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Abstract

This thesis investigates the stability and error estimates of finite element methods (FEM)
for partial differential equations (PDEs) in complex and evolving geometries. It aims
to advance the mathematical understanding and numerical analysis of FEM in three
challenging settings: time-dependent domains, fluid–structure interaction (FSI), and the
maximum-norm stability of isoparametric FEM.

The first part addresses the Arbitrary Lagrangian–Eulerian (ALE) FEM for the Stokes
equations on moving domains. By establishing optimal L2 error bounds of order O(hr+1)
for the velocity and O(hr) for the pressure, this work closes a long-standing gap in the
literature, where only sub-optimal convergence rates were previously available. A novel
duality argument for H−1-error estimate of pressure is developed to obtain optimal esti-
mates for the commutator between the material derivative and the Stokes–Ritz projection.

The second part develops and analyzes a fully-discrete loosely coupled scheme for fluid
thin-structure interaction problems. A key innovation is the construction and analysis of
a coupled non-stationary Ritz projection that satisfies the kinematic interface condition
and enables the derivation of optimal L2 error estimates. The proposed loosely coupled
scheme incorporates stabilization terms to ensure unconditional energy stability and is
rigorously shown to achieve optimal convergence in the L2 norm.

The third part focuses on maximum norm stability of isoparametric FEM in curvilin-
ear polyhedral domains where the geometry cannot be exactly triangulated. This includes
the proof of a weak discrete maximum principle and the derivation of optimal maximum-
norm error estimates for elliptic equations. For parabolic problems, the thesis establishes
the analyticity and maximal Lp-regularity of the semi-discrete FEM and further proves
optimal maximum-norm error estimates.
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Chapter 1

Introduction

This thesis is organized into three main parts, each addressing a fundamental challenge
in the numerical analysis of finite element methods (FEM) for partial differential equa-
tions in complex geometries. The first part (Chapter 2) focuses on the optimal L2 error
analysis of ALE finite element methods for the Stokes equations on time-dependent do-
mains. The second part (Chapter 3) presents an optimal L2 error analysis of loosely
coupled schemes for fluid–structure interaction (FSI) problems. The third part (Chap-
ters 4 and 5) examines the maximum-norm stability and error estimates of isoparametric
FEM on curvilinear polyhedral domains, including the establishment of a weak discrete
maximum principle for elliptic problems and the discrete analyticity and maximal reg-
ularity for parabolic equations. Together, these contributions provide new theoretical
insights and practical methodologies that enhance the accuracy and reliability of FEM-
based simulations, particularly in evolving domains and coupled physical systems.

Chapter 2 of this thesis is devoted to establishing optimal L2-error estimates for the
arbitrary Lagrangian–Eulerian (ALE) finite element method for the Stokes equations on
time-dependent domains. We consider the following model problem:

∂tu−∆u+∇p = f in
⋃

t∈(0,T ]

Ω(t)× {t}, (1.0.1a)

∇ · u = 0 in
⋃

t∈(0,T ]

Ω(t)× {t}, (1.0.1b)

u = w on
⋃

t∈(0,T ]

∂Ω(t)× {t}, (1.0.1c)

u = u0 on Ω0 := Ω(0), (1.0.1d)

where the domain Ω(t) evolves with a smooth boundary Γ(t) := ∂Ω(t), driven by a given
smooth velocity field w(·, t).

Significant progress has recently been made in Eulerian FEMs for fluid equations. In
particular, Lehrenfeld and Olshanskii [93] proposed a CutFEM-based Eulerian framework
for parabolic problems on moving domains, which was later extended to the Stokes equa-
tions by Burman et al. [31], who proved optimal-order estimates in the L2H1 and L2L2

norms. Alternatively, the ALE method has been a widely used approach for addressing
the challenges posed by domain motion, and it is the method employed in Chapter 2.

We consider the semidiscrete finite element approximation of problem (1.0.1). Let
V r
h (Ωh(t)) and Qr−1

h (Ωh(t)) denote the Taylor–Hood Pr–Pr−1 finite element spaces on
the evolving computational domain Ωh(t). We seek functions uh(t) ∈ V r

h (Ωh(t)) and
ph(t) ∈ Qr−1

h (Ωh(t)) such that uh(0) = Ihu(0) and uh = Ihw on ∂Ωh(t), satisfying:

(Dt,huh − wh · ∇uh, vh)Ωh(t) + (∇uh,∇vh)Ωh(t) − (∇ · vh, ph)Ωh(t) = (f, vh)Ωh(t), (1.0.2a)
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(∇ · uh, qh)Ωh(t) = 0, (1.0.2b)

for all test functions vh ∈ V̊ r
h (Ωh(t)) and qh ∈ Qr−1

h (Ωh(t)).
Optimal convergence of order O(hr+1) in the L∞(0, T ;L2) norm for the ALE semidis-

crete FEM has been proved for diffusion equations in moving domains by [64] and [102],
assuming polynomial degree r ≥ 1. However, for the Stokes and Navier–Stokes equations,
prior analyses have yielded only suboptimal rates. Specifically, for the ALE FEM with
Taylor–Hood elements, existing results show an L2 error of order O(hr); see [92, 122, 108].

In Chapter 2, we close this gap by proving that the semidiscrete ALE FEM achieves
O(hr+1) convergence in the L2 norm for the velocity and O(hr) convergence for the pres-
sure. As demonstrated in [64, 102], obtaining optimal convergence requires establishing
the following estimate for the commutator between the material derivative Dt,h and the
Stokes–Ritz projection Rh:

∥Dt,hRhu−RhDt,hu∥L2 ≤ Chr+1. (1.0.3)

To establish (1.0.3), the main challenge lies in the involvement of the pressure component
of the Stokes–Ritz projection in the L2 duality argument for the commutator term. This
difficulty is resolved by additionally deriving and employing an optimal H−1-norm error
estimate for the pressure component of the Stokes–Ritz projection.

Chapter 3 of this thesis is dedicated to the optimal L2 error analysis of finite element
methods (FEM) for fluid–structure interaction (FSI) problems. This chapter addresses
two primary aspects: the first is the optimal error analysis for the semidiscrete finite ele-
ment approximation of the FSI system; the second concerns the stability and convergence
of loosely coupled schemes for time-discretized FSI problems.

To simplify the analysis, we consider a model problem describing the interaction
between a viscous incompressible fluid and a thin elastic structure. The fluid is governed
by the Stokes equations:

ρf∂tu−∇ · σσσ(u, p) = 0, in (0, T )×Ω,

∇ · u = 0, in (0, T )×Ω,

u(0, ·) = u0(x), on Ω,

(1.0.4)

and the structure is modeled by a linear elastic wave equation:
ρsϵs∂ttηηη − Lsηηη = −σσσ(u, p)n, in (0, T )× Σ,

ηηη(0, x) = ηηη0(x), on Σ,

∂tηηη(0, x) = u0(x), on Σ,

(1.0.5)

subject to the kinematic interface condition:

∂tηηη = u on (0, T )× Σ, (1.0.6)

and periodic inflow–outflow conditions at the lateral boundaries Σl and Σr (see Fig-
ure 1.1).

In this analysis, several simplifying assumptions are made: (i) the domain deformation
induced by structural displacement is neglected (fixed-domain model), (ii) the domain
Ω admits an exact triangulation (no domain approximation error), (iii) the fluid and
structure are governed by linear equations (Stokes and elastic wave models), and (iv) the

10
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Figure 1.1: The computational domain for the thin-structure interaction problem

domain is assumed to be smooth with periodic inflow–outflow conditions (no geometric
singularities).

To the best of our knowledge, even under these simplified assumptions, optimal L2-
norm error estimates for FEM applied to FSI problems have not been previously estab-
lished. A primary difficulty lies in the absence of an appropriate Ritz projection that
accounts for the coupling between the fluid and structure. Standard Ritz projections
applied separately to the fluid and structure components fail to yield optimal L2-error
bounds for the coupled system; see, e.g., [5, 25, 54, 91, 120].

In Chapter 3, we resolve this issue by introducing a novel coupled non-stationary Ritz
projection. This projection consists of a triple (Rhu, Rhp,Rhηηη) of finite element functions
that satisfy a weak form of the coupled system, together with the time-dependent interface
constraint (Rhu)|Σ = ∂tRhηηη on Σ × [0, T ]. This construction is equivalent to solving an
evolution problem for Rhηηη with a suitably chosen initial condition Rhηηη(0).

Moreover, the dual problem associated with the non-stationary Ritz projection is
formulated as a backward-in-time initial–boundary value problem:

−Lsϕ+ ϕ = ∂tσσσ(ϕ, q)n+ f , on Σ× [0, T ), (1.0.7a)

−∇ · σσσ(ϕ, q) + ϕ = 0, in Ω × [0, T ), (1.0.7b)

∇ · ϕ = 0, in Ω × [0, T ), (1.0.7c)

σσσ(ϕ, q)n = 0, at t = T. (1.0.7d)

This system is equivalent to a backward evolution equation for ξ := σσσ(ϕ, q)n of the form:

−LsNξ +Nξ − ∂tξ = f on Σ× [0, T ), ξ(T ) = 0, (1.0.8)

where N : H−1/2(Σ)d → H1/2(Σ)d denotes the Neumann-to-Dirichlet map associated
with the Stokes system. By choosing a well-designed initial value Rhηηη(0) and utilizing
the regularity properties of the dual problem (1.0.7), which are shown by analyzing the
equivalent formulation in (1.0.8), we are able to derive optimal L2-error estimates for the
Ritz projection and, consequently, for the semidiscrete FEM approximation of the FSI
problem.

For time discretization, loosely coupled schemes enable separate treatment of the fluid
and structure subproblems without requiring extra iterations. However, ensuring stabil-
ity—especially in the presence of strong added-mass effects, such as in hemodynamics—is
a major challenge; see [33]. The design of stable loosely coupled methods has been an
active area of research [29, 30, 13, 68, 72].

Among these, the kinematically coupled scheme has gained prominence due to its
modularity, stability, and ease of implementation. The scheme was first analyzed in [23,
72, 25]. It proceeds in two steps: first, compute (sn, ηηηn) satisfying

ρsϵs
sn − un−1

τ
− Lsηηη

n = −σσσn−1 · n, on Σ, (1.0.9)
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ηηηn = ηηηn−1 + τsn, on Σ,

then compute (un, pn) satisfying

ρfDτu
n +∇ · σσσn = 0, in Ω, (1.0.10)

∇ · un = 0, in Ω,

ρsϵs
un − sn

τ
+ (σσσn − σσσn−1) · n = 0, on Σ.

In Chapter 3, we propose a finite element fully discrete version of this kinematically
coupled scheme. The fluid stress is evaluated explicitly as

σσσn
h · n := σσσ(un

h, p
n
h) · n = (−pnhI + 2µD(un

h)) · n.

To ensure unconditional energy stability, additional stabilization terms are incorporated:

ρsϵs

(
un
h − snh
τ

,
τ

ρsϵs
σσσ(vh, qh) · n

)
Σ

,

(
(σσσn

h − σσσn−1
h ) · n, τ(1 + β)

ρsϵs
σσσ(vh, qh) · n

)
Σ

.

Although alternative unconditionally stable fully discrete kinematically coupled schemes
have been proposed and studied [26, 120, 54, 5, 28, 25], their analyses have generally
yielded only suboptimal L2 error estimates, partly due to the lack of an appropriate Ritz
projection for the coupled system. In contrast, by employing the coupled non-stationary
Ritz projection introduced in this chapter, we are able to establish an optimal L2 error
estimate for the proposed fully discrete scheme.

The third part of this thesis concerns the maximum-norm stability and error estimates
of isoparametric finite element methods (FEM). Such stability and error estimates have
been established in the literature in settings where the domain Ω can be exactly triangu-
lated by finite elements—for instance, polygonal or polyhedral domains that admit exact
triangulations using linear simplicies, so that the computational domain Ωh coincides
with the exact domain Ω. However, in practical computations, curved boundaries of
smooth domains—or more generally, curvilinear polygons or polyhedra that may include
curved faces, edges, and corners—are typically approximated using isoparametric finite
elements. In such cases, the discrepancy between the exact domain Ω and the compu-
tational domain Ωh introduces a domain perturbation that must be carefully accounted
for in both the stability analysis and the error estimates.

In Chapter 4, we investigate the weak discrete maximum principle and derive optimal
maximum-norm error estimates for isoparametric FEM applied to elliptic problems. Let
Ω ⊂ RN with N ∈ {2, 3} be a (possibly concave) curvilinear polyhedral domain with
edge openings smaller than π, and let Th be a quasi-uniform family of meshes composed
of isoparametric elements of order r, such that the Hausdorff distance between Ω and
the computational domain Ωh = (

⋃
K∈Th K)◦ is of order O(hr+1). Denote by Sh(Ωh)

the associated isoparametric finite element space. A function uh ∈ Sh(Ωh) is said to be
discrete harmonic if ∫

Ωh

∇uh · ∇χh = 0 ∀χh ∈ S◦
h(Ωh). (1.0.11)

If all such discrete harmonic functions satisfy

∥uh∥L∞(Ωh) ≤ C∥uh∥L∞(∂Ωh), (1.0.12)
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with a constant C independent of h, the FEM is said to satisfy the weak discrete maximum
principle.

The result in [125] established this principle for a broad class of H1-conforming ele-
ments on quasi-uniform meshes in polygonal domains. Moreover, the principle was used
to derive maximum-norm stability and best-approximation properties of the Ritz projec-
tion:

∥u−Rhu∥L∞(Ω) ⩽ Cℓh inf
vh∈S◦

h(Ω)
∥u− vh∥L∞(Ω) ∀u ∈ H1

0 (Ω) ∩ L∞(Ω), (1.0.13)

where Rh : H1
0 (Ω) → Š◦

h(Ω) is the Ritz projection and

ℓh =

{
ln(2 + 1/h) for piecewise linear elements,

1 for higher-order finite elements.

The method employed in [125] remains a fundamental approach for establishing maxi-
mum norm estimates in FEM. Specifically, [125] reduces the problem to an L1-type error
estimate between the regularized elliptic Green’s function and its Ritz projection onto
the finite element space, using a dyadic decomposition of the domain and a kick-back ar-
gument to derive the desired L1-type error estimate. This argument was further refined
in [96], extending the result to three-dimensional polyhedral domains.

Some related results have been proved in the case Ωh ̸= Ω. For general bounded
smooth domains which may be concave, thus the finite element space may be non-
conforming, Kashiwabara & Kemmochi [79] have obtained the following error estimate
for piecewise linear finite elements for the Poisson equation under the Neumann boundary
condition:

∥ũ− uh∥L∞(Ωh) ⩽ Ch| log h| inf
vh∈Sh

∥ũ− vh∥W 1,∞(Ωh) + Ch2| log h|∥u∥W 2,∞(Ω), (1.0.14)

where ũ is any extension of u inW 2,∞(Ωδ) and Ωδ is a neighborhood of Ω. More recently,
the W 1,∞ stability of the Ritz projection was proved in [43] for isoparametric FEMs on
Cr+1,1-smooth domains based on weighted-norm estimates, where r denotes the degree
of finite elements.

For curvilinear polyhedral domains, the weak maximum principle and the best ap-
proximation results in the L∞ norm have not been proved. In this chapter, we close the
gap mentioned above by proving the weak maximum principle in (1.0.12) for isopara-
metric finite elements of degree r ⩾ 1 in a bounded smooth domain or a curvilinear
polyhedron (possibly concave) with edge openings smaller than π. The weak maximum
principle is proved by converting the finite element weak form on Ωh to a weak form on
Ω by using a bijective transformation Φh : Ωh → Ω which is piecewisely defined on the
triangles/tetrahedra. This yields a bilinear form with a discontinuous coefficient matrix
Ah. To align the reduction step with [125, 96], we reduce the weak discrete maximum
principle to a L1-type estimate for v−Rhv, where v is a regularized Green function on Ω
with respect to the coefficient matrix Ah (see (4.3.16) for definition of v). The difficulty
arises from the limited regularity of v, as it solves an elliptic equation with discontinuous
coefficients. To address this, we decomposes v into two components: v1, a regularized
Green’s function for the original Laplacian equation, and v2, which corresponds to an
elliptic equation with discontinuous coefficients Ah but with a small source term arising
from the domain perturbation, and then estimate the two parts separately by using the
H2 and W 1,p regularity of the respective problems.
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As an application of the weak maximum principle, we prove that the finite element
solution uh ∈ S◦

h(Ωh) of the Poisson equation{
−∆u = f in Ω

u = 0 on ∂Ω
(1.0.15)

using isoparametric finite elements of degree r ⩾ 1 has the following optimal-order error
bound (for any p > N):

∥u− uh∥L∞(Ω) ⩽ Cℓh∥u− Ǐhu∥L∞(Ω) + Chr+1ℓh∥f∥Lp(Ω), (1.0.16)

where uh is extended to be zero in Ω\Ωh, and Ǐhu denotes a Lagrange interpolation
operator. The maximum-norm error estimate is established in two steps. First, we
follow the approach of [125] to derive the L∞-stability of the Ritz projection Rh from
the weak discrete maximum principle, which yields an optimal maximum-norm error
estimate between the finite element solution uh and the auxiliary solution u(h) of the
Poisson equation posed on Ωh, where the source term f is extended by zero outside Ω.
The second step is to estimate the difference between u and u(h), which is achieved using
a maximum principle argument in an enlarged domain Ωt that contains both Ω and Ωh.
This step leads to the error term Chr+1ℓh∥f∥Lp(Ω) in (1.0.16), capturing the effect of
domain perturbation Ω ̸= Ωh.

In Chapter 5, we study the analyticity, maximal Lp-regularity, and optimal maximum-
norm error estimates of isoparametric FEM for the heat equation in curvilinear polyhedral
domains (possibly with non-convex corners):

∂u(t, x)

∂t
−∆u(t, x) = f(t, x), ∀(t, x) ∈ R+ ×Ω, (1.0.17)

u(t, x) = 0, ∀(t, x) ∈ R+ × ∂Ω, (1.0.18)

u(0, x) = u0(x), ∀x ∈ Ω. (1.0.19)

The semigroup E(t) = et∆ generated by the Laplacian operator ∆ satisfies the following
analyticity estimates:

sup
t>0

(
∥E(t)v∥Lq(Ω) + t∥∂tE(t)v∥Lq(Ω)

)
≤ C∥v∥Lq(Ω), ∀v ∈ Lq(Ω), 1 ≤ q <∞

(1.0.20a)

sup
t>0

(
∥E(t)v∥C0(Ω) + t∥∂tE(t)v∥C0(Ω)

)
≤ C∥v∥C0(Ω), ∀v ∈ C0(Ω), (1.0.20b)

Moreover, when u0 = 0, the solution of (1.0.17) exhibits maximal Lp regularity in the
space Lq(Ω):

∥∂tu∥Lp(R+;Lq(Ω)) + ∥∆u∥Lp(R+;Lq(Ω)) ≤ Cp,q∥f∥Lp(R+;Lq(Ω)) ∀1 < p, q <∞. (1.0.21)

For spatially semidiscrete FEM, we study whether discrete analogues of (1.0.20)–(1.0.21)
hold. Let Eh(t) := et∆h be the discrete semigroup. Then the corresponding estimates
are:

sup
t>0

(
∥Eh(t)vh∥Lq(Ωh) + t∥∂tEh(t)vh∥Lq(Ωh)

)
≤ C∥vh∥Lq(Ωh) (1.0.22a)

∀vh ∈ S◦
h(Ωh), 1 ≤ q ≤ ∞,
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∥∂tuh∥Lp(R+;Lq(Ωh)) + ∥∆huh∥Lp(R+;Lq(Ωh)) ≤ Cp,q∥fh∥Lp(R+;Lq(Ωh)) (1.0.22b)

if uh,0 = 0, ∀1 < p, q <∞.

The analyticity and maximal regularity of the finite element semi-discrete or fully-discrete
problem have numerous applications and serve as important tools for the convergence
analysis of numerical schemes for nonlinear parabolic equations [2, 52, 67, 104, 88, 143].

By reducing the problem to an L1-type error estimate between the discrete Green’s
function and a regularized Green’s function of the parabolic equation, [126, 133] estab-
lished the analyticity property (5.1.8a) of the discrete semigroup Eh for smooth domains.
The key estimate for the discrete Green’s function in these works was subsequently em-
ployed in [66] to prove the maximal Lp-regularity (5.1.8b) of the discrete semigroup
Eh(t) when both the domain and the coefficients of the parabolic equation are suffi-
ciently smooth. Later studies further relaxed the regularity requirements on the domain
and the coefficients. In particular, the results in [101, 100, 104] demonstrated that both
(5.1.8a) and (5.1.8b) hold when Ω is a (possibly nonconvex) polyhedral domain, provided
the coefficients satisfy aij ∈ W 1,N+ε(Ω).

However, these results remain valid only under the assumption that the domain Ω is
exactly triangulated. In the setting of isoparametric FEM, as discussed in Chapter 4, the
discrepancy between the exact domain Ω and the computational domain Ωh—i.e., domain
perturbation—must be properly addressed. Using the extension method, [80] proved
the discrete analyticity and maximal regularity properties (1.0.22a)–(1.0.22b) for finite
element semi-discretizations of parabolic equations on smooth domains with Neumann
boundary conditions, where Ωh approximates Ω via a quasi-uniform triangulation Th

composed of linear simplices, and Sh(Ωh) denotes the P
1 continuous finite element space

on Ωh.
The analyticity (1.0.22a) and maximal regularity (1.0.21) of isoparametric FEM on

curvilinear polyhedral domains with possibly nonconvex corners had not been established.
In Chapter 5, we close this gap by following the strategy of [101] to address the regularity
issues posed by nonconvex corners and, in place of the extension method, adopt the
transformation method to handle domain perturbation Ω ̸= Ωh. Specifically, we employ
a Lipschitz homeomorphism Φh : Ωh → Ω, as introduced in Chapter 4, to transform the
finite element problem on Ωh into one on Ω, where the transformed equation involves
a discontinuous coefficient matrix Ah. Let Γ̌h denote the discrete Green’s function of
the transformed problem and Γ the regularized Green’s function for the original heat
equation. Then, following [101], the estimates (1.0.22a) and (1.0.21) are reduced to an
L1-type estimate for the difference Γ − Γ̌h, which is obtained via a kick-back argument
involving parabolic dyadic decomposition, local energy error estimates, and local duality
arguments. A key challenge stems from the fact that Γ − Γ̌h satisfies only an almost
Galerkin orthogonality :

(∂tΓ− ah(x)∂tΓ̌h, χ̌h)Ω + (∇Γ− Ah(x)∇Γ̌h,∇χ̌h)Ω = 0 ∀ χ̌h ∈ Š◦
h(Ω).

This complicates the derivation of local energy error estimates and the application of
local duality arguments.

As shown in [101], the quasi-maximal L∞-regularity of the FEM facilitates reduc-
ing the maximum-norm stability of finite element solutions for parabolic equations to
the maximum-norm stability of the elliptic Ritz projection. Specifically, the following
estimate holds:

∥u− uh∥L∞(0,T ;L∞(Ω)) ≤ C
(
ℓh∥u−Rhu∥L∞(0,T ;L∞(Ω)) + ∥u0 − uh,0∥L∞(Ω)

)
. (1.0.23)
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In the context of isoparametric FEM, we establish a corresponding estimate in which
the additional error introduced by the domain perturbation remains of optimal order.
Specifically, we show that

∥ũ− uh∥L∞(0,T ;L∞(Ωh)) ≤C
(
ℓh∥ũ−Rhũ∥L∞(0,T ;L∞(Ωh)) + ∥ũ0 − uh,0∥L∞(Ωh)

)
(1.0.24)

+ Chr+1
(
∥u∥L∞(0,T ;W 2,∞(Ω)) + ∥∂tu∥L∞(0,T ;L∞(Ω))

)
.

Here, ũ denotes a Sobolev extension of the exact solution u to the larger domain Ω ∪Ωh.

Summary. This thesis contributes to the numerical analysis of partial differential equa-
tions by developing novel stability and error estimation techniques for finite element
methods in evolving and curvilinear domains. The results offer new theoretical insights
and practical tools for improving the accuracy and robustness of FEM-based simulations,
particularly in moving domain problems and fluid–structure interaction systems.
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Chapter 2

Optimal convergence of arbitrary La-
grangian Eulerian finite element meth-
ods for the Stokes equations in an evolv-
ing domain

2.1 Introduction

The Stokes equations are widely used to describe the motion of viscous fluids such as
water and air. Solving the Stokes equations is a critical area of research in fluid dynamics,
particularly when the domain is not fixed, such as in moving boundary/interface or fluid-
structure interaction problems. The inclusion of such a dynamic domain introduces an
additional layer of intricacy to the problem.

This chapter concerns the numerical solution of the Stokes equations in a time-
dependent domain Ω(t) ⊂ Rd with d ∈ {2, 3}, i.e.,

∂tu−∆u+∇p = f in
⋃

t∈(0,T ]

Ω(t)× {t}, (2.1.1a)

∇ · u = 0 in
⋃

t∈(0,T ]

Ω(t)× {t}, (2.1.1b)

u = w on
⋃

t∈(0,T ]

∂Ω(t)× {t}, (2.1.1c)

u = u0 on Ω0 = Ω(0), (2.1.1d)

where the domain Ω(t) has a smooth boundary Γ(t) = ∂Ω(t) which moves under a given
smooth vector field w(·, t). For well-posedness of system (2.1.1), velocity field w should
satisfy condition

∫
∂Ω(t)

w(·, t) ·n = 0 for each t ∈ [0, T ], where n denotes the outward unit

normal vector of ∂Ω(t). For simplicity, we assume that the vector field w has a smooth
extension (which we do not need to know explicitly) to the entire space Rd and generates
a smooth flow map Φ(·, t) defined on the entire space Rd. The equation also includes a
source term f , a given smooth function that depends on both space and time variables.
In our analysis, the solutions (u, p) of equation (2.1.1) are assumed to be sufficiently
smooth. To ensure uniqueness of the solutions, we assume that p(·, t) ∈ L2

0(Ω(t)), which
is the space of functions p in L2(Ω(t)) such that

∫
Ω(t)

pdx = 0.

Recent advancements have brought significant progress in the convergence analysis
of finite element methods (FEMs) for fluid equations in evolving domains. The well-
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posedness of the Oseen equation in time-dependent domains was proved in [41] by using an
evolving space framework. Lozovskiy et al. [111] introduced a quasi-Lagrangian FEM for
Navier–Stokes equations in time-dependent domains, demonstrating optimal-order error
estimates in the energy norm. In [113] a kth-order unfitted characteristic finite element
method(UCFEM) was studied for the time-varying interface problem of two-dimensional
Oseen equations. Moreover, Eulerian FEMs for fluid equations have made significant
progress. An Eulerian coordinate framework using CutFEM for parabolic equations on
moving domains was proposed by Lehrenfeld & Olshanskii [93], while Burman et al. [31]
extended this framework to the Stokes equations, proving optimal-order error estimates
for the velocity in L2H1-norm and L2L2-norm. Further enhanced analysis of related
CutFEMs for the Stokes and Oseen equations was provided in subsequent studies of von
Wahl et al. [135] and Neilan & Olshanskii [116].

Another prevalent method used to handle the complexities arising from domain evolu-
tion is the arbitrary Lagrangian-Eulerian (ALE) method, which will be employed in this
chapter. The ALE method allows the mesh to move according to an ALE mapping, such
as the interpolation Φh of Φ, to fit the evolving domain. To employ the ALE formulation,
one can define the material derivative of the solution u with respect to the velocity field
w as

Dtu(x, t) :=
d

dt
u(Φ(ξ, t), t) = ∂tu+ w · ∇u at x = Φ(ξ, t) ∈ Ω(t) for ξ ∈ Ω0. (2.1.2)

Using this definition of material derivative, the first two equations in (2.1.1) can be
rewritten as

Dtu− w · ∇u−∆u+∇p = f, (2.1.3a)

∇ · u = 0, (2.1.3b)

and the ALE method can be employed to discretize the material derivative Dtu along the
characteristic lines of the evolving mesh.

In an early investigation of ALE methods, Formaggia & Nobile [118] provided sta-
bility results for two different ALE finite element schemes. Subsequently, Gastaldi [63]
established a priori error estimates of ALE FEMs for parabolic equations, illustrating
that a piecewise linear element can yield L2 error of order O(h) when the mesh size h is
sufficiently small. In a related study [117], Nobile obtained an error estimate of O(hk) in
the L2 norm for spatially semidiscrete ALE finite element schemes, with k denoting the
degree of the piecewise polynomials utilized. The stability of time-stepping schemes in
the context of ALE formulations, such as implicit Euler, Crank–Nicolson, and backward
differentiation formulae (BDF), were proved in [17] and [58]. Under specific generalized
compatibility conditions and step size restrictions, these investigations yielded L2 error
estimates of O(τ s + hk), where s = 1, 2 corresponds to the order of the time schemes
and k denotes the degree of the finite element space employed. Moreover, Badia & Cod-
ina [10] obtained L2 error bounds of O(τ s + τ−1/2hk+1) for s = 1, 2 for fully discretized
ALE methods that employ BDF in time and FEM in space. These sub-optimal error
bounds were obtained when the mesh dependent stabilization parameter appearing in
fully discrete scheme is as small as the time step size.

Optimal convergence of O(hr+1) in the L∞(0, T ;L2) norm of ALE semidiscrete FEM
for diffusion equations in a bulk domain with a moving boundary was established by
Gawlik & Lew in [64] for finite element schemes of degree r ⩾ 1. We also refer to
[50] and [47] for a unified framework of ALE evolving FEMs and an ALE method with
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harmonically evolving mesh, respectively. Optimal-order H1 convergence of the ALE
FEM for PDEs coupling boundary evolution arising from shape optimziation problems
was proved in [70]. These results were established for high-order curved evolving mesh.
Optimal convergence of O(hr+1) in the L∞(0, T ;L2) norm, with flat evolving simplices in
the interior and curved simplices exclusively on the boundary, was proved in [106] for the
ALE semidiscrete FEM utilizing the standard iso-parametric element of degree r in [94].

In addition to the ALE spatial discretizations mentioned above, the stability and
error estimates of discontinuous Galerkin (dG) semi-discretizations in time for diffusion
equations in a moving domain using ALE formulations were established in [19] and [18],
respectively. The ALE methods for PDEs in bulk domains [70] are also closely related to
the evolving FEMs for PDEs on evolving surfaces. Optimal-order convergence in the L2

and H1 norms of evolving FEMs for linear and nonlinear PDEs on evolving surfaces has
been shown in [45, 51, 86].

The above-mentioned research efforts have focused on diffusion equations with and
without advection terms. The analysis of ALE methods for the Stokes and Navier–Stokes
equations has also yielded noteworthy results but remained suboptimal, as discussed
below. In [92], Legendre & Takahashi introduced a novel approach that combines the
method of characteristics with finite element approximation to the ALE formulation of
the Navier–Stokes equations in two dimensions, and established an L2 error estimate
of O(τ + h1/2) for the P1b–P1 elements under certain restrictions on the time step size.
In a related work [122], an error estimate of O(h2| log h|) was obtained for the ALE
semidiscrete FEM with the Taylor–Hood P2–P1 elements for the Stokes equations in a
time-dependent domain. Moreover, for a fully discrete ALE method with the implicit
Euler scheme in time, convergence of O(τ + h2 + h2/τ) was proved in [122]. The errors
of ALE finite element solutions to the Stokes equations on a time-varying domain, with
BDF-k in time (for 1 ⩽ k ⩽ 5) and the Taylor–Hood Pr–Pr−1 elements in space (with
degree r ⩾ 2), were shown to be O(τ k + hr) in the L2 norm in [108].

As far as we know, optimal-order convergence of ALE semidiscrete and fully discrete
FEMs were not established for the Stokes and Navier–Stokes equations in an evolving
domain. As shown in [64, 102], the optimal-order convergence of ALE semidiscrete FEM
requires proving the following optimal-order approximation property for the material
derivative of the Ritz projection:

∥Dt,hRhu−RhDt,hu∥L2 ⩽ Chr+1. (2.1.4)

In line with the fixed domain case, achieving optimal consistency error in analysis of
finite element approximation for the Stokes equations necessitates the use of the Stokes-
Ritz projection Rh. As a result, when trying to obtain the optimal-order approximation
property (2.1.4) following the duality argument as in [64, 102], a problem occurs that
the error estimate of Stokes-Ritz projection of pressure is involved in the analysis. This
problem was addressed by additionally establishing and utilizing an optimal H−1 error
estimate for the Stokes-Ritz projection of pressure, i.e., (2.4.43), which is used in Lemma
2.4.5. This leads to optimal-order convergence of the ALE semidiscrete FEM, as the main
result of this chapter (see Theorem 2.2.1).

A fully discrete second-order projection method along the trajectories of the evolv-
ing mesh for decoupling the unknown solutions of velocity and pressure is proposed to
compute the numerical solutions in the section of numerical examples.

For simplicity, we focus on the analysis of ALE semidiscrete method for the Stokes
equations. However, the numerical scheme and analysis presented in this chapter can be
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readily extended to the Navier–Stokes equations. The methodologies employed can be
effectively utilized to tackle the nonlinear terms as well.

The rest of this chapter is organized as follows. In Section 2.2 we present the basic
notation of evolving mesh and ALE finite elements, as well as the semidiscrete ALE
FEM for (2.1.1) and the main theorem of this chapter. In Section 2.3 we present some
preliminary results for the evolving mesh, ALE finite element spaces, and boundary-
skin estimates. The proof of the main theorem is presented in Section 2.4. Section
2.5 includes numerical results for the Stokes equations and Navier-Stokes equations as
empirical evidence supporting our theoretical findings.

2.2 Notation and main results

2.2.1 Evolving mesh and ALE finite element spaces

Suppose that the initial smooth domain Ω0 is divided into a set T 0
h of shape-regular and

quasi-uniform curved simplices with maximal mesh size h. Each curved simplex K is
associated with a unique polynomial FK of degree r, referred to as the parametrization
of K (as described in [50]). This parametrization maps the reference simplex K̂ onto
the curved simplex K. Additionally, each boundary simplex K (with one face or edge
attached to the boundary) may contain a curved face or edge that needs to interpolate
the boundary Γ0 = ∂Ω0. To achieve this interpolation, we employ iso-parametric fi-
nite elements of Lenoir’s type (see [94] for further details) at time t = 0 based on the
parametrization of the boundary which is denoted by Υ : ∂D̃ → Γ0. Here, ∂D̃ repre-
sents the flat boundary face of the triangulated flat domain, which has the same vertices
as the curved triangulated domain Ω0

h =
⋃

K∈T 0
h
K. In practical implementations, the

parametrization Υ can be chosen as the normal projection onto Γ0. In other words, it
computes the unique point Υ (x) ∈ Γ0 satisfying the equation:

x = Υ (x) + sign(x,Ω0)|x− Υ (x)|n(Υ (x)),

where n(Υ (x)) is the unit outward normal vector at point Υ (x) and

sign(x,Ω0) =

{
1 for x ∈ Rd\Ω0,
−1 for x ∈ Ω0.

Let us denote the nodes of the triangulation T 0
h as ξj ∈ Rd, where j = 1, . . . , N .

Each node ξj undergoes a time evolution with velocity w, resulting in the movement of
the node to a point xj(t) ∈ Rd at time t. This evolution is governed by an ordinary
differential equation (ODE):

d

dt
xj(t) = w(xj(t), t) and xj(0) = ξj.

Consequently, the points xj(t), where j = 1, . . . , N , constitute the nodes of a time-
dependent triangulation denoted as Th(t). The relations among these points mirror those
among the original nodes ξj, namely, a set of nodes xj(t) form the vertices of a simplex in
Th(t) if and only if the corresponding nodes ξj form the vertices of a simplex in T 0

h . Hence,
the evolving domain Ωh(t) =

⋃
K∈Th(t)K serves as an approximation of the exact domain

Ω(t). This approximation is achieved by employing piecewise polynomial interpolation
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of degree r on the reference simplex, with an associated interpolation error of O(hr+1).
Note that the approximation to Ω(t) by Ωh(t) may not be Lenoir’s type for t > 0.

In a manner similar to the initial triangulation T 0
h , each simplex K ∈ Th(t) is as-

sociated with a unique polynomial of degree r, denoted as F t
K : K̂ → K, which serves

as a parametrization of K over time. Therefore, the finite element space defined on the
evolving discrete domain Ωh(t) is given by:

Sr
h(Ωh(t)) := {vh ∈ C(Ωh(t)) : vh ◦ F t

K ∈ P r(K̂) for all K ∈ Th(t)},

where P r(K̂) represents the set of polynomials on K̂ with degree less than or equal to
r. We denote V r

h (Ωh(t)) := Sr
h(Ωh(t))

d as the corresponding vector-valued finite element
spaces. The finite element basis functions of Sr

h(Ωh(t)) are denoted as ϕt
j, where j =

1, . . . , N . These basis functions satisfy the property:

ϕt
j(xi(t)) = δij, i, j = 1, . . . , N.

In terms of these basis functions, the approximated flow map Φh(·, t) ∈ V r
h (Ω

0
h) can be

expressed as

Φh(ξ, t) =
N∑
j=1

xj(t)ϕ
0
j(ξ) for ξ ∈ Ω0

h.

The flow map Φh(·, t) establishes a one to one correspondence between Ω0
h and Ωh(t) at

time t, with a velocity field wh ∈ V r
h (Ωh(t)) satisfying:

wh(Φh(ξ, t), t) =
d

dt
Φh(ξ, t) =

N∑
j=1

w(xj(t), t)ϕ
0
j(ξ) for ξ ∈ Ω0

h. (2.2.5)

This representation corresponds to the unique Lagrange interpolation of the exact velocity
w(Φ(·, t), t). Analogous to definition (2.1.2), we can define the material derivative of any
vector or scalar valued function v with respect to the discrete velocity field wh as follows:

Dt,hv(x, t) :=
d

dt
v(Φh(ξ, t), t) = ∂tv +∇v · wh at x = Φh(ξ, t) ∈ Ωh(t) for ξ ∈ Ω0

h.

(2.2.6)

The pullback of the finite element basis function ϕt
j from the domain Ωh(t) to Ωh(s),

i.e., ϕt
j ◦ Φh(·, t) ◦ Φh(·, s)−1, gives rise to a finite element function defined on Ωh(s).

Remarkably, the nodal values of this function coincide with those of ϕs
j . As a result, we

establish the equality ϕt
j ◦ Φh(·, t) ◦ Φh(·, s)−1 = ϕs

j . Exploiting this relationship, we can
derive the well-known transport property of the basis function ϕt

j, which states:

Dt,hϕ
t
j(x) =

d

dt
ϕ0
j(ξ) = 0 at x = Φh(ξ, t). (2.2.7)

2.2.2 The semidiscrete finite element approximation and main
results

We consider the Taylor–Hood type finite element spaces on the evolving domain Ω(t),
which allow for a continuous approximation of the pressure. Specifically, we define the
following spaces:

V̊ r
h (Ωh(t)) :={u ∈ V r

h (Ωh(t)) : u|∂Ωh(t) = 0},
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Qr−1
h (Ωh(t)) :={p ∈ Sr−1

h (Ωh(t)) :

∫
Ωh(t)

pdx = 0}.

The semidiscrete finite element problem can be formulated as follows: Seek solutions
uh(t) ∈ V r

h (Ωh(t)) with initial value uh(0) = Ihu(0) and the boundary condition uh =
wh on ∂Ωh(t), and ph(t) ∈ Qr−1

h (Ωh(t)) that satisfy the following equations for all test

functions vh ∈ V̊ r
h (Ωh(t)) and qh ∈ Qr−1

h (Ωh(t)):

(Dt,huh − wh · ∇uh, vh)Ωh(t) + (∇uh,∇vh)Ωh(t) − (∇ · vh, ph)Ωh(t) =(f, vh)Ωh(t), (2.2.8a)

(∇ · uh, qh)Ωh(t) =0, (2.2.8b)

The main result of this chapter is the following theorem.

Theorem 2.2.1 (Error estimates of the semidiscrete FEM). Consider the semidiscrete
finite element solutions (uh, ph) given by (2.2.8). Assuming that the exact solutions (u, p)
to problem (2.1.1) are sufficiently smooth and have been extended to be defined on Rd via
(2.3.15), the following estimate holds under condition that w is sufficiently smooth:

sup
t∈[0,T ]

∥u− uh∥L2(Ωh(t)) ⩽CRu,ph
r+1, (2.2.9)

∥p− ph∥L2(0,T ;L2(Ωh(t))) ⩽CRu,ph
r, (2.2.10)

where C is a constant independent of the mesh size h and Ru,p is a norm of (u, p) defined
as follows:

Ru,p :=∥∂tu∥L2(0,T ;W r+1,∞(Rd) + ∥u∥L2(0,T ;W r+2,∞(Rd))

+ ∥∂tp∥L2(0,T ;Hr(Rd)) + ∥p∥L2(0,T ;Hr+1(Rd))

+ ∥u∥L∞(0,T ;W r+1,∞(Rd)) + ∥p∥L∞(0,T ;Hr(Rd)).

The rest of this chapter is devoted to the proof of Theorem 2.2.1.

2.3 Preliminary

The analysis of integrals over dynamically evolving domains necessitates the application
of the Transport Theorem, as established in [137, Lemma 5.7]. This pivotal theorem
provides a concise and indispensable description of the intrinsic relationship between the
time derivative of an integral over a domain that evolves with time and the derivatives
of the integrated function and domain velocity.

Lemma 2.3.1 (Transport Theorem). If the domain Ω undergoes motion with a velocity
field w ∈ W 1,∞(Ω), we have

d

dt

∫
Ω

f dx =

∫
Ω

Dtf + f∇ · w dx, (2.3.11)

where Dtf is the material derivative of f with respect to the velocity w.

The interaction between the operators Dt and ∇ plays an essential role in the error
analysis. Consequently, we establish the following lemma as a direct consequence of
(2.1.2):
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Lemma 2.3.2. For any vector-valued function f , the material derivative of ∇f and ∇·f
with respect to the velocity field w can be expressed as follows:

Dt∇f = ∇Dtf −∇f∇w, (2.3.12)

Dt∇ · f = ∇ ·Dtf − (∇f) : (∇w)⊤. (2.3.13)

By employing Verfürth’s trick and utilizing the macros-element criterion, as described
in [16, Section 8.5 and Section 8.8], we establish the inf-sup condition for the Taylor–Hood
type isoparametric elements.

Lemma 2.3.3 (Inf-sup condtion). There exists a constant κ > 0, independent of h and
t ∈ [0, T ] for r ⩾ 2, such that

sup
0̸=vh∈V̊ r

h (Ωh(t))

(divvh, ph)Ωh(t)

∥∇vh∥L2(Ωh(t))

≥ κ∥ph∥L2(Ωh(t)) ∀ph ∈ Qr−1
h (Ωh(t)). (2.3.14)

2.3.1 Boundedness of partial derivatives of the mesh velocity

For any function u defined on
⋃

0≤t≤T Ω(t)×{t}, there is an extension function ũ defined

on Rd × [0, T ] such that

ũ(·, t) := E(u(·, t) ◦ Φ(·, t)) ◦ Φ(·, t)−1, (2.3.15)

where the operator E : L1(Ω(0)) → L1(Rd) refers to Stein’s extension operator in [130,
p. 181, Theorem 5]. It holds that

∥ũ(·, t)∥Wk,p(Rd) ≤ C∥u(·, t)∥Wk,p(Ω(t)). (2.3.16)

Similarly, we can define the function p̃ as the extension of p to the whole space Rd. To
simplify the notation, we will just use (u, p) to represent (ũ, p̃) if there is no confusion
arisen within the context.

We denote the interpolation operators as Ih(t) : C(Ωh(t)) → Sr
h(Ωh(t)). Throughout

this discussion, the explicit time dependency t is often omitted, and we will use Ih instead.
In certain cases, we come across vector-valued spaces such as V r

h (Ωh(t)) = Sr
h(Ωh(t))

d

and the corresponding vector-valued interpolation operators such as Idh. To streamline
the notation, we will use Ih when referring to vector-valued objects, provided there is no
ambiguity within the context. In the same spirit, we use notation like ∥ · ∥H1(Ω(t)) instead
of ∥ · ∥H1(Ω(t))d when referring to norms of vector-valued objects.

By (2.2.5), the interpolation wh = Ihw serves as an approximation of w. Consequently,
we can establish an error estimate for wh in the piece-wise Sobolev norm W k,∞

h (Ωh(t))
with respect to triangulation Th(t) as follows:

∥wh(·, t)− w(·, t)∥Wk,∞
h (Ωh(t))

⩽ Chr+1−k∥w(·, t)∥W r+1,∞(Ωh(t)) ∀ 0 ≤ k ≤ r + 1, (2.3.17)

which especially implies the W 1,∞-boundedness of the discrete velocity wh. Observe that
Φ(ξj, t) = Φh(ξj, t) for each nodes ξj of discrete domain Ω0

h, thus there holds Φh(·, t) =
IhΦ(·, t) on Ω0

h and we can derive the error between Φ(t) and Φh(t) as follows:

∥Φ(·, t)− Φh(·, t)∥W 1,∞(Ω0
h)
⩽ Chr. (2.3.18)
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The estimates in (2.3.17) and (2.3.18) lead to the following result when h is sufficiently
small

∥wh(·, t)∥W 1,∞(Ωh(t)) + ∥Φh(·, t)∥W 1,∞(Ω0
h)
+ ∥Φ−1

h (·, t)∥W 1,∞(Ωh(t)) ⩽ C, (2.3.19)

where C is a constant independent of the mesh size h and time t. This serves as a basic
condition on the mesh velocity in the subsequent analysis.

2.3.2 Error of domain approximation

To address the discrepancy between Ω(t) and its finite element approximation Ωh(t), we
utilize the boundary-skin estimate. This estimate is essential for effectively managing
errors that arise from the finite element approximation of the domain.

Lemma 2.3.4. For any finite element function vh ∈ V̊ r
h (Ωh(t)), the following inequalities

hold:

∥vh∥L2(Ωh(t)\Ω(t)) ≤ Ch3(r+1)/2−d/2∥∇vh∥L2(Ωh(t)) ≤ Ch3(r+1)/2−d/2−1∥vh∥L2(Ωh(t)).

Proof. Using Hölder’s inequality, Newton-Leibniz formula and the fact vh|∂Ωh(t) = 0, we
have

∥vh∥L2(Ωh(t)\Ω(t)) ≤ |Ωh(t) \Ω(t)|1/2∥vh∥L∞(Ωh(t)\Ω(t))

≤ |Ωh(t) \Ω(t)|1/2 sup
x∈Ωh(t)\Ω(t)

dist(x, ∂Ωh)∥∇vh∥L∞(Ωh(t))

≤ Ch3(r+1)/2∥∇vh∥L∞(Ωh(t))

≤ Ch3(r+1)/2−d/2∥∇vh∥L2(Ωh(t)) ≤ Ch3(r+1)/2−d/2−1∥vh∥L2(Ωh(t)),

where we used the fact that the distance from x ∈ Ωh \ Ω to ∂Ωh(t) is no greater than
Chr+1 and the inverse estimate of finite element functions in the last two inequalities.

Due to the inherent discrepancy between the finite element domain Ωh(t) and the
exact domain Ω(t), the exact solution u does not vanish on ∂Ωh(t). To handle this
situation, we rely on the following lemma to derive an estimate for the integral over the
boundary ∂Ωh(t). A proof of this lemma can be found in [102, eq. (3.32)].

Lemma 2.3.5. Let g ∈ W 1,1(Rd). Then the following inequality holds:

∥g∥L1(∂Ωh(t)) ≤ C∥g∥L1(∂Ω(t)) + C∥∇g∥L1(Ω(t)∪Ωh(t)), (2.3.20)

where C is a constant independent of the mesh size h and time t.

The significance of the ensuing lemma lies in its pivotal role in acquiring optimal H−1-
norm estimates for pressure through implementation of a duality argument. A rigorous
proof of this lemma can be found in [53, Corollary 1.5].

Lemma 2.3.6. For each λ ∈ H1(Ω(t))∩L2
0(Ω(t)), there is a function χ ∈ H2(Ω(t))d ∩H1

0 (Ω(t))d

such that divχ = λ, and the following inequality holds:

∥χ∥H2(Ω(t)) ≤ C∥λ∥H1(Ω(t)),

where the constant C is independent of t ∈ [0, T ].
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2.4 Error estimates of the semidiscrete FEM

2.4.1 The Stokes–Ritz projection

Analogous to the Stokes–Ritz projection in a fixed domain, we introduce the concept
of the Stokes–Ritz projection for the pair (v(·, t), q(·, t)) ∈ H1(Ωh(t)) × L2(Ωh(t)) for
t ∈ [0, T ] over a time-dependent finite element domain Ωh(t), denoted as (Rhv,Rhq) ∈
V r
h (Ωh(t))×Qr−1

h (Ωh(t)). The Stokes–Ritz projection satisfies the following equations for

all test functions χh ∈ V̊ r
h (Ωh(t)) and λh ∈ Qr−1

h (Ωh(t)) under the boundary condition
Rhv = Ihv on ∂Ωh(t):

(∇Rhv,∇χh)Ωh(t) − (∇ · χh, Rhq)Ωh(t) =(∇v,∇χh)Ωh(t) − (∇ · χh, q)Ωh(t), (2.4.21a)

(∇ ·Rhv, λh)Ωh(t) =(∇ · v, λh)Ωh(t). (2.4.21b)

Additionally, we define the norm ∥ · ∥′
over any domain D ⊂ Rd as follows:

∥f∥′

L2(D) := ∥f − f̄∥L2(D), (2.4.22)

where f̄ denotes the average of f over D, given by f̄ := 1
|D|

∫
D
f dx.

By utilizing the inf-sup condition (2.3.14), the Stokes–Ritz projection exhibits quasi-
optimal error estimates, as stated in the following lemma:

Lemma 2.4.1. [69, Chapter 2, Theorem 1.1] Let (Rhv,Rhq) denote the Stokes–Ritz
projections of (v, q). Suppose that (v, q) are sufficiently smooth. Then the following
estimate holds

∥∇(v −Rhv)∥L2(Ωh(t)) + ∥q −Rhq∥
′

L2(Ωh(t))
≤ Chr

(
∥v∥Hr+1

h (Ωh(t))
+ ∥q∥Hr

h(Ωh(t))

)
,

where Hr
h(Ωh(t)) means the piece-wise Sobolev norm with respect to the mesh Th(t). The

constant C is independent of h, t and the function (v, q).

Remark 2.4.1. Lemma 2.4.1 is a corollary of [69, Chapter 2, Theorem 1.1] and error
estimates of Lagrange interpolation:

∥∇(v − Ihv)∥L2(Ωh(t)) ≤ Chk∥v∥Hk+1
h (Ωh(t))

, ∥q − Ihq∥L2(Ωh(t)) ≤ Chk∥q∥Hk
h(Ωh(t))

,

where k is restricted by condition that d
2
< k ≤ r due to the requirement of Sobolev

embedding Hk(Rd) ↪→ C0(Rd) for the stability of Lagrange interpolation. To obtain
Lemma 2.4.1, it suffices to take k = r. Since r ≥ 2 and d ∈ {2, 3} by our assumption,
the restriction k = r > d

2
is satisfied. However, if q only possesses H1-regularity, as is

the case for the solution φ of the duality problem (2.4.32), there is no desired estimate
of Lagrange interpolation error of q. To overcome this problem, we can consider the
Scott-Zhang interpolation Ih (cf. [129] and [21, Section 4.8]). Though we are working
with finite element space consisting of isoparametric elements, the same strategy as in
[129, Theorem 3.1] still applies to prove the following first-order error estimate:

∥q − Ihq∥L2(Ωh(t)) ≤ Ch∥q∥H1(Ωh(t)). (2.4.23)

As a corollary, let Ph : L2(Ωh(t)) → Sr
h(Ωh(t)) be the L2(Ωh(t))-orthogonal projection

onto the finite element space Sr
h(Ωh(t)). Then, there holds:

∥q − Phq∥L2(Ωh(t)) ≤ ∥q − Ihq∥L2(Ωh(t)) ≤ Ch∥q∥H1(Ωh(t)) (2.4.24)

We shall utilize (2.4.24) in our duality argument contained in Lemma 2.4.3 and Lemma
2.4.5 below.

25



In order to prove the optimal-order estimate of the error between exact solutions and
numerical solutions, we need to facilitate the estimation of errors such as Dt,h(v − Rhv)
and Dt,h(q −Rhq). It is convenient to introduce the operator Et,h defined as:

Et,h := Dt,hRh −RhDt,h. (2.4.25)

We can establish the following lemma about the estimate of ∇Et,hv and Et,hq.

Lemma 2.4.2. Let (Rhv,Rhq) denote the Stokes–Ritz projections of (v, q). Suppose that
(v, q) are sufficiently smooth. There is a constant C independent of h, t and the function
(v, q) so that the following estimate holds:

∥∇Et,hv∥L2(Ωh(t)) + ∥Et,hq∥
′

L2(Ωh(t))
≤ Chr

(
∥v∥Hr+1

h (Ωh(t))
+ ∥q∥Hr

h(Ωh(t))

)
. (2.4.26)

Proof. Since equations (2.4.21) are invariant under the substitution q to q − q with q
being the average of q over Ωh(t), it suffices to assume that q = 0. Now, we fix a time
t ∈ [0, T ] and a pair of testing functions χh ∈ V̊ r

h (Ωh(t)) and λh ∈ Qr−1
h (Ωh(t)). From

(2.4.21), the following equation holds for each s ∈ [0, T ]:

(∇(Rhv − v)(s),∇χh(s))Ωh(s) − (∇ · χh(s), (Rhq − q)(s))Ωh(s) = 0, (2.4.27a)

(∇ · (Rhv − v)(s), λh(s)− λh(s))Ωh(s) = 0, (2.4.27b)

where χh(s) ∈ V̊ r
h (Ωh(s)) and λh(s) ∈ Sr−1

h (Ωh(s)) are defined by χh(s) := χh(t) ◦ϕh(t) ◦
(ϕh(s))

−1 and λh(s) := λh(t) ◦ ϕh(t) ◦ (ϕh(s))
−1, i.e. the finite element functions on

Ωh(s) with the same nodal values as χh and λh respectively. Note that by definition
Dt,hχh(s) = Dt,hλh(s) = 0 for all s ∈ [0, T ] and λh(t) = λh = 0 but in general λh(s) ̸= 0.
By taking derivative with respective to time s at s = t on both sides of (2.4.27), and
using Lemma 2.3.1 and Lemma 2.3.2, we obtain

(∇Dt,hRhv,∇χh)Ωh(t) − (∇ · χh, Dt,hRhq)Ωh(t) − (∇Dt,hv,∇χh)Ωh(t) + (∇ · χh, Dt,hq)Ωh(t)

= −(∇(v −Rhv)∇wh,∇χh)Ωh(t) + (∇(v −Rhv),∇χh(∇ · wh −∇wh))Ωh(t)

+ (∇χh : (∇wh)
⊤ −∇ · χh∇ · wh, q −Rhq)Ωh(t), (2.4.28a)

(∇ ·Dt,hRhv, λh)Ωh(t) − (∇ ·Dt,hv, λh)Ωh(t)

= −(∇(v −Rhv) : (∇wh)
⊤, λh)Ωh(t) + (∇ · (v −Rhv), λh∇ · wh)Ωh(t)

+ (∇ · (Rhv − v), 1)Ωh(t)

(λh,∇ · wh)Ωh(t)

|Ωh(t)|
. (2.4.28b)

Similarly to the definition of (2.4.21), we can define the Stokes–Ritz projection of (Dt,hv,Dt,hq),
and substitute the definition into (2.4.28), we obtain

(∇Et,hv,∇χh)Ωh(t) − (∇ · χh, Et,hq)Ωh(t)

= −(∇(v −Rhv)∇wh,∇χh)Ωh(t) + (∇(v −Rhv),∇χh∇ · wh −∇χh∇wh)Ωh(t)

+ (∇χh : (∇wh)
⊤ −∇ · χh∇ · wh, q −Rhq)Ωh(t), (2.4.29a)

(∇ · Et,hv, λh)Ωh(t)

= −(∇(v −Rhv) : (∇wh)
⊤, λh)Ωh(t) + (∇ · (v −Rhv), λh∇ · wh)Ωh(t)

+ (∇ · (Rhv − v), 1)Ωh(t)

(λh,∇ · wh)Ωh(t)

|Ωh(t)|
. (2.4.29b)
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By the definition of the Stokes–Ritz projection, Rhv = Ihv and RhDt,hv = IhDt,hv on the
boundary ∂Ωh(t). Then Dt,hRhv = Dt,hIhv = IhDt,hv on ∂Ωh(t), which means Et,hv = 0
on ∂Ωh(t). Hence, we can choose χh = Et,hv and λh = Et,hq − Et,hq in equation (2.4.29)
with Et,hq being the average of Et,hq over Ωh(t), and obtain the following estimate by
using the W 1,∞ boundedness of wh

∥∇Et,hv∥2L2(Ωh(t))
⩽C∥∇(Rhv − v)∥2L2(Ωh(t))

+ C∥q −Rhq∥2L2(Ωh(t))

+ C∥Et,hq − Et,hq∥L2(Ωh(t))∥∇(Rhv − v)∥L2(Ωh(t)). (2.4.30)

By using the inf-sup condition (2.3.14) and the equation (2.4.29a), we have

∥Et,hq − Et,hq∥L2(Ωh(t)) ⩽C sup
0 ̸=χh∈V̊ r

h

(∇ · χh, Et,hq − Et,hq)

∥∇χh∥L2(Ωh(t))

= C sup
0̸=χh∈V̊ r

h

(∇ · χh, Et,hq)

∥∇χh∥L2(Ωh(t))

⩽C
(
∥∇Et,hv∥L2(Ωh(t)) + ∥∇(Rhv − v)∥L2(Ωh(t)) + ∥q −Rhq∥L2(Ωh(t))

)
.

(2.4.31)

By substituting (2.4.31) into (2.4.30), and using Young’s inequality and Lemma 2.4.1
under the assumption q = 0, we obtain the desired result.

2.4.2 The Nitsche’s trick and duality argument

In order to obtain an optimal order error estimate of Rhu − u, we will apply Nitsche’s
trick. Let gh be a function in V̊ r

h (Ωh(t)) that we can extend outside of Ωh(t) by setting
it to zero. We solve the following equations in Ω(t) for (ψ, φ) ∈ H1

0 (Ω(t))× L2
0(Ω(t)):

−∆ψ +∇φ = gh in Ω(t), (2.4.32a)

∇ · ψ =0 in Ω(t), ψ|∂Ω(t) = 0. (2.4.32b)

By applying regularity estimates for the Stokes equations in Ω(t), we obtain the following
result:

∥ψ∥H2(Ω(t)) + ∥∇φ∥L2(Ω(t)) ≤ C∥gh∥L2(Ωh(t)). (2.4.33)

To extend the functions ψ and φ to ψ̃ and φ̃, respectively, we employ the Stein extension
operator as in (2.3.15). By applying this operator, we can define η̃ as η̃ := −∆ψ̃+∇φ̃−gh
and arrive at the following expression:

∥gh∥2L2(Ωh(t))
= (∇ψ̃,∇gh)Ωh(t) − (∇ · gh, φ̃)Ωh(t) − (gh, η̃)Ωh(t). (2.4.34)

Notably, since η̃ vanishes in Ω(t) and we have r ≥ 2, we can utilize Lemma 2.3.4 along
with the regularity estimate (2.4.33) to obtain the following inequality:

|(gh, η̃)Ωh(t)| = |(gh, η̃)Ωh(t)\Ω(t)| ≤ ∥η̃∥L2(Rd)∥gh∥L2(Ωh(t)\Ω(t)) ≤ Ch2∥gh∥2L2(Ωh(t))
. (2.4.35)

Consequently, when h > 0 is sufficiently small, we can absorb |(gh, η̃)Ωh(t)| on the right-
hand side of (2.4.34) by the left-hand side. This yields the following estimate:

∥gh∥2L2(Ωh(t))
⩽ C

∣∣∣(∇ψ̃,∇gh)Ωh(t) − (∇ · gh, φ̃)Ωh(t)

∣∣∣. (2.4.36)

We choose gh = Rhv − Ihv ∈ V̊ r
h (Ωh(t)) in (2.4.32). By appropriately estimating the

right-hand side of (2.4.36), we can derive the following lemma.

