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Abstract

This thesis investigates the stability and error estimates of finite element methods (FEM)
for partial differential equations (PDEs) in complex and evolving geometries. It aims
to advance the mathematical understanding and numerical analysis of FEM in three
challenging settings: time-dependent domains, fluid—structure interaction (FSI), and the
maximum-norm stability of isoparametric FEM.

The first part addresses the Arbitrary Lagrangian—Eulerian (ALE) FEM for the Stokes
equations on moving domains. By establishing optimal L? error bounds of order O(h™*1)
for the velocity and O(h") for the pressure, this work closes a long-standing gap in the
literature, where only sub-optimal convergence rates were previously available. A novel
duality argument for H ~!-error estimate of pressure is developed to obtain optimal esti-
mates for the commutator between the material derivative and the Stokes—Ritz projection.

The second part develops and analyzes a fully-discrete loosely coupled scheme for fluid
thin-structure interaction problems. A key innovation is the construction and analysis of
a coupled non-stationary Ritz projection that satisfies the kinematic interface condition
and enables the derivation of optimal L? error estimates. The proposed loosely coupled
scheme incorporates stabilization terms to ensure unconditional energy stability and is
rigorously shown to achieve optimal convergence in the L? norm.

The third part focuses on maximum norm stability of isoparametric FEM in curvilin-
ear polyhedral domains where the geometry cannot be exactly triangulated. This includes
the proof of a weak discrete maximum principle and the derivation of optimal maximum-
norm error estimates for elliptic equations. For parabolic problems, the thesis establishes
the analyticity and maximal LP-regularity of the semi-discrete FEM and further proves
optimal maximum-norm error estimates.
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Chapter 1

Introduction

This thesis is organized into three main parts, each addressing a fundamental challenge
in the numerical analysis of finite element methods (FEM) for partial differential equa-
tions in complex geometries. The first part (Chapter [2) focuses on the optimal L? error
analysis of ALE finite element methods for the Stokes equations on time-dependent do-
mains. The second part (Chapter |3) presents an optimal L? error analysis of loosely
coupled schemes for fluid—structure interaction (FSI) problems. The third part (Chap-
ters 4| and [5) examines the maximum-norm stability and error estimates of isoparametric
FEM on curvilinear polyhedral domains, including the establishment of a weak discrete
maximum principle for elliptic problems and the discrete analyticity and maximal reg-
ularity for parabolic equations. Together, these contributions provide new theoretical
insights and practical methodologies that enhance the accuracy and reliability of FEM-
based simulations, particularly in evolving domains and coupled physical systems.

Chapter [2] of this thesis is devoted to establishing optimal L?-error estimates for the
arbitrary Lagrangian—Eulerian (ALE) finite element method for the Stokes equations on
time-dependent domains. We consider the following model problem:

u — Au+Vp=f in (| 20 x{t}, (1.0.1a)
te(0,7]

V-u=0 in (| 20 x {1}, (1.0.1b)
te(0,7

u=w on | J o9(t) x {t}, (1.0.1c)
te(0,T]

U = uy on §2° := (0), (1.0.1d)

where the domain {2(¢) evolves with a smooth boundary I'(t) := 0£2(¢), driven by a given
smooth velocity field w(-, t).

Significant progress has recently been made in Eulerian FEMs for fluid equations. In
particular, Lehrenfeld and Olshanskii [93] proposed a CutFEM-based Eulerian framework
for parabolic problems on moving domains, which was later extended to the Stokes equa-
tions by Burman et al. [31], who proved optimal-order estimates in the L*H"' and L?L?
norms. Alternatively, the ALE method has been a widely used approach for addressing
the challenges posed by domain motion, and it is the method employed in Chapter [2]

We consider the semidiscrete finite element approximation of problem (1.0.I). Let
Vir(2,(t)) and Q) ' (2,(t)) denote the Taylor-Hood P,—P,_; finite element spaces on
the evolving computational domain (2,(t). We seek functions u,(t) € V7 (£2,(t)) and
pr(t) € Q1 (2,(t)) such that uy,(0) = I,u(0) and uy, = Iw on 962, (t), satisfying:

(Dypun — wp, - Vg, vp) o, @) + (Vun, Vor) o, — (V- vn, pr) o) = (F, v) 2,0, (1.0.2a)
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(V-un, qn)o,@ =0, (1.0.2b)

for all test functions v, € V' (£2,(t)) and g, € Qr(£2,(t)).

Optimal convergence of order O(h"!) in the L>(0,T; L?) norm for the ALE semidis-
crete FEM has been proved for diffusion equations in moving domains by [64] and [102],
assuming polynomial degree r > 1. However, for the Stokes and Navier—Stokes equations,
prior analyses have yielded only suboptimal rates. Specifically, for the ALE FEM with
Taylor-Hood elements, existing results show an L? error of order O(h"); see [92, 122, [108].

In Chapter [2, we close this gap by proving that the semidiscrete ALE FEM achieves
O(h™1) convergence in the L? norm for the velocity and O(h") convergence for the pres-
sure. As demonstrated in [64], [102], obtaining optimal convergence requires establishing
the following estimate for the commutator between the material derivative D, ) and the
Stokes—Ritz projection Rp:

| Den Ry — Ry Dy pul| 2 < Ch™E (1.0.3)

To establish , the main challenge lies in the involvement of the pressure component
of the Stokes-Ritz projection in the L? duality argument for the commutator term. This
difficulty is resolved by additionally deriving and employing an optimal H ~!-norm error
estimate for the pressure component of the Stokes—Ritz projection.

Chapter |3| of this thesis is dedicated to the optimal L? error analysis of finite element
methods (FEM) for fluid-structure interaction (FSI) problems. This chapter addresses
two primary aspects: the first is the optimal error analysis for the semidiscrete finite ele-
ment approximation of the FSI system; the second concerns the stability and convergence
of loosely coupled schemes for time-discretized FSI problems.

To simplify the analysis, we consider a model problem describing the interaction
between a viscous incompressible fluid and a thin elastic structure. The fluid is governed
by the Stokes equations:

prou—V -o(u,p) =0, in (0,7) x {2,
V-u=0, in (0,7) x {2, (1.0.4)
u(07') :u()(x)a on .Q,

and the structure is modeled by a linear elastic wave equation:

ps€sOun — Lsn = —o(u, p)n, in (0,7) x X,
n(0,z) = no(z), on ¥, (1.0.5)
Im(0,z) = ug(z), on X,

subject to the kinematic interface condition:
om=u on (0,7)x X%, (1.0.6)

and periodic inflow—outflow conditions at the lateral boundaries ¥; and X, (see Fig-
ure [L.1).

In this analysis, several simplifying assumptions are made: (i) the domain deformation
induced by structural displacement is neglected (fixed-domain model), (ii) the domain
(2 admits an exact triangulation (no domain approximation error), (iii) the fluid and
structure are governed by linear equations (Stokes and elastic wave models), and (iv) the

10
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Figure 1.1: The computational domain for the thin-structure interaction problem

domain is assumed to be smooth with periodic inflow—outflow conditions (no geometric
singularities).

To the best of our knowledge, even under these simplified assumptions, optimal L?-
norm error estimates for FEM applied to FSI problems have not been previously estab-
lished. A primary difficulty lies in the absence of an appropriate Ritz projection that
accounts for the coupling between the fluid and structure. Standard Ritz projections
applied separately to the fluid and structure components fail to yield optimal L2-error
bounds for the coupled system; see, e.g., [5, 25] 54, 01, 120].

In Chapter (3] we resolve this issue by introducing a novel coupled non-stationary Ritz
projection. This projection consists of a triple (Rpu, Ryp, Ryn) of finite element functions
that satisfy a weak form of the coupled system, together with the time-dependent interface
constraint (Rpu)|ys = Oy Rpn on X x [0,T]. This construction is equivalent to solving an
evolution problem for R,n with a suitably chosen initial condition R,n(0).

Moreover, the dual problem associated with the non-stationary Ritz projection is
formulated as a backward-in-time initial-boundary value problem:

—Lsp+ ¢ =00(¢p,q)n+ f, on ¥ x [0,7), (1.0.7a)
—V.o(p,q)+¢ =0, in 2 x[0,7), (1.0.7b)
V-¢p=0, in 2x10,7), (1.0.7¢)

o(¢p,q)n =0, att ="1T. (1.0.7d)

This system is equivalent to a backward evolution equation for € := (¢, ¢)n of the form:
—LNE+NE—O0E=F onXx[0,T), &T)=0, (1.0.8)

where N : H-'/2(X)4 — HY?(%)? denotes the Neumann-to-Dirichlet map associated
with the Stokes system. By choosing a well-designed initial value R,n(0) and utilizing
the regularity properties of the dual problem (1.0.7)), which are shown by analyzing the
equivalent formulation in (1.0.8]), we are able to derive optimal L*-error estimates for the
Ritz projection and, consequently, for the semidiscrete FEM approximation of the FSI
problem.

For time discretization, loosely coupled schemes enable separate treatment of the fluid
and structure subproblems without requiring extra iterations. However, ensuring stabil-
ity—especially in the presence of strong added-mass effects, such as in hemodynamics—is
a major challenge; see [33]. The design of stable loosely coupled methods has been an
active area of research [29, [30} 13, 68, [72].

Among these, the kinematically coupled scheme has gained prominence due to its
modularity, stability, and ease of implementation. The scheme was first analyzed in [23,
72, 25]. It proceeds in two steps: first, compute (s",n") satisfying

s — unfl

Ps€s———— — Es’r]n =—o" . n, on 2, (109)
T

11
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then compute (u”, p™) satisfying

prDu" +V.0o" =0, in (2, (1.0.10)
V . un pr— 0’ in Q,
psesg + (0" —0") - n=0, on X.

In Chapter [3| we propose a finite element fully discrete version of this kinematically
coupled scheme. The fluid stress is evaluated explicitly as

oy - n = o(uy,py)-n = (—p, +2uD(uy)) - n.

To ensure unconditional energy stability, additional stabilization terms are incorporated:

uy —s; T W e T(1+ 8
Ps€s (ua O-(Vh7 Qh) : n> ’ <(0h - Uh 1) "n, (—)O'(Vh, Qh) : n)
by

T Ps€s Ps€s

by

Although alternative unconditionally stable fully discrete kinematically coupled schemes
have been proposed and studied [26], 120, [54, [5 28] 25], their analyses have generally
yielded only suboptimal L? error estimates, partly due to the lack of an appropriate Ritz
projection for the coupled system. In contrast, by employing the coupled non-stationary
Ritz projection introduced in this chapter, we are able to establish an optimal L? error
estimate for the proposed fully discrete scheme.

The third part of this thesis concerns the maximum-norm stability and error estimates
of isoparametric finite element methods (FEM). Such stability and error estimates have
been established in the literature in settings where the domain {2 can be exactly triangu-
lated by finite elements—for instance, polygonal or polyhedral domains that admit exact
triangulations using linear simplicies, so that the computational domain (2, coincides
with the exact domain 2. However, in practical computations, curved boundaries of
smooth domains—or more generally, curvilinear polygons or polyhedra that may include
curved faces, edges, and corners—are typically approximated using isoparametric finite
elements. In such cases, the discrepancy between the exact domain {2 and the compu-
tational domain (2, introduces a domain perturbation that must be carefully accounted
for in both the stability analysis and the error estimates.

In Chapter [4] we investigate the weak discrete maximum principle and derive optimal
maximum-norm error estimates for isoparametric FEM applied to elliptic problems. Let
2 C RY with N € {2,3} be a (possibly concave) curvilinear polyhedral domain with
edge openings smaller than 7, and let 7, be a quasi-uniform family of meshes composed
of isoparametric elements of order r, such that the Hausdorftf distance between (2 and
the computational domain 2, = (Uxes, K)° is of order O(h™*'). Denote by Sp(£25)
the associated isoparametric finite element space. A function u, € S,(£2,) is said to be
discrete harmonic if

/ Vuy, - th =0 \V/Xh € SZ(\Qh) (1011)
2y

If all such discrete harmonic functions satisfy

[unllzoo () < Cllunl|e(aay), (1.0.12)

12



with a constant C independent of A, the FEM is said to satisfy the weak discrete mazimum
principle.

The result in [125] established this principle for a broad class of H!-conforming ele-
ments on quasi-uniform meshes in polygonal domains. Moreover, the principle was used
to derive maximum-norm stability and best-approximation properties of the Ritz projec-
tion:

|lu — Rpullpo(oy < Ol inf  fju —vp||pe) Yu € Hy(2) N L>(92), (1.0.13)
vh €SP (£2)

where Ry, : H}(£2) — S5(£2) is the Ritz projection and

’ { In(2+ 1/h) for piecewise linear elements,
h =

1 for higher-order finite elements.

The method employed in [I25] remains a fundamental approach for establishing maxi-
mum norm estimates in FEM. Specifically, [125] reduces the problem to an L'-type error
estimate between the regularized elliptic Green’s function and its Ritz projection onto
the finite element space, using a dyadic decomposition of the domain and a kick-back ar-
gument to derive the desired L!-type error estimate. This argument was further refined
in [96], extending the result to three-dimensional polyhedral domains.

Some related results have been proved in the case (2, # 2. For general bounded
smooth domains which may be concave, thus the finite element space may be non-
conforming, Kashiwabara & Kemmochi [79] have obtained the following error estimate
for piecewise linear finite elements for the Poisson equation under the Neumann boundary
condition:

i = wnllioeen) < Chlloghl inf (17— vnllwsos(ey) + Ch* log Alljullwace(oy,  (1.0.14)
Vh h

where 1 is any extension of u in W% (£2;5) and {25 is a neighborhood of £2. More recently,
the W1 stability of the Ritz projection was proved in [43] for isoparametric FEMs on
O™l smooth domains based on weighted-norm estimates, where r denotes the degree
of finite elements.

For curvilinear polyhedral domains, the weak maximum principle and the best ap-
proximation results in the L* norm have not been proved. In this chapter, we close the
gap mentioned above by proving the weak maximum principle in for isopara-
metric finite elements of degree r > 1 in a bounded smooth domain or a curvilinear
polyhedron (possibly concave) with edge openings smaller than 7. The weak maximum
principle is proved by converting the finite element weak form on 2, to a weak form on
(2 by using a bijective transformation ® : (2, — {2 which is piecewisely defined on the
triangles/tetrahedra. This yields a bilinear form with a discontinuous coefficient matrix
Ap. To align the reduction step with [125, 96], we reduce the weak discrete maximum
principle to a L!-type estimate for v — R,v, where v is a regularized Green function on 2
with respect to the coefficient matrix A, (see for definition of v). The difficulty
arises from the limited regularity of v, as it solves an elliptic equation with discontinuous
coefficients. To address this, we decomposes v into two components: wv;, a regularized
Green’s function for the original Laplacian equation, and vy, which corresponds to an
elliptic equation with discontinuous coefficients A, but with a small source term arising
from the domain perturbation, and then estimate the two parts separately by using the
H? and W1? regularity of the respective problems.

13



As an application of the weak maximum principle, we prove that the finite element
solution uy, € S5 (£2,) of the Poisson equation

{—Au:f in (2

1.0.1
u=0 on 012 (1.0.15)

using isoparametric finite elements of degree » > 1 has the following optimal-order error
bound (for any p > N):

||u — uhHLoo(Q) < CEhHU - jhU,”LOO(_Q) + Chr—‘rlthfHLp(Q), (1.0.16)

where uy, is extended to be zero in 2\f2,, and Iyu denotes a Lagrange interpolation
operator. The maximum-norm error estimate is established in two steps. First, we
follow the approach of [125] to derive the L*°-stability of the Ritz projection R, from
the weak discrete maximum principle, which yields an optimal maximum-norm error
estimate between the finite element solution u; and the auxiliary solution u of the
Poisson equation posed on (2, where the source term f is extended by zero outside f2.
The second step is to estimate the difference between v and «®, which is achieved using
a maximum principle argument in an enlarged domain (2! that contains both 2 and (2.
This step leads to the error term Ch™ ™0, f||re(o) in (1.0.16)), capturing the effect of
domain perturbation {2 # (2;,.

In Chapter[5], we study the analyticity, maximal LP-regularity, and optimal maximum-
norm error estimates of isoparametric FEM for the heat equation in curvilinear polyhedral
domains (possibly with non-convex corners):

a“(ai’ D) _ Aultz) = flt.x), V() € R, x 2, (1.0.17)
u(t,z) =0,  V(t,x) € Ry x 012, (1.0.18)
u(0, ) = up(x), Vo € {2 (1.0.19)

The semigroup E(t) = e'® generated by the Laplacian operator A satisfies the following
analyticity estimates:

Stl>1%) (||E(t)UHLq(Q) + t”atE(t)UHLq(Q)) < OHU”Lq(Q), Yo € Lq(Q), 1<g< o
(1.0.20a)
s (100l + U000l < Ol W0 e @, (10200

Moreover, when uy = 0, the solution of (1.0.17)) exhibits maximal LP regularity in the
space LI((2):

| Osul| oy spa(2y) + || Aul| oy sra2)) < Cpgll fllrmysne2)y V1 <p,qg<oo. (1.0.21)

For spatially semidiscrete FEM, we study whether discrete analogues of (1.0.20)—(1.0.21))
hold. Let Ej(t) := e'®r be the discrete semigroup. Then the corresponding estimates
are:

sup ([1En () onll Lacan) + tN0ER(E)vnllLacay)) < Cllonll ) (1.0.22a)
t>

Y, € SZ(-Qh), 1 <qg < oo,
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||5tuh||LP(R+;Lq(9h)) + ||Ahuh||LP(R+;L4(Qh)) < Cp,qllfhlle(R+;Lq(Qh)) (1.0.22Db)
if upo =0, V1 <p,q < oo.

The analyticity and maximal regularity of the finite element semi-discrete or fully-discrete
problem have numerous applications and serve as important tools for the convergence
analysis of numerical schemes for nonlinear parabolic equations [2], 52, [67, 104, 88| [143].

By reducing the problem to an L!-type error estimate between the discrete Green’s
function and a regularized Green’s function of the parabolic equation, [120, 133] estab-
lished the analyticity property of the discrete semigroup Fj, for smooth domains.
The key estimate for the discrete Green’s function in these works was subsequently em-
ployed in [66] to prove the maximal LP-regularity of the discrete semigroup
Ey(t) when both the domain and the coefficients of the parabolic equation are suffi-
ciently smooth. Later studies further relaxed the regularity requirements on the domain
and the coefficients. In particular, the results in [T0T], 100, 104] demonstrated that both
(5.1.8a)) and ((5.1.8b]) hold when {2 is a (possibly nonconvex) polyhedral domain, provided
the coefficients satisfy a;; € WhVTe(2).

However, these results remain valid only under the assumption that the domain (2 is
exactly triangulated. In the setting of isoparametric FEM, as discussed in Chapter 4] the
discrepancy between the exact domain (2 and the computational domain {2,—i.e., domain
perturbation—must be properly addressed. Using the extension method, [80] proved
the discrete analyticity and maximal regularity properties ((1.0.22a])—((1.0.22b|) for finite
element semi-discretizations of parabolic equations on smooth domains with Neumann
boundary conditions, where (2, approximates (2 via a quasi-uniform triangulation 7y
composed of linear simplices, and Sy,(£2;,) denotes the P! continuous finite element space
on {2,.

The analyticity and maximal regularity of isoparametric FEM on
curvilinear polyhedral domains with possibly nonconvex corners had not been established.
In Chapter , we close this gap by following the strategy of [I01] to address the regularity
issues posed by nonconvex corners and, in place of the extension method, adopt the
transformation method to handle domain perturbation {2 # (2. Specifically, we employ
a Lipschitz homeomorphism ®,, : 2, — 2, as introduced in Chapter [4, to transform the
finite element problem on 2, into one on 2, where the transformed equation involves
a discontinuous coefficient matrix A,. Let I, denote the discrete Green’s function of
the transformed problem and I' the regularized Green’s function for the original heat
equation. Then, following [I01], the estimates and are reduced to an
L'-type estimate for the difference I' — I';,, which is obtained via a kick-back argument
involving parabolic dyadic decomposition, local energy error estimates, and local duality
arguments. A key challenge stems from the fact that T' — I'), satisfies only an almost
Galerkin orthogonality:

(8tF — ah(a:)ﬁtfh, )V(h)g + (VF — Ah(l‘)Vf‘h, V)Zh)g =0 Vy,€ SZ(Q)

This complicates the derivation of local energy error estimates and the application of
local duality arguments.

As shown in [I01], the quasi-maximal L*®-regularity of the FEM facilitates reduc-
ing the maximum-norm stability of finite element solutions for parabolic equations to
the maximum-norm stability of the elliptic Ritz projection. Specifically, the following
estimate holds:

||u — UhHLoo(O’T;Loo(Q)) S C (EhHU - Rhu”Loo(O,T;Loo(Q)) + ||UQ - Uh,OHLOO(Q)) . (1023)
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In the context of isoparametric FEM, we establish a corresponding estimate in which
the additional error introduced by the domain perturbation remains of optimal order.
Specifically, we show that

H?j — UhHLoo(O’T;Loo(Qh)) S C (éhHﬂ - Rh/leLoo(O’T;Loo(Qh)) -+ Hﬂo - uh70HLoo(Qh)) (1.0.24)

+Ch™ (lull o o,rwae () + |0l L7z (2)) -

Here, u denotes a Sobolev extension of the exact solution u to the larger domain 2 U §2;,.

Summary. This thesis contributes to the numerical analysis of partial differential equa-
tions by developing novel stability and error estimation techniques for finite element
methods in evolving and curvilinear domains. The results offer new theoretical insights
and practical tools for improving the accuracy and robustness of FEM-based simulations,
particularly in moving domain problems and fluid—structure interaction systems.
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Chapter 2

Optimal convergence of arbitrary La-
grangian Eulerian finite element meth-
ods for the Stokes equations in an evolv-
ing domain

2.1 Introduction

The Stokes equations are widely used to describe the motion of viscous fluids such as
water and air. Solving the Stokes equations is a critical area of research in fluid dynamics,
particularly when the domain is not fixed, such as in moving boundary /interface or fluid-
structure interaction problems. The inclusion of such a dynamic domain introduces an
additional layer of intricacy to the problem.

This chapter concerns the numerical solution of the Stokes equations in a time-
dependent domain 2(¢) C R? with d € {2, 3}, i.e.,

Ou—Au+Vp=f in | Q) x{t} (2.1.1a)
te(0,T]

Veu=0 in [ 20 x{t}, (2.1.1b)
te(0,T]

u=w on | J 90(t)x {t}, (2.1.1¢)
te(0,7T

u=uy on  2°=0), (2.1.1d)

where the domain §2(¢) has a smooth boundary I'(t) = 02(¢) which moves under a given
smooth vector field w(-,t). For well-posedness of system ([2.1.1)), velocity field w should
satisfy condition |, 22(t) w(-,t)-n = 0 for each ¢ € [0, 7], where n denotes the outward unit
normal vector of 9§2(t). For simplicity, we assume that the vector field w has a smooth
extension (which we do not need to know explicitly) to the entire space R? and generates
a smooth flow map ®(-,¢) defined on the entire space R?. The equation also includes a
source term f, a given smooth function that depends on both space and time variables.
In our analysis, the solutions (u,p) of equation (2.1.1) are assumed to be sufficiently
smooth. To ensure uniqueness of the solutions, we assume that p(-,¢) € L3(£2(¢)), which
is the space of functions p in L?(£2(t)) such that f()(t) pdzx = 0.

Recent advancements have brought significant progress in the convergence analysis
of finite element methods (FEMs) for fluid equations in evolving domains. The well-
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posedness of the Oseen equation in time-dependent domains was proved in [41] by using an
evolving space framework. Lozovskiy et al. [I11] introduced a quasi-Lagrangian FEM for
Navier—Stokes equations in time-dependent domains, demonstrating optimal-order error
estimates in the energy norm. In [I13] a kth-order unfitted characteristic finite element
method(UCFEM) was studied for the time-varying interface problem of two-dimensional
Oseen equations. Moreover, Eulerian FEMs for fluid equations have made significant
progress. An Eulerian coordinate framework using CutFEM for parabolic equations on
moving domains was proposed by Lehrenfeld & Olshanskii [93], while Burman et al. [31]
extended this framework to the Stokes equations, proving optimal-order error estimates
for the velocity in L?H'-norm and L?L?-norm. Further enhanced analysis of related
CutFEMs for the Stokes and Oseen equations was provided in subsequent studies of von
Wahl et al. [135] and Neilan & Olshanskii [116].

Another prevalent method used to handle the complexities arising from domain evolu-
tion is the arbitrary Lagrangian-Eulerian (ALE) method, which will be employed in this
chapter. The ALE method allows the mesh to move according to an ALE mapping, such
as the interpolation @, of ®, to fit the evolving domain. To employ the ALE formulation,
one can define the material derivative of the solution u with respect to the velocity field
w as

d
Dyu(zx,t) :== d—tu(CD(f,t),t) =0 +w-Vuat x =®(&,t) € 2(t) for £ € 2°. (2.1.2)
Using this definition of material derivative, the first two equations in (2.1.1) can be
rewritten as

Diwu—w-Vu—Au+Vp=f, (2.1.3a)
Vou=0, (2.1.3b)

and the ALE method can be employed to discretize the material derivative D;u along the
characteristic lines of the evolving mesh.

In an early investigation of ALE methods, Formaggia & Nobile [118] provided sta-
bility results for two different ALE finite element schemes. Subsequently, Gastaldi [63]
established a priori error estimates of ALE FEMs for parabolic equations, illustrating
that a piecewise linear element can yield L? error of order O(h) when the mesh size h is
sufficiently small. In a related study [117], Nobile obtained an error estimate of O(h¥) in
the L? norm for spatially semidiscrete ALE finite element schemes, with k denoting the
degree of the piecewise polynomials utilized. The stability of time-stepping schemes in
the context of ALE formulations, such as implicit Euler, Crank—Nicolson, and backward
differentiation formulae (BDF), were proved in [17] and [58]. Under specific generalized
compatibility conditions and step size restrictions, these investigations yielded L? error
estimates of O(7% + h*), where s = 1,2 corresponds to the order of the time schemes
and k denotes the degree of the finite element space employed. Moreover, Badia & Cod-
ina [I0] obtained L? error bounds of O(7* 4+ 7~ Y2hk+1) for s = 1,2 for fully discretized
ALE methods that employ BDF in time and FEM in space. These sub-optimal error
bounds were obtained when the mesh dependent stabilization parameter appearing in
fully discrete scheme is as small as the time step size.

Optimal convergence of O(h"™!) in the L>(0,T; L?) norm of ALE semidiscrete FEM
for diffusion equations in a bulk domain with a moving boundary was established by
Gawlik & Lew in [64] for finite element schemes of degree r > 1. We also refer to
[50] and [47] for a unified framework of ALE evolving FEMs and an ALE method with
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harmonically evolving mesh, respectively. Optimal-order H' convergence of the ALE
FEM for PDEs coupling boundary evolution arising from shape optimziation problems
was proved in [70]. These results were established for high-order curved evolving mesh.
Optimal convergence of O(h™™!) in the L>(0,T; L?) norm, with flat evolving simplices in
the interior and curved simplices exclusively on the boundary, was proved in [106] for the
ALE semidiscrete FEM utilizing the standard iso-parametric element of degree r in [94].

In addition to the ALE spatial discretizations mentioned above, the stability and
error estimates of discontinuous Galerkin (dG) semi-discretizations in time for diffusion
equations in a moving domain using ALE formulations were established in [19] and [1§],
respectively. The ALE methods for PDEs in bulk domains [70] are also closely related to
the evolving FEMs for PDEs on evolving surfaces. Optimal-order convergence in the L?
and H! norms of evolving FEMs for linear and nonlinear PDEs on evolving surfaces has
been shown in [45] 51, 86].

The above-mentioned research efforts have focused on diffusion equations with and
without advection terms. The analysis of ALE methods for the Stokes and Navier—Stokes
equations has also yielded noteworthy results but remained suboptimal, as discussed
below. In [92], Legendre & Takahashi introduced a novel approach that combines the
method of characteristics with finite element approximation to the ALE formulation of
the Navier-Stokes equations in two dimensions, and established an L? error estimate
of O(7 + h'/?) for the P;,—P; elements under certain restrictions on the time step size.
In a related work [122], an error estimate of O(h?|logh|) was obtained for the ALE
semidiscrete FEM with the Taylor-Hood P»—P; elements for the Stokes equations in a
time-dependent domain. Moreover, for a fully discrete ALE method with the implicit
Euler scheme in time, convergence of O(7 + h* + h?/7) was proved in [122]. The errors
of ALE finite element solutions to the Stokes equations on a time-varying domain, with
BDF-k in time (for 1 < k < 5) and the Taylor-Hood P,—FP,_; elements in space (with
degree r > 2), were shown to be O(7% + h") in the L? norm in [108].

As far as we know, optimal-order convergence of ALE semidiscrete and fully discrete
FEMs were not established for the Stokes and Navier—Stokes equations in an evolving
domain. As shown in [64], 102], the optimal-order convergence of ALE semidiscrete FEM
requires proving the following optimal-order approximation property for the material
derivative of the Ritz projection:

HDt,thu — Rth,huH[; < ChT—H. (214)

In line with the fixed domain case, achieving optimal consistency error in analysis of
finite element approximation for the Stokes equations necessitates the use of the Stokes-
Ritz projection Rj. As a result, when trying to obtain the optimal-order approximation
property following the duality argument as in [64, [102], a problem occurs that
the error estimate of Stokes-Ritz projection of pressure is involved in the analysis. This
problem was addressed by additionally establishing and utilizing an optimal H~! error
estimate for the Stokes-Ritz projection of pressure, i.e., (2.4.43)), which is used in Lemma
[2.4.5] This leads to optimal-order convergence of the ALE semidiscrete FEM, as the main
result of this chapter (see Theorem [2.2.1)).

A fully discrete second-order projection method along the trajectories of the evolv-
ing mesh for decoupling the unknown solutions of velocity and pressure is proposed to
compute the numerical solutions in the section of numerical examples.

For simplicity, we focus on the analysis of ALE semidiscrete method for the Stokes
equations. However, the numerical scheme and analysis presented in this chapter can be
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readily extended to the Navier-Stokes equations. The methodologies employed can be
effectively utilized to tackle the nonlinear terms as well.

The rest of this chapter is organized as follows. In Section we present the basic
notation of evolving mesh and ALE finite elements, as well as the semidiscrete ALE
FEM for (2.1.1) and the main theorem of this chapter. In Section [2.3) we present some
preliminary results for the evolving mesh, ALE finite element spaces, and boundary-
skin estimates. The proof of the main theorem is presented in Section [2.4] Section
includes numerical results for the Stokes equations and Navier-Stokes equations as
empirical evidence supporting our theoretical findings.

2.2 Notation and main results

2.2.1 Evolving mesh and ALE finite element spaces

Suppose that the initial smooth domain 29 is divided into a set 7,0 of shape-regular and
quasi-uniform curved simplices with maximal mesh size h. Each curved simplex K is
associated with a unique polynomial F of degree r, referred to as the parametrization
of K (as described in [50]). This parametrization maps the reference simplex K onto
the curved simplex K. Additionally, each boundary simplex K (with one face or edge
attached to the boundary) may contain a curved face or edge that needs to interpolate
the boundary I'° = 9£2°. To achieve this interpolation, we employ iso-parametric fi-
nite elements of Lenoir’s type (see [94] for further details) at time ¢ = 0 based on the
parametrization of the boundary which is denoted by 7 : 9D — I'°. Here, D repre-
sents the flat boundary face of the triangulated flat domain, which has the same vertices
as the curved triangulated domain 29 = J KeT? K. In practical implementations, the

parametrization 7" can be chosen as the normal projection onto I'’. In other words, it
computes the unique point 1'(x) € T'? satisfying the equation:

x =T (x) +sign(x, 2%z — T(2)|n(T(z)),
where n(7°(z)) is the unit outward normal vector at point 7'(x) and

. 1 for z e RN,
sign(z, QO) - { —1 for =z € _QO.\

Let us denote the nodes of the triangulation 7,0 as ¢ € RY, where j = 1,...,N.
Each node §; undergoes a time evolution with velocity w, resulting in the movement of
the node to a point z;(t) € R? at time ¢. This evolution is governed by an ordinary
differential equation (ODE):

d
§$j(t) =w(z;(t),t) and z;(0)=¢&;.

Consequently, the points z;(t), where j = 1,..., N, constitute the nodes of a time-
dependent triangulation denoted as 7, (t). The relations among these points mirror those
among the original nodes ;, namely, a set of nodes x;(t) form the vertices of a simplex in
Tr(¢) if and only if the corresponding nodes &; form the vertices of a simplex in 7;?. Hence,
the evolving domain (2,(t) = U7, ) K serves as an approximation of the exact domain
(2(t). This approximation is achieved by employing piecewise polynomial interpolation
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of degree r on the reference simplex, with an associated interpolation error of O(h™*1).
Note that the approximation to {2(¢) by (2,(¢) may not be Lenoir’s type for ¢t > 0.

In a manner similar to the initial triangulation 7,2, each simplex K € Tp(t) is as-
sociated with a unique polynomial of degree r, denoted as F}. : K-> K , which serves
as a parametrization of K over time. Therefore, the finite element space defined on the
evolving discrete domain (2, (¢) is given by:

SI(2(1)) := {vp € C(2u(1)) : vp o Fle € PT(K) for all K € T;(t)},

where P’“(f( ) represents the set of polynomials on K with degree less than or equal to
r. We denote V' (£2,,(t)) := Sr(§2,(t))¢ as the corresponding vector-valued finite element
spaces. The finite element basis functions of S} (f2,(t)) are denoted as ¢, where j =
1,..., N. These basis functions satisfy the property:

In terms of these basis functions, the approximated flow map ®(-,t) € V;"(£2?) can be
expressed as

N
=Y (0e(E) for £ € 2.
j=1

The flow map ®;(-,t) establishes a one to one correspondence between 29 and (2, (¢) at
time ¢, with a velocity field wy, € V[ (£2,(t)) satisfying:

wi (Pr (€, 1), 1) = iq>h (&,1) = Zw (z;(t), £)80(€) for & € 2. (2.2.5)
7=1

This representation corresponds to the unique Lagrange interpolation of the exact velocity
w(P(-,t),t). Analogous to definition (2.1.2)), we can define the material derivative of any
vector or scalar valued function v with respect to the discrete velocity field wy, as follows:

Dipv(z,t) = —v(®p(&,1),1) = Qv+ Vv - wy, at x = Oy (€,1) € 2(t) for £ € 2.

dt
(2.2.6)
The pullback of the finite element basis function ¢ from the domain §2,(t) to £2,(s),
ie., ¢ o ®y(:,t) o Pp(-,5)", gives rise to a finite element function defined on 2,(s).
Remarkably, the nodal values of this function coincide with those of ¢3. As a result, we
establish the equality ¢’ o ®,(-,t) o @y, s)7l = ¢5. Exploiting this relationship, we can
derive the well-known transport property of the basis function qb§, which states:

Dy p¢y(x) = %qb?({) =0at z = (£, t). (2.2.7)

2.2.2 The semidiscrete finite element approximation and main
results

We consider the Taylor-Hood type finite element spaces on the evolving domain §2(t),
which allow for a continuous approximation of the pressure. Specifically, we define the
following spaces:

Vi (2(1)) :={u € Vi (20(t)) = ulog, = 0},
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@ (@0) = e S @) [ pdr=0),
24 (t)
The semidiscrete finite element problem can be formulated as follows: Seek solutions
up(t) € V7 (§2,(t)) with initial value u;(0) = I,u(0) and the boundary condition u;, =
wy, on (), and pp,(t) € Q) ($2,(t)) that satisfy the following equations for all test
functions v, € Vy7(2,(t)) and g, € Q)1 (£2,()):

(Depun — wp - Vup, vn) g, ) + (Vun, Vo) g, — (V- vn, pr) 2,) = (f; vn) 2,09, (2.2.82)
(V-un, qn)o,@ =0, (2.2.8D)

The main result of this chapter is the following theorem.

Theorem 2.2.1 (Error estimates of the semidiscrete FEM). Consider the semidiscrete
finite element solutions (uy, py) given by ([2.2.8). Assuming that the exact solutions (u, p)
to problem (2.1.1)) are sufficiently smooth and have been extended to be defined on R via
, the following estimate holds under condition that w is sufficiently smooth:

sup |lu — unlz2(2, () < CRuph’™, (2.2.9)
t€[0,T]
|2 = pullL20. 10200 )) < CRuph”, (2.2.10)

where C'is a constant independent of the mesh size h and R, is a norm of (u,p) defined
as follows:

Ru,p ::|’8tuHL2(O,T;W”"+1v°°(Rd) + HuHL2(07T;W7"+2,OO(Rd))
+ [|0epl L2 0,157 Ry + Pl 2200, E57+1 (R2Y)

+ ||| oo (0,1 w100 RaY) + ||| o0 (0757 (1Y) -

The rest of this chapter is devoted to the proof of Theorem [2.2.1]

2.3 Preliminary

The analysis of integrals over dynamically evolving domains necessitates the application
of the Transport Theorem, as established in [I37, Lemma 5.7]. This pivotal theorem
provides a concise and indispensable description of the intrinsic relationship between the
time derivative of an integral over a domain that evolves with time and the derivatives
of the integrated function and domain velocity.

Lemma 2.3.1 (Transport Theorem). If the domain {2 undergoes motion with a velocity
field w € WH°(02), we have

%/Qfdx:/Qth—l—fV-wdx, (2.3.11)

where Dy f is the material derivative of f with respect to the velocity w.

The interaction between the operators D; and V plays an essential role in the error

analysis. Consequently, we establish the following lemma as a direct consequence of
(2.1.2)):
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Lemma 2.3.2. For any vector-valued function f, the material derivative of Vf and V- f
with respect to the velocity field w can be expressed as follows:

D\Vf=VD,f—VfVu, (2.3.12)
DN - f=V-Df —(Vf): (Vw)'. (2.3.13)

By employing Verfiirth’s trick and utilizing the macros-element criterion, as described
in [I6], Section 8.5 and Section 8.8|, we establish the inf-sup condition for the Taylor-Hood
type isoparametric elements.

Lemma 2.3.3 (Inf-sup condtion). There exists a constant k > 0, independent of h and
t €10,T] forr > 2, such that

divv
sup (divon, pr) o,

. > kllpnllizon)  Von € Q) (20(1)). (2.3.14)
otonery(2ne) | VUl L2200

2.3.1 Boundedness of partial derivatives of the mesh velocity

For any function u defined on (J,,1 £2(t) x {t}, there is an extension function u defined
on R? x [0, T] such that

U(-,t) == E(u(-,t) o ®(-, 1)) o &(-, 1)1, (2.3.15)

where the operator £ : L'(£2(0)) — L'(R?) refers to Stein’s extension operator in [130]
p. 181, Theorem 5]. It holds that

(-, t) lwep@ay < Cllul- t)|lwrrow)- (2.3.16)

Similarly, we can define the function p as the extension of p to the whole space R%. To
simplify the notation, we will just use (u,p) to represent (u,p) if there is no confusion
arisen within the context.

We denote the interpolation operators as Ij,(t) : C(£2,(t)) — S;(£2,(t)). Throughout
this discussion, the explicit time dependency t is often omitted, and we will use I, instead.

In certain cases, we come across vector-valued spaces such as Vi (£2,(t)) = S5 (£2,(¢))?
and the corresponding vector-valued interpolation operators such as . To streamline
the notation, we will use I, when referring to vector-valued objects, provided there is no
ambiguity within the context. In the same spirit, we use notation like || - || 41 (o)) instead
of || || g1 (o))+ when referring to norms of vector-valued objects.

By , the interpolation w;, = I,w serves as an approximation of w. Consequently,
we can establish an error estimate for wy, in the piece-wise Sobolev norm W, (£2,(t))
with respect to triangulation 7y(t) as follows:

Hwh(';t> - w('at)HW;?OO(Qh(t)) < Chr+1*k‘|w('7t)“W?"-Fl,oo(Qh(t)) VO<k<r+ 1, (2317)

which especially implies the W1>-boundedness of the discrete velocity wy,. Observe that
D(&,t) = Py(&;,t) for each nodes &; of discrete domain (27, thus there holds ®@,(-,t) =
I,®(-,t) on 22 and we can derive the error between ®(t) and @, (t) as follows:

[D(, 1) = o, ) [[wroo (o) < CR". (2.3.18)
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The estimates in (2.3.17)) and (2.3.18)) lead to the following result when h is sufficiently

small

[wn (-, )lwioe (@) + [Pal ) lwroe o) + 185 ¢ ) llwres@umy < C, (2.3.19)

where C' is a constant independent of the mesh size h and time ¢. This serves as a basic
condition on the mesh velocity in the subsequent analysis.

2.3.2 Error of domain approximation

To address the discrepancy between (2(t) and its finite element approximation (2,(t), we
utilize the boundary-skin estimate. This estimate is essential for effectively managing
errors that arise from the finite element approximation of the domain.

Lemma 2.3.4. For any finite element function v;, € V{(Qh(t)), the following inequalities
hold:

onll 2n ey < CRATTY 22270 Lo 1y < ORI 224270101 o 1y

Proof. Using Holder’s inequality, Newton-Leibniz formula and the fact Uh|emh(t) =0, we
have

lonll2(2nene) < 1920(8) \ 26)Y2|vall L (@, 0020

< |20\ )V sup  dist(x, 0924) | Von| Loe(a, )
rEM(\2A)

S ChB(r-ﬁ-l)/?||vvh||Loo(Qh(t))

S ChS(T—i—l)/Q—d/Q||vvh||L2(Qh(t)) S Ch3(r+1)/2_d/2_1||Uh||L2(Qh(t))a
where we used the fact that the distance from x € (2, \ {2 to 9§2,(t) is no greater than
Ch™! and the inverse estimate of finite element functions in the last two inequalities. i

Due to the inherent discrepancy between the finite element domain (2, (f) and the
exact domain §2(t), the exact solution u does not vanish on 92, (t). To handle this

situation, we rely on the following lemma to derive an estimate for the integral over the
boundary 0§2,(t). A proof of this lemma can be found in [102] eq. (3.32)].

Lemma 2.3.5. Let g € WYYHRY). Then the following inequality holds:

9l @) < Cllgllnoew) + ClIVIllL ewuanw) (2.3.20)
where C' 1s a constant independent of the mesh size h and time t.

The significance of the ensuing lemma lies in its pivotal role in acquiring optimal H -
norm estimates for pressure through implementation of a duality argument. A rigorous
proof of this lemma can be found in [53, Corollary 1.5].

Lemma 2.3.6. For each A € H'(2(t))NLE($2(t)), there is a function x € H?(Q2(t))* N H (2(t))?
such that divy = X, and the following inequality holds:

x|l 200y < ClIIMH (2

where the constant C' is independent of t € [0,T].
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2.4 Error estimates of the semidiscrete FEM

2.4.1 The Stokes—Ritz projection

Analogous to the Stokes—Ritz projection in a fixed domain, we introduce the concept
of the Stokes—Ritz projection for the pair (v(-,t),q(-,t)) € H (2(t)) x L*(£2,(t)) for
t € [0,T] over a time-dependent finite element domain (2,(t), denoted as (Ryv, Rnq) €
Vir(2,(1) x Q4 ($2,(t)). The Stokes—Ritz projection satisfies the following equations for
all test functions y, € V7 (£2,(t)) and A, € Q;'(£2,(t)) under the boundary condition
Ryv = Ihv on 082(t):

(VRhU> th)Qh(t) - (V * Xhs RhQ)Qh(t) = (vva VXh)Qh(t) - (V * Xh, (])Qh(t), (2.4.21&)

(V . RhU, /\h)()h(t) = (V - U, /\h)(lh(t)' (2.4.21b)
Additionally, we define the norm || - || over any domain D C R? as follows:
||f||/L?(D) = |If - f”L?(D)a (2.4.22)

where f denotes the average of f over D, given by f := ‘%' /, pfdr.

By utilizing the inf-sup condition (2.3.14]), the Stokes—Ritz projection exhibits quasi-
optimal error estimates, as stated in the following lemma:

Lemma 2.4.1. [69, Chapter 2, Theorem 1.1] Let (Ryv, Ryq) denote the Stokes—Ritz
projections of (v,q). Suppose that (v,q) are sufficiently smooth. Then the following
estimate holds

IV (v = Rpv) |2 (2n ) + lla — thHL2(Qh(t)) < Chr(””“H;'*'l(_Qh(t)) + ”qHH;:(-Qh(t))>7

where Hj ((2,(t)) means the piece-wise Sobolev norm with respect to the mesh Tp(t). The
constant C' is independent of h,t and the function (v, q).

