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Abstract of Thesis

The main objective of this thesis is to study in details the vortex sound generation
under the influence of porous materials. The effects of vortex strengths, separation
distance and initial position are examined. The effects of effective fluid density and
flow resistance inside the lattice of the porous material on sound generation are also
explored.

Acoustic analogy is employed in the present study in order to derive the flow
potential, and the matched asymptotic expansion method is used to evaluate the far-
field sound pressure.

The present study is relevant to the problem of self-generated noise as the
major function of the porous material is to attenuate the noise inside the ductwork
system, but additional noise can be generated in the presence of the porous material
at the same time.  Vortex sound generation under the influence of a porous half
cylinder mounted on an otherwise rigid plane, a porous wedge, a piece-wise porous
material on an otherwise rigid plane and alined duct are investigated.

In general, the far-field sound pressure is higher when the effective fluid
density or the flow resistance is small. A smaller separation of the vortex from the
porous material also increases the far-field sound pressure. The acoustical energy
radiated can be higher than that in the rigid surface case when the flow resistance is
very small, the separation distance of the vortices is large or the difference of the
vortex strengthsis large. The far-field sound pressure increases as the length or the
thickness of the porous material increases. The far-field sound pressure does not
decrease monotonically with increasing flow resistance when the length of the
porous material increases due to the substantialy large rate of change of the vortex

velocity.
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Chapter 1: Introduction and Literature Review

1.1 Thesis Objective and Background

Ventilation and air conditioning systems are indispensable nowadays, especially in
high-rise buildings within congested cities. Their principal function is to provide a
better thermal comfort condition in terms of air temperature, air speed, humidity, etc
to the occupants [Fanger, 1972; Gallo et al., 1988]. However, noise is produced
unavoidably. There are three major noise sources inside a ventilation system. The
primary noise source is the unbalanced force in the rotating part of the fan unit and is
negligible if the machinery is properly installed. Noise is also produced as an
unwanted by-product from the fluid flow as a result of instability containing regular
fluctuations or turbulence at low Mach number [Lighthill, 1952, 1954]. The noise
generated by turbulence alone is an acoustic quadrupole. In addition, the turbulence
will interact with the solid surfaces such as bends, edges and cross-sectiona area
changes inside the ductwork to radiate noise [Curle, 1955]. This noise is an acoustic
dipole. This turbulence surface interaction (dipole) is more important than that
produced within the turbulent flow (quadrupole) in the air conditioning system
where the flow Mach number is low and the flow Reynolds number is high. Noise
from the related building services equipment, such as the air handling unit and fan,
then propagates into the interior of the building through the air conveying ductworks
and affects directly the indoor built environment.

First, the treated air with low temperature will be distributed by means of the
air handling unit. Noise and turbulence are generated from the interaction between
fan blades and the air flow [Ffowcs Williams and Hawkings, 1969; Peake and

Kerschen, 1997; Quinlan and Bent, 1998; Fehse and Neise, 1999; Woodley and



Peake, 19993, 1999b]. The turbulence further interacts with duct elements to
produce noise. Nelson and Morfey [1981] measured the noise radiated from a flat
plate placed normal to alow Mach number flow in aduct, and Hourigan et al. [1990]
examined the acoustic resonance in a flow duct with baffles experimentally. Flow-
induced noise due to fluid-structure interactions is also a problem in the ventilation
ductwork [Howe, 1998]. Prediction methods for the aerodynamic noise produced in
air ducts were also studied [Waddington and Oldham, 1999; Mak and Y ang, 2000;
Oldham and Waddington, 2001; Mak, 2002]. In the existing literature, there exists a
large volume of analytical results on the flow-induced noise. Though they are not
directly related to the noise inside the ventilation ductwork [for instance, Howe,
1975, 2003; Dowling and Ffowcs Williams, 1983; Crighton et al., 1992], they do
provide useful information on the sound generation mechanisms inside the
ductwork.

In the current practice, there are two kinds of control method to alleviate the
noise nuisance to the building occupants, namely, the active [Nelson and Elliott,
1993; Hansen and Snyder, 1997; Bies and Hansen, 2003] and the passive methods
[Munjal, 1987a; Harries, 1991; Beranek and Vér, 1992; Barron, 2003]. The passive
control method can be further categorized into the reactive and dissipative types.

Active control method utilizes electronic feedforward and feedback
techniques to cancel the noise. Aninverse pressure wave is generated to attenuate an
unwanted noise by using the principle of destructive interference of waves. In order
to achieve substantial sound cancellation, the cancelling source must produce, with
great precision, an equal amplitude but inverted replica of the signal to be cancelled.
Only with the advancement of adaptive digital signal-processing theory and

hardware has it become possible to maintain these relationships automatically to the



desired precision without continuous intervention by a human operator. The
advantages of active control are small equipment size, low pressure drop (and
associated energy savings in large air handing systems) and good low frequency
performance. One can find some examples on controlling the ductwork noise in
Swinbanks [1973], Trinder and Nelson [1983] and Tang and Cheng [1998].

Reactive control method consists of a number of elements with different
transverse dimensions joined together so as to cause, at every junction, impedance
mismatch and hence reflection of a substantial part of the incident acoustical energy
back to the source. Some examples of reactive components are the side-branches
[Ingard, 1953; Redmore and Mulholland, 1982; Radavich et al., 2001; Tang and L.,
2003; Tang, 2004], the flexible panels [Huang, 1999; Huang et al., 2000,
Ramamoorthy et al., 2003] and the expansion chambers [Cummings, 1975; El-
Sharkawy and Nayfeh, 1978; Denia et al., 2001; Sadamoto and Murakami, 2002].

The side-branch muffler consists of a Helmholtz resonator [Diskey and
Selamet, 1996; Selamet et al., 1997; Chen et al., 1998; Griffin, et al., 2001; Selamet
and Lee, 2003; Tang, 2005] connected to the main pipe through which the noise is
transmitted. It reduces the noise transmission primarily by reflecting the acoustic
energy back to the source, and some energy is partly dissipated by the air friction in
the neck of the Helmholtz resonator. The effective frequency range of a side-branch
muffler is narrow but the transmission loss within this range is large. For the
expansion chamber, the maximum transmission loss is obtained when the length of
the chamber is equal to an odd multiple of a quarter wavelength of the sound while
the minimum transmission loss occurs when the length of the chamber is a multiple

of a half wavelength [Munjal, 1987b; Selamet and Radavich, 1997]. Unfortunately,



the cross-sectional area changes or cavity along the main duct causes high static
pressure loss in the flow system.

The last method is to dissipate sound energy by the air friction (viscous
effects) in the porous material lining (usually made of fibreglass or rockwool) inside
dissipative silencers [Cummings, 1976; Mechel, 1990a, 1990b; Kirby and Lawrie,
2005]. Effective range of noise control is limited to the middle to high frequencies.
Owing to its broadband performance and cost effectiveness, the dissipative silencers
are widely adopted in the ventilation systems. For high frequency noise, the
dissipative silencers are generally less expensive and have better performance over
the active control system. Thisis because high frequency noise is usually associated
with the propagation of higher order modes in addition to plane waves in a duct.
Active systems for the control of higher order mode propagation are much more
complicated than those for controlling plane waves.

There are many studies that deal with the attenuation performance of a
dissipative silencer. Cummings [1976] studied the sound attenuation performance of
acoustically lined flow ducts and of the paralel baffle type dissipative silencers
having an arbitrary number of central splitters. Cummings and Sormaz [1993] sought
an eigensoluton that satisfied the governing differential equation. However, the end
effects are not included in their study. Cummings and Chang [1988] studied the
transmission loss across a finite length dissipative flow duct silencer with interna
mean flow in the absorbent by the mode matching technique followed by
experimental validation. Peat and Rathi [1995] used the finite element method to
study the sound field in a dissipative flow duct silencer and Glav [2000] derived a
transfer matrix to study the characteristics of a dissipative silencer of arbitrary cross-

section without mean flow. A closed-form analytical solution for the transmission



loss of a dissipative silencer with a circular cross-section is derived using the low
frequency approximation by Kirby [2001]. This low frequency approximation is
suitable for designing relatively small circular dissipative silencers as a fast and
accurate tool provided that the investigation is not extended to the middle to high
frequencies. Kirby [2003] studied the transmission loss of an arbitrary cross-section
duct with porous material theoretically and experimentally. Selamet et al. [2004,
2005] studied analyticaly the sound attenuation performance of perforated
dissipative silencers with and without inlet/outlet extension by applying the pressure
and velocity matching technique.

However, the flow inside a ventilation ductwork isin general turbulent and is
of low Mach number. From the theory of Lighthill [1952] and the work of Curle
[1955], flow turbulence is expected to generate noise even in the presence of
acoustically absorptive materials. The self-noise from a dissipative silencer isalso a
typical problem of aerodynamic sound generation.

Ffowcs Williams [1972] showed that noise could be generated by the
turbulence over a sound absorbent lining, implying that the dissipative silencer is
also a source of noise. The self-noise generation over perforated duct liners was aso
studied by Tsui and Flandro [1977] and Nelson [1982]. They provided further
theoretical support to the self-noise generation. Quinn and Howe [1984]
investigated the production and absorption of acoustic energy when a sound wave
impinges on the edges of the acoustic lossless liner theoretically. Self-noise
generation from a ducted fan was also studied by Glegg et al. [1998]. However, a
detailed study on this self-noise generation is rarely found in the existing literature.

Researchers usualy deal with the interaction between turbulence and rigid

boundaries theoretically, for instance, Ffowcs Williams and Hawkings [1969],



Ffowcs Williams and Hall [1970] and Howe [1975]. There are also studies using
numerical methods to investigate the sound generation. The sound generated by a
circular cylinder at low Mach number flow was investigated by the method of direct
numerical ssmulation (DNS) [Inoue and Hatakeyama, 2002]. Casalino et al. [2003]
investigated the noise generated by an airfoil in the wake of a rod by the method of
computational fluid dynamics (CFD). Many experimental works have been carried
out as well [For instance, Nelson and Morfey, 1981; Hourigan et al., 1990; Neise et
al., 1993; Quinlan and Bent, 1998; Fehse and Neise, 1999]. The generation of edge-
tones and Aeolian tones were studied by Curle [1953] and Phillips [1956]
respectively. Bies et al. [1997] analyzed the aerodynamic noise generated by a
stationary body in a turbulent air stream and Nash et al. [1999] studied the tonal
noise generation mechanism of the flow over an aerofoil experimentaly and
compared the results with the theoretical prediction.

In the author’s opinion, the research topic on aerodynamic sound generation
is complicated as turbulence is hard to model so that many problems cannot be easily
studied by using analytical methods. However, the situation becomes much simpler
when the low Mach number turbulence is treated as discrete vortices because the
dynamics of the latter can be obtained using the potential theory [Crighton, 1972;
Dunne and Howe, 1997; Howe, 2003; Tang and Ffowcs Williams, 1998]. The
application of vortex sound theory [Powell, 1964] or matched asymptotic expansion
method [Crighton, 1972, Obermeier, 1979a, 1979b, and 1980] then enables the
estimation of the noise radiation. The far-field inner potential and the near-field outer
potential are matched in the first leading order term at large distance which is 1/r, wherer is

the radial distance from the origin. Though the vortices are a drastic smplification of a



real turbulent flow, they can still provide useful insights to the topics, at least to the
leading order of magnitude.

For the application of the vortex sound theory, the characteristics of
aerodynamic noise scattered and radiated by a semi-infinite plate were aso
conducted [Crighton, 1972; Crighton and Leppington, 1970, 1974]. Crighton [1972]
estimated the noise radiation from a line vortex around the edge of arigid half plane
by the method of matched asymptotic expansion and Obermeier [1979b, 1980] used
similar method to investigate the sound generated by the interaction of vortices with
a circular cylinder in the presence of a mean flow. Cannell and Ffowcs Williams
[1972] investigated the noise generation when a vortex pair exhausts from a two-
dimensional ductwork while Méhring [1978] derived an alternative form of sound
generation using the Green's function representation. The aerodynamic noise
generation from a vortex ring in the presence a sharp wedge was studied by Chang
and Chen [1994]. The vortex interaction with a wall barrier, circular cylinder, wall
mounted cylinder and thin-wall aperture and this sound radiation were discussed
using the Lighthill acoustic analogy in Abou-Hussein et al. [2002]. Tang and
Ffowcs Williams [1998] studied the noise radiation when an inviscid vortex
approaches a circular cylinder with surface suction. The noise production by an
inviscid vortex-nozzle interaction was investigated together with the use of the
Lighthill acoustic analogy and the vortex-blob method by Hulshoff et al. [2001].
The recent study of Tang [2001] investigated the dynamics of an inviscid vortex
upon the influence of the porous material and suggested that the change in the vortex
speed gives rise to fluctuating force acting on the porous material and enhances self-

noise radiation.



There are also studies investigating vortex-surface noise experimentally.
Bearman [1967] measured the velocity of the vortices and the longitudinal spacing
between vortices in the wake with splitter plates and base bleed. Kambe et al.
[1985] studied the sound from a vortex ring passing near the edge of a haf-plane
while Minota and Kambe [1987] studied the sound generation when a vortex ring
interacts with a circular cylinder. Minota et al. [1988] aso investigated the sound
radiation from the interaction of avortex ring passing near a wedge-like plate.

As discussed earlier, the use of porous material in a dissipative silencer is
widely adopted. However, the self-noise generation under the influence of the
porous material cannot be neglected as it lowers the overal performance of the
silencer and if it is within the worst frequency range of the silencer, noise
amplification within some frequency bands may be possible. Despite this problem,
the conventional dissipative silencer is used extensively because of cost-
effectiveness, broadband performance and stability. Therefore, it is worthable to
study the mechanisms of self-noise generation in the dissipative silencer. In
addition, a detailed study of the self-noise generation of the porous material is rarely
found in the existing literature.

In the present study, two-dimensional self-noise generation upon the
influence of the porous material in the low Mach number and high Reynolds number
flow condition is investigated. The investigation is based on theoretical modelling.
The turbulence is simplified as discrete vortices, and the vortex-surface interaction is
investigated. In the present study, the theoretical model derived by Tang [2001] is
adopted. It excludes the effects of mean flow. The presence of a mean flow will
probably create a stronger sound field. In order to simplify the present theoretical

study, the mean flow effect is again ignored. The present study shows how the



porous material affects the dynamics of the vortex motion and the possibility of
noise amplification. It ishoped that the present study can enhance the understanding
of the self-noise generation due to porous materials and reveal the basic mechanisms

of self-noise generation in a dissipative silencer.

1.2 Theory of Aerodynamic Sound

The present study is focused on the aerodynamic sound generation, and an
introduction to its theory will be outlined in this section. The sound generated by
turbulence in an unbounded medium is called aerodynamic sound and is a very small
component of the whole fluid motion. Lighthill [1952] transformed the Navier-
Stokes and continuity equations into an exact inhomogeneous wave equation whose

source terms are important only within the turbulent region. Lighthill’s equation

states that
1 52 2 2 82Tij

__V - = , 11
[Cg e j[co(p po)] oxox, (1.1)

where Tjj, t, po, p — Po, Co aNd V? are the Lighthill stress tensor, time, mean fluid
density, perturbation density, sound speed and Laplacian operator respectively. x =
(X1, X2, X3) isthe position, i and j are the sufficesover 1, 2 and 3. The Lighthill stress

tensor is represented by

Tij = pViv, +[(p_ po)_cg(p_po)]éij — 0O (1.2)



where p, and p — p, are the mean and perturbation pressure, J; is the Kronecker delta
(=1fori=j,andOfori=]j), gjisthe viscous stress tensor and pvyv; is the Reynolds
stress. The terms in the Lighthill stress tensor account for the generation of sound,
govern the acoustic self-modulation caused by acoustic nonlinearity, the convection
of sound waves by the turbulent velocity, refraction caused by sound speed
variations, and attenuation due to thermal and viscous actions. When the mean fluid
density and sound speed are uniform, pviv; and p — po can be approximated as po\iV;

and c(p — p, ) respectively. The Lighthill stress tensor in Equation (1.2) reduces to

Tij = poViV; When the viscous stresses are neglected.

To calculate the sound generated by turbulence in an unbounded medium, we
need to solve Equation (1.1) for the radiation into a stationary, ideal fluid produced
by a distribution of quadrupole sources whose strength per unit volume is the

Lighthill stress tensor Tj. The solution of Equation (1.1) with outgoing wave

behaviour is
XX 92 X-y
px,t) = 4ﬂc2|1x|3at_2 T, [y,t—|c—|]d3y, (1.3)

where y lies within the source region and [x| >> |y|. However, turbulence is
frequently generated in the boundary layers and the wakes of flow past solid
boundaries. The unsteady surface forces on these boundaries have significant
contribution to the production of sound. It is necessary to generalize the solution of
Equation (1.3) to account for the presence of solid boundaries in the flow. Curle
[1955] extended the theory of Lighthill [1952] to include the influence of solid

boundaries:
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where Sis the solid boundary, V is the occupied volume and pi'j = (p - po)dij — G-

The first term on right hand side of Equation (1.4) represents the quadrupole source
term distributed over V, while the second and the third terms represent the dipole and
monopole source distributed over S The dipole describes the production of sound
by the unsteady surface force that the body exerts on the exterior fluid, whereas the
monopole is the sound produced by volume pulsations of the boundary.

In the present study, the turbulence is treated as discrete vortices, and the
component div(p.@ A V) of the Lighthill quadrupole is the principal source of sound
at low Mach number (@ is the vorticity). Lighthill’s equation [Equation (1.1)] can

be recast into a form to emphasize the prominent role of vorticity in the production

of sound by taking total enthalpy sz%+%v2 as the independent acoustic
Y2

variable [Howe, 2003]. The production of sound is governed by the vortex sound

equation

10° _, :
?at—z—v B:d|V(ZU/\V). (15)
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If the mean flow is at rest in the far-field, the acoustic pressure is given by the

linearized approximation

p(x,t)~ p,B(x,t). (1.6)

In an irrotational flow, Crocco’ s equation states that % =-VB. Therefore

B(x,t)=— a¢gt(’t) , (1.7)

in region where @ = 0 and ¢#(X, t) is the velocity potentia that determines the whole
motion in the irrotational regions of the fluid. From Equations (1.6) and (1.7), the

far-field acoustic pressure is

og(x.t) (18)

1.3 Properties of Porous Material

In the present study, the vortex sound generation under the influence of the porous
materia is investigated. The characteristics of the porous materia have crucial
effects on the sound production. There are three approaches to characterize the
properties of a porous material: (i) the phenomenological formulae of Morse and
Ingard [1968], (ii) empirical curve fitting methods such as that of Delany and Bazley
[1970], and (iii) rigid-frame models for more complicated pore microstructures such

as parallel tubes or fibres by Attenborough [1982]. The first approach is adopted in

12



the present investigation since the ineffective range for design purposes in silencers
is towards the lower frequency region, and the model of Morse and Ingard [1968],
based on a real, quasi-steady, effective flow resistivity of the porous materia is
adequate at lower frequency.

