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Abstract of Thesis 

The main objective of this thesis is to study in details the vortex sound generation 

under the influence of porous materials.  The effects of vortex strengths, separation 

distance and initial position are examined.  The effects of effective fluid density and 

flow resistance inside the lattice of the porous material on sound generation are also 

explored.   

Acoustic analogy is employed in the present study in order to derive the flow 

potential, and the matched asymptotic expansion method is used to evaluate the far-

field sound pressure.   

The present study is relevant to the problem of self-generated noise as the 

major function of the porous material is to attenuate the noise inside the ductwork 

system, but additional noise can be generated in the presence of the porous material 

at the same time.    Vortex sound generation under the influence of a porous half 

cylinder mounted on an otherwise rigid plane, a porous wedge, a piece-wise porous 

material on an otherwise rigid plane and a lined duct are investigated.   

In general, the far-field sound pressure is higher when the effective fluid 

density or the flow resistance is small.  A smaller separation of the vortex from the 

porous material also increases the far-field sound pressure.  The acoustical energy 

radiated can be higher than that in the rigid surface case when the flow resistance is 

very small, the separation distance of the vortices is large or the difference of the 

vortex strengths is large.  The far-field sound pressure increases as the length or the 

thickness of the porous material increases.  The far-field sound pressure does not 

decrease monotonically with increasing flow resistance when the length of the 

porous material increases due to the substantially large rate of change of the vortex 

velocity.  
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Chapter 1: Introduction and Literature Review 
 

1.1 Thesis Objective and Background 

Ventilation and air conditioning systems are indispensable nowadays, especially in 

high-rise buildings within congested cities.  Their principal function is to provide a 

better thermal comfort condition in terms of air temperature, air speed, humidity, etc 

to the occupants [Fanger, 1972; Gallo et al., 1988].  However, noise is produced 

unavoidably.  There are three major noise sources inside a ventilation system.  The 

primary noise source is the unbalanced force in the rotating part of the fan unit and is 

negligible if the machinery is properly installed.  Noise is also produced as an 

unwanted by-product from the fluid flow as a result of instability containing regular 

fluctuations or turbulence at low Mach number [Lighthill, 1952, 1954].  The noise 

generated by turbulence alone is an acoustic quadrupole.  In addition, the turbulence 

will interact with the solid surfaces such as bends, edges and cross-sectional area 

changes inside the ductwork to radiate noise [Curle, 1955].  This noise is an acoustic 

dipole.  This turbulence surface interaction (dipole) is more important than that 

produced within the turbulent flow (quadrupole) in the air conditioning system 

where the flow Mach number is low and the flow Reynolds number is high.  Noise 

from the related building services equipment, such as the air handling unit and fan, 

then propagates into the interior of the building through the air conveying ductworks 

and affects directly the indoor built environment.     

First, the treated air with low temperature will be distributed by means of the 

air handling unit.  Noise and turbulence are generated from the interaction between 

fan blades and the air flow [Ffowcs Williams and Hawkings, 1969; Peake and 

Kerschen, 1997; Quinlan and Bent, 1998; Fehse and Neise, 1999; Woodley and 
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Peake, 1999a, 1999b].  The turbulence further interacts with duct elements to 

produce noise.  Nelson and Morfey [1981] measured the noise radiated from a flat 

plate placed normal to a low Mach number flow in a duct, and Hourigan et al. [1990] 

examined the acoustic resonance in a flow duct with baffles experimentally.  Flow-

induced noise due to fluid-structure interactions is also a problem in the ventilation 

ductwork [Howe, 1998].  Prediction methods for the aerodynamic noise produced in 

air ducts were also studied [Waddington and Oldham, 1999; Mak and Yang, 2000; 

Oldham and Waddington, 2001; Mak, 2002].  In the existing literature, there exists a 

large volume of analytical results on the flow-induced noise.  Though they are not 

directly related to the noise inside the ventilation ductwork [for instance, Howe, 

1975, 2003; Dowling and Ffowcs Williams, 1983; Crighton et al., 1992], they do 

provide useful information on the sound generation mechanisms inside the 

ductwork.   

In the current practice, there are two kinds of control method to alleviate the 

noise nuisance to the building occupants, namely, the active [Nelson and Elliott, 

1993; Hansen and Snyder, 1997; Bies and Hansen, 2003] and the passive methods 

[Munjal, 1987a; Harries, 1991; Beranek and Vér, 1992; Barron, 2003].  The passive 

control method can be further categorized into the reactive and dissipative types.   

Active control method utilizes electronic feedforward and feedback 

techniques to cancel the noise.  An inverse pressure wave is generated to attenuate an 

unwanted noise by using the principle of destructive interference of waves.  In order 

to achieve substantial sound cancellation, the cancelling source must produce, with 

great precision, an equal amplitude but inverted replica of the signal to be cancelled.  

Only with the advancement of adaptive digital signal-processing theory and 

hardware has it become possible to maintain these relationships automatically to the 
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desired precision without continuous intervention by a human operator.  The 

advantages of active control are small equipment size, low pressure drop (and 

associated energy savings in large air handing systems) and good low frequency 

performance.  One can find some examples on controlling the ductwork noise in 

Swinbanks [1973], Trinder and Nelson [1983] and Tang and Cheng [1998].  

Reactive control method consists of a number of elements with different 

transverse dimensions joined together so as to cause, at every junction, impedance 

mismatch and hence reflection of a substantial part of the incident acoustical energy 

back to the source.  Some examples of reactive components are the side-branches 

[Ingard, 1953; Redmore and Mulholland, 1982; Radavich et al., 2001; Tang and Li, 

2003; Tang, 2004], the flexible panels [Huang, 1999; Huang et al., 2000, 

Ramamoorthy et al., 2003] and the expansion chambers [Cummings, 1975; El-

Sharkawy and Nayfeh, 1978; Denia et al., 2001; Sadamoto and Murakami, 2002]. 

The side-branch muffler consists of a Helmholtz resonator [Diskey and 

Selamet, 1996; Selamet et al., 1997; Chen et al., 1998; Griffin, et al., 2001; Selamet 

and Lee, 2003; Tang, 2005] connected to the main pipe through which the noise is 

transmitted.  It reduces the noise transmission primarily by reflecting the acoustic 

energy back to the source, and some energy is partly dissipated by the air friction in 

the neck of the Helmholtz resonator.  The effective frequency range of a side-branch 

muffler is narrow but the transmission loss within this range is large.  For the 

expansion chamber, the maximum transmission loss is obtained when the length of 

the chamber is equal to an odd multiple of a quarter wavelength of the sound while 

the minimum transmission loss occurs when the length of the chamber is a multiple 

of a half wavelength [Munjal, 1987b; Selamet and Radavich, 1997].  Unfortunately, 
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the cross-sectional area changes or cavity along the main duct causes high static 

pressure loss in the flow system.   

The last method is to dissipate sound energy by the air friction (viscous 

effects) in the porous material lining (usually made of fibreglass or rockwool) inside 

dissipative silencers [Cummings, 1976; Mechel, 1990a, 1990b; Kirby and Lawrie, 

2005].  Effective range of noise control is limited to the middle to high frequencies.  

Owing to its broadband performance and cost effectiveness, the dissipative silencers 

are widely adopted in the ventilation systems.  For high frequency noise, the 

dissipative silencers are generally less expensive and have better performance over 

the active control system.  This is because high frequency noise is usually associated 

with the propagation of higher order modes in addition to plane waves in a duct.  

Active systems for the control of higher order mode propagation are much more 

complicated than those for controlling plane waves.   

There are many studies that deal with the attenuation performance of a 

dissipative silencer.  Cummings [1976] studied the sound attenuation performance of 

acoustically lined flow ducts and of the parallel baffle type dissipative silencers 

having an arbitrary number of central splitters. Cummings and Sormaz [1993] sought 

an eigensoluton that satisfied the governing differential equation.  However, the end 

effects are not included in their study.  Cummings and Chang [1988] studied the 

transmission loss across a finite length dissipative flow duct silencer with internal 

mean flow in the absorbent by the mode matching technique followed by 

experimental validation.  Peat and Rathi [1995] used the finite element method to 

study the sound field in a dissipative flow duct silencer and Glav [2000] derived a 

transfer matrix to study the characteristics of a dissipative silencer of arbitrary cross-

section without mean flow.  A closed-form analytical solution for the transmission 
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loss of a dissipative silencer with a circular cross-section is derived using the low 

frequency approximation by Kirby [2001].  This low frequency approximation is 

suitable for designing relatively small circular dissipative silencers as a fast and 

accurate tool provided that the investigation is not extended to the middle to high 

frequencies.  Kirby [2003] studied the transmission loss of an arbitrary cross-section 

duct with porous material theoretically and experimentally.  Selamet et al. [2004, 

2005] studied analytically the sound attenuation performance of perforated 

dissipative silencers with and without inlet/outlet extension by applying the pressure 

and velocity matching technique. 

However, the flow inside a ventilation ductwork is in general turbulent and is 

of low Mach number.  From the theory of Lighthill [1952] and the work of Curle 

[1955], flow turbulence is expected to generate noise even in the presence of 

acoustically absorptive materials.  The self-noise from a dissipative silencer is also a 

typical problem of aerodynamic sound generation. 

Ffowcs Williams [1972] showed that noise could be generated by the 

turbulence over a sound absorbent lining, implying that the dissipative silencer is 

also a source of noise.  The self-noise generation over perforated duct liners was also 

studied by Tsui and Flandro [1977] and Nelson [1982].  They provided further 

theoretical support to the self-noise generation.  Quinn and Howe [1984] 

investigated the production and absorption of acoustic energy when a sound wave 

impinges on the edges of the acoustic lossless liner theoretically.  Self-noise 

generation from a ducted fan was also studied by Glegg et al. [1998].  However, a 

detailed study on this self-noise generation is rarely found in the existing literature.   

Researchers usually deal with the interaction between turbulence and rigid 

boundaries theoretically, for instance, Ffowcs Williams and Hawkings [1969], 
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Ffowcs Williams and Hall [1970] and Howe [1975].  There are also studies using 

numerical methods to investigate the sound generation.  The sound generated by a 

circular cylinder at low Mach number flow was investigated by the method of direct 

numerical simulation (DNS) [Inoue and Hatakeyama, 2002].  Casalino et al. [2003] 

investigated the noise generated by an airfoil in the wake of a rod by the method of 

computational fluid dynamics (CFD).  Many experimental works have been carried 

out as well [For instance, Nelson and Morfey, 1981; Hourigan et al., 1990; Neise et 

al., 1993; Quinlan and Bent, 1998; Fehse and Neise, 1999].  The generation of edge-

tones and Aeolian tones were studied by Curle [1953] and Phillips [1956] 

respectively.  Bies et al. [1997] analyzed the aerodynamic noise generated by a 

stationary body in a turbulent air stream and Nash et al. [1999] studied the tonal 

noise generation mechanism of the flow over an aerofoil experimentally and 

compared the results with the theoretical prediction. 

In the author’s opinion, the research topic on aerodynamic sound generation 

is complicated as turbulence is hard to model so that many problems cannot be easily 

studied by using analytical methods.  However, the situation becomes much simpler 

when the low Mach number turbulence is treated as discrete vortices because the 

dynamics of the latter can be obtained using the potential theory [Crighton, 1972; 

Dunne and Howe, 1997; Howe, 2003; Tang and Ffowcs Williams, 1998].  The 

application of vortex sound theory [Powell, 1964] or matched asymptotic expansion 

method [Crighton, 1972, Obermeier, 1979a, 1979b, and 1980] then enables the 

estimation of the noise radiation.  The far-field inner potential and the near-field outer 

potential are matched in the first leading order term at large distance which is 1/r, where r is 

the radial distance from the origin.  Though the vortices are a drastic simplification of a 
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real turbulent flow, they can still provide useful insights to the topics, at least to the 

leading order of magnitude. 

For the application of the vortex sound theory, the characteristics of 

aerodynamic noise scattered and radiated by a semi-infinite plate were also 

conducted [Crighton, 1972; Crighton and Leppington, 1970, 1974].  Crighton [1972] 

estimated the noise radiation from a line vortex around the edge of a rigid half plane 

by the method of matched asymptotic expansion and Obermeier [1979b, 1980] used 

similar method to investigate the sound generated by the interaction of vortices with 

a circular cylinder in the presence of a mean flow.  Cannell and Ffowcs Williams 

[1972] investigated the noise generation when a vortex pair exhausts from a two-

dimensional ductwork while Möhring [1978] derived an alternative form of sound 

generation using the Green’s function representation.  The aerodynamic noise 

generation from a vortex ring in the presence a sharp wedge was studied by Chang 

and Chen [1994].  The vortex interaction with a wall barrier, circular cylinder, wall 

mounted cylinder and thin-wall aperture and this sound radiation were discussed 

using the Lighthill acoustic analogy in Abou-Hussein et al. [2002].  Tang and 

Ffowcs Williams [1998] studied the noise radiation when an inviscid vortex 

approaches a circular cylinder with surface suction.  The noise production by an 

inviscid vortex-nozzle interaction was investigated together with the use of the 

Lighthill acoustic analogy and the vortex-blob method by Hulshoff et al. [2001].  

The recent study of Tang [2001] investigated the dynamics of an inviscid vortex 

upon the influence of the porous material and suggested that the change in the vortex 

speed gives rise to fluctuating force acting on the porous material and enhances self-

noise radiation.   
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There are also studies investigating vortex-surface noise experimentally.  

Bearman [1967] measured the velocity of the vortices and the longitudinal spacing 

between vortices in the wake with splitter plates and base bleed.  Kambe et al. 

[1985] studied the sound from a vortex ring passing near the edge of a half-plane 

while Minota and Kambe [1987] studied the sound generation when a vortex ring 

interacts with a circular cylinder.  Minota et al. [1988] also investigated the sound 

radiation from the interaction of a vortex ring passing near a wedge-like plate.  

As discussed earlier, the use of porous material in a dissipative silencer is 

widely adopted.  However, the self-noise generation under the influence of the 

porous material cannot be neglected as it lowers the overall performance of the 

silencer and if it is within the worst frequency range of the silencer, noise 

amplification within some frequency bands may be possible.  Despite this problem, 

the conventional dissipative silencer is used extensively because of cost-

effectiveness, broadband performance and stability.  Therefore, it is worthable to 

study the mechanisms of self-noise generation in the dissipative silencer.  In 

addition, a detailed study of the self-noise generation of the porous material is rarely 

found in the existing literature.   

In the present study, two-dimensional self-noise generation upon the 

influence of the porous material in the low Mach number and high Reynolds number 

flow condition is investigated.  The investigation is based on theoretical modelling.  

The turbulence is simplified as discrete vortices, and the vortex-surface interaction is 

investigated.  In the present study, the theoretical model derived by Tang [2001] is 

adopted.  It excludes the effects of mean flow.  The presence of a mean flow will 

probably create a stronger sound field.  In order to simplify the present theoretical 

study, the mean flow effect is again ignored.  The present study shows how the 
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porous material affects the dynamics of the vortex motion and the possibility of 

noise amplification.  It is hoped that the present study can enhance the understanding 

of the self-noise generation due to porous materials and reveal the basic mechanisms 

of self-noise generation in a dissipative silencer.     

 

1.2 Theory of Aerodynamic Sound 

The present study is focused on the aerodynamic sound generation, and an 

introduction to its theory will be outlined in this section.  The sound generated by 

turbulence in an unbounded medium is called aerodynamic sound and is a very small 

component of the whole fluid motion.  Lighthill [1952] transformed the Navier-

Stokes and continuity equations into an exact inhomogeneous wave equation whose 

source terms are important only within the turbulent region.  Lighthill’s equation 

states that 
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where Tij, t, ρo, ρ − ρo, co and ∇2 are the Lighthill stress tensor, time, mean fluid 

density, perturbation density, sound speed and Laplacian operator respectively.  x = 

(x1, x2, x3) is the position, i and j are the suffices over 1, 2 and 3.  The Lighthill stress 

tensor is represented by  
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where po and p − po are the mean and perturbation pressure, δij is the Kronecker delta 

(= 1 for i = j, and 0 for i ≠ j), σij is the viscous stress tensor and ρvivj is the Reynolds 

stress.  The terms in the Lighthill stress tensor account for the generation of sound, 

govern the acoustic self-modulation caused by acoustic nonlinearity, the convection 

of sound waves by the turbulent velocity, refraction caused by sound speed 

variations, and attenuation due to thermal and viscous actions.  When the mean fluid 

density and sound speed are uniform, ρvivj and p − po can be approximated as ρovivj 

and ( )ooc ρρ −2  respectively.  The Lighthill stress tensor in Equation (1.2) reduces to 

Tij = ρovivj when the viscous stresses are neglected. 

To calculate the sound generated by turbulence in an unbounded medium, we 

need to solve Equation (1.1) for the radiation into a stationary, ideal fluid produced 

by a distribution of quadrupole sources whose strength per unit volume is the 

Lighthill stress tensor Tij.  The solution of Equation (1.1) with outgoing wave 

behaviour is 
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where y lies within the source region and |x| >> |y|.  However, turbulence is 

frequently generated in the boundary layers and the wakes of flow past solid 

boundaries.  The unsteady surface forces on these boundaries have significant 

contribution to the production of sound.  It is necessary to generalize the solution of 

Equation (1.3) to account for the presence of solid boundaries in the flow.  Curle 

[1955] extended the theory of Lighthill [1952] to include the influence of solid 

boundaries:   
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where S is the solid boundary, V is the occupied volume and '
ijp  = (p − po)δij − σij.  

The first term on right hand side of Equation (1.4) represents the quadrupole source 

term distributed over V, while the second and the third terms represent the dipole and 

monopole source distributed over S.  The dipole describes the production of sound 

by the unsteady surface force that the body exerts on the exterior fluid, whereas the 

monopole is the sound produced by volume pulsations of the boundary. 

In the present study, the turbulence is treated as discrete vortices, and the 

component div(ρoϖ ∧ v) of the Lighthill quadrupole is the principal source of sound 

at low Mach number (ϖ is the vorticity).  Lighthill’s equation [Equation (1.1)] can 

be recast into a form to emphasize the prominent role of vorticity in the production 

of sound by taking total enthalpy ∫ += 2

2
1 v

ρ
dpB  as the independent acoustic 

variable [Howe, 2003].  The production of sound is governed by the vortex sound 

equation 
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If the mean flow is at rest in the far-field, the acoustic pressure is given by the 

linearized approximation 

 

( ) ( )tBtp o ,, xx ρ≈ .                  (1.6) 

 

In an irrotational flow, Crocco’s equation states that B
t

−∇=
∂
∂v .  Therefore 
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in region where ϖ = 0 and φ(x, t) is the velocity potential that determines the whole 

motion in the irrotational regions of the fluid.  From Equations (1.6) and (1.7), the 

far-field acoustic pressure is 
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1.3 Properties of Porous Material 

In the present study, the vortex sound generation under the influence of the porous 

material is investigated.  The characteristics of the porous material have crucial 

effects on the sound production.  There are three approaches to characterize the 

properties of a porous material:  (i) the phenomenological formulae of Morse and 

Ingard [1968], (ii) empirical curve fitting methods such as that of Delany and Bazley 

[1970], and (iii) rigid-frame models for more complicated pore microstructures such 

as parallel tubes or fibres by Attenborough [1982].  The first approach is adopted in 
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the present investigation since the ineffective range for design purposes in silencers 

is towards the lower frequency region, and the model of Morse and Ingard [1968], 

based on a real, quasi-steady, effective flow resistivity of the porous material is 

adequate at lower frequency.   

Basically, there are two types of porous materials.  The first one is called 

locally reacting and the other one is called non-locally reacting [Ingard, 1994].  The 

former states that the surface impedance of a locally reacting boundary is 

independent of the angle of an oblique incident wave and the latter states that the 

fluid velocity within the porous material no longer is forced to be perpendicular to 

the boundary axis.  We will focus on the locally reacting one as the porous material 

in a dissipative silencer usually consists of fibreglass or rockwool which is locally 

reacting, and the porous material is densely packed.    

The flow inside the porous material is governed by the effective fluid density 

ρe and the flow resistance Rf [Morse and Ingard, 1968].  The former describes the 

inertial properties of the fluid in the pores of the porous material, and the latter the 

frictional retardation to flow through the pores.  For the flow resistance, Rf is adopted 

by Morse and Ingard [1968] for the description of the viscous effect inside the porous 

material.  The flow inside the porous material is very slow and thus the Reynolds number 

will not be so meaningful in this case.  For a real porous material, ρe is between 1.5 and 

5.  However, ρe can be large when the porous material is replaced by a heavy liquid.  

In the study of the transmission loss across dissipative silencers, the data in 

Cummings and Sormaz [1993], Peat and Rathi [1995] and Kirby [2001] give ρe ≈ 3.  

Unless the fluid is perfectly inviscid, one should note that owing to the very tiny 

fluid passages inside the porous material, the effect of viscosity on the fluid motion 

inside this material cannot be neglected though the external flow outside it can be 
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satisfactorily represented by the inviscid model [Tang, 2001].  Also, the introduction 

of the porous material results in finite impedance, which may lower the ability of 

this boundary to support fluid pressure and produce a pressure-releasing effect.  The 

flow equation within the porous material is, according to Morse and Ingard [1968], 

 

0=∇++
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pfe pR

t p
p u
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ρ ,                 (1.9) 

 

where ∇ is the differential operator, and up and pp are the fluid velocity and fluid 

pressure inside the porous material respectively.  Porosity is included implicitly in 

both ρe and Rf.  One can notice from the flow equation depicted in Morse and Ingard 

[1968] as well as in Tang [2001] that ρe and Rf produce pressure-releasing and 

pressure-supporting effects respectively.  In addition, a streamfunction ψp exists for 

the flow inside the porous material such that [Bear, 1972]: 

 

02 =∇ pψ .                 (1.10) 

 

1.4 Thesis Structure 

To investigate the self-noise generation mechanisms, the behaviour of two vortices 

in the proximity of a rigid circular cylinder is investigated in Chapter 2 first.  It 

provides an understanding on how the vortices interacting with a solid body as a 

reference study for further investigation into the influence of the porous material.  

Then, Chapter 3 describes the sound generation when the vortices interact with a 

porous half cylinder mounted on an otherwise rigid plane, and the configuration in 

this chapter is similar to the situation near the wall boundaries of a dissipative 
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silencer.  The vortex sound in the presence of a porous wedge is studied in Chapter 

4.  It is the case at some flow junctions in ductwork which involve edges or are 

wedge-like.  Chapter 5 analyzes the noise generated when the vortex is under the 

influence of a finite length porous material on an otherwise rigid plane, and this flow 

configuration is similar to the situation when the vortex is located near the boundary 

of a lined duct.  Chapter 6 extends the study of Chapter 5 to analyze the self-noise by 

a vortex in a lined duct and is the last chapter for theoretical study of self-noise 

generation.   
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Chapter 2: Sound Generated by a Pair of Vortices 
in the Proximity of a Rigid Circular 
Cylinder 

 

2.1 Introduction 

There is a general belief that turbulence is made up of vertical eddies or vortices.  

These vortices will interact with themselves as well as with any solid body 

embedded in the flow.  In this chapter, the far-field sound radiation resulted from the 

motions of a pair of vortices engaging a rigid circular cylinder without the presence 

of a mean flow is investigated.  The effects of vortex circulations, initial position and 

separation distance are discussed.  In addition, it is valuable to study the influence of 

a rigid boundary [Howe, 2003] and the wavelength of coherent structures [Becker 

and Massaro, 1968] on the aerodynamic sound generation as a reference for further 

investigation into the influence of the porous material.   

 

2.2 Theoretical Model 

The formula of Curle [1955] suggests that the sound generated by the interaction 

between vortices and a submerged solid body can be estimated once the fluctuating 

forces acting on the latter are known.  The potential theory enables the estimation of 

the flight paths of the vortices and thus these forces.  The analysis commences by 

estimating the vortex paths. 

Figure 2.1 shows the schematics of the present numerical investigation.  Two 

rectilinear vortices are situated at z1 = (x1, y1) with vortex strength Γ1 and z2 = (x2, y2) 

with vortex strength Γ2 in the proximity of a rigid circular cylinder centred at the 
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origin in the absence of a mean flow.  The vorticity centroid of the two vortices zc is 

defined as (Γ1z1 + Γ2z2)/Γ, where Γ = Γ1 + Γ2 is the total vortex strength.  In the 

foregoing analysis, the vortex circulations are normalized by Γ.  All length and time 

scales are normalized by a and a2/Γ respectively where a is the radius of the 

cylinder.  From the potential theory, the normalized equation of the complex 

potential is  
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where jz  denotes the complex conjugate of zj and 1−=i . 

