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Abstract

The ongoing evolution toward low-carbon and decentralized power systems, driven by
high renewable penetration and widespread integration of inverter-based DERs, has raised
significant concerns regarding the security, stability, and resilience of both transmission and
distribution systems. These systems are now more frequently exposed to high-impact, low-
probability events, such as extreme weather conditions, cyber-attacks, multi-component
failures, and real-time operational uncertainties. Traditional model-based optimization
approaches, such as security-constrained optimal power flow (SCOPF) and contingency-
constrained OPF (CCOPF), while mathematically rigorous, often suffer from scalability
limitations, long computation times, and a lack of adaptability to rapidly changing
conditions. There is an urgent need for new intelligent decision-making methodologies
capable of handling uncertainty, maintaining physical constraint feasibility, and enabling
fast response in both centralized and decentralized operation frameworks.

This thesis addresses these critical challenges by proposing a deep reinforcement learning
(DRL)-based framework for resilient and adaptive power system operation under
uncertainty. The thesis spans three interconnected layers of power system control:
transmission system scheduling under contingencies, real-time voltage regulation in active
distribution networks, and coordinated transmission and distribution (T&D) system load
restoration during emergency events. Each layer is investigated through a dedicated
contribution, incorporating DRL techniques tailored to the respective operational
requirements and system architectures.

The first contribution introduces a novel adversarial learning-based approach to solving
the CCOPF problem under worst-case N-k contingency conditions. A defender—attacker soft
actor-critic (DA-SAC) framework is proposed, in which two non-cooperative agents—
representing the system operator and an adversarial uncertainty generator—interact within
a reinforcement learning environment. The defender agent learns robust dispatch actions,

while the attacker agent identifies the worst-case contingency scenarios in a discrete action



space. The proposed algorithm embeds constraint violation information directly into the
reward function and employs dual-timescale policy updates to enhance convergence and
learning stability. This approach shifts robust power system operation from static, model-
based optimization to a dynamic, game-theoretic learning paradigm.

The second contribution extends the SCOPF model into a two-stage preventive—corrective
control framework incorporating fast-response virtual power plants (VPPs). The model is
formulated as a constrained Markov decision process (CMDP) and solved using a
Lagrangian-based soft actor-critic (L-SAC) algorithm. Preventive and corrective agents are
trained to minimize pre-contingency risk and post-contingency recovery costs while
satisfying AC power flow constraints. The state-dependent Lagrange multiplier mechanism
enables real-time enforcement of safety constraints without relying on static penalty
parameters. The inclusion of VPPs in the operational framework enhances flexibility and
responsiveness, allowing for dynamic adjustment to unexpected load and generation
fluctuations.

The third contribution focuses on voltage regulation in active distribution networks
(ADNs), where high penetration of inverter-based DERs results in frequent and
unpredictable voltage violations. A hierarchical multi-mode voltage control strategy is
proposed, featuring day-ahead dispatch of on-load tap changers (OLTCs) and capacitor
banks via single-agent RL, and real-time inverter-based control using a multi-agent SAC
(MASAC) algorithm with an embedded attention mechanism. The attention module enables
each agent to prioritize relevant local observations, ensuring stable policy learning even in
large-scale, multi-agent environments. Additionally, the voltage regulation problem is
decomposed into three dynamic operational modes—power loss minimization, under-
voltage mitigation, and over-voltage correction—allowing the system to flexibly respond to
varying operational conditions.

The fourth contribution addresses the real-time coordination of load restoration across
transmission and distribution systems under N-k emergency conditions. A distributed DRL
architecture is proposed, comprising a centralized SAC controller for the transmission

system and a complementary attention-enhanced MASAC controller for the distribution
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system. A VPP is introduced as an aggregator to coordinate distributed DERs and reduce
communication burdens. The hierarchical architecture enables asynchronous but coherent
interaction between system layers, ensuring scalable and rapid recovery under contingency
conditions. The integration of an attention mechanism improves inter-agent coordination
and decision accuracy during system-wide restoration efforts.

Collectively, the four contributions of this thesis form a comprehensive and integrated
framework for enhancing the resilience, adaptability, and operational efficiency of modern
power systems under contingencies and uncertainties. By systematically addressing three
critical aspects—transmission dispatch against worst-case contingencies, dynamic voltage
regulation in active distribution networks, and real-time coordinated restoration across
transmission and distribution systems—this work bridges the gap between traditional
model-based optimization techniques and data-driven, learning-based control approaches.
The proposed reinforcement learning strategies are specifically tailored to overcome key
challenges such as computational delays, model inaccuracies, and coordination
inefficiencies, which have historically limited the practical deployment of robust control
frameworks in real-world systems. Furthermore, by incorporating multi-agent models,
adversarial training mechanisms, and hierarchical decision-making structures, the thesis
lays the foundation for autonomous, decentralized, and scalable control methodologies that
can adapt to evolving system configurations and unforeseen operational scenarios.
Extensive case studies on IEEE 30-bus, 118-bus, and modified distribution systems validate
the effectiveness and generalizability of the methods, laying a strong foundation for the next
generation of learning-augmented decision support systems in modern power networks.
Ultimately, this thesis contributes toward realizing the vision of resilient, sustainable, and
smart grids capable of ensuring security, stability, and flexibility under the transformative

pressures of high renewable integration, decentralization, and digitalization.
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Chapter 1 Introduction

1.1 Background

The secure and stable operation of power systems under uncertain and unexpected
conditions is one of the most critical and fundamental requirements in modern power
systems [1]. With the increasing complexity and interconnection of power systems, ensuring
that both transmission and distribution systems can operate reliably in the presence of
external disturbances has become essential [2]. Power systems are vulnerable to various
uncertainties and contingencies, including extreme weather events, abrupt equipment
failures, cyber-attacks, and human-induced operational errors [3], [4]. These events can
significantly disturb the normal balance between electricity supply and demand, thereby
threatening the integrity of the entire power infrastructure. Particularly, high-impact and
low-probability disruptions can trigger widespread outages, posing threats to social stability,
economic activity, and the stability of essential services [5]. Therefore, maintaining
operational robustness, rapid fault recovery, and adaptive response capacity across the
transmission and distribution layers is crucial to ensuring the reliability of the power supply.
Moreover, with the transition towards low-carbon and renewable energy systems [6], the
ability of these networks to withstand, absorb, and recover from unexpected events has
become not only a reliability issue but also a core component of modern power system
design. The coordinated secure operation of both transmission and distribution systems
under uncertainty must therefore be prioritized in power system research, planning, and real-
time control.

As the primary infrastructure of the power system, the transmission network is responsible
for transporting electricity generated from centralized generation units over long distances
to major consumption regions and distribution networks [7]. Its role in ensuring the large-
scale balance of power and maintaining grid-wide voltage and frequency stability is
indispensable. However, the secure operation of transmission systems has become

increasingly vulnerable to high-impact, low-probability events [3], [4]. These include
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multiple simultaneous equipment failures, line overloads, substation faults, and natural
disasters such as wildfires, floods, or hurricanes. Such incidents are often modeled as N-&
contingencies, reflecting the potential disconnection of multiple transmission elements and
leading to severe congestion, voltage fluctuation, or even cascading blackouts. Due to the
highly interconnected structure of modern transmission systems, a disruption in the network
can result in a widespread outage that impacts large areas of the power system. Traditional
protection and control strategies, although effective in managing localized issues, often lack
the flexibility and speed required to handle large-scale system-wide disturbances [8].
Furthermore, the increasing complexity of market mechanisms and renewable power
injections into transmission networks exacerbates these challenges. As a result, enhancing
the resilience of transmission systems through preventive-corrective scheduling, fast
response reserves, and intelligent decision-making has become a top research priority for
system operators and policymakers worldwide.

In parallel with transmission networks, distribution systems play a vital role in ensuring
the final delivery of electricity to end-users, ranging from residential loads to industrial
customers [9]. Traditionally, distribution systems functioned passively, relying on
predictable single-direction power flows from the transmission level to local loads.
However, this operational model has shifted dramatically with the increasing penetration of
distributed energy resources (DERs), especially renewable sources such as rooftop
photovoltaics and community wind turbines. These resources introduce significant
variability and stochasticity into the distribution system, altering voltage profiles and
disturbing the load-generation balance at the local level [10]. Moreover, many of these
DERs are inverter-based, meaning they lack the inertia that conventional synchronous
generators provide, making the system more sensitive to rapid transients [11]. The
intermittent characteristics of these resources, along with load uncertainty and electric
vehicle (EV) charging behavior, make real-time operation and planning of distribution
networks more complex than ever before. Conventional control devices such as on-load tap
changers (OLTCs) and capacitor banks (CBs) operate on slower time scales and cannot

respond effectively to rapid fluctuations [12]. Consequently, voltage violations, reverse
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power flows, and protection coordination issues have become more prevalent. These
challenges highlight the urgent need for advanced voltage regulation techniques, real-time
DER coordination, and predictive management strategies to ensure secure and reliable
distribution system operation under increasing uncertainty. Given the parallel challenges
facing both transmission and distribution systems, it becomes imperative to consider how
these two subsystems interact — particularly under conditions where disturbances in one
can propagate to the other. This brings us to the critical need for coordinated operation
between transmission and distribution layers.

The need for coordinated operation between transmission and distribution systems has
attracted increasing attention due to the growing complexity and interdependence of modern
power system operations [13]. Historically, transmission and distribution networks were
operated independently, with insufficient real-time interaction [14]. However, the growing
complexity of the power system, characterized by the bidirectional flow of power and
information, requires a fundamental shift in this operational model. Transmission-level
decisions, such as generator redispatch or emergency load shedding, have immediate
impacts on downstream distribution systems, potentially causing voltage instability or
unexpected disconnection of critical DERs and loads. At the same time, distribution
networks are increasingly equipped with controllable DERs and flexible demand-side
resources that can provide support to the bulk power system during contingencies if properly
coordinated. The traditional top-down control approach is no longer sufficient for ensuring
power system stability in such an environment [15]. The absence of synchronized data
exchange, integrated modeling frameworks, and real-time control interfaces between
transmission system operators (TSOs) and distribution system operators (DSOs) creates
significant observability limitations, especially during high-impact events [16]. Achieving
effective transmission and distribution (T&D) system coordination requires advanced
communication infrastructure, shared situational awareness, and jointly optimized control
actions. This coordination is not only essential for improving system resilience but also for
enabling new services such as local energy markets, distributed ancillary services, and

enhanced system restoration capabilities after major disturbances.



The modernization and restructuring of power systems—under the motivation of
decarbonization policies, digital innovation, and widespread electrification—has resulted in
growing operational complexity and uncertainty [17]. Unlike traditional power system
structures where power flowed predictably from large generation plants to passive loads,
the modern power system is a dynamic and interactive system where generation,
consumption, and storage are distributed across all voltage levels [18]. This transformation
challenges the existing planning and operational strategies, particularly when considering
the need to ensure security and reliability under dynamic scenarios. One of the most pressing
issues is the dual exposure to stochastic renewable generation on both the transmission and
distribution sides, coupled with unexpected contingencies such as multiple devices outages,
cyberattack, or natural hazards [19]. These events can induce cascading failures across the
entire power system without effective preventive and corrective control mechanisms.
Previous research has made considerable progress in tackling transmission system security
through contingency-constrained optimal power flow (CCOPF) and security-constrained
economic dispatch. Similarly, in the distribution level, work on local voltage control, DER
capacity regulations, and microgrid resilience has advanced significantly [20]. However,
these efforts are often developed independently and fail to fully capture the range of
interactions between the transmission and distribution network levels. In many real-world
incidents, it has become apparent that local issues in distribution systems—such as reverse
flows, islanding, or sudden DER tripping—can exacerbate transmission-level stresses, and
vice versa [21]. This interdependence necessitates the development of joint resilience
strategies that simultaneously consider operational flexibility, inter-layer uncertainty
interactions, and shared resource utilization. Furthermore, time-scale challenges complicate
coordination. While transmission-level decisions are typically made at slower intervals (e.g.,
5-15 minutes) [22], distribution systems may require fast responsiveness, especially when
integrating fast-reacting DERs and loads [23]. Thus, there is an increasing need for unified
frameworks that bridge these temporal and spatial gaps, enabling the joint optimization of
T&D systems under uncertainty. Such frameworks must integrate robust preventive

planning, real-time corrective actions, and adaptive learning from historical operational data.
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Only by treating the transmission and distribution layers as a single, dynamic, and
interactive system can power system operators effectively respond to the multifaceted
challenges posed by the development of modern power systems.

While emerging technologies such as distributed renewable energy, smart sensors, electric
vehicles, and demand response systems offer tremendous opportunities for power system
modernization, they also result in numerous new operational challenges [24]. One of the
most prominent issues is the spatially dispersed and highly dynamic characteristics of
distributed resources, which lack centralized control and exhibit insufficient communication.
These resources can fluctuate rapidly, making it difficult to forecast aggregate behavior or
respond uniformly during disturbances. In the absence of a centralized control center, the
lack of coordination among decentralized units significantly hinders the power system's
ability to act swiftly in the face of unexpected events. Moreover, the supporting
communication infrastructure is subject to latency, unstable data links, and a lack of
standardized protocols across distributed components, all of which complicate timely and
reliable system coordination [25]. In addition, many DERs participate in power system
operations using inverter-based interfaces that, while fast, are highly sensitive to control
errors and disturbances. Without well-coordinated control strategies, these systems can
worsen power system instabilities. These technical barriers underscore the need for novel
architectures that incorporate real-time communication, hierarchical control, and distributed
intelligence. Designing such architectures is crucial for enabling reliable decision-making
and fast response across both transmission and distribution systems when confronted with
increasing operational uncertainty and complexity.

In response to the increasingly dynamic and uncertain environment in power systems
operation, artificial intelligence—particularly deep reinforcement learning (DRL)—has
emerged as a promising tool for achieving intelligent decision-making [26]. DRL is capable
of addressing the complexity of power system operations due to its ability to learn optimal
control strategies from high-dimensional and stochastic environments. Unlike traditional
optimization approaches that rely on model-based formulations and are computationally

intensive in real-time [27], DRL agents can be trained offline using historical and simulated



data, and then deployed online for fast and adaptive decision-making. This paradigm is
especially valuable when coordinating transmission and distribution resources under
uncertainty, where the need for speed and accuracy is critical. By learning from interaction
with the system environment, DRL algorithms can handle nonlinear, time-dependent
constraints and unknown disturbances. They can make decisions that are adaptive to real-
time system conditions and forward-looking, enabling more robust and flexible operational
strategies [28]. In the context of contingency response, load balancing, or voltage regulation,
DRL-based controllers can outperform conventional control methods or heuristic methods
[29]. Therefore, integrating DRL into the operational framework of power systems has the
potential to enhance resilience, reduce response times, and improve overall system
efficiency, particularly in scenarios where traditional methods are infeasible or too slow.
Alongside intelligent decision-making techniques, the concept of the virtual power plant
(VPP) offers a scalable and practical solution to the challenge of coordinating highly
distributed energy resources [30]. A VPP aggregates diverse DERs—including PV, wind,
battery storage, controllable loads, and electric vehicles—into a single, flexible,
dispatchable entity [31]. Through the use of cloud-based control platforms and advanced
communication technologies, VPPs enable real-time coordination and optimization of
decentralized resources, effectively functioning as a centralized management center for
distributed systems [32]. This capability is crucial for supporting both transmission and
distribution systems during high-impact or uncertain conditions. VPPs enhance operational
visibility, enable aggregated participation in electricity markets, and support ancillary
services such as frequency regulation, ramping, and voltage support. Most importantly,
during contingency scenarios, a well-designed VPP can provide rapid load/generation
rebalancing and contribute to the restoration of affected areas. By establishing bi-directional
communication channels with both TSOs and DSOs, VPPs serve as a bridge between
system-level coordination and local flexibility [33], [34]. This approach not only improves
overall power system resilience but also facilitates the integration of renewable energy and

demand-side resources in a controllable and efficient manner. Therefore, VPPs are expected



to play an increasingly central role in the realization of a smart, flexible, and low-carbon

power system.

1.2 Research Objectives

This thesis aims to enhance the secure and stable operation of power systems under high-
impact contingency events and various uncertainties, which are increasingly frequent due
to the integration of renewable energy and extreme external disturbances. As conventional
optimization and control methods often fall short in providing real-time, scalable, and
adaptive responses to such complex conditions, this work proposes intelligent and robust
control frameworks to fill these gaps. Specifically, the thesis addresses these challenges
from three key perspectives: the transmission system, the distribution system, and the
coordinated operation of transmission and distribution (T&D) systems. For the transmission
system, a DRL-based approach is developed to enhance the robustness of CCOPF solutions
under the worst-case N-k contingencies. In the distribution system, a multi-mode DRL
strategy is introduced to manage fast voltage violations in the presence of DER uncertainties.
Lastly, the thesis presents a reinforcement learning-enhanced T&D coordination scheme to
facilitate intelligent, system-wide response to cascading failures. These contributions aim
to improve operational resilience, situational awareness, and real-time decision-making
across the entire power network. Each of these aspects is explored in detail in the following
sections.
® Robust transmission system operation under N-k contingencies: Power system resilience

and optimal decision-making under contingency scenarios have become central to

ensuring secure operation. Among existing approaches, two-stage decision-making
frameworks such as CCOPF are widely adopted, though they present significant
computational and modeling challenges due to their large-scale, nonconvex, and discrete
decision characteristics. To address this, this thesis proposes a novel DRL-based robust
optimization framework, specifically tailored for CCOPF problems under N-k security
criteria. The method leverages a multi-agent learning architecture that enables the system

operator to identify the worst-case contingency scenarios, thereby enhancing the



robustness of the resulting operational strategy. This DRL-enhanced CCOPF model
improves computational tractability and adaptive response, making it a promising tool for
real-time contingency analysis in large-scale transmission networks. The proposed
method fills an important research gap by integrating Al-based decision-making with
traditional CCOPF, contributing to both the theory and practice of resilient transmission
system operation.

® Multi-mode real-time voltage regulation in active distribution networks: In distribution
systems, real-time operation is increasingly affected by uncertainties such as fluctuating
renewable generation and stochastic load demand behaviors. Conventional devices such
as OLTCs and capacitor banks, operating at slower timescales, are insufficient for
mitigating fast voltage violations. Moreover, single-mode voltage control strategies often
fail to satisfy the complex economic and security constraints associated with voltage and
reactive power margins in active distribution networks (ADNs). To address these
challenges, this thesis develops a two-stage DRL-based multi-modal voltage regulation
strategy. The proposed framework combines fast inverter-based reactive power control
with traditional device coordination, allowing for real-time adaptation to system
uncertainties. The objective is to minimize total power losses while maintaining voltage
profiles within secure limits. By introducing adaptive multi-mode control, the strategy
enhances voltage stability and distribution-level operational efficiency. This study
contributes significantly to the field by offering a scalable, intelligent, and real-time
voltage regulation framework tailored to the dynamics of modern ADNSs.

® Coordinated T&D load restoration under N-k contingencies: Ensuring rapid and
coordinated load recovery in T&D systems under emergency conditions is critical for
maintaining overall power system stability. With the growing presence of active
distribution systems and DERs, there is increasing potential to utilize flexible resources
in the distribution layer to support transmission-level operations. In particular, during
transmission system contingencies, distribution networks can assist in relieving
congestion and mitigating voltage support deficiencies. To achieve this, an effective T&D

coordination strategy must facilitate bidirectional information exchange and joint



decision-making under uncertainty. This thesis introduces a reinforcement learning-based
control strategy for optimizing load restoration during N-k contingency events, leveraging
the flexibility of distribution systems. The proposed framework improves global system
resilience by allowing T&D subsystems to respond jointly and intelligently to critical
disruptions. This contribution is particularly relevant in light of the ongoing transition
toward decentralized and distributed grid architectures, providing a pathway for

integrated emergency response strategies in coupled T&D environments.

1.3 Contributions of the Thesis

This thesis presents four original contributions aimed at improving the resilient operation
of power systems under high-impact contingencies and uncertainties. These contributions
address key limitations in traditional optimization and control methods by integrating
advanced reinforcement learning algorithms, distributed optimization models, and hybrid
control frameworks. Specifically, the proposed solutions tackle challenges in robust
transmission system operation, real-time voltage control in active distribution networks, and
coordinated transmission and distribution system restoration under emergency scenarios.
The technical novelty of this thesis lies in the customized design of DRL algorithms, multi-
agent architectures, and the integration of physical constraints into decision-making
frameworks. Each research effort targets a specific gap in existing literature and collectively
contributes to enhancing the robustness, scalability, and intelligence of modern power
system operation. The main contributions are summarized below.

1) Robust real-time transmission operation via defender-attacker reinforcement learning

® Research gaps: Traditional approaches to solving two-stage robust optimization problems
in power systems, such as CCOPF under contingency constraints, are hindered by their
high computational complexity and difficulty in handling real-time uncertainty. Moreover,
most DRL applications lack a formal structure to model adversarial uncertainty scenarios
dynamically, limiting their effectiveness in ensuring worst-case performance. There is
also a lack of multi-agent formulations that explicitly model adversarial interactions

between decision-makers and uncertainty realizations, especially under nonconvex



constraints such as AC power flow. Thus, there is a pressing need for a DRL framework
that supports real-time, robust, and scalable contingency management in power system
operations.

® Contributions: This study proposes a novel DRL-based method, defender-attacker soft
actor-critic (DA-SAC), to solve robust two-stage optimization problems for real-time
power system operations under uncertainty. The formulation introduces a Markov
decision process (MDP) incorporating two non-cooperative agents: a defender agent (DA)
that generates robust control actions, and an attacker agent (AA) that identifies the worst
contingency scenarios. A model-free entropy-regularized soft actor-critic (SAC)
algorithm is used for the DA in a continuous action space, while a discrete SAC algorithm
is designed for the AA. To stabilize learning, the most recent DA action is used as the
input state for the AA, and a dual-timescale learning rate mechanism is introduced.
Moreover, the degree of constraint violation (DCV) is integrated into the reward function
to enhance the feasibility of the final CCOPF solutions. This adversarial DRL framework
enables efficient, online learning of robust operational strategies, significantly improving
grid reliability during worst-case events.

2) Safe preventive-corrective SCOPF with VPPs under deep reinforcement learning

® Research gaps: Preventive-corrective security-constrained optimal power flow
(PCSCOPF) models have been widely used to manage N-k contingencies. However, most
traditional formulations are limited by their reliance on deterministic scenarios and their
inability to integrate the fast-response capabilities of VPPs. Moreover, the inclusion of
AC power flow constraints, time-dependent dynamics, and cumulative operational costs
increases the complexity and scalability issues of such models. While DRL has emerged
as a promising solution for complex control tasks, its application to two-stage PCSCOPF
problems under uncertainty, particularly with virtual resources, has been limited.
Additionally, existing SAC-based approaches do not explicitly enforce constraint
satisfaction, leading to sub-optimal and potentially infeasible solutions during real-time

operation.
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® Contributions: This study presents a robust DRL-based two-stage PCSCOPF framework
that integrates fast-response VPPs into AC power systems under N-k contingencies. The
proposed approach formulates the problem as a constrained Markov decision process
(CMDP), where two agents, a preventive agent (PA) and a corrective agent (CA), are
designed to minimize unmet demand, constraint violations, and adjustment costs. To
solve this CMDP efficiently, a Lagrangian-based SAC (L-SAC) algorithm is developed.
The algorithm dynamically tunes state-dependent Lagrange multipliers, ensuring both
optimality and constraint satisfaction. This structure captures the full complexity of AC
power flows while maintaining computational efficiency through agent decomposition.
The proposed framework outperforms existing methods in scalability, constraint handling,
and convergence speed, offering a safe and effective control strategy for real-time
preventive-corrective dispatch with VPPs under high-impact contingencies.

3) Multi-mode voltage regulation in active distribution networks using MADRL

® Research gaps: The increasing penetration of rooftop PV and inverter-based DERs
introduces rapid voltage fluctuations in ADNs. Traditional devices such as OLTCs and
capacitor banks operate on slower timescales and are unable to provide adequate voltage
support in real time. Existing voltage control strategies often rely on single-mode
regulation, which fails to account for varying grid conditions such as under-voltage and
over-voltage scenarios. Additionally, most control strategies are either centralized,
incurring high communication burdens, or fully decentralized, lacking coordination.
There is a lack of scalable control architectures that can balance global coordination and
local responsiveness under high-dimensional uncertainties in distribution networks.

® Contributions: This work introduces a two-stage, multi-mode voltage regulation strategy
that coordinates slow-response traditional devices and fast-response PV inverters to
optimize voltage control across timescales. A single-agent DRL algorithm performs day-
ahead control of OLTCs and CBs, while a MADRL algorithm is employed for real-time
local voltage control by distributed PV inverters. Each inverter acts as an agent in a
decentralized framework trained using centralized training with decentralized execution.

An attention mechanism is integrated to allow each agent to focus on reward-relevant

11



information, improving learning efficiency and robustness under communication
constraints. The strategy supports three operating modes, power loss minimization, under-
voltage mitigation, and over-voltage mitigation, enabling dynamic adaptation to network
conditions. The framework reduces energy consumption, enhances voltage stability, and
minimizes communication overhead, providing a scalable and adaptive solution for
voltage regulation in ADNS.

4) Distributed load restoration for T&D systems under N-k contingency

® Research gaps: Traditional load restoration strategies under N-k emergencies often treat
transmission and distribution systems separately, leading to sub-optimal recovery actions.
Moreover, centralized restoration approaches face scalability issues and heavy
communication burdens, particularly in distribution networks with high DER penetration.
The complexity of coordinating DERs during emergencies presents a major challenge.
While VPPs have been proposed as aggregators, their role in coordinated restoration
strategies under uncertainty has not been fully explored. Additionally, there is a need for
learning-based optimization techniques that can manage large-scale dynamic problems
across system layers with real-time performance.

® Contributions: This study proposes a distributed optimization and multi-agent DRL
framework for coordinated load restoration in T&D systems under N-k contingencies.
The transmission and distribution layers are modeled as two coupled MDPs, addressed
by a SAC and a MASAC algorithm, respectively. A VPP serves as an aggregator in the
distribution system, mediating between the DSO and DERs to reduce communication
burdens and facilitate coordinated recovery. To enhance system-wide cooperation, a
complementary attention mechanism is introduced in the MASAC framework, improving
the ability of agents to prioritize relevant information and align decisions with shared
objectives. This complementary attention for MASAC (CMS) structure enables scalable,
communication-efficient, and effective restoration of loads across T&D boundaries. The
proposed approach demonstrates superior performance in terms of convergence speed,
adaptability, and restoration coverage under extreme event conditions, making it highly

applicable to future resilient grid architectures.

12



1.4 Organization of the Thesis

This thesis is organized into seven chapters, as illustrated in Fig. 1.1. The overall structure
reflects the layered approach of this research, which systematically addresses the secure and
resilient operation of power systems under uncertainties and contingencies from three
interconnected perspectives: transmission system operation, distribution system control,
and coordinated T&D system restoration. Each core contribution is aligned with one of these
layers and builds upon a reinforcement learning—based algorithmic framework tailored to

the operational characteristics of each subsystem.

Chapter I:
Introduction of the Thesis
(Background, Objectives, Contributions, Organization)

v

Chapter II:
Literature review of the Thesis
(Resilient Operation of Transmission, Distribution, and
Coordinated Transmission and Distribution Systems)

|
v v

( Resilient Operation of ) ( Resilient Operation of

Transmission System Distribution System

I 3 .

| | )
Chapter III: Chapter IV: : Chapter V: \ : Chapter VI: 1
CCOPF for transmission PCSCOPF for transmission I Online voltage control or : I Load restoration for T&D :
system under N-k contingency system under N-k contingency : distribution system ! : system under N-k contingency :

| |
. ' |
A 4 A 4 | A 4 | : A 4 |
Defender-attacker DRL Two-stage coordination recovery : Two-timescale DRL : 1 ( Complementary multi-agent :
algorlthm framework DRL algorithm framework : algorithm control framework : : DRL algorithm framework :

[ i """"" [ [
Chapter VII:

Conclusions and Future Perspectives

Fig. 1.1 Overall Organization of the Thesis and the Structure of Resilient Power System

Operation Framework.

® Chapter I introduces the thesis background, research motivations, objectives, main
contributions, and the overall organization of the thesis. It outlines the increasing
challenges posed by uncertainties and N-k contingencies in modern power systems

and highlights the need for intelligent, robust, and scalable operational strategies.
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Chapter II presents a comprehensive literature review, categorizing existing works
into three domains: resilient operation of transmission systems, distribution networks,
and coordinated T&D systems. It identifies key research gaps in traditional
optimization-based methods and establishes the rationale for adopting DRL
methodologies.

Chapter III focuses on the resilient operation of transmission systems by addressing
the CCOPF (contingency-constrained optimal power flow) problem under N-k
contingencies. A novel defender—attacker DRL algorithm is proposed, in which a
two-agent adversarial learning structure is developed to identify worst-case
contingencies and derive robust control strategies.

Chapter IV continues with the transmission layer and proposes a two-stage
PCSCOPF model. By leveraging fast-response VPPs and a Lagrangian-based DRL
formulation, the chapter introduces a two-stage coordination recovery DRL
framework that enables safe and adaptive control under complex operational
constraints.

