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Abstract

This thesis is devoted to design and analyze the numerical algorithm for parameter identification
problem utlizing theoretical results.

In recent years, numerous numerical schemes for parameter identification problems were developed,
analyzed and tested. Most of existing work emphasizes well-posedness, convergence (with respect to
the noise level), and convergence rates under various source conditions. In practice, the inversion
formulations are further discretized, traditionally via the Galerkin finite element methods (FEMs)
or, more recently, neural networks (NNs). However, discretization introduces additional errors that
affect reconstruction quality, and rigorous error bounds for numerical inversion algorithms remain
underexplored.

After some background introduction and preliminaries in Chapters [I] and [2| we investigate the
reconstruction of both the diffusion and reaction coefficients present in an elliptic/parabolic equation
in Chapter 8] A decoupled algorithm is constructed to sequentially recover these two parameters. Our
approach is stimulated by a constructive conditional stability, and we provide rigorous a priori error
estimates in L?(f2) for the recovered diffusion and reaction coefficients. Next, in Chapter 4}, we focus
on the numerical analysis of quantitative photoacoustic tomography (QPAT). The stability of the
inverse problem significantly depends on a non-zero condition in the internal observations, a condition
that can be met using randomly chosen boundary excitation data. Utilizing these randomly generated
boundary data, we provide a rigorous error estimate in L?(2) norm for the numerical reconstruction.
In Chapter [5, we propose a hybrid FEM-NN scheme, where the finite element method is employed to
approximate the state and neural networks act as a smoothness prior to approximate the unknown
parameter. We demonstrate that the hybrid approach enjoys both rigorous mathematical foundation
of the FEM and inductive bias/approximation properties of NNs. In Chapter @ we concern with
numerically recovering multiple parameters simultaneously in the subdiffusion model from one single
lateral measurement on a part of the boundary, while in an incompletely known medium. We prove a
uniqueness result for special cases of diffusion coefficients and boundary excitations. The uniqueness
analysis further inspires the development of a robust numerical algorithm for recovering the unknown
parameters. Finally, in Chapter[7} we summarize our work and mention possible future research topics.

Throughout, extensive numerical experiments are provided to illustrate the efficiency and reliability

of the proposed algorithms.
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CHAPTER 1.

Introduction

In this chapter, we will introduce the parameters identification problems associated with partial dif-
ferential equations (PDEs). In Section we present the an abstract framework for parameters
identification problems governed by PDEs. This framework is further illustrated by the inverse diffu-
sivity problem (IDP) in Section where we show how theoretical results in parameter identification
can inspire the development of numerical algorithms and analysis. In Section [1.3] we establish the
subdiffusion model and introduce the parameters identification problem related to subdiffusion equa-

tions. This dissertation’s contributions and organizational structure, are then described in Section

L4

1.1 Introduction to inverse problems

Estimating physical parameters in partial differential equations (PDEs), known as parameter identifi-
cation, constitutes a critical class of inverse problems with broad applications. These include medical
imaging (including electrical impedance tomography [28] [140] and diffuse optical tomography [75] [47]
etc.), geophysical prospecting [I54], and non-destructive testing [91]. Mathematically, these problems

admit the following abstract operator equation:
Kx=y, withze X, yey, (1.1)

where X and Y be two given Banach spaces, and K : X — Y be a densely defined, injective (but
not necessary continuous or linear) mapping. Here K represents the forward mapping that relates the
parameter z! (e.g., a PDE coefficient) to the observable state y' = y(z'). The goal is to recover x
from noisy measurements of y.

This problem is ill-posed, namely their solutions can be highly susceptible to data noise. Thus spe-
cialized solution techniques known as regularization are needed for their stable and accurate numerical
solution. This is often achieved using variational regularization (see, e.g., [73]), i.e., formulating the
reconstruction task as solving a PDE constrained optimization problem that involves a data-fitting

term and a regularization term
é
Jy(x) = Ko = 2°|ly +9]]Z. (1.2)

Here, the first term measures fidelity of the model output with the noisy measurement data 2%,
whereas the second term (with regularization parameter ) imposes stability via penalties like Sobolev

smoothness, ¢!-sparsity or total variation.



Meanwhile, for many PDE inverse problems, there are conditional stability estimates that providing
theoretical bounds on solution sensitivity within restricted parameter sets. They are conditional in
the sense that the estimates are valid only on a suitable subset of admissible parameters, which often
impose very strong regularity assumptions on the concerned parameters. In [34], Cheng et al formulate

one delicate definition on the conditional stability

Definition 1.1. Let Z C X be a new Banach space with the embedding relation Z — X hold. Fix

some M > 0, the admissible set is given by
Ay ={zeZ:||z|z < M}

and choose Q C Z suitably. Let w be a non-negative monotone increasing function w = w(n), n = 0,
satisfying limy,_ow(n) = 0. The conditional stability holds in the operator equation Kz =y, if for a

given M > 0, there exists a constant ¢ = ¢(M) > 0 such that
21 — 2ol x < c(M)w ([| K21 — Kzally) = c(M)w ([ly2 — v2lly ),

for every xz1,x9 € Ay N Q. The function w often indicates the modulus of the conditional stability

under consideration.

Given the theoretical foundation of conditional stability estimates, it is a very natural question to
combine them with numerical procedures. This idea first was suggested by Cheng and Yamamoto [34],
who analyzed Tikhonov regularization using conditional stability, proposed a new rule for choosing the
regularization parameter based on the stability estimates and exemplified the approach on multiple
concrete PDE inverse problems. Since then the approach has been further studied in several works
for both variational regularization |21} 49 147] and iterative regularization [45].

In practical computation, one has to further discretize the governing equation and the objective
functional. This can be achieved using finite difference, finite element and more recently also deep
neural networks. From the perspective of numerical analysis, it would be desirable to also incorporate
the discretization parameters in the error analysis. Indeed, a finer mesh leads to a more accurate
approximation of the forward map, but at the cost of increased computational efforts, whereas a
coarse mesh may significantly deteriorate the accuracy of the reconstruction (due to the discretization
error). Therefore it is important to derive quantitative bounds on the approximation to guide the
choice of various algorithmic parameters. Unfortunately, the rigorous numerical analysis of discrete
variational regularization techniques lags far behind. This is due to the severe nonlinearity of the
forward map for many PDE parameter identifications as well as the inherent ill-posedness of inverse
problems. So far in the literature, there have only been a few studies prior to 2010s, prominently

54, [129].



In the thesis, we aim to employ conditional stability estimate to derive numerical error estimation
for the parameters identification problems governed by PDEs. In particular, we investigate two inverse
problems with finite element discretization in Chapter [3|and Chapter 4] We present the error analysis
with neural network discretization in Chapter [f] In Chapter [6] we design a numerical algorithm for a

highly ill-posed inverse problem motivating from the theoretical analysis.

1.2 Inverse diffusivity problem and error estimate

In this section, we provide a simple example, the inverse diffusivity problem. In particular, we demon-
strate that the theoretical stability results motivate the numerical analysis of the reconstruction error.

We consider the following elliptic equation

—div(gVu) = f, in Q,
( ) (1.3)
u=g, on Jf.

The elliptic problem describes many important physical processes, and the related inverse prob-
lems are exemplary for parameter identifications for PDEs (see the monographs [6, 22] for overviews).
For example, is often used to model the steady state of diffusion process, where u represents the
concentration of a substance (e.g., a chemical, pollutant, or particles) in the domain €2, ¢ represents
the diffusion coefficient, which determines how easily the substance diffuses through the medium, f is
the source and ¢ is the concentration on boundary 9. See also [56] [150] for parameter identifications
in hydrology and [I7] for related coupled-physics inverse problems arising in medical imaging.
Equation admits a unique solution u € H'(Q) when f € H-1(Q), g € H%((‘?Q) and g € L*()
with positive lower and upper bounds. The inverse problem aims to identify the diffusion coefficient

q(z) with measurement data 2°(x), € Q with noise level 4, i.e.
0
12° = uf| r2(q) <6,

where uf = u(qT) is the solution of corresponding to the exact diffusion coefficient ¢.

The stability as well as error estimate of the inverse diffusion problem has been extensively studied
in the literature. In [54], one of the earliest works, Falk consider the governing equation with a
Neumann boundary condition over a smooth domain Q C R2?. They imposed a structural condition

on the problem data:
There exists a constant unit vector v € R? and a

(1.4)
constant ¢, > 0,such that Vu'-v > ¢, for all z € Q,

and derive the conditional stability

1
la — 'l 2y < eIV~ )l gy

3



where ¢ depends on the maximum of ||q[| ;1 (q), gt m1(0)- The proof relies on the weak formulation of
ul and u with the test function ¢ = e=2k@¥ (¢ — ¢), where k > ||AUTHLOO(Q)/(20V) is a given constant.

Indeed, direct computation leads to following weighted stability
/(q1L - q)Q(k:VuT v+ %AUT)G_%“"” dz < ¢||V(u — UT)HLQ(Q).
Q

By the choice of k, one can remove the weight function and get the desired L?(£2) estimate. Motivated
by the stability estimate, Falk [54] analyzed a Galerkin finite element method discretization of the
standard output least-squares formulation, and derived a rate O(h” +h~26) in the L?(£2) norm, where
r is the polynomial degree of the finite element space and h is the mesh size. The proof relies on
the design of test function ¢ = e~ 2k®¥ (pth — ¢;) and applying energy argument. Here P, denotes
the projection onto finite element space, cf Section and ¢; denotes the minimizer of proposed
least-squares formulation. However, this result requires sufficiently high regularity u! € C"+3(Q) and
q' € H™1(Q) and the restrictive structural condition (T.4)).

Later, Wang and Zou [144] improved the error analysis of the inverse diffusion problem with a
homogeneous Neumann boundary condition. To obtain a numerically stable reconstruction, they
employed the output least-squares method with an H'(§)) seminorm penalty and discretizes both the
diffusion coefficient ¢ and the solution u using conforming piecewise linear finite elements. Their work

relaxed the regularity assumption ¢, uf € H2(Q)NW1°(Q) and employed a mild structural condition:
There exists a constant ¢o > 0 such that co|Vu'(z)]? > f(z) a.e. z € Q. (1.5)
With these assumptions, they established the following weighted L?(£2) analysis
I(a" = g7)Vul || 2y < c(h2y™2 + h72y73) (B2 + 6+ %),

where v > 0 denotes the regularization parameter. The proof is similar to [54] by introducing the

special test function ¢ = (¢f)~1(¢f — ¢)e 2% "u! The following weighted stability holds

T —g)? _
/Q (q<q+>3> (2c0c; g [Vul P — f)e 205" dz < ¢ V(u(g) — ul) | 20,

The box constraint 0 < ¢, < g(x) < ¢; and the choice of ¢y imply the desired estimate.

The above reconstruction schemes are based on least-squares techniques. There are various ap-
proaches to reconstruct the diffusion coefficient and establish the error analysis. One approach relies
on reformulating the inverse problem as a transport equation for the diffusivity ¢. Richter [128] [129]
proved the uniqueness of the inverse problem under the assumptions that ¢ is given on the inflow

boundary (the portion of the boundary where g—g < 0) and the condition
i1§12f max{|Vu'|, Au'} > 0. (1.6)

4



In addition, Richter [129] provided a modified upwind difference scheme for the transport problem
and proved O(h) convergence under restrictive regularity assumption uf € C3(Q) and ¢ € C%(Q).
Another approach uses variational methods. Kohn and Lowe [101] proposed following unconstrained

minimization problem to solve the inverse problem (|1.3)) with Neumann boundary condition:
min jo, — V2|22 g) + IV - on + fllZ2g) + lon -1 = gllZ2a0) + 7 Vanll72(q)-

The objective function matches equation error of the first order system with u replaced by noise
measurement 2°. Kohn and Lowe proved that assuming the regularity uf € H3(Q), Auf € C(Q),
¢ € H*(Q) and |juf — 25||H1(Q) < ¢, there holds

N
N

lla, — qTHLQ(Q) <elh+d+7y

)%,

under the condition

For all ¢ € H' (), the equation Vu! - Vg, = wn
1.7

has a solution with |[vy || g1(q) < cll¥| g1 ()-
They also showed the condition is weaker than the condition presented in Falk’s result [101],
Lemma 5].
It is important to highlight that the structural assumptions — are crucial for the stability
and numerical analysis for the inverse diffusivity problem. These assumptions can be interpreted as

variations of the following non-zero gradient condition:
|[Vu(z)| > cp >0 forall zeq. (1.8)

In general, this non-zero condition does not holds. To achieve this condition, it is important to design
some special input data (boundary excitation g or source f). In practical, these designs of input data
may be restrictive. Below, we review and propose two strategies for designing the input data.

We first consider the case f # 0. Bonito et. al. [22] proposed a novel stability estimate with mild
assumptions on problem data by considering with zero Dirichlet boundary. Based on the energy
argument and a special test function ¢ = (¢")~!(¢" — q)ul € HL(Q2), Bonito et al [22] established the

following weighted stability estimate:
T g2
q —q 2
LI (19 + ) da < el 9t = w)loge

where ¢ depends on the maximum of ||| 51 (q), ”qTHHl(Q). We notice that since the source f does not
vanish, there is flexibility to design the input data such that the weight function ¢f|Vuf|> + fu' is

positive. In [22], the authors consider the following positive condition:

¢'|Vul|? + ful > codist(z,00)7, for a.e. z € Q. (1.9)



The positive condition describes the decay rate of the weight function near the boundary 9f2.
This condition has been shown for some certain cases with mild regularity assumptions on problem
data. For example, holds with 8 = 2 if Q is a Lipschitz domain, ¢ € H L(Q) with positive
lower and upper bounds, and f € L%(Q) with a strictly positive lower bound in €. Further, if Q is
a C%* domain with p € (0,1), ¢t € CY#(Q) with positive lower and upper bounds, f € C*(Q) with
f>cy >0, then holds with 8 = 0. The proofs follow from the maximum principle and Schauder
estimates for second-order scalar elliptic equations, the decay rate of the Green function near the
boundary 95, see e.g., [22] Corollaries 3.4 and 3.8] for the related analysis. Inspired by the stability
analysis in [22], the work in [84] develops a new error bound using a weighted energy estimate with
a special test function ¢ = (¢")~1(¢" — ¢})ul € HI(2). They proved a weighted estimate under the
regularity assumption ¢f € H2(Q) N Wh°(Q) and derived L?(2) error analysis if in addition (T.9)
holds:
la" = gillz2a) < e((hy™3n + min(h =4y, 1))y~ 3n) 205,

where n = h% + 6 + 'y%. Later, Jin et al [84] [85] [83] [8T], 87] extend this positive condition to inverse
potential problem or non-stationary equations. In Chapter [3] we would extend this framework to an
inverse problem with two unknown parameters. We provide rigorous a priori error estimates in L?(£2)
for both parameters under similar positive conditions.

Now we focus the case f = 0 while g # 0. There are several approaches for constructing a boundary
illumination ¢ such that this condition holds. When d = 2, the works [8] [7] provide a simple criterion
for choosing a special boundary illumination g that guarantees the non-zero condition. Roughly speak-
ing, the graph of g should have a single maximum point, a single minimum point, and be monotone in
between. For dimensions d > 3, ensuring the non-zero condition becomes more challenging [5]. In [16],
the author uses the method of complex geometrical optics to construct boundary data g satisfying the
nonzero condition. However, this construction is not very explicit and depends on the interior values
of the unknown coefficient g. We note that it is possible to obtain §-Hdélder stability for the inverse
problem even without requiring , provided the illuminations are suitably chosen [9]. However, the
parameter 0 is not explicit and the construction of the boundary values is not easily implementable
numerically. Recently, [4, [6] considered using random boundary illuminations and proved that the
corresponding solutions will satisfy the non-zero condition with overwhelming probability. This ap-
proach overcomes the drawbacks of the previous methods, as it imposes no restrictive constraints on
the boundary illuminations and aligns well with practical situations. In Chapter |4, we present the

numerical analysis for the inverse problem with nonzero condition provided in [4 [6].



1.3 Inverse problems for subdiffusion model

In recent decades, numerous experiments and studies have revealed that diffusion in complex systems
often deviates from Brownian motion, instead following Lévy processes. This phenomenon, known
as anomalous diffusion, is characterized by the mean square displacement of particles varying either
superlinearly (superdiffusion) or sublinearly (subdiffusion) with time. Anomalous diffusion models are
highly effective in describing experimental data across many significant practical applications. The
list of successful applications is long and still fast growing, e.g., ion transport in column experiments
[66], protein diffusion within cells [59] and contaminant transport in underground water [99]. See the
reviews [117, [116] for the derivation of relevant mathematical models and diverse applications. In
this thesis, we will only consider the subdiffusion diffusion in time, which can be represented by an
equation of the form:
ofu—V - (DVu)+ou=f inQx (0,71,
u=g ondQx (0,7T], (1.10)
u(0) =up in Q,

where Of'u is defined as

ou(t) ::F(lla)/o (t — 5)~*/(s) ds. (1.11)

The model differs considerably from the normal diffusion model due to the presence of the
nonlocal operator df*u: it has limited smoothing property in space and slow asymptotic decay at large
time [102, [76].

The mathematical study on inverse problems for time-fractional models is of relatively recent ori-
gin, starting from the pioneering work [35] (see [82] 109, 114} 110] for overviews). One of the classical
example of inverse problems for subdiffusion is the backward problem. This inverse problem aims
to identify the initial data ug from the measurement u(x,T), x € Q. The existence, uniqueness and
stability of the time-fractional backward problem were analyzed by Sakamoto and Yamamoto in [134].
A numerical method is proposed by Liu and Yamamoto [I113] based on the quasi-reversibility method,
and the approximation error is developed (in terms of noise level) under a priori smoothness assump-
tion on ug. In [153], Zhang and Zhou employ the finite element method and convolution quadrature
to discretize the reconstruction scheme and provide a rigorous error analysis. Another classical iden-
tification problem is to recover the diffusivity term D or potential term o from measurement data
u(z,T), x € Q. In [71] Isakov showed the uniqueness and existence of the inverse potential problem
for parabolic equations, by developing a unique continuation principle and a constructive fixed point
iteration. Choulli and Yamamoto [36] proved a generic well-posedness result in a Hélder space, and

then proved a conditional stability result in a Hilbert space setting [37] for sufficiently small 7. More
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recently, a series of works [85] [83], BT, [152) [86] derived conditional stability for diffusivity /potential
identification problems and established error analysis based on the positive condition mentioned
in Section

Instead of reconstructing space-dependent potential or diffusion coefficient from terminal measure-
ment, it is more interesting to identifying space-dependent coefficients from lateral Cauchy data. In
this scenario, the data and the unknown are misaligned in direction, leading to a severely ill-posed
inverse problem. There are several existing works [I31], 132} [145, 90l 86, 95]. Rundell and Yamamoto
[131] showed that the lateral Cauchy data can uniquely determine the spectral data when uyg = f =0,
and proved the unique determination of the potential using Gel’fand-Levitan theory. They also numer-
ically studied the singular value spectrum of the linearized forward map, showing the severe ill-posed
nature of the problem. Later, they [I32] relaxed the regularity condition on the boundary excitation
¢g(t) in a suitable Sobolev space. Recently, Jing and Yamamoto [90] proved the identifiability of multi-
ple parameters (including order, spatially dependent potential, initial value and Robin coefficients in
the boundary condition) in a time-fractional subdiffusion model with a zero boundary condition and
source, excited by a nontrivial initial condition from the lateral Cauchy data at both end points; see
also [89]. Jin and Zhou [86] studied the unique recovery of the potential, fractional order and either
initial data or source from the lateral Cauchy data, when the boundary excitation is judiciously cho-
sen. All these interesting works are concerned with the one-dimensional setting due to their essential
use of the inverse Sturm-Liouville theory. Wei et al [146] numerically investigated the recovery of
the zeroth-order coefficient and fractional order in a time-fractional reaction-diffusion-wave equation
from lateral boundary data. A direct extension of these theoretical works to the multi-dimensional
case is challenging since the Gel’fand-Levitan theory is no longer applicable. Kian et al. [96] provided
the first results for the multi-dimensional case, including the uniqueness for identifying two spatially
distributed parameters in the subdiffusion model from one single lateral observation with a specially
designed excitation Dirichlet input; see also [68] for a related study on determining the manifold from
one measurement corresponding to a specialized source. Kian [95] studied also the issue of simulta-
neous recovery of these parameters along with the order and initial data using a similar choice of the
boundary data. However, in the works [96] [95], the excitation data, which plays the role of infinity
measurements, is numerically inconvenient to realize, if not impossible at all; see Remark [6.4] for further
discussions. These considerations motivate one to design robust numerical algorithm for recovering
multiple parameters from a single partial boundary measurement for multi-dimensional subdiffusion
with a computable excitation Neumann data, in the presence of a partly unknown medium. The

details are presented in Chapter [6]



1.4 Contributions and organizations of the thesis

In Chapter [2] we provide some necessary preliminaries needed for the numerical analysis of parameter
identification problems. Firstly we list some standard results in Galerkin finite element method (FEM)
approximation. Due to the excellent approximation property and recent algorithmic innovations of
neural networks (NNs), we are interested in employing NNs in the parameter identification problems.
In particular, we introduce the design and approximation theory of feedforward neural networks.
We also introduce the subdiffusion model and provide solution representations based on the spectral
expansion and the Mittag-Leffler functions . All these preliminaries form basis for the following
mathematical analysis and numerical algorithms.

In Chapter [3, we extend the inverse diffusivity problem by considering the following elliptic

equation

—div(DVu) +ou=f, in Q,
(DVu) (1.12)
u=g, on 0f.

This model extends by adding the reaction term cu with o denoting the reaction coefficient.
The inverse problem target the simultaneous reconstruction of the diffusion coefficient D and the
reaction coefficient ¢ in equation ((1.12)). This is done using two internal observations w; and wue,
which correspond to different source terms but share the same boundary data ¢g. It is important
to highlight that a similar problem, which involves reconstructing two parameters in equation
(with f = 0) from two internal observations cuy and ous (corresponding to distinct boundary data),
has been systematically investigated in previous studies [16], (15, [I7]. This problem emerges in the
context of quantitative photo-acoustic tomography in its diffusive regime. In the aforementioned
studies, the two parameters were assumed to be known at the boundary, a prerequisite for constructing
a reconstruction algorithm and proving uniqueness. Additionally, the measurements were assumed
to satisfy the nonzero condition |V(uj/uz)| > x > 0 almost everywhere in €. Interestingly, these
assumptions are not required in the current setting since we have a non-vanished source term. Our
investigation will address several critical aspects of the inverse problem: the conditional stability of
the reconstruction, the development of an efficient numerical algorithm, and a discrete numerical
scheme with a provable error estimate. One of the key challenges in this coupled problem is the
appropriate selection of function spaces for the analysis, such as for conditional stability estimates,
due to the diverse degree of smoothing of the forward map. Our approach utilizes several technical
tools, including the weighted stability estimate and energy technique with specific test functions [22].
Notably, the proposed approach differs significantly from existing ones, as the analysis naturally leads

to the derivation of rigorous error bounds on the discrete approximations. We also extends the



argument to the parabolic equation
Ou—V - (DVu) +ou=f, inQx (0,7]
u=yg, ondQx (0,7 (1.13)
u(0) = up, in .

We aim to identify the diffusion coefficient D and the reaction coeflicient o from the observation of
u(z,t) for (z,t) € (T; — 0,T;] x Q with ¢ = 1,2. Here T; and T» denote two distinct time levels, and
0 is a fixed small constant. The error estimate for the numerical recovery of the single parameter
has been extensively studied in different scenarios. See e.g., [84] [144] for inverse diffusivity problems
and [92], BT} 152] for inverse potential problems. In [92], Kaltenbacher and Rundell analyzed the
simultaneous recovery of ¢ and D in one dimensional diffusion equations using the spatial measurement
u(T) for two different sets of boundary conditions. The restriction on the one dimension is due to
the use of the Sobolev embedding W2(Q) < L>°(Q). In Chapter [3| we consider higher dimensional
cases and use the interior observation of a single solution in (7; — 6,T;], i« = 1,2. Note that the
coupled nonlinear inverse problem does not admits unique recovery in general, even for the one-
dimensional case. See a simple counterexample in the beginning of Section Therefore, such the
recovery highly relies on the choice of the problem data. We will investigate the conditional stability of
the reconstruction, develop a decoupled numerical algorithm to identify two parameters sequentially,
and propose a completely discrete scheme with provable error bounds. The argument employs some
technical arguments, including decoupling the original problem into two single-parameter identification
problems [15], ©2], exploring weighted L?(Q) stability estimates by an energy argument with special
test functions [22, [81] and applying numerical analysis for the direct problems [139].

In Chapter |4 we consider parameter identification problems in photoacoustic tomography (PAT).
Photoacoustic tomography is a biomedical imaging technique that combines the principles of optical
imaging and ultrasound to produce high-resolution images of tissues within the body [107) 143]. It
offers unique advantages by capturing the functional and structural characteristics of tissues, making it
particularly useful for medical diagnostics, including cancer detection, monitoring of vascular diseases,
and studying brain functions.

The quantitative photoacoustic tomography (QPAT) is a parameter identification problem of re-
covering the diffusion coefficient and the absorption coefficient from the deposited optical energy.

Mathematically, it can be formulated as the following elliptic equation [3T], [11]:

—diV(DVu) +ou=0, in €,
(1.14)
u=g, on Jf2.
We investigate the problem of QPAT raising in practical scenario, where the source term f vanishes

and the measurement H = ou is generated by a boundary illumination g. The inverse problem aims
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to simultaneously identify the diffusion coefficient D and the absorption coefficient ¢ from optical
energy H = ou. Compared with Chapter [3] the vanishing source term makes the required positivity
condition fail in general, and the measurement, which is the product between the function u and the
absorption coefficient o, is more involved. In order to have a Holder type stability, we employ specially
designed random boundary illuminations [4, [6], and apply the weighted energy estimate with special
test functions [22, 84]. We employ a decouple algorithm [I6], [I5]: first solve an inverse diffusivity
problem and then solve a forward problem; cf Section We then discuss the numerical inversion
formula and analyze the approximation error for the reconstruction. One popular reconstruction
approach is to reformulate the inverse diffusivity problem as a transport equation with variable ¢
[16, [15]. This approach is non-iterative and hence efficient for computation. However, it requires the
non-zero condition to hold on the whole domain 2, while in our approach (see Proposition the
non-zero condition holds only locally for a specific boundary illumination. On the other hand, the
least square formulation allows one to naturally incorporate the local non-zero property into the error
analysis. Therefore, in this paper, we consider the least square fitting approach with a regularization
term for the QPAT reconstruction. Motivated by the stability estimate, we employ weighted energy
estimate with a special test function to analyze the approximation error in terms of the discretization
mesh size h, the noise level §, and the regularization parameter v. Our approach employs several
technical tools, including the decoupled procedure for QPAT, the weighted energy estimate, the non-
vanishing gradient property, and a priori estimates for the finite element approximation.

In Chapter [5| we develop a hybrid scheme combining the neural networks and the finite element
methods for the inverse diffusivity problem

—div(un) =f, in Q,
u=0, on 0.

Due to excellent approximation property of neural networks, many methods based on NNs have been
devised and have demonstrated impressive empirical performance on a variety of PDE inverse problems
(see [138] for a recent overview). One prominent approach within the class is physics-informed neural
networks (PINNs) [126]. In the context of inverse problems, the idea is to minimize a PDE residual
functional, and then to enforce both consistency with observational data via a suitable data-fitting
functional and a priori regularity assumption on the unknown via a suitable penalty. The unknowns
are then approximated via NNs, and the resulting loss is trained to yield an approximation. However,
the theoretical analysis of neural PDE solvers for direct problems is still at an early stage, when
compared with more conventional numerical methods, e.g., finite element methods. This has greatly
hindered the mathematical analysis of relevant inverse solvers. To have the best of both approaches,

one natural idea is to combine neural networks with FEMs. Therefore, in Chapter [§] we study the
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hybrid NN-FEM approach for recovering the unknown coefficient ¢ in problem (and also the
parabolic case), and provide an analysis on the numerical approximation. We contribute in the
following three aspects. First, we develop a novel reconstruction formulation by incorporating the
projection operator, which automatically guarantees the well-posedness of the discrete formulations.
Second, we derive the L?(£2) error estimates on the NN approximation qp for both inverse elliptic and
parabolic problems, under mild conditions on the problem data (ug, f, ¢ and ), c¢f. Theorems
and for the elliptic and parabolic cases, respectively. The error bounds depend explicitly on the
approximation accuracy € of the NN, discretization parameters (h and 7), the noise level § and the
regularization parameter . The overall argument relies heavily on a suitable positivity condition.
Third and last, in the context of hybrid solvers, quadrature errors are inevitable, due to the presence
of the NN function in various integrals. We derive a useful L?(€2) bound depending on the NN
architecture (e.g., width and maximum bound), cf. Theorems and The technical proofs rely
on smoothness properties of NNs and the structure of the finite element space. To the best of our
knowledge, these results are new and provide theoretical foundations for using the hybrid formulation
for solving PDE inverse problems.

In Chapter [6] we investigate an inverse problem in subdiffusion model:

Ofu—V-(qVu)=f inQx (0,7T],
qOyu=g on 9N x (0,7T], (1.15)
u(0) =up in Q.

We study mathematical and numerical aspects of an inverse problem of recovering the diffusion coeffi-
cient ¢ and fractional order « from a single lateral boundary measurement of the solution, without the
knowledge of the initial data ug and source f. We note that this inverse problem is severely ill-posed:
the model is partial known; and the data and the unknown are misaligned in direction. However, the
theoretical uniqueness analysis could motivate the design of stably reconstruction algorithm. We make
the following contributions to the mathematical analysis and numerics of the concerned inverse prob-
lem. First, we examine the feasibility to recover multiple parameters. We show that if the coefficient
q is piecewise constant as defined in , then one single boundary measurement can uniquely deter-
mine the coefficient a and fractional order «, even though the initial data ug and source f are unknown.
Note that the exciting Neumann data g given in (6.3) is easy to realize and hence allows the numerical
recovery. The proof relies on the asymptotic behavior of Mittag-Leffler functions, analyticity in time
of the solution, and the uniqueness of the inverse diffusivity problem (for elliptic problems) from one
boundary measurement. In particular, the subdomain w can be either a convex polygon / polyhedron
or a disc / ball, ¢f. Theorem and Remark This analysis strategy follows a well-established

procedure in the community, and roughly it consists of two steps. (1) Using the time-analyticity, the
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uniqueness for the original inverse problem is reduced to the one for an inverse problem for the corre-
sponding time-independent elliptic equation; (2) The reduction can be done by the Laplace transform
or considering the asymptotics. Both strategies of reductions are well known. For example, the for-
mer way is used for an Dirichlet-to-Neumann map for the inverse coefficient problem for a multi-term
time-fractional diffusion equation [I0§], while the latter way is used for the Dirichlet-to-Neumann map
for the inverse parabolic problem [72], Section 4, Chapter 9]. Second, the uniqueness analysis lends
itself to the development of a robust numerical algorithm: we develop a three-step recovery algorithm
for identifying the piecewise constant coefficient a and the fractional order «: (i) use the asymptotic
behavior of the solution of problem near t = 0 to recover «; (ii) use analytic continuation to
extract the solution of problem with zero f and w; (iii) use the level set method to recover the
shape of subdomain w. To the best of our knowledge, this is the first work on the numerical recovery
of a (piecewise constant) diffusion coefficient in the context of multi-dimensional subdiffusion model
with missing initial and source data. Last, we present extensive numerical experiments to illustrate
the feasibility of the approach. We refer interested readers to [133] [124] for some numerical studies
for identifying a piecewise constant source from the boundary measurement.

Finally, we summarize the main results in the thesis and try to discuss possible future work in
Chapter [7}

Throughout, we denote by W*P(Q) the standard Sobolev spaces of order s for any integer s > 0
and real p > 1, equipped with the norm || - [[yysp(q). Moreover, we write H*(2) with the norm
|- les(q) if p = 2 we write LP(€2) with the norm || - [[z»(q) if s = 0. The space CF# with integer
k > 0 and p € (0,1] denotes the set of Holder continuous functions. For a Banach space X (with
norm | - ||x), we define W"P(0,T; X) = {v : v(t) € X for a.e. t € (0,T) and [[v|yymr(o,r;x) < 0}
with [|v[wmeo,rx) = (e fOT ||u(j)(t)\|§()%, The space L>°(0,7"; X) is defined similarly. The space
C¥(T, 00; X) denotes the set of functions valued in X and analytic in t € (T, 00). The spaces on the
boundary 9 are defined similarly. The notation (,-) denotes the standard L?(f2) inner product and
(-,-)aq denotes the inner product on L?(9€2). We denote by ¢ and C generic constants not necessarily

the same at each occurrence but it is always independent of the concerned quantities.
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CHAPTER 2.

