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Abstract

The global energy system is undergoing a significant transition driven by climate
change and global warming, largely resulting from substantial carbon emissions
associated with expanding industrial production. This transition is characterized by a
shift from fossil-fuel-based thermal generation toward renewable energy sources on the
supply side and from centralized large-scale generation toward decentralized and
distributed generation on the demand side. Consequently, there is a growing emphasis
on unlocking demand-side flexibility to provide dispatchable resources for multiple
uses of the grid. In this context, this thesis investigates optimal decision-making
problems, particularly focusing on energy management faced by entities on the demand
side within the distribution network.

In operational energy management problems, demand-side entities typically aim to
minimize their energy costs by strategically adjusting load profiles and managing
energy devices subject to operational constraints. The diversity and distributed nature
of demand-side entities—including individual buildings, energy communities, and
retail electricity markets with responsive consumers—present unique challenges in
energy management that require tailored solutions rather than a universal approach. In
other words, optimization of energy management at different scales emphasizes
different issues: individual consumers face uncertainty in energy prices and distributed
generation; community systems grapple with complexity arising from diverse energy
consumption profiles and non-convex network constraints involving multiple energy
types; collective participation in the retail electricity market (REM) involves strategic
interactions under dynamic pricing schemes. Therefore, energy management strategies
adapted to scenarios with different scales need to be developed individually. For this
reason, this thesis specifically addresses multi-scale energy management problems on
the demand side with multi scales to provide adaptive, scenario-specific solutions,
ultimately contributing to the broader goals of energy transition and carbon emission

mitigation.



Meanwhile, machine learning (ML) has become a useful and reliable technique for
multiple uses, e.g., forecasting, anomaly detection, and decision-making. As one of the
most popular categories of ML techniques, reinforcement learning (RL) has been
gaining much attention as a decision-making tool for multiple scenarios in power
systems. RL can enable the algorithm as a smart agent to learn from interactions with
the environment by “trial and error” in a Markovian environment. Given the inherent
uncertainties in electricity prices, energy demands, and distributed generation, these
operational decision-making problems can naturally be formulated as stochastic
processes and modeled as MDPs, making RL particularly suitable for automating
energy management decisions on the demand side. For multi-scale demand side
operation problems, RL can be implemented as a smart energy management system to
optimize energy consumption decisions automatically, reducing the need for
sophisticated manual calculation to lower energy costs. To make the most of RL
techniques in demand-side energy management problems, this thesis thus develops
novel RL algorithms specifically tailored to address multi-scale, scenario-specific
objectives within demand-side decision-making contexts.

Specifically, this thesis advances the state-of-the-art by developing three novel RL
algorithms tailored specifically to different scales and scenarios of demand-side energy
management. At the individual building level, a forecast-enhanced RL approach is
proposed to optimally dispatch integrated energy devices based on predictive models
of loads, renewable generation, and prices, achieving cost reduction while satisfying
multi-energy demands. At the community level, a safe RL method is introduced,
enabling the Lagrangian method in the RL algorithm to reduce network constraint
violations within integrated community energy systems (ICES), significantly
improving operational safety. In the retail electricity market scenario, interactions
between consumers and the utility are modeled as a dynamic Stackelberg game, where
a novel multi-agent RL (MARL) algorithm is developed to estimate the multiple
equilibria of this game, providing possible market outcomes in the REM. Finally, the

three novel RL algorithms are validated by using real-world datasets and provide

II



superior performance to baseline approaches. The numerical results of this thesis
underscore the transformative potential of the RL technique to empower energy
consumers as active and efficient participants within modern energy distribution

systems.
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Chapter I
Introduction

1.1 Research Background

Since the first intermittent power system was developed to supply thousands of
lamps in New York City in 1882 by Thomas Edison, the energy system has continued
to evolve from the steam-powered machine era to an electricity-powered era due to
electricity’s fast transmission speed at the speed of light and direct usage in machines
[1]. To this day, the modern power system, mainly formed by power generators,
transformers, transmission lines and consumption devices, keeps growing in scale and
has covered most places where human lives, even in the Arctic and on satellites [2, 3].
The power production and consumption have been dramatically growing due to
population growth and the popularization of electricity-based technologies around the
world, exhibiting the brightest technological developments and big-bang like prosperity
that have ever been made on Earth.

However, the usage of a major source for power generation---fossil fuel---produces
about 34 billion tonnes (Gt) of carbon dioxide per year, which is over 40% of energy-
related carbon dioxide (CO2) emissions, resulting in a severe greenhouse effect and thus
global warming [4]. The global warming caused by the cumulative burning of fossil
fuel and other carbon-emission activities has heated the atmosphere to a temperature
increase of over 1°C since 1900, which has endangered the lifelong existence of human
beings [5]. For this reason, people who have realized the seriousness of this problem
have tried to reduce carbon emissions. One of the well-known actions is the Paris
Agreement made by around 196 countries in 2015, aiming to limit global warming to
1.5°C above pre-industrial levels by 2030 and reach net zero by 2050 [6]. Even so, the
temperature is still increasing, which makes it doubtful if the target of the Paris

agreement will be reached and bring huge uncertainty and danger to the future of all



life on Earth. It still requires more great work in not only policy regulation but also
technology development to limit the global warming effect.

From the perspective of the power system, one of the most intuitive and efficient
approaches is to substitute the thermal generator consuming fossil fuel with renewable
generators with almost zero carbon emission. Solar, wind, and hydro power have been
greatly promoted by policy stimulation in recent years. For instance, renewable power
now account for over 20% of generation in the United States [7]. Meanwhile,
technological development leads to the wide and increasing installation of energy
devices, including distributed energy resources (DERs), combined heat and power
(CHP) units, etc., which also leads to high renewable penetration on the demand side
and provides conditions for energy conversion on the demand side to meet various
applications. All these implementations endow high operational flexibility for energy
end users, who thus become active and crucial participants in the energy system
operation. Since then, multiple operating paradigms have arisen from the demand side
[8]. For instance, with the help of DERs and integrated energy devices, energy
consumers can schedule their consumption plan flexibly to minimize their electricity
bill or even arbitrage using energy storage systems (ESS). Consumers with high
demand in various energy forms and multiple energy devices can have more space for
action to further optimize their devices’ operation schedules to reach higher profits. In
this context, energy management on the demand side becomes a significant and

meaningful topic [9].

1.2 Incentives and Literature Review

To optimize energy management on the demand side, this work aims to develop the
optimal scheduling/operation methods for multi-scale entities (e.g., grid-connected
building systems and community systems) and analyze the outcome of the optimal
decisions in multi-agent environments of the RTP-DR problem. However, there are
specific problems in different level systems at the size of single building customers,

community operators, and utility companies, which are illustrated as follows.



One severe challenge for energy management on the demand side is the requirement
for scenarios tailored solution rather than a uniform solution because the demand side
entities in different scales face different energy management problems. In other words,
optimization problems in multi-scale energy management may emphasize different
issues: individual consumers face uncertainty in energy prices and distributed
generation; community systems grapple with complexity arising from diverse energy
consumption profiles and non-convex network constraints involving multiple energy
types, while the collective participates in the retail electricity market (REM) and
involve strategic interactions under dynamic pricing schemes. Therefore, energy
management strategy adapted to multi-scale entities needs to be developed individually.

The most common and also the most minor scale case is a single consumer with
integrated energy demand and multiple devices, which can be characterized as building-
integrated energy systems (BIES) and account for about 40% of global energy use [10].
By coordinating multiple energies, including power, gas, and heat, the BIES consumer
dispatches devices like CHP and ESS efficiently according to the profile demand, price,
and renewable generation to obtain more abundant flexibility and achieve sufficient
renewable usage. Energy management in such systems emphasizes robust operation
under uncertainties from energy prices, DER production, and multi-energy demand,
which is not only for self-profit-maximization but also vital to improving operational
flexibility and maximizing renewable energy use in the whole energy system.

On a larger scale, a bunch of consumers who are geographically located nearby to
each other can form an energy community and operate in a cooperative way for a lower
energy cost. Such local energy systems can potentially contribute to the overall energy
and climate objectives, helping reverse energy consumption and emissions trends
worldwide [11]. Furthermore, the proliferation of distributed energy devices and energy
integration of multi-energy lay a solid foundation for better cooperation in a community
system for satisfying consumers’ demand for both power and heat. It is necessary and
pressing to increase energy efficiency and utilization with the means of energy

integration in the whole system. The challenges in such systems mainly lie in the safe



operation that satisfies the operation constraints of multi-energy networks, which could
be multiple and non-convex.

The energy management problem with the largest scale in this thesis is the real-time
pricing (RTP) - demand response (DR) problem between an electricity retailer (utility
company) and multiple consumers (end users, EUs). When the electricity retailer
implements real-time pricing in REM, consumers can learn the pricing behavior of
utility companies to optimize their plans, leading to a non-cooperative game [12]. This
problem may not be an energy management problem in the common sense, but it
involves the demand-side management in the distribution network and also the energy
scheduling of consumers, indicating the great potential of demand-side flexibility and
also the risk of uncertainty in consumption patterns.

Furthermore, machine learning (ML) has become a reliable and useful technique
for multiple uses, e.g., forecasting, anomaly detection, and decision-making [13]. As
one of the most popular categories of ML techniques, reinforcement learning (RL) has
been gaining much attention as a decision-making tool for multiple scenarios in power
systems. RL can enable the algorithm as a smart agent to learn from the interaction with
the environment by “trial and error” with limited information [14]. For multi-scale
demand side operation problems, RL can be installed as an energy management system
to optimize the energy consumption decision automatically, reducing the sophisticated
calculation by hand to lower energy costs. It will be especially useful in scenarios with
dynamic environments with uncertain information like electricity price, renewable
generation, energy demand, etc. The further implementation of these techniques can
realize better use of energy on the demand side, which is a crucial part of promoting the
carbon neutral career.

Overall, entities with multi-scale in the demand side may have different objectives
and are subject to different sets of constraints. This makes power consumption behavior
in different scales more complex, thus harder to capture. Furthermore, the collective
behavior of consumers may adversely change the whole picture of the energy system.

On the other hand, using state-of-the-art (SOTA) ML and RL techniques, which are



game-changers for the traditional power system problem, provide essential tools to
manage the system operation on the demand side. Advancing RL application in multi-
scale demand-side energy management can assist in a better understanding of the
demand side behavior and is beneficial to promoting energy transition and

decarbonization [15].
1.3 Primary Contributions

The work presented in this thesis contributes to several key issues of decision-
making in the demand side of the power system, specifically surrounding the
application of RL in multi-scale systems: (i) scheduling the multi-energy devices under
uncertainties of the renewable profile and energy demand for an integrated energy
consumer like BIES, (ii) achieving a safe operation subject to multi-energy network
constraints for collective community consumers in Integrated Community Energy
Systems (ICES), (iii) estimating the mixed-strategy Nash equilibrium for the RTP-DR
problem between an electricity retailer and multiple energy consumers in REM.

The main contributions of this thesis can be summarized as follows.

1) A hybrid data-driven approach integrating TFT and SAC algorithm, TFT-SAC,
is developed to schedule the day-ahead operation strategy for BIES accounting for
uncertainty in renewable output and energy demands. The TFT is used to forecast the
renewable generation and energy demand based on historical data, and the forecasts
that are obtained are then utilized by the SAC algorithm to solve the scheduling
problems. Unlike conventional black-box forecasting methods, the TFT provides
interpretability through the attention mechanism, enhancing the trustworthiness of
forecasting results for decision-making. Furthermore, the SAC algorithm, trained to
maximize the policy entropy, can learn an operational strategy with superior robustness
and generalization capabilities. The proposed TFT-SAC approach is trained and tested
on a real-world dataset to validate its superior performance in reducing energy costs

and computational time compared with the benchmark approaches. The generalization



performance for the learned scheduling policy and the sensitivity analysis are examined
in various scenarios.

2) A novel MNC-ICES model is proposed to interpret the concept of ICES. The
proposed model accounts for the constraints of multi-network, which captures the
physical characteristics of energy flow and imposes security operational constraints for
the distribution level energy transmissions. Energy devices are modeled in high fidelity
to describe the realistic physical operating attributes in practice. Additionally, the
renewable uncertainty and integrated demand elasticity are considered to describe the
novel characteristics of modern distribute-level energy systems. A constrained
optimization problem is formulated to denote the operation problem in the proposed
MNC-ICES model and then transformed into a Constrained Markov decision process
(C-MDP) for the application of RL approaches. Specifically, the C-MDP is formulated
from the constrained operational optimization problem in MNC-ICES with multi-
energy integration. Constraints on voltage in the power network, gas flow, gas pressure
and gas injection in the gas network, pipeline flow, and nodal flow in the district heat
network are considered security constraints and imposed safety requirements, being
modelled as the cost term in a tuple of C-MDP.

3) A safe RL algorithm, Primal-Dual Twin Delayed Deep Deterministic Policy
Gradient (PD-TD3), based on a C-MDP) is proposed to optimize the decisions of ICES
operators for profits-maximization subject to multi-energy network constraints. The
PD-TD3 algorithm using double networks reduces the over-estimation problem of the
action value for both the reward and cost, and the delayed update stabilizes the training
process of policy and its dual variable. With such an accurate estimation of Q values,
the proposed algorithm converges to the optimal solution that balances the maximal
profits and the lowest constraint violation. In addition, the training processes of the
policy and its dual variable are stabilized by delayed updates, which contributes to the
training efficiency and helps to converge to the global optimal.

4) A 1-leader, N-follower dynamic Bayesian Stackelberg game is developed to

represent the sequential decision-making RTP-DR problem. This game is assumed to



be an incomplete information environment in a non-cooperative game between an
electricity retailer and multiple EUs. All players learn others' strategies dynamically to
maximize their own profits in certain sequential RTP-DR problems. The proposed game
is then re-formulated into a MDP for reinforcement learning solutions.

5) A multi-agent RL (MARL) algorithm is developed to estimate the mixed-strategy
Nash equilibrium(MSNE) of the RTP-DR problem. By solving the MDP for each player,
the subgame perfect equilibrium (SPE) of the dynamic Stackelberg game is reached,
and the convergence conditions are almost identical to the equilibrium conditions (No
player can benefit from deviating from current decisions). Compared to typical MAQL,
the proposed approach utilizes probability distributions to represent Q-values,
enhancing the algorithm's learning speed and strategic depth, leading to a more accurate
equilibrium point. The results show that the optimal decision trajectories of both the
retailer and end users are multiple, indicating the equilibrium for the proposed game is

indeed MSNE.

1.4 Thesis Layout

This thesis comprises six chapters in total, including this introductory chapter. The
remaining chapters are organized as follows.

Chapter II carefully reviews the past research and critical challenges in multi-scale
demand side energy management problem in terms of different scales. A review of
fundamentals and advances of RL is also provided. In depth discussion in challenges in
both demand side energy management problems across different scales and current RL
algorithms are discussed, which are to be addressed in Chapter III, IV, and V.

Chapter III presents the application of a novel transformer-based RL model, namely
TFT-SAC, in energy forecasting and afterward energy management in a BIES. The
models of a modern BIES system constitute the energy devices of micro-CHP, ESS,
photovoltaic (PV), gas boiler (GB), and uncertain demand of power and heat. The novel
method, TFT-SAC, adopts TFT for interpretable energy forecasting and SAC for

follow-up operational optimization. The proposed hybrid data-driven approach is



trained and tested on a real-world dataset to validate its superior performance in
reducing energy costs and better generalization performance compared with the
benchmark approaches.

Chapter IV provides an overview of the state-of-the-art concepts for techno—
economic modeling of ICES by establishing a Multi-Network Constrained ICES
(MNC-ICES) model. The proposed model underscores the diverse energy devices at
community and consumer levels and multiple networks for power, gas, and heat in a
privacy-protection manner. The corresponding operational optimization/energy
management problem in the proposed model is formulated into a C-MDP and solved
by a Safe RL approach. A novel Safe RL algorithm, PD-TD3, is developed to solve the
C-MDP. By optimizing operations and maintaining network safety simultaneously,
which is tested against benchmark approaches.

Chapter V employs MSNE to analyze the multiple equilibria in the non-convex
game of the RTP-DR problem, which is considered as a combination of demand-side
management problem of the retailer and energy management problem of EUs,
providing a comprehensive view of the potential transaction results in REM. A novel
multi-agent Q-learning algorithm is developed to estimate SPE in the proposed game.
The proposed algorithm has a bi-level structure and adopts probability distributions to
denote Q-values, representing the belief in environmental response. Through validation
on a Northern Illinois utility dataset, the proposed approach demonstrates notable
advantages over benchmark algorithms.

Finally, the concluding remarks of the thesis are summarized in Chapter VI, and
some prospective extensions and possible directions for future research work are also

presented.
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Chapter 11

Literature Review

2.1 Overview

In modern power systems, the demand side entities are varied in scales and also
operation methods. This chapter aims to introduce the state-of-the-art multi-scale
demand side energy management models. Furthermore, fundamentals and current
challenges of RL techniques are also provided and discussed to cover the necessary
concepts that would be used in the thesis. Firstly, energy forecasting and day-ahead
optimal operation for BIES are reviewed as a single self-schedule proactive consumer
in the distribution network. Secondly, safe operation and constrained optimization for
an ICES containing a group of integrated energy consumers and multiple energy
devices are reviewed at the community level of demand side energy management
problems. In addition, the interaction and game between an electricity retailer and
corresponding end users of energy are reviewed at the level of demand side
management in REM. Lastly, the fundamentals of RL, which mainly include MDP and
the Bellman function, are presented. The categories and challenges of RL algorithms

are also briefly discussed.
2.2 State-of-the-Art Multi-Scale Demand Side Energy Management

Multi-scale demand side energy management involves dynamic decision-making
problems from a single energy building to integrated energy community and the whole
REM. In the following, a literature review on the models and solutions of corresponding

scenario and problems are presented in detail.

2.2.1 Energy Forecasting and Day-ahead Optimal Decision Making for Building

Integrated Energy System
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The BIES operates to meet multiple energy demands using both internal energy
devices and external energy resources. Specifically, the electric system, which
comprises PV panels, micro-CHP units, and BESSs, is grid-connected to satisfy the
power demands of the building. Typically, BIESs purchasess electricity from the
external power market when the demand exceeds renewable generation and may sell
electricity when renewable generation is surplus. The BESS enhances the operational
flexibility and adds complexity to the decision-making process. PV and BESS, as
components of DC systems, are connected to the building and power grid through
electronic interfaces. The maximum power point tracking (MPPT) is used to control the
inverter between the DC and AC systems, maximizing energy extraction from PV
panels despite fluctuating solar conditions. For simplicity, the dynamics inside the
power converters are neglected, as the focus is on optimizing the hourly operational
strategy. Additionally, independent heating systems, consisting of micro-CHP units and
GBs, are commonly deployed in building complexes, campuses, and industrial parks,
particularly in regions with high heat demands [16]. These localized heating systems
reduce the significant transmission losses associated with centralized heating. The BIES
model also assumes a connection to an external natural gas market as the fuel source
for the micro-CHP units. Detailed models of these devices are provided as follows. The
energy management of BIES is hindered by two key challenges: 1) high operational
risk due to the intermittent and uncertain nature of PV power generation and energy
demand [17], and 2) intractable optimization caused by the non-convexity of the CHP
unit [18]. For the former, PV generation and demand uncertainty has been shown to
bring significant profit loss and endanger the system stability by leading to energy
shortage or renewable curtailment [19]. The problem even gets more severe in large
buildings with high peak demands or high solar capacity. Accurate forecasting of PV
output and demand is thus crucial for smart scheduling in energy devices (e.g., energy
storage) to avoid profit loss and system blackout. Much of the existing research has
focused on developing model-based frameworks for optimal operation in multi-carrier

energy systems. These optimization problems generally rely on precise models and
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estimated exogenous factors such as weather-dependent renewable generation and
energy loads. To address uncertainties, techniques like robust optimization (RO) and
stochastic optimization (SO) have been used, where RO models uncertainties as
bounded sets, and SO uses a set of scenarios to represent uncertainty. While these
conventional methods are effective for managing the scheduling of multi-carrier
systems, they face challenges in handling highly nonlinear units, particularly in
competitive markets. Stochastic programming (SP) becomes inefficient as the number
of scenarios increases, and RO often yields overly conservative results by focusing on
worst-case scenarios. Both SP and RO also suffer from the "curse of dimensionality,"
where increased actions, decision variables, and constraints lead to exponentially
growing computational requirements, limiting their scalability for real-world energy
management applications involving multiple devices and uncertainties [20].

As for the latter, CHP is well known for providing flexibility in power and heat in
a feasible operation region (FOR), which is non-convex in practice and makes the
optimization non-tractable. FOR convexification is a widely adopted solution but
sacrifices considerable operational flexibility [21]. The optimal scheduling of CHP
remains an open question in BIES optimal operation. Moreover, the variable
renewable/demand forecast and non-convex operation optimization are not independent
of each other, e.g., the flexible dispatch of CHP can provide compensation for the
renewable uncertainty. This indicates a deep correlation between the forecast and

downstream non-convex scheduling in BIES.

2.2.2 Constrained Optimization in Grid-Connected Integrated Community Energy

Systems

ICES have emerged as a promising approach for efficient multi-energy coordination
and utilization, particularly in managing demand flexibility and increasing renewable
energy penetration [22]. The energy management of ICES is, therefore, essential for
integrating diverse energy transactions and enhancing overall energy efficiency.

However, the concept of ICES, which represents an integrated energy system at the
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community level, is still under discussion and lacks a clear definition. Some researchers
have described ICES as a modern development that reorganizes local energy systems
to integrate distributed energy resources and engage local communities [11]. Others
have focused on its role in managing local energy generation, delivery, and exchange
to meet local demand, with or without grid connection [23]. However, these
descriptions do not fully capture the operational logic and model structure of ICES.
Inspired by the concept of energy communities [24, 25], ICES is defined as follows:
ICES is a socio-economic unit rooted in a physical community, characterized by
cooperative multi-energy production and consumption through either shared or
unshared integrated energy devices, and functioning as a non-commercial market actor
that amalgamates economic, environmental, and social community objectives. While
sharing the goal of maximizing social welfare through energy device scheduling and
demand response stimulation, ICES extends beyond electric energy to include the
integration of power, gas, and heat, emphasizing coordination among both energy
devices and demands. Thus, ICES represents an effective strategy for maximizing
social welfare and facilitating decarbonization.

