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ABSTRACT 

 

The area of this PhD research is directed towards performance enhancement and 

fault-tolerance at client/server(C/S) interaction over a logical Internet channel. The 

aim is to effectively eliminate the user-level buffer overflow so that retransmissions 

can be reduced to shorten the service roundtrip time (RTT) in the interaction. Since a 

server may serve different clients simultaneously, the relationship is actually one-

server-to-many-clients, alternatively known as the asymmetric rendezvous. The 

different streams of service requests from clients merge at the server’s queue and this 

easily inundates the queue buffer to overflow at peak times. In fact, an asymmetric 

rendezvous involves two levels: the system/router level that includes all activities 

inside the TCP channel, and the user level that involves the client and the server. If 

the collective error probability for a client/server interaction path is pathρ , then the 

average number of trials (ANT) to send a message successfully from one end of the 

C/S path to another is .
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encapsulates the user-level buffer overflow error, eliminating the latter definitely 

yields a smaller ANT and shorter end-to-end service roundtrip time (RTT).  

My previous MPhil research concluded that dynamic buffer size tuning can 

indeed eliminate the chance of user-level buffer overflow. This was clearly 

demonstrated by the experimental results with the dynamic buffer controllers 

proposed. These original controllers developed in the MPhil thesis are: 
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1) PIDC  (“proportional (P) + integral(I) + derivative(D)” Controller): It is 

algorithmic and always eliminates user-level buffer overflow but has two 

shortcomings: a) it locks unused memory, and b) it does not have a safety margin and 

therefore the queue length can get dangerously close to the buffer length, threatening 

possible overflow. 

2) GAC (Genetic Algorithm Controller): It is the “PIDC + genetic algorithm (GA) + 

2},0{ Δ  objective function” combination. The GA moderates the PIDC process so that 

the outcome is always within the Δ±  safety margins about the steady-state reference 

symbolically represented by “0” in 2},0{ Δ . The GA eliminates the PIDC 

shortcomings but also produces occasional buffer overflow because it does not 

guarantee the global-optimal solution of the solution hyper-plane. 

3) FLC (Fuzzy Logic Controller): It is the combination: “PIDC + fuzzy logic + 

2},0{ Δ  objective function” combination, which was proposed to preserve the GAC 

merits and eliminate the occasional buffer overflow.  The fuzzy logic moderates the 

PIDC control process similar to the GA. 

4) NNC (Neural Network Controller): It works with the 2},0{ Δ  objective function but 

does not include PIDC. Its proposal was inspired by the successful experience of 

using neural networks in AQM (active queue management) algorithms, which prevent 

network congestion at the system/router level. AQM methods differ from the 

dynamic buffer size tuners by using a fixed-size buffer.  

When experiments were conducted to verify the above four dynamic buffer tuners, 

it was observed that their performance was affected by the traffic patterns. The 

conclusion is that measures must be taken to neutralize the ill effects by traffic on 
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tuner stability and accuracy. My MPhil thesis left several unaddressed issues that 

form the backbone of this PhD research. The issues include:  

1) In the aspect of traffic ill effects: a) Is it possible to calibrate the ill effects off-

line so that the tuners can use these calibrations to ward off traffic changes by 

fine-tuning its dynamic buffer tuning process adaptively? b) If so, then how 

can the current Internet traffic pattern be deciphered on the fly (on-line) so 

that the off-line calibrations can be applied selectively? 

2) For FLC: a) Is it possible to have an optimal design? b) Is it possible to make 

the tuner self-reconfigurable (especially with respect to traffic pattern 

changes)? 

3) For NNC: a) Is it possible to prune the NNC configuration on the fly so that 

its control cycle time can be consistently and adaptively reduced? b) Is there a 

correlation between control accuracy and the number of hidden neurons in the 

NNC back-propagation architecture? (The procedure to provide the answer is 

called sensitivity analysis.)  

 

The motivation of my PhD research is to provide answers to the above 

unaddressed issues. As a result the following solutions are proposed: 

1) For real time traffic analysis: Two traffic filters have been proposed: real-time 

modified QQ-plot (or simply RT-QQ) and self-similarity ( 2S ) filter. These 

filters identify the Internet traffic patterns on the fly. The RT-QQ recognizes 

heavy-tailed distributions and the 2S filter identifies self-similarity. 

2) For FLC: a) an optimal design range is found for FLC design, and b) a way is 
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found to make the FLC adaptive/reconfigurable by squeezing the “don’t care” 

state range threshold in a dynamic manner. 

3) For NNC: a) the HBP (Hessian Based Pruning) approach was proposed for 

pruning or optimizing the NNC configuration on the fly and as a result its 

average execution time (i.e. control cycle time) is reduced, and b) sensitivity 

analysis was conducted and the results confirm that more hidden neurons do 

not necessarily mean better NNC performance. 

 

The solutions proposed in my PhD research have contributed to 19 publications 

so far (5 journals and 14 conferences). All the stated PhD research objectives have 

been achieved. The research has also uncovered many relevant problems, which 

should be resolved in the future work: a) investigation of the issue of how to choose 

the limits for Gaussian tests effectively, b) deepening of the investigation into why 

“heavy-tailedness” is not a necessary condition of self-similarity, and c) investigation 

into how the dynamic buffer size controllers, especially the FLC, can best support 

pervasive computing based e-applications such a telemedicine. 
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CHAPTER 1 BACKGROUND AND MOTIVATION 

 

1.0 INTRODUCTION 

 

The transport layer of the Internet supports two protocols: the connection-

oriented TCP (Transmission Control Protocol) and the connectionless UDP (User 

Datagram Protocol) [Comer1995]. It is not easy to use the TCP for time-critical 

applications because of the inevitable channel error probability ρ at the system level 

that occurs due to the sheer size and heterogeneity of the underlying network. 

Sending a message/segment from one TCP end to another physically means 

traversing many different links and nodes of varying quality and capacities. Firstly, 

the Internet conceptually is a collection of large backbones (e.g. US backbone and 

European backbone) that are interconnected by the IP (Internet Protocol). In fact, it is 

not unusual that two IP peers are sandwiched by incompatible protocols such as the 

ATM (Asynchronous Transfer Mode). Then, the IP peers rely on the technique of 

tunnelling to communicate properly [Hassan2000]. In another scenario the IP peers 

may actually communicate in a transparent manner via the different wired and 

wireless parts of the Internet. Wireless and wired communications have very different 

requirements. For example, the wired part of Internet will opt to slow down 

transmissions when the possibility of network congestion is envisioned. On the 

contrary, in wireless communication packet loss due to congestion or other reasons 

will trigger even more aggressive transmissions by the sender. The aim is to make up 

for the lost messages quickly [Cen2003]. 
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Figure 1.0.1 A simple representation of an asymmetric rendezvous 

 

A client/server interaction is considered to have two levels: system and user. The 

system or router level (marked “Internet” in Figure 1.0.1) includes all the activities 

within the TCP channel, and the user level includes the client and the server that 

interact over the TCP channel in the end-to-end manner. Therefore the error 

probability for a client/server interaction path (referred to as the “C/S path” in this 

thesis) pathρ is made up of two parts: the collective channel error probability ρ at the 

system/router level and the collective one at the user level Uρ ; Upath ρρρ += . Then, 

the average number of trials to send a message successfully from one end of the C/S 

path to another is .
)1(

1)1(1

1 path
path

j
path

k

j

jANT
ρ

ρρ
−

≈−= −
∞→

=
∑  Therefore, 

lowering/eliminating either ρ or Uρ , or both, yields a smaller ANT and thus shorter 

end-to-end service roundtrip time (RTT). There are many possible causes that 
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contribute to ρ and/or Uρ  such as hardware partial failures and buffer overflow. For 

example, network congestion at the system level may lead to router buffer overflow, 

which means message losses and timeouts by the respective senders, leading to 

widespread retransmission and more network congestion. The buffer at the user-level 

receiving end (i.e. server’s end) may also be inundated by fast incoming messages to 

overflow unless the buffer can self-tune to ensure that buffer length always covers the 

queue size. There is a need for research to explore how to enable a reception buffer at 

the user level to self-tune on the fly, thereby eliminating the chance of overflow (i.e. 

dynamic buffer size tuning). 

 

 

Figure 1.0.2 Client/server interaction over a logical channel with error 

probability ρ 

 

The importance of reducing pathρ  for better service response is well recognized. 

The benefit of such reduction is best viewed from the point of system dependability 

[Avizienis2004], which is defined by the following attributes: reliability, availability, 

fault tolerance, security, integrity, and maintainability.  
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1.1 NETWORK CONGESTION PREVENTION 

 

From the literature, pathρ  reduction in the area of network congestion prevention 

and buffer overflow control may be achieved as follows: 

1) System-level sender initiative:  

a) Dynamic timeout window adjustment: The sender adjusts the timeout 

window on the fly with respect to the current values of some chosen 

parameters to avoid premature timeouts and unnecessary retransmissions (e.g. 

the Adaptive and Aggressively Bounded Convergence Algorithm 

[WongHC2001]). 

b) Dynamic congestion window tuning: The AIMD (Additive Increase and 

Multiplicative Decrease) is a well-known example proposed by Jacobson 

[Jacobson1988] to adjust the congestion window of a TCP connection. 

Another example is adaptive congestion window tuning for a Reno TCP 

[Padhye1998]. 

c) Multiple copies of time-critical messages [Rama1992]: The sender sends 

multiple copies of the same message immediately one after another. The 

number of copies corresponds to the likelihood of congestion. The argument 

is that if the C/S path error probability for sending a message is pathρ , then 

the chance for mc number copies to be erroneous at the same time is 

mc
path )(ρ , which is a smaller error. 
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2) Active Queue Management (AQM) by the system-level receiver/router 

[Braden1998]: If a router detects that its reception buffer is likely to 

overflow, then it throttles the sender to slow down transmission voluntarily. 

A router starts the throttling process by sending “choke” packets. If the 

sender does not respond to the throttling, then the router drops the incoming 

packets to facilitate smooth passage of those already queued. The message 

dropping process may follow different strategies, for example, “drop from 

front” [Lakshman1996]. In fact, dropping messages as a congestion and 

buffer overflow prevention mechanism is deleterious. Recently the IETF 

(Internet Engineering Task Force) proposed to use the RED (Random Early 

Discard) algorithm for AQM purposed in the RFC 2309 [Braden1998]. The 

subsequent analysis of RED found that it was unstable and this led to the 

different RED mutants (e.g. the algorithmic ones, FRED (Fair RED) 

[Kim1998], DS-RED [Zheng2001], LRU-RED [Reddy2001], M-RED 

[Koo2001], REM [Athuraliya2001]) and the intelligent non-RED-based 

versions (e.g. Fuzzy-PI [Ren2002]; P for proportional control and I for 

integral control). Floyd and Jacobson call those routers in packet-switching 

networks that adopt the RED algorithm the Random Early Detection 

Gateways [Floyd1993]. 

3) Using backup channels [Kris2003, Shin2000]: There is always a urgent need 

to control the message delivery/roundtrip time in real-time computing over 

the Internet so that tasks can be meaningfully executed before the deadline 

[Stankovic1998]. This is absolutely necessary for hard and firm real-time 
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applications and less stringent for the soft type. Using backup channels, 

which have the guaranteed level of reliability when congestion is detected, is 

the state-of-the-art solution. It may be more expensive to temporarily 

relinquish the normal channel and switch to the more reliable backup 

channel that guarantees the QoS (quality of service) to reduce pathρ . The 

meaningful timely result, however, could be worth much more than the cost. 

Sometimes a reliable backup channel is time-shared by many normal 

channels.  

4) Dynamic buffer size tuning [Wong1999A, WongHC2001, Wong2002GAC]: 

The principle is to tune the reception buffer size adaptively on the fly so that 

the buffer length always covers the queue size and therefore eliminates any 

chance of buffer overflow. So far all the dynamic buffer tuners, namely, 

PIDC, GAC, FLC and NNC are aimed at user-level applications. 

 

To summarize, the three basic techniques to deal with buffer overflow are 

throttling, message dropping, and dynamic buffer tuning [Tanenbaum1996]. The four 

techniques that effect pathρ  reduction without tuning the buffer size are: a) tuning the 

timeout window adaptively, b) tuning the congestion window adaptively, c) sending 

multiple copies of the same message immediately one after another to logically 

reduce pathρ , and d) using backup channels to bypass the bottlenecks.     

The throughput of a communication channel depends on how efficiently by the 

supporting system can recycle usable memory. If too much memory is locked up in 

communication activities, then the whole system throughput may suffer because tasks 
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are suspended on memory shortage. Likewise, if a communication system is 

constantly starved of buffer memory random drop of messages [Lakshman1997, 

Paxson1999] and buffer overflow inevitably happen. The result is massive 

retransmissions by senders and widespread data traffic jams. Elimination of buffer 

overflow in client/server interaction [Lewandowski1998] is a significant and yet 

challenging balancing act in memory usage [Amir1995, Alvisi1998, Crawford2000, 

Cristian1999, Garbinato2000, Ip2001, Markatos1998, Mishra1998, Morin1997, 

Mukherjee1998, Ramani2000, Schmidt1995, Sobczak2001, Wong1999A, 

Wong2000B, Wuytack1999]. For commercial applications such as ISP (Internet 

Service Provider) setups any excessively long response delay/latency due to 

retransmissions would cause business loss because it taxes customers' patience and 

drives them away. In such cases it is justified to aggressively apply one or a 

combination of the aforementioned basic techniques to reduce the response time to 

make customers happy. 

 

1.2 BUFFER TUNING SCHEMES 

 

The fact that buffer overflow prevention shortens TCP channel RTT has 

spurred development and deployment of different algorithmic and expert approaches 

for applications at the system and user levels [Fisk2001, Dunigan2003, Aweya2002]. 

These algorithms can be classified in different ways by various attributes, as follows: 
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a) Open loop versus closed loop: Open loop algorithms do not require behavioral 

feedback for controlling the future trend, while feedback is mandatory for 

closed loop systems [Yang1995]. 

b) FBL (fixed buffer length) versus VBL (variable buffer length): For FBL 

algorithms the ultimate overflow prevention solution is to drop packets. This 

may occur in two stages: i) firstly, the receiver throttles the sender to reduce 

transmission, and ii) if this does not help then incoming packets are dropped 

either “front on full” or “random on full” [Lakshman1996]. VBL algorithms 

prevent overflow by dynamic buffer size adjustment without the necessity of 

throttling the sender first [Wong1999A].  

c) Algorithmic versus expert: Algorithmic approaches do not use soft computing 

techniques but expert systems do [Karray2002, Ravindran2001].   

d) System level versus user level: Algorithms at the system level operate without 

user intervention, for example, the AQM operations [Braden1998]. If they 

operate in the client and server domains independent of the system, they are 

working at the user level [Wong1999A]. 

e) Implicit versus explicit: In implicit control the remedy is negotiable, for 

example, the voluntary reaction by the sender when throttled by a router 

[Ren2002]. If the remedial response is instantaneous and involuntary, it is 

explicit control (e.g. [Wong2002GAC]). 

f) Direct versus indirect: Direct control invokes immediate action, for example, 

tuning the buffer size spontaneously [Ip2001]. Indirect control depends on 

voluntary reaction. 
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1.3 BUFFER OVERFLOW MANAGEMENT 

 

The motivation of the research is to explore how soft computing techniques 

[Pedrycz1997, Zadeh1994] can be used to gain efficacious user-level dynamic buffer 

overflow control for Internet channels for better response timeliness [Kang2002, 

Stankovic1998] and fault tolerance [Avizienis2004, Elnozahy1999, Gartner1999, 

Jalote1994, Laprie1995]. This research project is a deeper continuation of my MPhil 

thesis [Lin2002], in which four original dynamic buffer overflow controllers were 

proposed [Appendix 1]. One of them, namely, the PID or “P+I+D” controller 

(Proportional + Integral + Derivative controls) is algorithmic. The control 

parameters of the PID controller or PIDC remain unchanged once the control process 

has started. The other three controllers are soft computing based and work with the 

2},0{ Δ objective function, where Δ  is the safety margin to be maintained about the 

reference symbolically represented by “0”. In reality the reference is a given queue 

length over buffer length (QOB) ratio known as the RQOB . The three intelligent 

dynamic buffer controllers for user-level applications are: the GAC (Genetic 

Algorithm Controller [Wong2002GAC]), the FLC (Fuzzy Logic Controller 

[Lin2002FLC]), and the NNC (Neural Network Controller [Lin2001NNC]). The 

PIDC was based on the “P+D” dynamic buffer size tuner controller for user-level 

application [Wong1999A]. The “P+D” controller was the first of its kind but failed 

frequently in actual deployment over the Internet. The cause was the unrealistic 

expectation of using a set of static parameters to control the whole spectrum of 

changes in TCP channel dynamics. The PIDC rectifies the “P+D” problem by adding 
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the integral (I) control. It differs from the GAC, FLC and NNC by having no safety 

margin (i.e. Δ ) at all, and the accumulated performance data shows that the danger of 

buffer overflow is still there under serious perturbations. The basis and evolution 

process in my MPhil research is summarized in Figure 1.3.1. 

 

 

Figure 1.3.1 Summary of the basis and evolution of my MPhil project 

 

The previous Internet based experimental results with the four novel 

controllers indicate that they represent the right direction to eliminate user-level 

buffer overflow along the client/server interaction path. This path over a TCP 

(Transmission Control Protocol) channel is also known as the asymmetric rendezvous. 

The GAC was proposed to preserve the PIDC merits minus its shortcomings. 