Basically, there are two types of porous materials. The first one is called
locally reacting and the other one is called non-locally reacting [Ingard, 1994]. The
former states that the surface impedance of a locally reacting boundary is
independent of the angle of an oblique incident wave and the latter states that the
fluid velocity within the porous material no longer is forced to be perpendicular to
the boundary axis. We will focus on the locally reacting one as the porous material
in a dissipative silencer usualy consists of fibreglass or rockwool which is locally
reacting, and the porous material is densely packed.

The flow inside the porous material is governed by the effective fluid density
pe and the flow resistance R; [Morse and Ingard, 1968]. The former describes the
inertial properties of the fluid in the pores of the porous material, and the latter the
frictional retardation to flow through the pores. For the flow resistance, R is adopted

by Morse and Ingard [1968] for the description of the viscous effect inside the porous

material. The flow inside the porous material is very slow and thus the Reynolds number
will not be so meaningful in this case. For areal porous material, pe is between 1.5 and
5. However, p. can be large when the porous material is replaced by a heavy liquid.
In the study of the transmission loss across dissipative silencers, the data in
Cummings and Sormaz [1993], Peat and Rathi [1995] and Kirby [2001] give pe = 3.
Unless the fluid is perfectly inviscid, one should note that owing to the very tiny
fluid passages inside the porous material, the effect of viscosity on the fluid motion

inside this material cannot be neglected though the external flow outside it can be
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satisfactorily represented by the inviscid model [Tang, 2001]. Also, the introduction
of the porous material results in finite impedance, which may lower the ability of
this boundary to support fluid pressure and produce a pressure-releasing effect. The

flow equation within the porous material is, according to Morse and Ingard [1968],
ou,
peﬁ+ Riu, +Vp, =0, (1.9

where V is the differential operator, and u, and p, are the fluid velocity and fluid
pressure inside the porous material respectively. Porosity is included implicitly in
both p. and R.. One can notice from the flow equation depicted in Morse and Ingard
[1968] as well as in Tang [2001] that pe and Rs produce pressure-releasing and
pressure-supporting effects respectively. In addition, a streamfunction y, exists for

the flow inside the porous material such that [Bear, 1972]:

Vi =0. (1.10)

p

1.4 Thesis Structure

To investigate the self-noise generation mechanisms, the behaviour of two vortices
in the proximity of a rigid circular cylinder is investigated in Chapter 2 first. It
provides an understanding on how the vortices interacting with a solid body as a
reference study for further investigation into the influence of the porous material.
Then, Chapter 3 describes the sound generation when the vortices interact with a
porous half cylinder mounted on an otherwise rigid plane, and the configuration in

this chapter is similar to the situation near the wall boundaries of a dissipative
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silencer. The vortex sound in the presence of a porous wedge is studied in Chapter
4. |t is the case at some flow junctions in ductwork which involve edges or are
wedge-like. Chapter 5 analyzes the noise generated when the vortex is under the
influence of afinite length porous material on an otherwise rigid plane, and this flow
configuration is similar to the situation when the vortex is located near the boundary
of alined duct. Chapter 6 extends the study of Chapter 5 to analyze the self-noise by
a vortex in a lined duct and is the last chapter for theoretical study of self-noise

generation.
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Chapter 2: Sound Generated by a Pair of Vortices
in the Proximity of a Rigid Circular
Cylinder

2.1 Introduction

There is a genera belief that turbulence is made up of vertical eddies or vortices.
These vortices will interact with themselves as well as with any solid body
embedded in the flow. In this chapter, the far-field sound radiation resulted from the
motions of a pair of vortices engaging a rigid circular cylinder without the presence
of amean flow isinvestigated. The effects of vortex circulations, initial position and
separation distance are discussed. In addition, it is valuable to study the influence of
a rigid boundary [Howe, 2003] and the wavelength of coherent structures [Becker
and Massaro, 1968] on the aerodynamic sound generation as a reference for further

investigation into the influence of the porous material.

2.2 Theoretical Model

The formula of Curle [1955] suggests that the sound generated by the interaction
between vortices and a submerged solid body can be estimated once the fluctuating
forces acting on the latter are known. The potential theory enables the estimation of
the flight paths of the vortices and thus these forces. The analysis commences by

estimating the vortex paths.

Figure 2.1 shows the schematics of the present numerical investigation. Two
rectilinear vortices are situated at z; = (xq, Y1) with vortex strength I'; and z, = (X2, Y2)

with vortex strength I'; in the proximity of a rigid circular cylinder centred at the
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origin in the absence of amean flow. The vorticity centroid of the two vortices z; is
defined as (I'zy + 1'22)/T°, where I = I'; + I'z is the total vortex strength. In the
foregoing analysis, the vortex circulations are normalized by I'. All length and time
scales are normalized by a and a¥T" respectively where a is the radius of the
cylinder. From the potentia theory, the normalized equation of the complex

potential is
2| il ir ir
we3]-Dts) Bl ) B

where Z, denotes the complex conjugate of z and i = J-1.

The velocity of the jth vortex (u; and V) can be obtained from the derivative
of W with respect to z at the position z after subtracting the “self-potential”,

~irIn(z-2z) /27,

, (2.2)

. .4 o d ir.
u, —iv, :(rj —|rj6’j)e =E(W+2—7’zln(z—zj)j

Z:Zj

where (rj, ) is the polar coordinates of the jth vortex and - denotes differentiation
with respect to time.

The radial and angular velocities of the jth vortex (r; and 6?]) can be

analytically determined:
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(2.3)

wherej = k= 1, 2. Thus, the paths of the vortices can be obtained by the standard

fourth order Runge-Kutta Method. The velocity of the vorticity centroid (U, and V)

) I . I .
Uy, — IV, = __Fl(uzl - IVzl) +?2(u22 - IVZZ):l
(2.4)

1|1irz iR L iLz, T ihz i 1 ir’z,

Z_r|zl|2_1 zz T'zz, -1 T zz-1 z F|22|2_1

The flight paths of the vortices can be explicitly determined when the
separation distance between the vortices is small. This happens when the vortices
are either really close to each other or are reasonably far away from the cylinder
surface. Thisis the case where a solid body interacts with an initial shear layer on

the low speed side [Ko and Tang, 1990]. Under this circumstance and let

z, =z —¢, where |¢ > 0, Equation (2.4) becomes
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Assuming the two vortices can be viewed as a single vortex of strength I" located at
the centroid z, this single vortex will then perform a circular motion round the

cylinder with avelocity given by

: 1] ir irz }
Uyp =iV =——| ——+——
2r| z, zz.-1
. o . o , 25 (2
1| ir Tz i, iL(E+Z%) ir7 , i}zl (2.6)
2l Tz T 25 L 28 e Y '
2 R (o af TR )

=200 = 5 \2
+|er2(21‘9+21‘9) +O(|€|3).

rlzf -1f

One can observe immediately that Equations (2.5) and (2.6) are equivalent up to

O(|g|2) . The velocity of jth vortex relative to the centroid is then

. . . =2
. : 1| i  iLe LZe
Uy =iV — (U, =1V, ) =——| ——+ -

7 QZ]_‘2_1)2+0(|g|). (2.7)

For small |¢], the only important velocity components are —iI", /27e and il /27,

which are the velocities of the isolated rectilinear vortices. The motion therefore
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consists of a large circular movement of the centroid around the cylinder together
with more rapid circular movements of the vortices about the centroid. It will be
demonstrated later that the above approximated paths can predict reasonably well the
forces and sound generated by closely packed vortices. When a single vortex moves
around the rigid circular cylinder, the vortex will move in circular motion. Equation (2.6)
describes the circular motion of a single vortex about arigid circular cylinder, and Equation
(2.5) describes the motion of the vorticity centroid of the two vortices about the rigid
circular cylinder which is equivaent up to O(J¢?)), so one can conclude that two vorticity
centroid of the two vortices describes circular motion when ¢is small.

The force per unit length, F, acting on the cylinder is obtained by calculating
the force needed to keep the image vortices moving along the assumed paths as in

Tang and Ffowcs Williams [1998]:
F=>(ui+v,j)xTk, (2.8)

under the conservation of vortex impulse, wherei, j and k are the unit vectors in the

longitudinal, transverse and spanwise directions respectively. In the present

situation, the position of the image vortex with strength —T; is e’ /rj , and its
velocity is (=f; + rj¢9'j)ei9j /rf . The force acting on unit length of the cylinder, F, in

the present study is normalized by p.l?/aand F = F,j + Fyj where

2 .
F = —Zr{r{u%}jnej +1,6, coso, [1—%]]
= f fi

2 .
F, = Zl‘i {r‘i [1+ r%]cosej —r,0,sino, [1—%}} : (29

J J
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where subscripts x and y denote the longitudinal and transverse directions
respectively.

The far-field sound radiation by the influence of solid boundaries can be
estimated from Equation (1.4). In the present and subsequent chapters, the
guadrupole source term in Equation (1.4) isignored as the contribution from it is not
important in the low Mach number and high Reynolds number flows in the presence
of solid surfaces. The contribution from the monopole source term is equa to zero
in the case of arigid circular cylinder. In the two-dimensional sense, the surface
integral becomes a line integral in the spanwise direction, and this line integral can
be transformed into a time integral as in Ffowcs Williams and Hawkings [1968].
The time integral can then be solved numericaly [Tang and Ko, 1997]. The
acoustical contribution from each element of a line source arrives at the far-field location at
different time. Integration over the length of the line source is equivalent to integration over

time [Ffowcs Williams, 1968]. The far-field acoustic pressureiis:

dr

Jt,—t-R/c, |

L [ 2 (F, coso+ F, sno)

— 2.10
27\2Rc, |7+ or (210

p=-—

where R, ¢, and t, are the far-field distance, speed of sound in the undisturbed
medium and far-field observer time respectively. The far-field sound pressure is

normalized by po[?/a’.
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2.3 Vortex Paths, Forces and Sound

The present study is focused on the fluctuating force created and the sound radiated
from the unsteady motions of two vortices in the proximity of a rigid circular
cylinder. Owing to the symmetry of the vortices about the x and y axes in the present
investigation [Figure 2.1], the initial positions of the vortices are chosen to be on the
x-axis. Since there is only phase difference between the drag and the lift forces
created on the cylinder, only results related to the drag force, F, and the drag dipole

strength in the x-direction, Py, will be presented. The drag dipole Py is defined as

—~—F - (2.11)

Figure 2.2 shows the paths of the vortices located at z; = (2.1, 0) and z; =
(1.9, 0) withT'; =T, = 0.5. Thus, £ = 0.2. As suggested by Equations (2.5) to
(2.7), one can observe from Figure 2.2 that the vortices are in circular movement
relative to the vorticity centroid and so is the vorticity centroid relative to the centre

of the circular cylinder. The period of the vorticity centroid of the vortices around
the cylinder is approximately equal to47z2rf(rf—1)/ ", which is the period of the
circular motion of a single vortex with strength I" located at a distance r. from the
cylinder centre [Howe, 2003]. Those of the vortices about the vorticity centroid are
roughly 472¢?/T", which is consistent with the prediction by Equation (2.7). It can
aso be shown that r” +r. isfairly time-invariant.

The resultant force acting on the cylinder consists of components resulted
from the interaction between mean vortex motion (z;) and the cylinder, and the

mutual induction between the vortices. The former, Fy, results in a low frequency

22



fluctuation, while the latter, F«y,, produces a high frequency component [Figure
2.3(a)]. Small magnitude high frequency fluctuations are found in the low frequency
force, which are the results of the small effects from the mutually induced vortex
motions. The magnitude of the low frequency force compares well with the single
vortex prediction, which is I'?/2r® [Howe, 2003]. While the period of Fy. equals
that for the vorticity centroid to cover one revolution around the cylinder centre, that
of Fxm is half that of the mutually induced nominal vortex circular motion, and the
corresponding lift forces are just 180° out-of-phase with those presented.

Obvioudly, both the drag and lift dipole strength time fluctuations are
composed of low frequency and high frequency components as in the case of the
forces [Figure 2.3(b)]. The amplitude of the Py, compared well with that resulted

from a single vortex with circulation I" rotating around a circular cylinder, which is

1"2'5/ (4\/§7zrc41/rc2 —1) [Howe, 2003]. The characteristics of the time fluctuations of

these dipole strengths resemble very much that of the forces. However, the
magnitude of the high frequency component in the dipole strength is much higher
than that of the low frequency one, suggesting that the mutually induced vortex
motions are more dominant in the sound radiation process. One should note that the
high frequency component in a sound is more significant than the low frequency one
as it contributes much more to the overall sound power radiation.

When the vortices are located closer to the cylinder surface with ¢ fixed, the
motions of the vortices relative to z. are no longer circular due to the effect of the
rigid cylinder. Figure 2.4(a) is an example of the vortex motion with z; = (—1.3,0)
and z; = (-1.1,0). Under this condition, the vorticity centroid is still describing a
circular motion around the cylinder. The motions of the vortices relative to it look

similar to those in the vortex leapfrogging [Tang and Ko, 2000]. The orbits of the

23



vortices relative to the centroid are oval-like [Figure 2.4(b)]. However, one can
observe that the principal axes of these oval orbits are rotating clockwisely. These
unsteady motions appear to be very important in affecting the forces on the cylinder
and the dipole strengths [Figures 2.5(a) and 2.5(b)]. The effects of increasing ¢ at a
fixed initia vorticity centroid location to the vortex motions are very similar to those
shown in Figure 2.4, but one can observe from Figures 2.6(a) and 2.6(b) that the
increasing cylinder effect relative to the mutual induction strength between vortices
can result in a wrangling vorticity centroid flight path while the oval-like vortex
orbits relative to this centroid remain. Certainly, one can expect that there will be a
drop in the force and dipole strength magnitudes upon the increase of . At large ¢,
the frequencies of the fluctuations in Fy. and Fx, (and thus Py and Pyy) are very
Similar.

The combined effects of variations in z. and & on the drag forces are
summarized in Figure 2.7. One can note that Fy., which is more related to vorticity
centroid motion, reduces in magnitude as z. increases at a fixed ¢. The magnitude of
Fxc increases as ¢ increases a a fixed z.. Fym, Which is primarily related to the
relative motions of the vortices about z;, deviates considerably from the prediction
using the approximated vortex paths [Equations (2.5) — (2.7)] when ¢ is large
compared with z.. The under-estimation of the magnitude of F,, increases with ¢.
One can aso find that the magnitude of Fy. is aways higher than that of the
corresponding Fym.

While the variations of the magnitude of P,. with z. and & resemble very
much those of Fy, those of P,y show complicated dependence on ¢ [Figure 2.8].
The approximated vortex paths under-estimate the magnitude of Py, at large &, but

give over-estimations at small . At small ¢, one can observe that the magnitude of
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Pxm decreases approximately linearly with &, but this amplitude reaches a minimum

at acritical ¢for afixed z.. For &> 1, the presence of the rigid circular cylinder affects
the motion of the vortices. A substantial rate of change of vortex velocity is observed such
that the dipole strength increases. Results shown in Figures 2.7 and 2.8 suggest that a
substantial reduction of sound power is possible without a significant change in the
drag/lift force by carefully adjusting the vortex spacing (wavelength of coherent

structures in a shear layer).

When one of the vortices is considerably stronger than the other, the forces
created on the cylinder and sound generated are different from those discussed
above. Figures 2.9(a) and 2.9(b) illustrate the vortex paths when I'; = 0.1, I', = 0.9,
zi = (-2.1,0), i = (-1.9,0). The path of the stronger vortex is approximately
circular around the cylinder with a very small fluctuating amplitude of around 0.02
[Figure 2.9(b)]. The circular motion of the weaker vortex about the vorticity
centroid is also observed. The stronger vortex dominates the fluid mechanics and
also the aeroacoustics. Low frequency and high frequency components are again
observed in the drag force and dipole strength time fluctuations as in the
corresponding I'; = ', = 0.5 case [Figure 2.3]. However, the circular motion of the
weaker vortex here results in an amplitude modulation pattern in the high frequency
fluctuations [Figure 2.10].

The combined effects of z. and & for I'; # ', on Fyy are illustrated in Figure
2.11(a). It can be observed that for vortices of comparable strengths, the results are
similar to those shown before in Figure 2.7. When one of the vortices is
considerably stronger than the other, the magnitude of Fyy, is not really sensitive to

the change in ¢ unless the latter is really large. The prediction from the
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approximated vortex paths [Equations (2.5) — (2.7)] appears satisfactory for
relatively large ¢ of even up to more than 1. Similar observations can be found for

Fxc. Again, the maximum |F,| remains larger than that of |Fyy| for small z.

Figure 2.11(b) shows the effects of z. and € on Pyy, for 'y # ', Similar to
Figure 2.8, the magnitude of Py, decreases linearly with ¢ at a fixed z; when ¢ is
small. The prediction from the approximated vortex paths works well at T'; = 0.99,
I'; =0.01, z; = (-1.8,0). These observations, together with those shown previously
in Figures 2.7 and 2.8, tend to suggest that, apart from the fact that the forces and
aeroacoustics generation can again be modified by the separation of vortices,
breaking vortical flow structures will increase the forces acting on a submerged
object and the sound power radiated if the total circulation and the coherence of the

broken up structures inside the near flow field are not reduced.

2.4 Summary

The fluctuating force and far-field sound generated by the motions of two vorticesin
the proximity of arigid circular cylinder using the potentia theory and the acoustic
analogy have been investigated. Effects of circulation ratio, initial vortex position
and separation distance on the force and sound generated are examined in detail.
Results obtained in the present study demonstrate how the separation
between vortical structures in a flow, that is, the wavelength of coherent structures,
has affected the flow induced force on submerged bodies and the eventual
aeroacoustics. They also suggest that breaking up large scale flow structures into
smaller ones enhances the fluid force on submerged bodies and increases the

acoustic radiation if the total circulation within the flow and the coherence of the
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broken up flow structures are not reduced. The results also act as a reference to
those in later chapters where the effects of the porous material on the vortex sound

are studied.
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Chapter 3: Sound Generated by Vortices in the
presence of a Porous Half Cylinder
Mounted on a Rigid Plane

3.1 Introduction

An introduction on vortex sound radiation due to the interaction of two vortices with
a rigid circular cylinder has been given in Chapter 2. The force acting on the
cylinder is also discussed. In this chapter, the investigation proceeds to study the
influence of the porous material. The unsteady motions of two vortices in the
proximity of a porous half cylinder on an otherwise rigid horizontal plane are
investigated, and the present configuration is similar to the situation near to the
boundary of a dissipative silencer. The effects of vortex circulations, initial vortex
height and separation distance are discussed. In addition, the effects of effective
fluid density and flow resistance of the porous material are also studied. Since the
normal velocity at the boundaries of the porous material does not vanish, the
calculation becomes complicated. In this chapter, the complex potential and the
velocity of the inviscid vortex are evaluated through the use of conformal mapping
asin Tang [2001], while the far-field potential is derived with the use of the matched
asymptotic expansion method as in Crighton [1972] and Obermeier [1979a, 1980].

The far-field acoustic pressure is evaluated using Equation (1.8).