Preliminary

2.1 Numerical algorithms

2.1.1 Finite element method

First, we briefly state some standard results in Galerkin FEM approximation. Let 7, be a shape
regular quasi-uniform partitions of {2 that fit the boundary exactly with a mesh size h. We assume
that 9€Y does not cross an element, that is, ' equals the union of some meshes. Let V), denote the
conforming finite element space with piecewise polynomials of degree 1 and V! = V,, N H}(Q). In
particular the finite element space V}, can be characterized by curved element method [156, 157] when
d = 2 or isoparametric element method [40), [104] when d > 2.

Following inverse inequality holds on the finite element space V! [24, Lemma 4.5.3]: for 0 < ¢ <

s<1,1<p,q< oo,
lenllwsr(g) < ChEFUP=0 oyl ey, Voon € V. (2.1)

Let Z;,: C(Q2) — V}, be the Lagrange nodal interpolation operator. Following interpolation error holds

[24, Corollary 4.4.20]: for s =1,2 and 1 < p < oo (with sp >dif p>1land sp >dif p=1)
v = Zpvllr) + V(0 = Zpv) | 1r0) < CRP||vllwswq), Vv € WHP(CQ). (2.2)

Similarly, we use I}‘? to denote the Lagrange interpolation operator on the boundary. We define the

L%(Q)-projection Py,: L2(Q2) — V2 by
(Pv,on) = (v,0n),  Vn € V3
The operator P, satisfies the following error estimates [139, p. 32]: for any s € [1, 2]
lo = Pyl r2g) + IV (v = Puv) 2y < Ch®||vllgs), Yo € H¥(Q) N Hy(R). (2.3)

2.1.2 Neural networks

In this work, we employ fully connected feedforward neural networks. Let L € N be the depth of a
neural network (NN) and {dg}ﬁzo C N be a sequence of integers, with dp = d and d;, = 1, d; the
number of neurons in the ¢th layer of the NN. Then the realization of the NN from Q C R? to R is
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defined by
=z, x€,

NN realization o0 = p(A(e)v“*l) + b(g)), for{=1,2,---,L—1, (2.4)
v = o) = AL, (L=1) b(L)7

where p : R — R is a nonlinear activation function and applied componentwise to a vector. Through-

T x

e’ —e—
er+e "

vectors at the /-th layer of the NN. The width W of the NN is defined by W := maxy— . 1, dy.
We denote the NN parametrization by 6 = {(A®,pO)}L € HZLZI(Rd‘ZXdZ—I x R). The following

out, we take p = tanh: = — AW® ¢ Rdexdi-1 and p® € R% are weight matrices and bias

approximation property holds [61, Proposition 4.8].

Lemma 2.1. Let s € Ny and p € [1,00] be fived, and v € WFP(Q) with k > s+ 1. Then for any
€ > 0, there exists at least one 6 € © with depth O(log(aH— k:)) and total number of nonzero parameters

d
(’)(ei k—s—pu(s=2) ), where p > 0 is arbitrarily small, such that the NN realization vy of 0 satisfies

[v—vellwsr) <€

. ) ) ; 2 2(d/p+d+s+u(s=2))+d/p+d
Moreover, the mazimum norm of the weights in the NN is bounded by O(e E—y =)

Remark 2.1. On the domain Q = (0,1)¢, Guhring and Raslan [67] proved Lemma using three
steps. They first divide the domain (0,1)¢ into (N +1)¢ equal patches with gridsize 1/N and construct
approximation of partitions of unity by neural networks [64, Lemma 4.5]. Next, they approximate a
function v € WHP(Q) by a localized Taylor polynomial vpery: v — Vpoly lwsr () < Cpoty N~ (k=5 =(s=2)),
where the construction of vpely relies on the approximated partition of unity and the constant cpoly =

Cpoly (d,p, k,8) > 0. Finally, they show that there exists a DNN parameter 0, satisfying the conditions
in Lemma[2.1] such that [64, Lemma D.5]:

[vpoly — vallwsr) < exnllvllwepo)e,

where the constant exy = enn(d, p, k,s) > 0 and € € (0, %) Now for small € > 0, the desired estimate

follows directly from the choice below N = (55 )7’“*5*245:2) and € =

€
2¢poly 2CNNHUHWIC7P(Q) ’

Remark 2.2. The study of approximation capabilities of nmeural networks begins with the universal
approximation theorem [{4, [70], i.e., every continuous function defined on a compact domain can be
uniformly approximated by shallow neural networks, under certain mild conditions on the activation
function. Later, the works [18,[118] examined the approximation capability of sigmoid neural networks
for (piecewise) smooth functions. These studies employed neural networks to approximate globally de-
fined polynomials, with the polynomial degree increasing concurrently with the desired approximation

accuracy. For the popular rectified linear unit (ReLU) neural network, Yarotsky [149] constructed
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neural networks to approximate localized Taylor polynomials and provided an analysis of the approxi-
mation error. However, the approach in [1]9] heavily relies on the ReLU activation function, which
facilitates the construction of an exact partition of unity. The work [6]|] extended the approach to a

wide class of smooth activation functions by constructing an approzimate partition of unity.

We denote the set of NNs of depth L, the number of nonzero entries Ny, and maximum bound R

on the parameter vector 6 by
N(L, Ny, R) =: {vg is an NN with depth L : ||0]|,0 < Ng,||0|ls~ < R},

where [|-||,0 and ||+||¢~ denote the number of nonzero entries in and the maximum norm of, respectively,
a vector. Further, for any € > 0 and p > 1, we denote by B, . the NN parameter set for the NN function

class
2p+3d+-3pd+2p )

N(C’ log(d + 1), Ce*ﬁ, Ce 2" wim

which will be used to approximate the coefficient q. We focus on two cases: p = max(2,d + u) (with
small g > 0) and p = oo for the cases without and with the quadrature error, respectively.

The next result bounds the tanh activation function p.

Lemma 2.2. The following estimates hold

lollpe®y <1, 110 lLeomy <1, 10" lpeemy <1, 10" | Loo(m) < 2.

Proof. Clearly |[|p||r®) < 1. Next, using the definition of p, direct computation gives

pla)=1-p*), p'(z)=-2p(z)1-p*x), p"(x)=(6p"(x)—2)(1—p*x)).

Thus the desired assertions follow directly. O

2.2 Subdiffusion model

For a € (0, 1), we define the Djrbashian-Caputo fractional derivative 9w by ([97, p. 92] or [76l, Section
2.3])

Ou(t) = r(11—a) /0 (t — s)~u/(s) ds,

where I' denotes the Gamma function. In the following, we introduce the Mittag-Leffler function, which

is a basis for fractional differential equations. The two parameter Mittag-Leffler function E, g(z) is

defined by ([97, pp. 40-45], [76], Section 3.1})

. 2.
kZ:OFkHB VzeC (2.5)
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The function E, g(z) generalizes the exponential function e*. For example,

sinh(z) '

z

FEi1(z) = €7, E271(z2) = cosh(z), E272(22) =

The following decay estimate of E, g(z) is crucial; See e.g., [97, eq. (1.8.28), p. 43] and [76, Theorem
3.2] for the proof.

Lemma 2.3. Let a € (0,2), B € R, ¢ € (57, min(m, ar)) and N € N. Then for ¢ < |argz| < 7 with

|z| — oo, there holds

N _
Zk

Eaplz)=—-)_ TG o) +0(z| V1Y),

k=1
Now, we introduce the representation of the solution to the (sub)diffusion problem:
ofu+ Lu=f inQx(0,T],
u=g ondQx(0,7T], (2.6)
u(0) =ug in Q.

Here a € (0,1], this model coincides with classical diffusion with v = 1. The elliptic operator is
defined as Lu := —V - (DVu) + ou, with D,o € L*°(Q) satisfying 0 < ¢p < D <¢p and 0 < 0 < G,.
Let A : H?(Q) N H} () — L?(2) be the realization of the operator £ with zero Dirichlet boundary
condition and its domain Dom(A) := {u € H}(Q) : Lu € L?(Q)}. It is unbounded, closed and,
by elliptic regularity [58, Theorem 8.12] and Sobolev embedding theorem [58, Theorem 7.26], its
inverse A=1 : L?(Q) — L%(Q) is compact. Thus, by spectral theory of compact operators, A admits
eigenvalues (with finite multiplicity): 0 < Ay < Ay < --- < A; < --- = 00, as j — oo. The
corresponding eigenfunctions ; € H?(Q) N HE(Q) and {p, 52 can be taken to form an orthonormal
basis of L?(2).

Then the solution of the forward problem could be written as [70]

u(t) = Bu(t) + F(t)(uo — Buo) + /Ot E(t—s)(f(s) — 07 Bu(s))ds, (2.7)
where Bu(t) solves the elliptic equation
LBu=f in Q,
Bu=g¢g on 09,

and the solution operators F'(t) and E(t) are given by

o0

F(t)o =) Ear(=Mt") (v, 05)05,  Etv=> 1 Eaa(=At")(v,95)p;.
=1 j=1

Another strategy for deriving the solution representation is (vector-valued) Laplace transform. Note

that the operator A satisfies the following resolvent estimate [139, p. 92]
1z + A 2oz < cl+12)7! Ve, (2.8)
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where ¥, = {0 # z € C : |arg(z)| < p} with a fixed p € (7/2,7). Then the solution representation
(2.7) holds with the solution operators given by

1 1
Flt) = / 015 4 A)lds,  E(t) = / etz + A)ldz,
T I

=i )y =i )
where I'p . = {2 € C: |z| = &, |arg(2)| < p}U{z € C: 2z = pe'?, p > k} with fixed constants x € (0, 00)
and p € (7/2, 7).

We end this section with following remarks. Note that in both approaches, when a = 1, there

holds F(t) = E(t) = e~4%. In addition, the boundary condition in (2.6) can be taken as Neumann or

Robin type.
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CHAPTER 3.

Numerical Reconstruction of Diffusion and Reaction Coefficients

from Two Observations: Decoupled Recovery and Error Estimates

This chapter is concerned with the identification problem for numerically recovering spatially depen-
dent diffusion coefficient D(z) and reaction coefficient o(z) for elliptic problems. Let Q C R%(d =
1,2,3) be a convex polyhedral domain with a boundary 9€2. We consider the following elliptic bound-

ary value problem:

—V - (DVu) +ou=f, in{,
(3.1)

u=g, on 0f),
where f denotes a given source term and g denotes the boundary data. The solution to problem
is denoted by u(D, o), to indicate its dependence on the coefficients D and o. The inverse problem
under consideration is to recover exact coefficients DT(z) and o (z) from two interior measurements of
solutions, denoted by w1 (DT, oT) and us (DT, oT). Here, u;(al, ¢') be the solution of the elliptic problem

(3.1]) with source function f; and boundary data g. Besides, we assume that the empirical observation
é

z¢ is noisy with level 9, i.e.,

lui (DT, ot) — 20| 2y <0 for i=1,2. (3.2)

Throughout, the diffusion coefficient and reaction coefficient are respectively sought within the follow-

ing admissible sets

Ap={D e H(Q):0<¢p <D<épae. inQ} and

(3.3)
A ={0€ L>®(Q):0< 0 <¢ ae. in Q},
for some positive constants ¢p, ¢p, ¢y > 0.
We also extends the argument to the parabolic equation
Ou—V - (DVu)+ou=f, inQx(0,7T]
u=yg, ondQx (0,7 (3.4)

u(0) =up, in Q.

We aim to identify the exact diffusion coefficient DT and the exact reaction coefficient ¢! from the

observation of u(x,t) for (z,t) € (T; — 0,T;] x Q with ¢ = 1,2. Here 77 and T, denote two distinct

LChapter [3|is reprinted with permission from ”Numerical Reconstruction of Diffusion and Potential Coefficients from
Two Observations: Decoupled Recovery and Error Estimates”, Siyu Cen and Zhi Zhou, STAM J. Numer. Anal., 62 (5)
(2024) 2276-2307. The candidate mainly works on the research methodology discussion, the proof details and the coding

and data collection in numerical experiments.
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time levels, and @ is a fixed small constant. We assume that D' and ot belong to the admissible sets

Ap and A, respectively, defined in (3.3 and the empirical observation z° is noisy with level §, i.e.,
lu(DT, o) = 2°|| oo (-0 12 () < 6, i=1,2. (3.5)

The rest of this Chapter is organized as follows. In Section we show the Holder type stability
of the inverse problem for the elliptic equations, under several positivity conditions which could be
fulfilled. Then the stability estimate further motivates a decoupled recovery algorithm and the error
analysis of the discrete approximation, that will be presented in Section In Section we extend

our argument to the parabolic equation. Numerical experiments will be presented in Section

3.1 Conditional stability of inversion for elliptic equation

In this section, we aim to derive a conditional stability estimate for the inverse problem, which in-
volves identifying both the diffusion and reaction coefficients in an elliptic equation using two internal
observations.

To accomplish this, we must first establish an assumption related to the problem data.
Assumption 3.1. The source and boundary terms satisfy following properties
(i) The source terms fi, fo € L*°(2) and the boundary data g € H%((‘?Q) N Whee(09Q).
(i1) The source terms fi, fa > 0 and the boundary data g > c4 > 0.

(i4i) The exact diffusion coefficient DT € Ap N Wh>(Q) N H2(Q) and the exact reaction coefficient
ot e A,.

Under Assumption the elliptic equation (3.1]) with source term f; (i = 1,2) and boundary data

g admits a unique solution u; = u;(D', oT) such that
uy,up € HA(Q) N Whe(Q). (3.6)

Moreover, by the strong maximum principle of the elliptic equation [53} Section 6.4], we conclude that

there exists a constant ¢, depending on DT, o7, g and €, but independent of fi, f such that
uy,ug > ¢, > 0. (3.7)

3.1.1 Stability estimate for the recovery of diffusion coefficient

To begin with, we eliminate the reaction coefficient o and recover the diffusion coefficient D from a

reformulated elliptic problem. Motivated by the idea in [I5], we multiply the equation for u; by wug,
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and the equation for us by u;, and subtract these two relations. As a result, we eliminate the reaction

coefficient o and obtain

-V <Du%V <Zi — 1)) = f2u1 — f1UQ, in Q,

%—1:0, on 0f2.

Ui

(3.8)

Let w:=“2 —1, q:= Du? and F := fou; — fius, hence the elliptic problem ([3.8)) can be written as

u1

-V .- (qVw)=F, inQ,
(3.9)
w=0, on ofN.

Let the diffusion coefficient D, the reaction coefficient o, the source terms f; (i = 1,2) and the
boundary data ¢ satisfy Assumption Then ¢ = Du? is uniformly bounded and strictly positive,

and hence we define the following admissible set
Ay ={qe H(Q):0< ¢, < q< ¢ ae in Q). (3.10)

Note that the lower bound ¢, > ¢ pc2 and the upper bound ¢, depends on D, o, f; and g. Meanwhile,
note that Duf € H2(Q) N WH(Q) and fou; — frus € L=(Q). Consequently, we make the following

assumption.

Assumption 3.2. The exact diffusion coefficient ¢* = D|uy (DT, 0T)2 € H2(Q)nW1>(Q)N A, and
source term F = fou1 (DT, ot) — flus(D1,01) € L2(Q).

Under Assumption we deduce that w € Wol’z(Q) NH2(Q)NW12°(Q). This allows us to present
the following conditional stability results in both weighted and standard L?(€2) norms, which play a
pivotal role in the numerical analysis in Section The proof of these results modifies the proof of

[22] Theorem 2.2], incorporating a perturbed source term.

Theorem 3.3. Suppose that F, Fe L>(Q), q,q € Aq, and q satisfies Assumption . Also, suppose
the H'(Q)-norm of q¢ and § are bounded by a generic constant c. Let w be the solution of (3.9) with
the diffusion coefficient q and source F, and w as the solution with the diffusion coefficient ¢ and

source F. Under these conditions, the following holds:

2
q9—q ~ =
/Q ( q;) (aIVel + Fuw) dz < e (llo = @lm) + IF ~ Flla) -
Moreover, if the following positive condition holds
(¢|Vw|* + Fw)(x) > edist(z,00)®  a.e. on Q (3.11)
for some generic constants 5 > 0 and ¢ > 0. Then the following estimate holds
1
la = ll 20y < e (hw = @l @) + I1F = Fllzzey) 7 . (3.12)
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Proof. Define £ = q — q. For any v € H}(2), integration by parts in (3.8) yields
/ EVw - Vode = / GV (0 —w) - Vv + (F — F)udaz. (3.13)
Q Q

Besides, multiplying £v/q on both sides of (3.8) and applying integration by parts, we derive

g—dex = / qVw - Vg—vdx = / quVw - V§d$ + / q§Vw - Vode,
o 4q Q q Q q o 9
and hence
1 1 1
/ EVw - Vodr = - / q§Vw -Vodr — / quVw - V§dx + = g—dex. (3.14)
Q 2Jaq 2 Ja q 2J)aq

Now we choose the test function v = £w/q. Note that ¢ satisfies Assumption qg € A; and
F,F € L®(Q). As a result, we conclude that v € H}(Q) with

2¢,
vl z200) < (g — Qw/qll L2y < 7q|!w||L2(Q)
=q

and

o < H qVilg — Qw] — (¢ — ?Dqu‘

IVolZ2 e

L2(2)
1 - = —
<z (cq\lwv(q — Dllzz + ll(g — DVl 12y + 284wl () qu||L2(Q))

1/ R _
< Cg(Cq”w”LOO(Q)(HVQHLQ(Q) + IVl z2()) + 2621Vl r20) + 2Cq||wHL°°(Q)HVQ||L2(Q))-

With this test function v, a direct computation yields that the first two terms on the right hand side

of (3:14) is equal to 3 [, % |Vw|? dz. Hence, The relation (3.13) and (3.14) yields

;/ﬂgi<q|Vw\2+Fw>dx:/Q£jV(@—w)~Vv+<F—ﬁ)vdx

< (lw =@l + IF = Fllza) -

With the positive condition (3.11]), we divide the domain € into two parts, Q, = {z € Q : dist(z,0Q) >
p}, Q5 =Q\ Q,. Thus we have

1 €\ 2 £\? &\’
5 [ lepar< [ () ar < [ () < e | () dist(z, 9)°dz
i JQ, Q, \4 Q, \¢ Q, \4

- £\’ 2 _ - ~
< P 2 < Jé] _ _

n the other hand, [,. rz<c < cp. en the desired result follows by balancing the above two
On th hhdgfzd QZ Then the desired It foll by balanci he ab
P

estimates with p. O

Remark 3.1. The positivity condition 1s introduced in Section . It looks artificial, as its
physical interpretation is not immediately apparent. However, the condition becomes more intuitive
when considering the special case § = 0 and F > 0. Then by maximum principle of the elliptic
equation, we conclude that the solution w > 0 and hence Fw > 0. Consequently, Condition (2.6)

requires that the gradient |Vw| and the solution w cannot vanish concurrently.

22



Let u; (u;) be the solution to the elliptic equation (3.1)) with diffusion coefficient D (D), reaction
coefficient o (), the boundary data g and source functions f;. Using the strict positivity of u; and u;
in (3.7) and the uniform boundedness of u; and u;, we obtain
q

~ q
D =Dl = |5 - %
| 220 i

< cllqui — quillr2()

12(9)
< (g7 — @l 20y + v = Gdllna(e) )
< C(Hﬂl — w1l z2(0) + llg — a|’L2(Q)>'
Using Theorem the positivity and solution regularity , we obtain
1D = Dllzay < e(llii — will ey + (o = @llan ey + 17 = Fllzaey) 7 )
< C(||171 —wllrz) + (llur — Ul o) + lluz — ﬂQHHl(Q))ﬁ) (3.15)

1
< c(llur — Ul () + Iluz — Tl ) ) 2.

3.1.2 Stability estimate for the recovery of reaction coefficient

In the preceding section, we derived the stability for the recovery of the diffusion coefficient D. Now,
we will shift our focus to the stability analysis for the reaction coefficient 0. We introduce ¢ := uo —uq,
which satisfies the following elliptic problem:

=V (DV()+o¢=f2— fi, inQ,

(3.16)
(=0, onof.

Then the next theorem provide a conditional stability for the identification of o.

Theorem 3.4. Assume that Assumptions cmd are valid. Let 0,6 € Ay, with their H'(Q)-
norm being bounded by a generic constant c. Under these conditions, the following weighted estimate

holds:

1

2 =
(o =2l < e 3 s = Tilln oy + 11D = Dlzaey )

i=1
Moreover, if fo — fi > ¢ > 0 a.e. in Q, then for any compact subset Q' € Q with dist(€Y,08) > 0,

there exists a positive constant c, depending on dist(Q,0Q) and D, o, such that

-

2
lo =520 < e - llui = allan o) + 1D = Dllzzey ) *
i=1
Proof. Denote E be the solution of (3.16]) with coefficients INJ,Ef. For a test function v € HO1 (Q), we

consider the L?()-inner product ((¢ — &)z,v). By integration by parts, we have

((G - 5)(7 U) :(O() U) - (aCa U) + (56 ’U) - (8Z> U)
=(DV{ — DV¢, V) + (5(C =€), v).
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Now we take v = (¢ — )¢. Recall that ( € Wh>®(Q), 0,5 € A,, and Va2 IValr2@) < c

Hence
1Vl z200) < (IVall ) + IVl L2@)IIC e ) + 285V o () < e
As a result, noting that D, D € Ap, we obtain
(DVE = DVE, V)| < (I1D(VE = VO)llza@) + 1D = D)VC| p2(ey ) 190l 220y

< e(en V(= Ollza@ + 1D = Dllza@y I Vellz(@ )

IN

2
(Y I =Tl + 15 = Dl
i=1

and
2 1
(F(C =€), )] € &lIS = Cllra@llvlizzg) < €Y i — il 20y + 5”””%2(9)‘
i=1
Then we complete the proof of the first assertion.
Since the source term in satisfying fo — fi > ¢ > 0 in €1, then the strong maximum
principle [141, Theorem 1] implies that for any Q' € , there exists a positive constant ¢ depending

on dist(Q, 9Q) such that ¢(of) > ¢ > 0in Q' , and consequently, the second assertion holds. O

By combining Theorem with the estimate (3.15]), we can reformulate the stability estimate
for o in terms of u; and wuy. It is important to note that, in comparison with (3.15]), the reaction o
exhibits weaker stability than the diffusion coefficient D. This observation is in alignment with the

numerical findings discussed in Section

Corollary 3.1. Under the same conditions as in Theorem[3.3 and Theorem suppose the positive
condition (3.11) holds and fo — f1 > ¢ > 0 a.e. in Q, then for any compact subset Q' € Q with
dist(Y,09) > 0, there exists a positive constant ¢, depending on dist(Y,09) and D, o, such that

2 1
~ ~ 4(1+8)
lor = e < e 3 llus = il ey)
=1

3.2 Finite element approximation and error analysis

In this section, we will introduce a numerical scheme aimed at reconstructing the diffusion coefficient
D' and the reaction coefficient of. This is achieved using the output least-squares formulation. Tak-
ing inspiration from the stability estimate, we propose a decoupled algorithm that first recovers the

diffusion coefficient DT, followed by the reconstruction of the reaction coefficient of.
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3.2.1 Step one: Numerically recover the diffusion coefficient

Recall that the elliptic problem ([3.9) enables to recover the diffusion coefficient without the knowledge
of reaction. Note that the exact solution uI = ui(DJf, UT), with ¢ = 1,2, is strictly positive with a fixed
lower bound (cf. (3.7)). For ease of simplicity, we assume that the empirical observation z{ satisfies

the same positive lower bound. We define

5 T
w®(z) = zg(:v) —1 and wi(z)= u?(x) -1
21 (z) ul(2)
Using (82, (B-6) and (B-7), we derive
1 — ]| Hﬁ@—%ﬂ‘ H%@—ﬂ@’ Hﬂ@—%ﬂ’
w =Wz =\||— = — <||——F——= —l7s el
©) uiz‘f L2(Q) uiz‘f L2(9) uJ{z‘f L2(Q)

1 5 s
=2 (”Zlug — ufub|l () + llufu} - Zzumm(m) < ¢d.

Su
Moreover, we should also take care of the source term F' in (3.9)) where the exact solutions u; and wug

should be replaced with noisy observations. Hence we define F° := foz) — f123 with
IF = F°ll o) < ll(ur = 20) fallLaay + [I(u2 = 28) fill L2y < €d. (3.17)

We look for the numerical reconstruction of diffusion coefficient of the system ({3.9)) in the admissible
set Agn, = AgNVy,, where Vj,, is the finite element space generated by mesh size hi; cf Section [2.1.1]

The finite element scheme reads

: 1 71
min o, (ghy) = 5 llwn (gn) — w|[72() + 5 IVan, 1720 (3.18)

qny €Aq hq

where wy, (g, ) € V), is a weak solution of
(qh1vwh1’v¢h1) = (F(S’Sohl) v90h1 € Vi?l' (3‘19)

For any 71, h1 > 0, there exists at least one minimizer g to problem -; see [69, [158] for
related analysis for the well-posedness and convergence. Then our objective is to bound the error
g — g, » where g = DTu% is the exact coefficient satisfying ¢f € H?(Q) N W1 (Q) provided that
Assumption holds valid. To this end, we state the following a priori estimate for [wp,(q;,) —

w(q") | r2() and [V}, [l22(0)-

Lemma 3.1. Suppose that ¢* and F satisfy Assumption . Let g5, € Agp be a minimizer of problem
(3.18))-(3.19). Then there holds

* 4 *
[[wh, (ar,) —w H%Q(Q) +1lVag, ”%Q(Q) < e(hi + 6% + ).
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Proof. First of all, we notice the following estimate
[y (Znya") = wghll2 () < e(hi +6). (3.20)

The proof follows from the Lax—Milgram lemma and the standard duality argument, similar to that
of [84, Lemma A.1]. The only difference is that the source term F? in is noisy with level 4, cf.
(8.17). Since g;;, is a minimizer of .J,, 4,, we have J,, n, (¢5) < Jy hy (Znyq"). This combined with the
estimate leads to
[wny (@r,) = w20 + 111 Va5 1720

<llwn, (Zn,4") = w1 Z2() + 1IVIn 4 720

<JJwn, (Tnya") = wlah 72y + lwgh) = w172 + 111 VZna 1720

<c(hi + 6% + 7).

Then the proof is complete. O

The following theorem establishes a bound for the error ¢f — q;"Ll. The approach is inspired by the
stability estimate provided in Theorem

Theorem 3.5. Suppose Assumptions and hold wvalid. Let ¢t = DT|uy(DT,a")? € A, be the
ezact parameter in ([3.9), w' = w(q') be the solution of (3.9), and G, € Agn, be a minimizer of
1

problem (3.18)-(3.19). Then with n = h3 + 3§ +~¢, there holds

2

¢ — 4, trogt2 t =3 o i 1 -1
L) (dl19wi + Putah)) do < ety * +minGhy + b D)y +9).
Moreover, let D}, = q;‘”/|z‘f|2. If the positive condition (3.11) holds with some 3 > 0, then
_1 _1 1
ID5, = DMl p2@y < e((hamyy 2 + by 'n)iy 2 + 6) 20590,

Proof. For any test function ¢ € HE(€2), then the weak formulation of w(q') and wp, (g5, ) imply

((qT — g, Vu', Vso) = ((qT —q;,) V!, V(e - PhlSO)) + <(qT - q;,) V', VPhl‘P)
= (V : ((qT - QZl)VwT> P — PhlSO)
+ (g, (Voon (a5,) = V), VPuy) + (F = F*, Pog)

T_qzl

Motivated by the proof of Theorem 3.3 we choose ¢ = 1 p w'. A direct computation leads to

I, vu'.

Tt ot ) (ot gt YTt t_
q'V(q"—q; ) — (" —q;,)Vq q
V@:( h e h w+ o
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By the box constraint of the admissible sets A, and A, ;, as well as the regularity of w', we derive

Vel 2 < cla"Via" —ai,) = (@" = @) Va2l 0) + elld” = a, ) I V'l 12
< ellg | oo () (14 | 20y + IV, 2() + el 2o @) + 1, oo @IVl 2()) + €

< ce(T+ IVan, l2(@))-

Next, according to the box constraint of ¢ and qj,» the regularity of ¢" and w', the approximation

property of Py, in (2.3), as well as Lemma we have

(V- ((¢" = g, ) V'), 0 = Pu,o)|
< (IVa'| p= Q)vaTHLQ +lg" — g, ”LW(Q)HAMTHL?(Q) + quzlHLQ(Q)HVU)THLOO(Q)) o = Pyl r2(0)
< (14 IVah, l2@) e = Pry@llr2) < chi (1 +11Va, ln20) Vel 20

< chi(1+ IV, 2)” < eha(1+712).

For the remaining terms, by the triangle inequality, the inverse inequality (2.1)), the stability and

approximation of Py, and Lemma we have

IV (wny (g,) — 0| 220
<[V (wn, (45,) = Puyw)ll2() + 1V (Bry o’ — w2
<chiwn, (q;,) — Ph1wT||L2(Q) + CthwTHH2(Q)
<chy! (Hwhl (h,) — Prywny (qh,) 2 ) + ([ Phywn, (q5,) — PhleHLQ(Q)) + challw'|| 2 g
<e (i oy (a1,) = w(aDlli@)) < e (b + by ')
Meanwhile, the Lax—Milgram lemma implies
IV (wny (ai,) = wh)llz2() < 1IVwn, (@5, 220) + Vo' 2) < e
As a result, we derive

|<ql>:1 (thl (qzl) - va)a VPhﬁD) + (F - F57 Phlgo)’

<el|V (wny (ah,) — w20 IV ell2 () + 8Nl 20

<c <min(h1 +htn, D)y, 1/2 n+ 6) .
Then using integration by parts and F = —V - (¢'Vw(q")), we have
1 (d-a )
(¢ =g Vu(a"). Vi) = 5 /Q (qﬂ) (a' IV + Fuld") dz.
Consequently, under positivity condition (3.11]), the same argument of (3.12)) yields

_1 1
lar, — a'll 2@ < C((hm’h +min(hy + Ay, 1))ny, 2+ 6) 20,
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Finally, we let Dj = qzl/]zﬂg and recall that D = qu/|uU2 with uJ{ = uy (D', of). Using the box
constraint of g , the estimate (3.2)), the regularity of uJ{ (provided that Assumption holds valid),

and the fact that uJ{, 2 > ¢y, we derive
107, = DM ls2(0) < elllah, =@l (=0)* = @D)?ll 2 + llgi, — ' ll2@lludllzo @)
_1 _1 1
< e(d + llah, —a'll2(@) < e((hamy * +min(hy + by, 1)y * +8) 205
This completes the proof of the theorem. O

Remark 3.2. Theorem[3.5 serves as a guideline for the a priori selection of algorithmic parameters,
suggesting y1 ~ 6 and hy ~ V6. Given the positivity condition (3.11)) with 8 > 0, the following

estimate 1s valid:
1
IDY — Dj |l p2(q) < ed70+7 .

This estimate is optimal with respect to the conditional stability estimate (3.15|).

3.2.2 Step two: Numerically recover the reaction

In this section, we give the reconstruction formula of reaction ¢ and corresponding error analysis. We

make following regularity assumption for true reaction coefficient o'.
Assumption 3.6. The reaction coefficient ol satisfies ot € H*(Q) N A,.
Recall ¢ = uo — u; satisfies following elliptic equation
_v. (DTvg) totc=fo— fi, mQ,
(=0, on 0.