27



Lemma 2.4.3. Let (Rhv,Rhq) be the Stokes–Ritz projection of (v, q). Suppose that (v, q)
are sufficiently smooth. Then there exists a constant C independent of h, t and (v, q)
such that

∥Rhv − v∥L2(Ωh(t)) ≤Ch
r+1
(
∥v∥W r+1,∞

h (Ωh(t))
+ ∥q∥Hr

h(Ωh(t))

)
. (2.4.37)

Proof. For gh = Rhv − Ihv, by utilizing (2.4.36), the definition of Stokes–Ritz projection

(2.4.21) with (χh, λh) = (Ihψ̃,P∗
hφ̃) (noting that Ihψ̃|∂Ωh(t) = 0 since ψ̃|∂Ω(t) = 0 and thus

ψ̃ vanishes on all the boundary nodes of Ωh(t)), and integration by parts, we have

∥gh∥2L2(Ωh(t))
⩽C
∣∣∣(∇ψ̃,∇(Rhv − v))Ωh(t) − (∇ · (Rhv − v), φ̃)Ωh(t)

∣∣∣
+ C

∣∣∣(∇ψ̃,∇(v − Ihv))Ωh(t) − (∇ · (v − Ihv), φ̃)Ωh(t)

∣∣∣
⩽C
∣∣∣(∇(ψ̃ − Ihψ̃),∇(Rhv − v))Ωh(t) + (∇ · Ihψ̃, Rhq − q − q)Ωh(t)

∣∣∣
+ C

∣∣∣(∇ · (Rhv − v), φ̃− P∗
hφ̃)Ωh(t)

∣∣∣
+ C

∣∣∣(−∆ψ̃ +∇φ̃, v − Ihv)Ωh(t) + (∇ψ̃ · n− φ̃n, v − Ihv)∂Ωh(t)

∣∣∣,
where we used following notations: Phφ̃ is the L2(Ωh(t))-orthogonal projection of φ̃ onto
the space Sr−1

h (Ωh(t)) and Phφ̃ = φ̃ is the average of Phφ̃ on Ωh(t) so that P∗
hφ̃ :=

Phφ̃ − Phφ̃ belongs to Qr−1
h (Ωh(t)). For L2-orthogonal projection Ph, there holds error

estimate (cf. (2.4.24) of Remark 2.4.1)

∥Phφ̃− φ̃∥L2(Ωh(t)) ≤ Ch∥φ̃∥H1(Ωh(t)). (2.4.38)

And we can deduce following estimate for |φ̃| from condition φ ∈ L2
0(Ω(t)),

|φ̃| ≤C
(∫

Ωh(t)\Ω(t)

|φ̃|+
∫
Ω(t)\Ωh(t)

|φ̃|
)

≤C∥φ̃∥L6(Rd)(|Ω(t) \Ωh(t)|1/3 + |Ωh(t) \Ω(t)|1/3)
≤Ch∥φ̃∥H1(Rd). (2.4.39)

As a corollary, we have

∥P∗
hφ̃− φ̃∥L2(Ωh(t)) ≤ Ch∥φ̃∥H1(Ωh(t)). (2.4.40)

By using the error estimate of interpolation Ih, the error estimate of P∗
h (2.4.40), Lemma

2.4.1, and the regularity result (2.4.33), we have

∥gh∥2L2(Ωh(t))

⩽C
(
∥ψ̃∥H2(Rd) + ∥φ̃∥H1(Rd)

)(
h∥∇(Rhv − v)∥L2(Ωh(t)) + ∥v − Ihv∥L2(Ωh(t))

)
+ C

∣∣∣(∇ · Ihψ̃, q −Rhq − q)Ωh(t)

∣∣∣+ C
∣∣∣(n · ∇ψ̃ − φ̃n, v − Ihv)∂Ωh(t)

∣∣∣
⩽Chr+1

(
∥v∥Hr+1(Ωh(t)) + ∥q∥Hr(Ωh(t))

)
∥gh∥L2(Ωh(t)) + C

∣∣∣(∇ · (ψ̃ − Ihψ̃), q −Rhq − q)Ωh(t)

∣∣∣
+ C

∣∣∣(∇ · ψ̃, q −Rhq − q)Ωh(t)

∣∣∣+ C
∣∣∣(∇ψ̃ · n− φ̃n, v − Ihv)∂Ωh(t)

∣∣∣.
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We estimate the left terms subsequently.∣∣∣(∇ · (ψ̃ − Ihψ̃), q −Rhq − q)Ωh(t)

∣∣∣ ⩽ Ch∥ψ̃∥H2(Ωh(t))∥q −Rhq∥
′

L2(Ωh(t))
.

It is known that ∇ · ψ̃ = 0 in Ω(t). Hence, we have∣∣∣(∇ · ψ̃, q −Rhq − q)Ωh(t)

∣∣∣ ⩽∥∇ · ψ̃∥L2(Ωh(t)\Ω(t))∥q −Rhq∥
′

L2(Ωh(t))

⩽C|Ωh(t)\Ω(t)|
1
3∥∇ · ψ̃∥L6(Rd)∥q −Rhq∥

′

L2(Ωh(t))

⩽Ch∥ψ̃∥H2(Rd)∥q −Rhq∥
′

L2(Ωh(t))
, (2.4.41)

where the last inequality follows from the fact r ⩾ 2, Lemma 2.4.1, and (2.4.33). By
using Lemma 2.3.5 and (2.4.33), we have∣∣∣(n · ∇ψ̃ − φ̃n, v − Ihv)∂Ωh(t)

∣∣∣ ⩽C∥v − Ihv∥L∞(∂Ωh(t))

(
∥∇ψ̃∥L1(∂Ωh(t)) + ∥φ̃∥L1(∂Ωh(t))

)
⩽C∥v − Ihv∥L∞(Ωh(t))

(
∥ψ̃∥H2(Rd) + ∥φ̃∥H1(Rd)

)
⩽Chr+1∥v∥W r+1,∞

h (Ωh(t))
∥gh∥L2(Ωh(t)). (2.4.42)

Combining the above estimates, we obtain the desired estimate (2.4.37).
To obtain the optimal order estimate of Et,hv, we rely on the negative norm estimate

of Rhq − q, which is shown in the following lemma.

Lemma 2.4.4. Let (Rhv,Rhq) be the Stokes–Ritz projection of (v, q). Let q denote the
average of q over Ωh(t). Suppose that (v, q) are sufficiently smooth. Then for each
λ ∈ H1(Rd), the following inequality holds.∣∣(q −Rhq − q, λ)Ωh(t)

∣∣ ⩽ Chr+1
(
∥v∥W r+1,∞

h (Ωh(t))
+ ∥q∥Hr

h(Ωh(t))

)
∥λ∥H1(Rd). (2.4.43)

The constant C is independent of h, t and (v, q).

Proof. For each λ ∈ H1(Rd), let λ∗ := 1
|Ω(t)|

∫
Ω(t)

λ dx denote its average over Ω(t). By

Lemma 2.3.6, there exists χ ∈ H2(Ω(t)) ∩H1
0 (Ω(t)) such that

divχ = λ− λ∗ in Ω(t), ∥χ∥H2(Ω(t)) ≤ C∥λ∥H1(Rd). (2.4.44)

We extend χ to χ̃ ∈ H2(Rd) as mentioned in (2.3.15). By decomposing the integral, we
have∣∣(q −Rhq − q, λ)Ωh(t)

∣∣ = ∣∣(q −Rhq − q, λ− λ∗)Ωh(t)

∣∣
⩽
∣∣(q −Rhq − q, λ− λ∗)Ωh(t)\Ω(t)

∣∣+ ∣∣(q −Rhq − q,∇ · χ̃)Ωh(t)∩Ω(t)

∣∣
≤
∣∣(q −Rhq − q, λ− λ∗)Ωh(t)\Ω(t)

∣∣+ ∣∣(q −Rhq − q,∇ · χ̃)Ωh(t)

∣∣
+
∣∣(q −Rhq − q,∇ · χ̃)Ωh(t)\Ω(t)

∣∣.
To estimate the boundary-skin integral, we derive the following inequalities by using
Lemma 2.4.1:

|(q −Rhq − q, λ− λ∗)Ωh(t)\Ω(t)|+
∣∣(q −Rhq − q,∇ · χ̃)Ωh(t)\Ω(t)

∣∣
≤∥q −Rhq∥

′

L2(Ωh(t))

(
∥λ∗∥L2(Ωh(t)\Ω(t)) + ∥λ∥L2(Ωh(t)\Ω(t)) + ∥∇ · χ̃∥L2(Ωh(t)\Ω(t))

)
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≤∥q −Rhq∥
′

L2(Ωh(t))

(
|λ∗||Ωh(t) \Ω(t)|1/2 + (∥∇ · χ̃∥L6(Rd) + ∥λ∥L6(Rd))|Ωh(t) \Ω(t)|1/3

)
≤∥q −Rhq∥

′

L2(Ωh(t))

(
|λ∗||Ωh(t) \Ω(t)|1/2 + (∥χ̃∥H2(Rd) + ∥λ∥H1(Rd))|Ωh(t) \Ω(t)|1/3

)
≤Chr+1

(
∥v∥Hr+1

h (Ωh(t))
+ ∥q∥Hr

h(Ωh(t))

)
∥λ∥H1(Rd), (2.4.45)

where we have used Hölder’s inequality, Sobolev embedding H1(Rd) ↪→ L6(Rd), regularity
estimate (2.4.44), and the fact r ≥ 2.

Since χ̃|∂Ω(t) = 0, we can interpolate χ̃ to a function χh ∈ V̊ r
h (Ωh(t)), i.e., χh = Ihχ̃.

Then we have∣∣(q −Rhq − q,∇ · χ̃)Ωh(t)

∣∣
≤
∣∣(q −Rhq − q,∇ · (χ̃− χh))Ωh(t)

∣∣+ ∣∣(q −Rhq − q,∇ · χh)Ωh(t)

∣∣
≤
∣∣(q −Rhq − q,∇ · (χ̃− χh))Ωh(t)

∣∣+ ∣∣(∇(Rhv − v),∇(χh − χ̃))Ωh(t)

∣∣+ ∣∣(∇(Rhv − v),∇χ̃)Ωh(t)

∣∣
≤Ch∥χ̃∥H2(Rd)

(
∥q −Rhq∥

′

L2(Ωh(t))
+ ∥∇(Rhv − v)∥L2(Ωh(t))

)
+
∣∣(∇(Rhv − v),∇χ̃)Ωh(t)

∣∣
⩽Chr+1

(
∥v∥Hr+1

h (Ωh(t))
+ ∥q∥Hr

h(Ωh(t))

)
∥λ∥H1(Rd) +

∣∣(∇(Rhv − v),∇χ̃)Ωh(t)

∣∣.
Integrating by parts and dealing the boundary integral term as in (2.4.42) and using
regularity estimate (2.4.44) as well as Lemma 2.4.3, we obtain∣∣(∇(Rhv − v),∇χ̃)L2(Ωh(t))

∣∣ ≤C(∥Rhv − v∥L2(Ωh(t)) + ∥Rhv − v∥L∞(∂Ωh(t))

)
∥χ̃∥H2(Rd)

≤C
(
∥Rhv − v∥L2(Ωh(t)) + ∥Rhv − v∥L∞(∂Ωh(t))

)
∥λ∥H1(Rd)

≤C
(
∥v∥W r+1,∞

h (Ωh(t))
+ ∥q∥Hr

h(Ωh(t))

)
∥λ∥H1(Rd)

Combining the above estimates completes this proof.
Having completed the necessary preparations, we are now poised to establish the L2-

estimate of Et,hv. To achieve this, we adopt a proof technique akin to that used in Lemma
2.4.3, leveraging the insights gained from (2.4.36) and (2.4.43).

Lemma 2.4.5. Let (Rhv,Rhq) be the Stokes–Ritz projection of (v, q). Suppose that (v, q)
are sufficiently smooth. Then there is a constant C independent on h, t and (v, q) such
that the following estimate holds:

∥Et,hv∥L2(Ωh(t)) ≤Ch
r+1
(
∥v∥W r+1,∞

h (Ωh(t))
+ ∥q∥Hr

h(Ωh(t))

)
. (2.4.46)

Proof. Similarly to the proof of Lemma 2.4.2, we may assume that q = 0, where q is
the average of q over Ωh(t). Since Et,hv = 0 on the boundary ∂Ωh(t), we can choose
gh = Et,hv in (2.4.32). By (2.4.36) and the definition of Stokes–Ritz projection, we have

∥Et,hv∥2L2(Ωh(t))
⩽C
∣∣∣(∇ψ̃,∇gh)Ωh(t) − (∇ · gh, φ̃)Ωh(t)

∣∣∣
≤C
∣∣∣(∇Ihψ̃,∇Et,hv)Ωh(t) − (∇ · Et,hv,P∗

hφ̃)Ωh(t)

∣∣∣
+ C

∣∣∣(∇(1− Ih)ψ̃,∇Et,hv)Ωh(t) − (∇ · Et,hv, (1− P∗
h)φ̃)Ωh(t)

∣∣∣.
Let χh = Ihψ̃, λh = P∗

hφ̃ := Phφ̃ − Phφ̃ in (2.4.29) (where Ph is the same L2-orthogonal
projection operator as used in proof of Lemma 2.4.3), we obtain

∥Et,hv∥2L2(Ωh(t))
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⩽C
∣∣∣− (∇(v −Rhv)∇wh,∇Ihψ̃)Ωh(t) + (∇(v −Rhv),∇Ihψ̃(∇ · wh −∇wh))Ωh(t)

∣∣∣
+ C

∣∣∣(∇Ihψ̃ : (∇wh)
⊤ −∇ · Ihψ̃∇ · wh, q −Rhq)Ωh(t)

∣∣∣
+ C

∣∣∣− (∇(v −Rhv) : (∇wh)
⊤,P∗

hφ̃)Ωh(t) + (∇ · (v −Rhv),P∗
hφ̃∇ · wh)Ωh(t)

∣∣∣
+ C

∣∣∣(∇ · (Rhv − v), 1)Ωh(t)

(P∗
hφ̃,∇ · wh)Ωh(t)

|Ωh(t)|

∣∣∣
+ C

∣∣∣(∇ · Ihψ̃, Et,hq − Et,hq)Ωh(t)

∣∣∣
+ C

∣∣∣(∇(1− Ih)ψ̃,∇Et,hv)Ωh(t) − (∇ · Et,hv, (1− P∗
h)φ̃)Ωh(t)

∣∣∣
⩽C
∣∣∣− (∇(v −Rhv)∇wh,∇(Ihψ̃ − ψ̃))Ωh(t) + (∇(v −Rhv),∇(Ihψ̃ − ψ̃)(∇ · wh −∇wh))Ωh(t)

∣∣∣
+ C

∣∣∣(∇(Ihψ̃ − ψ̃) : (∇wh)
⊤ −∇ · (Ihψ̃ − ψ̃)∇ · wh, q −Rhq)Ωh(t)

∣∣∣
+ C

∣∣∣− (∇(v −Rhv) : (∇wh)
⊤,P∗

hφ̃− φ̃)Ωh(t) + (∇ · (v −Rhv), (P∗
hφ̃− φ̃)∇ · wh)Ωh(t)

∣∣∣
+ C

∣∣∣(∇(Rhv − v)∇wh,∇ψ̃)Ωh(t) + (∇(v −Rhv),∇ψ̃(∇ · wh −∇wh))Ωh(t)

∣∣∣
+ C

∣∣∣(∇ψ̃ : (∇wh)
⊤ −∇ · ψ̃∇ · wh, q −Rhq)Ωh(t)

∣∣∣
+ C

∣∣∣− (∇(v −Rhv) : (∇wh)
⊤, φ̃)Ωh(t) + (∇ · (v −Rhv), φ̃∇ · wh)Ωh(t)

∣∣∣
+ C

∣∣∣(∇ · (Rhv − v), 1)Ωh(t)

(P∗
hφ̃,∇ · wh)Ωh(t)

|Ωh(t)|

∣∣∣
+ C

∣∣∣(∇ · (Ih − 1)ψ̃, Et,hq − Et,hq)Ωh(t)

∣∣∣+ C
∣∣∣(∇ · ψ̃, Et,hq − Et,hq)Ωh(t)

∣∣∣
+ C

∣∣∣(∇(1− Ih)ψ̃,∇Et,hv)Ωh(t) − (∇ · Et,hv, (1− P∗
h)φ̃)Ωh(t)

∣∣∣.
Furthermore, wh can be replaced by (wh−w)+w. In view of the error estimate (2.3.17),
applying the same routine as in the proof of Lemma 2.4.3, i.e. using the error of inter-
polation Ih, error of modified L2-projection P∗

h (2.4.40), Lemma 2.4.2 and an analogue of
estimate (2.4.41), we have

∥Et,hv∥2L2(Ωh(t))
⩽Chr+1

(
∥v∥Hr+1

h (Ωh(t))
+ ∥q∥Hr

h(Ωh(t))

)(
∥ψ̃∥H2(Ωh(t)) + ∥φ̃∥H1(Ωh(t))

)
+ C

∣∣∣(∇ · (Rhv − v), 1)Ωh(t)

(P∗
hφ̃,∇ · wh)Ωh(t)

|Ωh(t)|

∣∣∣
+ C

∣∣∣(∇(Rhv − v)∇w,∇ψ̃)Ωh(t) + (∇(v −Rhv),∇ψ̃(∇ · w −∇w))Ωh(t)

∣∣∣
+ C

∣∣∣(∇ψ̃ : (∇w)⊤ −∇ · ψ̃∇ · w, q −Rhq)Ωh(t)

∣∣∣
+ C

∣∣∣− (∇(v −Rhv) : (∇w)⊤, φ̃)Ωh(t) + (∇ · (v −Rhv), φ̃∇ · w)Ωh(t)

∣∣∣.
By using the regularity result (2.4.33), Lemma 2.4.4, and integration by parts, we obtain

∥Et,hv∥2L2(Ωh(t))
≤Chr+1

(
∥v∥W r+1,∞

h (Ωh(t))
+ ∥q∥Hr

h(Ωh(t))

)
∥Et,hv∥L2(Ωh(t))

+ C
∣∣∣(Rhv − v,n)∂Ωh(t)

(P∗
hφ̃,∇ · wh)Ωh(t)

|Ωh(t)|

∣∣∣
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+ C
∣∣∣− (Rhv − v,∇ · (∇ψ̃∇w⊤))Ωh(t) + (Rhv − v,n · (∇ψ̃∇w⊤))∂Ωh(t)

∣∣∣
+ C

∣∣∣− (Rhv − v,∇ · (∇ψ̃(∇ · w −∇w)))Ωh(t)

∣∣∣
+ C

∣∣∣(v −Rhv,n · (∇ψ̃(∇ · w −∇w)))∂Ωh(t)

∣∣∣
+ C

∣∣∣(v −Rhv,∇ · (φ̃(∇w)⊤))Ωh(t) − (v −Rhv,∇(φ̃∇ · w))Ωh(t)

∣∣∣
+ C

∣∣∣− (v −Rhv, φ̃n · (∇w)⊤)∂Ωh(t) + ((v −Rhv) · n, φ̃∇ · w)∂Ωh(t)

∣∣∣.
Since Rhv = Ihv on ∂Ωh(t), by using Lemma 2.4.3, we have

∥Et,hv∥2L2(Ωh(t))
⩽Chr+1

(
∥v∥W r+1,∞

h (Ωh(t))
+ ∥q∥Hr

h(Ωh(t))

)
∥Et,hv∥L2(Ωh(t))

+ C
(
∥Rhv − v∥L2(Ωh(t)) + ∥v − Ihv∥L∞(∂Ωh(t))

)
(∥ψ̃∥H2(Rd) + ∥φ̃∥H1(Rd))

⩽Chr+1
(
∥v∥W r+1,∞

h (Ωh(t))
+ ∥q∥Hr

h(Ωh(t))

)
∥Et,hv∥L2(Ωh(t)). (2.4.47)

By using Young’s inequality, we finish the proof.
With these preparations done, we can go start proving Theorem 2.2.1, which is shown

in next subsection.

2.4.3 Proof of Theorem 2.2.1

Proof. We define the auxiliary function ξ in Rd as follows:

ξ := ∂tu−∆u+∇p− f, (2.4.48)

where u, p, f represent their extensions to Rd. By testing the equation (2.4.48) with
vh ∈ V̊ r

h (Ωh(t)), we obtain:

(Dt,hu− wh · ∇u, vh)Ωh(t) + (∇u,∇vh)Ωh(t) − (∇ · vh, p)Ωh(t) = (f, vh)Ωh(t) + (ξ, vh)Ωh(t).

Applying Hölder’s inequality, Lemma 2.3.4 and the fact r ≥ 2, we can derive the following
estimate:

|(ξ, vh)Ωh(t)| = |(ξ, vh)Ωh(t)\Ω(t)| ≤ Chr+1∥∇vh∥L2(Ωh(t))∥ξ∥L2(Rd). (2.4.49)

It follows from (2.4.21) that the Stokes–Ritz projection (Rhu,Rhp) satisfies the following
equation

(Dt,hRhu−wh · ∇Rhu, vh)Ωh(t) + (∇Rhu,∇vh)Ωh(t) − (∇ · vh, Rhp)Ωh(t)

=(f, vh)Ωh(t) + (ξ, vh)Ωh(t) + (F , vh)Ωh(t) ∀vh ∈ V̊ r
h (Ωh(t)), (2.4.50a)

(∇ ·Rhu, qh)Ωh(t) = 0 ∀qh ∈ Qr−1
h (Ωh(t)), (2.4.50b)

where the remainder F := Dt,h(Rhu − u) − wh · ∇(Rhu − u) represents the consistency
error of the spatial discretization.

Since vh ∈ V̊ r
h (Ωh(t)), via integration by parts, we can estimate wh · ∇(Rhu − u) as

follows:∣∣(wh · ∇(Rhu− u), vh)Ωh(t)

∣∣ = ∣∣− (vh∇ · wh, Rhu− u)Ωh(t) − (Rhu− u,wh · ∇vh)Ωh(t)

∣∣
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≤ C∥Rhu− u∥L2(Ωh(t))∥vh∥H1(Ωh(t)), (2.4.51)

where we have used theW 1,∞ boundedness of the mesh velocity, i.e., ∥wh(t)∥W 1,∞(Ωh(t)) ≤
C, which follows from (2.3.17) and the triangle inequality. Thus, we have∣∣(F , vh)Ωh(t)

∣∣ ≤C(∥Dt,h(Rhu− u)∥L2(Ωh(t)) + ∥Rhu− u∥L2(Ωh(t))

)
∥vh∥H1(Ωh(t)).

⩽C
(
∥Et,hu∥L2(Ωh(t)) + ∥RhDt,hu−Dt,hu∥L2(Ωh(t))

)
∥vh∥H1(Ωh(t))

+ C∥Rhu− u∥L2(Ωh(t))∥vh∥H1(Ωh(t)) (2.4.52)

by the definition (2.4.25) of Et,h. We can estimate ∥RhDt,hu − Dt,hu∥L2(Ωh(t)) term in
(2.4.52) by Lemma 2.4.3 as follows:

∥RhDt,hu−Dt,hu∥L2(Ωh(t))

≤Chr+1
(
∥Dt,hu∥W r+1,∞

h (Ωh(t))
+ ∥Dt,hp∥Hr

h(Ωh(t))

)
≤Chr+1

(
∥∂tu∥W r+1,∞(Ωh(t)) + ∥wh∥W r+1,∞

h (Ωh(t))
∥u∥W r+2,∞(Ωh(t))

+∥∂tp∥Hr(Ωh(t)) + ∥wh∥W r,∞
h (Ωh(t))∥p∥Hr+1(Ωh(t))

)
≤Chr+1

(
∥∂tu∥W r+1,∞(Ωh(t)) + ∥u∥W r+2,∞(Ωh(t)) + ∥∂tp∥Hr(Ωh(t)) + ∥p∥Hr+1(Ωh(t))

)
,

(2.4.53)

where we have employed formula (2.2.6) of material derivative and theW r+1,∞
h -boundedness

(2.3.17) of discrete velocity wh. Combining the estimate (2.4.53) and (2.4.52) as well as
using Lemma 2.4.3 and Lemma 2.4.5 , we can derive that

|(F , vh)Ωh(t)| ⩽ Chr+1Au,p(t)∥vh∥H1(Ωh(t)), (2.4.54)

where we used notation Au,p(t) which is an abbreviation defined as follows

Au,p(t) := ∥∂tu(·, t)∥W r+1,∞(Rd) + ∥u(·, t)∥W r+2,∞(Rd) + ∥∂tp(·, t)∥Hr(Rd) + ∥p(·, t)∥Hr+1(Rd).

Let us define eu := Rhu − uh and ep := Rhp − ph. By subtracting equation (2.2.8)

from equation (2.4.50) we obtain the following equations for any vh ∈ V̊ r
h (Ωh(t)) and

qh ∈ Qr−1
h (Ωh(t))

(Dt,heu − wh · ∇eu, vh)Ωh(t) + (∇eu,∇vh)Ωh(t) − (∇ · vh, ep)Ωh(t) =(ξ + F , vh)Ωh(t),
(2.4.55a)

(∇ · eu, qh)Ωh(t) =0. (2.4.55b)

Since Rhu = Ihu = wh = uh on the boundary ∂Ωh(t), we have eu ∈ V̊ r
h (Ωh(t)). By testing

(2.4.55a) with vh = eu, we obtain:

1

2

d

dt
∥eu(t)∥2L2(Ωh(t))

+ ∥∇eu(t)∥2L2(Ωh(t))
=(ξ, eu)Ωh(t) + (F , eu)Ωh(t)

≤Chr+1Au,p(t)∥eu(t)∥H1(Ωh(t)),

where the last inequality follows from (2.4.49) and (2.4.54).
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By applying Young’s inequality and absorbing ∥eu∥2H1(Ωh(t))
on the right-hand side,

we can integrate the inequality from 0 to t to obtain:

∥eu∥2L2(Ωh(t))
+

∫ t

0

∥∇eu∥2L2(Ωh(s))
ds ≤ ∥eh(0)∥2L2(Ωh(0))

+ CR2
u,ph

2(r+1) ⩽ CR2
u,ph

2(r+1).

Combining this result with Lemma 2.4.3, we derive the estimate for u− uh.
For the estimate of p− ph, by using inf-sup condition, the W 1,∞-boundedness of wh,

and equation (2.4.55a), we have

∥ep∥L2(Ωh(t)) ⩽C sup
0̸=vh∈V̊ r

h (Ωh(t))

(∇ · vh, ep)
∥∇vh∥L2(Ωh(t))

⩽C
(
hr+1Au,p(t) + ∥∇eu∥L2(Ωh(t)) + ∥Dt,heu∥L2(Ωh(t))

)
. (2.4.56)

Since Dt,heu = 0 on the boundary ∂Ωh(t), we can chooose vh = Dt,heu in (2.4.55a) and
obtain

∥Dt,heu∥2L2(Ωh(t))
− (wh · ∇eu, Dt,heu)Ωh(t) + (∇eu,∇Dt,heu)Ωh(t) − (∇ ·Dt,heu, ep)Ωh(t)

= (ξ + F , Dt,heu)Ωh(t). (2.4.57)

From Lemma 2.3.1 and Lemma 2.3.2, it is known that

(∇eu,∇Dt,heu)Ωh(t) =
1

2

d

dt
∥∇eu∥2L2(Ωh(t))

− 1

2
(|∇eu|2,∇ · wh)Ωh(t)

+
1

2
(∇eu(∇wh + (∇wh)

⊤),∇eu)Ωh(t). (2.4.58)

By taking derivative to (2.4.55b) with respect time, we obtain that

(∇ ·Dt,heu, qh)Ωh(t) + (∇ · eu∇ · wh −∇eu : (∇wh)
⊤, qh)Ωh(t) = 0. (2.4.59)

Let qh = ep in (2.4.59), we have

(∇ ·Dt,heu, ep)Ωh(t) + (∇ · eu∇ · wh −∇eu : (∇wh)
⊤, ep)Ωh(t) = 0 (2.4.60)

Substituting (2.4.49), (2.4.54), (2.4.58) and (2.4.60) into (2.4.57), and using inverse esti-
mate, we can obtain that

∥Dt,heu∥2L2(Ωh(t))
+

1

2

d

dt
∥∇eu∥2L2(Ωh(t))

⩽Chr+1Au,p(t)∥Dt,heu∥H1(Ωh(t)) + C∥Dt,heu∥L2(Ωh(t))∥∇eu∥L2(Ωh(t))

+ C∥∇eu∥L2(Ωh(t))∥ep∥L2(Ωh(t)) + C∥∇eu∥2L2(Ωh(t))

≤ChrAu,p(t)∥Dt,heu∥L2(Ωh(t)) + C∥Dt,heu∥L2(Ωh(t))∥∇eu∥L2(Ωh(t))

+ C∥∇eu∥L2(Ωh(t))∥ep∥L2(Ωh(t)) + C∥∇eu∥2L2(Ωh(t))
(2.4.61)

By substituting (2.4.56) into (2.4.61), using Young’s inequality, and integrating both sides
from 0 to t, we have∫ t

0

∥Dt,heu∥2L2(Ωh(s))
ds+ ∥∇eu∥2L2(Ωh(t))
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⩽Ch2rR2
u,p + C

∫ t

0

∥∇eu∥2L2(Ωh(s))
ds+ ∥∇eu(·, 0)∥2L2(Ω0

h)
⩽ Ch2rR2

u,p. (2.4.62)

Combining (2.4.62) and (2.4.56), we obtain that

∥ep∥L2(0,T ;L2(Ωh(t))) ⩽ CRu,ph
r.

By using Lemma 2.4.1, we can deduce that

∥p− ph∥L2(0,T ;L2(Ωh(t))) ⩽ CRu,ph
r + C∥p∥L2(0,T ), (2.4.63)

where p̄(t) is the average of p(t) on Ωh(t). Since p ∈ L2
0(Ω(t)), we have that

|p(t)| ⩽C
(∣∣∣ ∫

Ωh(t)\Ω(t)

pdx
∣∣∣+ ∣∣∣ ∫

Ω(t)\Ωh(t)

pdx
∣∣∣)

⩽C∥p(·, t)∥L∞(Rd)(|Ωh(t)\Ω(t)|+ |Ω(t)\Ωh(t)|)
≤CAu,p(t)h

r+1 (Sobolev embedding Hr+1(Rd) ↪→ L∞(Rd) used) (2.4.64)

Combining (2.4.63) and (2.4.64), we complete the proof.

2.5 Numerical experiments

In this section, we provide numerical tests for problem (2.1.1) to support the theoretical
result proved in Theorem 2.2.1. For temporal discretization, We use the second-order
projection method. If we define the pull back operator P n,m

h : V r
h (Ω

n
h) → V r

h (Ω
m
h ) as

P n,m
h vh = vh ◦ Φn

h ◦ (Φm
h )

−1 for any vh ∈ V r
h (Ω

n
h), then the fully discrete scheme is shown

as follows: Find un+1
h ∈ V r

h (Ω
n+1
h ) and pn+1

h ∈ Qr−1
h (Ωn+1

h ) at step n+ 1 such that

1

2τ

[ (
un+1
h − P n,n+1

h unh, vh
)
Ωn+1

h

+
(
P n+1,n
h un+1

h − unh, P
n+1,n
h vh

)
Ωn

h

]
− 1

8

(
(wn+1

h + P n,n+1
h wn

h) · ∇(un+1
h + P n,n+1

h unh), vh

)
Ωn+1

h

− 1

8

(
(P n+1,n

h wn+1
h + wn

h) · ∇(P n+1,n
h un+1

h + unh), P
n+1,n
h vh

)
Ωn

h

+
1

4

[(
∇(un+1

h + P n,n+1
h unh),∇vh

)
Ωn+1

h

+
(
∇(P n+1,n

h un+1
h + unh),∇P

n+1,n
h vh

)
Ωn

h

]
− 1

2

[ (
∇ · vh, pnh ◦ Φn

h ◦ (Φn+1
h )−1

)
Ωn+1

h

+
(
∇ · P n+1,n

h vh, p
n
h

)
Ωn

h

]
=
1

2

[
(f(tn+1), vh)Ωn+1

h
+ (f(tn), P

n+1,n
h vh)Ωn

h

]
∀vh ∈ V̊ r

h (Ω
n+1
h ), (2.5.65a)

(∇ · un+1
h , qh)Ωn+1

h
+ βτ

(
∇(pn+1

h − pnh ◦ Φn
h ◦ (Φn+1

h )−1),∇qh
)
Ωn+1

h

= 0 ∀qh ∈ Qr−1
h (Ωn+1

h ),

(2.5.65b)

where β > 1 is a constant. In the numerical tests, we choose β = 2. The solution
un+1
h is obtained by solving equation (2.5.65a), and subsequently, pn+1

h is computed using
equation (2.5.65b) and un+1

h .

Example 2.5.1. Let Ω(t) be an ellipse given by:

Ω(t) = {(x, y) : F (x, y) ⩽ 0} for F (x, y) = (1− t

4
)2x2 + (1− t

4
)−2y2 − 1.
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Then for t ⩾ 0, the domain Ω(t) evolves with volume invariant. We select the velocity
function w to be

w(x, y; t) = − ∂tF∇F
∇F⊤∇F

on ∂Ω(t), and −∆w = 0 in Ω(t).

The initial value u0 is chosen to be w(·, 0) and f = 0. Since the exact solution is
not known, we compute a numerical solution for sufficiently small τ and h as reference
solution.

The initial and final discretized domains, denoted as Ωh(0) and Ωh(1) respectively, are
illustrated in Figure 2.1. These domains are obtained by employing the P1 element and
P2 element, representing the piecewise linear and quadratic finite elements, respectively.

To assess the convergence properties of the numerical scheme, we conducted a con-
vergence test at time T = 1 to assess the spatial discretization. For this purpose, we
employed two different sets of finite elements: P1b − P1, and P2 − P1, while keeping the
time step sizes sufficiently small to ensure minimal errors from the time discretization.
The errors of the numerical solutions are presented in Figure 2.2 for varying mesh sizes:
h = 1/8, 1/16, 1/32, 1/64. The results demonstrate that the numerical solutions exhibit
r + 1-th order convergence in space, where r corresponds to the order of the FEM. This
finding aligns with the theoretical results established in Theorem 2.2.1 for r = 2. No-
tably, for the P1b −P1 element, we verified that the inf-sup condition (2.3.14) is satisfied.
Therefore, we can attain second-order convergence using the same approach presented in
this chapter.

In addition to investigating the convergence in space, we also conducted a tempo-
ral convergence test at T = 1 using the P2 − P1 element and a suitably small mesh
size that ensures negligible errors from the space discretization. The resulting errors
of the numerical solutions are depicted in Figure 2.3 for different time step sizes: τ =
1/50, 1/100, 1/200, 1/400. The observed errors demonstrate second-order convergence of
velocity u in time.

Example 2.5.2. In this example, we investigate the convergence order of numerical solu-
tions in a rotating domain. Let the initial Ω(0) be an ellipse given by

Ω(0) = {(x, y) : 25
16
x2 +

25

9
y2 ⩽ 1}.

The domain Ω(t) is generated by the rotating mesh velocity field w(x, y, t), which is given
by

w(x, y, t) = (−y sin t, x cos t).

The exact solutions (u, p) are chosen to be u(x, y, t) = w(x, y, t) and p(x, y, t) = x + y.
The source function f is chosen to be consistent with the equation (2.1.1a).

Similarly to Example 2.5.1, we assess the convergence behavior of the numerical so-
lutions. Specifically, we investigate the convergence of spatial discretization using the
P1b − P1, and P2 − P1 elements, considering sufficiently small time step sizes that ensure
the errors from time discretization are negligible. Figure 2.4 illustrates the errors of the
numerical solutions for different mesh sizes: h = 1/8, 1/16, 1/32, 1/64. The results in-
dicate that the numerical solutions exhibit r + 1-th order convergence in space for r-th
order FEMs. This convergence behavior aligns with the Theorem 2.2.1.

In addition, we examine the convergence of the velocity u in time at T = 1 using
the P2 − P1 element, with a sufficiently small mesh size that ensures the errors from
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(a) P1 element at t = 0 (b) P1 element at t = 1

(c) P2 element at t = 0 (d) P2 element at t = 1

Figure 2.1: Meshes of P1 and P2 elements at time T = 0 and T = 1.
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(a) L2 error of u from spatial discretization at T = 1
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Figure 2.2: Errors from spatial discretization for T = 1.
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Figure 2.3: Errors from temporal discretization for velocity u at time T = 1.
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spatial discretization are negligible. The errors of the numerical solutions are presented
in Figure 2.5 for various time step sizes: τ = 1/50, 1/100, 1/200, 1/400. The numerical
results demonstrate a second-order convergence in time.
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(a) L2 error of u from spatial discretization at T = 1
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(b) L2L2 error of p from spatial discretization

Figure 2.4: Errors from spatial discretization for T = 1.
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Figure 2.5: Errors from temporal discretization for velocity u at time T = 1.

Example 2.5.3 (Navier–Stokes flow in a domain with rotating propeller). In this example,
we investigate the fluid motion surrounding a rotating propeller, governed by the Navier–
Stokes equation with slip boundary conditions, i.e.

∂tu+ u · ∇u−∇ · (2µDu− 1
ρ
pI) = 0 in

⋃
t∈(0,T ]

Ω(t)× {t},

∇ · u = 0, in
⋃

t∈(0,T ]

Ω(t)× {t},

u · n = w · n on
⋃

t∈(0,T ]

∂Ω(t)× {t},

((2µDu− 1
ρ
pI) · n)tan + kutan = 0 on

⋃
t∈(0,T ]

∂Ω(t)× {t},

u = u0 on Ω(0),

(2.5.66)

where the subindex tan stands for the tangential component of a vector, w is the velocity
of the propeller defined on the boundary and has a natural extension to the whole domain
Ω(t), µ = 0.001 denotes the viscosity, ρ = 1000 is the fluid density, and n is the outward
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normal vector on the boundary. The initial domain Ω(0) corresponds to a unit sphere
with an ellipse removed, defined as:

Ω(0) = {(x, y) : x2 + y2 ⩽ 1, and 2x2 + 4y2 ⩾ 1}.

The propeller, depicted as the middle ellipse in Figure 2.7, has a prescribed velocity
profile. Specifically, when 0 ≤ t ≤ 2, the propeller velocity is given by w(x, y; t) :=
(−2ty, 2tx), and for t > 2, it is defined as w(x, y; t) := (−2y, 2x). This velocity naturally
extends to domain Ω.

The numerical method studied in this chapter can be extended to the Navier–Stokes
equations with slip boundary conditions. The scheme needs to be modified to suit the
slip boundary conditions, and optimal-order convergence in space and second-order con-
vergence in time can be established similarly.

We perform convergence tests for the accuracy of the numerical scheme. To investigate
the convergence in time, we select the P2−P1 element with a sufficiently small mesh size,
ensuring that the errors from space discretization are negligible. The results, presented
in Figure 2.6 (a), demonstrate the errors of the numerical solutions for various time step
sizes: τ = 1/960, 1/1440, 1/2160, 1/3240, and indicating that the numerical solutions
exhibit second-order convergence in time.
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(a) L2 error of u from time discretization
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(b) L2 error of u from space discretization

Figure 2.6: Errors from time and space discretization at time T = 1.

In addition to time discretization, we illustrate the convergence of spatial discretiza-
tion using both the P1b −P1 and P2 −P1 elements, with sufficiently small time step sizes
to ensure negligible errors from time discretization. Figure 2.6 (b) presents the errors
of the numerical solutions for various mesh sizes: h = 1/100, 1/110, 1/120, 1/130. The
results demonstrate that the numerical solutions exhibit (r + 1)th-order convergence in
space for finite elements of degree r. This aligns with the theoretical results presented in
Theorem 2.2.1 in the case r = 2.

To illustrate the propeller rotation, we conduct simulations with a mesh size of h =
0.01 and a time step size of τ = 0.001. Figure 2.7 depicts the process of the propeller
rotation and displays the magnitude of the velocity field |u|. The figure portrays the flow
of the fluid driven by the yellow elliptic propeller, offering insights into propeller-driven
flows.
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(a) t = 0 (b) t = 0.5 (c) t = 1 (d) t = 1.5

(e) t = 2 (f) t = 2.5 (g) t = 3 (h) t = 3.5

(i) t = 4 (j) t = 4.5 (k) t = 5 (l) t = 5.5

(m) t = 6 (n) t = 6.5 (o) t = 7 (p) t = 7.5

(q) The range of |u|

Figure 2.7: Flow of the fluid driven by propeller rotation.
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Chapter 3

Optimal L2 error analysis of a loosely
coupled finite element scheme for thin-
structure interactions

3.1 Introduction

There has been increasing interest in studying fluid-structure interaction due to its diverse
applications in many areas [44, 59, 77, 110, 117]. Numerical simulations are crucial in this
field, and over the past two decades, numerous efforts have been devoted to developing
efficient numerical algorithms and analysis methods.

This chapter focus on a commonly-used academic model problem, where an incom-
pressible fluid interacts with thin structure described by some lower-dimensional, linearly
elastic model (such as membranes in 3D, strings in 2D). This thin-structure interaction
model is described by the following equations

ρf∂tu− div σσσ(u, p) = 0, in (0, T )×Ω,

divu = 0, in (0, T )×Ω,

u(0, ·) = u0(x), on Ω,

(3.1.1)


ρsϵs∂tt ηηη − Lsηηη = −σσσ(u, p)n, in (0, T )× Σ,

ηηη(0, x) = ηηη0(x), on Σ,

∂t ηηη(0, x) = u0(x), on Σ

(3.1.2)

with the kinematic interface condition

∂tηηη = u on (0, T )× Σ (3.1.3)

and certain inflow and outflow conditions at Σl and Σr; see Figure 3.1. The unknown
solutions in (3.1.1) –(3.1.3) are fluid velocity u, fluid pressure p and structure displacement
ηηη. The following notations are also used in the model:

ϵs: The thickness of the structure.
µ: The fluid viscosity.
ρf : The fluid density.
ρs: The structure density.
n: The outward normal vector on ∂Ω.
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σσσ(u, p) = −pI +2µD(u): The fluid stress tensor.
D(u) = 1

2
(∇u+ (∇u)T ): The strain-rate tensor.

Ls: An elliptic differential operator on Σ, such as
Ls = −I + ∆s, where ∆s is the Laplace-Beltrami
operator on Σ.

Ω

Σ

Σ

Σl Σr

Figure 3.1: The computational domain in the thin-structure interaction problem

In general, two strategies can be employed to construct numerical schemes for solving
fluid-structure interaction problems. Monolithic algorithms solve a fully coupled system,
which can be expensive for complex fluid-structure problems. Various studies have fo-
cused on the numerical simulation and analysis of monolithic algorithms, as can be found
in [76, 78, 65, 91, 90, 109, 117]. Alternatively, the fluid and structure sub-problems can
be solved separately by partitioned type schemes. A strongly-coupled partitioned scheme
often requires extra iterations for the sub-problems at each time step to obtain the so-
lution which at convergence coincides with the monolithic one [117, 55], while the extra
iterations are not needed in loosely-coupled partitioned schemes. However, the stability
is a key issue for loosely-coupled partitioned schemes, which may be hard to be ensured
for highly added mass effect problems such as hemodynamics (e.g.[33]). The develop-
ment and study of stable loosely-coupled partitioned schemes have been an active area
of research (e.g. [29, 30, 13, 68, 72]).

Among those loosely-coupled partitioned schemes, the kinematically coupled scheme
is the most popular one due to its modularity, stability, and ease of implementation. The
scheme was first studied in [72] for the fluid-structure interaction problems and subse-
quently by numerous researchers [23, 25, 26, 112, 120]. However, the analysis of kinemat-
ically coupled schemes has been challenging due to the specific coupling of two distinct
physical phenomena. In [54], Fernandez proposed an incremental displacement-correction
scheme, which proved to be stable, and the following energy-norm error estimate was es-
tablished using piecewise polynomials of degree k for both un

h and ηηηnh in (3.1.4), i.e.,

∥un − un
h∥L2(Ω) +

( n∑
m=1

τ∥um − um
h ∥2f

) 1
2
+ ∥un − un

h∥L2(Σ) + ∥ηηηn − ηηηnh∥s ⩽ C(τ + hk).

(3.1.4)

The above estimate is optimal only for the velocity in the weak H1-norm (more precisely,
L2(H1)-norm) and not optimal in L2-norm. Several different schemes were investigated,
and similar error estimates, such as those given in [25, 120], were provided. The kinematic
coupling has been extended to other applications, such as composite structures and non-
Newtonian flow [24, 112], by many researchers. Additionally, a fully discrete loosely
coupled Robin-Robin scheme for thick structures was proposed in [28], where they showed
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that the error estimate in the same energy norm as in (3.1.4) is in the order of O(
√
τ +

h) for k = 1. Recently, a splitting scheme was proposed in [5] for the fluid-structure
interaction problem with immersed thin-walled structures. The scheme was proved to be
unconditionally stable, and a suboptimal L2-norm error estimate was presented.

Optimal L2-norm error estimates play a crucial role in both theoretical analysis of
algorithms and development of novel algorithms for practical applications. However,
to the best of our knowledge, such results have not been established due to the lack
of properly defined Ritz projections for fluid-structure interaction problems. This is in
contrast to the error analysis of finite element methods for parabolic equations, where
the Ritz projections have been well defined since the early work of Wheeler [140]. For
instance, for the heat equation ∂tu − ∆u = f , the Ritz projection is a finite element
function Rhu that satisfies the weak formulation:∫

Ω

∇(u−Rhu) · ∇vhdx = 0 for all finite element functions vh. (3.1.5)

With this projection Rh, the error of the finite element solution can be decomposed into
two parts:

u− uh = (u−Rhu) + (Rhu− uh).

In the analysis of the second part, the pollution from the approximation of the diffusion
term is not involved, thus enabling the establishment of an optimal-order error estimate
for ∥Rhu−uh∥L2(Ω). The optimal estimate for ∥u−uh∥L2(Ω) can be derived from the fact
that the projection error ∥u − Rhu∥L2(Ω) is also of optimal order. However, formulating
and determining optimal L2-norm error estimates for a suitably defined Ritz projection
in fluid-structure interaction systems remains a challenge. The standard elliptic Ritz
projection for the Stokes equations, while widely employed for obtaining error estimates
in the energy norm, no longer produces optimal L2-norm error estimates for such fluid-
structure interaction systems; see [5, 25, 54, 91, 120].

In this chapter, we propose a new kinematically coupled scheme which decouples (u, p)
and ηηη for solving the thin-structure interaction problem, and demonstrate its uncondi-
tional stability for long-time computation. More importantly, we establish an optimal
L2-norm error estimate for the proposed method, i.e.,

∥un − un
h∥L2(Ω) + ∥un − un

h∥L2(Σ) + ∥ηηηn − ηηηnh∥L2(Σ) ⩽ C(τ + hk+1) , (3.1.6)

by developing a new framework for the numerical analysis of fluid-structure interaction
problems in terms of a newly introduced coupled non-stationary Ritz projection, which
is defined as a triple of finite element functions (Rhu, Rhp,Rhηηη) satisfying a weak for-
mulation plus a constraint condition (Rhu)|Σ = ∂tRhηηη on Σ × [0, T ]. This is equivalent
to solving an evolution equation of Rhηηη under some initial condition Rhηηη(0). Moreover,
the dual problem of the non-stationary Ritz projection, required in the optimal L2-norm
error estimates for the fluid-structure interaction problem, is a backward initial-boundary
value problem

−Lsϕϕϕ+ ϕϕϕ = ∂tσσσ(ϕϕϕ, q)n+ f on Σ× [0, T ) (the boundary condition) (3.1.7a)

−∇ · σ(ϕϕϕ, q) + ϕϕϕ = 0 in Ω × [0, T ) (3.1.7b)

∇ · ϕϕϕ = 0 in Ω × [0, T ) (3.1.7c)

σσσ(ϕϕϕ, q)n = 0 at t = T (the initial condition). (3.1.7d)
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which turns out to be equivalent to a backward evolution equation of ξξξ = σσσ(ϕϕϕ, q)n, i.e.,

−LsN ξξξ +N ξξξ − ∂tξξξ = f on Σ× [0, T ), with initial condition ξξξ(T ) = 0, (3.1.8)

where N : H− 1
2 (Σ)d → H

1
2 (Σ)d is the Neumann-to-Dirichlet map associated to the Stokes

equations. By choosing a well-designed initial value Rhηηη(0) and utilizing the regularity
properties of the dual problem (3.1.7), which are shown by analyzing the equivalent
formulation in (3.1.8), we are able to establish optimal L2 error estimates for the non-
stationary Ritz projection and, subsequently, optimal L2-norm error estimates for the
finite element solutions of the thin-structure interaction problem.

The rest of this chapter is organized as follows. In Section 2, we introduce a kine-
matically coupled scheme and present our main theoretical results on the unconditional
stability and optimal L2-norm error estimates of the scheme. We focus on a first-order
kinematically coupled time-stepping method and the class of H1-conforming inf-sup sta-
ble finite element spaces, including the classical Taylor–Hood and MINI elements. In
Section 3, we introduce a new non-stationary coupled Ritz projection and present the
corresponding projection error estimates (with its proof deferred to Section 4). Then
we establish unconditionally stability and optimal L2-norm error estimates for the fully
discrete finite element solutions by utilizing the error estimates for the non-stationary
coupled Ritz projection. Section 4 is devoted to the proof of the error estimates of the
non-stationary coupled Ritz projection. We present a well-designed initial value of the
projection and the corresponding error estimates based on duality arguments on the thin
solid structure. In Section 5, we provide three numerical examples to support the theoret-
ical analysis presented in this chapter. The first example illustrates the optimal L2-norm
convergence of the proposed fully-discrete kinematically coupled scheme. The second
example demonstrates the simulation of certain physical features, which are consistent
with previous works. The third example is the 3D simulation of common cardiac arteries
in hemodynamics.

3.2 Notations, assumptions and main results

In this section, we propose a stable fully-discrete kinematically coupled FEM for the FSI
problem (3.1.1)–(3.1.3). Then, we present main theoretical results in this work.

3.2.1 Notation and weak formulation

Some standard notations and operators are defined below. For any two function u,
v ∈ L2(Ω), we denote the inner products and norms of L2(Ω) and L2(Σ) by

(u, v) =

∫
Ω

u(x)v(x) dx, ∥u∥2 := (u, u),

(w, ξ)Σ =

∫
Σ

w(x)ξ(x) dx, ∥w∥2Σ := (w,w)Σ.

We assume that Ω ⊂ Rd (d = 2, 3) is a bounded domain with ∂Ω = Σl ∪Σr ∪Σ, where Σ
denotes the fluid-structure interface, Σl and Σr are two disks (or lines in 2-dimensional
case) denoting the inflow and outflow boundary. Moreover, Σr = {(x, y, z+L) : (x, y, z) ∈
Σl for some L > 0}.
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For the simplicity of analysis, we consider the problem with the periodic boundary
condition on Σl and Σr. Assume that the extended domains Ω∞ and Σ∞ are smooth,
where

Ω∞ := {(x, y, z) : ∃k ∈ Z such that (x, y, z + Lk) ∈ Ω ∪ Σl},
Σ∞ := {(x, y, z) : ∃k ∈ Z such that (x, y, z + Lk) ∈ Σ}.

We say a function f defined in Ω∞ is periodic if

f(x, y, z) = f(x, y, z + kL) ∀(x, y, z) ∈ Ω ∪ Σl ∀ k ∈ Z.

The space of periodic smooth functions on Ω∞ is denoted as C∞(Ω∞). The periodic
Sobolev spaces Hs(Ω) and Hs(Σ), with s ⩾ 0, are defined as

Hs(Ω) := The closure of C∞(Ω∞) under the conventional norm of Hs(Ω),

Hs(Σ) := The closure of C∞(Σ∞) under the conventional norm of Hs(Σ),

which are equivalent to the Sobolev spaces by considering Ω and Σ as tori in the z
direction. The dual spaces of Hs(Ω) and Hs(Σ) are denoted by H−s(Ω) and H−s(Σ),
respectively.

We define the following function spaces associated to velocity, pressure and thin struc-
ture, respectively:

X(Ω) := H1(Ω)d, Q(Ω) := L2(Ω), S(Σ) := H1(Σ)d.

Correspondingly, we define the following bilinear forms:

af (u,v) : = 2µ(D(u),D(v)) for u,v ∈ X(Ω), (3.2.1)

b(p,v) : = (p, ∇ · v) for v ∈ X(Ω) and p ∈ Q(Ω), (3.2.2)

as(ηηη,w) : = (−Lsηηη,w)Σ for ηηη,w ∈ S(Σ).

We assume that Ls is a second-order differential operator on Σ satisfying the following
conditions:

∥Lsw∥Hk(Σ) ≤ C∥w∥Hk+2(Σ) ∀w ∈ Hk(Σ)d, ∀k ≥ −1, k ∈ R, (3.2.3)

as(ηηη,w) = as(w, ηηη) and as(ηηη, ηηη) ≥ 0 ∀ηηη ∈ H1(Σ)d, (3.2.4)

∥ηηη∥s + ∥ηηη∥Σ ∼ ∥ηηη∥H1(Σ) for ∥ηηη∥s :=
√
as(ηηη, ηηη). (3.2.5)

In addition, we denote ∥u∥f :=
√

(D(u),D(u)) and mention that the following norm
equivalence holds (according to Korn’s inequality):

∥u∥f + ∥u∥ ∼ ∥u∥H1(Ω).

For the simplicity of notations, we denote by ∥v∥LpX the Bochner norm (or semi-norm)
defined by

∥v∥LpX :=


(∫ t=T

t=0
∥v(t, ·)∥pXdt

)1/p
1 ≤ p <∞

supt∈[0,T ] ∥v(t, ·)∥X p = ∞,
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where ∥ · ∥X is any norm or semi-norm in space, such as ∥ · ∥f , ∥ · ∥s or ∥ · ∥L2(Σ). The
following conventional notations will be used: ∥ · ∥X := ∥ · ∥X(Ω), ∥ · ∥ := ∥ · ∥L2(Ω),
∥ · ∥Σ := ∥ · ∥L2(Σ) and ∥ · ∥f := ∥ · ∥Hf

, ∥ · ∥s := ∥ · ∥Hs .
For smooth solutions of (3.1.1)–(3.1.3), one can verify that (via integration by parts)

the following equations hold for all test functions (v, q,w) ∈ X×Q× S with v|Σ = w:

∂tηηη = u on Σ,

ρf (∂tu,v) + af (u,v)− b(p,v) + b(q,u) + ρsϵs(∂ttηηη, w)Σ + as(ηηη,w) = 0. (3.2.6)

3.2.2 Regularity assumptions

To establish the optimal error estimates for the finite element solutions to the thin-
structure interaction problem, we need to use the following regularity results.

• We assume that the domain Ω is smooth so that the the solution (u, p, ηηη) of the
fluid-structure interaction problem (3.1.1)–(3.1.3) is sufficiently smooth.

• The weak solution (ωωω, λ) ∈ H1(Ω)d × L2(Ω) of the Stokes equations

−∇ · σσσ(ωωω, λ) + ωωω = f

∇ · ωωω = 0

has the following regularity estimates:

∥ωωω∥Hk+3/2 + ∥λ∥Hk+1/2 ≤ C∥f∥Hk−1/2 + ∥σσσ(ωωω, λ) · n∥Hk(Σ) for k ≥ −1/2, k ∈ R,
(3.2.7)

∥ωωω∥Hk+1/2 + ∥λ− λ̄∥Hk−1/2 ≤ C∥f∥Hk−3/2 + ∥ωωω∥Hk(Σ) for k ≥ 1/2, k ∈ R,
(3.2.8)

where λ̄ := 1
|Ω|

∫
Ω
λ is the mean value of λ over Ω. The estimates in (3.2.7) and

(3.2.8) correspond to the Neumann and Dirichlet boundary conditions, respectively;
see [61, Theorem IV.6.1] for a proof of (3.2.8) in smooth domains, with a similar
approach as in [61, Chapter IV] one can prove (3.2.7). We also refer to [74, Theorem
4.15] for a proof of (3.2.7) in the case of polygonal domain.

• We assume that operator Ls possesses the following elliptic regularity: The weak
solution ξξξ ∈ H1(Σ)d of the equation (in the weak formulation)

as(ξξξ,w) + (ξξξ,w)Σ = (g,w)Σ ∀w ∈ H1(Σ)d,

has the following regularity estimate:

∥ξξξ∥H2+k(Σ) ≤ C∥g∥Hk(Σ) for k ≥ −1, k ∈ R. (3.2.9)

3.2.3 Assumptions on the finite element spaces

Let Th denote a quasi-uniform partition on Ω with Ω =
⋃

K∈Th K. Each K is a curvilinear
polyhedron/polygon with diam(K) ≤ h. All boundary faces of Th on Σ form a partition
Th(Σ), Σ =

⋃
D∈Th(Σ)D. All boundary faces of Th on Σl or Σr form a partition for Σl

or Σr, respectively, and these two partitions coincide after shifting L in z-direction. To
approximate the weak form (3.2.6) by finite element method, we assume that there are
finite element spaces (Xr

h,S
r
h, Q

r−1
h ) on Th (where r ≥ 1) with the following properties.
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• (A1) Xr
h ⊆ X, Sr

h ⊆ S and R ⊆ Qr−1
h ⊆ Q, with Sr

h = {vh|Σ : vh ∈ Xr
h}.

• (A2) For Xr
h and Qr−1

h , the following local inverse estimate holds on each K ∈ Th

for 0 ≤ l ≤ k, 1 ≤ p, q ≤ ∞:

∥vh∥Wk,p(K) ≤ Ch−(k−l)+(d/p−d/q)∥vh∥W l,q(K) ∀vh ∈ Xr
h or Qr−1

h , (3.2.10)

For Sr
h, the following global inverse estimate holds:

∥wh∥Hs(Σ) ≤ Chk−s∥wh∥Hk(Σ) ∀wh ∈ Sr
h; ∀ k, s ∈ R with 0 ≤ k ≤ s ≤ 1.