Based on a review of previous studies, the modeling of ICES can be divided into
three main components: community-level devices, consumer-level devices, and
network constraints. Devices in ICES can be divided into community-level and
consumer-level. Community-level devices typically include dispatchable generation
(DG) units, ESS, and renewable energy sources (RES). DG units comprise CHP
systems [26-30], power-only units [26, 28, 31], and heat-only units [26, 28, 30, 31].
CHP systems, which serve as critical energy converters across power, gas, and heat, are
modeled simplistically with fixed energy conversion rates in most works of ICES [26,
28, 30, 31]. However, the realistic and physical characteristics of CHP are always
overlooked, which describes the multi-energy conversion as a FOR but presents
computational challenges with non-convexity[32]. Power-only and heat-only units are
rarely used, which are typically modeled using a linear [26-30] or quadratic generation

cost function [31, 33]. For ESS, [34-36]electric battery systems (EBS) [25-28, 34-36],
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thermal energy storage (TES)[25, 34-36], and gas storage systems (GSS) are considered.
Compared to prevalent EBS and TES, which have variable costs, GSS is less common
due to static gas prices. Typical simplified ESS models are usually employed with static
value for charging and discharging efficiency. This is because ESS does not directly
participate in multi-energy conversion and is the core part of the ICES, although ESS
is deemed necessary. RES, such as PV systems and wind turbines (WT), introduce
renewable power output with uncertainty, constituted of an energy conversion model
and forecast errors. The energy conversion model provides the output given the solar
irradiation or wind speed and other external conditions (e.g., temperature [36]), while
the forecast errors are sampled from specific probabilistic distribution functions (PDFs).
For example, Weibull and Beta PDFs can be used to represent the forecast error
distribution for the WT and PV, respectively [34]. At the consumer level, the modeling
focuses on the energy demand for electricity and heat, typically based on a quadratic
energy utility function to represent demand response characteristics. Households may
possess energy conversion or flexible devices like micro-CHP, ESS, and boilers,
sometimes overlapping with community-level devices. The boilers employed on the
demand side enable energy conversion to realize a more flexible integrated demand
response (IDR) [30]. Moreover, some studies have extended ICES modeling to include
more detailed flexible devices, for example, electric vehicles (EVs) [27], to explore the
unique characteristics of ICES in various scenarios. Additionally, as research
accounting for network constraints in ICES is very limited, previous works in network
modeling are reviewed in the following operational research part rather than separately.

The existing literature on the energy management of ICES primarily addresses the
coordination of two energy systems, a focus partly due to the complexity and
computational intensity involved. For power and heat systems within ICES, prior
research has primarily concentrated on leveraging thermal demand characteristics,
given their direct impact on human comfort. IDR strategies for power and heat have
been employed to manage uncertainty and enhance profitability without compromising

comfort levels. For instance, in [27], the coordination between flexible IDR for power
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and heat and electric vehicle charging stations is explored in ICES under the uncertainty
of renewable generation. A bi-level model predictive control (MPC) based approach is
utilized in [29] to optimally integrate thermal demand and flow dynamics into the ICES
scheduling problem. [30] optimizes the distributed scheduling problem of multiple
energy hubs in ICES. Furthermore, [37] considers the impact of the thermal inertia of
detailed space heating loads to model the thermal demand response character in the IDR
problem of multiple energy users (MEUs) in ICES. On the other hand, literature on
power and gas systems in ICES is limited due to the non-convex nature of gas flow,
focusing on the coordination of energy flow in distribution networks. While research
on two-network coupling systems is extensive, the coordination and interaction among
multiple networks are still underexplored. Notably, comprehensive modeling and
mathematical optimization of multi-networks are proposed in a multi-energy district
[38], which shares a similar scale with ICES. However, multi-energy districts primarily
concentrate on network operations without addressing energy device scheduling and
are considered centrally controlled entities, in contrast to the community-oriented
nature of ICES. As a result, the multi-network constrained scheduling of ICES operators
and the interaction (e.g., IDR) between ICES operators and MEUSs remain critical yet
underexplored aspects—the modeling and operational optimization of multi-network
constrained ICES warrants further investigation.

The constrained optimization/energy management problem in ICES is challenging
to solve in terms of non-convexity, privacy protection, and computational burden,
which are caused by non-convex constraints of devices and network, the distributed
operation manner of MEUs, and the increasing scale of the modern community,
respectively. It can be solved by multiple approaches, including heuristic algorithms
[27] and mathematical programming [28, 29, 37]. Heuristic algorithms are a class of
optimization algorithms that are designed to explore solution spaces to find near-
optimal solutions efficiently. Therefore, this approach is particularly useful for
problems with non-convexity. A metaheuristic algorithm, chaotic differential evolution,

is adopted to schedule and price for multiple ICESs in [27]. However, it fails to
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guarantee optimality theoretically and is easy to fall into suboptimal, especially in large-
scale and complex problems like ICES operation. In contrast, mathematical
programming guarantees the solution optimality with rigorous proof but falls short in
dealing with non-convexity, which requires complicated convexification. Works in [28]
formulate a convex problem by employing the Big-M method and inequality second-
order cone constraint, after which active and reactive dispatching for ICES is solved to
the global optimal. Similarly, network constraint nonlinearity was tackled using the big-
M method and piece-wise linearization [31]. The two-stage optimization of the power
and heat system in ICES is then solved by a robust method subject to energy price
uncertainty. However, these approaches above require global information for solutions,
violating the privacy protection of MEUs in an ICES. To overcome this drawback, the
alternating direction method of multipliers (ADMM), was adopted to schedule the sub-
systems of ICES in a decentralized manner [37]. Even though these approaches can
partially deal with non-convexity and realize privacy protection, they still face
increasing computational burdens with the growing scalability of the consumers and

devices, which is known as the “curse of dimensionality [20].”

2.2.3 RTP-DR problem between utility companies and energy consumers

The practical utilization of RTP- DR by retailers and end users (EUs) offers a viable
approach for enhancing grid efficiency and providing flexibility resources [39]. RTP,
which continuously adjusts the price of electricity based on current supply and demand
conditions [40], is a popular dynamic pricing approach employed by electricity retailers.
Compared to other dynamic pricing programs such as time-of-use (ToU) and critical
peak pricing (CPP), RTP demonstrates superior performance in reflecting the intrinsic
value of electricity across different transaction periods, thereby improving market
intelligence and efficiency [41]. EUs, in response to the fluctuating price signals in
REM, intelligently adjust their power consumption among various transaction time
slots based on appliance utility and electricity prices. This behavior, known as “price-

based demand response”, effectively utilizes the inherent flexibility of power
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appliances in EU households [42]. Despite the intuitive conflict of interest between
retailers and EUs, the RTP-DR mechanism exploits the flexibility of EUs' power
consumption and facilitates its supply to the grid, thus ensuring incentive compatibility
within the market [43]. Furthermore, RTP-DR results in direct energy savings for
consumers and empowers them to manage their energy usage more effectively, leading
to more informed and active participation in the energy market.

Research on RTP-DR can be divided into two primary categories: optimal strategy
development for retailers and aggregators, and market equilibrium estimation.

The first category involves developing mathematical models and algorithms to
optimize pricing strategies, including ToU [44], CPP [45], and learning-based methods.
In ToU, the retailer segments the day into peak, off-peak, and mid-peak hours with
predetermined rates, enabling EUs to plan their consumption. Under CPP, prices are
significantly increased during pre-announced critical periods to reduce peak demand,
while lower rates apply during non-critical periods. Learning-based methods optimize
pricing in dynamic environments with uncertain demand and wholesale prices,
leveraging preference modeling or model-free deep reinforcement learning. For the
EUs side, Load-shedding and load-shifting are the main methods of EUs to change their
load profile, while they may have certain strategies under different RTP schemes. Under
ToU, EUs optimize consumption by shifting usage to lower-cost periods in day-ahead
scheduling. For CPP, EUs avoid consumption during critical periods to minimize costs.
When learning-based pricing is used, EUs solve real-time multi-device operation
problems considering demand characteristics and price uncertainties [46].

For the latter category of market equilibrium estimation, the Stackelberg game is a
popular means to construct a bi-level decision-making model, and features sequential
interactions between a single leader and multiple followers [44]. In recent research, it
has been widely adopted to model RTP-DR problems in various scenarios [47], [48],
[49], [50], [51]. A key challenge in the Stackelberg game modeling fitted in the RTP-
DR problem is to incorporate network constraints. Previous research, such as [47] and

[48], usually overlooked physical constraints due to computational complexity and
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temporal correlation of EUs' power consumption characteristics for simplicity.
However, this results in over-ideal solutions that did not comply with network
constraints and thus did not ensure the safe operation of the distribution network [49].
What's worse, neglecting the temporal correlation of EUs' power consumption
eliminated one of the most important functions of DR, i.e., peak shaving and valley
filling among time slots [52]. The cross-impact of network constraints and temporal-
related non-linear power consumption characteristics may render the RTP-DR problem
non-convex [50]. As a result, the market equilibrium may deviate from the unique Nash
Equilibrium (NE), and result in multiple equilibria in the game [51]. Reference [49]
claimed the problem formulated from the aforementioned game was non-convex and
NP-hard, so commercial solvers could not find a good solution. To date, the non-convex
RTP-DR problem with multiple equilibria remains unsolved.

Nonetheless, the non-convex Stackelberg game has multiple equilibria in nature and
is suitable to be analyzed from the view of MSNE. Compared to pure-strategy NE,
MSNE is a set of probability distributions on several possible local equilibria. The
adoption of MSNE allows players to randomize their strategy in a probability
distribution. There are several underlying reasons to implement the mixed strategy and
MSNE. 1) The non-convex game may have more than one NE especially when there
are non-linear temporal-correlated power consumption constraints and network
constraints [53]. 2) The nature of mixed strategy complies with the uncertain action of
both the human and learning algorithm [54]. 3) The strategic behavior of players in a
game with multiple equilibria should be various and stochastic. 4) A probability
distribution over several equilibria should exist accounting for optimal stochastic
(mixed) strategies and multiple equilibria [55]. Additionally, the analysis of MSNE is
able to provide a more comprehensive understanding of potential strategic behaviors in
non-cooperative games. Especially, when solving the RTP-DR problem, social welfare
over several equilibria may vary significantly, thus the presence of MSNE can guide
further regulation development. Although the works in [56] exploit multiple-equilibria

to indicate the market equilibrium accounting for the demand uncertainty, there is no
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current research focusing on the multiple equilibria in the non-convex Stackelberg
game that results from the physical constraints and non-linear power demand.

In most works above, mathematical programming methods are employed to
estimate NE in the Stackelberg game. For instance, the bi-level Stackelberg game has
been transformed into mathematical programming with equilibrium constraints and
solved using traditional mathematical methods after being reformulated to a linear
problem [57]. In [50], a network-constrained Stackelberg game is solved centrally for
the optimal prices and demand in the RTP-DR problem. However, with the increasing
scale of the problem, the huge burden on convexification and the possible exponentially
growing demand for the computation resources, which is called the “curse of
dimensionality,” put significant barriers to implementing the mathematical methods

[58].
2.3 Reinforcement Learning Algorithms

In this subsection, a brief review of RL fundamentals is provided, covering
necessary concepts and algorithms that will be further employed while elaborating RL
applications on marketized power systems in subsequent sections. The MDP as the most
simplified formulation of RL is introduced, and RL algorithms are reviewed and

discussed.
2.3.1 The Concept of Markov Decision Process

To start with, the concept of Markov Property is introduced as a foundation of
Markov Process (MP) and MDP. The Markov Property refers to the conditional
probability of s;,; occurring given that s, has already occurred, being independent to
the previous states from s,_; and beforehand. Intuitively, the MP is defined as the state
sequence (a random process) with such a property. The MP is always formulated as a
two-tuple (S,P), where S is a set of states with Markov Property, and P denotes

transition probabilities among states. Consider a smart agent that can take different
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actions given different states. Similarly, the MDP can be formulated as a tuple
(S, A, R, P), considered as a MP with the incorporation of actions and rewards, in which:
e Sisaset of states that contains environment information related to the decision-
making at this time.
e Ais aset of actions that can be taken by the agent at the corresponding state.
e P represents the transition probability, denoted as: P: S X A — (§), which is a
probability distribution over the set S.

e R(S,A) indicates the reward of selecting action a in the previous state s.

Once the MDP is observed (assume the MDP is fully-observable, while the
condition of partially-observable MDP also exists), the aim of agents is to obtain the
optimal policy m* , which refers to the sequential decisions [33], for maximizing
accumulative rewards in the MDP. However, the “performance” of a given policy
cannot be simply evaluated by the immediate reward after the action for the sake of
long-term benefits. Instead, the state-value function as formulated in (2.1), which is the
so-called “expected accumulative reward”, is adopted to evaluate the performance of
the policy r at the state s until the termination of the entire episode. When evaluating
a policy, the mapping from actions to states (state transition) is still uncertain (see the
definition of transition probability). Intuitively, the action-value function, which
implies the expected accumulated reward by executing the policy m after taking action
a at the state s, can be defined in (2.1). Note that the discount factor y is intended to

discount the future reward indicating the uncertainty.

V. (s) = E Z VkRk+t+1|5t = S] (2.1)
Li=0
qr(s,a) = E Z VkRk+t+1|5t =5,4; = a] (2.2)
k=0

Furthermore, (2.2) indicates that the action-value constitutes two parts: the
immediate reward, and the sum of possible state-values at s;,; weighted by their
probabilities. Inspired from (2.2), the “optimal” policy can be induced by taking the

action with maximum expected reward in an iterative manner once the action-value
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function is available. By substituting G;, 1 = V;(St+1), the iterative expression of V. (s),
which is the so-called Bellman Equation, can be written as:

Ve(st) = Ex[Rey1 + ¥Va(Se41)] (2.3)

Ir(Spap) = En[Rt+1 + VQn(St+1aat+1)] (2.4)

By definition, the optimal state-value function and action-value function are the

maximum values of V,(s) and q,(s,a), ie., V(s) =maxV,(s) and q*(s,a) =

max q,(s,a). Then, the Bellman Equation of the optimal state-value function and

action-value function can be formulated as follows.

V*(s0) = maxR% + yZRY, , max,V* (ses) 25)
q (seap) = R?f + Vzpsfét+1maxaq*(st+1' Ar1) (2.6)

With (2.6) in hand, the optimal policy can be intuitively derived by maximizing the
action-value q* (s, a) as formulated in (2.7), while such procedure is implemented with

assistance of most useful techniques including DP and RL algorithms.

wals) = (LY @ = argmaxg’(s,a) @7)

2.3.2 Reinforcement Learning Algorithms

In recent years, RL algorithms have gained great attention for addressing
optimization problems [59]. By interacting with the external environment, RL
algorithms enable intelligent agents to iteratively learn optimal strategies with only
partial environmental information. Compared to traditional mathematical programming,
RL offers advantages in scalability with high computational efficiency and
generalization to various scenarios [60].

As illustrated in the previous subsection, an RL algorithm learns a better strategy
by making decision based on the current observation and update the decision-making
strategy with the received reward. Based on whether an environment model is learnt,
RL algorithms can be roughly divided into two categories, model-based RL and model-
free RL. Specifically, model-based RL always requires modeling the transition
probability and the reward function, while model-free RL does not learn an explicit

environment model, but learns all the environment implicitly within the strategy. Since
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the tasks in power systems always need to receive highly uncertainty or high-order
signals, works in this thesis mainly focus on the model-free environment to better adapt
to the complex scenarios in power systems.

By leveraging DNN to estimate value functions, model-free RL algorithms can
handle complicated optimization problems by estimating non-convex Q-functions or
policies. DRL has been successfully applied in diverse domains [61-69]. For example,
a model-free DRL algorithm, DDPG, optimizes the energy management of an
integrated energy hub in [32]. Similarly, SAC algorithms optimize the scheduling of
islanded energy systems, accounting for multi-uncertainties and hydrothermal
simultaneous transmission [62]. RL algorithms can also be extended to multi-agent
environment in peer-to-peer multi-energy trading [70, 71], showing their strong
adaptability to different settings.

However, conventional RL algorithms suffer from several challenges.

1) In most real-world decision-making problems, the RL agent makes sequential
decisions based on observed state information. However, whole state information is
always not fully observed and may require forecasting, for example, power system
dispatching orders may require forecast on renewable and load. Although RL
algorithms can learn from current state to make decisions, there is no explicit
forecasting procedure in the design of RL algorithms, resulting in a poor ability to deal
with future uncertainties.

2) RL algorithms are designed for unconstrained optimization problems. Even
though they are applicable to some optimization problems with soft constraints, their
efficacy may diminish when applied to most constrained optimization problems. The
lack of consideration for network constraint violations restricts the application of RL
algorithms in industrial practice, as it can lead to economic losses and even system
blackouts [63].

To solve the first challenge, some literature has tended to integrate decision-making
with upstream forecasting for a holistic data-driven tool for scheduling in integrated

energy systems. For instance, [72] adopted a long short-term memory (LSTM) method
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to extract temporal features and assist the decision-making of the DRL algorithm in
integrated energy management. [32] combined a convolutional neural network (CNN)
and bidirectional LSTM (BLSTM) to forecast solar output in an energy hub by
analyzing sky images. The predicted value is then imported into the DDPG algorithm
for further scheduling decision-making. Although these methods have shown good
performance, the LSTM struggles with capturing complex temporal patterns and
dependencies that span multiple time steps effectively [73], and related research is still
limited.

To address the latter challenges mentioned above, Safe RL algorithms have been
developed to solve constrained optimization problems, which are designed to maximize
reward while complying with hard constraints. Specifically, Safe RL approaches can be
classified into three categories: 1) Penalizing constraint violations in the reward
function by adding a penalty term [64]. However, this requires choosing a suitable
penalty value, which is a difficult and sensitive task that depends on the reward scale,
the number and scale of constraints, and the degree of safety [65]. 2) Projecting unsafe
actions to safe ones by solving a projection problem, for example, approximated
Lyapunov constraints [66]. This method relies on a projection model, which is based
on predefined DNNs or matrices with potentially large approximation errors [67].
Therefore, the resulting actions could be overly conservative. 3) Penalizing the
constraint violations in the action-value function dynamically by introducing the
Lagrangian multiplier, instead of using a fixed penalty value in the reward [68, 69]. The
multiplier is stochastically updated as a dual variable of the policy during the agent
training based on the cost value function. However, the Lagrangian method-based Safe
RL algorithm may not converge to the optimal solution because of the cost value

function overestimation.
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Chapter 111

A Forecasted-Enhanced Reinforcement Learning
Method for Optimal Scheduling of Building
Integrated Energy Systems

3.1 Overview

This chapter focuses on the scheduling/energy management problem of BIES that
suffers from uncertainty of DER and energy demands, and also complex operation
characteristics of integrated energy devices. In the context of energy management
problems in BIES, the RL algorithm is one of the promising candidates, which learns
from historical data and receives available environment information to make
operational decisions. Such scheduling is based on day-ahead/hour-ahead prediction for
required variables, including renewable output, energy demand, etc. Although RLs can
learn from the current state to make decisions, there is no explicit forecasting procedure
in the design of RL algorithms, resulting in a poor ability to deal with future
uncertainties. Integrating decision-making with upstream forecasting for a holistic
operational tool is a natural idea to improve operational efficiency. Recently, some
literature has tended to integrate decision-making with upstream forecasting for a
holistic data-driven tool for scheduling in integrated energy systems. For instance, [72]
adopted a long short-term memory (LSTM) method to extract temporal features and
assist the decision-making of the DRL algorithm in integrated energy management. [32]
combined a convolutional neural network (CNN) and bidirectional LSTM (BLSTM) to
forecast solar output in an energy hub by analyzing sky images. The predicted value is
then imported into the deep deterministic policy gradient (DDPQG) algorithm for further
scheduling decision-making. Although these methods have shown good performance,
the LSTM struggles with capturing complex temporal patterns and dependencies that

span multiple time steps effectively[32], and related research is still limited. Many
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studies employ DRL techniques in conjunction with black-box forecasting tools, raising
concerns about model transparency and reliability. The opacity of these models can lead
to significant profit losses [74], thereby limiting the real-world applicability of data-
driven strategies.

In order to deal with the decision-making of BIES under uncertainty, a hybrid data-
driven method for forecast-enhanced reinforcement learning is developed, in which a
temporal fusion transformer (TFT) model performs time-series forecasting of uncertain
DER output and energy demands while a soft actor-critic (SAC) learns the optimal
strategy at the downstream. The optimal scheduling problem of BIES is formulated as
a MDP for the solution of the SAC algorithm. Finally, the forecasting accuracy,
generalization performance, robustness to exogenous uncertainty, and sensitivity to
external signals are analyzed, validating the applicability and advancement of the
proposed approach.

Differing from the previous literature in model and methodology, the main
contributions of this chapter are highlighted as follows:

1) System Modeling and Markov Decision Process Formulation: This chapter
presents a detailed mathematical model for BIES, including micro-CHP unit, BESSs,
PV panels, and gas boilers (GBs). The non-convex scheduling/energy management
problem in BIES is formulated into an optimization problem and then reformulated into
an MDP for the application of RL algorithms.

2) A Hybrid Data-Driven Method for Forecasted-enhanced Reinforcement
Learning: A hybrid data-driven approach integrating TFT and SAC algorithm, namely
TFT-SAC approach, is proposed to tackle the non-convex operational optimization
problem in BIES. The TFT is used to forecast the renewable generation and energy
demand based on historical data, and the obtained forecasts are then utilized by the SAC
algorithm to solve the scheduling problems. Unlike conventional black-box forecasting
methods, the TFT provides interpretability through the attention mechanism, enhancing

the trustworthiness of forecasting results for decision-making. Furthermore, the SAC
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algorithm, trained to maximize the policy entropy, can learn an operational strategy
with superior robustness and generalization capabilities.

3) Algorithm Validation and Optimal Scheduling Analysis: The proposed TFT-SAC
approach is trained and tested on a real-world dataset to validate its superior
performance in reducing the energy cost and computational time compared with the
benchmark approaches. The generalization performance for the learned scheduling
policy and the sensitivity analysis are examined in various scenarios.

The remainder of this chapter is organized as follows. Section 3.2 covers system
description, the optimization problem, and MDP formulation. Section 3.3 introduces
the proposed hybrid data-driven approach integrating TFT and SAC algorithm. Section
3.4 validates the proposed TFT-SAC approach with simulations, and Section 3.5

concludes this chapter

3.2 Problem Formulation

3.2.1 System Description

Work in this chapter focuses on a modern BIES that encompasses grid-connected
electric systems and independent heating systems, as illustrated in Fig. 3.1. In practice,
such systems can be found in university campuses, residential complexes, and industrial
parks. The BIES operates to meet multiple energy demands using both internal energy
devices and external energy resources. Specifically, the electric system, which
comprises PV panels, micro-CHP unit, and BESSs, is grid-connected to satisfy the
power demands of the building. Typically, BIESs purchases electricity from the external
power market when the demand exceeds renewable generation and may sell electricity
when renewable generation is surplus. The BESS enhances the operational flexibility
and adds complexity to the decision-making process. PV and BESS, as components of
DC systems, are connected to the building and power grid through electronic interfaces.
For the purposes of this study, the dynamics inside the power converters are neglected,

as the focus is on optimizing the hourly operational strategy.
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Additionally, independent heating systems, consisting of micro-CHP units and GBs,
are commonly deployed in building complexes, campuses, and industrial parks,
particularly in regions with high heat demands (e.g., most of North America and
northern China). These localized heating systems reduce the significant transmission
losses associated with centralized heating. The BIES model also assumes a connection

to an external natural gas market as the fuel source for the micro-CHP units.

External | BIES :
power market - — !
7 &
i =|=[=l0]
: |:|||:1 (=] :
: PV BESS |
1 1 o [
1 ! oo
S -
e SR N
' External gas | : 2 : o e
i market : i '-l ® | Building
: @ 1 : ﬁf : with power and heat demand
1 0 : 1 =(( 555 (= 1
I [} |
! “E" { | Micro-CHP GB |
e o e Lo i
electricity flow as flow heat flow
gas flow
Fig. 3.1 Illustration of BIES systems
3.2.2 Device modeling

1) Micro-CHP Unit Modeling

The micro-CHP unit is a crucial component of BIESs, functioning as a single-input
multi-output energy converter. It is highly efficient in converting natural gas to power
and heat, and a key element in enhancing the energy efficiency of the system. Typically,
the micro-CHP unit is modeled with constant energy conversion efficiencies for both
power and heat. However, the generation of heat and power by micro-CHP units is
interdependent, resulting in a feasible operating region (FOR). In this section, a non-
convex operational model is employed for the micro-CHP unit. The non-convex FOR
of this model is depicted in Fig. 3.2, bounded by the curve ABCDEFG. This FOR is

considered to comprise two convex subregions, labeled as I and II.
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Fig. 3.2 FOR of micro-CHP unit.

