

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

A STUDY ON LEARNING-BASED

MODEL EXTRACTION ATTACKS

AND DEFENSE METHODS

YAXIN XIAO

PhD

The Hong Kong Polytechnic University

2025

The Hong Kong Polytechnic University

Department of Electrical and Electronic Engineering

A Study on Learning-based Model Extraction

Attacks and Defense Methods

Yaxin Xiao

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

April 2025

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published

or written, nor material that has been accepted for the award of any

other degree or diploma, except where due acknowledgment has been

made in the text.

Signature:

Name of Student: Yaxin Xiao

Abstract

The widespread adoption of Machine Learning as a Service (MLaaS) has exposed

cloud-deployed black-box models to growing security risks, particularly from model

extraction attacks (MEAs). In these attacks, adversaries exploit prediction interfaces

to replicate proprietary models, subsequently enabling secondary privacy breaches

or adversarial attacks through extracted model insights. Driven by the intellectual

property (IP) theft crisis, this thesis first systematically investigates MEA risks and

then explores defense strategies from multiple perspectives.

While existing MEA research focuses on query optimization to maximize attack suc-

cess, two critical attack amplifiers remain underexplored: (1) the mutual reinforce-

ment between model theft and training data privacy leakage and (2) the impact of

initial bootstrapping on extraction performance. This work reveals that model ex-

traction and membership inference attacks, which aim to identify training data, can

strengthen each other through an iterative process. Furthermore, we reveal that op-

timized initial parameters and more compatible model architectures enable MEAs to

replicate models at the neuron level. This strategy not only boosts the performance

of model extraction attacks but also redefines their severity because it provides sub-

stitute models with neuron-level precision for downstream attacks.

To counter the threats of MEAs, we propose two defense strategies. The first is a

proactive method, which leverages the model’s hard-to-replicate properties to reduce

its extractability, preventing MEAs from producing high-fidelity extracted models.

i

The second is a passive forensic approach using black-box model watermarks, which

embeds ownership signals into the extracted models. Compared to existing water-

marking methods, CFW not only transfers more effectively to extracted models but

also resist adaptive removal attacks. By uncovering key mechanisms that amplify

model extraction attacks and introducing effective countermeasures, this study offers

strong protection for MLaaS platforms against intellectual property theft.

ii

Publications Arising from the

Thesis

1. Y. Xiao, Q. Ye, H. Hu, H. Zheng, C. Fang, and J. Shi. “MExMI: Pool-based

Active Model Extraction Crossover Membership Inference.” 36th Conference

on Neural Information Processing Systems (NeurIPS). 2022.

2. Y. Xiao, Q. Ye, L. Hu, H. Zheng, H. Hu, Z. Liang, Y. Jiao, “Privacy Attacks Ex-

ploiting Residuals: How Approximate Machine Unlearning Fails to Protect Pri-

vacy”. The IEEE/CVF International Conference on Computer Vision (ICCV),

2025.

3. Y. Xiao, H. Hu, Q. Ye, L. Tang, Z. Liang, H. Zheng. “Unlocking High- Fidelity

Learning: Towards Neuron-Grained Model Extraction”. IEEE Transactions on

Dependable and Secure Computing (TDSC), 2025.

4. T. Li, Q. Ye, H. Hu, Q. Xue, Y. Xiao, and J. Li. “DeepMark: A Scalable

and Robust Framework for DeepFake Video Detection”. ACM Transactions on

Privacy and Security 27, no. 1 (2024): 1-26. https://doi.org/10.1145/3629976.

5. H. LI, L. Bai, Q. Ye, H. Hu, Y. Xiao, H. Zheng, J. Xu. “A Sample-Level Eval-

uation and Generative Framework for Model Inversion Attacks”. The Annual

AAAI Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v39i17.

34012. 2025

iii

6. Z. Liang, P. Wang, R. Zhang, H. Hu, S. Zhang, Q. Ye, N. Xu, Y. Xiao, C. Zhang,

L. Cui. “Exploring Intrinsic Alignments within Text Corpus”. The Annual

AAAI Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v39i26.

34957. 2025

7. Z. Liang, H. Hu, Q. Ye, Y. Xiao, R. Li. “Does Low Rank Adaptation Lead to

Lower Robustness against Training-Time Attacks?”. Forty-second International

Conference on Machine Learning (ICML), 2025.

8. Z. Liang, Q. Ye, Y. Wang, S. Zhang, Y. Xiao, R. Li, J. Xu, H. Hu. “Yes, My

LoRD. Guiding Language Model Extraction with Locality Reinforced Distilla-

tion”. Annual Meeting of the Association for Computational Linguistics (ACL),

2025.

9. R. Du, Q. Ye, Y. Xiao, L. Yu, Y. Fu, H. Hu. “Dual Utilization of Perturbation

for Stream Data Publication under Local Differential Privacy”. The IEEE 41rd

International Conference on Data Engineering. https://doi.org/10.48550/arXiv

.2504.14993. 2025.

10. Y. Xiao, Q. Ye, Z. Liang, H. Li, R. Li, H. Zheng, H. Hu, “Class-feature Water-

mark: A Resilient Black-box Watermark Against Model Extraction Attacks”.

Submitted to The Annual AAAI Conference on Artificial Intelligence (AAAI),

2026.

11. Y. Xiao, H. Hu, Qi. Ye, J. Xu, L. Tang, H. LI, H. Zheng. “Privacy-Preserving

Proof-of-Learning via Watermark Trajectory”. Submitted to IEEE Transac-

tions on Dependable and Secure Computing (TDSC), 2025.

12. Z. Liang, H. Hu, Q. Ye, Y. Xiao, H. Li. “Why Are My Prompts Leaked?

Unraveling Prompt Extraction Threats in Customized Large Language Models”.

arXiv preprint arXiv:2408.02416, 2024.

iv

13. H. Li, R. Sun, Q. Ye, B. Zhao, H. Hu, Y. Xiao, Z. Liang, X. Zhang, J. Xue, H.

Hu. “FeatMark: Feature-level Watermark Protection against Mimicry Attacks

with Diffusion Models”. Submitted to Network and Distributed System Security

(NDSS), 2026.

14. R. Li, H. Hu, Z. Liang, Y. Xiao, Q. Ye. “Incorporating User Preferences into

TAP Conflict Handling”. Submitted to IEEE Internet of Things Journal, 2025

v

Acknowledgments

My PhD journey has been a deeply meaningful chapter of my life. When I first be-

gan this path, I struggled for years to understand the difference between absorbing

knowledge (as I did in engineering) and doing real research. Now I realize that re-

search requires critical, systematic thinking – this is how we build strong arguments.

I also finally grasped why I needed to learn those mathematics and science concepts.

At first, knowledge felt disconnected from the real purpose, and studying for exams

seemed like a waste of mental energy. But through research, I discovered how math-

ematics forms the foundation of scientific analysis. This rekindled the curiosity I felt

when I first learned about modern science. Beyond these lessons, I owe sincere thanks

to those who supported me along the way.

First and foremost, I thank my supervisor, Prof. Hu, for teaching me how to conduct

research from scratch. His positive attitude and the supportive research environment

he created allowed me to focus entirely on my work without stress. Unlike many

PhD students, I never faced mental health challenges, and this is largely thanks to

his guidance.

I am also grateful to Prof. Ye and the entire Astaple group. Their kindness, bril-

liant insights, and sincere dedication to research taught me invaluable lessons. The

friendships we formed during this time are treasures I will carry forever.

Additionally, I thank my family, my husband, Mr Han Rui, and my cat for their

steady support. They never pressured me and gave me the peace of mind to fully

vi

dedicate myself to this journey.

Finally, I thank PolyU and its administrative staff for their efficient organization.

Through their dedicated work, I was able to finish my PhD degree smoothly without

unnecessary distractions.

This PhD journey has not only answered academic questions but also helped me grow

as a person. I’ve learned to better understand myself, embrace my values, and strive

to live with authenticity.

vii

Table of Contents

Abstract i

Publications Arising from the Thesis iii

Acknowledgments vi

List of Figures xiv

List of Tables xvii

1 Introduction 1

1.1 Enhanced Frameworks for Model Extraction Attacks 2

1.1.1 Existing Works . 2

1.1.2 Model Extraction Crossover Membership Inference 3

1.1.3 Towards Neuron-grained Model Extraction 4

1.2 Defending Methods against Model Extraction Attacks 4

1.3 Contributions . 5

1.4 Roadmap . 6

viii

2 Related Works 7

2.1 Model Extraction Attacks . 7

2.2 Defending Against Model Extraction Attacks 9

2.2.1 Mitigation Defense through Prediction Perturbation 9

2.2.2 Ownership Verification in Model Extraction Attacks 10

3 Background Knowledge and Definitions 12

3.1 Notations of Machine Learning Models 12

3.1.1 Problem Definition: Model Extraction Attacks (MEAs) 13

3.1.2 Threat Model . 14

3.1.3 Problem Formulation of Model Watermarking 16

4 MExMI: Model Extraction Crossover Membership Inference 17

4.1 MExMI Framework . 19

4.1.1 MI Pre-Filter . 21

4.1.2 MI Post-Filter . 21

4.1.3 Semi-Supervised Boosting . 21

4.1.4 Pool-based Active Learning Algorithms 22

4.1.5 Adaptive Membership Inference 23

4.1.6 Shadow-Model Membership Inference 23

4.1.7 Unsupervised Membership Inference 29

4.2 Experiment . 29

4.2.1 Experiment Setup . 30

ix

4.2.2 Metric-based Shadow-Model MI 31

4.2.3 Overall Performance of MExMI 33

4.2.3.1 Implementation Details 33

4.2.3.2 Overall Results of MExMI 34

4.2.4 Impact of Adversary Data Pool on PAME 37

4.2.5 Impact of Output Access . 38

4.2.6 Transferability of Adversarial Attacks 39

4.2.7 Impact of Weight Ratio in MI Post-Filter 39

4.2.8 Case Study: Blackbox Attacks on MLaaS ModelArts 40

4.2.9 Impact of ML Optimizations 41

4.2.10 The Ability of Evading PRADA Defence 42

5 MEBooster: Towards Neuron-Grained Model Extraction 44

5.1 The ME Booster Framework . 45

5.2 Neuron-Grained Model Extraction . 47

5.2.1 High-level Solution . 47

5.2.2 Neuron Matching Theory . 48

5.2.3 Moment-based Parameter Estimation 50

5.2.3.1 Moment-based Weight Estimation 50

5.2.3.2 Corner-Patch-Retained Sample for Convolutional Layer

Generalization . 53

5.2.3.3 Generalization to Middle Layers by Decoding 55

5.2.4 Width Expansion and Re-scaling Initialization 55

x

5.2.5 Fine-tuning-boosted Neuron-grained Matching 56

5.3 Experiments . 58

5.3.1 Setup . 58

5.3.1.1 Baseline Attacks . 58

5.3.1.2 Query Budget & Datasets & Models 58

5.3.1.3 Attack Frameworks 59

5.3.2 Training Parameters . 59

5.3.2.1 Evaluation Metrics 60

5.3.3 Overall Performance of MEBooster 61

5.3.4 Impact of MEBooster on Follow-up Attacks 64

5.3.5 Impact of Width Expansion 65

5.3.6 Comparing Width Expansion with Other Optimization Methods 66

5.3.7 The Impact of Architecture Knowledge 66

6 Defense Methods Against Model Extraction Attacks 68

6.1 Mitigating the Effectiveness of Learning-based Model Extraction Attacks 68

6.1.1 Defense Strategy: Stochastic Norm Enlargement 69

6.1.2 Empirical Evaluation . 69

6.2 A Resilient Black-box Watermark Against Model Extraction Attacks 70

6.2.1 Watermark Removal Attack (WRK) 73

6.2.1.1 Decision Boundary Perturbation (DBP) 75

6.2.1.2 Model Attention Correction (MAC) 76

xi

6.2.2 Experimental Evaluation of Watermark Resilience against WRK 77

6.2.2.1 Experimental Setup 77

6.2.2.2 Resilience Evaluation of Existing Black-box Water-

marks against WRK 79

6.2.2.3 Comparison of WRK and Existing Removal Methods 80

6.2.2.4 Evaluation of WRK Variants 82

6.2.3 Principle of Resilient Black-box Model Watermarks against MEA 83

6.2.3.1 Impact of Maximum Representation Orthogonality on

MEA Transferability 83

6.2.3.2 Shifting to Class-level Artifacts for Higher Resilience 86

6.2.4 Class-Feature Watermark (CFW) 87

6.2.4.1 Overview . 87

6.2.4.2 Enhance Representation Entanglement (RE) and Sta-

bility of CFW . 88

6.2.4.3 Verify CFW with Intra-class Clustering 93

6.3 Experimental Evaluation for Class-Feature Watermarks (CFW) . . . 96

6.3.1 Setups . 96

6.3.2 Overall Evaluation of CFW 98

6.3.3 Evaluation on CFW Variants 100

6.3.4 The Impact of PD3 on CFW Stability 101

6.3.5 The Impact of Maximum Representation Orthogonality on MEA

Transferability . 103

xii

6.3.6 Ablation Study: The Impact of Copy Model’s Architectures on

Class-Feature Watermarks . 104

6.3.7 Discussions . 104

7 Conclusion 106

xiii

List of Figures

4.1 MExMI iterative framework. 20

4.2 The results of log-bias mean vs. bias mean. 27

4.3 The results of bias mean vs. vector-bias mean. 27

4.4 Experiment results of metric-based shadow-model MI under different

settings. 32

4.5 PAME results on CIFAR10 (16k budget) and AG’S NEWS (30k bud-

get). Shadows represent error bars. 35

4.6 MI attack results of MExMI. “ML-leaks” refers to the shadow-model

MI attack in [84]. 35

4.7 Performance of MI Pre-Filter in MExMI on CIFAR10. 37

4.8 PAME attacks’ results in ModelArts on SVHN (7k budget). 40

4.9 Distribution of L2 distance required in PRADA defence. 42

5.1 The MEBooster framework for learning-based ME. 46

5.2 Illustration of observation sample number and boundary sample num-

ber in model extraction. 49

xiv

5.3 The “corner-patch-retained” input samples. The colored area repre-

sents the overlap between open pixels and a convolution kernel, with

elements indexed post-flattening. 54

5.4 Neuron matching ratio. The color bar integer is the number of layers.

Low-opacity bars reflect matching scores above 0.95, while high-opacity

bars are scores over 0.99. 63

5.5 The impact of over-width factor of width expansion on MEBooster. . 65

6.1 Black-box model watermarks defend against model extraction attacks

(MEAs) but are threatened by watermark removal attacks. 72

6.2 Comparison of decision boundary perturbation (DBP) in WRK and

adversarial training (AT). The numbers indicate annotated labels, with

white representing the original label and red indicating the reassigned

label by DBP or AT. 76

6.3 Instances of compositional watermark samples [65, 69] and their heatmaps

before and after WRK removal. 77

6.4 Watermark decoupling curves of victim models. On the decoupling

line, ACC and WSR degrade equally. 82

6.5 WSR of the copy (substitute) model versus the maximum representa-

tion orthogonality. For BadNet and Blend, the values in parentheses

indicate their poisoning rates. 86

6.6 Overall framework of Class-Feature Watermark (CFW). 88

6.7 Changes in pairwise distances of representations under MEA-induced

deformations (e.g., stretching in Figure 6.7b). 91

6.8 Visualized representations of the last hidden layer. 94

xv

6.9 Predicted label histograms inWRK attack experiments (in Section 6.2.4.3.1). 94

6.10 Density histogram of PC cosine similarity between classes contains

watermarks and others. The ratio of deformation labels to non-deformation

labels is 1 : 9. 96

6.11 Watermark decoupling curves of CFW. Vertical lines indicate error bars

derived through interpolation due to variability in accuracy degrada-

tion across experiments. 102

6.12 PD3 versus Intra-class Variance. The vertical lines represent error bars. 102

6.13 MEA transferability versus the maximum representation orthogonality.

The vertical lines represent error bars. 103

6.14 Performance of CFW with different architectures used in model extrac-

tion attacks. The horizontal labels are victim models, and the vertical

labels are copy (substitute) models. 104

6.15 AUC results of abnormal detections on CFW. 105

xvi

List of Tables

2.1 Main-stream Learning-based Model Extraction Attacks 8

2.2 Comparison of defense methods against different attacks 9

2.3 Black-box Model Watermarking Defending against Model Extraction

Attacks (MEA) . 11

4.1 Homogeneous v.s. Non-Homogeneous Data Pool for Model Extraction 18

4.2 Results of Default PAME Experiments 36

4.3 Impact of the Adversary Data Pool on PAME Attacks with 16k Query

Budget . 38

4.4 Impact of Output Access on PAME Attacks 38

4.5 Transferability of FGSM attacks . 39

4.6 Impact of Post-Filter Weight Ratio 39

4.7 MI attacks’ results in ModelArts . 40

4.8 Performance Boosting Using Different ML Optimization Methods . . 42

5.1 Experimental Settings . 59

5.2 Results of Learning-based Model Extraction Experiments 62

5.3 The Results of Parameter Estimation Methods 62

xvii

5.4 Computing Cost of Learning-based Model Extraction Experiments . . 64

5.5 The Results of Follow-up Adversarial Attacks 65

5.6 The Results of Follow-up Membership Inference Attacks 65

5.7 Results of Optimization Methods with Similar Memories 66

5.8 Architecture-agnostic Model Extraction Attacks 67

6.1 The Results of Defending Methods Against Learning-based Model Ex-

traction . 70

6.2 Performance of the State-of-the-art Existing Black-box Watermarks

against WRK . 80

6.3 Performance of Benchmark Removal Attack on Victim Models 81

6.4 Benchmark Removal Attack Performance on Substitute Models . . . 81

6.5 Performance of WRK Variants . 83

6.6 Performance of Class-Feature (CF) Watermark 99

6.7 Resilience of CFW against Other Removal Attacks 99

6.8 Evaluation Results of Class-Feature Watermark (CFW) Variants . . . 101

xviii

Chapter 1

Introduction

Recent advances in machine learning (ML) have significantly shifted the paradigm

in all walks of life. To stay competitive, industries are accelerating the deployment

of ML-driven solutions, which drives upgrades in areas such as intelligent manufac-

turing [46] and autonomous driving [22]. This growing demand fuels the growth of

Machine Learning as a Service (MLaaS) [79], a service pattern where providers such as

Microsoft Azure ML [11], Amazon AWS ML [2], and Google Cloud AI [7] grant users

query access to proprietary models through pay-per-query APIs. Users can obtain

predictions by uploading data, without incurring the high cost of model development.

Within this paradigm, the confidentiality of deployed ML models is a critical as-

set. Terms of service clearly state that providers retain ownership of their models

(e.g., Google models [39]), and recognize them as legally protected intellectual prop-

erty (IP). However, this IP is increasingly threatened by model extraction attacks

(MEAs) [100], which aim to replicate target models by exploiting query access, even

when the models are deployed in black-box form.

Model extraction attacks pose escalating threats to machine learning ecosystems,

which are driven by three compelling adversarial incentives. First, adversaries can

replicate proprietary models to bypass years of R&D investment. For instance, a

1

Chapter 1. Introduction

fine-tuned large language model (LLM) developed by a financial startup to summa-

rize investment strategies was recently leaked on the dark web [14]. Second, model

extraction provides a path to economic efficiency. It allows adversaries to avoid the

prohibitive costs of API usage fees while evading rate-limited access controls. Third,

the extracted model can be exploited for downstream privacy attacks, including mem-

bership inference [45] and model inversion [34, 116], which exposes sensitive training

data.

These cascading risks range from IP theft to data breaches, which underscore the

critical need for robust defenses against model extraction in real-world ML deploy-

ments. Therefore, this thesis conducts a thorough investigation of model extraction

attacks. It first investigates their potential impact, then explores effective defense

strategies from different perspectives. Accordingly, Section 1.1 outlines the moti-

vations of our design to enhance the attack performance of model extraction, and

Section 1.2 introduces our proposed defense approaches.

1.1 Enhanced Frameworks for Model Extraction

Attacks

1.1.1 Existing Works

Existing model extraction attacks can be categorized into direct recovery [48] and

active-learning-based model extraction attacks [21, 76]. Active learning (AL) refers

to those semi-supervised training methods that aim to find the most informative train-

ing dataset with a limited query budget [36]. Since both active learning and model

extraction aim to train a model with as few queries as possible, active learning has be-

come increasingly popular in model extraction attacks. Depending on the availability

of real-life samples for querying, learning-based model extraction can be further di-

2

1.1. Enhanced Frameworks for Model Extraction Attacks

vided into pool-based active model extraction (PAME) and query-synthesizing-based

active model extraction (SAME). The former assumes the presence of samples, from

which query samples are iteratively selected using a pool-based or stream-based active

learning. Classic pool-based model extraction include ActiveThief [76] and Knock-

off [74]. The latter does not assume the presence of such samples and obtains them by

generative methods [21, 92]. Classic query-synthesizing-based model active extraction

include PRADA [52], MAZE [53] and DFME [101].

1.1.2 Model Extraction Crossover Membership Inference

While learning-based model extraction leverages techniques from active learning, a

critical difference between active learning and model extraction has long

been overlooked. Since active learning is essentially a training method, the data pool

is where training samples are drawn, which means this pool must have the same

feature distribution as the training dataset. However, in an MEA the adversary has

no access to the victim model’s training dataset or even samples in the same problem

domain [27]. Unfortunately, all previous pool-based model extraction works

ignore this difference and assume the samples in the pool are homogeneous

to those in the training dataset.

We address this issue through identifying homogeneous samples in the data

pool and making full use of them for a “guided” model extraction. We exploit

membership inference (MI), an attack that infers the training samples from a given

dataset [90], to select them and train a copy model. In turn, the extracted model

can enhance the accuracy of membership inference. As such, we propose an iterative

extraction framework MExMI where ME and MI reinforce each other through iter-

ations (See Chapter 4). Within limited query budget, the final outcome consists of

both a high-fidelity copy model and an accurate set of training samples.

3

Chapter 1. Introduction

1.1.3 Towards Neuron-grained Model Extraction

On the other hand, while learning-based model extraction is the de-facto type of ME

attacks [53, 76, 101], it is widely believed that learning-based strategies are not well-

suited for achieving high-fidelity extraction due to their non-determinism [48]. Con-

sequently, the copy model tends to converge to sub-optima, resulting in low fidelity

(i.e., low similarity to the victim model). For example, ActiveThief [76], the state-of-

the-art learning-based model extraction, can only achieve 94.25% fidelity even when

we grant it full access to all training details of the victim model, such as architecture

(ResNet [44]), initial parameters, training dataset (CIFAR [57]), and hyperparameters

of the optimizer. That is, there is a discrepancy in the labels inferred by the original

model and the copy model for about 1 in every 20 test samples. Essentially, such

limitations arise from their “learning-a-task” work mode, in which they search for the

best copy model in terms of task accuracy from a space of copy models with differ-

ent initialization states. “Learning-a-task” deviates from the objective of model

extraction and yet is neglected in the literature.

To boost the full potential effectiveness of model extraction, we re-evaluate the role of

learning in model extraction from a neuron-grained perspective and drive the learning

process beyond previous expectations by introducing a generic training booster —

MEBooster (See Chapter 5). Its key idea is to “learn-a-model” instead of to “learn-

a-task”. Through learning a model, the copy model can even achieve neuron-level

extraction to certain extent [81, 99, 124].

1.2 Defending Methods against Model Extraction

Attacks

In the second part of this thesis, we address the threat that model extraction poses to

a model’s intellectual property (IP) by proposing two defense strategies. The first is

4

1.3. Contributions

a proactive approach which rethinks model training from the defender’s perspective

and develops a new strategy to reduce the extractability of the victim model. This is

based on the theory that the difficulty of recovering a model by learning is subject to

specific critical properties of the model parameters [122]. In Chapter 6.1, we develop

a defensive training strategy for the victim model, which adjusts such properties to

make the model hard to extract.

The other defense proposed in this thesis is a passive approach based on black-box

model watermarks [50], a promising forensic method for verifying model ownership

in the context of MEAs, as detailed in Chapter 6.2. These watermarks embed a

specific task as a marker, enabling ownership verification of surrogate models obtained

through extraction, since such tasks may be partially transferred during the process.

Our key observation is that prior studies [50, 69] overestimated watermark resilience

against removal threats due to the use of ill-suited removal methods. In this work, we

explore how black-box watermarks can both verify ownership of extracted models and

remain robust against dedicated removal attacks tailored to the model watermarks

effective under MEA.

1.3 Contributions

In summary, this thesis makes the following contributions:

• We propose an iterative framework, MExMI, where model extraction attacks

(ME) and membership inference attacks (MI) reinforce each other. To support

this, we propose the few-shot versions for both shadow-model and unsuper-

vised MI. To boot-strap shadow-model MI, we develop an indicative quality

metric of shadow models and design a metric-based shadow-model training al-

gorithm. Extensive experimental results confirm that MExMI achieves fidelity

improvements ranging from 11.14% to 94.07% and reaches 84.13% MI precision,

5

Chapter 1. Introduction

comparable to the state-of-the-art MI attack [84], which assumes an unlimited

query budget.

• We propose MEBooster, a training booster framework to exploit the potential

advantage of model extraction attacks (MEAs) at the neuron-grained level.

MEBooster is validated on various image tasks and text tasks and demonstrate

its effectiveness and generalizability. In the best case, it yields a 58.10% fidelity

improvement over extraction methods without the booster.

• A proactive defensive training strategy is proposed, which exploits the hard-to-

extract properties of the victim model for the first time. Experimental results

show it can reduce the extractability (i.e., fidelity) of the victim model by up

to 58.81%.

• A resilient watermarking approach named Class-Feature Watermarks (CFW) is

proposed to detect the infringement of MEA. CFW leverages class-level artifacts

to resist WRK. To maintain its effectiveness and resilience during MEA, we

optimize its transferability and stability in MEA. Comprehensive evaluations

across diverse domain tasks show that CFW excels across multiple aspects,

offering robust resilience against removal attacks, high MEA transferability,

and minimal impact on model utility.

1.4 Roadmap

The rest of the thesis is organized as follows. Chapter 2 reviews related work. Chap-

ter 3 presents the necessary background and problem definition. Chapter 4 introduces

the MExMI framework. Chapter 5 elaborates on the MEBooster framework. One

mitigates potential MEA threats, while the other detects MEA infringements using

model watermarking techniques. Finally, Chapter 7 concludes the thesis.

6

Chapter 2

Related Works

2.1 Model Extraction Attacks

Recently, an increasing number of commercial ML models deployed with public

query interfaces are shown to be highly replicable by model extraction attacks (ME,

MEA) [48, 77, 100], which expose severe vulnerabilities in model confidentiality. Most

attacks follow a learning-based approach, where the attacker approximates the tar-

get model using queried samples and off-the-shelf gradient descent (GD) training

methods. Since the training data of a black-box victim model is usually private and

inaccessible, early attackers have to construct and surrogate query datasets, which

have been shown to be ineffective. For example, using random noise as query sam-

ples, model extraction is largely ineffective [76]. To address this, Chandrasekaran

et al. [21] propose learning-based model extraction based on active learning, a type

of semi-supervised learning that selectively chooses the training data to label so as

to maximize extraction efficiency. From then on, acquiring informative query data

becomes a key objective for almost all existing learning-based model extraction stud-

ies [52, 53, 76, 77, 101]. In terms of query data availability, ME can be categorized

into query-synthesizing ME and query-acquiring ME. The former is used when the

7

Chapter 2. Related Works

Table 2.1: Main-stream Learning-based Model Extraction Attacks

Attacks Year
Data Acquisition Data Pool Training

TechniquePool Synthesized Requirements

Tramèr [100] 2016 None –

Papernot [77] 2017 Domain subset Structure Selection

Knockoff [74] 2019 Public pool –

PRADA [52] 2019 Domain subset CV Search

ActiveThief [76] 2020 Public pool –

MAZE [53] 2021 None –

DFME [101] 2021 None –

HODA [82] 2023 None –

DisGUIDE [80] 2023 None –

Bayes Attack [97] 2024 Public pool –

adversary does not possess enough real data for query, which includes iterative active

frameworks [52, 77] and minimax-game frameworks [53, 101]. Despite saving the data

collection cost, it suffers from huge query budget demands. The latter is used when

the adversary spares extra cost to actively collect real data for query [27, 48, 76].

Table 2.1 summarizes the features of existing learning-based ME methods. Several at-

tackers, such as Knockoff [74], ActiveThief [76], and MExMI [108], utilize pool-based

strategies to select samples from real-life public datasets, necessitating a large data

pool. An alternative approach is query-synthesizing-based model extraction. One

category employs synthetic active learning algorithms, exemplified by PRADA [52]

and Papernot [77]. Another category of synthetic approaches is data-free model ex-

traction, which has gained popularity, with methods such as MAZE [53], DFME [101]

and DisGUIDE [80] emerging.

However, the focus of all these works on query data acquisition overshadows other

optimization opportunities for model extraction, especially in the training

process. As shown in Table 2.1, there is a lack of studies on training techniques.

So far, only Papernot et al. investigate the structure selection methods for copy

models [77], and PRADA [52] uses cross-validation (CV) to search for the training

hyper-parameters.

