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Abstract

This thesis is devoted to design and analyze the numerical algorithm for parameter identification

problem utlizing theoretical results.

In recent years, numerous numerical schemes for parameter identification problems were developed,

analyzed and tested. Most of existing work emphasizes well-posedness, convergence (with respect to

the noise level), and convergence rates under various source conditions. In practice, the inversion

formulations are further discretized, traditionally via the Galerkin finite element methods (FEMs)

or, more recently, neural networks (NNs). However, discretization introduces additional errors that

affect reconstruction quality, and rigorous error bounds for numerical inversion algorithms remain

underexplored.

After some background introduction and preliminaries in Chapters 1 and 2, we investigate the

reconstruction of both the diffusion and reaction coefficients present in an elliptic/parabolic equation

in Chapter 3. A decoupled algorithm is constructed to sequentially recover these two parameters. Our

approach is stimulated by a constructive conditional stability, and we provide rigorous a priori error

estimates in L2(Ω) for the recovered diffusion and reaction coefficients. Next, in Chapter 4, we focus

on the numerical analysis of quantitative photoacoustic tomography (QPAT). The stability of the

inverse problem significantly depends on a non-zero condition in the internal observations, a condition

that can be met using randomly chosen boundary excitation data. Utilizing these randomly generated

boundary data, we provide a rigorous error estimate in L2(Ω) norm for the numerical reconstruction.

In Chapter 5, we propose a hybrid FEM-NN scheme, where the finite element method is employed to

approximate the state and neural networks act as a smoothness prior to approximate the unknown

parameter. We demonstrate that the hybrid approach enjoys both rigorous mathematical foundation

of the FEM and inductive bias/approximation properties of NNs. In Chapter 6, we concern with

numerically recovering multiple parameters simultaneously in the subdiffusion model from one single

lateral measurement on a part of the boundary, while in an incompletely known medium. We prove a

uniqueness result for special cases of diffusion coefficients and boundary excitations. The uniqueness

analysis further inspires the development of a robust numerical algorithm for recovering the unknown

parameters. Finally, in Chapter 7, we summarize our work and mention possible future research topics.

Throughout, extensive numerical experiments are provided to illustrate the efficiency and reliability

of the proposed algorithms.
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CHAPTER 1.

Introduction

In this chapter, we will introduce the parameters identification problems associated with partial dif-

ferential equations (PDEs). In Section 1.1, we present the an abstract framework for parameters

identification problems governed by PDEs. This framework is further illustrated by the inverse diffu-

sivity problem (IDP) in Section 1.2, where we show how theoretical results in parameter identification

can inspire the development of numerical algorithms and analysis. In Section 1.3, we establish the

subdiffusion model and introduce the parameters identification problem related to subdiffusion equa-

tions. This dissertation’s contributions and organizational structure, are then described in Section

1.4.

1.1 Introduction to inverse problems

Estimating physical parameters in partial differential equations (PDEs), known as parameter identifi-

cation, constitutes a critical class of inverse problems with broad applications. These include medical

imaging (including electrical impedance tomography [28, 140] and diffuse optical tomography [75, 47]

etc.), geophysical prospecting [154], and non-destructive testing [91]. Mathematically, these problems

admit the following abstract operator equation:

Kx = y, with x ∈ X, y ∈ Y, (1.1)

where X and Y be two given Banach spaces, and K : X → Y be a densely defined, injective (but

not necessary continuous or linear) mapping. Here K represents the forward mapping that relates the

parameter x† (e.g., a PDE coefficient) to the observable state y† ≡ y(x†). The goal is to recover x†

from noisy measurements of y†.

This problem is ill-posed, namely their solutions can be highly susceptible to data noise. Thus spe-

cialized solution techniques known as regularization are needed for their stable and accurate numerical

solution. This is often achieved using variational regularization (see, e.g., [73]), i.e., formulating the

reconstruction task as solving a PDE constrained optimization problem that involves a data-fitting

term and a regularization term

Jγ(x) := ∥Kx− zδ∥Y + γ∥x∥2Z . (1.2)

Here, the first term measures fidelity of the model output with the noisy measurement data zδ,

whereas the second term (with regularization parameter γ) imposes stability via penalties like Sobolev

smoothness, ℓ1-sparsity or total variation.
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Meanwhile, for many PDE inverse problems, there are conditional stability estimates that providing

theoretical bounds on solution sensitivity within restricted parameter sets. They are conditional in

the sense that the estimates are valid only on a suitable subset of admissible parameters, which often

impose very strong regularity assumptions on the concerned parameters. In [34], Cheng et al formulate

one delicate definition on the conditional stability

Definition 1.1. Let Z ⊂ X be a new Banach space with the embedding relation Z ↪→ X hold. Fix

some M > 0, the admissible set is given by

AM = {x ∈ Z : ∥x∥Z ≤M}

and choose Q ⊂ Z suitably. Let ω be a non-negative monotone increasing function ω = ω(η), η ⩾ 0,

satisfying limη→0 ω(η) = 0. The conditional stability holds in the operator equation Kx = y, if for a

given M > 0, there exists a constant c = c(M) > 0 such that

∥x1 − x2∥X ≤ c(M)ω (∥Kx1 −Kx2∥Y ) = c(M)ω (∥y1 − y2∥Y ) ,

for every x1, x2 ∈ AM ∩ Q. The function ω often indicates the modulus of the conditional stability

under consideration.

Given the theoretical foundation of conditional stability estimates, it is a very natural question to

combine them with numerical procedures. This idea first was suggested by Cheng and Yamamoto [34],

who analyzed Tikhonov regularization using conditional stability, proposed a new rule for choosing the

regularization parameter based on the stability estimates and exemplified the approach on multiple

concrete PDE inverse problems. Since then the approach has been further studied in several works

for both variational regularization [21, 49, 147] and iterative regularization [45].

In practical computation, one has to further discretize the governing equation and the objective

functional. This can be achieved using finite difference, finite element and more recently also deep

neural networks. From the perspective of numerical analysis, it would be desirable to also incorporate

the discretization parameters in the error analysis. Indeed, a finer mesh leads to a more accurate

approximation of the forward map, but at the cost of increased computational efforts, whereas a

coarse mesh may significantly deteriorate the accuracy of the reconstruction (due to the discretization

error). Therefore it is important to derive quantitative bounds on the approximation to guide the

choice of various algorithmic parameters. Unfortunately, the rigorous numerical analysis of discrete

variational regularization techniques lags far behind. This is due to the severe nonlinearity of the

forward map for many PDE parameter identifications as well as the inherent ill-posedness of inverse

problems. So far in the literature, there have only been a few studies prior to 2010s, prominently

[54, 129].
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In the thesis, we aim to employ conditional stability estimate to derive numerical error estimation

for the parameters identification problems governed by PDEs. In particular, we investigate two inverse

problems with finite element discretization in Chapter 3 and Chapter 4. We present the error analysis

with neural network discretization in Chapter 5. In Chapter 6, we design a numerical algorithm for a

highly ill-posed inverse problem motivating from the theoretical analysis.

1.2 Inverse diffusivity problem and error estimate

In this section, we provide a simple example, the inverse diffusivity problem. In particular, we demon-

strate that the theoretical stability results motivate the numerical analysis of the reconstruction error.

We consider the following elliptic equation
−div

(
q∇u

)
= f, in Ω,

u = g, on ∂Ω.
(1.3)

The elliptic problem (1.3) describes many important physical processes, and the related inverse prob-

lems are exemplary for parameter identifications for PDEs (see the monographs [6, 22] for overviews).

For example, (1.3) is often used to model the steady state of diffusion process, where u represents the

concentration of a substance (e.g., a chemical, pollutant, or particles) in the domain Ω, q represents

the diffusion coefficient, which determines how easily the substance diffuses through the medium, f is

the source and g is the concentration on boundary ∂Ω. See also [56, 150] for parameter identifications

in hydrology and [17] for related coupled-physics inverse problems arising in medical imaging.

Equation (1.3) admits a unique solution u ∈ H1(Ω) when f ∈ H−1(Ω), g ∈ H
1
2 (∂Ω) and q ∈ L∞(Ω)

with positive lower and upper bounds. The inverse problem aims to identify the diffusion coefficient

q(x) with measurement data zδ(x), x ∈ Ω with noise level δ, i.e.

∥zδ − u†∥L2(Ω) ≤ δ,

where u† = u(q†) is the solution of (1.3) corresponding to the exact diffusion coefficient q†.

The stability as well as error estimate of the inverse diffusion problem has been extensively studied

in the literature. In [54], one of the earliest works, Falk consider the governing equation (1.3) with a

Neumann boundary condition over a smooth domain Ω ⊂ R2. They imposed a structural condition

on the problem data:

There exists a constant unit vector ν ∈ R2 and a

constant cν > 0, such that ∇u† · ν > cν , for all x ∈ Ω,
(1.4)

and derive the conditional stability

∥q − q†∥L2(Ω) ≤ c∥∇(u− u†)∥
1
2

L2(Ω)
,

3



where c depends on the maximum of ∥q∥H1(Ω), ∥q†∥H1(Ω). The proof relies on the weak formulation of

u† and u with the test function φ = e−2kx·ν(q†− q), where k > ∥∆u†∥L∞(Ω)/(2cν) is a given constant.

Indeed, direct computation leads to following weighted stability∫
Ω
(q† − q)2

(
k∇u† · ν + 1

2∆u
†)e−2kx·ν dx ≤ c∥∇(u− u†)∥L2(Ω).

By the choice of k, one can remove the weight function and get the desired L2(Ω) estimate. Motivated

by the stability estimate, Falk [54] analyzed a Galerkin finite element method discretization of the

standard output least-squares formulation, and derived a rate O(hr+h−2δ) in the L2(Ω) norm, where

r is the polynomial degree of the finite element space and h is the mesh size. The proof relies on

the design of test function φ = e−2kx·ν(Phq
† − q∗h) and applying energy argument. Here Ph denotes

the projection onto finite element space, cf Section 2.1.1; and q∗h denotes the minimizer of proposed

least-squares formulation. However, this result requires sufficiently high regularity u† ∈ Cr+3(Ω) and

q† ∈ Hr+1(Ω) and the restrictive structural condition (1.4).

Later, Wang and Zou [144] improved the error analysis of the inverse diffusion problem with a

homogeneous Neumann boundary condition. To obtain a numerically stable reconstruction, they

employed the output least-squares method with an H1(Ω) seminorm penalty and discretizes both the

diffusion coefficient q and the solution u using conforming piecewise linear finite elements. Their work

relaxed the regularity assumption q†, u† ∈ H2(Ω)∩W 1,∞(Ω) and employed a mild structural condition:

There exists a constant c0 > 0 such that c0|∇u†(x)|2 ≥ f(x) a.e. x ∈ Ω. (1.5)

With these assumptions, they established the following weighted L2(Ω) analysis

∥(q† − q∗h)∇u†∥L2(Ω) ≤ c
(
h

1
2γ−

1
2 + h−

1
2γ−

1
4
)(
h2 + δ + γ

1
2
)
,

where γ > 0 denotes the regularization parameter. The proof is similar to [54] by introducing the

special test function φ = (q†)−1(q† − q)e−2c0c−1
q u† . The following weighted stability holds∫

Ω

(q† − q)2

(q†)2
(
2c0c

−1
q q†|∇u†|2 − f

)
e−2c0c−1

q u†dx ≤ c∥∇(u(q)− u†)∥L2(Ω).

The box constraint 0 < cq ≤ q(x) ≤ cq and the choice of c0 imply the desired estimate.

The above reconstruction schemes are based on least-squares techniques. There are various ap-

proaches to reconstruct the diffusion coefficient and establish the error analysis. One approach relies

on reformulating the inverse problem as a transport equation for the diffusivity q. Richter [128, 129]

proved the uniqueness of the inverse problem (1.3) under the assumptions that q is given on the inflow

boundary (the portion of the boundary where ∂q
∂n < 0) and the condition

inf
Ω

max{|∇u†|,∆u†} > 0. (1.6)
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In addition, Richter [129] provided a modified upwind difference scheme for the transport problem

and proved O(h) convergence under restrictive regularity assumption u† ∈ C3(Ω) and q† ∈ C2(Ω).

Another approach uses variational methods. Kohn and Lowe [101] proposed following unconstrained

minimization problem to solve the inverse problem (1.3) with Neumann boundary condition:

min
σh,qh

∥σh − qh∇zδ∥2L2(Ω) + ∥∇ · σh + f∥2L2(Ω) + ∥σh · n− g∥2L2(∂Ω) + γ∥∇qh∥2L2(Ω).

The objective function matches equation error of the first order system with u† replaced by noise

measurement zδ. Kohn and Lowe proved that assuming the regularity u† ∈ H3(Ω), ∆u† ∈ C(Ω),

q† ∈ H2(Ω) and ∥u† − zδ∥H1(Ω) ≤ δ, there holds

∥q∗h − q†∥L2(Ω) ≤ c(h+ δ + γ
1
2 )

1
2 ,

under the condition

For all ψ ∈ H1(Ω), the equation ∇u† · ∇vψ = ψ

has a solution with ∥vψ∥H1(Ω) ≤ c∥ψ∥H1(Ω).
(1.7)

They also showed the condition (1.7) is weaker than the condition (1.4) presented in Falk’s result [101,

Lemma 5].

It is important to highlight that the structural assumptions (1.4)-(1.7) are crucial for the stability

and numerical analysis for the inverse diffusivity problem. These assumptions can be interpreted as

variations of the following non-zero gradient condition:

|∇u(x)| ≥ c0 > 0 for all x ∈ Ω. (1.8)

In general, this non-zero condition does not holds. To achieve this condition, it is important to design

some special input data (boundary excitation g or source f). In practical, these designs of input data

may be restrictive. Below, we review and propose two strategies for designing the input data.

We first consider the case f ̸= 0. Bonito et. al. [22] proposed a novel stability estimate with mild

assumptions on problem data by considering (1.3) with zero Dirichlet boundary. Based on the energy

argument and a special test function φ = (q†)−1(q† − q)u† ∈ H1
0 (Ω), Bonito et al [22] established the

following weighted stability estimate:∫
Ω

∣∣∣q† − q

q†

∣∣∣2(q†|∇u†|2 + fu†
)
dx ≤ c∥∇(u† − u)∥L2(Ω),

where c depends on the maximum of ∥q∥H1(Ω), ∥q†∥H1(Ω). We notice that since the source f does not

vanish, there is flexibility to design the input data such that the weight function q†|∇u†|2 + fu† is

positive. In [22], the authors consider the following positive condition:

q†|∇u†|2 + fu† ≥ c0 dist(x, ∂Ω)
β, for a.e. x ∈ Ω. (1.9)
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The positive condition (1.9) describes the decay rate of the weight function near the boundary ∂Ω.

This condition has been shown for some certain cases with mild regularity assumptions on problem

data. For example, (1.9) holds with β = 2 if Ω is a Lipschitz domain, q† ∈ H1(Ω) with positive

lower and upper bounds, and f ∈ L2(Ω) with a strictly positive lower bound in Ω. Further, if Ω is

a C2,µ domain with µ ∈ (0, 1), q† ∈ C1,µ(Ω) with positive lower and upper bounds, f ∈ Cµ(Ω) with

f ≥ cf > 0, then (1.9) holds with β = 0. The proofs follow from the maximum principle and Schauder

estimates for second-order scalar elliptic equations, the decay rate of the Green function near the

boundary ∂Ω, see e.g., [22, Corollaries 3.4 and 3.8] for the related analysis. Inspired by the stability

analysis in [22], the work in [84] develops a new error bound using a weighted energy estimate with

a special test function φ = (q†)−1(q† − q∗h)u
† ∈ H1

0 (Ω). They proved a weighted estimate under the

regularity assumption q† ∈ H2(Ω) ∩W 1,∞(Ω) and derived L2(Ω) error analysis if in addition (1.9)

holds:

∥q† − q∗h∥L2(Ω) ≤ c((hγ−
1
2 η +min(h−1η, 1))γ−

1
2 η)

1
2(1+β) ,

where η = h2 + δ + γ
1
2 . Later, Jin et al [84, 85, 83, 81, 87] extend this positive condition to inverse

potential problem or non-stationary equations. In Chapter 3, we would extend this framework to an

inverse problem with two unknown parameters. We provide rigorous a priori error estimates in L2(Ω)

for both parameters under similar positive conditions.

Now we focus the case f = 0 while g ̸= 0. There are several approaches for constructing a boundary

illumination g such that this condition holds. When d = 2, the works [8, 7] provide a simple criterion

for choosing a special boundary illumination g that guarantees the non-zero condition. Roughly speak-

ing, the graph of g should have a single maximum point, a single minimum point, and be monotone in

between. For dimensions d ≥ 3, ensuring the non-zero condition becomes more challenging [5]. In [16],

the author uses the method of complex geometrical optics to construct boundary data g satisfying the

nonzero condition. However, this construction is not very explicit and depends on the interior values

of the unknown coefficient q. We note that it is possible to obtain θ-Hölder stability for the inverse

problem even without requiring (1.8), provided the illuminations are suitably chosen [9]. However, the

parameter θ is not explicit and the construction of the boundary values is not easily implementable

numerically. Recently, [4, 6] considered using random boundary illuminations and proved that the

corresponding solutions will satisfy the non-zero condition with overwhelming probability. This ap-

proach overcomes the drawbacks of the previous methods, as it imposes no restrictive constraints on

the boundary illuminations and aligns well with practical situations. In Chapter 4, we present the

numerical analysis for the inverse problem with nonzero condition provided in [4, 6].
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1.3 Inverse problems for subdiffusion model

In recent decades, numerous experiments and studies have revealed that diffusion in complex systems

often deviates from Brownian motion, instead following Lévy processes. This phenomenon, known

as anomalous diffusion, is characterized by the mean square displacement of particles varying either

superlinearly (superdiffusion) or sublinearly (subdiffusion) with time. Anomalous diffusion models are

highly effective in describing experimental data across many significant practical applications. The

list of successful applications is long and still fast growing, e.g., ion transport in column experiments

[66], protein diffusion within cells [59] and contaminant transport in underground water [99]. See the

reviews [117, 116] for the derivation of relevant mathematical models and diverse applications. In

this thesis, we will only consider the subdiffusion diffusion in time, which can be represented by an

equation of the form: 
∂αt u−∇ · (D∇u) + σu = f in Ω× (0, T ],

u = g on ∂Ω× (0, T ],

u(0) = u0 in Ω,

(1.10)

where ∂αt u is defined as

∂αt u(t) :=
1

Γ(1− α)

∫ t

0
(t− s)−αu′(s) ds. (1.11)

The model (1.10) differs considerably from the normal diffusion model due to the presence of the

nonlocal operator ∂αt u: it has limited smoothing property in space and slow asymptotic decay at large

time [102, 76].

The mathematical study on inverse problems for time-fractional models is of relatively recent ori-

gin, starting from the pioneering work [35] (see [82, 109, 114, 110] for overviews). One of the classical

example of inverse problems for subdiffusion is the backward problem. This inverse problem aims

to identify the initial data u0 from the measurement u(x, T ), x ∈ Ω. The existence, uniqueness and

stability of the time-fractional backward problem were analyzed by Sakamoto and Yamamoto in [134].

A numerical method is proposed by Liu and Yamamoto [113] based on the quasi-reversibility method,

and the approximation error is developed (in terms of noise level) under a priori smoothness assump-

tion on u0. In [153], Zhang and Zhou employ the finite element method and convolution quadrature

to discretize the reconstruction scheme and provide a rigorous error analysis. Another classical iden-

tification problem is to recover the diffusivity term D or potential term σ from measurement data

u(x, T ), x ∈ Ω. In [71] Isakov showed the uniqueness and existence of the inverse potential problem

for parabolic equations, by developing a unique continuation principle and a constructive fixed point

iteration. Choulli and Yamamoto [36] proved a generic well-posedness result in a Hölder space, and

then proved a conditional stability result in a Hilbert space setting [37] for sufficiently small T . More

7



recently, a series of works [85, 83, 81, 152, 86] derived conditional stability for diffusivity/potential

identification problems and established error analysis based on the positive condition (1.9) mentioned

in Section 1.2.

Instead of reconstructing space-dependent potential or diffusion coefficient from terminal measure-

ment, it is more interesting to identifying space-dependent coefficients from lateral Cauchy data. In

this scenario, the data and the unknown are misaligned in direction, leading to a severely ill-posed

inverse problem. There are several existing works [131, 132, 145, 90, 86, 95]. Rundell and Yamamoto

[131] showed that the lateral Cauchy data can uniquely determine the spectral data when u0 ≡ f ≡ 0,

and proved the unique determination of the potential using Gel’fand-Levitan theory. They also numer-

ically studied the singular value spectrum of the linearized forward map, showing the severe ill-posed

nature of the problem. Later, they [132] relaxed the regularity condition on the boundary excitation

g(t) in a suitable Sobolev space. Recently, Jing and Yamamoto [90] proved the identifiability of multi-

ple parameters (including order, spatially dependent potential, initial value and Robin coefficients in

the boundary condition) in a time-fractional subdiffusion model with a zero boundary condition and

source, excited by a nontrivial initial condition from the lateral Cauchy data at both end points; see

also [89]. Jin and Zhou [86] studied the unique recovery of the potential, fractional order and either

initial data or source from the lateral Cauchy data, when the boundary excitation is judiciously cho-

sen. All these interesting works are concerned with the one-dimensional setting due to their essential

use of the inverse Sturm-Liouville theory. Wei et al [146] numerically investigated the recovery of

the zeroth-order coefficient and fractional order in a time-fractional reaction-diffusion-wave equation

from lateral boundary data. A direct extension of these theoretical works to the multi-dimensional

case is challenging since the Gel’fand-Levitan theory is no longer applicable. Kian et al. [96] provided

the first results for the multi-dimensional case, including the uniqueness for identifying two spatially

distributed parameters in the subdiffusion model from one single lateral observation with a specially

designed excitation Dirichlet input; see also [68] for a related study on determining the manifold from

one measurement corresponding to a specialized source. Kian [95] studied also the issue of simulta-

neous recovery of these parameters along with the order and initial data using a similar choice of the

boundary data. However, in the works [96, 95], the excitation data, which plays the role of infinity

measurements, is numerically inconvenient to realize, if not impossible at all; see Remark 6.4 for further

discussions. These considerations motivate one to design robust numerical algorithm for recovering

multiple parameters from a single partial boundary measurement for multi-dimensional subdiffusion

with a computable excitation Neumann data, in the presence of a partly unknown medium. The

details are presented in Chapter 6.
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1.4 Contributions and organizations of the thesis

In Chapter 2, we provide some necessary preliminaries needed for the numerical analysis of parameter

identification problems. Firstly we list some standard results in Galerkin finite element method (FEM)

approximation. Due to the excellent approximation property and recent algorithmic innovations of

neural networks (NNs), we are interested in employing NNs in the parameter identification problems.

In particular, we introduce the design and approximation theory of feedforward neural networks.

We also introduce the subdiffusion model and provide solution representations based on the spectral

expansion and the Mittag-Leffler functions (2.5). All these preliminaries form basis for the following

mathematical analysis and numerical algorithms.

In Chapter 3, we extend the inverse diffusivity problem (1.3) by considering the following elliptic

equation 
−div

(
D∇u

)
+ σu = f, in Ω,

u = g, on ∂Ω.
(1.12)

This model extends (1.3) by adding the reaction term σu with σ denoting the reaction coefficient.

The inverse problem target the simultaneous reconstruction of the diffusion coefficient D and the

reaction coefficient σ in equation (1.12). This is done using two internal observations u1 and u2,

which correspond to different source terms but share the same boundary data g. It is important

to highlight that a similar problem, which involves reconstructing two parameters in equation (1.12)

(with f = 0) from two internal observations σu1 and σu2 (corresponding to distinct boundary data),

has been systematically investigated in previous studies [16, 15, 17]. This problem emerges in the

context of quantitative photo-acoustic tomography in its diffusive regime. In the aforementioned

studies, the two parameters were assumed to be known at the boundary, a prerequisite for constructing

a reconstruction algorithm and proving uniqueness. Additionally, the measurements were assumed

to satisfy the nonzero condition |∇(u1/u2)| ≥ κ > 0 almost everywhere in Ω. Interestingly, these

assumptions are not required in the current setting since we have a non-vanished source term. Our

investigation will address several critical aspects of the inverse problem: the conditional stability of

the reconstruction, the development of an efficient numerical algorithm, and a discrete numerical

scheme with a provable error estimate. One of the key challenges in this coupled problem is the

appropriate selection of function spaces for the analysis, such as for conditional stability estimates,

due to the diverse degree of smoothing of the forward map. Our approach utilizes several technical

tools, including the weighted stability estimate and energy technique with specific test functions [22].

Notably, the proposed approach differs significantly from existing ones, as the analysis naturally leads

to the derivation of rigorous error bounds on the discrete approximations. We also extends the
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argument to the parabolic equation
∂tu−∇ · (D∇u) + σu = f, in Ω× (0, T ]

u = g, on ∂Ω× (0, T ]

u(0) = u0, in Ω.

(1.13)

We aim to identify the diffusion coefficient D and the reaction coefficient σ from the observation of

u(x, t) for (x, t) ∈ (Ti − θ, Ti] × Ω with i = 1, 2. Here T1 and T2 denote two distinct time levels, and

θ is a fixed small constant. The error estimate for the numerical recovery of the single parameter

has been extensively studied in different scenarios. See e.g., [84, 144] for inverse diffusivity problems

and [92, 81, 152] for inverse potential problems. In [92], Kaltenbacher and Rundell analyzed the

simultaneous recovery of σ andD in one dimensional diffusion equations using the spatial measurement

u(T ) for two different sets of boundary conditions. The restriction on the one dimension is due to

the use of the Sobolev embedding W 1,2(Ω) ↪→ L∞(Ω). In Chapter 3, we consider higher dimensional

cases and use the interior observation of a single solution in (Ti − θ, Ti], i = 1, 2. Note that the

coupled nonlinear inverse problem does not admits unique recovery in general, even for the one-

dimensional case. See a simple counterexample in the beginning of Section 3.3. Therefore, such the

recovery highly relies on the choice of the problem data. We will investigate the conditional stability of

the reconstruction, develop a decoupled numerical algorithm to identify two parameters sequentially,

and propose a completely discrete scheme with provable error bounds. The argument employs some

technical arguments, including decoupling the original problem into two single-parameter identification

problems [15, 92], exploring weighted L2(Ω) stability estimates by an energy argument with special

test functions [22, 81] and applying numerical analysis for the direct problems [139].

In Chapter 4, we consider parameter identification problems in photoacoustic tomography (PAT).

Photoacoustic tomography is a biomedical imaging technique that combines the principles of optical

imaging and ultrasound to produce high-resolution images of tissues within the body [107, 143]. It

offers unique advantages by capturing the functional and structural characteristics of tissues, making it

particularly useful for medical diagnostics, including cancer detection, monitoring of vascular diseases,

and studying brain functions.

The quantitative photoacoustic tomography (QPAT) is a parameter identification problem of re-

covering the diffusion coefficient and the absorption coefficient from the deposited optical energy.

Mathematically, it can be formulated as the following elliptic equation [31, 11]:
−div

(
D∇u

)
+ σu = 0, in Ω,

u = g, on ∂Ω.
(1.14)

We investigate the problem of QPAT raising in practical scenario, where the source term f vanishes

and the measurement H = σu is generated by a boundary illumination g. The inverse problem aims
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to simultaneously identify the diffusion coefficient D and the absorption coefficient σ from optical

energy H = σu. Compared with Chapter 3, the vanishing source term makes the required positivity

condition fail in general, and the measurement, which is the product between the function u and the

absorption coefficient σ, is more involved. In order to have a Hölder type stability, we employ specially

designed random boundary illuminations [4, 6], and apply the weighted energy estimate with special

test functions [22, 84]. We employ a decouple algorithm [16, 15]: first solve an inverse diffusivity

problem and then solve a forward problem; cf Section 4.2. We then discuss the numerical inversion

formula and analyze the approximation error for the reconstruction. One popular reconstruction

approach is to reformulate the inverse diffusivity problem as a transport equation with variable q

[16, 15]. This approach is non-iterative and hence efficient for computation. However, it requires the

non-zero condition to hold on the whole domain Ω, while in our approach (see Proposition 4.1) the

non-zero condition holds only locally for a specific boundary illumination. On the other hand, the

least square formulation allows one to naturally incorporate the local non-zero property into the error

analysis. Therefore, in this paper, we consider the least square fitting approach with a regularization

term for the QPAT reconstruction. Motivated by the stability estimate, we employ weighted energy

estimate with a special test function to analyze the approximation error in terms of the discretization

mesh size h, the noise level δ, and the regularization parameter γ. Our approach employs several

technical tools, including the decoupled procedure for QPAT, the weighted energy estimate, the non-

vanishing gradient property, and a priori estimates for the finite element approximation.

In Chapter 5, we develop a hybrid scheme combining the neural networks and the finite element

methods for the inverse diffusivity problem (1.3)
−div

(
q∇u

)
= f, in Ω,

u = 0, on ∂Ω.

Due to excellent approximation property of neural networks, many methods based on NNs have been

devised and have demonstrated impressive empirical performance on a variety of PDE inverse problems

(see [138] for a recent overview). One prominent approach within the class is physics-informed neural

networks (PINNs) [126]. In the context of inverse problems, the idea is to minimize a PDE residual

functional, and then to enforce both consistency with observational data via a suitable data-fitting

functional and a priori regularity assumption on the unknown via a suitable penalty. The unknowns

are then approximated via NNs, and the resulting loss is trained to yield an approximation. However,

the theoretical analysis of neural PDE solvers for direct problems is still at an early stage, when

compared with more conventional numerical methods, e.g., finite element methods. This has greatly

hindered the mathematical analysis of relevant inverse solvers. To have the best of both approaches,

one natural idea is to combine neural networks with FEMs. Therefore, in Chapter 5 we study the
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hybrid NN-FEM approach for recovering the unknown coefficient q in problem (1.3) (and also the

parabolic case), and provide an analysis on the numerical approximation. We contribute in the

following three aspects. First, we develop a novel reconstruction formulation by incorporating the

projection operator, which automatically guarantees the well-posedness of the discrete formulations.

Second, we derive the L2(Ω) error estimates on the NN approximation q∗θ for both inverse elliptic and

parabolic problems, under mild conditions on the problem data (u0, f , q and Ω), cf. Theorems 5.2

and 5.6 for the elliptic and parabolic cases, respectively. The error bounds depend explicitly on the

approximation accuracy ϵ of the NN, discretization parameters (h and τ), the noise level δ and the

regularization parameter γ. The overall argument relies heavily on a suitable positivity condition.

Third and last, in the context of hybrid solvers, quadrature errors are inevitable, due to the presence

of the NN function in various integrals. We derive a useful L2(Ω) bound depending on the NN

architecture (e.g., width and maximum bound), cf. Theorems 5.4 and 5.8. The technical proofs rely

on smoothness properties of NNs and the structure of the finite element space. To the best of our

knowledge, these results are new and provide theoretical foundations for using the hybrid formulation

for solving PDE inverse problems.

In Chapter 6, we investigate an inverse problem in subdiffusion model:
∂αt u−∇ · (q∇u) = f in Ω× (0, T ],

q∂νu = g on ∂Ω× (0, T ],

u(0) = u0 in Ω.

(1.15)

We study mathematical and numerical aspects of an inverse problem of recovering the diffusion coeffi-

cient q and fractional order α from a single lateral boundary measurement of the solution, without the

knowledge of the initial data u0 and source f . We note that this inverse problem is severely ill-posed:

the model is partial known; and the data and the unknown are misaligned in direction. However, the

theoretical uniqueness analysis could motivate the design of stably reconstruction algorithm. We make

the following contributions to the mathematical analysis and numerics of the concerned inverse prob-

lem. First, we examine the feasibility to recover multiple parameters. We show that if the coefficient

q is piecewise constant as defined in (6.2), then one single boundary measurement can uniquely deter-

mine the coefficient a and fractional order α, even though the initial data u0 and source f are unknown.

Note that the exciting Neumann data g given in (6.3) is easy to realize and hence allows the numerical

recovery. The proof relies on the asymptotic behavior of Mittag-Leffler functions, analyticity in time

of the solution, and the uniqueness of the inverse diffusivity problem (for elliptic problems) from one

boundary measurement. In particular, the subdomain ω can be either a convex polygon / polyhedron

or a disc / ball, cf. Theorem 6.2 and Remark 6.3. This analysis strategy follows a well-established

procedure in the community, and roughly it consists of two steps. (1) Using the time-analyticity, the
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uniqueness for the original inverse problem is reduced to the one for an inverse problem for the corre-

sponding time-independent elliptic equation; (2) The reduction can be done by the Laplace transform

or considering the asymptotics. Both strategies of reductions are well known. For example, the for-

mer way is used for an Dirichlet-to-Neumann map for the inverse coefficient problem for a multi-term

time-fractional diffusion equation [108], while the latter way is used for the Dirichlet-to-Neumann map

for the inverse parabolic problem [72, Section 4, Chapter 9]. Second, the uniqueness analysis lends

itself to the development of a robust numerical algorithm: we develop a three-step recovery algorithm

for identifying the piecewise constant coefficient a and the fractional order α: (i) use the asymptotic

behavior of the solution of problem (1.15) near t = 0 to recover α; (ii) use analytic continuation to

extract the solution of problem (1.15) with zero f and u0; (iii) use the level set method to recover the

shape of subdomain ω. To the best of our knowledge, this is the first work on the numerical recovery

of a (piecewise constant) diffusion coefficient in the context of multi-dimensional subdiffusion model

with missing initial and source data. Last, we present extensive numerical experiments to illustrate

the feasibility of the approach. We refer interested readers to [133, 124] for some numerical studies

for identifying a piecewise constant source from the boundary measurement.

Finally, we summarize the main results in the thesis and try to discuss possible future work in

Chapter 7.

Throughout, we denote by W s,p(Ω) the standard Sobolev spaces of order s for any integer s ≥ 0

and real p ≥ 1, equipped with the norm ∥ · ∥W s,p(Ω). Moreover, we write Hs(Ω) with the norm

∥ · ∥Hs(Ω) if p = 2 we write Lp(Ω) with the norm ∥ · ∥Lp(Ω) if s = 0. The space Ck,µ with integer

k ≥ 0 and µ ∈ (0, 1] denotes the set of Hölder continuous functions. For a Banach space X (with

norm ∥ · ∥X), we define Wm,p(0, T ;X) = {v : v(t) ∈ X for a.e. t ∈ (0, T ) and ∥v∥Wm,p(0,T ;X) < ∞}

with ∥v∥Wm,p(0,T ;X) = (
∑m

j=0

∫ T
0 ∥u(j)(t)∥pX)

1
p , The space L∞(0, T ;X) is defined similarly. The space

Cω(T,∞;X) denotes the set of functions valued in X and analytic in t ∈ (T,∞). The spaces on the

boundary ∂Ω are defined similarly. The notation (·, ·) denotes the standard L2(Ω) inner product and

(·, ·)∂Ω denotes the inner product on L2(∂Ω). We denote by c and C generic constants not necessarily

the same at each occurrence but it is always independent of the concerned quantities.
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CHAPTER 2.

Preliminary

2.1 Numerical algorithms

2.1.1 Finite element method

First, we briefly state some standard results in Galerkin FEM approximation. Let Th be a shape

regular quasi-uniform partitions of Ω that fit the boundary exactly with a mesh size h. We assume

that ∂Ω′ does not cross an element, that is, Ω′ equals the union of some meshes. Let Vh denote the

conforming finite element space with piecewise polynomials of degree 1 and V 0
h = Vh ∩ H1

0 (Ω). In

particular the finite element space Vh can be characterized by curved element method [156, 157] when

d = 2 or isoparametric element method [40, 104] when d ≥ 2.

Following inverse inequality holds on the finite element space V 0
h [24, Lemma 4.5.3]: for 0 ≤ t ≤

s ≤ 1, 1 ≤ p, q ≤ ∞,

∥φh∥W s,p(Ω) ≤ Cht−s+d/p−d/q∥φh∥W t,q(Ω), ∀φh ∈ V 0
h . (2.1)

Let Ih : C(Ω) → Vh be the Lagrange nodal interpolation operator. Following interpolation error holds

[24, Corollary 4.4.20]: for s = 1, 2 and 1 ≤ p ≤ ∞ (with sp > d if p > 1 and sp ≥ d if p = 1)

∥v − Ihv∥Lp(Ω) + ∥∇(v − Ihv)∥Lp(Ω) ≤ Chs∥v∥W s,p(Ω), ∀v ∈W s,p(Ω). (2.2)

Similarly, we use I∂h to denote the Lagrange interpolation operator on the boundary. We define the

L2(Ω)-projection Ph : L
2(Ω) → V 0

h by

(Phv, φh) = (v, φh), ∀φh ∈ V 0
h .

The operator Ph satisfies the following error estimates [139, p. 32]: for any s ∈ [1, 2]

∥v − Phv∥L2(Ω) + ∥∇(v − Phv)∥L2(Ω) ≤ Chs∥v∥Hs(Ω), ∀v ∈ Hs(Ω) ∩H1
0 (Ω). (2.3)

2.1.2 Neural networks

In this work, we employ fully connected feedforward neural networks. Let L ∈ N be the depth of a

neural network (NN) and {dℓ}Lℓ=0 ⊂ N be a sequence of integers, with d0 = d and dL = 1, dℓ the

number of neurons in the ℓth layer of the NN. Then the realization of the NN from Ω ⊂ Rd to R is

14



defined by

NN realization


v(0) = x, x ∈ Ω,

v(ℓ) = ρ(A(ℓ)v(ℓ−1) + b(ℓ)), for ℓ = 1, 2, · · · , L− 1,

v := v(L) = A(L)v(L−1) + b(L),

(2.4)

where ρ : R → R is a nonlinear activation function and applied componentwise to a vector. Through-

out, we take ρ ≡ tanh: x → ex−e−x

ex+e−x . A(ℓ) ∈ Rdℓ×dℓ−1 and b(ℓ) ∈ Rdℓ are weight matrices and bias

vectors at the ℓ-th layer of the NN. The width W of the NN is defined by W := maxℓ=0,...,L dℓ.

We denote the NN parametrization by θ = {(A(ℓ), b(ℓ))}Lℓ=1 ∈
∏L
ℓ=1(Rdℓ×dℓ−1 × Rdℓ). The following

approximation property holds [61, Proposition 4.8].

Lemma 2.1. Let s ∈ N0 and p ∈ [1,∞] be fixed, and v ∈ W k,p(Ω) with k ≥ s + 1. Then for any

ϵ > 0, there exists at least one θ ∈ Θ with depth O
(
log(d+k)

)
and total number of nonzero parameters

O
(
ϵ
− d

k−s−µ(s=2)
)
, where µ > 0 is arbitrarily small, such that the NN realization vθ of θ satisfies

∥v − vθ∥W s,p(Ω) ≤ ϵ.

Moreover, the maximum norm of the weights in the NN is bounded by O(ϵ
−2− 2(d/p+d+s+µ(s=2))+d/p+d

k−s−µ(s=2) ).

Remark 2.1. On the domain Ω = (0, 1)d, Guhring and Raslan [64] proved Lemma 2.1 using three

steps. They first divide the domain (0, 1)d into (N +1)d equal patches with gridsize 1/N and construct

approximation of partitions of unity by neural networks [64, Lemma 4.5]. Next, they approximate a

function v ∈W k,p(Ω) by a localized Taylor polynomial vpoly: ∥v−vpoly∥W s,p(Ω) ≤ cpolyN
−(k−s−µ(s=2)),

where the construction of vpoly relies on the approximated partition of unity and the constant cpoly =

cpoly(d, p, k, s) > 0. Finally, they show that there exists a DNN parameter θ, satisfying the conditions

in Lemma 2.1, such that [64, Lemma D.5]:

∥vpoly − vθ∥W s,p(Ω) ≤ cNN∥v∥Wk,p(Ω)ϵ̃,

where the constant cNN = cNN(d, p, k, s) > 0 and ϵ̃ ∈ (0, 12). Now for small ϵ > 0, the desired estimate

follows directly from the choice below N = ( ϵ
2cpoly

)
− 1

k−s−µ(s=2) and ϵ̃ = ϵ
2cNN∥v∥

Wk,p(Ω)
.

Remark 2.2. The study of approximation capabilities of neural networks begins with the universal

approximation theorem [44, 70], i.e., every continuous function defined on a compact domain can be

uniformly approximated by shallow neural networks, under certain mild conditions on the activation

function. Later, the works [18, 118] examined the approximation capability of sigmoid neural networks

for (piecewise) smooth functions. These studies employed neural networks to approximate globally de-

fined polynomials, with the polynomial degree increasing concurrently with the desired approximation

accuracy. For the popular rectified linear unit (ReLU) neural network, Yarotsky [149] constructed
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neural networks to approximate localized Taylor polynomials and provided an analysis of the approxi-

mation error. However, the approach in [149] heavily relies on the ReLU activation function, which

facilitates the construction of an exact partition of unity. The work [64] extended the approach to a

wide class of smooth activation functions by constructing an approximate partition of unity.

We denote the set of NNs of depth L, the number of nonzero entries Nθ, and maximum bound R

on the parameter vector θ by

N (L,Nθ, R) =: {vθ is an NN with depth L : ∥θ∥ℓ0 ≤ Nθ, ∥θ∥ℓ∞ ≤ R},

where ∥·∥ℓ0 and ∥·∥ℓ∞ denote the number of nonzero entries in and the maximum norm of, respectively,

a vector. Further, for any ϵ > 0 and p ≥ 1, we denote byPp,ϵ the NN parameter set for the NN function

class

N
(
C log(d+ 1), Cϵ

− d
1−µ , Cϵ

−2− 2p+3d+3pd+2µ
p(1−µ)

)
,

which will be used to approximate the coefficient q. We focus on two cases: p = max(2, d+ µ) (with

small µ > 0) and p = ∞ for the cases without and with the quadrature error, respectively.

