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Increased economical pressure and intensified transactions, especially in 

competitive environment, have forced modern electric power systems to operate 

much closer to their security limits than ever before. Nowadays, dynamic instability 

has become a major threat for system operation. Dynamic stability requires that when 

any of a specified set of disturbances (e.g. outages of generators or transmission lines) 

occurs, a feasible operation point should be able to withstand the fault and ensure 

that the power system moves to a new stable equilibrium after the clearance of the 

fault without violating equality and inequality constraints even during transient 

period of the dynamics. Due to the huge loss and expensive control cost associated 

with transient instability, dynamic security assessment must be considered in 

planning and operation analysis together with economic objectives. Mathematically, 
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dynamic security assessment can be considered as an extended optimal power flow 

(OPF) problem, in which transient stability, for example, is regarded as one of the 

security constraints for the system operation, with the optimal objective to be 

obtained under a given set of system parameters by adjusting available controlling 

schemes. This research aims to develop a practical framework based on existing OPF 

techniques for integrated economy and dynamic security optimization such that the 

final system could be operated in an optimal state with lowest generation cost, for 

instance, and guaranteed dynamic security.  

By introducing transient stability indices to conventional OPF, OPF with 

transient stability constraints is generalized as a semi-infinite programming (SIP) 

problem with a finite number of state and control variables for the operation state and 

an infinite number of constraints for transient stability in the functional space of time 

domain. In this thesis, "infinite" constraints for transient stability mean that the 

stability has to be satisfied in the infinitely many continuous time points in the 

transients. Two transient stability indices based on rotor angle limit and potential 

energy boundary surface (PEBS) concept are employed. The features and 

performance of the two indices are compared theoretically and numerically.  

General scheme of the solution of SIP is extended to solve transient stability 

constrained OPF problem. Numerical methods for SIP are developed to locally 

reduce transient stability constraints to be finite-dimensional constraints based on 1L  

and L∞  norm. 1L  and L∞  norm are defined as the norm integration and maximal 

norm of the violation of the semi-infinite constraints in their functional spaces, 

respectively. This transformation transcribes transient stability constrained OPF to 

conventional OPF with a finite number of constraints, which is solvable by using 

nonlinear programming theories and algorithms. 

The locally reduced SIP problem of transient stability constrained OPF is solved 

by direct nonlinear primal-dual interior point method. The theoretical difficulties in 

forming the Jacobian and Hessian Matrices of the transient stability constraints are 

overcome by using implicit relationship between the transient stability constraints 
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and the differential-algebra-equations (DAEs) for the dynamic performance. The 

solution of the multi-local optimization in the buildup of L∞  penalty functions is 

proposed based on intermediate value theorem. In addition, an improved BFGS 

(Broyden-Fletcher-Goldfarb-Shanno) method, which is a quasi-Newton method with 

superlinear convergence, is exploited to avoid the complicated derivation of Hessian 

matrix.  By splitting the Hessian matrix into two parts - an 'easy' part for 

conventional OPF and a 'difficult' part for transient stability constraints, only the 

'difficult part' is approximated according to BFGS updating while the 'easy' part is 

calculated accurately. Moreover, a new concept referred as "the most effective 

section" of transient stability constraints is proposed to alleviate the huge 

computational efforts and improve the convergence of the optimization calculation. 

The calculation of dynamic available transfer capability (ATC) and dynamic 

security dispatch are formulated as transient stability constrained OPF problems and 

are solved by the proposed methodology. The proposed methodology is fully 

validated in both the WSCC 9-bus system and New England 39-bus system. The 

necessity of transient stability involvement in OPF is illustrated in the case studies. 

The good performance of the introduction of the most effective section of transient 

stability constraints is illustrated in the case study of ATC computation. The 

effectiveness of transient stability constraints based on rotor angle limits and PEBS 

are compared and discussed. The advantage of the use of improved BFGS method to 

avoid complex Hessian matrix derivation is demonstrated. In the study of dynamic 

security dispatch, multi-contingency cases are handled by the proposed methodology 

in solving cases with difficult multiple contingencies for the improvement of the 

overall security level. 
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Chapter I INTRODUCTION 

 

I.1 BACKGROUND AND MOTIVATION 

Economics and security are often the two major inconsistent requirements for 

the normal operation of power systems, and it is inappropriate to treat them 

separately [1]. The overall aim of economy-security control is to operate the system 

at the lowest cost or in the most economic state, with guaranteed avoidance or 

survival of emergency conditions. This of necessity means operating the system 

within but as close as possible to its security limits.  

The security constrained optimization of an electric power system is an 

extremely difficult task. This difficulty tends to increase with the advent of open 

market environment and competition in the industry [2,3]. Economical pressure and 

intensified transactions has forced modern electric power systems to be operated 

much closer to their security limits than ever before. In addition, the complexity of 

power systems is continually rising because of the increasing system size and 

stressing loads, larger power transfer over longer distance, greater interdependence 

among interconnected systems, more complicate coordination and interaction among 

various control systems, and the adoption of more advanced technologies, etc. The 

security of system operation is becoming more significant than ever before.  

From the latest definition given by the IEEE/CIGRE Joint Task Force in [4], 

security of a power system refers to the degree of risk in its ability to survive 

imminent disturbances (contingencies) without interruption of customer service. It 

depends on the system operating conditions and the contingent probability of 

disturbances. In [2,4], security analysis is composed of both static and dynamic 

security analysis. However, most previous outcomes exist in the study of static 

security and optimal operation. The study to integrate dynamic security and economy 

in the same framework is still few despite the recognition of its importance. 
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Dynamic security requires that when any of a specified set of disturbances (e.g., 

outages of generators or transmission lines) occurs, a feasible operation point should 

be able to withstand the contingencies by surviving the subsequent transient events to 

arrive at an acceptable steady state operating condition after the clearance of the fault 

without violating equality and inequality constraints even during the transient period 

of the dynamics. Dynamic security must be included in the planning and operation of 

systems; otherwise, the system may not survive in credible contingencies, which 

causes huge losses, expensive control cost and even blackout throughout the system. 

The recently happened blackouts around the world, such as in North America and 

Europe in 2003 which affected a large number of customers, are good evidences that 

dynamic stability under large disturbances is still the most serious threat for the 

development of modern power systems [5-7].  

Among various power system analyses, transient instability analysis is one of the 

essential components of dynamic security assessment. In most systems, it has been 

the dominant stability problem and hence more attention needs to be paid by the 

industry and engineers concerning system stability. When potential instability 

consequent to a sufficiently credible contingency is detected, preventive action has to 

be taken by system controllers [8].  

As a result of the growing stress on today's power systems, great effort has been 

spent in the last decade to implement practical tools for dynamic security assessment 

[9]. In order to ensure the system security to survive in all possible abnormal 

conditions, advanced dynamic security assessment and control is in great need. There 

have been many technical challenging problems involving the analysis for both 

economics and dynamic security of power system operation within a single 

integrated framework, for example, preventive and emergency control [10-15], the 

calculation of dynamic available transfer capability in the interfaces of the 

interconnected grids [16-20], the dynamic security dispatch to improve the security 

level with less control cost [21-23], generation rescheduling [8,24-26], congestion 

management [27], etc. All of these efforts are attempting to formulate and solve their 
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corresponding problems with transient stability constraints by OPF or near OPF 

techniques. 

Dynamic security assessment could be considered as an extended optimum 

power flow (OPF) problem, in which transient stability, for instance, is specifically 

regarded as one of the security constraints for the system operation, and the optimal 

objective is to be obtained under given set of system parameters by adjusting 

available controlling schemes. However, in practical operation, it is an extremely 

difficult task to reconcile the conflict between economics and security requirements 

in power systems operation. Early discussions on the feasibility of including stability 

constraints into standard OPF formulations can be found in [28,29]. Nevertheless, 

transient stability constrained OPF is a rather new advancement and its study is still 

in the experimental stage.  

Conventionally, dynamic security assessment is mostly done by trial and error 

methods incorporating engineering experience and judgement. However, the trial 

process is not only time-consuming but also unsuitable for automated computation 

[16,30,31]. More importantly, it may sacrifice the optimality and even incur 

discriminations among market players in stressed power systems [32,33]. Thus, it has 

been one of the main challenges in OPF study to develop effective techniques for 

solving OPF problems with transient stability constraints efficiently [34]. 

Mathematically, transient stability constrained OPF is a semi-infinite 

programming (SIP) problem, which has finite dimension for optimal variables but 

infinite dimension for dynamic constraints in time domain. In this thesis, "infinite" 

dimension for dynamic constraints means that dynamic stability has to be satisfied in 

the infinitely many continuous time points in the time domain of transients. Even 

though the theoretical and practical manifestations of the SIP model have been 

established, its application for power engineering is still few [16,31,35,36] and more 

exploration is needed. This research aims to develop a general methodology for 

dynamic security constrained OPF based on SIP techniques. It provides a suitable 

preventive control scheme for economic system operation against dynamic security. 
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The framework is put forward based on the state-of-the-art transient stability analysis, 

OPF and SIP techniques.  

I.2 CURRENT STATE OF THE ART 

I.2.1 TRANSIENT STABILITY ANALYSIS 

Power system transient stability has long been recognized as an important and 

problematic issue. As one of subcategories of rotor angle stability, transient stability 

is also called as large-disturbance rotor angle stability in the latest definition and 

classification of power system stability [4]. It is commonly concerned with the ability 

of the power system to maintain synchronism when subjected to a severe disturbance, 

such as a short circuit on a transmission line. The resulting system response involves 

large excursions of generator rotor angles and is influenced by the nonlinear power-

angle relationship. Instability is usually in the form of aperiodic angular separation 

due to insufficient synchronizing torque, manifesting as first swing instability. In 

large power systems, transient instability may not always occur as first swing 

instability associated with a single mode; it could be a result of superposition of a 

slow inter-area swing mode and a local-plant swing mode causing a large excursion 

of rotor angle beyond the first swing [37]. It could also be a result of nonlinear 

effects affecting a single mode causing instability beyond the first swing. 

Transient stability depends on both the initial operating state of the system and 

the severity of the disturbance. Categorized as short term phenomena, the time frame 

of interest in transient stability studies is usually 3 to 5 seconds following the 

disturbance. It may extend to 10–20 seconds for very large systems with dominant 

inter-area swings [4]. Up to now, methods for transient stability analysis can be 

categorized into time domain simulation and direct methods.  

Time domain simulation is to analyze the nonlinear dynamic responses of the 

state variables of a power system, such as the generator rotor angles or real power 

outputs, via the solution of a set of differential-algebraic equations [37,38] describing 



THE HONG KONG POLYTECHNIC UNIVERSITY 

  5

the electromechanical transients. Step-by-step numerical integration methods are 

used to solve the nonlinear ordinary differential equations with known initial values 

obtained by static power flow solution before the transients. A wide range of 

approaches has been reported in [39] for solving the corresponding differential-

algebraic equations, depending on the numerical networks and modelling details used. 

The many possible schemes for the solution of the equations are characterized in [37]. 

Time domain simulation has been the most reliable and popular method for 

transient stability analysis in the industry. It is flexible in terms of different 

component modelling with complex details in power systems. Sufficient accurate 

results could be obtained even for large-scale systems with thousands of buses, 

branches, hundreds of generators and various controllers and relay protections. 

Besides, details of the time responses of dynamic parameters in the 

electromechanical transients could also be provided. 

However, the large computation efforts and time consumption are recognized as 

one disadvantage of time domain simulation. For better accuracy and computation 

reliability, smaller steps are preferred generally, which induces more calculations. 

Many efforts have been made to improve the computation efficiency, in which 

parallel algorithms show their promising perspective with their development in 

decades, such as in [40-46]. In addition, large step simulations in time domain based 

on Taylor series expansions are studied for fast transient stability assessment [47-49]. 

Another commonly known disadvantage of time domain simulation is that it is 

incapable of providing a quantitative measure for the system stability or the stability 

margin. Moreover, prolonged transient simulation has to be taken to obtain reliable 

dynamic responses over a period of minutes. Although generator rotor angle limit is 

adopted as one of the criteria for practical application based on engineer experience 

[16], the threshold varies with different systems and is difficult to set universally. In 

[21], the coherency of generator rotor angles with respect to the centre of inertia 

(COI) is measured by six heuristic indices based on some numerical simulation 

experiments to predict the system stability. Some of the indices only use information 
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from the rotor angle first swing to reduce the computation efforts by the shortening 

of simulation period. 

Direct methods are capable of determining the system stability "directly" 

without solving the complex differential-algebraic dynamic equation set. A function 

describing the system transient energy is computed at the end of the disturbance and 

compared with a critical (threshold) value of the energy for transient stability 

assessment. The difference between them is the energy margin, which is an 

indication of stability and of great interest in transient stability assessment.  

Application of the energy function method to power system stability began with 

the early work of Magnusson [50] and Aylett [51], followed by a formal application 

of the more general Lyapunov's method by Gless [52], El-Abiad and Nagappan [53]. 

Direct methods has been academically appealing and received considerable attention 

since then. Much of the progress is summarized in [54-58]. Up to now, direct 

methods for transient stability analysis of power system are classified into two 

categories. One is based on transient stability energy function, including relevant or 

controlling unstability equilibrium point (RUEP or CUEP) method [59-61], potential 

energy boundary surface (PEBS) method [62-64], boundary of stability region based 

controlling unstable equilibrium point (BCU) method [63,65]; the other is based on 

extended equal area criterion (EEAC) method [66-69]. 

Compared with time domain simulation, direct methods are less computational 

demanding, capable of providing a quantitative measure for the transient stability 

margin, and suitable for fast stability limit analysis using dynamic sensitivity 

techniques. However, the accuracy and reliability of direct methods is not guaranteed, 

for some instances due to the application of approximated critical transient margin 

with various assumptions, which cumber their widespread usage in the industry. 

More importantly, detailed models of the system components, including the 

synchronous machine, the excitation system dynamics, and various power electronics 

devices, often have to be included for realistic modelling of practical power systems, 

which will complicate the system model and increase the computation remarkably. 
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Although large amount of efforts and progress have been made over the years, the 

accuracy and reliability are in doubt while the enhanced direct methods become 

much more complicated and hence computational demanding. 

Attempts, such as hybrid methods in [70,71], are taken to combine the time 

domain method and the TEF evaluation to produce stability indices using the concept 

of transient energy margin and simulated system responses. Though implementation 

difficulties have been encountered, this approach is promising.    

I.2.2 OPTIMAL POWER FLOW WITH TRANSIENT STABILITY CONSTRAINTS 

Optimal power flow (OPF), as a powerful tool to weaken the increasing 

exacerbated conflict between economy and security, was introduced originally as a 

"network constrained economic dispatch" by Carpentier [72] and formulated as 

optimal power flow by Dommel and Tinney [73]. The main purpose of an OPF 

program is to determine the optimal operating state of a power system by optimizing 

specific objectives while satisfying certain specified physical and operating 

constraints.  

Practical on-line implementation of OPF is to be integrated into Energy 

Management System (EMS) in an automatic (closed loop) control mode [34]. Power 

system operating conditions are classified into five states: Normal, Alert, Emergency, 

In Extremis, and Restorative states [37]. The main goal of system operators in 

regional control centres or independent system operators (ISO) is to operate and 

maintain power systems in normal secure state with time-varied operating conditions. 

Power system state estimation is provided based on the collected measurements in 

the supervisory control and data acquisition (SCADA) system and on the assumed 

system status at the SCADA scan rate frequency. It will then be passed on to all the 

EMS application functions. For credible contingency analysis, on-line fast stability 

assessment is continuously triggered based on the current system snapshot for the 

next target window, 15-30 minutes. Preventive strategies based on OPF are expected 

to be triggered by changing operation state for the enhancement of the system 
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security from alert state to normal state.  

Many research efforts have been made in preventive and corrective actions base 

on OPF for static security constrained economic dispatch and proved quite effective 

[1,28,29,74-80]. However, despite the idea of transient stability constrained OPF has 

been around for years, few effective solutions have as yet been proposed until now. 

The main obstacle faced is that the complexity involved for OPF with transient 

stability constraints is several orders of magnitude higher than that of traditional OPF 

with merely static constraints. Different from traditional constraints in static state, the 

add-on transient stability constraints are with the differential-algebraic equations 

(DAEs) for the dynamic transients, whose variables are usually defined in the 

functional space [31]. In particular, there are two major difficulties in tackling the 

problem of transient stability constrained OPF. The first is how to formulate the 

mathematical model, including the incorporation of transient stability constraints in 

OPF. If the transient stability constraints are introduced directly into OPF, the OPF 

will be a semi-infinite programming problem since the dimension of transient 

stability constraints is infinite. Traditional NLP methods for OPF study cannot 

handle SIP problems. The second is how to solve this problem effectively and 

efficiently.  

So far, several attempts have been made to determine the OPF imbedded with 

transient stability constraints. Based on how the constraints are handled [14,26], they 

can be classified as "sequential" and "global" approaches.  

• Sequential approach. This is a divide and conquer approach, in which the 

subproblems of OPF and transient stability analysis are solved in sequence 

separately [10,14,17-19,23,24,26,27,81,82]. In [10], an analytic sensitivity 

method is proposed base on EEAC and its application is prospected for 

transient security dispatch. In [14,19], generation shift scheme from critical 

machines based on the single machine equivalent (SIME) control is used to 

obtain near optimal solution. In [17,18,24,26,27,81,82], the sensitivities of the 

energy margin to system parameters, such as generation output, the total 
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system load, etc., are used to determine new schedules of stability limits or 

transmission interface power flow limits using optimization techniques. In 

[13], linear relationships between critical clearing time (CCT) and generator 

rotor angle, which is incorporated in OPF, is used for transient stability 

preventive control, although the relationships are not always true. In [13], 

generation is shifted from the most advanced generators to the least based on 

trajectory sensitivity, which is incorporated in OPF by the modification of 

generation output limits.  

• Global approach. This is an integrated approach in which OPF with transient 

stability constraints is solved as a single problem [12,16,20,22,31,35,36, 

83,84]. In [12,16,20,22,35,83], transient stability constraints in a time domain 

are discretized into a set of algebraic (in)equations by specific time steps. 

Afterward, they are included in standard OPF program and solved. However, 

the number of the replacing constraints is proportional to the number of 

discretized intervals and tends to be large for good accuracy. The high-

dimensional constraints may spoil the computational efficiency in the 

optimization. In order to keep the dimension of constraints lower, in [31,36],  

integration over the regions where the transient stability constraints are 

violated is used to replace the constraints. In [84], an algorithm based on 

control variable parameterization is implemented to solve the formulated 

dynamic-constrained optimization problem. But its application is still limited 

in a 9-bus system. 

There are also some other methods applied in OPF with transient stability 

constraints, such as artificial neural network (ANN) [11,85].  

It is noted that in the sequential approach, the transient stability constraints are 

not introduced directly into OPF. The true optimal solution may not be obtained. 

Sometimes, conservative solution is produced with the sacrifice in economic 

operation [31]. Conceptually, the global approach is more appealing as it handles the 

problem as a whole and hence is more capable to provide a true optimal solution, 
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which is more preferred by the system operator and the electric market participants. 

However, the global approach has to deal with the complicated problem of 

introducing transient stability constraints into OPF.  

Mathematically, global transient stability constrained OPF is a SIP problem with 

finitely many decision variables for specific operating point and infinitely many 

transient stability constraints different from other finitely many static state 

constraints. Here, "infinite" constraints for transient stability are referred to that the 

stability should be satisfied in every time point in the whole studied transient. 

Obviously, the number of time points in transient is infinite. Therefore, standard 

programming methods fail to solve transient stability constrained OPF precisely and 

effectively. Instead, advanced SIP techniques play a very important role in the 

development of solution framework for a generic problem, which can be formulated 

as transient stability constrained OPF.  Both the calculation of available transfer 

capability and dynamic security dispatch are two important problems in power 

system study, in which the satisfaction for transient stability is a must-do. In Chapter 

V and VI of this thesis, these two problems are modelled as SIP problems and solved 

respectively.  

I.2.3 SEMI-INFINITE PROGRAMMING 

A semi-infinite programming (SIP) problem is referred to an optimization 

problem with finitely many variables and, in contrast to finite optimization problems, 

infinitely many inequality constraints. SIP has been an exciting part of mathematical 

programming since the middle of the 20th century, such as in [86], standard convex 

program is formulated as a semi-infinite linear program. 

There are numerous practical problems as well as theoretical problems naturally 

arising in optimal control, approximation theory, and engineering applications. The 

model contains at least one inequality constraint for each value of a parameter and 

the parameter, representing time, space, frequency etc., varies in a given domain and 

thus can be formulated as semi-infinite programs. In [87], a large class of 
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engineering design problems such as electronic circuit design, seismic-resistant 

structure design, and single-input single-output control systems design can be 

formulated as nonlinear semi-infinite programs. In [88], a survey of control system 

design via semi-infinite optimization is presented, in which typical control system 

design problem is transcribed into SIP problem and computational issues involved 

are discussed. In [89], engineering applications of SIP are reviewed and first order 

nondifferentiable optimization algorithms are constructed to solve the SIP problems. 

An overview of applications, algorithms and theories in this area is presented in [90].  

So far there are three categories of numerical methods for solving semi-infinite 

programs: discretization methods, local reduction methods and exchange methods 

[91]. In the first category, a sequence of relaxed problems with a finite number of 

constraints is solved according to a predefined or adaptively controlled grid 

generation scheme [91-94]. The local reduction approach of the second category 

replaces a SIP problem by a locally equivalent problem with a finite number of 

implicitly defined inequality constraints or equivalently a system of nonlinear 

equations with finitely many unknowns [95-98]. In the third category, typical 

exchange methods consist of two phases: the purification phase providing an extreme 

point and the pivoting phase generating a sequence of linked extreme points leading 

to an optimal solution [90,99]. General remarks are presented for these three 

categories of methods in [90], in which fast convergence and fewer constraints in the 

related subproblems by reduced methods are notified.  

Even though the theoretical and practical manifestations of the SIP model have 

been established, its application on the dynamic security constrained OPF is few and 

limited to two approaches in general up to now. One is based on discretization 

methods, such as in [12,16]. Further, in [22,35], multi-contingency transient stability 

constraints are incorporated. The other is based on transcription techniques of 

reduced methods, such as in [31,36]. However, the drawback of the former is the 

computational inefficiency due to the high-dimensional replacing constraints for the 

infinite constraints. Although the later can keep the dimension of constraints low by 
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transcription, it is not attractive either since it requires accurate integration over the 

regions where the infinite constraints are violated. 