Chapter V transitions to the distribution system, addressing the real-time voltage
regulation problem under renewable energy uncertainty. A two-timescale DRL
control architecture is developed, where traditional devices (OLTCs, CBs) and
inverter-based DERs are coordinated using single-agent and multi-agent learning
mechanisms. A multi-mode voltage control strategy is proposed to balance power
loss minimization and voltage constraint satisfaction.

Chapter VI explores the coordinated operation of transmission and distribution
systems for load restoration under N-k contingencies. A distributed, complementary
multi-agent DRL (MASAC) algorithm is designed to support real-time decision-
making in both TSO and DSO domains. A VPP is employed as an aggregator to
reduce communication burdens and enhance coordination between distributed agents.
Chapter VII concludes the thesis with a summary of key findings, practical
implications, and outlines several promising directions for future work. These include

extending adversarial learning to broader uncertainty models, integrating formal safe-

14



RL techniques, developing plug-and-play multi-agent control architectures, and

validating learning-based restoration strategies in real-time test environments.
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Chapter 2 Literature Review

2.1 Literature Review on Resilient Operation of Power Systems under

Contingencies and Uncertainties

2.1.1 Review of Robust SCOPF for Transmission Network Resilience

The secure operation of transmission systems under uncertain and high-impact
contingency events remains a fundamental challenge in modern power system operation.
To maintain grid stability and avoid cascading failures, SCOPF models have been widely
adopted. Among them, the CCOPF problem plays a central role, especially under N-k
security criteria where multiple simultaneous component failures must be considered. The
primary objective of SCOPF is to determine generation dispatch schedules that satisfy all
operational constraints in both pre-contingency and post-contingency states.

Early efforts on SCOPF modeling focused on deterministic, single-level formulations
under N-1 security assumptions. These models were commonly solved using interior point
methods [35], Newton methods [36], projected sub-gradient algorithms [36], sequential
linear programming [4], and conic programming [4]. Although effective for relatively small
systems, these methods suffer from scalability issues and long convergence times, making
them unsuitable for real-time implementation in large-scale networks [37], [38]. To
accelerate solution times, simplified models such as DC-OPF approximations [39], sparse
tableau formulations[40], and compensation-based approaches [39] have been introduced.
However, while these approximations provide computational benefits, they often result in
solutions that are not AC-feasible and may be suboptimal in terms of system security and
constraint satisfaction.

As power system operation evolves toward resilience-oriented planning, robust
optimization techniques have gained significant attention in CCOPF studies. These
approaches consider the worst-case realization of uncertainties within a predefined

uncertainty set [41], thus enabling system operators to obtain dispatch decisions that remain
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feasible even under extreme conditions. Typically, robust CCOPF models are formulated as
two-stage bi-level [40] or tri-level [42] optimization problems. Decomposition methods
such as Benders decomposition [43] and the column-and-constraint generation (C&CQG)
algorithm [44] are often employed to solve these models. For example, in [43], a robust
nonconvex AC OPF problem is dualized and solved via primal Benders decomposition, with
feasibility and optimality cuts iteratively refined. However, the presence of AC power flow
constraints and numerous mixed-integer variables introduces substantial computational
overhead and convergence challenges [45].

More recently, the SCOPF framework has been expanded to incorporate fast-response
resources, such as VPPs and battery energy storage systems (BESS), to improve operational
flexibility. The inclusion of BESS in CSCOPF models has demonstrated enhanced post-
contingency corrective capabilities [46], [47], although performance depends heavily on
state-of-charge limitations. To overcome this constraint, [48] proposes integrating
controllable loads and DERs within VPPs to support corrective dispatch. Further extensions
include coordinated control schemes for VPPs [49], showing promise in improving power
system robustness under stochastic contingencies. Nonetheless, existing works often focus
solely on post-contingency corrective actions and neglect pre-contingency preventive
strategies or the probabilistic nature of the contingencies [46].

In parallel, researchers have explored DRL as an alternative to traditional optimization
techniques, particularly for real-time OPF solutions. Unlike supervised learning methods,
which require large-scale labeled datasets [50], DRL methods learn directly through
interaction with the environment, thereby enabling adaptive control without explicit system
modeling [51]. Actor-critic structures and policy gradient algorithms such as DDPG and
proximal policy optimization (PPO) have shown strong potential in deriving near-optimal
policies in dynamic and uncertain environments [52]. However, most conventional DRL
methods ignore hard physical constraints (e.g., voltage and thermal limits), and use reward
penalties instead, which leads to difficulties in guaranteeing safety and feasibility during
real-time deployment [53], [54]. Moreover, as the number and scope of system constraints

grow, tuning appropriate penalty parameters becomes increasingly complex [55], and
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convergence to safe solutions is not always ensured [56]. To address these issues, recent
studies have explored CMDPs, projection-based techniques [57], and robust DRL
formulations that incorporate physical constraints more directly. However, the majority of
DRL-based methods are still in early stages of application and require further development
in terms of scalability, training stability, and integration with existing OPF solvers.

In conclusion, existing solution methodologies for SCOPF and CCOPF can be classified
into two main categories: (i) model-based optimization techniques [35], [36],[4], which
provide theoretical guarantees but face difficulties in handling uncertainty, dimensionality,
and real-time constraints, and (i1) model-free learning-based approaches [58], [59], which
offer adaptability and computational speed but often suffer from feasibility and
interpretability issues. While supervised learning approaches require extensive datasets and
retraining for system changes [60], reinforcement learning methods provide a promising
path toward adaptive and robust decision-making. Nevertheless, many existing DRL-based
CCOPF applications focus only on N-1 criteria [35], or ignore system security constraints
entirely [58],[59], limiting their ability to ensure resilience in the face of worst-case
contingencies. Thus, there remains a critical need to develop DRL-based frameworks that
are explicitly tailored for robust SCOPF solutions under N-k security standards, while
maintaining feasibility, adaptability, and computational efficiency in large-scale

transmission systems.

2.1.2 Review of Voltage Control Strategies in Distribution Networks under

Uncertainty

With the increasing penetration of DERs, particularly inverter-based PV systems,
distribution networks are facing unprecedented challenges in maintaining voltage stability.
The intermittent and stochastic nature of DER output introduces significant fluctuations in
local voltage profiles, often leading to both under-voltage and over-voltage violations.
Additionally, the growth of EV charging and flexible loads further increases uncertainty in
distribution system operation. Traditional voltage regulation mechanisms, including OLTCs

OLTCs, shunt capacitors, and voltage regulators, operate at relatively slow timescales and
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are not well-suited to managing rapid fluctuations caused by high-frequency PV variability
[61].

Early research in voltage regulation has predominantly focused on alleviating under-
voltage issues and minimizing power losses. For instance, a deep reinforcement learning
(DRL)-based dispatch strategy was proposed in [62] to mitigate under-voltage problems in
low-voltage distribution systems. Similarly, a P-Q adjustment strategy for PV inverters was
introduced in [63] to provide local voltage support. Although these methods have shown
effectiveness in managing specific voltage issues, most of them operate under a single-mode
control paradigm, which limits their ability to adapt to dynamically varying operational
conditions. In contrast, modern distribution networks often require multi-objective voltage
regulation that can simultaneously address over-voltage, under-voltage, and energy
efficiency concerns.

To improve adaptability, recent works have introduced mode-switching control strategies
for voltage regulation. For example, [64] proposed a scheme for PV inverter control under
unbalanced voltage sag conditions, while [65] explored multi-mode control strategies for
voltage support in high-voltage DC transmission systems. Further, [66] introduced a
voltage-var control (VVC) and conservation voltage reduction (CVR) strategy that switches
between control modes to handle fluctuations and optimize energy consumption. However,
few of these studies simultaneously consider the three major challenges in distribution
networks, over-voltage, under-voltage, and high energy losses, in an integrated and dynamic
regulation framework.

From a control architecture perspective, voltage regulation strategies are generally
categorized as centralized, decentralized, or distributed. Centralized methods require global
system information for real-time decision-making [67], which entails high communication
costs and computation burdens. Moreover, these centralized approaches are typically
limited in their ability to track fast voltage deviations caused by volatile DER output. On
the other hand, decentralized strategies rely solely on local measurements [68], leading to a
lack of system-wide coordination and limited performance under complex network

conditions. To overcome the limitations of both paradigms, distributed voltage regulation
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frameworks have been proposed. These strategies often use two-timescale structures to
coordinate fast inverter-based regulation and slow mechanical control devices. For instance,
[69] developed a two-timescale voltage control strategy for managing smart inverters and
capacitors, while [70] proposed a distributed coordination mechanism that aligns the control
schedules of OLTCs and DERs. A hybrid hierarchical framework was also introduced in
[71] to simultaneously minimize power loss and regulate real-time PV output using both
centralized and distributed elements.

Despite their practical value, most model-based distributed voltage regulation methods
depend heavily on accurate system models and reliable communication infrastructure [72].
However, in reality, the acquisition of real-time topology and system state information is
often constrained by communication bandwidth and measurement accuracy [73]. To
overcome this challenge, data-driven methods based on DRL have emerged as promising
alternatives. These methods learn voltage control policies through interaction with
simulation environments, without requiring detailed system models [74]. An agent-based
volt—var control strategy was proposed in [75] to optimize energy dispatch in integrated
energy systems. Meanwhile, [59] introduced a decentralized voltage control strategy for
active distribution networks using the DDPG algorithm. In [76], a collaborative multi-agent
DDPG framework was developed for volt—var control in the presence of high DER
penetration.

However, many DRL-based strategies, particularly those based on DDPG and its multi-
agent variants, face critical limitations in practice. These include instability during training,
sensitivity to hyperparameter tuning, and performance degradation in high-dimensional
environments with a large number of agents [77]. In particular, the standard multi-agent
deep deterministic policy gradient (MADDPG) algorithm becomes increasingly ineffective
as agent count grows, making it difficult to scale DRL-based voltage control to large
distribution systems.

To address these issues, recent works have attempted to integrate attention mechanisms
into MADRL frameworks to enhance control performance in multi-agent environments.

Such mechanisms allow each agent to selectively focus on relevant local or global
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observations, improving coordination and learning stability. While these methods show
promise, most existing studies have yet to fully incorporate multi-mode voltage regulation
objectives and dynamic adaptation to diverse network conditions. In addition, practical
considerations such as energy efficiency, real-time responsiveness, and communication
constraints remain insufficiently addressed.

In summary, while traditional voltage regulation methods offer valuable foundations, they
fall short in addressing the full range of operational challenges introduced by high DER
penetration and real-time uncertainty. Centralized approaches are often impractical for real-
time control, and decentralized strategies lack coordination. Distributed frameworks
improve scalability but remain heavily reliant on system models and communications.
Reinforcement learning—based methods provide model-free adaptability and fast decision-
making, but their scalability and robustness must be further enhanced. Therefore, there is a
strong research need to develop scalable, stable, and multi-objective DRL-based voltage
regulation strategies that can coordinate both traditional and inverter-based devices across

multiple timescales under uncertainty.

2.1.3 Review on T&D System Coordination for Emergency Load Restoration

The coordinated restoration of loads across T&D systems during large-scale
contingencies has emerged as a critical area of research in power system resilience.
Traditionally, TSOs and DSOs have managed their respective networks independently, with
limited information sharing or control coordination. This lack of integration can lead to
conflicting operational decisions, suboptimal load recovery strategies, and even
exacerbation of system stress during emergencies [78].

Centralized restoration frameworks have been proposed to coordinate T&D system
operation. These approaches typically rely on comprehensive system models and global data
exchange, resulting in significant communication overhead and computational complexity.
In large-scale systems with extensive DER deployment, centralized models become
increasingly impractical due to the combinatorial explosion of variables and the latency

involved in data acquisition and optimization. To mitigate this, distributed optimization
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frameworks have gained popularity for coordinating T&D restoration in emergency
scenarios [79] , [80].

Among distributed optimization techniques, the Lagrangian relaxation method is one of
the most widely used. It allows TSOs and DSOs to solve their respective subproblems
independently, exchanging boundary conditions iteratively. Variants of this method include
the alternating direction method of multipliers [78], analytical target cascading [79],
proximal message passing [80], and mixed-integer boundary-compatible approaches [81].
Other techniques leverage Karush—Kuhn-Tucker (KKT) conditions to facilitate primal—
dual decentralized optimization, enabling distributed solutions for economic dispatch and
AC OPF [82], [83], [84]. For example, Benders decomposition has been applied to
decentralized reactive power dispatch, utilizing transmission-level voltage regulation to
mitigate distribution-level overvoltage conditions [85].

Despite these advances, the majority of distributed coordination frameworks adopt
sequential update mechanisms. In such schemes, each subsystem must solve its local
problem in sequence, based on the latest received boundary conditions. This sequential
dependency significantly limits the scalability and responsiveness of restoration algorithms,
particularly when rapid recovery is required during N-k contingencies. To address this issue,
parallel computing approaches have been proposed to enhance the efficiency of distributed
optimization in T&D coordination. However, these methods often face trade-offs between
convergence speed and solution quality, especially when strict operational constraints are
imposed across system layers.

In addition to optimization-based frameworks, recent research has focused on improving
the responsiveness and scalability of distribution-level restoration using DERs. Strategies
have been developed that utilize distributed generators (DGs) and mobile energy storage to
accelerate localized recovery [86], [87]. For instance, DG scheduling algorithms have been
designed to rapidly match local demand following outages [88]. However, as the penetration
of DERSs increases, the complexity of managing these resources in a coordinated manner

across the entire distribution network also grows [89].
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Traditional centralized scheduling strategies for DERs suffer from high communication
costs, limited scalability, and computational bottlenecks. To alleviate these issues,
decentralized DER coordination schemes have been introduced. These include approaches
based on local terminal measurements [90] or real-time local control without relying on
centralized data [49]. However, such methods either require sophisticated communication
infrastructure or are limited in scope to small-scale or localized restoration tasks. As an
alternative, aggregator-based approaches, such as the VPP concept, have been proposed to
manage large populations of DERs through a hierarchical structure [91]. By serving as an
intermediary between DSOs and DERs, the VPP reduces communication burdens, enhances
controllability, and provides a scalable platform for coordinated response during
emergencies[92], [93]. Despite their advantages, aggregator-driven strategies for
emergency restoration have received limited attention and remain underexplored in current
literature.

Beyond model-based optimization, DRL has been increasingly adopted for real-time
decision-making in complex power system restoration tasks. DRL methods offer the
advantage of learning optimal control policies through interaction with the environment,
without requiring precise system modeling or extensive pre-defined datasets. For example,
a DRL-based SCOPF strategy was proposed in [94] to enhance the robustness of
transmission systems, while a hybrid DRL approach for preventive control under
uncertainty was introduced in [35]. These methods demonstrate the ability of DRL to
replace conventional control logic with adaptive, data-driven strategies that better handle
nonlinear system behavior and uncertain disturbances [95].

MADRL has also been explored for large-scale power system control tasks. For instance,
[96] presented a MADDPG framework for voltage control in transmission systems. While
this framework improves local autonomy, its learning performance degrades in high-
dimensional settings with many agents. To alleviate this issue, attention mechanisms have
been embedded into MADRL algorithms to improve scalability and coordination [97].

However, standard MADRL frameworks often rely heavily on local observations and fail
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to incorporate system-wide information, which limits the agents' ability to optimize a shared
objective function.

In summary, existing literature highlights a clear trajectory toward integrating distributed
optimization and learning-based approaches for T&D coordinated restoration. Model-based
distributed methods are theoretically sound but computationally intensive and hard to scale
for real-time application. DRL-based methods offer adaptive control and reduce reliance on
explicit models, but face challenges related to coordination, information sharing, and
learning stability. Aggregator-driven architectures such as VPPs offer a promising solution
by reducing communication overhead and enabling DER coordination across the
distribution layer. To fully realize resilient T&D restoration, future research must focus on
hybrid frameworks that combine distributed optimization, DRL, and scalable
communication infrastructures to ensure rapid, reliable, and coordinated recovery during

extreme events.
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Chapter 3 Real-time Resilient Power
System Operation with Defender-
Attacker Soft Actor-Critic
Reinforcement Learning

Threatened by weather disasters and operational uncertainties, resilient and economic
decision-making in power systems has garnered significant attention for maintaining system
security. Consequently, formulating operational models has become crucial, particularly
with the adoption of two-stage decision-making frameworks such as contingency-
constrained optimal power flow (CCOPF), a complex, large-scale, nonconvex problem.
This paper introduces a novel robust deep reinforcement learning approach named defender-
attacker soft actor-critic (DA-SAC), tailored for CCOPF with N-k security criteria. Initially,
a specialized Markov decision process (MDP) model is standardized for the nested two-
agent system. The primary agent generates resilient control actions, while the adversarial
agent identifies the worst-contingency scenarios to maximize regulation costs. A power
flow-based best response procedure is developed in a computationally efficient uncertain
environment to minimize load shedding during attack scenarios. To enhance the feasibility
and stability of the foundational soft actor-critic (SAC) algorithm, the degree of constraint
violation (DCV) is introduced along with two-timescale learning rates. The effectiveness of
the proposed DA-SAC algorithm is validated on two benchmark systems, demonstrating its
capability to generate rapid, resilient, and feasible control actions while maintaining stable

learning performance.

3.1 Framework

This work addresses the challenge of real-time resilient power system operation under
uncertain and high-impact N-k contingencies by formulating a two-stage contingency-

constrained optimal power flow (CCOPF) problem. The first stage involves pre-
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contingency planning, where robust control actions are determined to minimize operating
costs while accounting for possible future disruptions. The second stage simulates post-
contingency conditions, evaluating the system's performance under the worst-case scenarios
that result in load shedding, reserve violations, and constraint breaches. This forms a nested
max-min optimization problem in which the inner layer represents the attacker's objective
of maximizing operational losses, while the outer layer seeks to minimize total system cost
and violations. Due to the complexity and nonconvexity of AC power flow equations,
traditional decomposition-based optimization methods are computationally intensive and
unsuitable for real-time applications. Therefore, this work reformulates the CCOPF as a
dynamic decision-making process to enable rapid and robust responses.

To solve this problem efficiently, a novel defender-attacker soft actor-critic (DA-SAC)
algorithm is proposed, grounded in a competitive Markov decision process (MDP)
framework. Two agents are defined: the defender agent (DA), which produces resilient
control strategies under uncertainties, and the attacker agent (AA), which identifies the most
disruptive contingencies to test the robustness of these strategies. The DA uses a continuous
SAC algorithm to generate optimal power dispatch and load shedding actions, while the AA
employs a discrete SAC variant to select attack scenarios. The reward function integrates
operational cost and a normalized degree of constraint violation (DCV) to ensure feasibility
and system security. To stabilize the adversarial learning process, a non-cooperative
strategy is adopted where the DA receives auxiliary information from the AA's Q-values,
improving learning stability and convergence. Additionally, a power flow-based best
response mechanism is integrated into the environment to simulate realistic post-
contingency responses. Experimental validation on IEEE test systems demonstrates that the
proposed DA-SAC framework effectively minimizes unserved energy and constraint

violations, achieving fast, reliable solutions suitable for real-time grid operation.

3.2 Problem Formulation

To ensure continuous operation under uncertain contingencies such as extreme weather

and equipment failures, system operators seek to determine the optimal economic and
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resilient operational strategy with minimal computational burden. Consequently, this
decision-making problem is framed as a two-stage robust optimization model. The goal is
to minimize operating costs in the pre-contingency stage while accounting for the worst-
case scenarios that maximize post-contingency operational losses in the second stage. The

objective function can be expressed as follows:

max,, min_, > [ Y Crar, +Coar, + > Coap,, | +ming Y [ Cop, .+ Y. Coap,, ],

Vi VgeG vdeD vVt VgeG vdeD
(3.1)
where the first three terms represent post-contingency operating costs, and the last two
represent pre-contingency costs. G and D are the sets of generators and power demands,
respectively. The prime symbol () indicates post-contingency variables. p,, and Apg,
denote the active power output from generator g and load shedding from demand d at time
t, respectively.

In the proposed framework, power demands are randomly generated according to their
stochastic profiles. Consequently, power demands can be high, potentially making the
problem infeasible under normal operating conditions. Therefore, load shedding is
considered in the first stage to relax constraints and improve stability. Additional load
shedding, Apj ., which occurs due to contingencies and is referred to as unserved electricity,
is penalized in the second stage with a penalty Cj significantly more significant than Cg.
After a contingency, some generators automatically adjust their outputs to maintain system

stability according to their reserves 1;.. Thus, reserve violations, Argft and Arg,, are

penalized in the objective of the second stage.

Operational constraints for the CCOPF in the pre-contingency stage are defined in (3.2)-
(3.9). Linear constraints (3.2)-(3.8) represent generation capacities, voltage security
constraints, power flow limits, and logical limits of load shedding. pg.:/qg4¢, Vit/0i:, and
Sij¢/Sji,r represent the active/reactive power outputs from generator g, voltage magnitude/

angle at bus 1, and sending/receiving power flow between buses 1 and j, respectively. X,/ X,
denote the minimum/maximum values of parameter X,. P;, 1s the total power demand.
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RD,/RU, are the ramping down/up limits of generator g. Finally, (3.9) represents all non-

convex AC power flow equations, where fF7¢(%) is a nonlinear function [41], [98].

P <p, <P.,Vg.t, (3.2)

0, <4,,<0,.g.t, (3.3)
—RD, <p,, =P, <RU,, Vg1, (3.4)
V,<v, <V,Vit, (3.5)
©,<6,<0,Vit, (3.6)

Sy <85, < S/’Vij’ji’t’ (3.7)
0<Ap,, <F,,Vd,t, (3.8)
[Py85, 1= .0, B, —Ap, ) (3.9)

In the post-contingency stage, the operational constraints consider the attacker's actions,
denoted by u, where the objective is to maximize operational losses in this stage. The
attacker operates within an uncertainty set U. Various forms of uncertainty sets have been
proposed in relevant studies to encompass different electric power system components, such
as generation units, transformers, power lines, and reactive power injections [99].
Additionally, these sets can model extreme storm behaviors with specific time and
geographical constraints [98].

For simplicity, the uncertainty set in this study considers only the availability of
transmission lines and power units. Nevertheless, other uncertainty sets can be integrated

into the proposed approach without modification. Consequently, U is defined as follows:

U= { u € {0, 1}|Zuij’, +Z”g,: <kh;, =1-u; h,, =1-u,, Vi, g,t}
ZT (3.10)

where u;;¢/u,, indicates the attacker status of the component, 1 if it is attacked and 0
otherwise; h;j./hg. represents the availability of the power component. Once the attack
status is realized, the system will try to maintain stability given the robust control actions in

the first stage. Therefore, the post-contingency constraints are defined as
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hg,t (pg,t _rg_,t) S p:g,t S hg,t (pg,t + rg‘tt )) Vg7t7 (3.11)

0<Ar’ < p;g’t —(p,, + rgft), Vg,t,

o< (3.12)
0< A1, S(py, —70) = Py V81, (3.13)

h,Q, <q,, <h,0,,Vgt, (3.14)

~h RD, —(1=h, )P, < p,, —p, <h RU +(1-h, )P, Vg.t, (3.15)
V,<v,, <V,Vit, (3.16)

©,<6,<0,Vit, (3.17)

hy Sy <5, <hy S,V i, (3.18)

0<Ap,, <P, —Ap,,.Vd,t, (3.19)

[Pgir5 1= 7 (PyoViss 000 B = APy, =MDy By o By ) (3.20)

where (3.11) ensures that regulated power outputs comply with generation reserves based
on their availability. The violations in reserves are calculated through (3.12)-(3.13) and
minimized in the objective function (3.1). It is important to note that this work focuses on
solving the two-stage CCOPF problem, so generation reserves are considered predefined
and not optimized in the first stage [42]. However, the proposed model can incorporate
generation reserves in the robust action of DA without additional modifications. Ramping
capacities, voltage magnitudes, and angles are defined in (3.15)-(3.17), respectively.
Depending on the availability of power lines, their flows are restricted by (3.18), and

fPost

additional power shedding is defined in (3.19). Finally, encompasses all nonlinear

AC power flow equations in the post-contingency stage.
The CCOPF model is formulated as a two-stage robust optimization problem to identify
optimal robust control actions while considering the worst-case scenarios under N-k security

criteria. This model can be expressed as follows:

Pre Post

min,, Cost™ + Cost

st. (3.2)—(3.9), 321
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: Post
u € argmax, min , . Cost

st (3.11)=(3.20)

(3.22)

The objectives are defined in (3.1). This model cannot be directly solved with traditional
solvers. It can be reformulated as a single-level problem by introducing optimality and
feasibility cuts for all possible worst-case contingency scenarios. The resulting model can
then be solved using a nonlinear solver. However, this approach results in a high-
dimensional problem with extensive nonconvex constraints, making it challenging to find
an optimal resilient solution for real-time operations. Another approach is to use
decomposition or nested algorithms to handle the large number of contingencies. However,
this method is time-consuming due to the increasing constraints per iteration. In this work,
we employ advanced deep learning technology to solve the problem effectively and quickly,
ensuring high reliability for real-time operation.

However, traditional optimization techniques, such as mixed-integer linear programming
for unit commitment and nonlinear programming for optimal power flow, guarantee strict
adherence to all physical and operational constraints. These methods are particularly
suitable for day-ahead scheduling or planning problems, where solution feasibility and
optimality are of paramount importance, even at the expense of long computation times. In
contrast, deep reinforcement learning (DRL) shifts the heavy computation to the offline
training phase, enabling real-time decision-making with negligible inference cost. This
makes DRL attractive for real-time operation under high uncertainty, such as corrective
dispatch after contingencies or fast voltage regulation with high renewable penetration.
Nevertheless, DRL frameworks may generate unsafe or infeasible control actions if

constraints are not properly embedded, and thus require careful design.

3.3 Methodology

3.3.1 Markov decision process formulation

To apply a reinforcement learning approach, optimization problems or control tasks are
reformulated as a MDP model [50]. In this model, one or more agents interact with an

uncertain environment to gradually improve their control policy through exploration. Unlike
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commonly adopted simple MDP models, which typically involve a single agent [35] or
multiple agents cooperating on the same task [100], this work develops a specialized MDP
for competitive agents. Specifically, the power system operator, DA, aims to minimize
operational costs by implementing robust and resilient control actions a¢ against all
possible contingency scenarios. Conversely, the attacker, AA, seeks to maximize post-
contingency costs by determining the attack action af. To identify the worst contingency
scenario, the predicted actions of the DA should be considered in the state of the AA to
expedite policy exploration. Fig. 3.1 illustrates the interactions between the two agents and
the environment. The DA predicts robust actions based on the latest states of power demands
and renewable energy outputs, denoted as s&. The AA predicts the worst attack given the
predicted action al and other environmental states s&. The environment then generates

rewards for each agent, r2 for the DA and 12 for the AA, along with the new states s,

and sf, 4.

DA-SAC
Attack agent
O

. Environment
Attack action — — _ _ __ _

o » Pre-contingency
t
| Stage

E | Post-contingency |
_________ }I_ Stage B

\.

Fig. 3.1 The developed MDP model for the nested agents.

To formulate the MDP model, the main components of the DA, the AA, and the
environment are defined as follows. The DA generates robust actions a using the control
policy m%(s#) to maximize the cumulative discounted reward YA_,(y)* *rd. Thus, it

can be defined by the tuple (s&, a?, r&,y%, P?%). s represents the input states, including

active and reactive power demands as defined in (3.23). It is important to note that
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renewable energy outputs are considered uncertain in this setting and are therefore included
in P;, with a negative sign. The predicted action a is defined in (3.24), where J, and
Jy are subsets of power buses that include reactive power injections and active power
injections (excluding the slack bus), respectively. Instead of considering all decision
variables from (3.21)-(3.22), the selected actions in (3.24) are controllable and include the
minimum necessary actions to improve learning convergence and stability. The defense
action chosen here is continuous action, as it involves regulating the adjustment of
generators and the load shedding in the demand buses, which is inherently a continuous
action. This paper leverages recent advancements in AC power flow solvers [41], [101] to
derive the full decision vector from this action space. The reward value per time step 12
should reflect the action value taken by the DA. It is defined in (3.25) to include all
operational costs, i.e., pre- and post-contingency costs, and the DCV value of violated
constraints in the two stages. K represents a penalty value. Finally, y¢ is the discount rate
for the cumulative reward, and P? is the transition function, which the reinforcement

learning algorithm will learn.

5! =(P,,.0,,,vd),vt,

(3.23)
a' =, VieT,p,Viel, A, vd)Vt, (3.24)
r! = —Cost™ —Cost™" — K(DCV"™ + DCV™™) (3.25)

In the reward function, two degrees of constraint violation are incorporated to account for
both the pre-contingency and post-contingency system conditions. Specifically, the defense
agent applies its control actions in the pre-contingency stage. Since reinforcement learning
agents may produce unsafe actions that could violate operational constraints, the degree of
constraint violation is explicitly evaluated during the pre-contingency power flow
calculation and included in the reward to discourage infeasible preventive actions. At the
same time, the defense agent’s actions also propagate into the post-contingency
environment, where the system is subjected to the worst contingency scenarios. In this stage,
the resulting system state reflects how the SCOPF solution performs under stressed

conditions, and constraint violations may arise due to line overloads, voltage deviations, or

32



generation limits. Therefore, the degree of constraint violation is also computed in the post-
contingency stage and incorporated into the reward function.