The noisy observational data for equation (3.16) is ¢° = 2§ — 29 and ||¢ — ¢?|| r2(q) < cd.
From now on, let hy represent the spatial mesh size, which may differ from hA; used in the previous
section. Utilizing the output least-squares formulation, we can approximate the recovery of the reaction

as follows:

. 1 Y2
min '-772,h2 (UhQ) = §HCh2 (th) - (6"%2(9) + ?Hvahz”%?(fl) (3'21)

Ohy E.Amh?

where Agp, = Ay N Vi, and (y,(on,) € Vi is the solution to the finite dimensional problem

(DZIVChQ, VUhQ) + (O-h2<h27 UhQ) = (fs — fl,’UhQ) Y vp, € V,?Q. (3.22)

Here Dj; is the diffusion coefficient we reconstructed in Theorem As stated in Remark we

have the a priori error estimate
I
IDj, = D'l 2y <€  with €= 5@,
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The discrete problem — is well-posed: there exists at least one global minimizer o} to
problem — and it depends continuously on the data perturbation. Then we aim to establish
an a priori error bound between o and of.

To accomplish this, we initially derive a bound for (u,(Zp,0") — ((cof). This is achieved using the

standard estimates applicable to the finite element method.

Lemma 3.2. Suppose Assumption holds, DT € ApNW1*°(Q) and 1D}, _DT”LQ(Q) <e. Let (o)
be the solution to the elliptic problem (3.16|), while (p, (IhzaT) be the solution to the finite dimensional
problem (3.22)) where oy, is replaced with Tp,ot. Then

16he (Zny o) = ¢l 2(02) < (B3 + ).

Proof. We apply the following splitting

3

<h2 (IhQUT) - C(UT) = (Chz (IhQO-T) - Zhg) + (Zhg - Eh2) + (Ehg - C(UT)) =: Z €j,

j=1

where th and th respectively satisfy

(D', Vun,) + (Zhy o'y vny) = (f2 — f1, ) Vo, €V, and

(D' s Vony) + (01 Chay o) = (f2 = froms) ¥ vy € Vi,
We begin with the L?(2) bound of e, which satisfies
(Dzlveh vvhz) + ((Zh2UT)617 th) = ((DT - D;kzl)Vthv V’Uh2) v Vhy € Vi?g

Now we choose vy, = e; in the above relation. By the regularity HDTHWI,OO(Q) + ||(Ih2)UT||Loo(Q) <e,
we conclude that ||V, [|p) < ¢ (cf. [127] and [63, Theorem 2]). This together with the fact that

Dy € Ap and Poincaré’s inequality implies
lexllz i) < 1DT = D 2@y IV, oo @) < ce.
Now we turn to the second term es which satisfies
(D'Ves, Von,) + (Tnyo ez, vny) = (067 = TnyoN)ngrony) ¥ vy € V2.
Letting vy, = ez and using the fact that ||Eh2 oo (@) < C, we arrive at
IVeall 20y < cllo’ = Zn, ol 121Gk | oo () < hd,

where we use the estimate (2.2)) and the assumption that of € H?(Q). Finally, the estimate for the

third term, [[es||z2(q) < Ch3, can be estimated directly by applying the standard argument. O
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The subsequent lemma offers useful bounds for the state ¢, (07,) and the H 1(Q2) seminorm of Thy

Lemma 3.3. Suppose Assumption holds, DT € Ap NW1>°(Q) and 1Dy, — DTHLQ(Q) <e. Then

there is

1
1¢(o") = Gra (o)l 2@ +72HV%IIL2(Q c(h3 +e+8+3).

Proof. Since o7, is a minimizer of J,, p,, we have Ty, p, (05,) < Ty hy (Tn,o'). Then we derive

1¢hs (07,) = S 17200 + 2201V 07, 120
< Chy (Zhpo') — C5||L2 +W2||V1h20' HL2
<[1Chs (Tno ™) = S0 1210y + 1€(0T) = 720y + 12 Va0 (1720

<c ((h% + 6)2 +6%+ 72) ,
where in the last inequality we use the result in Lemma ]

Then we are ready to show the error bound of numerically recovered reaction.

IN

Theorem 3.7. Suppose that Assumption holds valid, DT € ApNWH>=(Q) and D5, _DT||L2(Q)

€. Let a;, be the numerical reconstruction of the reaction given in (3.21)-(3.22). Then with n =
1

h% + €+ 6 + 74, there holds

N

)-

Finally, if fo — f1 > ¢ > 0 a.e. in Q, then for any Q' € Q, there exists a constant ¢ depending on
dist(€Y,09) and D', ot such that

_1
I(o¥ = 07:,)¢ (0N L2y < c(havy 20+ 1+ (’72 n(minfhy + hy 'y, 1} + €))

D=

1 - 1
lor, = o llz2ry < e(hayy *n+n+ (157 (ha +€)) ).

Proof. For any test function ¢ € H{(Q), by weak formulation of Chy(07,) and ¢ (oT), we have

(
(ot — 07,)¢(01), 0 = Pryg) + ((0F = a7,)C(0h), Pryep)
(

= UT - O-;;Q)C(O-T)7 2 PhQQO) + (D;:lvchz (022) - DTVC(UT)a Vth(p) + (O-ZQ(C}LQ(O-ZQ) - C(UT))7 PhQ‘»O)

Now, we take ¢ = (of — 022)((JT). A direct computation implies ¢ € H}(£2) and

lellz2) < ¢ and  [[Vollp2q) < c(1+ [Vop, llr2)-
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By the box constraint of A, p,, the error estimate of Py, in (2.3) and Lemma we have

L] <ll(e" = o1,)C(@N 2l — Prollr2() < chall(o? — 07,0 (0Nl 12(0) I Vel 20

3.23)
* * — 1 * (
<chsl|(at = 0}, ) ()| 120y (1 + V0, I 120) < ch3yy 'n® + §||(<7T —5,)¢(0 N 1720
By the stability of P, and Lemma [3.3) we conclude
1] <llo, | oo @) 1Ga () = <o) 20 | Proell L2
(3.24)

1
32y < e + 510130

Wl

<el|Gry(0%,) — Clo) 2o +
Finally, we turn to the term Is and use the splitting
Iy = (D}, V6 (07,) = Di,, VE(01), Vi) + (Di, V¢(") = DIVG(oh), VPie) = Loy + Lz,
It is easy to observe
ol <UD, — Dl 2@ IV (o) IV Pl 200y < €75 e,

where we use the a priori estimate that || V¢ (o) | Lo () < c and the assumption that || D} —Df lz2(0) <

€. Moreover, by Lemma |3.3, we have
Lo,1| <D, oo 0) I V6ha (07,) = VE(@N) 220 IV Prapll 2 (@) < CV;%HIIVQLQ(UZQ) = V(@2 @)-
By the inverse inequality and the approximation property , we have
IV (,) = V(a2 () SNV (CGha(0h,) = PraC (@)l 220y + IV (Pl (0") = C(a") 20
<e(h3 1602 (0h,) = PraC(0D)lz2(0) + hall¢lo o))

<c(hy'n+ hs).

Meanwhile, using the stability estimate ||V (n, (07| 2(0) + IV¢(0)|Ir2(q) < ¢, we conclude that

o=

Lo,1| <cvp *nmin (hy ' + ha, 1).

Thus we arrive at the estimate
_1
To| <eyg 2n(min (hy 'n+ h, 1) +€). (3.25)

Then the desired estimate follows immediately by combining the estimates (3.23)), (3.24) and (3.25|).
Finally, if fo — fi > ¢ > 0, with the same argument as that of Theorem we have the second

assertion. ]
Remark 3.3. According to Theorem [3.5 and Remark[3.9, we have
1
1D}, - DI < ¢ = 57059,
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provided that hy ~ \/8, y1 ~ 6% and the positivity condition (3.11)) is valid. As a result, with the choice

of parameters hg ~ 2 and o ~ €2, there holds the estimate
T * T < 58(11+ﬁ)
(0" = 0h,)C(0") | L20) < ¢ :

Moreover, if we choose source terms such that fo — f1 > ¢ > 0 in QQ, then similar argument as that of
Theorem [3.4 implies that

1
ot — o, 2@y < 0505,
where Q' € Q and the constant ¢ depending on dist(€Y',0Q) and DT, oT.

Remark 3.4. Instead of adopting the aforementioned decoupled approach, alternative reconstruction
formulas exist to address the inverse problem. One intuitive method involves the following least-squares

formulation:

2

: _1 512 M 2 72 2

DheADIT;lll,gheAa,hj(Dh’Jm =3 E 1 lwin = 2ilz2@) + 5 IVDrllze(@) + 5 IVonllzz@),  (3.26)
1=

where w;p, = wip(Dy,op) € Vi, satisfies w; p(Dp, on)|oo = Zng and
(thui,h, V’Uh) + (O’hui’h, Uh) = (fz, Uh) Y vy, € V,? (327)

Due to the non-homogeneous boundary condition, deriving an error estimate similar to Theorem
and[3.7 for the coupled reconstruction formula ([3.26)-(3.27) and its numerical discretization is not fea-
sible. Furthermore, a numerical comparison between the decoupled approach and the coupled approach

is presented in Section [3.].

Remark 3.5. We assume that Q is a convex polyhedral domain to ensure the solution u is in the
Sobolev space H?(Q), which is a prerequisite for obtaining an optimal approximation rate with the
finite element method on quasi-uniform meshes. Note that the proof of Theorems and [3.7 rely
on the application of the inverse inequality , which necessitates the quasi-uniformity of the mesh
partition. In contrast, if € is a nonconvex polygon, attaining the aforementioned optimal rates requires
a geometrically graded mesh, which is inherently non-quasi-uniform. Under such circumstances, the
mverse inequality is not applicable, thus the error estimate in this paper does not hold in general.
Nevertheless, the argument in this paper could be easily adapted to arbitrary domains with smooth

boundary conditions.
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3.3 Inverse problem for parabolic equation

In this section, we extend the argument to the following non-stationary parabolic problem with exact

conductivity D' and reaction coefficient of
du—V - (D'Vu) +olu=f, inQx(0,T],
u=yg, ondQx(0,T], (3.28)
u(0) = ug, in .
We aim to reconstruct the conductivity D' and the reaction coefficient o' by observing u(x,t) for
(x,t) € (T; — 0, T;] x Q, where i = 1,2. Here, # > 0 represents a small positive constant.
The inverse problem under consideration generally does not allow for unique recovery. To illustrate
this, let’s examine a one-dimensional example within the unit interval Q = (0,1), where g = 0 and

f = 0. Suppose ug(x) = sin(mz). In this case, both of the following parameter sets yield identical

solutions u(z,t) for all (z,t) € Q x [0,00):
(1) D(z) =1 and o(z) = 7%
(2) D(z) =2 and o(x) =0.

As a result, the recovery process is highly sensitive to the choice of problem data. Therefore, it

is necessary to impose certain assumptions on the problem data in the parabolic problem given by
equation (3.28]).
Assumption 3.8. The problem data in (3.28) satisfy following properties.

(i) The initial data ug € H?(2) N WH>(Q) and ug > co > 0.

(i) The source data f € C*(0,T;L>(2)) N C*1(0,T; L2(Q)) with k € N* and f > 0. Moreover,

there exists Ty > 0 such that

fl(x), 0<t§T0,
flz,t) = (3.29)
fg(.’L‘), t Z 2T0.

(11i) The boundary data g € H%(aQ) NWLe(99Q) and g > ¢, > 0.

(iv) The exact diffusion coefficient Dt € Ap N W1°(Q) and the exact reaction coefficient ot € A,.

Under regularity Assumption the parabolic equation (3.28) admits a unique solution u €
L>(0,T; Wh(Q)). Moreover, the parabolic maximum principle [53, Section 7.1.4] implies that there

exists a constant ¢, depending on DT, of, g and Q, but independent of f such that
w(x,t) >¢, >0, Va,teQx][0,T)] (3.30)
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3.3.1 Stability estimate

We first give a priori estimate which will be frequently used in the stability analysis. We denote
A = A(DT,o") be the realization of —V - DTV + o with a zero Dirichlet boundary condition. Note

that the operator A satisfies the following resolvent estimate
1z + A Mp@)orr@) < c(l+2))7  Vz e Sy, (3.31)

where Xy = {0 # 2 € C : |arg(2)| < ¢} with a fixed ¢ € (7/2,7). If DT € Ap and o' € A,, then the
resolvent estimate with p = 2 holds for a constant ¢ independent of Dt and of (but depending
on ¢p, ¢p and ¢, in (3.3))). This could be easily proved by using a standard energy argument; see
e.g., [139, p. 92]. Moreover, if DT € W1°°(Q), then the resolvent estimate holds for p = oo (cf.
[137, Theorem 1], [14, Theorem 2.1] and [105, Appendix A]).

Then we introduce the solution operator

B(t) = - /F ez + A)dz. (3.32)
(o

C2mi

Here Iy, = {2 € C: |z| = &, |arg(2)| < ¢} U{z € C: 2z = pe'?, p > x} with fixed constants x € (0, 00)
and ¢ € (7/2,7). Then the solution u to the parabolic problem (3.28)) could be written as

w(t) = B(#)(uo — §) + /0 E(s)f(t — 5)ds, (3.33)

where g satisfies elliptic equation Ag = 0 with Dirichlet boundary condition g|spg = ¢g. Under Assump-
tion by the elliptic regularity theory and maximum principle, g € W1*(Q) N H%(Q) and has a
strictly positive lower bound.

Next, we provide a selection of valuable smoothing properties associated with the solution operator

E(t).

Lemma 3.4. Let E(t) be the solution opetator defined in (3.32). Suppose that DT € Ap and ot € A,.
Then there exists a constant ¢ independent of Dt and of (but depending on cp, ¢p and ¢, in (3.3))

such that for any nonnegative integer ¢,

IEC )| 2(0)—r2() < emin(t 1, t75).
Moreover, if DY € WH(Q), then there holds

IE (#)]] oo 0y Lo (@) < cmin(t™ 1, ¢76).

Proof. The proof of the lemma follows by the contour integral (3.32]) and the resolvent estimate (3.31)).
If DT € Ap and ot € A,, then the resolvent estimate (3.31)) with p = 2 holds for a constant ¢ depending
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on ¢p, ¢p and ¢, in (3.3). Then for £ > 0 we have

IO )] 12(0) 220 < C/F |2[le* Il (= + A)_1HL2(Q)_>L2(Q)\dZ\ <C g [e*]]2]°(1 + [2]) "] dz]
(oM b,k

00 ¢
< C(/ efstcos¢ st dS—I—/ efntcosw dw) < cmin(tié*l,tfz),
K s+1 —¢ 14k

where we take x = t~! in the last inequality. The estimate in maximum-norm could be derived

similarly using the resolvent estimate (3.31]) with p = co. O

Lemma immediately leads to the next lemma showing the decay properties of the solution.

Lemma 3.5. Suppose that Assumption [3.§ (i)-(iii) holds valid. Let u be the solution of the parabolic
problem (3.28). If D' € Ap and o € A,, then for £ =1,--- ,k+ 1, there holds

10fu(t)|| 20y < cmax(t™4,1), V¥t € (0,00).
Moreover, if Dt € Who°(Q), then there holds

Ctil, Vite (07TO]7
[0cu(t)]| oo () <
c(t —2Tp)~, VYV te (2Tp, ).

Proof. By solution representation (3.33)), we may write

/—1
Ofu(t) = EO(t)(uo — g) + > ED () f79(0 / E(s)fO(t — s)ds.

=0

According to Assumption (iii), we have f@(0)=0,i=1,---,¢ — 1. Then Lemma implies
10fu() | 2y <IED )]l 12(0)— 2@ lto — 3l 2y + 1B @)l 22(0)— 2@ 1 £ (0l 220
t
+ [ 1B 20| 1O = ey
<ct ™t 4 a7 4 ¢ < emax(t74 ).

Now we assume that D e W1°°(Q). Similarly, with solution representation (3.33)), d;u could be

written as
drut) = E'(t) (uo — 3) + E(t) £(0) + / E(s)uf(t — s)ds

For any t € (0, Tp], we recall that 9, f = 0 according to Assumption Then the regularity of problem
data in Assumption [3.8 and Lemma [3.4] lead to

10cu(t)]| Lo 0y < 1B (8) | zoo () zoo () 1w — Gl () + IE )] poe ()= Loo () 1LF (0) || ooy < et
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Next, we turn to the case that t € (27p,00). Assumption leads to 0,f # 0 for t € (Tp,27p) and
O¢f = 0 otherwise. Then Lemma [3.4] yields

|05 (t) | oo () IE' () oo ()= oo () [0 = Gl oo () + 1B ()] oo () £oo () 1 (0) | oo ()

t
T /0 1E(8) | ey oo () 101.£(E — 8)]| ey s

t—To
<ct'+cC s tds < Ot — 2Tp) ™%
t—2T)

This completes the proof of the lemma. O

The stability estimation follows a similar approach to that of the elliptic case. First, we decouple
the parameters, and then sequentially determine the stability for the diffusion coefficient D and the
reaction coefficient . To achieve this, we select time intervals such that 0 < T < Ty and To > 27p.
Multiplying the equation at time 77 by w(7) and at time 75 by u(71), after subtracting the two

equations, we can eliminate the reaction coefficient o and obtain

-9+ (D (U5 1)) = () = ddTa)u(Ty) ~ (F(T) - duu(Ti)ulTa), in 2
wT)
u(Ti) —1=0, on 0f.
(3.34)
For ease of reference, let’s introduce the following notation:
= Zgj; —1, ¢:=Du(T)? and F := (f(Tz)—du(T2))u(T1)— (f(T1) —deu(T1))u(Tz). (3.35)

Then the system (3.34) could be written as the form (3.9). Therefore, the following result is an

immediate application of Theorem [3.3] and we omit the proof.

Assumption 3.9. The ezact diffusion coefficient ' = D|u(T1)? € H2(Q)NW 1> (Q)N.A, and source
term F' = (f(T2) — 0pu(T2))u(Ty) — (f(T1) — Opu(T1))u(T2) € L>().

Theorem 3.10. Suppose that F, Fe L>(Q), q satisfy Assumption and g € Ay. Also, suppose
the HY(Q)-norm of q and q are bounded by a generic constant c. Let w be the solution of (3.34]) with
diffusion coefficient q and source F, while w be the solution with diffusion coefficient ¢ and source F.

Then there holds
[ (a1l + Fw) o < e (o = i + 1F - Flliz)
Moreover, if the following positive condition holds
q|Vw|? + Fw > cdist(z,00)°  a.e. on Q (3.36)
for some B >0 and ¢ > 0. Then the following estimate holds
i~ ez < (I = @llre) + IF = Fllzy) ™
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Remark 3.6. As suggested in Section the crucial aspect to ensure the positivity condition in
1s to establish the strict positivity of the function F. It is worth noting that F' contains the time
derivative term Oyu, making the positive condition more intricate than that presented in Section [1.9
Therefore, a careful examination is required. Next, we demonstrate that the positive condition holds
valid under certain specific excitations f and g.

We claim that the function F in could be strictly positive provided some restrictions on

excitation f and g. For example, with Assumption |3.8, we take a time dependent source term

0, 0<t<Tp,
flz,t) =
Cy, t > 2Ty,

for some Ty. Here we assume that Ty is sufficient large, Ty = Ty, and Ty = 3Ty. As a result, according
to Lemma [0cu(T1) oo () + 10eu(T2) || oo () < CTy "t Since u has a strict positive lower bound
(3-30) and [[u(t)| po () < ¢ uniform in t, we conclude that for sufficiently large To,

F > cpe, — Ty ey + 1u(Ta)l oo @) > ¢r > 0.

Then the positivity condition (3.36|) holds valid for some (B € [0,2].

The following corollary gives the estimate of ||F — F|| 12(0) and hence the estimate of ||D — D|| 12(Q)-

Corollary 3.2. Suppose that Assumption holds valid, D € Ap and o € A,. Let u (u) be the
solution to the parabolic equation with diffusion coefficient D (D), reaction coefficient o (5), the
boundary data g and source f. Let D € Wh(Q)NAp, 0 € L®(Q)NA,. Assume that ||u(T;)| 12¢) < ¢
fori=1,2. Then there holds

_k_
E+1

2
IF = Fllzay < e( D Il = llpen-omirzy)
=1

where k is the regularity of source f given in Assumption (ii). If in addition, the positive condition
(13.36) holds for some > 0, then

2 2 ko ﬁ
~ ~ ~ k+1
|D = D2y <c (Z [(w — @) (Ti)ll ) + <Z Ju — UHLOO(Ti—G,Ti;L2(Q))> ) :

i=1 i=1

Proof. By definition in (3.35), F' — F can be written as

F—F = f(Ty) (u(Th) — @(Ty)) + f(T1) (@(T5) — u(T))
+ U(Tg)atu(Tl) - ’lj(Tg)atﬂ(Tl) + ﬂ(Tl)ﬁtﬂ(Tg) - U(Tl)atu(T2>

The first two terms can be easily bounded by

2
1 (T2) (w(Ty) = @(T0) + f(T1) (@(T2) = u(T2)) 120 < e ) I = @) (L) 12 (@)-

=1
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Inserting an intermediate term w(7%)0u(T}), we have

w(T2)Opu(T1) — u(T2)0eu(T1) | L2y < [W(T2) || oo ()l Ou(T) — Opu(Th)|| L2 (0

+ 10cu(T)| oo o u(T2) — u(T2) [ L2(0)-

By assumption, we have [[u(T2)| o) < ¢. Meanwhile, Lemmaimplies 10vu(T1) || Lo () < Tyt <

c. These together imply
[u(T2)dpu(T1) — w(T2)0uu(Th) || 120y < ¢ (18u(T1) — (T () + lu(T2) — W(To) |l L2(q)) -

To analyze the term |9yu(T1) — 0yu(T1)||12(q), We insert the backward difference quotient of order £,

k k
Oru(Ty) =7 > aju(Ty —jr) and O(Ty) =71 a;u(Ty — jr),
j=0 j=0

for some 0 < 7 < 0/k, where {aj};?:l are backward difference quotient coeflicients. By Lemma

k+1
at

we have || || oo (1, —0,11;12(02)) < ¢, and hence by Taylor’s expansion we obtain

10au(T1) — Bru(T1) |20y < T 08l oo (7 -0,y 12 () < 7. (3.37)
Then we obtain
lu(Ta)0uu(Th) = W) (Tl 2y < e (7 + 77w = @l ooy —pmysz200) + 1 (0 = DTl 1200y ) -

The bound for [|u(T1)0yu(Ts) —u(T1)0ku(T2)| 2oy can be obtained similarly. Consequently, we arrive

at

2
IF = Fllzay < o7 + 77 Y llu = il o 12y )-

=1

1

k+1

If 357 [Ju — Ul ooy o102 < (0/k)*F1, then the choice 7 = (2?21 [|u — aHLoo(Ti—e,:n-;L2(Q)))

leads to the desired estimate. Otherwise, it suffices to take 7 = 6/(2k) and derive
N 2 2
| F' = Fl 20 §C<9k +07 - a||Loo(Tf@,Ti;m(Q))) <! (9k+1 +) u- ﬂHLoo(TFo,Ti;L?(Q)))
i=1 i=1

2 2 k
~ ~ k+1
<e Y = ll e (r—o.r2()) < C( > - UHLW(Ti—@,Ti;L?(Q))) o,
i=1 =1

where we use the fact that 6 and k are constants and the a priori bound [|u — || oo (7,—9,1,;2(02)) < -

The second assertion of the corollary is a direct consequence of applying Theorem [3.10) O

Having obtained the reconstructed conductivity, we can now proceed to recover the reaction coef-

ficient. The subsequent theorem offers conditional stability for the parameter’s recovery.
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Theorem 3.11. Let the assumptions in Corollary[3.9 hold true. Then there holds

l(o = ) (w(T2) = w(Th))llL2(0)

2
c<(2||u—a||Loo(Tie,Ti;L )’“”+Zuu—u Dl +||D—D\|Lz<m>
=1

Proof. Letting ¢ = u(Ty) — u(T1) and choosing a test function v € H{(£2), we have

N

2

(0~ 3)¢.v) = (DVE — DVC, Vo) + (3(C — €).v) + 3 (0h(@ — u)(T1), v).

i=1

Now we take v = (0 — )¢ and note that |[Vvl|12(q) < c¢. Then we obtain
ol320) <e(lIC = Qo + 1D = Dllzag@y + 11 = Cllzzylollz2o

2
+ D 10u(iE = W) () 2 0 2 )
=1

Using the argument in the proof of Corollary we use backward difference quotient to estimate
10¢(u — u)(T3) || £2(q) and obtain

2 k

2
S 110 = ) (Tl 2y < (D Il = il r,-omiz2 )
=1

i=1
As a result, we conclude that
2k

o120 <c(Z||u—u ) + 1D = D2 (Znu—uumg omazray) )

This completes the proof of the theorem. O

Remark 3.7. Similar as in Theorem for any compact subset Q' € Q with dist(Q, Q) > 0, we can
obtain the bound for ||o — || 12y, if ¢ = w(T2) —u(T1) > C > 0 in Q. This condition can be achieved
by following choice of data: we take fo— f1 > ¢y >0 in , Ty =Ty, To = 31py, with Ty sufficiently
large. Then ¢ satisfies the elliptic equation with source F = fo — f1 + Opu(Ty) — Owu(Ts). According to
Lemma there holds [|0yu(T1) ||z () + |0/u(T2)|| Loy < Ty ", we conclude that F > ¢p — Ty
1s strictly positive when Ty is sufficiently large. Consequently, the strong mazimum principle [171),

Theorem 1] implies ¢ > ¢ > 0 in Q' and hence

l

2k

2 2
|o— 5||L2(Q/) < C((Z lu— aHLC’O(Ti—Q,Ti;B(Q . Z (u—u) HHl(Q) + D - DHL2 ) .
i=1 i=1
Remark 3.8. Throughout we assume that g is time-independent in order to have the relation that
_ U(T27 Jj)
wiw) = u(Ty,x)

The zero boundary condition of w is very crucial in the stability analysis and the error analysis of

—1=0 forall x € 0Q.

numerical recovery. For boundary data g(x,t) that varies with time, we would need to impose the

condition that D = D and 0 = & on 8Q to ensure the applicability of our current argument.
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3.3.2 Numerical scheme and error analysis

In this part, we present the numerical scheme for the reconstruction of diffusion coefficient and reaction
coefficient. First of all, we use the system (3.34)) to recover the diffusion coefficient without the

knowledge of reaction coefficient. Denote the exact solution uf(z,t) := u(x,t; DT, o1) and define

—1 and w’= Z6(T1)

(D) D) ¢

Recall that the exact solution ' is strictly positive, cf. (3.30]). Then for ease of simplicity, we assume

that 2 are strictly positive in Q. Moreover, we assume that
122l ((Ts—0: 13,10 () < (3.38)
with some generic constant c. Then it is easy to observe
|w® — wl| < e
Moreover, we take
FO = (f(Ty) = 0,22(T3)) (1) = (f(T}) = 6:2°(Th) ) 2 (T2),

where 0, denote backward difference quotient of orde k for some 0 < 7 < 8/k. We apply the following

output least squares formulation

‘ 1 5112 M 2
S (an) = 5l )~ 0 ey + IV (3.39)
where wp, (gn,) € V}?l is a weak solution of

(gn, Vwp,, Vup,) = (FJ, Up,), Yop, € V;?l. (3.40)

The following theorem is a direct consequence of Theorem

Theorem 3.12. Suppose Assumptions and hold. Let ¢f = DT|uf(T})> € A, be the exact

parameter in the elliptic equation (3.34), w(q") be the exact solution, and q, € Agn be a minimizer
1

of problem (3.39)-(3-40). Then with n = h3 + & + 78 + 6771+~ , there holds

T %
/ () (0! IVu(a) P+ Fu(a))de < o (s ® + min(hn + byt D)y ® 40475+ d770).
Q

Moreover, if the following positive condition (3.36)) holds for 5 > 0, we have

T gf 7% : -1 *% k 1 ﬁ
lg" = ap, l2@) < c| { hPamyy > +min(hy +hy 0, 1) ) ny > +0+ 77 + 07 '
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Proof. The proof closely resembles that of Theorem with the primary distinction being the esti-

mation of F — F. More specifically, we obtain

IF = FOll 2 () = I1/(T2) (w(Th) = 2°(T0)) |l 22y + I (T0) (u(T2) = 2°(T2)) || 2 @)
+ 0T )u(Te) — 0;2° (T1) 2" (To) | 20y + 10l To)ul(Ty) — 0:2°(T2)2° (Th)ll 2 0
< &8 + [|Opu(T1)u(Tz) — 0:2° (T1)2° (T2) | 12(0) + |Bsu(T2)ulTy) — 072° (T2)2° (Th) | 2

Then it suffices to bound the second term, and then the third term follows analogously. Inserting the

terms O,u(Ty)u(Tz) and 0,u(T1)2%(Ty), we have
10pu(T1)u(Tz) = 8-2°(T1)="(T2) 120
< 10ru(Th)u(Tz) — Oru(Th)u(T2) | L2() + (10 U(Tl)u(Tz) = 0ru(T1) 2 (To)l| 20

+ [|0-u(T1)2° (T2) — 0-2°(T1) 2 (T2) | 120y = ZI

By Lemma we observe that Haf:-‘rluHLOO(Ti_97Ti;L2(Q)) + [[u(T})|| Lo (@) < ¢ and hence we apply the
estimate (3.37)) to obtain

I < |0su(T1) — Oru(T) || 2o lu(T2) | poo ) < e 105 ull poo (7,0 71120 |1(T2) || oo () < €7
For the second term, we apply Lemma and the assumption (3.5)) to obtain
T
Iy < [[07u(Th)|| oo (o lu(T2) = 20| 2() < 67 / [t (8) || Lo () At < c7 7!
T -6
Finally, for the term I3, we use the assumption (3.5]) and ( - ) to derive

I3 < [|0ru(T)2" (T2) — 872°(T1)2°(T2) 120
< |0 (u(Tr) = 2°(T0) | L2y 12° (T) | Lo () < o7
Consequently, we arrive at
|F = F2l 20y < (6 + 7 + 577,

The proof that follows simply involves substituting ||F — F5H r2(e) in Theorem with the newly

established error bound. As such, we omit this largely redundant proof. O

Remark 3.9. In Theorem |3.18, the choice T ~ 571 implies that ||F — F5||L2(Q) < eSFHT. With a

_k 2k
priori choice of the algorithmic parameters: hy ~ §2-¥D vy ~ §&+1. Under the positivity condition

(13.36]) with B > 0, there holds the estimate

ID" — Dj 120 < ¢ STTFBFFD

-1

When f is smooth over time, the optimal order is nearly (4(1+4 3))~". This estimation aligns with the

one given in the elliptic case, as detailed in Remark [3.2
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Now we turn to the reconstruction formula of reaction coefficient o and study the approximation

error. Let ¢ = u(T1) — u(T») which is a solution to the elliptic problem

—V - (DV() +0¢ = f(T1) — f(T2) + Opu(T2) — Opu(T1), in €, (3.41)
C=0, ondQ. '

The noisy observational data for equation ([3.41)) is ¢° = 29(Ty) — 2°(T}) satisfying ||¢ — §5\|LQ(Q) < ¢d.

We consider following least-squares formulation

i 1 Y2
min *772,’12 (UhQ) = §HCh2 (JhQ) - (6"%2(9) + ?HvahQ”%?(Q) (3'42)

Ohy G-Ag’hQ

where Agp, = Ay N Vi, and (p,(op,) € Vi is the solution to the finite dimensional problem
(D3, Vhas V) + (0nyChg s v) = (F(T1) = f(To) + 8:2°(To) = 8:2°(Th), 0ny), - Vom, € Vi), (3:43)

where 0, denote backward difference quotient of orde k for some 0 < 7 < 6/k. Similar as Section
we use ho to denote the different spatial mesh size. Here O, denotes the difference quotient as the
discretized scheme and Dy is the diffusion coefficient we reconstructed in previous step with a
priort estimate

k
|Dj, — DY|lp2q) <€ with €= c5 TR
The subsequent result offers an error estimation for oy, — of. Given that the proof parallels that
of Theorem we have decided not to reproduce it here.