3.2 Theoretical Development

Two rectilinear vortices with circulations I'; and I'; initialy located at the complex
locations z;; and zy respectively interact with a half cylinder composed of a porous

material as shown in Figure 3.1. The present configuration is intended to represent
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one flow boundary inside a dissipative silencer. The horizontal separation between
the vortices is denoted by ¢. The properties of the porous material are characterized
by the effective fluid density, pe, and the flow resistance, Ry, inside its lattice [Morse
and Ingard, 1968] as mentioned in Chapter 1.

With the help of the conformal mapping [Churchill and Brown, 1990], the
original z-plane (z = x + iy) is transformed into the w-plane (w = £ + i¢) as shown in

Figure 3.2, and the mapping function is

2= f(w)z-:+—\‘:vv:>w= fl(z):i§—+1. (3.1)

It has been shown by Tang [2001] that the surface flow impedance is unaltered upon
any conformal transformation. In the present study, all the length scales are
normalized by the cylinder radius a, and the strengths of the vortices are normalized
by the total vortex strength T' (= I'y + I'»). Here, timeis normalized by a’/T". Vi, and
R: are normalized by I'/a and poI'/a® respectively. The streamfunction, Y, and the
velocity, V,;, of the jth vortex in the w-plane can then be obtained by matching the

fluid pressure and norma fluid velocity along the impedance boundary [Tang,

2001]:
r- 0 1 _kle Kl e_‘k‘g 'k( __)
=1 _eHCJ+ _e‘ < e S&J?dk 32
Vi 47r-[°C|k|( g ) g, (32)
where
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(k)= R, +ikV,, (1+7)
9, C-R, +ikV, (1-7)’

(3.3)
and 7 isthe ratio of effective fluid density to the fluid density in the medium (o 00)
such that 7 is aways greater than 1. Equation (3.2) is derived from matching the flow
potential in the fluid region in a channel bounded by the porous region. Details of the

derivation of Equations (3.2) and (3.3) can be found in Tang [2001]. The

corresponding vortex velocity in the w-plane, Vi, is evaluated by differentiating

Equation (3.2) with respect to ¢:
| AL [T

v, =L [ 28— ek (3.4)
A= g,

Itis parallel to the &~axis and is a sole function of .

The overall stream function, y, in the presence of other vorticesis therefore

_S i = 1 (ke K¢ e ik(¢-¢)
z//w_z4ﬂf_w|k|(e +0g,€ )g e dk (3.5

=1 j

and the velocity of the jth vortex, u,; and vy, in the w-plane are

4 dy & oy
u, =V, + Y W Ny == D ek : (3.6)
! " kéj 64’ $=5j:6=¢] K k;j 65 §=¢j,¢=¢]

30



A|SO, I's=-I'1, Uy = Uw1, Vuz = Vi1 and T4=-I"2, Uya = Unp, Via = —Virp. The paths
of the vortices in z-plane are calculated by integrating Equation (3.6) numerically
using the standard fourth order Runge-Kutta method together with the Routh’s

correction [Routh, 1881]:

Uy —1Vy = f.%w){um vy, +4I_7szT(WW))} 3.7)

where ' represents differentiation with respect to w. Routh’s correction details the

motion of a particle transformed from an original z-plane to a w-plane and the correlation
between the particle motions in these planes.

With the Cauchy-Rieman principle, the flow potential in w-planeis

_ké’

J':F_kj(ekgl "9 e )eg.

J

sin(k(g, - £)dk+C (3.8)

where C is the integration constant that can be evaluated by observing that the flow
potential vanishes as | — . For the Cauchy-Rieman principle, it states that For a
flow is irrotational, the streamlines and potentia lines are everywhere mutually
perpendicular except at a stagnation point. The incompressible flow potential in the z-
plane, ¢, can then be found by substituting w by f(2) [Equation (3.1)] in Equation
(3.8). Thefar-field potential, ¢, can then be obtained using the matched asymptotic
expansion method [Crighton, 1972; Obermeier, 1979a, 1980], and the far-field sound

pressure is evaluated through the use of Equation (1.8).
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3.2.1 Acoustically Hard Surface
When the effective fluid density or the flow resistance is so large that the fluid can
hardly enter the wall mounted half cylinder, g - —1 [Equation (3.3)]. The flow

potential in Equation (3.8) becomes

1 ol

ZEL ?'( ) e (ke -k +C, (3.9)

and by observing the flow potential vanishesas |7 — o (£ — 0and ¢ — 1), the

constant C [Gradshteyn and Ryzhik, 1980] is

r

B T DU
C—Jz; 7[( e tan 1—41-]' (3.10)

By substituting w= f *(z) into Equation (3.9), the flow potential in the z-plane is

thus

_ ZZF {m(l_zzéj]_|n(1_izij}, (3.11)

which is the flow potential of two vortices interacting with a rigid half cylinder

mounted on arigid plane [Howe, 2003]. The far-field inner potential produced by

the two vorticesis, for large|2,
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b, ~ —i%[ri —%Jsin(ﬁj)cose. (312

=1 j

The far-field so produced in the frequency domain is the solution of the

4 _
Helmholthz equation V?¢ + k’¢ = 0, which is ¢:ZAjH(§1j’(kr)e"”’9 , where HY is

j=1
the Hankel function of the first kind of order o; and k is the wavenumber. The
matched asymptotic expansion method [Obermeier, 1979b] suggests that for low

frequency sound radiation, o; = 1 and

Aj =———||r -—— sm(Hj) , (3.13)
2c r

where k = w/c,, ¢, is the ambient speed of sound and | ]' represents the Fourier

transform with respect to time. The far-field inner potential at z > o must match the far-
field outer potential at z = 0, and o must set equal to one to match the condition. At a
large distance R, one obtains with the property of the Hankel function [Abramowitz

and Stegun, 1972] that for positive w,

t
2 w 1 . 2Co i(wR/c,—3r,
R (R i 629

J

The far-field outer potential ¢, can be obtained by using the inverse Fourier

transform :
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Tt

t
2 o @l . _
b= &l(”‘l}g”@)} e (315)

It is straight-forward to observe that the integrand in Equation (3.15) comes from a

convolution and the far-field pressure [Equation (1.8)] is, with the help of

Gradshteyn and Ryzhik [1980]:
1 1 2 a tO_R/C a 1 . rdZ'
== — —||r, —=1{sin(@,) | ———=——=—=c0s0, 3.16
P ZCORjZ;‘@tJ.—w 61{(’ rJJ ( l)} t,—7—R/c, (319

where the far-field sound pressure p is normalized by p,I'%/a®. The far-field sound
pressure is a longitudina dipole (Py). Equation (3.16) is exactly the same as that
depicted in Abou-Hussein et a. [2002] and agrees with the deduction of Curle

[1955].

3.2.2 Perfectly Inviscid Fluid

When the flow resistance R; inside the lattice of the half cylinder vanishes, it can be

shown using Gradshteyn and Ryzhik [1980] that g; = T—n from Equation (3.3) and
-n

4 T. _ .
C= _Z_J itan-l °) than‘lc“’g—J since n # 1. From Equation (3.8), the
AN 1+¢) 1-¢;

flow potentia in z-plane becomes

g b)) e
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The far-field inner potential produced by the vortices in a perfectly inviscid

fluid is, for large |7,

@, z—ii[ j +gir]sin(¢9j)cos€ (3.18)

it

Thus, the far-field sound pressureis

1
p=—
T

2 _Rlc r.d
1 ng Reo 6 g bt sin(9;) T cos. (3.19)
2c,Ri= ot or g;r; /to —r—R/co

Equation (3.19) shows that the pressure generated in a perfectly inviscid fluid is

again alongitudinal dipole and it converges to Equation (3.16) for large 7 (g —» —1).

3.2.3 Combined Effects of 7 and Rs
With a finite flow resistance R, the effects from the porous material become

complicated. The flow potential in the w-planeis

4 T o o ke M g o
P S IRV U . L )Y
22 T S A RS (3.20)
_k(g*'CJ) _ ’ '
e
|VW].|(1+77) 0 B +k

where
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C= é%{— RelIn(L+iw, )|+ RelIn(L+iw, )]

_1i|m[— Gi( B ;) cOS(B, ;) — S (B, ;) Sin( B )]
+1

_%Re[ci(ﬁjy,-)sin(ﬂjuj)—Si(ﬁjﬂ,-)cos(ﬁjﬂj)]}
+17

W, = conjugate of wj, x, =(1+¢;)—-ié; and B, = R; /[’\/M‘(lwy)] ,and s and ci are
the sine and cosine integrals respectively. The velocity of each vortex has to be

estimated by iteration asin Tang [2001]. The corresponding flow potentia ¢,is

RioRe)

irl {[CI(ﬂJD])COS(IBIDJ) S(ﬂJDJ)Sn(ﬂJDJ)]}

g, => L PR (3.21)
Sor| 1en |- [-ci(B ) cos(B ) — S (B ) SIN(B )]
+LR [Cl(/gjDj)sm(ﬂij)_s(,Bij)Cos(ﬂj J)]}
Len LB SinGB )~ S (B ) cos(py )]
where D, = (¢ +¢;) —i(&; — &) . Theflow potential ¢, at large|Zbecomes
¢, ~ 24:2%[[ . —%Jsm(e 6?) f, cos - f,, siné |, (3.22)

253,
j =%Re[exp(i7,ﬂj )G(0,iy,B;)+exp(-iy, B, )G(O,—i}/jﬂj)],
483
i :%Im[d(yiﬂi)cos(ﬁﬁj)+Si(7’jﬁj)9”(7,ﬂj)],
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i0;
re’ +1 . . . .
4 =1+r‘_eig—l_1 , and G(0,y) is the incomplete gamma function [Abramowitz and

j
Stegun, 1972]. The far-field outer potential, ¢., can be obtained in the same way as
in the two previous cases. Equation (3.22) indicates that a transverse dipole (Py) of
magnitude fy exists when the flow resistance is finite. A longitudinal dipole (Py) of
magnitude f;; adds to the half cylinder dipole.

One should note that R in the present chapter is normalized by pol'/a’
Therefore, this parameter can vary over a very wide range. For weak vortex
strength, R can be very large and it decreases as the vortex strength increases. It
vanishes in the case of a perfectly inviscid fluid. In the foregoing analysis, R; ranges
from O to 100. One can notice from later discussions that the acoustic radiation with
R: = 100 are already close to those of therigid half cylinder.

In the foregoing discussions, the far-field sound pressure is evaluated at a
radial distance R of 100. The acoustical energy (E) radiated by the unsteady vortex

motionsis equal to

E=[ ["(P?+P? et (3.23)

3.3 Single Vortex

For asingle vortex trandating past a rigid wall mounted half cylinder, Abou-Hussein
et al. [2002] studied the effects of mean flow on its path and the sound generation.
The magnitude of sound pressure increases as y; decreases. Active sound

generation is observed during the period when the vortex undergoes a substantial
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large rate of change of velocity when it is close to the rigid half cylinder. A single
vortex moving over arigid flat plane generates no sound.

For a perfectly inviscid fluid, the flow resistance vanishes (R = 0). Figure
3.3(a) shows the corresponding effect of 7 on the vortex path with x;; = —10 and y3; =
0.5. The path of a vortex engaging arigid wall mounted half cylinder is also shown
for comparison. The theory in the previous section (Section 3.2.2) indicates that the
vortex path converges to that under rigid wall condition at very large . The vortex
path bends towards the porous half cylinder surface because of the pressure-releasing
effect. The smaler the value of 7, the greater the degree of bending towards the
porous half cylinder surface. It will be shown later in Chapter 4 that such situation
also appears when a vortex moves in the vicinity of a wedge with inhomogeneous
surface flow impedance. The vortex resumes its original height as it gradually goes
away from the porous half cylinder (at x > 2). Figures 3.3(b) to 3.3(¢) show the
corresponding time variation of the vortex velocities and accelerations. The time t,
denotes the time at which the vortex passes across the y-axis (x = 0). The magnitude
of the vortex longitudinal velocity u, increases as 7 decreases while the magnitude
of the vortex transverse velocity v is fairly constant for a perfectly inviscid fluid.
One can aso notice that the magnitudes of the vortex accelerations increase with
decreasing 7. When y;; increases, less severe vortex path bending can be observed at
afixed 7.

Equations (3.16) and (3.19) suggest that the far-field sound pressure is a
longitudinal dipole (Py) for the case of arigid half cylinder (g; — —1) or a perfectly
inviscid fluid (gj = (1 + 7)/(1 — 7)). The sound pressure increases [Figure 3.3(f)] as
the vortex comes closer to the porous half cylinder surface and undergoes substantial

large longitudinal and transverse accelerations [Figures 3.3(d) and 3.3(e)]. The
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pressure fluctuation patterns for various 7 are pulse-like and are similar to that for
the case of a hard cylinder, except that the duration of active sound production is
reduced as 7 decreases. Amplifications of the first peak and trough are found upon
the introduction of the porous material and the extent of such amplification increases
with decreasingn. It isfound that a decrease in either y;; or 77 will lead to an increase
in the strength of the far-field sound pressure fluctuation.

For non-vanishing flow resistance (R # 0), Morse and Ingard [1968] and
Tang [2001] suggested that » and R: produce pressure-releasing and pressure-
supporting effects respectively (Chapter 1). Figure 3.4(@) shows such effects on the
vortex path at afixed 7 with the vortex located at x;; = —10 and y;; = 0.5. The vortex
paths for R > 10 are close to that of the rigid half cylinder case. The vortex bends
away from the porous haf cylinder surface at x < 0 and the extent of the bending
increases as Ry decreases towards 0.1. Further away from the porous half cylinder at
X > 2, it is observed that for 0.5 < Ry < 10, the vortex path first gets closer to the x-
axis a small Ry but gradualy rises back to y = 0.5 after reaching a minimum
separation distance at R = 1. At R = 0.1, the earlier movement of the vortex away
from the porous half cylinder surface at x < 0 is so serious that the vortex height y; is
greater than 0.5 after the vortex moves over the porous half cylinder. However, the
vortex path collapses gradually with that for n = 5, R = 0 [Figure 3.3(a)] as Rr is
further reduced. When R is reduced further towards zero, the pressure-releasing
effect becomes more important such that the vortex path bends towards the porous
half cylinder again and converges to that of the perfectly inviscid fluid case. One
can aso notice from Figure 3.4(a) that the vortex paths with non-vanishing R are not

symmetrical about the y-axis.

39



Figure 3.4(b) illustrates the effects of 7 on the vortex path with R; fixed at 5.
The vortex bends away from the porous half cylinder surface asin Figure 3.4(a). The
degree of the initial path bending increases with 7 for 7 < 1000. The vortex height
y; after the vortex passes over the porous half cylinder first drops below 0.5 as n
increases from 3, but rises up above 0.5 as 7 further increases from 100. One is
expecting that y; will resume the value of 0.5 as  — «. When 7 tends to one, the
pressure-releasing effect is very strong. The vortex comes closer to the porous half
cylinder surface for small Re as it decelerates after passing across the vertical
centerline of the porous half cylinder as shown in Figure 3.4(c). The path becomes
similar to that under the hard wall condition for R; > 1.

Figure 3.5 shows the effect of flow resistance on vortex velocity at a fixed
=5. The amplitude of v, decreases for al R compared with the rigid wall condition.
However, one can notice that uy increases when Ry is very small and decreases with
increasing R.. When the flow resistance inside the porous material is finite, the transverse
and longitudinal vortex velocities decrease with increasing flow resistance. However, when

the flow resistance is small, the longitudinal velocity of the vortex increases because of the

relatively weaker frictional force inside the porous material. Figure 3.6 shows the
corresponding time variations of vortex accelerations. The amplitude of the
longitudinal acceleration of the vortex decreases from R; = 10 to R = 0.1 and then
increases again by further reducing R; to 0. However, the vortex undergoes longer
duration of longitudinal acceleration for 0.1 < R < 10. The same is true for the
transverse acceleration of the vortex.

Unlike the situation in an inviscid flow, the present far-field sound pressure
consists of a longitudinal dipole, Py, and a transverse dipole, Py [Equation (3.22)].

Figures 3.7(a) and 3.7(b) show some examples of the time variations of Px and Py for
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n =5 at various Ry respectively. It is observed that the decrease of Ry reduces the
magnitudes of the peak and trough of Py, but prolongs the duration of active sound
radiation for 0.001 < R < 0.1. This aso results in earlier radiation of sound.
However, the amplitude of Py is higher than that under the rigid half cylinder
condition for 10 > R > 0.1 and R < 0.001. The time variation of P, converges to
those for the rigid half cylinder and perfectly inviscid fluid cases as Ry — « and 0
respectively. On the other hand, the increase of the flow resistance enhances the
radiation of Py, though their magnitudes are small compared to those of Py. The
duration of the transverse dipole radiation appears longer than that of the
longitudinal one. In addition, the magnitude of Py is higher at small R.. At very
large Ry, the results converge to those in the rigid half cylinder case.

Figures 3.8(a) to 3.8(c) summarize the effects of 7 and R; on the amplitudes
of Py and Py at x;; = —10, y;; = 0.3, 0.5 and 0.8 respectively for 10° < R; < 100.
Those of Py for the cases of arigid half cylinder and an inviscid fluid are included
for the sake of referencing. For y;; = 0.3 [Figure 3.8(a)], the vortex is likely to hit the
porous half cylinder at 7 = 1.5 and Rr < 0.009. This violates the assumption of the
theory and thus no data in this R range can be presented. For al 7 studied, the
amplitude of Py is approximately equal to that of the rigid half cylinder case for Ry >
1. At R <1, the amplitude of Py fluctuates about its ‘rigid half cylinder’ value, but
increases as Rr — 0 and finally converges to the corresponding values for the
perfectly inviscid fluid. The amplitude of Py peaks at around Ri ~0.5. AsRi— 0 or
o, Py drops towards its theoretical value for a perfectly inviscid fluid and arigid half
cylinder respectively (that is, Py = 0). The decrease of 7 increases the amplitude of

Py for the whole range of Ry, while the increase of Py is only observed at Ry < 0.5.
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Again, the increase of 7 leads to a reduction of the transverse dipole
amplitude for the other two values of y;; [Figures 3.8(b) and 3.8(c)]. The amplitude
of the transverse dipole becomes weaker when the porous half cylinder is less
pressure-releasing as anticipated by the theory (larger 7 and/or higher Ry). Ascan be
expected, the increase in y;; reduces the effects of the porous half cylinder on the
sound radiation. Results in Figure 3.8 suggest that certain combinations of 7 and Ry
will lead to louder sound radiation than the rigid half cylinder case, especialy for
small yi; with small 7 and very small R.. Also, it is noted that the amplitude of Py is
always below those of Py, but their difference decreases with increasing ys;.

Figure 3.9 illustrates the overal acoustical energy (E) radiated by the
unsteady vortex motions under the influence of n and R.. At a small yy; [Figure
3.9(a)], the introduction of the porous material enhances the radiation of acoustical
energy at n = 5 and small R (<10). This radiation becomes less important as 7
decreases from 5 to 1.5 for Rr > 0.5, while this trend is reversed for Ri < 0.5. As R
increases from 0.5 to 100, the strength of the radiation eventually falls below that of
the rigid half cylinder case for a fixed . However, al the curves in Figure 3.9(a)
converge to E = 0.1769, which is the energy radiated in the rigid half cylinder case
for large R:.