Nevertheless, as a result of the very nature of the genetic algorithm (GA), which does 

not guarantee the global-optimal solution of the solution hyperplane [Mitchel1999], 

the GAC produces occasional though rare buffer overflow. The GAC results do verify 

that the 2},0{ Δ objective function is a powerful concept, and it can serve as a solid 

basis for other intelligent solutions. This led to the FLC proposal and subsequently 

the NNC development. What I had achieved in my MPhil thesis can be summarized 

as follows: 
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a) Four novel dynamic buffer overflow controllers for user-level applications 

were proposed, one algorithmic (i.e. the PIDC) and three intelligent ones 

(i.e. GAC, FLC and NNC). 

b) The GAC was thoroughly tested and found to be unacceptable because it 

yields occasional buffer overflow. 

c) The FLC was proposed and two designs, namely, FLC [4x4] and FLC 

[4x6] were tested. The results indicated this direction is the right one 

because of the following: i) it eliminates buffer overflow completely, ii) 

its execution time is comparable to the simpler PIDC’s due the presence of 

the “don’t care” state [Lin2002FLC], and iii) it always maintains the 

control output within Δ± about the chosen RQOB  reference. Yet, its 

convergence to RQOB  can be oscillatory. 

d) The success of using 2},0{ Δ as the operational principle and the desire to 

have a smoother RQOB  convergence led to the proposal of the NNC. The 

NNC differs from the GAC and the FLC because it does not include the 

PIDC as a component. The NNC, however, has a much longer control 

cycle time compared to the PIDC, GAC and the FLC and this is prone to 

deleterious effects. The argument is that by the time the remedy is 

computed the actual problem has already passed. Using the computed 

remedy to resolve a spurious problem may lead to undesirable 

consequences or deleterious effects. The NNC prototype, which works by 

backpropagation with supervised training, has 10 input neurons, 20 

neurons in the hidden layer, and one output neuron. 
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e) Timing analyses confirmed that the four novel dynamic buffer size tuning 

models are indeed suitable for time-critical applications over the Internet.  

The area of user-level dynamic buffer size control, which tries to ensure that the 

buffer length always covers the queue size on the fly, is pristine. For this reason my 

MPhil research is able to produce 12 refereed publications (4 journal papers and 8 

conference papers). The MPhil research, however, also left some important, 

unaddressed issues: 

a) Does the Internet traffic impede the controllers’ stability and accuracy? If so 

how can the impedance be alleviated or neutralized? In fact, the internet 

traffic can change without warning, for example, from LRD (long-range 

dependence) such as heavy-tailed and self-similar to SRD (short-range 

dependence) such as Poisson [Molnár1999]. Such changes may have a serious 

impact on the controllers’ performance. 

b) Is it possible to have an optimal (cost effective) FLC design? 

c) Is there a correlation between the accuracy and the number of neurons in the 

hidden layer of the NNC? In my PhD research finding such a correlation is 

called sensitivity analysis. 

d) Is it possible to cut down the NNC control cycle time and lower the chance of 

a deleterious effect? 
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1.4 SCOPE OF THESIS 

 

The motivation to address the above issues becomes the problem statement of my 

PhD project, with the aim to achieve the following objectives: 

a) Study the impact of traffic on the stability and accuracy of the FLC and the 

NNC, and propose methods to counteract the negative impact effectively. 

b) Explore and define the possible optimal range for the FLC design and 

implementation. 

c) Define the correlation between the number of neurons in the NNC hidden 

layer and the control accuracy. 

d) Propose a method(s) to optimize the NNC configuration to lower its control 

cycle time. 

e) Perform timing analyses of the improved or new FLC and NNC models to 

confirm that they indeed suitable for time-critical applications over the 

Internet.  

Figure 1.4.1 accentuates the importance of buffer overflow control over the 

path of asymmetric rendezvous (one-server-to-many-clients relationship) over a TCP 

channel. Efficacious buffer overflow control is the prelude for running time-critical 

applications over the Internet successfully [Stankovic1998] because it reduces the 

service roundtrip time (SRTT or simply RTT). As a result the response timeliness is 

enhanced. The server at the user level in an asymmetric rendezvous usually serves 

many clients simultaneously [Lewandowski1998]. Any sudden influx of requests 

from these clients to be queued at the server’s buffer could cause buffer overflow, 



 38

which means request losses and possible widespread retransmissions [Lakshman1997, 

Paxson1999, Jamjoom2004]. The average number of trials (ANT) to get a 

transmission success depends on the C/S path error probability pathρ . If the jP  is the 

probability for a transmission success at the jth trial, then )1(1
path

j
pathjP ρρ −= −  leads 

to j
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j
PjANT ∑
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=

=
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probability is part of the overall pathρ  any overflow elimination along the client/sever 

interaction path yields a smaller ANT and thus a shorter service RTT.  

 

 

Figure 1.4.1 End-to-end logical channel between client and server 

 

In reality the buffer overflow can occur at both the system/router and user 

levels. The system/router level includes all the routing activities within the TCP. Here 

the sender and the receiver can contribute to prevent network congestion, which is 
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manifested as buffer overflow at the congested routers or bottle-necks. The AIMD 

(Additive Increase Multiplicative Decrease) approach proposed by Jacobson 

[Jacobson1988], for example, is a measure for a sender within the TCP to control the 

congestion window adaptively. This lowers the transmission rate thereby alleviating 

congestion. The router can also choose to actively throttle any sender that sends too 

much data in a short time. The throttling act is called AQM (active queue 

management) [Braden1998]. Since the throttled sender reacts only voluntarily, the 

AQM process may fail and the router then may to have to drop new incoming packets. 

The goal is to ensure that those already queued have a smooth passage. Using 

message dropping as a strategy [Floyd1993] to prevent network congestion is 

deleterious even though it prevents router buffer overflow because on the other hand 

it increases retransmission, which causes more congestion. System-level buffer 

overflow or congestion prevention alone, however, cannot prevent the user-level 

overflow. The reason is that “merged traffic” from the combined client requests 

streams (Figure 1.4.1) can still inundate the buffer easily to overflow. My MPhil 

research indicates that the inundation is definitely caused by the high traffic rate and 

possibly by the embedded traffic pattern. Yet, the effect of the embedded traffic 

pattern was not explored and studied. The buffer inundation problem can be 

alleviated if the buffer is provided with the capability to self-tune and assure that the 

buffer length always covers the queue size. The assurance is called dynamic buffer 

size tuning in both of my MPhil and PhD research. If user-level buffer overflow is 

allowed to occur after the system has dished out expensive congestion prevention 

effort, the consequence could be disastrous. Not only are valuable resources wasted 



 40

but the system also loses the chance of rectifying a serious problem earlier. Therefore, 

user-level dynamic buffer tuning and system congestion prevention together is a 

unified solution to stifle the chance of buffer overflow along the client/server 

interaction path. 

The potential of shorter service RTT in an asymmetric rendezvous by having 

buffer overflow control has inspired the emergence of different strategies 

[Chatranon2004]. These strategies are divided into two basic categories, namely, 

fixed length buffer (FLB) [Aweya1998, Feng1999] and variable length buffer (VLB) 

[Ip2001, Lin2001NNC, Lin2002FLC, Wong2002GAC]. The FLB approach is 

naturally deleterious because dropping incoming messages as the ultimate solution to 

prevent congestion and buffer overflow would cause widespread request 

retransmissions [Grinnemo2004, Jamjoom2004]. At this moment all the known AQM 

approaches from literature to prevent network congestion and router buffer overflow 

are exclusively FLB in nature. The VLB approach is relatively recent and the only 

examples that can be identified from literature include the PIDC, FLC, GAC, and 

NNC.  These four controllers are designed for user-level applications. The desire to 

eliminate the two PIDC shortcomings [Ip2001] led to the development of the 

intelligent FLC, GAC and NNC. These shortcomings are: a) the controlled queue 

length can get dangerously close to the buffer length leading to possible overflow 

under serious perturbations, and b) too much buffer space is locked up even when it is 

no longer needed for remedial action. 
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CHAPTER 2 EVALUATION OF PREVIOUS RESEARCH 

 

2.0 INTRODUCTION 

 

In the last chapter, we identified the importance of controlling network 

congestion on the Internet, in the presence of different traffic patterns. 

 

We noted that network congestion prevention and buffer overflow control can be 

carried as follows: 

1) Initiated by system-level sender 

2) Active Queue Management 

3) Using backup channels 

4) Dynamic buffer size tuning 

 

Firstly we will show the taxonomy of the techniques being utilized for network 

congestion control, and then we will discuss each of these techniques and evaluate 

their effectiveness. 

 

2.1 CLASSIFICATION OF CONGESTION MANAGEMENT TECHNIQUES 

 

Table 2.1.1 shows a few overflow controllers and their attributes, and Figure 

2.1.1 is the brief taxonomy of different queue buffer management techniques. 
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 Algorithmic  Expert 

System level The RED AQM algorithm 

[Braden1998] (closed loop, 

implicit, FBL, indirect) 

The PI fuzzy controller 

[Ren2002] (closed loop, 

implicit, FBL, indirect) 

User level The basic PID controller 

[Ip2001] (closed loop, 

explicit, VBL, direct) 

The genetic algorithm 

controller  

[Wong2002GAC] (closed 

loop, explicit, VBL, direct) 

Table 2.1.1 A few overflow controller examples for illustration 

 

 

Figure 2.1.1 Brief taxonomy of different queue buffer management techniques 
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2.2 MECHANISMS INITIATED BY THE SYSTEM-LEVEL SENDER  

 

 The aim is to prevent premature timeouts to maximize the TCP channel 

bandwidth utilization. The mechanisms initiated by the system-level sender include 

the following: 

   

a) Dynamic timeout window adjustment: The sender adjusts the timeout window outT  

on the fly with respect to the currently measured values of some chosen parameters. 

The goal is to prevent premature timeouts and unnecessary retransmissions. How the 

TCP manages its retransmission timer (i.e. outT ) adaptively provides a good example. 

Unlike the data link protocols, which usually have predictable roundtrip times (RTT) 

with a low variance, the TCP (an Internet transport layer operation) has a large RTT 

variability spread. This makes the dynamic outT  adjustment process non-trivial 

[Jacoson1988]. Most TCP implementations adjusts outT on the fly by using three 

parameters: the predicted RTT (PRTT), the currently measured RTT (MRTT), and 

the deviation D defined by ||)1( MRTTPRTTDD −−+= ςς , where ς  is a 

smoothing factor typically set to 7/8. The PRTT value is predicted 

by MRTTPRTTPRTT )1( ςς −+= . Finally the next timeout interval for the 

retransmission timer is set to DPRTTTout *4+= , where 4 is the commonly used 

figure for better performance, as determined from experience [Tanenbaum2003]. 

   

b) Dynamic congestion window tuning: The TCP is a full-duplex, connection-

oriented Internet transport set up that strives to provide a reliable end-to-end byte-
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stream based client/server interaction. A TCP connection is, however, considered 

“point-to-point” because the client/server interaction is “port-to-port”. The client and 

the server can communicate only via two specific end points or ports, which are also 

known as the TSAP (Transport Service Access Points). A TCP connection is 

established if the server successfully responds to the CONNECT protocol primitive 

executed by a client. The server response includes the execution of the two primitives: 

LISTEN and ACCEPT. In the CONNECT primitive a client/sender specifies the IP 

address (i.e. the Network Service Access Point), the target port for connection, and 

the maximum TCP segment size expected. In the connection establishment process 

the server advertises the size of the sliding window for flow control 

[Tanenbaum2003]. The actual management of this size in the TCP, however, is 

decoupled from the acknowledgements. Since a segment sent through a TCP channel 

may be fragmented into smaller packets to be routed through the network layer, 

whether all the packets can be received correctly for assembly depends on the 

network capacity. Some packets may get lost or become corrupted.  

The major cause for packet loss in the wired Internet is router congestion.  A 

congested router drops the new incoming packets to prevent local buffer overflow 

and ensure the smooth passage for those already queued. Segment/packet 

retransmission can deleteriously aggravate network congestion and rapidly consume 

the bandwidth leading to poor system throughput. Therefore, the TCP needs to 

contribute actively to network congestion control. For example, the slow start 

algorithm that adaptively tunes the congestion window is supported by all TCP 

implementations [Jacobson1988]. In the algorithm if the receiver advertises a 
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reception window of 10K bytes but timeout occurs at 4K bytes, then the congestion 

window is set at 2K bytes to prevent any segment larger than this size to be sent. This 

is independent of what the receiver advertises. Initially the sender sets the congestion 

window to the size of the maximum segment in use by the connection, and then sends 

one maximum segment. If the corresponding acknowledgement is received before the 

timeout is triggered, it resets the retransmission timer and then sends a burst of two 

maximum segments. This process repeats and the congestion window grows 

exponentially by the factor of P2  until it encounters a timeout or hits the receiver’s 

window. The exponent P indicates the successive successful acknowledgements, 

for nP ,...,3,2,1= . To make the network congestion control by slow start even more 

effective a threshold, which is typically set at 64K bytes initially (approximately the 

IP payload size), is used together with the receiver and congestion windows. This is 

the AIMD (Additive Increase and Multiplicative Decrease) approach. When a 

timeout or “choke packet” is sent by the router, the threshold becomes half of the 

current congestion window, which is set to one maximum segment size. Slow start 

then determines how much transmission the network can handle, but the exponential 

growth of the congestion window size stops once the threshold is hit. After this point 

the congestion window can grow only linearly by one maximum segment in every 

new burst. The AIMD approach, however, may create problems as follows: 

i) Self-similar traffic generation: The AIMD encourages the maximum 

bandwidth usage by allowing burst sending behaviour in an exponential 

manner. This may create self-similar burst traffic that affects the receiver’s 

stability as some of my experiments have revealed (Chapter 3 and section 6.3). 
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ii) Impoverished bandwidth utilization: The approach is useful for short-haul 

interactions, where the distance in terms of network latency between the client 

and server is not serious. For long-haul operations such as the “long-fat-pipes” 

[Nakamura2004] in high-bandwidth-high-latency networks the 

acknowledgements can be seriously delayed leading to spurious timeouts by 

the sender. As a result the subsequent decrease of the congestion window to 

one maximum segment can inadvertently impoverish the client/server 

interaction bandwidth utilization. This has inspired different solution 

proposals and the RRTP (Reconfigurable and Reliable Transport Layer 

Protocol) [Balakrishnan1997, Wang2004] is one example. 

In fact, the quest for more effective adaptive congestion window tuning 

models is continuing, for example, the model proposed by Padhye et al [Padhye1998] 

for the Reno TCP applications.  

 

c) Multiple copies of the same time-critical message [Rama1992]: The sender sends 

multiple copies of the same message immediately one after another. The number of 

copies ties with the likelihood of congestion. The argument is that if the C/S path 

error probability for sending a message is pathρ , then the chance for mc number copies 

to be erroneous at the same time is mc
path )(ρ ; it is much reduced. A design that is 

based on the mc
path )(ρ  criterion is also called the Consecutive Message Transmission 

(CMT) approach [Wong1999A]. The evaluation of some recent CMT findings 

[Wong1999A] has revealed the following: 
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i) Possible orphan executions: If the server/receiver side is designed to receive 

multiple copies of the same messages/requests, it must be able to support remote 

invocations of the exactly-once semantics. This is necessary for services that are not 

idempotent. An idempotent service differs by producing the same effect even when it 

is repeatedly and inadvertently invoked. If a non-idempotent service is invoked by the 

at-least-once semantics, then the additional copies of the same request would lead to 

orphan executions and possibly disastrous side effects. This requires the server to 

possess the power to differentiate the exactly-once semantics from the at-least-once 

invocations. Judging from the complexity and size of the Internet operation precise 

differentiation is not easy to accomplish. 

ii) Balanced protocol design needed: The mc
path )(ρ  alone is not enough for an 

efficient CMT protocol. The number of copies in a CMT scheme should be supported 

by a proper “acceptance criterion”, which is the number of copies of the same 

message received correctly before the transmission of the “original/intended” 

message is considered a successful reception. This can be demonstrated by comparing 

the following two CMT schemes: 

 A) Scheme 1: In a 4-copies CMT scheme, the receiver acknowledges correct 

reception of a message provided that it has received any 2 correct copies out of the 4. 

Every copy however has an error probability of 4.0=υ  or 40%. This implies the 

probability for a transmission success to be 8208.04324 =++= PRPRPRυ . XPR is 

the error probability for having X number of correct copies 

for 4,3,2,1=X ; 224
22 )1()( υυ −=PR , 34

33 )1()( υυ −=PR , 4
4 )1( υ−=PR . Then, the 

average number of trials (ANT) to send a message successfully from one end to 
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another can be calculated in the same way as for a C/S path with the pathρ  error 

probability: .
)1(
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 B) Scheme 2: In this CMT scheme three copies of the same message are sent 

and the receiver acknowledges reception as long as one of the copies is correctly 

received. This scheme is of speculative nature but is useful when the heavy-tailed 

traffic persists. If one of the copies can get through the channel quickly, then the 

service roundtrip time can be shortened. Assuming 4.0=υ  the probability for a 

message transmission success is 936.03213 =++= PRPRPRυ , 

for )1()( 23
11 υυ −=PR , 23

22 )1()( υυ −=PR and 3
3 )1( υ−=PR . Then, the 

resultant 07.1
936.0
11

)1(
1
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2 ≈≈≈

−
≈− υρ path

SchemeANT implies a shorter RTT than 

scheme 1. 

The comparison between the two schemes above indicates that the designer should 

strike a balance between the number of multiple copies and acceptance criterion for 

an efficacious CMT scheme.  

 

2.3   ACTIVE QUEUE MANAGEMENT 

 

In fact, prevention of TCP channel congestion by the sender’s effort alone 

may not be effective in many cases. This led to the proposal of the Active Queue 
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Management (AQM) concept in the RFC 2309 for system-level receiver/router 

applications [Braden1998]. In this concept if a router detects that its reception buffer 

is likely to overflow, then it throttles the sender to slow down transmission 

voluntarily [Chatranon2004]. A router starts the throttling process by sending 

“choke” packets. If the sender does not respond to the throttling, then the router drops 

the incoming packets to facilitate smooth passage of those already queued. The 

message dropping process may follow different strategies, for example, “drop from 

front” [Lakshman1996]. In fact, dropping messages as a congestion and buffer 

overflow prevention mechanism is deleterious. That is why the IETF (Internet 

Engineering Task Force) proposes to use the RED (Random Early Discard) algorithm 

for AQM purposes in the RFC 2309 [Braden1998]. The subsequent analyses of RED 

by different researchers, however, found that it was unstable and this led to the 

different RED mutants (e.g. the algorithmic ones FRED (Fair RED) [Kim1998], DS-

RED [Zheng2001], LRU-RED [Reddy2001], M-RED [Koo2001], REM 

[Athuraliya2001]) and the intelligent non-RED-based versions (e.g. Fuzzy-PI 

[Ren2002]; P for proportional control and I for integral control). Floyd and Jacobson 

call those routers in packet-switching networks that adopt the RED algorithm the 

Random Early Detection Gateways [Floyd1993]. 