The next result bounds the tanh activation function ρ.

Lemma 2.2. The following estimates hold

∥ρ∥L∞(R) ≤ 1, ∥ρ′∥L∞(R) ≤ 1, ∥ρ′′∥L∞(R) ≤ 1, ∥ρ′′′∥L∞(R) ≤ 2.

Proof. Clearly ∥ρ∥L∞(R) ≤ 1. Next, using the definition of ρ, direct computation gives

ρ′(x) = 1− ρ2(x), ρ′′(x) = −2ρ(x)(1− ρ2(x)), ρ′′′(x) = (6ρ2(x)− 2)(1− ρ2(x)).

Thus the desired assertions follow directly.

2.2 Subdiffusion model

For α ∈ (0, 1), we define the Djrbashian-Caputo fractional derivative ∂αt u by ([97, p. 92] or [76, Section

2.3])

∂αt u(t) :=
1

Γ(1− α)

∫ t

0
(t− s)−αu′(s) ds,

where Γ denotes the Gamma function. In the following, we introduce the Mittag-Leffler function, which

is a basis for fractional differential equations. The two parameter Mittag-Leffler function Eα,β(z) is

defined by ([97, pp. 40-45], [76, Section 3.1])

Eα,β(z) =

∞∑
k=0

zk

Γ(kα+ β)
, ∀z ∈ C. (2.5)
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The function Eα,β(z) generalizes the exponential function ez. For example,

E1,1(z) = ez, E2,1(z
2) = cosh(z), E2,2(z

2) =
sinh(z)

z
.

The following decay estimate of Eα,β(z) is crucial; See e.g., [97, eq. (1.8.28), p. 43] and [76, Theorem

3.2] for the proof.

Lemma 2.3. Let α ∈ (0, 2), β ∈ R, φ ∈ (α2π,min(π, απ)) and N ∈ N. Then for φ ≤ | arg z| ≤ π with

|z| → ∞, there holds

Eα,β(z) = −
N∑
k=1

z−k

Γ(β − αk)
+O(|z|−N−1).

Now, we introduce the representation of the solution to the (sub)diffusion problem:
∂αt u+ Lu = f in Ω× (0, T ],

u = g on ∂Ω× (0, T ],

u(0) = u0 in Ω.

(2.6)

Here α ∈ (0, 1], this model coincides with classical diffusion with α = 1. The elliptic operator is

defined as Lu := −∇ · (D∇u) + σu, with D,σ ∈ L∞(Ω) satisfying 0 < cD ≤ D ≤ cD and 0 ≤ σ ≤ cσ.

Let A : H2(Ω) ∩ H1
0 (Ω) → L2(Ω) be the realization of the operator L with zero Dirichlet boundary

condition and its domain Dom(A) := {u ∈ H1
0 (Ω) : Lu ∈ L2(Ω)}. It is unbounded, closed and,

by elliptic regularity [58, Theorem 8.12] and Sobolev embedding theorem [58, Theorem 7.26], its

inverse A−1 : L2(Ω) → L2(Ω) is compact. Thus, by spectral theory of compact operators, A admits

eigenvalues (with finite multiplicity): 0 < λ1 < λ2 ≤ · · · ≤ λj ≤ · · · → ∞, as j → ∞. The

corresponding eigenfunctions φj ∈ H2(Ω)∩H1
0 (Ω) and {φj}∞j=1 can be taken to form an orthonormal

basis of L2(Ω).

Then the solution of the forward problem (2.6) could be written as [76]

u(t) = Bu(t) + F (t)(u0 −Bu0) +

∫ t

0
E(t− s)(f(s)− ∂αt Bu(s))ds, (2.7)

where Bu(t) solves the elliptic equation
LBu = f in Ω,

Bu = g on ∂Ω,

and the solution operators F (t) and E(t) are given by

F (t)v =

∞∑
j=1

Eα,1(−λjtα)(v, φj)φj , E(t)v =

∞∑
j=1

tα−1Eα,α(−λjtα)(v, φj)φj .

Another strategy for deriving the solution representation is (vector-valued) Laplace transform. Note

that the operator A satisfies the following resolvent estimate [139, p. 92]

∥(z +A)−1∥L2(Ω)→L2(Ω) ≤ c(1 + |z|)−1, ∀z ∈ Σρ, (2.8)
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where Σρ = {0 ̸= z ∈ C : | arg(z)| ≤ ρ} with a fixed ρ ∈ (π/2, π). Then the solution representation

(2.7) holds with the solution operators given by

F (t) =
1

2πi

∫
Γρ,κ

eztzα−1(z +A)−1dz, E(t) =
1

2πi

∫
Γρ,κ

ezt(z +A)−1dz,

where Γρ,κ = {z ∈ C : |z| = κ, | arg(z)| ≤ ρ}∪{z ∈ C : z = ρeiρ, ρ ≥ κ} with fixed constants κ ∈ (0,∞)

and ρ ∈ (π/2, π).

We end this section with following remarks. Note that in both approaches, when α = 1, there

holds F (t) = E(t) = e−At. In addition, the boundary condition in (2.6) can be taken as Neumann or

Robin type.
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CHAPTER 3.

Numerical Reconstruction of Diffusion and Reaction Coefficients

from Two Observations: Decoupled Recovery and Error Estimates

This chapter is concerned with the identification problem for numerically recovering spatially depen-

dent diffusion coefficient D(x) and reaction coefficient σ(x) for elliptic problems. Let Ω ⊂ Rd(d =

1, 2, 3) be a convex polyhedral domain with a boundary ∂Ω. We consider the following elliptic bound-

ary value problem: 
−∇ · (D∇u) + σu = f, in Ω,

u = g, on ∂Ω,
(3.1)

where f denotes a given source term and g denotes the boundary data. The solution to problem (3.1)

is denoted by u(D,σ), to indicate its dependence on the coefficients D and σ. The inverse problem

under consideration is to recover exact coefficients D†(x) and σ†(x) from two interior measurements of

solutions, denoted by u1(D
†, σ†) and u2(D

†, σ†). Here, ui(a
†, q†) be the solution of the elliptic problem

(3.1) with source function fi and boundary data g. Besides, we assume that the empirical observation

zδi is noisy with level δ, i.e.,

∥ui(D†, σ†)− zδi ∥L2(Ω) ≤ δ for i = 1, 2. (3.2)

Throughout, the diffusion coefficient and reaction coefficient are respectively sought within the follow-

ing admissible sets

AD = {D ∈ H1(Ω) : 0 < cD ≤ D ≤ c̄D a.e. in Ω} and

Aσ = {σ ∈ L∞(Ω) : 0 ≤ σ ≤ c̄σ a.e. in Ω},
(3.3)

for some positive constants cD, c̄D, c̄σ > 0.

We also extends the argument to the parabolic equation
∂tu−∇ · (D∇u) + σu = f, in Ω× (0, T ]

u = g, on ∂Ω× (0, T ]

u(0) = u0, in Ω.

(3.4)

We aim to identify the exact diffusion coefficient D† and the exact reaction coefficient σ† from the

observation of u(x, t) for (x, t) ∈ (Ti − θ, Ti] × Ω with i = 1, 2. Here T1 and T2 denote two distinct

1Chapter 3 is reprinted with permission from ”Numerical Reconstruction of Diffusion and Potential Coefficients from

Two Observations: Decoupled Recovery and Error Estimates”, Siyu Cen and Zhi Zhou, SIAM J. Numer. Anal., 62 (5)

(2024) 2276–2307. The candidate mainly works on the research methodology discussion, the proof details and the coding

and data collection in numerical experiments.
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time levels, and θ is a fixed small constant. We assume that D† and σ† belong to the admissible sets

AD and Aσ respectively, defined in (3.3) and the empirical observation zδ is noisy with level δ, i.e.,

∥u(D†, σ†)− zδ∥L∞(Ti−θ,Ti;L2(Ω)) ≤ δ, i = 1, 2. (3.5)

The rest of this Chapter is organized as follows. In Section 3.1, we show the Hölder type stability

of the inverse problem for the elliptic equations, under several positivity conditions which could be

fulfilled. Then the stability estimate further motivates a decoupled recovery algorithm and the error

analysis of the discrete approximation, that will be presented in Section 3.2. In Section 3.3, we extend

our argument to the parabolic equation. Numerical experiments will be presented in Section 3.4.

3.1 Conditional stability of inversion for elliptic equation

In this section, we aim to derive a conditional stability estimate for the inverse problem, which in-

volves identifying both the diffusion and reaction coefficients in an elliptic equation using two internal

observations.

To accomplish this, we must first establish an assumption related to the problem data.

Assumption 3.1. The source and boundary terms satisfy following properties

(i) The source terms f1, f2 ∈ L∞(Ω) and the boundary data g ∈ H
3
2 (∂Ω) ∩W 1,∞(∂Ω).

(ii) The source terms f1, f2 ≥ 0 and the boundary data g ≥ cg > 0.

(iii) The exact diffusion coefficient D† ∈ AD ∩W 1,∞(Ω) ∩H2(Ω) and the exact reaction coefficient

σ† ∈ Aσ.

Under Assumption 3.1, the elliptic equation (3.1) with source term fi (i = 1, 2) and boundary data

g admits a unique solution ui = ui(D
†, σ†) such that

u1, u2 ∈ H2(Ω) ∩W 1,∞(Ω). (3.6)

Moreover, by the strong maximum principle of the elliptic equation [53, Section 6.4], we conclude that

there exists a constant cu depending on D†, σ†, g and Ω, but independent of f1, f2 such that

u1, u2 ≥ cu > 0. (3.7)

3.1.1 Stability estimate for the recovery of diffusion coefficient

To begin with, we eliminate the reaction coefficient σ and recover the diffusion coefficient D from a

reformulated elliptic problem. Motivated by the idea in [15], we multiply the equation for u1 by u2,
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and the equation for u2 by u1, and subtract these two relations. As a result, we eliminate the reaction

coefficient σ and obtain 
−∇ ·

(
Du21∇

(
u2
u1

− 1

))
= f2u1 − f1u2, in Ω,

u2
u1

− 1 = 0, on ∂Ω.

(3.8)

Let w := u2
u1

− 1, q := Du21 and F := f2u1 − f1u2, hence the elliptic problem (3.8) can be written as
−∇ · (q∇w) = F, in Ω,

w = 0, on ∂Ω.
(3.9)

Let the diffusion coefficient D, the reaction coefficient σ, the source terms fi (i = 1, 2) and the

boundary data g satisfy Assumption 3.1. Then q = Du21 is uniformly bounded and strictly positive,

and hence we define the following admissible set

Aq = {q ∈ H1(Ω) : 0 < cq ≤ q ≤ c̄q a.e. in Ω}. (3.10)

Note that the lower bound cq ≥ cDc
2
u and the upper bound c̄q depends on D,σ, f1 and g. Meanwhile,

note that Du21 ∈ H2(Ω) ∩W 1,∞(Ω) and f2u1 − f1u2 ∈ L∞(Ω). Consequently, we make the following

assumption.

Assumption 3.2. The exact diffusion coefficient q† = D†|u1(D†, σ†)|2 ∈ H2(Ω)∩W 1,∞(Ω)∩Aq and

source term F = f2u1(D
†, σ†)− f1u2(D

†, σ†) ∈ L∞(Ω).

Under Assumption 3.2, we deduce that w ∈W 1,2
0 (Ω)∩H2(Ω)∩W 1,∞(Ω). This allows us to present

the following conditional stability results in both weighted and standard L2(Ω) norms, which play a

pivotal role in the numerical analysis in Section 3.2. The proof of these results modifies the proof of

[22, Theorem 2.2], incorporating a perturbed source term.

Theorem 3.3. Suppose that F, F̃ ∈ L∞(Ω), q, q̃ ∈ Aq, and q satisfies Assumption 3.2. Also, suppose

the H1(Ω)-norm of q and q̃ are bounded by a generic constant c. Let w be the solution of (3.9) with

the diffusion coefficient q and source F , and w̃ as the solution with the diffusion coefficient q̃ and

source F̃ . Under these conditions, the following holds:∫
Ω

(q − q̃)2

q2

(
q |∇w|2 + Fw

)
dx ≤ c

(
∥w − w̃∥H1(Ω) + ∥F − F̃∥L2(Ω)

)
.

Moreover, if the following positive condition holds

(q |∇w|2 + Fw)(x) ≥ cdist(x, ∂Ω)β a.e. on Ω (3.11)

for some generic constants β ≥ 0 and c > 0. Then the following estimate holds

∥q − q̃∥L2(Ω) ≤ c
(
∥w − w̃∥H1(Ω) + ∥F − F̃∥L2(Ω)

) 1
2(1+β)

. (3.12)
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Proof. Define ξ = q − q̃. For any v ∈ H1
0 (Ω), integration by parts in (3.8) yields∫

Ω
ξ∇w · ∇vdx =

∫
Ω
q̃∇ (w̃ − w) · ∇v + (F − F̃ )vdx. (3.13)

Besides, multiplying ξv/q on both sides of (3.8) and applying integration by parts, we derive∫
Ω

ξv

q
Fdx =

∫
Ω
q∇w · ∇ξv

q
dx =

∫
Ω
qv∇w · ∇ξ

q
dx+

∫
Ω
q
ξ

q
∇w · ∇vdx,

and hence ∫
Ω
ξ∇w · ∇vdx =

1

2

∫
Ω
q
ξ

q
∇w · ∇vdx− 1

2

∫
Ω
qv∇w · ∇ξ

q
dx+

1

2

∫
Ω

ξv

q
Fdx. (3.14)

Now we choose the test function v = ξw/q. Note that q satisfies Assumption 3.1, q̃ ∈ Aq and

F, F̃ ∈ L∞(Ω). As a result, we conclude that v ∈ H1
0 (Ω) with

∥v∥L2(Ω) ≤ ∥(q − q̃)w/q∥L2(Ω) ≤
2c̄q
cq

∥w∥L2(Ω)

and

∥∇v∥2L2(Ω) ≤
∥∥∥q∇[(q − q̃)w]− (q − q̃)w∇q

q2

∥∥∥
L2(Ω)

≤ 1

c2q

(
c̄q∥w∇(q − q̃)∥L2 + c̄q∥(q − q̃)∇w∥L2(Ω) + 2c̄q∥w∥L∞(Ω)∥∇q∥L2(Ω)

)
≤ 1

c2q

(
c̄q∥w∥L∞(Ω)(∥∇q∥L2(Ω) + ∥∇q̃∥L2(Ω)) + 2c̄2q∥∇w∥L2(Ω) + 2c̄q∥w∥L∞(Ω)∥∇q∥L2(Ω)

)
.

With this test function v, a direct computation yields that the first two terms on the right hand side

of (3.14) is equal to 1
2

∫
Ω
ξ2

q |∇w|2 dx. Hence, The relation (3.13) and (3.14) yields

1

2

∫
Ω

ξ2

q2

(
q |∇w|2 + Fw

)
dx =

∫
Ω
q̃∇ (w̃ − w) · ∇v +

(
F − F̃

)
vdx

≤ c
(
∥w − w̃∥H1(Ω) + ∥F − F̃∥L2(Ω)

)
.

With the positive condition (3.11), we divide the domain Ω into two parts, Ωρ = {x ∈ Ω : dist(x, ∂Ω) ≥

ρ}, Ωcρ = Ω \ Ωρ. Thus we have

1

c2q

∫
Ωρ

|ξ|2dx ≤
∫
Ωρ

(
ξ

q

)2

dx ≤ cρ−β
∫
Ωρ

(
ξ

q

)2

ρβdx ≤ cρ−β
∫
Ωρ

(
ξ

q

)2

dist(x, ∂Ω)βdx

≤ cρ−β
∫
Ωρ

(
ξ

q

)2 (
q |∇w|2 + Fw

)
dx ≤ cρ−β

(
∥w − w̃∥H1(Ω) + ∥F − F̃∥L2(Ω)

)
.

On the other hand,
∫
Ωc

ρ
ξ2dx ≤ c|Ωcρ| ≤ cρ. Then the desired result follows by balancing the above two

estimates with ρ.

Remark 3.1. The positivity condition (3.11) is introduced in Section 1.2. It looks artificial, as its

physical interpretation is not immediately apparent. However, the condition becomes more intuitive

when considering the special case β = 0 and F ≥ 0. Then by maximum principle of the elliptic

equation, we conclude that the solution w ≥ 0 and hence Fw ≥ 0. Consequently, Condition (2.6)

requires that the gradient |∇w| and the solution w cannot vanish concurrently.
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Let ui (ũi) be the solution to the elliptic equation (3.1) with diffusion coefficient D (D̃), reaction

coefficient σ (σ̃), the boundary data g and source functions fi. Using the strict positivity of ui and ũi

in (3.7) and the uniform boundedness of ui and ũi, we obtain

∥D − D̃∥L2(Ω) =
∥∥∥ q
u21

− q̃

ũ21

∥∥∥
L2(Ω)

≤ c∥qũ21 − q̃u21∥L2(Ω)

≤ c
(
∥qũ21 − qu21∥L2(Ω) + ∥qu21 − q̃u21∥L2(Ω)

)
≤ c
(
∥ũ1 − u1∥L2(Ω) + ∥q − q̃∥L2(Ω)

)
.

Using Theorem 3.3, the positivity (3.7) and solution regularity (3.6) , we obtain

∥D − D̃∥L2(Ω) ≤ c
(
∥ũ1 − u1∥L2(Ω) +

(
∥w − w̃∥H1(Ω) + ∥F − F̃∥L2(Ω)

) 1
2(1+β)

)
≤ c
(
∥ũ1 − u1∥L2(Ω) +

(
∥u1 − ũ1∥H1(Ω) + ∥u2 − ũ2∥H1(Ω)

) 1
2(1+β)

)
≤ c
(
∥u1 − ũ1∥H1(Ω) + ∥u2 − ũ2∥H1(Ω)

) 1
2(1+β) .

(3.15)

3.1.2 Stability estimate for the recovery of reaction coefficient

In the preceding section, we derived the stability for the recovery of the diffusion coefficient D. Now,

we will shift our focus to the stability analysis for the reaction coefficient σ. We introduce ζ := u2−u1,

which satisfies the following elliptic problem:
−∇ · (D∇ζ) + σζ = f2 − f1, in Ω,

ζ = 0, on ∂Ω.
(3.16)

Then the next theorem provide a conditional stability for the identification of σ.

Theorem 3.4. Assume that Assumptions 3.1 and 3.2 are valid. Let σ, σ̃ ∈ Aσ, with their H1(Ω)-

norm being bounded by a generic constant c. Under these conditions, the following weighted estimate

holds:

∥(σ − σ̃)ζ∥L2(Ω)≤ c
( 2∑
i=1

∥ui − ũi∥H1(Ω) + ∥D̃ −D∥L2(Ω)

) 1
2
.

Moreover, if f2 − f1 ≥ c > 0 a.e. in Ω, then for any compact subset Ω′ ⋐ Ω with dist(Ω′, ∂Ω) > 0,

there exists a positive constant c, depending on dist(Ω′, ∂Ω) and D,σ, such that

∥σ − σ̃∥L2(Ω′)≤ c
( 2∑
i=1

∥ui − ũi∥H1(Ω) + ∥D̃ −D∥L2(Ω)

) 1
2
.

Proof. Denote ζ̃ be the solution of (3.16) with coefficients D̃, σ̃. For a test function v ∈ H1
0 (Ω), we

consider the L2(Ω)-inner product ((σ − σ̃)z, v). By integration by parts, we have

((σ − σ̃)ζ, v) =(σζ, v)− (σ̃ζ, v) + (σ̃ζ̃, v)− (σ̃ζ̃, v)

=(D̃∇ζ̃ −D∇ζ,∇v) + (σ̃(ζ̃ − ζ), v).

23



Now we take v = (σ − σ̃)ζ. Recall that ζ ∈ W 1,∞(Ω), σ, σ̃ ∈ Aσ, and ∥∇σ∥L2(Ω), ∥∇σ̃∥L2(Ω) ≤ c.

Hence

∥∇v∥L2(Ω) ≤ (∥∇σ∥L2(Ω) + ∥∇σ̃∥L2(Ω))∥ζ∥L∞(Ω) + 2c̄σ∥∇ζ∥L∞(Ω) ≤ c.

As a result, noting that D, D̃ ∈ AD, we obtain

|(D̃∇ζ̃ −D∇ζ,∇v)| ≤
(
∥D̃(∇ζ̃ −∇ζ)∥L2(Ω) + ∥(D̃ −D)∇ζ∥L2(Ω)

)
∥∇v∥L2(Ω)

≤ c
(
c̄D∥∇(ζ̃ − ζ)∥L2(Ω) + ∥D̃ −D∥L2(Ω)∥∇ζ∥L∞(Ω)

)
≤ c
( 2∑
i=1

∥ui − ũi∥H1(Ω) + ∥D̃ −D∥L2(Ω)

)
and

|(σ̃(ζ̃ − ζ), v)| ≤ c̄σ∥ζ̃ − ζ∥L2(Ω)∥v∥L2(Ω) ≤ c
2∑
i=1

∥ui − ũi∥2L2(Ω) +
1

2
∥v∥2L2(Ω).

Then we complete the proof of the first assertion.

Since the source term in (3.16) satisfying f2 − f1 ≥ c > 0 in Ω, then the strong maximum

principle [141, Theorem 1] implies that for any Ω′ ⋐ Ω, there exists a positive constant c depending

on dist(Ω′, ∂Ω) such that ζ(σ†) ≥ c > 0 in Ω′ , and consequently, the second assertion holds.

By combining Theorem 3.4 with the estimate (3.15), we can reformulate the stability estimate

for σ in terms of u1 and u2. It is important to note that, in comparison with (3.15), the reaction σ

exhibits weaker stability than the diffusion coefficient D. This observation is in alignment with the

numerical findings discussed in Section 3.4.

Corollary 3.1. Under the same conditions as in Theorem 3.3 and Theorem 3.4, suppose the positive

condition (3.11) holds and f2 − f1 ≥ c > 0 a.e. in Ω, then for any compact subset Ω′ ⋐ Ω with

dist(Ω′, ∂Ω) > 0, there exists a positive constant c, depending on dist(Ω′, ∂Ω) and D,σ, such that

∥σ − σ̃∥L2(Ω′)≤ c
( 2∑
i=1

∥ui − ũi∥H1(Ω)

) 1
4(1+β)

.

3.2 Finite element approximation and error analysis

In this section, we will introduce a numerical scheme aimed at reconstructing the diffusion coefficient

D† and the reaction coefficient σ†. This is achieved using the output least-squares formulation. Tak-

ing inspiration from the stability estimate, we propose a decoupled algorithm that first recovers the

diffusion coefficient D†, followed by the reconstruction of the reaction coefficient σ†.

24



3.2.1 Step one: Numerically recover the diffusion coefficient

Recall that the elliptic problem (3.9) enables to recover the diffusion coefficient without the knowledge

of reaction. Note that the exact solution u†i := ui(D
†, σ†), with i = 1, 2, is strictly positive with a fixed

lower bound (cf. (3.7)). For ease of simplicity, we assume that the empirical observation zδi satisfies

the same positive lower bound. We define

wδ(x) =
zδ2(x)

zδ1(x)
− 1 and w†(x) =

u†2(x)

u†1(x)
− 1.

Using (3.2), (3.6) and (3.7), we derive

∥wδ − w†∥L2(Ω) =
∥∥∥zδ1u†2 − zδ2u

†
1

u†1z
δ
1

∥∥∥
L2(Ω)

≤
∥∥∥zδ1u†2 − u†1u

†
2

u†1z
δ
1

∥∥∥
L2(Ω)

+
∥∥∥u†1u†2 − zδ2u

†
1

u†1z
δ
1

∥∥∥
L2(Ω)

≤ 1

c2u

(
∥zδ1u

†
2 − u†1u

†
2∥L2(Ω) + ∥u†1u

†
2 − zδ2u

†
1∥L2(Ω)

)
≤ cδ.

Moreover, we should also take care of the source term F in (3.9) where the exact solutions u1 and u2

should be replaced with noisy observations. Hence we define F δ := f2z
δ
1 − f1z

δ
2 with

∥F − F δ∥L2(Ω) ≤ ∥(u1 − zδ1)f2∥L2(Ω) + ∥(u2 − zδ2)f1∥L2(Ω) ≤ cδ. (3.17)

We look for the numerical reconstruction of diffusion coefficient of the system (3.9) in the admissible

set Aq,h1 = Aq ∩Vh1 , where Vh1 is the finite element space generated by mesh size h1; cf Section 2.1.1.

The finite element scheme reads

min
qh1∈Aq,h1

Jγ1(qh1) =
1

2
∥wh1(qh1)− wδ∥2L2(Ω) +

γ1
2
∥∇qh1∥2L2(Ω) (3.18)

where wh1(qh1) ∈ V 0
h1

is a weak solution of

(qh1∇wh1 ,∇φh1) = (F δ, φh1) ∀φh1 ∈ V 0
h1 . (3.19)

For any γ1, h1 > 0, there exists at least one minimizer q∗h1 to problem (3.18)-(3.19); see [69, 158] for

related analysis for the well-posedness and convergence. Then our objective is to bound the error

q† − q∗h1 , where q
† = D†u21 is the exact coefficient satisfying q† ∈ H2(Ω) ∩W 1,∞(Ω) provided that

Assumption 3.2 holds valid. To this end, we state the following a priori estimate for ∥wh1(q∗h1) −

w(q†)∥L2(Ω) and ∥∇q∗h1∥L2(Ω).

Lemma 3.1. Suppose that q† and F satisfy Assumption 3.2. Let q∗h1 ∈ Aq,h be a minimizer of problem

(3.18)-(3.19). Then there holds

∥wh1(q∗h1)− wδ∥2L2(Ω) + γ1∥∇q∗h1∥
2
L2(Ω) ≤ c(h41 + δ2 + γ1).
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Proof. First of all, we notice the following estimate

∥wh1(Ih1q†)− w(q†)∥L2(Ω) ≤ c(h21 + δ). (3.20)

The proof follows from the Lax–Milgram lemma and the standard duality argument, similar to that

of [84, Lemma A.1]. The only difference is that the source term F δ in (3.19) is noisy with level δ, cf.

(3.17). Since q∗h1 is a minimizer of Jγ1,h1 , we have Jγ1,h1(q
∗
h1
) ≤ Jγ1,h1(Ih1q†). This combined with the

estimate (3.20) leads to

∥wh1(q∗h1)− wδ∥2L2(Ω) + γ1∥∇q∗h1∥
2
L2(Ω)

≤∥wh1(Ih1q†)− wδ∥2L2(Ω) + γ1∥∇Ih1q†∥2L2(Ω)

≤∥wh1(Ih1q†)− w(q†)∥2L2(Ω) + ∥w(q†)− wδ∥2L2(Ω) + γ1∥∇Ih1q†∥2L2(Ω)

≤c(h41 + δ2 + γ1).

Then the proof is complete.

The following theorem establishes a bound for the error q† − q∗h1 . The approach is inspired by the

stability estimate provided in Theorem 3.3.

Theorem 3.5. Suppose Assumptions 3.1 and 3.2 hold valid. Let q† = D†|u1(D†, σ†)|2 ∈ Aq be the

exact parameter in (3.9), w† = w(q†) be the solution of (3.9), and q∗h1 ∈ Aq,h1 be a minimizer of

problem (3.18)-(3.19). Then with η = h21 + δ + γ
1
2
1 , there holds

∫
Ω

(
q† − q∗h1
q†

)2 (
q†|∇w†|2 + Fw(q†)

)
dx ≤ c

(
(h1ηγ

− 1
2

1 +min(h1 + h−1
1 η, 1))ηγ

− 1
2

1 + δ
)
.

Moreover, let D∗
h1

= q∗h1/|z
δ
1|2. If the positive condition (3.11) holds with some β ≥ 0, then

∥D∗
h1 −D†∥L2(Ω) ≤ c

(
(h1ηγ

− 1
2

1 + h−1
1 η)ηγ

− 1
2

1 + δ
) 1

2(1+β) .

Proof. For any test function φ ∈ H1
0 (Ω), then the weak formulation of w(q†) and wh1(q

∗
h1
) imply(

(q† − q∗h1)∇w
†,∇φ

)
=
(
(q† − q∗h1)∇w

†,∇(φ− Ph1φ)
)
+
(
(q† − q∗h1)∇w

†,∇Ph1φ
)

=−
(
∇ ·
(
(q† − q∗h1)∇w

†
)
, φ− Ph1φ

)
+
(
q∗h1(∇wh1(q

∗
h1)−∇w†),∇Ph1φ

)
+
(
F − F δ, Ph1φ

)
.

Motivated by the proof of Theorem 3.3, we choose φ =
q†−q∗h1
q†

w†. A direct computation leads to

∇φ =

(
q†∇(q† − q∗h1)− (q† − q∗h1)∇q

†

q†2

)
w +

q† − q∗h1
q†

∇w†.
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By the box constraint of the admissible sets Aq and Aq,h as well as the regularity of w†, we derive

∥∇φ∥L2(Ω) ≤ c∥q†∇(q† − q∗h1)− (q† − q∗h1)∇q
†∥L2(Ω)∥w†∥L∞(Ω) + c∥q† − q∗h1∥L∞(Ω)∥∇w†∥L2(Ω)

≤ c∥q†∥L∞(Ω)(∥∇q†∥L2(Ω) + ∥∇q∗h1∥L2(Ω)) + c(∥q†∥L∞(Ω) + ∥q∗h1∥L∞(Ω))∥∇q†∥L2(Ω)) + c

≤ c(1 + ∥∇q∗h1∥L2(Ω)).

Next, according to the box constraint of q† and q∗h1 , the regularity of q† and w†, the approximation

property of Ph1 in (2.3), as well as Lemma 3.1, we have

|
(
∇ ·
(
(q† − q∗h1)∇w

†), φ− Ph1φ
)
|

≤
(
∥∇q†∥L∞(Ω)∥∇w†∥L2(Ω) + ∥q† − q∗h1∥L∞(Ω)∥∆w†∥L2(Ω) + ∥∇q∗h1∥L2(Ω)∥∇w†∥L∞(Ω)

)
∥φ− Ph1φ∥L2(Ω)

≤ c
(
1 + ∥∇q∗h1∥L2(Ω)

)
∥φ− Ph1φ∥L2(Ω) ≤ ch1

(
1 + ∥∇q∗h1∥L2(Ω)

)
∥∇φ∥L2(Ω)

≤ ch1
(
1 + ∥∇q∗h1∥L2(Ω)

)2 ≤ ch1(1 + γ−1
1 η2).

For the remaining terms, by the triangle inequality, the inverse inequality (2.1), the stability and

approximation of Ph1 , and Lemma 3.1, we have

∥∇(wh1(q
∗
h1)− w†)∥L2(Ω)

≤∥∇(wh1(q
∗
h1)− Ph1w

†)∥L2(Ω) + ∥∇(Ph1w
† − w†)∥L2(Ω)

≤ch−1
1 ∥wh1(q∗h1)− Ph1w

†∥L2(Ω) + ch1∥w†∥H2(Ω)

≤ch−1
1

(
∥wh1(q∗h1)− Ph1wh1(q

∗
h1)∥L2(Ω) + ∥Ph1wh1(q∗h1)− Ph1w

†∥L2(Ω)

)
+ ch1∥w†∥H2(Ω)

≤c
(
h1 + h−1

1 ∥wh1(q∗h1)− w(q†)∥L2(Ω)

)
≤ c

(
h1 + h−1

1 η
)
.

Meanwhile, the Lax–Milgram lemma implies

∥∇(wh1(q
∗
h1)− w†)∥L2(Ω) ≤ ∥∇wh1(q∗h1)∥L2(Ω) + ∥∇w†∥L2(Ω) ≤ c.

As a result, we derive

|(q∗h1(∇wh1(q
∗
h1)−∇w†),∇Ph1φ) + (F − F δ, Ph1φ)|

≤c∥∇(wh1(q
∗
h1)− w†)∥L2(Ω)∥∇φ∥L2(Ω) + δ∥φ∥L2(Ω)

≤c
(
min(h1 + h−1

1 η, 1)γ
−1/2
1 η + δ

)
.

Then using integration by parts and F = −∇ · (q†∇w(q†)), we have

(
(q† − q∗h1)∇w(q

†),∇φ
)
=

1

2

∫
Ω

(
q† − q∗h1
q†

)2 (
q†|∇w(q†)|2 + Fw(q†)

)
dx.

Consequently, under positivity condition (3.11), the same argument of (3.12) yields

∥q∗h1 − q†∥L2(Ω) ≤ c
(
(h1ηγ

− 1
2

1 +min(h1 + h−1
1 η, 1))ηγ

− 1
2

1 + δ
) 1

2(1+β) .
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Finally, we let D∗
h1

= q∗h1/|z
δ
1|2 and recall that D† = q†/|u†1|2 with u†1 = u1(D

†, σ†). Using the box

constraint of q∗h1 , the estimate (3.2), the regularity of u†1 (provided that Assumption 3.1 holds valid),

and the fact that u†1, z
δ
1 ≥ cu, we derive

∥D∗
h1 −D†∥L2(Ω) ≤ c(∥q∗h1∥L∞(Ω)∥(zδ1)2 − (u†1)

2∥L2(Ω) + ∥q∗h1 − q†∥L2(Ω)∥u
†
1∥L∞(Ω))

≤ c(δ + ∥q∗h1 − q†∥L2(Ω)) ≤ c
(
(h1ηγ

− 1
2

1 +min(h1 + h−1
1 η, 1))ηγ

− 1
2

1 + δ
) 1

2(1+β) .

This completes the proof of the theorem.

Remark 3.2. Theorem 3.5 serves as a guideline for the a priori selection of algorithmic parameters,

suggesting γ1 ∼ δ2 and h1 ∼
√
δ. Given the positivity condition (3.11) with β ≥ 0, the following

estimate is valid:

∥D† −D∗
h1∥L2(Ω) ≤ cδ

1
4(1+β) .

This estimate is optimal with respect to the conditional stability estimate (3.15).

3.2.2 Step two: Numerically recover the reaction

In this section, we give the reconstruction formula of reaction σ and corresponding error analysis. We

make following regularity assumption for true reaction coefficient σ†.

Assumption 3.6. The reaction coefficient σ† satisfies σ† ∈ H2(Ω) ∩ Aσ.

Recall ζ = u2 − u1 satisfies following elliptic equation
−∇ ·

(
D†∇ζ

)
+ σ†ζ = f2 − f1, in Ω,

ζ = 0, on ∂Ω.

The noisy observational data for equation (3.16) is ζδ = zδ2 − zδ1 and ∥ζ − ζδ∥L2(Ω) ≤ cδ.

From now on, let h2 represent the spatial mesh size, which may differ from h1 used in the previous

section. Utilizing the output least-squares formulation, we can approximate the recovery of the reaction

as follows:

min
σh2∈Aσ,h2

Jγ2,h2(σh2) =
1

2
∥ζh2(σh2)− ζδ∥2L2(Ω) +

γ2
2
∥∇σh2∥2L2(Ω) (3.21)

where Aσ,h2 = Aσ ∩ Vh2 and ζh2(σh2) ∈ V 0
h2

is the solution to the finite dimensional problem

(D∗
h1∇ζh2 ,∇vh2) + (σh2ζh2 , vh2) = (f2 − f1, vh2) ∀ vh2 ∈ V 0

h2 . (3.22)

Here D∗
h1

is the diffusion coefficient we reconstructed in Theorem 3.5. As stated in Remark 3.2, we

have the a priori error estimate

∥D∗
h1 −D†∥L2(Ω) ≤ ϵ with ϵ = cδ

1
(4(1+β)) .
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The discrete problem (3.21)-(3.22) is well-posed: there exists at least one global minimizer σ∗h2 to

problem (3.21)-(3.22) and it depends continuously on the data perturbation. Then we aim to establish

an a priori error bound between σ∗h2 and σ†.

To accomplish this, we initially derive a bound for ζh2(Ih2σ†)− ζ(σ†). This is achieved using the

standard estimates applicable to the finite element method.

Lemma 3.2. Suppose Assumption 3.6 holds, D† ∈ AD∩W 1,∞(Ω) and ∥D∗
h1
−D†∥L2(Ω) ≤ ϵ. Let ζ(σ†)

be the solution to the elliptic problem (3.16), while ζh2(Ih2σ†) be the solution to the finite dimensional

problem (3.22) where σh2 is replaced with Ih2σ†. Then

∥ζh2(Ih2σ†)− ζ(σ†)∥L2(Ω) ≤ c(h22 + ϵ).

Proof. We apply the following splitting

ζh2(Ih2σ†)− ζ(σ†) = (ζh2(Ih2σ†)− ζh2) + (ζh2 − ζ̃h2) + (ζ̃h2 − ζ(σ†)) =:

3∑
j=1

ej ,

where ζh2 and ζ̃h2 respectively satisfy

(D†∇ζh2 ,∇vh2) + (Ih2σ†ζh2 , vh2) = (f2 − f1, vh2) ∀ vh2 ∈ V 0
h2 , and

(D†∇ζ̃h2 ,∇vh2) + (σ†ζ̃h2 , vh2) = (f2 − f1, vh2) ∀ vh2 ∈ V 0
h2 .

We begin with the L2(Ω) bound of e1, which satisfies

(D∗
h1∇e1,∇vh2) + ((Ih2σ†)e1, vh2) = ((D† −D∗

h1)∇ζh2 ,∇vh2) ∀ vh2 ∈ V 0
h2 .

Now we choose vh2 = e1 in the above relation. By the regularity ∥D†∥W 1,∞(Ω) + ∥(Ih2)σ†∥L∞(Ω) ≤ c,

we conclude that ∥∇ζh2∥L∞(Ω) ≤ c (cf. [127] and [63, Theorem 2]). This together with the fact that

D∗
h1

∈ AD and Poincaré’s inequality implies

∥e1∥H1(Ω) ≤ ∥D† −D∗
h1∥L2(Ω)∥∇ζh2∥L∞(Ω) ≤ cϵ.

Now we turn to the second term e2 which satisfies

(D†∇e2,∇vh2) + ((Ih2σ†)e2, vh2) = ((σ† − Ih2σ†)ζ̃h2 , vh2) ∀ vh2 ∈ V 0
h2 .

Letting vh2 = e2 and using the fact that ∥ζ̃h2∥L∞(Ω) ≤ C, we arrive at

∥∇e2∥L2(Ω) ≤ c∥σ† − Ih2σ†∥L2∥ζ̃h2∥L∞(Ω) ≤ ch22,

where we use the estimate (2.2) and the assumption that σ† ∈ H2(Ω). Finally, the estimate for the

third term, ∥e3∥L2(Ω) ≤ Ch22, can be estimated directly by applying the standard argument.
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The subsequent lemma offers useful bounds for the state ζh2(σ
∗
h2
) and the H1(Ω) seminorm of σ∗h2 .

Lemma 3.3. Suppose Assumption 3.6 holds, D† ∈ AD ∩W 1,∞(Ω) and ∥D∗
h1

−D†∥L2(Ω) ≤ ϵ. Then

there is

∥ζ(σ†)− ζh2(σ
∗
h2)∥L2(Ω) + γ

1
2
2 ∥∇σ

∗
h2∥L2(Ω) ≤ c(h22 + ϵ+ δ + γ

1
2
2 ).

Proof. Since σ∗h2 is a minimizer of Jγ2,h2 , we have Jγ2,h2(σ∗h2) ≤ Jγ2,h2(Ih2σ†). Then we derive

∥ζh2(σ∗h2)− ζδ∥2L2(Ω) + γ2∥∇σ∗h2∥
2
L2(Ω)

≤∥ζh2(Ih2σ†)− ζδ∥2L2(Ω) + γ2∥∇Ih2σ†∥2L2(Ω)

≤∥ζh2(Ih2σ†)− ζ(σ†)∥2L2(Ω) + ∥ζ(σ†)− ζδ∥2L2(Ω) + γ2∥∇Ih2σ†∥2L2(Ω)

≤c
(
(h22 + ϵ)2 + δ2 + γ2

)
,

where in the last inequality we use the result in Lemma 3.2.

Then we are ready to show the error bound of numerically recovered reaction.

Theorem 3.7. Suppose that Assumption 3.6 holds valid, D† ∈ AD∩W 1,∞(Ω) and ∥D∗
h1
−D†∥L2(Ω) ≤

ϵ. Let σ∗h2 be the numerical reconstruction of the reaction given in (3.21)-(3.22). Then with η =

h22 + ϵ+ δ + γ
1
2
2 , there holds

∥(σ† − σ∗h2)ζ(σ
†)∥L2(Ω) ≤ c

(
h2γ

− 1
2

2 η + η +
(
γ
− 1

2
2 η(min{h2 + h−1

2 η, 1}+ ϵ)
) 1

2
)
.

Finally, if f2 − f1 ≥ c > 0 a.e. in Ω, then for any Ω′ ⋐ Ω, there exists a constant c depending on

dist(Ω′, ∂Ω) and D†, σ† such that

∥σ∗h2 − σ†∥L2(Ω′) ≤ c
(
h2γ

− 1
2

2 η + η +
(
γ
− 1

2
2 (h2 + ϵ)

) 1
2
)
.

Proof. For any test function φ ∈ H1
0 (Ω), by weak formulation of ζh2(σ

∗
h2
) and ζ(σ†), we have

(
(σ† − σ∗h2)ζ(σ

†), φ
)

=
(
(σ† − σ∗h2)ζ(σ

†), φ− Ph2φ
)
+
(
(σ† − σ∗h2)ζ(σ

†), Ph2φ
)

=
(
(σ† − σ∗h2)ζ(σ

†), φ− Ph2φ
)
+
(
D∗
h1∇ζh2(σ

∗
h2)−D†∇ζ(σ†),∇Ph2φ

)
+
(
σ∗h2(ζh2(σ

∗
h2)− ζ(σ†)), Ph2φ

)
=:

n∑
j=1

Ij .

