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Abstract 

The ongoing evolution toward low-carbon and decentralized power systems, driven by 

high renewable penetration and widespread integration of inverter-based DERs, has raised 

significant concerns regarding the security, stability, and resilience of both transmission and 

distribution systems. These systems are now more frequently exposed to high-impact, low-

probability events, such as extreme weather conditions, cyber-attacks, multi-component 

failures, and real-time operational uncertainties. Traditional model-based optimization 

approaches, such as security-constrained optimal power flow (SCOPF) and contingency-

constrained OPF (CCOPF), while mathematically rigorous, often suffer from scalability 

limitations, long computation times, and a lack of adaptability to rapidly changing 

conditions. There is an urgent need for new intelligent decision-making methodologies 

capable of handling uncertainty, maintaining physical constraint feasibility, and enabling 

fast response in both centralized and decentralized operation frameworks. 

This thesis addresses these critical challenges by proposing a deep reinforcement learning 

(DRL)-based framework for resilient and adaptive power system operation under 

uncertainty. The thesis spans three interconnected layers of power system control: 

transmission system scheduling under contingencies, real-time voltage regulation in active 

distribution networks, and coordinated transmission and distribution (T&D) system load 

restoration during emergency events. Each layer is investigated through a dedicated 

contribution, incorporating DRL techniques tailored to the respective operational 

requirements and system architectures. 

The first contribution introduces a novel adversarial learning-based approach to solving 

the CCOPF problem under worst-case N-k contingency conditions. A defender–attacker soft 

actor-critic (DA-SAC) framework is proposed, in which two non-cooperative agents—

representing the system operator and an adversarial uncertainty generator—interact within 

a reinforcement learning environment. The defender agent learns robust dispatch actions, 

while the attacker agent identifies the worst-case contingency scenarios in a discrete action 
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space. The proposed algorithm embeds constraint violation information directly into the 

reward function and employs dual-timescale policy updates to enhance convergence and 

learning stability. This approach shifts robust power system operation from static, model-

based optimization to a dynamic, game-theoretic learning paradigm. 

The second contribution extends the SCOPF model into a two-stage preventive–corrective 

control framework incorporating fast-response virtual power plants (VPPs). The model is 

formulated as a constrained Markov decision process (CMDP) and solved using a 

Lagrangian-based soft actor-critic (L-SAC) algorithm. Preventive and corrective agents are 

trained to minimize pre-contingency risk and post-contingency recovery costs while 

satisfying AC power flow constraints. The state-dependent Lagrange multiplier mechanism 

enables real-time enforcement of safety constraints without relying on static penalty 

parameters. The inclusion of VPPs in the operational framework enhances flexibility and 

responsiveness, allowing for dynamic adjustment to unexpected load and generation 

fluctuations. 

The third contribution focuses on voltage regulation in active distribution networks 

(ADNs), where high penetration of inverter-based DERs results in frequent and 

unpredictable voltage violations. A hierarchical multi-mode voltage control strategy is 

proposed, featuring day-ahead dispatch of on-load tap changers (OLTCs) and capacitor 

banks via single-agent RL, and real-time inverter-based control using a multi-agent SAC 

(MASAC) algorithm with an embedded attention mechanism. The attention module enables 

each agent to prioritize relevant local observations, ensuring stable policy learning even in 

large-scale, multi-agent environments. Additionally, the voltage regulation problem is 

decomposed into three dynamic operational modes—power loss minimization, under-

voltage mitigation, and over-voltage correction—allowing the system to flexibly respond to 

varying operational conditions. 

The fourth contribution addresses the real-time coordination of load restoration across 

transmission and distribution systems under N-k emergency conditions. A distributed DRL 

architecture is proposed, comprising a centralized SAC controller for the transmission 

system and a complementary attention-enhanced MASAC controller for the distribution 
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system. A VPP is introduced as an aggregator to coordinate distributed DERs and reduce 

communication burdens. The hierarchical architecture enables asynchronous but coherent 

interaction between system layers, ensuring scalable and rapid recovery under contingency 

conditions. The integration of an attention mechanism improves inter-agent coordination 

and decision accuracy during system-wide restoration efforts. 

Collectively, the four contributions of this thesis form a comprehensive and integrated 

framework for enhancing the resilience, adaptability, and operational efficiency of modern 

power systems under contingencies and uncertainties. By systematically addressing three 

critical aspects—transmission dispatch against worst-case contingencies, dynamic voltage 

regulation in active distribution networks, and real-time coordinated restoration across 

transmission and distribution systems—this work bridges the gap between traditional 

model-based optimization techniques and data-driven, learning-based control approaches. 

The proposed reinforcement learning strategies are specifically tailored to overcome key 

challenges such as computational delays, model inaccuracies, and coordination 

inefficiencies, which have historically limited the practical deployment of robust control 

frameworks in real-world systems. Furthermore, by incorporating multi-agent models, 

adversarial training mechanisms, and hierarchical decision-making structures, the thesis 

lays the foundation for autonomous, decentralized, and scalable control methodologies that 

can adapt to evolving system configurations and unforeseen operational scenarios. 

Extensive case studies on IEEE 30-bus, 118-bus, and modified distribution systems validate 

the effectiveness and generalizability of the methods, laying a strong foundation for the next 

generation of learning-augmented decision support systems in modern power networks. 

Ultimately, this thesis contributes toward realizing the vision of resilient, sustainable, and 

smart grids capable of ensuring security, stability, and flexibility under the transformative 

pressures of high renewable integration, decentralization, and digitalization. 
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Chapter 1 Introduction 

1.1 Background 

The secure and stable operation of power systems under uncertain and unexpected 

conditions is one of the most critical and fundamental requirements in modern power 

systems [1]. With the increasing complexity and interconnection of power systems, ensuring 

that both transmission and distribution systems can operate reliably in the presence of 

external disturbances has become essential [2]. Power systems are vulnerable to various 

uncertainties and contingencies, including extreme weather events, abrupt equipment 

failures, cyber-attacks, and human-induced operational errors [3], [4]. These events can 

significantly disturb the normal balance between electricity supply and demand, thereby 

threatening the integrity of the entire power infrastructure. Particularly, high-impact and 

low-probability disruptions can trigger widespread outages, posing threats to social stability, 

economic activity, and the stability of essential services [5]. Therefore, maintaining 

operational robustness, rapid fault recovery, and adaptive response capacity across the 

transmission and distribution layers is crucial to ensuring the reliability of the power supply. 

Moreover, with the transition towards low-carbon and renewable energy systems [6], the 

ability of these networks to withstand, absorb, and recover from unexpected events has 

become not only a reliability issue but also a core component of modern power system 

design. The coordinated secure operation of both transmission and distribution systems 

under uncertainty must therefore be prioritized in power system research, planning, and real-

time control. 

As the primary infrastructure of the power system, the transmission network is responsible 

for transporting electricity generated from centralized generation units over long distances 

to major consumption regions and distribution networks [7]. Its role in ensuring the large-

scale balance of power and maintaining grid-wide voltage and frequency stability is 

indispensable. However, the secure operation of transmission systems has become 

increasingly vulnerable to high-impact, low-probability events [3], [4]. These include 
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multiple simultaneous equipment failures, line overloads, substation faults, and natural 

disasters such as wildfires, floods, or hurricanes. Such incidents are often modeled as N-k 

contingencies, reflecting the potential disconnection of multiple transmission elements and 

leading to severe congestion, voltage fluctuation, or even cascading blackouts. Due to the 

highly interconnected structure of modern transmission systems, a disruption in the network 

can result in a widespread outage that impacts large areas of the power system. Traditional 

protection and control strategies, although effective in managing localized issues, often lack 

the flexibility and speed required to handle large-scale system-wide disturbances [8]. 

Furthermore, the increasing complexity of market mechanisms and renewable power 

injections into transmission networks exacerbates these challenges. As a result, enhancing 

the resilience of transmission systems through preventive-corrective scheduling, fast 

response reserves, and intelligent decision-making has become a top research priority for 

system operators and policymakers worldwide. 

In parallel with transmission networks, distribution systems play a vital role in ensuring 

the final delivery of electricity to end-users, ranging from residential loads to industrial 

customers [9]. Traditionally, distribution systems functioned passively, relying on 

predictable single-direction power flows from the transmission level to local loads. 

However, this operational model has shifted dramatically with the increasing penetration of 

distributed energy resources (DERs), especially renewable sources such as rooftop 

photovoltaics and community wind turbines. These resources introduce significant 

variability and stochasticity into the distribution system, altering voltage profiles and 

disturbing the load-generation balance at the local level [10]. Moreover, many of these 

DERs are inverter-based, meaning they lack the inertia that conventional synchronous 

generators provide, making the system more sensitive to rapid transients [11]. The 

intermittent characteristics of these resources, along with load uncertainty and electric 

vehicle (EV) charging behavior, make real-time operation and planning of distribution 

networks more complex than ever before. Conventional control devices such as on-load tap 

changers (OLTCs) and capacitor banks (CBs) operate on slower time scales and cannot 

respond effectively to rapid fluctuations [12]. Consequently, voltage violations, reverse 
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power flows, and protection coordination issues have become more prevalent. These 

challenges highlight the urgent need for advanced voltage regulation techniques, real-time 

DER coordination, and predictive management strategies to ensure secure and reliable 

distribution system operation under increasing uncertainty. Given the parallel challenges 

facing both transmission and distribution systems, it becomes imperative to consider how 

these two subsystems interact — particularly under conditions where disturbances in one 

can propagate to the other. This brings us to the critical need for coordinated operation 

between transmission and distribution layers. 

The need for coordinated operation between transmission and distribution systems has 

attracted increasing attention due to the growing complexity and interdependence of modern 

power system operations [13]. Historically, transmission and distribution networks were 

operated independently, with insufficient real-time interaction [14]. However, the growing 

complexity of the power system, characterized by the bidirectional flow of power and 

information, requires a fundamental shift in this operational model. Transmission-level 

decisions, such as generator redispatch or emergency load shedding, have immediate 

impacts on downstream distribution systems, potentially causing voltage instability or 

unexpected disconnection of critical DERs and loads. At the same time, distribution 

networks are increasingly equipped with controllable DERs and flexible demand-side 

resources that can provide support to the bulk power system during contingencies if properly 

coordinated. The traditional top-down control approach is no longer sufficient for ensuring 

power system stability in such an environment [15]. The absence of synchronized data 

exchange, integrated modeling frameworks, and real-time control interfaces between 

transmission system operators (TSOs) and distribution system operators (DSOs) creates 

significant observability limitations, especially during high-impact events [16]. Achieving 

effective transmission and distribution (T&D) system coordination requires advanced 

communication infrastructure, shared situational awareness, and jointly optimized control 

actions. This coordination is not only essential for improving system resilience but also for 

enabling new services such as local energy markets, distributed ancillary services, and 

enhanced system restoration capabilities after major disturbances. 
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The modernization and restructuring of power systems—under the motivation of 

decarbonization policies, digital innovation, and widespread electrification—has resulted in 

growing operational complexity and uncertainty [17]. Unlike traditional power system 

structures where power flowed predictably from large generation plants to passive loads, 

the modern power system is a dynamic and interactive system where generation, 

consumption, and storage are distributed across all voltage levels [18]. This transformation 

challenges the existing planning and operational strategies, particularly when considering 

the need to ensure security and reliability under dynamic scenarios. One of the most pressing 

issues is the dual exposure to stochastic renewable generation on both the transmission and 

distribution sides, coupled with unexpected contingencies such as multiple devices outages, 

cyberattack, or natural hazards [19]. These events can induce cascading failures across the 

entire power system without effective preventive and corrective control mechanisms. 

Previous research has made considerable progress in tackling transmission system security 

through contingency-constrained optimal power flow (CCOPF) and security-constrained 

economic dispatch. Similarly, in the distribution level, work on local voltage control, DER 

capacity regulations, and microgrid resilience has advanced significantly [20]. However, 

these efforts are often developed independently and fail to fully capture the range of 

interactions between the transmission and distribution network levels. In many real-world 

incidents, it has become apparent that local issues in distribution systems—such as reverse 

flows, islanding, or sudden DER tripping—can exacerbate transmission-level stresses, and 

vice versa [21]. This interdependence necessitates the development of joint resilience 

strategies that simultaneously consider operational flexibility, inter-layer uncertainty 

interactions, and shared resource utilization. Furthermore, time-scale challenges complicate 

coordination. While transmission-level decisions are typically made at slower intervals (e.g., 

5–15 minutes) [22], distribution systems may require fast responsiveness, especially when 

integrating fast-reacting DERs and loads [23]. Thus, there is an increasing need for unified 

frameworks that bridge these temporal and spatial gaps, enabling the joint optimization of 

T&D systems under uncertainty. Such frameworks must integrate robust preventive 

planning, real-time corrective actions, and adaptive learning from historical operational data. 
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Only by treating the transmission and distribution layers as a single, dynamic, and 

interactive system can power system operators effectively respond to the multifaceted 

challenges posed by the development of modern power systems. 

While emerging technologies such as distributed renewable energy, smart sensors, electric 

vehicles, and demand response systems offer tremendous opportunities for power system 

modernization, they also result in numerous new operational challenges [24]. One of the 

most prominent issues is the spatially dispersed and highly dynamic characteristics of 

distributed resources, which lack centralized control and exhibit insufficient communication. 

These resources can fluctuate rapidly, making it difficult to forecast aggregate behavior or 

respond uniformly during disturbances. In the absence of a centralized control center, the 

lack of coordination among decentralized units significantly hinders the power system's 

ability to act swiftly in the face of unexpected events. Moreover, the supporting 

communication infrastructure is subject to latency, unstable data links, and a lack of 

standardized protocols across distributed components, all of which complicate timely and 

reliable system coordination [25]. In addition, many DERs participate in power system 

operations using inverter-based interfaces that, while fast, are highly sensitive to control 

errors and disturbances. Without well-coordinated control strategies, these systems can 

worsen power system instabilities. These technical barriers underscore the need for novel 

architectures that incorporate real-time communication, hierarchical control, and distributed 

intelligence. Designing such architectures is crucial for enabling reliable decision-making 

and fast response across both transmission and distribution systems when confronted with 

increasing operational uncertainty and complexity. 

In response to the increasingly dynamic and uncertain environment in power systems 

operation, artificial intelligence—particularly deep reinforcement learning (DRL)—has 

emerged as a promising tool for achieving intelligent decision-making [26]. DRL is capable 

of addressing the complexity of power system operations due to its ability to learn optimal 

control strategies from high-dimensional and stochastic environments. Unlike traditional 

optimization approaches that rely on model-based formulations and are computationally 

intensive in real-time [27], DRL agents can be trained offline using historical and simulated 
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data, and then deployed online for fast and adaptive decision-making. This paradigm is 

especially valuable when coordinating transmission and distribution resources under 

uncertainty, where the need for speed and accuracy is critical. By learning from interaction 

with the system environment, DRL algorithms can handle nonlinear, time-dependent 

constraints and unknown disturbances. They can make decisions that are adaptive to real-

time system conditions and forward-looking, enabling more robust and flexible operational 

strategies [28]. In the context of contingency response, load balancing, or voltage regulation, 

DRL-based controllers can outperform conventional control methods or heuristic methods 

[29]. Therefore, integrating DRL into the operational framework of power systems has the 

potential to enhance resilience, reduce response times, and improve overall system 

efficiency, particularly in scenarios where traditional methods are infeasible or too slow. 

Alongside intelligent decision-making techniques, the concept of the virtual power plant 

(VPP) offers a scalable and practical solution to the challenge of coordinating highly 

distributed energy resources [30]. A VPP aggregates diverse DERs—including PV, wind, 

battery storage, controllable loads, and electric vehicles—into a single, flexible, 

dispatchable entity [31]. Through the use of cloud-based control platforms and advanced 

communication technologies, VPPs enable real-time coordination and optimization of 

decentralized resources, effectively functioning as a centralized management center for 

distributed systems [32]. This capability is crucial for supporting both transmission and 

distribution systems during high-impact or uncertain conditions. VPPs enhance operational 

visibility, enable aggregated participation in electricity markets, and support ancillary 

services such as frequency regulation, ramping, and voltage support. Most importantly, 

during contingency scenarios, a well-designed VPP can provide rapid load/generation 

rebalancing and contribute to the restoration of affected areas. By establishing bi-directional 

communication channels with both TSOs and DSOs, VPPs serve as a bridge between 

system-level coordination and local flexibility [33], [34]. This approach not only improves 

overall power system resilience but also facilitates the integration of renewable energy and 

demand-side resources in a controllable and efficient manner. Therefore, VPPs are expected 
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to play an increasingly central role in the realization of a smart, flexible, and low-carbon 

power system. 

1.2 Research Objectives 

This thesis aims to enhance the secure and stable operation of power systems under high-

impact contingency events and various uncertainties, which are increasingly frequent due 

to the integration of renewable energy and extreme external disturbances. As conventional 

optimization and control methods often fall short in providing real-time, scalable, and 

adaptive responses to such complex conditions, this work proposes intelligent and robust 

control frameworks to fill these gaps. Specifically, the thesis addresses these challenges 

from three key perspectives: the transmission system, the distribution system, and the 

coordinated operation of transmission and distribution (T&D) systems. For the transmission 

system, a DRL-based approach is developed to enhance the robustness of CCOPF solutions 

under the worst-case N-k contingencies. In the distribution system, a multi-mode DRL 

strategy is introduced to manage fast voltage violations in the presence of DER uncertainties. 

Lastly, the thesis presents a reinforcement learning-enhanced T&D coordination scheme to 

facilitate intelligent, system-wide response to cascading failures. These contributions aim 

to improve operational resilience, situational awareness, and real-time decision-making 

across the entire power network. Each of these aspects is explored in detail in the following 

sections. 

⚫ Robust transmission system operation under N-k contingencies: Power system resilience 

and optimal decision-making under contingency scenarios have become central to 

ensuring secure operation. Among existing approaches, two-stage decision-making 

frameworks such as CCOPF are widely adopted, though they present significant 

computational and modeling challenges due to their large-scale, nonconvex, and discrete 

decision characteristics. To address this, this thesis proposes a novel DRL-based robust 

optimization framework, specifically tailored for CCOPF problems under N-k security 

criteria. The method leverages a multi-agent learning architecture that enables the system 

operator to identify the worst-case contingency scenarios, thereby enhancing the 



8 

 

robustness of the resulting operational strategy. This DRL-enhanced CCOPF model 

improves computational tractability and adaptive response, making it a promising tool for 

real-time contingency analysis in large-scale transmission networks. The proposed 

method fills an important research gap by integrating AI-based decision-making with 

traditional CCOPF, contributing to both the theory and practice of resilient transmission 

system operation. 

⚫ Multi-mode real-time voltage regulation in active distribution networks: In distribution 

systems, real-time operation is increasingly affected by uncertainties such as fluctuating 

renewable generation and stochastic load demand behaviors. Conventional devices such 

as OLTCs and capacitor banks, operating at slower timescales, are insufficient for 

mitigating fast voltage violations. Moreover, single-mode voltage control strategies often 

fail to satisfy the complex economic and security constraints associated with voltage and 

reactive power margins in active distribution networks (ADNs). To address these 

challenges, this thesis develops a two-stage DRL-based multi-modal voltage regulation 

strategy. The proposed framework combines fast inverter-based reactive power control 

with traditional device coordination, allowing for real-time adaptation to system 

uncertainties. The objective is to minimize total power losses while maintaining voltage 

profiles within secure limits. By introducing adaptive multi-mode control, the strategy 

enhances voltage stability and distribution-level operational efficiency. This study 

contributes significantly to the field by offering a scalable, intelligent, and real-time 

voltage regulation framework tailored to the dynamics of modern ADNs. 

⚫ Coordinated T&D load restoration under N-k contingencies: Ensuring rapid and 

coordinated load recovery in T&D systems under emergency conditions is critical for 

maintaining overall power system stability. With the growing presence of active 

distribution systems and DERs, there is increasing potential to utilize flexible resources 

in the distribution layer to support transmission-level operations. In particular, during 

transmission system contingencies, distribution networks can assist in relieving 

congestion and mitigating voltage support deficiencies. To achieve this, an effective T&D 

coordination strategy must facilitate bidirectional information exchange and joint 
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decision-making under uncertainty. This thesis introduces a reinforcement learning-based 

control strategy for optimizing load restoration during N-k contingency events, leveraging 

the flexibility of distribution systems. The proposed framework improves global system 

resilience by allowing T&D subsystems to respond jointly and intelligently to critical 

disruptions. This contribution is particularly relevant in light of the ongoing transition 

toward decentralized and distributed grid architectures, providing a pathway for 

integrated emergency response strategies in coupled T&D environments. 

1.3 Contributions of the Thesis 

This thesis presents four original contributions aimed at improving the resilient operation 

of power systems under high-impact contingencies and uncertainties. These contributions 

address key limitations in traditional optimization and control methods by integrating 

advanced reinforcement learning algorithms, distributed optimization models, and hybrid 

control frameworks. Specifically, the proposed solutions tackle challenges in robust 

transmission system operation, real-time voltage control in active distribution networks, and 

coordinated transmission and distribution system restoration under emergency scenarios. 

The technical novelty of this thesis lies in the customized design of DRL algorithms, multi-

agent architectures, and the integration of physical constraints into decision-making 

frameworks. Each research effort targets a specific gap in existing literature and collectively 

contributes to enhancing the robustness, scalability, and intelligence of modern power 

system operation. The main contributions are summarized below. 

1) Robust real-time transmission operation via defender-attacker reinforcement learning 

⚫ Research gaps: Traditional approaches to solving two-stage robust optimization problems 

in power systems, such as CCOPF under contingency constraints, are hindered by their 

high computational complexity and difficulty in handling real-time uncertainty. Moreover, 

most DRL applications lack a formal structure to model adversarial uncertainty scenarios 

dynamically, limiting their effectiveness in ensuring worst-case performance. There is 

also a lack of multi-agent formulations that explicitly model adversarial interactions 

between decision-makers and uncertainty realizations, especially under nonconvex 
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constraints such as AC power flow. Thus, there is a pressing need for a DRL framework 

that supports real-time, robust, and scalable contingency management in power system 

operations. 

⚫ Contributions: This study proposes a novel DRL-based method, defender-attacker soft 

actor-critic (DA-SAC), to solve robust two-stage optimization problems for real-time 

power system operations under uncertainty. The formulation introduces a Markov 

decision process (MDP) incorporating two non-cooperative agents: a defender agent (DA) 

that generates robust control actions, and an attacker agent (AA) that identifies the worst 

contingency scenarios. A model-free entropy-regularized soft actor-critic (SAC) 

algorithm is used for the DA in a continuous action space, while a discrete SAC algorithm 

is designed for the AA. To stabilize learning, the most recent DA action is used as the 

input state for the AA, and a dual-timescale learning rate mechanism is introduced. 

Moreover, the degree of constraint violation (DCV) is integrated into the reward function 

to enhance the feasibility of the final CCOPF solutions. This adversarial DRL framework 

enables efficient, online learning of robust operational strategies, significantly improving 

grid reliability during worst-case events. 

2) Safe preventive-corrective SCOPF with VPPs under deep reinforcement learning 

⚫ Research gaps: Preventive-corrective security-constrained optimal power flow 

(PCSCOPF) models have been widely used to manage N-k contingencies. However, most 

traditional formulations are limited by their reliance on deterministic scenarios and their 

inability to integrate the fast-response capabilities of VPPs. Moreover, the inclusion of 

AC power flow constraints, time-dependent dynamics, and cumulative operational costs 

increases the complexity and scalability issues of such models. While DRL has emerged 

as a promising solution for complex control tasks, its application to two-stage PCSCOPF 

problems under uncertainty, particularly with virtual resources, has been limited. 

Additionally, existing SAC-based approaches do not explicitly enforce constraint 

satisfaction, leading to sub-optimal and potentially infeasible solutions during real-time 

operation. 
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⚫ Contributions: This study presents a robust DRL-based two-stage PCSCOPF framework 

that integrates fast-response VPPs into AC power systems under N-k contingencies. The 

proposed approach formulates the problem as a constrained Markov decision process 

(CMDP), where two agents, a preventive agent (PA) and a corrective agent (CA), are 

designed to minimize unmet demand, constraint violations, and adjustment costs. To 

solve this CMDP efficiently, a Lagrangian-based SAC (L-SAC) algorithm is developed. 

The algorithm dynamically tunes state-dependent Lagrange multipliers, ensuring both 

optimality and constraint satisfaction. This structure captures the full complexity of AC 

power flows while maintaining computational efficiency through agent decomposition. 

The proposed framework outperforms existing methods in scalability, constraint handling, 

and convergence speed, offering a safe and effective control strategy for real-time 

preventive-corrective dispatch with VPPs under high-impact contingencies. 

3) Multi-mode voltage regulation in active distribution networks using MADRL 

⚫ Research gaps: The increasing penetration of rooftop PV and inverter-based DERs 

introduces rapid voltage fluctuations in ADNs. Traditional devices such as OLTCs and 

capacitor banks operate on slower timescales and are unable to provide adequate voltage 

support in real time. Existing voltage control strategies often rely on single-mode 

regulation, which fails to account for varying grid conditions such as under-voltage and 

over-voltage scenarios. Additionally, most control strategies are either centralized, 

incurring high communication burdens, or fully decentralized, lacking coordination. 

There is a lack of scalable control architectures that can balance global coordination and 

local responsiveness under high-dimensional uncertainties in distribution networks. 

⚫ Contributions: This work introduces a two-stage, multi-mode voltage regulation strategy 

that coordinates slow-response traditional devices and fast-response PV inverters to 

optimize voltage control across timescales. A single-agent DRL algorithm performs day-

ahead control of OLTCs and CBs, while a MADRL algorithm is employed for real-time 

local voltage control by distributed PV inverters. Each inverter acts as an agent in a 

decentralized framework trained using centralized training with decentralized execution. 

An attention mechanism is integrated to allow each agent to focus on reward-relevant 
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information, improving learning efficiency and robustness under communication 

constraints. The strategy supports three operating modes, power loss minimization, under-

voltage mitigation, and over-voltage mitigation, enabling dynamic adaptation to network 

conditions. The framework reduces energy consumption, enhances voltage stability, and 

minimizes communication overhead, providing a scalable and adaptive solution for 

voltage regulation in ADNs. 

4) Distributed load restoration for T&D systems under N-k contingency 

⚫ Research gaps: Traditional load restoration strategies under N-k emergencies often treat 

transmission and distribution systems separately, leading to sub-optimal recovery actions. 

Moreover, centralized restoration approaches face scalability issues and heavy 

communication burdens, particularly in distribution networks with high DER penetration. 

The complexity of coordinating DERs during emergencies presents a major challenge. 

While VPPs have been proposed as aggregators, their role in coordinated restoration 

strategies under uncertainty has not been fully explored. Additionally, there is a need for 

learning-based optimization techniques that can manage large-scale dynamic problems 

across system layers with real-time performance. 

⚫ Contributions: This study proposes a distributed optimization and multi-agent DRL 

framework for coordinated load restoration in T&D systems under N-k contingencies. 

The transmission and distribution layers are modeled as two coupled MDPs, addressed 

by a SAC and a MASAC algorithm, respectively. A VPP serves as an aggregator in the 

distribution system, mediating between the DSO and DERs to reduce communication 

burdens and facilitate coordinated recovery. To enhance system-wide cooperation, a 

complementary attention mechanism is introduced in the MASAC framework, improving 

the ability of agents to prioritize relevant information and align decisions with shared 

objectives. This complementary attention for MASAC (CMS) structure enables scalable, 

communication-efficient, and effective restoration of loads across T&D boundaries. The 

proposed approach demonstrates superior performance in terms of convergence speed, 

adaptability, and restoration coverage under extreme event conditions, making it highly 

applicable to future resilient grid architectures. 
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1.4 Organization of the Thesis 

This thesis is organized into seven chapters, as illustrated in Fig. 1.1. The overall structure 

reflects the layered approach of this research, which systematically addresses the secure and 

resilient operation of power systems under uncertainties and contingencies from three 

interconnected perspectives: transmission system operation, distribution system control, 

and coordinated T&D system restoration. Each core contribution is aligned with one of these 

layers and builds upon a reinforcement learning–based algorithmic framework tailored to 

the operational characteristics of each subsystem. 

Chapter I:

Introduction of the Thesis

(Background, Objectives, Contributions, Organization)

Chapter II:

Literature review of the Thesis

(Resilient Operation of Transmission, Distribution, and 

Coordinated Transmission and Distribution Systems)

Resilient Operation of 

Transmission System

Resilient Operation of 

Distribution System

Resilient operation of coordination 

transmission and distribution system

Chapter III:

CCOPF for transmission 

system under N-k contingency

Chapter IV:

PCSCOPF for transmission 

system under N-k contingency

Chapter V:

Online voltage control or 

distribution system

Chapter VI:

Load restoration for T&D 

system under N-k contingency

Two-timescale DRL 

algorithm control framework

Defender-attacker DRL 

algorithm framework

Two-stage coordination recovery 

DRL algorithm framework

Complementary multi-agent 

DRL algorithm framework

Chapter VII:

Conclusions and Future Perspectives
 

Fig. 1.1 Overall Organization of the Thesis and the Structure of Resilient Power System 

Operation Framework. 

 

⚫ Chapter I introduces the thesis background, research motivations, objectives, main 

contributions, and the overall organization of the thesis. It outlines the increasing 

challenges posed by uncertainties and N-k contingencies in modern power systems 

and highlights the need for intelligent, robust, and scalable operational strategies. 
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⚫ Chapter II presents a comprehensive literature review, categorizing existing works 

into three domains: resilient operation of transmission systems, distribution networks, 

and coordinated T&D systems. It identifies key research gaps in traditional 

optimization-based methods and establishes the rationale for adopting DRL 

methodologies. 

⚫ Chapter III focuses on the resilient operation of transmission systems by addressing 

the CCOPF (contingency-constrained optimal power flow) problem under N-k 

contingencies. A novel defender–attacker DRL algorithm is proposed, in which a 

two-agent adversarial learning structure is developed to identify worst-case 

contingencies and derive robust control strategies. 

⚫ Chapter IV continues with the transmission layer and proposes a two-stage 

PCSCOPF model. By leveraging fast-response VPPs and a Lagrangian-based DRL 

formulation, the chapter introduces a two-stage coordination recovery DRL 

framework that enables safe and adaptive control under complex operational 

constraints. 

⚫ Chapter V transitions to the distribution system, addressing the real-time voltage 

regulation problem under renewable energy uncertainty. A two-timescale DRL 

control architecture is developed, where traditional devices (OLTCs, CBs) and 

inverter-based DERs are coordinated using single-agent and multi-agent learning 

mechanisms. A multi-mode voltage control strategy is proposed to balance power 

loss minimization and voltage constraint satisfaction. 

⚫ Chapter VI explores the coordinated operation of transmission and distribution 

systems for load restoration under N-k contingencies. A distributed, complementary 

multi-agent DRL (MASAC) algorithm is designed to support real-time decision-

making in both TSO and DSO domains. A VPP is employed as an aggregator to 

reduce communication burdens and enhance coordination between distributed agents. 

⚫ Chapter VII concludes the thesis with a summary of key findings, practical 

implications, and outlines several promising directions for future work. These include 

extending adversarial learning to broader uncertainty models, integrating formal safe-
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RL techniques, developing plug-and-play multi-agent control architectures, and 

validating learning-based restoration strategies in real-time test environments.  
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Chapter 2 Literature Review 

2.1 Literature Review on Resilient Operation of Power Systems under 

Contingencies and Uncertainties 

2.1.1 Review of Robust SCOPF for Transmission Network Resilience 

The secure operation of transmission systems under uncertain and high-impact 

contingency events remains a fundamental challenge in modern power system operation. 

To maintain grid stability and avoid cascading failures, SCOPF models have been widely 

adopted. Among them, the CCOPF problem plays a central role, especially under N-k 

security criteria where multiple simultaneous component failures must be considered. The 

primary objective of SCOPF is to determine generation dispatch schedules that satisfy all 

operational constraints in both pre-contingency and post-contingency states. 

Early efforts on SCOPF modeling focused on deterministic, single-level formulations 

under N-1 security assumptions. These models were commonly solved using interior point 

methods [35], Newton methods [36], projected sub-gradient algorithms [36], sequential 

linear programming [4], and conic programming [4]. Although effective for relatively small 

systems, these methods suffer from scalability issues and long convergence times, making 

them unsuitable for real-time implementation in large-scale networks [37], [38]. To 

accelerate solution times, simplified models such as DC-OPF approximations [39], sparse 

tableau formulations[40], and compensation-based approaches [39] have been introduced. 

However, while these approximations provide computational benefits, they often result in 

solutions that are not AC-feasible and may be suboptimal in terms of system security and 

constraint satisfaction. 

As power system operation evolves toward resilience-oriented planning, robust 

optimization techniques have gained significant attention in CCOPF studies. These 

approaches consider the worst-case realization of uncertainties within a predefined 

uncertainty set [41], thus enabling system operators to obtain dispatch decisions that remain 
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feasible even under extreme conditions. Typically, robust CCOPF models are formulated as 

two-stage bi-level [40] or tri-level [42] optimization problems. Decomposition methods 

such as Benders decomposition [43] and the column-and-constraint generation (C&CG) 

algorithm [44] are often employed to solve these models. For example, in [43], a robust 

nonconvex AC OPF problem is dualized and solved via primal Benders decomposition, with 

feasibility and optimality cuts iteratively refined. However, the presence of AC power flow 

constraints and numerous mixed-integer variables introduces substantial computational 

overhead and convergence challenges [45]. 

More recently, the SCOPF framework has been expanded to incorporate fast-response 

resources, such as VPPs and battery energy storage systems (BESS), to improve operational 

flexibility. The inclusion of BESS in CSCOPF models has demonstrated enhanced post-

contingency corrective capabilities [46], [47], although performance depends heavily on 

state-of-charge limitations. To overcome this constraint, [48] proposes integrating 

controllable loads and DERs within VPPs to support corrective dispatch. Further extensions 

include coordinated control schemes for VPPs [49], showing promise in improving power 

system robustness under stochastic contingencies. Nonetheless, existing works often focus 

solely on post-contingency corrective actions and neglect pre-contingency preventive 

strategies or the probabilistic nature of the contingencies [46]. 

In parallel, researchers have explored DRL as an alternative to traditional optimization 

techniques, particularly for real-time OPF solutions. Unlike supervised learning methods, 

which require large-scale labeled datasets [50], DRL methods learn directly through 

interaction with the environment, thereby enabling adaptive control without explicit system 

modeling [51]. Actor-critic structures and policy gradient algorithms such as DDPG and 

proximal policy optimization (PPO) have shown strong potential in deriving near-optimal 

policies in dynamic and uncertain environments [52]. However, most conventional DRL 

methods ignore hard physical constraints (e.g., voltage and thermal limits), and use reward 

penalties instead, which leads to difficulties in guaranteeing safety and feasibility during 

real-time deployment [53], [54]. Moreover, as the number and scope of system constraints 

grow, tuning appropriate penalty parameters becomes increasingly complex [55], and 
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convergence to safe solutions is not always ensured [56]. To address these issues, recent 

studies have explored CMDPs, projection-based techniques [57], and robust DRL 

formulations that incorporate physical constraints more directly. However, the majority of 

DRL-based methods are still in early stages of application and require further development 

in terms of scalability, training stability, and integration with existing OPF solvers. 

In conclusion, existing solution methodologies for SCOPF and CCOPF can be classified 

into two main categories: (i) model-based optimization techniques [35],[36],[4], which 

provide theoretical guarantees but face difficulties in handling uncertainty, dimensionality, 

and real-time constraints, and (ii) model-free learning-based approaches [58], [59], which 

offer adaptability and computational speed but often suffer from feasibility and 

interpretability issues. While supervised learning approaches require extensive datasets and 

retraining for system changes [60], reinforcement learning methods provide a promising 

path toward adaptive and robust decision-making. Nevertheless, many existing DRL-based 

CCOPF applications focus only on N-1 criteria [35], or ignore system security constraints 

entirely [58],[59], limiting their ability to ensure resilience in the face of worst-case 

contingencies. Thus, there remains a critical need to develop DRL-based frameworks that 

are explicitly tailored for robust SCOPF solutions under N-k security standards, while 

maintaining feasibility, adaptability, and computational efficiency in large-scale 

transmission systems. 

2.1.2 Review of Voltage Control Strategies in Distribution Networks under 

Uncertainty 

With the increasing penetration of DERs, particularly inverter-based PV systems, 

distribution networks are facing unprecedented challenges in maintaining voltage stability. 

The intermittent and stochastic nature of DER output introduces significant fluctuations in 

local voltage profiles, often leading to both under-voltage and over-voltage violations. 

Additionally, the growth of EV charging and flexible loads further increases uncertainty in 

distribution system operation. Traditional voltage regulation mechanisms, including OLTCs 

OLTCs, shunt capacitors, and voltage regulators, operate at relatively slow timescales and 
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are not well-suited to managing rapid fluctuations caused by high-frequency PV variability 

[61]. 

Early research in voltage regulation has predominantly focused on alleviating under-

voltage issues and minimizing power losses. For instance, a deep reinforcement learning 

(DRL)-based dispatch strategy was proposed in [62] to mitigate under-voltage problems in 

low-voltage distribution systems. Similarly, a P-Q adjustment strategy for PV inverters was 

introduced in [63] to provide local voltage support. Although these methods have shown 

effectiveness in managing specific voltage issues, most of them operate under a single-mode 

control paradigm, which limits their ability to adapt to dynamically varying operational 

conditions. In contrast, modern distribution networks often require multi-objective voltage 

regulation that can simultaneously address over-voltage, under-voltage, and energy 

efficiency concerns. 

