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I 

Abstract 

The global energy system is undergoing a significant transition driven by climate 

change and global warming, largely resulting from substantial carbon emissions 

associated with expanding industrial production. This transition is characterized by a 

shift from fossil-fuel-based thermal generation toward renewable energy sources on the 

supply side and from centralized large-scale generation toward decentralized and 

distributed generation on the demand side. Consequently, there is a growing emphasis 

on unlocking demand-side flexibility to provide dispatchable resources for multiple 

uses of the grid. In this context, this thesis investigates optimal decision-making 

problems, particularly focusing on energy management faced by entities on the demand 

side within the distribution network.  

In operational energy management problems, demand-side entities typically aim to 

minimize their energy costs by strategically adjusting load profiles and managing 

energy devices subject to operational constraints. The diversity and distributed nature 

of demand-side entities—including individual buildings, energy communities, and 

retail electricity markets with responsive consumers—present unique challenges in 

energy management that require tailored solutions rather than a universal approach. In 

other words, optimization of energy management at different scales emphasizes 

different issues: individual consumers face uncertainty in energy prices and distributed 

generation; community systems grapple with complexity arising from diverse energy 

consumption profiles and non-convex network constraints involving multiple energy 

types; collective participation in the retail electricity market (REM) involves strategic 

interactions under dynamic pricing schemes. Therefore, energy management strategies 

adapted to scenarios with different scales need to be developed individually. For this 

reason, this thesis specifically addresses multi-scale energy management problems on 

the demand side with multi scales to provide adaptive, scenario-specific solutions, 

ultimately contributing to the broader goals of energy transition and carbon emission 

mitigation. 
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Meanwhile, machine learning (ML) has become a useful and reliable technique for 

multiple uses, e.g., forecasting, anomaly detection, and decision-making. As one of the 

most popular categories of ML techniques, reinforcement learning (RL) has been 

gaining much attention as a decision-making tool for multiple scenarios in power 

systems. RL can enable the algorithm as a smart agent to learn from interactions with 

the environment by “trial and error” in a Markovian environment. Given the inherent 

uncertainties in electricity prices, energy demands, and distributed generation, these 

operational decision-making problems can naturally be formulated as stochastic 

processes and modeled as MDPs, making RL particularly suitable for automating 

energy management decisions on the demand side. For multi-scale demand side 

operation problems, RL can be implemented as a smart energy management system to 

optimize energy consumption decisions automatically, reducing the need for 

sophisticated manual calculation to lower energy costs. To make the most of RL 

techniques in demand-side energy management problems, this thesis thus develops 

novel RL algorithms specifically tailored to address multi-scale, scenario-specific 

objectives within demand-side decision-making contexts. 

Specifically, this thesis advances the state-of-the-art by developing three novel RL 

algorithms tailored specifically to different scales and scenarios of demand-side energy 

management. At the individual building level, a forecast-enhanced RL approach is 

proposed to optimally dispatch integrated energy devices based on predictive models 

of loads, renewable generation, and prices, achieving cost reduction while satisfying 

multi-energy demands. At the community level, a safe RL method is introduced, 

enabling the Lagrangian method in the RL algorithm to reduce network constraint 

violations within integrated community energy systems (ICES), significantly 

improving operational safety. In the retail electricity market scenario, interactions 

between consumers and the utility are modeled as a dynamic Stackelberg game, where 

a novel multi-agent RL (MARL) algorithm is developed to estimate the multiple 

equilibria of this game, providing possible market outcomes in the REM. Finally, the 

three novel RL algorithms are validated by using real-world datasets and provide 
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superior performance to baseline approaches. The numerical results of this thesis 

underscore the transformative potential of the RL technique to empower energy 

consumers as active and efficient participants within modern energy distribution 

systems. 
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Chapter I  

Introduction 

 

 

1.1 Research Background 

Since the first intermittent power system was developed to supply thousands of 

lamps in New York City in 1882 by Thomas Edison, the energy system has continued 

to evolve from the steam-powered machine era to an electricity-powered era due to 

electricity’s fast transmission speed at the speed of light and direct usage in machines 

[1]. To this day, the modern power system, mainly formed by power generators, 

transformers, transmission lines and consumption devices, keeps growing in scale and 

has covered most places where human lives, even in the Arctic and on satellites [2, 3]. 

The power production and consumption have been dramatically growing due to 

population growth and the popularization of electricity-based technologies around the 

world, exhibiting the brightest technological developments and big-bang like prosperity 

that have ever been made on Earth. 

However, the usage of a major source for power generation---fossil fuel---produces 

about 34 billion tonnes (Gt) of carbon dioxide per year, which is over 40% of energy-

related carbon dioxide (CO2) emissions, resulting in a severe greenhouse effect and thus 

global warming [4]. The global warming caused by the cumulative burning of fossil 

fuel and other carbon-emission activities has heated the atmosphere to a temperature 

increase of over 1°C since 1900, which has endangered the lifelong existence of human 

beings [5]. For this reason, people who have realized the seriousness of this problem 

have tried to reduce carbon emissions. One of the well-known actions is the Paris 

Agreement made by around 196 countries in 2015, aiming to limit global warming to 

1.5°C above pre-industrial levels by 2030 and reach net zero by 2050 [6]. Even so, the 

temperature is still increasing, which makes it doubtful if the target of the Paris 

agreement will be reached and bring huge uncertainty and danger to the future of all 
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life on Earth. It still requires more great work in not only policy regulation but also 

technology development to limit the global warming effect. 

From the perspective of the power system, one of the most intuitive and efficient 

approaches is to substitute the thermal generator consuming fossil fuel with renewable 

generators with almost zero carbon emission. Solar, wind, and hydro power have been 

greatly promoted by policy stimulation in recent years. For instance, renewable power 

now account for over 20% of generation in the United States [7]. Meanwhile, 

technological development leads to the wide and increasing installation of energy 

devices, including distributed energy resources (DERs), combined heat and power 

(CHP) units, etc., which also leads to high renewable penetration on the demand side 

and provides conditions for energy conversion on the demand side to meet various 

applications. All these implementations endow high operational flexibility for energy 

end users, who thus become active and crucial participants in the energy system 

operation. Since then, multiple operating paradigms have arisen from the demand side 

[8]. For instance, with the help of DERs and integrated energy devices, energy 

consumers can schedule their consumption plan flexibly to minimize their electricity 

bill or even arbitrage using energy storage systems (ESS). Consumers with high 

demand in various energy forms and multiple energy devices can have more space for 

action to further optimize their devices’ operation schedules to reach higher profits. In 

this context, energy management on the demand side becomes a significant and 

meaningful topic [9].  

1.2 Incentives and Literature Review 

To optimize energy management on the demand side, this work aims to develop the 

optimal scheduling/operation methods for multi-scale entities (e.g., grid-connected 

building systems and community systems) and analyze the outcome of the optimal 

decisions in multi-agent environments of the RTP-DR problem. However, there are 

specific problems in different level systems at the size of single building customers, 

community operators, and utility companies, which are illustrated as follows. 
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One severe challenge for energy management on the demand side is the requirement 

for scenarios tailored solution rather than a uniform solution because the demand side 

entities in different scales face different energy management problems. In other words, 

optimization problems in multi-scale energy management may emphasize different 

issues: individual consumers face uncertainty in energy prices and distributed 

generation; community systems grapple with complexity arising from diverse energy 

consumption profiles and non-convex network constraints involving multiple energy 

types, while the collective participates in the retail electricity market (REM) and 

involve strategic interactions under dynamic pricing schemes. Therefore, energy 

management strategy adapted to multi-scale entities needs to be developed individually.  

The most common and also the most minor scale case is a single consumer with 

integrated energy demand and multiple devices, which can be characterized as building-

integrated energy systems (BIES) and account for about 40% of global energy use [10]. 

By coordinating multiple energies, including power, gas, and heat, the BIES consumer 

dispatches devices like CHP and ESS efficiently according to the profile demand, price, 

and renewable generation to obtain more abundant flexibility and achieve sufficient 

renewable usage. Energy management in such systems emphasizes robust operation 

under uncertainties from energy prices, DER production, and multi-energy demand, 

which is not only for self-profit-maximization but also vital to improving operational 

flexibility and maximizing renewable energy use in the whole energy system. 

On a larger scale, a bunch of consumers who are geographically located nearby to 

each other can form an energy community and operate in a cooperative way for a lower 

energy cost. Such local energy systems can potentially contribute to the overall energy 

and climate objectives, helping reverse energy consumption and emissions trends 

worldwide [11]. Furthermore, the proliferation of distributed energy devices and energy 

integration of multi-energy lay a solid foundation for better cooperation in a community 

system for satisfying consumers’ demand for both power and heat. It is necessary and 

pressing to increase energy efficiency and utilization with the means of energy 

integration in the whole system. The challenges in such systems mainly lie in the safe 
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operation that satisfies the operation constraints of multi-energy networks, which could 

be multiple and non-convex. 

The energy management problem with the largest scale in this thesis is the real-time 

pricing (RTP) - demand response (DR) problem between an electricity retailer (utility 

company) and multiple consumers (end users, EUs). When the electricity retailer 

implements real-time pricing in REM, consumers can learn the pricing behavior of 

utility companies to optimize their plans, leading to a non-cooperative game [12]. This 

problem may not be an energy management problem in the common sense, but it 

involves the demand-side management in the distribution network and also the energy 

scheduling of consumers, indicating the great potential of demand-side flexibility and 

also the risk of uncertainty in consumption patterns. 

Furthermore, machine learning (ML) has become a reliable and useful technique 

for multiple uses, e.g., forecasting, anomaly detection, and decision-making [13]. As 

one of the most popular categories of ML techniques, reinforcement learning (RL) has 

been gaining much attention as a decision-making tool for multiple scenarios in power 

systems. RL can enable the algorithm as a smart agent to learn from the interaction with 

the environment by “trial and error” with limited information [14]. For multi-scale 

demand side operation problems, RL can be installed as an energy management system 

to optimize the energy consumption decision automatically, reducing the sophisticated 

calculation by hand to lower energy costs. It will be especially useful in scenarios with 

dynamic environments with uncertain information like electricity price, renewable 

generation, energy demand, etc. The further implementation of these techniques can 

realize better use of energy on the demand side, which is a crucial part of promoting the 

carbon neutral career. 

Overall, entities with multi-scale in the demand side may have different objectives 

and are subject to different sets of constraints. This makes power consumption behavior 

in different scales more complex, thus harder to capture. Furthermore, the collective 

behavior of consumers may adversely change the whole picture of the energy system. 

On the other hand, using state-of-the-art (SOTA) ML and RL techniques, which are 
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game-changers for the traditional power system problem, provide essential tools to 

manage the system operation on the demand side. Advancing RL application in multi-

scale demand-side energy management can assist in a better understanding of the 

demand side behavior and is beneficial to promoting energy transition and 

decarbonization [15].  

1.3 Primary Contributions 

The work presented in this thesis contributes to several key issues of decision-

making in the demand side of the power system, specifically surrounding the 

application of RL in multi-scale systems: (i) scheduling the multi-energy devices under 

uncertainties of the renewable profile and energy demand for an integrated energy 

consumer like BIES, (ii) achieving a safe operation subject to multi-energy network 

constraints for collective community consumers in Integrated Community Energy 

Systems (ICES), (iii) estimating the mixed-strategy Nash equilibrium for the RTP-DR 

problem between an electricity retailer and multiple energy consumers in REM.  

The main contributions of this thesis can be summarized as follows. 

1) A hybrid data-driven approach integrating TFT and SAC algorithm, TFT-SAC, 

is developed to schedule the day-ahead operation strategy for BIES accounting for 

uncertainty in renewable output and energy demands. The TFT is used to forecast the 

renewable generation and energy demand based on historical data, and the forecasts 

that are obtained are then utilized by the SAC algorithm to solve the scheduling 

problems. Unlike conventional black-box forecasting methods, the TFT provides 

interpretability through the attention mechanism, enhancing the trustworthiness of 

forecasting results for decision-making. Furthermore, the SAC algorithm, trained to 

maximize the policy entropy, can learn an operational strategy with superior robustness 

and generalization capabilities. The proposed TFT-SAC approach is trained and tested 

on a real-world dataset to validate its superior performance in reducing energy costs 

and computational time compared with the benchmark approaches. The generalization 
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performance for the learned scheduling policy and the sensitivity analysis are examined 

in various scenarios. 

2) A novel MNC-ICES model is proposed to interpret the concept of ICES. The 

proposed model accounts for the constraints of multi-network, which captures the 

physical characteristics of energy flow and imposes security operational constraints for 

the distribution level energy transmissions. Energy devices are modeled in high fidelity 

to describe the realistic physical operating attributes in practice. Additionally, the 

renewable uncertainty and integrated demand elasticity are considered to describe the 

novel characteristics of modern distribute-level energy systems. A constrained 

optimization problem is formulated to denote the operation problem in the proposed 

MNC-ICES model and then transformed into a Constrained Markov decision process 

(C-MDP) for the application of RL approaches. Specifically, the C-MDP is formulated 

from the constrained operational optimization problem in MNC-ICES with multi-

energy integration. Constraints on voltage in the power network, gas flow, gas pressure 

and gas injection in the gas network, pipeline flow, and nodal flow in the district heat 

network are considered security constraints and imposed safety requirements, being 

modelled as the cost term in a tuple of C-MDP. 

3) A safe RL algorithm, Primal-Dual Twin Delayed Deep Deterministic Policy 

Gradient (PD-TD3), based on a C-MDP) is proposed to optimize the decisions of ICES 

operators for profits-maximization subject to multi-energy network constraints. The 

PD-TD3 algorithm using double networks reduces the over-estimation problem of the 

action value for both the reward and cost, and the delayed update stabilizes the training 

process of policy and its dual variable. With such an accurate estimation of Q values, 

the proposed algorithm converges to the optimal solution that balances the maximal 

profits and the lowest constraint violation. In addition, the training processes of the 

policy and its dual variable are stabilized by delayed updates, which contributes to the 

training efficiency and helps to converge to the global optimal.  

4) A 1-leader, N-follower dynamic Bayesian Stackelberg game is developed to 

represent the sequential decision-making RTP-DR problem. This game is assumed to 
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be an incomplete information environment in a non-cooperative game between an 

electricity retailer and multiple EUs. All players learn others' strategies dynamically to 

maximize their own profits in certain sequential RTP-DR problems. The proposed game 

is then re-formulated into a MDP for reinforcement learning solutions. 

5) A multi-agent RL (MARL) algorithm is developed to estimate the mixed-strategy 

Nash equilibrium(MSNE) of the RTP-DR problem. By solving the MDP for each player, 

the subgame perfect equilibrium (SPE) of the dynamic Stackelberg game is reached, 

and the convergence conditions are almost identical to the equilibrium conditions (No 

player can benefit from deviating from current decisions). Compared to typical MAQL, 

the proposed approach utilizes probability distributions to represent Q-values, 

enhancing the algorithm's learning speed and strategic depth, leading to a more accurate 

equilibrium point. The results show that the optimal decision trajectories of both the 

retailer and end users are multiple, indicating the equilibrium for the proposed game is 

indeed MSNE. 

1.4 Thesis Layout 

This thesis comprises six chapters in total, including this introductory chapter.  The 

remaining chapters are organized as follows.  

Chapter II carefully reviews the past research and critical challenges in multi-scale 

demand side energy management problem in terms of different scales. A review of 

fundamentals and advances of RL is also provided. In depth discussion in challenges in 

both demand side energy management problems across different scales and current RL 

algorithms are discussed, which are to be addressed in Chapter III, IV, and V.  

Chapter III presents the application of a novel transformer-based RL model, namely 

TFT-SAC, in energy forecasting and afterward energy management in a BIES. The 

models of a modern BIES system constitute the energy devices of micro-CHP, ESS, 

photovoltaic (PV), gas boiler (GB), and uncertain demand of power and heat. The novel 

method, TFT-SAC, adopts TFT for interpretable energy forecasting and SAC for 

follow-up operational optimization. The proposed hybrid data-driven approach is 
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trained and tested on a real-world dataset to validate its superior performance in 

reducing energy costs and better generalization performance compared with the 

benchmark approaches.  

Chapter IV provides an overview of the state-of-the-art concepts for techno–

economic modeling of ICES by establishing a Multi-Network Constrained ICES 

(MNC-ICES) model. The proposed model underscores the diverse energy devices at 

community and consumer levels and multiple networks for power, gas, and heat in a 

privacy-protection manner.  The corresponding operational optimization/energy 

management problem in the proposed model is formulated into a C-MDP and solved 

by a Safe RL approach. A novel Safe RL algorithm, PD-TD3, is developed to solve the 

C-MDP. By optimizing operations and maintaining network safety simultaneously, 

which is tested against benchmark approaches. 

Chapter V employs MSNE to analyze the multiple equilibria in the non-convex 

game of the RTP-DR problem, which is considered as a combination of demand-side 

management problem of the retailer and energy management problem of EUs, 

providing a comprehensive view of the potential transaction results in REM. A novel 

multi-agent Q-learning algorithm is developed to estimate SPE in the proposed game. 

The proposed algorithm has a bi-level structure and adopts probability distributions to 

denote Q-values, representing the belief in environmental response. Through validation 

on a Northern Illinois utility dataset, the proposed approach demonstrates notable 

advantages over benchmark algorithms. 

Finally, the concluding remarks of the thesis are summarized in Chapter VI, and 

some prospective extensions and possible directions for future research work are also 

presented. 
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Chapter II 

Literature Review 

 

2.1 Overview 

In modern power systems, the demand side entities are varied in scales and also 

operation methods. This chapter aims to introduce the state-of-the-art multi-scale 

demand side energy management models. Furthermore, fundamentals and current 

challenges of RL techniques are also provided and discussed to cover the necessary 

concepts that would be used in the thesis. Firstly, energy forecasting and day-ahead 

optimal operation for BIES are reviewed as a single self-schedule proactive consumer 

in the distribution network. Secondly, safe operation and constrained optimization for 

an ICES containing a group of integrated energy consumers and multiple energy 

devices are reviewed at the community level of demand side energy management 

problems. In addition, the interaction and game between an electricity retailer and 

corresponding end users of energy are reviewed at the level of demand side 

management in REM. Lastly, the fundamentals of RL, which mainly include MDP and 

the Bellman function, are presented. The categories and challenges of RL algorithms 

are also briefly discussed.   

2.2 State-of-the-Art Multi-Scale Demand Side Energy Management 

Multi-scale demand side energy management involves dynamic decision-making 

problems from a single energy building to integrated energy community and the whole 

REM. In the following, a literature review on the models and solutions of corresponding 

scenario and problems are presented in detail. 

2.2.1 Energy Forecasting and Day-ahead Optimal Decision Making for Building 

Integrated Energy System 
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The BIES operates to meet multiple energy demands using both internal energy 

devices and external energy resources. Specifically, the electric system, which 

comprises PV panels, micro-CHP units, and BESSs, is grid-connected to satisfy the 

power demands of the building. Typically, BIESs purchasess electricity from the 

external power market when the demand exceeds renewable generation and may sell 

electricity when renewable generation is surplus. The BESS enhances the operational 

flexibility and adds complexity to the decision-making process. PV and BESS, as 

components of DC systems, are connected to the building and power grid through 

electronic interfaces. The maximum power point tracking (MPPT) is used to control the 

inverter between the DC and AC systems, maximizing energy extraction from PV 

panels despite fluctuating solar conditions. For simplicity, the dynamics inside the 

power converters are neglected, as the focus is on optimizing the hourly operational 

strategy. Additionally, independent heating systems, consisting of micro-CHP units and 

GBs, are commonly deployed in building complexes, campuses, and industrial parks, 

particularly in regions with high heat demands [16]. These localized heating systems 

reduce the significant transmission losses associated with centralized heating. The BIES 

model also assumes a connection to an external natural gas market as the fuel source 

for the micro-CHP units. Detailed models of these devices are provided as follows. The 

energy management of BIES is hindered by two key challenges: 1) high operational 

risk due to the intermittent and uncertain nature of PV power generation and energy 

demand [17], and 2) intractable optimization caused by the non-convexity of the CHP 

unit [18]. For the former, PV generation and demand uncertainty has been shown to 

bring significant profit loss and endanger the system stability by leading to energy 

shortage or renewable curtailment [19]. The problem even gets more severe in large 

buildings with high peak demands or high solar capacity. Accurate forecasting of PV 

output and demand is thus crucial for smart scheduling in energy devices (e.g., energy 

storage) to avoid profit loss and system blackout. Much of the existing research has 

focused on developing model-based frameworks for optimal operation in multi-carrier 

energy systems. These optimization problems generally rely on precise models and 



 
 

13 

estimated exogenous factors such as weather-dependent renewable generation and 

energy loads. To address uncertainties, techniques like robust optimization (RO) and 

stochastic optimization (SO) have been used, where RO models uncertainties as 

bounded sets, and SO uses a set of scenarios to represent uncertainty. While these 

conventional methods are effective for managing the scheduling of multi-carrier 

systems, they face challenges in handling highly nonlinear units, particularly in 

competitive markets. Stochastic programming (SP) becomes inefficient as the number 

of scenarios increases, and RO often yields overly conservative results by focusing on 

worst-case scenarios. Both SP and RO also suffer from the "curse of dimensionality," 

where increased actions, decision variables, and constraints lead to exponentially 

growing computational requirements, limiting their scalability for real-world energy 

management applications involving multiple devices and uncertainties [20]. 

As for the latter, CHP is well known for providing flexibility in power and heat in 

a feasible operation region (FOR), which is non-convex in practice and makes the 

optimization non-tractable. FOR convexification is a widely adopted solution but 

sacrifices considerable operational flexibility [21]. The optimal scheduling of CHP 

remains an open question in BIES optimal operation. Moreover, the variable 

renewable/demand forecast and non-convex operation optimization are not independent 

of each other, e.g., the flexible dispatch of CHP can provide compensation for the 

renewable uncertainty. This indicates a deep correlation between the forecast and 

downstream non-convex scheduling in BIES.  

2.2.2 Constrained Optimization in Grid-Connected Integrated Community Energy 

Systems 

ICES have emerged as a promising approach for efficient multi-energy coordination 

and utilization, particularly in managing demand flexibility and increasing renewable 

energy penetration [22]. The energy management of ICES is, therefore, essential for 

integrating diverse energy transactions and enhancing overall energy efficiency. 

However, the concept of ICES, which represents an integrated energy system at the 
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community level, is still under discussion and lacks a clear definition. Some researchers 

have described ICES as a modern development that reorganizes local energy systems 

to integrate distributed energy resources and engage local communities [11]. Others 

have focused on its role in managing local energy generation, delivery, and exchange 

to meet local demand, with or without grid connection [23]. However, these 

descriptions do not fully capture the operational logic and model structure of ICES. 

Inspired by the concept of energy communities [24, 25],  ICES is defined as follows: 

ICES is a socio-economic unit rooted in a physical community, characterized by 

cooperative multi-energy production and consumption through either shared or 

unshared integrated energy devices, and functioning as a non-commercial market actor 

that amalgamates economic, environmental, and social community objectives. While 

sharing the goal of maximizing social welfare through energy device scheduling and 

demand response stimulation, ICES extends beyond electric energy to include the 

integration of power, gas, and heat, emphasizing coordination among both energy 

devices and demands. Thus, ICES represents an effective strategy for maximizing 

social welfare and facilitating decarbonization. 

Based on a review of previous studies, the modeling of ICES can be divided into 

three main components: community-level devices, consumer-level devices, and 

network constraints. Devices in ICES can be divided into community-level and 

consumer-level. Community-level devices typically include dispatchable generation 

(DG) units, ESS, and renewable energy sources (RES). DG units comprise CHP 

systems [26-30], power-only units [26, 28, 31], and heat-only units [26, 28, 30, 31]. 

CHP systems, which serve as critical energy converters across power, gas, and heat, are 

modeled simplistically with fixed energy conversion rates in most works of ICES [26, 

28, 30, 31]. However, the realistic and physical characteristics of CHP are always 

overlooked, which describes the multi-energy conversion as a FOR but presents 

computational challenges with non-convexity[32]. Power-only and heat-only units are 

rarely used, which are typically modeled using a linear [26-30] or quadratic generation 

cost function [31, 33]. For ESS, [34-36]electric battery systems (EBS) [25-28, 34-36], 
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thermal energy storage (TES)[25, 34-36], and gas storage systems (GSS) are considered. 

Compared to prevalent EBS and TES, which have variable costs, GSS is less common 

due to static gas prices. Typical simplified ESS models are usually employed with static 

value for charging and discharging efficiency. This is because ESS does not directly 

participate in multi-energy conversion and is the core part of the ICES, although ESS 

is deemed necessary. RES, such as PV systems and wind turbines (WT), introduce 

renewable power output with uncertainty, constituted of an energy conversion model 

and forecast errors. The energy conversion model provides the output given the solar 

irradiation or wind speed and other external conditions (e.g., temperature [36]), while 

the forecast errors are sampled from specific probabilistic distribution functions (PDFs). 

For example, Weibull and Beta PDFs can be used to represent the forecast error 

distribution for the WT and PV, respectively [34]. At the consumer level, the modeling 

focuses on the energy demand for electricity and heat, typically based on a quadratic 

energy utility function to represent demand response characteristics. Households may 

possess energy conversion or flexible devices like micro-CHP, ESS, and boilers, 

sometimes overlapping with community-level devices. The boilers employed on the 

demand side enable energy conversion to realize a more flexible integrated demand 

response (IDR) [30]. Moreover, some studies have extended ICES modeling to include 

more detailed flexible devices, for example, electric vehicles (EVs) [27], to explore the 

unique characteristics of ICES in various scenarios. Additionally, as research 

accounting for network constraints in ICES is very limited, previous works in network 

modeling are reviewed in the following operational research part rather than separately. 

The existing literature on the energy management of ICES primarily addresses the 

coordination of two energy systems, a focus partly due to the complexity and 

computational intensity involved. For power and heat systems within ICES, prior 

research has primarily concentrated on leveraging thermal demand characteristics, 

given their direct impact on human comfort. IDR strategies for power and heat have 

been employed to manage uncertainty and enhance profitability without compromising 

comfort levels. For instance, in [27], the coordination between flexible IDR for power 
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and heat and electric vehicle charging stations is explored in ICES under the uncertainty 

of renewable generation. A bi-level model predictive control (MPC) based approach is 

utilized in [29] to optimally integrate thermal demand and flow dynamics into the ICES 

scheduling problem. [30] optimizes the distributed scheduling problem of multiple 

energy hubs in ICES. Furthermore, [37] considers the impact of the thermal inertia of 

detailed space heating loads to model the thermal demand response character in the IDR 

problem of multiple energy users (MEUs) in ICES. On the other hand, literature on 

power and gas systems in ICES is limited due to the non-convex nature of gas flow, 

focusing on the coordination of energy flow in distribution networks. While research 

on two-network coupling systems is extensive, the coordination and interaction among 

multiple networks are still underexplored. Notably, comprehensive modeling and 

mathematical optimization of multi-networks are proposed in a multi-energy district 

[38], which shares a similar scale with ICES. However, multi-energy districts primarily 

concentrate on network operations without addressing energy device scheduling and 

are considered centrally controlled entities, in contrast to the community-oriented 

nature of ICES. As a result, the multi-network constrained scheduling of ICES operators 

and the interaction (e.g., IDR) between ICES operators and MEUs remain critical yet 

underexplored aspects—the modeling and operational optimization of multi-network 

constrained ICES warrants further investigation. 

The constrained optimization/energy management problem in ICES is challenging 

to solve in terms of non-convexity, privacy protection, and computational burden, 

which are caused by non-convex constraints of devices and network, the distributed 

operation manner of MEUs, and the increasing scale of the modern community, 

respectively. It can be solved by multiple approaches, including heuristic algorithms 

[27] and mathematical programming [28, 29, 37]. Heuristic algorithms are a class of 

optimization algorithms that are designed to explore solution spaces to find near-

optimal solutions efficiently. Therefore, this approach is particularly useful for 

problems with non-convexity. A metaheuristic algorithm, chaotic differential evolution, 

is adopted to schedule and price for multiple ICESs in [27]. However, it fails to 
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guarantee optimality theoretically and is easy to fall into suboptimal, especially in large-

scale and complex problems like ICES operation. In contrast, mathematical 

programming guarantees the solution optimality with rigorous proof but falls short in 

dealing with non-convexity, which requires complicated convexification. Works in [28] 

formulate a convex problem by employing the Big-M method and inequality second-

order cone constraint, after which active and reactive dispatching for ICES is solved to 

the global optimal. Similarly, network constraint nonlinearity was tackled using the big-

M method and piece-wise linearization [31]. The two-stage optimization of the power 

and heat system in ICES is then solved by a robust method subject to energy price 

uncertainty. However, these approaches above require global information for solutions, 

violating the privacy protection of MEUs in an ICES. To overcome this drawback, the 

alternating direction method of multipliers (ADMM), was adopted to schedule the sub-

systems of ICES in a decentralized manner [37]. Even though these approaches can 

partially deal with non-convexity and realize privacy protection, they still face 

increasing computational burdens with the growing scalability of the consumers and 

devices, which is known as the “curse of dimensionality [20].” 

2.2.3 RTP-DR problem between utility companies and energy consumers 

The practical utilization of RTP- DR by retailers and end users (EUs) offers a viable 

approach for enhancing grid efficiency and providing flexibility resources [39]. RTP, 

which continuously adjusts the price of electricity based on current supply and demand 

conditions [40], is a popular dynamic pricing approach employed by electricity retailers. 

Compared to other dynamic pricing programs such as time-of-use (ToU) and critical 

peak pricing (CPP), RTP demonstrates superior performance in reflecting the intrinsic 

value of electricity across different transaction periods, thereby improving market 

intelligence and efficiency [41]. EUs, in response to the fluctuating price signals in 

REM, intelligently adjust their power consumption among various transaction time 

slots based on appliance utility and electricity prices. This behavior, known as “price-

based demand response”, effectively utilizes the inherent flexibility of power 
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appliances in EU households [42]. Despite the intuitive conflict of interest between 

retailers and EUs, the RTP-DR mechanism exploits the flexibility of EUs' power 

consumption and facilitates its supply to the grid, thus ensuring incentive compatibility 

within the market [43]. Furthermore, RTP-DR results in direct energy savings for 

consumers and empowers them to manage their energy usage more effectively, leading 

to more informed and active participation in the energy market.  