The situations at y;; = 0.5, presented in Figure 3.9(b), follow closely those
shown in Figure 3.9(a), except that the results at 0.001 < R; < 0.01 are very close to
each other. The increase in y;; reduces the induction effect of the porous half
cylinder on the vortex, resulting in aless significant sound radiation even at small 7
and R:. Further increase y1; to 0.8 does not affect much the trend of E with R and 7

for Ry > 0.1, but E decreases with decreasing 7 otherwise [Figure 3.9(c)]. In this
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case, less acoustical energy than in the rigid half cylinder case is radiated for Ry <
0.1.

Figures 3.10(a) to 3.10(d) show the change in the directivity patterns of the
sound radiations. One can notice that the dipole axis does change with time as in
Minota and Kambe [1987] but it should be noted that the longitudinal dipole
dominates the sound field as the magnitude of Py is nearly always much higher than
that of Py [Figure 3.8]. The rotation of the dipole axis can only be observed when Py

issufficiently small, which is aso the instant of less significant sound radiation.

3.4 Two Interacting Vortices with Identical strengths
The sound generation by two identical vortices will be examined in this section. The
initial vertical height of the vortices y;; = y, is set at 0.5 and x;; = —10 and the
strengths of the two vorticesare set equal at I'y =I', = 0.5. It iswell known that two
vortices of thin cores will undergo leapfrogging and such motion is periodic in the
absence of the cylinder [Tang and Ko, 2000]. The present investigation is focused
on how this motion and the corresponding sound generation are affected by the
porous half cylinder. In the foregoing discussions, the vorticity centroid of the two
vortices is defined as in Chapter 2. That isz. = (I'1z1 + I'22)/T, whereI' =Ty + I'a.
Similar to Section 3.3, the results associated with the combinations of 7 and R under
which the vortices come very close to the porous half cylinder surface are excluded.
Figure 3.11 illustrates some examples of the vortex paths at different ¢in the
presence of arigid half cylinder. The paths of the individual vortices relative to z
are also given at the bottom of the figure. For & < 0.4, the path of the vorticity
centroid collapses with that of a single vortex of strength I' located at x3; = —10 with

yii = 0.5. The relative paths of the vortices are in circular motion about the vorticity



centroid [Figure 3.11(a)]. The presence of the rigid half cylinder does not affect
much the mutual induction between the two vortices at this «.

At increased ¢, the path of z. deviates from that shown in Figure 3.11(a) and
the paths of the two vortices relative to the vorticity centroid become chaotic and not
circular. The leapfrogging vortex motions become more disturbed as ¢ increases
from 0.8 to 1.6 [Figures 3.11(b) to 3.11(d)]. The larger vortex separation weakens
the mutual induction strengths between the vortices.

Figures 3.12 to 3.14 show the time variation of vortex velocities and
accelerations at different separation distance in the presence of arigid half cylinder.
Here, t, represents the instant when the vorticity centroid passes over x = 0. The
vortex velocities and accelerations are not affected much in the presence of arigid
half cylinder when ¢ is small [Figure 3.12]. The strengths of these components are
very strong and fluctuate seriously due to the mutual induction between the two
vortices. At increased ¢, the magnitudes of the vortex velocities and accelerations
decrease, and the mutual induction strengths between the vortex are weakened
[Figures 3.13 and 3.14].

Figures 3.15(a) to 3.15(c) show the far-field sound pressure time fluctuations
a different & It is expected that the sound radiation is more significant when the
vortices are in the proximity of the half cylinder. The periodic leapfrogging vortex
motions at small ¢ results in a higher frequency sound radiation [Figure 3.15(a)],
which carries most of the sound energy. There is a lower frequency sound
fluctuation embedded inside the result shown in Figure 3.15(a), which is similar to
that produced by a single vortex of strength I' = 1 located at z;; = (=10, 0.5). The

increase in ¢ leads to less ordered leapfrogging vortex motions. The pulses in



Figures 3.15(b) and 3.15(c) are created at the instants when the vortex dlip-through
occurs as in the case without the cylinder [ Tang and Ko, 2003].

As discussed in Section 3.3 [Figure 3.3(8)], a finite effective fluid density
inside the porous material lattice will create a pressure-releasing effect, reducing the
effect of the porous half cylinder relative to the mutual induction between the
vortices. At ¢ = 0.4, ordered periodic vortex leapfrogging motions can be observed
when 7 =5 and R = O [Figure 3.16(a)]. The reduction of 7 to 3 does not disturb
much the leapfrogging vortex motions though the vortex paths are much closer to the
porous half cylinder surface. The same is aso true for n = 2 [Figure 3.16(b)]. The
stronger effect from the porous half cylinder due to the shorter separation between it
and the vortices does result in a dlight deviation of the vortex paths relative to z
from circular motion. The path of z. resembles those shown in Figure 3.3(a).
Similar observation can be made at increased ¢ [for instance, Figure 3.16(C)]
provided that the vortices do not hit the porous half cylinder.

When the flow resistance inside the porous half cylinder is finite, the vortices
tend to bend away from the porous half cylinder surface as they propagate across the
porous half cylinder [Figure 3.17] as in the single vortex case [Figure 3.4].
However, unlike the cases of a rigid half cylinder or a perfectly inviscid fluid
[Figures 3.11 and 3.16 respectively], an increase in the pairing period is observed in
the present two interacting vortices case upon the introduction of R.. The separation
of the vortices eventually increases due to the combined effects of 7 and Rr [Figure
3.17]. Further decreasing n at afixed R; brings the vortices further away from the x-
axis after they pass over the porous haf cylinder into the region x > 2 [Figures
3.17(c) and 3.17(d)] and thus reduces the frequency of sound. Such reduction in

sound frequency is more pronounced at small . However, one should note that the
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acoustical energy radiated when the vortices are at |x|> 2is insignificant. The
vortex dynamics at increased ¢ are similar to those presented in Figure 3.17, though
one expects that the two vortices will move closer to the porous haf cylinder
provided that no impingement occurs.

Figures 3.18 to 3.20 show some examples of the time variation of vortex
velocities and accelerations at ¢ = 0.4 and 7 = 5 with different R. It is observed that
the magnitudes of the vortex velocities and accelerations decrease at t — t, > 0.
Figures 3.21(a) and 3.21(b) illustrate the time variations of Py and Py at different R
respectively at ¢ = 0.4 and = 5. One can observe that there are high and low
frequency components in the time variation of Py [Figure 3.21(a)]. The former is
due to the nominally circular motion of the vortices relative to z;, whose frequency
decreases after the vortices pass over the porous half cylinder. The strength of this
component relative to the low frequency one first decreases with increasing R; but
the trend reverses when R; increases beyond ~0.1. The smaller the value of ¢, the higher

the frequency of the radiated sound and thus less supportive the porous material to the sound

radiation can be expected at small R.. Similar high frequency time fluctuations are also
found in Py but the amplitudes are very small when compared to those in Py [Figure
3.21(b)]. The amplitudes of these frequency components first increases with R; but
they decrease as R; increases away beyond unity. Py vanisheswhen R =0or Ry —
oo,

The increase in the separation ¢ to 0.8 reduces the mutual induction strength
between the vortices, resulting in much less regular leapfrogging motions. The
corresponding time variations of Px and Py with finite Ry are given in Figures 3.21(c)
and 3.21(d) respectively. The results for the rigid half cylinder at ¢ = 0.8 have been

shown in Figure 3.15(b). One can notice that the amplitudes of the two dipolesfor ¢

46



= 0.4 and 0.8 do not differ much, but the higher frequency fluctuation at ¢ = 0.4
implies more significant radiation of acoustical energy.

Figure 3.22 illustrates the dependence of the amplitudes of Px and Py on Ry, 7
and ¢. Again the amplitude of Py is about a half or afull order below that of Py. Itis
found that the introduction of the porous half cylinder reduces in genera the
amplitude of the longitudinal dipole Py for small ¢ [Figure 3.22(a)] for n > 3.
Certainly, one can anticipate that there will be some amplifications of Py close to Ry
= 0 for smal #, provided that the vortices do not hit the porous half cylinder.
However, the vortices can be very close to the porous haf cylinder or even hit the
porous half cylinder when 7 drops below 3, making the whole vortex approach
invalid.

The increase in ¢ appears to have amplified Px and it is not surprising to find
the rapid increase of Px when Ry — 0 [Figures 3.22(b) and 3.22(c)]. When &= 1.6,
the amplitude of Py is always above that of the rigid half cylinder case. The trend of
Px variation with & shown in Figure 3.22 suggests that louder noise will occur upon
an increase of ¢. This implies that the presence of a porous material near to a jet
shear layer can be noisier than the case where the porous material is replaced by a
rigid one, if the material is not located at a position where the dominant flow
structures have a short wavelength (the initial shear layer mode) [Hussain and
Zaman, 1985]. Figure 3.23(a) further suggests that the porous material can reduce
the overall acoustical energy radiation when ¢ is small. It can also be noted that E
decreases with decreasing . However, thistrend isreversed at e =0.8and 1.6 a R
< 0.1 [Figures 3.23(b) and 3.23(c) respectively]. The sound produced by the mutual

interaction of the vortices depends very much on the unsteady |eapfrogging motions.
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The smaller the value of &, the higher the frequency of the sound radiated and thus
less supportive the porous material to the sound radiation can be expected. The
effect of y1; = yoi in this two interacting vortices case is similar to those observed in

the single vortex case.

3.5 Two Interacting Vortices with Different Strengths

The sound generation by two vortices with different strengths in the presence of a
porous half cylinder will be investigated in this section. Without loss of generality,
the initial vertical heights of the vortices y;; = y, are set at 0.5 as in Section 3.4.
Figure 3.24 shows the vortex paths with different I'; and I', in the presence of arigid
half cylinder. When the difference of I'; and I'; is small and & = 0.4, the path of z
collapses with that of asingle vortex withT" =T'; + I'; located at x;; = -10 and yy; =
0.5. The vortices are in circular motion about z; but the stronger vortex isin a more
rapid motion than the weaker one [Figure 3.24(a)]. This Situation becomes more
acute if the difference of vortex strengths increases at a fixed ¢[Figure 3.24(b)]. The
path of the stronger vortex is circular relative to z. with very small fluctuating
amplitude, and the path of z. collapses with that of a single vortex located at z; with
vortex strength I while the weaker vortex moves in a larger circle relative to the
vorticity centroid. The stronger vortex dominates the fluid mechanics and also the
aeroacoustics as in the case where the vortices are located in the proximity of arigid
circular cylinder (Chapter 2). The presence of a circular cylinder does not affect
much the mutua induction between the two vortices with I'y # I'> at small ¢ At
increased &, the path of z; deviates from that shown in Figure 3.24(a) and the paths of
the vortices relative to z. become chaotic and not circular [Figure 3.24(c)]. The

stronger vortex follows closely the path of z but the weaker one does not.
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The velocity and acceleration of the vortex with I'; # ', are shown in Figures
3.25t0 3.27. Large fluctuations of these components are observed with I"; = 0.6 and
I'; = 04 when ¢ = 04[Figure 3.25]. The amplitudes of the velocities and
accelerations of the weaker vortex are higher than those of the stronger one. Such
difference in amplitude is more pronounced by further increasing the difference of
the vortex strengths [Figure 3.26]. At ¢=0.8 withI'; = 0.6 and I'; = 0.4, the mutual
induction between the vortices is weakened and the magnitudes of the velocities and
accelerations decrease [Figure 3.27].

When & = 0.4, the far-field sound pressure time fluctuation with I'; = 0.6 and
I', = 0.4 resembles very much those presented in Figure 3.15(a) [Figure 3.28(a)].
The sound radiation is more significant when the two vortices propagate across the
rigid half cylinder at small & except that an amplitude modulation pattern [Figure
2.10] is observed due to the motion of the weaker vortex. Figures 3.28(b) and
3.28(c) show the sound pressure when the difference of the vortex strengths
increases at afixed ¢ and ¢ increases at afixed I'; # I', respectively. One can observe
that when the difference of the vortex strengths increases, the sound pressure
fluctuation is modulated by the weaker vortex [Figure 3.28(b)]. The sound pressure
fluctuation becomes more irregular when the separation distance between the two
vortices increases.

For a perfectly invisvid fluid, R = O, the vortices move in a closer path
towards the surface of the porous half cylinder due to the pressure-releasing effect
[Figure 3.29]. For e=04,T;=0.6 and I'; = 0.4 a afinite = 5, ordered periodic
vortex leapfrogging motions can be observed [Figure 3.29(a)]. When the difference
of vortex strengths increases at a fixed 7, the paths of the vortices are similar to

those shown in Figure 3.29(a) except that the stronger vortex follows closely the

49



path of z. and the weaker vortex movesin alarger circular path relative to z; [Figure
3.29(b)]. The reduction of 7 to 3 does not disturb much the leapfrogging vortex
motions though the vortices are much closer to the porous haf cylinder surface
[Figure 3.29(c)]. Theincrease in the separation distance ¢ resultsin aless distinctive
leapfrogging vortex motions close to the porous half cylinder surface at n = 5
provided that the weaker vortex does not hit the porous half cylinder [Figure
3.29(d)].

The dynamics of equal strength vortices at a finite flow resistance inside the
porous half cylinder have been discussed in Section 3.4. When the vortex strengths
are different at afinite R;, the vortices also bend away from the porous half cylinder
surface as they propagate over the half cylinder, and an increase in the pairing period
is observed asin Figure 3.17 [Figure 3.30]. WhenI'; = 0.6 and I'; = 0.4, the vortex
paths are similar to the case in rigid half cylinder conditionat e=0.4, n=5and R =
10 [Figure 3.30(a)]. The vortices bend away from the x-axis as they pass over the
porous half cylinder when Ry is further reduced from 0.1 at a fixed ¢ and 7 [Figure
3.30(b)]. The stronger vortex propagates more rapidly than the weaker one. An
increase in the pairing period is observed as in Figure 3.17. Unlike the situation in
Figure 3.17, the vortices bend away from the x-axis before they pass over the porous
half cylinder at x > -2. At a fixed R with decreased 7, an increase in the vortex
pairing period is more pronounced when the vortices are at X > 2 but not at —2 < x <
2 [Figure 3.30(c)]. When the difference of the vortex strengths increases, the
vortices bend away from the porous half cylinder at x > — 2, and the period of vortex
pairing increases as shown in Figure 3.30(d). The path of the stronger vortex
deviates dightly from the path of z. while the weaker vortex moves in a larger

circular path relative to z.. At increased ¢, the vortex dynamics are similar to those
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presented in Figure 3.30 provided that no impingement occurs. The vortices move
closer to the porous half cylinder surface, and the paths of the vortices relative to z.
become chaotic and not circular.

Figure 3.31 shows the sound pressure time fluctuation at afixed ¢ = 0.4 with
''=08,T,=0.2and n=5at various R.. High and low frequency components are
found in the time variation of Py [Figure 3.31(a)], and the strengths of these
frequency components decrease when R; decreases from 0.01 but the trend reverses
when R increases beyond 0.01. An amplitude modulation pattern is also observed in
the high frequency component. The magnitude of P, converges to that under the
rigid wall condition at large Ry ~ 10. Figures 3.32 to 3.34 shows the time variations of
vortex velocities and accelerations at a fixed ¢ = 0.4 withI'; = 0.8, I', = 0.2 at various R;.
The velocities and accelerations of the weaker vortex are higher than the stronger one at
various R.. The presence of a finite R inside the porous half cylinder does not affect the
velocities and accelerations of the vortex compare with the rigid half cylinder case [Figure
3.26]. From the vortex paths shown in Figures 3.30(b) and 3.30(d) and the time
variation of the vortex velocities and accelerations [Figures 3.32 to 3.34], one can
predict that the modulation becomes less influential when the difference of the
vortex strengths decreases. Similar high and low frequency components are found in
the transverse dipole Py but the amplitude of Py is always lower than that of P
[Figure 3.31(b)]. The maximum amplitude of Py increases with R; for R < 1 but the
opposite occurs for R > 1, and the dynamics of the weaker vortex also has an
amplitude modulation effect on Py. At an increased ¢ with different I'; and I'», the
longitudinal and transverse dipoles do not differ much from those shown in Figures

3.13(c) and 3.13(d).
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Figure 3.35 summaries the combined effects of 7, R, & and the vortex
strengths on the amplitudes of Py and Py. For ¢ = 0.4, I'; = 0.6 and I'> = 0.4, the
magnitudes of Py and P, converge to those under the rigid half cylinder condition for
large Ry ~ 10 and those for the perfectly inviscid fluid case when Ry — 0 [Figure
3.35(a)]. The introduction of the porous half cylinder reduces the magnitude of Px
generaly for 7 = 5 but there are some amplifications of P, when Ry — 0 for 7 = 3.
The amplitude of P, decreases with increasing R for R < 0.01 and then it increases
with Rs for R > 0.01. The magnitude of Py is about half or afull order below that of
Px, and the magnitude of Py at 7 = 3 is aways greater than that at 7 = 5. Similar
findings are reported in Figure 3.22. When the difference of the vortex strengths
increases (I'y = 0.8 and I'; = 0.2), the results are similar to those presented in Figure
3.35(a) [Figure 3.35(b)] except that the weaker vortex hits the porous half cylinder
when n=3and R — 0.

When ¢ increases to 0.8 with I'y = 0.6 and I', = 0.4 [Figure 3.35(c)], the
fluctuation of P, around the “ rigid half cylinder” valueis more serious at R; > 10 as
the sound produced by the mutual induction between the vortices depends very much
on the unsteady |eapfrogging motions. Generally, the magnitude of Py is amplified,
and there is a rapid increase of P, when Ry — 0, especially when 7 is small. The
magnitude of Py at small 7 is higher than that in the case for I'y = I', [Figure
3.22(b)]. The weaker vortex moves towards the porous half cylinder surface under
the strong pressure-releasing effect and undergoes substantial large vortex

accelerations, resulting in a higher value of Px. The amplitude of Py follows similar
trend when ¢ = 0.4 [Figure 3.35(a) and 3.35(b)]. At increased &, the combined
effects of 77 and Rr suggest louder noise generation, and the trend is similar to those

presented in the case with equal vortex strengths [Figure 3.22]. In addition, the
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amplitude of Py increases by further increasing the difference of vortex strengths
[Figure 3.35(d)].

From Figure 3.35(a), one can anticipate that the overal acoustical energy
radiation can be lowered upon the introduction of the porous material when the
difference of the vortex strengths is small for small & [Figure 3.36(a)]. When T'; =
0.8and I'; = 0.2 a afixed ¢ = 0.4, the overall acoustical energy radiation is lower than
that under the rigid wall condition [Figure 3.36(b)]. At increased ¢ = 0.8 with =5,T; =
0.6 and I'; = 0.4, the energy is lower than that under the rigid half cylinder condition
but such reduction of acoustical energy is not found at small n with Ry < 0.001
[Figure 3.36(c)]. The substantial large rate of change of vortex velocity due to the
chaotic motion of a weaker one under the strong pressure-releasing effect increases
the total amount of energy radiation at increased . Further increasing the difference
of I'; and I', results in a stronger acoustical energy radiation for R < 0.001 [Figure

3.36(d)]. The smaller the value of 7, the stronger the acoustical energy radiation .