(3.2.11)

• (A3) There are interpolation/projection operators IXh : X → Xr
h and IQh : Q →

Qr−1
h which have the following local Lp approximation properties on each K ∈ Th,

for all 1 ≤ p ≤ ∞:

∥IXh u− u∥Lp(K) + h∥IXh u− u∥W 1,p(K) ≤ Chk+1∥u∥Wk+1,p(∆K) ∀ 0 ≤ k ≤ r,
(3.2.12a)

∥IQh p− p∥Lp(K) ≤ Chk+1∥p∥Wk+1,p(∆K) ∀ 0 ≤ k ≤ r − 1,
(3.2.12b)

where ∆K is the macro element including all the elements which have a common
vertex with K. And there is an interpolation/projection operator ISh : S → Sr

h

satisfying (IXh u)|Σ = ISh (u|Σ) for all u ∈ X with u|Σ ∈ S. Moreover, we require the
following optimal order error estimate

∥IShw −w∥Σ + h∥IShw −w∥H1(Σ) ≤ Chk+1∥w∥Hk+1
h (Σ) ∀0 ≤ k ≤ r, (3.2.13)

where ∥ · ∥Hk+1
h (Σ) is the piecewise Hk+1-norm associated with partition Th(Σ). We

will use Ih to denote one of the operators IXh , ISh and IQh when there is no confusion.

• (A4) Let X̊r
h := {vh ∈ Xr

h : vh|Σ = 0} and Qr−1
h,0 := {qh ∈ Qr−1

h : qh ∈ L2
0(Ω)}. The

following inf-sup condition holds:

∥qh∥≤ C sup
0̸=vh∈X̊r

h

(div vh, qh)

∥vh∥H1

∀qh ∈ Qr−1
h,0 (3.2.14)

Remark 3.2.1. Examples of finite element spaces which satisfy Assumptions (A1)–(A4)
include the Taylor–Hood finite element space with IXh , IQh and ISh being the Scott–Zhang
interpolation operators onto Xr

h, Q
r−1
h and Sr

h respectively. We refer to [21, Section 4.8]
and the references therein for the details on construction and properties of Scott-Zhang
interpolation, and refer to [16, Section 8.8] for a proof of (3.2.14) for the Taylor-Hood
finite element spaces. The following properties are consequences of the assumptions
(A1)–(A4).

1. From (A2) and (A3) we can derive the following estimate for vh ∈ Xr
h:

∥D(vh)n∥Σ =
( ∑

D∈Th(Σ)

∥D(vh)n∥2L2(D)

)1/2

48



≤ C
( ∑

D∈Th(Σ)

hd−1∥vh∥2W 1,∞(K)

)1/2
(K ∈ Th contains D)

≤ C
( ∑

D∈Th(Σ)

h−1∥vh∥2H1(K)

)1/2
≤ Ch−1/2∥vh∥H1 .

Therefore, we can obtain the following inverse estimate for the boundary term
σσσ(vh, qh)n:

∥σσσ(vh, qh)n∥Σ ≤ Ch−1/2(∥vh∥H1 + ∥qh∥). (3.2.15)

2. From (A3) and (A4) we can see that when r ≥ 2, the mixed finite element space
(Xr

h, Q
r−1
h ) can be realized by the (r, r−1) Taylor-Hood finite element space. When

r = 1, (X1
h, Q

0
h) can be realized by the MINI element space.

3. From inf-sup condition (3.2.14), we can deduce the following alternative version of
inf-sup condition (involving H1(Σ)-norm in the denominator)

∥qh∥≤ C sup
0̸=vh∈Xr

h

(div vh, qh)

∥vh∥H1 + ∥vh∥H1(Σ)

∀qh ∈ Qr−1
h . (3.2.16)

An inf-sup condition similar to (3.2.16) was proved in [141, Lemma 2], though thick
structure problem is considered there. For the reader’s convenience, we present a
proof of (3.2.16) in Section 3.9.

4. For each wh ∈ Sr
h, we denote by Ehwh ∈ Xr

h an extension such that Ehwh := IXh v,
where v ∈ H1(Ω)d is the extension of wh by trace theorem, satisfying ∥v∥H1 ≤
C∥wh∥H1/2(Σ) and v|Σ = wh. Combining (3.2.12) with (3.2.11) we see that

∥Ehwh∥H1 ≤ Ch−1/2∥wh∥Σ. (3.2.17)

5. Combining (3.2.12) with (3.2.15) we have for any uh ∈ Xr
h, ph ∈ Qr−1

h

∥σσσ(u− uh, p− ph)n∥Σ
≤ ∥σσσ(u− Ihu, p− Ihp)n∥Σ + ∥σσσ(Ihu− uh, Ihp− ph)n∥Σ
≤ C(∥u− Ihu∥W 1,∞ + ∥p− Ihp∥L∞) + ∥σσσ(Ihu− uh, Ihp− ph)n∥Σ
≤ Chr + Ch−1/2(∥Ihu− uh∥H1 + ∥Ihp− ph∥)
≤ Chr−1/2 + Ch−1/2(∥u− uh∥H1 + ∥p− ph∥), (3.2.18)

where we have used (3.2.12) with p = ∞ and (3.2.15) in the second to last inequality.

3.2.4 A new kinematically coupled scheme and main theoretical
results

Let {tn}Nn=0 be a uniform partition of the time interval [0, T ] with stepsize τ = T/N . For
a sequence of functions {un}Nn=0 we denote

Dτu
n =

un − un−1

τ
, for n = 1, 2, . . ., N.

With the above notations, we present a fully discrete kinematically coupled algorithm.
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Step 1: For given un−1
h , pn−1

h , ηηηn−1
h , find ηηηnh and snh ∈ Sr

h such that

ρsϵs

(
snh − un−1

h

τ
, wh

)
Σ

+ as(ηηη
n
h, wh) = −(σσσn−1

h · n, wh)Σ, ∀wh ∈ Sr
h (3.2.19)

ηηηnh = ηηηn−1
h + τsnh .

Step 2: Then find (un
h, p

n
h) ∈ Xr

h ×Qr−1
h satisfying

ρf (Dτu
n
h, vh) + af (u

n
h, vh)− b(pnh, vh) + b(qh, u

n
h)− (σσσn

h · n, vh)Σ (3.2.20)

+ ρsϵs

(
un
h − snh
τ

, vh +
τ

ρsϵs
σσσ(vh, qh) · n

)
Σ

+

(
(σσσn

h − σσσn−1
h ) · n, vh +

τ(1 + β)

ρsϵs
σσσ(vh, qh) · n

)
Σ

= 0

for all (vh, qh) ∈ Xr
h × Qr−1

h , where σσσn
h = σσσ(un

h, p
n
h) and β ≥ 0 denotes a stabilization

parameter.
Initial values: Since σσσn−1

h depends on both un−1
h and pn−1

h , the numerical scheme in
(3.2.19)–(3.2.20) requires the initial value (u0

h, p
0
h, ηηη

0
h) to be given. We simply assume

that the initial value (u0
h, p

0
h, ηηη

0
h) are given sufficiently accurately, satisfying the following

conditions:

∥u0
h −Rhu

0∥+ ∥u0
h −Rhu

0∥Σ + ∥ηηη0h −Rhηηη
0∥H1(Σ) ⩽ Chr+1,

∥p0h −Rhp
0∥Σ ⩽ C,

(3.2.21)

where (Rhu
0, Rhp

0, Rhηηη
0) satisfies a coupled non-stationary Ritz projection defined in

Section 3.3.2.

Remark 3.2.2. Kinematically coupled schemes were firstly proposed in [23, 72, 25] with
the following time discretization: Find (sn, ηηηn) such that

ρsϵs
sn − un−1

τ
− Ls(ηηη

n) = −σσσn−1 · n on Σ (3.2.22)

ηηηn = ηηηn−1 + τsn on Σ

and then find (un, pn) satisfying

ρfDτu
n +∇ · σσσn = 0 and ∇ · un = 0 in Ω, (3.2.23)

ρsϵs
un − sn

τ
+ (σσσn − σσσn−1) · n = 0 on Σ.

The extension to full discretization was considered by several authors [25, 120], while the
analysis for full discretization is incomplete and the energy stability is proved only for
time-discrete schemes.

Remark 3.2.3. Our scheme in (3.2.19)–(3.2.20) is designed with two new ingredients.
First, we have added two stabilization terms

ρsϵs

(
un
h − snh
τ

,
τ

ρsϵs
σσσ(vh, qh) · n

)
Σ

and

(
(σσσn

h − σσσn−1
h ) · n, τ(1 + β)

ρsϵs
σσσ(vh, qh) · n

)
Σ

,

which guarantee unconditional energy stability of the scheme in (3.2.19)–(3.2.20). Oth-
erwise the unconditional energy stability cannot be proved in the fully discrete finite
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element setting. Second, we have introduced an additional parameter β > 0 to the
scheme, and this additional parameter allows us to prove optimal-order convergence in
the L2 norm (especially optimal order in space). More specifically, this parameter β > 0
leads to the following term in the E1 of (3.2.26) :

β0
ρsϵs
2τ

∥snh − un
h∥2Σ with β0 = 1− (

√
4 + β2 − β)/2,

which is used to absorb other undesired terms on the right-hand side of the inequalities in
our error estimation. Therefore, the optimal-order L2 error estimate does benefits from
our scheme (with the parameter β > 0).

Remark 3.2.4. For the Taylor–Hood finite element spaces, the conditions in (3.2.21) on
the initial values can be satisfied if one chooses u0

h and p
0
h to be the Lagrange interpolations

of u0 and p0, respectively, and chooses ηηη0h = Rshηηη(0), where Rshηηη(0) is defined in Section
3.4; see Definition 3.4.4 and estimate (5.3.44).

The main theoretical results of this chapter are the following two theorems.

Theorem 3.2.1. Under the assumptions in Section 3.2.3 (on the finite element spaces),
the finite element system in (3.2.19)–(3.2.20) is uniquely solvable, and the following in-
equality holds:

E0(u
n
h, p

n
h, ηηη

n
h) +

n∑
m=1

τE1(u
m
h , s

m
h , ηηη

m
h ) ⩽ E0(u

0
h, p

0
h, ηηη

0
h), n = 1, 2, ..., N, (3.2.24)

where

E0(u
n
h, p

n
h, ηηη

n
h) =

ρf
2
∥un

h∥2 +
1

2
∥ηηηnh∥2s +

τ 2(1 + β)

2ρsϵs
∥σσσn

h · n∥2Σ +
ρsϵs
2

∥un
h∥2Σ, (3.2.25)

E1(u
n
h, s

n
h, ηηη

n
h) = 2µ∥un

h∥2f +
ρf
2τ

∥un
h − un−1

h ∥2 + ρsϵs
2τ

∥snh − un−1
h ∥2Σ +

ρsϵsβ0
2τ

∥snh − un
h∥2Σ

+
τβ0
2ρsϵs

∥(σσσn
h − σσσn−1

h ) · n∥2Σ +
τ

2
∥Dτηηη

n
h∥2s, (3.2.26)

with β0 = 1− (
√

4 + β2 − β)/2 and β ⩾ 0.

Theorem 3.2.2. For finite elements of degree r ⩾ 2, under the assumptions in Sections
3.2.2–3.2.3 (on the regularity of solutions and finite element spaces), there exist positive
constants τ0 and h0 such that, for sufficiently small stepsize and mesh size τ ⩽ τ0 and
h ⩽ h0, the finite element solutions given by (3.2.19)–(3.2.20) with initial values satisfying
(3.2.21) and β > 0 has the following error bound:

max
1⩽n⩽N

(
∥u(tn, ·)− un

h∥+ ∥ηηη(tn, ·)− ηηηnh∥Σ + ∥u(tn, ·)− un
h∥Σ
)
⩽ C(τ + hr+1), (3.2.27)

where C is some positive constant independent of n, h and τ .

The proofs of Theorem 3.2.1 and Theorem 3.2.2 are presented in the next section.

3.3 Analysis of the proposed algorithm

This section is devoted to the proof of Theorems 3.2.1 and 3.2.2. For the simplicity of
notation, we denote by C a generic positive constant, which is independent of n, h and
τ but may depend on the physical parameters ρs, ϵ, µ, ρf and the exact solution (u, p, ηηη).
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3.3.1 Proof of Theorem 3.2.1

We rewrite (3.2.20) into

ρf (Dτu
n
h, vh) + af (u

n
h, vh)− b(pnh, v

n
h) + b(qh, u

n
h) + ρsϵs

(
un
h − snh
τ

, vh

)
Σ

(3.3.1)

= (σσσn−1
h · n, vh)Σ − (un

h − snh, σσσ(vh, qh) · n)Σ − τ(1 + β)

ρsϵs
((σσσn

h − σσσn−1
h ) · n, σσσ(vh, qh) · n)Σ .

Taking vh = un
h, qh = pnh in (3.3.1) and wh = snh = Dτηηη

n
h in (3.2.19), respectively, gives

the following relations:

ρf
2τ

(
∥un

h∥2 − ∥un−1
h ∥2 + ∥un

h − un−1
h ∥2

)
+ 2µ∥un

h∥2f + ρsϵs

(
un
h − snh
τ

, un
h

)
Σ

= (σσσn−1
h · n, un

h)Σ − (un
h − snh, σσσ

n
h · n)Σ − τ(1 + β)

ρsϵs
((σσσn

h − σσσn−1
h ) · n, σσσn

h · n)Σ

and

1

2τ

(
as(ηηη

n
h, ηηη

n
h)− as(ηηη

n−1
h , ηηηn−1

h ) + τ 2as(s
n
h, s

n
h)
)
+ ρsϵs

(
snh − un−1

h

τ
, snh

)
Σ

= −(σσσn−1
h · n, snh)Σ .

By summing up the last two equations, we have

ρf
2

(
∥un

h∥2 − ∥un−1
h ∥2 + ∥un

h − un−1
h ∥2

)
+ 2µτ∥un

h∥2f +
ρsϵs
2

(
∥snh − un−1

h ∥2Σ + ∥un
h − snh∥2Σ

)
+

1

2

(
as(ηηη

n
h, ηηη

n
h)− as(ηηη

n−1
h , ηηηn−1

h ) + τ 2as(s
n
h, s

n
h)
)
+
ρsϵs
2

(
∥un

h∥2Σ − ∥un−1
h ∥2Σ

)
= τ((σσσn−1

h − σσσn
h) · n,un

h − snh)Σ − τ 2(1 + β)

ρsϵs
((σσσn

h − σσσn−1
h ) · n, σn

h · n)Σ

⩽
τ 2(1 + β − β0)

2ρsϵs
∥(σσσn

h − σσσn−1
h ) · n∥2Σ +

ρsϵs
2(1 + β − β0)

∥un
h − snh∥2Σ

− τ 2(1 + β)

2ρsϵs

(
∥σσσn

h · n∥2Σ − ∥σσσn−1
h · n∥2Σ + ∥(σσσn

h − σσσn−1
h ) · n∥2Σ

)
⩽
ρsϵs(1− β0)

2
∥un

h − snh∥2Σ − τ 2(1 + β)

2ρsϵs

(
∥σσσn

h · n∥2Σ − ∥σσσn−1
h · n∥2Σ

)
− τ 2β0

2ρsϵs
∥(σσσn

h − σσσn−1
h ) · n∥2Σ,

which leads to the following energy inequality:

E0(u
n
h, p

n
h, ηηη

n
h)− E0(u

n−1
h , pn−1

h , ηηηn−1
h ) + E1(u

n
h, p

n
h, ηηη

n
h)τ ⩽ 0 . (3.3.2)

This implies (3.2.24) and completes the proof of Theorem 3.2.1.

3.3.2 A coupled non-stationary Ritz projection

To establish L2-norm optimal error estimate as given in Theorem 5.2.2, we need to in-
troduce a new coupled Ritz projection. Since the FSI model is governed by the Stokes
type equation for fluid coupled with the hyperbolic type equation for solid, the coupled
projection, which is non-stationary and much more complicated than the standard Ritz
projections, plays a key role in proving the optimal-order convergence of finite element
solutions to the FSI model.
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Definition 3.3.1 (Coupled non-stationary Ritz projection). Let (u, p, ηηη) ∈ X ×
Q × S be a triple of functions smoothly depending on t ∈ [0, T ] and satisfying the
condition u|Σ = ∂tηηη. For a given initial value Rhηηη(0), the coupled Stokes–Ritz projection
Rh(u, p, ηηη) is defined as a triple of functions (Rhu, Rhp,Rhηηη) ∈ Xr

h×Qr−1
h ×Sr

h satisfying
(Rhu)|Σ = ∂tRhηηη and the following weak formulation for every t ∈ [0, T ]:

af (u−Rhu,vh)− b(p−Rhp,vh) + b(qh,u−Rhu) + (u−Rhu,vh)

+ as(ηηη −Rhηηη,vh) + (ηηη −Rhηηη,vh)Σ = 0, ∀(vh, qh) ∈ Xr
h ×Qr−1

h .
(3.3.3)

Remark 3.3.1. Given an initial valueRhηηη(0), there exists a unique solution (Rhu, Rhp,Rhηηηh)
for the finite element semi-discrete problem (3.3.3). To see this, we firstly introduce a
linear operator Sh : (Xr

h)
∗ × (Qr−1

h )∗ → Xr
h ×Qr−1

h , where (Xr
h)

∗ and (Qr−1
h )∗ denote the

dual space of Xr
h and Qr−1

h , respectively. For a given (ϕ, ℓ) ∈ (Xr
h)

∗ × (Qr−1
h )∗, denote by

(uh, ph) ∈ Xr
h×Qr−1

h the solution of the following Neumann-type discrete Stokes equation

af (uh,vh)− b(ph,vh) + (uh,vh) = ϕ(vh) ∀vh ∈ Xr
h,

b(qh,uh) = ℓ(qh) ∀qh ∈ Qr−1
h ,

and define Sh(ϕ, ℓ) = (Sv
h(ϕ, ℓ),S

p
h(ϕ, ℓ)) := (uh, ph). The well-posedness of the above

equation follows the inf-sup condition (3.2.16).
Next, we denote

ϕ(u,p,η)(vh) := af (u,vh)− b(p,vh) + (u,vh) + as(ηηη,vh) + (ηηη,vh)Σ,

ϕRhη(vh) := as(Rhηηη,vh) + (Rhηηη,vh)Σ,

ℓu(qh) := b(qh,u).

Then (Rhu, Rhp,Rhηηη) is a solution to (3.3.3) if and only if the following equations are
satisfied:

∂tRhηηη = Sv
h(ϕ(u,p,η) − ϕRhη, ℓu)|Σ, (3.3.4a)

Rhu = Sv
h(ϕ(u,p,η) − ϕRhη, ℓu), Rhp = Sp

h(ϕ(u,p,η) − ϕRhη, ℓu). (3.3.4b)

Therefore, the uniqueness and existence of solution to (3.3.3) follows the uniqueness and
existence of solution to (3.3.4a). Since Sv

h is a linear operator on (Xr
h)

∗×(Qr−1
h )∗ and ϕRhη

is linear with respect to Rhηηη, (3.3.4a) is an in-homogeneous linear ordinary differential
equation for Rhηηη and thus admits a unique solution for a given initial value Rhηηη(0). Next,
we can obtain Rhu and Rhp from (3.3.4b).

In order to guarantee that the coupled non-stationary Ritz projection Rh possesses
optimal-order approximation properties, we need to define Rhηηη(0) in a rather technical
way. Therefore, we present error estimates for this projection in Theorem 3.3.1 and
postpone the definition of Rhηηη(0) and the proof of Theorem 3.3.1 to Section 3.4.

Theorem 3.3.1 (Error estimates for the coupled non-stationary Ritz pro-
jection). For sufficiently smooth functions (u, p, ηηη) satisfying u|Σ = ∂tηηη, there exists
wh ∈ Sr

h such that when Rhηηη(0) = wh, the following estimates hold uniformly for
t ∈ [0, T ]:

max
t∈[0,T ]

(
∥ηηη −Rhηηη∥Σ + ∥u−Rhu∥+ ∥u−Rhu∥Σ + h∥p−Rhp∥

)
⩽ Chr+1, (3.3.5)

max
t∈[0,T ]

(
∥∂t(u−Rhu)∥H1 + ∥∂t(u−Rhu)∥H1(Σ) + ∥∂t(p−Rhp)∥

)
⩽ Chr, (3.3.6)

∥∂t(u−Rhu)∥L2L2(Σ) + ∥∂t(u−Rhu)∥L2L2 ⩽ Chr+1 . (3.3.7)
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3.3.3 Proof of Theorem 5.2.2

For the solution (u, p, ηηη) of the problem (3.1.1)–(3.1.3), we define the notations:

un = u(tn, ·), ηηηn = ηηη(tn, ·), pn = p(tn, ·). (3.3.8)

For the analysis of the kinematically coupled scheme, we introduce sn ∈ H1(Σ) and
Rhs

n ∈ Sr
h by

sn = ∂tηηη(tn, ·) = u(tn, ·) and Rhs
n := (Rhu)(tn) = ∂tRhηηη(tn) on Σ,

which satisfy the estimate:

∥sn −Rhs
n∥Σ ⩽ Chr+1 (3.3.9)

according to the estimates in Theorem 3.3.1.
By Taylor’s expansion, we have ηηηn = ηηηn−1 + τsn + T n

0 , with a truncation error T n
0

which has the following bound:

∥T n
0 ∥H1(Σ) ≤ Cτ 2 ∀n ≥ 1 . (3.3.10)

By (3.1.1)–(3.1.3), we can see that the sequence (un, pn, ηηηn, sn) satisfies the following
weak formulations

ρsϵs

(
sn − un−1

τ
, wh

)
Σ

+ as(ηηη
n, wh) + (σσσn−1 · n, wh)Σ = En

s (wh), ∀wh ∈ Sr
h

(3.3.11)

and

ρf (Dτu
n, vh) + af (u

n, vh)− b(pn, vh) + b(qh, u
n) + ρsϵs

(
un − sn

τ
, vh

)
Σ

= (σσσn−1 · n, vh)Σ − (un − sn, σσσ(vh, qh) · n)Σ − τ(1 + β)

ρsϵs
((σσσn − σσσn−1) · n, σσσ(vh, qh) · n)Σ

+ En
f (vh, qh), ∀(vh, qh) ∈ Xr

h ×Qr−1
h (3.3.12)

where σσσn = σσσ(un, pn) and the truncation error functions satisfy the following estimates:

|En
s (wh)| ⩽ Cτ∥wh∥Σ,

|En
f (vh,qh)| ⩽ Cτ(∥vh∥Σ + ∥vh∥) + Cτ 2∥σσσ(vh,qh) · n∥Σ .

(3.3.13)

For given (un, pn, ηηηn, sn), we denote by (Rhu
n, Rhp

n, Rhηηη
n, Rhs

n) the corresponding
coupled non-stationary Ritz projection and define RhT n

0 satisfying

Rhηηη
n = Rhηηη

n−1 + τRhs
n +RhT n

0 ∀n ≥ 1.

Then we introduce the following error decomposition:

enu := un − un
h = un −Rhu

n +Rhu
n − un

h := θnu + δnu , in Ω.

enp := pn − pnh = pn −Rhp
n +Rhp

n − pnh := θnp + δnp , in Ω.

enσ := σσσ(un, pn)− σσσ(un
h, p

n
h) = σσσ(θnu , θ

n
p ) + σσσ(δnu , δ

n
p ) := θnσ + δnσ , in Ω.

ens := sn − snh = sn −Rhs
n +Rhs

n − snh := θns + δns , on Σ .
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enη := ηηηn − ηηηnh = ηηηn −Rhηηη
n +Rhηηη

n − ηηηnh := θnη + δnη , on Σ .

Since un|Σ = sn, it follows that θnu |Σ = θns . Moreover, the following relations hold:

(un − un−1)− (snh − un−1
h ) = θnu + δns − θn−1

u − δn−1
u ,

(un − un)− (un
h − snh) = θnu + δnu − θnu − δns = δnu − δns on Σ.

By using (3.2.19)–(3.2.20) and (3.3.11)–(3.3.12), we can write down the following error
equations:

ρsϵs

(
δns − δn−1

u

τ
, wh

)
Σ

+ as(δ
n
η , wh) + (δn−1

σ · n, wh)Σ = En
s (wh)− F n

s (wh), ∀wh ∈ Sr
h

(3.3.14)

δnη = δn−1
η + τδns +RhT n

0 , on Σ (3.3.15)

ρf

(
δnu − δns

τ
, vh

)
+ af (δ

n
u , vh)− b(δnp , v

n
h) + b(qh, δ

n
u) + ρsϵs

(
δnu − δns

τ
, vh

)
Σ

= (δn−1
σ · n, vh)Σ − (δnu − δns , σσσ(vh, qh))Σ − τ(1 + β)

ρsϵs
((δnσ − δn−1

σ ) · n, σσσ(vh, qh) · n)Σ

+ En
f (vh, qh)− F n

f (vh, qh), ∀(vh, qh) ∈ Xr
h ×Qr−1

h (3.3.16)

where

F n
s (wh) = ρsϵs(Dτθ

n
u , wh)Σ + as(θ

n
η , wh) + (θn−1

σ · n, wh)Σ (3.3.17)

F n
f (vh, qh) = ρf (Dτθ

n
u ,vh) + af (θ

n
u , vh)− b(θnp , vh)

− (θn−1
σ · n, vh)Σ +

τ(1 + β)

ρsϵs
((θnσ − θn−1

σ ) · n, σσσ(vh, qh) · n)Σ (3.3.18)

Moreover, we have the following result:

θnη = θn−1
η + τθns + (T n

0 −RhT n
0 ),

where the last term can be estimated by using (3.3.6), i.e.,

∥T n
0 −RhT n

0 ∥H1(Σ) ≤ Cτ 2∥∂t(Rhu− u)∥L∞H1(Σ) ≤ Cτ 2hr. (3.3.19)

Therefore, by the triangle inequality with estimates (3.3.10) and (3.3.19), we have

∥RhT n
0 ∥H1(Σ) ⩽ ∥T n

0 ∥H1(Σ) + ∥T n
0 −RhT n

0 ∥H1(Σ) ≤ Cτ 2 ∀n ≥ 1 (3.3.20)

We take (vh, qh) = (δnu , δ
n
p ) ∈ Xr

h × Qr−1
h in (3.3.16) and wh = δns ∈ Sr

h in (3.3.14),
respectively, and then sum up the two results. Using the stability analysis in (3.3.2) and
the relation

δns = Dτδ
n
η − τ−1RhT n

0 ,

we obtain

DτE0(δ
n
u , δ

n
p , δ

n
η ) + E1(δ

n
u , δ

n
s , δ

n
η )

⩽ En
s (δ

n
s )− F n

s (δ
n
s ) + En

f (δ
n
u , δ

n
p )− F n

f (δ
n
u , δ

n
p ) + τ−1as(δ

n
η , RhT n

0 ) . (3.3.21)
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To establish the error estimate, we need to estimate each term on the right-hand side of
(3.3.21). From (3.3.13) and (3.3.20) we can see that

|En
s (δ

n
s )| ⩽ Cτ∥δns ∥Σ

|En
f (δ

n
u , δ

n
p )| ⩽ Cτ(∥δnu∥Σ + ∥δnu∥) + τ 2∥δnσ · n∥Σ

|τ−1as(δ
n
η , RhT n

0 )| ≤ Cτ∥δnη ∥s

(3.3.22)

It remains to estimate F n
s (δs) + F n

f (δu, δp) from the right hand side of (3.3.21).

1. The second term in (3.3.17) plus the second and third terms in (3.3.18) can be
estimated as follows. Let ξnh := δnu −Eh(δ

n
u − δns ), where Eh(δ

n
u − δns ) is an extension

of δnu −δns to Ω satisfying estimate (3.2.17) and ξnh |Σ = δns . By choosing vh = ξnh and
qh = 0 in (3.3.3) (definition of the coupled Ritz projection), we obtain the following
relation:

af (θ
n
u , δ

n
u)− b(θnp , δ

n
u) + as(θ

n
η , δ

n
s )

= af (θ
n
u , Eh(δ

n
u − δns ))− b(θnp , Eh(δ

n
u − δns ))− (θnu , ξ

n
h)− (θnη , δ

n
s )Σ

≤ Chr∥Eh(δ
n
u − δns )∥f + Chr+1(∥ξnh∥+ ∥δns ∥Σ)

≤ Chr−1/2∥δnu − δns ∥Σ + Chr+1(∥δnu∥+ ∥δns ∥Σ), (3.3.23)

where we have used estimate (3.3.5)–(3.3.6).

2. The third term in (3.3.17) plus the fourth term in (3.3.18) can be estimated as
follows:

(θn−1
σ · n, δns )Σ − (θn−1

σ · n, δnu)Σ
≤∥θn−1

σ · n∥Σ∥δns − δnu∥Σ
≤C(hr−1/2 + h−1/2(∥θn−1

u ∥H1 + ∥θn−1
p ∥))∥δns − δnu∥Σ

≤Chr−1/2∥δns − δnu∥Σ, (3.3.24)

where we used (3.2.18) in the second inequality and (3.3.5) in the last inequality.

3. For the first term in (3.3.17) and (3.3.18), respectively, we have

ρsϵs(Dτθ
n
u , δ

n
s )Σ ≤ C

τ
∥δns ∥Σ

∫ tn

tn−1

∥∂tθu(t)∥Σdt, (3.3.25)

ρf (Dτθ
n
u , δ

n
u) ≤

C

τ
∥δnu∥

∫ tn

tn−1

∥∂tθu(t)∥dt. (3.3.26)

4. The last term in (3.3.18) can be estimated by using (3.3.6) and (3.2.18), i.e.,

τ

ρsϵ
((θnσ − θn−1

σ ) · n, σσσ(δnu , δnp ) · n)Σ

⩽Cτ

(∫ tn

tn−1

∥σσσ(∂tθu, ∂tθp)(t) · n∥Σdt
)
∥σσσ(δnu , δnp ) · n∥Σ

≤Cτ 2hr−1/2∥σσσ(δnu , δnp ) · n∥Σ. (3.3.27)
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Now we can substitute estimates (3.3.22)–(3.3.27) into the energy inequality in (3.3.21).
This yields the following result:

DτE0(δ
n
u , δ

n
p , δ

n
η ) + E1(δ

n
u , δ

n
s , δ

n
η )

⩽ Cτ(∥δns ∥Σ + ∥δnu∥Σ + ∥δnu∥+ ∥δnη ∥s) + Chr−1/2∥δnu − δns ∥Σ + Chr+1(∥δnu∥+ ∥δns ∥Σ)

+
C

τ
∥δns ∥Σ

∫ tn

tn−1

∥∂tθu(t)∥Σdt+
C

τ
∥δnu∥

∫ tn

tn−1

∥∂tθu(t)∥dt+ Cτ 2∥δnσ · n∥Σ . (3.3.28)

Since ∥δns ∥Σ ⩽ ∥δns − δnu∥Σ + ∥δnu∥Σ, by using Young’s inequality, we can re-arrange the
right hand side of (3.3.28) to obtain

DτE0(δ
n
u , δ

n
p , δ

n
η ) + E1(δ

n
u , δ

n
s , δ

n
η )

⩽ Cε−1(τ 2 + Ch2(r+1) + τh2r−1) + Cε(∥δnu∥2Σ + ∥δnu∥2 + ∥δnη ∥2s) +
Cε

τ
∥δnu − δns ∥2Σ

+
Cε−1

τ

(∫ tn

tn−1

∥∂tθu(t)∥2Σdt+
∫ tn

tn−1

∥∂tθu(t)∥2dt
)
+ Cτ 2∥δnσ · n∥2Σ, (3.3.29)

where 0 < ε < 1 is an arbitrary constant.
We can choose a sufficiently small ε so that the term Cε

τ
∥δnu−δns ∥2Σ can be absorbed by

E1(δ
n
u , δ

n
s , δ

n
η ) on the left-hand side. Then, using the discrete Gronwall’s inequality and

the estimates of θu in (3.3.7), as well as the definition of E0 and E1 in (3.2.25)–(3.2.26),
we obtain

E0(δ
n
u , δ

n
p , δ

n
η ) +

n∑
m=1

τE1(δ
m
u , δ

m
s , δ

m
η ) ≤ CE0(δ

0
u, δ

0
p, δ

0
η) + C(τ 2 + Ch2(r+1) + τh2r−1).

(3.3.30)

Since the initial values satisfy the estimates in (3.2.21), the term E0(δ
0
u, δ

0
p, δ

0
η) can be

estimated to the optimal order. Thus inequality (3.3.30) reduces to

∥δnu∥+ ∥δnu∥Σ + ∥δnη ∥s + ∥δnu − δns ∥Σ ⩽ C(hr−1/2τ 1/2 + τ + hr+1). (3.3.31)

It follows from the relation δnη = δn−1
η + τδns +RhT n

0 , n ⩾ 1, that

∥δnη ∥Σ ≤∥δ0η∥Σ +
n∑

m=1

τ∥δms ∥Σ +
n∑

m=1

∥RhT m
0 ∥Σ ≤ C(hr−1/2τ 1/2 + τ + hr+1), (3.3.32)

where we have used (3.3.31) and (3.3.20). Then, combining the two estimates above with
the following estimate for the projection error:

∥θnu∥+ ∥θnu∥Σ + ∥θnη∥Σ ≤ Chr+1 ∀n ≥ 0,

we obtain the following error bound:

∥enu∥+ ∥enu∥Σ + ∥enη∥Σ ⩽ C(hr−1/2τ 1/2 + τ + hr+1) ⩽ C(τ + hr+1) ,

where the last inequality uses hr−1/2τ 1/2 ⩽ τ +h2r−1 and r ⩾ 2. This completes the proof
of Theorem 5.2.2.
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3.4 The proof of Theorem 3.3.1

We present the proof of the Theorem 3.3.1 step-by-step in the next three subsections.

3.4.1 The definition of Rhηηη(0) in the coupled Ritz projection

In this subsection, we focus on designing the initial value Rhηηη(0) for our coupled non-
stationary Ritz projection.

We first present two auxiliary Ritz projections RS
h and RD

h associated to the structure
model and the fluid model in Definitions 3.4.1-3.4.2, respectively. Next, in terms of
these two auxiliary Ritz projections, we define the initial value Rhηηη(0) in Definition 3.4.3
which is only for our theoretical purpose. Finally, an alternative definition of Rhηηη(0) for
practical computation is given in Definition 3.4.4.

Definition 3.4.1 (Structure–Ritz projection RS
h). We define an auxiliary Ritz projection

RS
h : S → Sr

h for the elastic structure problem by

as(R
S
hs− s,wh) + (RS

hs− s,wh)Σ = 0 ∀wh ∈ Sr
h. (3.4.33)

This is the standard Ritz projection on Σ, which satisfies the estimate ∥RS
hs−s∥Σ ≤ Chr+1

when s is sufficiently smooth. Moreover when r ≥ 2, there holds the negative norm
estimate:

∥RS
hs− s∥H−1(Σ) ≤ Chr+2. (3.4.34)

Let X̊r
h := {vh ∈ Xr

h : vh|Σ = 0} and Qr−1
h,0 := {qh ∈ Qr−1

h : qh ∈ L2
0(Ω)}. We denote

S̃r
h := {vh ∈ Sr

h : (vh,n)Σ = 0} and by P̃ the L2(Σ)-orthogonal projection from Sr
h to S̃r

h.

Definition 3.4.2 (Dirichlet Stokes–Ritz projection RD
h ). Let X̂ := {u ∈ X : u|Σ ∈ S}.

We define an auxiliary Dirichlet Stokes–Ritz projection RD
h : X̂×Q→ Xr

h ×Qr−1
h by

af (u−RD
h u,vh)− b(p−RD

h p,vh) + (u−RD
h u,vh) = 0 ∀vh ∈ X̊r

h, (3.4.35a)

b(qh,u−RD
h u) = 0 ∀qh ∈ Qr−1

h,0 ; with RD
h u = P̃RS

h(u|Σ) on Σ, (3.4.35b)

In addition, we choose RD
h p to satisfy RD

h p − p ∈ L2
0(Ω). This uniquely determines a

solution (RD
h u,R

D
h p) ∈ Xr

h ×Qr−1
h , as explained in the following Remark.

Remark 3.4.1. In order to see the existence and uniqueness of solution (RD
h u,R

D
h p)

defined by (3.4.35), we let ûh ∈ Xr
h be an extension of P̃RS

hu to the bulk domain Ω and

let p̂h be the L2(Ω)-orthogonal projection of p onto Qr−1
h . Then ûh − RD

h u ∈ X̊r
h and

p̂h − RD
h p ∈ Qr−1

h,0 . Replacing (u, p) and (RD
h u, R

D
h p) by (u − ûh, p − p̂h) and (RD

h u −
ûh, R

D
h p− p̂h) in (3.4.35a)-(3.4.35b) respectively, we obtain a standard Stokes FE system

with a homogeneous Dirichlet boundary condition for (RD
h u− ûh, R

D
h p− p̂h). The well-

posedness directly follows the inf-sup condition (3.2.14).

Remark 3.4.2. The projection P̃ in (3.4.35b) is introduced to guarantees that the
b(qh,u−RD

h u) = 0 holds not only for qh ∈ Qr−1
h,0 but also for qh ∈ Qr−1

h . That is,

b(qh,u−RD
h u) = 0 ∀qh ∈ Qr−1

h . (3.4.36)

Since Qr−1
h = {1}⊕Qr−1

h,0 , this follows from the first relation in (3.4.35b) and the following
relation:

b(1,u−RD
h u) = (RD

h u,n)Σ = (P̃RS
hu,n)Σ = 0 ,
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where b(1,u) = 0 for the exact solution u which satisfies ∇ · u = 0. Especially, when u
is replaced with ∂tu(0), we have

b(qh, (∂tu−RD
h ∂tu)(0)) = 0 ∀qh ∈ Qr−1

h . (3.4.37)

The relation (3.4.37) is needed in error estimates between (∂tRhu(0), ∂tRhp(0)) and
(∂tu(0), ∂tp(0)) in the Lemma 3.4.4 below. Furthermore, in the Definition 3.4.3, we
defined (Rhu(0), Rhp(0)) via a Dirichlet-type Stokes-Ritz projection with the boundary

condition Rhu(0)|Σ = P̃Rshu(0).

To facilitate further use of P̃ in the following analysis, here we derive an explicit
formula for P̃ . We denote by nh ∈ Sr

h the L2(Σ)-orthogonal projection of unit normal
vector field n of Σ to Sr

h, i.e.,

(n,wh)Σ = (nh,wh)Σ ∀wh ∈ Sr
h. (3.4.38)

Then for any wh ∈ Sr
h, we have

P̃wh = wh − λ(wh)nh ∈ S̃r
h with λ(wh) :=

(wh,n)Σ
∥nh∥2Σ

. (3.4.39)

From ∥n − nh∥Σ ≤ ∥n − Ihn∥Σ ≤ Chr+1 (since n is smooth on Σ), especially we have
∥nh∥Σ ∼ C and

|λ(RS
hu)| =

|(RS
hu− u,n)Σ|
∥nh∥2Σ

≤ Chr+1 and ∥P̃RS
hu−RS

hu∥ ≤ Chr+1. (3.4.40)

Therefore we obtain the estimate ∥RD
h u− u∥Σ ≤ Chr+1.

The following lemma on the error estimates of the Dirichlet Stokes–Ritz projection is
standard. We refer to [73, Proposition 8, Proposition 9] for the proof of (3.4.41). The
negative norm estimate of pressure in (3.4.42) requires a further duality argument, which
is presented in the proof of Lemma 3.8.3 of Section 3.8. We omit the details here.

Lemma 3.4.1. Under the regularity assumptions in Section 3.2.2, the Dirichlet Stokes–
Ritz projection RD

h defined in (3.4.35) satisfies the following estimates:

∥u−RD
h u∥Σ + ∥u−RD

h u∥+ h
(
∥u−RD

h u∥H1 + ∥p−RD
h p∥

)
⩽ Chr+1, (3.4.41)

∥RD
h p− p∥H−1 ≤ Chr+1. (3.4.42)

We define an initial value Rhηηη(0) as follows in terms of the Dirichlet Ritz projection
RD

h .

Definition 3.4.3 (Initial value Rhηηη(0)). Firstly, assuming that the function RD
h ∂tu(0)

and RD
h ∂tp(0) are known with operator RD

h defined by (3.4.35), we define Rshu(0) ∈ Sr
h

to be the solution of the following weak formulation:

as((u−Rshu)(0),wh) + ((u−Rshu)(0),wh)Σ + af ((∂tu−RD
h ∂tu)(0), Ehwh)

− b((∂tp−RD
h ∂tp)(0), Ehwh) + ((∂tu−RD

h ∂tu)(0), Ehwh) = 0 ∀wh ∈ Sr
h, (3.4.43)

where Ehwh denotes an extension of wh to the bulk domain Ω. From the definition of RD
h

in (3.4.35) we can conclude that this definition is independent of the specific extension.
Therefore, (3.4.43) still holds when replacing both wh and Ewh with vh ∈ Xr

h.
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Secondly, we denote by (Rhu(0), Rhp(0)) ∈ Xr
h × Qr−1

h a Dirichlet-type Stokes–Ritz
projection satisfying

af (u(0)−Rhu(0),vh)− b(p(0)−Rhp(0),vh) + (u(0)−Rhu(0),vh) = 0 ∀vh ∈ X̊r
h,

(3.4.44a)

b(qh,u(0)−Rhu(0)) = 0 ∀qh ∈ Qr−1
h,0 ; Rhu(0) = P̃Rshu(0) on Σ,

(3.4.44b)

where we require p(0)−Rhp(0) ∈ L2
0(Ω).

Finally, with the Rhu(0) and Rhp(0) defined above, we define Rhηηη(0) ∈ Sr
h to be the

solution of the following weak formulation on Σ:

af (u(0)−Rhu(0), Ehwh)− b(p(0)−Rhp(0), Ehwh) + (u(0)−Rhu(0), Ehwh)

+ as(ηηη(0)−Rhηηη(0),wh) + (ηηη(0)−Rhηηη(0),wh)Σ = 0 ∀wh ∈ Sr
h.

(3.4.45)

Again (3.4.45) also holds when replacing wh and Ehwh with vh ∈ Xr
h.

For the computation with the numerical scheme (3.2.19)–(3.2.20), we can define the
initial value ηηη0h = Rshηηη(0) ∈ Sr

h in an alternative way below.

Definition 3.4.4 (Ritz projection Rshηηη(0)). We define ηηη0h = Rshηηη(0) ∈ Sr
h as the solution

of the following weak formulation:

as((Rshηηη − ηηη)(0),wh) + ((Rshηηη − ηηη)(0),wh)Σ ∀wh ∈ Sr
h

= −af ((RD
h u− u)(0), Ehwh) + b((RD

h p− p)(0), Ehwh)− ((RD
h u− u)(0), Ehwh) ,

(3.4.46)

which does not require knowledge of ∂tu(0) or ∂tp(0). Again, Ehwh denotes an extension
of wh to the bulk domain Ω, and this definition is independent of the specific extension.
Therefore, (3.4.46) holds for all vh ∈ Xr

h with wh and Ehwh replaced by vh in the
equation. For r ≥ 2, the following result can be proved in Section 3.8:

∥Rshηηη(0)−Rhηηη(0)∥H1(Σ) ≤ Chr+1. (3.4.47)

In addition, by differentiating (3.3.3) with respect to time, we have the following
evolution equations:

as(u−Rhu,vh) + (u−Rhu,vh)Σ + af (∂t(u−Rhu),vh)

−b(∂t(p−Rhp),vh) + (∂t(u−Rhu),vh) = 0 ∀vh ∈ Xr
h, (3.4.48a)

b(qh, ∂t(u−Rhu)) = 0 ∀qh ∈ Qr−1
h , (3.4.48b)

which are used not only to design the above Rhηηη(0), but also to estimate errors in the
following subsections.

3.4.2 Error estimates for the coupled Ritz projection at t = 0

Firstly, we consider the estimation of Rshu(0) which occurs as an auxiliary function in the
definition of Rhηηη(0) in Lemma 3.4.2. Secondly, we present estimates for u(0) − Rhu(0),
ηηη(0) − Rhηηη(0) and p(0) − Rhp(0) in Lemma 3.4.3. Finally, we present estimates for the
time derivatives ∂t(u−Rhu)(0) and ∂t(p−Rhp)(0) in Lemma 3.4.4.
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Lemma 3.4.2. Under the assumptions in Sections 3.2.2 and 3.2.3, the following error
estimate holds for the Rshu(0) defined in (3.4.43):

∥Rshu(0)− u(0)∥Σ + h∥Rshu(0)− u(0)∥s ≤ Chr+1. (3.4.49)

Proof. Since we can choose an extension Ehξξξh of ξξξh ∈ Sr
h to satisfy that ∥Ehξξξh∥H1(Ω) ≤

C∥ξξξh∥H1(Σ), equation (3.4.43) implies that

as(u(0)−Rshu(0), ξξξh) + (u(0)−Rshu(0), ξξξh)Σ ⩽ Chr∥ξξξh∥H1(Σ) .

This leads to the following standard H1-norm estimate:

∥u(0)−Rshu(0)∥s + ∥u(0)−Rshu(0)∥Σ ≤ Chr.

In order to obtain an optimal-order L2-norm estimate for u(0)−Rshu(0), we introduce
the following dual problem:

−Lsψ + ψ = Rshu(0)− u(0), ψ has periodic boundary condition on Σ. (3.4.50)

The regularity assumption in (3.2.9) implies that

as(ψ, ξξξ)+(ψ, ξξξ)Σ = (u(0)−Rshu(0), ξξξ)Σ ∀ξξξ ∈ S and ∥ψ∥H2(Σ) ≤ C∥u(0)−Rshu(0)∥Σ .

We can extend ψ to be a function on Ω, still denoted by ψ, satisfying the periodic
boundary condition and ∥ψ∥H2(Ω) ≤ C∥ψ∥H2(Σ). Therefore, choosing ξξξ = u(0)−Rshu(0)
in the equation above leads to

∥u(0)−Rshu(0)∥2Σ = as(u(0)−Rshu(0), ψ) + (u(0)−Rshu(0), ψ)Σ

= as(u(0)−Rshu(0), ψ − Ihψ) + (u(0)−Rshu(0), ψ − Ihψ)Σ

− af (∂tu(0)−RD
h ∂tu(0), Ihψ) + b(∂tp(0)−RD

h ∂tp(0), Ihψ)

− (∂tu(0)−RD
h ∂tu(0), Ihψ) (relation (3.4.43) is used)

≤Chr+1∥ψ∥H2(Σ) + |af (∂tu(0)−RD
h ∂tu(0), ψ)|

+ |b(∂tp(0)−RD
h ∂tp(0), ψ)|+ |(∂tu(0)−RD

h ∂tu(0), ψ)| .

Since

|(D(∂tu(0)−RD
h ∂tu(0)),Dψ)|

= | − (∂tu(0)−RD
h ∂tu(0),∇ ·Dψ) + (∂tu(0)−RD

h ∂tu(0),Dψ · n)Σ|
≤ Chr+1∥ψ∥H2(Σ),

where the last inequality uses the estimate ∥ψ∥H2(Ω) ≤ C∥ψ∥H2(Σ) as well as the estimates
of ∥∂tu(0)−RD

h ∂tu(0)∥ and ∥∂tu(0)−RD
h ∂tu(0)∥Σ in (3.4.41) (with u(0) replaced by ∂tu(0)

therein). Furthermore, using the H−1 estimate in (3.4.42), we have

|b(∂tp(0)−RD
h ∂tp(0), ψ)| ≤ C∥∂tp(0)−RD

h ∂tp(0)∥H−1∥ψ∥H2 ⩽ Chr+1∥ψ∥H2(Σ).

Then, summing up the estimates above, we obtain

∥u(0)−Rshu(0)∥Σ ≤ Chr+1 .

The proof of Lemma 3.4.2 is complete.
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Lemma 3.4.3. Under the assumptions in Sections 3.2.2 and 3.2.3, the following error
estimates hold (for the coupled Ritz projection in Definition 3.4.3):

∥ηηη(0)−Rhηηη(0)∥Σ + h∥ηηη(0)−Rhηηη(0)∥s + ∥u(0)−Rhu(0)∥Σ ≤ Chr+1, (3.4.51)

∥u(0)−Rhu(0)∥+ h∥p(0)−Rhp(0)∥ ≤ Chr+1. (3.4.52)

Proof. From (3.4.39) we know that Rhu(0) = P̃Rshu(0) = Rshu(0) − λ(Rshu(0))nh on
Σ, with

|λ(Rshu(0))| =
|(Rshu(0),n)Σ|

∥nh∥2Σ
=

|(Rshu(0)− u(0),n)Σ|
∥nh∥2Σ

⩽ C∥Rshu(0)−u(0)∥Σ ⩽ Chr+1.

Therefore, using the triangle inequality, we have

∥u(0)−Rhu(0)∥Σ ⩽ ∥u(0)−Rshu(0)∥Σ + |λ(Rshu(0))|∥nh∥Σ ⩽ Chr+1,

where the estimate (3.4.49) is used.
Since (Rhu(0), Rhp(0)) is essentially a Dirichlet Ritz projection with a different bound-

ary value, i.e., P̃Rshu(0), the error estimates for ∥u(0) − Rhu(0)∥ and ∥p(0) − Rhp(0)∥
are the same as those in Lemma 3.4.1. With the optimal-order estimates of ∥u(0) −
Rhu(0)∥Σ, ∥u(0)−Rhu(0)∥ and ∥p(0)−Rhp(0)∥, the estimation of ∥ηηη(0)−Rhηηη(0)∥Σ and
∥ηηη(0)−Rhηηη(0)∥s would be the same as the proof of Lemma 3.4.2.

Next, we present estimates for the time derivatives ∂t(u−Rhu)(0) and ∂t(p−Rhp)(0).
To this end, we use the following relation:

(u−Rhu)(0) = (u−Rshu)(0) + λ(Rshu(0))nh on Σ. (3.4.53)

Replacing (u−Rshu)(0) by (u−Rhu)(0)− λ(Rshu(0))nh in (3.4.43), we have

as((u−Rhu)(0),vh) + ((u−Rhu)(0),vh)Σ + af ((∂tu−RD
h ∂tu)(0),vh)

− b((∂tp−RD
h ∂tp)(0),vh) + ((∂tu−RD

h ∂tu)(0),vh)

= λ(Rshu(0))(as(nh,vh) + (nh,vh)Σ) ∀vh ∈ Xr
h. (3.4.54)

Let (u#, p#) ∈ X×Q be the weak solution of

af (u
#,v)− b(p#,v) + (u#,v) = as(n,v) + (n,v)Σ ∀v ∈ X, (3.4.55a)

b(q,u#) = 0 ∀q ∈ Q. (3.4.55b)

Denote by (u#
h , p

#
h ) ∈ (Xr

h, Q
r−1
h ) the corresponding FE solution satisfying

af (u
#
h ,vh)− b(p#h ,vh) + (u#

h ,vh) = as(nh,vh) + (nh,vh)Σ ∀vh ∈ Xr
h, (3.4.56a)

b(qh,u
#
h ) = 0 ∀qh ∈ Qr−1

h , (3.4.56b)

where nh is defined in (3.4.38).
Note that (3.4.55) is equivalent to the weak solution of

−∇ · σσσ(u#, p#) + u# = 0 in Ω with σσσ(u#, p#)n = −Lsn+ n on Σ

∇ · u# = 0 in Ω.
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Therefore, from the regularity estimate in (3.2.7) (with k = r − 1/2 therein) and as-
sumption (3.2.3) on Ls, we obtain the following regularity estimate for the solutions of
(3.4.55):

∥u#∥Hr+1 + ∥p#∥Hr ≤ C∥n∥Hr+3/2(Σ) ≤ C.

By considering the difference between (3.4.55) and (3.4.56), the following estimates of
e#h := Ihu

# − u#
h and m#

h := Ihp
# − p#h can be derived for all vh ∈ Xr

h and qh ∈ Qr−1
h :

af (e
#
h ,vh)− b(m#

h ,vh) + (e#h ,vh) ≤ Chr∥vh∥H1(Σ) + Chr∥vh∥H1 ≤ Chr−1/2∥vh∥H1

b(qh, e
#
h ) ≤ Chr∥qh∥,

where we have used the inverse estimate in (3.2.11) and the following trace inequality:

∥vh∥H1(Σ) ≤ Ch−1/2∥vh∥H1/2(Σ) ≤ Ch−1/2∥vh∥H1 .

From Korn’s inequality and inf-sup condition (3.2.16), choosing vh = e#h yields the fol-
lowing result:

∥e#h ∥H1 + ∥m#
h ∥ ≤ Chr−1/2,

which also implies the following boundedness through the application of the triangle
inequality:

∥u#
h ∥H1 + ∥p#h ∥ ≤ C.

By using the boundedness of H1(Ω)-norm of u#
h and L2(Ω)-norm of p#h , we can estimate

∂t(u−Rhu)(0) and ∂t(p−Rhp)(0) as follows.

Lemma 3.4.4. Under the assumptions in Sections 3.2.2 and 3.2.3, the following error
estimates hold (for the time derivative of the coupled Ritz projection in Definition 3.4.3):

∥∂t(u−Rhu)(0)∥+ ∥∂t(u−Rhu)(0)∥Σ + h∥∂t(p−Rhp)(0)∥ ≤ Chr+1. (3.4.57)

Proof. By comparing (3.4.54) with (3.4.56a), and comparing (3.4.37) with (3.4.56b), we
obtain

as((u−Rhu)(0),vh) + ((u−Rhu)(0),vh)Σ

+ af ((∂tu−RD
h ∂tu)(0)− λ(Rshu(0))u

#
h ,vh)− b((∂tp−RD

h ∂tp)(0)− λ(Rshu(0))p
#
h ,vh)

+ ((∂tu−RD
h ∂tu)(0)− λ(Rshu(0))u

#
h ,vh) = 0 ∀vh ∈ Xr

h (3.4.58)

b
(
qh, (∂tu−RD

h ∂tu)(0)− λ(Rshu(0))u
#
h

)
= 0 ∀qh ∈ Qr−1

h (3.4.59)

Then, by comparing (3.4.58)-(3.4.59) with (3.4.48a)-(3.4.48b), we find the following rela-
tions:

∂t(u−Rhu)(0) =
(
∂tu−RD

h ∂tu
)
(0)− λ(Rshu(0))u

#
h ,

∂t(p−Rhp)(0) = (∂tp−RD
h ∂tp)(0)− λ(Rshu(0))p

#
h .

Since |λ(Rshu(0))| ≤ Chr+1 and ∥u#
h ∥ + ∥u#

h ∥Σ + ∥p#h ∥ ≤ C, the result of this lemma
follows from the estimates of the Dirichlet Stokes–Ritz projection in Lemma 3.4.1 (with
u and p replaced by ∂tu and ∂tp therein).
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3.4.3 Error estimates of the coupled Ritz projection for t > 0

In this subsection, using the results in the subsection 3.4.2, we present the proof of the
H1-error estimates and L2-error estimates results in Theorem 3.3.1.

We first present H1-norm error estimates for the coupled Ritz projection by employing
the auxiliary Ritz projections RS

h and RD
h defined in (3.4.33) and (3.4.35), respectively.

From (3.4.35b) we see that

RD
h u−RS

hu = P̃RS
hu−RS

hu = −λ(RS
hu)nh with λ(RS

hu) ∈ R,

where the last equality follows from relation (3.4.39). Therefore, with the relation above
we have

as(u−RD
h u,vh) + (u−RD

h u,vh)Σ

= as(u−RS
hu,vh) + (u−RS

hu,vh)Σ + λ(RS
hu) (as(nh,vh) + (nh,vh)Σ)

≤Chr+1∥vh∥H1(Σ) ≤ Chr+1/2∥vh∥H1/2(Σ) ≤ Chr+1/2∥vh∥H1 ∀vh ∈ Xr
h, (3.4.60)

where we have used the inverse inequality in (3.2.11) and the trace inequality in the
derivation of the last two inequalities. Moreover, since the auxiliary Ritz projection RD

h

defined in (3.4.35) is time-independent, it follows that (∂tR
D
h u, ∂tR

D
h p) = (RD

h ∂tu,R
D
h ∂tp).

Therefore, in view of estimate (3.4.41) for the Dirichlet Stokes–Ritz projection, the fol-
lowing estimate can be found:

as(u−RD
h u,vh) + (u−RD

h u,vh)Σ + af (∂t(u−RD
h u),vh)

− b(∂t(p−RD
h p),vh) + (∂t(u−RD

h u),vh) ≤ Chr∥vh∥H1 ∀vh ∈ Xr
h. (3.4.61)

By considering the difference between (3.4.48a) and (3.4.61), we can derive the following
inequality:

as(Rhu−RD
h u,vh) + (Rhu−RD

h u,vh)Σ + af (∂t(Rhu−RD
h u),vh)

− b(∂t(Rhp−RD
h p),vh) + (∂t(Rhu−RD

h u),vh) ≤ Chr∥vh∥H1 ∀vh ∈ Xr
h. (3.4.62)

Then, choosing vh = ∂t(Rhu−RD
h u) in (3.4.62) and using relation b(∂t(Rhp−RD

h p), ∂t(Rhu−
RD

h u)) = 0 (which follows from (3.4.37) and (3.4.48b)), using Young’s inequality

Chr∥∂t(Rhu−RD
h u)∥H1 ⩽ Cε−1h2r + ε∥∂t(Rhu−RD

h u)∥2H1

with a small constant ε so that ε∥∂t(Rhu − RD
h u)∥2H1 can be absorbed by the left hand

side of (3.4.62), we obtain

∥Rhu−RD
h u∥L∞H1(Σ) + ∥∂t(Rhu−RD

h u)∥L2H1

≤ Chr + C∥(Rhu−RD
h u)(0)∥s + C∥(Rhu−RD

h u)(0)∥Σ ≤ Chr, (3.4.63)

where the last inequality uses the estimates in Lemma 3.4.3 and Lemma 3.4.1. Then, by
applying the inf-sup condition in (3.2.16) (which involves ∥vh∥H1(Σ) in the denominator),
we can obtain the following estimate from (3.4.62):

∥∂t(Rhp−RD
h p)∥ ≤ C∥Rhu−RD

h u∥H1(Σ) + C∥∂t(Rhu−RD
h u)∥H1 + Chr, (3.4.64)

which combined with the estimate in (3.4.63), leads to the following estimate:

∥∂t(Rhp−RD
h p)∥L2L2 ≤ Chr. (3.4.65)
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Therefore, using an additional triangle inequality, the estimates in (3.4.63)–(3.4.65) can
be written as follows:

∥∂t(Rhu− u)∥L2H1 + ∥Rhu− u∥L∞H1(Σ) + ∥∂t(Rhp− p)∥L2L2 ≤ Chr. (3.4.66)

With the initial estimates in Lemma 3.4.3, the estimate of ∥∂t(Rhu − u)∥L2H1 above
further implies that

∥Rhu− u∥L∞H1 ≤ ∥(Rhu− u)(0)∥H1 + C∥∂t(Rhu− u)∥L2H1 ≤ Chr . (3.4.67)

Since ∂t(Rhηηη − ηηη) = Rhu− u on the boundary Σ, by using the Newton–Leibniz formula
with respect to t ∈ [0, T ], the estimate in (3.4.66) and initial estimates in Lemma 3.4.3,
we have

∥Rhηηη − ηηη∥L∞H1(Σ) ≤ ∥(Rhηηη − ηηη)(0)∥H1(Σ) + C∥∂t(Rhηηη − ηηη)∥L2H1(Σ)

≤ ∥(Rhηηη − ηηη)(0)∥H1(Σ) + C∥Rhu− u∥L2H1(Σ) ≤ Chr. (3.4.68)

In the same way, from (3.4.66) and initial estimates in Lemma 3.4.3 we have

∥Rhp− p∥L∞L2 ≤ C∥(Rhp− p)(0)∥+ C∥Rhp− u∥L2L2 ≤ Chr. (3.4.69)

Thus we can summarize what we have proved as follows:

∥Rhu− u∥L∞H1 + ∥Rhu− u∥L∞H1(Σ) + ∥Rhp− p∥L∞L2

+ ∥Rhηηη − ηηη∥L∞H1(Σ) + ∥∂t(Rhu− u)∥L2H1 + ∥∂t(Rhp− p)∥L2L2 ≤ Chr. (3.4.70)

Moreover, by differentiating (3.4.48) with respect to time, we have

as(∂t(Rhu− u),vh) + (∂t(Rhu− u),vh)Σ + af (∂
2
t (Rhu− u),vh)

− b(∂2t (Rhp− p),vh) + (∂2t (Rhu− u),vh) = 0 ∀vh ∈ Xr
h, (3.4.71a)

b(qh, ∂
2
t (Rhu− u)) = 0 ∀qh ∈ Qr−1

h .
(3.4.71b)

Similarly, by choosing vh = ∂2t (Rhu−RD
h u) in (3.4.71a) and using the same approach as

above with the initial value estimates in (3.4.57), we can obtain the following estimate
(the details are omitted):

∥∂t(Rhu− u)∥L∞H1 + ∥∂t(Rhu− u)∥L∞H1(Σ) + ∥∂t(Rhp− p)∥L∞L2

+∥∂2t (Rhu− u)∥L2H1 + ∥∂2t (Rhp− p)∥L2L2 ≤ Chr . (3.4.72)

(3.4.70) and (3.4.72) establish theH1-norm error estimates for the coupled non-stationary
Ritz projection defined in (3.3.3).