Now, we take φ = (σ† − σ∗h2)ζ(σ
†). A direct computation implies φ ∈ H1

0 (Ω) and

∥φ∥L2(Ω) ≤ c and ∥∇φ∥L2(Ω) ≤ c(1 + ∥∇σ∗h2∥L2(Ω)).
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By the box constraint of Aσ,h2 , the error estimate of Ph2 in (2.3) and Lemma 3.3, we have

|I1| ≤∥(σ† − σ∗h2)ζ(σ
†)∥L2(Ω)∥φ− Ph2φ∥L2(Ω) ≤ ch2∥(σ† − σ∗h2)ζ(σ

†)∥L2(Ω)∥∇φ∥L2(Ω)

≤ch2∥(σ† − σ∗h2)ζ(σ
†)∥L2(Ω)(1 + ∥∇σ∗h2∥L2(Ω)) ≤ ch22γ

−1
2 η2 +

1

3
∥(σ† − σ∗h2)ζ(σ

†)∥2L2(Ω).
(3.23)

By the stability of Ph2 and Lemma 3.3 we conclude

|I3| ≤∥σ∗h2∥L∞(Ω)∥ζh2(σ∗h2)− ζ(σ†)∥L2(Ω)∥Ph2φ∥L2(Ω)

≤c∥ζh2(σ∗h2)− ζ(σ†)∥2L2(Ω) +
1

3
∥φ∥2L2(Ω) ≤ cη2 +

1

3
∥φ∥2L2(Ω).

(3.24)

Finally, we turn to the term I2 and use the splitting

I2 =
(
D∗
h1∇ζh2(σ

∗
h2)−D∗

h1∇ζ(σ
†),∇Ph2φ

)
+
(
D∗
h1∇ζ(σ

†)−D†∇ζ(σ†),∇Ph2φ
)
=: I2,1 + I2,2.

It is easy to observe

|I2,2| ≤∥D∗
h1 −D†∥L2(Ω)∥∇ζ(σ†)∥L∞(Ω)∥∇Ph2φ∥L2(Ω) ≤ cγ

− 1
2

2 ηϵ,

where we use the a priori estimate that ∥∇ζ(σ†)∥L∞(Ω) ≤ c and the assumption that ∥D∗
h1
−D†∥L2(Ω) ≤

ϵ. Moreover, by Lemma 3.3, we have

|I2,1| ≤∥D∗
h1∥L∞(Ω)∥∇ζh2(σ∗h2)−∇ζ(σ†)∥L2(Ω)∥∇Ph2φ∥L2(Ω) ≤ cγ

− 1
2

2 η∥∇ζh2(σ∗h2)−∇ζ(σ†)∥L2(Ω).

By the inverse inequality (2.1) and the approximation property (2.3), we have

∥∇ζh2(σ∗h2)−∇ζ(σ†)∥L2(Ω) ≤∥∇(ζh2(σ
∗
h2)− Ph2ζ(σ

†))∥L2(Ω) + ∥∇(Ph2ζ(σ
†)− ζ(σ†))∥L2(Ω)

≤c
(
h−1
2 ∥ζh2(σ∗h2)− Ph2ζ(σ

†)∥L2(Ω) + h2∥ζ(σ†)∥H2(Ω)

)
≤c
(
h−1
2 η + h2

)
.

Meanwhile, using the stability estimate ∥∇ζh2(σ∗h2)∥L2(Ω) + ∥∇ζ(σ†)∥L2(Ω) ≤ c, we conclude that

|I2,1| ≤cγ
− 1

2
2 ηmin

(
h−1
2 η + h2, 1

)
.

Thus we arrive at the estimate

|I2| ≤cγ
− 1

2
2 η

(
min

(
h−1
2 η + h2, 1

)
+ ϵ
)
. (3.25)

Then the desired estimate follows immediately by combining the estimates (3.23), (3.24) and (3.25).

Finally, if f2 − f1 ≥ c > 0, with the same argument as that of Theorem 3.4, we have the second

assertion.

Remark 3.3. According to Theorem 3.5 and Remark 3.2, we have

∥D∗
h1 −D†∥ ≤ ϵ = cδ

1
4(1+β) ,
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provided that h1 ∼
√
δ, γ1 ∼ δ2 and the positivity condition (3.11) is valid. As a result, with the choice

of parameters h2 ∼ ϵ
1
2 and γ2 ∼ ϵ2, there holds the estimate

∥(σ† − σ∗h2)ζ(σ
†)∥L2(Ω) ≤ cδ

1
8(1+β) .

Moreover, if we choose source terms such that f2 − f1 ≥ c > 0 in Ω, then similar argument as that of

Theorem 3.4 implies that

∥σ† − σ∗h2∥L2(Ω′) ≤ cδ
1

8(1+β) ,

where Ω′ ⋐ Ω and the constant c depending on dist(Ω′, ∂Ω) and D†, σ†.

Remark 3.4. Instead of adopting the aforementioned decoupled approach, alternative reconstruction

formulas exist to address the inverse problem. One intuitive method involves the following least-squares

formulation:

min
Dh∈AD,h,σh∈Aσ,h

J (Dh, σh) =
1

2

2∑
i=1

∥ui,h − zδi ∥2L2(Ω) +
γ1
2
∥∇Dh∥2L2(Ω) +

γ2
2
∥∇σh∥2L2(Ω), (3.26)

where ui,h = ui,h(Dh, σh) ∈ Vh satisfies ui,h(Dh, σh)|∂Ω = Ihg and

(Dh∇ui,h,∇vh) + (σhui,h, vh) = (fi, vh) ∀ vh ∈ V 0
h . (3.27)

Due to the non-homogeneous boundary condition, deriving an error estimate similar to Theorem 3.5

and 3.7 for the coupled reconstruction formula (3.26)-(3.27) and its numerical discretization is not fea-

sible. Furthermore, a numerical comparison between the decoupled approach and the coupled approach

is presented in Section 3.4.

Remark 3.5. We assume that Ω is a convex polyhedral domain to ensure the solution u is in the

Sobolev space H2(Ω), which is a prerequisite for obtaining an optimal approximation rate with the

finite element method on quasi-uniform meshes. Note that the proof of Theorems 3.5 and 3.7 rely

on the application of the inverse inequality (2.1), which necessitates the quasi-uniformity of the mesh

partition. In contrast, if Ω is a nonconvex polygon, attaining the aforementioned optimal rates requires

a geometrically graded mesh, which is inherently non-quasi-uniform. Under such circumstances, the

inverse inequality is not applicable, thus the error estimate in this paper does not hold in general.

Nevertheless, the argument in this paper could be easily adapted to arbitrary domains with smooth

boundary conditions.
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3.3 Inverse problem for parabolic equation

In this section, we extend the argument to the following non-stationary parabolic problem with exact

conductivity D† and reaction coefficient σ†
∂tu−∇ · (D†∇u) + σ†u = f, in Ω× (0, T ],

u = g, on ∂Ω× (0, T ],

u(0) = u0, in Ω.

(3.28)

We aim to reconstruct the conductivity D† and the reaction coefficient σ† by observing u(x, t) for

(x, t) ∈ (Ti − θ, Ti]× Ω, where i = 1, 2. Here, θ > 0 represents a small positive constant.

The inverse problem under consideration generally does not allow for unique recovery. To illustrate

this, let’s examine a one-dimensional example within the unit interval Ω = (0, 1), where g = 0 and

f = 0. Suppose u0(x) = sin(πx). In this case, both of the following parameter sets yield identical

solutions u(x, t) for all (x, t) ∈ Ω× [0,∞):

(1) D(x) = 1 and σ(x) = π2;

(2) D(x) = 2 and σ(x) = 0.

As a result, the recovery process is highly sensitive to the choice of problem data. Therefore, it

is necessary to impose certain assumptions on the problem data in the parabolic problem given by

equation (3.28).

Assumption 3.8. The problem data in (3.28) satisfy following properties.

(i) The initial data u0 ∈ H2(Ω) ∩W 1,∞(Ω) and u0 ≥ c0 > 0.

(ii) The source data f ∈ Ck(0, T ;L∞(Ω)) ∩ Ck+1(0, T ;L2(Ω)) with k ∈ N∗ and f ≥ 0. Moreover,

there exists T0 > 0 such that

f(x, t) =


f1(x), 0 < t ≤ T0,

f2(x), t ≥ 2T0.
(3.29)

(iii) The boundary data g ∈ H
3
2 (∂Ω) ∩W 1,∞(∂Ω) and g ≥ cg > 0.

(iv) The exact diffusion coefficient D† ∈ AD ∩W 1,∞(Ω) and the exact reaction coefficient σ† ∈ Aσ.

Under regularity Assumption 3.8, the parabolic equation (3.28) admits a unique solution u ∈

L∞(0, T ;W 1,∞(Ω)). Moreover, the parabolic maximum principle [53, Section 7.1.4] implies that there

exists a constant cu depending on D†, σ†, g and Ω, but independent of f such that

u(x, t) ≥ cu > 0, ∀ x, t ∈ Ω× [0, T ]. (3.30)
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3.3.1 Stability estimate

We first give a priori estimate which will be frequently used in the stability analysis. We denote

A = A(D†, σ†) be the realization of −∇ ·D†∇ + σ† with a zero Dirichlet boundary condition. Note

that the operator A satisfies the following resolvent estimate

∥(z +A)−1∥Lp(Ω)→Lp(Ω) ≤ c(1 + |z|)−1, ∀z ∈ Σϕ, (3.31)

where Σϕ = {0 ̸= z ∈ C : | arg(z)| ≤ ϕ} with a fixed ϕ ∈ (π/2, π). If D† ∈ AD and σ† ∈ Aσ, then the

resolvent estimate (3.31) with p = 2 holds for a constant c independent of D† and σ† (but depending

on cD, c̄D and c̄σ in (3.3)). This could be easily proved by using a standard energy argument; see

e.g., [139, p. 92]. Moreover, if D† ∈W 1,∞(Ω), then the resolvent estimate (3.31) holds for p = ∞ (cf.

[137, Theorem 1], [14, Theorem 2.1] and [105, Appendix A]).

Then we introduce the solution operator

E(t) =
1

2πi

∫
Γϕ,κ

ezt(z +A)−1dz. (3.32)

Here Γϕ,κ = {z ∈ C : |z| = κ, | arg(z)| ≤ ϕ} ∪ {z ∈ C : z = ρeiϕ, ρ ≥ κ} with fixed constants κ ∈ (0,∞)

and ϕ ∈ (π/2, π). Then the solution u to the parabolic problem (3.28) could be written as

u(t) = E(t)(u0 − ḡ) +

∫ t

0
E(s)f(t− s)ds, (3.33)

where ḡ satisfies elliptic equation Aḡ = 0 with Dirichlet boundary condition ḡ|∂Ω = g. Under Assump-

tion 3.8, by the elliptic regularity theory and maximum principle, ḡ ∈ W 1,∞(Ω) ∩ H2(Ω) and has a

strictly positive lower bound.

Next, we provide a selection of valuable smoothing properties associated with the solution operator

E(t).

Lemma 3.4. Let E(t) be the solution opetator defined in (3.32). Suppose that D† ∈ AD and σ† ∈ Aσ.

Then there exists a constant c independent of D† and σ† (but depending on cD, c̄D and c̄σ in (3.3))

such that for any nonnegative integer ℓ,

∥E(ℓ)(t)∥L2(Ω)→L2(Ω) ≤ cmin(t−ℓ−1, t−ℓ).

Moreover, if D† ∈W 1,∞(Ω), then there holds

∥E(ℓ)(t)∥L∞(Ω)→L∞(Ω) ≤ cmin(t−ℓ−1, t−ℓ).

Proof. The proof of the lemma follows by the contour integral (3.32) and the resolvent estimate (3.31).

IfD† ∈ AD and σ† ∈ Aσ, then the resolvent estimate (3.31) with p = 2 holds for a constant c depending
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on cD, c̄D and c̄σ in (3.3). Then for ℓ ≥ 0 we have

∥E(ℓ)(t)∥L2(Ω)→L2(Ω) ≤ c

∫
Γϕ,κ

|z|ℓ|ezt|∥(z +A)−1∥L2(Ω)→L2(Ω)|dz| ≤ C

∫
Γϕ,κ

|ezt||z|ℓ(1 + |z|)−1|dz|

≤ c
(∫ ∞

κ
e−st cosϕ

sℓ

s+ 1
ds+

∫ ϕ

−ϕ
e−κt cosψ

κℓ+1

1 + κ
dψ
)
≤ cmin(t−ℓ−1, t−ℓ),

where we take κ = t−1 in the last inequality. The estimate in maximum-norm could be derived

similarly using the resolvent estimate (3.31) with p = ∞.

Lemma 3.4 immediately leads to the next lemma showing the decay properties of the solution.

Lemma 3.5. Suppose that Assumption 3.8 (i)-(iii) holds valid. Let u be the solution of the parabolic

problem (3.28). If D† ∈ AD and σ† ∈ Aσ, then for ℓ = 1, · · · , k + 1, there holds

∥∂ℓtu(t)∥L2(Ω) ≤ cmax(t−ℓ, 1), ∀ t ∈ (0,∞).

Moreover, if D† ∈W 1,∞(Ω), then there holds

∥∂tu(t)∥L∞(Ω) ≤


ct−1, ∀ t ∈ (0, T0],

c(t− 2T0)
−1, ∀ t ∈ (2T0,∞).

Proof. By solution representation (3.33), we may write

∂ℓtu(t) = E(ℓ)(t)(u0 − ḡ) +
ℓ−1∑
i=0

E(i)(t)f (ℓ−1−i)(0) +

∫ t

0
E(s)f (ℓ)(t− s)ds.

According to Assumption 3.8 (iii), we have f (i)(0) = 0, i = 1, · · · , ℓ− 1. Then Lemma 3.4 implies

∥∂ℓtu(t)∥L2(Ω) ≤∥E(ℓ)(t)∥L2(Ω)→L2(Ω)∥u0 − ḡ∥L2(Ω) + ∥E(ℓ−1)(t)∥L2(Ω)→L2(Ω)∥f(0)∥L2(Ω)

+

∫ t

0
∥E(s)∥L2(Ω)→L2(Ω)∥f (ℓ)(t− s)∥L2(Ω)ds

≤ct−ℓ + ct−ℓ+1 + c ≤ cmax(t−ℓ, 1).

Now we assume that D† ∈ W 1,∞(Ω). Similarly, with solution representation (3.33), ∂tu could be

written as

∂tu(t) = E′(t)(u0 − ḡ) + E(t)f(0) +

∫ t

0
E(s)∂tf(t− s)ds.

For any t ∈ (0, T0], we recall that ∂tf = 0 according to Assumption 3.8. Then the regularity of problem

data in Assumption 3.8 and Lemma 3.4 lead to

∥∂tu(t)∥L∞(Ω) ≤ ∥E′(t)∥L∞(Ω)→L∞(Ω)∥u0 − ḡ∥L∞(Ω) + ∥E(t)∥L∞(Ω)→L∞(Ω)∥f(0)∥L∞(Ω) ≤ ct−1.
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Next, we turn to the case that t ∈ (2T0,∞). Assumption 3.8 leads to ∂tf ̸= 0 for t ∈ (T0, 2T0) and

∂tf ≡ 0 otherwise. Then Lemma 3.4 yields

∥∂tu(t)∥L∞(Ω) ≤∥E′(t)∥L∞(Ω)→L∞(Ω)∥u0 − ḡ∥L∞(Ω) + ∥E(t)∥L∞(Ω)→L∞(Ω)∥f(0)∥L∞(Ω)

+

∫ t

0
∥E(s)∥L∞(Ω)→L∞(Ω)∥∂tf(t− s)∥L∞(Ω)ds

≤Ct−1 + C

∫ t−T0

t−2T0

s−1ds ≤ C(t− 2T0)
−1.

This completes the proof of the lemma.

The stability estimation follows a similar approach to that of the elliptic case. First, we decouple

the parameters, and then sequentially determine the stability for the diffusion coefficient D and the

reaction coefficient σ. To achieve this, we select time intervals such that 0 < T1 ≤ T0 and T2 ≥ 2T0.

Multiplying the equation at time T1 by u(T2) and at time T2 by u(T1), after subtracting the two

equations, we can eliminate the reaction coefficient σ and obtain
−∇ ·

(
Du2(T1)∇

(
u(T2)

u(T1)
− 1

))
= (f(T2)− ∂tu(T2))u(T1)− (f(T1)− ∂tu(T1))u(T2), in Ω,

u(T2)

u(T1)
− 1 = 0, on ∂Ω.

(3.34)

For ease of reference, let’s introduce the following notation:

w :=
u(T2)

u(T1)
−1, q := D|u(T1)|2 and F := (f(T2)−∂tu(T2))u(T1)−(f(T1)−∂tu(T1))u(T2). (3.35)

Then the system (3.34) could be written as the form (3.9). Therefore, the following result is an

immediate application of Theorem 3.3 and we omit the proof.

Assumption 3.9. The exact diffusion coefficient q† = D†|u(T1)|2 ∈ H2(Ω)∩W 1,∞(Ω)∩Aq and source

term F = (f(T2)− ∂tu(T2))u(T1)− (f(T1)− ∂tu(T1))u(T2) ∈ L∞(Ω).

Theorem 3.10. Suppose that F , F̃ ∈ L∞(Ω), q satisfy Assumption 3.9 and q̃ ∈ Aq. Also, suppose

the H1(Ω)-norm of q and q̃ are bounded by a generic constant c. Let w be the solution of (3.34) with

diffusion coefficient q and source F , while w̃ be the solution with diffusion coefficient q̃ and source F̃ .

Then there holds∫
Ω

(q − q̃)2

q2

(
q |∇w|2 + Fw

)
dx ≤ c

(
∥w − w̃∥H1(Ω) + ∥F − F̃∥L2(Ω)

)
.

Moreover, if the following positive condition holds

q |∇w|2 + Fw ≥ cdist(x, ∂Ω)β a.e. on Ω (3.36)

for some β ≥ 0 and c > 0. Then the following estimate holds

∥q − q̃∥L2(Ω) ≤ c
(
∥w − w̃∥H1(Ω) + ∥F − F̃∥L2(Ω)

) 1
2(1+β)

.

36



Remark 3.6. As suggested in Section 1.2, the crucial aspect to ensure the positivity condition in

(3.36) is to establish the strict positivity of the function F . It is worth noting that F contains the time

derivative term ∂tu, making the positive condition more intricate than that presented in Section 1.2.

Therefore, a careful examination is required. Next, we demonstrate that the positive condition holds

valid under certain specific excitations f and g.

We claim that the function F in (3.35) could be strictly positive provided some restrictions on

excitation f and g. For example, with Assumption 3.8, we take a time dependent source term

f(x, t) =


0, 0 < t ≤ T0,

cf , t > 2T0,

for some T0. Here we assume that T0 is sufficient large, T1 = T0, and T2 = 3T0. As a result, according

to Lemma 3.5, ∥∂tu(T1)∥L∞(Ω) + ∥∂tu(T2)∥L∞(Ω) ≤ CT−1
0 . Since u has a strict positive lower bound

(3.30) and ∥u(t)∥L∞(Ω) ≤ c uniform in t, we conclude that for sufficiently large T0,

F ≥ cfcu − T−1
0 (cu + ∥u(T2)∥L∞(Ω)) > cF > 0.

Then the positivity condition (3.36) holds valid for some β ∈ [0, 2].

The following corollary gives the estimate of ∥F − F̃∥L2(Ω) and hence the estimate of ∥D−D̃∥L2(Ω).

Corollary 3.2. Suppose that Assumption 3.8 holds valid, D̃ ∈ AD and σ ∈ Aσ. Let u (ũ) be the

solution to the parabolic equation (3.4) with diffusion coefficient D (D̃), reaction coefficient σ (σ̃), the

boundary data g and source f . Let D ∈W 1,∞(Ω)∩AD, σ ∈ L∞(Ω)∩Aσ. Assume that ∥ũ(Ti)∥L2(Ω) ≤ c

for i = 1, 2. Then there holds

∥F − F̃∥L2(Ω) ≤ c
( 2∑
i=1

∥u− ũ∥L∞(Ti−θ,Ti;L2(Ω))

) k
k+1

,

where k is the regularity of source f given in Assumption 3.8 (ii). If in addition, the positive condition

(3.36) holds for some β ≥ 0, then

∥D − D̃∥L2(Ω) ≤ c

(
2∑
i=1

∥(u− ũ)(Ti)∥H1(Ω) +
( 2∑
i=1

∥u− ũ∥L∞(Ti−θ,Ti;L2(Ω))

) k
k+1

) 1
2(1+β)

.

Proof. By definition in (3.35), F − F̃ can be written as

F − F̃ = f(T2) (u(T1)− ũ(T1)) + f(T1) (ũ(T2)− u(T2))

+ u(T2)∂tu(T1)− ũ(T2)∂tũ(T1) + ũ(T1)∂tũ(T2)− u(T1)∂tu(T2).

The first two terms can be easily bounded by

∥f(T2) (u(T1)− ũ(T1)) + f(T1) (ũ(T2)− u(T2)) ∥L2(Ω) ≤ c

2∑
i=1

∥(u− ũ)(Ti)∥L2(Ω).
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Inserting an intermediate term ũ(T2)∂tu(T1), we have

∥u(T2)∂tu(T1)− ũ(T2)∂tũ(T1)∥L2(Ω) ≤ ∥ũ(T2)∥L∞(Ω)∥∂tu(T1)− ∂tũ(T1)∥L2(Ω)

+ ∥∂tu(T1)∥L∞(Ω)∥u(T2)− ũ(T2)∥L2(Ω).

By assumption, we have ∥ũ(T2)∥L∞(Ω) ≤ c. Meanwhile, Lemma 3.5 implies ∥∂tu(T1)∥L∞(Ω) ≤ cT−1
1 ≤

c. These together imply

∥u(T2)∂tu(T1)− ũ(T2)∂tũ(T1)∥L2(Ω) ≤ c
(
∥∂tu(T1)− ∂tũ(T1)∥L2(Ω) + ∥u(T2)− ũ(T2)∥L2(Ω)

)
.

To analyze the term ∥∂tu(T1)− ∂tũ(T1)∥L2(Ω), we insert the backward difference quotient of order k,

∂τu(T1) = τ−1
k∑
j=0

aju(T1 − jτ) and ∂τ ũ(T1) = τ−1
k∑
j=0

aj ũ(T1 − jτ),

for some 0 < τ < θ/k, where {aj}kj=1 are backward difference quotient coefficients. By Lemma 3.5,

we have ∥∂k+1
t u∥L∞(T1−θ,T1;L2(Ω)) ≤ c, and hence by Taylor’s expansion we obtain

∥∂tu(T1)− ∂τu(T1)∥L2(Ω) ≤ cτk∥∂k+1
t u∥L∞(T1−θ,T1;L2(Ω)) ≤ cτk. (3.37)

Then we obtain

∥u(T2)∂tu(T1)− ũ(T2)∂tũ(T1)∥L2(Ω) ≤ c
(
τk + τ−1∥u− ũ∥L∞(T1−θ,T1;L2(Ω)) + ∥(u− ũ)(T2)∥L2(Ω)

)
.

The bound for ∥u(T1)∂tu(T2)− ũ(T1)∂tũ(T2)∥L2(Ω) can be obtained similarly. Consequently, we arrive

at

∥F − F̃∥L2(Ω) ≤ c
(
τk + τ−1

2∑
i=1

∥u− ũ∥L∞(Ti−θ,Ti;L2(Ω))

)
.

If
∑2

i=1 ∥u − ũ∥L∞(Ti−θ,Ti;L2(Ω)) ≤ (θ/k)k+1, then the choice τ =
(∑2

i=1 ∥u− ũ∥L∞(Ti−θ,Ti;L2(Ω))

) 1
k+1

leads to the desired estimate. Otherwise, it suffices to take τ = θ/(2k) and derive

∥F − F̃∥L2(Ω) ≤c
(
θk + θ−1

2∑
i=1

∥u− ũ∥L∞(Ti−θ,Ti;L2(Ω))

)
≤ cθ−1

(
θk+1 +

2∑
i=1

∥u− ũ∥L∞(Ti−θ,Ti;L2(Ω))

)
≤c

2∑
i=1

∥u− ũ∥L∞(Ti−θ,Ti;L2(Ω)) ≤ c
( 2∑
i=1

∥u− ũ∥L∞(Ti−θ,Ti;L2(Ω))

) k
k+1

,

where we use the fact that θ and k are constants and the a priori bound ∥u− ũ∥L∞(Ti−θ,Ti;L2(Ω)) ≤ c.

The second assertion of the corollary is a direct consequence of applying Theorem 3.10.

Having obtained the reconstructed conductivity, we can now proceed to recover the reaction coef-

ficient. The subsequent theorem offers conditional stability for the parameter’s recovery.
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Theorem 3.11. Let the assumptions in Corollary 3.2 hold true. Then there holds

∥(σ − σ̃)(u(T2)− u(T1))∥L2(Ω)

≤ c

(( 2∑
i=1

∥u− ũ∥L∞(Ti−θ,Ti;L2(Ω))

) 2k
k+1

+

2∑
i=1

∥(u− ũ)(Ti)∥H1(Ω) + ∥D − D̃∥L2(Ω)

) 1
2

.

Proof. Letting ζ = u(T2)− u(T1) and choosing a test function v ∈ H1
0 (Ω), we have

((σ − σ̃)ζ, v) = (D̃∇ζ̃ −D∇ζ,∇v) + (σ̃(ζ̃ − ζ), v) +

2∑
i=1

(∂t(ũ− u)(T1), v).

Now we take v = (σ − σ̃)ζ and note that ∥∇v∥L2(Ω) ≤ c. Then we obtain

∥v∥2L2(Ω) ≤c
(
∥ζ − ζ̃∥H1(Ω) + ∥D − D̃∥L2(Ω) + ∥ζ̃ − ζ∥L2(Ω)∥v∥L2(Ω)

+

2∑
i=1

∥∂t(ũ− u)(Ti)∥L2(Ω)∥v∥L2(Ω)

)
.

Using the argument in the proof of Corollary 3.2, we use backward difference quotient to estimate

∥∂t(ũ− u)(Ti)∥L2(Ω) and obtain

2∑
i=1

∥∂t(ũ− u)(Ti)∥L2(Ω) ≤
( 2∑
i=1

∥u− ũ∥L∞(Ti−θ,Ti;L2(Ω))

) k
k+1

.

As a result, we conclude that

∥v∥2L2(Ω) ≤ c
( 2∑
i=1

∥(u− ũ)(Ti)∥H1(Ω) + ∥D − D̃∥L2(Ω) +
( 2∑
i=1

∥u− ũ∥L∞(Ti−θ,Ti;L2(Ω))

) 2k
k+1
)
.

This completes the proof of the theorem.

Remark 3.7. Similar as in Theorem 3.4, for any compact subset Ω′ ⋐ Ω with dist(Ω′, ∂Ω) > 0, we can

obtain the bound for ∥σ− σ̃∥L2(Ω′), if ζ = u(T2)−u(T1) ≥ C > 0 in Ω′. This condition can be achieved

by following choice of data: we take f2−f1 ≥ cf > 0 in (3.29), T1 = T0, T2 = 3T0, with T0 sufficiently

large. Then ζ satisfies the elliptic equation with source F = f2 − f1 + ∂tu(T1)− ∂tu(T2). According to

Lemma 3.5, there holds ∥∂tu(T1)∥L∞(Ω) + ∥∂tu(T2)∥L∞(Ω) ≤ cT−1
0 , we conclude that F ≥ cf − cT−1

0

is strictly positive when T0 is sufficiently large. Consequently, the strong maximum principle [141,

Theorem 1] implies ζ ≥ c > 0 in Ω′ and hence

∥σ − σ̃∥L2(Ω′) ≤ c
(( 2∑

i=1

∥u− ũ∥L∞(Ti−θ,Ti;L2(Ω))

) 2k
k+1 +

2∑
i=1

∥(u− ũ)(Ti)∥H1(Ω) + ∥D − D̃∥L2(Ω)

) 1
2
.

Remark 3.8. Throughout we assume that g is time-independent in order to have the relation that

w(x) =
u(T2, x)

u(T1, x)
− 1 = 0 for all x ∈ ∂Ω.

The zero boundary condition of w is very crucial in the stability analysis and the error analysis of

numerical recovery. For boundary data g(x, t) that varies with time, we would need to impose the

condition that D = D̃ and σ = σ̃ on ∂Ω to ensure the applicability of our current argument.
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3.3.2 Numerical scheme and error analysis

In this part, we present the numerical scheme for the reconstruction of diffusion coefficient and reaction

coefficient. First of all, we use the system (3.34) to recover the diffusion coefficient without the

knowledge of reaction coefficient. Denote the exact solution u†(x, t) := u(x, t;D†, σ†) and define

w† =
u(T1)

u(T2)
− 1 and wδ =

zδ(T1)

zδ(T2)
− 1.

Recall that the exact solution u† is strictly positive, cf. (3.30). Then for ease of simplicity, we assume

that zδ are strictly positive in Ω. Moreover, we assume that

∥zδ∥C((Ti−θi,T ];L∞(Ω)) ≤ c, (3.38)

with some generic constant c. Then it is easy to observe

∥wδ − w†∥ ≤ cδ.

Moreover, we take

F δ =
(
f(T2)− ∂τz

δ(T2)
)
zδ(T1)−

(
f(T1)− ∂τz

δ(T1)
)
zδ(T2),

where ∂τ denote backward difference quotient of orde k for some 0 < τ < θ/k. We apply the following

output least squares formulation

min
qh1∈Aq,h1

Jγ1,h1(qh1) =
1

2
∥wh1(qh1)− wδ∥2L2(Ω) +

γ1
2
∥∇qh1∥2L2(Ω) (3.39)

where wh1(qh1) ∈ V 0
h1

is a weak solution of

(qh1∇wh1 ,∇vh1) = (F δ, vh1), ∀vh1 ∈ V 0
h1 . (3.40)

The following theorem is a direct consequence of Theorem 3.5.

Theorem 3.12. Suppose Assumptions 3.8 and 3.9 hold. Let q† = D†|u†(T1)|2 ∈ Aq be the exact

parameter in the elliptic equation (3.34), w(q†) be the exact solution, and q∗h1 ∈ Aq,h be a minimizer

of problem (3.39)-(3.40).Then with η = h21 + δ + τk + δτ−1 + γ
1
2
1 , there holds∫

Ω

(q† − q∗h1
q†

)2(
q†|∇w(q†)|2 + Fw(q†)

)
dx ≤ c

((
h1ηγ

− 1
2

1 +min(h1 + h−1
1 η, 1)

)
ηγ

− 1
2

1 + δ + τk + δτ−1
)
.

Moreover, if the following positive condition (3.36) holds for β ≥ 0, we have

∥q† − q∗h1∥L2(Ω) ≤ c

((
h1ηγ

− 1
2

1 +min(h1 + h−1
1 η, 1)

)
ηγ

− 1
2

1 + δ + τk + δτ−1

) 1
2(1+β)

.
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Proof. The proof closely resembles that of Theorem 3.5, with the primary distinction being the esti-

mation of F − F δ. More specifically, we obtain

∥F − F δ∥L2(Ω) = ∥f(T2)
(
u(T1)− zδ(T1)

)
∥L2(Ω) + ∥f(T1)

(
u(T2)− zδ(T2)

)
∥L2(Ω)

+ ∥∂tu(T1)u(T2)− ∂τz
δ(T1)z

δ(T2)∥L2(Ω) + ∥∂tu(T2)u(T1)− ∂τz
δ(T2)z

δ(T1)∥L2(Ω)

≤ cδ + ∥∂tu(T1)u(T2)− ∂τz
δ(T1)z

δ(T2)∥L2(Ω) + ∥∂tu(T2)u(T1)− ∂τz
δ(T2)z

δ(T1)∥L2(Ω).

Then it suffices to bound the second term, and then the third term follows analogously. Inserting the

terms ∂τu(T1)u(T2) and ∂τu(T1)z
δ(T2), we have

∥∂tu(T1)u(T2)− ∂τz
δ(T1)z

δ(T2)∥L2(Ω)

≤ ∥∂tu(T1)u(T2)− ∂τu(T1)u(T2)∥L2(Ω) + ∥∂τu(T1)u(T2)− ∂τu(T1)z
δ(T2)∥L2(Ω)

+ ∥∂τu(T1)zδ(T2)− ∂τz
δ(T1)z

δ(T2)∥L2(Ω) =

3∑
j=1

Ij .

By Lemma 3.5, we observe that ∥∂k+1
t u∥L∞(Ti−θ,Ti;L2(Ω)) + ∥u(Ti)∥L∞(Ω) ≤ c and hence we apply the

estimate (3.37) to obtain

I1 ≤ ∥∂tu(T1)− ∂τu(T1)∥L2(Ω)∥u(T2)∥L∞(Ω) ≤ cτk∥∂k+1
t u∥L∞(T1−θ,T1;L2(Ω))∥u(T2)∥L∞(Ω) ≤ cτk.

For the second term, we apply Lemma 3.5 and the assumption (3.5) to obtain

I2 ≤ ∥∂τu(T1)∥L∞(Ω)∥u(T2)− zδ∥L2(Ω) ≤ cδτ−1

∫ T1

T1−θ
∥ut(t)∥L∞(Ω) dt ≤ cδτ−1.

Finally, for the term I3, we use the assumption (3.5) and (3.38) to derive

I3 ≤ ∥∂τu(T1)zδ(T2)− ∂τz
δ(T1)z

δ(T2)∥L2(Ω)

≤ c∥∂τ (u(T1)− zδ(T1))∥L2(Ω)∥zδ(T2)∥L∞(Ω) ≤ cδτ−1.

Consequently, we arrive at

∥F − F δ∥L2(Ω) ≤ c(δ + τk + δτ−1).

The proof that follows simply involves substituting ∥F − F δ∥L2(Ω) in Theorem 3.5 with the newly

established error bound. As such, we omit this largely redundant proof.

Remark 3.9. In Theorem 3.12, the choice τ ∼ δ
1

k+1 implies that ∥F − F δ∥L2(Ω) ≤ cδ
k

k+1 . With a

priori choice of the algorithmic parameters: h1 ∼ δ
k

2(k+1) , γ1 ∼ δ
2k
k+1 . Under the positivity condition

(3.36) with β ≥ 0, there holds the estimate

∥D† −D∗
h1∥L2(Ω) ≤ c δ

k
4(1+β)(k+1) .

When f is smooth over time, the optimal order is nearly (4(1+β))−1. This estimation aligns with the

one given in the elliptic case, as detailed in Remark 3.2.
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Now we turn to the reconstruction formula of reaction coefficient σ† and study the approximation

error. Let ζ = u(T1)− u(T2) which is a solution to the elliptic problem
−∇ · (D∇ζ) + σζ = f(T1)− f(T2) + ∂tu(T2)− ∂tu(T1), in Ω,

ζ = 0, on ∂Ω.
(3.41)

The noisy observational data for equation (3.41) is ζδ = zδ(T2)− zδ(T1) satisfying ∥ζ − ζδ∥L2(Ω) ≤ cδ.

We consider following least-squares formulation

min
σh2∈Aσ,h2

Jγ2,h2(σh2) =
1

2
∥ζh2(σh2)− ζδ∥2L2(Ω) +

γ2
2
∥∇σh2∥2L2(Ω) (3.42)

where Aσ,h2 = Aσ ∩ Vh2 and ζh2(σh2) ∈ V 0
h2

is the solution to the finite dimensional problem

(D∗
h1∇ζh2 ,∇vh2) + (σh2ζh2 , vh2) = (f(T1)− f(T2) + ∂τz

δ(T2)− ∂τz
δ(T1), vh2), ∀vh2 ∈ V 0

h2 , (3.43)

where ∂τ denote backward difference quotient of orde k for some 0 < τ < θ/k. Similar as Section 3.2,

we use h2 to denote the different spatial mesh size. Here ∂τ denotes the difference quotient as the

discretized scheme (3.40) and D∗
h1

is the diffusion coefficient we reconstructed in previous step with a

priori estimate

∥D∗
h1 −D†∥L2(Ω) ≤ ϵ with ϵ = cδ

k
4(1+β)(k+1) .

The subsequent result offers an error estimation for σh2 − σ†. Given that the proof parallels that

of Theorem 3.7, we have decided not to reproduce it here.

Theorem 3.13. Suppose Assumptions 3.8 and 3.6 holds, D† ∈ AD∩W 1,∞(Ω) and ∥D∗
h1
−D†∥L2(Ω) ≤

ϵ. Let ζ(σ†) be the solution to equation (3.41), while σ∗h2 be the minimizer of (3.42)-(3.43). Then with

η = h22 + ϵ+ (τk + δτ−1)2 +
√
γ2, there holds

∥(σ† − σ∗h2)ζ(σ
†)∥L2(Ω) ≤ c

(
h2γ

− 1
2

2 η + η + τk + δτ−1 +

(
γ
− 1

2
2 η(min{h2 + h−1

2 η, 1}+ ϵ)

) 1
2

)
.

Moreover, if f2 − f1 ≥ c > 0 a.e. in Ω, T1 = T0 and T2 = 3T0 with T0 being sufficiently large, then for

any Ω′ ⋐ Ω, there exists a constant c depending on dist(Ω′, ∂Ω), f , g, u0, D
† and σ†, such that

∥(σ† − σ∗h2∥L2(Ω′) ≤ c

(
h2γ

− 1
2

2 η + η + τk + δτ−1 +

(
γ
− 1

2
2 η(min{h2 + h−1

2 η, 1}+ ϵ)

) 1
2

)
.

Remark 3.10. According to Theorem 3.5 and Remark 3.2, we have

∥D∗
h1 −D†∥ ≤ ϵ = c δ

k
4(1+β)(k+1) ,

provided that h ∼ δ
k

2(k+1) , γ1 ∼ δ
2k
k+1 and the positivity condition (3.11) is valid with β ∈ [0, 2]. As a

result, with the choice of parameters h2 ∼ ϵ
1
2 , γ2 ∼ ϵ2, τ ∼ δ

1
k+1 , there holds the estimate

∥(σ† − σ∗h2)ζ(σ
†)∥L2(Ω) ≤ c δ

k
8(1+β)(k+1) .
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Finally, if f2 − f1 ≥ c > 0 a.e. in Ω, T1 = T0 and T2 = 3T0 with T0 being sufficiently large, then

∥σ† − σ∗h2∥L2(Ω′) ≤ c δ
k

8(1+β)(k+1) ,

where Ω′ ⋐ Ω and the constant c depending on dist(Ω′, ∂Ω), f , g, u0, D
† and σ†.

3.4 Numerical results

In this section, we present empirical results that demonstrate the precision of our proposed decoupled

numerical algorithm. The reconstruction accuracy is measured in relatively L2(Ω) error:

eD = ∥D∗
h1 −D†∥L2(Ω)/∥D†∥L2(Ω) and eσ = ∥σ∗h2 − σ†∥L2(Ω)/∥σ†∥L2(Ω).

To begin with, we present numerical results for one- and two-dimensional elliptic equations.

Example 3.1. Ω = (0, 1), D†(x) = 2 + sin(2πx), σ†(x) = 1 + x(1 − x). The boundary is g ≡ 1 and

the two sources are given by f1 ≡ 1 and f2 ≡ 10.

Table 3.1: Examples 3.1 and 3.2: convergence with respect to δ.

(a) Example 3.1 (b) Example 3.2

δ 1e-2 5e-3 1e-3 5e-4 1e-4 1e-2 5e-3 1e-3 5e-4 1e-4

eD 4.87e-2 3.51e-2 1.73e-2 7.12e-3 4.67e-3 1.29e-1 6.34e-2 3.20e-2 1.95e-2 1.14e-2

eσ 1.78e-2 1.73e-2 1.61e-2 1.00e-2 9.24e-3 7.70e-2 3.55e-2 3.12e-2 2.23e-2 2.13e-2

The results of the reconstruction at different noise levels can be seen in Figure 3.1, while the

relative errors are displayed in Table 3.1. For different noise level δ, we adopt the regularization

parameter γ1 and mesh size h as γ1 = Cγ1δ
2 and h1 = Ch1δ

1
2 respectively. This choice is guided

by the recommendations made in Remark 3.2 for the reconstruction of D†. Next, in the process of

reconstructing σ†, we follow the guidelines provided in Remark 3.3. Specifically, we assign values to

γ2 and h2 as γ2 = Cγ2ϵ
2 and h2 = Ch2ϵ

1
2 respectively. Here, ϵ represents the empirical convergence

rates observed in our experiments. The constant Cγ1 , Ch1 , Cγ2 and Ch2 are determined by a trial

and error way. For reconstruction of D†, we initially take γ1 = 1e-6 and h1 = 1/16. The numerical

results indicate that the error eD decays to zero as the noise level tends to zero, with rate O(δ0.52).

For reconstruction of reaction coefficient σ†, we initially take γ2 = 1e-5 and h2 = 1/16 and observe a

convergence rate O(δ0.18). It’s important to note, as discussed in Remark 3.1, that the predicted rate

for D† is O(δ1/4), which is significantly lower than the empirically observed rate. Moreover, with the

empirical rate γ = 0.52, the predicted rate for σ† is expected to be O(δ0.26) as noted in Remark 3.2.

43



(a) δ = 1e-2 (b) δ = 1e-3 (c) δ = 1e-4

Figure 3.1: Example 3.1. First row: reconstructions of D†. Second row: reconstructions of σ†.

However, this rate is seldom observed in practical applications. The discrepancy between numerical

experiments and theoretical predictions can be attributed to optimization error. In the decoupled

algorithm, two optimization problems must be solved to obtain D∗
h and σ∗h. The loss functions are non-

convex and contain local minima, which making it challenging to achieve the theoretical convergence

rates.