I.3 PRIMARY CONTRIBUTIONS  

Security and economy must be reconciled with each other in modern deregulated 

power systems. The main objective of this research is to develop a novel 

methodology to deal with a category of problems related with both dynamic security 

and economy, which can be modelled as transient stability constrained OPF 

problems.  

In summary, this thesis has made the following original contributions: 

 Transient stability constrained OPF problems are generalized 

mathematically to be SIP problems with finitely many variables and finitely 

many constraints in time domain. Numerical methods for SIP are extended 

to locally reduce transient stability constraints to be finite-dimensional 

constraints based on 1L  and L∞  norm. Thus transient stability constrained 

OPF is equivalently converted to an equivalent conventional OPF, which is 

solvable by conventional OPF methods.  

 The direct primal dual interior point method, as a suitable nonlinear 

programming method, is used to solve the equivalent problem. Different 

from conventional OPF, the theoretical difficulties in forming the Jacobian 

and Hessian matrices of the transient stability constraints are overcome with 

the employment of implicit functions. The multi-local optimization 

subproblem in L∞  norm local reduction method is solved by the application 

of intermediate value theorem for transient stability constraints according to 

its specific features. 

 Effective measures are proposed to improve the performance of the 

implementation. The most effective section of transient stability constraints, 

as a novel concept, is proposed to reduce the functional space and hence to 

improve the computation efficiency remarkably, which is validated by 
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numerical tests. Besides, improved BFGS (Broyden-Fletcher-Goldfarb-

Shanno) method is employed instead of Newton method to simplify the 

complicated derivation of Hessian matrix, in which only the difficult 

computation part of the Hessian matrix related to the transient stability 

constraints is updated approximately in BFGS formulation in each iterate. 

 The calculation of dynamic available transfer capability (ATC) and dynamic 

security dispatch are formulated as transient stability constrained OPF 

problems in this thesis respectively. The effectiveness of the proposed 

methodology is validated for such categories of problems with dynamic 

security and economy considered. Multi-contingency cases are able to be 

dealt with simultaneously to obtain an economically secure solution for a 

credible contingency set.  

I.4 ORGANIZATION OF THIS THESIS  

This thesis consists of seven chapters.  

This chapter, Chapter I, first states the background and motivation of this 

research, followed by the brief description on the current state of the art. A list of 

original contributions of this thesis is presented in section 3. Finally, the last section 

presents organization of the thesis. 

In chapter II, conventional OPF problem is introduced. Dynamic power system 

model is described briefly for the transient stability assessment. Two indices based 

on rotor angle limit and PEBS concept, respectively, are proposed and compared 

with each other. Optimization of power flow with transient stability constraints is 

generalized as a SIP problem with the introduction of the proposed transient stability 

indices to the conventional OPF.  

In chapter III, theoretical foundation and solution methods of SIP are presented 

and developed for the transformation of transient stability constraints in OPF 

problem. Firstly, preliminaries of SIP problems are introduced. Generalized KKT 

optimality conditions for SIP are extended. General scheme of the solution of SIP 



THE HONG KONG POLYTECHNIC UNIVERSITY 

  14

problems is given based on discretization and local reduction methods, by which SIP 

problems are recast into equivalent nonlinear programming problems with a finite 

number of constraints under appropriate assumptions. In particular, 1L  and L∞  

penalty functions are employed for the implementation of local reduction. Transient 

stability constraints are locally reduced to be finite-dimensional constraints, which 

makes transient stability constrained OPF solvable through traditional nonlinear 

programming methods. 

In chapter IV, the transient stability constrained OPF is solved by the direct 

nonlinear primal-dual interior point method. The theoretical difficulties in deriving 

the Jacobian and Hessian Matrices of the transient stability constraints are overcome 

based on implicate function and chain rule. Intermediate value theorem is applied to 

solve the local optimization subproblem in the local reduction of transient stability 

constraints. The overall algorithm is then presented. An improved BFGS method 

with superlinear convergence is exploited to avoid the complicated derivation of 

Hessian matrix. A new concept referred as "the most effective section" of transient 

stability constraints is proposed to alleviate the huge computational efforts and 

improve the convergence of the optimization calculation. 

In chapter V, the study of transient stability constrained OPF is applied in the 

calculation of dynamic available transfer capability (ATC). The calculation of 

dynamic ATC is formulated as an OPF problem with security constraints, especially 

transient stability constraints. SIP techniques are employed and fully tested on the 

ATC calculation in the WSCC 9-bus and New England 39-bus systems. 

In chapter VI, the study of transient stability constrained OPF is applied for 

dynamic security dispatch. Dynamic security dispatch is an effective preventive 

control to improve the security level of the systems by adjusting the controllable 

parameters. Dynamic security dispatch in this chapter is implemented as an extended 

OPF problem to minimize the economic cost and survive in credible contingencies as 

well. The effectiveness of the proposed method is fully validated in the New England 

39-bus system. Multi-contingency is also considered in the dynamic security dispatch 
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for plural credible contingencies simultaneously.  

Chapter VI gives the conclusion of this thesis and the possible future work. 
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Chapter II TRANSIENT STABILITY CONSTRAINED OPF 

 

The demand for optimal power flow (OPF) tools has been on the increase since 

its initial formulation in the 1960's [72,73] for assessing state and recommended 

control actions for off-line and on-line studies. Transient stability, as one of the 

essential components of dynamic security assessment, has been noticed to be studied 

as constraints of OPF for years. In [34], it is recognized as a challenge in OPF study 

to propose optimal preventive or correction control schemes. In this chapter, the OPF 

problem is introduced briefly and the model of transient stability constrained OPF is 

formulated directly by the introduction of transient stability as one constraint in OPF. 

II.1 FORMULATION OF CONVENTIONAL OPF PROBLEM 

Optimal power flow (OPF) problem is formulated to obtain an optimal solution 

of a specific power system objective function by adjusting system parameters and 

controllable variables while satisfying a variety of equality and/or inequality 

constraints.  

Although there are different OPF formulations for specific objectives and 

constraints, conventional OPF problem can be generalized as the following nonlinear 

programming problem: 

( )0min    ,f x y              (2.1) 

( )0. .    ,s t =g x y 0                 (2.2) 

        ( )0 , ≤H x y 0                  (2.3) 

where 0
xn∈x R  and yn∈y R  are the decision variable vectors of the system. Vector 

0x  is the time-dependent variable vector describing the static state of the system at a 

specified time instance (e.g. 0t = ), including generation output, bus voltage, etc. 

Vector y  is time-independent and usually includes shunt capacitor, and the tap 

position of the transformer, etc, which is also stated as control variable related to 
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control actions. : xnf →R R  is the OPF objective function, which is different with 

reference to various power system problems, such as unit commitment, reactive 

power dispatch, power market, etc. In this thesis, the detailed optimization problems 

of available transfer capability and dynamic security dispatch are studied as 

applications of OPF in the Chapter V and VI, respectively.  

This nonlinear programming optimization problem is subjected to a number of 

equality and inequality constraints as follows: 

 Equality constraints : x y gn n n+ →g R R  

Active and reactive power flow balance in the system is formatted as polar 

coordinate form power flow equations as  

( )cos sin 0Gi Di i j ij ij ij ij
j I

P P V V G Bθ θ
∈

− − + =∑       (2.4) 

( )sin cos 0Gi Di i j ij ij ij ij
j I

Q Q V V G Bθ θ
∈

− − − =∑   (2.5) 

where Ni S∈  is the index set of buses. GiP  and GiQ  are the active and 

reactive power generations at bus i . DiP  and DiQ  are the active and reactive 

power loads at bus i . iV  and iθ  are the voltage magnitude and its phase 

angle at bus i , and ij i jθ θ θ= − . ij ijG jB+  is the transfer admittance 

between bus i  and j . 

 Inequality constraints : x y Hn n n+ →H R R  

The steady-state operation limits of the system include the upper and lower 

limits of the generator outputs, bus voltage magnitudes, transformer taps, 

and power flow on transmission lines as  

       min maxGi Gi GiP P P≤ ≤       Gi S∈     (2.6) 

   min maxGi Gi GiQ Q Q≤ ≤       Ri S∈                 (2.7) 

min maxi i iV V V≤ ≤              Ni S∈     (2.8) 

min maxi i iT T T≤ ≤                  Ti S∈     (2.9) 

min maxij ij ijP P P≤ ≤        ( ), CLi j S∈     (2.10) 
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where GS  and RS  are the index sets of active and reactive power sources, 

respectively. TS  is the index set of  transformers. iT  is the i -th transformer 

tap. CLS  is the index set of constrained transmission lines. ijP  is the active 

power flow on the transmission line i j− .  

Clearly the OPF model (2.1-2.3) is with finitely many decision variables for 

static system performance and finitely many constraints. It can be solved by any 

appropriate standard nonlinear programming methods, such as interior point method, 

sequential quadratic programming (SQP), etc. Primal-dual interior point method is 

employed in this research and described in details in Chapter IV. 

II.2 TRANSIENT STABILITY ASSESSMENT 

Besides the constraints of steady-state operation in (2.2-2.3), more importantly, a 

practical power system should be operated to be able to dynamically survive when 

large disturbances or event disturbances occur, such as short-circuits, generator 

outages, sudden large load changes, etc. Therefore, transient stability is especially 

important to evaluate the practicability of the OPF solution. It is inevitably necessary 

to adopt a suitable transient stability index for inclusion in the OPF model.  

II.2.1 POWER SYSTEM MODEL 

Mathematically, power systems are compactly described by a set of non-linear 

differential-algebraic equations (DAEs) 

( ) ( )( ),t t=x F x y�   t∈T     (2.11) 

( )( ),t =G x y 0    t∈T     (2.12) 

The differential equation F  describes the dynamics associated with the 

generators, the excitation systems, the prime movers and the speed governors. The 

algebraic equation G  represents the network power balance equations. ( )tx  is the 

state variable vector including all dynamic components in the system, such as rotor 

angles of generators, which is time-dependent. y is algebraic variable vector as 
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defined in (2.1-2.3), which are generally independent of transient stability analysis. 

[ ) ( ]0, ,cl cl et t t t= ∪T  is the studied transient process from the time 0t  of the occurrence 

of the disturbance to the clearing time clt  and to the end of the study time et . 

For each contingency, it should be noted that the dynamics of the disturbed 

system can generally be divided into three stages [37]: 

 pre-disturbance at 0t t=  

( )( ),t =F x y 0       (2.11.a) 

( )( ),t =G x y 0       (2.12.a) 

 during-disturbance for ( )0, clt t t∈  

( ) ( )( )1 ,t t=x F x y�       (2.11.b) 

( )( )1 ,t =G x y 0       (2.12.b) 

 post-disturbance for ( ],cl et t t∈  

( ) ( )( )2 ,t t=x F x y�       (2.11.c) 

( )( )2 ,t =G x y 0       (2.12.c) 

Consider a power system consisting of ng  generators and N  buses. For 

simplicity, classical generator model for transient stability is used and load is 

modelled as constant impedance determined from initial (pre-disturbance) conditions. 

The dynamic model for the i -th synchronous generator can be formulated by the 

following differential equations: 

[ ]
i i

N
i mi ei i i

i
P P D

M

δ ω
ωω ω

⎧ =
⎪
⎨ = − −⎪
⎩

�

�       i∈ gS    (2.13) 

where  

        ( )
1

sin cos
ng

ei i j ij ij ij ij
j

P E E B Gδ δ
=

= +∑ .    (2.14) 

miP  and eiP  are the mechanical power input and electric power output of generator i  

respectively. iE  is the internal bus voltage of generator i .  iδ  and iω  are 
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rotor angle and rotor speed of generator i  respectively. iM  is the moment of inertia 

of the generator i . Nω  is the base system radian frequency and 02N fω π= . 0f  is the 

nominal system frequency. gS  is the index set of generators. ij ij ijY G jB= +  is the 

admittance matrix for the reduced network with only the generator internal nodes 

preserved. 

The power network is modeled by an algebraic equation 

=I YE         (2.15) 

where I  is the vector of node currents, which is also the generator currents. 

Practically, time domain simulation is employed for transient stability 

assessment. The DAEs are solved by using step by step numerical integration 

techniques. Forth-order Runge-Kutta (R-K) method is adopted in this thesis for the 

numerical computation, see in Appendix C.  

II.2.2 TRANSIENT STABILITY INDEX BASED ON ROTOR ANGLE LIMIT 

Transient stability index based on rotor angle limit obtained from time-domain 

simulation is proposed here. For very stable cases, the rotor angle of each machine 

move coherently with the centre of inertia (COI) whose position is defined as  

1

ng

i i
i

COI
T

M

M

δ
δ ==

∑
       (2.16) 

where 
1

ng

T i
i

M M
=

= ∑ . In other word, the variation of each machine angle with 

reference to the COI will stay within a certain boundary. For unstable cases, there is 

at least one machine whose angle moves away from the COI and eventually lost of 

synchronism. Thus the transient stability index is defined as the deviation margin of 

rotor angles with respect to COI less a specified threshold as  

max 0i i COIh δ δ δ= − − ≤  i∈ gS     (2.17) 

in the study period T . maxδ  is the maximum allowable deviation of the rotor angle. 

For unstable cases, the simulation is terminated if one machine's angle reaches maxδ  

degrees. Obviously, the smaller of the instability instant detected, the more 
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severe the contingency is.  

Coherent indices based on rotor angle limits with respect to COI are proposed in 

[21]. It is found that rotor angle limit with respect to COI in the first swing has good 

accuracy and is consistent with a long period of time domain simulation. Thus 

shorter period for simulation could be used to reduce the computation efforts for 

stability assessment.  

II.2.3 TRANSIENT STABILITY INDEX BASED ON PEBS 

As an alternative approach to transient stability assessment, direct methods are 

capable of providing a quantitative measure for system transient stability margin. 

Power system under transient conditions can be described as a ball rolling on a 

bowled-shaped potential energy surface, which depends on the post-contingency 

network configuration. The stable equilibrium point (SEP) is surrounded by a set of 

unstable equilibrium points (UEP). The surface connecting all the UEPs is called 

potential energy boundary surface (PEBS). In [63], a theoretical foundation for the 

PEBS method is given for machines modelled classically. PEBS can be defined as 

the locus of the local maxima of potential energy on all rays emanating from SEP 

[59,105].  

Furthermore, it is assumed that all unstable system trajectories cross the PEBS, 

whereas all stable trajectories remain inside the PEBS. The assumption is based on 

the recognition of the occurrence of transient instability when the system trajectories 

cross the potential energy maxima around the SEP with a residual kinetic energy. 

Remarkably, this test of stability is also valid for multi-swing instability. As 

illustrated in [54], both in the first and multi-swing instability cases, the PEBS is 

crossed by unstable trajectories. 

Therefore, the transient stability constraints can be defined as to prevent the 

system trajectory crossing the PEBS. For the application of PEBS method, it is 

convenient to describe the transient behaviour of the system with the generator rotor 

angles expressed with respect to the COI. For instance, the equations of motion of 
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the i th generator becomes 

i i

i
i i mi ei COI

T

MM P P P
M

δ ω

ω

⎧ =
⎪
⎨

= − − ⋅⎪
⎩

�� �

��      (2.18) 

where ( )
1

ng

COI T COI mi ei
i

P M P Pω
=

= = −∑� . δ�  and �ω  are the vector of rotor angles δ  

and rotor speed ω  with reference to their COI respectively as 

       COI= −δ δ δ�        (2.19) 

COI COI= − = −�� ��ω δ δ ω ω      (2.20) 

and  

1

1

ng

i i
i

COI ng

i
i

M

M

ω
ω =

=

=
∑

∑
       (2.21) 

1
0

ng

i i
i

M δ
=

=∑ �               (2.22) 

The potential energy is given as [57] 

( ) ( )
1

i

s
i

ng

PE i i
i

V f dδ δ
δ

δ
δ

=

= −∑∫
�

�
� � �      (2.23) 

where ( ) 1,..., ngf f⎡ ⎤= ⎣ ⎦f δ�  is the vector of the accelerating power of rotors with the 

centre of inertia (COI) as reference in the scenario of credible contingency: 

( ) i
i mi ei COI

T

M
f P P P

M
= − − ⋅�δ         i∈ gS    (2.24) 

sδ� is the vector of rotor angles sδ  at post-disturbance SEP with reference to their 

COI respectively as  

s s
COI= −δ δ δ�        (2.25) 

       Assume the linear path for system trajectory, we have 

       ( )s s sδ δ δ δ δ δα α= + − = + Δ� � � � �     (2.26) 

and approximated potential energy 
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        ( ) ( )
0

1

ng
s

PEapprox i i
i

V f dδ δ δ
α

α δ α
=

= − + Δ Δ∑∫� � �    (2.27) 

Thus mathematically, PEBS is deduced as  

0PEapproxdV
dδ

=�        (2.28) 

that is  

 ( )
1

0
ng

s
i i

i
f δ δα δ

=

− + Δ Δ =∑ �      (2.29) 

Therefore, PEBS is described as the following dot product. 

( ) ( ) 0
T sP ⎡ ⎤= ⋅ − =⎣ ⎦

� � �f δ δ δ               (2.30) 

The application of PEBS is that the dot product (2.30) is negative inside the 

PEBS and positive outside. In [105], it is said as long as the dot product evaluated is 

less than zero at each ith time step of the discretized trajectory, the system is STABLE. 

Therefore, the transient stability index can be defined based on PEBS as  

( ) ( ) 0
T sP ⎡ ⎤= ⋅ − ≤⎣ ⎦

� � �f δ δ δ                         (2.31) 

II.2.4 REMARKS ON THE TWO INDICES OF TRANSIENT STABILITY 

It is not easy to tell which index performs better for stability assessment and is 

more suitable to be introduced in OPF study. In this section, some general remarks 

are provided for the two indices of transient stability. 

The index based on rotor angle limit has been widely adopted in many 

applications for its consistence with industry practice and acceptance for utility 

engineers. Firstly, with the lack of any generic methods, inequation (2.17) could be 

the most direct method for measuring the stability region of dynamic system [16]. 

Secondly, suppose the generators are approximately separated into two groups during 

the transient duration, then the well-known equal area criteria indicates that the 

relative rotor angle between the two groups of generators should always be smaller 

than the extreme 180 degrees, otherwise the system is unstable. Thirdly, a real-world 

power system should be operated such that any generator rotor angle will not be 

greater than a threshold (like the extreme case, 180 degrees). If a generator's rotor 
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angle is larger than such a threshold, the generator will be tripped off by out-of-step 

relay to protect it from being damaged [57]. 

The pitfall of index based on rotor angle limit is that the threshold is arbitrary in 

nature and would vary with different systems. If the threshold is too relaxed, systems 

may be unstable even if the limit has not been exceeded in the study period; on the 

contrary, if the threshold is too strict, the operation tends to be conservative and less 

economic. Moreover, from the optimization point of view, the index is an ng-

dimensional vector, where ng is the number of machines, because the coherency of 

generator rotor angles with respect to COI should be maintained at each time step 

during dynamic simulation. 

The situation gets better for index based on PEBS. This index can be regarded as 

a general criterion for different systems because it describes the performance of 

system. Another advantage is the dimension of this index is only one. The reason is 

that the PEBS criterion is referred to the whole system but not to each machine like 

rotor angle limit. Thus the dimension of transient stability constraint in OPF model is 

independent of the number of machines in the system if the constraint is based on 

PEBS criterion. However, the formulation of this index is more complicated, 

especially the computation of its derivative in the optimization process. It is also 

noted that the accuracy of PEBS method could be suffered with ill boundary surface 

and the assessment tends to be optimistic [56]. 

Power systems operation should be capable to survive in a set of credible 

contingencies. In this thesis, the criteria for transient stability are employed with 

reference to the two indices, rotor angle limit and PEBS, respectively. The criteria 

are introduced as transient stability constraints in OPF, which can be written 

compactly as  

( )( ),k k kt ≤U x y 0        (2.32) 

where ck ∈ I  and : x y un n n+ × →U R T R . cI  is the index set of credible contingencies. 

Numerical comparison for the two kinds of indices is given in the later chapters.  
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II.3 TRANSIENT STABILITY CONSTRAINED OPF 

The transient stability constrained OPF problem can be formulated as: 

( )0min    ,f x y              (2.33) 

( )0. .    ,s t =g x y 0                 (2.34) 

        ( )0 , ≤H x y 0                  (2.35) 

    ( )( ),k k t ≤U x y 0   t∈T , ck∈ I    (2.36) 

where both variable vectors 0
xn∈x R  and yn∈y R , and functions : xnf →R R , 

: x y gn n n+ →g R R  and : x y Hn n n+ →H R R  are the same with the conventional OPF 

problem (2.1-2.3). : x y un n n+ × →U R T R  is dynamic constraints to ensure the dynamic 

security of system disturbed by contingencies in the transient. It can be formulated 

either as (2.17) based on rotor angle limits or as (2.31) based on PEBS concept 

although the property of the constraint is different. xn∈x R  is a time-dependent 

variable vector related to the dynamic state of the system, such as the generation 

output, rotor angle, etc. 0x  represents the initial value of x  at 0t= . 

Clearly, without inequality (2.36), the OPF model (2.33-2.35) is with finite 

optimal variables for static system performance and finite constraints. It can be 

solved by any appropriate standard programming method. The add-on transient 

stability constraints of inequality (2.36) become active in case instability is detected 

for the relative credible contingencies. An economically and securely viable 

operation is needed to be proposed by the solution of OPF (2.33-2.36) for the 

security and economy of the system.  

However, inequality (2.36) for transient stability constraints is obviously 

different with the other conventional inequality constraints compactly describing as 

(2.35). Inequality (2.36) is infinite-dimensional in the functional space to ensure 

transient stability being satisfied during the transient period T . In other word, even 

for single contingency, transient stability should be satisfied in every time point of 

the whole studied transient as shown in Figure II.1.  
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Figure II.1 Intuitionistic explanation for infinite-dimensional constraints 

The transient period T  is continuous and undividable, which causes the difference of 

the values of ( )( ),tU x y  due to the time-dependent variable ( )tx  at different time 

t . Therefore, in the transient period T  there are infinitely many constraints for 

transient stability for the infinitely many time points, or slices in Figure II.1, in the 

time domain.  