We then present L2-norm error estimates for the coupled non-stationary Ritz projec-
tion. To this end, we introduce the following dual problem:

−Lsϕϕϕ+ ϕϕϕ = ∂tσσσ(ϕϕϕ, q)n+ f in Σ (3.4.73a)

−∇ · σ(ϕϕϕ, q) + ϕϕϕ = 0 in Ω (3.4.73b)

∇ · ϕϕϕ = 0 in Ω, (3.4.73c)

with the initial condition σσσ(ϕϕϕ, q)n = 0 at t = T . Problem (3.4.73) can be equivalently
written as a backward evolution equation of ξξξ = σσσ(ϕϕϕ, q)n, i.e.,

−LsN ξξξ +N ξξξ − ∂tξξξ = f on Σ× [0, T ), with initial condition ξξξ(T ) = 0, (3.4.74)
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where N : H− 1
2 (Σ)d → H

1
2 (Σ)d is the Neumann-to-Dirichlet map associated to the

Stokes equations. The existence, uniqueness and regularity of solutions to (3.4.73) are
presented in the following lemma, for which the proof is given in Section 3.7 by utilizing
and analyzing (3.4.74).

Lemma 3.4.5. Problem (3.4.73) has a unique solution which satisfies the following esti-
mate:

∥ϕϕϕ∥L2H2 + ∥ϕϕϕ∥L2H2(Σ) + ∥q∥L2H1 + ∥σσσ(ϕϕϕ, q)(0)n∥Σ ≤ C∥f∥L2L2(Σ). (3.4.75)

By choosing f = Rhηηη− ηηη and, testing equations (3.4.73a) and (3.4.73b) with Rhηηη− ηηη
and Rhu− u, respectively, and using relation ∂t(Rhηηη − ηηη) = Rhu− u on Σ, we have

as(ϕϕϕ,Rhηηη − ηηη) + (ϕϕϕ,Rhηηη − ηηη)Σ + af (ϕϕϕ,Rhu− u)− b(q, Rhu− u) + (ϕϕϕ,Rhu− u)

=
d

dt
(σσσ(ϕϕϕ, q) · n, Rhηηη − ηηη)Σ + ∥Rhηηη − ηηη∥2Σ.

In view of the definition of the non-stationary Ritz projection in (3.3.3), we can subtract
Ihϕϕϕ from ϕϕϕ in the inequality above by generating an additional remainder b(Rhp− p, ϕϕϕ−
Ihϕϕϕ). This leads to the following result in view of the estimate in (3.4.66):

d

dt
(σσσ(ϕϕϕ, q)n, Rhηηη − ηηη)Σ + ∥Rhηηη − ηηη∥2Σ = as(ϕϕϕ− Ihϕϕϕ,Rhηηη − ηηη) + (ϕϕϕ− Ihϕϕϕ,Rhηηη − ηηη)Σ

+ af (ϕϕϕ− Ihϕϕϕ,Rhu− u)− b(q − Ihq, Rhu− u) + (ϕϕϕ− Ihϕϕϕ,Rhu− u)− b(Rhp− p, ϕϕϕ− Ihϕϕϕ)

⩽ Chr+1(∥ϕϕϕ∥H2 + ∥ϕϕϕ∥H2(Σ) + ∥q∥H1).

Since ∥(Rhηηη − ηηη)(0)∥Σ ⩽ Chr+1 (see Lemma 3.4.3), the inequality above leads to the
following result:

∥Rhηηη − ηηη∥2L2L2(Σ)

≤ Chr+1∥Rhηηη − ηηη∥L2L2(Σ) + ∥Rhηηη(0)− ηηη(0)∥L2(Σ)∥(σσσ(ϕϕϕ, q)n)(0)∥L2(Σ)

≤ Chr+1∥Rhηηη − ηηη∥L2L2(Σ) + Chr+1∥Rhηηη − ηηη∥L2L2(Σ),

and therefore

∥Rhηηη − ηηη∥L2L2(Σ) ≤ Chr+1. (3.4.76)

By using the same approach, choosing f = Rhu−u and f = ∂t(Rhu−u) in (3.4.73a),
respectively, the following result can be shown (the details are omitted):

∥Rhu− u∥L2L2(Σ) + ∥∂t(Rhu− u)∥L2L2(Σ) ≤ Chr+1. (3.4.77)

This also implies, via the Newton–Leibniz formula in time,

∥Rhηηη − ηηη∥L∞L2(Σ) + ∥Rhu− u∥L∞L2(Σ) ≤ Chr+1 . (3.4.78)

Furthermore, we consider a dual problem defined by
−∇ · σ(ϕϕϕ, q) + ϕϕϕ = Rhu− u in Ω

∇ · ϕϕϕ = 0 in Ω

ϕϕϕ|Σ = 0, q ∈ L2
0(Ω),

(3.4.79)
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which satisfies the following standard H2 regularity estimate

∥ϕϕϕ∥H2 + ∥q∥H1 + ∥σ(ϕϕϕ, q)n∥L2(Σ) ≤ C∥Rhu− u∥,

where the term ∥σ(ϕϕϕ, q)n∥L2(Σ) is included on the left-hand side because it is actually
bounded by ∥ϕϕϕ∥H2 + ∥q∥H1 . Then, testing (3.4.79) with Rhu− u, we have

∥Rhu− u∥2

= af (ϕϕϕ,Rhu− u)− b(q, Rhu− u) + (ϕϕϕ,Rhu− u)− (σσσ(ϕϕϕ, q)n, Rhu− u)Σ

= af (ϕϕϕ− Ihϕϕϕ,Rhu− u)− b(q − Ihq, Rhu− u)− (σσσ(ϕϕϕ, q)n, Rhu− u)Σ

+ (ϕϕϕ− Ihϕϕϕ,Rhu− u)− b(Rhp− p, ϕϕϕ− Ihϕϕϕ) (as a result of (3.3.3) with vh = Ihϕϕϕ, qh = Ihq)

⩽ Ch(∥ϕϕϕ∥H2 + ∥q∥H1)(∥Rhu− u∥H1 + ∥Rhp− p∥)
+ ∥σσσ(ϕϕϕ, q) · n∥Σ∥Rhu− u∥Σ

⩽ Chr+1∥Rhu− u∥+ C∥Rhu− u∥∥Rhu− u∥Σ.

The last inequality implies, in combination with (3.4.78), the following result:

∥Rhu− u∥ ≤ Chr+1 . (3.4.80)

By using the same approach, replacing Rhu−u by ∂t(Rhu−u) in (3.4.79), the following
estimate can be shown (the details are omitted):

∥∂t(Rhu− u)∥L2L2 ≤ Chr+1 . (3.4.81)

The proof of Theorem 3.3.1 is complete.

3.5 Numerical examples

In this section, we present numerical tests to support the theoretical analysis in this
chapter and to show the efficiency of the proposed algorithm. For 2D numerical examples,
the operator Lsηηη = C0∂xxηηη −C1ηηη on the interface Σ is considered. All computations are
performed by the finite element package NGSolve; see [128].

Example 3.5.1. To test the convergence rate of the algorithm, we consider an artificial
example of two-dimensional thin structure models given in (3.1.1)–(3.1.3) with extra
source terms such that the exact solution is given by

u1 = 4 sin(2πx) sin(2πy) sin(t),

u2 = 4(cos(2πx) cos(2πy)) sin(t),

p = 8(cos(4πx)− cos(4πy)) sin(t),

η1 = 0, η2 = −4 cos(2πx) cos(t).

First, we examine this problem involving left/right-side periodic boundary conditions
and top/bottom interfaces in the domain Ω̄ = [0, 2]×[0, 1]. A uniform triangular partition
is employed, featuring M + 1 vertices in the y-direction and 2M + 1 vertices in the x-
direction, where h = 1/M . The classical lowest-order Taylor–Hood element is utilized for
spatial discretization. For simplicity, we set all involved parameters to 1. Our algorithm
is applied to solve the system with M = 8, 16, 32, τ = h3, and the terminal time T = 0.1.
The numerical results are presented in the Table 3.1, which shows that the algorithm has
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Table 3.1: The convergence order of the algorithm under periodic boundary conditions

Taylor–Hood elements (τ = h3) ∥uN − uN
h ∥ ∥pN − pNh ∥ ∥ηηηN − ηηηNh ∥Σ ∥ηηηN − ηηηNh ∥s

h = 1/8 6.852e-3 1.403e-1 1.324e-2 8.075e-1
h = 1/16 6.848e-4 2.691e-2 1.644e-3 2.029e-1
h = 1/32 7.937e-5 6.297e-3 2.052e-4 5.079e-2
order 3.10 2.10 3.00 2.00

the third-order accuracy for the velocity and the displacement in the L2-norm, as well as
the second-order accuracy for the pressure in the L2-norm and the displacement in the
energy-norm. These numerical results align with our theoretical analysis.

Next, we test our algorithm for the case of the left/right-side Dirichlet boundary
conditions, using the same configuration as previously described. Both the lowest-order
Taylor-Hood element and the MINI element are employed for spatial discretization. We
set τ = h3 and τ = h2 for the Taylor-Hood element and the MINI element, respectively.
The numerical results are displayed in the Table 3.2. As observed in the Table 3.2, the
algorithm, when paired with both the Taylor–Hood element and the MINI element, yields
numerical results exhibiting optimal convergence orders for u and ηηη.

Table 3.2: The convergence order of the algorithm under Dirichlet boundary conditions

Taylor–Hood elements (τ = h3) ∥uN − uNh ∥ ∥pN − pNh ∥ ∥ηηηN − ηηηNh ∥Σ ∥ηηηN − ηηηNh ∥s
h = 1/8 4.553e-3 1.354e-1 1.313e-2 8.069e-1
h = 1/16 6.009e-4 2.775e-2 1.645e-3 2.029e-1
h = 1/32 7.693e-5 6.470e-3 2.055e-4 5.079e-2
order 2.97 2.10 3.00 2.00

MINI elements (τ = h2) ∥uN − uNh ∥ ∥pN − pNh ∥ ∥ηηηN − ηηηNh ∥Σ ∥ηηηN − ηηηNh ∥s
h = 1/16 1.324e-2 3.186e-1 7.971e-2 4.001e0
h = 1/32 3.349e-3 1.192e-1 1.999e-2 2.003e0
h = 1/64 8.327e-4 4.641e-2 5.001e-3 1.002e0
order 2.00 1.36 2.00 1.00

Example 3.5.2. We consider a benchmark model which was studied by many researchers
[25, 26, 54, 57, 72, 109, 120]. All the quantities will be given in the CGS system of units
[54]. The model is described by (3.1.1)–(3.1.3) in Ω̄ = [0, 5] × [0, 0.5] with the physical
parameters: fluid density ρf = 1, fluid viscosity µ = 0.035, solid density ρs = 1.1, the
thickness of wall ϵs = 0.1, Young’s modulus E = 0.75× 106, Poisson’s ratio σ = 0.5 and

C0 =
Eϵs

2(1 + σ)
, C1 =

Eϵs
R2(1− σ2)

,

where R = 0.5 is the width of the domain Ω. The boundary conditions on the in/out-flow
sides (x = 0, x = 5) are defined by σ(u, p)n = −pin/outn where

pin (t) =


pmax

2

[
1− cos

( 2πt

tmax

)]
if t ≤ tmax

0 if t > tmax

, pout (t) = 0 ∀t ∈ (0, T ] .

with pmax = 1.3333 × 104 and tmax = 0.003. The top and bottom sides of Ω are thin
structures, and the fluid is initially at rest. We take a uniform triangular partition
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with M + 1 vertices in y-direction and 10M + 1 vertices in x-direction (h = 1/M), and
solve the system by our algorithm where the lowest-order Taylor–Hood finite element
approximation is used with the spatial mesh size h = 1/64 (M = 64), the temporal step
size τ = h3 and the parameter β = 0.5. We present the contour of pressure p in the
Figure 3.2 at t = 0.003, 0.009, 0.016, 0.026 (from top to bottom). We can see a forward
moving pressure wave(red), which reaches the right-end of the domain and gets reflected.
The reflected wave is characterized by the different color(blue), which was also observed
in [54, 57, 72].

Figure 3.2: The contour of the pressure when t = 0.003, 0.009, 0.016, 0.026 (from top to
bottom)

Example 3.5.3. We consider an example of 3D blood flow simulation in common carotid
arteries studied in [120]. The blood flow is modeled by the Navier-Stokes equation, while
our analysis was presented only for the model with the Stokes equation. The weak form
of the arterial wall model is:

ρsϵs(ηηηtt,w)Σ +D1(ηηη,w)Σ +D2(ηηηt,w)Σ + ϵs(Πs(ηηη),∇sw)Σ = (−σ(u, p)n,w)Σ

for any w ∈ S, where ∇s denote the surface gradient on the interface Σ and

Πs(ηηη) =
E

1 + σ2

∇sηηη +∇T
s ηηη

2
+

Eσ

1− σ2
∇s · ηηηI

for a linearly elastic isotropic structure. The geometrical domain is a straight cylinder of
length 4 cm and radius 0.3 cm, see the Fugure 3.3. The hemodynamical parameters used
in this model are given in the Table 3.3. For the inlet and outlet boundary conditions,
we set

u = (uD(t)
R2 − r2

R2
, 0, 0) on Σin and σ(u, p)n = −pout(t)n on Σout.

The given data for uD(t) and pout(t), as shown in the Figure 5.2, are taken from [120].
Mmore realistic and delicate treatment of boundary conditions can be found in [56].

The fluid mesh used in this example consists of 11745 tetrahedra, and the structure
mesh consists of 3786 triangles. We utilize the P2 − P1 finite element approximation
for the velocity and pressure of the fluid, the P2 finite element approximation for the
displacement of the structure. For comparison, both classical monolithic scheme and the
proposed partitioned scheme are implemented to solve this example, where the parameter
β = 0.5. The initial velocity/pressure is the smooth constant extension of the inlet/outlet
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Figure 3.3: The geometrical domain(left) and the given data for uD(t) and pout(t)(right)

Table 3.3: The hemodynamical parameters in the PDE model

Parameter Value Parameter Value
Wall thickness ϵs(cm) 0.06 Poisson’s ratio σ 0.5
Fluid viscosity µ(g/cm s) 0.04 Young’s modulo E(dyne/cm2) 2.6 · 106
Fluid density ρf (g/cm

3) 1 Coefficient D1(dyne/cm
3) 6 · 105

Wall density ρs(g/cm
3) 1.1 Coefficient D2(dyne s/cm

3) 2 · 105

boundary data at t = 0 for both schemes. The terminal time T = 3 s which corresponds
to 3 cardiac cycles. We have observed that the periodic pattern was established after 1
cardiac cycle. Some comparison between monolithic and partitioned schemes is done. In
the Figure 3.4, the magnitude of the radial displacement for the artery wall is shown at
the interface point (2, 0.3, 0) in the whole 3 cardiac cycles. In the Figures 3.5 and 3.6,
the axial velocity and the pressure are presented at the center point (2, 0, 0) in the third
cardiac cycle, respectively. The waveforms of velocity and pressure are generally not be
the same. The difference waveforms between velocity and pressure can be observed in
the numerical results by comparing Figure 5.4 and Figure 5.5.

Figure 3.4: Comparison of the radial displacement

Figure 3.5: Comparison of the axial velocity
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Figure 3.6: Comparison of the pressure

3.6 Conclusion

We have proposed a new stable fully-discrete kinematically coupled scheme which decou-
ples fluid velocity from the structure displacement for solving a thin-structure interaction
problem described by (3.1.1)–(3.1.3). To the best of our knowledge, the optimal-order
convergence in L2 norm of spatially finite element methods for such problems has not
been established in the previous works. Our scheme in (3.2.19)–(3.2.20) contains two
stabilization terms

ρsϵs

(
un
h − snh
τ

,
τ

ρsϵs
σσσ(vh, qh) · n

)
Σ

and

(
(σσσn

h − σσσn−1
h ) · n, τ(1 + β)

ρsϵs
σσσ(vh, qh) · n

)
Σ

which guarantee the unconditional stability of the method, and an additional parameter
β > 0 which is helpful for us to prove optimal-order convergence in the L2 norm for the
fully discrete finite element scheme. Moreover, we have developed a new approach for
the numerical analysis of such thin-structure interaction problems in terms of a newly
introduced coupled non-stationary Ritz projection, with rigorous analysis for its approx-
imation properties through analyzing its dual problem, which turns out to be equivalent
to a backward evolution equation on the boundary Σ, i.e.,

−LsN ξξξ +N ξξξ − ∂tξξξ = f on Σ× [0, T ), with initial condition ξξξ(T ) = 0,

in terms of the Neumann-to-Dirichlet map N : H− 1
2 (Σ)d → H

1
2 (Σ)d associated to the

Stokes equations. Although we have focused on the analysis for the specific kinematically
coupled scheme proposed in this chapter for a thin-structure interaction problem, the new
approach developed in this chapter, including the non-stationary Ritz projection and its
approximation properties, may be extended to many other fully-discrete monolithic and
partitioned coupled algorithms and to more general fluid-structure interaction models.

3.7 Appendix A: Proof of Lemma 3.4.5

In this appendix, we prove Lemma 3.4.5 via the following proposition, where equation
(3.7.1) differs from (3.4.73) via a change of variable t→ T − t in time.

Proposition 3.7.1. The initial-boundary value problem

−Lsϕϕϕ+ ϕϕϕ = −∂tσσσ(ϕϕϕ, q)n+ f on Σ× (0, T ] (the boundary condition) (3.7.1a)

−∇ · σ(ϕϕϕ, q) + ϕϕϕ = 0 in Ω × (0, T ] (3.7.1b)

∇ · ϕϕϕ = 0 in Ω × (0, T ] (3.7.1c)

σσσ(ϕϕϕ, q)n = 0 at t = 0 (the initial condition), (3.7.1d)
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has a unique solution (ϕϕϕ, q) which satisfies the following regularity estimate:

∥ϕϕϕ∥L2H2 + ∥ϕϕϕ∥L2H2(Σ) + ∥q∥L2H1 + ∥σσσ(ϕϕϕ, q)n∥L∞L2(Σ) ≤ C∥f∥L2L2(Σ) (3.7.2)

Proof. We divide the proof into three parts. In the first part, we introduce the Neumann-
to-Dirichlet operator and reformulate (3.7.1) into an evolution equation (3.7.4) on the
boundary Σ with the aid of Neumann-to-Dirichlet operator, and then establish some
mapping properties of the Neumann-to-Dirichlet operator to be used in the proof of
Proposition 3.7.1. In the second part, we establish the existence, uniqueness and reg-
ularity of solutions to an equivalent formulation of (3.7.1), i.e., equation (3.7.4) below.
Finally, in the third part, we establish regularity estimates for the solutions to (3.7.1).

Part 1. We can define the Neumann-to-Dirichlet operator N : H−1/2(Σ)d → H1/2(Σ)d

as ζζζ 7→ (N vζζζ)|Σ, with (N vζζζ,N pζζζ) being the solution of the following Stokes equation:

af (N vζζζ,v)− b(N pζζζ,v) + (N vζζζ,v) = (ζζζ,v)Σ ∀v ∈ H1(Ω)d (3.7.3a)

b(q,N vζζζ) = 0 ∀q ∈ L2(Ω). (3.7.3b)

Therefore,

−∇ · σ(N vζζζ,N pζζζ) +N vζζζ = 0 in Ω and σ(N vζζζ,N pζζζ)n = ζζζ on Σ.

Let ξξξ = σσσ(ϕϕϕ, q)n. Then it is easy to see that problem (3.7.1) can be equivalently
formulated as follows: Find ξξξ(t) ∈ H1(Σ)d for t ∈ [0, T ] satisfying the following evolution
equation:

−LsN ξξξ +N ξξξ + ∂tξξξ = f on Σ× (0, T ], with initial condition ξξξ(0) = 0. (3.7.4)

By choosing v = N vφφφ in (3.7.3) and using relation b(N pζζζ,N vφφφ) = 0 (due to the definition
of N vφφφ), we obtain

(ζζζ,Nφφφ)Σ = af (N vζζζ,N vφφφ) + (N vζζζ,N vφφφ) ∀ζζζ, φφφ ∈ H−1/2(Σ)d. (3.7.5)

Especially, this implies that

(ζζζ,N ζζζ)Σ = 2µ∥N vζζζ∥2f + ∥N vζζζ∥2 ∼ ∥N vζζζ∥2H1 ∼ ∥N ζζζ∥2H1/2(Σ) ∀ζζζ ∈ H−1/2(Σ)d. (3.7.6)

By choosing k = s in the regularity result in (3.2.7) with s ≥ −1/2, s ∈ R and noting
the trace inequality, we can establish the following mapping property of the Neumann-
to-Dirichlet operator:

∥N ζζζ∥Hs+1(Σ) ≤ C∥N vζζζ∥Hs+3/2(Ω) ≤ C∥ζζζ∥Hs(Σ) ∀s ≥ −1/2, s ∈ R, (3.7.7)

Note that N ζζζ = 0 if and only if ζζζ = λn for some scalar constant λ ∈ R. This motivates
us to define the following subspace of Hs(Σ)d for s ∈ R:

H̃s(Σ)d := {ζζζ ∈ Hs(Σ)d : (ζζζ,n)Σ = 0}.

Then we define the Dirichlet-to-Neumann operator D : H̃1/2(Σ)d → H̃−1/2(Σ)d as follows:

For ζζζ ∈ H̃1/2(Σ)d, let (Dvζζζ,Dpζζζ) be the weak solution of

−∇ · σσσ(Dvζζζ,Dpζζζ) +Dvζζζ = 0 in Ω

∇ · Dvζζζ = 0 in Ω

(Dvζζζ)|Σ = ζζζ on Σ,

(3.7.8)
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and then define Dζζζ ∈ H̃−1/2(Σ)d by the following equation

af (Dvζζζ,v)− b(Dpζζζ,v) + (Dvζζζ,v) = (Dζζζ,v)Σ ∀v ∈ H1(Ω)d. (3.7.9)

Since the function Dpζζζ in equation (3.7.8) is only determined up to a constant, we
can choose this constant in such a way that the function Dζζζ defined by (3.7.9) lies

in H̃−1/2(Σ)d. Using trace theorem and Bogovoski’s map (cf. [53, Corollary 1.5]) there

exists v ∈ H1(Ω)d such that v|Σ = n, ∇ · v =
∥n∥2Σ
|Ω| with ∥v∥H1 ≤ C, testing (3.7.9) with

such v, noting the assumption that (Dζζζ,n)Σ = 0, we obtain

|Dpζζζ| ≤ C∥Dvζζζ∥H1 , (3.7.10)

whereDpζζζ is the mean value ofDpζζζ overΩ. Therefore, choosing k = s with s ≥ 1/2, s ∈ R
in (3.2.8) and combining (3.7.10) leads to the following estimates

∥Dvζζζ∥Hs+1/2 + ∥Dpζζζ∥Hs−1/2 ≤ C∥ζζζ∥Hs(Σ) ∀s ≥ 1/2, s ∈ R. (3.7.11)

From the weak form (3.7.9), it follows that

∥Dζζζ∥H−1/2(Σ) ≤ C (∥Dvζζζ∥H1 + ∥Dpζζζ∥) . (3.7.12)

Meanwhile when s ≥ 3/2, by trace inequality we have

∥Dζζζ∥Hs−1(Σ) ≤ C
(
∥Dvζζζ∥Hs+1/2 + ∥Dpζζζ∥s−1/2

)
∀s ≥ 3/2, s ∈ R. (3.7.13)

Combining (3.7.12), (3.7.13) and (3.7.11) leads to the following estimates of the Neumann
value Dζζζ in terms of the Dirichlet value ζζζ:

∥Dζζζ∥H−1/2(Σ) ≤ C∥ζζζ∥H1/2(Σ) ∀ζζζ ∈ H̃1/2(Σ)d,

∥Dζζζ∥Hs−1(Σ) ≤ C∥ζζζ∥Hs(Σ) ∀ζζζ ∈ H̃s(Σ)d. (whenever s ≥ 3/2, s ∈ R)
(3.7.14)

The following complex interpolation of Sobolev spaces hold:

[Hk(Σ)d, Hs(Σ)d]θ = Hθs+(1−θ)k(Σ)d ∀k, s ∈ R, θ ∈ [0, 1]; (3.7.15a)

[H̃k(Σ)d, H̃s(Σ)d]θ = H̃θs+(1−θ)k(Σ)d ∀k, s ∈ R, θ ∈ [0, 1]; (3.7.15b)

where (3.7.15a) follows from [131, Proposition 3.1-3.2 of Chapter 4] and (3.7.15b) fol-

lows from (3.7.15a) because H̃s(Σ)d is a retract of Hs(Σ)d for s ∈ R via projection

π : Hs(Σ)d → H̃s(Σ)d, with

π(ζζζ) := ζζζ − (ζζζ,n)Σ
∥n∥2Σ

n. (3.7.16)

Therefore, the following result follows from the complex interpolation between the two
estimates in (3.7.14):

∥Dζζζ∥Hs−1(Σ) ≤ C∥ζζζ∥Hs(Σ) ∀ζζζ ∈ H̃s(Σ)d ∀s ≥ 1/2, s ∈ R. (3.7.17)

If we restrict the domain of N to H̃−1/2(Σ)d, then N : H̃−1/2(Σ)d → H̃1/2(Σ)d and

D : H̃1/2(Σ)d → H̃−1/2(Σ)d are inverse maps of each other. This leads to the following
norm equivalence:

∥ζζζ∥H−1/2(Σ) ∼ ∥N ζζζ∥H1/2(Σ) ∀ζζζ ∈ H̃−1/2(Σ)d.
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Similarly, from identity DN ζζζ = NDζζζ = ζζζ for ζζζ ∈ H̃1/2(Σ)d and the mapping property

in (3.7.17) and (3.7.7), we conclude that the maps N : H̃s(Σ)d → H̃s+1(Σ)d and D :

H̃s+1(Σ)d → H̃s(Σ)d are also inverse to each other for all s ≥ −1/2, s ∈ R. This implies
the following norm equivalence for s ≥ −1/2, s ∈ R:

∥ζζζ∥Hs(Σ) ∼ ∥N ζζζ∥Hs+1(Σ); ∥ζζζ∥Hs+1(Σ) ∼ ∥Dζζζ∥Hs(Σ) ∀ζζζ ∈ H̃−1/2(Σ)d (3.7.18)

To facilitate further use, we summarize the properties of the NtD (Neumann to Dirichlet)
operator and DtN (Dirichlet to Neumann) operator in the following lemma:

Lemma 3.7.2.

1. For s ≥ −1/2, s ∈ R, the NtD operator N : H̃s(Σ)d → H̃s+1(Σ)d and DtN operator

D : H̃s+1(Σ)d → H̃s(Σ)d are bounded and inverse to each other.

2. With domain dom(D) := H̃1(Σ)d ⊆ L̃2(Σ)d, the DtN operator D is a self-adjoint

positive-definite operator on L̃2(Σ)d. The NtD operator N : L̃2(Σ)d → L̃2(Σ)d is a

compact self-adjoint positive-definite operator on L̃2(Σ)d.

3. The square root operators D1/2 and N 1/2 are well defined. Moreover, for s ≥
−1/2, s ∈ R, operators N 1/2 : H̃s(Σ)d → H̃s+1/2(Σ)d and D1/2 : H̃s+1/2(Σ)d →
H̃s(Σ)d are bounded and inverse to each other.

Proof. The three statements are proved as follows.

1. The first statement has been proved in (3.7.18).

2. From (3.7.5) and (3.7.6) it follows that N is self-adjoint positive-definite operator

on L̃2(Σ)d. Since H̃1(Σ)d → L̃2(Σ)d is a compact embedding by Rellich-Kondrachov
theorem (cf. [131, Proposition 3.4 of Chapter 4]), from mapping property (3.7.7)

of N it follows that N is a compact operator. To verify D : dom(D) → L̃2(Σ)d is
self-adjoint, it suffices to show that if ζζζ satisfies

|(ζζζ,Dφφφ)Σ| ≤ C∥φφφ∥Σ ∀φφφ ∈ H̃1(Σ)d, (3.7.19)

then ζζζ ∈ H̃1(Σ)d. From (3.7.19), by Riesz representation theorem there exists

g ∈ L̃2(Σ)d such that

(ζζζ,Dφφφ)Σ = (g, φφφ)Σ ∀φφφ ∈ H̃1(Σ)d.

Especially, taking φφφ = N ξξξ, it follows that

(ζζζ, ξξξ)Σ = (g,N ξξξ)Σ = (Ng, ξξξ)Σ ∀ξξξ ∈ L̃2(Σ)d.

Therefore ζζζ = Ng ∈ H̃1(Σ)d, proof of the second statement is complete.

3. By the spectrum theory of compact self-adjoint operator (cf. [22, Theorem 5.3.16]),

L̃2(Σ)d admits an orthornormal basis of eigenvectors {ωωωi}i∈N of N and N has the
following expression

N ζζζ =
∞∑
i=1

(N ζζζ, ωωωi)Σωωωi =
∞∑
i=1

λi(ζζζ, ωωωi)Σωωωi ∀ζζζ ∈ H̃−1/2(Σ)d,
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where λi > 0 is the eigenvalue associated with ωωωi. From norm equivalence (3.7.18),
we can deduce that for s ∈ N there holds

∥ζζζ∥Hs(Σ) ∼ ∥Dsζζζ∥Σ =

(
∞∑
i=1

λ−2s
i |(ζζζ, ωωωi)Σ|2

)1/2

∀s ∈ N. (3.7.20)

In view of complex interpolation result of weighted ℓ2-sequence spaces (cf. [15,
Theorem 5.5.3]), in fact (3.7.20) is valid for all s ≥ 0, s ∈ R by complex interpolation
method. Moreover for −1/2 ≤ s < 0, using norm equivalence (3.7.18) and (3.7.20)
(which is valid for s ≥ 0, s ∈ R) we have

∥ζζζ∥Hs(Σ) ∼ ∥N ζζζ∥Hs+1(Σ) ∼

(
∞∑
i=1

λ−2s
i |(ζζζ, ωωωi)Σ|2

)1/2

∀s ∈ R,−1/2 ≤ s < 0.

(3.7.21)
Combining (3.7.20) and (3.7.21), we arrive at

∥ζζζ∥Hs(Σ) ∼

(
∞∑
i=1

λ−2s
i |(ζζζ, ωωωi)Σ|2

)1/2

∀s ≥ −1/2, s ∈ R. (3.7.22)

We can define square root operators N 1/2 and D1/2 by formula

N 1/2ζζζ : =
∞∑
i=1

λ
1/2
i (ζζζ, ωωωi)Σωωωi ∀ζζζ ∈ H̃−1/2(Σ)d (this series converges in L̃2(Σ)d)

D1/2ζζζ : =
∞∑
i=1

λ
−1/2
i (ζζζ, ωωωi)Σωωωi ∀ζζζ ∈ L̃2(Σ)d (this series converges in H̃−1/2(Σ)d),

from the norm equivalence in (3.7.22), it is direct to verify that operators N 1/2

and D1/2 are inverse to each other and satisfy the following mapping property for
s ≥ −1/2, s ∈ R

∥ζζζ∥Hs(Σ) ∼ ∥N 1/2ζζζ∥Hs+1/2(Σ); ∥ζζζ∥Hs+1/2(Σ) ∼ ∥D1/2ζζζ∥Hs(Σ) ∀ζζζ ∈ H̃−1/2(Σ)d.
(3.7.23)

The proof of third statement is complete.

Part 2. Taking into account of the fact that N is not injective on L2(Σ)d, for conve-
nience of our further construction we first take the L2-orthogonal projection π : L2(Σ)d →
L̃2(Σ)d defined as in (3.7.16) on the both side of (3.7.4), and obtain the following equa-

tion with solution space contained in L̃2(Σ)d: seek ξ̃ξξ ∈ L2H̃1(Σ)d with ∂tξ̃ξξ ∈ L2L̃2(Σ)d

satisfying

∂tξ̃ξξ +Aξ̃ξξ = f̃ ; ξ̃ξξ(0) = 0, (3.7.24)

where A = π(I − Ls)N and f̃ = πf . One difficulty in proving existence and regularity

of solution to (3.7.24) is that the operator A : H̃1(Σ)d → L̃2(Σ)d is not a self-adjoint

operator in L̃2(Σ)d. To overcome this difficulty, we consider the following change of

variable ωωω = N 1/2ξ̃ξξ, and reformulate (3.7.24) into an abstract Cauchy problem on ωωω:

seek ωωω ∈ L2H̃1(Σ)d with ∂tω ∈ L2L̃2(Σ)d satisfying

∂tωωω + Bωωω = g; ωωω(0) = 0, (3.7.25)
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where B := N 1/2π(I − Ls)N 1/2 and g := N 1/2f̃ . We summarize some useful properties
on the operators A and B in the following lemma:

Lemma 3.7.3.

1. There holds norm equivalence for 0 ≤ s ≤ 1, s ∈ R

∥Aζζζ∥Hs(Σ) ∼ ∥ζζζ∥Hs+1(Σ); ∥Bζζζ∥Hs(Σ) ∼ ∥ζζζ∥Hs+1(Σ) ∀ζζζ ∈ H̃−1/2(Σ)d. (3.7.26)

2. B is a self-adjoint positive-definite operator on L̃2(Σ)d with domain dom(B) :=

H̃1(Σ)d.

Proof. The two statements are proved as follows.

1. In view of the norm equivalence relations in (3.7.18) and (3.7.23), it suffices to show
the following norm equivalence for −1 ≤ s ≤ 1, s ∈ R

∥π(I − Ls)ζζζ∥Hs(Σ) ∼ ∥ζζζ∥Hs+2(Σ) ∀ζζζ ∈ H̃−1/2(Σ)d. (3.7.27)

Note that one direction of the norm equivalence in (3.7.27) is given by assumption
(3.2.3). To prove the opposite direction, observe first that

∥π(I − Ls)ζζζ∥H−1(Σ)∥ζζζ∥H1(Σ) ≥ (π(I − Ls)ζζζ, ζζζ)Σ = ((I − Ls)ζζζ, ζζζ)Σ ≥ C∥ζζζ∥2H1(Σ).

It follows that (3.7.27) is valid for s = −1. Next we note that, by definition (3.7.16)

of projection π : Hs(Σ)d → H̃s(Σ)d,

∥π(I − Ls)ζζζ − (I − Ls)ζζζ∥Hs(Σ) ≤ C|(ζζζ, (I − Ls)n)Σ| ≤ C∥ζζζ∥H1(Σ) (3.7.28)

For −1 ≤ s ≤ 1, s ∈ R, in view of regularity assumption (3.2.9) and the estimate
(3.7.28) above, we have

∥ζζζ∥Hs+2(Σ) ≤ C∥(I − Ls)ζζζ∥Hs(Σ)

≤ C∥π(I − Ls)ζζζ∥Hs(Σ) + C∥ζζζ∥H1(Σ)

≤ C∥π(I − Ls)ζζζ∥Hs(Σ) (this is because (3.7.27) is valid for s = −1).

Thus (3.7.27) is proved and the first statement follows directly.

2. Since B is obviously symmetric and positive definite on its domain dom(B) =

H̃1(Σ)d. To prove that B is self-adjoint, it remains to show that the domain of the
dual operator B′ defined by

dom(B′) = {w ∈ L̃2(Σ)d : ∃ g ∈ L̃2(Σ)d such that (ωωω,Bζζζ)Σ = (g, ζζζ)Σ ∀ζζζ ∈ H̃1(Σ)d},

coincides with the domain of B. Therefore, we need to prove that if ωωω ∈ L̃2(Σ)d

satisfies
(ωωω,Bζζζ)Σ = (g, ζζζ)Σ ∀ζζζ ∈ H̃1(Σ)d, (3.7.29)

for some g ∈ L̃2(Σ)d, then ωωω ∈ H̃1(Σ)d. To this end, we define φφφ ∈ H̃1(Σ)d to be
the weak solution of equation

as(φφφ, ζζζ) + (φφφ, ζζζ)Σ = (D1/2g, ζζζ)Σ ∀ζζζ ∈ H̃1(Σ)d, (3.7.30)
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where the existence and uniqueness of solution to (3.7.30) is due to coercive prop-

erty: ∥ζζζ∥2s + ∥ζζζ∥2Σ ∼ ∥ζζζ∥2H1(Σ),∀ζζζ ∈ H̃1(Σ)d. Equation (3.7.30) means

π(I − Ls)φφφ = D1/2g ∈ H̃−1/2(Σ)d,

thus by norm equivalence (3.7.27) we have φφφ ∈ H̃3/2(Σ)d. Now we observe

(D1/2φφφ,Bζζζ)Σ =
(
π(I − Ls)φφφ,N 1/2ζζζ

)
Σ
= (D1/2g,N 1/2ζζζ)Σ = (g, ζζζ)Σ ∀ζζζ ∈ H̃1(Σ)d

(3.7.31)

By comparing (3.7.29) with (3.7.31) we obtain ωωω = D1/2φφφ ∈ H̃1(Σ)d. This com-
pletes the proof.

Especially, since B is a self-adjoint positive-definite operator on L̃2(Σ)d with domain

dom(B) := H̃1(Σ)d, −B generates an analytic semigroup E(t) : L̃2(Σ)d → L̃2(Σ)d for
t ≥ 0 (cf. [22, Example 7.4.5]), and the unique solution to (3.7.25) is given by

ωωω(t) =

∫ t

0

E(t− s)g(s)ds.

Moreover, for self-adjoint semigroup on a Hilbert space, the following L2-maximal regu-
larity estimate holds (cf. [22, Theorem 7.6.11]):

∥∂tωωω∥L2L2(Σ) + ∥Bωωω∥L2L2(Σ) ≤ C∥g∥L2L2(Σ), (3.7.32)

which can be obtained by testing (3.7.25) with ∂tωωω. If the source term g in (3.7.25)
possesses higher spacial regularity, the solution ωωω also inherits higher spacial regularity.
To see this, assume g ∈ L2H̃1(Σ)d, then since

Bωωω(t) =
∫ t

0

E(t− s)Bg(s)ds

is the solution to (3.7.25) with the source term replaced by Bg. Thus again by maximal
L2-regularity estimate, we have

∥B∂tωωω∥L2L2(Σ) + ∥B2ωωω∥L2L2(Σ) ≤ C∥Bg∥L2L2(Σ). (3.7.33)

By norm equivalence in (3.7.26), it follows that

∥∂tωωω∥L2H1(Σ) + ∥Bωωω∥L2H1(Σ) ≤ C∥g∥L2H1(Σ). (3.7.34)

Complex interpolation of (3.7.32) and 3.7.34 gives

∥∂tωωω∥L2H1/2(Σ) + ∥Bωωω∥L2H1/2(Σ) ≤ C∥g∥L2H1/2(Σ). (3.7.35)

Now we take g = N 1/2f̃ , then it is direct to verify that ξ̃ξξ := D1/2ωωω is the solution to
(3.7.24) and satisfies estimate

∥∂tξ̃ξξ∥L2L2(Σ) + ∥ξ̃ξξ∥L2H1(Σ) ≤ C∥f̃∥L2L2(Σ), (3.7.36)
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where we have used norm equivalences in (3.7.26) and (3.7.23). Having obtained the

solution ξ̃ξξ to equation (3.7.24), if we write f(t) = f̃(t) + c(t)n then it is direct to verify

that ξξξ(t) = ξ̃ξξ(t) + k(t)n is the solution to (3.7.4), where k(t) is given by

∂tk = c− r(ξ̃ξξ); k(0) = 0

r(ξ̃ξξ) :=

(
(I − Ls)N ξ̃ξξ,n

)
Σ

∥n∥2Σ
,

it follows that

∥∂tk∥L2(0,T ) ≤ C(∥f∥L2L2(Σ) + ∥ξ̃ξξ∥L2H1(Σ)) ≤ C∥f∥L2L2(Σ). (3.7.37)

Therefore, combining (3.7.37) and (3.7.36) we obtain

∥∂tξξξ∥L2L2(Σ) + ∥ξξξ∥L2H1(Σ) ≤ C∥f∥L2L2(Σ) (3.7.38)

Part 3. Given the solution ξξξ to equation (3.7.4), we define (ϕϕϕ, q) = (N vξξξ,N pξξξ). Then
ξξξ = σσσ(ϕϕϕ, q)n and N ξξξ = ϕϕϕ|Σ. Therefore, equation (3.7.4) can be written as

−Lsϕϕϕ+ ϕϕϕ = −∂tσσσ(ϕϕϕ, q)n+ f on Σ× (0, T ], with initial condition (ϕϕϕ, q)(0) = (0, 0).

Thus (ϕϕϕ, q) is a solution of equation (3.7.1). Since σσσ(ϕϕϕ, q)n(0) = 0, it follows that

∥σσσ(ϕϕϕ, q)n∥L∞L2(Σ) ≤ C∥∂tσσσ(ϕϕϕ, q)n∥L2L2(Σ).

Therefore, (ϕϕϕ, q) satsifies the following estimate according to (3.7.38) and the inequality
above:

∥σσσ(ϕϕϕ, q)n∥L∞L2(Σ) + ∥ϕϕϕ∥L2H2(Σ) ≤ C∥f∥L2L2(Σ). (3.7.39)

Moreover, since (ϕ, q) is the solution of the homogeneous Stokes equation (with boundary
value ϕ|Σ = N ξξξ), the following two estimates follow from the regularity results of the
Stokes equation in (3.2.7)–(3.2.8):

∥ϕϕϕ∥H2 + ∥∇q∥ ≤ C∥ϕϕϕ|Σ∥H2(Σ); ∥ϕϕϕ∥H1 + ∥q∥ ≤ C∥σσσ(ϕϕϕ, q)n∥H−1/2(Σ) (3.7.40)

Combining the estimates in (3.7.39) and (3.7.40), we obtain the result of Proposition
3.7.1.

Proof of (3.4.75). Let ϕ̂ϕϕ = ϕϕϕ(T − t) and q̂ = q(T − t), then ϕ̂ϕϕ and q̂ is a solution of (3.7.1)

in Proposition 3.7.1, with source term f̂(t) = f(T − t), thus we have

∥ϕϕϕ∥L2H2(Ω) + ∥ϕϕϕ∥L2H2(Σ) + ∥q∥L2H1(Ω) + ∥σσσ(ϕϕϕ, q)n∥L∞L2(Σ) ≤ C∥f∥L2L2(Σ).

The proof of Lemma 3.4.5 is complete.

3.8 Appendix B: Proof of (3.4.47)

In this subsection, we assume that r ≥ 2. Under this assumption, we establish a negative-
norm estimate for the Dirichlet Stokes–Ritz projection RD

h in the following lemma.
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Lemma 3.8.1. For the Dirichlet Stokes–Ritz projection RD
h defined in (3.4.35), the fol-

lowing error estimate holds:

∥u−RD
h u∥H−1 + ∥u−RD

h u∥H−1(Σ) + h∥p−RD
h p∥H−1 ⩽ Chr+2. (3.8.1)

Skectch of Proof. From the definition of RD
h u in (3.4.35) we can see that the following

relation holds on the boundary Σ:

RS
hu−RD

h u =
(RS

hu,n)Σ
∥nh∥2

nh =
(RS

hu− u,n)Σ
∥nh∥2

nh.

Since
(RS

hu− u,n)Σ
∥nh∥2

≲ C∥RS
hu− u∥H−1(Σ) ≤ Chr+2,

it follows that ∥u−RD
h u∥H−1(Σ) ≤ Chr+2. Then (3.8.1) follows from the same routine of

duality argument for the Dirichlet Stokes–Ritz projection.
Next, we note that ∥(Rshu− u)(0)∥ also satisfies negative norm estimate below.

Lemma 3.8.2. For the Rshu(0) defined in (3.4.43), the following negative-norm estimate
holds:

∥(Rshu− u)(0)∥H−1(Σ) ≤ Chr+2. (3.8.2)

Proof. We introduce a dual equation

−Lsψ + ψ = φ ψ has periodic boundary condition on Σ. (3.8.3)

The regularity assumption in (3.2.9) implies that ∥ψ∥H3(Σ) ≤ ∥φ∥H1(Σ). We can extend
ψ to be a function (still denoted by ψ) which is defined in Ω with periodic boundary
condition and satisfies ∥ψ∥H3 ≤ C∥ψ∥H3(Σ). Then the following relation can be derived:

((Rshu− u)(0), φ)Σ =as((Rshu− u)(0), ψ) + ((Rshu− u)(0), ψ)Σ

=as((Rshu− u)(0), ψ − Ihψ)Σ + ((Rshu− u)(0), (ψ − Ihψ))Σ

− af ((R
D
h ∂tu− ∂tu)(0), Ihψ) + b((RD

h ∂tp− ∂tp)(0), Ihψ)

− ((RD
h ∂tu− ∂tu)(0), Ihψ)

≤Chr+2∥ψ∥H3(Σ) + |af ((RD
h ∂tu− ∂tu)(0), ψ)|+ |b((RD

h ∂tp∂t − p)(0), ψ)|
+ |((RD

h ∂tu− ∂tu)(0), ψ)|.

Since

(D(RD
h ∂tu− ∂tu)(0),Dψ) = −((RD

h ∂tu− ∂tu)(0),∇ ·Dψ) + ((RD
h ∂tu− ∂tu)(0),n ·Dψ)Σ

≲
(
∥(RD

h ∂tu− ∂tu)(0)∥H−1(Ω) + ∥(RD
h ∂tu− ∂tu)(0)∥H−1(Σ)

)
∥ψ∥H3(Ω)

≤ Chr+2∥φ∥H1(Σ)

and

b((RD
h ∂tp− ∂tp)(0), ψ) ≲ C∥(RD

h ∂tp− ∂tp)(0)∥H−2∥ψ∥H3 ≤ Chr+2∥φ∥H1(Σ)

((RD
h ∂tu− ∂tu)(0), ψ) ≲ ∥(RD

h ∂tu− ∂tu)(0)∥H−1∥ψ∥H1 ≤ Chr+2∥φ∥H1(Σ),

summing up the estimates above yields the result in (3.8.2). The proof is complete.
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Lemma 3.8.3. Let euh := (Rhu−RD
h u)(0) and e

p
h := (Rhp−RD

h p)(0). Then the following
estimates hold:

∥euh∥H1 + ∥eph∥ ≤ Chr+1/2, (3.8.4)

∥euh∥H−1(Σ) + ∥euh∥H−1/2 + ∥eph∥H−3/2 ≤ Chr+2. (3.8.5)

Proof. To prove the first inequality in Lemma 3.8.3, we note that

af (e
u
h,vh) + (euh,vh)− b(eph,vh) = 0 ∀vh ∈ X̊r

h. (3.8.6)

Let uh = Eh(e
u
h|Σ), where Eh is an extension operator as in (3.2.17). Then euh − uh ∈ X̊r

h

and ∥uh∥H1 ≤ Ch−1/2∥euh∥Σ ≤ Chr+1/2. This estimate of ∥uh∥H1 and relation (3.8.6)
imply that

af (e
u
h − uh,vh) + (euh − uh,vh)− b(eph,vh) ≲ Chr+1/2∥vh∥H1 ∀vh ∈ X̊r

h.

Now, choosing vh = euh − uh in the inequality above, we obtain (3.8.4)

∥euh∥H1(Ω) + ∥eph∥ ≤ Chr+1/2.

We prove the second inequality in Lemma 3.8.3 now. On the boundary Σ, relations
(3.4.44b) and (3.4.39) imply that (Rhu− u)(0) = (Rshu− u)(0)− λ(Rshu(0))nh. Since

λ(Rshu(0)) =
(Rshu(0),n)Σ

∥nh∥2Σ
=

(Rshu(0)− u(0),n)Σ
∥nh∥2Σ

≲ C∥Rshu(0)− u(0)∥H−1(Σ),

it follows from (3.8.2) in Lemma 3.8.2 that ∥(Rhu − u)(0)∥H−1(Σ) ≤ Chr+2. Using in-
equality ∥(RD

h u− u)(0)∥H−1(Σ) ≤ Chr+2 in (3.8.1) of Lemma 3.8.1, we obtain

∥(Rhu−RD
h u)(0)∥H−1(Σ) ≤ Chr+2. (3.8.7)

Next, we consider a dual problem: For given f ∈ H1/2(Ω)d, we construct (ϕϕϕ, q) to be
the solution of

−∇ · σ(ϕϕϕ, q) + ϕϕϕ = f ; ∇ · ϕϕϕ = 0; ϕϕϕ|Σ = 0; q ∈ L2
0(Ω).

By the regularity assumptions in (3.2.8), the following estimate of ϕ and q can be written
down:

∥ϕϕϕ∥H5/2 + ∥p∥H3/2 ≤ C∥f∥H1/2 .

From equation (3.8.6) one can see that

(euh, f) =af (e
u
h, ϕϕϕ− Ihϕϕϕ) + (euh, ϕϕϕ− Ihϕϕϕ)− (σσσ(ϕϕϕ, q)n, euh)Σ

+ b(eph, Ihϕϕϕ− ϕϕϕ)

≲Chr+2∥f∥H1/2 + ∥euh∥H−1
p (Σ)∥f∥H1/2 ≤ Chr+2∥f∥H1/2 .

Therefore, the following result is proved:

|(euh, f)| ≤ Chr+2∥f∥H1/2 ; ∥euh∥H−1/2 ≤ Chr+2.

We move on to consider the dual problem for pressure: For given f ∈ H3/2(Ω), since
eph ∈ L2

0(Ω) it follows that
(eph, f) = (eph, f − f).
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Thus it suffices to assume that
∫
Ω
f = 0. Then, using Bogovoski’s map (see details in

[53, Corollary 1.5] and [4, Theorem 4]), there exists v ∈ H5/2(Ω) such that

∇ · v = f, ∥v∥H5/2 ≤ C∥f∥H3/2 , v|Σ = 0.

From equation (3.8.6), we can find that

(eph, f) = b(eph,v) = b(eph,v − Ihv) + af (e
u
h, Ihv − v) + (euh, Ihv − v) + af (e

u
h,v) + (euh,v).

Thus, combining the known estimate ∥euh∥H−1/2 ≤ Chr+2 and ∥euh∥H1 + ∥eph∥ ≤ Chr, we
have

|(eph, f)| ≤ Chr+2∥f∥H3/2 + |af (euh,v)|.

Using integration by parts, we derive that

af (e
u
h,v) = 2µ(Deuh,Dv) = −2µ(euh,∇ ·Dv) + 2µ(euh,Dv · n)Σ ≲ Chr+2∥f∥H3/2 .

Therefore, we have proved the following result:

|(eph, f)| ≤ Chr+2∥f∥H3/2 ; ∥eph∥H−3/2 ≤ Chr+2.

This completes the proof of Lemma 3.8.3.

Lemma 3.8.4. For the projection operators Rh and Rsh defined in (3.4.3) and (3.4.4),
respectively, the following estimate holds:

∥Rshηηη(0)−Rhηηη(0)∥H1(Σ) ≤ Chr+1.

Proof. By denoting δh := Rhηηη(0) − Rshηηη(0), e
u
h := (Rhu − RD

h u)(0) and eph := (Rhp −
RD

h p)(0), we can write down the following equation according to the definitions of the
two projection operators:

as(δh,vh) + (δh,vh)Σ + af (e
u
h,vh)− b(eph,vh) + (euh,vh) = 0 ∀vh ∈ Xr

h.

Then, choosing vh = Ehδh ∈ Xr
h in the relation above and note that ∥vh∥H1 ≤ Ch−1/2∥δh∥Σ,

we derive that

∥δh∥2H1(Σ) ≤ Ch−1/2∥δh∥Σ(∥euh∥H1 + ∥eph∥) ≤ Chr∥δh∥Σ. (3.8.8)

Next, we consider the following dual problem: Let ψ be the solution of

−Lsψ + ψ = δh ψ has periodic boundary condition on Σ.

Then
as(ψ, ξξξ) + (ψ, ξξξ)Σ = (δh, ξξξ)Σ ∀ξξξ ∈ S and ∥ψ∥H2(Σ) ≤ ∥δh∥Σ.

We can extend ψ to a function (still denoted by ψ) defined on Ω with periodic boundary
condition and ∥ψ∥H5/2 ≤ C∥ψ∥H2 . Therefore

∥δh∥2Σ =as(δh, ψ − Ihψ)Σ + (δh, (ψ − Ihψ))Σ

− af (e
u
h, Ihψ) + b(eph, Ihψ)− (euh, Ihψ)

≤Ch∥δh∥H1(Σ)∥ψ∥H2(Σ) + Ch3/2(∥euh∥H1 + ∥eph∥)∥ψ∥H5/2

+ |af (euh, ψ)− b(eph, ψ) + (euh, ψ)|. (3.8.9)
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Using integrating by parts and negative-norm estimates in Lemma 3.8.3, the following
estimates can obtain:

b(eph, ψ) ≲ C∥ψ∥H5/2∥eph∥H−3/2 ≤ Chr+2∥δh∥Σ, (3.8.10)

af (e
u
h, ψ) + (euh, ψ) ≲ C∥euh∥H−1/2∥ψ∥H5/2 + C∥euh∥H−1(Σ)∥ψ∥H5/2 ≤ Chr+2∥δh∥Σ.

(3.8.11)

Therefore, combining the estimates in (3.8.8)–(3.8.11), we obtain the following error
estimate for δh:

∥δh∥Σ ≤ Chr/2+1∥δh∥1/2Σ + Chr+2 ⇒ ∥δh∥Σ ≤ Chr+2.

The inverse inequality implies ∥δh∥H1(Σ) ≤ Chr+1. This completes the proof of Lemma
3.8.4.

3.9 Appendix C: Proof of (3.2.16)

In this appendix, we prove (3.2.16) in the following lemma.

Lemma 3.9.1. Under assumptions (A1)–(A4) on the finite element spaces, the follow-
ing type of inf-sup condition holds (the H1(Σ)-norm is involved on the right-hand side of
the inequality):

∥ph∥≤ C sup
0 ̸=vh∈Xr

h

(divvh, ph)

∥vh∥H1 + ∥v∥H1(Σ)

∀ph ∈ Qr−1
h ,

where C > 0 is a constant independent of ph and the mesh size h.

Proof. Each ph ∈ Qr−1
h can be decomposed into ph = p̃h + p̄h, with p̃h ∈ Qr−1

h,0 and

p̄h = 1
|Ω|

∫
Ω
phdx. Since we have assumed that inf-sup condition (3.2.14) holds, there

exists ṽh ∈ X̊r
h such that

∥ṽh∥H1 ≤ ∥p̃h∥ and b(p̃h, ṽh) ≥ C1∥p̃h∥2 for some constant C1 > 0. (3.9.1)

For the constant p̄h ∈ R, we note that

b(p̄h,vh) = p̄hb(1,vh) = p̄h(vh,n)Σ.

Let v∗
h ∈ Xr

h be defined as v∗
h = Eh(nh), where nh is defined in (3.4.38) and Eh is

the extension operator defined in item 4 of Remark 3.2.1, i.e., v∗
h = IXh v ∈ Xr

h with
v ∈ H1(Ω)d being an extension of nh such that v|Σ = nh. By the definition of v∗

h, we
have

∥v∗
h∥H1 = ∥IXh v∥H1 ≤ C∥v∥H1 ≤ C∥nh∥H1/2(Σ) ≤ C

∥v∗
h∥H1(Σ) = ∥nh∥H1(Σ) ≤ C.

Moreover, the following relation holds:

b(1,v∗
h) = (v∗

h,n)Σ = (nh,n)Σ = ∥nh∥2Σ ≥ C > 0.
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Therefore, the function v1
h := p̄hv

∗
h has the following property:

∥v1
h∥H1 + ∥v1

h∥H1(Σ) ≤ C|p̄h| ≤ C0∥p̄h∥ for some constant C0 > 0.

We can re-scale v1
h to ve

h = 1
C0
v1
h so that the following inequalities hold for some constant

C2 > 0:

∥ve
h∥H1 + ∥ve

h∥H1(Σ) ≤ ∥p̄h∥ and b(p̄h,v
e
h) =

|p̄h|2

C0

b(1,v∗
h) ≥ C2∥p̄h∥2. (3.9.2)

By considering vh = ṽh + ϵve
h, with a parameter ϵ > 0 to be determined later, and using

the relation b(p̄h, ṽh) = p̄h(ṽh,nh)Σ = 0, we have

b(ph,vh) = b(p̃h + p̄h, ṽh + ϵve
h)

= b(p̃h, ṽh) + ϵb(p̃h,v
e
h) + ϵb(p̄h,v

e
h)

≥ C1∥p̃h∥2 + ϵb(p̃h,v
e
h) + ϵC2∥p̄h∥2 (here (3.9.1) and (3.9.2) are used)

≥ C1∥p̃h∥2 − Cϵ∥p̃h∥∥p̄h∥+ ϵC2∥p̄h∥2 (the first inequality in (3.9.2) is used).

By using Young’s inequality, we can reduce the last inequality to the following one:

b(ph,vh) ≥ C1∥p̃h∥2 + ϵC2∥p̄h∥2 −
(
C1

2
∥p̃h∥2 +

C2ϵ2

2C1

∥p̄h∥2
)
.