Research on RTP-DR can be divided into two primary categories: optimal strategy 

development for retailers and aggregators, and market equilibrium estimation. 

The first category involves developing mathematical models and algorithms to 

optimize pricing strategies, including ToU [44], CPP [45], and learning-based methods. 

In ToU, the retailer segments the day into peak, off-peak, and mid-peak hours with 

predetermined rates, enabling EUs to plan their consumption. Under CPP, prices are 

significantly increased during pre-announced critical periods to reduce peak demand, 

while lower rates apply during non-critical periods. Learning-based methods optimize 

pricing in dynamic environments with uncertain demand and wholesale prices, 

leveraging preference modeling or model-free deep reinforcement learning. For the 

EUs side, Load-shedding and load-shifting are the main methods of EUs to change their 

load profile, while they may have certain strategies under different RTP schemes. Under 

ToU, EUs optimize consumption by shifting usage to lower-cost periods in day-ahead 

scheduling. For CPP, EUs avoid consumption during critical periods to minimize costs. 

When learning-based pricing is used, EUs solve real-time multi-device operation 

problems considering demand characteristics and price uncertainties [46]. 

For the latter category of market equilibrium estimation, the Stackelberg game is a 

popular means to construct a bi-level decision-making model, and features sequential 

interactions between a single leader and multiple followers [44]. In recent research, it 

has been widely adopted to model RTP-DR problems in various scenarios [47], [48], 

[49], [50],  [51]. A key challenge in the Stackelberg game modeling fitted in the RTP-

DR problem is to incorporate network constraints. Previous research, such as [47] and 

[48], usually overlooked physical constraints due to computational complexity and 
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temporal correlation of EUs' power consumption characteristics for simplicity. 

However, this results in over-ideal solutions that did not comply with network 

constraints and thus did not ensure the safe operation of the distribution network [49]. 

What's worse, neglecting the temporal correlation of EUs' power consumption 

eliminated one of the most important functions of DR, i.e., peak shaving and valley 

filling among time slots [52]. The cross-impact of network constraints and temporal-

related non-linear power consumption characteristics may render the RTP-DR problem 

non-convex [50]. As a result, the market equilibrium may deviate from the unique Nash 

Equilibrium (NE), and result in multiple equilibria in the game [51]. Reference [49] 

claimed the problem formulated from the aforementioned game was non-convex and 

NP-hard, so commercial solvers could not find a good solution. To date, the non-convex 

RTP-DR problem with multiple equilibria remains unsolved. 

Nonetheless, the non-convex Stackelberg game has multiple equilibria in nature and 

is suitable to be analyzed from the view of MSNE. Compared to pure-strategy NE, 

MSNE is a set of probability distributions on several possible local equilibria. The 

adoption of MSNE allows players to randomize their strategy in a probability 

distribution. There are several underlying reasons to implement the mixed strategy and 

MSNE. 1) The non-convex game may have more than one NE especially when there 

are non-linear temporal-correlated power consumption constraints and network 

constraints [53]. 2) The nature of mixed strategy complies with the uncertain action of 

both the human and learning algorithm [54]. 3) The strategic behavior of players in a 

game with multiple equilibria should be various and stochastic. 4) A probability 

distribution over several equilibria should exist accounting for optimal stochastic 

(mixed) strategies and multiple equilibria [55]. Additionally, the analysis of MSNE is 

able to provide a more comprehensive understanding of potential strategic behaviors in 

non-cooperative games. Especially, when solving the RTP-DR problem, social welfare 

over several equilibria may vary significantly, thus the presence of MSNE can guide 

further regulation development. Although the works in [56] exploit multiple-equilibria 

to indicate the market equilibrium accounting for the demand uncertainty, there is no 
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current research focusing on the multiple equilibria in the non-convex Stackelberg 

game that results from the physical constraints and non-linear power demand. 

In most works above, mathematical programming methods are employed to 

estimate NE in the Stackelberg game. For instance, the bi-level Stackelberg game has 

been transformed into mathematical programming with equilibrium constraints and 

solved using traditional mathematical methods after being reformulated to a linear 

problem [57]. In [50], a network-constrained Stackelberg game is solved centrally for 

the optimal prices and demand in the RTP-DR problem. However, with the increasing 

scale of the problem, the huge burden on convexification and the possible exponentially 

growing demand for the computation resources, which is called the “curse of 

dimensionality,” put significant barriers to implementing the mathematical methods 

[58].  

2.3 Reinforcement Learning Algorithms 

In this subsection, a brief review of RL fundamentals is provided, covering 

necessary concepts and algorithms that will be further employed while elaborating RL 

applications on marketized power systems in subsequent sections. The MDP as the most 

simplified formulation of RL is introduced, and RL algorithms are reviewed and 

discussed.  

2.3.1 The Concept of Markov Decision Process 

To start with, the concept of Markov Property is introduced as a foundation of 

Markov Process (MP) and MDP. The Markov Property refers to the conditional 

probability of s𝑡+1 occurring given that s𝑡 has already occurred, being independent to 

the previous states from s𝑡−1 and beforehand. Intuitively, the MP is defined as the state 

sequence (a random process) with such a property. The MP is always formulated as a 

two-tuple (𝑆, 𝑃) , where 𝑆  is a set of states with Markov Property, and P denotes 

transition probabilities among states. Consider a smart agent that can take different 
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actions given different states. Similarly, the MDP can be formulated as a tuple 

(𝑆, 𝐴, 𝑅, 𝑃), considered as a MP with the incorporation of actions and rewards, in which: 

• 𝑆 is a set of states that contains environment information related to the decision-

making at this time.  

• 𝐴 is a set of actions that can be taken by the agent at the corresponding state. 

• 𝑃 represents the transition probability, denoted as: 𝑃: 𝑆 × 𝐴 → (𝑆), which is a 

probability distribution over the set 𝑆.  

• 𝑅(𝑆, 𝐴) indicates the reward of selecting action 𝑎 in the previous state 𝑠.  

Once the MDP is observed (assume the MDP is fully-observable, while the 

condition of partially-observable MDP also exists), the aim of agents is to obtain the 

optimal policy  𝜋 ∗  , which refers to the sequential decisions [33], for maximizing 

accumulative rewards in the MDP. However, the “performance” of a given policy 

cannot be simply evaluated by the immediate reward after the action for the sake of 

long-term benefits. Instead, the state-value function as formulated in (2.1), which is the 

so-called “expected accumulative reward”, is adopted to evaluate the performance of 

the policy 𝜋 at the state 𝑠 until the termination of the entire episode. When evaluating 

a policy, the mapping from actions to states (state transition) is still uncertain (see the 

definition of transition probability). Intuitively, the action-value function, which 

implies the expected accumulated reward by executing the policy 𝜋 after taking action 

𝑎 at the state 𝑠, can be defined in (2.1). Note that the discount factor 𝛾 is intended to 

discount the future reward indicating the uncertainty.  

𝑉𝜋(s) = 𝐸𝜋 [∑𝛾𝑘𝑅𝑘+𝑡+1|𝑆𝑡 = 𝑠

∞

𝑘=0

] (2.1) 

𝑞𝜋(𝑠, 𝑎) = 𝐸𝜋 [∑𝛾𝑘𝑅𝑘+𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

∞

𝑘=0

] (2.2) 

Furthermore, (2.2) indicates that the action-value constitutes two parts: the 

immediate reward, and the sum of possible state-values at 𝑠𝑡+1  weighted by their 

probabilities. Inspired from (2.2), the “optimal” policy can be induced by taking the 

action with maximum expected reward in an iterative manner once the action-value 



 
 

22 

function is available. By substituting 𝐺𝑡+1 = 𝑉𝜋(𝑠𝑡+1), the iterative expression of 𝑉𝜋(𝑠), 

which is the so-called Bellman Equation, can be written as: 

𝑉𝜋(s𝑡) = 𝐸𝜋[𝑅𝑡+1 + 𝛾𝑉𝜋(s𝑡+1)] (2.3) 

𝑞𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋[𝑅𝑡+1 + 𝛾𝑞𝜋(s𝑡+1,a𝑡+1)] (2.4) 

By definition, the optimal state-value function and action-value function are the 

maximum values of 𝑉𝜋(𝑠)  and 𝑞𝜋(𝑠, 𝑎) , i.e., 𝑉(𝑠) = 𝑚𝑎𝑥 𝑉𝜋(𝑠)  and 𝑞∗(𝑠, 𝑎) =

max 𝑞𝜋(𝑠, 𝑎) . Then, the Bellman Equation of the optimal state-value function and 

action-value function can be formulated as follows. 

𝑉∗(𝑠𝑡) = max
𝑎
𝑅𝑠𝑡
𝑎𝑡 + 𝛾∑𝑃𝑠𝑡𝑠𝑡+1

𝑎𝑡 max𝑎𝑡𝑉
∗(𝑠𝑡+1) (2.5) 

𝑞∗(𝑠𝑡, 𝑎𝑡) = 𝑅𝑠𝑡
𝑎𝑡 + 𝛾∑𝑃𝑠𝑡𝑠𝑡+1

𝑎𝑡 max𝑎𝑞
∗(𝑠𝑡+1, 𝑎𝑡+1) (2.6) 

With (2.6) in hand, the optimal policy can be intuitively derived by maximizing the 

action-value 𝑞∗(𝑠, 𝑎) as formulated in (2.7), while such procedure is implemented with 

assistance of most useful techniques including DP and RL algorithms. 

𝜋∗(𝑎|𝑠) = {
1,
0
𝑖𝑓 𝑎 = argmax𝑞∗(𝑠, 𝑎)
, 𝑜. 𝑤.

(2.7) 

2.3.2 Reinforcement Learning Algorithms 

In recent years, RL algorithms have gained great attention for addressing 

optimization problems [59]. By interacting with the external environment, RL 

algorithms enable intelligent agents to iteratively learn optimal strategies with only 

partial environmental information. Compared to traditional mathematical programming, 

RL offers advantages in scalability with high computational efficiency and 

generalization to various scenarios [60].  

As illustrated in the previous subsection, an RL algorithm learns a better strategy 

by making decision based on the current observation and update the decision-making 

strategy with the received reward. Based on whether an environment model is learnt, 

RL algorithms can be roughly divided into two categories, model-based RL and model-

free RL. Specifically, model-based RL always requires modeling the transition 

probability and the reward function, while model-free RL does not learn an explicit 

environment model, but learns all the environment implicitly within the strategy. Since 
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the tasks in power systems always need to receive highly uncertainty or high-order 

signals, works in this thesis mainly focus on the model-free environment to better adapt 

to the complex scenarios in power systems. 

By leveraging DNN to estimate value functions, model-free RL algorithms can 

handle complicated optimization problems by estimating non-convex Q-functions or 

policies. DRL has been successfully applied in diverse domains [61-69]. For example, 

a model-free DRL algorithm, DDPG, optimizes the energy management of an 

integrated energy hub in [32]. Similarly, SAC algorithms optimize the scheduling of 

islanded energy systems, accounting for multi-uncertainties and hydrothermal 

simultaneous transmission [62]. RL algorithms can also be extended to multi-agent 

environment in peer-to-peer multi-energy trading [70, 71], showing their strong 

adaptability to different settings.  

However, conventional RL algorithms suffer from several challenges.  

1) In most real-world decision-making problems, the RL agent makes sequential 

decisions based on observed state information. However, whole state information is 

always not fully observed and may require forecasting, for example, power system 

dispatching orders may require forecast on renewable and load. Although RL 

algorithms can learn from current state to make decisions, there is no explicit 

forecasting procedure in the design of RL algorithms, resulting in a poor ability to deal 

with future uncertainties.  

2) RL algorithms are designed for unconstrained optimization problems. Even 

though they are applicable to some optimization problems with soft constraints, their 

efficacy may diminish when applied to most constrained optimization problems. The 

lack of consideration for network constraint violations restricts the application of RL 

algorithms in industrial practice, as it can lead to economic losses and even system 

blackouts [63]. 

To solve the first challenge, some literature has tended to integrate decision-making 

with upstream forecasting for a holistic data-driven tool for scheduling in integrated 

energy systems. For instance, [72] adopted a long short-term memory (LSTM) method 
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to extract temporal features and assist the decision-making of the DRL algorithm in 

integrated energy management. [32] combined a convolutional neural network (CNN) 

and bidirectional LSTM (BLSTM) to forecast solar output in an energy hub by 

analyzing sky images. The predicted value is then imported into the DDPG algorithm 

for further scheduling decision-making. Although these methods have shown good 

performance, the LSTM struggles with capturing complex temporal patterns and 

dependencies that span multiple time steps effectively [73], and related research is still 

limited. 

To address the latter challenges mentioned above, Safe RL algorithms have been 

developed to solve constrained optimization problems, which are designed to maximize 

reward while complying with hard constraints. Specifically, Safe RL approaches can be 

classified into three categories: 1) Penalizing constraint violations in the reward 

function by adding a penalty term [64]. However, this requires choosing a suitable 

penalty value, which is a difficult and sensitive task that depends on the reward scale, 

the number and scale of constraints, and the degree of safety [65]. 2) Projecting unsafe 

actions to safe ones by solving a projection problem, for example, approximated 

Lyapunov constraints [66]. This method relies on a projection model, which is based 

on predefined DNNs or matrices with potentially large approximation errors [67]. 

Therefore, the resulting actions could be overly conservative. 3) Penalizing the 

constraint violations in the action-value function dynamically by introducing the 

Lagrangian multiplier, instead of using a fixed penalty value in the reward [68, 69]. The 

multiplier is stochastically updated as a dual variable of the policy during the agent 

training based on the cost value function. However, the Lagrangian method-based Safe 

RL algorithm may not converge to the optimal solution because of the cost value 

function overestimation. 
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Chapter III 

A Forecasted-Enhanced Reinforcement Learning 

Method for Optimal Scheduling of Building 

Integrated Energy Systems 

 

 

3.1 Overview 

This chapter focuses on the scheduling/energy management problem of BIES that 

suffers from uncertainty of DER and energy demands, and also complex operation 

characteristics of integrated energy devices. In the context of energy management 

problems in BIES, the RL algorithm is one of the promising candidates, which learns 

from historical data and receives available environment information to make 

operational decisions. Such scheduling is based on day-ahead/hour-ahead prediction for 

required variables, including renewable output, energy demand, etc. Although RLs can 

learn from the current state to make decisions, there is no explicit forecasting procedure 

in the design of RL algorithms, resulting in a poor ability to deal with future 

uncertainties. Integrating decision-making with upstream forecasting for a holistic 

operational tool is a natural idea to improve operational efficiency. Recently, some 

literature has tended to integrate decision-making with upstream forecasting for a 

holistic data-driven tool for scheduling in integrated energy systems. For instance, [72] 

adopted a long short-term memory (LSTM) method to extract temporal features and 

assist the decision-making of the DRL algorithm in integrated energy management. [32] 

combined a convolutional neural network (CNN) and bidirectional LSTM (BLSTM) to 

forecast solar output in an energy hub by analyzing sky images. The predicted value is 

then imported into the deep deterministic policy gradient (DDPG) algorithm for further 

scheduling decision-making. Although these methods have shown good performance, 

the LSTM struggles with capturing complex temporal patterns and dependencies that 

span multiple time steps effectively[32], and related research is still limited. Many 
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studies employ DRL techniques in conjunction with black-box forecasting tools, raising 

concerns about model transparency and reliability. The opacity of these models can lead 

to significant profit losses [74], thereby limiting the real-world applicability of data-

driven strategies. 

In order to deal with the decision-making of BIES under uncertainty, a hybrid data-

driven method for forecast-enhanced reinforcement learning is developed, in which a 

temporal fusion transformer (TFT) model performs time-series forecasting of uncertain 

DER output and energy demands while a soft actor-critic (SAC) learns the optimal 

strategy at the downstream. The optimal scheduling problem of BIES is formulated as 

a MDP for the solution of the SAC algorithm. Finally, the forecasting accuracy, 

generalization performance, robustness to exogenous uncertainty, and sensitivity to 

external signals are analyzed, validating the applicability and advancement of the 

proposed approach.  

Differing from the previous literature in model and methodology, the main 

contributions of this chapter are highlighted as follows: 

1) System Modeling and Markov Decision Process Formulation: This chapter 

presents a detailed mathematical model for BIES, including micro-CHP unit, BESSs, 

PV panels, and gas boilers (GBs). The non-convex scheduling/energy management 

problem in BIES is formulated into an optimization problem and then reformulated into 

an MDP for the application of RL algorithms.  

2) A Hybrid Data-Driven Method for Forecasted-enhanced Reinforcement 

Learning: A hybrid data-driven approach integrating TFT and SAC algorithm, namely 

TFT-SAC approach, is proposed to tackle the non-convex operational optimization 

problem in BIES. The TFT is used to forecast the renewable generation and energy 

demand based on historical data, and the obtained forecasts are then utilized by the SAC 

algorithm to solve the scheduling problems. Unlike conventional black-box forecasting 

methods, the TFT provides interpretability through the attention mechanism, enhancing 

the trustworthiness of forecasting results for decision-making. Furthermore, the SAC 



 
 

27 

algorithm, trained to maximize the policy entropy, can learn an operational strategy 

with superior robustness and generalization capabilities. 

3) Algorithm Validation and Optimal Scheduling Analysis: The proposed TFT-SAC 

approach is trained and tested on a real-world dataset to validate its superior 

performance in reducing the energy cost and computational time compared with the 

benchmark approaches. The generalization performance for the learned scheduling 

policy and the sensitivity analysis are examined in various scenarios. 

The remainder of this chapter is organized as follows. Section 3.2 covers system 

description, the optimization problem, and MDP formulation. Section 3.3 introduces 

the proposed hybrid data-driven approach integrating TFT and SAC algorithm. Section 

3.4 validates the proposed TFT-SAC approach with simulations, and Section 3.5 

concludes this chapter 

3.2 Problem Formulation 

3.2.1 System Description 

Work in this chapter focuses on a modern BIES that encompasses grid-connected 

electric systems and independent heating systems, as illustrated in Fig. 3.1. In practice, 

such systems can be found in university campuses, residential complexes, and industrial 

parks. The BIES operates to meet multiple energy demands using both internal energy 

devices and external energy resources. Specifically, the electric system, which 

comprises PV panels, micro-CHP unit, and BESSs, is grid-connected to satisfy the 

power demands of the building. Typically, BIESs purchases electricity from the external 

power market when the demand exceeds renewable generation and may sell electricity 

when renewable generation is surplus. The BESS enhances the operational flexibility 

and adds complexity to the decision-making process. PV and BESS, as components of 

DC systems, are connected to the building and power grid through electronic interfaces. 

For the purposes of this study, the dynamics inside the power converters are neglected, 

as the focus is on optimizing the hourly operational strategy.  
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Additionally, independent heating systems, consisting of micro-CHP units and GBs, 

are commonly deployed in building complexes, campuses, and industrial parks, 

particularly in regions with high heat demands (e.g., most of North America and 

northern China). These localized heating systems reduce the significant transmission 

losses associated with centralized heating. The BIES model also assumes a connection 

to an external natural gas market as the fuel source for the micro-CHP units.  

 

 

Fig. 3.1 Illustration of BIES systems 

3.2.2 Device modeling 

1) Micro-CHP Unit Modeling 

The micro-CHP unit is a crucial component of BIESs, functioning as a single-input 

multi-output energy converter. It is highly efficient in converting natural gas to power 

and heat, and a key element in enhancing the energy efficiency of the system. Typically, 

the micro-CHP unit is modeled with constant energy conversion efficiencies for both 

power and heat. However, the generation of heat and power by micro-CHP units is 

interdependent, resulting in a feasible operating region (FOR). In this section, a non-

convex operational model is employed for the micro-CHP unit. The non-convex FOR 

of this model is depicted in Fig. 3.2, bounded by the curve ABCDEFG. This FOR is 

considered to comprise two convex subregions, labeled as I and II.  

electricity flow
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Fig. 3.2 FOR of micro-CHP unit. 

The mathematical representation of the FORs for the micro-CHP unit is given by 

(3.1)-(3.8), as detailed in [32]. 

PCHP.e
t − PCHP.e

B −
PCHP.e
B − PCHP.e

C

PCHP.h
B − PCHP.h

C
× (PCHP.h

t − PCHP.h
B ) ≤ 0, ∀𝑡 ∈ 𝑇 (3.1) 

PCHP.e
t − PCHP.e

C −
PCHP.e
C − PCHP.e

D

PCHP.h
C − PCHP.h

D
× (PCHP.h

t − PCHP.h
C ) ≤ 0, ∀𝑡 ∈ 𝑇 (3.2) 

−(1 − XCHP
t

) × Γ ≤

PCHP.e
t − PCHP.e

E −
PCHP.e
E − PCHP.e

F

PCHP.h
E − PCHP.h

F
× (PCHP.h

t − PCHP.h
E ), ∀𝑡 ∈ 𝑇 (3.3)

 

−(1 − XCHP
t ) × Γ ≤

PCHP.e
t − PCHP.e

D −
PCHP.e
D − PCHP.e

E

PCHP.h
D − PCHP.h

E × (PCHP.h
t − PCHP.h

D ), ∀𝑡 ∈ 𝑇 (3.4)
 

XCHP
t

+ XCHP
t = ICHP

t , ∀𝑡 ∈ 𝑇 (3.5) 

−(1 − XCHP
t ) × Γ ≤ HCHP.h

t − HCHP.h
E ≤ (1 − XCHP

t
) × Γ, ∀𝑡 ∈ 𝑇 (3.6) 

0 ≤ PCHP.e
t ≤ PCHP.e

A × ICHP
t , ∀𝑡 ∈ 𝑇 (3.7) 

0 ≤ HCHP.h
t ≤ HCHP.h

A × ICHP
t , ∀𝑡 ∈ 𝑇 (3.8) 

where PCHP.e
t  presents the output power of micro-CHP unit at time t , and PCHP.h

t  

represent the output heat. PCHP.e
A  and PCHP.h

A  are the generated power and heat of the 

micro-CHP at point A, those at other points B, C, D, E, and F similarly defined; X and 

𝑋 are the operating statuses in the convex subregions I and II, respectively: If the micro-

CHP unit operates in the convex subregion I, X = 1 and 𝑋 = 0; otherwise, 𝑋 = 1 and 
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X = 0; Γ is a sufficiently large number used to assist in the model description; and ICHP
t  

is the commitment status of the micro-CHP unit. 𝑇 = {1,… ,24} is the set of operational 

hours.  

The total operation cost of the micro-CHP unit at time t is expressed as: 

CCHP
t (PCHP.e

t , PCHP.h
t ) = αCHPPCHP.e

t 2
+ β

CHP
PCHP.e
t + γCHP + αCHPPCHP.h

t 2
+

βCHPPCHP.h
t + γCHPPCHP.e

t PCHP.h
t (3.9)

 

where αCHP, αCHP, β
CHP

, βCHP, γCHP, and γCHP are the cost coefficients. 

2) BESS Modeling 

The BESS is conceptualized as a battery capable of charging and discharging with 

distinct efficiencies. The operational strategy of the BESS is designed with a granularity 

of one hour, corresponding to one time slot. This means that all charging and 

discharging activities of the BESS within a time period are aggregated into a single 

operation. Consequently, the BESS can either charge or discharge in any given time 

slot, but not both simultaneously [75].  

𝐸BESS
𝑡 = (1 − 𝛽)𝐸BESS

𝑡−1 + 𝑃BESS.𝑐
𝑡 𝜂BESS.𝑐 − 𝑃BESS.𝑑

𝑡 (3.10) 

0 ≤ 𝑃BESS.𝑐
𝑡 ≤ 𝑆BESS.𝑐

𝑡 𝑃BESS.𝑐.𝑚𝑎𝑥 (3.11) 

0 ≤ 𝑃BESS.𝑑
𝑡 ≤ 𝑆BESS.𝑑

𝑡 𝑃BESS.𝑑.𝑚𝑎𝑥 (3.12) 

𝑆BESS.𝑐
𝑡 + 𝑆BESS.𝑑

𝑡 ≤ 1 (3.13) 

𝐸BESS.𝑚𝑖𝑛 ≤ 𝐸BESS
𝑡 ≤ 𝐸BESS.𝑚𝑎𝑥 (3.14) 

where 𝐸BESS
𝑡  is the state of charge (SoC) of BESS at time 𝑡 ; 𝛽  and 𝜂BESS.𝑐  are the 

predetermined loss factor and charging efficiency, respectively; 𝑃BESS.𝑐
𝑡  and 𝑃BESS.𝑑

𝑡  are 

the charging power and discharging power of BESS at time 𝑡, respectively; 𝑆BESS.𝑐
𝑡  and 

𝑆BESS.𝑑
𝑡  are the charging state and discharging state of BESS at time 𝑡, respectively; and 

the subscripts max and min represent the maximum and minimum value of 

corresponding variables, respectively.  

The SoC is calculated in (3.10). The charging power and discharge power of BESS 

are constrained by (3.11) and (3.12), respectively. Constraint (3.13) is employed to 

determine the charging or discharging state of BESS. The total capacity of BESS is 

constrained by (3.14). 
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3) GB Modeling 

The GB is modelled as an energy device transforming natural gas to heat with a 

fixed rate. The model of GB can be described as: 

𝑃GB.ℎ
𝑡 = 𝜂GB𝑃GB.𝑔

𝑡 (2.15) 

𝑃GB.𝑔.𝑚𝑖𝑛 ≤ 𝑃GB.𝑔
𝑡 ≤ 𝑃GB.𝑔.𝑚𝑎𝑥 (2.16) 

𝑃GB.ℎ.𝑚𝑖𝑛 ≤ 𝑃GB.ℎ
𝑡 ≤ 𝑃GB.ℎ.𝑚𝑎𝑥 (2.17) 

where 𝜂GB is the natural gas conversion efficiency; 𝑃GB.𝑔
𝑡  is the consumed natural gas 

of GB at time t; and 𝑃GB.ℎ
𝑡  is the generated heat of GB at time t.  

3.2.3 Optimization Problem 

Considering all the models of devices in BIES presented above, the primary 

objective of BIES is to minimize the total cost of system operation. Specifically, the 

operational cost encompasses several components, including the cost of purchasing 

electricity and gas from the external markets (EM), the degradation of BESSs, and the 

penalty incurred for unfulfilled energy demand. Consequently, the optimization 

problem for BIES operator can be formulated as: 

min
𝛿𝑡
𝐶𝑏 =∑ {

𝑥𝑤.𝑒
𝑡 (

𝑃CHP.𝑒
𝑡 + 𝑃BESS.𝑐

𝑡

−𝑃BESS.𝑑
𝑡 − 𝑃PV.𝑒

𝑡 )

+𝑥𝑤.𝑔
𝑡 𝑃𝑤.𝑔

𝑡

}
T

t=1
(3.18) 

𝑠. 𝑡.  ∀𝑡 ∈ 𝑇 

(2.1) − (2.17) 

𝑃𝑤.e
𝑡 + 𝑃DER

𝑡 + 𝑃CHP.𝑒
𝑡 + 𝑃CHP.𝑑

𝑡 − 𝑃BESS.𝑐
𝑡 = 𝑃𝑒

𝑡 (3.19) 

𝑃CHP.ℎ
𝑡 = 𝑃ℎ

𝑡 (3.20) 

𝑃𝑤.𝑔
𝑡 = 𝑃GB.g

𝑡 (3.21) 

where {𝑃CHP.𝑒
𝑡 , 𝑃BESS.𝑑

𝑡 , 𝑃BESS.𝑐
𝑡 , 𝑃𝑤.𝑒

𝑡 , 𝑃CHP.ℎ
𝑡 , 𝑃GB.ℎ

𝑡 }  is the set of decision variables. 

𝑃𝐵𝐸𝑆𝑆,𝑑
𝑡  and 𝑃𝐵𝐸𝑆𝑆,𝑐

𝑡  are the discharge and charge power; 𝑥𝑤.𝑒
𝑡  and 𝑥𝑤.𝑔

𝑡  are the 

wholesale electricity and natural gas market price; 𝑃𝑤.e
𝑡  is power purchased from the 

wholesale electricity market; 𝑃PV.e
𝑡  is the power output of PV penal. 𝑃𝑒

𝑡 and 𝑃ℎ
𝑡 are the 

power and heat demands within the BIES. The objective function aims to minimize the 

costs for purchasing electricity and operation of devices. Also, the objective is 

constrained by (3.1)-(3.17), and (3.19)-(3.21), where (3.1)-(3.17) are operating 
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constraints for micro-CHP unit, BESS, and GB, and (3.19)-(3.21) indicate the multi-

energy balance. 

3.2.4 Markov Decision Process 

To optimize the decision-making process of BIES operator, an MDP is leveraged to 

describe the optimization problem. The BIES operator is an intelligent agent whose 

objective is to improve the operation decisions by minimizing the total cost in (3.18). 

The MDP can be denoted by a tuple < 𝑆𝑡 , 𝐴𝑡, 𝑅𝑡(𝑠, 𝑎), 𝑃𝑡(𝑠, 𝑎), 𝜇, 𝛾𝑡 > , where𝑆𝑡 =

{𝑥𝑤.𝑒
𝑡 , 𝑥𝑤.𝑔

𝑡 , 𝐸BESS
𝑡 , 𝑃𝑒.𝑓𝑜𝑟𝑒

𝑡 , 𝑃ℎ.𝑓𝑜𝑟𝑒
𝑡 , 𝑃PV.𝑓𝑜𝑟𝑒

𝑡 } is the state, which encompasses electricity 

market price 𝑥𝑤.𝑒
𝑡 , natural gas market price 𝑥𝑤.𝑔

𝑡 , SoC of BESS 𝐸𝐵𝐸𝑆𝑆
𝑡 , forecast of power 

demand 𝑃𝑒.𝑓𝑜𝑟𝑒
𝑡  , forecast of heat demand 𝑃ℎ.𝑓𝑜𝑟𝑒

𝑡  , and forecast of PV generation 

𝑃PV.𝑓𝑜𝑟𝑒
𝑡 ; 𝐴𝑡 = {𝑃CHP.𝑒

𝑡 , 𝑃BESS.𝑑
𝑡 , 𝑃BESS.𝑐

𝑡 , 𝑃𝑤.𝑒
𝑡 , 𝑃CHP.ℎ

𝑡 , 𝑃GB.ℎ
𝑡 }  is the action, including the 

available actions as the decision variables in (3.18); 𝑅𝑡(𝑠, 𝑎) is the reward quantifying 

the agent performance, which is presented by the opposite of objective function in 

(3.18); 𝜇 is the policy of the MDP, which contains a series of action for each state; and 

𝛾𝑡 is the discount factor that discounts all rewards in the future state. 