Thus, mathematically, the OPF problem (2.33-2.36) is a semi-infinite 

programming (SIP) problem with finitely many optimal variables with infinitely 

many constraints for the introduction of transient stability constraints. Standard finite 

programming methods are incapable to handle this problem directly. The basic 

underlying difficulty in extending suitable standard algorithms of non-linear 

programming to the SIP case is to replace the infinitely many constraints of the latter 

by finite constraints. SIP methods should be implemented to transcribe the SIP 

problem appropriately into a finite programming problem. SIP is presented in chapter 

III and specifically employed for transient stability constrained OPF. 

II.4 SUMMARY  

This chapter deals with the formulation of transient stability constrained OPF.  

Conventional OPF in static state is introduced firstly. Dynamic power system 

model is briefly presented for transient stability assessment. Two indices for transient 

stability based on rotor angle limit and PEBS concept are proposed. The properties of 

the two indices are compared theoretically. Optimization of power flow with 

transient stability constraints is generalized as a SIP problem, with finitely many 

variables and finitely many constraints, by introducing the proposed indices for 

........m

t0 tm-1



THE HONG KONG POLYTECHNIC UNIVERSITY 

  27

transient stability to the conventional OPF directly. 
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Chapter III SEMI-INFINITE PROGRAMMING AND 

TRANSFORMATION FOR TRANSIENT STABILITY 

CONSTRAINTS 

 

This chapter presents the essential concepts for semi-infinite programming (SIP) 

problems in optimization theory, and describes numerical methods for the solution. 

The numerical methods are employed especially for the solution of transient stability 

constrained OPF.   

Firstly, a few basic terms for mathematical analysis are defined as follows 

[101,106]:  

1) A set n⊂A R  is open if and only if for every point * ∈x A  there exists a 

0ρ >  such that { }*n ρ∈ − ≤ ⊂x R x x A . 

2) A set n⊂A R  is closed if and only if cA  is open, where c denotes the 

compliment.  

3) A set n⊂A R  is bounded if and only if there exists a 0ρ >  such that 

{ }n ρ⊂ ∈ ≤A x R x . 

4) A set n⊂A R  is compact if and only if it is bounded and closed. 

5) The interior of a set n⊂A R  is equal to the union of all open sets contained 

in A .  

6) A set n⊂A R  has an interior if and only if the interior of A  is non-empty.  

7) A set n⊂A R  is convex if and only if for any 'x , ''∈x A  and [ ]0,1λ∈ , 

( )( )' 1 ''λ λ+ − ∈x x A . 

8) A function is continuously differentiable if it has continuous derivatives. 

9) A function : n m→f R R  is Lipschitz continuous on the set n∈X R  if and 

only if there exists an L < ∞  such that ( ) ( )' '' ' ''L− ≤ −f x f x x x  for all 

'x , ''∈x A .  
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III.1 PRELIMINARIES 

Consider general SIP optimization problems of the form [107] 

GSIP:   minimize f  on the feasible set M  

with 

       ( ) ( ){ }, 0 for all ,  ;  0,n
i jg i h j= ∈ ≤ ∈ ∈ = ∈M x R x y y Y I x J  

where I  and J  are finite index sets whereas the index set Y  is of infinite cardinality 

and in many applications compact. * n∈x R  is called feasible for the programming 

problem if * ∈x M  as  

( )*, 0    ,  ig i≤ ∀ ∈ ∈x y y Y I  

( )* 0        jh j= ∈x J  

In full generality, Y  is allowed to depend on the decision variable x  and described 

by functional constraints as  

        ( ) ( ) ( ){ }, 0,  ;  , 0,m
k lu k v l= ∈ ≤ ∈ = ∈Y x y R x y K x y L  

with finite index sets K  and L .  

A simple but instructive example is given to illustrate the concept of general 

semi-infinite constraints. 

Example 3.1 

Take a simple general semi-infinite constraint  

( ), 0g x y ≤ , y∀ ∈Y  

and ( ) ( ){ }, 0u= ∈ ≤Y x y R x y  

with one real-value function g  as an example. A simple index set Y  is an interval in 

R  depending on x  with reference to function u . If the decision variable x  is also 

one-dimensional, then the restriction function g  has two-dimensional arguments. An 

illustration for feasibility situation is sketched in Figure III.1, where the point 1x  is 

feasible, whereas 2x  and 3x  are not.         ▋ 

An important special case of general SIP arises if the infinite index set Y  does 
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not depend on the decision variable x , i.e. ( ) ≡Y x Y  where Y  is some non-empty 

and compact set. In [100,107], problems of this type are called standard semi-infinite 

optimization problems. For instance, the constraint ( ),g x y  in Example 3.1 will 

become standard semi-infinite if Y  is not dependent on x  and merely an constant 

interval of [ , ]a b . 

 

x3

x1

x2

x
g

y
  0

1( , )g x i

2( , )g x i

3( , )g x i

a b
 

Figure III.1 Feasibility illustration under a standard semi-infinite constraint 

A standard SIP problem is often written in the form of 

SIP:      ( )min    
n

f
∈x R

x        (3.1) 

( ). . ,st ≤g x y 0               p∀ ∈ ⊂y Y R                                       (3.2) 

where the objective function : nf →R R  and the constraint function : gnn × →g R Y R  

are both continuously differentiable in all arguments. ( ){ 0,p
ku= ∈ ≤Y y R y  

}k∈K  is defined as a Cartesian product of intervals for 2p ≥ . The form of SIP 

problem can be reformulated easily in the case where a finite number of additional 

equality constraints are taken into the definition of the feasible set. However, the 

complexity of the problem will not be changed. Instead, they can be formatted as 
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inequalities as  

( ) 0jh ≥x  and ( ) 0jh ≤x , j∈J .  

For simplicity, equality constraints ( ) 0jh =x , j∈J  are not included in this form.  

With reference to the model of transient stability constrained OPF (2.33-2.36) 

constructed in Chapter II, T  is constant and non-dependent on the decision variables 

 and x y  for the semi-infinite constraints U . Thus the optimization of power flow 

with transient stability constraint is a standard SIP problem. Unless stated otherwise, 

all SIP problems afterwards in this chapter are in the standard format as (3.1-3.2). 

The following are a simple example given to illustrate the concept of standard 

semi-infinite constraints.  

Example 3.2 

In this example, the feasibility set is defined as the unit disc in 2R  as shown in 

Figure III.2, 

{ }2 2 2
1 2 1x x= ∈ + ≤D x R , 

-1 0 1

y3

y2

x2

D

x1

y1

 

Figure III.2 The unit disc as intersection of infinitely many halfplanes 
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The feasibility set can also be described by means of infinitely many affine-

linear inequality constraints: 

{ }2 1,  T= ∈ ≤ ∀ ∈D x R y x y Y�  

with 

       { }2
2

1= ∈ ≤Y y R y . 

In fact, this standard semi-infinite constraint describes D  as the intersection of 

infinitely many halfplanes. Three of these halfplanes are depicted as examples in 

Figure III.2.  

The SIP problem  

( ){ }min f ∈x x D�  

is able to be equivalently transcribed to a nonlinear programming problem 

( )1 2min   ,f x x  

2 2
1 2. .   1s t x x+ ≤  

No doubt it is not necessary to search for a semi-infinite description of the feasibility 

set once a finite one can be presented. However, in some practices, only a semi-

infinite description can be given. Thus SIP techniques have to be explored for those 

applications.            ▋ 

III.2 OPTIMALITY CONDITIONS 

The primary concern in the practical study of optimization problems is with 

characterizing solution points and devising effective methods for finding them [106]. 

In this section optimality conditions are presented for nonlinear programming 

problems and extended to standard SIP problems.  

III.2.1 OPTIMALITY CONDITIONS FOR NONLINEAR OPTIMIZATION 

Consider a nonlinear programming (NLP) problem 
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( )min    
n

f
∈x R

x        (3.3) 

( ). .st ≤g x 0         (3.4) 

( ) =h x 0                                                                          (3.5) 

where { }ig=g , { }jh=h , i∈ I  and j∈J . Before deriving the first order optimality 

conditions, a few definitions are introduced with reference to [106]. 

Definition 3.1   Let * n∈x R  be feasible for the NLP problem. The inequality 

constraint ( )ig x  is active at *x  if ( )* 0ig =x . The set of indices corresponding to 

active inequality constraints is written as  

( ) ( ){ }* * 0ii g= ∈ =A x I x      (3.6) 

Of course, equality constraints are always active, but it is more preferred to 

account for their indices separately. 

Definition 3.2   If the gradients of the active constraints at *x , ( ){ *,  ;ig i∇ ∈ A x  

},  jh j∇ ∈J , is linearly independent, the linear independence constraint qualification 

(LICQ) holds at *x . 
*x  is called a regular point in [106]. The LICQ assumption guarantees that the 

linearization of NLP around *x  is differential-topologically equivalent to NLP in a 

neighbourhood of *x : the dimension of the manifold formed by the strictly feasible 

points in a neighbourhood of *x  must remain the same after replacing each of the 

constraint surfaces by their tangent plane at *x . 

The first order necessary conditions for optimality in constrained optimization 

problems involving both equality and inequality constraints are usually stated as the 

Karush-Kuhn-Tucker (KKT) conditions as below [106,108]. 

Theorem 3.1   First Order Necessary Optimality Conditions. Let *x  be a local 

minimizer for (3.3-3.5). Assume the functions f , ig  and jh  are differentiable at *x  

for all i∈ I  and j∈J  respectively. If the LICQ holds then there exist * m∈λ R , 
* n∈ω R  such that ( )* * *, ,x λ ω   solves the following system of (in)equalities, 
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( ) ( ) ( )* * * * *T Tf∇ + ∇ + ∇ =x λ g x ω h x 0     (3.7) 

( )* 0ig ≤x      i∀ ∈ I      (3.8) 

( )* 0ih =x      i∀ ∈ J      (3.9) 

* 0iλ =       ( )*\i∀ ∈ I A x     (3.10) 

* 0iλ ≥       i∀ ∈ I      (3.11) 

The vector *x  is called a KKT stationary point, and ( )* *,x λ�  is called a KKT 

pair with ( )* * *,
T

=λ λ ω� . The definition of *x  as a KKT stationary point means that 

there exists vector of *λ�  such that ( )* *,x λ� , as a KKT pair, satisfies the KKT (first-

order necessary) conditions of local optimality. The KKT conditions can also be seen 

as an extension of the Lagrange multiplier theory for problems with equality 

constraints to problems with both equality and inequality constraints. *λ  and *ω  are 

vectors of Lagrange multipliers for Lagrangian function 

( ) ( ) ( ) ( ), T TL f= + +x λ x λ g x ω h x     (3.12) 

The first-order (KKT) optimality conditions are sufficient for the global 

optimality of a feasible vector *x  if f , ig  and jh  are differentiable convex 

functions. 

The classical KKT conditions are developed from the Lagrange multiplier theory 

depending on the finite dimensionality of Euclidean space and the finiteness of the 

constraint set. In this thesis, the KKT conditions of finite-dimensional development 

are generalized and extended to programming problems in which the constraint 

functional is indexed by an infinite set.  

III.2.2 OPTIMALITY CONDITIONS FOR SIP 

In standard SIP problem (3.1-3.2), for convenience in notation, let  

( ){ }, ,  ng= ≤ ∈ ⊂S x x y 0 y Y R  

be the feasible set. Y  is a non-empty and compact index set. Assume the functions 

f  and g  are continuously differentiable with respect to x  everywhere on nR  and 
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n p×R R , respectively.  

        The Lagrange multiplier vector can be replaced with a measure on the infinite 

index set. Assume this measure is absolute continuous, it can be represented as a 

density function on the index set as pointed in [109]. Let { }ig g= , i I∈ , define 

( ) iIλ λ=  and ( ) ( ){ }0 , , 0iI i I g= ∈ =x y x y . The generalized Lagrangian function 

is written as            

( ) ( ) ( ) ( ), , ,iL f g diλ= + ∫Ix y λ x x y     (3.13) 

Associated with NLP is the generalized Lagrangian gradient 

( ) ( ) ( ) ( ), , ,iL f g diλ∇ = ∇ + ∇ =∫x x xI
x y λ x x y 0 .  (3.14) 

Suppose * ∈x S  for the standard SIP problem (3.1-3.2), the generalized first-order 

conditions are  

( ) ( ) ( )* * *,if g diλ∇ + ∇ =∫x xI
x x y 0   .  (3.15) 

( )*,ig∇ ≤x x y 0        (3.16) 

( )* ' 0Iλ =        ( )*
0' \I I I∀ ⊂ x      (3.17) 

( )* ' 0Iλ ≥        'I I∀ ⊂       (3.18) 

With reference to NLP, the first-order conditions are extended to standard SIP 

problem. However, it cannot be used directly for numerical algorithms.          

The KKT type conditions are of interest in that the classical KKT conditions will 

be extended to a SIP problem in the next section by transcribing it equivalently (or 

approximately) to a general nonlinear programming problem with finitely many 

constraints. 

III.3 SIP SOLUTION METHODS 

Different methods exist to solve the SIP problem (3.1-3.2) numerically. One 

general scheme is to replace the original SIP problem by (a sequence of) finite 

programming problems with only a finite number of constraints. The known 

optimality conditions of finite optimization in section III.2 can then be 
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applied for SIP problems with specific assumptions and solved by appropriate linear 

or nonlinear programming algorithms.  

Semi-infinite
Problem

Generator of
Finite Problem

LP or NLP
Algorithem

Solution
 

Figure III.3 General scheme to solve SIP problem 

The general scheme of an algorithm for SIP is illustrated in the flowchart of 

Figure III.3. Depending on how the finite problems are generated, methods can be 

roughly classified into three categories: (1) discretization methods, (2) local 

reduction methods, and (3) exchange methods. In this thesis, only the first two 

methods are focused whilst exchanged methods are not encouraged due to its lower 

accuracy as pointed in [90]. 

III.3.1 DISCRETIZATION METHODS 

Ordinary discretization is the most direct choice to describe or at least 

approximate the feasible set ( ){ }, ,  = ≤ ∈S x g x y 0 y Y  by imposing only finitely 

many constraints. By choosing ⊂Y Y , < ∞Y , and replacing S  by  

( ) ( ){ }, ,  g= ≤ ∈S Y x x y 0 y Y , 

the SIP problem (3.1-3.2) is approximate by 

( )min    
n

f
∈x R

x        (3.19) 



THE HONG KONG POLYTECHNIC UNIVERSITY 

  37

( ). . ,st g ≤x y 0 , ∀ ∈y Y       (3.20) 

or  

( ) ( ){ }min f ∈x x S Y .      (3.21) 

Typically Y  is termed a grid. For a given step length vector p
i ∈h R  and i >h 0 , 

1,  ..., i m= , and a fixed 0
p∈y R , the grid is defined as  

( ){ }0 ,  ,  1,  ..., h i i ii
i mα α= − = ∈ =G y y y h Z    (3.22)  

and 

        h= ∩Y Y G .       (3.23) 

This concept may be applied to general nonlinear problems. For ( )* ∈x S Y , the 

active set of y , for which the constraints are active, is denoted as  

( ) ( ){ }* *
0, ,  ,  1,  ..., i i ig i mα α= ∈ + = ∈ =A x y Y x y h 0 Z . 

By the discretization of the infinite constraints into a sequence of finite-dimensional 

constraints 

( ) ( ){ }0,   ,  1,  ..., i i i ih
g i mα α= + ≤ ∈ =S Y x x y h 0 Z .   (3.24) 

the solution of the original program (3.1-3.2) can be obtained approximately by 

solving a sequence of problems (3.21).  

For ( )* ∈x S Y , the KKT conditions for the discretized SIP problem are   

( ) ( )* * *
0

1
,

m

i i
i

f gλ α
=

∇ + ∇ + =∑x xx x y h 0   .  (3.25) 

( )* *
0,i i igλ α∇ + ≤x x y h 0            ,  1,  ..., i i mα ∈ =Z   (3.26) 

* 0iλ ≥             1,  ..., i m=    (3.27) 

Unfortunately, there is no guarantee for the existence of Y , as a subset of Y , 

which yields identical set of solutions for the SIP (3.1-3.2) and the approximate 

problem (3.21). Also, if a finite sequence of finer and finer grids ( )nY  is used, it is 

not necessarily true that the accumulation points of solutions ( )* nx  of (3.21) converge 

to the solution of (3.1-3.2). Thus the grids by discretization must be chosen with care 
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[90,101]. In [90], Theorem 3.2 is given for the question of identical value in the 

transformation for the infinite constraints. 

Theorem 3.2   In Program (3.1-3.2) assume that Y  is compact, both f  and 

( ),g yi  are convex with respect to x  and all finite over nR , and the value of  the 

program (3.1-3.2) is finite. Assume further that the following type of Slater condition 

holds in which there exists a *x  such that ( )*, ig <x y 0 , 0,  ..., i m= , for every set of 

1n +  points 0 ,  ..., n ∈y y Y  and 0i i iα= +y y h . Then there exists { }1,  ..., n n= ⊂T y y Y  

such that 

(i) the program (3.1-3.2) and its approximated program with nT  have the same 

value; 

(ii) there exist multipliers 0,  1,  ..., i i mλ ≥ = , such that the value of the 

program (3.1-3.2) is  

( ) ( )
1

inf ,
m

n
i i

i

f gλ
=

⎧ ⎫+ ∈⎨ ⎬
⎩ ⎭

∑x x y x R . 

It is noted that (ii) is basically a convex SIP Lagrangian duality result [90]. 

Obviously, a set nT , even if its existence is known, will not be known explicitly, but 

usually is a result of a numerical solution of the problem. 

Conceptual discretization method for SIP is presented as below.  

Algorithm 3.1   Conceptual discretization method. For Step (i), one is given ih , 

a selection i ih h
⊂Y Y  and a solution *ix  of  the approximated problem (3.21) with 

( )ih
S Y . 

(a) Set ( )1 1i i
in+ =h h , ,  2i in n∈ ≥N . 

(b) Select 1 1i ih h+ +⊂Y Y  based on *ix  and ih
Y . 

(c) Compute a solution * 1i+x  of the approximated problem (3.21) with ( )1ih +S Y .  

If * 1i+x  is feasible with ( )1ih +S Y  within a given accuracy then continue with 

(d), otherwise repeat (b). 

(d) If 0i i> , a pre-chosen number of refinement steps, then stop. Otherwise Step 

(i + 1). 
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An essential point with respect to efficiency is to use as much information as 

possible from previous grids when solving the approximated problem (3.21) with 

( )ih
S Y . Since 1i ih h −⊂Y Y , 1i−x  is generally a good starting point in solving the 

problem (3.21) with ( )ih
S Y . Besides, constraints from ( )ih

S Y  should be reduced in 

Step (b) using information from previous grid. A convenient way of selecting 

i ih h
⊃Y Y  is as 

( ){ }* 1: , ,  i i i
i

h h h
gρ ρ−⊃ = ≤ ∈Y Y y x y y Y     (3.28)  

with 0ρ >  being a chosen threshold. The choice of ρ  in (3.28) is crucial: A larger 

ρ  leads to more constraints for ( )ih
S Y  than necessary; whereas a smaller ρ  may 

cause active parts of Y overlooked. It is demonstrated with examples in [91] that 

problems (with 1,2m = ) can be solved on very fine grids rather efficiently by these 

methods, requiring only the solution of a small number of finite problems with rather 

few constraints. 

III.3.2 LOCAL REDUCTION METHODS 

An exact, finite reformulation of (3.1-3.2) yields the following min-max 

program [101]:  

( )min    
n

f
∈x R

x        (3.29) 

( ){ }. . max ,s t ≤g x y 0 , ∀ ∈y Y      (3.30) 

For standard SIP, ( ){ }0,p
kR u k= ∈ ≤ ∈Y y y K . The functions ( )f x , ( ),g x y  and 

( )u y  are assumed continuously differentiable. 

Let  

( ) ( ){ }max ,
∈

�
y Y

ψ x g x y       (3.31) 

the problem (3.29-3.30) can be rephrased in the alternative form 

( )min    
n

f
∈x R

x        (3.32) 

( ). .st ≤ψ x 0        (3.33) 
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Obviously, the feasible set is equivalently described by a finite set of restrictions as  

( ){ }n= ∈ ≤S x R ψ x 0       (3.34) 

Moreover, we assume the following holds. 

Assumption 3.1  For a feasible solution * ∈x S , the active points *
0

l ∈y Y , 

l∈ L  and { }1,  ..., r=L , are optimal solutions of (3.31). ( ){ }0 , 0g= ∈ =Y y Y x y  is 

a finite set of the active points. There exists a neighbourhood *U
x

 of *x , 

neighbourhoods *lU
y

 of *ly , and continuous mappings  

* *:  l
l U U→ ∩

x y
y Y  

such that 

(i) ( )* *l l=y x y , l∈ L ; 

(ii) for every *U∈
x

x  and l∈ L , ( )ly x  is the only local solution of (3.31) in 

*lU ∩
y

Y . 

With the assumption 3.1, there exists a neighbourhood *U
x

 of *x  such that for 

all *U∈
x

x  we have ∈x S  if and only if  

( ) ( )( ): , 0l lG g= ≤x x y x       (3.35) 

Thus the so-called local reduction methods realize the local reduction of the SIP 

problem (3.1-3.2) to a finite dimensional optimization problem as  

( )*
redP x      ( ) ( ){ }*min 0,  1,  ..., ;  lf G l r U≤ = ∈ xx x x . (3.36) 

If ( )* 0lG <x , 1,  ..., l r= , then *x  is an interior point of S . 

Theorem 3.3   Let *U
x

 be a neighbourhood of * ∈x S  as in (3.35). A point 

*U∈
x

x�  is locally optimal for the original SIP (3.1-3.2) if and only if it is locally 

optimal for ( )*
redP x . 

Given Assumption 3.1, at least locally description of the feasible set of SIP is 

able to be presented in terms of finitely many constraints. However, it is noted that 

the finitely many constraints are defined only implicitly via solutions of a 
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parametric optimization problem (3.31). Thus it is difficult to formulate a given SIP 

as an ordinary optimization problem. Nevertheless, Theorem 3.3 allows the transfer 

of theory and methods of finite programming to SIP problems.  

For feasible * ∈x S  assume the set of active points 0Y  is nonempty. Clearly, 

any point *
0

l ∈y Y  is a global maximizer of the following parametric optimization 

problem 

( )*max    ,g x y        (3.38) 

( ). .     0ks t u ≤y   k ∈K      (3.39) 

The active index set for (3.38)-(3.39) is written as  

( ) ( ){ }* *, 0l
kk u= ∈ =K x y K y . 