To improve adaptability, recent works have introduced mode-switching control strategies 

for voltage regulation. For example, [64] proposed a scheme for PV inverter control under 

unbalanced voltage sag conditions, while [65] explored multi-mode control strategies for 

voltage support in high-voltage DC transmission systems. Further, [66] introduced a 

voltage-var control (VVC) and conservation voltage reduction (CVR) strategy that switches 

between control modes to handle fluctuations and optimize energy consumption. However, 

few of these studies simultaneously consider the three major challenges in distribution 

networks, over-voltage, under-voltage, and high energy losses, in an integrated and dynamic 

regulation framework. 

From a control architecture perspective, voltage regulation strategies are generally 

categorized as centralized, decentralized, or distributed. Centralized methods require global 

system information for real-time decision-making [67], which entails high communication 

costs and computation burdens. Moreover, these centralized approaches are typically 

limited in their ability to track fast voltage deviations caused by volatile DER output. On 

the other hand, decentralized strategies rely solely on local measurements [68], leading to a 

lack of system-wide coordination and limited performance under complex network 

conditions. To overcome the limitations of both paradigms, distributed voltage regulation 
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frameworks have been proposed. These strategies often use two-timescale structures to 

coordinate fast inverter-based regulation and slow mechanical control devices. For instance, 

[69] developed a two-timescale voltage control strategy for managing smart inverters and 

capacitors, while [70] proposed a distributed coordination mechanism that aligns the control 

schedules of OLTCs and DERs. A hybrid hierarchical framework was also introduced in 

[71] to simultaneously minimize power loss and regulate real-time PV output using both 

centralized and distributed elements. 

Despite their practical value, most model-based distributed voltage regulation methods 

depend heavily on accurate system models and reliable communication infrastructure [72]. 

However, in reality, the acquisition of real-time topology and system state information is 

often constrained by communication bandwidth and measurement accuracy [73]. To 

overcome this challenge, data-driven methods based on DRL have emerged as promising 

alternatives. These methods learn voltage control policies through interaction with 

simulation environments, without requiring detailed system models [74]. An agent-based 

volt–var control strategy was proposed in [75] to optimize energy dispatch in integrated 

energy systems. Meanwhile, [59] introduced a decentralized voltage control strategy for 

active distribution networks using the DDPG algorithm. In [76], a collaborative multi-agent 

DDPG framework was developed for volt–var control in the presence of high DER 

penetration. 

However, many DRL-based strategies, particularly those based on DDPG and its multi-

agent variants, face critical limitations in practice. These include instability during training, 

sensitivity to hyperparameter tuning, and performance degradation in high-dimensional 

environments with a large number of agents [77]. In particular, the standard multi-agent 

deep deterministic policy gradient (MADDPG) algorithm becomes increasingly ineffective 

as agent count grows, making it difficult to scale DRL-based voltage control to large 

distribution systems. 

To address these issues, recent works have attempted to integrate attention mechanisms 

into MADRL frameworks to enhance control performance in multi-agent environments. 

Such mechanisms allow each agent to selectively focus on relevant local or global 
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observations, improving coordination and learning stability. While these methods show 

promise, most existing studies have yet to fully incorporate multi-mode voltage regulation 

objectives and dynamic adaptation to diverse network conditions. In addition, practical 

considerations such as energy efficiency, real-time responsiveness, and communication 

constraints remain insufficiently addressed. 

In summary, while traditional voltage regulation methods offer valuable foundations, they 

fall short in addressing the full range of operational challenges introduced by high DER 

penetration and real-time uncertainty. Centralized approaches are often impractical for real-

time control, and decentralized strategies lack coordination. Distributed frameworks 

improve scalability but remain heavily reliant on system models and communications. 

Reinforcement learning–based methods provide model-free adaptability and fast decision-

making, but their scalability and robustness must be further enhanced. Therefore, there is a 

strong research need to develop scalable, stable, and multi-objective DRL-based voltage 

regulation strategies that can coordinate both traditional and inverter-based devices across 

multiple timescales under uncertainty. 

2.1.3 Review on T&D System Coordination for Emergency Load Restoration 

The coordinated restoration of loads across T&D systems during large-scale 

contingencies has emerged as a critical area of research in power system resilience. 

Traditionally, TSOs and DSOs have managed their respective networks independently, with 

limited information sharing or control coordination. This lack of integration can lead to 

conflicting operational decisions, suboptimal load recovery strategies, and even 

exacerbation of system stress during emergencies [78]. 

Centralized restoration frameworks have been proposed to coordinate T&D system 

operation. These approaches typically rely on comprehensive system models and global data 

exchange, resulting in significant communication overhead and computational complexity. 

In large-scale systems with extensive DER deployment, centralized models become 

increasingly impractical due to the combinatorial explosion of variables and the latency 

involved in data acquisition and optimization. To mitigate this, distributed optimization 
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frameworks have gained popularity for coordinating T&D restoration in emergency 

scenarios [79] , [80]. 

Among distributed optimization techniques, the Lagrangian relaxation method is one of 

the most widely used. It allows TSOs and DSOs to solve their respective subproblems 

independently, exchanging boundary conditions iteratively. Variants of this method include 

the alternating direction method of multipliers [78], analytical target cascading [79], 

proximal message passing [80], and mixed-integer boundary-compatible approaches [81]. 

Other techniques leverage Karush–Kuhn–Tucker (KKT) conditions to facilitate primal–

dual decentralized optimization, enabling distributed solutions for economic dispatch and 

AC OPF [82], [83], [84]. For example, Benders decomposition has been applied to 

decentralized reactive power dispatch, utilizing transmission-level voltage regulation to 

mitigate distribution-level overvoltage conditions [85]. 

Despite these advances, the majority of distributed coordination frameworks adopt 

sequential update mechanisms. In such schemes, each subsystem must solve its local 

problem in sequence, based on the latest received boundary conditions. This sequential 

dependency significantly limits the scalability and responsiveness of restoration algorithms, 

particularly when rapid recovery is required during N-k contingencies. To address this issue, 

parallel computing approaches have been proposed to enhance the efficiency of distributed 

optimization in T&D coordination. However, these methods often face trade-offs between 

convergence speed and solution quality, especially when strict operational constraints are 

imposed across system layers. 

In addition to optimization-based frameworks, recent research has focused on improving 

the responsiveness and scalability of distribution-level restoration using DERs. Strategies 

have been developed that utilize distributed generators (DGs) and mobile energy storage to 

accelerate localized recovery [86], [87]. For instance, DG scheduling algorithms have been 

designed to rapidly match local demand following outages [88]. However, as the penetration 

of DERs increases, the complexity of managing these resources in a coordinated manner 

across the entire distribution network also grows [89]. 
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Traditional centralized scheduling strategies for DERs suffer from high communication 

costs, limited scalability, and computational bottlenecks. To alleviate these issues, 

decentralized DER coordination schemes have been introduced. These include approaches 

based on local terminal measurements [90] or real-time local control without relying on 

centralized data [49]. However, such methods either require sophisticated communication 

infrastructure or are limited in scope to small-scale or localized restoration tasks. As an 

alternative, aggregator-based approaches, such as the VPP concept, have been proposed to 

manage large populations of DERs through a hierarchical structure [91]. By serving as an 

intermediary between DSOs and DERs, the VPP reduces communication burdens, enhances 

controllability, and provides a scalable platform for coordinated response during 

emergencies[92], [93]. Despite their advantages, aggregator-driven strategies for 

emergency restoration have received limited attention and remain underexplored in current 

literature. 

Beyond model-based optimization, DRL has been increasingly adopted for real-time 

decision-making in complex power system restoration tasks. DRL methods offer the 

advantage of learning optimal control policies through interaction with the environment, 

without requiring precise system modeling or extensive pre-defined datasets. For example, 

a DRL-based SCOPF strategy was proposed in [94] to enhance the robustness of 

transmission systems, while a hybrid DRL approach for preventive control under 

uncertainty was introduced in [35]. These methods demonstrate the ability of DRL to 

replace conventional control logic with adaptive, data-driven strategies that better handle 

nonlinear system behavior and uncertain disturbances [95]. 

MADRL has also been explored for large-scale power system control tasks. For instance, 

[96] presented a MADDPG framework for voltage control in transmission systems. While 

this framework improves local autonomy, its learning performance degrades in high-

dimensional settings with many agents. To alleviate this issue, attention mechanisms have 

been embedded into MADRL algorithms to improve scalability and coordination [97]. 

However, standard MADRL frameworks often rely heavily on local observations and fail 
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to incorporate system-wide information, which limits the agents' ability to optimize a shared 

objective function. 

In summary, existing literature highlights a clear trajectory toward integrating distributed 

optimization and learning-based approaches for T&D coordinated restoration. Model-based 

distributed methods are theoretically sound but computationally intensive and hard to scale 

for real-time application. DRL-based methods offer adaptive control and reduce reliance on 

explicit models, but face challenges related to coordination, information sharing, and 

learning stability. Aggregator-driven architectures such as VPPs offer a promising solution 

by reducing communication overhead and enabling DER coordination across the 

distribution layer. To fully realize resilient T&D restoration, future research must focus on 

hybrid frameworks that combine distributed optimization, DRL, and scalable 

communication infrastructures to ensure rapid, reliable, and coordinated recovery during 

extreme events. 
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Chapter 3 Real-time Resilient Power 

System Operation with Defender-

Attacker Soft Actor-Critic 

Reinforcement Learning 

Threatened by weather disasters and operational uncertainties, resilient and economic 

decision-making in power systems has garnered significant attention for maintaining system 

security. Consequently, formulating operational models has become crucial, particularly 

with the adoption of two-stage decision-making frameworks such as contingency-

constrained optimal power flow (CCOPF), a complex, large-scale, nonconvex problem. 

This paper introduces a novel robust deep reinforcement learning approach named defender-

attacker soft actor-critic (DA-SAC), tailored for CCOPF with N-k security criteria. Initially, 

a specialized Markov decision process (MDP) model is standardized for the nested two-

agent system. The primary agent generates resilient control actions, while the adversarial 

agent identifies the worst-contingency scenarios to maximize regulation costs. A power 

flow-based best response procedure is developed in a computationally efficient uncertain 

environment to minimize load shedding during attack scenarios. To enhance the feasibility 

and stability of the foundational soft actor-critic (SAC) algorithm, the degree of constraint 

violation (DCV) is introduced along with two-timescale learning rates. The effectiveness of 

the proposed DA-SAC algorithm is validated on two benchmark systems, demonstrating its 

capability to generate rapid, resilient, and feasible control actions while maintaining stable 

learning performance. 

3.1 Framework 

This work addresses the challenge of real-time resilient power system operation under 

uncertain and high-impact N-k contingencies by formulating a two-stage contingency-

constrained optimal power flow (CCOPF) problem. The first stage involves pre-
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contingency planning, where robust control actions are determined to minimize operating 

costs while accounting for possible future disruptions. The second stage simulates post-

contingency conditions, evaluating the system's performance under the worst-case scenarios 

that result in load shedding, reserve violations, and constraint breaches. This forms a nested 

max-min optimization problem in which the inner layer represents the attacker's objective 

of maximizing operational losses, while the outer layer seeks to minimize total system cost 

and violations. Due to the complexity and nonconvexity of AC power flow equations, 

traditional decomposition-based optimization methods are computationally intensive and 

unsuitable for real-time applications. Therefore, this work reformulates the CCOPF as a 

dynamic decision-making process to enable rapid and robust responses. 

To solve this problem efficiently, a novel defender-attacker soft actor-critic (DA-SAC) 

algorithm is proposed, grounded in a competitive Markov decision process (MDP) 

framework. Two agents are defined: the defender agent (DA), which produces resilient 

control strategies under uncertainties, and the attacker agent (AA), which identifies the most 

disruptive contingencies to test the robustness of these strategies. The DA uses a continuous 

SAC algorithm to generate optimal power dispatch and load shedding actions, while the AA 

employs a discrete SAC variant to select attack scenarios. The reward function integrates 

operational cost and a normalized degree of constraint violation (DCV) to ensure feasibility 

and system security. To stabilize the adversarial learning process, a non-cooperative 

strategy is adopted where the DA receives auxiliary information from the AA's Q-values, 

improving learning stability and convergence. Additionally, a power flow-based best 

response mechanism is integrated into the environment to simulate realistic post-

contingency responses. Experimental validation on IEEE test systems demonstrates that the 

proposed DA-SAC framework effectively minimizes unserved energy and constraint 

violations, achieving fast, reliable solutions suitable for real-time grid operation. 

3.2 Problem Formulation 

To ensure continuous operation under uncertain contingencies such as extreme weather 

and equipment failures, system operators seek to determine the optimal economic and 
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resilient operational strategy with minimal computational burden. Consequently, this 

decision-making problem is framed as a two-stage robust optimization model. The goal is 

to minimize operating costs in the pre-contingency stage while accounting for the worst-

case scenarios that maximize post-contingency operational losses in the second stage. The 

objective function can be expressed as follows: 
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  (3.1) 

where the first three terms represent post-contingency operating costs, and the last two 

represent pre-contingency costs. G and D are the sets of generators and power demands, 

respectively. The prime symbol (′) indicates post-contingency variables. 𝑝𝑔,𝑡 and ∆𝑝𝑑,𝑡 

denote the active power output from generator g and load shedding from demand d at time 

t, respectively. 

In the proposed framework, power demands are randomly generated according to their 

stochastic profiles. Consequently, power demands can be high, potentially making the 

problem infeasible under normal operating conditions. Therefore, load shedding is 

considered in the first stage to relax constraints and improve stability. Additional load 

shedding, ∆𝑝𝑑,𝑡
′ , which occurs due to contingencies and is referred to as unserved electricity, 

is penalized in the second stage with a penalty 𝐶𝑑
′  significantly more significant than 𝐶𝑑. 

After a contingency, some generators automatically adjust their outputs to maintain system 

stability according to their reserves 𝑟𝑔,𝑡 . Thus, reserve violations, ∆𝑟𝑔,𝑡
+  and ∆𝑟𝑔,𝑡

− , are 

penalized in the objective of the second stage. 

Operational constraints for the CCOPF in the pre-contingency stage are defined in (3.2)-

(3.9). Linear constraints (3.2)-(3.8) represent generation capacities, voltage security 

constraints, power flow limits, and logical limits of load shedding. 𝑝𝑔,𝑡/𝑞𝑔,𝑡, 𝑣𝑖,𝑡/𝜃𝑖,𝑡, and 

𝑠𝑖𝑗,𝑡/𝑠𝑗𝑖,𝑡 represent the active/reactive power outputs from generator g, voltage magnitude/ 

angle at bus i, and sending/receiving power flow between buses i and j, respectively. 𝑋𝑥/𝑋𝑥 

denote the minimum/maximum values of parameter 𝑋𝑥. 𝑃𝑑,𝑡 is the total power demand. 
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𝑅𝐷𝑔/𝑅𝑈𝑔 are the ramping down/up limits of generator g. Finally, (3.9) represents all non-

convex AC power flow equations, where 𝑓𝑃𝑟𝑒(∙) is a nonlinear function [41], [98]. 
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In the post-contingency stage, the operational constraints consider the attacker's actions, 

denoted by u, where the objective is to maximize operational losses in this stage. The 

attacker operates within an uncertainty set 𝒰. Various forms of uncertainty sets have been 

proposed in relevant studies to encompass different electric power system components, such 

as generation units, transformers, power lines, and reactive power injections [99]. 

Additionally, these sets can model extreme storm behaviors with specific time and 

geographical constraints [98]. 

For simplicity, the uncertainty set in this study considers only the availability of 

transmission lines and power units. Nevertheless, other uncertainty sets can be integrated 

into the proposed approach without modification. Consequently, 𝒰 is defined as follows: 
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where 𝑢𝑖𝑗,𝑡/𝑢𝑔,𝑡 indicates the attacker status of the component, 1 if it is attacked and 0 

otherwise; ℎ𝑖𝑗,𝑡/ℎ𝑔,𝑡 represents the availability of the power component. Once the attack 

status is realized, the system will try to maintain stability given the robust control actions in 

the first stage. Therefore, the post-contingency constraints are defined as 
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where (3.11) ensures that regulated power outputs comply with generation reserves based 

on their availability. The violations in reserves are calculated through (3.12)-(3.13) and 

minimized in the objective function (3.1). It is important to note that this work focuses on 

solving the two-stage CCOPF problem, so generation reserves are considered predefined 

and not optimized in the first stage [42]. However, the proposed model can incorporate 

generation reserves in the robust action of DA without additional modifications. Ramping 

capacities, voltage magnitudes, and angles are defined in (3.15)-(3.17), respectively. 

Depending on the availability of power lines, their flows are restricted by (3.18), and 

additional power shedding is defined in (3.19). Finally, 𝑓𝑃𝑜𝑠𝑡 encompasses all nonlinear 

AC power flow equations in the post-contingency stage. 

The CCOPF model is formulated as a two-stage robust optimization problem to identify 

optimal robust control actions while considering the worst-case scenarios under N-k security 

criteria. This model can be expressed as follows: 
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The objectives are defined in (3.1). This model cannot be directly solved with traditional 

solvers. It can be reformulated as a single-level problem by introducing optimality and 

feasibility cuts for all possible worst-case contingency scenarios. The resulting model can 

then be solved using a nonlinear solver. However, this approach results in a high-

dimensional problem with extensive nonconvex constraints, making it challenging to find 

an optimal resilient solution for real-time operations. Another approach is to use 

decomposition or nested algorithms to handle the large number of contingencies. However, 

this method is time-consuming due to the increasing constraints per iteration. In this work, 

we employ advanced deep learning technology to solve the problem effectively and quickly, 

ensuring high reliability for real-time operation. 

However, traditional optimization techniques, such as mixed-integer linear programming 

for unit commitment and nonlinear programming for optimal power flow, guarantee strict 

adherence to all physical and operational constraints. These methods are particularly 

suitable for day-ahead scheduling or planning problems, where solution feasibility and 

optimality are of paramount importance, even at the expense of long computation times. In 

contrast, deep reinforcement learning (DRL) shifts the heavy computation to the offline 

training phase, enabling real-time decision-making with negligible inference cost. This 

makes DRL attractive for real-time operation under high uncertainty, such as corrective 

dispatch after contingencies or fast voltage regulation with high renewable penetration. 

Nevertheless, DRL frameworks may generate unsafe or infeasible control actions if 

constraints are not properly embedded, and thus require careful design. 

3.3 Methodology 

3.3.1 Markov decision process formulation 

To apply a reinforcement learning approach, optimization problems or control tasks are 

reformulated as a MDP model [50]. In this model, one or more agents interact with an 

uncertain environment to gradually improve their control policy through exploration. Unlike 
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commonly adopted simple MDP models, which typically involve a single agent [35] or 

multiple agents cooperating on the same task [100], this work develops a specialized MDP 

for competitive agents. Specifically, the power system operator, DA, aims to minimize 

operational costs by implementing robust and resilient control actions 𝑎𝑡
𝑑  against all 

possible contingency scenarios. Conversely, the attacker, AA, seeks to maximize post-

contingency costs by determining the attack action 𝑎𝑡
𝑎. To identify the worst contingency 

scenario, the predicted actions of the DA should be considered in the state of the AA to 

expedite policy exploration. Fig. 3.1 illustrates the interactions between the two agents and 

the environment. The DA predicts robust actions based on the latest states of power demands 

and renewable energy outputs, denoted as 𝑠𝑡
𝑑. The AA predicts the worst attack given the 

predicted action 𝑎𝑡
𝑑 and other environmental states 𝑠𝑡

𝑎. The environment then generates 

rewards for each agent, 𝑟𝑡
𝑑 for the DA and 𝑟𝑡

𝑎 for the AA, along with the new states 𝑠𝑡+1
𝑑  

and 𝑠𝑡+1
𝑎 . 

Environment
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Stage
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..
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Fig. 3.1 The developed MDP model for the nested agents. 

 

To formulate the MDP model, the main components of the DA, the AA, and the 

environment are defined as follows. The DA generates robust actions 𝑎𝑡
𝑑 using the control 

policy 𝜋𝑑(𝑠𝑡
𝑑) to maximize the cumulative discounted reward ∑ (𝛾𝑑)𝑘−1𝑟𝑘

𝑑𝑁
𝑘=1 . Thus, it 

can be defined by the tuple (𝑠𝑡
𝑑 , 𝑎𝑡

𝑑 , 𝑟𝑡
𝑑, 𝛾𝑑 , ℙ𝑑). 𝑠𝑡

𝑑 represents the input states, including 

active and reactive power demands as defined in (3.23). It is important to note that 
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renewable energy outputs are considered uncertain in this setting and are therefore included 

in 𝑃𝑑,𝑡 with a negative sign. The predicted action 𝑎𝑡
𝑑 is defined in (3.24), where ℐ𝑣 and 

ℐ𝑔  are subsets of power buses that include reactive power injections and active power 

injections (excluding the slack bus), respectively. Instead of considering all decision 

variables from (3.21)-(3.22), the selected actions in (3.24) are controllable and include the 

minimum necessary actions to improve learning convergence and stability. The defense 

action chosen here is continuous action, as it involves regulating the adjustment of 

generators and the load shedding in the demand buses, which is inherently a continuous 

action. This paper leverages recent advancements in AC power flow solvers [41], [101] to 

derive the full decision vector from this action space. The reward value per time step 𝑟𝑡
𝑑 

should reflect the action value taken by the DA. It is defined in (3.25) to include all 

operational costs, i.e., pre- and post-contingency costs, and the DCV value of violated 

constraints in the two stages. K represents a penalty value. Finally, 𝛾𝑑 is the discount rate 

for the cumulative reward, and ℙ𝑑  is the transition function, which the reinforcement 

learning algorithm will learn. 
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In the reward function, two degrees of constraint violation are incorporated to account for 

both the pre-contingency and post-contingency system conditions. Specifically, the defense 

agent applies its control actions in the pre-contingency stage. Since reinforcement learning 

agents may produce unsafe actions that could violate operational constraints, the degree of 

constraint violation is explicitly evaluated during the pre-contingency power flow 

calculation and included in the reward to discourage infeasible preventive actions. At the 

same time, the defense agent’s actions also propagate into the post-contingency 

environment, where the system is subjected to the worst contingency scenarios. In this stage, 

the resulting system state reflects how the SCOPF solution performs under stressed 

conditions, and constraint violations may arise due to line overloads, voltage deviations, or 
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generation limits. Therefore, the degree of constraint violation is also computed in the post-

contingency stage and incorporated into the reward function. 

Similarly, the AA is defined by the tuple (𝑠𝑡
𝑎, 𝑎𝑡

𝑎, 𝑟𝑡
𝑎, 𝛾𝑎, ℙ𝑎). The states 𝑠𝑡

𝑎 include active 

and reactive power demands as well as the robust action from the pre-contingency stage, as 

defined in (3.26). The predicted attack action 𝑎𝑡
𝑎 is a discrete action space, represented in 

(3.27), where 𝒢 and ℒ are sets of generation units and power lines, respectively. In other 

words, the AA selects an attack from a list that considers all possible combinations of 

equipment failures according to the adopted security criterion k. In contrast to the defense 

action 𝑎𝑡
𝑑, the chosen attack action is a discrete action. This is due to the fact that deciding 

to disconnect generators or transmission lines is a binary decision, which makes it 

fundamentally discrete in nature. The reward value per time step 𝑟𝑡
𝑎 is defined in (3.28) to 

encompass post-contingency costs and the DCV value of violated constraints in the second 

stage. 
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This formalism is modeled as a two-player zero-sum MDP with one-sided incomplete 

information. In particular, the attacker knows the actions of the operator while the operator 

does not. The game proceeds as follows. Initially, a state-reward pair (𝑠0, 𝑟0) is sampled 

from the prior distribution 𝒫0. The state 𝑠0 is publicly observed by both players, while the 

attacker observes the operator's action 𝑎𝑑 ∈ 𝒟 and chooses action 𝑎𝑎 ∈ 𝒟. Given both 

actions, the current state 𝑠𝑡 transitions to a successor state 𝑠𝑡+1 according to the transition 

model ℙ(𝑠𝑡+1|𝑠𝑡, 𝑎
𝑑 , 𝑎𝑎). The attacker receives a reward ℛ(𝑠𝑡

𝑎; 𝑎𝑡
𝑎; 𝑎𝑡

𝑑; 𝑠𝑡+1
𝑎 ); the operator 

receives the reward ℛ(𝑠𝑡
𝑑; 𝑎𝑡

𝑑; 𝑠𝑡+1
𝑎 ). The competition results in the operator possessing 

incomplete information, requiring it to maintain a belief of enhancing robustness over the 

worst contingency scenario. The attacker and the operator aim to minimize operating costs 

while maximizing post-contingency operational losses. 
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d aR
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 . . (3.21) (3.22)s t −  (3.30) 

To ensure the secure operation of the power system, all constraint violations are 

normalized in one number called the degree of constraint violations (DCV) to be included 

in the reward function as defined in (3.25) and (3.28). It is defined as 

 

2[ ] [ ]1
DCV

| |
( )

n

n n n n
n

x n n

x x x x

x x


+ +



− + −
=

−


 (3.31) 

where 𝑥𝑛 collects all uncontrolled constraints in (3.21)-(3.22). The number of constraints 

is |𝒳|, with minimum 𝑥𝑛 and maximum 𝑥𝑛 limits. These limits are obtained from (3.2)-

(3.8) and (3.11)-(3.19) for DCVPre and DCVPost, respectively. [∙]+  indicates max⁡{0,∙}. 

Finally, 𝜁𝑛 is an optional factor to increase the weight of the constraint n compared with 

others. 

Because the post-contingency stage can result in disconnected subsystems (zones z) 

within the power system, a new procedure is required to calculate rewards and generate new 

states in the simulation environment under these disconnections. Recent advances in power 

flow (PF) solvers [102] have demonstrated their capability to find fast and robust solutions. 

Building on these advances, Algorithm 1 is developed to execute the environment with a 

few straightforward steps. 

 

Algorithm 1: Power Flow-based Best Response Procedure 

1: Input: 𝑠𝑡
𝑑 , 𝑎𝑡

𝑑 , ,i tv  and.𝑎𝑡
𝑎. 

2: Solve: pre-contingency PF problem with 𝑎𝑡
𝑑 and 𝑠𝑡

𝑑 . Get CostPre 

by (3.1) and DCVPre by (3.31). 

3: Apply: attack actions 𝑎𝑡
𝑎, update system topology and get ℬ𝑧 , ∀𝑧. 

4: For each zone z: 

5:    If slack bus 𝑘 ∈ ℬ𝑧, 

Solve PF with 𝑎𝑡
𝑑(𝑧) and 𝑠𝑡

𝑑(𝑧). 

∆𝑟𝑘
+ = [𝑝𝑘

′ − (𝑝𝑘 + 𝑟𝑘
+)]+, ∆𝑟𝑘

− = [(𝑝𝑘 − 𝑟𝑘
−) − 𝑝𝑘

′ ]+, ∆𝑝𝑑
′ (𝑧)

= 0. 

6:    Else if ∃𝑔 ∈ 𝒢𝑖 , 𝑖 ∈ ℬ𝑧, 
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Select a slack bus k, where 𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 ∑ ∆𝑟𝑔
+

𝑔∈𝒢𝑘 +

∑ ∆𝑟𝑔
−

𝑔∈𝒢𝑘  

Solve PF with 𝑎𝑡
𝑑(𝑧) and 𝑠𝑡

𝑑(𝑧). 

∆𝑟𝑘
+ = [𝑝𝑘

′ − (𝑝𝑘 + 𝑟𝑘
+)]+, ∆𝑟𝑘

− = [(𝑝𝑘 − 𝑟𝑘
−) − 𝑝𝑘

′ ]+, ∆𝑝𝑑
′ (𝑧)

= 0. 

7:     Else if ∄𝑔 ∈ 𝒢𝑖 , 𝑖 ∈ ℬ𝑧, 

∆𝑝𝑑
′ (𝑧) = 𝑃𝑑(𝑧) − ∆𝑝𝑑(𝑧). 

8: Calculate: CostPost using (3.1), DCVPost using (3.31), 𝑟𝑡
𝑑 using 

(3.25), 𝑟𝑡
𝑎 using (3.28). 

 

When attack actions 𝑎𝑡
𝑎 are applied, the system topology changes, grouping the buses 

into sets ℬ𝑧, ∀𝑧. In some zones, such as those involving lines 5 and 6 in the procedure, the 

PF solver updates the active power generation from the slack bus to mitigate the attack. 

Power regulation is penalized if it exceeds generator reserves. Conversely, in zones without 

generators (as in line 7), the PF solver is unnecessary, and the power demands of that zone 

remain unmet. 

Considering these dynamics, the environment calculates rewards and generates new states 

accordingly. The simulated power system environment accurately reflects the impact of 

disconnections and ensures that the power system's response is realistic and robust. 

3.3.2 Defender-attacker soft actor-critic DRL algorithm 

Traditional model-free DRL algorithms often need help with low sampling efficiency and 

weak convergence. While practical, on-policy algorithms like A3C and PPO suffer from 

lower sampling efficiency due to their reliance on data directly related to the current policy, 

limiting their data utilization scope [103]. On the other hand, off-policy algorithms such as 

DDPG utilize a broader data set by sampling from an experience buffer, which can 

potentially increase sampling efficiency [104]. However, the increased sampling scope does 

not inherently translate to higher efficiency, as both algorithm types must effectively 

manage the relevance and diversity of sampled experiences. To address these challenges, 

the soft actor-critic (SAC) algorithm, an off-policy method, was proposed to enhance 
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sampling efficiency by maximizing both the information entropy of system states and 

discounted cumulative rewards, ensuring robust and efficient learning [103]. Meanwhile, to 

enhance the operational performance of power systems under pre and post-contingency 

stages, a robust DRL algorithm is developed based on the fundamental SAC, namely the 

defender-attacker SAC (DA-SAC) algorithm, where two independent policies for DA and 

AA are learned in a competitive scenario. Because the action spaces of DA and AA are 

continuous and discrete, respectively, the fundamental SAC (continuous) and its modified 

version [52] (discrete) are employed in the developed DA-SAC algorithm. 

3.3.2.1 SAC algorithm with continuous action space 

The prominent features of the SAC algorithm are due to several essential mathematical 

and technical techniques. First, the SAC algorithm utilizes a replay buffer to reuse prior 

experiences for an off-policy formulation, improving sample utilization efficiency. During 

each gradient step, the actor and critic networks are updated based on a mini-batch of prior 

experiences sampled from the replay buffer ℳ = [(𝑠, 𝑎, 𝑟, 𝑠′)], where s' represents the new 

states after applying action a. 

Second, SAC is the state-of-the-art entropy maximization-based deep reinforcement 

learning (DRL) algorithm, where the entropy of the policy is augmented in the policy 

objective to balance the exploration process, as shown below [105]: 

 

1
*

~

0

arg max [ log ( | )],
T

t

t

r a s     
−

=

= −
 (3.32) 

where 𝜏 indicates one trajectory. The policy 𝜋(𝑠|𝑎) maps the system's states to control 

actions. 𝛼 represents the entropy temperature, tuning the stochasticity of the optimal policy, 

i.e., the weight of the entropy term. 𝛾 ∈ [0,1) denotes the discounting coefficient. 

Third, the SAC algorithm is based on an actor-critic architecture with stochastic actors, 

where the optimal maximum entropy policies are updated by alternating between critic 

update (policy evaluation) and actor update (policy improvement). The critic network 

receives the states and actions and outputs the action value 𝑄𝜃(𝑠, 𝑎), where 𝜃 are the 

parameters. Using the modified Bellman backup operator, the soft Q-value is given by 
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𝑄𝜃(𝑠, 𝑎) = 𝐸(𝑎′,𝑠′)~𝜋[𝑟𝑡 + 𝛾𝑉𝜋(𝑠′)] , where 𝑉𝜋(𝑠) = 𝐸𝑎~𝜋[𝑄𝜃(𝑠, 𝑎) − 𝛼 𝑙𝑜𝑔(𝜋(𝑎|𝑠))] is 

the soft state-value function. 

The proposed model: i) Implements two critic networks with different parameters 𝜃1 and 

𝜃2 , taking their minimum values to avoid overestimation issues [99]. ii) Uses a target 

network for each critic with parameters 𝜃1 and 𝜃2 to improve learning stability [99]. iii) 

Neglects the state-value network 𝑉𝜋 and uses its exact equivalent. 

Thus, in the policy evaluation step, the critics are updated by the following loss function: 

 

* 2

ˆ( , , , ')~

1
( ) ( , )  ( ', ') log( ( ' | ')) , {1,2},

2
[ ( ( { })) ]

i i
Q i s a r sJ Q s a r Q s a a s i 

   = − + −  

  (3.33) 

where 𝜑 are the parameters of the actor network. a' is the control action predicted from the 

latest updated policy 𝜋𝜑
∗  given states s'. Note that target networks are smoothly and 

periodically updated by 

 
ˆ ˆ(1 ) , {1,2},i i i i   = − +  

 (3.34) 

where 𝜏 is the target update factor. In the policy improvement step, the policy is optimized 

to maximize the soft Q-function by minimizing the KL-divergence as [105]: 

 
ˆ~ ~ {1,2}( ) log( ( | )) min ( , ) ,[ [ ]]
i

s a iJ a s Q s a   
   = −

 (3.35) 

which can be minimized using a reparameterization trick. Given the system states, the policy 

is modified to predict the mean and standard deviation of the actions' probability distribution 

(spherical Gaussian). Additionally, policy entropy is maximized to enhance the exploration-

exploitation balance and improve learning stability. However, the effectiveness of 

exploration and learning stability depends on the entropy temperature, which varies across 

different tasks. Consequently, automating entropy adjustment is proposed in [105] by 

computing the objective in (35), where ℋ denotes the expected minimum entropy. 

 ~( ) log( ( | ))[ ]aJ a s   = − −
 (3.36) 

3.3.2.2 SAC algorithm with disrete action space 
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The attacker's actions are modeled as discrete to reflect the binary nature of decisions, 

such as disconnecting specific transmission lines or generators in the power system, as 

defined by the N-k contingency criteria in (3.27). According to statistical theory, a discrete 

action A follows a categorical distribution, represented by a probability vector 𝒫 =

[𝑝1, 𝑝2, … , 𝑝𝑘] . The probability of selecting a specific action 𝑎∗ ∈ 𝐴  is given by 

𝒫(𝑎∗ = 𝑎𝑖) = 𝑝𝑖, where 𝑎𝑖 denotes an action in the action space. This distribution enables 

the attack agent to assign probabilities to potential actions, facilitating exploration of the 

action space and selection of worst-case contingency scenarios based on the learned policy. 

This approach ensures the learning process aligns with power system operations while 

maintaining computational efficiency and stability during policy training [106]. Modeling 

the attacker's policy with a categorical distribution provides a practical framework for 

addressing contingencies in CCOPF. 

To derive the discrete action-based SAC (DSAC) algorithm, four essential modifications 

are required in the SAC algorithm: i) Instead of implementing the policy network with 

outputs representing the mean and variance of control actions, DSAC directly predicts the 

probability of discrete actions. The softmax function is employed in the output layer to 

ensure an accurate probability distribution for the outputs, thereby transforming the policy 

space from continuous to discrete. ii) Because the expectation of the discrete actions can be 

directly calculated from the probability of discrete distributions, the soft state-action 

function can be expressed as 𝑉𝜋(𝑠) = 𝜋𝜑(𝑠)
⊺  [30]. The Q-function loss can then be 

calculated as follows: 

 

2

( , , , ')~

1
( ) ( , ) ( ') ( ', ') log( ( ' | ')) , , 

2
[ ( ( { [ ]})) ]

i iQ i s a r sJ Q s a r s Q s a a s i      = − + − 

  (3.37) 

where 𝜋𝜑(𝑠′)
⊺ indicates the expectation value of the discrete action; iii) Similarly, the 

automating entropy adjustment can be changed to 

 
( ) ( ') log( ( )) ,[ ]J s s    = − −

 (3.38) 
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Finally, iv) there is no need for the reparameterization trick because the policy predicts 

the exact action distribution and the new objective is changed to 

 
ˆ~ {1,2}( ) ( ) log( ( | )) min ( , )[ [ ]]
i

s iJ s a s Q s a   
    = −

 (3.39) 

3.3.2.3 Practical implementation of DA-SAC 

The DA and AA are constructed within a min-max framework, sharing the same neural 

network architecture, except for the policy network, but with independently updated 

parameters. Each agent generates different actions and interacts with the same environment 

to obtain distinct rewards. The replay buffer ℳ  stores their prior experiences and 

randomly samples a mini-batch to update the parameters of DA and AA according to (3.32)-

(3.39). The proposed DA-SAC is summarized in Algorithm 2. 

 

Algorithm 2: Defender-Attacker SAC Algorithm 

1: Initialize: Defender agent networks 𝜑𝑑, 𝜃𝑖
𝑑, 𝜃𝑖

𝑑, and attacker agent networks 

𝜑𝑎, 𝜃𝑖
𝑎, 𝜃𝑖

𝑎 

2: For each episode do 

3:   For each time step do 

4:      𝑎𝑑~𝜋𝜑𝑑(∙ |𝑠𝑑 = 𝑠); 𝑎𝑎~𝜋𝜑𝑎(∙ |𝑠𝑎 = [𝑎𝑑 , 𝑠]). 