The mathematical representation of the FORs for the micro-CHP unit is given by

(3.1)-(3.8), as detailed in [32].
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where Plype presents the output power of micro-CHP unit at time t, and Plyp,

represent the output heat. P&;p . and P{yp 1, are the generated power and heat of the

micro-CHP at point 4, those at other points B, C, D, E, and F similarly defined; X and

X are the operating statuses in the convex subregions I and II, respectively: If the micro-

CHP unit operates in the convex subregion /, X=1and X = 0; otherwise, X = 1 and
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X = 0; T is a sufficiently large number used to assist in the model description; and I&y;p
is the commitment status of the micro-CHP unit. T = {1, ...,24} is the set of operational
hours.

The total operation cost of the micro-CHP unit at time t is expressed as:

Cérp (Péup.es Porpn) = aCHPPctHP.e2 + ECHpPéHP.e +Yeup ECHPPctHP.h2 +
BeupPeupn + YenpPiup.ePenpn (3.9)

where Ocyp, AcHp ECHP, ECHP, Ycupr @nd Ycnp are the cost coefficients.
2) BESS Modeling

The BESS is conceptualized as a battery capable of charging and discharging with
distinct efficiencies. The operational strategy of the BESS is designed with a granularity
of one hour, corresponding to one time slot. This means that all charging and
discharging activities of the BESS within a time period are aggregated into a single
operation. Consequently, the BESS can either charge or discharge in any given time

slot, but not both simultaneously [75].

Egpss = (1 — B)Efgss + Pigss.cMBEss.c — Parss.a (3.10)
0 < Pgpssc < Sgrss.cPBESS.cmax (3.11)

0 < Pgpssq < Shrss.aPeEss.amax (3.12)

Sgess.c + Sessa < 1 (3.13)

Egessmin < Egpss < EBEssmax (3.14)

where Efggs is the state of charge (SoC) of BESS at time t; § and nggss.c are the
predetermined loss factor and charging efficiency, respectively; Pfggs - and Piggg 4 are
the charging power and discharging power of BESS at time t, respectively; Siggs - and
SEEss.q are the charging state and discharging state of BESS at time ¢, respectively; and
the subscripts max and min represent the maximum and minimum value of
corresponding variables, respectively.

The SoC is calculated in (3.10). The charging power and discharge power of BESS
are constrained by (3.11) and (3.12), respectively. Constraint (3.13) is employed to
determine the charging or discharging state of BESS. The total capacity of BESS is

constrained by (3.14).
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3) GB Modeling
The GB is modelled as an energy device transforming natural gas to heat with a

fixed rate. The model of GB can be described as:

Pégn = NeePép g (2.15)
PGB.g.min = PéB.g = PGB.g.max (2-16)
PGB.h.min =< PéB.h = PGB.h.max (2-17)

where 1gg is the natural gas conversion efficiency; PéB_g is the consumed natural gas
of GB at time #; and P{g 5, is the generated heat of GB at time .
3.2.3 Optimization Problem

Considering all the models of devices in BIES presented above, the primary
objective of BIES is to minimize the total cost of system operation. Specifically, the
operational cost encompasses several components, including the cost of purchasing
electricity and gas from the external markets (EM), the degradation of BESSs, and the
penalty incurred for unfulfilled energy demand. Consequently, the optimization

problem for BIES operator can be formulated as:

T t <P(t:HP.e + PéESS.c)
: _— xW.e t t
min Cp = z —PgEss.a — Ppvee (3.18)
t=1 t pt
+xXw.gPw.g
s.t. VteT
(2.1) - (2.17)
Pl + Pigr + Péupe + Péup.a — Pipssc = PF (3.19)
Péupn = Py (3.20)
Pig = Pipg (3.21)

where {Plyp o) Pigss.ar PiEss.cr Pher Peupn Pl n} is the set of decision variables.
Pigssa and Phggs. are the discharge and charge power; x{ ., and Xy g are the
wholesale electricity and natural gas market price; P . is power purchased from the
wholesale electricity market; Py . is the power output of PV penal. P! and P} are the
power and heat demands within the BIES. The objective function aims to minimize the
costs for purchasing electricity and operation of devices. Also, the objective is

constrained by (3.1)-(3.17), and (3.19)-(3.21), where (3.1)-(3.17) are operating
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constraints for micro-CHP unit, BESS, and GB, and (3.19)-(3.21) indicate the multi-

energy balance.
3.2.4 Markov Decision Process

To optimize the decision-making process of BIES operator, an MDP is leveraged to
describe the optimization problem. The BIES operator is an intelligent agent whose
objective is to improve the operation decisions by minimizing the total cost in (3.18).
The MDP can be denoted by a tuple < S¢, A%, R*(s, a), Pt(s,a),u, ¥t >, whereSt =
(x5 e, x5, g, Efgss) PE forer Ph fores Phv.fore ) is the state, which encompasses electricity
market price x{, ., natural gas market price x‘f\,_g, SoC of BESS E% s, forecast of power
demand P! fore» torecast of heat demand Pt fore» and forecast of PV generation
Plgv.foreiAt = {Péup.e Phess.a» Piess.c Pov.es Péup.no Pép.n} is the action, including the
available actions as the decision variables in (3.18); R (s, a) is the reward quantifying
the agent performance, which is presented by the opposite of objective function in
(3.18); u is the policy of the MDP, which contains a series of action for each state; and
vt is the discount factor that discounts all rewards in the future state.

As the main objective of the agent is to identify the optimal policy that maximizes
the accumulated return, the value of each state using the state value function V#(s) is
evaluated as given in (3.22). Moreover, the state-action value function Q*(s, a) that
captures the joint value of a particular action a at a state s is demonstrated in (3.23),

where E(+) is the expectation function, s, and a, are the initial state and action,

respectively.
Vi(s) = E [Z YR |so = s] (3.22)
teT
T
Q#(s,a) = E [Z yiRY|sy = s,a9 = a] (3.23)
t=0

3.3 Proposed TFT-SAC algorithm
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In this section, a novel TFT-SAC approach to solve the optimal scheduling problem
of BIES is introduced. The structure of the proposed TFT-SAC approach is depicted in
Fig. 3.3. Specifically, the TFT uses historical PV power generation and energy
consumption data alongside meteorological and static covariates (e.g., geographical
coordinates and energy types) to forecast future trends. Variable selection networks
(VSNs) identifies relevant features, while an LSTM network captures long-term
dependencies. A multi-head self-attention layer focuses on crucial time steps,
enhancing the forecasting accuracy. These forecasts inform subsequent optimization
tasks. The SAC algorithm uses forecasting data to generate the optimal operation
strategies for the BIES. These strategies are implemented, and the resulting state
transitions (state, action, reward, next state) are stored in the experience replay buffer
(ERB). The experiences are sampled to train the critic and actor networks until the SAC
algorithm converges, producing an optimal operation strategy for BIES. The details of

the TFT and SAC algorithm are presented in the following subsections.
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Fig. 3.3 Structure of proposed TFT-SAC approach
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3.3.1 TFT Model

This subsection introduces the TFT model, an interpretable deep learning model
designed for time-series forecast. The TFT model effectively captures complex
temporal relationships and delivers reliable forecasts, which are essential for managing
BIES. Specifically, the interpretability of the multi-head self-attention mechanism and
VSN stems from its ability to assign VSN weight v, and attention weight A(Q,K) to
input data points, thereby visualizing the most influential time steps and features in the
prediction process. Detailed algorithm design is covered in the following subsections.
1) Quantile Outputs

The TFT model generates quantile forecasts, which are particularly useful for
estimating the uncertainty of future forecasts. The quantile forecasts are obtained
through a linear transformation of the outputs from the temporal fusion decoder. The
mathematical representation of this process is given as:

yilg,t, 1) = fq (T: Vit-kt Zit—k:tr Xi t—kit+v Si) (3.24)
where §;(q, t, ) is the g™ quantile value for predicting the future T steps at time point #;
fq(.) is the forecasting model; y; (.. is the vector of historical target variables from
time points t — K 7o t; Z; ¢_k. 1s the vector of past-observed inputs from time points -k
to #; Xj t—k.t+< 15 the vector of priori-known future inputs; and s; is the static metadata,
which is the covariate in energy forecast.

The training of TFT model involves minimizing the quantile loss [76], which is
designed to penalize the overestimations and underestimations differently based on the

quantile level. The quantile loss function is formulated as:

Tmax
L(y.,y(q,t—1,7),
LO,W) = Z Z Z QL(y: yg;z ), q) (3.25)
VEN qEN T=1 Tmax

where L({2, W) is the quantile loss of single time series at the average prediction point;

¢ is the actual data;  is predictions; £ is the domain of training data containing M, ___
samples; W is the weight of TFT model; 7,,,x 1S the maximum step; and the function

QL(.) can be expressed as:
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ALYy, ) =q(y =9+ + A -)F —y)+ (3.26)
where QL is the output quantiles (g = {0.1,0.5,0.9} in the experiments); and (.), =
max(0,.). To ensure consistency in prediction dimensions across different prediction

points, the regularization is applied as:
2 Zyteﬁ Z;’;‘ix QL(y:, y(q,t —1,7),9)

Qrisk = T
Zyteﬁ Z‘[Zixlytl

where 2 is the domain of test samples; q,sx is the normalized quantile losses across

(3.27)

the entire forecasting horizon.
2) Gating Mechanism

In the time-series forecast, especially with multiple regression, identifying relevant
variables and the extent of non-linear processing is challenging. The TFT model uses
gated residual networks (GRNss) for adaptive non-linear processing as needed in (3.28),

and the gated linear units (GLUs) are shown in (3.31).

GRN,, = LayerNorm(a + GLU,, (1)) (3.28)

N =Wiuyn,+ by (3.29)

n, = ELUW,,a+W;,c+b,,) (3.30)
GLU,(¥) = (Wyu¥ +bay) © (Wso¥ + bsy) (3.31)

where LayerNorm(.) is the layer normalization function; a is the vector of primary
inputs to GRN; and c is an optional context vector; ELU(.) is the Exponential Linear
Unit activation function; o(.) is the sigmoid activation function, W, ,,, W, ,,, W3,
W, 4, and W5, are index to denote weight sharing respectively; by 4, b, ,, by 4, and
bs ,, are index to denote bias sharing respectively. The GRN layer is controlled by the
GLU layer, which may skip the layer entirely if GLU outputs are close to 0. a +
GLU,(n,) represents linear and nonlinear contributions, with GLU controlling the
degree of nonlinearity.
3) VSN

The VSN is a key component of the TFT that improves the performance by selecting
important features and filtering out noises. It assigns weights to features, which are used

to combine the processed inputs:
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v,, = Softmax (GRNUX(Et, cs)) (3.32)
where v,, is the set of weights corresponding to the features; E; is the flattened vector;
and ¢ is obtained from the static covariate encoder. The processed features are
weighted by their corresponding variable selection weights and combined.

5) Temporal Self-attention Layer

The TFT model employs a temporal self-attention layer that plays a key role in
capturing long-term dependencies in time-series data. This layer not only improves the
model's ability to understand complex temporal relationships but also enhances the
interpretability of forecasts. The self-attention layer used here is a masked and
interpretable multi-head attention layer combined with a gating mechanism to
selectively control information flow.

The core concept behind the temporal self-attention layer is to calculate the
relevance, or "attention", of different time steps to each other, enabling the TFT model
to focus on important events or sequences within the data. This is done using the
following equation for attention:

Attention(Q,K,V) = A(Q,K)V (3.33)
where V is the value of input based on the similarity between the query vector Q and
key vector K; and A(-) is a normalization function that determines the attention weights

of value V. The scaled dot-product mechanism for calculating attention is defined as:

A(Q,K) = Soft < QK ) (3.34)
= X .
@10 = Softmax\ g

Multi-head self-attention mechanism enhances the power of the self-attention

mechanism by allowing the model to jointly focus on information from different
representation subspaces at different positions. Instead of using a single set of queries,
keys, and values, the multi-head self-attention mechanism splits them into multiple sets,
each of which is processed independently. Each head computes attention separately,
and the results are then concatenated and linearly transformed to produce the final

output. By having multiple heads, the TFT model can capture a richer set of
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relationships and nuances in the data compared with a single self-attention mechanism,

which are presented as:

MultiHead(Q,K,V) = [Hy,H, ..., Hp, | Wy (3.35)
H), = Attention(QWY", KW', yw{) (3.36)

where W(Qh) e Rdmodelx‘iattn , Wg{h) e ]RdmodeIXdattn’ and WI(/h) € ]RdmodeleV are the

head-specific weights for queries, keys, and values, respectively; and Wy €
R(MHdv)Xdmodel inearly combines outputs concatenated from all heads H, (H =
1,2,...,my). my is the number of heads, dyogel, @artn @nd dy are the dimension of
model, attention layer and weight V.

One of the main issues with traditional multi-head attention mechanism is that each
head uses different value vectors, making it difficult to directly determine the feature
importance from the attention weights. By modifying the mechanism to share the same
value vector across all heads, the TFT model can produce a unified set of attention
weights, thereby improving interpretability:

MultiHead(Q,K,V) = HW (3.37)

o 1 <
A=40Q,KVW, = m—Hz A(Q Wl kW) vw,
h=1

mpy
1
_ m_z Attention(Q Wi, K Wi,V W) (3.38)
Hy=

where MultiHead(.) is interpretable multi-head, Wy € R%modeldattn denotes the
final linear mapping used across Wy, and W, € R%model*dv i5 the value weights
shared across all heads. Compared to A(Q, K) in (2.34), this modification allows each
attention head to share the same set of values A(Q, K), resulting in a single and
interpretable set of attention scores that can be analyzed to determine feature

importance [77].
3.3.2 SAC Algorithm

In this subsection, the SAC algorithm as a state-of-the-art maximum-entropy-based

off-policy DRL algorithm is described to solve the optimization problem of BIES.
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Typical DRL algorithms generally suffer from limited robustness in real-world
applications due to ineffective exploration. In contrast, the SAC algorithm uses entropy
as a regularization term in the objective function to enhance adaptability and
generalization performance.
1) Algorithm Description

As a DRL algorithm with an actor-critic structure, the SAC algorithm outperforms
most algorithms, e.g., DDPG, in convergence performance. The SAC algorithm
maximizes both accumulative rewards and policy entropy. The entropy function H (+)
is defined in (3.39), where (- |s;) is the strategy conditioned on the state s;. The state
value function V¥ (s) and state-action value function are Q¥ (s, a) presented in (3.40)
and (3.41), respectively, where the temperature parameter a determines the relative

importance of the entropy term against the reward, and thus controls the stochasticity

of the optimal policy.
H(n( [s0) = — Z r(als,) Inm(als,) (3.39)
r ]
VE(s) =E [Z vt (Rt + aH(n(: |st))) |so =s (3.40)
t=0 ]

Q¥(s,a) = E ; v (Rt + “Z H(m( 'St))> (3.41)

ter
|so =s,a0 =a

At the same time, the value functions can be expressed as (3.42) according to the
relationship between (3.39) and (3.40). Equation (3.40) allows us to derive the solution
for the policy as (3.43).

VE(se) = E[Qf (s, )] + aH(m(: |sy)) (3.42)

e Q;f(sf)/a’

(- |sy) = argmax V! (s) = (3.43)
mEA

where A= {m|mr >0, 1-m = 1}. When the O value converges to the optima, the
optimal policy achieves the optimal state value function. Therefore, the updating of O-
value function can be realized by using the closed form solution in an off-policy scheme.

2) Algorithm Implementation
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The SAC algorithm adopts an actor-critic structure with DNNs to estimate the
policy (actor) and Q-value functions (critic). The actor network is represented by the
policy function u(s|6*) parameterized by 6*. The critic employs clipped double Q
network Q; and Q, parameterized by 8?1 and 892, and also their target networks,
parameterized by 691 and 9 Therefore, the target y, for the QO value is expressed as
(3.44), where d; 4 is the action under the current policy in the next state s;,, and g is
the executed policy. Then, the L2 loss is used to update the Q-network in (3.45) for j =

{1,2}.

Ye =Tty (}.E{}g} Q(St+1, C~lt+1|9Qj) —alogmyg (at+1|5t+1)) (3.44)
1
Vool =3 D [y = Qs,alo%)] (3.45)
nEN

To train these networks, the agent randomly samples tuples (sj, a;, 1, sj+1) from the
ERB to form nth mini batch for experience replay learning, where n € N, and N is the
set of all batches. The online critic networks are updated by one step of gradient descent
to the mean square error (MSE) 0% in (3.45), while the actor network is updated by
one step of gradient ascent using (3.46). To stabilize the training, the target network

parameters are soft updated with (3.47).

1 : ~ ~
Voul = Vgu Nz L_rer%ir%}Q(st, a.(s)) — alogmg (@;|se) (3.46)
nenN
0" « po? + (1 —p)o? (3.47)

where d;(s) is a sample from g (- |s;); p is the soft update parameter.
3.3.3 Discussions

The use of the proposed TFT-SAC approach is unique and effective for the dynamic
operation and control of BIES. This combination offers several advantages and
potential shortcomings compared to other traditional approaches.

1) Integrated forecasting and operation: the TFT provides accurate and data-driven
forecasts of PV generation and energy demand, which allows the SAC algorithm to
make informed decisions. This integration reduces uncertainty in the decision-making
process, leading to more reliable system operations. Moreover, the most important part

in bridging TFT and SAC is not the model itself, but to consider how the forecast or
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what kind of forecast can be helpful to the decision-making of the RL algorithm. The
TFT can be helpful by providing the interpretability of forecasting results, which is
more valuable than forecast accuracy in this case.

2) Offline training and efficient online operation: The proposed TFT-SAC approach
allows for offline training using historical data, enabling the development of a robust
policy before deployment. Once trained, the algorithm operates in real time with
minimal computational overhead, which is a significant advantage over approaches like
SO or RO that require repeated recalculation.

3) Handling non-convexity: The operation of BIES involves non-convex constraints
such as the FOR. The SAC algorithm, leveraging DNNs, can effectively learn non-
convex optimal operating policies due to the powerful representation capabilities of
DNNs. In comparison, traditional mathematical programming approaches, such as
mixed-integer linear programming (MILP), address non-convexity by linearizing
nonlinear relationships and explicitly formulating integer constraints, facing scalability
and computational challenges particularly in large, dynamic systems like BIES.
Heuristic algorithms can explore complex optimization landscapes and are often more
flexible than mathematical programming. However, they may suffer from high
computational demands, especially in large-scale systems, and may converge to local
optima rather than finding the global solution.

4) Training complexity: The proposed TFT-SAC approach requires extensive
offline training, which can be computationally expensive and time-consuming,
particularly for large datasets. The performance highly relies to a high-quality training
dataset, which is typically hard to acquire in the real world.

5) Dependence on forecasting accuracy: The effectiveness of SAC algorithm in
making optimal decisions depends heavily on the forecasting accuracy provided by
TFT. If the forecasts are inaccurate due to unexpected external factors, the quality of
the operational decisions may be compromised.

Overall, the proposed TFT-SAC approach provides an effective solution for BIES

operation. The integrated forecast and optimize structure, capability to handle non-
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convexity, and efficient implementation make this approach a compelling alternative to
traditional approaches, despite some challenges related to training complexity and

dependence on forecasting accuracy.
3.4 Case Study

3.4.1 Simulation Setup

To validate the effectiveness of the proposed TFT-SAC approach, case studies are
conducted using data from a real building located in Zhenjiang, China. The BIES under
study comprises a micro-CHP unit, PV panels, BESSs, and a GB device to meet both
heat and power demands.

The micro-CHP unit, with a rated output of 25.3 kWh, is designed to satisfy the heat
demand of the building while partially covering its power demand. The PV system
includes 610 PV panels, each with a capacity of 280 W, resulting in a theoretical
maximum output of 170.8 kWh. However, due to practical limitations, the actual
capacity is 153 kWh. The BESS consists of 24 LiFePO4 batteries, each with a storage
capacity of 5.12 kWh, providing a maximum output of 72 kWh. This setup enables the
BESS to support peak power demand for up to 4 hours. Detailed information on micro-
CHP and BESS is shown in Appendix A.

The proposed TFT-SAC approach is implemented in Python, and the neural
networks are developed using PyTorch. To achieve the optimal performance, the neural
network parameters and hyperparameters are carefully chosen based on empirical
values and adjusted throughout the training process. The complete configuration details
for SAC algorithm are presented in Tables 3.1 and 3.2, while hyperparameter settings
of TFT for forecasts of energy demand and PV generation are shown in Table 3.3. The

Adam optimizer is used as the training algorithm to update the network weights.
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Table 3.1 Neural network architectures setting of sac algorithm

Number of
Neutral Number of Learning Soft update
hidden Optimizer
Networks neurons rate parameter
layers
Actor 3 [512,32] 1x10 11x1072 Adam
Critic 2 [512,32] 1x1073 11x1072 Adam

Table 3.2 Hyperparameter setting of sac algorithm

Training parameter Number
Replay buffer size 1x108
Replay start size 128
Batch size 128
Discount factor 0.99

Table 3.3 Hyperparameter setting of TFT for forecasts of energy demand and PV

generation
Parameter Forecast of energy demand  Forecast of PV generation
Learning rate 1x10™ 3.5x107
Grad clip value 0.1 0.9
Patience 10 2
Batch size 16 16
Drop out 0.2 0.1
Time step 168 24
Hidden size 128 32
Number of LSTM layers 6 4
Number of attention heads 6 3
Loss function Quantile Loss Quantile Loss
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3.4.2 Computational Performance of Different Algorithms

This subsection compares the SAC algorithm with baseline algorithms such as TD3
and DDPG. Each algorithm is trained for 10000 episodes on sampled days from the
training set. Figure 3.4 shows the episodic reward evolution of different algorithms
during the offline training process. Considering the fluctuations in state features, the
data have been smoothed using a 100-episode moving average method. This is because
the oscillations caused by the exogenous state features cannot be addressed by the

operational strategies even if the policy is optimal.
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Fig. 3.4 Episodic reward evolution of different algorithms during offline training

process.

Fig 3.4 shows that initially, the learning curves of different algorithms are similar
due to randomly selected energy schedules and Gaussian noise. Early on, rewards are
low for all algorithms. As training progresses, rewards increase as agents learn and
refine their policies. The reward of SAC algorithm grows the fastest initially, followed
by TD3 and then DDPG. Around 2000 iterations, the reward of DDPG increases
sharply, surpassing TD3 but still remaining lower than the SAC algorithm, which is
close to converging. DDPG and TD3 converge around 5000 iterations. The SAC

algorithm achieves a significantly higher final reward compared with DDPG and TD3,
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with the reward of DDPG slightly higher than that of TD3. This indicates the superior
offline training performance of the SAC algorithm.