3.6 Remarks

The low Mach number condition in the present study results in the radiation
of low frequency sound whose peak value depends substantially on the vortex
circulation. At R = 100 with an ambient speed of sound ¢ = 343 (normalized by
I'/a), ysi = 0.3 and 7 = 1.5, the maximum peak normalized sound pressure radiated at
R = 1 by a single vortex is 1.3x10* [Fig. 3.8(3)]. With a I' = 0.14m?%s, the
maximum sound pressure level is around 23.5dB, but this pressure level goes up to
~78.9dB when I = 3.4m?/s. For arigid half cylinder, the corresponding maximum

sound pressure levels are 21dB and 72dB respectively.
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In the case of two vortices with y3; = y5 = 0.5, £= 0.8, n=5and R = 1, the
sound pressure levels with I' = 0.14m%s and 3.4m%s are approximately 19.8dB and
75.2dB respectively [Fig. 3.22(b)]. The corresponding values for rigid half cylinder
are 19.3dB and 74.7dB respectively.

The above dimensional examples illustrate that the aeroacoustics studied in
the present study can be significant and the introduction of porous material can

enhance the sound radiation at certain combinations of parameters.

3.7 Summary

In the present investigation, the sound generation by the unsteady vortex motions in
the presence of a porous half cylinder on an otherwise rigid horizontal plane is
studied theoretically. The far-field sound pressure so produced is evaluated through
the use of the conformal mapping and the matched asymptotic expansion method.
The effects of the effective fluid density and flow resistance inside the porous
material on the vortex motions and the far-field sound radiation are discussed.

In the presence of a porous material with afinite flow resistance, longitudinal
and transverse dipoles co-exist in the far-field but the latter is significantly weaker
than the former in general. When a single vortex engages the porous half cylinder,
the time variation of the strength of each dipole is pulse-like. The amplitude of the
longitudinal dipole converges to that for the rigid half cylinder case when the flow
resistanceis large for all effective fluid density studied, but is larger than the latter at
small flow resistance. The rate of increase of the dipole amplitude becomes rapid at
vanishing flow resistance. The larger vortex height above the rigid plane reduces the

amplitudes of the dipoles. However, the overall acoustical energy radiated remains
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higher than that for the rigid half cylinder case at some combinations of the effective
fluid density and flow resistance.

When two identical vortices exist in the proximity of the porous half
cylinder, both the longitudinal and transverse dipoles consists of a low and a high
frequency components. The former is due to the macroscopic vortex centroid
motions and the latter to the leapfrogging motions of the vortices. When the two
vortices are close to each other, the corresponding dipoles are dominated by the high
frequency fluctuations. The overall acoustical energy so radiated is less than that for
therigid half cylinder case. The oppositeisfound at larger vortices separation for all
combinations of flow resistance and effective fluid density studied. When the vortex
strengths are different, the results are similar to those for the two identical vortices
case except that the acoustical energy radiated is higher than that for the rigid half
cylinder case when the difference of vortex strengths increases.

The present results show that suitable combinations of the effective fluid
density and the flow resistance within a porous material will enhance the radiation of
sound in the presence of a turbulent shear flow, especially when the flow structures

involved are of lower frequency.
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Chapter 4: Vortex Sound in the presence of a
Wedge with Inhomogeneous Surface
Flow Impedance

4.1 Introduction

As mentioned in chapter 1, the problem of self-generated noise upon the influence of
the porous material is not well known. In chapters 2 and 3, the forces and sound
generated by the interaction of the vortices with arigid or porous circular cylinder
are discussed, and the effect of the wavelength of coherent structure on the sound
generation is also addressed. In this chapter, the sound generated by the unsteady
motion of an inviscid vortex in the presence of a wedge with inhomogeneous surface
flow impedance is studied as some flow junctions in ductwork involve edges or are
wedge-like, which tend to scatter aerodynamic sound. The important effects of the

porous material properties and the wedge angle are discussed.

4.2 Theoretical Development

Figure 4.1 shows the nomenclature used and the flow configuration for the present
investigation. The wedge consists of two materials. One of the materialsis assumed
porous while the other is rigid for smplicity. Here the noise radiated when an
inviscid vortex with circulation I originally moving close to the rigid surface turns
around the edge of the sharp wedge is considered. The wedge angle « varies
between 0 and 7. All the length scales in the present study are normalized by d,
which is the initial perpendicular distance of the vortex from the rigid surface and

the time scale is normalized by di?/T".
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The Bernoulli’s equation suggests that the vortex moves around the edge as the
vortex is experiencing a force resulting from the fluid pressure difference between the edge

and the boundary at infinity. The analysis is started by transforming the present vortex
system [Figure 4.1], which is hereinafter referred to as the z-plane (z=x + iy, y > 0),
to a w-plane (w = & + i), which is a parallel passage with 0 < < 1 as shown in

Figure 4.2. The conformal mapping [Kober, 1952] required is

z=f(w)=e? M= w=f(z)= L iz (4.1)

The branch cut in the z-plane is the positive x-axis.
The streamfunction in the w-plane, 4, can be obtained by the integration

[Tang, 2001] asin Chapter 3:

ekagk (4.2)
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wherew; = & +i¢; represents the position of the vortex in the w-plane and

iKY, + (ikV, 7 + R, Jooth(|k]h)
kv, —(ikv,7 + R Jcoth(k|h)

g(k)

, 4.3

where h is the depth of the porous material in the w-plane. In addition, V,, and Rs are
normalized by T'/d; and poI'/di? respectively. The corresponding vortex velocity in

the w-planeis evaluated by differentiating Equation (4.2) with respect to ¢:
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The paths of the vortex in the z-plane are calculated by integrating Equation (4.4)
numerically with the standard fourth order Runge-Kutta method together with the
Routh’ s correction [Equation (3.7)].

With the use of Cauchy-Rieman principle, the flow potential in the w-plane,

Bw, 1S
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0 eik(il’i)dk + C , (4_5)
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where C is the integration constant that can be evaluated by observing that the flow

potential vanishes as |& — oo. It can be shown after some algebra that
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The incompressible flow potential in the z-plane, ¢, can then be found by
substituting the inverse of Equation (4.1) into Equation (4.6). Expressing z = re'’,

where r and & are the polar coordinates in the flow field, one obtains from Equation

(4.1) that
_nr (o a2
5‘2,,_7"9‘(2” a)¢ and h=—"—. (4.7)
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Thus, the far-field outer potential, ¢,, can be obtained using matched asymptotic
expansion method as in Crighton [1972] and Obermeier [1979a, 1980], and the far-

field sound pressure can be obtained from Equation (1.8).

4.3 Acoustically Hard Surface

The case for edges with acoustically hard surfaces has been investigated by severa
researchers, such as Crighton [1972], Panaras [1985] and Kambe [1986]. However,

the case for arbitrary wedge angle has not been explicitly presented. The condition

of hard surfaces requires that ‘— ikV 7+ R, ‘ >> [kV,,| for all value of k and g = -

[Equation (4.3)]. The final potential is independent of h. The flow potential in the

w-planeis, according to Equation (4.5), given by

A Y - o R -
¢W_E b E(—e +e )Wsn[k(ﬁl—f)]dk—kC

, (4.8)

cosh [k(1-¢)] .

:__J. gl Ks h(k) Sn[k(é_fl)]dk"*'c

and by observing the flow potential vanishes when || — oo, one finds for non-zero R

that
C= /2. (4.9)

Using the formula tabulated in Gradshteyn and Ryzhik [1980], one obtains
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b= —i{tan{tan(g(l— £+ é)] tanh(%(é - cfl)ﬂ

2

- tan‘l[tan(% L-¢ - :)j tanh(% (&~ ei)ﬂ} -

2

(4.10)

Substituting Equation (4.7) into Equation (4.10), the potential in the z-plane, ¢,, in

the polar form,

b_yb b_ b
?, — 1t cot(b(e_el)j rb—rlb —tan™ cot(b(eﬁe)j rb—rlb
2r 2 )r’+r 2 )rl+r

bo,

27

. (411

whereb = 7127 - «).
When « = 7, the wedge becomes an infinite flat surfaceand b = 1. It can be

shown exactly using sine rule that,

4, —i{tan‘l( rssnf—r,sing, J—tan‘l( rsiné+r,sing, H (4.12)

2z r cosd —r, cosé, I cosd —r, cosé,

which is consistent with existing literature, for instance Lamb [1993]. For larger, ¢,

— 0. For 0< a < 7, b < 1, one can approximate Equation (4.11) as
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R

bo,
2r
) j{tm_l{cot(t)(e—wj} ~ %sn[b(ﬁ 3 91)]_ tan—1|:cot( b(el + 9))j| . (413
2r 2 ' i
- :iZsin(bw + 91))} + *;—i
— 11 cogbo)sinoe,)
Tr

This shows that there is a relatively strong radiation back to the downstream side
where the wedge is located. For arigid half plate occupying the regionx >0,y =0

in the z-plane, « = 0 and b = 0.5, and the far-field outer potential becomes

1, (0\. (6
¢Zoz—;\/;co{2jsm(2j. (4.14)

For the case investigated by Crighton [1972], the half-planeislocated at x <0,y =0.
The results of Crighton [1972] can be obtained by rotating the present w-plane 180°
in the anticlockwise direction. That is, by substituting dand 6, in Equation (4.14) by
6 — n and 6, — n respectively, and the far-field pressure can be estimated by
Equation (1.8). For a =, b =1 and the far-field pressure in Equation (1.8) vanishes
as the vortex is moving parallel to the x-axis in the z-plane. Figure 4.3 illustrates the
far-field pressure time variation for different « with the directivity factor ignored.
Here, t; denotes the time at which the vortex passes across the axis of symmetry of

the wedge. One can notice that every far-field pressure time variation contains a tail
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which decays relatively sowly after the vortex passes over the edge of the wedge.
This is typical for two-dimensional sound radiation due to the non-compactness of
the source field so that sound generated from different parts of the source arrives at
the far-field at different instants. The rate of decay is slower at larger a. The larger
the wedge angle «, the longer the active sound radiation period. Also, both the tail
and the far-field pressure amplitude drops rapidly when « approaches 7. One should
note that b increases with « so that the ratio (r1/r)° actually decreases with increasing
a forr >>r;. Thisimplies that the sound generated with arigid half-plane is more

significant at large distance.

4.4 Perfectly Inviscid Fluids

For a perfectly inviscid fluid, the flow resistance R = 0. Equation (4.3) then reduces

to

1+ coth(kh)

9(k) = W , (4.15)

The potential in the w-plane, according to Equation (4.6), is

snk(é-¢&)dk+C.  (4.16)

_ 1 I cosh( kg“l + 7 coth(kh)sinh(k¢, ) coshlk(1-¢)]
cosh(k)+ 77 coth(kh)sinh(k) k

Inthiscase, C = (n¢1 + h)/2(7n + h).
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In general, Equation (4.16) is not easy to solve analytically. However, if |&—
&1| — oo, the solution can be approximated by considering the approximation for

small k,

cosh(k)sinh(kh)+ 7 cosh(kh)sinh(k) ~ 7 s nh{ (r ;h)k} : (4.17)

As an approximation to Equation (4.16), one can then write for afinite h, |- &| —

o and k'=k(£-¢&):

_ —1 = cosh(k¢, )sinh(kh) + 77 coth(kh)sinh(k¢; )
h=" k cosh(k)sinh(kh)+ 7 cosh(kh)sinh(k)

K= gz - & o+ ©

. (4.18)
—1 (= (+1)sinh[k(¢, + )]+ (7 = 1)sinh[k(¢, - h)]

]

-—COSh[k( Ngin(e)esc

Equation (4.18) can be solved analytically, even when n — 0, using the formula

shown in Gradshteyn and Ryzhik [1980]. For |£— &| — o, one obtains

b= (Zfrl]j {mh(l é)} {%} (4.19)

Figure 4.4 shows that Equation (4.19) agrees well with the results obtained

from direct numerical integration of Equation (4.16). The comparison is not
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extended to the range & — & > 4 as ¢, will be too small to be handled accurately in
the numerical integration. However, one can note from the conformal mapping
adopted that the ratio of r/ry is aready very large when £ — & = 4. After applying

the conformal mapping [Equation (4.7)], one obtains

nr

¢Z = lsn Lﬁla co La(zﬂ. —a- 9) [%)n(Zﬁa}Z
4 n(2r—a)+ n(2r —a)+
2 2
(4.20)
nr 0+ i nx
; nz6, 2n [rljn(Zﬁa)wLa
=——98n CO — 2
T a |\ r

77(27z—a)+% 77(27z—a)+5

Equation (4.20) reduces to Equation (4.13) for large 1. For n =1, thereisno
porous surface. The situation then reduces to that of a wedge with wedge angle /2
and rigid surfaces. Equations (4.16) and (4.20) give the same result as that obtained
from Equation (4.13), by taking the wedge angle to be /2 instead of « and rotating
the far-field anticlockwisely by /2. Though 7 is not likely to be less than unity,
Equation (4.20) tends to suggest that the magnitude of the far-field pressure
decreases should such a pressure-releasing surface exists. For 7 =0, there will be no
sound radiation. Figure 4.5 summarizes the effect of 7 on the far-field radiation
directivity. It isexpected that the introduction of a pressure-releasing surface alows
more sound radiation in a direction closer to this surface. The larger the wedge
angle or the smaller the value of 7, the greater this shift.

The far-field pressure magnitudes for some values of 7 at a = 7 are shown in

Figure 4.6. This case has been investigated by Tang and Li [2001] on the
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assumption that the frequency of the radiated sound is so low that the impedance
surface has no effect on the sound radiation. Thus, only the dipole radiation was
considered in Tang and Li [2001]. As expected, the scattered sound field becomes
weaker as 7 increases from unity and the rate of such weakening decreases
considerably quickly for small 7. The magnitudes of the sound fields are higher than
those shown in Tang and Li [2001]. Together with the fact that the present scattered
field magnitude varies with (Mach number)® where b is less than unity, the scattered
field is much stronger than the dipole radiation discussed in Tang and Li [2001].

For « less than 7z, the vortex moves towards the pressure-releasing surface
after it passes over the edge of the wedge. Figure 4.7 shows the vortex path at 77 = 2,
4 and « for ¢ = #/13. Theinitial vortex position is at one unit length perpendicular to
the hard surface at r; ~ 100. It can be noted that the smaller the value of #, the
closer the vortex will be to the pressure-releasing surface eventually. Figure 4.8
shows the sound pressure time fluctuations for finite 7. These patterns are basically
similar to those for the rigid surface case [Figure 4.3]. However, one can note that
the peak pressure is higher for smaller . The tail of the sound pressure fluctuation
pattern becomes shorter as 7 decreases, implying shorter period for active and
significant sound production at smaller 7. The power associated with the radia
radiation term Ur is nx | [n(27 — @)+al2], which increases with . The far-field
sound, therefore, decays more rapidly at increasing 7. Similar results are obtained at
different « (< 7). The effect of wedge angle on the sound radiation is summarized in

Figure 4.9. Again, the magnitude of the sound pulse increases with decreasing c.
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4.5 Combined Effects of nand Rs
For a real porous material, R is finite, and the effects from the porous material
become complicated. The far-field potential ¢, can be obtained from Equations (4.5)

and (4.6). Again, let k'=k(& - ¢&,), one obtains

[ mGIIE de- [ RGN de)+ 5 2)

where

_ ikv,,, cosh(k¢, )sinh(kh)+ (ikV,,,7 + R, )cosh(kh)sinh(k¢,)
=ik, cosh(K)Snh(Kn) £ KV, + R, Joosh(Knjsinn(k)  CoIkE=¢ )l (422)

It can be shown that

) { ikv, [coth(k¢, ) — coth(k)] N 1} sinh(k¢, Jcoshlk(1-¢)] (4.23)

~ |ikV,, [coth(k)+ 7 coth(kh)]+ R, coth(kh) sinh(k)

Again, the analytical solution for Equation (4.21) is hard to find without
assumption. As we are interested in the far-field where | — &| > «, @y then

depends on the value of G as k — 0, which is unity. One can thus conclude to the

leading order of magnitude that

=__J' ReG(k) ﬂdk 61 2= b _—lr—cos(be)sm(bﬁ) (4.24)
wr
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The directivity of sound radiation for non-vanishing Rr is the same as that with hard
surfaces or at large 7.

Figure 4.10 illustrates the combined effects of 7 and Ry on the vortex path. In
general, the vortex propagates towards the porous surface soon after it passes over
the edge of the wedge. It is observed that the larger the value of 7 or R, the less
serious the bending of the vortex path. The increase in the flow resistance Rr makes
the porous surface less pressure-releasing and produces the same effect as increasing
n. The far-field sound pressure fluctuations for ¢ = #/3 and n = 2 are shown in
Figure 4.11. Theincrease in R reduces the magnitude of the pulse. The less severe
vortex path bending towards the porous surface at larger R and 7 results in smaller
vortex acceleration and thus weaker sound radiation. It is found that the magnitude
of the sound pulse increases as 7, decreases when R; is fixed. However, the variation
becomes insignificant for R > 10. The increase in the wedge angle « again reduces
the magnitude of the sound pulse, but the far-field sound fluctuation patterns are
very similar to those as shown in Figure 4.9.

Figure 4.12 summarizes the combined effects of «, 7 and R on the sound
pulse magnitude. Again, one can observe that the introduction of a porous material
results in louder sound radiation. This is the result of the increase in the porous
material thickness with wedge angle so that the pressure-supporting interface

between the porous and the rigid materials becomes less influential.

4.6 Summary

The sound field produced by a vortex engaging the edge of a wedge with

inhomogeneous surface impedance is investigated theoretically in this chapter. The
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wedge is made up symmetricaly of a rigid material and an acoustically softer
material, which can be a porous material or a heavy liquid. The initial location of
the vortex is on the rigid material side far away from the edge of the wedge. The
effects of the wedge angle, the effective fluid density and the flow resistance of the
porous material on the directivity and the magnitude of the far-field sound are
discussed. A genera expression for the leading order approximation of the sound
field is derived.

In all cases studied, the far-field sound is a pulse whose magnitude decreases
with increasing wedge angle. The time variation of each pulse contains a tail which
is typical for two-dimensional sound radiation. The rate of decay of the pulse
increases as the wedge angle increases. When the wedge angle is fixed, the
magnitude of the far-field sound pulse decreases as the solid surface becomes
acoustically harder. The vortex path bends towards the porous material after it
passes over the edge of the wedge when the surface impedance is reduced, resulting
in higher vortex acceleration and thus stronger sound radiation. The final velocity of
the vortex is higher than that in the hard surface case.

In a perfectly inviscid fluid medium, the far-field sound is only affected by
the effective fluid density and the wedge angle. It is found that a finite effective
fluid density deflects the directivity towards the porous surface. The extent of such
deflection increases with increasing effective fluid density. However, the rate of
decay of the sound pulse with distance from the edge is lower if the effective fluid
density isreduced. The introduction of a porous surface in a perfectly inviscid fluid
results in louder and more distant sound radiation.