5:      𝑟𝑑, 𝑟𝑎, 𝑠′ ← call Algorithm 1 to execute 𝑎𝑑 , 𝑎𝑎. 

6:      ℳ ←ℳ ∪ (𝑠, 𝑎𝑑 , 𝑎𝑎, 𝑟𝑑, 𝑟𝑎, 𝑠′). 

7:   End For 

8:   For each gradient step do 

9:      Sample random N experiences from ℳ. 

10:     Update soft Q-value parameters 𝜃𝑖
𝑑 and 𝜃𝑖

𝑎 by (3.33) and (3.37). 

11:     Update policy parameters 𝜑𝑑 and 𝜑𝑎 by (3.35) and (3.39). 

12:     Adjust temperature 𝛼𝑑 and 𝛼𝑎 by (3.36) and (3.38). 

13:     Update targets 𝜃𝑖
𝑑 and 𝜃𝑖

𝑎 by (3.34). 

14:  End For 

15: End For 

The architecture of the DA-SAC algorithm consists of two sets of networks, as discussed 

above. Each set can be represented as shown in Fig. 3.2. It includes the three components: 

the actor, critics/targets, and replay buffer. The actor network comprises a fully connected 

layer with several hidden layers and outputs a two-dimensional vector that characterizes a 
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Gaussian distribution of the predicted control actions. In other words, it maps the states s to 

actions 𝒩(𝜇, 𝜎). The action determined by the policy 𝜋𝜑(∙ |𝑠) and the latest state s are 

fed into the environment, which produces the reward r and the next state s'. These are then 

stored in the replay buffer ℳ. 
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Fig. 3.2 Structure of a set of networks in the DA-SAC agent. 

In our study, the training of DRL algorithms is primarily conducted in a simulated 

environment rather than relying on real-world historical records of equipment failures. 

During the early stage of training, experiences are generated through random sampling of 

actions. Each action is applied to the environment, where the resulting system state 

transition and the corresponding reward value are calculated. These state–action–reward 

samples are then stored in the replay buffer to serve as the initial learning experience for the 

DRL agent. This simulation-driven setup ensures that the agent can learn from a wide 
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variety of contingency scenarios, including rare but severe failures, thereby improving the 

robustness of the trained policy. 

The critic network predicts the Q-value of the cumulative reward using an output layer 

with a single neuron and multiple hidden layers. As previously discussed, the target network 

shares the same structure as its associated critic. A mini-batch of N experiences, i.e, 

{𝑠, 𝑎𝑑 , 𝑎𝑎, 𝑟𝑑, 𝑟𝑎, 𝑠′}~ℳ, is sampled from the replay buffer to calculate the loss functions 

for each critic and the gradient descent for the actor network to update their parameters. The 

updating process alternates between collecting prior experiences and updating the 

parameters of the actor-critic components until the termination criteria are met, such as 

reaching the maximum number of episodes or achieving the local optimal policy. 

3.3.2.4 Stability enhancement for noncooperative agents 

The DA and AA compete iteratively in the MDP framework to find optimal actions that 

maximize their rewards. However, the DA is disadvantaged since the AA can access 

additional information from the robust action. The states of the AA are designed to include 

the robust action predicted by the DA's policy to ensure the identification of worst-

contingency scenarios, which aligns with practical operation. This essentially forms an 

embedded Stackelberg game [107] between the attacker and the defender and helps develop 

robust defense mechanisms [108]. These recent studies [109] underline the validity and 

necessity of assuming complete information in attackers to realistically prepare and defend 

against potential sophisticated attacks on power systems. 

To address this issue, this work introduces a noncooperative strategy. This strategy 

involves two competitive agents with completely misaligned objectives, where only one 

agent has perfect information. The less informed agent receives auxiliary information from 

the environment rather than cooperating with its competitor. In this setup, the latest 

improvement of the informed agent's policy parameters and the action value function are 

transferred to the state of the less informed agent as auxiliary information for the next step. 

The action value function evaluates the expected future performance of the informed agent's 

action 𝑎𝑡  under state 𝑠𝑡 . Consequently, based on the action value function, the less 

informed agent (DA) can generate effective actions to compete with the informed agent 
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(AA). This approach is underpinned by existing literature on multi-agent systems where the 

sharing of strategic information has proven to enhance system robustness and reliability 

significantly [110]. This proactive strategy not only improves the robustness of the DA's 

solutions but also reinforces the overall resilience of the electrical power systems against a 

wide range of threats and disturbances, thereby enhancing reliability and security. 

In the proposed setting, the AA agent has two critics with two targets, and the minimum 

operator is used to ensure solution stability. The input state for the DA during training is 

given by 𝑚𝑖𝑛𝑖∈{1,2} 𝑄𝜃̂𝑖
𝑎(𝑠, 𝑎). Therefore, the states of the DA agent can be written as 

follows: 
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 (3.40) 

Fig. 3.3 illustrates the procedure of the noncooperative strategy within the MDP 

framework. In this process, the environment produces immediate rewards (𝑟𝑚, 𝑟𝑎) and the 

next state s' as a result of the prior actions, which are then stored in the replay buffer. The 

informed agent (AA) receives complete information from its state space, whereas the less 

informed agent (DA) only has access to limited information. 

EnvironmentReplay buffer

Less Informed Agent

Updating Information

Auxiliary Information

Lacking information flow

Lacking information in agent

Information flow

Robust

action

Attack

action

  
.
.

.
 
 
..
.

Informed Agent

 

Fig. 3.3 The process of the noncooperative strategy. 
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Imperfect information games can lead to different learning rate scales and significant 

fluctuations while the DA and AA compete during the training process. It can result in 

instability, as most actor-critic approaches with explicit parameterization of 𝜋  are 

particularly sensitive to large fluctuations. To enhance the stability and robustness of the 

DA, the noncooperative strategy provides auxiliary information to the DA, as defined in 

(3.40). This auxiliary information enables the DA to compete effectively with the AA and 

generate robust actions against worst-case scenarios during exploration. 

This design of the noncooperative strategy ensures that the defense agent is not 

persistently placed in a weak or dominated position, which is critical for maintaining its 

learning efficiency. While the interaction between the defense agent and the attack agent 

may introduce oscillatory dynamics due to their competitive objectives, the use of 

noncooperative training prevents these oscillations from becoming excessive or 

destabilizing. As a result, the defender–attacker competition converges to a stable learning 

process where the defense agent is able to consistently improve its policy, thereby enhancing 

the robustness of the overall SCOPF solution under worst-case contingencies. 

3.4 Case Study 

3.4.1 Experimental Setup 

The following experimental results and simulations are programmed using Python 

language with Pycharm as an IDE, and the learning process of the multilayer neural 

networks in the DRL algorithm is formulated using PyTorch. Numerical tests are 

implemented on a computer with Intel i7−10700 CPU and 16 GB of RAM. The 

hyperparameters of the SAC algorithm are presented in Table 3.1. The system parameters, 

including system topology, generation capacities, and line parameters, are obtained from 

PYPOWER. Two test systems, namely IEEE 30-Bus and IEEE 118-Bus, are selected for 

this work. Additional modeling data are generalized as follows. Power reserves are set as 

𝑟𝑔,𝑡
+ = 𝑟𝑔,𝑡

− = 0.05 × 𝑃𝑔, ∀𝑔, 𝑡, penalties of (3.1) are set as 𝐶𝑑 = 2 ×𝑚𝑎𝑥𝑔𝐶𝑔, 𝐶𝑔
+ = 𝐶𝑔

− =

𝐶𝑑
′ = 5 × 𝐶𝑑, and the violation penalty K in (3.25) and (3.28) is set as 1 × 103. Finally, 
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power demands are randomly generated, where maximum and minimum values are set at 

120% and 80% of the normal operating point in the data set PYPOWER. 

 

Table 3.1 Main hyper-parameters and data setting. 

Parameters Value Parameters Value 

Optimizer Adam Discount factor 0.99 

Critics learning rate 1e-2 Minibatch size 128 

Actor learning rate 1e-3 Neurons number 512 

Target learning rate 1e-3 Time step 1 hour 

Entropy learning rate 1e-4 Max steps 24 hours 

Initial temperature 1 Activation RELU 

3.4.2 Training performance of the DA-SAC algorithm 

This subsection investigates the training performance of the proposed algorithm with two 

advanced DRL algorithms. The first benchmark algorithm, DDPG, struggles with discrete 

actions during offline training. To overcome this limitation, we combined the deep Q-

network (DQN) with DDPG, creating the DDPG-DQN algorithm, which effectively 

generates discrete actions for AA. The second benchmark, PPO, is an on-policy algorithm 

capable of handling both DA and AA actions, termed the PPO-PPO method. An analysis of 

the experimental results for the three DRL algorithms reveals that the PPO-based AA and 

the SAC-based DA agents demonstrate the best convergence performances in attack and 

defense, respectively. To further validate the effectiveness of the proposed DA-SAC 

algorithm, a new scheme, SAC-PPO, is introduced, where the DA is trained using SAC and 

the AA using PPO. All DRL algorithms were tested on the IEEE 30-bus system using the 

same dataset. Ten independent experiments with different initial seeds and training datasets 

were conducted for each algorithm to illustrate the DA and AA cumulative reward curves 

in Fig. 3.4 under the N-1 criterion. The solid curve represents the average of the ten 

experiments. It should be noted that the DA actors (continuous actions) and AA actors 

(discrete actions) share identical structures across all algorithms (DDPG, PPO, SAC for DA; 
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DQN, PPO, SAC for AA) to ensure a fair comparison based solely on algorithmic 

differences. 

The proposed algorithm demonstrates noticeable reward oscillations during the initial 

1800 steps in Fig. 3.4. This oscillation is due to the stochastic exploration by the nested 

agent to fill the replay buffer. The policy network parameters are updated as the agent 

interacts with the environment, increasing the reward. After approximately 2000 steps, the 

DA-SAC reaches an optimal local solution, where the DA achieves high rewards and 

generates robust actions with less than 10 kWh of unserved electricity. However, as the AA 

gains an advantage, the reward of the DA quickly drops to 650, and the AA generates the 

worst contingency scenario with over 15 kWh of unserved electricity. During steps 2400 to 

3600, the noncooperative strategy shifts the stable action-value function from AA to DA, 

promoting competition for robust actions against the worst scenarios. As depicted in Fig. 

3.4, the reward curve fluctuates significantly from the 3600th to the 6000th step, ultimately 

resulting in consistently high cumulative rewards for the DA and low cumulative rewards 

for the AA. The proposed DA-SAC algorithm converges after 6000 steps, progressing 

through three stages: policy exploration (first 1800 steps), policy training (1800 to 4800 

steps), and policy convergence (after 4800 steps). During the first stage, the algorithm 

randomly selects actions to collect sufficient initial experience in the replay buffer, resulting 

in significant reward fluctuations. As the replay buffer accumulates enough experience, the 

policy network learns and updates according to the principles outlined in Algorithm 2. These 

sequential updates enable the proposed algorithm to find the optimal policy, resulting in 

cumulative reward convergence in the final stage. The SAC-PPO algorithm demonstrates 

strong learning capabilities. While its convergence performance for the AA is weaker 

compared to the PPO-PPO algorithm, its DA achieves convergence results comparable to 

those of the proposed DA-SAC algorithm. This advantage stems from SAC's entropy-based 

offline learning strategy, which provides the DA with a learning edge during adversarial 

training against the PPO-based AA. However, the interaction between the PPO and SAC 

algorithms introduces larger fluctuations in the convergence outcomes of both agents, 

compared to other benchmark algorithms. Overall, the results confirm that the proposed 
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DA-SAC algorithm outperforms the benchmark DRL algorithms in terms of cumulative 

rewards for both DA and AA and demonstrates superior convergence stability compared to 

alternative approaches 

Furthermore, to demonstrate the superiority of the proposed algorithm, Table 3.2 presents 

the average computational results over the last 1e2 episodes across ten independent 

experiments for the including unserved electricity, load shedding, and DCV per hour, over 

the last 1e2 episodes across ten independent experiments. The performance comparison of 

the DA-SAC, DDPG-DQN, PPO-PPO, and SAC-PPO algorithms reveals distinct 

differences influenced by their unique optimization strategies. DA-SAC achieves a balanced 

performance with an offline computation time of 1807.29 seconds and an online response 

time of 152.59 milliseconds. This results in a load shedding of 27.78 kWh, an unserved 

electricity of 5.46 kWh, and a degree of constraint violation of 0.0636. This indicates that 

DA-SAC effectively manages contingencies by preemptively reducing demand, thus 

enhancing system robustness without excessive penalties. 

 

(a) Cumulative reward of DA 
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(b) Cumulative reward of AA 

Fig. 3.4 Cumulative reward of the proposed and benchmark algorithms. 

 

Table 3.2 Training performance comparison of the different algorithms. 

Algorithm CT(s) OT(ms) LS(kWh) UE(kWh) DCV 

DA-SAC 1807.29 152.59 27.7811 4.46 0.0636 

DDPG-DQN 2048.94 152.59 42.7158 6.83 0.1053 

PPO-PPO 1571.14 152.59 66.3634 8.67 0.1703 

SAC-PPO 1728.25 152.59 42.2552 4.19 0.0712 

CT: Offline computation time; OT: Online response time; LS: Load shedding; UE: 

Unserved electricity; DCV: Degree of constraint violation. 

In contrast, DDPG-DQN, which has the highest offline computation time of 2048.94 

seconds, performs moderately. It has a load shedding of 42.72 kWh, unserved electricity of 

6.83 kWh, and a degree of constraint violation of 0.1053. This reflects a reasonable balance 

but less efficiency compared to DA-SAC. Despite having the fastest computation times with 

1571.14 seconds offline, PPO-PPO exhibits significant load shedding of 66.36 kWh. This 

results in the highest unserved electricity of 8.67 kWh and a constraint violation of 0.1703, 

suggesting a less optimal approach to maintaining system stability. It should be noted that 

all DA's policies have identical structures; therefore, online operating times are the same for 

all algorithms. The SAC-PPO algorithm, leveraging SAC's entropy-based strategy, 

outperforms the other two benchmarks but still lags behind the proposed DA-SAC. This is 

attributed to the increased volatility introduced by the adversarial interaction between its 
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DA and AA components. In conclusion, DA-SAC emerges as the most effective algorithm 

for generating robust CCOPF solutions, striking a superior balance between computational 

efficiency and performance in the face of contingencies. 

 

Table 3.3 Online performance comparison of DA policies based on contingencies 

generated by the SAC-based AA. 

Algorithm OC LS(kWh) UE*(kWh) DCV* TC 

DA-SAC 241.23 27.78 4.46 0.0636 488.38 

DDPG-DQN 221.86 42.42 11.26 0.1244 826.76 

PPO-PPO 201.13 67.01 9.38 0.2115 811.48 

SAC-PPO 208.91 43.20 6.24 0.10696 614.27 

∗ Worst cases generated by the same AA learned by DSAC; OC: Operational cost; 

LS: Load shedding; UE: Unserved electricity; DCV: Degree of constraint 

violation; TC: Total cost. 

 

To evaluate the learned agents further, an additional performance analysis was conducted 

to assess their behavior during online operation. A fair comparison was ensured by 

excluding the stochastic elements of the policies, such as Gaussian noise in PPO and SAC 

or Ornstein-Uhlenbeck process noise in DDPG. All learned DA policies were tested under 

the same SAC-based AA, which exhibited the best performance among all AA policies. 

Table 3.3 presents the operational costs and loadshedding values for the four algorithms, 

where the worst-case contingencies were generated using the SAC-based AA. Metrics such 

as unserved electricity and degree of constraint violation were recorded. The results 

demonstrate that the proposed DASAC algorithm achieves the lowest total operational costs 

and constraint violations, outperforming the benchmark algorithms. Combining these 

results with those in Table 3.2 (training performance) confirms that the proposed DA-SAC 

excels in both training and online operations, offering a robust and cost effective solution 

for CCOPF. 
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3.4.3 Training performance in N-k outage contingencies 

Table 3.4 presents the numerical results for the abovementioned algorithms under N-2 

and N-3 criteria, including operational cost, pre-contingency stage load shedding, unserved 

electricity, and DCV. This table shows that the proposed DASAC algorithm outperforms 

the other alternative algorithms in terms of CCOPF solution quality. It minimizes total cost, 

pre-contingency shedding, and post-contingency unserved power, thanks to the combined 

coordination of continuous and discrete SAC. This approach yields an optimal policy by 

leveraging auxiliary information that enables DA to generate robust actions against the 

worst contingency scenarios. 

 

Table 3.4 Training performance comparison of the proposed and benchmark algorithms 

in N-k situation. 

Case Algorithm CT(s) OT(ms) LS UE DCV TC 

N-2 

DA-SAC 1961.61 152.59 209.60 14.30 0.0640 589.70 

DDPG-DQN 2341.72 152.59 188.95 18.51 0.1062 796.85 

PPO-PPO 1620.93 152.59 206.11 16.22 0.1709 944.71 

N-3 

DA-SAC 2062.01 152.59 198.91 17.85 0.0629 644.31 

DDPG-DQN 2342.55 152.59 176.81 27.48 0.1251 942.36 

PPO-PPO 1813.16 152.59 184.28 25.05 0.2534 1112.58 

OC: Operational cost (k$); LS: load shedding (kWh); UE: Unserved electricity (kWh); DCV: 

Degree of constraint violation; CT: Offline computation time; OT: Online response time; 

TC: Total cost (k$). 

The proposed algorithm exhibits the highest CCOPF solution quality, with an average 

improvement of 82.42% and 234.95% in constraint violations compared to the DDPG and 

PPO algorithms, respectively. In contrast, DDPG produces the worst CCOPF solutions, with 

the highest unserved electricity under N-2 and N-3 situations, due to competition between 

the DDPG and DQN algorithms, which fail to find an optimal CCOPF solution. The PPO 

algorithm, on the other hand, requires more pre-contingency stage load shedding to reduce 

unserved electricity under N-2 and N-3 situations compared to the other two algorithms. 
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Furthermore, the PPO-PPO algorithm excels in computational efficiency with the smallest 

offline computation time of 1620.93s in the N-2 situation. However, despite these 

computational advantages, PPO-PPO suffers from significantly higher load shedding of 

81.10 kWh and unserved electricity of 16.22 kWh, leading to the highest total cost of 944.71. 

While PPO-PPO can quickly compute and respond, its inability to manage robustness 

effectively increases penalties from unmet demand and operational constraint violations. 

On the other hand, although not the fastest in computation, with 1961.61s in the N-2 

scenario, the DA-SAC algorithm strikes a better balance between computational time and 

system robustness. DA-SAC achieves a lower load shedding of 31.76 kWh and unserved 

electricity of 14.30 kWh, resulting in a total cost of 589.70. In conclusion, the proposed DA-

SAC's nested structure, which allows for more comprehensive planning and contingency 

handling, offsets its slower learning times by minimizing the penalties associated with load 

shedding and unserved electricity. 

3.4.4 Effectiveness of auxiliary information 

A numerical comparison between the proposed method and the model is conducted 

without considering auxiliary information (woAI) in the training process. The MDP for both 

methods is depicted in Fig. 3.5, whereas the cumulative reward of DA and AA is presented 

in Fig. 3.6. In the convergence curves 6, the proposed method for the DA shows higher 

cumulative rewards, indicating better learning efficiency and more robust performance. 

Meanwhile, the AA achieves lower cumulative rewards, reflecting effective mitigation of 

adverse actions. Conversely, the woAI method exhibits more fluctuations and lower 

cumulative rewards for the defender agent and higher cumulative rewards for the attacker 

agent, signaling less effective learning and increased vulnerability. This is mainly caused 

by the two learning rate scales caused by the different strategies, as shown in Fig. 3.5, 

leading to faster exploration in the AA and significant fluctuations between the DA and AA 

reward curves. In contrast, the proposed method leverages the auxiliary information, 

allowing DA to compete with AA and stabilize its solution at the 6000th gradient step. 

Although both two methods achieve the worst scenario nearly at 2500th gradient step, the 
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proposed method leverages the 𝑄𝜋(𝑠𝑡, 𝑎𝑡)from AA as auxiliary information to improve the 

DA reward after the 2500th gradient step. The high reward of the DA and the lower reward 

of the AA indicate that the proposed method learns an optimal policy to compete with AA 

and optimize the cumulative reward under the worst contingency scenario. This disparity is 

further substantiated by the data in Table 3.5, where proposed method results in significantly 

lower load shedding (27.7811 kWh vs. 33.0019 kWh), reduced unserved electric load (6.46 

kWh vs. 7.65 kWh), and a lower damage cost value (0.0636 vs. 0.1283), illustrating its 

superior performance in maintaining power system stability and reducing operational risks 

compared to woAI method. 

 

Fig. 3.5 Different settings in MDP with or without considering auxiliary information. 

 

(a) Cumulative reward of DA 
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(b) Cumulative reward of AA 

Fig. 3.6 Convergence comparison with and without auxiliary information. 

 

Table 3.5 Performance comparison of the different strategies. 

 Load shedding Unserved electricity DCV 

DA-SAC 27.7811 kWh 6.46 kWh 0.0636 

woAI 33.0019 kWh 7.65 kWh 0.1283 

 

3.4.5 Performance evaluation 

In terms of the solution quality of CCOPF, Figs. 3.7 depict the hourly distribution of 

DCVs. Fig. 3.7(a) illustrates the DCV when the DCV penalty is considered in the reward 

function (scenario 1), while Fig. 3.7(b) shows the DCV without the DCV penalty (scenario 

2). As shown in Fig. 3.7(a), the DCVs are restricted within the upper tolerance value of 0.1 

when the DCV penalty is included in the CCOPF operation. Introducing the DCV penalty 

incentivizes the DA to avoid violations, minimize total operational costs, and ensure the 

minimum degree of constraint violations. 
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(a) with the penalty consideration 

 

(b) without the penalty consideration 

Fig. 3.7 Distribution of DCV with or without the penalty consideration. 

 

On the other hand, while most of the minimum DCVs in scenario 2 are below the upper 

tolerance value, the average DCV exceeds the tolerance limit, especially during peak 

electricity demand hours, leading to significant constraint violations. Consequently, the 

DCV penalty plays a critical role in maintaining the stability of the power system and 

improving the solution quality of CCOPF under contingency scenarios. 

3.4.6 Robustness analysis 

To evaluate the robustness of the proposed CCOPF solution using the DA-SAC algorithm, 

the unserved electricity of the CCOPF and OPF solutions when different transmission lines 

are tripped hourly is examined. The corresponding results are presented in Figs. 3.8. As 

shown, the CCOPF solution demonstrates superior performance in reducing unserved 



54 

 

electricity compared to the OPF solution, with a maximum of less than 10kWh of unserved 

electricity in the CCOPF solution, as opposed to more than 30kWh in the OPF solution. 

 

(b) Unserved electricity of the proposed CCOPF 

 

(b) Unserved electricity of the OPF 

Fig. 3.8 Unserved electricity(UE) of the CCOPF or OPF after contingency. 

 

By training the nested agents to compete with each other, the DA-SAC algorithm 

generates robust actions for the CCOPF solution against the worst contingency scenarios. 

Consequently, when transmission lines are out of service, the CCOPF solution effectively 

mitigates the unserved electricity caused by such incidents. In contrast, the OPF solution 

struggles to mitigate unserved electricity and maintain solution quality when different 

transmission lines are tripped, making it vulnerable to contingencies without a defensive 

strategy. Therefore, the DA-SAC algorithm effectively generates robust CCOPF solutions 

under contingency scenarios. 
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3.4.6 Computational performance test 

To verify the computational performance of the proposed DASAC algorithm, the interior 

point optimizer (IPOPT) is utilized as a baseline solver for the CCOPF problem examined 

for the IEEE 30-Bus and 118-Bus systems under N-1 criteria. The task can be formulated 

as a single-stage optimization problem with an additional N set of constraints. We 

considered 100 random profiles of power demands and recorded the average results per time 

step. Table 3.6 summarizes the simulation results of the IPOPT and proposed DA-SAC 

algorithms in terms of average operation cost, DCV, and computation time. Notably, the 

proposed algorithm achieves comparable average operation costs to IPOPT, with 

improvements of approximately 0.7% and 0.96% in the IEEE 30-Bus and IEEE 118-Bus 

systems, respectively. These values are reliable from an economic perspective. Note that 

the RMS value of DCV is below 0.1% of the range of the physical quantities of voltages at 

demand buses and line flows under all cases of contingencies. Although the proposed DRL 

method results in near-zero violation degrees, this level of violation is acceptable, especially 

under the worst contingency scenario, and our future work is to generate zero-DCV 

decisions. The average computation times of these two methods differ significantly, with 

IPOPT taking 8.624s and 15.087s due to the large number of constraints and variables. The 

proposed DRL algorithm requires only 0.153s and 0.841s for the IEEE 30-Bus and IEEE 

118-Bus systems, respectively. Due to the simple mathematical operation in predicting 

actions through the learned policy, the proposed DRL method is much faster than the IPOPT 

method, with nearly 98.22% and 94.4% time savings, respectively, about 56x and 18x 

speedup. 

 

Table 3.6 Computational performance. 

Method Test system Operation cost DCV Computation time 

IPOPT IEEE 30 216.33 0 8.624s 

Proposed DRL IEEE 30 217.94 0.0636% 0.153s 

IPOPT IEEE 118 4552.27 0 15.087s 

Proposed DRL IEEE 118 4596.64 0.0736% 0.841s 
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3.5 Summary 

This paper proposes a novel robust deep reinforcement learning algorithm, DA-SAC, for 

solving the CCOPF problem and generating a robust solution against the worst contingency 

scenario while satisfying system constraints. The proposed optimization process has several 

unique features: (i) the design of two competitive agents, a DA, and an AA, as nested agents 

to obtain robust actions through iterative interaction with the environment; (ii) the inclusion 

of DCV penalties in power system operations to ensure the feasibility of the CCOPF 

solution; and (iii) the enhancement of stability and robustness in the noncooperative learning 

strategy to find optimal CCOPF solutions. Specifically, the DA and AA utilize continuous 

and discrete SAC algorithms to generate robust decisions and attack actions. 

To evaluate the proposed algorithm, numerical simulations are conducted on IEEE 30-

bus and 118-bus systems. The results demonstrate that the proposed algorithm generates a 

robust solution for the CCOPF problem under the worst contingency scenario, achieving 

significant time savings compared to other state-of-the-art optimization approaches and 

learning techniques. 

Although the proposed DRL-based frameworks demonstrate strong empirical 

performance in enhancing system resilience, the interpretability of learned policies remains 

an important consideration for practical deployment. DRL decisions are often viewed as 

opaque, which may reduce operator confidence in automated control. One promising 

direction is to conduct sensitivity analysis, for example by examining how agent control 

actions shift under variations in distributed energy resource (DER) outputs or load 

conditions. Such analysis would help clarify the behavioral patterns of the learned agents 

and provide operators with a better understanding of the underlying decision-making 

process. In addition, explainable AI techniques could be integrated with DRL to further 

enhance transparency and trust. While a detailed sensitivity study is beyond the scope of 

this work, this discussion highlights interpretability as a promising avenue for future 

research. 
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Chapter 4 Robust preventive and 

corrective security-constrained OPF for 

worst contingencies with the adoption of 

VPP: A safe reinforcement learning 

approach 

The rising frequency of extreme weather events calls for urgent measures to improve the 

resilience and reliability of power systems. This paper, therefore, presents a robust 

preventive-corrective security-constrained optimal power flow (PCSCOPF) model designed 

to strengthen power system reliability during N-k outages. The model integrates fast-

response virtual power plants (VPPs), dynamically adjusting their injections to mitigate 

post-contingency overloads and maintain branch flows within emergency limits. 

Additionally, a novel approach combining deep reinforcement learning (DRL) with 

Lagrangian relaxation is introduced to efficiently solve the PCSCOPF decision-making 

problem. By framing the problem as a constrained Markov decision process (CMDP), the 

proposed Lagrangian-based soft actor-critic (L-SAC) algorithm optimizes control actions 

while ensuring constraint satisfaction during the exploration process. Extensive 

investigations have been conducted on the IEEE 30-bus and 118-bus systems to evaluate 

their computational efficiency and reliability. 

4.1 Framework 

This study aims to tackle the issue of robust PCSCOPF by incorporating the ACPF 

constraints and dividing it into PSCOPF and CSCOPF in pre- and post-contingency stages, 

respectively. The PSCOPF is responsible for enhancing the robustness of the power system 

during the pre-contingency stage; hence, load shedding is implemented to alleviate 

constraint violations. The solution to the PSCOPF involves finding a balance between the 

amount of load shedding prior to the contingency and the degree of constraint violation 
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following the contingency. A min-max optimization problem is specifically formulated to 

determine the minimum quantity of load shedding required in the pre-contingency stage, 

considering the worst-case contingency scenario. In the CSCOPF problem, power flow may 

exceed short-term emergency ratings [111], potentially leading to cascading line outages in 

the post-contingency stage. However, due to the limitation of ramping rate constraints and 

large inertia, it is hard for conventional generators to respond immediately to contingencies. 

Therefore, the introduction of the flexible VPP with the capacity to rapidly dispatch 

generation and absorb overflow from the system can quickly restore the power flow back to 

the long-term emergency rating. To gain a better understanding of the implementation of 

PCSCOPF with VPP involvement in dispatching, a timeline-based illustration is depicted 

in Fig. 4.1. 

 

Fig. 4.1 Timeline-based illustration of the PCSCOPF implementation. 

 

The process can be effectively delineated into two distinct stages based on the time axis. 

The first stage, known as the pre-contingency stage, is resolved through the utilization of 

PSCOPF. The load shedding and stochastic contingencies are considered in this stage to 

identify a robust action against the worst contingency scenario. Subsequently, the second 

stage, referred to as the post-contingency stage, is comprised of two distinct periods: a rapid 

short-term emergency period and a gradual long-term emergency period. As indicated in 

the figure, the stochastic contingencies lead to transmission lines exceeding their short-term 
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emergency rating (FST). However, during the fast short-term period, conventional 

generators encounter limitations in their ability to promptly respond owing to the constraints 

imposed by their ramping rates and substantial inertia. Thus, VPPs swiftly dispatch their 

active and reactive power output, enabling them to discharge or charge power and 

effectively bring the branch flow back down with short-term emergency violations. 

Throughout the long-term period, VPPs consistently decrease their power output until it 

reaches zero, while conventional generators commence the process of redistributing the 

power flow within the confines of long-term emergency limits (FLT). By integrating the 

two aforementioned stages, a comprehensive framework known as PCSCOPF is established. 

This framework ensures the uninterrupted functionality of the power system when 

confronted with various contingency scenarios. For clarity and readability, the PSCSOPF 

optimization problem is divided into PSCOPF and CSCOPF and defined separately as 

follows. 

4.2 Problem Formulation 

4.2.1 Problem Formulation of PSCOPF 

The PSCOPF optimization objective function can be formulated as follows: 
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where Ω Feasible region for primary variables. 𝐶𝑔 , 𝐶𝑑  and 𝐶𝑑
𝑜  are operation cost of 

generator, load shedding cost, and unserved electricity cost, respectively. 𝑝𝑔,𝑡  is active 

power from generator g. ∆𝑝𝑑, ∆𝑝𝑑
𝑜 are Load-shedding and unserved electricity of bus d. 

∀𝑔 ∈ 𝒢, ∀𝑑 ∈ 𝒟, and 𝑤 ∈ 𝒲 are generators set, power demand buses, and uncertainty 

set. 

The first two terms correspond to the operational costs and load shedding penalty during 

the pre-contingency stage; the last term pertains to the penalties imposed for unserved 

electricity following the occurrence of contingencies. The superscript symbol (o) designates 

variables after the contingency event. In this work, power demands are generated randomly 

in accordance with their stochastic profiles. Consequently, power demands may be heavy, 
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potentially rendering the problem infeasible under normal operating conditions. Hence, load 

shedding is incorporated in the first stage to relax constraints and enhance the stability of 

the learning process. Furthermore, any additional load shedding that may occur as a result 

of a contingency event, also known as unserved electricity, is penalized in the second stage 

with a penalty of 𝑐𝑑
𝑜. 

The operational constraints for PSCOPF during the pre-contingency stage are explicitly 

outlined in equations (4.2)-(4.10). Equation (4.2) denotes the set of equality constraints that 

pertain to the active and reactive power balance equations. Equation (4.3)-(4.9) represents 

the inequality set of constraints encompassing generation capacities, voltage security 

constraints, and power flow boundaries. Equation (4.10) defines the operational constraint 

governing the behavior of the attacker, which is devised to maximize the constraint violation 

and the magnitude of unserved electricity during the post-contingency stage. Different 

forms of sets are presented in the previous studies to include different types of electric power 

system components, such as generation units, transformers, power lines, and reactive power 

injections, or to model extreme storm behavior with additional time and geographical 

constraints [112]. In this work, the behavior of the attacker only considers the availability 

of the transmission lines and generation units. 
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where 𝑠𝑖𝑗  is receiving power flow between buses i and j. 𝑣𝑖 , 𝜃𝑖  are voltage 

magnitude/angle at bus i. 𝑝net,L, 𝑝PV,met, and 𝑝BESS,net are the consumption from the 

network of controllable load in the VPP, PV and BESS generation injected into the network. 

𝑃𝑔, 𝑃𝑔 are min/max active power limit of generator. 𝑄𝑔, 𝑄𝑔 are min/max reactive power 

limit of generator. 𝑅𝐷𝑔, 𝑅𝑈𝑔 are ramping up/down limit of generator. Vi, Vi are min/max 

voltage limit of bus. Θ𝑖, Θ𝑖 are min/max angle phase limit of bus. 𝑆𝑖𝑗, 𝑆𝑖𝑗 are min/max 

power flow limit of line. 𝑤𝑖𝑗, 𝑤𝑔 are attacker status of transmission line ij/ generator g, 1 

if it is attacked and 0 otherwise. 𝑙𝑖𝑗, 𝑙𝑔⁡are availability of the transmission line ij/generator 

g. 

4.2.2 Problem Formulation of CSCOPF 

The CSCOPF optimization problem considering the VPP fast-response control action can 

be defined as follows: 
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where 𝐶𝑣𝑝𝑝 is adjustment cost of VPP. ∀𝑣 ∈ 𝑣𝑝𝑝 is VPP set. Superscript primes s, l, o 

indicate the short-term, long-term emergency period, and occurrence of the contingencies. 

In (4.11), the first term of the objective is to minimize VPP adjustments during the short-

term period, and the second term is to minimize the adjustment of generators during the 

long-term period. Equations (4.12) and (4.15) are the equality set of constraints, 

incorporating the active and reactive power balance equations during short-term and long-

term periods, respectively. Equations (4.13) and (4.16) are the inequality set of constraints, 
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encompassing generation capacities, voltage security constraints, and power flow limits 

during short-term and long-term periods, respectively. Equation (4.14) aims at avoiding 

unrealistic variations of VPPs, ensuring that their responses remain within reasonable 

bounds. 

4.2.3 Fast Response Model of VPP 

The VPP is introduced to recover quickly and ensure the continuous operation of the 

power system in the presence of contingencies. Fig. 4.2 shows the structure of the VPP 

profile, which illustrates all internal energy flows between the VPP elements and the power 

system. 

 

Fig. 4.2 The structure of the VPP profile. 

 

Constraint (4.17) ensures that the total PV production is equal to the summation of the 

directly injected into the power system, the power consumption by the load, and the power 

consumption by the BESS during the charging phase. Constraint (4.18) restricts the hourly 

production of the PV production during each hour t. Constraint (4.19) ensures that the total 

load consumption is equal to the summation of the load that is directly absorbed from the 

power system, the load fed by the PV, and the load fed by the BESS. Constraint (4.20) 

ensures that the total BESS production is equal to the summation of the directly injected 

into the power system and the power consumption by the load. Similarly, constraint (4.21) 

ensures that the total BESS load that is consumed during the charging phase is equal to the 

summation of the load directly absorbed from the power system and the load fed by the PV. 

Constraints (4.22) restrict the energy generation and consumption of the BESS to their 
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discharging and charging limits, respectively, while constraint (4.23) requires that the BESS 

may not operate in discharging and charging mode simultaneously in a given hour. 

Constraint (4.24) represents the hourly BESS energy balance. 

 
, , ,PV PV net PV BESS PV L

t t t tp p p p= + +
 (4.17) 

 
PV PV
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where 𝑝net,L , 𝑝PV,L , 𝑝BESS,L  are the consumption from the network/ PV/ BESS of 

controllable load in the VPP. 𝑝BESS,p, 𝑝BESS,c are the power production/consumption of the 

BESS. 𝜒𝑝, 𝜒𝑐 are discharge/charge status of the BESS. 𝑝BESS is operation power of the 

BESS. 𝑝net,L , 𝑝PV,L , 𝑝BESS,L  are the consumption from the network/ PV/ BESS of 

controllable load in the VPP. 

4.2.4 Comprehensive Model of the PCSCOPF with VPP 

The presented CSCOPF problem is integrated with the PSCOPF problem, resulting in the 

formulation of a min-max optimization framework known as PCSCOPF. This 

comprehensive formulation aims to determine the optimal robust control actions by 

considering worst-case scenarios based on N-k security criteria. Mathematically, the 

PCSCOPF formulation can be expressed as follows: 

,, , , ,min max min
s l
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g g t d d t d d t v

o o
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+     

  (4.25) 
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 s.t.      (4.2)-(4.10), (4.12)-(4.16), (4.19)-(4.24) (4.26) 

To surmount this optimization problem, cutting-edge DRL technology is adopted to 

effectively address it in a time-efficient manner, facilitating real-time operation with a 

heightened level of robustness. In the following section, a CMDP model is introduced, 

which encapsulates the problems above into two intelligent agents. 