The velocity of the jth vortex (uzj and vzj) can be obtained from the derivative 

of W with respect to z at the position zj after subtracting the “self-potential”, 

π2)ln( jj zzi −Γ− , :      
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where (rj, θj) is the polar coordinates of the jth vortex and ⋅ denotes differentiation 

with respect to time. 

The radial and angular velocities of the jth vortex ( jr&  and jθ& ) can be 

analytically determined: 
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where j ≠ k = 1, 2.  Thus, the paths of the vortices can be obtained by the standard 

fourth order Runge-Kutta Method.  The velocity of the vorticity centroid (uzc and vzc) 

is  
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The flight paths of the vortices can be explicitly determined when the 

separation distance between the vortices is small.  This happens when the vortices 

are either really close to each other or are reasonably far away from the cylinder 

surface.  This is the case where a solid body interacts with an initial shear layer on 

the low speed side [Ko and Tang, 1990].  Under this circumstance and let 

ε−= 12 zz , where 0→ε , Equation (2.4) becomes 
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Assuming the two vortices can be viewed as a single vortex of strength Γ located at 

the centroid zc, this single vortex will then perform a circular motion round the 

cylinder with a velocity given by 
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One can observe immediately that Equations (2.5) and (2.6) are equivalent up to 

)( 2εO .  The velocity of jth vortex relative to the centroid is then    
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For small ε , the only important velocity components are πε22Γ− i  and πε21Γi , 

which are the velocities of the isolated rectilinear vortices.  The motion therefore 
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consists of a large circular movement of the centroid around the cylinder together 

with more rapid circular movements of the vortices about the centroid.  It will be 

demonstrated later that the above approximated paths can predict reasonably well the 

forces and sound generated by closely packed vortices.  When a single vortex moves 

around the rigid circular cylinder, the vortex will move in circular motion.  Equation (2.6) 

describes the circular motion of a single vortex about a rigid circular cylinder, and Equation 

(2.5) describes the motion of the vorticity centroid of the two vortices about the rigid 

circular cylinder which is equivalent up to O(|ε2|), so one can conclude that two vorticity 

centroid of the two vortices describes circular motion when ε is small. 

The force per unit length, F, acting on the cylinder is obtained by calculating 

the force needed to keep the image vortices moving along the assumed paths as in 

Tang and Ffowcs Williams [1998]: 

 

kji jjj vuF Γ×+= ∑ )( ,                                                                                        (2.8) 

 

under the conservation of vortex impulse, where i, j and k are the unit vectors in the 

longitudinal, transverse and spanwise directions respectively.  In the present 

situation, the position of the image vortex with strength jΓ−  is j
i re jθ , and its 

velocity is 2)( j
i

jjj rerr jθθ&& +− .  The force acting on unit length of the cylinder, F, in 

the present study is normalized by ρoΓ2/a and F = Fxi + Fyj where     
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where subscripts x and y denote the longitudinal and transverse directions 

respectively.  

The far-field sound radiation by the influence of solid boundaries can be 

estimated from Equation (1.4).  In the present and subsequent chapters, the 

quadrupole source term in Equation (1.4) is ignored as the contribution from it is not 

important in the low Mach number and high Reynolds number flows in the presence 

of solid surfaces.  The contribution from the monopole source term is equal to zero 

in the case of a rigid circular cylinder.  In the two-dimensional sense, the surface 

integral becomes a line integral in the spanwise direction, and this line integral can 

be transformed into a time integral as in Ffowcs Williams and Hawkings [1968].  

The time integral can then be solved numerically [Tang and Ko, 1997].  The 

acoustical contribution from each element of a line source arrives at the far-field location at 

different time.  Integration over the length of the line source is equivalent to integration over 

time [Ffowcs Williams, 1968].  The far-field acoustic pressure is: 
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where R, co and to are the far-field distance, speed of sound in the undisturbed 

medium and far-field observer time respectively.  The far-field sound pressure is 

normalized by ρoΓ2/a2. 
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2.3 Vortex Paths, Forces and Sound 

The present study is focused on the fluctuating force created and the sound radiated 

from the unsteady motions of two vortices in the proximity of a rigid circular 

cylinder.  Owing to the symmetry of the vortices about the x and y axes in the present 

investigation [Figure 2.1], the initial positions of the vortices are chosen to be on the 

x-axis.  Since there is only phase difference between the drag and the lift forces 

created on the cylinder, only results related to the drag force, Fx, and the drag dipole 

strength in the x-direction, Px, will be presented.  The drag dipole Px is defined as 

 

∫
−

∞− −−∂
∂

−= oo cRt

oo
xx ct

dFP
τ
τ

τ
            (2.11) 

 

Figure 2.2 shows the paths of the vortices located at z1i = (−2.1, 0) and z2i = 

(−1.9, 0) with Γ1 = Γ2 = 0.5.  Thus, ε = 0.2.  As suggested by Equations (2.5) to 

(2.7), one can observe from Figure 2.2 that the vortices are in circular movement 

relative to the vorticity centroid and so is the vorticity centroid relative to the centre 

of the circular cylinder.  The period of the vorticity centroid of the vortices around 

the cylinder is approximately equal to ( ) Γ− /14 222
cc rrπ , which is the period of the 

circular motion of a single vortex with strength Γ located at a distance rc from the 

cylinder centre [Howe, 2003].   Those of the vortices about the vorticity centroid are 

roughly Γ224 επ , which is consistent with the prediction by Equation (2.7).  It can 

also be shown that 2
2

2
1 rr +  is fairly time-invariant. 

The resultant force acting on the cylinder consists of components resulted 

from the interaction between mean vortex motion (zc) and the cylinder, and the 

mutual induction between the vortices.  The former, Fxc, results in a low frequency 
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fluctuation, while the latter, Fxm, produces a high frequency component [Figure 

2.3(a)].  Small magnitude high frequency fluctuations are found in the low frequency 

force, which are the results of the small effects from the mutually induced vortex 

motions.  The magnitude of the low frequency force compares well with the single 

vortex prediction, which is 32 2 crπΓ  [Howe, 2003].  While the period of Fxc equals 

that for the vorticity centroid to cover one revolution around the cylinder centre, that 

of Fxm is half that of the mutually induced nominal vortex circular motion, and the 

corresponding lift forces are just 180o out-of-phase with those presented. 

Obviously, both the drag and lift dipole strength time fluctuations are 

composed of low frequency and high frequency components as in the case of the 

forces [Figure 2.3(b)].  The amplitude of the Pxc compared well with that resulted 

from a single vortex with circulation Γ rotating around a circular cylinder, which is 

( )124 245.2 −Γ cc rrπ  [Howe, 2003].  The characteristics of the time fluctuations of 

these dipole strengths resemble very much that of the forces.  However, the 

magnitude of the high frequency component in the dipole strength is much higher 

than that of the low frequency one, suggesting that the mutually induced vortex 

motions are more dominant in the sound radiation process.  One should note that the 

high frequency component in a sound is more significant than the low frequency one 

as it contributes much more to the overall sound power radiation. 

When the vortices are located closer to the cylinder surface with ε fixed, the 

motions of the vortices relative to zc are no longer circular due to the effect of the 

rigid cylinder.  Figure 2.4(a) is an example of the vortex motion with z1i = (−1.3,0) 

and z2i = (−1.1,0).  Under this condition, the vorticity centroid is still describing a 

circular motion around the cylinder.  The motions of the vortices relative to it look 

similar to those in the vortex leapfrogging [Tang and Ko, 2000].  The orbits of the 
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vortices relative to the centroid are oval-like [Figure 2.4(b)].  However, one can 

observe that the principal axes of these oval orbits are rotating clockwisely.  These 

unsteady motions appear to be very important in affecting the forces on the cylinder 

and the dipole strengths [Figures 2.5(a) and 2.5(b)].  The effects of increasing ε at a 

fixed initial vorticity centroid location to the vortex motions are very similar to those 

shown in Figure 2.4, but one can observe from Figures 2.6(a) and 2.6(b) that the 

increasing cylinder effect relative to the mutual induction strength between vortices 

can result in a wrangling vorticity centroid flight path while the oval-like vortex 

orbits relative to this centroid remain.  Certainly, one can expect that there will be a 

drop in the force and dipole strength magnitudes upon the increase of ε.  At large ε, 

the frequencies of the fluctuations in Fxc and Fxm (and thus Pxc and Pxm) are very 

similar.   

The combined effects of variations in zc and ε on the drag forces are 

summarized in Figure 2.7.  One can note that Fxc, which is more related to vorticity 

centroid motion, reduces in magnitude as zc increases at a fixed ε.  The magnitude of 

Fxc increases as ε increases at a fixed zc.  Fxm, which is primarily related to the 

relative motions of the vortices about zc, deviates considerably from the prediction 

using the approximated vortex paths [Equations (2.5) − (2.7)] when ε is large 

compared with zc.  The under-estimation of the magnitude of Fxm increases with ε.  

One can also find that the magnitude of Fxc is always higher than that of the 

corresponding Fxm. 

While the variations of the magnitude of Pxc with zc and ε resemble very 

much those of Fxc, those of Pxm show complicated dependence on ε [Figure 2.8].  

The approximated vortex paths under-estimate the magnitude of Pxm at large ε, but 

give over-estimations at small ε.  At small ε, one can observe that the magnitude of 
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Pxm decreases approximately linearly with ε, but this amplitude reaches a minimum 

at a critical ε for a fixed zc.  For ε > 1, the presence of the rigid circular cylinder affects 

the motion of the vortices.  A substantial rate of change of vortex velocity is observed such 

that the dipole strength increases.  Results shown in Figures 2.7 and 2.8 suggest that a 

substantial reduction of sound power is possible without a significant change in the 

drag/lift force by carefully adjusting the vortex spacing (wavelength of coherent 

structures in a shear layer). 

When one of the vortices is considerably stronger than the other, the forces 

created on the cylinder and sound generated are different from those discussed 

above.  Figures 2.9(a) and 2.9(b) illustrate the vortex paths when Γ1 = 0.1, Γ2 = 0.9, 

z1i = (−2.1,0), z2i = (−1.9,0).  The path of the stronger vortex is approximately 

circular around the cylinder with a very small fluctuating amplitude of around 0.02 

[Figure 2.9(b)].  The circular motion of the weaker vortex about the vorticity 

centroid is also observed.  The stronger vortex dominates the fluid mechanics and 

also the aeroacoustics.  Low frequency and high frequency components are again 

observed in the drag force and dipole strength time fluctuations as in the 

corresponding Γ1 = Γ2 = 0.5 case [Figure 2.3].  However, the circular motion of the 

weaker vortex here results in an amplitude modulation pattern in the high frequency 

fluctuations [Figure 2.10]. 

The combined effects of zc and ε for Γ1 ≠ Γ2 on Fxm are illustrated in Figure 

2.11(a).  It can be observed that for vortices of comparable strengths, the results are 

similar to those shown before in Figure 2.7.  When one of the vortices is 

considerably stronger than the other, the magnitude of Fxm is not really sensitive to 

the change in ε unless the latter is really large.  The prediction from the 
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approximated vortex paths [Equations (2.5) − (2.7)] appears satisfactory for 

relatively large ε of even up to more than 1.  Similar observations can be found for 

Fxc.  Again, the maximum |Fxc| remains larger than that of |Fxm| for small zc. 

Figure 2.11(b) shows the effects of zc and ε on Pxm for Γ1 ≠ Γ2.  Similar to 

Figure 2.8, the magnitude of Pxm decreases linearly with ε at a fixed zc when ε is 

small.  The prediction from the approximated vortex paths works well at Γ1 = 0.99, 

Γ2 = 0.01, zci = (–1.8,0).  These observations, together with those shown previously 

in Figures 2.7 and 2.8, tend to suggest that, apart from the fact that the forces and 

aeroacoustics generation can again be modified by the separation of vortices, 

breaking vortical flow structures will increase the forces acting on a submerged 

object and the sound power radiated if the total circulation and the coherence of the 

broken up structures inside the near flow field are not reduced. 

 

2.4 Summary 

The fluctuating force and far-field sound generated by the motions of two vortices in 

the proximity of a rigid circular cylinder using the potential theory and the acoustic 

analogy have been investigated.  Effects of circulation ratio, initial vortex position 

and separation distance on the force and sound generated are examined in detail. 

Results obtained in the present study demonstrate how the separation 

between vortical structures in a flow, that is, the wavelength of coherent structures, 

has affected the flow induced force on submerged bodies and the eventual 

aeroacoustics.  They also suggest that breaking up large scale flow structures into 

smaller ones enhances the fluid force on submerged bodies and increases the 

acoustic radiation if the total circulation within the flow and the coherence of the 
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broken up flow structures are not reduced.  The results also act as a reference to 

those in later chapters where the effects of the porous material on the vortex sound 

are studied. 
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Chapter 3: Sound Generated by Vortices in the 
presence of a Porous Half Cylinder 
Mounted on a Rigid Plane 

 

3.1 Introduction 

An introduction on vortex sound radiation due to the interaction of two vortices with 

a rigid circular cylinder has been given in Chapter 2.  The force acting on the 

cylinder is also discussed.  In this chapter, the investigation proceeds to study the 

influence of the porous material.  The unsteady motions of two vortices in the 

proximity of a porous half cylinder on an otherwise rigid horizontal plane are 

investigated, and the present configuration is similar to the situation near to the 

boundary of a dissipative silencer.  The effects of vortex circulations, initial vortex 

height and separation distance are discussed.  In addition, the effects of effective 

fluid density and flow resistance of the porous material are also studied.  Since the 

normal velocity at the boundaries of the porous material does not vanish, the 

calculation becomes complicated.  In this chapter, the complex potential and the 

velocity of the inviscid vortex are evaluated through the use of conformal mapping 

as in Tang [2001], while the far-field potential is derived with the use of the matched 

asymptotic expansion method as in Crighton [1972] and Obermeier [1979a, 1980].  

The far-field acoustic pressure is evaluated using Equation (1.8).  

 

3.2 Theoretical Development 

Two rectilinear vortices with circulations Γ1 and Γ2 initially located at the complex 

locations z1i and z2i respectively interact with a half cylinder composed of a porous 

material as shown in Figure 3.1.  The present configuration is intended to represent 
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one flow boundary inside a dissipative silencer.  The horizontal separation between 

the vortices is denoted by ε.  The properties of the porous material are characterized 

by the effective fluid density, ρe, and the flow resistance, Rf, inside its lattice [Morse 

and Ingard, 1968] as mentioned in Chapter 1. 

With the help of the conformal mapping [Churchill and Brown, 1990], the 

original z-plane (z = x + iy) is transformed into the w-plane (w = ξ + iζ) as shown in 

Figure 3.2, and the mapping function is 
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It has been shown by Tang [2001] that the surface flow impedance is unaltered upon 

any conformal transformation.  In the present study, all the length scales are 

normalized by the cylinder radius a, and the strengths of the vortices are normalized 

by the total vortex strength Γ (= Γ1 + Γ2).  Here, time is normalized by a2/Γ.  Vwj and 

Rf are normalized by Γ/a and ρoΓ/a2 respectively.  The streamfunction, ψwj, and the 

velocity, Vwj, of the jth vortex in the w-plane can then be obtained by matching the 

fluid pressure and normal fluid velocity along the impedance boundary [Tang, 

2001]:   
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where 
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and η is the ratio of effective fluid density to the fluid density in the medium (ρe/ρo) 

such that η is always greater than 1.  Equation (3.2) is derived from matching the flow 

potential in the fluid region in a channel bounded by the porous region.  Details of the 

derivation of Equations (3.2) and (3.3) can be found in Tang [2001].  The 

corresponding vortex velocity in the w-plane, Vwj, is evaluated by differentiating 

Equation (3.2) with respect to ζ: 
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It is parallel to the ξ-axis and is a sole function of ζj. 

The overall stream function, ψw, in the presence of other vortices is therefore 
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and the velocity of the jth vortex, uwj and vwj, in the w-plane are 
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Also, Γ3 = −Γ1, uw3 = uw1, vw3 = −vw1 and Γ4 = −Γ2, uw4 = uw2, vw4 = −vw2.  The paths 

of the vortices in z-plane are calculated by integrating Equation (3.6) numerically 

using the standard fourth order Runge-Kutta method together with the Routh’s 

correction [Routh, 1881]: 
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where ′ represents differentiation with respect to w.  Routh’s correction details the 

motion of a particle transformed from an original z-plane to a w-plane and the correlation 

between the particle motions in these planes.   

With the Cauchy-Rieman principle, the flow potential in w-plane is 
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where C is the integration constant that can be evaluated by observing that the flow 

potential vanishes as ∞→z .  For the Cauchy-Rieman principle, it states that For a 

flow is irrotational, the streamlines and potential lines are everywhere mutually 

perpendicular except at a stagnation point.  The incompressible flow potential in the z-

plane, φz, can then be found by substituting w by f-−1(z) [Equation (3.1)] in Equation 

(3.8).  The far-field potential, φzo, can then be obtained using the matched asymptotic 

expansion method [Crighton, 1972; Obermeier, 1979a, 1980], and the far-field sound 

pressure is evaluated through the use of Equation (1.8). 
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3.2.1 Acoustically Hard Surface 

When the effective fluid density or the flow resistance is so large that the fluid can 

hardly enter the wall mounted half cylinder, gj → −1 [Equation (3.3)].  The flow 

potential in Equation (3.8) becomes   
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and by observing the flow potential vanishes as z → ∞ (ξ → 0 and ζ → 1), the 

constant C [Gradshteyn and Ryzhik, 1980] is 
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By substituting )(1 zfw −=  into Equation (3.9), the flow potential in the z-plane is 

thus 
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which is the flow potential of two vortices interacting with a rigid half cylinder 

mounted on a rigid plane [Howe, 2003].  The far-field inner potential produced by 

the two vortices is, for large z , 
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The far-field so produced in the frequency domain is the solution of the 

Helmholthz equation 022 =+∇ φφ k , which is ∑
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Hσ  is 

the Hankel function of the first kind of order σj and k is the wavenumber.  The 

matched asymptotic expansion method [Obermeier, 1979b] suggests that for low 

frequency sound radiation, σj = 1 and 
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where ock ω= , co is the ambient speed of sound and [ ]t represents the Fourier 

transform with respect to time.  The far-field inner potential at z  ∞ must match the far-

field outer potential at z  0, and σ must set equal to one to match the condition.  At a 

large distance R, one obtains with the property of the Hankel function [Abramowitz 

and Stegun, 1972] that for positive ω, 
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The far-field outer potential φzo can be obtained by using the inverse Fourier 

transform : 
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It is straight-forward to observe that the integrand in Equation (3.15) comes from a 

convolution and the far-field pressure [Equation (1.8)] is, with the help of 

Gradshteyn and Ryzhik [1980]: 
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where the far-field sound pressure p is normalized by ρoΓ2/a2.  The far-field sound 

pressure is a longitudinal dipole (Px).  Equation (3.16) is exactly the same as that 

depicted in Abou-Hussein et al. [2002] and agrees with the deduction of Curle 

[1955]. 
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 since η ≠ 1.  From Equation (3.8), the 

flow potential in z-plane becomes 
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The far-field inner potential produced by the vortices in a perfectly inviscid 

fluid is, for large z ,  
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Thus, the far-field sound pressure is 
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Equation (3.19) shows that the pressure generated in a perfectly inviscid fluid is 

again a longitudinal dipole and it converges to Equation (3.16) for large η (gj → −1). 

 

3.2.3 Combined Effects of η and Rf 

With a finite flow resistance Rf, the effects from the porous material become 

complicated.  The flow potential in the w-plane is 
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where 
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jw = conjugate of wj, jjj iξζµ −+= )1(  and )]1([ ηβ += wjfj VR , and si and ci are 

the sine and cosine integrals respectively.  The velocity of each vortex has to be 

estimated by iteration as in Tang [2001].  The corresponding flow potential φz is  
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where )()( ξξζζ −−+= jjj iD .  The flow potential φzi at large z becomes 
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γ , and G(0,χ) is the incomplete gamma function [Abramowitz and 

Stegun, 1972].  The far-field outer potential, φzo, can be obtained in the same way as 

in the two previous cases.  Equation (3.22) indicates that a transverse dipole (Py) of 

magnitude f2j exists when the flow resistance is finite.  A longitudinal dipole (Px) of 

magnitude f1j adds to the half cylinder dipole.   

One should note that Rf in the present chapter is normalized by ρoΓ/a2.  

Therefore, this parameter can vary over a very wide range.  For weak vortex 

strength, Rf can be very large and it decreases as the vortex strength increases.  It 

vanishes in the case of a perfectly inviscid fluid.  In the foregoing analysis, Rf ranges 

from 0 to 100.  One can notice from later discussions that the acoustic radiation with 

Rf = 100 are already close to those of the rigid half cylinder. 

In the foregoing discussions, the far-field sound pressure is evaluated at a 

radial distance R of 100.  The acoustical energy (E) radiated by the unsteady vortex 

motions is equal to 

 

( )∫ ∫ +=
t

yx dtrdPPE
0

2

0

22π
θ              (3.23) 

 

3.3 Single Vortex  

For a single vortex translating past a rigid wall mounted half cylinder, Abou-Hussein 

et al. [2002] studied the effects of mean flow on its path and the sound generation.  

The magnitude of sound pressure increases as y1i decreases.  Active sound 

generation is observed during the period when the vortex undergoes a substantial 
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large rate of change of velocity when it is close to the rigid half cylinder.  A single 

vortex moving over a rigid flat plane generates no sound.   

For a perfectly inviscid fluid, the flow resistance vanishes (Rf = 0).  Figure 

3.3(a) shows the corresponding effect of η on the vortex path with x1i = −10 and y1i = 

0.5.  The path of a vortex engaging a rigid wall mounted half cylinder is also shown 

for comparison.  The theory in the previous section (Section 3.2.2) indicates that the 

vortex path converges to that under rigid wall condition at very large η.  The vortex 

path bends towards the porous half cylinder surface because of the pressure-releasing 

effect.  The smaller the value of η, the greater the degree of bending towards the 

porous half cylinder surface.  It will be shown later in Chapter 4 that such situation 

also appears when a vortex moves in the vicinity of a wedge with inhomogeneous 

surface flow impedance.  The vortex resumes its original height as it gradually goes 

away from the porous half cylinder (at x > 2).  Figures 3.3(b) to 3.3(e) show the 

corresponding time variation of the vortex velocities and accelerations.  The time ta 

denotes the time at which the vortex passes across the y-axis (x = 0).  The magnitude 

of the vortex longitudinal velocity uz1 increases as η decreases while the magnitude 

of the vortex transverse velocity vz1 is fairly constant for a perfectly inviscid fluid.  

One can also notice that the magnitudes of the vortex accelerations increase with 

decreasing η.  When y1i increases, less severe vortex path bending can be observed at 

a fixed η. 

Equations (3.16) and (3.19) suggest that the far-field sound pressure is a 

longitudinal dipole (Px) for the case of a rigid half cylinder (gj → −1) or a perfectly 

inviscid fluid (gj = (1 + η)/(1 − η)).  The sound pressure increases [Figure 3.3(f)] as 

the vortex comes closer to the porous half cylinder surface and undergoes substantial 

large longitudinal and transverse accelerations [Figures 3.3(d) and 3.3(e)].  The 
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pressure fluctuation patterns for various η are pulse-like and are similar to that for 

the case of a hard cylinder, except that the duration of active sound production is 

reduced as η decreases.  Amplifications of the first peak and trough are found upon 

the introduction of the porous material and the extent of such amplification increases 

with decreasingη.  It is found that a decrease in either y1i or η will lead to an increase 

in the strength of the far-field sound pressure fluctuation. 