Similarly, the AA is defined by the tuple (s2, aZ, r&, y%, P%). The states sg include active
and reactive power demands as well as the robust action from the pre-contingency stage, as
defined in (3.26). The predicted attack action af is a discrete action space, represented in
(3.27), where G and L are sets of generation units and power lines, respectively. In other
words, the AA selects an attack from a list that considers all possible combinations of
equipment failures according to the adopted security criterion k. In contrast to the defense
action ag, the chosen attack action is a discrete action. This is due to the fact that deciding
to disconnect generators or transmission lines is a binary decision, which makes it
fundamentally discrete in nature. The reward value per time step 72 is defined in (3.28) to

encompass post-contingency costs and the DCV value of violated constraints in the second

stage.
st =(a',P,,.0,,,vd,), 1, (3.26)
af ={1,2,.(G 1+ L)'} v, (3.27)
r'= CAp,, +K-DCV™ ¥d e D (3.28)

This formalism is modeled as a two-player zero-sum MDP with one-sided incomplete
information. In particular, the attacker knows the actions of the operator while the operator
does not. The game proceeds as follows. Initially, a state-reward pair (sq, 79) 1s sampled
from the prior distribution P,. The state s, is publicly observed by both players, while the
attacker observes the operator's action a® € D and chooses action a® € D. Given both
actions, the current state s, transitions to a successor state s;,; according to the transition

model P(s¢41lse, a?, a®). The attacker receives areward R(s&; ad; ad; s&,1); the operator
receives the reward R(sf ;ad; s{fﬂ). The competition results in the operator possessing

incomplete information, requiring it to maintain a belief of enhancing robustness over the
worst contingency scenario. The attacker and the operator aim to minimize operating costs

while maximizing post-contingency operational losses.
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. d a
min_, max _, B[ R(z*,z")], (3.29)

st. (321)-(3.22) (3.30)

To ensure the secure operation of the power system, all constraint violations are
normalized in one number called the degree of constraint violations (DCV) to be included

in the reward function as defined in (3.25) and (3.28). It is defined as

1 [x =X 1 +[x —x 1\,
DCV = |— ol T

where x, collects all uncontrolled constraints in (3.21)-(3.22). The number of constraints
is |X|, with minimum x,, and maximum Xx, limits. These limits are obtained from (3.2)-
(3.8) and (3.11)-(3.19) for DCVP®™ and DCV respectively. [-]* indicates max {0,}.
Finally, ,, is an optional factor to increase the weight of the constraint n» compared with
others.

Because the post-contingency stage can result in disconnected subsystems (zones z)
within the power system, a new procedure is required to calculate rewards and generate new
states in the simulation environment under these disconnections. Recent advances in power
flow (PF) solvers [102] have demonstrated their capability to find fast and robust solutions.
Building on these advances, Algorithm 1 is developed to execute the environment with a

few straightforward steps.

Algorithm 1: Power Flow-based Best Response Procedure

1: Input: s&,a?, v, and.a?.

2: Solve: pre-contingency PF problem with ag and s . Get Cost™
by (3.1) and DCV*™ by (3.31).
3: Apply: attack actions af, update system topology and get B,,Vz.
4: For each zone z:
5: If slack bus k € B,
Solve PF with aZ(z) and sf(z).
Ard = [pr — (pr + 1] A = [k — 1) — pi] ¥, A (2)
= 0.
6: Else if 3g € G;,i € B,,

34



Select a slack bus k, where k = arg maxy ¥ 5eq, A1y +

deQk Arg—

Solve PF with a?(z) and sf(z).
Ard = [pi — (0 + 1] A = [(o — 1) — pic] ™, Apa(2)
= 0.
7: Elseif Ag € G;,i € B,
Apg(2) = Py(2) — Apy(2).
8: Calculate: Cost™ using (3.1), DCV"* using (3.31), r? using
(3.25), T2 using (3.28).

When attack actions af are applied, the system topology changes, grouping the buses
into sets B,, Vz. In some zones, such as those involving lines 5 and 6 in the procedure, the
PF solver updates the active power generation from the slack bus to mitigate the attack.
Power regulation is penalized if it exceeds generator reserves. Conversely, in zones without
generators (as in line 7), the PF solver is unnecessary, and the power demands of that zone
remain unmet.

Considering these dynamics, the environment calculates rewards and generates new states
accordingly. The simulated power system environment accurately reflects the impact of

disconnections and ensures that the power system's response is realistic and robust.

3.3.2 Defender-attacker soft actor-critic DRL algorithm

Traditional model-free DRL algorithms often need help with low sampling efficiency and
weak convergence. While practical, on-policy algorithms like A3C and PPO suffer from
lower sampling efficiency due to their reliance on data directly related to the current policy,
limiting their data utilization scope [103]. On the other hand, off-policy algorithms such as
DDPG utilize a broader data set by sampling from an experience buffer, which can
potentially increase sampling efficiency [104]. However, the increased sampling scope does
not inherently translate to higher efficiency, as both algorithm types must effectively
manage the relevance and diversity of sampled experiences. To address these challenges,

the soft actor-critic (SAC) algorithm, an off-policy method, was proposed to enhance
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sampling efficiency by maximizing both the information entropy of system states and
discounted cumulative rewards, ensuring robust and efficient learning [103]. Meanwhile, to
enhance the operational performance of power systems under pre and post-contingency
stages, a robust DRL algorithm is developed based on the fundamental SAC, namely the
defender-attacker SAC (DA-SAC) algorithm, where two independent policies for DA and
AA are learned in a competitive scenario. Because the action spaces of DA and AA are
continuous and discrete, respectively, the fundamental SAC (continuous) and its modified
version [52] (discrete) are employed in the developed DA-SAC algorithm.
3.3.2.1 SAC algorithm with continuous action space

The prominent features of the SAC algorithm are due to several essential mathematical
and technical techniques. First, the SAC algorithm utilizes a replay buffer to reuse prior
experiences for an off-policy formulation, improving sample utilization efficiency. During
each gradient step, the actor and critic networks are updated based on a mini-batch of prior
experiences sampled from the replay buffer M = [(s,a, 1, s")], where s’ represents the new
states after applying action a.

Second, SAC is the state-of-the-art entropy maximization-based deep reinforcement
learning (DRL) algorithm, where the entropy of the policy is augmented in the policy

objective to balance the exploration process, as shown below [105]:

T-1
7 =argmax E_ Y y'[r—alogz(als)],
= (3.32)

where 7 indicates one trajectory. The policy m(s|a) maps the system's states to control
actions. a represents the entropy temperature, tuning the stochasticity of the optimal policy,
i.e., the weight of the entropy term. y € [0,1) denotes the discounting coefficient.

Third, the SAC algorithm is based on an actor-critic architecture with stochastic actors,
where the optimal maximum entropy policies are updated by alternating between critic
update (policy evaluation) and actor update (policy improvement). The critic network
receives the states and actions and outputs the action value Qg(s,a), where 6 are the

parameters. Using the modified Bellman backup operator, the soft Q-value is given by
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Qo(5,a) = E(gt s1yrn[Te + ¥Ve(s"], where Vi(s) = Eqor|Qo(s, @) — alog(m(als))] is

the soft state-value function.

The proposed model: i) Implements two critic networks with different parameters 6; and
0,, taking their minimum values to avoid overestimation issues [99]. ii) Uses a target
network for each critic with parameters 8; and 8, to improve learning stability [99]. iii)
Neglects the state-value network V,, and uses its exact equivalent.

Thus, in the policy evaluation step, the critics are updated by the following loss function:

Jo(0) = E(s,a,r,w[% (0, (s.a)-(r+710; (sa") —alog(m,(a'|sN})) ] Vie 12},

(3.33)

where ¢ are the parameters of the actor network. a’is the control action predicted from the

latest updated policy 7, given states s’ Note that target networks are smoothly and

periodically updated by

6, =(1-1)0 +16,Vie{l,2}, (3.34)

where 7 is the target update factor. In the policy improvement step, the policy is optimized

to maximize the soft Q-function by minimizing the KL-divergence as [105]:

J (p=E_,, [EM, [05 log(7,(as))—min,,,, le_ (s, a)]], (3.35)

which can be minimized using a reparameterization trick. Given the system states, the policy
is modified to predict the mean and standard deviation of the actions' probability distribution
(spherical Gaussian). Additionally, policy entropy is maximized to enhance the exploration-
exploitation balance and improve learning stability. However, the effectiveness of
exploration and learning stability depends on the entropy temperature, which varies across
different tasks. Consequently, automating entropy adjustment is proposed in [105] by

computing the objective in (35), where H denotes the expected minimum entropy.

J(@)=E, [-alog(z(a|s)-aH] (3.36)

3.3.2.2 SAC algorithm with disrete action space
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The attacker's actions are modeled as discrete to reflect the binary nature of decisions,
such as disconnecting specific transmission lines or generators in the power system, as
defined by the N-k contingency criteria in (3.27). According to statistical theory, a discrete
action A follows a categorical distribution, represented by a probability vector P =
[p1, D2, -, Pk] - The probability of selecting a specific action a* € A is given by
P(a* = a;) = p;, where a; denotes an action in the action space. This distribution enables
the attack agent to assign probabilities to potential actions, facilitating exploration of the
action space and selection of worst-case contingency scenarios based on the learned policy.
This approach ensures the learning process aligns with power system operations while
maintaining computational efficiency and stability during policy training [106]. Modeling
the attacker's policy with a categorical distribution provides a practical framework for
addressing contingencies in CCOPF.

To derive the discrete action-based SAC (DSAC) algorithm, four essential modifications
are required in the SAC algorithm: i) Instead of implementing the policy network with
outputs representing the mean and variance of control actions, DSAC directly predicts the
probability of discrete actions. The softmax function is employed in the output layer to
ensure an accurate probability distribution for the outputs, thereby transforming the policy
space from continuous to discrete. i) Because the expectation of the discrete actions can be

directly calculated from the probability of discrete distributions, the soft state-action

function can be expressed as V;(s) = m, (s)" [30]. The Q-function loss can then be

calculated as follows:

Jy 0)= ]E(S’a”,)NM [% (Qgi (s,a) — (r + 7/{% (s ')T[Qei (s a"Yy—alog(x(a'|s '))] } ))2], Vi,

(3.37)

where 1, (s")" indicates the expectation value of the discrete action; iii) Similarly, the
automating entropy adjustment can be changed to

J(@)=7,(s") [~alog(n(s))~aH], (3.38)

38



Finally, iv) there is no need for the reparameterization trick because the policy predicts

the exact action distribution and the new objective is changed to

J(@)=B, |7, [log(m, (@] s)~min,, ,, 0; (s.a)]] (339

3.3.2.3 Practical implementation of DA-SAC

The DA and AA are constructed within a min-max framework, sharing the same neural
network architecture, except for the policy network, but with independently updated
parameters. Each agent generates different actions and interacts with the same environment
to obtain distinct rewards. The replay buffer M stores their prior experiences and
randomly samples a mini-batch to update the parameters of DA and AA according to (3.32)-

(3.39). The proposed DA-SAC is summarized in Algorithm 2.

Algorithm 2: Defender-Attacker SAC Algorithm

1: Initialize: Defender agent networks (pd, Hl-d, éid, and attacker agent networks
0%, 67, 6f

2: For each episode do

3:  For each time step do

4: a®~m,a( |s? = 5); a%~mpa(- |s® = [a?,s]).

%1% 5" « call Algorithm 1 to execute a<,a®.

5

6: M « M U(s,a%a%r%1r%s").

7:  End For

8 For each gradient step do

9: Sample random N experiences from M.

10: Update soft Q-value parameters Hl-d and 6/ by (3.33) and (3.37).

11: Update policy parameters ¢% and ¢% by (3.35) and (3.39).
12: Adjust temperature a® and a® by (3.36) and (3.38).

13: Update targets A and 67 by (3.34).

14: End For

15: End For

The architecture of the DA-SAC algorithm consists of two sets of networks, as discussed
above. Each set can be represented as shown in Fig. 3.2. It includes the three components:
the actor, critics/targets, and replay buffer. The actor network comprises a fully connected

layer with several hidden layers and outputs a two-dimensional vector that characterizes a
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Gaussian distribution of the predicted control actions. In other words, it maps the states s to

actions V'(u, ). The action determined by the policy 7, (- |s) and the latest state s are

fed into the environment, which produces the reward r and the next state s'. These are then

stored in the replay buffer M.
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Fig. 3.2 Structure of a set of networks in the DA-SAC agent.

In our study, the training of DRL algorithms is primarily conducted in a simulated
environment rather than relying on real-world historical records of equipment failures.
During the early stage of training, experiences are generated through random sampling of
actions. Each action is applied to the environment, where the resulting system state
transition and the corresponding reward value are calculated. These state—action—reward
samples are then stored in the replay buffer to serve as the initial learning experience for the

DRL agent. This simulation-driven setup ensures that the agent can learn from a wide
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variety of contingency scenarios, including rare but severe failures, thereby improving the
robustness of the trained policy.

The critic network predicts the Q-value of the cumulative reward using an output layer
with a single neuron and multiple hidden layers. As previously discussed, the target network
shares the same structure as its associated critic. A mini-batch of N experiences, i.e,

d, 1%, s'}~M, is sampled from the replay buffer to calculate the loss functions

{s,a% a%r
for each critic and the gradient descent for the actor network to update their parameters. The
updating process alternates between collecting prior experiences and updating the
parameters of the actor-critic components until the termination criteria are met, such as
reaching the maximum number of episodes or achieving the local optimal policy.

3.3.2.4 Stability enhancement for noncooperative agents

The DA and AA compete iteratively in the MDP framework to find optimal actions that
maximize their rewards. However, the DA is disadvantaged since the AA can access
additional information from the robust action. The states of the AA are designed to include
the robust action predicted by the DA's policy to ensure the identification of worst-
contingency scenarios, which aligns with practical operation. This essentially forms an
embedded Stackelberg game [107] between the attacker and the defender and helps develop
robust defense mechanisms [108]. These recent studies [109] underline the validity and
necessity of assuming complete information in attackers to realistically prepare and defend
against potential sophisticated attacks on power systems.

To address this issue, this work introduces a noncooperative strategy. This strategy
involves two competitive agents with completely misaligned objectives, where only one
agent has perfect information. The less informed agent receives auxiliary information from
the environment rather than cooperating with its competitor. In this setup, the latest
improvement of the informed agent's policy parameters and the action value function are
transferred to the state of the less informed agent as auxiliary information for the next step.
The action value function evaluates the expected future performance of the informed agent's
action a; under state s;. Consequently, based on the action value function, the less

informed agent (DA) can generate effective actions to compete with the informed agent
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(AA). This approach is underpinned by existing literature on multi-agent systems where the
sharing of strategic information has proven to enhance system robustness and reliability
significantly [110]. This proactive strategy not only improves the robustness of the DA's
solutions but also reinforces the overall resilience of the electrical power systems against a
wide range of threats and disturbances, thereby enhancing reliability and security.

In the proposed setting, the AA agent has two critics with two targets, and the minimum

operator is used to ensure solution stability. The input state for the DA during training is

given by min;e(q z Q@ia (s,a). Therefore, the states of the DA agent can be written as

follows:
[[)d,t-H > Qd,t+l > Vd, 0]9t = 0,

d
Sq= . a _a
! {[ d t+1’Qd,t+1’Vd’mlnle{l,2} Qéi“ (St 4, )]9t >0 (3 40)

Fig. 3.3 illustrates the procedure of the noncooperative strategy within the MDP
framework. In this process, the environment produces immediate rewards (r", r%) and the
next state s’ as a result of the prior actions, which are then stored in the replay buffer. The
informed agent (AA) receives complete information from its state space, whereas the less

informed agent (DA) only has access to limited information.
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Imperfect information games can lead to different learning rate scales and significant
fluctuations while the DA and AA compete during the training process. It can result in
instability, as most actor-critic approaches with explicit parameterization of m are
particularly sensitive to large fluctuations. To enhance the stability and robustness of the
DA, the noncooperative strategy provides auxiliary information to the DA, as defined in
(3.40). This auxiliary information enables the DA to compete effectively with the AA and
generate robust actions against worst-case scenarios during exploration.

This design of the noncooperative strategy ensures that the defense agent is not
persistently placed in a weak or dominated position, which is critical for maintaining its
learning efficiency. While the interaction between the defense agent and the attack agent
may introduce oscillatory dynamics due to their competitive objectives, the use of
noncooperative training prevents these oscillations from becoming excessive or
destabilizing. As a result, the defender—attacker competition converges to a stable learning
process where the defense agent is able to consistently improve its policy, thereby enhancing

the robustness of the overall SCOPF solution under worst-case contingencies.

3.4 Case Study

3.4.1 Experimental Setup

The following experimental results and simulations are programmed using Python
language with Pycharm as an IDE, and the learning process of the multilayer neural
networks in the DRL algorithm is formulated using PyTorch. Numerical tests are
implemented on a computer with Intel 17-10700 CPU and 16 GB of RAM. The
hyperparameters of the SAC algorithm are presented in Table 3.1. The system parameters,
including system topology, generation capacities, and line parameters, are obtained from
PYPOWER. Two test systems, namely IEEE 30-Bus and IEEE 118-Bus, are selected for
this work. Additional modeling data are generalized as follows. Power reserves are set as

rgft =14: = 0.05 X ﬁg,‘v’g, t, penalties of (3.1) are set as Cq = 2 X max,C,, Cy = C; =

C) =5 X Cq, and the violation penalty K in (3.25) and (3.28) is set as 1 x 10°. Finally,

43



power demands are randomly generated, where maximum and minimum values are set at

120% and 80% of the normal operating point in the data set PYPOWER.

Table 3.1 Main hyper-parameters and data setting.

Parameters Value Parameters Value
Optimizer Adam Discount factor 0.99
Critics learning rate le-2 Minibatch size 128
Actor learning rate le-3 Neurons number 512
Target learning rate le-3 Time step 1 hour
Entropy learning rate le-4 Max steps 24 hours
Initial temperature 1 Activation RELU

3.4.2 Training performance of the DA-SAC algorithm

This subsection investigates the training performance of the proposed algorithm with two
advanced DRL algorithms. The first benchmark algorithm, DDPG, struggles with discrete
actions during offline training. To overcome this limitation, we combined the deep Q-
network (DQN) with DDPG, creating the DDPG-DQN algorithm, which effectively
generates discrete actions for AA. The second benchmark, PPO, is an on-policy algorithm
capable of handling both DA and AA actions, termed the PPO-PPO method. An analysis of
the experimental results for the three DRL algorithms reveals that the PPO-based AA and
the SAC-based DA agents demonstrate the best convergence performances in attack and
defense, respectively. To further validate the effectiveness of the proposed DA-SAC
algorithm, a new scheme, SAC-PPO, is introduced, where the DA is trained using SAC and
the AA using PPO. All DRL algorithms were tested on the IEEE 30-bus system using the
same dataset. Ten independent experiments with different initial seeds and training datasets
were conducted for each algorithm to illustrate the DA and AA cumulative reward curves
in Fig. 3.4 under the N-1 criterion. The solid curve represents the average of the ten
experiments. It should be noted that the DA actors (continuous actions) and AA actors

(discrete actions) share identical structures across all algorithms (DDPG, PPO, SAC for DA;
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DQN, PPO, SAC for AA) to ensure a fair comparison based solely on algorithmic
differences.

The proposed algorithm demonstrates noticeable reward oscillations during the initial
1800 steps in Fig. 3.4. This oscillation is due to the stochastic exploration by the nested
agent to fill the replay buffer. The policy network parameters are updated as the agent
interacts with the environment, increasing the reward. After approximately 2000 steps, the
DA-SAC reaches an optimal local solution, where the DA achieves high rewards and
generates robust actions with less than 10 kWh of unserved electricity. However, as the AA
gains an advantage, the reward of the DA quickly drops to 650, and the AA generates the
worst contingency scenario with over 15 kWh of unserved electricity. During steps 2400 to
3600, the noncooperative strategy shifts the stable action-value function from AA to DA,
promoting competition for robust actions against the worst scenarios. As depicted in Fig.
3.4, the reward curve fluctuates significantly from the 3600th to the 6000th step, ultimately
resulting in consistently high cumulative rewards for the DA and low cumulative rewards
for the AA. The proposed DA-SAC algorithm converges after 6000 steps, progressing
through three stages: policy exploration (first 1800 steps), policy training (1800 to 4800
steps), and policy convergence (after 4800 steps). During the first stage, the algorithm
randomly selects actions to collect sufficient initial experience in the replay buffer, resulting
in significant reward fluctuations. As the replay buffer accumulates enough experience, the
policy network learns and updates according to the principles outlined in Algorithm 2. These
sequential updates enable the proposed algorithm to find the optimal policy, resulting in
cumulative reward convergence in the final stage. The SAC-PPO algorithm demonstrates
strong learning capabilities. While its convergence performance for the AA is weaker
compared to the PPO-PPO algorithm, its DA achieves convergence results comparable to
those of the proposed DA-SAC algorithm. This advantage stems from SAC's entropy-based
offline learning strategy, which provides the DA with a learning edge during adversarial
training against the PPO-based AA. However, the interaction between the PPO and SAC
algorithms introduces larger fluctuations in the convergence outcomes of both agents,

compared to other benchmark algorithms. Overall, the results confirm that the proposed
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DA-SAC algorithm outperforms the benchmark DRL algorithms in terms of cumulative
rewards for both DA and AA and demonstrates superior convergence stability compared to
alternative approaches

Furthermore, to demonstrate the superiority of the proposed algorithm, Table 3.2 presents
the average computational results over the last 1e2 episodes across ten independent
experiments for the including unserved electricity, load shedding, and DCV per hour, over
the last 1e2 episodes across ten independent experiments. The performance comparison of
the DA-SAC, DDPG-DQN, PPO-PPO, and SAC-PPO algorithms reveals distinct
differences influenced by their unique optimization strategies. DA-SAC achieves a balanced
performance with an offline computation time of 1807.29 seconds and an online response
time of 152.59 milliseconds. This results in a load shedding of 27.78 kWh, an unserved
electricity of 5.46 kWh, and a degree of constraint violation of 0.0636. This indicates that
DA-SAC effectively manages contingencies by preemptively reducing demand, thus

enhancing system robustness without excessive penalties.
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Table 3.2 Training performance comparison of the different algorithms.

Algorithm CT(s) OT(ms) LS(kWh) UE(kWh) DCV
DA-SAC 1807.29 152.59 27.7811 4.46 0.0636
DDPG-DQN  2048.94 152.59 42.7158 6.83 0.1053
PPO-PPO 1571.14 152.59 66.3634 8.67 0.1703
SAC-PPO 1728.25 152.59 42.2552 4.19 0.0712

CT: Offline computation time; OT: Online response time; LS: Load shedding; UE:
Unserved electricity; DCV: Degree of constraint violation.

In contrast, DDPG-DQN, which has the highest offline computation time of 2048.94
seconds, performs moderately. It has a load shedding of 42.72 kWh, unserved electricity of
6.83 kWh, and a degree of constraint violation of 0.1053. This reflects a reasonable balance
but less efficiency compared to DA-SAC. Despite having the fastest computation times with
1571.14 seconds offline, PPO-PPO exhibits significant load shedding of 66.36 kWh. This
results in the highest unserved electricity of 8.67 kWh and a constraint violation of 0.1703,
suggesting a less optimal approach to maintaining system stability. It should be noted that
all DA's policies have identical structures; therefore, online operating times are the same for
all algorithms. The SAC-PPO algorithm, leveraging SAC's entropy-based strategy,
outperforms the other two benchmarks but still lags behind the proposed DA-SAC. This is

attributed to the increased volatility introduced by the adversarial interaction between its
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DA and AA components. In conclusion, DA-SAC emerges as the most effective algorithm
for generating robust CCOPF solutions, striking a superior balance between computational

efficiency and performance in the face of contingencies.

Table 3.3 Online performance comparison of DA policies based on contingencies

generated by the SAC-based AA.

Algorithm ocC LS(kWh)  UE*(kWh) DCV* TC
DA-SAC 241.23 27.78 4.46 0.0636  488.38
DDPG-DQN  221.86 42.42 11.26 0.1244  826.76
PPO-PPO 201.13 67.01 9.38 0.2115  811.48
SAC-PPO 208.91 43.20 6.24 0.10696  614.27

* Worst cases generated by the same AA learned by DSAC; OC: Operational cost;
LS: Load shedding; UE: Unserved electricity; DCV: Degree of constraint

violation; TC: Total cost.

To evaluate the learned agents further, an additional performance analysis was conducted
to assess their behavior during online operation. A fair comparison was ensured by
excluding the stochastic elements of the policies, such as Gaussian noise in PPO and SAC
or Ornstein-Uhlenbeck process noise in DDPG. All learned DA policies were tested under
the same SAC-based AA, which exhibited the best performance among all AA policies.
Table 3.3 presents the operational costs and loadshedding values for the four algorithms,
where the worst-case contingencies were generated using the SAC-based AA. Metrics such
as unserved electricity and degree of constraint violation were recorded. The results
demonstrate that the proposed DASAC algorithm achieves the lowest total operational costs
and constraint violations, outperforming the benchmark algorithms. Combining these
results with those in Table 3.2 (training performance) confirms that the proposed DA-SAC
excels in both training and online operations, offering a robust and cost effective solution

for CCOPF.
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3.4.3 Training performance in N-k outage contingencies

Table 3.4 presents the numerical results for the abovementioned algorithms under N-2
and N-3 criteria, including operational cost, pre-contingency stage load shedding, unserved
electricity, and DCV. This table shows that the proposed DASAC algorithm outperforms
the other alternative algorithms in terms of CCOPF solution quality. It minimizes total cost,
pre-contingency shedding, and post-contingency unserved power, thanks to the combined
coordination of continuous and discrete SAC. This approach yields an optimal policy by
leveraging auxiliary information that enables DA to generate robust actions against the

worst contingency scenarios.

Table 3.4 Training performance comparison of the proposed and benchmark algorithms

in N-k situation.

Case Algorithm CT(s) OT(ms) LS UE DCV TC

DA-SAC 1961.61 152.59  209.60 1430 0.0640 589.70
N-2  DDPG-DOQN 2341.72 15259 188.95 18.51 0.1062 796.85
PPO-PPO 162093  152.59 206.11 16.22 0.1709 944.71

DA-SAC 2062.01 152.59 19891 17.85 0.0629 644.31
N-3  DDPG-DOQN 2342.55 15259 176.81 27.48 0.1251 942.36
PPO-PPO 1813.16  152.59 184.28 25.05 0.2534 1112.58

OC: Operational cost (k$); LS: load shedding (kWh); UE: Unserved electricity (kWh); DCV:
Degree of constraint violation; CT: Offline computation time; OT: Online response time;
TC: Total cost (k$).

The proposed algorithm exhibits the highest CCOPF solution quality, with an average
improvement of 82.42% and 234.95% in constraint violations compared to the DDPG and
PPO algorithms, respectively. In contrast, DDPG produces the worst CCOPF solutions, with
the highest unserved electricity under N-2 and N-3 situations, due to competition between
the DDPG and DQN algorithms, which fail to find an optimal CCOPF solution. The PPO
algorithm, on the other hand, requires more pre-contingency stage load shedding to reduce

unserved electricity under N-2 and N-3 situations compared to the other two algorithms.
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Furthermore, the PPO-PPO algorithm excels in computational efficiency with the smallest
offline computation time of 1620.93s in the N-2 situation. However, despite these
computational advantages, PPO-PPO suffers from significantly higher load shedding of
81.10 kWh and unserved electricity of 16.22 kWh, leading to the highest total cost 0of 944.71.
While PPO-PPO can quickly compute and respond, its inability to manage robustness
effectively increases penalties from unmet demand and operational constraint violations.
On the other hand, although not the fastest in computation, with 1961.61s in the N-2
scenario, the DA-SAC algorithm strikes a better balance between computational time and
system robustness. DA-SAC achieves a lower load shedding of 31.76 kWh and unserved
electricity of 14.30 kWh, resulting in a total cost of 589.70. In conclusion, the proposed DA-
SAC's nested structure, which allows for more comprehensive planning and contingency
handling, offsets its slower learning times by minimizing the penalties associated with load

shedding and unserved electricity.

3.4.4 Effectiveness of auxiliary information

A numerical comparison between the proposed method and the model is conducted
without considering auxiliary information (woAl) in the training process. The MDP for both
methods is depicted in Fig. 3.5, whereas the cumulative reward of DA and AA is presented
in Fig. 3.6. In the convergence curves 6, the proposed method for the DA shows higher
cumulative rewards, indicating better learning efficiency and more robust performance.
Meanwhile, the AA achieves lower cumulative rewards, reflecting effective mitigation of
adverse actions. Conversely, the woAl method exhibits more fluctuations and lower
cumulative rewards for the defender agent and higher cumulative rewards for the attacker
agent, signaling less effective learning and increased vulnerability. This is mainly caused
by the two learning rate scales caused by the different strategies, as shown in Fig. 3.5,
leading to faster exploration in the AA and significant fluctuations between the DA and AA
reward curves. In contrast, the proposed method leverages the auxiliary information,
allowing DA to compete with AA and stabilize its solution at the 6000th gradient step.