 

2.4 USING BACKUP CHANNELS 

 

Internet based time-critical applications, which require communication service 

with guaranteed quality of service (QoS) in terms of timeliness and fault tolerance, 
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are emerging quickly. They include different areas such as video-on-demand, video-

conferencing, and telemedicine. From the “average number of trials (ANT) to get a 

transmission success” point of view, fault tolerance measures can reduce the 

channel/connection error pathρ  and thus the ANT value leading to a shorter RTT that 

can satisfy the QoS requirements. The pathρ  value actually encompasses different 

errors that could occur along the C/S path including partial failures and router buffer 

overflow. Therefore, some researchers argue that the ordinary TCP channels for best-

effort traffic (i.e. no real-time constraints) may not be good enough. They suggest the 

use of backup channels [Kris2003, Shin2000] to create more dependable real-time 

protocols. An ordinary primary TCP channel together with a backup connection 

makes a more dependable connection referred to as DP-channel/connection here. 

How dependable the backup channel is depends on the resources being reserved. For 

example, [Han1998] proposes to reserve dedicated system resources as support for 

backup channels. This means that the backup dependability depends on the quality of 

the reserved resource, which is tied with the cost. The DP-connection is a basically a 

primary-backup approach that involves three basic steps: i) establishing the primary 

channel and backup, ii) detecting channel problems (e.g. network congestion, partial 

failure, etc.), and iii) channel switching from primary to backup. Some researchers 

argue that a backup channel should not be dedicated but shared for better system 

throughput. The sharing can be as follows: i) backup multiplexing (BM) that lets two 

or more primary channels share a backup, ii) backup-primary multiplexing (BPM) 

that lets the backup be a temporary ordinary primary channel without real-time 
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constraints. The pros and cons of the three basic schemes above are evaluated as 

follows: 

a) Dedicated scheme: The dedicated backup is expensive but it can better 

support the primary channel to provide a high-quality DP-channel. 

Unless the network always has extra resource to be reserved for backup 

channels the reservations can consume system resources rapidly. As a 

result the bandwidth utilization is impoverished leading to poor system 

throughput. 

b) BM scheme: If a backup channel is shared, the dependability of the DP-

connections (i.e. primary channel plus backup) can be evaluated by 

equation (2.4.1) [Kris2003, Shin2000]. The parameter n is the number of 

sampling operations within the period/window of interest T. iPTD  is the 

“product of the thi sampling period and the number of DP-connections”, 

and iPTC  is the “product of the thi sampling period and the total number 

of primary and backup channels involved”. Table 2.4.1 illustrates some 

statistics for the two separate sampling operations within the interval T. 

In the 1st sampling operation that lasted 10 time units the original 

primary connection 1 in the DP-channel 1 shared the backup in the time-

multiplexing manner with the original primary 2 connection. The backup 

channel was used 5 times to support either DP-channel 1 or DP-channel 

2. In the 2nd sampling operation the backup channel was used for similar 

support 4 times. By equation (2.4.1) the dependability of the DP-
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connections in T is 31.0
118
36

)8*48*210*510*2(
)8*210*2(

≈=
+++

+  or 31%. 

The important connotation from equation (2.4.1) is that the dependability 

is 100% if the backup is not invoked at all.            

)1.4.2...(..........
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∑

∑

=

== n
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i
i

PTC

PTD
ityDependabil  

 

thi sampling  
operation  
(duration) 

number of 
connections

connection  type  remarks 

1st (10 time units)    1 original primary 
1 

as main part of DP-channel 
no. 1  

    5  backup  shared by DP-channels 1 
and 2 

    1 original primary 
2 

as main part of DP-channel 
no. 2 

    3 backup became a 
temporary 
“ordinary” 
channel 

 

2nd (8 time units)    1 original primary 
1 

as main part of DP-channel 
no. 1  

    4  backup  shared by DP-channels 1 
and 2 

    1 original primary 
2 

as main part of DP-channel 
no. 2 

i.e. 2=n  for 
equation 
(2.4.1) 

   2 backup became a 
temporary 
“ordinary” 
channel 

 

Table 2.4.1 The connections sampled in two sampling periods within T 

 

c) BMP scheme: In this scheme the backup channel can become a temporary 

“ordinary” channel with no real-time quality as illustrated in Table 2.4.1. The 
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argument is that when the backup channel is not needed as backup it may be used 

temporarily to boost up the communication throughput. The drawback of this 

approach is that it also makes the DP-channels temporarily insecure/undependable. 

There are still many issues that need to be addressed for designing efficacious BMP 

schemes, for example: 

 i) When should a backup be allowed to become a temporary non-real-time 

channel?  

 ii) How could an “ordinary” channel be terminated gracefully when a DP-

channel needs it for support suddenly? 

      

   In general it is difficult to harness the TCP channel RTT for time-critical 

applications because of the sheer size and heterogeneity of the underlying network. 

This leads to the use of backup channels for more dependability [Kris2003, 

Shin2000]. This approach helps shorten the service RTT in critical applications over 

the Internet. As a result tasks can be meaningfully executed before the deadline 

[Stankovic1998]. This is absolutely necessary for hard and firm real-time 

applications and less stringent for the soft type.  

 

2.5 DYNAMIC BUFFER SIZE TUNING 

 

The system-level channel congestion prevention methods cannot prevent user 

level buffer overflow from happening. Firstly, the server may serve many different 

clients simultaneously, and the merged traffic in the asymmetric rendezvous can 
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create overflow because of its high rate. Secondly, the traffic pattern embedded in the 

merged traffic is unpredictable and this can cause overflow because the pattern 

affects the efficacy and stability of the reception buffer. One effective solution is 

dynamic buffer tuning, which means tuning the reception buffer size adaptively on 

the fly so that the buffer length always covers the queue size and thus eliminates any 

chance of buffer overflow [Wong1999A, WongHC2001, Wong2002GAC]. The first 

dynamic buffer size tuning scheme, “P+D” scheme, was proposed by Wong and 

Dillon [Wong1999]. It is based on the concept of proportional (P) and the derivative 

(D) control. The two parameters used in this approach are: the ratio of “queue length 

over the buffer length” and the rate of change of queue length over time. The 

instability of the “P+D” controller in real application led to the development of the 

PID controller or PIDC [Ip2001], which is the “P+D” approach augmented by 

integral (I) control. So far all the known dynamic buffer tuners, namely, PIDC, GAC, 

FLC and NNC are aimed at user-level applications. 

 

2.6 PREVIOUS MPHIL RESEARCH 

 

 In my previous MPhil research four original dynamic buffer overflow 

controllers/tuners were proposed, namely, the PID Controller (PIDC), the GAC, the 

FLC and the NNC. Figure 1.3.1 illustrated the course of evolution from the PIDC to 

the NNC, and in fact, the intelligent tuners, GAC, FLC, and NNC were intended to 

preserve the PIDC merits minus its shortcomings [Ip2001]. In the rest of this section 
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each of the four tuners will be concisely presented, and their performance in terms of 

their control cycle time will also be compared.  

 

2.6.1 THE PID CONTROLLER (PIDC) 

 

 Buffer size tuning, similar to industrial control processes, may involve P, I 

and D control elements [Karray2002]. In the PIDC the proportional (P) control is the 

ratio of “queue length over buffer length (QOB)” to predict the chance of overflow. 

The rate or derivative (D) control, which decides how fast the buffer would become 

full, is the rate of change in the queue length (i.e. dt
dQ ). The integral control is the 

history of changes in the queue length. The P, I and D control elements in the PIDC 

should be construed on a conceptual basis [Wong2000A], They are different from the 

traditional meanings in process control theory because the PIDC does not consider 

the feedback system gain. The PIDC is formed by adding integral control to the 

previous “P+D” tuner, which was the first of its kind [Wong1999A].  Although the 

“P+D” tuner worked well in simulations with selected datasets, it failed in real 

situations over the Internet. The main cause of failure is the “hard-coded” nature of 

the “P+D” control parameters. Since these parameters do not register new knowledge 

the controller does not have enough power to anticipate what may happen in the 

future proactively. The use of the history in predicting the trend of change is the basis 

of integral (I) control in a general sense. The PIDC development needs to address the 

following two issues:  
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a) Would the P+D perform better if I control is incorporated to make it a PID 

controller (PIDC)? 

b) How should the I control be implemented, especially when direct data 

measurement is the basis of the PID control process? 

 

The need for direct data measurement and the impossibility of monitoring the 

overwhelming number of dynamic network parameters in the sizeable Internet 

directly require a new technique. This led to the consideration of using the IEPM 

(Internet End-to-End Performance Measurement) approach [Cottrel1999]. The core 

idea in this approach is to gauge the channel dynamics by measuring its mean 

roundtrip time (RTT). The IEPM concept is relatively new [Prasad2003, 

Barford2004], and the only known IEPM method that has its accuracy independent of 

any type of distribution/waveform is the Convergence Algorithm (CA) [Wong1999B]. 

The CA was successfully implemented and tested as the M2RT [Wong2001] macro 

IEPM tool. The waveform independent property of CA/M2RT is attributed to the fact 

that it is derived from the Central Limit Theorem [Aloisio1980]. In its macro version 

the M2RT must be installed at two nodes that represent the ends of a logical channel. 

The micro implementation of the CA is known as the M3RT [Ip2002], which runs as 

a logical object that can be invoked for service by message passing anytime and 

anywhere.  

The accumulated PIDC experience, however, shows that this tuner has two 

distinctive shortcomings (Figure 2.6.1.1): 
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a) The queue length can get dangerously close to the buffer length, and in very 

serious dynamic traffic perturbations there could be a chance of overflow. 

b) The buffer length lingers at the high value after every correction and this wastes 

valuable memory and impedes system performance. 

The desire to eliminate these shortcomings led to the introduction of the safety 

margin Δ concept. The three intelligent tuners, GAC, FLC and NNC, adaptively 

maintain Δ on the fly about the chosen reference (i.e. “0”) of the 2},0{ Δ objective 

function. The difference between the controlled buffer length and the current queue 

length should stay inside the user-specified tolerance band of Δ±  about the reference 

point. This reference point is the “queue length over buffer length” ratio chosen by 

the user, namely, RQOB .  

 

   Figure 2.6.1.1 Illustration of the PID shortcomings 

  

 Figure 2.6.1.1 shows the following: a) the trace of queue length values for the 

experiment, b) for this trace the “P+D” tuner buffer overflows at point E, and c) the 
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PIDC working with same trace produces no overflow at all. In fact, the PIDC 

consistently produces no overflow with all the deployment cases, but its two 

shortcomings are always present.  

 

2.6.2 THE GENETIC ALGORITHM CONTROLLER (GAC) 

 

     Genetic algorithms are a form of evolutionary computing [Michalewicz1996] that 

mimick natural evolution in the reproduction process, including chromosome 

crossover and mutation of genes. From the perspective of conventional or algorithmic 

PID control genes are the threshold values. The goal of the GAC is to eradicate the 

shortcomings of the algorithmic PIDC by adjusting the set of thresholds. The safety 

margin concept Δ and the 2},0{ Δ objective function were first introduced in the GAC 

proposal and development [Wong2002GAC]. Conceptually the GAC is the “PIDC 

plus GA plus the 2},0{ Δ objective function” combination. 

     Since in the buffer length tuning process the GA treats the PIDC parameters as 

genes every parameter set is a chromosome in the GA context. The buffer size 

estimated by the refined PIDC is fed to the objective function {0,Δ}2 to check its 

fitness. In effect, {0,Δ}2 is the fitness function. The aim is to ensure that the 

difference between the controlled buffer length and the current queue length stays 

within the Δ± tolerance band about RQOB . If there is an indication that the criterion 

of Δ± may not be satisfied, the GA immediately reproduces new chromosomes by 

mutation and crossover. It then selects the fittest chromosome to replace the existing 

set of PIDC parameters as a refinement process. By doing so the GA tries to prevent 
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the QOB deviating from RQOB by more than Δ± . The operation of the GAC, which 

is a GA-augmented PIDC, is shown in Figure 2.6.2.1.  

 

 

Figure 2.6.2.1 The GAC model for marginal buffer control 

 

It was observed in different tests that oscillations might occur right after 

replacements with new chromosomes, and this leads to subsequent system instability 

and occasional buffer overflow. A solution to alleviate such vicious oscillations is to 

give the GAC enough time to adjust to the new parameters. We call this grace period 

the adaptation time window (ATW). The subsequent deeper analysis shows that the 

ATW helps but cannot eliminate the chance of buffer overflow at all. The analysis of 

this phenomenon as part of my PhD research overview had revealed that this is 

caused by the very nature of the GA not to guarantee the global-optimal solution of 

the hyperplane [Mitchel1999]. In the GAC the PIDC and the GA mechanism work in 

parallel with the same data input. The chromosome is made up of two different sets of 
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thresholds, namely, QOBL (Lower) and QOBU (Upper). The GA logic is illustrated 

in the flowchart shown in Figure 2.6.2.2. 

 

      Figure 2.6.2.2 The GA logic flowchart 

 

 Figure 2.6.2.3 shows that for the given queue length trace the GAC eliminates 

the shortcomings of the PIDC (non-GA) by yielding more responsive buffer overflow 

control. For the same trace, however, it also produced an overflow as shown in Table 

2.6.2.1. The overflow occurred at the time point of 548980 after chromosome 

replacement at the time point 547781. 
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Figure 2.6.2.3 The GAC yields a more responsive result than the PIDC 

 

Time Queue 
length 

Buffer 
(GA) 

Buffer 
(non-GA) 

RLQI 
(GA) 

RLQD 
(GA) 

RLQI 
(non-GA) 

RLQD 
(non-GA) 

Action 

588 0 20 20 0.716605 0.574195 0.716605 0.574195 

1174 1 20 20 0.716605 0.574195 0.716605 0.574195 

1379 0 20 20 0.716605 0.574195 0.716605 0.574195 

: 
: 
: 

546589 18 20 26 0.856595 0.583624 0.716605 0.574195 

547178 19 20 26 0.856595 0.583624 0.716605 0.574195 

547781 20 20 26 0.856595 0.583624 0.716605 0.574195 REPLACE 

547941 19 20 26 0.823966 0.539837 0.716605 0.574195 

548374 20 20 26 0.823966 0.539837 0.716605 0.574195 INSIDE_ADAPTATION_
PERIOD 

548980 21 20 26 0.823966 0.539837 0.716605 0.574195 INSIDE_ADAPTATION_
PERIOD 

549391 20 26 32 0.823966 0.539837 0.716605 0.574195 

549509 19 26 32 0.823966 0.539837 0.716605 0.574195 

549587 20 26 32 0.823966 0.539837 0.716605 0.574195 

Table 2.6.2.1 A record of buffer overflow after chromosome replacement 

 

2.6.3 THE FUZZY LOGIC CONTROLLER (FLC) 

 

Although the GAC produces occasional buffer overflow it eliminates the PIDC 

shortcomings completely and confirms that the 2},0{ Δ objective function is a sound 

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

1

23
9

47
7

71
5

95
3

11
91

14
29

16
67

19
05

21
43

23
81

26
19

28
57

30
95

33
33

35
71

38
09

40
47

42
85

45
23

47
61

49
99

T im e  (m s )

Le
ng

th

Q u e u e  le n g th B u ffe r  (G A ) B u ffe r  (n o n -G A )



 62

and powerful concept. The FLC proposal represents the quest for a better intelligent 

model that can: a) work with the PIDC as a component minus its shortcomings, b) use 

the 2},0{ Δ objective function as the operational basis, and c) produce no overflow at 

all. In this sense the FLC should be more powerful and accurate than the GAC. The 

FLC conceptual framework is the “PIDC plus fuzzy logic plus the 2},0{ Δ objective 

function” combination. The fuzzy logic divides the PIDC control domain into many 

smaller fuzzy control regions (e.g. Table 2.6.3.1) and supports each of them with a 

predefined fuzzy rule or a “don’t care” state. The “don’t care” state requires no 

action/computation and in this way it offsets the FLC computation complexity and 

reduces its control cycle time. Therefore, the FLC is a fuzzy region based (FRB) 

approach [Berkan1997, Zadeh1994]. The control domain, which now consists of 

many fuzzy regions, is known as the fuzzy knowledge base. The adaptive adjustment 

of the buffer length, by addition or subtraction, depends on the current fuzzy region 

of operation. In effect, the original algorithmic PIDC has only two fuzzy regions if 

compared to the FLC approach. The “don’t care” is marked by X in the FLC[4x6] 

design shown in Table 2.6.3.1.    

       

       Table 2.6.3.1 A FLC [4x6] design example 

 

     The “dot” in Table 2.6.3.1 marks the RQOB , which in this case is equal to 0.8 

(80%). The FLC experimental result presented in this section is based on this design, 
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and this implies  Δ to be 0.2 or 20%. The linguistic variables (representations), which 

are used for the fuzzy regions of the FLC design in Table 2.6.3.1, are defined as 

follows: 

a) For the Ratio of Queue Length Over Buffer Length (QOB) 

• ML  - Much Less than optimal point 

• L - Less than optimal point 

• G - Greater than optimal point 

• MG - Much Greater than optimal point 

b) For the Rate of change of queue length (dQ/dt) 

• NL - Negative Large than optimal point 

• NM - Negative Medium than optimal point 

• NS - Negative Small than optimal point 

• PS - Positive Small than optimal point 

• PM - Positive Medium than optimal point 

• PL - Positive Large than optimal point 

The control action to be taken by the FLC depends on the two input parameters, 

namely, QOB (i.e. proportional or P control) and dt
dQ  (i.e. derivative or D control). 