For non-vanishing flow resistance (Rf ≠ 0), Morse and Ingard [1968] and 

Tang [2001] suggested that η and Rf produce pressure-releasing and pressure-

supporting effects respectively (Chapter 1).  Figure 3.4(a) shows such effects on the 

vortex path at a fixed η with the vortex located at x1i = −10 and y1i = 0.5.  The vortex 

paths for Rf > 10 are close to that of the rigid half cylinder case.  The vortex bends 

away from the porous half cylinder surface at x < 0 and the extent of the bending 

increases as Rf decreases towards 0.1.  Further away from the porous half cylinder at 

x > 2, it is observed that for 0.5 ≤ Rf < 10, the vortex path first gets closer to the x-

axis at small Rf but gradually rises back to y = 0.5 after reaching a minimum 

separation distance at Rf ≈ 1.  At Rf = 0.1, the earlier movement of the vortex away 

from the porous half cylinder surface at x < 0 is so serious that the vortex height y1 is 

greater than 0.5 after the vortex moves over the porous half cylinder.  However, the 

vortex path collapses gradually with that for η = 5, Rf = 0 [Figure 3.3(a)] as Rf is 

further reduced.  When Rf is reduced further towards zero, the pressure-releasing 

effect becomes more important such that the vortex path bends towards the porous 

half cylinder again and converges to that of the perfectly inviscid fluid case.  One 

can also notice from Figure 3.4(a) that the vortex paths with non-vanishing Rf are not 

symmetrical about the y-axis. 
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Figure 3.4(b) illustrates the effects of η on the vortex path with Rf fixed at 5. 

The vortex bends away from the porous half cylinder surface as in Figure 3.4(a). The 

degree of the initial path bending increases with η for η ≤ 1000.  The vortex height 

y1 after the vortex passes over the porous half cylinder first drops below 0.5 as η 

increases from 3, but rises up above 0.5 as η further increases from 100.  One is 

expecting that y1 will resume the value of 0.5 as η → ∞.  When η tends to one, the 

pressure-releasing effect is very strong.  The vortex comes closer to the porous half 

cylinder surface for small Rf as it decelerates after passing across the vertical 

centerline of the porous half cylinder as shown in Figure 3.4(c).  The path becomes 

similar to that under the hard wall condition for Rf > 1. 

Figure 3.5 shows the effect of flow resistance on vortex velocity at a fixed η 

= 5.  The amplitude of vz1 decreases for all Rf compared with the rigid wall condition.  

However, one can notice that uz1 increases when Rf is very small and decreases with 

increasing Rf.  When the flow resistance inside the porous material is finite, the transverse 

and longitudinal vortex velocities decrease with increasing flow resistance.  However, when 

the flow resistance is small, the longitudinal velocity of the vortex increases because of the 

relatively weaker frictional force inside the porous material.  Figure 3.6 shows the 

corresponding time variations of vortex accelerations.  The amplitude of the 

longitudinal acceleration of the vortex decreases from Rf = 10 to Rf = 0.1 and then 

increases again by further reducing Rf to 0.  However, the vortex undergoes longer 

duration of longitudinal acceleration for 0.1 < Rf < 10.  The same is true for the 

transverse acceleration of the vortex. 

Unlike the situation in an inviscid flow, the present far-field sound pressure 

consists of a longitudinal dipole, Px, and a transverse dipole, Py [Equation (3.22)].  

Figures 3.7(a) and 3.7(b) show some examples of the time variations of Px and Py for 
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η = 5 at various Rf respectively.  It is observed that the decrease of Rf reduces the 

magnitudes of the peak and trough of Px, but prolongs the duration of active sound 

radiation for 0.001 ≤ Rf ≤ 0.1.  This also results in earlier radiation of sound.  

However, the amplitude of Px is higher than that under the rigid half cylinder 

condition for 10 > Rf > 0.1 and Rf < 0.001.  The time variation of Px converges to 

those for the rigid half cylinder and perfectly inviscid fluid cases as Rf → ∞ and 0 

respectively.  On the other hand, the increase of the flow resistance enhances the 

radiation of Py, though their magnitudes are small compared to those of Px.  The 

duration of the transverse dipole radiation appears longer than that of the 

longitudinal one.  In addition, the magnitude of Py is higher at small Rf.  At very 

large Rf, the results converge to those in the rigid half cylinder case. 

Figures 3.8(a) to 3.8(c) summarize the effects of η and Rf on the amplitudes 

of Px and Py at x1i = −10, y1i = 0.3, 0.5 and 0.8 respectively for 10−5 < Rf ≤ 100.  

Those of Px for the cases of a rigid half cylinder and an inviscid fluid are included 

for the sake of referencing.  For y1i = 0.3 [Figure 3.8(a)], the vortex is likely to hit the 

porous half cylinder at η = 1.5 and Rf < 0.009.  This violates the assumption of the 

theory and thus no data in this Rf range can be presented.  For all η studied, the 

amplitude of Px is approximately equal to that of the rigid half cylinder case for Rf > 

1.  At Rf < 1, the amplitude of Px fluctuates about its ‘rigid half cylinder’ value, but 

increases as Rf → 0 and finally converges to the corresponding values for the 

perfectly inviscid fluid.  The amplitude of Py peaks at around Rf ~ 0.5.  As Rf → 0 or 

∞, Py drops towards its theoretical value for a perfectly inviscid fluid and a rigid half 

cylinder respectively (that is, Py = 0).  The decrease of η increases the amplitude of 

Py for the whole range of Rf, while the increase of Px is only observed at Rf < 0.5. 
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Again, the increase of η leads to a reduction of the transverse dipole 

amplitude for the other two values of y1i [Figures 3.8(b) and 3.8(c)].  The amplitude 

of the transverse dipole becomes weaker when the porous half cylinder is less 

pressure-releasing as anticipated by the theory (larger η and/or higher Rf).  As can be 

expected, the increase in y1i reduces the effects of the porous half cylinder on the 

sound radiation.  Results in Figure 3.8 suggest that certain combinations of η and Rf 

will lead to louder sound radiation than the rigid half cylinder case, especially for 

small y1i with small η and very small Rf.  Also, it is noted that the amplitude of Py is 

always below those of Px, but their difference decreases with increasing y1i. 

Figure 3.9 illustrates the overall acoustical energy (E) radiated by the 

unsteady vortex motions under the influence of η and Rf.  At a small y1i [Figure 

3.9(a)], the introduction of the porous material enhances the radiation of acoustical 

energy at η = 5 and small Rf (<10-4).  This radiation becomes less important as η 

decreases from 5 to 1.5 for Rf > 0.5, while this trend is reversed for Rf < 0.5.  As Rf 

increases from 0.5 to 100, the strength of the radiation eventually falls below that of 

the rigid half cylinder case for a fixed η.  However, all the curves in Figure 3.9(a) 

converge to E = 0.1769, which is the energy radiated in the rigid half cylinder case 

for large Rf. 

The situations at y1i = 0.5, presented in Figure 3.9(b), follow closely those 

shown in Figure 3.9(a), except that the results at 0.001 ≤ Rf ≤ 0.01 are very close to 

each other.  The increase in y1i reduces the induction effect of the porous half 

cylinder on the vortex, resulting in a less significant sound radiation even at small η 

and Rf.  Further increase y1i to 0.8 does not affect much the trend of E with Rf and η 

for Rf > 0.1, but E decreases with decreasing η otherwise [Figure 3.9(c)].  In this 
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case, less acoustical energy than in the rigid half cylinder case is radiated for Rf < 

0.1. 

Figures 3.10(a) to 3.10(d) show the change in the directivity patterns of the 

sound radiations.  One can notice that the dipole axis does change with time as in 

Minota and Kambe [1987] but it should be noted that the longitudinal dipole 

dominates the sound field as the magnitude of Px is nearly always much higher than 

that of Py [Figure 3.8].  The rotation of the dipole axis can only be observed when Px 

is sufficiently small, which is also the instant of less significant sound radiation. 

 

3.4 Two Interacting Vortices with Identical strengths 

The sound generation by two identical vortices will be examined in this section.  The 

initial vertical height of the vortices y1i = y2i is set at 0.5 and x1i = −10 and the 

strengths of the two vortices are set equal at Γ1 = Γ2 = 0.5.  It is well known that two 

vortices of thin cores will undergo leapfrogging and such motion is periodic in the 

absence of the cylinder [Tang and Ko, 2000].  The present investigation is focused 

on how this motion and the corresponding sound generation are affected by the 

porous half cylinder.  In the foregoing discussions, the vorticity centroid of the two 

vortices is defined as in Chapter 2.  That is zc = (Γ1z1 + Γ2z2)/Γ, where Γ = Γ1 + Γ2.  

Similar to Section 3.3, the results associated with the combinations of η and Rf under 

which the vortices come very close to the porous half cylinder surface are excluded.   

Figure 3.11 illustrates some examples of the vortex paths at different ε in the 

presence of a rigid half cylinder.  The paths of the individual vortices relative to zc 

are also given at the bottom of the figure.  For ε ≤ 0.4, the path of the vorticity 

centroid collapses with that of a single vortex of strength Γ located at x1i = −10 with 

y1i = 0.5.  The relative paths of the vortices are in circular motion about the vorticity 
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centroid [Figure 3.11(a)].  The presence of the rigid half cylinder does not affect 

much the mutual induction between the two vortices at this ε. 

At increased ε, the path of zc deviates from that shown in Figure 3.11(a) and 

the paths of the two vortices relative to the vorticity centroid become chaotic and not 

circular.  The leapfrogging vortex motions become more disturbed as ε increases 

from 0.8 to 1.6 [Figures 3.11(b) to 3.11(d)].  The larger vortex separation weakens 

the mutual induction strengths between the vortices. 

Figures 3.12 to 3.14 show the time variation of vortex velocities and 

accelerations at different separation distance in the presence of a rigid half cylinder.  

Here, tb represents the instant when the vorticity centroid passes over x = 0.  The 

vortex velocities and accelerations are not affected much in the presence of a rigid 

half cylinder when ε is small [Figure 3.12].  The strengths of these components are 

very strong and fluctuate seriously due to the mutual induction between the two 

vortices.  At increased ε, the magnitudes of the vortex velocities and accelerations 

decrease, and the mutual induction strengths between the vortex are weakened 

[Figures 3.13 and 3.14].  

Figures 3.15(a) to 3.15(c) show the far-field sound pressure time fluctuations 

at different ε.  It is expected that the sound radiation is more significant when the 

vortices are in the proximity of the half cylinder.  The periodic leapfrogging vortex 

motions at small ε results in a higher frequency sound radiation [Figure 3.15(a)], 

which carries most of the sound energy.  There is a lower frequency sound 

fluctuation embedded inside the result shown in Figure 3.15(a), which is similar to 

that produced by a single vortex of strength Γ = 1 located at z1i = (−10, 0.5).  The 

increase in ε leads to less ordered leapfrogging vortex motions.  The pulses in 
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Figures 3.15(b) and 3.15(c) are created at the instants when the vortex slip-through 

occurs as in the case without the cylinder [Tang and Ko, 2003].   

As discussed in Section 3.3 [Figure 3.3(a)], a finite effective fluid density 

inside the porous material lattice will create a pressure-releasing effect, reducing the 

effect of the porous half cylinder relative to the mutual induction between the 

vortices.  At ε = 0.4, ordered periodic vortex leapfrogging motions can be observed 

when η = 5 and Rf = 0 [Figure 3.16(a)].  The reduction of η to 3 does not disturb 

much the leapfrogging vortex motions though the vortex paths are much closer to the 

porous half cylinder surface.  The same is also true for η = 2 [Figure 3.16(b)].  The 

stronger effect from the porous half cylinder due to the shorter separation between it 

and the vortices does result in a slight deviation of the vortex paths relative to zc 

from circular motion.  The path of zc resembles those shown in Figure 3.3(a).  

Similar observation can be made at increased ε [for instance, Figure 3.16(c)] 

provided that the vortices do not hit the porous half cylinder. 

When the flow resistance inside the porous half cylinder is finite, the vortices 

tend to bend away from the porous half cylinder surface as they propagate across the 

porous half cylinder [Figure 3.17] as in the single vortex case [Figure 3.4].  

However, unlike the cases of a rigid half cylinder or a perfectly inviscid fluid 

[Figures 3.11 and 3.16 respectively], an increase in the pairing period is observed in 

the present two interacting vortices case upon the introduction of Rf.  The separation 

of the vortices eventually increases due to the combined effects of η and Rf [Figure 

3.17].  Further decreasing η at a fixed Rf brings the vortices further away from the x-

axis after they pass over the porous half cylinder into the region x > 2 [Figures 

3.17(c) and 3.17(d)] and thus reduces the frequency of sound.  Such reduction in 

sound frequency is more pronounced at small ε.  However, one should note that the 
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acoustical energy radiated when the vortices are at x> 2 is insignificant.  The 

vortex dynamics at increased ε are similar to those presented in Figure 3.17, though 

one expects that the two vortices will move closer to the porous half cylinder 

provided that no impingement occurs. 

Figures 3.18 to 3.20 show some examples of the time variation of vortex 

velocities and accelerations at ε = 0.4 and η = 5 with different Rf.  It is observed that 

the magnitudes of the vortex velocities and accelerations decrease at t − tb > 0.  

Figures 3.21(a) and 3.21(b) illustrate the time variations of Px and Py at different Rf 

respectively at ε = 0.4 and η = 5.  One can observe that there are high and low 

frequency components in the time variation of Px [Figure 3.21(a)].  The former is 

due to the nominally circular motion of the vortices relative to zc, whose frequency 

decreases after the vortices pass over the porous half cylinder.  The strength of this 

component relative to the low frequency one first decreases with increasing Rf but 

the trend reverses when Rf increases beyond ~0.1.  The smaller the value of ε, the higher 

the frequency of the radiated sound and thus less supportive the porous material to the sound 

radiation can be expected at small Rf.  Similar high frequency time fluctuations are also 

found in Py but the amplitudes are very small when compared to those in Px [Figure 

3.21(b)].  The amplitudes of these frequency components first increases with Rf but 

they decrease as Rf increases away beyond unity.  Py vanishes when Rf = 0 or Rf → 

∞. 

The increase in the separation ε to 0.8 reduces the mutual induction strength 

between the vortices, resulting in much less regular leapfrogging motions.  The 

corresponding time variations of Px and Py with finite Rf are given in Figures 3.21(c) 

and 3.21(d) respectively.  The results for the rigid half cylinder at ε = 0.8 have been 

shown in Figure 3.15(b).  One can notice that the amplitudes of the two dipoles for ε 
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= 0.4 and 0.8 do not differ much, but the higher frequency fluctuation at ε = 0.4 

implies more significant radiation of acoustical energy. 

Figure 3.22 illustrates the dependence of the amplitudes of Px and Py on Rf, η 

and ε.  Again the amplitude of Py is about a half or a full order below that of Px.  It is 

found that the introduction of the porous half cylinder reduces in general the 

amplitude of the longitudinal dipole Px for small ε [Figure 3.22(a)] for η ≥ 3.  

Certainly, one can anticipate that there will be some amplifications of Px close to Rf 

= 0 for small η, provided that the vortices do not hit the porous half cylinder.  

However, the vortices can be very close to the porous half cylinder or even hit the 

porous half cylinder when η drops below 3, making the whole vortex approach 

invalid. 

The increase in ε appears to have amplified Px and it is not surprising to find 

the rapid increase of Px when Rf → 0 [Figures 3.22(b) and 3.22(c)].  When ε = 1.6, 

the amplitude of Px is always above that of the rigid half cylinder case.  The trend of 

Px variation with ε shown in Figure 3.22 suggests that louder noise will occur upon 

an increase of ε.  This implies that the presence of a porous material near to a jet 

shear layer can be noisier than the case where the porous material is replaced by a 

rigid one, if the material is not located at a position where the dominant flow 

structures have a short wavelength (the initial shear layer mode) [Hussain and 

Zaman, 1985].  Figure 3.23(a) further suggests that the porous material can reduce 

the overall acoustical energy radiation when ε is small.  It can also be noted that E 

decreases with decreasing η.  However, this trend is reversed at ε = 0.8 and 1.6 at Rf 

< 0.1 [Figures 3.23(b) and 3.23(c) respectively].  The sound produced by the mutual 

interaction of the vortices depends very much on the unsteady leapfrogging motions.  
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The smaller the value of ε, the higher the frequency of the sound radiated and thus 

less supportive the porous material to the sound radiation can be expected.  The 

effect of y1i = y2i in this two interacting vortices case is similar to those observed in 

the single vortex case. 

 

3.5 Two Interacting Vortices with Different Strengths 

The sound generation by two vortices with different strengths in the presence of a 

porous half cylinder will be investigated in this section.  Without loss of generality, 

the initial vertical heights of the vortices y1i = y2i are set at 0.5 as in Section 3.4.  

Figure 3.24 shows the vortex paths with different Γ1 and Γ2 in the presence of a rigid 

half cylinder.  When the difference of Γ1 and Γ2 is small and ε = 0.4, the path of zc 

collapses with that of a single vortex with Γ = Γ1 + Γ2 located at x1i = −10 and y1i = 

0.5.  The vortices are in circular motion about zc but the stronger vortex is in a more 

rapid motion than the weaker one [Figure 3.24(a)].  This situation becomes more 

acute if the difference of vortex strengths increases at a fixed ε [Figure 3.24(b)].  The 

path of the stronger vortex is circular relative to zc with very small fluctuating 

amplitude, and the path of zc collapses with that of a single vortex located at zci with 

vortex strength Γ while the weaker vortex moves in a larger circle relative to the 

vorticity centroid.  The stronger vortex dominates the fluid mechanics and also the 

aeroacoustics as in the case where the vortices are located in the proximity of a rigid 

circular cylinder (Chapter 2).  The presence of a circular cylinder does not affect 

much the mutual induction between the two vortices with Γ1 ≠ Γ2 at small ε.  At 

increased ε, the path of zc deviates from that shown in Figure 3.24(a) and the paths of 

the vortices relative to zc become chaotic and not circular [Figure 3.24(c)].  The 

stronger vortex follows closely the path of zc but the weaker one does not.  
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The velocity and acceleration of the vortex with Γ1 ≠ Γ2 are shown in Figures 

3.25 to 3.27.  Large fluctuations of these components are observed with Γ1 = 0.6 and 

Γ2 = 0.4 when ε = 0.4[Figure 3.25].  The amplitudes of the velocities and 

accelerations of the weaker vortex are higher than those of the stronger one.  Such 

difference in amplitude is more pronounced by further increasing the difference of 

the vortex strengths [Figure 3.26].  At ε = 0.8 with Γ1 = 0.6 and Γ2 = 0.4, the mutual 

induction between the vortices is weakened and the magnitudes of the velocities and 

accelerations decrease [Figure 3.27]. 

When ε = 0.4, the far-field sound pressure time fluctuation with Γ1 = 0.6 and 

Γ2 = 0.4 resembles very much those presented in Figure 3.15(a) [Figure 3.28(a)].  

The sound radiation is more significant when the two vortices propagate across the 

rigid half cylinder at small ε except that an amplitude modulation pattern [Figure 

2.10] is observed due to the motion of the weaker vortex.  Figures 3.28(b) and 

3.28(c) show the sound pressure when the difference of the vortex strengths 

increases at a fixed ε and ε increases at a fixed Γ1 ≠ Γ2  respectively. One can observe 

that when the difference of the vortex strengths increases, the sound pressure 

fluctuation is modulated by the weaker vortex [Figure 3.28(b)].  The sound pressure 

fluctuation becomes more irregular when the separation distance between the two 

vortices increases.   

For a perfectly invisvid fluid, Rf = 0, the vortices move in a closer path 

towards the surface of the porous half cylinder due to the pressure-releasing effect 

[Figure 3.29].  For ε = 0.4, Γ1 = 0.6 and Γ2 = 0.4 at a finite η = 5, ordered periodic 

vortex leapfrogging motions can be observed [Figure 3.29(a)].  When the difference 

of vortex strengths increases at a fixed η, the paths of the vortices are similar to 

those shown in Figure 3.29(a) except that the stronger vortex follows closely the 
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path of zc and the weaker vortex moves in a larger circular path relative to zc [Figure 

3.29(b)].  The reduction of η to 3 does not disturb much the leapfrogging vortex 

motions though the vortices are much closer to the porous half cylinder surface 

[Figure 3.29(c)].  The increase in the separation distance ε results in a less distinctive 

leapfrogging vortex motions close to the porous half cylinder surface at η = 5  

provided that the weaker vortex does not hit the porous half cylinder [Figure 

3.29(d)]. 

The dynamics of equal strength vortices at a finite flow resistance inside the 

porous half cylinder have been discussed in Section 3.4.  When the vortex strengths 

are different at a finite Rf, the vortices also bend away from the porous half cylinder 

surface as they propagate over the half cylinder, and an increase in the pairing period 

is observed as in Figure 3.17 [Figure 3.30].  When Γ1 = 0.6 and Γ2 = 0.4, the vortex 

paths are similar to the case in rigid half cylinder condition at ε = 0.4, η = 5 and Rf = 

10 [Figure 3.30(a)].  The vortices bend away from the x-axis as they pass over the 

porous half cylinder when Rf is further reduced from 0.1 at a fixed ε and η [Figure 

3.30(b)].  The stronger vortex propagates more rapidly than the weaker one.  An 

increase in the pairing period is observed as in Figure 3.17.  Unlike the situation in 

Figure 3.17, the vortices bend away from the x-axis before they pass over the porous 

half cylinder at x > −2.  At a fixed Rf with decreased η, an increase in the vortex 

pairing period is more pronounced when the vortices are at x > 2 but not at −2 < x < 

2 [Figure 3.30(c)].  When the difference of the vortex strengths increases, the 

vortices bend away from the porous half cylinder at x > − 2, and the period of vortex 

pairing increases as shown in Figure 3.30(d).  The path of the stronger vortex 

deviates slightly from the path of zc while the weaker vortex moves in a larger 

circular path relative to zc.  At increased ε, the vortex dynamics are similar to those 
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presented in Figure 3.30 provided that no impingement occurs.  The vortices move 

closer to the porous half cylinder surface, and the paths of the vortices relative to zc 

become chaotic and not circular. 

Figure 3.31 shows the sound pressure time fluctuation at a fixed ε = 0.4 with 

Γ1 = 0.8, Γ2 = 0.2 and η = 5 at various Rf.  High and low frequency components are 

found in the time variation of Px [Figure 3.31(a)], and the strengths of these 

frequency components decrease when Rf decreases from 0.01 but the trend reverses 

when Rf increases beyond 0.01.  An amplitude modulation pattern is also observed in 

the high frequency component.  The magnitude of Px converges to that under the 

rigid wall condition at large Rf ~ 10.  Figures 3.32 to 3.34 shows the time variations of 

vortex velocities and accelerations at a fixed ε = 0.4 with Γ1 = 0.8, Γ2 = 0.2 at various Rf.  

The velocities and accelerations of the weaker vortex are higher than the stronger one at 

various Rf.  The presence of a finite Rf inside the porous half cylinder does not affect the 

velocities and accelerations of the vortex compare with the rigid half cylinder case [Figure 

3.26].  From the vortex paths shown in Figures 3.30(b) and 3.30(d) and the time 

variation of the vortex velocities and accelerations [Figures 3.32 to 3.34], one can 

predict that the modulation becomes less influential when the difference of the 

vortex strengths decreases.  Similar high and low frequency components are found in 

the transverse dipole Py but the amplitude of Py is always lower than that of Px 

[Figure 3.31(b)].  The maximum amplitude of Py increases with Rf for Rf < 1 but the 

opposite occurs for Rf > 1, and the dynamics of the weaker vortex also has an 

amplitude modulation effect on Py.  At an increased ε with different Γ1 and Γ2, the 

longitudinal and transverse dipoles do not differ much from those shown in Figures 

3.13(c) and 3.13(d).      
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Figure 3.35 summaries the combined effects of η, Rf, ε and the vortex 

strengths on the amplitudes of Px and Py.   For ε = 0.4, Γ1 = 0.6 and Γ2 = 0.4, the 

magnitudes of Px and Py converge to those under the rigid half cylinder condition for 

large Rf ~ 10 and those for the perfectly inviscid fluid case when Rf → 0 [Figure 

3.35(a)].  The introduction of the porous half cylinder reduces the magnitude of Px 

generally for η = 5 but there are some amplifications of Px when Rf → 0 for η = 3.  

The amplitude of Px decreases with increasing Rf for Rf < 0.01 and then it increases 

with Rf for Rf > 0.01.  The magnitude of Py is about half or a full order below that of 

Px, and the magnitude of Py at η = 3 is always greater than that at η = 5.  Similar 

findings are reported in Figure 3.22.  When the difference of the vortex strengths 

increases (Γ1 = 0.8 and Γ2 = 0.2), the results are similar to those presented in Figure 

3.35(a) [Figure 3.35(b)] except that the weaker vortex hits the porous half cylinder 

when η = 3 and Rf → 0.   