Theorem 3.13. Suppose Assumptions and holds, D' € ApNnW1H(Q) and (P2 —DT||L2(Q) <

e. Let (o) be the solution to equation (3.41)), while oy, be the minimizer of (3.42)-(3.43). Then with
n=h3+e+ (" + 67712 + /72, there holds

N

1
_1 _ 2
(ot = oh,)¢ (o)l 20y < € <hm R N (72 n(min{ha + hy 'y, 1} + 6)) > :

Moreover, if fo—fi1 > ¢ >0 a.e. inQ, Ty =Ty and Ty = 3Ty with Ty being sufficiently large, then for

any ' € Q, there exists a constant ¢ depending on dist(Q,09), f, g, ug, DT and o', such that

1 1 3
|(of — Ohollr2y < e <h272 A+t o+ (72 2n(min{hg + hy'n, 1} + e)> ) .
Remark 3.10. According to Theorem[3.5 and Remark[53.3, we have
|D}, — Di|| < e = coTmmmm,

k 2k
provided that h ~ §2F+1) |~y ~ §F+1 and the positivity condition (3.11)) is valid with 5 € [0,2]. As a

1
result, with the choice of parameters hg ~ eé,’yg ~ €2, T ~ 651, there holds the estimate
k
ot = )¢l 2y < coTTHT.
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Finally, if fo— f1 > c¢>0 a.e. in Q, Ty =Ty and Ty = 3Ty with Ty being sufficiently large, then
k
o — o7, | 2(ar) < €§FTFAFETD,

where Q' € Q and the constant ¢ depending on dist(€Y,09), f, g, uo, D' and oT.

3.4 Numerical results

In this section, we present empirical results that demonstrate the precision of our proposed decoupled

numerical algorithm. The reconstruction accuracy is measured in relatively L?(§2) error:
ep = ||Df, = D2 /1D 2y and  eo = lloh, — ol 2@/ llo ]2 ()
To begin with, we present numerical results for one- and two-dimensional elliptic equations.

Example 3.1. Q = (0,1), Df(z) = 2 +sin(27x), o (z) = 1 + 2(1 — x). The boundary is g = 1 and

the two sources are given by fi =1 and fo = 10.

Table 3.1: Examples and convergence with respect to 9.

(a) Example (b) Example

) le-2 5e-3 le-3 He-4 le-4 ‘ le-2 5e-3 le-3 He-4 le-4

ep | 4.87e-2 3.51le-2 1.73e-2 7.12e-3 4.67e-3 | 1.29e-1 6.34e-2 3.20e-2 1.95e-2 1.14e-2
es | 1.78e-2 1.73e-2 1.6le-2 1.00e-2 9.24e-3 | 7.70e-2 3.55e-2 3.12e-2 2.23e-2 2.13e-2

The results of the reconstruction at different noise levels can be seen in Figure [3.1] while the
relative errors are displayed in Table For different noise level §, we adopt the regularization
parameter v; and mesh size h as 1 = 07152 and h; = C’hléé respectively. This choice is guided
by the recommendations made in Remark for the reconstruction of DT. Next, in the process of
reconstructing of, we follow the guidelines provided in Remark Specifically, we assign values to
v and hy as 72 = 07262 and hy = C’hQG% respectively. Here, € represents the empirical convergence
rates observed in our experiments. The constant C,,, Cy,, C,, and Cj, are determined by a trial
and error way. For reconstruction of D, we initially take 7; = le-6 and h; = 1/16. The numerical
results indicate that the error ep decays to zero as the noise level tends to zero, with rate O(5%52).
For reconstruction of reaction coefficient of, we initially take 7o = le-5 and hy = 1/16 and observe a
convergence rate O(6%!®). It’s important to note, as discussed in Remark 3.1, that the predicted rate
for Dt is O(§ 1/ 4), which is significantly lower than the empirically observed rate. Moreover, with the

empirical rate v = 0.52, the predicted rate for o is expected to be O(6%2%) as noted in Remark 3.2.
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X X X
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0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
X X X
(a) d = le-2 (b) 6 = 1e-3 (c) 0 =1le4

Figure 3.1: Example First row: reconstructions of Df. Second row: reconstructions of o'.

However, this rate is seldom observed in practical applications. The discrepancy between numerical
experiments and theoretical predictions can be attributed to optimization error. In the decoupled
algorithm, two optimization problems must be solved to obtain D} and o7. The loss functions are non-
convex and contain local minima, which making it challenging to achieve the theoretical convergence

rates.

Example 3.2. Q = (0,1)%, D(z,y) = 2 +sin(2rx) sin(2ry) and o' (2,y) = 1 +y(1 — y)sin(rx). The

boundary is g = 1 and the two sources are given by f1 =1, fo = 10.

The numerical results for Example are presented in Table [3.1] and Fig. [3.2] The mesh sizes
and regularization parameters are initialized to hy = 1/16, 71 = le-8, hg = 1/12 and 2 = be-6.
The empirical convergence rates for ep and e, with respect to § are about O(6%%!) and O(5%?%),
respectively, which are comparable with that for Example

Next we compare our decoupled reconstruction process with the scheme — where we
compute D; and o simultaneously. We address the optimization problem defined in —,
using the conjugate gradient method. The solution process alternates between two directions. We
initially set o as fixed and employ the conjugate gradient descent to optimize Dy. Subsequently, we
fix Dy, and utilize the conjugate gradient descent to optimize 0. We continue this alternating process
until convergence is reached. In the computation, we select a mesh size of h = 1/50. The regularization
parameters are determined through a process of trial and error. The reconstruction results, carried out
with a noise level of 6 = 2%, are presented in Figure [3.3l The first column illustrates the convergence

of the conjugate gradient iteration. In both methods, the errors first decays and then increase or
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Figure 3.2: Example First row: reconstructions of D. Second row: reconstructions of of.
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Figure 3.3: Comparison between the proposed decoupled algorithm and the coupled scheme (3.26))-

(3.26). First row: diffusion coefficient D. Second row: reaction coefficient o.
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oscillate and finally become steady. This phenomenon indicates that it is essential to choose a good
regularization parameter or apply early stopping strategy. Notably, the errors for the decoupled scheme
demonstrate a rapid and steady decay. However, for the coupled scheme as defined in —,
the optimization problem is considerably more complicated. As a result, the errors exhibit a period
of oscillation and require a significantly longer time to converge.

Next, we present numerical results for the parabolic equation. Throughout, we use backward Euler

scheme, i.e. k =1, to discretize in time variable.

Example 3.3. Q = (0,1), Df(z) = 2 +sin(27z), o' (z) = 1 — [z — 1|, wo(z) = 1 + Lsin(rz) and

g =1. We take the source term as

1, fortel0,1.5];
fla,t) = Isin(Z(t—3)) + L, fort e (1.5,3.5); (3.44)
10, fort € [3.5,00).

The measurement is taken in the time-space domain (t,x) € [0.9,1] x Q and (t,z) € [4.9,5] x Q.

Table 3.2: Examples and convergence with respect to 9.

(a) Example (b) Example

1) le-2 5e-3 le-3 He-4 le-4 ‘ le-2 5e-3 le-3 He-4 le-4

ep | 5.49e-2 3.78e-2 1.37e-2 7.45e-3 6.69e-3 | 1.59e-1 1.00e-1 3.15e-2 1.98e-3 8.78e-3
es | 0.23e-2 5.14e-2 3.32e-2 2.29e-2 2.13e-2 | 4.41e-2 2.43e-2 2.24e-2 1.98e-2 1.53e-2

The reconstruction results are listed in Table [3.2] and Figure [3.4] For reconstructing diffusion
coefficient DT, the parameters are taken to be h; = C’hl(ﬁ, T = C’T(S% and v, = C,,0, according to
Theorem We observe ep decays in a rate O(6%4Y) with initial mesh size hy = 1/16, time step
7 = 0.1 and regularization parameter 3 = le-6. As shown in Theorem for reconstructing of, we
take parameters ho = ChQG%, T=0C0 3 and 72 = Cy, 2. Here, € represents the empirical convergence
rates for recovering DT observed in our experiments. We initialize the mesh size ho = 1/16, time step
7 = 0.1 and regularization parameter 72 = le-5. The numerical results show that the error e, have

decay rates O(6%-?2). These results are comparable with that for Examples and

Example 3.4. Q = (0,1)?, D' = 2 + Dy — Dy with Dy(x,y) = e~ 20(@=0.5)?-20(y—0.7)* Dy(z,y) =
e—QO(x—O.5)2—20(y—O.3)2’ O'T(l',y) =1+ 0‘56—20(;1:—0.6)2—20(y—0.6)2, ’UJO(IL‘) =1+ %Sin(ﬂ';p) Sin(ﬂ'y) and
g = 1. The source term is given by (3.44). The measurement data is observed in the time-space
domain (t,z,y) € [0.9,1] X Q and (t,z,y) € [4.9,5] x Q.
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35 3.5 35
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(a) d = le-2 (b) 6 = 1e-3 (c) 0 =1le4

Figure 3.4: Example First row: reconstructions of Df. Second row: reconstructions of o'.

The numerical results for Example are shown in Table [3.2) and Figure [3.5] The computational
parameters are initialized to hy = 1/16, 7 = 0.1, 73 = le-6 and he = 1/16, 7 = 0.1, 72 = le-6. It
was discovered that the empirical convergence rate for ep in relation to § was approximately O(5%4%).
This rate is higher than the theoretical one. Moreover, the empirical rate for e, was found to be about

0O(6%22), which aligns with the theoretical estimate.
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Figure 3.5: Example First row: reconstructions of D. Second row: reconstructions of of.
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CHAPTER 4.

Finite element approximation for quantitative photoacoustic

tomography in a diffusive regime

In this chapter, we investigate the inverse problem raising in the quantitative photoacoustic tomogra-
phy (QPAT):
—V - (D(z)Vu) +o(z)u=0 in Q,

(4.1)
u=g¢g on Jf.

Here,  is a bounded Lipschitz domain in R? (d = 2,3) with boundary 9. The optical coefficients
(D(x),0(x)), with D(z) being the diffusion coefficient and o(z) the absorption coefficient, are assumed
to be bounded and positive. The QPAT inverse problem consists of recovering D(z) and o(z) from

the internal observation of the optical energy
H(z) =o(x)u(z) forall xz € Q.

The problem of QPAT has been extensively studied in the literature. Since the inverse problem
involves multiple parameters (D and ¢), a common method uses multiple illuminations g to generate
various optical energies H and reconstruct the unknown parameters. In [16] [15], the authors propose
a decoupled procedure and prove the uniqueness and Holder stability for the inverse problem. The
decoupled scheme relies on the following observation: if uj,us are two solutions to equation (|4.1))
corresponding to illuminations g1, g2 respectively, then the quotient u = ug/uy = Ho/H; satisfies the
following elliptic equation with one parameter:

-V - (¢Vu) =0 in
’ (4.2)
u=g on 02,
where ¢ = Du? and g = g2/g1. Thus, the problem of QPAT is solved by a two-step procedure. The
first step is to solve an inverse diffusivity problem (IDP) of recovering ¢ given w and the boundary
value ¢|pq. After obtaining ¢ = Du%, the second step is solving a direct problem:
~V - (DuiV(1/u)) = Hy inQ,
(4.3)
1/up =1/g1 on 0,
to find u; and hence determine D and o.
The rest of this chapter is organized as follows. In Section we discuss the choice of random

boundary illuminations and show the Holder type stability of the inverse diffusivity problem under
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the non-zero condition. We also propose an iterative reconstruction algorithm and study the finite
element approximation error. In Section [£.2] we establish the numerical inversion scheme for QPAT
and analyze the discrete approximation error. Numerical experiments are presented in Section to

validate the theoretical results.

4.1 Inverse diffusivity problem
In this section, we consider the inverse diffusivity problem of the second-order elliptic equation (4.2]):

-~V (¢Vw) =0 inQ,
14.2)
w=g on Jf.

Let Q' € Q be a given Lipschitz subdomain and suppose that the exact diffusion coefficient ¢f(z) is

known for all z € 2\ Q. The diffusion coefficient is assumed to be in the following admissible set:
A, ={qe HY(Q): 0 <¢,<qg<cgae inQ, qg= q'in Q\ '}, (4.4)

with a priori known positive constants c,, ¢;. Moreover, we assume that the coefficient and boundary

data satisfy the following assumption.

Assumption 4.1. Let Q be a bounded Lipschitz domain in R and Q' € Q be a given Lipschitz
subdomain. We assume that the exact diffusivity coefficient ¢ € C%H(Q) N Agy. Further, we let g
(with £ = 1,...,L) denote boundary data, which are taken as independent and identically distributed

random variables in H%@Q) satisfying the erpansion
M
gtV = Zag)ek, £=1,...,L, (4.5)
k=1

where M is a given positive integer, {ey}72, is a fized orthonormal basis ofH% (092) and a,(f) ~ N(0,6?)

are independent real Gaussian variables, with 0y, > 0 for every k and -, 0 < oco.

Remark 4.1. Let w9 (¢1) denote the solution to the elliptic problem [&.2) associated with the diffusion
coefficient ¢' and the boundary excitation ¢90. Under the reqularity assumption, classical elliptic

reqularity theory ([57, Theorem 5.20] and [58, Theorem 8.8]) implies that the corresponding solution
to the elliptic equation [L.2)) satisfies w® (¢t) € CL*(Q) N HY(Q) for all k € (0,1).

loc

The inverse diffusivity problem (IDP) consists of recovering the diffusion coefficient in Q from the
multiple internal observations w(®) (z;q") for all 2 € Q', where £ = 1,2,..., L. With the above choice
of g9, by using the result of [4] we have the following non-zero condition, which is crucial for stability

and error estimates.
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Proposition 4.1. Suppose that Assumption holds. Take v € R® with |v| = 1. Then, with a
probability greater than
1 — Léexp (—C1L) — Lexp (—CyM), (4.6)

the following non-zero condition holds

max Vw(z)-v| > Cy, ze, (4.7)

EARA)

and the random boundary data has upper bound

(0) z
Jmax g,y o0 < L. (48)

Here w® (with ¢ = 1,...,L) is the solution to (4.2|) corresponding to the boundary illumination g(g).

The positive constants Cy, C1 and Cy depend only on Q, ', {01}, {ex}, ¢, ¢q and ||q||Co,1(§).

Proof. All the constants appearing in the proof will depend only on , ', {0;}, {ex}, ¢

Cq» Cq and
||q”()071(§)' Let w® be the solution to ([£.2)) with boundary data

ﬁ(f) = Za,(f)ek, (=1,...,L,
k=1

where {e;}7°, and ag) are as in Assumption By [4, Theorem 1] (with the choice {(u) = Vw-v, as a
minor variation of [4, Example 2]) and [4, Lemma 5]), with probability greater than 1— L% exp (—C4 L),
we have the following non-zero condition

max Vo () v| > 20, ze

=1,...,

and

max_[[g| <L%/2

0=1,...,.L H%(aﬂ)

Now we estimate the difference between g(¥ and the truncated boundary values ¢9). We view
a0 — 40

19 = 9"l 1 o0

the moment generating function satisfies for all A € R:

E exp (AQHQ(Z) - Q(E)Hi{%(m)) = Eexp <A2 Z (a/(f))Z) = exp <A2 Z 9;%) )

k=M+1 k=M-+1

as a random variable. Since a,(f) ~ N(0,62) and ey, are orthonormal in H %(89),

The condition ) ;2 0 < oo implies that > .2,/ 92 < CM~1. By [142] Proposition 2.5.2], we have

P (H?m =990 4 o0y 2 t) < 2exp (~C%2M), Wt>0,0=1,... L.

Thus, with probability greater than 1 — 2L exp (—Czt2M ), we have

159 — g9 <t, (=1,..., L.

H3(00) =

o1



Hence, elliptic regularity yields

(l ¢ o
Hw()—w()Hcl(W)SCt7 ¢t=1,...,L.

With the choice ¢ = min{Cy/C, L2 /2}, we have [@®) — w®)|| . g, < Co and ||g €>||H2 o < L2. Let
Cy = C?t?, with a probability greater than

1 — L%exp (—C1L) — 2Lexp (—CoM) ,
the non-zero condition (4.7) and the upper bound on the boundary values (4.8]) hold. ]

4.1.1 Conditional stability

In this part, we derive a useful conditional stability estimate in Sobolev spaces for the inverse diffusivity
problem. According to the non-zero condition ([£.7) and the smoothness of the solutions w(® &

ch

loc

"(Q) N HY(Q), there exist open sets €y, £ =1,..., L, covering €’ such that

where  |[Vw(® - v| > Cp/2 for all z € Q. (4.9)

N
. IC-~
o]

Theorem 4.2. Suppose the diffusion coefficient ¢ and the boundary terms g'¢ (wzth ¢{=1,...,L)
satisfy Assumption and let ¢ € Aq be a perturbation. Let w® and w0 be the corresponding
solutions to (4.2]) with parameters q and q, respectively. Then, with a probability greater than ,
the following stability estimate holds:

=

L
- 1 _
lg = @ll 2o < cCy 'L (Z [w® — w(@HHl(Q')) °. (4.10)
Here ¢ > 0 is a constant depending only on Q, ', ¢, and Hq”co,1(§), and Cy is the lower bound of the
non-zero condition given in (4.7)).

Proof. With an abuse of notation, several positive constants depending only on 2, €/, Cq» Cq and
llall o @ will be denoted by the same letter ¢. By Proposition with overwhelming probability
, both the non-zero condition and the uniform bound are satisfied. Then for a given
¢e{l,...,L}, for any test function ¢ € HE(Q), integration by parts in (4.2) yields

(g = @Vw®, vel) = (qv (@ — w®),ve®). (4.11)

Furthermore, multiplying both sides of (4.2)) by%‘igo(g) and applying integration by parts, we obtain

0= (qvw(e),v(q—zf)w(@) ( (O)x74® v(q—&)) ( (q—zﬁ Vsp(é))
q q
and hence

((g = PVuw, V) =

((¢— HVw® vl )) — ;(qap(@Vw(g),V(q — @) (4.12)

l\.')\r—t
i
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Now, we choose the test function ) = (¢ — §)w® /q. Since ¢ = § on Q\ ', ¢ vanishes on 9.
Noting that ¢, € A, and w® € C1*(€V), we conclude that ) € H}(Q), with
1o 1
109N 20y = (@ = Dw® /20y < 2¢; " Ellw | 120y < L2

and

gV — Qw9 — (¢ — Huw9Vq
q2

IV o) =

L2(QY)
<2 (g1l ooy (Va2 + IVl o) + 22190 2

g 1
+ 26,72 || w]| Lo ) | Val| L2y < eL2.

With the test function ¢, the right hand side of (4.12)) equals to % fQ @\Vw(mzdx. Therefore,
by the relations (4.11)), (4.12) and the assumption ¢ = ¢ in  \ €', we achieve

)
;/ =9 G024, :/ V@O — ). VeOda < L TO — w10,
/ q Q/

Taking summation with respect to £, we obtain

L L

(Q*Q)QZV OPdz < L33 70 - w®

R [Vw'™|*dx < ¢ ||w W | gy
=1 =1

The non-zero condition (&7)) indicates ¢, [Vw(® (z)> > CZ, for all z € Q. Hence, we conclude

L
- 9.1 _
lg — QH%Z(Q’) < Cy?L> Z [t — w(e)HHl(Q’)-
=1

Since ¢ = ¢ in Q \ €, the proof is completed. O

Remark 4.2. The proof of Theorem depends on the non-zero condition and the boundedness
of ”’LU(E)HLOO(QI) < cHg(K)HH%(am < CL%, which is satisfied under an overwhelming probability. It is
important to emphasize that the constant ¢ in is influenced by the distance between € and
00. As the subdomain Q) approaches the boundary of Q, controlling the reqularity of solutions and
maintaining the stability of the inverse problem becomes increasingly challenging. In the limiting case,

where Q' = Q and g = § on 9, the domain Q and the boundary conditions ¢'©) must exhibit higher
reqularity to ensure that w) € CL5(Q).

4.1.2 Error estimate

In this section, we introduce a numerical algorithm for the IDP and derive the reconstruction error
estimation. We employ the FEM discretization specified in Section In addition, we assume that

09 does not cross an element, that is , € equals the union of some meshes.
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Now, we present the reconstruction algorithm. Slightly different from the stability analysis, we

aim to reconstruct the diffusion coefficient in the whole domain €2 using the measurement in the entire

(

domain. Throughout this section, we let zf) denote the practical noisy observations corresponding to

w® (¢") with noise level 4, i.e.
¢
1w (") = 257 2y <6, VE=1,...,L. (4.13)

The reconstruction is based on standard regularized least-squares with further discretization using

finite element methods. More precisely, the minimization problem is

L
. 1 ¢ ~vL
min J,() = 5 3w (a) = 21320 + 5 IValiz(a). (4.14)

4 =1

where v > 0 is the regularization parameter, and w®)(¢q) € H() is the weak solution of

—V - (qVw) =0, inQ,

(4.15)
w® = 9(2)7 on 0f).
We formulate the finite element approximation of problem (4.14))-(4.15)):
LS (0 () VL
. _ _ 2 yL 2
q:él}&h Jyn(an) = 2; [wy, " (qn) — 25 ||L2(Q) + 9 ”V(IhHL?(Q)a (4.16)
where w,(f)(qh) € V}, is the weak solution of
(thw}(f), Vo) =0, Yy, € V;?, (4.17)
1
w,(f) = I,?g(g), on 0N).
Here, the admissible set is defined as
Apph={an € Vi : 0<c, <qn <cgae inQ, qp = Zng' on 00}. (4.18)

The discrete problem — is well-posed: there exists at least one global minimizer ¢; and it
depends continuously on the data perturbation. The main objective in this section is to bound the
approximation error ||gf — all r2(e)- The strategy is based upon the stability analysis in the preceding
section. Furthermore, we need the following higher regularity assumption on the exact diffusivity

coefficient and boundary data.

Assumption 4.3. Let Q C R? (d = 2,3) be a bounded domain with C*' boundary 0Q. Assume that
the ezact diffusivity coefficient ¢ € W*P(Q) N A, with p > d. Assume the boundary data g (with
¢=1,...,L) are taken as independent and identically distributed satisfying the expansion (4.5), where

{ex}22, are assumed to be in H*(0SY) and a,(f) ~ N(0,k72502), with s > ﬁ + 3.
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Remark 4.3. Assumption @ requires higher reqularity for the domain Q as well as the parameter gt
and g to ensure that the finite element approzimation achieves an optimal convergence rate. Indeed,
under the reqularity assumption, elliptic reqularity theory ([57, Theorem 7.2] and [58, Theorem 8.12])
implies that the solution satisfies w® (q") € H2(Q) N WP(Q) for all p > 2. The non-zero condition
still hold with overwhelming probability under Assumption . Under Assumption with a
probability greater than

1 — Léexp (—C1L) — Lexp (—Cy M),

the non-zero condition (4.7)) holds and the random boundary data has upper bound

1
fax 1911 200 < L2, (4.19)

where the positive constants Co, C1 and Co depend only on s, Q, ', {0}, {ex}, ¢,, Tq and Hq”c&l(ﬁ)

The nonzero condition is a direct consequence of Proposition [{.1. It suffices to investigate the upper
bound of ||g(£)||H2(ag). Note that the Laplace—Beltrami operator —A on 0S) admits a positive sequence
{A\}32, of eigenvalues and the corresponding eigenfunctions {pr}32, form an orthonormal basis of

L2(09). Here we use the equivalent norm in space H*(0Q), with s > 0, defined by [111, Remark 7.6]

oo
||9||%{s(09) = ||9||%2(ag) + Z)\i(g, k)50
k=1

1
Therefore, the orthonormal basis of H%(GQ) can be chosen as ey, = (1 + /\,3)7190;9 which satisfies
2\1 Iy-1
lerllm2an) = (14 Ap)2 (1 4+ Ap)

By Cauchy-Schwarz inequality and the asymptotic behavior of eigenvalues N ~ k2/4 [119], the moment
generating function of Hg(e)HHz(ag) satisfies for all A € R:

M M

k

Eexp (AZHQ(Z)H?{Q(BQ)) < Eexp ( (Zl ) (kz Hekllimam))
< cRexp ( 2(% )( 3 k2s+3/d)>

k=1 k=1
< cEexp ()\2 Z 9,%) .
k=1
Then, by [142, Proposition 2.5.2], with probability greater than 1 — Lexp(—C1L), we have
Y 1
e, 191 200y < L2

We have the following L?(2) error estimate for wy,(¢") — wp,(Zng®).
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Lemma 4.1. Let Assumption hold and the boundary data satisfy ||g|| g2(a0) < L3. We denote the
solutions of equation [.17) with coefficients q' and Tnq' by wy(¢") and wy,(Tnq"), respectively. Then

1
Hwh(qT) - wh(Ith)”LQ(Q) < Ch2L2,
where ¢ is a positive constant depending only on Q and g .

Proof. With an abuse of notation, several positive constants depending only on Q and ¢ will be
denoted by the same letter c. We start with the estimate in energy norm. By subtracting the weak

formulations of wy,(¢") and wy,(Zxq'), we derive
(Ith(th(Ith) — th(qT)), Vvh) = ((qT - Ith)th(qT), Vvh), for all vy, € Vf?.

Select the test function vy, = wy,(Zrg") — wi(g"). Note that it belongs to V) since up(Zq") and up(q")
share the same boundary value. Using the box constraint on ¢ and the Cauchy-Schwarz inequality,

we obtain

IVwn(Zna") — Van(gH 720
< ellq" — Zng'|| oo I Vwn (g | 220 [ Vwn (Zag") = Vwn(gh) | r2(0)

Then the approximation estimate implies

IVen(Zua") — Veonlahl 2o < el Vun(ahll 2@ < chLE. (4.20)
Next, we apply the duality argument to get the estimate in L?(Q) norm. Let v satisfy

—V - (¢"V¢) = wp(Tng") — wa(gh), in €,
Y =0, on 0f2.

Then we have
(= V- (¢"V), wn(Tng') — wi(qh))
(¢'V, V (wn(Tng") — wnld")))
((¢" = Zng") VY, V(wi(Zng") — wi(qh)))
+ (ZTha' V(1 — Pub), V(wn(Zng') — wi(qh)))
+ ((¢" = Zng") VP, Vun(¢)),

[wn(Zng") = wi(gH72q

where we used the weak formulation of wy,(¢") and wy,(Z,q") in the last equality. Therefore, by Hélder

inequality, error estimate (2.2)), (2.3 and (4.20]) yield that

lun(Zng") — un(gMll72) <cP?llg" i@l Vel 2@ I Vwn (gl 2@
+ ch® | Tng" || oo o) ¥ 2 | Vwn (@) | 22y

+ c? gt wew ) IV Patd | 2oy I Vwn (@' | 20

o6



Here % + % + % = 1 and, by Assumption q = p?sz < d%dz' Thus the stability of the L?(2) pro-
jection (see [43, Theorem 4] and [13, Lemma 2.1]) and the Sobolev embedding imply ||V Py9| a0y <
VY| ra) < elllla2(q)- By using standard elliptic regularity estimates, according to which ||| 2 () <

cllun(Zng") — un(qh)ll r2(q), we obtain
1
wn (Zng') — wi(q") 2y < |V ()| 2y < ch®Lz.
This completes the proof of the lemma. O

Corollary 4.1. Let Assumption hold and the boundary data satisfy ||gl|m2(a0) < L3. Let w(q")
be the solution of equation (E.15) and wy(Zyq') be the solution of equation ([A.17). Then

leon(Zna') = w(g)li2(e) < ch’L?,
where ¢ is a positive constant depending only on Q and q'.
Proof. We use the following splitting
lwn(Zna") = wlgll 2 @) <llwn(@ng") = wi(a"lr2) + lwona") = w(g"l z20)-
For the first term, we apply Lemma [4.1] and obtain
leon(Zng") = wn(ah)llzo) < ch”L2.
The second term can be estimated by utilizing the standard duality argument with the interpolation
estimate ||g — Igg|]L2(aQ) < ch?Ls. O

The next lemma gives an a prior: estimate.

Lemma 4.2. Let Assumption hold and boundary data satisfy Hg(Z)HHQ(ag) < L%, {=1,...,L.
Let q; € Agn be a minimizer of problem (4.16)-(4.17). Then we have

L
3wl (a;) — 0@ (gDl 2@ + L2 IVa N2 < cL(ALE + 6 +~3),
/=1

where ¢ is a positive constant depending only on Q and g'.

Proof. With an abuse of notation, several positive constants depending only on Q and ¢ will be
denoted by the same letter c. Since gj is a minimizer of J, 5, we have J, ,(q}) < Jon(Zng'). As a

result,

5 2w @) = 2”320y + 5 VGl

M=

1
1

IN
o |

L
¢ [4 L
Z ng )(Ith) - zé )||%2(Q) + 7”VIMJTH%2(Q)
{=1

M=

¢ ¢ vL
(Ilf (Zng) = wO g Ba(qy + 11O (ah) = #7132y ) + SNV Tua 120

~
I

1

o7



By the interpolation property ([2.2)) and regularity of ¢f, the term ||VZ;q!|| £2(q) can be bounded by

IVZha' | L2y <IVZra' — Valllz2) + 11Vl | 22y

<chllg" |2y + a0y < e

This, together with Corollary and the bound for the noise level in (4.13)), implies that

L

1 ¢
5 S Neia) — = Py + S IVGE o) < L+ 57 +7).
(=1

Hence, we derive ’y2 IV@illz2) < c(h2L2 +0+ 'y2). Then the triangle inequality and the Cauchy-

Schwarz inequality lead to

L

l * Y4 é
3wy (ar) — 0@ (ah 20 <Zuw”qh—z5 l2@ +Zuz5> w® (" 120
=1

1
1 0) /1 x 4 2
< L3 (3 1uf(eh) - 20 ey) + 26
/=1
273 3
< cL(h2L3 + 6 + 7).
O

Next, we state our main theorem, estimating the error between the exact diffusivity coefficient ¢

and the numerical reconstruction g; .

Theorem 4.4. Suppose the exact diffusivity coefficient ¢* and the random boundary illuminations gt

(with ¢ = 1,...,L) satisfy Assumption . Let qf € Agn be a minimizer of problem (4.16])-(4.17).
Set n = h2L3 + 6 + ’y%. Then, with probability greater than (4.6|), we have

la" = @i 32y < cCT2L2(1 457 3n) (h+ W4(1 + 97 5n) + min (1,5 + A7 L73n) ),

where € > 0 is arbitrary small, ¢ is a positive constant depending only on Q and ¢', and Cy is given
in (4.7).

Proof. With an abuse of notation, several positive constants depending only on Q and ¢ will be

denoted by the same letter ¢. Let ul® = u()(¢") be the solution to (£.15) with boundary value ¢(®.
For a test function o) e HE(9), we multiply both sides of (#.15) by (Znq" — q;;)go(g) /q', and apply

integration by parts:

Trat — a*)o® Toat _ o
0= (qTVw(Z)vvw) _ (qTQD(Z)Vw(e),VM)

qT qT + ((Ith - q;)vw(é)’ VSD(Z))'

Thus, we obtain

(Zng' — q};))_

((Tna" = a;) V', V) = 7

1
(Zng" — qf) V9, vp®) — g(quo(e)Vw“), Y (4.21)

N =
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Set the test function p© = (Zp,¢" — q;)u(é)/qT. We first verify ¢ ¢ H(Q). Since q; € Agn, ©®
vanishes on 0. Recall that, under the current assumptions, we have ||g(|| H2(00) < L2 for every
£=1,...,L, cf. Remark By the regularity of ¢' and (9, and in view of Lemma we conclude
that o¥) € H}(Q), with

* —1—= 1
leONzz0) = 1(Tna" — a5)w /a" 1) < 265 Ellw' |2 () < eL2

and
¢'V[(Zng' — ¢;)w?] — (Tng" — ¢f)wP vy

(¢")?

HV‘P(Q”LQ(Q) =

12(0)
< ¢ 2|0 oo ) (IVZna | 12(0) + IV Gl 22(0) (4.22)

+e,° (252“%1)(2) z2(0) + Qéq”w(g)||L<>°(Q)HVQTHL2(Q)>

NI

_1
(1+~72n).

With this test function ¢(©, by direct computation, we can further write the left hand side of (4.21))

< cLr(1+ Vil 2(@)) < cL

as

. 1 T T %\2
((Zng' — q;) V', V) = B /Q (hq(ﬂqh)]wa)]de. (4.23)

On the other hand, by the weak formulation of (4.15) and (4.17)), we have
((Zng" = a) V', V) = ((Tng" — ¢") V', vel) + (¢ — g) Vo, Vel
= ((Zng" — d" )V, Vo) + (¢ = g5) V', V(! — Pip®))
+ (@Y () (g7) =), Vi)
=19 410 1.