Although both two methods achieve the worst scenario nearly at 2500th gradient step, the
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proposed method leverages the Q. (s;, a;)from AA as auxiliary information to improve the

DA reward after the 2500th gradient step. The high reward of the DA and the lower reward

of the AA indicate that the proposed method learns an optimal policy to compete with AA

and optimize the cumulative reward under the worst contingency scenario. This disparity is

further substantiated by the data in Table 3.5, where proposed method results in significantly

lower load shedding (27.7811 kWh vs. 33.0019 kWh), reduced unserved electric load (6.46

kWh vs. 7.65 kWh), and a lower damage cost value (0.0636 vs. 0.1283), illustrating its

superior performance in maintaining power system stability and reducing operational risks

compared to woAl method.
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Table 3.5 Performance comparison of the different strategies.

Load shedding Unserved electricity DCV
DA-SAC 27.7811 kWh 6.46 kWh 0.0636
woAl 33.0019 kWh 7.65 kWh 0.1283

3.4.5 Performance evaluation

In terms of the solution quality of CCOPF, Figs. 3.7 depict the hourly distribution of
DCVs. Fig. 3.7(a) illustrates the DCV when the DCV penalty is considered in the reward
function (scenario 1), while Fig. 3.7(b) shows the DCV without the DCV penalty (scenario
2). As shown in Fig. 3.7(a), the DCVs are restricted within the upper tolerance value of 0.1
when the DCV penalty is included in the CCOPF operation. Introducing the DCV penalty
incentivizes the DA to avoid violations, minimize total operational costs, and ensure the

minimum degree of constraint violations.
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Fig. 3.7 Distribution of DCV with or without the penalty consideration.

On the other hand, while most of the minimum DCVs in scenario 2 are below the upper
tolerance value, the average DCV exceeds the tolerance limit, especially during peak
electricity demand hours, leading to significant constraint violations. Consequently, the
DCV penalty plays a critical role in maintaining the stability of the power system and

improving the solution quality of CCOPF under contingency scenarios.

3.4.6 Robustness analysis

To evaluate the robustness of the proposed CCOPF solution using the DA-SAC algorithm,
the unserved electricity of the CCOPF and OPF solutions when different transmission lines
are tripped hourly is examined. The corresponding results are presented in Figs. 3.8. As

shown, the CCOPF solution demonstrates superior performance in reducing unserved
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electricity compared to the OPF solution, with a maximum of less than 10kWh of unserved

electricity in the CCOPF solution, as opposed to more than 30kWh in the OPF solution.
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(b) Unserved electricity of the proposed CCOPF

Unserved electricity (kWh)

Time(h)

# of Transmission Line
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Fig. 3.8 Unserved electricity(UE) of the CCOPF or OPF after contingency.

By training the nested agents to compete with each other, the DA-SAC algorithm
generates robust actions for the CCOPF solution against the worst contingency scenarios.
Consequently, when transmission lines are out of service, the CCOPF solution effectively
mitigates the unserved electricity caused by such incidents. In contrast, the OPF solution
struggles to mitigate unserved electricity and maintain solution quality when different
transmission lines are tripped, making it vulnerable to contingencies without a defensive
strategy. Therefore, the DA-SAC algorithm effectively generates robust CCOPF solutions

under contingency scenarios.

54



3.4.6 Computational performance test

To verify the computational performance of the proposed DASAC algorithm, the interior
point optimizer (IPOPT) is utilized as a baseline solver for the CCOPF problem examined
for the IEEE 30-Bus and 118-Bus systems under N-1 criteria. The task can be formulated
as a single-stage optimization problem with an additional N set of constraints. We
considered 100 random profiles of power demands and recorded the average results per time
step. Table 3.6 summarizes the simulation results of the IPOPT and proposed DA-SAC
algorithms in terms of average operation cost, DCV, and computation time. Notably, the
proposed algorithm achieves comparable average operation costs to IPOPT, with
improvements of approximately 0.7% and 0.96% in the IEEE 30-Bus and IEEE 118-Bus
systems, respectively. These values are reliable from an economic perspective. Note that
the RMS value of DCV is below 0.1% of the range of the physical quantities of voltages at
demand buses and line flows under all cases of contingencies. Although the proposed DRL
method results in near-zero violation degrees, this level of violation is acceptable, especially
under the worst contingency scenario, and our future work is to generate zero-DCV
decisions. The average computation times of these two methods differ significantly, with
IPOPT taking 8.624s and 15.087s due to the large number of constraints and variables. The
proposed DRL algorithm requires only 0.153s and 0.841s for the IEEE 30-Bus and IEEE
118-Bus systems, respectively. Due to the simple mathematical operation in predicting
actions through the learned policy, the proposed DRL method is much faster than the IPOPT

method, with nearly 98.22% and 94.4% time savings, respectively, about 56x and 18x

speedup.
Table 3.6 Computational performance.
Method Test system Operation cost DCV Computation time
IPOPT IEEE 30 216.33 0 8.624s
Proposed DRL IEEE 30 217.94 0.0636% 0.153s
IPOPT IEEE 118 4552.27 0 15.087s
Proposed DRL IEEE 118 4596.64 0.0736% 0.841s
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3.5 Summary

This paper proposes a novel robust deep reinforcement learning algorithm, DA-SAC, for
solving the CCOPF problem and generating a robust solution against the worst contingency
scenario while satisfying system constraints. The proposed optimization process has several
unique features: (i) the design of two competitive agents, a DA, and an AA, as nested agents
to obtain robust actions through iterative interaction with the environment; (ii) the inclusion
of DCV penalties in power system operations to ensure the feasibility of the CCOPF
solution; and (iii) the enhancement of stability and robustness in the noncooperative learning
strategy to find optimal CCOPF solutions. Specifically, the DA and AA utilize continuous
and discrete SAC algorithms to generate robust decisions and attack actions.

To evaluate the proposed algorithm, numerical simulations are conducted on IEEE 30-
bus and 118-bus systems. The results demonstrate that the proposed algorithm generates a
robust solution for the CCOPF problem under the worst contingency scenario, achieving
significant time savings compared to other state-of-the-art optimization approaches and
learning techniques.

Although the proposed DRL-based frameworks demonstrate strong empirical
performance in enhancing system resilience, the interpretability of learned policies remains
an important consideration for practical deployment. DRL decisions are often viewed as
opaque, which may reduce operator confidence in automated control. One promising
direction is to conduct sensitivity analysis, for example by examining how agent control
actions shift under variations in distributed energy resource (DER) outputs or load
conditions. Such analysis would help clarify the behavioral patterns of the learned agents
and provide operators with a better understanding of the underlying decision-making
process. In addition, explainable Al techniques could be integrated with DRL to further
enhance transparency and trust. While a detailed sensitivity study is beyond the scope of
this work, this discussion highlights interpretability as a promising avenue for future

research.
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Chapter 4 Robust preventive and
corrective security-constrained OPF for
worst contingencies with the adoption of
VPP: A safe reinforcement learning
approach

The rising frequency of extreme weather events calls for urgent measures to improve the
resilience and reliability of power systems. This paper, therefore, presents a robust
preventive-corrective security-constrained optimal power flow (PCSCOPF) model designed
to strengthen power system reliability during N-£ outages. The model integrates fast-
response virtual power plants (VPPs), dynamically adjusting their injections to mitigate
post-contingency overloads and maintain branch flows within emergency limits.
Additionally, a novel approach combining deep reinforcement learning (DRL) with
Lagrangian relaxation is introduced to efficiently solve the PCSCOPF decision-making
problem. By framing the problem as a constrained Markov decision process (CMDP), the
proposed Lagrangian-based soft actor-critic (L-SAC) algorithm optimizes control actions
while ensuring constraint satisfaction during the exploration process. Extensive
investigations have been conducted on the IEEE 30-bus and 118-bus systems to evaluate

their computational efficiency and reliability.

4.1 Framework

This study aims to tackle the issue of robust PCSCOPF by incorporating the ACPF
constraints and dividing it into PSCOPF and CSCOPF in pre- and post-contingency stages,
respectively. The PSCOPF is responsible for enhancing the robustness of the power system
during the pre-contingency stage; hence, load shedding is implemented to alleviate
constraint violations. The solution to the PSCOPF involves finding a balance between the

amount of load shedding prior to the contingency and the degree of constraint violation
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following the contingency. A min-max optimization problem is specifically formulated to
determine the minimum quantity of load shedding required in the pre-contingency stage,
considering the worst-case contingency scenario. In the CSCOPF problem, power flow may
exceed short-term emergency ratings [111], potentially leading to cascading line outages in
the post-contingency stage. However, due to the limitation of ramping rate constraints and
large inertia, it is hard for conventional generators to respond immediately to contingencies.
Therefore, the introduction of the flexible VPP with the capacity to rapidly dispatch
generation and absorb overflow from the system can quickly restore the power flow back to
the long-term emergency rating. To gain a better understanding of the implementation of

PCSCOPF with VPP involvement in dispatching, a timeline-based illustration is depicted

in Fig. 4.1.
pre-contingency stage post—contingency stage
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Fig. 4.1 Timeline-based illustration of the PCSCOPF implementation.

The process can be effectively delineated into two distinct stages based on the time axis.
The first stage, known as the pre-contingency stage, is resolved through the utilization of
PSCOPF. The load shedding and stochastic contingencies are considered in this stage to
identify a robust action against the worst contingency scenario. Subsequently, the second
stage, referred to as the post-contingency stage, is comprised of two distinct periods: a rapid
short-term emergency period and a gradual long-term emergency period. As indicated in

the figure, the stochastic contingencies lead to transmission lines exceeding their short-term
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emergency rating (FST). However, during the fast short-term period, conventional
generators encounter limitations in their ability to promptly respond owing to the constraints
imposed by their ramping rates and substantial inertia. Thus, VPPs swiftly dispatch their
active and reactive power output, enabling them to discharge or charge power and
effectively bring the branch flow back down with short-term emergency violations.
Throughout the long-term period, VPPs consistently decrease their power output until it
reaches zero, while conventional generators commence the process of redistributing the
power flow within the confines of long-term emergency limits (FLT). By integrating the
two aforementioned stages, a comprehensive framework known as PCSCOPF is established.
This framework ensures the uninterrupted functionality of the power system when
confronted with various contingency scenarios. For clarity and readability, the PSCSOPF
optimization problem is divided into PSCOPF and CSCOPF and defined separately as

follows.
4.2 Problem Formulation

4.2.1 Problem Formulation of PSCOPF

The PSCOPF optimization objective function can be formulated as follows:

ménZ{ z Copy, + z C,Ap,, +r}l%§{ z CSApZ,tﬂ
vt | Vgeg VdeD VSV | vdeD

4.1)
where () Feasible region for primary variables. C;, C; and Cg are operation cost of
generator, load shedding cost, and unserved electricity cost, respectively. pg . is active
power from generator g. Apy, Apg are Load-shedding and unserved electricity of bus d.
Vg€eG, Vd € D, and w € W are generators set, power demand buses, and uncertainty
set.

The first two terms correspond to the operational costs and load shedding penalty during
the pre-contingency stage; the last term pertains to the penalties imposed for unserved
electricity following the occurrence of contingencies. The superscript symbol (o) designates
variables after the contingency event. In this work, power demands are generated randomly

in accordance with their stochastic profiles. Consequently, power demands may be heavy,
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potentially rendering the problem infeasible under normal operating conditions. Hence, load
shedding is incorporated in the first stage to relax constraints and enhance the stability of
the learning process. Furthermore, any additional load shedding that may occur as a result
of a contingency event, also known as unserved electricity, is penalized in the second stage
with a penalty of c¢j.

The operational constraints for PSCOPF during the pre-contingency stage are explicitly
outlined in equations (4.2)-(4.10). Equation (4.2) denotes the set of equality constraints that
pertain to the active and reactive power balance equations. Equation (4.3)-(4.9) represents
the inequality set of constraints encompassing generation capacities, voltage security
constraints, and power flow boundaries. Equation (4.10) defines the operational constraint
governing the behavior of the attacker, which is devised to maximize the constraint violation
and the magnitude of unserved electricity during the post-contingency stage. Different
forms of sets are presented in the previous studies to include different types of electric power
system components, such as generation units, transformers, power lines, and reactive power
injections, or to model extreme storm behavior with additional time and geographical
constraints [112]. In this work, the behavior of the attacker only considers the availability

of the transmission lines and generation units.

[Py 85.0= 80,00, P17 D5 P = Apy ) 4.2)
P <p, <P, Vgt (4.3)
0,<q,,<0,.Yg.1 (4.4)
~RD, <p,,~p,, <RU,, Vgt (4.5)
V,<v, <V, Vit (4.6)
©,<6,<0,Vit (4.7)
Sy <5, 8,5, jit (4.8)
0<Ap, <F,,.Vd.t (4.9)
W= {w e {01 3w, + 2w, Skl =1=w, .1, =1-w, ,Vij, 2.0}
2 — (4.10)
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where s;; is receiving power flow between buses i and j. v;, 6; are voltage

net,L PV,met BESS,net

magnitude/angle at bus i. p ,and p are the consumption from the

» P
network of controllable load in the VPP, PV and BESS generation injected into the network.

By

P, are min/max active power limit of generator. Q4, @, are min/max reactive power

limit of generator. RDy, RU, are ramping up/down limit of generator. V;, V; are min/max

voltage limit of bus. 0, ©; are min/max angle phase limit of bus. S;;, S;; j are min/max

Dijs
power flow limit of line. w;;, w, are attacker status of transmission line #j/ generator g, 1
if it is attacked and 0 otherwise. [;;, l; are availability of the transmission line ij/generator
g.

4.2.2 Problem Formulation of CSCOPF

The CSCOPF optimization problem considering the VPP fast-response control action can

be defined as follows:

man{ Z C,,,Ap, + Z CAD, 5

vVt Vvevpp Vgeg (4.11)
[p;”s;’t] =g (Vl t’est,ptPV nets’ptBESS net,s pneth’Pdt Apd,t _Ap;,t) (412)
n (pgwqgm Sijeo lt) h (4.13)
SAPMLDC
v (4.14)
T e N A N e A .
! max
h (pgt’qgt’ l]t’ 1t> h (416)

where Cp,,, 18 adjustment cost of VPP. Vv € vpp is VPP set. Superscript primes s, /, o
indicate the short-term, long-term emergency period, and occurrence of the contingencies.

In (4.11), the first term of the objective is to minimize VPP adjustments during the short-
term period, and the second term is to minimize the adjustment of generators during the
long-term period. Equations (4.12) and (4.15) are the equality set of constraints,
incorporating the active and reactive power balance equations during short-term and long-

term periods, respectively. Equations (4.13) and (4.16) are the inequality set of constraints,

61



encompassing generation capacities, voltage security constraints, and power flow limits
during short-term and long-term periods, respectively. Equation (4.14) aims at avoiding
unrealistic variations of VPPs, ensuring that their responses remain within reasonable

bounds.

4.2.3 Fast Response Model of VPP

The VPP is introduced to recover quickly and ensure the continuous operation of the
power system in the presence of contingencies. Fig. 4.2 shows the structure of the VPP

profile, which illustrates all internal energy flows between the VPP elements and the power

system.

i VPP profile :
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Fig. 4.2 The structure of the VPP profile.

Constraint (4.17) ensures that the total PV production is equal to the summation of the
directly injected into the power system, the power consumption by the load, and the power
consumption by the BESS during the charging phase. Constraint (4.18) restricts the hourly
production of the PV production during each hour 7. Constraint (4.19) ensures that the total
load consumption is equal to the summation of the load that is directly absorbed from the
power system, the load fed by the PV, and the load fed by the BESS. Constraint (4.20)
ensures that the total BESS production is equal to the summation of the directly injected
into the power system and the power consumption by the load. Similarly, constraint (4.21)
ensures that the total BESS load that is consumed during the charging phase is equal to the
summation of the load directly absorbed from the power system and the load fed by the PV.

Constraints (4.22) restrict the energy generation and consumption of the BESS to their
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discharging and charging limits, respectively, while constraint (4.23) requires that the BESS
may not operate in discharging and charging mode simultaneously in a given hour.

Constraint (4.24) represents the hourly BESS energy balance.

PV ,net PV ,BESS PV,L

p =p/" +p] 2 (4.17)
PV _ pPV
p <P (4.18)
L netl BESS,L PV.L
pbo=p oD (4.19)
tBESS,p .Zp — ptBESS,net + ZBESS,L (4.20)
ptBESS,C .ZL’ :p;let,BESS +p[PV,BESS (4.21)
BESS < BESS . BESS
. SPTn (4.22)
FARV AR (4.23)
SOCBESS ~ {SOCff_SiS +77BESSptBESS,cAt
it BESS BESS,p At/ BESS
SOCl,t—l +pt 77 (424)
where pPett | pPVL  pBESSL are the consumption from the network/ PV/ BESS of

controllable load in the VPP. pBESSP pBESSC are the power production/consumption of the
BESS. x?, x¢ are discharge/charge status of the BESS. pBESS is operation power of the
BESS. pretl pPVL = pBESSL are the consumption from the network/ PV/ BESS of

controllable load in the VPP.

4.2.4 Comprehensive Model of the PCSCOPF with VPP

The presented CSCOPF problem is integrated with the PSCOPF problem, resulting in the
formulation of a min-max optimization framework known as PCSCOPF. This
comprehensive formulation aims to determine the optimal robust control actions by
considering worst-case scenarios based on N-k security criteria. Mathematically, the

PCSCOPF formulation can be expressed as follows:

min} | ¥ C,p,,+ D, Clp,, +r}}€au><[ > CﬁApZ,,ﬂﬂgip[ PIACHLEDY CgApg,,}

Vvt | Vgeg VdeD VdeD Yvevpp Vgeg

(4.25)
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s.t. (4.2)-(4.10), (4.12)-(4.16), (4.19)-(4.24) (4.26)

To surmount this optimization problem, cutting-edge DRL technology is adopted to
effectively address it in a time-efficient manner, facilitating real-time operation with a
heightened level of robustness. In the following section, a CMDP model is introduced,

which encapsulates the problems above into two intelligent agents.

4.2.5 Contingency Filtering Approach

To enhance scalability and reduce the computation time of the PCSCOPF solution, a
contingency filter [47] is employed to filter non-dominated contingencies. In this work, the
contingency filter leverages the constraint violations observed after simulating all
contingencies using a Newton-Raphson power flow program. The contingency filter selects
a critical contingency set, where the scenarios in this set exhibit greater violations compared
to others. Two constraint limits—branch flow and voltage—are considered critical violation
parameters. Consequently, the Pareto set [113] is used to determine the contingency set,

which is defined as:

PS ={w e W| F(w)< F(w)} (4.27)

The corresponding Pareto front is defined as:

PF ={F(W)=[£,(W), ,(0")]| W € PS} (4.28)

where F(w) < F(w") implies that any contingency scenario w € W is dominated by
contingency scenario w' , mathematically, f;(w) < fy(w'),w € W,w' € PS , and
w) < fL,(w"),w € W,w' € PS; fi(w") and f,(w") represent the magnitude of branch
flow and voltage violations under contingency scenario w', respectively. A contingency
scenario belonging to the Pareto front is able to form a critical contingency set. This ensures
that the contingency scenarios w' on the Pareto front result in greater violations than other
scenarios. By eliminating redundant contingencies, the Pareto set-based contingency
filtering approach accelerates the PCSCOPF computation and guarantees the scalability of

the proposed model.
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4.3 Methodology

In accordance with the established framework, the PCSCOPF problem is sequentially
addressed by solving the PSCOPF problem, followed by the CSCOPF problem. The
PSCOPF problem adopts a min-max optimization formulation where the power system
operator engages in competition with an attacker, aiming to identify a robust solution against
contingency scenarios. Therefore, the PSCOPF problem can be standardized as an MDP
with two adversarial agents, which is an important way to build the RL framework. On the
other hand, the CSCOPF problem focuses on generating a resilient solution to restore power
system operation in the presence of contingencies, which can be effectively formulated as
an MDP. Notably, unlike previous study [114], this work addresses the issue of constraint
violation in the MDP framework and formulates the process as a CMDP. The proposed
CMDP framework is employed for decision-making to maximize rewards within the
constraint-satisfying regime. This approach offers enhanced clarity and readability by
separately defining the CMDP within the PSCOPF and CSCOPF domains, which will be

elaborated upon in the subsequent subsection.

4.3.1 CMDP characteristics in preventive agent

In the robust PSCOPF problem, two competitive agents, a defense agent (DA) and an
attack agent (AA), are designed in CMDP as preventive agents (PA). Simultaneously, a
corrective agent (CA) is designed to make sequential decisions during the post-contingency
stage while minimizing the cumulative reward. The elements of those agents are

summarized in Table 4.1.

Table 4.1 Elements of Constraint Markov Decision Process in Different Agents.

) Post-contingency
Pre-contingency stage stage
Elements of CMDP X &
Preventive agent )
Corrective agent
Defense agent | Attack agent
State s? s s¢
Action a? a“ a‘
Reward s r r
Constraint cost function c? - Cce
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Specifically, the state space of DA can be defined as the active and reactive load of each
bus, which is defined in (4.29). The actions of the DA are represented by the active outputs
and voltage magnitudes of the non-slack buses, and load shedding in demand buses, which
can be formulated in (4.30). Noting that, instead of considering all decision variables of
(4.29), the selected actions in (4.30) are controllable and include fewer actions to improve
learning convergence and stability. This paper adopts the recent progress in AC power flow
solvers [52] to extract the full decision vector from this action space. The reward function
of DA is to evaluate the action performance to facilitate the update process of the policy
network, which is defined in (4.31).

s'=(P,.0,).vd

(4.29)
a® :(Vg,pg,Apd),Vg € U(pv),d (4.30)
1 =S Copet XCp,, + Y Cibp, ) Vend (431)

where U(pv) denote the set of PV buses in the generator set. To enhance the robustness of
the PSCOPF solution by identifying the worst-case contingency scenario, it is essential to
incorporate the action of the DA a? into the state of the AA. Consequently, the state space
of the AA is mathematically expressed in (4.32). Meanwhile, the AA is responsible for
attacking transmission lines and generation units. As a result, the action space of the AA is
discrete and can be precisely defined in (4.33). On the other hand, the reward function for

the AA aims to maximize the amount of unserved electricity. This can be formulated in

(4.34).
a d

s*=(P,.0,,a"),d e DP (4.32)

a" =(w,,w, ),Vij,g (4.33)

=S Coaps,,vd (4.34)

In this formulation, the state of the corrective agent is defined in (4.35), which consists of
active, reactive power demands and action of the PA to describe the state of the post-
contingency environment. To quickly determine the corrective action to recover the power

system operation, corrective action a® is defined to determine the adjustment of the output

66



of the VPPs and the generator, as defined in (4.36). The reward function r¢ assesses the

action value taken by the CA, which is defined in (4.37).
s =(Pd ,Qd,ad,aa),d e DP

(4.35)

a‘ = (ApBEssaApnet’LaApg)’ Vg e U(pV),d ebr (4.36)
c _ BESS

r=—(C,00"5 +C,Ap,, ). Ve (4.37)

The interactions between the PA and CA in the environment are depicted in Fig. 4.3. The
PA generates preventive action to address the robust PSCOPF problem, while the CA
predicts corrective actions to efficiently control the VPPs and adjust the generators, ensuring
a swift recovery of power system operations. The environment provides feedback to each
agent in the form of rewards (r?, r%, and r°) and transitions to the next state, thereby
shaping the learning process. Fig. 4.3 visually illustrates these interactions between the
agents and the environment, highlighting their collaborative efforts in achieving the desired

power system performance.
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Fig. 4.3 The developed CMDP model for the PCSCOPF problem.
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4.3.2 Constraint cost function

The CMDP incorporates a cost function that enforces constraints, ensuring that selected
actions must satisfy prescribed conditions at each exploration step. Deviation from these
constraints incurs a substantial penalty imposed by the constraint cost function, impacting
the overall reward. This mechanism drives the CMDP framework to prioritize the
exploration of action policies that adhere to the specified constraints, fostering the selection
of actions that prioritize constraint satisfaction throughout the decision-making process.
Within the CMDP framework, the constraint cost function, as presented in equation (4.38),

quantifies the extent of constraint violation.

+

C:\/ngn([xn—fnlw[)_cn—xn] )

| X | Vx, xn _)—Cn

(4.38)

where x, indicates all uncontrollable variations in PCSCOPF, such as branch flows and

voltage magnitudes at demand buses, with minimum x, and maximum Xx, which are

obtained from (4.2)-(4.6), (4.8)-(4.12). The total number of various is |X|. [-]" denotes
max{0, .} function. In contrast to simply summing the constraint violations with their
varying scales, the proposed constraint cost function normalizes these values before
summation. This normalization step ensures that the constraint violations are treated on an
equal scale, thereby facilitating a more accurate evaluation of the overall constraint violation

degree within the CMDP framework.

4.3.3 Soft Actor-Critic Algorithm for PSCSOPF Problem

The DRL algorithm is responsible for determining the optimal control actions that
maximize the expected cumulative reward. Typically, this is achieved within the actor-critic
framework. However, on-policy approaches like asynchronous advantage actor-critic (A3C)
and PPO algorithms often face challenges related to updating contradictions and efficiency.
In contrast, off-policy algorithms such as DDPG have been introduced to enhance
exploration capability. Nevertheless, DDPG suffers from issues, such as hyper-parameter
sensitivity, which can hinder training performance. In this work, these limitations were

addressed by adopting the off-policy algorithm known as SAC. SAC combines the actor-
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critic framework with entropy maximization to promote exploration and ensure learning
stability. However, this paper highlights a critical issue prevalent in existing DRL
algorithms, wherein the unrestricted ability of the agent to select control actions through
trial and error can lead to violations of operational constraints [115]. Such violations can
result in equipment failures and instability in the power system operation. Therefore, it is
crucial to ensure zero-constraint violations during the RL training process, not only at
convergence but also throughout the exploration and learning phases. To tackle this
challenge, this section introduces the L-SAC algorithm, which effectively manages the
CMDP while operating within a constraint-satisfying regime.

The SAC algorithm trains a stochastic policy to maximize not only the cumulative reward

but also the entropy of the policy, and the policy function 7 can be expressed as follows:

7 =argmax ) E, . [ 7' (r(s,.a)+aH(x(]s,) ]
7 (4.39)

where ¢ is the time step; T denotes a trajectory; 7 is a reward under state s; and action a; «
is an entropy temperature which regulates the stochastic degree of the policy; H(n(*|s¢))
represents the entropy of the policy under state s, The prominent feature of the SAC
algorithm is that the hyperparameter entropy temperature is learned by an automated

entropy adjustment, which is presented in (4.40).

J(@)=E, | -a(logr(als)+H)] (4.40)

where H indicates the target entropy. Based on the maximum entropy framework, the soft

iteration is employed to maximize the objective by alternating between policy estimation

and amendment. Thus, the soft state value function can be defined as:

V(s)=E, [0(s,.a,)—alog(x(a,|s))] @.41)

where the value function Q(s;, a;) estimates the performance of the action a; at state s;.
Since the action space of the PA is hybrid with continuous and discrete action, the soft state

value function in discrete action can be transferred to:

Vis,)= ”(S,)T[Q(St) —alog(7(s,))] (4.42)

69



Consequently, the optimization task is transferred to identify the optimal policy based on

the state-value function V, which is defined as follows:

n =arg max E, [V, (s,)] (4.43)

where D is the minibatch prior sample from the replay buffer. Soft policy iteration is to learn
an optimal maximum entropy policy that alternates between policy evaluation and policy
improvement in the maximum entropy framework. To satisfy large continuous domain
requirements, instead of alternating between the soft policy evaluation and improvement,
the approximator functions are introduced to derive a practical approximation to soft policy

iteration in subsection 4.3.5.