Example 3.2. Ω = (0, 1)2, D†(x, y) = 2+ sin(2πx) sin(2πy) and σ†(x, y) = 1+ y(1− y) sin(πx). The

boundary is g ≡ 1 and the two sources are given by f1 ≡ 1, f2 ≡ 10.

The numerical results for Example 3.2 are presented in Table 3.1 and Fig. 3.2. The mesh sizes

and regularization parameters are initialized to h1 = 1/16, γ1 = 1e-8, h2 = 1/12 and γ2 = 5e-6.

The empirical convergence rates for eD and eσ with respect to δ are about O(δ0.51) and O(δ0.25),

respectively, which are comparable with that for Example 3.1

Next we compare our decoupled reconstruction process with the scheme (3.26)-(3.27) where we

compute D∗
h and σ∗h simultaneously. We address the optimization problem defined in (3.26)-(3.27),

using the conjugate gradient method. The solution process alternates between two directions. We

initially set σh as fixed and employ the conjugate gradient descent to optimize Dh. Subsequently, we

fix Dh and utilize the conjugate gradient descent to optimize σh. We continue this alternating process

until convergence is reached. In the computation, we select a mesh size of h = 1/50. The regularization

parameters are determined through a process of trial and error. The reconstruction results, carried out

with a noise level of δ = 2%, are presented in Figure 3.3. The first column illustrates the convergence

of the conjugate gradient iteration. In both methods, the errors first decays and then increase or
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(a) exact (b) δ = 5e-3 (c) δ = 5e-4

Figure 3.2: Example 3.2. First row: reconstructions of D†. Second row: reconstructions of σ†.

(a) error (b) coupled scheme (c) decoupled scheme

Figure 3.3: Comparison between the proposed decoupled algorithm and the coupled scheme (3.26)-

(3.26). First row: diffusion coefficient D. Second row: reaction coefficient σ.
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oscillate and finally become steady. This phenomenon indicates that it is essential to choose a good

regularization parameter or apply early stopping strategy. Notably, the errors for the decoupled scheme

demonstrate a rapid and steady decay. However, for the coupled scheme as defined in (3.26)-(3.27),

the optimization problem is considerably more complicated. As a result, the errors exhibit a period

of oscillation and require a significantly longer time to converge.

Next, we present numerical results for the parabolic equation. Throughout, we use backward Euler

scheme, i.e. k = 1, to discretize in time variable.

Example 3.3. Ω = (0, 1), D†(x) = 2 + sin(2πx), σ†(x) = 1 − |x − 1
2 |

1.1, u0(x) = 1 + 1
2 sin(πx) and

g ≡ 1. We take the source term as

f(x, t) =


1, for t ∈ [0, 1.5];

9
2 sin(

π
2 (t−

5
2)) +

11
2 , for t ∈ (1.5, 3.5);

10, for t ∈ [3.5,∞).

(3.44)

The measurement is taken in the time-space domain (t, x) ∈ [0.9, 1]× Ω and (t, x) ∈ [4.9, 5]× Ω.

Table 3.2: Examples 3.3 and 3.4: convergence with respect to δ.

(a) Example 3.3 (b) Example 3.4

δ 1e-2 5e-3 1e-3 5e-4 1e-4 1e-2 5e-3 1e-3 5e-4 1e-4

eD 5.49e-2 3.78e-2 1.37e-2 7.45e-3 6.69e-3 1.59e-1 1.00e-1 3.15e-2 1.98e-3 8.78e-3

eσ 5.23e-2 5.14e-2 3.32e-2 2.29e-2 2.13e-2 4.41e-2 2.43e-2 2.24e-2 1.98e-2 1.53e-2

The reconstruction results are listed in Table 3.2 and Figure 3.4. For reconstructing diffusion

coefficient D†, the parameters are taken to be h1 = Ch1δ
1
4 , τ = Cτδ

1
2 and γ1 = Cγ1δ, according to

Theorem 3.12. We observe eD decays in a rate O(δ0.49) with initial mesh size h1 = 1/16, time step

τ = 0.1 and regularization parameter γ1 = 1e-6. As shown in Theorem 3.13, for reconstructing σ†, we

take parameters h2 = Ch2ϵ
1
2 , τ = Cτδ

1
2 and γ2 = Cγ2ϵ

2. Here, ϵ represents the empirical convergence

rates for recovering D† observed in our experiments. We initialize the mesh size h2 = 1/16, time step

τ = 0.1 and regularization parameter γ2 = 1e-5. The numerical results show that the error eσ have

decay rates O(δ0.22). These results are comparable with that for Examples 3.1 and 3.2.

Example 3.4. Ω = (0, 1)2, D† = 2 + D1 − D2 with D1(x, y) = e−20(x−0.5)2−20(y−0.7)2, D2(x, y) =

e−20(x−0.5)2−20(y−0.3)2, σ†(x, y) = 1 + 0.5e−20(x−0.6)2−20(y−0.6)2, u0(x) = 1 + 1
2 sin(πx) sin(πy) and

g ≡ 1. The source term is given by (3.44). The measurement data is observed in the time-space

domain (t, x, y) ∈ [0.9, 1]× Ω and (t, x, y) ∈ [4.9, 5]× Ω.
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(a) δ = 1e-2 (b) δ = 1e-3 (c) δ = 1e-4

Figure 3.4: Example 3.3. First row: reconstructions of D†. Second row: reconstructions of σ†.

The numerical results for Example 3.4 are shown in Table 3.2 and Figure 3.5. The computational

parameters are initialized to h1 = 1/16, τ = 0.1, γ1 = 1e-6 and h2 = 1/16, τ = 0.1, γ2 = 1e-6. It

was discovered that the empirical convergence rate for eD in relation to δ was approximately O(δ0.48).

This rate is higher than the theoretical one. Moreover, the empirical rate for eσ was found to be about

O(δ0.22), which aligns with the theoretical estimate.
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(a) exact (b) δ = 5e-3 (c) δ = 5e-4

Figure 3.5: Example 3.4. First row: reconstructions of D†. Second row: reconstructions of σ†.
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CHAPTER 4.

Finite element approximation for quantitative photoacoustic

tomography in a diffusive regime

In this chapter, we investigate the inverse problem raising in the quantitative photoacoustic tomogra-

phy (QPAT): 
−∇ · (D(x)∇u) + σ(x)u = 0 in Ω,

u = g on ∂Ω.
(4.1)

Here, Ω is a bounded Lipschitz domain in Rd (d = 2, 3) with boundary ∂Ω. The optical coefficients

(D(x), σ(x)), with D(x) being the diffusion coefficient and σ(x) the absorption coefficient, are assumed

to be bounded and positive. The QPAT inverse problem consists of recovering D(x) and σ(x) from

the internal observation of the optical energy

H(x) = σ(x)u(x) for all x ∈ Ω.

The problem of QPAT has been extensively studied in the literature. Since the inverse problem

involves multiple parameters (D and σ), a common method uses multiple illuminations g to generate

various optical energies H and reconstruct the unknown parameters. In [16, 15], the authors propose

a decoupled procedure and prove the uniqueness and Hölder stability for the inverse problem. The

decoupled scheme relies on the following observation: if u1, u2 are two solutions to equation (4.1)

corresponding to illuminations g1, g2 respectively, then the quotient u = u2/u1 = H2/H1 satisfies the

following elliptic equation with one parameter:
−∇ · (q∇u) = 0 in Ω,

u = g on ∂Ω,
(4.2)

where q = Du21 and g = g2/g1. Thus, the problem of QPAT is solved by a two-step procedure. The

first step is to solve an inverse diffusivity problem (IDP) of recovering q given u and the boundary

value q|∂Ω. After obtaining q = Du21, the second step is solving a direct problem:
−∇ · (Du21∇(1/u1)) = H1 in Ω,

1/u1 = 1/g1 on ∂Ω,
(4.3)

to find u1 and hence determine D and σ.

The rest of this chapter is organized as follows. In Section 4.1, we discuss the choice of random

boundary illuminations and show the Hölder type stability of the inverse diffusivity problem under
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the non-zero condition. We also propose an iterative reconstruction algorithm and study the finite

element approximation error. In Section 4.2, we establish the numerical inversion scheme for QPAT

and analyze the discrete approximation error. Numerical experiments are presented in Section 4.3 to

validate the theoretical results.

4.1 Inverse diffusivity problem

In this section, we consider the inverse diffusivity problem of the second-order elliptic equation (4.2):
−∇ · (q∇w) = 0 in Ω,

w = g on ∂Ω.
(4.2)

Let Ω′ ⋐ Ω be a given Lipschitz subdomain and suppose that the exact diffusion coefficient q†(x) is

known for all x ∈ Ω \ Ω′. The diffusion coefficient is assumed to be in the following admissible set:

Aq = {q ∈ H1(Ω) : 0 < cq ≤ q ≤ cq a.e. in Ω, q = q† in Ω \ Ω′}, (4.4)

with a priori known positive constants cq, cq. Moreover, we assume that the coefficient and boundary

data satisfy the following assumption.

Assumption 4.1. Let Ω be a bounded Lipschitz domain in Rd and Ω′ ⋐ Ω be a given Lipschitz

subdomain. We assume that the exact diffusivity coefficient q† ∈ C0,1(Ω) ∩ Aq. Further, we let g(ℓ)

(with ℓ = 1, . . . , L) denote boundary data, which are taken as independent and identically distributed

random variables in H
1
2 (∂Ω) satisfying the expansion

g(ℓ) =
M∑
k=1

a
(ℓ)
k ek, ℓ = 1, . . . , L, (4.5)

whereM is a given positive integer, {ek}∞k=1 is a fixed orthonormal basis of H
1
2 (∂Ω) and a

(ℓ)
k ∼ N(0, θ2k)

are independent real Gaussian variables, with θk > 0 for every k and
∑

k≥1 θk <∞.

Remark 4.1. Let w(ℓ)(q†) denote the solution to the elliptic problem (4.2) associated with the diffusion

coefficient q† and the boundary excitation g(ℓ). Under the regularity assumption, classical elliptic

regularity theory ([57, Theorem 5.20] and [58, Theorem 8.8]) implies that the corresponding solution

to the elliptic equation (4.2) satisfies w(ℓ)(q†) ∈ C1,κ
loc (Ω) ∩H

1(Ω) for all κ ∈ (0, 1).

The inverse diffusivity problem (IDP) consists of recovering the diffusion coefficient in Ω′ from the

multiple internal observations w(ℓ)(x; q†) for all x ∈ Ω′, where ℓ = 1, 2, . . . , L. With the above choice

of g(ℓ), by using the result of [4] we have the following non-zero condition, which is crucial for stability

and error estimates.

50



Proposition 4.1. Suppose that Assumption 4.1 holds. Take ν ∈ Rd with |ν| = 1. Then, with a

probability greater than

1− Ld exp (−C1L)− L exp (−C2M) , (4.6)

the following non-zero condition holds

max
ℓ=1,...,L

|∇w(ℓ)(x) · ν| ≥ C0, x ∈ Ω′, (4.7)

and the random boundary data has upper bound

max
ℓ=1,...,L

∥g(ℓ)∥
H

1
2 (∂Ω)

≤ L
1
2 . (4.8)

Here w(ℓ) (with ℓ = 1, . . . , L) is the solution to (4.2) corresponding to the boundary illumination g(ℓ).

The positive constants C0, C1 and C2 depend only on Ω, Ω′, {θk}, {ek}, cq, cq and ∥q∥C0,1(Ω).

Proof. All the constants appearing in the proof will depend only on Ω, Ω′, {θk}, {ek}, cq, cq and

∥q∥C0,1(Ω). Let w
(ℓ) be the solution to (4.2) with boundary data

g(ℓ) =

∞∑
k=1

a
(ℓ)
k ek, ℓ = 1, . . . , L,

where {ek}∞k=1 and a
(ℓ)
k are as in Assumption 4.1. By [4, Theorem 1] (with the choice ζ(u) = ∇w·ν, as a

minor variation of [4, Example 2]) and [4, Lemma 5]), with probability greater than 1−Ld exp (−C1L),

we have the following non-zero condition

max
ℓ=1,...,L

|∇w(ℓ)(x) · ν| ≥ 2C0, x ∈ Ω′

and

max
ℓ=1,...,L

∥g(ℓ)∥
H

1
2 (∂Ω)

≤ L
1
2 /2.

Now we estimate the difference between g(ℓ) and the truncated boundary values g(ℓ). We view

∥g(ℓ) − g(ℓ)∥
H

1
2 (∂Ω)

as a random variable. Since a
(ℓ)
k ∼ N(0, θ2k) and ek are orthonormal in H

1
2 (∂Ω),

the moment generating function satisfies for all λ ∈ R:

E exp

(
λ2∥g(ℓ) − g(ℓ)∥2

H
1
2 (∂Ω)

)
= E exp

(
λ2

∞∑
k=M+1

(a
(ℓ)
k )2

)
= exp

(
λ2

∞∑
k=M+1

θ2k

)
.

The condition
∑∞

k=1 θk <∞ implies that
∑∞

k=M+1 θ
2
k ≤ CM−1. By [142, Proposition 2.5.2], we have

P
(
∥g(ℓ) − g(ℓ)∥

H
1
2 (∂Ω)

≥ t
)
≤ 2 exp

(
−C2t2M

)
, ∀t ≥ 0, ℓ = 1, . . . , L.

Thus, with probability greater than 1− 2L exp
(
−C2t2M

)
, we have

∥g(ℓ) − g(ℓ)∥
H

1
2 (∂Ω)

≤ t, ℓ = 1, . . . , L.
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Hence, elliptic regularity yields

∥w(ℓ) − w(ℓ)∥C1(Ω′) ≤ C̃t, ℓ = 1, . . . , L.

With the choice t = min{C0/C̃, L
1
2 /2}, we have ∥w(ℓ) −w(ℓ)∥C1(Ω′) ≤ C0 and ∥g(ℓ)∥

H
1
2 (∂Ω)

≤ L
1
2 . Let

C2 = C2t2, with a probability greater than

1− Ld exp (−C1L)− 2L exp (−C2M) ,

the non-zero condition (4.7) and the upper bound on the boundary values (4.8) hold.

4.1.1 Conditional stability

In this part, we derive a useful conditional stability estimate in Sobolev spaces for the inverse diffusivity

problem. According to the non-zero condition (4.7) and the smoothness of the solutions w(ℓ) ∈

C1,κ
loc (Ω) ∩H

1(Ω), there exist open sets Ωℓ, ℓ = 1, . . . , L, covering Ω′ such that

Ω′ ⊂
L⋃
ℓ=1

Ωℓ where |∇w(ℓ) · ν| > C0/2 for all x ∈ Ωℓ. (4.9)

Theorem 4.2. Suppose the diffusion coefficient q and the boundary terms g(ℓ) (with ℓ = 1, . . . , L)

satisfy Assumption 4.1, and let q̃ ∈ Aq be a perturbation. Let w(ℓ) and w̃(ℓ) be the corresponding

solutions to (4.2) with parameters q and q̃, respectively. Then, with a probability greater than (4.6),

the following stability estimate holds:

∥q − q̃∥L2(Ω) ≤ cC−1
0 L

1
4

( L∑
ℓ=1

∥w(ℓ) − w̃(ℓ)∥H1(Ω′)

) 1
2
. (4.10)

Here c > 0 is a constant depending only on Ω, Ω′, cq and ∥q∥C0,1(Ω), and C0 is the lower bound of the

non-zero condition given in (4.7).

Proof. With an abuse of notation, several positive constants depending only on Ω, Ω′, cq, cq and

∥q∥C0,1(Ω) will be denoted by the same letter c. By Proposition 4.1, with overwhelming probability

(4.6), both the non-zero condition (4.7) and the uniform bound (4.8) are satisfied. Then for a given

ℓ ∈ {1, . . . , L}, for any test function φ(ℓ) ∈ H1
0 (Ω), integration by parts in (4.2) yields(

(q − q̃)∇w(ℓ),∇φ(ℓ)
)
=
(
q̃∇(w̃(ℓ) − w(ℓ)),∇φ(ℓ)

)
. (4.11)

Furthermore, multiplying both sides of (4.2) by q−q̃q φ(ℓ) and applying integration by parts, we obtain

0 =
(
q∇w(ℓ),∇(q − q̃)φ(ℓ)

q

)
=
(
qφ(ℓ)∇w(ℓ),∇(q − q̃)

q

)
+
(
q
(q − q̃)

q
∇w(ℓ),∇φ(ℓ)

)
,

and hence (
(q − q̃)∇w(ℓ),∇φ(ℓ)

)
=

1

2

(
(q − q̃)∇w(ℓ),∇φ(ℓ)

)
− 1

2

(
qφ(ℓ)∇w(ℓ),∇(q − q̃)

q

)
. (4.12)
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Now, we choose the test function φ(ℓ) = (q − q̃)w(ℓ)/q. Since q = q̃ on Ω \ Ω′, φ(ℓ) vanishes on ∂Ω.

Noting that q, q̃ ∈ Aq and w(ℓ) ∈ C1,κ(Ω′), we conclude that φ(ℓ) ∈ H1
0 (Ω), with

∥φ(ℓ)∥L2(Ω) = ∥(q − q̃)w(ℓ)/q∥L2(Ω) ≤ 2c−1
q cq∥w(ℓ)∥L2(Ω) ≤ cL

1
2

and

∥∇φ(ℓ)∥L2(Ω) =

∥∥∥∥∥q∇[(q − q̃)w(ℓ)]− (q − q̃)w(ℓ)∇q
q2

∥∥∥∥∥
L2(Ω′)

≤c−2
q

(
cq∥w(ℓ)∥L∞(Ω′)(∥∇q∥L2(Ω′) + ∥∇q̃∥L2(Ω′)) + 2c2q∥∇w(ℓ)∥L2(Ω′)

)
+ 2c−2

q cq∥w(ℓ)∥L∞(Ω′)∥∇q∥L2(Ω′) ≤ cL
1
2 .

With the test function φ(ℓ), the right hand side of (4.12) equals to 1
2

∫
Ω

(q−q̃)2
q |∇w(ℓ)|2dx. Therefore,

by the relations (4.11), (4.12) and the assumption q = q̃ in Ω \ Ω′, we achieve

1

2

∫
Ω′

(q − q̃)2

q
|∇w(ℓ)|2dx =

∫
Ω′
q̃∇(w̃(ℓ) − w(ℓ)) · ∇φ(ℓ)dx ≤ cL

1
2 ∥w̃(ℓ) − w(ℓ)∥H1(Ω′).

Taking summation with respect to ℓ, we obtain∫
Ω′

(q − q̃)2

q2

L∑
ℓ=1

|∇w(ℓ)|2dx ≤ cL
1
2

L∑
ℓ=1

∥w̃(ℓ) − w(ℓ)∥H1(Ω′).

The non-zero condition (4.7) indicates
∑L

ℓ=1 |∇w(ℓ)(x)|2 ≥ C2
0 , for all x ∈ Ω′. Hence, we conclude

∥q − q̃∥2L2(Ω′) ≤ cC−2
0 L

1
2

L∑
ℓ=1

∥w̃(ℓ) − w(ℓ)∥H1(Ω′).

Since q = q̃ in Ω \ Ω′, the proof is completed.

Remark 4.2. The proof of Theorem 4.2 depends on the non-zero condition (4.7) and the boundedness

of ∥w(ℓ)∥L∞(Ω′) ≤ c∥g(ℓ)∥
H

1
2 (∂Ω)

≤ cL
1
2 , which is satisfied under an overwhelming probability. It is

important to emphasize that the constant c in (4.10) is influenced by the distance between Ω′ and

∂Ω. As the subdomain Ω′ approaches the boundary of Ω, controlling the regularity of solutions and

maintaining the stability of the inverse problem becomes increasingly challenging. In the limiting case,

where Ω′ = Ω and q = q̃ on ∂Ω, the domain Ω and the boundary conditions g(ℓ) must exhibit higher

regularity to ensure that w(ℓ) ∈ C1,κ(Ω).

4.1.2 Error estimate

In this section, we introduce a numerical algorithm for the IDP and derive the reconstruction error

estimation. We employ the FEM discretization specified in Section 2.1.1. In addition, we assume that

∂Ω′ does not cross an element, that is , Ω equals the union of some meshes.
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Now, we present the reconstruction algorithm. Slightly different from the stability analysis, we

aim to reconstruct the diffusion coefficient in the whole domain Ω using the measurement in the entire

domain. Throughout this section, we let z
(ℓ)
δ denote the practical noisy observations corresponding to

w(ℓ)(q†) with noise level δ, i.e.

∥w(ℓ)(q†)− z
(ℓ)
δ ∥L2(Ω) ≤ δ, ∀ℓ = 1, . . . , L. (4.13)

The reconstruction is based on standard regularized least-squares with further discretization using

finite element methods. More precisely, the minimization problem is

min
q∈Aq

Jγ(q) =
1

2

L∑
ℓ=1

∥w(ℓ)(q)− z
(ℓ)
δ ∥2L2(Ω) +

γL

2
∥∇q∥2L2(Ω), (4.14)

where γ > 0 is the regularization parameter, and w(ℓ)(q) ∈ H1(Ω) is the weak solution of
−∇ · (q∇w(ℓ)) = 0, in Ω,

w(ℓ) = g(ℓ), on ∂Ω.
(4.15)

We formulate the finite element approximation of problem (4.14)-(4.15):

min
qh∈Aq,h

Jγ,h(qh) =
1

2

L∑
ℓ=1

∥w(ℓ)
h (qh)− z

(ℓ)
δ ∥2L2(Ω) +

γL

2
∥∇qh∥2L2(Ω), (4.16)

where w
(ℓ)
h (qh) ∈ Vh is the weak solution of

(qh∇w
(ℓ)
h ,∇vh) = 0, ∀vh ∈ V 0

h ,

w
(ℓ)
h = I∂hg(ℓ), on ∂Ω.

(4.17)

Here, the admissible set is defined as

Aq,h = {qh ∈ Vh : 0 < cq ≤ qh ≤ cq a.e. in Ω, qh = Ihq† on ∂Ω}. (4.18)

The discrete problem (4.16)-(4.17) is well-posed: there exists at least one global minimizer q∗h and it

depends continuously on the data perturbation. The main objective in this section is to bound the

approximation error ∥q†− q∗h∥L2(Ω). The strategy is based upon the stability analysis in the preceding

section. Furthermore, we need the following higher regularity assumption on the exact diffusivity

coefficient and boundary data.

Assumption 4.3. Let Ω ⊂ Rd (d = 2, 3) be a bounded domain with C1,1 boundary ∂Ω. Assume that

the exact diffusivity coefficient q† ∈ W 2,p(Ω) ∩ Aq with p > d. Assume the boundary data g(ℓ) (with

ℓ = 1, . . . , L) are taken as independent and identically distributed satisfying the expansion (4.5), where

{ek}∞k=1 are assumed to be in H2(∂Ω) and a
(ℓ)
k ∼ N(0, k−2sθ2k), with s >

3
2(d−1) +

1
2 .
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Remark 4.3. Assumption 4.3 requires higher regularity for the domain Ω as well as the parameter q†

and g(ℓ) to ensure that the finite element approximation achieves an optimal convergence rate. Indeed,

under the regularity assumption, elliptic regularity theory ([57, Theorem 7.2] and [58, Theorem 8.12])

implies that the solution satisfies w(ℓ)(q†) ∈ H2(Ω) ∩W 1,p(Ω) for all p > 2. The non-zero condition

(4.7) still hold with overwhelming probability under Assumption 4.3. Under Assumption 4.3, with a

probability greater than

1− Ld exp (−C1L)− L exp (−C2M) ,

the non-zero condition (4.7) holds and the random boundary data has upper bound

max
ℓ=1,...,L

∥g(ℓ)∥H2(∂Ω) ≤ L
1
2 , (4.19)

where the positive constants C0, C1 and C2 depend only on s, Ω, Ω′, {θk}, {ek}, cq, cq and ∥q∥C0,1(Ω).

The nonzero condition is a direct consequence of Proposition 4.1. It suffices to investigate the upper

bound of ∥g(ℓ)∥H2(∂Ω). Note that the Laplace–Beltrami operator −∆ on ∂Ω admits a positive sequence

{λk}∞k=1 of eigenvalues and the corresponding eigenfunctions {φk}∞k=1 form an orthonormal basis of

L2(∂Ω). Here we use the equivalent norm in space Hs(∂Ω), with s > 0, defined by [111, Remark 7.6]

∥g∥2Hs(∂Ω) = ∥g∥2L2(∂Ω) +

∞∑
k=1

λsk(g, φk)
2
∂Ω.

Therefore, the orthonormal basis of H
1
2 (∂Ω) can be chosen as ek = (1 + λ

1
4
k )

−1φk which satisfies

∥ek∥H2(∂Ω) = (1 + λ2k)
1
2 (1 + λ

1
4
k )

−1.

By Cauchy-Schwarz inequality and the asymptotic behavior of eigenvalues λk ∼ k2/d [119], the moment

generating function of ∥g(ℓ)∥H2(∂Ω) satisfies for all λ ∈ R:

E exp
(
λ2∥g(ℓ)∥2H2(∂Ω)

)
≤ E exp

(
λ2
( M∑
k=1

(a
(ℓ)
k ks)2

)( M∑
k=1

k−2s∥ek∥2H2(∂Ω)

))

≤ cE exp

(
λ2
( M∑
k=1

(a
(ℓ)
k ks)2

)( M∑
k=1

k−2s+3/d
))

≤ cE exp

(
λ2

M∑
k=1

θ2k

)
.

Then, by [142, Proposition 2.5.2], with probability greater than 1− L exp(−C1L), we have

max
ℓ=1,...,L

∥g(ℓ)∥H2(∂Ω) ≤ L
1
2 .

We have the following L2(Ω) error estimate for wh(q
†)− wh(Ihq†).
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Lemma 4.1. Let Assumption 4.3 hold and the boundary data satisfy ∥g∥H2(∂Ω) ≤ L
1
2 . We denote the

solutions of equation (4.17) with coefficients q† and Ihq† by wh(q
†) and wh(Ihq†), respectively. Then

∥wh(q†)− wh(Ihq†)∥L2(Ω) ≤ ch2L
1
2 ,

where c is a positive constant depending only on Ω and q†.

Proof. With an abuse of notation, several positive constants depending only on Ω and q† will be

denoted by the same letter c. We start with the estimate in energy norm. By subtracting the weak

formulations of wh(q
†) and wh(Ihq†), we derive(

Ihq†(∇wh(Ihq†)−∇wh(q†)),∇vh
)
=
(
(q† − Ihq†)∇wh(q†),∇vh

)
, for all vh ∈ V 0

h .

Select the test function vh = wh(Ihq†)−wh(q
†). Note that it belongs to V 0

h since uh(Ihq†) and uh(q†)

share the same boundary value. Using the box constraint on q† and the Cauchy–Schwarz inequality,

we obtain

∥∇wh(Ihq†)−∇wh(q†)∥2L2(Ω)

≤ c∥q† − Ihq†∥L∞(Ω)∥∇wh(q†)∥L2(Ω)∥∇wh(Ihq†)−∇wh(q†)∥L2(Ω).

Then the approximation estimate (2.2) implies

∥∇wh(Ihq†)−∇wh(q†)∥L2(Ω) ≤ ch∥∇wh(q†)∥L2(Ω) ≤ chL
1
2 . (4.20)

Next, we apply the duality argument to get the estimate in L2(Ω) norm. Let ψ satisfy
−∇ · (q†∇ψ) = wh(Ihq†)− wh(q

†), in Ω,

ψ = 0, on ∂Ω.

Then we have

∥wh(Ihq†)− wh(q
†)∥2L2(Ω) =

(
−∇ · (q†∇ψ), wh(Ihq†)− wh(q

†)
)

=
(
q†∇ψ,∇(wh(Ihq†)− wh(q

†))
)

=
(
(q† − Ihq†)∇ψ,∇(wh(Ihq†)− wh(q

†))
)

+
(
Ihq†∇(ψ − Phψ),∇(wh(Ihq†)− wh(q

†))
)

+
(
(q† − Ihq†)∇Phψ,∇wh(q†)

)
,

where we used the weak formulation of wh(q
†) and wh(Ihq†) in the last equality. Therefore, by Hölder

inequality, error estimate (2.2), (2.3) and (4.20) yield that

∥uh(Ihq†)− uh(q
†)∥2L2(Ω) ≤ch

2∥q†∥W 1,∞(Ω)∥∇ψ∥L2(Ω)∥∇wh(q†)∥L2(Ω)

+ ch2∥Ihq†∥L∞(Ω)∥ψ∥H2(Ω)∥∇wh(q†)∥L2(Ω)

+ ch2∥q†∥W 2,p(Ω)∥∇Phψ∥Lq(Ω)∥∇wh(q†)∥L2(Ω).
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Here 1
p + 1

q +
1
2 = 1 and, by Assumption 4.3, q = 2p

p−2 <
2d
d−2 . Thus the stability of the L2(Ω) pro-

jection (see [43, Theorem 4] and [13, Lemma 2.1]) and the Sobolev embedding imply ∥∇Phψ∥Lq(Ω) ≤

c∥∇ψ∥Lq(Ω) ≤ c∥ψ∥H2(Ω). By using standard elliptic regularity estimates, according to which ∥ψ∥H2(Ω) ≤

c∥uh(Ihq†)− uh(q
†)∥L2(Ω), we obtain

∥wh(Ihq†)− wh(q
†)∥L2(Ω) ≤ ch2∥∇wh(q†)∥L2(Ω) ≤ ch2L

1
2 .

This completes the proof of the lemma.

Corollary 4.1. Let Assumption 4.3 hold and the boundary data satisfy ∥g∥H2(∂Ω) ≤ L
1
2 . Let w(q†)

be the solution of equation (4.15) and wh(Ihq†) be the solution of equation (4.17). Then

∥wh(Ihq†)− w(q†)∥L2(Ω) ≤ ch2L
1
2 ,

where c is a positive constant depending only on Ω and q†.

Proof. We use the following splitting

∥wh(Ihq†)− w(q†)∥L2(Ω) ≤∥wh(Ihq†)− wh(q
†)∥L2(Ω) + ∥wh(q†)− w(q†)∥L2(Ω).

For the first term, we apply Lemma 4.1 and obtain

∥wh(Ihq†)− wh(q
†)∥L2(Ω) ≤ ch2L

1
2 .

The second term can be estimated by utilizing the standard duality argument with the interpolation

estimate ∥g − I∂hg∥L2(∂Ω) ≤ ch2L
1
2 .

The next lemma gives an a priori estimate.

Lemma 4.2. Let Assumption 4.3 hold and boundary data satisfy ∥g(ℓ)∥H2(∂Ω) ≤ L
1
2 , ℓ = 1, . . . , L.

Let q∗h ∈ Aq,h be a minimizer of problem (4.16)-(4.17). Then we have

L∑
ℓ=1

∥w(ℓ)
h (q∗h)− w(ℓ)(q†)∥L2(Ω) + Lγ

1
2 ∥∇q∗h∥L2(Ω) ≤ cL(h2L

1
2 + δ + γ

1
2 ),

where c is a positive constant depending only on Ω and q†.

Proof. With an abuse of notation, several positive constants depending only on Ω and q† will be

denoted by the same letter c. Since q∗h is a minimizer of Jγ,h, we have Jγ,h(q
∗
h) ≤ Jγ,h(Ihq†). As a

result,

1

2

L∑
ℓ=1

∥w(ℓ)
h (q∗h)− z

(ℓ)
δ ∥2L2(Ω) +

γL

2
∥∇q∗h∥2L2(Ω)

≤ 1

2

L∑
ℓ=1

∥w(ℓ)
h (Ihq†)− z

(ℓ)
δ ∥2L2(Ω) +

γL

2
∥∇Ihq†∥2L2(Ω)

≤
L∑
ℓ=1

(
∥w(ℓ)

h (Ihq†)− w(ℓ)(q†)∥2L2(Ω) + ∥u(ℓ)(q†)− z
(ℓ)
δ ∥2L2(Ω)

)
+
γL

2
∥∇Ihq†∥2L2(Ω).
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By the interpolation property (2.2) and regularity of q†, the term ∥∇Ihq†∥L2(Ω) can be bounded by

∥∇Ihq†∥L2(Ω) ≤∥∇Ihq† −∇q†∥L2(Ω) + ∥∇q†∥L2(Ω)

≤ch∥q†∥H2(Ω) + ∥q†∥H1(Ω) ≤ c.

This, together with Corollary 4.1 and the bound for the noise level in (4.13), implies that

1

2

L∑
ℓ=1

∥w(ℓ)
h (q∗h)− z

(ℓ)
δ ∥2L2(Ω) +

γL

2
∥∇q∗h∥2L2(Ω) ≤ cL(h4L+ δ2 + γ).

Hence, we derive γ
1
2 ∥∇q∗h∥L2(Ω) ≤ c(h2L

1
2 + δ + γ

1
2 ). Then the triangle inequality and the Cauchy-

Schwarz inequality lead to

L∑
ℓ=1

∥w(ℓ)
h (q∗h)− w(ℓ)(q†)∥L2(Ω) ≤

L∑
ℓ=1

∥w(ℓ)
h (q∗h)− z

(ℓ)
δ ∥L2(Ω) +

L∑
ℓ=1

∥z(ℓ)δ − w(ℓ)(q†)∥L2(Ω)

≤ L
1
2

( L∑
ℓ=1

∥w(ℓ)
h (q∗h)− z

(ℓ)
δ ∥2L2(Ω)

) 1
2
+ Lδ

≤ cL(h2L
1
2 + δ + γ

1
2 ).

Next, we state our main theorem, estimating the error between the exact diffusivity coefficient q†

and the numerical reconstruction q∗h.

Theorem 4.4. Suppose the exact diffusivity coefficient q† and the random boundary illuminations g(ℓ)

(with ℓ = 1, . . . , L) satisfy Assumption 4.3. Let q∗h ∈ Aq,h be a minimizer of problem (4.16)-(4.17).

Set η = h2L
1
2 + δ + γ

1
2 . Then, with probability greater than (4.6), we have

∥q† − q∗h∥2L2(Ω′) ≤ cC−2
0 L2(1 + γ−

1
2 η)
(
h+ h1−ϵ(1 + γ−

1
2 η) + min

(
1, h+ h−1L− 1

2 η
))

,

where ϵ > 0 is arbitrary small, c is a positive constant depending only on Ω and q†, and C0 is given

in (4.7).

Proof. With an abuse of notation, several positive constants depending only on Ω and q† will be

denoted by the same letter c. Let u(ℓ) = u(ℓ)(q†) be the solution to (4.15) with boundary value g(ℓ).

For a test function φ(ℓ) ∈ H1
0 (Ω), we multiply both sides of (4.15) by (Ihq† − q∗h)φ

(ℓ)/q†, and apply

integration by parts:

0 =
(
q†∇w(ℓ),∇

(Ihq† − q∗h)φ
(ℓ)

q†
)
=
(
q†φ(ℓ)∇w(ℓ),∇

(Ihq† − q∗h)

q†
)
+
(
(Ihq† − q∗h)∇w(ℓ),∇φ(ℓ)

)
.

Thus, we obtain

(
(Ihq† − q∗h)∇w(ℓ),∇φ(ℓ)

)
=

1

2

(
(Ihq† − q∗h)∇w(ℓ),∇φ(ℓ)

)
− 1

2

(
q†φ(ℓ)∇w(ℓ),∇

(Ihq† − q∗h)

q†
)
. (4.21)
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Set the test function φ(ℓ) = (Ihq† − q∗h)u
(ℓ)/q†. We first verify φ(ℓ) ∈ H1

0 (Ω). Since q∗h ∈ Aq,h, φ
(ℓ)

vanishes on ∂Ω. Recall that, under the current assumptions, we have ∥g(ℓ)∥H2(∂Ω) ≤ L
1
2 for every

ℓ = 1, . . . , L, cf. Remark 4.3. By the regularity of q† and u(ℓ), and in view of Lemma 4.2, we conclude

that φ(ℓ) ∈ H1
0 (Ω), with

∥φ(ℓ)∥L2(Ω) = ∥(Ihq† − q∗h)w
(ℓ)/q†∥L2(Ω) ≤ 2c−1

q cq∥w(ℓ)∥L2(Ω) ≤ cL
1
2

and

∥∇φ(ℓ)∥L2(Ω) =

∥∥∥∥∥q†∇[(Ihq† − q∗h)w
(ℓ)]− (Ihq† − q∗h)w

(ℓ)∇q†

(q†)2

∥∥∥∥∥
L2(Ω)

≤ c−2
q cq∥w(ℓ)∥L∞(Ω)(∥∇Ihq†∥L2(Ω) + ∥∇q∗h∥L2(Ω))

+ c−2
q

(
2c2q∥∇w(ℓ)∥L2(Ω) + 2cq∥w(ℓ)∥L∞(Ω)∥∇q†∥L2(Ω)

)
≤ cL

1
2 (1 + ∥∇q∗h∥L2(Ω)) ≤ cL

1
2 (1 + γ−

1
2 η).

(4.22)

With this test function φ(ℓ), by direct computation, we can further write the left hand side of (4.21)

as (
(Ihq† − q∗h)∇w(ℓ),∇φ(ℓ)

)
=

1

2

∫
Ω

(Ihq† − q∗h)
2

q†
|∇w(ℓ)|2dx. (4.23)

On the other hand, by the weak formulation of (4.15) and (4.17), we have

(
(Ihq† − q∗h)∇w(ℓ),∇φ(ℓ)

)
=
(
(Ihq† − q†)∇w(ℓ),∇φ(ℓ)

)
+
(
(q† − q∗h)∇w(ℓ),∇φ(ℓ)

)
=
(
(Ihq† − q†)∇w(ℓ),∇φ(ℓ)

)
+
(
(q† − q∗h)∇w(ℓ),∇(φ(ℓ) − Phφ

(ℓ))
)

+
(
q∗h∇(w

(ℓ)
h (q∗h)− w(ℓ)),∇Phφ(ℓ)

)
= I

(ℓ)
1 + I

(ℓ)
2 + I

(ℓ)
3 .

For I
(ℓ)
1 , the interpolation error (2.2) and the estimate (4.22) yield that

|I(ℓ)1 | ≤ c∥Ihq† − q†∥L∞(Ω)∥∇w(ℓ)∥L2(Ω)∥∇φ(ℓ)∥L2(Ω) ≤ chL(1 + γ−
1
2 η).

Now, we consider I
(ℓ)
2 . Applying integration by parts, the regularity of q† and w(ℓ), the inverse

inequality (2.1), the projection error (2.3) and estimate (4.22) imply that

|I(ℓ)2 | = |
(
∇ · ((q† − q∗h)∇w(ℓ)), φ(ℓ) − Phφ

(ℓ)
)
|

≤
(
∥∇(q† − q∗h)∥Lq(Ω)∥∇u(ℓ)∥Lp(Ω) + ∥q† − q∗h∥L∞(Ω)∥∆w(ℓ)∥L2(Ω)

)
∥φ(ℓ) − Phφ

(ℓ)∥L2(Ω)

≤ ch
(
L

1
2 + L

1
2hd/q−d/2∥∇q∗h∥L2(Ω))

)
∥φ(ℓ)∥H1(Ω)

≤ ch1+d/q−d/2L(1 + γ−
1
2 η)2 = ch1−ϵL(1 + γ−

1
2 η)2.

Here 1
p +

1
q +

1
2 = 1 with q = 2d

d−2ϵ . To estimate I
(ℓ)
3 , by the inverse inequality (2.1) and the projection

59



error (2.3), we first derive that

∥∇w(ℓ) −∇w(ℓ)
h (q∗h)∥L2(Ω) ≤∥∇w(ℓ) −∇Phw(ℓ)∥L2(Ω) + ∥∇Phw(ℓ) −∇w(ℓ)

h (q∗h)∥L2(Ω)

≤c
(
h∥w(ℓ)∥H2(Ω) + h−1∥Phw(ℓ) − w

(ℓ)
h (q∗h)∥L2(Ω)

)
≤c
(
hL

1
2 + h−1∥u(ℓ) − w

(ℓ)
h (q∗h)∥L2(Ω)

)
.

There obviously holds that ∥∇w(ℓ)−∇w(ℓ)
h (q∗h)∥L2(Ω) ≤ cL

1
2 . Therefore, by using these two inequalities,

(4.22) and Lemma 4.2, we obtain

L∑
ℓ=1

|I(ℓ)3 | ≤
L∑
ℓ=1

∥q∗h∥L∞(Ω)∥∇w
(ℓ)
h (q∗h)−∇w(ℓ)∥L2(Ω)∥∇Phφ(ℓ)∥L2(Ω)

≤ cL
1
2 (1 + γ−

1
2 η)

L∑
ℓ=1

∥∇w(ℓ)
h (q∗h)−∇u(ℓ)∥L2(Ω)

≤ cL
1
2 (1 + γ−

1
2 η)min

(
L

3
2 , L

3
2h+ h−1

L∑
ℓ=1

∥w(ℓ)
h (q∗h)− w(ℓ)∥L2(Ω)

)
≤ cL2(1 + γ−

1
2 η)min

(
1, h+ h−1L− 1

2 η
)
.

Taking summation with respect to ℓ = 1, . . . , L in (4.23), the estimates of I
(ℓ)
1 , I

(ℓ)
2 , I

(ℓ)
3 yield that

1

2

∫
Ω

(Ihq† − q∗h)
2

q†

L∑
ℓ=1

|∇w(ℓ)|2dx

≤ cL2(1 + γ−
1
2 η)
(
h+ h1−ϵ(1 + γ−

1
2 η) + min

(
1, h+ h−1L− 1

2 η
))

.

Applying the interpolation error bound ∥q† − Ihq†∥L2(Ω) ≤ Ch2∥q†∥H2(Ω) (see (2.2)), we arrive at the

weighted estimate

1

2

∫
Ω

(q† − q∗h)
2

q†

L∑
ℓ=1

|∇w(ℓ)|2dx

≤ cL2h4 + cL2(1 + γ−
1
2 η)
(
h+ h1−ϵ(1 + γ−

1
2 η) + min

(
1, h+ h−1L− 1

2 η
))

.