Assume LICQ holds on every active point of lK . The Lagrange function for (3.38)-

(3.39) with respect to *ly  is 

( ) ( ) ( )* *, , ,
l

l l
k k

k

g uλ
∈

= − ∑
K

x y λ x y yL .    (3.40) 

According to the KKT conditions as stated in Theorem 3.1, there exist unique 

multipliers * 0l
kλ ≥  such that  

( ) ( ) ( )* * * * * * *, , , 0
l

l l l l l l
y y k y k

k

g uλ
∈

∇ = ∇ − ∇ =∑
K

x y λ x y yL . (3.41) 

Moreover, if ( )* * *, ,l l
yy∇ x y λL  is negative definite on the tangent space 

( ){ }* * 0,  
Tl l j l l

j yh jλ= ∇ = ∈T d y d K ,    (3.42) 

the strong second order sufficient condition holds for *ly  to be a strict local 

maximum of (3.38)-(3.39).  

Theorem 3.4 Assume that Assumption 3.1 holds with continuously 

differentiable functions * *:  l
l U U→ ∩

x y
y Y , and strict complementary slackness of 

* 0kλ >  holds for (3.38)-(3.39). Moreover, there exists continuously differentiable 

*:  Uλ →
x

R  such that LICQ and the second order sufficient condition hold for all 

triples ( ) ( )( ),  ,  x y x λ x , *U∈
x

x . 
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(i) The derivatives ( )l l
x x=y y x , ( )l l

x x=λ λ x  are uniquely determined by 

( ) ( ) ( ), ,l l l l l l l l l
yy x x x yx g∇ − = −∇y λ y U y λ x yL  (3.43) 

( )( )                        
Tl l l

x x =U y y 0    (3.44) 

with 

( ) ( )( ) l

l

pl l j l
x y j

u ×

∈
= ∈

K

K
U y y R    (3.45) 

(ii) The constraint functions ( ) ( )( ),l lG g=x x y x  of the reduced problem are 

twice continuously differentiable in *U
x

 and are given by 

( ) ( )( ),l l
x xG g=∇x x y x     (3.46) 

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ), ,
Tl l l l l l l l

xx xx x yy xG g=∇ − ∇ ∇ ∇x x y x y x y x λ x y xL   

(3.47) 

The proof of (i) uses the implicit function derivation and obvious continuity 

arguments. Equations (3.46) and (3.47) are derived from (i). Further relaxations of 

the related assumptions are possible to define reduced problems with lG  only 

Lipschitz continuous on the basis of ( )ly x , which may even be discontinuous [102].  

For the SIP problem (3.1-3.2), its local reduced problem ( )*
redP x  in (3.36) is a 

finite dimensional optimization problem. Its first order optimality conditions in a 

feasible solution *x  are  

( ) ( )* * *

1

r
l l

l

f Gλ
=

∇ + ∇ =∑x xx x 0   .   (3.48) 

( )* *l lGλ ∇ ≤x x 0           1,  ..., l r=     (3.49) 

* 0lλ ≥                   1,  ..., l r=     (3.50) 

in which ( )l l
xG G∇ =x x  as formulated in (3.46).  

Conceptually, local reduction methods can be described as follows. 

Algorithm 3.2  Conceptual reduction method. For Step (i)，one is given ix  

(not necessarily feasible). 

(a) Determine ( ) { }1, ,  ..., iri ρ =x y yA  with  
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( ) ( ){ } ( )0, ,i i igρ ρ= ∈ ≥ − ∩x y Y x y xA A ,  (3.51) 

in which ( ) ( ){ }0 is a local maximizer of ,  over i ig= ∈x y Y y x y YA  and 

0ρ > . 

(b) Apply ik  steps of a finite programming algorithm to the reduced problem  

( )( )i
redP x    ( ) ( ){ }min 0, 1, ..., l

if G l r≤ =x x   (3.52) 

  with ( ) ( )( ),l lG g=x x y x . Let ,i jx , 1,  ..., ij k=  be the iterates. 

(c) Set ,1 ii ki+ =x x  and continue with Step (i+1). 

Substep (a) is very costly as it requires a global search for maximizers of 

( ),ig x y  on p⊂Y R . The overall strategy should decrease the execution of this step 

as much as possible. For technical and practical reasons, it is convenient to focus 

attention on all local maximizers of ( ),ig x y  that exceed a slightly negative 

threshold ρ− , rather than just the elements of ( ),0xA . In a certain sense the costly 

global search for maximizers is replaced by the determination of ( ),ρxA , which 

takes the whole clusters of points in the neighbourhoods of maximizers in Y . 

Substep (a) tacitly assumes that there are only finitely many maximizers of 

( )( )i
redP x . If this is not the case, a basic assumption for reduction fails to hold and 

another method (for instance, a discretization method, or 1L  penalty function 

presented in Section III.4) should be used. In substep (b), the parametric problem 

( )( )i
redP x  has also to be considered in evaluating the constraints lG . Finite 

programming method can be performed efficiently, for instance, Newton methods, 

sequential quadratic programming (SQP) methods, etc., to solve the problem.  

III.3.3 REMARKS ON NUMERICAL METHODS 

Although it is difficult to determine which method should be selected for which 

type of problem, some general remarks are provided from restricted experiences on 

discretization methods and local reduction methods.  

For either of discretization and local reduction method, the following 



THE HONG KONG POLYTECHNIC UNIVERSITY 

  44

transcription of the SIP is involved in each iterate: 

( )min    
n

f
∈x R

x        (3.53) 

( ). . , 0st g ≤x y , i∀ ∈y Y      (3.54) 

where i  is the current iteration, and iY  is a finite subset of the points in the interval 

Y . Under suitable assumptions in III.3.1 and III.3.2, the sequence of solution values 

converges, via either of the two types of methods respectively, to the SIP minimum 

value, SIPf , and every accumulation point of the sequence of solution points is a 

solution point of the SIP. 

Discretization and reduction-based methods differ primarily in their selection of 

the finite set iY . Discretization methods mainly suffer from the drawback of the rapid 

growth of the dimension. When the index set Y  is higher-dimensional, i.e. p⊂Y R , 

2p ≥ , the large-scale NLPs (3.19-3.20) have to be solved in successive iterations 

inefficiently with higher-dimensional constraints by discretization. In these cases, the 

methods become inefficient. Moreover, grid selection strategies for discretization 

should be tactically. However, one advantage is that weaker assumptions are required 

for the convergence of discretization methods to the solution of the original SIP 

problem. 

Reduction methods have advantages to keep the cardinality of iY  low. The 

convergence to high accuracy is fast without increasing the dimension of the 

constraints in the subproblems between iterations. However, these methods make 

strong assumptions on the properties of the problem.  

In this thesis, reduction methods are preferred to solve the transient stability 

constrained OPF with good convergence.  

III.4 ALGORITHMS FOR SOLVING SIP 

In this section practical algorithms based on local reduction are employed to 

solve the SIP problem. For a give 0ρ >  let ( ) { }* 1* *, ,  ..., rρ =x y yA , which is 

defined in (3.51) as the set of local maximizers of g  that take values not less than 
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ρ− . Assume that a finite set of functions ( ){ }*ly x  exists such that each 

( )* * *l l=y x y  for all l  is continuous at *x  and ( ) ( )* ,l ∈ ∞y x xA  for all x  

satisfying * ε− <x x , 0ε > . Strictly, ( )*ly x  and r  also depend on ρ  although 

this dependence is kept implicit. The semi-infinite constraint, ( ), 0g ≤x y , ∀ ∈y Y , 

can be replaced by the finitely many constraints:  

( ) ( )( )* *, 0l lG g= ≤x x y x ,    ( )*1,  ..., l r= x .  (3.55) 

Although ( )*lG x  functions are important for theoretical purposes, ( )*lG x  and 

its derivatives are commonly evaluated only locally at *=x x  in practical algorithms. 

The given *x  is significant to trigger the searching process. In NLP the dependence 

on requiring good initial approximations is often successfully removed by employing 

exact penalty functions to force convergence from remote starting points. The 

superscript "*" is suppressed in the remaining chapter for compactness of notations. 

III.4.1 EXACT PENALTY FUNCTIONS FOR SIP 

Although less popular in the NLP context, exact penalty function is preferable 

for SIP problems [93]. The aim of the penalty function is to construct a function P , 

as a penalty function, such that any local solution to the original SIP problem is a 

local minimizer of the penalty function. A penalty function is exact if there exists a 

finite parameter value such that the solution of the penalty problem yields the exact 

solution to the original problem. Then the idea is to minimize the penalty function 

rather than solve the original SIP. 

1L  and L∞  norm penalty functions are described in this part and then employed 

respectively in the later chapters. p -norm, 1p ≥ , of vector nR∈x , { }ix=x , is 

defined as  
1

1

:
n pp

ip
i

x
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑x  

Thus 1L  norm is defined as  

       
1

1
:

n

i
i

x
=

=∑x  
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and L∞  norm as  

        ( )1: max ,  ..., nx x
∞
=x . 

       With the introduction of penalty functions, the optimality conditions for NLP 

(3.7-3.11) or SIP (3.15-3.18) should be rewritten, in which the updated objective 

function is the original objective function plus penalty functions.  

III.4.1.1 1L  PENALTY FUNCTIONS 

Penalty functions based on the 1L  norm of the constraint violations are 

commonly used. The analogue for the SIP case is the penalty function 

( ) ( ) ( )
( )

1

1
,

r
l

l
P f Gμ μ

+=
⎡ ⎤= + ⎣ ⎦∑

x
x x x     (3.56) 

where ( )G
+

⎡ ⎤•⎣ ⎦  denotes the maximum of ( )G •  and 0. Obviously, ( ) ( )1 ,P fμ =x x  

if x  is feasible, i.e. ( ) 0lG ≤x , ( )*1,  ..., l r= x . μ  is a positive scalar such that any 

local solution to the SIP is a local minimizer of ( )1 ,P μx  in the limit as μ → +∞ . 

However, the necessity of μ → +∞  is not desirable for practical method for solving 

a SIP based on penalty function minimization.  

In [103], an exact penalty function based on 1L  norm is constructed as an 

alternative 

( ) ( )
( )( )( )
( )( )

11

1

,
ˆ ,

j

j

s

j
s

j

g d
P f

d
μ μ

Ω +=

Ω
=

⎡ ⎤⎣ ⎦
= +

∑ ∫

∑ ∫

x

x

x y y
x x

y
   (3.57) 

where  ( )jΩ x  is a finite set for a x  such that  

i) ( )jΩ ⊆x Y , ( )1 j s≤ ≤ < ∞x , 

ii) ( ), 0g ≥x y , ( )j∀ ∈Ωy x  and ( ), 0g <x y , ( )( )1\ s
j j=∀ ∈ ∪ Ωy Y x , 

iii) ( ) ( )j kΩ ∩Ω =∅x x  if j k≠ , and  

iv) ( )jΩ x  is connected and non-trivial, i.e., ( ) 0
j

dΩ >∫ x y . 

Obviously, ( )jΩ x  is empty if x  is feasible. In principle this is a generalization of 
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the 1L  exact penalty function for SIP, which has the advantage of not assuming a 

finite number of global maximizers of ( )G •  in each iterate. As argued in [103], it is 

essential to determine the normalizing denominator integral to make 1P̂  be an exact 

penalty function.  

However, in practice, the computation efforts involved by accurate evaluation of 

the integrals make 1P̂  less attractive than L∞  penalty functions as shown in the next 

section. Moreover, another disadvantage with this penalty function is it may be 

discontinuous. Examples of SIP problems for which discontinuities may cause 

difficulties can be found in [102,104]. These discontinuities can only occur at 

infeasible points but the consequent invalidity of convergence results for such 

problems makes this penalty functions inadvisable for general SIP problems.  

III.4.1.2 L∞  PENALTY FUNCTIONS 

Exact penalty function for SIP based on L∞  norm does not suffer the 

disadvantage of possible discontinuities at infeasible points. In [93], the exact penalty 

function is presented as  

( ) ( ) ( ), max ,P f gμ μ∞
+∈

⎡ ⎤= + ⎣ ⎦y Y
x x x y     (3.58) 

Similarly as 1P , ( ) ( ),P fμ∞ =x x  if x  is feasible, i.e., ( ), 0g ≤x y . μ  is a penalty 

parameter.  

Practically, we can define  

( ) ( ){ } ( )0, ,gρ ρ= ∈ ≥ − ∩x y Y x y xA A    (3.59) 

where ( ) ( ){ }0  is a local maximizer of ,  over g= ∈x y Y y x y YA  and 0ρ > . 

( ),ρxA  can be expressed as  

( ) ( ) ( ){ }, k k Kρ = ∈x y x xA      (3.60) 

where ( )K x  is a subset of a finite index set of K and ( )ky x  is continuous at x . 

The cardinality of ( )K x  may vary depending on x  and ρ . L∞  norm penalty 

function can be replaced alternatively as  
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( ) ( )
( )

( )( ), max , k

k K
P f gμ μ∞

∈ +
⎡ ⎤= + ⎣ ⎦x

x x x y x    (3.61) 

The computation related to the integration of violated constraints is avoided. 

However, a global maximizer and hence all local maximizers of ( ),g •x  on Y  have 

to be determined. Some other advantages are also presented in [102] with two-

penalty-parameter exact penalty function based on L∞  norm. 

III.4.2 MULTI-LOCAL OPTIMIZATION SUBPROBLEM 

Exact penalty functions have to be evaluated at each iterate and at each trial 

point. The calculation of an L∞  exact penalty function at a point *x  requires the 

solution of the global optimization problem 

( )max ,g
+∈

⎡ ⎤⎣ ⎦y Y
x y .       (3.62) 

In order to ensure convergence under appropriate conditions, all members of the set  

( ) ( ) ( ) ( )* * * *, , max ,g gρ ρ
∈ +

⎧ ⎫⎡ ⎤= ∈ ≥ −⎨ ⎬⎣ ⎦⎩ ⎭y Y
x y x x y x yB M  (3.63) 

must be found for some pre-specified positive ρ , where ( )*xM  is the set of local 

maximizers of ( )*,g x y  over Y . If an 1L  exact penalty functions is employed, 

additional condition ( )*max ,gρ
∈ +

⎡ ⎤> ⎣ ⎦y Y
x y  is needed to ensure convergence.  

The problem (3.63) of finding all the global and near global maximizers is 

referred to as the multi-local optimization problem. However, there does not exist an 

algorithm which is able to detect a global maximizer of an arbitrary continuous 

function [93]. One common method for solving the multi-local optimization problem 

is to find coarse approximations to the local maximizers by comparison of function 

values of ( ),g •x  on a uniform mesh over Y , and  then to refine these 

approximations by an iterative procedure afterwards.  

There are many methods of the computation of the unique local maximizer in a 

specific subregion of Y  if Y  is a one-dimensional set. In case Y  has a dimension 

greater than one, all zeros of ( ),y g∇ •x  in the interior of Y  have to be computed, 
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for example, by means of the BFGS quasi-Newton method, and all maximizers on 

the boundary of Y  have to be specified separately.  

The described ideas for multi-local maximizers includes the risk that not all local 

maximizers and therefore possibly not a true global maximizer are found without 

search more thoroughly parts of Y . The accuracy of local maximizers of ( ),g •x  on 

Y  obtained at an iteration *x  may also give impact on the convergence. For the sake 

of simplicity, it is assumed here that all needed local maximizers are determined with 

sufficient accuracy and that hence algorithms which employ maximizers are always 

implementable in this respect. In the later chapters, these problems are solved 

practically.  

III.4.3 ALGORITHM AND THE IMPLEMENTATION 

In this section conceptual algorithms based on nonlinear programming methods 

are specified for their employment to solve the locally reduced problem from SIP as 

substep (b) in Algorithm 3.2.  

Algorithm 3.3   Conceptual reduction method. For Step (i)，given ix   

(a) Reduce the original SIP locally as  

( )min    
n

f
∈x R

x        (3.64) 

( ). . 0s t G ≤x        (3.65) 

where ( )G x  is either refer to the 1L  norm penalty term in (3.57) as  

( )
( )( )( )
( )( )

1

1

,
j

j

s

j
s

j

g d
G

d

Ω +=

Ω
=

⎡ ⎤⎣ ⎦
=
∑ ∫

∑ ∫

x

x

x y y
x

y
             (3.66) 

or the L∞  norm penalty term in (3.61) as 

( )
( )

( )( )max , k

k K
G g

∈ +
⎡ ⎤= ⎣ ⎦x

x x y x ,    (3.67) 

(b) Set ,0i i=x x  and give ,0iλ . For 1,  ..., ij k=  do (b1)-(b3). 
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(b1) Compute a solution ,i jx  and an optimal multiplier vector ,i j ≥λ 0  for  

( ), 1 , 1,i j i j
xL − −∇ =x λ 0     (3.68) 

( ), 1 0i jG − =x      (3.69) 

where ( ),L x λ  is a Lagrange function 

( ) ( ) ( ), TL f= +x λ x λ G x     (3.70) 

Most straightforwardly, Newton's method can solve the system (3.68-

3.69) by solving the linearized version as below recursively.  

( ) ( ), 1 , 1 , 1 , 1,
Ti j j i j j i j i j

xG L− − − −Δ +∇ Δ = −∇H x x λ x λ  (3.71) 

( ) ( ), 1 , 1i j j i j
x

− −∇ Δ = −G x x G x    (3.72) 

(b2) Compute step lengths, jα  and jβ , for ,i jx  and ,i jλ  respectively.  

(b3) Let , , 1i j i j j
jα−= + Δx x x  and , , 1i j i j j

jβ
−= + Δλ λ λ . 

(c) Set ,1 ii ki+ =x x  and continue with Step (i+1). 

Newton's method in substep (b1) will converge to the solution and the 

convergence will be of order at least two if the linearized system is nonsingular at the 

solution and the initial point is sufficiently close to the solution. In Newton's method, 

the matrix H  used in (3.71) is the Hessian matrix ( )2 ,xL∇ x λ  of the Lagrange 

function (3.70) as  

( ) ( ) ( )2 2 2

1
,

p

x x l x l
l

L f Gλ
=

∇ = ∇ + ∇∑x λ x x .    (3.73) 

However, it is not necessarily appropriate to use Hessian matrix exactly as 

( )2 ,xL∇ x λ . Quasi-Newton approximation to ( )2 ,xL∇ x λ  can be employed to avoid 

complications arisen from second derivative methods but with some loss of 

efficiency. BFGS (Broyden-Fletcher-Goldfarb-Shanno) updating formula is used to 

provide quasi-Newton approximations for ( )2 ,xL∇ x λ  [106,127]. An updated matrix 

+B  is computed to approximate Hessian matrix based on the formula 
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( )( )TT

T T+ = + −
Bd dBγγB B

dγ d Bd .     (3.74) 

where = Δd x  and j=γ γ  

( ) ( ), , , 1 ,, ,j i j i j i j i j
x xL L −= ∇ −∇γ x λ x λ .   (3.75) 

III.5 TRANSFORMATION OF TRANSIENT STABILITY CONSTRAINTS 

As constructed in Chapter II.3, the transient stability constrained OPF problem  

( )0min    ,f x y              (3.76) 

( )0. .    ,s t =g x y 0                 (3.77) 

        ( )0 , ≤H x y 0                  (3.78) 

    ( )( ),k k t ≤U x y 0   t∈T , ck ∈ I   (3.79) 

is a SIP problem due to the dynamic constraints (3.79) in transients. In this thesis, 

local reduction methods for SIP are employed to transform the transient stability 

constrained OPF into traditional OPF with finite-dimensional constraints. 

Suppose only one credible contingency is considered, i.e. superscript k  omitted 

in (3.79), to avoid much cumbersome notation. It is noted that transient stability 

constraint (3.79) with infinite dimension, based on either rotor angle limit as (2.17) 

or PEBS concept as (2.31), is associated to the DAEs (2.11-2.22) describing the 

dynamics in the transients. It is different from the defined form of standard SIP (3.1-

3.2), in which the functional of infinite constraint is explicit. Thus the complexity of 

transient stability constrained OPF is increased due to the implicit representation of 

the infinite constraint in its functional space.  

With ( ) *
0t =x x  at 0t = , ( )tx  can be obtained at t∀ ∈T  by solving the DAEs 

(2.11-2.22) with any suitable numerical integration method such as the implicit 

trapezoidal integration, see Appendix C. Thus for ( )tx , there exists ( )0 , , tφ x y  with 

implicit function theorem satisfying 

( ) ( ) ( )( )0 0 00, , , ,tt t dτ= = + ∫x φ x y x F φ x y y      t∈T   (3.80) 
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After that, the substitution of (3.80) into the infinite constraint (3.79) yields: 

( )( )0 , , ,t ≤U φ x y y 0       (3.81) 

or  

       ( )0 , , t ≤U x y 0        (3.82) 

which is formatted explicitly for t , although (3.81) or (3.82) is not easy to be written 

explicitly in practice.  

III.5.1 1L  NORM LOCAL REDUCTION FOR TRANSIENT STABILITY CONSTRAINTS  

Given a feasible solution ( )* *
0 ,x y  to (3.76)-(3.79), the rewritten infinite 

constraint (3.82) is reduced locally based on 1L  norm as  

( ) ( )* * * *
0 00, , , 0et

i iq u t dt
+

⎡ ⎤= ≤
⎣ ⎦∫x y x y     (3.83) 

where { }iq=Q  and { }iu=U , 1,  ...,  i m= . [ ]+•  is defined as { }max ,0• . m  is 

different depending on the type of transient stability index being adopted. If infinite 

constraint (3.79) is based on rotor angle limit, m  is equal to the number of machines, 

i.e. ng ; whereas based on PEBS concept, m  is one.  
  

Figure III.4 Intuitionistic explanation for 1L  norm local reduction 

q2

q1

q=q1+q2

ui

Time
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Here, interpretation is given by taking the index based on rotor angle limit as an 

example. The rotor angle of each generator with respect to the COI must keep below 

the allowed upper limit maxδ . Equivalently, this stability requirement can be fulfilled 

by reducing the shadowed area q , as shown in Figure III.4, to zero. The area, which 

can be composed of separated sub-areas like 1q  and 2q  as shown in Figure III.4, is 

enclosed by the swing curve and the allowed threshold maxδ . This equivalence is 

represented mathematically as the integration on the time intervals corresponding to 

the swing curve beyond the threshold maxδ  being zero as (3.83). 