Remark 2.4.1. Lemma is a corollary of [69, Chapter 2, Theorem 1.1] and error
estimates of Lagrange interpolation:

IV (0 = L)l 220y < CRE 0]l i,y g = Itz < Ch*llall e

where k is restricted by condition that %l < k < r due to the requirement of Sobolev
embedding H*(R?) — C°(R?) for the stability of Lagrange interpolation. To obtain
Lemma [2.4.1] it suffices to take k = r. Since r > 2 and d € {2,3} by our assumption,

the restriction k = r > % is satisfied. However, if ¢ only possesses H!'-regularity, as is

the case for the solution ¢ of the duality problem , there is no desired estimate
of Lagrange interpolation error of q. To overcome this problem, we can consider the
Scott-Zhang interpolation Z, (cf. [129] and [2I, Section 4.8]). Though we are working
with finite element space consisting of isoparametric elements, the same strategy as in
[129, Theorem 3.1] still applies to prove the following first-order error estimate:

||q - IhQHLQ(Qh(t)) S CthHHl(Qh(t)) (2423)

As a corollary, let Py, : L2(2,(t)) — S;(24(t)) be the L?(£2;(t))-orthogonal projection
onto the finite element space Sy ((2,(t)). Then, there holds:

g = Prallr2(2,0) < lla — Znall 22,0y < Chllalm e, (2.4.24)

We shall utilize (2.4.24) in our duality argument contained in Lemma and Lemma
2.4.5 below.
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In order to prove the optimal-order estimate of the error between exact solutions and
numerical solutions, we need to facilitate the estimation of errors such as Dy (v — Ryv)
and Dy (¢ — Rpq). It is convenient to introduce the operator E;; defined as:

Et,h = Dt’th — Rth,h- (2425)
We can establish the following lemma about the estimate of VE, v and Ej q.

Lemma 2.4.2. Let (Ryv, Rnq) denote the Stokes—Ritz projections of (v,q). Suppose that
(v,q) are sufficiently smooth. There is a constant C' independent of h,t and the function
(v,q) so that the following estimate holds:

IV Euollzenn + 1l iz < CF (10l ouey + lall g ). (24.26)

Proof. Since equations are invariant under the substitution ¢ to ¢ — g with g
being the average of q over (2,(t), it suffices to assume that § = 0. Now, we fix a time
t € [0,T] and a pair of testing functions y, € Vy(£2,(t)) and Ay € Q) (£2,(t)). From
(2-4.21), the following equation holds for each s € [0, T:

(V(Ryv = v)(s), VXn($))2u6) = (V- Xn(5), (Brg — @)(8))2u) = 0, (2.4.27a)
(V- (Ryv — 0)(8), M(8) — Mn(8) ) = 0, (2.4.27D)

where x5 (s) € V7 (£24(s)) and Ay (s) € St (2,(s)) are defined by ya(s) := xa(t) o én(t) o
(dn(s))™t and Ay(s) := Ap(t) o dn(t) o (on(s))™!, i.e. the finite element functions on
24, (s) with the same nodal values as x;, and A \n_respectively. Note that by definition
Dynxn(s) = DypAp(s) = 0 for all s € [0, 7] and A\, (t) = A, = 0 but in general )\h( ) # 0.
By taking derivative with respective to time s at s = ¢t on both sides of ({ , and
using Lemma and Lemma [2.3.2 we obtain

(VD Ry, VXn)2n@t) — (V- X DenRu@) 2,y — (VDepv, VXu) 2, ) + (V- Xn, Dend@) 2,
= —(V(v = Rpyv)Vwn, Vxn) o, + (V(v = Rp), VX (V - wp, — Vwg)) o, @)

+ (Vxn : (Vwn)T = V- xaV - wn, ¢ — Rug) g, ) (2.4.28a)
(V- DepRyv, An)any — (V- Dipv, An) o)
= —(V(v—Ry) : (Vwyp) ", M)aont) + (V- (v = Rpv), AWV - wi) 0, 1)

(An, V-wp) g
+ (V . (th — U); 1>Qh(t) |Qh<t)’ h(t)

Similarly to the definition of (2.4.21]), we can define the Stokes—Ritz projection of (D; yv, Dy 1q),
and substitute the definition into (2.4.28)), we obtain

(2.4.28b)

(VE v, ViXn)oww — (V- Xns Een@) 2, 0)
= —(V(v = Rpyv)Vwn, Vxn) o, + (V(v = Ryv), VXAV - wy, — VX VW) g, ¢
+ (Vxn s (V)" =V xo V- wi, ¢ — Ruq) o, 1) (2.4.29a)
(V- Eepv, An) a2, 0)
= —(V(v—Rp): (Vup)", M) an) + (V- (v = Rpv), AWV - wp) g, 1)
(An, V- wn) 0,0
|£2,(2)]

+ (V- (Ryv = 0), Dy (2.4.29b)
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By the definition of the Stokes-Ritz projection, R,v = Iv and Ry, Dy v = 1, Dy v on the
boundary 0(2(t). Then D, Ryv = Dy pIpv = 1Dy v on 082;,(t), which means E; v =0
on 0f2,(t). Hence, we can choose x5 = E;pv and Ay = Eypq — m in equation
with E;,q being the average of Ejjq over §2,(t), and obtain the following estimate by
using the W1 boundedness of wy,

||VEt,hU||%2(Qh(t)) <C|V(Byv — U)H%?(Qh(t)) + Cllg - RhQ||%2(Qh(t))
+ ClEeng — Eepdll 2oy IV (Rrv — )| 202, 0))- (2.4.30)

By using the inf-sup condition (2.3.14)) and the equation ([2.4.29al), we have

e Vo Xns Eing — Eipg VX, By ng
| Eeng — Et7hq||L2(_Qh(t)) <C  sup ( v i thd) =C sup (V L)
0#XREV) | Xh||L2(9h(t)) 0#XnEV) I XhHL?(Qh(t))

<C<||VEt7hU||L2<rzh<t)) + I V(Rrv — )| 22,00 + llg — RhQ||L2(Qh(t)))-
(2.4.31)

By substituting (2.4.31)) into (2.4.30]), and using Young’s inequality and Lemma

under the assumption g = 0, we obtain the desired result. il

2.4.2 The Nitsche’s trick and duality argument

In order to obtain an optimal order error estimate of Ryu — u, we will apply Nitsche’s
trick. Let g, be a function in V) (£2,(t)) that we can extend outside of (2,(t) by setting
it to zero. We solve the following equations in $2(t) for (¢, @) € Hj(2(t)) x LE(2(t)):

—AYp+ V=g, in 2(t), (2.4.32a)
V- L/J =0 in Q(t), ¢|3_Q(t) =0. (2.4.32b)

By applying regularity estimates for the Stokes equations in 2(¢), we obtain the following
result:

[l 22wy + 1IVellr2awy) < Cllgnllrz, @) (2.4.33)

To extend the functions ¥ and ¢ to @Z and @, respectively, we employ the Stein extension
operator as in ([2.3.15)). By applying this operator, we can define 17 as 7 := —Av+Vp—gp
and arrive at the following expression:

901|720, 0n = (V. Van)auey — (V- g0, @)ty — (9, M - (2.4.34)

Notably, since 77 vanishes in (2(¢) and we have r > 2, we can utilize Lemma along
with the regularity estimate (2.4.33)) to obtain the following inequality:

(g, M 2| = [(gns Manenew] < 17l 2@allgnllzz@aonewm) < CRgnll7e0, @) (2-4.35)

Consequently, when h > 0 is sufficiently small, we can absorb |(gn,7) g, | on the right-
hand side of (2.4.34) by the left-hand side. This yields the following estimate:

lgnl1Z (2, 0 < C’(V%Vgh)nh(t) — (V91 @) an |- (2.4.36)

We choose g, = Ryv — Iv € V{(Qh(t)) in (2.4.32). By appropriately estimating the
right-hand side of ([2.4.36)), we can derive the following lemma.
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Lemma 2.4.3. Let (Ryv, Rpq) be the Stokes—Ritz projection of (v, q). Suppose that (v, q)
are sufficiently smooth. Then there ezists a constant C independent of h, t and (v,q)
such that

[Riw — ol 2y <Ch™ (uvuwmmh + llalligcnon ) - (2.4.37)

Proof. ¥or g, = Ryv — Ipv, by utilizing (2.4.36)), the definition of Stokes—Ritz projection

©2.2.21) with (xn, M) = (In), P @) (notlng that ]hw|3gh = 0 since z/1|39 = 0 and thus
¥ vanishes on all the boundary nodes of (2,(t)), and integration by parts, we have

191117200 ‘(Viﬂ V(Ryo =)y — (V- (R = v),9)a,0)
+C|(VE V(o = In)oyw = (V- (0 = 1), By

<C|(V(& = 1), V(Bo = )ay + (V- Inth, Bug = 4 = Doy

+ C‘(V (Rpv —v), 0 = Pr@) 0,0
(-

—I—C" Azb—i—Vgp,v—Ihv)gh (V@b n— pn, U—Ihv)agh(t)

where we used following notations: P is the L?(£2,(t))-orthogonal projection of @ onto
the space S5~ L(02,(t)) and P,3 = @ is the average of Pp@ on 2,(t) so that Pip =
P.G — Py belongs to Q) (2 (t )) For L2-orthogonal projection P, there holds error

estimate (cf. (2.4.24]) of Remark [2.4.1]
IPhp — Dl z2neyy < CRNDl (2,00 (2.4.38)

And we can deduce following estimate for |3| from condition ¢ € L3(£2(t)),

EE - T )
On(O\L(2) Q@\2n ()

<O @l zoeay(192(6) \ 2u ()7 + 1024(2) \ £2(8)]"?)
<Ch)|@ll 1 g, (2.4.39)

As a corollary, we have
IPLE = @llz2nw) < Chllollm 2. w)- (2.4.40)

By using the error estimate of interpolation /I, the error estimate of P (|2.4.40]), Lemma
2.4.1) and the regularity result (2.4.33)), we have

||9h||%2((zh(t))
<C (10l m2qeey + 1830y ) (B (Bv = )220 + 10 = Tl )

+C\v-1h@5q—th—a)

+ C‘ n- VQ/) —on,v — Ihv)a.(?h(t)

<O (ol s + Nallmrcenion ) lonllony + C| (V- (& = 1), 0 — Fag = Doy

+C‘ V'w,q—th—Q)rzh(t)

VQ/} 1N — (pl’l, v — Ihv)agh(t) .
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We estimate the left terms subsequently.

(V- (= 1d). g — Rag = Da

< Chll | m2ananlla = Raallza(o, -
It is known that V-4 = 0 in (2(t). Hence, we have

‘(V o, q— Rng — 7))

<V - Dl rxeneneanlla = Ruall 2o,
<LC|2O\2(H)[3 |V - ¢||L6(Rd)||q - RhQHIL?(Qh(t))
<Ch||¢||H2(Rd)Hq - RhQHIL?(Qh(t)y (2.4.41)

where the last inequality follows from the fact r > 2, Lemma [2.4.1] and (2.4.33). By

using Lemma and (2.4.33), we have
1ol oono) (19810, + 18112000

<Cllo = ol (1P m2gey + 1Bl ey )
SONH[vllyr+1o0 g, iy |90l 2202001 (2.4.42)

‘(n Vw on, v — Iv)an, @

Combining the above estimates, we obtain the desired estimate (2.4.37)). 1
To obtain the optimal order estimate of E; ,v, we rely on the negative norm estimate
of R;q — q, which is shown in the following lemma.

Lemma 2.4.4. Let (Ryv, Rpq) be the Stokes—Ritz projection of (v,q). Let G denote the
average of q over (2,(t). Suppose that (v,q) are sufficiently smooth. Then for each
A\ € HYRY), the following inequality holds.

(4= Rug = @, Ny < CRH (Ilollyreo, o + lallmgonen ) Nl (24.43)

The constant C' is independent of h,t and (v, q).

Proof. For each A € H*(RY), let \, IQ(t)I Jou Adx denote its average over £2(t). By
Lemma [2.3.6}, there exists y € HQ(Q( )) N Hl(Q( )) such that

divy =A— X, in 20), Il < CIM a @s- (2.4.44)

We extend x to ¥ € H?(RY) as mentioned in (2.3.15). By decomposing the integral, we
have

(g = Rng =G, X = Ao,

(g — Rng — 3, X = M) awenew| + (@ — Bra — 7,V - Xawwne|
(g — Rng — 3,2 = M) awenew| + (@ — B — 7,V - Xaww|

+ (¢ = Rhg — 7,V - Xanenow |-

(g — Rrg — 7, N o] =

IA /N

To estimate the boundary-skin integral, we derive the following inequalities by using

Lemma 2.4,k

(g = Rug — T X — M) auonew| + [(@ — B — 7,V - Xa,enen|
<[lg = Rull z2(a, ey Ul z2enena) + M zz@umnew) + IV - X2 enaw))
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<lla = Rudllzz(q, yy (Ael120(8) \ 212 + (IV - Xl zogeay + [l 2s(a)) |2 (8) \ 2(8)]?)
<llg = Ruallz2 @,y (Rel120(E) \ 2012 + (X0 2y + 1M a1y 200 \ 2(2)]7)
<O (ol g oy + Nl ) N e, (2.4.45)

where we have used Hélder’s inequality, Sobolev embedding H'(R?) — L%(R?), regularity

estimate ([2.4.44]), and the fact r > 2. )
Since X|an@) = 0, we can interpolate X to a function x;, € Vi (£2,(t)), ie., xn = InX.
Then we have
(¢ — R — T,V - X
(= Rhg =T,V -(X— xu)en| + (¢ — Rg — 7,V - Xh)rzh( )‘
(@ = Rrg— 3, V- (X = xu)aww| + |(V(Rw =), Vxn — X)) aww| + |(V( R — ), VX) 0,0
CHIReguy (||q — a9 (R — v>||mh<t>>) + \ (R —v), VDau0|

C (10l g3y 0 + Nl

IA TN

IN

/N

) ) N ey + |(V (Riw = 0), VR) o0

Integrating by parts and dealing the boundary integral term as in (2.4.42)) and using
regularity estimate (2.4.44)) as well as Lemma [2.4.3] we obtain

[(V (B =), VR)z2(pi00| <C (10 = 0llz2(y 09 + | Rnv = v, 09 ) 1Kl ey
<C (1R = vllz2(onen + I1Bx0 = ollz=om ) ) INm ey
<C (Iolgoe gy o + lall g ) 1AL o

Combining the above estimates completes this proof.
Having completed the necessary preparations, we are now poised to establish the L2-
estimate of £} ,v. To achieve this, we adopt a proof technique akin to that used in Lemma

2.4.3] leveraging the insights gained from ([2.4.36|) and (2.4.43)).

Lemma 2.4.5. Let (Ryv, Ryq) be the Stokes—Ritz projection of (v,q). Suppose that (v, q)
are sufficiently smooth. Then there is a constant C independent on h,t and (v,q) such
that the following estimate holds:

1B, 0]l z2(0, ) <Ch! (||v||WT+1m(Qh + llall ey e )) (2.4.46)

Proof. Similarly to the proof of Lemma [2.4.2] we may assume that § = 0, where 7 is
the average of ¢ over (2,(t). Since E;,v = 0 on the boundary 02,(t), we can choose

gn = Eypv in (2.4.32)). By (2.4.36|) and the definition of Stokes—Ritz projection, we have

1Bl <C| (Ve Yan)anr = (7 - g1 Bt

<c‘ V1, VEu0) 0,0 — (V- Bont, Pi@) o,

+0‘ (1= 1), VEu0) gy — (V- Eupv, (1= P)@) 0,0 |-

Let x, = ImZ, A =Prp :=Prp— P.@ in (2.4.29) (where Py, is the same L2-orthogonal

projection operator as used in proof of Lemma [2.4.3)), we obtain

| Bt pol] %Q(Qh(t))



gC — (V(U — th)th, VIhJ)Qh(t) + (V(U — th), VI;ﬂZ(V W — th))gh(t)

+C|(VI : (Vup)T =V - LV - wy, q — Ruq)a, )

+ C — (V(U — th) . (th)T,IP’;;cﬁ)Qh(t) + (V . (U — th), PZ@V . wh)gh(t)

(Pr@, V- wh) 2, 1)
| 2,()]

+ O (V . (th — U), ].)_Qh(t)

+ C|(V - Iy, Evng — Ernd) o

(

+C|(V( = L)Y, VEL) 0y — (V- Eupv, (1= PP 0, 1)
(
(

<C| = (V(v = Rpo)Vun, V(I — ) aue + (V(0 = Ryv), V(I — ) (V - wy, — Vwn)) a0

(

(
+C{(V(Inh =) : (Vwn) " =V - (It = )V - wh, ¢ — Rug) o,

(

(

+C| = (V(v—=Rpv) : (Vwn) ", Prg — @), + (V- (v— Rypv), (Prg — @)V - wh) g, 0)

Ryv — 0)Vwn, Vib) o, + (V(0 = Ryw), Vo(V - wh — Vo)), 0

+ C|(V

+C|(VY 2 (V)" = V-0V - wi, g — Rug)an

+C| — (V(U - Rh’U) (th) , P )Qh(t) + (V . (U — th), AV ’wh)gh(t)

(Pr@, V- wh) 0, 1)
|02, ()]

+C (V ) ([h - 1)7:57 Et,hq - Et,hQ)Qh(t) + C‘(V : 127 Et,hq - Et,hQ)Qh(t)

+C|(V(L = 1), VE ) a0 — (V- By, (1= P5@) a0 |

+C|(V - (Byv = v), gy

Furthermore, wy, can be replaced by (wj, —w) +w. In view of the error estimate (2.3.17)),
applying the same routine as in the proof of Lemma [2.4.3] i.e. using the error of inter-
polation [y, error of modified L?-projection P} (2.4.40), Lemma and an analogue of

estimate (2.4.41)), we have

1B 2oy SCHH (1elligescay o + lallmgionn ) (19022 + 18 ni0n )

(P4, V- wi) o, 1)
|£2,(1)]
+C|(V(Rpv — v)Vw, Vi) g, + (V(v — Ryw), V(Y - w — Vw)) g, )

+C|(V - (Rpv —v), g,

+C|(VY : (V)T =V -4V - w,q — Ruq) a0

+C| = (Vv = Rp): (V) ', @), + (V- (v — Ryv), 3V - )0, )| -

By using the regularity result (2.4.33]), Lemma [2.4.4) and integration by parts, we obtain

B2z, 9 SCH™ ([0l ooy + Nl ) 1 Bentllzzeno)

( th,V wh)Qh(t)
1£2,(1)]

+ C‘(th — 0, n)agh(t)
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+C| — (Rpv — v,V - (VJV'IUT»Q;L@) + (Rpv —v,n - (VJV@UT))BQh(t)

+C| = (R — v,V - (VO(V - w — Vw))) g0

+C|(v = Ryv,n - (V(V - w — Vw)))ag, o

+ C|(v = Ry, V - (3(Vw) ) gy — (v — Rpo, V(SV - w)) g, 1)

+C| = (v = Rpv,n - (Vw) Nag, @) + (v — Rpv) -0, @V - w0)ag, 1)

Since Rpv = Iv on 0§2,(t), by using Lemma [2.4.3, we have

HEt,hUH%%Qh(t)) <Cn (HUHwﬁlm(Qh(t)) + ||Q||Hg(nh(t))) | £t vl 2202, 1))
+ C(Hth = vl 2@uey + v — 1hU||Loo<arzh(t))> 1Pl 2 ey + 190 1 mey)

<O (Iollyg oo gy + 19l ) I Bentlliza, o (2.4.47)

By using Young’s inequality, we finish the proof. i
With these preparations done, we can go start proving Theorem [2.2.1] which is shown
in next subsection.

2.4.3 Proof of Theorem 2.2.1

Proof. We define the auxiliary function £ in R as follows:
§:=0u—Au+Vp— f, (2.4.48)

where u, p, f represent their extensions to R?. By testing the equation (2.4.48)) with
vy, € VI (£24(t)), we obtain:

(D pu — wp, - Vu, vp) 2, 1) + (Vu, Vo) o,0) — (V- v, 0) 0,00 = (F, Un)2n@) + (& V)2 )-

Applying Hélder’s inequality, Lemma[2.3.4) and the fact » > 2, we can derive the following
estimate:

(& vn)anw] = (& vn)aenew| < CH Vol 20,0 1€l 12 (Re)- (2.4.49)

It follows from (2.4.21)) that the Stokes—Ritz projection (Ryu, Ry,p) satisfies the following
equation
(D Ryu—wy - VRyu, vp) g, + (VRyu, Vop) o, — (V- n, Bib) 2, )

= (fv Uh)f?h(t) + (57 Uh)f?h(t) + (ﬁa vh)Qh(t) Yoy € ‘O/fzn(“oh(t))v (2-4'503)
(V - Ryu, Qh)Qh(t) =0 Vg, € inl(ﬁh(t)), (2450b)

where the remainder .% := D, ;,(Ryu — u) — wy, - V(Rpu — u) represents the consistency
error of the spatial discretization.

Since v, € V;'(£2,(t)), via integration by parts, we can estimate wy, - V(Rpu — u) as
follows:

|(wh . V(Rhu — u), Uh)_(zh(t)‘ = } — (th * Wp, Rhu — U)Qh(t) — (Rhu — U, Wy, - V?Jh)gh(t){
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< Cl|Rpu — ull 220, e 1onl 1 n ) (2.4.51)

where we have used the W'>° boundedness of the mesh velocity, i.e., ||wy(¢)|lwree (o, @) <

C', which follows from (2.3.17) and the triangle inequality. Thus, we have

(F on) o] <C (1D (Ra = )2y 0y + 1R = w20 ) ol -
<C (IEunull 2wy + IBxDunte = Dol sz ) lonllms e, o

+ Cl|Ryu — ul| L2, o) [1vnl 712 0)) (2.4.52)

by the definition (2.4.25) of E;;. We can estimate ||RyDypu — Dypul| 20, ) term in
(2.4.52) by Lemma as follows:

| Ry Dy e — Dy ]| 120, 1))
<Ch*! (”Dt nttllyrees @, ) T 1 Deapl

H}(92,(t ))
gC’hr+1<||8tu||Wr+1oo(gh ) F wallyyreroo g, @ Il wrzeo @, 0
10l @ + lonllwg= oy Il

<CH (10l wrre @y + Nullwez@,w) + 10l i) + Pl (2u0)
(2.4.53)

where we have employed formula ([2.2.6)) of material derivative and the VVTJrl = boundedness

(2.3.17)) of discrete velocity wy,. Comblmng the estimate (2.4.53)) and ( as well as
using Lemma and Lemma , we can derive that

(Z,vn) ] < O Aup(®)|vnll 20 (2.4.54)

where we used notation A, ,(t) which is an abbreviation defined as follows

Aup(t) = [0, ) lwreroogay + [[uls D) llwrezoomay + 10 ) | mr@ay + [1PC Ol e oy

Let us define e, := Rpu — u, and e, := Ryp — py. By subtracting equation ([2.2.8)
from equation (2.4.50) we obtain the following equations for any v, € V'(£2,(t)) and
an € Q7 (2u(1))

(Dt,heu Wy, - Veu,vh)fzh (Veu,vvh)(zh(t (V Uhaep>9h(t (f+§,vh)9h(t),
(2.4.55a)

(V- €us @) 2,1y =0 (2.4.55b)

Since Rpu = Iu = wy, = uy, on the boundary 02 (t), we have e, € V{(Qh(t)) By testing
(2.4.55a)) with v, = e,, we obtain:

1d
5 stlleal® a0 + 196u 30,y =6 edann + (Fn)anin

<Ch 1 Aup(®)lew(®) (20

where the last inequality follows from (2.4.49) and (2.4.54]).
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By applying Young’s inequality and absorbing ||eu||§{1(9h(t)) on the right-hand side,
we can integrate the inequality from 0 to ¢ to obtain:

t
lewllZz 2, ) +/0 IVeullZz(,)ds < [len(0)]|72, o) + CR: WD < OR, Y.

Combining this result with Lemma [2.4.3] we derive the estimate for u — uy,.
For the estimate of p — py,, by using inf-sup condition, the W1*-boundedness of wy,

and equation ([2.4.55al), we have

V-wup,e
lepllz2 (@) <C sup é—hf’)
0#vn VY (824 (t) H Onll L2 1))
<C (h?“JrlAu,p( ) + HveuHm(Qh(t)) + HDt,heuHLQ(Oh(t))) i (2.4.56)

Since Dy pe,, = 0 on the boundary 0f2,(t), we can chooose v, = Dy e, in (2.4.55a]) and
obtain

IDeneullZ2(, ey — (Wh - Vew, Dinew)a, @ + (Vew, VDinew) o, — (V - Dinéu, €p)au
= (§+F, Dinew) o, (2.4.57)

From Lemma [2.3.1) and Lemma [2.3.2] it is known that

1d 1
(Vew, VDineu)an =3 Ght”V@uHL2 () 5(\V€ul2, V- wi) 1)

+ §(Veu(th + (th)T), Veu)()h(t). (2.4.58)

By taking derivative to (2.4.55b)) with respect time, we obtain that

(V- D, peq, Qh)ﬂh(t) +(V-e,V-w, — Ve, : (th)T, qh)gh(t) =0. (2.4.59)
Let ¢, = e, in (2.4.59)), we have
(V . Dt,heu, Gp)gh(t) -+ (V . euV s Wh — Veu . (th>T, ep)Qh(t) =0 (2460)

Substituting (2.4.49), (2.4.54), (2.4.58) and (2.4.60)) into (2.4.57)), and using inverse esti-

mate, we can obtain that

1d
1Dl + 51V eul B,

SCR™ Ay ()| Deneull a1, + CllDeneull 2 @nep I Vel 2w
+ ClIVeull 20, llenl 2(2n@y) + CHV%HB(Qh(t)
<SCh" Ay (1)|| Dy, heuHLz 2n®) T CllDeneull 2o, ep IV eull L2 (e
+ C||V€u||L2 (2t ||€p||L2(nh(t) + C||V€u||m(nh(t> (2.4.61)

By substituting ([2.4.56) into (2.4.61)), using Young’s inequality, and integrating both sides
from 0 to ¢, we have

t
/0 ||Dt,h€u||%2(9h(s))d5 + ||V€u||%2(9h(t))
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t
<Ch' R, , + C/o IVeullZa ) ds + Vel 01720 < CR7 RS . (2.4.62)

Combining (2.4.62)) and (2.4.56|), we obtain that

lepllz2 0,22 (2 t))) < CRuph”.
By using Lemma [2.4.1] we can deduce that
0 = pullL20.1 020 ))) < CRuph” + CP||20,1), (2.4.63)

where p(t) is the average of p(t) on Qh(t). Since p € L3(£2(t)), we have that

p(t)| <C ()/ pdx‘+‘/ pde
Cn(0\2() L)\ 2 (1)

SOl )l oo ey (12 @NL()] + [L2(2)\ 20 (2)])
<CA,,(t)h"™  (Sobolev embedding H" ' (R%) — L>®(R?) used) (2.4.64)

Combining (2.4.63)) and (2.4.64]), we complete the proof. I

2.5 Numerical experiments

In this section, we provide numerical tests for problem to support the theoretical
result proved in Theorem 2.2.1] For temporal discretization, We use the second-order
projection method. If we define the pull back operator P;"™ : V/'(£21) — V7 (£2;") as
Py, = v 0 @ o (P7) ! for any vy, € V/(£21), then the fully discrete scheme is shown
as follows: Find u"+1 € Vr (27t and pitt € Q) (27 at step n + 1 such that

n—+1 n,n+1 n n+1l,n_ n4+1 n+1n
- [ (Uh - P, Up, vh) g+ + (Ph uy T —uy, Py )O;; }

(
(

( n+1+PnTL+1 n)v( n—l—l_l_Pn’fH-l n) Uh)

n+1
“Qh

n+1,n n+1 n+1n n+1 n n+1,n
(P, +wy) - V(BT ), B Uh>m
h

+
wl»—‘ B~ |+~ |+~

(Vi + P, Von) L+ (VO 0 ), VBT )
h

[ ot
[ (V U, P © P 0 (‘132“)_1)9;;“ + (V ' P}?H’nvhap?}:)m;]
(

1 n n Vas n
:5[(]” thrl),Uh)_Qn-H + (f(tn), PPHY vh)m} Yoy, € ViI(2p), (2.5.65a)

(V- upt Qh)gn-H + B7 (V™ = ppo @ o (P77, VQh)QZ+1 =0 Vg, € Q) (20,
(2.5.65b)

where § > 1 is a constant. In the numerical tests, we choose § = 2. The solution
uj*! is obtained by solving equation (2.5.65a]), and subsequently, pj*! is computed using

equation (2.5.65bH) and u}"'.

Ezample 2.5.1. Let £2(t) be an ellipse given by:
t

Qt) = {(z,y) : Fla,y) <0} for F(z,y) = (1—2)2 PH1-) 7y -1
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Then for ¢t > 0, the domain (2(¢) evolves with volume invariant. We select the velocity
function w to be

FVF
w(z,y;t) = —% on 9f2(t), and —Aw=0 in 2(t).
The initial value wgy is chosen to be w(-,0) and f = 0. Since the exact solution is

not known, we compute a numerical solution for sufficiently small 7 and h as reference
solution.

The initial and final discretized domains, denoted as §2,(0) and (2, (1) respectively, are
illustrated in Figure 2.1, These domains are obtained by employing the P; element and
P, element, representing the piecewise linear and quadratic finite elements, respectively.

To assess the convergence properties of the numerical scheme, we conducted a con-
vergence test at time 7" = 1 to assess the spatial discretization. For this purpose, we
employed two different sets of finite elements: Py, — Py, and P, — P, while keeping the
time step sizes sufficiently small to ensure minimal errors from the time discretization.
The errors of the numerical solutions are presented in Figure for varying mesh sizes:
h =1/8,1/16,1/32,1/64. The results demonstrate that the numerical solutions exhibit
r 4+ 1-th order convergence in space, where r corresponds to the order of the FEM. This
finding aligns with the theoretical results established in Theorem for r = 2. No-
tably, for the Py, — P; element, we verified that the inf-sup condition (2.3.14]) is satisfied.
Therefore, we can attain second-order convergence using the same approach presented in
this chapter.

In addition to investigating the convergence in space, we also conducted a tempo-
ral convergence test at T = 1 using the P, — P; element and a suitably small mesh
size that ensures negligible errors from the space discretization. The resulting errors
of the numerical solutions are depicted in Figure for different time step sizes: 7 =
1/50,1/100,1/200,1/400. The observed errors demonstrate second-order convergence of
velocity w in time.

Ezxample 2.5.2. In this example, we investigate the convergence order of numerical solu-
tions in a rotating domain. Let the initial £2(0) be an ellipse given by
25 25
2(0) = 4 Sy <1
0) = {(ry): 2a2 4 2y <1
The domain {2(t) is generated by the rotating mesh velocity field w(zx, y, t), which is given
by

w(z,y,t) = (—ysint, zcost).

The exact solutions (u,p) are chosen to be u(x,y,t) = w(x,y,t) and p(x,y,t) = z + y.
The source function f is chosen to be consistent with the equation ([2.1.1a)).

Similarly to Example [2.5.1] we assess the convergence behavior of the numerical so-
lutions. Specifically, we investigate the convergence of spatial discretization using the
Py, — Py, and P, — P; elements, considering sufficiently small time step sizes that ensure
the errors from time discretization are negligible. Figure illustrates the errors of the
numerical solutions for different mesh sizes: h = 1/8,1/16,1/32,1/64. The results in-
dicate that the numerical solutions exhibit r 4+ 1-th order convergence in space for r-th
order FEMs. This convergence behavior aligns with the Theorem [2.2.1}

In addition, we examine the convergence of the velocity u in time at 7" = 1 using
the P, — P; element, with a sufficiently small mesh size that ensures the errors from
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Figure 2.1: Meshes of P, and P, elements at time T"=0 and T = 1.
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Figure 2.2: Errors from spatial discretization for 7' = 1.
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Figure 2.3: Errors from temporal discretization for velocity v at time 7" = 1.
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spatial discretization are negligible. The errors of the numerical solutions are presented
in Figure for various time step sizes: 7 = 1/50,1/100,1/200,1/400. The numerical
results demonstrate a second-order convergence in time.
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(a) L? error of u from spatial discretization at T =1 (b) L2L? error of p from spatial discretization

Figure 2.4: Errors from spatial discretization for 7' = 1.
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Figure 2.5: Errors from temporal discretization for velocity u at time T" = 1.

Ezample 2.5.3 (Navier—Stokes flow in a domain with rotating propeller). In this example,
we investigate the fluid motion surrounding a rotating propeller, governed by the Navier—
Stokes equation with slip boundary conditions, i.e.

( 8tu+u-Vu—V-(2u]D)u—%pI):0 in J 02(t) x {t},
t€(0,T]
V-u=0, in |J 20t) x {t},
t€(0,7T]
u-n=w-n on |J 992(t) x {t}, (2.5.66)
te(0,77]
((2uDu — %p]) 1) tan + ktgan = 0 on J 002(t) x {t},
te(0,77]
[ U= ug on £2(0),

where the subindex tan stands for the tangential component of a vector, w is the velocity
of the propeller defined on the boundary and has a natural extension to the whole domain
£2(t), u = 0.001 denotes the viscosity, p = 1000 is the fluid density, and n is the outward
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normal vector on the boundary. The initial domain {2(0) corresponds to a unit sphere
with an ellipse removed, defined as:

200) = {(z,y) - 2® +y* <1, and 207 + 4¢° > 1}.

The propeller, depicted as the middle ellipse in Figure 2.7, has a prescribed velocity
profile. Specifically, when 0 < ¢ < 2, the propeller velocity is given by w(z,y;t) :=
(—2ty, 2tx), and for t > 2, it is defined as w(x,y;t) := (—2y, 2x). This velocity naturally
extends to domain (2.

The numerical method studied in this chapter can be extended to the Navier—Stokes
equations with slip boundary conditions. The scheme needs to be modified to suit the
slip boundary conditions, and optimal-order convergence in space and second-order con-
vergence in time can be established similarly.

We perform convergence tests for the accuracy of the numerical scheme. To investigate
the convergence in time, we select the P, — P; element with a sufficiently small mesh size,
ensuring that the errors from space discretization are negligible. The results, presented
in Figure (a), demonstrate the errors of the numerical solutions for various time step
sizes: T = 1/960,1/1440,1/2160,1/3240, and indicating that the numerical solutions
exhibit second-order convergence in time.

@ u

-@- Plb-P1
-—- 0(1?)

P2-P1
——- 0(h?)
o(h3)

L2 Errors of U
L2 Errors of U

1/3240 1/2160 1/1440 1/960 1/130 1/120 1/110 1/100
T h

(a) L? error of u from time discretization (b) L? error of u from space discretization

Figure 2.6: Errors from time and space discretization at time 7" = 1.

In addition to time discretization, we illustrate the convergence of spatial discretiza-
tion using both the P, — P, and P, — P; elements, with sufficiently small time step sizes
to ensure negligible errors from time discretization. Figure (b) presents the errors
of the numerical solutions for various mesh sizes: h = 1/100,1/110,1/120,1/130. The
results demonstrate that the numerical solutions exhibit (r + 1)th-order convergence in
space for finite elements of degree r. This aligns with the theoretical results presented in
Theorem 2.2.7] in the case r = 2.

To illustrate the propeller rotation, we conduct simulations with a mesh size of h =
0.01 and a time step size of 7 = 0.001. Figure depicts the process of the propeller
rotation and displays the magnitude of the velocity field |u|. The figure portrays the flow
of the fluid driven by the yellow elliptic propeller, offering insights into propeller-driven
flows.
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Figure 2.7: Flow of the fluid driven by propeller rotation.
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Chapter 3

Optimal L? error analysis of a loosely
coupled finite element scheme for thin-
structure interactions

3.1 Introduction

There has been increasing interest in studying fluid-structure interaction due to its diverse
applications in many areas [44, 59, [77, 110, [117]. Numerical simulations are crucial in this
field, and over the past two decades, numerous efforts have been devoted to developing
efficient numerical algorithms and analysis methods.

This chapter focus on a commonly-used academic model problem, where an incom-
pressible fluid interacts with thin structure described by some lower-dimensional, linearly
elastic model (such as membranes in 3D, strings in 2D). This thin-structure interaction
model is described by the following equations

(prou — dive(u, p) = 0, in (0,7) x £2,
divu = 0, in (0,T) x £2, (3.1.1)
u(0,-) =uo(z),  on L,

\

(pe€sOun — Ly = —o(u, p)n, in (0,7) x X,
(0, ) = no(z), on %, (3.1.2)
9 n(0,z) = uo(x), on X

with the kinematic interface condition
om=u on (0,7)xX (3.1.3)

and certain inflow and outflow conditions at 3; and X,; see Figure [3.1] The unknown
solutions in (3.1.1)) —(3.1.3)) are fluid velocity u, fluid pressure p and structure displacement

1. The following notations are also used in the model:

€5 The thickness of the structure.

75 The fluid viscosity.

Py The fluid density.

Ps: The structure density.

n: The outward normal vector on 0f2.
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Q

(u,p) = —pI +2uD(u): The fluid stress tensor.

(u) = 3(Vu+ (Vu)?):  The strain-rate tensor.

: An elliptic differential operator on ¥, such as
L, =—1+ A,, where A, is the Laplace-Beltrami
operator on .

50O

by

b (2 hI

Dy

Figure 3.1: The computational domain in the thin-structure interaction problem

In general, two strategies can be employed to construct numerical schemes for solving
fluid-structure interaction problems. Monolithic algorithms solve a fully coupled system,
which can be expensive for complex fluid-structure problems. Various studies have fo-
cused on the numerical simulation and analysis of monolithic algorithms, as can be found
in [76], [78, [65], 911 90 109, 117]. Alternatively, the fluid and structure sub-problems can
be solved separately by partitioned type schemes. A strongly-coupled partitioned scheme
often requires extra iterations for the sub-problems at each time step to obtain the so-
lution which at convergence coincides with the monolithic one [I17, 55], while the extra
iterations are not needed in loosely-coupled partitioned schemes. However, the stability
is a key issue for loosely-coupled partitioned schemes, which may be hard to be ensured
for highly added mass effect problems such as hemodynamics (e.g.[33]). The develop-
ment and study of stable loosely-coupled partitioned schemes have been an active area
of research (e.g. [29, 30, 13| 68| [72]).

Among those loosely-coupled partitioned schemes, the kinematically coupled scheme
is the most popular one due to its modularity, stability, and ease of implementation. The
scheme was first studied in [72] for the fluid-structure interaction problems and subse-
quently by numerous researchers [23, 25 26], [112], 120]. However, the analysis of kinemat-
ically coupled schemes has been challenging due to the specific coupling of two distinct
physical phenomena. In [54], Fernandez proposed an incremental displacement-correction
scheme, which proved to be stable, and the following energy-norm error estimate was es-
tablished using piecewise polynomials of degree k for both u} and 7} in , ie.,

n 1
n n m m 2 n n n n
lu = i lleaey + (D0 7™ = wgrl2) + o = il ey + " = mills < C( + 1Y),
m=1

(3.1.4)

The above estimate is optimal only for the velocity in the weak H'-norm (more precisely,
L*(H')-norm) and not optimal in L*norm. Several different schemes were investigated,
and similar error estimates, such as those given in [25] [120], were provided. The kinematic
coupling has been extended to other applications, such as composite structures and non-
Newtonian flow [24, 112], by many researchers. Additionally, a fully discrete loosely
coupled Robin-Robin scheme for thick structures was proposed in [28], where they showed
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that the error estimate in the same energy norm as in is in the order of O(y/7 +
h) for k = 1. Recently, a splitting scheme was proposed in [5] for the fluid-structure
interaction problem with immersed thin-walled structures. The scheme was proved to be
unconditionally stable, and a suboptimal L?-norm error estimate was presented.

Optimal L?-norm error estimates play a crucial role in both theoretical analysis of
algorithms and development of novel algorithms for practical applications. However,
to the best of our knowledge, such results have not been established due to the lack
of properly defined Ritz projections for fluid-structure interaction problems. This is in
contrast to the error analysis of finite element methods for parabolic equations, where
the Ritz projections have been well defined since the early work of Wheeler [140]. For
instance, for the heat equation d;u — Au = f, the Ritz projection is a finite element
function Rju that satisfies the weak formulation:

/ V(u— Ryu) - Vopdr = 0 for all finite element functions vp,. (3.1.5)
Q

With this projection Ry, the error of the finite element solution can be decomposed into
two parts:
u—up = (u— Rpu) + (Rpu — up,).

In the analysis of the second part, the pollution from the approximation of the diffusion
term is not involved, thus enabling the establishment of an optimal-order error estimate
for || Rpu — unl|22(). The optimal estimate for ||u —up||r2(0) can be derived from the fact
that the projection error ||u — Rpul/r2() is also of optimal order. However, formulating
and determining optimal L?-norm error estimates for a suitably defined Ritz projection
in fluid-structure interaction systems remains a challenge. The standard elliptic Ritz
projection for the Stokes equations, while widely employed for obtaining error estimates
in the energy norm, no longer produces optimal L?-norm error estimates for such fluid-
structure interaction systems; see [B, 25] [54], 911, 120].

In this chapter, we propose a new kinematically coupled scheme which decouples (u, p)
and n for solving the thin-structure interaction problem, and demonstrate its uncondi-
tional stability for long-time computation. More importantly, we establish an optimal
L?-norm error estimate for the proposed method, i.e.,

[u" = wujll 2 (o) + 0" = wjllzm + 0" = m3ll 2y < O(r + A5, (3.1.6)

by developing a new framework for the numerical analysis of fluid-structure interaction
problems in terms of a newly introduced coupled non-stationary Ritz projection, which
is defined as a triple of finite element functions (R,u, Ryp, Ryn) satisfying a weak for-
mulation plus a constraint condition (Rpu)|s = 0;Rpn on 3 x [0,7]. This is equivalent
to solving an evolution equation of Rj,n under some initial condition R,n(0). Moreover,
the dual problem of the non-stationary Ritz projection, required in the optimal L?-norm
error estimates for the fluid-structure interaction problem, is a backward initial-boundary
value problem

—Lp+¢d=00(p,gn+f on X x[0,T) (the boundary condition) (3.1.7a)

—V ol q)+¢=0 in 2 x[0,7) (3.1.7b)
V.$=0 in 0 x[0,7) (3.1.7¢)
o(p,q)n=0 at t=1T (the initial condition). (3.1.7d)
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which turns out to be equivalent to a backward evolution equation of £ = o (¢, ¢)n, i.e.,
—LNE+NE—0£=1F on X x[0,T), with initial condition &(T) = 0, (3.1.8)

where N : H=2(X)? — Hz (%)% is the Neumann-to-Dirichlet map associated to the Stokes
equations. By choosing a well-designed initial value R,n(0) and utilizing the regularity
properties of the dual problem (3.1.7), which are shown by analyzing the equivalent
formulation in ([3.1.8)), we are able to establish optimal L? error estimates for the non-
stationary Ritz projection and, subsequently, optimal L?-norm error estimates for the
finite element solutions of the thin-structure interaction problem.

The rest of this chapter is organized as follows. In Section 2, we introduce a kine-
matically coupled scheme and present our main theoretical results on the unconditional
stability and optimal L?-norm error estimates of the scheme. We focus on a first-order
kinematically coupled time-stepping method and the class of H'-conforming inf-sup sta-
ble finite element spaces, including the classical Taylor-Hood and MINI elements. In
Section 3, we introduce a new non-stationary coupled Ritz projection and present the
corresponding projection error estimates (with its proof deferred to Section 4). Then
we establish unconditionally stability and optimal L?-norm error estimates for the fully
discrete finite element solutions by utilizing the error estimates for the non-stationary
coupled Ritz projection. Section 4 is devoted to the proof of the error estimates of the
non-stationary coupled Ritz projection. We present a well-designed initial value of the
projection and the corresponding error estimates based on duality arguments on the thin
solid structure. In Section 5, we provide three numerical examples to support the theoret-
ical analysis presented in this chapter. The first example illustrates the optimal L?-norm
convergence of the proposed fully-discrete kinematically coupled scheme. The second
example demonstrates the simulation of certain physical features, which are consistent
with previous works. The third example is the 3D simulation of common cardiac arteries
in hemodynamics.

3.2 Notations, assumptions and main results

In this section, we propose a stable fully-discrete kinematically coupled FEM for the FSI
problem ({3.1.1))—(3.1.3). Then, we present main theoretical results in this work.

3.2.1 Notation and weak formulation

Some standard notations and operators are defined below. For any two function u,
v € L*(£2), we denote the inner products and norms of L?({2) and L*(X) by

(4, 0) = / wE)dx, [l = (u,w),
(w,6)s = / wEEE) dx,  [wllE = (w,w)s.

We assume that 2 C R? (d = 2, 3) is a bounded domain with 92 = ¥, U, UY, where
denotes the fluid-structure interface, ¥; and ¥, are two disks (or lines in 2-dimensional
case) denoting the inflow and outflow boundary. Moreover, ¥, = {(z,y, 2+ L) : (z,y,2) €
¥, for some L > 0}.
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For the simplicity of analysis, we consider the problem with the periodic boundary
condition on ¥; and Y,. Assume that the extended domains 2., and X, are smooth,
where

2w = A{(z,y, 2) : Ik € Z such that (z,y,z + Lk) € 2 U},
Yoo = {(2,9, 2) : Ik € Z such that (z,y,z + Lk) € B}.