To evaluate the performance of the proposed TFT-SAC approach, the trained actor
network parameters are used to generate operational strategies for the BIES over 50 test
days. The proposed forecast-enhanced RL approach is compared with benchmark
approaches: typical RL approaches (TD3, DDPG, and SAC) and another forecast-
enhanced RL approach (LSTM-SAC). Fig 3.5 compares the cumulative costs for energy
consumption with different approaches over 50 test days. The results indicate that the
cumulative costs with typical RL approaches are significantly higher than those with
forecast-enhanced RL approaches. The cost gap increases with more training episodes,
highlighting the differences between different approaches. For forecast-enhanced
approaches, the cumulative costs are similar, showing that combining forecasting with
RL is effective. Notably, the proposed TFT-SAC approach achieves lower costs than
LSTM-SAC, demonstrating its superior performance. However, the difference between
the proposed TFT-SAC approach and LSTM-SAC is small compared with their
differences from typical RL approaches, suggesting limited room for improvement in
current forecast-enhanced RL approaches.
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Fig. 3.5 Cumulative cost for energy consumption with different approaches over 50

test days.
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Notably, the proposed TFT-SAC approach achieves lower costs than LSTM-SAC,
demonstrating its superior performance. However, the difference between the proposed
TFT-SAC approach and LSTM-SAC is small compared with their differences from
typical RL approaches, suggesting limited room for improvement in current forecast-
enhanced RL approaches. The performance differences between TFT-SAC and
benchmark algorithms may vary in scenarios with different settings, and be affected by

the uncertainty resources significantly.

3.4.3 Forecasting Performance Analysis

As shown in Table 3.4, the TFT model outperforms the LSTM model across three
performance metrics, i.e., mean absolute error (MAE), root mean squared error
(RMSE), and R? in forecasts of both PV generation and building energy demand.

Fig. 3.6 and 3.7 show that the forecasting curves of TFT model closely fit the target
curves, demonstrating its effectiveness in capturing time-series patterns. The TFT
model particularly excels in forecasting PV generation, accurately capturing peaks and
valleys, which is crucial for energy forecasting. In summary, the TFT model shows
superior forecasting accuracy and pattern recognition compared with the LSTM model,
which is crucial for energy management in BIES, guiding energy allocation, optimizing

resource utilization, and improving overall energy efficiency.

Table 3.4 Performance metrics of TFT and LSTM models

Forecast
Obj ect Model MAE RMSE R?
LSTM 3.66 12.23 0.8402
PV generation
TFT 5.22 11.24 0.8721
Energy LSTM 3.37 4.6 0.9407
demand TFT 2.20 3.26 0.9670
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Fig. 3.6 Performance of LSTM and TFT models in forecasting PV generation

—
(]
=

—
[=]
(=]

=]
[=]

(=)
(=]

E
(=]

[ov]
=

(=]

0:00
6:00
0
18:00
0:00
6:00
0
18:00
0:00
6:00
0
18:00
0:00
6:00
12:00

Building Energy Consumption (KWh)
18:00
0:00
6:00
0
18:00
0:00
6:00
0
18:00
0:00
6:00
0
18:00

Time

LSTM T Target

Fig. 3.7 Performance of LSTM and TFT models in forecasting building energy

demand

The meteorological data include net solar irradiation (NSI), solar irradiation (SI),
ultraviolet (UV), outdoor air temperature (OAT), rainfall (RF), relative humidity (RH),
temperature-humidity-wind (THW), and surface air temperature (SAT). Fig 3.8 and
illustrates the relative importance of different features in the TFT model for forecasting
PV generation. In the encoder, SI appears as the most significant factor, indicating that
direct sunlight intensity plays a crucial role in forecasting PV generation. Meanwhile,
in the decoder, longitude emerges as the most important feature, highlighting the
importance of geographical positioning in the forecasting process. This is intuitive
because the position affects the angle of sunlight and daylight duration, which

ultimately impacts PV generation.
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Fig. 3.8. Relative importance of different features in TFT model for forecasting PV

generation. (a) Encoder. (b) Decoder.

Fig 3.9 depicts relative importance of different features in TFT model for
forecasting building energy demand. Unlike PV generation, which predominantly relies
on weather-related factors, building energy demand is highly influenced by calendar-
based information. Features such as hour of the day, workday status, and specific time-
based attributes are ranked highly, reflecting the relationship between user behavior and
energy usage. These calendar-related features indicate the impact of typical human
activities and routines—such as work schedules and holidays—on building energy

demand.
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Fig. 3.9 Relative importance of different features in TFT model for forecasting
building energy demand. (a) Encoder. (b) Decoder.

The importance ranking reveals that the TFT model considers both weather
conditions and temporal attributes to accurately predict energy demands. This is crucial
because user activities are often influenced by the time of day or specific events on the
calendar, and these behavioral patterns significantly affect energy usage in buildings.
The model's attention to these aspects shows its ability to learn from diverse data
sources and focus on the most impactful features during the training process, resulting
in a more reliable forecast.

Fig 3.10 and 3.11 illustrate the attention distribution of TFT model over the past 7
days (indexed by -7 to -1) during the forecasting process. Fig 3.10 shows that the
attention of TFT model is concentrated on the recent past, especially the previous day,
reflecting the strong daily cyclic patterns of PV generation. Minor peaks indicate
consideration of earlier time steps, but these have lower weights due to the influence of

short-term environmental factors like SI.
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Fig. 3.11 Attention of TFT model over past 7 days for forecasting building energy

demand.

Fig 3.11 shows a smooth distribution across various historical time steps with a
gradual increase. This suggests the TFT model considers a range of past data, reflecting
that the high complexity and irregularity of building energy demands are influenced by
factors like user behavior, daily activities, and weather conditions.

In comparison, the TFT model for forecasting PV generation focuses on recent time
steps due to daily cyclic patterns, while that for forecasting building energy demands
has a broad attention span over the entire historical cycle, balancing long-term trends
and short-term impacts. The gradual increase in attention weights indicates the
emphasis on recent information for imminent forecasts.

The uniform attention distribution for building energy demand suggests its cyclical
patterns are less pronounced or more complex than those of PV generation. This
highlights the importance of extracting information from multiple time scales for
accurate forecasts and underscores the need for effective energy management strategies
to optimize BIES operational efficiency.

In summary, the TFT model provides accurate and interpretable forecasts for both
PV generation and building energy demand, supporting the RL algorithm in

formulating efficient scheduling strategies.
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3.4.4 Generalization Performance

To validate the generalization performance, different approaches are tested over a
test set that shows different statistical characteristics compared with the training set.
The test set is represented by several typical weeks labeled W-1 to W-4 for comparative
analysis. These typical weeks include scenarios with extreme PV generation or energy
demand. Table 3.5 presents the daily operational costs of BIES across different weeks.
The results clearly demonstrate that forecast-enhanced RL approaches achieve
significantly lower operational costs compared with typical RL approaches,
underscoring the effectiveness of combining forecasting and decision-making.
Furthermore, the average operational cost of the proposed TFT-SAC approach is lower
than that of LSTM-SAC, indicating that the proposed TFT-SAC approach outperforms
all the comparable approaches across a range of scenarios, thereby demonstrating its
strong generalization capabilities. Although the daily cost improvements may appear
marginal, the cumulative benefits of the proposed TFT-SAC approach over extended

operation could result in substantial additional profits.

Table 3.5 Comparison of daily average operational cost of BIES across different

weeks
Daily average operational cost (¥)
Week LSTM-
DDPG TD3 SAC TFT-SAC
SAC
W-1 500.14 499.3 490.19 328.02 325.79
W-2 361.75 361.2 347.92 232.76 231.6
W-3 450.34 449.66 431.4 318.91 311.03
W-4 733.25 732.44 715.75 521.3 520.99
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3.4.5 Robust Operation

To compare the robustness of the proposed TFT-SAC approach with other RL
approaches, independent Gaussian noise is introduced to real PV generation and energy
demand to represent uncertain scenarios. The average daily operational costs of BIES
under different noise levels are presented in Table 3.6. Across all noise levels, the
typical RL approaches incur significantly higher operational costs than forecast-
enhanced RL approaches, with cost differences ranging from ¥60 to ¥100. Among all
the tested approaches, the proposed TFT-SAC approach demonstrates the lowest
average operational costs, indicating superior robustness. However, the cost variations
between the proposed TFT-SAC approach and LSTM-SAC remained small, in the
range of ¥10 and ¥20. In contrast, the cost difference of the proposed TFT-SAC
approach with N=0.01 and N=0.05 is approximately ¥5, and that of TD3, SAC, and
LSTM-SAC is ¥3. This larger cost variation suggests that the proposed TFT-SAC
approach is more sensitive to forecasting accuracy than other approaches, even though

it consistently achieves the lowest average operational costs among all approaches.

Table 3.6 Comparison of daily average operational cost of BIES across different noise

levels
Daily average operational cost (¥)
Noise level
LSTM-
N DDPG TD3 SAC TFT-SAC

SAC
0.01 596.07 557.56 557.49 505.12 490.04
0.02 596.38 558.24 558.18 505.82 491.88
0.03 597.37 559.02 558.96 506.62 494.91
0.04 599.8 559.85 559.78 507.47 495.13

51



3.4.6 Operational Analysis

To evaluate the generalization of the optimal energy management policy learned by
the proposed TFT-SAC approach, two typical scenarios are applied: a summer day
(August 27) and a winter day (December 25). Figures 3.12 and 3.13 show the power
and heat profiles on the two typical days, respectively, where bars above the horizontal
axis represent power generation/purchase and bars below indicate storage

discharge/power sold.
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Fig. 3.12 Power generation and consumption of BIES. (a) A typical summer day. (b)

A typical winter day.
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Fig. 3.13 Heat generation and consumption of BIES. (a) A typical summer day. (b) A

typical winter day.

Both scenarios share common trends. Initially, from 00:00 to 8:00, the BIES
purchases electricity due to zero PV generation and low SoC of ESS. ESS charges at
low prices for future demands. From 09:00 to 15:00, PV generation and ESS discharge
could meet most power demands, with excess power sold at high electricity prices.
From 18:00 to 24:00, the BIES does not sell electricity, and the micro-CHP unit
becomes the primary power source due to high demand.

Nevertheless, there are some evident differences between the two typical days. On

the winter day, the micro-CHP unit operates from 09:00 to 15:00 to meet high heat
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demands and support the power demands due to low PV generation. On the summer
day, the micro-CHP unit is inactive as PV and BESS can meet the demands and the
excess power is sold. The policy effectively uses the micro-CHP unit in winter and
BESS in summer, charging at low prices and discharging at peak prices to maximize
economic benefits.

Finally, it can be concluded that the proposed TFT-SAC approach can learn an
effective policy and can generalize to variable state information on different test days.
Also, the flexibility of BIES is investigated on two typical winter and summer days.
Specifically, the summer day has higher PV generation and lower heat demand, so it
has higher energy export and makes use of more flexibility of BESS. Due to lower PV
generation and higher heat demand, the winter day has higher power import and higher

utilization of the micro-CHP unit, which also provides significant flexibility to BIES.
3.4.7 Sensitivity Analysis

In this subsection, a detailed sensitivity analysis is conducted to evaluate the impact
of changes in key factors on the operation and performance of BIES. Specifically, the
sensitivities of the episodic reward to variations in electricity price, PV generation,

power demand, and heat demand are analyzed, as shown in Fig. 3.14.
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Fig. 3.14 Sensitivity analysis of the proposed model on key factors
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The sensitivity analysis is performed by varying each parameter independently from
90% to 110% of the initial configured value, with a granularity of 5%. This range is
selected to represent potential fluctuations in market and operational conditions, and
the granularity is chosen to provide a balanced level of detail without excessive
computational overhead.

The results in Fig. 3.14 indicate the following. The episodic rewards of BIES are
negatively correlated with electricity price, which is expected given that higher
electricity prices increase the cost of purchasing electricity. There is a positive
correlation between PV generation and episodic reward, as increased PV generation
reduces the need for power from EM and allows for more excess power to be sold back
to EM. Both power and heat demands negatively impact the rewards, with power
demand having a particularly significant effect. This can be attributed to the fact that
meeting higher demands requires more energy procurement, which incurs additional
costs.

Interestingly, the power demand has a greater effect on the episodic reward
compared with PV generation. This is because the total daily PV generation is lower
than the total power demand. As a result, any reduction in power demand has a larger
marginal impact on profitability, either through reduced procurement or allowing more
energy to be sold during peak periods.

In terms of scheduling policies, the changes in power demand and PV generation
lead to noticeable shifts in action prioritization. For instance, increased PV generation
results in more frequent utilization of battery storage for energy arbitrage, while
fluctuations in electricity price affect decisions regarding energy procurement timing.
These findings emphasize the importance of accurate forecasts for PV generation and

energy demand to optimize the operational strategies of BIES effectively.
3.5 Summary

In conclusion, a novel hybrid data-driven approach, namely TFT-SAC, is developed

in this chapter for the energy management problem in BIES. Specifically, the TFT
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model enhances the forecasting accuracy and transparency through attention
mechanisms and the VSN, enhancing interpretability and trustworthiness of forecasting
results. The integration of the SAC algorithm for optimization further strengthens the
proposed framework by ensuring more effective exploration during training, leading to
strategy that exhibits robustness and generalization capabilities. Simulation results
demonstrate the superior performance of the proposed TFT-SAC approaches compared
with existing approaches. The interpretability of the TFT model and the generalization
performance of SAC algorithm are analyzed. The sensitivity analysis of reward on

several key factors in BIES is also conducted.
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Chapter IV

A Safe Reinforcement Learning algorithm for
Operational Optimization of Multi-Network
Constrained Integrated Community Energy Systems

4.1 Overview

This chapter focuses on comprehensive techno—economic modeling and energy
management in ICES, which considers multi-network constraints and the complex
behavior of integrated energy consumers. To this end, the work in this chapter present
a novel MNC-ICES model that considers network constraints of integrated energy,
including electricity, natural gas, and heat. In the proposed model, the ICESO secures
the safe operation of the MNC-ICES by accounting for non-convex energy devices,
renewable uncertainties, and IDR of MEUs. A constrained optimization problem is
formulated to represent the operation problem in the proposed MNC-ICES model and
then transformed into a C-MDP for the application of RL approaches. Compared to
existing software programs for regional IES operation, this research highlights
operational safety regarding detailed multi-network constraints and detailed energy
device models. Moreover, a SOTA Safe RL algorithm, namely PD-TD3, is developed
based on the Lagrangian-based Safe RL method to optimize the scheduling and pricing
strategies in MNC-ICES. The proposed algorithm shows great potential for Safe RL to
become a useful energy management tool in modern ICES regarding operational safety
with multi-network constraints.

The contributions of this chapter are as follows:

1) Comprehensive Modeling of Community Energy System: A novel MNC-ICES
model is proposed to interpret the concept of ICES. The proposed model accounts for
the constraints of multi-network, which captures the physical characteristics of energy

flow and imposes security operational constraints for the distribution level energy
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transmissions. Energy devices are modeled in high fidelity to describe the realistic
physical operating attributes in practice. Additionally, the renewable uncertainty and
integrated demand elasticity are considered to describe the novel characteristics of
modern distribution-level energy systems. Overall, the proposed model can be
implemented as a basis for practical network-constrained community operation tools.

2) Constrained-Markov Decision Process Modeling: A C-MDP is formulated from
the constrained operational optimization problem in MNC-ICES with multi-energy
integration. Constraints on voltage in the power network, gas flow, gas pressure and gas
injection in the gas network, pipeline flow, and nodal flow in the district heat network
are considered security constraints and imposed safety requirements, being modelled
as the cost term in a tuple of C-MDP.

3) Novel Safe Reinforcement Learning Algorithm and Validation: A novel Safe RL
algorithm, namely PD-TD3, is proposed to solve the C-MDP and the constrained
operational optimization problem in MNC-ICES. The PD-TD3 algorithm using double
networks reduces the over-estimation problem of the action value for both the reward
and cost, and the delayed update stabilizes the training process of policy and its dual
variable. With such an accurate estimation of Q values, the proposed algorithm
converges to the optimal solution that balances the maximal profits and the lowest
constraint violation. In addition, the training processes of the policy and its dual variable
are stabilized by delayed updates, which contributes to the training efficiency and helps
to converge to the global optimal.

The remaining chapter is organized as follows. The mathematical models of MNC-
ICES, including integrated networks, energy devices, and MEUs, are presented in
Section 4.2. The constrained operational optimization problem and the corresponding
C-MDP are formulated in Section 4.3. The novel Safe RL algorithm is proposed in
Section 4.4 to solve the C-MDP. Finally, several scenarios are simulated to verify the
algorithm performance and analyze the simulation result in Section 4.5. The whole

chapter is concluded in Section 4.6.
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4.2 System Modeling

This section proposes an MNC-ICES model, including various types of energy
sectors and corresponding network models. Specifically, the MNC-ICES model, as
depicted in Fig. 4.1, operates as a localized integrated energy system catering to MEUs
on the demand side. The proposed model consists of 1) two types of DERs, WT, and
PV; 2) two types of energy storage systems, EBS and TES; 3) CHP as a power
generation unit, as well as 4) MEU consisting of electric boiler (EB), GB, and energy
demand for power and heat. More importantly, the modeling of physical integrated
energy networks for electricity, natural gas, and heat within the MNC-ICES model is
presented. These networks are foundational components and are vital for the efficient
transmission and distribution of energy resources. To this end, multi-network
constraints are proposed to govern the behavior of each network, complying with
physical constraints in real-world operation. The cooling system (including CHP
cooling generation, cooling network, and cooling load) is omitted for simplicity, since
its similar operational characteristics to the heating system. The loads for MEUs are
consequently modelled in terms of EB and GB, which is a simplified model but
sufficient to reflect the basic consumption behavior in the regime of ICES operation.

The MNC-ICES model is assumed to encompass a singular operator, i.e., I[CESO,
scheduling energy devices and conducting energy transactions. The ICESO should
manage the energy schedules of energy devices and determine the energy prices for
MEUs to maximize the total profits without violating the network constraints.
Therefore, the ICESO needs to schedule the energy devices dynamically for local
energy conversion and price-integrated energy to mobilize the IDR resources of MEUS.
In contrast, MEUs adjust energy consumptions due to IDR oriented from energy
flexibilities. The whole period of operation and transaction can be divided into 24
intervals (t = {1,2,...,T}), and N MEUs are represented by i = {1,2,..., N}. In each
step, the ICESO should read the wholesale prices information, observe the local

information on energy devices, and evaluate the state of charge of energy storage

59



systems of TES and EBS before scheduling. Then, the energy prices for MEUs need to
be set, the operation status of energy devices needs to be scheduled, and the TES and
EBS need to be charged or discharged at each time interval. The detailed models of

MNC-ICES are presented as follows.

External MNC-ICES
wholesale market | Networks
N ST TET ST
£t T ICESO | [ ea9ce |
we ! .Rﬁ,Ré‘: o--o :
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Fig. 4.1 Illustration of the proposed multi-network constrained integrated

community energy system model

4.2.1 Electricity Distribution Network

In the distribution of electricity networks, the prevailing topology is often radial,
which lends itself well to representation as a tree graph. In this representation, the root
point corresponds to the connection with the transmission network. The distribution
network can thus be visualized as an interconnected web of nodes and transmission
lines, embodying the essential structure of a tree graph.

Let n € N, denote the set of nodes within the distribution network, and (n,m) € P,
represent the set of transmission lines governing the interconnection of these nodes.
Fowllowing the paradigm of radial distribution electricity networks, this network
configuration captures the hierarchical nature of power flow from the root point, linked
to the transmission network, branching out to various nodes within the distribution
system. To govern and constrain the dynamics of real power, reactive power, and

voltage within the radial distribution network, the linearized DistFlow approach is
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adopted [78]. The ensuing sections delve into the specifics of how linearized DistFlow
constraints shape and guide the real power, reactive power, and voltage considerations

in the context of distribution system operation.

pfzzx,g,teT (4.1)

vn
Pl =P'—pt, VneN,teT (4.2)
Qni1= Q% — i1, VR E N, t ET (4.3)
Vi, =Vt — (bIPt + b2QL),vn €N, t €T (4.4)
V,<Vt<V,Vne€N,teT (4.5)
0<pf<p, VielLteT (4.6)
0<qf<q,VielteT (4.7)
0<P., <PunVnmeN,V(nm)€EPL,teT (4.8)
0<Qn<0Q,,YnmeN,Y(nm)EP,teT (4.9)

In (4.1)-(4.9) P%,, and Qf,,, indicate the real power and reactive power flow from
bus n to node m at time t. V! is the voltage magnitude at the bus n at time t. p, and ¢},
are the real and reactive power exchange at bus n. b} and b2 are the resistance and
reactance between the bus n and n + 1. V,,/V,, are upper/lower bound for voltages of

each bus. P, /Pam and 6nm/ Qnm denote the upper/lower limits for active and

reactive power of the transmission line between bus n and bus m.
4.2.2 Natural Gas Distribution Network

The natural gas network, renowned for its intricate network of pipelines enabling
bidirectional gas flow, constitutes a critical infrastructure for the dissemination of
energy resources. Traditionally, the directionality of gas flow is contingent upon the
interplay of gas pressure differentials and injections at discrete nodes. However, in this
work, the scope is limited to the dynamics of unidirectional gas flow within this network.
This assumption is made based on operational constraints whereby consumers
exclusively draw upon gas resources, with the absence of gas production and storage

facilities.
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Within this defined framework, let n € N, denote the set of nodes, and (n,m) € F;
represent the set of gas pipelines intricately threading through the natural gas network.
To model the dynamics of unidirectional gas flow, this study employs the Weymouth
equation [79, 80]. The network-wide constraints for natural gas networks are given as

(4.10)-(4.14).

9fmn = sgn(Prin, Pryr) Cmn\/I(PnZ)Z — (Pry)?|,Y(nm) E R, VEET  (410)

~9f un S 9fihin S Gf iy ¥(,M) € P (4.11)

Gt = — Z 9ffn,¥(n,m) € P VLET (4.12)
mENg

Pr, < Pr{ < Pr,,Vn€ N, Vt €T (4.13)

0<Gt<G,VneEN,VteT (4.14)

In equations above, gf;t, is the gas flow in the pipeline from node m to node n.
P! is the gas pressure of the node n. G is the gas consumption in the node n. C,,, is
the line pack constant of gas pipeline mn. Sgn(+) is the signal function to determine the
direction of the gas flow. Equations (4.10)—(4.12) show the constraints for nodal natural
gas flow balance with the setting of Prgrg: = Pymax- In (4.11), ﬁmn is the limitations
for the gas flow in the network. Equations (4.13)—(4.14) limit the nodal pressure and
gas sources within its threshold, where Pr,, and Pr;, are the upper and lower bounds of
gas pressure at node n, G,, is the limitation for gas consumption in node n. It is worth
noting that (4.10) is a non-convex equation constraint in an optimization problem, being

hard to tackle by using a mathematical programming approach.
4.2.3 District Heating Network

Heat networks are vital for transmitting thermal energy through hot water via water
pipelines, which are conventionally comprised of supply and return pipelines. The
generation of heat energy, typically by CHP systems within the MNC-ICES model,
initiates the flow of water in the supply pipelines to consumers at each node. After the
consumer utilizes the heat energy, the water, now cooled, is directed back to the CHP

through return pipelines. This unidirectional water flow mirrors the direction of heat
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flow. Notably, the temperature and pressure of water decrease along the heat
transmission direction, indicating both heat loss during transmission and the propulsive

force for water flow. The heat flow is roughly described by Fig. 4.2.

supply piplines S t N S
'pPply ptp T; mi, T; T
O S 0O 0O >
my mj mp
! MEUZ ! ! MEU2 ! ! MEUn !
return piplines i i %
O O O« e & >
R R
Ty T; Ty

Fig. 4.2 Representation of district heating network

Variable Flow Temperature Constant (VFTC) method is employed to model the
heating network [81]. The temperature at the supply and return sides of each node is
considered constant over time. During heat transmission, a fixed proportion of heat
injected into a pipeline is lost as the water progresses to the next node. Denoting nodes
as n € Ny, and direct supply and return pipelines as (n,m) € S;f and (n,m) € S, ,

respectively, the heat network model is formulated as follows.