The three possible FLC decisions/actions are: a) Addition or “+”, b) Subtraction or

 “-” and don’t care or “X”. The X state prevents unnecessary oscillation in the 

buffer length control process. The quantum for addition (buffer elongation) or 

subtraction (buffer shortening) is still computed by the refined PIDC mechanism, 

which is a component of the FLC. Refinement here means that the operation of the 

PIDC algorithm depends on the fuzzy region that the controller is currently operating 
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in. The FLC Java prototype for the FLC[4x6] design shown by Table 2.6.3.1 has the 

following fuzzy rules, which moderate the integral control represent by RICM 

(Refined Integral Control Mechanism [Lin2002FLC]): 

Rule 1: If (QOB is ML) AND (dQ/dt is NL) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM 

Rule 2: If (QOB is ML) AND (dQ/dt is NM) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM 

Rule 3: If (QOB is ML) AND (dQ/dt is NS) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM 

Rule 4: If (QOB is ML) AND (dQ/dt is PS) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM 

Rule 5: If (QOB is ML) AND (dQ/dt is PM) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM 

Rule 6: If (QOB is ML) AND (dQ/dt is PL) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM 

Rule 7:  If (QOB is L) AND (dQ/dt is NL) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM 

Rule 8: If (QOB is L) AND (dQ/dt is NM) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM 

Rule 9: If (QOB is L) AND (dQ/dt is NS) Then Action is “X”(Don’t care) AND Lnew = Lold 

Rule 10: If (QOB is L) AND (dQ/dt is PS) Then Action is “X”(Don’t care) AND Lnew = Lold 

Rule 11: If (QOB is L) AND (dQ/dt is PM) Then Action is “+”(Addition) AND Lnew = Lold + RICM 

Rule 12: If (QOB is L) AND (dQ/dt is PL) Then Action is “+” (Addition) AND Lnew = Lold + RICM 

Rule 13: If (QOB is G) AND (dQ/dt is NL) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM 

Rule 14: If (QOB is G) AND (dQ/dt is NM) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM 

Rule 15: If (QOB is G) AND (dQ/dt is NS) Then Action is “X”(Don’t care) AND Lnew = Lold 

Rule 16: If (QOB is G) AND (dQ/dt is PS) Then Action is “X”(Don’t care) AND Lnew = Lold 

Rule 17: If (QOB is G) AND (dQ/dt is PM) Then Action is “+”(Addition) AND Lnew = Lold + RICM 

Rule 18: If (QOB is G) AND (dQ/dt is PL) Then Action is “+”(Addition) AND Lnew = Lold + RICM 

Rule 19: If (QOB is MG) AND (dQ/dt is NL) Then Action is “+”(Addition) AND Lnew = Lold + RICM 

Rule 20: If (QOB is MG) AND (dQ/dt is NM) Then Action is “+”(Addition) AND Lnew = Lold + RICM 

Rule 21: If (QOB is MG) AND (dQ/dt is NS) Then Action is “+”(Addition) AND Lnew = Lold + RICM 

Rule 22: If (QOB is MG) AND (dQ/dt is PS) Then Action is “+”(Addition) AND Lnew = Lold + RICM 

Rule 23: If (QOB is MG) AND (dQ/dt is PM) Then Action is “+”(Addition) AND Lnew = Lold + RICM 

Rule 24: If (QOB is MG) AND (dQ/dt is PL) Then Action is “+”(Addition) AND Lnew = Lold + RICM 
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Figure 2.6.3.1 A case of performance comparison between the PIDC and the 

FLC ( 8.0=RQOB , 2.0=Δ )  

 

 The FLC always yields more a responsive buffer tuning operation than the 

PIDC minus the latter’s shortcomings. Figure 2.6.3.1 is one case in which the FLC 

consistently maintains the safety marginΔ  for the 2},0{ Δ  objectivity function. Point A 

in Figure 2.6.3.1 indicates that the FLC has eliminated the PIDC shortcoming of 

staying at the high buffer length value (i.e. unused buffer space still being locked by 

the controller). 

 

2.6.4 THE NEURAL NETWORK CONTROLLER (NNC) 

 

     Although the FLC preserves the PIDC merits minus its shortcomings, its 

convergence towards RQOB can be oscillatory. The desire to attain a smoother 

RQOB convergence for the 2},0{ Δ  objectivity function led to the NNC proposal, 

which was also inspired by the success of applying the neural network (NN) 
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techniques in AQM (Active Queue Management) algorithms (e.g. [Aweya1998]). 

After some detailed preliminary investigation it was concluded that the NN approach 

should base on backpropagation (BP). The argument is that the BP approach is 

simpler and the NN controller can be trained efficiently withΔ as the teacher signal. 

Therefore, the NNC is proposed as a feed-forward BP perceptron [Lin2001NNC] 

with supervised training [Rumelhart1986], as shown in Figure 2.6.4.1. The NNC 

prototype’s configuration consists of: a) a single input layer of 10 neurons, b) a single 

hidden layer of 20 neurons, and c) a single neuron in the output layer. The training 

with Δ is based on the Sigmoid function represented by )0.1(0.1)( xexf −+= . The 

activation energy (value) for the neurons in the hidden and output layers are 

computed respectively as follows: 

a) Sigmoid(∑ InputActivation * weight (input-hidden)) 

b) Sigmoid(∑ OutputActivation * weight(hidden-output)) 

Figure 2.6.4.1 Backpropagation NNC control 

 

     The NNC has an input vector Qvector of ten variables with the following properties: 

Input
layer

Hidden
  layer

Teacher signal  for training
      (deserved  value)

Output
  layer

10 neurons 20 neurons

1 neuron

Sigmoid (input)
Sigmoid(output)
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a) Nine queue-length samples: They are sampled at equal time distances within the 

chosen renewal window or period of W. If we divide W equally into nine portions 

then each sample is denoted by tXQ , where X is 1,2,…9. 

b) 10th element: This is the queue length estimated by the M3RT at the t9. That is, at 

the time point t9, which is the end point of the current W cycle, two samples are 

included, namely, QueueCA_estimate and the queue length at that point. This means 

that M3RT must run in parallel with the NNC as a logical entity.  

The inclusion of QueueCA_estimate (output from the M3RT) is the basis for the argument 

that the NNC has the capability to proactively maintain the safety margin Δ. The 

rationale is that the main function of M3RT is to predict the trend of the queue length 

distribution and therefore the instantaneous value of QueueCA_estimate at t9 should 

reflect the next move of the queue length accurately. The output from the NNC is the 

predicted buffer length required to ensure that the queue is completely covered so that 

the safety margin Δ criterion will be met in the next W. The computation approach 

for the NNC is given by equations (3.4.1) and (3.4.2). The predicted buffer length 

)1( +WL for the W+1 cycle is a function ( ∫NN
(..) is the symbolic representation) of 

the variables vector Qvector (W) and QueueCA_estimate ( Wt9 ). 

∫=+
NN vector WQWL ),([)1( QueueCA_estimate(t9w)]……(3.4.1) 

Wtvector QQ 1{= , 
WtQ 2 , 

WtQ 3 , 
WtQ 4 , 

WtQ 5 , 
WtQ 6 , 

WtQ 7 ,
WtQ 8 , 

WtQ 9 }…..(3.4.2) 

     The NNC operation is divided into two phases, namely, training and prediction. 

The first is the training process for the BP approach to learn to respond properly by 

yielding the deserved value with respect to the teacher signal; in this case the teacher 



 68

is the given Δ. Before training starts the weights of the NN arcs are randomized. The 

error, which is the difference between the predicted output and the deserved value 

(DV) defined by the )()( Δ+≤≤Δ− RR QOBDVQOB  range, should gradually decay as 

the learning process is progressing. The training is considered to be completed if the 

controlled output is consistently within the DV range. The simulation performance by 

the NNC and that by the “NNC+M3RT”, namely, the NNC supported by the M3RT in 

the form of QueueCA_estimate or 10Q element in the Qvector, are depicted in Figure 2.6.4.2 

and 2.6.4.3. M3RT is synonymous with CA (Convergence Algorithm) because the 

former is the validated micro version of the CA macro Java implementation known as 

the M2RT. 

 

 Figure 2.6.4.2 Deviation by NNC from objective function with QOB=0.8 – test 

case 1 
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Figure 2.6.4.3 Deviation by (NNC+ RTM 3 ) from objective function, QOB=0.8 – test 

case 2 

 

     The average of the deviation of the NNC output is measured by the following 

equation: kQOB
k

i
i ⎥
⎦

⎤
⎢
⎣

⎡
−Δ∑

=1
|| . Table 2.6.4.1 (Δ = 0.2, sample size k = 7200) shows 

three cases out of the many simulations, which confirm that the “NNC+M3RT” 

consistently has at least 5 percent or less of deviation from the RQOB  than the NNC 

working alone. Without the M3RT incorporation the deviation can be as large as 25% 

in some cases, and our analysis indicates that this phenomenon is due to the fact that 

the knowledge from the last training of the NNC is not enough to deal with 

unexpected new situations. With the M3RT presence the largest deviation by the 

“NNC+ M3RT” is around only 15%. This is the result of the integral effect provided 

by the M3RT convergence process. 

 

Figure 2.6.4.4 compares the smoothness of convergence towards RQOB  by the 

PIDC, FLC and NNC (supported by CA/ RTM 3 ). The NNC and the FLC eliminate 
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the PIDC shortcomings and consistently maintain the safety margin Δ . The 

maintenance by the NNC is much smoother than the FLC.  

Figure 2.6.4.4 Comparing the PIDC, FLC and NNC (QOBR = 0.8) 

 

Controller Case 1 Case 2 Case 3 

NNC 0.02386 0.01853 0.02245 
NNC+ M3RT 0.02260 0.01655 0.02115 
Performance improvement: 

%100*"" 3

NNC
RTMNNCNNC +−  

5.28% 10.7% 5.8% 

Table 2.6.4.1 Comparing three cases of deviations between NNC and “NNC+ M3RT”  

 

2.6.5 TIMING ANALYSES OF THE DIFFERENT CONTROLLERS 

 

Timing analysis of the individual dynamic buffer tuners, namely, PIDC, GAC, 

FLC and NNC is an essential part of my MPhil research. A good dynamic buffer 

tuner should be quick and accurate. If its control cycle time is too long, then it may 
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yield deleterious effects because the computed remedy ends up correcting a long-

passed spurious problem. The timing analysis is carried out with the Intel’s VTune 

Performance Analyzer [VTune2002]. The control cycle time or controller execution 

time is measured in terms of the number of neutral clock cycles. Some of the results 

are presented in Figure 2.6.5.1 to 2.6.5.4. The clock cycles can be converted into the 

actual physical time for the chosen platform. For example, if the platform is operating 

at 100 MHz, the control cycle time of 500 clock cycles yields 5)10*100(
500

6 ≈  micro 

seconds. 

Figure 2.6.5.1 PIDC VTune Analysis (control cycle time is 205 clock/T cycles) 
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Figure 2.6.5.2 GAC VTune Analysis (control cycle time is 475 T cycles) 

 

Figure 2.6.5.3 FLC VTune Analysis (control cycle time is 255 T cycles) 
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Figure 2.6.5.4 NNC VTune Analysis (control cycle time is 10800 T cycles) 

 

Intel VTune [VTune2002] Timing Analyses for four buffer controllers with the Intel-Pentium III as the reference architecture 

Control 
models 

Lines of Java code 
for controller 

implementation 
 

(Ln) 

Average 
number of  

lines of code 
in Pentium III 

assembler  

Clock/T cycles per 
assembly line 

(Pentium lll 933MHz)
 

(T) 

Average number of 
T cycles for 

RQOB convergence 
 

(NTC) 

Measured average number 
of T cycles per control 

cycle 
(TCC) 

 Chosen 
architecture: 

Intel-
Pentium III 
933MHz 

(seconds) 

 PIDC 105 525 9 4725 205 2.1972E-07

GAC 111 555 9 4995 475 5.0911E-07

 FLC 116 580 9 5220 255 2.7331E-07

 NNC (Input-
Hidden-

Output]: 10-
20-1) 

240 1200 9 10800 10800 1.1576E-05

Table 2.6.5.1 Summary of the indicative control cycle times by the different controllers  
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2.7 CONNECTIVE SUMMARY 

 

To recap, my MPhil research had achieved the following: 

a) Four novel dynamic buffer overflow controllers for user-level 

applications were proposed; one algorithmic (i.e. the PIDC) and three 

intelligent ones (i.e. GAC, FLC and NNC). 

b) The GAC was thoroughly tested and found to be unacceptable because 

it yields occasional buffer overflow. 

c) The FLC was proposed and two designs, namely, FLC [4x4] and FLC 

[4x6] were tested. The results indicate that this direction is the right 

one because of the following: i) it eliminates buffer overflow 

completely, ii) its execution time comparable to the simpler PIDC’s 

due the presence of the “don’t care” state [Lin2002FLC], and iii) it 

always maintains the control output within Δ± about the chosen 

RQOB  reference, but  its convergence to RQOB  can be oscillatory. 

d) The success of using 2},0{ Δ as the operation principle and the desire to 

have a smoother RQOB  convergence led to the proposal of the NNC. 

The NNC differs form the GAC and the FLC because it does not 

include the PIDC as a component. The NNC, however, has a much 

longer control cycle time compared to the PIDC, GAC and the FLC 

and this is prone to deleterious effects. The argument is that by the 

time the remedy is computed the actual problem has already passed. 

Using the computed remedy to resolve a spurious problem may lead to 
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undesirable consequences or deleterious effects. The NNC prototype, 

which works by backpropagation with supervised training, has 10 

input neurons, 20 neurons in the hidden layer, and one output neuron. 

e) Timing analyses confirmed that the four novel dynamic buffer size 

tuning models are indeed suitable for time-critical applications over 

the Internet. The limit of application and accuracy is determined by the 

controller’s mean control cycle time.   

 

 Meanwhile my MPhil research also left behind some important but 

unaddressed issues: 

 

a) Does the Internet traffic impede the controllers’ stability and accuracy? If so 

how can the impedance be alleviated or neutralized? In fact, the internet 

traffic can change without warning, for example, from LRD (long-range 

dependence) such as heavy-tailed and self-similar to SRD (short-range 

dependence) such as Poisson [Molnár1999]. Such changes may have a serious 

impact on the controllers’ performance. 

b) Is it possible to have an optimal (cost-effective) FLC design? 

c) Is there a correlation between the accuracy and the number of neurons in the 

hidden layer of the NNC? In my PhD research finding such a correlation is 

called sensitivity analysis. 

d) Is it possible to cut down the NNC control cycle time and lower the chance of 

deleterious effects? 
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CHAPTER 3 PROBLEM STATEMENT AND METHODOLOGY 

 

3.0 INTRODUCTION 

 

In this section the problem tackled in my PhD research will be explained. In 

order to achieve the research objectives in a qualitative manner and within the time 

constraints imposed on the duration of the project, the “investigate & experiment & 

iterate (IET)” methodology is adopted as the basis for evolution. This methodology 

helped my MPhil research a great deal and enabled me to produce useful and 

meaningful findings that led to several refereed journal and conference publications. 

 

3.1 DEFINITIONS OF USEFUL TERMS 

 

Client/server interaction - A client/server interaction has two levels: system and user. 

The system or router level includes all the activities within the TCP channel, and the 

user level includes the client and the server that interact over the TCP channel in the 

end-to-end manner. 

 

Buffer - A finite memory space where objects queue up. 

 

Network congestion - This happens when a router is inundated by a large volume of 

incoming packets and runs out of buffer space, leading to loss of packets and very 

slow or no response to the clients’ requests 
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Queue – It is a series of requests waiting to be processed in a FIFO (first in first out) 

basis. 

 

Adaptive buffer – It meets the “n <Buffer ≤ m” criterion with lower limit n ≥0 and 

upper limit m. 

 

Adaptive/dynamic buffer size control – The buffer size is adjusted on the fly by the 

dynamic buffer size tuning function: 

),,)(,( 3
tttt ICMRTMdt

dQQOBfunctionBufferSize = , where t indicates the time 

point. The parameters are defined as follows: QOB - ratio of queue length over buffer 

length, dt
dQ - rate of change of queue length, RTM 3 - Micro Mean Message 

Response Time implementation, and ICM - integral control mechanism. 

 

Traffic pattern – It is the traffic waveform/distribution, which may be SRD (short-

range dependence) or LRD (long-range dependence). 

 

Long-Range Dependence – A stationary process is long-range dependent if its 

autocorrelation function r(k) is nonsummable (i.e. ∑ ∞=
k

kr )( ), applied only to 

infinite time series[Paxson1995]. 
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Short-Range Dependence – A stationary process is short-range dependent if its 

autocorrelation function r(k) is summable (i.e. ∑ ∞<
k

kr )( ). 

 

Intelligent buffer controller – It uses soft computing techniques, for example, the FLC 

(Fuzzy Logic Controller) and the NNC (Neural Network Controller). 

 

Roundtrip time (RTT): It is the delay/latency between the time that a client sends a 

request and gets the correct result from the server. 

 

Packet loss – It happens in the transmission process (e.g. dropped by the receiver to 

prevent local buffer overflow as a congestion prevention measure). 