Generally, in power systems the original transient stability constraint is not a 

hard constraint. That is to say, some tolerant violations in transients can be accepted 

if the system is able to reach a secure steady-state operation condition finally. Thus, a 

slightly positive tolerance ρ  rather than 0 is introduced to relax the strictness of 

(3.83) as 

( ) ( )* * * *
0 00, , , 0et

i iq u t dt ρ
+

⎡ ⎤= − ≤
⎣ ⎦∫x y x y  1,  ...,  i m=  (3.84) 

From the technical and practical aspects, this relaxation might improve the 

convergence property of the optimization [93]. 

III.5.2 L∞  NORM LOCAL REDUCTION FOR TRANSIENT STABILITY CONSTRAINTS 

Let ( )* *
0 ,x y  denote a feasible solution to problem (3.76)-(3.79). For infinite 

constraint iu , the i -th element of vector U  in (3.82), we define  

( ) ( ){ } ( )* * * * * *
0 0 0 0, , , ,i i iE t u t Eρ= ∈ − > ∩x y T x y 0 x y   (3.85) 

where 

( ) { }* *
0 0 ,  is a local maximizer of  on i iE t t u= ∈x y T T .  (3.86) 

For the same reason as given in section III.5.1, all local maximizers of ( )* *
0 , ,iu tx y  

that exceed a slightly positive tolerance ρ  rather than 0 are focused on in (3.85). 

Thus ( )* *
0 ,iE x y  is the set of active points. It is composed of the local maximizers 

for the violated constraint iu  on the time domain T .  
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As the illustration in Figure III.5, assume ( )* *
0 ,iE x y  is expressed as  

( ) ( ) ( ){ }* * * * * *
0 0 0, , ,i kE t k K= ∈x y x y x y        (3.87) 

where ( )* *
0 ,K x y  is a subset of a finite index set of K  and ( )* *

0 ,kt x y  is continuous 

at ( )* *
0 ,x y . The cardinality of ( )* *

0 ,K x y  may vary depending on ( )* *
0 ,x y . Strictly, 

( )* *
0 ,kt x y  and ( )* *

0 ,K x y  also depend on ρ  although this dependence is implicit. 

After that, the semi-infinite constraints (3.79) can be replaced by  

( )
( )

( )( )
*

* * * *
0 0*

0

* *
0

,
0,, max , ,i ki

k K
q tu

+∈
≤= ⎡ ⎤

⎣ ⎦yx
x y x yx y     (3.88) 

where the tolerance ρ  has been taken into account in iu  in (3.85). The expression 

of ( )* *
0 ,iq x y  is the infinity norm of the i -th infinite constraint of inequation (3.79) 

violations. Tacitly ( )* *
0 ,iq x y  is with finite dimension because the index set ( )*

0K x  is 

finite. The practical implementation to obtain the multi-local maximizers in (3.88) is 

described in the next chapter.  
 

t3(x
*)

t2(x
*)

t1(x
*)

*

*

*

ui

Time

 

Figure III.5 Intuitionistic explanation for L∞  norm local reduction 
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III.5.3 REFORMULATED TRANSIENT STABILITY CONSTRAINED OPF 

Using local reduction methods for SIP, transient stability constrained OPF can 

be reformulated as the following traditional NLP problem: 

( )0min    ,f x y              (3.89) 

( )0. .    ,s t =g x y 0                 (3.90) 

        ( )0 , ≤H x y 0                  (3.91) 

     ( )0 ,k k ≤Q x y 0  k∈C     (3.92) 

where : x y un n n+ →Q R R  in (3.92) can be formatted as either (3.84) by 1L  norm or 

(3.88) by L∞  norm. Obviously, the equivalent programming problem (3.89-3.92) has 

a finite number of optimal variables and a finite number of constraints. The 

replacement of constraint (3.92) for the original (3.79) allows extending theory and 

methods of standard finite programming to the original SIP problem. The solution 

implementation for this problem is presented in Chapter IV. It is noted that the 

dimension of finite constraints Q  in (3.92) is equal to un , the dimension of the 

original infinite constraints U  in (3.79). Thus the total dimension of the 

optimization is kept lower than that of discretization methods, such as in [12,16]. 

       In this study, the research is focused on the modelling of transient stability 

constrained OPF. The higher order generator models and more complicated 

controllers, such as AVR, are not included in the framework of transient stability 

constrained OPF although there is no theoretical limitation for such extension. 

Therefore, optimal solutions obtained in this framework could be somewhat 

conservative because some of the insecure operating points detected could be secure 

in practice due to the fast actions of controllers. 
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III.6 SUMMARY 

The general scheme to solve SIP problems is introduced in this chapter and 

extended to the solution of transient stability constrained OPF. 

Preliminaries of SIP problems are introduced. The extension of KKT optimality 

conditions of NLP is generalized to SIP. After that, general scheme is given to solve 

the SIP numerically. By using discretization and local reduction methods, SIP 

problems are recast into equivalent nonlinear programming problems with a finite 

number of constraints under appropriate assumptions. Conceptual algorithms are 

described. The properties of the two numerical methods are illustrated and compared.  

Transient stability constrains are local reduced by 1L  and L∞  norm local 

reduction methods to finite-dimensional constraints. Thus the original transient 

stability constrained OPF is converted into an equivalent NLP problem with finitely 

many variables and finitely many constraints. The transformation makes it solvable 

by conventional OPF methods. 
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Chapter IV IMPLEMENTATION OF TRANSIENT STABILITY 

CONSTRAINED OPF 

 

IV.1 INTRODUCTION 

With the use of local reduction based SIP methods, transient stability 

constrained OPF can be equivalently formulated as the following nonlinear program: 

( )0min    ,f x y              (4.1) 

( )0. .    ,s t =g x y 0                 (4.2) 

        ( )0 , ≤H x y 0                  (4.3) 

     ( )0 , ≤Q x y 0       (4.4) 

where : x y Qn n n+ →Q R R  in (4.4) represents transient stability constraints defined 

based on either rotor angle limit as in (2.17) or PEBS concept as in (2.31). No matter 

it is formatted by 1L  norm as in (3.84) or by L∞  norm as in (3.88), the equivalent 

nonlinear programming problem (4.1-4.4) has a finite number of optimal variables 

and a finite number of constraints. Thus it is possible to extend theory and methods 

of standard finite programming to the original SIP problem. 

Generally, OPF problem is non-convex and there are multiple local minima in 

the feasible region, and these different local minima are reached from different initial 

points. The non-convexity may even prevent a particular method of solution from 

reaching a true local or global minimum. Many attempts to overcome this problem 

have been published, employing the various optimization techniques, traditionally, 

such as nonlinear programming (NLP) [73,110,111], successive linear programming 

(SLP) [28,112], or successive quadratic programming (SQP) algorithms [113-114], 

etc. The development of numerical analysis techniques and programming methods, 

particularly interior point methods, allows large-scale problems in power systems to 

be solved with reasonable computational effort.  
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Since Karmarkar's fundamental paper of interior point method appeared in 1984 

[115], many interior point methods for linear programming and quadratic 

programming have been proposed, and also extended for nonlinear programming. 

Extensive numerical computation has shown that the primal-dual path-following 

method is one of the best that is known up to now [116]. In essence, the theoretical 

foundation for the primal-dual path-following method comprises three crucial 

building blocks: Newton's method for solving nonlinear equations and hence for 

unconstrained optimization, Lagrange's method for optimization with equality 

constraints, and logarithmic barrier method for optimization with inequality 

constraints [117-126].  

In this chapter, a direct primal-dual nonlinear interior point method is employed 

to solve the local reduced SIP programming problem of OPF.  

IV.2 DIRECT NONLINEAR PRIMAL-DUAL INTERIOR POINT METHOD 

By the introduction of slack variable vectors Hn∈u R  and Qn∈v R , where 

,  ≥u v 0 , to (4.3) and (4.4), the previous inequation constraints in the nonlinear 

programming problem (4.1-4.4) can be converted to the following equation 

constraints 

( )0 , + =H x y u 0                  (4.5) 

( )0 , + =Q x y v 0                                    (4.6) 

The nonnegative feature of the slack variables can be eliminated by the 

employment of the logarithmic barrier method. The Lagrange function for the 

nonlinear programming problem (4.1-4.2) together with (4.5-4.6) can then be 

obtained as following by the introduction of Lagrangian multiplier to equation (4.2) 

and (4.5-4.6). 

( ) ( ) ( )( )0 0 0, , ,T T
g uL f= − − +x y y g x y y H x y u  

( )( )0 , ln lnT
v j j

j j
u vμ μ− + − −∑ ∑y Q x y v                     (4.7) 



THE HONG KONG POLYTECHNIC UNIVERSITY 

  59

where gy , uy  and vy  are the Lagrangian multiplier vectors, uy , v ≤y 0 . μ  is the 

barrier parameter and 0μ ≥ . Based on the Fiacco and McCormick's theorem [127], 

μ  is enforced to decrease towards zero as the iterations progress.  

Based on the Karush-Kuhn-Tucker optimality condition for a stationary point 

( )0,x y , a set of nonlinear equations can be derived from (4.7) as  

( ) ( ) ( ) ( )
0 0 0 0 00 0 0 0 , vf= ∇ −∇ −∇ −∇ =x x x g x u xL x , y g x , y y H x , y y Q x y y 0  

(4.8)  

( ) ( ) ( ) ( )0 0 0 0 , vf= ∇ −∇ −∇ −∇ =y y y g y u yL x , y g x , y y H x , y y Q x y y 0  

(4.9) 

( )0 ,= =
gyL g x y 0                                             (4.10) 

( )0= + =
uyL H x , y u 0                         (4.11) 

( )0= + =
vyL Q x , y v 0                                           (4.12) 

μ= + =u u u uL UY e e 0                                           (4.13) 

μ= + =v v v vL VY e e 0                          (4.14) 

where , , , and u vU V Y Y  are diagonal matrices with the element , , , and i i ui viu v y y . 

[ ]1,  ..., 1 HT n= ∈ue R  and [ ]1,  ..., 1 QT n= ∈ve R . ( )0f∇α x , y , ( )0∇αg x , y , 

( )0∇αH x , y  and ( )0 ,∇αQ x y  are the sub-Jacobian matrices of ( )0f x , y , ( )0g x , y , 

( )0H x , y  and ( )0 ,Q x y  respectively, { }0∀ ∈α x , y .  

By applying Newton's method to the KKT condition (4.8-4.14), the 

corresponding set of linear correction equation can be derived in sequence as  

( ) ( ) ( )
0 0 0 00 0 0 0,− = + −∇ −∇ −∇x 0 11 12 x g x u x vL a Δx a Δy g x , y Δy H x , y Δy Q x y Δy  

(4.15) 

( ) ( ) ( )0 0 0 0 ,− = + −∇ −∇ −∇y0 21 22 y g y u y vL a Δx a Δy g x , y Δy H x , y Δy Q x y Δy    

(4.16) 

( ) ( )
0 0 0 0, ,− = −∇ −∇

gy 0 x yL g x y Δx g x y Δy                   (4.17) 
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( ) ( )
0 0 0− = ∇ +∇ +

uy 0 x yL H x , y Δx H x, y Δy Δu       (4.18)  

( ) ( )
0 0 0 0− = ∇ +∇ +

vy 0 x yL Q x , y Δx Q x , y Δy Δv                (4.19) 

ΔuYΔyUL uuu0 +=−                                     (4.20) 

− = +v0 v vL VΔy Y Δv       (4.21) 

where 
0x 0L , y0L , 0yg

L , 0yu
L , 

vy 0L , u0L  and v0L  are the values at a point of 

expansion and denote the residuals of equations (4.8-4.14). In (4.15-4.16), 

( ) ( ) ( ) ( )
0 0 0 0 0 0 0 00 0 0 0f= ∇ −∇ −∇ −∇2 2 2 2

11 x x x x g x x u x x va x , y g x , y y H x , y y Q x , y y    

           (4.22) 

( ) ( ) ( ) ( )
0 0 0 00 0 0 0f= ∇ −∇ −∇ −∇2 2 2 2

12 x y x y g x y u x y va x , y g x , y y H x , y y Q x , y y   

(4.23) 

( ) ( ) ( ) ( )0 0 0 0f= ∇ −∇ −∇ −∇2 2 2 2
22 yy yy g yy u yy va x , y g x , y y H x , y y Q x , y y    

(4.24) 

1221 aa =                    (4.25)        

where ( )2
0f∇αβ x , y , ( )0 ∇2

αβ g x , y , ( )0∇2
αβH x , y  and ( )0 ,∇2

αβQ x y  are sub-

Hessian matrices of ( )0f x , y , ( )0g x , y , ( )0H x , y  and ( )0 ,Q x y  respectively, 

{ }0,∀ ∈α β x , y .  

The correction equations can be reduced by eliminating ( Δu , Δv , uΔy , vΔy ) to 

handle inequality constraints efficiently. According to (4.18-4.21),  

( ) ( )
0 0 0 0= − −∇ −∇

uy 0 x yΔu L H x , y Δx H x , y Δy               (4.26) 

( ) ( )
0 0 0 0= − −∇ −∇

vy 0 x yΔv L Q x , y Δx Q x , y Δy                (4.27) 

( ) ( )( )0

1
0 0 0

− ⎡ ⎤= − − +∇ +∇⎣ ⎦uu u0 u y 0 x yΔy U L Y L H x , y Δx H x , y Δy  (4.28) 

( ) ( )( )0

1
0 0 0

− ⎡ ⎤= − − +∇ +∇⎣ ⎦vv v0 v y 0 x yΔy V L Y L Q x , y Δx Q x , y Δy     (4.29) 

After that, the reduced correction equations are obtained as  
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( )
( )

0

0

11 12
0 1

21 22 2

T

T

g

⎡ ⎤− ∇⎢ ⎥ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− ∇ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ −−∇ −∇ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

g

x

y

y 0x y

a a g
Δx B

a a g Δy B
Δy Lg g 0

  (4.30) 

where 

( ) ( ) ( ) ( )0 0 0 0

1 1
11 11

T T− −= − ∇ ∇ − ∇ ∇x u x x v xa a H U Y H Q V Y Q  (4.31) 

( ) ( ) ( ) ( )0 0

1 1
12 12

T T− −= − ∇ ∇ − ∇ ∇x u y x v ya a H U Y H Q V Y Q  (4.32) 

1221 aa =         (4.33) 

( ) ( ) ( ) ( )1 1
22 22

T T− −= − ∇ ∇ − ∇ ∇y u y y v ya a H U Y H Q V Y Q  (4.34) 

( ) ( )0 0 0

1 1
1 0

− −⎡ ⎤ ⎡ ⎤= − −∇ − −∇ −⎣ ⎦ ⎣ ⎦u vx 0 x u0 u y 0 x v0 v y 0B L H U L Y L Q V L Y L  (4.35) 

( ) ( )1 1
2 0 0 0

− −⎡ ⎤ ⎡ ⎤= − −∇ − −∇ −⎣ ⎦ ⎣ ⎦u vy y u0 u y 0 y v0 v y 0B L H U L Y L Q V L Y L    (4.36) 

It is obvious that the coefficient matrix of the reduced correction equation (4.30) 

is symmetrical. Variable inequality constraints including the functional inequality are 

eliminated. Thus the size of (4.30), which is determined only by the number of 

variables and equality constraints, is much smaller than that of (4.15-4.21). 

Traditionally, the corrections at each iteration can thus be readily obtained for 

the primal variables and dual variables. However, the calculation of the Jacobian and 

Hessian matrices is fairly complex due to the introduction of transient stability 

constraints (4.4) and is the main obstacle in solving the transient stability constrained 

OPF effectively.        

IV.3 JACOBIAN AND HESSIAN MATRICES 

The calculation of the Jacobian and Hessian matrices of transient stability 

constraints (4.4) is based on which norm the local reduction is taken.  

IV.3.1 LOCAL REDUCTION BASED ON 1L  NORM 

Based on 1L  norm local reduction as addressed in III.5.1, the semi-infinite 
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constraint of transient stability (4.4) is represented as  

( ) ( )0 00, , , 0et
i iq u t dt

+
⎡ ⎤= ≤⎣ ⎦∫x y x y ,   iq∀ ∈Q    (4.37) 

The elements in Jacobian and Hessian matrices of transient stability constraints (4.37) 

can be represented respectively as 

( ){ }0
0

max 0, , ,
e iti

u tq
dt

α α

∂∂
=

∂ ∂∫
x y

                        (4.38) 

( ){ }22
0

0

max 0, , ,
e iti u tq

dt
α β α β

∂∂
=

∂ ∂ ∂ ∂∫
x y

    (4.39) 

where α  and β  are any elements in the vector 0x  or y . Unless the transient 

stability constraints are satisfied in the functional space T , i.e. ( )0, , 0iu t ≤x y  and 

0iq
α
∂

=
∂ , 

2
0iq

α β
∂

=
∂ ∂ , the difficulty in calculating (4.38-4.39) lies in how to 

determine the first and second partial derivative of ( )0, ,iu tx y  with respect to α  

and β . Based on the chain rule for compound function and implicit derivative 

techniques, the derivations of ( )0, ,iu tx y  are formatted as  

i i t

t

u u
α α
∂ ∂ ∂

= ⋅
∂ ∂ ∂

x
x                                       (4.40) 

2 2 2

2
i i t t i t

tt

u u u
α β β α α β
∂ ∂ ∂ ∂ ∂ ∂

= ⋅ ⋅ + ⋅
∂ ∂ ∂ ∂ ∂ ∂ ∂∂

x x x
xx                      (4.41) 

Apparently, it is convenient to obtain i

t

u∂
∂ x  and 

2

2
i

t

u∂

∂x
 in (4.40) and (4.41) 

directly in that ( ) ( )( )0, , ,i iu t u t≡x y x y  is an explicit function of ( )tx , formatted 

compactly  as tx . However, ( )0, ,t t=x φ x y , as defined in (3.80), is not an explicit 

function of either 0x  or y , and the calculation of t

α
∂
∂
x

 and 
2

t

α β
∂
∂ ∂

x  needs further 

derivation. 

By differentiating (2.11) with respect to α , we obtain: 
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t t

t

d
dt α α α

∂ ∂∂ ∂⎛ ⎞ = ⋅ +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

x xF F
x

                              (4.42) 

where 
t

∂
∂
F
x

 and 
α
∂
∂
F  can be calculated directly in that ( )( ),tF x y  is an explicit 

function of tx  and y . Thus it is recognized that (4.42) is a set of ordinary time-

varying differential equations with t

α
∂
∂
x

 as variables with initial value  

00 1,  =
0,  others

ii xx α
α

⎧∂
= ⎨

∂ ⎩
.      (4.43) 

Furthermore, by differentiating (4.42) with respect to β , we obtain: 

2 22 2

2
t t t t

tt

d
dt α β β α α β α β
⎛ ⎞∂ ∂ ∂ ∂∂ ∂ ∂

= ⋅ ⋅ + ⋅ +⎜ ⎟
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂⎝ ⎠

x x x xF F F
xx

  (4.44) 

Using the same tricks as in (4.42), 
t

∂
∂

F
x , 

2

2
t

∂
∂

F
x

 and 
2

α β
∂
∂ ∂

F
 can be calculated 

directly, and thus, (4.44) is a set of ordinary time-varying differential equations with 
2

t

α β
∂
∂ ∂

x
 as variables with initial value  

2
0 0ix

α β
∂

=
∂ ∂        (4.45) 

Afterwards the time dependent t

α
∂
∂
x

 and 
2

t

α β
∂
∂ ∂

x
 can be solved by integrating the 

ordinary differential equations (4.44) and (4.45), using the Runge-Kutta method for 

example. See in Appendix C. 

Finally, iq
α

∂
∂  and 

2
iq

α β
∂
∂ ∂  in (4.42) and (4.44) can be obtained by numerical 

integration methods such as the trapezoidal rule, and the Jacobian and Hessian 

matrices of transient stability constraints ( )0 ,Q x y  is now computable. 

IV.3.2 LOCAL REDUCTION BASED ON L∞  NORM 

Based on L∞  norm local reduction as addressed in III.5.2, the semi-infinite 
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constraint of transient stability (4.4) is represented as 

( )
( )

( )( )
0

0 0 0
,

0,, max , ,i kik K
q tu

+∈
≤= ⎡ ⎤⎣ ⎦yx

x y x yx y , iq∀ ∈Q   (4.46) 

Before the calculation of the Jacobian and Hessian matrices of transient stability 

constraints (4.46), it is noted that the global or near global maximizer should be 

detected among all the local maximizers of iu , which is referred to as a multi-local 

optimization problem.  

For given ( )0 ,x y , all zeros of idu
dt

 in the interior of T  have to be computed 

together with all maximizers on the boundary of T . Thanks to one-dimensional 

characteristic of the functional space T , in principal, the global maximizers is able to 

be detected coarsely by comparison of function values of iu  on a uniform mesh over 

T  composed of step by step integration of (2.11) with appropriate stepsize. However, 

practically, the mesh has to be subtle enough to prevent omitting the global 

maximizer, which will increase computation efforts.   

In this thesis, the detection of global maximizer is accomplished by function 

value comparison among all zeros of idu
dt

 in the interior of T  and all maximizers on 

the boundary of T . Take the transient stability constraints defined in (2.17) as an 

example, for generator i , all the local maximizers satisfy 

0i
i COI

dh
dt

ω ω= − =       (4.47) 

and 

 
1

1

ng

i i
i

COI ng

i
i

M

M

ω
ω =

=

=
∑

∑
      (4.48) 

It is noted that the absolute value of idu
dt

 could be much larger than zero, except 
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at zeros of idu
dt

, if iu  is steep over T . Thus merely based on the value of idu
dt

 is not 

a reliable criterion to determine zeros of idu
dt

.  

Theorem 4.1   Intermediate Value Theorem 

Suppose an interval [ ],I a b R= ∈ , and :f I R→  is a continuous function. For a 

real value σ , there exist ( ),c a b∈  satisfying ( )f c σ=  if ( ) ( )f a f bσ< <  or 

( ) ( )f b f aσ< < . 