8

2.2. Defending Against Model Extraction Attacks

Table 2.2: Comparison of defense methods against different attacks

Attack
Query Detection Mitigation Defense Model Watermarking

PRADA[52] VarDetect[75] GRAD2[72]Adaptive[54] DBLP[119]ModelGuard[97] EWE[50] MBW[55] MEA-D[69]

Tramèr[100] ✓ ✓ △ △ △ △ ✓ ✗ ✓

Papernot[77] ✓ ✓ △ △ △ △ ✓ ✗ ✓

Knockoff[74] ✗ ✗ △ △ △ △ ✓ ✗ ✓

PRADA[52] ✓ ✓ △ △ △ △ ✓ ✗ ✓

ActiveThief[76] ✗ ✗ △ △ △ △ ✓ ✗ ✓

MAZE[53] ✓ ✓ △ △ △ △ ✓ ✗ ✓

DFME[101] ✓ ✓ △ △ △ △ ✓ ✗ ✓

HODA[82] ✓ ✓ △ △ △ △ ✓ ✗ ✓

DisGUIDE[80] ✓ ✓ △ △ △ △ ✓ ✗ ✓

Bayes Attack[97] ✗ ✗ △ △ △ △ ✓ ✗ ✓

Adaptive: Adaptive Misinformation [54]
✓: Defense is effective against the attack
✗: Defense is ineffective against the attack
△: Defense provides partial mitigation

2.2 Defending Against Model Extraction Attacks

Current research addresses model security through three principal defense paradigms:

(1) malicious query detection, (2) mitigation defense, and (3) model watermarking

techniques. Detection-based approaches [52, 75] identify suspicious query patterns,

while existing mitigation defense [54, 72] systematically alter prediction outputs to

degrade extraction quality. Model watermarking solutions [50, 69] embed identifiable

signatures to trace stolen models. While query detection remains vulnerable to coor-

dinated attacks, prediction perturbation and model watermarking demonstrate better

operational viability, warranting focused analysis. Table 2.2 compares representative

defenses across these three categories against various known extraction attacks. A

check mark indicates effective defense, a cross denotes ineffectiveness, and a triangle

represents partial mitigation.

2.2.1 Mitigation Defense through Prediction Perturbation

Output perturbation [54, 72, 96] protects victim models by deliberately distorting

API responses without altering core model parameters. However, practical deploy-

ment faces a fundamental privacy-utility trade-off, as excessive distortion compro-

mises legitimate user experience. Further, the emergence of adaptive model extraction

attacks [25] capable of neutralizing conventional perturbation defenses has spurred

9

Chapter 2. Related Works

renewed defensive innovation, which is exemplified by ModelGuard [97].

Complementing existing reactive defenses, this study proposes model modification

as a novel proactive paradigm. It reduces the extractability of victim models by

strategically modifying their properties during training., establishing a preemptive

defense mechanism fundamentally distinct from post-deployment protections.

2.2.2 Ownership Verification in Model Extraction Attacks

2.2.2.0.1 Black-box Model Watermarks Black-box watermarks are a promi-

nent approach to safeguarding machine learning (ML) models from Model Extraction

Attacks (MEA) [50, 55, 69] infringement. State-of-the-art approaches typically em-

bed backdoor-based tasks by modifying inputs and relabeling them to form distinct

watermark patterns. Since these watermarks are task-based, they can be transferred

through MEA. Recent studies focus on enhancing their MEA transferability to ensure

extracted models retain the embedded markers, making extraction without water-

mark retention difficult. Techniques to improve transferability include representation

entanglement via Soft Nearest Neighbor Loss (SNNL) [50] and composite sample

generation for input-space entanglement [69]. However, existing methods fall short

of systematically evaluating their resilience against removal attacks. Table 2.3 sum-

marizes state-of-the-art black-box watermarking methods which can defend MEAs,

highlighting their data types, impact on model utility, transferability through MEA,

and resilience against various attacks, which are further detailed below.

2.2.2.0.2 Removal Attacks Threatening Black-box Watermarks Black-

box watermark tasks can be removed if they are decoupled from the domain task. This

principle underpins existing threats to black-box watermarks, including watermark-

targeted removal methods [13, 24] and applicable backdoor removal techniques [63,

64, 67, 68, 103, 112, 121, 126], which do not require watermark samples. Among these

10

2.2. Defending Against Model Extraction Attacks

Table 2.3: Black-box Model Watermarking Defending against Model Extraction At-
tacks (MEA)

Watermark

Resilience Against Removal Attacks

Reversion-
type [103, 112]

Learning
Induced [63, 68]

Neuron
Pruning [67, 121]

WRK
(Ours)

EWE [50] ✓ ✓ ✓ ✗

RS [17] ✗ ✗ ✓? ✗

MBW [55] ✗ ✗ ✓? ✗

MEA-Defender [69] ✓? ✓ ✓ ✗

CFW (Ours) ✓ ✓ ✓ ✓

✗: No. ✓: Yes. ✓?: Yes but largely degraded.

removal methods, three decoupling perspectives are exploited: input space, features,

and neurons/channels. Input space decoupling aims to reverse watermark samples

first and then unlearn them, with techniques including NC [103], I-BAU [112], and

Aiken [13]. Feature decoupling removes watermark tasks through learning-induced

forgetting, such as ABS [68], NAD [63], SEAM [126], and REFIT [24]. The third

type, neuron/channel decoupling, targets watermark tasks at the neuron level through

pruning methods, including Fine Pruning [67], CLP [121], and RNP [64]. However,

these methods struggle against black-box watermarks that are deeply entangled with

domain tasks [50, 69]. For example, adversarial samples [50] and composite sam-

ples [69] form non-linear decision boundaries that are hard to reverse [113]. Existing

methods fail to account for this entanglement, leading to an overestimation of water-

mark resilience.

11

Chapter 3

Background Knowledge and

Definitions

3.1 Notations of Machine Learning Models

The victim models are deep neural networks (DNN) trained for classification tasks

with K classes in supervised learning. A DNN model Fθ(·) : X ⇒ Y (F for short)

is defined over input space X ∈ Rd and an output space Y , where d is the input

dimension. For example, X can be images or texts, and Y are the image labels or

text sentiments. To train such a model, we assume a supervised learning process on

the training dataset D = (xi,yi)
n
i=1 ⊆ X × Y . D contains n labelled samples, where

xi is the i-th training sample, and yi is its one-hot format label vector. That is, if

the sample label is k, yi[k] = 1, and yi[j] = 0 for ∀j ̸= k. 1

A typical L-layer DNN consists of layers like linear, convolutional, activation, and

pooling, with L-th layer being the output layer. Common activation functions σ(·)

include ReLU / Leaky ReLU [12, 71]. In layer l, the width/channel is nl, with

1Throughout this paper, we exclude special training algorithms, e.g., co-training, mutual mean-
teaching, and sharpness-aware minimization [33, 106, 117]. Neither the victim nor the adversary
uses these algorithms.

12

3.1. Notations of Machine Learning Models

neuron weights and bias as θl,i ← [wl,i, bl,i]. The weight matrix Wl = [wl,1, ..., wl,nl
]

connects layers l− 1 and l, where wl,i ∈ Rnl−1 for linear layers, and wl,i ∈ Rnl−1×kl×k∗l

for convolutional layers, with (kl, k
∗
l) being the kernel size. For input samples {xi}bi=1

({x} for short) with size b, Fθl({x}) = [fl,1({x}), . . . , fl,nl
({x})] ∈ Rb×nl denotes layer

l’s output matrix. Here, θl represents the subset from the input layer up to layer l.

Dl(x) = [zl,1({x}), ..., zl,nl
({x}), 1] ∈ Rb×(nl+1)×(nl+1) denote the diagonal matrix of

the activation function. For example, if the activation function is ReLU, zl,i({x}) is

either 0 or 1.

For the DNN model F (·; θ), the output of each layer is referred to as its representation,

a matrix (or a vector) that captures intermediate features. For an input x, the

representation at layer l is denoted as Fθl(x). The output at layer L is a length-

K vector, called the logits, i.e., logits=FθL(x) (F (x) for short). Normalized logits

yield the predicted probability for each class. The class probabilities for x can be

described as: probabilities = [Pr (Y = 0|x), . . . ,Pr (Y = K|x)]. F ’s predicted label is

the indices with the highest probability, denoted by ŷ = argmaxF (x).

3.1.1 Problem Definition: Model Extraction Attacks (MEAs)

In Machine Learning as a Service (MLaaS), ML models are deployed on cloud plat-

forms to provide services via query APIs [4, 5, 6]. Given the resource-intensive training

and the high privacy of their training data, these ML models are considered valuable

assets and are deployed in black-box format.

However, model extraction attacks (MEA) [100] threaten the intellectual property of

these black-box models by exploiting queried input-output pairs. In an MEA, the

adversary aims to replicate the victim model F locally, obtaining a copy model

F ′ without access to additional information, e.g., model structures or training sam-

ples. MEA performance is typically evaluated using two metrics: the copy model’s

accuracy (ACC) on the evaluation dataset Dt, and fidelity (FID) [48]. Fidelity

13

Chapter 3. Background Knowledge and Definitions

measures the similarity between the victim and copy models by their label agreement

rate on Dt. To date, learning-based model extraction is the de-facto approach of

MEA [53, 76, 101], where the adversary first queries the victim model and then trains

the copy model using the queried results [76, 108].

3.1.2 Threat Model

We assume a well-trained black-box victim model F is deployed in a machine-

learning-as-a-service (MLaaS) with a chargeable query interface. The threat model

is a game between an adversary aiming to steal the model by model extraction and

a defender implementing proactive defending strategies or ownership protection.

We assume that the adversary either only has black-box access to the MLaaS model,

or knows its architecture (e.g. in AWS Marketplace [3] and Huawei AI Gallery [8]).

In addition, the adversary can collect a large number of unannotated public samples

to construct an adversary data pool P. These attackers are expected to have good

mastery of machine learning techniques, including common initialization methods.

For instance, in the context of image classification, they are familiar with widely

adopted methods such as He initialization [43].

To protect the victim model’s ownership against model extraction, the defender may

implement two defending strategies. He either employs anti-model-extraction

(anti-MEA) defenses, such as perturbation on the output probability vector [119,

120]. or embeds black-box model watermarks which enable ownership verifica-

tion through queries. Given the prevalence of removal research [113], this game with

model watermarks becomes more complex: the adversary may attempt to remove

the watermark after theft to avoid ownership detection, which threatens owner-

ship verification. Thus, for defenders, the challenge extends beyond watermarking

the copy model in indirect model theft attacks, i.e., MEA; a more critical issue is

ensuring the watermark resilience against removal attacks.

14

3.1. Notations of Machine Learning Models

We formalize the threat model in Game 3.1.1.

Game 3.1.1. The game proceeds between a defender (the model owner) D and an

adversary A.

1) (Optional) Anti-MEA Training. D trains the victim model F using anti-

MEA strategies to reduce extractability while preserving high model utility.

2) (Optional) Watermark Embedding. D embeds black-box watermarks W

into the victim model F . The watermark-related objects (e.g., watermark sam-

ples) and training samples are securely stored on a trusted platform, ideally with

a timestamp.

3) Model Stealing. A obtains the local copy model F ′ through model extraction

attacks.

4) Watermark Removal and Copy Model Deployment. A attempts to

remove the watermark from F ′ using limited domain data Dd. Afterward, F
′ is

deployed and provides query access.

5) (Optional) Watermark Verification. To verify the ownership of the sus-

pected model F ′, D queries F ′ with watermark samples, obtaining the watermark

evidence W.

6) Settlement 1. If A fails to replicate a high-fidelity copy model F ′ from F ,

then D wins and A loses.

7) Settlement 2. When A successfully replicates a high-fidelity copy model F ′, if

the watermark evidence W indicates that F ′ is stolen from F , D wins, and A

loses. If the watermark evidence W fails or does not exist, A wins and D loses.

8) Settlement 3. If W suggests that an innocent model is misidentified as stolen

from F , the defender D loses.

15

Chapter 3. Background Knowledge and Definitions

3.1.3 Problem Formulation of Model Watermarking

For the defender to succeed in the ownership game (Game 3.1.1) in model extraction

attacks, the model watermarks must satisfy the following criteria:

Prop. 1. Utility Preservation. The watermark should not harm the target model’s

functionality for benign users.

Prop. 2. High MEA transferability. The watermark should be retained in copy

models obtained through MEAs.

Prop. 3. Correctness. The watermark should reliably identify stolen models without

false ownership claims.

Prop. 4. Resilience. The watermark remains valid after being attacked by water-

mark removal.

Prop. 5. Stability. A derivative property of resilience, stability ensures that a

watermark’s resilience in the copy model remains consistent with that in the victim

model.

Prop. 6. Stealthiness. The watermark cannot be detected by adversaries.

16

Chapter 4

MExMI: Model Extraction

Crossover Membership Inference

This chapter presents MExMI, a unified framework in which model extraction attacks

(MEA) and membership inference attacks (MIA) reinforce each other.

As noted in Section 1.1.2, the query set in MEA is typically non-homogeneous [27],

as adversaries lack access to the victim’s training data or domain-specific samples.

However, prior MEA methods overlook this gap and directly apply active

learning algorithms [36] designed for homogeneous settings to pursue query

efficiency. As a result, they underestimate the true potential of MEA. To demonstrate

how non-homogeneous datasets can affect the ME performance, we build a Wide-

ResNet-based victim model using the first 25k training image samples of CIFAR10.

Then we extract this model using ActiveThief [76], an existing pool-based active

model extraction (PAME) benchmark, from three adversary data pools: (1) pool

A consists of the second 25k training samples of CIFAR10, (2) pool B consists of

the middle 25k training samples, and (3) pool C consists of the first 25k training

samples. In other words, the victim’s training set does not overlap with A (non-

homogeneous) but overlaps with half of B (quasi-homogeneous), and completely with

17

Chapter 4. MExMI: Model Extraction Crossover Membership Inference

Table 4.1: Homogeneous v.s. Non-Homogeneous Data Pool for Model Extraction

Train Copy Model from Pool Pool A Pool B Pool C

Training Data Homogeneity None Partial Full

Fidelity / % 90.32 91.29 92.30

C (fully homogeneous). Table 4.1 shows the fidelity (i.e., similarity to the victim

model) of the extracted copy models from A, B and C. We observe that homogeneous

samples contributes more to the success of model extraction than non-homogeneous

samples.

To address this gap, MExMI leverages MIA to identify training-homogeneous samples

from the candidate query set, which benefits the effectiveness of MEA. In return,

MIA benefits from the high-fidelity surrogate model produced by MEA, which allows

unrestricted querying for membership inference.

When designing MExMI, three critical challenges emerge. First, existing MIA meth-

ods [84, 90] do not account for query cost, which is a crucial constraint in MEA. To

address this, we leverage the training data of the extracted (copy) model to perform

MI without incurring additional query overhead. Second, state-of-the-art MI attacks

often rely on assumptions that are incompatible with MExMI or typical pool-based

model extraction settings. For instance, shadow-model MI assumes access to a la-

beled dataset drawn from the same distribution and of the same size as the target

model’s training data [90]. To remove this barrier, we propose a quality metric to

evaluate and optimize shadow models without relying on a large labeled dataset. Us-

ing this approach, we adapt both shadow-model MI and unsupervised MI [84, 111] to

fit within the MExMI framework. Third, current PAME attacks overlook the poten-

tial of utilizing purified training samples selected from the query pool. In response,

we designed three modules to facilitate PAME to make the most of it.

Roadmap. The rest of this chapter details the proposed methodology and experi-

mental validation. Section 4.1 provides an overview of the MExMI framework and

18

4.1. MExMI Framework

its key components. Section 4.1.5 introduces the adaptive MI algorithms tailored for

MExMI. Section 4.2 presents extensive experimental results evaluating the effective-

ness of the proposed framework.

4.1 MExMI Framework

In this section, we present our iterative model extraction framework MExMI where

ME and MI reinforce each other. An MI attack aims to distinguish those individuals

D̂ from a population P that exist in the victim model F ’s training dataset [90].

As illustrated in Fig. 4.1 and pseudocode in Algorithm 1, the input of MExMI is an

adversary data pool P and the access to a black-box victim model F , and its outputs

are the copy model F ′ and the inferred training dataset D̂. In the first iteration,

the adversary chooses k initial seed samples [x1, . . . ,xk]0 from P without putting

them back, where k is the query budget per iteration. These samples are fed to the

victim model F , which outputs a probability vector F (x). Then an MI attack model

FMIA is constructed using the queried dataset [(x1, F (x1)) , . . .]0 or the copy model

(see Section 4.1.5). FMIA is used in both MI Post-Filter and MI Pre-Filter modules.

The queried dataset is then passed through the MI Post-Filter, which weighs them

according to their probability of being a training sample of the victim model. Then

the weighted queried dataset is used to train the copy model F ′ , which is then fed

to the MI Pre-Filter to refine the adversary data pool for AL sample selection of k

queries in the next iteration. The process is repeated until the total query budget b is

depleted. Thereafter, without consuming any query budget, FMIA is used to launch

MI attacks on F ′ and the data pool to obtain the final inferred training dataset D̂.

This dataset will be used in a semi-supervised learning on F ′ to release the final copy

model F ′.

From Fig. 4.1, MExMI has three key modules on top of the basic PAME iterative

framework [76], namely, MI Pre-Filter, MI Post-Filter and semi-supervised boosting

19

Chapter 4. MExMI: Model Extraction Crossover Membership Inference

MI Pre-Filter

Start: Initial
Seeds Selection

Query Data from
Victim Model 𝐹

𝑠 samples
[𝒙!, …]

MI Post-Filter𝑘 records
[𝒙!, 𝐹 𝒙! , …]

Train Copy
Model 𝐹′

Copy Model
𝐹′AL

Selection

Get
Filtered
Pool *𝐷

𝑘 samples [𝒙!, …]

Adversary
Data Pool

Samples

Final
Round?

No

Yes
Semi-supervised

Boosting
Final Copy
Model 𝐹′

Query Data
from Copy
Model 𝐹′

[𝒙!, 𝐹′ 𝒙! , …]

unlabelled
samples

weighted records

MExMI processes Operation processes ML models Data flows Model flowsDecision flowchart Model flows in MI
updating

Figure 4.1: MExMI iterative framework.

Algorithm 1 MExMI attack

1: Input: F , P ; Parameters: k, b, ω;
2: Output: F ′, D̂;
3: [x1, . . . ,xk]0 ← RandomPick(P);
4: Pr ← P \ [x1, . . . ,xk]0, d← d− k, i = 0;
5: Dq ← [{x1, F (x1)} , . . .]0;
6: FMIA ← MIUpdate(Dq, P); ▷ Section 4.1.5
7: while b >= 0 do
8: Dq+, Dq− ← FMIA(Dq);
9: AssignWeight(Dq+, Dq−, ω);
10: F ′

i ← WeightLossTrain(Dq+, Dq−);
11: Pt ← FMIA(F

′
i , Pr);

12: [x1, . . . ,xk]i+1 ← ActiveLearning(Pt, F
′
i);

13: Pr ← Pr \ [x1, . . . ,xk]i+1,
14: Dq ← [{x1, F (x1)} , . . .]i+1 ∪Dq, d← d− k, i← i+ 1;
15: end while
16: D̂ ← FMIA(F

′, P);
17: F ′ ← SemiSupervisedTrain(Dq, D̂);

that will be elaborated in rest of this section. As will become clear, they are orthogonal

to each other, so they can be turned on or off independently. For ease of presentation,

the construction of the MI attack model FMIA, a key issue in the MExMI framework,

will be introduced later in Section 4.1.5.

20

4.1. MExMI Framework

4.1.1 MI Pre-Filter

MI Pre-Filter works before AL sample selection. The core idea is to use an MI attack

model FMIA to choose from the adversary data pool P only those samples that are

highly homogeneous to the victim’s training data D. Training the copy model with

them, both models can thus exhibit strong resemblance. Ideally, FMIA should perform

membership inference attack directly on the victim model F , which is truly trained

from D. However, since such training causes extra query budget on F , FMIA attacks

the copy model F ′ instead as the latter exhibit similar training data property.

4.1.2 MI Post-Filter

MI Post-Filter works after querying a sample x from the victim model. The rationale

of this filter is that since the victim model returns the probability vectors F (x), the

adversary can infer if x belongs to the training dataset D by an MI attack model

FMIA. Obviously a negative membership result means this sample may not lead to

a high-fidelity copy model F ′, so its contribution to the training process should be

lowered by reducing its weight in the training loss calculation. We use a parameter

ω (ω > 1) to denote the weighted loss ratio of a positive membership sample to a

negative one.

4.1.3 Semi-Supervised Boosting

The main idea of this module is that MExMI gains the results of its MI attack— an

inferred training dataset D̂ of the victim model. Although this dataset is not labeled

and there is no more query budget to label them at the end of MExMI, we can still

train the copy model F ′ on this dataset together with the queried set using semi-

supervised learning algorithms. Note that this module is unique in MExMI as other

PAME methods cannot distinguish training samples from others in the data pool.

21

Chapter 4. MExMI: Model Extraction Crossover Membership Inference

Nonetheless, this module is intended to improve model accuracy only, not fidelity,

because semi-supervised learning can divert the copy model’s ability to follow the

same label distribution as the victim model’s training data. Therefore, MExMI

only applies semi-supervised boosting after the final iteration and when

higher accuracy is needed.

4.1.4 Pool-based Active Learning Algorithms

MExMI can use various pool-based AL algorithms available in the literature. In

this paper, we focus on three AL algorithms based on different metrics of samples:

uncertainty, diversity, and vulnerability to deep-fool perturbation. As AL algorithms

often calculate the distance between samples [118], MExMI also provides an encoding

process to reduce dimension for high-dimensional feature space. In essence, it uses

F ′
i−1, the copy model trained in the previous iteration, as an encoder. When inter-

sample distances are required, we use inter-vector distances between the outputs of

the encoder for calculation. The distance is calculated using the output probability

vectors of F ′ whenever the calculation of the distance is needed.

4.1.4.0.1 Entropy Uncertainty One of the most common ways to measure un-

certainty is entropy [62]. The larger the entropy, the higher the uncertainty level is.

For a sample {x, ŷ} in the data pool, where ŷ = F ′(x) = [Pr(1|x),Pr(2|x), . . . ,Pr(K|x)]T ,

its entropy is defined as

Φent(x) = −
K∑
k=1

Pr(k|x)log(Pr(k|x)), (4.1)

where K is the number of class labels.

4.1.4.0.2 Greedy K-center One classic diversity-based AL is the greedy k-

center algorithm [88]. Let Dq := [{xq, F (xq)} , . . .] denote the set of samples se-

22

4.1. MExMI Framework

lected previously, and P := [xp, . . .] the data pool. Greedy k-center algorithm sets

[F ′(xq), . . .] as cluster centers and selects the sample xs that has the largest Euclidean

distance from all existing centers. Formally,

xs = argmaxxp∈P{min(xq ,yq)∈Dq∥F ′(xp)− F ′(xq)∥22}. (4.2)

Then we query the selected sample xs and update Dq by Dq = Dq ∪ {xs,ys}, where

ys = F (xs).

4.1.4.0.3 Adversarial Deep-Fool Deep-Fool based AL (DFAL) uses sample

perturbation attack in Deep Fool to calculate the distance between samples and deci-

sion boundaries, a.k.a., margin, and then selects those with the smallest perturbation

distance to query [32]. The perturbation algorithm iteratively perturbs samples by

adding linear noise until the samples are misclassified by the copy model F ′.

4.1.5 Adaptive Membership Inference

In MExMI, an MI attack model FMIA is trained after the initial seeds query. For MI

to play a role in MExMI framework in early stage iterations, FMIA must be accurate

enough even when there are only few samples. In this section, we renovate existing

MI algorithms to be adaptive to their training sample sizes and thus suitable for the

MExMI framework. We focus on two state-of-the-art black-box MI attack paradigms:

(1) shadow-model MI [84, 90], and (2) unsupervised MI [84].

4.1.6 Shadow-Model Membership Inference

The rationale of shadow-model MI is to obtain a shadow model similar to the victim

model, so that their output probability vectors for training and non-training samples

are also distinguishable in a similar manner. As such, the adversary can build a

23

Chapter 4. MExMI: Model Extraction Crossover Membership Inference

binary MI classifier from these samples instead of from those of the victim model. In

order to approximate the victim model, a shadow model should (1) draw its training

dataset from the same distribution as in the victim model, (2) have roughly the same

size of training set as the victim model, and (3) have the same training algorithm.

However, in MExMI, neither (1) nor (2) holds because:

a) The queried samples may not be drawn from the same distribution as in the

victim’s training samples.

b) The number of queried samples is significantly smaller than that of the victim’s

training set size, especially in the beginning phase.

As such, the design principle of our adaptive shadow-model MI attack is to work under

a limited number of labeled training samples in a different distribution from

the victim model. To start with, we need to know how to estimate the quality of a

shadow model so that we can tell when it is good enough for MExMI. Intuitively, the

fidelity of the shadow model against the victim model can serve as the performance

indicator, but it is inaccessible from the adversary’s side, especially when MExMI

just starts. As such, we need an easy-to-access performance metric.

4.1.6.0.1 Measuring Quality of Shadow-model MI An MI attack works by

distinguishing the output probability vector distribution Y of the victim model F

on training samples X from non-training samples. A shadow-model MI estimates the

above on a shadow model — it distinguishes the output probability vector distribution

Y(s) of shadow models Fs on training samples X(s) from non-training samples. As such,

to improve the attack accuracy, Y(s) should be as similar as possible to the victim’s

Y. We measure the similarity by the bias of the expectation values between Y(s) and

Y, denoted by b. For each shadow model that targets at class j ∈ [1, . . . , K], bj is

formally defined as:

24

4.1. MExMI Framework

bj =
1

n
(s)
j

∑
y(s)∈Y(s)

j

y(s) − 1

nj

∑
y∈Yj

y, (4.3)

where n denotes the size of training set, and the superscript (s) denotes the shadow

model. The following theorem shows that the gap between the training loss ∆l is

positively correlated to the bias of expectations between Y(s) and Y. Therefore, it

can serve as a quality measurement for Fs. We can minimize it to enhance the quality

of Y(s) approximating Y.

Theorem 1 (Quality measurement for shadow-model MI). Given a shadow

model Fs which has the same model structure and hyper-parameters as the victim

model F , the gap ∆l between the training loss of Fs and F is positively correlated to

the bias of expectations between Y(s) and Y, i.e., ∆l ∝ b.

Proof. For a multi-classifier with K labels and n training samples, the training loss l

is measured using cross-entropy:

l = − 1

n

∑
x∈X

K∑
y=1

Pr (Y = y|x)log(Pr (Ŷ = y|x)), (4.4)

where Y is the ground truth label variable, and Ŷ is the predicted label variable.

Since the ground truth probability vectors are in one-hot format, the training loss in

the j-th class, lj, can be rewritten as:

lj = −
1

n

∑
x∈Xj

log(Pr (Ŷ = j|x)) (4.5)

Therefore, the gap of loss in the j-th class between the distribution of the shadow

model Y(s) and that of the victim model Y is:

∆lj =
1

n(s)

∑
y(s)∈Y(s)

j

log(y
(s)
j)− 1

n

∑
y∈Yj

log(yj), (4.6)

25

Chapter 4. MExMI: Model Extraction Crossover Membership Inference

where yj represents the j-th element of y. On the other hand, we define b′jj as the

log-bias between the two logarithm distributions for class j:

b′jj ≡
1

n
(s)
j

∑
y(s)∈Y(s)

j

log(y
(s)
j)− 1

nj

∑
y∈Yj

log(yj). (4.7)

From Eqn. 4.6 and 4.7, we get:

b′jj =
∆lj
aj

, (4.8)

where aj is the proportion of class j in both shadow and victim model training sets.

bj ∈ RK is a vector, and its element in dimension j is denoted by bjj.

To complete the proof, in Eqn.4.8 we need to replace b′jj with bjj, the j-th element

in vector bj. This replacement is correct because of the following two assumptions,

whose validity will be verified experimentally in Section 4.2.

Assumption 1. The correlation coefficient ρ between a distribution and its logarithm

distribution is positive. Formally,

ρ|b′jj |,|bjj | > 0, (4.9)

where j ∈ [1, . . . , K].

Assumption 2. For two models with the same structure and hyper-parameters, for

any class j, the correlation coefficient ρ between the output vector distribution and

its j-th element is positive. Formally,

ρ|bjj |,|bj | > 0, (4.10)

where j ∈ [1, . . . , K].

Based on the above two assumptions, we replace b′jj with bjj in Eqn.4.8 and obtain

∆lj ∝ bj.

26

4.1. MExMI Framework

10 4 10 3 10 2

log-bias mean

10 4

10 3

10 2

10 1

bi
as

 m
ea

n

Original
Ideal case

(a) original shadow-model MI

10 4 10 3 10 2 10 1

log-bias mean

10 4

10 3

10 2

10 1

bi
as

 m
ea

n

FSL
Ideal case

(b) FSL shadow-model MI

Figure 4.2: The results of log-bias mean vs. bias mean.