When ε increases to 0.8 with Γ1 = 0.6 and Γ2 = 0.4 [Figure 3.35(c)], the 

fluctuation of Px around the “ rigid half cylinder” value is more serious at Rf > 10-3 as 

the sound produced by the mutual induction between the vortices depends very much 

on the unsteady leapfrogging motions.  Generally, the magnitude of Px is amplified, 

and there is a rapid increase of Px when Rf → 0, especially when η is small.  The 

magnitude of Px at small η is higher than that in the case for Γ1 = Γ2 [Figure 

3.22(b)].  The weaker vortex moves towards the porous half cylinder surface under 

the strong pressure-releasing effect and undergoes substantial large vortex 

accelerations, resulting in a higher value of Px.  The amplitude of Py follows similar 

trend when ε = 0.4 [Figure 3.35(a) and 3.35(b)].  At increased ε, the combined 

effects of η and Rf suggest louder noise generation, and the trend is similar to those 

presented in the case with equal vortex strengths [Figure 3.22].  In addition, the 
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amplitude of Px increases by further increasing the difference of vortex strengths 

[Figure 3.35(d)].         

From Figure 3.35(a), one can anticipate that the overall acoustical energy 

radiation can be lowered upon the introduction of the porous material when the 

difference of the vortex strengths is small for small ε [Figure 3.36(a)].  When Γ1 = 

0.8 and Γ2 = 0.2 at a fixed ε = 0.4, the overall acoustical energy radiation is lower than 

that under the rigid wall condition [Figure 3.36(b)].  At increased ε = 0.8 with η = 5, Γ1 = 

0.6 and Γ2 = 0.4, the energy is lower than that under the rigid half cylinder condition 

but such reduction of acoustical energy is not found at small η with Rf < 0.001 

[Figure 3.36(c)].  The substantial large rate of change of vortex velocity due to the 

chaotic motion of a weaker one under the strong pressure-releasing effect increases 

the total amount of energy radiation at increased ε.  Further increasing the difference 

of Γ1 and Γ2 results in a stronger acoustical energy radiation for Rf < 0.001 [Figure 

3.36(d)].  The smaller the value of η, the stronger the acoustical energy radiation .  

 

3.6 Remarks 

 The low Mach number condition in the present study results in the radiation 

of low frequency sound whose peak value depends substantially on the vortex 

circulation.  At R = 100 with an ambient speed of sound c = 343 (normalized by 

Γ/a), y1i = 0.3 and η = 1.5, the maximum peak normalized sound pressure radiated at 

Rf = 1 by a single vortex is 1.3×10-4 [Fig. 3.8(a)].  With a Γ = 0.14m2/s, the 

maximum sound pressure level is around 23.5dB, but this pressure level goes up to 

~78.9dB when Γ = 3.4m2/s.  For a rigid half cylinder, the corresponding maximum 

sound pressure levels are 21dB and 72dB respectively.  
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 In the case of two vortices with y1i = y2i = 0.5, ε = 0.8, η = 5 and Rf = 1, the 

sound pressure levels with Γ = 0.14m2/s and 3.4m2/s are approximately 19.8dB and 

75.2dB respectively [Fig. 3.22(b)].  The corresponding values for rigid half cylinder 

are 19.3dB and 74.7dB respectively. 

The above dimensional examples illustrate that the aeroacoustics studied in 

the present study can be significant and the introduction of porous material can 

enhance the sound radiation at certain combinations of parameters. 

 

3.7 Summary 

In the present investigation, the sound generation by the unsteady vortex motions in 

the presence of a porous half cylinder on an otherwise rigid horizontal plane is 

studied theoretically.   The far-field sound pressure so produced is evaluated through 

the use of the conformal mapping and the matched asymptotic expansion method.  

The effects of the effective fluid density and flow resistance inside the porous 

material on the vortex motions and the far-field sound radiation are discussed. 

In the presence of a porous material with a finite flow resistance, longitudinal 

and transverse dipoles co-exist in the far-field but the latter is significantly weaker 

than the former in general.  When a single vortex engages the porous half cylinder, 

the time variation of the strength of each dipole is pulse-like.  The amplitude of the 

longitudinal dipole converges to that for the rigid half cylinder case when the flow 

resistance is large for all effective fluid density studied, but is larger than the latter at 

small flow resistance.  The rate of increase of the dipole amplitude becomes rapid at 

vanishing flow resistance.  The larger vortex height above the rigid plane reduces the 

amplitudes of the dipoles.  However, the overall acoustical energy radiated remains 
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higher than that for the rigid half cylinder case at some combinations of the effective 

fluid density and flow resistance. 

When two identical vortices exist in the proximity of the porous half 

cylinder, both the longitudinal and transverse dipoles consists of a low and a high 

frequency components.  The former is due to the macroscopic vortex centroid 

motions and the latter to the leapfrogging motions of the vortices.  When the two 

vortices are close to each other, the corresponding dipoles are dominated by the high 

frequency fluctuations.  The overall acoustical energy so radiated is less than that for 

the rigid half cylinder case.  The opposite is found at larger vortices separation for all 

combinations of flow resistance and effective fluid density studied.  When the vortex 

strengths are different, the results are similar to those for the two identical vortices 

case except that the acoustical energy radiated is higher than that for the rigid half 

cylinder case when the difference of vortex strengths increases. 

The present results show that suitable combinations of the effective fluid 

density and the flow resistance within a porous material will enhance the radiation of 

sound in the presence of a turbulent shear flow, especially when the flow structures 

involved are of lower frequency. 
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Chapter 4: Vortex Sound in the presence of a 
Wedge with Inhomogeneous Surface 
Flow Impedance 

 

4.1 Introduction 

As mentioned in chapter 1, the problem of self-generated noise upon the influence of 

the porous material is not well known.  In chapters 2 and 3, the forces and sound 

generated by the interaction of the vortices with a rigid or porous circular cylinder 

are discussed, and the effect of the wavelength of coherent structure on the sound 

generation is also addressed.  In this chapter, the sound generated by the unsteady 

motion of an inviscid vortex in the presence of a wedge with inhomogeneous surface 

flow impedance is studied as some flow junctions in ductwork involve edges or are 

wedge-like, which tend to scatter aerodynamic sound.  The important effects of the 

porous material properties and the wedge angle are discussed.   

  

4.2 Theoretical Development 

Figure 4.1 shows the nomenclature used and the flow configuration for the present 

investigation.  The wedge consists of two materials.  One of the materials is assumed 

porous while the other is rigid for simplicity.  Here the noise radiated when an 

inviscid vortex with circulation Γ originally moving close to the rigid surface turns 

around the edge of the sharp wedge is considered.  The wedge angle α varies 

between 0 and π.  All the length scales in the present study are normalized by di, 

which is the initial perpendicular distance of the vortex from the rigid surface and 

the time scale is normalized by di
2/Γ.   
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The Bernoulli’s equation suggests that the vortex moves around the edge as the 

vortex is experiencing a force resulting from the fluid pressure difference between the edge 

and the boundary at infinity.  The analysis is started by transforming the present vortex 

system [Figure 4.1], which is hereinafter referred to as the z-plane (z = x + iy, y ≥ 0), 

to a w-plane (w = ξ + iζ), which is a parallel passage with 0 ≤ ζ ≤ 1 as shown in 

Figure 4.2.  The conformal mapping [Kober, 1952] required is  
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The branch cut in the z-plane is the positive x-axis.   

The streamfunction in the w-plane, ψw can be obtained by the integration 

[Tang, 2001] as in Chapter 3: 
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where w1 = ξ1 + iζ1 represents the position of the vortex in the w-plane and 
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where h is the depth of the porous material in the w-plane.  In addition, Vw and Rf are 

normalized by Γ/di and ρoΓ/di
2 respectively.  The corresponding vortex velocity in 

the w-plane is evaluated by differentiating Equation (4.2) with respect to ζ: 
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The paths of the vortex in the z-plane are calculated by integrating Equation (4.4) 

numerically with the standard fourth order Runge-Kutta method together with the 

Routh’s correction [Equation (3.7)].  

With the use of Cauchy-Rieman principle, the flow potential in the w-plane, 

φw, is  
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where C is the integration constant that can be evaluated by observing that the flow 

potential vanishes as |ξ| → ∞.  It can be shown after some algebra that 
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The incompressible flow potential in the z-plane, φz, can then be found by 

substituting the inverse of Equation (4.1) into Equation (4.6).  Expressing z = reiθ, 

where r and θ are the polar coordinates in the flow field, one obtains from Equation 

(4.1) that 
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Thus, the far-field outer potential, φzo, can be obtained using matched asymptotic 

expansion method as in Crighton [1972] and Obermeier [1979a, 1980], and the far-

field sound pressure can be obtained from Equation (1.8). 

 

4.3 Acoustically Hard Surface 

The case for edges with acoustically hard surfaces has been investigated by several 

researchers, such as Crighton [1972], Panaras [1985] and Kambe [1986].  However, 

the case for arbitrary wedge angle has not been explicitly presented.  The condition 

of hard surfaces requires that 11 wfw kVRikV >>+− η  for all value of k and g = −1 

[Equation (4.3)].  The final potential is independent of h.  The flow potential in the 

w-plane is, according to Equation (4.5), given by  
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and by observing the flow potential vanishes when |ξ| → ∞, one finds for non-zero Rf 

that 

 

C = ζ1/2.                                      (4.9) 

 

Using the formula tabulated in Gradshteyn and Ryzhik [1980], one obtains  
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Substituting Equation (4.7) into Equation (4.10), the potential in the z-plane, φz, in 

the polar form,  
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where b = π/(2π − α).   

When α = π, the wedge becomes an infinite flat surface and b = 1.  It can be 

shown exactly using sine rule that, 
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which is consistent with existing literature, for instance Lamb [1993].  For large r, φz 

→ 0.  For 0 ≤ α < π, b < 1, one can approximate Equation (4.11) as        
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This shows that there is a relatively strong radiation back to the downstream side 

where the wedge is located.  For a rigid half plate occupying the region x > 0, y = 0 

in the z-plane, α = 0 and b = 0.5, and the far-field outer potential becomes   
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For the case investigated by Crighton [1972], the half-plane is located at x < 0, y = 0.  

The results of Crighton [1972] can be obtained by rotating the present w-plane 180o 

in the anticlockwise direction.  That is, by substituting θ and θ1 in Equation (4.14) by 

θ − π and θ1 − π respectively, and the far-field pressure can be estimated by 

Equation (1.8).  For α = π, b = 1 and the far-field pressure in Equation (1.8) vanishes 

as the vortex is moving parallel to the x-axis in the z-plane.  Figure 4.3 illustrates the 

far-field pressure time variation for different α with the directivity factor ignored.  

Here, tc denotes the time at which the vortex passes across the axis of symmetry of 

the wedge.  One can notice that every far-field pressure time variation contains a tail 
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which decays relatively slowly after the vortex passes over the edge of the wedge.  

This is typical for two-dimensional sound radiation due to the non-compactness of 

the source field so that sound generated from different parts of the source arrives at 

the far-field at different instants.  The rate of decay is slower at larger α.  The larger 

the wedge angle α, the longer the active sound radiation period.  Also, both the tail 

and the far-field pressure amplitude drops rapidly when α approaches π.  One should 

note that b increases with α so that the ratio (r1/r)b actually decreases with increasing 

α for r >> r1.  This implies that the sound generated with a rigid half-plane is more 

significant at large distance. 

 

4.4 Perfectly Inviscid Fluids 

For a perfectly inviscid fluid, the flow resistance Rf ≡ 0.  Equation (4.3) then reduces 

to  
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The potential in the w-plane, according to Equation (4.6), is  
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In this case, C = (ηζ1 + h)/2(η + h). 
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In general, Equation (4.16) is not easy to solve analytically.  However, if |ξ − 

ξ1| → ∞, the solution can be approximated by considering the approximation for 

small k,    
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As an approximation to Equation (4.16), one can then write for a finite h, |ξ − ξ1| → 

∞ and ( )1' ξξ −= kk : 
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Equation (4.18) can be solved analytically, even when η → 0, using the formula 

shown in Gradshteyn and Ryzhik [1980].  For |ξ − ξ1| → ∞, one obtains 
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Figure 4.4 shows that Equation (4.19) agrees well with the results obtained 

from direct numerical integration of Equation (4.16).  The comparison is not 
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extended to the range ξ − ξ1 > 4 as φw will be too small to be handled accurately in 

the numerical integration.  However, one can note from the conformal mapping 

adopted that the ratio of r/r1 is already very large when ξ − ξ1 = 4.  After applying 

the conformal mapping [Equation (4.7)], one obtains 

 

( ) ( )
( ) ( )

( ) ( )
( )

2
211

2
211

2
2

2cos

2
2

sin1

2

2
2

cos

2
2

sin1

ααπη

ηπ

ααπη

ηπ

ααπη

η
αθηπ

ααπη

ηπθ
π

θαπααπη

ηπ
ααπη

ηπθ
π

φ

+−

+−



























+−









+

















+−
−=

























−−
+−
















+−
=

r
r

r
r

z

.          (4.20) 

 

Equation (4.20) reduces to Equation (4.13) for large η.  For η = 1, there is no 

porous surface.  The situation then reduces to that of a wedge with wedge angle α/2 

and rigid surfaces.  Equations (4.16) and (4.20) give the same result as that obtained 

from Equation (4.13), by taking the wedge angle to be α/2 instead of α and rotating 

the far-field anticlockwisely by α/2.  Though η is not likely to be less than unity, 

Equation (4.20) tends to suggest that the magnitude of the far-field pressure 

decreases should such a pressure-releasing surface exists.  For η = 0, there will be no 

sound radiation.  Figure 4.5 summarizes the effect of η on the far-field radiation 

directivity.  It is expected that the introduction of a pressure-releasing surface allows 

more sound radiation in a direction closer to this surface.  The larger the wedge 

angle or the smaller the value of η, the greater this shift. 

The far-field pressure magnitudes for some values of η at α = π are shown in 

Figure 4.6.  This case has been investigated by Tang and Li [2001] on the 
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assumption that the frequency of the radiated sound is so low that the impedance 

surface has no effect on the sound radiation.  Thus, only the dipole radiation was 

considered in Tang and Li [2001].  As expected, the scattered sound field becomes 

weaker as η increases from unity and the rate of such weakening decreases 

considerably quickly for small η.  The magnitudes of the sound fields are higher than 

those shown in Tang and Li [2001].  Together with the fact that the present scattered 

field magnitude varies with (Mach number)b where b is less than unity, the scattered 

field is much stronger than the dipole radiation discussed in Tang and Li [2001]. 

For α less than π, the vortex moves towards the pressure-releasing surface 

after it passes over the edge of the wedge.  Figure 4.7 shows the vortex path at η = 2, 

4 and ∞ for α = π/3.  The initial vortex position is at one unit length perpendicular to 

the hard surface at r1 ≈ 100.  It can be noted that the smaller the value of η, the 

closer the vortex will be to the pressure-releasing surface eventually.  Figure 4.8 

shows the sound pressure time fluctuations for finite η.  These patterns are basically 

similar to those for the rigid surface case [Figure 4.3].  However, one can note that 

the peak pressure is higher for smaller η.  The tail of the sound pressure fluctuation 

pattern becomes shorter as η decreases, implying shorter period for active and 

significant sound production at smaller η.  The power associated with the radial 

radiation term 1/r is ηπ / [η(2π − α)+α/2], which increases with η.  The far-field 

sound, therefore, decays more rapidly at increasing η.  Similar results are obtained at 

different α (< π).  The effect of wedge angle on the sound radiation is summarized in 

Figure 4.9.  Again, the magnitude of the sound pulse increases with decreasing α. 
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4.5 Combined Effects of η and Rf    

For a real porous material, Rf is finite, and the effects from the porous material 

become complicated.  The far-field potential φw can be obtained from Equations (4.5) 

and (4.6).  Again, let ( )1' ξξ −= kk , one obtains 
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It can be shown that  
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 Again, the analytical solution for Equation (4.21) is hard to find without 

assumption.  As we are interested in the far-field where |ξ − ξ1| → ∞, φw then 

depends on the value of G as k → 0, which is unity.  One can thus conclude to the 

leading order of magnitude that  
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The directivity of sound radiation for non-vanishing Rf is the same as that with hard 

surfaces or at large η.    

Figure 4.10 illustrates the combined effects of η and Rf on the vortex path.  In 

general, the vortex propagates towards the porous surface soon after it passes over 

the edge of the wedge.  It is observed that the larger the value of η or Rf, the less 

serious the bending of the vortex path.  The increase in the flow resistance Rf makes 

the porous surface less pressure-releasing and produces the same effect as increasing 

η.  The far-field sound pressure fluctuations for α = π/3 and η = 2 are shown in 

Figure 4.11.  The increase in Rf reduces the magnitude of the pulse.  The less severe 

vortex path bending towards the porous surface at larger Rf and η results in smaller 

vortex acceleration and thus weaker sound radiation.  It is found that the magnitude 

of the sound pulse increases as η decreases when Rf is fixed.  However, the variation 

becomes insignificant for Rf ≥ 10.  The increase in the wedge angle α again reduces 

the magnitude of the sound pulse, but the far-field sound fluctuation patterns are 

very similar to those as shown in Figure 4.9.  

Figure 4.12 summarizes the combined effects of α, η and Rf on the sound 

pulse magnitude.  Again, one can observe that the introduction of a porous material 

results in louder sound radiation.  This is the result of the increase in the porous 

material thickness with wedge angle so that the pressure-supporting interface 

between the porous and the rigid materials becomes less influential.   

 

4.6 Summary 

The sound field produced by a vortex engaging the edge of a wedge with 

inhomogeneous surface impedance is investigated theoretically in this chapter.  The 
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wedge is made up symmetrically of a rigid material and an acoustically softer 

material, which can be a porous material or a heavy liquid.  The initial location of 

the vortex is on the rigid material side far away from the edge of the wedge.  The 

effects of the wedge angle, the effective fluid density and the flow resistance of the 

porous material on the directivity and the magnitude of the far-field sound are 

discussed.  A general expression for the leading order approximation of the sound 

field is derived.  

In all cases studied, the far-field sound is a pulse whose magnitude decreases 

with increasing wedge angle.  The time variation of each pulse contains a tail which 

is typical for two-dimensional sound radiation.  The rate of decay of the pulse 

increases as the wedge angle increases.  When the wedge angle is fixed, the 

magnitude of the far-field sound pulse decreases as the solid surface becomes 

acoustically harder.  The vortex path bends towards the porous material after it 

passes over the edge of the wedge when the surface impedance is reduced, resulting 

in higher vortex acceleration and thus stronger sound radiation.  The final velocity of 

the vortex is higher than that in the hard surface case. 

In a perfectly inviscid fluid medium, the far-field sound is only affected by 

the effective fluid density and the wedge angle.  It is found that a finite effective 

fluid density deflects the directivity towards the porous surface.  The extent of such 

deflection increases with increasing effective fluid density.  However, the rate of 

decay of the sound pulse with distance from the edge is lower if the effective fluid 

density is reduced.  The introduction of a porous surface in a perfectly inviscid fluid 

results in louder and more distant sound radiation.   

When the fluid possesses a finite viscosity, the flow resistance inside the 

lattice of the porous material becomes significant.  The higher the flow resistance, 
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the higher the ability of the porous surface to support pressure, resulting in weaker 

sound pulse in the far-field.  However, unlike the effect of the effective fluid density, 

the directivity and the rate of decay of the sound radiation in the leading order of 

magnitude are the same as those with hard surfaces, regardless of the magnitude of 

the flow resistance. 
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Chapter 5: Vortex Sound Generation due to a 
Piece-wise Porous Material on an 
Infinite Rigid Plane 

 

5.1 Introduction 

The problem of sound generation by an inviscid vortex translating past a porous half 

cylinder and a porous wedge are studied in Chapters 3 and 4 respectively.  In this 

chapter, vortex sound in the presence of a piece-wise porous material with finite 

thickness on an otherwise infinite rigid plane is studied.  Apart from the initial vortex 

height, the effective fluid density and the flow resistance of the porous material, the 

effects of the length and the thickness of the porous material on the vortex dynamics 

and the far-field sound radiation are also discussed.  The conformal mapping 

technique applied in Chapters 3 and 4 is not easy to implement in this circumstance.  

However, the streamfunctions in the flow and in the porous regions and the velocity 

of the vortex can be evaluated by the continuity of fluid velocity and pressure on the 

porous boundary together with the use of Fourier transform.  The far-field sound 

pressure is derived using the matched asymptotic expansion method as in the 

previous chapters. 

 

5.2 Theoretical Development 

An inviscid vortex with circulation Γ located at z1i far away from the piece-wise 

porous material with length L and thickness h is considered [Figure 5.1].  All the 

length scales in the present study are normalized by the initial vortex height y1i above 

the x-axis.  Also, the time scale, the velocity of the vortex and the flow resistance Rf 

are normalized by y1i
2/Γ, Γ/y1i and ρoΓ/y1i

2 respectively.        
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Inside the fluid region (y ≥ 0), 
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and within the porous material (−h ≤ y ≤ 0, 0 ≤ x ≤ L) [Equation (1.10)],  
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where ψz and ψpl are the streamfunctions in the fluid and in the porous regions 

respectively, and are normalized by Γ.  ∇2 and δ are Laplacian operator and delta 

function respectively.  The boundary conditions at the interface of the porous 

material and the rigid wall are: 
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where φpl is the flow potential in the porous region.  Equation (5.3) implies that the 

normal velocity at the interface between the porous material and the rigid wall vanishes.  

From Equations (5.2) and (5.3), one can quickly find that the solution of ψpl is 
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where αn = nπ/L, n = 1, 2, 3, … and An is the mode magnitude.        

As in Tang [2001], the x-Fourier transform of Equation (5.1) gives  



 72

 









∞≤≤+

≤≤+
=

−

−

yyeHeH

yyeGeG

ykyk

ykyk

x
z

121

121 0
ψ ,               (5.5) 

 

where G1, G2, H1 and H2 are function of k and ∫
∞

∞−
= dkeikx

z
x
z ψψ .  The continuity of 

x
zψ  and the vorticity jump 

y

x
z

∂
∂ψ  at y = y1 lead to 

 

11

2
1

11
ykikxe

k
GH +=−  and 11

2
1

22
ykikxe

k
HG −=− .              (5.6) 

 

H2 = 0 for the outgoing wave condition.  And on the porous boundary (y = 0, 0 ≤ x ≤ 

L), the continuity of normal fluid velocity gives  

 

00 == ∂

∂
−=

∂
∂

−
y

pl

y

z

xx
ψψ

.                       (5.7) 

 

The relationship between G1 and An can be found by substituting the x-Fourier 

transforms of Equations (5.4) and (5.5) into Equation (5.7): 
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The continuity of pressure on the porous boundary (y = 0, 0 ≤ x ≤ L) gives, from 

Equation (1.9),  
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The application of the inverse Fourier transform to Equation (5.9) suggests that, 
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where · denotes differentiation with respect to time.  After some algebra, Equation 

(5.10) can be expressed into 
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where m = 1, 2, 3, …, 
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respectively,.  In addition, the integral In in Equation (5.11) can be further reduced to 
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On the other hand, the longitudinal and transverse velocities of the vortex are 

[Tang, 2001]:  
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and 
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The integrals in Equations (5.13) and (5.14) correspond to the flow field induced by 

the normal fluid velocity at y = 0, 0 ≤ x ≤ L.  Equations (5.13) and (5.14) can be 
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coupled with Equation (5.11) to estimate the vortex position z1 and the mode 

magnitude An.  Initial An ≡ 0. 

The streamfunction ψz can be derived by the inverse Fourier transform of 

Equation (5.5) together with the help of Equation (5.8): 
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The flow potential can then be evaluated through the use of the Cauchy-Rieman 

principle: 
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where C is the integration constant.  It can be shown that by observing the flow 

potential vanishes when |z| → ∞, C = 0.  Using the formula tabulated in Gradshteyn 

and Ryzhik [1980], the flow potential becomes 
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The integral term in Equation (5.17) represents the flow potential induced by the 

porous material while the other is the flow potential induced by an infinite rigid 

plane.  The far-field inner potential at large |z| is    

 

( ) ( )2
11

,...5,3,1

cossin1sinh12 −
∞

=

+







−−= ∑ rO

r
rheA

n
n

h
n

n
zi

n
θθ

π
α

απ
φ α ,          (5.18) 

 

where (r1,θ1) is the polar coordinates of the inviscid vortex position and (r,θ) is a 

point in the flow field.  Following the steps in Chapter 3, the far-field sound pressure 

p at large distance R is 
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where the far-field sound pressure is normalized by ρoΓ/y1i
2 and it can be shown 

from Equation (5.19) that the far-field sound pressure consists of longitudinal 

dipoles. 