4.3.4 Lagrangian-Based Soft Actor-Critic Algorithm

Automatically turning the Lagrange multipliers for each power constraint during the
exploration process of the DRL algorithm is the key point in limiting the violation of
constraints. In this way, constraints can be imposed on not only expected reward or cost but
also their instantaneous values. In this subsection, the Lagrangian-based SAC algorithm is
formulated in the CMDP. The objective of a CMDP is to select a feasible action to satisfy
all of its necessary constraints within the feasibility budget. Mathematically, the discounted

cumulative constraint within the feasibility budget is of the form:

t=0

T —_—
J*=E {z ],tC(st,at,st+1):| <J.
(4.44)

where J, indicates the upper bound for constraint violation cost. Finally, the goal of a

CMDP is recast as a constrained optimization problem as expressed in (4.45):

T
maxJ’ =FE___ {Z 7’r(st,at,st+l)}

t=0

T —
st. E__ {Z 7'C(s,,a,,s,,, )} <J.

t=0

(4.45)
where JJ is the expected discounted cumulative reward. Therefore, the SAC maximization

task (4.39) in CMDP can be shifted to

7 =argmax E,_ [V (s stE _[Vi(s SVC
gmax £, _,[V.(s,)] oV ()] (4.46)
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where Vf(s;) is the state-value function of constraint violation C; V.=
(1 —=AT)/(1 = 2)C, pertains to the limit for state value associated with the operation
constraint; C, is the maximum violation in each time step. This inequality-constrained

problem can be solved by the Lagrangian relaxation approach, wherein the hard constraint
is relaxed into a soft constraint. Specifically, the Lagrangian function for the CMDP

problem can be written as:

min max E
A>0 V.4

oV O+ AV = E,_p[V(s)D (4.47)

where A is the Lagrange multiplier, and the Lagrangian function can be converted into

L(r,A)=E, | [Vﬁ (St)}”lfc (4.48)

s~y

where V, (s,)=E, [( ¥ (r(s,,a,)—Ac,)+aH(x (s, )))] . In the proposed Lagrangian-

SAC framework, the partitioning of constraints into soft and hard is guided by both power
system operational priorities and algorithmic considerations. From an operational
perspective, hard constraints correspond to safety-critical limits whose violations may
immediately compromise system security, such as transmission line ratings, bus voltage
bounds, and generation capacity limits. These constraints must be strictly satisfied and are
therefore explicitly modeled in the CMDP formulation through Lagrangian multipliers. In
contrast, soft constraints are associated with objectives of economic efficiency or service
quality, such as minimizing active power losses or reducing load shedding costs. Since
occasional deviations in these objectives are tolerable, they are incorporated directly into
the cost function, where they can be traded off against operational costs during optimization.
This partitioning strategy ensures that the algorithm focuses on strictly preserving system
security while maintaining flexibility in optimizing system performance.

Note that as A increases, the solution of (4.45) converges to that of (4.44). However, a
larger A results in a higher penalty for violating the constraint. Therefore, a slower
timescale solution [54] is needed to iteratively update A by gradient descent on the state-

value function and alternate with policy optimization until the constraint is satisfied.

A% =T, [/1" (V. ~E, olV; (Sr)])} (4.49)
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where 77, is the step size for updating A, I, projects A into its logical range [0, A™*].

However, at the beginning of the training process, as the constraints are typically not

satisfied, A will increase to surpass the cost E,_.p[V;(s;)] and focus the optimization on
maximizing Es_.p[V7 (s¢)]. This can result in unstable learning as most actor-critic methods

that have an explicit parameterization of m are especially sensitive to large (swings in)
values. To improve stability, a change of variable ' = log (1) is performed to obtain the
following dual optimization problem (4.47). Therefore, the weight of constraint cost in the

Lagrangian-based state-value function is mitigated.

. E, [V, (s)]+exp(A)V, —E, [V (s)])
min max
20 =z exp(4)+1 (4.50)

In the proposed Lagrangian-SAC algorithm, the stability and feasibility of constraint
handling are achieved through the careful design of the Lagrange multiplier update scheme.
First, stability is maintained through soft updates: as formulated in Eq. (3.49)—(3.50), the
multipliers are updated using a projected gradient descent scheme on a slower timescale
than the policy updates. This mechanism ensures that the values of A gradually converge
rather than oscillate, preventing instability and avoiding over-penalization during the early
stage of training. Second, feasibility is guaranteed in expectation: the multiplier update is
driven by the difference between the allowed violation budget and the observed violation
under the current policy. When constraint violations persist above the threshold, A increases
and shifts the optimization emphasis toward satisfying constraints. Conversely, once the
violations fall within the acceptable region, A stabilizes, allowing the algorithm to continue

optimizing operational costs without compromising feasibility.

4.3.5 Practical implementation in Lagrangian-based SAC algorithm

This subsection presents the structure of the off-policy L-SAC algorithm and provides an
overview of the overall updating procedure of the proposed algorithm. The L-SAC
algorithm implementation comprises the following sets of DNNs: (i) Two critic DNNSs,

characterized by distinct parameters, are employed to accurately represent the value
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function Q(s,a) and mitigate the problem of overestimation. (ii) A safety network, with
parameters 9, is utilized to update the Lagrange multiplier, ensuring the convergence of the
algorithm. (iii) To enhance learning stability, two target networks with parameters are
adopted. These target networks share the same task and construction as the critics,
promoting improved learning efficiency. (iv) The policy, referred to as the actor-network,
utilizes parameters ¢. It accepts environmental states as input and generates a probability
density function, parameterizing a Gaussian distribution for the control action. Fig. 4.4
illustrates the comprehensive workflow of the L-SAC algorithm, depicting the interactions
among the components above and highlighting the necessary loss functions. Further
elaboration on these loss functions can be found in subsequent sections within this
subsection.

The parameters of the networks are updated by performing updates on the critics, actor,
and safety networks using an experience buffer. Firstly, the target networks undergo
periodic and gradual adjustments derived from the relative critics and safety utilizing
equations (4.51) and (4.52) with u € (0,1) [55].

0. = ub, +(1- )0, Vr 451)

‘9: :lulgc +(1—,U)19:,Vl” (4.52)

Secondly, the safety network parameters 9 are updated through the utilization of the loss

function outlined in equation (4.53), where the mini-batch size M is introduced.

1 &1 .
J =—32 a)—c,—0.(s.,a )+11 s
. an_;z[Qgc (s,.a,)—c 0, (s,.a) )+ og(;z (a s ))] sy
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Thirdly, the actor parameters ¢ are updated by employing the policy gradient defined in
equation (5.54). Finally, the critics undergo updates by minimizing the loss function defined

in equation (5.55).

M
EZ$Z( min, _,,, O (sn,an)+/110g(7r(an| s))
" (4.54)
| ¥ . .
J=1r2s [Qa )=, + 2, =0, (5., ) +Alog(7 (a5, )) | vr e 1,2}

=2 (4.55)

The proposed L-SAC algorithm is summarized in Algorithm 3. In each iteration, the
parameters of the networks are updated using stochastic gradient descent. This process
involves performing gradient updates to optimize the network parameters and improve the

algorithm's performance.

Algorithm 3 L-SAC Algorithm

1: Initialize: Preventive agent networks o, Hid , Q.d* , ¢, 8",
and Q“*, corrective agent networks ¢°, 6, and 6’["* , and
safety network 9

2: For each episode do

3: For each time step do

4 a’ ~ 7T (-‘sd =5).

> o Cls* =la’,sD).

6: =[a’,a",s"]).

7 Apply a’, a“,and «° ineq. (4.25) and observe r?, r,

c

r¢, s',andc.

[oe]

R« Ru(s,ad,a“,ac,rd,r“,rc,c,s’)
9: End For
10: For each gradient step do
11: Sample random mini-batch N experiences from R
12: Update soft Q-value parameters &°, 6, and 6° using (4.55)
13: Update policy parameters ¢°, ¢°,and ¢° using (4.54)
14: Update safety network parameter ¢ using (4.53)
15: Adjust temperature o, a“,and «° using (4.40)
16:  Update targets 87, 8, 6" ,and & using (4.51)-(4.52)
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4.4 Case Study

4.4.1 Experiment Setting

In this section, the formulated CMDP model and the proposed DRL solution approach are
evaluated by examining two test systems, IEEE 30-bus and IEEE 118-bus. The system
parameters, including system topology, generation capacities, and line parameters, are
directly handled in its standard format as in PYPOWER. The numerical results listed below
are conducted on a computer with an Intel i7-10700 CPU and 16 GB of RAM. The
hyperparameters of the SAC algorithm are presented in Table 4.2. Additional modeling data
are generalized as follows. Load shedding penalties of Eq. (4.25) are set as C, =10xC,
and C; =100xC, . The PV generation profile data are from pvoutput.org, whose generation
power capacity is 6 kW, and the BESS power/energy capacity is 10 kW/30 kWh. Finally,
power demands are randomly generated, where maximum and minimum values are set at
120% and 80% of the normal operating point in the data set PYPOWER. The response time
(2 - t1 as shown in Fig. 4.1) and ramping time (¢3 — £2 ) of the generators are assumed to be

5 and 10 min, respectively.

Table 4.2 Main Hyper-Parameters and Data Setting.

Parameters Value | Parameters Value
Optimizer Adam | Activation RELU
Actor learning rate le-3 | Critics learning rate le-2

Entropy learning rate le-4 | Targets learning rate  le-3

Discount factor 0.99 | Initial temperature 1
Neurons number 512 | Time step 1
Max steps 24 | Minibatch size 128

4.4.2 Case 1: 30-Bus System

The modified IEEE 30-bus system is used to test the proposed algorithm. This system has

30 buses, six generators, 41 branches, and 24 loads. Six VPPs are connected at buses 4, 7,
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10, 15, 24, and 30. The maximum allowed adjustment of long-term branch flow than the

continuous ratings is 1.2.
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Fig. 4.5 Convergence performance of the proposed and benchmark algorithms (a) reward

of the DA; (b) reward of the AA; (c) reward of the CA; (d) constraint penalty.

In this subsection, the training performance comparison of the proposed algorithm with
two state-of-the-art DRL algorithms is investigated. The first benchmark algorithm, DDPG,
performs offline training but struggles to handle discrete action spaces. To overcome this
limitation, the deep Q-network (DQN) is introduced to combine with DDPG to form the
DDPG-DQN algorithm, which generates the discrete action for AA. The second benchmark
algorithm, PPO, is an on-policy algorithm. The PPO algorithm is responsible for generating
action for PA and CA and is referred to as the PPO-PPO method. All DRL algorithms are
implemented in the IEEE 30-bus system with the same data set. Ten independent experiment
results of each algorithm with different initial seeds and training datasets are collected to
depict the DA, AA, and CA cumulative reward curves in Figs. 4.5 (a), (b), and (c) under the

N-1 criterion. Fig. 4.5 (d) demonstrates the degree of constraint violations and the soft

77



update in the penalty A per episode. It is worth noting that in Fig. 4.5, the solid curve in each
algorithm represents the average value of ten experiments, while the light-colored shadow
area is bounded by the minimum and maximum rewards obtained over ten experiments.

It is observed from Figs. 4.5 (a), (b), and (c) that the proposed algorithm exhibits
significant oscillations in reward during the first ten episodes as the SAC agent
stochastically explores to fill the replay buffer. After the first ten episodes, the reward of the
DA begins decreasing as the reward of the AA increases. Nevertheless, this situation is
reversed when the DA updates robust action against the attack and improves the reward
after the 50™ episode. In the end, the reward of the DA continues to grow and reaches
2.8x10* This is owing to the DA policy learned from the prior experience to generate
optimal action against the AA. As seen in Fig. 4.5 (d), the power system generates a high
degree of violation in the first ten episodes. This is mainly because the Lagrange multiplier
A starts with a low value, 0, and the updating process of the network begins after filling
enough prior experience in the replay buffer. However, the dramatic increase in the penalty
value encourages the agent to find feasible control decisions and reduce the degree of the
constraint violation during 10 - 50 episodes. Then, the agent changes its focus from avoiding
violations to minimizing the total operation costs while guaranteeing the minimum violation
degree, and the penalty value moves to its saturation value. Therefore, the safety network
generates small violation degrees and encourages a reduction in the penalty value. Based on
the results presented in Fig. 4.5, the DDPG algorithm fails to learn a good policy for the DA
and CA to achieve a steady reward, and there are big fluctuations in the cumulative reward
of the AA as well. On the other hand, PPO demonstrates considerable fluctuation in the
start-up training phase, with the reward of DA decreasing due to the increased reward of the
AA. Numerical results show that the proposed algorithm outperforms the benchmark DRL
algorithms in terms of the cumulative reward of the DA and AA and exhibits better
convergence.

Furthermore, to further demonstrate the superiority of the proposed algorithm, Table
4.3 illustrates the numeric results for the aforementioned algorithms under N-1, N-2, and N-

3 criteria, wherein the operational cost, pre-contingency stage load shedding, unserved
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electricity, short-term and long-term adjustment are included in each hour, over the last 100
episodes over ten independent experiments. Additionally, the computation time of each

DRL algorithm is presented to compare the training efficiency of the algorithm.

Table 4.3 Computational Results of the Proposed and Benchmark Algorithm for the N-k

PCSCOPF Problem.

Method oC LS UE ST LT CT

L-SAC [293.73 29.52 733 121.19 179.29 1850.58
N-1 [DDPG-DQN| 297.54 28.28 12.60 140.93 224.52 2172.39
PPO-PPO | 27544 4991 9.351 102.11 236.04 2059.36
L-SAC |271.93 47.82 28.19 149.09 239.87 1902.71
N-2 DDPG-DQN| 260.12 51.43 27.64 103.83 218.53 2341.72
PPO-PPO | 254.84 5592 17.08 127.99 184.72 2252.45
L-SAC |[245.95 64.62 30.19 154.70 239.58 2143.00
N-3 IDDPG-DQN| 247.80 59.46 32.27 134.22 228.79 2466.21
PPO-PPO | 271.93 47.82 28.19 149.09 239.87 2477.67

OC: Operational cost; LS: Load shedding (Unit: MW); UE: Unserved electricity (Unit:
MW); ST: Short-term corrective adjustment (Unit: MW); LT: Long-term corrective

adjustment (Unit: MW); CT: Computation time (Unit: s).

As shown in this table, the proposed L-SAC algorithm outperforms the other alternative
algorithms in terms of the CCOPF solution quality. The proposed algorithm attains the
minimum total cost with the lowest pre-contingency load shedding and post-contingency
unserved electricity, which is achieved through the coordination of the continuous action
SAC and discrete SAC. Simultaneously, the proposed L-SAC generates an optimal policy
to reduce the adjustment of the VPP and the generators after the contingencies to redispatch
the power system. Additionally, the proposed L-SAC algorithm outperforms both DDPG
and PPO in terms of computation time. This is obvious because the proposed L-SAC
algorithm inherits such an advantage from the traditional SAC algorithm. Therefore, the
proposed algorithm demonstrates an advantage in training efficiency, with an average of

18.51% and 15.09% time savings compared to the DDPG and PPO algorithms, respectively.
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Table 4.4 Corrective Actions in Different Contingencies Scenario (Unit: MW).
L10 L36 L25
Pypr | -29.62  -29.96 -12.69
Pyp2 | -29.80  -29.88 -21.12
Short | Pyyps 8.54 2429 1532
term Puyps | 2922 2836  6.01
Pupps 4.11 20.26  0.31
Puyps | 1990  -11.30 11.60
AP | -36.17 -141 -21.11
APg> | -54.15 -55.23 -10.51
Long | APg; | 29.11  27.41 3.58
term | APgs | 1856  -4.51  14.75
APgs | 16.03  10.73 2.11
APgs | 2527 23.81 10.77
DCV 0.6043 0.3371 0.2070

Table 4.4 demonstrates the corrective control actions during short- and long-term
emergency periods when part transmission lines are disconnected. The stochastic
contingencies will cause overflow in the power system, which results in constraints
violation during the post-contingencies stage. These corrective actions are provided by the
VPPs immediately to remedy the branch flow above their short-term emergency rating after
each contingency and the long-term generation adjustment for the same contingencies. This
demonstrates that, after solving the pre-contingency problems of the PSCOPF, suitable

corrective actions by the VPPs and generators are required to relieve overloads.

4.4.3 Case 2: 118-Bus System

The scalability of the proposed CCOPF is tested on the modified IEEE 118-bus system.
This system has 118 buses, 54 generators, 186 branches, and 99 loads. Six VPPs are
connected at buses 5, 30, 37, 64, 82, and 94. The maximum allowed adjustment of long-
term branch flow compared to the continuous ratings is 1.2. The convergence curves of the

cumulative reward of the DA, AA, and CA based on different DRL algorithms for the IEEE
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118-bus system in the N-1 criterion are presented in Figs. 4.6 (a), (b), and (¢). Fig. 4.6 (d)
demonstrates the degree of constraint violations and the soft update in the penalty A per
episode. Similarly, the solid curve in each algorithm corresponds to the average value of ten
independent experiments, and the light-colored shadow area is bounded by the minimum

and maximum rewards over the experiments.
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Fig. 4.6 Convergence performance of the proposed and benchmark algorithms based on

the IEEE 118-bus system (a) reward of the DA; (b) reward of the AA; (c) reward of the CA;

(d) constraint penalty.

As shown in the figures, the training process of the proposed algorithm can be divided
into three continuous stages: policy exploration (first ten episodes), policy training (from 10
to 150 episodes), and policy convergence (after 150 episodes). During the initial stage, the
proposed algorithm collects initial experiences, which demonstrate slight fluctuations in the
cumulative reward of DA and AA. With the training process preceding, DA and AA start
to learn the optimum policy and generate satisfactory actions to compete with each other.

Therefore, the cumulative rewards of DA and AA exhibit significant fluctuations during this
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stage. The competition facilitates DA in generating robust action against the worst
contingency scenario. Hence, the cumulative reward of the proposed algorithm converges
to minimize operational costs. On the other hand, the PPO algorithm demonstrates fast
update progress in the cumulative reward of AA, but the cumulative reward of DA suffers
from obvious competition from AA. Even after the training process ends, the cumulative
reward for the DA is at a lower level. DDPG-DQN provides AA with a gradually growing
cumulative reward due to DQN's on-policy training. However, when the replay buffer of
the DDPG algorithm stores enough prior experience, the cumulative reward of DA starts to
rise.

Table 4.5 Computational Results based on the IEEE 118-Bus System.
Method OoC LS UE ST LT CT

L-SAC |4715.23 109.88 28.61 79.93 426.16 6946.48
N-1 DDPG-DQN|4614.75 214.04 33.92 88.17 557.43 8157.34
PPO-PPO [4919.29 108.42 35.42 130.34 465.94 7966.76
L-SAC [4768.45 133.19 34.19 119.98 486.07 7210.43
N-2 DDPG-DQN#544.411235.15 44.63 84.07 512.80 8537.56
PPO-PPO |4871.24 137.42 42.10 144.70 494.32 8014.78
L-SAC [4628.78 213.33 41.20 141.97 525.97 7679.51
N-3 [DDPG-DQN|4400.83 294.62 49.46 86.26 599.54 8849.11
PPO-PPO [4744.89 221.09 52.11 159.0 53236 8511.75

To demonstrate the superiority of the proposed algorithm, Table 4.5 illustrates the detailed
computational results of different DRL algorithms in the N-k security criterion in the IEEE
118-bus system. The table includes key performance metrics such as operational cost, load
shedding, unserved electricity, computation time, and total cost. Although the solutions of
the proposed algorithm result in a high operational cost, they outperform the two benchmark
algorithms in terms of load shedding and unserved electricity under different N-k
contingency scenarios. Meanwhile, the proposed algorithm demonstrates high sample
efficiency and requires less computation time to train the PCSCOPF problem while

curtailing fewer pre-contingency load shedding to reduce unserved electricity. As a result,
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the total cost of the solution generated by the L-SAC algorithm is the lowest, with an average
improvement of 17.02% and 12.23% compared to the DDPG and PPO algorithms,

respectively.

4.4.4 Case 3: Robustness Effectiveness of the PCSCOPF model
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Fig. 4.7 (a) Unserved electricity in the proposed method and (b) in the OPF method.

The stochastic contingencies will cause not only constraint violation but also unserved
electricity on demand buses. The subsection verified the effectiveness of the preventive
action in enhancing the robustness of the power system. Fig. 4.7 demonstrates the unserved
electricity of the PCSCOPF solution and the OPF solution when different transmission lines
are out of service hourly. As shown in the figures, the PCSCOPF solution exhibits superior
performance in reducing unserved electricity as compared to the OPF solution, with less
than 10kWh maximum unserved electricity in the PCSCOPF solution compared to more

than 30kWh in the OPF solution. The L-SAC algorithm, by training the defense and attack
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agents to compete with each other in the pre-contingency stage, can generate robust actions
for the PCSCOPF solution against the worst contingency scenarios. Therefore, when the
transmission lines are out of service, the PCSCOPF solution can effectively mitigate the
unserved electricity caused by attacks. On the contrary, the OPF solution struggles to
mitigate the unserved electricity and maintain solution quality when different transmission
lines are tripped, leaving it vulnerable to contingencies without a defensive strategy. Hence,
the L-SAC algorithm is effective in generating robust PCSCOPF solutions under

contingency scenarios.

4.4.5 Case 4: Soft Update of Lagrange multiplier

The power system is the most important infrastructure, and it must be ensured that any
decision taken is safe and does not violate any crucial operating constraints. However, the
stochastic contingencies will cause significant constraint violations. Numerical comparisons
of the security effectiveness of the soft update of the Lagrange multiplier with the existing
methods of optimal power flow, PSCOPF, PSCOPF methods, and the fixed penalty methods
in the IEEE 30-bus and IEEE 118-bus systems are conducted. Fig. 4.8 (a) demonstrates the
operation cost of the IEEE 30-bus system under the N-1 contingency scenario, and the
degree of constraints violation will multiply by 1x10* as part of the operation cost. Fig. 4.8
(b) illustrates the cumulative constraint violation degree of the five methods. It should be
noticed that the solid curve in each method represents the average value of ten experiments,
while the light-colored shadow area is bounded by the minimum and maximum values
obtained over ten experiments. The OPF and PSCOPF generate more conservative decisions
than the proposed method because of the lack of safe action in the post-contingency stage
to avoid violations. As indicated by the figures, the PCSCOPF provides high reward values
because the agent focuses on the operational costs, neglecting the low values of penalty
terms. However, it suffers from high values of constraint violations. It generates unsafe
actions during the training process, resulting in an unpromising method for the power

system operation. The degree of constraint violation is low when setting the A=1000.
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However, its operation cost suffers from big fluctuation due to the unstable degree of

constraint violation.
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performance of the proposed safety method.

To investigate the feasibility of the five methods after the stochastic contingency, the
numerical data of the last 100 episodes, i.e., 2400 time steps, are collected. Table 4.6
presents the statistical results of the five methods in the security action and the cumulative
DCV over the 2400 time steps. The Scur (%) is defined in (4.56), where the limitation of
the DCV, C,, is set as 0.05 in the IEEE 30-bus system and 1 in the IEEE 118-bus system.
From the table, it is obvious that the proposed method outperforms both existing methods
and the fixed penalty method by predicting high-quality nonconservative control actions,

promoting safety and economical operation.
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Table 4.6 Security Performance of Different Safety OPF Methods.
IEEE 30-Bus system IEEE 118-Bus system
Method
Scur (%) Cumulative C; Scur (%) Cumulative C;

OPF 29.9% 248.2038 16.6% 1050.26
PSCOPF 37.0% 147.3566 32.5% 918.69
PCSCOPF 68.9% 114.7575 50.0% 836.09
A=1000 79.1% 87.2114 71.9% 609.82

Proposed 99.99% 0.4424 99.78% 18.44

4.4.6 Case 5: Demand Response Programs Analysis

Demand response programs (DRPs) contributes to the power system by offering a flexible
model that can enhance both the security and economic performance of the SCOPOF model
[47]. This subsection discusses the simulation results of the proposed method for handling
DRPs on the IEEE 30-bus system. Four different time-based DRP scenarios—flat rates,
time of use (TOU), real-time pricing (RTP), and critical peak pricing (CPP)—are considered
to evaluate their performance in terms of operational costs, total load shedding, and the
peak-to-valley ratio (PVR) of demand. Furthermore, an economic model for DRPs is
introduced to simulate the economic behavior of responsive loads, with their corresponding
electricity tariff ratios provided in [47]. Based on the four different DRP scenarios, Fig. 4.9
illustrates their daily demand curves based on demand ratios in [47].

Based on the load demand from Fig. 4.9, the safe RL method solves the PCSCOPF
problem for each of the four DRP scenarios, with the hourly load shedding for each scenario
shown in Fig. 4.10. In the flat rate scenario, which remains constant throughout the day,
load shedding is relatively stable, reflecting the absence of price incentives to shift demand.
In contrast, TOU pricing leads to more dynamic load shedding, with reduced shedding
during cheaper peak hours (1-9) and increased shedding during more expensive off-peak

and valley periods (10-24). RTP and CPP demonstrate greater responsiveness, with
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significantly higher load shedding during periods of elevated pricing, especially between
hours 20-22 when RTP and CPP prices spike. These two schemes show the system's
sensitivity to real-time or critical price changes, leading to the highest load shedding during
peak price periods. Overall, while the flat rate results in a uniform shedding pattern, TOU,
RTP, and CPP pricing strategies encourage more targeted load reductions, with RTP and

CPP proving most effective during critical peak times.
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Fig. 4.9 Power demand curve based on four different scenarios.
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Fig. 4.10 Load shedding based on four different scenarios.

Table 4.7 evaluates the performance of power systems under four DRP scenarios based
on the safe RL solution for the PCSCOPF model. The results highlight that dynamic pricing
schemes, such as RTP and TOU, generally outperform flat rate and CPP across various
performance metrics. Although the flat rate achieves the lowest operational cost, it also
results in the highest load shedding and the greatest demand imbalance, as indicated by its

PVR. In contrast, RTP and TOU provide a better balance by reducing both load shedding
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and PVR, reflecting more efficient load management and a smoother demand curve.
Meanwhile, CPP lowers PVR and load shedding compared to the flat rate, incurs the highest
operational costs due to the sharp price spikes during peak periods. Overall, RTP
demonstrates as the most effective strategy for balancing operational costs, reducing load
shedding, and flattening demand, whereas CPP offers similar benefits in demand smoothing
but with reduced cost efficiency. The DRPs contribute to reducing the system's operational

costs and improving security performance by lowering the load shedding.

Table 4.7 Comprehensive assessment of performance of four different scenarios.

DRPs Flat rate TOU RTP CpPP
Indices

Operation costs 7.67e+03 7.69¢+03 7.92¢+03 1.17e+04
PVR 1.5679 1.2472 1.2584 1.3488
Load shedding 681.0367 654.5655 620.8196 647.9215
MW)

To clarify the effect of the contingency filtering approach in the proposed model, the

solution times of the problem in scenarios of IEEE 30-bus system are given in Table 4.8.

Table 4.8 Computation time performance of four different scenarios.

DRPs Flat rate TOU RTP CPP

Indices

Computation time

without contingency 2029.73 2053.14 2058.44 2042.22
filtering (s)

Computation time

with contingency 1376.63 1371.51 1365.55 1370.99
filtering (s)
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This clearly demonstrates that applying the contingency filtering approach effectively
reduces the computational burden, enabling faster solutions to the PCSCOPF problem under
various DRPs. The filtering approach filters unnecessary contingency scenarios, accelerates
the calculation process, making it a practical method to enhance computational efficiency,

especially for real-time power system operations.

4.5 Summary

This paper presents a novel, fast, and safe solution method for PCSCOPF problem that
uses a combination of a robust DRL algorithm and the Lagrangian relaxation methods. By
modeling the problem as a CMDP with two DRL agents, the approach ensures robust and
efficient solutions to prevent and correct N-k outages. The enhanced L-SAC algorithm,
featuring soft Lagrange multiplier updates, guarantees the safe exploration of control actions,
improving policy robustness. Meanwhile, the incorporation of the VPPs with the power
system in this work enables a fast response to stochastic contingencies, thereby avoiding
short-term violations of the operating constraints. Finally, test results on IEEE 30-bus and
118-bus systems verify the computational efficiency and reliability of the proposed method,

outperforming traditional OPF approaches in handling stochastic contingencies.
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Chapter 5 Online Voltage Control
Strategy: Multi-Mode Based Data-Driven
Approach for Active Distribution
Networks

Active distribution network (ADN) is faced with significant challenges, including
frequent and fast voltage violations, due to the increased integration of intermittent
renewable energy resources. This paper proposes a two-stage multi-mode voltage control
strategy based on a deep reinforcement learning (DRL) algorithm, designed to alleviate
voltage violations in ADN and minimize network power loss. In the first stage, a DRL
algorithm, the soft actor-critic (SAC), is introduced to determine the hourly dispatch of on-
load tap changers and capacitor banks, ensuring voltage security during the day-ahead stage.
A multi-mode voltage regulation strategy is then proposed to obtain real-time dispatch of
PV inverters, aiming to save energy and enforce voltage constraints under various
conditions. The real-time voltage regulation problem is formulated as a Markov decision
process and solved using a multi-agent SAC integrated with an attention mechanism. All
agents undergo centralized offline training to learn the optimal coordinated voltage control
strategy, then make decentralized online decisions based on locally available information
only. The effectiveness of the proposed approach is confirmed through extensive testing on
the IEEE 33-bus distribution system, with simulation results conclusively demonstrating its

ability to address voltage violation challenges.

5.1 Framework

This study addresses the challenge of optimal voltage regulation within a two-stage
framework, as illustrated in Fig. 5.1. The framework coordinates the collaboration of both
traditional and innovative voltage control devices across two timescales, aiming to ensure

secure operation in ADN using the DRL algorithm. Two intelligent agents, designed as day-
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Fig. 5.1 Proposed multi-mode based data-driven voltage control framework.

ahead and real-time agents, are specifically tailored for voltage regulation at different
timescales. In the first stage, forecasts of PV generation and power demand for the
upcoming day are generated and communicated as observations to the day-ahead agent. This
agent undergoes training to learn the optimal control policy for voltage regulation within
the MDP framework. Subsequently, to address the slower timescale control, the day-ahead
agent executes optimal power flow within the environment, yielding day-ahead dispatch
schedules for OLTC and CBs. In the second stage, system information such as voltages and
switch statuses of OLTC and CBs from the first stage are recorded as observations for the
real-time agent. In order to mitigate power loss and voltage violations, the well-trained real-
time agent, operating within the MDP framework, adjusts the output of PV inverters to
achieve fast timescale control. To further guide the selection of distinct voltage regulation
modes in the real-time stage, two security operation margins are designed. Specifically,
three operation modes — power loss minimization mode (P_Mode), under- voltage

optimization mode (U Mode), and over-voltage optimization mode (O_Mode) — are
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formulated for the real-time agent. This multi-mode control strategy is designed to ensure
both economic and secure operation in ADN.