For Igg)’ the interpolation error (2.2)) and the estimate (4.22)) yield that

{4 _1
7] < elZug" = a1l e @ IV0 O 1200 [V 1200y < chL(1+7721).
Now, we consider Ig@)‘ Applying integration by parts, the regularity of ¢f and w(

inequality (2.1)), the projection error (2.3) and estimate (4.22]) imply that

). the inverse

4 *
] = (V- (' = ¢5)Vw®), 0O — Pp)]
< (IV(q" = @)l @y I Vel o) + lla" — @il oo @y | AW || 2 10 = Prip®]| 22
1 1 _ N
< ch (L5 + L7295 ) ) Il o

S Ch1+d/q7d/2L(1 + '77%77)2 — ChlfeL(l + ,-)/7%77)2

Here % + % + % =1 with ¢ = dz—‘;e. To estimate Igg), by the inverse inequality (2.1]) and the projection
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error , we first derive that
IV — V(@) r2) <IVW® — VPw® 120y + IV Paw® — Vi (g5)]] 220
)/ x
<c(hllw®|| g2y + B Prw® — wl ()] 12()
<e(hL7 + h u® — w2 (g} 12 )-

There obviously holds that ||Vw(® Vw}(l (@)l z2() < cl? 3. Therefore, by using these two inequalities,

(4.22) and Lemma we obtain

L L
Sl < Z gl 2o @ IV (g) = VO | 2y IV Pae® | 120y

1
< eL3(1+7 ) ZHW“ 1) = Va2
=1

3
2

SIS

L
1 . 3 _ *
< eLH(1 4+ 3y min (L3, L3h 4 b7 o) (g7) — 0 120y

VT

<ecL?(1+4 277)m1n<1 h+h Ll an).

Taking summation with respect to £ =1,..., L in (4.23)), the estimates of Ig ), I(e) ( ) yield that

1 [ (Tng' )2
Q/QZ\VUJ )12z

< cL(1+~737) (h + 141+ 2n) + min <1, h+ h*lL*%n» .

Applying the interpolation error bound ||¢t — IthHLz < Ch2||qT||H2(Q (see (2.2))), we arrive at the

weighted estimate

L
1 [ (¢ —q) S (Vw2

(=1
< cL*h* + cL?(1 + 7_%77) <h + R (1 + ’y_%n) + min <17 h+ iflL_%ﬁ)) .

By Proposition we have the non-zero condition (4.7)):

L
Z Vw®(2)|> > C2, forallze Q.
(=1

Hence, we conclude
lat — g5 1220y < cCo 2 L2h* + ¢Cy 2L (1 + 7 2n) (h + B+~ 2n) + min (1, h+ h—lL—%n)) .
O

Remark 4.4. Theorem[].]] provides a guideline for the a priori choice of the algorithmic parameters

h and 7, in relation to 6. The choice h2L3 ~ & and v ~ 62 yields a convergence rate

* 7 lfe
lg" = ahllr2() < cL=63
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with € > 0 arbitrary small. This rate is consistent with the stability in Theorem[{.3, that shows

D=

L
1
la" = allzz) < ezt (3 1w (a") = w (@) o)
/=1

Thus, the Gagliardo-Nirenberg interpolation inequality [25]
1 1
IOl @y < @11z g 10O .

and the regularity |Jw® (qT)HH2(Q) + Hw(e)(q)HHQ(Q) < C||g(€)||H2(8Q) < cLz directly yields

L

1 1
S (O g @) + 102D )o@ ah) = w0 () e
/=1

/N
S
N

1
lq" = qllz2@) < cLi

Remark 4.5. In two dimensions, the above analysis can be extended to the case where € is a con-
vex polygon. We parameterize OS2 by arc length and generate H%(QQ) orthonormal basis using the
eigenvalues and eigenfunctions of Laplace—Beltrami operator on 0. Indeed, the eigenfunctions are
trigonometric functions on each edge which are continuous at each vertex. Therefore, with appropriate
normalization, we obtain the H%((?Q) orthonormal basis. With the same argument as in Remark

the following upper bound holds with high probability
N 1
Z Hg(z)HHQ(Fi) <CLz, (=1,...,L,
i=1

where I';, 1 = 1,..., N are the edges of the polygon Q. As a consequence, the forward problem (4.15)
admits H*(Q) solutions [60, Theorem 5.1.2.4] and the L*(Q) error estimate ||w® (q*)—wég)(qT)HLz(Q) <
ch?L3 holds as a consequence of [52, Corollary 3.29].

4.2 Quantitative Photoacoustic Tomography

In this section, we study the numerical inversion scheme for quantitative photoacoustic tomography.
We consider the case where radiation propagation is approximated by a second-order elliptic equation
(4.1). Our objective is to numerically reconstruct the true diffusion coefficient D' and absorption

coefficient o' from multiple internal observations
HY(z) = oTu®(2; Dt ot) for all z e,
where ul® := u(® (D1, o1) denotes the solution to the elliptic equation (£.1)) with parameters D! and

of, and associated with the Dirichlet boundary illuminations g(f), £=1,2,...,L+1:

—V - (DIVuD) + otu® =0 in Q,
(4.24)
= g(é) on 0.
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We need the following assumptions on the parameters and boundary data. In particular, as in the

previous section, we assume the parameters to be known in Q \ .

Assumption 4.5. We assume that the parameters and boundary data satisfy the following assump-

tions.

(i) Let Q C R (d = 2,3) be a bounded domain with C*' boundary 0. The exact diffusion
coefficient DT € W?2P(Q) N Ap with p > d and the exact absorption coefficient ot € A, where
Ap={DeWh®(Q): 0<cp<D<cp ae inQ D=D" ae inQ\Q} and
Ay ={0€L®(Q): 0<c, <o0<C ae. inQ o=0c ae inQ\QV},

with some a priori known positive constants ¢p and ¢, .

(i) Let gV =1, and g¥) (with £ = 2,..., L+ 1) be independent and identically distributed random
boundary data given by the expansion (4.5) satisfying Assumption .

We assume that the empirical observational data, denoted by Zgg) is noisy in the sense that
0 _ 770 _
1 Z; H HLQ(Q) <4, forall £=1,2,...,L+1. (4.25)

Assumption together with the elliptic maximum principle implies that 0 < ¢y < H 1) < 1 for
some positive constant ¢,. Without loss of generality, we assume that the empirical observation Z(gl)
satisfies the same bound 0 < ¢j < Zél) < 1. Indeed, otherwise, it is enough to project Zél) pointwise
onto [cy, 1], which preserves (4.25)).

For £=1,2,...,L, we define

ot (1)2 @ _ “s 0 _ _ :
q —D]u()|, wy' = Z(l) , w® = 70 = 4@ in €,
1)
and
/+1
O = g :1_)) = ¢+ on 99.
g

It is straightforward to observe that

7D g g e ’ HOFE) — 70 feeD ’

L2(Q) + H H(l)Z§1)

¢
ch(s) — w2 < H

HOZW L2(Q)
1 +1
< S (IEDEED = BOD) | g + (BEDHD - 20|20 )
QO
< ¢d.

A direct calculation ([I6, [I5]) shows that w(® is the solution of the following elliptic equation

V- (¢'vu®)=0, nQ,
(4.26)

w® = f(é), on 0f).
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Thus, the first step of the reconstruction algorithm consists of the recovery of ¢! from the practical
observation w((sg). This is the inverse diffusivity problem discussed in Section Indeed, Assumption
and elliptic regularity [58, Theorem 9.15] imply u(!) € W2P(Q) and hence ¢' € W?P?(Q). By the
bounds of D' and maximum principle, we may assume that the diffusivity coefficient ¢! has positive
lower and upper bound 0 < ¢, < ¢ < ¢;. Moreover, since g =1, the boundary data f() = g(¢+1)
still satisfy Assumption and the non-zero condition given in Proposition holds for equation
(4.26). Therefore, as in Section we propose to consider the following least-squares formula with

H'(Q)-seminorm penalty:

Jmin Jolan) = Zilwh an) =i 720 +f||th||L2 (4.27)

where the admissible set A, 4 is defined in (4.18)) and w,(f)(qh) € V}, is the weak solution of

(thw,(f), Vo) =0, Yy, € Vho, (4.28)
28
w? =20 ® . on 0Q.

The following error analysis is a direct consequence of Theorem [£.4]

Proposition 4.2. Suppose Assumption holds valid and set ¢t = D uM 2. Let q; € Agn be a
manimizer of problem (4.27))-(4.28)). Setn = h2L2 46 —i—'y%. Then, with probability greater than (4.6)),

we have
la" = i3y < CL2A+773m) (h+ 5L+ 3m) + min (LA + 7' L75n) ),
where ¢ is a constant independent of h, §, v and L.

The second step of the inverse algorithm is to recover u!). The reconstruction of DT and of will
follow immediately by using the relations DT = ¢ /|u(V)[? and of = HM /uM). Since uV|yq = ¢V = 1,
by (4.24) we have that v = 1/u(!) — 1 satisfies the following boundary value problem

~V-(¢'vo)=HW, inQ,
(4.29)
v =0, on 0.

We are now ready to show the error bound of the numerically recovered parameters.

Theorem 4.6. Suppose that Assumptz'on holds valid and set ¢t = D ju(M 2. Let q; € Agn be such

that ||qt — Gill2ry < € for some § > 0 and set the reconstructed coefficient ¢* as

qr in Y,
DIz joh? in )\ Q.
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Let vy, € V,? solve

(q*Von, Veon) = (29, o), Veon € V. (4.30)

Then there holds
v = vl 2@ < C(h+§+4).

Moreover, set D* = ¢*|v, + 1|? and o* = Z(gl)(vh + 1), we have
|ID" = D*||j20) < C(h+£+6) and ot — 0|12y < C(h+ £ +0),
where ¢ is a constant independent of h, § and .

Proof. We observe that

(1))2 72
. Nt HEHY) (27
lg" — ¢ Iz (o) = HD ()2 D (T2 ’

L2(Q\Q)

< &;%p|HY + Z | pe@any |HY = Z8 | 2 inany

IA
Q
&

By equation (4.29)) and (4.30)), we have

(" (VP — V), Vop) = (¢F (VP — Vo), Vo) + (¢" (Vv — Vo), Vr)

* * 1
= (" (VPww — V), Vou) + (" — 6" Vo, Viou) + (HD = Z{Y, 1),
Taking ¢y, = Pyv — vp,, Cauchy-Schwarz inequality and Poincare’s inequality yield

IVenl2ay <elV(Pav — o)l 2 IVenll ) + el Vollie@lle” = 'l sz IV enll 2@
+ e[ HY = Z0 | 2o | Veonll 2 () -

By elliptic regularity theory, we have v € H?(Q2) N W1°°(Q). Hence, by the projection error (2.3)),
estimate of ¢* and the noise level (4.25)), we derive that

IV Pyv — Voullr2) = [IVenrllr2@) < e(h + & +9).
Thus, by Poincare’s inequality and the error bound , we conclude
v —vnllL2@@) < 1Phv — vnllz2) + |1Phv — vl 12(0) < c(h + & +9).
Moreover, direct computation yields

1D — D¥|l oy = H o+ 17

= Hq”v + 1’2 — q*|vh + 1’2‘
2(Q)

-
Ju(D) |2 I L2()

< [ta" = e+ 12|

sy T Q0 1F = Ton + 1) g

<l +6)+c(h+E+6) <clh+E+0),
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and

. H®
ot — o2 = Hu(l) — ZM vy + 1)

= [|EO @+ 1) - 20w + 1)
L2(Q)

L2(Q)

< I(HD = ZM) 0+ 1) 120) + 1287 (0 = i)l 1200

<cl+eh+E+0) <c(h+&+50).

O]

Remark 4.6. The error analysis in Proposition[{.3 and Theorem[{.6 provide a guideline for choosing
the mesh size h and reqularization parameter v, see also Remark @ Indeed, by choosing h2Lz ~ §

and v ~ 8%, with probability greater than ([4.6)), there holds

. . 71
|DF — Dillz20) + o — ohll2) < cL8di™e

4.3 Numerical results

In this section, we provide numerical reconstructions of the diffusion coefficient D! and the absorption
coefficient o based on the two stage algorithm discussed in Section We first solve the optimization
problem — and then solve the direct problem . We consider the two-dimensional
setting (d = 2).

4.3.1 Numerical implementation

In this part, we introduce the numerical implementation for the reconstruction algorithm. We first de-
scribe the generation of the boundary illuminations ¥, £ = 1,..., L+1. Recall in Assumption (iii),
g1 =1 is fixed and ¢¥ (with £ =2,... L +1) are taken as

&l {4
g0 = Zal(f)%
k=1

where {e;}72, is a fixed orthonormal basis of H %(89) generated by the eigenfunctions of Laplace—
Beltrami operator. The coefficients a,(f) ~ N(0, 9,%) are independent and identically distributed random
variables satisfying Assumption with 0, = k2 and s = %

In all the examples, we take the first five terms in the series, i.e. M = 5. With the truncated

boundary illuminations, we generate noisy measurements as follows:

2 @) = HO (@) + 3sup | HOG)E(), £=1,. L+1,
z
where ¢ follows standard Gaussian distribution, while § denotes the level of noise. The exact data

HO = 5ty (D', o) correspond to the precise values of D and of, calculated using a highly refined

. _ 1
mesh with h = 500
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4.3.2 Numerical experiments

In this part, we provide numerical verification of the non-zero condition in Proposition and the
numerical reconstructions of the diffusion coefficient D' and the absorption coefficient of. To verify

the non-zero condition, we plot the region in which

max, VwO(z)-v| > Cy, zeQ,

where w® (z) = H*D /H® | In the following numerical experiments, we fix the direction v = (1,0)
and the threshold Cy = 0.1. To quantify the performance of the numerical reconstruction, we introduce

the following relative L?(Q) error:
ep = ||Dj, — DY 2/ DVl r2) and  es = [lof — o'l 2y /o 2o
We start with the following examples with smooth coefficients.

Example 4.1. Q = (0,1)2, Df(z,y) = 2 + sin(27x) sin(27y) and of = 6 + 401 + 409 with o1(x,y) =

e—20(2—0.3)>~20(y—0.7)? —20(z—0.7)2—20(y—0.3)2

and oa(z,y) =€

Table 4.1: The convergence rates for Example with respect to 4.

1) le-2 5e-3 2e-3 le-3 He-4 2e-4 le-4 rate

ep | 6.53e-2 4.17e-2 2.98e-2 2.6le-2 2.33e-2 2.30e-2 2.12e-2 O(5%??)
eo | 1.45e-2 7.90e-3 5.23e-3 4.77e-3 4.13e-3 4.06e-3 3.76e-3  O(5°-2)

In Figure a), we plot the random boundary data f = g+ /¢(1) = ¢+ We show the
region in which the non-zero condition is satisfied with different L in Figures (b)—(f). We observe
that the region where the non-zero condition is satisfied expands as the number of random boundary
data increases. For L = 1, the non-zero condition is satisfied only in a small region, while for L = 3,
the non-zero condition is satisfied in most parts of the domain Q. We also notice that as L increases,
the lower bound Cj increases, indicating better stability of the inverse problem.

Table displays the convergence rate of the reconstruction errors. The mesh size and the
regularization parameter are chosen by following the guidelines in Remark with fixed number of
illuminations L = 5: h ~ 62 and v ~ 6%2. We initialize the mesh size h = 1/12 and the regularization
parameter v = 3e-7. The numerical results indicate that the error ep and e, decay to zero as the
noise level tends to zero, with rate O(6°22) and O(3%2%), respectively. These convergence rates are
consistent with the rate predicted in Remark which is O(692%). Figure shows the recovered
diffusion coefficient and absorption coefficient in 5% and 1% noise. Here we take h = 1/20, v = le-6

for noise level § = 5e-2 and h = 1/45, v = 4e-8 for § = le-2.
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Figure 4.1: Boundary illuminations and the non-zero region of Example Top left: plot of boundary
data f = ¢g(*+1) Top middle to bottom right: region where the non-zero condition is satisfied as

the number of boundary inputs increases.
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Figure 4.2: Example First row: reconstructions of Df. Second row: reconstructions of .

67



Example 4.2. Q = (0,1)2, D = 1+ D; — %Dg — %Dg with Di(x,y) = 6_40(:6_0'5)2_40(31_0'7)2,
Dy(z,y) = e BE—032-154=03)* " Dy ) = ¢ 1@-012=154-03)* 414 the absorption coefficient

UT(% y) = 1+ 0.5sin(mx) sin(wy)e*‘l(l*:v)y_

Table 4.2: The convergence rates for Example [4.2| with respect to §.

1) le-2 He-3 2e-3 le-3 He-4 2e-4 le-4 rate

ep | 6.34e-2 5.72e-2 3.47e-2 2.65e-2 2.40e-2 1.85e-2 1.24e-2 O(53)
es | 1.04e-2 5.67e-3 4.08¢-3 2.95¢-3 2.70e-3 1.84e-3 1.24e-3 O(6°42)
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Figure 4.3: Boundary illuminations and the non-zero region of Example Top left: plot of boundary
data f© = ¢g(*1 Top middle to bottom right: region which satisfying the non-zero condition as

number of boundary input increasing.

The region representing the non-zero condition and the numerical reconstructions of Example
are shown in Figures 4.4 and Table For the non-zero condition region, we observe a similar
behavior as in Example the region enlarges with the addition of boundary illuminations. For
testing the convergence rates of reconstruction errors, we initially choose the mesh size h = 1/12 and
the regularization parameter v = 5e-7. We observe the convergence rate O(6°%) for ep and O(5%42)
for e,. The experimental convergence rates are slightly higher than the theoretical rate O(6%2%). Since

in the first step of the reconstruction algorithm we need to solve an optimization problem to get gj,
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Figure 4.4: Example First row: reconstructions of Df. Second row: reconstructions of o'.

the non-convexity of the loss function may lead to local minima, making it challenging to verify the
theoretical convergence rates. Figure shows the reconstructions in 5% and 1% noise level, with

h =1/20, v = 5e-7 and h = 1/45, v = 2e-8, respectively.

Example 4.3. Q = (0,1)2, D(z,y) = 1+ 4 sin(272) sin(27y)e® and o' (z,y) = 3+sin(3rz) sin(3ry).

Table 4.3: The convergence rates for Example with respect to 4.

) le-2 5e-3 2e-3 le-3 He-4 2e-4 le-4 rate

ep | 7.80e-2 5.78e-2 3.53e-2 3.13e-2 2.82e-2 2.78¢-2 2.15e-2 O(5%2)
es | 1.36e-2 7.73e-3 3.24e-3 3.06e-3 2.54e-3 2.42e-3 1.89e-3 O(§°39)

In this example, we consider a more challenging setting. The absorption coefficient o has high
oscillations. Figure [4.5[shows the behavior of the non-zero condition. The non-zero condition is satis-
fied in the whole domain when sufficiently many random boundary illuminations are used. Table
present the convergence rates. Here, we choose the initial mesh size h = 1/16 and the regularization
parameter v = 2e-6. The convergence rate for ep is O(6%2%), which aligns with the predicted rate
O(8°2%). However, we observe a much faster decay for e,, with convergence rate O(6%-3%). Figure

demonstrates that even for this challenging absorption coefficient, the reconstruction is accurate for
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Figure 4.5: Boundary illuminations and the non-zero region of Example Top left: plot of boundary
data f© = ¢+ Top middle to bottom right: region which satisfying the non-zero condition as

number of boundary input increasing.
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high noise levels. Here we take h = 1/20, v = 2e-6 for noise level § = 5e-2 and h = 1/45, v = 8e-8 for
6 = le-2.

Next, we present numerical results for nonsmooth coefficients.

Example 4.4. Q = (0,1)2, Df(z,y) = min(1.4, 14 22(1 — z) sin(ry)) and o't (x,y) = 6+ 2 tanh(20x —
10).

Table 4.4: The convergence rates for Example with respect to d.

) le-2 5e-3 2e-3 le-3 oe-4 2e-4 le-4 rate
ep | 4.89e-2 4.72e-2 3.39e-2 2.68e-2 2.14e-2 1.86e-2 1.31e-2 O(5%?9)
eo | 1.65e-2 1.25e-2 7.89e-3 6.23e-3 5.17e-3 4.6le-3 3.33e-3  O(4"-33)
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Figure 4.7: Boundary illuminations and the non-zero region of Example Top left: plot of boundary
data f(© = ¢g(*+1) Top middle to bottom right: region which satisfying the non-zero condition as

number of boundary input increasing.

Here, we cut off the diffusion coefficient DT in order to have discontinuous derivatives. Additionally,
the absorption coefficient of includes a sharp interface where the magnitudes of the derivatives are
large. The non-zero condition and the numerical reconstructions are presented in Figures and

Table The mesh size and the regularization parameter are initialized as h = 1/12 and v = le-5.
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Figure 4.8: Example First row: reconstructions of Df. Second row: reconstructions of o'.

For this nonsmooth case, we still observe the convergence rates O(5%2?) and O(6°33) for ep and e,,
respectively. The convergence rate for the diffusion coefficient D matches the predicted rate, whereas
the convergence rate for absorption coefficient o' is slightly higher. In the numerical reconstructions
Figure we take h = 1/20, v = 5e-6 and h = 1/45, v = 2e-7 for noise level 6 =5e-2 and § =le-2,

respectively.

Example 4.5. Q = (0,1)2, Df(z,y) = 1 + 0.2X{|2—0.312+]y—0.32<0.12} and the absorbtion coefficient

ol (z,y) =1+ 0.2X[0.6,0.8]x[0.2,0.6] -

In this case, both the diffusion coefficient D' and the absorption coefficient of are piecewise
constant, which is out the scope of our theoretical framework. Figures show the non-zero
condition and the numerical reconstructions. The results indicate that the non-zero condition remains
valid numerically even if the coefficients do not satisfy Assumption Meanwhile, the reconstructions
are satisfactory for these piecewise constant coefficients. Here we take h = 1/20, v = le-6 for noise

level § = 5e-2 and h = 1/45, v = 4e-8 for § = le-2.
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Figure 4.9: Boundary illuminations and the non-zero region of Example Top left: plot of boundary
data f(© = ¢g(*1_ Top middle to bottom right: region which satisfying the non-zero condition as

number of boundary input increasing.
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CHAPTER 5.
Hybrid Neural-Network FEM Approximation of Diffusion

Coefficient in Elliptic and Parabolic Problems

In this chapter, we study the inverse problem of recovering a space-dependent diffusion coeflicient
in elliptic and parabolic problems from one internal measurement using neural networks. Let 2 C
R?(d = 1,2,3) be a convex polyhedral domain with a boundary 9. Consider the following elliptic

problem

-V (qvu) =/ in (2,
(5.1)
u=0, on 0N,

where f is a known source. The diffusion coeflicient g belongs to the admissible set

A={qe H(Q): ¢, < q(x) <G, a.e. in O},

q

with the constants 0 < ¢, < ¢; < oo being the lower and upper bounds on the diffusivity. Below we
use the notation u(q) to indicate the dependence of the solution u to problem (/5.1)) on the coefficient

g. Further, we are given the noisy observational data z° in the domain €

lu(g")(z) = 2°(2)|l L) < 6,

where u(g") denotes the exact data (for the exact coefficient ¢'), and § denotes the noise. The inverse
problem is to identify the diffusion coefficient ¢ from z°. We investigate the hybrid NN-FEM approach
for recovering the unknown coefficient ¢ in problem (and also the parabolic case in ), and
provide an analysis on the numerical approximation.

The rest of the chapter is organized as follows. In Sections and we establish the L2(Q)
error bounds of the hybrid NN-FEM approximation for elliptic and parabolic cases with or without
numerical quadrature. In Section we describe the algorithmic details of the approaches and present

several numerical experiments to complement the theoretical results.

5.1 Elliptic inverse problem

In this section, we develop and analyze a novel hybrid NN-FEM approximation for the elliptic inverse

problem.

!Chapter [5| is reprinted with permission from ?Hybrid Neural-Network FEM Approximation of Diffusion Coefficient
in Elliptic and Parabolic Problems”, Siyu Cen, Bangti Jin, Qimeng Quan, Zhi Zhou, IMA J. Numer. Anal., 44 (5) (2024)
3059-3093. The candidate mainly works on the research methodology discussion and the coding and data collection in

numerical experiments.
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5.1.1 The regularized problem and its hybrid approximation

To recover the diffusion coefficient ¢, we employ the standard regularized output least-squares formu-

lation with an H'({) seminorm penalty, which amounts to minimizing the following objective:

: 1 5112 v 2
o Jy(q) = 5”“(‘1) — 272y + §HVqHL2(Q)7 (5.2)

with u = u(q) € HZ(Q) subject to the following PDE constraint

(qVu, Vo) = (f,¢), Vo€ Hy(Q). (5.3)

A standard argument in calculus of variation shows the well-posedness of the regularized problem
—: for any fixed v > 0, it has at least one global minimizer, which depends continuously on
the data [51), [73]. In practice, the regularized problem has to be properly discretized, and this is often
achieved using finite element / finite difference methods [129, (54, 158 65].

We employ an alternative discretization strategy: we approximate the coefficient ¢ using NNs, and
the state u using the Galerkin FEM. Note that NNs are globally defined, unlike compactly supported
FEM basis functions. Hence, it is challenging to impose the box constraint of the admissible set A

directly. In order to preserve the box constraint of A, we apply to the NN output a cutoff operation
Py : HY(Q) — A defined by

P4(v) = min(max(c,,v), ;). (5.4)

The operator Py is stable in the following sense [155, Corollary 2.1.8]
IVPA()| o) < IV0llzo(), Yo € WHP(Q),p € [1,00], (5.5)
and moreover, for all v € A, there holds
[Pa(w) = vl|r) < lw —vllr), Yw € LP(), p € [1,00]. (5.6)
Now we can formulate the hybrid NN-FEM approximation scheme as

. 1 y
pain Jyn(a0) = 5 llun (Pa(a0)) = 2720y + §||VCJ9H%2(Q)7 (5.7)

P,€

where B, . is the NN parameter set defined in Section the discrete state u, = up(Pa(gp)) € V)

satisfies the following discrete variational problem

(Pa(a0)Vun, Vor) = (f, ¢n), Ven € Vi, (5.8)

The well-posedness of problem ([5.7))-(5.8) holds trivially true. Indeed, the uniform boundedness of

the admissible set B, . in a finite-dimension space implies the compactness of the parametrization set.
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Together with the continuity of the discrete forward map, the existence of a minimizer 8* to problem
f follows by a standard argument. We denote its NN realization by gj.

The hybrid formulation — enjoys the following distinct features. First, the construction
naturally preserves the box constraint, which is highly nontrivial to impose on the NN functions
directly; Second, the resulting objective .J, ,(qq) is differentiable with respect to the NN parameters
0, which facilitates the training process by gradient type methods; Third, it is amenable with rigorous
convergence analysis, i.e., a priori error estimates. In sum, it enjoys both rigorous mathematical

foundation of the FEM and excellent inductive bias / approximation properties of NNs.

Remark 5.1. The formulation (5.7)—(5.8) includes the operator P, and uses Pa(qg) to approzimate

the exact one q'. It differs from the existing ones. Berg and Nystrom [I9] suggested the objective
min 7, 1(a0) = 5 llun(a0) — 230y + 2laoll
fesp. ~,h 40 9 h\4q6 L2(Q) 9 401l L2(Q)>

where v > 0 is the regularization parameter. Their numerical evaluation focuses on v = 0, i.e.,
unreqularized case, which necessitates the use of tiny NNs for approximating q, in order to avoid
overfitting. The well-posedness of this formulation remains unclear, due to a lack of the box constraint.
In addition, even assuming the box constraint, the L?(Q) penalty induces only very weak compactness
and greatly complicates the mathematical analysis: the existence of a minimizer is only ensured in
the sense of H-convergence and the minimizer might be matriz-valued [{6], [112]. Mitusch et al [120]
suggested including an H'(Q) penalty to stabilize the training process. Note that one should not apply

the projection P4 in the penalty term, in order to preserve the differentiability of the objective.

5.1.2  Error analysis

Now we derive (weighted) L?(Q2) error estimates of the approximation P4(q}). Under Assumption
the solution u' = u(q") to (5.1)) satisfies u' € H2(Q) N HI(Q) N W1°(Q) [106, Lemma 2.1].

Assumption 5.1. f € L>=(), and ¢ € W2P(Q) N A for some p > max(2,d + p) with p > 0.
The next lemma gives the existence of an approximant in the admissible set 3, .

Lemma 5.1. Let Assumptz’on hold. Then for any € > 0, there exists 0. € P, such that

Ju" = un (Palgs.)) 12y < c(h® +€).

Proof. By the choice of p, W1P(Q) continuously embeds into L>°() [2, Theorem 4.12, p. 85]. Since
¢ € W?P(Q), by Lemma there exists 6. € P, . such that its NN realization gg_ satisfies

la" = goll (o) + lla" — ao. | (o) < clla” — o, lw1o@) < ce. (5.9)
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Then by the stability estimate ([5.6)) of the operator Py, we deduce

la" — Pa(gs.) | () < ce. (5.10)

Next we bound gy, := up(Pa(gp,.)) —un(q’) € V0. It follows from the weak formulations of uy,(Pa(gp,))
and uy,(q"), cf. (5.8), and Hélder’s inequality that for any ¢y, € V0,

(Pa(a0.)Von, Veon) = ((¢" — Palas.))Vun(a"), Vor)

< llg" = Pago.) | oo () | V(g | 220 [ Veonll 22 -

Next we set ¢, = g5, in the inequality. Upon noting P4(gg.) € A, by the approximation property
(5.10)), Poincaré inequality, Hélder’s inequality and the estimate ||Vug(q")]| 2@) < cllfllre@), we

obtain

lonllz2() < el Venllz) < clla’ — Palgs.) | oo ()| Vun(ahl 12 < ce.

This and the standard a priori error estimate ||uf — wuy,(¢")|| r2@) < ch? yield the desired estimate. [J
The next lemma gives crucial a priori bounds on |juf — un(Pa(gp)) 220 and [|[VPa(gg)llz2(0)-

Lemma 5.2. Let Assumption hold. For any € > 0, let 8* € B, be a minimizer to problem
(5.7)-(5.8). Then the following estimate holds

lul = un(Pa(@5)) 720 + VNIVPA(@G) 721y < c(h* + € + 6% + 7).

Proof. Let gy, be the NN realization of 6. € B, satisfying the estimate (5.9), which also implies

g6, ||t () < c. Then Lemma and the minimizing property of gj, i.e., Jy n(q5) < Jy n(gs. ), yield
* ) * 0
lun(Pa(g3)) = 21720 + IV 720 < llun(Palas,)) — 2720y + I Vas. 1220
<c(llun(Pa(as.)) = u'l72(q) + lut = 272 () +7) < (b + € +6° + 7).
Applying the triangle inequality leads to
[t —un(Pa(@s)I72q) + YIVEs172() < cllu’ = 2°1720
+cl12° = un(Pa(@p)) 720 + IV I[720) < c(h* + € + 8% +7).

Finally, the bound on ||V P4(gj)|12(q) follows from and the constraint P(q;) € A. O

To derive an a priori estimate for P4(qj), we use the following positivity condition introduced in

(1.9): for some 8 > 0,
¢'|Vul|? + ful > ¢ dist(z, 9Q)°. (5.11)
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Theorem 5.2. Let Assumption hold. For any € > 0, let 0* € By be a minimizer to problem
(6-7)-(5-8), with g} its NN realization. Then with n* := h* + €% + 6 + v, there holds

T Pala®)\ 2
/ (quA(qe)) (¢'|Vu'|? + ful) dz < e(min(h ™'y + h,1) + hy~2n)y " 2.
Q

Moreover, if condition (5.11)) holds, then
1
la" — Pa(@))llz2(ey < c[(min(h1n + b, 1) + hy~ Sy dy] 0.