Then, choosing ϵ = C1C2

C2 , we derive that

b(ph,vh) ≥
C1

2
∥p̃h∥2 +

C1C
2
2

2C2
∥p̄h∥2 ≥ C3∥ph∥2 with C3 := min{C1

2
,
C1C2

2

2C2 }. (3.9.3)

Since vh = ṽh + ϵve
h with ṽh = 0 on Σ, it follows from the triangle inequality and

(3.9.1)–(3.9.2) that

∥vh∥H1 + ∥vh∥H1(Σ) ≤ ∥ṽh∥H1 + ϵ(∥ve
h∥H1 + ∥ve

h∥H1(Σ)) (3.9.4)

≤ ∥p̃h∥+
C1C2

C2
∥p̄h∥ ≤

(
1 +

C1C2

C2

)
∥ph∥. (3.9.5)

Therefore, (3.9.3) and (3.9.4) imply that

b(ph,vh)

∥vh∥H1 + ∥vh∥H1(Σ)

⩾
C3∥ph∥2(

1 + C1C2

C2

)
∥ph∥

=
C3∥ph∥(
1 + C1C2

C2

) .
This proves that

∥ph∥ ≤ 1

C3

(
1 +

C1C2

C2

) b(ph,vh)

∥vh∥H1 + ∥vh∥H1(Σ)

.

and therefore completes the proof of (3.2.16).
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Chapter 4

Weak Discrete Maximum Principle of
Isoparametric Finite Element Meth-
ods in Curvilinear Polyhedra

4.1 Introduction

Let Ω be a bounded domain in RN with N ∈ {2, 3} and consider a quasi-uniform trian-
gulation of the domain Ω with mesh size h, denoted by Th. Hence, Ωh = (

⋃
K∈Th K)◦ is

an approximation of Ω. Let Sh(Ωh) be a finite element space subject to the triangulation
Th, and denote by S◦

h(Ωh) = {vh ∈ Sh(Ωh) : vh = 0 on ∂Ωh} the finite element subspace
under the homogeneous boundary condition. A function uh ∈ Sh(Ωh) is called discrete
harmonic if it satisfies ∫

Ωh

∇uh · ∇χh = 0 ∀χh ∈ S◦
h(Ωh). (4.1.1)

For a given mesh and finite element space, if all the discrete harmonic functions satisfy
the following inequality:

∥uh∥L∞(Ωh)
⩽ ∥uh∥L∞(∂Ωh)

, (4.1.2)

then it is said that the discrete maximum principle holds.
The discrete maximum principle of finite element methods (FEMs) has attracted much

attention from numerical analysts due to its importance for the stability and accuracy of
numerical solutions; for example, see [34, 36, 121, 134, 138]. However, strong restrictions
on the geometry of the mesh are required for the discrete maximum principle to hold.
For example, for piecewise linear finite elements on a two-dimensional triangular mesh,
the discrete maximum principle generally requires the angles of the triangles to be less
than π/2; see [138, §5]. In three dimensions, it is hard to have such discrete maximum
principe even for piecewise linear finite elements; see [20, 83, 84, 142].

Schatz considered a different approach in [125] by proving the weak maximum prin-
ciple (also called the Agmon–Miranda maximum principle) ,

∥uh∥L∞(Ωh)
⩽ C ∥uh∥L∞(∂Ωh)

, (4.1.3)

for some constant C which is independent of uh and h, for a wide class of H1-conforming
finite elements on a general quasi-uniform triangulation of a two-dimensional polygonal
domain. It was shown in [125] that the weak maximum principle can be used to prove the
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maximum-norm stability and best approximation results of FEMs in a plane polygonal
domain, i.e.,

∥u−Rhu∥L∞(Ω) ⩽ Cℓh inf
vh∈S◦

h

∥u− vh∥L∞(Ω) ∀u ∈ H1
0 (Ω) ∩ L∞(Ω), (4.1.4)

where Rh : H1
0 (Ω) → S◦

h is the Ritz projection operator, and

ℓh =

{
ln(2 + 1/h) for piecewise linear elements,

1 for higher-order finite elements.

Such maximum-norm stability and best approximation results have a number of applica-
tions in the error estimates of finite element solutions for parabolic problems [101, 102,
80, 98], Stokes systems [14], nonlinear problems [60, 40, 115], optimal control problems
[6, 7], and so on.

In three dimensions, the weak maximum principle was extended to convex polyhedral
domains in [96] and used to prove the L∞-norm stability and best approximation results
of FEMs on convex polyhedral domains, removing an extra logarithmic factor ln(2 +
1/h) in the stability constant for quadratic and higher-order elements obtained in other
approaches (for example, see [97]). When Ω is a smooth domain and Ωh = Ω (the
triangulation is assumed to match the curved boundary exactly), the weak maximum
principle of quadratic or higher-order FEMs is a result of the maximum-norm stability
result in [127, 124], and the weak maximum principle of linear finite elements can be
proved similarly as in [96]. In all these articles, the triangulation is assumed to match
the boundary of the domain exactly, with Ωh = Ω.

In the practical computation, the curved boundary of a bounded smooth domain, or
more generally a curvilinear polygon or polyhedron (which may contain both curved faces,
curved edges, and corners), is generally approximated by isoparametric finite elements
instead of being matched exactly by the triangulation. In this case, the weak maximum
principle of FEMs has not been proved yet. Correspondingly, the best approximation
results such as (4.1.4) are not known for isoparametric FEMs in a curved domain.

Some related results have been proved in the case Ωh ̸= Ω. For the Poisson equation
with Dirichlet boundary conditions in convex smooth domains, the piecewise linear finite
element space with a zero extension in Ω\Ωh is conforming, i.e., Sh(Ωh) ⊂ H1

0 (Ω). In
this case, pointwise error estimates of FEMs have been established in [12, 124]. For
general bounded smooth domains which may be concave, thus the finite element space
may be non-conforming, Kashiwabara & Kemmochi [79] have obtained the following error
estimate for piecewise linear finite elements for the Poisson equation under the Neumann
boundary condition:

∥ũ− uh∥L∞(Ωh) ⩽ Ch| log h| inf
vh∈Sh

∥ũ− vh∥W 1,∞(Ωh) + Ch2| log h|∥u∥W 2,∞(Ω), (4.1.5)

where ũ is any extension of u in W 2,∞(Ωδ) and Ωδ is a neighborhood of Ω. In the case
u ∈ W 2,∞(Ω), this error estimate is a consequence of the best approximation result in
(4.1.4). More recently, the W 1,∞ stability of the Ritz projection was proved in [43] for
isoparametric FEMs on Cr+1,1-smooth domains based on weighted-norm estimates, where
r denotes the degree of finite elements. For curvilinear polyhedra or smooth domains
which may be concave, the weak maximum principle and the best approximation results
in the L∞ norm have not been proved.
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In this chapter, we close the gap mentioned above by proving the weak maximum
principle in (4.1.3) for isoparametric finite elements of degree r ⩾ 1 in a bounded smooth
domain or a curvilinear polyhedron (possibly concave) with edge openings smaller than
π. As an application of the weak maximum principle, we prove that the finite element
solution uh ∈ S◦

h(Ωh) of the Poisson equation{
−∆u = f in Ω

u = 0 on ∂Ω
(4.1.6)

using isoparametric finite elements of degree r ⩾ 1 has the following optimal-order error
bound (for any p > N):

∥u− uh∥L∞(Ω) ⩽ Cℓh∥u− Ǐhu∥L∞(Ω) + Chr+1ℓh∥f∥Lp(Ω), (4.1.7)

where uh is extended to be zero in Ω\Ωh, and Ǐhu denotes a Lagrange interpolation
operator (which will be defined in the next section). Inequality (4.1.7) can be viewed as
a variant of the best approximation result in (4.1.4) by taking account of the geometry
change of the domain, which produces an additional optimal-order term Chr+1∥f∥Lp(Ω)

independent of the higher regularity of f . In particular, inequality (4.1.7) implies the
following error estimate:

∥u− uh∥L∞(Ω) ⩽ Cℓhh
s∥u∥Cs(Ω) + Chr+1ℓh∥f∥Lp(Ω) for u ∈ Cs(Ω), 0 ⩽ s ⩽ r + 1,

(4.1.8)

which adapts to the regularity of u.
The weak maximum principle is proved by converting the finite element weak form

on Ωh to a weak form on Ω by using a bijective transformation Φh : Ωh → Ω which
is piecewisely defined on the triangles/tetrahedra. This yields a bilinear form with a
discontinuous coefficient matrix. The main technical difficulty is that the elliptic partial
differential equation associated to this coefficient matrix does not have the H2 regularity
estimate, which is required in the proof of weak maximum principle in the literature; see
[96]. We overcome this difficulty by decomposing the solution v (of a duality problem)
into two parts, v = v1 + v2, with v1 corresponding to the Poisson equation with H2

regularity, and v2 corresponding to an elliptic equation with discontinuous coefficients
but with a small source term arising from the geometry perturbation, and then estimate
the two parts separately by using the H2 and W 1,p regularity of the respective problems.

The maximum-norm error estimate is proved by using Schatz argument through esti-
mating the difference between the solutions of the Poisson equations in Ωh and Ω. How-
ever, in order to avoid using the partial derivatives of f in the proof of (4.1.7), we have
to estimate the error between the solutions of the Poisson equation in the two domains
Ωh and Ω under the Dirichlet boundary conditions, respectively. This is accomplished by
perturbing the curvilinear polyhedron through a globally smooth flow map pointing out-
ward the domain and establishing the W 1,∞ regularity estimate of the Poisson equation
in a slightly larger perturbed domain Ωt (uniformly with respect to the perturbation),
which contains both Ωh and Ω and satisfies that dist(x, ∂Ω) ∼ hr+1 for x ∈ ∂Ωt.

The rest of this chapter is organized as follows. In Section 4.2, we present the main
results to be proved in this chapter, including the weak maximum principle of the isopara-
metric FEM in a curvilinear polyhedron, and the best approximation result of finite ele-
ment solutions in the maximum norm. The proofs of the two main results are presented
in Sections 4.3 and 4.4, respectively. The conclusions are presented in Section 4.5.
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4.2 Main results

In this chapter, we assume that Ω ⊂ RN , with N ∈ {2, 3}, is either a bounded smooth
domain or a curvilinear polyhedron (possibly concave) with edge openings smaller than
π. More specifically, in the three-dimensional space, this means that for every x ∈ ∂Ω
there is a neighborhood Ux and a smooth diffeomorphism φx : Ux → B0(εx) mapping x
to 0 such that one of the following three conditions holds:

1. x is a smooth point, i.e., φx(Ux ∩Ω) = B0(εx)∩R3
+, where R3

+ = {x ∈ R3 : x3 > 0}
is a half space in R3.

2. x is an edge point, i.e., φx(Ux ∩ Ω) = B0(εx) ∩ Kx, where Kx = R × Σ, where
Σ ⊆ R2 is a sector with angle less than π.

3. x is a vertex point, i.e., φx(Ux∩Ω) = B0(εx)∩Kx, where Kx is a convex polyhedral
cone with a vertex at 0. Therefore, the boundary of Kx consists of several smooth
faces intersecting at some edges which pass through the vertex 0.

We refer to [9, Definition 2.1] for the definition of general curvilinear polyhedron.
Let Th be the set of closed simplices in a quasi-uniform triangulation of the domain

Ω with isoparametric finite elements of degree r ⩾ 1 approximating the boundary ∂Ω, as
described in [94], with flat interior simplices which have at most one vertex on ∂Ω and
possibly curved boundary simplices. Each boundary simplex contains a possibly curved
face or edge interpolating ∂Ω with an accuracy of O(hr+1), where h denotes the mesh
size of the triangulation. Hence, Ωh = (

⋃
K∈T K)◦ is an approximation to Ω such that

dist(x, ∂Ω) = O(hr+1) for x ∈ ∂Ωh.
We prove the following weak maximum principle of the isoparametric FEM.

Theorem 4.2.1. For the isoparametric FEM of degree r ⩾ 1 on a quasi-uniform trian-
gulation of Ω, all the discrete harmonic functions uh ∈ Sh(Ωh) satisfying (4.1.1) have the
following estimate:

∥uh∥L∞(Ωh)
⩽ C ∥uh∥L∞(∂Ωh)

, (4.2.1)

where the constant C is independent of uh and the mesh size h.

In the isoparametric finite elements described in [94], each curved simplex K ∈ Th

is the image of a map FK : K̂ → K defined on the reference simplex K̂, which is a
polynomial of degree no larger than r and transforms the finite element structure of K̂ to
K. There is a homeomorphism Φh : Ωh → Ω, which is piecewise smooth on each simplex
and globally Lipschitz continuous. If we denote Φh,K := Φh|K and Ǩ := Φh(K), then
Φh,K : K → Ǩ is a diffeomorphism which transforms the finite element structure of K to
Ǩ. Therefore, Ťh = {Ǩ : K ∈ T } is a triangulation of the curved domain Ω, with

Ωh =
⋃

K∈Th

K and Ω =
⋃

K∈Th

Ǩ.

One can define isoparametric finite element space Sh(Ωh) as

Sh(Ωh) = {vh ∈ H1(Ωh) : vh|K ◦ FK is a polynomial on K̂ of degree⩽ r for K ∈ K }.
(4.2.2)
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The finite element spaces on Ω can be defined as

Šh(Ω) = {v̌h ∈ H1(Ω) : v̌h◦Φh ∈ Sh(Ωh)} and Š◦
h(Ω) = {v̌h ∈ Šh(Ω) : v̌h = 0 on ∂Ω}.

(4.2.3)
For a finite element function vh ∈ Sh(Ωh), we can associate it with a finite element

function v̌h ∈ Šh(Ω) defined by vh ◦ Φ−1
h := v̌h.

Remark 4.2.1. By using the notation which link vh ∈ Sh(Ωh) and v̌h ∈ Šh(Ω), the weak
maximum principle in (4.2.1) can be equivalently written as

∥ǔh∥L∞(Ω) ⩽ C ∥ǔh∥L∞(∂Ω) . (4.2.4)

For a function f ∈ C0(Ωh), one can define its local interpolation Ih,Kf on a simplex
K ∈ T as the function satisfying

(Ih,Kf) ◦ FK := IK̂(f ◦ FK),

where IK̂ is the standard Lagrange interpolation on the reference simplex K̂ (onto the
space of polynomials of degree⩽ r). The global interpolation Ihf ∈ Sh(Ωh) is defined as

Ihf |K := Ih,Kf ∀K ∈ T .

For the analysis of the isoparametric FEM, we also define an interpolation operator
Ǐh : C(Ω) → Šh(Ω) by

(Ǐhv) ◦ Φh = Ih(v ◦ Φh) ∀ v ∈ C(Ω).

As an application of the weak maximum principle, we establish an L∞-norm best
approximation result of isoparametric FEM for the Poisson equation in a curvilinear
polyehdron. We assume that the triangulation can be extended to a bigger domain which
contains Ω, as stated below.

Assumption 4.2.1. The curvilinear polyhedral domain Ω can be extended to a larger
convex polyhedron Ω∗ with piecewise flat boundaries such that Ω ⊂ Ω∗ and the tri-
angulation Th can be extended to a quasi-uniform triangulation T∗,h on Ω∗ (thus the
triangulation in Ω∗\Ω is also isoparametric on its boundary ∂Ω).

Remark 4.2.2. Here Ω∗ can be chosen as a large cube whose interior contains Ω. Note
that the triangulation Th is obtained from some triangulation T̃h consisting of flat sim-
plexes by the method in Lenoir’s paper [94]. We can first extend K̃ to a quasi-uniform

flat triangulation T̃∗,h of Ω∗, and then modify those flat simplexes T̃h with one of whose
edges/faces attaches to the boundary ∂Ω, to isoparametric elements by the method in
Lenoir’s paper [94]. This leads to a quasi-uniform triangulation T∗,h on Ω∗ which extends
Th. By our construction, the triangulation on Ω∗\Ω is also isoparametric on its boundary
∂Ω.

Theorem 4.2.2. For f ∈ Lp(Ω) with some p > N , we consider the Poisson equation{
−∆u = f in Ω

u = 0 on ∂Ω
(4.2.5)
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and the isoparametric FEM of degree r ⩾ 1 for (4.2.5): Find uh ∈ S◦
h(Ωh) such that∫

Ωh

∇uh · ∇χhdx =

∫
Ωh

f̃χhdx ∀χh ∈ S◦
h(Ωh), (4.2.6)

where f̃ ∈ Lp(Ω∪Ωh) is any extension of f ∈ Lp(Ω) satisfying ∥f̃∥Lp(Ω∪Ωh) ⩽ C∥f∥Lp(Ω).
Assuming that the triangulation satisfies Assumption 4.2.1, there exist positive constants
h0 and C (independent of f , u and h) such that the solutions of (4.2.5) and (4.2.6) satisfy
the following inequality for h ≤ h0:

∥u− uh∥L∞(Ω) ≤ Cℓh∥u− Ǐhu∥L∞(Ω) + Chr+1ℓh∥f∥Lp(Ω), (4.2.7)

where uh is extended to be zero on Ω\Ωh, and ℓh is defined as

ℓh =

{
ln(2 + 1/h) for piecewise linear elements,

1 for higher-order finite elements.

The proofs of Theorems 4.2.1 and 4.2.2 are presented in the next two sections, respec-
tively. For the simplicity of notation, we denote by C a generic positive constant which
may be different at different occurrences, possibly depending on the specific domain Ω
and the shape-regularity and quasi-uniformity of the triangulation, and the polynomial
degree r ⩾ 1, but is independent of the mesh size h.

4.3 Proof of Theorem 4.2.1

The proof of Theorem 4.2.1 is divided into six parts, presented in the following six sub-
sections.

4.3.1 Properties of the isomparametric FEM

In this subsection, we summarize the basic properties of the isoparametric FEM to be
used in the proof of Theorem 4.2.1.

Lemma 4.3.1 ([94, Theorem 1, Theorem 2, Proposition 2, Proposition 3, Proposition
4]). Let Ťh be the triangulation of Ω by isoparametric finite elements of degree r ⩾ 1,
with the maps FK : K̂ → K and Φh,K : K → Ǩ described in Section 4.2. Let Ds denote
the Fréchet derivative of order s. Then the following results hold:

1. FK : K̂ → K is a diffeomorphism such that

∥DsFK∥L∞(K̂) ≤ Chs ∀s ∈ [1, r + 1]

∥DsF−1
K ∥L∞(K) ≤ Ch−s ∀s ∈ [1, r + 1]

(4.3.1)

2. Φh,K : K → Ǩ is a diffeomorphism such that

∥Ds(Φh,K − Id)∥L∞(K) ≤ Chr+1−s ∀s ∈ [1, r + 1]

∥Ds(Φ−1
h,K − Id)∥L∞(Ǩ) ≤ Chr+1−s ∀s ∈ [1, r + 1]

(4.3.2)

3. For v ∈ Hm(K) and integer m ∈ [0, r+1], the norms ∥v∥Hm(K) and ∥v◦Φ−1
h,K∥Hm(Ǩ)

are uniformly equivalent with respect to h.
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4. Each curved simplex K ∈ Th corresponds to a flat simplex K̃ (which has the same

vertices as K), and there is a unique linear bijection FK̃ : K̂ → K̃ which maps

the reference simplex K̂ onto K̃. The map Ψ̃K := FK ◦ F−1

K̃
: K̃ → K is a

diffeomorphism satisfying the following estimates:

∥D(Ψ̃K − Id)∥L∞(K̃) ≤ Ch, ∥D(Ψ̃−1
K − Id)∥L∞(K) ≤ Ch

∥DsΨ̃K∥L∞(K̃) ≤ C, ∥DsΨ̃−1
K ∥L∞(K) ≤ C ∀s ∈ [1, r + 1].

(4.3.3)

5. For v ∈ Hm(K) and integer m ∈ [0, r+1], the norms ∥v∥Hm(K) and ∥v ◦ Ψ̃K∥Hm(K̃)

are uniformly equivalent with respect to h.

Let W k,p
h (Ω) be the space of functions on Ω whose restriction on each Ǩ ∈ Ťh lies in

W k,p(Ǩ), equipped with the following norm:

∥v∥Wk,p
h (Ω) :=


(∑

K∈T

∥v∥p
Wk,p(K)

) 1
p

for 1 ⩽ p <∞,

sup
K∈T

∥v∥Wk,p(K) for p = ∞.

In the case p = 2 we write H l,h(Ω) = W l,2
h (Ω). The following local interpolation error

estimate was proved in [94, Lemma 7]; also see [35, Theorem 4.3.4]. Although it was
proved only for p = 2 in [94, Lemma 7], the proof can be extended to 1 ⩽ p ⩽ ∞
straightforwardly.

Lemma 4.3.2 (Lagrange interpolation). Let Ǐh,K : C(Ω) → Šh(Ω) be the interpolation
operator defined by

Ǐh,Kf ◦ Φh := Ih,Kf ∀ f ∈ C(Ω).

Then, for 1 ≤ k ≤ r+1 and 1 ⩽ p ⩽ ∞ such that W k,p
h (Ω) ↪→ C(Ω) (e.g., kp > N when

p > 1 or k ≥ N when p = 1), the following error estimate holds:

|u− Ǐh,Ku|W i,p(Ǩ) ≤ Chk−i∥u∥Wk,p(Ǩ) ∀ 0 ≤ i ≤ k, ∀ Ǩ ∈ Ťh, ∀u ∈ C(Ω̄) ∩W k,p
h (Ω).

Since the Lagrange interpolation is defined by using the pointwise values of a function
at the Lagrange nodes, its stability in theW k,p norm is valid only whenW k,p(Ω) ↪→ C(Ω),
i.e., in the case “kp > N and p > 1” or “k ≥ N and p = 1”. One can remove this
restriction by using the Scott–Zhang interpolation, which can be constructed first in the
flat triangulation T̃h = {K̃ : K ∈ Th} as in [21, Section 4.8] and then be transformed to

Th via the maps Ψ̃K . Namely, by denoting Ω̃h =
⋃

K∈Th K̃ and Ψ̃h : Ω̃h → Ωh, we can
define

(Ihv) ◦ Ψ̃h := Ĩh(v ◦ Ψ̃h) ∀ v ∈ L1(Ωh),

where Ĩh denotes the Scott–Zhang interpolation on the flat triangulation T̃h. Since the
maps Ψ̃h induces norm equivalence on every simplex, as a result of (4.3.3), we have the
following result.

Lemma 4.3.3 (Scott–Zhang interpolation). There is a global interpolation operator

Ih : L1(Ωh) → Sh(Ωh)

such that

|u− Ihu|W i,p
h (Ωh)

≤ Chk−i∥u∥Wk,p
h (Ωh)

∀ 0 ≤ i ≤ k, ∀ 1 ≤ k ≤ r + 1, ∀u ∈ W k,p
h (Ωh).
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The inverse estimate for isoparametric finite elements follows from Lemma 4.3.1, Part
1. This is presented in the following lemma.

Lemma 4.3.4 (Inverse estimate). For 1 ≤ k ≤ l ≤ r+1 and 1 ≤ p, q ≤ ∞ the following
estimate holds:

∥ǔh∥W l,p(Ǩ) ≤ Chk−l+N/p−N/q∥ǔh∥Wk,q(Ǩ) ∀ ǔh ∈ Šh(Ω), ∀ Ǩ ∈ Ťh. (4.3.4)

The following lemma says that the (r+1)th-order derivative of a finite element function
in Šh(Ω) can be bounded by its lower-order derivatives. This result is often used to prove
a super-approximation property which is stated in Lemma 4.3.6 for iso-parametric finite
elements.

Lemma 4.3.5. The following result holds for iso-parametric finite element functions in
Šh(Ω):

|Dr+1v̌h|(x) ≤ C

r∑
i=1

|Div̌h|(x) ∀x ∈ Ǩ, ∀ Ǩ ∈ Ťh, ∀ v̌h ∈ Šh(Ω). (4.3.5)

Proof. LetMK := Φh,K ◦ Ψ̃K , which is a diffeomorpshism between the flat simplex K̃ and
the curved simplex Ǩ (according to Lemma 4.3.1), satisfying the following estimates:

∥DsMK∥L∞(K̃) ≤ C and ∥DsM−1
K ∥L∞(Ǩ) ≤ C ∀ 1 ≤ s ≤ r + 1.

According to the definition of Šh(Ω), a function v̌h is in Šh(Ω) if and only if the pull-back

function v̌h ◦MK is a polynomial degree⩽ r on the flat simplex K̃. Therefore, from the
estimate on higher order derivatives of composed functions (see [36, Lemma 3]), we have

|Dr+1v̌h|(x)
= |Dr+1((v̌h ◦MK) ◦M−1

K )|(x)

≤ C
r+1∑
l=1

|Dl(v̌h ◦MK)(M
−1
K (x))|

∑
i∈I(l,r+1)

|DM−1
K (x)|i1|D2M−1

K (x)|i2 ...|Dr+1M−1
K (x)|ir+1

≤ C
r+1∑
l=1

|Dl(v̌h ◦MK)|(M−1
K (x))

= C
r∑

l=1

|Dl(v̌h ◦MK)|(M−1
K (x)),

where

I(l, r + 1) := {i = (i1, i2, ..., ir+1) ∈ Zr+1 : ik ≥ 0,
r+1∑
k=1

ik = l;
r+1∑
k=1

kik = r + 1}.

We can estimate |Dl(v̌h ◦MK)|(M−1
K (x)) using the same estimate on higher order deriva-

tives of composed function

|Dl(v̌h ◦MK)|(M−1
K (x))

≤C
l∑

k=1

|Dkv̌h|(x)
∑

i∈I(k,l)

|DMK(M
−1
K (x))|i1|D2MK(M

−1
K (x))|i2 ...|DlMK(M

−1
K (x))|il
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≤C
l∑

k=1

|Dkv̌h|(x)

The result of Lemma 4.3.5 is obtained by combining the two estimates above. The
result above is the key to the superapproximation results for the isoparametric case. For
the standard elements the r + 1 derivative just vanishes.

Lemma 4.3.6 (Super-approximation). Let ω ∈ C∞
0 (RN) be a smooth cut-off function

such that 0 ≤ ω ≤ 1 and supp(ω) ∩ Ω ⊂ Ω0 ⊂ Ω, with Ω0(d) := {x ∈ Ω : dist(x,Ω0) ≤
d} ⊂ Ω1 for some d > h. Then the following estimate holds for v̌h ∈ Š◦

h(Ω):

∥ωv̌h − Ǐh(ωv̌h)∥H1(Ω1) ≤ Ch
( r∑

j=1

hj−1∥ω∥W j,∞(RN )

)
∥v̌h∥H1(Ω1) + Chr∥ω∥r+1,∞∥v̌h∥L2(Ω1),

∥ωv̌h − Ǐh(ωv̌h)∥H1(Ω1) ≤ C
( r+1∑

j=1

hj−1∥ω∥W j,∞(RN )

)
∥v̌h∥L2(Ω1).

Proof. Since supp(ωv̌h) ⊂ Ω0, it follows that Ǐh(ωv̌h) vanishes on all Ǩ such that Ǩ∩Ω0 =
∅. Since Ω0(d) ⊂ Ω1, all the simplices Ǩ such that Ǩ ∩ Ω0 ̸= ∅ are contained in Ω1.
Therefore, we have

∥ωv̌h − Ǐh(ωv̌h)∥2H1(Ω1)
=

∑
Ǩ∩Ω0 ̸=∅

∥ωv̌h − Ǐh(ωv̌h)∥2H1(Ǩ)

⩽
∑

Ǩ∩Ω0 ̸=∅

Ch2r∥ωv̌h∥2Hr+1(Ǩ)

⩽
∑

Ǩ∩Ω0 ̸=∅

Ch2r
(
|v̌h|2Hr+1(Ǩ)

+
r∑

i=0

∥ω∥2W r+1−i,∞(RN )∥v̌h∥
2
Hi(Ǩ)

)
.

(4.3.6)

The term |v̌h|2Hr+1(Ǩ)
can be estimated by using Lemma 4.3.5, i.e.,

|v̌h|2Hr+1(Ǩ)
≤ C

r∑
i=1

|v̌h|2Hi(Ǩ)
. (4.3.7)

For 0 ⩽ i ⩽ r, the term |v̌h|Hi(Ǩ) can be estimated by using the inverse estimate for
isoparametric finite element functions (see Lemma 4.3.4). This yields the first result of
Lemma 4.3.6. The second result can be proved similarly.

4.3.2 The perturbed bilinear form associated to the isopara-
metric FEM

By using the notation ǔh ◦ Φh = uh and v̌h ◦ Φh = vh for uh, vh ∈ Sh(Ωh), the following
identity holds: ∫

Ωh

∇uh · ∇vhdx =

∫
Ωh

∇(ǔh ◦ Φh) · ∇(ǔh ◦ Φh)dx

=

∫
Ω

Ah∇ǔh · ∇v̌hdx ∀ v̌h ∈ Š◦
h(Ω), (4.3.8)
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where
Ah = (∇Φh(∇Φh)

⊤J−1) ◦ Φ−1
h

is a piecewise smooth (globally discontinuous) and symmetric matrix-valued function,
and J = det(∇Φh) ∈ L∞(Ωh) is the Jacobian of the mapping Φh : Ωh → Ω, piecewisely
defined on every simplex K ∈ T . Therefore, a function uh ∈ Sh(Ωh) is discrete harmonic
if and only if ∫

Ω

Ah∇ǔh · ∇v̌hdx = 0 ∀ v̌h ∈ Š◦
h(Ω), (4.3.9)

Identity (4.3.9) will be used frequently in the following proof.
Since the map Φh : Ωh → Ω is close to the identity map Id : RN → RN (which satisfies

Id(x) ≡ x), it follows that the matrix Ah is close to the identity matrix. In particular,
the following results are corollaries of the second statement of Lemma 4.3.1:

∥∇j(Φh − Id)∥L∞(Ωh) ≤ Chr+1−j and ∥Ah − I∥L∞(Ω) ≤ Chr, for j = 0, 1. (4.3.10)

Therefore, for sufficiently small mesh size h, the perturbed bilinear form B̌h : H1(Ω) ×
H1(Ω) → R defined by

B̌h(v, χ) =

∫
Ω

Ah∇v · ∇χdx (4.3.11)

is continuous and coercive on H1
0 (Ω), i.e.,

B̌h(v, χ) ⩽ C∥∇v∥L2(Ω)∥∇χ∥L2(Ω) ∀ v, χ ∈ H1(Ω),

B̌h(v, v) ⩾ C−1∥∇v∥2L2(Ω) ∼ ∥v∥2H1(Ω) ∀ v ∈ H1
0 (Ω).

(4.3.12)

More precisely, the difference between B̌h(u, v) and B(u, v) is estimated in the follow-
ing lemma.

Lemma 4.3.7. There exists a positive constant h1 > 0 such that for h ⩽ h1 the following
result holds: If 1 ≤ p, q ≤ ∞, 1

p
+ 1

q
= 1, and u ∈ W 1,p(Ω), v ∈ W 1,q(Ω), then∣∣B̌h(u, v)−B(u, v)
∣∣ ≤ Chr∥∇u∥Lp(Λh)∥∇v∥Lq(Λh)

where Λh := {x ∈ Ω : dist(x, ∂Ω) ≤ 2h}.

Proof. Since Φh = Id at all interior simplices, it follows that Ah ◦ Φh = I outside the
subdomain Dh = {x ∈ Ωh : dist(x, ∂Ωh) ≤ h}. Correspondingly, Ah = I outside the
subdomain Φh(Dh) and therefore,∣∣B̌h(u, v)−B(u, v)

∣∣ ≤ ∥Ah − I∥L∞(Φh(Dh)∥∇u∥Lp(Φh(Dh))∥∇v∥Lq(Φh(Dh))

≤ Chr∥∇u∥Lp(Φh(Dh))∥∇v∥Lq(Φh(Dh)).

If x ∈ Dh, then there exists x′ ∈ ∂Ωh such that |x− x′| = dist(x, ∂Ωh) ⩽ h and

|Φh(x)− Φh(x
′)| ⩽ |Φh(x)− x|+ |x− x′|+ |x′ − Φh(x

′)| ⩽ Chr+1 + h+ Chr+1,

which implies that
dist(Φh(x), ∂Ω) ⩽ Chr+1 + h.

For sufficiently small h we obtain dist(Φh(x), ∂Ω) ⩽ 2h and therefore Φh(Dh) ⊂ Λh.
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4.3.3 Reduction of the problem

Let x0 ∈ Ω be a point satisfying

|ǔh(x0)| = ∥ǔh∥L∞(Ω) with d = dist(x0, ∂Ω).

If d ⩾ 2kh for some fixed k ⩾ 1, i.e., x0 is relatively far away from the boundary
∂Ω, then we can choose Ω1 = {x0} and Ω2 = Sd/2(x0) and use the interior L∞ estimate
established in [127, Corollary 5.1]. This yields the following result:

|ǔh(x0)| ⩽ Cd−
N
2 ∥ǔh∥L2(Sd(x0)).

Otherwise, we have d < 2kh. In this case, assuming that x0 ∈ Ǩ for some curved
simplex Ǩ ∈ Ť , by the inverse estimate in Lemma 4.3.4 we have

|ǔh(x0)| = ∥ǔh∥L∞(Ǩ) ⩽ Ch−
N
2 ∥ǔh∥L2(Ǩ) ≤ Ch−

N
2 ∥ǔh∥L2(S2kh(x0)).

Overall, for either d ⩾ 2kh or d < 2kh, the following estimate holds:

|ǔh(x0)| ⩽ Cρ−
N
2 ∥ǔh∥L2(Sρ(x0)), with ρ = d+ 2kh. (4.3.13)

To estimate the term ∥ǔh∥L2(Sρ(x0)) on the right-hand side of (4.3.13), we use the
following duality property:

∥ǔh∥L2(Sρ(x0)) = sup
supp(φ)⊂Sρ(x0)
∥φ∥L2(Sρ(x0))

⩽1

|(ǔh, φ)|,

where (·, ·) denotes the inner product of L2(Ω) (or L2(Ω)N for vector-valued functions),
i.e.,

(u, v) :=

∫
Ω

u · vdx.

Hence, there exists a function φ ∈ C∞
0 (Ω) with the following properties:

supp(φ) ⊂ Sρ(x0), ∥φ∥L2(Sρ(x0)) ⩽ 1, (4.3.14)

∥ǔh∥L2(Sρ(x0)) ⩽ 2|(ǔh, φ)|. (4.3.15)

For this function φ, we define v ∈ H1
0 (Ω) and u ∈ H1(Ω) to be the solutions of the

following elliptic equations (in the weak form):{
(Ah∇v,∇χ) = (φ, χ) ∀χ ∈ H1

0 (Ω),

v = 0 on ∂Ω,
(4.3.16)

and {
(Ah∇u,∇χ) = 0 ∀χ ∈ H1

0 (Ω),

u = ǔh on ∂Ω,
(4.3.17)

respectively. The maximum principle of the continuous problem (4.3.17) implies that

∥u∥L∞(Ω) ⩽ ∥ǔh∥L∞(∂Ω). (4.3.18)
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Therefore, we have

∥ǔh∥L2(Sρ(x0)) ⩽ 2|(ǔh, φ)| (here we have used (4.3.15))

= 2|(ǔh − u, φ) + (u, φ)|
= 2|(Ah∇(ǔh − u),∇v) + (u, φ)| (here we have used (4.3.16))

= 2|(Ah∇ǔh,∇v) + (u, φ)| (here we have used (4.3.17))

⩽ 2|(Ah∇ǔh,∇v)|+ 2∥u∥L∞(Ω)∥φ∥L1(Sρ(x0)) (since supp(φ) ⊂ Sρ(x0))

⩽ 2|(Ah∇ǔh,∇v)|+ Cρ
N
2 ∥ǔh∥L∞(∂Ω)∥φ∥L2(Sρ(x0)), (4.3.19)

where we have used (4.3.18) and the Hölder inequality in deriving the last inequality.
Combing inequalities (4.3.13) and (4.3.19), we have

∥ǔh∥L∞(Ω) = |ǔh(x0)| ≤ Cρ−
N
2 |(Ah∇ǔh,∇v)|+ C∥ǔh∥L∞(∂Ω) (4.3.20)

where we have used the fact that ∥φ∥L2(Sρ(x0)) ≤ 1.

It remains to estimate ρ−
N
2 |(Ah∇ǔh,∇v)|. To this end, we define Rh : H1

0 (Ω) →
Š◦
h(Ω) to be the Ritz projection associated with the perturbed bilinear form defined in

(4.3.11), i.e.,

(Ah∇(v −Rhv),∇χ̌h) = 0 ∀ χ̌h ∈ Š◦
h(Ω), (4.3.21)

which is well defined in view of the coercivity of the bilinear form; see (4.3.12). By
using identity (4.3.9) for the discrete harmonic function uh and the definition of the Ritz
projection Rh in (4.3.21), we have

(Ah∇ǔh,∇v) = (Ah∇ǔh,∇(v −Rhv))

= (Ah∇(ǔh − χ̌h),∇(v −Rhv)) ∀χ̌h ∈ Š◦
h(Ω). (4.3.22)

In particular, we can choose χ̌h = χh ◦ Φ−1
h ∈ Š◦

h(Ω) to satisfy χh = uh on all interior
Lagrange nodes while χh = 0 on all the boundary nodes (which implies χh = 0 on ∂Ωh

and therefore χ̌h ≡ 0 on ∂Ω). Then

∥χ̌h − ǔh∥L∞(Ω) ≤ C∥ǔh∥L∞(∂Ω). (4.3.23)

Let Λh = {x ∈ Ω : dist(x, ∂Ω) ⩽ 2h} be a neighborhood of the boundary ∂Ω, when h
sufficiently small, ǔh − χ̌h = 0 outside Λh. Then

|(Ah∇(ǔh − χ̌h),∇(v −Rhv))| ≤ C∥∇(χ̌h − ǔh)∥L∞(Ω)∥∇(v −Rhv)∥L1(Λh)

≤ Ch−1∥ǔh∥L∞(∂Ω)∥∇(v −Rhv)∥L1(Λh), (4.3.24)

where we have used (4.3.23) and the inverse estimate for finite element functions. Sub-
stituting (4.3.22) and (4.3.24) into (4.3.20), we obtain

∥ǔh∥L∞(Ω) ⩽ C
(
ρ−

N
2 h−1∥∇(v −Rhv)∥L1(Λh) + 1)∥uh∥L∞(∂Ω). (4.3.25)

The proof of Theorem 4.2.1 will be completed if the following result holds:

ρ−
N
2 h−1∥∇(v −Rhv)∥L1(Λh) ⩽ C, (4.3.26)

which will be proved in the following subsections.
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4.3.4 Regularity decomposition

In order to estimate the left-hand side of (4.3.26), we need to use a local energy estimate
and a duality argument, which is based on the regularity result of the following elliptic
equation (in the weak form): Find v ∈ H1

0 (Ω) such that

(Ah∇v,∇χ) = (f, χ) ∀χ ∈ H1
0 (Ω), (4.3.27)

where Ah is a globally discontinuous matrix-valued function defined in Section 4.3.2.
Due to the discontinuity of the coefficient matrix Ah, the standard H

2 regularity does
not hold for the elliptic equation (4.3.27). We decompose the solution v ∈ H1

0 (Ω) of
equation (4.3.27) into the following two parts:

v = v1 + v2, (4.3.28)

where v1 ∈ H1
0 (Ω) and v2 ∈ H1

0 (Ω) are the weak solutions of the equations

(∇v1,∇χ) = (f, χ) ∀χ ∈ H1
0 (Ω), (4.3.29)

(Ah∇v2,∇χ) = ((I − Ah)∇v1,∇χ) ∀χ ∈ H1
0 (Ω). (4.3.30)

Equation (4.3.29) has a constant coefficient and therefore the classical W 2,q regularity
estimate holds for 1 < q < 2 + ε, for some ε > 0 which depends on the interior angles at
the edges and corners of the domain Ω (see [39, Corollaries 3.7, 3.9 and 3.12]), i.e.,

∥v1∥W 2,q(Ω) ≤ Cq∥f∥Lq(Ω) ∀ 1 < q < 2 + ε. (4.3.31)

Since equation (4.3.30) has discontinuous coefficients, the W 2,q regularity estimate does
not hold. We have to estimate v2 by using the W 1,p estimate in the following lemma.

Lemma 4.3.8. For every 1 < p <∞ there exists hp > 0 (which depends on p), such that
for h ≤ hp, the solution w ∈ H1

0 (Ω) of the equation

(Ah∇w,∇χ) = (g⃗,∇χ) ∀χ ∈ H1
0 (Ω) with g⃗ ∈ Lp(Ω)N ∩ L2(Ω)N , (4.3.32)

satisfies w ∈ W 1,p(Ω) and

∥w∥W 1,p(Ω) ≤ Cp∥g⃗∥Lp(Ω), (4.3.33)

where Cp is a constant which is independent of h (possibly depending on p).

Proof. We can rewrite equation (4.3.32) into the following form:

(∇w,∇χ) = (g⃗,∇χ) + ((I − Ah)∇w,∇χ) ∀χ ∈ H1
0 (Ω),

and apply theW 1,p regularity estimate for the Poisson equation (which holds in a smooth
domain or curvilinear polyhedron with edge openings smaller than π; see [39, Corollaries
3.7, 3.9 and 3.12]). This yields the following inequality:

∥w∥W 1,p(Ω) ≤ Cp∥g⃗∥Lp(Ω) + Cp∥I − Ah∥L∞(Ω)∥w∥W 1,p(Ω).

Since ∥Ah − I∥L∞ ≤ Ch, for sufficiently small h (depending on p) the last term on the
right-hand side can be absorbed by the left-hand side. This yields the result of Lemma
4.3.8.

By combining theW 2,q regularity estimate in (4.3.31) and theW 1,p regularity estimate
in Lemma 4.3.8, we can prove the following result.
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Lemma 4.3.9. Let 1 < p, q < ∞ be numbers such that 1/q ≤ 1/n + 1/p, and assume
that h ≤ hp, where hp is given in Lemma 4.3.8. Let w ∈ H1

0 (Ω) be the weak solution of
the equation

(Ah∇w,∇χ) = (f, χ) + (g⃗,∇χ) ∀χ ∈ H1
0 (Ω) (4.3.34)

for some f ∈ Lq(Ω) ∩ L2(Ω) and g⃗ ∈ Lp(Ω)N ∩ L2(Ω)N . Then w ∈ W 1,p(Ω) and

∥w∥W 1,p(Ω) ≤ Cp∥f∥Lq(Ω) + Cp∥g⃗∥Lp(Ω). (4.3.35)

Proof. We consider the decomposition w = w1 +w2 with w1, w2 ∈ H1
0 (Ω) weakly solving

(∇w1,∇χ) = (f, χ) ∀χ ∈ H1
0 (Ω),

(Ah∇w2, χ) = ((I − Ah)∇w1 + g⃗,∇χ) ∀χ ∈ H1
0 (Ω).

Note that for χ ∈ W 1,p′

0 (Ω) where 1/p+ 1/p′ = 1

|(f, χ)| ≤∥f∥Lq(Ω)∥χ∥Lq′ (Ω) (1/q + 1/q′ = 1)

≤C∥f∥Lq(Ω)∥χ∥W 1,p′ (Ω) (embedding W 1,p′ ↪→ Lq′ used),

therefore we have ∥f∥W−1,p(Ω) ≤ C∥f∥Lq(Ω). By the W 1,p regularity estimate for the
Poisson equation on curvilinear polyhedron (see [39, Corollaries 3.7, 3.9 and 3.12]), there
holds

∥w1∥W 1,p(Ω) ≤ Cp∥f∥W−1,p(Ω) ≤ Cp∥f∥Lq(Ω)

Then we apply the W 1,p estimate in Lemma 4.3.8 to the equation of w2. This yields the
following result:

∥w2∥W 1,p(Ω) ≤ Cp∥g⃗ + (I − Ah)∇w1∥Lp(Ω) ≤ Cp∥g⃗∥Lp(Ω) + Cp∥f∥Lq(Ω).

The result of Lemma 4.3.9 follows from combining the estimates for w1 and w2.
The following lemma was proved in [96, Lemma 2.2] for polyhedral domains. The

proof of this result for smooth domains and curvilinear polyhedron is the same.

Lemma 4.3.10. If χ ∈ W 1,p
0 (Ω) for some 1 < p <∞ and x∗ ∈ ∂Ω, then

∥χ∥Lp(Sd∗ (x
∗)) ⩽ Cd∗∥∇χ∥Lp(Ω),

where Sd∗(x
∗) := {x ∈ Ω : |x− x∗| < d∗}.

Lemma 4.3.11. Let 1 < p <∞ and h ≤ hp, where hp is given in Lemma 4.3.8. For

f ∈ Lp(Ω) ∩ L2(Ω) with supp(f) ⊂ Sd∗(x0), where x0 ∈ Ω and dist(x0, ∂Ω) ≤ d∗,

the solution v ∈ H1
0 (Ω) of equation (4.3.27) satisfies

∥v∥W 1,p(Ω) ≤ Cpd∗∥f∥Lp(Ω) (4.3.36)
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Proof. We consider the decomposition v = v1 + v2 in (4.3.28)–(4.3.30). If dist(x0, ∂Ω) ≤
d∗, then Sd∗(x0) ⊂ S2d∗(x̄0) for some x̄0 ∈ ∂Ω. Note that for χ ∈ W 1,p′

0 (Ω) where
1/p+ 1/p′ = 1, we have

|(f, χ)| ≤∥f∥Lp(Sd∗ (x0))∥χ∥Lp′ (Sd∗ (x0))

≤∥f∥Lp(Sd∗ (x0))∥χ∥Lp′ (S2d∗ (x̄0))

≤Cd∗∥f∥Lp(Ω)∥∇χ∥Lp′ (Ω), (Lemma 4.3.10 used)

which implies that ∥f∥W−1,p(Ω) ≤ Cd∗∥f∥Lp(Ω). Thus by the W 1,p regularity estimate for
the Poisson equation on curvilinear polyhedron (see [39, Corollaries 3.7, 3.9 and 3.12]),
there holds:

∥v1∥W 1,p(Ω) ≤ Cp∥f∥W−1,p(Ω) ≤ Cpd∗∥f∥Lp(Ω).

By applying Lemma 4.3.8 to equation (4.3.30), we obtain

∥v2∥W 1,p(Ω) ≤ Cp∥(I − Ah)∇v1∥Lp(Ω) ≤ Cph∥v1∥W 1,p(Ω) ≤ Cphd∗∥f∥Lp(Ω).

The last two inequalities imply the result of Lemma 4.3.11.
The next lemma is about the Cacciopoli inequality for harmonic functions which is

the same as in [123, Lemma 8.3]. The result holds for smooth domains and curvilinear
polyhedra on which the elliptic H2 regularity result holds for the Poisson equation.

Lemma 4.3.12. Let D and Dd be two subdomains of Ω satisfying D ⊂ Dd ⊂ Ω, with

Dd = {x ∈ Ω : dist(x,D) ⩽ d},

where d is a positive constant. If v ∈ H1
0 (Ω) and v is harmonic on Dd, i.e.

(∇v,∇w) = 0 ∀w ∈ H1
0 (Dd),

then the following estimates hold:

|v|H2(D) ⩽ Cd−1∥v∥H1(Dd), (4.3.37a)

∥v∥H1(D) ⩽ Cd−1∥v∥L2(Dd). (4.3.37b)

We also need the following interior estimate in the estimation of v2.

Lemma 4.3.13. Let 1 < p, q < ∞ be numbers such that 1/q ≤ 1/n + 1/p and assume
that h ≤ hp, where hp is given in Lemma 4.3.8. Let D ⊂ Dd ⊂ Ω be subdomains, with
Dd = {x ∈ Ω : dist(x,D) ⩽ d}. If v ∈ W 1,p

0 (Ω) ∩H1
0 (Ω) satisfies equation

(Ah∇v,∇χ) = 0 ∀χ ∈ H1
0 (Dd), (4.3.38)

or

(∇v,∇χ) = 0 ∀χ ∈ H1
0 (Dd). (4.3.39)

Then

∥v∥W 1,p(D) ≤
Cp

d
(∥v∥Lp(Dd) + ∥v∥W 1,q(Dd)). (4.3.40)
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Proof. We focus on the first case: v satisfies equation (4.3.38). The proof for the second
case is the same and therefore omitted.

First, we choose a cut-off function ω ∈ C∞
0 (RN), ω ≡ 1 on D, supp(ω) ∩ Ω ⊂ Dd,

with ∥ω∥W 1,∞(RN ) ≤ Cd−1. Then ωv ∈ H1
0 (Ω) satisfies the following equation:

(Ah∇(ωv),∇χ) = (ωAh∇v,∇χ) + (Ah∇ω, v∇χ)
= (Ah∇v,∇(ωχ))− (Ah∇v, χ∇ω) + (Ah∇ω, v∇χ)
= (Ahv∇ω,∇χ)− (Ah∇v · ∇ω, χ) ∀χ ∈ H1

0 (Ω)

where we have used the identity (Ah∇v,∇(ωχ)) = 0 in the derivation of the last equality,
which is a consequence of (4.3.38) and ωχ ∈ H1

0 (Dd). Then we can apply Lemma 4.3.9
to the above equation satisfied by ωv. This yields the following result:

∥ωv∥W 1,p(Ω) ≤ Cp∥Ahv∇ω∥Lp(Ω) + Cp∥Ah∇v · ∇ω∥Lq(Ω)

≤ Cp

d
∥v∥Lp(Dd) +

Cp

d
∥v∥W 1,q(Dd).

Since ω = 1 on D, the last inequality implies the result of Lemma 4.3.13.

Lemma 4.3.14. Let 1 < p, q <∞ be numbers such that 1/q ≤ 1/n+1/p and assume that
h ≤ min{hp, hq}, where hp, hq are given in Lemma 4.3.8. Let D ⊂ Dd ⊂ Ω be subdomains,
with Dd = {x ∈ Ω : dist(x,D) ⩽ d}. If the source function f has supp(f)∩Dd = ∅, then
the solution v2 of equation (4.3.30) satisfies the following estimate:

∥v2∥W 1,p(D) ≤
Cp,q

d
h∥v1∥W 1,q(Ω). (4.3.41)

Proof. We consider a cut-off function ω such that ω ≡ 1 in D and supp(ω) ⊂ Dd/2, with
∥ω∥W 1,∞(RN ) ≤ Cd−1. Then the following equation can be written down similarly as in
the proof of Lemma 4.3.13:

(Ah∇(ωv2),∇χ) = (ω(I − Ah)∇v1,∇χ) + ((I − Ah)∇v1 · ∇ω, χ)
+ (v2Ah∇ω,∇χ)− (Ah∇v2 · ∇ω, χ) ∀χ ∈ H1

0 (Ω).

By applying Lemma 4.3.9 to the equation above, we obtain

∥v2∥W 1,p(D) ≤ Cph∥v1∥W 1,p(Dd/2) +
Cph

d
∥v1∥W 1,q(Ω) +

Cp

d
∥v2∥Lp(Ω) +

Cp

d
∥v2∥W 1,q(Ω)

≤ Cph∥v1∥W 1,p(Dd/2) +
Cph

d
∥v1∥W 1,q(Ω) +

Cp

d
∥v2∥W 1,q(Ω), (4.3.42)

where we have used Sobolev embedding W 1,q(Ω) ↪→ Lp(Ω).
Since supp(f) ∩ Dd = ∅, it follows that the solution v1 of (4.3.29) satisfies equation

(4.3.39). Therefore, Lemma 4.3.13 implies that

∥v1∥W 1,p(Dd/2) ≤
Cp

d
(∥v∥Lp(Dd) + ∥v∥W 1,q(Dd)) ≤

Cp

d
∥v1∥W 1,q(Ω).

By applying Lemma 4.3.8 to equation (4.3.30), we also obtain

∥v2∥W 1,q(Ω) ≤ Cq∥I − Ah∥L∞(Ω)∥v1∥W 1,q(Ω) ≤ Cqh∥v1∥W 1,q(Ω).

Then, substituting the last two inequalities into (4.3.42), we obtain the result of Lemma
4.3.14.
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4.3.5 W 1,p stablity of the Ritz projection (with discontinuous
coefficients)

In [75] the W 1,∞ stability of the Ritz projection is proved for the Poisson equation in
convex polyhedral domains. The proof is based on the following properties of the domain
and finite elements:

(P1) Hölder estimates of the Green function for the Poisson equation, i.e.,

|∂xi
G(x, ξ)− ∂yiG(y, ξ)|

|x− y|σ
≤ C

(
|x− ξ|−2−σ + |y − ξ|−2−σ

)
∣∣∂xi

∂ξjG(x, ξ)− ∂yi∂ξjG(y, ξ)
∣∣

|x− y|σ
≤ C

(
|x− ξ|−3−σ + |y − ξ|−3−σ

) (4.3.43)

for i, j = 1, 2, 3.

(P2) Elliptic H2 regularity result for the Poisson equation.

(P3) Exact triangulation which matches the boundary ∂Ω.

(P4) Error estimates for the Lagrange interpolation holds as in Lemma 4.3.2.

Note that the Hölder estimates for the Green function in (4.3.43) was proved in [75]
for general curvilinear polyhedral domains with edge opening smaller than π, instead of
merely classical polyhedral domains. If we define a modified Ritz projection R∗

h associated
to the Poisson equation (without the discontinuous coefficient Ah), i.e.,∫

Ω

∇(v −R∗
hv) · ∇χ̌hdx = 0 ∀χ̌h ∈ Š◦

h(Ω), (4.3.44)

then all the properties in (P1)–(P4) are possessed by the curvilinear polyhedral domain
Ω and the finite element space Š◦

h(Ω). The latter is based on the triangulation Ǩ which
matches the boundary ∂Ω exactly. Therefore, the W 1,∞ stability still holds for the
modified Ritz projection defined in (4.3.44). The result is stated in the following lemma.

Lemma 4.3.15.

∥R∗
hv∥W 1,∞(Ω) ≤ C∥v∥W 1,∞(Ω) ∀ v ∈ H1

0 (Ω) ∩W 1,∞(Ω). (4.3.45)

By real interpolation between the H1 and W 1,∞ stability estimates (see [32, result in
(5.1)]), we obtain the W 1,p stability of the modified Ritz projection for 2 ≤ p ≤ ∞. The
result can also be extended to 1 < p ≤ 2 by a duality argument as in [21, Section 8.5],
which requires Poisson equation to have the W 1,p′ regularity (this is true for a curvilinear
polyhedron with edge opening smaller than π). The result is summarized below.

Lemma 4.3.16 (W 1,p stability of the modified Ritz projection R∗
h). For any 1 < p ⩽ ∞,

there exists a positive constant hp such that for h ⩽ hp the following result holds:

∥R∗
hu∥W 1,p(Ω) ≤ Cp∥u∥W 1,p(Ω) ∀u ∈ W 1,p(Ω) ∩H1

0 (Ω). (4.3.46)

By a “perturbation” argument, similar as [21, Section 8.6], one can obtain the W 1,p

stability of the Ritz projection Rh. This is stated in the following proposition.
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Proposition 4.3.17 (W 1,p stability of the Ritz projection Rh). For any 1 < p < ∞,
there exists a positive constant hp such that for h ⩽ hp the following result holds:

∥Rhu∥W 1,p(Ω) ≤ Cp∥u∥W 1,p(Ω) ∀u ∈ W 1.p(Ω) ∩H1
0 (Ω). (4.3.47)

Proof. For v ∈ H1
0 (Ω), its Ritz projection Rhv ∈ Š◦

h(Ω) satisfies the following equation:∫
Ω

∇(v −Rhv) · ∇χ̌hdx =

∫
Ω

(I − Ah)∇(v −Rhv) · ∇χ̌hdx ∀χ̌h ∈ Š◦
h(Ω).

If we define w to be the solution of the following elliptic equation (in the weak form):∫
Ω

∇w · ∇χ̌dx = −
∫
Ω

(I − Ah)∇(v −Rhv) · ∇χ̌dx ∀χ̌ ∈ H1
0 (Ω),

then ∫
Ω

∇(w + v −Rhv) · ∇χ̌hdx = 0 ∀χ̌h ∈ Š◦
h(Ω),

which means that Rhv = R∗
h(w + v). Lemma 4.3.16 implies that

∥Rhv∥W 1,p(Ω) = ∥R∗
h(w + v)∥W 1,p(Ω) ⩽ Cp∥w + v∥W 1,p(Ω)

⩽ Cp∥I − Ah∥L∞(Ω)∥v −Rhv∥W 1,p(Ω) + Cp∥v∥W 1,p(Ω)

⩽ Cph∥Rhv∥W 1,p(Ω) + Cp∥v∥W 1,p(Ω).

There exists a constant hp such that for h ⩽ hp the first term on the right-hand side can
be absorbed by the left-hand side. In this case we obtain the result of Proposition 4.3.17.

As a result of Proposition 4.3.17, we obtain the following W 1,p error estimate for the
Ritz projection.

Lemma 4.3.18. For any 1 < q < 2 + ε, there exists a positive constant hq such that for
h ⩽ hq the solution of equation (4.3.27) has the following error bound:

∥v −Rhv∥W 1,q(Ω) ⩽ Cqh∥f∥Lq(Ω) ∀ f ∈ Lq(Ω) ∩ L2(Ω).

Proof. We consider the decomposition v = v1+v2 in (4.3.28)–(4.3.30). TheW 2,q estimate
in (4.3.31) and theW 1,p estimate in Lemma 4.3.8 imply that v1 and v2 satisfy the following
estimates:

∥v1∥W 2,q(Ω) ≤ Cq∥f∥Lq(Ω) ∀ 1 < q < 2 + ε,

∥v2∥W 1,q(Ω) ≤ Cqh∥v1∥W 1,q(Ω) ≤ Cqh∥f∥Lq(Ω).

Applying the W 1,q stability of the Ritz projection, we obtain the following estimates:

∥v1 −Rhv1∥W 1,q(Ω) ≤ Cq inf
χ̌h∈Š◦

h(Ω)
∥v1 − χ̌h∥W 1,q(Ω) ≤ Cqh∥v1∥W 2,q(Ω) ≤ Cqh∥f∥Lq(Ω),

∥v2 −Rhv2∥W 1,q(Ω) ≤ Cq∥v2∥W 1,q(Ω) ≤ Cqh∥f∥Lq(Ω).

The result of Lemma 4.3.18 is obtained by combining the two estimates above.
Finally, the Lp error estimate for the Ritz projection follows from a standard duality

argument, again by using the regularity decomposition as in (4.3.28)–(4.3.30) for the dual
problem.
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Lemma 4.3.19. For any 1 < q < 2 + ε, there exists a positive constant hq such that for
h ⩽ hq the following error estimate holds:

∥u−Rhu∥Lq′ (Ω) ≤ Cqh∥u−Rhu∥W 1,q′ (Ω) ∀u ∈ H1
0 (Ω) ∩W 1,q′(Ω), (4.3.48)

where 1/q + 1/q′ = 1.

Proof. By using the duality between Lq(Ω) and Lq′(Ω), we can express the Lq′ error of
the Ritz projection as

∥Rhu− u∥Lq′ (Ω) = sup
φ∈C∞

0 (Ω)
∥φ∥Lq(Ω)≤1

(Rhu− u, φ),

In particular, there exists φ ∈ C∞
0 (Ω) with ∥φ∥Lq(Ω) ≤ 1 such that

∥Rhu− u∥Lq′ (Ω) ≤ 2(Rhu− u, φ).

Let v ∈ H1
0 (Ω) be the weak solution of the following elliptic equation (in the weak form):

(Ah∇v,∇χ) = (φ, χ) ∀χ ∈ H1
0 (Ω).

Then

(Rhu− u, φ) = (Ah∇v,∇(Rhu− u))

= (Ah∇(Rhu− u),∇v)
= (Ah∇(Rhu− u),∇(v −Rhv))

≤ C∥Rhu− u∥W 1,q′ (Ω)∥Rhv − v∥W 1,q(Ω)

≤ Cqh∥Rhu− u∥W 1,q′ (Ω)∥φ∥Lq(Ω) (Lemma 4.3.18 is used here)

≤ Cqh∥Rhu− u∥W 1,q′ (Ω).