 

5.3 Vortex Paths and Sound 

In the present investigation, the far-field sound pressure is obtained at large r, and 

the directivity of the sound pressure consists of longitudinal dipoles only.  The 

vortex dynamics are obtained from the coupled Equations (5.11), (5.13) and (5.14) 

with the appropriate number of mode An and so is the far-field sound pressure in 
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Equation (5.19).  Ten terms for An are enough for a reliable solution as the difference 

of Px for 10-terms with that for 20-terms is already in the order of 10-6 [Figure 5.2] 

while the maximum |Px| for the 20-terms is in the order of 10-3 for L = 2, h = 2 and η 

= 5 at different Rf [Figure 5.3].  In the rest of this chapter, only results obtained with 

10-terms for An are presented.  

For the case of an infinite rigid plane, the longitudinal and transverse 

velocities of the vortex from Equations (5.13) and (5.14) converge to 
0

1 4
1
y

uz π
=  and 

vz = 0.  The inviscid vortex propagates with a constant velocity in the longitudinal 

direction, and generates no sound.  Px tends to zero when η = 5 at large Rf or large η 

= 100 at various Rf with fixed L = 2 and h = 2 [Figure 5.4].  The effective fluid 

density or the flow resistance inside the lattice of the porous material is so large that 

it has no effect on both the vortex dynamics and the sound pressure.  Besides, the 

mode magnitude An for all n (n = 1 to 10) tends to zero.  

 

5.3.1 Perfectly Invscid Fluid 

For a perfectly inviscid fluid, the flow resistance vanishes (Rf = 0).  Figure 5.4(a) 

shows the effects of L and η for h = 2 on the vortex path.  The vortex is initially 

located far away from the finite length porous material for L = 1, η = 3.  The inviscid 

vortex experiences the pressure-releasing effect due to the porous material and bends 

towards the porous material for −2 < x < 0.5.  It gradually propagates back to its 

original height for 0.5 < x < 2 due to the pressure-supporting effect of the rigid plane 

at y = 0, x ≥ 1.  The vortex path is symmetrical about the transverse axis at x = 0.5.  

When the porous material is less pressure-releasing, less severe bending towards the 

porous material is observed, and the vortex path converges to that under the infinite 
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rigid wall condition for large η.  When the length of the porous material is increased 

to 2 at η = 3, the degree of bending towards the porous material is more serious than 

that for the case with L = 1 and η = 3.  This situation becomes more serious when the 

length of the porous material is further increased to L = 10/3.  It is due to the longer 

duration of the interaction between the inviscid vortex and the porous material.  The 

vortex undergoes a substantial large rate of change of velocity by such prolonged 

interaction [Figures 5.4(b) to 5.4(e)].  Here, ta denotes the time at which the vortex 

passes across the leading edge of the porous material.  The larger the value of η, the 

smaller the magnitudes of uz1 and vz1.  The magnitudes of uz1 and vz1 increase with L 

[Figures 5.4(b) and 5.4(c)].  One can also observe that the vortex accelerations are 

increased by either decreasing η or increasing L [Figures 5.4(d) and 5.4(e)].  Figure 

5.4(f) shows the time variation of the longitudinal dipole Px at a fixed h = 2.  The 

magnitude of Px increases as η decreases for L = 1 [Figure 5.4(f)] due to the 

amplification of the vortex accelerations [Figures 5.4(d) and 5.4(e)], and Px 

approaches zero for η = 100.  On the other hand, Px increases with L, and a longer 

duration of active sound generation is also observed.  It is due to the earlier 

movement of the inviscid vortex and the longer duration under the influence of the 

porous material.   

At a fixed L and η under various h, the inviscid vortex propagates in a path 

closer to the porous material because of the stronger pressure-releasing effect of a 

thicker porous material [Figure 5.5(a)].  The larger the value of h, the more serious 

bending towards the porous material.  The vortex motions are not affected by further 

increasing h at a fixed L = 1 and η = 3.  One can expect that this value of h increases 

when either L increases or η decreases.  The magnitudes of uz1, vz1 and the 

longitudinal and transverse accelerations increase at increased L [Figures 5.5(b) to 
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5.5(e)], and an amplification of Px is observed as h increases [Figure 5.5(f)].  

However, the amplitude of Px reaches its maximum at h ≈ 1. 

Figure 5.6 summarizes the effects of L, h and η on the generation of Px in a 

perfectly inviscid fluid.  In general, the amplitude of Px increases when L or h 

increases.  When h is small (h = 0.01), the influence of the porous material on the 

vortex accelerations diminishes [Figures 5.5(d) and 5.5(e)], resulting in a lower 

amplitude of Px [Figure 5.5(f)].  Increase in Px is concentrated from h = 0.1 to 1 

[Figures 5.6(a) and 5.6(b)].  The amplitude of Px is not affected much by further 

increasing h.  It is due to the pressure-supporting effect from the rigid wall at x > 1.  

One can notice that Px increases for h > 1 when L = 2 and L = 10/3 [Figures 5.6(c) 

and 5.6(d)].  For the effect of η, a higher magnitude of Px is observed under a strong 

pressure-releasing effect for small η.  The acoustical energy radiated in a perfectly 

inviscid fluid exhibits similar pattern with the sound pressure presented in Figure 5.6 

[Figure 5.7]. 

 

5.3.2 Combined Effects of η and Rf 

When the flow resistance Rf is finite, the effective fluid density and the flow 

resistance Rf inside the lattice of the porous material will produce pressure-releasing 

and pressure-supporting effects respectively as shown in Chapters 3 and 4.  Figure 

5.8(a) shows their combined effects on the vortex motion for L = 1, h = 1 and η = 3 

under various Rf.  The situation for the perfectly inviscid fluid (Rf = 0) is also shown 

for the sake of comparison.  For Rf = 0.05, the vortex bends towards the porous 

material at −2 < x < 0.5 because of the pressure-releasing effect, and then surfs up at 

0.5 < x < 1.2 due to the presence of the rigid wall.  At x > 1.2, the inviscid vortex 

propagates in a path lower than the cases for the rigid wall condition and the 
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perfectly inviscid fluid.  Similar phenomenon was also observed in Chapter 3 that 

the inviscid vortex will not resume its original height after interacting with the 

porous half cylinder mounted on an otherwise rigid plane when Rf is small.  In 

addition, the vortex path is not symmetrical about x = 0.5.  When Rf = 0.1, the vortex 

propagates more closely to its original height at −2 < x < 1.2 but at x > 1.2, it still 

bends towards the horizontal axis.  This situation of the vortex path at x > 1.2 is 

different once the flow resistance is increased (for instance, Rf = 1), the vortex path 

gradually rises back to its initial height, and soon recovers to that under the rigid 

wall condition for Rf = 10.  At large Rf, the pressure-supporting effect is very strong 

that it overcomes the pressure-releasing effect, An tends to zero and becomes less 

influential to the vortex velocity [Equations (5.13) and (5.14)] such that the path of 

the inviscid vortex matches that for the rigid wall case.   

Figures 5.8(b) to 5.8(e) show the corresponding time variations of vortex 

velocity and acceleration for L = 1, h = 1 and η = 3 with different Rf.  The magnitude 

of uz1 increases as Rf increases from 0 to 0.1 [Figure 5.8(b)].  One can also notice 

that such increase in uz1 is from x > 1.2 (The instant for t − ta > 20).  However, uz1 

decreases for 0.1 < Rf < 10 and matches the rigid wall condition when Rf = 10.  The 

magnitude of vz1 decreases with increasing Rf [Figure 5.8(c)].  The acceleration of 

the vortex increases with decreasing Rf [Figures 5.4(d) and 5.4(e)] though that of uz1 

does not.  Figure 5.8(f) shows some examples of the time variation of Px at L = 1, h 

= 1 and η = 3 at various Rf.  The amplitude of Px is maximum for the perfectly 

inviscid fluid case, and decreases with increasing Rf.  The magnitudes of the first 

crest and trough decrease while the magnitude of the second crest increases as Rf 

increases from 0 to 0.1.  When Rf > 1, the magnitude of Px decreases since the 

magnitudes of vortex accelerations are lowered [Figures 5.8(d) and 5.8(e)].  The 
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properties of the porous material are dominated by the pressure-supporting effect at 

increased Rf, and the sound radiation becomes very weak as Rf increases to 10. 

Figure 5.9(a) shows the vortex dynamics for various h and η at L = 1 and Rf = 

1.  The smaller the value of η, the greater the bending towards the porous material.  

This serious bending in the vortex path is due to the strong pressure-releasing effect 

at small η.  The vortex path converges to that for the infinite rigid plane condition 

for η = 100.  Similar to the perfectly inviscid fluid case, the degree of bending 

increases with increasing h, and the vortex motion is not affected by further 

increasing h beyond 1.  The effect of increasing h is similar to that of decreasing the 

value of η (increasing the pressure-releasing effect) but the former one produces no 

further effect on the vortex dynamics at large h.  The effects of varying h and η on 

the vortex dynamics are similar to those presented in the perfectly inviscid fluid case 

[Figures 5.4(a) and 5.5(a)].  Figure 5.9(b) shows the time variation of Px with 

different h and η.  The magnitude of Px decreases when h decreases or η increases.  

When h increases, the pulse shape of Px shifts upwards, and the magnitude of Px 

increases.   

Figure 5.10(a) shows the effect of L at h = 2 and η = 5 for various Rf on the 

vortex dynamics.  When the flow resistance is fixed at Rf = 2, the vortex propagates 

in a path closer to the porous material with a longer L.  The same is true for a fixed 

Rf with different L.  When L increases to 10/3, the variation of the vortex dynamics 

[Figure 5.10(a)] and the vortex velocity [Figures 5.10(b) and 5.10(c)] are similar to 

those presented in Figure 5.8.  However the longitudinal acceleration of the vortex 

increases as Rf increases from 0 to 0.45 and then decreases again upon further 

increase in Rf, while the transverse acceleration decreases at increased Rf [Figures 

5.10(d) and 5.10(e)].  When the length of the porous material is increased to 10/3, the 
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small flow resistance inside the porous material increases the vortex acceleration when the 

vortex propagates over x = 1 and x = 10/3.  This is due to the bigger impedance mismatch 

between the junction of the rigid wall and the porous material at small Rf.  One can expect 

that the magnitude of Px decreases with increasing Rf [Figure 5.10(f)].    

The magnitude of Px at different L, h, η and Rf is summarized in Figure 5.11.  

For L = 1 [Figure 5.11(a)], an increase in the thickness h of the porous material 

increases the magnitude of Px, but the magnitude of Px is not affected by further 

increasing h beyond 1.  The thickness h does not affect very much the vortex 

dynamics [Figure 5.9(a)] and the vortex accelerations [Figures 5.9(d) and 5.9(e)].  

The magnitude of Px is higher for η = 3 than that for η = 5, and it decreases more 

than two orders as Rf increases from 0 to 100.  A more rapid decrease in Px is 

observed from Rf = 0 to Rf = 10 when L is small.  The magnitude of Px increases 

when L increases from 1 to 2 [Figure 5.11(b)] for a fixed η and Rf [Figure 5.11(a)].  

The vortex propagates with substantial large vortex acceleration [Figures 5.2(d) and 

5.2(e)] under the pressure-releasing effect of the porous material, resulting in an 

amplification of Px.  It is the consequence of the longer duration of the interaction 

between the inviscid vortex and the porous material.  Comparing the thickness of the 

porous material at L = 1 and L = 2, an increase of the magnitude of Px is observed for 

h deeper than 1.  One can also expect that the variation of Px for L = 10/3 is similar 

to those for L = 1 and L = 2 [Figures 5.11(b) and 5.11(c)], but the magnitude of Px is 

not lowered when Rf increases [Figure 5.11(c)].  It may be due to the fluctuation of 

the vortex acceleration at different Rf [Figures 5.10(d) and 5.10(e)].  The magnitude 

of Px decreases as Rf increases from 0 to 0.09 and increases slightly for 0.09 < Rf < 

0.45.  It converges to that under the rigid wall condition for Rf ≥ 10.  The 
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corresponding sound energy radiation is shown in Figure 5.12.  The energy variation 

pattern is similar to those presented in Figure 5.11.  

 
5.4 Summary 

The vortex sound generation in the presence of a piece-wise porous material on an 

otherwise infinite rigid plane is studied.  The configuration is analogous to the 

boundary of a dissipative silencer or a lined duct.  The streamfunctions inside the 

fluid medium and the porous material are derived, and the coupled equations of the 

vortex motions are evaluated by matching the continuity of pressure and normal 

fluid velocity at the interface of the fluid medium and the porous material.  The 

standard fourth order Runge-Kutta method is used to solve the coupled equations.  

The far-field sound pressure is evaluated by the method of matched asymptotic 

expansions.   

When an inviscid vortex engages a finite length porous material, the sound 

pressure radiated consists of longitudinal dipoles, and the time variations of the 

longitudinal dipoles are pulse-like.  The vortex generates no sound when the length 

or thickness of the porous material is small such that the presence of the porous 

material does not affect the vortex acceleration.  The sound pressure increases as the 

effective fluid density decreases because of the strong pressure-releasing effect of 

the porous boundary.  It decreases when a finite flow resistance exists inside the 

porous material.  However, the magnitude of the sound pressure does not decrease 

monotonically with increasing flow resistance when the length of the porous material 

increases.  The value of this sound pressure converges to that for the rigid wall 

condition when the flow resistance is large.  One can also conclude that the 

magnitude of the sound pressure is higher when the flow resistance vanishes.  The 

effect of thickening the porous material is similar to that of lengthening it except that 
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an increase in the sound pressure with increasing flow resistance is not observed.  A 

thicker porous material produces a stronger sound but the sound magnitude has an 

upper bound as the vortex motion will not be affected by further increasing the 

thickness at a specified length of the porous material. 
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Chapter 6: Vortex Sound Generation in a Lined 

Duct  

 

6.1 Introduction 

We show in Chapter 5 that the sound pressure generated under the influence of a 

piece-wise porous material on an otherwise infinite rigid plane consists of 

longitudinal dipoles.  The sound pressure increases by either increasing the length or 

the thickness of the porous material.  Also, the sound pressure magnitude increases 

under the influence of a pressure-releasing surface.  The situation in Chapter 5 of an 

inviscid vortex interacting with a finite length porous material on an otherwise 

infinite rigid plane is analogous to the case near the boundary of a lined duct.  The 

focus in Chapter 5 is extended to model the vortex sound generation in a lined duct 

in this chapter.  The effects of the length, thickness, effective fluid density and flow 

resistance of the porous material are examined.  The effect of initial vortex height is 

also discussed.   

 

6.2 Theoretical Development 

An inviscid vortex with circulation Γ located at z1i moves inside a lined duct as 

shown in Figure 6.1.  The length and the thickness of the porous material are 

denoted by L and h respectively, while d denotes the width of the air duct.  Also, all 

the length scales, the time and the flow resistance of the porous material in the 

present study are normalized by d, d2/Γ and ρoΓ/d2 respectively.   
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The analysis is started by deriving the streamfunction in the flow and porous 

regions as in Chapter 5.  The streamfunction in the fluid region for 0 ≤ y ≤ 1 satisfies 

Equation (5.1), while the streanfunction ψpl (0 ≤ x ≤ L, −h ≤ y ≤ 0) and ψpu (0 ≤ x ≤ 

L, 1 ≤ y ≤ 1 + h) within the porous materials satisfy Equation (1.10).  Thus, one can 

substitute the boundary condition [Equation (5.3)] of the porous materials into the 

solution of Equation (1.10).  The streamfunction ψpl (0 ≤ x ≤ L, −h ≤ y ≤ 0) is the 

same as that shown in Equation (5.4), while the streamfunction ψpu (0 ≤ x ≤ L, 1 ≤ y 

≤ 1 + h) is    
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where αn = nπ/L and n = 1, 2, 3,… and Bn is the mode magnitude.  

Through the application of continuity of normal fluid velocity at y = 0, 0 ≤ x 

≤ L and y = 1, 0 ≤ x ≤ L, one obtains from Equation (5.5),   
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In this case, H2 ≠ 0.  Substitute ψpl [Equation (5.4)], ψpu [Equation (6.1)] and ψz 

[Equation (5.5)] into the continuity of pressure at the boundary [Equation (5.9)], y = 

0, 0 ≤ x ≤ L and y = 1, 0 ≤ x ≤ L: 

 

( ) ( ) ( ) ( )∑∫
∞

=

∞

∞−

− +=−
1

12 coshsin
2
1

n
nn

h
nnfn

ikx hxeARAdkeGGk n αααη
π

α&&& ,         (6.4) 

 

and 
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The longitudinal and transverse velocities of the vortex are [Equations (5.13) 

and (5.14)]: 
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( ) ( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( ) ( )[ ] ( ) ( )
dk

k
kyk

k
kxxLk

heB

dk
k
ykk

k
kxxLk

heAv

n

n

n
n

h
nn

n

n

n
n

h
nnz

n

n

∫∑

∫∑
∞∞

=

+

∞∞

=

−
+−−

−

−
−

+−−
=

0

1
22

11

1

1

0

1
22

11

1
1

sinh
sinhsinsin1

sinh1

sinh
1sinhsinsin1

sinh1

α
αα

π

α
αα

π

α

α

,     (6.7) 



 88

respectively.  The first term in Equation (6.6) is equivalent to an inviscid vortex 

moving inside a rigid air duct with a constant velocity, and the integrals in Equations 

(6.6) and (6.7) correspond to the flow fields induced by the normal velocity at y = 0, 

0 ≤ x ≤ L and y = 1, 0 ≤ x ≤ L (porous material/fluid interfaces).  Thus, the path of the 

vortex can be obtained by integrating the coupled Equations (6.4) to (6.7) 

numerically using the standard fourth order Runge-Kutta method. 

The flow potential of an inviscid vortex can be evaluated through the use of 

Cauchy-Rieman principle with Equation (5.5),  
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where C is the integration constant.  It can be shown by observing the flow potential 

tends to (1 − y1)/2 when |x| → ∞ that C = 0.  Equation (6.8) becomes 

 

( ) ( )

( ) ( )

( ) ( ) ( )[ ] ( )[ ]

( ) ( ) ( ) ( )[ ]
∫∑

∫∑
∞ +∞

=

+

∞ +∞

=

−

−

−
+−−

−

−
−

+−−
+






 −−−
+






 −+−
=

0
22

1

1

1

0
22

1

1

111

111

sinh
coshsinsin1sinh1

sinh
1coshsinsin1sinh1

2
tanh

2
1

tantan
2
1

2
tanh

2
1

tantan
2
1

dk
k
ky

k
kxLxkheB

dk
k

yk
k

kxLxkheA

xxyy

xxyy

n

n

n
n

h
nn

n

n

n
n

h
nn

z

n

n

α
αα

π

α
αα

π

ππ
π

ππ
π

φ

α

α

.         (6.9) 

 

The integral terms in Equation (6.9) together represent the flow potential 

induced by the porous material while the remainder implies the flow potential due to 

the infinite rigid duct.  Using the formula tabulated in Gradshteyn and Ryzhik 

[1980], the far-field inner potential at large |x| is 
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and the far-field outer potential can be obtained by the matched asymptotic method 

as in Chapter 3: 
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where []t denotes the Fourier transform with respect to time.  Thus, the far-field 

pressure is evaluated through the use of Equation (1.8): 
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sound pressure is normalized by ρoΓ2/d2.  Equation (6.11) shows that a plane 

acoustic wave is generated under the influence of the porous material inside the lined 

duct.  

 

6.3 Vortex Paths and Sound 

In Chapter 5, we show that the far-field sound pressure is not affected much by the 

presence of higher order modes inside the porous material.  In this chapter, the mode 

magnitude An and Bn are calculated up to 5-terms each as the difference of p obtained 
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from a 5-terms truncation with 10-terms truncation is in the order of 10-5 while the 

maximum of p for the 10-terms calculation is in the order of 10-3 for y1i = 0.2, L = 2, 

h = 0.2, η = 3 with various Rf.  The vortex is initially located at far away from the 

porous material, and the vortex height is set to be y1i = 0.2 or 0.3 such that the vortex 

propagates in the positive x-direction.  The contribution from the upper part of the 

porous material is less than that from the lower part.  When the vortex is initially 

located at the centreline of the air duct, it will remain stationary in the original 

position and generates no sound.  When y1i > 0.5, the vortex propagates in the 

negative x-direction with constant velocity so that the porous material does not affect 

the vortex motion.   

 

6.3.1 Perfectly Invscid Fluid 

For a perfectly inviscid fluid, the flow resistance Rf = 0.  Figure 6.2(a) shows the 

vortex path with different h and η at for y1i = 0.2 and L = 1.  For h = 0.2 and η = 3, 

the vortex propagates towards the porous material (0 ≤ x ≤ 1 and −0.2 ≤ y ≤ 0) with a 

minimum vortex height of y ≈ 0.14 (x ≈ 0.52) due to the pressure-releasing effect of 

the porous material.  The vortex moves upwards for 0.52 < x < 1.4 under the 

influence of the pressure-supporting effect of the rigid wall beyond x = 1.  The loss in 

symmetry is due to the pressure-supporting effect from the rigid wall at the downstream 

section when the vortex propagates across the porous material.  One can notice that the 

larger the value of η (η = 5), the less severe the vortex will bend towards the lower 

porous material.  When h increases to 0.4 with η fixed at 3, the vortex experiences a 

stronger pressure-releasing effect by the lower porous material and propagates closer 

to its surface.  This situation becomes more serious when h is increased further.  One 

can expect from Figure 5.5(a) that the vortex motion becomes independent of h 
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when h is large.  Unlike the vortex paths for a perfectly inviscid fluid in Chapters 3 

and 5 [Figures 3.3(a) and 5.4(a)], the vortex paths are not symmetrical about x = 

0.5L in the present situation, and the vortex will not propagate back to its initial 

height after interacting with the porous material.   

Figures 6.2(b) and 6.2(c) show the corresponding longitudinal and transverse 

velocities of the vortex.  The longitudinal and transverse velocities of the vortex are 

1/4cot(y1π) = 0.34 and 0 respectively when the vortex is located at y1i = 0.2 and is far 

away from the porous material [Equations (6.6) and (6.7)].  Relatively large change 

in the vortex velocity is observed when the vortex propagates over the porous 

material, suggesting significant sound generation [Powell, 1964; Tang and Ffowcs 

and Williams, 1998].  The magnitude of the vortex velocity increases at a decreased 

η due to the strong pressure-releasing effect.  The increase in h also results in a 

significant change in the vortex velocity.  The time variation of the corresponding 

vortex acceleration is shown in Figures 6.2(d) and 6.2(e).  

The time variation of the sound pressure is shown in Figure 6.2(f).  The 

sound pressure is pulse-like.  The first crest and trough of the sound pressure 

increase with increasing h or decreasing η for y1i = 0.2 and L = 1.  However, the 

amplitude of p reaches a maximum value at h ≈ 0.8.  Similar observations are also 

found in Chapter 5 [Figure 5.5(f)].   

When the length of the porous material is increased from 1 to 2 with y1i = 0.2, 

η = 3 and h = 0.2, the vortex propagates in a path closer to the porous material 

[Figure 6.3].  The vortex bends towards the porous material with either increasing h 

or decreasing η.  The velocity and the acceleration of the vortex are similar to those 

presented in Figures 6.2(b) to 6.2(e) [Figure 6.4] except that more fluctuating peaks 
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are found in their transverse components.  The magnitudes of the vortex velocity and 

acceleration increase with increasing h or decreasing η.  

When y1i increases to 0.3 with L = 1, the vortex experiences the effect of the 

porous material earlier, and the degree of bending of the vortex path towards the 

porous material is higher than that in the case of y1i = 0.2 [Figure 6.2(a)].  It is also 

noticed from Figure 6.3 that the vortex paths are not symmetrical about x = 0.5L for 

L = 1.   

Figure 6.5 shows the time variation of sound pressure corresponding to the 

vortex path shown in Figure 6.3.  The duration of active sound generation is 

prolonged, and the magnitude of p increases as L increases with y1i = 0.2, h = 0.2 and 

η = 3 compared with the sound pressure p for L = 1 [Figure 6.2(a)].  More crests and 

troughs are found, and the magnitude of p increases when h is increased to 0.8 with 

y1i = 0.2, L = 2 and η = 3.  The magnitude of p decreases as the porous material is 

less pressure-releasing (η = 5).  The magnitude of p decreases with increasing y1i, 

but the pulse shape of p is similar to the case of y1i = 0.2 [Figure 6.2(f)].  The 

magnitude of p increases when h is increased further to 0.4 while it decreases when 

η increases.     