As the main objective of the agent is to identify the optimal policy that maximizes 

the accumulated return, the value of each state using the state value function 𝑉𝜇(𝑠)  is 

evaluated as given in (3.22). Moreover, the state-action value function 𝑄𝜇(𝑠, 𝑎) that 

captures the joint value of a particular action 𝑎 at a state 𝑠 is demonstrated in (3.23), 

where 𝔼(∙)  is the expectation function, 𝑠0  and 𝑎0  are the initial state and action, 

respectively. 

𝑉𝜇(𝑠) = 𝔼 [∑𝛾𝑡𝑅𝑡

𝑡∈𝑇

|𝑠0 = 𝑠] (3.22) 

𝑄𝜇(𝑠, 𝑎) = 𝔼 [∑𝛾𝑡𝑅𝑡
𝑇

𝑡=0

|𝑠0 = 𝑠, 𝑎0 = 𝑎] (3.23) 

3.3 Proposed TFT-SAC algorithm 
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In this section, a novel TFT-SAC approach to solve the optimal scheduling problem 

of BIES is introduced. The structure of the proposed TFT-SAC approach is depicted in 

Fig. 3.3. Specifically, the TFT uses historical PV power generation and energy 

consumption data alongside meteorological and static covariates (e.g., geographical 

coordinates and energy types) to forecast future trends. Variable selection networks 

(VSNs) identifies relevant features, while an LSTM network captures long-term 

dependencies. A multi-head self-attention layer focuses on crucial time steps, 

enhancing the forecasting accuracy. These forecasts inform subsequent optimization 

tasks. The SAC algorithm uses forecasting data to generate the optimal operation 

strategies for the BIES. These strategies are implemented, and the resulting state 

transitions (state, action, reward, next state) are stored in the experience replay buffer 

(ERB). The experiences are sampled to train the critic and actor networks until the SAC 

algorithm converges, producing an optimal operation strategy for BIES. The details of 

the TFT and SAC algorithm are presented in the following subsections. 

 

Fig. 3.3 Structure of proposed TFT-SAC approach 
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3.3.1 TFT Model 

This subsection introduces the TFT model, an interpretable deep learning model 

designed for time-series forecast. The TFT model effectively captures complex 

temporal relationships and delivers reliable forecasts, which are essential for managing 

BIES. Specifically, the interpretability of the multi-head self-attention mechanism and 

VSN stems from its ability to assign VSN weight 𝜈𝜒𝑡  and attention weight 𝐴̃(𝑸,𝑲) to 

input data points, thereby visualizing the most influential time steps and features in the 

prediction process. Detailed algorithm design is covered in the following subsections. 

1) Quantile Outputs 

The TFT model generates quantile forecasts, which are particularly useful for 

estimating the uncertainty of future forecasts. The quantile forecasts are obtained 

through a linear transformation of the outputs from the temporal fusion decoder. The 

mathematical representation of this process is given as: 

ŷi(q, t, τ) = fq(τ, 𝐲i,t−k:t, 𝐳i,t−k:t, 𝐱i,t−k:t+τ, si) (3.24) 

where ŷi(q, t, τ) is the qth quantile value for predicting the future τ steps at time point t; 

fq(. ) is the forecasting model; 𝐲i,t−k:t is the vector of historical target variables from 

time points t − k to t; 𝐳i,t−k:t is the vector of past-observed inputs from time points t-k 

to t; 𝐱i,t−k:t+τ is the vector of priori-known future inputs; and si is the static metadata, 

which is the covariate in energy forecast.  

The training of TFT model involves minimizing the quantile loss [76], which is 

designed to penalize the overestimations and underestimations differently based on the 

quantile level. The quantile loss function is formulated as: 

ℒ(𝛺,𝑊) = ∑ ∑ ∑
𝑄𝐿(𝑦𝑡, 𝑦̂(𝑞, 𝑡 − 𝜏, 𝜏), 𝑞)

𝑀𝜏max

𝜏max

𝜏=1𝑞∈𝛺𝑦𝑡∈𝛺

(3.25) 

where ℒ(𝛺,𝑊) is the quantile loss of single time series at the average prediction point; 

𝑦𝑡 is the actual data; 𝑦̂ is predictions; 𝛺 is the domain of training data containing 𝑀𝜏max  

samples; 𝑊 is the weight of TFT model; 𝜏max is the maximum step; and the function 

𝑄𝐿(. ) can be expressed as: 
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𝑄𝐿(𝑦, 𝑦̂, 𝑞) = 𝑞(𝑦 − 𝑦̂)+ + (1 − 𝑞)(𝑦̂ − 𝑦)+ (3.26) 

where 𝑄𝐿 is the output quantiles (𝑞 = {0.1, 0.5, 0.9} in the experiments); and (. )+ =

max(0, . ). To ensure consistency in prediction dimensions across different prediction 

points, the regularization is applied as: 

𝑞𝑟𝑖𝑠𝑘 =
2∑ ∑ 𝑄𝐿(𝑦𝑡, 𝑦̂(𝑞, 𝑡 − 𝜏, 𝜏), 𝑞)

𝜏max
𝜏=1𝑦𝑡∈𝛺̃

∑ ∑ |𝑦𝑡|
𝜏max
𝜏=1𝑦𝑡∈𝛺̃

(3.27) 

where 𝛺̃ is the domain of test samples; 𝑞𝑟𝑖𝑠𝑘 is the normalized quantile losses across 

the entire forecasting horizon. 

2) Gating Mechanism 

In the time-series forecast, especially with multiple regression, identifying relevant 

variables and the extent of non-linear processing is challenging. The TFT model uses 

gated residual networks (GRNs) for adaptive non-linear processing as needed in (3.28), 

and the gated linear units (GLUs) are shown in (3.31). 

GRNω = LayerNorm(𝐚 + GLUω(𝛈1)) (3.28) 

𝜼1 = 𝑾1,𝜔𝜼2 + 𝒃1,𝜔 (3.29) 

𝜼2 = 𝐸𝐿𝑈(𝑾2,𝜔𝒂 +𝑾3,𝜔𝐜 + 𝒃2,𝜔) (3.30) 

𝐺𝐿𝑈𝜔(𝜸) = 𝜎(𝑾4,𝜔𝜸 + 𝒃4,𝜔)⊙ (𝑾5,𝜔𝜸 + 𝒃5,𝜔) (3.31) 

where 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(. ) is the layer normalization function; 𝐚 is the vector of primary 

inputs to GRN; and 𝐜 is an optional context vector; 𝐸𝐿𝑈(. ) is the Exponential Linear 

Unit activation function; 𝜎(. ) is the sigmoid activation function, 𝑾1,𝜔, 𝑾2,𝜔, 𝑾3,𝜔, 

𝑾4,𝜔, and 𝑾5,𝜔 are index to denote weight sharing respectively; 𝒃1,𝜔, 𝒃2,𝜔, 𝒃4,𝜔, and 

𝒃5,𝜔 are index to denote bias sharing respectively. The GRN layer is controlled by the 

GLU layer, which may skip the layer entirely if GLU outputs are close to 0. 𝒂 +

𝐺𝐿𝑈𝜔(𝜼1) represents linear and nonlinear contributions, with GLU controlling the 

degree of nonlinearity.  

3) VSN 

The VSN is a key component of the TFT that improves the performance by selecting 

important features and filtering out noises. It assigns weights to features, which are used 

to combine the processed inputs: 
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υχt = Softmax (GRNυχ(𝚵t, 𝐜s)) (3.32) 

where 𝑣𝜒𝑡 is the set of weights corresponding to the features; 𝚵𝐭 is the flattened vector; 

and 𝒄𝑠  is obtained from the static covariate encoder. The processed features are 

weighted by their corresponding variable selection weights and combined. 

5) Temporal Self-attention Layer 

The TFT model employs a temporal self-attention layer that plays a key role in 

capturing long-term dependencies in time-series data. This layer not only improves the 

model's ability to understand complex temporal relationships but also enhances the 

interpretability of forecasts. The self-attention layer used here is a masked and 

interpretable multi-head attention layer combined with a gating mechanism to 

selectively control information flow. 

The core concept behind the temporal self-attention layer is to calculate the 

relevance, or "attention", of different time steps to each other, enabling the TFT model 

to focus on important events or sequences within the data. This is done using the 

following equation for attention: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸,𝑲, 𝑽) = 𝐴(𝑸,𝑲)𝑽 (3.33) 

where V is the value of input based on the similarity between the query vector 𝑸 and 

key vector 𝑲; and 𝐴(∙) is a normalization function that determines the attention weights 

of value V. The scaled dot-product mechanism for calculating attention is defined as: 

𝐴(𝑸,𝑲) = 𝑆𝑜𝑓𝑡max (
𝑸𝑲𝑇

√𝑑𝑎𝑡𝑡𝑛
) (3.34) 

Multi-head self-attention mechanism enhances the power of the self-attention 

mechanism by allowing the model to jointly focus on information from different 

representation subspaces at different positions. Instead of using a single set of queries, 

keys, and values, the multi-head self-attention mechanism splits them into multiple sets, 

each of which is processed independently. Each head computes attention separately, 

and the results are then concatenated and linearly transformed to produce the final 

output. By having multiple heads, the TFT model can capture a richer set of 



 
 

37 

relationships and nuances in the data compared with a single self-attention mechanism, 

which are presented as: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑸,𝑲, 𝑽) = [𝑯1, 𝑯2… ,𝑯𝑚𝐻] 𝑾𝐻 (3.35) 

𝑯ℎ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸𝑾𝑸
(𝒉), 𝑲𝑾𝑲

(𝒉), 𝑽𝑾𝑽
(𝒉)) (3.36) 

where 𝑾𝑄
(ℎ)
∈ ℝ𝑑model×𝑑attn , 𝑾𝐾

(ℎ)
∈ ℝ𝑑model×𝑑attn , and 𝑾𝑉

(ℎ)
∈ ℝ𝑑model×𝑑𝑉  are the 

head-specific weights for queries, keys, and values, respectively; and 𝑾𝐻 ∈

ℝ(𝑚𝐻𝑑𝑣)×𝑑model   linearly combines outputs concatenated from all heads 𝑯ℎ  (𝐻 =

1, 2, … ,𝑚𝐻 ). 𝑚𝐻  is the number of heads, 𝑑model , 𝑑attn  and 𝑑𝑉  are the dimension of 

model, attention layer and weight V. 

One of the main issues with traditional multi-head attention mechanism is that each 

head uses different value vectors, making it difficult to directly determine the feature 

importance from the attention weights. By modifying the mechanism to share the same 

value vector across all heads, the TFT model can produce a unified set of attention 

weights, thereby improving interpretability: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑸,𝑲, 𝑽) = 𝑯̃𝑾𝐻 (3.37) 

𝐻̃ = 𝐴̃(𝑸,𝑲) 𝑽 𝑾𝑉 = {
1

𝑚𝐻
∑𝐴(𝑸 WQ

(h)
, 𝑲 WK

(h)
)

𝑚𝐻

ℎ=1

}𝑽 𝑾𝑉

=
1

𝑚𝐻
∑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸 WQ

(h)
, 𝑲 WK

(h)
, 𝑽 𝑾𝑉)

𝑚𝐻

ℎ=1

(3.38)

 

where 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(. )  is interpretable multi-head, 𝑾𝑯̃ ∈ ℝ
𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑎𝑡𝑡𝑛   denotes the 

final linear mapping used across 𝑾𝐻 , and 𝑾𝑉 ∈ ℝ
𝑑model×𝑑𝑉  is the value weights 

shared across all heads. Compared to 𝐴(𝑸,𝑲) in (2.34), this modification allows each 

attention head to share the same set of values 𝐴̃(𝑸,𝑲) , resulting in a single and 

interpretable set of attention scores that can be analyzed to determine feature 

importance [77]. 

3.3.2 SAC Algorithm 

In this subsection, the SAC algorithm as a state-of-the-art maximum-entropy-based 

off-policy DRL algorithm is described to solve the optimization problem of BIES. 
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Typical DRL algorithms generally suffer from limited robustness in real-world 

applications due to ineffective exploration. In contrast, the SAC algorithm uses entropy 

as a regularization term in the objective function to enhance adaptability and 

generalization performance.  

1) Algorithm Description 

As a DRL algorithm with an actor-critic structure, the SAC algorithm outperforms 

most algorithms, e.g., DDPG, in convergence performance. The SAC algorithm 

maximizes both accumulative rewards and policy entropy. The entropy function 𝐻(∙) 

is defined in (3.39), where 𝜋(∙ |𝑠𝑡) is the strategy conditioned on the state 𝑠𝑡. The state 

value function 𝑉𝑟
𝜇(𝑠) and state-action value function are 𝑄𝑟

𝜇(𝑠, 𝑎) presented in (3.40) 

and (3.41), respectively, where the temperature parameter α determines the relative 

importance of the entropy term against the reward, and thus controls the stochasticity 

of the optimal policy. 

𝐻(𝜋(∙ |𝑠𝑡)) = −∑𝜋(𝑎|𝑠𝑡) ln 𝜋(𝑎|𝑠𝑡)

𝑎

(3.39) 

𝑉𝑟
𝜇(𝑠) = 𝔼 [∑𝛾𝑡 (𝑅𝑡 + 𝛼𝐻(𝜋(∙ |𝑠𝑡)))

𝑇

𝑡=0

|𝑠0 = 𝑠] (3.40) 

𝑄𝑟
𝜇(𝑠, 𝑎) = 𝔼 [

∑𝛾𝑡 (𝑅𝑡 + 𝛼∑𝐻(𝝅(∙ |𝑠𝑡))

𝑡∈𝑇

)

𝑇

𝑡=0

|𝑠0 = 𝑠, 𝑎0 = 𝑎

] (3.41) 

At the same time, the value functions can be expressed as (3.42) according to the 

relationship between (3.39) and (3.40). Equation (3.40) allows us to derive the solution 

for the policy as (3.43). 

𝑉𝑟
𝜇(𝑠𝑡) = 𝔼[𝑄𝑟

𝜇(𝑠, 𝑎)] + 𝛼𝐻(𝝅(∙ |𝑠𝑡)) (3.42) 

𝝅∗(∙ |𝑠𝑡) = 𝑎𝑟𝑔max
𝝅∈∆

𝑉𝑟
𝜇(𝑠) =

𝑒𝑄ℎ
𝜋(𝑠,∙)/𝛼

∑ 𝑒𝑄ℎ
𝜋(𝑠,𝑎)/𝛼

𝑎

(3.43) 

where ∆= {𝝅|𝝅 ≥ 0, 𝟏 ∙ 𝝅 = 1} . When the Q value converges to the optima, the 

optimal policy achieves the optimal state value function. Therefore, the updating of Q-

value function can be realized by using the closed form solution in an off-policy scheme.  

2) Algorithm Implementation 
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The SAC algorithm adopts an actor-critic structure with DNNs to estimate the 

policy (actor) and Q-value functions (critic). The actor network is represented by the 

policy function 𝜇(𝑠|𝜃𝜇)  parameterized by 𝜃𝜇 . The critic employs clipped double Q 

network 𝑄1  and 𝑄2  parameterized by 𝜃𝑄1  and 𝜃𝑄2 , and also their target networks, 

parameterized by 𝜃𝑄1
′
 and 𝜃𝑄2

′
 Therefore, the target 𝑦𝑡 for the Q value is expressed as 

(3.44), where 𝑎̃𝑡+1 is the action under the current policy in the next state 𝑠𝑡+1 and 𝜋𝜃 is 

the executed policy. Then, the L2 loss is used to update the Q-network in (3.45) for 𝑗 =

{1,2}. 

𝑦𝑡 = 𝑟𝑡 + 𝛾 ( min
𝑗∈{1,2}

𝑄(𝑠𝑡+1, 𝑎̃𝑡+1|𝜃
𝑄𝑗) − 𝛼 log 𝜋𝜃(𝑎̃𝑡+1|𝑠𝑡+1)) (3.44) 

∇𝜃𝑄𝐿 =
1

𝑁
∑[𝑦𝑡 − 𝑄(𝑠, 𝑎|𝜃

𝑄𝑗)]

𝑛∈𝑁

(3.45) 

To train these networks, the agent randomly samples tuples (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗+1) from the 

ERB to form 𝑛th mini batch for experience replay learning, where 𝑛 ∈ 𝑁, and 𝑁 is the 

set of all batches. The online critic networks are updated by one step of gradient descent 

to the mean square error (MSE) 𝜃𝑄𝑗 in (3.45), while the actor network is updated by 

one step of gradient ascent using (3.46). To stabilize the training, the target network 

parameters are soft updated with (3.47). 

𝛻𝜃𝜇𝐿 = 𝛻𝜃𝜇
1

𝑁
∑ [ min

𝑗∈{1,2}
𝑄(𝑠𝑡, 𝑎̃𝑡(𝑠)) − 𝛼 log 𝜋𝜃(𝑎̃𝑡|𝑠𝑡)]

𝑛∈𝑁

(3.46) 

𝜃𝑄
′
← 𝜌𝜃𝑄 + (1 − 𝜌)𝜃𝑄

′
(3.47) 

where 𝑎̃𝑡(𝑠) is a sample from 𝜋𝜃(∙ |𝑠𝑡); 𝜌 is the soft update parameter. 

3.3.3 Discussions 

The use of the proposed TFT-SAC approach is unique and effective for the dynamic 

operation and control of BIES. This combination offers several advantages and 

potential shortcomings compared to other traditional approaches. 

1) Integrated forecasting and operation: the TFT provides accurate and data-driven 

forecasts of PV generation and energy demand, which allows the SAC algorithm to 

make informed decisions. This integration reduces uncertainty in the decision-making 

process, leading to more reliable system operations. Moreover, the most important part 

in bridging TFT and SAC is not the model itself, but to consider how the forecast or 
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what kind of forecast can be helpful to the decision-making of the RL algorithm. The 

TFT can be helpful by providing the interpretability of forecasting results, which is 

more valuable than forecast accuracy in this case.   

2) Offline training and efficient online operation: The proposed TFT-SAC approach 

allows for offline training using historical data, enabling the development of a robust 

policy before deployment. Once trained, the algorithm operates in real time with 

minimal computational overhead, which is a significant advantage over approaches like 

SO or RO that require repeated recalculation. 

3) Handling non-convexity: The operation of BIES involves non-convex constraints 

such as the FOR. The SAC algorithm, leveraging DNNs, can effectively learn non-

convex optimal operating policies due to the powerful representation capabilities of 

DNNs. In comparison, traditional mathematical programming approaches, such as 

mixed-integer linear programming (MILP), address non-convexity by linearizing 

nonlinear relationships and explicitly formulating integer constraints, facing scalability 

and computational challenges particularly in large, dynamic systems like BIES. 

Heuristic algorithms can explore complex optimization landscapes and are often more 

flexible than mathematical programming. However, they may suffer from high 

computational demands, especially in large-scale systems, and may converge to local 

optima rather than finding the global solution. 

4) Training complexity: The proposed TFT-SAC approach requires extensive 

offline training, which can be computationally expensive and time-consuming, 

particularly for large datasets. The performance highly relies to a high-quality training 

dataset, which is typically hard to acquire in the real world. 

5) Dependence on forecasting accuracy: The effectiveness of SAC algorithm in 

making optimal decisions depends heavily on the forecasting accuracy provided by 

TFT. If the forecasts are inaccurate due to unexpected external factors, the quality of 

the operational decisions may be compromised. 

Overall, the proposed TFT-SAC approach provides an effective solution for BIES 

operation. The integrated forecast and optimize structure, capability to handle non-
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convexity, and efficient implementation make this approach a compelling alternative to 

traditional approaches, despite some challenges related to training complexity and 

dependence on forecasting accuracy. 

3.4 Case Study 

3.4.1 Simulation Setup 

To validate the effectiveness of the proposed TFT-SAC approach, case studies are 

conducted using data from a real building located in Zhenjiang, China. The BIES under 

study comprises a micro-CHP unit, PV panels, BESSs, and a GB device to meet both 

heat and power demands. 

The micro-CHP unit, with a rated output of 25.3 kWh, is designed to satisfy the heat 

demand of the building while partially covering its power demand. The PV system 

includes 610 PV panels, each with a capacity of 280 W, resulting in a theoretical 

maximum output of 170.8 kWh. However, due to practical limitations, the actual 

capacity is 153 kWh. The BESS consists of 24 LiFePO4 batteries, each with a storage 

capacity of 5.12 kWh, providing a maximum output of 72 kWh. This setup enables the 

BESS to support peak power demand for up to 4 hours. Detailed information on micro-

CHP and BESS is shown in Appendix A. 

The proposed TFT-SAC approach is implemented in Python, and the neural 

networks are developed using PyTorch. To achieve the optimal performance, the neural 

network parameters and hyperparameters are carefully chosen based on empirical 

values and adjusted throughout the training process. The complete configuration details 

for SAC algorithm are presented in Tables 3.1 and 3.2, while hyperparameter settings 

of TFT for forecasts of energy demand and PV generation are shown in Table 3.3. The 

Adam optimizer is used as the training algorithm to update the network weights.  
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Table 3.1 Neural network architectures setting of sac algorithm 

Neutral 

Networks 

Number of 

hidden 

layers 

Number of 

neurons 

Learning 

rate 

Soft update 

parameter 
Optimizer 

Actor 3 [512,32] 1×10-4 11×10-2 Adam  

Critic 2 [512,32] 1×10-3 11×10-2 Adam  

 

Table 3.2 Hyperparameter setting of sac algorithm 

Training parameter Number 

Replay buffer size 1×106 

Replay start size 128 

Batch size 128 

Discount factor 0.99 

 

Table 3.3 Hyperparameter setting of TFT for forecasts of energy demand and PV 

generation 

Parameter Forecast of energy demand  Forecast of PV generation 

Learning rate 1×10-4 3.5×10-3 

Grad clip value 0.1 0.9 

Patience 10 2 

Batch size 16 16 

Drop out 0.2 0.1 

Time step 168 24 

Hidden size 128 32 

Number of LSTM layers 6 4 

Number of attention heads 6 3 

Loss function Quantile Loss Quantile Loss 
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3.4.2 Computational Performance of Different Algorithms 

This subsection compares the SAC algorithm with baseline algorithms such as TD3 

and DDPG. Each algorithm is trained for 10000 episodes on sampled days from the 

training set. Figure 3.4 shows the episodic reward evolution of different algorithms 

during the offline training process. Considering the fluctuations in state features, the 

data have been smoothed using a 100-episode moving average method. This is because 

the oscillations caused by the exogenous state features cannot be addressed by the 

operational strategies even if the policy is optimal. 

 

Fig. 3.4 Episodic reward evolution of different algorithms during offline training 

process. 

Fig 3.4 shows that initially, the learning curves of different algorithms are similar 

due to randomly selected energy schedules and Gaussian noise. Early on, rewards are 

low for all algorithms. As training progresses, rewards increase as agents learn and 

refine their policies. The reward of SAC algorithm grows the fastest initially, followed 

by TD3 and then DDPG. Around 2000 iterations, the reward of DDPG increases 

sharply, surpassing TD3 but still remaining lower than the SAC algorithm, which is 

close to converging. DDPG and TD3 converge around 5000 iterations. The SAC 

algorithm achieves a significantly higher final reward compared with DDPG and TD3, 
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with the reward of DDPG slightly higher than that of TD3. This indicates the superior 

offline training performance of the SAC algorithm. 

To evaluate the performance of the proposed TFT-SAC approach, the trained actor 

network parameters are used to generate operational strategies for the BIES over 50 test 

days. The proposed forecast-enhanced RL approach is compared with benchmark 

approaches: typical RL approaches (TD3, DDPG, and SAC) and another forecast-

enhanced RL approach (LSTM-SAC). Fig 3.5 compares the cumulative costs for energy 

consumption with different approaches over 50 test days. The results indicate that the 

cumulative costs with typical RL approaches are significantly higher than those with 

forecast-enhanced RL approaches. The cost gap increases with more training episodes, 

highlighting the differences between different approaches. For forecast-enhanced 

approaches, the cumulative costs are similar, showing that combining forecasting with 

RL is effective. Notably, the proposed TFT-SAC approach achieves lower costs than 

LSTM-SAC, demonstrating its superior performance. However, the difference between 

the proposed TFT-SAC approach and LSTM-SAC is small compared with their 

differences from typical RL approaches, suggesting limited room for improvement in 

current forecast-enhanced RL approaches. 

 

Fig. 3.5 Cumulative cost for energy consumption with different approaches over 50 

test days. 
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Notably, the proposed TFT-SAC approach achieves lower costs than LSTM-SAC, 

demonstrating its superior performance. However, the difference between the proposed 

TFT-SAC approach and LSTM-SAC is small compared with their differences from 

typical RL approaches, suggesting limited room for improvement in current forecast-

enhanced RL approaches. The performance differences between TFT-SAC and 

benchmark algorithms may vary in scenarios with different settings, and be affected by 

the uncertainty resources significantly. 

3.4.3 Forecasting Performance Analysis 

As shown in Table 3.4, the TFT model outperforms the LSTM model across three 

performance metrics, i.e., mean absolute error (MAE), root mean squared error 

(RMSE), and R² in forecasts of both PV generation and building energy demand. 

Fig. 3.6 and 3.7 show that the forecasting curves of TFT model closely fit the target 

curves, demonstrating its effectiveness in capturing time-series patterns. The TFT 

model particularly excels in forecasting PV generation, accurately capturing peaks and 

valleys, which is crucial for energy forecasting. In summary, the TFT model shows 

superior forecasting accuracy and pattern recognition compared with the LSTM model, 

which is crucial for energy management in BIES, guiding energy allocation, optimizing 

resource utilization, and improving overall energy efficiency. 

Table 3.4 Performance metrics of TFT and LSTM models  

Forecast 

object Model MAE RMSE R² 

PV generation 
LSTM 3.66 12.23 0.8402 

TFT 5.22 11.24 0.8721 

Energy 

demand 

LSTM 3.37 4.6 0.9407 

TFT 2.20 3.26 0.9670 
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Fig. 3.6 Performance of LSTM and TFT models in forecasting PV generation 

 

Fig. 3.7 Performance of LSTM and TFT models in forecasting building energy 

demand 

The meteorological data include net solar irradiation (NSI), solar irradiation (SI), 

ultraviolet (UV), outdoor air temperature (OAT), rainfall (RF), relative humidity (RH), 

temperature-humidity-wind (THW), and surface air temperature (SAT). Fig 3.8 and 

illustrates the relative importance of different features in the TFT model for forecasting 

PV generation. In the encoder, SI appears as the most significant factor, indicating that 

direct sunlight intensity plays a crucial role in forecasting PV generation. Meanwhile, 

in the decoder, longitude emerges as the most important feature, highlighting the 

importance of geographical positioning in the forecasting process. This is intuitive 

because the position affects the angle of sunlight and daylight duration, which 

ultimately impacts PV generation. 
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(a)            (b) 

Fig. 3.8. Relative importance of different features in TFT model for forecasting PV 

generation. (a) Encoder. (b) Decoder. 

Fig 3.9 depicts relative importance of different features in TFT model for 

forecasting building energy demand. Unlike PV generation, which predominantly relies 

on weather-related factors, building energy demand is highly influenced by calendar-

based information. Features such as hour of the day, workday status, and specific time-

based attributes are ranked highly, reflecting the relationship between user behavior and 

energy usage. These calendar-related features indicate the impact of typical human 

activities and routines—such as work schedules and holidays—on building energy 

demand. 
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(a)       (b) 

Fig. 3.9 Relative importance of different features in TFT model for forecasting 

building energy demand. (a) Encoder. (b) Decoder. 

The importance ranking reveals that the TFT model considers both weather 

conditions and temporal attributes to accurately predict energy demands. This is crucial 

because user activities are often influenced by the time of day or specific events on the 

calendar, and these behavioral patterns significantly affect energy usage in buildings. 

The model's attention to these aspects shows its ability to learn from diverse data 

sources and focus on the most impactful features during the training process, resulting 

in a more reliable forecast. 

Fig 3.10 and 3.11 illustrate the attention distribution of TFT model over the past 7 

days (indexed by -7 to -1) during the forecasting process. Fig 3.10 shows that the 

attention of TFT model is concentrated on the recent past, especially the previous day, 

reflecting the strong daily cyclic patterns of PV generation. Minor peaks indicate 

consideration of earlier time steps, but these have lower weights due to the influence of 

short-term environmental factors like SI. 
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Fig. 2.10 Attention of TFT model over past 7 days for forecasting PV generation. 

 

Fig. 3.11 Attention of TFT model over past 7 days for forecasting building energy 

demand. 

Fig 3.11 shows a smooth distribution across various historical time steps with a 

gradual increase. This suggests the TFT model considers a range of past data, reflecting 

that the high complexity and irregularity of building energy demands are influenced by 

factors like user behavior, daily activities, and weather conditions. 

In comparison, the TFT model for forecasting PV generation focuses on recent time 

steps due to daily cyclic patterns, while that for forecasting building energy demands 

has a broad attention span over the entire historical cycle, balancing long-term trends 

and short-term impacts. The gradual increase in attention weights indicates the 

emphasis on recent information for imminent forecasts. 

The uniform attention distribution for building energy demand suggests its cyclical 

patterns are less pronounced or more complex than those of PV generation. This 

highlights the importance of extracting information from multiple time scales for 

accurate forecasts and underscores the need for effective energy management strategies 

to optimize BIES operational efficiency. 

In summary, the TFT model provides accurate and interpretable forecasts for both 

PV generation and building energy demand, supporting the RL algorithm in 

formulating efficient scheduling strategies. 
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3.4.4 Generalization Performance 

To validate the generalization performance, different approaches are tested over a 

test set that shows different statistical characteristics compared with the training set. 

The test set is represented by several typical weeks labeled W-1 to W-4 for comparative 

analysis. These typical weeks include scenarios with extreme PV generation or energy 

demand. Table 3.5 presents the daily operational costs of BIES across different weeks. 

The results clearly demonstrate that forecast-enhanced RL approaches achieve 

significantly lower operational costs compared with typical RL approaches, 

underscoring the effectiveness of combining forecasting and decision-making. 