This proves the result of Lemma 4.3.19 .

4.3.6 Estimation of ρ−
N
2 h−1∥∇(v −Rhv)∥L1(Λh)

In this subsection, we prove (4.3.26) by utilizing the results established in Sections 4.3.4–
4.3.5, where v is the solution of (4.3.16). This would complete the proof of Theorem
4.2.1. To this end, we consider a dyadic decomposition of the domain as in the literature;
see [75, 96, 125].

Let R0 = diam(Ω) and dj = R02
−j for j ⩾ 0. We define a sequence of subdomains

Dj = {x ∈ Ω : dj+1 ⩽ |x− x0| ⩽ dj} for j ⩾ 0.

For each j we denote by Dl
j a subdomain slightly larger than Dj, defined by

Dl
j = Dj−l ∪ · · · ∪Dj ∪Dj+1 ∪ · · · ∪Dj+l (Di := ∅ for i < 0.)

Let J = [ln2(R0/2κρ)]+1, where [ln2(R0/2κρ)] denotes the biggest integer not exceeding
ln2(R0/2κρ). The constant κ > 32 will be determined below, and the generic constant
C will be independent on κ until it is determined (unless it contains a subscript κ). The
definition above implies that

1

2
κρ ⩽ dJ+1 ⩽ κρ
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and

measure(Dj ∩ Λh) ≤ ChdN−1
j . (4.3.49)

Note that v is the solution of (4.3.16), where φ = 0 outside Sρ(x0). Therefore, φ = 0 in
D3

j for 1 ⩽ j ⩽ J . This result will be used below.
By using the subdomains defined above, we have

ρ−
N
2 h−1∥∇(v −Rhv)∥L1(Λh)

⩽ ρ−
N
2 h−1

( J∑
j=0

∥∇(v −Rhv)∥L1(Λh∩Dj) + ∥∇(v −Rhv)∥L1(Λh∩Sκρ(x0))

)

⩽ Cρ−
N
2 h−1

J∑
j=0

h
1
2d

N−1
2

j ∥∇(v −Rhv)∥L2(Λh∩Dj)

+ Cκ
N−1

2 ρ−
1
2h−

1
2∥∇(v −Rhv)∥L2(Λh∩Sκρ(x0)), (4.3.50)

where the Hölder inequality and (4.3.49) are used in the derivation of the last inequality.
By choosing q = 2 in Lemma 4.3.18 we have

∥∇(v −Rhv)∥L2(Ω) ≤ Ch∥φ∥L2(Ω) ≤ Ch. (4.3.51)

Then, substituting (4.3.51) into the last term on the right-hand side of (4.3.50) and using
the fact that ρ ⩾ h (which follows from the definition of ρ in (4.3.13)), we obtain

ρ−
N
2 h−1∥∇(v −Rhv)∥L1(Λh) ≤ Cρ−

N
2 h−

1
2

J∑
j=0

d
N−1

2
j ∥∇(v −Rhv)∥L2(Dj) + Cκ, (4.3.52)

where Cκ denotes a constant which depends on the parameter κ.
It remains to estimate ∥∇(v −Rhv)∥L2(Dj). To this end, we use the following interior

energy estimate for the solution of (4.3.16):

∥v −Rhv∥H1(Dj) ≤ C∥v − Ǐhv∥H1(D1
j )
+ Cd−1

j ∥v − Ǐhv∥L2(D1
j )
+ Cd−1

j ∥v −Rhv∥L2(D1
j )
.

(4.3.53)

The proof of such interior energy estimate is omitted as it only requires the coefficient
matrix Ah to be L

∞ in the perturbed bilinear form in (4.3.11), without additional smooth-
ness, and therefore is the same as the proof for standard finite elements for the Poisson
equation.

We use the decomposition v = v1 + v2 in (4.3.28)–(4.3.30) with f = φ supported in
Sρ(x0), and consider interpolation error of v1 and v2, respectively. First, by applying the
result of Lemma 4.3.2 and using the fact that dj > h, we have

∥v1 − Ǐhv1∥H1(D1
j )
+ dj

−1∥v1 − Ǐhv1∥L2(D1
j )
⩽ Ch∥v1∥H2(D2

j )
⩽ Chd

−1+N
2
−N

p

j ∥v1∥W 1,p(Ω)

for 2N
N+2

< p < 2, (4.3.54)

where we have used the following inequality in deriving the last inequality:

∥v1∥H2(D2
j )
⩽ Cd

1
2
− 3

p

j ∥v1∥W 1,p(Ω) for 2N
N+2

< p < 2. (4.3.55)
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The inequality above follows from Lemma 4.3.12 (because v1 is the solution of (4.3.29)
with f = φ = 0 in D3

j ), the Hölder inequality and the Sobolev embedding inequality, i.e.,

∥v1∥H2(D2
j )
⩽ Cd−2

j ∥v1∥L2(D3
j )

⩽ Cd
−2+N

2
− N

p∗
j ∥v1∥Lp∗ (D3

j )
if p∗ > 2

⩽ Cd
−1+N

2
−N

p

j ∥v1∥W 1,p(Ω) for N
p∗

= N
p
− 1 and 2N

N+2
< p < 2

so that p∗ > 2 and W 1,p(Ω) ↪→ Lp∗(Ω).

Here we require κ > 32 to guarantee that dJ+5 > ρ, which is required in the use Lemma
4.3.12. This proves the last inequality in (4.3.54).

Next, we consider the interpolation error of v2 by using Lemma 4.3.2 and Hölder
inequality, i.e.,

∥v2 − Ǐhv2∥H1(D1
j )
+ dj

−1∥v2 − Ǐhv2∥L2(D1
j )
≤ Cd

N
2
− N

p1
j ∥v2∥W 1,p1 (D2

j )

≤ Cd
N
2
− N

q1
j h∥v1∥W 1,q1 (Ω)

for some p1 > N and
N

q1
=
N

p1
+ 1, (4.3.56)

where we have applied Corollary 4.3.14 in deriving the last inequality. (Here we only need
p1 to be slightly bigger than N , and therefore the corresponding q1 here can be smaller
than 2, so that we can use Hölder inequality to estimate ∥φ∥Lq1 (Sρ(x0)) below.)

By combining (4.3.54) and (4.3.56), we obtain

C∥v − Ǐhv∥H1(D1
j )
+ Cdj

−1∥v − Ǐhv∥L2(D1
j )

≤ Chd
−1+N

2
−N

p

j ∥v1∥W 1,p(Ω) + Cd
N
2
− N

q1
j h∥v1∥W 1,q1 (Ω)

≤ Chd
−1+N

2
−N

p

j ρ∥φ∥Lp(Sρ(x0)) + Chd
N
2
− N

q1
j ρ∥φ∥Lq1 (Sρ(x0))

≤ Chd
−1+N

2
−N

p

j ρ1−
N
2
+N

p + Chd
N
2
− N

q1
j ρ

1−N
2
+ N

q1 , (4.3.57)

where we have applied Lemma 4.3.11 to equation (4.3.29) in the derivation of the second
inequality, and used Hölder inequality in the derivation of the last inequality.

Finally, substituting (4.3.57) into (4.3.53), we obtain

d
N−1

2
j ∥∇(v −Rhv)∥L2(Dj)

≤ Chd
N− 3

2
−N

p

j ρ1−
N
2
+N

p + Chd
N− 1

2
− N

q1
j ρ

1−N
2
+ N

q1 + Cd
N−3

2
j ∥v −Rhv∥L2(D1

j )

≤ Chd
N− 3

2
−N

p

j ρ1−
N
2
+N

p + Cd
N−3

2
j ∥v −Rhv∥L2(D1

j )
, (4.3.58)

where we have chosen p = q1 < 2 and used dj ≤ C in the derivation of the last inequality.
Here we can make p as close to 2 as possible so that p = q′ satisfies the condition in
Lemma 4.3.19 (which will be used in the subsequent analysis).

Now we substitute (4.3.58) into (4.3.52) and use the result
∑J

j=0 d
N− 3

2
−N

p

j ≤ Cκρ
N− 3

2
−N

p ,
we obtain

J∑
j=0

d
N−1

2
j ∥∇(v −Rhv)∥L2(Dj) ⩽ Cκhρ

N−1
2 +

J∑
j=0

Cd
N−3

2
j ∥v −Rhv∥L2(D1

j )
, (4.3.59)
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and therefore

ρ−
N
2 h−1∥∇(v −Rhv)∥L1(Λh) ≤ Cρ−

N
2 h−

1
2

J∑
j=0

d
N−1

2
j ∥∇(v −Rhv)∥L2(Dj) + Cκ

≤ Cκ + Cρ−
N
2 h−

1
2

J∑
j=0

d
N−3

2
j ∥v −Rhv∥L2(D1

j )
. (4.3.60)

It remains to estimate
∑J

j=0 d
N−3

2
j ∥v −Rhv∥L2(D1

j )
. To this end, we let χ be a smooth

cut-off function satisfying

χ = 1 on D1
j , χ = 0 outside D2

j and |∇χ| ⩽ Cd−1
j .

For N = 2, 3 the following Sobolev interpolation inequality holds:

∥χ(v −Rhv)∥L2(Ω) ⩽ ∥χ(v −Rhv)∥1−θ
Lp(Ω)∥χ(v −Rhv)∥θH1(Ω) with

1

2
=

1− θ

p
+

θ

p∗
,

(4.3.61)

where p∗ = ∞ for N = 2 and p∗ = 6 for N = 3. For both N = 2 and N = 3, the
parameter θ determined by (4.3.61) satisfies the following relation:

N

p
− N

2
=

θ

1− θ
. (4.3.62)

We can choose p sufficiently close to 2 as mentioned below (4.3.58). Since

C∥χ(v −Rhv)∥H1(Ω) ⩽ C∥∇(v −Rhv)∥L2(D2
j )
+ Cd−1

j ∥v −Rhv∥L2(D2
j )

(4.3.63)

it follows that

∥v −Rhv∥L2(D1
j )

⩽ ∥v −Rhv∥1−θ
Lp(D2

j )

(
C∥∇(v −Rhv)∥L2(D2

j )
+ Cd−1

j ∥v −Rhv∥L2(D2
j )

)θ
= (ϵ−

θ
1−θ ∥v −Rhv∥Lp(D2

j )
)1−θ

(
Cϵ∥∇(v −Rhv)∥L2(D2

j )
+ Cϵd−1

j ∥v −Rhv∥L2(D2
j )

)θ
⩽ Cϵ−

θ
1−θ ∥v −Rhv∥Lp(D2

j )
+ Cϵ∥∇(v −Rhv)∥L2(D2

j )
+ Cϵd−1

j ∥v −Rhv∥L2(D2
j )
,

where ϵ can be an arbitrary positive number.
By choosing ϵ = dj(ρ/dj)

σ with a fixed σ ∈ (0, 1), we obtain

∥v −Rhv∥L2(D1
j )
⩽ C

(
ρ

dj

)− θσ
1−θ

d
− θ

1−θ

j ∥v −Rhv∥Lp(D1
j )

(4.3.64)

+

(
ρ

dj

)σ(
Cdj∥∇(v −Rhv)∥L2(D2

j )
+ C∥v −Rhv∥L2(D2

j )

)
.

Hence,

ρ−
N
2 h−

1
2

J∑
j=0

d
N−3

2
j ∥v −Rhv∥L2(D1

j )
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⩽ Cρ−
N
2 h−

1
2

J∑
j=0

(
ρ

dj

)− θσ
1−θ

d
− θ

1−θ
+N−3

2

j ∥v −Rhv∥Lp(D2
j )

+ Cρ−
N
2 h−

1
2

J∑
j=0

(
ρ

dj

)σ(
d

N−1
2

j ∥∇(v −Rhv)∥L2(D2
j )
+ Cd

N−3
2

j ∥v −Rhv∥L2(D2
j )

)
⩽ Cρ−

N
2 h−

1
2

J∑
j=0

(
ρ

dj

)− θσ
1−θ

d
− θ

1−θ
+N−3

2

j ∥v −Rhv∥Lp(D2
j )

+ Cκ + Cρ−
N
2 h−

1
2

(
ρ

dJ

)σ J∑
j=0

d
N−3

2
j ∥v −Rhv∥L2(D3

j )
, (4.3.65)

where we have used (4.3.59) and the fact ρ
dj

≤ ρ
dJ

in deriving the last inequality. Note

that

J∑
j=0

d
N−3

2
j ∥v −Rhv∥L2(D3

j )
⩽ Cd

N−3
2

J ∥v −Rhv∥L2(Sκρ(x0)) + 3
J∑

j=0

d
N−3

2
j ∥v −Rhv∥L2(D1

j )
.

Combining the last two estimates, we obtain

ρ−
N
2 h−

1
2

J∑
j=0

d
N−3

2
j ∥v −Rhv∥L2(D1

j )
⩽ Cρ−

N
2 h−

1
2

J∑
j=0

(
ρ

dj

)− θσ
1−θ

d
− θ

1−θ
+N−3

2

j ∥v −Rhv∥Lp(D2
j )

+ Cκ + Cρ−
N
2 h−

1
2

(
ρ

dJ

)σ

d
N−3

2
J ∥v −Rhv∥L2(Sκρ(x0))

+ Cρ−
N
2 h−

1
2

(
ρ

dJ

)σ J∑
j=0

d
N−3

2
j ∥v −Rhv∥L2(D1

j )
.

For the fixed σ ∈ (0, 1), by choosing a sufficiently large parameter κ we have
(

ρ
dJ

)σ ≤ C
κσ ,

and therefore the last term of the inequality above can be absorbed by the left-hand side.
From now on we fix the parameter κ. Then we have

J∑
j=0

ρ−
N
2 h−

1
2d

N−3
2

j ∥v −Rhv∥L2(D1
j )
⩽

J∑
j=0

Cρ−
N
2 h−

1
2

(
ρ

dj

)− θσ
1−θ

d
− θ

1−θ
+N−3

2

j ∥v −Rhv∥Lp(D2
j )

+ Cκ + Cρ−
N
2 h−

1
2

(
ρ

dJ

)σ

d
N−3

2
J ∥v −Rhv∥L2(Sκρ(x0)).

(4.3.66)

It remains to estimate ∥v − Rhv∥Lp(D1
j )

and ∥v − Rhv∥L2(Sκρ(x0)). This is done by

applying Lemma 4.3.19 (with q′ = p therein), Lemma 4.3.18 (with q = p therein) and
Hölder’s inequality, i.e.,

∥v −Rhv∥Lp(Ω) ⩽ Ch2∥φ∥Lp(Ω) ⩽ Ch2ρ
N
p
−N

2 , (4.3.67)

∥v −Rhv∥L2(Ω) ⩽ Ch2 (setting q′ = q = 2 in Lemma 4.3.19 and Lemma 4.3.18 ).
(4.3.68)
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Then, substituting these estimates into (4.3.66), we obtain

J∑
j=0

ρ−
N
2 h−

1
2d

N−3
2

j ∥v −Rhv∥L2(D1
j )
⩽

J∑
j=0

C

(
h

ρ

)N
2
(
h

dj

) 3−N
2
(
ρ

dj

)N
p
−N

2
− θσ

1−θ

d
N
p
−N

2
− θ

1−θ

j

+ Cκ + C

(
h

ρ

)N
2
(
h

dJ

) 3−N
2
(
ρ

dJ

)σ

(4.3.69)

By choosing p < 2 to be sufficiently close to 2 (so that q′ = p satisfies the condition of
Lemma 4.3.19) and using the relation N

p
− N

2
= θ

1−θ
as shown in (4.3.62), we obtain

J∑
j=0

ρ−
N
2 h−

1
2d

N−3
2

j ∥v −Rhv∥L2(D1
j )
⩽ C. (4.3.70)

Then, substituting the last inequality into the right-hand side of (4.3.60), we obtain

ρ−
N
2 h−1∥∇(v −Rhv)∥L1(Λh) ⩽ C.

This proves (4.3.26) for sufficiently small mesh size, say h ⩽ h0. This condition is required
when we use Corollary 4.3.14, Lemma 4.3.18 and Lemma 4.3.19 in this subsection.

In the case h ⩾ h0, we denote by g̃h ∈ Sh(Ωh) the isoparametric finite element function
satisfying g̃h = uh on ∂Ωh and g̃h = 0 at the interior nodes of the domain Ωh. Then the
following estimate holds:

∥g̃h∥L∞(Ωh) ⩽ C∥uh∥L∞(∂Ωh).

Since χh = uh − g̃h ∈ S◦
h(Ωh), it follows from (4.1.1) that

0 =

∫
Ωh

∇uh · ∇(uh − g̃h) = ∥∇(uh − g̃h)∥2L2(Ωh)
+

∫
Ωh

∇g̃h · ∇(uh − g̃h),

and therefore

∥∇(uh − g̃h)∥2L2(Ωh)
= −

∫
Ωh

∇g̃h · ∇(uh − g̃h) ⩽ C∥∇g̃h∥L2(Ωh)∥∇(uh − g̃h)∥L2(Ωh).

Thus, by using the inverse inequality and the condition h ⩾ h0, we have

∥∇(uh − g̃h)∥L2(Ωh) ⩽ C∥∇g̃h∥L2(Ωh) ⩽ Ch−1∥g̃h∥L2(Ωh) ⩽ Ch−1
0 ∥g̃h∥L∞(Ωh)

⩽ Ch−1
0 ∥uh∥L∞(∂Ωh).

By using the inverse inequality again, we obtain

∥uh − g̃h∥L∞(Ωh) ⩽ Ch−
N
2 ∥uh − g̃h∥L2(Ωh)

⩽ Ch−
N
2 ∥∇(uh − g̃h)∥L2(Ωh)

⩽ Ch
−N

2
−1

0 ∥uh∥L∞(∂Ωh).

By the triangle inequality, this proves

∥uh∥L∞(Ωh) ⩽ ∥g̃h∥L∞(Ωh) + ∥uh − g̃h∥L∞(Ωh) ⩽ C∥uh∥L∞(∂Ωh)

for h ⩾ h0.
Combining the two cases h ⩽ h0 and h ⩾ h0, we obtain the result of Theorem

4.2.1.
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4.4 Proof of Theorem 4.2.2

In this section, we adapt Schatz’s argument in [125] to the proof of maximum-norm
stability of isoparametric finite element solutions of the Poisson equation in the curvilinear
polyhedron considered here. The argument is based on the weak maximum principle
established in Theorem 4.2.1 and the following technical result, which asserts that the
W 1,∞ regularity estimate of the Poisson equation can hold in a family of larger perturbed
domains Ωt, t ∈ [0, δ], such that dist(∂Ωt, ∂Ω) ∼ t and the W 1,∞ estimate is uniformly
with respect to t ∈ [0, δ].

Remark 4.4.1. Here we make a remark on the idea of our proof. To prove Theorem 4.2.2,
we observe that the numerical solution uh is in fact the Ritz projection of u(h) ∈ H1

0 (Ωh)
which is the exact solution of the Poisson equation on Ωh:

−∆u(h) = f in Ωh (f is extended by zero outside Ω),

in the sense that

Rh(u
(h) ◦ Φ−1

h ) = uh ◦ Φ−1
h .

Using the weak maximum principle established in Theorem 4.2.1, one can imitate the
proof of [96, Theorem 5.1] to show that there holds L∞ stability for our Ritz projection
Rh. It follows that

∥u(h) − uh∥L∞(Ωh) ≤ C∥u(h) − Ihu
(h)∥L∞(Ωh).

Now we can obtain the result of Theorem 4.2.2 as long as we establish the estimate

∥u− u(h)∥L∞(Ωh) ≤ Chr+1∥f∥Lp(Ω) (p > N),

where we have extended u by zero outside Ω. To this end, we consider employing the
maximum principle of harmonic functions since ∆(u(h)−u) = 0 inΩ∩Ωh. Here technically
we introduce larger perturbed domain Ωt and solution ut

−∆ut = f in Ωt,

in the larger perturbed domain Ωt. Then using maximum principle, we compare u and
u(h) with ut respectively, for example we have

∥u− ut∥L∞(Ω) ≤ ∥ut∥L∞(∂Ω) ≤ Chr+1∥ut∥W 1,∞(Ωt).

This explains the motivation of establishing Proposition 4.4.1.

Proposition 4.4.1. Let Ω be a curvilinear polyhedron with edge openings smaller than
π, and define

Ω(ε) := {x ∈ RN : dist(x,Ω) < ε},

which is an ε neighborhood of Ω. Then there exist constants δ > 0 and λ > 0 and a
family of larger bounded domains Ωt satisfying

Ω(λt) ⊆ Ωt ⊆ Ω(λ−1t) ∀t ∈ [0, δ],
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such that the weak solution ut ∈ H1
0 (Ω

t) of the Poisson equation

−∆ut = f in Ωt, with f ∈ Lp(Ωt) for some p > N, (4.4.1)

satisfies the following estimate:

∥ut∥W 1,∞(Ωt) ≤ Cp∥f∥Lp(Ωt) for t ∈ [0, δ], (4.4.2)

where Cp is some constant which is independent of t ∈ [0, δ].

Proof. In a standard convex polyhedron Ω̂, the following estimate holds for p > N (cf.
[104, Lemma 2.1]):

∥∇w∥L∞(Ω̂) ≤ Cp∥∇ · (a∇w)∥Lp(Ω̂) ∀w ∈ H1
0 (Ω̂) such that ∇ · (a∇w) ∈ L2(Ω̂).

(4.4.3)

where a = (aij) is any symmetric positive definite matrix in W 1,q(Ω̂) with q > N ,
satisfying the following estimate:

C−1|ξ|2 ⩽ aξ · ξ ⩽ C|ξ|2. (4.4.4)

On the curvilinear polyhedron Ω considered in this chapter, by using a partition of
unity we can reduce the problem to an open subset of Ω which is diffeomorphic to a
convex polyhedral cone. Therefore, the following result still holds for p > N :

∥∇w∥L∞(Ω) ≤ Cp∥∇ · (a∇w)∥Lp(Ω) ∀w ∈ H1
0 (Ω) such that ∇ · (a∇w) ∈ L2(Ω).

(4.4.5)

If there exists a smooth diffeomorphism Ψt : Ω → Ωt (smooth uniformly with respect
to t ∈ [0, δ]), then we can pull the Poisson equation on Ωt = Ψt(Ω) back to the curvilinear
polyhedron Ω as an elliptic equation with some coefficient matrix a satisfying (4.4.4), and
then use the result in (4.4.5). This would prove (4.4.2). If the partial derivatives of the
diffeomorphism from Ω to Ωt can be uniformly bounded with respect to t ∈ [0, δ], then
the constant in (4.4.2) is independent of t ∈ [0, δ].

It remains to prove the existence of a smooth diffeomorphism Ψt : Ω → Ωt = Ψt(Ω).
This is presented in the following lemma.

Lemma 4.4.2. Let Ω be a curvilinear polyherdon. Then there exist constants δ > 0 and
λ > 0 (which only depend on Ω), and a family of diffeomorphisms Ψt : RN → RN for
t ∈ [0, δ], such that

1. Ω(λt) ⊆ Ψt(Ω) ⊆ Ω(λ−1t) for t ∈ [0, δ] and some constant λ > 0.

2. The partial derivatives of Ψt are bounded uniformly with respect to t ∈ [0, δ], i.e.,

|∇kΨt(x)| ⩽ Ck ∀x ∈ RN , ∀k ⩾ 1, where Ck is independent of t ∈ [0, δ].

Proof. It is known that any given smooth and compactly supported vector field X on R
induces a flow map

Ψ : R× RN → RN (t, x) 7→ Φ(t, x),

such that each Ψt = Ψ(t, ·) : RN → RN is a diffeomorphism of RN for sufficiently small
t, say |t| ⩽ δ. Moreover, Ψ0 = Id, Ψt+s = Ψt ◦Ψs for t, s ∈ R, and the partial derivatives

109



of Ψt are uniformly bounded by constants which only depend on X and δ (independent
of t).

Therefore, in order to prove Lemma 4.4.2, it suffices to construct a compactly sup-
ported smooth vector field X, such that the flow map induced by X satisfies Ω(λt) ⊆
Ψt(Ω) ⊆ Ω(λ−1t) for t ∈ [0, δ] (with some constants λ > 0 and δ > 0). This can be
proved by utilizing the following result, which provides a criteria for the construction of
such a vector field.

Lemma 4.4.3. Let Ω be a curvilinear polyhedron, and let X be a smooth and compactly
supported vector field on RN satisfying the following conditions:

1. X|Ω′ ≡ 0 for some nonempty open subset Ω′ ⊂⊂ Ω.

2. ⟨X(x), Nx⟩ ⩾ c at all smooth points x ∈ ∂Ω, where Nx denotes the unit outward
normal vector at x ∈ ∂Ω and c > 0 is some constant.

3. |X(x)| ⩽ 1 ∀x ∈ RN

Then there are constants λ > 0 and δ > 0, which only depend on X and Ω, such that the
flow map Ψt induced by the vector field X has the following property:

Ω(λt) ⊆ Ψt(Ω) ⊆ Ω(λ−1t) for t ∈ [0, δ].

Let us temporarily assume that Lemma 4.4.3 holds, and use it to prove Lemma 4.4.2.
To this end, it suffices to construct a vector field which satisfies the conditions in Lemma
4.4.3.

From the definition of the curvilinear polyhedron we know that for every x ∈ ∂Ω there
exists a map φx : Ux → Bεx(0) which is a diffeomorphism from a neighborhood Ux of x
in RN to a ball centered at 0 with radius εx, such that φx(x) = 0 and φx(Ux∩Ω) = Kx∩
B0(εx), where Kx = {y ∈ R3 : y/|y| ∈ Θ} is a cone corresponding to a spherical region
Θ ⊂ S2 which is contained in an open half sphere, say S2

+ = {x ∈ R3 : |x| = 1, x3 > 0}.
We shall use the following terminology:

1. By composing φx with an additional linear transformation if necessary, we can
assume that ∇φx(x) = I (which holds only at the point x in Ux).

2. If p is a smooth point on ∂Kx (not on the edges or vertex of ∂Kx), then we denote
by Nx,p the unit outward normal vector of ∂Kx at p, and define

N̂x =
{
Nx,p : p in some smooth piece of ∂Kx

}
to be the set of all outward unit normal vectors on the smooth faces of ∂Kx. When
x is a smooth point of ∂Ω, N̂x consists of only one vector, i.e., the usual unit normal
vector Nx. Therefore, the set N̂x can be viewed as generalization of normal vector
at x when x is not a smooth point.

3. Let y be an interior point in the polyhedral cone Kx. Then the unit vector Vx =
−y/|y| satisfies that ⟨Vx, Nx,p⟩ > 0 for all Nx,p ∈ N̂x.

We will construct a smooth vector field X on RN as follows, by using a partition of
unity. By the three properties above and the compactness of ∂Ω, there is constant c > 0
only dependent on Ω such that for each x ∈ ∂Ω, there is a unit vector Vx ∈ RN such that

⟨Vx, Nx,p⟩ ⩾ 2c ∀Nx,p ∈ N̂x.
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Since the normal vector at a smooth point of ∂Ω changes continuously in a smooth piece
of ∂Ω, one can shrink the neighborhood Ux of x ∈ ∂Ω so that

⟨Vx, Ny⟩ ⩾ c for all smooth points y ∈ ∂Ω ∩ Ux,

where Ny denotes the unit outward normal vector at y ∈ ∂Ω ∩ Ux. We define a smooth
vector field Xx on Ux by

Xx(y) = Vx ∀y ∈ Ux,

and choose a finite covering {Uxℓ
}1⩽ℓ⩽L of ∂Ω from these Ux, x ∈ ∂Ω, and a family of

smooth cut-off functions {χℓ}1⩽ℓ⩽L such that 0 ≤ χℓ ≤ 1 and

supp(χℓ) ⊆ Uxℓ
and

∑
1≤ℓ≤L

χℓ(x) = 1, ∀x ∈ ∂Ω.

Then we denote by Xxℓ
the above-mentioned vector field defined on Uxℓ

, and define

X =
L∑

ℓ=1

χℓXxℓ
,

so that X is a compactly supported smooth vector field such that

⟨X(y), Ny⟩ =
∑

χℓ(y)̸=0

χℓ(y)⟨Xxℓ
, Ny⟩ ≥ c, for all smooth point y ∈ ∂Ω.

and clearly |X(x)| ≤ 1, ∀x ∈ RN . This proves the existence of a desired vector field X,
and therefore completes the proof of Proposition 4.4.1.

Proof of Lemma 4.4.3. For each x ∈ ∂Ω, let φx : Ux → Bεx(0) be the map as in the
definition of the curvilinear polyhedron. Here we do not require φx(Ux) to be a ball so
that we can assume Ux to be convex.

By composing φx with an additional linear transformation if necessary, we can assume
that ∇φx(x) = I (as in the proof of Lemma 4.4.2). Since c ⩽ ⟨X(x), Nx⟩ ⩽ 1 (as a the
condition in Lemma 4.4.3), we can shrink the neighborhood Ux small enough so that

c

2
⩽ ⟨(∇φx(y))

⊤X(y), Nx,p⟩ ⩽ 2 ∀y ∈ Ux, p ∈ φx(Ux ∩ ∂Ω) = φx(Ux) ∩ ∂Kx,

p is a smooth point. (4.4.6)

Moreover, since (∇φx)
⊤ = I at x, we can shrink Ux so that the following equivalence

relation holds:
d(y1, y2) ∼ d(φx(y1), φx(y2)) ∀y1, y2 ∈ Ux,

where d(·, ·) denotes the Euclidean distance in RN . As a result,

d(y, Ux ∩Ω) ∼ d(φx(y), φx(Ux ∩Ω)) ∀y ∈ Ux.

We can choose a finite covering {Uxℓ
}1⩽ℓ⩽L of ∂Ω from these Ux. Then there exists a

sufficiently small δ > 0 such that for any x ∈ ∂Ω there exists 1 ⩽ ℓ ⩽ L such that for all
t ∈ [0, δ],

Ψt(x) ∈ Uxℓ
for some 1 ⩽ ℓ ⩽ L.
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Moreover,

d(Ψt(x), Ω) = d(Ψt(x), Uℓ ∩Ω) (4.4.7)

and

d(Ψt(x), Ω) ∼ d(φxℓ
(Ψt(x)), φxℓ

(Uℓ ∩Ω)). (4.4.8)

Let Yℓ = (∇φxℓ
)⊤X|Uℓ

be the pushforward vector field under φxℓ
, then φxℓ

(Ψt(x)) is the
integral curve of vector field Yℓ, with initial value point φxℓ

(x). From (4.4.6) we know
that

c

2
⩽ ⟨Yℓ(z), Nxℓ,p⟩ ⩽ 2 ∀z ∈ φxℓ

(Uxℓ
), ∀p ∈ φxℓ

(Uxℓ
∩ ∂Ω) = φxℓ

(Uxℓ
) ∩ ∂Kxℓ

,

which implies that the integral curve φxℓ
(Ψt(x)) is flowing outside φxℓ

(Uxℓ
∩Ω), i.e.,

ct

2
⩽ d(φxℓ

(Ψt(x)), φxℓ
(Uxℓ

∩Ω)) ⩽ 2t.

Then, from the equivalence of distance as shown in (4.4.7)–(4.4.8), we conclude that there
exists a constant λ > 0 such that

2λt ⩽ d(Ψt(x), Ω) ⩽
1

2
λ−1t ∀t ∈ [0, δ], ∀x ∈ ∂Ω.

We consider the domain Ω(λt) := {x ∈ RN : dist(x,Ω) < λt} ⊃ Ω. On the one
hand, since X|Ω′ = 0 for some subdomain Ω′ ⊂⊂ Ω it follows that Ψt(Ω) ∩ Ω(λt) ̸= ∅.
On the other hand, since d(Ψt(x), Ω) > λt for all x ∈ ∂Ω, the boundaries of Ψt(Ω) and
Ω(λt) are disjoint. It follows that Ω(λt) ⊆ Ψt(Ω) for t ∈ [0, δ]. Similarly, one can prove
that Ω(λ−1t) ⊃ Ψt(Ω). This completes the proof of Lemma 4.4.3.

Lemma 4.4.4. Let Ωt be the domain in Proposition 4.4.1, satisfying Ω(λt) ⊆ Ωt ⊆
Ω(λ−1t) for t ∈ [0, δ], with Ω(λt) = {x ∈ RN : dist(x,Ω) < λt}. Suppose that
f ∈ Lp(Ωt) for some p > N , and Ωh ⊂ Ωt for some t = O(hr+1) and h ⩽ h1, where
h1 > 0 is some constant. Let u ∈ H1

0 (Ω) and u(h) ∈ H1
0 (Ωh) be the weak solutions of the

following PDE problems:

−∆u = f in Ω,

−∆u(h) = f in Ωh,

and extend u and u(h) by zero to the larger domain Ωt. Then there exists h2 > 0 such
that for h ⩽ h2 the following estimate holds:

∥u− u(h)∥L∞(Ωt) ≤ Chr+1∥f∥Lp(Ωt) (4.4.9)

Proof. Since max
x∈Ωh

|Φh(x) − x| ≤ C0h
r+1 for some constant C0, it follows that Ωh ⊂

Ω(C0h
r+1) ⊂ Ωt for t = C0λ

−1hr+1. When h is sufficiently small we have t = C0λ
−1hr+1 ⩽

δ and therefore Ωt is well defined. Let ut ∈ H1
0 (Ω

t) be a weak solution of the Poisson
equation

−∆ut = f in Ωt.
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Proposition 4.4.1 implies that

∥ut∥W 1,∞(Ωt) ≤ C∥f∥Lp(Ωt). (4.4.10)

Since ut − u is harmonic in Ω ⊂ Ωt and ut − u(h) is harmonic in Ωh ⊂ Ωt, the maximum
principle of the continuous problem implies that

∥ut − u(h)∥L∞(Ωh) ≤ ∥ut − u(h)∥L∞(∂Ωh)

= ∥ut∥L∞(∂Ωh) (since u(h) = 0 on ∂Ωh)

≤ Chr+1∥ut∥W 1,∞(Ωt)

≤ Chr+1∥f∥Lp(Ωt), (4.4.11)

where we have used the fact that dist(x, ∂Ωt) ≤ 2C0h
r+1 for x ∈ ∂Ωh. Therefore,

∥ut − u(h)∥L∞(Ωt) ≤ ∥ut − u(h)∥L∞(Ωh) + ∥ut∥L∞(Ωt\Ωh)

≤ Chr+1∥f∥Lp(Ωt) + Chr+1∥ut∥W 1,∞(Ωt)

≤ Chr+1∥f∥Lp(Ωt). (4.4.12)

The following result can be proved in the same way:

∥ut − u∥L∞(Ωt) ≤ Chr+1∥f∥Lp(Ωt). (4.4.13)

The result of Lemma 4.4.4 follows from (4.4.12)–(4.4.13) and the triangle inequality.
In the following, we prove Theorem 4.2.2 by using the technical result in Proposition

4.4.1.
Let Ωt be the domain in Proposition 4.4.1, satisfying Ω(λt) ⊆ Ωt ⊆ Ω(λ−1t) for

t ∈ [0, δ], with Ω(λt) = {x ∈ RN : dist(x,Ω) < λt}. For the simplicity of notation,
we still denote by f ∈ Lp(Ωt) an extension of f̃ ∈ Lp(Ω ∪ Ωh) satisfying ∥f∥Lp(Ωt) ⩽
C∥f̃∥Lp(Ω∪Ωh) ⩽ C∥f∥Lp(Ω).

Under assumption 4.2.1, the curvilinear polyhedral domain Ω can be extended to a
larger convex polyhedron Ω∗ with a piecewise flat boundary such that Ω ⊂ Ω∗ and the
triangulation Th can be extended to a quasi-uniform triangulation T∗,h on Ω∗ (thus the
triangulation in Ω∗\Ω is also isoparametric on its boundary ∂Ω).

Let ũ be an extension of u(h) such that ũ = u(h) on Ωh and ũ = 0 in Ω∗\Ωh. Let
S◦
h(Ω∗) ⊂ H1

0 (Ω∗) be the H1-conforming isoparametric finite element space on Ω∗ with
triangulation T∗,h. Let ũh ∈ S◦

h(Ω∗) be the Ritz projection of ũ defined by∫
Ω∗

∇(ũ− ũh) · ∇χh = 0 ∀χh ∈ S◦
h(Ω∗).

Then

∥u(h) − uh∥L∞(Ωh) = ∥ũ− uh∥L∞(Ωh)

⩽ ∥ũ− ũh∥L∞(Ωh) + ∥ũh − uh∥L∞(Ωh)

⩽ ∥ũ− ũh∥L∞(Ω∗) + ∥ũh − uh∥L∞(Ωh), (4.4.14)

where ∥ũ − ũh∥L∞(Ω∗) is the error of the Ritz projection of an H1-conforming FEM in
a standard convex polyhedron and therefore can be estimated by using the result on a
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standard convex polyhedron (or using the interior maximum-norm estimate as in [127,
Theorem 5.1] and [96, Proof of Theorem 5.1]), i.e.,

∥ũ− ũh∥L∞(Ω∗) ⩽ Cℓh∥ũ− Ihũ∥L∞(Ω∗)

⩽ Cℓh∥u(h) − Ihu
(h)∥L∞(Ωh)

⩽ Cℓh∥u− Ihu∥L∞(Ωh) + Cℓhh
r+1∥f∥Lp(Ωt), (4.4.15)

where the last inequality uses the triangle inequality and (4.4.9), and Ihũ is the interpola-
tion operator associated with the larger triangulation T∗,h which extends the interpolation
operator Ih : C(Ω̄h) → Sh(Ωh) associated with Th. Since ũh − uh is discrete harmonic in
Ωh, i.e.,∫

Ωh

∇(ũh − uh) · ∇χhdx =

∫
Ωh

∇(ũ− u(h)) · ∇χhdx = 0 ∀χh ∈ S◦
h(Ωh),

it follows from Theorem 4.2.1 that ũh − uh satisfies the discrete maximum principle, i.e.,

∥ũh − uh∥L∞(Ωh) ⩽ C∥ũh − uh∥L∞(∂Ωh)

= C∥ũh∥L∞(∂Ωh)

= C∥ũh − ũ∥L∞(∂Ωh) (since ũ|∂Ωh
= 0)

⩽ C∥ũh − ũ∥L∞(Ω∗). (4.4.16)

Substituting (4.4.15) and (4.4.16) into (4.4.14) yields

∥u(h) − uh∥L∞(Ωh) ⩽ Cℓh∥u− Ihu∥L∞(Ωh) + Cℓhh
r+1∥f∥Lp(Ωt).

Since u(h) = uh = 0 in Ω\Ωh, it follows that

∥u(h) − uh∥L∞(Ω) = ∥u(h) − uh∥L∞(Ω∩Ωh) ⩽ Cℓh∥u− Ihu∥L∞(Ωh) + Cℓhh
r+1∥f∥Lp(Ωt).

Then, combining this with (4.4.9), we obtain the following error bound:

∥u− uh∥L∞(Ω) ⩽ Cℓh∥u− Ihu∥L∞(Ωh) + Cℓhh
r+1∥f∥Lp(Ωt).

Finally, we note that

∥u− Ǐhu∥L∞(Ω) =∥u ◦ Φh − Ih(u ◦ Φh)∥L∞(Ωh)

≥∥u− Ihu∥L∞(Ωh) − C∥u− u ◦ Φh∥L∞(Ωh)

≥∥u− Ihu∥L∞(Ωh) − C∥u∥W 1,∞(Rd)∥Φh − Id∥L∞(Ωh)

≥∥u− Ihu∥L∞(Ωh) − Chr+1∥u∥W 1,∞(Rd)

≥∥u− Ihu∥L∞(Ωh) − Chr+1∥f∥Lp(Ωt).

This proves the result of Theorem 4.2.2.

4.5 Conclusion

We have proved the weak maximum principle of the isoparametric FEM for the Poisson
equation in curvilinear polyhedral domains with edge openings smaller than π, which in-
clude smooth domains and smooth deformations of convex polyhedra. The proof requires
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using a duality argument for an elliptic equation with some discontinuous coefficients
arising from the use of isoparametric finite elements. Hence, the standard H2 elliptic
regularity does not hold for the solution of the corresponding dual problem. We have
overcome the difficulty by decomposing the solution into a smooth H2 part and a non-
smooth W 1,p part, separately, and replaced the H2 regularity required in a standard
duality argument by some W 1,p estimates for the nonsmooth part of the solution.

As an application of the weak maximum principle, we have proved an L∞-norm best
approximation property of the isoparametric FEM for the Poisson equation. All the
analysis for the Poisson equation in this chapter can be extended to elliptic equations
with W 1,∞ coefficients. However, the current analysis does not allow us to extend the
results to curvilinear polyhedral domains with edge openings bigger than π (smooth
deformations of nonconvex polyhedra) or graded mesh in three dimensions. These would
be the subject of future research.

There are other approaches to the maximum principle of finite element methods for
elliptic equations using non-obtuse meshes, which is restricted to piecewise linear finite
elements and Poisson equation with constant coefficients; see [62]. The approach in
the current manuscript is applicable to elliptic equations with W 1,∞ coefficients, general
quasi-uniform meshes, and high-order finite elements, and therefore requires completely
different analysis from the approaches using non-obtuse meshes.
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Chapter 5

Stability, analyticity and maximal reg-
ularity of semi-discrete isoparametric
finite element solutions of parabolic
equations in curvilinear polyhedra

5.1 Introduction

Let Ω be a curvilinear polygonal (in 2D) or polyhedral (in 3D) domain in RN (where
N ∈ {2, 3}) with edge openings possibly larger than π, and consider the heat equation

∂u(t, x)

∂t
−∆u(t, x) = f(t, x), ∀(t, x) ∈ R+ ×Ω, (5.1.1)

u(t, x) = 0, ∀(t, x) ∈ R+ × ∂Ω, (5.1.2)

u(0, x) = u0(x), ∀x ∈ Ω. (5.1.3)

In the case of f = 0 it is well-known that the solution of (5.1.1) is given by u(t, x) =
et∆u(x), where E(t) = et∆ extends to an analytic semigroup on C0(Ω) and Lq(Ω) for any
1 ≤ q <∞ (cf. [119]), and satisfies the following analytic estimates:

sup
t>0

(
∥E(t)v∥Lq(Ω) + t∥∂tE(t)v∥Lq(Ω)

)
≤ C∥v∥Lq(Ω), ∀v ∈ Lq(Ω), 1 ≤ q <∞

(5.1.4a)

sup
t>0

(
∥E(t)v∥C0(Ω) + t∥∂tE(t)v∥C0(Ω)

)
≤ C∥v∥C0(Ω), ∀v ∈ C0(Ω). (5.1.4b)

When u0 = 0, the solution of (5.1.1) exhibits maximal Lp regularity in the space Lq(Ω).
Specifically, for all f ∈ Lp(R+;L

q(Ω)), the solution satisfies:

∥∂tu∥Lp(R+;Lq(Ω)) + ∥∆u∥Lp(R+;Lq(Ω)) ≤ Cp,q∥f∥Lp(R+;Lq(Ω)) ∀1 < p, q <∞. (5.1.5)

Maximal Lp-regularity, as described in (5.1.5), plays a crucial role in the analysis of
nonlinear partial differential equations (PDEs) [3, 37, 38, 107] and has been extensively
studied in the literature; see [89, 114, 139] and the references therein.

This chapter addresses the heat equation on a curvilinear polyhedral domain Ω, which
cannot be exactly triangulated by linear simplices. To achieve high-order finite element
methods (FEM) in such cases, an effective approach is to use isoparametric elements.
The work of [94] provides a systematic way to construct a family Th of isoparametric
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elements of order r for each h > 0. Each boundary simplex K ∈ Th contains a curved
face or edge interpolating ∂Ω with an accuracy of O(hr+1). The approximate domain
Ωh = interior of

(⋃
K∈Th K

)
satisfies dist(x,Ω) = O(hr+1) for x ∈ Ωh and dist(x,Ωh) =

O(hr+1) for x ∈ Ω. Based on these isoparametric elements, we define the finite element
space Sh(Ωh) ⊆ H1(Ωh) ∩ C(Ωh). The semi-discrete isoparametric FEM approximation
for the heat equation (5.1.1) then involves finding uh(t) ∈ S◦

h(Ωh) that satisfies:{
(∂tuh, χh)Ωh

+ (∇uh,∇χh)Ωh
= (fh, vh)Ωh

, ∀χh ∈ S◦
h(Ωh),∀t > 0,

uh(0) = uh,0 ∈ S◦
h(Ωh).

(5.1.6)

where

S◦
h(Ωh) := {χh ∈ Sh(Ωh) : χh|∂Ωh

= 0} (5.1.7)

and fh(t) ∈ S◦
h(Ωh) is some source term function. Let Eh(t) = et∆h denote the discrete

semigroup on S◦
h(Ωh) generated by the operator ∆h. Then uh(t) = Eh(t)vh gives the

solution of equation (5.1.6) when uh,0 = vh and fh = 0. The aim of this chapter is to
prove the following analogues of (5.1.4) and (5.1.5) for the semi-discrete problem (5.1.6):

sup
t>0

(
∥Eh(t)vh∥Lq(Ωh) + t∥∂tEh(t)vh∥Lq(Ωh)

)
≤ C∥vh∥Lq(Ωh) (5.1.8a)

∀vh ∈ S◦
h(Ωh), 1 ≤ q ≤ ∞,

∥∂tuh∥Lp(R+;Lq(Ωh)) + ∥∆huh∥Lp(R+;Lq(Ωh)) ≤ Cp,q∥fh∥Lp(R+;Lq(Ωh)) (5.1.8b)

if uh,0 = 0, ∀1 < p, q <∞.

The analyticity and maximal regularity of the finite element semi-discrete or fully-discrete
problem have numerous applications and serve as important tools for the convergence
analysis of numerical schemes for nonlinear parabolic equations [2, 52, 67, 104, 88, 143].

Historically, there has been extensive literature examining the analyticity (5.1.8a) and
maximal regularity (5.1.8b) of the finite element discrete semigroup. By analyzing the
discrete Green’s function, [126, 133] established the analyticity (5.1.8a) of the discrete
semigroup Eh when the domain is smooth. The key estimate for the discrete Green’s func-
tion discussed in [126, 133] was subsequently utilized in [66] to demonstrate the maximal
Lp regularity (5.1.8b) of the discrete semigroup Eh(t) when the domain and coefficients
of parabolic equation are sufficiently smooth. The extension of semidiscrete maximal Lp-
regularity (5.1.8b) to fully discrete finite element methods has been established for various
time discretization methods, including the backward Euler method [8, 105], discontinuous
Galerkin method [99], θ-schemes [82] and A-stable multistep and Runge–Kutta methods
[85].

Subsequent studies have relaxed the requirements on the smoothness of the domain
and coefficients necessary to obtain analyticity and maximal regularity estimates. The
results in [101, 100, 104] have shown that (5.1.8a) and (5.1.8b) hold when Ω is a polyhe-
dral domain (possibly nonconvex) and the coefficients of the parabolic equation satisfy
aij ∈ W 1,N+ε(Ω). Furthermore, the discrete maximal regularity of fully-discrete k-step
BDF methods for parabolic equations in polyhedral (possibly nonconvex) domain was
established in [102].

The above results regarding (5.1.8a)-(5.1.8b) are valid only when the domain Ω is
assumed to be exactly triangulated. When Ω ̸= Ωh, it becomes necessary to address the
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domain perturbation effect. As far as we know, there are in general two approaches to
deal with the domain perturbation effect. One approach is the extension method, where
the exact solution u is extended over a neighborhood of Ω. The extended solution ũ
satisfies the original equation in Ωh except along the boundary skin Ω∆Ωh. Analyzing the
consistency error terms associated with the boundary skin effect is crucial in this method;
see the analysis using the extension methods in [80, 79, 81, 71]. Specifically, using the
extension method, [80] proved (5.1.8a)-(5.1.8b) for finite element semi-discretization of
parabolic problems on a smooth domain Ω with Neumann boundary conditions, where
Ωh approximates the original Ω through a quasi-uniform triangulation Th consisting of
linear simplicies, and Sh(Ωh) is the continuous P 1 element space based on Th.

In this chapter, we adopt an alternative approach—the transformation method—to
address the domain perturbation Ω ̸= Ωh. Specifically, we utilize the Lipschitz homeo-
morphism Φh : Ωh → Ω constructed in [94], to transform the equation (5.1.6) into an
equation defined on domain Ω:{

(ah(x)∂tǔh, v̌h)Ω + (Ah(x)∇ǔh,∇v̌h)Ω = (ah(x)f̌h, v̌h)Ω, ∀v̌h ∈ Š◦
h(Ω),∀t > 0,

ǔh(0) = ǔh,0 := uh,0 ◦Φ−1
h .

(5.1.9)
Then (5.1.8a)-(5.1.8b) would become equivalent to the analyticity and maximal regularity
estimate of equation (5.1.9) (see Section 5.3.2). Let Γ̌h be the discrete Green’s function
for equation (5.1.9) and Γ be a regularized Green’s function for the original equation
(5.1.1). Both Γ̌h and Γ are defined on Ω; however, it is important to note that Γ̌h − Γ
does not satisfy Galerkin orthogonality due to ah(x) ̸= 1 and Ah(x) ̸= IN for x ∈ Ω with
dist(x, ∂Ω) ≤ ch.

In general, the transformation method involves using a map like Φh : Ωh → Ω to lift
finite element functions to Ω by ulh := uh ◦ Φ−1

h . The domain perturbation Ω ̸= Ωh is
then captured in the discrepancies of the mass bilinear forms and stiffness bilinear forms:

mh(uh, vh)−m(uh, vh) := (uh, vh)Ωh
− (ulh, v

l
h)Ω

Ah(uh, vh)− A(uh, vh) := (∇uh,∇vh)Ωh
− (∇ulh,∇vlh)Ω.

This approach is widely used in analyzing domain perturbation effects [46, 49, 27] and can
be adapted for problems involving moving domains or surfaces [11, 87, 48, 50]. Specifically,
optimal H1 and L2 error estimates for isoparametric FEM applied to the heat equation
and the Cahn–Hilliard equation with dynamic boundary conditions are provided in [87]
and [27], respectively. Evolving bulk and surface isoparametric finite element spaces on
evolving triangulations are defined and developed in [49, 50] for coupled bulk–surface
system. [48] examines an evolving bulk–surface model in which a Poisson equation with
a generalized Robin boundary condition on the domain is coupled to a forced mean
curvature flow of the free boundary, proving an optimal H1 error estimate for the spatial
semi-discretization using bulk–surface finite elements. Lastly, [11] establishes maximal
regularity for evolving surface FEM applied to parabolic equations on moving surfaces,
utilizing a temporal perturbation argument to extend results from stationary to evolving
surfaces.

Our proof of (5.1.8a)-(5.1.8b) essentially follows the same strategy in [101]. We reduce
(5.1.8a)-(5.1.8b) to an L1-type error estimate between Γ̌h and Γ (Lemma 5.4.3). The
estimates utilize a dyadic decomposition of the domain (0, 1)×Ω = ∪∗,jQj and the kick-
back argument from [126]. To address the singularity arising from non-convex corners,
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we analyze the local L2H1+α(Qj) and L∞H1+α(Qj) estimates of the Green’s function
(Lemma 5.4.2), as in [101]. A local energy error estimate for finite element solutions of
parabolic equations (Lemma 5.5.1) and a local duality argument (see (5.5.111)–(5.5.120))
are key components of the kick-back argument. The main challenge in our proof arises
during the local energy error estimate and the duality argument, similar to [80]. Since only
perturbed Galerkin orthogonality holds for Γ̌h − Γ, extra terms arising from the domain
perturbation effect (terms involving ah − 1 or Ah − IN) must be handled carefully.

As shown in [101], the quasi-maximal L∞-regularity facilitates reducing the maximum-
norm stability of finite element solutions for parabolic equations to the maximum-norm
stability of the elliptic Ritz projection. Specifically, the following estimate holds:

∥u− uh∥L∞(0,T ;L∞(Ω)) ≤ C
(
ℓh∥u−Rhu∥L∞(0,T ;L∞(Ω)) + ∥u0 − uh,0∥L∞(Ω)

)
. (5.1.10)

In our context, since uh solves the equation in a perturbed domain Ωh, the error in-
troduced by domain perturbation is nontrivial to eliminate. Nevertheless, this chapter
establishes that the additional error caused by the domain perturbation remains of opti-
mal order. Specifically, we show:

∥ũ− uh∥L∞(0,T ;L∞(Ωh)) ≤C
(
ℓh∥ũ−Rhũ∥L∞(0,T ;L∞(Ωh)) + ∥ũ0 − uh,0∥L∞(Ωh)

)
+ Chr+1

(
∥u∥L∞(0,T ;W 2,∞(Ω)) + ∥∂tu∥L∞(0,T ;L∞(Ω))

)
, (5.1.11)

where ũ is a Sobolev extension of the exact solution u over Ω ∪Ωh.
Our current work presents both connections and distinctions with the previous study

[103], which investigated the weak maximal principle for isoparametric FEM in the con-
text of elliptic equations. In both studies, the primary result is reduced to obtaining an
L1-type error estimate of a regularized Green’s function. Specifically, the L1-type error
estimate pertains to the function v defined in [103, Eq. (2.16)] and the function Γ defined
in (5.3.53), respectively.

However, in [103], to align with the reduction process of [96], v is defined as the solution
of an elliptic equation with discontinuous coefficients (cf. [103, Eq. (2.16)]). The main
result is reduced to proving an L1-type error estimate (cf. [103, Eq. (2.26)]) for v−Rhv,
where Rh denotes the Ritz projection for elliptic equations with the same discontinuous
coefficients (cf. [103, Eq. (2.21)]). Although v − Rhv satisfies Galerkin orthogonality,
the difficulty arises from the limited regularity of v, as it solves an elliptic equation with
discontinuous coefficients. To address this, [103] decomposes v into two components: v1,
a regularized Green’s function for the original Laplacian equation, and v2, which accounts
for the effects of domain perturbation (cf. [103, Section 2.4]). Consequently, the analysis
in [103] does not require addressing local energy error estimates or duality arguments
under almost Galerkin orthogonality.

In contrast, in the current work, the function Γ retains the same regularity as the
Green’s function for the heat equation in the curvilinear polyhedron. However, the error
Γ− Γ̌h satisfies only an almost Galerkin orthogonality:

(∂tΓ− ah(x)∂tΓ̌h, χ̌h)Ω + (∇Γ− Ah(x)∇Γ̌h,∇χ̌h)Ω = 0 ∀χ̌h ∈ Š◦
h(Ω).

The primary difficulty lies in handling the local energy error estimates and the local
duality arguments in the context of almost Galerkin orthogonality. We address the local
energy error estimate by decomposing the error ϕ− ϕ̌h into two terms: ϕ− θ̌h and η̌h. The
term ϕ−θ̌h satisfies a local Galerkin orthogonality and can be analyzed using [101, Lemma
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5.1], while the term η̌h, which captures the domain perturbation effects (Ah − I ̸= 0 and
ah − 1 ̸= 0), satisfies the following equation:

(ah(x)∂tη̌h, χ̌h) + (Ah(x)∇η̌h,∇χ̌h) = ((1− ah)∂tϕ̃, χ̌h) + ((I − Ah)∇ϕ̃,∇χ̌h) (5.1.12)

∀χ̌h ∈ Š◦
h(Ω), t ∈ (0, 1) and η̌h(0) = 0.

The additional term η̌h is bounded using a global parabolic energy estimate, introducing
the extra term Yj(ϕ) in the local energy error estimate (cf. Lemma 5.5.1). While the
local duality argument largely follows the structure in [101], additional terms, such as I2,
I3, and I4 in (5.5.113), arise due to the domain perturbation effects. For example, I2 is
given by:

J2 = [(1− ah(x))∂tΓ, w]Q + [(IN − Ah(x))∇Γ,∇w]Q

As in [101], these additional terms are controlled using local H1+α estimates (5.5.119) for
w (the solution of the parabolic duality problem) and local energy estimates (5.4.65c) for
Γ, based on the parabolic dyadic decomposition.

The rest of this chapter is organized as follows. In Section 5.2, we present the main
results concerning the analyticity and maximal regularity of the discrete semigroup, as
well as the quasi-optimal maximum norm error estimate for isoparametric FEM. Section
5.3 introduces some preliminary results on isoparametric FEM and the Green’s functions,
and reformulates (5.1.8a)-(5.1.8b) using the transformation method. In Section 5.4, we
prove the main results with the assistance of Lemma 5.4.3, which provides an L1-type
error estimate between Γ̌h and Γ. Section 5.5 contains the proof of the key Lemma 5.4.3
through a local energy error estimate and a local duality argument. Finally, in Section
5.6, we establish Lemma 5.5.1, which is utilized in the local energy error estimate.

5.2 Main results

The discrete semigroup Eh has an associated kernel Γh(t, x, x0) := (Eh(t)δh,x0)(x) such
that

(Eh(t)vh)(x0) =

∫
Ωh

Γh(t, x, x0)vh(x)dx ∀vh ∈ S◦
h(Ωh), (5.2.13)

where δh,x0 ∈ S◦
h(Ωh) is the discrete delta function satisfying (δh,x0 , vh)Ωh

= vh(x0) for
all vh ∈ S◦

h(Ωh). We can define |Eh(t)| as a linear operator on Lq(Ωh) with kernel
|Γh(t, x, x0)|,

(|Eh(t)|v)(x0) :=
∫
Ωh

|Γh(t, x, x0)|v(x)dx ∀v ∈ Lq(Ωh). (5.2.14)

The main result of this chapter is the following theorem.

Theorem 5.2.1. Let Ω be a curvilinear polyhedral domain in RN (with edge openings
possibly larger than π), and let S◦

h(Ωh), 0 < h < h0 be the finite element spaces based on
the family Th of isoparametric elements. Then, for the semi-discrete equation (5.1.6), we
have the following analytic semigroup estimate:

sup
t>0

(
∥Eh(t)vh∥Lq(Ωh) + t∥∂t(Eh(t)vh)∥Lq(Ωh)

)
≤ C∥vh∥Lq(Ωh) ∀vh ∈ S◦

h(Ωh), ∀1 ≤ q ≤ ∞,

(5.2.15a)
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∥ sup
t>0

|Eh(t)||v|∥Lq(Ωh) ≤ Cq∥v∥Lq(Ωh), ∀v ∈ Lq(Ωh), ∀1 < q ≤ ∞. (5.2.15b)

Further, if uh,0 = 0 and fh ∈ Lp(0, T ;Lq(Ωh)), then the solution uh(t) of equation (5.1.6)
possesses the following maximal Lp-regularity:

∥∂tuh∥Lp(0,T ;Lq(Ωh)) + ∥∆huh∥Lp(0,T ;Lq(Ωh)) ≤ max(p, (p− 1)−1)Cq∥fh∥Lp(0,T ;Lq(Ωh))

(5.2.16a)

∀1 < p, q <∞
∥∂tuh∥L∞(0,T ;Lq(Ωh)) + ∥∆huh∥L∞(0,T ;Lq(Ωh)) ≤ Cℓh∥fh∥L∞(0,T ;Lq(Ωh)), (5.2.16b)

∀1 ≤ q ≤ ∞,

where ℓh := log2(2 + 1/h). The constant C in (5.2.15a) and (5.2.16b) is independent of
fh, h, p, q and T . The constant Cq in (5.2.15b) and (5.2.16a) is independent of fh, h, p
and T .