By Proposition 4.1, we have the non-zero condition (4.7):

L∑
ℓ=1

|∇w(ℓ)(x)|2 ≥ C2
0 , for all x ∈ Ω′.

Hence, we conclude

∥q† − q∗h∥2L2(Ω′) ≤ cC−2
0 L2h4 + cC−2

0 L2(1 + γ−
1
2 η)
(
h+ h1−ϵ(1 + γ−

1
2 η) + min

(
1, h+ h−1L− 1

2 η
))

.

Remark 4.4. Theorem 4.4 provides a guideline for the a priori choice of the algorithmic parameters

h and γ, in relation to δ. The choice h2L
1
2 ∼ δ and γ ∼ δ2 yields a convergence rate

∥q† − q∗h∥L2(Ω) ≤ cL
7
8 δ

1
4
−ϵ,
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with ϵ > 0 arbitrary small. This rate is consistent with the stability in Theorem 4.2, that shows

∥q† − q∥L2(Ω) ≤ cL
1
4

( L∑
ℓ=1

∥w(ℓ)(q†)− w(ℓ)(q)∥H1(Ω)

) 1
2
.

Thus, the Gagliardo-Nirenberg interpolation inequality [25]

∥w(ℓ)∥H1(Ω) ≤ ∥w(ℓ)∥
1
2

L2(Ω)
∥w(ℓ)∥

1
2

H2(Ω)
,

and the regularity ∥w(ℓ)(q†)∥H2(Ω) + ∥w(ℓ)(q)∥H2(Ω) ≤ c∥g(ℓ)∥H2(∂Ω) ≤ cL
1
2 directly yields

∥q† − q∥L2(Ω) ≤ cL
1
4

( L∑
ℓ=1

(∥w(ℓ)(q†)∥H2(Ω) + ∥w(ℓ)(q†)∥H2(Ω))
1
2 ∥w(ℓ)(q†)− w(ℓ)(q)∥

1
2

L2(Ω)

) 1
2

≤ cL
7
8 δ

1
4 .

Remark 4.5. In two dimensions, the above analysis can be extended to the case where Ω is a con-

vex polygon. We parameterize ∂Ω by arc length and generate H
1
2 (∂Ω) orthonormal basis using the

eigenvalues and eigenfunctions of Laplace–Beltrami operator on ∂Ω. Indeed, the eigenfunctions are

trigonometric functions on each edge which are continuous at each vertex. Therefore, with appropriate

normalization, we obtain the H
1
2 (∂Ω) orthonormal basis. With the same argument as in Remark 4.3,

the following upper bound holds with high probability

N∑
i=1

∥g(ℓ)∥H2(Γi) ≤ CL
1
2 , ℓ = 1, . . . , L,

where Γi, i = 1, . . . , N are the edges of the polygon Ω. As a consequence, the forward problem (4.15)

admits H2(Ω) solutions [60, Theorem 5.1.2.4] and the L2(Ω) error estimate ∥w(ℓ)(q†)−w(ℓ)
h (q†)∥L2(Ω) ≤

ch2L
1
2 holds as a consequence of [52, Corollary 3.29].

4.2 Quantitative Photoacoustic Tomography

In this section, we study the numerical inversion scheme for quantitative photoacoustic tomography.

We consider the case where radiation propagation is approximated by a second-order elliptic equation

(4.1). Our objective is to numerically reconstruct the true diffusion coefficient D† and absorption

coefficient σ† from multiple internal observations

H(ℓ)(x) = σ†u(ℓ)(x;D†, σ†) for all x ∈ Ω,

where u(ℓ) := u(ℓ)(D†, σ†) denotes the solution to the elliptic equation (4.1) with parameters D† and

σ†, and associated with the Dirichlet boundary illuminations g(ℓ), ℓ = 1, 2, . . . , L+ 1:


−∇ · (D†∇u(ℓ)) + σ†u(ℓ) = 0 in Ω,

u(ℓ) = g(ℓ) on ∂Ω.
(4.24)

61



We need the following assumptions on the parameters and boundary data. In particular, as in the

previous section, we assume the parameters to be known in Ω \ Ω′.

Assumption 4.5. We assume that the parameters and boundary data satisfy the following assump-

tions.

(i) Let Ω ⊂ Rd (d = 2, 3) be a bounded domain with C1,1 boundary ∂Ω. The exact diffusion

coefficient D† ∈W 2,p(Ω) ∩ AD with p > d and the exact absorption coefficient σ† ∈ Aσ, where

AD = {D ∈W 1,∞(Ω) : 0 < cD ≤ D ≤ cD a.e. in Ω, D = D† a.e. in Ω \ Ω′} and

Aσ = {σ ∈ L∞(Ω) : 0 < cσ ≤ σ ≤ cσ a.e. in Ω, σ = σ† a.e. in Ω \ Ω′},

with some a priori known positive constants cD and cσ.

(ii) Let g(1) ≡ 1, and g(ℓ) (with ℓ = 2, . . . , L+ 1) be independent and identically distributed random

boundary data given by the expansion (4.5) satisfying Assumption 4.3.

We assume that the empirical observational data, denoted by Z
(ℓ)
δ is noisy in the sense that

∥Z(ℓ)
δ −H(ℓ)∥L2(Ω) ≤ δ, for all ℓ = 1, 2, . . . , L+ 1. (4.25)

Assumption 4.5 together with the elliptic maximum principle implies that 0 < c0 ≤ H(1) ≤ 1 for

some positive constant c0. Without loss of generality, we assume that the empirical observation Z
(1)
δ

satisfies the same bound 0 < c0 ≤ Z
(1)
δ ≤ 1. Indeed, otherwise, it is enough to project Z

(1)
δ pointwise

onto [c0, 1], which preserves (4.25).

For ℓ = 1, 2, . . . , L, we define

q† = D†|u(1)|2, w
(ℓ)
δ =

Z
(ℓ+1)
δ

Z
(1)
δ

, w(ℓ) =
H(ℓ+1)

H(1)
=
u(ℓ+1)

u(1)
in Ω,

and

f (ℓ) =
g(ℓ+1)

g(1)
= g(ℓ+1) on ∂Ω.

It is straightforward to observe that

∥w(ℓ)
δ − w(ℓ)∥L2(Ω) ≤

∥∥∥Z(ℓ+1)
δ H(1) −H(1)H(ℓ+1)

H(1)Z
(1)
δ

∥∥∥
L2(Ω)

+
∥∥∥H(1)H(ℓ+1) − Z

(1)
δ H(ℓ+1)

H(1)Z
(1)
δ

∥∥∥
L2(Ω)

≤ 1

c20

(
∥H(1)(Z

(ℓ+1)
δ −H(ℓ+1))∥L2(Ω) + ∥H(ℓ+1)(H(1) − Z

(1)
δ )∥L2(Ω)

)
≤ cδ.

A direct calculation ([16, 15]) shows that w(ℓ) is the solution of the following elliptic equation
−∇ · (q†∇w(ℓ)) = 0, in Ω,

w(ℓ) = f (ℓ), on ∂Ω.
(4.26)
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Thus, the first step of the reconstruction algorithm consists of the recovery of q† from the practical

observation w
(ℓ)
δ . This is the inverse diffusivity problem discussed in Section 4.1. Indeed, Assumption

4.5 and elliptic regularity [58, Theorem 9.15] imply u(1) ∈ W 2,p(Ω) and hence q† ∈ W 2,p(Ω). By the

bounds of D† and maximum principle, we may assume that the diffusivity coefficient q† has positive

lower and upper bound 0 < cq ≤ q ≤ cq. Moreover, since g(1) ≡ 1, the boundary data f (ℓ) = g(ℓ+1)

still satisfy Assumption 4.3 and the non-zero condition given in Proposition 4.1 holds for equation

(4.26). Therefore, as in Section 4.1.2 we propose to consider the following least-squares formula with

H1(Ω)-seminorm penalty:

min
qh∈Aq,h

Jγ,h(qh) =
1

2

L∑
ℓ=1

∥w(ℓ)
h (qh)− w

(ℓ)
δ ∥2L2(Ω) +

γL

2
∥∇qh∥2L2(Ω), (4.27)

where the admissible set Aq,h is defined in (4.18) and w
(ℓ)
h (qh) ∈ Vh is the weak solution of

(qh∇w
(ℓ)
h ,∇vh) = 0, ∀vh ∈ V 0

h ,

w
(ℓ)
h = I∂hf (ℓ), on ∂Ω.

(4.28)

The following error analysis is a direct consequence of Theorem 4.4.

Proposition 4.2. Suppose Assumption 4.5 holds valid and set q† = D†|u(1)|2. Let q∗h ∈ Aq,h be a

minimizer of problem (4.27)-(4.28). Set η = h2L
1
2 + δ+ γ

1
2 . Then, with probability greater than (4.6),

we have

∥q† − q∗h∥2L2(Ω′) ≤ CL2(1 + γ−
1
2 η)
(
h+ h1−ϵ(1 + γ−

1
2 η) + min

(
1, h+ h−1L− 1

2 η
))

,

where c is a constant independent of h, δ, γ and L.

The second step of the inverse algorithm is to recover u(1). The reconstruction of D† and σ† will

follow immediately by using the relations D† = q†/|u(1)|2 and σ† = H(1)/u(1). Since u(1)|∂Ω = g(1) ≡ 1,

by (4.24) we have that v = 1/u(1) − 1 satisfies the following boundary value problem
−∇ · (q†∇v) = H(1), in Ω,

v = 0, on ∂Ω.
(4.29)

We are now ready to show the error bound of the numerically recovered parameters.

Theorem 4.6. Suppose that Assumption 4.5 holds valid and set q† = D†|u(1)|2. Let q∗h ∈ Aq,h be such

that ∥q† − q∗h∥L2(Ω′) ≤ ξ for some ξ ≥ 0 and set the reconstructed coefficient q∗ as

q∗ =


q∗h in Ω′,

D†(Z
(1)
δ /σ†)2 in Ω \ Ω′.
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Let vh ∈ V 0
h solve

(q∗∇vh,∇φh) = (Z
(1)
δ , φh), ∀φh ∈ V 0

h . (4.30)

Then there holds

∥v − vh∥L2(Ω) ≤ C(h+ ξ + δ).

Moreover, set D∗ = q∗|vh + 1|2 and σ∗ = Z
(1)
δ (vh + 1), we have

∥D† −D∗∥L2(Ω) ≤ C(h+ ξ + δ) and ∥σ† − σ∗∥L2(Ω) ≤ C(h+ ξ + δ),

where c is a constant independent of h, δ and ξ.

Proof. We observe that

∥q† − q∗∥L2(Ω\Ω′) =
∥∥∥D† (H

(1))2

(σ†)2
−D† (Z

(1)
δ )2

(σ†)2

∥∥∥
L2(Ω\Ω′)

≤ c−2
σ cD∥H(1) + Z

(1)
δ ∥L∞(Ω\Ω′)∥H(1) − Z

(1)
δ ∥L2(Ω\Ω′)

≤ cδ.

By equation (4.29) and (4.30), we have

(q∗(∇Phv −∇vh),∇φh) = (q∗(∇Phv −∇v),∇φh) + (q∗(∇v −∇vh),∇φh)

= (q∗(∇Phv −∇v),∇φh) + ((q∗ − q†)∇v,∇φh) + (H(1) − Z
(1)
δ , φh).

Taking φh = Phv − vh, Cauchy-Schwarz inequality and Poincáre’s inequality yield

∥∇φh∥2L2(Ω) ≤c∥∇(Phv − v)∥L2(Ω)∥∇φh∥L2(Ω) + c∥∇v∥L∞(Ω)∥q∗ − q†∥L2(Ω)∥∇φh∥L2(Ω)

+ c∥H(1) − Z
(1)
δ ∥L2(Ω)∥∇φh∥L2(Ω).

By elliptic regularity theory, we have v ∈ H2(Ω) ∩W 1,∞(Ω). Hence, by the projection error (2.3),

estimate of q∗ and the noise level (4.25), we derive that

∥∇Phv −∇vh∥L2(Ω) = ∥∇φh∥L2(Ω) ≤ c(h+ ξ + δ).

Thus, by Poincáre’s inequality and the error bound (2.3), we conclude

∥v − vh∥L2(Ω) ≤ ∥Phv − vh∥L2(Ω) + ∥Phv − v∥L2(Ω) ≤ c(h+ ξ + δ).

Moreover, direct computation yields

∥D† −D∗∥L2(Ω) =

∥∥∥∥ q†

|u(1)|2
− q∗|vh + 1|2

∥∥∥∥
L2(Ω)

=
∥∥∥q†|v + 1|2 − q∗|vh + 1|2

∥∥∥
L2(Ω)

≤
∥∥∥(q† − q∗)|v + 1|2

∥∥∥
L2(Ω)

+
∥∥q∗(|v + 1|2 − |vh + 1|2)

∥∥
L2(Ω)

≤ c(ξ + δ) + c(h+ ξ + δ) ≤ c(h+ ξ + δ),
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and

∥σ† − σ∗∥L2(Ω) =

∥∥∥∥∥H(1)

u(1)
− Z

(1)
δ (vh + 1)

∥∥∥∥∥
L2(Ω)

=
∥∥∥H(1)(v + 1)− Z

(1)
δ (vh + 1)

∥∥∥
L2(Ω)

≤ ∥(H(1) − Z
(1)
δ )(v + 1)∥L2(Ω) + ∥Z(1)

δ (v − vh)∥L2(Ω)

≤ cδ + c(h+ ξ + δ) ≤ c(h+ ξ + δ).

Remark 4.6. The error analysis in Proposition 4.2 and Theorem 4.6 provide a guideline for choosing

the mesh size h and regularization parameter γ, see also Remark 4.4. Indeed, by choosing h2L
1
2 ∼ δ

and γ ∼ δ2, with probability greater than (4.6), there holds

∥D† −D∗
h∥L2(Ω) + ∥σ† − σ∗h∥L2(Ω) ≤ cL

7
8 δ

1
4
−ϵ.

4.3 Numerical results

In this section, we provide numerical reconstructions of the diffusion coefficient D† and the absorption

coefficient σ† based on the two stage algorithm discussed in Section 4.2. We first solve the optimization

problem (4.27)-(4.28) and then solve the direct problem (4.30). We consider the two-dimensional

setting (d = 2).

4.3.1 Numerical implementation

In this part, we introduce the numerical implementation for the reconstruction algorithm. We first de-

scribe the generation of the boundary illuminations g(ℓ), ℓ = 1, . . . , L+1. Recall in Assumption 4.5(iii),

g(1) ≡ 1 is fixed and g(ℓ) (with ℓ = 2, . . . , L+ 1) are taken as

g(ℓ) =
M∑
k=1

a
(ℓ)
k ek,

where {ek}∞k=1 is a fixed orthonormal basis of H
1
2 (∂Ω) generated by the eigenfunctions of Laplace–

Beltrami operator. The coefficients a
(ℓ)
k ∼ N(0, θ2k) are independent and identically distributed random

variables satisfying Assumption 4.3 with θk = k−2 and s = 5
2 .

In all the examples, we take the first five terms in the series, i.e. M = 5. With the truncated

boundary illuminations, we generate noisy measurements as follows:

Z
(ℓ)
δ (x) = H(ℓ)(x) + δ sup

z∈Ω
|H(ℓ)(z)|ξ(x), ℓ = 1, . . . , L+ 1,

where ξ follows standard Gaussian distribution, while δ denotes the level of noise. The exact data

H(ℓ) = σ†u(ℓ)(D†, σ†) correspond to the precise values of D† and σ†, calculated using a highly refined

mesh with h = 1
500 .
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4.3.2 Numerical experiments

In this part, we provide numerical verification of the non-zero condition in Proposition 4.1 and the

numerical reconstructions of the diffusion coefficient D† and the absorption coefficient σ†. To verify

the non-zero condition, we plot the region in which

max
ℓ=1,...,L

|∇w(ℓ)(x) · ν| ≥ C0, x ∈ Ω,

where w(ℓ)(x) = H(ℓ+1)/H(1). In the following numerical experiments, we fix the direction ν = (1, 0)

and the threshold C0 = 0.1. To quantify the performance of the numerical reconstruction, we introduce

the following relative L2(Ω) error:

eD = ∥D∗
h −D†∥L2(Ω)/∥D†∥L2(Ω) and eσ = ∥σ∗h − σ†∥L2(Ω)/∥σ†∥L2(Ω).

We start with the following examples with smooth coefficients.

Example 4.1. Ω = (0, 1)2, D†(x, y) = 2 + sin(2πx) sin(2πy) and σ† = 6 + 4σ1 + 4σ2 with σ1(x, y) =

e−20(x−0.3)2−20(y−0.7)2 and σ2(x, y) = e−20(x−0.7)2−20(y−0.3)2.

Table 4.1: The convergence rates for Example 4.1 with respect to δ.

δ 1e-2 5e-3 2e-3 1e-3 5e-4 2e-4 1e-4 rate

eD 6.53e-2 4.17e-2 2.98e-2 2.61e-2 2.33e-2 2.30e-2 2.12e-2 O(δ0.22)

eσ 1.45e-2 7.90e-3 5.23e-3 4.77e-3 4.13e-3 4.06e-3 3.76e-3 O(δ0.26)

In Figure 4.1(a), we plot the random boundary data f (ℓ) = g(ℓ+1)/g(1) = g(ℓ+1). We show the

region in which the non-zero condition is satisfied with different L in Figures 4.1(b)-(f). We observe

that the region where the non-zero condition is satisfied expands as the number of random boundary

data increases. For L = 1, the non-zero condition is satisfied only in a small region, while for L = 3,

the non-zero condition is satisfied in most parts of the domain Ω. We also notice that as L increases,

the lower bound C0 increases, indicating better stability of the inverse problem.

Table 4.1 displays the convergence rate of the reconstruction errors. The mesh size and the

regularization parameter are chosen by following the guidelines in Remark 4.6 with fixed number of

illuminations L = 5: h ∼ δ
1
2 and γ ∼ δ2. We initialize the mesh size h = 1/12 and the regularization

parameter γ = 3e-7. The numerical results indicate that the error eD and eσ decay to zero as the

noise level tends to zero, with rate O(δ0.22) and O(δ0.26), respectively. These convergence rates are

consistent with the rate predicted in Remark 4.6, which is O(δ0.25). Figure 4.2 shows the recovered

diffusion coefficient and absorption coefficient in 5% and 1% noise. Here we take h = 1/20, γ = 1e-6

for noise level δ = 5e-2 and h = 1/45, γ = 4e-8 for δ = 1e-2.
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(a) Boundary f (ℓ) (b) L = 1 (c) L = 2

(d) L = 3 (e) L = 4 (f) L = 5

Figure 4.1: Boundary illuminations and the non-zero region of Example 4.1. Top left: plot of boundary

data f (ℓ) = g(ℓ+1). Top middle to bottom right: region where the non-zero condition is satisfied as

the number of boundary inputs increases.

(a) D† (b) δ = 5e-2 (c) δ = 1e-2

(d) σ† (e) δ = 5e-2 (f) δ = 1e-2

Figure 4.2: Example 4.1. First row: reconstructions of D†. Second row: reconstructions of σ†.
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Example 4.2. Ω = (0, 1)2, D† = 1 + D1 − 1
2D2 − 1

2D3 with D1(x, y) = e−40(x−0.5)2−40(y−0.7)2,

D2(x, y) = e−15(x−0.3)2−15(y−0.3)2, D3(x, y) = e−15(x−0.7)2−15(y−0.3)2 and the absorption coefficient

σ†(x, y) = 1 + 0.5 sin(πx) sin(πy)e−4(1−x)y.

Table 4.2: The convergence rates for Example 4.2 with respect to δ.

δ 1e-2 5e-3 2e-3 1e-3 5e-4 2e-4 1e-4 rate

eD 6.34e-2 5.72e-2 3.47e-2 2.65e-2 2.40e-2 1.85e-2 1.24e-2 O(δ0.35)

eσ 1.04e-2 5.67e-3 4.08e-3 2.95e-3 2.70e-3 1.84e-3 1.24e-3 O(δ0.42)

(a) Boundary f (ℓ) (b) L = 1 (c) L = 2

(d) L = 3 (e) L = 4 (f) L = 5

Figure 4.3: Boundary illuminations and the non-zero region of Example 4.2. Top left: plot of boundary

data f (ℓ) = g(ℓ+1). Top middle to bottom right: region which satisfying the non-zero condition as

number of boundary input increasing.

The region representing the non-zero condition and the numerical reconstructions of Example 4.2

are shown in Figures 4.3-4.4 and Table 4.2. For the non-zero condition region, we observe a similar

behavior as in Example 4.1, the region enlarges with the addition of boundary illuminations. For

testing the convergence rates of reconstruction errors, we initially choose the mesh size h = 1/12 and

the regularization parameter γ = 5e-7. We observe the convergence rate O(δ0.35) for eD and O(δ0.42)

for eσ. The experimental convergence rates are slightly higher than the theoretical rate O(δ0.25). Since

in the first step of the reconstruction algorithm we need to solve an optimization problem to get q∗h,
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(a) D† (b) δ = 5e-2 (c) δ = 1e-2

(d) σ† (e) δ = 5e-2 (f) δ = 1e-2

Figure 4.4: Example 4.2. First row: reconstructions of D†. Second row: reconstructions of σ†.

the non-convexity of the loss function may lead to local minima, making it challenging to verify the

theoretical convergence rates. Figure 4.4 shows the reconstructions in 5% and 1% noise level, with

h = 1/20, γ = 5e-7 and h = 1/45, γ = 2e-8, respectively.

Example 4.3. Ω = (0, 1)2, D†(x, y) = 1+ 1
2 sin(2πx) sin(2πy)e

xy and σ†(x, y) = 3+sin(3πx) sin(3πy).

Table 4.3: The convergence rates for Example 4.3 with respect to δ.

δ 1e-2 5e-3 2e-3 1e-3 5e-4 2e-4 1e-4 rate

eD 7.80e-2 5.78e-2 3.53e-2 3.13e-2 2.82e-2 2.78e-2 2.15e-2 O(δ0.26)

eσ 1.36e-2 7.73e-3 3.24e-3 3.06e-3 2.54e-3 2.42e-3 1.89e-3 O(δ0.39)

In this example, we consider a more challenging setting. The absorption coefficient σ† has high

oscillations. Figure 4.5 shows the behavior of the non-zero condition. The non-zero condition is satis-

fied in the whole domain when sufficiently many random boundary illuminations are used. Table 4.3

present the convergence rates. Here, we choose the initial mesh size h = 1/16 and the regularization

parameter γ = 2e-6. The convergence rate for eD is O(δ0.26), which aligns with the predicted rate

O(δ0.25). However, we observe a much faster decay for eσ, with convergence rate O(δ0.39). Figure 4.6

demonstrates that even for this challenging absorption coefficient, the reconstruction is accurate for
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(a) Boundary f (ℓ) (b) L = 1 (c) L = 2

(d) L = 3 (e) L = 4 (f) L = 5

Figure 4.5: Boundary illuminations and the non-zero region of Example 4.3. Top left: plot of boundary

data f (ℓ) = g(ℓ+1). Top middle to bottom right: region which satisfying the non-zero condition as

number of boundary input increasing.

(a) D† (b) δ = 5e-2 (c) δ = 1e-2

(d) σ† (e) δ = 5e-2 (f) δ = 1e-2

Figure 4.6: Example 4.3. First row: reconstructions of D†. Second row: reconstructions of σ†.
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high noise levels. Here we take h = 1/20, γ = 2e-6 for noise level δ = 5e-2 and h = 1/45, γ = 8e-8 for

δ = 1e-2.

Next, we present numerical results for nonsmooth coefficients.

Example 4.4. Ω = (0, 1)2, D†(x, y) = min(1.4, 1+2x(1−x) sin(πy)) and σ†(x, y) = 6+2 tanh(20x−

10).

Table 4.4: The convergence rates for Example 4.4 with respect to δ.

δ 1e-2 5e-3 2e-3 1e-3 5e-4 2e-4 1e-4 rate

eD 4.89e-2 4.72e-2 3.39e-2 2.68e-2 2.14e-2 1.86e-2 1.31e-2 O(δ0.29)

eσ 1.65e-2 1.25e-2 7.89e-3 6.23e-3 5.17e-3 4.61e-3 3.33e-3 O(δ0.33)

(a) Boundary f (ℓ) (b) L = 1 (c) L = 2

(d) L = 3 (e) L = 4 (f) L = 5

Figure 4.7: Boundary illuminations and the non-zero region of Example 4.4. Top left: plot of boundary

data f (ℓ) = g(ℓ+1). Top middle to bottom right: region which satisfying the non-zero condition as

number of boundary input increasing.

Here, we cut off the diffusion coefficientD† in order to have discontinuous derivatives. Additionally,

the absorption coefficient σ† includes a sharp interface where the magnitudes of the derivatives are

large. The non-zero condition and the numerical reconstructions are presented in Figures 4.7-4.8 and

Table 4.4. The mesh size and the regularization parameter are initialized as h = 1/12 and γ = 1e-5.
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(a) D† (b) δ = 5e-2 (c) δ = 1e-2

(d) σ† (e) δ = 5e-2 (f) δ = 1e-2

Figure 4.8: Example 4.4. First row: reconstructions of D†. Second row: reconstructions of σ†.

For this nonsmooth case, we still observe the convergence rates O(δ0.29) and O(δ0.33) for eD and eσ,

respectively. The convergence rate for the diffusion coefficient D† matches the predicted rate, whereas

the convergence rate for absorption coefficient σ† is slightly higher. In the numerical reconstructions

Figure 4.8, we take h = 1/20, γ = 5e-6 and h = 1/45, γ = 2e-7 for noise level δ =5e-2 and δ =1e-2,

respectively.

Example 4.5. Ω = (0, 1)2, D†(x, y) = 1 + 0.2χ{|x−0.3|2+|y−0.3|2<0.12} and the absorbtion coefficient

σ†(x, y) = 1 + 0.2χ[0.6,0.8]×[0.2,0.6].

In this case, both the diffusion coefficient D† and the absorption coefficient σ† are piecewise

constant, which is out the scope of our theoretical framework. Figures 4.9-4.10 show the non-zero

condition and the numerical reconstructions. The results indicate that the non-zero condition remains

valid numerically even if the coefficients do not satisfy Assumption 4.5. Meanwhile, the reconstructions

are satisfactory for these piecewise constant coefficients. Here we take h = 1/20, γ = 1e-6 for noise

level δ = 5e-2 and h = 1/45, γ = 4e-8 for δ = 1e-2.
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(a) Boundary f (ℓ) (b) L = 1 (c) L = 2

(d)L = 3 (e) L = 4 (f) L = 5

Figure 4.9: Boundary illuminations and the non-zero region of Example 4.5. Top left: plot of boundary

data f (ℓ) = g(ℓ+1). Top middle to bottom right: region which satisfying the non-zero condition as

number of boundary input increasing.

(a) exact D (b) δ = 5e-2 (c) δ = 1e-2

(d) exact σ (e) δ = 5e-2 (f) δ = 1e-2

Figure 4.10: Example 4.5. First row: reconstructions of D†. Second row: reconstructions of σ†.
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CHAPTER 5.

Hybrid Neural-Network FEM Approximation of Diffusion

Coefficient in Elliptic and Parabolic Problems

In this chapter, we study the inverse problem of recovering a space-dependent diffusion coefficient

in elliptic and parabolic problems from one internal measurement using neural networks. Let Ω ⊂

Rd (d = 1, 2, 3) be a convex polyhedral domain with a boundary ∂Ω. Consider the following elliptic

problem 
−∇ · (q∇u) = f, in Ω,

u = 0, on ∂Ω,
(5.1)

where f is a known source. The diffusion coefficient q belongs to the admissible set

A = {q ∈ H1(Ω) : cq ≤ q(x) ≤ cq a.e. in Ω},

with the constants 0 < cq < cq < ∞ being the lower and upper bounds on the diffusivity. Below we

use the notation u(q) to indicate the dependence of the solution u to problem (5.1) on the coefficient

q. Further, we are given the noisy observational data zδ in the domain Ω:

∥u(q†)(x)− zδ(x)∥L2(Ω) ≤ δ,

where u(q†) denotes the exact data (for the exact coefficient q†), and δ denotes the noise. The inverse

problem is to identify the diffusion coefficient q† from zδ. We investigate the hybrid NN-FEM approach

for recovering the unknown coefficient q in problem (5.1) (and also the parabolic case in (5.24)), and

provide an analysis on the numerical approximation.

The rest of the chapter is organized as follows. In Sections 5.1 and 5.2, we establish the L2(Ω)

error bounds of the hybrid NN-FEM approximation for elliptic and parabolic cases with or without

numerical quadrature. In Section 5.3, we describe the algorithmic details of the approaches and present

several numerical experiments to complement the theoretical results.

5.1 Elliptic inverse problem

In this section, we develop and analyze a novel hybrid NN-FEM approximation for the elliptic inverse

problem.

1Chapter 5 is reprinted with permission from ”Hybrid Neural-Network FEM Approximation of Diffusion Coefficient

in Elliptic and Parabolic Problems”, Siyu Cen, Bangti Jin, Qimeng Quan, Zhi Zhou, IMA J. Numer. Anal., 44 (5) (2024)

3059-3093. The candidate mainly works on the research methodology discussion and the coding and data collection in

numerical experiments.
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5.1.1 The regularized problem and its hybrid approximation

To recover the diffusion coefficient q, we employ the standard regularized output least-squares formu-

lation with an H1(Ω) seminorm penalty, which amounts to minimizing the following objective:

min
q∈A

Jγ(q) =
1

2
∥u(q)− zδ∥2L2(Ω) +

γ

2
∥∇q∥2L2(Ω), (5.2)

with u ≡ u(q) ∈ H1
0 (Ω) subject to the following PDE constraint

(q∇u,∇φ) = (f, φ), ∀φ ∈ H1
0 (Ω). (5.3)

A standard argument in calculus of variation shows the well-posedness of the regularized problem

(5.2)-(5.3): for any fixed γ > 0, it has at least one global minimizer, which depends continuously on

the data [51, 73]. In practice, the regularized problem has to be properly discretized, and this is often

achieved using finite element / finite difference methods [129, 54, 158, 65].

We employ an alternative discretization strategy: we approximate the coefficient q using NNs, and

the state u using the Galerkin FEM. Note that NNs are globally defined, unlike compactly supported

FEM basis functions. Hence, it is challenging to impose the box constraint of the admissible set A

directly. In order to preserve the box constraint of A, we apply to the NN output a cutoff operation

PA : H1(Ω) → A defined by

PA(v) = min(max(cq, v), cq). (5.4)

The operator PA is stable in the following sense [155, Corollary 2.1.8]

∥∇PA(v)∥Lp(Ω) ≤ ∥∇v∥Lp(Ω), ∀v ∈W 1,p(Ω), p ∈ [1,∞], (5.5)

and moreover, for all v ∈ A, there holds

∥PA(w)− v∥Lp(Ω) ≤ ∥w − v∥Lp(Ω), ∀w ∈ Lp(Ω), p ∈ [1,∞]. (5.6)

Now we can formulate the hybrid NN-FEM approximation scheme as

min
θ∈Pp,ϵ

Jγ,h(qθ) =
1

2
∥uh
(
PA(qθ)

)
− zδ∥2L2(Ω) +

γ

2
∥∇qθ∥2L2(Ω), (5.7)

where Pp,ϵ is the NN parameter set defined in Section 2.1.2, the discrete state uh ≡ uh(PA(qθ)) ∈ V 0
h

satisfies the following discrete variational problem

(PA(qθ)∇uh,∇φh) = (f, φh), ∀φh ∈ V 0
h . (5.8)

The well-posedness of problem (5.7)-(5.8) holds trivially true. Indeed, the uniform boundedness of

the admissible set Pp,ϵ in a finite-dimension space implies the compactness of the parametrization set.
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Together with the continuity of the discrete forward map, the existence of a minimizer θ∗ to problem

(5.7)–(5.8) follows by a standard argument. We denote its NN realization by q∗θ .

The hybrid formulation (5.7)-(5.8) enjoys the following distinct features. First, the construction

naturally preserves the box constraint, which is highly nontrivial to impose on the NN functions

directly; Second, the resulting objective Jγ,h(qθ) is differentiable with respect to the NN parameters

θ, which facilitates the training process by gradient type methods; Third, it is amenable with rigorous

convergence analysis, i.e., a priori error estimates. In sum, it enjoys both rigorous mathematical

foundation of the FEM and excellent inductive bias / approximation properties of NNs.

Remark 5.1. The formulation (5.7)–(5.8) includes the operator PA, and uses PA(qθ) to approximate

the exact one q†. It differs from the existing ones. Berg and Nyström [19] suggested the objective

min
θ∈Pϵ

Jγ,h(qθ) =
1

2
∥uh
(
qθ
)
− zδ∥2L2(Ω) +

γ

2
∥qθ∥2L2(Ω),

where γ ≥ 0 is the regularization parameter. Their numerical evaluation focuses on γ = 0, i.e.,

unregularized case, which necessitates the use of tiny NNs for approximating q, in order to avoid

overfitting. The well-posedness of this formulation remains unclear, due to a lack of the box constraint.

In addition, even assuming the box constraint, the L2(Ω) penalty induces only very weak compactness

and greatly complicates the mathematical analysis: the existence of a minimizer is only ensured in

the sense of H-convergence and the minimizer might be matrix-valued [46, 112]. Mitusch et al [120]

suggested including an H1(Ω) penalty to stabilize the training process. Note that one should not apply

the projection PA in the penalty term, in order to preserve the differentiability of the objective.

5.1.2 Error analysis

Now we derive (weighted) L2(Ω) error estimates of the approximation PA(q
∗
θ). Under Assumption 5.1,

the solution u† ≡ u(q†) to (5.1) satisfies u† ∈ H2(Ω) ∩H1
0 (Ω) ∩W 1,∞(Ω) [106, Lemma 2.1].

Assumption 5.1. f ∈ L∞(Ω), and q† ∈W 2,p(Ω) ∩ A for some p ≥ max(2, d+ µ) with µ > 0.

The next lemma gives the existence of an approximant in the admissible set Pp,ϵ.

Lemma 5.1. Let Assumption 5.1 hold. Then for any ϵ > 0, there exists θϵ ∈ Pp,ϵ such that

∥u† − uh
(
PA(qθϵ)

)
∥L2(Ω) ≤ c(h2 + ϵ).

Proof. By the choice of p, W 1,p(Ω) continuously embeds into L∞(Ω) [2, Theorem 4.12, p. 85]. Since

q† ∈W 2,p(Ω), by Lemma 2.1, there exists θϵ ∈ Pp,ϵ such that its NN realization qθϵ satisfies

∥q† − qθϵ∥H1(Ω) + ∥q† − qθϵ∥L∞(Ω) ≤ c∥q† − qθϵ∥W 1,p(Ω) ≤ cϵ. (5.9)
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Then by the stability estimate (5.6) of the operator PA, we deduce

∥q† − PA(qθϵ)∥L∞(Ω) ≤ cϵ. (5.10)

Next we bound ϱh := uh(PA(qθϵ))−uh(q†) ∈ V 0
h . It follows from the weak formulations of uh(PA(qθϵ))

and uh(q
†), cf. (5.8), and Hölder’s inequality that for any φh ∈ V 0

h ,

(PA(qθϵ)∇ϱh,∇φh) =
(
(q† − PA(qθϵ))∇uh(q†),∇φh

)
≤ ∥q† − PA(qθϵ)∥L∞(Ω)∥∇uh(q†)∥L2(Ω)∥∇φh∥L2(Ω).

Next we set φh = ϱh in the inequality. Upon noting PA(qθϵ) ∈ A, by the approximation property

(5.10), Poincaré inequality, Hölder’s inequality and the estimate ∥∇uh(q†)∥L2(Ω) ≤ c∥f∥L2(Ω), we

obtain

∥ϱh∥L2(Ω) ≤ c∥∇ϱh∥L2(Ω) ≤ c∥q† − PA(qθϵ)∥L∞(Ω)∥∇uh(q†)∥L2(Ω) ≤ cϵ.

This and the standard a priori error estimate ∥u†−uh(q
†)∥L2(Ω) ≤ ch2 yield the desired estimate.

The next lemma gives crucial a priori bounds on ∥u† − uh(PA(q
∗
θ))∥L2(Ω) and ∥∇PA(q

∗
θ)∥L2(Ω).

Lemma 5.2. Let Assumption 5.1 hold. For any ϵ > 0, let θ∗ ∈ Pp,ϵ be a minimizer to problem

(5.7)-(5.8). Then the following estimate holds

∥u† − uh(PA(q
∗
θ))∥2L2(Ω) + γ∥∇PA(q

∗
θ)∥2L2(Ω) ≤ c(h4 + ϵ2 + δ2 + γ).

Proof. Let qθϵ be the NN realization of θϵ ∈ Pp,ϵ satisfying the estimate (5.9), which also implies

∥qθϵ∥H1(Ω) ≤ c. Then Lemma 5.1 and the minimizing property of q∗θ , i.e., Jγ,h(q
∗
θ) ≤ Jγ,h(qθϵ), yield

∥uh(PA(q
∗
θ))− zδ∥2L2(Ω) + γ∥∇q∗θ∥2L2(Ω) ≤ ∥uh(PA(qθϵ))− zδ∥2L2(Ω) + γ∥∇qθϵ∥2L2(Ω)

≤c
(
∥uh(PA(qθϵ))− u†∥2L2(Ω) + ∥u† − zδ∥2L2(Ω) + γ

)
≤ c(h4 + ϵ2 + δ2 + γ).

Applying the triangle inequality leads to

∥u†−uh(PA(q
∗
θ))∥2L2(Ω) + γ∥∇q∗θ∥2L2(Ω) ≤ c∥u† − zδ∥2L2(Ω)

+ c∥zδ − uh(PA(q
∗
θ))∥2L2(Ω) + γ∥∇q∗θ∥2L2(Ω) ≤ c(h4 + ϵ2 + δ2 + γ).

Finally, the bound on ∥∇PA(q
∗
θ)∥L2(Ω) follows from (5.5) and the constraint PA(q

∗
θ) ∈ A.

To derive an a priori estimate for PA(q
∗
θ), we use the following positivity condition introduced in

(1.9): for some β ≥ 0,

q†|∇u†|2 + fu† ≥ c dist(x, ∂Ω)β. (5.11)
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Theorem 5.2. Let Assumption 5.1 hold. For any ϵ > 0, let θ∗ ∈ Pp,ϵ be a minimizer to problem

(5.7)-(5.8), with q∗θ its NN realization. Then with η2 := h4 + ϵ2 + δ2 + γ, there holds∫
Ω

(q† − PA(q
∗
θ)

q†

)2(
q†|∇u†|2 + fu†

)
dx ≤ c(min(h−1η + h, 1) + hγ−

1
2 η)γ−

1
2 η.

Moreover, if condition (5.11) holds, then

∥q† − PA(q
∗
θ)∥L2(Ω) ≤ c

[
(min(h−1η + h, 1) + hγ−

1
2 η)γ−

1
2 η
] 1
2(1+β) .

Proof. By the weak formulations of u† and uh(PA(q
∗
θ)), cf. (5.3) and (5.8), for any φ ∈ H1

0 (Ω), we

have (
(q† − PA(q

∗
θ))∇u†,∇φ

)
=
(
(q† − PA(q

∗
θ))∇u†,∇(φ− Phφ)

)
+
(
(q† − PA(q

∗
θ))∇u†,∇Phφ

)
= −

(
∇ · ((q† − PA(q

∗
θ))∇u†), φ− Phφ

)
+
(
PA(q

∗
θ)∇(uh(PA(q

∗
θ))− u†),∇Phφ

)
=: I + II.

Let φ ≡ q†−PA(q∗θ )

q†
u†. Next we bound the terms I and II separately. Direct computation gives

∇φ = (q†)−1(u†∇(q† − PA(q
∗
θ)) + (q† − PA(q

∗
θ))∇u†)− (q†)−2(q† − PA(q

∗
θ))(∇q†)u†.

This identity and Assumption 5.1 imply φ ∈ H1
0 (Ω), and further

∥∇φ∥L2(Ω) ≤ c(1 + ∥∇PA(q
∗
θ)∥L2(Ω)). (5.12)

Using Assumption 5.1 again and Lemma 5.2, we obtain

∥∇ ·
(
(q†−PA(q

∗
θ))∇u†

)
∥L2(Ω) ≤ ∥q† − PA(q

∗
θ)∥L∞(Ω)∥∆u†∥L2(Ω)

+ ∥∇q† −∇PA(q
∗
θ)∥L2(Ω)∥∇u†∥L∞(Ω) ≤ c(1 + ∥∇PA(q

∗
θ)∥L2(Ω)) ≤ cγ−

1
2 η.

Hence, we can bound the term I by

|I| ≤ ch(1 + ∥∇PA(q
∗
θ)∥L2(Ω))∥∇φ∥L2(Ω) ≤ ch(1 + ∥∇PA(q

∗
θ)∥2L2(Ω)) ≤ chγ−1η2.

By the Cauchy–Schwarz inequality and the estimate (5.12), we can bound the term II by

|II| ≤ ∥PA(q
∗
θ)∥L∞(Ω)∥∇(uh(PA(q

∗
θ))− u†)∥L2(Ω)∥∇φ∥L2(Ω)

≤ c∥∇(uh(PA(q
∗
θ))− u†)∥L2(Ω)∥∇φ∥L2(Ω)

≤ c
(
1 + ∥∇PA(q

∗
θ)∥L2(Ω)

)
∥∇(uh(PA(q

∗
θ))− u†)∥L2(Ω).