 ( )
*

*,
0

i

t t

du t

dt
=

=
x

 ( )
1

*,
0

l

i

t t

du t

dt
+=

<
x

 ( )*,
0

l

i

t t

du t

dt
=

>
x

t * t l+1t l T

 

ui

 

Figure IV.1 Intuitionistic explanation for local maximizer detection 

 

According to intermediate value theorem, zeros of 
( )*,idu t

dt

x
 are able to be 

positioned between lt  and 1lt +  if 
( )*,

l

i

t t

du t

dt
=

x
 and 

( )
1

*,

l

i

t t

du t

dt
+=

x
 have opposite 

signs as illustrated in Figure IV.1, i.e. 
( ) ( )

1

* *, ,
0

l l

i i

t t t t

du t du t

dt dt
+= =

⋅ <
x x

. After 
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that, the local maximizer *t  is approximated by the larger based on the comparison 

between ( )*, l
iu tx  and ( )* 1, l

iu t +x  if at least one of them is positive, which means 

the relative constraint is violated; otherwise the local maximizer of ( )*,iu tx  can 

only be positioned approximately by reducing the distance between lt  and 1lt + . 

These approximations can be refined by iterative procedures afterwards if higher 

accuracy is needed. If ( )*,iu tx  is nearly constant over the mesh in T , then most 

function evaluations will be redundant. Larger stepsize can be used to reduce the 

redundant computation. 

Now that the global maximizer of iu  is able to be detected, implicit derivative 

techniques employed in IV.3.1 can also be used here to compute the derivatives iq
α
∂
∂

 

and 
2

iq
α β
∂
∂ ∂

. Finally, the Jacobian and Hessian matrices of transient stability 

constraints ( )0 ,Q x y  is computable. 

IV.4 OVERALL IMPLEMENTATION OF THE ALGORITHM 

The overall implementation of the primal-dual interior point method for the 

transient stability constrained OPF is as follows: 

a) Initialization: input system parameters, the initial value of primal-dual 

variables, required convergence accuracy 1ε  and 2ε , for complementary gap 

gapG  and the maximal mismatch of power flow maxM  respectively, etc. Set 

the iteration counter 0k = , the maximal iteration number and damping factor 

( )0,1σ ∈ .  Here, complementary gap  

 
1 1

QH nn

gap ui i vi i
i i

G y u y v
= =

= − −∑ ∑           (4.49)  

  is employed instead of duality gap. The reason is that the value of duality 

gap may not be positive because the primal and dual variables are not 

feasible [120]. 
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b) Test whether transient stability constraints, formulated based on either rotor 

angle limit or PEBS concept, are satisfied. If yes, set FLAG=0, and go to next 

step; otherwise, set FLAG=1 and jump to step (e). 

c) Check whether convergence precisions are satisfied. Compute gapG and 

maxM . If both gapG  and maxM  are satisfied, then the output optimal solution 

is obtained and go to the final step (i); otherwise, go to the next step. 

d) Compute the barrier penalty parameter  

 gap

H Q

G
n n
σ

μ =
+

       (4.50) 

e) If FLAG=1, locally reduce the original SIP problem based on 1L  or L∞  norm 

and calculate the Jacobian and Hessian matrices of transient stability 

constraints Q  according to the proposed method in IV. 3; otherwise, if 

FLAG=0, set the Jacobian and Hessian matrices of Q  to be zero. 

f) Formulate the linear correction equations (4.30). Solve the correction 

equations, obtain the correction direction 0Δx , Δy and gΔy . Substitute into 

(4.26-4.29), Δu , Δv , uΔy  and vΔy  are obtained.  

g) Determine the step lengths pstep  and dstep  for the primal and dual variables 

respectively. 

0.9995 1.0, ,i
p ii

i

step min min  if  <0α α
α

⎧ ⎫⎧ ⎫−⎪ ⎪= Δ⎨ ⎨ ⎬⎬Δ⎪ ⎪⎩ ⎭⎩ ⎭
, 0 , , ,α ∈ x y u v  (4.51) 

0.9995 1.0, ,i
d ii

i

step min min  if  <0β β
β

⎧ ⎫⎧ ⎫−⎪ ⎪= Δ⎨ ⎨ ⎬⎬Δ⎪ ⎪⎩ ⎭⎩ ⎭
, ,u vβ ∈ y y        (4.52)        

The constant, 0.9995, is chosen to prevent nonnegative variables, u  and v , 

from being zero. Because of this feature, the logarithmic barrier functions are 

continuous and differentiable. Moreover, during the algorithm, there is no 

need to evaluate any barrier function, ( )ln • . 



THE HONG KONG POLYTECHNIC UNIVERSITY 

  68

h) Update primal and dual variables 

( ) ( ) ( )1
0 0 0

k k k

pstep

+ Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + ⋅
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x x
y y y
u u u
v v v

                    (4.53) 

   

( ) ( ) ( )1k k k
g g g

d

v v v

step

+ Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= + ⋅ Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u u u

y y y

y y y
y y y

      (4.54)  

 Set 1k k= + , jump back to step (b).    

i) Output the optimal solution and stop. 

It is noted that Newton based method can only converge to a local minimal 

solution. Starting from different initial points, for example, as 0
1x  and 0

2x  shown in 

Fig. IV.2, Newton method may converge to different local optimal solutions *x  and 
**x  respectively, which may not be the global optimal solution. Therefore, global 

solution should be found by using advanced global programming methods [128] or 

triggering the process from different starting points in case more economical 

solutions are expected; however, this is beyond the scope of this research. 
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Figure IV.2 Optimal solutions obtained from different staring points 
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IV.5 IMPROVED BFGS METHOD 

Most often, Hessian matrix in Newton's method is not easy to derive. Its 

computation becomes much more difficult for semi-infinite constraints for transient 

stability due to the involvement of complicated implicit function relationships for the 

transcribed infinite dimensional constraints based on local reduction methods. 

In Newton's method a quadratic approximation is used instead of a linear 

approximation of the function ( )F x . The next approximate solution is obtained at a 

point that minimizes the quadratic function 

( ) ( ) ( )1
1
2

T T
k k k k k k k k kF F F+ = + Δ = + Δ + Δ Δx x x x g x x H x      (4.55)  

Hence, the obtained sequence is  

1
1

T
k k k k

−
+ = −x x H g                                      (4.56) 

which needs the calculation of Jacobian matrix kg  and Hessian matrix kH . 

To avoid the complex derivation of H , the idea of quasi-Newton methods can 

be adopted to update an approximation of H  as the iteration progresses. Suppose  

= +H C A        (4.57) 

where C  is the computed part and A is the approximated part. Generally, C  is 

much easier to be obtained than A . Thus, quasi-Newton methods tend to exploit this 

structure by updating A  only [129]. Hence,  

+ + += +H C A        (4.58) 

the updated Hessian matrix is approximated by the combination of the exact 

computation of the computed part C  and approximated part A . 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [106,129] is a kind of 

quasi-Newton method with superlinear convergence. Different from the traditional 

update for the whole Hessian matrix by BFGS, here, we adopt a special case of a 

result from [130] in the BFGS formulation, and name it as the improved BFGS 

method. Only the approximated part A  of Hessian matrix is calculated as  
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T T
k k c k k c

c T T
k k k c k

+ = + −
γ γ A d d A

A A
d γ d A d

     (4.59) 

where 

1k k k+= −d x x         (4.60) 

1k k k+= −γ g g             (4.61) 

The quasi-Newton iteration defined by (4.59) exists and converges superlinearly to 
*x . This result is given as theorem 4.3.2 in [129]. 

Generally, quasi-Newton method is to approximate the true Hessian matrix H  

by updating an approximated matrix from iteration to iteration incorporating the most 

recent gradient information. Since only the approximated part of the true Hessian 

matrix is updated by the improved BFGS method, more information of the true 

Hessian matrix is preserved. As a result, the final approximated Hessian matrix for 

the whole programming is remarkably closer to the true one than that by traditional 

BFGS method. Therefore, the performance of the programming will be better than 

the traditional ones. 

In the OPF model proposed in this thesis, obviously, the Hessian matrix for 

traditional OPF problem is much easier to compute than the one with transient 

stability constraints introduced. Thus, the accurate Hessian matrix for the 

conventional programming (4.1-4.3) is computed directly as C ; whilst the Hessian 

matrix related with transient stability constraint (4.4) is approximated as A . In other 

words, the sum of C  and A  would be the Hessian matrix for the whole 

programming problem (4.1-4.4) if A  is close enough to the true one. 

IV.6 MEASURES TO IMPROVE COMPUTATION EFFICIENCY 

The computational burden in the proposed method is much heavier than the 

conventional OPF due to the involvement of transient stability constraints. It is very 

necessary to improve the efficiency and reduce the computational efforts for practical 

use of the proposed method. The semi-infinite transient stability constraints are 
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required to be satisfied in the study period ( ]0, et . The following two remarks can be 

drawn:  

1) Let 1t , ( ]2 0, et t∈ , and 1 2t t> . If the system fails to satisfy transient stability 

constraints in ( ]20,t , which means that there exist ( )( ), 0iu t >x y , iu ∈U , 

( ]20,t t∈  as in (3.79), then the system fails to satisfy transient stability 

constraints in ( ]10 , t  as well, which means that ( )( ), 0iu t >x y , ( ]10,t t∈ . 

2) Discretize the study time interval ( ]0, et into a time sequence 

{ }1 2, ,..., ntT T T=T , (0,i iT t= ⎤⎦ , with step length hΔ , where i jt t<  and 

0 i j nt< < ≤ . If the system satisfies transient stability constraints in 1iT − , 

but not satisfies in iT , which means ( )( ), 0iu t ≤x y , 1it T −∀ ∈  and 

( )( ), 0iu t >x y , it T∈ , then we define the constraints in the time interval 

iT  as the most effective section of transient stability constraints. 

te
ti-1

u

ti+λ

hλΔ

tti
tc  

 

Figure IV.3 Intuitionistic explanation of transient stability constraints 

By replacing the transient stability constraints in its whole functional space with 

its most effective section, the computation burden can be reduced considerably 

during the optimization process since it is not necessary to take the overall transient 
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behaviour in ntT  into account if transient instability occurs at i et t t= < . However, in 

order to improve the convergence of the optimization, it would be better to 

reasonably expand the most effective section to strengthen the transient stability 

constraints. As illustrated in Figure IV.2, λ  steps were extended after the time 

interval iT  which is the most effective section of transient stability constraints.  

Since only the most effective section iT λ+  of transient stability constraints is 

introduced in the optimization, the computation efforts are reduced considerably. 

However, it should be noted that the locally reduced semi-infinite constraints may 

vary from iteration to iteration in the optimization generally. Therefore, it is 

necessary to determine whether and when the instability will occur in each iterate. 

Based on the numerical test results, the instability instant it , the first time that the 

transient stability constraints are violated, is found to move toward et  gradually with 

the optimization process progressing. This indicates the system security for a given 

contingency has been improved to cover the whole period ( ]0, et  associated with the 

optimization procedure. 

IV.7 SUMMARY 

This chapter deals with the implementation of solving transient stability 

constrained OPF.  

The direct nonlinear primal-dual interior point method is employed to solve the 

locally reduce SIP problem. The theoretical difficulties in forming the Jacobian and 

Hessian matrices of the transient stability constraints are overcome using implicit 

relationship between the transient stability constraints and the DAEs for the dynamic 

performance. In the L∞  norm local reduction, the multi-local maximizers are easily 

detected by intermediate value theorem. After that, the overall algorithm is presented.  

Moreover, an improved BFGS method, a quasi-Newton method with superlinear 

convergence, is exploited to avoid the complicated derivation of Hessian matrix. The 

Hessian matrix is splitting into two parts: one is easier to obtain exactly for 
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conventional OPF and the other is more difficult to derive for transient stability 

constraints. Only the difficult part is approximated by BFGS updating.  

Finally, a new concept referred as "the most effective section" of transient 

stability constraints is proposed to alleviate the huge computational efforts and 

improve the convergence of the optimization calculation. 
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Chapter V CALCULATION OF AVAILABLE TRANSFER 

CAPABILITY 

 

In this chapter, the calculation of available transfer capability (ATC) is 

investigated as an application of transient stability constrained OPF. 

V.1 INTRODUCTION 

ATC is not only a technical index for the safe operation of power grid, but also a 

market signal that reflects the capability of more commercial activities between 

interconnected transmission networks in power market as well. Although earlier 

study of transfer capability could be traced back to decades ago, such as in [17], the 

demand and application of ATC calculation did not attract researchers' attention until 

the electric industry started deregulation and open access. In US, FERC mandated 

the order 888 and 889 in 1996, which claim that the public utility had to open their 

transmission grid for market participants and required that the ATC information of 

the transmission networks should be calculated and posted on Open Access Same-

time Information System (OASIS). Shortly later in the same year, North America 

Electric Reliability Council (NERC) presents a comprehensive definition for ATC in 

[131] at the first time. After that, a framework for ATC definition and evaluation is 

established for interconnected electric network in North America [132]. The 

calculation of ATC is employed practically in North America from then on [133].   

According to NERC's definition, ATC is the transfer capability remaining in the 

physical transmission network for further commercial activity over and above 

already committed uses [132]. Numerically, ATC is the transfer capability deduced 

from the Total Transfer Capability (TTC) less the Transmission Margin (TM) and 

the sum of existing transmission commitments (ETC) as  

ATC TTC ETC TM= − −      (5.1) 
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Particularly, TTC is defined as the amount of electric power that can be 

transferred over a specific interface or a corridor of the interconnected transmission 

network whilst all the reliability conditions are satisfied. TM is defined as the 

amount of transmission transfer capability reserved for the uncertainties in the 

system operation. It is composed of Transmission Reliability Margin (TRM) and 

Capacity Benefit Margin (CBM). TRM is defined as that amount of transmission 

transfer capability necessary to ensure that the interconnected network is secure 

under a reasonable range of uncertainties in system conditions. CBM is defined as 

that amount of transmission transfer capability reserved by load serving entities to 

ensure access to generation from interconnected systems to meet generation 

reliability requirements. It is recognized that different transmission systems, such as 

individual systems, power pools, sub-regions and regions, identify their different 

TRM and CBM procedures used to establish transfer margins as necessary. Without 

the consideration of TM, the value of ATC is the TTC less the basic case power flow. 

As a result, the calculation of TTC will be focused in this thesis to determine ATCs 

in interconnected transmission networks.  

The definition of TTC between any two areas or across particular paths or 

interfaces is direction specific. TTC is the amount of electric power that can be 

transferred over the interconnected transmission network in a reliable manner. For 

existing or planned system configurations with normal (pre-contingency) operating 

procedures in effect, all facility loadings are required to be within normal ratings and 

all voltages within normal limits. The electric systems should be capable of 

absorbing the dynamic power swings, and remaining stable, following a disturbance 

that results in the loss of any single electric system element, such as a transmission 

line, transformer, or generating unit. Depending on the variation in operation 

conditions, the most stringent operation limits may shift among thermal, voltage and 

transient stability limits over time. Nevertheless, the determination of TTC has to 

respect to the strictest of them. Thus the calculation of ATC can be formulated as an 

OPF problem with the objective to maximize the transfer capability over some 
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specific interfaces of interconnected networks and security constraints.  

Since the loss and control cost associated with transient instability is very 

expensive, transient stability, as an important constraint, is necessary to be included 

in the OPF modelling for the calculation of ATC so that the system is able to survive 

in credible contingencies. However, the involvements of OPF based ATC calculation 

with transient stability constraints are much more complicated than that of the 

conventional OPF problem so that traditional programming methods cannot solve 

this SIP problem directly. In this thesis, the calculation of ATC is modelled as an SIP 

problem and solved by SIP methods.  

V.2 MODELLING OF ATC 

The calculation of ATC depends on the determination of the total or maximal 

transfer capability (TTC) of the network so that all the operation and security 

constraints are satisfied. Thus, the calculation of ATC is modelled as an OPF 

problem as 

( )0min    ,f x y              (5.2) 

( )0. .    ,s t =g x y 0                 (5.3) 

        ( )0 , ≤H x y 0                  (5.4) 

    ( )( ),t ≤U x y 0                                             (5.5) 

where ( )0,f x y  is the objective function of TTC in specific interface. ( )0 ,g x y  is 

equality constraints for power flow balance. Inequality constraints ( )0 ,H x y  are the 

steady-state operation limits of the system including the upper and lower limits of the 

generator outputs, bus voltage magnitudes, transformer taps, and power flow on 

transmission lines, etc. Inequality constraints ( )( ),tU x y  are the semi-infinite 

constraints for transient stability. Therefore, the calculation of ATC is eventually 

determined by the strictest limit of all these security constraints, including steady-

state or transient security limits. ( )( ),tU x y  can be locally reduced based on 1L  or L∞  
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norm penalty functions respectively. Primal-dual interior point method is used to 

solve the transcribed finite programming problem.  

The objective of ATC computation is to determine the maximal transfer 

capability of the network. For OPF study, generally, the objective is to find minimal. 

Therefore, ( )0 ,f x y  is defined in this thesis as the negative ATC over some 

specific interfaces between interconnected networks. One interface is generally 

composed of transmission lines in the cut set for individual networks respectively. As 

shown in Figure V.1, the interface of area i , 1,  ..., i N= , to other areas is its cut set 

TiΓ .  

Transfer capability is the measure of the ability of interconnected electric 

systems to reliably transfer power from one area to another over the interface in 

between under specified system conditions. The units of transfer capability are in 

terms of electric power, generally expressed in megawatts (MW). In this context, 

"area" may be an individual electric system, power pool, control area, subregion, or a 

portion of any of these. 

 

Area 1

Area 2

Area 3

Area N

Area i

1TΓ

TNΓ

2TΓ

3TΓ

TiΓ

 

Figure V.1 Interconnected systems and their respective transmission interfaces 
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Before the calculation of transfer capability, Assumption 5.1 and Theorem 5.1 

are given with reference to [134]. 

Assumption 5.1   For the transfer capability from area i  to j , 

1) The base case of the system operation is specific, no matter whether it is 

existing or planned.  

2) All loads in area i  are the same with the power flow in base case and fixed.  

3) All generation outputs in area j  are the same with the power flow in base 

case and fixed.  

4) All of the loads and generation outputs in the other interconnected areas, 

except area i  and j , are the same with the power flow in base case and fixed. 

5) The increase of the loads in area j  will lead to the increase of the generation 

output in area i  until any limit of system operation is reached.  

Theorem 5.1  If Assumption 5.1 holds, without the consideration of 

transmission loss, the following six formulations of maximal transfer capability from 

area i  to j  are equal: 

1) Maximize the sum of all generation outputs in area i , i.e. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑=
∈ Gik

GkPmaxf
Γ

1 . 

2) Maximize the sum of all active loads in area j , i.e. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑=
∈ Ljl

LlPmaxf
Γ

2 . 

3) Maximize the sum of all generation outputs in area i  and all active loads in 

area j , i.e. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑+∑=
∈∈ LjGi l

Ll
k

Gk PPmaxf
ΓΓ

3 . 

4) Maximize the sum of output active power in the interface TiΓ  of area i , i.e. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑=
∈ Tiij

ijPmaxf
Γ

4 . Here, "output" refers to the power flows out from all 

the sources of the interface TiΓ . 
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5) Maximize the sum of input active power in the interface TjΓ  of area j , i.e. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑−=
∈ Tjji

jiPmaxf
Γ

5 . Here, "input" refers to the power flows into the sinks 

of the interface TjΓ . 

6) Maximize the sum of output active power in the interface TiΓ  of area i  and 

input active power in the interface TjΓ  of area j , i.e. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑−∑=
∈∈ TjTi ji

ji
ij

ij PPmaxf
ΓΓ

6 . 

where for area k , 1,  ,...,  k N= , its interface with other areas is TkΓ , generator bus 

set is GkΓ , loading bus set is LkΓ .  

The objective function of ATC can be selected from the six formulations in 

Theorem 5.1. In this thesis, the fourth formulation of the sum of output active power 

in the interface TiΓ  of area i  is employed.  

V.3 CASE STUDY AND DISCUSSIONS 

The proposed algorithms for the calculation of ATC are fully tested on the 

WSCC 9-bus and the New England 39-bus system.  

V.3.1 WSCC 9-BUS SYSTEM 

The full system parameters of WSCC 9-bus system are detailed in Appendix A 

and [135]. This system consists of 3 generators, 9 buses, 3 load points, and 6 

transmission lines. Bus 1 is the slack bus, and the system base is 100 MVA. For the 

evaluation of the purposed method, this 9-bus system is partitioned into A and B 

subsystems as shown in Figure V.2. The interconnected interface consists of line 7-5 

and 9-6 with transfer direction as illustrated in Figure V.2. The objective function is 

selected as the TTC in the interface. The base case power flow across this interface is 
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1.4778 pu. 

 

 

Figure V.2 One line diagram of the WSCC 9-bus system 

For simplicity, only one single contingency is considered here. It consists of a 

three-phase fault occurred near bus 7 at the end of line 8-7. The fault is subsequently 

cleared at 0.18t s=  with line 8-7 tripped.  

V.3.1.1 VALIDATION TEST 

Three methods are employed here to validate the proposed ATC computation by 

comparison with each other. Method 1 is the conventional OPF optimization without 

the consideration of transient stability constraints. Both Method 2 and 3 include 

transient stability constraints for the specific contingency based on rotor angle limit 

with the threshold max 120δ = D  relaxed by 0.01ρ = . The transient period under 

study is 1.5 sec with integration time step length of 0.01 sec. Here, 1.5 second is 

selected based on the recommendation from [21] to ensure the system stability 

during the first swing. Method 3, as an enhancement to the Method 2, uses the 

proposed concept of the most effective section of transient stability constraints with 
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6λ = , as defined in Section IV.6. Local reduction based on 1L  norm is applied here 

to transcribe semi-infinite constraints in Method 2 and 3. Convergence accuracies 1ε  

and 2ε  in all the three methods, for complementary gap gapG  and the maximal 

mismatch of power flow maxM  respectively, are set to 10-3. 

Table V.1 Optimal results obtained with the WSCC 9-bus system 

Method TTC (p.u.) Increase of TTC (%) ATC (p.u.) Iteration Counter

1 2.1113 42.87 0.6335 10 

2 1.9878 34.51 0.5100 106 

3 2.0068 35.80 0.5290 21 
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Figure V.3 Comparison between swing curves of generator 2  

based on optimization by Method 1, 2 and 3 

Table V.1 shows the optimization results obtained by the three methods. Figure 

V.3 shows the largest rotor swing curves, which belongs to generator 2, in the 
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credible contingency according to the operation conditions by the three methods. 