This study notably incorporates multiple agents for optimal voltage regulation. A multi-
agent soft actor-critic (MASAC) algorithm is introduced to address the formulated MDP,
representing an off-policy entropy maximization-based DRL algorithm. Power flow
calculations are then executed in the modeling environment, incorporating injection actions
and the dispatch of PV, OLTC, and CBs. The actor and critic networks of the SAC algorithm
are further augmented with an attention mechanism to extract pertinent information from
extensive state-action spaces, thereby mitigating potential issues related to local
observations. Compared to single-based DRL algorithms, the attention-based MADRL
requires less information to generate optimal voltage control, a notable departure from the
MADRL algorithm, which experiences performance degradation when handling numerous
agents. Considering the longevity concerns and sluggish response of traditional voltage
control devices, OLTC and CBs are adjusted on an hourly basis during day-ahead dispatch.
In the real-time stage, the output of PV inverters is regulated with a 1-minute time interval
between adjacent control steps in each agent to address rapid voltage changes. Leveraging
the offline training characteristic of the SAC algorithm, all agents in the MADRL algorithm
undergo centralized training to learn the coordination voltage regulation strategy. Upon
completion of the exploring process, the parameters of the DNN stabilized and subsequently
transitioned to online implementation for each agent, enabling real-time voltage control
based on local observations. This approach significantly mitigates the degradation of control

performance caused by communication delays within the entire system.

5.2 Problem Formulation

5.2.1 Day-ahead Stage for voltage regulation

The aim of the two-stage voltage control is to determine the optimal dispatch of OLTC
and CBs at each time step. This ensures that both the cumulative voltage violation and the
long-term switching operations of mechanical devices are reduced. Consequently, the

mathematical optimization formulation for the first stage is articulated as follows:
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where B and N are the sets of transmission lines and power buses; [;;, p;j, and q;; are

current active, and reactive power flow of transmission line ij; v;, and vft are voltage

14 PV

and voltage deviation of bus i at time pP and q;, are active and reactive of PV of bus

Load

i at time t; p;y Load

and q;;"" are active and reactive demand of bus i at time £ qgf and

ul®

int are reactive power and status of nth capacitor of CB of bus i at time #; tap; is the

status of OLTC at time ¢, 7;; and x;; are resistance and reactance of transmission line ij;
AVy is voltage regulation of OLTC for one-tap step; V; is the primary voltage of

SFV is power capacitor of the PV inverter at bus i; V and v

transformer at the slack bus;
are max and min bus voltage limit; ql nt 1s Teactive power of one capacitor at bus i; tap,qy
and cap; mq, are maximum operation number of OLCT and nth capacitor at bus i.

The objective function (5.1), consisting of two terms, minimizes the total cost. The first

term represents the power loss costs, which are crucial for efficient energy distribution. The

second term represents the voltage deviation costs, penalizing deviations from the desired
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voltage levels to ensure system stability. Equations (5.2)-(5.3) delineate the nodal power
balance constraints. Equation (5.4) describes the constraints related to bus voltages.
Equation (5.5) calculates the substation voltage based on the OLTC positioning. Equation
(5.6) denotes the power flow constraint, ensuring that the power transmitted through each
branch does not exceed its limits. Equation (5.7) specifies the reactive power constraint for
the PV inverter, ensuring that the inverter operates within its reactive power capability limits.
Equation (5.8) computes the reactive power injections facilitated by the CBs, which provide
necessary reactive power support to maintain voltage levels and improve power factor.
Equations (5.9)-(5.11) establish the constraints concerning bus voltage limits, branch flow,

and switch time for both OLTC and CBs.

5.2.2 Multi-mode for real-time stage voltage regulation

In the context of real-time voltage regulation, the distribution system operator endeavors
to minimize energy consumption while ensuring that bus voltages are maintained within
predefined acceptable thresholds within power systems. In scenarios where fast reactive
power resources are scarce and voltage margins are tight, the system operator will focus on
maintaining voltage levels to mitigate security concerns. Conversely, when reactive power
availability or voltage margins are sufficient, a single mode of voltage regulation may
neglect economic factors [20], [23], [116]. In such scenarios, a multi-mode voltage
regulation approach offers appropriate power support across varied conditions, thereby
enhancing practical flexibility. To illustrate the proposed multi-mode voltage control
methodology comprehensively, we introduce two distinct criteria: namely, the voltage

margin (VM) and the flexible PV margin (PVM) for bus i at time ¢, as described as follows.
VMi,t = (? - Vm)

(5.12)
M, = (v, =V) (5.13)
Prm, = (5 (ol ) ~(all) (5.14)

where VM;, and VM;, denote voltage margins when the voltage is close to the upper limit

and lower limit, respectively; PVM; . represents the reactive power margin of PV inverters.
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1) Mode I: Power-Loss Minimization Mode (P _Mode): The P Mode is developed to
curtail the overall power loss of the distribution network while ensuring requisite voltage
limits. If the proposed two margins satisfy security levels, the optimization problem will

exclusively prioritize power loss minimization through the subsequent objective:

min), > L. (5.15)

s.t. (5.2)-(5.9) (5.16)

This objective function seeks to minimize the total power loss by summing the product of
the branch current and resistance over all branches and time periods.

2) Mode 2: Under-Voltage Minimization Mode (U Mode): The U _Mode is structured to
guarantee voltage levels when both VM and PVM fall below security thresholds within the
distribution system. This implies that the available reactive power resources are approaching
exhaustion, increasing the risk of voltage descending below acceptable limits. In this
operational mode, the reserved reactive power in the PV inverters will be regulated to

sustain voltage levels above a predetermined threshold, as governed by the following model:

1 D
min ZteT (Zy’eg sz/',tr;j + ZieN Vi’t )

(5.17)
G =i =0 (5.18)
s.t. (5.2)-(5.9) (5.19)

3) Mode 3: Over-Voltage Minimization Mode (O _Mode): The O Mode is devised to
uphold secure voltage levels, particularly when the VM diminishes and the reactive power
reserves of PV inverters are fully depleted. Under such circumstances, the O Mode
orchestrates active power curtailment of PV systems to mitigate voltage escalation issues.
To optimize and minimize the overall PV curtailment, the optimization formulation is
defined as follows:

: D curt
min ZteT(ZijeB lij,trij +ZieN Vit +ZiePV b, )

curt

Py =py" - pn (5.21)

(5.20)

V- Vi,
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pi <pytm =R (Z
(5.22)
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s.t. (5.2)-(5.9) (5.23)

where the maximum curtailment of each PV inverter, pfy "™%, in equation (5.22) is given

by fairness control among the PV systems based on voltage sensitivities [117]. The detailed
shift algorithm of the proposed multi-mode voltage regulation strategy is demonstrated in

Algorithm 4.

Algorithm 4: Multi-mode voltage control strategy

Input: v;,p/¢_,v,, and.qf{_;.
Calculate: VM;,, VM;,, and PVM;, using (5.13)-(5.15).

For time step ¢ do

If VM, <y, and PVM;, <y,

Perform O_Mode to address voltage rise problems.

Else VMi,t < Y1, and PVMl',t < Y2

Perform U_Mode to maintain the voltage above a

certain level.

Else VM;. >y, VM;; > y,,and PVM;, >y,

Perform P_Mode to minimize power loss.
End If
End For

5.3 Methodology

To address the objectives of mitigating rapid voltage violations and minimizing power
losses via the developed DRL framework, the two-stage voltage regulation framework is
divided into two timescale tasks based on distinct objectives. Subsequently, the two
timescale tasks are conceptualized as a single-agent MDP and a multi-agent MDP
respectively. The MDP stands as a quintessential paradigm within DRL methodologies,

wherein an agent, or potentially multiple agents, engages with an inherently uncertain
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environment, iteratively refining their control policies through exploration. The orchestrated
coordination of this two-stage voltage regulation is realized by concurrently training the
two-stage agents, facilitated by information interchange grounded in the reward signals
deduced from a data-driven surrogate model. For the slower timescale control, the OLTC
and CBs are harmonized through a single agent-driven SAC algorithm, leveraging
comprehensive system information. Conversely, the optimization of PV inverters, treated

as a fast timescale control, is addressed and resolved by employing the MASAC algorithm.

5.3.1 Day-ahead Voltage Control based on Soft Actor-critic Algorithm

1) MDP Formulation of Day-Ahead Agent

To formulate MDP of the day-ahead voltage control problem, key components for the
day-ahead agent (DA) encompass the state set S, action set 4, and reward function R. The
DA determines the schedule of OLTC and CBs according to the forecasting power demand
and PV generation. Therefore, the state set holds comprehensive information regarding the
distribution network and is explicitly defined in (5.24). The predicted action a? is defined
in (5.25), encapsulating the statuses of OLTC and CBs. Note that, instead of encompassing
all decision variables in (5.2)-(5.9), the selected actions in (5.25) are controllable and
include the minimum actions to improve the learning convergence and stability. The reward
value per time step 7% endeavors to reflect the efficacy of actions undertaken by the DA,

as specified in equation (5.26), taking into account metrics such as power loss and voltage

deviations.
s =(plalpl] al] ) V.t (5.24)
a,d = (zaptaui,n,t )’Vt (5.25)
i == (A + 2y, ) VL (5.26)

2) SAC Algorithm for Day-Ahead Voltage Control
SAC is an off-policy, actor-critic algorithm in maximum entropy reinforcement learning
[105], which concurrently enhances the expected reward and the entropy of the policy to

facilitate exploration, i.e.:
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where 7 indicates one trajectory. m(-|s;) is a categorical distribution indicating the
probability of taking any action under state s; o represents the entropy temperature that

tunes the stochasticity of the optimal policy; H (n(- IS)) = —log(n(atlst)) denotes

entropy term. y € [0,1] indicates the discounting coefficient. Besides, the exploration and
learning stability of the policy is related to the value of entropy temperature. Therefore, one
of the technical essential tricks in the SAC algorithm is to automatically adjust the entropy

temperature by:

J(@)=E,, [—a log(z(als)) ‘“71] (5.28)

where H denotes the expected minimum entropy. Noteworthy that the action in the day-
ahead agent is discrete. Therefore, the discrete SAC algorithm is applied to train our day-
ahead control optimization problem. Accordingly, the policy evaluation relies on the actor-
critic architecture, wherein the Bellman backup operator is applied for soft Q-function
Qo (s) =1r(ss ap) + yme(s)TV,(sp41) where m,(s)T indicates the expectation value of the

discrete action; V,(s) = T[t(S)T[Qg (s)—a log(n(als))] is the soft state-value function.

SAC refines the critic through temporal-difference (TD) learning by minimizing the loss
function, in which two critic networks with different parameters 6; and 6, are

implemented to avoid overestimation issues:
1 !/ !/ * ! 2
Jo(8) = Esaryee [5(Q6,65) = (r +y # ()7 (@5, (", @) + a3t (- 15)) |

(5.29)
Significantly, SAC utilizes a soft Q-function augmented with an entropy term. The policy
is learned through the gradient ascent optimizer, where two target networks for each critic

with parameters 6; and 8, are used to improve the learning stability

ie{l,2}

J(0)=E,_, [ﬂt () [0‘ log(7,(als)) - min 0, (S)ﬂ (5.30)

where ¢ are the parameters of the actor-network.
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5.3.2 Real-Time Voltage Control via Attention-based MASA

1) MDP Formulation of Real-Time Agent

To mitigate the communication burden associated with information exchange, the
distribution network is segmented into distinct regional sub-networks based on inherent
geographic attributes. Subsequently, each agent is designated to oversee a specific sub-
network. The coordination of PV inverters across multiple sub-networks is conceptualized
within the framework of MDPs, representing a multi-agent extension thereof. While all
agents undergo centralized training to learn a coordinated control strategy, their operational
deployment is decentralized, enabling robust decisions grounded in real-time sub-network
information. This approach markedly diminishes communication demands and avoids
adverse effects on control efficacy stemming from temporal delays. Within the MDP
paradigm, each sub-network is formulated as an agent to dispatch PV inverters within its

designated domain. The main constituents of this MDP framework are defined subsequently.

r PV _PV Load _ Load
S;, Z(VM[J,PVMN,PJ,, G Pis 294 9vi,t’tapt’ci,t) (5.31)
4, =(pi". A7) ) vt (5.32)
r D curt
= _(Zijeb’ lz‘j,tr;‘j + ZieN KiVig + ZiEPV KaPis ) (5 33)

where s{ denotes the state of the agent i in time ¢. The state s{ includes the local
observation of sub-network 7, which is composed of voltage margin, flexible PV margin,
PV output, load demand, voltage in the sub-network 7, and the operational statuses of OLTC
and CBs across the distribution network. The action a;, represents the strategic control
undertaken by agent i at the time 7. Specifically, a;, is designed to regulate reactive power
and curtail active power across PV inverters situated within sub-network i. The reward r{
is the immediate reward subsequent to action execution within the operational environment.
Notably, all the agents concur upon a unified reward r{, wherein xjand x, serve as
penalty coefficients, addressing deviations in voltage and PV curtailment, respectively.

2) Attention Based MASAC Algorithm for Real-Time Voltage Control

To address the intricacies of the multi-agent MDP problem, this section introduces the

MASAC algorithm. Nonetheless, the performance of the multi-agent algorithm suffers from
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degradation with the increasing number of agents. To ameliorate this issue, an attention
mechanism is incorporated into the MADRL framework, enabling each agent to selectively
focus on information most pertinent to its corresponding reward structure. The structure of
the proposed methodology is illustrated in Fig. 5.2, in which Q,"(s, @) = f;(9;(s;, a), vy)
denotes a function encapsulating the state and action of agent i, augmented by contributions
from other agents. Herein, f; signifies a two-layer multi-layer perceptron, g;(-) indicates
the embedding function pertinent to agent i, and v; presents the output processed by the
attention mechanism, signifying the weighted aggregation of values extracting from other
agents: v, =Y L, -ReLU(V - g,(s,.a,))

] (5.34)

where ReLU denotes the activation function; V stand as the linear transformation matrix.

Agent1l Agent2 Agentn

Fig. 5.2 The framework of the proposed attention based MADRL algorithm.

The attention weight £; evaluates the embedding g;(s;, a;) with g; (sj, aj) through a
query-key mechanism:

0, cexp(g| W, W,g,) (5.35)
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where W, and W, denote the transformation matrices. The computed similarity between
two embeddings subsequently undergoes a softmax operation to derive the attention weight
¢;. The parameters associated with the attention model, represented as (W, W,,V),
facilitates a weighted aggregation of contributions from all other agents pertinent to a
specific agent. Consequently, the parameters of attention-critic framework comprise both
the parameters of the critic function Qg (s, a) and those of attention model (Wk, Wy, V).
These parameters are refined through optimization techniques aimed at minimizing the

ensuing loss function as follows:

]Q (91) = E(s,a,r,s')~]\/[ [% (Q@i(g(sf a),v) — (T‘ + y(Q'éi(g(S,r a),v) —
alog (n;;,(a'|s')))))2] (5.36)

The critic function is optimized through the minimization loss among Q4 (s, a) and the
target. In the policy improvement step, the policy is optimized to maximize the soft Q-

function by minimizing the KL-divergence as

J.(p)=E L@ﬂ[a log(7,(a|s))—min O, (g(s.a), U)ﬂ

ie{l,2}

(5.37)

which can be minimized by a reparameterization trick. The policy is modified to predict the
mean and standard deviation of actions' probability distribution given system states.

Due to the inherent offline training characteristic of the SAC algorithm, the integration of
the attention-based MASAC can separately execute centralized training for coordinated
strategy and decentralized implementation for voltage regulation. The procedural details of

this practical implementation are summarized in Algorithm 5.

Algorithm 5: Attention based MASAC

Input: the power demand, p©%4, q~°%4 PV output
p*’,q"V, and the result from the day-ahead agent.

Initialize: actor network ¢,,, and attention-critic

network 6; ,,, éi,n for each agent n.

For each episode do

For each time step do
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Generate action a,~m,n(:|s, = s) for each

agent n, and execute joint action a = (a)4,+:*,a,
to obtain reward and next state— 1, s;,
Store transition M « M U (s,,,a,,1,s;) inthe
experience buffer

End For

For each gradient step do
Sample random m experiences from M
Update soft-Q value parameter by 6;, (5.36)
Update policy parameter ¢,, by (5.37)
Adjust temperature o by (5.28)

Update target 8;,, by 8;, = (1 —p)0;, + pb;

End For
End For

Note: p is the target update factor.

Furthermore, the trained network parameters then are transformed to the real-time stage
for voltage regulation. Each agent receives local observation from the sub-network and then

executes the voltage regulation in a decentralized manner.

5.4 Case Study

5.4.1 Setting of the Test System

In this section, the proposed two-stage multi-mode voltage regulation strategy is evaluated
on a modified IEEE 33-bus distribution network, where six PV inverters were installed at
bus 2, 6, 11, 18, 25, 33, respectively, to provide distributed generation and reactive power
support and two CBs were added at bus 16 and 22 to help manage reactive power and
voltage control. The scalability of the proposed attention-based MASAC framework is an
important consideration for its deployment in larger-scale distribution systems. From a
training perspective, the framework adopts a centralized training with decentralized

execution (CTDE) paradigm: during training, global information is available to stabilize the
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learning process, while in the inference stage each agent makes decisions solely based on
local states and selectively attended neighbor information. This design ensures that the
computational complexity of online inference remains manageable even as the number of
agents increases. From a communication perspective, the attention mechanism naturally
enhances scalability by allowing each agent to focus only on the most relevant neighbors
rather than requiring system-wide communication. Such selective information exchange
significantly reduces communication overhead, which is particularly critical for large
distribution networks where full communication among all controllable units, such as PV
inverters, would be impractical.

Firstly, the distribution network is divided into several regional sub-networks according
to the default geographic location parameters, with each agent assigned to a specific sub-
networks. It's important to note that geographic partition does not inherently ensure voltage
control for every bus through local PV inverter adjustments. To address this, an offline
evaluation mechanism 1is established to identify uncontrollable buses following the
geographic partition [96]. These uncontrollable buses are then reassigned to an alternative
sub-network that has the necessary electrical interconnections. This iterative post-partition
adjustment process continues until all buses can be effectively regulated by local resources,
as illustrated in Fig. 5.3. The computational analyses presented here were executed on a
system equipped with an Intel 17-10700 CPU and 16 GB of RAM. The hyperparameters of
the SAC algorithm are presented in Table 5.1. Fig. 5.4 illustrates PV output and load demand
across various periods, sourced from online resources. In particular, Fig. 5.4 (a) displays
curves of the day-ahead forecast of PV output and load demand for hourly data. This
forecast is calculated from the hourly averages of actual data and serves as the foundation
for the day-ahead optimization process. Fig. 5.4 (b) depicts real-time minute-by-minute data
during a peak PV generation between 13:00 and 14:00, showcasing the variability and
dynamics of PV output and load on a finer timescale. Meanwhile Fig. 5.4 (c) presents
minute-by-minute real-time data during a period of diminished PV generation and increased
load demand from 18:00 to 19:00, highlighting the daily fluctuations in PV output and load

demand.
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Table 5.1 Main Hyper-Parameters and Data Setting.

Parameters Value Parameters Value
Optimizer Adam Activation RELU
Actor learning rate le-3 Critics learning rate le-3
Entropy learning rate le-3 Targets learning rate le-3
Discount factor 0.99 Initial temperature 1
Neurons number 512 Time step 1
Max steps 24 Minibatch size 128
Penalty coefficient A, 1 Penalty coefficient A, le3
Voltage margin limit y;  0.005 p.u. | PV margin limit vy, 70 kVar
Penalty coefficient x; le3 Penalty coefficient «, 1

SUB-4

? 10 IIIELI?' 13|14 l|5 1|6 ll'.f' 1|8
[ | [ [ [ [

28 29 30 31 32 33

! —t——

K

0 L I L L L
2 4 6 8 10 12 14 16 18 20 22 24

Time(h)

(a) Prediction of PV and load day-ahead hourly data.
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(b) Real-time minutely of PV and load data during 13:00-14:00.
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(c) Real-time minutely of PV and load data during 18:00-19:00.

Fig. 5.4 PV and load data in distribution network in different timescales.

5.4.2 Numerical Results of Day-Ahead Agent Voltage Regulation

To validate the effectiveness of the day-ahead agent in addressing voltage control
problems, voltage profiles following the day-ahead optimization via the DRL algorithm are
shown in Fig. 5.5. It is evident that all bus voltages adhere to the security operational range
(0.95 p.u. to 1.05 p.u.) throughout the entire day. Notably, at the start and end of the day,
the system's voltage distribution progressively converges towards the lower operational
threshold, making the system particularly susceptible to fluctuations inherent to real-time
operations. Moreover, at midday, the voltage profiles show a reduced margin, approaching
the upper operational limit, due to the significant PV output during this time. These
observations underscore the need for a real-time voltage control strategy to mitigate voltage
infringements arising from system uncertainties and to strengthen the voltage margin during

these vulnerable periods.
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Fig. 5.5 Voltage profiles obtained by the day-ahead agent in the distribution network.

5.4.3 Comparison Results of Real-Time Voltage Regulation with Other Alternative

Strategies

To illustrate the effectiveness of the proposed multi-mode voltage control strategy during
the real-time stage, comparative analyses were conducted with three benchmark voltage
control methodologies for contextual evaluation. The first benchmark control method,
referred to as the conventional centralized control method (Method #1), adopts only one
agent within the real-time agent for voltage regulation. Following the day-ahead agent's
dispatch, this method relies on a single agent to centrally determine the minutely dispatch
of PV inverters [118]. The second benchmark control method, referred to as the optimal
local control method (Method #2), performs a singular voltage control mode for regulatory
purposes. Specifically, this method centralizes the adjustment and curtailment of PV
reactive and active power within a single control mode to mitigate voltage violations based
on day-ahead optimal dispatch schedules [119]. Lastly, the third benchmark control method,
referred to as the original two-stage control method (Method #3), regulates voltage
regulation devices with a slow timescale and maintains the day-ahead dispatch constant

during the real-time stage.
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Fig. 5.6 Voltage profiles obtained by different methods during 18:00-19:00.
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Fig. 5.7 Adjustment of reactive power in PVs with different methods during 18:00-19:00.

Fig. 5.6 presents voltage profiles at bus 18 across distinct voltage regulation methods
during the typical time interval of 18:00 to 19:00. Notably, Method #2 shows severe voltage
violations, whereas Method #3 displays more moderate violations. These discrepancies arise
from Method #2's single mode, which lacks a clear strategy for voltage regulation when
voltage margins are constrained. Specifically, when confronted with fewer voltage margins
at lower levels, this method may adjust both the active and reactive without a distinct
operational mode. In contrast, the proposed method adopts a clear classification of voltage
regulation mode, adeptly adjusting the PV reactive power as the voltage margin approaches
its lower limit. Furthermore, the persistence of day-ahead dispatch remaining within Method
#3 proves inadequate in mitigating voltage violation challenges, primarily due to
uncertainties in the real-time stage. On the other hand, Method #1 consistently results in

higher voltage levels relative to the proposed method. This discrepancy arises from over-
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optimization tendencies when a single agent attempts to centrally regulate PV dispatches
across different sub-networks. This single agent requires comprehensive knowledge of the
entire distribution system, demanding highly communicative capabilities. In contrast, the
proposed method only requires local information for the real-time agent, reducing
communication requirements and avoiding negative impacts on control performance caused
by time delays.

Fig. 5.7 shows the reactive power adjustment of PV across various voltage control
methods. Owing to the static strategy inherent in Method #3, adjustments to the reactive
power profile for this approach are not considered. As shown in Fig. 5.7, Method #1 exhibits
high levels of reactive power adjustments, a result of its inherent tendency towards over-
optimization. In contrast, when compared with Method #2, the proposed method exhibits
more precise and accurate adjustments to PV reactive power. The clear classification of the
voltage control mode facilitates timely voltage support. A comprehensive comparison of
outcomes across different voltage regulation methods is further illustrated in Table 5.2.
Notably, both Method #2 and Method #3 engender higher power losses, accompanied by
unacceptable voltage violations of 0.00931 p.u. and 0.00816 p.u., respectively. Furthermore,
Method #3 records a maximum voltage variance of 4.31%, attributable to its real-time
control strategy. Compared to Method #1, the proposed approach effectively curtails voltage

violations while minimizing power losses.

Table 5.2 Comparison Results for Different Methods.

Methods Power loss Voltage Vio. Voltage
(kWh) (p-u.) Var.

Method #1 27.41 0 3.02%

Method #2 27.70 0.00931 3.19%

Method #3 27.94 0.00817 4.31%

Proposed 26.56 0 3.11%

where the degree of the voltage violation is defined as

DCV = ’%Zieg(vft)z, B is the total number of power

buses.
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To assess the effectiveness of the proposed method in mitigating over-voltage issues,
simulations are conducted during the period from 13:00 to 14:00, characterized by
heightened PV generation. In Fig. 5.8, the voltage profiles at bus 18 are presented,
showcasing the performance of various voltage control methods. While voltage levels and
trends differ among methods, both Method #2 and Method #3 exhibit inadequacies in
addressing voltage violations. Notably, voltage fluctuations are observed in the profiles of
Method #3 between 13:00 and 13:40, underscoring the inherent limitations of relying solely
on day-ahead dispatch to manage real-time power system uncertainties. Method #2, while
showing improved performance compared to Method #3, falls short in fully mitigating
voltage violations due to PV curtailment operations. Conversely, both Method #1 and the
proposed method demonstrate superior performance in effectively addressing voltage rise
problems. However, Method #1 exhibits lower voltage levels attributed to overoptimization,
despite substantial PV curtailment, as depicted in Fig. 5.9, illustrating curtailment of PV
generation across distinct voltage control methods. Notably, the adjustment profiles of
Method #3 are not presented in this figure. In Fig. 5.9, it is evident that the active power
curtailment tendencies of Method #2 and the proposed method align closely. Yet, the
proposed method excels in enhancing voltage quality through its clear classification of the
voltage control mode. Complementary numerical results are summarized in Table 5.3,
where Method #3 incurs a maximum power loss of 22.51 kWh alongside pronounced
voltage violations of 0.00907 p.u. In comparison, despite Method #1 curtailing a higher PV
active power, resulting in a maximum voltage variance, the proposed method outperforms
in terms of minimizing PV active power curtailment and associated power losses, facilitated

by its precise classification of operational control modes.
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Fig. 5.9 Adjustment of active power in PVs with different methods during 13:00-14:00.

Table 5.3 Comparison Results for Different Methods.

Methods Power loss Voltage Voi. Voltage PV Curtailment
(kWh) (p-u.) Var. (kWh)
Method #1 19.77 0 10.36% 8.2
Method #2 21.66 0.00795 9.86% 6.51
Method #3 22.51 0.00907 9.61% 0
Proposed 19.20 0 9.09% 5.21

5.4.4 Comparison Results with Other Alternative Algorithms

A comparative analysis is conducted on four distinct algorithms, namely: 1) the MASAC
algorithm; 2) multi-agent proximal policy optimization (MAPPO), an on-policy algorithm;

3) multi-agent deep deterministic policy gradient (MADDPG), which involves offline
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training followed by online testing; and 4) attention-based MADDPG (AMADDPG), which
integrates the attention mechanism with the MADDPG framework. To ensure robustness
and reliability, each algorithm is subjected to ten independent experimental runs using
varied initial seeds. The cumulative reward curves resulting from these experiments are
illustrated in Fig. 5.10, in which each algorithm is represented by a solid curve denoting the
average value across the ten experimental iterations. The shaded region surrounding each
curve represents the range between the minimum and maximum rewards obtained across
the ten experiments, providing a comprehensive visualization of the performance variability

of the algorithms.
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Fig. 5.10 Training process of different algorithms.

From Fig. 5.10, it can be observed that while the cumulative reward reaches high levels
with different algorithms, their tendencies vary. Initially, we observe that MASAC and
MADDPG exhibit significant oscillations, reflecting the inherent challenges in stabilizing
the learning process in a multi-agent environment using off-policy methods. However, as
training progresses, these oscillations diminish, with MASAC converging around 350
epochs and MADDPG around 400 epochs, though MADDPG's final reward stabilizes at a
higher value of -50 compared to MASAC's -30. In contrast, the on-policy MAPPO
demonstrates early convergence around 300 epochs, maintaining relatively low oscillations
and a final reward close to -10, showcasing its stability and efficiency. The attention-based

variations, AMD and AMS, show marked improvements; AMD converges around 300
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epochs with reduced oscillations and a final reward of -40, while AMS displays superior
performance with minimal oscillations, early convergence around 250 epochs, and the
lowest final reward close to -5. This superior performance of AMS can be attributed to the
enhanced capability of attention mechanisms in handling complex interactions, leading to

more effective optimization in power system dispatch.
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Fig. 5.11 Voltage distribution obtained by different algorithms when t=9:00.
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Fig. 5.12 Voltage distribution obtained by different algorithms when t=23:00.