Mt — Z ML, = ML,V (nm) € Sy, ¥(n',m') € SF,n € Ny, Vt € T(4.15)

(nm)es; (n';mNes;

Z Hf = —¢sME(T; —TR),n € Ny, VtET (4.16)
i€l,
—N
MN < M, < M,n € N, Vt €T (4.17)
—S
0< My, < My, V(n,m) € (S; USH),VteT (4.18)

In (4.15)-(4.18), M., represents the pipeline heating flow, M} denotes nodal
heating flow, and Hf signifies the nodal power injection of a consumer. c¢ denotes the
heat capacity of water, while T, and T,R indicate temperatures of node n in the supply
and return networks, respectively. M: and MY represent the upper and lower bounds
of nodal flow. The heat flow Mflm in the pipeline (n, m) is positive if the direction
aligns with water flow and negative otherwise. In the proposed model, (4.15) is the
equality constraints for nodal flow, while (4.16) describes the nodal power injection

given the nodal flow. Equations (4.17) and (4.18) impose inequality constraints on
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nodal flow and pipeline flow. Importantly, the constraints reveal bidirectional nodal

flow and unidirectional water/heat flow within the pipeline.
4.2.4 Energy Devices Modeling

1) Combined heat and power (CHP)

CHP, a single-input multi-output energy converter, assumes a crucial part of the
MNC-ICES model due to its high energy conversion efficiency from natural gas to
electricity and heat [82, 83]. CHP is characterized by two constant energy conversion
efficiencies for electricity and heat. The detailed operation model of CHP, depicted by
a non-convex FOR enclosed by the boundary curve ABCDEFG, is adopted and shown
in Fig. 4.3. P{yp, Hyp are generated power and heat for the CHP in time slot t. The

FOR of the CHP is divided into two convex sections and is represented as follows [32].

B C
l:’CHP.n B l:)CHF‘.n

Pépn — Pohipn — X (HEgpn — HgHP.n) <0,VvteT (4.19)

I—I(]?HP.n - I—IEZ:HP.n

Pcup — Plup c

cHp — HchHp

e t E PCEHP — PCFHP t E

- (1 - XCHP) XT' < Pcyp — Peup — HE. —qr. < (Héup — Hegp), VE € T (4.21)

cHp ~ Hcup
t t D lD(]:)HP B lD(]:EHP t D

—(1—Xtup) X T < Pyp — Plup — —p———5— X (Heup — Houp), VE €T (4.22)

Hewp — Heup

—t
Xcup + Xcup = Icup VEET (4.23)
—t
—(1 = Xbup) X T < Hiyp — HEyp < (1= Xewp) X T VL ET (4.24)
0 < Plyp < P&p X IEyp, VEET (4.25)
0 <Hiyp < Hyp X Iiyp, VEET (4.26)

In equations above, P&yp, Hyp are generated power and heat for the CHP in time
slot t. As the region is described by a non-convex polygon, P{;p and H2yp indicate the
power and heat output of the CHP at point A in the feasible region, and the same applied
to the other points BCDEF. XEHP(XEHP) states the operating status in the first (second)
convex section, when the CHP operate in the first (second) section, XEHP(XEHP) =1,

—t
and Xf&yp (XCHP) =0. I denotes a sufficiently large number to assist model

description, while I¢yp is the commitment status of the CHP. The total operation cost
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of the CHP unit at time t can be expressed by equation (4.27), where acyp, bcup, Ccup

dcyp, ecup and foyp represent the cost coefficients.
t t t _ t 2 t
Ccup(Pcup, Henp) = acupPcyp + beupPeup + conp +

2
deupHenp + ecupHenp + fonpPéupHenp (4.27)

A B Max. fuel

=
=
}
[<P]
E Max. heat extraction
[~ W
Min. fuel D
Heat (MWth)

Fig. 4.3 Feasible operation region (FOR) of CHP units

2) Distributed energy resources (DER)

The power output of DER, denoted as P}rr, is defined in equation (4.28) by
incorporating the power generation of PV and WT. The power generation function for
DER accounts for power output uncertainty, modeled by probabilistic distribution
functions for PV and WT, respectively.

Pier = Ppy + Plyr (4.28)

As variable renewable energy (VRE), wind power inherently carries high
uncertainty. The wind speed (w), directly influencing power output, is predicted with
an unavoidable error Aw, which is modelled by a Weibull PDF [84]. The power output
Pt of WT is positive if and only if the wind speed exceeds the starting speed (w§),);
otherwise, Pj,r is always zero. The upper limit for WT power is Pjr ,qreq When
Wigtea < W < w5, If the wind speed surpasses the cutout speed w§,,;, WT will be cut
out, resulting in P}, = 0. Additionally, the Weibull PDF is employed to estimate the
uncertainty parameter due to wind speed prediction errors. The wind speed (w), directly

influencing power output, is predicted with an unavoidable error Aw in (4.29), which
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is modelled by a Weibull PDF [84]. The power output P5,; of WT is modeled in
equation (3.30), where it is positive if and only if the wind speed exceeds the starting
speed (w$,); otherwise, Pr is always zero. The upper limit for WT power is Plyr rated
when wfgeq < 0 < w5y, If the wind speed surpasses the cutout speed w§,,;, WT will
be cut out, resulting in P, = 0. Additionally, the Weibull PDF is employed to estimate

the uncertainty parameter due to wind speed prediction errors in (4.31)

w = ws + Aw (4.29)
J 0, w<w, or w=wsy
w + 0
PVtI/T((‘)) = —chVtVT.rated' wicn Sw< wf‘ated (4‘-30)

Wyated + win
L PVtVT.ratedl wgated Sw< (‘)Sut
k /Adw + 0.5\71 _(Aw+0.5)k
Fy(Aw; A, k) = ;<—) e\ 4 do 2 —0.5 (4.31)

0, Aw < —0.5

For photovoltaic power generation, the prediction error Al of PV is introduced in
(4.32). PV generates electricity by converting solar radiation energy, and power
generation is directly related to solar irradiance in (4.33). The Beta PDF is employed to

estimate uncertain parameters with minimal error in (4.34).

I =1Is + Al (4.32)
PIEV = z npvnSpvnIt (4.33)
NENpy

(A1 +0.5)% (1 — (41 +05))
fol ue1(1 —u)f-1du

Fo(Al;a,B) = (4.34)

3) Energy Storage Systems (ESS)

ESS contains the EBS and TES for the energy storage of power and thermal energy,
respectively. The EBS functions as a charge-dischargeable battery with varying
efficiency [85]. The operational strategy of EBS is modeled at a granularity of one hour,
i.e., one time interval. Charging and discharging operations are consolidated into a
single activity within one time slot [86].

The detailed model of EBS is shown as follows.

Etps = (1 — Beps)Egps + Peps.cleps.c — Pepsa (4.35)

0 < PEtBS.C < SE'BS.CPEBS.THCLX (4-36)
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0 < Pgps.a < Seps.aPessmax (4.37)
Skgsc + Sgpsa <1 (4.38)
0 < Egps < Egpsmax (4.39)

In equations above, Efg is the battery capacity at time interval t. f and nggs . are
predetermined parameters representing the loss factor and charging efficiency,
respectively. Plgs . and Pfg 4 represents the charging power and discharging power at
time step t, respectively. Stps . and Stgs 4 represent the charging state and discharging
state at time step ¢, respectively. Pggs c.max ad Peps d max are the maximum charging
and discharging power, respectively. Eggsmin and Egpsmax represent the upper and
lower limits of battery capacity, respectively.

In the model above, the representation of the SoC is shown in (4.35). The maximal
charge and discharge power are constrained by (4.36) and (4.37), respectively. (4.38)
is employed to determine the charge of discharge state of EBS. (4.39) constraints the
range of total capacity of the energy in EBS.

In the model of EBS, Ef g is the battery capacity at time interval t. 8 and ggs.¢
are predetermined parameters representing the loss factor and charging efficiency,
respectively. Plgs . and Py 4 represents the charging power and discharging power at
time step t, respectively. Stps . and Sty 4 represent the charging state and discharging
state at time step t, respectively. Pggs cmax a0d Pggs d.max are the maximum charging
and discharging power, respectively. Eggsmin and Eggs max r€present the upper and
lower limits of battery capacity, respectively. TES has a similar model to EBS. Please
refer to Appendix for the detailed description.

A generalized energy storage system model is applied to address TES. This model

aligns with that of EBS and is not detailed here for the sake of brevity.

Etgs = (1 — B)Efgs + HigsNresc — Hresa (4.40)
0 < Hrgse < Stes.cHresmax (4.41)

0 < Hrgs.a < Stes.alresmax (4.42)

Stesc + Stesa <1 (4.43)

0 < Efps < Eresmax (4.44)
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4.2.5 Multi-Energy User (MEU) Modeling

As rational integrated energy consumers, MEUs engage in the procurement of
energy to fulfill their energy demands for both power and heat [87]. MEUs are
conceptualized to possess elastic electricity consumption appliances and energy
conversion devices, including EB and GB, which enable them to adjust energy
consumption dynamically across various time periods and multiple energies.

At wt
w; _EL(Pife)Z'O = P‘t, <—

e — At
EMEU(Pit,e) = N2 . ' (4.45)
@n)° e @
ZAi T Le Ai

2
Hugy (Hf op Hi goo Hin) = —0f (Hfop + Higp + Hp) ™ + 6f (Hiep + H gp + HE ) (4.46)
In (4.45), Pl-t,e is the power consumption of MEU i during time interval t. w; and A;

are preset parameters reflecting the preference of MEU in energy consumption. In

(4.46), Hl-t,eb,Hl-t' gp and HE n are heat power from EB, GB, and ICESO, respectively.
Similarly, o} and ¢} are preset parameters. By considering the utility above, the

objective function of MEUs is modelled by (4.47) and is constrained by (4.48)-(4.52).
( (Ewso(PL) + Hygu(Hf oy Higy HE)) )

T
— Utility for energy consumption
. max  Uygy = E R 2 . gyt ! p A (4.47)
PiePienPightin t=1 | — (xr,e (Pi,e + Pi’eb) + xr_gPi’gb + xr,hPi,h)

Cost for energy purchase

s.t.
H{ ., = NepiPfes (4.48)
H{ ;5 = N6,iPlgp (4.49)
0 < Pfe < Plomax (4.50)
0 < Plep < Plepmax (4.51)
0 < Pigp < Plgpmax (4.52)

In these equations, P/, and P}, are power and gas consumed by EB and GB of

MEU i during time interval ¢, respectively. ngp; and nsp; are the energy conversion

rates of EB and GB for MEU i. P, 1naxs Popmax and Pf g may are the upper bounds

for the corresponding power consumption of electric appliance, power consumption of

EB, and gas consumption of GB.
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Equation (4.47) is the objective function of the MEU with the decision variables of

P!, Pl P} Hit'h. In (4.47), the first term is the utility for integrated energy

L,gb’
consumption, and the second term is the cost for integrated energy purchase from
ICESO. Equations (4.48) and (4.49) are the equality constraints for the power

conversion of EB and GB. Inequalities (4.50)-(4.52) are constraints for electricity

consumption, and power input for EB and GB, respectively.
4.3 Problem Formulation

This section presents the multi-networks constrained operational optimization
problem for the ICESO and reformulates it into a corresponding C-MDP for the
implementation of Safe RL algorithm. Specifically, the cost term in the C-MDP is
denoted by the network constraint violations. By solving this C-MDP, the ICESO can

maximize its reward with the tolerated constraint violation.
4.3.1 Objective Function and Constraints

The profit of ICESO is mainly the difference between the revenue for selling energy
to MEUs and the cost of energy purchasing, as well as the imbalance penalty. The

corresponding objective function is presented in (4.53).

N N N
t t t t t t
(xr,e Z Pio+xrg4 ' Pi,g + x5 p E ' Pi’h) —
=1 i=1 i=1

T =
max Ujgsp = z Revenue for selling energy (4_53)
(0]
=1 (xwepmt/e +xwng£g) (6t imb.e +6tlebg +6F€Hitmb)
Cost for energy pruchase Cost for energy balance
s.t. VteT
(4.1) — (4.52)
Pie + Phgr + Z Péupne + Pegsa — Pégsc + Pimpe = Z Pf, (4.54)
NEN, IEl,
Z Hipupp + Higsa — Hipse + Hinp = Z H{ (4.55)
NneNp LEl,
vag + P, Lmbg Z Z P(?HP.g (4-56)
i€l NneNg
xmme =< xﬁ.e < xrtnax.e (4-57)
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xrtnin.g < xrt.g < xrtnax.g (4‘-58)

xrtnin.h = xﬁ.h < xrtnax.h (4-59)

In (4.53), ¢ = {xﬁ,e»xﬁ,g'xﬁ,h' Péup.e» Peps.a Péps.c Henpr Hrps.ao HTt"ES.c} is the set

of decision variables, and several decision variables are omitted due to the energy

balance among several variables. The objective function in (3.53-a) constitutes three

parts, revenue for selling energy, cost for energy purchase, and cost for energy balance,

where Pfp o, Hinp, Pinp o are the imbalanced electricity, heat and natural gas for
ICESO. Penalty indexes 8¢, &, 8}, are preset parameters to penalize the energy
imbalance and determined based on energy prices. Also, the objective is constrained by
(4.1)-(4.52) and (4.54)-(4.59). Equality constraints (4.54)-(4.56) indicate the integrated

energy balance. (4.57)-(4.59) are inequality constraints for the retail energy prices,

where Xfax.e» Xmines Xmax.g» Xmin.g> Xmax.h> Xmin.n aI¢ preset parameters indicating

the upper bounds and lower bounds for power, natural gas and heat, respectively.

The energy balance constraints are actually relaxed by introducing the penalty terms
6. However, network constraints are not directly relaxed to the objective function, as
penalties for network constraint violations are hard to determine. Specifically,
compared with energy imbalance that only decreases the profits from the economic
perspective, the violation of network constraints is more serious and may affect the safe
operation of the ICES. Moreover, determining penalties for network constraint
violation to realize a fair tradeoff between improving profits and reducing violations is
not straightforward. Therefore, it is assumed that the ICESO aims to guarantee safe
operation rather than uplift the economic revenue. Consequently, the network-
constrained operational optimization problem is formulated to C-MDP in the next
subsection.

Moreover, it is worth noting that violating safety constraints in an ICES has
immediate physical, operational, and regulatory consequences in practice. In the power
network, exceeding line/transformer ampacity or voltage limits causes overheating,
accelerated insulation aging, protection miscoordination, inverter trips, and potentially

feeder outages. In the gas network, breaching pressure/flow bounds risks compressor
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surge, line-pack depletion, and, in extreme cases, pipeline damage or supply
interruption. In the district heating network, violating temperature/pressure/flow
constraints leads to comfort violations, pump cavitation, thermal stress and leaks, or
safety-valve discharge. Because these carriers are coupled (e.g., CHP, boilers), a

violation in one layer can cascade to others.
4.3.2 Markov Decision Process (MDP)

To optimize the decision-making process of ICESO, a MDP is leveraged to describe
the integrated energy transactions and then a DRL algorithm is used to solve it. This
approach treats the ICESO as an intelligent agent that makes decisions based on the
environmental observation of wholesale market prices (both electricity and gas), and
power generation of DER. The objective is to improve the pricing decisions by
maximizing the accumulated return, using a well-defined reward function in (4.53). The
MDP can be denoted by <S,A,R,P,u,y>. S is the set of states. S =
{x8e x84, Pyt predices Phv preaices EEss» Efgs}, encompassing electricity market price,
natural gas market price, forecast power generation of WT and PV, state of charge of
EBS and TES. A is the set of actions. A=
{xt e xt g, xt 1, Plap, Henps Pigs.c Pegs.a» HYgs.o Higsa) represents the available
actions as the decision variables in (4.53). R:S X A X § — R is the reward function,
which quantifies the action's performance and is presented by the objective function.
P:SxAxS+—[0,1] is the transition probability function. The state transition
function is not considered due to the assumption of uncoupled state across time periods.
u: S — P(A) represents the policy of the agent, mapping from states to a probability
distribution over actions [88]. y € [0, 1] is the discount factor to discount the future
reward.

The discounted accumulative reward under policy p is denoted as (4.60). In (4.60),
T = (Sg,a9,51,a4 * +*) 1s a trajectory of the agent with a series of actions, and 7 ~

m indicate trajectories distribution under policy. To conclude, the aim of MDP is to find
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the optimal policy p* that can maximize the discounted accumulative reward R(u), as

(4.61).
R(w) = Erepp lz YR (se, atrst+1)] (4.60)
t=0
u* = arg ml?xR(u) (4.61)

4.3.3 Constrained-Markov decision process (C-MDP)

To maintain the energy flow complying with the network constraints, a cost
function is proposed for the C-MDP, indicating the violation of network constraints.
The C-MDP can be denoted as < S,A,R,C,P,u,y >, which is an ordinary MDP
augmented by cost function C(s, a). The cost function is denoted by C: S X A X S +—
R, mapping from transition tuples to cost. The explicit expression of the cost function
is given in (4.62). It comprises the standardized constraint violation of cost in three
kinds of network constraints. As the transmission capacity is always designed to be
large enough to carry the real and reactive power in the electric distribution network,
only voltage constraints are considered in the following cost function.

— _+ +
[Vn,t - Vn] [_Vn - Vn,t]
— +
Vo 14

Cost for constraints violation in electricity network
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Cost for constraints violation in heat network

NENp,V(n,m)€EPy

In (4.62), [x]" = max{0,x} is the projection function. The cost function is
constituting costs for constraint violation in the electricity network, gas network, and
heat network. To limit the constraint violation, the constraint for the cost function is
proposed as (4.63), where d is the upper bound of the cost function.

C(u) <d (4.63)

The long-term discounted cost under policy u is similarly defined as C(u) =

~ul Xter Ve C(St, ¢, Se41) ], and the corresponding limit is d. In the C-MDP, the
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goal is to select a policy u that maximizes the long-term reward R(m) while satisfying

the constraints on the long-term costs.
u* = argmax R(u) (4.64)
u

s.t.(9)

4.4 Proposed TD3 algorithm

In this section, a PD-TD3 algorithm is developed to solve the proposed C-MDP and
learn the optimal operational strategy for ICESO. Specifically, the proposed C-MDP is
formulated into a Lagrangian function, which is then converted to an unconstrained
min-max problem and thus applicable to the solution of the iterative primal-dual TD3
algorithm. The PD-TD3 algorithm then solves the primal-dual problem by using the

gradient descent to iteratively update the policy and Lagrangian multiplier.
4.4.1 Primal-Dual TD3 algorithm

The challenges of optimal operation of MNC-ICES model mainly come from the
non-linear integrated network constraints. Conventional deep reinforcement learning
algorithms do not directly consider these constraints in the learning process [88].
Moreover, traditional DRL algorithms still face the problem of overestimation of Q-
value and cost value in C-MDP and instability during the training process. To overcome
these drawbacks, the proposed PD-TD3 algorithm is able to address the challenges of
constrained optimal operation problem in MNC-ICES model by solving the C-MDP,
and mitigating the issue of value overestimation and training instability.

As a RL method, the key of the primal-dual algorithm is to augment constraints on
the expected rewards, such that the training of the RL agent converges to the optimal
constraints-satisfying policies. Therefore, the objective of primal-dual TD3 for cost
minimization can be generally written as (3.65), where L(u,A) as (4.66) is the

augmented objective action-value function, A4 denotes the multipliers of constraints.
(u*,A*) = argmin max L(u, 1) (4.65)
A>0 u

L) = RG@ = ) ACE@ - d) (4.66)
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In (4.66), R(u) and C(u) represent the reward and the cost for constraint violation
of a DRL agent. For constrained optimal operation of MNC-ICES model, the reward
and constraint violation can be the total profits of the ICESO and violation of physical
constraints of integrated distribution networks, respectively. To solve the unconstrained
minimax problem (4.65), the iterative primal-dual method is used as a canonical
approach where in each iteration. In each iteration, the primal policy © and the dual
variable A are updated in turn. The primal-dual update procedures at iteration & are as
follows:

Or+1 = O + Vo (L((0),21)) g0, (4.67)
herr = fie(Que 1(6) (4.68)

In the proposed PD-TD3 algorithm, the primal variable, i.e., policy parameters, is
updated by policy gradient, which is specified later. The dual variable, i.e., the
Lagrangian multiplier, is updated by (4.69). In (4.69), B is the step size of the
multiplier update. [x]* = max{0, x} is the projection onto the dual space A* > 0. Note
that the dual variable is updated in a stable manner via (4.69), which applies a tunable

step size for gradual adjustments

Akr1 = [ + B (Cpe) — D]T (4.69)
4.4.2 Algorithm Design for Primal-Dual TD3

The proposed PD-TD3 algorithm is an off-policy DRL algorithm, enabling offline
training of strategies in optimization problems and using DNN approximate action-
value functions. The overall framework of the PD-TD3 is summarized in Algorithm
4.1. As a DRL algorithm based on the actor-critic framework, the PD-TD3 adopts
DNNss to approximate the value functions and policy functions of the C-MDP, which
denotes the critic and actor, respectively. To estimate both the reward and cost in the
C-MDP, PD-TD3 employs two kinds of critic networks, namely the reward critic
network and the cost critic network. Additionally, as PD-TD3 uses the trick of double

networks, each type of critic consists of two online Q networks and their target networks,
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mitigating the issue of Q-value overestimation observed in other value-based RL
algorithms. Also, the target networks of the critic are delayed copies of the online
network, which is supposed to mitigate the instability of the training process. Therefore,
three sets of neural networks are employed: (1) two reward critic Q-networks
Qr1(s, al6%,), Qra(s, al63,) and their target network Qp, (s, a|931'), Qr; (s, a|0,?2’),
(2) two cost critic Q-networks Q4 (s, a|9g1), Qcz (s, a|9CQ2) and their target networks
Qc1 (s, a|9§1’ ), Qc2 (s, a|HCQ2’ ), and (3) the actor policy network u(s|6#) and its target
network u'(s|6#*").

During the training process, the agent randomly samples transitions
(si,a;, 13, i, Siy1) from the ERB to form a mini-batch N for experience replay learning.
Then, the target of the reward and cost critic networks are presented as (4.70) and

(4.71), which are employed to update Q-functions.

_ . ~ Qr

yi=ri+y min Q (Sm. ai+1I9R,.) (4.70)
_ . ~ Qr

zZi=¢ + ng%ig}Q (5i+1' ai+1|9cj) (4.71)

In (4.70) and (4.71), a4 is the clipped target action shown in (4.72). Here, target
policy smoothing is employed by incorporating clipped Gaussian noise into the target
action during the evaluation process. This technique promotes smoother and more
stable policy updates, facilitating convergence and enhancing the quality of the learned
policy.

iy = W (s|O*) + & E~clip(IV(0,6), —c,c) (4.72)

Based on the target, the reward and cost critic networks are updated by minimizing

the loss function, i.e., MSE between the value functions and their targets, proposed in

(4.73) and (4.74), respectively.