10 4 10 3 10 2 10 1

bias mean

10 3

10 2

10 1

ve
ct

or
-b

ia
s m

ea
n

Original
Ideal case

(a) original shadow-model MI

10 4 10 3 10 2 10 1

bias mean

10 3

10 2

10 1

ve
ct

or
-b

ia
s m

ea
n

FSL
Ideal case

(b) FSL shadow-model MI

Figure 4.3: The results of bias mean vs. vector-bias mean.

To verify Assumptions 1 and 2 of Theorem 1, we calculated the bias mean as the

mean of bias of all classes, i.e.,
∑K

j=1 |bjj|, the log-bias mean as the mean of log-bias

of all classes, i.e.,
∑K

j=1 |b′jj|, and the vector-bias mean as the mean of scalar bias∑
dim

∑K
j=1 |bj| of all classes. See Section 4.2.1 for experimental setups. The results

are shown in Figure 4.2 and Figure 4.3 respectively. We observe that:

1 The bias mean is positively correlated with the log-bias mean, which justifies

Assumption 1.

2 The vector-bias mean is positively correlated with the bias mean, which justifies

Assumption 2.

4.1.6.0.2 Metric-based Shadow-model MI To obtain ∆l, the gap between the

training loss of both models, we need them both. However, the victim’s training loss

27

Chapter 4. MExMI: Model Extraction Crossover Membership Inference

is not available to the adversary. Nonetheless, in practice a victim model is valuable

for extraction mainly because this model accurately predicts the training data, or

equivalently, its training loss is smaller than other models of the same training set

size. As such, we can replace ∆l with the loss of the shadow model, denoted by ls,

compensated by its training dataset size n(s). Furthermore, for the sake of comparing

various shadow models, only the relative rather than the absolute value of the gap

between shadow models and the victim model ∆F is needed. So we propose the

following metric Q as a negative relative value of ∆F . The larger the Q, the better

the quality of a shadow model. Formally,

1

∆F
∼ Q(ls, n

(s)) = f(ls)× (n(s))a, (4.11)

where f(·) is a non-negative non-linear decreasing function, and a ∈ [0, 1] scales down

the impact of n(s). Note that Q does not require that shadows’ training data come

from the same distribution as the victim’s.

From the above equation, there are two ways to increase the quality metric Q: (1)

reducing ls using good training algorithms on shadow models, and (2) increasing n(s)

by augmenting the training set. Few-shot learning (FSL), a training paradigm to

improve models’ accuracy with a limited number of examples [104], can serve both

purposes. For example, we can use FSL approaches, namely data augmentation [58]

and transfer learning [45], to train shadow models. In MExMI, we use the following

two FSL approaches to train shadow models, leading to two metric-based shadow-

model MI.

Data-augmented shadow-model MI. Data augmentation expands the training

dataset to accelerate convergence by adding synthetic samples transformed from ex-

isting samples. In image classification, an image can be flipped, panned or rotated to

enrich the training set [58].

Transfer shadow-model MI. Transfer learning shares the knowledge from a source

28

4.2. Experiment

domain to reduce the training complexity in a target domain. In image classification,

NN models are suitable for transfer learning, because their shallow layers learn task-

independent abstract features, and deep layers are more task-related [45]. As such,

an adversary can transfer the shallow layers of a pre-trained NN model to initialize a

shadow model’s parameters and to accelerate its convergence. This technique is valid

even if the pre-trained model’s problem domain is different from that of the shadow

models.

4.1.7 Unsupervised Membership Inference

Recent works [84, 111] have shown the effectiveness of unsupervised learning on MI

attack models. In such models, the feature values are usually the top-m score, loss or

entropy of the output probabilities, and the output value serves as the confidence of

membership inference — if the value is higher than an adversary-specified threshold c,

the sample is inferred as in the training dataset and vice versa. To set this threshold,

the adversary first gets a set of non-member samples and then query them to get

corresponding top-m scores. The top t percentile of these scores can serve as a

threshold [84]. To save the query cost, the copy model instead of the victim model

should be queried.

4.2 Experiment

In this section, we first conduct experiments to validate the shadow model quality

metricQ. Then we evaluate the attack performance of four variants of MExMI — Pre-

Filter only, Post-Filter only, MExMI without semi-supervised boosting, and MExMI

— against state-of-the-art ME and MI attacks.

29

Chapter 4. MExMI: Model Extraction Crossover Membership Inference

4.2.1 Experiment Setup

Datasets. We perform PAME attacks on two image datasets, namely CIFAR10 [57]

and Street View House Numbers (SVHN) [73], and a text dataset AG’S NEWS which

contains corpus of AG’s news articles [28]

• CIFAR10. CIFAR10 is an image dataset in color (with 3 channels) with 10

class labels, 50k training samples, and 10k test samples. The image samples

have a resolution of 32 and are evenly distributed into 10 classes. It is a well-

known benchmark dataset to evaluate image classifiers.

• SVHN. SVHN is another 32-resolution benchmark for color image classifica-

tion. It consists of street-view images of door numbers, which are labeled with

digits from “0” to “9”. The dataset contains 73,257 images for training, and

26,032 images for testing.

• AG’S NEWS. AG’S NEWS is a benchmark for text classification. It consists of

titles and descriptions of articles from 4 news classes, namely “World”, “Sports”,

“Business” and “Sci/Tech”. This dataset contains 120k training samples and

7.6k test samples.

Victim Model. For the image classification task, we use Wide-ResNet-28-10 [117]

trained on CIFAR10 as the victim model with an accuracy of 96.10%. We also use

a cloud MLaaS, ModelArts [9], to train an online victim model on SVHN that leads

to 94.30% accuracy. In the text classification task, we use DPCNN [51] as the victim

model which achieves an accuracy of 89.88%.

Running Environment. Experiments are implemented with Python 3.7 on a desk-

top computer running Windows 10 with AMD Ryzen 7 2700X CPU and 64 GB RAM.

All experimental results are the average measures of 5 trials.

Adversarial data pool. In the default CIFAR10 experiments, the pool consists

30

4.2. Experiment

of 50k training samples and 100k from the ImageNet32 [26]. In the default AG’S

NEWS experiments, the pool has 50k training samples and 100k from Dbpedia [16].

Note that as with existing pool-based ME [76], MExMI does not require the

pool to contain training samples. The main reason for such a mixed dataset

composition is for us to evaluate the performance of MI [90] and show how much it

can be enhanced by ME. In Section 4.2.4, we evaluate the performance of MExMI

when the pool has no training sample at all.

Implementation Details for ML-leaks [84] Membership Inference Attacks.

For transfer shadow-model MI, it needs prior knowledge of the source model. In the

experiment, we use a 5-block model with the same shallow structure as the victim

model as the source model and train it on CIFAR100. We then transfer the parameters

of the three shallow blocks to initialize the shadow models. For data-augmented

shadow-model MI, we add augmented samples to the training dataset to double its

size. We adopt the same augmentation policy as in [117], which includes inverting,

rotating, sharpening etc., but excludes those methods used to train models for a fair

comparison. The test dataset consists of 10k victim’s training images as positive

samples and another 10k non-training images as negative samples.

4.2.2 Metric-based Shadow-Model MI

Implementation Details. Recall that the hyper-parameters (such as epoch, initial

learning rate, and optimizer) of shadow models Fs can be adjusted to maximize the

metric Q. Parameter a in Q is set as 0.05 and f(·) is set as −log10(·).1 The training

dataset of Fs, denoted by D(s), is constructed by random sampling from P , and its

size varies from the set {2000, 5000}. A non-training dataset, denoted by D
(s)
n , is also

randomly sampled from P \D(s). We implement two metric-based shadow-model MI

methods in Section 4.1.5: original shadow-model MI [90] and FSL shadow-model MI

1In our experiments ls ∈ (0, 1) where −log10(·) is non-negative and ever decreasing.

31

Chapter 4. MExMI: Model Extraction Crossover Membership Inference

2 4 6 8
shadow metric Q

50

60

70

80
sh

ad
ow

 M
I a

cc
ur

ac
y/

%

Original
Ideal case

(a) Original

2 4 6 8
shadow metric Q

50

60

70

80

sh
ad

ow
 M

I a
cc

ur
ac

y/
%

FSL
Ideal case

(b) FSL

Figure 4.4: Experiment results of metric-based shadow-model MI under different
settings.

that utilizes transfer learning [45] and data augmentation respectively. For transfer

shadow-model MI, it needs prior knowledge of the source model. In the experiment,

we use a 5-block model with the same shallow structure as the victim model as the

source model and train it on CIFAR100. We then transfer the parameters of the three

shallow blocks to initialize the shadow models. For data-augmented shadow-model

MI, we add augmented samples to the training dataset to double its size. We adopt the

same augmentation policy as in [117], which includes inverting, rotating, sharpening

etc., but excludes those methods used to train models for a fair comparison. For each

MI method, we vary their hyper-parameters and thus Q in various settings. An ideal

shadow-model MI is built as a reference by using the same training dataset as the

victim model.

Results. We plot the MI attack models’ accuracy with respect to shadow metric Q

in Fig. 4.4. We observe that Q is positively correlated with the attack accuracy of

shadow-model MI and therefore can guide the training process of the shadow models,

whether using the original or FSL training algorithms. The recall rate of all MI

attacks is almost 100%, so it is omitted from the figure. In addition, once the metric

Q is large enough (≥ 6), metric-based shadow-model MI attack models can achieve

almost the same accuracy as the ideal shadow-model MI [84] even for 2k samples.

32

4.2. Experiment

4.2.3 Overall Performance of MExMI

4.2.3.1 Implementation Details

We compare six PAME attacks, including four MExMI variants, namely, baseline

ME without MI, Pre-Filter only, Post-Filter only, MExMI without semi-supervised

boosting, regular MExMI (which adopts Mix-Match semi-supervised methods [18] for

image classifiers, and consistency regularization [83] semi-supervised methods for text

classifiers), and the ideal ME attack. The baseline ME is ActiveThief [76], which is

the state-of-the-art PAME attack.2 The ideal ME uses the real training samples as

its pool. Moreover, to comprehensively evaluate MExMI, we added two additional

state-of-the-art query-synthesizing-based ME baselines, including PRADA [52] and

DFME [101] which share the same query budget with PAME attacks. Each MExMI

variant has a MI result. In our experiments, we compare our MI attacks that don’t

cost additional query budget with the existing MI attacks [84] that assume infinite

query budget.

The AL algorithms used are entropy uncertainty [62], greedy k-center [88] and adver-

sarial deep-fool [32] (see Section 4.1.4 for a brief explanation). The last algorithm is

not evaluated on AG’S NEWS since there is no trivial way to adapt it to text classi-

fication. The hyper-parameters are set as follows: initial learning rate (lr)=0.03 for

image classifiers, lr=0.01 for text classifiers, momentum=0.5, weight decay=10e− 4,

epochs=150. The optimization method is SGD accelerated by Nesterov Gradient

Method [30]. The copy models in MExMI share the same architecture as the victim

models. The testing samples in CIFAR10, AG’S NEWS, and SVHN are used as the

test dataset Dt for calculating the fidelity and accuracy of the copy models, respec-

tively. The MI attack model FMIA is trained on initial seed samples. The preset

2INVERSENET [37] is another state-of-the-art work that adopts model inversion to assist ME.
We do not include it in the experiments for two reasons. First, its performance is similar to Ac-
tiveThief under our 16k-query budget setting. Second, it augments query selection from the data
pool with query synthesis from the model, which can be considered orthogonal to our method.

33

Chapter 4. MExMI: Model Extraction Crossover Membership Inference

weights ratio ω in MI Post-Filter is 5 : 1. For CIFAR10 experiments, MExMI queries

2k samples in each round with a total of 8 rounds. For AG’S NEWS experiments,

there are 6 rounds, each with 5k samples. All experimental results are the average

measures of 5 trials. For CIFAR10 experiments, MExMI queries 2k samples in each

round with a total of 8 rounds. For AG’S NEWS experiments, there are 6 rounds,

each with 5k samples. To be fair, all attacks, including the ideal one, use the same

initial seed samples. The adaptive shadow-model MI used in MI Pre-Filter and MI

Post-Filter is trained on initial seed samples for 150 epochs. The preset weights ratio

ω in MI Post-Filter is 5 : 1.

4.2.3.2 Overall Results of MExMI

We use fidelity and model’s accuracy obtained from the test datasets Dt (CIFAR10

and AG’S NEWS test sets) to evaluate copy models against the victim model (see

Section 3.1.2), and use accuracy, precision and recall of the inferred training datasets

against ground truth to evaluate the MI accuracy.

Fig. 4.5 plots the fidelity of various PAME attacks with respect to iterations on CI-

FAR10 and AG’S NEWS, respectively 3, and Table 4.2 shows the final results. Fig. 4.6

plots the accuracy, precision and recall of the MI attack of each MExMI variant. The

results indicate that MExMI greatly boosts the potential of AL algorithms in PAME,

and breaks the curse of query budget of existing MI. Overall, MExMI performs the

best and achieves a fidelity gain of 7.76%, 7.8%, and 11.14% on CIFAR10 over the

baseline ME attack in all three AL methods. A similar gain of 4.46% and 3.46% is

observed on AG’S NEWS over the baseline PAME attacks in both two AL methods.

Without additional queries, the MI attacks of MExMI yield up to 83.20% accuracy,

84.13% precision and 75.93% recall on CIFAR10, and 68.77% accuracy, 71.73% pre-

cision and 82.53% recall on AG’S NEWS respectively, both on par with existing MI

3The label ’MExMI w/o Boosting’ in figures is an abbreviation for MExMI without semi-
supervised boosting.

34

4.2. Experiment

2k 4k 6k 8k 10k 12k 14k 16k
Query number

50

60

70

80

90
Fi

de
lit

y/
%

CIFAR10

Baseline
Pre-Filter only
Post-Filter only
MExMI w/o Boosting
MExMI
Ideal case

(a) Entropy Uncertainty

2k 4k 6k 8k 10k 12k 14k 16k
Query number

50

60

70

80

90

Fi
de

lit
y/

%

CIFAR10

Baseline
Pre-Filter only
Post-Filter only
MExMI w/o Boosting
MExMI
Ideal case

(b) Greedy K-center

2k 4k 6k 8k 10k 12k 14k 16k
Query number

50

60

70

80

90

Fi
de

lit
y/

% Baseline
Pre-Filter only
Post-Filter only
MExMI w/o Boosting
MExMI
Ideal case

(c) Adversarial Deep-fool

5k 10k 15k 20k 25k 30k
Query number

61

70

80

90

Fi
de

lit
y/

%

AG'S NEWS

Baseline
Pre-Filter only
Post-Filter only
MExMI w/o Boosting
MExMI
Ideal case

(d) Entropy Uncertainty

5k 10k 15k 20k 25k 30k
Query number

70

75

80

85

90

Fi
de

lit
y/

%

AG'S NEWS

Baseline
Pre-Filter only
Post-Filter only
MExMI w/o Boosting
MExMI
Ideal case

(e) Greedy K-center

Figure 4.5: PAME results on CIFAR10 (16k budget) and AG’S NEWS (30k budget).
Shadows represent error bars.

Entropy
uncertainty

Greedy
k-center

Adversarial
deep-fool

0

20

40

60

80

100

Ac
cu

ra
cy

 p
er

ce
nt

ag
e/

% CIFAR10

MI-leaks attack on F
Pre-Filter only
Post-Filter only
MExMI

(a) MI Accuracy

Entropy
uncertainty

Greedy
k-center

Adversarial
deep-fool

0

20

40

60

80

100

Pr
ec

isi
on

 p
er

ce
nt

ag
e/

% CIFAR10

MI-leaks attack on F
Pre-Filter only
Post-Filter only
MExMI

(b) MI Precision

Entropy
uncertainty

Greedy
k-center

Adversarial
deep-fool

0

20

40

60

80

100

Re
ca

ll
pe

rc
en

ta
ge

/%

CIFAR10

ML-leaks attack on F
Pre-Filter only
Post-Filter only
MExMI

(c) MI Recall

Entropy
uncertainty

Greedy
k-center

0

20

40

60

80

Ac
cu

ra
cy

 p
er

ce
nt

ag
e/

% AG'S NEWS

ML-leaks attack on F
Pre-Filter only
Post-Filter only
MExMI

(d) MI Accuracy

Entropy
uncertainty

Greedy
k-center

0

20

40

60

80

Pr
ec

isi
on

 p
er

ce
nt

ag
e/

% AG'S NEWS

ML-leaks attack on F
Pre-Filter only
Post-Filter only
MExMI

(e) MI Precision

Entropy
uncertainty

Greedy
k-center

0

20

40

60

80

100

Re
ca

ll
pe

rc
en

ta
ge

/%

AG'S NEWS

ML-leaks attack on F
Pre-Filter only
Post-Filter only
MExMI

(f) MI Recall

Figure 4.6: MI attack results of MExMI. “ML-leaks” refers to the shadow-model MI
attack in [84].

35

Chapter 4. MExMI: Model Extraction Crossover Membership Inference

Table 4.2: Results of Default PAME Experiments

Fidelity
(Accuracy)/%

CIFAR10 AG’S NEWS

Entropy Greedy Adversarial Entropy Greedy

Uncertainty K-center Deep-fool Uncertainty K-center

PRADA [52]/DFME [101] 61.32 (60.12) / 11.20 (10.32) - / 30.23 (25.00)

Baseline(ActiveThief) 84.65 (83.78) 86.26 (85.69) 82.93 (82.27) 81.36 (78.66) 85.03 (81.92)

Pre-Filter only 85.38 (85.38) 85.84 (85.22) 86.17 (85.48) 84.76 (81.57) 86.61 (83.36)

Post-Filter only 85.48 (84.71) 87.68 (86.86) 84.57 (84.00) 82.06 (79.29) 85.84 (82.38)

MExMI w/o Boosting 89.10 (88.69) 90.16 (89.21) 90.14 (89.58) 85.18 (81.98) 87.26 (84.18)

MExMI 92.41(91.80) 94.06(93.43) 94.07(93.47) 85.82(82.54) 88.49(85.36)

Ideal case 93.31 (93.03) 93.71 (93.38) 93.66 (93.25) 90.68 (87.51) 91.03 (87.68)

attacks [84] that assume infinite query budgets.

Impact of MI Post-Filter and MI Pre-Filter. In Fig. 4.5, on CIFAR10 attacks

with MI Post-Filter always outperform those without it, by up to a 1.64% increase on

fidelity in the final results. The gain is more eminent in the beginning iterations, and

then gradually decreases. On AG’S NEWS, MI Post-Filter also performs effectively,

with a maximum boost of 1.57% on fidelity over those without it. As for MI Pre-Filter,

except for the greedy k-center one in CIFAR10 experiments, attacks with Pre-Filter

always outperform those without it. In addition, the gain does not decrease with

more iterations, because the adversary data pool is much larger than the total query

budget. To understand the underlying mechanism why MI Pre-Filter works, we track

the filtering results of Pre-Filter in each iteration of MExMI attack on CIFAR10.

The results are shown in Fig. 4.7. We observe that MI Pre-Filter can accurately find

victim’s training samples in the remaining pool, so the training set for copy model is

gradually restored through iterations. Interestingly, we find that when MI Pre-filter

and MI Post-filter work together, they can achieve a greater gain on fidelity than

the sum of individual gains when they work separately. This suggests that the two

filters truly reinforce each other in our MExMI framework.

Impact of Semi-Supervised Boosting. In Fig. 4.5 and Table 4.2, MExMI out-

performs MExMI without semi-supervised boosting by at least 3.11% on CIFAR10

and 0.56% on AG’S NEWS in terms of accuracy, which indicates that MExMI does

benefit from effective MI attacks. A fidelity gain is observed in MExMI since the copy

36

4.2. Experiment

4k 6k 8k 10k 12k 14k 16k
Query number

70

75

80
Ac

cu
ra

cy
 p

er
ce

nt
ag

e/
%

Entropy Uncertainty
Greedy K-center
Adversarial Deep-fool
Black-box attack on F

(a) MI Accuracy

4k 6k 8k 10k 12k 14k 16k
Query number

60

62

64

66

68

70

72

74

76

Pr
ec

isi
on

 p
er

ce
nt

ag
e/

%

Entropy Uncertainty
Greedy K-center
Adversarial Deep-fool

(b) MI Precision

4k 6k 8k 10k 12k 14k 16k
Query number

20

30

40

50

60

70

Re
ca

ll
pe

rc
en

ta
ge

/%

Entropy Uncertainty
Greedy K-center
Adversarial Deep-fool

(c) MI Recall

Figure 4.7: Performance of MI Pre-Filter in MExMI on CIFAR10.

models’ accuracy is closer to that of the victim model.

MI Performance in MExMI. The precision and recall of the adaptive shadow-

model MI attacks of three MExMI variants are shown in Fig. 4.6. MExMI always

performs the best and can achieve up to 83.20% accuracy and 84.13% precision on

CIFAR10, and 68.77% and 71.73% precision on AG’S NEWS. This precision is even

better than the state-of-the-art MI — ML-leaks [84] (75.25% on CIFAR10, 65.37%

on AG’S NEWS) which assumes unlimited query budget. Furthermore, our adaptive

MI attacks have no additional cost when inferring training samples.

Discussion About Potential Defenses. There are two potential defenses against

MExMI. First, MExMI is subject to MI-related defensive strategies that can reduce

the accuracy of MI, such as using differential privacy [31], which in turn lowers the

fidelity of MExMI. Second, as with other model extraction attacks, MExMI can also

be defended by model provenance techniques, such as watermark embedding [50], to

detect copyright infringement from an extracted model.

4.2.4 Impact of Adversary Data Pool on PAME

In this experiment, we study how the quality of adversary data pool affects the

outcome of PAME attacks. Since there are cases where the data pool does not contain

any training data, the results of MI attacks are not evaluated. To be fair, we fix the

37

Chapter 4. MExMI: Model Extraction Crossover Membership Inference

Table 4.3: Impact of the Adversary Data Pool on PAME Attacks with 16k Query
Budget

The Proportion of Pv in P Baseline
Pre-Filter

only
Post-Filter

only
MExMI w/o
Boosting

MExMI

Fidelity
(Accuracy)/%

0% 76.30(75.62) 74.23(73.93) 76.29(75.71) 77.40(76.80) 79.11(78.51)

25% 81.07(80.48) 83.91(83.50) 83.55(83.05) 89.99(88.78) 92.91(91.96)

33.33% 82.93(82.27) 86.17(85.48) 84.57(84.00) 90.14(89.58) 94.07(93.47)

Table 4.4: Impact of Output Access on PAME Attacks

Fidelity (Accuracy)/% Baseline
Pre-Filter

only
Post-Filter

only
MExMI w/o
Boosting

MExMI

Output Access
Probabilities 82.93(82.27) 86.17(85.48) 84.57(84.00) 90.14(89.58) 94.07(93.47)

Top-1 Scores 79.53(79.00) 81.89(81.33) 81.94(81.18) 85.60(84.89) 91.00(90.40)

size of the pool to 150k samples and change the proportion of training data in it to

vary its quality. Since the total training samples are 50k, this proportion is capped

at 1/3.

The results on CIFAR10 are shown in Table 4.3. We can see that the quality of the

data pool greatly affects each PAME attack. MExMI consistently outperforms the

baseline irrespective of the quality, even in the complete absence of victim’s training

data, i.e., when the adversary has no access to the true training samples. In such

extreme cases, we also observe that Pre-Filter only is outperformed by the baseline.

This is due to the fact that the Pre-Filter cannot find any training data in the pool

and thus excludes most of them for training. Since the filtered data pool is too small,

active learning might not be effective.

4.2.5 Impact of Output Access

We investigate the impact of output access granted to our PAME attacks. We limit

the output access to top-1 score and show the results on CIFAR10 in Table 4.4. It

indicates that even with limited output access, the three modules of MExMI still

perform consistently well. Among various PAME attacks, MExMI always performs

the best and can outperform the baseline by 11.47% on fidelity.

38

4.2. Experiment

Table 4.5: Transferability of FGSM attacks

Active Learning
Transferability / %

Entropy Uncertainty Greedy K-center Adversarial Deep-fool

Baseline 51.76 57.47 57.59

Pre-Filter only 55.96 59.72 60.99

Post-Filter only 59.17 62.53 57.90

MExMI 63.87 62.66 58.57

4.2.6 Transferability of Adversarial Attacks

We measured the transferability of adversarial samples obtained from the FGSM [38]

adversarial attacks (at a rate of ϵ = 0.1) on the PAME copy models. The transferabil-

ity rate is the fraction of these samples misclassified by the victim model. The results

on CIFAR10 are shown in Table 4.5. MExMI consistently has higher transferability

rate than the baseline, indicating that our MExMI algorithms are also superior from

this perspective.

4.2.7 Impact of Weight Ratio in MI Post-Filter

In MI Post-Filter, we introduce a weight ratio ω between loss weights of the inferred

training data and non-training data, which has an effect on both Post-Filter only and

MExMI without semi-supervised boosting variants. In this experiment, we vary ω in

CIFAR10 experiments and show the results in Table. 4.6. We observe that ω has a

very limited impact on the fidelity and therefore our MExMI framework is robust to

this parameter.

Table 4.6: Impact of Post-Filter Weight Ratio

Weight Ratio
Fidelity (Accuracy) / %

3:1 5:1 7:1

Post-Filter only 85.12 (84.20) 84.57 (84.00) 84.59 (83.93)

MExMI w/o Boosting 89.61 (99.84) 90.14 (89.58) 90.21 (89.61)

39

Chapter 4. MExMI: Model Extraction Crossover Membership Inference

1k 2k 3k 4k 5k 6k 7k
Query number

60
65
70
75
80
85
90

Fi
de

lit
y/

%

5k 6k 7k
87

88

89

90
Baseline
Pre-Filter only
Post-Filter only
MExMI w/o Boosting
MExMI
Ideal case

Figure 4.8: PAME attacks’ results in ModelArts on SVHN (7k budget).

Table 4.7: MI attacks’ results in ModelArts

MI Attacks Precision/% Recall/%

Pre-Filter only 86.94 91.69

Post-Filter only 87.17 90.50

MExMI 87.78 91.77

ML-leaks on F 87.83 92.38

4.2.8 Case Study: Blackbox Attacks on MLaaS ModelArts

We use a real case study to show the feasibility and real-life impact of MExMI. We

target ModelArts, the MLaaS provided by Huawei Cloud [9] where developers can

train and deploy their ML models in the cloud, and then access them via Web API

(e.g., CURL).

We train and deploy a classification model on ModelArts without knowledge of its

architecture using SVHN and then perform various PAME attacks on it. Our ad-

versarial data pool consists of 2.5k SVHN and 5k ImageNet32 images as we have to

measure both ME results and MI results of MExMI. Since ModelArts returns top-5

probabilities with three decimal places, we choose unsupervised MI as the MI module

in MExMI. The parameter tolerant percentage t is set to 0.06 in the threshold decision

method [84]. The architecture of the copy model is VGG16 with batch normalization.

The query budget is 7k, and the size of initial seeds as well as the step are both 1k.

The experimental results of the adversarial deep-fool PAME are shown in Fig. 4.8. All

40

4.2. Experiment

four MExMI variants outperform the baseline. MExMI achieves the highest 90.32%

fidelity and MExMI without semi-supervised boosting comes the second with 89.45%

fidelity. The final MI results of MExMI framework are shown in Table 4.7. We observe

similar precision and recall of the three variants, all on par with ML-leaks [84], the

state-of-the-art unsupervised MI attack that exhausts all pool data, which costs ten

times higher.

4.2.9 Impact of ML Optimizations

As there are many emerging optimization methods in ML, in this subsection we

investigate what impact they have on PAME attacks. In particular, we focus on the

following two methods:

• Data augmentation. It is used in the training process to prevent overfitting.

This method has become increasingly popular in the domain of image classifi-

cation [78]. As shown in the experiments below, applying data augmentation

in PAME can significantly improve the fidelity.

• Ensembles for neural networks. Ensembling a set of models trained sepa-

rately is well known for effectively reducing generalization error [42]. As shown

in the experiments below, applying ensembles in PAME can improve the fidelity.

We use the performance results in Section 4.2.3 on CIFAR10, especially MExMI

without semi-supervised boosting, as the baseline in this experiment. We then use

the transforming policy in [117] to perform a richer data augmentation and model

averaging ensemble method. The results are shown in Table 4.8, where “Data-Aug”

denotes data augmentation. Richer data augmentation improves baselines’ fidelity

by 1.18%, and the ensemble method further improves fidelity by another 1.52% to

92.84%. These results warn us that in a never-ending battle between model owners

41

Chapter 4. MExMI: Model Extraction Crossover Membership Inference

Table 4.8: Performance Boosting Using Different ML Optimization Methods

Methods
Fidelity (Accuracy) / %

Baseline Baseline + Data-Aug Baseline + Data-Aug + Ensemble

Entropy Uncertainty 89.10 (88.69) 90.10 89.97) 91.57 91.36)

Greedy K-center 90.16 (89.21) 91.11 (90.98) 92.86 (92.60)

Adversarial Deep-fool 90.14 (89.58) 91.32 (90.80) 92.84 (92.32)

0 5 10 15 20
L2 distance

1k

2k

sa
m

pl
e

siz
e

(a) Black-box DNNs [77]

0 5 10 15 20
L2 distance

1k

2k

sa
m

pl
e

siz
e

(b) PRADA [52]

0 10 20 30
L2 distance

1k

2k

sa
m

pl
e

siz
e

(c) ActiveThief [76]

0 10 20 30
L2 distance

1k

2k

sa
m

pl
e

siz
e

(d) MExMI (this work)

Figure 4.9: Distribution of L2 distance required in PRADA defence.

and model extractors, emerging technologies in ML may favor the latter rather than

the former.