We say a function f defined in {2 is periodic if
flx,y,2) = f(z,y,z+ kL) VY(v,y,2) € QU VkecZ.

The space of periodic smooth functions on (2., is denoted as C*°({2,). The periodic
Sobolev spaces H*({2) and H*(X), with s > 0, are defined as

H?(£2) := The closure of C*°({2,,) under the conventional norm of H*({2),
H?* (%) := The closure of C*°(X,) under the conventional norm of H*(¥),

which are equivalent to the Sobolev spaces by considering (2 and X as tori in the z
direction. The dual spaces of H*({2) and H*(X) are denoted by H*({2) and H*(%),

respectively.
We define the following function spaces associated to velocity, pressure and thin struc-
ture, respectively:

X(02):=H ()Y, Q) :=L*12), S):=H' (%)

Correspondingly, we define the following bilinear forms:

af(u,v) : =2u(D(u), D(v)) for u,v € X(£2), (3.2.1)
b(p,v) :=(p, V-v) for v € X(£2) and p € Q(£2), (3.2.2)
as(n,w) : = (=L, wW)s for n,w € S(X).

We assume that L is a second-order differential operator on ¥ satisfying the following
conditions:

||£sw||Hk(E) < C||W||Hk+2(2) Vw e Hk(E d, Vk > —1, k € R, (323)
as(n,w) = as(w,n) and as(n,n) >0 Vne H'(X), (3.2.4)
Inlls +lInlls ~ [l ) for Infls == v/as(n,n). (3.2.5)
In addition, we denote ||ufl; := /(D(u),D(u)) and mention that the following norm

equivalence holds (according to Korn’s inequality):
[ully + lall ~ ffull o)

For the simplicity of notations, we denote by ||v||z»x the Bochner norm (or semi-norm)

defined by

1/
(S5 vt ) ™ 1< p< oo

SUDyefo,7) HV( »lx p = o0,

[VIzrx =
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where || - ||x is any norm or semi-norm in space, such as || - ||z, || - ||s or || - |z2(x). The
following conventional notations will be used: || - ||X = lxw -1l = 1 - 2

Il =1l - lz2s) and |- Iy o= || - |u H s =1+
For smooth solutlons of (3.1.1] - , one can verlfy that (via integration by parts)
the following equations hold for all test funct10ns (v,q,w) € X x Q x S with v|g =
on=nu on X,
pr(O,v) + ap(u,v) — b(p,v) + b(q, u) + pses(Oun, w)s + as(n, w) = 0. (3.2.6)

3.2.2 Regularity assumptions

To establish the optimal error estimates for the finite element solutions to the thin-
structure interaction problem, we need to use the following regularity results.

e We assume that the domain 2 is smooth so that the the solution (u,p,n) of the
fluid-structure interaction problem (3.1.1)—(3.1.3)) is sufficiently smooth.

e The weak solution (w,\) € H'(£2)% x L?(£2) of the Stokes equations

—V.ow\)+w=f
V-w=
has the following regularity estimates:
|wl| grerare + | M| grsrre < Cllf||gr-r2 + [lo(w, A) - 0| grsy for k> —-1/2, kR,
(3.2.7)
HLUHHk+1/2 + H)\ - 5\’|ka1/2 < CHfHkasm + HwHHk?(E) for k > 1/2, keR,
(3.2.8)

where \ := ‘—}2' | oA is the mean value of A over §2. The estimates in and
(3.2.8) correspond to the Neumann and Dirichlet boundary conditions, respectively;
see [61, Theorem IV.6.1] for a proof of in smooth domains, with a similar
approach as in [61], Chapter IV] one can prove . We also refer to [74, Theorem
4.15] for a proof of in the case of polygonal domain.

e We assume that operator L, possesses the following elliptic regularity: The weak
solution & € H(X)? of the equation (in the weak formulation)

as(é: ) (67 )Z_( W)2 VWEHl(E)d,

has the following regularity estimate:

3.2.3 Assumptions on the finite element spaces

Let 75, denote a quasi-uniform partition on 2 with 2 = | rer, K. Each K is a curvilinear
polyhedron/polygon with diam(K) < h. All boundary faces of 7, on ¥ form a partition
Th(Y), X = UDG%(E) D. All boundary faces of 7, on X; or X, form a partition for ¥,
or Y., respectively, and these two partitions coincide after shifting L in z-direction. To
approximate the weak form by finite element method, we assume that there are
finite element spaces (X}, S5, Q) ') on Tj, (where 7 > 1) with the following properties.
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e (A1) X; CX, S, CSandRC Q! CQ, with S} = {vy|s : v, € X3}

e (A2) For X! and @}, the following local inverse estimate holds on each K € T,
for 0 <1<k, 1<p,q<o0:

||Vh||Wk,p(K) S th—(k—l)—i-(d/p—d/q)||Vh||leq(K) VVh € X;L or Q;L_l, (3210)

For S}, the following global inverse estimate holds:

wes) < ChF% ||\ willgnsy Vwy, € Sp; Vk,s € R with 0 <k <s<1.
(3.2.11)

W

e (A3) There are interpolation/projection operators I;X : X — X7 and [ ,? Q=
2_1 which have the following local LP approximation properties on each K € Tj,

forall 1 <p < oc:

1170 = | oy + R 0 = allwie < CHMHullysasa,y VO<k<T,
(3.2.12a)

112D — pllioey < CH Y |pllwrsioan VO<k<r—1,
(3.2.12b)

where Ak is the macro element including all the elements which have a common
vertex with K. And there is an interpolation/projection operator I : S — S%
satisfying (I;*u)|z = I} (u]s) for all u € X with u|s, € S. Moreover, we require the
following optimal order error estimate

IIPw — wl|s + Al w — W) < CthrlHWHH}I:Jrl(E) VO<k<r, (3.213)

where || - || 1+ () 1S the piecewise H F1norm associated with partition 75 (). We

will use I, to denote one of the operators I;*, I’ and I }? when there is no confusion.

o (A4) Let X7 := {v, € X7 : vj|y, = 0} and 251 = {q, € Q)" : g, € L3(2)}. The

following inf-sup condition holds:

lgnl|< € sup (div v, gn) Vg, € Q) 4 (3.2.14)

0#v,EXT Vil ’
Remark 3.2.1. Examples of finite element spaces which satisfy Assumptions (A1)—(A4)
include the Taylor-Hood finite element space with I;X, I }? and I being the Scott-Zhang
interpolation operators onto Xj, 2’1 and Sj respectively. We refer to |21, Section 4.8]
and the references therein for the details on construction and properties of Scott-Zhang
interpolation, and refer to [16, Section 8.8] for a proof of for the Taylor-Hood
finite element spaces. The following properties are consequences of the assumptions
(A1)-(A4).

1. From (A2) and (A3) we can derive the following estimate for v, € Xj:

Danls=( Y IDEn)

DeTh(E)
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1/2
< C’( Z hd_1||Vh||%/Vl,oo(K)> (K € T, contains D)
DeTh(E)

1/2
<c( Y nvalagg) < CRYvall,
DeTh(%)

Therefore, we can obtain the following inverse estimate for the boundary term

U(Vh,(]h)n:
lo(Va, gn)nlls < Ch2([[villar + [lgnl)- (3.2.15)

2. From (A3) and (A4) we can see that when r > 2, the mixed finite element space
(X5, Q77 1) can be realized by the (r,r —1) Taylor-Hood finite element space. When
r=1, (X},Q%) can be realized by the MINI element space.

3. From inf-sup condition (3.2.14]), we can deduce the following alternative version of
inf-sup condition (involving H'(¥)-norm in the denominator)

HQhHS C sup (dIVV}uCJh)

Vg, € Q) 3.2.16
ozviexy | Vallat + [[Vallms) " ( )

An inf-sup condition similar to (3.2.16]) was proved in [I41], Lemma 2], though thick
structure problem is considered there. For the reader’s convenience, we present a

proof of ([3.2.16|) in Section

4. For each wy, € S}, we denote by E,wj, € X} an extension such that Epwy, 1= I,f(v,
where v € H'(£2)? is the extension of w;, by trace theorem, satisfying ||v|| gz <

Cl|Wh| r1/2(s) and v]s = wy,. Combining (3.2.12) with (3.2.11)) we see that

| Exwal|m < Ch™ Y2 |wy|s. (3.2.17)

5. Combining ([3.2.12) with (3.2.15) we have for any u;, € X}, p, € Q7"

lo(u—up,p—pp)n|ls

<llo(u— Iy, p— Iyp)n|s + [[o(lpu — uy, Inp — pr)n||s

< C(llu = Luflwres + |lp = Inpll ) + lo(Znu — up, Inp — pr)nls

< Ch"+ Ch™ (| Iyu = sl g1 + || Tnp — pal))

< O V2 L Ch Y2 (lu— uwpllm + |lp — pul]), (3.2.18)

where we have used ((3.2.12]) with p = oo and (3.2.15|) in the second to last inequality.

3.2.4 A new kinematically coupled scheme and main theoretical
results

Let {t,})_, be a uniform partition of the time interval [0, 7] with stepsize 7 = T'/N. For

a sequence of functions {u"}Y_ we denote

n __ unfl

Du'=——— forn=1,2,..., N.

T

With the above notations, we present a fully discrete kinematically coupled algorithm.
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Step 1: For given u} ™!, pi~ n7~ ! find n? and s € S} such that
SZ — uZ_l n n—1 r
pses |~ Wn | + as(my, wp) = —(0) " -1, wWp)s, Vwy, €S, (3.2.19)
b2
m=

Step 2: Then find (u}, p}) € X5 x Q) ! satisfying

pr(Druy, vi) +ag(uy, vi) —b(pr, vi) + b(gn, uy) — (o}, -1, vi)s (3.2.20)
u? —s? T
+Ps€s( bR vy + G("hth)'n)
T s€s )

T(1+P)

S-S

+ ((O'Z — 02_1) ‘n, v + o(Vi,qn) - n) =0

by

for all (vi,qn) € X5 x Q;', where o = o(ul,p}!) and 8 > 0 denotes a stabilization
parameter.

Initial values: Since O'Z’l depends on both uZ’l and pZ’l, the numerical scheme in
(3.2.19)-(3.2.20) requires the initial value (u),p?,n?%) to be given. We simply assume
that the initial value (ul,p?, n%) are given sufficiently accurately, satisfying the following
conditions:

luh — Rypa®|| + uiy — Raw®lls + Imh — Bam’ [l (s

<
(3.2.21)
Ip, = Rap’ll= < C,

where (Rpu®, Rpp®, R,n°) satisfies a coupled non-stationary Ritz projection defined in

Section [3.3.2

Remark 3.2.2. Kinematically coupled schemes were firstly proposed in [23], [72], 25] with
the following time discretization: Find (s™,n") such that

s” —u" ! . -
pses—— — Ls(n") = —c""" - n on X (3.2.22)
T
n=n""'+rs" on X

and then find (u”, p") satisfying

prDu"+V.-0"=0 and V-u"=0 in (2, (3.2.23)

n n

u —S

+(@"=0") n=0 on X.

Ps€s

The extension to full discretization was considered by several authors [25, [120], while the
analysis for full discretization is incomplete and the energy stability is proved only for
time-discrete schemes.

Remark 3.2.3. Our scheme in (3.2.19)(3.2.20)) is designed with two new ingredients.
First, we have added two stabilization terms

uy —sy T
Ps€s ( y ha U(th qh) ’ Il>

and <(a’,§ — o) - m, MG(V/“%) -n) ;

Ps€s b

T Ps€s b))

which guarantee unconditional energy stability of the scheme in (3.2.19)—(3.2.20). Oth-
erwise the unconditional energy stability cannot be proved in the fully discrete finite
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element setting. Second, we have introduced an additional parameter 3 > 0 to the
scheme, and this additional parameter allows us to prove optimal-order convergence in

the L? norm (especially optimal order in space). More specifically, this parameter 3 > 0
leads to the following term in the E; of (3.2.26)) :

Ps€s | n .
607“% —u||3 with By =1— (V4 + 52—

which is used to absorb other undesired terms on the right-hand side of the inequalities in
our error estimation. Therefore, the optimal-order L? error estimate does benefits from
our scheme (with the parameter 5 > 0).

Remark 3.2.4. For the Taylor-Hood finite element spaces, the conditions in (3.2.21)) on
the initial values can be satisfied if one chooses u!) and p?) to be the Lagrange interpolations
of u® and p; respectively, and chooses 1) = Ry,n(0), where Rg,n(0) is defined in Section

3.4} see Definition and estimate ((5.3.44)).

The main theoretical results of this chapter are the following two theorems.

Theorem 3.2.1. Under the assumptions in Sectzon (on the finite element spaces),
the finite element system in (3.2.19)—(3.2.20) is umquely solvable, and the following in-
equality holds:

Eo(uy, pp,mp) + Y rE (up, sy on) < Eo(uf,phmf), n=1,2,....N,  (3.224)

m=1
where
2
Pr (1+5) ps s
Eo(uy, pp,my) = ||11h||2 ||77h||2 2p—€||ah'n||2 | hHZa (3.2.25)
n o.n n n 143 n n— Ps€s | n n— pSESBO n n

Ey(uy, sy, my) :2:u||uh||?“+§”uh_uh HJ? o7 sy — 1||22 o7 Isp, — uylls

TBo . T

+ oo~ o) n||%+5||DTn;zr|§, (3.220)

with Bo =1— (\/4+ > =p)/2 and 8 >
Theorem 3.2.2. For finite elements of degree r > 2, under the assumptions in Sections
(on the regularity of solutions and finite element spaces), there exist positive
constants 9 and hg such that, for sufficiently small stepsize and mesh size T < 19 and
h < hg, the finite element solutions given by (3.2.19)—(3.2.20) with initial values satisfying
(3.2.21)) and 8 > 0 has the following error bound:

max ([[u(t, ) —wpll +[In(te, ) = mhlls + ults, ) — whlls) < C(r + A1), (3.2.27)

1<n<N

where C'is some positive constant independent of n, h and 7.

The proofs of Theorem and Theorem |3.2.2| are presented in the next section.

3.3 Analysis of the proposed algorithm

This section is devoted to the proof of Theorems [3.2.1] and [3.2.2] For the simplicity of
notation, we denote by C' a generic positive constant, which is independent of n, A and
7 but may depend on the physical parameters p;, €, 41, py and the exact solution (u, p,n).
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3.3.1 Proof of Theorem (3.2.1
We rewrite into

u® — g
prDr, i) + g va) = B0 Vi) + blan, )+ s (M v, ) (33.1)
>

T(1+5)

Ps€s

n—1 n __

= (op " -0, vp)s — (uy, — sy, 0(Va, qn) - n)s — ((oh —op ") m, o(va, qn) - n)s .

Taking vi, = u}, ¢, = pj in (3.3.1) and w;, = s} = D,n} in (3.2.19)), respectively, gives

the following relations:

Pf n|(2 n—1(2 n n—1(2 ni(2 uz _ SZ n
== ([ l? = =12+ [Juy — ™ ?) + 2ul[ag |5 + pses W
by

2T
n— n n n n T(]‘—i_ﬁ)
= (o}, ', uy)s — (uy — sy, o) )y — p—e((a

h—on )m o m)s

and

1 n o,.n n— n— n .n Sh — unil n n— n
Z (CLS(nhanh) - a5(77h, 1777h 1) + TQ@S(ShaSh)) + pPs€s ( - - b ) Sh) = _<0h b n, Sh)E'
by

By summing up the last two equations, we have

EL (g2 = = 12 4 = = 112) + 2p0m g+ 252 (s — w13 + g — s31%)
b3 (anlrh ) — s ) 7l o)) + L (gl — g 1)
= r((o " = o) mou — s = (o o) o s
2
< TP o - o)l g st
2
D (g nl ~ o -l + 0% - ) nl)
2 2

< L =B g — it~ T (ol — o ulR) - 2 o} - o) - mi,
which leads to the following energy inequality:

Eo(ay, ph ) — Eo(wy ™, pp " mi ™) + Ex(ug, piy, my) 7 < 0. (3.3.2)
This implies (3.2.24)) and completes the proof of Theorem m |

3.3.2 A coupled non-stationary Ritz projection

To establish L2-norm optimal error estimate as given in Theorem , we need to in-
troduce a new coupled Ritz projection. Since the FSI model is governed by the Stokes
type equation for fluid coupled with the hyperbolic type equation for solid, the coupled
projection, which is non-stationary and much more complicated than the standard Ritz
projections, plays a key role in proving the optimal-order convergence of finite element
solutions to the FSI model.
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Definition 3.3.1 (Coupled non-stationary Ritz projection). Let (u,p,n) € X X
@ x S be a triple of functions smoothly depending on t € [0,7] and satisfying the
condition ul|y, = 9;n. For a given initial value R;n(0), the coupled Stokes—Ritz projection
Rp(u,p,n) is defined as a triple of functions (Ryu, Rup, Ryn) € X4 x Q7' x S} satisfying
(Rpu)|s = 0;Rpn and the following weak formulation for every ¢ € [0, T:

ar(u— Rpu,vy) — b(p — Ryp, vi) + b(gn, u — Rpu) + (u — Ryu, vy,)

+as(n — Ry, vi) + (0 — Ban, vi)s = 0, V(vi, qn) € Xj, x Q1
(3.3.3)

Remark 3.3.1. Given an initial value R,n(0), there exists a unique solution (Ryu, Ryp, Ryny)
for the finite element semi-discrete problem . To see this, we firstly introduce a
linear operator Sy, : (X7)* x (Q7~1)* — X& x Q) ', where (X})* and (Q;')* denote the
dual space of X and @}, *, respectively. For a given (¢, ) € (X})* x (Q,)*, denote by
(up, pr) € Xj, X QZ’l the solution of the following Neumann-type discrete Stokes equation

ay(Un, vi) = b(pn, Vi) + (un, vi) = d(v) Vvi € X,
b(qn, un) = L(gn) Van € Q4"
and define Sp(¢,0) = (SF(6,£0), S (¢,0)) := (up,pr). The well-posedness of the above

equation follows the inf-sup condition (3.2.16)).
Next, we denote

Plupm) (Vi) = ay(u,vy) = b(p,vy) + (w0, va) + as(n, vi) + (0, va)s,
¢>Rhn( vy) = as(Rpn, vi) + (Ran, Vi)s,
Lu(qn) = b(qn, u).

Then (Rpu, Rpp, Rpn) is a solution to (3.3.3)) if and only if the following equations are
satisfied:

atRhn = S;L}(Qs(u,p,n) - ¢Rhm gu)|27 (334&)
Rpu = Sﬁ((ﬁ(u,pm) - (thm gu)? Rup = S}f(ﬁb(u,p,n) - ¢Rh777 £U> (3'3'4b)

Therefore, the uniqueness and existence of solution to follows the uniqueness and
existence of solution to (3.3.4a)). Since S} is a linear operator on (X})* x (Q; )" and ¢g,,
is linear with respect to Ryn, (3.3.4a)) is an in-homogeneous linear ordinary differential
equation for Ryn and thus admits a unique solution for a given initial value R,n(0). Next,
we can obtain Rpu and Rpp from (3.3.4b)).

In order to guarantee that the coupled non-stationary Ritz projection R, possesses
optimal-order approximation properties, we need to define R;,n(0) in a rather technical
way. Therefore, we present error estimates for this projection in Theorem and
postpone the definition of R,n(0) and the proof of Theorem to Section

Theorem 3.3.1 (Error estimates for the coupled non-stationary Ritz pro-
jection). For sufficiently smooth functions (u,p,n) satisfying u|s = 0O, there ezists
wy, € S} such that when Rpn(0) = wy, the following estimates hold uniformly for
te€0,77]:

e (In = Runlls + lla = Ryul| + lu = Rpulls + Allp = Rypll) < O™, (3.3.5)

max ([|0;(u — Rpu)|| i + [|0:(u — Ryu)| sy + |10:(p — Rip)||) < CR” (3.3.6)

t€[0,T]

10, (1 — Ryw)| poras) + 10i(a — Rpu)||poze < CR7FH. (3.3.7)
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3.3.3 Proof of Theorem |5.2.2
For the solution (u, p,n) of the problem (3.1.1)—(3.1.3)), we define the notations:

u’ = u(tna ')a 77" = 77(% ')7 Pt = p(tna ) (3'3'8)

For the analysis of the kinematically coupled scheme, we introduce s® € H(X) and
Rps™ € S} by

s" = 0m(ty, ) =u(t,,-) and Rps":= (Ryu)(t,) = ORin(t,) on X,
which satisfy the estimate:
|s™ — Rps"||s < CR™! (3.3.9)

according to the estimates in Theorem [3.3.1]
By Taylor’s expansion, we have " = n"~! + 78" + 7", with a truncation error 7,
which has the following bound:

1T sy <Cm* V> 1. (3.3.10)

By (3.1.1)—(3.1.3)), we can see that the sequence (u",p™, n", s") satisfies the following

weak formulations

n __ 4n—1
Ps€s <S+, Wh) +as(n", wa) + (0" n, wi)s = EX(wh),  Yw, €S
>
(3.3.11)

and

u” —s"
pr(Da", vi) +ap(u®, vi) —b(p", vi) + b(gn, u") + pses ( — Vh)
>

_ n n (1 + n e
— (0" v = (0 = ", o) ‘s - T (@ ) o) s
+ EF (Vi qn), V(vi,qn) € X x Q! (3.3.12)

where 6" = g(u", p™) and the truncation error functions satisfy the following estimates:

€ (wa)| < Crlwalls,

: ) (3.3.13)
E3 (v an)| < CT([[valls + [[vall) + CT2|lo(va, qn) - n||s .

For given (u",p™,n", s"), we denote by (Rpu", Ryp", Ryn", Rys™) the corresponding
coupled non-stationary Ritz projection and define R}7;" satisfying

Rin" = Rpn™ ' + TRus" + Ry Ty V> 1.

Then we introduce the following error decomposition:

e, :=u"—uy =u" — Ryu" + Rpyu" —up =0, +9,, in (2.
e, =p" —p, =p" — Rpp" + Rpp" — pj :== 0, +9,, in (2.
e = o(w,p") — o(wh,p) = o (6], 07) + o (3L, 07) == 6] + o7, in 0.
ey =8"—sp =s" — Rps" + Rps" — s, :=07 + 6, on Y.
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ey =n"—ny =n"—Ryn" + Rpn™ —mj, =0, + 5y, on %,
Since u”|y = s", it follows that 6|, = 6”. Moreover, the following relations hold:

(W =) = (s =) = oo - 0 -

(u"—u")— (up —sy) =6, +9, — 6, -, =6, —6, onX.

By using (3.2.19)—(3.2.20]) and (3.3.11)—(3.3.12)), we can write down the following error
equations:

o — n—1
Ps€s (%, wh) + as(0;, W) + (601, wy)y = EM(wy) — F'(wy), Ywy, €S)
2

(3.3.14)
op = op =t + 767 + Ry Ty, on ¥ (3.3.15)
5 — §n 5 — gn
Pr < “ T > ) Vh) —|—le((53, Vh) - b(6;7 VZ) +b(Qh7 5;1) +ps€s < “ - : ) Vh)
3
_ n n 7(1+ n -
— 05 m s — (0 = 0% (v a)s — TE (0 - 03 . o) s
+EF (Vhy n) — FF (Vas qn), V(v qn) € X x Q! (3.3.16)
where
Fl' (W) = pses(D70y, wi)s + as(0), wi) + (07 -1, wy)s (3.3.17)

F}l(vthh) = pf(D‘Fe:;bth) + af(&?? Vh) - b(egv Vh)

T<1—+5)((9§ — 0" Y n,o(v, qu) -n)y  (3.3.18)

— (027", vy)s +
Ps€s

Moreover, we have the following result:
0y =0, + 707 + (77" — RaT5"),

where the last term can be estimated by using (3.3.6), i.e.,

H7E,n — Rh’]?)nHHl(E) S 07—2Hat(Rhu — u)HLC’OHl(E) S CTzhr. (3319)
Therefore, by the triangle inequality with estimates (3.3.10) and (3.3.19)), we have
IR TS sy < 175 ) + 175" = RaTg sy < O Vn> 1 (3.3.20)

We take (v, qn) = (07,07) € X; x Q" in (3.3.16) and wy, = 67 € S, in (3.3.14),
2

respectively, and then sum up the two results. Using the stability analysis in (3.3.2) and
the relation

0y = D-0y — 'Ry TS,
we obtain

D, Eo(57,57,5™) + B (5", 5", 6")

u’r U prn u’r s n

< ENOY) — FIo7) + EF(0y,,0,) — Ff(dy,0)) + T‘las(ég, RyTY) . (3.3.21)

u’»vp
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To establish the error estimate, we need to estimate each term on the right-hand side of

(13.3.21). From (3.3.13)) and (3.3.20) we can see that

E5(09)] < C7llog =
€7 (0, oI < Cr(lloglls + 13 1) + 72165 - nl (3.3.22)

wr Up

7 as (05, RuTg")| < CTlldy s
It remains to estimate F{'(ds) + F}(du,0,) from the right hand side of (3.3.21]).

1. The second term in plus the second and third terms in can be
estimated as follows. Let & := 0} — E(d; — 67), where Ej (97 —67) is an extension
of 0;, — o7 to (2 satistying estimate and &'|s = 7. By choosing v, = £ and
gn = 0in (definition of the coupled Ritz projection), we obtain the following
relation:

ar(0y,0,) — b0y, 6,) + as(0y, 07)
= ag(0y, En(0y — 07)) = b0y, En(d, — 07)) — (05, &) — (0, 09)x
< CH||En (0 = 09 + CR™ (IR + 1102 1s)

< Ch 20y = 8¢l + CR (8l + 1187 ]1s), (3.3.23)

where we have used estimate (3.3.5)—(3.3.6)).

2. The third term in (3.3.17)) plus the fourth term in (3.3.18) can be estimated as
follows:

(057" 0, 00)s — (6,7 - n,07)s
<[|65~" - nlls[|67 — oy ls
<O 2+ =210 e + 165 D)6 = 62l
<Ch™ 12|67 — 67|, (3.3.24)

where we used (13.2.18]) in the second inequality and (3.3.5)) in the last inequality.
3. For the first term in (3.3.17)) and (3.3.18]), respectively, we have

C tn
pees( D2, 7)< ST / 10,6u(0) |, (3.3.25)
tn—1
C tn
oD < IS [ ool (3:320)
tn—1

4. The last term in (3.3.18]) can be estimated by using (3.3.6) and (3.2.18]), i.e.,

T n n— n n
pse((eo - 90 1) ’ n70<5u7 5;)) ’ 1’1)2
tn
<cr ([ 100 98,0 nllsi ) 10062, 53) -l
tn—1
<Cr*h'2|e(57, 67) - ns. (3.3.27)
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Now we can substitute estimates (3.3.22)—(3.3.27)) into the energy inequality in (3.3.21)).
This yields the following result:

D, Eo(87, 87, 67) + Eqy (87, 67, 1)

u? p’ n u’ 78S

< Cr(l187 1l + 1831l + I8ull + 187 1ls) + Ch V210 = 67l + CR™ (1]l + 1167 1lx)

C tn C tn
s Spals [ Nosuolsde+ 10 [ ja0u0d+ el (3329
th—1 tn—1

Since ||07]|s < [[67 — 0!||s + ||6F||s, by using Young’s inequality, we can re-arrange the
right hand side of (3.3.28) to obtain
D, Ey(6y,6,,0,) + E1(0,,07,6,)

u’rUpr u’rYsoYn

— r r— n n n Ce n n
< Ce (72 + CRPUHD 1 7?1 + Ce(l0n 113 + 10217 + llop112) + —lIo% = 5315

05_1 tn tn
P ([ anars [ jara) ol ol 63
tn—1 tn—1

where 0 < € < 1 is an arbitrary constant.
We can choose a sufficiently small € so that the term <£||67 —67||% can be absorbed by
Ey(dy,0¢,6,) on the left hand side. Then, using the discrete Gronwall’s inequality and

the estimates of 6, in , as well as the definition of Ey and F; in (3.2.25)—(3.2.26)),

we obtain

o(67, 67, 67) + ZTEI (87,67, 61) < CEg(02,8%,60) + C(r? + Ch2r+) 4 7hr 1),

u’r U prn u Vs 1 Vn ur Vpr

(3.3.30)

Since the initial values satisfy the estimates in (3.2.21)), the term Ey(dy,d),dy) can be
estimated to the optimal order. Thus inequality (3.3.30|) reduces to

1011+ N8l + oy lls + 103 = 02lls < C(R™ Y272 7 4 BT, (3.3.31)
It follows from the relation 6; = 6, =" + 767 + Ry 7", n > 1, that

631l <[5l + D 7o s + > IR TG s < C(RV2r 2 7+ 07, (3.3.32)

m=1 m=1

where we have used (3.3.31]) and (3.3.20)). Then, combining the two estimates above with
the following estimate for the projection error:

1621+ 11615 + 1651 < CR™ ¥n >0,
we obtain the following error bound:
lexll + llexlls + lleglls < O 2712 47 4 ™) < O(r + ™),

where the last inequality uses A" ~1/27/2 < 7+ h* ! and r > 2. This completes the proof
of Theorem [5.2.2 ]
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3.4 The proof of Theorem (3.3.1

We present the proof of the Theorem [3.3.1] step-by-step in the next three subsections.

3.4.1 The definition of R;n(0) in the coupled Ritz projection

In this subsection, we focus on designing the initial value R,n(0) for our coupled non-
stationary Ritz projection.

We first present two auxiliary Ritz projections Ry and RP associated to the structure
model and the fluid model in Definitions [3.4.143.4.2] respectively. Next, in terms of
these two auxiliary Ritz projections, we define the initial value R;,n(0) in Definition [3.4.3]
which is only for our theoretical purpose. Finally, an alternative definition of Ryn(0) for
practical computation is given in Definition [3.4.4]

Definition 3.4.1 (Structure-Ritz projection Ry). We define an auxiliary Ritz projection
Ry :'S — St for the elastic structure problem by

as(Rys — s, wp,) + (Ris —s,wp,)y =0 Vw, € S. (3.4.33)

This is the standard Ritz projection on X, which satisfies the estimate || Rys—s||s < Ch"!
when s is sufficiently smooth. Moreover when r > 2, there holds the negative norm
estimate:

IRys = s|lg-1x) < R (3.4.34)

Let X} := {v; € X7 : vy = 0} and Q’,;_Ol = {qn € Q)" : g € L2(2)}. We denote
St :={v, €S} : (vp,n)y = 0} and by P the L?(X)-orthogonal projection from Sj to Sr.

Definition 3.4.2 (Dirichlet Stokes Ritz projection RP). Let X := {u € X : u|y € S}.
We define an auxiliary Dirichlet Stokes—Ritz projection RY : X x Q — X4 x Q™" by

ar(u— RPu,vy) —b(p— RPp,vi) + (u— RPu,v,) =0 Vv, € X, (3.4.35a)
blgn,u— RPu) =0 Vg, € Qp,s with RPu= PRy(uly) on X, (3.4.35b)

In addition, we choose RPp to satisfy RPp —p € L3(£2). This uniquely determines a
solution (RPu, RPp) € X x Q1! as explained in the following Remark.

Remark 3.4.1. In order to see the existence and uniqueness of solution (RPu, RPp)
defined by , we let 1, € X be an extension of IBRE u to the bulk domain {2 and
let py, be the L?(2)-orthogonal projection of p onto Q; . Then &, — RPu € Xz and
pn — RPp € Q;'. Replacing (u,p) and (Rfu, RPp) by (u — G, p — pp) and (Rfu —
Uy, RPp—pp,) in (3.4.35a)-(3.4.35D) respectively, we obtain a standard Stokes FE system
with a homogeneous Dirichlet boundary condition for (RPu — G, RPp — py,). The well-
posedness directly follows the inf-sup condition (3.2.14).

Remark 3.4.2. The projection P in (3.4.35bf) is introduced to guarantees that the
b(gn, u — RPu) = 0 holds not only for g, € Qz’_ol but also for ¢, € Qz_l. That is,

b(gn,u— Ru) =0 Vg, € Q; " (3.4.36)
Since Q' = {1} @Q%l, this follows from the first relation in (3.4.35b|) and the following

relation: B
b(1,u — Ryu) = (Rfu,n)x = (PRyju,n)y =0,
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where b(1,u) = 0 for the exact solution u which satisfies V - u = 0. Especially, when u
is replaced with d;u(0), we have

b(gn, (Ou — RPO)(0) =0 Ve € Qp " (3.4.37)

The relation (3.4.37) is needed in error estimates between (9;R,u(0),0;R,p(0)) and
(0pu(0),0p(0)) in the Lemma below. Furthermore, in the Definition [3.4.3] we
defined (R,u(0), Ryp(0)) via a Dirichlet-type Stokes-Ritz projection with the boundary
condition R,u(0)|s, = PRy,u(0)

To facilitate further use of P in the following analysis, here we derive an explicit
formula for P. We denote by n;, € S} the L?(3)-orthogonal projection of unit normal
vector field n of ¥ to S, i.e.,

(H,Wh)z = (nh,wh)g Yw,, € S}; (3438)
Then for any wj, € S}, we have

(Wh’ n)E

Pw, =w, —A(wp)n, € S with A(wy,) = 5
[ 15,

(3.4.39)
From |[n — n||s < ||n — Iin||s < Ch"™! (since n is smooth on ), especially we have
|ng||s ~ C and

[(7Z7u — u,n)s|

IMR3u)| = < Ch™" and |[PR{u — Riu| < Ch'. (3.4.40)

Therefore we obtain the estimate |RPu — u||s < Ch™L.

The following lemma on the error estimates of the Dirichlet Stokes—Ritz projection is
standard. We refer to [73, Proposition 8, Proposition 9] for the proof of (3.4.41). The
negative norm estimate of pressure in (3.4.42)) requires a further duality argument, which
is presented in the proof of Lemma of Section [3.8. We omit the details here.

Lemma 3.4.1. Under the reqularity assumptions in Section[3.2.9, the Dirichlet Stokes—
Ritz projection RY defined in (3.4.35)) satisfies the following estimates:

[l — Rpulls + [lu— Byull + A (Ju— Ryullm +[lp — Bypl) < Ch™, - (3.4.41)

IR p = plla-— < Ch™ (3.4.42)

We define an initial value Rn(0) as follows in terms of the Dirichlet Ritz projection
RP,

Definition 3.4.3 (Initial value R,n(0)). Firstly, assuming that the function RPd,u(0)
and RP9,p(0) are known with operator R? defined by (3.4.35)), we define Ry ,u(0) € Sy,
to be the solution of the following weak formulation:

as((u — Ryu)(0), wy) + (0 — Repu)(0), wp)s + af((Oou — R 0,u)(0), Epwy,)
—b((0p — RP0,p)(0), Eywy) + ((Ou — RP9)(0), Eywy) =0 Ywy, €87, (3.4.43)

where Ej,w), denotes an extension of wy, to the bulk domain 2. From the definition of RhD
in (3.4.35) we can conclude that this definition is independent of the specific extension.
Therefore, ((3.4.43) still holds when replacing both w;, and E'w;, with v, € XJ.
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Secondly, we denote by (R,u(0), Ryp(0)) € X% x Q7" a Dirichlet-type Stokes—Ritz
projection satisfying
ar(u(0)—Rpu(0),vy) — b(p(0) — Rup(0), vi) + (u(0) — Rpu(0),vy,) =0 Vv, € Xy,
(3.4.44a)
b(gn, u(0) — Ryu(0)) =0 Vg, € Qpy's  Ryu(0) = PRyu(0) on ¥,
(3.4.44b)
where we require p(0) — R,p(0) € L3(02).

Finally, with the R,u(0) and Rpp(0) defined above, we define R,n(0) € S}, to be the
solution of the following weak formulation on X:

ar(u(0) — Ryu(0), Epywy) — b(p(0) — Ryp(0), Epwy) + (u(0) — Ryu(0), Eywy,)
(

+ (15(77(0) — RhT](O), Wh) + 77(0) — R}J)(O),Wh)z =0 th € SZ
(3.4.45)

Again ((3.4.45) also holds when replacing wj, and Ejw), with v, € Xj.

For the computation with the numerical scheme (3.2.19)—(3.2.20), we can define the
initial value 79 = Ry,n(0) € S} in an alternative way below.

Definition 3.4.4 (Ritz projection Ry,n(0)). We define 79 = Ry,n(0) € S, as the solution
of the following weak formulation:

as((Ranm —1)(0), wr) + (Rawm —m)(0), wr)s VW, €S
= —a;((R)u —u)(0), Eywy) + b((RYp — p)(0), Eywy,) — ((RPu —u)(0), Epwy),
(3.4.46)

which does not require knowledge of d;u(0) or 9;p(0). Again, E,w;, denotes an extension
of wy, to the bulk domain (2, and this definition is independent of the specific extension.
Therefore, holds for all v, € X} with w;, and E,w;, replaced by v; in the
equation. For r > 2, the following result can be proved in Section [3.8}

| Rsnn(0) — Riyn(0) || sy < Ch™ (3.4.47)
In addition, by differentiating (3.3.3) with respect to time, we have the following

evolution equations:

as(u — Rpu, vy) + (u — Rpu, vi)s + af(0(u — Rpu), vy,)
—b(0(p — Rip), vi) + (O:(u — Rpu),v,) =0 Vv, € X},  (3.4.48a)

b(qn, O(u— Rpu)) =0 Vg, € Qy ", (3.4.48b)

which are used not only to design the above R,n(0), but also to estimate errors in the
following subsections.

3.4.2 Error estimates for the coupled Ritz projection at ¢t =0

Firstly, we consider the estimation of Rg,u(0) which occurs as an auxiliary function in the
definition of R,n(0) in Lemma [3.4.2] Secondly, we present estimates for u(0) — R,u(0),
n(0) — Ryn(0) and p(0) — Ryp(0) in Lemma Finally, we present estimates for the
time derivatives 8;(u — Ryu)(0) and 9;(p — Ryp)(0) in Lemma [3.4.4]
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Lemma 3.4.2. Under the assumptions in Sections|3.2.4 and |3.2.5, the following error
estimate holds for the Rg,u(0) defined in (3.4.43)):

| Repu(0) — u(0) ||z + A||Rspu(0) — u(0)||, < CR™. (3.4.49)

Proof. Since we can choose an extension Ej€;, of £, € S, to satisfy that ||Ex&,||m ) <

C\&nll (s, equation (3.4.43) implies that
as(u(0) — Rypu(0),€,) + (u(0) — Rpu(0),€,)s < CR7[|€,] [z

This leads to the following standard H'-norm estimate:
[u(0) = Repu(0)]s + [[u(0) = Repu(0)||ss < Ch"

In order to obtain an optimal-order L?*-norm estimate for u(0) — Ry,u(0), we introduce
the following dual problem:

—L) + 1 = Rgu(0) —u(0), ¢ has periodic boundary condition on ¥.  (3.4.50)
The regularity assumption in 9) implies that
as(, )+ (¥, §)x = (u(0) = Rau(0),§)x V& €S and [[¢[|p2x) < Cllu(0) = Rapu(0)]s -

We can extend v to be a function on {2, still denoted by 1, satisfying the periodic
boundary condition and [|1|| g2(0) < C||¢| g2(x). Therefore, choosing § = u(0) — Rg,u(0)
in the equation above leads to

[u(0) = Repu(0)[f5; = as(u(0) — Repu(0), ) + (u(0) — Repu(0),9)s
=as(u(0) — Repu(0), v — L) 4+ (u(0) — Repu(0), v — Lyth)s
— a(9u(0) — Ry 0,u(0), Inyh) + b(9p(0) — Ry 0ip(0), Inth)
— (0,u(0) — RP0,u(0), Inp) (relation (3.4.43) is used)
< Ch |9l a2y + lag(9pu(0) — Ry 0u(0), )]
+[0(8p(0) — Ry 0:p(0), )| + (941 (0) — R 3pu(0),¥)] .

Since

|(D((9tu(0) - RhDatu<0))7 Dw,
= | — (0u(0) — RP9,u(0), V- D)) + (0,u(0) — RP9,u(0),D¢ - n)sx|
< CH |z

where the last inequality uses the estimate ||[¢|| g2(0) < C||¥||2(x) as well as the estimates

of [|9u(0)—RP9u(0)|| and ||9,u(0)—RP9u(0)||s in (with u(0) replaced by 0,u(0)

therein). Furthermore, using the H~! estimate in (3.4.42)), we have

[6(0:p(0) — Ry 0p(0), )| < C|0ep(0) — Ry Op(0) || -1 [l 2 < CH™ [ | sy

Then, summing up the estimates above, we obtain
[u(0) = Rgpu(0)]|s < CH™.

The proof of Lemma is complete. |
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Lemma 3.4.3. Under the assumptions in Sections|3.2.4 and |3.2.5, the following error
estimates hold (for the coupled Ritz projection in Definition :

In(0) — Run(0)||s + hlIn(0) — Run(0)|ls + [[u(0) — Ryu(0)||s < CR™, (3.4.51)
|u(0) — Rpu(0)|| + A|[p(0) — Rup(0)|| < Ch™. (3.4.52)

Proof. From (34.39) we know that R,u(0) = PRyu(0) = Ryu(0) — A(Rgu(0))n, on
Y., with

Ryu(0),n Ryu(0) —u(0),n .
IMRgpu(0))| = |(Fanu(0), 0)s| _ [(Ran1i(0) = u(0), )y < C||Rgpu(0)—u(0)||g < CA™H.

A a5

Therefore, using the triangle inequality, we have
[u(0) = Ryu(0)l|s < [[u(0) — Repu(0)l|s + [A(Rau(0))[Inalle < CA™,

where the estimate (3.4.49)) is used.

Since (Rpu(0), Ryp(0)) is essentially a Dirichlet Ritz projection with a different bound-
ary value, i.e., PRy,u(0), the error estimates for ||u(0) — R,u(0)|| and [|p(0) — Rup(0)]|
are the same as those in Lemma [3.4.1] With the optimal-order estimates of ||u(0) —
Rpu(0)]s, |[u(0) — Ryu(0)|| and ||p(0) — Rup(0)]], the estimation of ||n(0) — Rxn(0)||x and
In(0) — Ryn(0)||s would be the same as the proof of Lemma [3.4.2] i

Next, we present estimates for the time derivatives d;(u— R,u)(0) and 0;(p— Rpp)(0).
To this end, we use the following relation:

(u— Rpu)(0) = (u— Rgpu)(0) + A(Rspu(0))n, on X. (3.4.53)
Replacing (u — Rg,u)(0) by (u — Rpu)(0) — A(Rgpu(0))ny, in (3.4.43)), we have

as((u — Rpu)(0), v,) + ((u — Rpu)(0), vi)s + as((9u — RP9,u)(0), vy)
— b((ep — Ry 9:p)(0),v1) + ((Opu — Ry 9yu)(0), v,)
= )\(Rshu(O))(aS(nh, Vh) + (Ilh, Vh)g) Vv, € Xz (3454)

Let (u”,p?) € X x Q be the weak solution of

ap(u® v) —b(p*,v) + (u*,v) = a;(n,v) + (n,v)y Vv e X, (3.4.55a)
b(g,u?) =0 Vg € Q. (3.4.55D)

Denote by (uf, pi*) € (X5, Q;~!) the corresponding FE solution satisfying
ap(uff,vi) — b}, vi) + (U] vi) = as(nn, vi) + (nn, vi)s - Vvip € X, (3.4.56a)
b(gn,uj’) =0 Vg, € Q7Y (3.4.56D)

where ny, is defined in (|3.4.38)).
Note that (3.4.55)) is equivalent to the weak solution of

~V-o(® p?)+u” =0 in 2 with o(u”,p* ) n=—-Ln+n on ¥
V-u# =0 in £
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Therefore, from the regularity estimate in (3.2.7) (with & = r — 1/2 therein) and as-
sumption on L,, we obtain the following regularity estimate for the solutions of
(3.4.55)):

[ ([ + (9% e < Cllnl|grvsa sy < C

By considering the difference between ([3.4.55)) and ( m the following estlmates of

el .= I,u# —u and m! := I,p#* — p/’ can be derived for all vj, € X} and ¢, € Q}~

as(efl,vi) = b(mj,vi) + (€], vi) < CH|[Vallm () + ChT[vallm < CH™2 vl
ban, €}) < CH|lgull,

where we have used the inverse estimate in (3.2.11)) and the following trace inequality:
Vil < Ch™Y2|vall ey < Ch7Y2|[va .

From Korn’s inequality and inf-sup condition ((3.2.16f), choosing v, = e# yields the fol-
lowing result:
e [l + [lm || < OBV,

which also implies the following boundedness through the application of the triangle
inequality:
[l | + 1971 < C.

By using the boundedness of H'(£2)-norm of u}’ and L?(£2)-norm of pj’, we can estimate
Oy(u — Rpu)(0) and 0:(p — Ryp)(0) as follows.