4.2.5 Contingency Filtering Approach 

To enhance scalability and reduce the computation time of the PCSCOPF solution, a 

contingency filter [47] is employed to filter non-dominated contingencies. In this work, the 

contingency filter leverages the constraint violations observed after simulating all 

contingencies using a Newton-Raphson power flow program. The contingency filter selects 

a critical contingency set, where the scenarios in this set exhibit greater violations compared 

to others. Two constraint limits—branch flow and voltage—are considered critical violation 

parameters. Consequently, the Pareto set [113] is used to determine the contingency set, 

which is defined as: 

 
 | ( ) ( )PS w F w F w = 

 (4.27) 

The corresponding Pareto front is defined as: 

 
  1 2( ) ( ), ( ) |PF F w f w f w w PS   = = 

 (4.28) 

where 𝐹(𝑤) ≺ 𝐹(𝑤′)  implies that any contingency scenario w ∈ W  is dominated by 

contingency scenario 𝑤′ , mathematically, 𝑓1(𝑤) ≤ 𝑓1(𝑤
′),𝑤 ∈ 𝒲,𝑤′ ∈ 𝑃𝑆 , and 

𝑓2(𝑤) ≤ 𝑓2(𝑤
′), 𝑤 ∈ 𝒲,𝑤′ ∈ 𝑃𝑆; 𝑓1(𝑤′) and 𝑓2(𝑤′) represent the magnitude of branch 

flow and voltage violations under contingency scenario 𝑤′, respectively. A contingency 

scenario belonging to the Pareto front is able to form a critical contingency set. This ensures 

that the contingency scenarios 𝑤′ on the Pareto front result in greater violations than other 

scenarios. By eliminating redundant contingencies, the Pareto set-based contingency 

filtering approach accelerates the PCSCOPF computation and guarantees the scalability of 

the proposed model. 
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4.3 Methodology 

In accordance with the established framework, the PCSCOPF problem is sequentially 

addressed by solving the PSCOPF problem, followed by the CSCOPF problem. The 

PSCOPF problem adopts a min-max optimization formulation where the power system 

operator engages in competition with an attacker, aiming to identify a robust solution against 

contingency scenarios. Therefore, the PSCOPF problem can be standardized as an MDP 

with two adversarial agents, which is an important way to build the RL framework. On the 

other hand, the CSCOPF problem focuses on generating a resilient solution to restore power 

system operation in the presence of contingencies, which can be effectively formulated as 

an MDP. Notably, unlike previous study [114], this work addresses the issue of constraint 

violation in the MDP framework and formulates the process as a CMDP. The proposed 

CMDP framework is employed for decision-making to maximize rewards within the 

constraint-satisfying regime. This approach offers enhanced clarity and readability by 

separately defining the CMDP within the PSCOPF and CSCOPF domains, which will be 

elaborated upon in the subsequent subsection. 

4.3.1 CMDP characteristics in preventive agent 

In the robust PSCOPF problem, two competitive agents, a defense agent (DA) and an 

attack agent (AA), are designed in CMDP as preventive agents (PA). Simultaneously, a 

corrective agent (CA) is designed to make sequential decisions during the post-contingency 

stage while minimizing the cumulative reward. The elements of those agents are 

summarized in Table 4.1. 

 

Table 4.1 Elements of Constraint Markov Decision Process in Different Agents. 

Elements of CMDP 

Pre-contingency stage 
Post-contingency 

stage 

Preventive agent 
Corrective agent 

Defense agent Attack agent 

State sd sa sc 

Action ad aa ac 

Reward rd ra rc 

Constraint cost function Cd - Cc 
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Specifically, the state space of DA can be defined as the active and reactive load of each 

bus, which is defined in (4.29). The actions of the DA are represented by the active outputs 

and voltage magnitudes of the non-slack buses, and load shedding in demand buses, which 

can be formulated in (4.30). Noting that, instead of considering all decision variables of 

(4.29), the selected actions in (4.30) are controllable and include fewer actions to improve 

learning convergence and stability. This paper adopts the recent progress in AC power flow 

solvers [52] to extract the full decision vector from this action space. The reward function 

of DA is to evaluate the action performance to facilitate the update process of the policy 

network, which is defined in (4.31). 

 
( ), ,d

d ds P Q d= 
 (4.29) 

 
( ), , , ( ),d

g g da v p p g U pv d=   
 (4.30) 

 
( ), , , , ,g g t d dt d t

o o

t d

dr dC p C p gC p+  + = −   
 (4.31) 

where U(pv) denote the set of PV buses in the generator set. To enhance the robustness of 

the PSCOPF solution by identifying the worst-case contingency scenario, it is essential to 

incorporate the action of the DA 𝑎𝑑 into the state of the AA. Consequently, the state space 

of the AA is mathematically expressed in (4.32). Meanwhile, the AA is responsible for 

attacking transmission lines and generation units. As a result, the action space of the AA is 

discrete and can be precisely defined in (4.33). On the other hand, the reward function for 

the AA aims to maximize the amount of unserved electricity. This can be formulated in 

(4.34).  

 
( ), , ,a d

d ds P Q a d DP= 
 (4.32) 

 
( ), , ,a

ij ga w w ij g= 
 (4.33) 

 , ,d d

a o o

ttr dC p=   (4.34) 

In this formulation, the state of the corrective agent is defined in (4.35), which consists of 

active, reactive power demands and action of the PA to describe the state of the post-

contingency environment. To quickly determine the corrective action to recover the power 

system operation, corrective action 𝑎𝑐 is defined to determine the adjustment of the output 
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of the VPPs and the generator, as defined in (4.36). The reward function 𝑟𝑐 assesses the 

action value taken by the CA, which is defined in (4.37). 

 
( ), , , ,c d a

d ds P Q a a d DP= 
 (4.35) 

 
( ),, , , ( ),c BESS net L

ga p p p g U pv d DP=      
 (4.36) 

 
( ), ,c BESS

t vpp t g g tr C p C p g= −  +  
 (4.37) 

The interactions between the PA and CA in the environment are depicted in Fig. 4.3. The 

PA generates preventive action to address the robust PSCOPF problem, while the CA 

predicts corrective actions to efficiently control the VPPs and adjust the generators, ensuring 

a swift recovery of power system operations. The environment provides feedback to each 

agent in the form of rewards (𝑟𝑑 , 𝑟𝑎 , and 𝑟𝑐) and transitions to the next state, thereby 

shaping the learning process. Fig. 4.3 visually illustrates these interactions between the 

agents and the environment, highlighting their collaborative efforts in achieving the desired 

power system performance. 
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Fig. 4.3 The developed CMDP model for the PCSCOPF problem. 
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4.3.2 Constraint cost function 

The CMDP incorporates a cost function that enforces constraints, ensuring that selected 

actions must satisfy prescribed conditions at each exploration step. Deviation from these 

constraints incurs a substantial penalty imposed by the constraint cost function, impacting 

the overall reward. This mechanism drives the CMDP framework to prioritize the 

exploration of action policies that adhere to the specified constraints, fostering the selection 

of actions that prioritize constraint satisfaction throughout the decision-making process. 

Within the CMDP framework, the constraint cost function, as presented in equation (4.38), 

quantifies the extent of constraint violation. 

 

2[ ] [ ]1

| |
( )
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n n n n
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x n n
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x x


+ +



− + −
=

−
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 (4.38) 

where xn indicates all uncontrollable variations in PCSCOPF, such as branch flows and 

voltage magnitudes at demand buses, with minimum 𝑥𝑛  and maximum 𝑥𝑛  which are 

obtained from (4.2)-(4.6), (4.8)-(4.12). The total number of various is |𝒳|. [∙]+ denotes 

max{0, .} function. In contrast to simply summing the constraint violations with their 

varying scales, the proposed constraint cost function normalizes these values before 

summation. This normalization step ensures that the constraint violations are treated on an 

equal scale, thereby facilitating a more accurate evaluation of the overall constraint violation 

degree within the CMDP framework. 

4.3.3 Soft Actor-Critic Algorithm for PSCSOPF Problem 

The DRL algorithm is responsible for determining the optimal control actions that 

maximize the expected cumulative reward. Typically, this is achieved within the actor-critic 

framework. However, on-policy approaches like asynchronous advantage actor-critic (A3C) 

and PPO algorithms often face challenges related to updating contradictions and efficiency. 

In contrast, off-policy algorithms such as DDPG have been introduced to enhance 

exploration capability. Nevertheless, DDPG suffers from issues, such as hyper-parameter 

sensitivity, which can hinder training performance. In this work, these limitations were 

addressed by adopting the off-policy algorithm known as SAC. SAC combines the actor-
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critic framework with entropy maximization to promote exploration and ensure learning 

stability. However, this paper highlights a critical issue prevalent in existing DRL 

algorithms, wherein the unrestricted ability of the agent to select control actions through 

trial and error can lead to violations of operational constraints [115]. Such violations can 

result in equipment failures and instability in the power system operation. Therefore, it is 

crucial to ensure zero-constraint violations during the RL training process, not only at 

convergence but also throughout the exploration and learning phases. To tackle this 

challenge, this section introduces the L-SAC algorithm, which effectively manages the 

CMDP while operating within a constraint-satisfying regime. 

The SAC algorithm trains a stochastic policy to maximize not only the cumulative reward 

but also the entropy of the policy, and the policy function 𝜋 can be expressed as follows: 

 

*

( , )~arg max ( ( , ) ( ( )))
t t

t

s a t t t

t

E r s a H s




    = +  
 (4.39) 

where t is the time step; 𝜏 denotes a trajectory; r is a reward under state st and action at; 𝛼 

is an entropy temperature which regulates the stochastic degree of the policy; H(π(∙|𝑠𝑡)) 

represents the entropy of the policy under state st. The prominent feature of the SAC 

algorithm is that the hyperparameter entropy temperature is learned by an automated 

entropy adjustment, which is presented in (4.40). 

 
( )( )( ) log

ta t tJ E a s H  
 = − +
 

∣
 (4.40) 

where 𝐻 indicates the target entropy. Based on the maximum entropy framework, the soft 

iteration is employed to maximize the objective by alternating between policy estimation 

and amendment. Thus, the soft state value function can be defined as: 

 ~( ) [ ( , ) log( ( ))]
tt a t t t tV s E Q s a a s  = −

 (4.41) 

where the value function 𝑄(𝑠𝑡, 𝑎𝑡) estimates the performance of the action at at state st. 

Since the action space of the PA is hybrid with continuous and discrete action, the soft state 

value function in discrete action can be transferred to: 

 
( ) ( ) [ ( ) log( ( ))]T

t t t tV s s Q s s  = −
 (4.42) 
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Consequently, the optimization task is transferred to identify the optimal policy based on 

the state-value function V, which is defined as follows: 

 

*

~arg max [ ( )]
ts D tE V s


 =

 (4.43) 

where D is the minibatch prior sample from the replay buffer. Soft policy iteration is to learn 

an optimal maximum entropy policy that alternates between policy evaluation and policy 

improvement in the maximum entropy framework. To satisfy large continuous domain 

requirements, instead of alternating between the soft policy evaluation and improvement, 

the approximator functions are introduced to derive a practical approximation to soft policy 

iteration in subsection 4.3.5. 

4.3.4 Lagrangian-Based Soft Actor-Critic Algorithm 

Automatically turning the Lagrange multipliers for each power constraint during the 

exploration process of the DRL algorithm is the key point in limiting the violation of 

constraints. In this way, constraints can be imposed on not only expected reward or cost but 

also their instantaneous values. In this subsection, the Lagrangian-based SAC algorithm is 

formulated in the CMDP. The objective of a CMDP is to select a feasible action to satisfy 

all of its necessary constraints within the feasibility budget. Mathematically, the discounted 

cumulative constraint within the feasibility budget is of the form: 
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where 𝐽𝑐  indicates the upper bound for constraint violation cost. Finally, the goal of a 

CMDP is recast as a constrained optimization problem as expressed in (4.45): 
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where 𝐽𝑟
𝜋 is the expected discounted cumulative reward. Therefore, the SAC maximization 

task (4.39) in CMDP can be shifted to 
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where 𝑉𝜋
𝑐(𝑠𝑡)  is the state-value function of constraint violation C; 𝑉𝑐 =

(1 − 𝜆𝑇) (1 − 𝜆)𝐶𝑡⁄  pertains to the limit for state value associated with the operation 

constraint; 𝐶𝑡  is the maximum violation in each time step. This inequality-constrained 

problem can be solved by the Lagrangian relaxation approach, wherein the hard constraint 

is relaxed into a soft constraint. Specifically, the Lagrangian function for the CMDP 

problem can be written as: 
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where 𝜆 is the Lagrange multiplier, and the Lagrangian function can be converted into 

 
( )*

~( , )
ts D t cE V s V   = +   (4.48) 
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 
= . In the proposed Lagrangian-

SAC framework, the partitioning of constraints into soft and hard is guided by both power 

system operational priorities and algorithmic considerations. From an operational 

perspective, hard constraints correspond to safety-critical limits whose violations may 

immediately compromise system security, such as transmission line ratings, bus voltage 

bounds, and generation capacity limits. These constraints must be strictly satisfied and are 

therefore explicitly modeled in the CMDP formulation through Lagrangian multipliers. In 

contrast, soft constraints are associated with objectives of economic efficiency or service 

quality, such as minimizing active power losses or reducing load shedding costs. Since 

occasional deviations in these objectives are tolerable, they are incorporated directly into 

the cost function, where they can be traded off against operational costs during optimization. 

This partitioning strategy ensures that the algorithm focuses on strictly preserving system 

security while maintaining flexibility in optimizing system performance. 

Note that as 𝜆 increases, the solution of (4.45) converges to that of (4.44). However, a 

larger 𝜆  results in a higher penalty for violating the constraint. Therefore, a slower 

timescale solution [54] is needed to iteratively update λ by gradient descent on the state-

value function and alternate with policy optimization until the constraint is satisfied. 
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where   is the step size for updating λ, Γλ projects λ into its logical range [0, λmax]. 

However, at the beginning of the training process, as the constraints are typically not 

satisfied, λ will increase to surpass the cost 𝐸𝑠𝑡~𝐷[𝑉𝜋(𝑠𝑡)] and focus the optimization on 

maximizing 𝐸𝑠𝑡~𝐷[𝑉𝜋
𝑐(𝑠𝑡)]. This can result in unstable learning as most actor-critic methods 

that have an explicit parameterization of 𝜋 are especially sensitive to large (swings in) 

values. To improve stability, a change of variable 𝜆′ = 𝑙𝑜𝑔⁡(𝜆) is performed to obtain the 

following dual optimization problem (4.47). Therefore, the weight of constraint cost in the 

Lagrangian-based state-value function is mitigated. 
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In the proposed Lagrangian-SAC algorithm, the stability and feasibility of constraint 

handling are achieved through the careful design of the Lagrange multiplier update scheme. 

First, stability is maintained through soft updates: as formulated in Eq. (3.49)–(3.50), the 

multipliers are updated using a projected gradient descent scheme on a slower timescale 

than the policy updates. This mechanism ensures that the values of λ gradually converge 

rather than oscillate, preventing instability and avoiding over-penalization during the early 

stage of training. Second, feasibility is guaranteed in expectation: the multiplier update is 

driven by the difference between the allowed violation budget and the observed violation 

under the current policy. When constraint violations persist above the threshold, λ increases 

and shifts the optimization emphasis toward satisfying constraints. Conversely, once the 

violations fall within the acceptable region, λ stabilizes, allowing the algorithm to continue 

optimizing operational costs without compromising feasibility. 

4.3.5 Practical implementation in Lagrangian-based SAC algorithm 

This subsection presents the structure of the off-policy L-SAC algorithm and provides an 

overview of the overall updating procedure of the proposed algorithm. The L-SAC 

algorithm implementation comprises the following sets of DNNs: (i) Two critic DNNs, 

characterized by distinct parameters, are employed to accurately represent the value 
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function 𝑄(𝑠, 𝑎) and mitigate the problem of overestimation. (ii) A safety network, with 

parameters ϑ, is utilized to update the Lagrange multiplier, ensuring the convergence of the 

algorithm. (iii) To enhance learning stability, two target networks with parameters are 

adopted. These target networks share the same task and construction as the critics, 

promoting improved learning efficiency. (iv) The policy, referred to as the actor-network, 

utilizes parameters 𝜑. It accepts environmental states as input and generates a probability 

density function, parameterizing a Gaussian distribution for the control action. Fig. 4.4 

illustrates the comprehensive workflow of the L-SAC algorithm, depicting the interactions 

among the components above and highlighting the necessary loss functions. Further 

elaboration on these loss functions can be found in subsequent sections within this 

subsection. 

The parameters of the networks are updated by performing updates on the critics, actor, 

and safety networks using an experience buffer. Firstly, the target networks undergo 

periodic and gradual adjustments derived from the relative critics and safety utilizing 

equations (4.51) and (4.52) with 𝜇 ∈ (0,1) [55]. 
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 (4.51) 
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 (4.52) 

Secondly, the safety network parameters ϑ are updated through the utilization of the loss 

function outlined in equation (4.53), where the mini-batch size M is introduced. 
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Fig. 4.4 The workflow of the L-SAC algorithm. 
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Thirdly, the actor parameters 𝜑 are updated by employing the policy gradient defined in 

equation (5.54). Finally, the critics undergo updates by minimizing the loss function defined 

in equation (5.55). 

 
( ) ( )( )( *{1,2}

1

1
min , log

r

M

r n n n n

n

J Q
M

 
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= − + s a a s∣
 (4.54) 
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(4.55) 

The proposed L-SAC algorithm is summarized in Algorithm 3. In each iteration, the 

parameters of the networks are updated using stochastic gradient descent. This process 

involves performing gradient updates to optimize the network parameters and improve the 

algorithm's performance. 

 

Algorithm 3 L-SAC Algorithm 

 1: Initialize: Preventive agent networks 
d , 

d

i , 
*d

i , 
a , 

a

i , 

and 
*a

i , corrective agent networks 
c , 

c

i , and 
*c

i , and 

safety network   

 2: For each episode do 

 3:    For each time step do 

 4:    ~ ( )d

d da s s


  = . 

 5:    ~ ( [ , ])a

a a d da s a s


  = . 

 6:    ~ ( [ , , ])c

c c d a da s a a s


  = . 

 7:    Apply da , aa , and ca  in eq. (4.25) and observe dr , ar , 

cr , s , and c. 

 8:    ( ), , , , , , , ,d a c d a cs a a a r r r c s   

 9: End For 

10: For each gradient step do 

11:    Sample random mini-batch N experiences from  

12:  Update soft Q-value parameters 
d

i , 
a

i , and 
c

i  using (4.55) 

13:    Update policy parameters 
d , 

a , and 
c  using (4.54) 

14:    Update safety network parameter   using (4.53) 

15:    Adjust temperature d , a , and c  using (4.40) 

16:    Update targets 
*d

i , 
*a

i , 
*c

i , and *  using (4.51)-(4.52) 
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4.4 Case Study 

4.4.1 Experiment Setting 

In this section, the formulated CMDP model and the proposed DRL solution approach are 

evaluated by examining two test systems, IEEE 30-bus and IEEE 118-bus. The system 

parameters, including system topology, generation capacities, and line parameters, are 

directly handled in its standard format as in PYPOWER. The numerical results listed below 

are conducted on a computer with an Intel i7−10700 CPU and 16 GB of RAM. The 

hyperparameters of the SAC algorithm are presented in Table 4.2. Additional modeling data 

are generalized as follows. Load shedding penalties of Eq. (4.25) are set as 10d gC C=   

and 100o

d gC C=  . The PV generation profile data are from pvoutput.org, whose generation 

power capacity is 6 kW, and the BESS power/energy capacity is 10 kW/30 kWh. Finally, 

power demands are randomly generated, where maximum and minimum values are set at 

120% and 80% of the normal operating point in the data set PYPOWER. The response time 

(t2 - t1 as shown in Fig. 4.1) and ramping time (t3 – t2 ) of the generators are assumed to be 

5 and 10 min, respectively. 

 

Table 4.2 Main Hyper-Parameters and Data Setting. 

Parameters Value Parameters Value 

Optimizer Adam Activation RELU 

Actor learning rate 1e-3 Critics learning rate 1e-2 

Entropy learning rate 1e-4 Targets learning rate 1e-3 

Discount factor 0.99 Initial temperature 1 

Neurons number 512 Time step 1 

Max steps 24 Minibatch size 128 

 

4.4.2 Case 1: 30-Bus System 

The modified IEEE 30-bus system is used to test the proposed algorithm. This system has 

30 buses, six generators, 41 branches, and 24 loads. Six VPPs are connected at buses 4, 7, 
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10, 15, 24, and 30. The maximum allowed adjustment of long-term branch flow than the 

continuous ratings is 1.2. 

 

(a)                                   (b)         

 

(c)                                   (d)         

Fig. 4.5 Convergence performance of the proposed and benchmark algorithms (a) reward 

of the DA; (b) reward of the AA; (c) reward of the CA; (d) constraint penalty. 

 

In this subsection, the training performance comparison of the proposed algorithm with 

two state-of-the-art DRL algorithms is investigated. The first benchmark algorithm, DDPG, 

performs offline training but struggles to handle discrete action spaces. To overcome this 

limitation, the deep Q-network (DQN) is introduced to combine with DDPG to form the 

DDPG-DQN algorithm, which generates the discrete action for AA. The second benchmark 

algorithm, PPO, is an on-policy algorithm. The PPO algorithm is responsible for generating 

action for PA and CA and is referred to as the PPO-PPO method. All DRL algorithms are 

implemented in the IEEE 30-bus system with the same data set. Ten independent experiment 

results of each algorithm with different initial seeds and training datasets are collected to 

depict the DA, AA, and CA cumulative reward curves in Figs. 4.5 (a), (b), and (c) under the 

N-1 criterion. Fig. 4.5 (d) demonstrates the degree of constraint violations and the soft 
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update in the penalty λ per episode. It is worth noting that in Fig. 4.5, the solid curve in each 

algorithm represents the average value of ten experiments, while the light-colored shadow 

area is bounded by the minimum and maximum rewards obtained over ten experiments. 

It is observed from Figs. 4.5 (a), (b), and (c) that the proposed algorithm exhibits 

significant oscillations in reward during the first ten episodes as the SAC agent 

stochastically explores to fill the replay buffer. After the first ten episodes, the reward of the 

DA begins decreasing as the reward of the AA increases. Nevertheless, this situation is 

reversed when the DA updates robust action against the attack and improves the reward 

after the 50th episode. In the end, the reward of the DA continues to grow and reaches 

2.8×104. This is owing to the DA policy learned from the prior experience to generate 

optimal action against the AA. As seen in Fig. 4.5 (d), the power system generates a high 

degree of violation in the first ten episodes. This is mainly because the Lagrange multiplier 

λ starts with a low value, 0, and the updating process of the network begins after filling 

enough prior experience in the replay buffer. However, the dramatic increase in the penalty 

value encourages the agent to find feasible control decisions and reduce the degree of the 

constraint violation during 10 - 50 episodes. Then, the agent changes its focus from avoiding 

violations to minimizing the total operation costs while guaranteeing the minimum violation 

degree, and the penalty value moves to its saturation value. Therefore, the safety network 

generates small violation degrees and encourages a reduction in the penalty value. Based on 

the results presented in Fig. 4.5, the DDPG algorithm fails to learn a good policy for the DA 

and CA to achieve a steady reward, and there are big fluctuations in the cumulative reward 

of the AA as well. On the other hand, PPO demonstrates considerable fluctuation in the 

start-up training phase, with the reward of DA decreasing due to the increased reward of the 

AA. Numerical results show that the proposed algorithm outperforms the benchmark DRL 

algorithms in terms of the cumulative reward of the DA and AA and exhibits better 

convergence. 

 Furthermore, to further demonstrate the superiority of the proposed algorithm, Table 

4.3 illustrates the numeric results for the aforementioned algorithms under N-1, N-2, and N-

3 criteria, wherein the operational cost, pre-contingency stage load shedding, unserved 
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electricity, short-term and long-term adjustment are included in each hour, over the last 100 

episodes over ten independent experiments. Additionally, the computation time of each 

DRL algorithm is presented to compare the training efficiency of the algorithm. 

 

Table 4.3 Computational Results of the Proposed and Benchmark Algorithm for the N-k 

PCSCOPF Problem. 

 Method OC LS UE ST LT CT 

N-1 

L-SAC 293.73 29.52 7.33 121.19 179.29 1850.58 

DDPG-DQN 297.54 28.28 12.60 140.93 224.52 2172.39 

PPO-PPO 275.44 49.91 9.351 102.11 236.04 2059.36 

N-2 

L-SAC 271.93 47.82 28.19 149.09 239.87 1902.71 

DDPG-DQN 260.12 51.43 27.64 103.83 218.53 2341.72 

PPO-PPO 254.84 55.92 17.08 127.99 184.72 2252.45 

N-3 

L-SAC 245.95 64.62 30.19 154.70 239.58 2143.00 

DDPG-DQN 247.80 59.46 32.27 134.22 228.79 2466.21 

PPO-PPO 271.93 47.82 28.19 149.09 239.87 2477.67 

OC: Operational cost; LS: Load shedding (Unit: MW); UE: Unserved electricity (Unit: 

MW); ST: Short-term corrective adjustment (Unit: MW); LT: Long-term corrective 

adjustment (Unit: MW); CT: Computation time (Unit: s). 

 

As shown in this table, the proposed L-SAC algorithm outperforms the other alternative 

algorithms in terms of the CCOPF solution quality. The proposed algorithm attains the 

minimum total cost with the lowest pre-contingency load shedding and post-contingency 

unserved electricity, which is achieved through the coordination of the continuous action 

SAC and discrete SAC. Simultaneously, the proposed L-SAC generates an optimal policy 

to reduce the adjustment of the VPP and the generators after the contingencies to redispatch 

the power system. Additionally, the proposed L-SAC algorithm outperforms both DDPG 

and PPO in terms of computation time. This is obvious because the proposed L-SAC 

algorithm inherits such an advantage from the traditional SAC algorithm. Therefore, the 

proposed algorithm demonstrates an advantage in training efficiency, with an average of 

18.51% and 15.09% time savings compared to the DDPG and PPO algorithms, respectively. 
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Table 4.4 Corrective Actions in Different Contingencies Scenario (Unit: MW). 

  L10 L36 L25 

Short 

term 

Pvpp1 -29.62 -29.96 -12.69 

Pvpp2 -29.80 -29.88 -21.12 

Pvpp3 8.54 24.29 15.32 

Pvpp4 29.22 28.36 6.01 

Pvpp5 4.11 20.26 0.31 

Pvpp6 19.90 -11.30 11.60 

Long 

term 

ΔPG1 -36.17 -1.41 -21.11 

ΔPG2 -54.15 -55.23 -10.51 

ΔPG3 29.11 27.41 3.58 

ΔPG4 18.56 -4.51 14.75 

ΔPG5 16.03 10.73 2.11 

ΔPG6 25.27 23.81 10.77 

DCV  0.6043 0.3371 0.2070 

 

Table 4.4 demonstrates the corrective control actions during short- and long-term 

emergency periods when part transmission lines are disconnected. The stochastic 

contingencies will cause overflow in the power system, which results in constraints 

violation during the post-contingencies stage. These corrective actions are provided by the 

VPPs immediately to remedy the branch flow above their short-term emergency rating after 

each contingency and the long-term generation adjustment for the same contingencies. This 

demonstrates that, after solving the pre-contingency problems of the PSCOPF, suitable 

corrective actions by the VPPs and generators are required to relieve overloads. 

4.4.3 Case 2: 118-Bus System 

The scalability of the proposed CCOPF is tested on the modified IEEE 118-bus system. 

This system has 118 buses, 54 generators, 186 branches, and 99 loads. Six VPPs are 

connected at buses 5, 30, 37, 64, 82, and 94. The maximum allowed adjustment of long-

term branch flow compared to the continuous ratings is 1.2. The convergence curves of the 

cumulative reward of the DA, AA, and CA based on different DRL algorithms for the IEEE 
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118-bus system in the N-1 criterion are presented in Figs. 4.6 (a), (b), and (c). Fig. 4.6 (d) 

demonstrates the degree of constraint violations and the soft update in the penalty λ per 

episode. Similarly, the solid curve in each algorithm corresponds to the average value of ten 

independent experiments, and the light-colored shadow area is bounded by the minimum 

and maximum rewards over the experiments. 

 

(a)                                   (b)         

 

(c)                                   (d)         

Fig. 4.6 Convergence performance of the proposed and benchmark algorithms based on 

the IEEE 118-bus system (a) reward of the DA; (b) reward of the AA; (c) reward of the CA; 

(d) constraint penalty. 

 

As shown in the figures, the training process of the proposed algorithm can be divided 

into three continuous stages: policy exploration (first ten episodes), policy training (from 10 

to 150 episodes), and policy convergence (after 150 episodes). During the initial stage, the 

proposed algorithm collects initial experiences, which demonstrate slight fluctuations in the 

cumulative reward of DA and AA. With the training process preceding, DA and AA start 

to learn the optimum policy and generate satisfactory actions to compete with each other. 

Therefore, the cumulative rewards of DA and AA exhibit significant fluctuations during this 
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stage. The competition facilitates DA in generating robust action against the worst 

contingency scenario. Hence, the cumulative reward of the proposed algorithm converges 

to minimize operational costs. On the other hand, the PPO algorithm demonstrates fast 

update progress in the cumulative reward of AA, but the cumulative reward of DA suffers 

from obvious competition from AA. Even after the training process ends, the cumulative 

reward for the DA is at a lower level. DDPG-DQN provides AA with a gradually growing 

cumulative reward due to DQN's on-policy training. However, when the replay buffer of 

the DDPG algorithm stores enough prior experience, the cumulative reward of DA starts to 

rise. 

Table 4.5 Computational Results based on the IEEE 118-Bus System. 

 Method OC LS UE ST LT CT 

N-1 

L-SAC 4715.23 109.88 28.61 79.93 426.16 6946.48 

DDPG-DQN 4614.75 214.04 33.92 88.17 557.43 8157.34 

PPO-PPO 4919.29 108.42 35.42 130.34 465.94 7966.76 

N-2 

L-SAC 4768.45 133.19 34.19 119.98 486.07 7210.43 

DDPG-DQN 4544.411 235.15 44.63 84.07 512.80 8537.56 

PPO-PPO 4871.24 137.42 42.10 144.70 494.32 8014.78 

N-3 

L-SAC 4628.78 213.33 41.20 141.97 525.97 7679.51 

DDPG-DQN 4400.83 294.62 49.46 86.26 599.54 8849.11 

PPO-PPO 4744.89 221.09 52.11 159.0 532.36 8511.75 

 

To demonstrate the superiority of the proposed algorithm, Table 4.5 illustrates the detailed 

computational results of different DRL algorithms in the N-k security criterion in the IEEE 

118-bus system. The table includes key performance metrics such as operational cost, load 

shedding, unserved electricity, computation time, and total cost. Although the solutions of 

the proposed algorithm result in a high operational cost, they outperform the two benchmark 

algorithms in terms of load shedding and unserved electricity under different N-k 

contingency scenarios. Meanwhile, the proposed algorithm demonstrates high sample 

efficiency and requires less computation time to train the PCSCOPF problem while 

curtailing fewer pre-contingency load shedding to reduce unserved electricity. As a result, 
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the total cost of the solution generated by the L-SAC algorithm is the lowest, with an average 

improvement of 17.02% and 12.23% compared to the DDPG and PPO algorithms, 

respectively. 

4.4.4 Case 3: Robustness Effectiveness of the PCSCOPF model 

 

(a) 

 

(b) 

Fig. 4.7 (a) Unserved electricity in the proposed method and (b) in the OPF method. 

The stochastic contingencies will cause not only constraint violation but also unserved 

electricity on demand buses. The subsection verified the effectiveness of the preventive 

action in enhancing the robustness of the power system. Fig. 4.7 demonstrates the unserved 

electricity of the PCSCOPF solution and the OPF solution when different transmission lines 

are out of service hourly. As shown in the figures, the PCSCOPF solution exhibits superior 

performance in reducing unserved electricity as compared to the OPF solution, with less 

than 10kWh maximum unserved electricity in the PCSCOPF solution compared to more 

than 30kWh in the OPF solution. The L-SAC algorithm, by training the defense and attack 
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agents to compete with each other in the pre-contingency stage, can generate robust actions 

for the PCSCOPF solution against the worst contingency scenarios. Therefore, when the 

transmission lines are out of service, the PCSCOPF solution can effectively mitigate the 

unserved electricity caused by attacks. On the contrary, the OPF solution struggles to 

mitigate the unserved electricity and maintain solution quality when different transmission 

lines are tripped, leaving it vulnerable to contingencies without a defensive strategy. Hence, 

the L-SAC algorithm is effective in generating robust PCSCOPF solutions under 

contingency scenarios. 

4.4.5 Case 4: Soft Update of Lagrange multiplier 

The power system is the most important infrastructure, and it must be ensured that any 

decision taken is safe and does not violate any crucial operating constraints. However, the 

stochastic contingencies will cause significant constraint violations. Numerical comparisons 

of the security effectiveness of the soft update of the Lagrange multiplier with the existing 

methods of optimal power flow, PSCOPF, PSCOPF methods, and the fixed penalty methods 

in the IEEE 30-bus and IEEE 118-bus systems are conducted. Fig. 4.8 (a) demonstrates the 

operation cost of the IEEE 30-bus system under the N-1 contingency scenario, and the 

degree of constraints violation will multiply by 1×104 as part of the operation cost. Fig. 4.8 

(b) illustrates the cumulative constraint violation degree of the five methods. It should be 

noticed that the solid curve in each method represents the average value of ten experiments, 

while the light-colored shadow area is bounded by the minimum and maximum values 

obtained over ten experiments. The OPF and PSCOPF generate more conservative decisions 

than the proposed method because of the lack of safe action in the post-contingency stage 

to avoid violations. As indicated by the figures, the PCSCOPF provides high reward values 

because the agent focuses on the operational costs, neglecting the low values of penalty 

terms. However, it suffers from high values of constraint violations. It generates unsafe 

actions during the training process, resulting in an unpromising method for the power 

system operation. The degree of constraint violation is low when setting the λ=1000. 
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However, its operation cost suffers from big fluctuation due to the unstable degree of 

constraint violation. 

 

(a) 

 

(b) 

Fig. 4.8 (a) Optimality performance of the proposed safety method; (b) Safety 

performance of the proposed safety method. 

 

To investigate the feasibility of the five methods after the stochastic contingency, the 

numerical data of the last 100 episodes, i.e., 2400 time steps, are collected. Table 4.6 

presents the statistical results of the five methods in the security action and the cumulative 

DCV over the 2400 time steps. The Scur (%) is defined in (4.56), where the limitation of 

the DCV, Ct, is set as 0.05 in the IEEE 30-bus system and 1 in the IEEE 118-bus system. 

From the table, it is obvious that the proposed method outperforms both existing methods 

and the fixed penalty method by predicting high-quality nonconservative control actions, 

promoting safety and economical operation. 
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Table 4.6 Security Performance of Different Safety OPF Methods. 

Method 
IEEE 30-Bus system IEEE 118-Bus system 

Scur (%) Cumulative Ct Scur (%) Cumulative Ct 

OPF 29.9% 248.2038 16.6% 1050.26 

PSCOPF 37.0% 147.3566 32.5% 918.69 

PCSCOPF 68.9% 114.7575 50.0% 836.09 

λ=1000 79.1% 87.2114 71.9% 609.82 

Proposed 99.99% 0.4424 99.78% 18.44 

 

4.4.6 Case 5: Demand Response Programs Analysis 

Demand response programs (DRPs) contributes to the power system by offering a flexible 

model that can enhance both the security and economic performance of the SCOPOF model 

[47]. This subsection discusses the simulation results of the proposed method for handling 

DRPs on the IEEE 30-bus system. Four different time-based DRP scenarios—flat rates, 

time of use (TOU), real-time pricing (RTP), and critical peak pricing (CPP)—are considered 

to evaluate their performance in terms of operational costs, total load shedding, and the 

peak-to-valley ratio (PVR) of demand. Furthermore, an economic model for DRPs is 

introduced to simulate the economic behavior of responsive loads, with their corresponding 

electricity tariff ratios provided in [47]. Based on the four different DRP scenarios, Fig. 4.9 

illustrates their daily demand curves based on demand ratios in [47]. 

Based on the load demand from Fig. 4.9, the safe RL method solves the PCSCOPF 

problem for each of the four DRP scenarios, with the hourly load shedding for each scenario 

shown in Fig. 4.10. In the flat rate scenario, which remains constant throughout the day, 

load shedding is relatively stable, reflecting the absence of price incentives to shift demand. 

In contrast, TOU pricing leads to more dynamic load shedding, with reduced shedding 

during cheaper peak hours (1–9) and increased shedding during more expensive off-peak 

and valley periods (10–24). RTP and CPP demonstrate greater responsiveness, with 
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significantly higher load shedding during periods of elevated pricing, especially between 

hours 20–22 when RTP and CPP prices spike. These two schemes show the system's 

sensitivity to real-time or critical price changes, leading to the highest load shedding during 

peak price periods. Overall, while the flat rate results in a uniform shedding pattern, TOU, 

RTP, and CPP pricing strategies encourage more targeted load reductions, with RTP and 

CPP proving most effective during critical peak times. 