4.2.10 The Ability of Evading PRADA Defence

For image classification, PRADA[52] is the state-of-the-art method to detect ME

attacks. The detection is based on the distribution of consecutive query data, as

PRADA believes that the adversary tends to issue query samples across an exceptional

feature space. To evaluate the ability of MExMI evading such detection, we measure

the minimal L2 distance between query samples of MExMI and several benchmark

42

4.2. Experiment

ME attacks on CIFAR10. The results are shown in Fig. 4.9. We can see that MExMI

and the baseline attack are not different from benign queries (subject to Gaussian

distribution) and both cannot be detected by PRADA. In contrast, the distributions

of PRADA attack[52] and Black-box DNNs[77] have distinct traits, which are thus

easier to be detected.

43

Chapter 5

MEBooster: Towards

Neuron-Grained Model Extraction

This chapter introduces MEBooster, a novel training framework that advances model

extraction attacks. Grounded in neuron matching theory [99], MEBooster enables

a neuron-level investigation into the replicability and impact of model extraction

attacks.

To enhance extraction fidelity, MEBooster introduces two complementary training-

phase strategies: bootstrapping the initialization and post-training fine-tuning. The

first approach provides the copy model with a stronger initialization by estimating

parameters of the victim model [86], and further mitigates estimation errors using

a width-expanded architecture capable of accommodating multiple hypotheses. The

second approach extends neuron alignment to deeper layers of the copy model [99],

refining representation consistency. Notably, both techniques can be seamlessly inte-

grated into existing learning-based model extraction attacks without modification or

additional query cost.

MEBooster faces several challenges. First, existing parameter estimation methods

are limited to two-layer linear neural networks [86]. In Section 5.2.3.2, we generalize

44

5.1. The ME Booster Framework

such methods to complex models by encoding patch samples for middle convolutional

layers. Second, these methods assume access to the probability distribution function

of input samples, typically unavailable in practice. To address this, Section 5.2.3.1

incorporates score matching [93] to model data distribution using ML models with

implicit score loss. Third, existing optimal convergence theories focus only on the

lowest layer of neural networks [99]. We extend this theory to facilitate upper layers

(see Section 5.2.5).

Roadmap. The rest of this chapter presents the details of MEBooster framework

and its experimental evaluations. Section 5.1 provides an overview of the MEBooster

framework. Section 5.2 elaborates on MEBooster’s key components: initial bootstrap-

ping and post-processing fine-tuning, both supported by neuron matching theory.

Section 5.3 discusses the experimental results of MEBooster.

5.1 The ME Booster Framework

Framework Overview. Fig. 5.1 illustrates the general learning-based model extrac-

tion (ME) framework augmented by MEBooster (in the green area). This framework

is an abstraction of existing learning-based model extraction attacks, e.g., DFME [101]

and ActiveThief [76]. As shown in this figure, MEBooster focuses on training and

consists of two parts: initial bootstrapping (steps ①-③), and the post processing

(step ⑥). We briefly introduce these two parts below, with detailed discussions in

Section 5.2.

Stage 1: Initial Bootstrapping. MEBooster first targets improving the copy

model’s initialization to counteract the performance limitations caused by random

initialization in learning-based ME [48]. In the learning-a-model scenario, studies [35,

115, 122] indicate that a copy model initialized close to the victim model is more

likely to converge to the ground-truth parameters via (stochastic) gradient descent,

45

Chapter 5. MEBooster: Towards Neuron-Grained Model Extraction

③ Width Expansion

&

Re-scaling Initialization

⑤ Training Copy Model 𝐹′

② Moment-

based Parameter

Estimation

Queried Data

& 𝐹′

𝐹’

Stage 2: Learning-based Model Extraction

⑥ Fine-Tuning-Boosted

Neuron-Grained

Matching on 𝑭′

Stage 3: Post Processing

Query

Stage 1: Initial Bootstrapping

④ Active Learning (AL)

𝐹

Victim Model

Copy Model

Output

MEBooster

Existing ME

Generate Train
Designed

Middle-layer

Inputs {ℎ𝑑}

{ℎ′}

𝐹𝐷
Decoder

Pretrained Layers

𝐹′

SamplesCorner-patch-retained Input
Samples

① Constructing Sample Set for Estimation

Feedback

Or

Decoded Input
Samples

Query

Figure 5.1: The MEBooster framework for learning-based ME.

compared to a randomly initialized model which may settle at a local optimum.

Hence, MEBooster allocates some query budget to derive a good estimation

of the victim model’s parameters, thereby improving initialization.

Specifically, after collecting the victim model’s architecture-related information by

reconnaissance attacks, the attacker initializes the parameters in the copy model by a

query-based method (Section 5.2.3). MEBooster constructs the initial dataset on the

victim model (step ①) with a small query budget bini, and then estimates lower-layer

parameters based on the statistical value moment derived from this queried set (step

②). Since the initial norms of weights can affect the convergence of the copy model,

they are re-scaled in step ③ [43] (Section 5.2.4).

To further enhance the effectiveness of this parameter estimation, MEBooster over-

widens the architecture of the copy model (step ③). In essence, it expands the width

in each layer so that the copy model can fully exploit the outcome of the initialization

with more neurons.

Stage 2: Learning-based Model Extraction. In this stage, a current learning-

based ME [53, 76, 101] is executed. First, the query for the victim model is deter-

mined by an active learning (AL) process (step ④), either query-synthesizing-based

or pool-based. Once the query budget is used, the attacker retrains the copy model

with annotated samples (step ⑤), repeating the process until the query budget is

exhausted.

46

5.2. Neuron-Grained Model Extraction

Stage 3: Post-processing with Fine-tuning-boosted Neuron-grained Match-

ing. In the outlined training process, two biases exist. First, earlier queried and

trained samples impact the copy model less, as they are gradually excluded from

further ME. Second, the copy model’s training is inadequate during the query gen-

eration iterations. To address these issues, a theory on the neuron-grained matching

achieved by learning is extended from the foundational lowest-layer neuron match-

ing theory [99, 124]. Supported by it, we propose a post-processing step (step ⑥),

fine-tuning (Section 5.2.5), to match more neurons, particularly in upper layers. This

step also mitigates the first bias by utilizing all queried samples equally.

5.2 Neuron-Grained Model Extraction

In this section, we introduce neuron matching theory to elucidate the mechanisms

behind MEBooster. We then detail the three modules of MEBooster supported by this

theory, which enhance the fidelity of the copy model through neuron-grained matching

with the victim model. These modules include moment-based parameter estimation

and width expansion during the initial bootstrapping phase, aimed at establishing

favorable initial parameters and an optimal architecture. Additionally, fine-tuning-

boosted neuron-grained matching in the post-processing stage demonstrates how the

learning-based method equips the copy model to match the victim’s neurons across

multiple neural network layers.

5.2.1 High-level Solution

Studies [99, 124] demonstrate that lower-layer neurons in a copy model can align with

those in the victim model via gradient descent (Section 5.2.2), i.e., via “learning-a-

model”. This alignment indicates that such model extraction does more than just

superficially learn the victim model’s task; it fundamentally replicates its neurons,

47

Chapter 5. MEBooster: Towards Neuron-Grained Model Extraction

achieving neuron matching. However, they realize neuron matching only at the

lowest layer, i.e., the input layer, which makes them fall short of high-fidelity ex-

traction from a complex model. In this study, we aim to achieve closer alignment,

i.e., (1) a higher proportion of neuron matching, (2) greater similarity between the

copy and victim neurons, and (3) deeper layers of neuron matching. Key to the first

two objectives are closer initial states to the victim model and an over-width archi-

tecture. Consequently, we design optimization modules for moment-based parameter

estimation (Section 5.2.3) as well as width expansion (Section 5.2.4) during the ini-

tial bootstrapping phase, and we also introduce a re-scaling initialization approach

to combine the advantages of both. Furthermore, we realize the last objective, i.e.,

extending neuron matching to deeper layers, in the third module, fine-tuning-boosted

neuron-grained matching. Combined with the initial bootstrapping, this module in-

creases the neuron matching rate from lower to higher layers, even surpassing the

lowest-layer neuron matching expectation outlined in existing theories.

5.2.2 Neuron Matching Theory

The phenomenon of neuron-grained matching (i.e., convergence) in the lowest layer

during “learning a model” [81, 99, 124] is due to gradient backpropagation. Theorem 1

proposes the theoretical conditions essential for achieving the lowest-layer neuron

matching. By satisfying these conditions, the copy model could potentially enhance

its ability to achieve better neuron matching during gradient descent, ultimately

leading to improved fidelity (i.e., similarity). Before delving into the theory of neuron

matching, we first give the formal definition of neuron matching and observation

sample number, whose symbols are illustrated in Fig. 5.2.

Definition 1. (Neuron Matching) On layer l, neuron j matches neuron k if they

satisfy:

⟨fl,j({x}), fl,k({x})⟩ ≤ ϵ, (5.1)

48

5.2. Neuron-Grained Model Extraction

Boundary of Victim Neuron ':
w(* + ,) = 0

Boundary Band I)(1)

1

Boundary of Copy Neuron %:
w** + ,* = 0

Boundary Sample Number 3N[+] : Observation Sample Number 4N[] :

Samples *

56)* + ,) = 0

Boundary of victim node '
I!(#)

#
Boundary of copy node %

%"

56** + ,* = 0

The Boundary Density 3N[+] :

The Observation Density 4N[] :

Samples *

+

+

+

-

-

-

1

Dataset D: {*}

Figure 5.2: Illustration of observation sample number and boundary sample number
in model extraction.

when ϵ is sufficiently small. fj(x) is the output vector of the l-layer neuron j over a

batch of samples {xi}i∈{b}.

Definition 2. (Observation Sample Number) For 0 < ε, if a neuron j and a neuron

k satisfies N [Ij(ε) ∩ Ek] ≥ κ over a dataset D, the neuron j is observed by neuron

k in the observation sample number κ, where N [·] calculates the number of samples,

Ij(ε) is the boundary band of neuron j, or formally {x ∈ D|((wT
j x+ bj)/∥wj∥) < ε},

and Ek := {x ∈ D|(wT
k x+ bk) > 0}.

Theorem 1. (Lowest-layer Neuron Matching, Theorem 5 in [99]). For a victim

neuron j, if the lowest-layer neurons in copy model satisfy: (1) neuron j is observed

by a copy neuron k with observation sample number:

N [Ij(Cϵ/κ) ∩ Ek] ≥ κ = O(Qd3/2), (5.2)

and (2) the lowest-layer gradient on each sample is sufficiently small, then there will

exist a copy model neuron k′ matching neuron j.

49

Chapter 5. MEBooster: Towards Neuron-Grained Model Extraction

In the above, Q is the number of the decision boundaries of neurons (tractable for

2-layer networks only [99]), d is the input dimension, and C is a constant.1

Theorem 1 states that the lowest-layer neuron matching is theoretically guaranteed

if the observation sample numbers for all victim neurons satisfy Equation 5.2. To

achieve this, the copy model should possess a sufficient number of observer neurons

targeting the victim neurons, in addition to requiring a sufficient number of query

samples. Therefore, we optimize the initial positioning of copy neurons through

moment-based parameter estimation, bringing them closer to the victim neurons.

Additionally, we increase the number of neurons in each layer of the copy model via

width expansion. These two optimizations are combined in re-scaling initialization

to enhance the likelihood of copy neurons observing victim neurons. Next, we de-

tail the three methods mentioned above: moment-based parameter estimation, width

expansion, and re-scaling initialization.

5.2.3 Moment-based Parameter Estimation

The moment-based parameter estimation provides the copy model with much better

initial parameters than Gaussian random vectors [43]. It is achieved by estimating

the bases of a layer-wise span in DNNs [15, 49], starting from the lowest (linear) layer

to the middle (convolutional) layers.

5.2.3.1 Moment-based Weight Estimation

The weight matrix of the lowest layer in the deep neural network can be inferred

from the moment [49, 86], a statistical expected value of the output distribution’s

derivative relative to the input distribution. We begin by introducing the concept of

moments, followed by a derivation of how to estimate weights from them. Let the

1C is the angle ratio of the weights of two neurons and their output vectors, which is architecture-
dependent [99].

50

5.2. Neuron-Grained Model Extraction

input distribution’s probability density function be p(x), and its score function S(x)

is defined as the gradient of the logarithm of p(x) [49]

S(x) = ∇xlog(p(x)) =
∇xp(x)

p(x)
∈ Rd. (5.3)

The first-order moment M1 of an ML model F on the input distribution is

M1 = E(F (x)⊗ S(x)T) ∈ RK×d, (5.4)

where ⊗ is the outer product of two vectors. The i-th row and j-th column element

of M1 is F (x)i × S(x)j. According to Stein’s Lemma [95], the moment M1 can be

expressed as:

M1 = E(F (x)⊗ (∇x log p(x))) = −E(∇xF (x)). (5.5)

According to Stein’s Lemma 5.5, moments can be expressed as linear mappings be-

tween the lowest-layer weights of F . Formally, it’s expressed in Theorem 2 as follows.

Theorem 2. (Linear Mapping from The First Layer Weight to The Moment. Theo-

rem 1 in [86]) For an MLP model F with first-layer weight matrix W1 = [w1, . . . , wn]
T ∈

Rn×d,

M1 = E(F (x)⊗∇xlog(p(x))) = −E(∇xF (x))

= AW1 =
∑
i∈{n}

aiw
T
i ,

(5.6)

where S(x) is the score function of the distribution of x, M1 is the first-order moment

of F and A = [a1, . . . , an] is a coefficient matrix, A ∈ RK×n.

The chain rule indicates that the lowest-layer weight matrix is crucial in the derivative

calculation of F (x), making it an inherent factor of M1.

Theorem 2 suggests that the bases of W1 can be deducted from M1 via sparse dictio-

nary learning [40, 94] by treating W1 as the sparse dictionary matrix of M1, due to

the inherent sparse constraint on weight matrices in supervised learning [98]. Then,

51

Chapter 5. MEBooster: Towards Neuron-Grained Model Extraction

the bases of W1 can be utilized to initialize the neurons of the copy model.

To estimate W1, M1 should be computed first. According to Equation 5.4, it begins

with calculating the score function S(x) w.r.t. the inputs, followed by obtaining

M1 through the expected outer product of S(x) and F (x). However, as defined in

Equation 5.3, S(x) is derived by taking the derivative of probability density p(x),

which is challenging since p(x) of most datasets cannot be expressed. To address this

issue, we adopt score matching algorithms [47, 93] to approximate the score function

S(x) without being aware of p(x).

Specifically, score matching involves training a score model Ψ(x) to best approximate

the score of the true distribution p(x). Given the unknown nature of p(x), an implicit

form of score matching, known as the sliced score matching method [93], has been

proposed to provide explicit regression targets. The loss for sliced score matching is

designed to minimize the discrepancy between the modeled and true distributions by

utilizing efficiently computable sliced statistics, which does not require knowledge of

p(x), which is expressed as follows:

L = Ev∈{v}Ex∈D[v∇T
xΨ(x)vT +

1

2
(vTΨ(x))2], (5.7)

where {v} is a set of random vectors, and D is the training dataset. The trained

score model Ψ(·) learns the distribution characteristic of the training dataset. For a

training sample x, its score is the model output Ψ(x).

Algorithm 2 illustrates the overall algorithm of moment-based parameter estimation.

First, an input sample set {xi}i∈{bini} (or {x} for short) is constructed (Section 5.2.3.2

and Section 5.2.3.3) to estimate the distribution score of the inputs {h′
i}i∈{bini} (or {h′}

for short) of the target layer, where bini is the budget assigned to initial bootstrapping.

If the target layer is the first layer, {h′} denotes the query samples {x}; otherwise,

{h′} denotes the output matrix of the previous layer. Second, the input samples

are queried, and a collection of input-output pairs Dini = {[h′
i, F (xi)]}i∈{bini} are

52

5.2. Neuron-Grained Model Extraction

constructed. Then the score function S(h′) of {h′} is calculated, followed by the

calculation of moment M1 of Dini by Equation 5.4. Finally, the bases {vi}i∈{n} of W1

are estimated via sparse dictionary learning, like LISTA [40] and ER-SpUD [94].

Algorithm 2 Moment-Based Parameter Estimation

1: Input: Intial sub-budget bini; Victim model F (·).
2: Output: Bases {vi}i∈{n};
3: Construct the input sample set {xi}i∈{bini};

4: Get Dini = {[h′
i, F (xi)]}i∈{bini} via querying F (·)

5: Train the score model Ψ(x) ▷Equation 5.7

6: Compute the score function S(h′) = Ψ(x)

7: Compute moment M1 via S(h′) on Dini; ▷Equation 5.4

8: /***Sparse Dictionary Learning (ER-SpUD)***/

9: for j = 1, . . . , d do

10: Setup an ML model F
(s)
j ;

11: Setup a j-th basis vector ej;

12: Train F
(s)
j with loss l = ||F (s)

j (M1)
TM1||, s.t. ||(M1ej)

TFj(M1)− 1|| = 0;

13: sj = F
(s)
j (M1)

TM1;

14: end for

15: S = {sj}, j ∈ {d};
16: if sj ∈ S has elements smaller than a small number ξ, then

17: Set those elements 0;

18: end if

19: Pick up n columns {vi}i∈{n} from S with minimum l0 norm.

5.2.3.2 Corner-Patch-Retained Sample for Convolutional Layer General-

ization

In this section, moment-based parameter estimation is extended to convolutional

neural networks (CNNs), which is previously developed for multi-layer perceptron

(MLP). For CNNs with a lowest-layer kernel W1 ∈ Rc×k×k∗ and input samples x ∈

Rc×m×m∗
, Theorem 2 no longer holds, where c is the number of input channels, m is

sample height, and m∗ is sample width. This is because the kernel interacts not with

the entire sample but with its various overlapping patches.

53

Chapter 5. MEBooster: Towards Neuron-Grained Model Extraction

!! !" !# 0 0 0

!$!% !& 0 0 0

!' !(!) 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

-

-∗

.

.∗

open pixel

closed pixel

Figure 5.3: The “corner-patch-retained” input samples. The colored area represents
the overlap between open pixels and a convolution kernel, with elements indexed
post-flattening.

To adapt Theorem 2 to convolutional layers, we propose a “corner-patch-retained”

convolutional kernel estimation method. As Fig. 5.3 illustrates, pixels of the input

distribution are active only in the corner patch and 0 elsewhere, aligning with kernel

steps. This allows for moment calculation on the patch, facilitating the target-layer

convolutional kernels’ estimation via moment-based weight estimation.

The Impact of Kernel Overlap. Despite varying padding, stride, and kernel size

causing kernel step overlap on the corner patch, the moment-based weight estima-

tion minimizes information overlap between different steps. Kernel steps that only

partially match the corner patch are equivalent to adding trivial elements to a dictio-

nary. As such, sparse dictionary learning methods like ER-SpUD [94] are minimally

affected as they select top critical and independent elements as kernels. Experiments

on overlapped models also support this claim as detailed in Section 5.3.3.

Multiple Corner-patch-retained Samples. To save query budget, patches can

be retained in multiple corners in a sample because they interfere with each other

least. For example, in image samples, this approach can quadruple query efficiency.

54

5.2. Neuron-Grained Model Extraction

5.2.3.3 Generalization to Middle Layers by Decoding

Moment-based weight estimation can’t initialize a middle layer due to the complexity

of its input set {h′}’s distribution, which is too intricate for statistical calculations,

whether in linear or convolutional middle layers. Therefore, it’s essential to create

input samples {x} that yield the suitable {h′} for these layers.

Decoding Method. We propose using a decoder to design input samples, as shown

in step ① of Fig. 5.1. This process assumes pretrained lower layers (e.g., embedding

layers in text classification). A decoder FD is trained to generate input samples.

Initially, a target set {hd} for the middle layer is created. Then FD decodes the input

samples {x} from {hd}. Feeding {x} to the model F ′ yields the middle-layer input

set {h′}, and FD is optimized by minimizing the MSE loss between {hd} and {h′},

resulting in generating input samples {x} with the targeted middle-layer distribution.

5.2.4 Width Expansion and Re-scaling Initialization

Apart from using estimated weight for initialization, expanding the width of the copy

model’s architecture can also enhance its initial advantage. Over-width [99, 124],

which increases the number of neurons per layer by a factor of µ (µ is called the over-

width factor), ensures more neurons can be better initialized with a higher probability.

After the estimation of initialization parameters and width expansion, re-scaling ini-

tialization combines their benefits. It first rescales the norms of estimated parameters

for compatibility with off-the-shelf initialization algorithms [43], then distributes these

parameters across the over-width architecture to initialize segments in parallel.

The norms of the neural network’s parameters affect the convergence of the model,

and thus in the neural network’s default initialization, their neuron weight norms are

usually re-scaled [43]. To retain the advantage from these norms, we re-scaled the

bases {vi}i∈{n} of estimated W1 when initializing the copy model. For example, for

55

Chapter 5. MEBooster: Towards Neuron-Grained Model Extraction

ReLU activated layers, the estimated parameters are re-scaled by the HE initialization

method [43]:

wi =
vi
||vi||

√
2

d
, i ∈ {n}, (5.8)

where d = c×m×m∗ for the convolutional layer.

5.2.5 Fine-tuning-boosted Neuron-grained Matching

To match more neurons across multiple layers, we extend Theorem 1 to exploit neuron

matching in upper layers achieved by the gradient descent in Theorem 3. It outlines

the optimal states for any given layer, l.

Theorem 3. (Neuron Matching in Upper Layers) If all victim model’s neurons in

layer l − 1 (l > 1) are matched by at least one copy neuron, then the input matrix

f ′l−1({x}) for layer l over a batch of samples in the copy model is equivalent to the

input matrix fl−1({x}) in the victim model, i.e., it satisfies:

fl−1({x}) = Al−1f
′
l−1({x}),∀{x},

where Al−1 is the transformation matrix and independent on {x}. For the victim’s

neuron j in layer l, if the neurons in copy model satisfy: (1) neuron j is observed by a

copy neuron k with the observed sample number larger than O((exp(L− l))5/2×m
3/2
l−1),

and (2) the gradient in layer l on each sample is sufficiently small, there will exist a

copy neuron k′ matching neuron j by learning.

Proof. As Definition 1 describes, for two neurons at layer l with different architectures,

we define the neuron matching between them as follows: a victim neuron j is matched

by a copy neuron k, if for any batch of samples {x}, they satisfy:

⟨fl,j({x}), f ′
l,k({x})⟩ ≤ ε, (5.9)

56

5.2. Neuron-Grained Model Extraction

where ε is sufficiently small. fl,j({x}) ∈ R1×b and f ′l,k({x}) ∈ R1×b, where b is the

batch size of {x}.

Assume in layer l − 1, all victim neurons are matched by one or more copy neurons,

i.e., for each victim neuron j, there exists at least one copy neuron k,

⟨fl−1,j({x}), f ′
l−1,k({x})⟩ ≤ ε, (5.10)

that is,

f ′
l−1,k({x}) ≈ akjfl−1,j({x}), (5.11)

where akj is a constant. As a result, the output matrix of layer l − 1 on a batch of

samples can be expressed as:

f ′l−1({x}) = [f ′
l−1,1({x}), . . . , f ′

l−1,nl−1
({x})]T

≈


0 . . . a1j1 . . . 0

0

0 . . . anljml
. . . 0

 [fl−1,1({x}), . . .]T

= Al−1fl−1({x}),

(5.12)

where Al−1 is constant for all input samples. As a result, the output matrix of layer

l in the copy model and in the victim model would be:

f ′l ({x}) =D′
l({x})W ′T

l f ′l−1({x})

=D′
l({x})W ′T

l Al−1fl−1({x}),
(5.13)

and

fl({x}) = Dl({x})W T
l fl−1({x}). (5.14)

Thus, with a linear transformation, W ′
l is mapped into the space of Wl. For W

′T
l Al−1,

the neuron matching situation is akin to the lowest layer discussed in Theorem 1.

Theorem 3 implies that if a model’s lower layers are well-matched neuron-wisely, and

each of the victim’s neurons in the upper layers is observed by the neurons of the

copy model with a sufficient number of observation samples, fine-tuning until the

57

Chapter 5. MEBooster: Towards Neuron-Grained Model Extraction

backpropagated gradients are minimal enough will make the copy model gradually

match the victim’s upper layers as well. The overall query complexity can be ex-

plained as O(exp(5L
2
)+exp((5(L−1)

2
)+ · · ·+exp(5

2
)) = exp(O(L))). Therefore, in post

processing, we supplement the overlooked learning process, especially for iterative

query sample generation frameworks [53, 101], with fine-tuning.

5.3 Experiments

We evaluate MEBooster and its variants on various state-of-the-art learning-based

model extraction (ME) attacks.

5.3.1 Setup

5.3.1.1 Baseline Attacks

We implemented three advanced learning-based ME attacks as baselines: two query-

synthesizing-based (i.e., data-free) MEs (DFME [101] and MAZE [53]) and one pool-

based ME (ActiveThief [76]).

5.3.1.2 Query Budget & Datasets & Models

We evaluate the performance of MEBooster on six benchmark datasets encompassing

both local and black-box MLaaS models, and ranging from images to texts: LeNet-

5 [61] on MNIST [60], LeNet-5 on FMNIST [107], ModelArt [9] on SVHN [73],

Resnet18 on CIFAR10 [57], DPCNN [51] on AG’S NEWS [28], and DPCNN [51]

on IMDB [70].2

The total query budgets are consistent for DFME and MAZE regardless of the

2DPCNNs are constructed with pre-trained embeddings.

58

5.3. Experiments

Table 5.1: Experimental Settings

Dataset / Model Total ActiveThief Initial

/ Acc. (%) Budget Pool / Size Budget

MNIST / LeNet-5 / 99.17 1M EMNIST/10K 1K

FMNIST / LeNet-5 / 89.88 10M E, KMNIST /100K 1K

SVHN / ModelArt / 94.30 10M ImageNet32 / 150K 3K

CIFAR10 / Resnet18 / 90.13 50M ImageNet32 / 50K 20K

NEWS / DPCNN* / 84.80 20M Dbpedia / 200K 40K

IMDB / DPCNN / 72.47 20M Dbpedia / 100K 40K

* DPCNNs are constructed with pre-trained embeddings.

initial bootstrapping phase, to ensure comparability of query budgets across different

attacks. For ActiveThief, we utilize all available real-life data in its adversarial pool

for all experiments and allocate additional sub-budgets for attacks involving initial

bootstrapping. Table 5.1 summarizes experimental settings, where columns Dataset

and Model/Acc. show the general information of victim models, and column Initial

Budget shows the sub-budget for the initial bootstrapping.

Moreover, Baseline maintains the same architecture as the victim model, in line with

the original implementations [54, 76, 101]. For black-box ModelArts [9], ResNet50 is

used as per the official Codelabs documentation [10].

5.3.1.3 Attack Frameworks

To evaluate each component’s impact in MEBooster, we build five training framework

variants: Baseline, WE only, RI only, MEBooster w/o FT, and MEBooster. WE only

uses the width expansion of MEBooster; RI only uses the re-scaling initialization

with estimated parameters, and w/o FT uses the entire MEBooster except for the

post-processing.

5.3.2 Training Parameters

In our baseline, the copy model mirrors the victim model’s structure, aligning with

the prevailing view that this configuration is optimal. This setting is in line with the

59

Chapter 5. MEBooster: Towards Neuron-Grained Model Extraction

original implementations, where ActiveThief [76] employs a copy model identical to

the victim’s, and DFME [101] and MAZE [53] use models from the ResNet family.

Other training parameters, like learning rate and optimizer, follow those specified

in the original studies. For width expansion, the over-width factor is set to 5. All

experimental results are the average measures of 5 trials.

5.3.2.1 Evaluation Metrics

We measure the effectiveness of MEBooster using fidelity and accuracy [48]. Query-

based parameter estimation is evaluated by relative Initial Error Reduction (IER),

which measures the error reduction of the estimated weight matrix {vj}j∈{n} compared

to Gaussian random vectors. A higher IER means the estimated parameters are closer

to the target parameters. Their formal definitions are as follows.

5.3.2.1.1 Fidelity Fidelity is measured by the proportion of similarity between

the outputs of two models on the evaluation dataset Dt. Formally, fidelity =

Prx∈Dt [argmax(F (x)) = argmax(F ′(x))].

5.3.2.1.2 Accuracy It refers to the test accuracy of the copy model F ′ on the

evaluation dataset Dt. Formally, accuracy = Pr(x,y)∈Dt [argmax(F ′(x)) = y].