 

 3.2 PROBLEM DEFINITION 

 

The scope of this research is dynamic buffer size tuning at the user level. The 

argument is that if the chance of overflow for the server’s reception buffer in a TCP 

based client/server or C/S interaction path (Figure 1.01 and Figure 1.4.1) is 

eliminated, then the service roundtrip time or RTT can be shortened. In this sense the 

C/S path becomes more dependable and suitable for time-critical applications. My 

previous MPhil thesis had explored different possibilities of achieving reasonable 

user-level dynamic buffer size tuning, and as a result four novel dynamic buffer 

tuners were proposed, namely, the algorithmic PIDC and the intelligent/expert GAC, 

FLC and NNC [Lin2002]. These four models are unique because they operate with a 
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variable buffer length (VBL) as indicated in Figure 2.1.1. My MPhil research, 

however, left behind some important but unaddressed issues as follows:      

 

a) Does the Internet traffic impede the controllers’ stability and accuracy? If so 

how can the impedance be alleviated or neutralized? In fact, the internet 

traffic can change without warning, for example, from LRD (long-range 

dependence) such as heavy-tailed and self-similar to SRD (short-range 

dependence) such as Poisson [Molnár1999]. Such changes may have a serious 

impact on the controllers’ performance. 

b) Is it possible to have an optimal (cost effective) FLC design? 

c) Is there a correlation between the accuracy and the number of neurons in the 

hidden layer of the NNC? In my PhD research finding such a correlation is 

called sensitivity analysis. 

d) Is it possible to cut down the NNC control cycle time and lower the chance of 

deleterious effect? 

 

Over a C/S path there are two levels of operations: system and user as shown by 

Figure 1.4.1, which is duplicated here to support a clearer explanation of the problem. 

The system level includes all the activities in the TCP channel, which inevitably has 

the collective error probability ρ (as explained in section 1.0 Introduction) due to the 

sheer size and heterogeneity of the Internet. There are existing mechanism that can 

prevent the network congestion, which results in router buffer overflow, loss of 

messages/segments, and widespread retransmission. The sender based mechanisms 
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tune the timeout windows to alleviate premature timeouts and/or the congestion 

window to reduce the sending rate and thus the amount of data across the network. 

Although the sender mechanisms have their contributions in cutting down the chance 

of network congestion, they are not powerful enough and have side effects. For 

example, the well-known AIMD (Additive Increase and Multiplicative Decrease) 

algorithm [Jacobson 1988] can impoverish bandwidth utilization in “long-fat-pipes”, 

which are high-bandwidth-high-latency networks [Wang2004]. This side effect is a 

relatively recent observation and since then different methods had been proposed to 

reduce it [Balakrishnan1997]. One of the counter measures is the AQM (Active 

Queue Management) approach proposed by the IETF’s RFC 2309. It allows the 

router to throttle the sender(s) once it has detected a strong likelihood of overflow in 

its reception buffer. The RED (Random Early Discard) algorithm is the candidate to 

do the job. The system-level congestion prevention activities cannot, however, 

prevent user-level reception buffer of a C/S path from overflowing. As shown in 

Figure 1.4.1, the client/server interaction at the user level is usually an asymmetric 

rendezvous, with the server simultaneously serving many different clients. At the 

periods of peak service demands the torrents of incoming request traffic merge to 

inundate the buffer to overflow easily. The cause is not only the high incoming traffic 

rate but also the pattern embedded in the merged traffic [Molnár1999]. If the server’s 

reception buffer on a C/S path overflows only after the system has dished out a large 

amount of resources to prevent network congestion and ensure the smoother passage 

for a message/segment/packet from the sender to the server, then the result can be 

disastrous. Therefore, it makes sense to propose dynamic buffer size tuners such as 
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the PIDC, GAC, FLC and NNC to eliminate the chance of user-level buffer overflow 

by ensuring the buffer length always covers the queue size. This needs the support of 

an efficient memory recycling system in the host where the server resides. Besides, 

dynamic buffer size tuning at the user level could also break down as the congestion 

problem is a persistent one. Conceptually the congestion prevention effort at the 

system level and the user-level dynamic buffer tuning operation together form a 

unified solution to stifle buffer overflow along a C/S path.   

 

 

(Duplication of Figure 1.4.1 for clearer problem definition) 

 

The Internet traffic pattern changes without warning, for example, from LRD 

(long-range dependence) such as heavy-tailed and self-similar to SRD (short-range 

dependence) such as Poisson. Since the traffic patterns and the sudden change from 

one pattern to another can have a serious impact on the queue dynamics and thus the 

dynamic buffer tuner performance, the buffer tuning mechanism should be able to 
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detect them and react within a reasonable time. Therefore, the real-time nature of the 

detection mechanism is important for it to be applied successfully.  

 

3.3 PROBLEM STATEMENT 

 

The aim of this PhD research is to address the following issues in-depth. The 

objectives include the following: 

a)  Study and define the impact of traffic on the stability and accuracy of the FLC 

and the NNC, and propose methods to counteract the negative impact 

effectively. 

b) Explore and define the possible optimal range for the FLC design and 

implementation. 

c) Define the correlation between the number of neurons in the NNC hidden 

layer and the control accuracy. 

d) Propose a method(s) to optimize the NNC configuration to lower its control 

cycle time so that it becomes more suitable for time critical applications over 

the Internet. 

e) Perform timing analyses of the improved/new FLC and NNC models to 

confirm that they are indeed suitable for time-critical applications over the 

Internet.  
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3.4 RESEARCH METHODOLOGY 

 

The aim of any research is to address an issue or problem as thoroughly as 

possible. In the process it may involve the following: a) forming a conceptual 

framework, b) dissecting this preliminary framework into manageable pieces so that 

their functionalities and relationship can be investigated, c) developing the respective 

system supporting architecture so that the conceptual framework can be tested, 

verified and evaluated as a prototype, and d) improving the prototype continuously 

with new experimental results and observations. In the research process both 

backtracking and cross referencing are natural. To get meaningful research results 

within a given time frame, discipline is absolutely necessary in the course of action. 

This relies on choosing the correct research methodology, which is a totality of 

methods and tools that are appropriate for the problem domain. From the literature 

research activities can be classified in various ways in terms of their objectives and 

approaches. For example, the following types are summarized from the literature by 

[Nunamaker1991], a) basic and applied, b) scientific and engineering, c) evaluative 

and development, d) research and development, and e) “formulative” and 

“verificational”.  

 

The system development approach involves theory building (development of 

new ideas and conceptual frameworks and models), experimentation (computer 

simulations to validate the underlying theory), and observation (case studies and 

formulation of hypotheses to be tested through experimentation). The work in this 
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PhD thesis clearly fits this approach, which supports system development and is 

therefore an information systems research methodology [Nunamaker1991]. The 

theory building part in the thesis consists of defining new types of buffer control 

strategies and formulating their mathematical structures. The experimentation 

involves both simulations and experimental studies on the Internet so that 

observations can be carried out for system validation, which is essential for proof of 

concept. 

 

From another angle my PhD research is in the domain of computer science. 

According to [Philips1987] there are three basic types in this domain, namely, testing 

out, problem solving, and exploratory. From this perspective, this research is 

exploratory even though it ends up with a prototyping for rigorous testing and 

supporting future deeper research. The prototyping process concurs with the 

definition of system development by [Nunamaker1991]. Therefore, the concepts in 

[Nunamaker1991] and [Philips1987] complement each other. The workflow in my 

PhD research is top-down and includes literature search, problem statement definition, 

proposed solutions, and data collection and analysis. It is inappropriate, however, to 

apply the top down philosophy in a strict sense because the exploratory investigations 

at different stages may involve repetitive backtracking, re-orientation, and cross-

referencing, to gain enough insight for going to the next step. For meeting the 

iterative or spiral behavior of the research activities the “investigate & experiment & 

iterate (IET)” methodology is adopted as the basis. The reason for adopting this basis 
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is that it helped me finish my previous MPhil research effectively and efficiently 

[Lin2002] and led to important findings and refereed publications.  

 

Since the area of dynamic buffer overflow control over the Internet is relatively 

new, previous techniques and experience are limited in scope. It is inevitable that in 

my PhD research intermediary models would be proposed so that tests and 

experiments could be carried out to determine whether they are actually milestones. 

In this light the IET approach is natural for this project because experiments are 

continuously and repetitively needed to confirm the right direction for further actions. 

In the course of research it is only natural to have backtracking, concept refinement 

and modularization, and cross referencing. The basic IET methodology is conceptual, 

and this means that it can be realized in different ways. In this research the IET 

realization should gain from the experience of my previous MPhil project and be 

implemented as a roadmap (Figure 3.4.1). As the PhD research progresses the new 

experience gained would inspire inevitable changes to the IET hierarchy in the 

roadmap. 

 

 The first step in the IET approach is to divide the research problem is into 

sub-problems or tasks. The division is based on the knowledge gained from literature 

search and my previous experience. Each task is studied and executed carefully and 

the findings determine if a task should be further divided, eliminated, or combined 

with another extant one. As the research activities progress through a hierarchy of 

tasks and sub-tasks, backtracking and cross-referencing are sometimes necessary. 
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Backtracking is usually caused by insufficient research in one or several of the 

previous tasks higher in the hierarchy. Therefore, revisit(s) and more research are 

necessary with this/these previous task(s) to gain more insight so that the temporarily 

suspended task can continue and remains possible with proper re-orientation. Cross-

referencing allows the present research stage to utilize the previous findings directly. 

In fact, tangible products may be produced by different tasks and sub-tasks, such as 

refereed journal and conference publications. This is clearly manifested by my 

previous MPhil research experience [Lin2002].     
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Figure 3.4.1 Realization of the IET methodology into a road map 
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CHAPTER 4 OVERVIEW OF SOLUTIONS 

 

4.0 BACKGROUND 

 

The area of my PhD research is directed at performance enhancement and 

fault tolerance in Internet applications. It is the continued, deeper investigation using 

my previous MPhil research experience as the basis. My MPhil research concentrated 

on how to use dynamic buffer size tuning to eliminate user-level buffer overflow at 

the receiver side.  Figure 4.0.1 shows the end-to-end client/server interaction over a 

logical Internet TCP channel. This interaction in reality is asymmetric rendezvous 

because the server serves many different clients simultaneously (i.e. one-server-to-

many-clients relationship). The request streams from different clients merge at the 

server’s queue buffer. Every request has to wait there for its turn to be served. The 

queue length can grow very long during periods of peak demand, especially for a 

popular server. The overflow due to the merged traffic of different request streams 

that inundate the server buffer is called user-level overflow in the context of my PhD 

research. It differs from those along and inside the TCP channel. The dynamic buffer 

tuners proposed in my MPhil thesis include [Lin2002]: the algorithmic PIDC (i.e. 

proportional (P) plus integral (I) plus derivative (D) controller), and the intelligent 

trio, namely, GAC (Genetic Algorithm Controller), FLC (Fuzzy Logic Controller) 

and NNC (Neural Network Controller). This trio contributes to shortening the service 

roundtrip time (RTT) in the asymmetric rendezvous by eliminating the chance of 

user-level buffer overflow at the receiver side.  
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Figure 4.0.1 End-to-end client/server asymmetric rendezvous 

 

Buffer overflow can occur at both the system/router level (all activities inside 

and including the logical TCP channel) and the user-level. Different strategies were 

proposed for reducing or preventing the chance of overflow at the system level by 

preventing network congestion. They are formally referred to as AQM (active queue 

management) algorithms by RFC2309 [Braden1998]. The more recent AQM 

algorithms use neural networks and their potential benefits had inspired the proposal 

of the NNC. Together with the system-level AQM mechanisms the user-level 

dynamic buffer size tuners proposed in my MPhil research, PIDC, GAC, FLC, and 

NNC, form a unified solution to stifle buffer overflow in an asymmetric rendezvous. 

If ρ  encapsulates all the error probabilities that cause overflow in an asymmetric 
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rendezvous, the average number of trials (ANT) to get a successful transmission 

is )1(
1)]1([

1

1

ρρρ −≈−∑
∞→

=

−
K

j

jj  . Therefore, eliminating the chance of user-level 

overflow reduces ρ  and thus ANT. As a result it improves asymmetric rendezvous 

fault tolerance and shortens its RTT.  The development history of the tuners in my 

MPhil research is summarized as follows: 

a) PIDC – It was proposed to improve the efficacy of the first model, 

namely, “P+D” (i.e. proportional (P) plus derivative (D) controls). 

The “P+D” aims at eliminating user-level buffer overflow by 

dynamic buffer size tuning, which adaptively ensures that the buffer 

length always cover the queue length. It however produces overflow 

in real-life deployments because of the unrealistic expectation of 

using a set of static parameters to cover the whole spectrum of 

system dynamics. When integral (I) control is added to the “P+D” 

model the novel PIDC is formed. The PIDC always eliminates the 

chance of user-level buffer overflow despite its two shortcomings: a) 

it locks up unused buffer memory and this affects the overall system 

performance, and b) it does not have a safety margin and therefore 

the queue length can get dangerously close to the buffer length 

threatening overflow during peak demand periods. The desire to 

eliminate these two shortcomings prompted the investigation into 

the use of soft computing techniques. 
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b) GAC – It is basically the combination of “PIDC plus 

2},0{ Δ objective function plus genetic algorithm (GA).  The GA 

moderates the PIDC control process to make sure that it always 

stays within the Δ  safety margin about the chosen reference 

represented symbolically by “0”. The GAC eliminates the PIDC’s 

shortcomings but produces rare user-level overflow. The reason is 

that the GA, similar to other evolutionary computing approaches, 

does not guarantee the global-optimal solution in the solution 

hyperplane [Mitchel1999].     

c) FLC – It represents the desire and effort to eliminate any user-level 

overflow and preserve the GAC merits. The FLC is basically the 

following combination: “PIDC plus fuzzy logic plus 

2},0{ Δ objective function”. The FLC is more stable and faster than 

the GAC, and most important of all it does not produce any buffer 

overflow. 

d) NNC – The success of some AQM algorithms at the experimental 

level inspired the NNC research, which is conceptually this 

combination: “neural network plus 2},0{ Δ objective function”. 

Although the NNC provides smoother and more accurate control 

than the FLC, it has a much longer control cycle time. This makes 

the NNC less suitable for time-critical applications. 

  When the above dynamic buffer size tuners were verified, it was observed that 

traffic patterns can affect their performance and stability. In all the experiments the 
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FLC has remained the most efficient and stable dynamic buffer size tuner compared 

to other versions. For this reason the FLC is always the candidate for different testing 

purposes. The MPhil research, however, had left many unaddressed issues, which 

form the basis for this deeper PhD research of mine. The unaddressed issues are 

summarized in Table 4.0.1. 

        

Tuner(s) Unaddressed issues in my MPhil research 

FLC 1) Is it possible to have an optimal design?  

 

2) Is it possible to make it reconfigurable (especially with 

respect to traffic pattern changes)?  

NNC 1) Is it possible to prune the NNC configuration on the fly so 

that its control cycle time can be consistently and adaptively 

reduced?  

 

2) Is there a correlation between control accuracy and the 

number of hidden neurons in the NNC back-propagation 

architecture? (The procedure to provide the answer is called 

sensitivity analysis.)  

Traffic ill effects 

for PIDC, FLC and 

NNC 

1) It is possible to calibrate the ill effects off-line so that the 

tuners can use these calibrations to ward off the impedance by 

fine-tuning its dynamic buffer tuning process adaptively?  

  

2) If so, then how can the current Internet traffic pattern be 

deciphered on the fly (on-line) so that the off-line calibrations 

can be applied selectively? 

Table 4.0.1 Unaddressed issues in my MPhil that forms the basis of my PhD research 
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Finding solutions for the unaddressed issues in Table 4.0.1 forms the 

backbone of my PhD research. It was difficult to rely on previous experience in 

solving some of the problems, in particular “on-line” traffic detection. Firstly, the off-

line traffic analysis techniques are generally not well-established [Molnar1999] even 

though there are many relevant publications [Abry2000, Arvotham2001, Cao2001, 

Cottrel2001, Ryu1996, Crovella1997, Karagiannis2003, Leland1994, Resnick1997, 

Taqqu2003, Willinger2003]. Secondly, “on-line” traffic detection techniques were 

absent from the literature until the paper published by the COMP Team (or simply the 

Team) [ATNAC]. The team analyzed the available off-line or post-mortem statistical 

techniques and concluded that they are basically lump analysis. For example, 

Gaussianity test [Zhang2003] is used to determine the stationarity of a discrete 

stochastic process X. This is at best an estimate that can be reasonably accurate or a 

crude approximation because Gaussianity is continuous but the target process is 

discrete in contrast. A Gaussian distribution can be used to approximate a Poisson or 

binomial process only under certain conditions [Jain1992]. Since in most published 

cases the continuous and discrete ideas are lumped as one, the Team calls these cases 

lump analysis. The Team uses the Hurst parameter as the yardstick to determine if 

any aggregate m
lX  of block size m  and lag l  “ ssH ” or not. The aggregate is ssH for 

10 << H , and the range  5.00 << H  indicates SRD (short-range dependence) 

traffic (e.g. Markovain) and 15.0 << H  for LRD (long-range dependence) traffic 

(e.g. heavy-tailed and self-similar). The limitation or criterion of application for the 

real-time traffic pattern detector (RTPD) [ATNAC] proposed by the COMP Team is 

“ ssH  and stationarity” because self-similar traffic can be non-stationary (i.e. non-
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linear). In non-linear situations the H value/effect does not scale linearly as a constant 

[Zhang2003]. In the remaining section on overview of the solutions proposed in my 

PhD research for the unaddressed issues in Table 4.0.1 are concisely described.      

 

4.1 PROPOSED SOLUTIONS 

 

4.1.1 FOR FLC 

 

The empirical results indicate that an optimal design range exists for the FLC 

design. Figure 4.1.1.1 shows the optimal range. Any complex design not in this range 

yields no obvious advantage measured in terms of the amount of mean deviations 

(MD) from the given steady-state reference symbolically represented by “0” in the 

2},0{ Δ objective function.   

 

 

Figure 4.1.1.1 An optimal FLC design is possible (mean deviation stabilizes 

around 0.02) (excerpt of Figure 6.1.1.1) 
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It is found that it is possible to make the FLC adaptive or reconfigurable (i.e. 