To analyze the error between exact and numerical solutions, let E : L1(Ω) → L1(RN)
denote the Stein extension operator (cf. [130, page 181, Theorem 5]) which continuously
maps the Sobolev spaces W k,p(Ω) into W k,p(RN) for each 1 ≤ p ≤ ∞ and k ≥ 0. We use

abbreviation ϕ̃ := Eϕ for a function ϕ defined on Ω.
To solve the semi-discrete equation (5.1.6) as an approximation of the original heat

equation (5.1.1), one choice is to set fh(t) = Phf̃(t), where f̃ is the extension of f discussed
as above and Ph is the L2(Ωh)-orthogonal projection onto S◦

h(Ωh) i.e.,

(Phf, vh)Ωh
= (f, vh)Ωh

∀vh ∈ S◦
h(Ωh).

We define the elliptic Ritz projection Rh : H1(Ωh) → S◦
h as:

(∇Rhϕ,∇vh)Ωh
= (∇ϕ,∇vh)Ωh

∀vh ∈ S◦
h(Ωh). (5.2.17)

Then, as an application of Theorem 5.2.1, we can prove the following L∞-norm error
estimate which is analogous to [101, Corollary 2.2] in the context of isoparametric FEM.

Theorem 5.2.2. Let Ω be a curvilinear polyhedral domain with edge openings possibly
larger than π. Let u be the solution of equation (5.1.1), and let uh be the solution of

equation (5.1.6) with fh = Phf̃ . When h is sufficiently small, the following holds:

∥ũ− uh∥L∞(0,T ;L∞(Ωh)) ≤Cℓh∥ũ−Rhũ∥L∞(0,T ;L∞(Ωh)) + C∥uh,0 − ũ0∥L∞(Ωh)

+ Chr+1
(
∥u∥L∞(0,T ;W 2,∞(Ω)) + ∥∂tu∥L∞(0,T ;L∞(Ω))

)
, (5.2.18)

where ũ = Eu and f̃ = Ef denote the extensions of the exact solution u and the source
term f , respectively, using the Stein extension operator E : L1(Ω) → L1(RN). The
constant C is independent of h, T, f and u, and r is the order of the isoparametric elements

Remark 5.2.1. When Ω is a curvilinear polyhedral domain with edge openings smaller
than π, we apply [103, Theorem 1.2] to derive a maximum norm estimate for the projec-
tion error ũ(t) − Rhũ(t). Specifically, [103, Theorem 1.2] establishes the following: Let
g ∈ L∞(Ω), and v solves the Poisson equation

−∆v = g in Ω, v = 0 on ∂Ω. (5.2.19)
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Let vh ∈ S◦
h(Ωh) be the finite element approximation solving

(∇vh,∇χh)Ωh
= (g̃, χh)Ωh

∀χh ∈ S◦
h(Ωh), (5.2.20)

where g̃ is an extension of g to RN . For sufficiently small h, if v and vh are extended by
zero to Ω ∪Ωh, the following holds:

∥v − vh∥L∞(Ω∪Ωh) ≤ Cℓhh
r+1
(
∥v∥W r+1,∞(Ω) + ∥g̃∥L∞(RN )

)
. (5.2.21)

We use the result of (5.2.21) to estimate ũ(t)− Rhũ(t) by setting v = u(t), g = −∆u(t)
in the Poisson equation (5.2.19), and vh = Rhũ(t), g̃ = −∆ũ(t) in its finite element
counterpart (5.2.20). Consequently, we obtain

∥u(t)−Rhũ(t)∥L∞(Ωh∩Ω) + ∥u(t)∥L∞(Ω\Ωh) + ∥Rhũ(t)∥L∞(Ωh\Ω)

≤Cℓhhr+1
(
∥u∥W r+1,∞(Ω) + ∥ũ(t)∥W 2,∞(RN )

)
.

Since ũ(t)|∂Ω = 0 and dist(x, ∂Ω) ≤ Chr+1 for x ∈ Ωh \Ω, we further deduce

∥ũ(t)∥L∞(Ωh\Ω) ≤ Chr+1∥ũ(t)∥W 1,∞(RN ).

Combining these results and utilizing the W k,p-boundedness of the Stein extension oper-
ator, we obtain

∥ũ(t)−Rhũ(t)∥L∞(Ωh) ≤ Cℓhh
r+1∥u(t)∥W r+1,∞(Ω) ∀r ≥ 1.

Thus, the following quasi-optimal maximum norm error estimate holds for the parabolic
problem:

∥ũ− uh∥L∞(0,T ;L∞(Ωh)) ≤C∥uh,0 − ũ0∥L∞(Ωh)

+ Chr+1ℓ2h
(
∥u∥L∞(0,T ;W r+1,∞(Ω)) + ∥∂tu∥L∞(0,T ;L∞(Ω))

)
.

(5.2.22)

These two theorems are demonstrated in Section 5.4.

5.3 Preliminary

5.3.1 Notations of function spaces

Let Ω ⊆ RN be the curvilinear polyhedral domain in (5.1.1). We use the conventional
notations of Sobolev spaces W s,q(Ω), s ≥ 0, 1 ≤ q ≤ ∞ (c.f. [1]) and Hölder spaces
Cγ(Ω), 0 < γ < 1, with the abbreviations Lq = W 0,q(Ω), W s,q = W s,q(Ω), Cγ = Cγ(Ω)
and Hs := W s,2(Ω). The notation H−s(Ω) denotes the dual space of Hs

0(Ω), which is
the closure of C∞

0 (Ω) in Hs(Ω). The Bochner norm of a function f : (0, T ) → W s,p is
defined as

∥f∥Lp(0,T ;W s,q) := ∥∥f(·)∥W s,q∥Lp(0,T ) ∀1 ≤ p, q ≤ ∞, s ∈ R,

For any subdomain D ⊆ Ω, we make the following convention concerning the Sobolev
spaces on D:

∥f∥W s,q(D) := inf
f̃ |D=f

∥f̃∥W s,q(Ω) ∀1 ≤ p, q ≤ ∞, s ∈ R, (5.3.23)
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where the infimum extends over all possible f̃ defined on Ω with f̃ |D = f . Similarly, for
any time-space subdomain Q ⊆ Q = (0, 1)×Ω, we define

∥f∥LpW s,q(Q) := inf
f̃ |Q=f

∥f̃∥Lp(0,1;W s,q) ∀1 ≤ p, q ≤ ∞, s ∈ R, (5.3.24)

where the infimum extends over all possible f̃ defined on Q such that f̃ |Q = f in Q. We
define the Bochner norms for the Hölder spaces in the same way:

∥f∥LpCγ(Q) := inf
f̃ |Q=f

∥f̃∥Lp(0,1;Cγ) ∀1 ≤ p, q ≤ ∞, s ∈ R.

One advantage of our convention for Sobolev and Hölder norms on Q ⊆ Q is the following:
if there holds Sobolev embedding W s,q(Ω) ↪→ Cγ(Ω), then

∥f∥LpCγ(Q) ≤ C∥f∥LpW s,q(Q),

where the constant C is independent of the subdomain Q ⊆ Q.
Finally, we use the abbreviations

(ϕ, φ) :=

∫
Ω

ϕ(x)φ(x)dx [u, v] :=

∫ 1

0

∫
Ω

u(t, x)v(t, x)dxdt, (5.3.25)

(ϕ, φ)Ωh
:=

∫
Ωh

ϕ(x)φ(x)dx [u, v]Ωh
:=

∫ 1

0

∫
Ωh

u(t, x)v(t, x)dxdt, (5.3.26)

and denote ω(t) := ω(t, ·) for the slice at time t of any function ω defined on Q.

5.3.2 Preliminary of the isoparametric FEM

Definition of isoparametric FEM

We denote by T̃h a quasi-uniform triangulation of the curvilinear polygonal or polyhedral
domain Ω ⊆ RN , using triangles in 2D or tetrahedra in 3D. For each simplex K̃ ∈ T̃h,
there is a linear parametric map F K̃ : K̂ → K̃ from the reference simplex K̂ to K̃.

For a boundary simplexes K̃, we denote by D̃ the face or edge of K̃ attaching to the
boundary ∂Ω, and let D̂ ⊆ K̂ be corresponding face or edge of the reference simplex
such that F K̃(D̂) = D̃. The work in [94] provides a systematic way to modify the linear

parametric map F K̃ : K̂ → K̃ of a boundary simplex into FK : K̂ → RN so that FK

is a vector-valued polynomial on K̂ with degree no greater than a given integer r ≥ 1.
Moreover FK |D̂ interpolates the boundary ∂Ω at the Lagrangian nodes of degree r on

the face or edge D̂. For interior simplexes, the parametric maps remain unchanged, i.e.,
FK = F K̃ . LetK be the image of the parametric map FK ; in this way we obtain a family
Th consisting of these possibly curved simplexes K. The family of parametric maps FK

constructed in [94] satisfies the following mesh regularity condition:

∥DsFK∥L∞(K̂) ≤ Csh
s, ∥Ds(F−1

K )∥L∞(K) ≤ Csh
−s ∀K ∈ Th,∀s ≥ 1, (5.3.27)

where Cs is a positive constant independent of h. In addition, the parametric maps
FK are arranged in a mutually consistent way so that each Th is still a triangulation
with the same structure as T̃h, i.e., K,K

′ ∈ Th share a common face if and only if the
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corresponding pair K̃, K̃ ′ ∈ T̃h share a common face. We define the approximate domain
as Ωh := interior of

⋃
K∈Th K, and the isoparametric finite element space Sh(Ωh) of order

r is defined as

Sh(Ωh) := {χh ∈ C(Ωh) : χh|K ◦ FK ∈ Pr(K̂) ∀K ∈ Th},

where Pr(K̂) denotes the space of polynomials on K̂ with degree no greater than r.
The mesh regularity condition (5.3.27) guarantees that the finite element space Sh(Ωh)
satisfies the same local interpolation error estimate and inverse estimate as the usual
Lagrangian finite element space based on a quasi-uniform triangle/tetrahedron mesh (cf.
[94]).

Furthermore, similar as the construction of FK , for every given m ≥ r, [94] associates
each K ∈ Th with a map Ψm

K : K → RN , which is a Cm+1-diffeomorphism from K
to Ǩm := Ψm

K(K). In this chapter, we just choose m = r and omit the superscript
m; specifically the transformation ΨK is C2-diffeomorphism when r = 1. For interior
simplex K, ΨK equals to identity map, and for boundary simplex K, ΨK maps the
curved boundary face/edge of the simplex K onto the exact domain boundary ∂Ω. The
map Φh : Ωh → Ω defined by Φh|K = ΨK gives a globally Lipschitz homeomorphism
from the approximate domain Ωh to the exact domain Ω. Let Ťh be the family of
{Ǩ = ΨK(K) : K ∈ Th}; it follows that Ťh gives a triangulation on Ω. The finite element
space Šh(Ω) ⊆ C(Ω̄) associated to Ťh is defined via the Lipschitz homeomorphism Φh:

Šh(Ω) := {χ̌h ∈ C(Ω̄) : χ̌h ◦Φh ∈ Sh(Ωh)}

Alternative formulation of Theorem 5.2.1

For any element K ∈ Th, we have estimates (cf. [94, Proposition 2 & Proposition 3 of
Section 5])

∥Ds(ΨK − Id)∥L∞(K) ≤ Chr+1−s ∀s ∈ [1, r + 1], (5.3.28)

∥Ds(Ψ−1
K − Id)∥L∞(Ǩ) ≤ Chr+1−s ∀s ∈ [1, r + 1].

As a corollary, let F Ǩ := ΨK ◦ FK : K̂ → Ǩ be the parametric map of Ǩ ∈ Ťh. Then
F Ǩ is a Cr+1-diffeomorphism from K̂ to Ǩ with derivatives satisfying estimate:

∥DsF Ǩ∥L∞(K̂) ≤ Chs, ∥Ds(F−1
Ǩ
)∥L∞(Ǩ) ≤ Ch−s ∀K ∈ Th, ∀1 ≤ s ≤ r + 1 (5.3.29)

From estimate (5.3.28), when h is sufficiently small, Φh induces the following Lp and
W 1,p norm equivalence for each 1 ≤ p ≤ ∞:

C−1∥v ◦Φh∥Lp(Ωh) ≤ ∥v∥Lp(Ω) ≤ C∥v ◦Φh∥Lp(Ωh) ∀v ∈ Lp(Ω) (5.3.30)

C−1∥∇(v ◦Φh)∥Lp(Ωh) ≤ ∥∇v∥Lp(Ω) ≤ C∥∇(v ◦Φh)∥Lp(Ωh) ∀v ∈ W 1,p(Ω). (5.3.31)

We define ah(x) := | det
(
DΨ−1

K (x)
)
| and Ah(x) := ah(x)

(
DΨ−1

K (x)
)−1 (

DΨ−1
K (x)

)−⊤
for

any x ∈ Ω. By (5.3.28), we have

∥ah − 1∥L∞(Ω) + ∥Ah − IN∥L∞(Ω) ≤ Chr, (5.3.32)

where IN denotes the N × N identity matrix. Observe that the isoparametric finite
element method (5.1.6) is equivalent to{

(ah(x)∂tǔh, v̌h) + (Ah(x)∇ǔh,∇v̌h) = (ah(x)f̌h, v̌h), ∀v̌h ∈ Š◦
h(Ω),∀t > 0,

ǔh(0) = ǔh,0 := uh,0 ◦Φ−1
h ,

(5.3.33)
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where for elements vh, uh, fh ∈ Sh(Ωh) we use the convention v̌h := vh ◦ Φ−1
h , ǔh :=

uh ◦Φ−1
h , f̌h := fh ◦Φ−1

h , and we define Š◦
h(Ω) as

Š◦
h(Ω) := {χ̌h ∈ Šh(Ω) : χ̌h|∂Ω = 0}. (5.3.34)

We can define the corresponding operators associated with finite element space Š◦
h(Ω),

which have natural relations with those associated with the finite element space S◦
h(Ωh):

The L2-projection We denote by P̌h the weighted L2(Ω)-orthogonal projection onto
Š◦
h(Ω) defined as follows:

(ah(x)P̌hv, χ̌h) = (ah(x)v, χ̌h) ∀χ̌h ∈ Š◦
h(Ω). (5.3.35)

Clearly, there holds following relation between Ph and P̌h:

Ph(u ◦Φh) = P̌hu ◦Φh.

The L2(Ωh)-orthogonal projection Ph can be extended to a bounded operator on
Lq(Ωh), 1 ≤ q ≤ ∞, i.e.,

∥Phf∥Lq(Ωh) ≤ C∥f∥Lq(Ωh) ∀f ∈ Lq(Ωh), ∀1 ≤ q ≤ ∞, (5.3.36)

where the constant C is independent of h and q. The estimate above is a conse-
quence of [132, Lemma 6.1] and the self-adjointness of Ph. In view of the norm
equivalence (5.3.30), it follows that P̌h also possesses Lq-stability:

∥P̌hf∥Lq(Ω) ≤ C∥f∥Lq(Ω) ∀f ∈ Lq(Ω), ∀1 ≤ q ≤ ∞. (5.3.37)

The discrete Laplacian In the same way, one can transform the discrete Laplacian ∆h

to the corresponding operator ∆̌h : Š◦
h(Ω) → Š◦

h(Ω) defined by,

−(Ah(x)∇ǔh,∇χ̌h)Ω = (ah(x)∆̌hǔh, χ̌h)Ω ∀χ̌h ∈ Š◦
h(Ω), (5.3.38)

with the relation
∆h(ǔh ◦Φh) = ∆̌hǔh ◦Φh.

The discrete semigroup With the operator ∆̌h, we can rewrite (5.3.33) equivalently
as, {

∂tǔh − ∆̌hǔh = f̌h ∀t > 0,

ǔh(0) = ǔh,0 := uh,0 ◦Φ−1
h .

(5.3.39)

In the case of f̌h = 0, there is a discrete semigroup Ěh(t) on finite element space
Š◦
h(Ω), generated by ∆̌h, such that Ěh(t)(v̌h) is the solution of (5.3.33) when ǔh,0 =
v̌h. The following relation holds between Eh(t) and Ěh(t):

(Ěh(t)v̌h) ◦Φh = Eh(t)vh (convention vh = v̌h ◦Φh used),

which implies that

(Ěh(t)v̌h)(x0) =

∫
Ω

ah(x)Γh(Φ
−1
h x,Φ−1

h x0, t)v̌h(x)dx ∀x0 ∈ Ω,∀v̌h ∈ Š◦
h(Ω).

125



We can define |Ěh(t)| to be the linear operator on Lq(Ω) with the following repre-
sentation

(|Ěh(t)|v)(x0) =
∫
Ω

ah(x)|Γh(Φ
−1
h x,Φ−1

h x0, t)|v(x)dx ∀x0 ∈ Ω, ∀v ∈ Lq(Ω),

then we have the relation

(|Ěh(t)|v) ◦Φh = |Eh(t)|(v ◦Φh) ∀v ∈ Lq(Ω).

From the discussion above, the main Theorem 5.2.1 can be equivalently expressed in the
following form.

Theorem 5.3.1. Let Ω be a curvilinear polyhedral domain in R3 (possibly with edge
openings larger than π), and let Š◦

h(Ω) ⊆ H1
0 (Ω) be the finite element spaces defined

in (5.3.34). Assume that h is sufficiently small. Then for the semi-discrete equation
(5.3.33), we have the following analytic semigroup estimate:

sup
t>0

(
∥Ěh(t)v̌h∥Lq(Ω) + t∥∂t(Ěh(t)v̌h)∥Lq(Ω)

)
≤ C∥v̌h∥Lq(Ω) ∀v̌h ∈ Š◦

h(Ωh),∀1 ≤ q ≤ ∞,

(5.3.40a)

∥ sup
t>0

|Ěh(t)||v|∥Lq(Ω) ≤ Cq∥v∥Lq(Ω), ∀v ∈ Lq(Ω), ∀1 < q ≤ ∞. (5.3.40b)

Further, if ǔh,0 = 0 and f̌h ∈ Lp(0, T ;Lq(Ω)), then the solution ǔh(t) of equation (5.3.33)
possesses the following maximal Lp-regularity estimate:

∥∂tǔh∥Lp(0,T ;Lq(Ω)) + ∥∆̌huh∥Lp(0,T ;Lq(Ω)) ≤ max(p, (p− 1)−1)Cq∥f̌h∥Lp(0,T ;Lq(Ω))

(5.3.41a)

∀1 < p, q <∞,

∥∂tǔh∥L∞(0,T ;Lq(Ω)) + ∥∆̌hǔh∥L∞(0,T ;Lq(Ω)) ≤ Cℓh∥f̌h∥L∞(0,T ;Lq(Ω)), (5.3.41b)

∀1 ≤ q ≤ ∞,

where ℓh := log2(2 + 1/h). The constant C in (5.3.40a) and (5.3.41b) is independent of
f̌h, p, q, h and T , and the constant Cq in (5.3.40b) and (5.3.41a) is independent of f̌h, h, p
and T .

Theorem 5.3.1 is proved in Section 5.4.2 and Section 5.4.3.

Properties of the isoparametric finite element space

For any subregion D ⊆ Ω, we define Š◦
h(D) as the subspace of Š◦

h(Ω) consisting of
functions that equal zero outside of D. For a given subset D ⊆ Ω, denote Bd(D) := {x ∈
Ω : dist(x,D) ≤ d} for d ≥ 0. There exists positive constants C and c0 such that the
finite element space Šh(Ω) possesses the following properties, independent of the subset
D and mesh size h:

(P1) Quasi-uniformity For all Ǩ ∈ Ťh (we make the convention that an element K
denotes a closed domain), the following analogue properties of quasi-uniform trian-
gle/tetrahedron meshes hold:

diam(Ǩ) ≤ h and |Ǩ| ≥ c−1
0 hN ,

#{Ǩ ′ ∈ Ťh : Ǩ ′ ∩ Ǩ ̸= ∅} ≤ c0.
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(P2) Inverse property If D is a union of elements in partition Ťh, then

∥χ̌h∥W l,p(D) ≤ Ch−(l−k)−(N/q−N/p)∥χ̌h∥Wk,q(D) ∀χ̌h ∈ Šh(Ω), (5.3.42)

for 0 ≤ k ≤ l ≤ 1 and 1 ≤ q ≤ p ≤ ∞.

(P3) Local appoximation and superapproximation There exists a quasi-interpolation
operator Ǐh : H1

0 (Ω) → Š◦
h(Ω) with the following properties:

1. for ∀v ∈ H1+α(Ω) ∩H1
0 (Ω), α ∈ [0, 1], the following error estimate holds:

∥v − Ǐhv∥L2(Ω) + h∥∇(v − Ǐhv)∥L2(Ω) ≤ Ch1+α∥v∥H1+α(Ω), (5.3.43)

2. If d ≥ 2h, then the value of Ǐhv in D depends only on the value of v in Bd(D).
If d ≥ 2h and supp(v) ⊂ D̄, then Ǐhv ∈ Š◦

h(Bd(D)).

3. If d ≥ 2h, ω = 0 outside D and |∂βω| ≤ Cd−|β| for all multi-index β, then for
any ψ̌h ∈ Š◦

h(Ω), Ǐh(ωψ̌h) ∈ Š◦
h(Bd(D)) and

∥ωψ̌h − Ǐh(ωψ̌h)∥L2(Ω) + h∥ωψ̌h − Ǐh(ωψ̌h)∥H1(Ω) ≤ Chd−1∥ψ̌h∥L2(Bd(D)).
(5.3.44)

By (5.3.43), Property (P3)-(2), and our definition of Sobolev spaces (5.3.23), we have the
following estimate for α ∈ [0, 1]:

∥v − Ǐhv∥L2(D) + h∥v − Ǐhv∥H1(D) ≤ Ch1+α∥v∥H1+α(Bd(D)) (5.3.45)

∀v ∈ H1+α(Bd(D)) ∩H1
0 (Ω).

The properties (P1)-(P2) can be directly verified via employing the mesh-regularity con-
dition (5.3.27) and the norm equivalence property (5.3.30)-(5.3.31) of the Lipschitz home-
omorphism Φh. The operator Ǐh in (P3) can be constructed by the same method as in
[101, Appendix B], for the reader’s convenience we demonstrate (P3) in Section 5.7 of
our manuscript.

5.3.3 Green’s functions

For any x0 ∈ Ǩ ∈ Ťh, using the mesh regularity estimate (5.3.29), we can mimic the
proof of [133, Lemma 2.2] to obtain a function δ̌x0 ∈ Cr+1(Ω̄) with suppδ̌x0 ⊆ Ǩ and
dist(suppδ̌x0 , ∂Ǩ) ≥ k0h (k0 is a positive constant independent of h) such that

χ̌h(x0) =

∫
Ω

ah(x)δ̌x0χ̌hdx ∀χ̌h ∈ Šh(Ω), (5.3.46)

and

∥δ̌x0∥W l,p(Ω) ≤ Ch−l−N(1−1/p) ∀1 ≤ p ≤ ∞, 0 ≤ l ≤ r + 1, (5.3.47a)

sup
y∈Ω

∫
Ω

|δ̌y(x)|dx+ sup
x∈Ω

∫
Ω

|δ̌y(x)|dx ≤ C, (5.3.47b)∫
Ω

ah(x)δ̌x0dx = 1. (5.3.47c)
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Let δ̌h,x0 := P̌hδ̌x0 ∈ Š◦
h(Ω) be the weighted L2(Ω) projection of δ̌x0 . In view of (5.3.35),

(5.3.47a) and properties (P1)-(P3) of Š◦
h(Ω), the same proof as in [136, Lemma 7.2] shows

that there exists constant C > 0 independent of h such that

|δ̌h,x0(x)| ≤ Ch−Ne−
|x−x0|

Ch ∀x, x0 ∈ Ω. (5.3.48)

Since ∆̌hP̌hδ̌x0 ∈ Š◦
h(Ω), (5.3.46) and (5.3.35) imply that for any y ∈ Ω,(

∆̌hP̌hδ̌x0

)
(y) = (ah(x)∆̌hP̌hδ̌x0 , P̌hδ̌y) = (Ah(x)∇δ̌h,x0 ,∇δ̌h,y) (5.3.49)

From the exponential decay property (5.3.48), using inverse estimate (5.3.42), one can
show that ∇δ̌h,x0 also possesses exponential decay property i.e

|∇δ̌h,x0|(x) ≤ Ch−N−1e−
|x−x0|

Ch .

Thus by formula (5.3.49) above, one can deduce that the discrete Laplacian of δ̌h,x0 also
possesses exponential decay property:

|∆̌hδ̌h,x0|(y) ≤ Ch−2N−2

∫
Ω

e−
|x−x0|+|x−y|

Ch dx ≤ Ch−N−2e−
|y−x0|

Ch ∀y, x0 ∈ Ω. (5.3.50)

Let G(t, x, x0) denote the Green’s function of the parabolic equation,

∂tG(·, ·, x0)−∆G(·, ·, x0) = 0 in (0,∞)×Ω, (5.3.51a)

G(·, ·, x0) = 0 on (0,∞)× ∂Ω, (5.3.51b)

G(0, ·, x0) = δx0 in Ω, (5.3.51c)

where δx0 is the Dirac delta function centered at x0. The Green’s function G(t, x, y) is
symmetric with respect to x and y and satisfies the following Gaussian pointwise estimate
for the time derivatives (cf. [101, (3.12)])

|∂ktG(t, x, x0)| ≤
Ck

tk+N/2
e
− |x−x0|

2

Ckt ∀x, x0 ∈ Ω ∀t > 0, k = 0, 1, 2, · · · . (5.3.52)

Let Γ = Γ(t, x, x0) be the regularized Green’s function of the parabolic equation, defined
by

∂tΓ(·, ·, x0)−∆Γ(·, ·, x0) = 0 in (0,∞)×Ω, (5.3.53a)

Γ(·, ·, x0) = 0 on (0,∞)× ∂Ω, (5.3.53b)

Γ(0, ·, x0) = δ̌x0 in Ω. (5.3.53c)

Let Γ̌h = Γ̌h(t, x, x0) be the finite element approximation of Γ, defined by

(ah(·)∂tΓ̌h(t, ·, x0), v̌h)Ω + (Ah(·)∇Γ̌h(t, ·, x0),∇v̌h)Ω = 0 ∀v̌h ∈ Š0
h(Ω), t ∈ (0,∞),

(5.3.54a)

Γ̌h(0, ·, x0) = δ̌h,x0 . (5.3.54b)

By using the Green’s function, the solution u(x, t) of the heat equation (5.1.1) has the
formula:

u(t, x0) =

∫
Ω

G(t, x, x0)u0(x)dx+

∫ t

0

∫
Ω

G(t− s, x, x0)f(s, x)dxds. (5.3.55)
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Notice that the discrete Laplacian operator ∆̌h is self-adjoint with respect to the weighted
L2(Ω) inner product on Š◦

h(Ω), i.e.,

(ah(x)∆̌hǔh, v̌h)Ω = (ǔh, ah(x)∆̌hvh)Ω.

It follows that Ěh(t) is self-adjoint with respect to the weighted L2(Ω) inner product on
Š◦
h(Ω). Since Γ̌h(t, ·, x0) = Ěh(t)δ̌h,x0 by the definition of Ěh(t), we have

Γ̌h(t, x, x0) =(Ěh(t)δ̌h,x0)(x) = (ahĚh(t)δ̌h,x0 , δ̌h,x)

=(ahδ̌h,x0 , Ěh(t)δ̌h,x) = (Ěh(t)δ̌h,x)(x0) = Γ̌h(t, x0, x), (5.3.56)

where we used the fact that v̌h(x0) = (ahv̌h, δ̌x0) = (ahv̌h, δ̌h,x0) for all vh ∈ Š◦
h(Ω), which

follows from (5.3.46) and (5.3.35). Therefore, Γ̌h(t, x, y) is symmetric with respect to x
and y. Moreover, Γ̌h gives the kernel of the discrete semigroup Ěh(t):

(Ěh(t)v̌h)(x0) = (ahĚh(t)v̌h, δ̌h,x0)Ω = (ahv̌h, Ěh(t)δ̌h,x0)Ω

=

∫
Ω

ah(x)Γ̌h(t, x, x0)v̌h(x)dx ∀v̌h ∈ Š◦
h(Ω), (5.3.57)

and the solution ǔh(t, x0) of (5.3.39) can be represented by

ǔh(t, x0) =

∫
Ω

ah(x)Γ̌h(t, x, x0)ǔh,0(x)dx+

∫ t

0

∫
Ω

ah(x)Γ̌h(t− s, x, x0)f̌h(s, x)dxds,

(5.3.58)

and we have

(|Ěh(t)|v)(x0) =
∫
Ω

ah(x)|Γ̌h(t, x, x0)|v(x)dx ∀v ∈ Lq(Ω). (5.3.59)

The regularized Green’s function can be represented as follows:

Γ(t, x, x0) =

∫
Ω

G(t, y, x)δ̌x0(y)dy =

∫
Ω

G(t, x, y)δ̌x0(y)dy. (5.3.60)

From the representation (5.3.60) and estimate (5.3.52), the regularized Green’s function
Γ also satisfies the Gaussian pointwise estimate:

|∂kt Γ(t, x, x0)| ≤
Ck

tk+N/2
e
− |x−x0|

2

Ckt ∀x, x0 ∈ Ω ∀t > 0 such that max(|x− x0|,
√
t) ≥ 2h,

(5.3.61)

with k = 0, 1, 2, · · · .

5.3.4 Dyadic decomposition of the domain Q = (0, 1)×Ω

We will employ the same dyadic decomposition method as used in [101] to prove Theo-
rem 5.3.1. Readers who are already familiar with this method may choose to skip this
subsection. The dyadic decomposition method, originally introduced in [126], has been
widely utilized by various authors [104, 66, 95, 100, 133].

For any positive integer j, we define dj = 2−j. For a given point x0 ∈ Ω, we set
J1 = 1, J0 = 0, and let J∗ be the integer satisfying 2−J∗ = C∗h where C∗ is a constant
with C∗ ≥ 16, to be determined later. If the condition

h <
1

4C∗
(5.3.62)
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is satisfied, then
2 ≤ J∗ ≤ log2(2 + 1/h) = ℓh.

In the following manuscript, for conclusions related to the dyadic decomposition, we will
assume that h is sufficiently small to satisfy condition (5.3.62). Let

Q∗(x0) = {(t, x) ∈ Q : max(|x− x0|, t1/2) ≤ dJ∗},
Ω∗(x0) = {x ∈ Ω : |x− x0| ≤ dJ∗}.

we define

Qj(x0) = {(t, x) ∈ Q : dj ≤ max(|x− x0|, t1/2) ≤ 2dj} for j ≥ 1,

Ωj(x0) = {x ∈ Ω : dj ≤ |x− x0| ≤ 2dj} for j ≥ 1,

Dj(x0) = {x ∈ Ω : |x− x0| ≤ 2dj} for j ≥ 1,

and

Q0(x0) = Q \

(
J∗⋃
j=1

Qj(x0) ∪Q∗(x0)

)

Ω0(x0) = Ω \

(
J∗⋃
j=1

Ωj(x0) ∪Ω∗(x0)

)
.

For j < 0, we define Qj(x0) = Ωj(x0) = ∅. For all integer j ≥ 0, we define:

Ω′
j(x0) = Ωj−1(x0) ∪Ωj(x0) ∪Ωj+1(x0)

Q′
j(x0) = Qj−1(x0) ∪Qj(x0) ∪Qj+1(x0)

Ω′′
j (x0) = Ωj−2(x0) ∪Ω′

j(x0) ∪Ωj+2(x0)

Q′′
j (x0) = Qj−2(x0) ∪Q′

j(x0) ∪Qj+2(x0)

D′
j(x0) = Dj(x0) ∪Ωj−1(x0), Q′

∗(x0) = Q∗(x0) ∪QJ∗(x0)

D′′
j (x0) = D′

j(x0) ∪Ωj−2(x0), Q′′
∗(x0) = Q′

∗(x0) ∪QJ∗−1(x0)

Then we have

Q =
J∗⋃
j=0

Qj(x0) ∪Q∗(x0) Ω =
J∗⋃
j=0

Ωj(x0) ∪Ω∗(x0)

We refer to Q∗(x0) as the ”innermost” set. We will use the notation
∑

∗,j to indicate
that the innermost set is included, and

∑
j when it is not. When x0 is fixed and there

is no ambiguity, we will simplify the notation by writing Qj = Qj(x0), Ωj = Ωj(x0),
Q′

j = Q′
j(x0), and Ω

′
j = Ω′

j(x0).
We will use the following notations

∥v∥k,D =

∫
D

∑
|α|=k

|∂αv|2dx

1/2

, |||v|||k,D =

∫
Q

∑
|α|=k

|∂αv|2dxdt

1/2

(5.3.63)

for any subdomains D ⊆ Ω and Q ⊆ Q, where ∂α denotes the derivative in x with
respect to the multi-index α. Throughout this manuscript, we use C to represent a
generic positive constant that is independent of h, x0 and C∗ (until C∗ is determined in
Section 5.5). To simplify notations, we also denote d∗ = dJ∗ .
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5.4 Proofs of the main results

5.4.1 Estimates of Green’s function

In the proof below, we will apply the following lemma (cf. [101, Lemma 4.3]) which is a
consequence of the elliptic regularity estimate in Ω.

Lemma 5.4.1. Let Ω be a curvilinear polyhedral domain in RN (with edge openings
possibly larger than π). Then there exists α ∈ (1/2, 1] and constant C such that

∥u∥H1+α ≤ C∥∇u∥1−α
L2 ∥∆u∥αL2 ∀u ∈ H1

0 (Ω) with ∆u ∈ L2(Ω). (5.4.64)

Similar to [101, Lemma 4.1], we have the following estimates on the (regularized)
Green’s functions.

Lemma 5.4.2. Let α ∈ (1
2
, 1] be as in Lemma 5.4.1 and assume that condition (5.3.62)

holds. There exists C > 0, independent of h and x0, such that the Green’s function
G defined in (5.3.51) and the regularized Green’s function Gamma defined in (5.3.53),
satisfy the following estimates:

d
−4−α+N/2
j ∥Γ(·, ·, x0)∥L∞(Qj(x0)) + d−4−α

j ∥∇Γ(·, ·, x0)∥L2(Qj(x0)) (5.4.65a)

+ d−4
j ∥Γ(·, ·, x0)∥L2H1+α(Qj(x0)) + d−2

j ∥∂tΓ(·, ·, x0)∥L2H1+α(Qj(x0))

+ ∥∂ttΓ(·, ·, x0)∥L2H1+α(Qj(x0)) ≤ Cd
−N/2−4−α
j ,

∥G(·, ·, x0)∥L∞H1+α(∪k≤jQk(x0)) (5.4.65b)

+ d2j∥∂tG(·, ·, x0)∥L∞H1+α(∪k≤jQk(x0)) ≤ Cd
−N/2−1−α
j ,

d4j |||∂tttΓ(·, ·, x0)|||Qj(x0)
+ d3j |||∂ttΓ(·, ·, x0)|||1,Qj(x0)

+ d2j |||∂ttΓ(·, ·, x0)|||Qj(x0)
(5.4.65c)

+ dj|||∂tΓ(·, ·, x0)|||1,Qj(x0)
+ |||∂tΓ(·, ·, x0)|||Qj(x0)

+ d−1
j |||Γ(·, ·, x0)|||1,Qj(x0)

+ d−2
j |||Γ(·, ·, x0)|||Qj(x0)

≤ Cd
−1−N/2
j .

Proof. Due to [101, (4.2)], (5.4.65b) is true. We note that there exists a Ǩ ∈ Ťh such
that x0 ∈ Ǩ, and suppδ̌x0 is contained in Ǩ. Therefore (5.3.60) implies

Γ(t, x, x0) =

∫
Ǩ

G(t, y, x)δ̌x0(y)dy =

∫
Ǩ

G(t, x, y)δ̌x0(y)dy.

For (5.4.65a) and (5.4.65c), we can proceed exactly as in the proof of [101, Lemma 4.1].
Namely, we first establish the corresponding estimate for Green’s function G(·, ·, x0) using
the local energy estimate and Gaussian pointwise estimate (5.3.52). Then, by applying
(5.3.47b) and the identity above, we conclude that (5.4.65a) and (5.4.65c) also hold for
Γ(·, ·, x0).

In addition to Lemma 5.4.2, we require the following critical lemma for the proof of
Theorem 5.3.1. The proof of this lemma is deferred to Section 5.5.

Lemma 5.4.3. There exists h0 > 0 such that for any 0 < h < h0, the functions
Γ̌h(t, x, x0), Γ(t, x, x0), and F (t, x, x0) := Γ̌h(t, x, x0)− Γ(t, x, x0) satisfy

sup
t∈(0,∞)

(
∥Γ̌h(t, ·, x0)∥L1(Ω) + t∥∂tΓ̌h(t, ·, x0)∥L1(Ω)

)
≤ C, (5.4.66a)
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sup
t∈(0,∞)

(
∥Γ(t, ·, x0)∥L1(Ω) + t∥∂tΓ(t, ·, x0)∥L1(Ω)

)
≤ C, (5.4.66b)

∥∂tF (·, ·, x0)∥L1((0,∞)×Ω) + ∥t∂ttF (·, ·, x0)∥L1((0,∞)×Ω) ≤ C, (5.4.66c)

∥∂tΓ̌h(t, ·, x0)∥L1(Ω) ≤ Ce−λ0t ∀t ≥ 1, (5.4.66d)

where the constants C and λ0 are independent of h.

5.4.2 Proof of (5.3.40) in Theorem 5.3.1

According to (5.3.57) and (5.4.66a), we have

|(Ěh(t)v̌h)(x0)|+ |(t∂tĚh(t)v̌h)(x0)|
≤∥ah∥L∞(Ω)

(
∥Γ̌h(t, ·, x0)∥L1(Ω) + t∥∂tΓ̌h(t, ·, x0)∥L1(Ω)

)
∥v̌h∥L∞(Ω)

≤C∥v̌h∥L∞(Ω) ∀t > 0,∀v̌h ∈ Š◦
h(Ω).

Therefore, (5.3.40a) is proven for q = ∞, if h > 0 is small enough. The case q = 2 follows
from energy estimate. Thus, the general case 1 ≤ q ≤ ∞ follows from interpolation
and duality (the operators Ěh(t) and ∂tĚh(t) are self-adjoint w.r.t the weighted L

2 inner
product). This completes the proof of (5.3.40a).

In order to prove (5.3.40b), we need a symmetrically truncated Green’s function G∗
tr

as used in [101, Section 4.2] (see also [100, 104]). G∗
tr satisfies the following conditions:

G∗
tr(t, x, y) is symmetric with respect to x and y, namely, G∗

tr(t, x, y) = G∗
tr(t, y, x).

(5.4.67a)

G∗
tr(·, ·, y) = 0 in Q∗(y) := {(t, x) ∈ Q : max(|x− y|,

√
t) ≤ d∗}, (5.4.67b)

and G∗
tr(0, ·, y) ≡ 0 in Ω.

0 ≤ G∗
tr(t, x, y) ≤ G(t, x, y) and G∗

tr(t, x, y) = G(t, x, y) (5.4.67c)

when max(|x− y|,
√
t) > 2d∗.

|∂tG∗
tr(t, x, y)| ≤ Cd−N−2

∗ when max(|x− y|,
√
t) ≤ 2d∗. (5.4.67d)

Using the same reasoning as in [101, (4.32)—(4.37)] and in view of (5.4.66c), to establish
(5.3.40b), it suffices to prove∫ ∫

(0,∞)×Ω

|∂tΓ(t, x, x0)− ∂tG
∗
tr(t, x, x0)|dxdt ≤ C. (5.4.68)

Let Ǩ ∈ Ťh such that x0 ∈ Ǩ and suppδ̌x0 is contained in Ǩ, and we denote Q2∗(x0) :=
{(t, x) ∈ Q : max(|x − x0|,

√
t) < 2d∗}. Then, by (5.4.67c), (5.3.47c) and (5.3.60), we

have ∫ ∫
[(0,∞)×Ω]\Q2∗(x0)

|∂tΓ(t, x, x0)− ∂tG
∗
tr(t, x, x0)|dxdt

=

∫ ∫
[(0,∞)×Ω]\Q2∗(x0)

|∂tΓ(t, x, x0)− ∂tG(t, x, x0)|dxdt

≤
∫ ∫

[(0,1)×Ω]\Q2∗(x0)

∫
Ǩ

|∂tG(t, x, y)− ∂tG(t, x, x0)| |δ̌x0(y)|dydxdt

+

∫ ∫
[(0,1)×Ω]\Q2∗(x0)

∫
Ǩ

∣∣(ah(y)− 1)∂tG(t, x, x0)δ̌x0(y)
∣∣ dydxdt
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+

∫ ∫
(1,∞)×Ω

|∂tΓ(t, x, x0)− ∂tG(t, x, x0)|dxdt

≤C
∫ ∫

[(0,1)×Ω]\Q2∗(x0)

hα−(N−2)/2|∂tG(t, x, ·)|Cα−(N−2)/2(Ǩ)dxdt

+ C

∫ ∫
[(0,1)×Ω]\Q2∗(x0)

hr∥∂tG(t, x, ·)∥L∞(Ǩ)dxdt

+

∫ ∫
(1,∞)×Ω

|∂tΓ(t, x, x0)− ∂tG(t, x, x0)|dxdt

≤C
∫ ∫

[(0,1)×Ω]\Q2∗(x0)

hα−(N−2)/2∥∂tG(t, x, ·)∥Cα−(N−2)/2(Ǩ)dxdt

+

∫ ∫
(1,∞)×Ω

|∂tΓ(t, x, x0)− ∂tG(t, x, x0)|dxdt

=:I1 + I2,

where we have used (5.3.47b) and (5.3.32) in deriving the second inequality and used the
fact α− (N − 2)/2 ≤ 1 in deriving the third inequality. In view of (5.3.61) and (5.3.52),
we can conclude that I2 ≤ C. The inequality I1 ≤ C was demonstrated in the proof
of [101, estimate (4.30)]. Furthermore, by applying the basic energy estimate as in [101,
estimate (4.31)] and considering (5.4.67d), we have∫ ∫

Q2∗(x0)

|∂tΓ(t, x, x0)− ∂tG
∗
tr(t, x, x0)|dxdt ≤ C. (5.4.69)

This establishes (5.4.68) and completes the proof of (5.3.40b).

5.4.3 Proof of (5.3.41) in Theorem 5.3.1

Since we have established the analytic estimate (5.3.40a) of Eh(t), by applying the general
theory of maximal regularity (cf. [42, Theorem 4.2], see also the proof in [101, Section
4.4]), it suffices to show (5.3.41a) for the case p = q. Let Eh denote the linear operator
on Lq(QT ) defined by

Ehf(t) :=
∫ t

0

∂tĚh(t− s)P̌hf(s)ds. (5.4.70)

Thus, when ǔh,0 = 0, we have ∆̌hǔh = Ehf̌h, which means that the maximal regularity
estimate (5.3.41a) for the case 1 < p = q < ∞ is equivalent to the Lq(QT )-boundedness
of the operator Eh. Furthermore, since the discrete semigroup Ěh(t) is self-adjoint w.r.t.
the weighted L2(Ω) inner product, there holds:∫ T

0

(ahEhf(t), g(t))dt =
∫ T

0

∫ t

0

(ah∂tĚh(t− s)P̌hf(s), g(t))dsdt

=

∫ T

0

∫ t

0

(ahf(s), ∂tĚh(t− s)P̌hg(t))dsdt

=

∫ T

0

(
ahf(s),

∫ T

s

∂tĚh(t− s)P̌hg(t)dt

)
ds

=

∫ T

0

(ahf(s), Ehg∗(T − s)) ds (5.4.71)
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where g∗(t) := g(T − t). In view of (5.4.71), via duality, it suffices to prove that Eh is a
bounded operator on Lq(QT ) for 2 ≤ q <∞. We decompose operator Eh as follows

Ehf(t, x0) =
∫ t

0

(
∂tĚh(t− s)P̌hf(s)

)
(x0)ds

=

∫ t

0

∫
Ω

ah(x)∂tΓ̌h(t− s, x, x0)f(s, x)dxds

=

∫ t

0

∫
Ω

ah(x)∂tF (t− s, x, x0)f(s, x)dxds

+

∫ t

0

∫
Ω

ah(x)∂tΓ(t− s, x, x0)f(s, x)dxds

=Mhf(t, x0) +Kh(ahf)(t, x0)

where we denote by Mh and Kh the following operators:

Khg(t, x0) :=

∫ t

0

∫
Ω

∂tΓ(t− s, x, x0)g(s, x)dxds

Mhg(t, x0) :=

∫ t

0

∫
Ω

ah(x)∂tF (t− s, x, x0)g(s, x)dxds

The same proof as in [101, (4.43)—(4.46)] yields that

∥Khf∥Lq(QT ) ≤ Cq∥f∥Lq(QT ) ∀1 < q <∞, (5.4.72)

where the constant Cq is independent of h and T . By the classical energy estimate, the
result (5.3.41a) is true for p = q = 2. Combining this with the L2(QT )-boundedness
(5.4.72) of the operator Kh, it follows that

∥Mhf∥L2(QT ) ≤ C∥f∥L2(QT ). (5.4.73)

By (5.4.66c) of Lemma 5.4.3 we have∫ t

0

∫
Ω

ah(x)|∂tF (t− s, x, x0)|dxds ≤ C

∫ ∞

0

∫
Ω

|∂tF (s, x, x0)|dxds ≤ C,

which implies
∥Mhf̌h∥L∞(QT ) ≤ C∥f̌h∥L∞(QT ), (5.4.74)

and the interpolation of (5.4.73) and (5.4.74) yields

∥Mhf̌h∥Lq(QT ) ≤ C∥f̌h∥Lq(QT ) ∀2 ≤ q ≤ ∞.

The estimate for Mh above, combined with the estimate for Kh, establishes the bound-
edness of Eh on Lq(QT ) for 2 ≤ q <∞. Thus, the proof of (5.3.41a) is complete.

The proof of (5.3.41b) is exactly as in [101, Section 4.5]. We reduce to prove that the
operator Eh satisfies the following estimate

∥Ehf∥L∞(0,T ;Lq) ≤ Cℓh∥f∥L∞(0,T ;Lq) ∀1 ≤ q ≤ ∞. (5.4.75)

By the same deduction as in [101, (4.61),(4.62)], we can show that

∥Ehf∥L∞(0,T ;Lq) ≤ C

(∫ ∞

0

sup
x0∈Ω

∫
Ω

|∂tΓ̌h(t, x, x0)|dxdt
)
∥f∥L∞(0,T ;Lq) ∀1 ≤ q ≤ ∞.

(5.4.76)
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It remains to prove∫ ∞

0

sup
x0∈Ω

∫
Ω

|∂tΓ̌h(t, x, x0)|dxdt ≤ C log2(2 + 1/h). (5.4.77)

To this end, note that ∂tΓ̌h(t, ·, x0) = ∆̌hΓ̌h(t, ·, x0) = Ěh(t)∆̌hP̌hδ̌x0 . By using (5.3.40a)
of Theorem 5.3.1 (proved in Section 5.4.2) and (5.4.66a) of Lemma (5.4.3), we have

∥∂tΓ̌h(t, ·, x0)∥L1 ≤ Ct−1, (5.4.78)

∥∂tΓ̌h(t, ·, x0)∥L1 ≤ C∥∆̌hP̌hδ̌x0∥L1 ≤ Ch−2∥P̌hδ̌x0∥L1 ≤ Ch−2, (5.4.79)

where we have used inverse estimate, L1-stability of P̌h and (5.3.47b). The interpolation
of the last two inequalities gives (see [101, estimate (4.67)])∫ 1

0

sup
x0∈Ω

∫
Ω

|∂tΓ̌h(t, x, x0)|dxdt ≤ C log2(2 + 1/h). (5.4.80)

While estimate (5.4.66d) implies∫ ∞

1

sup
x0∈Ω

∫
Ω

|∂tΓ̌h(t, x, x0)|dxdt ≤ C. (5.4.81)

The last two inequalities combine to give (5.4.77), completing the proof of (5.3.41b).

5.4.4 Proof of Theorem 5.2.2

For a solution uh with general initial value uh,0, we denote u∗h as the solution of (5.1.6)

with u∗h(0) = Phũ0 and fh = Phf̃ . Then, by the maximum norm stability (5.2.15a) of
discrete semigroup Eh(t), we have

∥uh(t)− u∗h(t)∥L∞(Ωh) = ∥Eh(t)(uh,0 − Phũ0)∥L∞(Ωh) ≤ C∥uh,0 − Phũ0∥L∞(Ωh).

Combined with the L∞-stability (5.3.36) of L2(Ωh)-orthogonal projection Ph, this implies:

∥uh − u∗h∥L∞(0,T ;L∞(Ωh)) ≤ C∥uh,0 − ũ0∥L∞(Ωh)

Therefore, it suffices to prove the error estimate in the case where uh,0 = Phũ0. Denote
eh := Phũ− uh. We first derive the error equation satisfied by eh. For each vh ∈ S◦

h(Ωh),
we have:

(∂tPhũ, vh)Ωh
+ (∇Phũ,∇vh)Ωh

=(∂tũ, vh)Ωh
+ (∇(Phũ−Rhũ),∇vh)Ωh

+ (∇Rhũ,∇vh)Ωh

=(∂tũ, vh)Ωh
+ (∇ũ,∇vh)Ωh

+ (∇(Phũ−Rhũ),∇vh)Ωh
(definition (5.2.17) of Rh used)

=(∂tũ−∆ũ− f̃ , vh)Ωh
+ (f̃ , vh)Ωh

+ (∇(Phũ−Rhũ),∇vh)Ωh

=(ψ̃, vh)Ωh\Ω + (f̃ , vh)Ωh
+ (∆h(Rhũ− Phũ), vh)Ωh

,

where we have denoted ψ̃ := ∂tũ −∆ũ − f̃ and observed that ψ̃|Ω ≡ 0. Thus, the error
equation satisfied by eh reads: eh(0) = 0 and

(∂teh, vh)Ωh
+ (∇eh,∇vh)Ωh

= (ψ̃, vh)Ωh\Ω + (∆h(Rhũ− Phũ), vh)Ωh
∀vh ∈ S◦

h(Ωh).
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We split the error eh as eh = δh + θh where θh is defined by equation: θh(0) = 0 and

(∂tθh, vh)Ωh
+ (∇θh,∇vh)Ωh

= (Phψ̃, vh)Ωh
∀vh ∈ S◦

h(Ωh).

Then δh satisfies δh(0) = 0 and

∂tδh −∆hδh = ∆h(Rhũ− Phũ)

Using the quasi-maximal L∞-L∞ regularity estimate in (5.2.16b), and following the same
argument as in [101, Corollary 2.2], we obtain the following result:

∥δh∥L∞(0,T ;L∞(Ωh)) = ∥∆h(∆
−1
h δh)∥L∞(0,T ;L∞(Ωh)) ≤ Cℓh∥Rhũ− Phũ∥L∞(0,T ;L∞(Ωh))

(5.4.82)

Next, we represent θh via the discrete Green’s function Γh:

θh(t, x) =

∫ t

0

∫
Ωh

Γh(t− s, y, x)Phψ̃(s, y)dyds

=

∫ t

0

∫
Ωh\Ω

Γh(t− s, y, x)ψ̃(s, y)dyds.

Therefore, for each 0 < t < T and x ∈ Ωh,

|θh(t, x)| ≤ ∥ψ̃∥L∞(0,T ;L∞(Ωh))

∫ T

0

∥Γh(t, y, x)∥L1
y(Ωh\Ω)dt.

From the boundary skin estimate [80, (3.3) of Lemma 3.2] and the fact Γh|∂Ωh
= 0, we

have:

∥Γh(t, ·, x)∥L1(Ωh\Ω) ≤ Chr+1∥∇Γh(t, ·, x)∥L1(Ωh)

It follows that

∥θh∥L∞(0,T ;L∞(Ωh)) ≤ Chr+1∥ψ̃∥L∞(0,T ;L∞(Ωh)) sup
x∈Ωh

∥∇Γh(·, ·, x)∥L1(0,T ;L1(Ωh)). (5.4.83)

It remains to prove the boundedness of ∥∇Γh(·, ·, x)∥L1(0,∞;L1(Ωh)). Since

Γh(t, x, y) = Γ̌h(t,Φh(x),Φh(y))

and Φh induces norm equivalence (5.3.31) in W 1,1-norm, it suffices to prove such bound-
edness result for Γ̌h. We split the L1(0,∞;W 1,1)-norm of Γ̌h as follows

∥∇Γ̌h(·, ·, x)∥L1(0,∞;L1(Ω)) ≤∥∇F (·, ·, x)∥L1(0,1;L1(Ω)) + ∥∇Γ(·, ·, x)∥L1(0,1;L1(Ω))

+ ∥∇Γ̌h(·, ·, x)∥L1(1,∞;L1(Ω)) (5.4.84)

We can convert the L1-norm into a summation of L2-norms by the dyadic decomposition
introduced in Section 5.3.4 and employ the local estimate (5.4.65a) and global estimate
(5.5.92c) of Γ to obtain

∥∇Γ(·, ·, x)∥L1(Q) ≤C
∑
j,∗

d
N/2+1
j ∥∇Γ∥L2(Qj(x))
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≤C
∑
j

d
N/2+1
j d

−N/2
j + CdN/2+1

∗ h−N/2 ≤ C. (5.4.85)

Similarly, from (5.5.99) and (5.5.123) established in the next section, specifically there

holds ∥∇F∥L2(Qj(x)) ≤ Cd
−N/2
j . Combining with the global estimate (5.5.92c), we have:

∥∇F (·, ·, x)∥L1(Q) ≤C
∑
j,∗

d
N/2+1
j ∥∇F∥L2(Qj(x))

≤C
∑
j

d
N/2+1
j d

−N/2
j + CdN/2+1

∗ h−N/2 ≤ C. (5.4.86)

Finally, from the exponential decay estimate (5.5.125), we can deduce by elliptic energy
estimate that

∥∇Γ̌h(t, ·, x)∥L2(Ω) ≤ Ce−λ0(t−1) ∀t ≥ 1, (5.4.87)

which yields the boundedness of ∥∇Γ̌h(·, ·, x)∥L1(1,∞;L1(Ω)). Combining estimates (5.4.85),
(5.4.86) and (5.4.87), we proved that

sup
x∈Ωh

∥∇Γh(·, ·, x)∥L1(0,∞;L1(Ωh)) ≤ C. (5.4.88)

Therefore, summarizing the estimates (5.4.82, 5.4.83, 5.4.88), we obtain

∥Phũ− uh∥L∞(0,T ;L∞(Ωh)) ≤Ch
r+1∥ψ̃∥L∞(0,T ;L∞(Ωh)) + Cℓh∥Rhũ− Phũ∥L∞(0,T ;L∞(Ωh))

≤Chr+1
(
∥u∥L∞(0,T ;W 2,∞(Ω)) + ∥∂tu∥L∞(0,T ;L∞(Ω))

)
+ Cℓh∥Rhũ− ũ∥L∞(0,T ;L∞(Ωh)), (5.4.89)

where we have used the stability in Sobolev norms of the Stein extension operator and
the L∞-stability (5.3.36) of Ph in deducing the last inequality. The proof of Theorem
5.2.2 is complete.

5.5 Proof of Lemma 5.4.3

We use the following local energy error estimate for finite element solutions of parabolic
equations.

Lemma 5.5.1. Suppose that ϕ ∈ L2(0, 1;H1
0 (Ω))∩H1(0, 1;L2(Ω)) and ϕ̌h ∈ H1(0, 1; Š◦

h(Ω))
satisfy the equation

(∂tϕ− ah(x)∂tϕ̌h, χ̌h) + (∇ϕ− Ah(x)∇ϕ̌h,∇χ̌h) = 0, (5.5.90)

for any χ̌h ∈ Š◦
h(Ω), and 0 < t < 1, with ϕ(0) = 0 in Ω′′

j . Then there exists h0 > 0 such
that for any 0 < h < h0,∣∣∣∣∣∣∂t(ϕ− ϕ̌h)

∣∣∣∣∣∣
Qj

+ d−1
j

∣∣∣∣∣∣ϕ− ϕ̌h

∣∣∣∣∣∣
1,Qj

(5.5.91)

≤Cϵ−3
(
Ij(ϕ̌h(0)) +Xj(Ǐhϕ− ϕ) + Yj(ϕ) + d−2

j

∣∣∣∣∣∣ϕ− ϕ̌h

∣∣∣∣∣∣
Q′

j

)
+
(
Ch1/2d

−1/2
j + Cϵ−1hd−1

j + ϵ
)(∣∣∣∣∣∣∂t(ϕ− ϕ̌h)

∣∣∣∣∣∣
Q′

j
+ d−1

j

∣∣∣∣∣∣ϕ− ϕ̌h

∣∣∣∣∣∣
1,Q′

j

)
,
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where

Ij(ϕ̌h(0)) =∥ϕ̌h(0)∥1,Ω′
j
+ d−1

j ∥ϕ̌h(0)∥Ω′
j
,

Xj(Ǐhϕ− ϕ) =dj∥∇∂t(Ǐhϕ− ϕ)∥L2(Q′
j)
+ ∥∂t(Ǐhϕ− ϕ)∥L2(Q′

j)

+ d−1
j ∥∇(Ǐhϕ− ϕ)∥L2(Q′

j)
+ d−2

j ∥Ǐhϕ− ϕ∥L2(Q′
j)

Yj(ϕ) =h
r
(
dj∥∇(∂tϕ)∥L2(Q′

j)
+ ∥∂tϕ∥L2(Q′

j)
+ d−1

j ∥∇ϕ∥L2(Q′
j)
+ d−2

j ∥ϕ∥L2(Q′
j)

)
.

Here ϵ ∈ (0, 1) is an arbitrary parameter, and the positive constant C is independent of
h, j, and C∗.

The proof of Lemma 5.5.1 is presented in next Section. In the rest of this section, we
apply Lemma 5.5.1 to prove Lemma 5.4.3 by setting α ∈ (1

2
, 1] a fixed constant satisfying

Lemma 5.4.2. The proof consists of three parts. The first part is concerned with estimates
for t ∈ (0, 1), where we convert the L1 estimates on Q = (0, 1) × Ω = Q∗ ∪ (∪J

j=0Qj)
into weighted L2 estimates on the subdomains Q∗ and Qj, j = 0, 1, · · · , J∗. The second
part is concerned with estimates for t ≥ 1, which is a simple consequence of the parabolic
regularity. The third part is concerned with the proof of (5.4.66a, 5.4.66b), which are
simple consequences of the results proved in the first two parts.

Proof. Part I. First, we present estimates in the domainQ = (0, 1)×Ω with the restriction
h < 1/(4C∗). In this case, the basic energy estimate gives

∥∂tΓ∥L2(Q) + ∥∂tΓ̌h∥L2(Q) ≤ C
(
∥Γ(0)∥H1(Ω) + ∥Γ̌h(0)∥H1(Ω)

)
≤ Ch−1−N/2, (5.5.92a)

∥Γ∥L∞L2(Q) + ∥Γ̌h∥L∞L2(Q) ≤ C
(
∥Γ(0)∥L2(Ω) + ∥Γ̌h(0)∥L2(Ω)

)
≤ Ch−N/2, (5.5.92b)

∥∇Γ∥L2(Q) + ∥∇Γ̌h∥L2(Q) ≤ C
(
∥Γ(0)∥L2(Ω) + ∥Γ̌h(0)∥L2(Ω)

)
≤ Ch−N/2, (5.5.92c)

∥∂ttΓ̌h∥L2(Q) ≤ C∥∆̌hΓ̌h(0)∥H1(Ω) ≤ Ch−3−N/2, (5.5.92d)

∥∇∂tΓ∥L2(Q) + ∥∇∂tΓ̌h∥L2(Q) ≤ C
(
∥∆Γ(0)∥L2(Ω) + ∥∆̌hΓ̌h(0)∥L2(Ω)

)
≤ Ch−2−N/2.