 

Fig. 4.9 Power demand curve based on four different scenarios. 

 

 

Fig. 4.10 Load shedding based on four different scenarios. 

 

Table 4.7 evaluates the performance of power systems under four DRP scenarios based 

on the safe RL solution for the PCSCOPF model. The results highlight that dynamic pricing 

schemes, such as RTP and TOU, generally outperform flat rate and CPP across various 

performance metrics. Although the flat rate achieves the lowest operational cost, it also 

results in the highest load shedding and the greatest demand imbalance, as indicated by its 

PVR. In contrast, RTP and TOU provide a better balance by reducing both load shedding 
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and PVR, reflecting more efficient load management and a smoother demand curve. 

Meanwhile, CPP lowers PVR and load shedding compared to the flat rate, incurs the highest 

operational costs due to the sharp price spikes during peak periods. Overall, RTP 

demonstrates as the most effective strategy for balancing operational costs, reducing load 

shedding, and flattening demand, whereas CPP offers similar benefits in demand smoothing 

but with reduced cost efficiency. The DRPs contribute to reducing the system's operational 

costs and improving security performance by lowering the load shedding. 

 

Table 4.7 Comprehensive assessment of performance of four different scenarios. 

DRPs Flat rate TOU RTP CPP 

Indices     

Operation costs 7.67e+03 7.69e+03 7.92e+03 1.17e+04 

PVR 1.5679 1.2472 1.2584 1.3488 

Load shedding 

(MW) 

681.0367 654.5655 620.8196 647.9215 

 

To clarify the effect of the contingency filtering approach in the proposed model, the 

solution times of the problem in scenarios of IEEE 30-bus system are given in Table 4.8. 

 

Table 4.8 Computation time performance of four different scenarios. 

DRPs Flat rate TOU RTP CPP 

Indices     

Computation time 

without contingency 

filtering (s) 

2029.73 2053.14 2058.44 2042.22 

Computation time 

with contingency 

filtering (s) 

1376.63 1371.51 1365.55 1370.99 
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This clearly demonstrates that applying the contingency filtering approach effectively 

reduces the computational burden, enabling faster solutions to the PCSCOPF problem under 

various DRPs. The filtering approach filters unnecessary contingency scenarios, accelerates 

the calculation process, making it a practical method to enhance computational efficiency, 

especially for real-time power system operations. 

4.5 Summary 

This paper presents a novel, fast, and safe solution method for PCSCOPF problem that 

uses a combination of a robust DRL algorithm and the Lagrangian relaxation methods. By 

modeling the problem as a CMDP with two DRL agents, the approach ensures robust and 

efficient solutions to prevent and correct N-k outages. The enhanced L-SAC algorithm, 

featuring soft Lagrange multiplier updates, guarantees the safe exploration of control actions, 

improving policy robustness. Meanwhile, the incorporation of the VPPs with the power 

system in this work enables a fast response to stochastic contingencies, thereby avoiding 

short-term violations of the operating constraints. Finally, test results on IEEE 30-bus and 

118-bus systems verify the computational efficiency and reliability of the proposed method, 

outperforming traditional OPF approaches in handling stochastic contingencies. 
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Chapter 5 Online Voltage Control 

Strategy: Multi-Mode Based Data-Driven 

Approach for Active Distribution 

Networks 

Active distribution network (ADN) is faced with significant challenges, including 

frequent and fast voltage violations, due to the increased integration of intermittent 

renewable energy resources. This paper proposes a two-stage multi-mode voltage control 

strategy based on a deep reinforcement learning (DRL) algorithm, designed to alleviate 

voltage violations in ADN and minimize network power loss. In the first stage, a DRL 

algorithm, the soft actor-critic (SAC), is introduced to determine the hourly dispatch of on-

load tap changers and capacitor banks, ensuring voltage security during the day-ahead stage. 

A multi-mode voltage regulation strategy is then proposed to obtain real-time dispatch of 

PV inverters, aiming to save energy and enforce voltage constraints under various 

conditions. The real-time voltage regulation problem is formulated as a Markov decision 

process and solved using a multi-agent SAC integrated with an attention mechanism. All 

agents undergo centralized offline training to learn the optimal coordinated voltage control 

strategy, then make decentralized online decisions based on locally available information 

only. The effectiveness of the proposed approach is confirmed through extensive testing on 

the IEEE 33-bus distribution system, with simulation results conclusively demonstrating its 

ability to address voltage violation challenges. 

5.1 Framework 

This study addresses the challenge of optimal voltage regulation within a two-stage 

framework, as illustrated in Fig. 5.1. The framework coordinates the collaboration of both 

traditional and innovative voltage control devices across two timescales, aiming to ensure 

secure operation in ADN using the DRL algorithm. Two intelligent agents, designed as day- 
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Fig. 5.1 Proposed multi-mode based data-driven voltage control framework. 

 

ahead and real-time agents, are specifically tailored for voltage regulation at different 

timescales. In the first stage, forecasts of PV generation and power demand for the 

upcoming day are generated and communicated as observations to the day-ahead agent. This 

agent undergoes training to learn the optimal control policy for voltage regulation within 

the MDP framework. Subsequently, to address the slower timescale control, the day-ahead 

agent executes optimal power flow within the environment, yielding day-ahead dispatch 

schedules for OLTC and CBs. In the second stage, system information such as voltages and 

switch statuses of OLTC and CBs from the first stage are recorded as observations for the 

real-time agent. In order to mitigate power loss and voltage violations, the well-trained real-

time agent, operating within the MDP framework, adjusts the output of PV inverters to 

achieve fast timescale control. To further guide the selection of distinct voltage regulation 

modes in the real-time stage, two security operation margins are designed. Specifically, 

three operation modes – power loss minimization mode (P_Mode), under- voltage 

optimization mode (U_Mode), and over-voltage optimization mode (O_Mode) – are 
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formulated for the real-time agent. This multi-mode control strategy is designed to ensure 

both economic and secure operation in ADN. 

This study notably incorporates multiple agents for optimal voltage regulation. A multi-

agent soft actor-critic (MASAC) algorithm is introduced to address the formulated MDP, 

representing an off-policy entropy maximization-based DRL algorithm. Power flow 

calculations are then executed in the modeling environment, incorporating injection actions 

and the dispatch of PV, OLTC, and CBs. The actor and critic networks of the SAC algorithm 

are further augmented with an attention mechanism to extract pertinent information from 

extensive state-action spaces, thereby mitigating potential issues related to local 

observations. Compared to single-based DRL algorithms, the attention-based MADRL 

requires less information to generate optimal voltage control, a notable departure from the 

MADRL algorithm, which experiences performance degradation when handling numerous 

agents. Considering the longevity concerns and sluggish response of traditional voltage 

control devices, OLTC and CBs are adjusted on an hourly basis during day-ahead dispatch. 

In the real-time stage, the output of PV inverters is regulated with a 1-minute time interval 

between adjacent control steps in each agent to address rapid voltage changes. Leveraging 

the offline training characteristic of the SAC algorithm, all agents in the MADRL algorithm 

undergo centralized training to learn the coordination voltage regulation strategy. Upon 

completion of the exploring process, the parameters of the DNN stabilized and subsequently 

transitioned to online implementation for each agent, enabling real-time voltage control 

based on local observations. This approach significantly mitigates the degradation of control 

performance caused by communication delays within the entire system. 

5.2 Problem Formulation 

5.2.1 Day-ahead Stage for voltage regulation 

The aim of the two-stage voltage control is to determine the optimal dispatch of OLTC 

and CBs at each time step. This ensures that both the cumulative voltage violation and the 

long-term switching operations of mechanical devices are reduced. Consequently, the 

mathematical optimization formulation for the first stage is articulated as follows: 
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where B and N are the sets of transmission lines and power buses; 𝑙𝑖𝑗, 𝑝𝑖𝑗, and 𝑞𝑖𝑗  are 

current active, and reactive power flow of transmission line 𝑖𝑗; 𝑣𝑖,𝑡 and 𝑣𝑖,𝑡
𝐷  are voltage 

and voltage deviation of bus i at time t; 𝑝𝑖,𝑡
𝑃𝑉 and 𝑞𝑖,𝑡

𝑃𝑉 are active and reactive of PV of bus 

i at time t; 𝑝𝑖,𝑡
𝐿𝑜𝑎𝑑 and 𝑞𝑖,𝑡

𝐿𝑜𝑎𝑑 are active and reactive demand of bus i at time t; 𝑞𝑖,𝑡
𝐶𝐵 and 

𝑢𝑖,𝑛,𝑡
𝐶𝐵  are reactive power and status of nth capacitor of CB of bus i at time t; 𝑡𝑎𝑝𝑡 is the 

status of OLTC at time t; 𝑟𝑖𝑗 and 𝑥𝑖𝑗 are resistance and reactance of transmission line 𝑖𝑗; 

∆𝑉𝑇  is voltage regulation of OLTC for one-tap step; 𝑉𝑠  is the primary voltage of 

transformer at the slack bus; 𝑆𝑖
𝑃𝑉 is power capacitor of the PV inverter at bus i; 𝑉 and 𝑉 

are max and min bus voltage limit; 𝑞𝑖,𝑛,𝑡
𝐶𝐵  is reactive power of one capacitor at bus i; 𝑡𝑎𝑝𝑚𝑎𝑥 

and 𝑐𝑎𝑝𝑖,𝑚𝑎𝑥 are maximum operation number of OLCT and nth capacitor at bus i. 

The objective function (5.1), consisting of two terms, minimizes the total cost. The first 

term represents the power loss costs, which are crucial for efficient energy distribution. The 

second term represents the voltage deviation costs, penalizing deviations from the desired 
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voltage levels to ensure system stability. Equations (5.2)-(5.3) delineate the nodal power 

balance constraints. Equation (5.4) describes the constraints related to bus voltages. 

Equation (5.5) calculates the substation voltage based on the OLTC positioning. Equation 

(5.6) denotes the power flow constraint, ensuring that the power transmitted through each 

branch does not exceed its limits. Equation (5.7) specifies the reactive power constraint for 

the PV inverter, ensuring that the inverter operates within its reactive power capability limits. 

Equation (5.8) computes the reactive power injections facilitated by the CBs, which provide 

necessary reactive power support to maintain voltage levels and improve power factor. 

Equations (5.9)-(5.11) establish the constraints concerning bus voltage limits, branch flow, 

and switch time for both OLTC and CBs. 

5.2.2 Multi-mode for real-time stage voltage regulation 

In the context of real-time voltage regulation, the distribution system operator endeavors 

to minimize energy consumption while ensuring that bus voltages are maintained within 

predefined acceptable thresholds within power systems. In scenarios where fast reactive 

power resources are scarce and voltage margins are tight, the system operator will focus on 

maintaining voltage levels to mitigate security concerns. Conversely, when reactive power 

availability or voltage margins are sufficient, a single mode of voltage regulation may 

neglect economic factors [20], [23], [116]. In such scenarios, a multi-mode voltage 

regulation approach offers appropriate power support across varied conditions, thereby 

enhancing practical flexibility. To illustrate the proposed multi-mode voltage control 

methodology comprehensively, we introduce two distinct criteria: namely, the voltage 

margin (VM) and the flexible PV margin (PVM) for bus i at time t, as described as follows. 

 , ,( )i t i tVM V v= −
 (5.12) 

 
, ,( )i t i tVM v V= −

 (5.13) 

 
( ) ( ) ( )

2 2 2

, , , , 1

PV PV PV

i t i t i t i tPVM s p q −= − −
 (5.14) 

where 𝑉𝑀𝑖,𝑡 and 𝑉𝑀𝑖,𝑡 denote voltage margins when the voltage is close to the upper limit 

and lower limit, respectively; 𝑃𝑉𝑀𝑖,𝑡 represents the reactive power margin of PV inverters. 
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1) Mode 1: Power-Loss Minimization Mode (P_Mode): The P_Mode is developed to 

curtail the overall power loss of the distribution network while ensuring requisite voltage 

limits. If the proposed two margins satisfy security levels, the optimization problem will 

exclusively prioritize power loss minimization through the subsequent objective: 

 
,min ij t ijt T ij B

l r
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 (5.15) 

 s.t. (5.2)-(5.9) (5.16) 

This objective function seeks to minimize the total power loss by summing the product of 

the branch current and resistance over all branches and time periods. 

2) Mode 2: Under-Voltage Minimization Mode (U_Mode): The U_Mode is structured to 

guarantee voltage levels when both VM and PVM fall below security thresholds within the 

distribution system. This implies that the available reactive power resources are approaching 

exhaustion, increasing the risk of voltage descending below acceptable limits. In this 

operational mode, the reserved reactive power in the PV inverters will be regulated to 

sustain voltage levels above a predetermined threshold, as governed by the following model: 
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3) Mode 3: Over-Voltage Minimization Mode (O_Mode): The O_Mode is devised to 

uphold secure voltage levels, particularly when the VM diminishes and the reactive power 

reserves of PV inverters are fully depleted. Under such circumstances, the O_Mode 

orchestrates active power curtailment of PV systems to mitigate voltage escalation issues. 

To optimize and minimize the overall PV curtailment, the optimization formulation is 

defined as follows: 
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 s.t. (5.2)-(5.9) (5.23) 

where the maximum curtailment of each PV inverter, 𝑝𝑖,𝑡
𝑐𝑢𝑟𝑡,𝑚𝑎𝑥

, in equation (5.22) is given 

by fairness control among the PV systems based on voltage sensitivities [117]. The detailed 

shift algorithm of the proposed multi-mode voltage regulation strategy is demonstrated in 

Algorithm 4. 

 

Algorithm 4: Multi-mode voltage control strategy 

Input: 𝑣𝑖 , 𝑝𝑖,𝑡−1
𝑃𝑉

,i tv  and.𝑞𝑖,𝑡−1
𝑃𝑉 . 

Calculate: 𝑉𝑀𝑖,𝑡, 𝑉𝑀𝑖,𝑡, and 𝑃𝑉𝑀𝑖,𝑡 using (5.13)-(5.15). 

For time step t do 

If 𝑉𝑀𝑖,𝑡 ≤ 𝛾1 and 𝑃𝑉𝑀𝑖,𝑡 ≤ 𝛾2 

Perform O_Mode to address voltage rise problems. 

Else 𝑉𝑀𝑖,𝑡 ≤ 𝛾1, and 𝑃𝑉𝑀𝑖,𝑡 ≤ 𝛾2 

Perform U_Mode to maintain the voltage above a 

certain level. 

Else  𝑉𝑀𝑖,𝑡 > 𝛾1, 𝑉𝑀𝑖,𝑡 > 𝛾1, and 𝑃𝑉𝑀𝑖,𝑡 > 𝛾2 

Perform P_Mode to minimize power loss. 

End If 

End For 

 

5.3 Methodology 

To address the objectives of mitigating rapid voltage violations and minimizing power 

losses via the developed DRL framework, the two-stage voltage regulation framework is 

divided into two timescale tasks based on distinct objectives. Subsequently, the two 

timescale tasks are conceptualized as a single-agent MDP and a multi-agent MDP 

respectively. The MDP stands as a quintessential paradigm within DRL methodologies, 

wherein an agent, or potentially multiple agents, engages with an inherently uncertain 
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environment, iteratively refining their control policies through exploration. The orchestrated 

coordination of this two-stage voltage regulation is realized by concurrently training the 

two-stage agents, facilitated by information interchange grounded in the reward signals 

deduced from a data-driven surrogate model. For the slower timescale control, the OLTC 

and CBs are harmonized through a single agent-driven SAC algorithm, leveraging 

comprehensive system information. Conversely, the optimization of PV inverters, treated 

as a fast timescale control, is addressed and resolved by employing the MASAC algorithm. 

5.3.1 Day-ahead Voltage Control based on Soft Actor-critic Algorithm 

1) MDP Formulation of Day-Ahead Agent 

To formulate MDP of the day-ahead voltage control problem, key components for the 

day-ahead agent (DA) encompass the state set S, action set A, and reward function R. The 

DA determines the schedule of OLTC and CBs according to the forecasting power demand 

and PV generation. Therefore, the state set holds comprehensive information regarding the 

distribution network and is explicitly defined in (5.24). The predicted action 𝑎𝑡
𝑑 is defined 

in (5.25), encapsulating the statuses of OLTC and CBs. Note that, instead of encompassing 

all decision variables in (5.2)-(5.9), the selected actions in (5.25) are controllable and 

include the minimum actions to improve the learning convergence and stability. The reward 

value per time step 𝑟𝑡
𝑑 endeavors to reflect the efficacy of actions undertaken by the DA, 

as specified in equation (5.26), taking into account metrics such as power loss and voltage 

deviations. 
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2) SAC Algorithm for Day-Ahead Voltage Control 

SAC is an off-policy, actor-critic algorithm in maximum entropy reinforcement learning 

[105], which concurrently enhances the expected reward and the entropy of the policy to 

facilitate exploration, i.e.: 
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where   indicates one trajectory. 𝜋(∙ |𝑠𝑡)  is a categorical distribution indicating the 

probability of taking any action under state st; α represents the entropy temperature that 

tunes the stochasticity of the optimal policy; ℋ(𝜋(∙ |𝑠)) = − 𝑙𝑜𝑔(𝜋(𝑎𝑡|𝑠𝑡))  denotes 

entropy term. 𝛾 ∈ [0,1] indicates the discounting coefficient. Besides, the exploration and 

learning stability of the policy is related to the value of entropy temperature. Therefore, one 

of the technical essential tricks in the SAC algorithm is to automatically adjust the entropy 

temperature by: 

 
( )~ lo (( ) g )aJ a s     − − =   (5.28) 

where ℋ denotes the expected minimum entropy. Noteworthy that the action in the day-

ahead agent is discrete. Therefore, the discrete SAC algorithm is applied to train our day-

ahead control optimization problem. Accordingly, the policy evaluation relies on the actor-

critic architecture, wherein the Bellman backup operator is applied for soft Q-function 

𝑄𝜃(𝑠) = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝜋𝑡(𝑠)
𝑇𝑉𝜋(𝑠𝑡+1) where 𝜋𝑡(𝑠)

𝑇 indicates the expectation value of the 

discrete action; 𝑉𝜋(𝑠) = 𝜋𝑡(𝑠)
𝑇[𝑄𝜃(𝑠) − 𝛼 𝑙𝑜𝑔(𝜋(𝑎|𝑠))] is the soft state-value function. 

SAC refines the critic through temporal-difference (TD) learning by minimizing the loss 

function, in which two critic networks with different parameters 𝜃1  and 𝜃2  are 

implemented to avoid overestimation issues: 

 𝐽𝑄(𝜃𝑖) = 𝐸(𝑠,𝑎,𝑟,𝑠′)~ℳ [
1

2
(𝑄𝜃𝑖(𝑠) − (𝑟 + 𝛾 ∗ 𝜋𝑡(𝑠)

𝑇(𝑄𝜃̂𝑖
(𝑠′, 𝑎′) + 𝛼ℋ⁡(𝜋𝜑
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2

]

  (5.29) 

Significantly, SAC utilizes a soft Q-function augmented with an entropy term. The policy 

is learned through the gradient ascent optimizer, where two target networks for each critic 

with parameters 𝜃1 and 𝜃2 are used to improve the learning stability 
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where   are the parameters of the actor-network. 
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5.3.2 Real-Time Voltage Control via Attention-based MASA 

1) MDP Formulation of Real-Time Agent 

To mitigate the communication burden associated with information exchange, the 

distribution network is segmented into distinct regional sub-networks based on inherent 

geographic attributes. Subsequently, each agent is designated to oversee a specific sub-

network. The coordination of PV inverters across multiple sub-networks is conceptualized 

within the framework of MDPs, representing a multi-agent extension thereof. While all 

agents undergo centralized training to learn a coordinated control strategy, their operational 

deployment is decentralized, enabling robust decisions grounded in real-time sub-network 

information. This approach markedly diminishes communication demands and avoids 

adverse effects on control efficacy stemming from temporal delays. Within the MDP 

paradigm, each sub-network is formulated as an agent to dispatch PV inverters within its 

designated domain. The main constituents of this MDP framework are defined subsequently. 
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where 𝑠𝑡
𝑟  denotes the state of the agent i in time t. The state 𝑠𝑡

𝑟  includes the local 

observation of sub-network i, which is composed of voltage margin, flexible PV margin, 

PV output, load demand, voltage in the sub-network i, and the operational statuses of OLTC 

and CBs across the distribution network. The action 𝑎𝑖,𝑡
𝑟  represents the strategic control 

undertaken by agent i at the time t. Specifically, 𝑎𝑖,𝑡
𝑟  is designed to regulate reactive power 

and curtail active power across PV inverters situated within sub-network i. The reward 𝑟𝑡
𝑟 

is the immediate reward subsequent to action execution within the operational environment. 

Notably, all the agents concur upon a unified reward 𝑟𝑡
𝑟 , wherein 1and 2  serve as 

penalty coefficients, addressing deviations in voltage and PV curtailment, respectively. 

2) Attention Based MASAC Algorithm for Real-Time Voltage Control 

To address the intricacies of the multi-agent MDP problem, this section introduces the 

MASAC algorithm. Nonetheless, the performance of the multi-agent algorithm suffers from 
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degradation with the increasing number of agents. To ameliorate this issue, an attention 

mechanism is incorporated into the MADRL framework, enabling each agent to selectively 

focus on information most pertinent to its corresponding reward structure. The structure of 

the proposed methodology is illustrated in Fig. 5.2, in which 𝑄𝑖
 (𝑠, 𝑎) = 𝑓𝑖(𝑔𝑖(𝑠𝑖, 𝑎𝑖),𝑖) 

denotes a function encapsulating the state and action of agent i, augmented by contributions 

from other agents. Herein, 𝑓𝑖 signifies a two-layer multi-layer perceptron, 𝑔𝑖(∙) indicates 

the embedding function pertinent to agent i, and i presents the output processed by the 

attention mechanism, signifying the weighted aggregation of values extracting from other 

agents: 

 

ReLU( ( , ))i i i i i

i j

V g s a


=  
 (5.34) 

where ReLU denotes the activation function; V stand as the linear transformation matrix. 

 

Fig. 5.2 The framework of the proposed attention based MADRL algorithm. 

 

The attention weight ℓ𝑖  evaluates the embedding 𝑔𝑖(𝑠𝑖, 𝑎𝑖) with 𝑔𝑗(𝑠𝑗 , 𝑎𝑗) through a 

query-key mechanism: 

 
T Texp( )i j k q ig W W g

 (5.35) 
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where 𝑊𝑘 and 𝑊𝑞 denote the transformation matrices. The computed similarity between 

two embeddings subsequently undergoes a softmax operation to derive the attention weight 

ℓ𝑖 . The parameters associated with the attention model, represented as ⟨𝑊𝑘,𝑊𝑞 , 𝑉⟩ , 

facilitates a weighted aggregation of contributions from all other agents pertinent to a 

specific agent. Consequently, the parameters of attention-critic framework comprise both 

the parameters of the critic function 𝑄𝜃(𝑠, 𝑎) and those of attention model ⟨𝑊𝑘,𝑊𝑞 , 𝑉⟩. 

These parameters are refined through optimization techniques aimed at minimizing the 

ensuing loss function as follows: 

 𝐽𝑄(𝜃𝑖) = 𝐸(𝑠,𝑎,𝑟,𝑠′)~ℳ [
1

2
(𝑄𝜃𝑖(g(𝑠, 𝑎),) − (𝑟 + 𝛾(𝑄𝜃̂𝑖

(g(𝑠′, 𝑎′),) −

𝛼𝑙𝑜𝑔⁡(𝜋𝜑
∗ (𝑎′|𝑠′)))))

2

]  (5.36) 

The critic function is optimized through the minimization loss among 𝑄𝜃(𝑠, 𝑎) and the 

target. In the policy improvement step, the policy is optimized to maximize the soft Q-

function by minimizing the KL-divergence as 

 
( ) ( )

~ ~ {1,2}
( ) log ( | ) m ( , ),in

is a i
J Q g s aa s  

  


  
 

−
  

=
   (5.37) 

which can be minimized by a reparameterization trick. The policy is modified to predict the 

mean and standard deviation of actions' probability distribution given system states. 

Due to the inherent offline training characteristic of the SAC algorithm, the integration of 

the attention-based MASAC can separately execute centralized training for coordinated 

strategy and decentralized implementation for voltage regulation. The procedural details of 

this practical implementation are summarized in Algorithm 5. 

 

Algorithm 5: Attention based MASAC 

Input: the power demand, 𝑝𝐿𝑜𝑎𝑑, 𝑞𝐿𝑜𝑎𝑑, PV output 

𝑝𝑃𝑉, 𝑞𝑃𝑉, and the result from the day-ahead agent. 

Initialize: actor network 𝜑𝑛, and attention-critic 

network 𝜃𝑖,𝑛, 𝜃𝑖,𝑛 for each agent n. 

For each episode do 

For each time step do 
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Generate action 𝑎𝑛~𝜋𝜑𝑛(∙ |𝑠𝑛 = 𝑠) for each 

agent n, and execute joint action a = (a)1,⋯ , an 

to obtain reward and next state→ 𝑟, 𝑠𝑛
′  

Store transition ℳ ←ℳ ∪ (𝑠𝑛, 𝑎𝑛, 𝑟, 𝑠𝑛
′ ) in the 

experience buffer 

End For 

For each gradient step do 

Sample random m experiences from ℳ 

Update soft-Q value parameter by 𝜃𝑖,𝑛 (5.36) 

Update policy parameter 𝜑𝑛 by (5.37) 

Adjust temperature α by (5.28) 

Update target 𝜃𝑖,𝑛 by 𝜃𝑖,𝑛 = (1 − 𝜌)𝜃𝑖,𝑛 + 𝜌𝜃𝑖,𝑛 

End For 

End For 

Note: 𝜌 is the target update factor.         

 

Furthermore, the trained network parameters then are transformed to the real-time stage 

for voltage regulation. Each agent receives local observation from the sub-network and then 

executes the voltage regulation in a decentralized manner. 

5.4 Case Study 

5.4.1 Setting of the Test System 

In this section, the proposed two-stage multi-mode voltage regulation strategy is evaluated 

on a modified IEEE 33-bus distribution network, where six PV inverters were installed at 

bus 2, 6, 11, 18, 25, 33, respectively, to provide distributed generation and reactive power 

support and two CBs were added at bus 16 and 22 to help manage reactive power and 

voltage control. The scalability of the proposed attention-based MASAC framework is an 

important consideration for its deployment in larger-scale distribution systems. From a 

training perspective, the framework adopts a centralized training with decentralized 

execution (CTDE) paradigm: during training, global information is available to stabilize the 
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learning process, while in the inference stage each agent makes decisions solely based on 

local states and selectively attended neighbor information. This design ensures that the 

computational complexity of online inference remains manageable even as the number of 

agents increases. From a communication perspective, the attention mechanism naturally 

enhances scalability by allowing each agent to focus only on the most relevant neighbors 

rather than requiring system-wide communication. Such selective information exchange 

significantly reduces communication overhead, which is particularly critical for large 

distribution networks where full communication among all controllable units, such as PV 

inverters, would be impractical. 

Firstly, the distribution network is divided into several regional sub-networks according 

to the default geographic location parameters, with each agent assigned to a specific sub-

networks. It's important to note that geographic partition does not inherently ensure voltage 

control for every bus through local PV inverter adjustments. To address this, an offline 

evaluation mechanism is established to identify uncontrollable buses following the 

geographic partition [96]. These uncontrollable buses are then reassigned to an alternative 

sub-network that has the necessary electrical interconnections. This iterative post-partition 

adjustment process continues until all buses can be effectively regulated by local resources, 

as illustrated in Fig. 5.3. The computational analyses presented here were executed on a 

system equipped with an Intel i7-10700 CPU and 16 GB of RAM. The hyperparameters of 

the SAC algorithm are presented in Table 5.1. Fig. 5.4 illustrates PV output and load demand 

across various periods, sourced from online resources. In particular, Fig. 5.4 (a) displays 

curves of the day-ahead forecast of PV output and load demand for hourly data. This 

forecast is calculated from the hourly averages of actual data and serves as the foundation 

for the day-ahead optimization process. Fig. 5.4 (b) depicts real-time minute-by-minute data 

during a peak PV generation between 13:00 and 14:00, showcasing the variability and 

dynamics of PV output and load on a finer timescale. Meanwhile Fig. 5.4 (c) presents 

minute-by-minute real-time data during a period of diminished PV generation and increased 

load demand from 18:00 to 19:00, highlighting the daily fluctuations in PV output and load 

demand. 
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Table 5.1 Main Hyper-Parameters and Data Setting. 

Parameters Value Parameters Value 

Optimizer Adam Activation RELU 

Actor learning rate 1e-3 Critics learning rate 1e-3 

Entropy learning rate 1e-3 Targets learning rate 1e-3 

Discount factor  0.99 Initial temperature 1 

Neurons number 512 Time step 1 

Max steps 24 Minibatch size 128 

Penalty coefficient λ1 1 Penalty coefficient λ2 1e3 

Voltage margin limit γ1 0.005 p.u. PV margin limit γ2 70 kVar 

Penalty coefficient 1 1e3 Penalty coefficient 2 1 

 

 

Fig. 5.3 Partition and topology results of the IEEE 33-bus system. 

 

 

(a) Prediction of PV and load day-ahead hourly data. 
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(b) Real-time minutely of PV and load data during 13:00-14:00. 

 

(c) Real-time minutely of PV and load data during 18:00-19:00. 

Fig. 5.4 PV and load data in distribution network in different timescales. 

 

5.4.2 Numerical Results of Day-Ahead Agent Voltage Regulation 

To validate the effectiveness of the day-ahead agent in addressing voltage control 

problems, voltage profiles following the day-ahead optimization via the DRL algorithm are 

shown in Fig. 5.5. It is evident that all bus voltages adhere to the security operational range 

(0.95 p.u. to 1.05 p.u.) throughout the entire day. Notably, at the start and end of the day, 

the system's voltage distribution progressively converges towards the lower operational 

threshold, making the system particularly susceptible to fluctuations inherent to real-time 

operations. Moreover, at midday, the voltage profiles show a reduced margin, approaching 

the upper operational limit, due to the significant PV output during this time. These 

observations underscore the need for a real-time voltage control strategy to mitigate voltage 

infringements arising from system uncertainties and to strengthen the voltage margin during 

these vulnerable periods. 
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Fig. 5.5 Voltage profiles obtained by the day-ahead agent in the distribution network. 

 

5.4.3 Comparison Results of Real-Time Voltage Regulation with Other Alternative 

Strategies 

To illustrate the effectiveness of the proposed multi-mode voltage control strategy during 

the real-time stage, comparative analyses were conducted with three benchmark voltage 

control methodologies for contextual evaluation. The first benchmark control method, 

referred to as the conventional centralized control method (Method #1), adopts only one 

agent within the real-time agent for voltage regulation. Following the day-ahead agent's 

dispatch, this method relies on a single agent to centrally determine the minutely dispatch 

of PV inverters [118]. The second benchmark control method, referred to as the optimal 

local control method (Method #2), performs a singular voltage control mode for regulatory 

purposes. Specifically, this method centralizes the adjustment and curtailment of PV 

reactive and active power within a single control mode to mitigate voltage violations based 

on day-ahead optimal dispatch schedules [119]. Lastly, the third benchmark control method, 

referred to as the original two-stage control method (Method #3), regulates voltage 

regulation devices with a slow timescale and maintains the day-ahead dispatch constant 

during the real-time stage. 
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Fig. 5.6 Voltage profiles obtained by different methods during 18:00-19:00. 

 

 

Fig. 5.7 Adjustment of reactive power in PVs with different methods during 18:00-19:00. 

 

Fig. 5.6 presents voltage profiles at bus 18 across distinct voltage regulation methods 

during the typical time interval of 18:00 to 19:00. Notably, Method #2 shows severe voltage 

violations, whereas Method #3 displays more moderate violations. These discrepancies arise 

from Method #2's single mode, which lacks a clear strategy for voltage regulation when 

voltage margins are constrained. Specifically, when confronted with fewer voltage margins 

at lower levels, this method may adjust both the active and reactive without a distinct 

operational mode. In contrast, the proposed method adopts a clear classification of voltage 

regulation mode, adeptly adjusting the PV reactive power as the voltage margin approaches 

its lower limit. Furthermore, the persistence of day-ahead dispatch remaining within Method 

#3 proves inadequate in mitigating voltage violation challenges, primarily due to 

uncertainties in the real-time stage. On the other hand, Method #1 consistently results in 

higher voltage levels relative to the proposed method. This discrepancy arises from over-
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optimization tendencies when a single agent attempts to centrally regulate PV dispatches 

across different sub-networks. This single agent requires comprehensive knowledge of the 

entire distribution system, demanding highly communicative capabilities. In contrast, the 

proposed method only requires local information for the real-time agent, reducing 

communication requirements and avoiding negative impacts on control performance caused 

by time delays. 

Fig. 5.7 shows the reactive power adjustment of PV across various voltage control 

methods. Owing to the static strategy inherent in Method #3, adjustments to the reactive 

power profile for this approach are not considered. As shown in Fig. 5.7, Method #1 exhibits 

high levels of reactive power adjustments, a result of its inherent tendency towards over-

optimization. In contrast, when compared with Method #2, the proposed method exhibits 

more precise and accurate adjustments to PV reactive power. The clear classification of the 

voltage control mode facilitates timely voltage support. A comprehensive comparison of 

outcomes across different voltage regulation methods is further illustrated in Table 5.2. 

Notably, both Method #2 and Method #3 engender higher power losses, accompanied by 

unacceptable voltage violations of 0.00931 p.u. and 0.00816 p.u., respectively. Furthermore, 

Method #3 records a maximum voltage variance of 4.31%, attributable to its real-time 

control strategy. Compared to Method #1, the proposed approach effectively curtails voltage 

violations while minimizing power losses. 

 

Table 5.2 Comparison Results for Different Methods. 

Methods Power loss 

(kWh) 

Voltage Vio. 

(p.u.) 

Voltage 

Var. 

Method #1 27.41 0 3.02% 

Method #2 27.70 0.00931 3.19% 

Method #3 27.94 0.00817 4.31% 

Proposed 26.56 0 3.11% 

where the degree of the voltage violation is defined as 

DCV = √
1

ℬ
∑ (𝑣𝑖,𝑡

𝐷 )2𝑖∈ℬ , ℬ  is the total number of power 

buses. 
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To assess the effectiveness of the proposed method in mitigating over-voltage issues, 

simulations are conducted during the period from 13:00 to 14:00, characterized by 

heightened PV generation. In Fig. 5.8, the voltage profiles at bus 18 are presented, 

showcasing the performance of various voltage control methods. While voltage levels and 

trends differ among methods, both Method #2 and Method #3 exhibit inadequacies in 

addressing voltage violations. Notably, voltage fluctuations are observed in the profiles of 

Method #3 between 13:00 and 13:40, underscoring the inherent limitations of relying solely 

on day-ahead dispatch to manage real-time power system uncertainties. Method #2, while 

showing improved performance compared to Method #3, falls short in fully mitigating 

voltage violations due to PV curtailment operations. Conversely, both Method #1 and the 

proposed method demonstrate superior performance in effectively addressing voltage rise 

problems. However, Method #1 exhibits lower voltage levels attributed to overoptimization, 

despite substantial PV curtailment, as depicted in Fig. 5.9, illustrating curtailment of PV 

generation across distinct voltage control methods. Notably, the adjustment profiles of 

Method #3 are not presented in this figure. In Fig. 5.9, it is evident that the active power 

curtailment tendencies of Method #2 and the proposed method align closely. Yet, the 

proposed method excels in enhancing voltage quality through its clear classification of the 

voltage control mode. Complementary numerical results are summarized in Table 5.3, 

where Method #3 incurs a maximum power loss of 22.51 kWh alongside pronounced 

voltage violations of 0.00907 p.u. In comparison, despite Method #1 curtailing a higher PV 

active power, resulting in a maximum voltage variance, the proposed method outperforms 

in terms of minimizing PV active power curtailment and associated power losses, facilitated 

by its precise classification of operational control modes. 
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Fig. 5.8 Voltage profiles obtained by different methods during 13:00-14:00. 

 

 

Fig. 5.9 Adjustment of active power in PVs with different methods during 13:00-14:00. 

 

Table 5.3 Comparison Results for Different Methods. 

Methods Power loss 

(kWh) 

Voltage Voi. 

(p.u.) 

Voltage 

Var. 

PV Curtailment 

(kWh) 

Method #1 19.77 0 10.36% 8.2 

Method #2 21.66 0.00795 9.86% 6.51 

Method #3 22.51 0.00907 9.61% 0 

Proposed 19.20 0 9.09% 5.21 

 

5.4.4 Comparison Results with Other Alternative Algorithms 

A comparative analysis is conducted on four distinct algorithms, namely: 1) the MASAC 

algorithm; 2) multi-agent proximal policy optimization (MAPPO), an on-policy algorithm; 

3) multi-agent deep deterministic policy gradient (MADDPG), which involves offline 
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training followed by online testing; and 4) attention-based MADDPG (AMADDPG), which 

integrates the attention mechanism with the MADDPG framework. To ensure robustness 

and reliability, each algorithm is subjected to ten independent experimental runs using 

varied initial seeds. The cumulative reward curves resulting from these experiments are 

illustrated in Fig. 5.10, in which each algorithm is represented by a solid curve denoting the 

average value across the ten experimental iterations. The shaded region surrounding each 

curve represents the range between the minimum and maximum rewards obtained across 

the ten experiments, providing a comprehensive visualization of the performance variability 

of the algorithms. 