In the absence of any transient stability constraints, the TTC by Method 1 is 

2.1113 pu, 42.87% increase compared with the base case. However, the optimized 

system is transient insecure and will become unstable after about 0.4 sec for the 

given contingency as illustrated in Figure V.3; whereas, the systems optimized by 

Method 2 and 3 can meet the security requirement and remain transient stable under 

the same contingency, but with the expense of 0.1235 pu and 0.1045 pu decrease in 

TTC compared with the optimal result by Method 1, respectively. Most often, the 

decreased TTC, which is able to survive dynamically, can be regarded as a social 

optimal solution since system security is guaranteed and the aggregate benefit is 

maximized. 

V.3.1.2 NUMERICAL ANALYSIS  

The changes of the complementary gap, maximum power flow mismatch, and 

instability instant in the optimization by Method 2 and 3 for WSCC 9-bus system are 

plotted in Figure V.4 and V.5, respectively.  
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Figure V.4 Change of maximum power flow mismatch, complementary gap and 

instability instant in the calculation by Method 2 
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Figure V.5 Change of maximum power flow mismatch, complementary gap and 

instability instant in the calculation by Method 3 

The "instability instant" referred in the figures is the time when the rotor angle of 

any generator first passes the maximum allowable angle maxδ . For the convenience 

of the plotting, the instability instant is set to zero if the system is transient stable for 

the whole period of study, i.e. all transient stability constraints are satisfied. 

Although both Method 2 and Method 3 take the transient stability constraints 

into consideration, the optimization results produced by Method 2 and 3 are not quite 

the same as illustrated in the WSCC 9-bus system. As illustrated in Figure V.4, the 

complementary gap and the maximum power flow mismatch are disturbed seriously 

whenever there is a violation of transient stability constraints. Most often those 

disturbances caused by the transient stability constraints are large enough to spoil the 

optimization process and even make the optimization become infeasible. On the 

contrary, Method 3 introduces transient stability constraints gently iteration by 

iteration using the most effective section concept. As illustrated in Figure V.5, the 

complementary gap, maximum power flow mismatch and instability instant do not 
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fluctuate as frequently as the ones in Method 2. This indicates that the optimization 

process progresses nicely to reach the optimum. 

As for the computation efficiency, Method 3 is more efficient than Method 2 

because of its better convergence property. Much less number of iterations is 

required to obtain the optimum solution using Method 3. According to the results of 

WSCC 9-bus system, the iteration counter in Method 3 is 21, just about one-fifth of 

that in Method 2. 

Moreover, the computation efforts in each iteration in Method 3 is greatly 

reduced since only the most effective section is computed instead of the whole 

transient stability simulation period. As shown in Figure V.6, area C is the most 

effective section of transient stability constraints in each iterate, whose upper 

boundary is the instability instant. Area B is an extension of the most effective 

section of area C. Compared with Method 2, which requires the calculation in area A, 

B and C, only the calculation in area B and C are needed in Method 3. Therefore, 

even if Method 2 and 3 have the same number of iterations, the computation efforts 

of Method 3 are still much less than that of Method 2. 
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Figure V.6 Computation related to transient stability by Method 3 

For the WSCC 9-bus system, Method 3 produces better results than Method 2 as 
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shown in Table V.1. This can be explained as follows. Firstly, the computation 

accuracy of Method 3 near the end of the optimization process is better than that of 

Method 2. When the optimization by Method 2 was completed, the complementary 

gap and maximum power flow mismatch were 3.52×10-5 and 1.91×10-5, respectively; 

whereas for Method 3, the convergence accuracies have already been satisfied in the 

11th and 12th iteration, while transient stability constraints were still violated. Further 

iterations are then needed to satisfy all the stability constraints. At the end of the 

optimization process, the complementary gap and maximum power flow mismatch 

are improved to 2.27×10-16 and 2.40×10-10, respectively, which are order of 

magnitude better than those obtained by Method 2. Secondly, the larger TTC by 

Method 3 is obtained by driving the operation point much closer to the stability limit 

than Method 2, as illustrated in Figure V.3. It is noted that the closer to the stability 

limit, the higher risk will be for the operation. Therefore, longer simulation period 

should be taken for better checking of transient stability after first swing.  

V.3.1.3 NUMERICAL COMPARISON BETWEEN ROTOR ANGLE LIMIT AND PEBS 

In this section, the performances of transient stability constraints based on rotor 

angle limit and PEBS are compared using the Method 3 solution approach. The 

transient period under study is set to 2.0 sec in this study to ensure the transient 

stability in a longer time scale in case of the instability after the first swing. 

 Larger TTC can be obtained by relaxing the rotor angle limits. With the rotor 

angle limit varied from 120 to 180 degree, the TTC increased from 1.7932 pu to 

2.0068 pu as shown in Figure V.7. TTC stops to increase once the threshold is over 

140 degree. This means the effect of transient stability constraints in OPF will 

remain more or less the same once the limit is set over a certain threshold value. 
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Figure V.7 Optimization results with different rotor angle limits 
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Figure V.8 Simulation based on different rotor angle limits 
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However, it is noted that, numerically, although transient stability is satisfied in 

all cases with threshold from 120 to 180 degree, the first swings are heavily distorted 

as shown in Figure V.8. From an operation point of view, simulation responses with 

stricter thresholds of 120 and 130 degree are preferred since the system obtained with 

over 140 degree threshold is too close to the stability limit. This indicates that how to 

appropriately set the rotor angle limit and set longer study period for transients are 

important issues in OPF. Up to now, there is no uniform policy to set the rotor angle 

limit for different systems. If the threshold is too relaxed, systems may not be stable 

enough although there is no violation in the study period; on the contrary, if the 

threshold is too strict, the operation tends to be conservative and less economic. 

Besides, numerical experiments show that sometimes the threshold value of rotor 

angle deviation could not absolutely indicate how much the system stability or 

instability is. In another word, the satisfaction for threshold value of 120 degree 

could not always be more reliable than that for 180 degree. 

TTC is calculated and compared with transient stability constraints defined by 

PEBS with the same contingency. BFGS method is employed to update the Hessian 

matrix approximately due to the complex formulation of transient stability 

constraints based on PEBS. The obtained TTC is 1.7576 pu, 18.93% increase 

compared with the base case. The optimal result is comparable with that defined 

based on rotor angle limit of 130 degree. Transient stability constraints are satisfied 

as illustrated in Figure V.9, in which the dot product curve remains negative in the 

study period of [0, 2] sec. Transient stability can also be recognized according to the 

swing curve with reference to COI as shown in Figure V.10. 

Obviously, the advantage of PEBS approach is that it can be regarded as a 

uniform criterion to transient stability constraints for different systems. However, in 
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this case, it makes the obtained TTC somewhat more conservative compared with 

that defined by rotor angle limit of 130 degree. There is no guarantee that the 

obtained optimal results always be conservative. If an aggressive optimal solution, 

which can spoil the stability, obtained based on PEBS, rotor angle limit has to be 

used instead. 
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Figure V.9 Dot product variation curve 
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Figure V.10 Swing curve based on the results by PEBS 
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V.3.2 NEW ENGLAND 39-BUS SYSTEM 

The New England 39-bus system as shown in Figure V.11 is selected as a larger 

test system for the proposed method. It comprises 10 generators, 39 buses, 34 lines 

and 12 transformers. Bus 1 is selected as the slack bus, and the system base is 100 

MVA. Details of this system are listed in Appendix B and also can be found in [55]. 

The OPF model is to determine the TTC with transient stability maintained. The 

39-bus system is separated into two areas as shown in Figure V.11 with the power 

transfer from the upper area to the lower area. The interconnected interface is 

composed of line 12-11, 12-13 and 36-37.  

For the validation of the optimization results, only a single contingency is 

considered. This contingency consists of a three-phase fault occurred near bus 36 at 

the end of line 35-36. The fault is subsequently cleared at 0.1t s=  with line 35-36 

tripped. 

 

 

Figure V.11 One line diagram of New England 39-bus system 
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Table V.2 shows the resulted system transfer capabilities. Method 1 is the 

conventional OPF without the consideration of transient stability constraints; whilst 

Method 2 is the optimization with transient stability constraints defined by PEBS.  

Table V.2 Optimization results obtained with New England 39-bus system 

Method 1 2 

TTC (p.u.) 20.98 12.59

There is a large difference between the optimal results by Method 1 and 2. In 

this case, with consideration of the creditable contingency, the TTC reduces to about 

60% of that without any transient stability constraints. 

However, when the contingency occurs, the performance of the two optimal 

solutions is also very different. As the dot product plotted in Figure V.12 and V.13 for 

Method 1 and 2, the optimal solution by Method 2 is secure even if the contingency 

occurs since the dot product in Figure V.13 remains negative in the study period of 

[0,2] sec. The effectiveness of method 2 can also be demonstrated by the comparison 

based on dynamic simulations. Figure V.14 and V.15 are the plots of rotor angles 

with reference to generator 1 by Method 1 and 2, respectively. Obviously, the 

difference of rotor angles increases and the system becomes unstable as shown in 

Figure V.14; whilst in Figure V.15 the rotors reach their maximum and then decrease. 

Further simulation in a longer period showed that the system remains stable. 
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Figure V.12 Dot product variation curve for Method 1 
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Figure V.13 Dot product variation curve for Method 2 
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Figure V.14 Swing curves for Method 1 
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Figure V.15 Swing curves for Method 2 
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With transient stability constraints, OPF solution by Method 2 is indeed able to 

meet the security requirement and is transient stable under the credible contingency. 

It should also be noticed that there is 8.39 pu, about 40%, reduction in transfer 

capability by Method 2 compared with Method 1. The significance to consider the 

transient stability in OPF study is clearly demonstrated. Without transient stability 

constraints consideration, the system operator may be seriously misled. The 

reduction in TTC could be regarded as the economical sacrifice for the consideration 

of security, or the cost for the secure guarantee. 

V.4 SUMMARY 

In this chapter, the calculation of ATC is formulated as an OPF problem with 

security constraints, especially transient stability constraints. SIP techniques are 

employed to solve this problem. The proposed methods for the calculation of ATC 

are fully tested on WSCC 9-bus and New England 39-bus systems. The necessity of 

transient stability involvement in OPF is illustrated in the case study. The good 

performances of the most effective section of transient stability constraints are 

presented based on numerical comparison. Transient stability constraints based on 

rotor angle limits and PEBS are also compared based on the numerical results. The 

improved BFGS method is used in the case study to avoid complex Hessian matrix 

derivation. 
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Chapter VI DYNAMIC SECURITY DISPATCH 

 

In this chapter, a new methodology for dynamic security dispatch is presented to 

reconcile the possible conflict between economy and dynamic security in the 

optimization.  

VI.1  INTRODUCTION 

Security dispatch is to provide economic operation in the presence of a specific 

list of contingencies. With increasing economical pressure and intensified 

transactions, especially in competitive environment, to maintain dynamic security of 

the economic operation to an acceptable level becomes more important and 

complicated [1]. Appropriate strategies of preventive control or remedial actions 

should be triggered for dynamic security enhancement if credible dangers of 

instability are detected. 

 Basic formulation for dynamic security dispatch is presented preliminarily in 

[136]. The usual cost function is augmented by including transient stability indices 

across selected cut sets. A trade-off between optimal economy and steady-state and 

dynamic security is obtained by optimization. Similarly, in [137], instability index is 

defined with potential energy and algebraic interpretations. Insecurity cost is 

assigned together with the total system cost. After that, optimal dispatch is taken for 

real power scheduling. 

Generation rescheduling has long been recognized as an effective means to 

alleviate power system insecurity. For several decades, many efforts, for example, in 

[8,10,13,14,21,23-25], have been made for dynamic security dispatch via preventive 

control and generation rescheduling. In [10,24,25], sensitivities of the energy margin 

to system parameters, such as generation output, are proposed for generation 

rescheduling. In [10], sensitivity with respect to generation power is studied based on 

extended equal area criterion and a related transient stability margin. Economic 
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dispatch algorithm is remarked to be extended to transient stability dispatch. In [24], 

generation rescheduling is carried out by the combination between transient stability 

constraints and optimization techniques based on the sensitivities of the energy 

margin. In [25], preventive generation rescheduling is taken based on a structure 

preserving energy margin sensitivity-based analysis to stabilize a transiently unstable 

power system. In [8,23], trajectory sensitivities are calculated to provide a preventive 

rescheduling scheme. In [23], optimal dynamic security constrained rescheduling is 

resolved by introducing power constraints for transient stability, which is produced 

based on trajectory sensitivities for credible contingencies. In [8], the sensitivity 

trajectory of the most critical rotor angle, defined as a good coherent index, with 

respect to the generation outputs is addressed to determine the rescheduling.  

Unlike sensitivity methods, in [21], dynamic security dispatch is accomplished 

by the improvement of the coherence of machines according to the variation rate of 

generator speeds at fault clearing time. Optimization should be taken into account for 

the ultimate rescheduling. In [14], generation rescheduling is implemented via 

shifting generation from critical machines to noncritical machines, the amount of 

which depends on the size of stability margin determined by the single machine 

equivalent hybrid transient stability method. In [13], transient stability preventive 

control is carried out by generation rescheduling using the linear relationships, which 

is not always true, between critical clearing time and generator rotor angles. 

In reality dynamic security dispatch appears to be an extended OPF problem 

with add-on dynamic security constraints. The basic idea is to find the OPF solution 

with the objective of economic cost subjected to transient stability constraints. 

Mathematically, the extended OPF can be formulated as an SIP problem with finite 

dimension for optimal variables but infinite dimension for dynamic security 

constraints in time domain as in [12,16,20,22,31,35,36]. In this thesis, the strategies 

of dynamic security dispatch are implemented based on stability constrained OPF 

model with local reduction method.  
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VI.2  MODELING OF DYNAMIC SECURITY DISPATCH 

Dynamic security dispatch is modelled as an OPF problem as  

( )0min    ,f x y                 (6.1) 

( )0. . ,s t =g x y 0                (6.2) 

( )0 , ≤H x y 0                  (6.3) 

( )( ),t ≤U x y 0       (6.4) 

Other than the objective function : x yn nf + →R R , all the other definitions of the 

variables and functions in (6.1-6.4) are similar with the general formulation (2.33-

2.36).  

The OPF objective function, ( )0 ,f x y , is selected as the fuel cost. Generally, 

the fuel cost curve can be approximated by a quadratic function of generator active 

power output as 

( ) ( )2

1

ng

G i Gi i Gi i
i

f a P b P c
=

= + +∑P                 (6.5) 

where { }G GiP=P , gi∈ I  is the vector of generation active power output. gI  is the 

index set of generators. ng  is the total number of generators. ia , ib , and ic  are fuel 

cost curve coefficients of the i -th generator respectively.  

Clearly Inequality (6.4) is infinite-dimensional in the functional space. Thus, 

mathematically, dynamic security dispatch problem (6.1-6.4) is a SIP problem with 

finitely many optimal variables with infinitely many constraints, and hence cannot be 

solved directly by standard finite programming methods. Instead, SIP techniques are 

employed based on local reduction method to transform the SIP problem into a finite 

programming problem. 

It is noted that a large number of credible contingencies should be taken into 

consideration to guarantee secure operation of the system. It is necessary to screen 

out the very stable contingencies for dynamic security dispatch so as to reduce 

computation efforts in the optimization. In addition, multi-contingency in many cases 

should be considered for practical dynamic security dispatch.  
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VI.3  CASE STUDY AND DISCUSSIONS 

The proposed model and solution for dynamic security dispatch is illustrated on 

the New England 39-bus system. The full system parameters are available in 

Appendix B. The output limits and coefficients of quadratic fuel cost function of 

generators are referred to MATPOWER [138] and listed in Appendix B. 

Synchronous machines are represented with classical models. All loads are modelled 

as constant power in the load flow calculation and as constant impedance in the 

transient stability simulation with initial value set by the load flow solution. L∞  norm 

local reduction method is used to transcribe the semi-infinite transient stability 

constraints.  

Two different loading conditions are tested in this study. One is the base loading 

conditions with the load as detailed in Appendix B and [55]. The other is heavy 

loading conditions in which all loads are increased by 20% from the base value. 

The proposed methodology has been implemented in C language running under 

Windows XP using a Pentium 4 2.4 GHz computer. 

VI.3.1 BASE LOADING CONDITIONS 

In the absence of any transient stability constraints, conventional OPF is 

performed to obtain the pre-rescheduling dispatch solution. The total fuel cost is 

36,119 $/hr for this base loading condition, and the computation time is 2.27 sec with 

14 iterations in total. The generation active power outputs are reported in Table VI.1.  

Dynamic simulations are then preformed to determine whether the system could 

survive in credible contingencies with such scheduling of generation. The credible 

contingencies are permanent three-phase faults to ground at the end of line. The 

faults are subsequently cleared by switching out of the faulty line. In all simulations, 

the transient period under study is 3 sec with integration time step of 0.01 sec. The 

rotor angle deviation threshold with respect to the COI is set to 120 degree with ρ  

being 10% of this threshold. Credible contingencies leading to different patterns of 
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instability are selected here for illustrating how the proposed method could optimally 

reschedule generation to ensure economic and secure operation of the power system. 

Table VI.1 Comparison between generation pre-rescheduling and rescheduling 

in base loading conditions 

Generators pre-rescheduling 
(MW) 

Case A 

(MW) 

Case B 

(MW) 

Case C 

(MW) 

1 968.4 992.4 1089.0 984.5 

2 577.7 666.7 615.8 551.6 

3 574.2 497.4 597.1 607.0 

4 563.0 577.3 550.0 594.5 

5 562.7 543.5 531.5 526.3 

6 567.3 595.2 597.2 590.5 

7 564.5 561.0 574.1 568.6 

8 554.5 561.9 535.8 613.7 

9 909.2 845.7 812.1 808.0 

10 350.0 350.0 285.9 350.0 

Total cost ($/hr) 36,119 36,338 36,690 36,334 

Iterate counter 14 13 16 14 

CPU time (sec) 2.27 60.58 116.92 86.88 

 

Case A:  

In this case the fault is applied at bus 13 and cleared by tripping line 12-13 at 

0.24clt =  sec which is a slightly larger than the critical clearing time of 0.23 sec. 

With the pre-rescheduling operation point, the rotor angle of generator 5 with respect 
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to COI is over the threshold in the second swing at about 2.5 sec after the fault 

occurs as shown in Figure VI.1. Although the violation is gentle, dynamic security 

dispatch based on the proposed methodology is triggered to eliminate this dynamic 

violation.  
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Figure VI.1 Swing curves with pre-rescheduling for Case A 

The rescheduled generation active power outputs are reported in Table VI.1. 

Compared with the pre-rescheduling conditions, the total fuel cost is increased to 

36,338 $/hr. As shown in Figure VI.2 for plots of swing curves, the deviation of 

generator 5 with respect to COI is kept less than the threshold and all generators 

remain in synchronism with each other throughout the study period. This illustrates 

that the OPF solution obtained by the proposed approach is able to dynamically 

survive in the contingency, and the fuel cost increase of 219 $/hr, i.e. 0.6%, can be 
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regarded as the dispatch cost for keeping the system stable. 
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Figure VI.2 Swing curves after rescheduling for Case A 

Case B: 

With the same fault as Case A but cleared at 0.28clt =  sec, i.e. this case is 

significantly more severe than Case A as shown in Figure VI.3. When the 

contingency occurs, the system behaves unstable with generator 1, which has the 

largest inertia, separated from other machines.  
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Figure VI.3 Swing curves with pre-rescheduling for Case B 
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Figure VI.4 Swing curves after rescheduling for Case B 
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The dynamic performance of the system after dynamic security dispatch is 

simulated and shown in Figure VI.4. Although in a short interval the swing curve of 

generator 2 exceeds the threshold 120 degree at around t = 1.6 sec, the deviation is 

within the tolerance η  and all generators remain in synchronism with each other in 

the study period. The total fuel cost is now increased to 36,690 $/hr, which is 571 

$/hr, i.e. 1.58%, larger than that in the pre-rescheduling conditions and is 352 $/hr 

larger than the rescheduled fuel cost in Case A. This indicates that higher cost has to 

be associated with dynamic security dispatch to prevent more serious instability. 

Case C:  

In this case the fault is applied at bus 27 and cleared by tripping line 27-28 at 

0.20clt =  sec, which is larger than the critical clearing time of 0.17 sec. In pre-

rescheduling state, the dynamic behaviour of the system is shown in Figure VI.5. 

Generator 5 fails to keep synchronism with others in its second swing, which can be 

regarded as multi-swing instability.  

Similarly, the swing curves in Figure VI.6 illustrate the survival of the proposed 

dynamic security dispatch if the contingency occurs. The total fuel cost is increased 

to 36,334 $/hr, about 215 $/hr, i.e. 0.6% larger than that in the pre-rescheduling 

conditions. 
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Figure VI.5 Swing curves with pre-rescheduling for Case C 
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Figure VI.6 Swing curves after rescheduling for Case C 
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VI.3.2 HEAVY LOADING CONDITIONS 

Without the consideration of any transient stability constraints, the total fuel cost 

is 52,964 $/hr with the pre-rescheduling in the heavy loading condition. The 

computation time is 1.94 sec as reported in Table VI.2.  

 

Table VI.2 Comparison between generation pre-rescheduling and rescheduling 

in heavy loading conditions 

Generators pre-rescheduling (MW) Case D (MW) 

1 1100.0 1100.0 

2 911.1 966.1 

3 750.0 744.3 

4 732.0 701.7 

5 608.0 600.1 

6 750.0 750.0 

7 660.0 654.6 

8 640.0 640.0 

9 930.0 924.8 

10 350.0 350.0 

Total cost ($/hr) 52,964 53,251 

Iterate counter 12 44 

CPU time (sec) 1.94 359.27 

 

All of the machines except generator 2 have reached their upper limits to satisfy 

the load demand. Afterwards dynamic simulations are preformed to determine 

whether the system can survive in credible contingencies or not. Case D is taken as 
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an example for generation rescheduling with dynamic security constraints in the 

heavy loading condition. 

 

Case D: 

In this case the fault is applied at bus 13 and cleared by tripping line 12-13 at 

0.18clt =  sec, which is larger than the critical clearing time of 0.17 sec. As shown in 

Figure VI.7, the system is transient unstable with generator 1 separated from the 

other machines whilst generator 2 is the first exceeding the threshold. 
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Figure VI.7 Swing curves with pre-rescheduling for Case D 
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Figure VI.8 Swing curves after rescheduling for Case D 
 

The proposed dynamic security dispatch successfully makes the system survive 

in the scenarios if the contingency was to occur as illustrated in Figure VI.8. The 

total fuel cost is increased to 53,251 $/hr, and is 287 $/hr, i.e. 0.5%, larger than that 

in pre-rescheduling conditions. 