Lemma 3.4.4. Under the assumptions in Sections |3.2.4 and [53.2.5, the following error
estimates hold (for the time derivative of the coupled Ritz projection in Definition :

10:(w — Ryw) (0)[| + (10 (1 — Ryu)(0) ||z + hllO:(p — Rap)(0)[| < CA™. (3.4.57)

Proof. By comparing ) with (3.4.56a)), and comparing (3.4.37)) with ( m we

obtain
as((u — Rhu)(O), Vh) + ((11 — Rhu)(O Vh)g

),
+ap((Opa — RP0)(0) — A(Rapu(0)uf, vi) — b((9p — R 9p)(0) — A(Rapu(0))pf, vi)
+ ((0u — RP9)(0) — A(Rapu(0))uf,vi,) =0 Vv, € X}, (3.4.58)
)

b(qh,(ﬁtu—Rfﬁtu)(O) A Rapu(0))u ):o Y € Q)1 (3.4.59)

Then, by comparing (3.4.58))-(3.4.59)) with (3.4.48a))-(3.4.48b]), we find the following rela-
tions:

O (u— Rpu)(0) = (8u — R} 9pu) (0) — A(Rgu(0))uj’,
Oup = Bap)(0) = (O — BOp)(0) = A(Roru(0))p]
Since |A\(Rgu(0))] < Ch™' and |[uf|| + |[uf||ls + |[p]]] < C, the result of this lemma

follows from the estimates of the Dirichlet Stokes—-Ritz projection in Lemma [3.4.1] (with
u and p replaced by d,u and 0;p therein). |
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3.4.3 Error estimates of the coupled Ritz projection for ¢t > 0

In this subsection, using the results in the subsection [3.4.2, we present the proof of the
H'-error estimates and L?-error estimates results in Theorem [3.3.1]
We first present H!-norm error estimates for the coupled Ritz projection by employing

the auxiliary Ritz projections Ry and RY defined in (3.4.33) and (3.4.37)), respectively.
From (3.4.35b|) we see that

RPu— Rju= PRJu— Rju=—-ARjun, with \(Rju)eR,

where the last equality follows from relation (3.4.39). Therefore, with the relation above

we have

as(u— RPu,v;) + (u— RPu,vp)s
= as(u— Ryu,v;) + (0 — Ryu, vi)s + A(Ryu) (as(ns, vi) + (0, vi)s)
< ChT+1HVh||H1(E) < Chr+1/2|\vh||H1/2(E) < CR Y2 |\vpllm Yvi € X, (3.4.60)
where we have used the inverse inequality in (3.2.11)) and the trace inequality in the
derivation of the last two inequalities. Moreover, since the auxiliary Ritz projection RY
defined in (3.4.35)) is time-independent, it follows that (9, RPu, 9, RPp) = (RP dyu, RP d;p).
Therefore, in view of estimate (3.4.41)) for the Dirichlet Stokes—Ritz projection, the fol-

lowing estimate can be found:

as(u — RPw,vi) + (u— RPu,vi)s + ap(9:(u — RPu),vy)

—b(0i(p — RZp),vi) + (O(u — RPa),vy,) < CR ||vpllm Vv € X5 (3.4.61)

By considering the difference between ([3.4.48a}) and (3.4.61)), we can derive the following
inequality:

as(Rhu — RhDu, Vh) + (Rhu — RhDu, Vh)g =+ af((‘?t(Rhu — RhDu), Vh)
— b(0y(Rup — RY'p), V1) + (Oy(Rpu — RPw),vy) < CH|[vpllm Vv, € X, (3.4.62)

Then, choosing v, = 0;( Ryu—RPu) in ([3.4.62)) and using relation b(0,( Ry,p—REp), 0;( Ry,u—
RPu)) = 0 (which follows from ([3.4.37) and (3.4.48b))), using Young’s inequality

Ch"||0;(Rpu — RPa)||gn < Ce 'h?" + €||0,(Rpyu — RPu) |3

with a small constant ¢ so that ¢||d;(R,u — R u)||3,: can be absorbed by the left hand

side of (3.4.62]), we obtain
HRhll — RquLoohn(E) + Hat<Rhll — RhDu)HLzH1
< Oh" + C||(Ryu — RP)(0)|| + C||(Ryu — RPa)(0)|s < O, (3.4.63)

where the last inequality uses the estimates in Lemma [3.4.3] and Lemma [3.4.1} Then, by
applying the inf-sup condition in ({3.2.16)) (which involves ||v||z1(x) in the denominator),
we can obtain the following estimate from (3.4.62)):

|]8t(th — Rth)H S CHRhu — RhDUHHl(Z) + C’H@t(Rhu — RhDU)HHl + Ohr, (3464)
which combined with the estimate in (3.4.63)), leads to the following estimate:
10:(Rnp — R D) || z2r2 < CR". (3.4.65)
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Therefore, using an additional triangle inequality, the estimates in (3.4.63])(3.4.65) can
be written as follows:

H@t(Rhu - 11)||L2H1 + HRhu - uHLDOHl(E) + Hat(th - p)HL2L2 S Ch™. (3466)

With the initial estimates in Lemma [3.4.3] the estimate of ||0,(Rp,u — u)|| 2y above
further implies that

IRy — ||z < [[(Rpu—u)(0)||mn + C||0y(Rpu — )| g2 < Ch”. (3.4.67)

Since 0(Rpn — 1) = Rpu — u on the boundary X, by using the Newton—Leibniz formula
with respect to ¢t € [0, 7], the estimate in (3.4.66|) and initial estimates in Lemma [3.4.3]
we have

[Ban — 0l ey < [(Brn —m)(0)|[ sy + CllO:(Ban — 0| 2m1(s)

In the same way, from (3.4.66)) and initial estimates in Lemma we have
[ Brp = pllrerz < Cll(Brp — p)(0)[ + CllRpp — uf| 22 < OB (3.4.69)
Thus we can summarize what we have proved as follows:

HRhu — uHLooHl + HRhu — uHLooHl(E) + Hth —p”LooL2
+ ||Rh77 - 77||LO0H1(E) + ||3t(Rhu - u)||L2H1 + ||8t(th —p)||L2L2 < Ch". (3.4.70)

Moreover, by differentiating ((3.4.48|) with respect to time, we have

as(at(Rhu — u), Vh) + (8t(Rhu — u), Vh)g + af(ﬁf(Rhu — 11), Vh>
— b(O?(Rup — p),vi) + (0} (Rpu — u),vy) =0 Vv, € X}, (3.4.71a)
b(qn, OF(Rpu — 1)) =0 Y, € QZ‘I.
(3.4.71b)

Similarly, by choosing v;, = 0?(Ryu — RPu) in (3.4.71a)) and using the same approach as
above with the initial value estimates in (3.4.57)), we can obtain the following estimate
(the details are omitted):

[0, (Rpu — u)||pee g1 + [|0y(Rpu — 1) || oo g1 z) + |0:(Rip — p) || o2
+||8t2(Rhu - u)||L2H1 -+ H@f(th - p)“L2L2 S Ch'". (3472)

(3.4.70) and (3.4.72)) establish the H'-norm error estimates for the coupled non-stationary
Ritz projection defined in ((3.3.3]).

We then present L?-norm error estimates for the coupled non-stationary Ritz projec-
tion. To this end, we introduce the following dual problem:

—Lp+¢=00(p,qn+f in X (3.4.73a)
—V.-o(¢,q) +¢=0 in 2 (3.4.73b)
V-p=0 in (2, (3.4.73c)

with the initial condition o(¢,¢)n = 0 at ¢ = T. Problem (3.4.73)) can be equivalently

written as a backward evolution equation of £ = o(¢, ¢)n, i.e.,

—LNE+NE—0£=1F on X x[0,T), with initial condition &(T) = 0, (3.4.74)
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where N : H™2(%)4 — Hz(X)% is the Neumann-to-Dirichlet map associated to the
Stokes equations. The existence, uniqueness and regularity of solutions to (3.4.73|) are
presented in the following lemma, for which the proof is given in Section by utilizing

and analyzing (13.4.74]).
Lemma 3.4.5. Problem (3.4.73)) has a unique solution which satisfies the following esti-

mate:
1Dl 2m2 + Bl 2m2(sy + )| 2 + [lo (@, @) (O)nlls < C|f][2p2¢s). (3.4.75)

By choosing f = R,n —n and, testing equations (|3.4.73a}) and (|3.4.73b)) with R,n—n

and Rpu — u, respectively, and using relation d;(R,n —n) = Ryu —u on X, we have
a5<¢7 Rhn - 77) + (¢7 Rhn - 77)2 + a’f(¢a Rhu - u) - b(q7 Rhu - ll) + (¢a Rhu - 11)
d

In view of the definition of the non-stationary Ritz projection in (3.3.3]), we can subtract
I,¢ from ¢ in the inequality above by generating an additional remainder b(Ryp — p, ¢ —
I,¢). This leads to the following result in view of the estimate in (3.4.66)):

d

E(a(czﬁ? @, Ryn —n)s + [|Ran — I3, = as(¢p — g, Ryn — ) + (¢ — In¢, Ry — )

+ap(¢p — 1o, Ryu —u) — b(q — Ing, Ryu — 1) + (¢ — I, Ryu —u) — b(Rpp — p, ¢ — 1,0)
< CR™ (||l + 19l 2y + llallm)-

Since [|(Rxn — n)(0)[ls < Ch™ (see Lemma , the inequality above leads to the
following result:

I1Rwm = n172120x)
< CH Y Ram = mll 22y + 1Ran(0) = 1(0) | 225 | (0(8, @)0) (0) [ 22
< CH T Run =l 22y + R Ran — 1l 22220,

and therefore
|Rin = 1l 222y < CR™1 (3.4.76)

By using the same approach, choosing f = Ry,u—u and f = 0;(Rpu—u) in (3.4.73a)),
respectively, the following result can be shown (the details are omitted):

|Rpu — u|| 220y + ||0)(Rpu — a) || p2p2(x) < Ch™+t, (3.4.77)
This also implies, via the Newton—Leibniz formula in time,
| Ran — 0| zor2s) + ||Rra — ul|poe sy < CR™H. (3.4.78)
Furthermore, we consider a dual problem defined by

—V-0(¢,9)+¢=Ryu—u in (2
V.¢=0 in 0 (3.4.79)
¢|E =0, ¢ge€ L(Q)(Q)7
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which satisfies the following standard H? regularity estimate

10l + llgllar + llo(@, onlr2(z) < Cf[Ryu —ul,

where the term ||o(¢, ¢)nl/z2(x) is included on the left-hand side because it is actually

bounded by ||@||z2 + ||g]|g:. Then, testing (3.4.79) with R,u — u, we have

|Rhu — ulf?
= ay(¢, Ryu —u) — b(q, Rpu — u) + (¢, Ryu — u) — (0(¢, ¢)n, Ryu — u)s,
(¢ — Ingd, Ryu —u) — b(q — Inq, Rpu — u) — (0(¢, ¢)n, Rpu — u)y
+ (¢ — In¢, Rpu —u) — b(Rpp — p, ¢ — I,¢) (as a result of with v, = I, g, = 11q)
< Ch(|[@lluz + llallm ) (|1 Brw — ull g + [[Rrp — pl)
+ [lo(¢,q) - nf[s[[Ryu — ul|s
< Ch Y| Ryu — u|| + C||Ryu — u|||Rpu — u|s.

:af

The last inequality implies, in combination with (3.4.78]), the following result:
|Rpu—ul| < Ch . (3.4.80)

By using the same approach, replacing Ryu —u by d;(Ryu—u) in (3.4.79)), the following
estimate can be shown (the details are omitted):

0:(Rpu — )| 22 < CA™HE. (3.4.81)

The proof of Theorem [3.3.1] is complete. |

3.5 Numerical examples

In this section, we present numerical tests to support the theoretical analysis in this
chapter and to show the efficiency of the proposed algorithm. For 2D numerical examples,
the operator L;n = Cy0,,n — C1n on the interface ¥ is considered. All computations are
performed by the finite element package NGSolve; see [128].

Example 3.5.1. To test the convergence rate of the algorithm, we consider an artificial
example of two-dimensional thin structure models given in (3.1.1)—(3.1.3) with extra
source terms such that the exact solution is given by

uy = 4sin(2rz) sin(2my) sin(t),
ug = 4(cos(2mx) cos(2my)) sin(t),

p = 8(cos(4mx) — cos(4my)) sin(t),
m =0, mny=—4cos(2rz)cos(t).

First, we examine this problem involving left /right-side periodic boundary conditions
and top/bottom interfaces in the domain 2 = [0, 2] x [0, 1]. A uniform triangular partition
is employed, featuring M + 1 vertices in the y-direction and 2M + 1 vertices in the -
direction, where h = 1/M. The classical lowest-order Taylor-Hood element is utilized for
spatial discretization. For simplicity, we set all involved parameters to 1. Our algorithm
is applied to solve the system with M = 8,16, 32, 7 = h3, and the terminal time 7" = 0.1.
The numerical results are presented in the Table[3.1] which shows that the algorithm has
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Table 3.1: The convergence order of the algorithm under periodic boundary conditions

Taylor-Hood elements (7 = %) [lu™ —wy' || [lp™ —py | lln™ —mills " —nylls
h=1/8 6.852c-3  1.403c-1  1.324e-2  8.075e-1
h=1/16 6.848¢-4  2.691e-2  1.644e-3  2.029e-1
h=1/32 7.937e-5  6.297e-3  2.052e-4  5.079e-2
order 3.10 2.10 3.00 2.00

the third-order accuracy for the velocity and the displacement in the L?-norm, as well as
the second-order accuracy for the pressure in the L?-norm and the displacement in the
energy-norm. These numerical results align with our theoretical analysis.

Next, we test our algorithm for the case of the left/right-side Dirichlet boundary
conditions, using the same configuration as previously described. Both the lowest-order
Taylor-Hood element and the MINT element are employed for spatial discretization. We
set 7 = h3 and 7 = h? for the Taylor-Hood element and the MINI element, respectively.
The numerical results are displayed in the Table 3.2 As observed in the Table [3.2] the
algorithm, when paired with both the Taylor-Hood element and the MINI element, yields
numerical results exhibiting optimal convergence orders for u and 7.

Table 3.2: The convergence order of the algorithm under Dirichlet boundary conditions

Taylor—Hood clements (7 = &%) " — ¥ 17" —o¥l_ I —ndls 7" — 'l
h=1/8 4.553e-3 1.354e-1 1.313e-2 8.069¢-1
h=1/16 6.009¢-4 2.775e-2 1.645e-3 2.029¢-1
h=1/32 7.693e-5 6.470e-3 2.055e-4 5.079e-2
order 2.97 2.10 3.00 2.00
MINT elements (7 = h?) Ju —ui | 0™ =il Y =i lls lIn™ —nills
h=1/16 1.324e-2 3.186e-1 7.971e-2 4.001e0
h=1/32 3.349e-3 1.192e-1 1.999e-2 2.003e0
h=1/64 8.327e-4 4.641e-2 5.001e-3 1.002e0
order 2.00 1.36 2.00 1.00

Example 3.5.2. We consider a benchmark model which was studied by many researchers
[25], 26, 54, (57, [72], 109, 120]. All the quantities will be given in the CGS system of units

[54]. The model is described by (3.1.1)—(3.1.3) in £ = [0,5] x [0,0.5] with the physical
parameters: fluid density py = 1, fluid viscosity @ = 0.035, solid density p, = 1.1, the
thickness of wall e, = 0.1, Young’s modulus E = 0.75 x 10°, Poisson’s ratio o = 0.5 and

Ee, o Ee,
20+0) ' R(1-02)

where R = 0.5 is the width of the domain {2. The boundary conditions on the in/out-flow
sides (x = 0,2 = 5) are defined by o(u, p)n = —piy/ousn Where

Pmax [ ( 2t )} .
1 — cos it < thax
Pin (t) = 2 max o

0 if ¢ > thax

Co =

, DPout (t) =0 Vt e (0,T7].

with prax = 1.3333 x 10* and tyax = 0.003. The top and bottom sides of {2 are thin
structures, and the fluid is initially at rest. We take a uniform triangular partition
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with M + 1 vertices in y-direction and 10M + 1 vertices in z-direction (h = 1/M), and
solve the system by our algorithm where the lowest-order Taylor-Hood finite element
approximation is used with the spatial mesh size h = 1/64 (M = 64), the temporal step
size 7 = h3 and the parameter § = 0.5. We present the contour of pressure p in the
Figure at t = 0.003,0.009,0.016,0.026 (from top to bottom). We can see a forward
moving pressure wave(red), which reaches the right-end of the domain and gets reflected.
The reflected wave is characterized by the different color(blue), which was also observed

in [54, 57, [72].

Figure 3.2: The contour of the pressure when ¢ = 0.003,0.009,0.016,0.026 (from top to
bottom)

Example 3.5.3. We consider an example of 3D blood flow simulation in common carotid
arteries studied in [120]. The blood flow is modeled by the Navier-Stokes equation, while
our analysis was presented only for the model with the Stokes equation. The weak form
of the arterial wall model is:

pses(nttv W)Z + Dl (777 W)E + DQ(ntv W)E + ES(HS(T])’ VSW)E - (—U(u,p)n, W)E
for any w € S, where V denote the surface gradient on the interface > and

_E Vsn+VST77+ Eo
1402 2 1— o2

for a linearly elastic isotropic structure. The geometrical domain is a straight cylinder of
length 4 ¢cm and radius 0.3 cm, see the Fugure [3.3] The hemodynamical parameters used
in this model are given in the Table For the inlet and outlet boundary conditions,
we set

R2_T2

u = (un(t) "4

,0,0) on X, and  o(u,p)n = —po(t)n on Mgy

The given data for up(t) and p,u:(t), as shown in the Figure 5.2, are taken from [120)].
Mmore realistic and delicate treatment of boundary conditions can be found in [56].

The fluid mesh used in this example consists of 11745 tetrahedra, and the structure
mesh consists of 3786 triangles. We utilize the P2 — P1 finite element approximation
for the velocity and pressure of the fluid, the P2 finite element approximation for the
displacement of the structure. For comparison, both classical monolithic scheme and the
proposed partitioned scheme are implemented to solve this example, where the parameter
B = 0.5. The initial velocity /pressure is the smooth constant extension of the inlet /outlet
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One cardiac cycle(s)

Figure 3.3: The geometrical domain(left) and the given data for up(t) and pe.(t)(right)

Table 3.3: The hemodynamical parameters in the PDE model

Parameter Value | Parameter Value
Wall thickness €s(cm) 0.06 | Poisson’s ratio o 0.5
Fluid viscosity p(g/cms) 0.04 | Young’s modulo F(dyne/cm?) 2.6 - 10°
Fluid density ps(g/cm?) 1 | Coefficient D;(dyne/cm?) 6-10°
Wall density p,(g/cm?) 1.1 | Coefficient Dy(dynes/cm?) 2-10°

boundary data at ¢ = 0 for both schemes. The terminal time T' = 3 s which corresponds
to 3 cardiac cycles. We have observed that the periodic pattern was established after 1
cardiac cycle. Some comparison between monolithic and partitioned schemes is done. In
the Figure [.4] the magnitude of the radial displacement for the artery wall is shown at
the interface point (2,0.3,0) in the whole 3 cardiac cycles. In the Figures and ,
the axial velocity and the pressure are presented at the center point (2,0,0) in the third

cardiac cycle, respectively. The wavefor

ms of velocity and pressure are generally not be

the same. The difference waveforms between velocity and pressure can be observed in
the numerical results by comparing Figure 5.4 and Figure 5.5.

’E0.0S

o
£0.04
c
@ 0.03
§ 0.02
-0.01

—— monolithic:dt=1e-4
—— partition:dt=5e-5

&
00975 05 10

1.5 2.0 2.5 3.0

Three cardiac cycles(s)

Figure 3.4: Comparison of the radial displacement

—— monolithic:dt=1e-4
— partition:dt=5e-5

2.0 2.2

2.4 2.6 2.8 3.0

The third cardiac cycle(s)

Figure 3.5: Comparison of the axial velocity
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Figure 3.6: Comparison of the pressure

3.6 Conclusion

We have proposed a new stable fully-discrete kinematically coupled scheme which decou-
ples fluid velocity from the structure displacement for solving a thin-structure interaction
problem described by f. To the best of our knowledge, the optimal-order
convergence in L? norm of spatially finite element methods for such problems has not
been established in the previous works. Our scheme in (3.2.19)—(3.2.20|) contains two
stabilization terms

up —s? T " e T(1+ 75
Ps€s ( h h, (Vi qn) - n) and ((Uh — 0y 1) -1, ga(vh,%) -n)
N b

T pSGS pSGS

which guarantee the unconditional stability of the method, and an additional parameter
f > 0 which is helpful for us to prove optimal-order convergence in the L? norm for the
fully discrete finite element scheme. Moreover, we have developed a new approach for
the numerical analysis of such thin-structure interaction problems in terms of a newly
introduced coupled non-stationary Ritz projection, with rigorous analysis for its approx-
imation properties through analyzing its dual problem, which turns out to be equivalent
to a backward evolution equation on the boundary 3, i.e.,

—LNE+NE—0&=1F on X x[0,T), with initial condition &(T") = 0,

in terms of the Neumann-to-Dirichlet map N : H~2(X)? — H2(X)¢ associated to the
Stokes equations. Although we have focused on the analysis for the specific kinematically
coupled scheme proposed in this chapter for a thin-structure interaction problem, the new
approach developed in this chapter, including the non-stationary Ritz projection and its
approximation properties, may be extended to many other fully-discrete monolithic and
partitioned coupled algorithms and to more general fluid-structure interaction models.

3.7 Appendix A: Proof of Lemma [3.4.5

In this appendix, we prove Lemma [3.4.5| via the following proposition, where equation

(3.7.1) differs from ((3.4.73) via a change of variable ¢t — 7" — ¢ in time.

Proposition 3.7.1. The initial-boundary value problem

—Lp+d=—-00(d,q)n+f on X x (0,7] (the boundary condition) (3.7.1a)
—V-0(¢,q) +¢=0 in 2% (0,T] (3.7.1b)
V=0 in £2x(0,T] (3.7.1c)
o(p,gn=0 at t=0 (the initial condition), (3.7.1d)
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has a unique solution (¢, q) which satisfies the following regularity estimate:

Pl L2r2 + 1@l 22 sy + gl 2 + [|0(D, @) Lo r2(sy < Cf][ 222 (3.7.2)

Proof. We divide the proof into three parts. In the first part, we introduce the Neumann-
to-Dirichlet operator and reformulate (3.7.1) into an evolution equation on the
boundary ¥ with the aid of Neumann-to-Dirichlet operator, and then establish some
mapping properties of the Neumann-to-Dirichlet operator to be used in the proof of
Proposition [3.7.1] In the second part, we establish the existence, uniqueness and reg-
ularity of solutions to an equivalent formulation of , i.e., equation below.
Finally, in the third part, we establish regularity estimates for the solutions to .
Part 1. We can define the Neumann-to-Dirichlet operator N : H~Y/2(X)? — H'/2(X)4
as ¢ — (NQ)|s, with (N, N?¢) being the solution of the following Stokes equation:

ap(NVC,v) — bNPE,v) + (N v) = (¢ v)s Vv e H'(N)? (3.7.3a)
b(g, N'¢) =0 Vg € L*(02). (3.7.3b)

Therefore,
—V - -oN¢CGNPO) +N¢C=01in 2 and oN"¢,N’()n=¢ on X.

Let & = o(¢,q)n. Then it is easy to see that problem (3.7.1) can be equivalently
formulated as follows: Find &(t) € H*(X)? for t € [0, T satisfying the following evolution
equation:

—LNE+NE+0,&=F on X x (0,T], with initial condition £(0) = 0. (3.7.4)

By choosing v = Ny in (3.7.3)) and using relation b(NP¢, NV¢) = 0 (due to the definition
of N"%¢p), we obtain

(&, NQ)s = af(NCNp) + (NG NYp) V¢, o € H V(X)) (3.7.5)
Especially, this implies that
(€ N Qs = 2ullNTCIE + NI ~ NGl ~ N s, YC € HTYA(S) (3.76)

By choosing k = s in the regularity result in (3.2.7) with s > —1/2,s € R and noting
the trace inequality, we can establish the following mapping property of the Neumann-
to-Dirichlet operator:

IV

) < CINC|

wos2() < C[¢]

Note that A'¢ = 0 if and only if { = An for some scalar constant A € R. This motivates
us to define the following subspace of H*(%)? for s € R:

Hs(%) VS Z —1/2, S € R, (377)

H(S)* = {¢ € H*()": (¢,m)s = O},

Then we define the Dirichlet-to-Neumann operator D : HY/2(X)4 — H~1/2(£)? as follows:
For ¢ € HY/2(X)4, let (D¢, DP¢) be the weak solution of

V- o(DC, D)+ D=0 in 0
V.DC=0 inQ (3.7.8)
(D'Q)ls =¢ on %,
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and then define D¢ € f]il/Q(Z)d by the following equation
a; (D¢, v) — b(DP¢,v) + (D¢, v) = (D¢, v)s Vv e HY ()% (3.7.9)

Since the function DP¢ in equation (3.7.8) is only determined up to a constant, we
can choose this constant in such a way that the function D¢ defined by (3.7.9)) lies
in H~'/2(£)?. Using trace theorem and Bogovoski’s map (cf. [53, Corollary 1.5]) there

exists v € H1(£2)? such that v|g =n, V-v = ”;}g% with ||v]| g < C, testing (3.7.9) with

such v, noting the assumption that (D¢, n)y = 0, we obtain

Dr¢| < CIID¢ 1, (3.7.10)

where DP( is the mean value of DP( over {2. Therefore, choosing k = s with s > 1/2,s € R

in (3.2.8) and combining ([3.7.10)) leads to the following estimates
ID*Cll o172 + 1Dl o172 < C¢]

From the weak form ({3.7.9)), it follows that
D¢ =172y < C (D¢l + [1DPC)) - (3.7.12)
Meanwhile when s > 3/2, by trace inequality we have
D¢
Combining (3.7.12)), (3.7.13) and (3.7.11)) leads to the following estimates of the Neumann

value D¢ in terms of the Dirichlet value (:

1) < C (D¢

otz + | DPCllsm1j2) Vs >3/2,5s € R (3.7.13)

D¢ 120y < Cl Nl ey V6 € HYA (),

~ (3.7.14)
D¢ -1y < Cli¢|mszy V¢ € H(X)%  (whenever s > 3/2,s € R)
The following complex interpolation of Sobolev spaces hold:
[HE(2)4, H?(2)Yy = HOHO-9F () vk, s e R, 0 € [0, 1]; (3.7.15a)
[H*(2)?, H3(2)Yy = HP*-0F(2)? vk s e R, 0 € [0,1]; (3.7.15b)

where (3.7.15a)) follows from [I31, Proposition 3.1-3.2 of Chapter 4] and (3.7.15b|) fol-
lows from (3.7.15a) because H*(X)? is a retract of H*(X)? for s € R via projection

7 H¥(X)Y — H*(X)?, with

r(¢) = ¢ — & HZE . (3.7.16)
5
Therefore, the following result follows from the complex interpolation between the two
estimates in ((3.7.14)):
I1D¢ |15y < CCllassy V€ € fIS(Z)d Vs >1/2,s € R. (3.7.17)

If we restrict the domain of N to H~Y/2(X)4, then N : H-Y/2($)? — HY2(L)? and
D : HY?2(x)4 — H~Y?(X)? are inverse maps of each other. This leads to the following
norm equivalence:

IS a-12) ~ NGy V6 € HTV2(E)
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Similarly, from identity DN'¢ = N'D{ = ( for ¢ € ﬁl/z(E)d and the mapping property
n [3.7.17) and (3.7.7), we conclude that the maps N : H*(X)? — H*"(¥)? and D :

HsY(2)? — H5(X)% are also inverse to each other for all s > —1/2, s € R. This implies
the following norm equivalence for s > —1/2;s € R:

€]

To facilitate further use, we summarize the properties of the NtD (Neumann to Dirichlet)
operator and DtN (Dirichlet to Neumann) operator in the following lemma:

Lemma 3.7.2.

aetie) ~ D¢ sy V¢ € HV2(2) (3.7.18)

me(x) ~ NG

Hs+1(2); HC‘

1. For s> —1/2,s € R, the NtD operator N : H*(X)* — H*T()? and DtN operator
D : H*Y(X)4 — H*(X)? are bounded and inverse to each other.

2. With domain dom(D) := H'(X)¢ C L2(2)?, the DtN operator D is a self-adjoint
positive-definite operator on L*(X)%. The NtD operator N : L*(X)¢ — L*(X)¢ is a
compact self-adjoint positive-definite operator on L?(X)%.

3. The square Toot operators D/ and N1/2 are well defined. Moreover, for s
—1/2,s € R, operators NY/? : H*(%)? — H**Y2(X)? and DY? : H*+Y/2(%)4
H*(X)4 are bounded and inverse to each other.

>
—

Proof. The three statements are proved as follows.
1. The first statement has been proved in (3.7.18)).

2. From and (| it follows that A is self-adjoint positive-definite operator
on L2(Y ) Smce H 1(Z) — L2(%)%is a compact embedding by Rellich-Kondrachov
theorem (cf. [131, Proposition 3.4 of Chapter 4]), from mapping property
of N it follows that N is a compact operator. To verify D : dom(D) — LA(E)% is
self-adjoint, it suffices to show that if ¢ satisfies

(¢, De)s| < Cllolls Ve € H'(D)", (3.7.19)

then { € H L($)4. From (3.7.19), by Riesz representation theorem there exists
g € L*(X)? such that

(¢.Do)s = (8. 9)s Vo€ H'(D)"
Especially, taking ¢ = N¢, it follows that
(€8x = (8 NEs = Wg & VEE (D)
Therefore { = Ng € H 1(2)4, proof of the second statement is complete.

3. By the spectrum theory of compact self-adjoint operator (cf. [22, Theorem 5.3.16)),
L2(¥)4 admits an orthornormal basis of eigenvectors {w;}ien of A and N has the
following expression

NC ZNCW sz—ZA 4-7% sWi VCEH 1/2(2)7

=1
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where \; > 0 is the eigenvalue associated with w;. From norm equivalence (3.7.18)),
we can deduce that for s € N there holds

€]

00 1/2
wx) ~ [[DCle = (Z /\;28’(Cawi)2|2> Vs € N. (3.7.20)
i=1

In view of complex interpolation result of weighted ¢?-sequence spaces (cf. [I5]
Theorem 5.5.3]), in fact is valid for all s > 0, s € R by complex interpolation
method. Moreover for —1/2 < s < 0, using norm equivalence and
(which is valid for s > 0, s € R) we have

~ 1/2
1SN zrs sy ~ INClls+1 () ~ (Z )\;25’(4-7%)2‘2) Vs eR,—1/2 < s <0.
- (3.7.21)
Combining and , we arrive at
o 1/2
1] gy ~ (Z A;23|((,wi)g\2> Vs > —1/2,s € R. (3.7.22)
i=1

We can define square root operators N''/2 and DY? by formula

N2 = Z Aj”((,wi)zwi V¢ € H'/2(2)?  (this series converges in L2(X)%)

DY = Z A2 (¢ w)sw; VC € LA(X)? (this series converges in H—Y/2(%)4),

=1

from the norm equivalence in (3.7.22)), it is direct to verify that operators AN//2
and D2 are inverse to each other and satisfy the following mapping property for
s>—-1/2,s€R

Il ~ N3G oo ~ 1DV sy € € H1A(2)1.

(3.7.23)

sy €]

The proof of third statement is complete.

|
Part 2. Taking into account of the fact that N is not injective on L?*(X)¢, for conve-
nience of our further construction we first take the L2-orthogonal projection 7 : L(X)? —

L2(2)* defined as in (3.7.16) on the both side of (3.7.4 -, and obtain the following equa-
tion with solution space contained in L*(X)% seek & € L2H(S)? with O€ € L2L2(%)
satisfying

O€+AE =1 £(0) =0, (3.7.24)
where A = (I — L,)N and f = nf. One difficulty in proving existence and regularity
of solution to (3.7.24) is that the operator A : H'(X)¢ — L2(2)? is not a self-adjoint
operator in ZQ(Z)d. To overcome this difficulty, we consider the following change of
variable w = N/ 25, and reformulate into an abstract Cauchy problem on w:
seck w € L2HY(X)? with w € L2L*(X)? satisfying

Ow~+ Bw=g; w(0)=0, (3.7.25)
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where B := N'2x(I — LON? and g := N'V/ 2f. We summarize some useful properties
on the operators A and B in the following lemma:

Lemma 3.7.3.
1. There holds norm equivalence for 0 < s <1,s € R
HsT1(%); 1B¢|

IAC] ey V¢ € HTVA(R) (3.7.26)

) ~ €] ms(2) ~ [I€]

2. B is a self-adjoint positive-definite operator on ZQ(Z)d with domain dom(B) :=
HY(%)
Proof. The two statements are proved as follows.

1. In view of the norm equivalence relations in (3.7.18|) and (3.7.23)), it suffices to show
the following norm equivalence for —1 < s <1,s € R

lm(I = £)¢]

Note that one direction of the norm equivalence in (3.7.27)) is given by assumption
(3.2.3). To prove the opposite direction, observe first that

I7(I = LS a-1 o ISlans) = (7(1 = L), C)s = (I = L)E, s = Cli¢l 7 )

It follows that (3.7.27) is valid for s = —1. Next we note that, by definition (3.7.16|)
of projection 7 : H¥(X)? — H*(X)?,

perry V¢ € HYA(D) (3.7.27)

sy ~ ||€]

I = £)¢ ~ (I = L)l < CIC (T = Lm)s] < Cllllnsy  (3.7.28)

For —1 < s < 1,s € R, in view of regularity assumption (3.2.9) and the estimate
(3.7.28]) above, we have

1€l msv2m) < ClI(T = L)Cl ()
S Clm(I = Lo)C mssy + CliS | (s
< C|lm(I — Ls)C||ms¢xy (this is because (3.7.27) is valid for s = —1).

Thus (3.7.27)) is proved and the first statement follows directly.

2. Since B is obviously symmetric and positive definite on its domain dom(B) =
H(X)?. To prove that B is self-adjoint, it remains to show that the domain of the
dual operator B’ defined by

dom(B') = {w € L*(X)?: 3 g € L*(2)? such that (w, B)s = (g,¢)s V¢ € H'(X)4},

coincides with the domain of B. Therefore, we need to prove that if w € L2(X)?
satisfies

(w,BO)s = (8,¢)s V¢ € H (D), (3.7.29)

for some g € L*(X)%, then w € H'(X)?. To this end, we define ¢ € H'(X) to be
the weak solution of equation

as(¢7 () + (S07 C)E = (D1/2g7 C)E VC € ]iv]l(E)da (3730)
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where the existence and uniqueness of solution to (3.7.30)) is due to coercive prop-
erty: ||€]12 + |I€]1E ~ ||§||§{1(E),‘v’(' € H*(X)? Equation (3.7.30) means

7(I — L) =D?g e H?()?,
thus by norm equivalence (3.7.27) we have ¢ € H32(2)%. Now we observe

(D1/2¢7BC>Z = (7T<I - Es)goﬂNl/QC)E = (D1/2g>N1/2C)E = <g> C)Z VC € ?1(2)2
3.7.31

By comparing ([3.7.29) with (3.7.31)) we obtain w = DY?¢p € f[l(E)d. This com-
pletes the proof.

|

Especially, since B is a self-adjoint positive-definite operator on Zz(E)d with domain

dom(B) := H'(X)4, —B generates an analytic semigroup E(t) : L*(X)? — L*(X)? for
t >0 (cf. 22 Example 7.4.5]), and the unique solution to (3.7.25)) is given by

wit) = /0 E(t — 5)g(s)ds.

Moreover, for self-adjoint semigroup on a Hilbert space, the following L?-maximal regu-
larity estimate holds (cf. |22, Theorem 7.6.11]):

HatWHLQLQ(E) + HBWHLQLQ(E) S CHg”L2L2(E)7 (3732)

which can be obtained by testing (3.7.25) with duw. If the source term g in ((3.7.25))
possesses higher spacial regularity, the solution w also inherits higher spacial regularity.

To see this, assume g € L2H' ()%, then since

Buw(t) = /0 E(t — s)Bg(s)ds

is the solution to (3.7.25|) with the source term replaced by Bg. Thus again by maximal
L?-regularity estimate, we have

HB@thLsz(E) + ||B2w||L2L2(E) S CHBgHLQLQ(E)’ (3733)

By norm equivalence in (3.7.26)), it follows that

||atOJ||L2H1(Z) + ||Bw||L2H1(E) < C||g||L2H1(Z) (3734)
Complex interpolation of (3.7.32)) and |3.7.34| gives
[0l 211 /2(s) + 1 Bwll L2125y < Cllgll2me (- (3.7.35)

Now we take g = NV/2f, then it is direct to verify that € := DY2w is the solution to
(3.7.24) and satisfies estimate

10| 2120y + 1€l p2mi () < ClIEl 2120, (3.7.36)
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where we have used norm equivalences in (3.7.26) and (3.7.23). Having obtained the
solution £ to equation (3.7.24]), if we write f(¢) = f(¢) + ¢(¢)n then it is direct to verify
that £(t) = €(t) + k(t)n is the solution to (3.7.4), where k(t) is given by

Ok=c—r(€); k0)=0
s ((I - ‘Cs)Nga II)E

T
it follows that
10kl 207y < CUIEN 22wy + €l z2m(s) < CllEl 2oy (3.7.37)
Therefore, combining and we obtain
10| 222y + €l L2mnm) < Cllfllzere(s) (3.7.38)

Part 3. Given the solution & to equation (3.7.4), we define (¢, q) = (N°&, NP€). Then
€ =0(¢,q)n and N§ = ¢|s. Therefore, equation (3.7.4]) can be written as

—Lp+d=—-00(d,q)n+f on X x(0,7], with initial condition (¢,q)(0) = (0,0).
Thus (¢, ¢) is a solution of equation (3.7.1)). Since o(¢,¢)n(0) = 0, it follows that

lo(e, Q)HHLOOL?(Z) < C|oo (¢, Q)n||L2L2(Z)-

Therefore, (¢, q) satsifies the following estimate according to (3.7.38) and the inequality
above:

”0'(¢7 Q)nHLooLZ(E) —+ H¢HL2H2(E) S CHfHLQLQ(Z)' (3739)

Moreover, since (¢, q) is the solution of the homogeneous Stokes equation (with boundary
value ¢|ly = NE), the following two estimates follow from the regularity results of the

Stokes equation in (3.2.7)—(3.2.8)):

10l + Vel < Cliglsllmw);  19llar + llall < Cllo(g, gnllg-1/zs, (3.7.40)
Combining the estimates in (3.7.39)) and (3.7.40]), we obtain the result of Proposition
B.71 u
Proof of (B.4.75). Let ¢ = ¢(T —t) and ¢ = q(T —1), then ¢ and G is a solution of (13.7.1))
in Proposition [3.7.1] with source term f(t) = £(T — ), thus we have

1Dl 2m200) + 1@l L2m2m) + lallz2mr o) + |l (@, @)n| Lo 25y < Cff[|2r2(s).

The proof of Lemma [3.4.5| is complete. |

3.8 Appendix B: Proof of (3.4.47))

In this subsection, we assume that » > 2. Under this assumption, we establish a negative-
norm estimate for the Dirichlet Stokes—Ritz projection RY in the following lemma.
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Lemma 3.8.1. For the Dirichlet Stokes—Ritz projection RY defined in (3.4.35)), the fol-
lowing error estimate holds:

lu— RPul| g1 + ||u— RSUHHfl(E) +hllp — R pllg—+ < Ch™F2. (3.8.1)

Skectch of Proof. From the definition of RPu in (3.4.35) we can see that the following
relation holds on the boundary i:

Rju — RPu = n, = ny,.
[ |2 [ |2

Since s

u—u,n

( h 2’ )E 5 CHREU — 11||H71(2) S Chr+2,

[l
it follows that |ju — RPu||g-1(x) < Ch"™2. Then (3.8.1]) follows from the same routine of
duality argument for the Dirichlet Stokes—Ritz projection. |

Next, we note that ||(Rs,u — u)(0)|| also satisfies negative norm estimate below.

Lemma 3.8.2. For the Rg,u(0) defined in (3.4.43)), the following negative-norm estimate
holds:

[(Rspu — u)(0)|| -1y < CR"F2. (3.8.2)
Proof. We introduce a dual equation
—L) +1 = ¢ 1 has periodic boundary condition on X. (3.8.3)

The regularity assumption in ({3.2.9) implies that ||[¢| g3y < ||@||a1 ). We can extend
¥ to be a function (still denoted by ) which is defined in {2 with periodic boundary
condition and satisfies ||[1)||gs < C||9)| m3(x). Then the following relation can be derived:

(Rspu —u)(0), ¢)s =as((Rau —u)(0),¢) + ((Rspu — u)(0),¢¥)s
=a;((Rspu —u)(0),¢ — IY)s + ((Rspu — u)(0), (¥ — In))s
— ay((Ry)0pa — 8iu)(0), 1,¥) + b((Ry dp — 0up)(0), Int))
— ((Ry 8a — 9)(0), Int)
SCH 2] sy + lap (R dqa — 8,u)(0), )| + [b((Ry 8ipdy, — p)(0), )]
+ (R 0 — 810)(0), ).

Since

(D(R;)9u — 9u)(0), DY) = —((Ry dyu — 8;u)(0), V - DY) + (R du — d,u)(0), n - D)y
< (I(RF9u — 0,) (0) | -1 + I1(RE Bra — 81u)(0) | r-1(sy) 11| 32
< Ch’"””ngHl(E

and

b((Ry0p — 0p)(0),) < CI(RYOp — 0p)(0) | =¥l 2 < CH"™ 2@l 1123
(RO — 0pu)(0),v) < [[(RY O — 0pa) (0| s[4l rrr < CR™ 2ol a1

summing up the estimates above yields the result in (3.8.2). The proof is complete. B
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Lemma 3.8.3. Let ¢} := (Ryu— RPu)(0) and €} := (Ry,p— RPp)(0). Then the following
estimates hold:

el + gl < Cr17,
leillz-1s) + lerlla-ir2 + lepll s < CRTH2
Proof. To prove the first inequality in Lemma [3.8.3] we note that
ap(el,vy) + (ef,vi) —b(el,vy) =0 Vv, € X5 (3.8.6)

Let u, = Ej(e}|x), where E}, is an extension operator as in (3.2.17). Then e} —uy, € X’;L
and ||u|m; < Ch™'2||e¥||ls < Ch™+/2. This estimate of ||uy| gz and relation (3.8.6)
imply that

ap(ed —up, vy) + (€ —up, vi) — b€l viy) S CR Y2 vyl Vvi € X5
Now, choosing v;, = €} — uy, in the inequality above, we obtain (|3.8.4])
leiill (o) + lleq ] < CR™H2.

We prove the second inequality in Lemma |[3.8.3] now. On the boundary 3, relations

(3.4.44b) and (3.4.39)) imply that (R,u —u)(0) = (Rspu — u)(0) — A(Rsp,u(0))ny. Since

_ (Bepu(0),n)y _ (Rgu(0) —u(0),n)y w(0) — w(OVl s
/\(Rshu(o)) - thH% - “nhH% 5 CHRsh (O> (O)HH (%)

it follows from (3.8.2)) in Lemma [3.8.2] that ||[(Ryu — u)(0)||g-1(xy < Ch™™2. Using in-
equality ||(RFu —u)(0)||g-1s) < Ch" in (3.8.1)) of Lemma 3.8.1} we obtain

|(Rpu — Rw)(0)]| g-1(zy < CR™H2. (3.8.7)

Next, we consider a dual problem: For given f € H'/2(§2)¢, we construct (¢, q) to be
the solution of

~V-o(gq)+o=£f V- -¢=0; ¢|s=0; qe L3(2).

By the regularity assumptions in (3.2.8]), the following estimate of ¢ and ¢ can be written
down:

1@l g5 + [P a2 < CllE | g2/
From equation (3 one can see that

(er £) _@f(ez7¢ — 1n9) + (€4, ¢ — 119) — (0(, @), €})s
(€h7]h¢ ¢)
SCH 2|l e + llenll sy |l e < CR2(E] o

Therefore, the following result is proved:
|(er, )| < CR 2| £l rr2; Nleqllgrr2 < CRTF2.

We move on to consider the dual problem for pressure: For given f € H3/?((2), since
eh € L2(£2) it follows that

(627]6) = (el})wf _7)
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Thus it suffices to assume that |, o f = 0. Then, using Bogovoski’s map (see details in
[53, Corollary 1.5] and [4, Theorem 4]), there exists v € H°/2(2) such that

V'V:f7 ”VHH5/2 < O”fHHs/z, V’E = 0.
From equation (|3.8.6)), we can find that
(€h, [) = b(e,, v) = b(ey,, v — Inv) + ag(ey, Inv — v) + (eg, Inv — v) + ag(ep, v) + (ef, V).