A-FLC) [p12]. The approach is to squeeze the “don’t care” state range threshold as 

shown by Figure 4.1.1.2. The amount of squeeze can be fixed/static or dynamic. The 

dynamic approach is suitable for neutralizing the ill effects by IAT traffic patterns on 

the tuner stability and efficacy on the fly. 

 

Figure 4.1.1.2 A-FLC adjustment of the don’t care state range threshold on the 

fly 

 

The calibration of the amount of squeeze versus traffic pattern (e.g. self-

similar) was carried out for the FLC, as shown by Figure 4.1.1.3. Real-time 

application of the squeeze calibration, however, is possible only if the RTPD is 

included to detect the current traffic pattern on the fly. This led to the proposals of 

two traffic filters in my PhD research for enhancing the RTPD. The inclusion of these 
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two traffic filters into the RTPD framework produces the Enhanced RTPD or E-

RTPD. The E-RTPD provides the basis of on-line traffic pattern 

detection/identification and neutralization of the traffic ill effects in the process of 

dynamic buffer size tuning. 

 

Figure 4.1.1.3 Mean Deviation Errors of different FLC designs versus traffic 

patterns (excerpt of Figure 6.3.1.1) 

 

4.1.2 FOR NNC 

 

The HBP (Hessian Based Pruning) approach was proposed to reduce the 

NNC execution time (i.e. control cycle time) on the fly. This on-line 

pruning/optimization technique always works with the same skeletal neural network. 

In operation the NNC has two modules: Chief and Learner.  Figure 4.1.2.1 is the twin 

system of two NNC clones (Chief and Learner). The NNC operates in two distinctive 

phases, namely, training/learning, and dynamic buffer tuning. In action it is a twin 

system consisting of the “Chief” NNC module and the “Learner” NNC module as 
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shown in Figure 4.1.2.1. The Chief , which has already learnt previous patterns, 

carries out actual dynamic buffer tuning while the Learner undergoes training to 

acquire new knowledge to deal with new phenomena. Before training starts all the 

weights of the arcs in the Learner’s neural network are randomized. As training 

progresses the error (difference) between the “trainee” output and the NNC 

desired/deserved output Δ decays gradually. After training the Chief and the Learner 

swap positions; the Chief becomes the learner. 

 

 

Figure 4.1.2.1 The NNC – a twin system of two NNC clones (excerpt of Figure 

7.1.2) 

 

Thorough analysis was carried out to determine if the number of hidden 

neurons would have an impact on the NNC performance. The preliminary empirical 

results shown in Figure 4.1.2.2 indicate that having 20 neurons in the NNC hidden 

layer is more or less the break point. Using more neurons does not produce better 

performance by yielding a lower MD. For the Poisson trace (a SRD pattern), the 

mean deviation error settles down for 15 hidden neurons in the hidden layer but for 
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other traffic patterns at least 20 neurons are needed. All the experimental results from 

this stage indicate that it is safer to use 20 neurons for the hidden layer for Internet 

applications because the traffic pattern, which includes all the patterns in Figure 

4.1.1.2, can switch quickly without warning. 

 

 

Figure 4.1.1.2 Mean deviation error for using different numbers of neurons in 

the NNC hidden layer versus different possible Internet traffic patterns (excerpt 

of Figure 7.1.1.6) 

 

4.1.3 REAL-TIME TRAFFIC PATTERN ANALYSIS 

 

I made use of the accumulated experience by the COMP Team in real-time 

traffic analysis. In return my PhD research contributed two traffic filters: real-time 

modified QQ-plot (or simply RT-QQ) filter/estimator and self-similarity ( 2S ) filter 



 99

for real time traffic pattern detection. The  2S  filter operation follows the CAB 

concept proposed by the Team. This concept helps find the starting point of a data 

section for meaningful RTPA evaluation. This point should satisfy the Gaussianity 

test, and only then the 2S  filter starts to find the necessary outcomes, including the H 

and D values for the successive aggregates mX  of a stochastic process X long the 

time axis. The block size m is a variable because the aggregate size for a pre-defined 

time interval depends on the average IAT of the aggregate; longer IAT means a 

smaller m . This "timed aggregate" approach avoids significant real-time sampling 

latency due to the unpredictable IAT. Figure 4.1.3.1 summarizes the CAB mechanism 

that the 2S  filter works with. The mechanism involves two separate real-time sub-

operations: Gaussianity test, and traffic pattern detection. The Gaussinaity test 

continues throughout the CAB mechanism’s service life. K1, K2 and K3 are blocks 

(timed aggregates of variable lengths) for three Gaussiainity tests. The second half of 

K1 is basically the first half of K2 to indicate that data in the current block/window is 

always half and half as the window is shifting forward along the time axis. For 

example, if Gaussianity is confirmed for K1 at 1Ag , then the 2S  filter starts to collect 

the first timed aggregate mX  (between 1Ag  and 2Ag ) so that the corresponding H 

value can be calculated. In the Figure 4.1.3.1 the 2S  filter tries to confirm self-

similarity in mX  for the “First aggregate” and finds H by the P1 linear regression. 

The same process repeats if the K2 block is also Gaussian. If the K3 block were 

found to possess no Gaussianity, then the 2S  filter would stop operation because the 

data has become non-stationary.  More details are presented in Chapter 5.  
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Figure 4.1.3.1 CAB mechanism has two real-time sub-operations (excerpt of 

Figure 5.2.3) 

 

4.2 ORIGINALITY AND SIGNIFICANCE 

 

This PhD research is a deeper exploration based on my previous MPhil 

findings [Lin2002] as the basis. In the MPhil project four original dynamic buffer size 

tuners for user-level applications were proposed: PIDC [Ip2001], GAC 

[Lin2001GAC], FLC [Lin2002FLC], and the NNC [Lin2001NNC]. In fact, these four 

tuners represent an evolutionary process. The PIDC, which is algorithmic, eliminates 

buffer overflow by proportional (P), derivative (D) and integral (I) controls despite 

the presence of performance shortcomings. The GAC uses genetic algorithms (GA) to 

eliminate these shortcomings. Unfortunately it produces occasional buffer overflow 

despite the fact that it has completely eliminated the PIDC shortcomings. Yet, the GA 

experience has confirmed that the effectiveness of the expert or soft computing 
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approach for dynamic buffer size tuning. The desire to preserve this effectiveness and 

prevent occasional buffer overflow at the same time led the proposal of the FLC, 

which uses fuzzy logic instead of GA. Meanwhile, the published positive experience 

of using neural networks in the AQM (active queue management) area [Braden1998] 

inspired the NNC proposal. The significant contribution by the four dynamic buffer 

size tuners is that they eliminate buffer overflow at the user level. As a result they 

shorten the client/server roundtrip time (RTT) over the Internet. These tuners are 

original because similar models have never been proposed before. They warrant 

deeper investigations for their positive impact on the performance of time-critical 

applications over a sizeable network such as the Internet. The findings from such 

deeper investigations should be original because they add new values to the original 

tuners.   

 

This PhD research addresses those issues uncovered in my previous MPhil 

thesis, and they include the following: 

 

a) To prevent occasional buffer overflows under GAC: The aim is to find a way to 

rectify the overflow problem. The preliminary conclusion is that the overflow is due 

to the very nature of any evolutionary techniques, which guarantee no global-optimal 

solution in the hyperplane [Mitchell1999]. Since this is a fundamental problem in 

evolutionary computing, it is outside the scope of the present research and no further 

pursuit was warranted. 
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b) To confirm that the FLC is a complete design approach: In the MPhil research only 

a few FLC configurations were proposed and tested. The aim is to ensure the 

following: i) these configurations need only short execution times, ii) they could 

indeed eliminate the PIDC shortcomings without causing buffer overflow and iii) the 

findings would pave a solid way for deeper investigation into the following:  

i) Is the FLC indeed a generic design approach in the sense that any 

configurations would work correctly even with somewhat different 

performance? 

ii) Is it possible to have optimal FLC design(s)? 

The PhD findings confirm that the FLC is indeed a generic design approach and it is 

possible to have optimal FLC designs. This original contribution was not part of my 

MPhil findings.  

 

c) To shorten the NNC execution time: The NNC proposed in my MPhil thesis has 

the longest execution time compared to PIDC, GAC and FLC and this can easily 

produce deleterious effects. The desire to shorten the NNC execution time led to the 

proposal of the Hessian based dynamic pruning technique, which successfully 

optimizes the neural network configuration of the skeletal NNC on the fly. This 

technique is original because no real-time dynamic neural network optimization by 

pruning as such has been proposed before. The success of using this technique to 

optimize the NNC continuously provides some insight into how real-time 

optimization of neural networks could be achieved. 
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d) To neutralize traffic ill effects on system performance in a dynamic manner: It was 

observed from the MPhil’s experimental data that Internet traffic patterns can produce 

negative impact on a tuner’s performance. Since the PIDC, GAC, FLC and NNC 

tuners operate in a real-time manner, a solution is needed to identify the traffic pattern 

at any time so that the traffic ill effects on tuner performance could be nullified. The 

deeper PhD investigation of this issue led to the following: i) it is possible to include 

real-time traffic detection capability into a tuner and ii) two novel real-time traffic 

pattern filters, namely the modified QQ-plot that identifies heavy-tailed traffic and 

the 2S  filter that detects self-similar traffic were proposed. The contribution from this 

area of investigation is original and significant because how real-time traffic pattern 

detection capability can be paired with time-critical applications for better system 

stability and performance is demonstrated for the first time.     

 

The following table concisely differentiates the original and significant 

achievements by this PhD research from my previous MPhil thesis. 

 

MPhil’s original contribution PhD’s original contribution 
*Four basic novel dynamic buffer size 
controllers/tuners were proposed, 
namely PIDC, GAC, FLC and NNC. 
 
 
 
*The GAC was found to be unacceptable 
because it yields occasional buffer 
overflow. 
 
 
 
 

*The unaddressed issues for the four 
original tuners from the MPhil thesis 
form the problem statement of the PhD 
research. 
 
 
* Deeper investigation of the GAC 
confirms that the buffer overflow is due 
to the very nature of evolutionary 
computing. Since this is a fundamental 
issue in this discipline, no further work 
was pursued because the GAC is 
application of GA in nature. 



 104

 
* A few FLC designs were proposed 
(e.g. [4x4] and [4x6]) and tested with the 
aim to preserve the merits of the soft-
computing approach as it was 
demonstrated by GAC and eliminate the 
buffer overflow at the same time. 
 
 
 
 
* The following had encouraged the 
NNC proposal: i) success of using the 
objective function for both GAC and 
FLC as the operation principle, ii) the 
desire to have a smoother  convergence 
than the FLC, and iii) positive 
experience in using neural networks in 
the AQM area was published.  
 
* Two NNC designs, which both work 
as a twin parallel system: Chief (in 
control) and Learner (in training): a) 
recurrent NNC (i.e. NNC+CA), where 
CA is the feedback loop and b) basic 
NNC without feedback loop – 
oscillatory {The NNC+CA framework is 
the basis for the PhD investigation}. 
 
* The real-time nature of dynamic buffer 
size tuning requires short tuner 
execution time, and this led to the choice 
of backpropagation as the NNC 
configuration because of its simplicity. 
Preliminary empirical analysis indicated 
that configuration of 10 input neurons, 
20 neurons in the hidden layer, and one 
output neuron could be cost-effective. 
The NNC still has the longest execution 
time compared to PIDC, GAC and FLC. 
  
 
* Traffic patterns can affect system 
performance as observed from the 
empirical data.  
 

 
* Different FLC designs were proposed 
and tested,  and the empirical results 
confirm the following: i) the FLC is 
indeed a generic design approach, ii) an 
optimal design range exists, and iii) the 
FLC can be made to reconfigure on the 
fly for better performance (i.e. A-FLC 
and R2-FLC ). 
 
 
* It is desirable to shorten the NNC 
execution time for successful real-time 
applications. For this reason the original 
Hessian based technique that optimizes 
the NNC tuner by pruning its 
configuration on the fly was proposed. 
This technique is generic in nature and 
works correctly when incorporated into 
the NNC framework. The logical 
pruning process always starts with the 
same skeletal NN configuration.  
 
* Sensitivity analysis was carried out to 
find optimal NNC configuration(s), and 
the result confirmed that the [10, 20, 1] 
backpropagation configuration is indeed 
cost-effective. The analysis finds the 
correlation between the number of 
neurons in the NNC’s hidden layer and 
the control/tuning accuracy. 
 
 
 
 
 
 
 
 
 
 
 
* Real-time traffic detection capability 
was considered and incorporated into the 
dynamic buffer size tuning process 
successfully. It is an original example of 
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4.3 CONNECTIVE SUMMARY 

 

This chapter has given a concise summary of all the solutions proposed in my 

PhD research with respect to the unaddressed issues from my MPhil as listed in Table 

4.0.1. The details of these solutions and my PhD research contributions will be 

presented in details in the following chapters: a) Chapter 5 describes the real-time 

traffic detection contribution, b) Chapter 6 is the in-depth FLC research, c) Chapter 7 

is the in-depth NNC research, and Chapter 8 is the location-aware test-bed with the 

FLC as the chosen dynamic buffer size tuner.  
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CHAPTER 5 REAL-TIME TRAFFIC DETECTION CONTRIBUTION 

 

5.0 INTRODUCTION 

 

The PIDC, GAC, FLC, and NNC dynamic tuner models proposed in my 

previous MPhil research [Lin2002] were verified with pre-collected Internet IAT 

traces (inter-arrival times among the requests from client to server). They provide the 

solid basis for my present deeper PhD research. The verification exercises of these 

tuners for my MPhil thesis, however, showed that they might produce various mean 

deviations (MD) from the given steady-state references. This inspired the 

investigation of the correlation between IAT traffic patterns and tuner stability in my 

present PhD study, using the FLC dynamic buffer size tuner as the test-bed. The setup 

for the experiments in my PhD investigations is shown in Figure (5.0.1). It has 

evolved over time to meet the changing experimental objectives. The dotted lines 

show the new additions to the basic setup shown in solid lines.  
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Figure 5.0.1 The setup for the subsequent tests 

 

The setup for conducting experiments in my PhD research (Figure 5.0.1) is an 

Aglets mobile agent platform environment. The aim is to make the experimental 

results scalable because the platform is designed for the internet. The driver and the 

server in the setup are aglets (agile applets). The driver picks a waveform to simulate 

the desired IAT distribution/pattern for the requested traffic into the server’s queue. 

The tuner (e.g. FLC) utilizes the buffer length (B) and the queue length (Q) to 

adaptively compute the buffer adjustment size for the dynamic tuning process. Figure 

5.0.2 shows the different MD values produced by the FLC for different IAT traffic 

patterns. Besides detecting traffic patterns on the fly, the E-RTPD (Enhanced Real-

Time Traffic Pattern Detector) also helps visualize the correlation between a traffic 

pattern and the corresponding MD value. Figure 5.0.2 is a result of the research work 

described in sections 6.2 and 6.3 of Chapter 6. 
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Figure 5.0.2 Different MD for specific traffic patterns by the FLC (Chapter 6) 

 

Requirements for real-time traffic analysis differ from that for non-real-time or 

“post-mortem” purposes. Real-time analysis recognizes a specific pattern embedded 

in the data segment sampled on the fly. If an IAT collection of size m  is made from a 

stochastic process X, then the data segment is the aggregate mX .  Over time X may 

yield many aggregates, which are uniquely identified by the aggregate level l  

[Taqqu2003], i.e. m
lX . In my present research we call any entity that recognizes a 

specific pattern (e.g. self-similar) is a traffic pattern filter. For example, the statistical 

modified QQ-plot is a “post-mortem” filter to recognize heavy-tailed distributions 

[Molnar1999].   

At the time of my PhD traffic investigation the research team (called the 

“COMP Team” hereafter) led by Dr. Allan Wong (my PhD supervisor) was deep into 

real-time traffic pattern detection and analysis already. The COMP Team proposed, 
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verified and published the novel Real-Time Traffic Pattern Detector (RTPD) [p11]. I 

was involved with the RTPD verification and that experience proved useful for traffic 

investigation. The RTPD design was gained from experience with the post-mortem, 

statistical Selfis tool [Karagiannis2003]. My participation and experience in the 

RTPD experiments has inspired my pursuit into proposing effective real-time traffic 

pattern filters. As a result I have achieved the following for my PhD thesis: 

a) Converting the post-mortem modified QQ-plot for real-time applications. 

b) Developing the novel self-similarity ( 2S )   filter because the original RTPD 

by the COMP Team does not detect self-similar traffic.     

The RTPD uses the Hurst parameter/effect as the yard stick and calls a stochastic 

process ssH  if its H value is within the 10 << H  range. The range 5.00 << H  is for 

the short-range dependence (SRD) and 15.0 << H  indicates long-range dependence 

(LRD). The value 5.0=H  indicates “white noise” and is ignored. SRD includes 

Markovian traffic and LRD includes heavy-tailed[Resnick1997] and self-similar 

patterns[Leland1994, Crovella1997, Tsybakov1998]. The RTPD puts emphasis on 

stationary traffic. A stationary stochastic process has independent increments in 

its m
lX  aggregates [Willinger2003]. For example, the distribution of the arrivals 

between time t  and st +  depends solely on the interval s  but not the starting point t . 

In the literature stationary processes are frequently associated with “Gaussinianity”. 

A Gaussian, ssH , stationary process is called the fractional Brownian motion and the 

independent increment is the fractional Gaussian noise. A ssH  process may be SRD 

or LRD, and a LRD process can be heavy-tailed and self-similar. The reverse may not 
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be true, for example, a self-similar process may not be stationary [Cao2001]. There is, 

however, a strong correspondence between self-similarity and stationarity. 

The core of the original RTPD proposed by the COMP Team is the traditional 

R/S (rescaled adjusted statistics) approach for non-real-time applications. It is the 

statistical expression: 
)var(
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1 . Yet, the best value for k in this traditional approach has to be found 

by trial and error. This is the main drawback of the R/S approach because its speed 

and accuracy depend on k. The R/S ratio is the rescaled range of the discrete process 

X , },...2,1:{ kiX i = . The log-log plot of the Hk
S

R )2(= feature yields the H value. 