When the fluid possesses a finite viscosity, the flow resistance inside the

lattice of the porous material becomes significant. The higher the flow resistance,
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the higher the ability of the porous surface to support pressure, resulting in weaker
sound pulsein the far-field. However, unlike the effect of the effective fluid density,
the directivity and the rate of decay of the sound radiation in the leading order of
magnitude are the same as those with hard surfaces, regardiess of the magnitude of

the flow resistance.
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Chapter 5: Vortex Sound Generation due to a
Piece-wise Porous Material on an
Infinite Rigid Plane

5.1 Introduction

The problem of sound generation by an inviscid vortex trandlating past a porous half
cylinder and a porous wedge are studied in Chapters 3 and 4 respectively. In this
chapter, vortex sound in the presence of a piece-wise porous material with finite
thickness on an otherwise infiniterigid planeis studied. Apart from theinitial vortex
height, the effective fluid density and the flow resistance of the porous material, the
effects of the length and the thickness of the porous material on the vortex dynamics
and the far-field sound radiation are aso discussed. The conformal mapping
technique applied in Chapters 3 and 4 is not easy to implement in this circumstance.
However, the streamfunctions in the flow and in the porous regions and the velocity
of the vortex can be evaluated by the continuity of fluid velocity and pressure on the
porous boundary together with the use of Fourier transform. The far-field sound
pressure is derived using the matched asymptotic expansion method as in the

previous chapters.

5.2 Theoretical Development

An inviscid vortex with circulation T" located at z; far away from the piece-wise
porous material with length L and thickness h is considered [Figure 5.1]. All the
length scales in the present study are normalized by the initial vortex height y;; above
the x-axis. Also, the time scale, the velocity of the vortex and the flow resistance R

are normalized by y;%/T", T/yy; and pol'/yy® respectively.
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Inside the fluid region (y > 0),
Vi, ==6(x=x)5(y - 1), (5.1)
and within the porous material (-h<y <0, 0<x<L) [Equation (1.10)],
Vi, =0, (5.2)

where y; and yy are the streamfunctions in the fluid and in the porous regions
respectively, and are normalized by I'. V2 and & are Laplacian operator and delta

function respectively. The boundary conditions at the interface of the porous

material and therigid wall are:

a¢p|| :aWpI| _a¢pl| :8Ir//pl| _aWpl

= =0, (5.3)
ox Ly ox

X=L y=—h

x=0 ay ‘ x=0 aX

where ¢y is the flow potential in the porous region. Equation (5.3) implies that the
normal velocity at the interface between the porous material and the rigid wall vanishes.

From Equations (5.2) and (5.3), one can quickly find that the solution of y, is
vy =2 A€ sin(e,x)sinh[e, (h+y)], (5.4)
n=1

where o, =nzlL,n=1, 2, 3, ... and A, is the mode magnitude.

Asin Tang [2001], the x-Fourier transform of Equation (5.1) gives
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v | (5.5)

where G;, G,, Hy and H; are function of k and v = f w,€“dk. The continuity of

w, and the vorticity jump oy, ay=yleadto
H,~ G, = = &% and G, ~ H, = "M% (56)
1 1 2|k| 2 2 2|k|

H, = O for the outgoing wave condition. And on the porous boundary (y =0, 0 < x <

L), the continuity of normal fluid velocity gives

__va
OX

_9v,

y=0 y=0

The relationship between G; and A, can be found by substituting the x-Fourier

transforms of Equations (5.4) and (5.5) into Equation (5.7):

0 n kL )
G =Y a, A gnh(anh)Le‘l L gy
n=1

Ke-a? 2 -8

The continuity of pressure on the porous boundary (y = 0, 0 < x < L) gives, from

Equation (1.9),
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(5.9)

J a al//pl
= 77—
y=0 ot| oy

The application of the inverse Fourier transform to Equation (5.9) suggests that,

2 8l//z +R al/lpl
f
at| oy oy

Zi [ KIS, -G, )e™™dk = 3 (A, + R, A, Jo, " sin(a, x)cosh(ez, h), (5.10)
T n-1

where - denotes differentiation with respect to time. After some algebra, Equation

(5.10) can be expressed into

-2 A srhla, )1 (snle -2 2y[1y( f)fi(?]zx>dx+

vfr [(Xl - )2 _Xyl] sm(amx)dx _ %(77'% IR, Aﬂ)ameamh COSh(amh)
yi +(x,

wherem=1, 2, 3, ...,
|, = cosla, x)[ci(e, x)—ci(e, (L — )]+ sin(e, x)[si (e, )+ si(a, (L - x))+ 7], and

n o . o
j Sl—tdt and ¢ —I %Stdt represent the sine and cosine integrals

respectively,. Inaddition, theintegral |, in Equation (5.11) can be further reduced to

73



azzimaz [ci(mz)—ci(n7z)] if m+niseven,m=n
: - L _
IO |, (x)sin(a, x)dx = 7+IO si( e, x)dx if m=n . (512)
0 otherwise

On the other hand, the longitudinal and transverse velocities of the vortex are

[Tang, 2001]:

6(1//2 ~G,eM y)(

l"Izl -

ay X=X, Y=Y1
(5.13)
1& o L (x, — x)cos(a, x) 1
== e’ sinh(a. h L Zdx+
I ()] oy Iy,
and
Vz]_ = - a(!//z _ Gze‘k‘y)|
OX
X=X, Y=Y1
(5.14)

2

18 o Ly, cos(a,X)
=—) a,AE™ sinh anh —= N7 dx
ﬂ'é Aj ( )jo (Xl_x)2+y1

The integrals in Equations (5.13) and (5.14) correspond to the flow field induced by

the normal fluid velocity at y = 0, 0 < x < L. Equations (5.13) and (5.14) can be
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coupled with Equation (5.11) to estimate the vortex position z and the mode
magnitude A,. Initial A,=0.
The streamfunction y, can be derived by the inverse Fourier transform of

Equation (5.5) together with the help of Equation (5.8):

L) n kL
(5.15)

1 —|k (x=x ) K|( y+y1 1 —|k (x=x J+{Kk|(y-y1) dk

4;;J | 47zI |

The flow potential can then be evaluated through the use of the Cauchy-Rieman

principle:

n kL
zz—zlanphean smh(a h)J. i(_ig#wiqe_kye_ikxdk

, (5.16)

_i 1 _|k (x=x - K|(y+y1) dk — ij‘w 1 e|k x=x HK|(y-y1) dk+C
wlk —ooik

where C is the integration constant. It can be shown that by observing the flow
potential vanishes when |z — «, C = 0. Using the formula tabulated in Gradshteyn

and Ryzhik [1980], the flow potential becomes

n ikl
:2_205 A€ sinh(eh)]” i—(_il € ietreak

(5.17)

+itan‘1 y_yl_itan—l Y+ ¥

2r X=X 27 X=X
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The integral term in Equation (5.17) represents the flow potential induced by the
porous material while the other is the flow potential induced by an infinite rigid

plane. Thefar-field inner potential at large |7 is

b, = _2 i iAhec‘"hsinh(aznh)—lrlsin@l @+O(r2), (5.18)
T a, /4 r

n=13,5,..

where (r1,6) is the polar coordinates of the inviscid vortex position and (r,6) is a
point in the flow field. Following the stepsin Chapter 3, the far-field sound pressure

p a large distance R is

1 1 6 tU—R/CO a 2 > 1 h - 1 .
== |— = —| = — A e“"snh(a h)+—r,sn8
P 7\ 2¢,R 8’[-[—“’ 87{7[,]:;3#-,”_,&“ A ( " ) Tt l}

, (5.19)

X de cosd

Jt,—7—R/c,

where the far-field sound pressure is normalized by po['/y:i? and it can be shown
from Equation (5.19) that the far-field sound pressure consists of longitudinal

dipoles.

5.3 Vortex Paths and Sound

In the present investigation, the far-field sound pressure is obtained at large r, and
the directivity of the sound pressure consists of longitudina dipoles only. The
vortex dynamics are obtained from the coupled Equations (5.11), (5.13) and (5.14)

with the appropriate number of mode A, and so is the far-field sound pressure in
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Equation (5.19). Ten termsfor A, are enough for areliable solution as the difference
of Py for 10-terms with that for 20-terms is already in the order of 10° [Figure 5.2]
while the maximum [P, for the 20-termsisin the order of 10° for L =2, h=2and 5
=5 at different R [Figure 5.3]. In the rest of this chapter, only results obtained with
10-terms for A, are presented.

For the case of an infinite rigid plane, the longitudinal and transverse

and

velocities of the vortex from Equations (5.13) and (5.14) convergeto u,, =
0

v, = 0. The inviscid vortex propagates with a constant velocity in the longitudinal
direction, and generates no sound. Py tendsto zero when =5 at large R; or large 7
= 100 at various Ry with fixed L = 2 and h = 2 [Figure 5.4]. The effective fluid
density or the flow resistance inside the lattice of the porous material is so large that
it has no effect on both the vortex dynamics and the sound pressure. Besides, the

mode magnitude A, for all n (n = 1to 10) tendsto zero.

5.3.1 Perfectly Invscid Fluid

For a perfectly inviscid fluid, the flow resistance vanishes (R = 0). Figure 5.4(a)
shows the effects of L and 7 for h = 2 on the vortex path. The vortex is initialy
located far away from the finite length porous material for L =1, n=3. Theinviscid
vortex experiences the pressure-releasing effect due to the porous material and bends
towards the porous material for -2 < x < 0.5. It gradually propagates back to its
original height for 0.5 < x < 2 due to the pressure-supporting effect of the rigid plane
ay=0,x>1 Thevortex path is symmetrical about the transverse axis at x = 0.5.
When the porous material is less pressure-releasing, less severe bending towards the

porous material is observed, and the vortex path converges to that under the infinite
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rigid wall condition for large 7. When the length of the porous material is increased
to 2 at n = 3, the degree of bending towards the porous material is more serious than
that for the case with L =1 and » = 3. This situation becomes more serious when the
length of the porous material is further increased to L = 10/3. It is due to the longer
duration of the interaction between the inviscid vortex and the porous material. The
vortex undergoes a substantial large rate of change of velocity by such prolonged
interaction [Figures 5.4(b) to 5.4(e)]. Here, t; denotes the time at which the vortex
passes across the leading edge of the porous material. The larger the value of 7, the
smaller the magnitudes of u, and v,;. The magnitudes of ux and v, increase with L
[Figures 5.4(b) and 5.4(c)]. One can also observe that the vortex accelerations are
increased by either decreasing 7 or increasing L [Figures 5.4(d) and 5.4(e)]. Figure
5.4(f) shows the time variation of the longitudinal dipole Py at a fixed h = 2. The
magnitude of Py increases as n decreases for L = 1 [Figure 5.4(f)] due to the
amplification of the vortex accelerations [Figures 5.4(d) and 5.4(e)], and Py
approaches zero for = 100. On the other hand, Px increases with L, and a longer
duration of active sound generation is also observed. It is due to the earlier
movement of the inviscid vortex and the longer duration under the influence of the
porous material.

At afixed L and » under various h, the inviscid vortex propagates in a path
closer to the porous material because of the stronger pressure-releasing effect of a
thicker porous material [Figure 5.5(a)]. The larger the value of h, the more serious
bending towards the porous material. The vortex motions are not affected by further
increasing h at afixed L =1 and 77 = 3. One can expect that this value of h increases
when either L increases or 7 decreases. The magnitudes of un, Vi and the

longitudinal and transverse accelerations increase at increased L [Figures 5.5(b) to
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5.5(e)], and an amplification of Py is observed as h increases [Figure 5.5(f)].
However, the amplitude of Py reachesits maximum at h ~ 1.

Figure 5.6 summarizes the effects of L, h and 7 on the generation of Py in a
perfectly inviscid fluid. In general, the amplitude of Py increases when L or h
increases. When h is small (h = 0.01), the influence of the porous material on the
vortex accelerations diminishes [Figures 5.5(d) and 5.5(e)], resulting in a lower
amplitude of Py [Figure 5.5(f)]. Increase in Py is concentrated from h = 0.1to 1
[Figures 5.6(a) and 5.6(b)]. The amplitude of Py is not affected much by further
increasing h. It is due to the pressure-supporting effect from the rigid wall at x > 1.
One can notice that Py increases for h > 1 when L = 2 and L = 10/3 [Figures 5.6(c)
and 5.6(d)]. For the effect of 7, a higher magnitude of Py is observed under a strong
pressure-releasing effect for small 7. The acoustical energy radiated in a perfectly
inviscid fluid exhibits similar pattern with the sound pressure presented in Figure 5.6

[Figure 5.7].

5.3.2 Combined Effects of n and Rs

When the flow resistance R is finite, the effective fluid density and the flow
resistance R inside the lattice of the porous material will produce pressure-releasing
and pressure-supporting effects respectively as shown in Chapters 3 and 4. Figure
5.8(a) shows their combined effects on the vortex motionfor L=1, h=1and =3
under various R.. The situation for the perfectly inviscid fluid (R = 0) is also shown
for the sake of comparison. For R; = 0.05, the vortex bends towards the porous
material at —2 < x < 0.5 because of the pressure-releasing effect, and then surfs up at
0.5 < x < 1.2 due to the presence of the rigid wall. At x > 1.2, the inviscid vortex

propagates in a path lower than the cases for the rigid wall condition and the
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perfectly inviscid fluid. Similar phenomenon was also observed in Chapter 3 that
the inviscid vortex will not resume its original height after interacting with the
porous half cylinder mounted on an otherwise rigid plane when R is small. In
addition, the vortex path is not symmetrical about x = 0.5. When R = 0.1, the vortex
propagates more closely to its original height at -2 < x < 1.2 but at x > 1.2, it till
bends towards the horizontal axis. This situation of the vortex path at x > 1.2 is
different once the flow resistance is increased (for instance, R = 1), the vortex path
gradually rises back to its initial height, and soon recovers to that under the rigid
wall condition for Rr = 10. At large Ry, the pressure-supporting effect is very strong
that it overcomes the pressure-releasing effect, A, tends to zero and becomes less
influential to the vortex velocity [Equations (5.13) and (5.14)] such that the path of
theinviscid vortex matches that for the rigid wall case.

Figures 5.8(b) to 5.8(e) show the corresponding time variations of vortex
velocity and acceleration for L = 1, h=1 and n = 3 with different R.. The magnitude
of ux increases as Ry increases from O to 0.1 [Figure 5.8(b)]. One can also notice
that such increase in uy is from x > 1.2 (The instant for t — t; > 20). However, un
decreases for 0.1 < Ry < 10 and matches the rigid wall condition when R = 10. The
magnitude of v, decreases with increasing R [Figure 5.8(c)]. The acceleration of
the vortex increases with decreasing R; [Figures 5.4(d) and 5.4(e)] though that of ux
does not. Figure 5.8(f) shows some examples of the time variation of Pxat L =1, h
=1and = 3 a various R. The amplitude of Py is maximum for the perfectly
inviscid fluid case, and decreases with increasing R.. The magnitudes of the first
crest and trough decrease while the magnitude of the second crest increases as R
increases from 0 to 0.1. When R > 1, the magnitude of Px decreases since the

magnitudes of vortex accelerations are lowered [Figures 5.8(d) and 5.8(¢)]. The
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properties of the porous material are dominated by the pressure-supporting effect at
increased Ry, and the sound radiation becomes very weak as Rr increases to 10.

Figure 5.9(a) shows the vortex dynamics for varioushand natL=1and R =
1. The smaller the value of 7, the greater the bending towards the porous material.
This serious bending in the vortex path is due to the strong pressure-releasing effect
at small n. The vortex path converges to that for the infinite rigid plane condition
for » = 100. Similar to the perfectly inviscid fluid case, the degree of bending
increases with increasing h, and the vortex motion is not affected by further
increasing h beyond 1. The effect of increasing h is similar to that of decreasing the
value of 7 (increasing the pressure-releasing effect) but the former one produces no
further effect on the vortex dynamics at large h. The effects of varying h and 7 on
the vortex dynamics are similar to those presented in the perfectly inviscid fluid case
[Figures 5.4(a) and 5.5(a)]. Figure 5.9(b) shows the time variation of Py with
different h and . The magnitude of Px decreases when h decreases or 7 increases.
When h increases, the pulse shape of P, shifts upwards, and the magnitude of Py
increases.

Figure 5.10(a) shows the effect of L at h =2 and r = 5 for various R; on the
vortex dynamics. When the flow resistance is fixed at R = 2, the vortex propagates
in a path closer to the porous material with alonger L. The same is true for a fixed
Rq with different L. When L increases to 10/3, the variation of the vortex dynamics
[Figure 5.10(a)] and the vortex velocity [Figures 5.10(b) and 5.10(c)] are similar to
those presented in Figure 5.8. However the longitudinal acceleration of the vortex
increases as Ry increases from O to 0.45 and then decreases again upon further
increase in Ry, while the transverse acceleration decreases at increased Ry [Figures

5.10(d) and 5.10(e)]. When the length of the porous material is increased to 10/3, the
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small flow resistance inside the porous material increases the vortex acceleration when the
vortex propagates over x = 1 and x = 10/3. This is due to the bigger impedance mismatch

between the junction of the rigid wall and the porous material at small R. One can expect
that the magnitude of P, decreases with increasing R; [Figure 5.10(f)].

The magnitude of Py at different L, h, 7 and Ry is summarized in Figure 5.11.
For L = 1 [Figure 5.11(a)], an increase in the thickness h of the porous material
increases the magnitude of Py, but the magnitude of Py is not affected by further
increasing h beyond 1. The thickness h does not affect very much the vortex
dynamics [Figure 5.9(a)] and the vortex accelerations [Figures 5.9(d) and 5.9(e)].
The magnitude of Py is higher for n = 3 than that for = 5, and it decreases more
than two orders as Ry increases from 0 to 100. A more rapid decrease in Py is
observed from R = 0 to Ry = 10 when L is small. The magnitude of Py increases
when L increases from 1 to 2 [Figure 5.11(b)] for a fixed » and Ri[Figure 5.11(a)].
The vortex propagates with substantial large vortex acceleration [Figures 5.2(d) and
5.2(e)] under the pressure-releasing effect of the porous material, resulting in an
amplification of Py. It is the consequence of the longer duration of the interaction
between the inviscid vortex and the porous material. Comparing the thickness of the
porous material at L =1 and L = 2, an increase of the magnitude of Py is observed for
h deeper than 1. One can also expect that the variation of Py for L = 10/3 is similar
tothosefor L =1 and L = 2 [Figures 5.11(b) and 5.11(c)], but the magnitude of Py is
not lowered when R; increases [Figure 5.11(c)]. It may be due to the fluctuation of
the vortex acceleration at different Ry [Figures 5.10(d) and 5.10(e)]. The magnitude
of Py decreases as R increases from 0 to 0.09 and increases dightly for 0.09 < R <

0.45. It converges to that under the rigid wall condition for Rr > 10. The
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corresponding sound energy radiation is shown in Figure 5.12. The energy variation

pattern is similar to those presented in Figure 5.11.