Figs. 5.11 and 5.12 demonstrate the voltage distributions across all buses as generated by
the proposed algorithm at specific time instances: t=9:00 and t=23:00, respectively. Notably,
the MADDPG algorithm exhibits pronounced voltage violations across both temporal

scenarios, attributable to challenges due to hyperparameter calibration. Conversely, while
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the AMADDPG algorithm adeptly mitigates voltage violation, it slightly lags in voltage
margin efficacy relative to the proposed method. This superior performance of the proposed
algorithm can be attributed to its integrated attention mechanism during the training process,

coupled with stability attributes inherited from the foundational SAC algorithm.

Table 5.4 Training Results with Different Algorithms.

Methods Power Voltage Vio. Computation
loss (p.u.) time (s)
MASAC 22.9376 0.00329 2456.72
MAPPO 22.0715 0.00435 1628.16
MADDPG  34.2096 0.01094 2347.01
AMADDPG 17.8841 0.00092 2591.93
Proposed 17.5993 0 2752.01

Table 5.4 offers a numerical exposition of training outcomes across varied algorithms.
The MAPPO algorithm, leveraging an on-policy approach, achieves fast computational time;
however, this strategy concurrently engenders unacceptable voltage infractions. In contrast,
the MADDPG algorithm causes a maximum voltage violation of 0.01094 p.u., accompanied
by a maximum power loss. Relative to the AMADDPG algorithm, the proposed algorithm
adeptly curtails voltage violations while minimizing power losses. Although the proposed
algorithm leads to the lengthiest computational time, it is acceptable, especially when

leveraging offline training paradigms for optimizing voltage control strategies.

5.4.5 Scalability of the Proposed Method

The scalability of the proposed voltage regulation strategy is tested on the IEEE 123-bus
system, with parameters data obtained from [120]. The convergence curves of the
cumulative reward based on different DRL algorithms for the IEEE 123-bus system are
presented in Figs. 5.13. Similarly, the solid curve in each algorithm corresponds to the
average value of ten independent experiments, and the light-colored shadow area is bounded
by the minimum and maximum rewards over the experiments. Initially, MAPPO exhibits

significant oscillations but stabilizes around a -145 reward after approximately 100 epochs,
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showing moderate stability. Similarly, MASAC, with comparable initial oscillations,
stabilizes slightly later, around 150 epochs, with a final reward of around -147. On the other
hand, MADDPG starts with high oscillations but stabilizes around 200 epochs, converging
to a -148 reward and indicating less stability than both MAPPO and MASAC. Furthermore,
AMADDPG shows the highest initial oscillations and stabilizes around 300 epochs, with a
final reward of approximately -149, suggesting slower convergence and less stability. In
contrast, the proposed method stands out with rapid convergence, stabilizing around -145
reward within the first 50 epochs, and maintains the lowest and most stable reward, thus
indicating superior performance. These differences can be attributed to the complexity of
each algorithm. Specifically, the proposed method incorporates advanced techniques, such
as attention mechanisms leading to faster and more stable convergence. Algorithms that
balance exploration and exploitation effectively, such as the proposed method and MAPPO,
tend to achieve better performance, while stability mechanisms like clipping and entropy
regularization further contribute to the superior results observed. Consequently, the
proposed method outperforms the others, making it the most effective for minimizing power

loss and voltage violation in this scenario.
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Fig. 5.13 Training process of different algorithms.

To demonstrate the superiority of the proposed algorithm, Table 5.5 illustrates the detailed
computational results of different DRL algorithms in the IEEE 123-bus system. The

proposed method shows the best overall performance in terms of voltage violation,
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achieving a perfect score of 0, which indicates a complete elimination of voltage violations.
Although it has a slightly higher power loss (110.28) compared to MAPPO (107.43) and
MADDPG (108.82), the significant advantage of eliminating voltage violations cannot be
overlooked. Meanwhile, MAPPO demonstrates the lowest power loss at 107.43 and a
minimal voltage violation of 0.00043, making it a strong contender, though it falls short of
the proposed method in completely eliminating voltage violations.

On the other hand, MASAC and AMADDPG exhibit higher power losses (111.32 and
110.77, respectively) and more significant voltage violations (0.00205 and 0.00143,
respectively). These results suggest that while they are somewhat effective in reducing
power loss, their ability to minimize voltage violations is less effective compared to the
proposed method. MADDPG shows a balanced performance with a power loss of 108.82
and a voltage violation of 0.00197. It performs better than MASAC and AMADDPG in

terms of voltage violation but still falls short when compared to the proposed method.

Table 5.5 Training Results with Different Algorithms.

Methods Power Voltage Vio. Computation
loss (p-u.) time (s)
MASAC 111.32 0.00205 4422.10
MAPPO 107.43 0.00043 3988.99
MADDPG 108.82 0.00197 4224.62
AMADDPG  110.77 0.00143 4665.47
Proposed 110.28 0 4985.62

5.5 Summary

This paper proposes a two-stage voltage control strategy to alleviate fast voltage
violations in ADN by coordinating PV inverters and traditional voltage control devices,
including OLTC and CBs. In the first stage, the dispatches of OLTC and CBs are determined
by a discrete SAC algorithm. In the second stage, a novel multi-mode voltage control

method is designed to dispatch the output of PV inverters in real-time operation, achieving
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a minimized power loss and secure voltage profile simultaneously. An attention-based
MASAC algorithm is then proposed to optimize the real-time dispatch of multiple PV
resources, which enables each PV inverter to regulate the voltage with only local
information. This algorithm helps alleviate the performance degradation associated with a
large number of agents in typical MARL algorithms. In case studies, the proposed control
strategy is compared with benchmark control strategies. The simulation results show that
the proposed multi-mode voltage control method can more precisely dispatch the output of
PV inverters and achieve the balance between voltage violation mitigation and power loss
minimization. Moreover, the performance of the attention-based MASAC is demonstrated
by comparison with benchmark MARL algorithms. It shows that MASAC addresses the
performance degradation by facilitating information exchange during off-line training, and
the voltage regulation strategy generation by the proposed algorithm mitigates the power
loss by 13.53% and reduces the voltage constraint violation by 7.07% compared with

benchmark MARL algorithms.
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Chapter 6 Coordinated Transmission-
Distribution Load Restoration under
N-k Contingencies: A Distributed
Optimization and Reinforcement
Learning Approach

Ensuring the rapid restoration of loads in transmission and distribution (T&D) systems
under emergency conditions is crucial for maintaining grid stability. This study addresses
the challenge of load restoration when contingencies, such as the disconnection of
transmission lines and generators, disrupt the power supply. To address this issue, a
coordinated T&D system operation strategy is introduced in this work, where virtual power
plants (VPPs) within the distribution system are leveraged to compensate for the curtailed
loads, thereby supporting the transmission system's load-shedding efforts. The coordination
process involves bidirectional information exchange: the transmission system
communicates load-shedding decisions to the distribution system, while the distribution
system provides the available maximum curtailment capacity through VPPs. This
interaction enhances the system's ability to respond to N-k contingency events in an
optimized manner, improving overall resilience. To achieve efficient decision-making in
this coordinated framework, reinforcement learning techniques are employed to optimize
load restoration under N-k contingencies. The transmission system is modeled using the soft
actor-critic (SAC) algorithm, which determines optimal load-shedding and generator
dispatch strategies for rapid system recovery. Meanwhile, the distribution system,
responsible for managing multiple VPPs, is controlled using the complementary attention
for multi-agent SAC (CMS) algorithm. This approach mitigates the common attention
dispersion problem in multi-agent SAC implementations, ensuring optimal decision-making
in dynamic multi-agent environments. Simulation results demonstrate that the proposed

reinforcement learning-based framework effectively reduces constraints violation in the
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transmission system while maintaining load supply and voltage stability in the distribution

network.

6.1 Framework

The proposed framework integrates the coordination of T&D systems under N-k
contingency scenarios to enhance power system resilience, as illustrated in Fig. 6.1. A key
aspect of this coordination lies in the dynamic exchange of information between the two
systems. The distribution system first provides the transmission system with its maximum
potential load curtailment capacity, allowing the transmission system to make informed
load-shedding decisions. Once the transmission system determines the curtailment strategy,
the distribution system immediately adjusts the output of VPPs to compensate for the
curtailed loads, ensuring stable power supply within the distribution network. While VPPs
play a crucial role in this process, the core of the coordination mechanism is the bidirectional
interaction between the transmission and distribution systems, enabling adaptive, efficient,
and resilient power dispatch in response to N-k contingency scenarios.

As shown in Fig. 6.1, on the transmission side, the load restoration problem for handling
N-k contingency scenarios is formulated as a Markov decision process (MDP) and solved
using a DRL-based approach. The agent receives predicted power demand as the state and
generates control actions to adjust the power dispatch and load curtailment, thereby
improving system robustness under N-k contingency scenarios. These actions involve load-
shedding at specific buses, satisfying constraints and load restoration. A simulation
environment models the transmission network's operation, providing the cost of the solution
to update the agent's policy through offline training. By iteratively refining the policy with
state-action-reward feedback, the framework achieves a stability power flow operation and
power supply for the transmission system under N-k contingency scenarios.

On the distribution side, after coordinating with the transmission system to handle
emergency scenarios and implement load curtailments, the framework enables the
distribution system to work in cooperation with VPP centers to restore its load supply. The

activate distribution network mechanism coordinates individual VPPs, collecting flexible
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Fig. 6.1 Decentralized Coordination Framework for Transmission and Distribution

System.

load supply capacities from VPP centers while offering economic incentives. Based on the
available load supply capacity from VPP centers and the load curtailment decisions
transmitted from information flow, a multi-agent DRL algorithm is then employed to
dynamically adjust the distributed generators within each VPP center, ensuring an optimal
power supply to the distribution system. To address the limitations of traditional MADRL
algorithms with increasing agent numbers, this framework introduces the CMS algorithm,
enhancing learning efficiency. This enables the distribution network to meet load demands
effectively during emergencies while optimizing economic returns for VPPs.

The proposed framework establishes a coordinated mechanism between the T&D systems
by facilitating efficient information exchange. Through this information flow, both systems
can access critical decision-making information, enabling the transmission system to
implement informed load curtailment strategies while allowing the distribution system to
respond effectively. In particular, the distribution system collaborates with VPP centers,
utilizing flexible distributed generators to dynamically adjust power output in response to
the transmission system's curtailment decisions. This coordinated approach enhances the
system's ability to mitigate N-k contingency scenarios, ensuring adaptive, resilient, and
efficient load restoration. Additionally, the adoption of the CMS algorithm addresses the
limitations of traditional multi-agent reinforcement learning by improving scalability and
learning efficiency. The complementary attention mechanism ensures optimal decision-

making across multiple VPP control centers, resulting in robust and efficient distribution
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system operations during emergencies. Overall, the proposed TSO framework combines
robust power flow optimization for the transmission system with flexible load restoration in
the distribution system, providing a comprehensive, resilient, and economically viable

solution for maintaining grid stability under N-k contingency scenarios.
6.2 Problem Formulation

6.2.1 Mathematical Model of the Transmission-Level System

This section focuses on constructing the objective function and associated constraints for
the transmission-level system to ensure robust operation during emergency scenarios. The
aim is to optimize the system's performance by minimizing the objective function under
emergency condition S. The objective function consists of three key components: the
generation cost of power in the transmission network, the penalty for load shedding at
critical load buses, and the penalty for providing insufficient power to load buses during

emergencies.

min > >, Copg+ D Citpl,+ ), Gy,
<= v Vgeg viel viel (61)

where p;t is the output of generator at time t and Cj is its operation cost; AplT,t is the load

shedding at time t and C; is its penalty cost; AplTj is the unserved electricity at time t and

C; isits penalty cost. The objective function is subject to the following constraints to ensure
that the transmission network operates within its physical and operational limits during
emergency scenarios. Equations (6.2)-(6.3) ensure the nodal power balance constraints.
Equation (6.4) used to calculate the bus voltages. Equation (6.5) calculates power flow.
Equations (6.6)-(6.8) limit the power output of generators to their operational limits.
Equations (6.9)-(6.10) are restricted the voltage magnitude and phase angle at each bus. The
maximum amount of load shedding is constrained at Equations (6.11). Equations (6.12)
constraints model the disconnection of & transmission lines and generators from the network

under N-k contingency scenarios.
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where pg,n,t and pl, . are the power input into bus 7 at time ¢ from generator g and
tranmission line mn, respecitvely, and g7 ,,, and qF,,, are the reactive power input; [T
» p Y, qg,n,t Amn,t p put; tnk

and [, is square of bus voltage and current; 7,5, and x[, are resistance and reactance of

transmission line mn; (P} P_gT) and (Qj Q_g) are active and reactive power limits of

generator, repsecitvely; RDg and RU; are ramping up and down limits of generator,

repsecitvely; (V1 V_nf) and (07, @) are voltage and angle phase limits, repsecitvely; s,

and sp,, are status of generator and transmission line, repsecitvely; I; and I, are
availability of generator and transmission line, repsecitvely. To accelerate the solution
process for the robust optimal power flow (OPF) problem, a worst contingency scenario is
generated by previous preventive security-constrained method to simulate the disconnection
of k components [111]. This method captures a wide range of possible contingencies without
the computational burden of worst contingency scenario identification, significantly
enhancing the efficiency of solving the robust OPF problem while maintaining robustness

against common and severe contingencies.

121



6.2.2 Mathematical Model of the Distribution-Level System

This section focuses on constructing the objective function and corresponding constraints
for the distribution-level system to ensure efficient and cost-effective operation, particularly
during emergency scenarios. The objective function is designed to minimize the overall
operational cost of the distribution network, which consists of two key components: the
power losses within the distribution network and the operational cost of purchasing power

from the VPP centers.

: D D
mln2£ Z lmn,trmn + Z Cvpv,tJ
Vvt \mneD vveV

(6.13)

where superscript represents the variable in the distribution system; p,,, is the output of the
VPP at time ¢ and C, is its operation cost. The objective function for the distribution-level
system is subject to the following constraints, ensuring that the distribution network
operates within its physical and operational limits while providing reliable power supply
and minimizing costs. Equations (6.14)-(6.15) ensure the nodal power balance constraints.
Equation (6.16) is used to calculate the bus voltages. Equation (6.17) calculates power flow.
Equation (6.18) is restricted the voltage magnitude at each bus. Equation (6.19) calculates

the substation voltage based on the OLTC positioning.
pv,n,t + Z prfn,t = Z (lrgc,trnf + prﬁc,t ) + p/?n,t > Vm, n’t

mneD nkeD (6 14)

QV,}’I,[ + Z qrfn,t = Z (lnD/C,t'ank +q£‘”)+qﬁl’[,vm’n’t
mneD nkeD (615)
=V =2t 5, )+ (O G0 Y Yot
(prft)n,t)z +(qr[n)n,t)2 = vlg,tlrfn,t’ vm’ I’l,ml’l,t (6 17)
V. <ve, <V2 Nm,t (6.18)

2

vh =(V, +tap,- AV, ) V't (6.19)

where V are the primary voltage of transformer at the slack bus; tap, is the status of

OLTC at time #; AV is voltage regulation of OLTC for one-tap step.
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6.2.2 Optimization Model for Virtual Power Plants

The introduction of VPPs into the distribution network enhances system flexibility and
resilience, particularly during emergency scenarios. As illustrated in Fig. 6.2, VPPs act as
aggregators of DERs, such as photovoltaic (PV) systems, battery energy storage systems
(BESS), and controllable loads (e.g., electric vehicles). These resources are centrally
managed through a unified VPP dispatch strategy, which reduces the complexity of directly

controlling individual DER responses to distribution system energy dispatch commands.

________________________________________________________

Y VPP profile BESS )
1 = — i
| pvib . ‘|| I‘ i
| P —
i pv,cl Controllable load 5 ¢/ G efi

f— —>l ECTEE - 1 —

s — b:ﬁéf"T""h‘e},b
v P P T P | P

Distribution system

Fig. 6.2 The structure of the VPP profile.

The optimization model for VPPs aims to maximize the economic operating benefits of
the VPP centers while ensuring reliable power supply to the distribution network during
emergency conditions. The objective function of VPP optimization is designed to maximize
the net revenue, defined as the difference between energy sales and operating costs. The
first term is revenue from energy sales to the distribution system; the second and third terms
are operating cost of PV and BESS systems; the last term is energy consumption of

controllable loads.

max Z(Cvpv,t -C,.p" — C,p; —C.p., )
o (6.20)

where p!” is the output of PV; p? is the output of BESS; Cpy and Cp, are management

cost of PV and BESS, respectively; p.;, is the power demand of the controllable load and

C. is its cost. The optimization of the VPP is subject to several constraints to ensure that its
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operation remains within technical and operational limits while achieving the economic
objective. Constraint (6.21) calculates the net power output of VPP sells to the distribution
system. Constraint (6.22) ensures total PV production. Constraint (6.23) calculates the
power consumption of the controllable load. Constraints (6.24)-(6.26) regulate the operation

of the BESS and govern the state of charge (SOC) of the BESS.

pv,net b,net net b net cl

Poi =Dl Pl = pit = p (6.21)
pl=pl" o+ pl (6.22)
pl=p "+ p + p (6.23)
pl=pr AT p AT = A pt = A pitt (6.24)
AP+ A°<1 (6.25)
SOC - {socf1 +ASpPAr pP >0
" |SOCh, + piat/ At p <0 (6.26)
where p! vnet p? vel and p? vP are the power that PV sends to distribution system,
controllable load and BESS, respectively; p/¢““" and p°" are the power consumption of
bnet net,b

controllable load from distribution system and BESS, respectively; p, and p; are

the power output and input from BESS to distribution system; AP and A€ are the discharge
and charge efficiency of BESS; SOC? is the state of charge of the BESS at time . The VPP
optimization model is designed to determine the feasible range of power supply that VPP

centers can dispatch within the distribution system during emergency scenarios.

6.3 Methodology

Building upon previous mathematical models for both the T&D systems, traditional
optimization algorithms, such as mixed-integer programming and gradient-based methods,
are often limited in handling the high-dimensional, nonlinear, and stochastic characteristic
of power system coordination, especially under contingency scenarios where uncertainty

and rapid decision-making are critical. To overcome these limitations, DRL algorithms are
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introduced, offering the ability to learn optimal policies directly from interaction with the
system without requiring an explicit mathematical model of all uncertainties. To achieve
this, the control problems in both the transmission and distribution systems are formulated
as MDPs. The following sections present the MDP formulation, the SAC algorithm for the

transmission system, and the CMS algorithm for the distribution system in detail.

6.3.1 MDP characteristics in agent

To apply a reinforcement learning approach, the optimization problems and control tasks
are reformulated as MDPs, where one or more agents interact with an uncertain environment
to gradually improve their control policies while exploring this environment. Unlike
commonly adopted simple MDP models, which typically involve a single agent or multiple
agents cooperating on the same task, this work develops two specialized MDPs tailored to
address the coordination challenges of the T&D systems under contingency scenarios.
Specifically, the transmission system agent (TA) aims to minimize the operational cost by
providing robust and resilient control actions al to against all possible contingency
scenarios. Meanwhile, the distribution system agents (DA) are formulated as a multi-agent
system to enable distributed control of the VPPs dispersed across the distribution network.
The DA seeks to minimize operational costs by determining the optimal economic dispatch
a? , while ensuring sufficient load restoration to ensure power supply, effectively
coordinating the operation of the transmission system under contingency scenarios.

To construct the MDP model, the key components involving the TA, DA, and the
environment are defined as follows. The TA generates robust control actions al based on
the policy n'(s!) , aiming to maximize the cumulative discounted reward
Yy T (sT,aT). Therefore, the main elements of the MDP can be described using the
tuple (s! , al , vl , y, T'T). The state s} consists of the input features, including active
and reactive power demands and the maximum load curtailment capacity of load buses
connected with distribution system, as defined in (6.27). The determination of this
maximum load curtailment capacity is an optimization problem that can be addressed using

well-established methods [121]. Then, the predicted action al, defined in (6.28), is
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designed to curtail power load at power system nodes to mitigate the impact of emergency
events. Instead of using all the decision variables from equations (6.2)-(6.11), the selected
actions in (6.28) are chosen to be controllable and minimal, ensuring faster convergence and
improved learning stability. The reward value r[ at each time step reflects the effectiveness
of the action taken by the TA and is defined in (6.29) to include all relevant operational
costs, such as generation costs, load curtailment penalties, unserved electricity penalties,
and penalties for operational violations. The discount factor y is used to calculate the
cumulative reward over time, while the transition function I'" describes how the system
evolves based on the current state and action, which will be learned by the reinforcement

learning algorithm.

s =(plT,t,qlT,t,pi,Vle£),Vt

(6.27)
a’ =(Ap];,VieL), vt 6.28)

i :( > Copp+ 2 G+ D ClAp] + v J’W
Vgeg viel viel (629)

where p{¢ represents the maximum load curtailment capability at load nodes; while v{
indicates the degree of operational violations in the transmission system, with k denoting
its penalty coefficient. Similarly, the main components of the MDP in the DA can be defined
using the tuple (sP, aP?, rP, y, TP). Since each VPP center operates relatively
independently, the distribution system is managed by multiple DAs, with each DA
responsible for controlling and dispatching power from its respective VPP center to supply
electricity to load buses in the distribution system. The states s? include the robust action
taken by the TA, the active and reactive power demands within the distribution network,
and the available power capacity of the controllable VPPs, as defined in (6.30). However,
these agents operate under partial state, meaning that each agent can only access state about
the bus load conditions in the neighborhood of its assigned VPP center. The extent of this
observability is determined by the observation region R, which defines the subset of the
distribution network that an agent can observe. While a larger observability range can

potentially improve the learning efficiency of agents, an excessive or redundant information
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can lead to distracted learning and inefficient coordination, as agents struggle to focus on
critical decision variables. To address this issue, the CMS algorithm is employed to enhance
attention-driven state processing, ensuring that each agent selectively focuses on the most
relevant state within its observation region R. The detailed introduction to the CMS
algorithm and its implementation is provided in Section 6.3.3. Then the predicted action a?,
described in (6.31), is used to adjust the VPP dispatch to provide sufficient power to the

load buses in the distribution network. Each VPP center is scheduled by the aft generated

by its corresponding DA. This action compensates for any power deficits caused by load
shedding in the transmission system while responding to emergency contingencies. The
reward value 1P at each time step is defined in (6.32) and incorporates several factors,
including power losses in the distribution network, the cost of power supplied by VPP
centers, and penalties for voltage violations. These reward components are designed to
guide the DA in optimizing the operation of VPPs, ensuring efficient power supply and
system stability during emergencies. Notably, all DAs share the same reward function.
These DAs collaborate to minimize the operational costs of the distribution system when

operating in coordination with the transmission system during emergency situations.

D _ T D D max
Sie = (at 2Pitirbitis Piv ,Vie E)’Vt

(6.30)
aft:(pl,,v,t,‘v’veV),Vt 631)

| Bt X et
mneD YveV (632)

where vP represents the degree of operational violations in the distribution system. To
guarantee the secure and reliable operation of the power system, all constraint violations are
aggregated and normalized into a single metric known as the violation metric. This metric
quantifies the severity of any violations and is incorporated into the reward function to
penalize suboptimal actions, as defined in (6.29) for the transmission system and (6.32) for

the distribution system. The DCV is formulated as:
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NS 5 -5
(6.33)

where s, represents the collection of all uncontrolled constraints, which include limits on
line power flows, active power outputs of the slack generator, reactive power injections, and
voltage magnitudes at the load buses. The total number of constraints is N, with the
corresponding minimum s, and maximum S, limits. These limits are derived from
equations (6.2)-(6.11) for the transmission system and equations (6.14)-(6.19) for the
distribution system. The notation [.]+ is defined as s, = max {0,'}, ensuring that only

violations beyond the allowed limits are penalized.

6.3.2 Soft actor-critic algorithm for transmission system

To solve the robust optimal power flow and load restoration problem for the transmission
system as a single-agent decision-making problem, the SAC algorithm is introduced. SAC
is an off-policy, actor-critic method based on maximum entropy reinforcement learning
[105], which simultaneously maximizes the expected reward and the policy entropy. The
incorporation of entropy encourages sufficient exploration, making the learning process
more stable and robust. The objective of the SAC algorithm is to train a policy m(a?l,s})
that minimizes the operational cost of the transmission system under emergency scenarios,

which is defined as:

7' =argmax B, aT)%Z[r(StT ) )+aH(x(l s)) ]
Ak (6.34)

where 7(- |s?) is a categorical distribution describing the probability of selecting any load

curtailment action al given the power system state s;. The term H(m(-|s7)) =

—log (m(al,sl)) represents the policy entropy, while « is the entropy temperature that
controls the balance between exploration and exploitation. The value of a significantly
influences learning convergence and exploration, and one important aspect of the SAC

algorithm is the automatic adjustment of a using the following optimization:

a) =argmin, B, | ~a logr/(a| 5;a) -] (635)
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where # is the target minimum entropy. The «; is an optimal dual variable after solving

this dual optimization problem,

max E; Y 1,7 (sT,a”) s.t. E(sr . of, )~xl—10g (m(al,sI)] =H , and m; . This dual

optimization problem ensures that the learned policy maintains sufficient stochasticity to
explore efficiently while achieving optimal performance. SAC follows an actor-critic
framework with stochastic actors, and the policy is iteratively updated by alternating
between the critic network and the actor network. The critic network evaluates the action-

value function Qg (s}, al), parameterized by 0, using the soft Bellman backup operator,

Q0T al) = Eyr_r ynlifGLaD) 4 1Ll . where  T(sh) =
E,r .[Qs (sF,al) — alog (m(al,sI))] is the soft state-value function. Instead of using an

explicit state-value network, SAC calculates this value directly from the Q-function,
improving efficiency. During each training iteration, the actor and critic networks are
updated using mini-batches of previous experiences stored in a replay buffer B =

[sT,af,rf,sl.,], where sT,, represents the next power system state after applying load

curtailment action a{. The model employs two separate critic networks Qg . (sI',al) and
Qp,(s{,af) with distinct parameters 6; and 6,. The minimum of the two Q-values is used

to mitigate overestimation bias [122]. Additionally, target networks Qgr and Qg are

introduced for each critic to improve stability during training [29]. The critic network update

is performed by minimizing the following loss function:

1
]Q (91) = E(s{,a{'rg'5?+1)~B |:E (QOL(SE' a?) - (r(sg-" az) + (Qe{ (Sg"l-l' a?+1) -

2
alog”;(“?+1|5Z+1)))> ,VL € {1)2} (636)

where ¢ are the parameters of the actor network. al,; is the load curtailment action

predicted from the latest updated policy 7, given states st,1. In the policy improvement

step, the policy is optimized to maximize the soft Q-function by minimizing the KL-

divergence as [29]:
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This optimization is implemented using the reparameterization trick, where the policy is
designed to predict the mean and standard deviation of a spherical Gaussian distribution,
allowing efficient sampling of continuous control actions. By leveraging this structure, the
SAC algorithm provides robust and scalable solutions to the robust optimal power flow and
load restoration problem, ensuring resilience against contingencies while minimizing

system operational costs.

6.3.3 Complementary attention based SAC for distribution system

To effectively address load restoration problem with VPP cooperation in distribution
system, each VPP center within the distribution network is modeled as a DA. These DAs
can only observe the load information of buses within their local distribution network, which
limits their ability to formulate optimal solutions for coordinating the distribution system
with the transmission network in response to contingency scenarios. To overcome these
challenges, we introduce the complementary attention for multi-agent soft actor-critic (CMS)
algorithm, which integrates a multi-agent SAC architecture with a complementary attention
mechanism. This mechanism enhances each agent's local focus while supplementing critical
global information, improving coordination, robustness, and performance stability.

CMS extends the standard SAC framework by incorporating multiple agents operating in

a partially observable environment. Each agent i maintains a stochastic policy ni’t(af?t |sft)

and learns its action-value function by integrating local and global distribution system
observation. The global value is communicated via a centralized trainer, while attention
mechanisms guide local decision-making. The primary objective of CMS is to maximize
cumulative rewards while maintaining a balance between exploration and exploitation
through entropy regularization.