1
Le =5 ) [vi— Qa(sualof)] (473)
iEN
1
Lc = NZ[ZL' — Qc(si,ai|9g)]2 (4.74)
iEN

To mitigate the training error caused by correlated samples, the primal variable, i.e.,
policy network, and dual variable, i.e., Lagrangian multiplier after a fixed number e of

iterations by using (4.75) and (4.76), which is the so-called “delayed” update. This
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delay in primal and dual variable updates reduces the correlation between successive
updates and prevents rapid forgetting of previously learned policies. The policy is
updated by one step of sampled gradient descent using (4.77). Also, it should be noted
that the dual variable updated in (4.78) uses the minimized estimated Q-value for cost,

alleviating the overestimation of the Q value to ensure a proper update descent.

1
onl(6,2) ~ 7> VoulQna (50 uCs:10")16%) = AQcr (50, uCsl016G)] - (477)

iEN

1 ,
Vi£(64,2) =5 )| min Q (sien @inal62) = d| (478)
ieN '

Additionally, all target networks of the actor and critic are updated by using the soft
update presented in (4.79) and (4.80). It allows a small pace update in each iteration
and ensures a gradual and stable convergence of the networks, where p represents the
soft update parameter.

0% « pby + (1 —p)o¥ (4.79)
O* « pB, + (1 —p)o¥ (4.80)

4.4.3 Discussion of Potential Limitations

Previous subsections address the Q-value overestimation problem in the typical RL
algorithms. Considering the PD-TD3 is developed based on the conventional TD3
algorithm, it also inherits the following drawbacks: 1) The PD-TD3 algorithm is more
complex than the TD3 algorithm and requires more computing resources by increasing
numbers of hyperparameters. 2) The TD3-based algorithm is relatively sensitive to the
selection of hyperparameters. However, as the ultimate goal is to deploy this well-
trained algorithm to online dispatch, this could not be a serious problem.

If this algorithm is deployed to real-world ICES for online dispatch, an important
assumption is that, the environment (state transition) of the simulation (test system)
should be similar to the real-world ICES. Otherwise, the algorithm will generate unsafe
decisions because it cannot be adaptive to the unknown environment. Potential

solutions are twofold. First, a comprehensive modelling of system state transition using
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advanced deep learning methods is necessary. Second, the output of this RL algorithm

should be corrected by real-time control algorithms, such as model predictive control.

Algorithm 4.1 PD-TD3 algorithm

1: Initialize policy parameters 6#, Q-function parameters 9}?1, 9}?2, Hgl, ng, and
empty buffer R

2: Initialize target networks 0% « 0, 8% « 6%, 0% « 02,02 < 62,0% « 0%
3: Initialize Lagrangian multiplier A

4: repeat

5:  Initialize a random process N for action exploration

Receive initial state s,

for each transaction time slott = 1, ..., T do

Select action

Y Lo 3D

Execute action and observe

10: Store transition in the reply buffer

11: if s is terminal, reset environment state
12: Randomly sample a bath of transitions from N
13: Compute target actions using

Aiy1 = W (S|O*) + & E~clip(W(0,6),—c, c)
14: Compute target using
_ , ~ Qr
yi=rity min Q (Sm. ai+1I9R].)

_ . ~ Qr
Zi=¢ t ererﬁg}Q (Sm, ai+1l90j)

15: Update Q-function by one step of gradient descent by minimizing
1 o2
Ly=2 [y = 0(soail6d)]
1 iEN
2
Le=% ) [z = Qclsual0f))]
iEN
16: if £ mod e then
17: Update policy by one step of gradient ascent using
1
VorL(6*, 1) ~ Nz VB“[QRl(Siuu(Sileﬂ)lH}%) - AQC1(5i'ﬂ(5i|9“)|921 |
iEN
18: Update Lagrangian multiplier by one step of gradient ascent using
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V,L(0H, 1) = —z [

Qr
]g{lyzl}Q Si+1, Ai1110¢ ) d]

0% « pb, + (1 —p)o¥
0" < pb, + (1 —p)o*

iEN
19: Update target networks with
20: end if

21: end for

22: until convergence
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Fig. 4.4 Tllustration of the proposed PD-TD3 algorithm

4.5 Case Study

To validate the performance of the proposed PD-TD3 algorithm, a test system
consisting of 5 MEUs is adopted and is shown in Fig. 4.5. As shown in the test system,
a standard IEEE-33 bus electricity network, a heat network, and a natural gas network
are considered to model the whole integrated energy network structure in MNC-ICES.
It should be mentioned that simulation based on the test system is a generalized scenario
but not a representation of a specific real-world application. The numerical results
obtained from the proposed test system only serve as a demonstration of the proposed
models and methods and a foundation for further application. To bridge the gap
between generalized scenarios and real-world applications of the ICES models and

Machine Learning methods, future work will involve applying the developed methods

to actual energy systems models or more detailed case studies.

78

i
i
1
s

Twin Critic

"""" update by
VL(:T [ i (20)

'
1 Cost Target
! Network #1 Q¢

'
1 Cost Target
! Network #2 Q¢,



It should be mentioned that simulation based on the test system is a generalized
scenario but not a representation of a specific real-world application. The proposed
algorithm is only tested on a small system to validate its functionality and compared
performance to benchmark algorithms. The numerical results obtained from the
proposed test system only serve as a demonstration of the proposed models and methods
and a foundation for further application. To bridge the gap between generalized
scenarios and real-world applications of the ICES models and Machine Learning
methods, future work will involve applying the developed methods to actual energy
systems models or more detailed case studies.

The key parameter settings for the test system are given as follows. The voltage
constraints of the electricity network are set with an upper bound of 0.9p. u. and lower
bound of 1.1p. u., and the other configuration data for the power network is taken from
[89]. The natural gas network transmits the gas in the pipeline with an inside diameter
of 0.3m and an efficiency of 90%, operating at a temperature of 288.15°K. The gas
compressibility factor is set as 0.9Pa~1. The allowable pressure for gas transmission is
limited from 110kPa to 100kPa, and the maximal gas flow rate is 400m3/h. In the
10-node district heat system, the supply temperature at the most upstream node is 70°C,
and the return side temperature of the most downstream node is set to 30°C. The
temperature loss is assumed to be 0.1K/m on the supply side, and 0.05K/m in return
side pipelines [86].

The hourly wholesale prices for electricity and natural gas are obtained using the
real data of New England ISO. The constant natural gas price is set at 4.75£/MMBtu,
resulting in a natural gas price of approximately 16.2 £/MW or 0.165£/m3 .
Moreover, the power output of WT and PV are adapted from real-world data in [90].
The pricing ranges for electricity, natural gas, and heat in the MNC-ICES are set as 0 —
50£/MW, 0 — 50£/MW, and 0 — 40£/MW, respectively.

The proposed DRL algorithm is implemented on the Pytorch [91]. The neural
networks are configured with the settings shown in Table 4.1. The hyperparameters of

the algorithm shown in Table 4.2 are selected based on empirical values and adjusted

79



during the training process until the algorithm converges to the maximum profit. The
quadratic programming problem for the comprehensive energy demand response of the

MEUEs is solved using commercial solver.

et |

N1

' I
'
_________ (Y N N TN IR

.........

Fig. 4.5. Test system of integrated community energy system

Table 4.1 Neural network architectures settings

Neutral Networks Actor Critic
No. of Hidden Layers 3 2
No. of Neurons [128,32] [128,32]
Activation Function tanh ReLU
Learning Rate 4e-4 Te-4
Soft update parameter le-3 le-3
Delayed update frequency 2 2
Optimizer Adam optimizer Adam optimizer

Table 4.2 Hyperparameter settings of the PD-TD3 algorithm

Training parameters Parameters
Replay Buffer Size le+6
Replay Start Size 128
Batch Size 128
Discount Factor 0.99
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4.5.1 Training Performance

This subsection aims to validate the convergence performance of the PD-TD3. Safe
RL algorithms using both the Lagrangian method and the direct penalty method are
employed as benchmark algorithms. The L-SAC [65] and S-DDPG [68] belong to the
former, while typical TD3 with direct penalizing cost stands for the latter. The penalty
index A is set as 1, 10, 100, and 1000 for a comprehensive comparison. In this context,
each algorithm is trained 1000 episodes to learn the optimal strategy in pricing and
scheduling in MNC-ICES, while each episode contains 24 steps, indicating 24 hours
per day. Figs. 4.6-4.7 present the evolution of cumulative reward and cost for each
episode, respectively. The corresponding values are also listed in Table 4.3 for a clearer
demonstration. The allowable operating range of the cumulative cost is 0~10, and the
upper bound of 10 is marked in black in Fig. 4.7.

As illustrated in Fig. 4.6, the cumulative reward of the four algorithms has a similar
trend, which fluctuates a lot in the initial stage of training, since the algorithm randomly
chooses actions to explore the environment. Similarly, the initial cost for constraint
violation in Fig. 4.7 is relatively higher and fluctuates in the initial stage. With the
learning process going on, the policy is continuously trained and improved, resulting in
an increasing trend in reward and a decreasing trend in cost. In the comparison between
the algorithms using the Lagrangian-based method and direct penalty method, it can be
observed that typical TD3 algorithms with fixed penalty index usually have lower
reward and higher cost. The reward and cost of TD3 decrease as A increases.
Specifically, TD3 with A = 1000 has the lowest reward among all algorithms even L-
SAC, and the lowest cost among TD3 with all A settings. Moreover, its cost reaches
around the allowable requirement but is still unqualified. This demonstrates a worse
performance of the direct penalty-based Safe RL algorithms compared to Lagrangian-
based Safe RL algorithms.

In the comparison within algorithms using the Lagrangian Safe RL method, it can

be observed that the L-SAC converges with the lowest cumulative reward, which is
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nearly zero. This is thought as a local optimum and caused by the improper tradeoff
between the reward and cost, indicating an over-conservative policy of L-SAC.
However, the PD-TD3 shows a fast convergence to the highest reward among the three
algorithms, and it can be observed in both Fig. 4.6 and Table 4.3 that the cumulative
reward is about to converge around 200 episodes with a reward of almost 10000. This
is driven by the delayed policy update that can update the policy without the training
noise, training the policy networks effectively. In addition, the PD-TD3 deals with the
physical constraints by directly adjusting the policy of the actor-network. On this
account, the cost of PD-TD3 for an episode containing 24 operating hours is in the
allowable range of 0~10 after 500 episodes. In comparison, the cost of S-DDPG is out
of the allowable range during almost the whole training process, while the cost of L-
SAC is about 0 and is thought of as over-conservative. This is owing to the double Q
cost networks that assist in estimating the cost more precisely by eliminating the
overestimation of cost and thus achieving a fair balancing of the tradeoff between the
reward and cost, which has the highest reward and an allowable cost. Furthermore, it
can be observed that the reward of PD-TD3 converges around 200 episodes, and the
cost is operating in the allowable range after about 500 episodes. The convergence
speed of PD-TD3 is similar to L-SAC but is much faster than S-DDPG twice. Also, the
convergence process of the reward and cost in PD-TD3 demonstrates that the dual
variable converges to optimal after the convergence of reward, since the dual variable
is updated with delay in a small step to allow a high exploration in reward, avoiding
getting stuck in a local optimum like L-SAC.

Overall, compared with direct-penalty TD3 baselines, PD-TD3 attains the highest
average cumulative reward (~10,000 by around 200 episodes) while reducing the
empirical constraint-violation probability, which is proxied by episode safety cost, into
the allowable band (cost 0—10 per 24-h episode) by around 500 episodes; in contrast,
penalty-TD3 yields lower reward and persistent over-limit violations even at A =
1000. Among Lagrangian safe-RL methods, L-SAC achieves near-zero violations but

collapses to near-zero reward (over-conservative), whereas S-DDPG keeps violations
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out of range for most of training; thus PD-TD3 offers the best reward—safety trade-off,

with convergence speed comparable to L-SAC and roughly twice as fast as S-DDPG.
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Fig. 4.6 The evolution of cumulative reward for different Safe RL algorithms.

100 ; | “. :
——PD-TD3 ——TD3(3=10)
——S-DDPG TD3(»=100)
30 L-SAC ——TD3(=1000)|
——TD3(0=1)

Cumulative reward

0 200 400 600 800 1000
Training episode

Fig. 4.7 The evolution of cumulative cost of constraint violation for different Safe RL

algorithms.

Table 4.3 The cumulative values of reward and cost for constraint violation for

different Safe RL algorithms.

Episode
Algorithms Evaluation
1 100 200 400 600 800 1000
Reward  -15402  -87 9113 10703 11105 10513 10473
PD-TD3
Cost 196 27 21 12 6 5 5
Reward  -18964 556 6744 8665 9462 9596 9555
S-DDPG

Cost 77 1 14 17 11 10 11
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Reward  -20826 1282 4778 5179 5151 5145 5141

L-SAC
Cost 101 1 0.5 0 0.1 0.1 0.1
TD3 Reward  -18965 1151 2786 6593 8794 9162 7412
(A=1) Cost 170 60 46 30 38 37 37
TD3 Reward  -16229 335 1022 7562 7964 8922 6925
(A =10) Cost 126 105 54 32 35 32 34
TD3 Reward  -18967 1266 2530 6254 6932 6987 6614
(A =100) Cost 96 53 53 29 29 28 28
TD3 Reward  -18964 -22773 -13324 2363 7 1015 6614

(A =1000) Cost 8990 1830 2102 1993 2072 4210 4471

4.5.2 Generalization Performance

To demonstrate the generalization performance of the proposed approach, two
scenarios are simulated from the data set and analyzed in Figs. 4.11-4.12. Two scenarios
are characterized as typical days for summer and winter with different demands and
renewable generation. Despite the two scenarios having different energy production
and consumption characteristics, there are some similarities during the operation.
Firstly, during periods without lower demands for electric and heat power, the CHP unit
is turned off due to its high operational cost; the demands are satisfied mainly by
imported power and gas. Secondly, electricity prices show a similar trend to the
homogenous demand and wholesale prices for electric power across scenarios. These
show the generic strategy of the learned policy when facing similar conditions in ICES
operation.

Nevertheless, the learned policies and energy resources show more differences
across scenarios. As shown in Fig. 4.11, the CHP unit in winter day is turned on for
about 15 hours on winter days (0:00-11:00 and 18:00-22:00) since profits caused by
high demand for electricity and heat power across most hours can cover the operational
cost of CHP. However, CHP only works one hour on summer day in Fig. 4.10 due to

the lower demands and potential uneconomic operation. This results in heavy reliance
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on the external market on the summer day. Moreover, Fig. 4.9 shows lower prices for
electric and heat power on winter day. This is a consequence of the power generation
of the CHP unit and wind turbine, which has a lower cost than the external prices or
zero generation cost. On the other hand, the flexibility of ESS is more efficiently
realized on the summer day in Fig. 4.8. Although the export of power is not allowed in
the proposed model, the larger dependence on the external market on the summer day

provides more arbitrary chances for ESS.
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Finally, it can be concluded that the proposed PD-TD3 algorithm is able to learn an
effective policy for profit-maximization and safe operation in an MNC-ICES that can
generalize to different scenarios. Furthermore, the proposed method investigates the
flexibility potential of energy sources for two typical summer and winter days. More
specifically, compared to the summer day, the ICES reports on CHP electric and heat
power generation on winter day due to its less renewable power generation and higher
demands. In contrast, summer day imports more electric power and natural gas from

the external market, leading to higher energy prices for MEUs.
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Fig. 4.10 Energy sources and prices for heat power with PD-TD3 method in the summer day
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4.5.3 Analysis of Pricing and Operation Decisions

For a more in-depth analysis of the learned pricing and device scheduling policies
of the three algorithms above, the energy resources and prices for satisfying power
demand and heat demand in the typical test day (the winter scenario) are presented in
Figs. 4.12-4.13 for comparison of PD-TD3 and S-DDPG. As illustrated in Fig. 4.8 and
Fig. 4.12, two transaction results show a similar trend in electricity prices in the whole
transaction period because of the inherent impact of the same wholesale electricity
prices, but the prices in Fig. 4.8 are higher than those in Fig. 4.12, therefore resulting
in a smoother power consumption curve. The higher prices in Fig. 4.8 also leads to a
low electric power purchase in the WEM in most periods except 11:00-18:00 due to the
low power demand and low prices in WEM. However, the agent of S-DDPG poses a
much lower ICES power price, which makes the power consumption curve much
steeper. The ICESO of both algorithms determines lower heat prices in periods with a
turning on CHP due to its low marginal cost for heat production, while having a lower
natural gas price compared to heat in the rest periods.

The devices scheduling is also illustrated in Fig. 4.12. It can be observed that the
PD-TD3 operates CHP for a longer period and purchases less electricity from the WEM
compared to S-DDPG. Specifically, the CHP is turned on during the periods of 0:00-
11:00 and 18:00-22:00 to sell power and heat to MEUs, since WEM prices, power, and
heat demands are relatively higher. In the rest of the hours, the ICESO tends to sell
electricity and natural gas from the external market due to the low demand and high
cost of the CHP operation. During some periods, the ICESO can provide all the power
demand through the power generation from the CHP, DER, and EBS, and the power
demand is also cut down or shifted, which is thought of as operating in high energy
efficiency. However, the S-DDPG relies on the external market much more by
purchasing power and gas to satisfy demand in most periods except for 18:00-22:00,
when the CHP is turned on. This is because the S-DDPG algorithm cannot learn the

tiny difference in WEM prices and demand between the periods of 0:00-11:00 and
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11:00-18:00, even though the market environment during the former periods offers a
positive profits uplift for operating the CHP. This not only demonstrates the superior
policy of the PD-TD3 compared to S-DDPG but also indicates the high energy
efficiency of the MNC-ICES operated by the PD-TD3 algorithm.

Nevertheless, the policies generated by the PD-TD3 and S-DDPG also show
differences in physical constraint violations. As the power consumption under PD-TD3
is much smoother and lower compared to the S-DDPG shown in Fig. 4.12, it is intuitive
that the latter may have more constraint violations in the electrical distribution network
due to higher power consumption in peak hours (8:00-9:00 and 18:00-21:00). On the
other hand, there is a lower value in a single kind of power consumption for satisfying
heat demand in a single time slot, which is operated by S-DDPG and shown in Fig. 4.13.
The network safety of gas and heat is easier to guarantee in the former algorithm, while
the policy generated by the latter algorithm may transfer the burden of power
transmission from the electrical distribution network to the gas and the thermal
networks during peak energy consumption periods, which verify the inherent logic of

maintaining the operational safety accounting for multi-energy networks.
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4.5.4 Impact of CHP Models

As discussed in Section 4.2, the CHP with a non-convex operating region is
effective in generating both electricity and heat, providing system flexibility in reducing
the network constraint violation. This subsection examines the influence of the non-
convex CHP model on the operation region. For this purpose, a comparison between
the scenario with the simplified and detailed CHP model is made, along with the
subsequent analysis of the impact on energy transactions and ICES operation. The
energy resources and prices in the typical winter day by using simplified CHP are
presented in Figs. 4.14-4.15. The total reward and network constraint violations with

different CHP models are presented in Table 4.4.
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In Fig. 4.14, CHP's operation periods are cut down from 0:00-7:00 since CHP's
power and heat output are constrained, leading to its non-profitability during that period.
However, this change also results in higher electricity prices and a different power
consumption portfolio with a lower average value in MNC-ICES. It should be noted
that the less operational profitability of CHP increases the prices for heat but decreases
the gas prices, especially during the 0:00-7:00 in Fig. 4.15, when non-convex CHP is
in operation but simplified one is not, since the ICESO aims to stimulate the MEUs to
consume natural gas instead of heat with turned down CHP. Moreover, the heat
consumption is affected even in peak hours of heat demand, which is 18:00-22:00. As
the heat generation of CHP is constrained to be linearly related to the power generation,
and the heat demand is higher than the power demand during 18:00-22:00, the heat
generation is limited to a low level, leading to a significant cut-down in heat
consumption in Fig. 4.15 comparing those in Fig. 4.9. Nevertheless, the implementation
of simplified CHP model decreases the total generation of both power and heat, which
is shown in Table 4.4. The generations of power and heat decrease around two times
and seven times, respective, while the generation cost only decrease no more than three
times since the detailed CHP model has a small marginal generation cost for heat.
Finally, the implementation of the simplified model results in a lower cumulative

reward of 7698.97, compared to 11593.98 in the detailed CHP model.
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Even though the simplified model decreases the profits of ICESO significantly, it
results in a smaller physical constraint violation of electricity and heat networks and
has a similar violation in terms of gas networks in comparison to the detailed one, and
is shown in Table 4.4. Especially, the cost for heat network violation decreases from
4.91 to 0, because of the significant decrease in heat generation of CHP and the
consequent reduced heat consumption of MEUs. On the other hand, due to the substitute
effect, MEUs tend to consume more natural gas, putting a burden on the gas network
operation. This leads to a slightly higher cost for gas network constraint violations. In
summary, the implementation of a simplified model cut down the power and heat
generation, and cumulative reward significantly by narrowing the operation region,
indicating that the simplified model deviates from the detailed model to a great extent

and reflects an unfaithful simulation of the ICES operation in reality.

Table 4.4 Results comparison of implementing detailed and simplified CHP

models
Total Network violation CHP output
reward E G H E H Cost
Realistic CHP
model with
1159398 0.65 0.10 491 163.61 501.25 5728.65
non-convex

feasible region

Simplified
CHP model

7698.97 0.56 0.20 0.00 &7.04 69.63 2558.4
with fixed

conversion rate
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4.5.5 Sensitivity Analysis

In this subsection, a sensitivity analysis of operational profits (reward) and network
constraint violations (cost) is conducted to evaluate the impact of various factors on the
operational performance of the MNC-ICES model and the proposed Safe RL approach.
The tested factors include renewable power generation (wind turbines and photovoltaic
systems), wholesale energy prices (electricity and gas), and integrated energy demand
levels (electricity and heat), which are considered to introduce the most uncertainties
into the MNC-ICES model. Additionally, as the algorithm's performance is
significantly influenced by the random seed, which determines the sequence of random
numbers generated, the system is simulated 50 times for each scenario using different
random seeds. The sensitivities of reward and cost to these factors are evaluated and
illustrated in Fig. 4.16-4.17, respectively. The horizontal axis represents the variable
fluctuation ratio of the factors, ranging from 50% to 150% of the initial configured
value in increments of 10%. The vertical axis represents the rate of change in the
episodic reward/cost of the ICES. Each data point corresponds to a simulation result for
a specific scenario under one random seed with a specific factor adjustment, and the

trend line is plotted by fitting to the given data points.
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Fig. 4.16 Sensitivity analysis of ICES operation reward on different factors

Fig. 4.16 depicts the sensitivity of reward to changes in various factors. Renewable
generation and energy demand positively correlate with reward, exhibiting an
approximately linear relationship. Specifically, deviations in energy demand most
significantly affect the reward, whereas the reward is least sensitive to renewable
generation due to its small proportion in the ICES energy mix. Wholesale gas prices

exhibit an approximately linear negative correlation with reward, as higher gas prices
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increase operational costs. Notably, the wholesale power price shows a nonlinear, likely
hyperbolic, relationship with reward. The initial decline in reward corresponds to the
natural negative correlation between reward and external energy prices. Conversely,
the latter part of the hyperbolic curve is likely due to the increased energy storage
arbitrage opportunities created by larger wholesale price gaps.