5.3.2.1.3 Initial Error Reduction (IER) It is the distance between weights

of the target victim layer with weight matrix W = [w1, . . . , wn] and the estimated

weights {vj}j∈{n} in the initial bootstrapping. Formally,

IER =

∑
i∈{n}

min
j
∥ wi
∥wi∥ −

rj
∥rj∥∥ −

∑
i∈{n}

min
j
∥ wj

∥wj∥ −
vj

∥vj∥∥∑
i∈{n}

min
j
∥ wi
∥wi∥ −

rj
∥rj∥∥

, (5.15)

where wj is the j-th weight vector of the target victim layer, and rj is the j-th

Gaussian random vector.

60

5.3. Experiments

5.3.3 Overall Performance of MEBooster

Overall Results. Table 5.2 compares the performance of MEBooster’s variants

against baselines, and Table 5.3 displays query-based parameter estimation results.

Table 5.4 reports the computing costs. Bold highlights superior results and under-

lines signify major improvements. Overall, each of the key components of MEBooster

significantly improves the fidelity of Baseline learning-based ME across different do-

mains under the same query budget by up to 58.10%.

Effectiveness of Initial Bootstrapping. Initial bootstrapping shows significant

fidelity improvements in different ME attacks, attributed to both width expansion

and re-scaling initialization. Table 5.3 reports at least 1.06% IER for the query-based

parameter estimation, suggesting better initialized than using Gaussian vectors. It

aligns with the fidelity gains achieved through RI. Additionally, in more complex

feature spaces, width expansion proves more beneficial. For instance, WE only shows

modest improvement over Baseline in MNIST, but at least a 6.43% fidelity gain in

FMNIST.

Effectiveness of Fine-tuning (FT). Comparing MEBooster with MEBooster w/o

FT, we observe that in the post-processing, the fine-tuning further improves up to

7.34% fidelity with additional 9.8% computing cost.

Evaluation of Neuron Matching. Fig. 5.4 reports the layer-wise neuron matching

in FMNIST and CIFAR10, focusing on the ratio of the matched victim neurons. They

reveal that each MEBooster component contributes to the neuron matching across

layers, indicating learning-based ME’s potential to extract the victim model closely.

Notably, DFME and MAZE, with their extensive synthetic queries, significantly ex-

ceed ActiveThief in neuron matching ratios, demonstrating they closely resemble the

victim model in both the target task and overall behavior. This is in line with the

near-perfect transferability in adversarial attacks using MEBooster-DFME/MAZE

models, further discussed in Section 5.3.4. This progress indicates that combined

61

Chapter 5. MEBooster: Towards Neuron-Grained Model Extraction

Table 5.2: Results of Learning-based Model Extraction Experiments

Dataset
ME

Attacks

Fidelity % /(Accuracy / %)

Baseline WE only RI only w/o FT MEBooster

MNIST[61]

/ LeNet-5[60]

DFME
96.69

(96.36)

99.49

(99.05)

97.78

(97.47)

99.59

(99.12)

99.60

(99.10)

MAZE
97.57

(97.37)

98.91

(98.61)

98.42

(98.21)

99.06

(98.67)

99.33

(98.84)

ActiveThief
97.99

(97.78)

98.59

(98.13)

98.00

(97.75)

98.60

(98.21)

98.71

(98.42)

FMNIST[107]

/ LeNet-5

DFME
58.63

(57.68)

92.66

(87.75)

76.42

(73.70)

93.79

(88.33)

94.32

(88.44)

MAZE
71.47

(70.21)

92.53

(87.69)

78.02

(75.65)

93.70

(88.21)

96.50

(89.50)

ActiveThief
78.07

(75.37)

84.50

(81.12)

78.84

(76.08)

84.38

(80.91)

86.28

(82.80)

SVHN[73]

/ ModelArt[9]

DFME
90.14

(91.36)

92.32

(93.09)

91.82

(92.18)

94.05

(93.66)

96.01

(94.27)

MAZE
90.32

(90.22)

92.89

(91.69)

92.44

(91.62)

93.46

(92.90)

95.19

(94.16)

ActiveThief
90.23

(69.31)

91.43

(90.74)

92.11

(91.92)

92.74

(92.04)

93.54

(93.15)

CIFAR10[57]

/ Resnet18[44]

DFME
91.35

(87.18)

97.92

(90.18)

91.72

(87.34)

98.14

(90.18)

98.99

(90.13)

MAZE
68.82

(67.54)

71.58

(70.56)

70.84

(69.35)

75.20

(73.49)

82.54

(80.68)

ActiveThief
83.54

(82.13)

87.34

(86.29)

84.07

(82.52)

87.35

(85.94)

87.86

(86.44)

AG’S NEWS[28]

/ DPCNN[51]

DFME
83.04

(75.83)

94.60

(82.63)

90.30

(80.47)

98.13

(83.63)

98.52

(83.63)

MAZE
34.83

(32.07)

88.58

(79.69)

85.62

(76.93)

92.88

(82.39)

92.93

(82.44)

ActiveThief
68.82

(64.72)

74.46

(71.64)

69.41

(64.96)

74.70

(71.88)

76.12

(73.35)

IMDB[70]

/ DPCNN

DFME
92.50

(67.08)

93.06

(67.51)

93.53

(67.22)

95.09

(67.68)

95.23

(67.62)

MAZE
78.72

(60.91)

87.25

(65.03)

81.82

(62.23)

91.90

(66.91)

91.91

(67.00)

ActiveThief
84.80

(64.84)

85.85

(64.37)

85.60

(64.43)

86.30

(64.40)

86.89

(64.47)

Table 5.3: The Results of Parameter Estimation Methods

Model #Neuron Dimension Dataset IER / %

LeNet5 6 25
MNIST 16.43

FMNIST 16.28

ModelArt – – SVHN –

Resnet18 16 27 CIFAR10 6.03

DPCNN 100 750
AG’S NEWS 1.06

IMDB 1.89

62

5.3. Experiments

Baseline RI only WE only
MEBooster

w/o FT MEBooster
0

20

40

60

80

100

120
Ne

ur
on

 M
at

ch
in

g
Ra

tio
/% FMNIST

(a) DFME

Baseline RI only WE only
MEBooster

w/o FT MEBooster
0

20

40

60

80

100

120
FMNIST

(b) MAZE

Baseline RI only WE only
MEBooster

w/o FT MEBooster
0

20

40

60

80

100

120
FMNIST

1

2

3

4

5

(c) ActiveThief

Baseline RI only WE only
MEBooster

w/o FT MEBooster
0

20

40

60

80

100

120

Ne
ur

on
 M

at
ch

in
g

Ra
tio

/%

CIFAR10

(d) DFME

Baseline RI only WE only
MEBooster

w/o FT MEBooster
0

20

40

60

80

100

120
CIFAR10

(e) MAZE

Baseline RI only WE only
MEBooster

w/o FT MEBooster
0

20

40

60

80

100

120
CIFAR10

1

10

19

(f) ActiveThief

Figure 5.4: Neuron matching ratio. The color bar integer is the number of layers.
Low-opacity bars reflect matching scores above 0.95, while high-opacity bars are scores
over 0.99.

with data-free ME, MEBooster advances learning-based ME into a new high-fidelity

era, from neuron-level to models, overturning previous biases against the efficacy of

learning in high-fidelity ME [48].

Computing Cost of Overall Evaluations. Table 5.4 reports the computational

cost of the experiments in Table 5.2. While MEBooster incurs higher computa-

tional costs compared to the baselines, its significant performance enhancement can

outweigh these costs. Moreover, the practical attack against the MLaaS model on

SVHN primarily consumes time in the data query process rather than during training.

Consequently, MEBooster only incurs a relative overhead of about 20%.

63

Chapter 5. MEBooster: Towards Neuron-Grained Model Extraction

Table 5.4: Computing Cost of Learning-based Model Extraction Experiments

Dataset
ME

Attacks

Computing Cost / hh:mm:ss

Baseline WE only RI only w/o FT MEBooster

DFME 00:05:32 00:05:55 00:07:42 00:08:05 01:17:46

MNIST MAZE 00:02:58 00:03:04 00:05:08 00:05:14 01:38.50

ActiveThief 00:18:37 00:32:59 00:20:47 00:35:09 00:55:13

DFME 01:58:55 02:04:14 02:01:25 02:06:44 06:04:01

FMNIST MAZE 00:59:26 01:01:36 01:01:56 01:04:06 05:26:23

ActiveThief 03:26:34 05:19:28 03:29:04 05:21:58 07:00:21

DFME 94:20:01 97:17:45 94:24:52 97:22:35 113:29:13

SVHN MAZE 93:52:11 95:20:38 93:57:01 95:25:29 117:11:36

ActiveThief 20:05:41 21:14:09 20:10:32 21:18:59 24:54:39

DFME 03:04:07 12:39:16 04:23:59 13:59:08 43:22:48

CIFAR10 MAZE 02:40:33 10:40:41 04:03:59 12:00:25 36:05:17

ActiveThief 11:18:13 19:17:44 12:38:05 20:37:36 22:30:21

AG’S

NEWS

DFME 00:06:07 00:18:36 01:52:03 02:04:32 10:22:59

MAZE 00:06:10 00:14:40 01:52:03 02:00:36 11:44:31

ActiveThief 00:44:52 00:44:52 02:30:48 02:30:48 04:06:45

DFME 00:07:00 00:19:53 02:04:58 02:17:51 10:22:55

IMDB MAZE 00:04:31 00:13:11 02:02:29 02:21:09 11:45:12

ActiveThief 00:52:59 00:53:54 02:50:57 02:51:52 06:00:16

5.3.4 Impact of MEBooster on Follow-up Attacks

To explore the significance of the fidelity gain sustained by MEBooster, we conduct

experiments on downstream attacks using copy models, including black-box adver-

sarial attacks [38, 110] and membership inference (MI) attacks [84]. For adversarial

attacks, we evaluated the transferability of the adversarial samples created on copy

models with FGSM [38] (at a ϵ of 0.1 for FMNIST and 0.03 for CIFAR10) to the

victim model. For MI attacks, we attack the copy models via unsupervised MI at-

tack [84]. Table 5.5 and Table 5.6 report the follow-up attack performance, showing

that higher fidelity of copy models leads to higher downstream attack performance.

This indicates that besides replicating the victim model’s functionality, copy mod-

els further leak the membership privacy of the victim model’s training data and its

decision boundaries, making it more vulnerable to adversarial attacks.

64

5.3. Experiments

Table 5.5: The Results of Follow-up Adversarial Attacks

Dataset Attacks
DFME MAZE ActiveThief

ASR (Transferability) / %

FMNIST
Baseline 5.64(18.64) 6.00(16.67) 8.74(24.09)

MEBooster 38.70(96.99) 39.55(98.82) 18.62(52.30)

CIFAR10
Baseline 67.47(85.40) 38.61(69.72) 29.57(39.35)

MEBooster 81.02(99.72) 58.38(96.00) 34.95(47.20)

Table 5.6: The Results of Follow-up Membership Inference Attacks

Dataset Attacks
DFME MAZE ActiveThief

MI Accuracy, F1 Score / %

FMNIST
Baseline 50.41, 51.50 51.42, 53.45 50.24, 51.19

MEBooster 50.67, 52.03 51.66, 53.81 50.66, 52.36

CIFAR10
Baseline 71.75, 72.02 61.87, 48.14 68.00, 59.49

MEBooster 81.73, 79.84 69.70, 61.97 78.70, 63.65

5.3.5 Impact of Width Expansion

In the initial bootstrapping, we introduced an over-width factor for the architecture

design. To explore the effect of this parameter on MEBooster, we report the im-

pact of the over-width factor on MEBooster in FMNIST and CIFAR10 experiments

in Fig. 5.5. We observe that in various model extraction attacks, moderate width

expansion can exhibit distinctive advantages.

2 4 6
Over-Width Factor

60

70

80

90

100

Fi
de

lit
y/

%

FMNIST

DFME
MAZE
ActiveThief

(a) FMNIST

2 4 6
Over-Width Factor

70

80

90

100

Fi
de

lit
y/

%

CIFAR10

DFME
MAZE
ActiveThief

(b) CIFAR10

Figure 5.5: The impact of over-width factor of width expansion on MEBooster.

65

Chapter 5. MEBooster: Towards Neuron-Grained Model Extraction

Table 5.7: Results of Optimization Methods with Similar Memories

Dataset Method
Fidelity (Accuracy) / %

Memory
DFME MAZE ActiveThief

Width Expansion 92.66 (87.75) 92.53 (87.69) 84.50 (81.12) 0.06MB

FMNIST Deep-LeNet 67.61 (58.80) 72.71 (70.73) 78.61 (76.14) 0.08MB

Ensemble 60.12 (59.18) 72.99 (71.69) 79.61 (76.87) 0.06MB

Width Expansion 97.83 (90.12) 71.49 (70.51) 87.28 (86.21) 5.77MB

CIFAR10 Resnet50 82.80 (80.52) 69.18 (67.53) 80.80 (80.80) 7.94MB

Ensemble 92.15 (83.32) 69.93 (68.82) 85.72 (84.13) 5.77MB

5.3.6 Comparing Width Expansion with Other Optimization

Methods

We further investigate the superiority of width expansion by comparing it with two

other common optimization methods using similar memories. The first adopts a more

complex architecture for the copy model, e.g., Resnet50 [44] to steal a Resnet18 victim

model. For the LeNet5 victim model, the copy model uses a deeper CNN with another

two convolutional layers added on LeNet-5, which have 5×5 kernels and widths of 32

and 16, respectively. The second ensembles a set of models trained separately [42].

The implementation details are as follows. In step ③ of MEBooster (see Fig. 5.1),

width expansion is replaced with the above two methods while other steps are re-

tained. To ensure they all consume similar memory, for the width expansion experi-

ment, the over-width factor is set to 3; for the ensemble experiment, three models are

employed. Table 5.7 shows the attack performance of these methods against width

expansion for FMNIST and CIFAR10. We observe that width expansion always per-

forms the best thanks to its architectural advantage rather than the high usage of

memory.

5.3.7 The Impact of Architecture Knowledge

We investigate how MEBooster behaves when the attacker adopts a mismatched

architecture, which usually happens in proprietary ML systems [109]. Specifically, for

66

5.3. Experiments

Table 5.8: Architecture-agnostic Model Extraction Attacks

Dataset
ME Fidelity (Accuracy) / %

Attacks Baseline WE only RI only w/o FT MEBooster

DFME
51.32

(50.22)

76.77

(74.33)

53.46

(52.13)

82.08

(78.97)

82.38

(79.54)

FMNIST MAZE
68.99

(67.26)

85.43

(82.00)

73.25

(70.84)

86.09

(82.44)

87.41

(83.81)

ActiveThief
61.04

(58.81)

79.20

(76.41)

65.16

(63.07)

80.54

(77.83)

81.31

(78.34)

DFME
91.81

(87.42)

98.03

(90.23)

92.26

(87.88)

98.31

(90.21)

98.82

(90.93)

CIFAR10 MAZE
69.22

(67.43)

75.12

(73.68)

76.45

(74.66)

76.72

(75.25)

77.62

(76.74)

ActiveThief
83.71

(81.88)

87.45

(85.78)

83.67

(82.26)

87.67

(86.27)

88.32

(86.91)

CIFAR10 and FMNIST victim models in Table 5.1, we set copy models as ResNet-

24 [44] and 5-layer PyTorch CNN [1] respectively. Table 5.8 reports the effectiveness

of MEBooster, where it still brings significant gains to all attacks by up to 30.06%

fidelity improvement.

67

Chapter 6

Defense Methods Against Model

Extraction Attacks

Turning to defense, this chapter explores defense strategies against model extraction

attacks (MEAs) from two distinct perspectives. The first aims to mitigate the ef-

fectiveness of MEAs, as detailed in Section 6.1. The second focuses on verifying the

ownership of models replicated through MEAs by leveraging model watermarking

techniques, which is discussed in Section 6.2.

6.1 Mitigating the Effectiveness of Learning-based

Model Extraction Attacks

In this section, we explore tuning the properties of the victim model’s parameters

to defend against learning-based model extraction. Contrasting previous methods

like BDPL [119], Adaptive Misinformation [54], and GRAD2 [72] which protect the

victim model by perturbing prediction results, we propose a novel approach, namely

model modification. This method steers model properties [99, 122] during training

68

6.1. Mitigating the Effectiveness of Learning-based Model Extraction Attacks

to enhance its resistance to learning-based model extraction.

6.1.1 Defense Strategy: Stochastic Norm Enlargement

We use the l2 norm of the victim model’s weight matrices as the critical property.

Zhang et al. [122] showed that the complexity of learning to recover a neural network

is polynomially related to λ, corresponding to the maximum singular value, i.e., l2

norm, of each layer’s weight matrix.

We introduce the Stochastic Norm Enlargement (SNE) defense, guiding weight ma-

trices in each layer towards larger l2 norms during training by adding a regularization

term to the loss. To prevent training crashes, z layers are stochastically chosen to be

incorporated into the loss at each epoch, as described in Equation 6.1.

loss = L(F (x), y) +
φ∑z

i ∥Wi∥2
, (6.1)

where L(·) denotes the original loss function (e.g., cross-entropy loss), and φ is the

norm regularization factor.

6.1.2 Empirical Evaluation

We compare SNE with two state-of-the-art defensive strategies, namely GRAD2 [72]

and adaptive misinformation [54], both with a perturbation l1 distance of 0.5. In

SNE, we set the factor φ to 5 and z to 5. Table 6.1 reports the defense performance

against learning-based ME frameworks Baseline and MEBooster, with the lowest

attack fidelity bolded.

We observe that victim models with SNE defense exhibit remarkably low extractabil-

ity at a price of slightly lower model accuracy. Against these SNE-defended models, all

model extraction attacks, particularly DFME and MAZE, show marked degradation.

69

Chapter 6. Defense Methods Against Model Extraction Attacks

Table 6.1: The Results of Defending Methods Against Learning-based Model Extrac-
tion

Dataset Attacks No Defence SNE (Ours) GRAD2 Adaptive Misinformation

Fidelity / % (Accuracy / %)

FMNIST ∆Accuracy/% – -1.48 -1.71 -1.68

DFME 58.63 (57.68) 16.10 (14.94) 48.71 (47.62) 51.52 (51.02)

Baseline MAZE 71.47 (70.21) 58.36 (57.83) 68.50 (67.93) 70.62 (69.53)

ActiveThief 78.07 (75.37) 65.92 (64.37) 78.13 (75.42) 78.09 (75.39)

DFME 94.32 (88.44) 29.51 (28.31) 62.03 (61.27) 88.55 (85.26)

MEBooster MAZE 96.50 (89.50) 72.83 (71.74) 89.96 (84.31) 90.18 (85.57)

ActiveThief 86.28 (82.80) 72.89 (71.76) 79.63 (76.15) 84.46 (82.75)

CIFAR10 ∆Accuracy/% – -1.78 -1.03 -1.13

DFME 91.35 (87.18) 79.52 (78.37) 87.13 (96.17) 89.68 (87.92)

Baseline MAZE 68.82 (67.54) 61.02 (60.01) 62.51 (61.42) 64.00 (62.95)

ActiveThief 83.54 (82.13) 83.39 (82.06) 81.21 (80.63) 79.16 (78.04)

DFME 98.99 (90.13) 88.05 (87.73) 95.55 (89.46) 94.00 (88.41)

MEBooster MAZE 82.54 (80.68) 65.04 (63.83) 77.51 (76.47) 78.19 (77.03)

ActiveThief 87.86 (86.44) 85.95 (83.61) 84.37 (82.64) 85.96 (83.63)

We speculate the reason as the sample complexity theory about model recovery arises

from synthetic training data [122]. On the other hand, as observed in Section 5.3.3,

ActiveThief, utilizing real-life data, learns tasks rather than models, offering better

resistance to SNE defense. Additionally, compared to strategies like GRAD2 and

adaptive misinformation with higher perturbation distance (ϵ = 0.5), SNE is more

effective in most attacks, reducing fidelity by up to 64.81% in the DFME attack on

FMNIST models, versus a maximum of 32.29% for its counterparts.

6.2 A Resilient Black-boxWatermark Against Model

Extraction Attacks

Black-box model watermarking is a promising forensic approach for verifying own-

ership of copy models obtained through MEA, as it embeds tasks as markers which

can be potentially transferred during the extraction process. Existing works [50, 69]

adopt backdoor techniques as watermark tasks, and enhance their transferability by

improving their entanglement with domain tasks. Backdoor techniques involve modi-

70

6.2. A Resilient Black-box Watermark Against Model Extraction Attacks

fying domain samples with artifacts (e.g., triggers) to create watermark samples, and

prompting the model to classify these samples into a non-source label. Later, the

model’s behavior on this pre-defined task then serves as a marker to assert owner-

ship. On the other hand, numerous studies [13, 63, 64, 67, 68, 103, 121, 126] focus

on removing backdoors from the models. If watermarks can be easily stripped from

models, their reliability becomes questionable, regardless of how prominent they ap-

pear originally. As a result, the ongoing “arms race” between backdoor embedding

and removal techniques [113] has raised concerns about the resilience of black-box

watermarks against removal attacks. Figure 6.1 illustrates this threat, where ad-

versaries may remove watermarks from stolen substitute models to evade ownership

verification before deployment.

This study investigates the resilience of black-box watermarks against re-

moval attacks. We first reveal that existing backdoor removal approaches are not

suited for evaluating the resilience of watermarks, as these watermarks are inten-

tionally crafted to entangle with domain tasks across both input and representation

spaces [50, 69], making them difficult to decouple using current backdoor removal

methods. In fact, techniques such as reversing watermark samples [13, 103], pruning

suspected neurons [67, 68], or learning-induced forgetting [63, 126] all fall short in

removing these highly entangled watermarks.

As a result, prior works [50, 69] that rely on these removal methods to test water-

mark resilience create a false sense of security. In response, we propose Watermark

Removal attacK (WRK), a systematic framework that adaptively breaks state-of-

the-art watermarks, even when they are deeply entangled with domain tasks. WRK

introduces a new perspective that decouples backdoor-type watermarks by exploit-

ing a fundamental distinction between the model’s behavior on domain samples and

their artifact-added counterparts. This distinction reveals that the model recognizes

watermark tasks through sample-wise artifacts, while the main task relies on real-life

features. By disrupting the model’s capability of artifact recognitions, WRK becomes

71

Chapter 6. Defense Methods Against Model Extraction Attacks

Domain Dataset

Watermark

Dataset

Steal by MEA Watermark

Removal

Victim Model Substitute

Model

Embed

Does it infringe my

model’s ownership?

Verify via Behavior on

Watermark Task

Black-boxBlack-box

Stealer

Model Owner

Figure 6.1: Black-box model watermarks defend against model extraction attacks
(MEAs) but are threatened by watermark removal attacks.

an effective tool to evaluate the true resilience of black-box watermarks.

To address the prevalent low resilience in existing backdoor-type watermarks, we

introduce a novel Class-Feature Watermarks (CFW). Instead of relying on sample-

wise artifacts, CFW constructs artificial attributes at the class level, making it more

resistant to WRK while ensuring clear task distinction–a critical factor in preventing

false ownership claims. However, using a crafted class composed of cross-domain

samples alone is insufficient to defend against MEA due to two key challenges. First,

such classes lack inherent representation entanglement (RE) with domain tasks, which

limits their transferability through MEA. To address this, we propose a quantitative

metric to guide RE during the watermark embedding to improve MEA transferability.

This optimization also offers a resilience bonus, as stronger RE makes the watermark

more resistant to learning-induced removal and neuron pruning attacks. Second,

the high feature variance among CFW samples undermines the watermark’s stability

during MEA. This instability occurs because MEA-induced distortions impact CFW

samples diversely, resulting in dispersed deformations in their representations. To

enhance stability, we improve the resilience of pairwise distance among CFW samples,

promoting compact MEA-post clustering and ensuring that the watermark remains

robust even after MEA.

Roadmap. The rest of this section details the proposed watermark removal attack

and the design of resilient watermarks. Section 6.2.1 presents the proposed watermark

72

6.2. A Resilient Black-box Watermark Against Model Extraction Attacks

removal framework, WRK, followed by an evaluation of watermark resilience using

WRK in Section 6.2.2. Section 6.2.3 outlines the principles for designing resilient

watermarks against MEA, while Section 6.2.4 details the construction of Class-Feature

Watermarks (CFW). A comprehensive evaluation of CFW is provided in Section 6.3.

6.2.1 Watermark Removal Attack (WRK)

This section elaborates on the Watermark Removal attacK (WRK) framework to

uncover vulnerabilities in black-box model watermarks. To achieve this, we introduce

a novel perspective for decoupling SOTA watermarks [50, 69], which overcomes the

challenge posed by their entanglement with domain tasks. Our analysis reveals that

these watermarks embed artifacts (e.g., triggers, noise) into domain samples, which

the model relies on to recognize the watermark task. In contrast, it relies on real-life

features to perform the domain task. By disrupting the model’s recognition of these

artifacts, WRK effectively strips the watermark task.

While WRK and reversion-type removal methods [103, 112] both target sample-level

artifacts, their principles differ. Reversion-type methods aim to reconstruct water-

mark samples, making them inefficient for highly entangled watermark tasks in the

input space [113]. In contrast, WRK eliminates the model’s abnormal attention to

artifacts using adaptive techniques and, when appropriate, integrates reversion-based

methods to achieve its goals.

WRK adapts its approach based on artifact types, categorizing sample-wise artifacts

into noise-based and non-noise-based types. For noise-based artifacts [50], subtle

noise is added to samples, positioning them near decision boundaries. This occurs

because watermark samples are relabeled after noise injection, causing the boundary

to pass between watermark and source samples. Thus, they are sensitive to bound-

ary perturbations. For non-noise-based artifacts, WRK adapts its strategy based on

whether existing reversion-type methods (e.g., NC [103]) can detect the artifacts. If

73

Chapter 6. Defense Methods Against Model Extraction Attacks

If detection is effective, WRK delegates the removal to classic methods. Otherwise,

it suggests that the watermark artifacts are highly entangled with domain samples

in the input space, as seen in compositional samples [69, 113]. In such cases, WRK

corrects the model’s attention on these artifacts. This approach leverages the ob-

servation that, although these artifacts are harder to distinguish from domain data,

the model’s attention to them is less robust compared to more straightforward and

uniform triggers.

To distinguish artifact types, WRK uses two flags: the adversarial flag (Γadv), which

indicates whether the artifacts are noise-based, and the trigger flag (Γt), which deter-

mines whether the artifacts can be decoupled by reversion-type methods. If neither

condition is met, WRK executes a model attention correction step; otherwise, this

step is unnecessary.

Overview. As shown in Algorithm 3 presents, WRK starts with deciding the boolean

value of two flags, Γt and Γadv. Off-the-shelf Backdoor Detection (line 1) sets Γt.

Next, the function Adversarial Vulnerability Detection (line 2) calculates the average

minimal noise that causes misclassification on a small domain dataset Dd. If the

mean of the detected noise n is below the expected threshold n̄, Γadv is set to true,

indicating that the model is vulnerable to adversarial attacks [125] and likely trained

on noise-based watermark tasks. Mathematically,

n = argminn {(arg maxF (x⊕ n)) ̸= y} , ∀(x, y) ∈ Dd, (6.2)

where the symbol ⊕ denotes element-wise addition. Γadv is set to True if E[n] < n̄;

otherwise, it is set to False. Here, E represents as the expectation across all elements.

Next, if Γt is True, the Backdoor Removal method (line 4) removes the watermark

task and outputs the WRK-attacked model Fwrk. If Γt is False, the process proceeds

to Decision Boundary Perturbation (DBP) (lines 6–10). In DBP, a small proportion

α of the domain dataset (D′
d) is randomly selected from Dd to construct the boundary

74

6.2. A Resilient Black-box Watermark Against Model Extraction Attacks

poisoning dataset Dp, where each sample x is perturbed with noise δx of magnitude ϵ

which is generated using FGSM [59], and assigned a random label e. WRK then fine-

tunes the model F on Dp and Dd to obtain Fwrk. If both Γt and Γadv are False, WRK

applies Model Attention Correctness (MAC) using the Data-Augmented Fine-Tuning

method (line 13) to produce the final model.

Algorithm 3 Black-box Watermark Removal Attack (WRK)

Input: Target model F , domain subset Dd, ratio α, adversarial noise magnitude ϵ
Output: WRK-attacked model Fwrk

1: Γt ← Backdoor Detection(F , Dd);
2: Γadv ← Adversarial Vulnerability Detection(F , Dd);
3: if Γt = True then
4: Fwrk ← Backdoor Removal(F , Dd);
5: else
6: ***Decision Boundary Perturbation (DBP)***\
7: Set D′

d ⊂ Dd, where |D′
d| = α|Dd|;

8: δx ← FSGM(F, x, ϵ), for x ∈ D′
d;

9: Dp ← {(x⊕ δx, e)}, for x ∈ D′
d, e ∼ Uniform({k}K1);

10: Fwrk ←Fine-tuning(F , Dp ∪Dd);
11: if Γt = False & Γadv = False then
12: ***Model Attention Correction (MAC)***\
13: Fwrk ← Data-augmented Fine-tuning(Fwrk, Dd).
14: end if
15: end if

6.2.1.1 Decision Boundary Perturbation (DBP)

Perturbing the decision boundary disrupts the model’s attention to noise-type ar-

tifacts, as such samples are inherently positioned near the boundary. A promising

approach to to this is adversarial training (AT) [59]. However, with limited access to

domain samples, AT achieves only slight boundary perturbations, as shown in Fig-

ure 6.2b. This occurs because adversarial samples with clean labels exert a repulsive

force that pushes the decision boundary away, resulting in weak constraints that may

fail to perturb the boundary near the watermark samples effectively.