Proof. By the weak formulations of u! and wuy(Pa( q;)), cf. and . for any ¢ € HE(Q), w

have

((¢" = Pa(gs)) V', Vo) = ((¢" — Palgp))Vul, V(e — Pup)) + ((¢" — Pa(g;))Vu', VPip)

= (V- ((¢" = Pa(g3))Vul), 0 = Pug) + (Pa(})V(un(Pa(gh)) — ul), VPup) = T+1L.
Let ¢ = %ur Next we bound the terms I and II separately. Direct computation gives
Ve = (a") (Vg = Palg) + (a" — Pa(g5))Vu) = (¢") (" = Palg;)) (Ve u'!
This identity and Assumption imply ¢ € H}(Q2), and further
IVellzaie) < e(l+[[VPalgp)ll2@))- (5.12)
Using Assumption again and Lemma we obtain
IV - ((a"=Pa(a3)Vul) |2y < lld" — Pa(a}) |l oo AT || 120
+ IV = VPA@d) 2l Vul | L) < e+ [VPa(g))ll r20y) < ey o,
Hence, we can bound the term I by
1] < eh(1+ [|VPa(@) | 2@) IV ellz() < ch(l + [V Palg)ll72(q) < chy™n?.
By the Cauchy—Schwarz inequality and the estimate , we can bound the term IT by
| < [[Pa(gg) |l 2o @IV (un(Pa(ag)) — uN)l 2 I Vel 2

< ellV (un(Pa(ah)) = uM) 20 Vel 20

< (14 IVPa(g) Il 2@)) IV (un(Palgs)) — UT)HLQ(Q)-

Then by Lemma the inverse inequality in the space Vf? (2.1), the approximation property ([2.3))
and the L?(Q)-stability of P, and the regularity uf € H?(Q), we can bound the term II by

_1 *
1| < ey 2 (| V (un(Pa(ag) — Puul)llz2(q) + IV (Paul — ul)||12())
_1 _ *
<oy 2 (Y un(Palgs)) — Poulll2i0) + Bllulll 2o

1 . 1
< ey 2 (W H|un(Pa(as)) — ulll 2 + Rllul | g2()) < ey 2n (b~ 'n+ h).
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Further, the estimate || Vun(Pa(g;))l z2(0) < cllfllL2(q) and the regularity ul € H2(Q) imply ||V (un(Pa(g}))—

UT)HLQ(Q) < c¢. Hence, |II| < cvfén. Combining these estimates on II yields
1] < cv_%n min(h ™'y + h, 1).
Moreover, direct computation gives [22, Theorem 2.2]

T *
(4! — Pa(g)Vul, Vo) = ;/Q (‘Jé?(qe)f(qnvmp 4 ful) da.

This and the preceding bounds together show the first assertion. The second assertion follows the

same argument as Theorem [3.3] O

Remark 5.2. Theorem provides useful guidelines for choosing the algorithmic parameters: v =

1
O(8?), h = 0(6%) and e = O(8). Then under condition (5.11)), we obtain HqT_PA(qz>HL2(Q) < cHIAHR)
This result is comparable with that for the purely FEM approximation [84), Corollary 3.3].

5.1.3 Quadrature error analysis

The weak formulation and objective require evaluating various integrals. This is commonly done via
a quadrature scheme. While this issue is direct for the standard FEM [41], it is nontrivial when NNs
are involved: NNs are globally supported and no longer polynomials within each finite element. Thus,
the use of quadrature schemes is required, and there is an inevitable quadrature error, which may
influence the accuracy of the NN approximation [20, 130]. We aim to provide a quadrature error
analysis.

There are many possible quadrature rules [139, Chapter 15]. We focus on one simple scheme to
shed useful insights. On each element K € Ty, we uniformly divide it into 2% sub-simplexes, denoted
by {Kz}?:L with the uniform diameter hg /2". The division for d = 1,2 is trivial, and for d = 3, it is
also feasible [122]. Then consider the following quadrature rule over the element K (with P; denoting

the jth node of the ith sub-simplex Kj;):

24 K| d+1
=) — P! K).
QK( ) g d—l—l;v( ])7 VUEC( )

The embedding H2(Q)) < L>®(Q) (for d = 1,2,3) and Bramble-Hilbert lemma [41, Theorem 4.1.3]
lead to
‘/ v dz — QK(U)‘ < K227 W3 ol oy, Vo € HA(K). (5.13)
K

Then we can define a global quadrature rule:

Qn(v) = Y Qxv), YveC(Q), (5.14)

KeTy,
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which satisfies the following error estimate

‘ /Qv dz — Qh(v)‘ < 02_2”h2\v]H2(Q), Vo € HX(Q). (5.15)
Similarly, we define a discrete / broken L%(Q2) inner product (-, ), by

(w,v)p = Qp(ww) Z Qx(wv), Yw,ve C(Q).

KeTy,

Lemma 5.3. The following error estimate holds for any vy, wp € V,?, and n € N:
[(qVon, Vwy) — (qVop, Vwp)n| < c(27"R)Plgllwroe @) I Vol Lz IVwnll L2y, with p=1,2;

Proof. Let Tlk, : C(K;) — P1(Kj) be the Lagrange nodal interpolation operator on the sub-simplex
K. Since the quadrature rule on Kj is exact for P;(K), we have

9dn

(qVon, Vwy) — (qVon, Vg, = Z Z/ q — 1k, q)Vup, - Vuwy, dx.
KeTy, j=1

Then the local estimate for Lagrange interpolation leads to

2dn

|(¢VuR, Vwy) — (¢Vop, Vwp,)p| < Z Z/ (¢ — Tk, q)Vup - th‘dx
KeTy, j=1
2dn

<c Z Z 27" h)Pllallwroo (i) IVORI| L2 (1) [ Vwnl L2 () < €27 R)Plallwe.ce @) Vonll L2 ) [V wnll 2
KeTy, j=1

This proves the desired estimate. O

Then the hybrid NN-FEM approximation of problem ([5.2)-(5.3]) (with numerical integration) reads

1.
i Ty(an) = 5T (Palan)) = 2*l[E2(0) + 5 @nl Vaol?) (5.16)

where Uy, = Up(Pa(go)) € V)2 satisfies the following discrete variational problem

(Pa(a0)Vn, Voor)n = (fion),  Ven € V2. (5.17)

We focus on approximating the integrals involving NNs only. The variational problem ({5.17)) involves
also the quadrature approximation, which necessitates quantifying the associated error. The presence
of P4 in the weak formulation ensures the V-ellipticity of the broken L?*(Q2) semi-inner product,

and hence the unique existence of the discrete forward map is ensured [39, [I]. Then repeating the

argument for problem (5.7))-(5.8]) yields the well-posedness of problem ({5.16)-(5.17)). The analysis of

the quadrature error requires the following condition on the problem data.

Assumption 5.3. ¢f € W2>®(Q)N A and f € L>=(Q).
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Next we state an analogue of Lemma [5.1] in the presence of numerical integration.

Lemma 5.4. Let Assumption hold. Then for any € > 0, there exists 0. € Poo e such that
[ut = @n(Palgs)l 2@y < c(h? + ).

Proof. The proof is similar to Lemma First, under Assumption there holds ||uf—y, (¢ || r2@) <
ch? [1, Theorem 5]. Next by Lemma there exists 0 € P e such that its NN realization gp, satisfies

”qT - QGEHWLOO(Q) <e (5.18)

Then by the stability estimate ([5.6)) of the operator Py, we deduce

lg" = Pa(gs) L) < e (5.19)
Let wp, := up(Palge.)) — un(q') € V0. Repeating the argument of Lemma yields
g IVR[I720y < (Palgo.)Vion, Vion)n = ((¢" — Palge.))Van(q"), V),
< llg" = Pa(ao.)ll oo 2 IV TR (a") || 20 | V@h || 1202

since [(qVun, Vor)n| < cllqll @)l Vunll L2 [ Vorl L2(q)- Using the estimate (5.19), the stability of
Lagrange interpolation and the a priori estimate ||V (qh)]| r2() < ¢ and Poincaré inequality, we

deduce
@n )l r20) < clVinlr2) < clla’ = Palao.) |l =) I Van (a2 < cllat = Palao) o) < ce.
This completes the proof of the lemma. O

The next lemma provides an a priori bound on |jul — un(Pa(g5))l22(0) and VPa(qp)-

Lemma 5.5. Let Assumption hold. Fixz e > 0, and let 0* € P be a minimizer to problem
(5.16)-(5.17) and g its NN realization. Then the following estimate holds

lut = @ (Paa)) 220y + 1Qn(VPA(G))?) < e + & + 62 4 7).

Proof. The proof relies on the minimizing property of 8%, Lemma [5.4] and the existence of an element
gp. € Wh(Q) satisfying (5.18). The estimate and the regularity ¢ € W?2°°(Q) implies
[gellw.00() < €. This yields Q4(|Vge|?) < ¢, since the quadrature operator Qp, is stable on C(Q2). The
rest of the proof is identical with that for Lemma [5.2] and hence, we omit the details. O

Next we show an a priori bound on quadrature error of the penalty term.
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Lemma 5.6. Let 0 € P, of depth L, width W and bound R, and vg be its NN realization, with
RW > 2. Then the following quadrature error estimate holds

d
V00l 720y — @n([IVealle) < 272 W2 Y (9r,v9)*|wroo(ay < 2722 RMEW A,
=1

Proof. By the NN realization (2.4), we have for every layer £ = 1,...,L — 1 and each i = 1,...,dp,
(Z) p( Zd" 14O, + bl(-z)>. Then for all 1 < k,m < d, direct computation with the chain rule

1) ]
gives
do_1 ooy
3§k,wmv§€) :p//< Z; Az(j)v (=1) b )(Z A(e)amkvje 1) ><Z; Agf)axmv§z—1)>
j= =
do_
+ p’( i:l Agj)v (=) 4 ) ( Z A(ﬁ)agwmv](e 1))_
j=1

Note that for the tanh activation function p, |[p'[|Lec®) < 1, [|p"[|zee@) < 1, cf. Lemma and
further [80, Lemma 3.4, eq. (3.6)]

|0z, v ] HLOO o SRWSL ve=1,... . L-1,j=1,....d. (5.20)

Then we arrive at

2 (€ 27772 (¢-1) (6-1)
102, 2 Vi llLoe() < R*W j_pnax 102,05 | oo () ) ;_fmex 102,05 oo ()
-1
TRW _max (05,0, )||Loo<m

20yx720—2
<R"W +RWj:1m“§§£7 102, 2 ] "l oo )

Note also the trivial estimate

d
1 1 1
102, a0t @) < \ A AP w + o) aRAD) <2
j=1 Leo(Q)
Taking maximum in ¢ = 1,...,dy and then applying the inequality recursively lead to
-1
a9, 0,01 o) < B2 Y (RW)P(RW) T 4 (RW) et (10,0, |1 (0)
1=1,...,d¢ 1=1,...,d¢—1
7j=1
o 20 -1 R2y24-2
= R“W (RW) 7 < ——————
S

Hence, under the condition RW > 2, we may bound

102, 5 0 | poo(y < 2R*W2 We=1,... Li=1,...,d. (5.21)
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By direct computation, we obtain for 1 < k,m,n < d

doe—1 do_1 dp_1 dg—1
3 O m 0 (6-1) 05 (1) 0 (t=1) 05 . (6-1)
8$k»fvm»fvnz =p (ZAZJ Y )(ZA a‘”k] )(ZAijafch )(ZA 8’””] )
j—l j=1 j=1
o4
AVg2 1) () (e=1)
+p,,(z,4w of )( A2 o )(ZA” D, )
j=1
dzf1 dz 1 de—1
(A ) (908 ) (X 400l )
j=1
S0 i (1) i g D
1" -1 -
+P(2Aza i )( Daom] )(ZAz‘jawn“j )
j=1 j=1
de—1 dz 1
#o (S AP ) (S A ™)
This, along with the bound [|p" || oo (r) < 2 from Lemma implies
O (e=1)
H Th,Tm,Tn Vi HL°° )< RWJ 11?3:2([7 H Tk, Tm,Tn ] HLOO
31173 (e=1) (¢-1)
+2RW . max lllaxkv] Ile(Q)jzlrfl_ég [ e [P (@ ,_max 102,05l ()
271,72 (Z 1) (£-1)
TR _may 02,0 ||Loo(mj:gg§# [ e P
oY
+,_ax 1H s Uj ||L°°(Q)j max |0z, v J V| ze(e)
MO
+max 08, o ey _max 0,0 ).

Then it follows from the estimates (5.20)) and (5.21]) and the condition RW > 2 that

Loo(q) < 2RIWAS 4 g R RW max |0 xk,xm,xn% | ooy

H Tl Tm,,Tn, z H =1,..,d¢—1

< 5R3€W3€_3 + RW . max H Tk, Tom,Tn ] HL"O(Q)

j=1,...,dp_1

Meanwhile, direct computation gives the estimate

(1 1 1,01
0 i < 57 A+ 0 DA<
Lo (Q)
The last two estimates together and the condition RW > 2 yield
(£
102, 2. 200 | ooy < TORMWA3, we=1,... L. (5.22)
Substituting this estimate into (5.14)) completes the proof of the lemma. O

Now we can state the error estimate on the approximation gj.
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Theorem 5.4. Let Assumption hold. Fix ¢ > 0, and let 0% € Poo,e be a minimizer to problem
(5.16)-(5.17) and g be its NN realization. Then with i =ht4+ e+ +yand (:=1+~"1n? +

272 p2 RALTYAL= e have
q" — Pa(@})\? 2 1 ] —np, pLyyLY L
/ (T> (¢'|Vul ]2 + fu) dz < c(hCE + (min(h 'y + h, 1) + 2 "hREWL) (2.
Q
Moreover, if condition (5.11)) holds, then
1 11
lg" = Pa(@)llz2(0) < e(h¢? + (min(h~ '+ h, 1) + 27 "hRFWH)(2) 25D,
Proof. By the weak formulations of u and uy,(Pa(q}), cf. (5-3) and (5-17), we have for any ¢ € H}(Q),
((¢"=Pa(@))Vu', Vo) = ((¢" = Pa(@)Vul, V(e = Pap)) + ((¢' = Pa(@))Vul, VPrgp)
=~ (V- ((¢" = Pa(@))Vu'), 0 — Pugp) + (Pa(@)V (un(Pa(@)) — ul), VPuyp)
+ [(Pa(@)Van(Pa(@)), VPup), — (Pa(@)Vin(Pa(@)), VPup)] =: T+ T+ 111

+
Next we set p = %ﬁ(")lﬁ in the identity and bound the three terms separately. By the stability

estimate (5.5]) of the operator P4 and Lemmas and we have

IV PA@) 2200y < IVG B2y = Qu(IVE ) + 15 220y — Qu(I VG )

< e(y 1?4 2722 RAWALY),
Thus we can bound ||V 2(q) by
IVollrz) < e+ [VPaldp) 2 0) < (3. (5.23)
Repeating the argument of Theorem and applying Lemma [5.5] yield

1] < ch(1+ HVPAQ;H%Q(Q)) < ¢hg,

I} < e(1+ [IVPa(g5) ]2 (o) 1V (@ (Pa(a5)) — u') | 20y < emin(h™g + R, 1)¢2.

w\»-t

Next from Lemma [5.3] (with p = 1), the stability of P4 and the bound (5.20), we deduce

[T < 27" Al Pa(@) lw.0o @) | Van(Pa(@) I L2l V Pl L2 @)
Y . .
< e27"hC2 ([ Pa(@p) I @) + IV Pa(g)l Lo ()

< 273 (14 | VG| oo (y) < 2 "hREWECS,
The proof of the second assertion is identical with that of Theorem O

Remark 5.3. Theorem[5.4) indicates that the error estimate in the presence of numerical quadrature

1s similar to the case of exact integration, provided that the quadrature error is sufficiently small. The
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quadrature error involves a factor R*™W*L=1  which can be large for deep NNs, and hence it may
require a large n to compensate its influence on the reconstruction Pa(qp). Indeed, one may take

- _d
272np2RAAWAL=1 = O(1). This and the choice 6* € Poo, i-e., L = O(log(d + 2)), Ny = O(e” T#)
2+3d

and R = 0(6_2_ T=u ) directly imply n = O(d|loge|). This estimate is a bit pessimistic. In practice,

the choice n = 0 suffices the desired accuracy.

5.2 Parabolic inverse problem

In this section, we extend the hybrid approach to the parabolic case:

Ou —V - (gVu) = f, in Q x (0,7),
u=0, ondQx(0,7T), (5.24)

u(0) = ug, in Q.

Like before, we are given the observation 2% on the space-time domain Q x (Tp, T) (with 0 < Ty < T):

lu(g") = 2° | 2y 120 < 6,

with a noise level §. We aim at recovering the coefficient ¢ € A from 2z°.

5.2.1 The regularized problem and its hybrid approximation

To recover the coefficient ¢ in the model (5.24)), we formulate a numerical scheme by

1

. i
o Jy(@) = 5llula)(t) = 2L Ol 2z 702000 + EHVQH%Q(Q)’ (5.25)

where u(t) = u(q)(t) € H(Q) with u(0) = ug satisfies
(Dpu(t), p) + (qVu(t), Vo) = (f,¢), Vo€ HHQ), ae. t € (0,T). (5.26)

Next we describe the hybrid NN-FEM discretization of problem f. For the space
discretization, we employ NNs and Galerkin FEM to approximate the diffusion coefficient ¢ and state
u, respectively. For the time discretization, we employ the backward Euler time-stepping scheme [139]:
We divide the time interval (0,7") into N uniform subintervals with a time step size 7 and grid points
t, =nt,n=0,...,N. Next we denote by v" = v(t,) and define the backward difference quotient
0- by 0" = 7*1(11" — v”fl). Further we assume Ty = Ng7 for some Ny € N. For a sequence of

functions {v" g:No C X, we define a discrete norm H(v”)%OH@z(X) by

N 1
I e = (7 3 I1%)
n=~Ng
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With these preliminaries, the hybrid NN-FEM scheme for problem (5.25)—(5.26)) reads

: 1 n VN |12 gl 2
eg}ﬁﬁe Jy,nr(46) = §H(Uh (Pal90)) — 20) o 2120y + §HV(I9HL2(Q)7 (5.27)
where 20 := 771 L 2°(t)dt, and U = Ul (gg) € V)Y with UP(gg) = Phuo satisfies

(0:U, on) + (Pa(g0)VUR, Veon) = (f(tn), o), Yon € VP, n=1,...,N. (5.28)

For any v > 0, a standard argument yields the well-posedness of problems (5.25)—(5.26) and (5.27))—
(5-28)); Let g; be the NN realization of a minimizer #* to problem (5.27)—(5.28)). See the work [94]

for relevant discussions on the pure FEM approximation. It also includes a detailed convergence
analysis of the FEM approximation to a global minimizer of problem (/5.25)—(5.26)) as the discretization

parameters h, 7 — 07. See also [144} [R4] for relevant error analysis.

5.2.2 Error analysis

Now we provide an error analysis of the approximation P4(gj), under the following assumption.

Assumption 5.5. For some p > max(2,d+ u) with u > 0, ¢t € W2P(Q)NA, ug € H2(Q)NHL(Q) N
W (Q) and f € L>=(0,T; L>(Q)) N C([0,T]; L*(2)) N W2L(0,T; L*(Q)).

Under Assumption the following regularity estimates hold on u' = u(q") [84, p. 128]: for any

7,q € (1,00)

o’ € L™(0,T; LY(Q)), Au' € L™(0,T; LI(Q)) and u' € L>®(0,T; WH>(Q)); (5.29)

||uT(t)||H2(Q) + H@tuT(t)HLz(Q) + t”attuT(t)”LQ(Q) <e¢, ae. t€(0,T]. (5.30)
The next lemma gives the existence of an approximation in the discrete admissible set B, ..
Lemma 5.7. Let Assumption hold. Then for e > 0, there exists 8. € P, such that
Il (1) — U (Paas )Y [Boguogay) < e + b+ ).

Proof. By the argument of Lemma we can find 6, € P, . such that the estimates (5.9) and
(5-10) hold. Next we bound o} := U*(Pa(gs.)) — Up(q"). It follows from the weak formulations of
U (Pa(gq.)) and UP(q"), cf. (5-28), that o} satisfies o) = 0 and

(8- 0hys 1) + (Palao) VR, Vion) = ((¢' = Palao))VUS(a"), Vion), Yon € Vi), m=12,... N.
Setting ¢ = 20} into this identity, and then applying Holder’s inequality lead to
T_l(HQZH%%Q) - HQZ_IH%?(Q)) +2¢,[IVohlZ2 () < 2llg" — Palgo) |l 2@ IVUR (@) 2@ IV 0} | 2 () -
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Summing the inequality over n from 1 to N, noting Q% = 0 and applying (5.10)) give

N
o 172y + 2¢4 (Vi)Y 1221200y < 2lla" = Palao) @™ D IVUR (@) 220 |V oitll 2
n=1

< cell(VUR (@Y 22 (VY (2 0))-

Since H(VU,?(qT))]lVng(Lz(Q)) < ¢ [144, Lemma 6.2], we obtain H(gz){vﬂp(m(g)) < ce. This and the
estimate ||(uf(t,) — U;Ll(qT))]lVsz(LQ(Q)) < c(7% + h?) [84, Lemma 4.2] complete the proof. O

The next lemma gives an important a priori bound.

Lemma 5.8. Let Assumption hold. For any € > 0, let 0% € By be a minimizer to problem
(5.27)-(5.28) and g its NN realization. Then the following estimate holds

It (tn) = UR (Pala)) N, I zeqay) + NV PG Baqy < e + B+ 2+ 6% + 7).

Proof. Let g, be the NN realization of a parameter 0. € B, . satisfying (5.9)) and (5.10)), which implies
also ||gel| 1oy < ¢. Under Assumption 5.5} the following estimate holds [84, Lemma 4.1]

N
H(’U,T(tn) - ZTL)NQH?Q(LQ(Q)) S 0(7'2 -+ 52)
Then by Lemma [5.7| and the minimizing property of gp, i.e., Jy n+(qp) < Jynr(qs,), we derive

(U (Palap)) — zg)]NVOH?2(L2(Q)) + 7“VQ;"%2(Q) < |(UR (Palgs.)) — 22)%0\\?2@2(9)) + ’YHVQHEH%%Q)

<c(IlUR (Palas.)) — ut(tn)) N 7222y + 1 (tn) = )N lZ2z2(y) +7) < e(7? + B + € + 62 + ),

Then by the triangle inequality, we have

(" (t0) = U (Palag)) )N, 122 )y + VG720 < ell(ul (t0) = 20N, 17220

+ll(zn = U (Pal@))) N2 (22 () + IV 1720y < e(7? + b + € + 62+ 7).
Finally, the bound on [[VP4(gj)| r2(q) follows from the stability estimate O
Now we can state an error estimate on the NN approximation gy.

Theorem 5.6. Let Assumption hold. Fiz any e > 0, and let 0 € B, be a minimizer to problem
(5.27)-(5.28) and qj its NN realization. Then with n? =12+ ht 4+ € + 6% + v, there holds

Z Z Z/ PA q@ ) (qT|VuT(tn)’2+ (f(tn)—atUT(tn»UT(tn)) da

j=No+1i=No+1 n=i

< c(min(h ™ n 4 h, 1) + h’y_%n)v_%n.
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Proof. For any ¢ € HE((2), the weak formulations of u' and U(Pa(q;))) in (5.26) and (5.28) yield

((g" = Pa()Vul (tn), Vip)
H(tn), V(e = Pup)) + ((¢" = Palg;))Vul (), V Pigp)
= ((¢" = Palq ))VUT(t ), V(¢ = Pup)) + (Palag) V(U (Palgg)) — ul(t)), VPug)
¢'Vul (t,) — Pa(ag) VUL (Pa(d5)), V Prg)

(
= — (V- ((¢" = Pa(g5))Vul(tn)), 0 — Pup) + (Pa(a5) V(UL (Pa(gp)) — ul(tn)), Vi)

Next we set ¢ = ¢" = 0 uf(t,) in the identity, and bound the three terms separately. Under

Assumption the regularity bound (5.30)) and the box constraint P4(g;) € A imply

e [ 96" 120 < (1 + [V Pa(a) |20 (5:31)

Then repeating the argument for Theorem [5.2] and applying Lemma [5.8| lead to
1 < ch(1 4+ IV Pa(gg) | 2@ IV [ 2 () < eh(1 + [V Pa(gp)l172(q)) < chy ™',

Next, by the Cauchy-Schwarz inequality, the H'({2)-stability of P, the box constraint Pa(g}) € A
and the estimate (5.31)), we bound the term II" as

1" < ||V (U (Pa(ay)) — UT(tn))HLQ(Q)HVPhSDnHLQ(Q)
< | V(UL (Palgp)) — ul (ta) 220 I V" 20

< e(1+IVPA(a5) | o) IV (UR (Palg)) — ul (t)ll 120

Then it follows from the inverse estimate in the space V}? [139, (1.12), p. 4] and (2.3)) that

T Z " < ey 277H (U (Pa(qy)) — T(tn)))%ouﬁ(m(ﬂ))
n=Np

< o (VR (PaG) = Paed ()l uaqay + IV ! ) = P D) Nolla)

1 g .
< oy (B I(UR(Pags)) — Puut ()N le2 2y + Rl ! (E)) N, L2y ) -

Now by applying the L?(£2)-stability of P, and Lemma we deduce

N

1o, n . _ 1
Y I < ey 2n(hH(UR(Palgs)) — ul () Nolle(z2o)) + 1) < c(h+ b7 'n)y 2.
n=~Np

Meanwhile, the box constraint P4(g;) € A and the standard energy argument imply
I(V (U7 (Palgs)) — ut(t)) N 2220y < e (5.32)
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Thus we obtain
N

T Z " < C’y*%n min(1, h + h™1n).
n=Ng
For the last term ITI", we further split it into

" = (0, U (Pa(g;)) — Orul (), Pug™) + (Orul (tn) — Opul (L), Ppe™) =: IIIT + 1113,

and then bound IIIT and III3 separately. Repeating the argument in [84, Theorem 4.5] gives

N J J
) Y | <er

j=No+1i=No+1 n=:

To bound the term IIIT, by the summation by parts formula, we deduce
j —
P3I == 73 (UR(Palah)) — ul (t0), 8- Pap™ 1) + (U (Palas)) — ' (t5), P

- (U,i_l(PA(q;)) - UT(tz’—1), Phcpi).

Since [P (| r2(0) < l9"[[L2(0) < ¢, we get

N N
T Y (UL(Palap) = ul(t), Pu?) [+ |7 DY (U7 (Palgp)) — ul(ticr), Pag')| < en.
j=No+1 i=No+1

Moreover, from the L?(€2) stability of Py, Assumption and the box constraint Py(q;) € A, we

deduce

B tn ot _ Pa(q})
n — q .A q
10: Pre” (| 22(q) < IH/ —— L Bult) dtHLQ(m < cllGulle ity ta);L2()-
Thus, we have

Z Z Z U (5) = u' (tn), 0 Ph@”“)’ < en.

j=No+1i=Nop+1 n=t
Finally, combining the preceding estimates with the identity

T _ *
(= Pat@) V(6. V") = 5 [ (T (G900 + (70) - 06l (1)) da

completes the proof of the theorem. O

Similarly, we can impose a positivity condition: there exists some 8 > 0 such that for any t € [Ty, T']
¢"\Vul (2, 6)* + (f(z,t) — 8tuT(x,t))uT(x, t) > c dist(z,0Q)?, a.e. in Q. (5.33)

This condition holds with § = 0,2 under suitable assumptions on the problem data [84, Propositions
4.7 and 4.8]. Under condition ([5.33)), the argument of Theorem gives the following L?(Q) error
bound.

Corollary 5.1. Under the assumptions in Theorem and condition (5.33)), there holds
1 _1
||q - (Z9”L2 < C(mm(h n+h,1)+hy" 277)7*577) 2(1+8) |
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5.2.3 Quadrature error analysis

Now we study the influence of quadrature errors on the reconstruction. Like before, we formulate a
practical hybrid NN-FEM discretization scheme of problem ([5.25))-(5.26) (with numerical integration)
by

: 1 rrn S\M Y
ol Tynr(a0) = 51 (UR (Palan)) = 20) oIz 2y + 5 @n(IVaol”), (5.34)
where 20 := 771 ftnnq 29(t)dt, and ﬁ[; = ﬁﬁ(PA(qg)) € VY with ﬁ]?(PA(QQ)) = Pjug satisfies

(0-UR en) + (Pa(go)VUR, Veon)n = (f(tn),0n), Ven € Vi), n=1,...,N. (5.35)
Using the box constraint P4(qy) € A and the standard energy argument, we have

(VU (Palao) Y 2 r2ay < e (5.36)

The existence of a discrete forward map Pa(qs) — {U}} ,]yzl follows from the ellipticity of the broken
L*(Q) semi-inner product (-,-), over the space V)0, and a standard argument yields that problem

(5.34)-(5.35) has at least one minimizer §* with a continuous dependence on the data. Next we derive

(weighted) L?(€2) error bounds of P4(q}), with the NN realization gj of the minimizer g*.

Assumption 5.7. ¢f € W2>(Q)N A, ug € H2(Q) N HH(Q) NW2(Q) and f € L=(0,T;L>®(Q)) N
CH(0,T; L3(2)) N W2L(0,T; L?(%2)).

The next lemma gives an analogue of Lemma for the quadrature scheme.

Lemma 5.9. Let Assumption hold. Then for small € > 0, there exists 0. € Poo,c such that
1 (u(g") (tn) — UR (Pa(90.))); o2y < e + b+ ).

Proof. 1t follows from Lemma that there exists 6. € Poo such that the estimate (5.19) holds
for the NN realization gp,. Let o} = ﬁ;}(qT) - ﬁ,’j(PA(qee)). Then it satisfies g} = 0 and for all
n=12,...,.N

(0-01, 1) + (Palae.)V ol Von)n = (Palge,) — ¢ )VUR ("), Ver)n,  Veon € V2.

Repeating the argument of Lemma gives

(T (") — U (Palao) Y lle2z2a) < ce. (5.37)

Since ||(uf(t,) — U}?(qT)){VH@(Lz(Q)) < (7 + h?) [84, Lemma 4.2], it suffices to show

1O (") = U@ 22y < eh®. (5.38)
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Let e = UP(q") — ﬁfl‘(qT) Then e} satisfies e} = 0 and
(Oreqs o) + (a"Ve, Veor)n = (a"VU (D), Vor)n — (¢'VUR(a"), Veor), Ven € Vi in=1,...,N.
Now upon choosing ¢j, = ej and applying Lemma (with p = 2), we obtain
(a"Veh, Vei)n = (a"VeR, Ver)| < chllaM w2 o) I VUG (6D 2oy [ VeR | 2()-
Consequently, we have
L0, [ef 220 + o Vel 122y < b2l lwace oy IVUR (@) 2 IV €R 2000,

Then upon summing the identity over n from 1 to N, noting e% = 0, we arrive at

e 11220y + (Ve 722y < eh®I(VUR @D 22 | (Ve llez 2 0)-
Then the estimate (5.38) follows from the bound |[(VU(¢"))¥ le2(22(0)) < ¢ [144, Lemma 6.2]. O

The next lemma gives an a priori bound on u(q")(t,) — Uh (gp) and gy, with the quadrature

approximation. The proof is identical with that for Lemma [5.8] and hence omitted.

Lemma 5.10. Let Assumption hold. Fix e > 0, and let 0* € P be a minimizer to problem
(5.34)-(5.35) and g its NN realization. Then the following estimate holds

1) (tn) = TR (AN 1200 + V@RIV PA@GR) < e(r? + b + 462 + 7).
Now we can present the main result of this section.

Theorem 5.8. Let Assumption hold. Fizx e > 0, and let 0* € P e be a minimizer to problem
(5-34)-(5-35) and g its NN realization. Let n? == 72+ h* + & + 6%+ v and ¢ = 1 +y71n? +
2720 p2 RALYYAL=4  Then the following estimate holds

Z Z Z/( ) ) (qT|VUT(tn)!2+(f(tn)—ﬁtuT(tn))uT(tn)) dz

j=No+1i=Nop+1 n=i

< ¢(h¢? + (min(h~'n + h, 1) + 27"hdz REWE) (2.
Proof. For any ¢ € H}(Q), the weak formulations of u! and Uh , cf. and ([5.35)), imply
((a" = Pa(@)Vul(tn), Vi)
= ((¢" = Pa(@)Vul(ta), V(e = Pap)) + ((a" = Pa(@))Vu' (t,), VPip)
= —(V- ((q" = Pa@)Vul(ta)), 0 — Pug) + (Pa(@) V(U (Pa(@)) — ! (tn)), V Prp)
+ (0, U3 (Pa(@3)) — Oyl (tn), Pagp)

+ ((Pal@) VU (PA@)), VP, — (PA@)T5 (Pa(@)), VPrp) ) = I" + T 4 TIT" 4 TV,
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T P
C=Pal@) (t,) in the identity. Lemma [5.10| and the argument for (5.23) imply

Set ¢ = " = 1%

~x 1
IVeollrz) < el + [VPaldp) 2 (e) < C2.