The objective for each agent i is to maximize the cumulative reward while balancing

exploration and exploitation through entropy regularization:

7, =argmax B , , >~nZ[(Vr(SzD’ @)+ aH[7 (| sy, )])]
t

(6.38)
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where 7, is global reward which is defined in equation (6.32); s? and aft are global

distribution system state and VPP dispatch action generated by agent i. Due to the multi-
agent structure, policy evaluation based on local agent observations fails to effectively
update the critic network. To enhance the evaluation capability of the critic network in a
multi-agent framework, the complementary attention mechanism introduces the state
dividing unit (SDU). This unit dynamically partitions the observed global distribution
system observation sf into two components: attention-enhanced information s; ;, which is
locally relevant for decision-making, and attention-replenished information s_;, which
represents complementary global insights derived from a local attention mask M; . The
extraction of s;, and s_;, from s? is guided by the attention weights Q;K” of the multi-
head attention module [123], enabling the selection of a limited number of high-relevance

entities while filtering out distractions. This state extraction process is formally defined as

follows:
M, =M, OM, (6.39)
M, [T]=1 (6.40)
s, =MHA(T,,s”, M) (6.41)
_ D
S, = MHA(]; 5, _'Mi,s) (642)

where equation (6.39) ensures that attention is focused on key execution-relevant states,
while equation (6.40) utilizes a binary mask to retain the indices of states with the highest
attention weights, where T; = Fz(Q;KT) is used to select the top E state with the highest
attention weights. M; € {0,1}54 is a binary mask of agent i applied to the state embeddings,
generated by the environment to indicate which global state the agent can observe at a given
time step. Here, S and A represent the number of lobal state s? and agents, respectively.
Additionally, M; ¢ and My denote the enhanced attention mask and the high-attention state
mask, respectively, while T, represents the set of selected attention indices. The MHA
mechanism is employed to compute each agent's attention distribution over all visible

entities [124]. The information extraction process for s;. ensures that only the most
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relevant entities are selected for further processing, while the extraction process for s_; ¢
guarantees that it contains global-level insights that the agent would otherwise miss.

After SDU extracts the attention-enhanced feature Sft, the attention improvement unit

(AIU) is introduced to further filter task-relevant information using an inverse model. The
inverse model predicts actions @;, based on a probability m(d;,) and SDU information
Sic and Sppyq:

(@) =IM(s,,.5,,.:9)

it+1°

(6.43)

where inverse model, IM, is a two-layer multilayer perceptron with parameters 9. This

model is trained using the cross-entropy loss as follows:

‘C[M = CE(”(&zl)’ ai,t) (644)

By optimizing L}, the model encourages the embedding s;, to encode only the most
relevant task-related information, helping the agent filter out irrelevant observations that
could lead to attention distraction. Once the attention-enhanced feature s; . has been refined
through the AIU, it is used as an input to compute the local Q-function. The local Q-function
quantifies the agent's expected return based on its refined observations and historical

information:

_ DD _D
Qi,t (local) - E(SS»ai{),)NB I:rt (Si,w ai,t) + 7/V7z (’Si,t):| (645)

where the temporal state of the agent and is updated using an experience buffer, B. It helps
retain memory of past decisions, making Q; .(local) more informed about past actions.
This formulation ensures that each agent's local Q-function is grounded in the most relevant
observations, improving local decision-making while mitigating distractions from irrelevant
entities.

Furthermore, to complement local observations, the complementary attention mechanism
introduces attention complement unit (ACU) to leverage a centralized trainer that has access
to the global state. The trainer generates a global attention {;, based on s_;,, providing

agents with critical out-of-sight information. The global attention {; is computed as:

¢, =argmax, (MI (C.i>S.,)—BMI(E, 5 s, )) (6.46)
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where MI(:,’) means the mutual information, which ensures that {;, captures relevant
global information without introducing distractions. Maximizing MI({;¢, S_;;) enables
agent i to perceive information beyond its sight region, thereby alleviating the challenges of
cooperation caused by partial observability. MI({;.,s) prevents {;, from being
overloaded with unnecessary details.  controls the trade-off between capturing relevant
information and preventing distractions. Then the global message {; . is passed through a
fully connected layer f(-) to compute the global Q-function which is ensuring that agents

incorporate global coordination information into decision-making as follows:

0, (global) = f(¢) (6.47)

Finally, the total Q-function described as:
Qi,t = Qi,t (local) + Qz‘,t (gIObal) (648)

Fig. 6.3 illustrates the process by which the complementary attention mechanism
coordinates the states observed by different agents to learn the total Q-function. First, the
SDU receives the states observed by each agent in the environment and then divides and
embeds the global state s into two components: s;, and s_;,, which are fed into the AIU
and the ACU, respectively. For AIU, an inverse model is applied to mitigate the issue of
distracted attention. The AIU then generates the local Q-value Q;((local) based on the
attention-enhanced information s;,. For ACU, a mutual information network with global
insights is introduced to generate a communication message {;., facilitating agent
coordination. The ACU subsequently generates the global Q-value Q; +(global) based on
the communication message {; .. The local and global Q-values of all agents are summed
to obtain the total Q-value Q,, (total), which is then used in conjunction with the target
network to compute the RL loss. This loss is utilized to update the agents' control policies.

During each training iteration, the total Q-function is updated using mini-batches of
previous experiences stored in a replay buffer B = [sP,aP,r?,sP ;]. The update process
of the Q-values is performed by minimizing the overestimation bias using the target network

[29]. This recursive loss can be formulated as follows:
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Fig. 6.3 Training structure of the complementary attention mechanism.

1 '
Loie = E(sp.ap rP sPa)~m [E(Qm(globaD — (r(sP, aP) + (Q 41 (global) —

2
alogn;(afﬂlsfﬂ)))) l,Vi € {1,2} (6.49)

where Q; . (global) is the target network. In the policy improvement step, the input

feature of the actor function is the local information of each agent. Its parameters are

optimized based on the following equation:

J(9)=F, 4| B, [alogz, (@] 57) -0, (global) | (6.50)

By leveraging this structure, the CMS algorithm effectively addresses the multi-VPP
coordination challenge in the load restoration problem with VPP cooperation in distribution

systems, ensuring efficient and adaptive dispatch of multiple VPP centers.

6.4 Case Study

6.4.1 Experiment setting

In this section, the proposed T&D system coordination model for emergency scenarios is

validated using a test network consisting of an IEEE 30-bus system representing the
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transmission network and an IEEE 33-bus system representing the distribution network,
which is connected to the transmission system at bus 8. Within the distribution network,
four VPP centers are integrated at nodes 15, 22, 25, and 26, respectively, as illustrated in
Fig. 6.4. The system parameters, including network topology, generation capacities, and
line characteristics, are directly processed in their standard format as defined in PYPOWER.
The numerical experiments were conducted on a computer equipped with an Intel 17-10700
CPU and 16 GB of RAM, with the hyperparameters used in the proposed algorithm
summarized in Table 6.1. Additional modeling parameters are set as follows: the penalties
for load shedding and unserved electricity, as defined in Eq. (6.29), are setto C; = 10 X Cj
and C; = 100 X Cg, respectively; the constraint violation penalty k is set to k = 1e3; the
PV generation profile data are sourced from pvoutput.org, with a generation capacity of 6
kW; the BESS has a power/energy capacity of 10 kW/30 kWh; and power demand values
are randomly generated, with maximum and minimum limits set at 120% and 80% of the
normal operating levels as defined in the PYPOWER dataset. This validation framework

ensures a comprehensive assessment of the proposed coordination model under emergency

scenarios.
Table 6.1 Main Hyper-Parameters and Data Setting.
Parameters Value Parameters Value
Optimizer Adam Discount factor 0.99
Critics learning rate le-2 Minibatch size 128
Actor learning rate le-3 Neurons number 512
Entropy learning rate le-4 Top Z attention weight 8
Targets learning rate le-3 Max steps 10
Initial temperature 1 Activation RELU, Softmax
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Fig. 6.4 The network topology structure of the coordinated IEEE 30-bus and IEEE 33-

bus system.

6.4.2 Simulation Results of Load Restoration Under N-£ Contingency

To evaluate the effectiveness of the coordinated T&D system in addressing N-k
contingency scenarios, we conducted simulations over 10 restoration steps, during which
the system gradually recovered from an emergency scenario where one transmission line
and one generator were disconnected from the grid. The optimization results of generators
output and loads restoration in the T&D system throughout the restoration process are

depicted in Fig. 6.5.
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Fig. 6.5 Restoration of generator dispatch and load recovery in the transmission and

distribution systems.

As observed in Figs. 6.5(a) and (c), due to ramp rate limitations, the active power output
of the generators and VPP centers in both the transmission and distribution systems
gradually increases, enabling the progressive restoration of load supply under emergency
scenarios. Figs. 6.5(b) and (d) further illustrate that after 9 restoration steps, the load
recovery ratio of the transmission system steadily improves from 59% to 100%, while the
distribution system, responding to load curtailment from the transmission system, achieves
a full recovery from 19% to 100% within 10 restoration steps. To further demonstrate the
robustness of the coordinated transmission and distribution system under emergency
conditions, Table 6.2 presents a detailed analysis of the operating costs and constraint

violations experienced by both systems throughout the restoration process.
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Table 6.2 System performance during the restoration process.

Operation Constraints Operation Constraints VPP
cost of TSO  violation of cost of violation of output
TSO DSO DSO
Step 1 228.88 1.3298 6.49 1.3897 296.68
Step 2 225.86 1.1285 7.85 1.2269 432.01
Step 3 226.58 0.9130 9.22 1.0735 600.43
Step 4 228.51 0.7300 10.31 0.9147 723.90
Step 5 233.93 0.5369 11.80 0.8170 883.15
Step 6 242.72 0.4430 12.62 0.6180 983.85
Step 7 251.58 0.1999 14.23 0.5333 1155.55
Step 8 261.22 0.0791 15.30 0.3317 1282.62
Step 9 273.18 0 16.18 0.1571 1388.02
Step 10 267.66 0 17.73 0 1557.19

Initially, both systems encounter severe constraint violations, quantified based on
Equation (6.33). This is primarily due to the ramping limitations of the generators, which
hinder the immediate reallocation of power dispatch following the transmission line and
generator disconnection, leading to congestion in power flow near the affected components.
Simultaneously, the distribution system experiences voltage violations as a result of load
curtailments imposed by the transmission system, causing an insufficient supply to local
consumers. However, as the system progresses through multiple restoration steps, the load
restoration ratio of both the transmission and distribution systems improves steadily, while
the constraint violations progressively decrease. This demonstrates the effectiveness of the
coordinated transmission and distribution response in dynamically mitigating the adverse

impacts of N-k contingency events.

6.4.3 Comparison of coordinated and independent scheme under N-k contingency

scenario

To validate the effectiveness of the proposed coordinated transmission and distribution

system operation, a comparative analysis is conducted against the independent operation
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model. Unlike the coordinated model, where the transmission system communicates its load
curtailment decisions to the distribution system and receives information about the
maximum potential load curtailment capacity in return, the independent model operates
without any exchange of information between the two systems. This lack of coordination

impacts the system's ability to respond optimally under emergency scenarios.
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(b) Load recovery ratio in the distribution system.

Fig. 6.6 Load restoration comparison between coordinated and independent scheme.

The optimization results, presented in Fig. 6.6, indicate that both approaches can restore
the transmission system's load supply following an emergency. However, the independent
operation model exhibits a slower response in restoring load supply compared to the
coordinated approach. The absence of information from the distribution system prevents the
independent model from accurately formulating a robust security-constrained optimal
power flow solution, leading to delays in adjusting dispatch and redistributing power flows
efficiently. Additionally, as the transmission system curtails load without knowledge of the

distribution system's available flexibility, the distribution network struggles to recover its

139



load supply, resulting in a prolonged period of voltage violations and load deficiency.
Overall, the results highlight that the coordinated operation significantly enhances system
resilience, accelerates load recovery, and improves stability in the distribution system. By
integrating real-time information exchange, the coordinated approach ensures faster
decision-making, more precise load curtailment, and reduced power flow congestion,

ultimately leading to a more efficient and robust emergency response.

6.4.4 Impact of considering DCV on system constraint satisfaction

This section evaluates the effectiveness of incorporating degree of constraints violation
(DCV) in the MDP framework to ensure that the generated actions remain within safe
operational limits while minimizing system violations. To highlight the advantages of this
approach, we compare the proposed CMS algorithm with its counterpart without DCV
consideration. The voltage distribution of the distribution system under both approaches is

depicted in Fig. 6.7.
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Fig. 6.7 Voltage distribution in the distribution system with and without DCV

consideration.
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As shown in Figs. 6.7(a) and (b), both approaches initially experience voltage violations
due to severe load supply shortages in the early restoration steps. However, as the MDP-
based optimization progresses, the proposed DCV-integrated approach successfully
regulates voltage distribution within the permissible range (0.95-1.05 p.u.), effectively
mitigating violations over time. In contrast, the approach that does not consider DCV
consistently exhibits lower voltage levels compared to the proposed method and fails to
fully eliminate voltage violations by the final MDP step. These results highlight the benefits
of incorporating DCV considerations in the optimization framework. By explicitly
accounting for system constraints, the proposed approach enhances voltage stability,
prevents persistent violations, and ensures secure operation of the distribution system. This
contribution strengthens the reliability and resilience of the coordinated transmission and

distribution system, particularly in emergency response scenarios.

6.4.5 Performance Evaluation of DRL Algorithms

To validate the effectiveness of the proposed CMS algorithm in handling the coordination
of the distribution system with the transmission system under emergency scenarios, a
comparative analysis is conducted against four state-of-the-art MADRL algorithms:
MASAC [125], MADDPG [126], multi-agent proximal policy optimization (MAPPO)
[127], and attention-based MASAC (AMS) [128]. Each of these algorithms is implemented
in the IEEE 33-bus distribution system, ensuring a consistent dataset and operational setting
for evaluating their performance. The first benchmark algorithm, MADDPG, utilizes an
offline training mechanism but struggles with high sensitivity to hyperparameters, making
it less robust in practical applications. The second benchmark, MAPPO, operates as an on-
policy algorithm, which limits its sample efficiency in complex environments. The third
benchmark, MASAC, applies a multi-agent SAC framework without additional
mechanisms to enhance coordination, while the fourth benchmark, AMS, integrates an
attention mechanism to mitigate the multi-agent attention dispersion problem, thereby
improving decision-making efficiency. The training performance of these algorithms is

illustrated in Fig. 6.8, which depicts the convergence curves over 400 gradient episodes.
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Fig. 6.8 Convergence curves of CMS and benchmark algorithms.

As shown in Fig. 6.8, the CMS algorithm demonstrates superior stability and faster
convergence compared to the other four approaches. The solid curves represent the mean
cumulative reward across ten independent experiments, while the shaded areas indicate the
range between the minimum and maximum rewards obtained. The results show that CMS
consistently achieves higher cumulative rewards than the other algorithms, demonstrating
better learning efficiency and decision-making capabilities in managing emergency dispatch
with VPP coordination. The MASAC, MADDPG, and MAPPO algorithms exhibit slower
convergence and lower final rewards, with MAPPO experiencing the most unstable learning
process, likely due to its reliance on an on-policy approach. Meanwhile, the attention-based
MASAC algorithm performs better than MASAC but still falls short of CMS, indicating
that while attention mechanisms enhance coordination, CMS further improves multi-agent
cooperation through complementary attention mechanisms. To further analyze the detailed
performance of each algorithm in solving this problem, Table 6.3 presents a quantitative
comparison of key performance indicators.

Table 6.3 provides a detailed evaluation of five key performance metrics: cumulative
reward, constraint violations, VPP adjustment, and unserved electricity at convergence. The
results confirm that CMS achieves the lowest reward (7420.58), along with the lowest
constraint violations (0.5972) and unserved electricity (23.94 MWh), while also maintaining
efficient VPP adjustment (1016.73 MWh). These results demonstrate that CMS effectively

balances power dispatch, constraint compliance, and operational efficiency in an emergency
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dispatch scenario. Among the benchmark algorithms, MAPPO exhibits the highest reward
(11091.85), which suggests the worst performance in constraint satisfaction. This is further
confirmed by its highest constraint violations (1.0244) and unserved electricity (84.33
MWh), indicating that it struggles to maintain a stable and reliable power dispatch solution.
Similarly, MADDPG, while performing better than MAPPO, still shows a relatively high
reward (8655.93), along with significant constraint violations (0.7117) and unserved
electricity (37.77 MWh), demonstrating suboptimal coordination and resource allocation.
MASAC and attention-based MASAC perform better than MAPPO and MADDPG in terms
of constraint satisfaction but still exhibit higher reward values and constraint violations
compared to CMS. Specifically, attention-based MASAC achieves a reward of 7812.16,
with constraint violations of 0.6312 and unserved electricity of 23.68 MWh, showing an
improvement over MASAC but still falling short of CMS. These findings further validate
that CMS provides the most effective balance between constraint satisfaction, resource
allocation, and system stability, reinforcing its superiority in managing the distribution

system's response to emergency dispatch scenarios.

Table 6.3 Performance metrics comparison of CMS and benchmark algorithms.

Reward Constraints VPP Unserved

violation adjustment electricity
MASAC 8021.45 0.6668 1369.31 25.55
MADDPG 8655.93 0.7117 1311.48 37.77
MAPPO 11091.85 1.0244 762.78 84.33
AMS 7812.16 0.6312 1268.54 23.68
CMS 7420.58 0.5972 1016.73 23.94

To further assess the effectiveness of AMS and CMS in enhancing agents' focus on global
information, we introduce an attention entropy metric. This metric quantifies how uniformly

an agent distributes its attention across available entities, thereby reflecting its ability to
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prioritize crucial information while avoiding distractions [124]. The attention entropy value
is defined as follows:

N N
M, =->>"p, logp,,
m (6.51)

€ij
N
Zk €ik

where p; ; = is the normalized attention weight assigned to agent j; e;; is the

attention weight assigned agent i to agent j. A lower entropy value indicates higher attention
concentration, meaning the agent focuses on fewer but more relevant information [129]. To
further analyze the variability of attention distribution across agents and time steps, we

compute the standard deviation of the attention distribution:

§.=3 =3 p,, )
ae - N - pi,j /ui

(6.52)

where u; = EZ?’ pi; is the mean attention weight for agent i. A high standard deviation

indicates more variance in attention distribution, suggesting that certain agents receive
significantly more attention than others. We conducted simulation experiments to compare
the attention entropy and its standard deviation for CMS and AMS under varying sight

regions (R = 8,10). The results are summarized in the following table:

Table 6.4 Evaluation of attention entropy in the proposed algorithm and the AMS

algorithm.

Mye, (R =8) Mge, (R =10) Sqe (R =18) Sge (R =10)

CMS local 1.3843 1.4208 0.1286 0.09132
CMS global 1.5121 1.5144 0.0922 0.06202
AMS 1.4830 1.5498 0.1018 0.0865

Note: R represents the size of the sight region that an agent can observe around its
VPP center. M, denotes the mean value of attention entropy, while S,, refers to the

standard deviation of the attention distribution.
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The results indicate that CMS local exhibits a relatively low attention entropy, which
allows agents to focus on critical information efficiently; however, excessive concentration
can lead to high training instability due to the lack of sufficient environmental information
for decision-making. To counterbalance this, CMS global achieves a higher attention
entropy, supplementing the local model by extracting relevant global information, thereby
enhancing the algorithm's training stability. This local-global coordination ensures that
CMS enables agents to make optimal control decisions even when limited to local
observations. The role of sight region R is critical in this analysis, as it defines how much
information an agent can perceive at a given time; a larger sight region (R = 10) generally
results in a more balanced attention distribution, while a smaller sight region (R = 8) forces
agents to rely more on local information. Compared to AMS, CMS local provides a more
focused attention mechanism, reducing distractions, while CMS global mitigates excessive
attention concentration by incorporating essential global context. This synergy allows CMS
to outperform AMS by maintaining both stability and adaptability, making it more robust
in dynamic multi-agent environments where agents need to make precise decisions despite

partial observability.

6.5 Summary

This study presents a novel coordinated T&D system operation strategy to enhance power
system resilience under N-k contingencies. The proposed framework leverages VPPs within
the distribution network to compensate for loads curtailed by the transmission system,
ensuring load restoration and mitigating power flow congestion. Through bidirectional
information exchange, the transmission system communicates load-shedding decisions to
the distribution network, while the distribution network provides its available maximum
curtailment capacity. This coordination optimizes system response to unexpected
disruptions, improving power system stability. To achieve efficient real-time decision-
making, we adopt reinforcement learning-based optimization. The transmission system is
modeled using the SAC algorithm, which determines optimal load-shedding and generator

dispatch strategies for rapid restoration. Meanwhile, the distribution system employs the
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CMS algorithm to effectively manage multiple VPPs. This approach addresses attention
dispersion issues commonly encountered in multi-agent environments, enabling more
reliable decision-making. Simulation results validate the effectiveness of the proposed
reinforcement learning framework. The coordinated operation of the T&D system
successfully reduces power flow congestion in the transmission network while maintaining
load supply and voltage stability in the distribution system. These findings demonstrate the
potential of reinforcement learning-based methodologies in enhancing the adaptability and
resilience of modern power grids.

While the present study has focused on simulation-based validation for transmission,
distribution, and coordinated T&D systems, an important direction for future work lies in
exploring the engineering validation pathway. One promising step is the adoption of
hardware-in-the-loop (HIL) platforms, where the proposed DRL-based controllers can be
evaluated against real-time digital simulations of power systems to assess their dynamic
performance under realistic operating conditions. At the transmission level, HIL
experiments could emulate generator dynamics and contingency responses to provide
insights into real-time feasibility. At the distribution level, controller-HIL tests with inverter
emulators and OLTCs would allow evaluation of scalability, communication load, and
control responsiveness. This staged validation pathway—from simulation to HIL to
SCADA-level integration—provides a clear route for bridging the gap between theoretical

research and practical deployment.

146



Chapter 7 Conclusions and Future
Perspectives

7.1 General Conclusions

This thesis proposes a unified reinforcement learning—based framework to improve the
secure and resilient operation of modern power systems under various contingencies and
uncertainties. It addresses a diverse set of operational challenges that arise across the
transmission system, distribution system, and their coordinated operation layers. Through
the development of four interrelated but methodologically distinct contributions, this thesis
highlights how learning-based control, robust optimization, and system-level coordination
can jointly address the fundamental limitations of traditional OPF techniques. The
contributions extend beyond simulation performance and demonstrate how reinforcement
learning can be systematically integrated into power system operation models to handle
high-dimensional, dynamic, and safety-critical decision-making. The four major
contributions are summarized below from a structural and conceptual perspective.

1) Multi-Agent Adversarial Learning Architecture for Robust Decision-Making under N-
k Contingencies: This study introduces an innovative multi-agent adversarial reinforcement
learning framework for enhancing robustness in CCOPF problems. Unlike prior methods
that treat uncertainties as passive stochastic parameters, the proposed model structures the
interaction between system control and uncertainty as a game between two learning agents.
This modeling shift enables the system operator (defender agent) to proactively generate
decisions that are robust to dynamically evolving worst-case contingency scenarios
generated by an attacker agent. The novelty lies not just in the application of DRL, but in
how uncertainty modeling is internalized within the learning loop through competitive
policy interaction. The use of dual-agent SAC—where continuous control spaces for the
defender and discrete combinatorial action spaces for the attacker coexist—further

introduces a flexible yet computationally efficient framework. Additionally, the approach
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supports end-to-end policy learning without dependence on linearized power flow models
or surrogate convex approximations. This work sets the foundation for rethinking robust
power system operation not just as an optimization problem but as a dynamic adversarial

learning task, where resilience emerges from strategic anticipation of system threats.

2) CMDP-Based Formulation for Safety-Aware Preventive-Corrective Scheduling with
VPPs: The second contribution reformulates the classic preventive—corrective SCOPF
problem into a constrained Markov decision process (CMDP) to explicitly address the dual
requirements of operational safety and adaptability under uncertainty. By leveraging the
control flexibility of VPPs, this formulation builds a temporal structure that separates
decision-making into pre-contingency (preventive) and post-contingency (corrective) stages,
each governed by a dedicated reinforcement learning agent. A key conceptual advancement
is the embedding of constraint satisfaction directly into the policy learning phase via
Lagrangian dual variables, which are updated dynamically based on observed system states
and actions. This contrasts with conventional DRL approaches that treat safety constraints
as soft penalties and often struggle with feasibility. The CMDP-based structure also enables
a modular learning approach, where the preventive agent learns to anticipate downstream
constraints imposed by corrective actions, creating a feedback-consistent learning
environment. Furthermore, the design effectively integrates physical modeling (AC
constraints) with policy-based learning, illustrating a hybrid paradigm that balances
theoretical rigor with practical adaptability. This methodological innovation is critical for
realizing real-time resilient control in large-scale systems where fast, constraint-compliant
decision-making is essential.

3) Hierarchical Multi-Mode Control Design for Data-Driven Voltage Regulation in ADNs:
In addressing voltage regulation in active distribution networks, this thesis presents a
hierarchically structured control architecture that operates across two timescales and
supports multiple operational objectives. A distinctive contribution of this work is the
formalization of a multi-mode voltage regulation model, where the system dynamically

transitions between optimization goals such as minimizing power losses, mitigating under-
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voltage, or suppressing over-voltage, depending on real-time operating conditions. This
contrasts with prior strategies that rely on fixed control objectives or single-mode regulation.
The learning framework is structured such that a global agent dispatches slow-acting
mechanical devices (OLTCs, CBs) using a discrete SAC approach, while local agents
govern inverter-based devices via attention-enabled multi-agent SAC (MASAC). The
attention mechanism allows agents to selectively process relevant signals, improving
learning efficiency and stability, especially in high-agent-count environments. Beyond
algorithmic novelty, the work contributes to the growing field of autonomous grid
management by demonstrating how localized inverter agents can collectively realize
system-wide control objectives without explicit communication during runtime. This
decentralized-yet-coordinated model of voltage regulation provides a scalable pathway for
managing uncertainty in high-DER environments without compromising stability or
efficiency.

4) Reinforcement Learning—Enhanced Coordination Framework for Distributed T&D
Load Restoration: The final contribution addresses the longstanding challenge of real-time
T&D coordination during emergency load restoration. Rather than relying on tightly
coupled optimization models, the proposed framework decomposes the problem into two
separate but communicative RL processes: a centralized SAC controller for the transmission
system and a multi-agent MASAC controller for the distribution system. The use of a virtual
power plant (VPP) as an intermediate aggregator represents a shift from device-level to
resource-cluster coordination, significantly reducing the dimensionality and communication
overhead of the distributed control process. What distinguishes this work is not only the
agent-level learning design but also the information exchange architecture that supports
asynchronous yet coherent decision-making across system layers. Furthermore, the
introduction of a complementary attention mechanism into the MASAC framework
addresses two pressing MARL challenges: the inability to focus on critical environmental
signals and the lack of global coordination among decentralized agents. By combining

reinforcement learning, hierarchical aggregation, and cross-layer communication, the
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proposed method provides a conceptually unified and computationally efficient approach

for restoring power in complex, multi-entity grid environments.

7.2 Future Perspectives

While this thesis introduces several novel and effective strategies for enhancing the secure
operation of power systems under uncertainties and emergencies, several limitations and
open challenges remain. Future research directions may focus on addressing these
limitations, extending current frameworks to broader scenarios, and integrating more
practical considerations for deployment in real-world systems. The key future directions are
summarized as follows:

1) Expanding Adversarial RL for Broader Classes of Power System Uncertainties: The
proposed defender—attacker reinforcement learning framework shows promising results in
generating robust control strategies under N-k contingency scenarios. However, current
work mainly considers topological failures and static system parameters. Future research
could extend this adversarial framework to include dynamic uncertainties, such as time-
varying load demand, renewable forecast errors, and market-driven behaviors. Additionally,
incorporating probabilistic forecasting models into the attacker's behavior generation could
further enhance the realism and adaptability of the defender's learning strategy. From a
theoretical standpoint, there is also a need to explore convergence guarantees and robustness
bounds in multi-agent adversarial settings within power system environments.

2) Integration of Safety-Critical RL Algorithms with Physical System Constraints: The
Lagrangian-based soft actor-critic algorithm developed in this thesis ensures constraint
satisfaction through dynamic dual variable adjustment. However, in practice, DRL policies
may still suffer from feasibility violations in unseen or extreme scenarios. Future work
should explore the integration of formal safe RL techniques, such as Lyapunov-based policy
optimization, control barrier function learning, or model predictive safety layers, into the
preventive—corrective SCOPF framework. Moreover, extending the CMDP formulation to
incorporate chance constraints or distributionally robust optimization (DRO) could better

handle uncertainties with known distributions, enhancing safety guarantees during operation.
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3) Toward Plug-and-Play Multi-Agent Voltage Control Architectures: The proposed
multi-mode voltage regulation strategy demonstrates a scalable solution for active
distribution networks. However, the MASAC architecture requires pre-defined agent
topologies and offline centralized training. For real-world systems with dynamic DER
participation, topology reconfigurations, or plug-and-play devices, the control architecture
must become more adaptive. Future research should investigate online transferable
reinforcement learning, where agents can continuously adapt to evolving network structures.
Additionally, adopting graph neural networks (GNNs) as policy encoders could improve
coordination under changing connectivity, while reducing the dependency on retraining
across different system configurations.

4) Real-World Implementation of Distributed Load Restoration Frameworks: While the
proposed T&D coordination strategy has shown strong simulation performance, practical
implementation still faces challenges in terms of communication delays, scalability, and
cybersecurity risks. Future research should explore the deployment of the proposed CMS-
based MASAC algorithm in hardware-in-the-loop (HIL) environments or digital twins,
integrating SCADA-based data feeds to validate real-time decision-making performance.
Additionally, optimizing the communication topology and frequency for aggregator-to-
DER coordination is crucial to ensure low-latency control without overloading the system.
Finally, considering cyber-attack resilience (e.g., data falsification or denial-of-service
attacks) in distributed MARL-based architectures is critical for ensuring the secure

operation of restoration strategies under adversarial conditions.
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