Then by Lemma 5.2, the inverse inequality in the space V 0
h (2.1), the approximation property (2.3)

and the L2(Ω)-stability of Ph and the regularity u† ∈ H2(Ω), we can bound the term II by

|II| ≤ cγ−
1
2 η
(
∥∇(uh(PA(q

∗
θ))− Phu

†)∥L2(Ω) + ∥∇(Phu
† − u†)∥L2(Ω)

)
≤ cγ−

1
2 η
(
h−1∥uh(PA(q

∗
θ))− Phu

†∥L2(Ω) + h∥u†∥H2(Ω)

)
≤ cγ−

1
2 η
(
h−1∥uh(PA(q

∗
θ))− u†∥L2(Ω) + h∥u†∥H2(Ω)

)
≤ cγ−

1
2 η (h−1η + h).
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Further, the estimate ∥∇uh(PA(q
∗
θ))∥L2(Ω) ≤ c∥f∥L2(Ω) and the regularity u† ∈ H2(Ω) imply ∥∇(uh(PA(q

∗
θ))−

u†)∥L2(Ω) ≤ c. Hence, |II| ≤ cγ−
1
2 η. Combining these estimates on II yields

|II| ≤ cγ−
1
2 η min(h−1η + h, 1).

Moreover, direct computation gives [22, Theorem 2.2]

(
(q† − PA(q

∗
θ))∇u†,∇φ

)
=

1

2

∫
Ω

(q† − PA(q
∗
θ)

q†

)2(
q†|∇u†|2 + fu†

)
dx.

This and the preceding bounds together show the first assertion. The second assertion follows the

same argument as Theorem 3.3.

Remark 5.2. Theorem 5.2 provides useful guidelines for choosing the algorithmic parameters: γ =

O(δ2), h = O(δ
1
2 ) and ϵ = O(δ). Then under condition (5.11), we obtain ∥q†−PA(q

∗
θ)∥L2(Ω) ≤ cδ

1
4(1+β) .

This result is comparable with that for the purely FEM approximation [84, Corollary 3.3].

5.1.3 Quadrature error analysis

The weak formulation and objective require evaluating various integrals. This is commonly done via

a quadrature scheme. While this issue is direct for the standard FEM [41], it is nontrivial when NNs

are involved: NNs are globally supported and no longer polynomials within each finite element. Thus,

the use of quadrature schemes is required, and there is an inevitable quadrature error, which may

influence the accuracy of the NN approximation [20, 130]. We aim to provide a quadrature error

analysis.

There are many possible quadrature rules [139, Chapter 15]. We focus on one simple scheme to

shed useful insights. On each element K ∈ Th, we uniformly divide it into 2dn sub-simplexes, denoted

by {Ki}2
dn

i=1, with the uniform diameter hK/2
n. The division for d = 1, 2 is trivial, and for d = 3, it is

also feasible [122]. Then consider the following quadrature rule over the element K (with P ij denoting

the jth node of the ith sub-simplex Ki):

QK(v) =
2dn∑
i=1

|Ki|
d+ 1

d+1∑
j=1

v(P ij ), ∀v ∈ C(K).

The embedding H2(Ω) ↪→ L∞(Ω) (for d = 1, 2, 3) and Bramble–Hilbert lemma [41, Theorem 4.1.3]

lead to ∣∣∣ ∫
K
v dx−QK(v)

∣∣∣ ≤ c|K|
1
2 2−2nh2K |v|H2(K), ∀v ∈ H2(K). (5.13)

Then we can define a global quadrature rule:

Qh(v) =
∑
K∈Th

QK(v), ∀v ∈ C(Ω), (5.14)
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which satisfies the following error estimate∣∣∣ ∫
Ω
v dx−Qh(v)

∣∣∣ ≤ c2−2nh2|v|H2(Ω), ∀v ∈ H2(Ω). (5.15)

Similarly, we define a discrete / broken L2(Ω) inner product (·, ·)h by

(w, v)h := Qh(wv) =
∑
K∈Th

QK(wv), ∀w, v ∈ C(Ω).

Lemma 5.3. The following error estimate holds for any vh, wh ∈ V 0
h , and n ∈ N:

|(q∇vh,∇wh)− (q∇vh,∇wh)h| ≤ c(2−nh)p∥q∥W p,∞(Ω)∥∇vh∥L2(Ω)∥∇wh∥L2(Ω), with p = 1, 2;

Proof. Let ΠKj : C(Kj) → P1(Kj) be the Lagrange nodal interpolation operator on the sub-simplex

Kj . Since the quadrature rule on Kj is exact for P1(Kj), we have

(q∇vh,∇wh)− (q∇vh,∇wh)h =
∑
K∈Th

2dn∑
j=1

∫
Kj

(q −ΠKjq)∇vh · ∇wh dx.

Then the local estimate for Lagrange interpolation leads to

|(q∇vh,∇wh)− (q∇vh,∇wh)h| ≤
∑
K∈Th

2dn∑
j=1

∫
Kj

∣∣∣(q −ΠKjq)∇vh · ∇wh
∣∣∣ dx

≤c
∑
K∈Th

2dn∑
j=1

(2−nh)p∥q∥W p,∞(Kj)∥∇vh∥L2(Kj)∥∇wh∥L2(Kj) ≤ c(2−nh)p∥q∥W p,∞(Ω)∥∇vh∥L2(Ω)∥∇wh∥L2(Ω).

This proves the desired estimate.

Then the hybrid NN-FEM approximation of problem (5.2)-(5.3) (with numerical integration) reads

min
θ∈P∞,ϵ

J̃γ,h(qθ) =
1

2
∥ũh(PA(qθ))− zδ∥2L2(Ω) +

γ

2
Qh(|∇qθ|2), (5.16)

where ũh ≡ ũh(PA(qθ)) ∈ V 0
h satisfies the following discrete variational problem

(PA(qθ)∇ũh,∇φh)h = (f, φh), ∀φh ∈ V 0
h . (5.17)

We focus on approximating the integrals involving NNs only. The variational problem (5.17) involves

also the quadrature approximation, which necessitates quantifying the associated error. The presence

of PA in the weak formulation ensures the V 0
h -ellipticity of the broken L2(Ω) semi-inner product,

and hence the unique existence of the discrete forward map is ensured [39, 1]. Then repeating the

argument for problem (5.7)-(5.8) yields the well-posedness of problem (5.16)-(5.17). The analysis of

the quadrature error requires the following condition on the problem data.

Assumption 5.3. q† ∈W 2,∞(Ω) ∩ A and f ∈ L∞(Ω).
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Next we state an analogue of Lemma 5.1 in the presence of numerical integration.

Lemma 5.4. Let Assumption 5.3 hold. Then for any ϵ > 0, there exists θϵ ∈ P∞,ϵ such that

∥u† − ũh(PA(qθϵ))∥L2(Ω) ≤ c(h2 + ϵ).

Proof. The proof is similar to Lemma 5.1. First, under Assumption 5.3, there holds ∥u†−ũh(q†)∥L2(Ω) ≤

ch2 [1, Theorem 5]. Next by Lemma 2.1, there exists θϵ ∈ P∞,ϵ such that its NN realization qθϵ satisfies

∥q† − qθϵ∥W 1,∞(Ω) ≤ ϵ. (5.18)

Then by the stability estimate (5.6) of the operator PA, we deduce

∥q† − PA(qθϵ)∥L∞(Ω) ≤ ϵ. (5.19)

Let w̃h := ũh(PA(qθϵ))− ũh(q
†) ∈ V 0

h . Repeating the argument of Lemma 5.1 yields

cq∥∇w̃h∥2L2(Ω) ≤ (PA(qθϵ)∇w̃h,∇w̃h)h =
(
(q† − PA(qθϵ))∇ũh(q†),∇w̃h

)
h

≤ ∥q† − PA(qθϵ)∥L∞(Ω)∥∇ũh(q†)∥L2(Ω)∥∇w̃h∥L2(Ω),

since |(q∇uh,∇vh)h| ≤ c∥q∥L∞(Ω)∥∇uh∥L2(Ω)∥∇vh∥L2(Ω). Using the estimate (5.19), the stability of

Lagrange interpolation and the a priori estimate ∥∇ũh(q†)∥L2(Ω) ≤ c and Poincaré inequality, we

deduce

∥w̃h∥L2(Ω) ≤ c∥∇w̃h∥L2(Ω) ≤ c∥q† − PA(qθϵ)∥L∞(Ω)∥∇ũh(q†)∥L2(Ω) ≤ c∥q† − PA(qθϵ)∥L∞(Ω) ≤ cϵ.

This completes the proof of the lemma.

The next lemma provides an a priori bound on ∥u† − ũh(PA(q
∗
θ))∥L2(Ω) and ∇PA(q

∗
θ).

Lemma 5.5. Let Assumption 5.3 hold. Fix ϵ > 0, and let θ∗ ∈ P∞,ϵ be a minimizer to problem

(5.16)-(5.17) and q∗θ its NN realization. Then the following estimate holds

∥u† − ũh(PA(q
∗
θ))∥2L2(Ω) + γQh(|∇PA(q

∗
θ)|2) ≤ c(h4 + ϵ2 + δ2 + γ).

Proof. The proof relies on the minimizing property of θ∗, Lemma 5.4 and the existence of an element

qθϵ ∈ W 1,∞(Ω) satisfying (5.18). The estimate (5.18) and the regularity q† ∈ W 2,∞(Ω) implies

∥qϵ∥W 1,∞(Ω) ≤ c. This yields Qh(|∇qϵ|2) ≤ c, since the quadrature operator Qh is stable on C(Ω). The

rest of the proof is identical with that for Lemma 5.2, and hence, we omit the details.

Next we show an a priori bound on quadrature error of the penalty term.

81



Lemma 5.6. Let θ ∈ P∞,ϵ, of depth L, width W and bound R, and vθ be its NN realization, with

RW > 2. Then the following quadrature error estimate holds

∥∇vθ∥2L2(Ω) −Qh(∥∇vθ∥2ℓ2) ≤ c2−2nh2|
d∑
i=1

(∂xivθ)
2|W 2,∞(Ω) ≤ c2−2nh2R4LW 4L−4.

Proof. By the NN realization (2.4), we have for every layer ℓ = 1, . . . , L − 1 and each i = 1, . . . , dℓ,

v
(ℓ)
i = ρ

(∑dℓ−1

j=1 A
(ℓ)
ij v

(ℓ−1)
j + b

(ℓ)
i

)
. Then for all 1 ≤ k,m ≤ d, direct computation with the chain rule

gives

∂2xk,xmv
(ℓ)
i =ρ′′

( dℓ−1∑
j=1

A
(ℓ)
ij v

(ℓ−1)
j + b

(ℓ)
i

)( dℓ−1∑
j=1

A
(ℓ)
ij ∂xkv

(ℓ−1)
j

)( dℓ−1∑
j=1

A
(ℓ)
ij ∂xmv

(ℓ−1)
j

)

+ ρ′
( dℓ−1∑
j=1

A
(ℓ)
ij v

(ℓ−1)
j + b

(ℓ)
i

)( dℓ−1∑
j=1

A
(ℓ)
ij ∂

2
xk,xm

v
(ℓ−1)
j

)
.

Note that for the tanh activation function ρ, ∥ρ′∥L∞(R) ≤ 1, ∥ρ′′∥L∞(R) ≤ 1, cf. Lemma 2.2, and

further [80, Lemma 3.4, eq. (3.6)]

∥∂xkv
(ℓ)
j ∥L∞(Ω) ≤ RℓW ℓ−1, ∀ℓ = 1, . . . , L− 1, j = 1, . . . , dℓ. (5.20)

Then we arrive at

∥∂2xk,xmv
(ℓ)
i ∥L∞(Ω) ≤ R2W 2 max

j=1,...,dℓ−1

∥∂xkv
(ℓ−1)
j ∥L∞(Ω) max

j=1,...,dℓ−1

∥∂xmv
(ℓ−1)
j ∥L∞(Ω)

+RW max
j=1,...,dℓ−1

∥∂2xk,xmv
(ℓ−1)
j ∥L∞(Ω)

≤ R2ℓW 2ℓ−2 +RW max
j=1,...,dℓ−1

∥∂2xk,xmv
(ℓ−1)
j ∥L∞(Ω).

Note also the trivial estimate

∥∂2xk,xmv
(1)
i ∥L∞(Ω) ≤

∥∥∥∥ρ′′( d∑
j=1

A
(1)
ij xj + b

(1)
i

)
A

(1)
ik A

(1)
im

∥∥∥∥
L∞(Ω)

≤ R2.

Taking maximum in i = 1, . . . , dℓ and then applying the inequality recursively lead to

max
i=1,...,dℓ

∥∂xk,xmv
(ℓ)
i ∥L∞(Ω) ≤ R2

ℓ−1∑
j=1

(RW )2j(RW )ℓ−1−j + (RW )ℓ−1 max
i=1,...,dℓ−1

∥∂xk,xmv
(1)
i ∥L∞(Ω)

= R2ℓW 2ℓ−2
ℓ−1∑
j=0

(RW )−j ≤ R2ℓW 2ℓ−2

1− (RW )−1
.

Hence, under the condition RW ≥ 2, we may bound

∥∂2xk,xsv
(ℓ)
i ∥L∞(Ω) ≤ 2R2ℓW 2ℓ−2, ∀ℓ = 1, . . . , L, i = 1, . . . , dℓ. (5.21)
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By direct computation, we obtain for 1 ≤ k,m, n ≤ d

∂3xk,xm,xnv
(ℓ)
i =ρ′′′

( dℓ−1∑
j=1

A
(ℓ)
ij v

(ℓ−1)
j + b

(ℓ)
i

)( dℓ−1∑
j=1

A
(ℓ)
ij ∂xkv

(ℓ−1)
j

)( dℓ−1∑
j=1

A
(ℓ)
ij ∂xmv

(ℓ−1)
j

)( dℓ−1∑
j=1

A
(ℓ)
ij ∂xnv

(ℓ−1)
j

)

+ ρ′′
( dℓ−1∑
j=1

A
(ℓ)
ij v

(ℓ−1)
j + b

(ℓ)
i

)( dℓ−1∑
j=1

A
(ℓ)
ij ∂

2
xk,xn

v
(ℓ−1)
j

)( dℓ−1∑
j=1

A
(ℓ)
ij ∂xmv

(ℓ−1)
j

)

+ ρ′′
( dℓ−1∑
j=1

A
(ℓ)
ij v

(ℓ−1)
j + b

(ℓ)
i

)( dℓ−1∑
j=1

A
(ℓ)
ij ∂

2
xm,xnv

(ℓ−1)
j

)( dℓ−1∑
j=1

A
(ℓ)
ij ∂xkv

(ℓ−1)
j

)

+ ρ′′
( dℓ−1∑
j=1

A
(ℓ)
ij v

(ℓ−1)
j + b

(ℓ)
i

)( dℓ−1∑
j=1

A
(ℓ)
ij ∂

2
xk,xm

v
(ℓ−1)
j

)( dℓ−1∑
j=1

A
(ℓ)
ij ∂xnv

(ℓ−1)
j

)

+ ρ′
( dℓ−1∑
j=1

A
(ℓ)
ij v

(ℓ−1)
j + b

(ℓ)
i

)( dℓ−1∑
j=1

A
(ℓ)
ij ∂

3
xk,xm,xn

v
(ℓ−1)
j

)
.

This, along with the bound ∥ρ′′′∥L∞(R) ≤ 2 from Lemma 2.2, implies

∥∂3xk,xm,xnv
(ℓ)
i ∥L∞(Ω) ≤ RW max

j=1,...,dℓ−1

∥∂3xk,xm,xnv
(ℓ−1)
j ∥L∞(Ω)

+ 2R3W 3 max
j=1,...,dℓ−1

∥∂xkv
(ℓ−1)
j ∥L∞(Ω) max

j=1,...,dℓ−1

∥∂xmv
(ℓ−1)
j ∥L∞(Ω) max

j=1,...,dℓ−1

∥∂xnv
(ℓ−1)
j ∥L∞(Ω)

+R2W 2
(

max
j=1,...,dℓ−1

∥∂2xk,xnv
(ℓ−1)
j ∥L∞(Ω) max

j=1,...,dℓ−1

∥∂xmv
(ℓ−1)
j ∥L∞(Ω)

+ max
j=1,...,dℓ−1

∥∂2xm,xnv
(ℓ−1)
j ∥L∞(Ω) max

j=1,...,dℓ−1

∥∂xkv
(ℓ−1)
j ∥L∞(Ω)

+ max
j=1,...,dℓ−1

∥∂2xk,xmv
(ℓ−1)
j ∥L∞(Ω) max

j=1,...,dℓ−1

∥∂xnv
(ℓ−1)
j ∥L∞(Ω)

)
.

Then it follows from the estimates (5.20) and (5.21) and the condition RW ≥ 2 that

∥∂3xk,xm,xnv
(ℓ)
i ∥L∞(Ω) ≤ 2R3ℓW 3ℓ−3 + 6R3ℓ−1W 3ℓ−4 +RW max

j=1,...,dℓ−1

∥∂3xk,xm,xnv
(ℓ−1)
j ∥L∞(Ω)

≤ 5R3ℓW 3ℓ−3 +RW max
j=1,...,dℓ−1

∥∂3xk,xm,xnv
(ℓ−1)
j ∥L∞(Ω).

Meanwhile, direct computation gives the estimate

∥∂3xk,xm,xnv
(1)
i ∥L∞(Ω) ≤

∥∥∥∥ρ′′′( d∑
j=1

A
(1)
ij xj + b

(1)
i

)
A

(1)
ik A

(1)
imA

(1)
in

∥∥∥∥
L∞(Ω)

≤ 2R3.

The last two estimates together and the condition RW ≥ 2 yield

∥∂3xk,xs,xtv
(ℓ)
i ∥L∞(Ω) ≤ 10R3ℓW 3ℓ−3, ∀ℓ = 1, . . . , L. (5.22)

Substituting this estimate into (5.14) completes the proof of the lemma.

Now we can state the error estimate on the approximation q̃∗θ .
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Theorem 5.4. Let Assumption 5.3 hold. Fix ϵ > 0, and let θ̃∗ ∈ P∞,ϵ be a minimizer to problem

(5.16)-(5.17) and q̃∗θ be its NN realization. Then with η2 := h4 + ϵ2 + δ2 + γ and ζ := 1 + γ−1η2 +

2−2nh2R4LW 4L−4, we have∫
Ω

(q† − PA(q̃
∗
θ)

q†

)2(
q†|∇u†|2 + fu†

)
dx ≤ c

(
hζ

1
2 + (min(h−1η + h, 1) + 2−nhRLWL

)
ζ

1
2 .

Moreover, if condition (5.11) holds, then

∥q† − PA(q̃
∗
θ)∥L2(Ω) ≤ c

(
hζ

1
2 + (min(h−1η + h, 1) + 2−nhRLWL)ζ

1
2
) 1

2(β+1) .

Proof. By the weak formulations of u† and ũh(PA(q̃
∗
θ), cf. (5.3) and (5.17), we have for any φ ∈ H1

0 (Ω),(
(q†−PA(q̃

∗
θ))∇u†,∇φ

)
=
(
(q† − PA(q̃

∗
θ))∇u†,∇(φ− Phφ)

)
+
(
(q† − PA(q̃

∗
θ))∇u†,∇Phφ

)
=−

(
∇ · ((q† − PA(q̃

∗
θ))∇u†), φ− Phφ

)
+
(
PA(q̃

∗
θ)∇(ũh(PA(q̃

∗
θ))− u†),∇Phφ

)
+ [
(
PA(q̃

∗
θ)∇ũh(PA(q̃

∗
θ)),∇Phφ

)
h
−
(
PA(q̃

∗
θ)∇ũh(PA(q̃

∗
θ)),∇Phφ

)
] =: I + II + III.

Next we set φ ≡ q†−PA(q̃∗θ )

q†
u† in the identity and bound the three terms separately. By the stability

estimate (5.5) of the operator PA and Lemmas 5.5 and 5.6, we have

∥∇PA(q̃
∗
θ)∥2L2(Ω) ≤ ∥∇q̃∗θ∥2L2(Ω) = Qh(|∇q̃∗θ |2) + [∥∇q̃∗θ∥2L2(Ω) −Qh(|∇q̃∗θ |2)]

≤ c(γ−1η2 + 2−2nh2R4LW 4L−4).

Thus we can bound ∥∇φ∥L2(Ω) by

∥∇φ∥L2(Ω) ≤ c(1 + ∥∇PA(q̃
∗
θ)∥L2(Ω)) ≤ cζ

1
2 . (5.23)

Repeating the argument of Theorem 5.2 and applying Lemma 5.5 yield

|I| ≤ ch(1 + ∥∇PAq
∗
θ∥2L2(Ω)) ≤ chζ,

|II| ≤ c
(
1 + ∥∇PA(q

∗
θ)∥L2(Ω)

)
∥∇(ũh(PA(q

∗
θ))− u†)∥L2(Ω) ≤ cmin(h−1η + h, 1)ζ

1
2 .

Next from Lemma 5.3 (with p = 1), the stability of PA and the bound (5.20), we deduce

|III| ≤ c2−nh∥PA(q̃
∗
θ)∥W 1,∞(Ω)∥∇ũh(PA(q̃

∗
θ))∥L2(Ω)∥∇Phφ∥L2(Ω)

≤ c2−nhζ
1
2 (∥PA(q̃

∗
θ)∥L∞(Ω) + ∥∇PA(q̃

∗
θ)∥L∞(Ω))

≤ c2−nhζ
1
2 (1 + ∥∇q̃∗θ∥L∞(Ω)) ≤ c2−nhRLWLζ

1
2 .

The proof of the second assertion is identical with that of Theorem 5.2.

Remark 5.3. Theorem 5.4 indicates that the error estimate in the presence of numerical quadrature

is similar to the case of exact integration, provided that the quadrature error is sufficiently small. The
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quadrature error involves a factor R4LW 4L−1, which can be large for deep NNs, and hence it may

require a large n to compensate its influence on the reconstruction PA(q̃
∗
θ). Indeed, one may take

2−2nh2R4LW 4L−4 = O(1). This and the choice θ̃∗ ∈ P∞,ϵ, i.e., L = O(log(d + 2)), Nθ = O(ϵ
− d

1−µ )

and R = O(ϵ
−2− 2+3d

1−µ ) directly imply n = O(d| log ϵ|). This estimate is a bit pessimistic. In practice,

the choice n = 0 suffices the desired accuracy.

5.2 Parabolic inverse problem

In this section, we extend the hybrid approach to the parabolic case:
∂tu−∇ · (q∇u) = f, in Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),

u(0) = u0, in Ω.

(5.24)

Like before, we are given the observation zδ on the space-time domain Ω× (T0, T ) (with 0 ≤ T0 < T ):

∥u(q†)− zδ∥L2(T0,T ;L2(Ω)) ≤ δ,

with a noise level δ. We aim at recovering the coefficient q ∈ A from zδ.

5.2.1 The regularized problem and its hybrid approximation

To recover the coefficient q in the model (5.24), we formulate a numerical scheme by

min
q∈A

Jγ(q) =
1

2
∥u(q)(t)− zδ(t)∥2L2(T0,T ;L2(Ω)) +

γ

2
∥∇q∥2L2(Ω), (5.25)

where u(t) ≡ u(q)(t) ∈ H1
0 (Ω) with u(0) = u0 satisfies

(∂tu(t), φ) + (q∇u(t),∇φ) = (f, φ), ∀φ ∈ H1
0 (Ω), a.e. t ∈ (0, T ). (5.26)

Next we describe the hybrid NN-FEM discretization of problem (5.25)–(5.26). For the space

discretization, we employ NNs and Galerkin FEM to approximate the diffusion coefficient q and state

u, respectively. For the time discretization, we employ the backward Euler time-stepping scheme [139]:

We divide the time interval (0, T ) into N uniform subintervals with a time step size τ and grid points

tn = nτ , n = 0, . . . , N . Next we denote by vn = v(tn) and define the backward difference quotient

∂̄τ by ∂̄τv
n := τ−1(vn − vn−1). Further we assume T0 = N0τ for some N0 ∈ N. For a sequence of

functions {vn}Nn=N0
⊂ X, we define a discrete norm ∥(vn)NN0

∥ℓ2(X) by

∥(vn)NN0
∥ℓ2(X) =

(
τ

N∑
n=N0

∥vn∥2X
) 1

2
.
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With these preliminaries, the hybrid NN-FEM scheme for problem (5.25)–(5.26) reads

min
θ∈Pp,ϵ

Jγ,h,τ (qθ) =
1

2
∥(Unh (PA(qθ))− zδn)

N
N0

∥2ℓ2(L2(Ω)) +
γ

2
∥∇qθ∥2L2(Ω), (5.27)

where zδn := τ−1
∫ tn
tn−1

zδ(t)dt, and Unh ≡ Unh (qθ) ∈ V 0
h with U0

h(qθ) = Phu0 satisfies

(∂̄τU
n
h , φh) + (PA(qθ)∇Unh ,∇φh) = (f(tn), φh), ∀φh ∈ V 0

h , n = 1, . . . , N. (5.28)

For any γ > 0, a standard argument yields the well-posedness of problems (5.25)–(5.26) and (5.27)–

(5.28); Let q∗θ be the NN realization of a minimizer θ∗ to problem (5.27)–(5.28). See the work [94]

for relevant discussions on the pure FEM approximation. It also includes a detailed convergence

analysis of the FEM approximation to a global minimizer of problem (5.25)–(5.26) as the discretization

parameters h, τ → 0+. See also [144, 84] for relevant error analysis.

5.2.2 Error analysis

Now we provide an error analysis of the approximation PA(q
∗
θ), under the following assumption.

Assumption 5.5. For some p ≥ max(2, d+µ) with µ > 0, q† ∈W 2,p(Ω)∩A, u0 ∈ H2(Ω)∩H1
0 (Ω)∩

W 1,∞(Ω) and f ∈ L∞(0, T ;L∞(Ω)) ∩ C1([0, T ];L2(Ω)) ∩W 2,1(0, T ;L2(Ω)).

Under Assumption 5.5, the following regularity estimates hold on u† ≡ u(q†) [84, p. 128]: for any

r, q ∈ (1,∞)

∂tu
† ∈ Lr(0, T ;Lq(Ω)),∆u† ∈ Lr(0, T ;Lq(Ω)) and u† ∈ L∞(0, T ;W 1,∞(Ω)); (5.29)

∥u†(t)∥H2(Ω) + ∥∂tu†(t)∥L2(Ω) + t∥∂ttu†(t)∥L2(Ω) ≤ c, a.e. t ∈ (0, T ]. (5.30)

The next lemma gives the existence of an approximation in the discrete admissible set Pp,ϵ.

Lemma 5.7. Let Assumption 5.5 hold. Then for ϵ > 0, there exists θϵ ∈ Pp,ϵ such that

∥(u†(tn)− Unh (PA(qθϵ)))
N
1 ∥2ℓ2(L2(Ω)) ≤ c(τ2 + h4 + ϵ2).

Proof. By the argument of Lemma 5.1, we can find θϵ ∈ Pp,ϵ such that the estimates (5.9) and

(5.10) hold. Next we bound ϱnh := Unh (PA(qθϵ)) − Unh (q
†). It follows from the weak formulations of

Unh (PA(qθϵ)) and U
n
h (q

†), cf. (5.28), that ϱnh satisfies ϱ0h = 0 and

(∂̄τϱ
n
h, φh) + (PA(qθϵ)∇ϱnh,∇φh) =

(
(q† − PA(qθϵ))∇Unh (q†),∇φh

)
, ∀φh ∈ V 0

h , n = 1, 2, . . . , N.

Setting φh = 2ϱnh into this identity, and then applying Hölder’s inequality lead to

τ−1(∥ϱnh∥2L2(Ω) − ∥ϱn−1
h ∥2L2(Ω)) + 2cq∥∇ϱnh∥2L2(Ω) ≤ 2∥q† − PA(qθϵ)∥L∞(Ω)∥∇Unh (q†)∥L2(Ω)∥∇ϱnh∥L2(Ω).
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Summing the inequality over n from 1 to N , noting ϱ0h = 0 and applying (5.10) give

∥ϱNh ∥2L2(Ω) + 2cq∥(∇ϱnh)N1 ∥2ℓ2(L2(Ω)) ≤ 2∥q† − PA(qθϵ)∥L∞(Ω)τ

N∑
n=1

∥∇Unh (q†)∥L2(Ω)∥∇ϱnh∥L2(Ω)

≤ cϵ∥(∇Unh (q†))N1 ∥ℓ2(L2(Ω))∥(∇ϱnh)N1 ∥ℓ2(L2(Ω)).

Since ∥(∇Unh (q†))N1 ∥ℓ2(L2(Ω)) ≤ c [144, Lemma 6.2], we obtain ∥(ϱnh)N1 ∥ℓ2(H1(Ω)) ≤ cϵ. This and the

estimate ∥(u†(tn)− Unh (q
†))N1 ∥2ℓ2(L2(Ω)) ≤ c(τ2 + h4) [84, Lemma 4.2] complete the proof.

The next lemma gives an important a priori bound.

Lemma 5.8. Let Assumption 5.5 hold. For any ϵ > 0, let θ∗ ∈ Pp,ϵ be a minimizer to problem

(5.27)-(5.28) and q∗θ its NN realization. Then the following estimate holds

∥(u†(tn)− Unh (PA(q
∗
θ)))

N
N0

∥2ℓ2(L2(Ω)) + γ∥∇PA(q
∗
θ)∥2L2(Ω) ≤ c(τ2 + h4 + ϵ2 + δ2 + γ).

Proof. Let qθϵ be the NN realization of a parameter θϵ ∈ Pp,ϵ satisfying (5.9) and (5.10), which implies

also ∥qϵ∥H1(Ω) ≤ c. Under Assumption 5.5, the following estimate holds [84, Lemma 4.1]

∥(u†(tn)− zδn)
N
N0

∥2ℓ2(L2(Ω)) ≤ c(τ2 + δ2).

Then by Lemma 5.7 and the minimizing property of q∗θ , i.e., Jγ,h,τ (q
∗
θ) ≤ Jγ,h,τ (qθϵ), we derive

∥(Unh (PA(q
∗
θ))− zδn)

N
N0

∥2ℓ2(L2(Ω)) + γ∥∇q∗θ∥2L2(Ω) ≤ ∥(Unh (PA(qθϵ))− zδn)
N
N0

∥2ℓ2(L2(Ω)) + γ∥∇qθϵ∥2L2(Ω)

≤c
(
∥(Unh (PA(qθϵ))− u†(tn))

N
N0

∥2ℓ2(L2(Ω)) + ∥(u†(tn)− zδn)
N
N0

∥2ℓ2(L2(Ω)) + γ
)
≤ c(τ2 + h4 + ϵ2 + δ2 + γ),

Then by the triangle inequality, we have

∥(u†(tn)−Unh (PA(q
∗
θ)))

N
N0

∥2ℓ2(L2(Ω)) + γ∥∇q∗θ∥2L2(Ω) ≤ c∥(u†(tn)− zδn)
N
N0

∥2ℓ2(L2(Ω))

+ c∥(zδn − Unh (PA(q
∗
θ)))

N
N0

∥2ℓ2(L2(Ω)) + γ∥∇q∗θ∥2L2(Ω) ≤ c(τ2 + h4 + ϵ2 + δ2 + γ).

Finally, the bound on ∥∇PA(q
∗
θ)∥L2(Ω) follows from the stability estimate (5.5).

Now we can state an error estimate on the NN approximation q∗θ .

Theorem 5.6. Let Assumption 5.5 hold. Fix any ϵ > 0, and let θ∗ ∈ Pp,ϵ be a minimizer to problem

(5.27)-(5.28) and q∗θ its NN realization. Then with η2 := τ2 + h4 + ϵ2 + δ2 + γ, there holds

τ3
N∑

j=N0+1

j∑
i=N0+1

j∑
n=i

∫
Ω

(q† − PA(q
∗
θ)

q†

)2(
q†|∇u†(tn)|2 +

(
f(tn)− ∂tu

†(tn)
)
u†(tn)

)
dx

≤ c(min(h−1η + h, 1) + hγ−
1
2 η)γ−

1
2 η.
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Proof. For any φ ∈ H1
0 (Ω), the weak formulations of u† and Unh (PA(q

∗
θ))) in (5.26) and (5.28) yield

(
(q† − PA(q

∗
θ))∇u†(tn),∇φ

)
=
(
(q† − PA(q

∗
θ))∇u†(tn),∇(φ− Phφ)

)
+
(
(q† − PA(q

∗
θ))∇u†(tn),∇Phφ

)
=
(
(q† − PA(q

∗
θ))∇u†(tn),∇(φ− Phφ)

)
+
(
PA(q

∗
θ)∇(Unh (PA(q

∗
θ))− u†(tn)),∇Phφ

)
+
(
q†∇u†(tn)− PA(q

∗
θ)∇Unh (PA(q

∗
θ)),∇Phφ

)
= −

(
∇ ·
(
(q† − PA(q

∗
θ))∇u†(tn)

)
, φ− Phφ

)
+
(
PA(q

∗
θ)∇(Unh (PA(q

∗
θ))− u†(tn)),∇Phφ

)
+
(
∂̄τU

n
h (PA(q

∗
θ))− ∂tu

†(tn), Phφ
)
=: In + IIn + IIIn.

Next we set φ ≡ φn =
q†−PA(q∗θ )

q†
u†(tn) in the identity, and bound the three terms separately. Under

Assumption 5.5, the regularity bound (5.30) and the box constraint PA(q
∗
θ) ∈ A imply

max
0≤n≤N

∥∇φn∥L2(Ω) ≤ c(1 + ∥∇PA(q
∗
θ)∥L2(Ω)). (5.31)

Then repeating the argument for Theorem 5.2 and applying Lemma 5.8 lead to

|In| ≤ ch(1 + ∥∇PA(q
∗
θ)∥L2(Ω))∥∇φn∥L2(Ω) ≤ ch(1 + ∥∇PA(q

∗
θ)∥2L2(Ω)) ≤ chγ−1η2.

Next, by the Cauchy–Schwarz inequality, the H1(Ω)-stability of Ph, the box constraint PA(q
∗
θ) ∈ A

and the estimate (5.31), we bound the term IIn as

|IIn| ≤ c∥∇(Unh (PA(q
∗
θ))− u†(tn))∥L2(Ω)∥∇Phφn∥L2(Ω)

≤ c∥∇(Unh (PA(q
∗
θ))− u†(tn))∥L2(Ω)∥∇φn∥L2(Ω)

≤ c(1 + ∥∇PA(q
∗
θ)∥L(Ω))∥∇(Unh (PA(q

∗
θ))− u†(tn))∥L2(Ω).

Then it follows from the inverse estimate in the space V 0
h [139, (1.12), p. 4] and (2.3) that

τ
N∑

n=N0

|IIn| ≤ cγ−
1
2 η
∥∥(∇(Unh (PA(q

∗
θ))− u†(tn)))

N
N0

∥∥
ℓ2(L2(Ω))

≤ cγ−
1
2 η
(∥∥(∇(Unh (PA(q

∗
θ))− Phu

†(tn)))
N
N0

∥∥
ℓ2(L2(Ω))

+
∥∥(∇(u†(tn)− Phu

†(tn)))
N
N0

∥∥
ℓ2(L2(Ω))

)
≤ cγ−

1
2 η
(
h−1∥(Unh (PA(q

∗
θ))− Phu

†(tn))
N
N0

∥ℓ2(L2(Ω)) + h∥(u†(tn))NN0
∥ℓ2(H2(Ω))

)
.

Now by applying the L2(Ω)-stability of Ph and Lemma 5.8, we deduce

τ
N∑

n=N0

|IIn| ≤ cγ−
1
2 η
(
h−1∥(Unh (PA(q

∗
θ))− u†(tn))

N
N0

∥ℓ2(L2(Ω)) + h
)
≤ c(h+ h−1η)γ−

1
2 η.

Meanwhile, the box constraint PA(q
∗
θ) ∈ A and the standard energy argument imply

∥(∇(Unh (PA(q
∗
θ))− u†(tn)))

N
N0

∥ℓ2(L2(Ω)) ≤ c. (5.32)
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Thus we obtain

τ
N∑

n=N0

|IIn| ≤ cγ−
1
2 ηmin(1, h+ h−1η).

For the last term IIIn, we further split it into

IIIn =
(
∂̄τU

n
h (PA(q

∗
θ))− ∂̄τu

†(tn), Phφ
n
)
+
(
∂̄τu

†(tn)− ∂tu
†(tn), Phφ

n
)
=: IIIn1 + IIIn2 ,

and then bound IIIn1 and IIIn2 separately. Repeating the argument in [84, Theorem 4.5] gives∣∣∣∣τ3 N∑
j=N0+1

j∑
i=N0+1

j∑
n=i

IIIn2

∣∣∣∣ ≤ cτ.

To bound the term IIIn1 , by the summation by parts formula, we deduce

τ

j∑
n=i

IIIn1 =− τ

j−1∑
n=i

(
Unh (PA(q

∗
θ))− u†(tn), ∂̄τPhφ

n+1
)
+
(
U jh(PA(q

∗
θ))− u†(tj), Phφ

j
)

−
(
U i−1
h (PA(q

∗
θ))− u†(ti−1), Phφ

i
)
.

Since ∥Phφn∥L2(Ω) ≤ ∥φn∥L2(Ω) ≤ c, we get∣∣∣∣τ N∑
j=N0+1

(
U jh(PA(q

∗
θ))− u†(tj), Phφ

j
)∣∣∣∣+ ∣∣∣∣τ N∑

i=N0+1

(
U i−1
h (PA(q

∗
θ))− u†(ti−1), Phφ

i
)∣∣∣∣ ≤ cη.

Moreover, from the L2(Ω) stability of Ph, Assumption 5.5 and the box constraint PA(q
∗
θ) ∈ A, we

deduce

∥∂̄τPhφn∥L2(Ω) ≤ τ−1
∥∥∥∫ tn

tn−1

q† − PA(q
∗
θ)

q†
∂tu(t) dt

∥∥∥
L2(Ω)

≤ c∥∂tu∥C([tn−1,tn];L2(Ω)).

Thus, we have ∣∣∣τ3 N∑
j=N0+1

j∑
i=N0+1

j∑
n=i

(
Unh (q

∗
θ)− u†(tn), ∂̄τPhφ

n+1
)∣∣∣ ≤ cη.

Finally, combining the preceding estimates with the identity(
(q† − PA(q

∗
θ))∇u†(tn),∇φn

)
=

1

2

∫
Ω

(q† − PA(q
∗
θ)

q†

)2(
q†|∇u†(tn)|2 +

(
f(tn)− ∂tu

†(tn)
)
u†(tn)

)
dx

completes the proof of the theorem.

Similarly, we can impose a positivity condition: there exists some β ≥ 0 such that for any t ∈ [T0, T ]

q†|∇u†(x, t)|2 +
(
f(x, t)− ∂tu

†(x, t)
)
u†(x, t) ≥ c dist(x, ∂Ω)β, a.e. in Ω. (5.33)

This condition holds with β = 0, 2 under suitable assumptions on the problem data [84, Propositions

4.7 and 4.8]. Under condition (5.33), the argument of Theorem 5.2 gives the following L2(Ω) error

bound.

Corollary 5.1. Under the assumptions in Theorem 5.6 and condition (5.33), there holds

∥q† − q∗θ∥L2(Ω) ≤ c
(
min(h−1η + h, 1) + hγ−

1
2 η)γ−

1
2 η
) 1

2(1+β) .
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5.2.3 Quadrature error analysis

Now we study the influence of quadrature errors on the reconstruction. Like before, we formulate a

practical hybrid NN-FEM discretization scheme of problem (5.25)-(5.26) (with numerical integration)

by

min
θ∈P∞,ϵ

J̃γ,h,τ (qθ) =
1

2
∥(Ũnh (PA(qθ))− zδn)

M
N0

∥2ℓ2(L2(Ω)) +
γ

2
Qh(|∇qθ|2), (5.34)

where zδn := τ−1
∫ tn
tn−1

zδ(t)dt, and Ũnh ≡ Ũnh (PA(qθ)) ∈ V 0
h with Ũ0

h(PA(qθ)) = Phu0 satisfies

(∂̄τ Ũ
n
h , φh) + (PA(qθ)∇Ũnh ,∇φh)h = (f(tn), φh), ∀φh ∈ V 0

h , n = 1, . . . , N. (5.35)

Using the box constraint PA(qθ) ∈ A and the standard energy argument, we have

∥(∇Ũnh (PA(qθ)))
N
1 ∥ℓ2(L2(Ω)) ≤ c. (5.36)

The existence of a discrete forward map PA(qθ) 7→ {Unh }Nn=1 follows from the ellipticity of the broken

L2(Ω) semi-inner product (·, ·)h over the space V 0
h , and a standard argument yields that problem

(5.34)-(5.35) has at least one minimizer θ̃∗ with a continuous dependence on the data. Next we derive

(weighted) L2(Ω) error bounds of PA(q̃
∗
θ), with the NN realization q̃∗θ of the minimizer θ̃∗.

Assumption 5.7. q† ∈ W 2,∞(Ω) ∩ A, u0 ∈ H2(Ω) ∩H1
0 (Ω) ∩W 1,∞(Ω) and f ∈ L∞(0, T ;L∞(Ω)) ∩

C1(0, T ;L2(Ω)) ∩W 2,1(0, T ;L2(Ω)).

The next lemma gives an analogue of Lemma 5.7 for the quadrature scheme.

Lemma 5.9. Let Assumption 5.7 hold. Then for small ϵ > 0, there exists θϵ ∈ P∞,ϵ such that

∥
(
u(q†)(tn)− Ũnh (PA(qθϵ))

)N
1
∥2ℓ2(L2(Ω)) ≤ c(τ2 + h4 + ϵ2).