 

Fig. 5.10 Training process of different algorithms. 

 

From Fig. 5.10, it can be observed that while the cumulative reward reaches high levels 

with different algorithms, their tendencies vary. Initially, we observe that MASAC and 

MADDPG exhibit significant oscillations, reflecting the inherent challenges in stabilizing 

the learning process in a multi-agent environment using off-policy methods. However, as 

training progresses, these oscillations diminish, with MASAC converging around 350 

epochs and MADDPG around 400 epochs, though MADDPG's final reward stabilizes at a 

higher value of -50 compared to MASAC's -30. In contrast, the on-policy MAPPO 

demonstrates early convergence around 300 epochs, maintaining relatively low oscillations 

and a final reward close to -10, showcasing its stability and efficiency. The attention-based 

variations, AMD and AMS, show marked improvements; AMD converges around 300 
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epochs with reduced oscillations and a final reward of -40, while AMS displays superior 

performance with minimal oscillations, early convergence around 250 epochs, and the 

lowest final reward close to -5. This superior performance of AMS can be attributed to the 

enhanced capability of attention mechanisms in handling complex interactions, leading to 

more effective optimization in power system dispatch. 

 

Fig. 5.11 Voltage distribution obtained by different algorithms when t=9:00. 

 

 

Fig. 5.12 Voltage distribution obtained by different algorithms when t=23:00. 

 

Figs. 5.11 and 5.12 demonstrate the voltage distributions across all buses as generated by 

the proposed algorithm at specific time instances: t=9:00 and t=23:00, respectively. Notably, 

the MADDPG algorithm exhibits pronounced voltage violations across both temporal 

scenarios, attributable to challenges due to hyperparameter calibration. Conversely, while 
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the AMADDPG algorithm adeptly mitigates voltage violation, it slightly lags in voltage 

margin efficacy relative to the proposed method. This superior performance of the proposed 

algorithm can be attributed to its integrated attention mechanism during the training process, 

coupled with stability attributes inherited from the foundational SAC algorithm. 

 

Table 5.4 Training Results with Different Algorithms. 

Methods Power 

loss 

Voltage Vio. 

(p.u.) 

Computation 

time (s) 

MASAC 22.9376 0.00329 2456.72 

MAPPO 22.0715 0.00435 1628.16 

MADDPG 34.2096 0.01094 2347.01 

AMADDPG 17.8841 0.00092 2591.93 

Proposed 17.5993 0 2752.01 

Table 5.4 offers a numerical exposition of training outcomes across varied algorithms. 

The MAPPO algorithm, leveraging an on-policy approach, achieves fast computational time; 

however, this strategy concurrently engenders unacceptable voltage infractions. In contrast, 

the MADDPG algorithm causes a maximum voltage violation of 0.01094 p.u., accompanied 

by a maximum power loss. Relative to the AMADDPG algorithm, the proposed algorithm 

adeptly curtails voltage violations while minimizing power losses. Although the proposed 

algorithm leads to the lengthiest computational time, it is acceptable, especially when 

leveraging offline training paradigms for optimizing voltage control strategies. 

5.4.5 Scalability of the Proposed Method 

The scalability of the proposed voltage regulation strategy is tested on the IEEE 123-bus 

system, with parameters data obtained from [120]. The convergence curves of the 

cumulative reward based on different DRL algorithms for the IEEE 123-bus system are 

presented in Figs. 5.13. Similarly, the solid curve in each algorithm corresponds to the 

average value of ten independent experiments, and the light-colored shadow area is bounded 

by the minimum and maximum rewards over the experiments. Initially, MAPPO exhibits 

significant oscillations but stabilizes around a -145 reward after approximately 100 epochs, 
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showing moderate stability. Similarly, MASAC, with comparable initial oscillations, 

stabilizes slightly later, around 150 epochs, with a final reward of around -147. On the other 

hand, MADDPG starts with high oscillations but stabilizes around 200 epochs, converging 

to a -148 reward and indicating less stability than both MAPPO and MASAC. Furthermore, 

AMADDPG shows the highest initial oscillations and stabilizes around 300 epochs, with a 

final reward of approximately -149, suggesting slower convergence and less stability. In 

contrast, the proposed method stands out with rapid convergence, stabilizing around -145 

reward within the first 50 epochs, and maintains the lowest and most stable reward, thus 

indicating superior performance. These differences can be attributed to the complexity of 

each algorithm. Specifically, the proposed method incorporates advanced techniques, such 

as attention mechanisms leading to faster and more stable convergence. Algorithms that 

balance exploration and exploitation effectively, such as the proposed method and MAPPO, 

tend to achieve better performance, while stability mechanisms like clipping and entropy 

regularization further contribute to the superior results observed. Consequently, the 

proposed method outperforms the others, making it the most effective for minimizing power 

loss and voltage violation in this scenario. 

 

Fig. 5.13 Training process of different algorithms. 

 

To demonstrate the superiority of the proposed algorithm, Table 5.5 illustrates the detailed 

computational results of different DRL algorithms in the IEEE 123-bus system. The 

proposed method shows the best overall performance in terms of voltage violation, 
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achieving a perfect score of 0, which indicates a complete elimination of voltage violations. 

Although it has a slightly higher power loss (110.28) compared to MAPPO (107.43) and 

MADDPG (108.82), the significant advantage of eliminating voltage violations cannot be 

overlooked. Meanwhile, MAPPO demonstrates the lowest power loss at 107.43 and a 

minimal voltage violation of 0.00043, making it a strong contender, though it falls short of 

the proposed method in completely eliminating voltage violations. 

On the other hand, MASAC and AMADDPG exhibit higher power losses (111.32 and 

110.77, respectively) and more significant voltage violations (0.00205 and 0.00143, 

respectively). These results suggest that while they are somewhat effective in reducing 

power loss, their ability to minimize voltage violations is less effective compared to the 

proposed method. MADDPG shows a balanced performance with a power loss of 108.82 

and a voltage violation of 0.00197. It performs better than MASAC and AMADDPG in 

terms of voltage violation but still falls short when compared to the proposed method. 

 

Table 5.5 Training Results with Different Algorithms. 

Methods Power 

loss 

Voltage Vio. 

(p.u.) 

Computation 

time (s) 

MASAC 111.32 0.00205 4422.10 

MAPPO 107.43 0.00043 3988.99 

MADDPG 108.82 0.00197 4224.62 

AMADDPG 110.77 0.00143 4665.47 

Proposed 110.28 0 4985.62 

 

5.5 Summary 

This paper proposes a two-stage voltage control strategy to alleviate fast voltage 

violations in ADN by coordinating PV inverters and traditional voltage control devices, 

including OLTC and CBs. In the first stage, the dispatches of OLTC and CBs are determined 

by a discrete SAC algorithm. In the second stage, a novel multi-mode voltage control 

method is designed to dispatch the output of PV inverters in real-time operation, achieving 
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a minimized power loss and secure voltage profile simultaneously. An attention-based 

MASAC algorithm is then proposed to optimize the real-time dispatch of multiple PV 

resources, which enables each PV inverter to regulate the voltage with only local 

information. This algorithm helps alleviate the performance degradation associated with a 

large number of agents in typical MARL algorithms. In case studies, the proposed control 

strategy is compared with benchmark control strategies. The simulation results show that 

the proposed multi-mode voltage control method can more precisely dispatch the output of 

PV inverters and achieve the balance between voltage violation mitigation and power loss 

minimization. Moreover, the performance of the attention-based MASAC is demonstrated 

by comparison with benchmark MARL algorithms. It shows that MASAC addresses the 

performance degradation by facilitating information exchange during off-line training, and 

the voltage regulation strategy generation by the proposed algorithm mitigates the power 

loss by 13.53% and reduces the voltage constraint violation by 7.07% compared with 

benchmark MARL algorithms. 

  



117 

 

Chapter 6 Coordinated Transmission-

Distribution Load Restoration under  

N-k Contingencies: A Distributed 

Optimization and Reinforcement 

Learning Approach 

Ensuring the rapid restoration of loads in transmission and distribution (T&D) systems 

under emergency conditions is crucial for maintaining grid stability. This study addresses 

the challenge of load restoration when contingencies, such as the disconnection of 

transmission lines and generators, disrupt the power supply. To address this issue, a 

coordinated T&D system operation strategy is introduced in this work, where virtual power 

plants (VPPs) within the distribution system are leveraged to compensate for the curtailed 

loads, thereby supporting the transmission system's load-shedding efforts. The coordination 

process involves bidirectional information exchange: the transmission system 

communicates load-shedding decisions to the distribution system, while the distribution 

system provides the available maximum curtailment capacity through VPPs. This 

interaction enhances the system's ability to respond to N-k contingency events in an 

optimized manner, improving overall resilience. To achieve efficient decision-making in 

this coordinated framework, reinforcement learning techniques are employed to optimize 

load restoration under N-k contingencies. The transmission system is modeled using the soft 

actor-critic (SAC) algorithm, which determines optimal load-shedding and generator 

dispatch strategies for rapid system recovery. Meanwhile, the distribution system, 

responsible for managing multiple VPPs, is controlled using the complementary attention 

for multi-agent SAC (CMS) algorithm. This approach mitigates the common attention 

dispersion problem in multi-agent SAC implementations, ensuring optimal decision-making 

in dynamic multi-agent environments. Simulation results demonstrate that the proposed 

reinforcement learning-based framework effectively reduces constraints violation in the 
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transmission system while maintaining load supply and voltage stability in the distribution 

network. 

6.1 Framework 

The proposed framework integrates the coordination of T&D systems under N-k 

contingency scenarios to enhance power system resilience, as illustrated in Fig. 6.1. A key 

aspect of this coordination lies in the dynamic exchange of information between the two 

systems. The distribution system first provides the transmission system with its maximum 

potential load curtailment capacity, allowing the transmission system to make informed 

load-shedding decisions. Once the transmission system determines the curtailment strategy, 

the distribution system immediately adjusts the output of VPPs to compensate for the 

curtailed loads, ensuring stable power supply within the distribution network. While VPPs 

play a crucial role in this process, the core of the coordination mechanism is the bidirectional 

interaction between the transmission and distribution systems, enabling adaptive, efficient, 

and resilient power dispatch in response to N-k contingency scenarios. 

As shown in Fig. 6.1, on the transmission side, the load restoration problem for handling 

N-k contingency scenarios is formulated as a Markov decision process (MDP) and solved 

using a DRL-based approach. The agent receives predicted power demand as the state and 

generates control actions to adjust the power dispatch and load curtailment, thereby 

improving system robustness under N-k contingency scenarios. These actions involve load-

shedding at specific buses, satisfying constraints and load restoration. A simulation 

environment models the transmission network's operation, providing the cost of the solution 

to update the agent's policy through offline training. By iteratively refining the policy with 

state-action-reward feedback, the framework achieves a stability power flow operation and 

power supply for the transmission system under N-k contingency scenarios. 

On the distribution side, after coordinating with the transmission system to handle 

emergency scenarios and implement load curtailments, the framework enables the 

distribution system to work in cooperation with VPP centers to restore its load supply. The 

activate distribution network mechanism coordinates individual VPPs, collecting flexible 
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Fig. 6.1 Decentralized Coordination Framework for Transmission and Distribution 

System. 

load supply capacities from VPP centers while offering economic incentives. Based on the 

available load supply capacity from VPP centers and the load curtailment decisions 

transmitted from information flow, a multi-agent DRL algorithm is then employed to 

dynamically adjust the distributed generators within each VPP center, ensuring an optimal 

power supply to the distribution system. To address the limitations of traditional MADRL 

algorithms with increasing agent numbers, this framework introduces the CMS algorithm, 

enhancing learning efficiency. This enables the distribution network to meet load demands 

effectively during emergencies while optimizing economic returns for VPPs. 

The proposed framework establishes a coordinated mechanism between the T&D systems 

by facilitating efficient information exchange. Through this information flow, both systems 

can access critical decision-making information, enabling the transmission system to 

implement informed load curtailment strategies while allowing the distribution system to 

respond effectively. In particular, the distribution system collaborates with VPP centers, 

utilizing flexible distributed generators to dynamically adjust power output in response to 

the transmission system's curtailment decisions. This coordinated approach enhances the 

system's ability to mitigate N-k contingency scenarios, ensuring adaptive, resilient, and 

efficient load restoration. Additionally, the adoption of the CMS algorithm addresses the 

limitations of traditional multi-agent reinforcement learning by improving scalability and 

learning efficiency. The complementary attention mechanism ensures optimal decision-

making across multiple VPP control centers, resulting in robust and efficient distribution 
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system operations during emergencies. Overall, the proposed TSO framework combines 

robust power flow optimization for the transmission system with flexible load restoration in 

the distribution system, providing a comprehensive, resilient, and economically viable 

solution for maintaining grid stability under N-k contingency scenarios. 

6.2 Problem Formulation 

6.2.1 Mathematical Model of the Transmission-Level System 

This section focuses on constructing the objective function and associated constraints for 

the transmission-level system to ensure robust operation during emergency scenarios. The 

aim is to optimize the system's performance by minimizing the objective function under 

emergency condition 𝑆. The objective function consists of three key components: the 

generation cost of power in the transmission network, the penalty for load shedding at 

critical load buses, and the penalty for providing insufficient power to load buses during 

emergencies. 
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where 𝑝𝑔,𝑡
𝑇  is the output of generator at time t and 𝐶𝑔 is its operation cost; ∆𝑝𝑙,𝑡

𝑇  is the load 

shedding at time t and 𝐶𝑙 is its penalty cost; ∆𝑝𝑙,𝑡
𝑇∗ is the unserved electricity at time t and 

𝐶𝑙
∗ is its penalty cost. The objective function is subject to the following constraints to ensure 

that the transmission network operates within its physical and operational limits during 

emergency scenarios. Equations (6.2)-(6.3) ensure the nodal power balance constraints. 

Equation (6.4) used to calculate the bus voltages. Equation (6.5) calculates power flow. 

Equations (6.6)-(6.8) limit the power output of generators to their operational limits. 

Equations (6.9)-(6.10) are restricted the voltage magnitude and phase angle at each bus. The 

maximum amount of load shedding is constrained at Equations (6.11). Equations (6.12) 

constraints model the disconnection of k transmission lines and generators from the network 

under N-k contingency scenarios. 
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where 𝑝𝑔,𝑛,𝑡
𝑇  and 𝑝𝑚𝑛,𝑡

𝑇  are the power input into bus n at time t from generator g and 

tranmission line mn, respecitvely, and 𝑞𝑔,𝑛,𝑡
𝑇  and 𝑞𝑚𝑛,𝑡

𝑇  are the reactive power input; 𝑙𝑛𝑘
𝑇  

and 𝑙𝑛𝑘
𝑇  is square of bus voltage and current; 𝑟𝑛𝑘

𝑇  and 𝑥𝑛𝑘
𝑇  are resistance and reactance of 

transmission line mn; (𝑃𝑔
𝑇  𝑃𝑔𝑇 ) and (𝑄𝑔

𝑇  𝑄𝑔𝑇 ) are active and reactive power limits of 

generator, repsecitvely; RDg and RUg are ramping up and down limits of generator, 

repsecitvely; (𝑉𝑚
𝑇 𝑉𝑚𝑇) and (Θ𝑚

𝑇  Θ𝑚𝑇 ) are voltage and angle phase limits, repsecitvely; 𝑠𝑔 

and 𝑠𝑚𝑛  are status of generator and transmission line, repsecitvely; 𝐼𝑔  and 𝐼𝑚𝑛  are 

availability of generator and transmission line, repsecitvely. To accelerate the solution 

process for the robust optimal power flow (OPF) problem, a worst contingency scenario is 

generated by previous preventive security-constrained method to simulate the disconnection 

of k components [111]. This method captures a wide range of possible contingencies without 

the computational burden of worst contingency scenario identification, significantly 

enhancing the efficiency of solving the robust OPF problem while maintaining robustness 

against common and severe contingencies. 
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6.2.2 Mathematical Model of the Distribution-Level System 

This section focuses on constructing the objective function and corresponding constraints 

for the distribution-level system to ensure efficient and cost-effective operation, particularly 

during emergency scenarios. The objective function is designed to minimize the overall 

operational cost of the distribution network, which consists of two key components: the 

power losses within the distribution network and the operational cost of purchasing power 

from the VPP centers. 
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where superscript represents the variable in the distribution system; 𝑝𝑣,𝑡 is the output of the 

VPP at time t and 𝐶𝑣 is its operation cost. The objective function for the distribution-level 

system is subject to the following constraints, ensuring that the distribution network 

operates within its physical and operational limits while providing reliable power supply 

and minimizing costs. Equations (6.14)-(6.15) ensure the nodal power balance constraints. 

Equation (6.16) is used to calculate the bus voltages. Equation (6.17) calculates power flow. 

Equation (6.18) is restricted the voltage magnitude at each bus. Equation (6.19) calculates 

the substation voltage based on the OLTC positioning. 
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where 𝑉𝑠  are the primary voltage of transformer at the slack bus; 𝑡𝑎𝑝𝑡  is the status of 

OLTC at time t; 𝛥𝑉𝑇 is voltage regulation of OLTC for one-tap step. 
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6.2.2 Optimization Model for Virtual Power Plants 

The introduction of VPPs into the distribution network enhances system flexibility and 

resilience, particularly during emergency scenarios. As illustrated in Fig. 6.2, VPPs act as 

aggregators of DERs, such as photovoltaic (PV) systems, battery energy storage systems 

(BESS), and controllable loads (e.g., electric vehicles). These resources are centrally 

managed through a unified VPP dispatch strategy, which reduces the complexity of directly 

controlling individual DER responses to distribution system energy dispatch commands. 

Distribution system

PV BESS

,pv netp

,pv bp
,pv clp

Controllable load ,b clp

,net clp
,b netp ,net bp

Inverter

VPP profile

 

Fig. 6.2 The structure of the VPP profile. 

 

The optimization model for VPPs aims to maximize the economic operating benefits of 

the VPP centers while ensuring reliable power supply to the distribution network during 

emergency conditions. The objective function of VPP optimization is designed to maximize 

the net revenue, defined as the difference between energy sales and operating costs. The 

first term is revenue from energy sales to the distribution system; the second and third terms 

are operating cost of PV and BESS systems; the last term is energy consumption of 

controllable loads. 
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where 𝑝𝑡
𝑝𝑣

 is the output of PV; 𝑝𝑡
𝑏 is the output of BESS; 𝐶𝑝𝑣 and 𝐶𝑏 are management 

cost of PV and BESS, respectively; 𝑝𝑐𝑙,𝑡 is the power demand of the controllable load and 

𝐶𝑐 is its cost. The optimization of the VPP is subject to several constraints to ensure that its 
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operation remains within technical and operational limits while achieving the economic 

objective. Constraint (6.21) calculates the net power output of VPP sells to the distribution 

system. Constraint (6.22) ensures total PV production. Constraint (6.23) calculates the 

power consumption of the controllable load. Constraints (6.24)-(6.26) regulate the operation 

of the BESS and govern the state of charge (SOC) of the BESS. 
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where 𝑝𝑡
𝑝𝑣,𝑛𝑒𝑡

, 𝑝𝑡
𝑝𝑣,𝑐𝑙

, and 𝑝𝑡
𝑝𝑣,𝑏

 are the power that PV sends to distribution system, 

controllable load and BESS, respectively; 𝑝𝑡
𝑛𝑒𝑡,𝑐𝑙

 and 𝑝𝑡
𝑏,𝑐𝑙

 are the power consumption of 

controllable load from distribution system and BESS, respectively; 𝑝𝑡
𝑏,𝑛𝑒𝑡

 and 𝑝𝑡
𝑛𝑒𝑡,𝑏

 are 

the power output and input from BESS to distribution system; 𝜆𝑝 and 𝜆𝑐 are the discharge 

and charge efficiency of BESS; 𝑆𝑂𝐶𝑡
𝑏 is the state of charge of the BESS at time t. The VPP 

optimization model is designed to determine the feasible range of power supply that VPP 

centers can dispatch within the distribution system during emergency scenarios. 

 

6.3 Methodology 

Building upon previous mathematical models for both the T&D systems, traditional 

optimization algorithms, such as mixed-integer programming and gradient-based methods, 

are often limited in handling the high-dimensional, nonlinear, and stochastic characteristic 

of power system coordination, especially under contingency scenarios where uncertainty 

and rapid decision-making are critical. To overcome these limitations, DRL algorithms are 
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introduced, offering the ability to learn optimal policies directly from interaction with the 

system without requiring an explicit mathematical model of all uncertainties. To achieve 

this, the control problems in both the transmission and distribution systems are formulated 

as MDPs. The following sections present the MDP formulation, the SAC algorithm for the 

transmission system, and the CMS algorithm for the distribution system in detail. 

6.3.1 MDP characteristics in agent 

To apply a reinforcement learning approach, the optimization problems and control tasks 

are reformulated as MDPs, where one or more agents interact with an uncertain environment 

to gradually improve their control policies while exploring this environment. Unlike 

commonly adopted simple MDP models, which typically involve a single agent or multiple 

agents cooperating on the same task, this work develops two specialized MDPs tailored to 

address the coordination challenges of the T&D systems under contingency scenarios. 

Specifically, the transmission system agent (TA) aims to minimize the operational cost by 

providing robust and resilient control actions 𝑎𝑡
𝑇  to against all possible contingency 

scenarios. Meanwhile, the distribution system agents (DA) are formulated as a multi-agent 

system to enable distributed control of the VPPs dispersed across the distribution network. 

The DA seeks to minimize operational costs by determining the optimal economic dispatch 

𝑎𝑡
𝐷 , while ensuring sufficient load restoration to ensure power supply, effectively 

coordinating the operation of the transmission system under contingency scenarios. 

To construct the MDP model, the key components involving the TA, DA, and the 

environment are defined as follows. The TA generates robust control actions 𝑎𝑡
𝑇 based on 

the policy 𝜋𝑇(𝑠𝑡
𝑇) , aiming to maximize the cumulative discounted reward 

∑ 𝛾𝑛−1𝑟𝑛
𝑇(𝑠𝑇, 𝑎𝑇)𝑡 . Therefore, the main elements of the MDP can be described using the 

tuple (𝑠𝑡
𝑇 , 𝑎𝑡

𝑇 , 𝑟𝑡
𝑇 , 𝛾, Γ𝑇). The state 𝑠𝑡

𝑇 consists of the input features, including active 

and reactive power demands and the maximum load curtailment capacity of load buses 

connected with distribution system, as defined in (6.27). The determination of this 

maximum load curtailment capacity is an optimization problem that can be addressed using 

well-established methods [121]. Then, the predicted action 𝑎𝑡
𝑇 , defined in (6.28), is 
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designed to curtail power load at power system nodes to mitigate the impact of emergency 

events. Instead of using all the decision variables from equations (6.2)-(6.11), the selected 

actions in (6.28) are chosen to be controllable and minimal, ensuring faster convergence and 

improved learning stability. The reward value 𝑟𝑡
𝑇 at each time step reflects the effectiveness 

of the action taken by the TA and is defined in (6.29) to include all relevant operational 

costs, such as generation costs, load curtailment penalties, unserved electricity penalties, 

and penalties for operational violations. The discount factor γ is used to calculate the 

cumulative reward over time, while the transition function Γ𝑇 describes how the system 

evolves based on the current state and action, which will be learned by the reinforcement 

learning algorithm. 
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where 𝑝𝑙,𝑡
𝑐𝑎 represents the maximum load curtailment capability at load nodes; while 𝑣𝑡

𝑇 

indicates the degree of operational violations in the transmission system, with κ denoting 

its penalty coefficient. Similarly, the main components of the MDP in the DA can be defined 

using the tuple ( 𝑠𝑡
𝐷 , 𝑎𝑡

𝐷 , 𝑟𝑡
𝐷 , 𝛾 , ΓD ). Since each VPP center operates relatively 

independently, the distribution system is managed by multiple DAs, with each DA 

responsible for controlling and dispatching power from its respective VPP center to supply 

electricity to load buses in the distribution system. The states 𝑠𝑡
𝐷 include the robust action 

taken by the TA, the active and reactive power demands within the distribution network, 

and the available power capacity of the controllable VPPs, as defined in (6.30). However, 

these agents operate under partial state, meaning that each agent can only access state about 

the bus load conditions in the neighborhood of its assigned VPP center. The extent of this 

observability is determined by the observation region ℛ, which defines the subset of the 

distribution network that an agent can observe. While a larger observability range can 

potentially improve the learning efficiency of agents, an excessive or redundant information 
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can lead to distracted learning and inefficient coordination, as agents struggle to focus on 

critical decision variables. To address this issue, the CMS algorithm is employed to enhance 

attention-driven state processing, ensuring that each agent selectively focuses on the most 

relevant state within its observation region ℛ . The detailed introduction to the CMS 

algorithm and its implementation is provided in Section 6.3.3. Then the predicted action 𝑎𝑡
𝐷, 

described in (6.31), is used to adjust the VPP dispatch to provide sufficient power to the 

load buses in the distribution network. Each VPP center is scheduled by the 𝑎𝑖,𝑡
𝐷  generated 

by its corresponding DA. This action compensates for any power deficits caused by load 

shedding in the transmission system while responding to emergency contingencies. The 

reward value 𝑟𝑡
𝐷 at each time step is defined in (6.32) and incorporates several factors, 

including power losses in the distribution network, the cost of power supplied by VPP 

centers, and penalties for voltage violations. These reward components are designed to 

guide the DA in optimizing the operation of VPPs, ensuring efficient power supply and 

system stability during emergencies. Notably, all DAs share the same reward function. 

These DAs collaborate to minimize the operational costs of the distribution system when 

operating in coordination with the transmission system during emergency situations. 
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where 𝑣𝑡
𝐷  represents the degree of operational violations in the distribution system. To 

guarantee the secure and reliable operation of the power system, all constraint violations are 

aggregated and normalized into a single metric known as the violation metric. This metric 

quantifies the severity of any violations and is incorporated into the reward function to 

penalize suboptimal actions, as defined in (6.29) for the transmission system and (6.32) for 

the distribution system. The DCV is formulated as: 
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where 𝑠𝑛 represents the collection of all uncontrolled constraints, which include limits on 

line power flows, active power outputs of the slack generator, reactive power injections, and 

voltage magnitudes at the load buses. The total number of constraints is 𝒩 , with the 

corresponding minimum 𝑠𝑛  and maximum 𝑠𝑛  limits. These limits are derived from 

equations (6.2)-(6.11) for the transmission system and equations (6.14)-(6.19) for the 

distribution system. The notation [.]+ is defined as 𝑠𝑛 = max⁡{0,∙}, ensuring that only 

violations beyond the allowed limits are penalized. 

6.3.2 Soft actor-critic algorithm for transmission system 

To solve the robust optimal power flow and load restoration problem for the transmission 

system as a single-agent decision-making problem, the SAC algorithm is introduced. SAC 

is an off-policy, actor-critic method based on maximum entropy reinforcement learning 

[105], which simultaneously maximizes the expected reward and the policy entropy. The 

incorporation of entropy encourages sufficient exploration, making the learning process 

more stable and robust. The objective of the SAC algorithm is to train a policy 𝜋(𝑎𝑡
𝑇 , 𝑠𝑡

𝑇) 

that minimizes the operational cost of the transmission system under emergency scenarios, 

which is defined as: 
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where 𝜋(∙ |𝑠𝑡
𝑇) is a categorical distribution describing the probability of selecting any load 

curtailment action 𝑎𝑡
𝑇  given the power system state 𝑠𝑡

𝑇. The term 𝐻(𝜋(∙ |𝑠𝑡
𝑇)) =

−𝑙𝑜𝑔⁡(𝜋(𝑎𝑡
𝑇 , 𝑠𝑡

𝑇)) represents the policy entropy, while α is the entropy temperature that 

controls the balance between exploration and exploitation. The value of α significantly 

influences learning convergence and exploration, and one important aspect of the SAC 

algorithm is the automatic adjustment of α using the following optimization: 
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where ℋ is the target minimum entropy. The 𝛼𝑡
∗ is an optimal dual variable after solving 

this dual optimization problem, 

𝑚𝑎𝑥⁡𝐸𝜋 ∑ 𝑟𝑛
𝑇(𝑠𝑇 , 𝑎𝑇)𝑡 ⁡𝑠. 𝑡. ⁡𝐸(𝑠𝑡+1𝑇 ,𝑎𝑡+1

𝑇 )~𝜋[−𝑙𝑜𝑔⁡(𝜋(𝑎𝑡
𝑇 , 𝑠𝑡

𝑇))] ≥ ℋ , and 𝜋𝑡
∗ . This dual 

optimization problem ensures that the learned policy maintains sufficient stochasticity to 

explore efficiently while achieving optimal performance. SAC follows an actor-critic 

framework with stochastic actors, and the policy is iteratively updated by alternating 

between the critic network and the actor network. The critic network evaluates the action-

value function 𝑄𝜃(𝑠𝑡
𝑇, 𝑎𝑡

𝑇), parameterized by θ, using the soft Bellman backup operator, 

𝑄𝜃(𝑠𝑡
𝑇, 𝑎𝑡

𝑇) = 𝐸(𝑠𝑡+1𝑇 ,𝑎𝑡+1
𝑇 )~𝜋[𝑟𝑡

𝑇(𝑠𝑡
𝑇, 𝑎𝑡

𝑇) + 𝛾𝑉𝜋(𝑠𝑡+1
𝑇 )] , where 𝑉𝜋(𝑠𝑡

𝑇) =

𝐸𝑎𝑡𝑇~𝜋
[𝑄𝜃(𝑠𝑡

𝑇 , 𝑎𝑡
𝑇) − 𝛼𝑙𝑜𝑔⁡(𝜋(𝑎𝑡

𝑇 , 𝑠𝑡
𝑇))] is the soft state-value function. Instead of using an 

explicit state-value network, SAC calculates this value directly from the Q-function, 

improving efficiency. During each training iteration, the actor and critic networks are 

updated using mini-batches of previous experiences stored in a replay buffer B =

[𝑠𝑡
𝑇 , 𝑎𝑡

𝑇 , 𝑟𝑡
𝑇 , 𝑠𝑡+1

𝑇 ], where 𝑠𝑡+1
𝑇  represents the next power system state after applying load 

curtailment action at
T. The model employs two separate critic networks 𝑄𝜃1(𝑠𝑡

𝑇 , 𝑎𝑡
𝑇) and 

𝑄𝜃2(𝑠𝑡
𝑇 , 𝑎𝑡

𝑇) with distinct parameters 𝜃1 and 𝜃2. The minimum of the two Q-values is used 

to mitigate overestimation bias [122]. Additionally, target networks 𝑄𝜃1
′  and 𝑄𝜃2

′  are 

introduced for each critic to improve stability during training [29]. The critic network update 

is performed by minimizing the following loss function: 

 𝐽𝑄(𝜃𝑖) = 𝔼(𝑠𝑡𝑇,𝑎𝑡𝑇,𝑟𝑡𝑇,𝑠𝑡+1𝑇 )~ℬ [
1

2
(𝑄𝜃𝑖(𝑠𝑡

𝑇, 𝑎𝑡
𝑇) − (𝑟(𝑠𝑡

𝑇 , 𝑎𝑡
𝑇) + (𝑄𝜃𝑖

′(𝑠𝑡+1
𝑇 , 𝑎𝑡+1

𝑇 ) −

𝛼𝑙𝑜𝑔𝜋𝜑
∗ (𝑎𝑡+1

𝑇 |𝑠𝑡+1
𝑇 ))))

2

] , ∀𝑖 ∈ {1,2}  (6.36) 

where 𝜑  are the parameters of the actor network. 𝑎𝑡+1
𝑇  is the load curtailment action 

predicted from the latest updated policy 𝜋𝜑
∗  given states 𝑠𝑡+1

𝑇 . In the policy improvement 

step, the policy is optimized to maximize the soft Q-function by minimizing the KL-

divergence as [29]: 
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 (6.37) 

This optimization is implemented using the reparameterization trick, where the policy is 

designed to predict the mean and standard deviation of a spherical Gaussian distribution, 

allowing efficient sampling of continuous control actions. By leveraging this structure, the 

SAC algorithm provides robust and scalable solutions to the robust optimal power flow and 

load restoration problem, ensuring resilience against contingencies while minimizing 

system operational costs. 

6.3.3 Complementary attention based SAC for distribution system 

To effectively address load restoration problem with VPP cooperation in distribution 

system, each VPP center within the distribution network is modeled as a DA. These DAs 

can only observe the load information of buses within their local distribution network, which 

limits their ability to formulate optimal solutions for coordinating the distribution system 

with the transmission network in response to contingency scenarios. To overcome these 

challenges, we introduce the complementary attention for multi-agent soft actor-critic (CMS) 

algorithm, which integrates a multi-agent SAC architecture with a complementary attention 

mechanism. This mechanism enhances each agent's local focus while supplementing critical 

global information, improving coordination, robustness, and performance stability. 

CMS extends the standard SAC framework by incorporating multiple agents operating in 

a partially observable environment. Each agent i maintains a stochastic policy 𝜋𝑖,𝑡(𝑎𝑖,𝑡
𝐷 |𝑠𝑖,𝑡

𝐷 ) 

and learns its action-value function by integrating local and global distribution system 

observation. The global value is communicated via a centralized trainer, while attention 

mechanisms guide local decision-making. The primary objective of CMS is to maximize 

cumulative rewards while maintaining a balance between exploration and exploitation 

through entropy regularization. 

The objective for each agent i is to maximize the cumulative reward while balancing 

exploration and exploitation through entropy regularization: 

 
( )

,

*

, ,( , )~
arg max ( , ) [ ( | )]D D

t i t

D D D

i t it t i i ts a
t

r s a s 
   = + 

 
 (6.38) 
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where 𝑟𝑡  is global reward which is defined in equation (6.32); 𝑠𝑡
𝐷  and 𝑎𝑖,𝑡

𝐷  are global 

distribution system state and VPP dispatch action generated by agent i. Due to the multi-

agent structure, policy evaluation based on local agent observations fails to effectively 

update the critic network. To enhance the evaluation capability of the critic network in a 

multi-agent framework, the complementary attention mechanism introduces the state 

dividing unit (SDU). This unit dynamically partitions the observed global distribution 

system observation 𝑠𝑡
𝐷 into two components: attention-enhanced information 𝑠𝑖,𝑡, which is 

locally relevant for decision-making, and attention-replenished information 𝑠−𝑖,𝑡 , which 

represents complementary global insights derived from a local attention mask 𝑀𝑖,𝑠. The 

extraction of 𝑠𝑖,𝑡 and 𝑠−𝑖,𝑡 from 𝑠𝑡
𝐷 is guided by the attention weights 𝑄𝑖𝐾

𝑇 of the multi-

head attention module [123], enabling the selection of a limited number of high-relevance 

entities while filtering out distractions. This state extraction process is formally defined as 

follows: 

 , Ti s iM M M=
 (6.39) 

 
] 1[T iM T =

 (6.40) 

 , ,MHA( , , )i

D

i t t i ss s MT=
 (6.41) 

 , ,MHA( , , )i

D

i t t i ss T s M− = 
 (6.42) 

where equation (6.39) ensures that attention is focused on key execution-relevant states, 

while equation (6.40) utilizes a binary mask to retain the indices of states with the highest 

attention weights, where 𝑇𝑖 = 𝐹𝛯(𝑄𝑖𝐾
𝑇) is used to select the top Ξ state with the highest 

attention weights. 𝑀𝑖 ∈ {0,1}𝑆,𝐴 is a binary mask of agent i applied to the state embeddings, 

generated by the environment to indicate which global state the agent can observe at a given 

time step. Here, 𝑆 and 𝐴 represent the number of lobal state 𝑠𝑡
𝐷 and agents, respectively. 

Additionally, 𝑀𝑖,𝑠 and 𝑀𝑇 denote the enhanced attention mask and the high-attention state 

mask, respectively, while Ti  represents the set of selected attention indices. The MHA 

mechanism is employed to compute each agent's attention distribution over all visible 

entities [124]. The information extraction process for 𝑠𝑖,𝑡  ensures that only the most 
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relevant entities are selected for further processing, while the extraction process for 𝑠−𝑖,𝑡 

guarantees that it contains global-level insights that the agent would otherwise miss. 

After SDU extracts the attention-enhanced feature 𝑠𝑖,𝑡
𝐷 , the attention improvement unit 

(AIU) is introduced to further filter task-relevant information using an inverse model. The 

inverse model predicts actions 𝑎̂𝑖,𝑡 based on a probability 𝜋(𝑎̂𝑖,𝑡) and SDU information 

𝑠𝑖,𝑡 and 𝑠𝑖,𝑡+1: 

 , , 1
ˆ( ) IM( , ; )t

i i t i ta s s +=
 (6.43) 

where inverse model, 𝐼𝑀, is a two-layer multilayer perceptron with parameters 𝜗. This 

model is trained using the cross-entropy loss as follows: 

 IM , ,
ˆCE( ( ), )i t i ta a=

 (6.44) 

By optimizing ℒ𝐼𝑀, the model encourages the embedding 𝑠𝑖,𝑡 to encode only the most 

relevant task-related information, helping the agent filter out irrelevant observations that 

could lead to attention distraction. Once the attention-enhanced feature 𝑠𝑖,𝑡 has been refined 

through the AIU, it is used as an input to compute the local Q-function. The local Q-function 

quantifies the agent's expected return based on its refined observations and historical 

information: 

 , ,
, , , ,( , )~
(local) ( , ) ( )D D

i t i t

D D D

i t t i t i t i ts a
Q r s a V s = + 

 (6.45) 

where the temporal state of the agent and is updated using an experience buffer, ℬ. It helps 

retain memory of past decisions, making 𝑄𝑖,𝑡(local) more informed about past actions. 