(5.5.92e)

In the estimate above, we have employed (5.3.47a), (5.3.48) and inverse properties (5.3.42)
of finite element functions to deal with norms of Γ(0) = δ̌x0 and Γ̌h(0) = P̌hδ̌x0 . We can
decompose ∥∂tF∥L1(Q) + ∥t∂ttF∥L1(Q) as follows:

∥∂tF∥L1(Q) + ∥t∂ttF∥L1(Q) (5.5.93)

≤∥∂tF∥L1(Q∗) + ∥t∂ttF∥L1(Q∗) +
J∗∑
j=0

(
∥∂tF∥L1(Qj) + ∥t∂ttF∥L1(Qj)

)
.

We will bound the innermost part ∥∂tF∥L1(Q∗) + ∥t∂ttF∥L1(Q∗) by separately bounding

∥∂tΓ̌h∥L1(Q∗)+∥t∂ttΓ̌h∥L1(Q∗) and ∥∂tΓ∥L1(Q∗)+∥t∂ttΓ∥L1(Q∗). By Hölder’s inequality (not-
ing the volume of Qj = Qj(x0) is Cd

2+N
j ) and the global energy estimate (5.5.92a) and

(5.5.92d), we have:

∥∂tΓ̌h∥L1(Q∗) + ∥t∂ttΓ̌h∥L1(Q∗) ≤CdN/2+1
∗

(
∥∂tΓ̌h∥L2(Q∗) + d2∗∥∂ttΓ̌h∥L2(Q∗)

)
≤CdN/2+1

∗
(
∥∂tΓ̌h∥L2(Q) + d2∗∥∂ttΓ̌h∥L2(Q)

)
≤CCN/2+1

∗ + CCN/2+3
∗ ≤ CCN/2+3

∗ . (5.5.94)
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For the term ∥t∂ttΓ∥L1(Q∗), since δ̌x0 only belongs to C2(Ω) when r = 1 (cf. (5.3.47a)),
we utilize the analyticity of the parabolic semigroup et∆ to obtain

∥t∂ttΓ∥L2 = ∥t∂tet∆(∂tΓ(0))∥L2 ≤ C∥∂tΓ(0)∥L2 = C∥∆δ̌x0∥L2 ≤ Ch−N/2−2. (5.5.95)

Thus, by Hölder’s inequality, (5.5.92a) and the last estimate (5.5.95), we have

∥∂tΓ∥L1(Q∗) + ∥t∂ttΓ∥L1(Q∗) ≤CdN/2+1
∗ ∥∂tΓ∥L2(Q∗) + Cd2+N/2

∗ ∥t∂ttΓ∥L∞L2(Q∗)

≤CCN/2+1
∗ + CCN/2+2

∗ ≤ CCN/2+2
∗ . (5.5.96)

It follows that

∥∂tF∥L1(Q) + ∥t∂ttF∥L1(Q) (5.5.97)

≤CCN/2+3
∗ +

J∗∑
j=0

(
∥∂tF∥L1(Qj) + ∥t∂ttF∥L1(Qj)

)
≤CCN/2+3

∗ +
J∗∑
j=0

Cd
N/2+1
j

(
∥∂tF∥L2(Qj) + d2j∥∂ttF∥L2(Qj)

)
≤CCN/2+3

∗ + CK (5.5.98)

where we have used Hölder’s inequality to convert the sum of L1-norms to a weighted
sum of L2-norms and introduced the notation:

K :=
J∗∑
j=0

d
1+N/2
j

(
d−1
j |||F |||1,Qj

+ |||∂tF |||Qj
+ dj|||∂tF |||1,Qj

+ d2j |||∂ttF |||Qj

)
. (5.5.99)

It remains to estimate K. To this end, we set “ϕ̌h = Γ̌h, ϕ = Γ, ϕ̌h(0) = P̌hδ̌x0 and
ϕ(0) = δ̌x0” and “ϕ̌h = ∂tΓ̌h, ϕ = ∂tΓ, ϕ̌h(0) = ∆̌hP̌hδ̌x0 and ϕ(0) = ∆δ̌x0” in Lemma 5.5.1
respectively. The we obtain

d−1
j |||F |||

1,Q
′,1/2
j

+ |||∂tF |||Q′,1/2
j

(5.5.100)

≤Cϵ−3
1

(
Îj + X̂j + Ŷj + d−2

j |||F |||Q′
j

)
+
(
Ch1/2d

−1/2
j + Cϵ−1

1 hd−1
j + ϵ1

)(
d−1
j |||F |||1,Q′

j
+ |||∂tF |||Q′

j

)
and

dj|||∂tF |||1,Qj
+ d2j |||∂ttF |||Qj

(5.5.101)

≤Cϵ−3
2

(
Ij +Xj + Y j + |||∂tF |||Q′,1/2

j

)
+
(
Ch1/2d

−1/2
j + Cϵ−1

2 hd−1
j + ϵ2

)(
dj|||∂tF |||1,Q′,1/2

j
+ d2j |||∂ttF |||Q′,1/2

j

)
,

respectively, where ϵ1, ϵ2 ∈ (0, 1) are arbitrary constants and Q
′,1/2
j is an intermediate

subset between Qj and Q
′
j:

Q
′,1/2
j := {(t, x) ∈ Q :

3

4
dj ≤ max(|x− x0|, t1/2) ≤ 3dj}.
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Note that from the proof of Lemma 5.5.1, the pair (Qj, Q
′
j) in the statement of Lemma

5.5.1 could be replaced by the pair (Q
′,1/2
j , Q′

j) or the pair (Qj, Q
′,1/2
j ).

By using local interpolation error estimate (5.3.45), exponential decay property (5.3.48)
and (5.3.50) of P̌hδ̌x0 and ∆̌hP̌hδ̌x0 respectively, and local estimates (5.4.65a) and (5.4.65c)
of the regularized Green’s function Γ, we have:

Îj =∥P̌hδ̌x0∥1,Ω′
j
+ d−1

j ∥P̌hδ̌x0∥Ω′
j
≤ Ch2d

−3−N/2
j , (5.5.102)

X̂j =dj∥∇(1− Ǐh)∂tΓ∥L2(Q′
j)
+ ∥(1− Ǐh)∂tΓ∥L2(Q′

j)

+ d−1
j ∥∇(1− Ǐh)Γ∥L2(Q′

j)
+ d−2

j ∥(1− Ǐh)Γ∥L2(Q′
j)

≤C(djhα + h1+α)∥∂tΓ∥L2H1+α(Q′′
j )
+ C(d−1

j hα + d−2
j h1+α)∥Γ∥L2H1+α(Q′′

j )

≤C(hαd−1−N/2−α
j + h1+αd

−2−N/2−α
j ) ≤ Chαd

−1−N/2−α
j (5.5.103)

Ŷj =h
r
(
dj|||∇(∂tΓ)|||Q′

j
+ |||∂tΓ|||Q′

j
+ d−1

j |||∇Γ|||Q′
j
+ d−2

j |||Γ|||Q′
j

)
≤ Chrd

−1−N/2
j .

(5.5.104)

and

Ij =d
2
j∥∆̌hP̌hδ̌x0∥1,Ω′,1/2

j
+ dj∥∆̌hP̌hδ̌x0∥Ω′,1/2

j
≤ Ch2d

−3−N/2
j , (5.5.105)

Xj =d
3
j∥∇(1− Ǐh)∂ttΓ∥L2(Q

′,1/2
j )

+ d2j∥(1− Ǐh)∂ttΓ∥L2(Q
′,1/2
j )

+ dj∥∇(1− Ǐh)∂tΓ∥L2(Q
′,1/2
j )

+ ∥(1− Ǐh)∂tΓ∥L2(Q
′,1/2
j )

≤C(d3jhα + d2jh
1+α)∥∂ttΓ∥L2H1+α(Q′

j)
+ C(djh

α + h1+α)∥∂tΓ∥L2H1+α(Q′
j)

≤Chαd−1−N/2−α
j , (5.5.106)

Y j =h
rd2j

(
dj|||∇(∂ttΓ)|||Q′,1/2

j
+ |||∂ttΓ|||Q′,1/2

j
+ d−1

j |||∇∂tΓ|||Q′,1/2
j

+ d−2
j |||∂tΓ|||Q′,1/2

j

)
≤Chrd−1−N/2

j . (5.5.107)

By choosing ϵ1 = ϵ4 in (5.5.100) and ϵ2 = ϵ in (5.5.101), substituting (5.5.100—5.5.107)
into the expression of K in (5.5.99), and dealing with the term Cϵ−3|||∂tF |||Q′,1/2

j
appearing

on the right side again by using (5.5.100), we have:

K =
J∗∑
j=0

d
1+N/2
j

(
d−1
j |||F |||1,Qj

+ |||∂tF |||Qj
+ dj|||∂tF |||1,Qj

+ d2j |||∂ttF |||Qj

)
≤Cϵ

J∗∑
j=0

d
1+N/2
j

(
h2d

−3−N/2
j + hd

−1−N/2
j + hαd

−1−α−N/2
j + d−2

j |||F |||Q′
j

)
+

J∗∑
j=0

(
Cϵh

1/2d
−1/2
j + Cϵhd

−1
j + ϵ

)
d
1+N/2
j

(
d−1
j |||F |||1,Q′

j
+ |||∂tF |||Q′

j

)
+

J∗∑
j=0

(
Cϵh

1/2d
−1/2
j + Cϵhd

−1
j + ϵ

)
d
1+N/2
j

(
dj|||∂tF |||1,Q′

j
+ d2j |||∂ttF |||Q′

j

)
≤Cϵ + Cϵ

J∗∑
j=0

d
−1+N/2
j |||F |||Q′

j
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+
J∗∑
j=0

(
Cϵh

1/2d
−1/2
j + Cϵhd

−1
j + ϵ

)
d
1+N/2
j

(
d−1
j |||F |||1,Q′

j
+ |||∂tF |||Q′

j

)
+

J∗∑
j=0

(
Cϵh

1/2d
−1/2
j + Cϵhd

−1
j + ϵ

)
d
1+N/2
j

(
dj|||∂tF |||1,Q′

j
+ d2j |||∂ttF |||Q′

j

)
. (5.5.108)

Since |||F |||Q′
j
≤ C

(
|||F |||Qj−1

+ |||F |||Qj
+ |||F |||Qj+1

)
, we can convert the Q′

j-norm in the

inequality (5.5.108) to the Qj-norm:

K ≤Cϵ + Cϵ

J∗∑
j=0

d
−1+N/2
j |||F |||Qj

+ Cϵd
−1+N/2
∗ |||F |||Q∗

+
J∗∑
j=0

(
Cϵh

1/2d
−1/2
j + Cϵhd

−1
j + ϵ

)
d
1+N/2
j

(
d−1
j |||F |||1,Qj

+ |||∂tF |||Qj

)
+

J∗∑
j=0

(
Cϵh

1/2d
−1/2
j + Cϵhd

−1
j + ϵ

)
d
1+N/2
j

(
dj|||∂tF |||1,Qj

+ d2j |||∂ttF |||Qj

)
+
(
Cϵh

1/2d−1/2
∗ + Cϵhd

−1
∗ + ϵ

)
d1+N/2
∗

(
d−1
∗ |||F |||1,Q∗

+ |||∂tF |||Q∗

)
+
(
Cϵh

1/2d−1/2
∗ + Cϵhd

−1
∗ + ϵ

)
d1+N/2
∗

(
d∗|||∂tF |||1,Q∗

+ d2∗|||∂ttF |||QJ∗+1

)
.

We can use global estimates (5.5.92) to bound

|||F |||Q∗
, |||F |||1,Q∗

, |||∂tF |||Q∗
, |||∂tF |||1,Q∗

.

For the term d
N/2+3
∗ |||∂ttF |||QJ∗+1

, note that by (5.4.65c), ∥∂ttΓ∥L2(QJ∗+1) ≤ Cd
−3−N/2
∗ and

by (5.5.92d), ∥∂ttΓ̌h∥L2(QJ∗+1) ≤ ∥∂ttΓ̌h∥L2(Q∗) ≤ Ch−3−N/2. Therefore, we have

K ≤Cϵ + CϵC
3+N/2
∗ + Cϵ

J∗∑
j=0

d
−1+N/2
j |||F |||Qj

(5.5.109)

+
J∗∑
j=0

(
Cϵh

1/2d
−1/2
j + Cϵhd

−1
j + ϵ

)
d
1+N/2
j

(
d−1
j |||F |||1,Qj

+ |||∂tF |||Qj

)
+

J∗∑
j=0

(
Cϵh

1/2d
−1/2
j + Cϵhd

−1
j + ϵ

)
d
1+N/2
j

(
dj|||∂tF |||1,Qj

+ d2j |||∂ttF |||Qj

)
≤Cϵ + CϵC

3+N/2
∗ + Cϵ

J∗∑
j=0

d
−1+N/2
j |||F |||Qj

+ C(CϵC
−1/2
∗ + CϵC

−1
∗ + ϵ)K.

We have used dj ≥ C∗h and the expression of K in (5.5.99) to obtain the last inequality
in (5.5.109). By choosing ϵ small enough and then choosing C∗ large enough (C∗ is still

to be determined later), the term C(CϵC
−1/2
∗ +CϵC

−1
∗ + ϵ)K in (5.5.109) will be absorbed

by the left hand side term K. Hence, we obtain

K ≤ CC3+N/2
∗ + C

J∗∑
j=0

d
−1+N/2
j |||F |||Qj

. (5.5.110)
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It remains to estimate |||F |||Qj
. To this end, we apply a duality argument below. Let w

be the solution of the backward parabolic equation

−∂tw −∆w = v with w(1) = 0, ω|∂Ω = 0,

where v is a function supported on Qj with |||v|||Qj
= 1. The auxiliary backward parabolic

equation above has been introduced in [101, Section 5]; for brevity we will directly use
the estimates on ω (cf. [101, (5.24), (5.31)]) proved there.

Multiplying the above equation by F yields (notice that Q = (0, 1)×Ω)

[F, v] = (F (0), w(0)) + [Ft, w] + [∇F,∇w]. (5.5.111)

Here

(F (0), w(0))

=(P̌hδ̌x0 − δ̌x0 , w(0))Ω = (P̌hδ̌x0 − δ̌x0 , w(0)− ah(x)Ǐhw(0))Ω (by (5.3.35))

=(P̌hδ̌x0 − δ̌x0 , ah(x)(w(0)− Ǐhw(0)))Ω + (P̌hδ̌x0 − δ̌x0 , (1− ah(x))w(0))Ω

=(ah(x)P̌hδ̌x0 , w(0)− Ǐhw(0))Ω′′
j
+ (ah(x)(P̌hδ̌x0 − δ̌x0), w(0)− Ǐhw(0))(Ω′′

j )
c

+ (P̌hδ̌x0 − δ̌x0 , (1− ah(x))w(0))Ω

=:I1 + I2 + I3.

By the same arguments in [101, (5.21, 5.22, 5.24)], we have

I1 + I2 ≤ Ch1+α−N/2d−α
j .

By (5.3.32), (5.3.47a), Lq stability (5.3.37) of P̌h and global energy estimate for w, we
have

I3 =(P̌hδ̌x0 − δ̌x0 , (1− ah(x))w(0))Ω

≤Chr
(
∥P̌hδ̌x0∥L 6

5 (Ω)
+ ∥δ̌x0∥L 6

5 (Ω)

)
∥w(0)∥H1(Ω)

≤Chr−N/6|||v|||Qj
≤ Ch1/2.

Therefore we have

|(F (0), w(0))| ≤ Ch1+α−N/2d−α
j + Ch1/2. (5.5.112)

Since F = Γ̌h − Γ, from (5.3.54a) and (5.3.53a) we have

[Ft, w] + [∇F,∇w] (5.5.113)

=[ah(x)Ft, w − Ǐhw] + [Ah(x)∇F,∇(w − Ǐhw)]

+ [(1− ah(x))∂tΓ, w] + [(IN − Ah(x))∇Γ,∇w]
+ [(1− ah(x))∂tΓ, Ǐhw − w] + [(IN − Ah(x))∇Γ,∇(Ǐhw − w)]

+ [(1− ah(x))∂tF,w] + [(IN − Ah(x))∇F,∇w]
=:J1 + J2 + J3 + J4.

By local interpolation error estimate (5.3.45), we have

J1 =[ah(x)Ft, w − Ǐhw] + [Ah(x)∇F,∇(w − Ǐhw)]
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≤C
∑
∗,i

(
|||Ft|||Qi

∣∣∣∣∣∣w − Ǐhw
∣∣∣∣∣∣

Qi
+ |||F |||1,Qi

∣∣∣∣∣∣w − Ǐhw
∣∣∣∣∣∣

1,Qi

)
≤C

∑
∗,i

(
h1+α|||Ft|||Qi

+ hα|||F |||1,Qi

)
∥w∥L2H1+α(Q′

i)
. (5.5.114)

By Hölder’s inequality and Sobolev embeddingH1+α(Ω) ↪→ L∞(Ω),H1+α(Ω) ↪→ W 1,3(Ω)
for α > 1/2, we have

J2 =[(1− ah(x))∂tΓ, w] + [(IN − Ah(x))∇Γ,∇w]

≤Chr
∑
∗,i

(
∥∂tΓ∥L2L1(Qi)∥w∥L2L∞(Qi) + ∥∇Γ∥L2L3/2(Qi)∥∇w∥L2L3(Qi)

)
≤Chr

∑
∗,i

(
∥∂tΓ∥L2L1(Qi) + ∥∇Γ∥L2L3/2(Qi)

)
∥w∥L2H1+α(Qi)

≤Chr
∑
∗,i

(
d
N/2
i ∥∂tΓ∥L2(Qi) + d

N/6
i ∥∇Γ∥L2(Qi)

)
∥w∥L2H1+α(Qi).

Then by (5.4.65c) and (5.5.92a)-(5.5.92c), we have

J2 ≤ Chr
∑
∗,i

(
CN/2+1

∗ d−1
i + CN/2

∗ d
−N/3
i

)
∥w∥L2H1+α(Qi), (5.5.115)

where we used estimates

∥∂tΓ∥L2(Q∗) ≤ ∥∂tΓ∥L2(Q) ≤ CC1+N/2
∗ d−1−N/2

∗ and ∥∇Γ∥L2(Q∗) ≤ ∥∇Γ∥L2(Q) ≤ CCN/2
∗ d−N/2

∗

to deal with the innermost term. Similarly, by Hölder’s inequality and Sobolev embedding
H1+α(Ω) ↪→ L∞(Ω), H1+α(Ω) ↪→ W 1,3(Ω) for α > 1/2, we have

J4 =[(1− ah(x))∂tF,w] + [(IN − Ah(x))∇F,∇w]

≤Chr
∑
∗,i

(
d
N/2
i ∥∂tF∥L2(Qi) + d

N/6
i ∥∇F∥L2(Qi)

)
∥w∥L2H1+α(Qi). (5.5.116)

By (5.3.45, 5.4.65c, 5.5.92a, 5.5.92c), we have

J3 =[(1− ah(x))∂tΓ, Ǐhw − w]Q + [(IN − Ah(x))∇Γ,∇(Ǐhw − w)]Q

≤Chr
∑
∗,i

(
|||∂tΓ|||Qi

∣∣∣∣∣∣Ǐhw − w
∣∣∣∣∣∣

Qi
+ |||∇Γ|||Qi

∣∣∣∣∣∣Ǐhw − w
∣∣∣∣∣∣

1,Qi

)
≤Chr

∑
∗,i

(
h1+α∥∂tΓ∥L2(Qi) + hα∥∇Γ∥L2(Qi)

)
∥w∥L2H1+α(Q′

i)

≤Chr
∑
∗,i

(
h1+αC1+N/2

∗ d
−1−N/2
i + hαCN/2

∗ d
−N/2
i

)
∥w∥L2H1+α(Q′

i)
. (5.5.117)

By (5.5.113) and the estimates (5.5.114, 5.5.115, 5.5.116, 5.5.117)of J1, · · · ,J4, we have

[Ft, w]Q + [∇F,∇w]Q (5.5.118)

≤C
∑
∗,i

(
(h1+α + hrd

N/2
i )|||Ft|||Qi

+ (hα + hrd
N/6
i )|||F |||1,Qi

)
∥w∥L2H1+α(Q′

i)
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+ CCN/2+1
∗

∑
∗,i

hr
(
d−1
i + hαd

−N/2
i

)
∥w∥L2H1+α(Q′

i)
,

where we have used di ≤ 1 and di ≥ h to simplify the result obtained. We note that the
following local H1+α-estimate of w has been proved by [101, (5.31)]

∥w∥L2H1+α(Q′
i)
≤ Cd1−α

i

(
min(di, dj)

max(di, dj)

)α

. (5.5.119)

Hence, substituting (5.5.112, 5.5.118) and (5.5.119) into (5.5.111) yields

|||F |||Qj
(5.5.120)

≤C(h1+α−N/2d−α
j + h1/2) + CC1+N/2

∗

∑
∗,i

hr
(
d−1
i + hαd

−N/2
i

)
d1−α
i

(
min(di, dj)

max(di, dj)

)α

+ C
∑
∗,i

(
(h1+α + hrd

N/2
i )|||Ft|||Qi

+ (hα + hrd
N/6
i )|||F |||1,Qi

)
d1−α
i

(
min(di, dj)

max(di, dj)

)α

Since α > 1/2, it follows that for any i ∈ ∗, 0, 1, · · · , J∗, we have:

J∗∑
j=0

d
N/2−1
j

(
min(di, dj)

max(di, dj)

)α

≤ Cd
N/2−1
i . (5.5.121)

By (5.5.110) and (5.5.120), we have:

K

≤CC3+N/2
∗ + C

J∗∑
j=0

d
−1+N/2
j |||F |||Qj

≤CC3+N/2
∗ +

j∗∑
j=0

h1/2d
−1+N/2
j +

J∗∑
j=0

(
h

dj

)1+α−N/2

+ CCN/2+1
∗

J∗∑
j=0

d
−1+N/2
j

∑
∗,i

hr
(
d−1
i + hαd

−N/2
i

)
d1−α
i

(
min(di, dj)

max(di, dj)

)α

+ C
J∗∑
j=0

d
−1+N/2
j

∑
∗,i

(
(h1+α + hrd

N/2
i )|||Ft|||Qi

+ (hα + hrd
N/6
i )|||F |||1,Qi

)
d1−α
i

(
min(di, dj)

max(di, dj)

)α

It is easy to check that:

J∗∑
j=0

h1/2d
−1+N/2
j +

J∗∑
j=0

(
h

dj

)1+α−N/2

≤ C. (5.5.122)

By (5.5.121), we have:

J∗∑
j=0

d
−1+N/2
j

∑
∗,i

hr
(
d−1
i + hαd

−N/2
i

)
d1−α
i

(
min(di, dj)

max(di, dj)

)α

=
∑
∗,i

(
hrd−α

i + hr+αd
1−α−N/2
i

) J∗∑
j=0

d
−1+N/2
j

(
min(di, dj)

max(di, dj)

)α
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≤C
∑
∗,i

(
hrd

N/2−1−α
i + hr+αd−α

i

)
≤C

∑
∗,i

(
h1−αd

N/2−1
i (

h

di
)α + h(

h

di
)α
)

≤ C (used N = 2, 3, r ≥ 1, di ≤ 1).

By (5.5.121) again, using the facts r ≥ 1 and α > 1/2, and (5.5.92a, 5.5.92c), we have:

J∗∑
j=0

d
−1+N/2
j

∑
∗,i

(
(h1+α + hrd

N/2
i )|||Ft|||Qi

+ (hα + hrd
N/6
i )|||F |||1,Qi

)
d1−α
i

(
min(di, dj)

max(di, dj)

)α

=
∑
∗,i

(
(h1+α + hrd

N/2
i )|||Ft|||Qi

+ (hα + hrd
N/6
i )|||F |||1,Qi

)
d1−α
i

J∗∑
j=0

d
−1+N/2
j

(
min(di, dj)

max(di, dj)

)α

≤C
∑
∗,i

(
(h1+α + hrd

N/2
i )|||Ft|||Qi

+ (hα + hrd
N/6
i )|||F |||1,Qi

)
d
N/2−α
i

≤C
∑
∗,i

d
1+N/2
i

(
|||Ft|||Qi

(
h

di

)1+α

+ d−1
i |||F |||1,Qi

(
h

dj

)α
)

+ C
∑
∗,i

d
1+N/2
i

(
|||Ft|||Qi

d
N/2−α
i

(
h

di

)
+ d−1

i |||F |||1,Qi
h1−αd

N/6
i

(
h

di

)α)
≤C

∑
∗,i

d
1+N/2
i

(
|||Ft|||Qi

+ d−1
i |||F |||1,Qi

)( h
di

)α

(used h ≤ di ≤ 1)

≤Cd1+N/2
∗

(
|||Ft|||Q∗

+ d−1
i |||F |||1,Q∗

)
+ C

J∗∑
i=0

d
1+N/2
i

(
|||Ft|||Qi

+ d−1
i |||F |||1,Qi

)( h
di

)α

≤CC1+N/2
∗ +

CK
Cα

∗
.

So we obtain

K ≤ CC3+N/2
∗ +

CK
Cα

∗
.

By choosing C∗ to be large enough (C∗ determined now), the term
CK
Cα

∗
will be absorbed

by the left-hand side of the inequality above. In the case, the inequality above implies

K ≤ C. (5.5.123)

Substituing (5.5.123) into (5.5.93) yields

∥∂tF∥L1(Q) + ∥t∂ttF∥L1(Q) ≤ C. (5.5.124)

Part II. Next, we present estimates for (t, x) ∈ (1,∞)×Ω. For t > 1, we differentiate
(5.3.54) with respect to t and integrate the resulting equation against ∂tΓ̌h. Then we get:

d

dt
∥
√
ah(x)∂tΓ̌h(t, ·, x0)∥2L2(Ω) + (Ah(x)∇∂tΓ̌h(t, ·, x0),∇∂tΓ̌h(t, ·, x0))Ω = 0
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for t ≥ 1. Owing to (5.3.32), when h is sufficiently small, there exists λ0 > 0 only
dependent on Ω such that:

λ0∥∂tΓ̌h(t, ·, x0)∥2L2(Ω) ≤ (Ah(x)∇∂tΓ̌h(t, ·, x0),∇∂tΓ̌h(t, ·, x0))Ω.

So we have:

d

dt
∥
√
ah(x)∂tΓ̌h(t, ·, x0)∥2L2(Ω) + λ0∥∂tΓ̌h(t, ·, x0)∥2L2(Ω) ≤ 0,

which implies:

∥∂tΓ̌h(t, ·, x0)∥2L2(Ω) ≤ e−λ0(t−1)∥∂tΓ̌h(1, ·, x0)∥2L2(Ω).

By a standard energy estimate, we have ∥∂tΓ̌h(1, ·, x0)∥2L2(Ω) ≤ C. So we have:

∥∂tΓ̌h(t, ·, x0)∥2L2(Ω) ≤ Ce−λ0(t−1) ∀t ≥ 1. (5.5.125)

Similarly, we also have:

∥∂ttΓ̌h(t, ·, x0)∥2L2(Ω) + ∥∂tΓ(t, ·, x0)∥2L2(Ω) + ∥∂ttΓ(t, ·, x0)∥2L2(Ω) ≤ Ce−λ0(t−1) ∀t ≥ 1.

(5.5.126)

The estimate (5.5.124) and the last two inequalities imply (5.4.66c, 5.4.66d) in the case
h is small enough.

Part III. Finally, we notice that (5.4.66b) is a simple consequence of (5.3.47b) and an-
alyticity estimate (5.1.4) of semigroup et∆. While (5.4.66a) is a consequence of (5.4.66b),
(5.4.66c) and the following inequalities:

∥F (t, ·, x0)∥L1(Ω) ≤ ∥F (0, ·, x0)∥L1(Ω) +

∫ t

0

∥∂tF (s, ·, x0)∥L1(Ω)ds

≤ ∥δ̌x0 − P̌hδ̌x0∥L1(Ω) + ∥∂tF∥L1((0,∞)×Ω) ≤ C, ∀t ∈ (0, 1)
(5.5.127)

∥t∂tF (t, ·, x0)∥L1(Ω) ≤
∫ t

0

∥∂sF (s, ·, x0) + s∂ssF (s, ·, x0)∥L1(Ω)ds

≤ ∥∂tF∥L1((0,∞)×Ω) + ∥t∂ttF∥L1((0,∞)×Ω) ≤ C, ∀t ∈ (0, 1) (5.5.128)

The proof of Lemma 5.4.3 is complete.

5.6 Proof of Lemma 5.5.1

In this section, we prove Lemma 5.5.1. First, we observe that the same proof as in [101,
Lemma 5.1] leads to the following lemma, which provides the local energy error estimate
under the assumption of local Galerkin orthogonality.

Lemma 5.6.1. Suppose that ϕ ∈ L2(0, 1;H1
0 (Ω))∩H1(0, 1;L2(Ω)) and ϕ̌h ∈ H1(0, 1; Š◦

h(Ω))
satisfy the equation

(ah(x)∂t(ϕ− ϕ̌h), χ̌h) + (Ah(x)∇(ϕ− ϕ̌h),∇χ̌h) = 0 ∀χ̌h ∈ Š◦
h(Ω

′
j), t ∈ (0, d2j),
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(ah(x)∂t(ϕ− ϕ̌h), χ̌h) + (Ah(x)∇(ϕ− ϕ̌h),∇χ̌h) = 0 ∀χ̌h ∈ Š◦
h(D

′
j), t ∈ (

1

4
d2j , 4d

2
j)

with ϕ(0) = 0 in Ω′
j. Then the following holds:∣∣∣∣∣∣∂t(ϕ− ϕ̌h)
∣∣∣∣∣∣

Qj
+ d−1

j

∣∣∣∣∣∣ϕ− ϕ̌h

∣∣∣∣∣∣
1,Qj

(5.6.129)

≤Cϵ−3
(
Ij(ϕ̌h(0)) +Xj(Ǐhϕ− ϕ) + d−2

j

∣∣∣∣∣∣ϕ− ϕ̌h

∣∣∣∣∣∣
Q′

j

)
+
(
Ch1/2d

−1/2
j + Cϵ−1hd−1

j + ϵ
)(∣∣∣∣∣∣∂t(ϕ− ϕ̌h)

∣∣∣∣∣∣
Q′

j
+ d−1

j

∣∣∣∣∣∣ϕ− ϕ̌h

∣∣∣∣∣∣
1,Q′

j

)
,

where

Ij(ϕ̌h(0)) =∥ϕ̌h(0)∥1,Ω′
j
+ d−1

j ∥ϕ̌h(0)∥Ω′
j
,

Xj(Ǐhϕ− ϕ) =dj∥∇∂t(Ǐhϕ− ϕ)∥L2(Q′
j)
+ ∥∂t(Ǐhϕ− ϕ)∥L2(Q′

j)

+ d−1
j ∥∇(Ǐhϕ− ϕ)∥L2(Q′

j)
+ d−2

j ∥Ǐhϕ− ϕ∥L2(Q′
j)
.

Here ϵ ∈ (0, 1) is an arbitrary parameter, and the positive constant C is independent of
h, j and C∗.

The distinction between Lemma 5.5.1 and Lemma 5.6.1 is that in the condition of
Lemma 5.5.1, there only holds perturbed Galerkin orthogonality (5.5.90). In fact, Lemma
5.5.1 is derived from Lemma 5.6.1 by additionally accounting for the domain perturbation
term, which introduces the extra term Yj(ϕ) in the error estimate of Lemma 5.5.1.

Proof of Lemma 5.5.1. Let 0 ≤ ω̃ ≤ 1 be a smooth cut-off function which equals to 1
in Q′

j and supp(ω̃) ⊂ Q′′
j , with an estimate of derivatives |∂kt ∇lω̃| ≤ Cd−2k−l

j for any

non-negative integers k, l. Let ϕ̃ = ω̃ϕ, and let η̌h(t) ∈ Š◦
h(Ω) be the solution of

(ah(x)∂tη̌h, χ̌h) + (Ah(x)∇η̌h,∇χ̌h) = ((1− ah)∂tϕ̃, χ̌h) + ((I − Ah)∇ϕ̃,∇χ̌h) (5.6.130)

∀χ̌h ∈ Š◦
h(Ω), t ∈ (0, 1) and η̌h(0) = 0.

Since ϕ̃ = ϕ in Q′
j, it follows that

(ah(x)∂tη̌h, χ̌h) + (Ah(x)∇η̌h,∇χ̌h) = ((1− ah)∂tϕ, χ̌h) + ((I − Ah)∇ϕ,∇χ̌h) (5.6.131)

∀χ̌h ∈ Š◦
h(Ω

′
j), t ∈ (0, d2j)

and

(ah(x)∂tη̌h, χ̌h) + (Ah(x)∇η̌h,∇χ̌h) = ((1− ah)∂tϕ, χ̌h) + ((I − Ah)∇ϕ,∇χ̌h) (5.6.132)

∀χ̌h ∈ Š◦
h(D

′
j), t ∈ (

1

4
d2j , 4d

2
j).

Now we split ϕ̌h into ϕ̌h = θ̌h + η̌h. Then θ̌h satisfies the condition of Lemma 5.6.1, i.e.,

(ah(x)∂t(ϕ− θ̌h), χ̌h) + (Ah(x)∇(ϕ− θ̌h),∇χ̌h) = 0 ∀χ̌h ∈ Š◦
h(Ω

′
j), t ∈ (0, d2j),

(ah(x)∂t(ϕ− θ̌h), χ̌h) + (Ah(x)∇(ϕ− θ̌h),∇χ̌h) = 0 ∀χ̌h ∈ Š◦
h(D

′
j), t ∈ (

1

4
d2j , 4d

2
j).

Therefore, we can apply Lemma 5.6.1 to obtain∣∣∣∣∣∣∂t(ϕ− θ̌h)
∣∣∣∣∣∣

Qj
+ d−1

j

∣∣∣∣∣∣ϕ− θ̌h
∣∣∣∣∣∣

1,Qj
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≤Cϵ−3
(
Ij(θ̌h(0)) +Xj(Ihϕ− ϕ) + d−2

j

∣∣∣∣∣∣ϕ− θ̌h
∣∣∣∣∣∣

Q′
j

)
+
(
Ch1/2d

−1/2
j + Cϵ−1hd−1

j + ϵ
)(∣∣∣∣∣∣∂t(ϕ− θ̌h)

∣∣∣∣∣∣
Q′

j
+ d−1

j

∣∣∣∣∣∣ϕ− θ̌h
∣∣∣∣∣∣

1,Q′
j

)
.

Again we split ϕ− θ̌h into ϕ− θ̌h = (ϕ− ϕ̌h) + η̌h and note that θ̌h(0) = ϕ̌h(0). It follows
that ∣∣∣∣∣∣∂t(ϕ− ϕ̌h)

∣∣∣∣∣∣
Qj

+ d−1
j

∣∣∣∣∣∣ϕ− ϕ̌h

∣∣∣∣∣∣
1,Qj

(5.6.133)

≤Cϵ−3
(
Ij(ϕ̌h(0)) +Xj(Ihϕ− ϕ) + d−2

j

∣∣∣∣∣∣ϕ− ϕ̌h

∣∣∣∣∣∣
Q′

j

)
+
(
Ch1/2d

−1/2
j + Cϵ−1hd−1

j + ϵ
)(∣∣∣∣∣∣∂t(ϕ− ϕ̌h)

∣∣∣∣∣∣
Q′

j
+ d−1

j

∣∣∣∣∣∣ϕ− ϕ̌h

∣∣∣∣∣∣
1,Q′

j

)
+ Cϵ−3

(
d−2
j ∥η̌h∥L2(Q′

j)
+ d−1

j ∥∇η̌h∥L2(Q′
j)
+ ∥∂tη̌h∥L2(Q′

j)

)
.

By Hölder’s inequality, we have

d−2
j ∥η̌h∥L2(Q′

j)
+ d−1

j ∥∇η̌h∥L2(Q′
j)
+ ∥∂tη̌h∥L2(Q′

j)

≤C
(
d−1
j ∥η̌h∥L∞L2(Q) + d−1

j ∥∇η̌h∥L2(Q) + ∥∂tη̌h∥L2(Q)

)
(5.6.134)

It remains to establish a global energy estimate for η̌h using the following lemma:

Lemma 5.6.2. Assume ϕ̌h ∈ Š◦
h(Ω) satisfies

(ah(x)∂tϕ̌h, χ̌h) + (Ah(x)∇ϕ̌h,∇χ̌h) = (f, χ̌h) + (g,∇χ̌h)∀χ̌h ∈ Š◦
h(Ω), t ∈ (0, 1),

and ϕ̌h(0) = 0. Then we have

∥ϕ̌h∥L∞L2(Q) + ∥∇ϕ̌h∥L2(Q) ≤ C(∥f∥L1L2(Q) + ∥g∥L2(Q)) (5.6.135)

∥∂tϕ̌h∥L2(Q) ≤ C
(
∥f∥L2(Q) + ∥g(0)∥L2 + ∥g∥

1
2

L2(Q)∥∂tg∥
1
2

L2(Q) + ∥∂tg∥
1
2

L2(Q)∥f∥
1
2

L1L2(Q)

)
(5.6.136)

Proof. Let χ̌h = ϕ̌h and integrate in time, we have

∥ϕ̌h∥2L∞(0,1;L2) + ∥∇ϕ̌h∥2L2(Q) ≤ C

(∫ 1

0

∥f(t)∥L2∥ϕ̌h(t)∥L2dt+

∫ 1

0

∥g(t)∥L2∥∇ϕ̌h(t)∥L2dt

)
,

and (5.6.135) is obtained from the estimate above and Hölder’s inequality. Let χ̌h = ∂tϕ̌h,
we have

∥
√
ah∂tϕ̌h∥2L2 +

1

2

d

dt
(Ah∇ϕ̌h,∇ϕ̌h) = (f, ∂tϕ̌h) + (g,∇∂tϕ̌h)

= (f, ∂tϕ̌h) +
d

dt
(g,∇ϕ̌h)− (∂tg,∇ϕ̌h).

Integrate in time from s = 0 to s = t, we obtain

∥∂tϕ̌h∥2L2(0,t;L2) + ∥∇ϕ̌h(t)∥2L2

≤C
(∫ t

0

(∥f∥L2∥∂tϕ̌h∥L2 + ∥∂tg∥L2∥∇ϕ̌h∥L2)ds+ ∥g(t)∥L2∥∥∇ϕ̌h(t)∥L2

)
≤C

(
∥f∥L2(0,t;L2)∥∂tϕ̌h∥L2(0,t;L2) + ∥∂tg∥L2(0,t;L2)∥∇ϕ̌h∥L2(0,t;L2) + ∥g(t)∥L2∥∥∇ϕ̌h(t)∥L2

)
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Using Young’s inequality to absorb ∥∇ϕ̌h(t)∥L2 and ∥∂tϕ̌h∥L2(0,t;L2) on the right side, we
have

∥∂tϕ̌h∥L2(Q) + ∥∇ϕ̌h∥L∞L2(Q) ≤ C
(
∥f∥L2(Q) + ∥g∥L∞L2(Q) + ∥∂tg∥

1
2

L2(Q)∥∇ϕ̌h∥
1
2

L2(Q)

)
.

(5.6.137)

Substitute the interpolation inequality

∥g∥L∞(0,1;L2) ≤ C∥g∥
1
2

L2(0,1;L2)∥∂tg∥L2(0,1;L2) + ∥g(0)∥L2 ,

and the estimate (5.6.135) of ∥∇ϕ̌h∥L2(Q) into (5.6.137), we obtain (5.6.136).

Take ϕ̌h = η̌h, f = (1 − ah)∂tϕ̃ and g = (I − Ah)∇ϕ̃ in the last lemma and note
(5.3.32), we have

∥η̌h∥L∞L2(Q) + ∥∇η̌h∥L2(Q) ≤ Chr(∥∂tϕ̃∥L1L2(Q) + ∥∇ϕ̃∥L2(Q))

≤ Chr(dj∥∂tϕ̃∥L2(Q) + ∥∇ϕ̃∥L2(Q)), (used Hölder’s inequality)

and

∥∂tη̌h∥L2(Q) ≤Chr
(
∥∂tϕ̃∥L2(Q) + ∥∇ϕ̃∥

1
2

L2(Q)∥∇∂tϕ̃∥
1
2

L2(Q) + ∥∇∂tϕ̃∥
1
2

L2(Q)∥∂tϕ̃∥L1L2(Q)

)
≤Chr

(
∥∂tϕ̃∥L2(Q) + d−1

j ∥∇ϕ̃∥L2(Q) + dj∥∇∂tϕ̃∥L2(Q) + d−1
j ∥∂tϕ̃∥L1L2(Q)

)
≤Chr

(
∥∂tϕ̃∥L2(Q) + d−1

j ∥∇ϕ̃∥L2(Q) + dj∥∇∂tϕ̃∥L2(Q)

)
,

where we have used the fact that suppϕ̃ ⊆ Q′′
j and ϕ̃(0) = 0, which follows from suppω̃ ⊆

Q′′
j and the assumption ϕ(0) = 0 in Ω′′

j . As a result,

d−1
j ∥η̌h∥L∞L2(Q) + d−1

j ∥∇η̌h∥L2(Q) + ∥∂tη̌h∥L2(Q) (5.6.138)

≤Chr
(
∥∂tϕ̃∥L2(Q) + d−1

j ∥∇ϕ̃∥L2(Q) + dj∥∇∂tϕ̃∥L2(Q)

)
≤Chr

(
∥∂tϕ∥L2(Q′′

j )
+ d−1

j ∥∇ϕ∥L2(Q′′
j )
+ dj∥∇∂tϕ∥L2(Q′′

j )
+ d−2

j ∥ϕ∥L2(Q′′
j )

)
.

In conclusion, combining (5.6.133), (5.6.134) and (5.6.138) we have shown∣∣∣∣∣∣∂t(ϕ− ϕ̌h)
∣∣∣∣∣∣

Qj
+ d−1

j

∣∣∣∣∣∣ϕ− ϕ̌h

∣∣∣∣∣∣
1,Qj

(5.6.139)

≤Cϵ−3
(
Ij(ϕ̌h(0)) +Xj(Ihϕ− ϕ) + Ỹj(ϕ) + d−2

j

∣∣∣∣∣∣ϕ− ϕ̌h

∣∣∣∣∣∣
Q′

j

)
+
(
Ch1/2d

−1/2
j + Cϵ−1hd−1

j + ϵ
)(∣∣∣∣∣∣∂t(ϕ− ϕ̌h)

∣∣∣∣∣∣
Q′

j
+ d−1

j

∣∣∣∣∣∣ϕ− ϕ̌h

∣∣∣∣∣∣
1,Q′

j

)
,

where in the last inequality (5.6.139), the Ỹj(ϕ) denotes

Ỹj(ϕ) = hr
(
dj∥∇(∂tϕ)∥L2(Q′′

j )
+ ∥∂tϕ∥L2(Q′′

j )
+ d−1

j ∥∇ϕ∥L2(Q′′
j )
+ d−2

j ∥ϕ∥L2(Q′′
j )

)
.

Finally, in order to replace Q′′
j with Q′

j in the expression of Ỹj(ϕ) above, we observe that

Lemma 5.6.1 remains valid if in the statement Q′
j is substituted with Q

′, 1
2

j , where Q
′, 1
2

j

denotes the following intermediate set between Qj and Q
′
j:

Q
′, 1
2

j := {(t, x) ∈ Q :
3

4
dj ≤ max(|x− x0|, t1/2) ≤ 3dj}.

Therefore, we can substitute Q′
j with Q

′, 1
2

j and Q′′
j with Q′

j throughout the proof above,
leading to the statement of Lemma (5.5.1).
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5.7 Appendix: Property (P3) and operator Ǐh

We take the same approach as in [101, Appendix B], constructing a modified Clément’s
interpolation operator (which is similar to the Scott-Zhang interpolation operator cf.

[21, Section 4.8]) Ĩh : H1(Ω) → Šh(Ω) which preserves homogeneous Dirichlet boundary

condition i.e. if u ∈ H1
0 (Ω) then Ĩhu ∈ Š◦

h(Ω). We denote by xi ∈ Ω, i = 1, . . . ,M
the interior finite element nodes and denote by x′j ∈ ∂Ω, j = 1, . . . ,m the boundary

finite element nodes of the finite element space Šh(Ω). We denote by Φ̌i ∈ Š◦
h(Ω) the

basis function corresponding to xi ∈ Ω and denote by Φ̌′
j ∈ Šh(Ω) the basis function

corresponding to x′j ∈ ∂Ω. In other words, we have relation

Φ̌i(xj) = δij, Φ̌
′
i(x

′
j) = δij, Φ̌i(x

′
j) = 0 and Φ̌′

j(xi) = 0.

Let τi =
⋃
{Ǩ ∈ Ťh : xi ∈ Ǩ} and τ ′j =

⋃
{Ǩ ∈ Ťh : x′j ∈ Ǩ}. For each interior node

xi ∈ Ω, we define P
(i)
h : L2(Ω) → Šh(τi) as the local L2-projection onto Šh(τi), i.e.,

(P
(i)
h v, χ̌h)τi = (v, χ̌h)τi ∀χ̌h ∈ Šh(τi).

For each boundary node x′j, we define P
(j)

h : H1(Ω) → Šh(∂Ω ∩ τ ′j) where

Šh(∂Ω ∩ τ ′j) = {χ ∈ C0(∂Ω ∩ τ ′j) : ∃χ̌h ∈ Šh(Ω) s.t. χ̌h|∂Ω∩τ ′j = χ},

and P
(j)

h v is the local L2 projection of v|∂Ω (trace of v on the boundary):

(P
(j)

h v, χ̌h)∂Ω∩τ ′j = (v|∂Ω, χ̌h)∂Ω∩τ ′j ∀χ̌h ∈ Šh(∂Ω ∩ τ ′j).

We define operator Ĩh : H1(Ω) → Šh(Ω) by setting

Ĩhv =
M∑
i=1

(P
(i)
h v)(xi)Φ̌i +

m∑
j=1

(P
(j)

h v)(x′j)Φ̌
′
j. (5.7.140)

It follows from the definition of Ĩh that Ĩhχ̌h = χ̌h for χ̌h ∈ Šh(Ω) and moreover Ĩhv ∈
Š◦
h(Ω) when v ∈ H1

0 (Ω). Therefore, the restriction of Ĩh to H1
0 (Ω) gives a projection

operator Ǐh : H1
0 (Ω) → Š◦

h(Ω) onto the finite element space Š◦
h(Ω). To verify (P3) for Ǐh,

it suffices to prove the same statements for Ĩh.
Using the mesh regularity condition (5.3.29), we can establish the following inverse

estimates by pulling back to reference element:

|χ̌h|(x′j) ≤ Ch−N/2+1/2∥χ̌h∥L2(∂Ω∩τ ′j); |χ̌h|(xi) ≤ Ch−N/2∥χ̌h∥L2(τi) ∀χ̌h ∈ Šh(Ω)

(5.7.141)

where x′j can be any boundary node and xi any interior node. Thus, from the definition

of Ĩh, it is straightforward to verify the following local stability:

∥Ĩhv∥L2(τi) + h∥∇Ĩhv∥L2(τi) ≤ C
(
∥v∥L2(τ̃i) + h1/2∥v∥L2(∂Ω∩τ̃i)

)
∥Ĩhv∥L2(τ ′j)

+ h∥∇Ĩhv∥L2(τ ′j)
≤ C

(
∥v∥L2(τ̃ ′j)

+ h1/2∥v∥L2(∂Ω∩τ̃ ′j)

)
,
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where τ̃i =
⋃
{Ǩ ∈ Ťh : Ǩ ∩ τi ̸= ∅} and τ̃ ′j =

⋃
{Ǩ ∈ Ťh : Ǩ ∩ τ ′j ̸= ∅}. Summing up the

two inequalities above for i = 1, . . . ,M and j = 1, . . . ,m and taking into account of the
quasi-uniformity (P1), we obtain the global stability:

∥Ĩhv∥L2(Ω) + h∥∇Ĩhv∥L2(Ω) ≤ C(∥v∥L2(Ω) + h1/2∥v∥L2(∂Ω)).

By trace inequality ∥v∥L2(∂Ω) ≤ C∥v∥1/2L2(Ω)∥v∥
1/2

H1(Ω) and Young’s inequality, we have:

∥Ĩhv∥L2(Ω) + h∥∇Ĩhv∥L2(Ω) ≤ C(∥v∥L2(Ω) + h∥∇v∥L2(Ω)),

which implies the following quasi-optimal approximation property since Ĩh is a projection
onto Šh(Ω):

∥v−Ĩhv∥L2(Ω)+h∥∇(v−Ĩhv)∥L2(Ω) ≤ C(∥v−χ̌h∥L2(Ω)+h∥∇(v−χ̌h)∥L2(Ω)) ∀χ̌h ∈ Šh(Ω).
(5.7.142)

When v ∈ H2(Ω), by simply taking χ̌h = ǏLh v, i.e., the Lagrangian interpolation of v (cf.
[94, Lemma 7] for error estimate of Lagrangian interpolation operator of Šh(Ω)), we have

∥v − Ĩhv∥L2(Ω) + h∥∇(v − Ĩhv)∥L2(Ω) ≤ Ch2∥v∥H2(Ω) ∀v ∈ H2(Ω). (5.7.143)

To consider the case where v ∈ H1(Ω), we can construct another Lipschitz homeomor-

phism Ψ̃h : Ω̃h → Ωh by
Ψ̃h|K̃ = FK ◦ F−1

K̃
,

where Ω̃h = interior of
⋃

K̃∈T̃h K̃ is the domain consisting of the triangles/tetrahedrons
in the initial flat triangulation of Ω described in Section 5.3.2. The mesh regularity
condition (5.3.27) guarantees that

∥∇Ψ̃h∥L∞(Ω̃h)
+ ∥∇Ψ̃

−1

h ∥L∞(Ωh) ≤ C. (5.7.144)

Let Sh(Ω̃h) be the finite element space based on T̃h and let P̃
′

h : L2(Ω̃h) → Sh(Ω̃h)

be the L2 projection onto Sh(Ω̃h). Since Sh(Ω̃h) is the usual Lagrangian finite element
space based on a quasi-uniform triangle/tetrahedron mesh, there holds the following basic

estimate of the L2 projection P̃ ′
h:

∥(1− P̃ ′
h)f∥L2(Ω̃h)

+ h∥∇(1− P̃ ′
h)f∥L2(Ω̃h)

≤ Ch∥f∥H1(Ω̃h)
.

From the definition of finite element space Šh(Ω), χ̌h = P̃ ′
h(v ◦ Φh ◦ Ψ̃h) ◦ Ψ̃

−1

h ◦ Φ−1
h

belongs to Šh(Ωh) and satisfies

∥v − χ̌h∥L2(Ω) + h∥∇(v − χ̌h)∥L2(Ω)

≤C∥(1− P̃ ′
h)(v ◦Φh ◦ Ψ̃h)∥L2(Ω̃h)

+ Ch∥∇(1− P̃ ′
h)(v ◦Φh ◦ Ψ̃h)∥L2(Ω̃h)

≤Ch∥v ◦Φh ◦ Ψ̃h∥L2(Ω̃h)
≤ Ch∥v∥H1(Ω), (5.7.145)

where we have used the fact that Φh and Ψ̃h induce norm equivalence in view of (5.7.144)
and (5.3.30)-(5.3.31). Therefore, by (5.7.142) we also established:

∥v − Ĩhv∥L2(Ω) + h∥∇(v − Ĩhv)∥L2(Ω) ≤ Ch∥v∥H1(Ω) ∀v ∈ H1(Ω). (5.7.146)
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By complex interpolation method, we can deduce from (5.7.146) and (5.7.143) that

∥v − Ĩhv∥L2(Ω) + ∥∇(v − Ĩhv)∥L2(Ω) ≤ Ch1+α∥v∥H1+α(Ω) ∀v ∈ H1+α(Ω). (5.7.147)

This proves (P3)-(1). From the construction of Ĩhv, it is direct to verify that if diam(Ǩ) ≤
h for all Ǩ ∈ Ťh, then the value of Ĩhv in D ⊆ Ω only depends on the value of v in Bd(D)
for d ≥ 2h. This proves (P3)-(2). Finally, it remains to prove the super-approximation
estimate

∥ωψ̌h − Ĩh(ωψ̌h)∥L2(Ω) + h∥ωψ̌h − Ĩh(ωψ̌h)∥H1(Ω) ≤ Chd−1∥ψ̌h∥L2(Bd(D)).

From the quasi-optimal approximation estimate (5.7.142), there holds

∥ωψ̌h − Ĩh(ωψ̌h)∥L2(Ω) + h∥ωψ̌h − Ĩh(ωψ̌h)∥H1(Ω)

≤∥ωψ̌h − ǏLh (ωψ̌h)∥L2(Ω) + h∥ωψ̌h − ǏLh (ωψ̌h)∥H1(Ω),

while for the Lagrangian interpolation operator ǏLh we refer to [103, Lemma 2.6] for a
proof of its super-approximation property.
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Chapter 6

Conclusion

This thesis investigates finite element methods (FEM) for solving complex problems in
fluid–structure interaction (FSI) and partial differential equations (PDEs) posed on curvi-
linear domains. The work is divided into three main parts, each addressing fundamental
challenges in computational mathematics and numerical analysis.

The first part (Chapter 2) focuses on the numerical solution of the Stokes equations
in evolving domains with moving boundaries, using the arbitrary Lagrangian–Eulerian
(ALE) finite element method. For Taylor–Hood elements of degree r ≥ 2, we establish
optimal L2 error estimates of order O(hr+1) for the velocity and O(hr) for the pressure.
The analysis employs Nitsche’s duality argument, adapted to an evolving mesh, and
hinges on proving that the material derivative and the Stokes–Ritz projection commute
up to terms of optimal L2 convergence order. A novel duality argument is developed
to derive an optimal H−1 error estimate for the pressure component of the Stokes–Ritz
projection, which is essential in the L2-error analysis of the commutator. Numerical
experiments support the theoretical results and demonstrate the method’s effectiveness
in simulating Navier–Stokes flow in domains with rotating boundaries, such as a propeller.

The second part (Chapter 3) addresses FSI problems involving the coupling of the
Stokes equations in a fluid domain with an elastic wave equation on the boundary through
kinematic and dynamic interface conditions. Such coupled systems are analytically and
numerically challenging. On one hand, optimal L2 error estimates for FEM in FSI prob-
lems had not been previously established, primarily due to the lack of an appropriate
Ritz projection to control the consistency error. To overcome this, we introduce a cou-
pled non-stationary Ritz projection and analyze its approximation properties, thereby
providing the first optimal L2 error estimate for the semi-discrete FEM approximation
of FSI problems. On the other hand, the presence of both parabolic and hyperbolic
dynamics complicates the construction of stable, decoupled numerical schemes. To ad-
dress this, we propose a fully discrete, kinematically coupled scheme that decouples the
fluid and structure subproblems while ensuring unconditional energy stability. Using
the newly constructed non-stationary Ritz projection, we further prove optimal L2-norm
convergence of the fully discrete scheme.

The third part (Chapters 4–5) investigates the maximum-norm stability and error
estimates of isoparametric FEM for elliptic and parabolic equations posed on curvilin-
ear polyhedral domains. Since such domains cannot, in general, be exactly triangulated
using linear simplices, isoparametric finite element methods are employed to better ap-
proximate curved boundaries. This, however, introduces domain perturbation errors, as
the computational domain Ωh no longer coincides with the exact domain Ω, necessitating
a careful analysis. We address this by adopting a transformation technique that maps
the problem from Ωh to Ω via a bi-Lipschitz transformation Φh : Ωh → Ω. The resulting
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formulation leads to a finite element discretization on Ω for an equivalent problem with
perturbed coefficients that encode the effects of domain perturbation.

In Chapter 4, we establish the weak discrete maximum principle for isoparametric
FEM applied to the Poisson equation with Dirichlet boundary conditions on (possibly
nonconvex) curvilinear polyhedral domains with edge openings smaller than π. These
domains include smooth regions and smooth deformations of convex polyhedra. The
proof relies on the analysis of a dual elliptic problem with a discontinuous coefficient
matrix arising from the isoparametric mapping. As standard H2-regularity does not hold
in this context, we decompose the dual solution into a smooth component and a singular
component, estimating them via H2 and W 1,p regularity, respectively. As an application,
we establish a maximum-norm best approximation result for the isoparametric FEM. To
address the domain perturbation Ω ̸= Ωh, we construct a globally smooth flow map from
Ω to a larger perturbed domain containing Ωh, enabling a uniform W 1,∞ estimate of the
continuous solution with respect to the perturbation.

In Chapter 5, we investigate the isoparametric finite element semi-discretization for
a parabolic problem on a curvilinear polyhedral domain Ω ⊆ RN with homogeneous
Dirichlet boundary condition. The domain Ω may include non-convex corners, i.e., with
edge openings possibly greater than π. We establish the analyticity and maximal reg-
ularity of the discrete semigroup by employing a transformation method to address the
domain perturbation effect Ω ̸= Ωh. The analysis hinges on estimating the error Γ− Γ̌h

between the regularized Green function of the Laplace equation in Ω and the discrete
Green function Γ̌h of the transformed finite element problem in Ω. Since only a perturbed
Galerkin orthogonality holds for Γ − Γ̌h due to the domain perturbation effect, the pri-
mary difficulty in the proof lies in handling the local energy error estimates and the local
duality arguments in the context of perturbed Galerkin orthogonality. As an application
of the logarithmically quasi-maximal L∞-regularity of the discrete semigroup, we reduce
the maximum norm error estimate of the parabolic problem to that of the elliptic Ritz
projection, incorporating an additional optimal order term resulting from the domain
perturbation effect.

Several promising directions for future research emerge from this thesis, particularly
in advancing the numerical analysis of fluid–structure interaction (FSI) problems and fi-
nite element methods under domain perturbation. For FSI, a deeper investigation of the
coupled non-stationary Ritz projection is warranted, particularly to extend the current
framework to more complex configurations involving thick-structure interactions, inter-
face deformation, and general inflow/outflow boundary conditions. Understanding the
stability properties of the Ritz projection in these extended settings remains a key open
question. In addition, the analyticity and maximal regularity of the evolution equation
associated with the coupled Ritz projection deserve further study. It is also of interest
to explore the removal of the current theoretical restrictions on initial data by examining
more closely the stability properties of the coupled parabolic–hyperbolic system.

In the context of domain perturbation, a systematic comparison between the extension
method and the transformation method raises rich and subtle theoretical challenges.
While both approaches have demonstrated effectiveness in certain settings, there exist
intricate scenarios in which one method proves successful while the other does not. This
highlights the need for a unified analytical framework capable of capturing the effects
of domain perturbation in FEM analysis across a broader class of geometries and PDE
models.
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