To achieve thorough watermark removal, WRK assigns “dirty” labels to adversar-

75

Chapter 6. Defense Methods Against Model Extraction Attacks

Original decision boundary Decision boundary Watermark Samples Adversarial Samples

3

2

1

1

1

1

1

3
3

3
3

2

2

2
2

21

1
2

3

2 3

2

1

1

1

1

1

3
3

3
3

2

2

2
2

21

1
1

1

3

3

1

1

1

1

3
3

2

2

2

2
1

1
2

3

2 3

1

1

1

1

3
3

2

2

2

2

1

1
1

1

3

(a) DBP (in WRK)

Original decision boundary Decision boundary Watermark Samples Adversarial Samples

3

2

1

1

1

1

1

3
3

3
3

2

2

2
2

21

1
2

3

2 3

2

1

1

1

1

1

3
3

3
3

2

2

2
2

21

1
1

1

3

3

1

1

1

1

3
3

2

2

2

2
1

1
2

3

2 3

1

1

1

1

3
3

2

2

2

2

1

1
1

1

3

(b) AT [59]

Original decision boundary

Decision boundary

Watermark Samples

Adversarial Samples

3

2

1

1

1

1

1

3
3

3
3

2

2

2
2

21

1
2

3

2 3

2

1

1

1

1

1

3
3

3
3

2

2

2
2

21

1
1

1

3

3

1

1

1

1

3
3

2

2

2

2
1

1
2

3

2 3

1

1

1

1

3
3

2

2

2

2

1

1
1

1

3

Figure 6.2: Comparison of decision boundary perturbation (DBP) in WRK and adver-
sarial training (AT). The numbers indicate annotated labels, with white representing
the original label and red indicating the reassigned label by DBP or AT.

ial samples. As illustrated in Figure 6.2a, WRK applies more aggressive boundary

perturbations, exerting an attractive force that pulls the decision boundary through

adversarial samples and their source counterparts. To preserve model performance,

WRK strictly limits the number of poisoned adversarial samples to 20% of Dd, the

small domain dataset collected by adversaries, as detailed in Section 6.2.2.

6.2.1.2 Model Attention Correction (MAC)

For highly entangled non-noise-type artifacts, we hypothesize that the model’s atten-

tion to artifacts differs from its focus on domain data where real-life features dominate.

This hypothesis is supported by the Grad-CAM [87] heatmaps of the watermarked

model, as shown in Figure 6.3b, which indicates that the model focuses on the compo-

sitional lines. Thus, this type of artifact can be perturbed by redirecting the model’s

attention back to real-life features.

To correct the attention, WRK employs data augmentation techniques to fine-tune

the watermarked model, i.e., Data-augmented Fine-tuning (line 13 in Algorithm 3).

Taking the image classification as an example, although certain data augmentation

techniques (e.g., cropping and horizontal flipping) are typically used in the target

model’s training, WRK introduces additional augmentation, specifically random ro-

76

6.2. A Resilient Black-box Watermark Against Model Extraction Attacks

(a) Compositional watermark samples

(b) Heatmaps of the watermarked model

(c) Heatmaps of the WRK-attacked watermarked model

Figure 6.3: Instances of compositional watermark samples [65, 69] and their heatmaps
before and after WRK removal.

tation and random erasing [123], to strengthen the model’s attention on objects. The

effectiveness of this approach is demonstrated by the results in Figure 6.3c.

6.2.2 Experimental Evaluation of Watermark Resilience against

WRK

In this section, WRK is used to experimentally test the resilience of black-box water-

marks. Additionally, it is compared with various existing removal methods.

6.2.2.1 Experimental Setup

Black-box Watermark Benchmarks. We benchmark four black-box model wa-

termarks against MEAs: EWE [50]1, MBW [55]2, MEA-Defender [69]3, and a typical

1https://github.com/cleverhans-lab/entangled-watermark
2https://github.com/matbambbang/margin-based-watermarking
3https://github.com/lvpeizhuo/MEA-Defender

77

https://github.com/cleverhans-lab/entangled-watermark
https://github.com/matbambbang/margin-based-watermarking
https://github.com/lvpeizhuo/MEA-Defender

Chapter 6. Defense Methods Against Model Extraction Attacks

backdoor method, Blend [23]4. Since some methods [55] specifically rely on image

generation techniques, all experiments are conducted on the CIFAR-10 [57] dataset

using ResNet18 as the model. All experiments follow their original frameworks with

optimized settings. For EWE and Blend, the watermark datasets comprise 5% and

3% of the training data, respectively, to balance model utility and watermark effec-

tiveness. MEA-Defender and MBW follow their original setups, using 10% and 10

samples, respectively.

WRK Settings. The reversion-type method integrated into WRK is NC [103]. NC

first reverses potential triggers and identifies the class assigned to the watermark. If

a watermark class is detected, the trigger flag Γt is set to True, and NC unlearns the

watermark task using the reversed triggers. If no class is detected, WRK proceeds

to the DBP and MAC modules. The threshold n̄ for Γadv is empirically set to 4. In

all attacks, the domain data collected by the adversary is set to 5% of the training

dataset. Additionally, the impact on model utility is kept within a 2% degradation

threshold whenever possible.

Model Extraction Attacks (MEAs). Considering the threat model assumes the

adversary prepares a limited number of domain samples for removal attacks, we eval-

uate two MEA benchmarks: the MExMI framework [108], which emphasizes domain

samples to enhance MEA performance, and ActiveThief [76]. To ensure meaningful

attack results, the query data pool is supplemented with out-of-domain datasets from

ImageNet [29]. Both methods use a query budget of 25,000, consistent with their

original scales.

Metrics. We evaluate model utility using test accuracy (ACC), watermark effective-

ness with watermark success rate (WSR), and the attack performance of MEA using

fidelity (FID). The calculations for these metrics are as follows:

Accuracy (ACC). For the model F and the test dataset Dt,

4https://github.com/Unispac/Fight-Poison-With-Poison

78

https://github.com/Unispac/Fight-Poison-With-Poison

6.2. A Resilient Black-box Watermark Against Model Extraction Attacks

ACC(F,Dt) =
1

|Dt|
∑

(x,y)∈Dt

1(F (x) = y). (6.3)

Fidelity (FID). For the copy model F ′ and the victim model F ,

FID(F ′, F) =
1

|Dt|
∑

(x,y)∈Dt

1(F ′(x) = F (x)). (6.4)

Watermark Success Rate (WSR). For the model F and the watermark dataset

Dw and the watermark label yw,

WSR(F,Dw|yw) =
1

|Dw|
∑

x∈Dw

1(F (x) = yw). (6.5)

Implementation Details. All experiments are repeated 5 times. The server is

running a Windows system with two NVIDIA 4090 GPUs.

6.2.2.2 Resilience Evaluation of Existing Black-box Watermarks against

WRK

Table 6.2 summarizes the performance of existing black-box watermarks and their

resilience under WRK attacks. The results show that WRK reduces watermark suc-

cess rate (WSR) to levels below those of non-watermarked models, demonstrating

that existing watermarks are effectively removed from both victim models and their

MEA-generated substitutes, despite their high MEA transferability (e.g., in EWE

and MEA-Defender). Additionally, WRK has minimal impact on model performance,

with a maximum accuracy drop of only 1.24% on MEA-Defender.

Explanation of Experimental Results of MBW. The model’s ACC in the MBW

experiments increases slightly after the WRK attack, rising from 73.77% to 74.50%

for victim models. This is because MBW is incompatible with data augmentation

and excludes it, which impacts the model’s performance. In contrast, both PDB and

79

Chapter 6. Defense Methods Against Model Extraction Attacks

Table 6.2: Performance of the State-of-the-art Existing Black-box Watermarks
against WRK

Watermarks Non-watermark Victim Model

Removal None None WRK

Metrics (%) ACC WSR ACC WSR ACC WSR

EWE [50] 93.55 19.95 91.98 99.88 91.28 2.62

MBW [55] 93.55 10.00 73.77 100.00 74.50 10.00

MEA-Defender [69] 93.55 0.96 85.93 96.50 84.69 9.40

Blend [23] 93.55 1.53 93.55 100.00 92.84 2.22

Watermarks Substitute Model

Removal Model

Extraction

None WRK

Metrics (%) ACC FID WSR ACC FID WSR

EWE [50]
MExMI 89.15 91.52 99.95 88.51 89.97 5.88

ActiveThief 83.77 87.16 99.92 84.68 84.05 5.35

MBW [55]
MExMI 71.32 86.99 10.00 71.11 85.69 10.00

ActiveThief 70.58 84.99 10.00 71.27 83.11 10.00

MEA-Defender [69]
MExMI 82.15 84.31 99.20 81.35 84.15 4.76

ActiveThief 78.08 81.64 99.14 80.79 80.58 6.86

Blend [23]
MExMI 89.97 91.57 42.96 88.15 90.02 2.81

ActiveThief 86.88 89.81 39.44 86.94 88.32 1.49

MAC in WRK utilize data-augmented learning, which improves ACC.

6.2.2.3 Comparison of WRK and Existing Removal Methods

This section compares WRK with six alternative methods for removing black-box

watermarks, including both existing removal approaches and Adversarial Training

(AT) [59]. In NC [103], the anomaly index threshold is set to detect at least one

suspicious class, ensuring that unlearning is triggered. Table 6.3 presents the removal

results on victim models, which show stronger watermark resilience than substitute

models, whose resilience may be affected by MEA-induced distortions (Table 6.4).

Furthermore, we introduce the watermark decoupling curves in Figure 6.4 to assess

the trade-off between watermark success rate (WSR) and model accuracy (ACC)

during removal. These curves illustrate how model accuracy degrades in relation to

the reduction in WSR during removal attacks.

From Table 6.3, we observe that EWE and MEA-Defender demonstrate resilience

against alternative methods. Only isolated attacks cause clear WSR reductions. For

80

6.2. A Resilient Black-box Watermark Against Model Extraction Attacks

Table 6.3: Performance of Benchmark Removal Attack on Victim Models

Model Accuracy (ACC) / %

Removal

Attack
None

NC

[103]

I-BAU

[112]

CLP

[121]

Fine pruning

[67]

NAD

[63]

AT

[59]

EWE 91.98 91.99 90.35 90.17 89.92 91.80 91.23

MBW 73.77 71.31 73.15 76.56 53.50 71.90 75.06

MEA-Defender 85.93 86.23 85.08 84.75 83.70 84.75 85.90

Blend 93.55 92.84 92.15 91.62 91.52 91.56 92.25

Watermark Success Rate (WSR) / %

Removal

Attack
None

NC

[103]

I-BAU

[112]

CLP

[121]

Fine pruning

[67]

NAD

[63]

AT

[59]

EWE 99.88 99.96 99.97 95.60 99.99 99.98 36.23

MBW 100.00 0.00 0.00 60.00 90.00 10.00 10.00

MEA-Defender 96.50 47.68 76.00 95.60 89.54 74.62 81.44

Blend 100.00 2.22 13.24 64.24 89.14 76.43 85.02

Table 6.4: Benchmark Removal Attack Performance on Substitute Models

Model Accuracy (ACC) / %

Removal

Attack
None

NC

[103]

I-BAU

[112]

CLP

[121]

Fine pruning

[67]

NAD

[63]

AT

[59]

EWE 89.15 88.99 88.35 75.46 68.33 87.75 88.85

MBW 71.32 70.33 75.16 72.56 67.67 74.35 75.33

MEA-Defender 82.15 82.13 83.56 76.25 63.47 83.05 81.90

Blend 89.97 88.15 88.33 88.17 71.66 88.17 88.95

Watermark Success Rate (WSR) / %

Removal

Attack
None

NC

[103]

I-BAU

[112]

CLP

[121]

Fine pruning

[67]

NAD

[63]

AT

[59]

EWE 99.95 96.67 99.15 99.58 99.98 81.67 33.33

MBW 10.00 0.00 0.00 0.00 10.00 0.00 0.00

MEA-Defender 99.20 75.54 86.67 97.40 98.35 62.10 81.67

Blend 39.44 1.49 35.85 20.75 69.81 41.53 45.28

instance, EWE’s WSR drops from 100% to 36.23% under Adversarial Training (AT).

Figure 6.4 illustrates the watermark decoupling curves for EWE and MEA-Defender

under various removal attacks. Notably, WRK exhibits the steepest curve, highlight-

ing its ability to reduce WSR while causing minimal ACC loss drastically. Although

AT and NC also show steep curves for EWE and MEA-Defender, respectively, their

final WSR remains above 35%. Their curves do not extend further along the hor-

izontal axis, as their effectiveness depends on the precision of reversing watermark

triggers or adversarial samples rather than the intensity of the learning process, thus

having a limited impact on ACC.

81

Chapter 6. Defense Methods Against Model Extraction Attacks

0 5 10 15
Accuracy Degradation / (%)

0

25

50

75

100
W

SR
 /

(%
)

(a) EWE

0 5 10 15
Accuracy Degradation / (%)

0

25

50

75

100

W
SR

 /
(%

)

(b) MEA-Defender0 5 10 15

0.04

0.02

0.00

0.02

0.04

I-BAU
CLP

Fine pruning
NAD

NC
Adversarial Training

WRK (Ours)
Decoupling Line

Figure 6.4: Watermark decoupling curves of victim models. On the decoupling line,
ACC and WSR degrade equally.

6.2.2.4 Evaluation of WRK Variants

We separately evaluate the threats of WRK’s two novel modules, Decision Boundary

Perturbation (DBP) and Model Attention Correction (MAC), against various black-

box watermarks. The ablation study tests two WRK variants: DBP only and MAC

only, each executing only one module while omitting the other. Table 6.5 presents

their experimental results, with the best removal outcomes highlighted in bold. The

findings reveal the following patterns. First, for EWE and MEW, both the DBP

only variant and WRK achieve the best removal performance. This is because, in

WRK, these two triggers activate the adversarial flag (Γadv = True). As a result,

WRK executes only DBP, which proves highly effective. Second, for MEA-Defender,

executing DBP alone yields suboptimal results, and MAC is required to disrupt the

model’s attention to its artifacts. Finally, for Blend backdoors, since they activate

the trigger flag (Γt = True), neither DBP nor MAC is executed. Instead, the task is

entirely handled by the off-the-shelf backdoor removal methods.

82

6.2. A Resilient Black-box Watermark Against Model Extraction Attacks

Table 6.5: Performance of WRK Variants

Variants DBP only MAC only WRK

Metrics (%) ACC WSR ACC WSR ACC WSR

EWE 91.28 2.62 91.81 47.81 91.28 2.62

MBW 74.20 10.00 71.94 10.00 74.20 10.00

MEA-Defender 83.28 85.02 84.60 13.98 84.69 9.40

Blend 92.84 2.22 92.84 2.22 92.84 2.22

6.2.3 Principle of Resilient Black-box Model Watermarks against

MEA

Given the vulnerability of existing watermarks to WRK, this section explores con-

structing a resilient black-box watermark to defend against MEA infringement while

withstanding removal attacks. First, we discuss how to enable any black-box water-

mark to mark substitute models through MEA. Then, we propose a watermarking

scheme to resist removal attacks.

6.2.3.1 Impact of Maximum Representation Orthogonality on MEA Trans-

ferability

The latest insights suggest that for a watermark task to be transferred through MEA,

its representations must be entangled with those of domain tasks [50, 69], a concept

known as representation entanglement (RE). While this observation has been noted,

no quantitative metric has been established. Such a metric could guide any black-box

watermark tasks to achieve high MEA transferability. To bridge this gap, this section

presents a quantifiable metric for RE.

The RE principle holds based on the assumption that the representations of the

MEA query dataset are sufficiently similar (i.e., entangled) to those of the domain

task to ensure high-fidelity extraction results. In other words, for a watermark task to

achieve high MEA transferability, its representations should be entangled with those

of the MEA query dataset. Furthermore, this entanglement can approximate the RE

83

Chapter 6. Defense Methods Against Model Extraction Attacks

between the watermark and domain tasks.

According to this insight, there exists a scenario where Model Extraction Attacks

(MEAs) will ultimately fail, and this scenario can be described quantitatively. This

occurs when, at a certain layer in the model, the representations of query samples

and task samples are entirely orthogonal, i.e., their cosine distance is 1. We provide a

simplified explanation for this on a linear model. Assume a linear model’s parameters

are θ ∈ Rm×d, and it undergoes training on a domain dataset D = X × Y (where

Y denotes representations), where X ∈ Rb×d and Y ∈ Rb×m. The training yields

the relationship: Y T = θXT . The goal of MEA is to reverse the parameters θ using

queries. Assume the adversary queries the model with a sample set Xq and obtains

query results: Y T
q = θXT

q . We summarize the failure condition of this MEA in

Theorem 4.

Theorem 4 (MEA Failure Condition). If the cosine distance satisfies

1− cosine(yT
q ,y

T) = 1, (6.6)

for all queried representations yT
q ∈ Y T

q and all model task representations yT ∈

Y T , then MEA cannot replicate the victim model’s functionality using queried pairs

XT
q × Y T

q .

Here, cosine() computes the cosine of the smaller angle between two vectors.

Proof. Assuming XT
q has a pseudoinverse (XT

q)
−1, the substitute model’s parameters

θmea estimated by queries are

θmea = Y T
q (XT

q)
−1. (6.7)

The performance of θmea on a domain sample xT ∈ X is

yT
mea = θmeax

T = Y T
q (XT

q)
−1xT . (6.8)

84

6.2. A Resilient Black-box Watermark Against Model Extraction Attacks

The right term in Equation 6.8 performs a weighted sum of the columns of Y T
q , i.e.,

yT
mea = [yT

q1, . . .][w1, . . .]
T =

∑
wiy

T
qi, (6.9)

where yT
qi is the i-th column in Y T

q and wi is a weight scalar. Since any yT ∈ Y T is

orthogonal to all yT
q ∈ Y T

q , it cannot be equal to any yT , i.e., yT
mea ̸= y.

Theorem 4 indicates that if the representations of the query dataset are entirely

orthogonal to domain representations, MEA will fail and get a fidelity of zero. Con-

versely, we infer that the greater their cosine similarity, the higher the MEA fidelity

achieved.

Maximum Representation Orthogonality. Based on Theorem 4, we propose that

maximum representation orthogonality across neural layers between the watermark

and domain tasks reflects the watermark’s ability to achieve high MEA transferability,

as it captures the bottleneck for watermark transmission. Similar to Theorem 4,

orthogonality is measured by cosine distance. We use this to define the metric O⊥ for

quantifying RE. A large O⊥ indicates a layer where the watermark task is difficult to

transfer in MEA, while a small O⊥ suggests higher MEA transferability. Formally,

O⊥ is defined as:

O⊥(F ;Dw, D) = max
l

1− cosine(E(Fθl(Dw)),E(Fθl(D))), (6.10)

where D and Dw are the domain and the watermark dataset separately. Here, rep-

resentation centroid is used rather than individual samples. This is due to the high

dimensionality and complexity of the representation space, where sample-wise com-

parisons are insufficient to capture representation similarity.

Experiments. We validate the relationship between maximum representation or-

thogonality (O⊥) and MEA transferability across various watermark and backdoor

methods. MEA transferability is measured by the watermark success rate (WSR) in

the copy model (see Equation 6.5). In addition to the watermark benchmarks, we

85

Chapter 6. Defense Methods Against Model Extraction Attacks

0.4 0.5 0.6 0.7 0.8 0.9
Maximum Representation Orthogonality

0
20
40
60
80

100

Su
bs

tit
ut

e
M

od
el

 W
SR

 (%
)

BadNet(0.1)

BadNet(0.003)

Blend(0.003)

EWE
MEADefender

MBW

Figure 6.5: WSR of the copy (substitute) model versus the maximum representation
orthogonality. For BadNet and Blend, the values in parentheses indicate their poi-
soning rates.

include two backdoor methods, BadNet [41] and Blend [23], to observe the impact

of watermark sample types on MEA transferability. The MEA method used is Ac-

tiveThief [76]. Detailed settings are provided in Section 6.2.2.1. Figure 6.5 shows

a significant negative correlation between O⊥ and the copy model’s WSR. Once O⊥

exceeds 0.685, WSR drops sharply for backdoor-type tasks. Interestingly, the type of

watermark data has minimal impact on WSR, as even sticker-type samples in BadNet

achieve high MEA transferability when its O⊥ is sufficiently small.

6.2.3.2 Shifting to Class-level Artifacts for Higher Resilience

Section 6.2.1 shows that sample-level artifacts are the primary vulnerability of current

black-box watermarks against WRK. Therefore, a resilient watermark needs to avoid

relying on such artifacts while ensuring the uniqueness of watermark tasks to prevent

false ownership claims. To achieve this, we propose creating artifacts at the class

level, and introduce theClass-FeatureWatermark (CFW). This approach also shows

promise in resisting existing removal attacks. First, it inherently resists reversion-

based removal [103, 112] due to the absence of sample-level artifacts. Second, when

its representation entanglement (RE) is strengthened, it gains additional resistance

to learning-induced forgetting [63, 126] and neuron pruning removal [67, 121], which

86

6.2. A Resilient Black-box Watermark Against Model Extraction Attacks

we will discuss in Section 6.2.4.2.

The straightforward form of CFW labels samples from multiple out-of-domain (OOD)

classes as a single watermark class. Its key benefits include low computational

cost and task domain independence, which make it a practical alternative to high-

resolution generation [125]. Its class-level artifacts stem from the fact that this class

does not exist in reality. To prevent false ownership claims, the CFW dataset must

ensure that a non-watermark model neither classifies these samples as a single cate-

gory nor maps them to clustered representations. Instead, these samples should be

randomly scattered across representation spaces in the final layer. To achieve this, we

reference a pre-trained model to select watermark samples, following the steps in [50].

6.2.4 Class-Feature Watermark (CFW)

6.2.4.1 Overview

Section 6.2.3.2 suggests that Class-Feature Watermarks (CFWs), which leverage class-

level artifacts, hold promise as a resilient watermarking solution against Model Ex-

traction Attacks (MEAs). However, to ensure the transfer of an effective and re-

silient watermark to a copy model, both its MEA transferability, guaranteed by

representation entanglement (RE) with domain tasks, and its stability (defined in

Section 3.1.3) during MEA must be achieved.

Figure 6.6 outlines the overall framework of CFWs, comprising two primary phases:

embedding and verification. The embedding phase involves two key steps. First, the

watermark dataset is co-trained with the domain dataset to embed the watermark

into the target model. Second, a fine-tuning process optimizes the representation

entanglement and stability of the watermark task. In the verification phase, the

CFW leverages class-level properties, where the model’s clustering behavior on the

watermark task provides stronger evidence of its presence than individual sample

87

Chapter 6. Defense Methods Against Model Extraction Attacks

① Train the Target Model

Watermark Class

Domain Classes

① Perform Model Extraction
Attacks (MEA)

② Remove Watermark (e.g.,
WRK)

Model Owner
(Defender)

Model Thief (Adversary)

Suspected Model 𝐹!

Victim Model 𝐹!

Label=𝒚𝒘 Query

② Fine-tune the Model
Watermark
Representations

Domain Representations

Fine-tune

Verify Class-level Properties

Query

Count

Predicted Label

Dim 1

Dim 2

Verify Clustering
Phenomenon

Label=𝟏 2 3

Embedding

Verification

Figure 6.6: Overall framework of Class-Feature Watermark (CFW).

performance [50, 69].

6.2.4.2 Enhance Representation Entanglement (RE) and Stability of CFW

To enhance representation entanglement (RE) and stability, the fine-tuning phase em-

ploys two optimization strategies, both implemented by introducing additional terms

in the objective function. The first strategy is guided by maximum representation or-

thogonality (O⊥), introduced in Section 6.2.3.1. This process reduces representation

orthogonality across all layers (i.e., increases cosine similarity). Thus, we refer to it

as Representation Similarity (RepS) Optimization. The second strategy improves

CFW stability by preserving intra-class representation clustering during MEA. With-

out this intervention, MEA distortions may degrade CFW clustering, which weak-

ens the watermark’s resilience in the copy model. This optimization is achieved by

minimizing the Projection of pair-wise Distance between watermark samples onto

Deformation Directions (PD3), referred to as PD3 optimization. Here, deformation

refers to the distortions that watermark representations may undergo during MEA.

As a result, the fine-tuning objective function consists of three components: the

criterion loss, the RepS loss, and the PD3 loss. The criterion loss preserves the

domain task performance and watermark success rate (WSR) by maintaining the

domain logits and watermark labels. It uses the first-step model (i.e., the step ①

in Figure 6.6), F (T), as a teacher model to provide initial domain task logits. For a

88

6.2. A Resilient Black-box Watermark Against Model Extraction Attacks

domain dataset D and a watermark dataset Dw, its formulation is:

LCri =
1

|D|
∑
x∈D
C(F (x), F (T)(x)) +

1

|Dw|
∑

(x,y)∈Dw

C(F (x), y), (6.11)

where C is the loss function, e.g., cross entropy [19].

The RepS loss is the sum of representation centroid cosine similarities across all layers.

For D and Dw, the centroids of their representations at layer l are cwl = E(Fθl(Dw))

and cdl = E(Fθl(D)). Thus, RepS loss is

LRepS =
∑L

l=0
cosine(cwl , cdl). (6.12)

The third term, PD3 loss, is calculated as follows. let the set [C] := [C1, · · ·] represent

deformation directions, whose estimation will be detailed in Section 6.2.4.2.2. First,

the set of pair-wise representation distances d for the watermark dataset is computed,

where the i× j-th element di×j is:

di×j = FθL(xi)− FθL(xj), i, j ∈ {|Dw|}. (6.13)

where xi/j ∈ Dw. Consequently, the PD
3 loss is defined as the sum of the projections

of d onto [C],

PD3 =
1

|d|
∑

C∈[C]

∑
d∈d

⟨d,C⟩
||C||

. (6.14)

Combining the three losses, the objective function of fine-tuning is

L = LCri − λ1LRepS + λ2PD
3, (6.15)

where λ1 > 0 and λ2 > 0 are the coefficients for the RepS and PD3 losses, respectively.

In the following sections, we explain the rationale behind these two optimization

strategies.

6.2.4.2.1 Representation Entanglement (RE) versus RepS Optimization

Intuitively, CFWs likely rely less on RE with domain tasks for MEA transferability,

89

Chapter 6. Defense Methods Against Model Extraction Attacks

as their construction is similar to that of domain classes. This similarity suggests

they can achieve RE with the MEA query set to enable transferability like domain

classes. However, due to the limited amount of watermark data, this assumption may

not always hold. Strengthening RE with domain tasks remains essential for CFWs.

Existing work [50] improves RE by incorporating Soft Nearest Neighbor Loss (SNNL) [56]

during watermark sample construction and model training. However, SNNL is sub-

optimal for CFWs for two reasons. First, CFWs do not include sample-level con-

struction. Second, SNNL jointly optimizes the model and temperature parameters,

making it challenging to balance RE and model utility. For example, SNNL causes

performance degradation exceeding 1.5% in EWE. In contrast, RepS optimization

leverages the quantifiable metric (O⊥) to guide RE explicitly during fine-tuning.

Resilience Bonus of RepS. Learning-based removal methods, such as NAD [63]

and WRK, pose the primary threat to CFWs by inducing catastrophic forgetting of

watermark features when RE with domain tasks is insufficient. In contrast, neuron

pruning methods [67, 121], which rely on finer neuron-level separability, are more

easily countered by stronger RE. Therefore, the enhanced RE from RepS optimization

provides a critical resilience ”bonus” against these removal methods.

6.2.4.2.2 Stability versus PD3 Optimization CFWs are inherently prone to

instability during MEA, which impacts their MEA-post resilience. This instability

arises from the high feature variance in the CFW dataset, which amplifies the dif-

ference of MEA-induced deformations across watermark samples and results in poor

representation clustering in the MEA-post copy model.