The time to compute X is unpredictable because of k. The COMP Team resolved this 

unpredictability and converted the R/S into the enhanced R/S version (i.e. E-R/S) for 

real-time applications by incorporating the Convergence Algorithm (CA) 

[Wong2001]. This involves transferring and adapting CA, which is from the IEPM 

(Internet End-to-End Performance Measurement) domain [Cottrel1999], for effective 

application in real-time traffic analysis.  

The CA operation is based on the Central Limit Theorem, and its accuracy is 

therefore independent of the traffic waveform. It is summarized by the equations: (5.1) 

and (5.2). 
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The estimated mean iM in the thi  prediction cycle is based on the fixed F (flush 

limit) number of data samples. The cycle time is the interval for collecting the F 

samples physically. It was previously confirmed that iM has the fastest convergence 

for F=14 [Wong2001]. Other parameters include: a) 1−iM  is the feedback of the last 

predicted mean to the current iM prediction cycle, b) i
jm  is the jth data item sampled 

in the current ith iM cycle, )1(,....,3,2,1 −= Fj , and c) 0M is the first data sample 

when the MCA had first started running. iM  replaces X to yield ∑
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for the E-R/S, which is more suitable for real-time applications because the number 

of data items (e.g. IAT) needed to calculate iW  is fixed (predictable), namely 14=F .    

To summarize, my PhD contributions to real-time traffic analysis are threefold: 

a) Development of two novel real-time traffic pattern filters: RR-QQ (real-time 

modified QQ-plot) and self-similarity ( 2S )  

b) Conversion of the RTPD to its enhanced version (i.e. Enhanced RTPD or E-RTPD) 

by including RR-QQ and 2S  filters.   

c) Addition of these two novel filters to enable the FLC to reconfigure (i.e. the 

Reconfigurable FLC (R-FLC) in section 6.2 of Chapter 6) by using the results 

detected by the E-RTPD on the fly. The reconfiguration adjusts the FLC’s derivative 

(D) control to neutralize the ill effects arising from changing traffic patterns. As a 

result more accurate dynamic buffer size tuning can be carried out and maintained.    

1);2.5.(..........);1.5(.......... 1
00

1

1
1

≥=
+

= =
=

−=

=
− ∑

imM
F

mM
M i

j

Fj

j

i
ji

i



 113

 

5.1 TRAFFIC ANALYSIS IN GENERAL 

 

Three goals for traffic analysis can be identified from the literature: a) gauging the 

end-to-end channel traffic to interpret the channel behavior, b) trace-based, post-

mortem or off-line traffic analysis (OTA) to understand the network behavior in the 

period where the trace was collected, and c) real-time traffic pattern analysis (RTPA) 

so that the result can be used immediately by a running application to self-tune or 

reconfigure to maintain high performance. Trace-based, off-line analyses pertain only 

to the traces concerned because the empirical results cannot be construed as the 

general network behavior. For example, the different traces may exhibit similar 

behavior because when the traces were collected the same network parameters 

happened to be coincidentally dominant.    

 

5.1.1 GAUGING END-TO-END BEHAVIOR 

 

It is always desirable to gauge the end-to-end client/server path (EE-path) 

(Figure 5.1.1.1) or a TCP channel for more reliable and efficient communication 

purposes. This approach is the basis of the IEPM (Internet End-to-End Performance 

Measurement) school of thought [Cottrel1999]. The off-line tools that manipulate 

pre-collected traces include the Skitter, PingER, RTM 2 [Wong2001M2RT] and 

SURVEYOR [Cottrel2001]. The RTM 3  (Micro Mean Message Response Time) tool 

is the only known IEPM model capable of on-line applications. It can predict the 
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mean of an IAT aggregate mX accurately and quickly on the fly. The difference 

between channel traffic and EE-path traffic is subtle and therefore they are used 

interchangeably. Precisely, channel traffic means those that have reached the exit of a 

logical channel. A server on the user-level is normally an asymmetric rendezvous (i.e. 

one-server-to-many-client relationship). In Figure 5.1.1.2 different service request 

streams from different channels merge at the server’s service access point (SAP) 

before entering its queue of service requests. Therefore, a channel traffic pattern 

could be very different from the composite “merged traffic” or “EE-path” behavior.     

 

   

Figure 5.1.1.1 The EE-path 

 

 

Figure 5.1.1.2 Merged traffic at the user-level 
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5.1.2 OFF-LINE (POST-MORTEM) TRAFFIC ANALYSIS  

 

  The aim is to understand the network/channel behavior with respect to the 

trace being examined. The off-line traffic analyzing (OTA) techniques are not well-

established at this moment [Molnar1999, Taqqu2003]. From the COMP Team’s point 

of view, the results from using these techniques should be accepted only from the 

trace perspective. They cannot be generalized to represent the underlying network. 

The OTA techniques are basically statistical [Karagiannis2003] and aim at 

determining the following properties: 

 

a)  Stationarity: A stochastic process X is stationary if its aggregates mX  of block 

size m have independent increments. Conceptually stationarity is an expression of the 

Gaussian property (i.e. "Gaussianity"). It is generally accepted that the Gaussian 

(normal), Poisson, Erlang, and binomial distributions belong to the exponential family, 

which is memoryless [Mitrani1987] and is therefore stationary. Consequently any 

bell curve that fits an Erlang variant of a specified shape parameter is exponential. 

This provides the basis for the "kurtosis/skewness" test that can verify Gaussianity 

[Jain1991]. The kurtosis value determines if a bell curve is peaked (for positive 

values) or flat (for negative values). The skewness value decides if the bell curve 

skews to the right (for positive values) or to the left (for negative values). For 

example, skewing to the right means the right tail in the distribution is heavier than 

the left. The pivotal point is that Gaussianity of a normal distribution is perfect for 

3=kurtosis  and 0=skewness , which are the “standards or references” for 
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comparison. It is reasonable to decide if a bell curve is Gaussian by comparing with 

these “standards” in a test for Gaussianity. Statistically estimated kurtosis and 

skewness values from a trace are rarely perfect. Reasonably predefined kurtosis and 

skewness limits, however, help determine if a bell curve of the exponential property 

does exist. For example, if the following are computed: 5.1=kurtosis  and 

5.0=skewness , statistically the bell curve is somewhere between a Weibull 

distribution ( 5.1=gamma , 5.4≈skewness  and 1≈skewness ) and a normal 

distribution. Therefore it may be regarded as part of the exponential family to possess 

stationarity. The COMP Team regards the Gaussianity test as a crude but workable 

way to look for the sign of existence of an exponential bell curve. Choosing the 

appropriate kurtosis and skewness limits, however, depends on empirical experience 

and is therefore an art rather than a science. Guessing the nature of the Gaussianity 

test by kurtosis and skewness becomes obvious if the properties of relevant 

distributions are examined. A normal distribution is inherently continuous but 

Poisson and binomial processes (such as packet traffic flow over the Internet) are 

discrete. The normal, binomial and Poisson processes can possess approximately the 

same behavior only under certain constraints (to be explained later). Therefore, there 

is ample room for making wrong guesses in using only the kurtosis/skewness test for 

Gaussianity. 

 

b) Hurst (H) effect: H effect/value measurement originated from hydrology (water 

flow), and only much later was adopted by researchers for traffic analysis 

[Molnar1999]. Statistical methods to estimate H include the R/S (rescaled adjusted 
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statistics) method and the Periodogram [Molnar1999, Karagiannis2003]. The H value 

of a ssH  stochastic process is divided into three sections: 5.00 << H  for SRD (short-

range dependence; e.g. Markovian inter-arrival times (IAT) traffic), 5.0=H  for 

"white noise" and 15.0 << H  for LRD (long-range dependence). The relatively more 

complex LRD has two basic components: heavy-tailed and self-similar. Self-similar 

patterns often result from heavy-tailed traffic but the latter is not a necessary 

condition for self-similarity [Ryu1996]. For example, the self-similar FSNDPP 

(Fractal-Shot-Noise-Driven Poisson Process) has no heavy-tailed property. Fractal 

and self-similar are synonymous except that the fractal dimension (D) is non-integer 

(i.e. real number). Objects are self-similar or fractal if they can be derived from others 

by scaling, rotation, and translation. The different existing definitions for the fractal 

dimension are non-converging. The Cantor Set, however, provides a reasonable 

conceptual basis. If an object is geometrically, recursively split into similar pieces, 

then at the thK iteration step the total measure of the object is the “product of the 

number of similar pieces and DO ”. The parameter O is the splitting resolution or 

reduction. For example, the Cantor Set considers drawing a line segment of interval 

[0,1] as the first step (i.e. 0=K ). This line is then manipulated by the subsequent 

steps: a) divide the line into three equal portions (i.e. resolution is 3
1  ) and remove 

the middle portion (i.e. 1=K ), b) remove the middle portions from the remaining two 

(i.e. 2=K ), and c) repeat the last step ad infinitum. The thK iteration produces K2  

similar line segments of length Ks )3
1(= . The Cantor Set’s self-similarity dimension 

is defined by the formula =sD K2 * K)3
1(  or alternatively   
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63.0]))3log((
))2log(([ ≈= K

KDs . In fact, the extant FD3 tool [Sarraille] can 

determine if an object or image is fractal and measures its D value. 

      

c) Linearity: Self-similar traffic can be linear and non-linear. Linear fractal 

traffic scales with a specific H value, but for the non-linear cases H becomes a 

variable. The following two methods can test and confirm linearity effectively: a) the 

"wavelet partitioning function (WPF) [Abry2000]" approach and b) the “CAB-based 

D/H plot” proposed by the COMP Team (explained later).            

 

Figure 5.1.2.1 The hierarchy of OTA methods 
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All the OTA discussions above are summarized in Figure 5.1.2.1. As a 

demonstration this hierarchy is walked through in order to find the self-similarity 

dimension D for an IAT aggregate mX . The steps involved are as follows: a) 

determine the Guassianity of mX  by computing its kurtosis and skewness values and 

comparing them with the chosen limits, b) if Gaussianity is positive then compute H 

by the R/S or Periodogram methods, c) for 15.0 << H  determine D by using the 

FD3 tool [Sarraille], and d) use the WPF approach to confirm that D is correct due to 

the existence of linearity. 

 

5.1.3 REAL-TIME TRAFFIC PATTERN ANALYSIS (RTPA) 

 

Post-mortem traffic analysis is useful to understand what happened in a 

network, but only in the trace perspective. It is, however, impractical to engineer a 

system and expect it to work correctly in a time-variant environment, based on partial 

past performance data. The real-time traffic pattern detector (RTPD) published by 

the COMP Team is an example of the RTPA approach [Lin2004a]. If the RTPD is 

incorporated as a component in a time-critical application, the latter can use the 

detected traffic pattern to self-tune for more stable performance in a dynamic and 

adaptive fashion.  
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5.2 THE COMP TEAM 

   

Real-time traffic pattern detection proposed by the COMP Team is a novel 

concept. Before that the known methods are basically post-mortem. The relevant 

experience accumulated by COMP Team that is useful for my PhD study includes the 

following, namely: 

a) Lump analysis 

b) Essence of time 

c) Traffic independence 

d) Micro implementation 

e) D/H correlation 

 

a) Lump analysis: The COMP Team considers the OTA techniques as lump analysis. 

The reason behind this is that the raw trace used in an OTA exercise can be 

composite. It has no demarcation where one traffic pattern begins and ends before the 

next. Therefore, the overall result indicates the composite effect of the different 

traffic types interleaved together. This is misleading in terms of system behavior. For 

real-time applications the response to stimulation, however, is immediate and clear. 

For example, a dynamic buffer tuner must respond adaptively to the continuous IAT 

traffic pattern changes, which are interleaved along the time axis. To trace where a 

traffic pattern begins and ends means scrutinizing the true characteristic of 

a mX aggregate by having the size m  as a variable. To have a meaningful scrutiny the 

m value should represent a sufficient number of samples to make the traffic 
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characteristic of mX stand out.  The RTPD approach is time based and this makes m  

a variable. Being time based means we have to denote it as m
TtX = , where the suffix T  

indicates a pre-defined interval. The m
TtX =  aggregates are examined one after another 

until the analytical process has ended. This kind of successive aggregate inspections 

makes the RTPD approach differ from the OTA lump analysis     

 

b) Essence of time: For the success of any real-time application, time is of the essence. 

OTA techniques normally work with immediately available data in the trace. For 

example, if an OTA method needs an average of 200 time units to compute the result 

from 1000 samples in the IAT trace (i.e. 1000=mX ), then the computation/execution 

time is intrinsic. It is intrinsic because it does not include the actual sampling latency 

for the 1000 samples. If the average IAT for the 1000 samples is 1 second, then the 

actual time needed to compute the result is 1000*1+200 or 1200 time units on-line. 

The data items have to be sampled one by one before the computation. For 

immediately available data in a pre-collected trace, however, there is no such 

sampling latency. A long sampling latency/delay can lead to deleterious effect 

because by the time the traffic characteristic is identified it has become history and 

would have changed and is, therefore, useless for on-line application. Therefore time 

essence requires the RTPD mechanism to produce a result quickly so that it is can be 

used immediately by a real-time application to self-tune and rectify itself.   

 

c) Traffic independence: The essential quality for any tool to analyze traffic and 

identify its characteristic(s) correctly is traffic independence. This was repeatedly 
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demonstrated by the previous IEPM (Internet End-to-End Performance Measurement) 

applications [Cottrel1999]. Any tools that are based on the Central Limit Theorem 

(CLT) [Aloisio1980] are inherently traffic independent [Wong2001M2RT].  

 

d) Micro implementation: Any successful tool for RTPA purposes should be simple 

so that it executes quickly to produce the result needed for real-time applications 

[Ip2002]. It should run independently so that: a) it can be invoked for service anytime 

and anywhere, and b) it does not burden/delay the execution time of its service user. 

For example, if the tool executes much faster than its service requestor running in 

parallel, then when the requestor needs the result it is immediately available (i.e. no 

substantial waiting).            

 

e) D/H correlation: The fractal dimension D is proportional to the H value and the 

resolution (as in the Cantor Set). Figure 5.2.1 correlates the D and H values computed 

by seven experiments. The self-similar traffic traces were artificially generated for the 

experiments by using Kramer’s tool [Kramer]. The D measurements were conducted 

with the FD3 tool [Sarraille], and the H values were estimated by using the Selfis tool 

[Karagiannis2003]. If we assumed that the traces for the seven experiments were 

aggregates (i.e. m
lX 7,..2,1= ) of the same stochastic process X, then X is nonlinear. The 

D/H correlation shows the non-linearity of X because H changes as a variable. In fact, 

in Figure 5.2.1 the D value is proportional to H and the splitting resolution (e.g. the 

Cantor set’s resolution of 3
1 ).     
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Figure 5.2.1 D/H correlation with respect to Table 5.3.2.1.1 

 

Some of the COMP Team’s conclusions such as the following directly pertain 

to my PhD research of real-time traffic analysis and filter design, namely:  

a) RTM 3  adoption 

b) Conceptual discrepancy 

c) CAB (continuous aggregate based) 

d) CAB-based D/H plot 

 

a) RTM 3  adoption: RTM 3  is the unique micro implementation of the Convergence 

Algorithm (CA) [Wong2001]. It is CLT based and needs only 250 clock cycles to 

execute and predict on the fly the mean of a waveform [Ip2002]. It is very useful for 

calculating the mean values needed by a real-time traffic filter quickly and accurately. 
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It has converted the traditional R/S method for measuring H to the enhanced R/S 

version (i.e. E-R/S), which is a component in the RTPD [Lin2004a]. 

 

b) Conceptual discrepancy: One reason for off-line traffic analysis or OTA 

techniques being not well-established is the conceptual discrepancy between 

continuous and discrete processes. Some OTA tools just lump the two concepts 

together in a high-level manner, and consequently these tools could hardly produce 

qualitative results. For example, many publications try to explain the association 

between the Hurst parameter and Gaussianity in the light of a continuous stochastic 

process such as hydrology (i.e. water flow) [Hurst1965]. This is probably fine for 

both phenomena originated from the continuous domain. Yet, when researchers 

directly transfer/apply their Gaussian explanations to the discrete domain such as 

packet traffic in the Internet, problems emerge. The transfer may be logical, but it is 

only "approximately or marginally correct" in the discrete domain. In fact, the 

problem of direct transfer as such is well known. In the area of process control 

[Courriou2004], digital (discrete) and analog (continuous) implementations of the 

same controller model produce different results. Discrete control (e.g. digital motor) 

works with different equations and falls into the domain of Z Transform, but 

continuous controllers work with Laplace Transform. Although the analog controller 

delivers the expected controlled system behavior, its supposedly equivalent digital 

version can shift the 3 db down point to create system instability. This implies that 

discrete control needs compensation to yield the same behavior as its analog 

counterpart. The COMP Team grasped this conceptual discrepancy by reviewing the 
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relationship among different discrete and continuous distributions. The discrepancy is 

summarized in Figure 5.2.2. Conceptually the Bernoulli Trials experiment (e.g. 

throwing a coin until a head appears) produces a memoryless binomial distribution. If 

σ  is the probability of having a head, then the probability jP of producing a head at 

the thj trial is 1)1( −−= j
jP σσ . Consider the F(j) 

distribution Kj
K

j

K

j
jPjF )1(1)1()( 1

11

σσσ −−=−== −

==
∑∑ .  