Then repeating the argument for Theorem [5.6] yields

M N J J
1"l <ch(, T Z III"| < emin(h ™ty + h, 1)C% and 7° Z Z ZHI” < cn.
m=M, j=No+1i=No+1 n=i

Then it follows from Lemma (with p = 1), the stability of P4 and the bounds ([5.20) and (/5.36))
that

N

r 3 IV < e R PAG o (s 19 P o ) (VT PAG, s
J=No -

—ny L ~x ~x rn ~x
< 27"hC2 (|PA(@) || o) + IV PA(@) | oo @) (VUR (Pa(@)) Ny le2 (222

1 ~ 1 1
< 27" (1+ VGl (VUR (Pa(@) N le2(r2(0y) < €27 "hd2 RFWE (3.

Combining the preceding estimates directly shows the desired assertion. O

5.3 Numerical results

First we describe the implementation of the hybrid NN-FEM approach, i.e., problems — and
—. We train the NNs by minimizing the losses and for the elliptic and parabolic
cases, respectively. Traditionally, the NNs are trained using gradient type methods and the gradient is
computed using back-propagation [L03], which can be done in many software framework, e.g., PyTorch
and Tensorflow. In the hybrid method, we employ the adjoint technique [32]. By the chain rule, the

dJ, _ dJ,dg dJ,

derivative of the loss J, to the NN parameter 6 is given by —j7- = g do We compute ny(q) =

using the standard adjoint technique, and % using back-propagation.

5.3.1 Numerical experiments

Now we present numerical reconstructions P4 (g;) and ¢j using the hybrid NN-FEM approach and the

fully FEM. Their accuracy to the exact diffusivity ¢! is measured by the relative error:

e(Pa(qs)) = lla" = Pa(a)) 2/l 112 and  e(gh) = lla" = giillz2(0)/la' 12

The exact data u' is generated on a finer mesh, and in the elliptic case, the noisy data z° is generated
by 20 (x) = uf(z) + 5HuT||Loo(Q)§(x) for x € Q, where £(z) follows the standard Gaussian distribution,
and § > 0 is the (relative) noise level. The parabolic case is similar. Unless otherwise stated, the NN

for approximating ¢ is taken to be d-32-32-1 (i.e., with two hidden layers, each having 32 neurons).
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The mesh size h is 1/40 and 1/32 and the time step size 7 is 1/1000 and 1/200, for one- and two-

dimensional problems, respectively. These FEM discretization parameters are applied to both hybrid

method and pure FEM. The regularization parameters -y for the hybrid NN-FEM method and ~;, for

the fully FEM are determined in a trail and test way. The resulting loss is minimized using ADAM [9§].

All the experiments were carried out on a personal desktop (with Windows 10, with RAM 64.0GB,
Intel(R) Core(TM) 19-10900 CPU, 2.80 GHz). The hybrid NN-FEM approach was implemented with

Python 3.8.8 on the software framework TensorFlow using the SciKit-fem [62] package to solve the

PDEs, and the pure FEM approach was implemented on MATLAB 2022a. Unless otherwise stated,

the level of quadrature is fixed at n = 0 (i.e., no further sub-division).

Table 5.1: The relative errors for the examples at different noise levels.

(a) Example (1) (b) Example (ii)

) 10e-2 He-2 le-2 oe-3 le-3 10e-2 de-2 le-2 oe-3 le-3
Yo le-6 le-6 le-6 le-7 le-7 le-7 le-7 le-8 le-8 le-8
e(gp) | 3.17e-2  2.25e-2  1.24e-2 1.24e-2 1.12e-2 | 8.92e-2 4.76e-2 3.86e-2 3.91e-2 2.67e-2
Yh 2e-6 le-6 le-7 oe-8 le-8 2e-6 le-6 le-7 5e-8 le-8
e(qy) | 7.16e-2 4.76e-2 2.3%e-2  2.04e-2 1.98e-2 | 1.23e-1 7.76e-2 3.58e-2 2.29e-2 1.54e-2

(c) Example (1) (d) Example (ii)

o 10e-2 He-2 le-2 oe-3 le-3 10e-2 He-2 le-2 5e-3 le-3
Yo le-6 le-6 le-6 le-7 le-7 le-7 le-7 le-8 le-8 le-8
e(qp) | 3.30e-2  3.13e-2 1.48e-2 1.47e-2 1.08e-2 | 6.21e-2 4.62e-2 2.85e-2 2.63e-2  2.68e-2
Yh 2e-6 le-6 le-7 oe-8 le-8 2e-7 le-7 le-8 5e-9 le-9
e(qn) | 5.63e-2 4.97e-2 1.58e-2 1.53e-2 1.21e-2 | 7.18¢-2 4.70e-2 2.08¢-2 1.81e-2  1.80e-2

(e) Example
o 10e-2 5e-2 le-2 5e-3 le-3
Yo le-6 le-6 le-6 le-6 le-6
e(qp) | 2.92e-2  2.25e-2 1.43e-2 1.92e-2 1.36e-2
Yh 2e-6 le-6 le-7 oe-8 le-8
e(qn) | 6.15e-2  4.09e-2  3.0le-2 2.20e-2 1.52e-2

The first two examples are about the inverse problem in the elliptic case.

Example 5.1.

(i) Q@ =(0,1), ¢'(x) = 2 + sin(27z) and f = 10.

93




(ii) Q= (0,1)2, ¢f(x1,29) = 2 + sin(2mz) sin(2722), up(x1, z2) = 421(1 — 22) and f = 10.

——exact ——exact

(a) 0 = 10e-2 (b) 6 = 5e-2 (c) 6 =1le-2

Figure 5.1: The reconstructions for Example (1) at three noise levels by the hybrid approach and
pure FEM.

In the ADAM optimizer, the hybrid scheme employs a learning rate le-3 and le-2 for cases (i) and
(ii), respectively. The reconstructions for case (i) in Fig. show that the hybrid approach is more
accurate than the pure FEM, although visually they are largely comparable, consistent with the prior
observation [I9]. This is also confirmed by the relative errors in Table [5.1)(a). These results clearly
show the influence of the discretization scheme on numerical inversion. The excellent performance
of the hybrid method might be attributed to the strong implicit smoothness prior imposed by NN,
which strongly favors smooth solutions [125], when compared with that by the FEM basis.

To gain further insights, we examine the change of the loss during the training process in Fig. [5.2
The plots are for two cases: the 1-32-32-1 architecture with different noise levels to study the impact
of data noise, and three architectures: i.e., 1-16-16-1, 1-32-32-1 and 1-32-32-32-1 (at a noise level 5%)
to study the impact of the architectural choice. During the training, the loss J first decreases only
slowly, exhibiting a plateau phenomenon, and then it experiences a rapid decreasing period, after
which it almost stagnates and oscillates a little bit. This pattern is consistently observed for all the
considered noise levels. The origin of the plateau remains elusive; see [3] for an interesting investigation
of the phenomenon for gradient descent on ReLLU networks. The evolution of the relative error shows
a similar behavior: it first decreases slowly, then enjoys a fast decay and finally tends to be nearly
steady.

Now we examine the influence of quadrature error, by varying the quadrature level n over the set
{0,1,---,5}. This is carried out on two settings with 1% noise: (i) the standard setting as before, and
(ii) the setting with the architecture 1-128-128-128-1, a mesh size h = 1/40, v = 1le-6, and a learning
rate le-3. The architecture in the latter is far bigger, and hence, according to the error estimate
in Theorem the problem becomes more challenging and may require more quadrature points to

deliver quality reconstructions. The numerical results are given in Fig. It is observed that the

94



NERRER

2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

k k
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0.35
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—— 1-16-16-1 0304 —— 1-16-16-1
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Figure 5.2: The variation of the loss J and error e during the training for Example (1) at different

noise levels and NN architectures.

—e— 1-32-32-1 —— [-32-32-1
== 1-128-128-128-1 == 1-128-128-128-1
10" 10"
© —_— °© S
1071 107
0 1 2 3 4 5 0 1 2 3 4 5
n n

(a) Example i) (b) Example i)

Figure 5.3: The relative errors for Examples (1) and i) versus quadrature level and NN archi-

tectures, at a noise level 1%.
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relative error e does decay slightly when using more quadrature points but the influence is very minor.
Hence, the error bound in Theorem [5.4] might be overly pessimistic in terms of the quadrature error.
In the rest of the experiments, we do not increase the quadrature level.

In case (ii), the reconstructions by the hybrid approach is slightly more accurate than that by
the pure FEM, when the data is highly noisy; see Fig. and Table b). When the data is very
accurate, the hybrid approach is actually slightly less accurate. This is attributed to the complex
optimization issue: the loss is highly nonconvex in the NN parameters, and its landscape is very
complicated, which may prevent the ADAM optimizer from finding a global minimizer. Fig.
shows the evolution of the loss J and relative error e in the two settings during the training process:
(1) the 2-32-32-1 architecture with noise level varying form 0.1% to 10% and (ii) with a fixed 1% noise
level, on three NN, i.e., 2-16-16-1, 2-32-32-1, and 2-32-32-32-1. The results show a similar behavior as
for case (i): the convergence curve shows fast convergence only after an initial plateau (of length about
5000 iterations). This may indicate the need of a better initialization strategy for the NN parameters

in order to shorten the plateau length (and thus faster convergence).

1.0 3.0

1.0

1.0 3.0
0.8
25
0.6
0.4
15
0.2
0.2 0.8 1 .
1.0
'lllll' ) i‘lIIIII' ‘llllll)
6
20
0.4
15
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0

(a) exact (b) 6 = He-2 (c) 0 =1le-2

0.8

0.6

0.4

0.2

3.0 3.0

0.8
25

1.0

Figure 5.4: The reconstructions for Example ii) at two noise levels with the hybrid method (top)
and the pure FEM (bottom).

The second set of experiments is for the inverse diffusivity problem in the parabolic case.
Example 5.2. (i) Q= (0,1), ¢'(z) = 2 + sin(27z) and f(z,t) = 10t, Ty = 0.9, and T = 1.

(ii) Q= (0,1)2, ¢ (21, 22) = 2 +sin(2rx1) sin(27wx2), uo(21, 22) = 41(1 —x1) and f(x1,z2,t) = 10t,
To=09 and T = 1.
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Figure 5.5: The variation of the loss J and error e during the training for Example (ii) at different

noise levels and NN architectures.

3.5 35 35

——exact ——exact ——exact
== ~NN-FEM 3.0
o FEM

-~ ~NN-FEM

25

20

(a) 6 = 10e-2 (b) § = be-2 (c) § = le-2

Figure 5.6: The reconstructions for Example i) with three noise levels, obtained by the hybrid
method and the pure FEM.
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In the ADAM optimizer, the hybrid scheme employs a learning rate le-3 and le-2 for cases (i)
and (ii), respectively. The numerical results in Figs. and (also Tables ¢)—(d)) show similar
observations as for the elliptic case: the hybrid approach appears to more accurate for highly noisy

data. Likewise, the influence of the quadrature error on the reconstruction eerror e is again very mild,

cf. Fig. [5.3(b).

3.0 1.0 3.0 1.0 3.0

0.8 0.8
0.6 0.6
2.0 2.0 2.0
0.4 0.4
15 15 15
. 1.0 0.0 1.0 0.0 1.0
.0 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
3.0 1.0 3.0 1.0 3.0
0.8 0.8
0.6 0.6
20 20 2.0
0.4 0.4
15 15 1.5
0.2 0.2
1.0 0.0 10 0.0 1.0
0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(a) exact (b) 6 = 5e-2 (c) 0 = le-2

Figure 5.7: The reconstructions for Example ii) at two noise levels, by the hybrid method (top)
and the pure FEM (bottom).

The last example is about partial interior data (on a subdomain Q' C Q).

Example 5.3. Q = (0,1), ¢'(z) =2 +10(1 — 2)2? and f = 10, ' = (0.3,0.7).

—exact —exact —exact
- =NN-FEM e - --NN-FEM - - --NN-FEM

(a) 6 = 10e-2 (b) § = be-2 (c) 0 = le-2

Figure 5.8: The numerical reconstructions for Example at three noise levels, obtained with the
hybrid method and the pure FEM.

For the hybrid inversion, we employ a learning rate le-3. The numerical results are presented in
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Fig. see also Table (e) for the relative errors. Due to the availability of the only partial interior
data, the problem is far more ill-posed. It is observed that the reconstructions by the hybrid approach
is more accurate than that by the pure FEM, indicating the high robustness of the hybrid approach

for more challenging inverse problems.
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CHAPTER 6.

Recovery of Multiple Parameters in Subdiffusion from One Lateral

Boundary Measurement

This work is concerned with an inverse problem of simultaneously recovering multiple parameters in
a subdiffusion model from one single lateral boundary measurement in a partly unknown medium.
Let Q C R? (d = 2,3) be an open bounded domain with a Lipschitz and piecewise C'!! boundary

and T > 0 be a fixed final time. Consider the following subdiffusion problem for the function wu:

Ofu—V - (q(z)Vu(z)) = f inQx (0,7,
gOyu=g on I x (0,7T], (6.1)
u(0) = up in Q,
where 9, a € (0,1) is the fractional derivative defined in (1.11), up € L*(£2) and (time-independent)
f € L3(2) are unknown initial and source data, and v denotes the unit outward normal vector to the
boundary 0f2.
In this chapter, we study mathematical and numerical aspects of an inverse problem of recovering
the diffusion coefficient ¢ and fractional order o from a single lateral boundary measurement of the

solution,

H(z,t) = u(z,t), zelyCote(0,T],

without the knowledge of the initial data ug and source f. In particular, we assume the diffusion

coefficient ¢ is piecewise constant:

q(z) = 1+ pxw(), (6.2)

where p > —1 is a nonzero unknown constant, w is an unknown convex polyhedron in ) satisfying
diam(w) < dist(w, 092) and x,, denotes the characteristic function of w.

We design a special excitation g, which is separable:

g(x,t) = p(t)n(x), (6.3)

!Chapter B] is reprinted with permission from ”Recovery of Multiple Parameters in Subdiffusion from One Lateral
Boundary Measurement”, Siyu Cen, Bangti Jin, Yikan Liu, Zhi Zhou, Inverse Problems, 39 (10) (2023), 104001. The
candidate mainly works on the research methodology discussion and the coding and data collection in numerical exper-

iments.
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where 0 #n € H %(89) satisfies the compatibility condition [,,7dS =0 and ¢ € C'(Ry) satisfies

0, t< Ty,
P(t) = (6.4)
1, t>1,
with 0 < Ty < T1 < T. Note that the inverse problem involves missing data (ug and f), whereas the
available data is only on a partial boundary. Thus, it is both mathematically and numerically very
challenging, due to not only the severe ill-posed nature and high degree of nonlinearity but also the
unknown forward map from the parameters to the data.

The rest of the paper is organized as follows. In Section [6.1] we describe preliminary results on the
model, especially time analyticity of the data. Then in Section |6.2| we give the uniqueness result in
case of piecewise constant ¢, and in Section [6.3] we develop a recovery algorithm based on the level set
method. We present extensive numerical experiments to illustrate the feasibility of recovering multiple

parameters in Section [6.4]

6.1 Time analyticity of solutions

In this section, we present preliminary analytical results. Let A be the L?(€2) realization of the elliptic
operator —V - (¢V), with a domain Dom(A) := {v € L}(Q) : =V - (¢Vv) € L3(Q),0,v|sq = 0}. Let
{Ae}e>1 be a strictly increasing sequence of eigenvalues of A, and denote the multiplicity of A\, by my
and {¢gk}pt, an L?(Q) orthonormal basis of ker(A — A¢). That is, for any £ € N, k=1,...,my:

~V - (qVrr) = Mppr  in £,
(6.5)

g0y =0 on 0f).
The eigenvalues {\,}7°, are nonnegative, and the eigenfunctions {p,r : k = 1,...,my}p2, form a
complete orthonormal basis of L?(2). Note that A; = 0 (and has multiplicity 1) and the corresponding
eigenfunction ¢ = ]Q|_% is constant valued, where |E| denotes the Lebesgue measure of a set E. Due
to the piecewise constancy of the coefficient g, ¢y is smooth in w and © \ @w. Moreover, it satisfies

the following transmission condition on the interface dw:

Ookl- = @orly and Onper|- = (14 p)Onprrl+ on dw, (6.6)

where ¢y |+ and g ;|- denote the limits from w and Q \ @ to the interface Ow, respectively, and
Onte k|+ denotes the derivative with respect to the unit outer normal vector n on Ow. Then we define

the fractional power A® (s > 0) via functional calculus by

oo my
Ay = Z A Z(v, ©uk) Pk
=1 k=1
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with a domain Dom(A®) = {v € L?(Q) : A%v € L?(2)}, and the associated graph norm

my 1
[ollbomary = (3083 (0, p00?)
(=1 k=1

By linearity, we may split the solution u of problem (6.1]) into v = u; + up, with u; and up solving

Ofu; — V- (qVu;) = f in Q x (0,7, Ofup — V- (qVup) =0 in Q x (0,77,
qO,u; = 0 on 90 x (0,T], and < ¢duy=g on 90 x (0,77, (6.7)
u; (0) = ug in Q up(0) =0 in ©,

respectively. The following result gives the representations of u; and w;, where E, g denotes the

Mittag-Leffler function defined in ({2.5).

Proposition 6.1. Let ug, f € L*(Q). Then there exist unique solutions u;,u, € L*(0,T; H*(Q)) that

can be respectively represented by

(f7 SOI)QDIta
ilt) = ’
ui(t) = (uo, p1)¢1 + T+ a)
0o My
+ZZ (w0, 0ek) — Ap  (fs 00)] Bag(=Aet™) + A, (f, 0ek)) ks
=2 k=1
oo My
=> Z/ )*  Eaa(=Aek(t = 5)*)(9(s), per)on ds po .
=1 k=1
Hence, the solution u to problem (6.1)) can be represented as
my
u(t) = po + p1t* + Z Eo1(=Aet™)pe + Z/ ) Eaya(=Ae(t = $)*) D _(9(s), eer)on ds pok,
k=1
with pp given by
co My
,U'O:SOI ¢1+ZZ>\ f,SOEk Pe,k> 6207
(=2 k=1
(f7 901)
— (=1 6.8
Pe F(l —|—Oé) P1, ; ( )
my
Z [(wos pek) = AU (Foer)] oo, £=2,3,....
\ k=1

Proof. The representations follow from the standard separation of variables technique ([134], [70,
Section 6.2]). The piecewise constancy of the diffusivity ¢ requires special care due to a lack of global

regularity. By multiplying the governing equation of u; by ¢y and then integrating over €2, we get

O (ui(t), po ) + (Aui(t), wer) = (f, o)
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Integrating by parts twice and using the transmission condition for ¢y, (and w;) on dw gives

(—V - (¢Vus), prn) = — /

Q\iv (V) g doe — / V(1 + p)Vug) oo da

= —/ (Vui - v) e dS — / (Vu; -n_) @prl—dS + Vu; - Vg do
80 Bw 0w
- /6 (1 + p)(Vu - ny) ol dS + /(1 + 1)Vu; - Vg i, da

= Vu; - Vg de + /(1 + u)Vu; - Vg dx
Q\w w

- [ Cenuas+ [ Fogenul-as— [ (Ve uida
o0 Ow Nw
[ @ m(Ton )l ds = [ T (040 Vi) wde

= (ui, =V - (Vrk)) = Me(ui, oo k).

Hence

O + M)l () = for = (fyoex)  for 0<t<T, with ul*(0) =u5* = (uo, per).

i
Then uf’k(t) is given by [76l Proposition 4.5]
t
uf’k(t) = ug’kEaJ(—)\gta) + ff,k/ SailEma(—)\gsa) ds.
0

Note that uzl = u(l) + ﬁflta. Now using the identity

d

&Eavl(—w) = AT B, o(—AtY), (6.9)

we have for £ > 2 and k=1,...,my that

UM (1) = ufF Baa (<2t + A7 L = Ean(~2t®)] fo

= <ugk - /\Zlfé,k) Eq1(=At®) + )\g_lfz,k-

This gives the representation of w;. Similarly, multiplying the governing equation for wu;, by ¢, and

repeating the argument yields that ug’k(t) = (up(t), 1) satisfies
(B8 + A)us® (1) = (g(t), per)on for 0 <t <T,  with u*(0)=0.
The solution ug’k(t) is given by [76l, Proposition 4.5]

ut(t) = /0 (t — )" " Eaa(=Xe(t — 5)*)(9(s), ee.r)aa ds ook

Thus the desired assertion follows. The representation of the solution u to problem (6.1)) follows
directly from that of uj and w;, and the identity . O
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Next we show properties of the boundary data H. This is achieved by first proving related prop-
erties of v and then applying the trace theorem. Below we study the analyticity of
0
ui(t) = po + p1t™ + Z Ea1(—=Met")pe,

{=2

oo My

=303 [ 9 Bl = 9 a(6) prsan s

(=1 k=1

Since our focus is the trace on 9, we only study u on the subdomain  \ @. Let ' D w be a small
neighborhood of w with a smooth boundary and denote ' = Q\ w’. Recall that for a Banach space

B, the notation C*(T, 0o; B) denotes the set of functions valued in B and analytic in t € (T, 00).
Proposition 6.2. For uy € L?(Q), f € L?(Q) and g as in (6.3), the following statements hold.
(i) u; € C¥(0,00; H*(Y)) and u, € C¥(Ty + €,00; H2(Q)) for arbitrarily fized € > 0.

(ii) The Laplace transforms u;(z) and uy(2) of u; and wy int exist for all R(z) > 0 and are respectively

given by

(9(2), eek)oaprk
2%+ Ny '

Ui(z) = 27t po + T+ 1)z 1+Zza+/\£ and Ty(z) =

Proof. Throughout this proof, let £ > 0 be arbitrarily fixed. Since A\; = 0, by Lemma [2.3] there exist
constants ¢ > 0 and 6 € (0, 5) such that for any z € Xy := {2z € C\ {0} : |arg(z)| < 0}, we have

2
||UZ HDom(A) Z)‘ Z(S@n,mPO"‘Plz +ZEO¢1 )\KZ >

oo my

2
= Z A Z <‘an D> {Baa(=2ez®) [(wo, per) = A (f00w)] +20  (fr0e) } W,k)
(=2 k=1

<CZ)\2 al Z{UO,SDn] +)\ f790n7j)2}+622(f7‘pn7j)2

n=1 j=1

oo Mp

<2 2D 0> { (w0, 0ng)” + A (Fr0ng)? ) Hell FIl2 0

n=2 j=1

< el 2|72 (lluoll Z2ay + 1F172() +ell FI 220

Since g, f € L*(Q), Hui(z)HQDom(A) is uniformly bounded for z € ¥y. Since E, 1(—MA,2%) is analytic
in z € ¥y and the series converges uniformly in any compact subset of ¥y, u;(t) is analytic in ¢ €
(0,00) as a Dom(A)-valued function, i.e., u; € C*¥(0,00;Dom(A)). By Sobolev embedding, u; €
C¥(0,00; H2(Y)).

Next we prove the analyticity of u,. By the choice g(x,t) = n(z)y(t) in and integration by
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parts, for t > T, u}(t) := (up(t), ¢1) is given by

W0 = i | =9 o) pronds = T [ty as
= edon Loz + [ -9t ds]
_ (777‘;01)89 n — )% (s)ds
b el GEDRU O

where the last step follows from the condition on ¢ in (6.4). Thus the time-analyticity of uj (¢)¢; for
t € (T1 + €,00) follows. Next, again by integration by parts, (6.3)—(6.4) and the identity , for
t> 11, ui’k(t) = (ub(t),gom) with £ > 2, k=1,...,my can be written as

)* " Ea (=Mt — 5)*)(g(5), prp)oa ds

/ Wk oo d

ds

a1 (—Ae(t —5)%)ds

s=t

A [(90), @er)on Fa (=Aelt = 5)%)] (”“"jj)a“ /0 Bt (= Aelt = 5))'(5) ds

_ (0, ¢ek)o0
A

s=0

Ty
() = P [T = )0 (s) ds = ufh(0) + )

Since ¥ (t) = 1 for ¢t > T, we see that ui’lf (t) is a constant for ¢ > 7). Next we consider the following

boundary value problem
-V - (qVU)=0 in Q, with ¢d,U=mn on 9. (6.10)

The compatibility condition (7, 1)gn = 0 implies that there exist solutions to problem (6.10]). We take
an arbitrary solution U. Since ¢ is piecewise constant and n € H 2 (09), we know that U € H'(Q) and

its restriction Ul|g € H?(§)'). Integrating by parts twice yields

(n, e r)aa = (U, oo k)-

Similar to the argument for Proposition from the transmission condition , we deduce

oo My oo My

SN i ek =D WU, or) e

=2 k=1 =2 k=1
which is analytic in t € (T} + €,00) since it is constant in time and U € L?(2). Moreover, by the

standard elliptic regularity theory,

co My

Z Z ui:]ftpg,k € C¥(Ty + ¢, 00; HX(Y)).
(=2 k=1

Recall Young’s inequality for convolution, i.e., [|f * gllrr®) < |fllzer)llgllLam) for p,q,7 > 1 with

pt+q¢gl=r"t4+1andany f € LP(R) and g € LY(R). Then by Young’s inequality, Lemma and
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the regularity estimate 37, A, % Y1, (1, 0ok )30 < U]l L2y < o0, we deduce

oo M 2 co my 2
ZZubQ 2) Pk _Z/\QZ<9%J’ZZUI’Q @gk>
(=2 k=1 Dom(A) =1 j=1 (=2 k=1

2

_ixn%<w/ Ba1(—X (z—s)“)w’(s)ds>
= i% (1, ¢n.5)30 ()\ |ziT1]0< /Tl !zﬁ’(s)]ds)Q

n=2 j=1
C||¢||W1700(R+) 9
< — g A, E
= < ’Z—T1|O‘ ’ 77 ()07’14_] 89‘ | T |2a

Since “i:g(t) is analytic in (T} + €,00) and the series 222 ot uizg(z)w’k converges uniformly in
Dom(A) for z € Ty +e+Yy, it belongs to C* (T} +¢, 00; Dom(A)), and hence u;, € C¥ (T} +¢, 00; H2(Y)).
This proves part (i).

The argument for part (i) implies that the series converges uniformly in Dom(A) for ¢ € (0, c0),
and

—tz

le™u;(t) [pom(a) < ce " FEE > +1), ¢ > 0.

The function e *®(#) (t~* 1) is integrable in t over (0, 00) for any fixed z with R(z) > 0. By Lebesgue’s

dominated convergence theorem and taking Laplace transform termwise, we obtain

0 a—1
Gi(2)=2po+D(a+ 1)+ 5 22 yR() >0
st 2%+ Ny

The argument for part (i) also implies

—tz

lle™"“up(t) || pom(a) < ce RO |7, t>o0.

Then termwise Laplace transform and Lebesgue’s dominated convergence theorem complete the proof

of the proposition. O

Thus, u; and uy are analytic in time and have H?(Q') regularity. Since 952 is Lipschitz and piecewise
Cb1 their traces on OS2 are well defined. The next result is direct from the trace theorem and Sobolev

embedding theorem.

Corollary 6.1. Let the assumptions in Proposition hold. Then the data H = u]pox(oj) to problem
(6.1) can be represented by

oo
H(t)=po+ p1t® + Y Ea1(—At®)pe

=2
=:H,(t)
oo My t
+ZZ/O (t— 8" Ba (=Mt — %) (9(5), prk)on ds pr
/=1 k=1

=:Hy(t)
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Moreover, H; and Hy satisfy the following properties.
(i) H; € C*(0,00; L*(T'g)) and Hy € C¥(Ty + €, 00; L?(T)) for arbitrarily fized € > 0.

(ii) The Laplace transforms f{\z(z) and I/{\b(z) of H; and Hy, in t exist for all R(z) > 0 and are given

by
— > pézafl
Hi(z) =2 "po+Tla+ 1)z p1 + % 29+ Ny
co My A
i = 303 ek puagmens

Remark 6.1. The analysis of Theorem crucially exploits the analyticity of the measurement
H;(t) in time, which relies on condition (6.4), i.e., ¥(t) = 0 for t € [0,Tp]. The condition ¢(t) =
fort > Ty for some Ty < T from (6.4)) ensures the time analyticity of Hy(t) for t > Ty + €, which
1s needed for Theorem . It should be interpreted as analytically extending the observation Hy(t)
by analytically extending 1(t), both from (T1,T) to (T1,00). Alternative conditions on 1(t) ensuring
the time analyticity of Hy(t) for t > Ty + ¢, e.g., ¥(t) vanishes identically on (T1,T), would also be
sufficient for Theorem [6.9

6.2 Uniqueness

Now we establish a uniqueness result for recovering the fractional order o and piecewise constant q.
The proof proceeds in two steps: First we show the uniqueness of the order a from the observation,
despite that the initial condition ug and source f are unknown. Then we show the uniqueness of q.
The key observation is that the contributions from ug and f can be extracted explicitly. Since the
Dirichlet data is only available on a sub-boundary I'g, we view py as a L?(I'g)-valued function. The
notation K denotes the set {k € N : p, # 0 in L?(T'g)}, i.e., the support of the sequence (pg, p1,. .. )
in L2(T) sense, similarly, K = {k € N: p # 0 in L?(I'0)}, and N* = N\ {1}. Below we denote by A

the admissible set of conductivities, i.e.,
A={14 pxw(z): p>—1and w C N is a convex polygon}.

Theorem 6.1. Let o, & € (0,1), (g, f,u0), (@ f, ) € A x L2(Q) x L2(Q), and fix g as with
W(t) satisfying condition . Let H and H be the corresponding Dirichlet observations. Then for
some 0 > 0, the condition h = H on To x [Ty — 6, Tp] implies o = &, po = po and {(pp; Me) beex =
{(ﬁk,xk)}k@z if K, K # 0.
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Proof. By the definition of g, we have g(y,t) = 0 for y € 09, t € [0,Tp]. Then by Corollary
H(y,t) admits a Dirichlet representation

H(y,t) = po(y) + o1t + D pr(y)Eat(—Ast®).
keKNN*

By Corollary (i), H (t) is analytic as an L?(99Q)-valued function in ¢ > 0. By analytic continuation,
the condition H(t) = H(t) for t € [Ty — 6, Tp] implies that H(t) = H(t) in L2(T) for all t > 0, i.c.,
po() + 1 W+ Y k(W) Bat (“At®) = Boy) + AWt + D> Br(y)EBan(—Met®).
keKNN* keKNN*
From the decay property of E,1(—n) (see Lemma [2.3), we derive po(y) + p1(y)t® = po(y) + p1(y)t?,
indicating pg = po and p; = p;. Moreover, we have o = a¢if 1 e K. If 1 € Kand 1 ¢ ]K, ie.,
p1 = p1 = 0, then
> W Eai(=Mt*) = > A(y)Ezi(—Mt®) on T x (0,00).
kEKNN* kRN~
Proposition ii) and Laplace transform give

Pk Z Pk
2o )\
ke KNN* + k ke KﬁN*

a—1
a + Ak )
Assuming that o > @, dividing both sides by 2®~! and setting ¢ := 2%, we have

pe(y)¢ e AW
reone ST heRAN® (o + M

Upon noting K # (), choosing an arbitrary kg € K and rearranging terms, we derive

- Pr(y) Pr(y)¢ 4
0 @ —= —— — T — + )\ 0/:
Pro(Y)C E T kEKQEN*\{kO} Ct AL (C+ Ako)

ki & °
Letting ¢ — —\g, and noting o > @, the right hand side tends to zero (since all Xk are positive, and
arg((—)\ko)%) = ‘%” € (0,m)) and hence pg, = 0 in L?(I'y), which contradicts the assumption ko € K.
Thus, we deduce a < &. The same argument yields a > a, so a = a. These discussions thus yield
Z = Pr(Y) (6.11)
kekome ¢ rere & T

Note that both sides of the identity (6.11]) are L?(I'g)-valued functions in . Next we show both

converge uniformly in any compact subset in C\ ({=Ag beerrns U {—Ak} wenn+) and are analytic in
C\ ({—Mgtrernn- U {_Xk}keme*)' Indeed, since ug, f € L2(f2), for all ¢ in any compact subset of
C\ ({~Mehernns U {=Ni}ezone ) We have

2
Pi
Z ¢+ Ak

keKNN*

<Y N (w0, 00) |2 + A, 2|(f, 0) 2
¢ ¢+ Ae|?