To address this issue, we first analyze how MEA-induced deformations impact CFW

representations. De-facto MEA learns to replicate the domain and watermark tasks,

where the two interact within representation spaces. In these spaces, the deformation

direction applied to the watermark task can be approximated by the representation

centroids of domain classes. As discussed in Section 6.2.3.1, the essence of MEA lies

90

6.2. A Resilient Black-box Watermark Against Model Extraction Attacks

6
5

6
5

Dim 1

Dim 2

0

Watermark after PD

cls1

1

2

1d
C

3 4

RepS PD
2d

Dim 1

Dim 2

0

2d

Stretching

3 4

Watermark after Embedding

Watermark after RepS

cls1C
1d

3
3

(a) The Original Model

6
5

6
5

Dim 1

Dim 2

0

Watermark after PD

cls1

1

2

1d
C

3 4

RepS PD
2d

Dim 1

Dim 2

0

2d

Stretching

3 4

Watermark after Embedding

Watermark after RepS

cls1C
1d

3
3

(b) After Deformation

Figure 6.7: Changes in pairwise distances of representations under MEA-induced
deformations (e.g., stretching in Figure 6.7b).

in replicating the victim model’s domain class representations, which serve as opti-

mization constraints and apply deformations to all representations. This assumption

is further validated through statistical analysis below. Based on this analysis, the

deformation directions [C] required in Section 6.2.4.2 can be estimated by the set of

domain class centroids [Ccls-k]k∈{K}. Formally, Ccls-k is:

Ccls-k = E(
⋃

(x,y)∈D
{FθL(x) : y = k}). (6.16)

To prevent deformations from disrupting CFW clustering, the pair-wise distance pro-

jections of watermark samples onto these deformation directions should be mini-

mized. Figure 6.7 illustrates this concept, where deformation is simplified as horizon-

tal stretching along Ccls1. In the figure, the distance d1 between vectors 3 and 4 is

significantly affected by stretching, indicating lower stability, while d2 between vec-

tors 5 and 6 is minimally affected, indicating higher stability. This demonstrates that

the PD3 value, representing the pair-wise distance projection onto Ccls1, determines

stability in MEA. Therefore, fine-tuning CFW from the state of vectors 3 and 4 to

that of 5 and 6 improves stability and preserves MEA-post resilience.

The Assumption of Deformation Direction during Model Extraction At-

tacks (MEA) and Learning-induced Removal Attacks. In high-dimensional

91

Chapter 6. Defense Methods Against Model Extraction Attacks

representation spaces, determining the exact deformation of the watermark task is

challenging. However, we can identify the potential deformation applied to them.

To simplify the scenario of stretching deformation, we propose that the deformation

direction be traceable. Specifically, during MEA and learning-based removal attacks,

watermark deformations align with the representation directions of domain classes.

This alignment occurs due to optimization constraints imposed either by the high-

fidelity mimicry of the victim model or by maintaining the utility of domain tasks,

which in turn influence the representation deformation applied on the watermarks.

Although watermarks are replicated alongside the domain task during the copy model

training, we simplify the analysis by treating it as sequential: first replicating the wa-

termark class and then copying the domain task, with the latter inducing deformation

on the former.

Assumption 6.2.1 (The Stretching Direction in Deformation). In both model extrac-

tion attacks and learning-based removal attacks, the stretching direction for watermark

representations can be estimated by the representation centroid (RC) directions.

Resilience Bonus of PD3. Beyond enhancing stability during MEA, PD3 optimiza-

tion also offers a resilience bonus. It improves CFW stability against learning-based

removal [63], as these methods induce deformations similar to those in MEA. Conse-

quently, PD3 optimization minimizes the impact of removal-induced deformations on

its clustering, thereby maintaining high stability during removal.

We empirically validate Assumption 6.2.1 through statistical analysis. If the stretch-

ing aligns with RC directions, the deformed representation space should show minimal

changes in RC directions for each class. The results indicate that the cosine simi-

larity of last-layer RCs before and after deformation (caused by removal or MEA)

has a minimum value of 0.89. This aligns with intuition, as last-layer representations

typically exhibit one-hot characteristics in classification tasks. Consequently, the sim-

ilarity of class representation centroids between the victim model and the copy model

is expected.

92

6.2. A Resilient Black-box Watermark Against Model Extraction Attacks

6.2.4.3 Verify CFW with Intra-class Clustering

Watermark verification is a hypothesis test with two possible outcomes: Hypothesis

0 (H0) assumes the model is watermarked, while Hypothesis 1 (H1) asserts it is

not. Existing methods [50, 69] typically apply t-tests and use the watermark success

rate (WSR) as the test statistic [50]. However, these methods overlook the group

information in class-feature watermarks (CFWs), which form distinct classes. Given

the enhanced stability of CFWs, our verification method prioritizes group clustering

over individual predictions. Next, we explore why clustering provides a more resilient

verification metric than prediction accuracy.

6.2.4.3.1 clustering is a Resilient Evidence for Watermark Existence To

compare the resilience of intra-class clustering and watermark success rate (WSR), we

apply the WRK attack to class-feature watermarks. This attack not only perturbs the

sample-wise artifacts but also leverages learning-induced forgetting. This experiment

allows us to observe which perspective leaves more resilient clues after removal.

Experiments. Experiments are conducted on CIFAR-10 with ResNet-18, using

250 out-of-domain (OOD) samples from CIFAR-20 to construct the watermark task,

whose clustering is optimized with PD3 5. Figure 6.8 uses t-SNE [102] to visualize the

final-layer representations and WSR (see Equation 6.5) for three models: the original

watermarked model, the WRK-attacked watermarked model, and a non-watermarked

model. Figure 6.8b shows that while the representation space of the watermark task

remains highly clustering, the WSR drops sharply from 100% to 19.60%, which sug-

gests that the representation clustering is more resilient than WSR.

6.2.4.3.2 Verify with Clustering in Label-only Situations Previous results

demonstrate that clustering provides a more resilient clue of watermark existence

5Under this setup, for CFW, the correlation between WSR and clustering is the weakest, making
this primary experiment more illustrative.

93

Chapter 6. Defense Methods Against Model Extraction Attacks

Watermark

Watermark Watermark

(a) CFW

Watermark

Watermark Watermark

(b) WRK-attacked CFW

Watermark

Watermark Watermark

(c) No watermark

Figure 6.8: Visualized representations of the last hidden layer.

(a) WRK-Attacked CFW

0 1 2 3 4 5 6 7 8 9
Label

0

50

100

Pr
op

or
tio

ns
/(%

)

(b) No watermark

Figure 6.9: Predicted label histograms in WRK attack experiments (in Sec-
tion 6.2.4.3.1).

than WSR. Therefore, we propose to verify CFW using its clustering state. However,

suspected models might only provide label-only access, making it impossible to

obtain representation-level information. Given this limitation, we instead observe

whether the label distribution reflects the clustering of the watermark class. Since

CFW’s clustering stability has been particularly enhanced by PD3, we infer that

its logits are still highly consistent during removal. Thus, in the label distribution,

even those labels considered misclassified under WSR might exhibit clustering. This

phenomenon is referred to as label clustering.

Label Clustering. We introduce the concept of the deformation label, where clus-

94

6.2. A Resilient Black-box Watermark Against Model Extraction Attacks

tering may occur during removal. Figure 6.9a shows the watermark label histograms

at four stages of removal from the experiments in Section 6.2.4.3.1, revealing strong

label clustering on the watermark label (= 0) and a deformation label (= 3) after re-

moval attacks. This stems from intra-class representation clustering during removal.

Thus, verification with clustering is conducted to evaluate whether the watermark and

deformation labels exhibit clustering. The deformation label is not always identical

but is predictable and related to the watermark label instead of watermark samples.

In Figure 6.9a, the deformation label consistently appears from 0 to 3. However,

deformation labels may vary or span multiple classes due to the unknown number of

decision boundaries crossed by the watermark class during removal attacks.

Nevertheless, the potential deformation labels are predictable. Before discussing this

further, we first elaborate on the interaction of deformation between classes during

removal. Apart from the alignment between deformation and RCs established in As-

sumption 6.2.1, we hypothesize that there exists other deformation which align with

the principal component (PC) directions of each class. Although PCs themselves

are indifferent to positive or negative directions, we assign the PCs positive di-

rections which enlarge representations. For domain classes, while their RCs

are nearly orthogonal, the relationships between their PCs vary significantly, ranging

from highly positively correlated to highly negatively correlated. When a class’s PC

opposes the PC of the class assigned to the watermark task, the dominant dimension

of the watermark logits may shrink due to stretching, causing the watermark label to

shift toward this opposing class, making this class a likely deformation label.

Proposition 6.2.1 (Deformation Label). Deformation labels typically emerge in

classes whose PCs have a significantly negative cosine similarity with the target class

PC assigned watermark tasks.

We validate this observation experimentally by analyzing the cosine similarity be-

tween the varying domain classes’ PCs assigned watermark tasks and their deforma-

95

Chapter 6. Defense Methods Against Model Extraction Attacks

0.8 0.6 0.4 0.2 0.0 0.2 0.4
Class-pair PAC Cosine Similarity

0

1

2

3

4

De
ns

ity

Deformation Label
Not Deformation Label

Figure 6.10: Density histogram of PC cosine similarity between classes contains
watermarks and others. The ratio of deformation labels to non-deformation labels is
1 : 9.

tion labels after WRK. Figure 6.10 presents the result, which indicates that deforma-

tion labels consistently exert opposing stretching, with negative cosine similarity to

the watermark label. In contrast, non-deformation labels’ PCs exhibit higher orthog-

onality with the watermark label. Therefore, to ensure deformation label consistency,

the watermark label should be fine-tuned or chosen to have only one possible defor-

mation label, as demonstrated with class 0 in the experiments in Section 6.2.4.3.1.

6.3 Experimental Evaluation for Class-FeatureWa-

termarks (CFW)

6.3.1 Setups

Datasets and Models. We evaluate four tasks spanning three domains: ResNet-

18 [44] trained on image datasets (CIFAR-10 [57] and CIFAR-20 [57]), DPCNN [51]

with BERT embeddings trained on a text dataset (DBPedia [16]), and VGG19-

BN [91] trained on an audio dataset (Google Speech Commands [105]). CIFAR-10

and CIFAR-20 each contain 50,000 training and 10,000 test images (3x32x32); CIFAR-

96

6.3. Experimental Evaluation for Class-Feature Watermarks (CFW)

10 has 10 labels, while CIFAR-20 uses 20 superclasses from CIFAR-100. DBPedia

includes 760,000 samples categorized into 14 classes. Google Speech Commands com-

prises over 105,000 utterances of 35 words from various speakers, organized into 12

classes.

Class-Feature Watermark (CFW) Settings. The CFW dataset is created by

selecting multiple out-of-domain (OOD) data types and assigning them to the same

label. To limit its feature complexity, the watermark dataset size is kept between

0.2% and 0.3% of the domain dataset. For CIFAR-10, 100 samples are taken from

10 non-overlapping classes in CIFAR-100. For CIFAR-20, 100 samples are selected

from 4 classes in ImageNet [29]. For DBPedia, 1,000 samples are drawn from Amazon

Reviews [89], and for Google Speech Commands, 200 samples are taken from 4 classes

within the ‘unknown’ category. Since MEAs also use OOD data as queries, the CFW

data is set to be entirely distinct from the classes in the adversarial pools. For

instance, in the CIFAR-20 experiment, the adversarial pool consists of the first 100

ImageNet classes, while the CFW data is drawn from classes 530 to 533.

Model Extraction Attack (MEA) Settings. The MEA query pool includes both

domain and OOD samples, from which MEAs sample using active learning algo-

rithms [76, 108]. Following Section 6.2.2.1, the domain subset constitutes 5% of the

training dataset and is also used for removal attacks. For image tasks, the OOD

samples are from ImageNet32 [29], with a query budget of 25,000. For DBPedia,

the pool is AG News dataset [114], with a budget of 50,000, and for Speech Com-

mands, the pool includes classes from version 0.02 absent in version 0.01, with a

budget of 100,000. The copy model architectures match the victim models in de-

fault experiments. Further, Section 6.3.6 reports cross-experiments using ResNet-18,

MobileNetV2 [85], and VGG19-BN to evaluate the impact of architectures on CFW.

Metrics. Since CFW is verified with clustering, in addition to WSR, we introduce

the following two metrics.

97

Chapter 6. Defense Methods Against Model Extraction Attacks

Intra-class Variance (Intra Var, Var). This metric calculates the mean squared

distance from each sample to its class centroid in the t-SNE [102] reduced represen-

tation space (normalized to [-100, 100]). For a model F and the watermark dataset

Dw, it is computed as:

Var(F,Dw) = 1/|Dw|
∑

x∈Dw

||t-SNE(FθL(x))− µ||2, (6.17)

where µ is the centroid of the reduced representations of watermark tasks, µ =

E(t-SNE(FθL(Dw))).

Label Clustering (WSRLC). This metric evaluates the clustering behavior on the

watermark label yw and the deformation label ydeform:

WSRLC = WSR(F,Dw|yw) +WSR(F,Dw|ydeform). (6.18)

6.3.2 Overall Evaluation of CFW

We evaluate the performance of class-feature watermarks on four primary properties:

their impact on the model utility (Prop.1), MEA transferability (Prop.2), their

correctness (Prop.3), and, importantly, their (MEA-post) resilience against removal

attacks (Prop.4, Prop.5). Table 6.6 shows CFW performance across four task do-

mains, with WRK attacks testing its resilience. Additionally, Table 6.7 provides a

supplementary evaluation of CFW resilience under another 6 removal attacks.

Results. CFW achieves significantly higher WSRLC on watermarked models com-

pared to non-watermarked models, enabling high-confidence verification. For copy

models extracted via MEA, CFW demonstrates notable transferability which is en-

sured by the RepS optimization (Section 6.2.4.2.1). Additionally, WSRLC strongly

correlates with the copy model’s accuracy, as CFW uses real-life samples, resulting

in similar extraction outcomes. The impact of CFW on model performance is limited

to 0.4%, which is much smaller than the over 1.5% degradation caused by existing

black-box watermarks (Table 6.2). Lastly, resilience analysis in Tables 6.6 and 6.7

98

6.3. Experimental Evaluation for Class-Feature Watermarks (CFW)

Table 6.6: Performance of Class-Feature (CF) Watermark

Tasks Non-watermark Victim Model

Removal None None WRK
Metrics (%) ACC WSRLC ACC WSRLC ACC WSRLC

CIFAR-10 93.55 20.60 93.26 100.00 91.95 96.80

CIFAR-20 81.61 6.60 81.26 100.00 80.54 96.80

DBPedia 98.17 15.28 98.03 100.00 97.85 94.51

Speech Commands 97.36 8.80 97.14 100.00 96.03 95.15

Tasks Copy Model

Removal Model None WRK
Metrics (%) Extraction ACC FID WSRLC ACC FID WSRLC

CIFAR-10
MExMI 89.29 92.70 94.00 88.94 90.13 79.13

ActiveThief 85.89 88.34 87.92 87.26 89.27 74.31

CIFAR-20
MExMI 80.64 82.35 85.15 80.18 81.97 70.58

ActiveThief 71.41 77.47 81.55 72.15 77.30 64.85

DBPedia
MExMI 95.15 96.62 97.55 94.83 95.76 88.58

ActiveThief 91.35 92.82 94.92 91.51 93.05 80.53

Speech Commands
MExMI 96.46 97.82 95.03 95.96 96.79 82.11

ActiveThief 96.33 97.73 94.13 94.61 95.20 79.21

Table 6.7: Resilience of CFW against Other Removal Attacks

Removal Victim Model Copy Model(MExMI)

Metrics (%) ACC↑ WSRLC↑ Var(×102)↓ ACC↑ WSRLC↑ Var(×102)↓

Non-Watermark 93.55 20.60 18.18 89.81 24.86 19.78

Non-Removal 93.22 100.00 1.68 89.20 93.20 2.74

NC 92.38 98.90 1.66 89.04 73.29 5.15

I-BAU 91.49 98.70 1.77 89.04 80.40 3.20

CLP 87.44 99.20 2.00 87.01 89.40 4.20

Fine pruning 84.20 100.00 1.78 67.30 96.80 3.16

NAD 91.76 98.11 1.81 88.20 73.15 4.87

AT 92.15 99.54 1.64 89.23 73.40 4.66

WRK 91.95 96.80 2.89 88.37 79.13 4.90

Arrows represent the trend toward better watermark performance.

shows that CFW maintains a WSRLC above 90% across all removal attacks in victim

models with stable intra-class variance (var). In copy models, WSRLC remains above

70.15%, which is affected by MEA distortions. Notably, the attacked intra-class vari-

ance in CFW models is lower than one-third of that in non-watermarked models,

which also provides a strong indication of watermark presence.

Explanations of Unexpected Results. In Table 6.7, Fine pruning and CLP

occasionally cause accuracy degradation exceeding 2%. This occurs when at least

one neuron must be removed.

99

Chapter 6. Defense Methods Against Model Extraction Attacks

6.3.3 Evaluation on CFW Variants

In this section, we conduct ablation experiments on the two CFW optimization steps:

RepS and PD3, and compare RepS with the existing SNNL [56] algorithm to opti-

mize RE. The experiments on CIFAR-10 evaluate key metrics, including maximum

representation orthogonality (O⊥, Equation 6.10) and pairwise distance projections

on deformation directions (PD3, Equation 6.14). Table 6.8 presents the results, while

Figure 6.11 shows the watermark decoupling curves under increasing removal inten-

sity.

Results. Table 6.8 reveals several key observations. Firstly, both RepS and SNNL [56]

significantly reduce O⊥, which benefits MEA transferability. However, SNNL causes

substantial utility degradation exceeding 3%, while offering suboptimal transferabil-

ity, indicating its incompatibility with CFW. In contrast, RepS enhances transfer-

ability without severely impacting performance. Regarding copy model WSR and

intra-class variance (Var), RepS improves transferability but fails to constrain Var

during MEA. By contrast, PD3 optimization reduces PD3 by 30×, which indicates

improved stability. As a result, PD3 lowers copy model variance from 10.30 × 102

to below 3.0× 102, which approaches the victim model’s variance of around 2× 102.

Consequently, label clustering (WSRLC) is enhanced by PD3, increasing from 70.42%

to 84.04%.

Figure 6.11 illustrates the resilience of key performance metrics in victim and sub-

stitute models under increasing removal intensity. When comparing Figures 6.11a

and 6.11b or Figures 6.11d and 6.11e, label clustering (WSRLC) consistently outper-

forms WSR in resilience. For instance, in the CFW with PD3 only variant, WSR

drops below 20% even though the watermark remains clustered, as shown in Fig-

ure 6.11c. This indicates that WSR leads to information loss, which label clustering

mitigates. Additionally, Figures 6.11a and 6.11d show that CFW with RepS only

improves WSR resilience, but Figures 6.11c and 6.11f reveal it cannot maintain clus-

100

6.3. Experimental Evaluation for Class-Feature Watermarks (CFW)

Table 6.8: Evaluation Results of Class-Feature Watermark (CFW) Variants

Watermarks Victim Model

Metrics O⊥ ↓ PD3 ↓ ACC/% ↑ WSR/WSRLC/% ↑ Var(×102) ↓
CFW w/o PD3 or RepS 0.81 3.98 93.70 100.00 2.59

CFW w/ SNNL[56] only 0.15 2.51 90.13 99.20 4.14

CFW w/ RepS only 0.08 1.78 93.31 100.00 1.92

CFW w/ PD3 only 0.96 5.93e−2 93.40 100.00 1.35

CFW 0.25 8.10e−2 93.26 100.00 1.68

Watermarks Copy Model

Metrics ACC/% ↑ FID/% ↑ WSR/% ↑ WSRLC/% ↑ Var(×102) ↓
CFW w/o PD3 or RepS 89.55 92.54 57.13 70.42 10.30

CFW w/ SNNL[56] only 87.18 90.49 73.20 77.60 11.12

CFW w/ RepS only 89.85 92.85 92.10 93.80 8.17

CFW w/ PD3 only 89.85 92.11 68.25 84.04 2.47

CFW 89.29 92.70 91.20 94.00 2.74

Arrows represent the trend toward better watermark performance.

tering stability. In contrast, when CFW includes PD3 optimization, both clustering

stability (Figures 6.11c and 6.11f) and label clustering resilience (Figure 6.11e) are

significantly enhanced.

6.3.4 The Impact of PD3 on CFW Stability

This section evaluates the relationship between PD3 and the clustering stability of

CFW, which is measured by intra-class variance. Here, two scenarios are observed:

without attack and with WRK attacks. Each experiment is further divided into two

setup conditions: one with RepS and one without. The experiments are conducted

on CIFAR-10. Figure 6.12 visualizes these relationships for each scenario.

First, we observe that PD3 optimization significantly affects the clustering stability of

the copy (substitute) model. When PD3 is below 0.1, both the MEA-post and MEA-

removal-post stability of the copy (substitute) model achieve favorable conditions,

with consistently low variance. However, as PD3 increases, the MEA-post stability

(Figure 6.12a) and removal-post stability (Figure 6.12b) decline rapidly. These find-

ings indicate that, in terms of representation space clustering, CFW becomes unstable

to MEA and removal attacks if PD3 is not properly optimized. Finally, RepS does

not appear to have a clear impact on the stability of watermark tasks.

101

Chapter 6. Defense Methods Against Model Extraction Attacks

0.0 2.5 5.0 7.5 10.0
Accuracy Degradation / (%)

0

25

50

75

100

W
SR

 /
(%

)

(a) Victim Model

0.0 2.5 5.0 7.5 10.0
Accuracy Degradation / (%)

0

25

50

75

100

La
be

l C
lu

st
er

in
g

/ (
%

)
(b) Victim Model

0.0 2.5 5.0 7.5 10.0
Accuracy Degradation / (%)

500

1000

1500

In
tra

 V
ar

(c) Victim Model

0 2 4 6 8
Accuracy Degradation / (%)

0

25

50

75

100

W
SR

 /
(%

)

(d) Copy Model

0 2 4 6 8
Accuracy Degradation / (%)

0

25

50

75

100

La
be

l C
lu

st
er

in
g

/ (
%

)

(e) Copy Model

0 2 4 6 8
Accuracy Degradation / (%)

500

1000

1500

2000

In
tra

 V
ar

(f) Copy Model0 5 10 15
0.0

2.5

5.0

7.5

10.0

Non-watermark
Decoupling Line

CFW w/o PD3/RepS
CFW w/ PD3 only

CFW w/ RepS only
CFW

Figure 6.11: Watermark decoupling curves of CFW. Vertical lines indicate error bars
derived through interpolation due to variability in accuracy degradation across ex-
periments.

10 1 100

PD3

0

400

800

1200

1600

In
tra

 V
ar

Non-watermark
Victim(w/o RepS)
Substitute(w/o RepS)
Victim(w/ RepS)
Substitute(w/ RepS)

(a) CFW

10 1 100

PD3

0

500

1000

1500

2000

In
tra

 V
ar

Non-watermark
Victim(w/o RepS)
Substitute(w/o RepS)
Victim(w/ RepS)
Substitute(w/ RepS)

(b) WRK-attacked CFW

Figure 6.12: PD3 versus Intra-class Variance. The vertical lines represent error bars.

102

6.3. Experimental Evaluation for Class-Feature Watermarks (CFW)

0.0 0.2 0.4 0.6 0.8
Maximum Representation Orthogonality

0

20

40

60

80

100
Su

bs
tit

ut
e

M
et

ric
 /

(%
)

WSR(w/o PD3)
Label Clustering(w/o PD3)

(a) w/o PD3

0.0 0.2 0.4 0.6 0.8
Maximum Representation Orthogonality

0

20

40

60

80

100

Su
bs

tit
ut

e
M

et
ric

 /
(%

)

WSR(w/ PD3)
Label Clustering(w/ PD3)

(b) w/ PD3

Figure 6.13: MEA transferability versus the maximum representation orthogonality.
The vertical lines represent error bars.

6.3.5 The Impact of Maximum Representation Orthogonal-

ity on MEA Transferability

This section investigates the relationship between maximum representation orthogo-

nality (O⊥) and MEA transferability for CFW, evaluated through the copy model’s

WSR and WSRLC. Two sets of experiments are conducted: one with PD3 opti-

mization and one without, where O⊥ is controlled by the RepS coefficient. The

experiments use the CIFAR-10 dataset. The results presented in Figure ?? reveal

several key findings. First, when O⊥ is below 0.3, MEA transferability consistently

reaches optimal levels. Additionally, even when O⊥ exceeds 0.8, WSR remains above

50%, primarily because CFW is constructed with real-life samples. Lastly, while PD3

has limited impact on WSR, it significantly enhances WSRLC, achieving over 80%

even when O⊥ > 0.8. This improvement is attributed to PD3’s ability to preserve

clustering stability during MEA.

103

Chapter 6. Defense Methods Against Model Extraction Attacks

ResNet18 MobileNetv2 VGG19_bn
Victim Model

Re
sN

et
18

M
ob

ile
Ne

tv
2

VG
G1

9_
bnSu

bs
tit

ut
e

M
od

el

94.00 90.55 85.15

90.22 91.10 87.15

82.14 80.15 88.57

(a) Label Clustering

ResNet18 MobileNetv2 VGG19_bn
Victim Model

Re
sN

et
18

M
ob

ile
Ne

tv
2

VG
G1

9_
bnSu

bs
tit

ut
e

M
od

el

79.13 77.11 74.33

75.25 75.95 72.52

72.51 71.15 70.97

(b) WRK-Attacked Label Clus-
tering

ResNet18 MobileNetv2 VGG19_bn
Victim Model

Re
sN

et
18

M
ob

ile
Ne

tv
2

VG
G1

9_
bn

89.15 87.15 83.56

86.49 85.77 84.62

85.00 82.29 88.10

40

50

60

70

80

90

100

(c) MEA Accuracy

Figure 6.14: Performance of CFW with different architectures used in model extrac-
tion attacks. The horizontal labels are victim models, and the vertical labels are copy
(substitute) models.

6.3.6 Ablation Study: The Impact of Copy Model’s Archi-

tectures on Class-Feature Watermarks

In model extraction attacks, the copy model’s architecture used by the adversary

usually differs from that of the victim model. Therefore, we study the consistency

of CFW across different architectures. Specifically, we cross-test three architectures:

ResNet18, MobileNet, and VGG19-bn on CIFAR-10. In this setup, the victim and

copy models are assigned different architectures in each combination, and Figure 6.14

presents CFW’s performance using heatmap grids. The results indicate that CFW’s

performance is minimally affected by model architecture, displaying high consistency.

This is because the CFW functions as a task and is independent of the underlying

architectures.

6.3.7 Discussions

Piracy Attack. A piracy attack occurs when the adversaries embed their watermarks

in a stolen model to evade watermark detection. This creates ambiguity in ownership

104

6.3. Experimental Evaluation for Class-Feature Watermarks (CFW)

0.00 0.25 0.50 0.75 1.00
False Positive Rate (FPR)

0.00

0.25

0.50

0.75

1.00
Tr

ue
 P

os
iti

ve
 R

at
e

(T
PR

)

Isolation Forest (AUC = 0.56)
LOF (AUC = 0.54)
Random Guess (AUC = 0.50)

(a) Victim Model

0.00 0.25 0.50 0.75 1.00
False Positive Rate (FPR)

0.00

0.25

0.50

0.75

1.00

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

Isolation Forest (AUC = 0.56)
LOF (AUC = 0.66)
Random Guess (AUC = 0.50)

(b) Subsititute Model (MExMI)

Figure 6.15: AUC results of abnormal detections on CFW.

verification, as two watermarks exist simultaneously. To prevent such ownership

confusion, the simplest countermeasure is time stamping the watermark model, the

samples, and the verifier through a trusted and accessible platform, such as privately

uploading to an open-source repository. This ensures that even if the adversary

performs a piracy attack, they cannot predate the defender’s verified time-stamp.

Watermark Detection. Section 6.3.2 has yet to discuss the stealthiness property

(Prop.6). When the stolen model is deployed online, adversaries might filter out

potential watermark data and refuse to provide correct query labels to evade water-

mark verification. To assess CFW’s stealthiness, we evaluate two anomaly detection

methods: Local Outlier Factor (LOF) [20] and Isolation Forest [66], applied to the

last hidden layer, following EWE [50]. Since CFW relies on clustering in the represen-

tation space, these methods infer watermark queries as high-density points, contrary

to their original detection principles. Figure 6.15 shows AUC results on the CIFAR-

10 dataset with 1,200 queries. The highest AUC reached only 0.66, indicating that

watermark queries are difficult to distinguish.

105

Chapter 7

Conclusion

This study investigates two optimization frameworks that deepen the potential threats

of model extraction attacks. One framework highlights their connection to data pri-

vacy. The other focuses on their interaction with neuron-level information leakage.

First, we propose a model extraction attack (ME, MEA) crossover membership in-

ference attack (MI, MIA) framework called MExMI, where the model and training

data privacy can trigger a chain reaction to boost the performance of both attacks.

The framework is generic in that it can adopt various ME and MI attacks. In our

experiments, MExMI improves the fidelity of copy models to 94.07%, up from the

basic ME by 11.14%. Meanwhile, the MI accuracy and precision can reach 83.20%

and 84.13% without additional query budget, on par with state-of-the-art MI attack

which requires about 10 times more queries.

Second, we pioneer the exploration of neuron-grained model extraction by boost-

ing the training process. Through initial bootstrapping (including width expansion

and rescaling initialization) and post-processing fine-tuning, the proposed MEBooster

framework can achieve a fidelity gain of up to 58.10%. Notably, MEBooster crossover

data-free ME reaches remarkable similarity from neuron to model level, ushering

learning-based ME into a new era for challenging high-fidelity model extraction.

106

To address the threats posed by model extraction attacks, we propose two defense

mechanisms from different perspectives. First, we introduce a novel proactive de-

fensive training strategy, Stochastic Norm Enlargement (SNE), which enhances the

inherent resistance of victim models by making them harder to extract. SNE is ex-

tensively evaluated on real-world datasets and state-of-the-art models under various

ME attacks.