Fig. 4.17 illustrates the sensitivity of cost to changes in various factors. Among
these, renewable generation has the weakest negative correlation with cost, with its
impact being almost negligible. Energy prices demonstrate a certain hyperbolic
relationship: initially, an increase in the price of a single energy source decreases costs
for a network with lower energy consumption, while an increase in energy price
improves the consumption of alternative energies, thereby raising network constraint
violations for other energies. Fluctuations of energy demands show a piecewise linear
relationship to the cost; energy demand below a certain level result in almost zero
network violations, whereas demand above this threshold leads to linear growth in
network constraints. Notably, thermal energy demand and wholesale power prices
impact network constraint costs most. In contrast, wholesale gas prices and power
demand have a weaker impact. The influence of PV and WT is relatively minor and can

almost be disregarded.
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Fig. 4.17 Sensitivity analysis of ICES operation network constraints violation (cost)

on different factors

4.5.6 Impact of Hyperparameters

As hyperparameters have a great impact on algorithm performance, sensitivity
analysis is conducted on selected hyperparameters, mainly including the Q-network
learning rate and actor-network learning rate. Fig. 4.18 shows the evolution of

cumulative reward and cost under different actor-network (policy) learning rates. It can
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be observed in Fig. 4.18 a) that the episode reward can converge to a high value fast
with a learning rate lying from 1le-4 to 5e-4 but may converge to a low value, which is
a local optimal, in several episodes with a policy learning rate from 6e-4. Also, the
curve of the cumulative reward increases faster in the initial stage with a lower learning
rate in policy, which means the exploration in the initial stage contains a higher
proportion of useless stochastic noise compared to the later stage. Among these
parameter settings, the policy learning rate of 4e-4 (purple) can assist in achieving the
highest accumulative reward. When comparing Fig. 4.18 a)-b), the policy learning rate
with a higher cumulative reward always results in a higher cost for constraint violation.
This demonstrates that the converged cumulative reward has a positive correlation with
the cumulative cost, while the policy learning rate plays a key role in the tradeoff of the
reward and cost. As all of these parameter settings satisfy the safe operating range of
0~10, the policy learning rate with the highest cumulative reward, which is 4e-4, is
selected to be the final setting of the algorithm.

As for the critic network learning rate shown in Fig. 4.19, the converged reward, as

well as the cost, firstly increases and then decreases with the growing actor-network
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learning rate, and the learning rate of 7e-4 shows the highest cumulative reward. In
general, the evolution curve with a lower learning rate tends to increase gently, while it
shows a steep increase or decrease in reward and cost with a higher learning rate.
Moreover, a positive correlation between the reward and cost can also be observed for
different settings in Fig. 4.19. Interestingly, the cumulative cost with the learning rate
of 5e-4 and 6e-4 may exceed the tolerated cost during the training process, while the
cost curve with 8e-4 is nearly zero and is considered too conservative. Among these
parameter settings of the critic learning rate, the settings of 7e-4 can balance the reward

and cost and increase the algorithm performance to the greatest extent.
4.6 Summary

In conclusion, this chapter proposes an MNC-ICES model to describe community-
level energy systems. The proposed model comprehensively models multi-networks for
integrated energy, realistic energy devices, renewable uncertainty, and IDR of MEUs.

Within the community, the ICESO schedules energy devices and prices integrated
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energy to maximize operational profits while securing the system operation within the
safety requirements imposed by integrated network constraints. This model provides a
basis for practical network-constrained community operation tools and can be used as
a reference for software development in energy system operation. Numerical results
reveal that the realistic model significantly differs from and can attain a higher
economic value than simplified models. A novel Safe RL algorithm, PD-TD3, is
developed to solve the constrained optimization problem in MNC-ICES and learn the
optimal scheduling strategies to maximize profits without violating safety constraints
dramatically. The proposed algorithm is based on the Lagrangian method, utilizing a
Lagrangian multiplier to penalize the constraint violation during the policy updates.
Double networks are employed to mitigate the Q value over-estimation issue of both
reward and cost, enabling accurate updates of the Lagrangian multiplier and achieving
a balanced tradeoff between the reward and cost. The simulation results demonstrate
the superior computational performance and the optimality of the proposed algorithm
compared with several benchmarks. Finally, the sensitivity of the MNC-ICES models
and the proposed algorithm to model factors and hyperparameters is also analyzed. This
work is impactful with potential beneficiaries, including ICES operators and residents,

as well as reinforcement learning researchers and practitioners.
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Chapter V

Multi-agent Reinforcement Learning for Mixed
Strategy Nash Equilibrium Estimation in Real-Time
Pricing and Demand Response

5.1 Overview

This chapter focuses on the RTP-DR problem as a combination of demand-side
management for the electricity retailer and energy management for multiple EUs in the
REM. A dynamic Bayesian Stackelberg game is first applied to the RTP-DR problem,
describing the sequential transactions between the retailer (leader) and EUs (followers)
under conditions of incomplete information. To solve this game, a novel Multi-Agent
Q-Learning algorithm adapted for the dynamic Bayesian Stackelberg game context
(BaS-MAQL) is proposed. In the proposed algorithm, both retailer and EUs are able to
learn their strategies from dynamic interactions across a day (24 hours transactions).
The estimated equilibrium of the game is not unique, indicating the MSNE of the
proposed game.

Simulation results of BaS-MAQL algorithm illustrate its computational efficacy by
analyzing several SPE in the Bayesian Stackelberg game. Findings reveal that while the
retailer, as the game's leader, can predetermine the final equilibrium, the equilibria often
yield comparable profits for the retailer but diverse outcomes for EUs, in terms of both
profits and power consumption. This discrepancy underscores the necessity of
developing new market policies to steer the market toward an equilibrium that
maximizes overall social welfare, thereby contributing to the field of smart electricity
markets. In addition, the implementation of the proposed algorithm can assist in making
transaction decisions with maximized individual profits, which also stimulates

consumer active participation and thus improves the market efficiency.
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1) Bayesian Stackelberg Game Model for RTP-DR Problem: A 1-leader, N-follower
dynamic Bayesian Stackelberg game is developed to represent the sequential decision-
making RTP-DR problem. This game is assumed to be an incomplete information
environment in a non-cooperative game between an electricity retailer and multiple EUs.
All players learn the strategies of others dynamically to maximize their own profits in
the sequential of RTP-DR problem. The proposed game is then re-formulated into a
MDP for reinforcement learning's solutions.

2) Novel Multi-agent Reinforcement Learning Algorithm: A BaS-MAQL algorithm
is proposed to solve the MDP. By solving the MDP for each player, the SPE of the
dynamic Stackelberg game is reached, and the convergence conditions are almost
identical to the equilibrium conditions (No player can benefit from deviating from
current decisions). Compared to typical MAQL, this approach utilizes probability
distributions to represent Q-values, enhancing the algorithm's learning speed and
strategic depth, leading to more accurate equilibrium point. The results show that the
optimal decisions trajectories of both the retailer and end users are multiple, indicating
the equilibrium for the proposed game is indeed MSNE.

The rest of this paper is organized as follows. A hierarchical RTP-DR framework
and a novel mixed strategy Bayesian Stackelberg game are established to capture the
non-cooperative game between a single retailer and multiple EUs in Section 5.2. A
corresponding MDP is formulated based on the game model, and the BaS-MAQL
algorithm is proposed to solve the MDP in Section 5.3. The analysis of the MSNE is
conducted in Section 5.4, using a case study comprising one retailer and multiple EUs.

Finally, this chapter is concluded in Section 5.5.
5.2 Problem Formulation

In this section, the hierarchical RTP-DR framework containing the model of retailer
and EU is established. Both retailer and EUs are strategic player that aims to maximize
their profits given uncertain behavior of each other. The transactions under this

framework are then formulated into a mixed-strategy Bayesian Stackelberg game. The

103



Bayesian property is introduced to the game by modeling the belief of the retailer in
EUs' uncertain behaviors in a limited information environment. The advantage of mixed
strategy adoption is to ensure the optimality of the strategy and demonstrate the inherent

randomness and uncertainty of the power consumption behavior.
5.2.1 Hierarchical RTP-DR Framework

Before developing the utility functions, the following assumptions are required for
the trading mechanism of WEM and REM: (1) Both the trading and pricing in WEM
and REM are on an hourly basis. The “time-slot” k € {1,2, ...... VK } mentioned
hereinafter would correspond to discrete hours in a single day. (2) Each EU cluster
constituted with n EUs (n € {1, ... ... , N}) is managed by one single RE, who purchases
the electricity from WEM and sells it to EUs with a dynamic price to be determined.
(3) EUs need to determine their own electricity consumption (i.e., the amount of
electricity to be purchased) of each time slot after the price announced by the RE. (4)
All REs and EUs are rational players who make decisions to maximize their own
profits. The operation of the proposed electricity market is roughly described in Fig.

5.1.
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In the proposed market, the several assumptions are made for the trading
mechanism of WEM and REM: (1) Transactions in WEM and REM are on an hourly
basis. The "time-slot" k € {1,2, ...... K } mentioned hereinafter would correspond to
discrete hours in a single day. (2) Each EU cluster constituted with ith EUs (i €
{1,.... ,1}) is managed by one retailer. (3) EUs need to decide their own electricity
consumption (i.e., the amount of electricity to be purchased) of each time slot after
receive the electricity price from the retailer. (4) All retailers and EUs are rational
players who make decisions to maximize their own profits. (5) The set of buses in the
network is denoted by Qy, where n € {1, ... ... , Qy}, while the set of lines is denoted by
;. The proposed market structure is roughly described in Fig.5.1.

1) Model of Retailers

Retailers are participants in both WEM and REM, acting as a “broker” between
GENCOs and EUs. The clearing prices in WEM, A% are assumed to be deterministic
for the whole transaction period, as the strategic behavior of a single retailer has hardly
impact on the wholesale clearing result. Based on A%, the retailer determines a uniform
retail electricity price A¥, which will be responded by EUs with total power
consumption of ith EU during times slot k, denoted by p¥. The objective of the retailer
is to maximize profits expressed by (5.1), where the AX — A% indicates the difference

between the retail and wholesale electricity price, so-called “price gap” in time slot k.

max » > (4 - A5)pt G.1)

T Vk Vi

2) Model of EUs

EUs are demand-side (REM) participants who determine their power consumption
based on the retail electricity price. Here, there are smart meters in households to
response and determine the power consumption instead of the real “End Users”.
According to the load being fixed in a specific time slot or not, loads of EUs are divided
into baseline load and elastic load. The baseline appliances of ith EU, including the
must-run appliances like lights and refrigerators, are considered to consume fixed

power p25¥ in time slot $k$. In contrast, the power consumption of the elastic load
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el.k

pr" mainly comes from elastic appliances, including heating ventilation air-

conditioning (HVAC) and wet appliance (WA), which can be dynamically modified to
satisfy both utility demand and economic considerations. Therefore, objective function

of each EU is given by (5.2).

max > (Ui(pk) - pl2E) (5.2)
Lovk
s.t.Vk Vi
pi = pi** + pftt (5.3)
0 < pftk < xphtmax (5.4)
€imin = Z Pf* < ejmax (5.5)
vk

In equations above, U; (p{‘)is the utility function for each EU, while p¥A¥ stands
for the cost for EUs with p¥ power consumption. Ui(p{‘) modeled by a widely
employed quadratic function as (5.6) [92]. It is concave and highlights the marginal
decreasing utility with the increase of power consumption.

Moreover, the power consumption of the ith EU p{‘ in time slot k can be computed
as (5.3). piel'k is constrained by (5.4), denoting the non-negative baseline power

elk

consumption. Total elastic power consumption Y., pi " among k periods is

constrained by (5.5), where e; ;i and €; 4, are the lower bound and the upper bound,

respectively. .
A 2 w:
W -0 spt s
k i
Ui(pi) = K\2 K (5.6)
24 TTEL L

Specifically, parameters w{‘,li varying in different time slots represents the

k 2
. A 2 wj T
energy-consuming preferences of each EU. wf — ;l (plk) and % — pFA¥ indicate
4

the valuation of power consumption pf‘ in different intervals.
5.2.2 The Mixed-Strategy Bayesian Stackelberg Game

To mathematically present the game between the retailer and EUs, a mixed strategy

Bayesian Stackelberg game model formulated based on the aforementioned models of
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retailers and EUs. The game model in compact-form is presented in (5.7), where the
retailer is the leader acting first, and EUs are followers that act after the action of the

leader.
TR =< N! ¢ri < S;c'@;ciAI;iR;‘CI'Qf'MT >,
Upper—Level (5 7
< SlkrOLkiA{c; leuui >i€I> )

Lower—Level

where [ denotes the total number of EUs served by the RE, and @&, indicates the
environment, i.e., transaction rules of REM. T is considered as a finite game, javing
limited number of players and pure strategies available to each player. For the retailer
with tuple < Sk, 0F, A%, Rk, Ok, 1, > in time slot k, S¥ presents the set of observed
states information, which specifically refer to the wholesale electricity price, OF
denotes the set of mixed strategies 9% (probabilistic distribution over pure strategies)
of the retailer, A¥ is the set of pure actions (retail electricity prices) taken by the retailer,
RE represents the payoff functions (objective), O indicate the set of the retailer’s belief
Pk on the strategies of all EUs, indicating the estimated total power consumption, and
U, denotes a set of executed strategies constituting strategies among all time slots,

termed as the policy of the retailer. In a finite game, strategy set A¥ in each time slot &

for the retailer can be presented as a¥ € A¥ = {a’l‘, a¥, ...,a’;l k}, where m¥ is the
T

number of pure strategies during time slot k. The game allows players to play mixed
strategy 9F = {p{‘, LA pfnk}, which is a probability distribution vector over the pure

strategies. pfn k 1s the probability that action a:;k is chosen in the mixed strategy profile.
T T

The sum of the probability of each pure strategy in a mixed strategy 95 should be equal
to one.
Similarly, the tuple < SF, @F, A¥, R¥, u; >;c; for each EU denotes the set of states

(retail electricity prices), the mixed strategies, actions, payoff functions (utility function)

and the strategies among all time slots. Also, finite pure strategy set A¥ for EUs in each

time slot k can be presented as af € A¥ = {a'f, ak, ..., a;k}, where m¥ is the number
i

of possible power consumption decisions during time slot k for EU. Also, the mixed
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strategy of EUs is 19{‘ = {pf, px, ..., pfn k} @{‘ represents the set of mixed strategies 191-"
L

fori € I +r and let 0% =x;¢;,, OF.
5.2.3 Optimal Conditions and Equilibrium Analysis

For the RE, a mixed strategy ¥J,- and policy u, are optimal, if Vi € I,k € K,

VL= argmax gk ok Z P¥(ak|sk)ok(ak)RE(9F, al) (5.8)
all"'EAéc
= ok (5.9)
kek

In (5.8), P¥(a¥|sk) indicates the RE’s belief on the type of EUs at state s¥, and is
expressed as a reduced form because the types of EUs are set to be the action of EUs.
While 9F (a¥) means the mixed strategy of the retailer distributing probability on pure
strategies ak, R¥(9F, af) is the reward under the mixed strategy o and EUs’ action
a¥ in times slot k.

For all EUs, the retail electricity prices in each time slot can be seen as a state. By
maximizing the profits of all EUs, a mixed strategy profile 9" constituting I mixed

strategies is defined optimal for EUs in time slot k, if Vn € N,k € K,

1911{,* € argmaxﬁike@f E (1_[ o‘{‘(af))ﬁ,’f(a’;)R{{(al{{) (5.10)

= z 9k (5.11)

In (5.10) and (5.11), 9} (a¥) and 9¥ (a¥) indicate mixed strategy of ith EU and the
retailer at k. While R¥(af) means the profit of the ith EU, it is acknowledged that the
expected payoff for each participant obtained by the optimal strategy or policy must be
larger than other strategies or policies. Also, the transaction result is both a MSNE and
a Bayesian Nash Equilibrium (BNE) when the RE holds the belief on all EUs, being
consistent with the EUs’ strategy. Transaction result of the Bayesian Stackelberg game
is MSNE when (5.8) and (5.10) are satisfied in time slot k, being identical to the
equilibrium condition “the payoff (profits) of all participants cannot be improved by his
own action deviation under the mixed strategy profile @ constituting [[/_, 9 and 9%”.

Also, the MSNE is a BNE as the strategy of retailer is optimal if and only if the retailer
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holds the correct belief Pr(aﬁc |sf) on each EU. While the pu,," is optimal if and only if
each mixed strategy 19ik in ;" is the optimal 191-"* during its time slot. Given the game
models above, the payoff function can be reformulated as (5.12) and (5.13) the retailer

and EUs. With such continuous payoff function, MSNE always exists [93].

D SECDIR GOk R — ) (5.12)
nenN
R,ﬁ:Z[ KU (e, @) = 85 IO )] (5.13)

k€K

5.3 Proposed MAQL algorithm

In this subsection, a bi-level MDP is formulated from the Bayesian Stackelberg
game above, where the retailer and EUs act sequentially in the upper level and the lower
level, respectively. A novel BaS-MAQL algorithm is developed to solve the proposed
MDP and estimate SPE in the Bayesian Stackelberg game. This algorithm is bi-level
and employs probabilistic distribution to denote the Q-value for the retailer, which can
be updated with posterior experiences. Hence, the algorithm merits privacy protection
aligning the reality because of the bi-level structure with incomplete information.
Moreover, it is applicable in dealing with the massive non-convex multi-agent systems
as the adoption of probabilistic Q-value distribution accelerate the training process in

highly non-convex problem significantly.
5.3.1 Markov Decision Process

1) Upper-level problem
The upper-level problem is the RE level problem to maximize the profits of the RE
in REM, where the RTP problem is formulated as a tuple < S¥, A%, Rk (s, a), iy, v, >
= {pk}, and A¥ = {pk}, are set to denote the state and action of the retailer in time
slot k. The constraints of actions are set as (5.2), representing the retail electricity price
is always higher than the wholesale electricity price to pursue RE’s profits. For the

selected action a¥ € A¥ and s¥ € S¥, reward R¥ (s, @) can be calculated as (5.14).
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I
RE = [ - ) (pF)] (5.14)

The policy u, refers to the optimal action to be taken at the given state. The aim of
retailer is to find the optimal policy u," of the retail electricity prices. The state value
function and state-action function are employed to value the state and state-action pair
and further explore the optimal policy by calculating the accumulative rewards in (5.15)
and (5.16). In these two equations, E is the expectation operator, discount factor y,. €
[0,1] is utilized to discount the future rewards in MDP for the uncertainty of rewards in

future.

Ve, (SF) = [z VrR"“IS"] (5.15)

Qu, (S, A7) = [Z wR"”le.A"] (5.16)

The Bellman functions, including state value function and state-action value
function, aim to find the optimal policy p,-* to maximize the Q-value of the retailer in

each step. Thus, the MDP problem of the retailer level model is formulated as follows.

P1: maXIE [Z VerJ“tle], (5.17)
0
s.t.(5.3) — (5.5)

2) Lower-level problem

In the EU level (lower-level), the DR problem of each EU is formulated as a similar
tuple < Sf, A¥, RF(s, @), u;, y; >, where Sk = {p?"*, Ak} denotes the set of states,
where p?"* is the baseline power consumption of the ith EU, and A¥ refers to the retail
electricity price. Action denoted by Ak {pl el. k} refers to the elastic power
consumption of the EU. While the reward function R¥ (s, a) has been proposed as (5.2)
and (5.13). Policy y; is the set of actions which has been taken in each state for ith EU.
Discount factor y,, € [0,1] is utilized to discount the future rewards for the future
uncertainty. Therefore, the lower-level model of the MDP can be formulated. To find
the optimal policy u,* to maximize Q in each time slot k, the RTP-DR problem is

formulated as a bi-level model in the framework of MDP, which can capture the
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interactive characters of RTP-DR problems, and be solved by MARL algorithm. In

summarize, the states, actions, and rewards for the two proposed MDP are illustrated in

Table 5.1.
Table 5.1 Variable Interpretations in Markov Decision Process
Variable Notation
State S¥ Ak Wholesale electricity price in time slot k
Action A¥ Ak Retail electricity price in time slot k
Retailer
Utility of the RE gained from selling
Reward RF Uk
electricity to EUs in time slot k
L Power consumption of the baseline
State S lk l appliances for EU i in time slot k
pk Retail electricity price in time slot k
EUs Power consumption of the elastic
Action A¥ eLk
appliances for EU # in time slot k
Utility of EU i gained from consuming
Reward R¥ Uk

and purchasing power in time slot k

5.3.2 Bayesian Stackelberg Multi-Agent Reinforcement Learning (BaS-MARL)

As one of the most popular model-free RL algorithm, Q-learning is a tabular
algorithm that enables agents to learn to select the optimal action at each state, i.e., to
generate the optimal policy [94]. The Q-learning merits a simple and precise structure,
which makes it more reliable and explainable than that of state-of-the-art algorithms
like TD3 and SAC. Moreover, it is believed to be stable and practical as the algorithm
is not hyper-parameter-sensitive and is more flexible to be tuned aligning with different
scenarios [95]. However, it is thought to be difficult to deal with large-scale problems
and stochastic problems with uncertainty, which is basically caused by the non-proper

way of Q-value update.
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For these reasons, Q-learning is first improved to a bi-level algorithm in a multi-
agent setting, which makes it applicable to the proposed Stackelberg game. Then, the
upper-level algorithm is revised to be a Bayesian Q-learning for assisting the Q-value
estimation and improving the computational performance in the proposed large-scale
RTP-DR problem with demand uncertainties. The workflow of the BaS-MAQL
algorithm is depicted in Fig 5.2. Compared to regular MAQL, there are two major
modifications in the proposed BaS-MAQL, including bi-level structure and Q-value
update, which are illustrated as follows.

1) Bi-level structure

The bi-level algorithm can be divided into upper-level and lower-level algorithms
corresponding with the proposed MDPs, where the agents are the retailer and EUSs,
respectively. At the RE level (upper level), the retailer first selects the action, i.e., the
retail electricity prices, based on e-greedy strategy. These prices are then broadcast to
EUs. After being informed of the retail electricity prices, at the EU level (lower level),
each EU takes actions (determines power consumption) accordingly using e-greedy
strategy. The rewards for these selected actions are immediately received by each EU.
With the state-action pair and the rewards, the Q-values of EUs are updated by a Q-
value update strategy. EUs will follow these processes iteratively to generate actions,
get rewards, and update Q-values until the termination criterion at the lower level is
satisfied.

Once the iterations of EUs terminate, the total power consumption is determined
and the retailer can receive his rewards, based on which updates his Q-value at the
upper-level algorithm. Given the process above, the retailer repeats it until the
termination criterion at the upper-level algorithm is satisfied. In this bi-level structure,
the lower-level algorithm converges for one time during the training of one iteration of
the upper-level algorithm. This process follows the nature of the Stackelberg game and
ensures the optimality of convergence results.

2) Q-value update
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Model-free Bayesian RL algorithm, like Bayesian-Q-learning, assumes that there is
a prior probability distribution over each Q-value [96]. The Q-values are updated using
the posterior probability distribution. Here, the Bayesian Q-learning is adopted in the
upper-level algorithm of the bi-level MAQL [97]. In the proposed algorithm, a
parametric Gaussian distribution p(us4, 654) 1s employed to denote the Q-value
distribution of the action a at the state s. ug , and & 4 are the mathematical expectation
and the variance of the Q-value, respectively. Initially, the prior probability distribution
can be normal distribution by default. It is assumed that r is the immediate reward of
the chosen action a in the current state s, R, is the discounted sum of rewards from the
state s following the apparently optimal policy, and Ry, = r + YR, indicates the
discounted reward of executing the actions a at the state s following the optimal action
in the future states. y is the discounted factor.