54 Summary

The vortex sound generation in the presence of a piece-wise porous material on an
otherwise infinite rigid plane is studied. The configuration is analogous to the
boundary of a dissipative silencer or a lined duct. The streamfunctions inside the
fluid medium and the porous material are derived, and the coupled equations of the
vortex motions are evaluated by matching the continuity of pressure and normal
fluid velocity at the interface of the fluid medium and the porous material. The
standard fourth order Runge-Kutta method is used to solve the coupled equations.
The far-field sound pressure is evaluated by the method of matched asymptotic
expansions.

When an inviscid vortex engages a finite length porous material, the sound
pressure radiated consists of longitudinal dipoles, and the time variations of the
longitudinal dipoles are pulse-like. The vortex generates no sound when the length
or thickness of the porous material is small such that the presence of the porous
material does not affect the vortex acceleration. The sound pressure increases as the
effective fluid density decreases because of the strong pressure-releasing effect of
the porous boundary. It decreases when a finite flow resistance exists inside the
porous material. However, the magnitude of the sound pressure does not decrease
monotonically with increasing flow resistance when the length of the porous material
increases. The value of this sound pressure converges to that for the rigid wall
condition when the flow resistance is large. One can aso conclude that the
magnitude of the sound pressure is higher when the flow resistance vanishes. The

effect of thickening the porous material is similar to that of lengthening it except that
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an increase in the sound pressure with increasing flow resistance is not observed. A
thicker porous material produces a stronger sound but the sound magnitude has an
upper bound as the vortex motion will not be affected by further increasing the

thickness at a specified length of the porous material.
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Chapter 6: Vortex Sound Generation in a Lined

Duct

6.1 Introduction

We show in Chapter 5 that the sound pressure generated under the influence of a
piece-wise porous material on an otherwise infinite rigid plane consists of
longitudinal dipoles. The sound pressure increases by either increasing the length or
the thickness of the porous material. Also, the sound pressure magnitude increases
under the influence of a pressure-releasing surface. The situation in Chapter 5 of an
inviscid vortex interacting with a finite length porous material on an otherwise
infinite rigid plane is analogous to the case near the boundary of a lined duct. The
focus in Chapter 5 is extended to model the vortex sound generation in a lined duct
in this chapter. The effects of the length, thickness, effective fluid density and flow
resistance of the porous material are examined. The effect of initial vortex height is

also discussed.

6.2 Theoretical Development

An inviscid vortex with circulation T" located at z;; moves inside a lined duct as
shown in Figure 6.1. The length and the thickness of the porous material are
denoted by L and h respectively, while d denotes the width of the air duct. Also, all
the length scales, the time and the flow resistance of the porous material in the

present study are normalized by d, d/T" and poI'/d? respectively.
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The analysis is started by deriving the streamfunction in the flow and porous
regions as in Chapter 5. The streamfunction in the fluid region for 0 <y <1 satisfies
Equation (5.1), while the streanfunction y (0 < X< L,-h<y<0)and yp, (0 <x<
L, 1 <y <1 + h) within the porous materials satisfy Equation (1.10). Thus, one can
substitute the boundary condition [Equation (5.3)] of the porous materials into the
solution of Equation (1.10). The streamfunction y (0 < x< L, -h <y <0) is the

same as that shown in Equation (5.4), while the streamfunction y, (0 <Xx<L,1<y

<1+h)is
Vo = i B,e“ ™ sin(a, x)sinh[a, (1+h—-y)], (6.1)
n=1

where o, =nzlL and n=1, 2, 3,... and B, is the mode magnitude.
Through the application of continuity of normal fluid velocity aty =0, 0 < x

<Landy=1, 0<x<L, one obtains from Equation (5.5),

© n kL

G, = a, A sinh(anh)% G, (6.2)
n=1 — U,

and
0 n _ikL

H,=> a,Be""" sinh(anh)(_iZ—ea;lék —H,e™. (6.3)
n=1 — Uy
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In this case, H, # 0. Substitute yp [Equation (5.4)], wpu [Equation (6.1)] and
[Equation (5.5)] into the continuity of pressure at the boundary [Equation (5.9)], y =

0,0<x<Landy=1,0<x<L:

Zir |k|(('3-2 -G, )e‘”‘xdk = i(ﬂ& +R, Aj)ane""“ sin(a, x)cosh(e, h), (6.4)
VA )

and

%fJM(Hzék ~H,e’™ )E_ikxdk— Z(nB + R, B, Ja, & " sin(ar, x)cosh(er,h) . (6.5)

n=1

The longitudinal and transverse velocities of the vortex are [Equations (5.13)

and (5.14)]:

1
Uy = Z COt(ylﬂ')

)" cos[k(L — x, )] cos(kx, ) k cosh[k(y, _1)]dk, (6.6)
K —a sinh k

- e”" sinh( hw
”;aﬁh a .([

+lian8ne“n(“h) sinh(anh)J' ~1)" coslk ('; - Xlz)]_cos(kxi) kCO_Sh(kyl)dk
0 K®—a, sinh k

and

1)"sin[k(L - xi)]+sm(kx1) ksinh[k(y, —1)]dk

1 h 0
=— e smh h
Va = 2 A sinh(e, l

5 ;
) k —a S|-nhk (67
_lz l+h Slnh 0[ hJ. Sln[k I; X )]+S|n(kxl) kSInh(kyl)dk
Ty 5 k? —af sinh k
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respectively. The first term in Equation (6.6) is equivalent to an inviscid vortex
moving inside a rigid air duct with a constant velocity, and the integrals in Equations
(6.6) and (6.7) correspond to the flow fields induced by the normal velocity aty = 0,
0<x<Landy=1,0<x<L (porous material/fluid interfaces). Thus, the path of the
vortex can be obtained by integrating the coupled Equations (6.4) to (6.7)
numerically using the standard fourth order Runge-Kutta method.

The flow potential of an inviscid vortex can be evaluated through the use of

Cauchy-Rieman principle with Equation (5.5),

6, =— 21 (|k|G e +|KG,e")e™™dk +C, (6.8)
Y/

where C is the integration constant. It can be shown by observing the flow potential

tends to (1 — y1)/2 when |[x| »> «othat C = 0. Equation (6.8) becomes

¢, = L tan ‘{tan - y12+ y)e tanh (x _2X1 )ﬂ}

27

L [tan i ylz_ Y tanh (x _2X1 )71

27

: (6.9)
n+1S|n[k x— L)]+sin kx cosh[k(L - y)] dk

—al sinh k

0 n+1
o, B e sinh(anh)_[ 1) sm[l;(x L)]+sm lox cosh ky
5 k sinh k

J’_

Nk N[k
NN

>S5
[
N

a, Ae™" sinh(a h.[
0

The integral terms in Equation (6.9) together represent the flow potential
induced by the porous material while the remainder implies the flow potential due to
the infinite rigid duct. Using the formula tabulated in Gradshteyn and Ryzhik

[1980], the far-field inner potential at large |X] is
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bo-Laoy)e Sloeon - agefimied) 610
a

n=1,3,5... n

and the far-field outer potential can be obtained by the matched asymptotic method

as in Chapter 3:

R t
. _ir 1(1— y)+ > [Bne“"(”“) —A]e"’"“]M e dew, (6.11)
,3,0... a

n

where []' denotes the Fourier transform with respect to time. Thus, the far-field

pressure is evaluated through the use of Equation (1.8):

p=—ia(t—l] , (6.12)

where azzi{%(l— Y, )+ i[Bne“"(“h)—Aje“"“]M} and the far-field
a

T n=13,5... n
sound pressure is normalized by p.I'’/d®. Equation (6.11) shows that a plane

acoustic wave is generated under the influence of the porous material inside the lined

duct.

6.3 Vortex Paths and Sound

In Chapter 5, we show that the far-field sound pressure is not affected much by the
presence of higher order modes inside the porous material. In this chapter, the mode

magnitude A, and By, are calculated up to 5-terms each as the difference of p obtained
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from a 5-terms truncation with 10-terms truncation is in the order of 10” while the
maximum of p for the 10-terms calculation is in the order of 10 for yy; = 0.2, L = 2,
h = 0.2, n = 3 with various R. The vortex is initially located at far away from the
porous material, and the vortex height is set to be y;; = 0.2 or 0.3 such that the vortex
propagates in the positive x-direction. The contribution from the upper part of the
porous material is less than that from the lower part. When the vortex is initially
located at the centreline of the air duct, it will remain stationary in the original
position and generates no sound. When y;; > 0.5, the vortex propagates in the
negative x-direction with constant velocity so that the porous material does not affect

the vortex motion.

6.3.1 Perfectly Invscid Fluid

For a perfectly inviscid fluid, the flow resistance R; = 0. Figure 6.2(a) shows the
vortex path with different hand 7 at fory;;=0.2andL=1. Forh=0.2 and n =3,
the vortex propagates towards the porous material (0 <x<1and -0.2 <y<0) with a
minimum vortex height of y ~ 0.14 (x ~ 0.52) due to the pressure-releasing effect of
the porous material. The vortex moves upwards for 0.52 < x < 1.4 under the
influence of the pressure-supporting effect of the rigid wall beyond x = 1. The loss in

symmetry is due to the pressure-supporting effect from the rigid wall at the downstream

section when the vortex propagates across the porous material. One can notice that the
larger the value of 7 (77 = 5), the less severe the vortex will bend towards the lower
porous material. When h increases to 0.4 with 7 fixed at 3, the vortex experiences a
stronger pressure-releasing effect by the lower porous material and propagates closer
to its surface. This situation becomes more serious when his increased further. One

can expect from Figure 5.5(a) that the vortex motion becomes independent of h

90



when h is large. Unlike the vortex paths for a perfectly inviscid fluid in Chapters 3
and 5 [Figures 3.3(a) and 5.4(a)], the vortex paths are not symmetrical about x =
0.5L in the present situation, and the vortex will not propagate back to its initial
height after interacting with the porous material.

Figures 6.2(b) and 6.2(c) show the corresponding longitudinal and transverse
velocities of the vortex. The longitudinal and transverse velocities of the vortex are
1/4cot(y; z) = 0.34 and 0O respectively when the vortex is located at y;; = 0.2 and is far
away from the porous material [Equations (6.6) and (6.7)]. Relatively large change
in the vortex velocity is observed when the vortex propagates over the porous
material, suggesting significant sound generation [Powell, 1964; Tang and Ffowcs
and Williams, 1998]. The magnitude of the vortex velocity increases at a decreased
n due to the strong pressure-releasing effect. The increase in h also results in a
significant change in the vortex velocity. The time variation of the corresponding
vortex acceleration is shown in Figures 6.2(d) and 6.2(e).

The time variation of the sound pressure is shown in Figure 6.2(f). The
sound pressure is pulse-like. The first crest and trough of the sound pressure
increase with increasing h or decreasing 7 for y;; = 0.2 and L = 1. However, the
amplitude of p reaches a maximum value at h ~ 0.8. Similar observations are also
found in Chapter 5 [Figure 5.5(f)].

When the length of the porous material is increased from 1 to 2 with y;; = 0.2,
n =3 and h = 0.2, the vortex propagates in a path closer to the porous material
[Figure 6.3]. The vortex bends towards the porous material with either increasing h
or decreasing 7. The velocity and the acceleration of the vortex are similar to those

presented in Figures 6.2(b) to 6.2(e) [Figure 6.4] except that more fluctuating peaks
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are found in their transverse components. The magnitudes of the vortex velocity and
acceleration increase with increasing h or decreasing 7.

When yi; increases to 0.3 with L = 1, the vortex experiences the effect of the
porous material earlier, and the degree of bending of the vortex path towards the
porous material is higher than that in the case of y3; = 0.2 [Figure 6.2(a)]. It is also
noticed from Figure 6.3 that the vortex paths are not symmetrical about x = 0.5L for
L=1

Figure 6.5 shows the time variation of sound pressure corresponding to the
vortex path shown in Figure 6.3. The duration of active sound generation is
prolonged, and the magnitude of p increases as L increases with y;; = 0.2, h=0.2 and
n = 3 compared with the sound pressure p for L = 1 [Figure 6.2(a)]. More crests and
troughs are found, and the magnitude of p increases when h is increased to 0.8 with
yii = 0.2, L =2 and n = 3. The magnitude of p decreases as the porous material is
less pressure-releasing (7 = 5). The magnitude of p decreases with increasing vy,
but the pulse shape of p is similar to the case of y;; = 0.2 [Figure 6.2(f)]. The
magnitude of p increases when h is increased further to 0.4 while it decreases when

77 Increases.

6.3.2 Combined Effects of 7 and Ry

Figure 6.6(a) shows the vortex path when y;; = 0.2, h=0.2, =3 and L = 1 with
various R. The vortex path for R; = 0 is also shown for the sake of comparison.
When R = 0.5, the vortex bends away from the porous material for 0 < x < 0.6
because of the pressure-supporting effect and then propagates towards the x-axis for
x> 0.6. The vortex path for R = 0.5 is different from the case in a perfectly inviscid

fluid. The degree of bending away from the porous material (0 < x < 0.6) and that
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towards the x-axis (x > 0.6) becomes serious when R is increased to 3. The
minimum vortex height y; ~ 0.1 at R = 7. After reaching the minimum vortex height,
the vortex bends away from the porous material at increased R = 30, and the vortex
moves in the horizontal direction with constant speed for large Ry (for instance, Ry =
100).

Figures 6.6(b) and 6.6(c) show the corresponding time variations of the
vortex velocities. One can observe that the longitudinal velocity of the vortex
increases as R; increases from 0 to 7 and then decreases again for R > 7. The initial
longitudinal velocity is different from the final velocity after interacting with the
porous material because of the lower vortex height at x > 2. The transverse velocity
of the vortex decreases at increasing Ry and tends to its theoretical value of zero for

R = 100 [Equation (6.7)]. The flow impedance of the porous material depends on the R,
m and the speed of the vortex. These three parameters also affect the duration of influence
of the porous material on the vortex motion. In addition, the flow impedance seen by the
vortex varies as it approaches the porous material. Therefore, the final height and velocity

of the vortex do not vary monotonically with R even when miis fixed. Figures 6.6(d) and
6.6(e) show the effect of R on the time variation of the vortex acceleration. One can
observe that the magnitude of the acceleration fluctuates seriously, and the
maximum acceleration occur at t — t; ~ 2 for 0.5 < Re < 7 during which the vortex is
under the influence of the porous material. Louder sound radiation is thus expected
[Figure 6.6(f)] at Ri = 7.

Figure 6.7 shows some examples of the vortex paths at different R.. Figure
6.7(a) shows the vortex path for y;; = 0.2, h=0.4, =3 and L = 1 with various R.
The vortex propagates towards the porous material more seriously compared with

the vortex paths shown in Figure 6.6(a) as a strong pressure-releasing effect is
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produced by a thicker porous material. The vortex moves away from the porous
material for 0 < x < 0.6 as R increases from 0 to 7. For x > 0.6, the vortex
propagates towards the rigid surface and reaches a constant vertical height after
interacting with the porous material. When the flow resistance is greater than 7, the
vortex propagates away from the porous material and moves in the horizontal
direction with constant speed when Ry is further increased. The vortex dynamics
with various Rs are similar to those presented in Figure 6.6(a) when h=0.2. When n
increases from 3 to 5 with y;; = 0.2, h=0.2 and L = 1 [Figure 6.7(b)], the vortex
moves away from the porous material due to the presence of a less pressure-releasing
surface. One can expect that an increase in yi; or L will cause the vortex to
propagate with a higher degree of bending towards the porous material, and the
corresponding sound pressure is shown in Figure 6.8.

Figure 6.9(a) illustrates the dependence of the sound pressure magnitude on
the flow resistance with y;; = 0.2 and L = 1 with various h and 7. The magnitude of
p does not vary much as Ry increases from 0 to 1. An increase in p is observed for 1
< R < 10 due to the substantial large rate of change of the vortex velocity [Figures
6.6(d) and 6.6(e)]. A general decrease of the magnitude of p follows when R is
increased further. For h=0.2 and n =5, the magnitude of p is lower than that for
= 3 as a less pressure-releasing surface is experienced by the vortex, and the porous
material becomes acoustically hard for large 7 (for instance, = 100). At the same
time, the sound pressure p also decreases with decreasing h. One can observe that
the magnitude of p reaches its maximum value at h ~ 0.8 [Figure 6.9(a)], and similar
finding is also reported in Chapter 5 [Figure 5.6].

Figure 6.9(b) summarizes the sound pressure magnitude p against the flow

resistance Rr when yi; increases to 0.3 for L = 1 with various hand 7.  The variation
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of p with different Ry is similar to those presented in Figure 6.9(a). The amplitude of
the sound pressure p is approximately constant for small R < 1, it then increases with
R for 1 < R < 10. It will approach its theoretical value (p = 0) for large R.. For y;; =
0.3, the effect of increasing h or decreasing 7 provides a stronger pressure-releasing
effect as suggested in Figure 6.9(a) [Figure 6.9(b)]. One can notice that the
magnitude of p is lower than that in the case for y;; = 0.2. When L increases from 1
to 2 at a fixed y,; [Figure 6.9(c)], the magnitude of p is greater than that in the case
for L = 1 [Figure 6.9(a)]. Though an increase in y;; with L = 2 results in a lower
magnitude of p, its magnitude is higher than that in the case for L = 1 and y;; = 0.3
[Figure 6.9(b)].

Figure 6.10 summaries the acoustical energy radiated with various flow
resistance. When y;; = 0.2 and L = 1, the acoustical energy E radiated increases as 7
decreases or h increases [Figure 6.10(a)], while it tends to zero when 7 is large (for
instance, 7 = 100). The acoustical energy E first decreases when Ry increases from 0
to 1 and then increases for 1 < R < 10. The magnitude of E drops as R increases
towards 100. When y;; increase to 0.3 at a fixed L, the variation of E is similar to
those presented in Figure 6.10(a) [Figure 6.10(b)]. One can notice that the variation
of E is not so significant when yj; increases. From Figure 6.9(c), one can expect that

the acoustical energy radiated increases as L increases [Figure 6.10(c)].

6.4 Summary

In this chapter, the vortex sound generation inside a lined duct is investigated. The
method employed in Chapter 5 is applied. The far-field sound pressure generated is
in form of a plane acoustic wave, and the time variation of the sound pressure is

pulse-like. The vortex with an anti-clockwise circulation propagates towards the
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lower porous material in a perfectly inviscid fluid if the vortex is initially located
below the centreline of the duct. Active sound generation is observed when the
vortex interacts with the porous material due to the substantial large rate of change
of the vortex velocity. The sound pressure can be increased by either increasing the
length, the thickness or decreasing the effective fluid density of the porous material.
When a finite flow resistance exists inside the porous material, the sound
pressure and the acoustical energy radiated first decrease when the flow resistance
increases from zero and then increase when the flow resistance increases from one to
ten. The sound pressure and the acoustical energy radiated drop rapidly when the

flow resistance is large.
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Chapter 7: Conclusions and Recommendations

for Future Work

7.1 Conclusions

In the present study, the vortex sound generation due to the presence of porous
materials is investigated theoretically. Porous materials are commonly used inside
the dissipative duct silencers for attenuating noise. The present study deals with the
problem of self-noise generation from the porous materials. Chapter 2 describes
how two vortices interacting with a rigid circular cylinder to produce sound while
the subsequent chapters describe the sound generation under the influence of the
porous materials.