Second, we investigate black-box model watermarking techniques as a passive pro-

tection against infringement by model extraction attacks. Our key contribution lies

in identifying critical gaps in the resilience of existing methods. We find that cur-

rent approaches overestimate their robustness due to insufficient evaluation against

watermark removal. To address this gap, we introduce Watermark Removal attacK

(WRK), a systematic framework that adaptively breaks model attention on sample-

wise artifacts of state-of-the-art watermark tasks, even if they are highly entangled.

To mitigate these vulnerabilities, we propose Class-Feature Watermarks (CFWs),

embedding class-level artifacts instead of sample-wise triggers. CFW constructs a

distinct watermark task using cross-domain real-life samples, ensuring its resilience

against WRK. To maintain resilience in MEA-post copy models, we optimize CFW’s

transferability and stability during MEA. Extensive experiments confirm that CFW

achieves high accuracy, strong MEA transferability, robust resilience against various

removal attacks, and minimal impact on model utility.

107

References

[1] 5-layer cnn model in pytorch examples. https://github.com/pytorch/

examples/blob/main/mnist_hogwild/main.py.

[2] Amazon aws marketplace. https://aws.amazon.com/marketplace/

solutions/machine-learning/pre-trained-models.

[3] Amazon aws marketplace. https://aws.amazon.com/marketplace/

solutions/machine-learning/pre-trained-models.

[4] Amazon sagemaker. https://aws.amazon.com/sagemaker/. Accessed: 2024-

12-22.

[5] AutoML by Google. https://cloud.google.com/automl. Accessed: 2024-12-

22.

[6] Azure Machine Learning by Microsoft. https://azure.microsoft.com/

en-us/products/machine-learning/. Accessed: 2024-12-22.

[7] Google gloud ml. https://cloud.google.com/vertex-ai.

[8] Huawei cloud ai gallery. https://developer.huaweicloud.com/develop/

aigallery/home.html.

[9] Huawei cloud modelarts. https://console-intl.huaweicloud.com/

modelarts.

108

https://github.com/pytorch/examples/blob/main/mnist_hogwild/main.py
https://github.com/pytorch/examples/blob/main/mnist_hogwild/main.py
https://aws.amazon.com/marketplace/solutions/machine-learning/pre-trained-models
https://aws.amazon.com/marketplace/solutions/machine-learning/pre-trained-models
https://aws.amazon.com/marketplace/solutions/machine-learning/pre-trained-models
https://aws.amazon.com/marketplace/solutions/machine-learning/pre-trained-models
https://aws.amazon.com/sagemaker/
https://cloud.google.com/automl
https://azure.microsoft.com/en-us/products/machine-learning/
https://azure.microsoft.com/en-us/products/machine-learning/
https://cloud.google.com/vertex-ai
https://developer.huaweicloud.com/develop/aigallery/home.html
https://developer.huaweicloud.com/develop/aigallery/home.html
https://console-intl.huaweicloud.com/modelarts
https://console-intl.huaweicloud.com/modelarts

References

[10] Huawei codelab. https://codelabs.developer.huaweicloud.com.

[11] Microsoft azure. https://azure.microsoft.com/services/

machine-learning.

[12] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv

preprint arXiv:1803.08375, 2018.

[13] William Aiken, Hyoungshick Kim, Simon Woo, and Jungwoo Ryoo. Neural net-

work laundering: Removing black-box backdoor watermarks from deep neural

networks. Computers & Security, 106:102277, 2021.

[14] Altrum AI. Model theft and llm ip protection: Securing

your competitive advantage. https://www.altrum.ai/blog/

model-theft-and-llm-ip-protection-securing-your-competitive-advantage,

2024. Accessed: 2025-04-28.

[15] Animashree Anandkumar, Rong Ge, and Majid Janzamin. Learning overcom-

plete latent variable models through tensor methods. In Conference on Learning

Theory, pages 36–112. PMLR, 2015.

[16] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyga-

niak, and Zachary Ives. Dbpedia: A nucleus for a web of open data. In The

semantic web, pages 722–735. Springer, 2007.

[17] Arpit Bansal, Ping-yeh Chiang, Michael J Curry, Rajiv Jain, Curtis Wigington,

Varun Manjunatha, John P Dickerson, and Tom Goldstein. Certified neural

network watermarks with randomized smoothing. In International Conference

on Machine Learning, pages 1450–1465. PMLR, 2022.

[18] David Berthelot, Nicholas Carlini, Ian J. Goodfellow, Nicolas Papernot, Avi-

tal Oliver, and Colin Raffel. Mixmatch: A holistic approach to semi-

supervised learning. In Advances in Neural Information Processing Sys-

tems 32: Annual Conference on Neural Information Processing Systems

109

https://codelabs.developer.huaweicloud.com
https://azure.microsoft.com/services/machine-learning
https://azure.microsoft.com/services/machine-learning
https://www.altrum.ai/blog/model-theft-and-llm-ip-protection-securing-your-competitive-advantage
https://www.altrum.ai/blog/model-theft-and-llm-ip-protection-securing-your-competitive-advantage

References

2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages

5050–5060, 2019. https://proceedings.neurips.cc/paper/2019/hash/

1cd138d0499a68f4bb72bee04bbec2d7-Abstract.html.

[19] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and ma-

chine learning, volume 4. Springer, 2006.

[20] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof:

Identifying density-based local outliers. In Proceedings of the 2000 ACM SIG-

MOD International Conference on Management of Data, pages 93–104. ACM,

2000.

[21] Varun Chandrasekaran, Kamalika Chaudhuri, Irene Giacomelli, Somesh Jha,

and Songbai Yan. Exploring connections between active learning and model

extraction. In 29th USENIX Security Symposium (USENIX Security 20), pages

1309–1326, 2020.

[22] Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas Geiger, and

Hongyang Li. End-to-end autonomous driving: Challenges and frontiers. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2024.

[23] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted

backdoor attacks on deep learning systems using data poisoning. arXiv preprint

arXiv:1712.05526, 2017.

[24] Xinyun Chen, Wenxiao Wang, Chris Bender, Yiming Ding, Ruoxi Jia, Bo Li,

and Dawn Song. Refit: a unified watermark removal framework for deep learning

systems with limited data. In Proceedings of the 2021 ACM Asia Conference

on Computer and Communications Security, pages 321–335, 2021.

[25] Yanjiao Chen, Rui Guan, Xueluan Gong, Jianshuo Dong, and Meng Xue. D-

dae: Defense-penetrating model extraction attacks. In 2023 IEEE Symposium

on Security and Privacy (SP), pages 382–399. IEEE, 2023.

110

https://proceedings.neurips.cc/paper/2019/hash/1cd138d0499a68f4bb72bee04bbec2d7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1cd138d0499a68f4bb72bee04bbec2d7-Abstract.html

References

[26] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled

variant of imagenet as an alternative to the cifar datasets. arXiv preprint

arXiv:1707.08819, 2017.

[27] Jacson Rodrigues Correia-Silva, Rodrigo F Berriel, Claudine Badue, Alberto F

de Souza, and Thiago Oliveira-Santos. Copycat cnn: Stealing knowledge by

persuading confession with random non-labeled data. In 2018 International

Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2018.

[28] Gianna M Del Corso, Antonio Gulli, and Francesco Romani. Ranking a stream

of news. In Proceedings of the 14th international conference on World Wide

Web, pages 97–106, 2005.

[29] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee, 2009.

[30] Timothy Dozat. Incorporating nesterov momentum into adam. International

Conference on Learning Representations (ICLR) workshop, 2016.

[31] Rong Du, Qingqing Ye, Yue Fu, and Haibo Hu. Collecting high-dimensional and

correlation-constrained data with local differential privacy. In 2021 18th Annual

IEEE International Conference on Sensing, Communication, and Networking

(SECON), pages 1–9. IEEE, 2021.

[32] Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep

networks: a margin based approach. arXiv preprint arXiv:1802.09841, 2018.

[33] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur.

Sharpness-aware minimization for efficiently improving generalization. In Inter-

national Conference on Learning Representations, 2021. https://openreview.

net/forum?id=6Tm1mposlrM.

111

https://openreview.net/forum?id=6Tm1mposlrM
https://openreview.net/forum?id=6Tm1mposlrM

References

[34] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks

that exploit confidence information and basic countermeasures. In Proceedings

of the 22nd ACM SIGSAC Conference on Computer and Communications Se-

curity, pages 1322–1333, 2015.

[35] Haoyu Fu, Yuejie Chi, and Yingbin Liang. Guaranteed recovery of one-hidden-

layer neural networks via cross entropy. IEEE transactions on signal processing,

68:3225–3235, 2020.

[36] Mingfei Gao, Zizhao Zhang, Guo Yu, Sercan Ö Arık, Larry S Davis, and Tomas

Pfister. Consistency-based semi-supervised active learning: Towards minimizing

labeling cost. In European Conference on Computer Vision (ECCV), pages 510–

526. Springer, 2020.

[37] Xueluan Gong, Yanjiao Chen, Wenbin Yang, Guanghao Mei, and Qian Wang.

Inversenet: Augmenting model extraction attacks with training data inversion.

JICAI, 2021.

[38] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples. ICLR, 2015.

[39] Google Cloud. Google cloud terms of service. https://cloud.google.com/

terms/service-terms, 2025. Accessed: 2025-04-28.

[40] Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding.

In Proceedings of the 27th international conference on international conference

on machine learning, pages 399–406, 2010.

[41] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets:

Evaluating backdooring attacks on deep neural networks. IEEE Access, 7, 2019.

[42] Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE trans-

actions on pattern analysis and machine intelligence, 12(10):993–1001, 1990.

112

https://cloud.google.com/terms/service-terms
https://cloud.google.com/terms/service-terms

References

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the IEEE international conference on computer vision, pages

1026–1034, 2015.

[44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

[45] Seira Hidano, Takao Murakami, and Yusuke Kawamoto. Transmia: Mem-

bership inference attacks using transfer shadow training. arXiv preprint

arXiv:2011.14661, 2020.

[46] Yujiao Hu, Qingmin Jia, Yuan Yao, Yong Lee, Mengjie Lee, Chenyi Wang,

Xiaomao Zhou, Renchao Xie, and F Richard Yu. Industrial internet of things

intelligence empowering smart manufacturing: A literature review. IEEE In-

ternet of Things Journal, 11(11):19143–19167, 2024.

[47] Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical

models by score matching. Journal of Machine Learning Research, 6(4), 2005.

[48] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nico-

las Papernot. High accuracy and high fidelity extraction of neural networks. In

29th USENIX Security Symposium (USENIX Security 20), pages 1345–1362,

2020.

[49] Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of

non-convexity: Guaranteed training of neural networks using tensor methods.

arXiv preprint arXiv:1506.08473, 2015.

[50] Hengrui Jia, Christopher A Choquette-Choo, Varun Chandrasekaran, and Nico-

las Papernot. Entangled watermarks as a defense against model extraction. In

113

References

30th USENIX Security Symposium (USENIX Security 21), pages 1937–1954,

2021.

[51] Rie Johnson and Tong Zhang. Deep pyramid convolutional neural networks for

text categorization. In Regina Barzilay and Min-Yen Kan, editors, Proceedings

of the 55th Annual Meeting of the Association for Computational Linguistics,

ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers,

pages 562–570. Association for Computational Linguistics, 2017. https://doi.

org/10.18653/v1/P17-1052.

[52] Mika Juuti, Sebastian Szyller, Samuel Marchal, and N. Asokan. Prada: Pro-

tecting against dnn model stealing attacks. In 2019 IEEE European Symposium

on Security and Privacy (EuroSP), pages 512–527, 2019.

[53] Sanjay Kariyappa, Atul Prakash, and Moinuddin K Qureshi. Maze: Data-free

model stealing attack using zeroth-order gradient estimation. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 13814–13823, 2021.

[54] Sanjay Kariyappa and Moinuddin K Qureshi. Defending against model steal-

ing attacks with adaptive misinformation. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 770–778, 2020.

[55] Byungjoo Kim, Suyoung Lee, Seanie Lee, Sooel Son, and Sung Ju Hwang.

Margin-based neural network watermarking. In International Conference on

Machine Learning, pages 16696–16711. PMLR, 2023.

[56] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Sim-

ilarity of neural network representations revisited. In International conference

on machine learning, pages 3519–3529. PMLR, 2019.

[57] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features

from tiny images. 2009.

114

https://doi.org/10.18653/v1/P17-1052
https://doi.org/10.18653/v1/P17-1052

References

[58] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-

tion with deep convolutional neural networks. Advances in neural information

processing systems, 25:1097–1105, 2012.

[59] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learn-

ing at scale. arXiv preprint arXiv:1611.01236, 2016.

[60] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.

com/exdb/mnist/, 1998.

[61] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

[62] David D Lewis and William A Gale. A sequential algorithm for training text

classifiers. In SIGIR’94, pages 3–12. Springer, 1994.

[63] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma.

Neural attention distillation: Erasing backdoor triggers from deep neural net-

works. In 9th International Conference on Learning Representations, ICLR

2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[64] Yige Li, Xixiang Lyu, Xingjun Ma, Nodens Koren, Lingjuan Lyu, Bo Li, and

Yu-Gang Jiang. Reconstructive neuron pruning for backdoor defense. In Inter-

national Conference on Machine Learning, pages 19837–19854. PMLR, 2023.

[65] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. Composite backdoor attack

for deep neural network by mixing existing benign features. In Proceedings of the

2020 ACM SIGSAC Conference on Computer and Communications Security,

pages 113–131, 2020.

[66] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008

Eighth IEEE International Conference on Data Mining, pages 413–422. IEEE,

2008.

115

References

[67] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: De-

fending against backdooring attacks on deep neural networks. In International

symposium on research in attacks, intrusions, and defenses, pages 273–294.

Springer, 2018.

[68] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and

Xiangyu Zhang. Abs: Scanning neural networks for back-doors by artificial

brain stimulation. In Proceedings of the 2019 ACM SIGSAC Conference on

Computer and Communications Security, pages 1265–1282, 2019.

[69] Peizhuo Lv, Hualong Ma, Kai Chen, Jiachen Zhou, Shengzhi Zhang, Ruigang

Liang, Shenchen Zhu, Pan Li, and Yingjun Zhang. Mea-defender: A robust

watermark against model extraction attack. 2024 IEEE Symposium on Security

and Privacy (SP), 2024.

[70] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and

Christopher Potts. Learning word vectors for sentiment analysis. In Proceed-

ings of the 49th annual meeting of the association for computational linguistics:

Human language technologies, pages 142–150, 2011.

[71] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities

improve neural network acoustic models. In Proc. icml, volume 30, page 3.

Citeseer, 2013.

[72] Mantas Mazeika, Bo Li, and David Forsyth. How to steer your adversary:

Targeted and efficient model stealing defenses with gradient redirection. In

International Conference on Machine Learning, pages 15241–15254. PMLR,

2022.

[73] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and

Andrew Y Ng. Reading digits in natural images with unsupervised feature

learning. 2011.

116

References

[74] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets: Stealing

functionality of black-box models. In 2019 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 4949–4958, 2019.

[75] Soham Pal, Yash Gupta, Aditya Kanade, and Shirish K. Shevade. Stateful

detection of model extraction attacks. CoRR, abs/2107.05166, 2021.

[76] Soham Pal, Yash Gupta, Aditya Shukla, Aditya Kanade, Shirish Shevade, and

Vinod Ganapathy. Activethief: Model extraction using active learning and

unannotated public data. In AAAI Conference on Artificial Intelligence, vol-

ume 34, pages 865–872, 2020.

[77] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay

Celik, and Ananthram Swami. Practical black-box attacks against machine

learning. In Proceedings of the 2017 ACM on Asia conference on computer and

communications security, pages 506–519, 2017.

[78] Luis Perez and Jason Wang. The effectiveness of data augmentation in image

classification using deep learning. arXiv preprint arXiv:1712.04621, 2017.

[79] Mauro Ribeiro, Katarina Grolinger, and Miriam AM Capretz. Mlaas: Machine

learning as a service. In 2015 IEEE 14th international conference on machine

learning and applications (ICMLA), pages 896–902. IEEE, 2015.

[80] Jonathan Rosenthal, Eric Enouen, Hung Viet Pham, and Lin Tan. Disguide:

disagreement-guided data-free model extraction. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 37, pages 9614–9622, 2023.

[81] David Saad and Sara Solla. Dynamics of on-line gradient descent learning for

multilayer neural networks. Advances in neural information processing systems,

8, 1995.

117

References

[82] Amir Mahdi Sadeghzadeh, Amir Mohammad Sobhanian, Faezeh Dehghan, and

Rasool Jalili. Hoda: Hardness-oriented detection of model extraction attacks.

IEEE Transactions on Information Forensics and Security, 2023.

[83] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. Regularization with

stochastic transformations and perturbations for deep semi-supervised learning.

Advances in neural information processing systems, 29:1163–1171, 2016.

[84] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz,

and Michael Backes. Ml-leaks: Model and data independent membership infer-

ence attacks and defenses on machine learning models. 26th Annual Network

and Distributed System Security Symposium (NDSS), 2018.

[85] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition,

pages 4510–4520, 2018.

[86] Hanie Sedghi and Anima Anandkumar. Provable methods for training neural

networks with sparse connectivity. ICLR, 2015.

[87] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna

Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations

from deep networks via gradient-based localization. In Proceedings of the IEEE

international conference on computer vision, pages 618–626, 2017.

[88] Ozan Sener and Silvio Savarese. Active learning for convolutional neural net-

works: A core-set approach. In International Conference on Learning Repre-

sentations (ICLR), 2018. https://openreview.net/forum?id=H1aIuk-RW.

[89] Amazon Web Services. Amazon customer reviews dataset, 2018. https://

registry.opendata.aws/amazon-reviews/, Accessed: 2024-12-22.

118

https://openreview.net/forum?id=H1aIuk-RW
https://registry.opendata.aws/amazon-reviews/
https://registry.opendata.aws/amazon-reviews/

References

[90] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Mem-

bership inference attacks against machine learning models. In 2017 IEEE Sym-

posium on Security and Privacy (SP), pages 3–18. IEEE, 2017.

[91] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[92] Samrath Sinha, Sayna Ebrahimi, and Trevor Darrell. Variational adversarial

active learning. In 2019 IEEE/CVF International Conference on Computer

Vision (ICCV), pages 5971–5980, 2019.

[93] Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching:

A scalable approach to density and score estimation. In Uncertainty in Artificial

Intelligence, pages 574–584. PMLR, 2020.

[94] Daniel A Spielman, Huan Wang, and John Wright. Exact recovery of sparsely-

used dictionaries. In Conference on Learning Theory, pages 37–1. JMLR Work-

shop and Conference Proceedings, 2012.

[95] Charles Stein, Persi Diaconis, Susan Holmes, and Gesine Reinert. Use of ex-

changeable pairs in the analysis of simulations. Lecture Notes-Monograph Series,

pages 1–26, 2004.

[96] Minxue Tang, Anna Dai, Louis DiValentin, Aolin Ding, Amin Hass, Neil Zhen-

qiang Gong, and Yiran Chen. Modelguard: Information-theoretic defense

against model extraction attacks. 2023.

[97] Minxue Tang, Anna Dai, Louis DiValentin, Aolin Ding, Amin Hass, Neil Zhen-

qiang Gong, Yiran Chen, et al. {ModelGuard}:{Information-Theoretic} de-

fense against model extraction attacks. In 33rd USENIX Security Symposium

(USENIX Security 24), pages 5305–5322, 2024.

[98] Markus Thom and Günther Palm. Sparse activity and sparse connectivity in

supervised learning. Journal of Machine Learning Research, 14(4), 2013.

119

References

[99] Yuandong Tian. Student specialization in deep rectified networks with finite

width and input dimension. In International Conference on Machine Learning,

pages 9470–9480. PMLR, 2020.

[100] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Risten-

part. Stealing machine learning models via prediction apis. In 25th USENIX

Security Symposium (USENIX Security 16), pages 601–618, 2016.

[101] Jean-Baptiste Truong, Pratyush Maini, Robert J Walls, and Nicolas Papernot.

Data-free model extraction. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 4771–4780, 2021.

[102] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.

Journal of machine learning research, 9(11), 2008.

[103] BolunWang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao

Zheng, and Ben Y Zhao. Neural cleanse: Identifying and mitigating backdoor

attacks in neural networks. In 2019 IEEE symposium on security and privacy

(SP), pages 707–723. IEEE, 2019.

[104] Yaqing Wang, Quanming Yao, James T. Kwok, and Lionel M. Ni. Generalizing

from a few examples: A survey on few-shot learning. ACM Comput. Surv.,

53(3), June 2020. https://doi.org/10.1145/3386252.

[105] Pete Warden. Speech commands: A dataset for limited-vocabulary speech

recognition. arXiv preprint arXiv:1804.03209, 2018.

[106] Bang Wu, Xiangwen Yang, Shirui Pan, and Xingliang Yuan. Model extraction

attacks on graph neural networks: Taxonomy and realization. CoRR, 2020.

https://arxiv.org/abs/2010.12751.

[107] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel im-

age dataset for benchmarking machine learning algorithms. arXiv preprint

arXiv:1708.07747, 2017.

120

https://doi.org/10.1145/3386252
https://arxiv.org/abs/2010.12751

References

[108] Yaxin Xiao, Qingqing Ye, Haibo Hu, Huadi Zheng, Chengfang Fang, and Jie Shi.

Mexmi: Pool-based active model extraction crossover membership inference.

Advances in Neural Information Processing Systems, 35:10203–10216, 2022.

[109] Mengjia Yan, Christopher W Fletcher, and Josep Torrellas. Cache telepa-

thy: Leveraging shared resource attacks to learn {DNN} architectures. In 29th

USENIX Security Symposium (USENIX Security 20), pages 2003–2020, 2020.

[110] Fan Yang, Zhiyuan Chen, and Aryya Gangopadhyay. Using randomness to

improve robustness of tree-based models against evasion attacks. IEEE Trans-

actions on Knowledge and Data Engineering, 34(2):969–982, 2020.

[111] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk

in machine learning: Analyzing the connection to overfitting. In 2018 IEEE 31st

Computer Security Foundations Symposium (CSF), pages 268–282, 2018.

[112] Yi Zeng, Si Chen, Won Park, Zhuoqing Mao, Ming Jin, and Ruoxi Jia. Adver-

sarial unlearning of backdoors via implicit hypergradient. In The Tenth Inter-

national Conference on Learning Representations, ICLR 2022, Virtual Event,

April 25-29, 2022. OpenReview.net, 2022.

[113] Kaiyuan Zhang, Siyuan Cheng, Guangyu Shen, Guanhong Tao, Shengwei An,

Anuran Makur, Shiqing Ma, and Xiangyu Zhang. Exploring the orthogonality

and linearity of backdoor attacks. In 2024 IEEE Symposium on Security and

Privacy (SP), pages 225–225. IEEE Computer Society, 2024.

[114] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional net-

works for text classification. Advances in neural information processing systems,

28, 2015.

[115] Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning one-

hidden-layer relu networks via gradient descent. In The 22nd international con-

ference on artificial intelligence and statistics, pages 1524–1534. PMLR, 2019.

121

References

[116] Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Bo Li, and Dawn

Song. The secret revealer: Generative model-inversion attacks against deep

neural networks. In IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 253–261, 2020.

[117] Shuai Zhao, Liguang Zhou, Wenxiao Wang, Deng Cai, Tin Lun Lam, and

Yangsheng Xu. Splitnet: Divide and co-training. CoRR, 2020. https:

//arxiv.org/abs/2011.14660.

[118] Zhong-Qiu Zhao, Yiu-ming Cheung, Haibo Hu, and Xindong Wu. Corrupted

and occluded face recognition via cooperative sparse representation. Pattern

Recognition, 56:77–87, 2016.

[119] Huadi Zheng, Qingqing Ye, Haibo Hu, Chengfang Fang, and Jie Shi. Bdpl: A

boundary differentially private layer against machine learning model extraction

attacks. In European Symposium on Research in Computer Security, pages

66–83. Springer, 2019.

[120] Huadi Zheng, Qingqing Ye, Haibo Hu, Chengfang Fang, and Jie Shi. Pro-

tecting decision boundary of machine learning model with differentially private

perturbation. IEEE Transactions on Dependable and Secure Computing, 2020.

[121] Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Data-free backdoor re-

moval based on channel lipschitzness. In European Conference on Computer

Vision, pages 175–191. Springer, 2022.

[122] Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon.

Recovery guarantees for one-hidden-layer neural networks. In International

conference on machine learning, pages 4140–4149. PMLR, 2017.

[123] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random

erasing data augmentation. In Proceedings of the AAAI conference on artificial

intelligence, volume 34, pages 13001–13008, 2020.

122

https://arxiv.org/abs/2011.14660
https://arxiv.org/abs/2011.14660

References

[124] Mo Zhou, Rong Ge, and Chi Jin. A local convergence theory for mildly over-

parameterized two-layer neural network. In Conference on Learning Theory,

pages 4577–4632. PMLR, 2021.

[125] Hongyu Zhu, Sichu Liang, Wentao Hu, Fangqi Li, Ju Jia, and Shilin Wang.

Reliable model watermarking: Defending against theft without compromising

on evasion. arXiv preprint arXiv:2404.13518, 2024.

[126] Rui Zhu, Di Tang, Siyuan Tang, XiaoFeng Wang, and Haixu Tang. Selective

amnesia: On efficient, high-fidelity and blind suppression of backdoor effects in

trojaned machine learning models. In 2023 IEEE Symposium on Security and

Privacy (SP), pages 1–19. IEEE, 2023.

123

	Abstract
	Publications Arising from the Thesis
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Enhanced Frameworks for Model Extraction Attacks
	Existing Works
	Model Extraction Crossover Membership Inference
	Towards Neuron-grained Model Extraction

	Defending Methods against Model Extraction Attacks
	Contributions
	Roadmap

	Related Works
	Model Extraction Attacks
	Defending Against Model Extraction Attacks
	Mitigation Defense through Prediction Perturbation
	Ownership Verification in Model Extraction Attacks

	Background Knowledge and Definitions
	Notations of Machine Learning Models
	Problem Definition: Model Extraction Attacks (MEAs)
	Threat Model
	Problem Formulation of Model Watermarking

	MExMI: Model Extraction Crossover Membership Inference
	MExMI Framework
	MI Pre-Filter
	MI Post-Filter
	Semi-Supervised Boosting
	Pool-based Active Learning Algorithms
	Adaptive Membership Inference
	Shadow-Model Membership Inference
	Unsupervised Membership Inference

	Experiment
	Experiment Setup
	Metric-based Shadow-Model MI
	Overall Performance of MExMI
	Implementation Details
	Overall Results of MExMI

	Impact of Adversary Data Pool on PAME
	Impact of Output Access
	Transferability of Adversarial Attacks
	Impact of Weight Ratio in MI Post-Filter
	Case Study: Blackbox Attacks on MLaaS ModelArts
	Impact of ML Optimizations
	The Ability of Evading PRADA Defence

	MEBooster: Towards Neuron-Grained Model Extraction
	The ME Booster Framework
	Neuron-Grained Model Extraction
	High-level Solution
	Neuron Matching Theory
	Moment-based Parameter Estimation
	Moment-based Weight Estimation
	Corner-Patch-Retained Sample for Convolutional Layer Generalization
	Generalization to Middle Layers by Decoding

	Width Expansion and Re-scaling Initialization
	Fine-tuning-boosted Neuron-grained Matching

	Experiments
	Setup
	Baseline Attacks
	Query Budget & Datasets & Models
	Attack Frameworks

	Training Parameters
	Evaluation Metrics

	Overall Performance of MEBooster
	Impact of MEBooster on Follow-up Attacks
	Impact of Width Expansion
	Comparing Width Expansion with Other Optimization Methods
	The Impact of Architecture Knowledge

	Defense Methods Against Model Extraction Attacks
	Mitigating the Effectiveness of Learning-based Model Extraction Attacks
	Defense Strategy: Stochastic Norm Enlargement
	Empirical Evaluation

	A Resilient Black-box Watermark Against Model Extraction Attacks
	Watermark Removal Attack (WRK)
	Decision Boundary Perturbation (DBP)
	Model Attention Correction (MAC)

	Experimental Evaluation of Watermark Resilience against WRK
	Experimental Setup
	Resilience Evaluation of Existing Black-box Watermarks against WRK
	Comparison of WRK and Existing Removal Methods
	Evaluation of WRK Variants

	Principle of Resilient Black-box Model Watermarks against MEA
	Impact of Maximum Representation Orthogonality on MEA Transferability
	Shifting to Class-level Artifacts for Higher Resilience

	Class-Feature Watermark (CFW)
	Overview
	Enhance Representation Entanglement (RE) and Stability of CFW
	Verify CFW with Intra-class Clustering

	Experimental Evaluation for Class-Feature Watermarks (CFW)
	Setups
	Overall Evaluation of CFW
	Evaluation on CFW Variants
	The Impact of PD3 on CFW Stability
	The Impact of Maximum Representation Orthogonality on MEA Transferability
	Ablation Study: The Impact of Copy Model's Architectures on Class-Feature Watermarks
	Discussions

	Conclusion