Proof. It follows from Lemma 5.1 that there exists θϵ ∈ P∞,ϵ such that the estimate (5.19) holds

for the NN realization qθϵ . Let ϱnh = Ũnh (q
†) − Ũnh (PA(qθϵ)). Then it satisfies ϱnh = 0 and for all

n = 1, 2, . . . , N

(∂τϱ
n
h, φh) + (PA(qθϵ)∇ϱnh,∇φh)h = ((PA(qθϵ)− q†)∇Ũnh (q†),∇φh)h, ∀φh ∈ V 0

h .

Repeating the argument of Lemma 5.7 gives

∥(Ũnh (q†)− Ũnh (PA(qθϵ)))
N
1 ∥ℓ2(L2(Ω)) ≤ cϵ. (5.37)

Since ∥(u†(tn)− Unh (q
†))N1 ∥ℓ2(L2(Ω)) ≤ c(τ + h2) [84, Lemma 4.2], it suffices to show

∥(Unh (q†)− Ũnh (q
†))N1 ∥ℓ2(L2(Ω)) ≤ ch2. (5.38)
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Let enh = Unh (q
†)− Ũnh (q

†). Then enh satisfies enh = 0 and

(∂τe
n
h, φh) + (q†∇enh,∇φh)h = (q†∇Unh (q†),∇φh)h − (q†∇Unh (q†),∇φh), ∀φh ∈ V 0

h , n = 1, . . . , N.

Now upon choosing φh = enh and applying Lemma 5.3 (with p = 2), we obtain

|(q†∇enh,∇enh)h − (q†∇enh,∇enh)| ≤ ch2∥q†∥W 2,∞(Ω)∥∇Unh (q†)∥L2(Ω)∥∇enh∥L2(Ω).

Consequently, we have

1
2∂τ∥e

n
h∥2L2(Ω) + cq∥∇enh∥2L2(Ω) ≤ ch2∥q†∥W 2,∞(Ω)∥∇Unh (q†)∥L2(Ω)∥∇enh∥L2(Ω).

Then upon summing the identity over n from 1 to N , noting e0h = 0, we arrive at

∥eNh ∥2L2(Ω) + cq∥(∇enh)N1 ∥2ℓ2(L2(Ω)) ≤ ch2∥(∇Unh (q†))N1 ∥ℓ2(L2(Ω))∥(∇enh)N1 ∥ℓ2(L2(Ω)).

Then the estimate (5.38) follows from the bound ∥(∇Unh (q†))N1 ∥ℓ2(L2(Ω)) ≤ c [144, Lemma 6.2].

The next lemma gives an a priori bound on u(q†)(tn) − Ũnh (q̃
∗
θ) and q̃∗θ , with the quadrature

approximation. The proof is identical with that for Lemma 5.8, and hence omitted.

Lemma 5.10. Let Assumption 5.7 hold. Fix ϵ > 0, and let θ∗ ∈ P∞,ϵ be a minimizer to problem

(5.34)-(5.35) and q̃∗θ its NN realization. Then the following estimate holds

∥(u(q†)(tn)− Ũnh (PA(q̃
∗
θ)))

N
N0

∥2ℓ2(L2(Ω)) + γQh(|∇PA(q̃
∗
θ)|2) ≤ c(τ2 + h4 + ϵ2 + δ2 + γ).

Now we can present the main result of this section.

Theorem 5.8. Let Assumption 5.7 hold. Fix ϵ > 0, and let θ∗ ∈ P∞,ϵ be a minimizer to problem

(5.34)-(5.35) and q̃∗θ its NN realization. Let η2 := τ2 + h4 + ϵ2 + δ2 + γ and ζ = 1 + γ−1η2 +

2−2nh2R4LW 4L−4. Then the following estimate holds

τ3
N∑

j=N0+1

j∑
i=N0+1

j∑
n=i

∫
Ω

(
q† − PA(q̃

∗
θ)

q†

)2(
q†|∇u†(tn)|2 +

(
f(tn)− ∂tu

†(tn)
)
u†(tn)

)
dx

≤ c
(
hζ

1
2 + (min(h−1η + h, 1) + 2−nhd

1
2RLWL

)
ζ

1
2 .

Proof. For any φ ∈ H1
0 (Ω), the weak formulations of u† and Ũmh (q̃∗θ), cf. (5.26) and (5.35), imply

(
(q† − PA(q̃

∗
θ))∇u†(tn),∇φ

)
=
(
(q† − PA(q̃

∗
θ))∇u†(tn),∇(φ− Phφ)

)
+
(
(q† − PA(q̃

∗
θ))∇u†(tn),∇Phφ

)
= −

(
∇ ·
(
(q† − PA(q̃

∗
θ))∇u†(tn)

)
, φ− Phφ

)
+
(
PA(q̃

∗
θ)∇(Ũnh (PA(q̃

∗
θ))− u†(tn)),∇Phφ

)
+
(
∂̄τ Ũ

n
h (PA(q̃

∗
θ))− ∂tu

†(tn), Phφ
)

+
((
PA(q̃

∗
θ)∇Ũnh (PA(q̃

∗
θ)),∇Phφ

)
h
−
(
PA(q̃

∗
θ)Ũ

n
h (PA(q̃

∗
θ)),∇Phφ

))
=: In + IIn + IIIn + IVn.
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Set φ ≡ φn =
q†−PA(q̃∗θ )

q†
u†(tn) in the identity. Lemma 5.10 and the argument for (5.23) imply

∥∇φ∥L2(Ω) ≤ c(1 + ∥∇PA(q̃
∗
θ)∥L2(Ω)) ≤ cζ

1
2 .

Then repeating the argument for Theorem 5.6 yields

|In| ≤ chζ, τ
M∑

m=M0

|IIn| ≤ cmin(h−1η + h, 1)ζ
1
2 and τ3

N∑
j=N0+1

j∑
i=N0+1

j∑
n=i

IIIn ≤ cη.

Then it follows from Lemma 5.3 (with p = 1), the stability of PA and the bounds (5.20) and (5.36)

that

τ
N∑

j=N0

|IVn| ≤ c2−nh∥PA(q̃
∗
θ)∥W 1,∞(Ω)

(
max

N0≤n≤N
∥∇Phφn∥L2(Ω)

)∥∥(∇Ũnh (PA(q̃
∗
θ)))

N
N0

∥∥
ℓ2(L2(Ω))

≤ c2−nhζ
1
2 (∥PA(q̃

∗
θ)∥L∞(Ω) + ∥∇PA(q̃

∗
θ)∥L∞(Ω))

∥∥(∇Ũnh (PA(q̃
∗
θ)))

N
N0

∥ℓ2(L2(Ω))

≤ c2−nhζ
1
2 (1 + ∥∇q̃∗θ∥L∞(Ω))

∥∥(∇Ũnh (PA(q̃
∗
θ)))

N
N0

∥ℓ2(L2(Ω)) ≤ c2−nhd
1
2RLWLζ

1
2 .

Combining the preceding estimates directly shows the desired assertion.

5.3 Numerical results

First we describe the implementation of the hybrid NN-FEM approach, i.e., problems (5.7)-(5.8) and

(5.27)-(5.28). We train the NNs by minimizing the losses (5.7) and (5.27) for the elliptic and parabolic

cases, respectively. Traditionally, the NNs are trained using gradient type methods and the gradient is

computed using back-propagation [103], which can be done in many software framework, e.g., PyTorch

and Tensorflow. In the hybrid method, we employ the adjoint technique [32]. By the chain rule, the

derivative of the loss Jγ to the NN parameter θ is given by
dJγ
dθ =

dJγ
dq

dq
dθ . We compute J ′

γ(q) =
dJγ
dq

using the standard adjoint technique, and dq
dθ using back-propagation.

5.3.1 Numerical experiments

Now we present numerical reconstructions PA(q
∗
θ) and q

∗
h using the hybrid NN-FEM approach and the

fully FEM. Their accuracy to the exact diffusivity q† is measured by the relative error:

e(PA(q
∗
θ)) := ∥q† − PA(q

∗
θ)∥L2(Ω)/∥q†∥L2(Ω) and e(q∗h) := ∥q† − q∗h∥L2(Ω)/∥q†∥L2(Ω).

The exact data u† is generated on a finer mesh, and in the elliptic case, the noisy data zδ is generated

by zδ(x) = u†(x) + δ∥u†∥L∞(Ω)ξ(x) for x ∈ Ω, where ξ(x) follows the standard Gaussian distribution,

and δ > 0 is the (relative) noise level. The parabolic case is similar. Unless otherwise stated, the NN

for approximating q is taken to be d-32-32-1 (i.e., with two hidden layers, each having 32 neurons).
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The mesh size h is 1/40 and 1/32 and the time step size τ is 1/1000 and 1/200, for one- and two-

dimensional problems, respectively. These FEM discretization parameters are applied to both hybrid

method and pure FEM. The regularization parameters γθ for the hybrid NN-FEM method and γh for

the fully FEM are determined in a trail and test way. The resulting loss is minimized using ADAM [98].

All the experiments were carried out on a personal desktop (with Windows 10, with RAM 64.0GB,

Intel(R) Core(TM) i9-10900 CPU, 2.80 GHz). The hybrid NN-FEM approach was implemented with

Python 3.8.8 on the software framework TensorFlow using the SciKit-fem [62] package to solve the

PDEs, and the pure FEM approach was implemented on MATLAB 2022a. Unless otherwise stated,

the level of quadrature is fixed at n = 0 (i.e., no further sub-division).

Table 5.1: The relative errors for the examples at different noise levels.

(a) Example 5.1(i) (b) Example 5.1(ii)

δ 10e-2 5e-2 1e-2 5e-3 1e-3 10e-2 5e-2 1e-2 5e-3 1e-3

γθ 1e-6 1e-6 1e-6 1e-7 1e-7 1e-7 1e-7 1e-8 1e-8 1e-8

e(q∗θ) 3.17e-2 2.25e-2 1.24e-2 1.24e-2 1.12e-2 8.92e-2 4.76e-2 3.86e-2 3.91e-2 2.67e-2

γh 2e-6 1e-6 1e-7 5e-8 1e-8 2e-6 1e-6 1e-7 5e-8 1e-8

e(q∗h) 7.16e-2 4.76e-2 2.39e-2 2.04e-2 1.98e-2 1.23e-1 7.76e-2 3.58e-2 2.29e-2 1.54e-2

(c) Example 5.2(i) (d) Example 5.2(ii)

δ 10e-2 5e-2 1e-2 5e-3 1e-3 10e-2 5e-2 1e-2 5e-3 1e-3

γθ 1e-6 1e-6 1e-6 1e-7 1e-7 1e-7 1e-7 1e-8 1e-8 1e-8

e(q∗θ) 3.30e-2 3.13e-2 1.48e-2 1.47e-2 1.08e-2 6.21e-2 4.62e-2 2.85e-2 2.63e-2 2.68e-2

γh 2e-6 1e-6 1e-7 5e-8 1e-8 2e-7 1e-7 1e-8 5e-9 1e-9

e(qh) 5.63e-2 4.97e-2 1.58e-2 1.53e-2 1.21e-2 7.18e-2 4.70e-2 2.08e-2 1.81e-2 1.80e-2

(e) Example 5.3

δ 10e-2 5e-2 1e-2 5e-3 1e-3

γθ 1e-6 1e-6 1e-6 1e-6 1e-6

e(q∗θ) 2.92e-2 2.25e-2 1.43e-2 1.92e-2 1.36e-2

γh 2e-6 1e-6 1e-7 5e-8 1e-8

e(qh) 6.15e-2 4.09e-2 3.01e-2 2.20e-2 1.52e-2

The first two examples are about the inverse problem in the elliptic case.

Example 5.1. (i) Ω = (0, 1), q†(x) = 2 + sin(2πx) and f ≡ 10.
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(ii) Ω = (0, 1)2, q†(x1, x2) = 2 + sin(2πx1) sin(2πx2), u0(x1, x2) = 4x1(1− x2) and f ≡ 10.

(a) δ = 10e-2 (b) δ = 5e-2 (c) δ = 1e-2

Figure 5.1: The reconstructions for Example 5.1(i) at three noise levels by the hybrid approach and

pure FEM.

In the ADAM optimizer, the hybrid scheme employs a learning rate 1e-3 and 1e-2 for cases (i) and

(ii), respectively. The reconstructions for case (i) in Fig. 5.1 show that the hybrid approach is more

accurate than the pure FEM, although visually they are largely comparable, consistent with the prior

observation [19]. This is also confirmed by the relative errors in Table 5.1(a). These results clearly

show the influence of the discretization scheme on numerical inversion. The excellent performance

of the hybrid method might be attributed to the strong implicit smoothness prior imposed by NNs,

which strongly favors smooth solutions [125], when compared with that by the FEM basis.

To gain further insights, we examine the change of the loss during the training process in Fig. 5.2.

The plots are for two cases: the 1-32-32-1 architecture with different noise levels to study the impact

of data noise, and three architectures: i.e., 1-16-16-1, 1-32-32-1 and 1-32-32-32-1 (at a noise level 5%)

to study the impact of the architectural choice. During the training, the loss J first decreases only

slowly, exhibiting a plateau phenomenon, and then it experiences a rapid decreasing period, after

which it almost stagnates and oscillates a little bit. This pattern is consistently observed for all the

considered noise levels. The origin of the plateau remains elusive; see [3] for an interesting investigation

of the phenomenon for gradient descent on ReLU networks. The evolution of the relative error shows

a similar behavior: it first decreases slowly, then enjoys a fast decay and finally tends to be nearly

steady.

Now we examine the influence of quadrature error, by varying the quadrature level n over the set

{0, 1, · · · , 5}. This is carried out on two settings with 1% noise: (i) the standard setting as before, and

(ii) the setting with the architecture 1-128-128-128-1, a mesh size h = 1/40, γ = 1e-6, and a learning

rate 1e-3. The architecture in the latter is far bigger, and hence, according to the error estimate

in Theorem 5.4, the problem becomes more challenging and may require more quadrature points to

deliver quality reconstructions. The numerical results are given in Fig. 5.3. It is observed that the
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(a) loss v.s. noise level (b) relative error v.s. noise level

(c) loss v.s. NN architecture (d) relative error v.s. NN architecture

Figure 5.2: The variation of the loss J and error e during the training for Example 5.1(i) at different

noise levels and NN architectures.

(a) Example 5.1(i) (b) Example 5.2(i)

Figure 5.3: The relative errors for Examples 5.1(i) and 5.2(i) versus quadrature level and NN archi-

tectures, at a noise level 1%.
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relative error e does decay slightly when using more quadrature points but the influence is very minor.

Hence, the error bound in Theorem 5.4 might be overly pessimistic in terms of the quadrature error.

In the rest of the experiments, we do not increase the quadrature level.

In case (ii), the reconstructions by the hybrid approach is slightly more accurate than that by

the pure FEM, when the data is highly noisy; see Fig. 5.4 and Table 5.1(b). When the data is very

accurate, the hybrid approach is actually slightly less accurate. This is attributed to the complex

optimization issue: the loss is highly nonconvex in the NN parameters, and its landscape is very

complicated, which may prevent the ADAM optimizer from finding a global minimizer. Fig. 5.5

shows the evolution of the loss J and relative error e in the two settings during the training process:

(i) the 2-32-32-1 architecture with noise level varying form 0.1% to 10% and (ii) with a fixed 1% noise

level, on three NNs, i.e., 2-16-16-1, 2-32-32-1, and 2-32-32-32-1. The results show a similar behavior as

for case (i): the convergence curve shows fast convergence only after an initial plateau (of length about

5000 iterations). This may indicate the need of a better initialization strategy for the NN parameters

in order to shorten the plateau length (and thus faster convergence).

(a) exact (b) δ = 5e-2 (c) δ = 1e-2

Figure 5.4: The reconstructions for Example 5.1(ii) at two noise levels with the hybrid method (top)

and the pure FEM (bottom).

The second set of experiments is for the inverse diffusivity problem in the parabolic case.

Example 5.2. (i) Ω = (0, 1), q†(x) = 2 + sin(2πx) and f(x, t) = 10t, T0 = 0.9, and T = 1.

(ii) Ω = (0, 1)2, q†(x1, x2) = 2+sin(2πx1) sin(2πx2), u0(x1, x2) = 4x1(1−x1) and f(x1, x2, t) = 10t,

T0 = 0.9 and T = 1.
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(a) loss v.s. noise level (b) relative error v.s. noise level

(c) loss v.s. NN architecture (d) relative error v.s. NN architecture

Figure 5.5: The variation of the loss J and error e during the training for Example 5.1(ii) at different

noise levels and NN architectures.

(a) δ = 10e-2 (b) δ = 5e-2 (c) δ = 1e-2

Figure 5.6: The reconstructions for Example 5.2(i) with three noise levels, obtained by the hybrid

method and the pure FEM.
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In the ADAM optimizer, the hybrid scheme employs a learning rate 1e-3 and 1e-2 for cases (i)

and (ii), respectively. The numerical results in Figs. 5.6 and 5.7 (also Tables 5.1(c)–(d)) show similar

observations as for the elliptic case: the hybrid approach appears to more accurate for highly noisy

data. Likewise, the influence of the quadrature error on the reconstruction eerror e is again very mild,

cf. Fig. 5.3(b).

(a) exact (b) δ = 5e-2 (c) δ = 1e-2

Figure 5.7: The reconstructions for Example 5.2(ii) at two noise levels, by the hybrid method (top)

and the pure FEM (bottom).

The last example is about partial interior data (on a subdomain Ω′ ⊂ Ω).

Example 5.3. Ω = (0, 1), q†(x) = 2 + 10(1− x)x2 and f ≡ 10, Ω′ = (0.3, 0.7).

(a) δ = 10e-2 (b) δ = 5e-2 (c) δ = 1e-2

Figure 5.8: The numerical reconstructions for Example 5.3 at three noise levels, obtained with the

hybrid method and the pure FEM.

For the hybrid inversion, we employ a learning rate 1e-3. The numerical results are presented in
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Fig. 5.8; see also Table 5.1(e) for the relative errors. Due to the availability of the only partial interior

data, the problem is far more ill-posed. It is observed that the reconstructions by the hybrid approach

is more accurate than that by the pure FEM, indicating the high robustness of the hybrid approach

for more challenging inverse problems.
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CHAPTER 6.

Recovery of Multiple Parameters in Subdiffusion from One Lateral

Boundary Measurement

This work is concerned with an inverse problem of simultaneously recovering multiple parameters in

a subdiffusion model from one single lateral boundary measurement in a partly unknown medium.

Let Ω ⊂ Rd (d = 2, 3) be an open bounded domain with a Lipschitz and piecewise C1,1 boundary

and T > 0 be a fixed final time. Consider the following subdiffusion problem for the function u:
∂αt u−∇ · (q(x)∇u(x)) = f in Ω× (0, T ],

q∂νu = g on ∂Ω× (0, T ],

u(0) = u0 in Ω,

(6.1)

where ∂αt , α ∈ (0, 1) is the fractional derivative defined in (1.11), u0 ∈ L2(Ω) and (time-independent)

f ∈ L2(Ω) are unknown initial and source data, and ν denotes the unit outward normal vector to the

boundary ∂Ω.

In this chapter, we study mathematical and numerical aspects of an inverse problem of recovering

the diffusion coefficient q and fractional order α from a single lateral boundary measurement of the

solution,

H(x, t) = u(x, t), x ∈ Γ0 ⊂ ∂Ω, t ∈ (0, T ],

without the knowledge of the initial data u0 and source f . In particular, we assume the diffusion

coefficient q is piecewise constant:

q(x) = 1 + µχω(x), (6.2)

where µ > −1 is a nonzero unknown constant, ω is an unknown convex polyhedron in Ω satisfying

diam(ω) < dist(ω, ∂Ω) and χω denotes the characteristic function of ω.

We design a special excitation g, which is separable:

g(x, t) = ψ(t)η(x), (6.3)

1Chapter 6 is reprinted with permission from ”Recovery of Multiple Parameters in Subdiffusion from One Lateral

Boundary Measurement”, Siyu Cen, Bangti Jin, Yikan Liu, Zhi Zhou, Inverse Problems, 39 (10) (2023), 104001. The

candidate mainly works on the research methodology discussion and the coding and data collection in numerical exper-

iments.
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where 0 ̸≡ η ∈ H
1
2 (∂Ω) satisfies the compatibility condition

∫
∂Ω ηdS = 0 and ψ ∈ C1(R+) satisfies

ψ(t) =


0, t < T0,

1, t > T1,

(6.4)

with 0 < T0 < T1 < T . Note that the inverse problem involves missing data (u0 and f), whereas the

available data is only on a partial boundary. Thus, it is both mathematically and numerically very

challenging, due to not only the severe ill-posed nature and high degree of nonlinearity but also the

unknown forward map from the parameters to the data.

The rest of the paper is organized as follows. In Section 6.1 we describe preliminary results on the

model, especially time analyticity of the data. Then in Section 6.2 we give the uniqueness result in

case of piecewise constant q, and in Section 6.3 we develop a recovery algorithm based on the level set

method. We present extensive numerical experiments to illustrate the feasibility of recovering multiple

parameters in Section 6.4.

6.1 Time analyticity of solutions

In this section, we present preliminary analytical results. Let A be the L2(Ω) realization of the elliptic

operator −∇ · (q∇), with a domain Dom(A) := {v ∈ L2(Ω) : −∇ · (q∇v) ∈ L2(Ω), ∂νv|∂Ω = 0}. Let

{λℓ}ℓ≥1 be a strictly increasing sequence of eigenvalues of A, and denote the multiplicity of λℓ by mℓ

and {φℓ,k}mℓ
k=1 an L2(Ω) orthonormal basis of ker(A− λℓ). That is, for any ℓ ∈ N, k = 1, . . . ,mℓ:

−∇ · (q∇φℓ,k) = λℓφℓ,k in Ω,

q∂νφℓ,k = 0 on ∂Ω.

(6.5)

The eigenvalues {λℓ}∞ℓ=1 are nonnegative, and the eigenfunctions {φℓ,k : k = 1, . . . ,mℓ}∞ℓ=1 form a

complete orthonormal basis of L2(Ω). Note that λ1 = 0 (and has multiplicity 1) and the corresponding

eigenfunction φ1 = |Ω|−
1
2 is constant valued, where |E| denotes the Lebesgue measure of a set E. Due

to the piecewise constancy of the coefficient q, φℓ,k is smooth in ω and Ω \ ω. Moreover, it satisfies

the following transmission condition on the interface ∂ω:

φℓ,k|− = φℓ,k|+ and ∂nφℓ,k|− = (1 + µ)∂nφℓ,k|+ on ∂ω, (6.6)

where φℓ,k|+ and φℓ,k|− denote the limits from ω and Ω \ ω to the interface ∂ω, respectively, and

∂nφℓ,k|± denotes the derivative with respect to the unit outer normal vector n on ∂ω. Then we define

the fractional power As (s ≥ 0) via functional calculus by

Asv :=

∞∑
ℓ=1

λsℓ

mℓ∑
k=1

(v, φℓ,k)φℓ,k,
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with a domain Dom(As) = {v ∈ L2(Ω) : Asv ∈ L2(Ω)}, and the associated graph norm

∥v∥Dom(As) =
( ∞∑
ℓ=1

λ2sℓ

mℓ∑
k=1

(v, φℓ,k)
2
) 1

2
.

By linearity, we may split the solution u of problem (6.1) into u = ui + ub, with ui and ub solving
∂αt ui −∇ · (q∇ui) = f in Ω× (0, T ],

q∂νui = 0 on ∂Ω× (0, T ],

ui(0) = u0 in Ω

and


∂αt ub −∇ · (q∇ub) = 0 in Ω× (0, T ],

q∂νub = g on ∂Ω× (0, T ],

ub(0) = 0 in Ω,

(6.7)

respectively. The following result gives the representations of ui and ub, where Eα,β denotes the

Mittag-Leffler function defined in (2.5).

Proposition 6.1. Let u0, f ∈ L2(Ω). Then there exist unique solutions ui, ub ∈ L2(0, T ;H1(Ω)) that

can be respectively represented by

ui(t) = (u0, φ1)φ1 +
(f, φ1)φ1t

α

Γ(1 + α)

+

∞∑
ℓ=2

mℓ∑
k=1

([
(u0, φℓ,k)− λ−1

ℓ (f, φℓ,k)
]
Eα,1(−λℓtα) + λ−1

ℓ (f, φℓ,k)
)
φℓ,k,

ub(t) =

∞∑
ℓ=1

mℓ∑
k=1

∫ t

0
(t− s)α−1Eα,α(−λℓ,k(t− s)α)(g(s), φℓ,k)∂Ω dsφℓ,k.

Hence, the solution u to problem (6.1) can be represented as

u(t) = ρ0 + ρ1t
α +

∞∑
ℓ=2

Eα,1(−λℓtα)ρℓ +
∞∑
ℓ=1

∫ t

0
(t− s)α−1Eα,α(−λℓ(t− s)α)

mℓ∑
k=1

(g(s), φℓ,k)∂Ω dsφℓ,k,

with ρℓ given by

ρℓ :=



(u0, φ1)φ1 +
∞∑
ℓ=2

mℓ∑
k=1

λ−1
ℓ (f, φℓ,k)φℓ,k, ℓ = 0,

(f, φ1)

Γ(1 + α)
φ1, ℓ = 1,

mℓ∑
k=1

[
(u0, φℓ,k)− λ−1

ℓ (f, φℓ,k)
]
φℓ,k, ℓ = 2, 3, . . . .

(6.8)

Proof. The representations follow from the standard separation of variables technique ([134], [76,

Section 6.2]). The piecewise constancy of the diffusivity q requires special care due to a lack of global

regularity. By multiplying the governing equation of ui by φℓ,k and then integrating over Ω, we get

∂αt (ui(t), φℓ,k) + (Aui(t), φℓ,k) = (f, φℓ,k).
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Integrating by parts twice and using the transmission condition (6.6) for φℓ,k (and ui) on ∂ω gives

(−∇ · (q∇ui), φℓ,k) = −
∫
Ω\ω

∇ · (∇ui)φℓ,k dx−
∫
ω
∇ · ((1 + µ)∇ui)φℓ,k dx

= −
∫
∂Ω

(∇ui · ν)φℓ,k dS −
∫
∂ω

(∇ui · n−)φℓ,k|− dS +

∫
Ω\ω

∇ui · ∇φℓ,k dx

−
∫
∂ω

(1 + µ)(∇ui · n+)φℓ,k|+ dS +

∫
ω
(1 + µ)∇ui · ∇φℓ,k dx

=

∫
Ω\ω

∇ui · ∇φℓ,k dx+

∫
ω
(1 + µ)∇ui · ∇φℓ,k dx

=

∫
∂Ω

(∇φℓ,k · ν)ui dS +

∫
∂ω

(∇φℓ,k · n−)ui|− dS −
∫
Ω\ω

∇ · (∇φℓ,k)ui dx

+

∫
∂ω

(1 + µ)(∇φℓ,k · n+)ui|+ dS −
∫
ω
∇ · ((1 + µ)∇φℓ,k)ui dx

= (ui,−∇ · (∇φℓ,k)) = λℓ(ui, φℓ,k).

Hence

(∂αt + λℓ)u
ℓ,k
i (t) = fℓ,k := (f, φℓ,k) for 0 < t ≤ T, with uℓ,ki (0) = uℓ,k0 := (u0, φℓ,k).

Then uℓ,ki (t) is given by [76, Proposition 4.5]

uℓ,ki (t) = uℓ,k0 Eα,1(−λℓtα) + fℓ,k

∫ t

0
sα−1Eα,α(−λℓsα) ds.

Note that u1i = u10 +
1

Γ(1+α)f1t
α. Now using the identity

d

dt
Eα,1(−λtα) = −λ tα−1Eα,α(−λtα), (6.9)

we have for ℓ ≥ 2 and k = 1, . . . ,mℓ that

uℓ,ki (t) = uℓ,k0 Eα,1(−λℓtα) + λ−1
ℓ [1− Eα,1(−λℓtα)] fℓ,k

=
(
uℓ,k0 − λ−1

ℓ fℓ,k

)
Eα,1(−λℓtα) + λ−1

ℓ fℓ,k.

This gives the representation of ui. Similarly, multiplying the governing equation for ub by φℓ,k and

repeating the argument yields that uℓ,kb (t) := (ub(t), φℓ,k) satisfies

(∂αt + λℓ)u
ℓ,k
b (t) = (g(t), φℓ,k)∂Ω for 0 < t ≤ T, with uℓ,kb (0) = 0.

The solution uℓ,kb (t) is given by [76, Proposition 4.5]

uℓ,kb (t) =

∫ t

0
(t− s)α−1Eα,α(−λℓ(t− s)α)(g(s), φℓ,k)∂Ω dsφℓ,k.

Thus the desired assertion follows. The representation of the solution u to problem (6.1) follows

directly from that of ub and ui, and the identity (6.9).
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Next we show properties of the boundary data H. This is achieved by first proving related prop-

erties of u and then applying the trace theorem. Below we study the analyticity of

ui(t) = ρ0 + ρ1t
α +

∞∑
ℓ=2

Eα,1(−λℓtα)ρℓ,

ub(t) =
∞∑
ℓ=1

mℓ∑
k=1

∫ t

0
(t− s)α−1Eα,α(−λℓ(t− s)α)(g(s), φℓ,k)∂Ω dsφℓ,k.

Since our focus is the trace on ∂Ω, we only study u on the subdomain Ω \ ω. Let ω′ ⊃ ω be a small

neighborhood of ω with a smooth boundary and denote Ω′ = Ω \ ω′. Recall that for a Banach space

B, the notation Cω(T,∞;B) denotes the set of functions valued in B and analytic in t ∈ (T,∞).

Proposition 6.2. For u0 ∈ L2(Ω), f ∈ L2(Ω) and g as in (6.3), the following statements hold.

(i) ui ∈ Cω(0,∞;H2(Ω′)) and ub ∈ Cω(T1 + ε,∞;H2(Ω′)) for arbitrarily fixed ε > 0.

(ii) The Laplace transforms ûi(z) and ûb(z) of ui and ub in t exist for all ℜ(z) > 0 and are respectively

given by

ûi(z) = z−1ρ0 + Γ(α+ 1)z−α−1ρ1 +
∞∑
ℓ=2

ρℓz
α−1

zα + λℓ
and ûb(z) =

∞∑
ℓ=1

mℓ∑
k=1

(ĝ(z), φℓ,k)∂Ωφℓ,k
zα + λℓ

.

Proof. Throughout this proof, let ε > 0 be arbitrarily fixed. Since λ1 = 0, by Lemma 2.3, there exist

constants c > 0 and θ ∈ (0, π2 ) such that for any z ∈ Σθ := {z ∈ C \ {0} : | arg(z)| ≤ θ}, we have

∥ui(z)∥2Dom(A) =

∞∑
n=1

λ2n

mn∑
j=1

(
φn,j , ρ0 + ρ1z

α +

∞∑
ℓ=2

Eα,1(−λℓzα)ρℓ

)2

=
∞∑
n=2

λ2n

mn∑
j=1

(
φn,j ,

∞∑
ℓ=2

mℓ∑
k=1

{
Eα,1(−λℓzα)

[
(u0, φℓ,k)− λ−1

ℓ (f, φℓ,k)
]
+λ−1

ℓ (f, φℓ,k)
}
φℓ,k

)2

≤ c
∞∑
n=2

λ2nEα,1(−λnzα)2
mn∑
j=1

{
(u0, φn,j)

2 + λ−2
n (f, φn,j)

2
}
+c

∞∑
n=1

mn∑
j=1

(f, φn,j)
2

≤ c|z|−2α
∞∑
n=2

mn∑
j=1

{
(u0, φn,j)

2 + λ−2
n (f, φn,j)

2
}
+c∥f∥2L2(Ω)

≤ c|z|−2α
(
∥u0∥2L2(Ω) + ∥f∥2L2(Ω)

)
+c∥f∥2L2(Ω).

Since u0, f ∈ L2(Ω), ∥ui(z)∥2Dom(A) is uniformly bounded for z ∈ Σθ. Since Eα,1(−λnzα) is analytic

in z ∈ Σθ and the series converges uniformly in any compact subset of Σθ, ui(t) is analytic in t ∈

(0,∞) as a Dom(A)-valued function, i.e., ui ∈ Cω(0,∞; Dom(A)). By Sobolev embedding, ui ∈

Cω(0,∞;H2(Ω′)).

Next we prove the analyticity of ub. By the choice g(x, t) = η(x)ψ(t) in (6.3) and integration by
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parts, for t > T1, u
1
b(t) := (ub(t), φ1) is given by

u1b(t) =
1

Γ(α)

∫ t

0
(t− s)α−1(g(s), φ1)∂Ω ds =

(η, φ1)∂Ω
Γ(α)

∫ t

0
(t− s)α−1ψ(s) ds

=
(η, φ1)∂Ω
αΓ(α)

[
−(t− s)αψ(s)|s=ts=0 +

∫ t

0
(t− s)αψ′(s) ds

]
=

(η, φ1)∂Ω
Γ(α+ 1)

∫ T1

T0

(t− s)αψ′(s) ds,

where the last step follows from the condition on ψ in (6.4). Thus the time-analyticity of u1b(t)φ1 for

t ∈ (T1 + ε,∞) follows. Next, again by integration by parts, (6.3)–(6.4) and the identity (6.9), for

t > T1, u
ℓ,k
b (t) := (ub(t), φℓ,k) with ℓ ≥ 2, k = 1, . . . ,mℓ can be written as

uℓ,kb (t) =

∫ t

0
(t− s)α−1Eα,α(−λℓ(t− s)α)(g(s), φℓ,k)∂Ω ds

=

∫ t

0

(g(s), φℓ,k)∂Ω
λℓ

d

ds
Eα,1(−λℓ(t− s)α) ds

= λ−1
ℓ

[
(g(s), φℓ,k)∂ΩEα,1(−λℓ(t− s)α)

]s=t
s=0

−
(η, φℓ,k)∂Ω

λℓ

∫ t

0
Eα,1(−λℓ(t− s)α)ψ′(s) ds

=
(η, φℓ,k)∂Ω

λℓ
ψ(t)−

(η, φℓ,k)∂Ω
λℓ

∫ T1

T0

Eα,1(−λℓ(t− s)α)ψ′(s) ds =: uℓ,kb,1(t) + uℓ,kb,2(t).

Since ψ(t) = 1 for t > T1, we see that uℓ,kb,1(t) is a constant for t > T1. Next we consider the following

boundary value problem

−∇ · (q∇U) = 0 in Ω, with q∂νU = η on ∂Ω. (6.10)

The compatibility condition (η, 1)∂Ω = 0 implies that there exist solutions to problem (6.10). We take

an arbitrary solution U . Since q is piecewise constant and η ∈ H
1
2 (∂Ω), we know that U ∈ H1(Ω) and

its restriction U |Ω′ ∈ H2(Ω′). Integrating by parts twice yields

(η, φℓ,k)∂Ω = λℓ(U,φℓ,k).

Similar to the argument for Proposition 6.1, from the transmission condition (6.6), we deduce

∞∑
ℓ=2

mℓ∑
k=1

uℓ,kb,1(t)φℓ,k =
∞∑
ℓ=2

mℓ∑
k=1

ψ(t)(U,φℓ,k)φℓ,k,

which is analytic in t ∈ (T1 + ε,∞) since it is constant in time and U ∈ L2(Ω). Moreover, by the

standard elliptic regularity theory,

∞∑
ℓ=2

mℓ∑
k=1

uℓ,kb,1φℓ,k ∈ Cω(T1 + ε,∞;H2(Ω′)).

Recall Young’s inequality for convolution, i.e., ∥f ∗ g∥Lr(R) ≤ ∥f∥Lp(R)∥g∥Lq(R) for p, q, r ≥ 1 with

p−1 + q−1 = r−1 + 1 and any f ∈ Lp(R) and g ∈ Lq(R). Then by Young’s inequality, Lemma 2.3 and
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the regularity estimate
∑∞

ℓ=2 λ
−2
ℓ

∑mℓ
k=1(η, φℓ,k)

2
∂Ω ≤ ∥U∥L2(Ω) <∞, we deduce∥∥∥∥∥

∞∑
ℓ=2

mℓ∑
k=1

uℓ,kb,2(z)φℓ,k

∥∥∥∥∥
2

Dom(A)

=

∞∑
n=1

λ2n

mn∑
j=1

(
φn,j ,

∞∑
ℓ=2

mℓ∑
k=1

uℓ,kb,2(z)φℓ,k

)2

=
∞∑
n=2

λ2n

mn∑
j=1

(
(η, φn,j)∂Ω

λn

∫ T1

T0

Eα,1(−λn(z − s)α)ψ′(s) ds

)2

≤
∞∑
n=2

mn∑
j=1

(η, φn,j)
2
∂Ω

(
c

λn|z − T1|α

∫ T1

T0

|ψ′(s)|ds
)2

≤
(
c∥ψ∥W 1,∞(R+)

|z − T1|α

)2 ∞∑
n=2

λ−2
n

mn∑
j=1

|(η, φn,j)∂Ω|2 ≤
c

|z − T1|2α
.

Since uℓ,kb,2(t) is analytic in (T1 + ε,∞) and the series
∑∞

ℓ=2

∑mℓ
k=1 u

ℓ,k
b,2(z)φℓ,k converges uniformly in

Dom(A) for z ∈ T1+ε+Σθ, it belongs to C
ω(T1+ε,∞; Dom(A)), and hence ub ∈ Cω(T1+ε,∞;H2(Ω′)).

This proves part (i).

The argument for part (i) implies that the series converges uniformly in Dom(A) for t ∈ (0,∞),

and

∥e−tzui(t)∥Dom(A) ≤ c e−tℜ(z)(t−α + 1), t > 0.

The function e−tℜ(z)(t−α+1) is integrable in t over (0,∞) for any fixed z with ℜ(z) > 0. By Lebesgue’s

dominated convergence theorem and taking Laplace transform termwise, we obtain

ûi(z) = z−1ρ0 + Γ(α+ 1)z−α−1ρ1 +

∞∑
ℓ=2

ρℓz
α−1

zα + λℓ
, ∀ℜ(z) > 0.

The argument for part (i) also implies

∥e−tzub(t)∥Dom(A) ≤ c e−tℜ(z)|t− T1|−α, t > 0.

Then termwise Laplace transform and Lebesgue’s dominated convergence theorem complete the proof

of the proposition.

Thus, ui and ub are analytic in time and haveH2(Ω′) regularity. Since ∂Ω is Lipschitz and piecewise

C1,1, their traces on ∂Ω are well defined. The next result is direct from the trace theorem and Sobolev

embedding theorem.

Corollary 6.1. Let the assumptions in Proposition 6.2 hold. Then the data H = u|Γ0×(0,T ) to problem

(6.1) can be represented by

H(t) = ρ0 + ρ1t
α +

∞∑
ℓ=2

Eα,1(−λℓtα)ρℓ︸ ︷︷ ︸
=:Hi(t)

+

∞∑
ℓ=1

mℓ∑
k=1

∫ t

0
(t− s)α−1Eα,α(−λℓ(t− s)α)(g(s), φℓ,k)∂Ω dsφℓ,k︸ ︷︷ ︸

=:Hb(t)

.
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Moreover, Hi and Hb satisfy the following properties.

(i) Hi ∈ Cω(0,∞;L2(Γ0)) and Hb ∈ Cω(T1 + ε,∞;L2(Γ0)) for arbitrarily fixed ε > 0.

(ii) The Laplace transforms Ĥi(z) and Ĥb(z) of Hi and Hb in t exist for all ℜ(z) > 0 and are given

by

Ĥi(z) = z−1ρ0 + Γ(α+ 1)z−α−1ρ1 +
∞∑
ℓ=2

ρℓz
α−1

zα + λℓ
,

Ĥb(z) =
∞∑
ℓ=1

mℓ∑
k=1

(ĝ(z), φℓ,k)∂Ωφℓ,k
zα + λℓ

.

Remark 6.1. The analysis of Theorem 6.1 crucially exploits the analyticity of the measurement

Hi(t) in time, which relies on condition (6.4), i.e., ψ(t) ≡ 0 for t ∈ [0, T0]. The condition ψ(t) ≡ 1

for t ≥ T1 for some T1 < T from (6.4) ensures the time analyticity of Hb(t) for t > T1 + ε, which

is needed for Theorem 6.2. It should be interpreted as analytically extending the observation Hb(t)

by analytically extending ψ(t), both from (T1, T ) to (T1,∞). Alternative conditions on ψ(t) ensuring

the time analyticity of Hb(t) for t > T1 + ε, e.g., ψ(t) vanishes identically on (T1, T ), would also be

sufficient for Theorem 6.2.

6.2 Uniqueness

Now we establish a uniqueness result for recovering the fractional order α and piecewise constant q.

The proof proceeds in two steps: First we show the uniqueness of the order α from the observation,

despite that the initial condition u0 and source f are unknown. Then we show the uniqueness of q.

The key observation is that the contributions from u0 and f can be extracted explicitly. Since the

Dirichlet data is only available on a sub-boundary Γ0, we view ρk as a L2(Γ0)-valued function. The

notation K denotes the set {k ∈ N : ρk ̸≡ 0 in L2(Γ0)}, i.e., the support of the sequence (ρ0, ρ1, . . . )

in L2(Γ0) sense, similarly, K̃ = {k ∈ N : ρ̃k ̸≡ 0 in L2(Γ0)}, and N∗ = N \ {1}. Below we denote by A

the admissible set of conductivities, i.e.,

A = {1 + µχω(x) : µ > −1 and ω ⊂ Ω is a convex polygon}.

Theorem 6.1. Let α, α̃ ∈ (0, 1), (q, f, u0), (q̃, f̃ , ũ0) ∈ A × L2(Ω) × L2(Ω), and fix g as (6.3) with

ψ(t) satisfying condition (6.4). Let H and H̃ be the corresponding Dirichlet observations. Then for

some θ > 0, the condition h = H̃ on Γ0 × [T0 − θ, T0] implies α = α̃, ρ0 = ρ̃0 and {(ρk, λk)}k∈K =

{(ρ̃k, λ̃k)}k∈K̃ if K, K̃ ̸= ∅.