Furthermore, the average operational cost of the proposed TFT-SAC approach is lower 

than that of LSTM-SAC, indicating that the proposed TFT-SAC approach outperforms 

all the comparable approaches across a range of scenarios, thereby demonstrating its 

strong generalization capabilities. Although the daily cost improvements may appear 

marginal, the cumulative benefits of the proposed TFT-SAC approach over extended 

operation could result in substantial additional profits. 

 

Table 3.5 Comparison of daily average operational cost of BIES across different 

weeks 

Week 

Daily average operational cost (¥) 

DDPG TD3 SAC 
LSTM-

SAC 
TFT-SAC 

W-1 500.14 499.3 490.19 328.02 325.79 

W-2 361.75 361.2 347.92 232.76 231.6 

W-3 450.34 449.66 431.4 318.91 311.03 

W-4 733.25 732.44 715.75 521.3 520.99 
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3.4.5 Robust Operation 

To compare the robustness of the proposed TFT-SAC approach with other RL 

approaches, independent Gaussian noise is introduced to real PV generation and energy 

demand to represent uncertain scenarios. The average daily operational costs of BIES 

under different noise levels are presented in Table 3.6. Across all noise levels, the 

typical RL approaches incur significantly higher operational costs than forecast-

enhanced RL approaches, with cost differences ranging from ¥60 to ¥100. Among all 

the tested approaches, the proposed TFT-SAC approach demonstrates the lowest 

average operational costs, indicating superior robustness. However, the cost variations 

between the proposed TFT-SAC approach and LSTM-SAC remained small, in the 

range of ¥10 and ¥20. In contrast, the cost difference of the proposed TFT-SAC 

approach with N=0.01 and N=0.05 is approximately ¥5, and that of TD3, SAC, and 

LSTM-SAC is ¥3. This larger cost variation suggests that the proposed TFT-SAC 

approach is more sensitive to forecasting accuracy than other approaches, even though 

it consistently achieves the lowest average operational costs among all approaches. 

 

Table 3.6 Comparison of daily average operational cost of BIES across different noise 

levels 

Noise level 

N 

Daily average operational cost (¥) 

DDPG TD3 SAC 
LSTM-

SAC 
TFT-SAC 

0.01 596.07 557.56 557.49 505.12 490.04 

0.02 596.38 558.24 558.18 505.82 491.88 

0.03 597.37 559.02 558.96 506.62 494.91 

0.04 599.8 559.85 559.78 507.47 495.13 
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3.4.6 Operational Analysis 

To evaluate the generalization of the optimal energy management policy learned by 

the proposed TFT-SAC approach, two typical scenarios are applied: a summer day 

(August 27) and a winter day (December 25). Figures 3.12 and 3.13 show the power 

and heat profiles on the two typical days, respectively, where bars above the horizontal 

axis represent power generation/purchase and bars below indicate storage 

discharge/power sold. 

 

(a) 

 

(b) 

Fig. 3.12 Power generation and consumption of BIES. (a) A typical summer day. (b) 

A typical winter day. 
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(a) 

 

(b) 

Fig. 3.13 Heat generation and consumption of BIES. (a) A typical summer day. (b) A 

typical winter day. 

Both scenarios share common trends. Initially, from 00:00 to 8:00, the BIES 

purchases electricity due to zero PV generation and low SoC of ESS. ESS charges at 

low prices for future demands. From 09:00 to 15:00, PV generation and ESS discharge 

could meet most power demands, with excess power sold at high electricity prices. 

From 18:00 to 24:00, the BIES does not sell electricity, and the micro-CHP unit 

becomes the primary power source due to high demand. 

Nevertheless, there are some evident differences between the two typical days. On 

the winter day, the micro-CHP unit operates from 09:00 to 15:00 to meet high heat 
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demands and support the power demands due to low PV generation. On the summer 

day, the micro-CHP unit is inactive as PV and BESS can meet the demands and the 

excess power is sold. The policy effectively uses the micro-CHP unit in winter and 

BESS in summer, charging at low prices and discharging at peak prices to maximize 

economic benefits. 

Finally, it can be concluded that the proposed TFT-SAC approach can learn an 

effective policy and can generalize to variable state information on different test days. 

Also, the flexibility of BIES is investigated on two typical winter and summer days. 

Specifically, the summer day has higher PV generation and lower heat demand, so it 

has higher energy export and makes use of more flexibility of BESS. Due to lower PV 

generation and higher heat demand, the winter day has higher power import and higher 

utilization of the micro-CHP unit, which also provides significant flexibility to BIES. 

3.4.7 Sensitivity Analysis 

In this subsection, a detailed sensitivity analysis is conducted to evaluate the impact 

of changes in key factors on the operation and performance of BIES. Specifically, the 

sensitivities of the episodic reward to variations in electricity price, PV generation, 

power demand, and heat demand are analyzed, as shown in Fig. 3.14. 

 

Fig. 3.14 Sensitivity analysis of the proposed model on key factors 
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The sensitivity analysis is performed by varying each parameter independently from 

90% to 110% of the initial configured value, with a granularity of 5%. This range is 

selected to represent potential fluctuations in market and operational conditions, and 

the granularity is chosen to provide a balanced level of detail without excessive 

computational overhead.  

The results in Fig. 3.14 indicate the following. The episodic rewards of BIES are 

negatively correlated with electricity price, which is expected given that higher 

electricity prices increase the cost of purchasing electricity. There is a positive 

correlation between PV generation and episodic reward, as increased PV generation 

reduces the need for power from EM and allows for more excess power to be sold back 

to EM. Both power and heat demands negatively impact the rewards, with power 

demand having a particularly significant effect. This can be attributed to the fact that 

meeting higher demands requires more energy procurement, which incurs additional 

costs. 

Interestingly, the power demand has a greater effect on the episodic reward 

compared with PV generation. This is because the total daily PV generation is lower 

than the total power demand. As a result, any reduction in power demand has a larger 

marginal impact on profitability, either through reduced procurement or allowing more 

energy to be sold during peak periods. 

In terms of scheduling policies, the changes in power demand and PV generation 

lead to noticeable shifts in action prioritization. For instance, increased PV generation 

results in more frequent utilization of battery storage for energy arbitrage, while 

fluctuations in electricity price affect decisions regarding energy procurement timing. 

These findings emphasize the importance of accurate forecasts for PV generation and 

energy demand to optimize the operational strategies of BIES effectively. 

3.5 Summary 

In conclusion, a novel hybrid data-driven approach, namely TFT-SAC, is developed 

in this chapter for the energy management problem in BIES. Specifically, the TFT 



 
 

56 

model enhances the forecasting accuracy and transparency through attention 

mechanisms and the VSN, enhancing interpretability and trustworthiness of forecasting 

results. The integration of the SAC algorithm for optimization further strengthens the 

proposed framework by ensuring more effective exploration during training, leading to 

strategy that exhibits robustness and generalization capabilities. Simulation results 

demonstrate the superior performance of the proposed TFT-SAC approaches compared 

with existing approaches. The interpretability of the TFT model and the generalization 

performance of SAC algorithm are analyzed. The sensitivity analysis of reward on 

several key factors in BIES is also conducted. 
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Chapter IV 

A Safe Reinforcement Learning algorithm for 

Operational Optimization of Multi-Network 

Constrained Integrated Community Energy Systems 

 

 

4.1 Overview 

This chapter focuses on comprehensive techno–economic modeling and energy 

management in ICES, which considers multi-network constraints and the complex 

behavior of integrated energy consumers. To this end, the work in this chapter present 

a novel MNC-ICES model that considers network constraints of integrated energy, 

including electricity, natural gas, and heat. In the proposed model, the ICESO secures 

the safe operation of the MNC-ICES by accounting for non-convex energy devices, 

renewable uncertainties, and IDR of MEUs. A constrained optimization problem is 

formulated to represent the operation problem in the proposed MNC-ICES model and 

then transformed into a C-MDP for the application of RL approaches. Compared to 

existing software programs for regional IES operation, this research highlights 

operational safety regarding detailed multi-network constraints and detailed energy 

device models. Moreover, a SOTA Safe RL algorithm, namely PD-TD3, is developed 

based on the Lagrangian-based Safe RL method to optimize the scheduling and pricing 

strategies in MNC-ICES. The proposed algorithm shows great potential for Safe RL to 

become a useful energy management tool in modern ICES regarding operational safety 

with multi-network constraints. 

The contributions of this chapter are as follows: 

1) Comprehensive Modeling of Community Energy System: A novel MNC-ICES 

model is proposed to interpret the concept of ICES. The proposed model accounts for 

the constraints of multi-network, which captures the physical characteristics of energy 

flow and imposes security operational constraints for the distribution level energy 
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transmissions. Energy devices are modeled in high fidelity to describe the realistic 

physical operating attributes in practice. Additionally, the renewable uncertainty and 

integrated demand elasticity are considered to describe the novel characteristics of 

modern distribution-level energy systems. Overall, the proposed model can be 

implemented as a basis for practical network-constrained community operation tools. 

2) Constrained-Markov Decision Process Modeling: A C-MDP is formulated from 

the constrained operational optimization problem in MNC-ICES with multi-energy 

integration. Constraints on voltage in the power network, gas flow, gas pressure and gas 

injection in the gas network, pipeline flow, and nodal flow in the district heat network 

are considered security constraints and imposed safety requirements, being modelled 

as the cost term in a tuple of C-MDP. 

3) Novel Safe Reinforcement Learning Algorithm and Validation: A novel Safe RL 

algorithm, namely PD-TD3, is proposed to solve the C-MDP and the constrained 

operational optimization problem in MNC-ICES. The PD-TD3 algorithm using double 

networks reduces the over-estimation problem of the action value for both the reward 

and cost, and the delayed update stabilizes the training process of policy and its dual 

variable. With such an accurate estimation of Q values, the proposed algorithm 

converges to the optimal solution that balances the maximal profits and the lowest 

constraint violation. In addition, the training processes of the policy and its dual variable 

are stabilized by delayed updates, which contributes to the training efficiency and helps 

to converge to the global optimal.  

The remaining chapter is organized as follows. The mathematical models of MNC-

ICES, including integrated networks, energy devices, and MEUs, are presented in 

Section 4.2. The constrained operational optimization problem and the corresponding 

C-MDP are formulated in Section 4.3. The novel Safe RL algorithm is proposed in 

Section 4.4 to solve the C-MDP. Finally, several scenarios are simulated to verify the 

algorithm performance and analyze the simulation result in Section 4.5. The whole 

chapter is concluded in Section 4.6. 
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4.2 System Modeling 

This section proposes an MNC-ICES model, including various types of energy 

sectors and corresponding network models. Specifically, the MNC-ICES model, as 

depicted in Fig. 4.1, operates as a localized integrated energy system catering to MEUs 

on the demand side. The proposed model consists of 1) two types of DERs, WT, and 

PV; 2) two types of energy storage systems, EBS and TES; 3) CHP as a power 

generation unit, as well as 4) MEU consisting of electric boiler (EB), GB, and energy 

demand for power and heat. More importantly, the modeling of physical integrated 

energy networks for electricity, natural gas, and heat within the MNC-ICES model is 

presented. These networks are foundational components and are vital for the efficient 

transmission and distribution of energy resources. To this end, multi-network 

constraints are proposed to govern the behavior of each network, complying with 

physical constraints in real-world operation. The cooling system (including CHP 

cooling generation, cooling network, and cooling load) is omitted for simplicity, since 

its similar operational characteristics to the heating system. The loads for MEUs are 

consequently modelled in terms of EB and GB, which is a simplified model but 

sufficient to reflect the basic consumption behavior in the regime of ICES operation. 

The MNC-ICES model is assumed to encompass a singular operator, i.e., ICESO, 

scheduling energy devices and conducting energy transactions. The ICESO should 

manage the energy schedules of energy devices and determine the energy prices for 

MEUs to maximize the total profits without violating the network constraints. 

Therefore, the ICESO needs to schedule the energy devices dynamically for local 

energy conversion and price-integrated energy to mobilize the IDR resources of MEUs. 

In contrast, MEUs adjust energy consumptions due to IDR oriented from energy 

flexibilities. The whole period of operation and transaction can be divided into 24 

intervals (𝑡 = {1,2, . . . , 𝑇}), and 𝑁 MEUs are represented by 𝑖 = {1,2, . . . , 𝑁}. In each 

step, the ICESO should read the wholesale prices information, observe the local 

information on energy devices, and evaluate the state of charge of energy storage 
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systems of TES and EBS before scheduling. Then, the energy prices for MEUs need to 

be set, the operation status of energy devices needs to be scheduled, and the TES and 

EBS need to be charged or discharged at each time interval. The detailed models of 

MNC-ICES are presented as follows. 

MNC-ICES

Power market

Gas market

External 

wholesale market Networks

ICESO

DER CHP ESB TES

…

GBEB

MEU

GB

MEU

GB

MEU

EB EB

Power network

Gas network

Heat network

 

Fig. 4.1 Illustration of the proposed multi-network constrained integrated 

community energy system model 

4.2.1 Electricity Distribution Network 

In the distribution of electricity networks, the prevailing topology is often radial, 

which lends itself well to representation as a tree graph. In this representation, the root 

point corresponds to the connection with the transmission network. The distribution 

network can thus be visualized as an interconnected web of nodes and transmission 

lines, embodying the essential structure of a tree graph. 

Let 𝑛 ∈ 𝑁𝑒 denote the set of nodes within the distribution network, and (𝑛,𝑚) ∈ 𝑃𝑒 

represent the set of transmission lines governing the interconnection of these nodes. 

Fowllowing the paradigm of radial distribution electricity networks, this network 

configuration captures the hierarchical nature of power flow from the root point, linked 

to the transmission network, branching out to various nodes within the distribution 

system. To govern and constrain the dynamics of real power, reactive power, and 

voltage within the radial distribution network, the linearized DistFlow approach is 
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adopted [78]. The ensuing sections delve into the specifics of how linearized DistFlow 

constraints shape and guide the real power, reactive power, and voltage considerations 

in the context of distribution system operation. 

𝑃1
𝑡 =∑𝑥𝑛

𝑡

∀𝑛

, 𝑡 ∈ 𝑇 (4.1) 

𝑃𝑛+1
𝑡 = 𝑃𝑛

𝑡 − 𝑝𝑛+1
𝑡 , ∀𝑛 ∈ 𝑁𝑒 , 𝑡 ∈ 𝑇 (4.2) 

𝑄𝑛+1
𝑡 = 𝑄𝑛

𝑡 − 𝑞𝑛+1
𝑡 , ∀𝑛 ∈ 𝑁𝑒 , 𝑡 ∈ 𝑇 (4.3) 

𝑉𝑛+1
𝑡 = 𝑉𝑛

𝑡 − (𝑏𝑛
1𝑃𝑛

𝑡 + 𝑏𝑛
2𝑄𝑛

𝑡 ), ∀𝑛 ∈ 𝑁𝑒 , 𝑡 ∈ 𝑇 (4.4) 

𝑉𝑛 < 𝑉𝑛
𝑡 < 𝑉𝑛, ∀𝑛 ∈ 𝑁𝑒 , 𝑡 ∈ 𝑇 (4.5) 

0 ≤ 𝑝𝑖
𝑡 ≤ 𝑝

𝑖

𝑡
, ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (4.6) 

0 ≤ 𝑞𝑖
𝑡 ≤ 𝑞

𝑖

𝑡
, ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (4.7) 

0 ≤ 𝑃𝑛𝑚
𝑡 ≤ 𝑃𝑛𝑚, ∀𝑛,𝑚 ∈ 𝑁𝑒 , ∀(𝑛,𝑚) ∈ 𝑃𝑒 , 𝑡 ∈ 𝑇 (4.8) 

0 ≤ 𝑄𝑛𝑚
𝑡 ≤ 𝑄𝑛𝑚, ∀𝑛,𝑚 ∈ 𝑁𝑒 , ∀(𝑛,𝑚) ∈ 𝑃𝑒 , 𝑡 ∈ 𝑇 (4.9) 

In (4.1)-(4.9) 𝑃𝑛𝑚
𝑡  and 𝑄𝑛𝑚

𝑡  indicate the real power and reactive power flow from 

bus 𝑛 to node 𝑚 at time 𝑡. 𝑉𝑛
𝑡 is the voltage magnitude at the bus 𝑛 at time 𝑡. 𝑝𝑛

𝑡  and 𝑞𝑛
𝑡  

are the real and reactive power exchange at bus 𝑛 . 𝑏𝑛
1  and 𝑏𝑛

2  are the resistance and 

reactance between the bus 𝑛 and 𝑛 + 1. 𝑉𝑛/𝑉𝑛 are upper/lower bound for voltages of 

each bus. 𝑃𝑛𝑚/𝑃𝑛𝑚  and 𝑄𝑛𝑚/𝑄𝑛𝑚  denote the upper/lower limits for active and 

reactive power of the transmission line between bus 𝑛 and bus 𝑚. 

4.2.2 Natural Gas Distribution Network 

The natural gas network, renowned for its intricate network of pipelines enabling 

bidirectional gas flow, constitutes a critical infrastructure for the dissemination of 

energy resources. Traditionally, the directionality of gas flow is contingent upon the 

interplay of gas pressure differentials and injections at discrete nodes. However, in this 

work, the scope is limited to the dynamics of unidirectional gas flow within this network. 

This assumption is made based on operational constraints whereby consumers 

exclusively draw upon gas resources, with the absence of gas production and storage 

facilities. 
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Within this defined framework, let 𝑛 ∈ 𝑁𝑔 denote the set of nodes, and (𝑛,𝑚) ∈ 𝑃𝑔 

represent the set of gas pipelines intricately threading through the natural gas network. 

To model the dynamics of unidirectional gas flow, this study employs the Weymouth 

equation [79, 80]. The network-wide constraints for natural gas networks are given as 

(4.10)-(4.14).  

𝑔𝑓𝑚𝑛
𝑡 = sgn(𝑃𝑟𝑚

𝑡 , 𝑃𝑟𝑛
𝑡) 𝐶𝑚𝑛√|(𝑃𝑟𝑚

𝑡 )2 − (𝑃𝑟𝑛
𝑡)2|, ∀(𝑛,𝑚) ∈ 𝑃𝑔, ∀𝑡 ∈ 𝑇 (4.10) 

−𝑔𝑓
𝑚𝑛
≤ 𝑔𝑓𝑚𝑛

𝑡 ≤ 𝑔𝑓
𝑚𝑛
, ∀(𝑛,𝑚) ∈ 𝑃𝑔 (4.11) 

𝐺𝑛
𝑡 = − ∑ 𝑔𝑓𝑚𝑛

𝑡

𝑚∈𝑁𝑔

, ∀(𝑛,𝑚) ∈ 𝑃𝑔, ∀𝑡 ∈ 𝑇 (4.12) 

𝑃𝑟𝑛 ≤ 𝑃𝑟𝑛
𝑡 ≤ 𝑃𝑟𝑛, ∀𝑛 ∈ 𝑁𝑔, ∀𝑡 ∈ 𝑇 (4.13) 

0 ≤ 𝐺𝑛
𝑡 ≤ 𝐺𝑛, ∀𝑛 ∈ 𝑁𝑔, ∀𝑡 ∈ 𝑇 (4.14) 

In equations above, 𝑔𝑓𝑚𝑛
𝑡  is the gas flow in the pipeline from node 𝑚 to node 𝑛. 

𝑃𝑟𝑛
𝑡 is the gas pressure of the node 𝑛. 𝐺𝑛

𝑡  is the gas consumption in the node n. 𝐶𝑚𝑛 is 

the line pack constant of gas pipeline 𝑚𝑛. Sgn(∙) is the signal function to determine the 

direction of the gas flow. Equations (4.10)–(4.12) show the constraints for nodal natural 

gas flow balance with the setting of 𝑃𝑅𝐸𝐹𝑔,𝑡 = 𝑃𝑛,𝑚𝑎𝑥. In (4.11),  𝑔𝑓
𝑚𝑛

 is the limitations 

for the gas flow in the network. Equations (4.13)–(4.14) limit the nodal pressure and 

gas sources within its threshold, where 𝑃𝑟𝑛 and 𝑃𝑟𝑛 are the upper and lower bounds of 

gas pressure at node 𝑛, 𝐺𝑛 is the limitation for gas consumption in node 𝑛. It is worth 

noting that (4.10) is a non-convex equation constraint in an optimization problem, being 

hard to tackle by using a mathematical programming approach.  

4.2.3 District Heating Network 

Heat networks are vital for transmitting thermal energy through hot water via water 

pipelines, which are conventionally comprised of supply and return pipelines. The 

generation of heat energy, typically by CHP systems within the MNC-ICES model, 

initiates the flow of water in the supply pipelines to consumers at each node. After the 

consumer utilizes the heat energy, the water, now cooled, is directed back to the CHP 

through return pipelines. This unidirectional water flow mirrors the direction of heat 
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flow. Notably, the temperature and pressure of water decrease along the heat 

transmission direction, indicating both heat loss during transmission and the propulsive 

force for water flow. The heat flow is roughly described by Fig. 4.2. 

…

MEU1 MEU2 MEUn

…

supply piplines

return piplines

 

Fig. 4.2 Representation of district heating network 

Variable Flow Temperature Constant (VFTC) method is employed to model the 

heating network [81]. The temperature at the supply and return sides of each node is 

considered constant over time. During heat transmission, a fixed proportion of heat 

injected into a pipeline is lost as the water progresses to the next node. Denoting nodes 

as 𝑛 ∈ 𝑁ℎ  and direct supply and return pipelines as (𝑛,𝑚) ∈ 𝑆𝑛
+  and (𝑛,𝑚) ∈ 𝑆𝑛

− , 

respectively, the heat network model is formulated as follows. 

∑  

(𝑛,𝑚)∈𝑆𝑛
+

𝑀𝑛𝑚
𝑡 − ∑  

(𝑛′,𝑚′)∈𝑆𝑛
−

𝑀𝑛′𝑚′
𝑡 = 𝑀𝑛

𝑡 , ∀(𝑛,𝑚) ∈ 𝑆𝑛
−, ∀(𝑛′, 𝑚′) ∈ 𝑆𝑛

+, 𝑛 ∈ 𝑁ℎ, ∀𝑡 ∈ 𝑇(4.15) 

∑ 

𝑖∈𝐼𝑛

𝐻𝑖
𝑡 = −𝑐𝑓𝑀𝑛

𝑡(𝑇𝑛
𝑆 − 𝑇𝑛

𝑅), 𝑛 ∈ 𝑁ℎ, ∀𝑡 ∈ 𝑇 (4.16) 

𝑀𝑛
𝑁 ⩽ 𝑀𝑛

t ⩽ 𝑀𝑛

𝑁
, 𝑛 ∈ 𝑁ℎ, ∀𝑡 ∈ 𝑇 (4.17) 

0 ⩽ 𝑀𝑛𝑚
t ⩽ 𝑀𝑛𝑚

𝑆
, ∀(𝑛,𝑚) ∈ (𝑆𝑛

− ∪ 𝑆𝑛
+), ∀𝑡 ∈ 𝑇 (4.18) 

In (4.15)-(4.18), 𝑀𝑛𝑚
t   represents the pipeline heating flow, 𝑀𝑛

𝑡   denotes nodal 

heating flow, and 𝐻𝑖
𝑡 signifies the nodal power injection of a consumer. 𝑐f denotes the 

heat capacity of water, while 𝑇𝑛
S and 𝑇𝑛

R indicate temperatures of node 𝑛 in the supply 

and return networks, respectively. 𝑀𝑛

𝑁
 and 𝑀𝑛

𝑁 represent the upper and lower bounds 

of nodal flow. The heat flow 𝑀𝑛𝑚

𝑆
  in the pipeline (𝑛,𝑚)  is positive if the direction 

aligns with water flow and negative otherwise. In the proposed model, (4.15) is the 

equality constraints for nodal flow, while (4.16) describes the nodal power injection 

given the nodal flow. Equations (4.17) and (4.18) impose inequality constraints on 
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nodal flow and pipeline flow. Importantly, the constraints reveal bidirectional nodal 

flow and unidirectional water/heat flow within the pipeline.  

4.2.4 Energy Devices Modeling 

1) Combined heat and power (CHP) 

CHP, a single-input multi-output energy converter, assumes a crucial part of the 

MNC-ICES model due to its high energy conversion efficiency from natural gas to 

electricity and heat [82, 83]. CHP is characterized by two constant energy conversion 

efficiencies for electricity and heat. The detailed operation model of CHP, depicted by 

a non-convex FOR enclosed by the boundary curve ABCDEFG, is adopted and shown 

in Fig. 4.3. PCHP
t , HCHP

t  are generated power and heat for the CHP in time slot t. The 

FOR of the CHP is divided into two convex sections and is represented as follows [32]. 

PCHP.n
t − PCHP.n

B −
PCHP.n
B − PCHP.n

C

HCHP.n
B − HCHP.n

C
× (HCHP.n

t − HCHP.n
B ) ≤ 0, ∀𝑡 ∈ 𝑇 (4.19) 

PCHP
t − PCHP

C −
PCHP
C − PCHP

D

HCHP
C − HCHP

D
× (HCHP

t − HCHP
C ) ≤ 0, ∀𝑡 ∈ 𝑇 (4.20) 

−(1 − XCHP
t

) × Γ ≤ PCHP
t − PCHP

E −
PCHP
E − PCHP

F

HCHP
E − HCHP

F
× (HCHP

t − HCHP
E ), ∀𝑡 ∈ 𝑇 (4.21) 

−(1 − XCHP
t ) × Γ ≤ PCHP

t − PCHP
D −

PCHP
D − PCHP

E

HCHP
D − HCHP

E
× (HCHP

t − HCHP
D ), ∀𝑡 ∈ 𝑇 (4.22) 

XCHP
t

+ XCHP
t = ICHP

t , ∀𝑡 ∈ 𝑇 (4.23) 

−(1 − XCHP
t ) × Γ ≤ HCHP

t − HCHP
E ≤ (1 − XCHP

t
) × Γ, ∀𝑡 ∈ 𝑇 (4.24) 

0 ≤ PCHP
t ≤ PCHP

A × ICHP
t , ∀𝑡 ∈ 𝑇 (4.25) 

0 ≤ HCHP
t ≤ HCHP

A × ICHP
t , ∀𝑡 ∈ 𝑇 (4.26) 

In equations above, PCHP
t , HCHP

t  are generated power and heat for the CHP in time 

slot t. As the region is described by a non-convex polygon, PCHP
A  and HCHP

A  indicate the 

power and heat output of the CHP at point A in the feasible region, and the same applied 

to the other points BCDEF. XCHP
t

(XCHP
t ) states the operating status in the first (second) 

convex section, when the CHP operate in the first (second) section, XCHP
t

(XCHP
t )  = 1, 

and XCHP
t (XCHP

t
) = 0 . Γ  denotes a sufficiently large number to assist model 

description, while ICHP
t  is the commitment status of the CHP. The total operation cost 
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of the CHP unit at time t can be expressed by equation (4.27), where aCHP, bCHP, cCHP, 

dCHP, eCHP and fCHP represent the cost coefficients.  

CCHP
t (PCHP

t , HCHP
t ) = aCHPPCHP

t 2
+ bCHPPCHP

t + cCHP +

dCHPHCHP
t 2

+ eCHPHCHP
t + fCHPPCHP

t HCHP
t (4.27)

 

P
o

w
er

 (
)

Heat ( )

Max. heat extraction

Max. fuel

Min. fuel

 
Fig. 4.3 Feasible operation region (FOR) of CHP units 

2) Distributed energy resources (DER) 

The power output of DER, denoted as 𝑃𝐷𝐸𝑅
𝑡 , is defined in equation (4.28) by 

incorporating the power generation of PV and WT. The power generation function for 

DER accounts for power output uncertainty, modeled by probabilistic distribution 

functions for PV and WT, respectively.  

𝑃𝐷𝐸𝑅
𝑡 = 𝑃𝑃𝑉

𝑡 + 𝑃𝑊𝑇
𝑡 (4.28) 

As variable renewable energy (VRE), wind power inherently carries high 

uncertainty. The wind speed (𝜔), directly influencing power output, is predicted with 

an unavoidable error 𝛥𝜔, which is modelled by a Weibull PDF [84]. The power output 

𝑃𝑊𝑇
𝑡  of WT is positive if and only if the wind speed exceeds the starting speed (𝜔𝑖𝑛

𝑐 ); 

otherwise, 𝑃𝑊𝑇
𝑡   is always zero. The upper limit for WT power is 𝑃𝑊𝑇.𝑟𝑎𝑡𝑒𝑑

𝑡   when 

𝜔𝑟𝑎𝑡𝑒𝑑
𝑐 ≤ 𝜔 ≤ 𝜔𝑜𝑢𝑡

𝑐 . If the wind speed surpasses the cutout speed 𝜔𝑜𝑢𝑡
𝑐 , WT will be cut 

out, resulting in 𝑃𝑊𝑇
𝑡 = 0. Additionally, the Weibull PDF is employed to estimate the 

uncertainty parameter due to wind speed prediction errors. The wind speed (𝜔), directly 

influencing power output, is predicted with an unavoidable error 𝛥𝜔 in (4.29), which 
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is modelled by a Weibull PDF [84]. The power output 𝑃𝑊𝑇
𝑡   of WT is modeled in 

equation (3.30), where it is positive if and only if the wind speed exceeds the starting 

speed (𝜔𝑖𝑛
𝑐 ); otherwise, 𝑃𝑊𝑇

𝑡  is always zero. The upper limit for WT power is 𝑃𝑊𝑇.𝑟𝑎𝑡𝑒𝑑
𝑡  

when 𝜔𝑟𝑎𝑡𝑒𝑑
𝑐 ≤ 𝜔 ≤ 𝜔𝑜𝑢𝑡

𝑐 . If the wind speed surpasses the cutout speed 𝜔𝑜𝑢𝑡
𝑐 , WT will 

be cut out, resulting in 𝑃𝑊𝑇
𝑡 = 0. Additionally, the Weibull PDF is employed to estimate 

the uncertainty parameter due to wind speed prediction errors in (4.31) 

𝜔 = 𝜔𝑓𝑠 + 𝛥𝜔 (4.29) 

𝑃𝑊𝑇
𝑡 (𝜔) =

{
 
 

 
 0, 𝜔 ≤ 𝜔𝑖𝑛

𝑐 𝑜𝑟 𝜔 ≥ 𝜔𝑜𝑢𝑡
𝑐

𝜔 + 𝜔𝑖𝑛
𝑐

𝜔𝑟𝑎𝑡𝑒𝑑 + 𝜔𝑖𝑛
𝑐 𝑃𝑊𝑇.𝑟𝑎𝑡𝑒𝑑

𝑡 , 𝜔𝑖𝑛
𝑐 ≤ 𝜔 ≤ 𝜔𝑟𝑎𝑡𝑒𝑑

𝑐

𝑃𝑊𝑇.𝑟𝑎𝑡𝑒𝑑
𝑡 , 𝜔𝑟𝑎𝑡𝑒𝑑

𝑐 ≤ 𝜔 ≤ 𝜔𝑜𝑢𝑡
𝑐

(4.30) 

𝐹𝜔(𝛥𝜔; 𝜆, 𝑘) = {
𝑘

𝜆
(
𝛥𝜔 + 0.5

𝜆
)
𝑘−1

𝑒−(
𝛥𝜔+0.5

𝜆
)
𝑘

𝛥𝜔 ≥ −0.5

0, 𝛥𝜔 < −0.5

(4.31) 

For photovoltaic power generation, the prediction error 𝛥𝐼 of PV is introduced in 

(4.32). PV generates electricity by converting solar radiation energy, and power 

generation is directly related to solar irradiance in (4.33). The Beta PDF is employed to 

estimate uncertain parameters with minimal error in (4.34). 