Dom(A) feN*

<e Y ([uo.pe)® +21(fr00)P) < oo

LeN*
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Hence, by the trace theorem, the identity holds for all ( € C\ ({—A\k }rernn+ U {_Xk}keme*)'
Assume that \; ¢ {Xk} peian- for some j € KNN*. Then we can choose a small circle C; centered at
—Aj which does not contain {—Xk} weRrn+- Integrating on € and applying the Cauchy theorem give
2my/—1p;j/A; = 0, which contradicts the assumption p; # 0 in L*(T). Hence, \; € {Xk}keme* for
every j € KNN*. Likewise, Xj € { Mk }kernn- for every j € ]KHN*, and hence {\ }kexnne = {X’f}keme*'

From ([6.11)), we obtain

Z W =0, V¢eC\{—Ai}reknn--
keKNN*

Varying j € KNN* and integrating over C}, we obtain 27v/—1 (p; — p;)/A; = 0, which directly implies
pj = pj in L?(T'p). This completes the proof of the theorem. O

Remark 6.2. The condition K # () holds whenever the following condition is valid (f,p1) # 0 or
(uo, e k) — /\E_l(f, oer) #0, k=1,...,my, £ =2,3,.... Note that the condition (f,¢1) # 0 does not

rely on the unknown parameter q, and can be easily guaranteed.

The next result gives the uniqueness of recovering the diffusion coefficient ¢ from the lateral

boundary observation.

Theorem 6.2. Let condition (6.4) be fulfilled, and let (q, f,uop), (q, f, tg) € Ax L2(Q) x L*(Q), and fix
g as (6.3)). Let H and H be the corresponding Dirichlet data. Then for any 6 € (0,Tp], the condition
H=H onTy x [To — 6, T] implies ¢ = q.

Proof. In view of the linearity of problem (/6.1]), we can decompose the data H(t) into
H(t) = H’L(t) + Hb(t)v te (OvT])
with H;(t) and Hy(t) given by

Hi(t) =po+pit® + > peBaa(—Mit®),

keEKNN*
00 + my
) =Y /0 (t = )" Faa(—Aelt — %) (9(5), 9ex)on ds 9o,
/=1 k=1

which solve problem with ¢ = 0 and f = ug = 0, respectively. By the choice of g in ,
the interval [0, 7] can be divided into two subintervals: (0,7p] and [Ty, T]. For ¢t € (0,Ty), () = 0,
Theorem implies that {(pg, \k) }kex = {(ﬁk,Xk)}kGK and o = @, from which we deduce H;(t) =
H;(t) for all t > 0. For t € [Ty, T), this and the condition H(t) = H(t) imply Hy(t) = Hy(t) in L*(Ty),

and hence
o] t my
S / (t = )% Eaa(=Ae(t — 5)%) S (9(5), 9ex)an ds 9rx
¢=1"To k=1
o0 t . My
—Z/ (t = 9" Baa(— et — %) S (9(5), Ben)on ds Gop, ¢ € [T, T].
¢=1"To k=1
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By the analyticity in Corollary the above identity holds for t € [T, 00). Thus applying Laplace

transform on both side gives

o0 ﬁ’Lg o =~ Y
Z > i1 (9(2), Pek)oope k=1(9(2), @f,k)&ﬁ@é,k YR(z) > 0. (6.12)
za + Ae = 2%+ N

Since Ay = A\; = 0 and o1 =P = ]Q|_%, the index in starts with £ = 2. Below we repeat the
argument for Theorem First we show that both sides of are analytic with ( = 2% in any
compact subset of C\ {—\y, —Xg}gzg. Let U € Dom(AiJrE) be a solution of problem (6.10)), for all ¢
in a compact subset of C\ {—My, —X@}KZQ, we have

2

o0 my
)s Pek)oQPrk T as Z (0, oe)on o0
C
= 0
C A Dom(A%+¢) (=2 k=1 ¢+ A
o jOO: )\%4*282 )\K(U7 Spﬁ,k) 2 < HUH2 <
- ¢ C+ M =¢ Dom(A%JrE) o0

=1 k=1
Since each term of the series is a Dom(Ai“ )-valued function analytic in ¢ and converges uniformly
in ¢, by the trace theorem, we obtain that both sides of (6.12]) are L?(9Q)-valued functions analytic
in¢eC\{-Ay —Xg}gzg. Since )\[,X@ > 0 for ¢ > 2, we may take ( — 0 in (6.12) and obtain

Z Do ( W k)ampek Z ST (G(0), @er)oaPe (6.13)
by

Hence, w = w on T'y, where w and w are the Dirichlet boundary data with ¢ and ¢ in the elliptic

problem

-V - (qVw)=0 1in Q,
(@Ve) (6.14)

qauw = §(0) on 0N

with the compatibility condition fQ wdx = 0. Indeed, the solution w of (6.14) can be represented as

oo My oo My
=3 (woen)eer = > A HG0), ver)onper,
(=2 k=1 =2 k=1

where the first equality follows from the compatibility condition fﬂ wdx = 0 and the second is due to
integration by part. By the choice of g in , the elliptic problem is uniquely solvable. Then
from [55, Theorem 1.1], we deduce that w = @ is uniquely determined by the input g(0) = 12(0)77.
Indeed, Friedman and Isakov [55] proved the unique determination of the convex polygon w for the
case 4 = 1, based on extending the solution w harmonically across a vertex of w and leading a
contradiction. The proof does not depend on the knowledge of the parameter p and hence it is also
applicable here. Once w is determined, it suffices to show the uniqueness of the scalar p. Suppose

<, ie, ¢g<qginwand g = ¢ =1 outside w. Thus w and w are harmonic functions near 92 with
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identical Cauchy data on I'g, we conclude w = w near 9€2. By multiplying both sides of the governing

equation in (6.14]) with w, integrating over the domain 2 and applying Green’s formula, we have

0:/ —V'(qu)wdx:/quPd:L‘—/ w OywdS,
Q Q o0

ie.,

/q|Vw|2dx:/ w dyw dS.
Q o0

Now since w and w have identical Cauchy data on the boundary 02, we have fagwayw ds =

Joq WO, dS, and consequently

/q\Vdex:/(ﬂVfDFdx.
Q Q

This identity and the inequality ¢ > ¢ a.e. in € imply

/q\Vw[zde/q|Vﬂ7|2dx,
Q Q

which immediately implies

1 1
/qu]zdx—/ wg(0)dS > /qVﬂ?]zdx—/ wg(0)dS.
2 Jo 09 2 Jao o9

By the Dirichlet principle [42], w is the minimizer of the energy integral, and hence w = w and

q=q. ]

Remark 6.3. Note that the uniqueness of the inclusion w in [55)] relies on the assumption w being a
convez polygon with diam(w) < dist(w,0Q). Alessandrini [10] removed the diameter assumption for
a specialized choice of the boundary data. The works [136], (93] proved the unique determination of
w when w is a disc or ball. For gemeral shapes, even for ellipses or ellipsoids, this inverse problem
appears still open. Note that in the uniqueness proof, the key is the reduction of the problem to the
elliptic case, with a nonzero Neumann boundary condition. In particular, the result will not hold if the

temporal component 1 vanishes identically over the interval [0,T1], i.e., condition (6.4)) does not hold.

Remark 6.4. If the diffusion coefficient q is not piecewise constant, it is also possible to show the
unique recovery if the boundary excitation data g is specially designed. For example, consider problem

(6.1)) with a more general elliptic operator

Lu(z) == =V - (D(z)Vu(z)) + o(x)u(z), =z €. (6.15)

Here D € C%(Q) and o € L>®(Q) with0 < cp < D <ep inQ and 0 < 0 < ¢, in Q, and the Neumann
data g is constructed as follows. First, we choose sub-boundaries 'y and I's such that 'y UT'y = 0Q and

I''NTe # 0. Let x € C®(0Q) be a cut-off function with supp(x) =T1 and x =1 on T, with T} C Ty
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such that T) UTy = 9Q, Ty NTe # 0. Now we fir 0 < Ty < Ty < T and choose a strictly increasing
sequence {ty}7°, such that to = Ty and limy_o ty = T1. Consider a sequence {py}72, C Ry and a

sequence {172, C C*([0,00); R such that

0 on [0, tgkfl],
Yy =

Pr on [tag, 00).

Then we fix {bp}32y C Ry such that Y772 ) b|[Yrllweeem,) < 00, and define the Neumann data g by
9(u,t) ==Y gy t) = x Y btk (t)m(y), (6.16)
k=1 k=1

where the set {n}72, is chosen to be dense in H%(ﬁﬁ) and anHH%(aQ) = 1. Note that the Neumann
data g defined in (6.16|) plays the role of infinity measurements [29, 30/, and hence the unique recovery
of the fractional order a and both a and q from one boundary measurement. See also some related
discussions in [96, [95] with different problem settings. However, this choice of g is impossible to

numerically realize in practice, due to the need to numerically represent infinitesimally small quantities.

6.3 Reconstruction algorithm

In this section, we derive an algorithm for recovering the fractional order « and the coefficient ¢,

directly inspired by the uniqueness proof. We divide the recovery procedure into three steps:
(i) use the asymptotic behavior of the solution of problem near t = 0 to recover «;
(ii) use analytic extension to extract the solution of problem with zero f and wug;
(iii) use the level set method [123] to recover the shape of the unknown medium w C 2.

First, we give an asymptotics of the Dirichlet data H () of problem (6.1)). The result is direct from

the representation and properties of E, 1(z) near z = 0 and the trace theorem.

Proposition 6.3. If ug € Dom(A'2) and f € Dom(Az2) with s > 1. Let H = ulagax(o,r) be the
Dirichlet trace of the solution to problem (6.1) with g given as (6.3), then the following asymptotic
holds:

H(y,t) = uo(y) + (Auo — ()t + O(£*) ast - 07

In view of Proposition for any fixed yo € 99, the asymptotic behavior of H(yo,t) ast — 0
allows recovering the order «. This can be achieved by minimizing the following objective in «, ¢y

and cy:
J(a, o, c1) = |lco + e1t® — H(yo,t)]]%2(07t0), (6.17)
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for some small ty > 0. Note that it is important to take ty sufficiently small so that higher-order terms
can indeed be neglected. The idea of using asymptotics for order recovery was employed in [67, [77, [7§].

When recovering the diffusion coefficient ¢, we need to deal with the unknown functions ug and f.
This poses significant computational challenges since standard regularized reconstruction procedures
[50] require a fully known forward operator. To overcome the challenge, we appeal to Theorem [6.2
up and f only contribute to H;(t) which is fully determined by {As, pe}eck. Indeed, by Theorem
{A¢, peteex can be uniquely determined by H(t), t € [0,7p]. Hence in theory we can extend
H(t) = H;(t) from t € [0,Tp] to t € [0,7], by means of analytic continuation, to approximate the
Dirichlet data of with ¢ = 0 and given ug and f. In practice, we look for approximations of the

form
_Pot+pit+---+pet”
o+ @t + -+t

where 7 € N is the polynomial order. This choice is motivated by the observation that Mittag-Leffler

H(t)

= H,(t), telo,T],

functions can be well approximated by rational polynomials [12] 115, 48]. The approximation H, can
be constructed efficiently by the AAA algorithm [121I]. Now, we can get the Dirichlet data of problem
(6.1) with a given g and ug = f = 0, by defining the reduced data

0, t e [O,To},
H(t) — Hy (), € [To,T).

Below we use the reduced data H to recover a piecewise constant g. Parameter identification for
the subdiffusion model is commonly carried out by minimizing a suitable penalized objective. Since ¢
is piecewise constant, it suffices to recover the interface between different media. The level set method
can effectively capture the interface in an elliptic problem [135, [74, 26], [38], which we extend to the
time-fractional model below. Specifically, we consider a slightly more general setting where the
inclusion w C Q has a diffusivity value ¢; and the background 2 \ w has a diffusivity value ¢o, with

possibly unknown ¢; and ¢o. That is, the diffusion coefficient ¢ is represented as

a(z) = qo(¢(z)) + g2(1 — o(d(2))) in Q, (6.18)
where o(z) and ¢(x) denote the Heaviside function and level set function (a signed distance function):

1, >0, d(z,0w), T € w,

o(x) = and ¢(x) =
0, =<0, —d(z,0w), x€Q\w,

respectively. Then ¢ satisfies w = {x € Q: ¢(x) > 0}, Q\w={z € Q: ¢(x) <0} and dw = {x € O :

¢(xz) = 0}. To find the values g; and g2 and the interface Ow, we minimize the following functional

1 _
J(¢,q1,q2) = EHU(Q) - HH%Q(QT;LQ(FO)) +’Y/Q V|, (6.19)
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where u(q) is the solution to problem (6.7), and v > 0 is the penalty parameter. The total variation

term [, [Vq| is to stabilize the inverse problem, which is defined by

/IVQI = sup /qV-sodl‘,
Q P€(Co(Q))%,|p|<1/Q

where | - | denotes the Euclidean norm. Then we apply the standard gradient descent method to
minimize problem (6.19)). The next result gives the gradient of J. The notations J%:O‘ and DF_

denote the backward Riemann-Liouville integral and derivative, defined respectively by [76], Sections

2.2 and 2.3]
l1-« 1 g —a
JT* U(t) = M/t (S — t) U(S) dS,
T
D2 u(t) = _ml_a)i/t (s — ) ~v(s) ds.

Proposition 6.4. The derivative dqu is formally given by

d Vg
—J(q / Vu-Vodt —~V - ( >
dg K V|

where v = v(x,t;q) solves the adjoint problem

DY v—V-(¢Vv)=0 inQx][0,T),
q0,v = (u — h)xr, on 90 x [0,T), (6.20)
Jr (-, T) =0 in Q.

By the chain rule, the derivatives of J with respect to g1, g2 and ¢ are given by

0J dJog dJ

96 dq 96 dq(Ql—Q2)5(¢),

J /dJ dq dx:/ 47 (6) da,

oq dg 01 o dg
oJ dJ dq / aJ

dz = 1—-0 dz,
g2 / dq Ogo dq( (9))

where 0 is the Dirac delta function. Hence the iterative scheme for updating ¢qi, g2 and ¢ reads

.7 ,
OJ %, df.d5) and ¢ =gf -0t ), =12

E+1 _ K
¢ == aQJ

(9¢>
The step sizes r* and rf can be either fixed or obtained by means of line search. The implementation of

the method requires some care. First, we approximate the delta function d(x) and Heaviside function

o(x) by
be(z) = @21

respectively, with € > 0 of order of the mesh size [33 B8]. Second, during the iteration, the new

1 1
and o (z) = - arctan (g) + X

iterate of ¢ may fail to be a signed distance function. Although one is only interested in sign(¢), it is
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undesirable for |@| to get too large near the interface. Thus we reset ¢ to a signed distance function
whenever ¢ changes by more than 10% in the relative L?(Q)-norm. The resetting procedure is to find

the steady solution of the following equation [123, [38]:

Byd + sign(d)(|Vd| — 1) = 0, with d(0) = ¢.

6.4 Numerical result

Now we present numerical results for reconstructing the fractional order o and piecewise constant
diffusion coefficient g, with unknown ug and f. In all experiments, the domain €2 is taken to be the
unit square 2 = (0,1)2, and the final time 7' = 1. We divide the domain ) into uniform squares with
a length h = 1/50 and then divide along the diagonals of each square. We discretize the time interval
[0, 7] into uniform subintervals with a time step size 7 = 1/100. All direct and adjoint problems are
solved by standard continuous piecewise linear Galerkin finite element method in space and backward
Euler convolution quadrature in time (see e.g.,[79] and [88, Chapters 2 and 3]). Below we investigate

the following four cases:
(i) wis a disc with radius 1, centered at (1, 1),

(ii) w is a square with length 3, centered at (3, 3),

D=

(iii) w is a concave polygon, and

1

(iv) w are two discs with radius £, centered at (1, 3) and (2, 3), respectively.

Throughout, the unknown initial condition ug and source f are fixed as

2

uo(x1,22) = x%x%(l — x1)2(1 —x9)° and f(x1,22) =1+ 21 + 29,

respectively. Meanwhile, we fix the exact fractional order af = 0.8 and the diffusion coefficient
¢" =10 — 9y, i.e. ¢1 =1, ¢o = 10. Unless otherwise stated, the Neumann excitation ¢ is taken
as g(y,t) = n(y)x0.5,1](t), where n is the cosine function with a frequency 27 on each edge for cases
(i)—(ili) and is constant 1 for case (iv). We set g on 92 x [0,T], and take the measurement H on
o0 x [0, 7).

First, we show the numerical recovery of the fractional order « for three different values, i.e., 0.3,
0.5 and 0.8. In view of Proposition it suffices to fix one point yy € 92 (which is fixed at the origin
yo = (0,0) below) and to minimize problem , for which we use the L-BFGS-B with constraint
a € [0,1] [27]. The recovered orders are presented in Table Note that the least-squares functional

has many local minima. Hence, the algorithm requires a good initial guess to get a correct value for
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Table 6.1: The recovered order « based on least-squares fitting.

(a) case (i)

(b) case (ii)

to\O&

0.3000

0.5000

0.8000

to\Oé

0.3000

0.5000

0.8000

le-3
le-4
le-5
le-6
le-7
le-8
le-9

0.2402
0.2516
0.2649
0.2712
0.2665
0.2558
0.2744

0.5289
0.5244
0.4994
0.4637
0.5267
0.4913
0.4925

0.8353
0.8795
0.8006
0.7978
0.8019
0.7989
0.7999

le-3
le-4
le-5
le-6
le-7
le-8
le-9

0.2380
0.2479
0.2612
0.2695
0.2662
0.2562
0.2741

0.5243
0.5239
0.5022
0.5182
0.5279
0.4914
0.4925

0.8350
0.8797
0.7803
0.7977
0.8019
0.7989
0.7999

(c) case (iii)

(d) case (iv)

to\a

0.3000

0.5000

0.8000

to\a

0.3000

0.5000

0.8000

le-3
le-4
le-5
le-6
le-7
le-8
le-9

0.2383
0.2480
0.2600
0.2667
0.2634
0.2654
0.2718

0.5214
0.5198
0.5098
0.5213
0.5273
0.4913
0.4925

0.8485
0.8821
0.8005
0.7977
0.8019
0.7990
0.7999

le-3
le-4
le-5
le-6
le-7
le-8
le-9

0.2384
0.2486
0.2617
0.2692
0.2650
0.2703
0.2740

0.5247
0.5221
0.5033
0.5178
0.5273
0.4913
0.4925

0.8436
0.8816
0.8005
0.7977
0.8019
0.7989
0.7999
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a. It is observed that the reconstruction is more accurate when ty — 07, since the high order terms
are then indeed negligible. Also, for a fixed interval (0,tp), due to the asymptotic behavior, we have
slightly better approximations when the true order « is large. However, this does not influence much
the reconstruction results for cases (i)—(iv), since the coefficient ¢ is constant near origin.

Now we apply analytic continuation to extend the observed data H by a rational function H, from
the interval [0, 0.5] to [0,1], using the AAA algorithm [I2I] with degree r = 4. This step is essential
for dealing with missing data ug and f: subtracting H, from H yields the reduced data H for a given
g and ug = f = 0, which is then used in recovering ¢. Fig. shows the L?(0Q) error between H,
and the exact data Hy which is obtained by solving with given ¢ and vanishing ug and f. Note
that higher order rational approximations can reduce the error over the interval [0, 0.5], but it tends
to lead to larger errors in the interval [0.5,1]. The approach is numerically sensitive to the presence

of data noise, reflecting the well-known severe ill-posed nature of analytic continuation.

g 107 g 1o
g 5 5
g 510 g g
108 / | 108 0% f
WYV
W\g |f 0% m"(\iq'f\f' WY\'/-\I
o o0z 04 06 08 1 o 05 04 nh: mer 4 o o0z 04 08 08 1 o o0z o4 [{.‘.ﬁ 08 1

t ¢ t

Figure 6.1: The L?(0€2)-error between the analytic continuation H, and true data Hy for cases (i)—(iv).

Finally, we present recovery results for the piecewise constant coefficient g, or equivalently, the
shape w. The exact value is 1 inside the inclusion w and 10 outside, unless otherwise stated. We use
the standard gradient descent method to minimize problem . Unless otherwise stated, we fix
the step sizes % = 1, r’f =0, r§ = (0, i.e., fixing the values inside and outside the inclusion w. The
regularization parameter 7y is chosen to be 1le-8, and the coefficients ¢; and g2 are set to ¢ = 0.9
and g2 = 10. The results are summarized in Figs. 6.8, where dashed lines denote the recovered
interfaces.

Fig. shows the result for case (i), when the initial guesses are a small circle but with two
different centers. In either case, the algorithm can successfully reconstruct the exact circle after
10000 iterations. For case (ii), the exact interface is a square, again with the initial guess being
small circles inside the square, cf. Fig. [6.3] The algorithm accurately recovers the four edges of the
square. However, due to the non-smoothness, the corners are much more challenging to reconstruct
and hence less accurately resolved. These results indicate that the method does converge with a

reasonable initial guess, but it may take many iterations to yield satisfactory reconstructions. Fig.
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Figure 6.2: The reconstructions of the interface for case (i) at iteration 0, 100 and 10000 from left to

right, with two different initial guesses.

shows the results for case (iii) for which the exact interface is a concave polygon, which is much more
challenging to resolve. Nonetheless, the algorithm can still recover the overall shape of the interface.
The reconstruction around the concave part has lower accuracy. To the best of our knowledge, the
unique determination of a concave polygonal inclusion (in an elliptic equation) is still open. Fig. 6.5
shows the results for case (iv) which contains two discs as the exact interface. The initial guess is two
small discs near the boundary 9€). Note that in this case, we choose the boundary data n = 1 in order
to strengthen the effect of inhomogeneity. The final reconstruction is very satisfactory.

Fig. shows a variant of case (ii), with the initial interface being two disjoint discs. It is
observed that the two discs first merge into one concave contour, and then it evolves slowly to resolve
the square. This shows one distinct feature of the level set method, i.e., it allows topological changes.
Due to the complex evolution, the algorithm takes many more iterations to reach convergence (i.e.,
30000 iterations versus 8000 iterations in case (ii)).

Fig. shows a case which aims at simultaneously recovering the interface and the diffusivity
value inside the inclusion, for which the exact interface is a square and the exact values of ¢; and ¢
are 1 and 10, respectively. In the experiment, we take two different initial guesses. The initial value
of ¢ for both cases is g1 = 1.2, and we take the step sizes ¥ = 1, r’f = 10 and r’g’ = 0. The recovered
value q; is 0.92 for the first row and 0.89 for the second row. It is observed that for both cases, one

can roughly recover the interface. These experiments clearly indicate that the level set method can
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Figure 6.3: The reconstructions of the interface for case (ii) with different initial guesses at iteration

0, 100 and 8000 from left to right.
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Figure 6.4: The reconstructions of the interface for case (iii) at iteration 0, 100 and 8000 from left to

right.
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Figure 6.5: The reconstructions of the interface for case (iii) at iteration 0, 1000 and 15000 from left
to right.
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Figure 6.6: The reconstruction of the interface for case (ii) with a different initial guess, at different

iterations 0, 100, 1000, 10000, 20000 and 30000 (from left to right).

accurately recover the interface w. However, it generally takes many iterations to obtain satisfactory
results. This is attributed partly to topological changes and the presence of nonsmooth points, and
partly to the direct gradient flow formulation. Indeed, one observes from Proposition that the
gradient field for updating the level set function is actually not very smooth, which hinders the rapid

evolution of the interface. Hence, there is an imperative need to accelerate the method, especially via

suitable preconditioning and post-processing [74].
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Figure 6.7: Initial guesses and reconstructions for case (ii) with a non-fixed diffusivity value ¢;.

Last, Fig. shows reconstruction results with noisy data. Due to the instability of analytic
continuation for noisy data, we use boundary data corresponding to zero ug, f as our measurement

and only focus on reconstructing ¢. That is, we denote H' the solution of problem (6.1)) with ug = 0
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and f = 0 which plays the role of H. The noisy measurement H® is generated by

HO(y,t) = H'(y,t) + 8[| H[| oo (90,1 & (U 1),

where § > 0 denotes the relative noise level, and £ follows the standard Gaussian distribution. We take
the exact interface as a concave polygon and the initial guess is a circle; see the left panel in Fig. [6.4
We consider two different noise levels and three different input boundary data. The first and second
rows in Fig. are for 1% and 5% noise, obtained with a regularization parameter v = le-7 and
v = be-7, respectively. We consider three input Neumann data g1, g2 and g3: g1 = ¢ (i.e., identical as

before), and go and g3 are given by

92(x,t) = m(x)x[0.251) () + n2(2)x[0.5,1) (1) + 13(2)X[0.75,1) (1),

g3(w,t) = m(z)xp /611 (t) + n2(2)X2/6,1) (t) + 13(2)x[3/6,1 (t) + 1a(®) X (46,1 (1) + 15(2) X[5/6,1) ()

where 7, (n =1,...,5) is a cosine function with frequency 2n7 on each edge. The inputs g2 and g3
contain higher frequency information and are designed to examine the influence of boundary excitation
on the reconstruction. Fig. shows that with the knowledge of HT, the method for recovering the
interface is largely stable with respect to the presence of data noise. With more frequencies in the
input excitation, the reconstruction results would improve slightly. This agrees with the observation

that the concave shape contains more high-frequency information.
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Figure 6.8: The reconstruction for case (iii) with noisy data and different boundary excitations g1, go

and g3 (from left to right). The top and bottom rows are for noise levels 1% and 5%.
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CHAPTER 7.

Conclusion and future works

In this thesis, we investigate the numerical algorithms and their analysis for the parameter identi-
fication problem in PDEs. Our focus is on numerical schemes with error analysis that align with
conditional stability results. We present our work through a model problem: the inverse diffusivity
problem. We study two derivations of this model problem: the diffusion-reaction model and the QPAT
model. Additionally, We propose a numerical scheme for the inverse diffusivity problem combining
the theoretical foundations of FEMs and computational innovations of NNs. Finally, we investigate
a severely ill-posed inverse problem in a subdiffusion model with partial data. We develop a reliable
numerical inversion algorithm based on the uniqueness analysis.

In Chapter [3] we investigated the simultaneous reconstruction of the diffusion and reaction coeffi-
cients inherent in elliptic/parabolic equations. This is achieved through the utilization of two internal
measurements of the solutions. We proposed a decoupled algorithm capable of sequentially recovering
these two parameters. The approach begins with a straightforward reformulation leading to a stan-
dard problem of identifying the diffusion coefficient. This coefficient is numerically recovered, without
any requirement for knowledge of the potential, by employing an output least-square method in con-
junction with finite element discretization. In the subsequent step, the previously recovered diffusion
coefficient becomes instrumental in the reconstruction of the potential coefficient. The approach is
inspired by a constructive conditional stability, and we have provided rigorous a priori error estimates
in L2(Q) for the recovered diffusion and potential coefficients. The derivation of these estimates ne-
cessitated the development of a weighted energy argument and suitable positivity conditions. These
estimates serve as a helpful guide to choose appropriate regularization parameters and discretization
mesh sizes, aligned with the noise level.

In Chapter [4, we investigated the reconstruction of the diffusion and absorption coefficients in
QPAT model. This is achieved by using multiple internal measurements illuminated by random
boundary data. The reconstruction method starts with a straightforward reformulation, leading to
an inverse diffusivity problem. A Holder type stability is established by using energy estimates with
special test function as well as the non-zero condition, guaranteed by the use of random boundary
illuminations. The diffusivity coefficient is numerically recovered by employing a least-square formu-
lation with a finite element discretization. The stability estimate motivates the approximation error
analysis. With appropriate choices of the discretization mesh size and of the regularization parameters

in relation with the noise level, the convergence rate of the approximation error is comparable to the
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stability result. In the subsequent step, we solve a direct problem involving the reconstructed diffu-
sivity and optical energy measurement. The diffusion and absorption coefficients can be recovered by
an algebraic relation using the solution of the direct problem and the reconstructed diffusivity in the
previous stage.

In Chapter we developed and analyzed the FEM-NN hybrid scheme for reconstructing the
diffusivity in elliptic/parabolic equations. The approach combines neural networks for approximating
the unknown coefficient with finite element methods for discretizing the solution. We established
rigorous L2(Q) error estimates that explicitly depend on the discretization parameter, noise level,
regularization parameter, neural network approximation accuracy, and network architecture. The
proofs leverage the smoothness properties of neural networks and the structural characteristics of
finite element spaces. Extensive numerical experiments demonstrate the efficiency and accuracy of the
proposed hybrid method.

In Chapter [6] we studied a challenging inverse problem of recovering multiple coefficients from one
single boundary measurement, in a partially unknown medium, due to the formal under-determined
nature of the problem. We have presented two uniqueness results, i.e., recovering the order and the
piecewise constant diffusion coefficient from a fairly general Neumann input data and recovering the
order and two distributed parameters from a fairly specialized Neumann input data (Remark .
For the former, we have also developed a practical reconstruction algorithm based on asymptotic
expansion, analytic continuation and level set method, which is inspired by the uniqueness proof, and
have presented extensive numerical experiments to showcase the feasibility of the approach.

Despite the detailed discussion, there are still many interesting issues that deserve further investi-
gation, which we briefly discuss below.

In Section and Section our numerical experiments indicated that the empirical rates sur-
passed the theoretical ones. Future work will focus on investigating the reasons behind this discrepancy
and improving the error estimate. It is worthwhile to explore the stability results of inverse problems
from numerical perspective. In particular, the error analysis for the inverse diffusion problem relies
on the conditional stability presented in [22]. This stability result utilizes the weak formulations of
PDEs and a weighted energy argument, which are frequently employed in numerical analysis. Conse-
quently, the error estimation can be derived by mimicking the proof of stability in numerical aspect
and the convergence rate would align with the condition stability. From this perspective, it is crucial
to establish the stability in continuous level, which can then be applied to numerical analysis. We
highlight this issue with the following example. For many inverse problems, the Carleman estimate
[72, [148] plays a essential role in continuous stability estimation. This type of estimation is based on

an exponential type weighted function and integration by parts. However, the derivation of Carleman
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estimates at discrete level is a challenging problem. In fact, in the proof of such estimates, the Carle-
man large parameter s must be connected to the mesh size h through the relation: sh < e [100] 23].
Thus the discrete Carleman estimate requires restrictive condition for the mesh size h, which leads to
challenges for related error analysis.

As the use of DNNs for solving forward and inverse problems for PDEs has been explored only
recently, the theoretical foundation of DNNs still requires further investigation. For instance, the
neural network approximation error presented in Lemma may not be optimal. Indeed, the proof of
Lemma [2.1] is constructive, involving the design of neural networks to approximate polynomials. In-
terestingly, numerical experiments have shown that the empirical rates surpassed the theoretical ones.
Even very shallow and small neural networks exhibit excellent expressivity. Besides, the presented
hybrid scheme cannot overcome the curse of dimensionality, which is one of the main motivations
using neural network for solving PDEs. Since the numerical algorithm requires to solve the equation
with FEMs, it cannot be implemented in high dimensional space. In the future, we aim to develop
an inversion algorithm with pure neural network approximation and provide rigorous error estimate
which aligns with the stability result. In this framework, high-dimensional integrals are computed via
a Monte Carlo method, whose error contribution requires further investigation.

In addition, it is also interesting to derive the error estimation for inverse problems with poor
stability. In Chapter[6] we only examined the uniqueness and numerical inversion of the identification.
It would be intriguing to investigate the stability estimate when observation is taken on the boundary
or subdomain. In practical scenario, the measurement data are typically not available on the entire
domain, which deteriorates the stability of the inverse problem. Therefore, it is crucial to study
the conditional stability of these highly ill-posed identification problems and derive rigorous error
estimates that align with the stability. Liu et al [I51] derived Hélder stability for inverse diffusion
problem with measurements on a subdomain, but they assumed the diffusion coefficient is analytic to
propose analytic extension. For problem data satisfying weaker assumptions, Carleman estimates can
be utilized to derive stability results. However, the design of robust numerical algorithms based on

this technical tool requires further investigation.
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