107



Proof. By the definition of g, we have g(y, t) ≡ 0 for y ∈ ∂Ω, t ∈ [0, T0]. Then by Corollary 6.1,

H(y, t) admits a Dirichlet representation

H(y, t) = ρ0(y) + ρ1(y)t
α +

∑
k∈K∩N∗

ρk(y)Eα,1(−λktα).

By Corollary 6.1(i), H(t) is analytic as an L2(∂Ω)-valued function in t > 0. By analytic continuation,

the condition H(t) = H̃(t) for t ∈ [T0 − θ, T0] implies that H(t) = H̃(t) in L2(Γ0) for all t > 0, i.e.,

ρ0(y) + ρ1(y)t
α +

∑
k∈K∩N∗

ρk(y)Eα,1(−λktα) = ρ̃0(y) + ρ̃1(y)t
α̃ +

∑
k∈K̃∩N∗

ρ̃k(y)Eα̃,1(−λ̃ktα̃).

From the decay property of Eα,1(−η) (see Lemma 2.3), we derive ρ0(y) + ρ1(y)t
α = ρ̃0(y) + ρ̃1(y)t

α̃,

indicating ρ0 = ρ̃0 and ρ1 = ρ̃1. Moreover, we have α = α̃ if 1 ∈ K. If 1 ̸∈ K and 1 ̸∈ K̃, i.e.,

ρ1 = ρ̃1 = 0, then∑
k∈K∩N∗

ρk(y)Eα,1(−λktα) =
∑

k∈K̃∩N∗

ρ̃k(y)Eα̃,1(−λ̃ktα̃) on Γ0 × (0,∞).

Proposition 6.1(ii) and Laplace transform give∑
k∈K∩N∗

ρk(y)z
α−1

zα + λk
=

∑
k∈K̃∩N∗

ρ̃k(y)z
α̃−1

zα̃ + λ̃k
.

Assuming that α > α̃, dividing both sides by zα̃−1 and setting ζ := zα, we have∑
k∈K∩N∗

ρk(y)ζ
1− α̃

α

ζ + λk
=

∑
k∈K̃∩N∗

ρ̃k(y)

ζ
α̃
α + λ̃k

.

Upon noting K ̸= ∅, choosing an arbitrary k0 ∈ K and rearranging terms, we derive

ρk0(y)ζ
1− α̃

α =

 ∑
k∈K̃∩N∗

ρ̃k(y)

ζ
α̃
α + λ̃k

−
∑

k∈K∩N∗\{k0}

ρk(y)ζ
1− α̃

α

ζ + λk

 (ζ + λk0).

Letting ζ → −λk0 and noting α > α̃, the right hand side tends to zero (since all λ̃k are positive, and

arg((−λk0)
α̃
α ) = α̃π

α ∈ (0, π)) and hence ρk0 ≡ 0 in L2(Γ0), which contradicts the assumption k0 ∈ K.

Thus, we deduce α ≤ α̃. The same argument yields α ≥ α̃, so α = α̃. These discussions thus yield∑
k∈K∩N∗

ρk(y)

ζ + λk
=

∑
k∈K̃∩N∗

ρ̃k(y)

ζ + λ̃k
. (6.11)

Note that both sides of the identity (6.11) are L2(Γ0)-valued functions in ζ. Next we show both

converge uniformly in any compact subset in C \ ({−λk}k∈K∩N∗ ∪ {−λ̃k}k∈K̃∩N∗) and are analytic in

C \ ({−λk}k∈K∩N∗ ∪ {−λ̃k}k∈K̃∩N∗). Indeed, since u0, f ∈ L2(Ω), for all ζ in any compact subset of

C \ ({−λk}k∈K∩N∗ ∪ {−λ̃k}k∈K̃∩N∗), we have∥∥∥∥∥ ∑
k∈K∩N∗

ρk
ζ + λk

∥∥∥∥∥
2

Dom(A)

≤ c
∑
ℓ∈N∗

λ2ℓ
|(u0, φℓ)|2 + λ−2

ℓ |(f, φℓ)|2

|ζ + λℓ|2

≤c
∑
ℓ∈N∗

(
|(u0, φℓ)|2 + λ−2

ℓ |(f, φℓ)|2
)
<∞.
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Hence, by the trace theorem, the identity (6.11) holds for all ζ ∈ C \ ({−λk}k∈K∩N∗ ∪ {−λ̃k}k∈K̃∩N∗).

Assume that λj ̸∈ {λ̃k}k∈K̃∩N∗ for some j ∈ K∩N∗. Then we can choose a small circle Cj centered at

−λj which does not contain {−λ̃k}k∈K̃∩N∗ . Integrating on Cj and applying the Cauchy theorem give

2π
√
−1 ρj/λj = 0, which contradicts the assumption ρj ̸≡ 0 in L2(Γ0). Hence, λj ∈ {λ̃k}k∈K̃∩N∗ for

every j ∈ K∩N∗. Likewise, λ̃j ∈ {λk}k∈K∩N∗ for every j ∈ K̃∩N∗, and hence {λk}k∈K∩N∗ = {λ̃k}k∈K̃∩N∗ .

From (6.11), we obtain ∑
k∈K∩N∗

ρk(y)− ρ̃k(y)

ζ + λk
= 0, ∀ζ ∈ C \ {−λk}k∈K∩N∗ .

Varying j ∈ K∩N∗ and integrating over Cj , we obtain 2π
√
−1 (ρj− ρ̃j)/λj = 0, which directly implies

ρj = ρ̃j in L
2(Γ0). This completes the proof of the theorem.

Remark 6.2. The condition K ̸= ∅ holds whenever the following condition is valid (f, φ1) ̸= 0 or

(u0, φℓ,k)− λ−1
ℓ (f, φℓ,k) ̸= 0, k = 1, . . . ,mℓ, ℓ = 2, 3, . . .. Note that the condition (f, φ1) ̸= 0 does not

rely on the unknown parameter q, and can be easily guaranteed.

The next result gives the uniqueness of recovering the diffusion coefficient q from the lateral

boundary observation.

Theorem 6.2. Let condition (6.4) be fulfilled, and let (q, f, u0), (q̃, f̃ , ũ0) ∈ A×L2(Ω)×L2(Ω), and fix

g as (6.3). Let H and H̃ be the corresponding Dirichlet data. Then for any θ ∈ (0, T0], the condition

H = H̃ on Γ0 × [T0 − θ, T ] implies q = q̃.

Proof. In view of the linearity of problem (6.1), we can decompose the data H(t) into

H(t) = Hi(t) +Hb(t), t ∈ (0, T ],

with Hi(t) and Hb(t) given by

Hi(t) = ρ0 + ρ1t
α +

∑
k∈K∩N∗

ρkEα,1(−λktα),

Hb(t) =
∞∑
ℓ=1

∫ t

0
(t− s)α−1Eα,α(−λℓ(t− s)α)

mℓ∑
k=1

(g(s), φℓ,k)∂Ω dsφℓ,k,

which solve problem (6.1) with g ≡ 0 and f = u0 ≡ 0, respectively. By the choice of g in (6.3),

the interval [0, T ] can be divided into two subintervals: (0, T0] and [T0, T ]. For t ∈ (0, T0), ψ(t) ≡ 0,

Theorem 6.1 implies that {(ρk, λk)}k∈K = {(ρ̃k, λ̃k)}k∈K̃ and α = α̃, from which we deduce Hi(t) =

H̃i(t) for all t > 0. For t ∈ [T0, T ], this and the condition H(t) = H̃(t) imply Hb(t) = H̃b(t) in L
2(Γ0),

and hence
∞∑
ℓ=1

∫ t

T0

(t− s)α−1Eα,α(−λℓ(t− s)α)

mℓ∑
k=1

(g(s), φℓ,k)∂Ω dsφℓ,k

=

∞∑
ℓ=1

∫ t

T0

(t− s)α−1Eα,α(−λ̃ℓ(t− s)α)

m̃ℓ∑
k=1

(g(s), φ̃ℓ,k)∂Ω ds φ̃ℓ,k, t ∈ [T0, T ].
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By the analyticity in Corollary 6.1, the above identity holds for t ∈ [T0,∞). Thus applying Laplace

transform on both side gives

∞∑
ℓ=2

∑mℓ
k=1(ĝ(z), φℓ,k)∂Ωφℓ,k

zα + λℓ
=

∞∑
ℓ=2

∑m̃ℓ
k=1(ĝ(z), φ̃ℓ,k)∂Ωφ̃ℓ,k

zα + λ̃ℓ
, ∀ℜ(z) > 0. (6.12)

Since λ1 = λ̃1 = 0 and φ1 = φ̃1 = |Ω|−
1
2 , the index in (6.12) starts with ℓ = 2. Below we repeat the

argument for Theorem 6.1. First we show that both sides of (6.12) are analytic with ζ = zα in any

compact subset of C \ {−λℓ,−λ̃ℓ}ℓ≥2. Let U ∈ Dom(A
1
4
+ε) be a solution of problem (6.10), for all ζ

in a compact subset of C \ {−λℓ,−λ̃ℓ}ℓ≥2, we have∥∥∥∥∥
∞∑
ℓ=2

∑mℓ
k=1(ĝ(ζ

1
α ), φℓ,k)∂Ωφℓ,k
ζ + λℓ

∥∥∥∥∥
2

Dom(A
1
4+ε)

≤ c

∞∑
ℓ=2

λ
1
2
+2ε

ℓ

mℓ∑
k=1

∣∣∣∣(η, φℓ,k)∂Ωζ + λℓ

∣∣∣∣2

=c

∞∑
ℓ=1

λ
1
2
+2ε

ℓ

mℓ∑
k=1

∣∣∣∣λℓ(U,φℓ,k)ζ + λℓ

∣∣∣∣2 ≤ c∥U∥2
Dom(A

1
4+ε)

<∞.

Since each term of the series is a Dom(A
1
4
+ε)-valued function analytic in ζ and converges uniformly

in ζ, by the trace theorem, we obtain that both sides of (6.12) are L2(∂Ω)-valued functions analytic

in ζ ∈ C \ {−λℓ,−λ̃ℓ}ℓ≥2. Since λℓ, λ̃ℓ > 0 for ℓ ≥ 2, we may take ζ → 0 in (6.12) and obtain

∞∑
ℓ=2

∑mℓ
k=1(ĝ(0), φℓ,k)∂Ωφℓ,k

λℓ
=

∞∑
ℓ=2

∑m̃ℓ
k=1(ĝ(0), φ̃ℓ,k)∂Ωφ̃ℓ,k

λ̃ℓ
. (6.13)

Hence, w = w̃ on Γ0, where w and w̃ are the Dirichlet boundary data with q and q̃ in the elliptic

problem 
−∇ · (q∇w) = 0 in Ω,

q∂νw = ĝ(0) on ∂Ω

(6.14)

with the compatibility condition
∫
Ωw dx = 0. Indeed, the solution w of (6.14) can be represented as

w =

∞∑
ℓ=2

mℓ∑
k=1

(w,φℓ,k)φℓ,k =

∞∑
ℓ=2

mℓ∑
k=1

λ−1
ℓ (ĝ(0), φℓ,k)∂Ωφℓ,k,

where the first equality follows from the compatibility condition
∫
Ωw dx = 0 and the second is due to

integration by part. By the choice of g in (6.3), the elliptic problem (6.14) is uniquely solvable. Then

from [55, Theorem 1.1], we deduce that ω = ω̃ is uniquely determined by the input ĝ(0) = ψ̂(0)η.

Indeed, Friedman and Isakov [55] proved the unique determination of the convex polygon ω for the

case µ ≡ 1, based on extending the solution w harmonically across a vertex of ω and leading a

contradiction. The proof does not depend on the knowledge of the parameter µ and hence it is also

applicable here. Once ω is determined, it suffices to show the uniqueness of the scalar µ. Suppose

µ ≤ µ̃, i.e., q ≤ q̃ in ω and q ≡ q̃ ≡ 1 outside ω. Thus w and w̃ are harmonic functions near ∂Ω with

110



identical Cauchy data on Γ0, we conclude w = w̃ near ∂Ω. By multiplying both sides of the governing

equation in (6.14) with w, integrating over the domain Ω and applying Green’s formula, we have

0 =

∫
Ω
−∇ · (q∇w)w dx =

∫
Ω
q|∇w|2 dx−

∫
∂Ω
w ∂νw dS,

i.e., ∫
Ω
q|∇w|2 dx =

∫
∂Ω
w ∂νw dS.

Now since w and w̃ have identical Cauchy data on the boundary ∂Ω, we have
∫
∂Ωw ∂νw dS =∫

∂Ω w̃ ∂νw̃ dS, and consequently ∫
Ω
q|∇w|2 dx =

∫
Ω
q̃|∇w̃|2 dx.

This identity and the inequality q̃ ≥ q a.e. in Ω imply∫
Ω
q|∇w|2 dx ≥

∫
Ω
q|∇w̃|2 dx,

which immediately implies

1

2

∫
Ω
q|∇w|2dx−

∫
∂Ω
wĝ(0) dS ≥ 1

2

∫
Ω
q|∇w̃|2 dx−

∫
∂Ω
w̃ĝ(0) dS.

By the Dirichlet principle [42], w is the minimizer of the energy integral, and hence w = w̃ and

q = q̃.

Remark 6.3. Note that the uniqueness of the inclusion ω in [55] relies on the assumption ω being a

convex polygon with diam(ω) < dist(ω, ∂Ω). Alessandrini [10] removed the diameter assumption for

a specialized choice of the boundary data. The works [136, 93] proved the unique determination of

ω when ω is a disc or ball. For general shapes, even for ellipses or ellipsoids, this inverse problem

appears still open. Note that in the uniqueness proof, the key is the reduction of the problem to the

elliptic case, with a nonzero Neumann boundary condition. In particular, the result will not hold if the

temporal component ψ vanishes identically over the interval [0, T ], i.e., condition (6.4) does not hold.

Remark 6.4. If the diffusion coefficient q is not piecewise constant, it is also possible to show the

unique recovery if the boundary excitation data g is specially designed. For example, consider problem

(6.1) with a more general elliptic operator

Lu(x) := −∇ · (D(x)∇u(x)) + σ(x)u(x), x ∈ Ω. (6.15)

Here D ∈ C2(Ω) and σ ∈ L∞(Ω) with 0 < cD ≤ D ≤ cD in Ω and 0 ≤ σ ≤ cσ in Ω, and the Neumann

data g is constructed as follows. First, we choose sub-boundaries Γ1 and Γ2 such that Γ1∪Γ2 = ∂Ω and

Γ1 ∩Γ2 ̸= ∅. Let χ ∈ C∞(∂Ω) be a cut-off function with supp(χ) = Γ1 and χ ≡ 1 on Γ′
1, with Γ′

1 ⊂ Γ1
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such that Γ′
1 ∪ Γ2 = ∂Ω, Γ′

1 ∩ Γ2 ̸= ∅. Now we fix 0 ≤ T0 < T1 < T and choose a strictly increasing

sequence {tk}∞k=0 such that t0 = T0 and limk→∞ tk = T1. Consider a sequence {pk}∞k=1 ⊂ R+ and a

sequence {ψk}∞k=1 ⊂ C∞([0,∞);R+) such that

ψk =


0 on [0, t2k−1],

pk on [t2k,∞).

Then we fix {bk}∞k=0 ⊂ R+ such that
∑∞

k=1 bk∥ψk∥W 2,∞(R+) <∞, and define the Neumann data g by

g(y, t) :=
∞∑
k=1

gk(y, t) = χ
∞∑
k=1

bkψk(t)ηk(y), (6.16)

where the set {ηk}∞k=1 is chosen to be dense in H
1
2 (∂Ω) and ∥ηk∥

H
1
2 (∂Ω) = 1. Note that the Neumann

data g defined in (6.16) plays the role of infinity measurements [29, 30], and hence the unique recovery

of the fractional order α and both a and q from one boundary measurement. See also some related

discussions in [96, 95] with different problem settings. However, this choice of g is impossible to

numerically realize in practice, due to the need to numerically represent infinitesimally small quantities.

6.3 Reconstruction algorithm

In this section, we derive an algorithm for recovering the fractional order α and the coefficient q,

directly inspired by the uniqueness proof. We divide the recovery procedure into three steps:

(i) use the asymptotic behavior of the solution of problem (6.1) near t = 0 to recover α;

(ii) use analytic extension to extract the solution of problem (6.1) with zero f and u0;

(iii) use the level set method [123] to recover the shape of the unknown medium ω ⊂ Ω.

First, we give an asymptotics of the Dirichlet data H(t) of problem (6.1). The result is direct from

the representation and properties of Eα,1(z) near z = 0 and the trace theorem.

Proposition 6.3. If u0 ∈ Dom(A1+ s
2 ) and f ∈ Dom(A

s
2 ) with s > 1. Let H = u|∂Ω×(0,T ) be the

Dirichlet trace of the solution to problem (6.1) with g given as (6.3), then the following asymptotic

holds:

H(y, t) = u0(y) + (Au0 − f)(y)tα +O(t2α) as t→ 0+.

In view of Proposition 6.3, for any fixed y0 ∈ ∂Ω, the asymptotic behavior of H(y0, t) as t → 0+

allows recovering the order α. This can be achieved by minimizing the following objective in α, c0

and c1:

J(α, c0, c1) = ∥c0 + c1t
α −H(y0, t)∥2L2(0,t0)

, (6.17)
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for some small t0 > 0. Note that it is important to take t0 sufficiently small so that higher-order terms

can indeed be neglected. The idea of using asymptotics for order recovery was employed in [67, 77, 78].

When recovering the diffusion coefficient q, we need to deal with the unknown functions u0 and f .

This poses significant computational challenges since standard regularized reconstruction procedures

[50] require a fully known forward operator. To overcome the challenge, we appeal to Theorem 6.2:

u0 and f only contribute to Hi(t) which is fully determined by {λℓ, ρℓ}ℓ∈K. Indeed, by Theorem

6.1, {λℓ, ρℓ}ℓ∈K can be uniquely determined by H(t), t ∈ [0, T0]. Hence in theory we can extend

H(t) = Hi(t) from t ∈ [0, T0] to t ∈ [0, T ], by means of analytic continuation, to approximate the

Dirichlet data of (6.1) with g ≡ 0 and given u0 and f . In practice, we look for approximations of the

form

H(t) ≈ p0 + p1t+ · · ·+ prt
r

q0 + q1t+ · · ·+ qrtr
:= Hr(t), t ∈ [0, T ],

where r ∈ N is the polynomial order. This choice is motivated by the observation that Mittag-Leffler

functions can be well approximated by rational polynomials [12, 115, 48]. The approximation Hr can

be constructed efficiently by the AAA algorithm [121]. Now, we can get the Dirichlet data of problem

(6.1) with a given g and u0 = f ≡ 0, by defining the reduced data

H(t) :=


0, t ∈ [0, T0],

H(t)−Hr(t), t ∈ [T0, T ].

Below we use the reduced data H to recover a piecewise constant q. Parameter identification for

the subdiffusion model is commonly carried out by minimizing a suitable penalized objective. Since q

is piecewise constant, it suffices to recover the interface between different media. The level set method

can effectively capture the interface in an elliptic problem [135, 74, 26, 38], which we extend to the

time-fractional model (6.1) below. Specifically, we consider a slightly more general setting where the

inclusion ω ⊂ Ω has a diffusivity value q1 and the background Ω \ ω has a diffusivity value q2, with

possibly unknown q1 and q2. That is, the diffusion coefficient q is represented as

a(x) = q1σ(ϕ(x)) + q2(1− σ(ϕ(x))) in Ω, (6.18)

where σ(x) and ϕ(x) denote the Heaviside function and level set function (a signed distance function):

σ(x) :=


1, x ≥ 0,

0, x < 0,

and ϕ(x) :=


d(x, ∂ω), x ∈ ω,

−d(x, ∂ω), x ∈ Ω \ ω,

respectively. Then ϕ satisfies ω = {x ∈ Ω : ϕ(x) > 0}, Ω \ ω = {x ∈ Ω : ϕ(x) < 0} and ∂ω = {x ∈ Ω :

ϕ(x) = 0}. To find the values q1 and q2 and the interface ∂ω, we minimize the following functional

J(ϕ, q1, q2) =
1

2
∥u(q)−H∥2L2(0,T ;L2(Γ0))

+ γ

∫
Ω
|∇q|, (6.19)
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where u(q) is the solution to problem (6.7), and γ > 0 is the penalty parameter. The total variation

term
∫
Ω |∇q| is to stabilize the inverse problem, which is defined by∫

Ω
|∇q| := sup

φ∈(C0(Ω))d,|φ|≤1

∫
Ω
q∇ · φdx,

where | · | denotes the Euclidean norm. Then we apply the standard gradient descent method to

minimize problem (6.19). The next result gives the gradient of J . The notations J1−α
T− and Dα

T−

denote the backward Riemann-Liouville integral and derivative, defined respectively by [76, Sections

2.2 and 2.3]

J1−α
T− v(t) :=

1

Γ(1− α)

∫ T

t
(s− t)−αv(s) ds,

Dα
T−v(t) := − 1

Γ(1− α)

d

dt

∫ T

t
(s− t)−αv(s) ds.

Proposition 6.4. The derivative d
dqJ is formally given by

d

dq
J(q) = −

∫ T

0
∇u · ∇v dt− γ∇ ·

(
∇q
|∇q|

)
,

where v = v(x, t; q) solves the adjoint problem
Dα
T−v −∇ · (q∇v) = 0 in Ω× [0, T ),

q∂νv = (u− h)χΓ0 on ∂Ω× [0, T ),

J1−α
T− v(·, T ) = 0 in Ω.

(6.20)

By the chain rule, the derivatives of J with respect to q1, q2 and ϕ are given by

∂J

∂ϕ
=

dJ

dq

∂q

∂ϕ
=

dJ

dq
(q1 − q2)δ(ϕ),

∂J

∂q1
=

∫
Ω

dJ

dq

∂q

∂q1
dx =

∫
Ω

dJ

dq
σ(ϕ) dx,

∂J

∂q2
=

∫
Ω

dJ

dq

∂q

∂q2
dx =

∫
Ω

dJ

dq
(1− σ(ϕ)) dx,

where δ is the Dirac delta function. Hence the iterative scheme for updating q1, q2 and ϕ reads

ϕk+1 = ϕk − rk
∂J

∂ϕ
(ϕk, qk1 , q

k
2 ) and qk+1

j = qkj − rkj
∂J

∂qj
(ϕk+1, qk1 , q

k
2 ), j = 1, 2.

The step sizes rk and rkj can be either fixed or obtained by means of line search. The implementation of

the method requires some care. First, we approximate the delta function δ(x) and Heaviside function

σ(x) by

δε(x) =
ε

π(x2 + ε2)
and σε(x) =

1

π
arctan

(x
ε

)
+

1

2
,

respectively, with ε > 0 of order of the mesh size [33, 38]. Second, during the iteration, the new

iterate of ϕ may fail to be a signed distance function. Although one is only interested in sign(ϕ), it is
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undesirable for |ϕ| to get too large near the interface. Thus we reset ϕ to a signed distance function

whenever ϕ changes by more than 10% in the relative L2(Ω)-norm. The resetting procedure is to find

the steady solution of the following equation [123, 38]:

∂td+ sign(d)(|∇d| − 1) = 0, with d(0) = ϕ.

6.4 Numerical result

Now we present numerical results for reconstructing the fractional order α and piecewise constant

diffusion coefficient q, with unknown u0 and f . In all experiments, the domain Ω is taken to be the

unit square Ω = (0, 1)2, and the final time T = 1. We divide the domain Ω into uniform squares with

a length h = 1/50 and then divide along the diagonals of each square. We discretize the time interval

[0, T ] into uniform subintervals with a time step size τ = 1/100. All direct and adjoint problems are

solved by standard continuous piecewise linear Galerkin finite element method in space and backward

Euler convolution quadrature in time (see e.g.,[79] and [88, Chapters 2 and 3]). Below we investigate

the following four cases:

(i) ω is a disc with radius 1
3 , centered at (12 ,

1
2),

(ii) ω is a square with length 1
2 , centered at (12 ,

1
2),

(iii) ω is a concave polygon, and

(iv) ω are two discs with radius 1
5 , centered at (14 ,

1
2) and (34 ,

1
2), respectively.

Throughout, the unknown initial condition u0 and source f are fixed as

u0(x1, x2) = x21x
2
2(1− x1)

2(1− x2)
2 and f(x1, x2) = 1 + x1 + z2,

respectively. Meanwhile, we fix the exact fractional order α† = 0.8 and the diffusion coefficient

q† = 10 − 9χω, i.e. q1 = 1, q2 = 10. Unless otherwise stated, the Neumann excitation g is taken

as g(y, t) = η(y)χ[0.5,1](t), where η is the cosine function with a frequency 2π on each edge for cases

(i)–(iii) and is constant 1 for case (iv). We set g on ∂Ω × [0, T ], and take the measurement H on

∂Ω× [0, T ].

First, we show the numerical recovery of the fractional order α for three different values, i.e., 0.3,

0.5 and 0.8. In view of Proposition 6.3, it suffices to fix one point y0 ∈ ∂Ω (which is fixed at the origin

y0 = (0, 0) below) and to minimize problem (6.17), for which we use the L-BFGS-B with constraint

α ∈ [0, 1] [27]. The recovered orders are presented in Table 6.1. Note that the least-squares functional

has many local minima. Hence, the algorithm requires a good initial guess to get a correct value for
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Table 6.1: The recovered order α based on least-squares fitting.

(a) case (i) (b) case (ii)

t0\α 0.3000 0.5000 0.8000 t0\α 0.3000 0.5000 0.8000

1e-3 0.2402 0.5289 0.8353 1e-3 0.2380 0.5243 0.8350

1e-4 0.2516 0.5244 0.8795 1e-4 0.2479 0.5239 0.8797

1e-5 0.2649 0.4994 0.8006 1e-5 0.2612 0.5022 0.7803

1e-6 0.2712 0.4637 0.7978 1e-6 0.2695 0.5182 0.7977

1e-7 0.2665 0.5267 0.8019 1e-7 0.2662 0.5279 0.8019

1e-8 0.2558 0.4913 0.7989 1e-8 0.2562 0.4914 0.7989

1e-9 0.2744 0.4925 0.7999 1e-9 0.2741 0.4925 0.7999

(c) case (iii) (d) case (iv)

t0\α 0.3000 0.5000 0.8000 t0\α 0.3000 0.5000 0.8000

1e-3 0.2383 0.5214 0.8485 1e-3 0.2384 0.5247 0.8436

1e-4 0.2480 0.5198 0.8821 1e-4 0.2486 0.5221 0.8816

1e-5 0.2600 0.5098 0.8005 1e-5 0.2617 0.5033 0.8005

1e-6 0.2667 0.5213 0.7977 1e-6 0.2692 0.5178 0.7977

1e-7 0.2634 0.5273 0.8019 1e-7 0.2650 0.5273 0.8019

1e-8 0.2654 0.4913 0.7990 1e-8 0.2703 0.4913 0.7989

1e-9 0.2718 0.4925 0.7999 1e-9 0.2740 0.4925 0.7999
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α. It is observed that the reconstruction is more accurate when t0 → 0+, since the high order terms

are then indeed negligible. Also, for a fixed interval (0, t0), due to the asymptotic behavior, we have

slightly better approximations when the true order α is large. However, this does not influence much

the reconstruction results for cases (i)–(iv), since the coefficient q is constant near origin.

Now we apply analytic continuation to extend the observed data H by a rational function Hr from

the interval [0, 0.5] to [0, 1], using the AAA algorithm [121] with degree r = 4. This step is essential

for dealing with missing data u0 and f : subtracting Hr from H yields the reduced data H for a given

g and u0 = f ≡ 0, which is then used in recovering q. Fig. 6.1 shows the L2(∂Ω) error between Hr

and the exact data H0 which is obtained by solving (6.1) with given g and vanishing u0 and f . Note

that higher order rational approximations can reduce the error over the interval [0, 0.5], but it tends

to lead to larger errors in the interval [0.5, 1]. The approach is numerically sensitive to the presence

of data noise, reflecting the well-known severe ill-posed nature of analytic continuation.

Figure 6.1: The L2(∂Ω)-error between the analytic continuation Hr and true data H0 for cases (i)–(iv).

Finally, we present recovery results for the piecewise constant coefficient q, or equivalently, the

shape ω. The exact value is 1 inside the inclusion ω and 10 outside, unless otherwise stated. We use

the standard gradient descent method to minimize problem (6.19). Unless otherwise stated, we fix

the step sizes rk ≡ 1, rk1 ≡ 0, rk2 ≡ 0, i.e., fixing the values inside and outside the inclusion ω. The

regularization parameter γ is chosen to be 1e-8, and the coefficients q1 and q2 are set to q1 = 0.9

and q2 = 10. The results are summarized in Figs. 6.2-6.8, where dashed lines denote the recovered

interfaces.

Fig. 6.2 shows the result for case (i), when the initial guesses are a small circle but with two

different centers. In either case, the algorithm can successfully reconstruct the exact circle after

10000 iterations. For case (ii), the exact interface is a square, again with the initial guess being

small circles inside the square, cf. Fig. 6.3. The algorithm accurately recovers the four edges of the

square. However, due to the non-smoothness, the corners are much more challenging to reconstruct

and hence less accurately resolved. These results indicate that the method does converge with a

reasonable initial guess, but it may take many iterations to yield satisfactory reconstructions. Fig. 6.4
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Figure 6.2: The reconstructions of the interface for case (i) at iteration 0, 100 and 10000 from left to

right, with two different initial guesses.

shows the results for case (iii) for which the exact interface is a concave polygon, which is much more

challenging to resolve. Nonetheless, the algorithm can still recover the overall shape of the interface.

The reconstruction around the concave part has lower accuracy. To the best of our knowledge, the

unique determination of a concave polygonal inclusion (in an elliptic equation) is still open. Fig. 6.5

shows the results for case (iv) which contains two discs as the exact interface. The initial guess is two

small discs near the boundary ∂Ω. Note that in this case, we choose the boundary data η ≡ 1 in order

to strengthen the effect of inhomogeneity. The final reconstruction is very satisfactory.

Fig. 6.6 shows a variant of case (ii), with the initial interface being two disjoint discs. It is

observed that the two discs first merge into one concave contour, and then it evolves slowly to resolve

the square. This shows one distinct feature of the level set method, i.e., it allows topological changes.

Due to the complex evolution, the algorithm takes many more iterations to reach convergence (i.e.,

30000 iterations versus 8000 iterations in case (ii)).

Fig. 6.7 shows a case which aims at simultaneously recovering the interface and the diffusivity

value inside the inclusion, for which the exact interface is a square and the exact values of q1 and q2

are 1 and 10, respectively. In the experiment, we take two different initial guesses. The initial value

of q1 for both cases is q1 = 1.2, and we take the step sizes rk ≡ 1, rk1 ≡ 10 and rk2 ≡ 0. The recovered

value q1 is 0.92 for the first row and 0.89 for the second row. It is observed that for both cases, one

can roughly recover the interface. These experiments clearly indicate that the level set method can
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Figure 6.3: The reconstructions of the interface for case (ii) with different initial guesses at iteration

0, 100 and 8000 from left to right.

Figure 6.4: The reconstructions of the interface for case (iii) at iteration 0, 100 and 8000 from left to

right.

Figure 6.5: The reconstructions of the interface for case (iii) at iteration 0, 1000 and 15000 from left

to right.
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Figure 6.6: The reconstruction of the interface for case (ii) with a different initial guess, at different

iterations 0, 100, 1000, 10000, 20000 and 30000 (from left to right).

accurately recover the interface ω. However, it generally takes many iterations to obtain satisfactory

results. This is attributed partly to topological changes and the presence of nonsmooth points, and

partly to the direct gradient flow formulation. Indeed, one observes from Proposition 6.4 that the

gradient field for updating the level set function is actually not very smooth, which hinders the rapid

evolution of the interface. Hence, there is an imperative need to accelerate the method, especially via

suitable preconditioning and post-processing [74].

Figure 6.7: Initial guesses and reconstructions for case (ii) with a non-fixed diffusivity value q1.

Last, Fig. 6.8 shows reconstruction results with noisy data. Due to the instability of analytic

continuation for noisy data, we use boundary data corresponding to zero u0, f as our measurement

and only focus on reconstructing q. That is, we denote H† the solution of problem (6.1) with u0 ≡ 0
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and f ≡ 0 which plays the role of H. The noisy measurement Hδ is generated by

Hδ(y, t) = H†(y, t) + δ∥H†∥L∞(∂Ω×[0,1])ξ(y, t),

where δ > 0 denotes the relative noise level, and ξ follows the standard Gaussian distribution. We take

the exact interface as a concave polygon and the initial guess is a circle; see the left panel in Fig. 6.4.

We consider two different noise levels and three different input boundary data. The first and second

rows in Fig. 6.8 are for 1% and 5% noise, obtained with a regularization parameter γ = 1e-7 and

γ = 5e-7, respectively. We consider three input Neumann data g1, g2 and g3: g1 = g (i.e., identical as

before), and g2 and g3 are given by

g2(x, t) = η1(x)χ[0.25,1](t) + η2(x)χ[0.5,1](t) + η3(x)χ[0.75,1](t),

g3(x, t) = η1(x)χ[1/6,1](t) + η2(x)χ[2/6,1](t) + η3(x)χ[3/6,1](t) + η4(x)χ[4/6,1](t) + η5(x)χ[5/6,1](t),

where ηn (n = 1, . . . , 5) is a cosine function with frequency 2nπ on each edge. The inputs g2 and g3

contain higher frequency information and are designed to examine the influence of boundary excitation

on the reconstruction. Fig. 6.8 shows that with the knowledge of H†, the method for recovering the

interface is largely stable with respect to the presence of data noise. With more frequencies in the

input excitation, the reconstruction results would improve slightly. This agrees with the observation

that the concave shape contains more high-frequency information.

Figure 6.8: The reconstruction for case (iii) with noisy data and different boundary excitations g1, g2

and g3 (from left to right). The top and bottom rows are for noise levels 1% and 5%.
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CHAPTER 7.

Conclusion and future works

In this thesis, we investigate the numerical algorithms and their analysis for the parameter identi-

fication problem in PDEs. Our focus is on numerical schemes with error analysis that align with

conditional stability results. We present our work through a model problem: the inverse diffusivity

problem. We study two derivations of this model problem: the diffusion-reaction model and the QPAT

model. Additionally, We propose a numerical scheme for the inverse diffusivity problem combining

the theoretical foundations of FEMs and computational innovations of NNs. Finally, we investigate

a severely ill-posed inverse problem in a subdiffusion model with partial data. We develop a reliable

numerical inversion algorithm based on the uniqueness analysis.

In Chapter 3, we investigated the simultaneous reconstruction of the diffusion and reaction coeffi-

cients inherent in elliptic/parabolic equations. This is achieved through the utilization of two internal

measurements of the solutions. We proposed a decoupled algorithm capable of sequentially recovering

these two parameters. The approach begins with a straightforward reformulation leading to a stan-

dard problem of identifying the diffusion coefficient. This coefficient is numerically recovered, without

any requirement for knowledge of the potential, by employing an output least-square method in con-

junction with finite element discretization. In the subsequent step, the previously recovered diffusion

coefficient becomes instrumental in the reconstruction of the potential coefficient. The approach is

inspired by a constructive conditional stability, and we have provided rigorous a priori error estimates

in L2(Ω) for the recovered diffusion and potential coefficients. The derivation of these estimates ne-

cessitated the development of a weighted energy argument and suitable positivity conditions. These

estimates serve as a helpful guide to choose appropriate regularization parameters and discretization

mesh sizes, aligned with the noise level.

In Chapter 4, we investigated the reconstruction of the diffusion and absorption coefficients in

QPAT model. This is achieved by using multiple internal measurements illuminated by random

boundary data. The reconstruction method starts with a straightforward reformulation, leading to

an inverse diffusivity problem. A Hölder type stability is established by using energy estimates with

special test function as well as the non-zero condition, guaranteed by the use of random boundary

illuminations. The diffusivity coefficient is numerically recovered by employing a least-square formu-

lation with a finite element discretization. The stability estimate motivates the approximation error

analysis. With appropriate choices of the discretization mesh size and of the regularization parameters

in relation with the noise level, the convergence rate of the approximation error is comparable to the
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stability result. In the subsequent step, we solve a direct problem involving the reconstructed diffu-

sivity and optical energy measurement. The diffusion and absorption coefficients can be recovered by

an algebraic relation using the solution of the direct problem and the reconstructed diffusivity in the

previous stage.

In Chapter 5, we developed and analyzed the FEM-NN hybrid scheme for reconstructing the

diffusivity in elliptic/parabolic equations. The approach combines neural networks for approximating

the unknown coefficient with finite element methods for discretizing the solution. We established

rigorous L2(Ω) error estimates that explicitly depend on the discretization parameter, noise level,

regularization parameter, neural network approximation accuracy, and network architecture. The

proofs leverage the smoothness properties of neural networks and the structural characteristics of

finite element spaces. Extensive numerical experiments demonstrate the efficiency and accuracy of the

proposed hybrid method.

In Chapter 6, we studied a challenging inverse problem of recovering multiple coefficients from one

single boundary measurement, in a partially unknown medium, due to the formal under-determined

nature of the problem. We have presented two uniqueness results, i.e., recovering the order and the

piecewise constant diffusion coefficient from a fairly general Neumann input data and recovering the

order and two distributed parameters from a fairly specialized Neumann input data (Remark 6.4).

For the former, we have also developed a practical reconstruction algorithm based on asymptotic

expansion, analytic continuation and level set method, which is inspired by the uniqueness proof, and

have presented extensive numerical experiments to showcase the feasibility of the approach.

Despite the detailed discussion, there are still many interesting issues that deserve further investi-

gation, which we briefly discuss below.

In Section 3.4 and Section 4.3, our numerical experiments indicated that the empirical rates sur-

passed the theoretical ones. Future work will focus on investigating the reasons behind this discrepancy

and improving the error estimate. It is worthwhile to explore the stability results of inverse problems

from numerical perspective. In particular, the error analysis for the inverse diffusion problem relies

on the conditional stability presented in [22]. This stability result utilizes the weak formulations of

PDEs and a weighted energy argument, which are frequently employed in numerical analysis. Conse-

quently, the error estimation can be derived by mimicking the proof of stability in numerical aspect

and the convergence rate would align with the condition stability. From this perspective, it is crucial

to establish the stability in continuous level, which can then be applied to numerical analysis. We

highlight this issue with the following example. For many inverse problems, the Carleman estimate

[72, 148] plays a essential role in continuous stability estimation. This type of estimation is based on

an exponential type weighted function and integration by parts. However, the derivation of Carleman
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estimates at discrete level is a challenging problem. In fact, in the proof of such estimates, the Carle-

man large parameter s must be connected to the mesh size h through the relation: sh ≤ ϵ [100, 23].

Thus the discrete Carleman estimate requires restrictive condition for the mesh size h, which leads to

challenges for related error analysis.

As the use of DNNs for solving forward and inverse problems for PDEs has been explored only

recently, the theoretical foundation of DNNs still requires further investigation. For instance, the

neural network approximation error presented in Lemma 2.1 may not be optimal. Indeed, the proof of

Lemma 2.1 is constructive, involving the design of neural networks to approximate polynomials. In-

terestingly, numerical experiments have shown that the empirical rates surpassed the theoretical ones.

Even very shallow and small neural networks exhibit excellent expressivity. Besides, the presented

hybrid scheme cannot overcome the curse of dimensionality, which is one of the main motivations

using neural network for solving PDEs. Since the numerical algorithm requires to solve the equation

with FEMs, it cannot be implemented in high dimensional space. In the future, we aim to develop

an inversion algorithm with pure neural network approximation and provide rigorous error estimate

which aligns with the stability result. In this framework, high-dimensional integrals are computed via

a Monte Carlo method, whose error contribution requires further investigation.

In addition, it is also interesting to derive the error estimation for inverse problems with poor

stability. In Chapter 6, we only examined the uniqueness and numerical inversion of the identification.

It would be intriguing to investigate the stability estimate when observation is taken on the boundary

or subdomain. In practical scenario, the measurement data are typically not available on the entire

domain, which deteriorates the stability of the inverse problem. Therefore, it is crucial to study

the conditional stability of these highly ill-posed identification problems and derive rigorous error

estimates that align with the stability. Liu et al [151] derived Hölder stability for inverse diffusion

problem with measurements on a subdomain, but they assumed the diffusion coefficient is analytic to

propose analytic extension. For problem data satisfying weaker assumptions, Carleman estimates can

be utilized to derive stability results. However, the design of robust numerical algorithms based on

this technical tool requires further investigation.
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126



[26] Martin Burger. A level set method for inverse problems. Inverse Problems, 17(5):1327–1355,

2001.

[27] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ci You Zhu. A limited memory algorithm

for bound constrained optimization. SIAM J. Sci. Comput., 16(5):1190–1208, 1995.

[28] Alberto-P. Calderón. On an inverse boundary value problem. In Seminar on Numerical Analysis

and its Applications to Continuum Physics (Rio de Janeiro, 1980), pages 65–73. Soc. Brasil.

Mat., Rio de Janeiro, 1980.

[29] B. Canuto and O. Kavian. Determining coefficients in a class of heat equations via boundary

measurements. SIAM J. Math. Anal., 32(5):963–986, 2001.

[30] Bruno Canuto and Otared Kavian. Determining two coefficients in elliptic operators via bound-

ary spectral data: a uniqueness result. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8),

7(1):207–230, 2004.

[31] Kenneth M. Case and Paul F. Zweifel. Linear transport theory. Addison-Wesley Publishing Co.,

Reading, Mass.-London-Don Mills, Ont., 1967.
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