This formulation ensures that each agent's local Q-function is grounded in the most relevant 

observations, improving local decision-making while mitigating distractions from irrelevant 

entities. 

Furthermore, to complement local observations, the complementary attention mechanism 

introduces attention complement unit (ACU) to leverage a centralized trainer that has access 

to the global state. The trainer generates a global attention 𝜁𝑖,𝑡 based on 𝑠−𝑖,𝑡, providing 

agents with critical out-of-sight information. The global attention ζi,t is computed as: 

 
( ), , , ,arg max ( ; ) ( ; )D

i t i t i t i t tMI s MI s   −= −
 (6.46) 
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where 𝑀𝐼(∙,∙) means the mutual information, which ensures that 𝜁𝑖,𝑡  captures relevant 

global information without introducing distractions. Maximizing 𝑀𝐼(𝜁𝑖,𝑡, 𝑠−𝑖,𝑡)  enables 

agent i to perceive information beyond its sight region, thereby alleviating the challenges of 

cooperation caused by partial observability. 𝑀𝐼(𝜁𝑖,𝑡, 𝑠𝑡
𝐷)  prevents 𝜁𝑖,𝑡  from being 

overloaded with unnecessary details. 𝛽 controls the trade-off between capturing relevant 

information and preventing distractions. Then the global message 𝜁𝑖,𝑡 is passed through a 

fully connected layer 𝑓(∙) to compute the global Q-function which is ensuring that agents 

incorporate global coordination information into decision-making as follows: 

 , (global) ( )i

i t tQ f =
 (6.47) 

Finally, the total Q-function described as: 

 , , ,(local) (global)i t i t i tQ Q Q= +
 (6.48) 

Fig. 6.3 illustrates the process by which the complementary attention mechanism 

coordinates the states observed by different agents to learn the total Q-function. First, the 

SDU receives the states observed by each agent in the environment and then divides and 

embeds the global state 𝑠𝑡
𝐷 into two components: 𝑠𝑖,𝑡 and 𝑠−𝑖,𝑡, which are fed into the AIU 

and the ACU, respectively. For AIU, an inverse model is applied to mitigate the issue of 

distracted attention. The AIU then generates the local Q-value 𝑄𝑖,𝑡(local) based on the 

attention-enhanced information 𝑠𝑖,𝑡. For ACU, a mutual information network with global 

insights is introduced to generate a communication message 𝜁𝑖,𝑡 , facilitating agent 

coordination. The ACU subsequently generates the global Q-value 𝑄𝑖,𝑡(global) based on 

the communication message 𝜁𝑖,𝑡. The local and global Q-values of all agents are summed 

to obtain the total Q-value 𝑄𝑛,𝑡(total), which is then used in conjunction with the target 

network to compute the RL loss. This loss is utilized to update the agents' control policies. 

During each training iteration, the total Q-function is updated using mini-batches of 

previous experiences stored in a replay buffer ℬ = [𝑠𝑡
𝐷 , 𝑎𝑡

𝐷 , 𝑟𝑡
𝐷 , 𝑠𝑡+1

𝐷 ]. The update process 

of the Q-values is performed by minimizing the overestimation bias using the target network 

[29]. This recursive loss can be formulated as follows: 
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Fig. 6.3 Training structure of the complementary attention mechanism. 

 

 ℒ𝑄𝑖,𝑡 = 𝔼(𝑠𝑡𝐷,𝑎𝑡𝐷,𝑟𝑡𝐷,𝑠𝑡+1𝐷 )~ℬ [
1

2
(𝑄𝑖,𝑡(global) − (𝑟(𝑠𝑡

𝐷 , 𝑎𝑡
𝐷) + (𝑄𝑖,𝑡+1

′ (global) −

𝛼𝑙𝑜𝑔𝜋𝜑
∗ (𝑎𝑡+1

𝐷 |𝑠𝑡+1
𝐷 ))))

2

] , ∀𝑖 ∈ {1,2}  (6.49) 

where ⁡𝑄𝑖,𝑡+1
′ (global)  is the target network. In the policy improvement step, the input 

feature of the actor function is the local information of each agent. Its parameters are 

optimized based on the following equation: 

 
~ ~ , , ,( ) log ( ) (global)D D

s a i t i t i tJ a s Q      = −  
∣

 (6.50) 

By leveraging this structure, the CMS algorithm effectively addresses the multi-VPP 

coordination challenge in the load restoration problem with VPP cooperation in distribution 

systems, ensuring efficient and adaptive dispatch of multiple VPP centers. 

6.4 Case Study 

6.4.1 Experiment setting 

In this section, the proposed T&D system coordination model for emergency scenarios is 

validated using a test network consisting of an IEEE 30-bus system representing the 
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transmission network and an IEEE 33-bus system representing the distribution network, 

which is connected to the transmission system at bus 8. Within the distribution network, 

four VPP centers are integrated at nodes 15, 22, 25, and 26, respectively, as illustrated in 

Fig. 6.4. The system parameters, including network topology, generation capacities, and 

line characteristics, are directly processed in their standard format as defined in PYPOWER. 

The numerical experiments were conducted on a computer equipped with an Intel i7-10700 

CPU and 16 GB of RAM, with the hyperparameters used in the proposed algorithm 

summarized in Table 6.1. Additional modeling parameters are set as follows: the penalties 

for load shedding and unserved electricity, as defined in Eq. (6.29), are set to 𝐶𝑙 = 10 × 𝐶𝑔 

and 𝐶𝑙
∗ = 100 × 𝐶𝑔, respectively; the constraint violation penalty 𝜅 is set to κ = 1e3; the 

PV generation profile data are sourced from pvoutput.org, with a generation capacity of 6 

kW; the BESS has a power/energy capacity of 10 kW/30 kWh; and power demand values 

are randomly generated, with maximum and minimum limits set at 120% and 80% of the 

normal operating levels as defined in the PYPOWER dataset. This validation framework 

ensures a comprehensive assessment of the proposed coordination model under emergency 

scenarios. 

Table 6.1 Main Hyper-Parameters and Data Setting. 

Parameters Value Parameters Value 

Optimizer Adam Discount factor 0.99 

Critics learning rate 1e-2 Minibatch size 128 

Actor learning rate 1e-3 Neurons number 512 

Entropy learning rate 1e-4 Top Ξ attention weight 8 

Targets learning rate 1e-3 Max steps 10 

Initial temperature 1 Activation RELU, Softmax 
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Fig. 6.4 The network topology structure of the coordinated IEEE 30-bus and IEEE 33-

bus system. 

6.4.2 Simulation Results of Load Restoration Under N-k Contingency 

To evaluate the effectiveness of the coordinated T&D system in addressing N-k 

contingency scenarios, we conducted simulations over 10 restoration steps, during which 

the system gradually recovered from an emergency scenario where one transmission line 

and one generator were disconnected from the grid. The optimization results of generators 

output and loads restoration in the T&D system throughout the restoration process are 

depicted in Fig. 6.5. 
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(a) Generator dispatch in the transmission system.       (b) Load recovery ratio in the 

transmission system. 

 

(c) VPP dispatch in the transmission system.              (d) Load recovery ratio in the 

distribution system. 

Fig. 6.5 Restoration of generator dispatch and load recovery in the transmission and 

distribution systems. 

 

As observed in Figs. 6.5(a) and (c), due to ramp rate limitations, the active power output 

of the generators and VPP centers in both the transmission and distribution systems 

gradually increases, enabling the progressive restoration of load supply under emergency 

scenarios. Figs. 6.5(b) and (d) further illustrate that after 9 restoration steps, the load 

recovery ratio of the transmission system steadily improves from 59% to 100%, while the 

distribution system, responding to load curtailment from the transmission system, achieves 

a full recovery from 19% to 100% within 10 restoration steps. To further demonstrate the 

robustness of the coordinated transmission and distribution system under emergency 

conditions, Table 6.2 presents a detailed analysis of the operating costs and constraint 

violations experienced by both systems throughout the restoration process. 
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Table 6.2 System performance during the restoration process. 

 Operation 

cost of TSO 

Constraints 

violation of 

TSO 

Operation 

cost of 

DSO 

Constraints 

violation of 

DSO 

VPP 

output 

Step 1 228.88 1.3298 6.49 1.3897 296.68 

Step 2 225.86 1.1285 7.85 1.2269 432.01 

Step 3 226.58 0.9130 9.22 1.0735 600.43 

Step 4 228.51 0.7300 10.31 0.9147 723.90 

Step 5 233.93 0.5369 11.80 0.8170 883.15 

Step 6 242.72 0.4430 12.62 0.6180 983.85 

Step 7 251.58 0.1999 14.23 0.5333 1155.55 

Step 8 261.22 0.0791 15.30 0.3317 1282.62 

Step 9 273.18 0 16.18 0.1571 1388.02 

Step 10 267.66 0 17.73 0 1557.19 

 

Initially, both systems encounter severe constraint violations, quantified based on 

Equation (6.33). This is primarily due to the ramping limitations of the generators, which 

hinder the immediate reallocation of power dispatch following the transmission line and 

generator disconnection, leading to congestion in power flow near the affected components. 

Simultaneously, the distribution system experiences voltage violations as a result of load 

curtailments imposed by the transmission system, causing an insufficient supply to local 

consumers. However, as the system progresses through multiple restoration steps, the load 

restoration ratio of both the transmission and distribution systems improves steadily, while 

the constraint violations progressively decrease. This demonstrates the effectiveness of the 

coordinated transmission and distribution response in dynamically mitigating the adverse 

impacts of N-k contingency events. 

6.4.3 Comparison of coordinated and independent scheme under N-k contingency 

scenario 

To validate the effectiveness of the proposed coordinated transmission and distribution 

system operation, a comparative analysis is conducted against the independent operation 
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model. Unlike the coordinated model, where the transmission system communicates its load 

curtailment decisions to the distribution system and receives information about the 

maximum potential load curtailment capacity in return, the independent model operates 

without any exchange of information between the two systems. This lack of coordination 

impacts the system's ability to respond optimally under emergency scenarios. 

 

(a) Load recovery ratio in the transmission system. 

  

(b) Load recovery ratio in the distribution system. 

Fig. 6.6 Load restoration comparison between coordinated and independent scheme. 

 

The optimization results, presented in Fig. 6.6, indicate that both approaches can restore 

the transmission system's load supply following an emergency. However, the independent 

operation model exhibits a slower response in restoring load supply compared to the 

coordinated approach. The absence of information from the distribution system prevents the 

independent model from accurately formulating a robust security-constrained optimal 

power flow solution, leading to delays in adjusting dispatch and redistributing power flows 

efficiently. Additionally, as the transmission system curtails load without knowledge of the 

distribution system's available flexibility, the distribution network struggles to recover its 
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load supply, resulting in a prolonged period of voltage violations and load deficiency. 

Overall, the results highlight that the coordinated operation significantly enhances system 

resilience, accelerates load recovery, and improves stability in the distribution system. By 

integrating real-time information exchange, the coordinated approach ensures faster 

decision-making, more precise load curtailment, and reduced power flow congestion, 

ultimately leading to a more efficient and robust emergency response. 

6.4.4 Impact of considering DCV on system constraint satisfaction 

This section evaluates the effectiveness of incorporating degree of constraints violation 

(DCV) in the MDP framework to ensure that the generated actions remain within safe 

operational limits while minimizing system violations. To highlight the advantages of this 

approach, we compare the proposed CMS algorithm with its counterpart without DCV 

consideration. The voltage distribution of the distribution system under both approaches is 

depicted in Fig. 6.7. 

Upper limit 1.05 p.u.

Lower limit 0.95 p.u.

  

Upper limit 1.05 p.u.

Lower limit 0.95 p.u.

 

            (a) Voltage distribution without           (b) Voltage distribution with 

                   DCV consideration.                      DCV consideration. 

Fig. 6.7 Voltage distribution in the distribution system with and without DCV 

consideration. 
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As shown in Figs. 6.7(a) and (b), both approaches initially experience voltage violations 

due to severe load supply shortages in the early restoration steps. However, as the MDP-

based optimization progresses, the proposed DCV-integrated approach successfully 

regulates voltage distribution within the permissible range (0.95–1.05 p.u.), effectively 

mitigating violations over time. In contrast, the approach that does not consider DCV 

consistently exhibits lower voltage levels compared to the proposed method and fails to 

fully eliminate voltage violations by the final MDP step. These results highlight the benefits 

of incorporating DCV considerations in the optimization framework. By explicitly 

accounting for system constraints, the proposed approach enhances voltage stability, 

prevents persistent violations, and ensures secure operation of the distribution system. This 

contribution strengthens the reliability and resilience of the coordinated transmission and 

distribution system, particularly in emergency response scenarios. 

6.4.5 Performance Evaluation of DRL Algorithms 

To validate the effectiveness of the proposed CMS algorithm in handling the coordination 

of the distribution system with the transmission system under emergency scenarios, a 

comparative analysis is conducted against four state-of-the-art MADRL algorithms: 

MASAC [125], MADDPG [126], multi-agent proximal policy optimization (MAPPO) 

[127], and attention-based MASAC (AMS) [128]. Each of these algorithms is implemented 

in the IEEE 33-bus distribution system, ensuring a consistent dataset and operational setting 

for evaluating their performance. The first benchmark algorithm, MADDPG, utilizes an 

offline training mechanism but struggles with high sensitivity to hyperparameters, making 

it less robust in practical applications. The second benchmark, MAPPO, operates as an on-

policy algorithm, which limits its sample efficiency in complex environments. The third 

benchmark, MASAC, applies a multi-agent SAC framework without additional 

mechanisms to enhance coordination, while the fourth benchmark, AMS, integrates an 

attention mechanism to mitigate the multi-agent attention dispersion problem, thereby 

improving decision-making efficiency. The training performance of these algorithms is 

illustrated in Fig. 6.8, which depicts the convergence curves over 400 gradient episodes. 
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Fig. 6.8 Convergence curves of CMS and benchmark algorithms. 

 

As shown in Fig. 6.8, the CMS algorithm demonstrates superior stability and faster 

convergence compared to the other four approaches. The solid curves represent the mean 

cumulative reward across ten independent experiments, while the shaded areas indicate the 

range between the minimum and maximum rewards obtained. The results show that CMS 

consistently achieves higher cumulative rewards than the other algorithms, demonstrating 

better learning efficiency and decision-making capabilities in managing emergency dispatch 

with VPP coordination. The MASAC, MADDPG, and MAPPO algorithms exhibit slower 

convergence and lower final rewards, with MAPPO experiencing the most unstable learning 

process, likely due to its reliance on an on-policy approach. Meanwhile, the attention-based 

MASAC algorithm performs better than MASAC but still falls short of CMS, indicating 

that while attention mechanisms enhance coordination, CMS further improves multi-agent 

cooperation through complementary attention mechanisms. To further analyze the detailed 

performance of each algorithm in solving this problem, Table 6.3 presents a quantitative 

comparison of key performance indicators. 

Table 6.3 provides a detailed evaluation of five key performance metrics: cumulative 

reward, constraint violations, VPP adjustment, and unserved electricity at convergence. The 

results confirm that CMS achieves the lowest reward (7420.58), along with the lowest 

constraint violations (0.5972) and unserved electricity (23.94 MWh), while also maintaining 

efficient VPP adjustment (1016.73 MWh). These results demonstrate that CMS effectively 

balances power dispatch, constraint compliance, and operational efficiency in an emergency 
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dispatch scenario. Among the benchmark algorithms, MAPPO exhibits the highest reward 

(11091.85), which suggests the worst performance in constraint satisfaction. This is further 

confirmed by its highest constraint violations (1.0244) and unserved electricity (84.33 

MWh), indicating that it struggles to maintain a stable and reliable power dispatch solution. 

Similarly, MADDPG, while performing better than MAPPO, still shows a relatively high 

reward (8655.93), along with significant constraint violations (0.7117) and unserved 

electricity (37.77 MWh), demonstrating suboptimal coordination and resource allocation. 

MASAC and attention-based MASAC perform better than MAPPO and MADDPG in terms 

of constraint satisfaction but still exhibit higher reward values and constraint violations 

compared to CMS. Specifically, attention-based MASAC achieves a reward of 7812.16, 

with constraint violations of 0.6312 and unserved electricity of 23.68 MWh, showing an 

improvement over MASAC but still falling short of CMS. These findings further validate 

that CMS provides the most effective balance between constraint satisfaction, resource 

allocation, and system stability, reinforcing its superiority in managing the distribution 

system's response to emergency dispatch scenarios. 

 

Table 6.3 Performance metrics comparison of CMS and benchmark algorithms. 

 Reward Constraints 

violation 

VPP 

adjustment 

Unserved 

electricity 

MASAC 8021.45 0.6668 1369.31 25.55 

MADDPG 8655.93 0.7117 1311.48 37.77 

MAPPO 11091.85 1.0244 762.78 84.33 

AMS 7812.16 0.6312 1268.54 23.68 

CMS 7420.58 0.5972 1016.73 23.94 

 

To further assess the effectiveness of AMS and CMS in enhancing agents' focus on global 

information, we introduce an attention entropy metric. This metric quantifies how uniformly 

an agent distributes its attention across available entities, thereby reflecting its ability to 
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prioritize crucial information while avoiding distractions [124]. The attention entropy value 

is defined as follows: 

 
, ,log

N N

ae i j i j

i j
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 (6.51) 

where 𝑝𝑖,𝑗 =
𝑒𝑖,𝑗

∑ 𝑒𝑖,𝑘
𝑁
𝑘

 is the normalized attention weight assigned to agent j; 𝑒𝑖,𝑗  is the 

attention weight assigned agent i to agent j. A lower entropy value indicates higher attention 

concentration, meaning the agent focuses on fewer but more relevant information [129]. To 

further analyze the variability of attention distribution across agents and time steps, we 

compute the standard deviation of the attention distribution: 

 

2

,

1
( )

N N

ae i j i

i j

p
N

= − 
 (6.52) 

where 𝜇𝑖 =
1

𝑁
∑ 𝑝𝑖,𝑗
𝑁
𝑗   is the mean attention weight for agent i. A high standard deviation 

indicates more variance in attention distribution, suggesting that certain agents receive 

significantly more attention than others. We conducted simulation experiments to compare 

the attention entropy and its standard deviation for CMS and AMS under varying sight 

regions (R = 8,10). The results are summarized in the following table: 

 

Table 6.4 Evaluation of attention entropy in the proposed algorithm and the AMS 

algorithm. 

 ℳ𝑎𝑒 , (ℛ = 8) ℳ𝑎𝑒 , (ℛ = 10) 𝒮𝑎𝑒 (ℛ = 8) 𝒮𝑎𝑒 (ℛ = 10) 

CMS local 1.3843 1.4208 0.1286 0.09132 

CMS global 1.5121 1.5144 0.0922 0.06202 

AMS 1.4830 1.5498 0.1018 0.0865 

 Note: ℛ represents the size of the sight region that an agent can observe around its 

VPP center. ℳae denotes the mean value of attention entropy, while 𝒮𝑎𝑒 refers to the 

standard deviation of the attention distribution. 
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The results indicate that CMS local exhibits a relatively low attention entropy, which 

allows agents to focus on critical information efficiently; however, excessive concentration 

can lead to high training instability due to the lack of sufficient environmental information 

for decision-making. To counterbalance this, CMS global achieves a higher attention 

entropy, supplementing the local model by extracting relevant global information, thereby 

enhancing the algorithm's training stability. This local-global coordination ensures that 

CMS enables agents to make optimal control decisions even when limited to local 

observations. The role of sight region R is critical in this analysis, as it defines how much 

information an agent can perceive at a given time; a larger sight region (ℛ = 10) generally 

results in a more balanced attention distribution, while a smaller sight region (ℛ = 8) forces 

agents to rely more on local information. Compared to AMS, CMS local provides a more 

focused attention mechanism, reducing distractions, while CMS global mitigates excessive 

attention concentration by incorporating essential global context. This synergy allows CMS 

to outperform AMS by maintaining both stability and adaptability, making it more robust 

in dynamic multi-agent environments where agents need to make precise decisions despite 

partial observability. 

6.5 Summary 

This study presents a novel coordinated T&D system operation strategy to enhance power 

system resilience under N-k contingencies. The proposed framework leverages VPPs within 

the distribution network to compensate for loads curtailed by the transmission system, 

ensuring load restoration and mitigating power flow congestion. Through bidirectional 

information exchange, the transmission system communicates load-shedding decisions to 

the distribution network, while the distribution network provides its available maximum 

curtailment capacity. This coordination optimizes system response to unexpected 

disruptions, improving power system stability. To achieve efficient real-time decision-

making, we adopt reinforcement learning-based optimization. The transmission system is 

modeled using the SAC algorithm, which determines optimal load-shedding and generator 

dispatch strategies for rapid restoration. Meanwhile, the distribution system employs the 
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CMS algorithm to effectively manage multiple VPPs. This approach addresses attention 

dispersion issues commonly encountered in multi-agent environments, enabling more 

reliable decision-making. Simulation results validate the effectiveness of the proposed 

reinforcement learning framework. The coordinated operation of the T&D system 

successfully reduces power flow congestion in the transmission network while maintaining 

load supply and voltage stability in the distribution system. These findings demonstrate the 

potential of reinforcement learning-based methodologies in enhancing the adaptability and 

resilience of modern power grids. 

While the present study has focused on simulation-based validation for transmission, 

distribution, and coordinated T&D systems, an important direction for future work lies in 

exploring the engineering validation pathway. One promising step is the adoption of 

hardware-in-the-loop (HIL) platforms, where the proposed DRL-based controllers can be 

evaluated against real-time digital simulations of power systems to assess their dynamic 

performance under realistic operating conditions. At the transmission level, HIL 

experiments could emulate generator dynamics and contingency responses to provide 

insights into real-time feasibility. At the distribution level, controller-HIL tests with inverter 

emulators and OLTCs would allow evaluation of scalability, communication load, and 

control responsiveness. This staged validation pathway—from simulation to HIL to 

SCADA-level integration—provides a clear route for bridging the gap between theoretical 

research and practical deployment. 
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Chapter 7 Conclusions and Future 

Perspectives  

7.1 General Conclusions 

This thesis proposes a unified reinforcement learning–based framework to improve the 

secure and resilient operation of modern power systems under various contingencies and 

uncertainties. It addresses a diverse set of operational challenges that arise across the 

transmission system, distribution system, and their coordinated operation layers. Through 

the development of four interrelated but methodologically distinct contributions, this thesis 

highlights how learning-based control, robust optimization, and system-level coordination 

can jointly address the fundamental limitations of traditional OPF techniques. The 

contributions extend beyond simulation performance and demonstrate how reinforcement 

learning can be systematically integrated into power system operation models to handle 

high-dimensional, dynamic, and safety-critical decision-making. The four major 

contributions are summarized below from a structural and conceptual perspective. 

1) Multi-Agent Adversarial Learning Architecture for Robust Decision-Making under N-

k Contingencies: This study introduces an innovative multi-agent adversarial reinforcement 

learning framework for enhancing robustness in CCOPF problems. Unlike prior methods 

that treat uncertainties as passive stochastic parameters, the proposed model structures the 

interaction between system control and uncertainty as a game between two learning agents. 

This modeling shift enables the system operator (defender agent) to proactively generate 

decisions that are robust to dynamically evolving worst-case contingency scenarios 

generated by an attacker agent. The novelty lies not just in the application of DRL, but in 

how uncertainty modeling is internalized within the learning loop through competitive 

policy interaction. The use of dual-agent SAC—where continuous control spaces for the 

defender and discrete combinatorial action spaces for the attacker coexist—further 

introduces a flexible yet computationally efficient framework. Additionally, the approach 
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supports end-to-end policy learning without dependence on linearized power flow models 

or surrogate convex approximations. This work sets the foundation for rethinking robust 

power system operation not just as an optimization problem but as a dynamic adversarial 

learning task, where resilience emerges from strategic anticipation of system threats. 

 

2) CMDP-Based Formulation for Safety-Aware Preventive-Corrective Scheduling with 

VPPs: The second contribution reformulates the classic preventive–corrective SCOPF 

problem into a constrained Markov decision process (CMDP) to explicitly address the dual 

requirements of operational safety and adaptability under uncertainty. By leveraging the 

control flexibility of VPPs, this formulation builds a temporal structure that separates 

decision-making into pre-contingency (preventive) and post-contingency (corrective) stages, 

each governed by a dedicated reinforcement learning agent. A key conceptual advancement 

is the embedding of constraint satisfaction directly into the policy learning phase via 

Lagrangian dual variables, which are updated dynamically based on observed system states 

and actions. This contrasts with conventional DRL approaches that treat safety constraints 

as soft penalties and often struggle with feasibility. The CMDP-based structure also enables 

a modular learning approach, where the preventive agent learns to anticipate downstream 

constraints imposed by corrective actions, creating a feedback-consistent learning 

environment. Furthermore, the design effectively integrates physical modeling (AC 

constraints) with policy-based learning, illustrating a hybrid paradigm that balances 

theoretical rigor with practical adaptability. This methodological innovation is critical for 

realizing real-time resilient control in large-scale systems where fast, constraint-compliant 

decision-making is essential. 

3) Hierarchical Multi-Mode Control Design for Data-Driven Voltage Regulation in ADNs: 

In addressing voltage regulation in active distribution networks, this thesis presents a 

hierarchically structured control architecture that operates across two timescales and 

supports multiple operational objectives. A distinctive contribution of this work is the 

formalization of a multi-mode voltage regulation model, where the system dynamically 

transitions between optimization goals such as minimizing power losses, mitigating under-
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voltage, or suppressing over-voltage, depending on real-time operating conditions. This 

contrasts with prior strategies that rely on fixed control objectives or single-mode regulation. 

The learning framework is structured such that a global agent dispatches slow-acting 

mechanical devices (OLTCs, CBs) using a discrete SAC approach, while local agents 

govern inverter-based devices via attention-enabled multi-agent SAC (MASAC). The 

attention mechanism allows agents to selectively process relevant signals, improving 

learning efficiency and stability, especially in high-agent-count environments. Beyond 

algorithmic novelty, the work contributes to the growing field of autonomous grid 

management by demonstrating how localized inverter agents can collectively realize 

system-wide control objectives without explicit communication during runtime. This 

decentralized-yet-coordinated model of voltage regulation provides a scalable pathway for 

managing uncertainty in high-DER environments without compromising stability or 

efficiency. 

4) Reinforcement Learning–Enhanced Coordination Framework for Distributed T&D 

Load Restoration: The final contribution addresses the longstanding challenge of real-time 

T&D coordination during emergency load restoration. Rather than relying on tightly 

coupled optimization models, the proposed framework decomposes the problem into two 

separate but communicative RL processes: a centralized SAC controller for the transmission 

system and a multi-agent MASAC controller for the distribution system. The use of a virtual 

power plant (VPP) as an intermediate aggregator represents a shift from device-level to 

resource-cluster coordination, significantly reducing the dimensionality and communication 

overhead of the distributed control process. What distinguishes this work is not only the 

agent-level learning design but also the information exchange architecture that supports 

asynchronous yet coherent decision-making across system layers. Furthermore, the 

introduction of a complementary attention mechanism into the MASAC framework 

addresses two pressing MARL challenges: the inability to focus on critical environmental 

signals and the lack of global coordination among decentralized agents. By combining 

reinforcement learning, hierarchical aggregation, and cross-layer communication, the 
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proposed method provides a conceptually unified and computationally efficient approach 

for restoring power in complex, multi-entity grid environments. 

7.2 Future Perspectives 

While this thesis introduces several novel and effective strategies for enhancing the secure 

operation of power systems under uncertainties and emergencies, several limitations and 

open challenges remain. Future research directions may focus on addressing these 

limitations, extending current frameworks to broader scenarios, and integrating more 

practical considerations for deployment in real-world systems. The key future directions are 

summarized as follows: 

1) Expanding Adversarial RL for Broader Classes of Power System Uncertainties: The 

proposed defender–attacker reinforcement learning framework shows promising results in 

generating robust control strategies under N-k contingency scenarios. However, current 

work mainly considers topological failures and static system parameters. Future research 

could extend this adversarial framework to include dynamic uncertainties, such as time-

varying load demand, renewable forecast errors, and market-driven behaviors. Additionally, 

incorporating probabilistic forecasting models into the attacker's behavior generation could 

further enhance the realism and adaptability of the defender's learning strategy. From a 

theoretical standpoint, there is also a need to explore convergence guarantees and robustness 

bounds in multi-agent adversarial settings within power system environments. 

2) Integration of Safety-Critical RL Algorithms with Physical System Constraints: The 

Lagrangian-based soft actor-critic algorithm developed in this thesis ensures constraint 

satisfaction through dynamic dual variable adjustment. However, in practice, DRL policies 

may still suffer from feasibility violations in unseen or extreme scenarios. Future work 

should explore the integration of formal safe RL techniques, such as Lyapunov-based policy 

optimization, control barrier function learning, or model predictive safety layers, into the 

preventive–corrective SCOPF framework. Moreover, extending the CMDP formulation to 

incorporate chance constraints or distributionally robust optimization (DRO) could better 

handle uncertainties with known distributions, enhancing safety guarantees during operation. 
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3) Toward Plug-and-Play Multi-Agent Voltage Control Architectures: The proposed 

multi-mode voltage regulation strategy demonstrates a scalable solution for active 

distribution networks. However, the MASAC architecture requires pre-defined agent 

topologies and offline centralized training. For real-world systems with dynamic DER 

participation, topology reconfigurations, or plug-and-play devices, the control architecture 

must become more adaptive. Future research should investigate online transferable 

reinforcement learning, where agents can continuously adapt to evolving network structures. 

Additionally, adopting graph neural networks (GNNs) as policy encoders could improve 

coordination under changing connectivity, while reducing the dependency on retraining 

across different system configurations. 

4) Real-World Implementation of Distributed Load Restoration Frameworks: While the 

proposed T&D coordination strategy has shown strong simulation performance, practical 

implementation still faces challenges in terms of communication delays, scalability, and 

cybersecurity risks. Future research should explore the deployment of the proposed CMS-

based MASAC algorithm in hardware-in-the-loop (HIL) environments or digital twins, 

integrating SCADA-based data feeds to validate real-time decision-making performance. 

Additionally, optimizing the communication topology and frequency for aggregator-to-

DER coordination is crucial to ensure low-latency control without overloading the system. 

Finally, considering cyber-attack resilience (e.g., data falsification or denial-of-service 

attacks) in distributed MARL-based architectures is critical for ensuring the secure 

operation of restoration strategies under adversarial conditions. 

  



152 

 

Reference 

[1] B. Ti, G. Li, M. Zhou, and J. Wang, "Resilience Assessment and Improvement for 

Cyber-Physical Power Systems Under Typhoon Disasters," Ieee Transactions on 

Smart Grid, Article vol. 13, no. 1, pp. 783-794, Jan 2022, doi: 

10.1109/tsg.2021.3114512. 

[2] T. Zhang, Y. Mu, L. Dong, H. Jia, T. Pu, and X. Wang, "Fully parallel decentralized 

load restoration in coupled transmission and distribution system with soft open 

points," Applied Energy, Article vol. 349, Nov 1 2023, Art no. 121626, doi: 

10.1016/j.apenergy.2023.121626. 

[3] N. Junnarkar, E. Jensen, X. Wu, S. Gumussoy, and M. Arcak, "Grouping of N-1 

Contingencies for Controller Synthesis: A Study for Power Line Failures," Ieee 

Transactions on Power Systems, Article vol. 40, no. 1, pp. 585-596, Jan 2025, doi: 

10.1109/tpwrs.2024.3393866. 

[4] M. Zhou, C. Liu, A. A. Jahromi, D. Kundur, J. Wu, and C. Long, "Revealing 

Vulnerability of N-1 Secure Power Systems to Coordinated Cyber-Physical 

Attacks," Ieee Transactions on Power Systems, Article vol. 38, no. 2, pp. 1044-1057, 

Mar 2023, doi: 10.1109/tpwrs.2022.3169482. 

[5] K. Zhou, I. Dobson, and Z. Wang, "The Most Frequent N-k Line Outages Occur in 

Motifs That Can Improve Contingency Selection," Ieee Transactions on Power 

Systems, Article vol. 39, no. 1, pp. 1785-1796, Jan 2024, doi: 

10.1109/tpwrs.2023.3249825. 

[6] M. Chen, X. Cao, Z. Zhang, L. Yang, D. Ma, and M. Li, "Risk-averse stochastic 

scheduling of hydrogen-based flexible loads under 100% renewable energy 

scenario," Applied Energy, Article vol. 370, Sep 15 2024, Art no. 123569, doi: 

10.1016/j.apenergy.2024.123569. 

[7] Y.-C. Wu, L.-F. Cheung, K.-S. Lui, and P. W. T. Pong, "Efficient Communication 

of Sensors Monitoring Overhead Transmission Lines," Ieee Transactions on Smart 

Grid, Article vol. 3, no. 3, pp. 1130-1136, Sep 2012, doi: 10.1109/tsg.2012.2186596. 

[8] M. Yan, M. Shahidehpour, A. Paaso, L. Zhang, A. Abdulwhab, and A. Abusorrah, 

"A Convex Three-Stage SCOPF Approach to Power System Flexibility With 

Unified Power Flow Controllers," Ieee Transactions on Power Systems, Article vol. 

36, no. 3, pp. 1947-1960, May 2021, doi: 10.1109/tpwrs.2020.3036653. 

[9] Y. Xu, C.-C. Liu, K. P. Schneider, F. K. Tuffner, and D. T. Ton, "Microgrids for 

Service Restoration to Critical Load in a Resilient Distribution System," Ieee 

Transactions on Smart Grid, Article vol. 9, no. 1, pp. 426-437, Jan 2018, doi: 

10.1109/tsg.2016.2591531. 

[10] W. Liu and F. Ding, "Collaborative Distribution System Restoration Planning and 

Real-Time Dispatch Considering Behind-the-Meter DERS," Ieee Transactions on 

Power Systems, Article vol. 36, no. 4, pp. 3629-3644, Jul 2021, doi: 

10.1109/tpwrs.2020.3048089. 

[11] A. Suresh, R. Bisht, and S. Kamalasadan, "A Coordinated Control Architecture With 

Inverter-Based Resources and Legacy Controllers of Power Distribution System for 

Voltage Profile Balance," Ieee Transactions on Industry Applications, Article; 



153 

 

Proceedings Paper vol. 58, no. 5, pp. 6701-6712, Sep 2022, doi: 

10.1109/tia.2022.3183030. 

[12] N. Nazir and M. Almassalkhi, "Voltage Positioning Using Co-Optimization of 

Controllable Grid Assets in Radial Networks," Ieee Transactions on Power Systems, 

Article vol. 36, no. 4, pp. 2761-2770, Jul 2021, doi: 10.1109/tpwrs.2020.3044206. 

[13] X. Zhu, J. Wang, N. Lu, N. Samaan, R. Huang, and X. Ke, "A Hierarchical VLSM-

Based Demand Response Strategy for Coordinative Voltage Control Between 

Transmission and Distribution Systems," Ieee Transactions on Smart Grid, Article 

vol. 10, no. 5, pp. 4838-4847, Sep 2019, doi: 10.1109/tsg.2018.2869367. 

[14] H. Wang, Z. Liu, Z. Liang, X. Huo, R. Yu, and J. Bian, "Multi-timescale risk 

scheduling for transmission and distribution networks for highly proportional 

distributed energy access," International Journal of Electrical Power & Energy 

Systems, Article vol. 155, Jan 2024, Art no. 109598, doi: 

10.1016/j.ijepes.2023.109598. 

[15] X. Cao, H. Wang, Y. Liu, R. Azizipanah-Abarghooee, and V. Terzija, "Coordinating 

self-healing control of bulk power transmission system based on a hierarchical top-

down strategy," International Journal of Electrical Power & Energy Systems, 

Article vol. 90, pp. 147-157, Sep 2017, doi: 10.1016/j.ijepes.2017.02.004. 

[16] C. Zhang, L. Liu, H. Cheng, D. Liu, J. Zhang, and G. Li, "Data-driven 

distributionally robust transmission expansion planning considering contingency-

constrained generation reserve optimization," International Journal of Electrical 

Power & Energy Systems, Article vol. 131, Oct 2021, Art no. 106973, doi: 

10.1016/j.ijepes.2021.106973. 

[17] S. Rahim and P. Siano, "A survey and comparison of leading-edge uncertainty 

handling methods for power grid modernization," Expert Systems with Applications, 

Article vol. 204, Oct 15 2022, Art no. 117590, doi: 10.1016/j.eswa.2022.117590. 

[18] J. Zhang, N. Zhang, and Y. Ge, "Energy Storage Placements for Renewable Energy 

Fluctuations: A Practical Study," Ieee Transactions on Power Systems, Article vol. 

38, no. 5, pp. 4916-4927, Sep 2023, doi: 10.1109/tpwrs.2022.3214983. 

[19] G. E. Mejia-Ruiz, M. R. A. Paternina, M. Ramirez-Gonzalez, F. R. S. Sevilla, and 

P. Korba, "Real-time co-simulation of transmission and distribution networks 

integrated with distributed energy resources for frequency and voltage support," 

Applied Energy, Article vol. 347, Oct 1 2023, Art no. 121046, doi: 

10.1016/j.apenergy.2023.121046. 