Thus, combining the known estimate ||e}| -1 < Ch™*? and ||e¥]| 1 + |l€} ]| < Ch™, we
have

(b, )] < CR2(| fll s + lag(eh, V)]
Using integration by parts, we derive that
ag(ey, v) = 2u(Dejy, Dv) = —2u(ey,, V- D) + 2u(ey, Dv - n)s S Ch™ 2| || oy
Therefore, we have proved the following result:
|(ehs DI S O 2| Fllgsres Nepllg-s2 < CRT2
This completes the proof of Lemma |3.8.3] |

Lemma 3.8.4. For the projection operators Ry, and Ry, defined in (3.4.3)) and (3.4.4)),
respectively, the following estimate holds:

IR4n(0) = Rum(0) || sy < CH7 T

Proof. By denoting &, := Ryn(0) — Ran(0), € := (Ryu — RPu)(0) and €f := (Rup —
RPp)(0), we can write down the following equation according to the definitions of the
two projection operators:

as(On, Vi) + (0, vi)s + ag(ey, vi) — bleh, vi) + (e, vy) =0 Vv, € Xj.

Then, choosing v, = E,d;, € X, in the relation above and note that || v || g1 < Ch=2||6,s,
we derive that

10ul71sy < Ch™ 2N 0nlls((legill e + llehll) < CR7[[6nlls: (3.8.8)
Next, we consider the following dual problem: Let ¢ be the solution of
—L) 4+ =6, 1 has periodic boundary condition on X.

Then
as(V,€) + (1,8)s = (0n,&)s VEES and [[¢] g2z < ||0n]ls-

We can extend v to a function (still denoted by ) defined on (2 with periodic boundary
condition and |[¢||gs/2 < C||¢|| 2. Therefore

160115 =as(0n, ¥ — Int))s + (6, (¥ — In1h))s
—ay(ep, Inh) +b(ey, Iny) — (eh, Iny))
<Ch|6n) ) 19| 2y + CR2 (€ + 12D grse
+ lag(eq, ) — (e, ¥) + (eh, Y. (3.8.9)
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Using integrating by parts and negative-norm estimates in Lemma the following
estimates can obtain:

b(eh, ) < Cllllasrlleq |l sz < O3], (3.8.10)
ag(ep, ¥) + (e, V) S Cllegll -2l s + Cllepla-1ll¢ll o2 < CR™2(|0n]|5:-
(3.8.11)

Therefore, combining the estimates in (3.8.8)—(3.8.11]), we obtain the following error
estimate for 0j,:

[3lls < CR*H045* + CRT™ = ]| < Ch7*2.

The inverse inequality implies ||0p]| g1 sy < Ch™*!. This completes the proof of Lemma
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3.9 Appendix C: Proof of (3.2.16

In this appendix, we prove (3.2.16|) in the following lemma.

Lemma 3.9.1. Under assumptions (A1)—(A4) on the finite element spaces, the follow-
ing type of inf-sup condition holds (the H'(3)-norm is involved on the right-hand side of
the inequality):

divvprh) r—
[pnl|< € sup ( Vpn € QY

oviexy [Vallm + [V s)
where C' > 0 is a constant independent of p;, and the mesh size h.

Proof. Each p, € Q™' can be decomposed into p, = pj + pn, with p, € Q};—Ol and
P = ﬁ f o prdx. Since we have assumed that inf-sup condition (3.2.14)) holds, there

exists v, € X7 such that
IVallgr < |Ipnll and  b(pn, Vi) > Ci||pn]|*  for some constant Cy > 0. (3.9.1)
For the constant p, € R, we note that
b(Pn, vi) = Prb(1, Vi) = Pu(Vh, m)s.

Let vi € X} be defined as v; = Ej(np), where ny, is defined in (3.4.38) and Ej, is
the extension operator defined in item 4 of Remark 3.2.1} ie., v} = I;'v € X/ with
v € H'(2)? being an extension of ny, such that v|s = nj. By the definition of v}, we
have

Vil = 1 vlim < Clvlia < Clowllges) < €

IVillais) = lonllms) < C.
Moreover, the following relation holds:

b(1,v;) = (vi,n)s = (n4,n)s = [n4[% > C > 0.
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Therefore, the function v} := p, v} has the following property:

||v,11||H1 + ||V}l||H1(E) < C|pn| < Col|pr||  for some constant Cy > 0.

We can re-scale vj, to v§ = Ciov,ll so that the following inequalities hold for some constant
OQ > 0:
=12
e e — . e Pn * _
Vil + Vilcsr < Il and o) = 2o v > clpg. 392)

By considering v, = vj, + evy,, with a parameter ¢ > 0 to be determined later, and using
the relation b(pp, Vi) = pr(Vh, np)y = 0, we have

b(ph, Vi) = b(pr + Dh, Vi + €V})
= b(ﬁh, gh) + Cb(ﬁh, Vi) + Gb(ﬁh, VZ)

> O1||pnl]? + eb(pn, v§) + €Co|pnl? (here (3.9.1]) and ( are used)
> C1llpnll? = Cellpullllpnll + €Ca||pnl|*  (the first 1nequahty in is used).

By using Young’s inequality, we can reduce the last inequality to the following one:

~ 112 — 112 Ol ~ 2 02 2 2
b(pn, vi) = C1||pall” + €Col|pnl|” — 7||ph|| ||Ph||

Then, choosing € = Cé%, we derive that
Ci C,C? C1C2
b(pn, Vi) > 7“1’ nll? + 502 215nl|* = Csllpa|®  with C3 := min{<!, 552}, (3.9.3)

Since v, = Vv, + ev§ with vj, = 0 on X, it follows from the triangle inequality and

B9.)-@.9.2) that

vl + 1Vallar sy < Vel + e([Vallar + [[VE I sy) (3.9.4)
G0y C,C
< |l + ~g- Ipull < (1 + =5 2>||th (3.9.5)

Therefore, (3.9.3)) and (3.9.4)) imply that

b(piuvh) > C3||ph||2 _ Cg”ph”
Vil + Vil ~ (1 + S22 |Ipa]] (14 S52)°

This proves that

1 (1 0102> b(pn, Vi)

Prll = .
o= G\ ) alln + il
and therefore completes the proof of (3.2.16]). |
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Chapter 4

Weak Discrete Maximum Principle of
Isoparametric Finite Element Meth-
ods in Curvilinear Polyhedra

4.1 Introduction

Let {2 be a bounded domain in RY with N € {2,3} and consider a quasi-uniform trian-
gulation of the domain (2 with mesh size h, denoted by 7. Hence, 2, = (Ugcy K)° is
an approximation of {2. Let Sj,({2,) be a finite element space subject to the triangulation
Tr, and denote by S} (§2,) = {vn € Sp(£2,) : v, = 0 on 042} the finite element subspace
under the homogeneous boundary condition. A function u;, € S,({2,) is called discrete
harmonic if it satisfies

/ Vup -Vx,=0 Vyx, € S,‘j(!?h) (4.1.1)
2

For a given mesh and finite element space, if all the discrete harmonic functions satisfy
the following inequality:

Huh”LOO(Qh) < HuhHLoo(th)y (4.1.2)

then it is said that the discrete maximum principle holds.

The discrete maximum principle of finite element methods (FEMs) has attracted much
attention from numerical analysts due to its importance for the stability and accuracy of
numerical solutions; for example, see [34] 36], 121], 134 [138]. However, strong restrictions
on the geometry of the mesh are required for the discrete maximum principle to hold.
For example, for piecewise linear finite elements on a two-dimensional triangular mesh,
the discrete maximum principle generally requires the angles of the triangles to be less
than 7/2; see [I38, §5]. In three dimensions, it is hard to have such discrete maximum
principe even for piecewise linear finite elements; see [20, 83, [84], [142].

Schatz considered a different approach in [125] by proving the weak maximum prin-
ciple (also called the Agmon—Miranda maximum principle) ,

HuhHLOO(_Qh) < C HuhHLoo(a_Qh) s (413)

for some constant C' which is independent of u;, and h, for a wide class of H!'-conforming
finite elements on a general quasi-uniform triangulation of a two-dimensional polygonal
domain. It was shown in [I125] that the weak maximum principle can be used to prove the
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maximum-norm stability and best approximation results of FEMs in a plane polygonal
domain, i.e.,

||u — RhUHLoo(Q) < Cﬁh 116120 ||u — UhHLoo(_Q) Yue H&(Q) N LOO(Q), (414)
VRESY,

where Ry, : Hj(£2) — Sy is the Ritz projection operator, and

p In(2+ 1/h) for piecewise linear elements,
"7 for higher-order finite elements.
Such maximum-norm stability and best approximation results have a number of applica-
tions in the error estimates of finite element solutions for parabolic problems [101] 102,
80, 98], Stokes systems [I4], nonlinear problems [60, 40, 115], optimal control problems
[6 [7], and so on.

In three dimensions, the weak maximum principle was extended to convex polyhedral
domains in [96] and used to prove the L>-norm stability and best approximation results
of FEMs on convex polyhedral domains, removing an extra logarithmic factor In(2 +
1/h) in the stability constant for quadratic and higher-order elements obtained in other
approaches (for example, see [97]). When (2 is a smooth domain and (2, = 2 (the
triangulation is assumed to match the curved boundary exactly), the weak maximum
principle of quadratic or higher-order FEMs is a result of the maximum-norm stability
result in [127, 124], and the weak maximum principle of linear finite elements can be
proved similarly as in [96]. In all these articles, the triangulation is assumed to match
the boundary of the domain exactly, with (2, = (2.

In the practical computation, the curved boundary of a bounded smooth domain, or
more generally a curvilinear polygon or polyhedron (which may contain both curved faces,
curved edges, and corners), is generally approximated by isoparametric finite elements
instead of being matched exactly by the triangulation. In this case, the weak maximum
principle of FEMs has not been proved yet. Correspondingly, the best approximation
results such as are not known for isoparametric FEMs in a curved domain.

Some related results have been proved in the case (2, # (2. For the Poisson equation
with Dirichlet boundary conditions in convex smooth domains, the piecewise linear finite
element space with a zero extension in (2\(2, is conforming, i.e., S,(£2,) C Hg(£2). In
this case, pointwise error estimates of FEMs have been established in [12, [124]. For
general bounded smooth domains which may be concave, thus the finite element space
may be non-conforming, Kashiwabara & Kemmochi [79] have obtained the following error
estimate for piecewise linear finite elements for the Poisson equation under the Neumann
boundary condition:

||1~L - uhHLoo(Qh) < Ch|log h| llgg ||2~L - UhHWLoo(_Qh) +Ch2|10gh|||U||W2,oo(_Q), (415)
UhESh

where 7 is any extension of u in W2 (§2;) and (25 is a neighborhood of 2. In the case
u € W2*(42), this error estimate is a consequence of the best approximation result in
. More recently, the W1 stability of the Ritz projection was proved in [43] for
isoparametric FEMs on C"*1''-smooth domains based on weighted-norm estimates, where
r denotes the degree of finite elements. For curvilinear polyhedra or smooth domains
which may be concave, the weak maximum principle and the best approximation results
in the L> norm have not been proved.
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In this chapter, we close the gap mentioned above by proving the weak maximum
principle in for isoparametric finite elements of degree r > 1 in a bounded smooth
domain or a curvilinear polyhedron (possibly concave) with edge openings smaller than
m. As an application of the weak maximum principle, we prove that the finite element
solution uy, € S5 (§2,) of the Poisson equation

—Au=f in {2
4.1.
{ u=0 on 0f2 (4.1.6)

using isoparametric finite elements of degree » > 1 has the following optimal-order error
bound (for any p > N):

||u — uh||Loo(Q) < CE}ZHU - jhu||Lm(Q) + Chr—i_lthfHLp(Q), (417)

where uy, is extended to be zero in (2\f2,, and I,u denotes a Lagrange interpolation
operator (which will be defined in the next section). Inequality can be viewed as
a variant of the best approximation result in by taking account of the geometry
change of the domain, which produces an additional optimal-order term Ch™*!|| f||Lr(0)
independent of the higher regularity of f. In particular, inequality implies the
following error estimate:

lu — unllLe(2) < CL® ||l go) + CH 0| fllo)  for we C*(2), 0<s <r+1,

(4.1.8)

which adapts to the regularity of w.

The weak maximum principle is proved by converting the finite element weak form
on {2, to a weak form on (2 by using a bijective transformation ®, : (2, — (2 which
is piecewisely defined on the triangles/tetrahedra. This yields a bilinear form with a
discontinuous coefficient matrix. The main technical difficulty is that the elliptic partial
differential equation associated to this coefficient matrix does not have the H? regularity
estimate, which is required in the proof of weak maximum principle in the literature; see
[96]. We overcome this difficulty by decomposing the solution v (of a duality problem)
into two parts, v = v; + vs, with v; corresponding to the Poisson equation with H?
regularity, and vy corresponding to an elliptic equation with discontinuous coefficients
but with a small source term arising from the geometry perturbation, and then estimate
the two parts separately by using the H? and WP regularity of the respective problems.

The maximum-norm error estimate is proved by using Schatz argument through esti-
mating the difference between the solutions of the Poisson equations in {2, and (2. How-
ever, in order to avoid using the partial derivatives of f in the proof of , we have
to estimate the error between the solutions of the Poisson equation in the two domains
{2, and {2 under the Dirichlet boundary conditions, respectively. This is accomplished by
perturbing the curvilinear polyhedron through a globally smooth flow map pointing out-
ward the domain and establishing the W regularity estimate of the Poisson equation
in a slightly larger perturbed domain 2° (uniformly with respect to the perturbation),
which contains both §2;, and {2 and satisfies that dist(z,92) ~ h™! for z € 002"

The rest of this chapter is organized as follows. In Section .2 we present the main
results to be proved in this chapter, including the weak maximum principle of the isopara-
metric FEM in a curvilinear polyhedron, and the best approximation result of finite ele-
ment solutions in the maximum norm. The proofs of the two main results are presented
in Sections and [4.4] respectively. The conclusions are presented in Section [4.5]
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4.2 Main results

In this chapter, we assume that 2 C RY, with N € {2, 3}, is either a bounded smooth
domain or a curvilinear polyhedron (possibly concave) with edge openings smaller than
7. More specifically, in the three-dimensional space, this means that for every x € 02
there is a neighborhood U, and a smooth diffeomorphism ¢, : U, — By(e,) mapping x
to 0 such that one of the following three conditions holds:

1. z is a smooth point, i.e., ¢, (U, N 2) = By(e,) NR3, where R? = {z € R® : z3 > 0}
is a half space in R3.

2. x is an edge point, i.e., ¢, (U, N 2) = By(e,) N K., where K, = R x X, where
¥ C R? is a sector with angle less than 7.

3. x is a vertex point, i.e., p,(U,N2) = By(e,) N K,, where K, is a convex polyhedral
cone with a vertex at 0. Therefore, the boundary of K, consists of several smooth
faces intersecting at some edges which pass through the vertex 0.

We refer to [9, Definition 2.1] for the definition of general curvilinear polyhedron.

Let 7, be the set of closed simplices in a quasi-uniform triangulation of the domain
(2 with isoparametric finite elements of degree r > 1 approximating the boundary 02, as
described in [94], with flat interior simplices which have at most one vertex on 02 and
possibly curved boundary simplices. Each boundary simplex contains a possibly curved
face or edge interpolating 962 with an accuracy of O(h"™!), where h denotes the mesh
size of the triangulation. Hence, {2, = (g K)° is an approximation to {2 such that
dist(z,02) = O(h™) for = € 0L,

We prove the following weak maximum principle of the isoparametric FEM.

Theorem 4.2.1. For the isoparametric FEM of degree r > 1 on a quasi-uniform trian-
gulation of §2, all the discrete harmonic functions u, € S,(£2,) satisfying (4.1.1) have the

following estimate:

HuhHLOO(Qh) <C ||uh||Loo(a_Qh) ) (421)
where the constant C' is independent of u, and the mesh size h.

In the isoparametric finite elements described in [94], each curved simplex K € Ty,
is the image of a map Fp : K — K defined on the reference simplex K , which is a
polynomial of degree no larger than r and transforms the finite element structure of K to
K. There is a homeomorphism ®, : {2, — (2, which is piecewise smooth on each simplex
and globally Lipschitz continuous. If we denote ®, x := ®y|x and K = ®,(K), then
Oy K — K is a diffeomorphism which transforms the finite element structure of K to
K. Therefore, T;, = {K : K € T} is a triangulation of the curved domain 2, with

Qh:UK and Q:UK.

KeTy KeTy

One can define isoparametric finite element space Sp,(§2;,) as

Sp(2) = {vn € HY () : vp|k © Fx is a polynomial on K of degree < r for K € J#}.
(4.2.2)
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The finite element spaces on {2 can be defined as

Sp(02) = {v, € H(2) : 040®;, € Sp(2,)} and Sy (02) = {vy € Sp(2) : 0, = 0 on 9N}

(4.2.3)

For a ﬁnitev element function v, € S,(f2,), we can associate it with a finite element
function v, € S,({2) defined by vy, o @;1 = Uy,

Remark 4.2.1. By using the notation which link v, € Sp({2,) and vy, € Sh(Q), the weak
maximum principle in (4.2.1)) can be equivalently written as

| ooy < C | oo o) - (4.2.4)

For a function f € C°({2,), one can define its local interpolation I;, x f on a simplex
K € T as the function satisfying

(Ih,Kf) o FK = IK(f o FK>,

where I is the standard Lagrange interpolation on the reference simplex K (onto the
space of polynomials of degree < r). The global interpolation I, f € S, (§2,) is defined as

IhflK = [hny VK € T

E‘or the analyvsis of the isoparametric FEM, we also define an interpolation operator
I, - C(82) — SK(£2) by

(Ihv) 0 @y = I(vo @) Vv e C(R).

As an application of the weak maximum principle, we establish an L*°-norm best
approximation result of isoparametric FEM for the Poisson equation in a curvilinear
polyehdron. We assume that the triangulation can be extended to a bigger domain which
contains 2, as stated below.

Assumption 4.2.1. The curvilinear polyhedral domain {2 can be extended to a larger
convex polyhedron (2, with piecewise flat boundaries such that 2 C 2, and the tri-
angulation 7, can be extended to a quasi-uniform triangulation 7., on {2, (thus the
triangulation in §2,\2 is also isoparametric on its boundary 942).

Remark 4.2.2. Here (2, can be chosen as a large cube whose interior contains . Note
that the triangulation 7}, is obtained from some triangulation 7, consisting of flat sim-
plexes by the method in Lenoir’s paper [94]. We can first extend K to a quasi-uniform
flat triangulation ﬁ,h of 2., and then modify those flat simplexes ﬁ with one of whose
edges/faces attaches to the boundary 0f2, to isoparametric elements by the method in
Lenoir’s paper [94]. This leads to a quasi-uniform triangulation 7, on {2, which extends

7. By our construction, the triangulation on 2, \ {2 is also isoparametric on its boundary
f2.

Theorem 4.2.2. For f € LP({2) with some p > N, we consider the Poisson equation

{_A“ =/ g (4.2.5)

u=0 on 012
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and the isoparametric FEM of degree r > 1 for (4.2.5)): Find uj, € S5 (£2,) such that
Vuy, - Vxpde = fxndz  Yxn € S2(02), (4.2.6)

2 2

where f € LP(QU,) is any extension of f € LP(2) satisfying || 1 Lrauay < Clf|le@)
Assuming that the triangulation satisfies Assumption[£.2.1) there exist positive constants
ho and C (independent of f, w and h) such that the solutions of and satisfy
the following inequality for h < hyg:

||U — uhHLoo(_Q) S O&LHU - jhu“Loo(_Q) + ChH_lthfHLp(_Q), (427)
where uy, is extended to be zero on 2\§2,, and l}, is defined as

g In(2+1/h) for piecewise linear elements,
"7 for higher-order finite elements.

The proofs of Theorems [4.2.1{and |4.2.2| are presented in the next two sections, respec-
tively. For the simplicity of notation, we denote by C a generic positive constant which
may be different at different occurrences, possibly depending on the specific domain (2
and the shape-regularity and quasi-uniformity of the triangulation, and the polynomial
degree r > 1, but is independent of the mesh size h.

4.3 Proof of Theorem 4.2.1

The proof of Theorem is divided into six parts, presented in the following six sub-
sections.

4.3.1 Properties of the isomparametric FEM

In this subsection, we summarize the basic properties of the isoparametric FEM to be

used in the proof of Theorem [4.2.1]

Lemma 4.3.1 (94, Theorem 1, Theorem 2, Proposition 2, Proposition 3, Proposition
4]). Let Ty be the triangulation of 2 by isoparametric finite elements of degree r > 1,
with the maps F : K — K and O K — K described in Sectzon . Let D* denote
the Fréchet derivative of order s. Then the following results hold:

1. Fp: K > K isa diffeomorphism such that

+1]
||DSFI;1||L00(K) S Ch_s VS € [1,7‘+

! 4.3.1
! (4.3.1)

2. op g K — K isa diffeomorphism such that

|1 D* (@5 — Id)|| ooy < CR™H7° Vs € [L,r

+ 1]
||DS(<I>,:}< —1d)|| oo () < Ch™'=s Vse[l,r+

| (4.3.2)

1
1

3. Forve H™(K) and integer m € [0,r+1], the norms ||v||gm k) and Hvo(ID}:}KHHm(K)
are uniformly equivalent with respect to h.
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4. Each curved simplex K € Ty, corresponds to a flat simplex K (which has the same
vertices as K ), and there is a umque linear bzyectwn Fz : K — K which maps

the reference simplex K onto K. The map Uy = F o Flgl K — K is a
diffeomorphism satisfying the following estimates:

1Dk = 1) ooy < Chy 1DV = 1d) || o) < Ch

T -1 (433)

HDS\I]KHLOO y SO |[DV ey <C Vs € [Lr +1].

5. Forv e H™(K) and integer m € (0,7 + 1], the norms ||v||gmx) and HUO\AI}KHHm(f()
are uniformly equivalent with respect to h.

Let W,lf ?(£2) be the space of functions on 2 whose restriction on each K € Ty, lies in
W*P(K), equipped with the following norm:

(3 1olfns) for 1< p <0,

||U||W:7P(Q) = KeT
sup [|v|lwr.re ) for p = oo.
KeT

In the case p = 2 we write H"(£2) = W}?(£2). The following local interpolation error
estimate was proved in [94, Lemma 7]; also see [35, Theorem 4.3.4]. Although it was
proved only for p = 2 in [94] Lemma 7|, the proof can be extended to 1 < p < oo
straightforwardly.

Lemma 4.3.2 (Lagrange interpolation). Let I,  : C(£2) — Sp(£2) be the interpolation
operator defined by ] o
IhKfO(I)h = IhKf Vf60(9>

Then, for 1 <k <r+1 and 1 < p < oo such that W,*(2) < C(2) (e.g., kp > N when
p>1ork>N whenp=1), the followmg error estimate holds:

lu— Dy wttlyiney < CHF ullyiwy YO<i<k, VK €Ty, Yue C(2)NWLP(12).

Since the Lagrange interpolation is defined by using the pointwise values of a function
at the Lagrange nodes, its stability in the W*® norm is valid only when W*?(£2) < C(£2),
i.e., in the case “kp > N and p > 1”7 or “6 > N and p = 1”7. One can remove this
restriction by using the Scott—Zhang interpolation, which can be constructed first in the
flat triangulation 7}L = {K : K € T;} as in [21 Section 4. 8] and then be transformed to
Th via the maps \I/K Namely, by denoting f?h = UKGT K and \I/h : Qh — (2}, we can
define B B B

(Z"v) o Uy, :=T"(v o W},) Vv e L'(12,),

where jh denotes the Scott—Zhang interpolation on the flat triangulation 75 Since the
maps ¥, induces norm equivalence on every simplex, as a result of (4.3.3)), we have the
following result.

Lemma 4.3.3 (Scott—Zhang interpolation). There is a global interpolation operator
Ih : L1(9h> — Sh(9h>
such that

lu —Ihu|wi,pmh) < Ch’“*iuuuwf,p VO<i<k VI<k<r+1, Yue W2

(2n)
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The inverse estimate for isoparametric finite elements follows from Lemma |4.3.1} Part
1. This is presented in the following lemma.

Lemma 4.3.4 (Inverse estimate). For 1 <k <[ <r+1and1 <p,q < oo the following
estimate holds:

||ﬂh||wz,p([() < Chk_H_N/p_N/q”ﬂh||Wk,q(g) Y, € Sh(Q), VK € 771 (434)

The following lemma says that the (r+1)th-order derivative of a finite element function
in Sy (f2) can be bounded by its lower-order derivatives. This result is often used to prove
a super-approximation property which is stated in Lemma for iso-parametric finite
elements.

Lemma 4.3.5. The following result holds for iso-parametric finite element functions in

Sy(92):

| D™y | () < CZ |Dity|(z) VYo e K, VK €Ty, Vi, € Sy(0). (4.3.5)
Proof. Let My = Pp i 0 v K, which is a diffeomorpshism between the flat simplex K and
the curved simplex K (according to Lemma [4.3.1)), satisfying the following estimates:
ID*Mk|| oo (ey < C and  |D*MH || ooy < C V1 <5 <r+1.

According to the definition of S;(£2), a function oy, is in Sy, (£2) if and only if the pull-back
function v, o M is a polynomial degree < r on the flat simplex K. Therefore, from the
estimate on higher order derivatives of composed functions (see [36, Lemma 3]), we have

| D™ oy ()
= [D" (0 © Mi) o M) ()
r+1
<CY Do M) (MM ()| > [DM (@) [D* M ()| | D™ M ()
=1 el(l,r+1)
r+1
< CY D' (i 0 Mi)|(M ()
=1

=Y D' (tn 0 M)|(Mg' (z)),

=1
where

r+1 r+1

Il +1) o= {i = (i, g, o) € Z7 i 2 0,) i =1 ) kip =7+ 1},

We can estimate |D!(v, o Mg )|(Mg"'(x)) using the same estimate on higher order deriva-
tives of composed function

IDl(f)h o My)|(My' (x))

<CZ|D'“@h| > IDM (M (@)D M (M (2))[..| D' M (M ()|
k=1 i€I(k,l)
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l
<C> |D*y|(x)
k=1

The result of Lemma is obtained by combining the two estimates above. B The
result above is the key to the superapproximation results for the isoparametric case. For
the standard elements the r + 1 derivative just vanishes.

Lemma 4.3.6 (Super-approximation). Let w € C5°(RY) be a smooth cut-off function
such that 0 < w <1 and supp(w) N2 C 2y C 2, with 25(d) := {z € 2 : dist(x, ) <
d} C (2 for some d > h. Then the following estimate holds for v, € S;(§2):

oot~ Tulsoim)llam iy < Ol S 1 wllwsoeery )1l sy + OH ol 222,
j=1

r+1
|won — In(wn) || () < C(Z hj_1||w||Wj»°°(]RN)> 108l z2(2y)-

Jj=1

Proof. Since supp(wvy,) C 2o, it follows that Iy (wiy) vanishes on all K such that KNy =
(). Since 2y(d) C (2, all the simplices K such that K N 2y # @ are contained in (2.
Therefore, we have

wa}h — jh(wlv}h)H?p(Ql) = Z wa)h — jh(&)lv)h)H?{l([()
KﬂQo#@

< Z ChQTHW{)hH?{rH(K)
f(ﬁﬂo;ﬁ@

< Z Ch%(wh‘?{rﬂ([()+Z”w”%/w+1*iv°°(RN)Hﬁh‘

f(m()oﬂ) i=0

o)
Hi(K) )
(4.3.6)

The term |i}h|§_[r+l(f() can be estimated by using Lemma , ie.,

=1

For 0 < 4 < r, the term |Uy]y:(g) can be estimated by using the inverse estimate for
isoparametric finite element functions (see Lemma [4.3.4)). This yields the first result of
Lemma [4.3.6, The second result can be proved similarly.

4.3.2 The perturbed bilinear form associated to the isopara-
metric FEM

By using the notation 4y, o ®, = uy, and vy, o ®;, = vy, for uy, v, € Sp(§2), the following
identity holds:

Vuy, - Vopda = V(a0 @p) - V(ay, o @p)dx
2 2p

= / ANy, - Vopde Vo, € SZ(Q), (438)
2
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where

Ap = (VO,(VD,) T o &

is a piecewise smooth (globally discontinuous) and symmetric matrix-valued function,
and J = det(V®y,) € L>®((2,) is the Jacobian of the mapping ®, : 2, — (2, piecewisely
defined on every simplex K € 7. Therefore, a function wuy, € S;({2;,) is discrete harmonic
if and only if

/ ANV, -Vopde =0 Vo, € SZ(Q), (439)
n

Identity will be used frequently in the following proof.

Since the map ®, : 2, — (2 is close to the identity map Id : RY — RY (which satisfies
Id(z) = x), it follows that the matrix A, is close to the identity matrix. In particular,
the following results are corollaries of the second statement of Lemma [4.3.1}

IV (@), — 1d) || 1o (2,) < CR™ 7 and  ||Ap — I|| () < Ch7, for j=0,1. (4.3.10)

Therefore, for sufficiently small mesh size h, the perturbed bilinear form B, : H 1(92) x
H'(02) — R defined by

Bp(v,x) = /QAth - Vxdzx (4.3.11)

is continuous and coercive on H}($2), i.e.,

By(v,x) < OVl 12| VX £2(02) Vo, x € H' (),
v

i ! (4.3.12)
By(v,0) = CHVullizg) ~ I0llE ) Vv e Hy(£2).

More precisely, the difference between By, (u,v) and B(u,v) is estimated in the follow-
ing lemma.

Lemma 4.3.7. There exists a positive constant hy > 0 such that for h < hy the following
result holds: If 1 < p,q < o0, 119 + % =1, and u € W'P(02), v € Wh(£2), then

| Br(u,v) = B(u,v)| < CB||Vull oan) | V| Lagan)
where Ay, = {x € 2 : dist(z,052) < 2h}.

Proof. Since ®;, = Id at all interior simplices, it follows that Ay, o ®, = I outside the
subdomain D, = {x € (2, : dist(z,0¢2,) < h}. Correspondingly, A, = I outside the
subdomain ®,(D;) and therefore,

| Bu(u,v) = B(u,v)| < | An = 1| oo @y, (o) IV tl| Lo (@, (0 V0]l o, (0)
< ChrHquLp(q)h(Dh))||vaLq(¢h(Dh))'

If x € Dy, then there exists 2’ € 9f2;, such that |x — 2’| = dist(x, 0(2;) < h and
a(2) — Bu ()] < |@4(2) — 2l + & — 2| + |2’ — By(a')] < CHTH 4+ o+ CHTH,

which implies that
dist(®(x),002) < Ch™ 4 h.

For sufficiently small h we obtain dist(®p(x),0¢2) < 2h and therefore @5, (Dy) C Ay. B
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4.3.3 Reduction of the problem
Let 2y € £2 be a point satisfying
[t (20)| = ||tn| Loy with d = dist(xg, 012).

If d > 2kh for some fixed k > 1, i.e., xy is relatively far away from the boundary
052, then we can choose 21 = {xo} and 25 = Sq/2(x0) and use the interior L> estimate
established in [127, Corollary 5.1]. This yields the following result:

. N,
| (20)] < Cd™ 2 |[tn]| L2(5,(0))-

Otherwise, we have d < 2kh. In this case, assuming that z, € K for some curved
simplex K € T, by the inverse estimate in Lemma we have

. . N N
[in(w0)| = llinl Lo iy < Ch™ 2 (| 2y < Ch™ 2 (|| L2 (550 (w0))-
Overall, for either d > 2kh or d < 2kh, the following estimate holds:
|ﬁh<l‘0)| < C'p_% HahHLQ(SP(mO))a with P = d+ 2kh. (4313)

To estimate the term |[|dp||2(s, () On the right-hand side of (4.3.13), we use the
following duality property:

lnll2(s,@) =  sup  |(tn, @),
supp() CSp(wo)
||¢||L2(SP(ZO))<1

where (-, ) denotes the inner product of L?(§2) (or L*(£2)" for vector-valued functions),

ie.,
(u,v) == / u - vdz.
0

Hence, there exists a function ¢ € Cg°

—~

(2) with the following properties:

—~

supp(p) C Sp(xo);  [lllL2(s, (o)) < 1, (4.3.14)

2|(tn, o). (4.3.15)

For this function ¢, we define v € H}(£2) and v € H'(2) to be the solutions of the
following elliptic equations (in the weak form):

N

[an | z2(s, (o))

(ALY, VX) = (¢, x) Vx € Hy(£2),
4.3.1
{ v=20 on 012, (43.16)
and
ANVu,Vy) =0 VyeHN R
( hVU, X) ’ XE 0( )7 (4317)
u=1u, on 02,

respectively. The maximum principle of the continuous problem (4.3.17)) implies that

[ul| o) < lltn | o0)- (4.3.18)
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Therefore, we have

s || 28, (20)) < 2[(tn, )| (here we have used (4.3.15)))
(@ = u, ) + (u, @)

(ApV (ap, —w), Vo) + (u, @)| (here we have used (4.3.16)))
(ApViy, Vv) + (u, )| (here we have used (4.3.17))
(
(

< 2|(AnViy, V)| + 2||ul| e ) llell 21(s, 20)) (since supp(p) C S,(xo))
2/(AnViin, V)| + Cp® [l 1= (00) ||90||L2 (Sp(z0))s (4.3.19)

where we have used (4.3.18) and the Holder inequality in deriving the last inequality.
Combing inequalities (4.3.13]) and (4.3.19)), we have

lnlloe @) = lin(wo)| < Cp 2 |(AnViin, Vo)l + Clliin | 1 (o0 (4.3.20)

where we have used the fact that ol 28, o)) < 1.

It remains to estimate p~ 2 |(AhVuh,Vv)| To this end, we define Ry, : H}(2) —
S5 (£2) to be the Ritz projection associated with the perturbed bilinear form defined in

(@.3.10)), i.e.,
(AnV (v — Ryv),VXn) =0 Vi € Sp(02), (4.3.21)

which is well defined in view of the coercivity of the bilinear form; see (4.3.12). By
using identity (4.3.9)) for the discrete harmonic function u;, and the definition of the Ritz
projection Ry in (4.3.21)), we have

(Ahvah, VU) = (Ahv{th, V(U - th))
= (AhV(ah — )v(h), V(U — Rhﬂ)) V)V(h € S’E(Q) (4322)

In particular, we can choose X, = x5 o CI>}:1 € S}‘;(Q) to satisfy x, = wu, on all interior
Lagrange nodes while y, = 0 on all the boundary nodes (which implies x;, = 0 on 02,
and therefore y, = 0 on 0f2). Then

1%n — @l o) < Clliin| s 02)- (4.3.23)

Let Ay, = {x € 2 : dist(x,02) < 2h} be a neighborhood of the boundary 02, when h
sufficiently small, i, — ¥, = 0 outside A;,. Then

(AR (Un — Xn), V(v — Rp))| < CIIV(Xn — )|l IV (v = Rrv) || L1(a,)
< Ch™ M|l o) |V (0 = Ruv) || 11(a,)s (4.3.24)

where we have used (4.3.23) and the inverse estimate for finite element functions. Sub-
stituting (4.3.22) and (4.3.24]) into (4.3.20)), we obtain

l[n | oo () < c(p—%h—lnwv — Riv)|lLieay) + Dllunll Lo @0)- (4.3.25)

The proof of Theorem {4.2.1| will be completed if the following result holds:
p TR V(v = Baw)llpa, < C (4.3.26)

which will be proved in the following subsections.
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4.3.4 Regularity decomposition

In order to estimate the left-hand side of (4.3.26)), we need to use a local energy estimate
and a duality argument, which is based on the regularity result of the following elliptic
equation (in the weak form): Find v € HJ({2) such that

(AVo,Vx) = (f,x) Yx € Hy(2), (4.3.27)

where Ay, is a globally discontinuous matrix-valued function defined in Section |4.3.2]
Due to the discontinuity of the coefficient matrix Ay, the standard H? regularity does
not hold for the elliptic equation (4.3.27). We decompose the solution v € H}(§2) of

equation (4.3.27)) into the following two parts:
v = v + Ve, (4.3.28)
where v; € H}(£2) and vy € Hj(£2) are the weak solutions of the equations

(Vor, Vx) = (f,x) Vx € Hy(02), (4.3.29)
(ALY, V) = (I — Ap) Vo, V) Vx € Hy(£2). (4.3.30)

Equation (4.3.29) has a constant coefficient and therefore the classical W29 regularity
estimate holds for 1 < ¢ < 2 4 ¢, for some € > 0 which depends on the interior angles at
the edges and corners of the domain (2 (see [39, Corollaries 3.7, 3.9 and 3.12)), i.e.,

H’U1HW27¢1(Q) < CquHLq(Q) Vi<g<2+e. (4.3.31)

Since equation (4.3.30)) has discontinuous coefficients, the W29 regularity estimate does
not hold. We have to estimate v, by using the W1? estimate in the following lemma.

Lemma 4.3.8. For every 1 < p < oo there exists h, > 0 (which depends on p), such that
for h < hy,, the solution w € Hy(§2) of the equation

(AVw, V) = (7,VX) Yx € Hy(2) with ge LP(2)N nL*(2)", (4.3.32)
satisfies w € WHP(£2) and
[wllwree) < CpllgllLr(e), (4.3.33)

where C,, is a constant which is independent of h (possibly depending on p).

Proof. We can rewrite equation (4.3.32) into the following form:

and apply the W'? regularity estimate for the Poisson equation (which holds in a smooth
domain or curvilinear polyhedron with edge openings smaller than 7; see [39, Corollaries
3.7, 3.9 and 3.12]). This yields the following inequality:

[wllwir) < Cpllgller@) + Cplll — Apllre @) |wl[wiea)-

Since ||Ap — I||p~ < Ch, for sufficiently small i (depending on p) the last term on the
right-hand side can be absorbed by the left-hand side. This yields the result of Lemma
438

By combining the W24 regularity estimate in and the WP regularity estimate
in Lemma [4.3.8] we can prove the following result.
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Lemma 4.3.9. Let 1 < p,q < oo be numbers such that 1/q < 1/n+ 1/p, and assume
that h < h,, where h, is given in Lemma . Let w € Hg(£2) be the weak solution of
the equation

(AnVw,Vx) = (f,x) + (7, VX) Vx € Hy(2) (4.3.34)

for some f € LU(2) N L3(2) and § € LP(2)N N L2(2)N. Then w € WHP(£2) and
[wllwre@) < Cpllfllze) + Collgll o )- (4.3.35)
Proof. We consider the decomposition w = w; + wy with wy, ws € Hy(§2) weakly solving

(Vwy, VX) = (f,X) Vx € Hy (1),
(ApVws, x) = (I — Ay)Vw, + g, Vx) Vx € Hy(92).

Note that for y € Wi? (£2) where 1/p+1/p =1

[(F001 SN lzalIXllper oy (L/a+1/d =1)
<C| fllza@lixllwrar () (embedding WP — L7 used),

therefore we have | f|lw-102) < C|fllze(). By the W'? regularity estimate for the
Poisson equation on curvilinear polyhedron (see [39, Corollaries 3.7, 3.9 and 3.12]), there
holds

lwillwie2) < Cpllfllw-1p2) < Cpll fllLa(e)

Then we apply the WP estimate in Lemma to the equation of wy. This yields the
following result:

|wallwir) < Cpllg + (I — An)Vwrllzr2) < CpllgllLe2) + Cpll fllLa(e)-

The result of Lemma follows from combining the estimates for w; and ws. R
The following lemma was proved in [96, Lemma 2.2] for polyhedral domains. The
proof of this result for smooth domains and curvilinear polyhedron is the same.

Lemma 4.3.10. If y € Wy ?(£2) for some 1 < p < 0o and z* € d12, then
Ixllze (s, @) < CAel[ VX L2(02)5
where Sy, (x*) == {z € 2 |x — x*| < d,}.
Lemma 4.3.11. Let 1 < p < oo and h < h,, where h, is given in Lemma . For
f e LP(2)NL*(02) with supp(f) C Sa, (z0), where 2o € 2 and dist(zy, 002) < d,,
the solution v € Hg(£2) of equation (4.3.27)) satisfies

|v][wrieo) < Cpdul fllzr) (4.3.36)
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Proof. We consider the decomposition v = v; + vy in (4.3.28)(4.3.30). If dist(zg, 062) <

d,, then Sy (z0) C S (Ty) for some T, € 2. Note that for x € Wy* (£2) where
1/p+1/p' =1, we have

[(f, 0l S“fHLP(Sd*(xo))||X||LFI(Sd*(x0))

<|I fllzo(sa. (xo))||X||LP'(S2d* (Z0))
<Cd|| fllr ) IVXl Lo (),  (Lemma [4.3.10] used)

which implies that || f||w-10(0) < Cdi||f||Lr(2). Thus by the W'? regularity estimate for
the Poisson equation on curvilinear polyhedron (see [39, Corollaries 3.7, 3.9 and 3.12]),
there holds:

[villwre) < Coll fllw-ro2) < Codill flLo(02)-
By applying Lemma to equation (4.3.30[), we obtain
[v2llwre2) < Coll(I = Ap)Vor|l @) < Cohllorllwree) < Cphd]| f]Lr(e)-

The last two inequalities imply the result of Lemma i

The next lemma is about the Cacciopoli inequality for harmonic functions which is
the same as in [123] Lemma 8.3]. The result holds for smooth domains and curvilinear
polyhedra on which the elliptic H? regularity result holds for the Poisson equation.

Lemma 4.3.12. Let D and D4 be two subdomains of (2 satisfying D C Dy C {2, with
Dy ={x € (2 :dist(x,D) < d},

where d is a positive constant. If v € HY(2) and v is harmonic on Dy, i.e.
(Vo,Vw) =0 Yw € Hy(Dy),

then the following estimates hold:

[0 20y < Cd7H[vllm(py. (4.3.37a)
<

ol oy < CA™H[0]| o) (4.3.37b)

We also need the following interior estimate in the estimation of vs.

Lemma 4.3.13. Let 1 < p,q < oo be numbers such that 1/q < 1/n+ 1/p and assume
that h < h,,, where hy, is given in Lemma[{.3.8 Let D C Dy C £2 be subdomains, with
Dy = {z € 2:dist(x, D) < d}. If v € WyP(2) N HY(2) satisfies equation

(A Vv, V) =0 Vx € Hy(Dy), (4.3.38)
or
(Vu,Vx) =0 Yy € Hy(Dy). (4.3.39)
Then
Jollwroor < 2 lollrmg + lollwrao) (4.3.40)
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Proof. We focus on the first case: v satisfies equation (4.3.38]). The proof for the second

case is the same and therefore omitted.
First, we choose a cut-off function w € CP(RY), w = 1 on D, supp(w) N 2 C Dy,
with [|wllyremyy < Cd™!. Then wv € Hj(12) satisfies the following equation:

(ApV(wv),Vx) = (wARLVY, V) + (A Vw, vVY)
= (A, Vo, V(wx)) — (A Vo, xVw) 4+ (A,Vw, vV )
= (ApoVw, V) — (A Vo - Vw, x)  Vx € Hy(£2)

where we have used the identity (A4, Vv, V(wx)) = 0 in the derivation of the last equality,
which is a consequence of (4.3.38)) and wy € H}(D4). Then we can apply Lemma m
to the above equation satisfied by wwv. This yields the following result:

lwollwirie) < Gyl AnvVwl|Le2) + Cpll AV - Vwl|La()
C
< 7p||v||Lp(Dd) + 7p||U||W1’Q(Dd)'
Since w = 1 on D, the last inequality implies the result of Lemma |4.3.13| B

Lemma 4.3.14. Let 1 < p,q < oo be numbers such that 1/q < 1/n+1/p and assume that
h < min{h,, h,}, where h,, h, are given in Lemma. Let D C Dy C 2 be subdomains,
with Dg = {x € 2 : dist(x, D) < d}. If the source function f has supp(f) N Dy =, then

the solution vy of equation (4.3.30)) satisfies the following estimate:

C
||U2||W1,p(D) S %h”vlnwl,q(g). (4341)

Proof. We consider a cut-off function w such that w =1 in D and supp(w) C Dg/2, with
[w|lwree@yy < Cd~'. Then the following equation can be written down similarly as in
the proof of Lemma |4.3.13}

(AnV(wv2), VX) = (WL — Ap)Vur, VX) + (L = Ap) Vo1 - Vw, x)
+ (12 AR VW, VX) — (A Vv - Vw, x)  Vx € Hy(92).