𝐼 = 𝐼𝑓𝑠 + 𝛥𝐼 (4.32) 

𝑃𝑃𝑉
𝑡 = ∑ 𝜂𝑝𝑣𝑛𝑆𝑝𝑣𝑛𝐼

𝑡

𝑛∈𝑁𝑝𝑣

(4.33) 

𝐹𝑆(𝛥𝐼; 𝛼, 𝛽) =
(𝛥𝐼 + 0.5)𝛼−1(1 − (𝛥𝐼 + 0.5))

𝛽−1

∫ 𝑢𝛼−1(1 − 𝑢)𝛽−1𝑑𝑢
1

0

(4.34) 

3) Energy Storage Systems (ESS)  

ESS contains the EBS and TES for the energy storage of power and thermal energy, 

respectively. The EBS functions as a charge-dischargeable battery with varying 

efficiency [85]. The operational strategy of EBS is modeled at a granularity of one hour, 

i.e., one time interval. Charging and discharging operations are consolidated into a 

single activity within one time slot [86].  

The detailed model of EBS is shown as follows. 

𝐸𝐸𝐵𝑆
𝑡 = (1 − 𝛽𝐸𝐵𝑆)𝐸𝐸𝐵𝑆

𝑡−1 + 𝑃𝐸𝐵𝑆.𝑐
𝑡 𝜂𝐸𝐵𝑆.𝑐 − 𝑃𝐸𝐵𝑆.𝑑

𝑡 (4.35) 

0 ≤ 𝑃𝐸𝐵𝑆.𝑐
𝑡 ≤ 𝑆𝐸𝐵𝑆.𝑐

𝑡 𝑃𝐸𝐵𝑆.𝑚𝑎𝑥 (4.36) 
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0 ≤ 𝑃𝐸𝐵𝑆.𝑑
𝑡 ≤ 𝑆𝐸𝐵𝑆.𝑑

𝑡 𝑃𝐸𝐵𝑆.𝑚𝑎𝑥 (4.37) 

𝑆𝐸𝐵𝑆.𝑐
𝑡 + 𝑆𝐸𝐵𝑆.𝑑

𝑡 ≤ 1 (4.38) 

0 ≤ 𝐸𝐸𝐵𝑆
𝑡 ≤ 𝐸𝐸𝐵𝑆.𝑚𝑎𝑥 (4.39) 

In equations above, 𝐸𝐸𝐵𝑆
𝑡  is the battery capacity at time interval 𝑡. 𝛽 and 𝜂𝐸𝐵𝑆.𝑐 are 

predetermined parameters representing the loss factor and charging efficiency, 

respectively. 𝑃𝐸𝐵𝑆.𝑐
𝑡  and 𝑃𝐸𝐵𝑆.𝑑

𝑡  represents the charging power and discharging power at 

time step 𝑡, respectively. 𝑆𝐸𝐵𝑆.𝑐
𝑡  and 𝑆𝐸𝐵𝑆.𝑑

𝑡  represent the charging state and discharging 

state at time step 𝑡, respectively. 𝑃𝐸𝐵𝑆.𝑐.𝑚𝑎𝑥 and 𝑃𝐸𝐵𝑆.𝑑.𝑚𝑎𝑥 are the maximum charging 

and discharging power, respectively. 𝐸𝐸𝐵𝑆.𝑚𝑖𝑛  and 𝐸𝐸𝐵𝑆.𝑚𝑎𝑥  represent the upper and 

lower limits of battery capacity, respectively.  

In the model above, the representation of the SoC is shown in (4.35). The maximal 

charge and discharge power are constrained by (4.36) and (4.37), respectively. (4.38) 

is employed to determine the charge of discharge state of EBS. (4.39) constraints the 

range of total capacity of the energy in EBS. 

In the model of EBS, 𝐸𝐸𝐵𝑆
𝑡  is the battery capacity at time interval 𝑡. 𝛽 and 𝜂𝐸𝐵𝑆.𝑐 

are predetermined parameters representing the loss factor and charging efficiency, 

respectively. 𝑃𝐸𝐵𝑆.𝑐
𝑡  and 𝑃𝐸𝐵𝑆.𝑑

𝑡  represents the charging power and discharging power at 

time step 𝑡, respectively. 𝑆𝐸𝐵𝑆.𝑐
𝑡  and 𝑆𝐸𝐵𝑆.𝑑

𝑡  represent the charging state and discharging 

state at time step 𝑡, respectively. 𝑃𝐸𝐵𝑆.𝑐.𝑚𝑎𝑥 and 𝑃𝐸𝐵𝑆.𝑑.𝑚𝑎𝑥 are the maximum charging 

and discharging power, respectively. 𝐸𝐸𝐵𝑆.𝑚𝑖𝑛  and 𝐸𝐸𝐵𝑆.𝑚𝑎𝑥  represent the upper and 

lower limits of battery capacity, respectively. TES has a similar model to EBS. Please 

refer to Appendix for the detailed description.  

A generalized energy storage system model is applied to address TES. This model 

aligns with that of EBS and is not detailed here for the sake of brevity. 

𝐸𝑇𝐸𝑆
𝑡 = (1 − 𝛽)𝐸𝑇𝐸𝑆

𝑡−1 + 𝐻𝑇𝐸𝑆.𝑐
𝑡 𝜂𝑇𝐸𝑆.𝑐 − 𝐻𝑇𝐸𝑆.𝑑

𝑡 (4.40) 

0 ≤ 𝐻𝑇𝐸𝑆.𝑐
𝑡 ≤ 𝑆𝑇𝐸𝑆.𝑐

𝑡 𝐻𝑇𝐸𝑆.𝑚𝑎𝑥 (4.41) 

0 ≤ 𝐻𝑇𝐸𝑆.𝑑
𝑡 ≤ 𝑆𝑇𝐸𝑆.𝑑

𝑡 𝐻𝑇𝐸𝑆.𝑚𝑎𝑥 (4.42) 

𝑆𝑇𝐸𝑆.𝑐
𝑡 + 𝑆𝑇𝐸𝑆.𝑑

𝑡 ≤ 1 (4.43) 

0 ≤ 𝐸𝑇𝐸𝑆
𝑡 ≤ 𝐸𝑇𝐸𝑆.𝑚𝑎𝑥 (4.44) 
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4.2.5 Multi-Energy User (MEU) Modeling 

As rational integrated energy consumers, MEUs engage in the procurement of 

energy to fulfill their energy demands for both power and heat [87]. MEUs are 

conceptualized to possess elastic electricity consumption appliances and energy 

conversion devices, including EB and GB, which enable them to adjust energy 

consumption dynamically across various time periods and multiple energies.  

𝐸𝑀𝐸𝑈(𝑃𝑖,𝑒
𝑡 ) =

{
 
 

 
 𝜔𝑖

𝑡 −
𝜆𝑖
𝑡

2
(𝑃𝑖,𝑒

𝑡 )
2
, 0 ≤ 𝑃𝑖,𝑒

𝑡 ≤
𝜔𝑖
𝑡

𝜆𝑖
𝑡

(𝜔𝑛
𝑡 )2

2𝜆𝑖
, 𝑃𝑖,𝑒
𝑡 >

𝜔𝑖
𝑡

𝜆𝑖

(4.45) 

𝐻𝑀𝐸𝑈(𝐻𝑖,𝑒𝑏
𝑡 , 𝐻𝑖,𝑔𝑏

𝑡 , 𝐻𝑖,ℎ
𝑡 ) = −𝜎𝑖

𝑡(𝐻𝑖,𝑒𝑏
𝑡 + 𝐻𝑖,𝑔𝑏

𝑡 + 𝐻𝑖,ℎ
𝑡 )

2
+ 𝜍𝑖

𝑡(𝐻𝑖,𝑒𝑏
𝑡 + 𝐻𝑖,𝑔𝑏

𝑡 + 𝐻𝑖,ℎ
𝑡 )(4.46) 

In (4.45), 𝑃𝑖,𝑒
𝑡  is the power consumption of MEU 𝑖 during time interval 𝑡. 𝜔𝑖 and 𝜆𝑖 

are preset parameters reflecting the preference of MEU in energy consumption. In 

(4.46), 𝐻𝑖,𝑒𝑏
𝑡 , 𝐻𝑖,𝑔𝑏

𝑡   and 𝐻𝑖,ℎ
𝑡   are heat power from EB, GB, and ICESO, respectively. 

Similarly, 𝜎𝑖
𝑡   and 𝜍𝑖

𝑡  are preset parameters. By considering the utility above, the 

objective function of MEUs is modelled by (4.47) and is constrained by (4.48)-(4.52). 

𝑚𝑎𝑥
𝑃𝑖,𝑒
𝑡 ,𝑃𝑖,𝑒𝑏

𝑡 ,𝑃𝑖,𝑔𝑏
𝑡 ,𝐻𝑖,ℎ

𝑡
𝑈𝑀𝐸𝑈 =∑

{
 
 

 
 (𝐸𝑀𝐸𝑈(𝑃𝑖,𝑒

𝑡 ) + 𝐻𝑀𝐸𝑈(𝐻𝑖,𝑒𝑏
𝑡 , 𝐻𝑖,𝑔𝑏

𝑡 , 𝐻𝑖,ℎ
𝑡 ))⏟                        

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

−(𝑥𝑟,𝑒
𝑡 (𝑃𝑖,𝑒

𝑡 + 𝑃𝑖,𝑒𝑏
𝑡 ) + 𝑥𝑟,𝑔

𝑡 𝑃𝑖,𝑔𝑏
𝑡 + 𝑥𝑟,ℎ

𝑡 𝑃𝑖,ℎ
𝑡 )⏟                          

𝐶𝑜𝑠𝑡 𝑓𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 }
 
 

 
 

𝑇

𝑡=1
(4.47) 

𝑠. 𝑡. 

𝐻𝑖,𝑒𝑏
𝑡 = 𝜂𝐸𝐵,𝑖𝑃𝑖,𝑒𝑏

𝑡 (4.48) 

𝐻𝑖,𝑔𝑏
𝑡 = 𝜂𝐺𝐵,𝑖𝑃𝑖,𝑔𝑏

𝑡 (4.49) 

0 ≤ 𝑃𝑖,𝑒
𝑡 ≤ 𝑃𝑖,𝑒.𝑚𝑎𝑥

𝑡 (4.50) 

0 ≤ 𝑃𝑖,𝑒𝑏
𝑡 ≤ 𝑃𝑖,𝑒𝑏.𝑚𝑎𝑥

𝑡 (4.51) 

0 ≤ 𝑃𝑖,𝑔𝑏
𝑡 ≤ 𝑃𝑖,𝑔𝑏.𝑚𝑎𝑥

𝑡 (4.52) 

In these equations, 𝑃𝑖,𝑒𝑏
𝑡  and 𝑃𝑖,𝑔𝑏

𝑡  are power and gas consumed by EB and GB of 

MEU 𝑖  during time interval 𝑡 , respectively. 𝜂𝐸𝐵,𝑖  and 𝜂𝐺𝐵,𝑖  are the energy conversion 

rates of EB and GB for MEU 𝑖. 𝑃𝑖,𝑒.𝑚𝑎𝑥
𝑡 , 𝑃𝑖,𝑒𝑏.𝑚𝑎𝑥

𝑡  and 𝑃𝑖,𝑔𝑏.𝑚𝑎𝑥
𝑡  are the upper bounds 

for the corresponding power consumption of electric appliance, power consumption of 

EB, and gas consumption of GB. 
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Equation (4.47) is the objective function of the MEU with the decision variables of 

𝑃𝑖,𝑒
𝑡 , 𝑃𝑖,𝑒𝑏

𝑡 , 𝑃𝑖,𝑔𝑏
𝑡 , 𝐻𝑖,ℎ

𝑡  . In (4.47), the first term is the utility for integrated energy 

consumption, and the second term is the cost for integrated energy purchase from 

ICESO. Equations (4.48) and (4.49) are the equality constraints for the power 

conversion of EB and GB. Inequalities (4.50)-(4.52) are constraints for electricity 

consumption, and power input for EB and GB, respectively. 

4.3 Problem Formulation 

This section presents the multi-networks constrained operational optimization 

problem for the ICESO and reformulates it into a corresponding C-MDP for the 

implementation of Safe RL algorithm. Specifically, the cost term in the C-MDP is 

denoted by the network constraint violations. By solving this C-MDP, the ICESO can 

maximize its reward with the tolerated constraint violation. 

4.3.1 Objective Function and Constraints 

The profit of ICESO is mainly the difference between the revenue for selling energy 

to MEUs and the cost of energy purchasing, as well as the imbalance penalty. The 

corresponding objective function is presented in (4.53). 

max
𝜑
𝑈𝐼𝐸𝑆𝑃 =∑

{
 
 

 
 (𝑥𝑟,𝑒

𝑡 ∑ 𝑃𝑖,𝑒
𝑡

𝑁

𝑖=1
+ 𝑥𝑟,𝑔

𝑡 ∑ 𝑃𝑖,𝑔
𝑡

𝑁

𝑖=1
+ 𝑥𝑟,ℎ

𝑡 ∑ 𝑃𝑖,ℎ
𝑡

𝑁

𝑖=1
)

⏟                                
𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝑓𝑜𝑟 𝑠𝑒𝑙𝑙𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦

−

(𝑥𝑤,𝑒
𝑡 𝑃𝑤,𝑒

𝑡 + 𝑥𝑤,𝑔
𝑡 𝑃𝑤,𝑔

𝑡 )⏟              
𝐶𝑜𝑠𝑡 𝑓𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑢𝑐ℎ𝑎𝑠𝑒 

− (𝛿𝑒
𝑡𝑃𝑖𝑚𝑏.𝑒
𝑡 + 𝛿𝑔

𝑡𝑃𝑖𝑚𝑏.𝑔
𝑡 + 𝛿ℎ

𝑡𝐻𝑖𝑚𝑏
𝑡 )⏟                    

𝐶𝑜𝑠𝑡 𝑓𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 }
 
 

 
 

T

t=1
(4.53) 

𝑠. 𝑡.  ∀𝑡 ∈ 𝑇 

(4.1) − (4.52) 

𝑃𝑤.𝑒
𝑡 + 𝑃𝐷𝐸𝑅

𝑡 + ∑ 𝑃𝐶𝐻𝑃.𝑛.𝑒
𝑡

𝑛∈𝑁𝑒

+ 𝑃𝐸𝐵𝑆.𝑑
𝑡 − 𝑃𝐸𝐵𝑆.𝑐

𝑡 + 𝑃𝑖𝑚𝑏.𝑒
𝑡 = ∑𝑃𝑖.𝑒

𝑡

𝑖∈𝐼𝑛

(4.54) 

∑ 𝐻𝐶𝐻𝑃,𝑛
𝑡

𝑛∈𝑁ℎ

+ 𝐻𝑇𝐸𝑆.𝑑
𝑡 − 𝐻𝐸𝐵𝑆.𝑐

𝑡 + 𝐻𝑖𝑚𝑏
𝑡 =∑𝐻𝑖

𝑡

𝑖∈𝐼𝑛

(4.55) 

𝑃𝑤.𝑔
𝑡 + 𝑃𝑖𝑚𝑏.𝑔

𝑡 =∑𝑃𝑖.𝑔
𝑡

𝑖∈𝐼𝑛

+ ∑ 𝑃𝐶𝐻𝑃.𝑔
𝑡

𝑛∈𝑁𝑔

(4.56) 

𝑥𝑚𝑖𝑛.𝑒
𝑡 ≤ 𝑥𝑟.𝑒

𝑡 ≤ 𝑥𝑚𝑎𝑥.𝑒
𝑡 (4.57) 
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𝑥𝑚𝑖𝑛.𝑔
𝑡 ≤ 𝑥𝑟.𝑔

𝑡 ≤ 𝑥𝑚𝑎𝑥.𝑔
𝑡 (4.58) 

𝑥𝑚𝑖𝑛.ℎ
𝑡 ≤ 𝑥𝑟.ℎ

𝑡 ≤ 𝑥𝑚𝑎𝑥.ℎ
𝑡 (4.59) 

In (4.53), 𝜑 = {𝑥𝑟,𝑒
𝑡 , 𝑥𝑟,𝑔

𝑡 , 𝑥𝑟,ℎ
𝑡 , 𝑃𝐶𝐻𝑃.𝑒

𝑡 , 𝑃𝐸𝐵𝑆.𝑑
𝑡 , 𝑃𝐸𝐵𝑆.𝑐

𝑡 , 𝐻𝐶𝐻𝑃
𝑡 , 𝐻𝑇𝐸𝑆.𝑑

𝑡 , 𝐻𝑇𝐸𝑆.𝑐
𝑡 } is the set 

of decision variables, and several decision variables are omitted due to the energy 

balance among several variables. The objective function in (3.53-a) constitutes three 

parts, revenue for selling energy, cost for energy purchase, and cost for energy balance, 

where 𝑃𝑖𝑚𝑏.𝑒
𝑡 , 𝐻𝑖𝑚𝑏

𝑡 , 𝑃𝑖𝑚𝑏.𝑔
𝑡  are the imbalanced electricity, heat and natural gas for 

ICESO. Penalty indexes 𝛿𝑒
𝑡 , 𝛿𝑔

𝑡 , 𝛿ℎ
𝑡  are preset parameters to penalize the energy 

imbalance and determined based on energy prices. Also, the objective is constrained by 

(4.1)-(4.52) and (4.54)-(4.59). Equality constraints (4.54)-(4.56) indicate the integrated 

energy balance. (4.57)-(4.59) are inequality constraints for the retail energy prices, 

where 𝑥𝑚𝑎𝑥.𝑒
𝑡 , 𝑥𝑚𝑖𝑛.𝑒

𝑡 , 𝑥𝑚𝑎𝑥.𝑔
𝑡 , 𝑥𝑚𝑖𝑛.𝑔

𝑡 , 𝑥𝑚𝑎𝑥.ℎ
𝑡 , 𝑥𝑚𝑖𝑛.ℎ

𝑡  are preset parameters indicating 

the upper bounds and lower bounds for power, natural gas and heat, respectively. 

The energy balance constraints are actually relaxed by introducing the penalty terms 

𝛿. However, network constraints are not directly relaxed to the objective function, as 

penalties for network constraint violations are hard to determine. Specifically, 

compared with energy imbalance that only decreases the profits from the economic 

perspective, the violation of network constraints is more serious and may affect the safe 

operation of the ICES. Moreover, determining penalties for network constraint 

violation to realize a fair tradeoff between improving profits and reducing violations is 

not straightforward. Therefore, it is assumed that the ICESO aims to guarantee safe 

operation rather than uplift the economic revenue. Consequently, the network-

constrained operational optimization problem is formulated to C-MDP in the next 

subsection. 

Moreover, it is worth noting that violating safety constraints in an ICES has 

immediate physical, operational, and regulatory consequences in practice. In the power 

network, exceeding line/transformer ampacity or voltage limits causes overheating, 

accelerated insulation aging, protection miscoordination, inverter trips, and potentially 

feeder outages. In the gas network, breaching pressure/flow bounds risks compressor 
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surge, line-pack depletion, and, in extreme cases, pipeline damage or supply 

interruption. In the district heating network, violating temperature/pressure/flow 

constraints leads to comfort violations, pump cavitation, thermal stress and leaks, or 

safety-valve discharge. Because these carriers are coupled (e.g., CHP, boilers), a 

violation in one layer can cascade to others. 

4.3.2 Markov Decision Process (MDP)  

To optimize the decision-making process of ICESO, a MDP is leveraged to describe 

the integrated energy transactions and then a DRL algorithm is used to solve it. This 

approach treats the ICESO as an intelligent agent that makes decisions based on the 

environmental observation of wholesale market prices (both electricity and gas), and 

power generation of DER. The objective is to improve the pricing decisions by 

maximizing the accumulated return, using a well-defined reward function in (4.53). The 

MDP can be denoted by < 𝑆, 𝐴, 𝑅, 𝑃, 𝜇, 𝛾 > .  𝑆  is the set of states. 𝑆 =

{𝑥𝑤,𝑒
𝑡 , 𝑥𝑤,𝑔

𝑡 , 𝑃𝑊𝑇,𝑝𝑟𝑒𝑑𝑖𝑐𝑡
𝑡 , 𝑃𝑃𝑉,𝑝𝑟𝑒𝑑𝑖𝑐𝑡

𝑡 , 𝐸𝐸𝐵𝑆
𝑡 , 𝐸𝑇𝐸𝑆

𝑡 }, encompassing electricity market price, 

natural gas market price, forecast power generation of WT and PV, state of charge of 

EBS and TES. 𝐴  is the set of actions. 𝐴 =

{𝑥𝑟,𝑒
𝑡 , 𝑥𝑟,𝑔

𝑡 , 𝑥𝑟,ℎ
𝑡 , PCHP

t , HCHP
t , PEBS.c

t , PEBS.d
t , HTES.c

t , HTES.d
t }  represents the available 

actions as the decision variables in (4.53). 𝑅: 𝑆 × 𝐴 × 𝑆 ⟼ ℝ is the reward function, 

which quantifies the action's performance and is presented by the objective function. 

𝑃: 𝑆 × 𝐴 × 𝑆 ⟼ [0, 1]  is the transition probability function. The state transition 

function is not considered due to the assumption of uncoupled state across time periods. 

𝜇: 𝑆 ⟼ 𝑃(𝐴) represents the policy of the agent, mapping from states to a probability 

distribution over actions [88]. 𝛾 ∈ [0, 1] is the discount factor to discount the future 

reward. 

The discounted accumulative reward under policy 𝜇 is denoted as (4.60). In (4.60), 

𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1 · · ·) is a trajectory of the agent with a series of actions, and 𝜏 ∼

𝜋 indicate trajectories distribution under policy. To conclude, the aim of MDP is to find 
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the optimal policy 𝜇∗ that can maximize the discounted accumulative reward 𝑅(𝜇), as 

(4.61). 

𝑅(𝜇) = 𝔼𝜏∼𝜋 [∑𝛾𝑡𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)

∞

𝑡=0

] (4.60) 

𝜇∗ = argmax
𝜇
𝑅(𝜇) (4.61) 

4.3.3 Constrained-Markov decision process (C-MDP) 

To maintain the energy flow complying with the network constraints, a cost 

function is proposed for the C-MDP, indicating the violation of network constraints. 

The C-MDP can be denoted as < 𝑆, 𝐴, 𝑅, 𝐶, 𝑃, 𝜇, 𝛾 > , which is an ordinary MDP 

augmented by cost function 𝐶(𝑠, 𝑎). The cost function is denoted by 𝐶: 𝑆 × 𝐴 × 𝑆 ⟼

ℝ, mapping from transition tuples to cost. The explicit expression of the cost function 

is given in (4.62). It comprises the standardized constraint violation of cost in three 

kinds of network constraints. As the transmission capacity is always designed to be 

large enough to carry the real and reactive power in the electric distribution network, 

only voltage constraints are considered in the following cost function.  

𝐶 =

{
 
 
 
 
 
 

 
 
 
 
 
 ∑ [[

𝑉𝑛,𝑡 − 𝑉𝑛

𝑉𝑛
]

+

+ [
𝑉𝑛 − 𝑉𝑛,𝑡
𝑉𝑛

]

+

]

𝑛∈𝑁𝑒,∀(𝑛,𝑚)∈𝑃𝑒⏟                          
𝐶𝑜𝑠𝑡 𝑓𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

+

∑ [[
|𝑔𝑓𝑘,𝑚𝑛| − 𝑔𝑓𝑚𝑛

𝑔𝑓
𝑚𝑛

]

+

+ [
𝑃𝑟𝑘,𝑛 − 𝑃𝑟𝑛

𝑃𝑟𝑛
]

+

+ [
𝑃𝑟𝑛 − 𝑃𝑟𝑘,𝑛

𝑃𝑟𝑛
]

+

+ [
𝐺𝑘,𝑛 − 𝐺𝑛

𝐺𝑛
]

+

]

𝑛∈𝑁𝑔,∀(𝑛,𝑚)∈𝑃𝑔⏟                                                        

+

𝐶𝑜𝑠𝑡 𝑓𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑔𝑎𝑠 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

∑ [[
𝑀𝑛
𝑡 −𝑀𝑛

𝑁

𝑀𝑛

𝑁 ]

+

+ [
𝑀𝑛
𝑁 −𝑀𝑛

𝑡

𝑀𝑛
𝑁

]

+

+ [
𝑀𝑛𝑚

t −𝑀𝑛𝑚
𝑆

𝑀𝑛𝑚

𝑆 ]

+

]

𝑛∈𝑁ℎ,∀(𝑛,𝑚)∈𝑃ℎ⏟                                        
𝐶𝑜𝑠𝑡 𝑓𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 ℎ𝑒𝑎𝑡 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 }

 
 
 
 
 
 

 
 
 
 
 
 

(4.62) 

In (4.62), [𝑥]+ = max{0, 𝑥}  is the projection function. The cost function is 

constituting costs for constraint violation in the electricity network, gas network, and 

heat network. To limit the constraint violation, the constraint for the cost function is 

proposed as (4.63), where 𝑑 is the upper bound of the cost function.  

𝐶(𝜇) ≤ 𝑑 (4.63) 

The long-term discounted cost under policy 𝜇  is similarly defined as 𝐶(𝜇)  =

 𝐸𝜏∼𝜇[ ∑ 𝛾𝑡 𝐶(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)𝑡∈𝑇  ], and the corresponding limit is 𝑑. In the C-MDP, the 
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goal is to select a policy 𝜇 that maximizes the long-term reward R(π) while satisfying 

the constraints on the long-term costs. 
𝜇∗ = argmax

𝜇
𝑅(𝜇) (4.64)

 𝑠. 𝑡. (9)
 

4.4 Proposed TD3 algorithm 

In this section, a PD-TD3 algorithm is developed to solve the proposed C-MDP and 

learn the optimal operational strategy for ICESO. Specifically, the proposed C-MDP is 

formulated into a Lagrangian function, which is then converted to an unconstrained 

min-max problem and thus applicable to the solution of the iterative primal-dual TD3 

algorithm. The PD-TD3 algorithm then solves the primal-dual problem by using the 

gradient descent to iteratively update the policy and Lagrangian multiplier. 

4.4.1 Primal-Dual TD3 algorithm 

The challenges of optimal operation of MNC-ICES model mainly come from the 

non-linear integrated network constraints. Conventional deep reinforcement learning 

algorithms do not directly consider these constraints in the learning process [88]. 

Moreover, traditional DRL algorithms still face the problem of overestimation of Q-

value and cost value in C-MDP and instability during the training process. To overcome 

these drawbacks, the proposed PD-TD3 algorithm is able to address the challenges of 

constrained optimal operation problem in MNC-ICES model by solving the C-MDP, 

and mitigating the issue of value overestimation and training instability.  

As a RL method, the key of the primal-dual algorithm is to augment constraints on 

the expected rewards, such that the training of the RL agent converges to the optimal 

constraints-satisfying policies. Therefore, the objective of primal-dual TD3 for cost 

minimization can be generally written as (3.65), where ℒ(𝜇, 𝜆)  as (4.66) is the 

augmented objective action-value function, 𝜆 denotes the multipliers of constraints. 

(𝜇∗, 𝜆∗) = argmin
𝜆>0

max
𝜇
ℒ(𝜇, 𝜆) (4.65) 

ℒ(𝜇, 𝜆) = 𝑅(𝜇) −∑𝜆(𝐶(𝜇) − 𝑑)

𝑖

(4.66) 
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In (4.66), 𝑅(𝜇) and 𝐶(𝜇) represent the reward and the cost for constraint violation 

of a DRL agent. For constrained optimal operation of MNC-ICES model, the reward 

and constraint violation can be the total profits of the ICESO and violation of physical 

constraints of integrated distribution networks, respectively. To solve the unconstrained 

minimax problem (4.65), the iterative primal-dual method is used as a canonical 

approach where in each iteration. In each iteration, the primal policy π and the dual 

variable λ are updated in turn. The primal-dual update procedures at iteration k are as 

follows: 

𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑘∇𝜃(ℒ(𝜇(𝜃), 𝜆𝑘))|𝜃=𝜃𝑘 (4.67) 

𝜆𝑘+1 = 𝑓𝑘(𝜆𝑘, 𝜇(𝜃)) (4.68) 

In the proposed PD-TD3 algorithm, the primal variable, i.e., policy parameters, is 

updated by policy gradient, which is specified later. The dual variable, i.e., the 

Lagrangian multiplier, is updated by (4.69). In (4.69), 𝛽𝑘  is the step size of the 

multiplier update. [𝑥]+ = max{0, 𝑥} is the projection onto the dual space 𝜆𝑘 > 0. Note 

that the dual variable is updated in a stable manner via (4.69), which applies a tunable 

step size for gradual adjustments 

 

𝜆𝑘+1 = [𝜆𝑘 + 𝛽𝑘(𝐶(𝜇𝑘) − 𝑑)]
+ (4.69) 

4.4.2 Algorithm Design for Primal-Dual TD3 

The proposed PD-TD3 algorithm is an off-policy DRL algorithm, enabling offline 

training of strategies in optimization problems and using DNN approximate action-

value functions. The overall framework of the PD-TD3 is summarized in Algorithm 

4.1. As a DRL algorithm based on the actor-critic framework, the PD-TD3 adopts 

DNNs to approximate the value functions and policy functions of the C-MDP, which 

denotes the critic and actor, respectively. To estimate both the reward and cost in the 

C-MDP, PD-TD3 employs two kinds of critic networks, namely the reward critic 

network and the cost critic network. Additionally, as PD-TD3 uses the trick of double 

networks, each type of critic consists of two online Q networks and their target networks, 
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mitigating the issue of Q-value overestimation observed in other value-based RL 

algorithms. Also, the target networks of the critic are delayed copies of the online 

network, which is supposed to mitigate the instability of the training process. Therefore, 

three sets of neural networks are employed: (1) two reward critic Q-networks 

𝑄𝑅1(𝑠, 𝑎|𝜃𝑅1
𝑄 ), 𝑄𝑅2(𝑠, 𝑎|𝜃𝑅2

𝑄 ) and their target network 𝑄𝑅1
′ (𝑠, 𝑎|𝜃𝑅1

𝑄′), 𝑄𝑅2
′ (𝑠, 𝑎|𝜃𝑅2

𝑄′), 

(2) two cost critic Q-networks 𝑄𝐶1(𝑠, 𝑎|𝜃𝐶1
𝑄 ), 𝑄𝐶2(𝑠, 𝑎|𝜃𝐶2

𝑄 ) and their target networks 

𝑄𝐶1
′ (𝑠, 𝑎|𝜃𝐶1

𝑄′), 𝑄𝐶2
′ (𝑠, 𝑎|𝜃𝐶2

𝑄′), and (3) the actor policy network 𝜇(𝑠|𝜃𝜇) and its target 

network  𝜇′(𝑠|𝜃𝜇′).  