   

6.3.2 Combined Effects of η and Rf 

Figure 6.6(a) shows the vortex path when y1i = 0.2, h = 0.2, η = 3 and L = 1 with 

various Rf.  The vortex path for Rf = 0 is also shown for the sake of comparison.  

When Rf = 0.5, the vortex bends away from the porous material for 0 < x < 0.6 

because of the pressure-supporting effect and then propagates towards the x-axis for 

x > 0.6.  The vortex path for Rf = 0.5 is different from the case in a perfectly inviscid 

fluid.  The degree of bending away from the porous material (0 < x < 0.6) and that 
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towards the x-axis (x > 0.6) becomes serious when Rf is increased to 3.  The 

minimum vortex height y1 ≈ 0.1 at Rf = 7.  After reaching the minimum vortex height, 

the vortex bends away from the porous material at increased Rf = 30, and the vortex 

moves in the horizontal direction with constant speed for large Rf (for instance, Rf = 

100).   

Figures 6.6(b) and 6.6(c) show the corresponding time variations of the 

vortex velocities.  One can observe that the longitudinal velocity of the vortex 

increases as Rf increases from 0 to 7 and then decreases again for Rf > 7.  The initial 

longitudinal velocity is different from the final velocity after interacting with the 

porous material because of the lower vortex height at x > 2.  The transverse velocity 

of the vortex decreases at increasing Rf and tends to its theoretical value of zero for 

Rf = 100 [Equation (6.7)].  The flow impedance of the porous material depends on the Rf, 

m and the speed of the vortex.  These three parameters also affect the duration of influence 

of the porous material on the vortex motion.  In addition, the flow impedance seen by the 

vortex varies as it approaches the porous material.  Therefore, the final height and velocity 

of the vortex do not vary monotonically with Rf even when m is fixed.  Figures 6.6(d) and 

6.6(e) show the effect of Rf on the time variation of the vortex acceleration.  One can 

observe that the magnitude of the acceleration fluctuates seriously, and the 

maximum acceleration occur at t − ta ≈ 2 for 0.5 < Rf < 7 during which the vortex is 

under the influence of the porous material.  Louder sound radiation is thus expected 

[Figure 6.6(f)] at Rf = 7. 

Figure 6.7 shows some examples of the vortex paths at different Rf.  Figure 

6.7(a) shows the vortex path for y1i = 0.2, h = 0.4, η = 3 and L = 1 with various Rf.  

The vortex propagates towards the porous material more seriously compared with 

the vortex paths shown in Figure 6.6(a) as a strong pressure-releasing effect is 
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produced by a thicker porous material.  The vortex moves away from the porous 

material for 0 < x < 0.6 as Rf increases from 0 to 7.  For x > 0.6, the vortex 

propagates towards the rigid surface and reaches a constant vertical height after 

interacting with the porous material.  When the flow resistance is greater than 7, the 

vortex propagates away from the porous material and moves in the horizontal 

direction with constant speed when Rf is further increased.  The vortex dynamics 

with various Rf are similar to those presented in Figure 6.6(a) when h = 0.2.  When η 

increases from 3 to 5 with y1i = 0.2, h = 0.2 and L = 1 [Figure 6.7(b)], the vortex 

moves away from the porous material due to the presence of a less pressure-releasing 

surface.  One can expect that an increase in y1i or L will cause the vortex to 

propagate with a higher degree of bending towards the porous material, and the 

corresponding sound pressure is shown in Figure 6.8.   

Figure 6.9(a) illustrates the dependence of the sound pressure magnitude on 

the flow resistance with y1i = 0.2 and L = 1 with various h and η.  The magnitude of 

p does not vary much as Rf increases from 0 to 1.  An increase in p is observed for 1 

< Rf < 10 due to the substantial large rate of change of the vortex velocity [Figures 

6.6(d) and 6.6(e)].  A general decrease of the magnitude of p follows when Rf is 

increased further.  For h = 0.2 and η = 5, the magnitude of p is lower than that for η 

= 3 as a less pressure-releasing surface is experienced by the vortex, and the porous 

material becomes acoustically hard for large η (for instance, η = 100).  At the same 

time, the sound pressure p also decreases with decreasing h.  One can observe that 

the magnitude of p reaches its maximum value at h ≈ 0.8 [Figure 6.9(a)], and similar 

finding is also reported in Chapter 5 [Figure 5.6].   

Figure 6.9(b) summarizes the sound pressure magnitude p against the flow 

resistance Rf when y1i increases to 0.3 for L = 1 with various h and η.    The variation 



 95

of p with different Rf is similar to those presented in Figure 6.9(a).  The amplitude of 

the sound pressure p is approximately constant for small Rf ≤ 1, it then increases with 

Rf for 1 < Rf < 10.  It will approach its theoretical value (p = 0) for large Rf.  For y1i = 

0.3, the effect of increasing h or decreasing η provides a stronger pressure-releasing 

effect as suggested in Figure 6.9(a) [Figure 6.9(b)].  One can notice that the 

magnitude of p is lower than that in the case for y1i = 0.2.  When L increases from 1 

to 2 at a fixed y1i [Figure 6.9(c)], the magnitude of p is greater than that in the case 

for L = 1 [Figure 6.9(a)].  Though an increase in y1i with L = 2 results in a lower 

magnitude of p, its magnitude is higher than that in the case for L = 1 and y1i = 0.3 

[Figure 6.9(b)]. 

Figure 6.10 summaries the acoustical energy radiated with various flow 

resistance.  When y1i = 0.2 and L = 1, the acoustical energy E radiated increases as η 

decreases or h increases [Figure 6.10(a)], while it tends to zero when η is large (for 

instance, η = 100).  The acoustical energy E first decreases when Rf increases from 0 

to 1 and then increases for 1 < Rf < 10.  The magnitude of E drops as Rf increases 

towards 100.  When y1i increase to 0.3 at a fixed L, the variation of E is similar to 

those presented in Figure 6.10(a) [Figure 6.10(b)].  One can notice that the variation 

of E is not so significant when y1i increases.  From Figure 6.9(c), one can expect that 

the acoustical energy radiated increases as L increases [Figure 6.10(c)]. 

 

6.4 Summary 

In this chapter, the vortex sound generation inside a lined duct is investigated.  The 

method employed in Chapter 5 is applied.  The far-field sound pressure generated is 

in form of a plane acoustic wave, and the time variation of the sound pressure is 

pulse-like.  The vortex with an anti-clockwise circulation propagates towards the 
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lower porous material in a perfectly inviscid fluid if the vortex is initially located 

below the centreline of the duct.  Active sound generation is observed when the 

vortex interacts with the porous material due to the substantial large rate of change 

of the vortex velocity.  The sound pressure can be increased by either increasing the 

length, the thickness or decreasing the effective fluid density of the porous material.    

When a finite flow resistance exists inside the porous material, the sound 

pressure and the acoustical energy radiated first decrease when the flow resistance 

increases from zero and then increase when the flow resistance increases from one to 

ten.  The sound pressure and the acoustical energy radiated drop rapidly when the 

flow resistance is large. 
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Chapter 7: Conclusions and Recommendations 

for Future Work 

 

7.1 Conclusions 

In the present study, the vortex sound generation due to the presence of porous 

materials is investigated theoretically.  Porous materials are commonly used inside 

the dissipative duct silencers for attenuating noise.  The present study deals with the 

problem of self-noise generation from the porous materials.  Chapter 2 describes 

how two vortices interacting with a rigid circular cylinder to produce sound while 

the subsequent chapters describe the sound generation under the influence of the 

porous materials.    

In Chapter 2, two vortices in the proximity of a rigid circular cylinder are 

investigated.  When the separation of the vortices is small or when the vortices are 

far away from the cylinder, the radiated dipoles consist of low and high frequency 

components.  The former is due to the interaction between the vorticity centroid of 

the two vortices and the cylinder, while the latter one is due to the mutual induction 

between the vortices.  The radiated dipoles are much stronger when the vortices are 

close to each other or are in a closer proximity of the circular cylinder.  However, the 

amplitude of radiated dipoles reaches a minimum at a critical vortex separation and 

increases again.           

When one of the vortices is considerably stronger than the other, the stronger 

vortex dominates the fluid mechanics and the acoustics.  Low and high frequency 

components are observed in the dipole time fluctuation.  However, the contribution 
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from the weaker vortex results in an amplitude modulation pattern in the high 

frequency fluctuations.  The strength of such modulation becomes weaker when the 

circulation of the weaker vortex is reduced.   

Chapter 3 studies the interaction between vortices and a porous half cylinder 

mounted on an otherwise rigid plane.  Unlike the case of a rigid half cylinder, the 

presence of a porous one results in the co-existence of the longitudinal and 

transverse dipoles.  When a single vortex engages the porous half cylinder, the time 

variation of the strength of each dipole is pulse-like.  Its amplitude increases as the 

effective fluid density decreases.  The amplitude of the longitudinal dipole converges 

to that for the rigid half cylinder case when the flow resistance is large, but is larger 

than the latter at small flow resistances.  The larger the initial vortex height above 

the rigid plane, the lower the amplitude of the dipole.  The overall acoustical energy 

radiated remains higher than that for the rigid half cylinder case at some 

combinations of the effective fluid density and flow resistance. 

When two identical vortices exist in the proximity of the porous half cylinder, 

both the longitudinal and transverse dipoles contain low and high frequency 

components.  The former is due to the macroscopic vortex centroid motions and the 

latter to the leapfrogging motions of the vortices as in Chapter 2.  When the vortices 

are close to each other, the overall acoustical energy radiated is less than that in the 

rigid half cylinder case and the dipoles are dominated by the high frequency 

fluctuation.  The opposite is found at larger vortex separation for all effective fluid 

density and flow resistance studied.  When the vortex strengths are different, the 

acoustical energy radiated is higher when the difference in the vortex strengths 

increases.   
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In Chapter 4, the vortex sound in the presence of a wedge is studied.  The 

wedge consists of two materials.  One of the materials is assumed porous while the 

other is rigid.  The far-field sound pressure is a pulse whose magnitude decreases 

with increasing wedge angle.  The rate of decay of the pulse increases as the wedge 

angle increases.  When the wedge angle is fixed, the magnitude of the sound 

pressure decreases as the solid surface becomes more acoustically hard by either 

increasing the effective fluid density or the flow resistance of the porous wedge.     

In a perfectly invsicd fluid medium, a finite effective fluid density deflects 

the radiation directivity towards the porous surface.  The extent of such deflection 

increases with increasing effective fluid density but the rate of decay of the sound 

pressure with distance from the edge is lower if the effective fluid density is reduced.  

When the fluid possesses non-vanishing viscosity, the directivity and the rate of 

decay of the sound in the leading order of magnitude are the same as those with hard 

surfaces, regardless of the magnitude of the flow resistance. 

Chapter 5 discusses the vortex sound generation in the presence of a piece-

wise porous material on an otherwise rigid plane.  The sound radiated consists of a 

longitudinal dipole, and the time variation of the longitudinal dipole is pulse-like.  

The amplitude of the dipole increases as the effective fluid density or the flow 

resistance of the porous material decreases.  The opposite is found when the length 

or the thickness of the porous material is reduced for all effective fluid density and 

flow resistance studied.  When the flow resistance is large, the vortex generates no 

sound.  The amplitude of the longitudinal dipole increases when the length of the 

porous material increases and does not decrease monotonically with increasing flow 

resistance.  The sound pressure magnitude matches that for the case of a rigid wall 

for a large flow resistance.   
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Chapter 6 extends the study of Chapter 5 to investigate the vortex sound 

generation inside a lined duct.  The far-field pressure generated is a plane wave and 

is pulse-like.  The sound pressure increases when the length or the thickness of the 

porous material increases.  On the contrary, the sound pressure decreases as the 

effective fluid density increases.  With a finite flow resistance, the amplitude of the 

sound pressure converges to that for the case of a perfectly inviscid fluid when the 

flow resistance is small.  The variations of the sound pressure magnitudes at various 

flow resistance are similar to those presented in Chapter 5.  The sound pressure 

magnitude does not decrease monotonically with increasing flow resistance.  

 

7.2 Recommendations for Future Work 

The present study focuses on the vortex sound generation under the influence of a 

porous material theoretically.  There are two folds which can be dealt with in the 

future (i) theoretically and (ii) experimentally.     

 

7.2.1 Theoretical Development 

The mean flow effect is excluded in the present study because it is expected to 

produce amplification to a sound field.  The mean flow effect can be added in the 

future study as in Tang and Ffowcs Williams [1998].  Other than the mean flow, 

vortex shedding is found when a fluid flows over an obstacle, an area change, an 

edge and etc because of flow separation [Davies and Ffowcs Williams, 1968], the 

effects of the shed vortices from the porous material should be investigated. 

The introduction of the porous material will affect the boundary layer and 

vortex shedding, eventually the sound radiation.  Kutta-condition can be imposed 

when the fluid flow interacts with a porous edge [Howe, 1999].  Instability waves or 
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gust [Glegg and Jochault, 1988; Peake and Kerschen, 1997] can be studied instead of 

the discrete vortices because the waves may be a better representation of the 

turbulence than the discrete vortices, especially in the proximity of a solid surface. 

The flow geometries in the present study are simple.  The effect on sound 

generation of the elliptical porous cylinder and the half porous cylinders mounted on 

the two sides of air duct can also be studied.  Numerical conformal mapping can be 

employed to deal with complicated geometry like the dissipative silencer with 

several splitters.  Such investigations can provide practical information on the self-

noise generation.  

 

7.2.2 Experimental Investigation 

Experimental investigation can be taken to study the self-noise generation.  The 

measurement should be carried out inside a wind tunnel, and the air supply system 

should provide a steady flow.  Hot-wire is recommended to obtain the information of 

the flow field.  It can be used to analyze the free stream turbulence level, which has 

significant effects on the vortex shedding and boundary layer development on the 

solid surfaces.  The turbulence level should be measured. 

The wall pressure spectrum across the porous material can be measured by 

the wall pressure sensor.  It can be used to evaluate the boundary layer development 

and the force acting on the porous material.  The wall pressure sensor should also be 

mounted on the rigid duct wall in order to study how the wall pressure changes 

across the porous material. 

The transmission loss in the presence of different mean flow conditions with 

and without the porous material in an air duct should be studied.  It can indicate the 

performance of the porous material in dissipating sound energy under various flow 
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conditions.  The transmission loss across the lined duct can be measured by the four-

microphone method.  The collected data on the self-noise generation can be 

correlated with the turbulence level, wall pressure spectrum, transmission loss and 

mean flow.  The obtained data will demonstrate how the turbulence interacts with 

the porous material to radiate noise, and how the turbulence lowers the sound 

absorption performance of the porous material. 

   



 103

Publications Arising from this Thesis  

Lau, C.K. Tang, S.K.  “An example for the sound production of the vortex surface 
sound interaction”  The Tenth International Congress on Sound and Vibration, 
Sweden, pp.377 – 384 (2003) 

 
Lau, C.K. and Tang, S.K.  “On sound generation due to a vortex pair interacting with 

a circular cylinder of homogeneous surface impedance”  The Eleventh Congress 
on Sound and Vibration, pp.377 – 384 Russia, (2004) 

 
Tang, S.K. and Lau, C.K.  “Vortex sound in the presence of a wedge with 

inhomogeneous surface flow impedance”  Journal of Sound and Vibration, Vol. 
281, pp.1077 – 1091 (2005) 

 
Lau, C.K. and Tang, S.K.  “Sound generated by vortices in the presence of a porous 

half-cylinder mounted on a rigid plane”  Journal of the Acoustical Society of the 
America, Vol. 119, pp. 2084 – 2095 (2006)    

 
Lau, C.K. and Tang, S.K.  “Force and sound generated by two vortices interacting 

with a circular cylinder”. (Submitted to American Institute of Aeronautics and 
Astronautics Journal) 

 
Lau, C.K. and Tang, S.K.  “Vortex sound in the presence of a finite-length porous 

material on an otherwise rigid plane”.  (Under preparation) 



 104

Abou-Hussein, H., DeBenedictis, A., Harrison, N., Kim, M., Rodrigues, M.A., 
Zagadou, F. and Howe, M.S.  “Vortex-surface interaction noise: A compendium of 
worked examples ”  Journal of Sound and Vibration, Vol. 252, pp.883 – 918 (2002) 
 
Abramowitz, M. and Stegun, I.A.  Handbook of Mathematical Functions with 
Formulas, Graphs and Mathematical Tables.  John Wiley and Sons, New York 
(1972) 
 
Attenborough, K.  “Acoustical characteristics of porous materials”  Physics Reports, 
Vol. 82, pp.179 – 227 (1982) 
 
Barron, R.F.  Industrial Noise Control and Acoustics.  Marcel Dekker, New York 
(2003) 
 
Bear, J.  Dynamics of Fluids in Porous Media.  Dover, New York (1972) 
 
Bearman, P.W.  “On vortex street wakes”  Journal of Fluid Mechanics, Vol.28, 
pp.625 – 641 (1967) 
 
Becker, H.A. and Massaro, T.A.  “Vortex evolution in a round Jet”  Journal of Fluid 
Mechanics, Vol. 31, pp.435 – 448 (1968) 
 
Beranek, L.L. and Vér, I.L.  Noise and Vibration Control Engineering.  Principles 
and Applications.  John Wiley and Sons, New York (1992) 
 
Bies, D.A. and Hansen, C.H.  Engineering Noise Control Theory and Practice.  
Spon Press, New York (2003) 
 
Bies, D.A., Pickles, J.M. and Leclercq, D.J.J.  “Aerodynamic noise generated by a 
stationary body in a turbulent air stream”  Journal of Sound and Vibration, Vol. 204, 
pp.631 – 632 (1997) 
 
Cannell, P. and Ffowcs Williams, J.E.  “Radiation from line vortex filaments 
exhausting from a two-dimensional semi-infinite duct”  Journal of Fluid Mechanics, 
Vol. 51, pp.357 – 362 (1972) 
 
 
 



 105

Casalino, D., Jacob, M, and Roger, M.  “Prediction of rod-airfoil interaction noise 
using the Ffowcs-Williams-Hawkings analogy”  American Institute of Aeronautics 
and Astronautics Journal, Vol. 41, pp.182 – 191 (2003) 
 
Chang, C.C. and Chen, T.L.  “Acoustic emission by a vortex ring passing near a 
sharp wedge”  Proceedings of Royal Society of London Series A: Mathematical and 
Physical Sciences, Vol. 445, pp.141 – 155 (1994) 
 
Chen, K.T., Chen, Y.H., Lin, K.Y. and Weng, C.C.  “The improvement on the 
transmission loss of a duct by adding Helmholtz resonators”  Applied Acoustics, Vol. 
54, pp.71 – 82 (1998) 
 
Churchill, R.V. and Brown, J.W.  Complex Variables and Applications.  
McGraw-Hill, New York (1990) 
 
Crighton, D.G.  “Radiation from vortex filament motion”  Journal of Fluid 
Mechanics.  Vol.51, pp.357 – 362 (1972) 
 
Crighton, D.G., Dowling, A.P., Ffowcs Williams, J.E., Heckl, M. and Leppington, F.G.  
Modern methods in Analytical Acoustics.  Springer-Verlag, London (1992) 
 
Crighton, D.G. and Leppington, F.G.  “Scattering of aerodynamic noise by 
semi-infinite compliant plate”  Journal of Fluid Mechanics, Vol. 43, pp.721 – 736 
(1970) 
 
Crighton, D.G.. and Leppington, F.G.  “Radiation properties of the semi-infinite 
vortex sheet: the initial-value problem”  Journal of Fluid Mechanics, Vol. 64, 
pp.393 – 414 (1974) 
 
Cummings, A.  “Sound transmission in a folded annular duct”  Journal of Sound 
and Vibration, Vol. 41, pp.375 – 379 (1975) 
 
Cummings, A.  “Sound attenuation in ducts lined in two opposite walls with porous 
material, with some applications to splitters”  Journal of Sound and Vibration, Vol. 
49, pp.9 – 35 (1976) 
 
 
 



 106

Cummings, A. and Chang, I.J.  “Sound attenuation of a finite length dissipative flow 
duct silencer with internal mean flow in the absorbent”  Journal of Sound and 
Vibration, Vol. 127, pp.1 – 17 (1988) 
 
Cummings, A. and Sormaz, N.  “Acoustic attenuation in dissipative splitter silencers 
containing mean fluid flow”  Journal of Sound and Vibration, Vol. 168, pp.209 – 227 
(1993) 
 
Curle, N.  “The mechanics of edge-tones”  Proceedings of Royal Society of London 
Series A: Mathematical and Physical Sciences, Vol. 216, pp.412 – 424 (1953) 
 
Curle, N.  “The influence of solid boundaries upon aerodynamic sound”  
Proceedings of the Royal Society of London Series A: Mathematical and Physical 
Sciences, Vol. 231, pp.505 – 514 (1955) 
 
Davies, H.G. and Ffowcs Williams, J.E.  “Aerodynamic sound generation in a pipe”  
Journal of Fluid Mechanics, Vol. 32, pp.765 – 778 (1968) 
 
Denia, F.D., Albelda, J. and Fuenmayor, F.J.  “Acoustical behaviour of elliptical 
chamber mufflers”  Journal of Sound and Vibration, Vol. 241, pp.401 – 421 (2001) 
 
Delany, M.E. and Bazley, E.N.  “Acoustical properties of fibrous materials”  
Applied Acoustics, Vol. 3, pp.105 – 116 (1970) 
 
Diskey, N.S. and Selamet, A.  “Helmholtz resonators: one-dimensional limit for 
small cavity length-to-diameter ratios”  Journal of Sound and Vibration, Vol. 195, 
pp.512 – 517 (1996) 
 
Dowling, A.P. and Ffowcs Williams, J.E.  Sound and Sources of Sound.  Ellis 
Horwood, New York (1983) 
 
Dunne, R.C. and Howe, M.S.  “Wall-bounded blade-tip vortex interaction noise”  
Journal of Sound and Vibration, Vol. 202, pp.605 – 618 (1997) 
 
EI-Sharkawy, A.I. and Nayfeh, A.H.  “Effect of an expansion chamber on the 
propagation of sound in circular ducts”  Journal of the Acoustical Society of America, 
Vol. 63, pp.667 – 674 (1978) 
 



 107

Fanger, P.O.  Thermal Comfort: Analysis and Applications in Environmental 
Engineering.  McGraw-Hill, New York (1972) 
 
Fehse, K.-R. and Neise, W.  “Generation mechanisms of low-frequency centrifugal 
fan noise”  American Institute of Aeronautics and Astronautics Journal, Vol. 37, 
pp.1173 – 1179 (1999) 
 
Ffowcs Williams, J.E.  “The acoustics of turbulence near sound-absorbent liners”  
Journal of Fluid Mechanics, Vol. 51, pp.737 – 749 (1972) 
 
Ffowcs Williams, J.E. and Hall, L.H.  “Aerodynamic sound generation by the 
turbulent flow in the vicinity of a scattering half-plane”  Journal of Fluid Mechanics, 
Vol/ 40, pp.657 – 670 (1970) 
 
Ffowcs Williams, J.E. and Hawkings, D.L.  “Shallow water wave generation by 
unsteady flow”  Journal of Fluid Mechanics, Vol. 31, pp.779 – 788 (1968) 
 
Ffowcs Williams, J.E. and Hawkings, D.L.  “Sound generation by turbulence and 
surfaces in arbitrary motion”  Proceedings of Royal Society of London Series A: 
Mathematical and Physical Sciences, Vol. 264, pp.321 – 342 (1969) 
 
Gallo, C, Sala, M. and Sayigh, A.M.M.  Architecture: Comfort and Energy.  
Elsevier, UK (1988) 
 
Glav, R.  “The transfer matrix for a dissipative silencer of arbitrary cross-section”  
Journal of Sound and Vibration, Vol. 236, pp.575 – 594 (2000) 
 
Glegg, S.A.L. and Jochault, C.  “Broadband self-noise from a ducted fan”  
American Institute of Aeronautics and Astronautics Journal, Vol. 36, pp.1387 – 1395 
(1998) 
 