By applying Lemma to the equation above, we obtain

Cyh C C
Jealbwsooy < Cobloalwsoin + 2 lollwsocer + Eloallr + Llallwsoce
Cyh C
< Cphllvillwir(p, ) + _2 [orllwaqe) + f”vszl,q(n), (4.3.42)

where we have used Sobolev embedding W14(§2) < LF(£2).
Since supp(f) N Dy = 0, it follows that the solution vy of (4.3.29)) satisfies equation
(4.3.39). Therefore, Lemma [4.3.13| implies that

lorlwrn,,) < —F(10lleea + lollwrang) < —Fllvrllwreo)-

By applying Lemma to equation (4.3.30]), we also obtain

[oallwiagey < Cylll = Anllze@lvillwra) < Cohllorllwiae)-

Then, substituting the last two inequalities into (4.3.42]), we obtain the result of Lemma

4374 1
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4.3.5 WP stablity of the Ritz projection (with discontinuous
coefficients)

In [75] the W1 stability of the Ritz projection is proved for the Poisson equation in
convex polyhedral domains. The proof is based on the following properties of the domain
and finite elements:

(P1) Holder estimates of the Green function for the Poisson equation, i.e.,

|8sz($v€) _ ayzG(yvf)’ <C (|ZL‘ o §-|—2—0' + |y . £|—2—a)
Iw —yl -

|02,0¢, G, €) — 8,,0¢, Gy, ©)|
[z —yl°

(4.3.43)

<C(le=& 7 +ly—¢€77)

fori,j =1,2,3.
(P2) Elliptic H? regularity result for the Poisson equation.
(P3) Exact triangulation which matches the boundary 042.
(P4) Error estimates for the Lagrange interpolation holds as in Lemma [4.3.2]

Note that the Holder estimates for the Green function in (4.3.43) was proved in [75]
for general curvilinear polyhedral domains with edge opening smaller than 7, instead of
merely classical polyhedral domains. If we define a modified Ritz projection R} associated
to the Poisson equation (without the discontinuous coefficient Ay), i.e.,

/ V(v — Riv)-Vxpdz =0 Yy, € Sp(£2), (4.3.44)
0

then all the properties in (P1)-(P4) are possessed by the curvilinear polyhedral domain
2 and the finite element space S9(£2). The latter is based on the triangulation K which
matches the boundary 92 exactly. Therefore, the W1 stability still holds for the
modified Ritz projection defined in . The result is stated in the following lemma.

Lemma 4.3.15.
| Ryvllwie @) < Cllollwisia) Vo € Hy(2) N WH2(0). (4.3.45)

By real interpolation between the H' and W1 stability estimates (see [32] result in
(5.1)]), we obtain the W stability of the modified Ritz projection for 2 < p < oo. The
result can also be extended to 1 < p < 2 by a duality argument as in [21, Section 8.5],
which requires Poisson equation to have the W?' regularity (this is true for a curvilinear
polyhedron with edge opening smaller than 7). The result is summarized below.

Lemma 4.3.16 (IW'? stability of the modified Ritz projection R}). For any 1 < p < oo
there exists a positive constant hy, such that for h < h, the following result holds:

|Ryullwieo) < Cpllullwiny Yu € WH(02) N Hy(£2). (4.3.46)

By a “perturbation” argument, similar as [21], Section 8.6], one can obtain the W?
stability of the Ritz projection Rj,. This is stated in the following proposition.
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Proposition 4.3.17 (W7 stability of the Ritz projection Rj). For any 1 < p < oo,
there exists a positive constant h, such that for h < hy, the following result holds:

| Ryullwioo) < Cpllullwingy Yu € WH(2) N Hy(£2). (4.3.47)

Proof. For v € H}(£2), its Ritz projection R,v € S¢(£2) satisfies the following equation:
/QV(U — Rpv) - Vypdz = /Q(I — AV (v — Ryv) - Vxudr  Vxy € Sp(92).
If we define w to be the solution of the following elliptic equation (in the weak form):
/Qw Vydz = — /Q(] — AV - Rp) - Vde Vi € HA(9),
then
/QV(IU +v— Ryw) - Vypdz =0 Yy, € Sp(92),

which means that R,v = R} (w + v). Lemma [4.3.16|implies that

[ Rpvllwie) = | By (w +0)[[wiee) < Cpllw + vl[wise)
< GpllI = Apllze) v — Ruvllwiro) + Cpllvllwiee)
<

CPhHRhUHWl’P(Q) +CPHUHWLP(Q)-

There exists a constant h, such that for A < h, the first term on the right-hand side can
be absorbed by the left-hand side. In this case we obtain the result of Proposition 4.3.17]
|

As a result of Proposition [4.3.17, we obtain the following W1? error estimate for the
Ritz projection.

Lemma 4.3.18. For any 1 < g < 2+ ¢, there exists a positive constant h, such that for
h < hy the solution of equation (4.3.27) has the following error bound:

lv — RhUHWLq(Q) < thHfHLq(_Q) VfelLi(2)N L2(Q).

Proof. We consider the decomposition v = v1+wvy in (4.3.28)-(4.3.30). The W24 estimate
in (4.3.31]) and the W? estimate in Lemma |4.3.8/imply that v; and v, satisfy the following
estimates:

[villw2a@) < Collflla) V1<qg<2+e,
v2|lwra2) < Cohllvi]lwray < Cehl fllLa)-

Applying the W4 stability of the Ritz projection, we obtain the following estimates:

[o1 = Rporflwrago) < Cg ig}of(m [or = Xnllwra@) < Cohllvrllwzaie) < Cohll fllae),

Xn€S},
|[ve = Ruvallwrae) < Cyllvallwraey < Cohll fllzoo)-

The result of Lemma [4.3.18|is obtained by combining the two estimates above. B

Finally, the LP error estimate for the Ritz projection follows from a standard duality
argument, again by using the regularity decomposition as in (4.3.28)—(4.3.30)) for the dual
problem.
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Lemma 4.3.19. For any 1 < g < 2+ ¢, there exists a positive constant h, such that for
h < hy the following error estimate holds:

= Rullpo oy < Coblln — Rutlgnioy Vo€ HA(Q) AW (), (43.48)
where 1/¢+1/q = 1.

Proof. By using the duality between L9(£2) and L9 (£2), we can express the LY error of
the Ritz projection as

| Rpu — uHLq/(Q) = sup (Rpu—u,p),
peCE(2)
llellLay<1

In particular, there exists ¢ € C§°(§2) with ||¢]|Ls(0) < 1 such that
| Rpu — UHLq’(Q) < 2(Rpu —u, ).
Let v € Hj(£2) be the weak solution of the following elliptic equation (in the weak form):
(AnVo,Vx) = (p,x) VX € Hy(£2).
Then
(Rpu —u, ) = (A Vo, V(Rpu — u))
= (AhV(Rhu — u), V’U)

= (AV(Rpu — u), V(v — Ryv))
< Ol Ry = ulyrer oy | R0 = vl

< Coh||Rpu — ullyyra (ol ¢l o) (Lemma[4.3.18]is used here)
< Cgh||Ryu — UHWLq’(Q)-

This proves the result of Lemma |4.3.19|. B

4.3.6 Estimation of p=2h !||V(v — Ryv) ||l L1 (ay)

In this subsection, we prove by utilizing the results established in Sections
, where v is the solution of . This would complete the proof of Theorem
4.2.1] To this end, we consider a dyadic decomposition of the domain as in the literature;
see [75], 96, 125].

Let Ry = diam(£2) and d; = Ry277 for j > 0. We define a sequence of subdomains

Dj={x e 2:dj1 <|v—x0 <d;} for j=0.
For each 5 we denote by Dé a subdomain slightly larger than D;, defined by
Dé’:Dj—lU"'UDjUDj+1U"'UDj+l (D; := 0 for i <0.)

Let J = [Ing(Ry/2kp)] + 1, where [Iny(Ro/2kp)] denotes the biggest integer not exceeding
Iny(Ry/2kp). The constant x > 32 will be determined below, and the generic constant
C will be independent on x until it is determined (unless it contains a subscript ). The

definition above implies that

1
4 Sdj S Kp
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and
measure(D; N Ay) < C’hd;-v_l. (4.3.49)

Note that v is the solution of (4.3.16]), where ¢ = 0 outside S,(z¢). Therefore, ¢ = 0 in
D;’ for 1 < j < J. This result will be used below.
By using the subdomains defined above, we have

p 2R Y|V (0 = Ryv)|| i)

J
_ N _
<o h 1(2 1900 = Rat) 11y + 90 — Rw)HlemsW(m»)

J=0

T N
< Cp 2h7' Y had; T ||V (0 = Ruo)llzzaunny)

=0

N-1 1 1
+ O/iTpighii HV(U — th)”LQ(AthK,p(xO))7 (4350)

where the Holder inequality and (4.3.49) are used in the derivation of the last inequality.
By choosing ¢ = 2 in Lemma {4.3.18 we have

V(v = Bro)lli2) < Chllell2o) < Ch. (4.3.51)

Then, substituting (4.3.51]) into the last term on the right-hand side of (4.3.50) and using
the fact that p > h (which follows from the definition of p in (4.3.13))), we obtain

8,1 N1 ! N-t
p 2 h V(v = Rpv)||pia,) < Cp~2h™2 g d;* [[V(v— RBpv)l2p,) + Cx, (4.3.52)
Jj=0

where C, denotes a constant which depends on the parameter .
It remains to estimate ||V (v — Rpv)||z2(p,). To this end, we use the following interior

energy estimate for the solution of (4.3.16|):

||U — RhUHHl(Dj) S CHU - jhUHHl(D}) + OdJ_IHU - jhUHL?(DJl.) + CdJ_IHU — RhUHLQ(D}.)'
(4.3.53)

The proof of such interior energy estimate is omitted as it only requires the coefficient
matrix Ay, to be L™ in the perturbed bilinear form in , without additional smooth-
ness, and therefore is the same as the proof for standard finite elements for the Poisson
equation.

We use the decomposition v = v + vy in (4.3.28)(4.3.30) with f = ¢ supported in
S,(x0), and consider interpolation error of v; and vs, respectively. First, by applying the
result of Lemma and using the fact that d; > h, we have

N_N

. _ . 14NN
lvr = Iyvill oy + d~ o = Lol 2oy < Chllorll ez < Chd;* 7 [orllwrege)
for 25 <p<2, (4.3.54)

where we have used the following inequality in deriving the last inequality:

3
llollwiwe)  for 2% <p<2. (4.3.55)

1
HUIHH?(DJQ.) < Od; Nt2

J
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The inequality above follows from Lemma [4.3.12| (because v; is the solution of (4.3.29)
with f = =01in D?), the Hélder inequality and the Sobolev embedding inequality, i.e.,

HU1HH2(D§.) < Cd;2HU1HL2(D?)

o4 N N
< Cd] 2 px UIHLP*(D;?) if Dy > 2
<od TR for & — N _ 1 and 2% 2
S 5 Hvluwl,p(g) or i an Nio <p<

so that p, > 2 and WP(02) < LF" (£2).

Here we require k > 32 to guarantee that d; 5 > p, which is required in the use Lemma
4.3.12 This proves the last inequality in (4.3.54)).
Next, we consider the interpolation error of vy by using Lemma and Holder
inequality, i.e.,
3 3 N_N
||U2 — ]hvg‘|H1(D]1) + dj_lHUQ - IhU2HL2(D]1.) < Cd; " HU2”W11P1(D]2.)

N _ N

<Odf " hflolwra o)

N N
for some p; > N and — = — +1, (4.3.56)

@1 N
where we have applied Corollary 4.3.14]in deriving the last inequality. (Here we only need
p1 to be slightly bigger than N, and therefore the corresponding ¢; here can be smaller

than 2, so that we can use Hélder inequality to estimate ||| zai (s, (zo)) below.)

By combining (4.3.54)) and (4.3.56)), we obtain
Cllv - jhUHHl(DJl.) + Cdj_IHU - jhv||L2(D]1)

N _ N

S

1+4-&
* P loillwee) + Cdy M hlloillwra )

< Chd;
145X o
< Chd, " pllelles,@on + Chdy ™ pllpll Lo (s, o))

N ==

1N N_N
< Chd, PP pERY 4 Chd} Mt (4.3.57)

where we have applied Lemma [4.3.11 to equation (4.3.29)) in the derivation of the second
inequality, and used Holder inequality in the derivation of the last inequality.
Finally, substituting (4.3.57)) into (4.3.53)), we obtain

N-1
dj 2 ||V(U — th)HLQ(D]-)

-3 4 NN N-{-& | NN N-3
_N,N m _N, N
P 1% 27 + Chd] ! 1% 2 a + Cd] 2 ||'U — RhUHLZ(D]l.)

< Chd,

N-—2_N N-3
<Chd; 7 4+ Cdy 7 o — Ryvlla o, (4.3.58)

where we have chosen p = ¢; < 2 and used d; < C' in the derivation of the last inequality.
Here we can make p as close to 2 as possible so that p = ¢ satisfies the condition in
Lemma {4.3.19| (which will be used in the subsequent analysis).

N-—3_

Now we substitute (4.3.58]) into (4.3.52)) and use the result Z}]:o d; < C.pN”

we obtain

S|z
N|w

S|z

J N-1 N-1 J N=3
> d; 7 || V(v — Rpo)llzap,) < Cehpr + Y _Cd;* o — Ryvllz2(py, (4.3.59)

J=0 J=0
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and therefore

J
% Z ’V/U—Rh’U)HLQD)—i—C

7=0

w\»—t

P~ TRV (0 = Ryv)||Lica,) < Cp

<

N 1 N-=3
S C,g + Cp_ih_E d] 2 ||U — RhUHLQ(D]l.)' (4360)

J=0

It remains to estimate 37
cut-off function satisfying

=04, T Hv — th||Lz(D1 To this end, we let x be a smooth

x=1 on Djl»7 x = 0 outside DJQ- and |Vy| < C’d_
For N = 2,3 the following Sobolev interpolation inequality holds:

1 1-6 6
(v = Buv)ll2i) < X = Buo)l (o Ix(v = Bv) 51 with 5 = — oo
(4.3.61)

where p, = oo for N = 2 and p, = 6 for N = 3. For both N = 2 and N = 3, the
parameter 6 determined by (4.3.61]) satisfies the following relation:

N N 0

We can choose p sufficiently close to 2 as mentioned below . Since
Clix(v = Byv)llm (o) < CIIV(0 = Ryv)|l2(p2) + Cdj v — Ryoll 202 (4.3.63)
it follows that
v = Rpvl| 2 D})
< o = Ruvll ey (CIV (0 = Riv)ll 2o + Cdy o = Ruvllizos))”
= (€7 72[|v = Ravl|po(p2) ™ (Ce| V(0 = Ruv)|12(p2) + Cedi o — Ruv|l2o2))”
6_%“7} - RhUHLP(DJQ.) + Ce|| V(v — th)HLQ(DJZ) + Cﬁdfl”v - RhUHLQ(D?)a

where € can be an arbitrary positive number.
By choosing € = d;(p/d;)? with a fixed o € (0, 1), we obtain

[Xed

16 __6_
lv = Rpoll 2oy < C(ﬁ) d; 7 v = vl ooy (4.3.64)
J .
J

Hence,

J
ﬂ _1
QZ 7 ||U—th||L2(D1

7=0
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‘ Z

J T 1-0 0
N1 -5+
<Cp T E (ﬁ) d; ' ’ ||U — Ryvl| 1o (D?)

o J
N1 fp N3
+Cot CpShh (d_J) Ejzoj 7 o = Ruvll iz, (4.3.65)
ﬁ i . . . . .
V&;lhere we have used (| and the fact 4 < < 4 in deriving the last inequality. Note
that

J N_3 J
> d;® lo = Ryl p2(ps) < Cd, = ||U—th||L2 S xo))+32d z ||U—th||L2(D1

j=0 7=0

Combining the last two estimates, we obtain

For the fixed o € (0, 1), by choosing a sufficiently large parameter x we have (dﬁ)a < K%?

and therefore the last term of the inequality above can be absorbed by the left- hand side.
From now on we fix the parameter x. Then we have

J
S o Eh %d

j=0

-3

J
N _1 -1
lo = Rvllpapyy < Y Cpm2h” 2( ) d; o = Ruvls (D2)
Jj=0 ]

_xo 1 p\T N
+Cot Cpmzhm2{ ) dy? o= Bavllzs. o)
(4.3.66)

It remains to estimate ||[v — thHLp(D;) and [|[v — Rpvl[z2(s,,(w))- This is done by

applying Lemma [4.3.19| (with ¢’ = p therein), Lemma [4.3.18| (with ¢ = p therein) and
Holder’s inequality, i.e.,

N
P

w\z

v — Rpv|| o) < CR?|| @l o) < ChPp (4.3.67)
<

Ch* (settlng qd=q= 2 in Lemma |4.3.19| and Lemma [4.3.18] ).
(4.3.68)

”U — RhUHLz
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Then, substituting these estimates into (4.3.66)), we obtain
N 3-N N_N_ 6o
2

J J 3=N N_N_ 0o
N, _1 N=38 h h 2 pP\? 2 1-46 %_%_1_
Zp 2 h 2dj 2 H?} — RhU“LQ(D}) < E C(;) (d—J> (d_]> dj 0

Jj=0 Jj=0

) (8)7 ()

By choosing p < 2 to be sufficiently close to 2 (so that ¢’ = p satisfies the condition of
Lemma 4.3.19)) and using the relation % — & — % 45 shown in (4.3.62), we obtain

2 1-60
J N, 1 N=3
§=0

Then, substituting the last inequality into the right-hand side of (4.3.60]), we obtain
N
P 2 h 1||V<U — th)”Ll(Ah) < C.

This proves for sufficiently small mesh size, say h < hg. This condition is required
when we use Corollary [4.3.14] Lemma and Lemma in this subsection.

In the case h > hg, we denote by g, € Si,({2,) the isoparametric finite element function
satisfying g, = uj, on 0f2, and g, = 0 at the interior nodes of the domain {2,. Then the
following estimate holds:

1Gnll 2o () < Cllunll=(o0,)-
Since x5, = up, — gn € S5 (§24), it follows from (4.1.1)) that

0= [ un V=) = 19w = 3o+ [ Vi V-0
Qh Qh
and therefore
IV (un = i)l 720 = — [ Van- V(un = gn) < CIVanll 2 IV (un — gn)ll2(2,)-
2y

Thus, by using the inverse inequality and the condition h > hg, we have

IV (un — Gn)ll 222 < ClIVaRllzco,) < ChHIGnl 2 < Cho llgnlliean
< Chyunll Lo (a,)-

By using the inverse inequality again, we obtain

~ _N ~
lun = Gl < Ch™2 |lun — gullL2(0))
N ~
< Ch™ 2 ||V (un — gn)llz2(n)

_N_
2

1
< Chy*  unllzos 002,

By the triangle inequality, this proves

||z (2,) < |Gnllzee2n) + 1un = Gnllze(2n) < Cllunl| @0,

for h > hy.
Combining the two cases h < hg and h > hg, we obtain the result of Theorem
421 O
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4.4 Proof of Theorem 4.2.2

In this section, we adapt Schatz’s argument in [125] to the proof of maximum-norm
stability of isoparametric finite element solutions of the Poisson equation in the curvilinear
polyhedron considered here. The argument is based on the weak maximum principle
established in Theorem and the following technical result, which asserts that the
W1 regularity estimate of the Poisson equation can hold in a family of larger perturbed
domains 2!, ¢t € [0,0], such that dist(92!,062) ~ t and the W estimate is uniformly
with respect to t € [0, d].

Remark 4.4.1. Here we make a remark on the idea of our proof. To prove Theorem [4.2.2]
we observe that the numerical solution uy, is in fact the Ritz projection of u®) € H}(12,)
which is the exact solution of the Poisson equation on (2,:

—Au™ = f in 2, (f is extended by zero outside £2),
in the sense that
Ry (u™ o D) =up o0t

Using the weak maximum principle established in Theorem [4.2.1] one can imitate the
proof of [96, Theorem 5.1] to show that there holds L> stability for our Ritz projection
R;,. It follows that

™ = upll () < Clu™ = Liu™ || 1= (g,)-
Now we can obtain the result of Theorem [4.2.2] as long as we establish the estimate
lu = w2y < CH Y| fllzniay (0> N),

where we have extended u by zero outside {2. To this end, we consider employing the
maximum principle of harmonic functions since A(u™ —u) = 01in £2N42,. Here technically
we introduce larger perturbed domain 2* and solution !

—Au' = f in 2

in the larger perturbed domain 2°. Then using maximum principle, we compare u and
u™ with u? respectively, for example we have

lu — || o) < [0l @) < CR™FH[u! lwroe (.-
This explains the motivation of establishing Proposition [4.4.1]

Proposition 4.4.1. Let {2 be a curvilinear polyhedron with edge openings smaller than
m, and define
Q) == {x e RY : dist(wx, 2) < e},

which is an € neighborhood of (2. Then there exist constants § > 0 and A > 0 and a
family of larger bounded domains £2¢ satisfying

Q) C P C ) Ve |o,d],
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such that the weak solution u' € H}(£2") of the Poisson equation
—Aut = f in Q') with f € LP(2") for somep > N, (4.4.1)
satisfies the following estimate:
[u ey < Coll fllzogany  for t €10, 4], (4.4.2)
where C,, is some constant which is independent of t € [0, d].

Proof. In a standard convex polyhedron fZ, the following estimate holds for p > N (cf.
[104, Lemma 2.1]):

VW]l e () < CollV - (aVW)| 1y Vw € Hy(£2) such that V- (aVw) € L*(£2).
(4.4.3)

where a = (a;;) is any symmetric positive definite matrix in Wh9(£2) with ¢ > N,
satisfying the following estimate:

CHeP < ag-€ <Ol (4.4.4)

On the curvilinear polyhedron (2 considered in this chapter, by using a partition of
unity we can reduce the problem to an open subset of {2 which is diffeomorphic to a
convex polyhedral cone. Therefore, the following result still holds for p > N:

V|| 1) < Cpl|V - (VW) ooy Yw € HY($2) such that V- (aVw) € Lz(?). |
4.4.5

If there exists a smooth diffeomorphism ¥, : {2 — 2* (smooth uniformly with respect
tot € [0, 4]), then we can pull the Poisson equation on 2" = W, (£2) back to the curvilinear
polyhedron 2 as an elliptic equation with some coefficient matrix a satisfying , and
then use the result in (4.4.5). This would prove . If the partial derivatives of the
diffeomorphism from (2 to £2' can be uniformly bounded with respect to ¢ € [0, 4], then
the constant in is independent of ¢ € [0, ¢].

It remains to prove the existence of a smooth diffeomorphism W, : 2 — OQF = W, (£2).
This is presented in the following lemma. B

Lemma 4.4.2. Let 2 be a curvilinear polyherdon. Then there exist constants § > 0 and
A > 0 (which only depend on §2), and a family of diffeomorphisms ¥, : RN — RY for
t €10,0], such that

1. Q) CU(02) C 2(\1) fort €]0,0] and some constant X > 0.
2. The partial derivatives of Wy are bounded uniformly with respect to t € |0, 4], i.e.,

VAU, (2)] < Cp Vo € RN, Vk > 1, where Cy, is independent of t € [0,0].

Proof. 1t is known that any given smooth and compactly supported vector field X on R
induces a flow map
U:RxRY = RY (t,2)— ®(t,2),

such that each ¥, = U(t,-) : RY — R¥ is a diffeomorphism of RY for sufficiently small
t, say [t| < 0. Moreover, Wg = Id, U, = ¥, 0 U, for ¢, s € R, and the partial derivatives
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of ¥, are uniformly bounded by constants which only depend on X and ¢ (independent
of t).

Therefore, in order to prove Lemma [4.4.2] it suffices to construct a compactly sup-
ported smooth vector field X, such that the flow map induced by X satisfies 2(At) C
U, (2) C 2(A71) for t € [0,6] (with some constants A > 0 and § > 0). This can be
proved by utilizing the following result, which provides a criteria for the construction of
such a vector field.

Lemma 4.4.3. Let (2 be a curvilinear polyhedron, and let X be a smooth and compactly
supported vector field on RN satisfying the following conditions:

1. X|o =0 for some nonempty open subset 2 CC (2.

2. (X(z),Ny) = c at all smooth points x € 02, where N, denotes the unit outward
normal vector at x € 02 and ¢ > 0 is some constant.

3. |X(z)| <1 VaeRY

Then there are constants A > 0 and 6 > 0, which only depend on X and {2, such that the
flow map V; induced by the vector field X has the following property:

Q) CU(2) C RN for t €0,6].

Let us temporarily assume that Lemma holds, and use it to prove Lemma |4.4.2]
To this end, it suffices to construct a vector field which satisfies the conditions in Lemma
443l

From the definition of the curvilinear polyhedron we know that for every x € 942 there
exists a map ¢, : U, — B (0) which is a diffeomorphism from a neighborhood U, of x
in RY to a ball centered at 0 with radius &,, such that ¢,(z) = 0 and ¢, (U,N2) = K, N
By(es), where K, = {y € R3: y/|y| € ©} is a cone corresponding to a spherical region
© C S* which is contained in an open half sphere, say ST = {z € R* : [z| = 1, 23 > 0}.
We shall use the following terminology:

1. By composing ¢, with an additional linear transformation if necessary, we can
assume that Vi, (x) = I (which holds only at the point z in U,).

2. If p is a smooth point on JK, (not on the edges or vertex of K, ), then we denote
by N, the unit outward normal vector of 0K, at p, and define

N, = {Nx,p . p in some smooth piece of 8[(1}

to be the set of all outward unit normal vectors on the smooth faces of 0K,. When
x is a smooth point of 0f2, N, consists of only one vector, i.e., the usual unit normal
vector N,. Therefore, the set Nx can be viewed as generalization of normal vector
at x when x is not a smooth point.

3. Let y be an interior point in the polyhedral cone K,. Then the unit vector V, =
—y/|y| satisfies that (V,, N,,) > 0 for all N, , € N,.

We will construct a smooth vector field X on RY as follows, by using a partition of
unity. By the three properties above and the compactness of 02, there is constant ¢ > 0
only dependent on 2 such that for each z € 92, there is a unit vector V, € R such that

(Vyy Nup) = 2¢ VN, € N,.
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Since the normal vector at a smooth point of 9f2 changes continuously in a smooth piece
of 0f2, one can shrink the neighborhood U, of x € 0f2 so that

(Vzy Nyy) > ¢ for all smooth points y € 92N U,,

where NN, denotes the unit outward normal vector at y € 92N U,. We define a smooth
vector field X, on U, by
Xo(y) =V, VyelU,

and choose a finite covering {U,, }1<i<r of 02 from these U,, x € 0f2, and a family of
smooth cut-off functions {x¢}1<e<z such that 0 < x, <1 and

supp(x¢) € U,, and Z xe(x) =1, Ve of.

1<¢<L

Then we denote by X,, the above-mentioned vector field defined on U,,, and define

L
X = Z XZXIW
/=1

so that X is a compactly supported smooth vector field such that

(X(y), Ny) = Z Xe(y){(Xz,, Ny) > ¢, for all smooth point y € 912.
xe(y)#0

and clearly | X (z)] < 1, Vo € RY. This proves the existence of a desired vector field X,
and therefore completes the proof of Proposition [£.4.1]

Proof of Lemmal[f.4.3 For each x € 912, let ¢, : U, — B.,(0) be the map as in the
definition of the curvilinear polyhedron. Here we do not require ¢,(U,) to be a ball so
that we can assume U, to be convex.

By composing ¢, with an additional linear transformation if necessary, we can assume
that Ve, (x) = I (as in the proof of Lemma [1.4.2). Since ¢ < (X (z), N,) < 1 (as a the
condition in Lemma , we can shrink the neighborhood U, small enough so that

< <(v90x(y))TX<y)»Nz,p> <2 Vyel, pe SO:B(U:B N aQ) = QOLB(UJJ) NOK,,

N O

p is a smooth point. (4.4.6)

Moreover, since (Vg,)" = I at x, we can shrink U, so that the following equivalence
relation holds:

d(y1,y2) ~ d(es (1), p2(y2)) Vi, y2 € Uy,

where d(-,-) denotes the Euclidean distance in RY. As a result,
d(y, U, N 2) ~ d(ps(y), v (U, N 2)) Vy € U,.

We can choose a finite covering {U,, }1<o<r of 02 from these U,. Then there exists a
sufficiently small § > 0 such that for any x € 0f2 there exists 1 < ¢ < L such that for all
t €10,4],

Uy (z) € Uy, for some 1 < ¢ < L.
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Moreover,
d(Vy(x), 2) = d(Vy(x), Uy, N 12) (4.4.7)
and
d(Ve(x), £2) ~ d(pa,(Ve()), o, (Ue N £2)). (4.4.8)

Let Y, = (V,,) " X|y, be the pushforward vector field under ¢,,, then ¢, (¥;(x)) is the
integral curve of vector field Y, with initial value point ¢,,(x). From (4.4.6) we know
that

c

5 < (Yi(2), Nyyp) <2 Vz € 9y, (Usy,), Y0 € 0s,(Uy, NO2) = ,,(Uy,) NOK,,,

which implies that the integral curve ¢,,(V(x)) is flowing outside ¢,,(U,, N £2), i.e.,

ct

5 < d(gozg(\llt(iﬂ)), sze(Uwe n “Q)) < 2t

Then, from the equivalence of distance as shown in (4.4.7)—(4.4.8)), we conclude that there
exists a constant A > 0 such that

oAt < d(T,(2), 2) < %/\‘115 Yt € (0,6, Va € 91

We consider the domain 2(\t) := {z € RY : dist(x,2) < M} D 2. On the one
hand, since X | = 0 for some subdomain 2 CC (2 it follows that W,(£2) N 2(A\t) # 0.
On the other hand, since d(V,(z), 2) > At for all = € 042, the boundaries of ¥;({2) and
2(At) are disjoint. It follows that 2(\t) C W,(£2) for ¢ € [0,0]. Similarly, one can prove
that 2(A71t) D U,(£2). This completes the proof of Lemma [4.4.3| B

Lemma 4.4.4. Let ' be the domain in Proposition satisfying 2(\t) C ' C
Q) for t € 10,0], with 2Q(\t) = {& € RN : dist(z,2) < At}. Suppose that
f e LP(2Y) for some p > N, and 2, C 2! for some t = O(h™™) and h < hy, where
hi > 0 is some constant. Let u € H}(2) and u™ € H}(§2;,) be the weak solutions of the
following PDE problems:

—Au=f in {2,
— AW = in (2,

and extend u and u™ by zero to the larger domain 2. Then there exists hy > 0 such
that for h < hs the following estimate holds:

||u — u(h)HLoo(_Qt) S Chr+1||f||LP(Qt) (449)

Proof. Since m%x@h(az) — x| < Coh™! for some constant Cp, it follows that 2, C
xeslp

Q(Coh™) € 2 for t = CoA~A™. When h is sufficiently small we have t = CoA~1A™! <
§ and therefore 2¢ is well defined. Let u' € HJ(£2!) be a weak solution of the Poisson
equation

—Au'=f in 2"
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Proposition implies that

||ut||W1,oo(_Qt) S CHfHLp(_Qt) (4410)
Since u' — u is harmonic in 2 C 2! and «! — «™ is harmonic in 2, C 2*, the maximum
principle of the continuous problem implies that

P | ooy < lluf — u™ |1 00,

[
= ||lu"|| L 002, (since u™ = 0 on 02;,)
S ChrJrlH'LLth/l,oo(Qt)

< CR Y fll o), (4.4.11)
where we have used the fact that dist(z, d02") < 2Coh" ! for & € 012,. Therefore,

[ = a ™| ooty < [’ = u™ | () + 0| o2\
< OH vy + OB il fnome
< OW | v a12)

The following result can be proved in the same way:

Hut — u”Loo(_Qt) S ChT+1HfHLP(Qt). (4.4.13)

The result of Lemma follows from (4.4.12)—(4.4.13|) and the triangle inequality.

In the following, we prove Theorem by using the technical result in Proposition
€47

Let ' be the domain in Proposition [4.4.1] satisfying 2(\t) C 2 C 2(A7't) for
t € [0,0], with 2(M\) = {z € RY : dist(z,2) < M}. For the simplicity of notation,
we still denote by f € LP(£2') an extension of f € LP(2 U §2,) satisfying || f| sy <
Cllfllzr2uan) < Cllfller )

Under assumption [£.2.1], the curvilinear polyhedral domain {2 can be extended to a
larger convex polyhedron f2, with a piecewise flat boundary such that 2 C (2, and the
triangulation 7, can be extended to a quasi-uniform triangulation 7, on {2, (thus the
triangulation in Q*\ﬁ is also isoparametric on its boundary 0f2).

Let @ be an extension of u™ such that @ = u™ on 2, and @ = 0 in 2\2y,. Let
Sp(£2,) C Hy(£2,) be the H'-conforming isoparametric finite element space on (2, with
triangulation 7, ,. Let @, € S5 (f2,) be the Ritz projection of @ defined by

/ V(ﬂ — ﬁh) . VXh =0 th € S;;(Q*)

*

Then
Hu( = uhHL"O(Qh) = [la — uhHL‘X’(Qh)
< @ = tnl e, + lan — unllze ()
< i = || oo 00y F+ 1tn — unl| o2, (4.4.14)

where ||@ — @[ roo(s,) is the error of the Ritz projection of an H'-conforming FEM in
a standard convex polyhedron and therefore can be estimated by using the result on a
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standard convex polyhedron (or using the interior maximum-norm estimate as in [127,
Theorem 5.1] and [96, Proof of Theorem 5.1]), i.e.,

< C£h||ﬂ - IhaHLoo(Q*)
< Ol flu™ — Lu™ | Lo,
< thHu — ]huHLOO(Qh) + thhr+1||f||Lp(Qt)7 (4415)

@ — tin || oo (2,

where the last inequality uses the triangle inequality and (4.4.9)), and I,u is the interpola-
tion operator associated with the larger triangulation 7. , which extends the interpolation
operator I, : C(§2;,) — Si(£2,) associated with Tj. Since @y — uy, is discrete harmonic in
th i.e.,

V(in — up) - Vxude = / V(i —u) Vxpdz =0 Vxu € Sp(12),

2n 2

it follows from Theorem that ), — uy, satisfies the discrete maximum principle, i.e.,

[@n — unll (2 < Cllan — unllz= @)
= Cllan| 2= @00,)
= C||ap — 0|z, (since i|sq, = 0)
< CH%I;L —?j“Lw(Q*). (4.4.16)

Substituting and into yields
[u"™ = un | Lo () < Clallu = Tnull oo () + COR™ | fllzoary.
Since u™ = u;, = 0 in 2\ (2, it follows that
lu™ — uplzeo(e) = ™ = wnllzm(onan < Clullu — Iull =@,y + COR | fllLogar).
Then, combining this with (4.4.9), we obtain the following error bound:
lu = unl (o) < Clillu = Inull (g, + COR | fllLegan.
Finally, we note that

lu — Inull oo () =llwo ®p — In(u o @)l (e
>|lu = Ipullpe(,) — Cllu — wo @pf| (e,
>l = Inul| oo (2,) — Cllullwroe e[ P — 1d|[ L (2,)
>[lu — Tnull L= (a,) — Ch™Hullp oo ra
>[lu — Iyul| oo () — CH™ | fll o

This proves the result of Theorem [4.2.2] O

4.5 Conclusion
We have proved the weak maximum principle of the isoparametric FEM for the Poisson

equation in curvilinear polyhedral domains with edge openings smaller than m, which in-
clude smooth domains and smooth deformations of convex polyhedra. The proof requires
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using a duality argument for an elliptic equation with some discontinuous coefficients
arising from the use of isoparametric finite elements. Hence, the standard H? elliptic
regularity does not hold for the solution of the corresponding dual problem. We have
overcome the difficulty by decomposing the solution into a smooth H? part and a non-
smooth WP part, separately, and replaced the H? regularity required in a standard
duality argument by some W1? estimates for the nonsmooth part of the solution.

As an application of the weak maximum principle, we have proved an L*>-norm best
approximation property of the isoparametric FEM for the Poisson equation. All the
analysis for the Poisson equation in this chapter can be extended to elliptic equations
with W1 coefficients. However, the current analysis does not allow us to extend the
results to curvilinear polyhedral domains with edge openings bigger than 7 (smooth
deformations of nonconvex polyhedra) or graded mesh in three dimensions. These would
be the subject of future research.

There are other approaches to the maximum principle of finite element methods for
elliptic equations using non-obtuse meshes, which is restricted to piecewise linear finite
elements and Poisson equation with constant coefficients; see [62]. The approach in
the current manuscript is applicable to elliptic equations with W1 coefficients, general
quasi-uniform meshes, and high-order finite elements, and therefore requires completely
different analysis from the approaches using non-obtuse meshes.
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Chapter 5

Stability, analyticity and maximal reg-
ularity of semi-discrete isoparametric
finite element solutions of parabolic
equations in curvilinear polyhedra

5.1 Introduction

Let §2 be a curvilinear polygonal (in 2D) or polyhedral (in 3D) domain in RY (where
N € {2,3}) with edge openings possibly larger than 7, and consider the heat equation

w — Au(t,z) = f(t,x), V(t,x) € Ry x (2, (5.1.1)
u(t,z) =0, V(t,x) € Ry x 052, (5.1.2)
u(0,z) = ug(x), Vo € (2. (5.1.3)

In the case of f = 0 it is well-known that the solution of (5.1.1]) is given by u(t,z) =
e®u(x), where E(t) = e'® extends to an analytic semigroup on Cy(§2) and L?(£2) for any
1 < ¢ < oo (cf. [I19]), and satisfies the following analytic estimates:

Li), VuE Li(2), 1<g¢g<x
(5.1.4a)
Sup (HE(t)UHCO(ﬁ) + tH@tE(t)chO@) < Clvllgym, Yo e Co(£2). (5.1.4b)

ub (IE@) [l La) + IOE ()]l L)) < Cllv
>

When uy = 0, the solution of (5.1.1) exhibits maximal LP regularity in the space L%({2).
Specifically, for all f € LP(R; L({2)), the solution satisfies:

10| Lo @ sLo(2)) + 1AU| Loy Lo 2)) < Cogllfllr@siza)y V1 <p,g<oo.  (5.1.5)

Maximal L,-regularity, as described in , plays a crucial role in the analysis of
nonlinear partial differential equations (PDEs) [3], B7, 38, 107] and has been extensively
studied in the literature; see [89] 114 [139] and the references therein.

This chapter addresses the heat equation on a curvilinear polyhedral domain {2, which
cannot be exactly triangulated by linear simplices. To achieve high-order finite element
methods (FEM) in such cases, an effective approach is to use isoparametric elements.
The work of [94] provides a systematic way to construct a family 7, of isoparametric
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elements of order r for each h > 0. Each boundary simplex K € 7T, contains a curved
face or edge interpolating 92 with an accuracy of O(h™!). The approximate domain
(2, = interior of (UKeTh K) satisfies dist(z, £2) = O(h™*!) for & € (2, and dist(z, £2,) =
O(h™1) for x € §2. Based on these isoparametric elements, we define the finite element
space S, (£2,) € HY(£2,) N C(£2;,). The semi-discrete isoparametric FEM approximation
for the heat equation then involves finding wuy,(t) € S5 (£2;) that satisfies:

(Orun, Xn) a2, + (Vun, Vxu)a, = (fn,vn)o,,  Yxu € Sp(£24),Vt >0, (5.1.6)
uh(O) = Up0 € SZ(Q}J
where
Sp(824) == {xn € Sh($24) : xnlow, = 0} (5.1.7)

and fi,(t) € S5(£2,) is some source term function. Let FEj,(t) = e'®» denote the discrete
semigroup on Sy(f2,) generated by the operator A,. Then up(t) = Ep(t)v, gives the
solution of equation (5.1.6)) when w9 = v, and f, = 0. The aim of this chapter is to
prove the following analogues of and for the semi-discrete problem (|5.1.6)):

sup (1 Bn(#)vnllLaca,) + 0L ()vnll Lacan)) < Cllvallzaan) (5.1.8a)
t>

Yo, € Sp($2), 1< q < oo,
10cun | oyszacn) + | Antnll o isan) < Cpall fall Loz, (5.1.8b)
if upo =0, V1 <p,q < oo.

The analyticity and maximal regularity of the finite element semi-discrete or fully-discrete
problem have numerous applications and serve as important tools for the convergence
analysis of numerical schemes for nonlinear parabolic equations [2], 52, [67, 104, 88| [143].

Historically, there has been extensive literature examining the analyticity and
maximal regularity of the finite element discrete semigroup. By analyzing the
discrete Green’s function, [126], [133] established the analyticity of the discrete
semigroup E}, when the domain is smooth. The key estimate for the discrete Green’s func-
tion discussed in [126], [133] was subsequently utilized in [66] to demonstrate the maximal
LP regularity of the discrete semigroup Ej(t) when the domain and coefficients
of parabolic equation are sufficiently smooth. The extension of semidiscrete maximal LP-
regularity to fully discrete finite element methods has been established for various
time discretization methods, including the backward Euler method [8, [105], discontinuous
Galerkin method [99], #-schemes [82] and A-stable multistep and Runge-Kutta methods
[85].

Subsequent studies have relaxed the requirements on the smoothness of the domain
and coefficients necessary to obtain analyticity and maximal regularity estimates. The
results in [10T), 100, 104] have shown that (5.1.8a) and (5.1.8b]) hold when 2 is a polyhe-
dral domain (possibly nonconvex) and the coefficients of the parabolic equation satisfy
a;j € WHNFE(2). Furthermore, the discrete maximal regularity of fully-discrete k-step
BDF methods for parabolic equations in polyhedral (possibly nonconvex) domain was
established in [102].

The above results regarding (5.1.8a))-(5.1.8b|) are valid only when the domain (2 is
assumed to be exactly triangulated. When (2 # (2, it becomes necessary to address the
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domain perturbation effect. As far as we know, there are in general two approaches to
deal with the domain perturbation effect. One approach is the extension method, where
the exact solution u is extended over a neighborhood of 2. The extended solution wu
satisfies the original equation in (2, except along the boundary skin 2A(2,. Analyzing the
consistency error terms associated with the boundary skin effect is crucial in this method;
see the analysis using the extension methods in [80, 79, 81|, [7T]. Specifically, using the
extension method, [80] proved (5.1.8a))-(5.1.8b)) for finite element semi-discretization of
parabolic problems on a smooth domain (2 with Neumann boundary conditions, where
(2, approximates the original {2 through a quasi-uniform triangulation 7, consisting of
linear simplicies, and Sy, (£2;) is the continuous P! element space based on Tj,.

In this chapter, we adopt an alternative approach—the transformation method—to
address the domain perturbation {2 # (2. Specifically, we utilize the Lipschitz homeo-
morphism ®, : 2, — 2 constructed in [94], to transform the equation into an
equation defined on domain {2:

(ah($)aﬂlh,{1h)9 + (Ah($)vah, V’Dh)g = (ah($)fh,fih)g, V'[Jh € SZ(.Q),Vt > O,
Up(0) = tp o = upo 0 @gl.
(5.1.9)
Then ((5.1.8a))-(5.1.8b)) would become equivalent to the analyticity and maximal regularity
estimate of equation (see Section . Let I'j, be the discrete Green’s function
for equation and I be a regularized Green’s function for the original equation
(5.1.1). Both I';, and T' are defined on {2; however, it is important to note that I, — T’
does not satisfy Galerkin orthogonality due to ap(z) # 1 and Ap(x) # Iy for x € {2 with
dist(z, 012) < ch.
In general, the transformation method involves using a map like ®;, : 2, — 2 to lift
finite element functions to 2 by u} := uj, o ®,'. The domain perturbation £ # (2, is
then captured in the discrepancies of the mass bilinear forms and stiffness bilinear forms:

M (tn, va) — mun, vp) = (Un, v4) 0, — (Uh, v}) 0

Ah(uh, Uh) — A(uh, Uh) = (Vuh, V’Uh)_(gh - (Vuﬁl, vvﬁl)g

This approach is widely used in analyzing domain perturbation effects [46], 49, 27] and can
be adapted for problems involving moving domains or surfaces [11}, 87, 48], 50]. Specifically,
optimal H' and L? error estimates for isoparametric FEM applied to the heat equation
and the Cahn-Hilliard equation with dynamic boundary conditions are provided in [87]
and [27], respectively. Evolving bulk and surface isoparametric finite element spaces on
evolving triangulations are defined and developed in [49, K0] for coupled bulk—surface
system. [48] examines an evolving bulk-surface model in which a Poisson equation with
a generalized Robin boundary condition on the domain is coupled to a forced mean
curvature flow of the free boundary, proving an optimal H'! error estimate for the spatial
semi-discretization using bulk—surface finite elements. Lastly, [11] establishes maximal
regularity for evolving surface FEM applied to parabolic equations on moving surfaces,
utilizing a temporal perturbation argument to extend results from stationary to evolving
surfaces.

Our proof of (5.1.8a))-([5.1.8b)) essentially follows the same strategy in [I0T]. We reduce
(5.1.8a)-(5.1.8b) to an L'-type error estimate between I'y, and T' (Lemma . The
estimates utilize a dyadic decomposition of the domain (0,1) x 2 = U, ;Q; and the kick-
back argument from [126]. To address the singularity arising from non-convex corners,

118



we analyze the local L2H'**(Q;) and L¥H"*(Q,) estimates of the Green’s function
(Lemma [5.4.2)), as in [10I]. A local energy error estimate for finite element solutions of
parabolic equations (Lemma5.5.1)) and a local duality argument (see (5.5.111))—(5.5.120)))
are key components of the kick-back argument. The main challenge in our proof arises
during the local energy error estimate and the duality argument, similar to [80]. Since only
perturbed Galerkin orthogonality holds for I', — I, extra terms arising from the domain
perturbation effect (terms involving a, — 1 or A, — Iy) must be handled carefully.