During the training process, the agent randomly samples transitions 

(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑐𝑖, 𝑠𝑖+1) from the ERB to form a mini-batch 𝑁 for experience replay learning. 

Then, the target of the reward and cost critic networks are presented as (4.70) and 

(4.71), which are employed to update Q-functions.  

𝑦𝑖 = 𝑟𝑖 + 𝛾 𝑚𝑖𝑛
𝑗∈{1,2}

𝑄 (𝑠𝑖+1, 𝑎̃𝑖+1|𝜃𝑅𝑗
𝑄′) (4.70) 

𝑧𝑖 = 𝑐𝑖 + 𝛾 𝑚𝑖𝑛
𝑗∈{1,2}

𝑄 (𝑠𝑖+1, 𝑎̃𝑖+1|𝜃𝐶𝑗
𝑄′) (4.71) 

In (4.70) and (4.71), 𝑎̃𝑡+1 is the clipped target action shown in (4.72). Here, target 

policy smoothing is employed by incorporating clipped Gaussian noise into the target 

action during the evaluation process. This technique promotes smoother and more 

stable policy updates, facilitating convergence and enhancing the quality of the learned 

policy. 

𝑎̃𝑖+1 = 𝜇
′(𝑠|𝜃𝜇′) + 𝜀̃, 𝜀̃~𝑐𝑙𝑖𝑝(𝒩(0, 𝜎̃), −𝑐, 𝑐) (4.72) 

Based on the target, the reward and cost critic networks are updated by minimizing 

the loss function, i.e., MSE between the value functions and their targets, proposed in 

(4.73) and (4.74), respectively. 

𝐿𝑅 =
1

𝑁
∑[𝑦𝑖 − 𝑄𝑅(𝑠𝑖 , 𝑎𝑖|𝜃𝑅

𝑄)]
2

𝑖∈𝑁

(4.73) 

𝐿𝐶 =
1

𝑁
∑[𝑧𝑖 − 𝑄𝐶(𝑠𝑖, 𝑎𝑖|𝜃𝐶

𝑄)]
2

𝑖∈𝑁

(4.74) 

To mitigate the training error caused by correlated samples, the primal variable, i.e., 

policy network, and dual variable, i.e., Lagrangian multiplier after a fixed number e of 

iterations by using (4.75) and (4.76), which is the so-called “delayed” update. This 
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delay in primal and dual variable updates reduces the correlation between successive 

updates and prevents rapid forgetting of previously learned policies. The policy is 

updated by one step of sampled gradient descent using (4.77). Also, it should be noted 

that the dual variable updated in (4.78) uses the minimized estimated Q-value for cost, 

alleviating the overestimation of the Q value to ensure a proper update descent. 

𝛻𝜃𝜇ℒ(𝜃
𝜇, 𝜆) ≈

1

𝑁
∑𝛻𝜃𝜇[𝑄𝑅1(𝑠𝑖, 𝜇(𝑠𝑖|𝜃

𝜇)|𝜃𝑅1
𝑄 ) − 𝜆𝑄𝐶1(𝑠𝑖, 𝜇(𝑠𝑖|𝜃

𝜇)|𝜃𝐶1
𝑄 )]

𝑖∈𝑁

(4.77) 

∇𝜆ℒ(𝜃
𝜇, 𝜆) =

1

𝑁
∑[ 𝑚𝑖𝑛

𝑗∈{1,2}
𝑄 (𝑠𝑖+1, 𝑎̃𝑖+1|𝜃𝐶𝑗

𝑄′) − 𝑑]

𝑖∈𝑁

(4.78) 

Additionally, all target networks of the actor and critic are updated by using the soft 

update presented in (4.79) and (4.80). It allows a small pace update in each iteration 

and ensures a gradual and stable convergence of the networks, where 𝜌 represents the 

soft update parameter. 

𝜃𝑄′ ← 𝜌𝜃𝑄 + (1 − 𝜌)𝜃
𝑄′ (4.79) 

𝜃𝜇′ ← 𝜌𝜃𝜇 + (1 − 𝜌)𝜃
𝜇′ (4.80) 

4.4.3 Discussion of Potential Limitations 

Previous subsections address the Q-value overestimation problem in the typical RL 

algorithms. Considering the PD-TD3 is developed based on the conventional TD3 

algorithm, it also inherits the following drawbacks: 1) The PD-TD3 algorithm is more 

complex than the TD3 algorithm and requires more computing resources by increasing 

numbers of hyperparameters. 2) The TD3-based algorithm is relatively sensitive to the 

selection of hyperparameters. However, as the ultimate goal is to deploy this well-

trained algorithm to online dispatch, this could not be a serious problem. 

If this algorithm is deployed to real-world ICES for online dispatch, an important 

assumption is that, the environment (state transition) of the simulation (test system) 

should be similar to the real-world ICES. Otherwise, the algorithm will generate unsafe 

decisions because it cannot be adaptive to the unknown environment. Potential 

solutions are twofold. First, a comprehensive modelling of system state transition using 
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advanced deep learning methods is necessary. Second, the output of this RL algorithm 

should be corrected by real-time control algorithms, such as model predictive control. 

 

Algorithm 4.1 PD-TD3 algorithm 

1:  Initialize policy parameters 𝜃𝜇, Q-function parameters 𝜃𝑅1
𝑄

, 𝜃𝑅2
𝑄

, 𝜃𝐶1
𝑄

, 𝜃𝐶2
𝑄

, and 

empty buffer 𝑅 

2:  Initialize target networks 𝜃𝜇′ ← 𝜃𝜇, 𝜃𝑅1
𝑄′ ← 𝜃𝑅1

𝑄
, 𝜃𝑅2

𝑄′ ← 𝜃𝑅2
𝑄

, 𝜃𝐶1
𝑄′ ← 𝜃𝐶1

𝑄
, 𝜃𝐶2

𝑄′ ← 𝜃𝐶2
𝑄

 

3:  Initialize Lagrangian multiplier 𝜆 

4:  repeat 

5:      Initialize a random process 𝑁 for action exploration 

6:      Receive initial state 𝑠0 

7:      for each transaction time slot 𝑡 = 1,… , 𝑇 do 

8:          Select action  

9:          Execute action and observe  

10:        Store transition in the reply buffer 

11:        if s is terminal, reset environment state 

12:        Randomly sample a bath of transitions from 𝑁 

13:        Compute target actions using 

𝑎̃𝑖+1 = 𝜇
′(𝑠|𝜃𝜇′) + 𝜀̃, 𝜀̃~𝑐𝑙𝑖𝑝(𝒩(0, 𝜎̃), −𝑐, 𝑐) 

14:        Compute target using 

𝑦𝑖 = 𝑟𝑖 + 𝛾 𝑚𝑖𝑛
𝑗∈{1,2}

𝑄 (𝑠𝑖+1, 𝑎̃𝑖+1|𝜃𝑅𝑗
𝑄′)  

𝑧𝑖 = 𝑐𝑖 + 𝛾 𝑚𝑖𝑛
𝑗∈{1,2}

𝑄 (𝑠𝑖+1, 𝑎̃𝑖+1|𝜃𝐶𝑗
𝑄′)  

15:        Update Q-function by one step of gradient descent by minimizing 

𝐿𝑟 =
1

𝑁
∑[𝑦𝑖 − 𝑄𝑟(𝑠𝑖 , 𝑎𝑖|𝜃𝑅

𝑄)]
2

𝑖∈𝑁

 

𝐿𝑐 =
1

𝑁
∑[𝑧𝑖 − 𝑄𝑐(𝑠𝑖, 𝑎𝑖|𝜃𝐶

𝑄)]
2

𝑖∈𝑁

 

16:        if k mod e then 

17:            Update policy by one step of gradient ascent using  

𝛻𝜃𝜇ℒ(𝜃
𝜇, 𝜆) ≈

1

𝑁
∑𝛻𝜃𝜇[𝑄𝑅1(𝑠𝑖, 𝜇(𝑠𝑖|𝜃

𝜇)|𝜃𝑅1
𝑄 ) − 𝜆𝑄𝐶1(𝑠𝑖, 𝜇(𝑠𝑖|𝜃

𝜇)|𝜃𝐶1
𝑄 )]

𝑖∈𝑁

 

18:            Update Lagrangian multiplier by one step of gradient ascent using 
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∇𝜆ℒ(𝜃
𝜇, 𝜆) =

1

𝑁
∑[ 𝑚𝑖𝑛

𝑗∈{1,2}
𝑄 (𝑠𝑖+1, 𝑎̃𝑖+1|𝜃𝐶𝑗

𝑄′
) − 𝑑]

𝑖∈𝑁

 

19:            Update target networks with 

𝜃𝑄′ ← 𝜌𝜃𝑄 + (1 − 𝜌)𝜃
𝑄′  

𝜃𝜇′ ← 𝜌𝜃𝜇 + (1 − 𝜌)𝜃
𝜇′  

20:        end if 

21:    end for 

22: until convergence 
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Fig. 4.4 Illustration of the proposed PD-TD3 algorithm  

4.5 Case Study 

To validate the performance of the proposed PD-TD3 algorithm, a test system 

consisting of 5 MEUs is adopted and is shown in Fig. 4.5. As shown in the test system, 

a standard IEEE-33 bus electricity network, a heat network, and a natural gas network 

are considered to model the whole integrated energy network structure in MNC-ICES. 

It should be mentioned that simulation based on the test system is a generalized scenario 

but not a representation of a specific real-world application. The numerical results 

obtained from the proposed test system only serve as a demonstration of the proposed 

models and methods and a foundation for further application. To bridge the gap 

between generalized scenarios and real-world applications of the ICES models and 

Machine Learning methods, future work will involve applying the developed methods 

to actual energy systems models or more detailed case studies. 
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It should be mentioned that simulation based on the test system is a generalized 

scenario but not a representation of a specific real-world application. The proposed 

algorithm is only tested on a small system to validate its functionality and compared 

performance to benchmark algorithms. The numerical results obtained from the 

proposed test system only serve as a demonstration of the proposed models and methods 

and a foundation for further application. To bridge the gap between generalized 

scenarios and real-world applications of the ICES models and Machine Learning 

methods, future work will involve applying the developed methods to actual energy 

systems models or more detailed case studies. 

The key parameter settings for the test system are given as follows. The voltage 

constraints of the electricity network are set with an upper bound of 0.9p. u. and lower 

bound of 1.1p. u., and the other configuration data for the power network is taken from 

[89]. The natural gas network transmits the gas in the pipeline with an inside diameter 

of 0.3m and an efficiency of 90%, operating at a temperature of 288.15°K. The gas 

compressibility factor is set as 0.9𝑃𝑎−1. The allowable pressure for gas transmission is 

limited from 110𝑘𝑃𝑎 to 100𝑘𝑃𝑎, and the maximal gas flow rate is 400𝑚3/ℎ. In the 

10-node district heat system, the supply temperature at the most upstream node is 70℃, 

and the return side temperature of the most downstream node is set to 30℃ . The 

temperature loss is assumed to be 0.1K/m on the supply side, and 0.05K/m in return 

side pipelines [86]. 

The hourly wholesale prices for electricity and natural gas are obtained using the 

real data of New England ISO. The constant natural gas price is set at 4.75£/MMBtu, 

resulting in a natural gas price of approximately 16.2 £/MW  or 0.165 £/m3 . 

Moreover, the power output of WT and PV are adapted from real-world data in [90]. 

The pricing ranges for electricity, natural gas, and heat in the MNC-ICES are set as 0 −

50£/MW, 0 − 50£/MW, and 0 − 40£/MW, respectively.  

The proposed DRL algorithm is implemented on the Pytorch [91]. The neural 

networks are configured with the settings shown in Table 4.1. The hyperparameters of 

the algorithm shown in Table 4.2 are selected based on empirical values and adjusted 
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during the training process until the algorithm converges to the maximum profit. The 

quadratic programming problem for the comprehensive energy demand response of the 

MEUs is solved using commercial solver. 

MEU3

E1 E2 E7

E19 E20 E21 E22

E23 E24 E25 E26 E27 E28 E29 E30 E31 E32 E33

H1

H2 H3 H4 H5 H6 H7
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N3N2 N4 N5 N6

N7 N8

MEU1 MEU4 MEU5

E3 E4 E5 E6 E12E8 E9 E10 E11 E13

E18

E14 E15 E16 E17

ICESO and Extnerla Market

MEU2

Heat network Gas network Electricity network
 

Fig. 4.5. Test system of integrated community energy system  

Table 4.1 Neural network architectures settings 

Neutral Networks Actor Critic 

No. of Hidden Layers 3 2 

No. of Neurons [128,32] [128,32] 

Activation Function tanh ReLU 

Learning Rate 4e-4 7e-4 

Soft update parameter 1e-3 1e-3 

Delayed update frequency 2 2 

Optimizer Adam optimizer Adam optimizer 

Table 4.2 Hyperparameter settings of the PD-TD3 algorithm 

Training parameters Parameters 

Replay Buffer Size 1e+6 

Replay Start Size 128 

Batch Size 128 

Discount Factor 0.99 
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4.5.1 Training Performance  

This subsection aims to validate the convergence performance of the PD-TD3. Safe 

RL algorithms using both the Lagrangian method and the direct penalty method are 

employed as benchmark algorithms. The L-SAC [65] and S-DDPG [68] belong to the 

former, while typical TD3 with direct penalizing cost stands for the latter. The penalty 

index 𝜆 is set as 1, 10, 100, and 1000 for a comprehensive comparison. In this context, 

each algorithm is trained 1000 episodes to learn the optimal strategy in pricing and 

scheduling in MNC-ICES, while each episode contains 24 steps, indicating 24 hours 

per day. Figs. 4.6-4.7 present the evolution of cumulative reward and cost for each 

episode, respectively. The corresponding values are also listed in Table 4.3 for a clearer 

demonstration. The allowable operating range of the cumulative cost is 0~10, and the 

upper bound of 10 is marked in black in Fig. 4.7.  

As illustrated in Fig. 4.6, the cumulative reward of the four algorithms has a similar 

trend, which fluctuates a lot in the initial stage of training, since the algorithm randomly 

chooses actions to explore the environment. Similarly, the initial cost for constraint 

violation in Fig. 4.7 is relatively higher and fluctuates in the initial stage. With the 

learning process going on, the policy is continuously trained and improved, resulting in 

an increasing trend in reward and a decreasing trend in cost. In the comparison between 

the algorithms using the Lagrangian-based method and direct penalty method, it can be 

observed that typical TD3 algorithms with fixed penalty index usually have lower 

reward and higher cost. The reward and cost of TD3 decrease as 𝜆  increases. 

Specifically, TD3 with 𝜆 = 1000 has the lowest reward among all algorithms even L-

SAC, and the lowest cost among TD3 with all 𝜆 settings. Moreover, its cost reaches 

around the allowable requirement but is still unqualified. This demonstrates a worse 

performance of the direct penalty-based Safe RL algorithms compared to Lagrangian-

based Safe RL algorithms. 

In the comparison within algorithms using the Lagrangian Safe RL method, it can 

be observed that the L-SAC converges with the lowest cumulative reward, which is 
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nearly zero. This is thought as a local optimum and caused by the improper tradeoff 

between the reward and cost, indicating an over-conservative policy of L-SAC. 

However, the PD-TD3 shows a fast convergence to the highest reward among the three 

algorithms, and it can be observed in both Fig. 4.6 and Table 4.3 that the cumulative 

reward is about to converge around 200 episodes with a reward of almost 10000. This 

is driven by the delayed policy update that can update the policy without the training 

noise, training the policy networks effectively. In addition, the PD-TD3 deals with the 

physical constraints by directly adjusting the policy of the actor-network. On this 

account, the cost of PD-TD3 for an episode containing 24 operating hours is in the 

allowable range of 0~10 after 500 episodes. In comparison, the cost of S-DDPG is out 

of the allowable range during almost the whole training process, while the cost of L-

SAC is about 0 and is thought of as over-conservative. This is owing to the double Q 

cost networks that assist in estimating the cost more precisely by eliminating the 

overestimation of cost and thus achieving a fair balancing of the tradeoff between the 

reward and cost, which has the highest reward and an allowable cost. Furthermore, it 

can be observed that the reward of PD-TD3 converges around 200 episodes, and the 

cost is operating in the allowable range after about 500 episodes. The convergence 

speed of PD-TD3 is similar to L-SAC but is much faster than S-DDPG twice. Also, the 

convergence process of the reward and cost in PD-TD3 demonstrates that the dual 

variable converges to optimal after the convergence of reward, since the dual variable 

is updated with delay in a small step to allow a high exploration in reward, avoiding 

getting stuck in a local optimum like L-SAC. 

Overall, compared with direct-penalty TD3 baselines, PD-TD3 attains the highest 

average cumulative reward (~10,000 by around 200 episodes) while reducing the 

empirical constraint-violation probability, which is proxied by episode safety cost, into 

the allowable band (cost 0–10 per 24-h episode) by around 500 episodes; in contrast, 

penalty-TD3 yields lower reward and persistent over-limit violations even at 𝜆 =

1000. Among Lagrangian safe-RL methods, L-SAC achieves near-zero violations but 

collapses to near-zero reward (over-conservative), whereas S-DDPG keeps violations 
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out of range for most of training; thus PD-TD3 offers the best reward–safety trade-off, 

with convergence speed comparable to L-SAC and roughly twice as fast as S-DDPG. 

 

 

Fig. 4.6 The evolution of cumulative reward for different Safe RL algorithms. 

 

Fig. 4.7 The evolution of cumulative cost of constraint violation for different Safe RL 

algorithms. 

Table 4.3 The cumulative values of reward and cost for constraint violation for 

different Safe RL algorithms. 

Algorithms Evaluation 
Episode 

1 100 200 400 600 800 1000 

PD-TD3 
Reward -15402 -87 9113 10703 11105 10513 10473 

Cost 196 27 21 12 6 5 5 

S-DDPG 
Reward -18964 556 6744 8665 9462 9596 9555 

Cost 77 1 14 17 11 10 11 
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L-SAC 
Reward -20826 1282 4778 5179 5151 5145 5141 

Cost 101 1 0.5 0 0.1 0.1 0.1 

TD3 

(λ =1) 

Reward -18965 1151 2786 6593 8794 9162 7412 

Cost 170 60 46 30 38 37 37 

TD3 

(λ =10) 

Reward -16229 335 1022 7562 7964 8922 6925 

Cost 126 105 54 32 35 32 34 

TD3 

(λ =100) 

Reward -18967 1266 2530 6254 6932 6987 6614 

Cost 96 53 53 29 29 28 28 

TD3 

(λ =1000) 

Reward -18964 -22773 -13324 2363 7 1015 6614 

Cost 8990 1830 2102 1993 2072 4210 4471 

 

4.5.2 Generalization Performance 

To demonstrate the generalization performance of the proposed approach, two 

scenarios are simulated from the data set and analyzed in Figs. 4.11-4.12. Two scenarios 

are characterized as typical days for summer and winter with different demands and 

renewable generation. Despite the two scenarios having different energy production 

and consumption characteristics, there are some similarities during the operation. 

Firstly, during periods without lower demands for electric and heat power, the CHP unit 

is turned off due to its high operational cost; the demands are satisfied mainly by 

imported power and gas. Secondly, electricity prices show a similar trend to the 

homogenous demand and wholesale prices for electric power across scenarios. These 

show the generic strategy of the learned policy when facing similar conditions in ICES 

operation. 

Nevertheless, the learned policies and energy resources show more differences 

across scenarios. As shown in Fig. 4.11, the CHP unit in winter day is turned on for 

about 15 hours on winter days (0:00-11:00 and 18:00-22:00) since profits caused by 

high demand for electricity and heat power across most hours can cover the operational 

cost of CHP. However, CHP only works one hour on summer day in Fig. 4.10 due to 

the lower demands and potential uneconomic operation. This results in heavy reliance 
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on the external market on the summer day. Moreover, Fig. 4.9 shows lower prices for 

electric and heat power on winter day. This is a consequence of the power generation 

of the CHP unit and wind turbine, which has a lower cost than the external prices or 

zero generation cost. On the other hand, the flexibility of ESS is more efficiently 

realized on the summer day in Fig. 4.8. Although the export of power is not allowed in 

the proposed model, the larger dependence on the external market on the summer day 

provides more arbitrary chances for ESS. 

 

Fig. 4.8 Energy sources and prices for electric power with PD-TD3 method in the 

summer day 

 

Fig. 4.9 Energy sources and prices for electric power with PD-TD3 method in the 

winter day 
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Finally, it can be concluded that the proposed PD-TD3 algorithm is able to learn an 

effective policy for profit-maximization and safe operation in an MNC-ICES that can 

generalize to different scenarios. Furthermore, the proposed method investigates the 

flexibility potential of energy sources for two typical summer and winter days. More 

specifically, compared to the summer day, the ICES reports on CHP electric and heat 

power generation on winter day due to its less renewable power generation and higher 

demands. In contrast, summer day imports more electric power and natural gas from 

the external market, leading to higher energy prices for MEUs. 

 

Fig. 4.10 Energy sources and prices for heat power with PD-TD3 method in the summer day 

 

Fig. 4.11 Energy sources and prices for heat power with PD-TD3 method in the winter day 
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4.5.3 Analysis of Pricing and Operation Decisions 

For a more in-depth analysis of the learned pricing and device scheduling policies 

of the three algorithms above, the energy resources and prices for satisfying power 

demand and heat demand in the typical test day (the winter scenario) are presented in 

Figs. 4.12-4.13 for comparison of PD-TD3 and S-DDPG. As illustrated in Fig. 4.8 and 

Fig. 4.12, two transaction results show a similar trend in electricity prices in the whole 

transaction period because of the inherent impact of the same wholesale electricity 

prices, but the prices in Fig. 4.8 are higher than those in Fig. 4.12, therefore resulting 

in a smoother power consumption curve. The higher prices in Fig. 4.8 also leads to a 

low electric power purchase in the WEM in most periods except 11:00-18:00 due to the 

low power demand and low prices in WEM. However, the agent of S-DDPG poses a 

much lower ICES power price, which makes the power consumption curve much 

steeper. The ICESO of both algorithms determines lower heat prices in periods with a 

turning on CHP due to its low marginal cost for heat production, while having a lower 

natural gas price compared to heat in the rest periods.  

The devices scheduling is also illustrated in Fig. 4.12. It can be observed that the 

PD-TD3 operates CHP for a longer period and purchases less electricity from the WEM 

compared to S-DDPG. Specifically, the CHP is turned on during the periods of 0:00-

11:00 and 18:00-22:00 to sell power and heat to MEUs, since WEM prices, power, and 

heat demands are relatively higher. In the rest of the hours, the ICESO tends to sell 

electricity and natural gas from the external market due to the low demand and high 

cost of the CHP operation. During some periods, the ICESO can provide all the power 

demand through the power generation from the CHP, DER, and EBS, and the power 

demand is also cut down or shifted, which is thought of as operating in high energy 

efficiency. However, the S-DDPG relies on the external market much more by 

purchasing power and gas to satisfy demand in most periods except for 18:00-22:00, 

when the CHP is turned on. This is because the S-DDPG algorithm cannot learn the 

tiny difference in WEM prices and demand between the periods of 0:00-11:00 and 
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11:00-18:00, even though the market environment during the former periods offers a 

positive profits uplift for operating the CHP. This not only demonstrates the superior 

policy of the PD-TD3 compared to S-DDPG but also indicates the high energy 

efficiency of the MNC-ICES operated by the PD-TD3 algorithm. 

Nevertheless, the policies generated by the PD-TD3 and S-DDPG also show 

differences in physical constraint violations. As the power consumption under PD-TD3 

is much smoother and lower compared to the S-DDPG shown in Fig. 4.12, it is intuitive 

that the latter may have more constraint violations in the electrical distribution network 

due to higher power consumption in peak hours (8:00-9:00 and 18:00-21:00). On the 

other hand, there is a lower value in a single kind of power consumption for satisfying 

heat demand in a single time slot, which is operated by S-DDPG and shown in Fig. 4.13. 

The network safety of gas and heat is easier to guarantee in the former algorithm, while 

the policy generated by the latter algorithm may transfer the burden of power 

transmission from the electrical distribution network to the gas and the thermal 

networks during peak energy consumption periods, which verify the inherent logic of 

maintaining the operational safety accounting for multi-energy networks. 

  

Fig. 4.12 Energy sources and prices for electric power with S-DDPG 
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Fig. 4.13 Energy sources and prices for heat power with S-DDPG 

4.5.4 Impact of CHP Models 

As discussed in Section 4.2, the CHP with a non-convex operating region is 

effective in generating both electricity and heat, providing system flexibility in reducing 

the network constraint violation. This subsection examines the influence of the non-

convex CHP model on the operation region. For this purpose, a comparison between 

the scenario with the simplified and detailed CHP model is made, along with the 

subsequent analysis of the impact on energy transactions and ICES operation. The 

energy resources and prices in the typical winter day by using simplified CHP are 

presented in Figs. 4.14-4.15. The total reward and network constraint violations with 

different CHP models are presented in Table 4.4. 

 

Fig. 4.14 Energy sources and prices for electric power by using simplified CHP 
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Fig. 4.15 Energy sources and prices for heat power by using simplified CHP 

In Fig. 4.14, CHP's operation periods are cut down from 0:00-7:00 since CHP's 

power and heat output are constrained, leading to its non-profitability during that period. 

However, this change also results in higher electricity prices and a different power 

consumption portfolio with a lower average value in MNC-ICES. It should be noted 

that the less operational profitability of CHP increases the prices for heat but decreases 

the gas prices, especially during the 0:00-7:00 in Fig. 4.15, when non-convex CHP is 

in operation but simplified one is not, since the ICESO aims to stimulate the MEUs to 

consume natural gas instead of heat with turned down CHP. Moreover, the heat 

consumption is affected even in peak hours of heat demand, which is 18:00-22:00. As 

the heat generation of CHP is constrained to be linearly related to the power generation, 

and the heat demand is higher than the power demand during 18:00-22:00, the heat 

generation is limited to a low level, leading to a significant cut-down in heat 

consumption in Fig. 4.15 comparing those in Fig. 4.9. Nevertheless, the implementation 

of simplified CHP model decreases the total generation of both power and heat, which 

is shown in Table 4.4. The generations of power and heat decrease around two times 

and seven times, respective, while the generation cost only decrease no more than three 

times since the detailed CHP model has a small marginal generation cost for heat. 

Finally, the implementation of the simplified model results in a lower cumulative 

reward of 7698.97, compared to 11593.98 in the detailed CHP model. 
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Even though the simplified model decreases the profits of ICESO significantly, it 

results in a smaller physical constraint violation of electricity and heat networks and 

has a similar violation in terms of gas networks in comparison to the detailed one, and 

is shown in Table 4.4. Especially, the cost for heat network violation decreases from 

4.91 to 0, because of the significant decrease in heat generation of CHP and the 

consequent reduced heat consumption of MEUs. On the other hand, due to the substitute 

effect, MEUs tend to consume more natural gas, putting a burden on the gas network 

operation. This leads to a slightly higher cost for gas network constraint violations. In 

summary, the implementation of a simplified model cut down the power and heat 

generation, and cumulative reward significantly by narrowing the operation region, 

indicating that the simplified model deviates from the detailed model to a great extent 

and reflects an unfaithful simulation of the ICES operation in reality. 

 

Table 4.4 Results comparison of implementing detailed and simplified CHP 

models 

 
Total 

reward 

Network violation CHP output 

E G H E H Cost 

Realistic CHP 

model with 

non-convex 

feasible region 

11593.98 0.65 0.10 4.91 163.61 501.25 5728.65 

Simplified 

CHP model 

with fixed 

conversion rate 

7698.97 0.56 0.20 0.00 87.04 69.63 2558.4 
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4.5.5 Sensitivity Analysis 

In this subsection, a sensitivity analysis of operational profits (reward) and network 

constraint violations (cost) is conducted to evaluate the impact of various factors on the 

operational performance of the MNC-ICES model and the proposed Safe RL approach. 

The tested factors include renewable power generation (wind turbines and photovoltaic 

systems), wholesale energy prices (electricity and gas), and integrated energy demand 

levels (electricity and heat), which are considered to introduce the most uncertainties 

into the MNC-ICES model. Additionally, as the algorithm's performance is 

significantly influenced by the random seed, which determines the sequence of random 

numbers generated, the system is simulated 50 times for each scenario using different 

random seeds. The sensitivities of reward and cost to these factors are evaluated and 

illustrated in Fig. 4.16-4.17, respectively. The horizontal axis represents the variable 

fluctuation ratio of the factors, ranging from 50% to 150% of the initial configured 

value in increments of 10%. The vertical axis represents the rate of change in the 

episodic reward/cost of the ICES. Each data point corresponds to a simulation result for 

a specific scenario under one random seed with a specific factor adjustment, and the 

trend line is plotted by fitting to the given data points. 