Gradshteyn, I.S. and Ryzhik, I.M.  Table of Integrals, Series, and Products. 
Academic Press, London (1980) 
 
Griffin, S., Lane, S.A. and Huybrechts, S.  “Coupled Helmholtz resonators for 
acoustic attenuation”  Transactions of the American Society of Mechanical 
Engineers, Journal of Vibration and Acoustics, Vol. 123, pp.11 – 17 (2001) 
 



 108

Hansen, C.H. and Snyder, S.D.  Active Control of Noise and Vibration.  Spon Press, 
New York (1997) 
 
Harris, C.M.  Handbook of Acoustical Measurements and Noise Control.  
McGraw-Hill, New York (1991) 
 
Hourigan, K., Welsh, M.C., Thompson, M.C. and Stokes, A.N.  “Aerodynamic 
sources of acoustic resonance in a duct with baffles”  Journal of Fluids and 
Structures, Vol. 4, pp.345 -370 (1990) 
 
Howe, M.S.  “Contributions to the theory of aerodynamic sound, with application to 
excess jet noise and the theory of flute”  Journal of Fluid Mechanics, Vol. 71, 
pp.625 – 673 (1975) 
 
Howe, M.S.  Acoustics of Fluid-Structure Interactions.  Cambridge University 
Press, Cambridge (1998) 
 
Howe, M.S.  “Trailing edge noise at low Mach numbers”  Journal of Sound and 
Vibration, Vol. 225, pp.211 – 238 (1999) 
 
Howe, M.S.  Theory of Vortex Sound.  Cambridge University Press, Cambridge 
(2003) 

 
Huang, L.  “A theoretical study of duct noise control by flexible panels”  Journal of 
the Acoustical Society of America, Vol. 106, pp.1801 – 1809 (1999) 
 
Huang, L., Choy, Y.S., So. R.M.C. and Chong, L.T.  “Experimental study of sound 
propagation in a flexible duct”  Journal of the Acoustical Society of America, Vol. 
108, pp.624 – 631 (2000) 
 
Hulshoff, S.J., Hirschberg, A. and Hofmans, G.C.J.  “Sound production of 
vortex-nozzle interactions”  Journal of Fluid Mechanics, Vol. 439, pp.335 – 352 
(2001) 
 
Hussain, A.K.M.F. and Zaman, K.B.M.Q.  “An experimental study of organized 
motions un the turbulent plane mixing layer”  Journal of Fluid Mechanics, Vol. 159, 
pp.85 – 104 (1985) 
 



 109

Ingard, K.U.  “On the theory and design of acoustic resonators”  Journal of the 
Acoustical Society of America, Vol. 25, pp.1037 – 1061 (1953) 
 
Ingard, K.U.  Notes on Sound Absorption Technology.  Poughkeepsie, New York 
(1994) 
 
Inoue, O. and Hatakeyama, N.  “Sound generation by a two-dimensional circular 
cylinder in a uniform flow”  Journal of Fluid Mechanics, Vol. 471, pp.285 – 314 
(2002) 
 
Kambe, T.  “Acoustic emissions by vortex motions”  Journal of Fluid Mechanics, 
Vol. 173, pp.643 – 666 (1986) 
 
Kambe, T., Minota, T. and Ikushima, Y.  “Acoustic wave emitted by a vortex ring 
passing near the edge of a half-plane”  Journal of Fluid Mechanics, Vol. 155, pp.77 – 
103 (1985) 
 
Kirby, R.  “Simplified techniques for predicting the transmission loss of a circular 
dissipative silencer”  Journal of Sound and Vibration, Vol. 243, pp.403 – 426 (2001) 
 
Kirby, R.  “Transmission loss predictions for dissipative silencers of arbitrary cross 
section in the presence of mean flow”  Journal of the Acoustical Society of America, 
Vol. 114, pp.200 – 209 (2003) 
 
Kirby, R. and Lawrie, J.B.  “A point collection approach to modeling large 
dissipative silencers”  Journal of Sound and Vibration, Vol. 286, pp.313 – 339 
(2005) 
 
Ko, N.W.M. and Tang, S.K.  “Effect of external exciter on the far field of an air jet”  
Journal of Sound and Vibration, Vol. 137, pp.154 – 158 (1990) 
 
Kober, H.  Dictionary of Conformal Representations.  Dover Publications, Inc 
(1952)  
 
Kuchemann, D.  “Report on the I.U.T.A.M. Symposium on concentrated vortex 
motions in fluids”  Journal of Fluid Mechanics, Vol. 21, pp.1 – 20 (1965) 
 
 



 110

Lamb, H.  Hydrodynamics.  Cambridge University Press, Cambridge (1993) 
 
Lighthill, M.J.  “On sound generated aerodynamically I. General theory”  
Proceedings of the Royal Society of London Series A: Mathematical and Physical 
Sciences, Vol. 211, pp.564 – 587 (1952) 
 
Lighthill, M.J.  “On sound generated aerodynamically II. Turbulence as a source of 
sound”  Proceedings of the Royal Society of London Series A: Mathematical and 
Physical Sciences, Vol. 222, pp.1 – 32 (1954) 
 
Mak, C.M.  “Development of a prediction method for flow-generated noise produced 
by duct elements in ventilation systems”  Applied Acoustics,  Vol. 63, pp.81 – 93 
(2002) 
 
Mak, C.M. and Yang, J.  “A prediction method for aerodynamic sound produced by 
closely spaced elements in air ducts”  Journal of Sound and Vibration, Vol. 229, 
pp.743 – 753 (2000) 
 
Mechel, F.P.  “Theory of baffle-type silencers”  Acustica, Vol. 70, pp.93 – 111 
(1990a) 
 
Mechel, F.P.  “Numerical results to the theory of baffle-type silencers”  Acutsica, 
Vol. 72, pp.7 – 20 (1990b) 
 
Minota, T. and Kambe, T.  “Acoustic waves emitted by a vortex ring passing near a 
circular cylinder”  Journal of Sound and Vibration, Vol. 119, pp.509 – 528 (1987) 
 
Minota, T., Murakame, T. and Kambe, T.  “Acoustic wave emitted by a vortex ring 
passing near a wedge-like plate”  Fluid dynamics Research, Vol. 4, pp.57 – 71 
(1988) 
 
Möhring, W.  “On vortex sound at low mach number”  Journal of Fluid Mechanics, 
Vol. 85, pp.685 – 691 (1978) 
 
Morse, P.M. and Ingard, K.U.  Theoretical Acoustics.  McGraw-Hill, New York 
(1968) 
 
 



 111

Munjal, M.L.  Acoustics of Ducts and Mufflers.  John Wiley and Sons, New York 
(1987a) 
 
Munjal, M.L.  “A simple numerical method for three-dimensional analysis of simple 
expansion chamber mufflers of rectangular as well as circular cross-section with a 
stationary medium”  Journal of Sound and Vibration, Vol. 116, pp.71 – 88 (1987b) 
 
Nash, E.C., Lowson, M.V. and McAlpine, A.  “Boundary-layer instability noise on 
aerofoils”  Journal of Fluid Mechanics, Vol. 382, pp.27 – 61 (1999) 
 
Neise, W., Frommhold, W., Mechel, F.P. and Holste, F.  “Sound power determination 
in rectangular flow ducts”  Journal of Sound and Vibration, Vol. 174, pp.210 – 237 
(1993) 
 
Nelson, P.A.  “Noise generated by flow over perforated surfaces”  Journal of Sound 
and Vibration, Vol. 83, pp.11 – 26 (1982) 
 
Nelson, P.A. and Elliott, S.J.  Active Control of Sound.  Academic Press, New York 
(1993) 
 
Nelson, P.A. and Morfey, C.L.  “Aerodynamic sound production in low speed flow 
ducts”  Journal of Sound and Vibration, Vol. 79, pp.263 – 289 (1981) 
 
Obermerier, F.  “New representation of aeroacoustic source distribution I.  General 
theory”  Acustica, Vol. 42, pp.56 – 61 (1979a) 
 
Obermeier, F.  “New representation of aeroacoustic source distribution II. 
2-dimenional model flows”  Acustica, Vol. 42, pp.62 – 71 (1979b) 
 
Obermeier, F.  “The influence of solid bodies on low Mach number vortex sound”  
Journal of Sound and Vibration, Vol. 72, pp.39 – 49 (1980) 
 
Oldham, D.J. and Waddington, D.C.  “The prediction of airflow-generated noise in 
ducts from considerations of similarity”  Journal of Sound and Vibration, Vol. 248, 
pp.780 – 787 (2001) 
 
Panaras, A.G.  “Pressure pulse generated by the interaction of a discrete vortex wit 
an edge”  Journal of Fluid Mechanics, Vol. 154, pp.445 – 461 (1985) 



 112

Peake, N. and Kerschen, E.J.  “Influence of mean loading on noise generated by the 
interaction of gusts with a flat-plate cascade: upstream radiation”  Journal of Fluid 
Mechanics, Vol. 347, pp.315 – 346 (1997) 
 
Peat, K.S. and Rathi, K.L.  “A finite element analysis of the convected acoustic wave 
motion in dissipative silencers”  Journal of Sound and Vibration, Vol. 184, pp.529 – 
545 (1995) 
 
Powell, A.  “Vortex sound theory”  Journal of the Acoustical Society of America, 
Vol. 36, pp.177 – 195 (1964) 
 
Phillips, O.M.  “The intensity of Aeolian tones”  Journal of Fluid Mechanics, Vol. 1, 
pp.607 -624 (1956) 
 
Quinlan, D.A. and Bent, P.H.  “High frequency noise generation in small axial flow 
fans”  Journal of Sound and Vibration, Vol. 218, pp.177 – 204 (1998) 
 
Quinn, M.C. and Howe, M.S.  “On the production and absorption of sound by 
lossless liners in the presence of mean flow”  Journal of Sound and Vibration, Vol. 
97, pp.1 – 9 (1984) 
 
Radavich, P.M., Selamet, A. and Novak, J.M.  “A computational approach for 
flow-acoustic coupling in closed side branches”  Journal of the Acoustical Society of 
America, Vol. 109, pp.1343 – 1353 (2001) 
 
Ramamoorthy, S., Grosh, K. and Nawar, T.G.  “Structural acoustic silencers – design 
and experiment”  Journal of the Acoustical Society of America, Vol. 114, pp.2812 – 
2824 (2003) 
 
Redmore, T.C. and Mulholland, K.A.  “The application of mode coupling theory to 
the transmission of sound in sidebranch of a rectangular duct system”  Journal of 
Sound and Vibration, Vol. 85, pp.323 – 331 (1982) 
 
Routh, E.J.  “Some applications of conjugate functions”  Proceedings of the 
London mathematical Society, Vol. 12, pp.73 – 89 (1881) 
 
 
 



 113

Sadamoto, A. and Murakami, Y.  “Resonant properties of short expansion chambers 
in a circular duct: including extremely short cases and asymmetric mode wave 
incidence cases”  Journal of Sound and Vibration, Vol. 249, pp.165 – 187 (2002) 
 
Selamet, A. and Lee, I.J.  “Helmholtz resonator with extended neck”  Journal of the 
Acoustical Society of America, Vol. 113, pp.1975 – 1985 (2003)  
 
Selamet, A. and Radavich, P.M.  “The effect of length on the acoustic attenuation 
performance of concentric expansion chambers: an analytical, computational and 
experimental investigation”  Journal of Sound and Vibration, Vol. 201, pp.407 – 426 
(1997) 
 
Selamet, A., Radavich, P.M., Diskey, N.S. and Novak, J.M.  “Circular concentric 
Helmholtz resonator”  Journal of the Acoustical Society of America, Vol. 101, 
pp.41 – 51 (1997) 
 
Selamet, A., Xu, M.B., Lee, I.J. and Huff, N.T.  “Analytical approach for sound 
attenuation in perforated dissipative silencers”  Journal of the Acoustical Society of 
America, Vol. 115, pp.2091 – 2099 (2004) 
 
Selamet, A. Xu, M.B., Lee, I.J. and Huff, N.T.  “Analytical approach for sound 
attenuation in perforated dissipative silencers with inlet/outlet extensions”  Journal 
of the Acoustical Society of America, Vol. 117, pp.2078 – 2089 (2005) 
 
Swinbanks, M.A.  “The active control of sound propagation in long ducts”  Journal 
of Sound and Vibration, Vol. 27, pp.411 – 436 (1973) 
 
Tang, S.K.  “Effects of porous boundaries on the dynamics of an inviscid vortex 
filament”  Quarterly Journal of Mechanics and Applied Mathematics, Vol. 54, 
pp.65 – 84 (2001) 
 
Tang, S.K.  “Sound transmission characteristics of Tee-junctions and the associated 
length corrections”  Journal of the Acoustical Society of America, Vol. 115, pp.218 – 
227 (2004) 
 
Tang, S.K.  “On Helmholtz resonators with tapered necks”  Journal of Sound and 
Vibration, Vol. 279, pp.1085 – 1096 (2005) 
 



 114

Tang, S.K. and Cheng, J.S.F.  “On the application of active noise control in an open 
end rectangular duct with and without flow”  Applied Acoustics, Vol. 53, pp.193 – 
210 (1998) 
 
Tang, S.K. and Ffowcs Williams, J.E.  “Acoustic radiation from a vortex 
approaching a circular cylinder with surface suction”  Acustica, Vol. 84, pp.1007 – 
1013 (1998) 
 
Tang, S.K. and Ko, N.W.M.  “Sound generation by interaction of two inviscid 
two-dimensional vortices”  Journal of the Acoustical Society of American, Vol. 102, 
pp.1463 – 1473 (1997) 
 
Tang, S.K. and Ko, N.W.M.  “Sound sources in the interactions of two 
inviscid-dimensional vortex pairs”  Journal of Fluid Mechanics, Vol. 419, pp.177 – 
201 (2000) 
 
Tang, S.K. and Ko, N.W.M.  “Basic sound generation mechanisms in inviscid vortex 
interactions at low Mach number”  Journal of Sound and Vibration, Vol. 262, 
pp.87 – 115 (2003) 
 
Tang, S.K. and Li. F.Y.C.  “On low frequency sound transmission loss of double 
sidebranches: A comparison between theory and experiment”  Journal of the 
Acoustical Society of AmericaI, Vol. 113, pp.3215 – 3225 (2003) 
 
Tang, S.K. and Li, K.M.  “Vortex sound generation due to a flow impedance 
discontinuity on a flat surface”  Journal of the Acoustical Society of American, Vol. 
109, pp.1334 – 1341 (2001) 
 
Trinder, M.C.J. and Nelson, P.A.  “Active control in finite length ducts”  Journal of 
Sound and Vibration, Vol. 83, pp.95 – 105 (1983) 
 
Tsui, C.Y. and Flandro, G.A.  “Self-induced sound generation by flow over 
perforated duct liners”  Journal of Sound and Vibration, Vol. 50, pp.315 – 331 
(1977) 
 
Waddington, D.C. and Oldham, D.J.  “Generalized flow noise prediction curves for 
air duct elements”  Journal of Sound and Vibration, Vol. 222, pp.163 – 169 (1999) 
 



 115

Woodley, B.M. and Peake, N.  “Resonant acoustic frequencies of a tandem cascade.  
Part 1.  Zero relative motion”  Journal of Fluid Mechanics, Vol. 393, pp.215 – 240 
(1999a) 
 
Woodley, B.M. and Peake, N.  “Resonant acoustic frequencies of a tandem cascade.  
Part 2.  Rotating blade rows”  Journal of Fluid Mechanics¸ Vol. 393, pp.241 – 256 
(1999b) 
 



 116

y

x

R

θ

ε

z1 z2
Γ1 Γ2

 
 
Figure 2.1 Schematics diagram of two rectilinear vortices in the 

proximity of a rigid circular cylinder.  
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Figure 2.2 Paths of vortices at small ε and large zc.  Cylinder 
surface; − − − − vorticity centroid;  ⋅  z1;  ⋅⋅  z2; Arrows direction of 
motion.   z1i = (−2.1, 0), z2i = (−1.9, 0), Γ1 = Γ2 = 0.5. 
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Figure 2.3 (a) Time variation of the drag force at small ε and large zc. 
 Fxc; − − − − Fxm; (b) Time variation of the x - direction dipole strength at 
small ε and large zc.  Pxc; − − − − Pxm.  z1i = (−2.1, 0), z2i = (−1.9, 0), Γ1 = Γ2 
= 0.5. 
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Figure 2.4 Paths of vortices at small ε and small zc. (a) Vortex paths 
relative to cylinder centre; (b) Vortex paths relative to vorticity centroid (0 ≤ t ≤ 
300).   Cylinder surface; − − − − vorticity centroid;  ⋅  z1;  ⋅⋅  z2; 
Arrows direction of motion.   z1i = (−1.3, 0), z2i = (−1.1, 0), Γ1 = Γ2 = 0.5.     
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Figure 2.5 (a) Time variation of the drag force at small ε and small zc. 

 Fxc; − − − − Fxm; (b) Time variation of the x - direction dipole strength at 
small ε and small zc.  Pxc; − − − − Pxm.  z1i = (−1.3, 0), z2i = (−1.1, 0), Γ1 = Γ2 
= 0.5. 
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Figure 2.6 Paths of vortices at large ε and large zc. (a) Vortex paths 
relative to cylinder centre; (b) Vortex paths relative to vorticity centroid.  
Cylinder surface; − − − − vorticity centroid;  ⋅  z1;  ⋅⋅  z2; Arrows direction 
of motion.   z1i = (−2.6, 0), z2i = (−1.4, 0), Γ1 = Γ2 = 0.5.     
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Figure 2.7 Combined effects of zc and ε on drag force for Γ1 = Γ2 = 0.5. 
Maximum |Fxc|:  zci = (−1.5,0);  zci = (−1.75,0);  zci = (−2,0);  zci = 
(−2.4,0); Maximum |Fxm|:  zci = (−1.5,0);  zci = (−1.75,0);  zci = (−2,0);  zci 
= (−2.4,0); Approximation from simplified vortex paths for maximum |Fxm|:  
zci = (−1.5,0); − − − − zci = (−1.75,0);  ⋅  zci = (−2,0);  ⋅⋅  zci = (−2.4,0). 
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Figure 2.8 Combined effects of zc and ε on dipole strength for Γ1 = Γ2 = 
0.5. Maximum |Pxc|:  zci = (−1.5,0);  zci = (−1.75,0);  zci = (−2,0);  zci = 
(−2.4,0); Maximum |Pxm|:  zci = (−1.5,0);  zci = (−1.75,0);  zci = (−2,0);  zci 
= (−2.4,0); Approximation from simplified vortex paths for maximum |Pxm|:  
zci = (−1.5,0); − − − − zci = (−1.75,0);  ⋅  zci = (−2,0);  ⋅⋅  zci = (−2.4,0). 
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Figure 2.9 Vortex paths when one of the vortices is considerably stronger 
than the other. (a) Vortex paths relative to cylinder centre; (b) vortex paths relative 
to vorticity centroid (0 ≤ t ≤ 250).  Cylinder surface; − − − − vorticity 
centroid;  ⋅  z1;  ⋅⋅  z2; Arrows direction of motion.  z1i = (−2.1, 0), z2i = 
(−1.9, 0), Γ1 = 0.1, Γ2 = 0.9. 
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Figure 2.10 Example of time variation of the x - direction dipole strength 
for Γ1 ≠ Γ2.  Pxc; − − − − Pxm.  z1i = (−2.1, 0), z2i = (−1.9, 0), Γ1 = 0.1, Γ2 = 
0.9. 
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Figure 2.11 Combined effects of zc and ε on drag force and dipole strength 
for Γ1 ≠ Γ2. (a) |Fxm|; (b) |Pxm|.  zci = (−1.98,0), Γ1 = 0.3, Γ2 = 0.7;  zci = 
(−1.53,0), Γ1 = 0.8, Γ2 = 0.2;  zci = (−1.8,0), Γ1 = 0.99, Γ2 = 0.01;  zci = 
(−2.44,0), Γ1 = 0.9, Γ2 = 0.1; Data from approximated vortex paths:  zci = 
(−1.98,0), Γ1 = 0.3, Γ2 = 0.7; − − − − zci = (−1.53,0), Γ1 = 0.8, Γ2 = 0.2;  ⋅   zci 
= (−1.8,0), Γ1 = 0.99, Γ2 = 0.01;  ⋅⋅  zci = (−2.44,0), Γ1 = 0.9, Γ2 = 0.1. 
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 Figure 3.1 Schematics of vortex model and nomenclatures in the original 
z-plane. 
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 Figure 3.2 Schematics of vortex model and nomenclatures in the 
transformed w-plane. 
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Figure 3.3 Effect of pressure-releasing surface on vortex motion, 

velocity, acceleration and sound generation.  (a) Vortex path; (b) Longitudinal 
velocity; (c) Transverse velocity; (d) Longitudinal acceleration; (e) Transverse 
acceleration; (f) Sound pressure. ⋅  η = 3; − − − η = 5;    η = 10;  
rigid half cylinder.  Initial z1i = (−10, 0.5).   
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Figure 3.3 Continued 
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Figure 3.4 Combined effects of effective fluid density and flow resistance 
on the vortex path.  (a) η = 5. ⋅⋅⋅⋅⋅⋅⋅⋅ Rf = 0;  ⋅⋅  Rf = 0.1;  ⋅  Rf = 0.5; − − − 
Rf = 1;    Rf = 10;  rigid half cylinder;  (b) Rf = 5.  ⋅⋅  η = 3;  ⋅ 
 η = 10; − − − η = 100;    η = 1000;  rigid half cylinder;  (c) η = 
1.5. ⋅⋅⋅⋅⋅⋅⋅⋅ Rf = 0;  ⋅⋅  Rf = 0.1;  ⋅  Rf = 0.5;    Rf = 10;  : rigid 
half cylinder.  Initial location of the vortex at x1i = −10 and y1i = 0.5. 
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Figure 3.5 Effects of flow resistance on vortex velocity.  (a) Longitudinal 
velocity; (b) Transverse velocity. ⋅⋅⋅⋅⋅⋅⋅⋅ Rf = 0;  ⋅⋅  Rf = 0.001;  ⋅  Rf = 0.1; − 
− − − Rf = 1;    Rf = 10;  rigid half cylinder.  Initial z1i = (−10, 0.5), η 
= 5. 
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Figure 3.6 Effects of flow resistance on vortex acceleration.  (a) 

Longitudinal acceleration; (b) Transverse acceleration. ⋅⋅⋅⋅⋅⋅⋅⋅ Rf = 0;  ⋅⋅  Rf = 
0.001;  ⋅  Rf = 0.1; − − − − Rf = 1;    Rf = 10;  rigid half cylinder.  
Initial z1i = (−10, 0.5), η = 5. 
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Figure 3.7 Sound pressure time variation for η = 5 at different Rf.  (a) 

Longitudinal dipole; (b) transverse dipole. ⋅⋅⋅⋅⋅⋅⋅⋅ Rf = 0;  ⋅⋅  Rf = 0.001;  ⋅  
Rf = 0.1; − − − − Rf = 1;    Rf = 10;  rigid half cylinder.  Initial z1i = 
(−10, 0.5). 
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 Figure 3.8 Combined effects of effective fluid density, flow resistance and 
initial vortex height on radiated sound amplitude. (a) y1i = 0.3; (b) y1i = 0.5; (c) y1i = 
0.8.  ⋅⋅  Px for η = 1.5, Rf = 0;  ⋅  Px for η = 3, Rf = 0;    Px for η = 
5, Rf = 0;  rigid half cylinder.   η = 1.5;  η = 3; ○ η = 5.  Closed 
Symbols for Px, open symbols for Py. 
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 Figure 3.9 Combined effects of effective fluid density, flow resistance and 
initial vortex height on acoustical energy radiation. (a) y1i = 0.3; (b) y1i = 0.5; (c) y1i 
= 0.8.   ⋅⋅  Px for η = 1.5, Rf = 0;  ⋅  Px for η = 3, Rf = 0;    Px for η 
= 5, Rf = 0;  rigid half cylinder.   η = 1.5;  η = 3;  η = 5.    
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Figure 3.10 Time variation of far-field directivity. (a) to – ta – R/co = 
−16.14; (b) to – ta – R/co = −6.76; (c) to – ta – R/co = 13.86; (d) to – ta – R/co = 53.86.  
   negative sound pressure;  positive sound pressure.  Initial z1i = 
(−10, 0.8), η = 1.5 and Rf = 0.5. 
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Figure 3.11 Unsteady leapfrogging motions of two identical vortices near 
a rigid half cylinder. (a) ε = 0.4; (b) ε = 0.8; (c) ε = 1.2; (d) ε = 1.6.    z1;  
⋅  z2;  zc; − − − − z1 relative to zc at x < − 2 or x > 2;  ⋅⋅  z2 relative to 
zc at − 2 < x < 2.  Initial zci = (−10, 0.5), Γ1 = Γ2 = 0.5. 
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Figure 3.12 Time variation of vortex velocity and acceleration at small ε 
in the presence of a rigid half cylinder.  (a) Longitudinal velocity; (b) Transverse 
velocity; (c) Longitudinal acceleration; (d) Transverse acceleration.  z1;  ⋅ 
 z2.  zci initially located at (−10, 0.5), Γ1 = Γ2 = 0.5, ε = 0.2. 
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Figure 3.13 Time variation of vortex velocity and acceleration at ε = 0.8 
in the presence of a rigid half cylinder.  (a) Longitudinal velocity; (b) Transverse 
velocity; (c) Longitudinal acceleration; (d) Transverse acceleration.  z1;  ⋅ 
 z2.  zci initially located at (−10, 0.5), Γ1 = Γ2 = 0.5. 
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Figure 3.14 Time variation of vortex velocity and acceleration at large ε 
in the presence of a rigid half cylinder.  (a) Longitudinal velocity; (b) Transverse 
velocity; (c) Longitudinal acceleration; (d) Transverse acceleration.  z1;  ⋅ 
 z2.  zci initially located at (−10, 0.5), Γ1 = Γ2 = 0.5, ε = 1.6. 
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Figure 3.15 Time variation of longitudinal dipole magnitude at different 
separation distance in the presence of a half rigid cylinder. (a) ε = 0.2; (b) ε = 0.8; 
(c) ε = 1.6.  Equivalent single vortex results;  ⋅  two interacting identical 
vortices results.  zci initially at (−10, 0.5), Γ1 = Γ2 =0.5. 
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Figure 3.16 Paths of two interacting vortices for perfectly inviscid fluid 
cases. (a) ε = 0.4, η = 5; (b) ε = 0.4, η = 2; (c) ε = 0.8, η = 5.    z1;  ⋅  
z2;  zc.  zci initially at (−10, 0.5), Γ1 = Γ2 = 0.5. 
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Figure 3.17 Combined effects of effective fluid density and flow resistance 
on the vortex paths. (a) η = 5, Rf = 10; (b) η = 5, Rf = 1; (c) η = 5, Rf = 0.1;(d) η = 
3, Rf = 0.1.    z1;  ⋅  z2;  zc.  Initial z1i = (−10.2, 0.5), initial z2i = 
(−9.8, 0.5), Γ1 = Γ2 = 0.5, ε = 0.4. 
 