VI.3.3 GENERATION RESCHEDULING 

Generation rescheduling is an effective remedy to alleviate power system 

insecurity by shifting generation output between machines. In this thesis, the strategy 

is fulfilled by the proposed dynamic security dispatch. The generation shifts between 

generators in the above 4 cases are plotted in Figure VI.9-VI.12, respectively. If 

"spare generation capability" in the figures is zero, it means the corresponding 

generator output has reached its upper limit and no more generation output available. 
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Figure VI.9 Generation rescheduling in Case A 
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Figure VI.10 Generation rescheduling in Case B 
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Figure VI.11 Generation rescheduling in Case C 
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Figure VI.12 Generation rescheduling in Case D 
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In the pre-rescheduling with base loading conditions, except generator 10, all the 

other generators still have generator capacity for implementing the rescheduling. 

Take Case B as an example, which suffered a more serious contingency compared 

with Case A and C, the system behaves unstable with generator 1, which has the 

largest inertia, lags behind other machines. After the optimization for dynamic 

security dispatch, the output of generator 1 is increased almost to its upper limit as 

shown in Figure VI.10. It can be explained that more loads should supplied by the 

lagged machine via rescheduling.  

In the pre-rescheduling with heavy loading conditions, all the generation outputs, 

except generator 2, have reached their upper limit and no more outputs available. 

After the generation rescheduling, the active outputs of generator 3, 4, 5, 7 and 9 are 

pulled back from the upper limits, and the loading demand is shifted to generator 2 

without consideration of transmission loss.  

VI.3.4 COMPUTATION ANALYSIS 

It is recognized that the time to introduce transient stability constraints into the 

optimization would have large impact on the convergence. If it is too early, the 

optimization may fail to converge as the initial point is too far away from the power 

flow solution; on the contrary, if it is too late, the optimization may have converged 

closely to one stationary point and may fail to eliminate the dynamic constraint 

violations. In this thesis, the transient stability constraints are introduced when the 

maximum power flow mismatch is less than 10 MW, i.e. started from the 6th iteration 

for Case B, as shown in Figure VI.13, for example. As an illustration of the 

optimization process for Case B, the changes of the complementary gap, maximum 

power flow mismatch, and instability instant in the optimization are plotted in Figure 

VI.13.  

Compared with pre-rescheduling conditions, the proposed security dispatch is 

more computationally intensive with the consideration of dynamic stability 
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constraints. As show in Table VI.1 and VI.2, the computation time for security 

dispatch is significantly more when compared with the pre-rescheduling dispatch 

although the number of the iterations is not changed much in different cases. The 

increased time is mainly spent on performing numerical integrations to obtain the 

Jacobian and Hessian matrices of transient stability constraints.  

Nevertheless, the proposed algorithm shows good convergence characteristics in 

the base loading cases, i.e. Case A, B, and C; whilst more iterates are needed for the 

heavily stressed Case D because of the very limited room for manoeuvre. 
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Figure VI.13 Change of maximum power flow mismatch, complementary gap and 

instability instant in the optimization for Case B 

 

VI.4 MULTI-CONTINGENCY CONSTRAINTS 

For large power systems, the number of credible contingencies would be huge. 

Dynamic security dispatch, as one tool for preventive control, should guarantee the 

capability of the system to survive in all the credible contingencies. Practically, 
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preventive control is carried out in the normal or alert state of the operation, which is 

before the occurrence of contingencies. It is uncertain which contingency should be 

included for dynamic security dispatch. Thus dynamic security dispatch with respect 

to single contingency might deteriorate the security level in other contingencies. 

Multi-contingency cases should be considered in the dispatch [22,35] for the 

improvement of  the overall security level. In this study, the definition of "multi-" or 

"single-" contingency in preventive control is according to [35]. "Single 

contingency" is defined as one fault (with or without reclosure) or two faults 

(simultaneous or cascading), etc. Multi-contingency, such as contingency (A+B), is 

defined as either contingency A or contingency B will occur at the same operating 

point. In other word, for preventive control based on transient stability constrained 

OPF, the system remains stable no matter which contingency A and B occurs.  

Practically, a well-engineered power system should be stable in most 

contingencies if not all although the number of credible contingencies could be huge. 

Only the most dangerous contingencies are considered for dispatch [8,24]. 

Contingencies should be first screened to remove the very stable cases and leave the 

marginal stable or unstable ones for further analysis in order to reduce the 

computation efforts. Contingency screening by direct methods and intelligent 

methods could be very effective, and the number of contingencies which needs to be 

further process could be reduced from a few thousands to a few dozens. After that, 

multi-contingency constraints should be considered to obtain a secure solution for all 

credible contingencies.  

In the following New England 39-bus system study, the credible contingency set 

consists of all possible three-phase single-line faults. In total, there are 68 

contingencies, and in each contingency, a 200ms three-phase fault is applied at the 

end of the line and is then cleared with the faulty line tripped simultaneous at the 

ends of the line. After the contingency screen, 11 severe contingencies were found as 

listed in Table VI.3, which are transient unstable. The superscript "*" refers to which 

bus the fault is close to.  
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Table VI.3 List of severe contingencies 

Contingency 1 2 3 4 5 6 

Fault location 12*-35 26*-31 26*-34 34*-26 27*-28 34*-33 

Contingency 7 8 9 10 11  

Fault location 35*-36 36*-37 37*-36 36*-38 39*-38  

Table VI.4 Results of single contingency involved dispatch 

Dynamic security dispatch with single-contingency 
C 

1 2 3 4 5 6 7 8 9 10 11 

1 S U U U U U U U U U U 

2 U S U U U U U U U U U 

3 U S S U U U U U U U U 

4 U S S S U S U U U U S 

5 U S S S S S S U S U U 

6 U S S U U S U U U U U 

7 S U U U U U S S S S S 

8 U U U U U U U S U S S 

9 S U U U S U S S S S S 

10 U U U U U U U U U S S 

11 U U U U U U U U U U S 

Cost 
($/hr) 

36155 36227 36218 36128 36334 36155 36130 36282 36178 36397 36466

ΔCost 
($/hr) 36 108 99 9 215 36 11 163 59 278 347

CPU 
Time 
(sec.) 

115.5 228.1 111.9 217.4 91.6 231.3 43.4 58.6 44.5 105.2 80.0
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Each single contingency in the severe contingency list (as listed in the second 

row of Table VI.4) is first considered individually for generation rescheduling, i.e. 11 

cases in total. The rescheduling results obtained from each case are tested on all the 

11 severe contingencies (as listed in the first column of Table VI.4). The stability 

results obtained are summarized in Table VI.4. The symbols S (stable) and U 

(unstable) state the stability of a system with optimal rescheduled generation 

obtained for a given single contingency and  tested against any single contingencies 

(C). As expected, the optimal dispatches for each single contingency are different. 

The total fuel cost increased from the pre-rescheduling conditions varies from 9 to 

347 $/hr. The variance is due to the differences in the severity of the contingencies. It 

is obvious that all the optimal operating point obtained for single contingency cannot 

ensure the stability of all contingencies. This clearly shows that consideration of a 

single contingency alone is not sufficient and multi-contingency has to be taken into 

account in the dynamic security dispatch in order to ensure the system security for all 

contingencies. 

The selection of the multi-contingency can be easily observed from Table VI.4, 

in which the inclusion of Contingency 1 covers Contingency (1,7,9), Contingency 2 

covers Contingency (2-6), and Contingency 11 covers Contingency (4,7-11). Thus 

the combination of Contingency (1+2+11) is able to cover the whole credible 

contingency set (1-11). In Table VI.5, multi-dimensional contingency related 

preventive control is summarized. Four combination of multi-contingency (1+5), 

(5+10), (1+3+11) and (1+2+11) are studied here. Compared with single contingency, 

the dispatch cost is higher with multi-contingency considered. For instance, the 

dispatch cost for multi-contingency (1+5) is 299 $/hr and 215 $/hr larger than that 

with single contingency 1 and 5, respectively. More importantly, with the multi-

contingency (1+2+11), the operation point obtained from the proposed dispatch is 

transient stable for all contingencies (1-11), but with the highest cost increment of 

523 $/hr. 
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Table VI.5 Results of multi-contingency involved dispatch 

Dynamic security dispatch with multi-contingency 
C 

1+5 5+10 1+3+11 1+2+11 

1 S S S S 
2 U U U S 
3 U U S S 
4 U U S S 
5 S S S S 
6 S U S S 
7 S S S S 
8 U S S S 
9 S S S S 
10 U S S S 
11 U U S S 

Cost 
($/hr) 36454 36399 36640 36642 

ΔCost 
($/hr) 335 220 521 523 

CPU Time (sec.) 289.0 170.0 875.2 732.4 

 

VI.5 SUMMARY 

In this chapter, a novel approach for dynamic security dispatch is proposed. 

Dynamic security dispatch is implemented as an extended OPF problem to minimize 

the economic cost while the stability of all credible contingencies can be maintained. 

This SIP problem is solved based on local reduction of infinity norm. The case study 

on New England 39-bus system demonstrates that the proposed method for dynamic 

dispatch is effective in both single and multi-contingency cases.  
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Chapter VII CONCLUSION AND FUTURE WORK 

 

VII.1 CONCLUSION 

With the advent of competitive market environment, economical pressure and 

intensified transactions have forced electric power systems to operate much closer to 

their security limits than ever before, while they are often subjected to disturbances 

such as bus fault, line outage, generation loss and even load shedding. In order to 

ensure the system security to survive in all possible abnormal conditions, advanced 

dynamic security assessment and control is in great need, for example, the 

calculation of dynamic available transfer capability in the interfaces of the 

interconnected grids, the dynamic security dispatch to improve the security level 

with less control cost, etc. However, in practical operation, it is an extremely difficult 

task to reconcile the conflict between economics and security requirements in power 

systems operation.  

So far, in spite of the efforts made by researchers, the study in this area has not 

developed enough to propose effective preventive strategies to integrate the 

economics and dynamic security in one framework. This thesis makes contributions 

to formulate such category of problems mathematically as a family of dynamic 

security constrained OPF. The effective methodology is developed to deal with the 

optimization of power flow with transient stability constraints using SIP. 

Firstly, transient stability constrained OPF is generalized mathematically as SIP 

problems with finitely many variables and finitely many constraints. Infinite-

dimensional constraints for transient stability, based on the coherence of the rotor 

angle with the COI and PEBS concept respectively, are converted equivalently by 

SIP methods to finite-dimensional constraints. In the transformation, 1L   and L∞  

norm local reduction methods are developed with clear practical definitions. The 

extension of SIP methods in the solution of transient stability constrained OPF makes 
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it solvable by conventional OPF methods.  

Secondly, the direct primal dual interior point method is employed as a suitable 

nonlinear programming method for solving the equivalent problem. The technical 

crux in the calculation of the Jacobian and Hessian matrices of the transient stability 

constraints is overcome with the employment of implicit function relation and chain 

rule in the derivative derivation. Besides, the multi-local maximizers for L∞  norm 

local reduction method are simply detected based on intermediate value theorem. 

Thirdly, two significant bottlenecks are broken in the implementation of SIP in 

transient stability constrained OPF. One is the complicated derivation of the Hessian 

matrix for transient stability constraints. Improved BFGS method with superlinear 

convergence characteristic is proposed to avoid the complex derivation of Hessian 

matrix. Different from traditional BFGS methods, the approximated Hessian is 

formulated by the summation of the easy and difficult computation parts. Only the 

difficult part, associated with transient stability constraints, is updated approximately 

with BFGS techniques; while the rest, as the easy part, is calculated accurately. The 

other one is the huge computation efforts in the local reduction transformation of the 

transient stability constraints. With only the most effective section of transient 

stability constraints included, the computation efforts in the local reduction and 

derivatives calculation are alleviated remarkably, which is illustrated by numerical 

tests.  

Finally, the calculation of dynamic ATC and dynamic security dispatch are 

formulated as transient stability constrained OPF problems and solved using SIP 

methods. The proposed methods are fully validated in WSCC 9-bus system and New 

England 39-bus system. The validation also shows the adaptability of the proposed 

methodology in such category of practical issues related with dynamic security and 

economy in power systems. Multi-contingency cases are able to be handled 

simultaneously to obtain an optimal solution which is secure for the specific credible 

contingency set.  
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VII.2 FUTURE WORK 

The integration of economy and security in one framework is a significantly 

important task in power system study and still in its experimental stage. With the 

contribution of the study in transient stability constrained OPF in this thesis, several 

issues is expected to be dealt with in study forward. Future work may be conducted 

in the following directions. 

Firstly, the infeasibility of the optimization needs to be detected accurately and 

speedily. If infeasibility detected, i.e. the proposed preventive control schemes, such 

as generation rescheduling, fails to produce a stable operation point for critical 

contingencies, more effective control strategies in emergency, such as angle control 

of phase-shifters and load shedding, are then necessary to be implemented via other 

means. The coordination of preventive and emergency control is important to build a 

higher level security framework for power systems with economic operation state.  

Secondly, more effective contingency screening scheme should be developed to 

identify representative set of critical contingencies such that only the minimum set of 

contingencies needs to be dealt with in the transient stability constrained OPF solver. 

Thirdly, the computation performance should be improved in the future. 

Theoretically, transient stability constrained OPF is inherently a SIP problem. Even 

in programming study, SIP is still an underdeveloped area for further study. More 

suitable and effective SIP techniques should be applied to solve the problems in 

power systems. Numerically, the huge computational efforts need to be decreased. 

Especially, the time-consuming and complicit calculation of the Jacobian and 

Hessian matrix of transient stability has to be solved for the future on-line application 

of the proposed method.  
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APPENDIX A WSCC 9-BUS SYSTEM [135] 

 

Figure A.0.1 9-Bus System One-Line Diagram 

 

Table A.1 9-Bus System Load 

Bus Real power (MW) Reactive power (MVar) 

5 125.0 50.0 

6 90.0 30.0 

8 100.0 35.0 
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Table A.2 Line and transformer data 

Bus Bus Resistance Reactance Susceptance 

1 4 0 0.0576 - 

2 7 0 0.0625 - 

3 9 0 0.0586 - 

4 6 0.017 0.092 0.079 

4 5 0.01 0.085 0.088 

5 7 0.032 0.161 0.153 

6 9 0.039 0.17 0.179 

7 8 0.0085 0.072 0.0745 

8 9 0.0119 0.1008 0.1045 

 

Table A.3 Generator data 

Generator H (Sec) 'dx  maxP  minP  

1 23.64 0.0608 2.475 0.3 

2 6.4 0.1198 1.92 0.3 

3 3.01 0.1813 1.28 0.3 
 

Note: 

1. Reactance values in Table A.2 are on a 100-MVA base and 230kv voltage 

base.   

2. All values in Table A.3 are on 100-MVA base and machines' rated terminal 

voltage. 
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APPENDIX B NEW ENGLAND 39-BUS SYSTEM [55] 

Figure B.0.1 39-Bus System One-Line Diagram 

 

Table B.1 39-Bus System Load 

Bus Real power (MW) Reactive power (Mvar) 

1 1104 250 

2 9.2 4.6 

13 322 2.4 

14 500 184 

17 233.8 84 

18 522 176 

22 7.5 88 
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25 320 153 

26 329.4 32.3 

28 158 30 

30 680 103 

31 274 115 

33 247.5 84.6 

34 308.6 -92.2 

35 224 47.2 

36 139 17 

37 281 75 

38 206 27.6 

39 283.5 26.9 

 

Table B.2 Line and transformer data 

Bus Bus Resistance Reactance Susceptance Transformer Tap

1 11 0.001 0.025 0.375 - 

1 19 0.001 0.025 0.6 - 

11 12 0.0035 0.0411 0.3494 - 

12 13 0.0013 0.0151 0.1286 - 

12 35 0.007 0.0086 0.073 - 

13 14 0.0013 0.0213 0.1107 - 

13 28 0.0011 0.0133 0.1069 - 

14 15 0.0008 0.0128 0.0671 - 

14 24 0.0008 0.0129 0.0691 - 

15 16 0.0002 0.0026 0.0217 - 

15 18 0.0008 0.0112 0.0738 - 
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16 17 0.0006 0.0092 0.0565 - 

16 21 0.0007 0.0082 0.0694 - 

17 18 0.0004 0.0046 0.039 - 

18 19 0.0023 0.0363 0.1902 - 

20 21 0.0004 0.0043 0.0364 - 

20 23 0.0004 0.0043 0.0364 - 

23 24 0.0009 0.0101 0.0862 - 

24 25 0.0018 0.0217 0.183 - 

25 26 0.0009 0.0094 0.0855 - 

26 27 0.0007 0.0089 0.0671 - 

26 29 0.0016 0.0195 0.152 - 

26 31 0.0008 0.0135 0.1274 - 

26 34 0.0003 0.0059 0.034 - 

27 28 0.0007 0.0082 0.066 - 

27 37 0.0013 0.0173 0.1608 - 

31 32 0.0008 0.014 0.1282 - 

32 33 0.0006 0.0096 0.0923 - 

33 34 0.0022 0.035 0.1805 - 

35 36 0.0032 0.0323 0.2565 - 

36 37 0.0014 0.0147 0.1198 - 

36 38 0.0043 0.0474 0.3901 - 

36 39 0.0057 0.0625 0.5145 - 

38 39 0.0014 0.0151 0.1245 - 

2 16 0 0.025 0 1.07 

3 20 0 0.02 0 1.07 

4 29 0.0007 0.0142 0 1.07 
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5 30 0.0009 0.018 0 1.009 

6 32 0 0.0143 0 1.025 

7 33 0.0005 0.0272 0 1 

8 35 0.0006 0.0232 0 1.025 

9 39 0.0008 0.0156 0 1.025 

10 12 0 0.0181 0 1.025 

21 22 0.0016 0.0435 0 1.006 

23 22 0.0016 0.0435 0 1.006 

30 29 0.0007 0.0138 0 1.06 

 

Table B.3 Generator data 

Cost coefficient Generator H (Sec) 'dx  maxP  minP  
a  b  c  

1 500 0.006 11 0 0.006 0.3 0.2 

2 30.3 0.0697 11.45 0 0.01 0.3 0.2 

3 35.8 0.0531 7.5 0 0.01 0.3 0.2 

4 28.6 0.0436 7.32 0 0.01 0.3 0.2 

5 26 0.132 6.08 0 0.01 0.3 0.2 

6 34.8 0.05 7.5 0 0.01 0.3 0.2 

7 26.4 0.049 6.6 0 0.01 0.3 0.2 

8 24.3 0.057 6.4 0 0.01 0.3 0.2 

9 34.5 0.057 9.3 0 0.006 0.3 0.2 

10 42 0.031 3.5 0 0.01 0.3 0.2 

Note: 

1. All per unit values in Table B.2 are on a 100-MVA base and 345kv voltage 
base.  

2. All values in Table B.3 are in 100-MVA power base and machines' rated 
terminal voltage. 
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APPENDIX C NUMERICAL SOLUTION TO ORDINARY 

DIFFERENTIAL EQUATION 

 

In power system stability analysis, the differential equations to be solved can be 

expressed by nonlinear ordinary differential equations with known initial values: 

( ),d t
dt

=
x f x        (C.1) 

where x  is the state vector of n  dependent variables and t  is the independent 

variable for time. Thus, the issue of solving x  as a function of t , with the initial 

values 0x  and 0t  respectively, is essential for simulation. 

In this section, forth-order Runge-Kutta method and implicit method are 

presented to the solution of equations of the above form. For simple description and 

without loss of generality, equation (C.1) is treated as a first-order differential 

equation as 

( ),dx f x t
dt

=        (C.2) 

C1   FORTH-ORDER RUNGE-KUTTA METHOD 

Forth-order R-K method is equivalent to considering up to forth derivative term 

in the Taylor series expansion. The general formula giving the value of x  for the 

(n+1) step is: 

( )1 1 2 3 4
1 2 2
6n nx x K K K K+ = + + + +     (C.3) 

where 

( )1 ,n nK f x t t= Δ  

1
2 ,

2 2n n
K tK f x t tΔ⎛ ⎞= + + Δ⎜ ⎟

⎝ ⎠
 

2
3 ,

2 2n n
K tK f x t tΔ⎛ ⎞= + + Δ⎜ ⎟

⎝ ⎠
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( )4 3,n nK f x K t t t= + + Δ Δ                                    (C.4) 

The physical interpretation of the above solution is as follows: 

1K  = (slope at the beginning of the time step) tΔ  

2K = (first approximation to slope at midstep) tΔ  

3K = (second approximation to slope at midstep) tΔ  

4K = (slope at the end of step) tΔ  

( )1 2 3 4
1 2 2
6

x K K K KΔ = + + +  

Thus xΔ , the incremental value of x , is given by the weighted average of estimates 

based on slopes at the beginning, midpoint, and the end of the time step. 

C2   IMPLICIT INTEGRATION METHODS 

Let the solution for x  at 0t t t= + Δ  with respect to equation (C.2) be written in 

integral form as 

( )
00 ,t

tx x f x dτ τ= + ∫                                      (C.5) 

Implicit integration methods use interpolation functions for the expression under 

the integral. Interpolation implies that the functions must pass through the yet 

unknown points, for equation (C.5) at time t. 

t

f(x,t)

tt0

f(x0,t0)

f(x,t)

 

Figure C.0.1 Illustration of trapezoidal rule 

The simplest implicit integration method is the trapezoidal rule. It uses linear 

interpolation. As shown in Figure C.1, the area under the integral of equation (C.5) is 
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approximated by trapezoids. 

The trapezoidal rule for equation (C.5) is given by  

( ) ( )0 0 0, ,
2
tx x f x t f x tΔ
⎡ ⎤= + +⎣ ⎦     (C.6) 

A general formula giving the value of x  at 1nt t +=  is 

( ) ( )1 1 1, ,
2n n n n n n
tx x f x t f x t+ + +

Δ
⎡ ⎤= + +⎣ ⎦    (C.7) 

where 1nx +  appears on both sides of equation (C.7). It implies that the variable x  is 

computed as a function of its value at the previous time step as well as the current 

value, which is unknown. Therefore, an implicit equation should be solved.  
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