  

(a) 



 
 

93 

 

(b) 

  

(c) 
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(d) 

  

(e) 

 

(f) 

Fig. 4.16 Sensitivity analysis of ICES operation reward on different factors 

Fig. 4.16 depicts the sensitivity of reward to changes in various factors. Renewable 

generation and energy demand positively correlate with reward, exhibiting an 

approximately linear relationship. Specifically, deviations in energy demand most 

significantly affect the reward, whereas the reward is least sensitive to renewable 

generation due to its small proportion in the ICES energy mix. Wholesale gas prices 

exhibit an approximately linear negative correlation with reward, as higher gas prices 
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increase operational costs. Notably, the wholesale power price shows a nonlinear, likely 

hyperbolic, relationship with reward. The initial decline in reward corresponds to the 

natural negative correlation between reward and external energy prices. Conversely, 

the latter part of the hyperbolic curve is likely due to the increased energy storage 

arbitrage opportunities created by larger wholesale price gaps. 

Fig. 4.17 illustrates the sensitivity of cost to changes in various factors. Among 

these, renewable generation has the weakest negative correlation with cost, with its 

impact being almost negligible. Energy prices demonstrate a certain hyperbolic 

relationship: initially, an increase in the price of a single energy source decreases costs 

for a network with lower energy consumption, while an increase in energy price 

improves the consumption of alternative energies, thereby raising network constraint 

violations for other energies. Fluctuations of energy demands show a piecewise linear 

relationship to the cost; energy demand below a certain level result in almost zero 

network violations, whereas demand above this threshold leads to linear growth in 

network constraints. Notably, thermal energy demand and wholesale power prices 

impact network constraint costs most. In contrast, wholesale gas prices and power 

demand have a weaker impact. The influence of PV and WT is relatively minor and can 

almost be disregarded. 

  

(a) 
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(b) 

  

(c) 
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(d) 

  

(e) 

 

(f) 

Fig. 4.17 Sensitivity analysis of ICES operation network constraints violation (cost) 

on different factors 

4.5.6 Impact of Hyperparameters 

As hyperparameters have a great impact on algorithm performance, sensitivity 

analysis is conducted on selected hyperparameters, mainly including the Q-network 

learning rate and actor-network learning rate. Fig. 4.18 shows the evolution of 

cumulative reward and cost under different actor-network (policy) learning rates. It can 
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be observed in Fig. 4.18 a) that the episode reward can converge to a high value fast 

with a learning rate lying from 1e-4 to 5e-4 but may converge to a low value, which is 

a local optimal, in several episodes with a policy learning rate from 6e-4. Also, the 

curve of the cumulative reward increases faster in the initial stage with a lower learning 

rate in policy, which means the exploration in the initial stage contains a higher 

proportion of useless stochastic noise compared to the later stage. Among these 

parameter settings, the policy learning rate of 4e-4 (purple) can assist in achieving the 

highest accumulative reward. When comparing Fig. 4.18 a)-b), the policy learning rate 

with a higher cumulative reward always results in a higher cost for constraint violation. 

This demonstrates that the converged cumulative reward has a positive correlation with 

the cumulative cost, while the policy learning rate plays a key role in the tradeoff of the 

reward and cost. As all of these parameter settings satisfy the safe operating range of 

0~10, the policy learning rate with the highest cumulative reward, which is 4e-4, is 

selected to be the final setting of the algorithm. 

As for the critic network learning rate shown in Fig. 4.19, the converged reward, as 

well as the cost, firstly increases and then decreases with the growing actor-network 

  

a) reward  
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b) cost 

Fig. 4.18 Evolution of cumulative reward and cost under different actor network 

(policy) learning rate 

 

  

a) reward 
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b) cost 

Fig. 4.19 Evolution of cumulative reward and cost under different critic network (Q-

value) learning rate 

learning rate, and the learning rate of 7e-4 shows the highest cumulative reward. In 

general, the evolution curve with a lower learning rate tends to increase gently, while it 

shows a steep increase or decrease in reward and cost with a higher learning rate. 

Moreover, a positive correlation between the reward and cost can also be observed for 

different settings in Fig. 4.19. Interestingly, the cumulative cost with the learning rate 

of 5e-4 and 6e-4 may exceed the tolerated cost during the training process, while the 

cost curve with 8e-4 is nearly zero and is considered too conservative. Among these 

parameter settings of the critic learning rate, the settings of 7e-4 can balance the reward 

and cost and increase the algorithm performance to the greatest extent. 

4.6 Summary 

In conclusion, this chapter proposes an MNC-ICES model to describe community-

level energy systems. The proposed model comprehensively models multi-networks for 

integrated energy, realistic energy devices, renewable uncertainty, and IDR of MEUs. 

Within the community, the ICESO schedules energy devices and prices integrated 
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energy to maximize operational profits while securing the system operation within the 

safety requirements imposed by integrated network constraints. This model provides a 

basis for practical network-constrained community operation tools and can be used as 

a reference for software development in energy system operation. Numerical results 

reveal that the realistic model significantly differs from and can attain a higher 

economic value than simplified models. A novel Safe RL algorithm, PD-TD3, is 

developed to solve the constrained optimization problem in MNC-ICES and learn the 

optimal scheduling strategies to maximize profits without violating safety constraints 

dramatically. The proposed algorithm is based on the Lagrangian method, utilizing a 

Lagrangian multiplier to penalize the constraint violation during the policy updates. 

Double networks are employed to mitigate the Q value over-estimation issue of both 

reward and cost, enabling accurate updates of the Lagrangian multiplier and achieving 

a balanced tradeoff between the reward and cost. The simulation results demonstrate 

the superior computational performance and the optimality of the proposed algorithm 

compared with several benchmarks. Finally, the sensitivity of the MNC-ICES models 

and the proposed algorithm to model factors and hyperparameters is also analyzed. This 

work is impactful with potential beneficiaries, including ICES operators and residents, 

as well as reinforcement learning researchers and practitioners.  
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Chapter V  

Multi-agent Reinforcement Learning for Mixed 

Strategy Nash Equilibrium Estimation in Real-Time 

Pricing and Demand Response  

 

 

5.1 Overview 

This chapter focuses on the RTP-DR problem as a combination of demand-side 

management for the electricity retailer and energy management for multiple EUs in the 

REM. A dynamic Bayesian Stackelberg game is first applied to the RTP-DR problem, 

describing the sequential transactions between the retailer (leader) and EUs (followers) 

under conditions of incomplete information. To solve this game, a novel Multi-Agent 

Q-Learning algorithm adapted for the dynamic Bayesian Stackelberg game context 

(BaS-MAQL) is proposed. In the proposed algorithm, both retailer and EUs are able to 

learn their strategies from dynamic interactions across a day (24 hours transactions). 

The estimated equilibrium of the game is not unique, indicating the MSNE of the 

proposed game. 

Simulation results of BaS-MAQL algorithm illustrate its computational efficacy by 

analyzing several SPE in the Bayesian Stackelberg game. Findings reveal that while the 

retailer, as the game's leader, can predetermine the final equilibrium, the equilibria often 

yield comparable profits for the retailer but diverse outcomes for EUs, in terms of both 

profits and power consumption. This discrepancy underscores the necessity of 

developing new market policies to steer the market toward an equilibrium that 

maximizes overall social welfare, thereby contributing to the field of smart electricity 

markets. In addition, the implementation of the proposed algorithm can assist in making 

transaction decisions with maximized individual profits, which also stimulates 

consumer active participation and thus improves the market efficiency. 
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1) Bayesian Stackelberg Game Model for RTP-DR Problem: A 1-leader, N-follower 

dynamic Bayesian Stackelberg game is developed to represent the sequential decision-

making RTP-DR problem. This game is assumed to be an incomplete information 

environment in a non-cooperative game between an electricity retailer and multiple EUs. 

All players learn the strategies of others dynamically to maximize their own profits in 

the sequential of RTP-DR problem. The proposed game is then re-formulated into a 

MDP for reinforcement learning's solutions. 

2) Novel Multi-agent Reinforcement Learning Algorithm: A BaS-MAQL algorithm 

is proposed to solve the MDP. By solving the MDP for each player, the SPE of the 

dynamic Stackelberg game is reached, and the convergence conditions are almost 

identical to the equilibrium conditions (No player can benefit from deviating from 

current decisions). Compared to typical MAQL, this approach utilizes probability 

distributions to represent Q-values, enhancing the algorithm's learning speed and 

strategic depth, leading to more accurate equilibrium point. The results show that the 

optimal decisions trajectories of both the retailer and end users are multiple, indicating 

the equilibrium for the proposed game is indeed MSNE. 

The rest of this paper is organized as follows. A hierarchical RTP-DR framework 

and a novel mixed strategy Bayesian Stackelberg game are established to capture the 

non-cooperative game between a single retailer and multiple EUs in Section 5.2. A 

corresponding MDP is formulated based on the game model, and the BaS-MAQL 

algorithm is proposed to solve the MDP in Section 5.3. The analysis of the MSNE is 

conducted in Section 5.4, using a case study comprising one retailer and multiple EUs. 

Finally, this chapter is concluded in Section 5.5. 

5.2 Problem Formulation 

In this section, the hierarchical RTP-DR framework containing the model of retailer 

and EU is established. Both retailer and EUs are strategic player that aims to maximize 

their profits given uncertain behavior of each other. The transactions under this 

framework are then formulated into a mixed-strategy Bayesian Stackelberg game. The 
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Bayesian property is introduced to the game by modeling the belief of the retailer in 

EUs' uncertain behaviors in a limited information environment. The advantage of mixed 

strategy adoption is to ensure the optimality of the strategy and demonstrate the inherent 

randomness and uncertainty of the power consumption behavior. 

5.2.1 Hierarchical RTP-DR Framework 

Before developing the utility functions, the following assumptions are required for 

the trading mechanism of WEM and REM: (1) Both the trading and pricing in WEM 

and REM are on an hourly basis. The “time-slot” 𝑘 ∈ {1,2，…… ,𝐾}  mentioned 

hereinafter would correspond to discrete hours in a single day. (2) Each EU cluster 

constituted with 𝑛 EUs (𝑛 ∈ {1,…… ,𝑁}) is managed by one single RE, who purchases 

the electricity from WEM and sells it to EUs with a dynamic price to be determined. 

(3) EUs need to determine their own electricity consumption (i.e., the amount of 

electricity to be purchased) of each time slot after the price announced by the RE. (4) 

All REs and EUs are rational players who make decisions to maximize their own 

profits. The operation of the proposed electricity market is roughly described in Fig. 

5.1. 

 

Fig. 5.1 Hierarchical RTP-DR framework within the electricity market 
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In the proposed market, the several assumptions are made for the trading 

mechanism of WEM and REM: (1) Transactions in WEM and REM are on an hourly 

basis. The "time-slot" 𝑘 ∈ {1,2，…… ,𝐾} mentioned hereinafter would correspond to 

discrete hours in a single day. (2) Each EU cluster constituted with 𝑖 th EUs (𝑖 ∈

{1,…… , 𝐼}) is managed by one retailer. (3) EUs need to decide their own electricity 

consumption (i.e., the amount of electricity to be purchased) of each time slot after 

receive the electricity price from the retailer. (4) All retailers and EUs are rational 

players who make decisions to maximize their own profits. (5) The set of buses in the 

network is denoted by Ω𝑁, where 𝑛 ∈ {1,…… , Ω𝑁}, while the set of lines is denoted by 

Ω𝐿. The proposed market structure is roughly described in Fig.5.1. 

1) Model of Retailers 

Retailers are participants in both WEM and REM, acting as a “broker” between 

GENCOs and EUs. The clearing prices in WEM, 𝜆𝑤
𝑘 , are assumed to be deterministic 

for the whole transaction period, as the strategic behavior of a single retailer has hardly 

impact on the wholesale clearing result. Based on 𝜆𝑤
𝑘 , the retailer determines a uniform 

retail electricity price 𝜆𝑟
𝑘 , which will be responded by EUs with total power 

consumption of 𝑖th EU during times slot 𝑘, denoted by 𝑝𝑖
𝑘. The objective of the retailer 

is to maximize profits expressed by (5.1), where the 𝜆𝑟
𝑘 − 𝜆𝑤

𝑘  indicates the difference 

between the retail and wholesale electricity price, so-called “price gap” in time slot 𝑘. 

max
𝜆𝑟
𝑘
∑∑(𝜆𝑟

𝑘 − 𝜆𝑤
𝑘 )𝑝𝑖

𝑘

∀𝑖∀𝑘

(5.1) 

2) Model of EUs 

EUs are demand-side (REM) participants who determine their power consumption 

based on the retail electricity price. Here, there are smart meters in households to 

response and determine the power consumption instead of the real “End Users”. 

According to the load being fixed in a specific time slot or not, loads of EUs are divided 

into baseline load and elastic load. The baseline appliances of 𝑖th EU, including the 

must-run appliances like lights and refrigerators, are considered to consume fixed 

power 𝑝𝑛
𝑏𝑠.𝑘 in time slot $k$. In contrast, the power consumption of the elastic load 
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𝑝𝑛
𝑒𝑙.𝑘  mainly comes from elastic appliances, including heating ventilation air-

conditioning (HVAC) and wet appliance (WA), which can be dynamically modified to 

satisfy both utility demand and economic considerations. Therefore, objective function 

of each EU is given by (5.2). 

max
𝑝𝑖
𝑘
∑(𝑈𝑖(𝑝𝑖

𝑘) − 𝑝𝑖
𝑘𝜆𝑟
𝑘)

∀𝑘

(5.2) 

𝑠. 𝑡. ∀𝑘 ∀𝑖 

𝑝𝑖
𝑘 = 𝑝𝑖

𝑏𝑠.𝑘 + 𝑝𝑖
𝑒𝑙.𝑘 (5.3) 

0 ≤ 𝑝𝑖
𝑒𝑙.𝑘 ≤ 𝑥𝑖

𝑒𝑙.max (5.4) 

𝑒𝑖.𝑚𝑖𝑛 ≤∑𝑝𝑖
𝑒𝑙.𝑘

∀𝑘

≤ 𝑒𝑖.𝑚𝑎𝑥 (5.5) 

In equations above, 𝑈𝑖(𝑝𝑖
𝑘)is the utility function for each EU, while 𝑝𝑖

𝑘𝜆𝑟
𝑘 stands 

for the cost for EUs with 𝑝𝑖
𝑘  power consumption. 𝑈𝑖(𝑝𝑖

𝑘)  modeled by a widely 

employed quadratic function as (5.6) [92]. It is concave and highlights the marginal 

decreasing utility with the increase of power consumption.  

Moreover, the power consumption of the 𝑖th EU 𝑝𝑖
𝑘 in time slot 𝑘 can be computed 

as (5.3). 𝑝𝑖
𝑒𝑙.𝑘  is constrained by (5.4), denoting the non-negative baseline power 

consumption. Total elastic power consumption ∑ 𝑝𝑖
𝑒𝑙.𝑘

∀𝑘   among 𝑘  periods is 

constrained by (5.5), where 𝑒𝑖.𝑚𝑖𝑛 and 𝑒𝑖.𝑚𝑎𝑥 are the lower bound and the upper bound, 

respectively. 

𝑈𝑖(𝑝𝑖
𝑘) =

{
 
 

 
 𝜔𝑖

𝑘 −
𝜆𝑖
2
(𝑝𝑖
𝑘)
2
, 0 ≤ 𝑝𝑖

𝑘 ≤
𝜔𝑖
𝑘

𝜆𝑖

(𝜔𝑖
𝑘)
2

2𝜆𝑖
− 𝑝𝑖

𝑘𝜆𝑟
𝑘, 𝑝𝑖

𝑘 >
𝜔𝑖
𝑘

𝜆𝑖

(5.6) 

Specifically, parameters  𝜔𝑖
𝑘, 𝜆𝑖  varying in different time slots represents the 

energy-consuming preferences of each EU. 𝜔𝑖
𝑘 −

𝜆𝑖

2
(𝑝𝑖
𝑘)
2
  and 

(𝜔𝑖
𝑘)
2

2𝜆𝑖
− 𝑝𝑖

𝑘𝜆𝑟
𝑘  indicate 

the valuation of power consumption 𝑝𝑖
𝑘 in different intervals. 

5.2.2 The Mixed-Strategy Bayesian Stackelberg Game 

To mathematically present the game between the retailer and EUs, a mixed strategy 

Bayesian Stackelberg game model formulated based on the aforementioned models of 
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retailers and EUs. The game model in compact-form is presented in (5.7), where the 

retailer is the leader acting first, and EUs are followers that act after the action of the 

leader. 

𝑇𝑅 =< 𝑁,𝜙𝑟 , < 𝑆𝑟
𝑘, 𝛩𝑟

𝑘 , 𝐴𝑟
𝑘, 𝑅𝑟

𝑘, 𝛺𝑟
𝑘, 𝜇𝑟⏟            >

𝑈𝑝𝑝𝑒𝑟−𝐿𝑒𝑣𝑒𝑙

,

< 𝑆𝑖
𝑘, 𝛩𝑖

𝑘 , 𝐴𝑖
𝑘, 𝑅𝑖

𝑘, 𝜇𝑖⏟          
𝐿𝑜𝑤𝑒𝑟−𝐿𝑒𝑣𝑒𝑙

>𝑖∈𝐼>
(5.7) 

where 𝐼  denotes the total number of EUs served by the RE, and 𝛷𝑟  indicates the 

environment, i.e., transaction rules of REM. 𝑇𝑅 is considered as a finite game, javing 

limited number of players and pure strategies available to each player. For the retailer 

with tuple < 𝑆𝑟
𝑘 , 𝛩𝑟

𝑘, 𝐴𝑟
𝑘, 𝑅𝑟

𝑘, Ω𝑟
𝑘, 𝜇𝑟 >  in time slot 𝑘 , 𝑆𝑟

𝑘  presents the set of observed 

states information, which specifically refer to the wholesale electricity price, 𝛩𝑅
𝑘 

denotes the set of mixed strategies 𝜗𝑟
𝑘 (probabilistic distribution over pure strategies) 

of the retailer, 𝐴𝑟
𝑘 is the set of pure actions (retail electricity prices) taken by the retailer, 

𝑅𝑟
𝑘 represents the payoff functions (objective), Ω𝑟

𝑘 indicate the set of the retailer’s belief 

𝑃𝑟
𝑘 on the strategies of all EUs, indicating the estimated total power consumption, and 

𝜇𝑟  denotes a set of executed strategies constituting strategies among all time slots, 

termed as the policy of the retailer. In a finite game, strategy set 𝐴𝑟
𝑘 in each time slot k 

for the retailer can be presented as 𝑎𝑟
𝑘 ∈ 𝐴𝑟

𝑘 = {𝑎1
𝑘, 𝑎2

𝑘, … , 𝑎
𝑚𝑟
𝑘

𝑘 } , where 𝑚𝑟
𝑘  is the 

number of pure strategies during time slot k. The game allows players to play mixed 

strategy 𝜗𝑟
𝑘 = {𝜌1

𝑘 , 𝜌2
𝑘 , … , 𝜌

𝑚𝑟
𝑘

𝑘 }, which is a probability distribution vector over the pure 

strategies. 𝜌
𝑚𝑟
𝑘

𝑘  is the probability that action 𝑎
𝑚𝑟
𝑘

𝑘  is chosen in the mixed strategy profile. 

The sum of the probability of each pure strategy in a mixed strategy 𝜗𝑟
𝑘 should be equal 

to one. 

Similarly, the tuple < 𝑆𝑖
𝑘, 𝛩𝑖

𝑘 , 𝐴𝑖
𝑘, 𝑅𝑖

𝑘, 𝜇𝑖 >𝑖∈𝐼 for each EU denotes the set of states 

(retail electricity prices), the mixed strategies, actions, payoff functions (utility function) 

and the strategies among all time slots. Also, finite pure strategy set 𝐴𝑖
𝑘 for EUs in each 

time slot 𝑘 can be presented as 𝑎𝑖
𝑘 ∈ 𝐴𝑖

𝑘 = {𝑎1
𝑘, 𝑎2

𝑘 , … , 𝑎
𝑚𝑖
𝑘

𝑘 }, where 𝑚𝑟
𝑘 is the number 

of possible power consumption decisions during time slot 𝑘 for EU. Also, the mixed 
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strategy of EUs is 𝜗𝑖
𝑘 = {𝜌1

𝑘 , 𝜌2
𝑘 , … , 𝜌

𝑚𝑖
𝑘

𝑘 }. 𝛩𝑖
𝑘 represents the set of mixed strategies 𝜗𝑖

𝑘 

for 𝑖 ∈ 𝐼 + 𝑟 and let 𝛩𝑘 ≡×𝑖∈𝐼+𝑟 𝛩𝑖
𝑘.  

5.2.3 Optimal Conditions and Equilibrium Analysis 

For the RE, a mixed strategy 𝜗𝑟 and policy 𝜇𝑟 are optimal, if ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 

𝜗𝑟
𝑘∗ ∈ argmax𝜗𝑟𝑘∈𝛩𝑟𝑘 ∑ 𝑃𝑟

𝑘(𝑎𝑖
𝑘|𝑠𝑟

𝑘)𝜗𝑟
𝑘(𝑎𝑟

𝑘)𝑅𝑟
𝑘(𝜗𝑟

𝑘, 𝑎𝑖
𝑘)

𝑎𝑖
𝑘∈𝐴𝑖

𝑘

(5.8)
 

𝜇𝑟
∗ = ∑𝜗𝑟

𝑘∗

𝑘∈𝐾

(5.9) 

In (5.8), 𝑃𝑟
𝑘(𝑎𝑖

𝑘|𝑠𝑟
𝑘) indicates the RE’s belief on the type of EUs at state 𝑠𝑟

𝑘, and is 

expressed as a reduced form because the types of EUs are set to be the action of EUs. 

While 𝜗𝑟
𝑘(𝑎𝑟

𝑘) means the mixed strategy of the retailer distributing probability on pure 

strategies 𝑎𝑟
𝑘, 𝑅𝑟

𝑘(𝜗𝑟
𝑘, 𝑎𝑖

𝑘) is the reward under the mixed strategy 𝜎𝑟
𝑘 and EUs’ action 

𝑎𝑖
𝑘 in times slot k. 

For all EUs, the retail electricity prices in each time slot can be seen as a state. By 

maximizing the profits of all EUs, a mixed strategy profile 𝜗∗  constituting 𝐼  mixed 

strategies is defined optimal for EUs in time slot 𝑘, if ∀𝑛 ∈ 𝑁, 𝑘 ∈ 𝐾, 

𝜗𝑛
𝑘∗ ∈ argmax

𝜗𝑖
𝑘∈𝛩𝑖

𝑘∑(∏𝜎𝑖
𝑘(𝑎𝑖

𝑘)

𝑖∈𝐼

)𝜗𝑟
𝑘(𝑎𝑟

𝑘)𝑅𝑖
𝑘(𝑎𝑖

𝑘)

𝑎𝑖
𝑘∈𝐴𝑖

𝑘

(5.10)
 

𝜇𝑖
∗ = ∑𝜗𝑖

𝑘∗

𝑘∈𝐾

(5.11) 

In (5.10) and (5.11), 𝜗𝑖
𝑘(𝑎𝑖

𝑘) and 𝜗𝑟
𝑘(𝑎𝑟

𝑘) indicate mixed strategy of 𝑖th EU and the 

retailer at k. While 𝑅𝑖
𝑘(𝑎𝑖

𝑘) means the profit of the 𝑖th EU, it is acknowledged that the 

expected payoff for each participant obtained by the optimal strategy or policy must be 

larger than other strategies or policies. Also, the transaction result is both a MSNE and 

a Bayesian Nash Equilibrium (BNE) when the RE holds the belief on all EUs, being 

consistent with the EUs’ strategy. Transaction result of the Bayesian Stackelberg game 

is MSNE when (5.8) and (5.10) are satisfied in time slot 𝑘 , being identical to the 

equilibrium condition “the payoff (profits) of all participants cannot be improved by his 

own action deviation under the mixed strategy profile 𝛩 constituting ∏ 𝜗𝑖
𝑘𝐼

𝑖=1  and 𝜗𝑟
𝑘”. 

Also, the MSNE is a BNE as the strategy of retailer is optimal if and only if the retailer 
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holds the correct belief 𝑃𝑟(𝑎𝑖
𝑘|𝑠𝑟

𝑘) on each EU. While the 𝜇𝑛
∗ is optimal if and only if 

each mixed strategy 𝜗𝑖
𝑘 in 𝜇𝑖

∗ is the optimal 𝜗𝑖
𝑘∗ during its time slot. Given the game 

models above, the payoff function can be reformulated as (5.12) and (5.13) the retailer 

and EUs. With such continuous payoff function, MSNE always exists [93].  

𝑅𝑟
𝑘 =∑∑𝜗𝑛

𝑘(𝑥𝑛
𝑘)[𝑃𝑟(𝑥𝑛

𝑘|𝑝𝑟
𝑘)𝜗𝑟

𝑘(𝑝𝑟
𝑘) − 𝑝𝑤

𝑘 ]

𝑛∈𝑁
𝑘∈𝐾

(5.12) 

𝑅𝑛
𝑘 = ∑[𝜗𝑛

𝑘(𝑥𝑛
𝑘)𝑈𝑛(𝑥𝑛

𝑘, 𝜔𝑛) − 𝜗𝑛
𝑘(𝑥𝑛

𝑘)𝜗𝑟
𝑘(𝑝𝑟

𝑘)]

𝑘∈𝐾

(5.13) 

5.3 Proposed MAQL algorithm 

In this subsection, a bi-level MDP is formulated from the Bayesian Stackelberg 

game above, where the retailer and EUs act sequentially in the upper level and the lower 

level, respectively. A novel BaS-MAQL algorithm is developed to solve the proposed 

MDP and estimate SPE in the Bayesian Stackelberg game. This algorithm is bi-level 

and employs probabilistic distribution to denote the Q-value for the retailer, which can 

be updated with posterior experiences. Hence, the algorithm merits privacy protection 

aligning the reality because of the bi-level structure with incomplete information. 

Moreover, it is applicable in dealing with the massive non-convex multi-agent systems 

as the adoption of probabilistic Q-value distribution accelerate the training process in 

highly non-convex problem significantly. 

5.3.1 Markov Decision Process 

1) Upper-level problem 

The upper-level problem is the RE level problem to maximize the profits of the RE 

in REM, where the RTP problem is formulated as a tuple < 𝑆𝑟
𝑘, 𝐴𝑟

𝑘, 𝑅𝑟
𝑘(𝑠, 𝑎), 𝜇𝑟 , 𝛾𝑟 >. 

𝑆𝑟
𝑘 = {𝑝𝑤

𝑘 }, and 𝐴𝑟
𝑘 = {𝑝𝑟

𝑘}, are set to denote the state and action of the retailer in time 

slot 𝑘. The constraints of actions are set as (5.2), representing the retail electricity price 

is always higher than the wholesale electricity price to pursue RE’s profits. For the 

selected action 𝑎𝑟
𝑘 ∈ 𝐴𝑟

𝑘 and 𝑠𝑟
𝑘 ∈ 𝑆𝑟

𝑘, reward 𝑅𝑟
𝑘(𝑠, 𝑎) can be calculated as (5.14).  
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𝑅𝑟
𝑘 =∑[(𝜆𝑟

𝑘 − 𝜆𝑤
𝑘 )(𝑝𝑖

𝑘)]

𝐼

𝑖

(5.14) 

The policy 𝜇𝑟 refers to the optimal action to be taken at the given state. The aim of 

retailer is to find the optimal policy 𝜇𝑟
∗ of the retail electricity prices. The state value 

function and state-action function are employed to value the state and state-action pair 

and further explore the optimal policy by calculating the accumulative rewards in (5.15) 

and (5.16). In these two equations, 𝔼 is the expectation operator, discount factor 𝛾𝑟 ∈

[0,1] is utilized to discount the future rewards in MDP for the uncertainty of rewards in 

future.  

𝑉𝜇𝑟(𝑆𝑟
𝑘) = 𝔼 [∑ 𝛾𝑟𝑅𝑟

𝑘+𝑡|𝑆𝑟
𝑘

𝐾−𝑘

𝑡=0

] (5.15) 

𝑄𝜇𝑟(𝑆𝑟
𝑘, 𝐴𝑟

𝑘) = 𝔼 [∑ 𝛾𝑟𝑅𝑟
𝑘+𝑡|𝑆𝑟

𝑘, 𝐴𝑟
𝑘

𝐾−𝑘

𝑡=0

] (5.16) 

The Bellman functions, including state value function and state-action value 

function, aim to find the optimal policy 𝜇𝑟
∗ to maximize the Q-value of the retailer in 

each step. Thus, the MDP problem of the retailer level model is formulated as follows. 

𝑃1:max
𝜇𝑟
𝔼 [∑ 𝛾𝑟𝑅𝑟

𝑘+𝑡|𝑆𝑟
𝑘

𝐾−𝑘

𝑡=0

] ,

𝑠. 𝑡. (5.3) − (5.5)

(5.17) 

2) Lower-level problem 

In the EU level (lower-level), the DR problem of each EU is formulated as a similar 

tuple < 𝑆𝑖
𝑘, 𝐴𝑖

𝑘, 𝑅𝑖
𝑘(𝑠, 𝑎), 𝜇𝑖, 𝛾𝑖 > , where 𝑆𝑛

𝑘 = {𝑝𝑖
𝑏𝑙.𝑘, 𝜆𝑟

𝑘}  denotes the set of states, 

where 𝑝𝑖
𝑏𝑙.𝑘 is the baseline power consumption of the 𝑖th EU, and 𝜆𝑟

𝑘 refers to the retail 

electricity price. Action denoted by 𝐴𝑖
𝑘 = {𝑝𝑖

𝑒𝑙.𝑘}  refers to the elastic power 

consumption of the EU. While the reward function 𝑅𝑖
𝑘(𝑠, 𝑎) has been proposed as (5.2) 

and (5.13). Policy 𝜇𝑖 is the set of actions which has been taken in each state for 𝑖th EU. 

Discount factor 𝛾𝑛 ∈ [0,1]  is utilized to discount the future rewards for the future 

uncertainty. Therefore, the lower-level model of the MDP can be formulated. To find 

the optimal policy 𝜇𝑛
∗  to maximize Q in each time slot 𝑘 , the RTP-DR problem is 

formulated as a bi-level model in the framework of MDP, which can capture the 
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interactive characters of RTP-DR problems, and be solved by MARL algorithm. In 

summarize, the states, actions, and rewards for the two proposed MDP are illustrated in 

Table 5.1.  