[20] A. Bedawy, N. Yorino, K. Mahmoud, Y. Zoka, and Y. Sasaki, "Optimal Voltage 

Control Strategy for Voltage Regulators in Active Unbalanced Distribution Systems 

Using Multi-Agents," Ieee Transactions on Power Systems, Article vol. 35, no. 2, 

pp. 1023-1035, Mar 2020, doi: 10.1109/tpwrs.2019.2942583. 

[21] Q. Wang, S. Lin, Y. Yang, and M. Liu, "A decomposition and coordination 

algorithm for SVSM interval of integrated transmission and distribution networks 

considering the uncertainty of renewable energy," International Journal of 

Electrical Power & Energy Systems, Article vol. 136, Mar 2022, Art no. 107761, 

doi: 10.1016/j.ijepes.2021.107761. 

[22] C. Liang, L. Guo, A. Zocca, S. Low, and A. Wierman, "Adaptive Network Response 

to Line Failures in Power Systems," Ieee Transactions on Control of Network 

Systems, Article vol. 10, no. 1, pp. 333-344, Mar 2023, doi: 

10.1109/tcns.2022.3203367. 



154 

 

[23] W. Jiao, J. Chen, Q. Wu, C. Li, B. Zhou, and S. Huang, "Distributed Coordinated 

Voltage Control for Distribution Networks With DG and OLTC Based on MPC and 

Gradient Projection," Ieee Transactions on Power Systems, Article vol. 37, no. 1, pp. 

680-690, Jan 2022, doi: 10.1109/tpwrs.2021.3095523. 

[24] S. Wang, C. Zhao, L. Fan, and R. Bo, "Distributionally Robust Unit Commitment 

With Flexible Generation Resources Considering Renewable Energy Uncertainty," 

Ieee Transactions on Power Systems, Article vol. 37, no. 6, pp. 4179-4190, Nov 

2022, doi: 10.1109/tpwrs.2022.3149506. 

[25] X. Li, G. Chen, C. Li, Z. Xu, F. Luo, and Z. Y. Dong, "Communication-Efficient 

Distributed Pricing for Power-Hydrogen Systems With Electric Vehicles and 

Renewable Energy Integration," Ieee Transactions on Smart Grid, Article vol. 16, 

no. 1, pp. 541-553, Jan 2025, doi: 10.1109/tsg.2024.3413755. 

[26] Y. Chen, J. Zhu, Y. Liu, L. Zhang, and J. Zhou, "Distributed Hierarchical Deep 

Reinforcement Learning for Large-Scale Grid Emergency Control," Ieee 

Transactions on Power Systems, Article vol. 39, no. 2, pp. 4446-4458, Mar 2024, 

doi: 10.1109/tpwrs.2023.3298486. 

[27] N. Sahani and C.-C. Liu, "Model-Based Detection of Coordinated Attacks (DCA) 

in Distribution Systems," Ieee Open Access Journal of Power and Energy, Article 

vol. 11, pp. 558-570, 2024 2024, doi: 10.1109/oajpe.2024.3489477. 

[28] J. Yan, Y. Li, J. Yao, S. Yang, F. Li, and K. Zhu, "Look-Ahead Unit Commitment 

With Adaptive Horizon Based on Deep Reinforcement Learning," Ieee Transactions 

on Power Systems, Article vol. 39, no. 2, pp. 3673-3684, Mar 2024, doi: 

10.1109/tpwrs.2023.3286094. 

[29] Y. Zhang, M. Yue, J. Wang, and S. Yoo, "Multi-Agent Graph-Attention Deep 

Reinforcement Learning for Post-Contingency Grid Emergency Voltage Control," 

Ieee Transactions on Neural Networks and Learning Systems, Article vol. 35, no. 3, 

pp. 3340-3350, Mar 2024, doi: 10.1109/tnnls.2023.3341334. 

[30] H. Gao, T. Jin, C. Feng, C. Li, Q. Chen, and C. Kang, "Review of virtual power plant 

operations: Resource coordination and multidimensional interaction," Applied 

Energy, Review vol. 357, Mar 1 2024, Art no. 122284, doi: 

10.1016/j.apenergy.2023.122284. 

[31] Z. Zheng et al., "A De-aggregation strategy based optimal co-scheduling of 

heterogeneous flexible resources in virtual power plant," Applied Energy, Article 

vol. 383, Apr 1 2025, Art no. 125404, doi: 10.1016/j.apenergy.2025.125404. 

[32] Y. Li, W. Chang, and Q. Yang, "Deep reinforcement learning based hierarchical 

energy management for virtual power plant with aggregated multiple heterogeneous 

microgrids," Applied Energy, Article vol. 382, Mar 15 2025, Art no. 125333, doi: 

10.1016/j.apenergy.2025.125333. 

[33] Q. Li et al., "Co-optimization of virtual power plants and distribution grids: 

Emphasizing flexible resource aggregation and battery capacity degradation," 

Applied Energy, Article vol. 377, Jan 1 2025, Art no. 124519, doi: 

10.1016/j.apenergy.2024.124519. 

[34] J. Liu, Z. Tang, Y. Liu, Y. Zhou, P. P. Zeng, and Q. Wu, "Region-inspired distributed 

optimal dispatch of flexibility providers in coordinated transmission-distribution 

framework," Energy, Article vol. 319, Mar 15 2025, Art no. 134985, doi: 

10.1016/j.energy.2025.134985. 



155 

 

[35] Z. Yan and Y. Xu, "A Hybrid Data-Driven Method for Fast Solution of Security-

Constrained Optimal Power Flow," Ieee Transactions on Power Systems, Article vol. 

37, no. 6, pp. 4365-4374, Nov 2022, doi: 10.1109/tpwrs.2022.3150023. 

[36] A. M. Farid, "A Profit-Maximizing Security-Constrained IV-AC Optimal Power 

Flow Model & Global Solution," Ieee Access, Article vol. 10, pp. 2842-2859, 2022 

2022, doi: 10.1109/access.2021.3138972. 

[37] J. Sliwak, E. D. Andersen, M. F. Anjos, L. Letocart, and E. Traversi, "A Clique 

Merging Algorithm to Solve Semidefinite Relaxations of Optimal Power Flow 

Problems," Ieee Transactions on Power Systems, Article vol. 36, no. 2, pp. 1641-

1644, Mar 2021, doi: 10.1109/tpwrs.2020.3044501. 

[38] A. R. Sayed, X. Zhang, G. Wang, C. Wang, and J. Qiu, "Optimal Operable Power 

Flow: Sample-Efficient Holomorphic Embedding-Based Reinforcement Learning," 

Ieee Transactions on Power Systems, Article vol. 39, no. 1, pp. 1739-1751, Jan 2024, 

doi: 10.1109/tpwrs.2023.3266773. 

[39] X. Pan, T. Zhao, M. Chen, and S. Zhang, "DeepOPF: A Deep Neural Network 

Approach for Security-Constrained DC Optimal Power Flow," Ieee Transactions on 

Power Systems, Article vol. 36, no. 3, pp. 1725-1735, May 2021, doi: 

10.1109/tpwrs.2020.3026379. 

[40] A. Velloso and P. Van Hentenryck, "Combining Deep Learning and Optimization 

for Preventive Security-Constrained DC Optimal Power Flow," Ieee Transactions 

on Power Systems, Article vol. 36, no. 4, pp. 3618-3628, Jul 2021, doi: 

10.1109/tpwrs.2021.3054341. 

[41] L. You, H. Ma, T. K. Saha, and G. Liu, "Risk-Based Contingency-Constrained 

Optimal Power Flow With Adjustable Uncertainty Set of Wind Power," Ieee 

Transactions on Industrial Informatics, Article vol. 18, no. 2, pp. 996-1008, Feb 

2022, doi: 10.1109/tii.2021.3076801. 

[42] A. R. Sayed, C. Wang, and T. Bi, "Resilient operational strategies for power systems 

considering the interactions with natural gas systems," Applied Energy, Article vol. 

241, pp. 548-566, May 1 2019, doi: 10.1016/j.apenergy.2019.03.053. 

[43] N. Y. Puvvada, A. Mohapatra, and S. C. Srivastava, "Robust AC Transmission 

Expansion Planning Using a Novel Dual-Based Bi-Level Approach," Ieee 

Transactions on Power Systems, Article vol. 37, no. 4, pp. 2881-2893, Jul 2022, doi: 

10.1109/tpwrs.2021.3125719. 

[44] S. Zhang, Y. Fang, H. Zhang, H. Cheng, and X. Wang, "Maximum Hosting Capacity 

of Photovoltaic Generation in SOP-Based Power Distribution Network Integrated 

With Electric Vehicles," Ieee Transactions on Industrial Informatics, Article vol. 18, 

no. 11, pp. 8213-8224, Nov 2022, doi: 10.1109/tii.2022.3140870. 

[45] A. R. Sayed, C. Wang, J. Zhao, and T. Bi, "Distribution-Level Robust Energy 

Management of Power Systems Considering Bidirectional Interactions With Gas 

Systems," Ieee Transactions on Smart Grid, Article vol. 11, no. 3, pp. 2092-2105, 

May 2020, doi: 10.1109/tsg.2019.2947219. 

[46] Y. Xu, J. Hu, W. Gu, W. Su, and W. Liu, "Real-Time Distributed Control of Battery 

Energy Storage Systems for Security Constrained DC-OPF," Ieee Transactions on 

Smart Grid, Article vol. 9, no. 3, pp. 1580-1589, May 2018, doi: 

10.1109/tsg.2016.2593911. 

[47] H. Ebrahimi, A. Yazdaninejadi, and S. Golshannavaz, "Decentralized prioritization 

of demand response programs in multi-area power grids based on the security 



156 

 

considerations," Isa Transactions, Article vol. 134, pp. 396-408, Mar 2023, doi: 

10.1016/j.isatra.2022.07.031. 

[48] Z. Tan, H. Zhong, Q. Xia, C. Kang, X. S. Wang, and H. Tang, "Estimating the 

Robust P-Q Capability of a Technical Virtual Power Plant Under Uncertainties," 

Ieee Transactions on Power Systems, Article vol. 35, no. 6, pp. 4285-4296, Nov 

2020, doi: 10.1109/tpwrs.2020.2988069. 

[49] H. Hui, Y. Chen, S. Yang, H. Zhang, and T. Jiang, "Coordination control of 

distributed generators and load resources for frequency restoration in isolated urban 

microgrids," Applied Energy, Article vol. 327, Dec 1 2022, Art no. 120116, doi: 

10.1016/j.apenergy.2022.120116. 

[50] L. Zhu and D. J. Hill, "Data/Model Jointly Driven High-Quality Case Generation 

for Power System Dynamic Stability Assessment," Ieee Transactions on Industrial 

Informatics, Article vol. 18, no. 8, pp. 5055-5066, Aug 2022, doi: 

10.1109/tii.2021.3123823. 

[51] F. Wei, Z. Wan, and H. He, "Cyber-Attack Recovery Strategy for Smart Grid Based 

on Deep Reinforcement Learning," Ieee Transactions on Smart Grid, Article vol. 

11, no. 3, pp. 2476-2486, May 2020, doi: 10.1109/tsg.2019.2956161. 

[52] Y. Zhou, W.-J. Lee, R. Diao, and D. Shi, "Deep Reinforcement Learning Based 

Real-time AC Optimal Power Flow Considering Uncertainties," Journal of Modern 

Power Systems and Clean Energy, Article vol. 10, no. 5, pp. 1098-1109, Sep 2022, 

doi: 10.35833/mpce.2020.000885. 

[53] B. Wang, Y. Li, W. Ming, and S. Wang, "Deep Reinforcement Learning Method for 

Demand Response Management of Interruptible Load," Ieee Transactions on Smart 

Grid, Article vol. 11, no. 4, pp. 3146-3155, Jul 2020, doi: 10.1109/tsg.2020.2967430. 

[54] F. Charbonnier, T. Morstyn, and M. D. McCulloch, "Scalable multi-agent 

reinforcement learning for distributed control of residential energy flexibility," 

Applied Energy, Article vol. 314, May 15 2022, Art no. 118825, doi: 

10.1016/j.apenergy.2022.118825. 

[55] C. Tessler, D. J. Mankowitz, and S. Mannor, "Reward Constrained Policy 

Optimization," Arxiv, preprint Dec 26 2018, doi: arXiv:1805.11074. 

[56]  T. L. Vu, S. Mukherjee, R. Huang, Q. Huang, and Ieee, "Barrier Function-based 

Safe Reinforcement Learning for Emergency Control of Power Systems," in 60th 

IEEE Conference on Decision and Control (CDC), Electr Network, 2021, Dec 13-

17 2021, in IEEE Conference on Decision and Control, 2021, pp. 3652-3657, doi: 

10.1109/cdc45484.2021.9683573. [Online]. Available: <Go to 

ISI>://WOS:000781990303040 

[57] Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman, and M. Ghavamzadeh, 

"Lyapunov-based Safe Policy Optimization for Continuous Control," Arxiv, preprint 

Feb 11 2019, doi: arXiv:1901.10031. 

[58] J. Lei et al., "A Reinforcement Learning Approach for Defending Against 

Multiscenario Load Redistribution Attacks," Ieee Transactions on Smart Grid, 

Article vol. 13, no. 5, pp. 3711-3722, Sep 2022, doi: 10.1109/tsg.2022.3175470. 

[59] D. Cao et al., "Deep Reinforcement Learning Enabled Physical-Model-Free Two-

Timescale Voltage Control Method for Active Distribution Systems," Ieee 

Transactions on Smart Grid, Article vol. 13, no. 1, pp. 149-165, Jan 2022, doi: 

10.1109/tsg.2021.3113085. 



157 

 

[60] J. Liu, Y. Zhang, K. Meng, Z. Y. Dong, Y. Xu, and S. Han, "Real-time emergency 

load shedding for power system transient stability control: A risk-averse deep 

learning method," Applied Energy, Article vol. 307, Feb 1 2022, Art no. 118221, doi: 

10.1016/j.apenergy.2021.118221. 

[61] X. Sun, J. Qiu, Y. Tao, Y. Ma, and J. Zhao, "Coordinated Real-Time Voltage Control 

in Active Distribution Networks: An Incentive-Based Fairness Approach," Ieee 

Transactions on Smart Grid, Article vol. 13, no. 4, pp. 2650-2663, Jul 2022, doi: 

10.1109/tsg.2022.3162909. 

[62] S. Wang, L. Du, X. Fan, and Q. Huang, "Deep Reinforcement Scheduling of Energy 

Storage Systems for Real-Time Voltage Regulation in Unbalanced LV Networks 

With High PV Penetration," Ieee Transactions on Sustainable Energy, Article vol. 

12, no. 4, pp. 2342-2352, Oct 2021, doi: 10.1109/tste.2021.3092961. 

[63] A. Das, E. I. Batzelis, S. Anand, and S. R. Sahoo, "Network-Agnostic Adaptive PQ 

Adjustment Control for Grid Voltage Regulation in PV Systems," Ieee Transactions 

on Industry Applications, Article vol. 58, no. 5, pp. 5792-5804, Sep 2022, doi: 

10.1109/tia.2022.3180280. 

[64] M. Castilla, J. Miret, J. Luis Sosa, J. Matas, and L. Garcia de Vicuna, "Grid-Fault 

Control Scheme for Three-Phase Photovoltaic Inverters With Adjustable Power 

Quality Characteristics," Ieee Transactions on Power Electronics, Article vol. 25, 

no. 12, pp. 2930-2940, Dec 2010, doi: 10.1109/tpel.2010.2070081. 

[65] Z. Liu, X. Lv, F. Wu, and Z. Li, "Multi-Mode Active Inertia Support Strategy for 

MMC-HVDC Systems Considering the Constraint of DC Voltage Fluctuations," 

Ieee Transactions on Power Delivery, Article vol. 38, no. 4, pp. 2767-2781, Aug 

2023, doi: 10.1109/tpwrd.2023.3259039. 

[66] X. Sun, J. Qiu, Y. Tao, Y. Ma, and J. Zhao, "A Multi-Mode Data-Driven Volt/Var 

Control Strategy With Conservation Voltage Reduction in Active Distribution 

Networks," Ieee Transactions on Sustainable Energy, Article vol. 13, no. 2, pp. 

1073-1085, Apr 2022, doi: 10.1109/tste.2022.3149267. 

[67] S. Huang et al., "Distributed Predefined-Time Control for Power System With Time 

Delay and Input Saturation," Ieee Transactions on Power Systems, Article vol. 40, 

no. 1, pp. 151-165, Jan 2025, doi: 10.1109/tpwrs.2024.3402233. 

[68] D. Cao, W. Hu, J. Zhao, Q. Huang, Z. Chen, and F. Blaabjerg, "A Multi-Agent Deep 

Reinforcement Learning Based Voltage Regulation Using Coordinated PV 

Inverters," Ieee Transactions on Power Systems, Article vol. 35, no. 5, pp. 4120-

4123, Sept 2020, doi: 10.1109/tpwrs.2020.3000652. 

[69] Q. Yang, G. Wang, A. Sadeghi, G. B. Giannakis, and J. Sun, "Two-Timescale 

Voltage Control in Distribution Grids Using Deep Reinforcement Learning," Ieee 

Transactions on Smart Grid, Article vol. 11, no. 3, pp. 2313-2323, May 2020, doi: 

10.1109/tsg.2019.2951769. 

[70] Z. Tang, D. J. Hill, and T. Liu, "Distributed Coordinated Reactive Power Control 

for Voltage Regulation in Distribution Networks," Ieee Transactions on Smart Grid, 

Article vol. 12, no. 1, pp. 312-323, Jan 2021, doi: 10.1109/tsg.2020.3018633. 

[71] A. R. Malekpour, A. M. Annaswamy, and J. Shah, "Hierarchical Hybrid 

Architecture for Volt/Var Control of Power Distribution Grids," Ieee Transactions 

on Power Systems, Article vol. 35, no. 2, pp. 854-863, Mar 2020, doi: 

10.1109/tpwrs.2019.2941969. 



158 

 

[72] W. Wang, N. Yu, Y. Gao, and J. Shi, "Safe Off-Policy Deep Reinforcement 

Learning Algorithm for Volt-VAR Control in Power Distribution Systems," Ieee 

Transactions on Smart Grid, Article vol. 11, no. 4, pp. 3008-3018, Jul 2020, doi: 

10.1109/tsg.2019.2962625. 

[73] H. Xu, A. D. Dominguez-Garcia, V. V. Veeravalli, and P. W. Sauer, "Data-Driven 

Voltage Regulation in Radial Power Distribution Systems," Ieee Transactions on 

Power Systems, Article vol. 35, no. 3, pp. 2133-2143, May 2020, doi: 

10.1109/tpwrs.2019.2948138. 

[74] H. Liu and W. Wu, "Two-stage Deep Reinforcement Learning for Inverter-based 

Volt-VAR Control in Active Distribution Networks," Arxiv, preprint May 20 2020, 

doi: arXiv:2005.11142. 

[75] B. Xu et al., "Var-Voltage Control Capability Constrained Economic Scheduling of 

Integrated Energy Systems," Ieee Transactions on Industry Applications, Article; 

Proceedings Paper vol. 58, no. 6, pp. 6899-6908, Nov 2022, doi: 

10.1109/tia.2022.3199675. 

[76] X. Sun and J. Qiu, "Two-Stage Volt/Var Control in Active Distribution Networks 

With Multi-Agent Deep Reinforcement Learning Method," Ieee Transactions on 

Smart Grid, Article vol. 12, no. 4, pp. 2903-2912, Jul 2021, doi: 

10.1109/tsg.2021.3052998. 

[77] X. Wei, X. Zhang, G. Wang, Z. Hu, Z. Zhu, and K. W. Chan, "Online Voltage 

Control Strategy: Multi-Mode Based Data-Driven Approach for Active Distribution 

Networks," Ieee Transactions on Industry Applications, Article vol. 61, no. 1, pp. 

1569-1580, Jan 2025, doi: 10.1109/tia.2024.3462891. 

[78] D. Xu, Q. Wu, B. Zhou, C. Li, L. Bai, and S. Huang, "Distributed Multi-Energy 

Operation of Coupled Electricity, Heating, and Natural Gas Networks," Ieee 

Transactions on Sustainable Energy, Article vol. 11, no. 4, pp. 2457-2469, Oct 2020, 

doi: 10.1109/tste.2019.2961432. 

[79] A. Mohammadi, M. Mehrtash, and A. Kargarian, "Diagonal Quadratic 

Approximation for Decentralized Collaborative TSO+DSO Optimal Power Flow," 

IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 2358-70, May 2019, doi: 

10.1109/tsg.2018.2796034. 

[80] S. Chakrabarti and R. Baldick, "Look-Ahead SCOPF (LASCOPF) for Tracking 

Demand Variation via Auxiliary Proximal Message Passing (APMP) Algorithm," 

International Journal of Electrical Power & Energy Systems, Article vol. 116, Mar 

2020, Art no. 105533, doi: 10.1016/j.ijepes.2019.105533. 

[81] S. Sharma and Q. Li, "Decentralized optimization of energy-water nexus based on a 

mixed-integer boundary compatible algorithm," Applied Energy, Article vol. 359, 

Apr 1 2024, Art no. 122588, doi: 10.1016/j.apenergy.2023.122588. 

[82] A. Ravi, L. Bai, V. Cecchi, and F. Ding, "Stochastic Strategic Participation of Active 

Distribution Networks With High-Penetration DERs in Wholesale Electricity 

Markets," Ieee Transactions on Smart Grid, Article vol. 14, no. 2, pp. 1515-1527, 

Mar 2023, doi: 10.1109/tsg.2022.3196682. 

[83] N. Pourghaderi, M. Fotuhi-Firuzabad, M. Moeini-Aghtaie, M. Kabirifar, and M. 

Lehtonen, "Exploiting DERs' Flexibility Provision in Distribution and Transmission 

Systems Interface," Ieee Transactions on Power Systems, Article vol. 38, no. 2, pp. 

1961-1975, Mar 2023, doi: 10.1109/tpwrs.2022.3209132. 



159 

 

[84] W. Lu, K. Xie, M. Liu, X. Wang, and L. Cheng, "Online Decentralized Tracking for 

Nonlinear Time-Varying Optimal Power Flow of Coupled Transmission-

Distribution Grids," Ieee Transactions on Power Systems, Article vol. 39, no. 2, pp. 

2706-2722, Mar 2024, doi: 10.1109/tpwrs.2023.3276049. 

[85] C. Lin, W. Wu, B. Zhang, B. Wang, W. Zheng, and Z. Li, "Decentralized Reactive 

Power Optimization Method for Transmission and Distribution Networks 

Accommodating Large-Scale DG Integration," Ieee Transactions on Sustainable 

Energy, Article vol. 8, no. 1, pp. 363-373, Jan 2017, doi: 10.1109/tste.2016.2599848. 

[86] J. Zhao, H. Wang, Y. Liu, Q. Wu, Z. Wang, and Y. Liu, "Coordinated Restoration 

of Transmission and Distribution System Using Decentralized Scheme," Ieee 

Transactions on Power Systems, Article vol. 34, no. 5, pp. 3428-3442, Sep 2019, 

doi: 10.1109/tpwrs.2019.2908449. 

[87] W. Wang, X. Xiong, Y. He, J. Hu, and H. Chen, "Scheduling of Separable Mobile 

Energy Storage Systems With Mobile Generators and Fuel Tankers to Boost 

Distribution System Resilience," Ieee Transactions on Smart Grid, Article vol. 13, 

no. 1, pp. 443-457, Jan 2022, doi: 10.1109/tsg.2021.3114303. 

[88] X. Liu, X. Lin, H. Qiu, Y. Li, and T. Huang, "Optimal aggregation and 

disaggregation for coordinated operation of virtual power plant with distribution 

network operator," Applied Energy, Article vol. 376, Dec 15 2024, Art no. 124142, 

doi: 10.1016/j.apenergy.2024.124142. 

[89] L. Ding, Q.-L. Han, and X.-M. Zhang, "Distributed Secondary Control for Active 

Power Sharing and Frequency Regulation in Islanded Microgrids Using an Event-

Triggered Communication Mechanism," Ieee Transactions on Industrial 

Informatics, Article vol. 15, no. 7, pp. 3910-3922, Jul 2019, doi: 

10.1109/tii.2018.2884494. 

[90] Z. Luo, H. Liu, N. Wang, T. Zhao, and J. Tian, "Optimal adaptive decentralized 

under-frequency load shedding for islanded smart distribution network considering 

wind power uncertainty," Applied Energy, Article vol. 365, Jul 1 2024, Art no. 

123162, doi: 10.1016/j.apenergy.2024.123162. 

[91] M. Mousavi and M. Wu, "A DSO Framework for Market Participation of DER 

Aggregators in Unbalanced Distribution Networks," Ieee Transactions on Power 

Systems, Article vol. 37, no. 3, pp. 2247-2258, May 2022, doi: 

10.1109/tpwrs.2021.3117571. 

[92] H. Zhang, S. Ma, T. Ding, Y. Lin, and M. Shahidehpour, "Multi-Stage Multi-Zone 

Defender-Attacker-Defender Model for Optimal Resilience Strategy With 

Distribution Line Hardening and Energy Storage System Deployment," Ieee 

Transactions on Smart Grid, Article vol. 12, no. 2, pp. 1194-1205, Mar 2021, doi: 

10.1109/tsg.2020.3027767. 

[93] X. Wu and A. J. Conejo, "Security-Constrained ACOPF: Incorporating Worst 

Contingencies and Discrete Controllers," Ieee Transactions on Power Systems, 

Article vol. 35, no. 3, pp. 1936-1945, May 2020, doi: 10.1109/tpwrs.2019.2937105. 

[94] L. Zeng, M. Sun, X. Wan, Z. Zhang, R. Deng, and Y. Xu, "Physics-Constrained 

Vulnerability Assessment of Deep Reinforcement Learning-Based SCOPF," Ieee 

Transactions on Power Systems, Article vol. 38, no. 3, pp. 2690-2704, May 2023, 

doi: 10.1109/tpwrs.2022.3192558. 

[95] X. Kong, Y. Sun, M. A. Khan, L. Zheng, J. Qin, and X. Ji, "Cyber-physical system 

planning for VPPs supporting frequency regulation considering hierarchical control 



160 

 

and multidimensional uncertainties," Applied Energy, Article vol. 353, Jan 1 2024, 

Art no. 122104, doi: 10.1016/j.apenergy.2023.122104. 

[96] S. Wang et al., "A Data-Driven Multi-Agent Autonomous Voltage Control 

Framework Using Deep Reinforcement Learning," Ieee Transactions on Power 

Systems, Article vol. 35, no. 6, pp. 4644-4654, Nov 2020, doi: 

10.1109/tpwrs.2020.2990179. 

[97] D. Cao, J. Zhao, W. Hu, F. Ding, Q. Huang, and Z. Chen, "Attention Enabled Multi-

Agent DRL for Decentralized Volt-VAR Control of Active Distribution System 

Using PV Inverters and SVCs," Ieee Transactions on Sustainable Energy, Article 

vol. 12, no. 3, pp. 1582-1592, Jul 2021, doi: 10.1109/tste.2021.3057090. 

[98] J. Zhao, F. Li, S. Mukherjee, and C. Sticht, "Deep Reinforcement Learning-Based 

Model-Free On-Line Dynamic Multi-Microgrid Formation to Enhance Resilience," 

Ieee Transactions on Smart Grid, Article vol. 13, no. 4, pp. 2557-2567, Jul 2022, 

doi: 10.1109/tsg.2022.3160387. 

[99] A. R. Sayed, C. Wang, H. I. Anis, and T. Bi, "Feasibility Constrained Online 

Calculation for Real-Time Optimal Power Flow: A Convex Constrained Deep 

Reinforcement Learning Approach," Ieee Transactions on Power Systems, Article 

vol. 38, no. 6, pp. 5215-5227, Nov 2023, doi: 10.1109/tpwrs.2022.3220799. 

[100] S. Jung, C. Park, M. Levorato, J.-H. Kim, and J. Kim, "Two-Stage Self-Adaptive 

Task Outsourcing Decision Making for Edge-Assisted Multi-UAV Networks," Ieee 

Transactions on Vehicular Technology, Article vol. 72, no. 11, pp. 14889-14905, 

Nov 2023, doi: 10.1109/tvt.2023.3283404. 

[101] Y. Li, R. Wang, Y. Li, M. Zhang, and C. Long, "Wind power forecasting considering 

data privacy protection: A federated deep reinforcement learning approach," Applied 

Energy, Article vol. 329, Jan 1 2023, doi: 10.1016/j.apenergy.2022.120291. 

[102]  P. Huang, M. Xu, F. Fang, and D. Zhao, "Robust Reinforcement Learning as a 

Stackelberg Game via Adaptively-Regularized Adversarial Training," in 31st 

International Joint Conference on Artificial Intelligence (IJCAI), Vienna, 

AUSTRIA, 2022, Jul 23-29 2022, 2022, pp. 3099-3106. [Online]. Available: <Go 

to ISI>://WOS:001202342303032. [Online]. Available: <Go to 

ISI>://WOS:001202342303032 

[103] J. Yan et al., "Scheduling Post-Disaster Power System Repair With Incomplete 

Failure Information: A Learning-to-Rank Approach," Ieee Transactions on Power 

Systems, Article vol. 37, no. 6, pp. 4630-4641, Nov 2022, doi: 

10.1109/tpwrs.2022.3149983. 

[104] Z. Liu and L. Wang, "A Distributionally Robust Defender-Attacker-Defender Model 

for Resilience Enhancement of Power Systems Against Malicious Cyberattacks," 

Ieee Transactions on Power Systems, Article vol. 38, no. 6, pp. 4986-4997, Nov 

2023, doi: 10.1109/tpwrs.2022.3222309. 

[105] T. Haarnoja et al., "Soft Actor-Critic Algorithms and Applications," Arxiv, preprint 

Jan 29 2019, doi: arXiv:1812.05905. 

[106] P. Christodoulou, "Soft Actor-Critic for Discrete Action Settings," Arxiv, preprint 

Oct 18 2019, doi: arXiv:1910.07207. 

[107] A. Abusorrah, A. Alabdulwahab, Z. Li, and M. Shahidehpour, "Minimax-Regret 

Robust Defensive Strategy Against False Data Injection Attacks," Ieee Transactions 

on Smart Grid, Article vol. 10, no. 2, pp. 2068-2079, Mar 2019, doi: 

10.1109/tsg.2017.2788040. 



161 

 

[108] R. Kour, R. Karim, and P. Dersin, Game Theory and Cyber Kill Chain: A Strategic 

Approach to Cybersecurity (International Congress and Workshop on Industrial AI 

and eMaintenance 2023. Lecture Notes in Mechanical Engineering). 2024, pp. 451-

63. 

[109] J. Heinrich and D. Silver, "Deep Reinforcement Learning from Self-Play in 

Imperfect-Information Games," Arxiv, preprint Jun 28 2016, doi: arXiv:1603.01121. 

[110] S. Bohez, A. Abdolmaleki, M. Neunert, J. Buchli, N. Heess, and R. Hadsell, "Value 

constrained model-free continuous control," Arxiv, preprint Feb 12 2019, doi: 

arXiv:1902.04623. 

[111] G. Gutierrez-Alcaraz, B. Diaz-Lopez, J. M. Arroyo, and V. H. Hinojosa, "Large-

Scale Preventive Security-Constrained Unit Commitment Considering <i>N-k</i> 

Line Outages and Transmission Losses," Ieee Transactions on Power Systems, 

Article vol. 37, no. 3, pp. 2032-2041, May 2022, doi: 10.1109/tpwrs.2021.3116462. 

[112] L. Huang, C. S. Lai, Z. Zhao, G. Yang, B. Zhong, and L. L. Lai, "Robust N - k 

Security-constrained Optimal Power Flow Incorporating Preventive and Corrective 

Generation Dispatch to Improve Power System Reliability," Csee Journal of Power 

and Energy Systems, Article vol. 9, no. 1, pp. 351-364, Jan 2023, doi: 

10.17775/cseejpes.2021.06560. 

[113] T. Wu, S. Bu, X. Wei, G. Wang, and B. Zhou, "Multitasking multi-objective 

operation optimization of integrated energy system considering biogas-solar-wind 

renewables," Energy Conversion and Management, Article vol. 229, Feb 1 2021, 

Art no. 113736, doi: 10.1016/j.enconman.2020.113736. 

[114] H. Li and H. He, "Learning to Operate Distribution Networks With Safe Deep 

Reinforcement Learning," Ieee Transactions on Smart Grid, Article vol. 13, no. 3, 

pp. 1860-1872, May 2022, doi: 10.1109/tsg.2022.3142961. 

[115] B. Park, J. Holzer, and C. L. DeMarco, "A Sparse Tableau Formulation for Node-

Breaker Representations in Security-Constrained Optimal Power Flow," Ieee 

Transactions on Power Systems, Article vol. 34, no. 1, pp. 637-647, Jan 2019, doi: 

10.1109/tpwrs.2018.2869705. 

[116] Y. Zhao, G. Zhang, W. Hu, Q. Huang, Z. Chen, and F. Blaabjerg, "Meta-Learning 

Based Voltage Control for Renewable Energy Integrated Active Distribution 

Network Against Topology Change," Ieee Transactions on Power Systems, Article 

vol. 38, no. 6, pp. 5937-5940, Nov 2023, doi: 10.1109/tpwrs.2023.3309536. 

[117]  M. G. Kashani, M. Mobarrez, S. Bhattacharya, and Ieee, "Smart Inverter Volt-Watt 

Control Design in High PV Penetrated Distribution Systems," in 9th Annual IEEE 

Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, 2017, Oct 

01-10 2017, in IEEE Energy Conversion Congress and Exposition, 2017, pp. 4447-

4452. [Online]. Available: <Go to ISI>://WOS:000426847404108. [Online]. 

Available: <Go to ISI>://WOS:000426847404108 

[118] H. Liu, W. Wu, and Y. Wang, "Bi-Level Off-Policy Reinforcement Learning for 

Two-Timescale Volt/VAR Control in Active Distribution Networks," Ieee 

Transactions on Power Systems, Article vol. 38, no. 1, pp. 385-395, Jan 2023, doi: 

10.1109/tpwrs.2022.3168700. 

[119] T. Zhang, L. Yu, D. Yue, C. Dou, X. Xie, and G. P. Hancke, "Two-Timescale 

Coordinated Voltage Regulation for High Renewable-Penetrated Active 

Distribution Networks Considering Hybrid Devices," Ieee Transactions on 



162 

 

Industrial Informatics, Article vol. 20, no. 3, pp. 3456-3467, Mar 2024, doi: 

10.1109/tii.2023.3308348. 

[120] K. P. Schneider et al., "Analytic Considerations and Design Basis for the IEEE 

Distribution Test Feeders," Ieee Transactions on Power Systems, Article vol. 33, no. 

3, pp. 3181-3188, May 2018, doi: 10.1109/tpwrs.2017.2760011. 

[121] M. Menghwar, J. Yan, Y. Chi, M. A. Amin, and Y. Liu, "A market-based real-time 

algorithm for congestion alleviation incorporating EV demand in active distribution 

networks," Applied Energy, Article vol. 356, Feb 15 2024, Art no. 122426, doi: 

10.1016/j.apenergy.2023.122426. 

[122]  T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, "Soft Actor-Critic: Off-Policy 

Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor," in 35th 

International Conference on Machine Learning (ICML), Stockholm, SWEDEN, 

2018, Jul 10-15 2018, vol. 80, in Proceedings of Machine Learning Research, 2018. 

[Online]. Available: <Go to ISI>://WOS:000683379201099. [Online]. Available: 

<Go to ISI>://WOS:000683379201099 

[123] W. Wang, H. Bao, S. Huang, L. Dong, and F. Wei, "MiniLMv2: Multi-Head Self-

Attention Relation Distillation for Compressing Pretrained Transformers," Arxiv, 

preprint Jun 27 2021, doi: arXiv:2012.15828. 

[124] Z. Zhang et al., "Attention Entropy is a Key Factor: An Analysis of Parallel Context 

Encoding with Full-attention-based Pre-trained Language Models," Arxiv, preprint 

Dec 21 2024, doi: arXiv:2412.16545. 

[125] X. Wu, X. Li, J. Li, P. C. Ching, V. C. M. Leung, and H. Vincent Poor, "Caching 

Transient Content for IoT Sensing: Multi-Agent Soft Actor-Critic," Arxiv, preprint 

Aug 30 2020, doi: arXiv:2008.13191. 

[126] C. Samende, J. Cao, and Z. Fan, "Multi-agent deep deterministic policy gradient 

algorithm for peer-to-peer energy trading considering distribution network 

constraints," Applied Energy, Article vol. 317, Jul 1 2022, Art no. 119123, doi: 

10.1016/j.apenergy.2022.119123. 

[127] C. Yu et al., "The Surprising Effectiveness of PPO in Cooperative, Multi-Agent 

Games," Arxiv, preprint Jul 21 2022, doi: arXiv:2103.01955. 

[128] Q. Lin and H. Ma, "SACHA: Soft Actor-Critic with Heuristic-Based Attention for 

Partially Observable Multi-Agent Path Finding," Arxiv, preprint Jul 05 2023, doi: 

arXiv:2307.02691. 

[129]  S. Thai et al., "Stabilizing Transformer Training by Preventing Attention Entropy 

Collapse," in 40th International Conference on Machine Learning, Honolulu, HI, 

2023, Jul 23-29 2023, vol. 202, in Proceedings of Machine Learning Research, 2023. 

[Online]. Available: <Go to ISI>://WOS:001372555102039. [Online]. Available: 

<Go to ISI>://WOS:001372555102039 

 