As shown in [101], the quasi-maximal L>-regularity facilitates reducing the maximum-
norm stability of finite element solutions for parabolic equations to the maximum-norm
stability of the elliptic Ritz projection. Specifically, the following estimate holds:

Hu — uhHLoo(QT;Loo(Q)) S C (thu - Rhu”Loo(O,T;Loo(Q)) + HUQ — uh’OHLoo(Q)) . (5110)

In our context, since wu; solves the equation in a perturbed domain (2, the error in-
troduced by domain perturbation is nontrivial to eliminate. Nevertheless, this chapter
establishes that the additional error caused by the domain perturbation remains of opti-
mal order. Specifically, we show:

||ﬂ - Uh||L°o(0,T;L°o(Qh)) <C (&Hﬂ - RhﬂHLoo(o,T;Loo(Qh)) + Hao - Uh,OHLOO(Qh))
+ Chr—H (HUHLOO(QT;WQ,OO(Q)) =+ HatuHLoo(O’T;Loo(Q))) , (5.1.11)

where © is a Sobolev extension of the exact solution u over {2 U (2.

Our current work presents both connections and distinctions with the previous study
[T03], which investigated the weak maximal principle for isoparametric FEM in the con-
text of elliptic equations. In both studies, the primary result is reduced to obtaining an
L'-type error estimate of a regularized Green’s function. Specifically, the L!-type error
estimate pertains to the function v defined in [103] Eq. (2.16)] and the function I" defined
in (5.3.53), respectively.

However, in [103], to align with the reduction process of [96], v is defined as the solution
of an elliptic equation with discontinuous coefficients (cf. [103, Eq. (2.16)]). The main
result is reduced to proving an L'-type error estimate (cf. [103, Eq. (2.26)]) for v — Ry,
where Ry, denotes the Ritz projection for elliptic equations with the same discontinuous
coefficients (cf. [103, Eq. (2.21)]). Although v — Rjv satisfies Galerkin orthogonality,
the difficulty arises from the limited regularity of v, as it solves an elliptic equation with
discontinuous coefficients. To address this, [I03] decomposes v into two components: vy,
a regularized Green’s function for the original Laplacian equation, and v, which accounts
for the effects of domain perturbation (cf. [103, Section 2.4]). Consequently, the analysis
in [I03] does not require addressing local energy error estimates or duality arguments
under almost Galerkin orthogonality.

In contrast, in the current work, the function I' retains the same regularity as the
Green’s function for the heat equation in the curvilinear polyhedron. However, the error
I' — I', satisfies only an almost Galerkin orthogonality:

(0T — an(z)0Ln, Xn) e + (VI — Ap(2)VIL, Vi) = 0 Vi, € Sp(£2).

The primary difficulty lies in handling the local energy error estimates and the local
duality arguments in the context of almost Galerkin orthogonality. We address the local
energy error estimate by decomposing the error ¢ — @, into two terms: ¢—6, and 7j,. The
term ¢— 6, satisfies a local Galerkin orthogonality and can be analyzed using [101, Lemma
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5.1], while the term 7j,, which captures the domain perturbation effects (A, — I # 0 and
ap, — 1 # 0), satisfies the following equation:

(an(2)Dsin, Xn) + (An(x)Viin, Via) = (1 — an)did, Xu) + (I — A)VS, Vin)  (5.1.12)
Vxn € S2(£2),t € (0,1) and 7,(0) = 0.

The additional term 7, is bounded using a global parabolic energy estimate, introducing
the extra term Yj(¢) in the local energy error estimate (cf. Lemma . While the
local duality argument largely follows the structure in [I01], additional terms, such as Z,
I3, and Zy in (5.5.113)), arise due to the domain perturbation effects. For example, Z, is
given by:

Jo = [(1 — ah(x))ﬁtF,w]Q —+ [(IN — Ah(x))VF, Vw]g

As in [I01], these additional terms are controlled using local H'** estimates (5.5.119) for
w (the solution of the parabolic duality problem) and local energy estimates (5.4.65¢)) for
I', based on the parabolic dyadic decomposition.

The rest of this chapter is organized as follows. In Section [5.2] we present the main
results concerning the analyticity and maximal regularity of the discrete semigroup, as
well as the quasi-optimal maximum norm error estimate for isoparametric FEM. Section
[.3]introduces some preliminary results on isoparametric FEM and the Green’s functions,
and reformulates (5.1.8a])-(5.1.8D)) using the transformation method. In Section [5.4] we
prove the main results with the assistance of Lemma , which provides an L'-type
error estimate between ', and T'. Section [5.5| contains the proof of the key Lemma m
through a local energy error estimate and a local duality argument. Finally, in Section
5.0, we establish Lemma [5.5.1], which is utilized in the local energy error estimate.

5.2 Main results

The discrete semigroup Ej has an associated kernel I'y(t, z,z0) 1= (Ep(t)0h4,)(z) such
that
(En(t)vn) (o) —/ Ly(t, x, xo)vp(x)dz Vo, € Sp(§2), (5.2.13)
2n

where 0p ., € S5(£2,) is the discrete delta function satisfying (0p.u0, vn)e, = vn(xo) for
all v, € S;(£2,). We can define |E,(t)| as a linear operator on L9((2,) with kernel
|Fh(t7x7$0)|?

(|En(t)|v)(z0) := / Uy (t, z, x0)|v(x)de Yo € LI((2). (5.2.14)
2
The main result of this chapter is the following theorem.

Theorem 5.2.1. Let 2 be a curvilinear polyhedral domain in RN (with edge openings
possibly larger than ), and let S;(£2,), 0 < h < hy be the finite element spaces based on
the family Ty, of isoparametric elements. Then, for the semi-discrete equation , we
have the following analytic semigroup estimate:

sup (1EL @) vl Lagan) + tlO:(Er@vn) |l Lacan) < Cllvallia,  Yon € Sp(£2,),V1 < g < oo,
t>
(5.2.15a)
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[ SUp | En()||v]]| 2oy < Cllvl|La,), Vv € LI(§2), V1 < ¢ < o0. (5.2.15Db)
t>

Further, if upo = 0 and fy, € LP(0,T; L9(§2,)), then the solution u,(t) of equation (5.1.6))
possesses the following mazimal LP-reqularity:

HatUhHLP(QT;Lq(Qh)) + ||AhUhHLP(0,T;Lq(Qh)) < max(p, (p — 1)71)0(1Hfh|’LP(07T;Lq(Qh))

(5.2.16a)
V1l <p,qg< oo
|Osunl| oo 0,7:2a(20)) + [|ARUR| Lo 0,7520(02,)) < Clal| fall oo 0,7:09(024)) 5 (5.2.16b)
V1 < g < oo,

where Uy, :=logy(2 4+ 1/h). The constant C' in (5.2.15a]) and (5.2.16b)) is independent of

fn.h,p,q and T. The constant Cy in (5.2.15b)) and (5.2.16al) s independent of fy, h,p
and T.

To analyze the error between exact and numerical solutions, let £ : L*(£2) — L'(R")
denote the Stein extension operator (cf. [I30, page 181, Theorem 5]) which continuously
maps the Sobolev spaces W*?(£2) into W*P(RY) for each 1 < p < oo and k > 0. We use
abbreviation 5 := F¢ for a function ¢ defined on 2.

To solve the semi-discrete equation ([5.1.6) as an approximation of the original heat
equation (5.1.1]), one choice is to set fi,(t) = P, f(t), where f is the extension of f discussed
as above and P, is the L?*({2,)-orthogonal projection onto S5 (2,) i.e.,

(Pnf,vn)a, = (fivn), Yo, € Sp(82).
We define the elliptic Ritz projection Ry, : H'(£2,) — S5, as:
(VRLo,Vun)o, = (Vo,Vun)a, Yo, € Sp(82). (5.2.17)

Then, as an application of Theorem [5.2.1, we can prove the following L*°-norm error
estimate which is analogous to [101, Corollary 2.2] in the context of isoparametric FEM.

Theorem 5.2.2. Let {2 be a curvilinear polyhedral domain with edge openings possibly
larger than w. Let u be the solution of equation (5.1.1), and let uy be the solution of

equation (5.1.6) with f, = th. When h is sufficiently small, the following holds:

10 — un| o 0,1;200(2,)) SClallt — Rptil| oo 0,750 (02,)) + Cllttn,o — ol ()
+ OhT+1 (||u||Loo(07T;W2,oo(Q)) ‘I— ||atu||Loo(07T;Loo(_Q))) 5 (5218)
where u = Eu and f: Ef denote the extensions of the exact solution u and the source

term f, respectively, using the Stein extension operator E : L*(£2) — LYRY). The
constant C' is independent of h, T, f and u, andr is the order of the isoparametric elements

Remark 5.2.1. When {2 is a curvilinear polyhedral domain with edge openings smaller
than 7, we apply [103, Theorem 1.2] to derive a maximum norm estimate for the projec-
tion error u(t) — Ryu(t). Specifically, [103] Theorem 1.2] establishes the following: Let
g € L>(§2), and v solves the Poisson equation

—Av=gin {2, v=0on 0. (5.2.19)
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Let vy, € S;(£2,) be the finite element approximation solving

(Vorn, Vxu)a, = (G, xn)2,  YXn € Sp(£21), (5.2.20)

where ¢ is an extension of g to RY. For sufficiently small h, if v and v, are extended by
zero to 2 U (2, the following holds:

||U — Uh”LOO(QUQh) S Cghhr—i_l (||U||Wr+1,oo(_()) + ||§||LM(RN)) . (5221)

We use the result of (5.2.21)) to estimate u(t) — Rpu(t) by setting v = u(t), g = —Au(t)
in the Poisson equation (5.2.19), and v, = Rpu(t), ¢ = —Au(t) in its finite element
counterpart (5.2.20)). Consequently, we obtain
[u(t) = Ruu(t)|| oo @une) + [[u() || @\@y) + [[BaU(E) ]| L (200
<CUN T ([lullwrsroe () + [T(E) 2o @) -

Since u(t)|ap = 0 and dist(z,002) < Ch™! for x € 2, \ 2, we further deduce

[0 o < 7 D) ey

Combining these results and utilizing the W*?-boundedness of the Stein extension oper-
ator, we obtain

|u(t) — Rpu(t)|| Lo (0, < Cghhr+1||u(t)||wr+1,oo(g) Vr > 1.

Thus, the following quasi-optimal maximum norm error estimate holds for the parabolic
problem:

|t — un || Lo 0,500 (2,)) LClluno — Uol|Loo(2,)

+ Ch?”-i-lfi (||U||LOO(O’T;WT+1,00(Q)) + ||8tu||L°°(O,T;L°°(Q))) .
(5.2.22)

These two theorems are demonstrated in Section [5.4]

5.3 Preliminary

5.3.1 Notations of function spaces

Let 2 C RY be the curvilinear polyhedral domain in . We use the conventional
notations of Sobolev spaces W*4(£2), s > 0,1 < ¢ < oo (c.f. [I]) and Hélder spaces
C7(£2), 0 < v < 1, with the abbreviations LI = W%4(§2), W1 = W*1((2), C7 = C7(0)
and H* := W#2?(2). The notation H*(£2) denotes the dual space of H({2), which is
the closure of C§°(£2) in H*(f2). The Bochner norm of a function f : (0,7) — W*? is
defined as

I le@rwaay == IIFOllwoall oz V1 <pg<o0,s €R,

For any subdomain D C 2, we make the following convention concerning the Sobolev
spaces on D:

HfHWS#I(D) = ﬂinff HJ?HWS’Q(Q) V1 <p,qg<oo,s €R, (5-3-23)
p=
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where the infimum extends over all possible fdeﬁned on {2 with ﬂ p = f. Similarly, for
any time-space subdomain Q C Q = (0, 1) x {2, we define

1 fl|zowsaq) = ﬂinff IFllzo@rwsey V1< p,g<oo,s€R, (5.3.24)
o=

where the infimum extends over all possible fdeﬁned on @ such that ﬂQ = fin Q. We
define the Bochner norms for the Holder spaces in the same way:

| fllzeev @) == ﬂinff | fllzro;0y V1< p,g<oo,s€R.
o=

One advantage of our convention for Sobolev and Holder norms on ) C Q is the following:
if there holds Sobolev embedding W#4((2) < C7({2), then

Hf”L”C”(Q) < CHfHLPWS«q(Q)

where the constant C' is independent of the subdomain Q) C Q.
Finally, we use the abbreviations

= [owe@ar o= [ [ ittt (5.3.25)

(D, 0)0, == ¢(x)g0(:v)dx [u,v] 0, :—/ /Q u(t, z)v(t, z)dzdt, (5.3.26)

and denote w(t) := w( -) for the slice at time ¢ of any function w defined on Q.

5.3.2 Preliminary of the isoparametric FEM
Definition of isoparametric FEM

We denote by ’771 a quasi-uniform triangulation of the curvilinear polygonal or polyhedral
domain 2 C R¥, using triangles in 2D or tetrahedra in 3D. For each simplex K € Ty,
there is a linear parametrlc map F'z . K — K from the reference simplex K to K.
For a boundary simplexes K , we denote by D the face or edge of K attaching to the
boundary 02, and let D C K be corresponding face or edge of the reference simplex
such that F' (D) D. The work in [04] provides a systematic way to modify the linear
parametric map F'j 'K — K of a boundary simplex into F'i : . K — RY so that Fy
is a vector-valued polynomlal on K with degree no greater than a given integer r > 1.
Moreover F'i|p interpolates the boundary 0f2 at the Lagrangian nodes of degree r on
the face or edge D. For interior simplexes, the parametric maps remain unchanged, i.e.,
Fy = F;. Let K be the image of the parametric map F'g; in this way we obtain a family
T, consisting of these possibly curved simplexes K. The family of parametric maps Fx
constructed in [94] satisfies the following mesh regularity condition:

ID°F k|| ooy < Csh®s |D*(FRH) | poerey < Csh™ VK € T, Vs > 1, (5.3.27)

where C, is a positive constant independent of A. In addition, the parametric maps
F are arranged in a mutually consistent way so that each 7j, is still a triangulation
with the same structure as Ty, i.e., K, K’ € T, share a common face if and only if the
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corresponding pair K , K' e ’ﬁ share a common face. We define the approximate domain
as {2, := interior of | ke, KK, and the isoparametric finite element space Sp,(§2;,) of order
r is defined as

S(2) = {xn € C(21) : xu|lx 0o Fx € P'(K) VK € T},

where PT(K ) denotes the space of polynomials on K with degree no greater than r.
The mesh regularity condition guarantees that the finite element space S, ((2;)
satisfies the same local interpolation error estimate and inverse estimate as the usual
Lagrangian finite element space based on a quasi-uniform triangle/tetrahedron mesh (cf.
o).

Furthermore, similar as the construction of F'g, for every given m > r, [94] associates
each K € T, with a map ¥% : K — RY, which is a C™*l-diffeomorphism from K
to K™ := WP(K). In this chapter, we just choose m = r and omit the superscript
m; specifically the transformation ¥y is C?-diffeomorphism when » = 1. For interior
simplex K, Wy equals to identity map, and for boundary simplex K, Wy maps the
curved boundary face/edge of the simplex K onto the exact domain boundary 0f2. The
map ®, : 2, — 2 defined by ®,|x = Wi gives a globally Lipschitz homeomorphism
from the approximate domain (2, to the exact domain (2. Let 7, be the family of
{f( = Wi(K): K € T,}; it follows that T gives a triangulation on (2. The finite element
space S, (£2) C C(£2) associated to Ty, is defined via the Lipschitz homeomorphism ®:

Su(82) == {xn € C(£2) : X, o @), € Su(42)}

Alternative formulation of Theorem m

For any element K € 7T,, we have estimates (cf. [94] Proposition 2 & Proposition 3 of
Section 5))

|1D*(Wx — Id)|| oy < CR™T17° Vs € [1,r+ 1], (5.3.28)
ID* (W' = Id)|| ooy < CHH7° Vs € [1,7 +1].

As a corollary, let F := Wy o F : K — K be the parametric map of K € 7;,. Then
F is a C""!diffeomorphism from K to K with derivatives satisfying estimate:

ID*F || oo iy < OB, ID*(F )| poo(iey S Ch™° VK € T, V1< s <r+1 (53.29)
From estimate ([5.3.28), when h is sufficiently small, ®; induces the following L? and

WP norm equivalence for each 1 < p < oc:
CHwvo Dy o0, < |V|lr2) £ Cllvo ®pllre,) Yve LP(12) (5.3.30)
CHIV(vo @)l < IVV|r2) < CIV(vo ®)|1rin,) YveWHP(2). (53.31)

T

We define a5 (z) := | det (D® ' (2)) | and Ay (z) := an() (D\Il;(l(gc))f1 (D¥ (z))  for
any r € §2. By (5.3.28]), we have
lan = 1Ly + [[An = InllLoe() < CH, (5.3.32)

where Iy denotes the N x N identity matrix. Observe that the isoparametric finite
element method ((5.1.6) is equivalent to

{ (ah(ﬂi)aﬂlh,f}h) + (Ah(l‘)Vth, Vf)h) = (ah(x)fh, @h), V@h < SZ(Q),W > 0,

5.3.33
R(0) = o := upgo ®; ", ( )
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where for elements vy, up, fr € Sp(£2,) we use the convention o, := v, o @;1,22;1 =
up, ° <I>}:1, n= fno <I>,71, and we define S} (§2) as

Sh(92) = {Xn € Su(£2) : Xnloa = 0}, (5.3.34)

We can define the corresponding operators associated with finite element space S;’L(Q),
which have natural relations with those associated with the finite element space S (£2,):

The [f-projection We denote by P, the weighted L?(f2)-orthogonal projection onto
S5 (£2) defined as follows:

(ah(:v)lbhv,)zh) = (ah(x)v,)'(h) V)Zh € S’Z(Q) (5335)
Clearly, there holds following relation between P, and Py:
Ph(u e} (I)h) = phu e} (I)h.

The L?(£2;)-orthogonal projection P, can be extended to a bounded operator on
Lq<9h)7 1 S q S 0, i-e'a

1P fllLaen < Cllfllpoe, V€ LU($2), V1 < g < oo, (5.3.36)

where the constant C' is independent of h and ¢q. The estimate above is a conse-
quence of [I32, Lemma 6.1] and the self-adjointness of P,. In view of the norm
equivalence ([5.3.30)), it follows that P, also possesses Li-stability:

1Puf o) < Cllfllray Yf € LU(2), V1< g < o0 (5.3.37)

The discrete Laplacian In the same way, one can transform the discrete Laplacian A,
to the corresponding operator Ay : S5 (£2) — Sy (£2) defined by,

—(Ap(2)Vin, Vn) o = (an(@)Aptin, Xn)o  VXn € Sp(£2), (5.3.38)

with the relation .
Ah(ah o (I)h) == Ahah o ‘I)h-

The discrete semigroup With the operator Ay, we can rewrite (5.3.33) equivalently

as,

{ Ovii, — Anity, = fr V>0, (5.3.39)

ﬂh(O) = ﬂhp ‘= Up,0 © (I),;l

In the case of fn = 0, there is a discrete semigroup E)(t) on finite element space
Sy(§2), generated by Ay, such that £y (¢)(0p) is the solution of (5.3.33) when o =
Op. The following relation holds between Ej(t) and Ej,(t):

(ER(t)0p) o @) = Ep(t)vy,  (convention vy, = vy, o @, used),

which implies that

(En(t)op)(xg) = /Qah(a:)Fh(@glx, &, 'ag, t)on(2)dr Vo € 2,V € Sp(0).
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We can define |E}, ()| to be the linear operator on L?(£2) with the following repre-
sentation

(\E’h(t)\v)(xo) = /Qah(:c)lf‘h(@;lx, @;lxo,t)\v(x)dx Vg € 2,Yv € LI(§2),

then we have the relation
(|EL(t)|v) o @ = |Ep(t)]|(vo @) Yo € LI(12).
From the discussion above, the main Theorem [5.2.1| can be equivalently expressed in the
following form.

Theorem 5.3.1. Let 2 be a curvilinear polyhedral domain in R3 (possibly with edge
openings larger than ), and let S3(£2) C HY(£2) be the finite element spaces defined
mn . Assume that h s sufficiently small. Then for the semi-discrete equation
, we have the following analytic semigroup estimate:

sup (1 En(#)onl oy + IO (En(t)0n)l La() < Cllonllra)  Von € Sp($24),V1 < ¢ < o0,
t>
(5.3.40a)
I sup |En()|[v]l ) < Collvllnay, Yo € LI(£2), V1 < ¢ < . (5.3.40Db)
t>

Further, if tno = 0 and f, € LP(0,T; L(£2)), then the solution iy (t) of equation (5.3.33)

possesses the following mazimal LP-reqularity estimate:

10vitnl| Lo (o.1;L9(2)) + ARl Lo o,7500(2)) < max(p, (p — 1)) Coll full r 071292

(5.3.41a)
V1 < p,q < o0,
18yt | Low 0.2 (2)) + | Anin || oo 1220 (2)) < Clul full zos 0,702y (5.3.41b)
V1< g < oo,

where Uy, :=logy(2+ 1/h). The constant C' in (5.3.40a]) and (5.3.41b)) is independent of

fu.p,q,h and T, and the constant Cq in (5.3.40b) and (5.3.41al) is independent of fu by p
and T.

Theorem [5.3.1] is proved in Section [5.4.2| and Section [5.4.3

Properties of the isoparametric finite element space

For any subregion D C (2, we define S§(D) as the subspace of S7(f2) consisting of
functions that equal zero outside of D. For a given subset D C (2, denote By(D) := {z €
(2 : dist(z, D) < d} for d > 0. There exists positive constants C' and ¢y such that the
finite element space Sh(Q) possesses the following properties, independent of the subset
D and mesh size h:

(P1) Quasi-uniformity For all K € 7;, (we make the convention that an element K
denotes a closed domain), the following analogue properties of quasi-uniform trian-
gle/tetrahedron meshes hold:

diam(K) < h and |K| > ¢;'h",
#{K' €Th: K'NnK # 0} < .
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(P2) Inverse property If D is a union of elements in partition 75, then
X llwerpy < Ch_(l_k)_(N/q_N/p)||>?h||wk»q(D) VXn € Sh(£2), (5.3.42)
for0<k<I<land1<¢q¢g<p<oo.

(P3) Local appoximation and superapproximation There exists a quasi-interpolation
operator I, : Hy(£2) — Sy (£2) with the following properties:

1. for Yo € H'T(2) N H{(2), a € [0,1], the following error estimate holds:

HU — ihv||L2(Q) + hHV(U — fhv)‘|L2(Q) < Ch1+aHUHH1+a(Q), (5343)

2. If d > 2h, then the value of Iy in D depends only on the value of v in By(D).
If d > 2h and supp(v) C D, then Iv € S5 (Ba(D)).

3. If d > 2h, w = 0 outside D and |0%w| < Cd~1P! for all multi-index (3, then for
any 1, € S;(92), In(win) € S;(Ba(D)) and

lwibn — In(wibn) || 2) + Bllwbn — D(wibn) || g9y < Chd ™M [Ynl| 12,0
(5.3.44)

By (5.3.43)), Property (P3)-(2), and our definition of Sobolev spaces ([5.3.23)), we have the

following estimate for a € [0, 1]:

||U — .fhv||L2(D) + h||U — jhUHHl(D) S Ch1+a||v”H1+a(Bd(D)) (5345)
Yo € H'*(By(D)) N HL(£2).

The properties (P1)-(P2) can be directly verified via employing the mesh-regularity con-
dition and the norm equivalence property (5.3.30)-(5.3.31)) of the Lipschitz home-
omorphism ®;,. The operator [, in (P3) can be constructed by the same method as in
[101, Appendix B|, for the reader’s convenience we demonstrate (P3) in Section of
our manuscript.

5.3.3 Green’s functions

For any o € K € T, using the mesh regularity estimate (5.3.29), we can mimic the
proof of [I33, Lemma 2.2] to obtain a function o,, € C™"'(£2) with suppd,, € K and
dist(suppos,, OK) > koh (ko is a positive constant independent of /) such that

(o0 = [ a@uade Vi € S(@), (5.3.46)
and
1020 lwin) < CRTNOTYP) w1 < p < 00,0 <1 <7 +1, (5.3.47a)
sup/ |Sy(a7)|dm+sup/ |0, (2)|dx < C, (5.3.47b)
yeR J N €N J N
/Q an(x)dy,dr = 1. (5.3.47c)

127



Let 0p.ay := Pros, € S3(§2) be the weighted L?({2) projection of 0zy- In view of (5.3.35)),
(5.3.47a)) and properties (P1)-(P3) of S5 (£2), the same proof as in [136, Lemma 7.2] shows
that there exists constant C' > 0 independent of A such that

lz—zq|

[6n,20(2)| < Ch™Ne™"n Vi, mp € 2. (5.3.48)
Since ApPydy, € S9(£2), (5.3.46) and (5.3.35) imply that for any y € £2,
(AnPudey) (4) = (an(@)AnPrdig, Pudy) = (An(2)Vhags Viny) (5.3.49)

From the exponential decay property ([5.3.48]), using inverse estimate ({5.3.42)), one can
show that Vy, ., also possesses exponential decay property i.e

Va0l () < Ch~N=Le= e

Thus by formula (5.3.49) above, one can deduce that the discrete Laplacian of 5;1@0 also
possesses exponential decay property:

Ah&m y) < Ch=2N=2 e_‘x_mcl:‘m_yl dr < Ch_N_Qe_‘ygzo‘ Yy, xo € §2. 5.3.50
s L0 0

Let G(t,x,x¢) denote the Green’s function of the parabolic equation,

0G(, -, x0) — AG(+,-,29) =0 in (0,00) x 2, (5.3.51a)
G(-,+,20) =0 on (0,00) x 042, (5.3.51b)
G(0,-,29) = 0y, in {2, (5.3.51c)

where d,, is the Dirac delta function centered at xy. The Green’s function G(t,x,y) is
symmetric with respect to x and y and satisfies the following Gaussian pointwise estimate
for the time derivatives (cf. [I01, (3.12)])

C _ lz—ag/?
k o Vr,ap €02 V>0, k=0,1,2,---.  (5.3.52)

|afG(t, Z, .ZTJ())| S tk'i‘—N/26

Let I' = I'(¢, x, xo) be the regularized Green’s function of the parabolic equation, defined
by

OL'(+, -, o) — AT(+,,29) =0 in (0,00) x £2, (5.3.53a)
I'(-,-,29) =0 on (0,00) x 012, (5.3.53b)
I'(0,-,20) = 0y, in £2. (5.3.53c)

Let I'y, = T's(t, , 29) be the finite element approximation of I, defined by

(ah(-)atthf, ‘ l’o),lv)h)_(g + (Ah(')VFh(t, -,ZE()), Vlv)h)g =0 \Vllv)h € S’;?(.Q),t € (0, OO),
(5.3.54a)

T5(0, -, 20) = dpao- (5.3.54b)

By using the Green’s function, the solution u(z,t) of the heat equation (5.1.1]) has the
formula:

u(t,a:o):/QG(t,x,xo)uo(:v)d:p—k/o /QG(t—s,x,xo)f(s,x)dxds. (5.3.55)
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Notice that the discrete Laplacian operator A}, is self-adjoint with respect to the weighted
L?(£2) inner product on Sy (£2), i.e.,

(ah(ZL’)Ahth, f)h)g = (’Lvth, ah(x)Ahvh)Q.

It follows thatvf?h(t) is self-adjoint with respect to the weighted L*(§2) inner product on
Sp(82). Since 'y (t, -, x0) = Ep(t)0n., by the definition of Ej,(t), we have

Co(t, 2, 20) =(En(t)0nz)(€) = (anEn(t)on.20, On)
:(ahgh,xo, Evh(t)gh,z) = (Eh(t)gh@)(xo) = fh<t, Zo, .T}), (5356)

where we used the fact that o,(20) = (antn, dsy) = (anDh, Ope,) for all vy, € S¢(£2), which

follows from ([5.3.46) and ([5.3.35). Therefore, Lh(t, z,y) is symmetric with respect to

and y. Moreover, '), gives the kernel of the discrete semigroup Ej(t):
(En(t)tn)(x0) = (anBn(t)0n, Ona) e = (anth, Bu(t)onz,) 0
= / an(x) Do (t, 2, 20)on (x)dx Vo, € S(02), (5.3.57)
19

and the solution (¢, zo) of (5.3.39)) can be represented by

ah(t,l’o):Lah(x)fh(t,x,l’g)’llhp(l’)dl’+/O /Qah(x)fh(t—s,x,:cg)fh(s,x)dxds,
(5.3.58)

and we have

(|1EL(t)|v)(z0) = /Qah(x)|fh(t,x,x0)\v(x)da: Yv e LY(12). (5.3.59)

The regularized Green’s function can be represented as follows:
L(t,x,z0) = /QG(t, Y, )0z, (y)dy = /QG(t, )0z, (1) dy. (5.3.60)

From the representation ([5.3.60) and estimate ([5.3.52)), the regularized Green’s function
I' also satisfies the Gaussian pointwise estimate:

C _|z—=z \2
|OFT(t, x, 20)| < t“—f’/?e ot Vx,z9 € 2 Yt > 0 such that max(|z — x|, V) > 2h,
(5.3.61)
with k= 0,1,2,--- .

5.3.4 Dyadic decomposition of the domain Q = (0,1) x {2

We will employ the same dyadic decomposition method as used in [I01] to prove Theo-
rem [5.3.1l Readers who are already familiar with this method may choose to skip this
subsection. The dyadic decomposition method, originally introduced in [126], has been
widely utilized by various authors [104] 66], 95] 100, 133].

For any positive integer j, we define d; = 277. For a given point zy € {2, we set
Ji =1, Jy =0, and let J, be the integer satisfying 2=/« = C,h where C, is a constant
with C, > 16, to be determined later. If the condition

1

h<40*

(5.3.62)
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is satisfied, then
2 < J. <logy(2+1/h) = 4.

In the following manuscript, for conclusions related to the dyadic decomposition, we will
assume that h is sufficiently small to satisfy condition (5.3.62). Let

Q.(x0) = {(t,z) € Q: max(|z — x|, t1/?) < d,.},
Qu(xog) ={z € |z —x <dy}.

we define

Q;(x0) = {(t, ) € Q: dj < max(|x — xo|,t"/?) < 2d;} for j > 1,
Qi(xo) ={r e 2:d; <|v—ux0| <2d;} forj>1,
Dj(xg) ={z € 2:|r —xo| <2d;} forj>1,

and

Qo(zo) = Q '\ (U Qj(wo) U Q*($0)>

(o) = 251 (w0) U £2(w0) U 2j41(20)
Q(x0) = Qj-1(0) U Qj(x0) U Qj41(70)
027 (w0) = $25_2(w0) U £2(0) U 2;12(20)
Q;’(xo) =Qj-2(z0) U Q; (20) U Qj42(z0)
Dj(w0) = Dj(w0) U 25-1(0), Qi(z0) = Qu(z0) U Q. (70)

' )
2j-2(x0),  Ql(xo) = Q(z0) U Q.—1(20)
Then we have p
Q= J@Qi(z0) UQulwo) 2= 2(x0) U 2(z0)
=0 =0
We refer to Q.(zo) as the "innermost” set. We will use the notation }_, ; to indicate
that the innermost set is included, and ) ; when it is not. When z is fixed and there
is no ambiguity, we will simplify the notation by writing Q; = Q;(z0), 2; = £2;(x0),
Q= Q(wo), and §2; = 2(x).
We will use the following notations

1/2 1/2

lollen = / S0 eldr | L el = /Q S |00 Pdudt (5.3.63)

D o=k la|=k

for any subdomains D C (2 and () C O, where 0% denotes the derivative in x with
respect to the multi-index «. Throughout this manuscript, we use C to represent a
generic positive constant that is independent of h, zg and C, (until C* is determined in
Section . To simplify notations, we also denote d, = d,.
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5.4 Proofs of the main results

5.4.1 Estimates of Green’s function

In the proof below, we will apply the following lemma (cf. [I01, Lemma 4.3]) which is a
consequence of the elliptic regularity estimate in (2.

Lemma 5.4.1. Let 2 be a curvilinear polyhedral domain in RY (with edge openings
possibly larger than 7). Then there exists o € (1/2,1] and constant C' such that

[ullgree < C|Vull3%|Aul|%  Yu € HE(2) with Au € L*(1). (5.4.64)

Similar to [10I, Lemma 4.1], we have the following estimates on the (regularized)
Green’s functions.

Lemma 5.4.2. Let o € (3,1] be as in Lemma and assume that condition ([5.3.62))
holds. There exists C' > 0, independent of h and xy, such that the Green’s function

G defined in (5.3.51]) and the reqularized Green’s function Gamma defined in ,

satisfy the following estimates:

dj_4—a+N/2||F(-’ ) ||L°°(Qj(xo)) + dj_4—a||V1"(-, -, Tg) ||L2(Qj(z0)) (5.4.65a)
" dj_4||r(" A ZEO)||L2H1+&(QJ'(°’C0)) + dj_2||8tr(‘a K $0)||L2H1+Q(Qj(a:o))
F 0L (-, -, zo) | L2br1+0.(Q; (o)) < Cd;N/Q*A‘*a’

|G (-, -, 20) | oo e Uy e, Qn(20)) (5.465D)
+ B(|0.G (-, +, )| oo mrrveUee, @pteoy < Cdy VT,

d?HmtttF('a "$0)|HQJ-(IO) + d?|||attr('7 ‘,$0)|||1,Qj(mo) + d?“@ttr(', -,$0)|||Qj(aco) (5.4.65¢)
+ AT 20) g, oy + NOLC 20l oy + 45 ITC - 20) g oo

_ —1-N/2
+ ;7T 20) g,y < Oy
Proof. Due to [101} (4.2)], (5.4.65b)) is true. We note that there exists a K € Ty, such
that ¢y € K, and suppd,, is contained in K. Therefore (5.3.60|) implies

rwww:/mwm%@@:/mmw%@@

K K

For (5.4.65a)) and (5.4.65¢)), we can proceed exactly as in the proof of [I0I, Lemma 4.1].

Namely, we first establish the corresponding estimate for Green’s function G(, -, zo) using
the local energy estimate and Gaussian pointwise estimate (5.3.52)). Then, by applying
(5.3.47bf) and the identity above, we conclude that (5.4.65a]) and (5.4.65¢|) also hold for
(- o). B

In addition to Lemma [5.4.2] we require the following critical lemma for the proof of
Theorem [5.3.1] The proof of this lemma is deferred to Section [5.5

Lemma 5.4.3. There exists hg > 0 such that for any 0 < h < hgy, the functions
Uyt x,x0), T(t, 2, 20), and F(t,x,x0) = Up(t, z,20) — ['(¢, 2, 20) satisfy

sup ([T, -, 20) || (o) + LIOT (- 20) | 11 (2) < C, (5.4.66a)

te(0,00)
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sup (||F(t7 5 20) ||y + 0L (¢, -, x0)||L1(Q)) <C, (5.4.66Db)

te(0,00)
[0 (-, 5 wo) || L1 ((0,00)x 2) + Bt E' (-5 -, 20) (| L1 (0,000 x2) < Cs (5.4.66¢)
10D (t, -, z0) || Loy < Ce ™ vt > 1, (5.4.66d)

where the constants C' and Ay are independent of h.

5.4.2 Proof of (5.3.40) in Theorem [5.3.1

According to (5.3.57)) and (5.4.66a)), we have

|(En(t)5n) (o) + | (t0 () 0n) (0)]
<llanll L2y (ITa(E, -, x0) |21 () + ENOT R (E, - o)l L1 (2)) [10n]] oo ()
SCH'E}LHLOO(Q) Yt > O,VTV}}L < SZ(Q)

Therefore, (5.3.40a)) is proven for ¢ = oo, if h > 0 is small enough. The case ¢ = 2 follows
from energy estimate. Thus, the general case 1 < ¢ < oo follows from interpolation

and duality (the operators Ej,(t) and 9,FE},(t) are self-adjoint w.r.t the weighted L? inner
product). This completes the proof of ([5.3.40a)).

In order to prove ([5.3.40b|), we need a symmetrically truncated Green’s function G7,
as used in [101, Section 4.2] (see also [100], [104]). G}, satisfies the following conditions:

Gi.(t,x,y) is symmetric with respect to x and y, namely, Gy.(t,x,y) = G.(t,y, x).

(5.4.67a)
G, y) =01in Q.(y) == {(t,z) € Q: max(|z — y|, V1) < d,}, (5.4.67b)
and G.(0,-,y) =0 in 2.
0 < GL(t,z,y) < G(tz,y) and Gi,.(t,z,y) = G(t,x,y) (5.4.67c)
when max(|z — y|, V1) > 2d..
0,GE.(t, z,y)| < Cd7N2 when max(|z — y|, Vt) < 2d,. (5.4.67d)

Using the same reasoning as in [I01], (4.32)—(4.37)] and in view of (5.4.66¢]), to establish
(5.3.40b)), it suffices to prove

/ / O (1, 2, 20) — DG (. 2, o) dadt < C. (5.4.68)
(0,00) % £2

{(t,z) € Q : max(|z — mo|, ) < 2d.}. Then, by (5.4.67d), (5.3.47c) and ( we
have

9

Let K € Ty, such that zy € K and supp&c0 is contained in K, and we denote Qo xg) =
i5.3.60

// |0:0(t, x, x0) — O G (t, @, x0) | ddt
[(0,00) X 2]\ Q2+ (20)
:// |0 (t, z, xo) — OLG(t, x, x0)|dadt
[(0,00) x 2N\ Q2+ (z0)
[(Oal)X‘Q]\QZ«(IO) K

+ // / |(a’h(y) - 1)atG(t7 I,$0)5x0 (y)‘ dyda:dt
[(0,1) x 2\ Q24 (z0) / K
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+// |0, (t, x, x9) — OG(t, x, x0)|dxdt
(1,00)x 2

SC// hai(N*Q)/Q‘atG(t,x, ')|Ca—(N72)/2(K)d$dt
[(0,1) x 2]\ Q2+ (x0)

[(0,1)x 2\Q2+(20)

+// |0, (t, x, x0) — OG(t, x, x0)|dadt

(1,00)x £2

SC// ha7(N*2)/2||(9tG(t,x,-)||Ca7(zv72>/2(f()dacdt
[(0,1) X 2]\ Q24 (w0)

+ // |0 L(t, x, x0) — G (1, x, x0)|dxdt
(1,00)x £2
::Il + 1—27

where we have used ([5.3.47b)) and (5.3.32)) in deriving the second inequality and used the
fact a — (N —2)/2 < 1 in deriving the third inequality. In view of (5.3.61]) and (/5.3.52)),

we can conclude that Z, < C'. The inequality Z; < C' was demonstrated in the proof
of [101], estimate (4.30)]. Furthermore, by applying the basic energy estimate as in [101],

estimate (4.31)] and considering (5.4.67d)), we have

// 10, 1(t, z, x0) — OGY,(t, x, x0)|dxdt < C. (5.4.69)
24 (0)

This establishes ([5.4.68]) and completes the proof of ([5.3.40bj).

5.4.3 Proof of (5.3.41)) in Theorem |5.3.1

Since we have established the analytic estimate of Ey(t), by applying the general
theory of maximal regularity (cf. [42l Theorem 4.2], see also the proof in [I01, Section
4.4]), it suffices to show for the case p = ¢q. Let &, denote the linear operator
on LY(Qr) defined by

Enf(t) = /0 t 0, En(t — )Py f(s)ds. (5.4.70)

Thus, when 0 = 0, we have Ay, = & fn, which means that the maximal regularity
estimate for the case 1 < p = ¢ < oo is equivalent to the L4(Qr)-boundedness
of the operator &,. Furthermore, since the discrete semigroup E'h(t) is self-adjoint w.r.t.
the weighted L?(£2) inner product, there holds:

[ ety = [ [ @okn - 7). o)isa
_ /0 ! /0 (anf(5), BB (t — 5) Pug(t))dsdt
:/OT (ahf(s),/ST O (1 — S)Phg(t)dt> ds
_ /0 anf (). E0g" (T — 5)) ds (5.4.71)
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where ¢g*(t) := ¢g(T — t). In view of (5.4.71)), via duality, it suffices to prove that &, is a
bounded operator on LY(Q7) for 2 < g < oo. We decompose operator &, as follows

af(t.an) = [ (OBt = )Pif(5) (a0
/ / )L (t — 5,1, 20) f (5, 2)dxds
:/ /ah(x)(?tF(t—s,x,a:o)f(s,x)dxds

/ / Dt — 5,2, 20) (5, 2)dads

—th t ZL’()) + ICh(ahf)(t l’o)

where we denote by M, and K, the following operators:

Krg(t, xo) / /&t — 8,x,20)g(s,x)dxds

Myg(t, zo) == //ah VOLE(t — s,2,20)9(s, x)dxds

The same proof as in [101} (4.43)—(4.46)] yields that
1Knfllza@r) < Coll fllzary V1 < g < o0, (5.4.72)

where the constant Cj is independent of h and T'. By the classical energy estimate, the
result (5.3.41al) is true for p = ¢ = 2. Combining this with the L*(Qr)-boundedness

(5.4.72)) of the operator Ky, it follows that
M fllzz@r) < Clifllzz@n)- (5.4.73)
By (5.4.66¢) of Lemma we have

/ / z)|OF(t — s,x,x0)|drds < C’/ / |0:F (s, x, o) |dxds < C,
0o Jo

which implies } .
M fullroe@ry < Cllifallze@r), (5.4.74)

and the interpolation of (5.4.73) and ([5.4.74) yields
M fullza@r) < Clfallzaer V2 < g < oo

The estimate for M, above, combined with the estimate for IC;,, establishes the bound-
edness of &, on L1(Qr) for 2 < ¢ < co. Thus, the proof of is complete.

The proof of is exactly as in [I01], Section 4.5]. We reduce to prove that the
operator &, satisfies the following estimate

[Enf Lo o0,;20) < Cla|| fllzoe 000y V1 < g < o0 (5.4.75)
By the same deduction as in [I01], (4.61),(4.62)], we can show that

|ERf L0300y < C ( Su%/ |5tfh(t,$,$o)!d$dt) | fllzeoo,msrey V1 < g < o0.
0 x0€ 2
(5.4.76)
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It remains to prove

/ sup / 0,1 (t, x, 20)|dxdt < Clogy(2+ 1/h). (5.4.77)

ToES?

To this end, note that 9,1, (¢, -, o) = Ahfh( s 10) = ER(t)AnPrdy,. By using ([5.3.40al)
of Theorem [5.3.1] (proved in Section [5.4.2)) and ([5.4.66a]) of Lemma ([5.4.3)), we have

10, T h(t, -, zo)|| 2 < Ct71, (5.4.78)

Hatfh(t, ',.TO)”Ll S OHAhPhSJCOHLl S Ch_QHP}ZSIO“Ll S Ch_Q, (5479)
where we have used inverse estimate, L'-stability of P, and (5.3.47D]). The interpolation
of the last two inequalities gives (see [101], estimate (4.67)])

1
/ sup / 10, (t, 2, z0)|dadt < C'log,(2+ 1/h). (5.4.80)
0

onQ N

While estimate ((5.4.66d|) implies

/ sup / O (t, 7, 20)|dwdt < C. (5.4.81)

To€ER J N

The last two inequalities combine to give ((5.4.77)), completing the proof of ([5.3.41b).