In Chapter 2, two vortices in the proximity of a rigid circular cylinder are
investigated. When the separation of the vortices is small or when the vortices are
far away from the cylinder, the radiated dipoles consist of low and high frequency
components. The former is due to the interaction between the vorticity centroid of
the two vortices and the cylinder, while the latter one is due to the mutual induction
between the vortices. The radiated dipoles are much stronger when the vortices are
close to each other or are in acloser proximity of the circular cylinder. However, the
amplitude of radiated dipoles reaches a minimum at a critical vortex separation and
increases again.

When one of the vortices is considerably stronger than the other, the stronger
vortex dominates the fluid mechanics and the acoustics. Low and high frequency

components are observed in the dipole time fluctuation. However, the contribution
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from the weaker vortex results in an amplitude modulation pattern in the high
frequency fluctuations. The strength of such modulation becomes weaker when the
circulation of the weaker vortex is reduced.

Chapter 3 studies the interaction between vortices and a porous half cylinder
mounted on an otherwise rigid plane. Unlike the case of a rigid half cylinder, the
presence of a porous one results in the co-existence of the longitudinal and
transverse dipoles. When a single vortex engages the porous half cylinder, the time
variation of the strength of each dipole is pulse-like. Its amplitude increases as the
effective fluid density decreases. The amplitude of the longitudinal dipole converges
to that for the rigid half cylinder case when the flow resistance is large, but is larger
than the latter at small flow resistances. The larger the initial vortex height above
the rigid plane, the lower the amplitude of the dipole. The overall acoustical energy
radiated remains higher than that for the rigid haf cylinder case a some
combinations of the effective fluid density and flow resistance.

When two identical vortices exist in the proximity of the porous half cylinder,
both the longitudinal and transverse dipoles contain low and high frequency
components. The former is due to the macroscopic vortex centroid motions and the
latter to the leapfrogging motions of the vortices as in Chapter 2. When the vortices
are close to each other, the overall acoustical energy radiated is less than that in the
rigid half cylinder case and the dipoles are dominated by the high frequency
fluctuation. The opposite is found at larger vortex separation for al effective fluid
density and flow resistance studied. When the vortex strengths are different, the
acoustical energy radiated is higher when the difference in the vortex strengths

increases.
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In Chapter 4, the vortex sound in the presence of a wedge is studied. The
wedge consists of two materials. One of the materials is assumed porous while the
other is rigid. The far-field sound pressure is a pulse whose magnitude decreases
with increasing wedge angle. The rate of decay of the pulse increases as the wedge
angle increases. When the wedge angle is fixed, the magnitude of the sound
pressure decreases as the solid surface becomes more acoustically hard by either
increasing the effective fluid density or the flow resistance of the porous wedge.

In a perfectly invsicd fluid medium, a finite effective fluid density deflects
the radiation directivity towards the porous surface. The extent of such deflection
increases with increasing effective fluid density but the rate of decay of the sound
pressure with distance from the edge is lower if the effective fluid density is reduced.
When the fluid possesses non-vanishing viscosity, the directivity and the rate of
decay of the sound in the leading order of magnitude are the same as those with hard
surfaces, regardless of the magnitude of the flow resistance.

Chapter 5 discusses the vortex sound generation in the presence of a piece-
wise porous material on an otherwise rigid plane. The sound radiated consists of a
longitudinal dipole, and the time variation of the longitudinal dipole is pulse-like.
The amplitude of the dipole increases as the effective fluid density or the flow
resistance of the porous material decreases. The opposite is found when the length
or the thickness of the porous material is reduced for all effective fluid density and
flow resistance studied. When the flow resistance is large, the vortex generates no
sound. The amplitude of the longitudinal dipole increases when the length of the
porous material increases and does not decrease monotonically with increasing flow
resistance. The sound pressure magnitude matches that for the case of a rigid wall

for alarge flow resistance.

99



Chapter 6 extends the study of Chapter 5 to investigate the vortex sound
generation inside a lined duct. The far-field pressure generated is a plane wave and
is pulse-like. The sound pressure increases when the length or the thickness of the
porous material increases. On the contrary, the sound pressure decreases as the
effective fluid density increases. With a finite flow resistance, the amplitude of the
sound pressure converges to that for the case of a perfectly inviscid fluid when the
flow resistance is small. The variations of the sound pressure magnitudes at various
flow resistance are similar to those presented in Chapter 5. The sound pressure

magnitude does not decrease monotonically with increasing flow resistance.

7.2 Recommendations for Future Work

The present study focuses on the vortex sound generation under the influence of a
porous materia theoretically. There are two folds which can be dealt with in the

future (i) theoretically and (ii) experimentally.

7.2.1 Theoretical Development
The mean flow effect is excluded in the present study because it is expected to
produce amplification to a sound field. The mean flow effect can be added in the
future study as in Tang and Ffowcs Williams [1998]. Other than the mean flow,
vortex shedding is found when a fluid flows over an obstacle, an area change, an
edge and etc because of flow separation [Davies and Ffowcs Williams, 1968], the
effects of the shed vortices from the porous material should be investigated.

The introduction of the porous material will affect the boundary layer and
vortex shedding, eventually the sound radiation. Kutta-condition can be imposed

when the fluid flow interacts with a porous edge [Howe, 1999]. Instability waves or
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gust [Glegg and Jochault, 1988; Peake and Kerschen, 1997] can be studied instead of
the discrete vortices because the waves may be a better representation of the
turbulence than the discrete vortices, especialy in the proximity of a solid surface.
The flow geometries in the present study are ssimple. The effect on sound
generation of the elliptical porous cylinder and the half porous cylinders mounted on
the two sides of air duct can aso be studied. Numerical conformal mapping can be
employed to deal with complicated geometry like the dissipative silencer with
severa splitters. Such investigations can provide practical information on the self-

noise generation.

7.2.2 Experimental Investigation

Experimental investigation can be taken to study the self-noise generation. The
measurement should be carried out inside a wind tunnel, and the air supply system
should provide a steady flow. Hot-wire is recommended to obtain the information of
the flow field. It can be used to analyze the free stream turbulence level, which has
significant effects on the vortex shedding and boundary layer development on the
solid surfaces. The turbulence level should be measured.

The wall pressure spectrum across the porous material can be measured by
the wall pressure sensor. It can be used to evaluate the boundary layer development
and the force acting on the porous material. The wall pressure sensor should also be
mounted on the rigid duct wall in order to study how the wall pressure changes
across the porous material.

The transmission loss in the presence of different mean flow conditions with
and without the porous material in an air duct should be studied. It can indicate the

performance of the porous material in dissipating sound energy under various flow
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conditions. The transmission loss across the lined duct can be measured by the four-
microphone method. The collected data on the self-noise generation can be
correlated with the turbulence level, wall pressure spectrum, transmission loss and
mean flow. The obtained data will demonstrate how the turbulence interacts with
the porous material to radiate noise, and how the turbulence lowers the sound

absorption performance of the porous material.
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Figure2.1  Schematics diagram of two rectilinear vortices in the
proximity of arigid circular cylinder.
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Figure2.2  Paths of vortices at small ¢ and large z. Cylinder
surface;, — —— — vorticity centroid; — - — z; — -~ — 2; Arrows direction of
motion. z; = (-2.1,0),2zi=(-1.9,0), /1= 7,=05.
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Figure 3.3 Effect of pressure-releasing surface on vortex motion,
velocity, acceleration and sound generation. (a) Vortex path; (b) Longitudinal
velocity; (c) Transverse velocity; (d) Longitudinal acceleration; (e) Transverse

acceleration; (f) Sound pressure.—-—n=3; - ——-n=5, ———n=10; ——
rigid half cylinder. Initial z;; = (-10, 0.5).
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Figure 3.4 Combined effects of effective fluid density and flow resistance
on the vortex path. (a) 7 =>5. - Ri=0; —+-—R;=0.1;, — - —Rf=05; ———
Ri=1, ———R;=10; rigid half cylinder; (b) Ry=5.—-—n=3; —
—n= 10 - ——n=100; ———n = 1000; rigid half cylinder; (c) n=
1.5, e =0; —-—R¢=0.1; — - —R;=0.5; ————R; = 10; : rigid

half cylinder. Initial location of the vortex at x;; = —10 and y;; = 0.5.
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Figure 3.6 Effects of flow resistance on vortex acceleration. (a)
Longitudinal acceleration; (b) Transverse acceleration. ------- Ri=0; —+—Rf=
0.001; —-—R¢=0.1; - ———Rf=1; ———R; = 10; ———rigid half cylinder.
Initial z;; = (-10, 0.5), n =5.
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Figure 3.10 Time variation of far-field directivity. (a) t, — ta — R/c, =
-16.14; (b) t, — ty — R/c, = —6.76; (C) t, — ta — R/c, = 13.86; (d) t, — ta — R/c, = 53.86.
— — — negative sound pressure; positive sound pressure. Initial z;; =
(<10, 0.8), n=1.5and Rt = 0.5.
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Figure 3.11 Unsteady leapfrogging motions of two identical vortices near
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Figure 3.13  Time variation of vortex velocity and acceleration at £ = 0.8
in the presence of a rigid half cylinder. (a) Longitudinal velocity; (b) Transverse

velocity

; (¢) Longitudinal acceleration; (d) Transverse acceleration.

Zy, —-

—12,. Zginitially located at (-10, 0.5), /1 =7, =0.5.
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Figure 3.15 Time variation of longitudinal dipole magnitude at different

separation distance in the presence of a half rigid cylinder. (a) ¢ = 0.2; (b) £ = 0.8;

(c) e=1.6.

Equivalent single vortex results; — - —two interacting identical

vortices results. z initially at (-10, 0.5), /7 = 73 =0.5.
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Figure 3.16  Paths of two interacting vortices for perfectly inviscid fluid
cases. (a) =04, n=5; (b) ¢=04, n=2; (c)g—08 n=5——m—zn;, — —
Zo; Z.. Zginitially at (<10, 0.5), 71 =73 =0.5.
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Figure 3.17 Combined effects of effective fluid density and flow resistance
on the vortex paths. (a) 7 =5, Ry=10; (b) =5,Rr=1; (c) =5, Rr=0.1;(d) n=
3, Re=01 ———179; — - —12p; ———7.. Initial z;; = (-10.2, 0.5), initial zy; =
(-9.8,0.5), 1=7,=05¢£=04.
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Figure 3.18 Time variation of vortex velocity and acceleration at 7 = 5
and Rf = 0.1. (a) Longitudinal velocity; (b) Transverse velocity; (c) Longitudinal
acceleration; (d) Transverse acceleration. 21, — - —12. Zg initially located
at(-10,0.5), 71 =7,=0.5, = 04.

142



Longitudina Velocity

Transverse Velocity

Longitudinal Acceleration

Transverse Acceleration

Flight Timet - t,

Figure 3.19 Time variation of vortex velocity and acceleration at 7 = 5
and Ry = 1. (a) Longitudinal velocity; (b) Transverse velocity; (c) Longitudinal
acceleration; (d) Transverse acceleration. 21, — - —12. Zg initially located
at (-10,0.5), /1 =73=0.5,£=0.4.
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Figure 3.20 Time variation of vortex velocity and acceleration at 7 = 5
and Rf = 10. (@) Longitudinal velocity; (b) Transverse velocity; (c) Longitudinal
acceleration; (d) Transverse acceleration. 21, — - —12. Zg initially located
at(-10,0.5), 71 =7,=0.5, = 04.
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Figure 3.21 Examples of time variation of dipole magnitudes at finite
effective fluid density and flow resistance. (a) Px, ¢ = 0.4; (b) Py, €= 0.4; (c) Py, 6=
08; (d) Py, e=08 — - —R;=0.1; ———Ri=1; Ri = 10; — -~ —rigid
half cylinder. Initial z;; = (-10, 0.5), /1 = 7, =0.5.
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Figure 3.22 Amplitudes of the dipoles produced by two interacting
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— — —Pxfor n =5, Rt = 0;
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Closed Symbols for Py, open symbols for Py. Initial z; = (<10, 0.5), /1 = 75 =0.5.
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Figure 3.24 Paths of two interacting vortices with different vortex
strengths near a rigid half cylinder. (a) e=0.4, /1 =0.6, 7 =04; (b) ¢=04, 71 =

08,7/2=02;(c)¢=08,71=06,7/2=04 ———723; — - —12;

— .

148



Longitudina Velocity

Transverse Velocity

Longitudinal Acceleration

Transverse Acceleration

with different vortex strengths in the presence of a rigid half cylinder.

-0.6

I 1 T
; I . ) ©) .
v h J . g ,\ f\ i I o Iy 5L VA
M AS P AN AN Npgt a2 ~io el
A AN YA A A
| i . .
LA A A ATV ni Vil [ 1V - AL
v ’ lv'v v ', % ! \'j |lll lf y o \\' Vo lv~ 4 I ‘Jv \
! I

40

Flight Timet - t,

Figure 3.25 Time variation of vortex velocity and acceleration at £ = 0.4

(@)

Longitudinal velocity; (b) Transverse velocity; (c) Longitudinal acceleration; (d)

Transverse acceleration.

21, —-—12. 11=06,7/,=04, ¢=0.4.
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Figure 3.26  Time variation of vortex velocity and acceleration at £ = 0.4
with different vortex strengths in the presence of a rigid half cylinder. (a)
Longitudinal velocity; (b) Transverse velocity; (c) Longitudinal acceleration; (d)
Transverse acceleration. 2;;, —-—12. [1=08,72=0.2, £=0.4.

150



Longitudinal Velocity

0.4
0k ' ' ! () ]

Transverse Velocity

Longitudinal Acceleration

0.20
0.15
0.10
0.05
0.00 &
-0.05
-0.10

_0.15 I I I
-40 -20 0 20 40

Transverse Acceleration

Flight Timet - t,

Figure 3.27  Time variation of vortex velocity and acceleration at ¢ = 0.8
with different vortex strengths in the presence of a rigid half cylinder. (a)
Longitudinal velocity; (b) Transverse velocity; (c) Longitudinal acceleration; (d)
Transverse acceleration. 7y, —-—12. [1=06,72=04,£=0.8.
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Figure 3.28 Time variation of longitudinal dipole magnitude at different
separation distance and vortex strengths in the presence of a rigid half cylinder. (a)
e=04,11=06,72=04;(b) c=04,71=08,72=0.2; (c) =08, I1 =0.6, I
= 0.4. —— Equivalent single vortex results; — - — two interacting vortices
results.
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Fgiure 3.29 Paths of two interacting vortices with different vortex

strengths for perfectly inviscid fluid. (a) e=0.4, 77 =0.6, /=04, n=5; (b) ¢=
04,17=08,712=02,n7=5;(c)¢=04,71=08,72=02,n7=3;(d) =08, I3
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Figure 3.30 Combined effects of effective fluid density and flow resistance
on the vortex paths. (a) e=0.4, 71 =0.6, /=04, n=5R;=10; (b) =04, /1 =
06,72=04,7=5R=0.1;(c)6=04,71=06,72=04,7=3,R=0.1; (d) ¢=
04,7:7=08,712=02, =3, Re=01———273; — - —Zp; —Z..
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Figure 3.31 Examples of time variation of dipole magnitudes at finite
effective fluid density, flow resistance and different vortex strengths. (a) Py; (b) Py.
— —Rf=0.01;, ———Rs=1; R¢ = 10; — --—rigid half cylinder. £ = 0.4,
71=08,73=02 n=5.
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Figure 3.32  Combined effects of 7 and Rf on the time variation of vortex
velocity and acceleration at » = 5 and Ry = 0.1 with different vortex strengths. (a)
Longitudinal velocity; (b) Transverse velocity; (c) Longitudinal acceleration; (d)
Transverse acceleration. 73, —-—12. 11=08,72=0.2,¢=04.
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Figure 3.33  Combined effects of 7 and Rs on the time variation of vortex
velocity and acceleration at » = 5 and Ry = 1 with different vortex strengths. (a)
Longitudinal velocity; (b) Transverse velocity; (c) Longitudinal acceleration; (d)
Transverse acceleration. 73, —-—12. 11=08,72=0.2,¢=04.
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Figure 3.34 Combined effects of 7 and Rs on the time variation of vortex
velocity and acceleration at 7 = 5 and Ry = 10 with different vortex strengths. (a)
Longitudinal velocity; (b) Transverse velocity; (c) Longitudinal acceleration; (d)
Transverse acceleration. 73, —-—12. 11=08,72=0.2,¢=04.
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Figure 3.35 Amplitudes of the dipoles produced by two vortices with
different strengths. (@) e=0.4,/71=0.6,7>=04; (b) e=04,71=038, /7, =0.2;
(c)e=08,717=06,72=04;(d) =08,71=08,1,=02. —-—Pyfor n=3,

Ri=0;———Pxfor n=5,R=0;
Closed Symbols for Py, open symbols for Py.

rigid half cylinder. V n=3; O n=5.
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Figure4.1  Schematic diagram for the present vortex-wedge system (z-
plane).
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Figure4.2  The w-plane.
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Figure4.3  Time variation of the sound pulse for rigid wedge. — - — «
=0, ——a=4d3, — - —a=24d3; - a =516, —— a = 9410.
R
o
Z 4
i
0
3
§ 4
o
©
2 7
ol
@
4
5_ 981
Figure4.4  Accuracy of the approximation of Equation (4.19). —— 7 =
2, ——n=95 —-—n=100.
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Figure4.5  Effect of effective fluid density on the radiation directivity for

a perfectly inviscid medium. ------- n=1a=md3;,——n=5, a= A3, ——rigid
wedge, a= 73, —-—n=1, a= 243, — --—rigid wedge, a = 27/3.
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Figure4.6  Effect of effective fluid density on sound pressure fluctuations
for perfectly inviscid medium. ——#n=1, —-—n=20; —--—n=100; ——7n
= 1000. a = 7.
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Figure4.7  Vortex flight path in a perfectly inviscid medium. — — 7 =

2, —-—n=4;, —--—rigidwedge. a= 3.
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Figure4.8  Sound pressure time variation for finite n at r = 100, = /3.

——n=2,—-—n=4;, ——rigid wedge.
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Figure4.9  Effect of wedge angle on the sound pulse magnitude. —— «
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Figure4.10 Combined effects of effective fluid density and flow resistance
onthevortex path. —— 7 =242 =0;, ——n= 2,42 =10, — - —n = 2,
47R = 100; ------- n=4,4zR = 100; — - —rigid wedge. o= /3.
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Figure4.11 Effect of flow resistance on the far-field sound radiation. —
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Figure4.12 Combined effects of effective fluid density, flow resistance and

wedge angle on sound radiation. @ =2, a= 43, O n=2, =273, B n=4,
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Figure5.4  Effect of pressure-releasing surface on the vortex motion,
velocity, acceleration and the sound generation at a fixed h. (a) Vortex path; (b)
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Figure5.5  Effect of pressure releasing surface on the vortex motion,
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