At the RE-level (upper-level), the Bayesian Q-learning is adopted. When receiving
the immediate reward r and estimating future reward R; = x, the updated posterior
probability distribution p(psq,8s4|7 + ¥»x) in the upper-level algorithm can be
calculated by using (5.18). The uncertainty of reward is captured by weighting the
probabilistic distribution that of Rg = x. This Q-value update method is called mixture

updating, which is cautious and helpful in avoiding the over-estimation of Q-value.

+oo
Ps,r (:us,a: 6s,a) = j p(.us,a: Ss,alr + er)p(Rs = x)dx (5.18)

At the EU level (lower-level), the Q-value is updated as the regular Q-learning by
using (5.19), where Q(Sl-k,Ai-‘) denotes the Q-value function of EU, ; and y; denotes
the learning rate and discount factor for EUs, respectively. The Q-table, which stores
the most recent updated Q-value, can help each EU optimize its policy by selecting the
action with the greatest Q-value with a high probability in the following iteration.
Finally, the iteration will come to an end when the termination criterion (5.20) is
satisfied, i.e., the difference of updated and original Q-value is less than the specified

threshold value 7;.

Q(SH, A7) = Q(SE A7) + Bil R +ymaxQ(S{™, A7) — o(Sf, A7) (5.19)
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lQ(SF*, AF*Y) — Q(SK. AF)| < 7, (5.20)
5.3.3 Discussions

This paper employ RL algorithm to solve the game and estimate its equilibrium
because of its non-convexity, and strong exploration ability. The proposed game is
actually non-linear and non-convex, since the end users have quadratic utility and the
aggregated utility of all end-users with individual time correlated constraints are non-
convex. Such game can only be solved by using methods that are capable of overcoming
non-linearity and non-convexity.

Moreover, the proposed game is highly dynamic due to the strategic interaction
between the retailer and end users, which probably has multiple equilibria. By owning
randomness in exploration stage, the algorithm can better explore the action spaces to
estimate all possible equilibriums, so that the multiple equilibria can be reached and
analyzed from the perspective of mixed strategy Nash equilibrium. Compared to
traditional mathematical methods, such randomness in RL methods can be thought of
as a different starting point for deterministic optimization. As for the NE convergence,
the termination condition for learning is the almost no change in accumulative reward
or Q-values for the algorithm, which is almost identical to the NE definition “No players
can get a higher payoff by deviating current actions.” Therefore, the output results of
the proposed algorithm are thought of NE.

Apart from merits of the typical RL algorithm, the proposed BaS-MAQL algorithm
exhibits significant advantages in terms of solution robustness and adaptability
compared with other RL algorithms, making it well-suited for smart electricity market
simulations and policy-making. The pros and cons of the proposed algorithms are
explained below.

1) The MAQL and single-agent Bayesian Q-learning have been developed for a

long history. BaS-MAQL combines them by letting Bayesian Q-learning agents
act as leaders, while typical agents in typical MAQL act as followers in the

dynamic Stackelberg game to adapt to the proposed RTP-DR problem. Such
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2)

3)

4)

S)

revision is to enhance the leader (retailer)’s learning ability to overcome the
highly uncertain power consumption of end users by making Q-tables
distributions rather than scalers. Therefore, computational convergence
conditions and the learning philosophy of original algorithms are not changed
after revision, which means the proposed algorithm can be adapted to any
environment.

The BaS-MAQL algorithm mitigates the Q-value overestimation bias
commonly associated with conventional value-based RL algorithms by
representing the Q-value through probability distributions. This approach
enables a more accurate estimation of Q-values, thereby facilitating the agents'
learning of optimal strategies. Using probability distributions for Q-values
enhances the algorithm's robustness by effectively quantifying and
incorporating environmental uncertainties into the decision-making process.
Compared to other RL algorithms like MADDPG, BaS-MAQL requires fewer
hyperparameters, simplifying its implementation and adaptation across different
market contexts. This simplicity, combined with the algorithm's other merits,
underscores its applicability and effectiveness in facilitating sophisticated
simulations and analyses for electricity market design and strategy optimization.
Due to its tailored structure to the RTP-DR problem, the proposed BaS-MAQL
is only applied in multi-agent problems that can be modeled as a one-leader
multi-follower Stackelberg game. However, it is also possible to extend the
algorithm into the multi-leader multi-follower structure, which may require
sophisticated work to provide a convergence guarantee.

Most value-based RL algorithms, e.g., Q-learning, only enable discrete action
space rather than continuous actions. This may require huge labor in action
discretization to ensure algorithm performance in some environments. Also,
with the increase in the number of actions, such an RL algorithm may require

more iterations to converge, leading to a longer time in algorithm training.
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In summary, the BaS-MAQL algorithm is an effective tool for simulating electricity
market dynamics since it can mitigate the Q-value over-estimation and is easy to
implement despite discrete action space and potential long convergence time. However,
it may also be restricted to problems with specific structures and may require more

computation labor with an increasing number of action spaces.

1-leader N-followers
[ RE-level } ( EU-level )
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Fig. 5.2 Flowchart of the proposed BaS-MAQL algorithm

5.4 Case Study
5.4.1 Simulation Setup

The main objective of this case study is to investigate the MSNE of the MDP
formulated in Section 5.3 by using the proposed BaS-MAQL algorithm, and verify the
computational performance of the proposed algorithm. Therefore, a test system based
on the IEEE 33-bus system consisting of 50 EUs is adopted to simulate the system
operation [98].

The entire transaction period of one day is divided into 24 time-slots. Real
transaction data of Commonwealth Edison (ComEd) are extracted herein as the 24
hours wholesale electricity price shown in Fig.4.3 to simulate the REM operation to the

greatest extent and calculate the retailer's profits. Otherwise, the power demand of EUs
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is set using real-world data [99], and the uncertain noise is added to the demand by
following a normal Gaussian distribution. For implementing the proposed MAQL using
the tabular-RL algorithm, the action spaces of both retailer and EUs are discretized
within a granularity of $0.5/kWh and 5kW, respectively. The retail electricity price
limitation is set as $5-7.8/kWh, which is equally discretized with a granularity of

$0.4/kWh.

Table 5.2 Parameter settings for the simulation

Parameter Value Parameter Value
A 1 wf [7.6,13.5]
Bi 0.3 T; 0.1
Vi 0.7 Yr 0.7

For EUs, the power consumption of baseline appliances for each hour is randomly
chosen from (10, 15, 20, 25, 30) $/kWh. The electricity consumptions of elastic
appliances, as well as the action space of EUs, are set from [0,20] kWh within a
granularity of 5 kWh.

The setting of hyper-parameters is summarized in Table.5.2. These parameters are
fine-tuned when training algorithms, and are carefully selected until the algorithm can
converge stably. The parameter € of the greedy strategy is initially set to 0, and then
increase 0.0005 per iteration until reaching 0.9950.
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Fig. 5.3 Clearing prices set in WEM and power demand in each time slot
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5.4.2 Convergence Analysis

In this section, the computational performance of the proposed BaS-MAQL
algorithm with typical MAQL algorithm are compared. The comparison is based on the
convergence speed and accumulative rewards.

Fig.5.4 illustrates the convergence process of both the retailer and all EUs. It can be
observed that the proposed BaS-MAQL algorithm achieves convergence with
significantly higher profits for the retailer within 1500 episodes, whereas both the
typical MAQL algorithms converge to a sub-optimal equilibrium. The retailer's profits
in BaS-MAQL are 7\% higher than those in MAQL. However, the profits of the EUs
converge to lower levels due to the near-zero-sum non-cooperative nature of the game.

The sub-optimality of the equilibrium in MAQL arises from its decision-making
process, which is based on an environment with substantial uncertainty stemming from
the mixed strategies of other agents. This uncertainty makes it easier to reach a sub-
optimal equilibrium in a multi-agent system. In the context of the Stackelberg game,
this sub-optimality manifests as the inability to achieve underestimated accumulative
rewards for the leader. This is primarily due to the significant uncertainty brought about
by multiple followers and the resulting large action spaces.

In contrast, the BaS-MAQL algorithm takes the probabilistic distribution of the Q-
value into account. This modification can effectively help dealing with the demand
uncertainty and estimating the best solution in a Stackelberg game with large-scale
followers. As a result, the solution of the BaS-MAQL show a higher total reward for

the retailer.
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Fig.5.4 Accumulative rewards converge procedure of (a) the retailer and (b) EUs

among different algorithms.
5.4.3 MSNE analysis

In this subsection, the transaction results to investigate the existence and impact of
MSNE are analyzed. The converged transaction results mainly include retail electricity
price and power consumption for the entire day (24 hours), and are depicted in Fig.5.5
(a)-(c) as three pure strategies denoted as SPE 1, 2, and 3. It should be noted that the

aforementioned pure SPE may be similar to be thought of as the "local optima" in the
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optimization problem. However, as these SPE are all solutions for the Bayesian
Stackelberg game consisting of multiple players, SPE cannot be seen as local optima,
but an equilibrium where each player cannot improve his profits by changing his
strategy.

Three SPE are achieved in the simulation, as shown in Fig.5.5 (a)-(c). The retail
electricity prices exhibit similar fluctuations to the wholesale electricity prices,
reflecting the retailers' costs in the wholesale market. At the beginning of the day (0:00-
2:00), due to low power consumption, prices in all three SPE decrease and then stabilize
at a low level ($5.4 or $5.8/kWh) from 2:00 to 9:00. Between 9:00 and 14:00, retail
electricity prices experience a sharp increase, remaining relatively high ($6.2-$7.8/kWh)
from 14:00 to 19:00. During the on-peak period of 14:00-19:00, the price gap, which
represents the difference between retail and wholesale electricity prices and indicates
retailers' profits, remains stable at around $3.50/kWh. However, during the peak hours
between 16:00 and 19:00, the price gap narrows sharply due to the high wholesale price
and the upward constraint on the retail price ($7.8/kWh), resulting in relatively low
profits for retailers (around $5200) despite the highest peak power consumption (over
2000 kWh). The reduced price gap in this period is around $2.4/kWh.

To further illustrate the MSNE among the three SPE, the profits of the retailer and
EUs in each SPE in Fig.5.5 (a) and (b) are compared. All time slots are classified into
three scenarios based on the profit differences, providing insights into the appearance
of MSNE. Scenario 1 represents a special case of MSNE where both the retailer and
EUs play pure strategies. In Scenario 2, one player (the retailer or EUs) plays mixed
strategies while the other plays pure strategies. Scenario 3 occurs when both the retailer
and EUs employ mixed strategies. The scenario classification for each time slot

throughout the day is summarized in Table 5.3.
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Table 5.3 Scenario classification of each time slot

Scenarios Time slots
1:00-2:00, 2:00-3:00, 3:00-4:00, 5:00-6:00, 6:00-7:00,
1 7:00-8:00, 10:00-11:00, 14:00-15:00, 15:00-16:00,

16:00-17:00, 17:00-18:00, 22:00-23:00
0:00-1:00, 8:00-9:00, 9:00-10:00, 11:00-12:00, 12:00-

2 13:00, 13:00-14:00, 19:00-20:00, 21:00-22:00, 23:00-
24:00
3 4:00-5:00, 18:00-19:00, 20:00-21:00

In Scenario 1 of MSNE, a pure strategy NE is considered as a special case where
there is only one optimal strategy for both the retailer and EUs in each time slot. For
example, all three SPE converge to the same NE at 2:00-3:00 with a retail electricity
price of $5.4/kWh and a total power consumption of approximately 1980 kWh. If EUs
consume more or less than 1980 kWh with a constant retail electricity price, they would
incur profit losses and have no motivation to deviate from their actions. The same
applies to the retailer when the power consumption of EUs is constant.

Scenario 2 of MSNE occurs when the optimal strategy of the retailer (or EUs) is a
mixed strategy with a probability distribution over multiple pure strategies, while the
optimal strategy of the opponent (EUs or the retailer) remains a pure strategy. In this
case, the participant with MSNE will randomly choose different actions as these pure
strategies result in the same profit. However, the opponent will suffer profit losses. For
example, during 4:00-5:00, the retailer's profits are the same ($2700) despite setting
different retail electricity prices of $5.8/kWh and $5.4/kWh in SPE 1 and 2, respectively.
This is because EUs consume 1545 kWh and 1705 kWh during 5:00-6:00 under
different retail electricity prices in SPE 1 and 2. However, for EUs, the total power
consumptions of 1545 kWh and 1705 kWh are optimal strategies during 5:00-6:00
under the retail electricity prices of $5.8/kWh and $5.4/kWh, respectively. Specifically,
EUs tend to consume more power under lower retail electricity prices and less power

under higher prices, resulting in the same profits for the retailer with two different retail
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electricity prices, thereby maximizing profits. At the same time, the retailer is
indifferent to these two retail electricity prices, leading to the execution of mixed
strategies containing both of them. Similarly, EUs may also execute mixed strategies
during certain time slots, resulting in different profits for the retailer, such as during
8:00-9:00 and 13:00-14:00. Hence, it is evident that the mixed strategy of one
participant may cause profit losses for the other

Scenario 3 of MSNE occurs when both the retailer and EUs adopt mixed strategies.
This is reflected in Fig.4.5 (a)-(b), where all participants have different profits in
different SPE. For example, during 20:00-21:00, the retailer sets retail electricity prices
as $7.4/kWh, $6.6/kWh, and $7.4/kWh in SPE 1, 2, and 3, respectively, resulting in
profits of $5710, $5700, and $5820, respectively. Meanwhile, EUs consume power of
1328 kWh, 1629 kWh, and 1353 kWh, resulting in profits of $1460, $2710, and $1470
in SPE 1, 2, and 3, respectively. Thus, there are three different outcomes for each SPE
during 20:00-21:00 due to the adoption of mixed strategies by both the retailer and EUs.
Specifically, if two retail electricity prices yield similar profits for the retailer, the
retailer may play a mixed strategy containing both prices. Similarly, under constant
retail electricity prices, EUs may also adopt mixed strategies containing two pure
strategies, resulting in similar profits for them. When both the retailer and EUs play

mixed strategies simultaneously, it falls under the third scenario.

Table 5.4 Results comparison between three SPE

Total profit of the RE Total power savings
SPE Total profit of EUs ($)
$) (kWh)
1 146260 68950 8700
2 146080 74320 7360
3 146100 61580 10550

Based on Table 5.4 and the analysis provided, it can be observed that scenario 1, 2,
and 3 occur 13 times, 9 times, and 2 times, respectively. This indicates that players (the

retailer and EUs) engage in mixed strategy transactions for approximately half of the
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period, while both the retailer and EUs employing mixed strategies in a single time slot
is relatively rare.

Furthermore, the retailer's profits are not significantly affected by the mixed
strategy of EUs, with fluctuations always remaining below $100. In contrast, the profits
of EUs exhibit significant variations, often exceeding $1000, during numerous time
slots when the retailer employs a mixed strategy. This disparity is attributed to the
retailer's market power as the price-maker in REM, which allows them to enhance
profits. Since the retailer has almost the same profits at multiple equilibria while end
users do not, it is possible for regulators to propose new market rules for a higher social

welfare, for example, dynamic pricing caps across different transaction interval.
5.4.4 Analysis of the power savings

This subsection focuses on power savings in the SPE to demonstrate the
effectiveness of RTP-DR in terms of energy-saving and network power balancing.
Fig.4.6 (c) presents the power savings, which reflects the discrepancy between expected
power demand and actual consumption. Proper adjustment of power savings is crucial
for system operation. In Fig.5.5 (a)-(c), even though EUs have high power consumption
during the on-peak period (15:00-19:00), SPE 1 and 2 exhibit high power savings (over
300kWh) in Fig.5.6 (c). This suggests that EUs may display greater demand elasticity
during peak hours due to high demand. Hence, implementing the RTP-DR scheme
becomes vital to stimulate EUs' demand elasticity and facilitate power balance between
the demand and supply sides.

To summarize, the profits and power savings of the three SPE are compared. Table
5.4 presents the total profits of the retailer and 50 EUs, along with the total power
savings. SPE 1 and 2 yield higher overall profits for both the retailer and EUs compared
to SPE 3. The profit difference for the retailer between SPE 1 and 2 is $680 out of
$146,460, while for EUs, it is $5,370. The profit differences for EUs in each SPE appear
to be larger than those for the retailer. The retailer's profits remain relatively stable as

they have market power as the price-maker in REM. Therefore, improving REM
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regulations to protect EU profits is necessary. Furthermore, SPE 1 exhibits curtail 2%
higher power savings than SPE 2, leading to lower power and energy consumption.
Although SPE 3 has the highest power savings (10,550kWh), market participants are

dissatisfied with its lowest EU profits ($61,580) compared to the other SPE.

5.5 Summary

In summary, this chapter formulates the RTP-DR problem between the retailer and
EUs into a Bayesian Stackelberg game by considering the incomplete information in
REM transactions. The game is non-convex due to the network constraints and
temporal-correlated non-linear power usage, thus is analyzed from the view of MSNE.
Subsequently, a novel BaS-MAQL is proposed to stimulate the market transaction and
estimate the SPE in this game. By representing the numerical Q-value with probability
distributions, this algorithm offers solution optimality, and robustness under uncertain
market transactions. Additionally, it can be scalable and adaptable to diverse scenarios
due to its flexible structure and few hyperparameters. The simulation results
demonstrate the existence of MSNE by comparing the SPEs in the transactions.

Nevertheless, there remain several limitations in the present study that point to
promising avenues for further investigation: 1) Current framework does not encompass
a variety of energy devices—such as electric vehicles, solar panels, and energy storage
systems—nor does it factor in potential bounded rationality in end-user decision-
making. Incorporating these aspects would significantly alter energy consumption
pattern dramatically, lead to different market equilibria and provide deeper insights.

2) By not fully modeling retailer involvement in both wholesale electricity and
capacity markets, this work may be overlooking intricate inter-dependencies between
various market signals and decision-making processes. Future work could investigate
how retailer strategies in these markets affect overall efficiency in retail market and

consumer welfare.

126



Chapter VI

Conclusions and Future Perspectives

6.1 Conclusions

Motivated by the need for smart control of distributed energy demand in the face of
growing renewable penetration, energy integration, and dynamic pricing, this thesis
focuses on developing RL techniques in demand side energy management across
multiple scales. Specifically, novel RL algorithms are designed for profit maximization
accounting for external uncertainty, operational safety, and equilibrium estimation for
demand side scale ranging from individual buildings to community microgrids and up
to REM interactions.

Moreover, the RL designs in this thesis are guided by the dominant challenge at
each scale of demand-side energy management. At the building level (BIES), limited
dispatchable assets (BESS, micro-CHP, GB) make operations highly sensitive to
demand and price uncertainty; accordingly, Chapter 3 proposes a forecast-enhanced RL
approach that integrates energy and price forecasting with control. At the community
level (ICES), safety precedes economics under multi-energy network constraints;
Chapter 4, therefore, develops a safe RL method for constrained operational
optimization. In the retail market (REM), RTP-DR introduces strategic interactions
among multiple stakeholders; Chapter 5 focuses on equilibrium learning to extract
actionable insights. Overall, the thesis tailors RL algorithms to the most critical issue
in each scenario across scales.

The key contributions of this work are summarized as follows:

1) Forecast-Enhanced RL for Operation in Building Integrated Energy System: An
RL-based algorithm is designed for grid connected BIES that leverages load and price
forecasting to make proactive energy management decisions. This approach satisfies

multi-energy demands and device constraints while reducing the energy cost. The

127



forecasting method, TFT, is interpretable and provides more information for subsequent
decision-making. The proposed approach shows good generalization performance with
real-world data in different seasons.

2) Multi-Network Constrained Integrated Community Energy Systems Model: A
novel MNC-ICES model is proposed to interpret the concept of ICES. The proposed
model accounts for the constraints of multiple networks, which captures the physical
characteristics of energy flow and imposes security operational constraints for the
distribution level energy transmissions. Energy devices are modeled in high fidelity to
describe the realistic physical operating attributes in practice. Additionally, the
renewable uncertainty and integrated demand elasticity are considered to describe the
novel characteristics of modern distribution-level energy systems. Overall, the
proposed model can be implemented as a basis for practical network-constrained
community operation tools.

3) Safe Reinforcement Learning for Multi-Network Constrained Integrated
Community Energy Systems: A novel Safe RL algorithm, namely PD-TD3, is proposed
to solve the C-MDP and the constrained operational optimization problem in MNC-
ICES. In the proposed algorithm, constraints are incorporated directly into the learning
process to ensure practical feasibility. Specifically, the PD-TD3 algorithm using double
networks reduces the over-estimation problem of the action value for both the reward
and cost, and the delayed update stabilizes the training process of policy and its dual
variable. With accurate estimation of Q values, the proposed algorithm converges to the
optimal solution that balances the maximal profits and the lowest constraint violation.

4) Game-Theoretic MARL for Real-Time Pricing and Demand Response: The
interaction between EUs and a utility (or retailer) is modeled as a dynamic Stackelberg
game and MARL is applied to find multiple behavioral equilibria. Specifically, a pricing
strategy and corresponding consumption policies can be learned such that no participant
has an incentive to deviate (akin to a Nash equilibrium in demand response). This is

one of the first demonstrations of MARL achieving stable market outcomes in a demand
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response context, bridging the gap between individual learning agents and system-level
economic equilibrium.

The findings of this thesis demonstrate that RL techniques can effectively manage
and reduce energy demand on the consumer side, responding adaptively to price
incentives and contributing to grid reliability. By fulfilling these objectives, the thesis
has demonstrated that RL can serve as an effective tool for energy management on the
demand side. The outcomes have several important implications. For demand-side
consumers, this suggests that deploying RL algorithms as smart agents in energy
management systems or via community aggregators could automate DR at scale,
achieving cost savings for EUs and operational benefits for utilities. For the field of
power systems, this work provides experimental proof that RL agents, if properly
designed, can maximize utilities’ profits while coordinating to achieve grid-level goals
such as peak shaving and load shifting with only price incentives. Importantly, the
multi-level energy management—spanning devices to markets — indicates that
coordination at different layers of the power system is feasible with decentralized
artificial intelligence controllers, potentially accelerating the adoption of smart grid

technologies.
6.2 Future Perspectives

The thesis has proposed several algorithm schemes for multi-scale demand-side
energy management problems, from individual BIES to multi-network constrained
ICES and RTP-DR problems in REM. To make the current work more comprehensive,
the following topics should be investigated in the future.

1) The power system calls for Safe RL algorithms that can enforce safety constraints
in both exploration and exploitation because of the severe constraints. Most currently
developed Safe RL algorithms, for example, Lagrangian-based Safe RL, enforce soft
constraints by penalizing the constraints violation in exploration while not guaranteeing

hard constraint enforcement, which may endanger energy system operation
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2) Most RL algorithms are mathematically developed to solve dynamic decision-
making problems in stationary MDPs. However, the practical operation environment
for demand-side energy systems has seasonality and trends inherently due to the
seasonal changes and industrial expansion, which makes the environment highly non-
stationary so as to reduce the performance of the RL algorithms. Moreover, another
important scenario in the demand-side, multi-agent interaction environment is also
considered as non-stationary for the evolution and stochastic of others’ strategies. Such
non-stationarity in the scenario may lead to the failure of the algorithm learning. For
the reasons above, developing a novel RL algorithm that can handle the non-stationary
environment is a significant step in promoting the real-world implementation of RL

techniques.
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