 
 
 
 
 
 
 
 



 142

Lo
ng

itu
di

na
l V

el
oc

ity

-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5

Tr
an

sv
er

se
 V

el
oc

ity

-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

Lo
ng

itu
di

na
l A

cc
el

er
at

io
n

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Flight Time t - tb

-40 -20 0 20 40

Tr
an

sv
er

se
 A

cc
el

er
at

io
n

-0.4

-0.2

0.0

0.2

0.4

(a)

(b)

(c)

(d)

 
 

Figure 3.18 Time variation of vortex velocity and acceleration at η = 5 
and Rf = 0.1.  (a) Longitudinal velocity; (b) Transverse velocity; (c) Longitudinal 
acceleration; (d) Transverse acceleration.  z1;  ⋅  z2.  zci initially located 
at (−10, 0.5), Γ1 = Γ2 = 0.5, ε = 0.4.  
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Figure 3.19 Time variation of vortex velocity and acceleration at η = 5 
and Rf = 1.  (a) Longitudinal velocity; (b) Transverse velocity; (c) Longitudinal 
acceleration; (d) Transverse acceleration.  z1;  ⋅  z2.  zci initially located 
at (−10, 0.5), Γ1 = Γ2 = 0.5, ε = 0.4.  
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Figure 3.20 Time variation of vortex velocity and acceleration at η = 5 
and Rf = 10.  (a) Longitudinal velocity; (b) Transverse velocity; (c) Longitudinal 
acceleration; (d) Transverse acceleration.  z1;  ⋅  z2.  zci initially located 
at (−10, 0.5), Γ1 = Γ2 = 0.5, ε = 0.4.  
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Figure 3.21 Examples of time variation of dipole magnitudes at finite 
effective fluid density and flow resistance. (a) Px, ε = 0.4; (b) Py, ε = 0.4; (c) Px, ε = 
0.8; (d) Py, ε = 0.8.  ⋅  Rf = 0.1;    Rf = 1;  Rf = 10;  ⋅⋅  rigid 
half cylinder.  Initial zci = (−10, 0.5), Γ1 = Γ2 = 0.5. 
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Figure 3.22 Amplitudes of the dipoles produced by two interacting 
identical vortices. (a) ε = 0.4; (b) ε = 0.8; (c) ε = 1.6.  ⋅  Px for η = 3, Rf = 0; 

   Px for η = 5, Rf = 0;  rigid half cylinder.  η = 3; ○ η = 5.  
Closed Symbols for Px, open symbols for Py.  Initial zci = (−10, 0.5), Γ1 = Γ2 = 0.5. 
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Figure 3.23 Acoustical energy radiated by two interacting identical 
vortices. (a) ε = 0.4; (b) ε = 0.8; (c) ε = 1.6.  ⋅  Px for η = 3, Rf = 0;    
Px for η = 5, Rf = 0;  rigid half cylinder.  η = 3;  η = 5.  Initial zci = 
(−10, 0.5), Γ1 = Γ2 = 0.5. 
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 Figure 3.24 Paths of two interacting vortices with different vortex 
strengths near a rigid half cylinder. (a) ε = 0.4, Γ1 = 0.6, Γ2 = 0.4; (b) ε = 0.4, Γ1 = 
0.8, Γ2 = 0.2; (c) ε = 0.8, Γ1 = 0.6, Γ2 = 0.4.    z1;  ⋅  z2;  zc.  
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Figure 3.25 Time variation of vortex velocity and acceleration at ε = 0.4 
with different vortex strengths in the presence of a rigid half cylinder.  (a) 
Longitudinal velocity; (b) Transverse velocity; (c) Longitudinal acceleration; (d) 
Transverse acceleration.  z1;  ⋅  z2.  Γ1 = 0.6, Γ2 = 0.4, ε = 0.4.  
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Figure 3.26 Time variation of vortex velocity and acceleration at ε = 0.4 
with different vortex strengths in the presence of a rigid half cylinder.  (a) 
Longitudinal velocity; (b) Transverse velocity; (c) Longitudinal acceleration; (d) 
Transverse acceleration.  z1;  ⋅  z2.  Γ1 = 0.8, Γ2 = 0.2, ε = 0.4. 
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Figure 3.27 Time variation of vortex velocity and acceleration at ε = 0.8 
with different vortex strengths in the presence of a rigid half cylinder.  (a) 
Longitudinal velocity; (b) Transverse velocity; (c) Longitudinal acceleration; (d) 
Transverse acceleration.  z1;  ⋅  z2.  Γ1 = 0.6, Γ2 = 0.4, ε = 0.8. 
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 Figure 3.28 Time variation of longitudinal dipole magnitude at different 
separation distance and vortex strengths in the presence of a rigid half cylinder. (a) 
ε = 0.4, Γ1 = 0.6, Γ2 = 0.4; (b) ε = 0.4, Γ1 = 0.8, Γ2 = 0.2; (c) ε = 0.8, Γ1 = 0.6, Γ2 
= 0.4.  Equivalent single vortex results;  ⋅  two interacting vortices 
results.  
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 Fgiure 3.29 Paths of two interacting vortices with different vortex 
strengths for perfectly inviscid fluid. (a) ε = 0.4, Γ1 = 0.6, Γ2 = 0.4, η = 5; (b) ε = 
0.4, Γ1 = 0.8, Γ2 = 0.2, η = 5; (c) ε = 0.4, Γ1 = 0.8, Γ2 = 0.2, η = 3; (d) ε = 0.8, Γ1 
= 0.8, Γ2 = 0.2, η = 5.    z1;  ⋅  z2;  zc. 
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Figure 3.30 Combined effects of effective fluid density and flow resistance 
on the vortex paths. (a) ε = 0.4, Γ1 = 0.6, Γ2 = 0.4, η = 5, Rf = 10; (b) ε = 0.4, Γ1 = 
0.6, Γ2 = 0.4, η = 5, Rf = 0.1; (c) ε = 0.4, Γ1 = 0.6, Γ2 = 0.4, η = 3, Rf = 0.1; (d) ε = 
0.4, Γ1 = 0.8, Γ2 = 0.2, η = 3, Rf = 0.1.   z1;  ⋅  z2;  zc. 
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Figure 3.31 Examples of time variation of dipole magnitudes at finite 
effective fluid density, flow resistance and different vortex strengths. (a) Px; (b) Py. 
 ⋅  Rf = 0.01;    Rf = 1;  Rf = 10;  ⋅⋅  rigid half cylinder. ε = 0.4, 
Γ1 = 0.8, Γ2 = 0.2  η = 5. 
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Figure 3.32 Combined effects of η and Rf on the time variation of vortex 
velocity and acceleration at η = 5 and Rf = 0.1 with different vortex strengths.  (a) 
Longitudinal velocity; (b) Transverse velocity; (c) Longitudinal acceleration; (d) 
Transverse acceleration.  z1;  ⋅  z2.  Γ1 = 0.8, Γ2 = 0.2, ε = 0.4. 
 

 



 157

Lo
ng

itu
di

na
l V

el
oc

ity

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Tr
an

sv
er

se
 V

el
oc

ity

-0.4

-0.2

0.0

0.2

0.4

0.6

Lo
ng

itu
di

na
l A

cc
el

er
at

io
n

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Flight Time t - tb

-40 -20 0 20 40

Tr
an

sv
er

se
 A

cc
el

er
at

io
n

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(a)

(b)

(c)

(d)

 
 

Figure 3.33 Combined effects of η and Rf on the time variation of vortex 
velocity and acceleration at η = 5 and Rf = 1 with different vortex strengths.  (a) 
Longitudinal velocity; (b) Transverse velocity; (c) Longitudinal acceleration; (d) 
Transverse acceleration.  z1;  ⋅  z2.  Γ1 = 0.8, Γ2 = 0.2, ε = 0.4. 
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Figure 3.34 Combined effects of η and Rf on the time variation of vortex 
velocity and acceleration at η = 5 and Rf = 10 with different vortex strengths.  (a) 
Longitudinal velocity; (b) Transverse velocity; (c) Longitudinal acceleration; (d) 
Transverse acceleration.  z1;  ⋅  z2.  Γ1 = 0.8, Γ2 = 0.2, ε = 0.4. 
 
 



 159

M
ag

ni
tu

de
 o

f L
on

gi
tu

di
na

l D
ip

ol
e 

10-2

10-1

100
M

agnitude of Transverse D
ipole 

10-6

10-5

10-4

10-3

10-2

10-1

Rf

10-5 10-4 10-3 10-2 10-1 100 101 102

M
ag

ni
tu

de
 o

f L
on

gi
tu

di
na

l D
ip

ol
e 

0.01

0.1

1

10

Rf

10-5 10-4 10-3 10-2 10-1 100 101 102

M
agnitude of Transverse D

ipole 

10-6

10-5

10-4

10-3

10-2

10-1

(a) (b)

(c) (d)

 
 

 Figure 3.35 Amplitudes of the dipoles produced by two vortices with 
different strengths.  (a) ε = 0.4, Γ1 = 0.6, Γ2 = 0.4; (b) ε = 0.4, Γ1 = 0.8, Γ2 = 0.2; 
(c) ε = 0.8, Γ1 = 0.6, Γ2 = 0.4; (d) ε = 0.8, Γ1 = 0.8, Γ2 = 0.2.  ⋅  Px for η = 3, 
Rf = 0;    Px for η = 5, Rf = 0;  rigid half cylinder.  η = 3; ○ η = 5.  
Closed Symbols for Px, open symbols for Py. 
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Figure 3.36 Acoustical energy radiated by two vortices with different 
strengths. (a) ε = 0.4, Γ1 = 0.6, Γ2 = 0.4; (b) ε = 0.4, Γ1 = 0.8, Γ2 = 0.2; (c) ε = 0.8, 
Γ1 = 0.6, Γ2 = 0.4; (d) ε = 0.8, Γ1 = 0.8, Γ2 = 0.2.  ⋅  Px for η = 3, Rf = 0;   
 Px for η = 5, Rf = 0;  rigid half cylinder.  η = 3;  η = 5. 
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Figure 4.1 Schematic diagram for the present vortex-wedge system (z-
plane). 
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 Figure 4.2 The  w-plane. 
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 Figure 4.3 Time variation of the sound pulse for rigid wedge.   ⋅  α 
= 0;   α = π/3;  ⋅⋅  α = 2π/3; ⋅⋅⋅⋅⋅⋅⋅⋅ α = 5π/6;  α = 9π/10.    
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Figure 4.4 Accuracy of the approximation of Equation (4.19).   η = 
2;   η = 5;  ⋅  η = 100. 
 
 



 163

Angular Direction  θ − α/2

-3 -2 -1 0 1 2 3

D
ire

ct
iv

ity
 F

ac
to

r

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 
 

Figure 4.5 Effect of effective fluid density on the radiation directivity for 
a perfectly inviscid medium.  ⋅⋅⋅⋅⋅⋅⋅⋅ η = 1, α = π/3;   η = 5, α = π/3;  rigid 
wedge, α = π/3;  ⋅  η = 1, α = 2π/3;  ⋅⋅  rigid wedge, α = 2π/3.   
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 Figure 4.6 Effect of effective fluid density on sound pressure fluctuations 
for perfectly inviscid medium.   η = 1;  ⋅  η = 20;  ⋅⋅  η = 100;   η 
= 1000. α = π.  
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Figure 4.7 Vortex flight path in a perfectly inviscid medium.    η = 
2;  ⋅  η = 4;  ⋅⋅  rigid wedge.  α = π/3. 
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Figure 4.8 Sound pressure time variation for finite η at r = 100, α = π/3.  
  η = 2;  ⋅  η = 4;  rigid wedge. 
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Figure 4.9 Effect of wedge angle on the sound pulse magnitude.   α 
= 0;   α = π/3;  ⋅  α = 2π/3;  ⋅  α = π.  η = 4.   
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Figure 4.10 Combined effects of effective fluid density and flow resistance 
on the vortex path.   η = 2, 4πRf = 0;   η = 2, 4πRf = 10;  ⋅⋅  η = 2, 
4πRf = 100; ⋅⋅⋅⋅⋅⋅⋅⋅ η = 4, 4πRf = 100;  ⋅  rigid wedge.  α = π/3.     
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Figure 4.11 Effect of flow resistance on the far-field sound radiation.   
 4πRf = 0;  ⋅  4πRf = 10;  ⋅⋅  4πRf = 100;  rigid wedge.  η = 2, α = 
π/3.  
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Figure 4.12 Combined effects of effective fluid density, flow resistance and 
wedge angle on sound radiation.   η = 2, α = π/3;  η = 2, α = 2π/3;  η = 4, α 
= π/3;  η = 4, α = 2π/3. 
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 Figure 5.1 Schematic diagram of vortex model in the present study. 
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 Figure 5.2 Maximum difference of the longitudinal dipole magnitude Px 
for 5, 10, 15 and 20 terms truncation.   |P5 − P20|;  |P10 − P20|;  |P15 − P20| .  L 
= 2, h = 2 and η = 5.  
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Figure 5.3 Validation of longitudinal dipole magnitude for the present 
vortex model.  ○ P20 for η = 5;  P10 for η = 100.  L = 2, h = 2. 
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 Figure 5.4 Effect of pressure-releasing surface on the vortex motion, 
velocity, acceleration and the sound generation at a fixed h.  (a) Vortex path; (b) 
Longitudinal velocity; (c) Transverse velocity; (d) Longitudinal acceleration; (e) 
Transverse acceleration; (f) Sound pressure.   L = 1, η = 3;    L = 1, 
η = 5; ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ L = 1, η = 100;  ⋅  L = 2, η = 3;  ⋅⋅  L = 10/3, η = 3. h = 2.  
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Figure 5.4 Continued 
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Figure 5.5 Effect of pressure releasing surface on the vortex motion, 

velocity, acceleration and the sound generation at a fixed L = 1 and η = 3.  (a) 
Vortex path; (b) Longitudinal velocity; (c) Transverse velocity; (d) Longitudinal 
acceleration; (e) Transverse acceleration; (f) Sound pressure.   h = 0.1;  
  h = 0.2; ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ h = 0.4;  ⋅  h = 0.6;  ⋅⋅  h = 0.8.   
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Figure 5.5 Continued 
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Figure 5.6 Combined effects of L and h on the radiated longitudinal 
dipole amplitude in perfectly inviscid fluid.  (a) L = 1; (b) L = 1.25; (c) L = 2; (d) L 
= 10/3.  η = 3 ;  η = 5. 
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Figure 5.7 Combined effects of L and h on acoustical energy radiation in 
perfectly inviscid fluid.  (a) L = 1; (b) L = 1.25; (c) L = 2; (d) L = 10/3.  η = 3 ;  
η = 5.    
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Figure 5.8 Combined effects of effective fluid density and flow resistance 
on the vortex motion, velocity, acceleration and the sound generation at a fixed L = 
1, h = 1 and η = 3.  (a) Vortex path; (b) Longitudinal velocity; (c) Transverse 
velocity; (d) Longitudinal acceleration; (e) Transverse acceleration; (f) Sound 
pressure.   Rf = 0;    Rf = 0.05; ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ Rf = 0.1;  ⋅  Rf = 1;  ⋅⋅ 
 Rf = 10. 
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Figure 5.8 Continued 
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Figure 5.9 Effects of h and η on the vortex path and the sound generation 
for non-vanishing Rf.  (a) Vortex motion; (b) Sound pressure.  h = 0.1, η = 3; 
   h = 0.4, η = 3; ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ h = 0.6, η = 3;  ⋅  h = 0.6, η = 5;  ⋅⋅  h = 
0.6, η = 100.  L = 1 and Rf = 1. 
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Figure 5.10 Vortex motion and time variation of vortex velocity, 
acceleration and sound generation of the inviscid vortex at a fixed h and η.  (a) 
Vortex path; (b) Longitudinal velocity; (c) Transverse velocity; (d) Longitudinal 
acceleration; (e) Transverse acceleration; (f) Sound pressure.  L = 2, Rf = 2; 
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ L = 10/3, Rf = 0.01; − − − − L = 10/3, Rf = 0.09;  ⋅⋅  L = 10/3, Rf = 
0.36;    L = 10/3, Rf = 2;  ⋅  L = 10/3, Rf = 9. h = 2 and η = 5. 
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Figure 5.10 Continued 
 

 
 
 
 
 
 
 
 
 
 



 180

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

M
ag

ni
tu

de
 o

f L
on

gi
tu

di
na

l D
ip

ol
e 

0.000

0.001

0.002

0.003

0.004

0.005

Flow Resistance Rf

10-4 10-3 10-2 10-1 100 101 102
0.000

0.002

0.004

0.006

0.008

(a)

(b)

(c)

 
 

Figure 5.11 Amplitudes of the longitudinal dipole Px with different L, h, η 
and Rf.  (a) L = 1; (b) L = 2;  h = 0.1;  h = 0.2;  h = 0.4;  h = 0.8;  h = 2. 
(c) L = 10/3.  h = 1/3;  h = 2/3;  h = 2;  h = 10/3;  h = 20/3.  Closed 
symbols for η = 3, open symbols for η = 5. 
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Figure 5.12 Acoustical energy radiated with different L, h, η and Rf.  (a) L 
= 1; (b) L = 2;  h = 0.1;  h = 0.2;  h = 0.4;  h = 0.8;  h = 2. (c) L = 10/3. 

 h = 1/3;  h = 2/3;  h = 2;  h = 10/3;  h = 20/3.  Closed symbols for η = 
3, open symbols for η = 5. 
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Figure 6.1 Schematics diagram of an inviscid vortex in a lined duct. 
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 Figure 6.2 Effects of h and η on the vortex motion, velocity, acceleration 
and sound pressure at a fixed y1i = 0.2 and L = 1.(a) Vortex path; (b) Longitudinal 
velocity; (c) Transverse velocity; (d) Longitudinal acceleration; (e) Transverse 
acceleration.  h = 0.2, η = 3;    h = 0.2, η = 5;  ⋅  h = 0.4, η = 3; 
 ⋅⋅  h = 0.8, η = 3.  
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Figure 6.2 Continued 
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 Figure 6.3 Effect of pressure-releasing surface on the vortex motion. 
 y1i = 0.2,  h = 0.2, η = 3, L = 2;    y1i = 0.2, h = 0.8, η = 3, L = 2;- - 
- - y1i = 0.2, h = 0.8, η = 5, L = 2; ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ y1i = 0.3, h = 0.2, η = 3, L = 1;  ⋅  
y1i = 0.3, h = 0.4, η = 3, L = 1;  ⋅⋅  y1i = 0.3, h = 0.4, η = 5, L = 1. 
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 Figure 6.4 Time variations of vortex velocity and acceleration at a fixed 
y1i = 0.2 and L = 2.  h = 0.2, η = 3;    h = 0.8, η = 3;- - - - h = 0.8, η 
= 5. 
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 Figure 6.5 Effect of pressure-releasing surface on the sound pressure 
fluctuations.  y1i = 0.2,  h = 0.2, η = 3, L = 2;    y1i = 0.2, h = 0.8, η 
= 3, L = 2;- - - - y1i = 0.2, h = 0.8, η = 5, L = 2; ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ y1i = 0.3, h = 0.2, η = 3, L 
= 1;  ⋅  y1i = 0.3, h = 0.4, η = 3, L = 1;  ⋅⋅  y1i = 0.3, h = 0.4, η = 5, L = 1. 
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 Figure 6.6 Effects of flow resistance on the vortex dynamic, velocity, 
acceleration and sound pressure.  (a) Vortex path; (b) Longitudinal velocity; (c) 
Transverse velocity; (d) Longitudinal acceleration; (e) Transverse acceleration; (f) 
Sound pressure.  Rf = 0; ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ Rf = 0.5; - - - - Rf = 3;  ⋅⋅  Rf = 7;  
  Rf = 30;  ⋅  Rf = 100. y1i = 0.2, h = 0.2, η = 3, L = 1. 
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Figure 6.6 Continued 
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Figure 6.7 Effects of flow resistance on the vortex dynamic.  (a) y1i = 0.2, h = 0.4, 
η = 3; (b) y1i = 0.2, h = 0.2, η = 5.  Rf = 0; ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ Rf = 0.5; - - - - Rf = 3; 
 ⋅⋅  Rf = 7;    Rf = 30;  ⋅  Rf = 100. L = 1. 
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Figure 6.8 Effects of flow resistance on the sound pressure generation.  (a) y1i = 
0.2, h = 0.4, η = 3; (b) y1i = 0.2, h = 0.2, η = 5.  Rf = 0; ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ Rf = 0.5; - 
- - - Rf = 3;  ⋅⋅  Rf = 7;    Rf = 30;  ⋅  Rf = 100. L = 1. 
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Figure 6.9 Summary of the sound pressure magnitude with various y1i, h, 
η and L against Rf.  (a)  y1i = 0.2, L = 1;  h = 0.2, η = 3;  h = 0.4, η = 3;  h = 
0.8, η = 3;  h = 0.2, η = 100.  (b) y1i = 0.3, L = 1;  h = 0.2, η = 3;  h = 0.4, η 
= 3; (c) L = 2.  y1i = 0.2, h = 0.2, η = 3;  y1i = 0.3, h = 0.2, η = 3.  Closed 
symbols for η = 3, open symbols for η = 5. 
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Figure 6.10 Summary of the acoustical energy radiated with various y1i, h, 
η and L against Rf.  (a)  y1i = 0.2, L = 1;  h = 0.2, η = 3;  h = 0.4, η = 3;  h = 
0.8, η = 3;  h = 0.2, η = 100.  (b) y1i = 0.3, L = 1;  h = 0.2, η = 3;  h = 0.4, η 
= 3; (c) L = 2.  y1i = 0.2, h = 0.2, η = 3;  y1i = 0.3, h = 0.2, η = 3.  Closed 
symbols for η = 3, open symbols for η = 5. 
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