5.4.4 Proof of Theorem (5.2.2

For a solution u, with general initial value uy, o, we denote u; as the solution of (5.1.6)
with u}(0) = Pyug and f, = P,f. Then, by the maximum norm stability (5.2.15a]) of
discrete semigroup Fj(t), we have

un(t) — up ()| Lo (@) = 1B () (uno — Prtio)|| Lo (2,) < Clltuno — Priiol| Lo (a,)-

Combined with the L>-stability (5.3.36]) of L?(§2;,)-orthogonal projection P, this implies:

lun — up || Lo 0,500 (20)) < Clluno — ol oo,

Therefore, it suffices to prove the error estimate in the case where uj, o = Pyup. Denote
en = Py — uy. We first derive the error equation satisfied by e,. For each vy, € S5 (£25),
we have:

Phu Uh)Qh (VPhﬂ, Vvh>gh

(0
(8 ) (V(Ph%] — Rh?j), V’Uh)gh + (VRhﬂ, Vvh)gh

(O, vp)p, + (V7, Vvh)gh (V(Pyu — Rpu), Vug)g, (definition (5.2.17)) of Ry used)
(

(

8tu — AU — f Uh).Qh ( h)_Q ( (Phﬂ — Rhﬂ>, V’Uh)gh
1/%%)%\9 + (f vn) e, + (An(Ryu — Pyu),v)g,,

where we have denoted @Z = O u — Au — fand observed that 7:/;|Q = 0. Thus, the error
equation satisfied by ey, reads: e,(0) = 0 and

(Bsen, vn)a, + (Ven, Von)o, = (1, vp) oo + (Ap(Rpu — Pyt), vn)a, Yo, € Sp(§2,).
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We split the error e, as e, = 0y, + 0}, where 6, is defined by equation: #,(0) = 0 and
(00h,vn) a0, + (VOu, Vur)a, = (Path,vn)a,  Yon € S2(024).
Then 6y, satisfies 0,(0) = 0 and
0i0n, — Apdp, = Ap(Rpu — Pyu)

Using the quasi-maximal L>-L*> regularity estimate in (5.2.16b]), and following the same
argument as in [101, Corollary 2.2], we obtain the following result:

16| o 0,732 (2)) = (1 AR(AL08) | oo 0,752 (2,)) < CLrl|RRT — Prit]] poo 0,75000 (424))
(5.4.82)

Next, we represent 6, via the discrete Green’s function I'y:

Ou(t,2) = / /Q Lult = 5,9,) Putb (s, y)dyds

t ~
:/ / Fh(t - Svyux)¢(87y>dyd8'
0 J2\n

Therefore, for each 0 <t < T and x € (2,

T
|0n(t, )| < ||¢||L°°<0,T;L°°(rzh>>/0 ITh(t, Y, @) | Ly 2 dt-

From the boundary skin estimate [80) (3.3) of Lemma 3.2] and the fact I';|gp, = 0, we
have:

Hrh(tv * x>||L1(Qh\~Q) < OhT—HHVFh(t? * "L‘)”Ll(ﬂh)
It follows that

108 | Lo 0,75250(2)) < Ch ||| oo 0,720 (52, sup VTR, )o@y (5:4.83)
AT

It remains to prove the boundedness of ||V, (-, -, )| 1(0,00;:01 (22,))- Since

Th(t,z,y) = Th(t, ®u(z), ®u(y))

and @, induces norm equivalence (5.3.31)) in Whl-norm, it suffices to prove such bound-
edness result for T',. We split the L'(0, oo; W!1)-norm of T'j, as follows

IVTL(s @) o0oini@) <IVEC, 5 2)|monri@) + VDG @) 0121 (2)
+ HVFh(, '7x)|‘L1(1,oo;L1(Q)) (5484)

We can convert the L'-norm into a summation of L?-norms by the dyadic decomposition

introduced in Section and employ the local estimate ([5.4.65al) and global estimate
(15.5.92¢) of I" to obtain

N/2+1
VD @) line) <O dy* VT ll2(q, )

j?*
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<C> a4 cal N < (5.4.85)

J

Similarly, from (5.5.99) and ([5.5.123)) established in the next section, specifically there
holds [[VF| 120,y < Cd; *. Combining with the global estimate (5-5.92d), we have:

N/2+1
IVEC, o) o) <C D &Y IV 12, )
j,*
N/2+1 ;—N/2 N _N
<CY a7 cal PN < (5.4.86)
7

Finally, from the exponential decay estimate ([5.5.125|), we can deduce by elliptic energy
estimate that

||th(t, ',l‘)||L2(_Q) S CG_AO(t_l) Vit Z 1, (5487)

which yields the boundedness of || VI, (+, -, )|| 11(1,00:11(2))- Combining estimates (5.4.85),
(5.4.86) and ([5.4.87)), we proved that

sup ||VIn(+, @) 210,002 (21)) < C- (5.4.88)

€Ny,

Therefore, summarizing the estimates (5.4.82} [5.4.83| [5.4.88)), we obtain

||‘Zjha - uhHLOO(O,T;LOO(Qh)) SChT_‘—lHIZHLOO(QT;LOO(Q}L)) + CthRha — Pha“Loo(o’T;Loo(_Qh))
SC]’LT'-Fl (HUHLOO(O,T;WQ’OQ(Q)) -+ ||atu||Loo(07T;Loo(_Q)))
+ Clp || Ryt — U Lo (0,7:1%0 (2,)) (5.4.89)

where we have used the stability in Sobolev norms of the Stein extension operator and
the L*>-stability (5.3.36) of P, in deducing the last inequality. The proof of Theorem

is complete.

5.5 Proof of Lemma 5.4.3

We use the following local energy error estimate for finite element solutions of parabolic
equations.

Lemma 5.5.1. Suppose that ¢ € L*(0,1; H}(2))NH (0, 1; L*(£2)) and ¢, € H(0,1; S3(£2))

satisfy the equation
(atqb - ah(x)atqgha Xh) + (v¢ - Ah(x)vq;h’ Vf(h) =0, (5590)

for any Xn € S2(82), and 0 < t < 1, with ¢(0) = 0 in (27. Then there exists hg > 0 such
that for any 0 < h < hyg,

19:(6 = du)lllg, + Ml = nll, (5:5.91)
<0 (LGn0) + X, (b~ 6) + Y5(0) + 4520 — )
+(Cnt2a o tnd;t ) ([llods — dn) o, T4 6= on ||1,Q;) :
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where

Li(9n(0)) =[16n(0)[11.2 + d; | @n(0) | 2,
X;(Ing = ¢) =4[V (In¢ — &)l 2@ + 110:(Ind — 0) |l 220
+d; V(g = O)llz2@y + d5211nd — dlli2qy)
Yi(¢) =h" (deV(atd))HLQ(Q;) + 110l 2@y + d; IVEll2@) + dj_QHd)HLQ(Q;-)) :

Here € € (0,1) is an arbitrary parameter, and the positive constant C' is independent of

h, j, and C\.

The proof of Lemma [5.5.1]is presented in next Section. In the rest of this section, we
apply Lemma m to prove Lemma by setting o € (%, 1] a fixed constant satisfying
Lemma(5.4.2l The proof consists of three parts. The first part is concerned with estimates
for t € (0,1), where we convert the L' estimates on @ = (0,1) x 2 = Q, U (U_,Q;)
into weighted L? estimates on the subdomains @, and Q;, j = 0,1,--- , J.. The second
part is concerned with estimates for ¢ > 1, which is a simple consequence of the parabolic
regularity. The third part is concerned with the proof of ([5.4.66al |5.4.66b)), which are
simple consequences of the results proved in the first two parts.

Proof. Part 1. First, we present estimates in the domain Q = (0, 1) x {2 with the restriction
h < 1/(4C,). In this case, the basic energy estimate gives

10T )| 2(0) + 10 Thll z20) < C (IT(O) 1) + IITa(0) | 1)) < Ch™ N2, (5.5.92a)
Tl 2 r2(0) + 1Tl = r20) < C (IT(0) 2202 + IT(0) ][ 22(2) < CRTM2, (5.5.92D)
IVT 20 + VT hllz2i0) < C (IT(0) [ 2(2) + [IT(0) ]l 12(2) < Ch™Y/2, (5.5.92¢)
Hattfhup(g) < CIALTL(0) || i) < Ch™~ N/2 (5.5.92d)
IV |20 + IV hll2(0) < C (IAT(0)]| 20 + 1ARTR(0) | r2(e) < CAT2V/2,
(5.5.92¢)

In the estimate above, we have employed (j5.3.474)), (5.3.48) and inverse properties (5.3.42)
of finite element functions to deal with norms of I'(0) = &, and I',(0) = Pyd,,. We can
decompose ||0:F||p1(g) + |[t0uF || 11(0) as follows:

10:F | 210y + 1t0: F|| 21 (o) (5.5.93)
Js

<N0:F || 2(0.) + 10uF 1300y + D (10:F i@y + 180 F | nay) -
=0

We will bound the innermost part [|0,F||11(q.) + [0 F||11(q.) by separately bounding
10: L0l 21 (@.) + [E0ul 'k || L1 g,y and |0 || L1(@.) + [[t0uT|| L1(q.). By Holder’s inequality (not-

ing the volume of Q; = Q;(zo) is Cdj2~+N) and the global energy estimate (5.5.92al) and
(5.5.92d), we have:

101l 1 (@) + 10l nll L1y SCAY*H (10T 0] r2 (. + 2|0 wl r2(0.))
<CdY*M (0Ll r2c0) + d210uTnllz2()
<CCONPHL L cONFS < oON/S, (5.5.94)
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For the term [[t0,1'||11(q.), since d,, only belongs to C%(2) when r = 1 (cf. (5.3.474)),
we utilize the analyticity of the parabolic semigroup e*® to obtain

||t8ttF||L2 - ||tat€tA(atF(O))||L2 S C||8tF(0)||L2 - O||A5x0||L2 S Ch_N/2_2. (5595)

Thus, by Hélder’s inequality, (5.5.92al) and the last estimate (5.5.95)), we have

10T 2. + [[t0uT (| 21 (@) SCAY*THOT | L2(qu) + CAZN2 ([t 0T || oo 12
<CCNFHL L oo < oM/, (5.5.96)

It follows that

10:F || 21 (0) +

|60 F || 11 () (5.5.97)

J
SOCZV/%FS + Z (||atF||L1(Q]’) =+ ||tattF||L1(Q].))
7=0

!]*
N/2+1
<CONP L3 0dy T (00F |12y + EN10uF llay))
j=0

<CCN*3 L oK (5.5.98)

where we have used Holder’s inequality to convert the sum of L'-norms to a weighted
sum of L?-norms and introduced the notation:

Jx
1+N/2 _
o= 3 a2 (@ Pl g, + IO F g, + dllOF g, + El0uFllg,) - (5599
j=0

It remains to estimate K. To this end, we set v“qvﬁvh =1 = L, on(0) = Pyd,, and
$(0) = d,,” and “¢y, = AT, ¢ = AT, Gu(0) = A Prdy, and $(0) = Ad,,” in Lemmal5.5.1]
respectively. The we obtain

A5 NEN, sz + N0 F Nl grare (5.5.100)

<Ce® (I+ X5+ %5+ ;2 Fllg )
—1/2 — — _

+ (On2a; et + e ) (4 IF g + 106 F g, )

and
dill0F Il q, + & l10xF g, (5.5.101)
<C&® (I + X, + Y + 10 Fllg)

—1/2 _ _
+ (C’hl/de P4 Cethd + 62) (dj|||6tF|||LQ;_,1/z n df|||8ttF|||Q;,1/2> :

respectively, where €;,e5 € (0,1) are arbitrary constants and Q;’l/ ? is an intermediate
subset between ); and Q:

Q2= {(t.1) € @+ 2 < max(jx — xo], %) < 3}
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Note that from the proof of Lemma the pair (@, Q) in the statement of Lemma

5.5.1| could be replaced by the pair (Q}’l/Q, Q) or the pair (Q;, Q;fl/z)‘

By using local interpolation error estimate (5.3.45)), exponential decay property (|5.3.48|)
and (5.3.50) of Pd,, and Ay, Pyé,, respectively, and local estimates ([5.4.65af) and ({5.4.65c])

of the regularized Green’s function I', we have:

L =l1Pubuglls.; + d5 M| Pyl o < CR2d;* 2, (5.5.102)
X; =dj[|v(1 - 1)AT | 2@ + (1 = 1) AT || 2
+d IV = D)D) + d7? (1 = L)T |22y
<O(d;h® + W)L || 2 ey + Cldy A 4 d R T[] 2 ey

<O(hed; NP0 g plred PNy < oped N (5.5.103)
Y, = (deIIV(é’tF)IIIQ;. + 10l g, +d; IV, + dj‘?IIIFIIIQ;) < Chrd; '™V,
(5.5.104)
and
I :dﬁﬂAhPthOHm;,l/z + deAhPhSIOHQ;,m < On2d; M2, (5.5.105)

X; =d2||v(1- ih)attruLQ(Q;,l/Q) +d3(1 - fh)éttFHLQ(Q;,l/Q)

+ &IV = L)AL vy + 11 = L)AL vz
<SC(d}h* + dFh T )|0uT || 2mivaqy) + C(dih® + R0 || 2 ey
<Ched; NP (5.5.106)
 =h'd; (deW(&ttF)H’Q;l/z + |||3ttF|HQ;,1/z + d;1|||V3tFH\Q;1/2 + d;2]||(9tF\HQ;,1/2>
<Ch'd; "2, (5.5.107)

By choosing €; = ¢* in (5.5.100)) and €, = ¢ in (5.5.101)), substituting ((5.5.1005.5.107))

into the expression of K in (5.5.99)), and dealing with the term C€*3|||8tF|||Q/.,1/2 appearing
J
on the right side again by using (5.5.100)), we have:

<

Jx
1+N/2 —
=3 d ™2 (41 F Wl g, + 0Fllg, + oIl g, + ll0uFllg,
j=0

J*
Sc'gzd;H\W (hgdjfsz/z X hd;kN/z X had;lfame X d;2|||F‘HQ;)

jJ*O

+ 37 (Cn 2 4 Cody +€) 2 (7 IF g + 10 g )
JZO

+3 <C€h1/2dj_1/ 21 Cohd; + e) o (dj|||atF||\LQ3_ + d§|||8ttF|||Q;>
j=0

J*
—14+N/2

J=0
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Ji
—-1/2 — 1+N/2 _
+ 37 (Cn 2y 4 Cond; - €) N (Pl g + 110 )
§=0
S
—1/2 — 1+N/2
+y (Cehl/%zj P4 Chd + (—:) d (dj|||atF||\LQ9 + d§|\|8ﬁFH|Q;> . (5.5.108)
§=0
Since |||FH]Q; <C (|||F"|Qj,1 +[1F g, + |||F]|]Qj+l>, we can convert the j-norm in the

inequality ([5.5.108]) to the @;-norm:

J
—14+N/2 _
K <Cot CY_d 2 Fll g, + Ced V2| P,

=0

J s
+3 (c;hl/zd;uz + Cehd " + e) 22 (d;1||| Fll g, + |||6tFH]Qj>
§=0

J*
+3 <C€h1/2dj—1/2 + CLhd ! + 6) SN2 (dj|||atF|||LQj n d§|||6ttF|||Qj>
5=0

J
o.)

+ (Ch'Pd 2 + Cehd ! + €) A (d*WatFWLQ* + dzmattF\HQJm) :

- (CRMRATM2 4 Cohd? + €) dE2 (Y|Pl g, + |

We can use global estimates ((5.5.92)) to bound
[Flly.q.

For the term d2/*||0,F note that by (5.4.65¢)), ||0xI'|| 12 < cd 2 and
Quet1’ Y ) (Qry+1)
by (6.5.92d), [|0ulnllr2q,. 1) < 106l r2(q.) < Ch™3N/2. Therefore, we have

Il

Q. 10:F Il 10 . -

J
K <Cot CCHN2 0N d M2 P, (5.5.109)

=0
J*
+ 3 (Cht 2+ o+ €) A (7 IF g, + 110F g, )
§=0

J*
+3 (Cehl/de_l/? + Cohd; + e) drNs (dj|||atF|||LQj + d§|]|8ttF|||Qj>

J=0

S
<Ce+ CCHN2 L N d PP, + CCCM2 4+ CO7 + oK.

J=0

We have used d; > C.h and the expression of K in to obtain the last inequality
in (5.5.109). By choosing e small enough and then choosing C, large enough (C. is still
to be determined later), the term 0(060;1/2 +C.C7 +6)K in will be absorbed
by the left hand side term K. Hence, we obtain

Jx
—1+N,
K< oL ey da ) E,, (5.5.110)

J=0
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It remains to estimate || F||| g, To this end, we apply a duality argument below. Let w
be the solution of the backward parabolic equation

—Oyw — Aw = v with w(l) =0, w|sn =0,

where v is a function supported on Q; with [|v||y, = 1. The auxiliary backward parabolic

equation above has been introduced in [I01, Section 5]; for brevity we will directly use
the estimates on w (cf. [I0T} (5.24), (5.31)]) proved there.
Multiplying the above equation by F' yields (notice that @ = (0,1) x {2)

[F,v] = (F(0),w(0)) + [F;,w] + [VF, Vw]. (5.5.111)
Here

(£(0),w(0))
iy~ w0 = (i~ w00~ E339)
=(Prday — by, an(z)(w(0) — Iw(0))) e + (Padsy — day, (1 — an(z))w(0))e

(ah(x)Ph(FxONﬂ(U) I (0))m + (an(2) (Prday — ), w(0) — Tyw(0))(r)

+ (Paday = bzy, (1 — an(2))w(0))

=T +1y,+ 1Is.

By the same arguments in [101], (5.21, 5.22, 5.24)], we have

I, + I, < Ch' e NPare,

By (5.3.32), (5.3.47a]), L9 stability (5.3.37) of P, and global energy estimate for w, we
have

Iy :(Phgﬂﬁo - 51‘07 (1 - ah<x))w(0))9
<O (I15daall 5 ) + 182all, ) 100 10
<Ch V0 ollg, < ChY2.

Therefore we have

[(F(0),w(0)| < ChM* e N2q-> 4 Chl/2, (5.5.112)
Since F =T, — T, from (5.3.54a]) and (5.3.53a]) we have
[Fy,w| + [VF, V] (5.5.113)

=lap(x)F), w — [yw] + [Ap(2)VF, V(w — [aw)]
+[(1 — ap(x))0L, w] + [(In — An(x)) VT, V]
+ (1 = an(2)oT, lw — w] + [(Iy — Ap(2))VL, V(I,w — w)]
+[(1 — ap(x))oF, w] + [(In — Ap(z))VE, V]

=N+ D+ Ts+ s

By local interpolation error estimate ([5.3.45)), we have

Ji =lan(2)Fy, w — Tyaw] + [Ap(2)VE,V(w — w)]
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<> (IFillg e = Tnwlllg, + 1F g, llw = Tl )
<C 3 (N Ellg, + R NFllyg, ) lollzam ey (5.5.114)

By Holder’s inequality and Sobolev embedding H'™*(2) — L>®(2), H'**(2) — W13(2)
for a > 1/2, we have

T2 =[(1 = an(2))0L, w] + [(In — Ap(z)) VT, V]
<CH Z (19T 2 @i lwll 2 os oy + IV (| 2o VWl 22300 )

*,7

<OW Y (10T 20100 + IVT Nl 2152q0) 1wl i2misacon

*,7

r N/2 N/6
<Ch" Y (di/ 10T | 120, + d2 ||vr||L2<Qi)> [wl| 2100,

*,17

Then by (5.4.65¢) and (5.5.92al)-(5.5.92c]), we have

J<CHY (Q{V/?“d;l + O§/2d;N/3> ]| 2100, (5.5.115)

*,7

where we used estimates
10| 2.y < 10T )| L2(@) < CCIN2A N2 and || VT| 2. < [IVT|12(0) < CONZdNT?

to deal with the innermost term. Similarly, by Holder’s inequality and Sobolev embedding
HY(Q) — L>(02), H'*(02) — W3(Q) for a > 1/2, we have

Ji =[(1 —ap(x)0 F,w| + [(In — Ap(z))VE, Vw]
<chy" (dfv/2||8tF||Lz(Qi) + df-V/GHVFHLz(Qi)) ]| 2 a1+ 0. (5.5.116)

*,1

By (5.3.45} [5.4.65¢}, [5.5.92a}, 5.5.92¢)), we have

Js =[(1 — ap(z))0,T, Iyw — w|g + [(In — Ap(z)) VT, V(fhw —w)]o
<on'S” (matrn o, + IVl ||| o — w\“l,@i)

*,0

Ihw—wH

Qi Qi

<CR™Y (W 0T 1r2g0) + W IVT |22 lwllz2meq)

*,1

<cny) <h1+aci+N/2d; L=N/2 e o2 2) [y~ (5.5.117)

/
i

By (5.5.113)) and the estimates (5.5.114} [5.5.115] [5.5.116| [5.5.117)of 73, -+ , Ju, we have

[F1, wlg + [VF, Vuw]g (5.5.118)
o r N, o r N
<CY (e + W d ) Fllg, + (b + W) Flly g, ) lhollm=ea:
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+ CCiV/QJrl Z hr (d;l + had;Nﬂ) ”wHLQHH""(Q;)a

where we have used d; < 1 and d; > h to simplify the result obtained. We note that the
following local H'™®-estimate of w has been proved by [101] (5.31)]

_,, ((min(d;, d;)\*“
appiraqy < Cdj [ ——2 ) . 5.5.119
il < O (202 (5.5.119)
Hence, substituting (5.5.112 [5.5.118]) and ([5.5.119) into (5.5.111)) yields
171y, (5.5.120)

Sc(h1+afN/2djfa + h1/2) + CC:+N/QZ}1T (d;l + had;N/2> dzlfa (

(0% T « T —Q mln(dl
+ O (e d Bl + (0 + B ) IF g, ) db (—

*,0

Since a > 1/2, it follows that for any i € x,0,1,--- | J,, we have:
J. . «
- _ d;, d; _
Y a) min(di d;) \©_ v, (5.5.121)
= J max(d;, d;)

By (5.5.110) and (5.5.120)), we have:
K

J*
—1+N/2
<COFN2 4 0y a7 2| Fllg,

=0
Jx LN /2 Js h 1+a—N/2
34N/2 1/2 31+ e
<CCENR 4y w2, +Z(dj)
7=0 7=0
I / / mln(d d ) «
N/2+1 d'_1+N 2 hr <d~_1 had—N 2) dl—a 1y Ug
+0C, jZO j *ZZ i T ’ max(d;, d;)

J. ' )
* B o r « r —« mln(di,d.)
FOY a0 | Fillg, + (h + W d O Fll g, ) d! (m)

]:0 *,i
It is easy to check that:

Jx

12 14N Jx h 1+a—N/2
> w2 +> (d—j) <C. (5.5.122)
j=0

=0

By (5.5.121)), we have:

& d—1+N/2 hr d—l had—N/2 dl—Oé mln(d”dj_> :
Zi Z (2 tha )’ (max(d-d-)

7=0 *,0 )
J. . o
—a— ~ d;, d;)
— hrd= hr+ad1 a N/2> d 1+N/2 HIlIl( iy Qj
*Zi < 7 + 7 ]ZO J max(di, d])
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<cy (h’"dfv/ 2ol h”“d;a>

h h
<Cy (hl KONGRS IC )a> SC (wed N=23r2>1d<1)

i i
*,0

By (5.5.121)) again, using the facts r > 1 and o > 1/2, and ([5.5.92a}, [5.5.92¢)), we have:

—1+N/2 1+a r iN/2 a r iN/6 l1—a mln(d’“dﬂ) “
Zd S (e H g, + (0 + wa O ) i ()
)
)

*’L

d;, d;
— h1+a thN/2 F + (he hrd N/6 Ia ) dl o d—1+N/2 mln( iy Uy
3 (e 4 WM+ (0 + 1Pl g Z i)

SCZ ((hl—i-a -+ th'fV/2>|||Ft|||Q (ha + L N/6)|HF|||1 o > N/2 o

14Ny h\ e h\°
<o a™ (el () + P, (1)
*,1 v J
Lo a e (Rl a ™ (1) warey, g i (1)
i tllg, a; i 1,Q: i d;

*,7

h (0%
<O a (Wllg, + a7l () (wedh<di<)

_ A\
o a1l (1)

J*
<CA (1Eilg, + 4 IF N, ) +C 3 & (1A
1=0

cK

<Ccl+N/2
C’a

So we obtain

oK
Co”

*

K< ooz 4

CK
By choosing C. to be large enough (C, determined now), the term To will be absorbed
by the left-hand side of the inequality above. In the case, the inequaﬁty above implies

K<cC. (5.5.123)
Substituing ([5.5.123)) into ((5.5.93)) yields
10| (@) + (1800 F || 1(@) < C (5.5.124)

Part II. Next, we present estimates for (t,z) € (1,00) x {2. For t > 1, we differentiate
(5.3.54)) with respect to t and integrate the resulting equation against 9;I';,. Then we get:

H V a atrh y L ”L2 (Ah(x)vatfh(t7 ’7'%0)7 Vatfh(ta ~,.1'0))_Q =0
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for ¢ > 1. Owing to (5.3.32)), when h is sufficiently small, there exists Ay > 0 only
dependent on {2 such that:

Mol OLw(t, - o) 17200y < (An(z)VOL (L, -, 20), VO (L, -, 20)) -

So we have:

d . .

Va2, + WOt a0)) <0
which implies:

18w (t, - zo)|[ 720y < € XU VNATw(L, -, 20) 72
By a standard energy estimate, we have ||0,;(1, -, $0)H%Q(Q) < C. So we have:
O n(t, -, o) |22y < Ce™ 00Dy > 1, 5.5.125
L2(£2)

Similarly, we also have:

18T w2, - 20) 7202y + 10T (t, - 20) 7202y + 10l (E, - o) 72y < Ce 7D Wt > 1.
(5.5.126)

The estimate (5.5.124)) and the last two inequalities imply ({5.4.66¢ |5.4.66d]) in the case
h is small enough.

Part III. Finally, we notice that ([5.4.66b)) is a simple consequence of (5.3.47h|) and an-
alyticity estimate (5.1.4]) of semigroup e'®. While ([5.4.66a)) is a consequence of ([5.4.66b)),
(5.4.66¢]) and the following inequalities:

t
(-5 z0) |2y < IE(O, - 20|10 +/ 10:F (s, -, o) | L1 () ds
0

< 102 = Prdug [l 212y + 10:F [l 110,00 x2) < O VE € (0,1)
(5.5.127)

t
HtatF(ta '7x0)HL1(Q) < / HasF(Sa '73:0) + 3835F<37 ',xO)HLl(Q)dS
0
< ||(9tF||L1((07OO)XQ) + ||tattF||L1((07oo)XQ) < O, Vt € (O, 1) (55128)

The proof of Lemma [5.4.3| is complete. 1

5.6 Proof of Lemma [5.5.1

In this section, we prove Lemma m First, we observe that the same proof as in [101]
Lemma 5.1] leads to the following lemma, which provides the local energy error estimate
under the assumption of local Galerkin orthogonality.

Lemma 5.6.1. Suppose that ¢ € L*(0,1; H(2))NHY(0,1; L*(£2)) and ¢, € H(0,1; S2(£2))
satisfy the equation

(an(2)0:(¢ — D), Xn) + (An(2)V(¢ — 1), VXn) =0 Vxy, € Sp(£25),t € (0,d3),
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(an(2)0:(¢ — D), Xn) + (An(2)V(¢ — 1), VXn) =0 VXy, € Sp(D)),t € (id?, 4d?)

with $(0) = 0 in §2;. Then the following holds:
06 = on)lll, +d; " lllé = nlll, (5.6.129)

< (1,(0n(0)) + X;(Th6 = 8) + 4520 = nll )
+ (Cn2a; 2 4 e thd;t + ) ([|[0o — dn)|

Q) + dj_1H|¢ - th‘Hl,Q}) ’
where
L;(61(0)) =[16n(0) 1,027 + d; | @n(0) | 2
Xi(Ing = ¢) =d;[|V (16 — &)l 12(@;) + 10:(Ind — 0) ]l 2@
+d MV (Ind = 0)ll2@) + 452 (e — Ol 2@y

Here e € (0,1) is an arbitrary parameter, and the positive constant C' is independent of

h,7 and C..

The distinction between Lemma [5.5.1] and Lemma [£.6.1] is that in the condition of
Lemma5.5.1], there only holds perturbed Galerkin orthogonality (5.5.90). In fact, Lemma
is derived from Lemmal5.6.1] by additionally accounting for the domain perturbation
term, which introduces the extra term Y;(¢) in the error estimate of Lemma m

Proof of Lemma[5.5.1. Let 0 < @w < 1 be a smooth cut-off function which equals to 1

in @} and supp(w) C @, with an estimate of derivatives |0EVG| < Cdj’%’l for any

non-negative integers k,l. Let ¢ = &6, and let 7j,(t) € S2(§2) be the solution of

(an ()B4, Xn) + (An(2)Vitn, Va) = (1 — an)dié, Xn) + (I — Ap)Vé, VXn) (5.6.130)
Vxn € S;(£2),t € (0,1) and 7;,(0) = 0.

Since d: = ¢ in @}, it follows that

(an ()04, Xn) + (Ap(@)Vitn, VXn) = (1 — an)did, Xn) + (I — AV, Vin) (5.6.131)
VX € Sp(£2)),t € (0,d3)
and
(an(x)iin, Xn) + (An(@)Vin, V) = (1 — an)dd, xn) + (I — AV, Vin) (5.6.132)
VX € Sp(D}),t € (id?,éldf.).

Now we split (ﬁh into éh =0, + 7n. Then 0, satisfies the condition of Lemma ie.,
(an(®)0(¢ — On), Xn) + (An(2)V (¢ — 01), V) =0 VX € S5 (£2), 1 € (0,d3),
(an(2)0(6 — 61)., X0) + (An(@)V( — 6), V) = 0 Vi € 52D}t € (id?,éld?).

Therefore, we can apply Lemma to obtain

‘H@t(qﬁ - éh)mQj + d;1H|¢ - éh

I e,
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<Ce? <Ij(éh(0)) + X (Ind — &)+ d;%| 6 — 4

)

+ (Ch1/2d;1/2 + Ce'hd; " + e) (mat(qs — 5h>\HQ9 +d;||¢ — 6hl

)

Again we split ¢ — 6}, into ¢ — 0, = (¢ — ¢p) + 7 and note that 6;,(0) = ¢, (0). It follows
that

1066 = du)lll, + 5 |6 — dnlll, o, (5.6.133)
<Ce (L(6n(0) + X; (g = &) + 42| = Gl )

+ (Cn2a 4 cethd;t + € ([[[ado - )|

1 ~
Q; +d; |H¢ - (bthQ;)
+ Ce3 (dj_QHﬁhHLQ(Q;.) + d;1||Vﬁh||L2(Q;) + ||8t77h||L2(Q;.)> .
By Holder’s inequality, we have

72 il ez + 45 IVl 2@y + 100l 2@y
<O (d;M17inll oo r20) + d5 IV iRl L2 () + 10einll L2(0)) (5.6.134)

It remains to establish a global energy estimate for 7, using the following lemma:

Lemma 5.6.2. Assume ¢y, € S3(£2) satisfies
(ah(f)atﬂgha Xh) + (Ah(x)véha V)véh) = <f7 Xh) + (97 vj&h)vjah S SZ<Q)7t € (07 1)7

and ¢p(0) = 0. Then we have

19l 220 + IVOnllz0) < ClI flprz) + Igllzxe) (5.6.135)
||at¢v5h||L2(Q) <C <||f||L2(Q) + [1g(0)] 2 + ||9||Ea(g)||9t9||§2(g) + ||atg||[§,2(g)||f||EIL2(Q)>
(5.6.136)

Proof. Let x5, = ¢, and integrate in time, we have

1 1
||a3h||%w<o,1;m>+||w3h||%z(g)sc( / LF(E) L2 lln (B) ]| ot + / ||g<t>||Lz||w3h<t>||det),

and ([5.6.135)) is obtained from the estimate above and Holder’s inequality. Let x5 = O,

we have

INardduls + 5w (AnV6,, V) = (. 0dn) + (9, Vo)

= (. 0hn) + 9.V ~ (949, V6.
Integrate in time from s = 0 to s = ¢, we obtain
10e0nlI72 0,122 + VR (D172
<C (/Ot(HfHLQ||31t€23h||L2 + ||at9HL2HV<ZBhHL2)d5 + Hg(t)HHH||V<5h(t)||L2)
<C (If 120,622 10:nll L20,6:22) + 100Gl 2 0.2 IV Pl L2(0.622) + |G () |22 IV ()| 2)
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Using Young’s inequality to absorb ||V, (t)||z2 and [|0,énr2(0.:22) on the right side, we
have

|9nllzzio) + IV dnllz=r200) < C (If 2 + gl r2c) + 148l F2(0) IVl ooy ) -
(5.6.137)

Substitute the interpolation inequality
1
191z 0,122) < CllGI72(0.1.2) 109 £2(0,1:22) + 19 (0)][ 2,

and the estimate (5.6.135) of ||V | 12(0) into (5.6.137), we obtain (5.6.136)). B
Take ¢, = 7, f = (1 — a)0p and g = (I — A,)V¢ in the last lemma and note
(5.3.32), we have

il 220y + [ Vitnll 2@y < CR (108l 22(0) + V0 22(0))
< Ch'(d;||0sd| 12(0) + IV @ 12(0)), (used Holder’s inequality)
and
9wl 200y <CH (10dllz2(0) + V813210 I V0B 10, + 1908 a0y 10 11200)
<Cn (l19:6l1200) + 451V ol10) + 511 VOB 12(0) + &5 106 12200))
< (10020 + 5 IV 8l 2oy + 4590l 1e) )

where we have used the fact that suppgg C Q7 and 5(0) = 0, which follows from suppw C
Q7 and the assumption ¢(0) = 0 in £27. As a result,

d; 1l oo r2c0) + d5 M Viinll2c0) + 1185 | 22 ) (5.6.138)
<en (10l + & 190 + &I V0 o)
<o (106l + 5 IVl ez + VoDl gy + 45210l )
In conclusion, combining ((5.6.133)), (5.6.134)) and we have shown
26 = Snlll, + 5[l = éalll,
<O (1(0n(0)) + X;(1nd — ) + V5(0) + 2|0 = Gl )
+(onea o hd;t 4 e) (1006 = dllg, + 576 = dulll )
where in the last inequality (5.6.139)), the )A}](qﬁ) denotes
7(¢) = " (419002 + 196z + 45 V6 |z + 4521l )

(5.6.139)

Finally, in order to replace Q7 with @ in the expression of }7](¢) above, we observe that

1
/5
where @);”

1
Lemma [5.6.1| remains valid if in the statement Q; is substituted with Q/’Q

70
denotes the following intermediate set between Q; and Q'

!/

Q;

N

3
={(t,x) € Q: Zdj < max(|z — xol,tl/Q) < 3d;}.

1
/,5

Therefore, we can substitute @} with @;* and Q7 with Q' throughout the proof above,
leading to the statement of Lemma ((5.5.1]). B
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5.7 Appendix: Property (P3) and operator I,

We take the same approach as in [I01, Appendix B], constructing a modified Clément’s
interpolation operator (which is similar to the Scott-Zhang interpolation operator cf.
21, Section 4.8]) I, : H'(£2) — S),(£2) which preserves homogeneous Dirichlet boundary
condition i.e. if u € H}(2) then Tyu € Sp(£2). We denote by z; € 2,i = 1,..., M
the interior finite element nodes and denote by 2% € 9§2,j = 1,...,m the boundary

finite element nodes of the finite element space S, (£2). We denote by ®; € S2(£2) the
basis function corresponding to x; € §2 and denote by ®; € S5,(f2) the basis function
corresponding to .CE; € 0f2. In other words, we have relation

Let 7, = U{K € T, : #; € K} and T = U{K €Ty : T € K}. For each interior node
z; € 2, we define PV L2(£2) — S, (7;) as the local L2-projection onto Sy(7;), i.e.,

(P}Ei%)»)v(h)n‘ = (,U7>Zh)7'i th € Sh(Ti)'
For each boundary node z’;, we define ?,(j) CHY(2) — S,(092n 7;) where
Sh(69 N 7']/) = {X S CO(&Q N 7']/) cdxn, € gh(.Q) s.t. )v(h|a_()m7_]/_ = X},

and ﬁg)v is the local L? projection of v|gq (trace of v on the boundary):

(Pv, X )osnr, = (vloa, Vo, ¥ € 5,(02117)).

We define operator I, : H*(£2) — S,(£2) by setting

M m
L = 3P 0) (@) + 3 (P o) ()@, (5.7.140)
=1 j=1

It follows from the definition of I, that beh = ¥y for x5, € Sp(£2) and moreover Lo €
S2(£2) when v € HL(£2). Therefore, the restriction of I, to HE(£2) gives a projection
operator I}, : H}(£2) — S2(£2) onto the finite element space S5 (2). To verify (P3) for Iy,
it suffices to prove the same statements for I..

Using the mesh regularity condition ([5.3.29), we can establish the following inverse
estimates by pulling back to reference element:

[Xnl(z}) < CR NP2 5 2 oaney; [Xnl (@) < CBN2(X0ll 2y YR € Sh(£2)
(5.7.141)

where 7, can be any boundary node and z; any interior node. Thus, from the definition
of I, it is straightforward to verify the following local stability:

1100 )| z2r) + RV In0l| 2y < C (0l 2y + B30l 2000m))
1Tnvll 2y + BV o] 2y < C (||UHL2(%;) + hl/z\lvllm(amﬁo :
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where 7; = | J{K € T, : KN7; # 0} and 7} = (J{K € T, : KN 7} # 0}. Summing up the
two inequalities above for « = 1,..., M and j = 1,...,m and taking into account of the
quasi-uniformity (P1), we obtain the global stability:

1hvll20) + IV I 12) < Cl0lli2i) + 12 (0]l 200)-

1/2 ”1/2

By trace inequality ||v|[z200) < C|lv]/> ||v and Young’s inequality, we have:

1hvllz20) + PIVIv]12) < Cl0ll2i0) + 1 Vol 120)),

which implies the following quasi-optimal approximation property since fh is a projection
onto Sy(£2):

[o=Inv|| L2 AV (0=1hv) | r2(0) < C(lv=Xnll2200) RV (v=X0) [l L2(2))  VXn € SK(£2).

(5.7.142)
When v € H?(2), by simply taking y;, = f,fv, i.e., the Lagrangian interpolation of v (cf.
[94, Lemma 7] for error estimate of Lagrangian interpolation operator of Sj,(£2)), we have

v = Ihvl 200y + RV (v — Ty)|| 122 < CR2|[v]l 2oy Yo € HA(£2). (5.7.143)

To consider the case where v € H'(§2), we can construct another Lipschitz homeomor-
phism ¥y, : 2, — (2, by

I -1

Uyplz = FroFZL,

where ﬁh = interior of J ReT, K is the domain consisting of the triangles/tetrahedrons
in the initial flat triangulation of (2 described in Section [5.3.2, The mesh regularity

condition ([5.3.27)) guarantees that
~ ~—1
IV oo,y + IV Lo, < C (5.7.144)

Let S,(£2,) be the finite element space based on T, and let ﬁ};  L2(82) — Sp(62)
be the L? projection onto Sy, (2,). Since S,(£2,) is the usual Lagrangian finite element
space based on a quasi-uniform triangle/tetrahedron mesh, there holds the following basic
estimate of the L? projection ]S,fL

(1= B fll 2@y + IV = B Lz < Chllfllna,)-
From the definition of finite element space Su(£2), Xn = P! (v o Py 0 \Ilh) o @;1 od,!
belongs to Sy ((2,) and satisfies
[v = Xnllz2(2) + RV (0 = Xn)ll 22 0)
<C[(1 = By)(v o ®po W)l 25, + ChlIV(L = P)(vo @y oWl g,
<Ch|vo®y o \AI}h\|L2(§h) < Ch||v|| g (o), (5.7.145)

where we have used the fact that ®, and ¥}, induce norm equivalence in view of ([5.7.144))
and (5.3.30))-(5.3.31)). Therefore, by ([5.7.142)) we also established:

v = Tl 2y + PIV (0 = 1y0) || 200y < Chlvllag Yo € HY(R). (5.7.146)
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By complex interpolation method, we can deduce from (5.7.146|) and (5.7.143|) that
o = Ll 2 + IV (0 = L) |2 < Ch7 | ullgisagy Yo € HYF(2).  (5.7.147)

This proves (P3)-(1). From the construction of I, it is direct to verify that if diam(K) <
h for all K € Ty, then the value of fIvhv in D C (2 only depends on the value of v in By(D)
for d > 2h. This proves (P3)-(2). Finally, it remains to prove the super-approximation
estimate

l|wepr, — fh(wq/;h)HLQ(Q) + hllwiy, — EL(Wl[Jh)HHl(Q) < Chd ™ |[{n|z2(By(0))-

From the quasi-optimal approximation estimate (5.7.142]), there holds

e, — In(win) || z2g0) + Bllwdn — In(win) | (o)
<|Jwtp, — If (wibn) | 12(0) + llwdn — Iy (Wn) | m),

while for the Lagrangian interpolation operator IX we refer to [103, Lemma 2.6] for a
proof of its super-approximation property.
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Chapter 6

Conclusion

This thesis investigates finite element methods (FEM) for solving complex problems in
fluid-structure interaction (FSI) and partial differential equations (PDEs) posed on curvi-
linear domains. The work is divided into three main parts, each addressing fundamental
challenges in computational mathematics and numerical analysis.

The first part (Chapter [2|) focuses on the numerical solution of the Stokes equations
in evolving domains with moving boundaries, using the arbitrary Lagrangian—Eulerian
(ALE) finite element method. For Taylor-Hood elements of degree r > 2, we establish
optimal L? error estimates of order O(h"!) for the velocity and O(h") for the pressure.
The analysis employs Nitsche’s duality argument, adapted to an evolving mesh, and
hinges on proving that the material derivative and the Stokes—Ritz projection commute
up to terms of optimal L? convergence order. A novel duality argument is developed
to derive an optimal H~! error estimate for the pressure component of the Stokes-Ritz
projection, which is essential in the L?-error analysis of the commutator. Numerical
experiments support the theoretical results and demonstrate the method’s effectiveness
in simulating Navier—Stokes flow in domains with rotating boundaries, such as a propeller.

The second part (Chapter [3) addresses FSI problems involving the coupling of the
Stokes equations in a fluid domain with an elastic wave equation on the boundary through
kinematic and dynamic interface conditions. Such coupled systems are analytically and
numerically challenging. On one hand, optimal L? error estimates for FEM in FSI prob-
lems had not been previously established, primarily due to the lack of an appropriate
Ritz projection to control the consistency error. To overcome this, we introduce a cou-
pled non-stationary Ritz projection and analyze its approximation properties, thereby
providing the first optimal L? error estimate for the semi-discrete FEM approximation
of FSI problems. On the other hand, the presence of both parabolic and hyperbolic
dynamics complicates the construction of stable, decoupled numerical schemes. To ad-
dress this, we propose a fully discrete, kinematically coupled scheme that decouples the
fluid and structure subproblems while ensuring unconditional energy stability. Using
the newly constructed non-stationary Ritz projection, we further prove optimal L?-norm
convergence of the fully discrete scheme.

The third part (Chapters investigates the maximum-norm stability and error
estimates of isoparametric FEM for elliptic and parabolic equations posed on curvilin-
ear polyhedral domains. Since such domains cannot, in general, be exactly triangulated
using linear simplices, isoparametric finite element methods are employed to better ap-
proximate curved boundaries. This, however, introduces domain perturbation errors, as
the computational domain {2, no longer coincides with the exact domain {2, necessitating
a careful analysis. We address this by adopting a transformation technique that maps
the problem from (2, to {2 via a bi-Lipschitz transformation ®;, : {2, — (2. The resulting
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formulation leads to a finite element discretization on {2 for an equivalent problem with
perturbed coefficients that encode the effects of domain perturbation.

In Chapter [, we establish the weak discrete maximum principle for isoparametric
FEM applied to the Poisson equation with Dirichlet boundary conditions on (possibly
nonconvex) curvilinear polyhedral domains with edge openings smaller than 7. These
domains include smooth regions and smooth deformations of convex polyhedra. The
proof relies on the analysis of a dual elliptic problem with a discontinuous coefficient
matrix arising from the isoparametric mapping. As standard H?-regularity does not hold
in this context, we decompose the dual solution into a smooth component and a singular
component, estimating them via H? and WP regularity, respectively. As an application,
we establish a maximum-norm best approximation result for the isoparametric FEM. To
address the domain perturbation {2 # (2, we construct a globally smooth flow map from
(2 to a larger perturbed domain containing {2, enabling a uniform W1 estimate of the
continuous solution with respect to the perturbation.

In Chapter |5, we investigate the isoparametric finite element semi-discretization for
a parabolic problem on a curvilinear polyhedral domain 2 C RY with homogeneous
Dirichlet boundary condition. The domain {2 may include non-convex corners, i.e., with
edge openings possibly greater than m. We establish the analyticity and maximal reg-
ularity of the discrete semigroup by employing a transformation method to address the
domain perturbation effect {2 # 2,. The analysis hinges on estimating the error I' — T'j,
between the regularized Green function of the Laplace equation in {2 and the discrete
Green function I'j, of the transformed finite element problem in 2. Since only a perturbed
Galerkin orthogonality holds for I' — I';, due to the domain perturbation effect, the pri-
mary difficulty in the proof lies in handling the local energy error estimates and the local
duality arguments in the context of perturbed Galerkin orthogonality. As an application
of the logarithmically quasi-maximal L*°-regularity of the discrete semigroup, we reduce
the maximum norm error estimate of the parabolic problem to that of the elliptic Ritz
projection, incorporating an additional optimal order term resulting from the domain
perturbation effect.

Several promising directions for future research emerge from this thesis, particularly
in advancing the numerical analysis of fluid—structure interaction (FSI) problems and fi-
nite element methods under domain perturbation. For FSI, a deeper investigation of the
coupled non-stationary Ritz projection is warranted, particularly to extend the current
framework to more complex configurations involving thick-structure interactions, inter-
face deformation, and general inflow/outflow boundary conditions. Understanding the
stability properties of the Ritz projection in these extended settings remains a key open
question. In addition, the analyticity and maximal regularity of the evolution equation
associated with the coupled Ritz projection deserve further study. It is also of interest
to explore the removal of the current theoretical restrictions on initial data by examining
more closely the stability properties of the coupled parabolic-hyperbolic system.

In the context of domain perturbation, a systematic comparison between the extension
method and the transformation method raises rich and subtle theoretical challenges.
While both approaches have demonstrated effectiveness in certain settings, there exist
intricate scenarios in which one method proves successful while the other does not. This
highlights the need for a unified analytical framework capable of capturing the effects
of domain perturbation in FEM analysis across a broader class of geometries and PDE
models.
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