Table 5.1 Variable Interpretations in Markov Decision Process 

  Variable Notation 

Retailer 

State 𝑆𝑟
𝑘 𝜆𝑤

𝑘  Wholesale electricity price in time slot 𝑘 

Action 𝐴𝑟
𝑘 𝜆𝑟

𝑘 Retail electricity price in time slot 𝑘 

Reward  𝑅𝑟
𝑘 𝑈𝑟

𝑘 
Utility of the RE gained from selling 

electricity to EUs in time slot 𝑘 

EUs 

State 𝑆𝑖
𝑘 

𝑝𝑖
𝑏𝑙.𝑘 

Power consumption of the baseline 

appliances for EU 𝑖 in time slot 𝑘 

𝑝𝑟
𝑘 Retail electricity price in time slot k 

Action 𝐴𝑖
𝑘 𝑝𝑖

𝑒𝑙.𝑘 
Power consumption of the elastic 

appliances for EU n in time slot 𝑘 

Reward 𝑅𝑖
𝑘 𝑈𝑖

𝑘 
Utility of EU 𝑖 gained from consuming 

and purchasing power in time slot 𝑘 

 

5.3.2 Bayesian Stackelberg Multi-Agent Reinforcement Learning (BaS-MARL) 

As one of the most popular model-free RL algorithm, Q-learning is a tabular 

algorithm that enables agents to learn to select the optimal action at each state, i.e., to 

generate the optimal policy [94]. The Q-learning merits a simple and precise structure, 

which makes it more reliable and explainable than that of state-of-the-art algorithms 

like TD3 and SAC. Moreover, it is believed to be stable and practical as the algorithm 

is not hyper-parameter-sensitive and is more flexible to be tuned aligning with different 

scenarios [95]. However, it is thought to be difficult to deal with large-scale problems 

and stochastic problems with uncertainty, which is basically caused by the non-proper 

way of Q-value update. 
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For these reasons, Q-learning is first improved to a bi-level algorithm in a multi-

agent setting, which makes it applicable to the proposed Stackelberg game. Then, the 

upper-level algorithm is revised to be a Bayesian Q-learning for assisting the Q-value 

estimation and improving the computational performance in the proposed large-scale 

RTP-DR problem with demand uncertainties. The workflow of the BaS-MAQL 

algorithm is depicted in Fig 5.2. Compared to regular MAQL, there are two major 

modifications in the proposed BaS-MAQL, including bi-level structure and Q-value 

update, which are illustrated as follows. 

1) Bi-level structure 

The bi-level algorithm can be divided into upper-level and lower-level algorithms 

corresponding with the proposed MDPs, where the agents are the retailer and EUs, 

respectively. At the RE level (upper level), the retailer first selects the action, i.e., the 

retail electricity prices, based on 𝜖-greedy strategy. These prices are then broadcast to 

EUs. After being informed of the retail electricity prices, at the EU level (lower level), 

each EU takes actions (determines power consumption) accordingly using 𝜖 -greedy 

strategy. The rewards for these selected actions are immediately received by each EU. 

With the state-action pair and the rewards, the Q-values of EUs are updated by a Q-

value update strategy. EUs will follow these processes iteratively to generate actions, 

get rewards, and update Q-values until the termination criterion at the lower level is 

satisfied.  

Once the iterations of EUs terminate, the total power consumption is determined 

and the retailer can receive his rewards, based on which updates his Q-value at the 

upper-level algorithm. Given the process above, the retailer repeats it until the 

termination criterion at the upper-level algorithm is satisfied. In this bi-level structure, 

the lower-level algorithm converges for one time during the training of one iteration of 

the upper-level algorithm. This process follows the nature of the Stackelberg game and 

ensures the optimality of convergence results. 

2) Q-value update 
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Model-free Bayesian RL algorithm, like Bayesian-Q-learning, assumes that there is 

a prior probability distribution over each Q-value [96]. The Q-values are updated using 

the posterior probability distribution. Here, the Bayesian Q-learning is adopted in the 

upper-level algorithm of the bi-level MAQL [97]. In the proposed algorithm, a 

parametric Gaussian distribution 𝑝(𝜇𝑠,𝑎, 𝛿𝑠,𝑎)  is employed to denote the Q-value 

distribution of the action 𝑎 at the state 𝑠. 𝜇𝑠,𝑎 and 𝛿𝑠,𝑎 are the mathematical expectation 

and the variance of the Q-value, respectively.  Initially, the prior probability distribution 

can be normal distribution by default. It is assumed that 𝑟 is the immediate reward of 

the chosen action 𝑎 in the current state 𝑠, 𝑅𝑠 is the discounted sum of rewards from the 

state 𝑠  following the apparently optimal policy, and 𝑅𝑠,𝑎 = 𝑟 + 𝛾𝑅𝑠  indicates the 

discounted reward of executing the actions 𝑎 at the state 𝑠 following the optimal action 

in the future states. 𝛾 is the discounted factor.  

At the RE-level (upper-level), the Bayesian Q-learning is adopted. When receiving 

the immediate reward 𝑟  and estimating future reward 𝑅𝑠 = 𝑥 , the updated posterior 

probability distribution 𝑝(𝜇𝑠,𝑎, 𝛿𝑠,𝑎|𝑟 + 𝛾𝑟𝑥)  in the upper-level algorithm can be 

calculated by using (5.18). The uncertainty of reward is captured by weighting the 

probabilistic distribution that of 𝑅𝑠 = 𝑥. This Q-value update method is called mixture 

updating, which is cautious and helpful in avoiding the over-estimation of Q-value. 

𝑝𝑠,𝑟(𝜇𝑠,𝑎, 𝛿𝑠,𝑎) = ∫ 𝑝(𝜇𝑠,𝑎, 𝛿𝑠,𝑎|𝑟 + 𝛾𝑟𝑥)𝑝(𝑅𝑠 = 𝑥)𝑑𝑥
+∞

−∞

(5.18) 

At the EU level (lower-level), the Q-value is updated as the regular Q-learning by 

using (5.19), where 𝑄(𝑆𝑖
𝑘, 𝐴𝑖

𝑘) denotes the Q-value function of EU, 𝛽𝑖 and 𝛾𝑖 denotes 

the learning rate and discount factor for EUs, respectively. The Q-table, which stores 

the most recent updated Q-value, can help each EU optimize its policy by selecting the 

action with the greatest Q-value with a high probability in the following iteration. 

Finally, the iteration will come to an end when the termination criterion (5.20) is 

satisfied, i.e., the difference of updated and original Q-value is less than the specified 

threshold value 𝜏𝑖. 

𝑄(𝑆𝑖
𝑘, 𝐴𝑖

𝑘) = 𝑄(𝑆𝑖
𝑘 , 𝐴𝑖

𝑘) + 𝛽𝑖[𝑅𝑖
𝑘 + 𝛾max𝑄(𝑆𝑖

𝑘+1, 𝐴𝑖
𝑘+1) − 𝑄(𝑆𝑖

𝑘, 𝐴𝑖
𝑘)] (5.19) 
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|𝑄(𝑆𝑖
𝑘+1, 𝐴𝑖

𝑘+1) − 𝑄(𝑆𝑖
𝑘 , 𝐴𝑖

𝑘)| ≤ 𝜏𝑖 (5.20) 

5.3.3 Discussions 

This paper employ RL algorithm to solve the game and estimate its equilibrium 

because of its non-convexity, and strong exploration ability. The proposed game is 

actually non-linear and non-convex, since the end users have quadratic utility and the 

aggregated utility of all end-users with individual time correlated constraints are non-

convex. Such game can only be solved by using methods that are capable of overcoming 

non-linearity and non-convexity.  

Moreover, the proposed game is highly dynamic due to the strategic interaction 

between the retailer and end users, which probably has multiple equilibria. By owning 

randomness in exploration stage, the algorithm can better explore the action spaces to 

estimate all possible equilibriums, so that the multiple equilibria can be reached and 

analyzed from the perspective of mixed strategy Nash equilibrium. Compared to 

traditional mathematical methods, such randomness in RL methods can be thought of 

as a different starting point for deterministic optimization. As for the NE convergence, 

the termination condition for learning is the almost no change in accumulative reward 

or Q-values for the algorithm, which is almost identical to the NE definition “No players 

can get a higher payoff by deviating current actions.” Therefore, the output results of 

the proposed algorithm are thought of NE. 

Apart from merits of the typical RL algorithm, the proposed BaS-MAQL algorithm 

exhibits significant advantages in terms of solution robustness and adaptability 

compared with other RL algorithms, making it well-suited for smart electricity market 

simulations and policy-making. The pros and cons of the proposed algorithms are 

explained below. 

1) The MAQL and single-agent Bayesian Q-learning have been developed for a 

long history. BaS-MAQL combines them by letting Bayesian Q-learning agents 

act as leaders, while typical agents in typical MAQL act as followers in the 

dynamic Stackelberg game to adapt to the proposed RTP-DR problem. Such 
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revision is to enhance the leader (retailer)’s learning ability to overcome the 

highly uncertain power consumption of end users by making Q-tables 

distributions rather than scalers. Therefore, computational convergence 

conditions and the learning philosophy of original algorithms are not changed 

after revision, which means the proposed algorithm can be adapted to any 

environment.  

2) The BaS-MAQL algorithm mitigates the Q-value overestimation bias 

commonly associated with conventional value-based RL algorithms by 

representing the Q-value through probability distributions. This approach 

enables a more accurate estimation of Q-values, thereby facilitating the agents' 

learning of optimal strategies. Using probability distributions for Q-values 

enhances the algorithm's robustness by effectively quantifying and 

incorporating environmental uncertainties into the decision-making process. 

3) Compared to other RL algorithms like MADDPG, BaS-MAQL requires fewer 

hyperparameters, simplifying its implementation and adaptation across different 

market contexts. This simplicity, combined with the algorithm's other merits, 

underscores its applicability and effectiveness in facilitating sophisticated 

simulations and analyses for electricity market design and strategy optimization. 

4) Due to its tailored structure to the RTP-DR problem, the proposed BaS-MAQL 

is only applied in multi-agent problems that can be modeled as a one-leader 

multi-follower Stackelberg game. However, it is also possible to extend the 

algorithm into the multi-leader multi-follower structure, which may require 

sophisticated work to provide a convergence guarantee. 

5) Most value-based RL algorithms, e.g., Q-learning, only enable discrete action 

space rather than continuous actions. This may require huge labor in action 

discretization to ensure algorithm performance in some environments. Also, 

with the increase in the number of actions, such an RL algorithm may require 

more iterations to converge, leading to a longer time in algorithm training. 
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In summary, the BaS-MAQL algorithm is an effective tool for simulating electricity 

market dynamics since it can mitigate the Q-value over-estimation and is easy to 

implement despite discrete action space and potential long convergence time. However, 

it may also be restricted to problems with specific structures and may require more 

computation labor with an increasing number of action spaces. 

 

Fig. 5.2 Flowchart of the proposed BaS-MAQL algorithm 

5.4 Case Study 

5.4.1 Simulation Setup 

The main objective of this case study is to investigate the MSNE of the MDP 

formulated in Section 5.3 by using the proposed BaS-MAQL algorithm, and verify the 

computational performance of the proposed algorithm. Therefore, a test system based 

on the IEEE 33-bus system consisting of 50 EUs is adopted to simulate the system 

operation [98]. 

The entire transaction period of one day is divided into 24 time-slots. Real 

transaction data of Commonwealth Edison (ComEd) are extracted herein as the 24 

hours wholesale electricity price shown in Fig.4.3 to simulate the REM operation to the 

greatest extent and calculate the retailer's profits. Otherwise, the power demand of EUs 
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is set using real-world data [99], and the uncertain noise is added to the demand by 

following a normal Gaussian distribution. For implementing the proposed MAQL using 

the tabular-RL algorithm, the action spaces of both retailer and EUs are discretized 

within a granularity of $0.5/kWh and 5kW, respectively. The retail electricity price 

limitation is set as $5-7.8/kWh, which is equally discretized with a granularity of 

$0.4/kWh.  

Table 5.2 Parameter settings for the simulation 

Parameter Value Parameter Value 

𝜆𝑖 1 𝜔𝑟
𝑘 [7.6, 13.5] 

𝛽𝑖 0.3 𝜏𝑖 0.1 

𝛾𝑖 0.7 𝛾𝑟 0.7 

For EUs, the power consumption of baseline appliances for each hour is randomly 

chosen from (10, 15, 20, 25, 30) $/kWh. The electricity consumptions of elastic 

appliances, as well as the action space of EUs, are set from [0,20] kWh within a 

granularity of 5 kWh.  

The setting of hyper-parameters is summarized in Table.5.2. These parameters are 

fine-tuned when training algorithms, and are carefully selected until the algorithm can 

converge stably. The parameter 𝜖 of the greedy strategy is initially set to 0, and then 

increase 0.0005 per iteration until reaching 0.9950.  

 

Fig. 5.3 Clearing prices set in WEM and power demand in each time slot 
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5.4.2 Convergence Analysis 

In this section, the computational performance of the proposed BaS-MAQL 

algorithm with typical MAQL algorithm are compared. The comparison is based on the 

convergence speed and accumulative rewards. 

Fig.5.4 illustrates the convergence process of both the retailer and all EUs. It can be 

observed that the proposed BaS-MAQL algorithm achieves convergence with 

significantly higher profits for the retailer within 1500 episodes, whereas both the 

typical MAQL algorithms converge to a sub-optimal equilibrium. The retailer's profits 

in BaS-MAQL are 7\% higher than those in MAQL. However, the profits of the EUs 

converge to lower levels due to the near-zero-sum non-cooperative nature of the game. 

The sub-optimality of the equilibrium in MAQL arises from its decision-making 

process, which is based on an environment with substantial uncertainty stemming from 

the mixed strategies of other agents. This uncertainty makes it easier to reach a sub-

optimal equilibrium in a multi-agent system. In the context of the Stackelberg game, 

this sub-optimality manifests as the inability to achieve underestimated accumulative 

rewards for the leader. This is primarily due to the significant uncertainty brought about 

by multiple followers and the resulting large action spaces. 

In contrast, the BaS-MAQL algorithm takes the probabilistic distribution of the Q-

value into account. This modification can effectively help dealing with the demand 

uncertainty and estimating the best solution in a Stackelberg game with large-scale 

followers. As a result, the solution of the BaS-MAQL show a higher total reward for 

the retailer. 



 
 

119 

 

(a) 

 

(b) 

Fig.5.4 Accumulative rewards converge procedure of (a) the retailer and (b) EUs 

among different algorithms. 

5.4.3 MSNE analysis  

In this subsection, the transaction results to investigate the existence and impact of 

MSNE are analyzed. The converged transaction results mainly include retail electricity 

price and power consumption for the entire day (24 hours), and are depicted in Fig.5.5 

(a)-(c) as three pure strategies denoted as SPE 1, 2, and 3. It should be noted that the 

aforementioned pure SPE may be similar to be thought of as the "local optima" in the  
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(a) 

 

(b) 

 

(c) 

Fig.5.5 Convergence results containing (a) SPE 1, (b) SPE 2 and (c) SPE 3 
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optimization problem. However, as these SPE are all solutions for the Bayesian 

Stackelberg game consisting of multiple players, SPE cannot be seen as local optima, 

but an equilibrium where each player cannot improve his profits by changing his 

strategy. 

Three SPE are achieved in the simulation, as shown in Fig.5.5 (a)-(c). The retail 

electricity prices exhibit similar fluctuations to the wholesale electricity prices, 

reflecting the retailers' costs in the wholesale market. At the beginning of the day (0:00-

2:00), due to low power consumption, prices in all three SPE decrease and then stabilize 

at a low level ($5.4 or $5.8/kWh) from 2:00 to 9:00. Between 9:00 and 14:00, retail 

electricity prices experience a sharp increase, remaining relatively high ($6.2-$7.8/kWh) 

from 14:00 to 19:00. During the on-peak period of 14:00-19:00, the price gap, which 

represents the difference between retail and wholesale electricity prices and indicates 

retailers' profits, remains stable at around $3.50/kWh. However, during the peak hours 

between 16:00 and 19:00, the price gap narrows sharply due to the high wholesale price 

and the upward constraint on the retail price ($7.8/kWh), resulting in relatively low 

profits for retailers (around $5200) despite the highest peak power consumption (over 

2000 kWh). The reduced price gap in this period is around $2.4/kWh. 

To further illustrate the MSNE among the three SPE, the profits of the retailer and 

EUs in each SPE in Fig.5.5 (a) and (b) are compared. All time slots are classified into 

three scenarios based on the profit differences, providing insights into the appearance 

of MSNE. Scenario 1 represents a special case of MSNE where both the retailer and 

EUs play pure strategies. In Scenario 2, one player (the retailer or EUs) plays mixed 

strategies while the other plays pure strategies. Scenario 3 occurs when both the retailer 

and EUs employ mixed strategies. The scenario classification for each time slot 

throughout the day is summarized in Table 5.3. 
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Table 5.3 Scenario classification of each time slot 

Scenarios Time slots 

1 

1:00-2:00, 2:00-3:00, 3:00-4:00, 5:00-6:00, 6:00-7:00, 

7:00-8:00, 10:00-11:00, 14:00-15:00, 15:00-16:00, 

16:00-17:00, 17:00-18:00, 22:00-23:00 

2 

0:00-1:00, 8:00-9:00, 9:00-10:00, 11:00-12:00, 12:00-

13:00, 13:00-14:00, 19:00-20:00, 21:00-22:00, 23:00-

24:00 

3 4:00-5:00, 18:00-19:00, 20:00-21:00 

In Scenario 1 of MSNE, a pure strategy NE is considered as a special case where 

there is only one optimal strategy for both the retailer and EUs in each time slot. For 

example, all three SPE converge to the same NE at 2:00-3:00 with a retail electricity 

price of $5.4/kWh and a total power consumption of approximately 1980 kWh. If EUs 

consume more or less than 1980 kWh with a constant retail electricity price, they would 

incur profit losses and have no motivation to deviate from their actions. The same 

applies to the retailer when the power consumption of EUs is constant. 

Scenario 2 of MSNE occurs when the optimal strategy of the retailer (or EUs) is a 

mixed strategy with a probability distribution over multiple pure strategies, while the 

optimal strategy of the opponent (EUs or the retailer) remains a pure strategy. In this 

case, the participant with MSNE will randomly choose different actions as these pure 

strategies result in the same profit. However, the opponent will suffer profit losses. For 

example, during 4:00-5:00, the retailer's profits are the same ($2700) despite setting 

different retail electricity prices of $5.8/kWh and $5.4/kWh in SPE 1 and 2, respectively. 

This is because EUs consume 1545 kWh and 1705 kWh during 5:00-6:00 under 

different retail electricity prices in SPE 1 and 2. However, for EUs, the total power 

consumptions of 1545 kWh and 1705 kWh are optimal strategies during 5:00-6:00 

under the retail electricity prices of $5.8/kWh and $5.4/kWh, respectively. Specifically, 

EUs tend to consume more power under lower retail electricity prices and less power 

under higher prices, resulting in the same profits for the retailer with two different retail 
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electricity prices, thereby maximizing profits. At the same time, the retailer is 

indifferent to these two retail electricity prices, leading to the execution of mixed 

strategies containing both of them. Similarly, EUs may also execute mixed strategies 

during certain time slots, resulting in different profits for the retailer, such as during 

8:00-9:00 and 13:00-14:00. Hence, it is evident that the mixed strategy of one 

participant may cause profit losses for the other 

Scenario 3 of MSNE occurs when both the retailer and EUs adopt mixed strategies. 

This is reflected in Fig.4.5 (a)-(b), where all participants have different profits in 

different SPE. For example, during 20:00-21:00, the retailer sets retail electricity prices 

as $7.4/kWh, $6.6/kWh, and $7.4/kWh in SPE 1, 2, and 3, respectively, resulting in 

profits of $5710, $5700, and $5820, respectively. Meanwhile, EUs consume power of 

1328 kWh, 1629 kWh, and 1353 kWh, resulting in profits of $1460, $2710, and $1470 

in SPE 1, 2, and 3, respectively. Thus, there are three different outcomes for each SPE 

during 20:00-21:00 due to the adoption of mixed strategies by both the retailer and EUs. 

Specifically, if two retail electricity prices yield similar profits for the retailer, the 

retailer may play a mixed strategy containing both prices. Similarly, under constant 

retail electricity prices, EUs may also adopt mixed strategies containing two pure 

strategies, resulting in similar profits for them. When both the retailer and EUs play 

mixed strategies simultaneously, it falls under the third scenario. 

Table 5.4 Results comparison between three SPE 

SPE 
Total profit of the RE 

($) 
Total profit of EUs ($) 

Total power savings 

(kWh) 

1 146260 68950 8700 

2 146080 74320 7360 

3 146100 61580 10550 

Based on Table 5.4 and the analysis provided, it can be observed that scenario 1, 2, 

and 3 occur 13 times, 9 times, and 2 times, respectively. This indicates that players (the 

retailer and EUs) engage in mixed strategy transactions for approximately half of the 
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period, while both the retailer and EUs employing mixed strategies in a single time slot 

is relatively rare. 

Furthermore, the retailer's profits are not significantly affected by the mixed 

strategy of EUs, with fluctuations always remaining below $100. In contrast, the profits 

of EUs exhibit significant variations, often exceeding $1000, during numerous time 

slots when the retailer employs a mixed strategy. This disparity is attributed to the 

retailer's market power as the price-maker in REM, which allows them to enhance 

profits. Since the retailer has almost the same profits at multiple equilibria while end 

users do not, it is possible for regulators to propose new market rules for a higher social 

welfare, for example, dynamic pricing caps across different transaction interval. 

5.4.4 Analysis of the power savings 

This subsection focuses on power savings in the SPE to demonstrate the 

effectiveness of RTP-DR in terms of energy-saving and network power balancing. 

Fig.4.6 (c) presents the power savings, which reflects the discrepancy between expected 

power demand and actual consumption. Proper adjustment of power savings is crucial 

for system operation. In Fig.5.5 (a)-(c), even though EUs have high power consumption 

during the on-peak period (15:00-19:00), SPE 1 and 2 exhibit high power savings (over 

300kWh) in Fig.5.6 (c). This suggests that EUs may display greater demand elasticity 

during peak hours due to high demand. Hence, implementing the RTP-DR scheme 

becomes vital to stimulate EUs' demand elasticity and facilitate power balance between 

the demand and supply sides. 

To summarize, the profits and power savings of the three SPE are compared. Table 

5.4 presents the total profits of the retailer and 50 EUs, along with the total power 

savings. SPE 1 and 2 yield higher overall profits for both the retailer and EUs compared 

to SPE 3. The profit difference for the retailer between SPE 1 and 2 is $680 out of 

$146,460, while for EUs, it is $5,370. The profit differences for EUs in each SPE appear 

to be larger than those for the retailer. The retailer's profits remain relatively stable as 

they have market power as the price-maker in REM. Therefore, improving REM  
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(a) 

 

(b) 

 

(c) 

Fig.5.6 Comparison of each SPE in (a) profits of the RE, (b) profits of all EUs,  

(c) power savings of EUs. 
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regulations to protect EU profits is necessary. Furthermore, SPE 1 exhibits curtail 2% 

higher power savings than SPE 2, leading to lower power and energy consumption. 

Although SPE 3 has the highest power savings (10,550kWh), market participants are 

dissatisfied with its lowest EU profits ($61,580) compared to the other SPE. 

 

5.5 Summary 

In summary, this chapter formulates the RTP-DR problem between the retailer and 

EUs into a Bayesian Stackelberg game by considering the incomplete information in 

REM transactions. The game is non-convex due to the network constraints and 

temporal-correlated non-linear power usage, thus is analyzed from the view of MSNE. 

Subsequently, a novel BaS-MAQL is proposed to stimulate the market transaction and 

estimate the SPE in this game. By representing the numerical Q-value with probability 

distributions, this algorithm offers solution optimality, and robustness under uncertain 

market transactions. Additionally, it can be scalable and adaptable to diverse scenarios 

due to its flexible structure and few hyperparameters. The simulation results 

demonstrate the existence of MSNE by comparing the SPEs in the transactions.  

Nevertheless, there remain several limitations in the present study that point to 

promising avenues for further investigation: 1) Current framework does not encompass 

a variety of energy devices—such as electric vehicles, solar panels, and energy storage 

systems—nor does it factor in potential bounded rationality in end-user decision-

making. Incorporating these aspects would significantly alter energy consumption 

pattern dramatically, lead to different market equilibria and provide deeper insights. 

2) By not fully modeling retailer involvement in both wholesale electricity and 

capacity markets, this work may be overlooking intricate inter-dependencies between 

various market signals and decision-making processes. Future work could investigate 

how retailer strategies in these markets affect overall efficiency in retail market and 

consumer welfare. 
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Chapter VI  

Conclusions and Future Perspectives 

 

 

6.1 Conclusions 

Motivated by the need for smart control of distributed energy demand in the face of 

growing renewable penetration, energy integration, and dynamic pricing, this thesis 

focuses on developing RL techniques in demand side energy management across 

multiple scales. Specifically, novel RL algorithms are designed for profit maximization 

accounting for external uncertainty, operational safety, and equilibrium estimation for 

demand side scale ranging from individual buildings to community microgrids and up 

to REM interactions.  

Moreover, the RL designs in this thesis are guided by the dominant challenge at 

each scale of demand-side energy management. At the building level (BIES), limited 

dispatchable assets (BESS, micro-CHP, GB) make operations highly sensitive to 

demand and price uncertainty; accordingly, Chapter 3 proposes a forecast-enhanced RL 

approach that integrates energy and price forecasting with control. At the community 

level (ICES), safety precedes economics under multi-energy network constraints; 

Chapter 4, therefore, develops a safe RL method for constrained operational 

optimization. In the retail market (REM), RTP-DR introduces strategic interactions 

among multiple stakeholders; Chapter 5 focuses on equilibrium learning to extract 

actionable insights. Overall, the thesis tailors RL algorithms to the most critical issue 

in each scenario across scales. 

The key contributions of this work are summarized as follows: 

1) Forecast-Enhanced RL for Operation in Building Integrated Energy System: An 

RL-based algorithm is designed for grid connected BIES that leverages load and price 

forecasting to make proactive energy management decisions. This approach satisfies 

multi-energy demands and device constraints while reducing the energy cost. The 
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forecasting method, TFT, is interpretable and provides more information for subsequent 

decision-making. The proposed approach shows good generalization performance with 

real-world data in different seasons.  

2) Multi-Network Constrained Integrated Community Energy Systems Model: A 

novel MNC-ICES model is proposed to interpret the concept of ICES. The proposed 

model accounts for the constraints of multiple networks, which captures the physical 

characteristics of energy flow and imposes security operational constraints for the 

distribution level energy transmissions. Energy devices are modeled in high fidelity to 

describe the realistic physical operating attributes in practice. Additionally, the 

renewable uncertainty and integrated demand elasticity are considered to describe the 

novel characteristics of modern distribution-level energy systems. Overall, the 

proposed model can be implemented as a basis for practical network-constrained 

community operation tools. 

3) Safe Reinforcement Learning for Multi-Network Constrained Integrated 

Community Energy Systems: A novel Safe RL algorithm, namely PD-TD3, is proposed 

to solve the C-MDP and the constrained operational optimization problem in MNC-

ICES. In the proposed algorithm, constraints are incorporated directly into the learning 

process to ensure practical feasibility. Specifically, the PD-TD3 algorithm using double 

networks reduces the over-estimation problem of the action value for both the reward 

and cost, and the delayed update stabilizes the training process of policy and its dual 

variable. With accurate estimation of Q values, the proposed algorithm converges to the 

optimal solution that balances the maximal profits and the lowest constraint violation.  

4) Game-Theoretic MARL for Real-Time Pricing and Demand Response: The 

interaction between EUs and a utility (or retailer) is modeled as a dynamic Stackelberg 

game and MARL is applied to find multiple behavioral equilibria. Specifically, a pricing 

strategy and corresponding consumption policies can be learned such that no participant 

has an incentive to deviate (akin to a Nash equilibrium in demand response). This is 

one of the first demonstrations of MARL achieving stable market outcomes in a demand 
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response context, bridging the gap between individual learning agents and system-level 

economic equilibrium. 

The findings of this thesis demonstrate that RL techniques can effectively manage 

and reduce energy demand on the consumer side, responding adaptively to price 

incentives and contributing to grid reliability. By fulfilling these objectives, the thesis 

has demonstrated that RL can serve as an effective tool for energy management on the 

demand side. The outcomes have several important implications. For demand-side 

consumers, this suggests that deploying RL algorithms as smart agents in energy 

management systems or via community aggregators could automate DR at scale, 

achieving cost savings for EUs and operational benefits for utilities. For the field of 

power systems, this work provides experimental proof that RL agents, if properly 

designed, can maximize utilities’ profits while coordinating to achieve grid-level goals 

such as peak shaving and load shifting with only price incentives. Importantly, the 

multi-level energy management–spanning devices to markets – indicates that 

coordination at different layers of the power system is feasible with decentralized 

artificial intelligence controllers, potentially accelerating the adoption of smart grid 

technologies. 

6.2 Future Perspectives 

The thesis has proposed several algorithm schemes for multi-scale demand-side 

energy management problems, from individual BIES to multi-network constrained 

ICES and RTP-DR problems in REM. To make the current work more comprehensive, 

the following topics should be investigated in the future. 

1) The power system calls for Safe RL algorithms that can enforce safety constraints 

in both exploration and exploitation because of the severe constraints. Most currently 

developed Safe RL algorithms, for example, Lagrangian-based Safe RL, enforce soft 

constraints by penalizing the constraints violation in exploration while not guaranteeing  

hard constraint enforcement, which may endanger energy system operation 
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2) Most RL algorithms are mathematically developed to solve dynamic decision-

making problems in stationary MDPs. However, the practical operation environment 

for demand-side energy systems has seasonality and trends inherently due to the 

seasonal changes and industrial expansion, which makes the environment highly non-

stationary so as to reduce the performance of the RL algorithms. Moreover, another 

important scenario in the demand-side, multi-agent interaction environment is also 

considered as non-stationary for the evolution and stochastic of others’ strategies. Such 

non-stationarity in the scenario may lead to the failure of the algorithm learning.  For 

the reasons above, developing a novel RL algorithm that can handle the non-stationary 

environment is a significant step in promoting the real-world implementation of RL 

techniques. 
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