The F(j)  distribution obtained by summing jP  above is power, geometric and 

binomial. This binomial distribution can be approximated by the Poisson distribution 

for rare events. An event is rare if it has less than 10% chance (i.e. 1.0=σ ) to occur 

in a sample of size 50>n  [Mitrani1987], 5≤σn  is the criterion for rarity. The 

approximation deteriorates as σ  increases and n decreases. The normal distribution, 

which is in the continuous domain, can approximate both the discrete, memoryless 

binomial and Poisson distributions. The approximation is good for the binomial 

distribution for 25>σn  and for the Poisson distribution (i.e. 1=− λλee  ) for 9>λ  

(or σλ n= ). The conceptual discrepancy, which lies in the constraint differences 

shown in Figure 5.2.2, can sometimes make the Gaussianity test based on using 

kurtosis and skewness values unreliable. The constraints are, namely, 51 ≤⇒ σnC , 

252 >⇒ σnC , and 93 >⇒ σnC  [Jain1991]. The Gaussianity test based on 

kurtosis and skewness is, however, empirically a workable but crude approach to 

verify the memoryless (i.e. exponential) property of mX as a necessary condition for 

stationarity. The success, however, depends on choosing correct kurtosis and 
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skewness limits for comparison with other distributions in the exponential family, for 

example, the Weibull and normal distributions. 

 

 

Figure 5.2.2 Relationship among some common distributions  

 

c) CAB (continuous aggregate based) approach: This is for finding the beginning of 

a data section for meaningful RTPA evaluation. This starting point should satisfy the 

Gaussianity test. Only then, could the RTPA mechanism (e.g. the RTPD) start to find 

the necessary outcomes, for example, the H and D values for the successive 

aggregates mX  of a stochastic process X along the time axis. The block size m is a 

variable because the aggregate size for a pre-defined time interval depends on the 

average IAT of the aggregate; a longer IAT means a smaller m . This "timed 

aggregate" approach avoids significant real-time sampling latency due to 

unpredictable IAT. Figure 5.2.3 summarizes the CAB mechanism, which has two 

separate real-time sub-operations: the Gaussianity test, and RTPD. The Gaussinaity 

test continues throughout the CAB mechanism’s service life. K1, K2 and K3 are 

blocks (timed aggregates of variable lengths) for Gaussiainity tests. The second half 

of K1 is basically the first half of K2 to indicate that data in the current block/window 
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is always half and half as the window is shifting forward. For example, if Gaussianity 

is confirmed for K1 at 1Ag , then the RTPD mechanism starts to collect the first timed 

aggregate mX  (between 1Ag  and 2Ag ) so that the corresponding H value can be 

calculated. In the Figure 5.2.3 example, the novel self-similar ( 2S ) filter, which is my 

PhD contribution, tries to confirm self-similarity in mX  for the “First aggregate” and 

finds H by the P1 linear regression (explained in detail later). This process repeats if 

the K2 block is also Gaussian. If the K3 block was found to possess no Gaussianity, 

then the 2S  filter stops operation because the data has become non-stationary.     

 

 

Figure 5.2.3 The CAB mechanism has two real-time sub-operations 

 

d) CAB-based D/H plot: This is an extension of the 2S  filter investigation and 

theoretically the correlation between D and H can be found for every aggregate in a 
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real-time manner. If the H values of all the aggregates along the time axis of 

stochastic process X are approximately the same, then X is monofractal; otherwise it 

is multifractal. At this moment the CAB-based D/H plotter makes use of the extant 

FD3 tool [Sarraille] to compute D for every timed mX aggregate. The plotter is being 

refined and the focus is on how to construct a real-time mechanism that is 

functionally similar to FD3 but needs less time to execute.   

 

5.3 THE RTPD CONTRIBUTION 

 

5.3.1 REAL-TIME MODIFIED QQ-PLOT FILTER 

 

A distribution F is LRD and heavy-tailed [Resnick1997] if  

)()(1 xLxxF α−=−  holds.  

L is slowly varying, if 

1)(
)( =∞→ xL

txLLimx  for 0>t .  

The simplest case of heavy-tailed distribution is the Pareto in the form 

of α−−= xxF 1)( . The preliminary experimental results with different heavy-tailed 

traces show that the E-R/S always recognizes their LRD character. The rationale of 

the modified QQ-plot[Kratz] consists of the following: a) pick k upper order statistics 

from the samples },...,,{ 21 nXXX , namely, uXXX k =≥≥≥ **
2

*
1 ...  and discard the 

rest, b) plot {( )log(
*

u
X j , )

1
log(

+
−

k
j ), kj ≤≤1 }, and c) best-fit the data points to 



 129

estimate α . Physically the uXXX k =≥≥≥ **
2

*
1 ...  set consists of the following: a) 

*
1X  represents the event that has the highest frequency of occurrence in the set, b) the 

set is arbitrarily chosen from a much larger set of ranked events by their frequencies 

of occurrences, and c) u is the value of the lowest ranked event in the set, namely, 

*
kX . The coefficient of determination 2R  characterizes the regression (fitting) quality, 

the higher the better. The modified QQ-plot is one of the many tools that can identify 

the heavy-tailed character. In my PhD research I have converted this popular post-

mortem statistical technique for real-time applications, namely, the RT-QQ. The 

conversion in the form of a Java object is actually a traffic filter to be invoked by the 

filtration process, which is part of my RTPA (real-time traffic pattern analysis) 

contribution.    

 

Figure 5.3.1.1 Timing Analysis of the QQ Estimator (765 clock cycles) by the 

Intel VTune Timing Analyzer 
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Figure 5.3.1.2 A heavy-tailed traffic trace 

 

Timing analysis of the of the real-time modified QQ-plot Java-based or RT-

QQ filter by the VTune [VTune2002] show that it needs an average of 750 clock 

cycles to execute. If the filter is running on a platform that operates at 100Mhz, the 

physical time is 5.7)10*100(
750

6 ≈=PT  micro seconds only. This is the 

operational limit of the filter because what it identifies is meaningless if the IAT of 

the waveform is shorter than 7.5 micro seconds. The physical limit, indicates that the 

RT-QQ filter can cater for a wide spectrum of time-critical applications. Figure 

5.3.1.1 shows the VTune analytical result of 765 clock cycles that the filter needed to 

identify the heavy-tailed IAT traffic pattern shown in Figure 5.3.1.2. Like other 

traffic filters the RT-QQ runs independently as a logical entity to provide service 

anytime and anywhere even though it is structurally an E-RTPD component. The 

filter indicates that the traffic pattern in Figure 5.3.1.2 as heavy-tailed because strong 

likelihood is confirmed by the high coefficient of determination for the 9231.02 =R  

regression. The meaning of strong likelihood is user-defined. The criterion is that the 

computed 2R value should be greater than the chosen threshold 2R
Th ; 2

2
R

ThR > . In 
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light of the heavy-tailed property defined by the )()(1 xLxxF α−=−  expression for a 

LRD trace, α is equal to 0.5989 in this case. Although the Java RT-QQ filter 

prototype recognizes “heavy-tailedness” by the quality of the linear regression, 

namely, 2R  in on-line applications, it also provides the function to produce plots like 

the post-mortem approach. The plot in Figure 5.3.1.3 is produced by the RT-QQ filter 

for demonstration purposes.  

     

Figure 5.3.1.3 Modified QQ-plot filter identifies heavy-tailed character for the 

trace in Figure 5.3.1.2 

 

5.3.2 SELF-SIMILARITY ( 2S ) FILTER 

 

LRD traffic has two basic components: heavy-tailed and self-similar. The 

proposed self-similarity ( 2S ) filter differentiates heavy-tailed IAT patterns from self-

similar ones. Self-similarity in many fractal point processes results from heavy-tailed 
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distributions, for example, FRP (Fractal Renewal Process) inter-arrival times. The 

heavy-tailed property, however, is not a necessary condition for self-similarity 

because at least the FSNDPP (Fractal-Shot-Noise-Driven Poisson Process) does not 

have the heavy-tailed property. The 2S filter basis is the “asymptotically second-

order self-similarity” concept, or simply called statistical OSSnd2  or S2OSS, which is 

associated with a sufficiently large aggregate level or lag l  in a discrete stochastic 

process X. For an aggregate }1:{ ≥= lXX m
l

m of size m in X, S2OSS for ∞→m  

means that the associated autocorrelation function (ACF), namely )(lr m  (for mX ) is 

proportional to )22( Hl −− . S2OSS is LRD for its ACF is non-summable, as indicated by 

=)(lr m ∞=∑
∞

−1l

mr  .The condition of “ )22()( Hm llr −−∝  for ∞→m ” is 

mathematically equivalent to the slowly decaying variance property. That is, the 

variance of the mean of sample size m  decays more slowly than m . This 

phenomenon is represented by the expression: β−∝ mXVar m )( . For a S2OSS process 

X and 15.0 << H  the value of H22 −=β  should apply. Equations (5.3.2.1) and 

(5.3.2.2) summarize the S2OSS property and they hold for the weaker condition in 

equation (5.3.2.3). The slowly decaying variance property is clear if a log-log plot is 

produced for equation (5.3.2.1). As shown by equation (5.3.2.4), ))(log( XVar  is a 

constant, ))(log( mXVar  versus )log(m  yields a straight line with slope β− . The H 

value can then be calculated by the )2(1 β−=H  formula. The 2S filter finds β  

for mX  on the fly. The )( mXVar  calculation uses the mean value )( mXE estimated 
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by the RTM 3  process.  )( mXE  is ∑
+−=

−
lm

mln
nXm

1)1(

1  conceptually, and the key for 

the 2S filter operation is to choose a sufficiently large m , which is the multiples (i.e. 

C) of 14=F  to virtually satisfy ∞→m ; FCm *=  for estimating β . The detected 

result is available at the Ag time point. In Figure 5.3.2.1 for example, the β result for 

aggregate 2 is available at the point of 2=Ag . 

)1.2.3.5).....((1)( )22( XVar
m

XVar H
m

−=  

)2.2.3.5)....(()( krlr m =    
∞→m

lim )3.2.3.5)....(()( krlr m =  

)4.2.3.5)....(log())(log())(log( mXVarXVar m β−=   

 

The process in the 2S filter to calculate β is the “continuous aggregate based 

(CAB)” concept, which is proposed by the COMP Team. The CAB evaluates if an 

aggregate is stationary by checking its Gaussian property or “Gaussianity” 

[Arvotham2001] by the kurtosis and skewness metrics. A symmetrical normal 

distribution has perfect Gaussianity indicated by 3=kurtosis  and 0=skewness . 

Statistically measured kurtosis and skewness values are rarely perfect, and reasonable 

limits can be used to indicate the presence of a bell curve, which belongs to the 

exponential family that is capable of independent stationary increments. The 2S filter 

uses the CAB concept and finds β  by linear regression, and the quality of which can 

be judged by the coefficient of determination or 2R between 0 and 1 [Jain1991]. A 

higher 2R implies better quality for the linear regression. By the predefined 

threshold 2R
Th  (e.g. 0.85 or 85%) the 2S  filter can reject a hypothesis of self-
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similarity in mX  for 2
2

R
ThR < . The CAB operation in Figure 5.3.2.1 works with the 

aggregates m
lAgX = in a discrete stochastic process X along the time axis. Assuming: a) 

P1, P2, and P3 are the log-log plots for three successive  aggregates based on 

equation (5.3.2.4), b) these plots yield different β  values: 1β  for P1 with 82.02 =R , 

2β  for P2 with 98.02 =R , and 3β  for P3 with 95.02 =R , c) lAg = is the aggregate 

level, and d) 9.02 =R
Th , then both P2 and P3 confirm self-similar traffic but not P1 

(for 2
2

R
ThR < ). If P2 and P3 yield very different β values, their H values by 

)2(1 β−=H  indicate different dimensions or D. The D value may change over time 

due to various factors, for example, ON/OFF situations in the network 

[Willinger2003]. A changing D or H is a sign of non-linearity in the stochastic 

process being examined. 

 

 

Figure 5.3.2.1 The “aggregate based (AB)” approach 
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Skewness is represented by ( )
sd

x
m

xi
N

i
3

1

3

)1( −
−∑ = , where x  and sd are the measured 

mean and standard deviation respectively for the aggregate of m samples. It measures 

the symmetry of a bell-shaped aggregate distribution. A positive value indicates that 

the bell curve skews right and the right tail is heavier than the left one. Kurtosis is 

represented by
sd

xx
m

i
N

i
4

1

4

)1(

)(
−

∑ −= , and its value decides whether the bell curve is peaked (for 

positive value) or flat (or negative value) compared to the normal distribution with 

kurtosis=3 and skewness = 0. 

 

5.3.2.1 EXPERIMENTAL RESULTS 

 

The 2S  filter was verified by simulations based on the CAB approach.  The 

experiments were conducted on the stable Aglets mobile agent platform, which is 

designed for Internet applications. The Aglets makes the experimental results scalable 

for the open Internet. The setup for the experiments is shown in Figure 5.3.2.1.1, in 

which the driver and server are both aglets (agile applets).  
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 Figure 5.3.2.1.1 Setup for the 2S  filter experiments 

 

The driver picks a known waveform or a pre-collected IAT trace that may 

embed different traffic patterns over time. The pick simulates the IAT among the 

requests that enter the server queue. The FLC dynamic buffer size tuner is the test-

bed for the 2S  filter. It adjusts the buffer size on the fly by leveraging the current 

queue length, buffer length, and detected traffic pattern. The traffic pattern(s) that 

drives the IAT is also recorded by the E-RTPD that has included the 2S  filter. This 

helps matching the FLC control behavior with the specific traffic pattern. The VTune 

measures the E-RTPD's average execution time so that its contribution to time-critical 

applications on the Internet can be evaluated. Experiments with different IAT traffic 

patterns were carried out. The results conclude that the 2S  filter indeed detects self-

similar traffic and helps the FLC deliver more accurate dynamic buffer size tuning. 

The experimental results presented here include: self-similarity detections, traffic and 

FLC accuracy, and D/H correlation.       
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Table 5.3.2.1.1 summarizes seven of the many different simulations 

conducted. The self-similar traces, which simulate the inter-arrival times (IAT) for 

the request into the server’s buffer being controlled by the FLC (Figure 5.3.2.1.1), are 

generated by using Kramer’s tool [Kramer].   

 

β    )21( β−=H  2R (coefficient  
of determination) 

loading ψ  kurtosis skewness 

0.6583        0.671    0.956 (95.6%) 0.1 (10%) 0.597045 1.180861 
0.6809        0.660 0.975 (97.5%) 0.2 -0.56218 0.798282 
0.6425        0.679 0.977 (97.7%) 0.3 0.40215 1.277175 
0.6473        0.677 0.972 (97.2%) 0.4 -0.53386 0.861215 
0.4685        0.766 0.959 (95.9%) 0.5 -0.58417 0.892037 
0.3762        0.812 0.885 (88.5%) 

(less than 2R
Th )  

0.6 
(rejected) -1.01033 0.446756 

0.1978         0.901 0.605 (60.5%) 0.7 
(rejected) -1.16043 0.388599 

Table 5.3.2.1.1.  2S  filter log(variance) versus log (aggregate level) to find β  

 

The useful information from the Table 5.3.2.1.1 summary is listed as follows: 

a) The 2S  filter always detects and recognizes self-similarity in the IAT traffic 

as long as the network loading or utilization ψ is 50% (i.e. 0.5 simulated by 

the same tool) or less.  

b) ψ is proportional to the self-similarity dimension (explained later with Figure 

5.3.2.1.7).  For 4.0>ψ the traffic self-similarity scales differently as indicated 

in Figures 5.3.2.1.3 and 5.3.2.1.4. Our analysis indicates that this is possibly 

the beginning of non-linear scaling or a sign of possible multifractal traffic. 

Both Figures 5.3.2.1.3 and 5.3.2.1.4 work with 9.02 =R
Th .  
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Figure 5.3.2.1.2 Kurtosis and skewness measurements for the 7 cases in Table 5.3.2.1.1 

 

 

Figure 5.3.2.1.3 2S filter yields slope = -0.6809(β= 0.6809), R2= 97.74% for 

2.0=ψ  
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Figure 5.3.2.1.4 2S filter yields slope = -0.4685(β= 0.4685), R2= 95.97% for 

5.0=ψ  

 

c) The scaling exponent H (Hurst effect) changes with ψ , which is inversely 

proportional to the IAT length that is the  “reduction/resolution” in light of 

traffic. For 4.0≤ψ  the scaling is basically the same (i.e. a monofractal sign). 

The β  value in every case (row) in Table 5.3.2.1.1 is the average of several 

aggregates for the same stochastic process X. 

d) The kurtosis and skewness are different for the different self-similar traces. 

Nevertheless they always indicate the presence of a bell curve.  
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Figure 5.3.2.1.5 Faster convergence of the FLC+ 2S filter than the FLC working alone 

 

The kurtosis and skewness values for each case (row) in Table 5.3.2.1.1 are 

plotted for comparison (Figure 5.3.2.1.2). These values are obviously affected by the 

loading. When the loading is high (e.g. 60% and 70%) the bell curve tends to skew 

less but still to the right. Meanwhile the bell curve tends to get flatter. Comparatively 

the skewness of the bell curves for the seven simulation cases in Table 5.3.2.1.1 are 

less than a Weibull ( 5.1=gamma ) distribution, which is relatively more peaked 

(kurtosis=4.5).  

The trend-lines in Figure 5.3.2.1.5 for the IAT traffic trace in Figure 5.3.2.1.3 

shows that the “ 2SFLC + filter” combination converges much faster to the given 

steady state than the FLC working alone. In fact, this combination is one of the 

working modes in the Adaptive/Reconfigurable FLC [p12], the details of which will 

be discussed in section 6.2. With help from the 2S  filter the FLC main body adjusts 

the GP value for the derivative (D) control element on the fly and according to the 
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self-similarity property currently detected. As a result it produces less MD than the 

FLC working alone (Figure 5.3.2.1.6). 

 

 

Figure 5.3.2.1.6 Less MD deviation by FLC+ 2S than the FLC alone 

 

 

Figure 5.3.2.1.7 D/H correlation for Table 5.3.2.1.1 

 

 In the experiments the FD3 tool [Sarraille], which confirms if an image (e.g. 

a time series generated by the Kramer’s tool) is really fractal and measures its 

dimension D, was used. The purpose is to evaluate the D/H correlations 

[Peitgen2004]. This correlation for Table 5.3.2.1.1 is plotted and shown in Figure 
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5.3.2.1.7. It shows that if D changes suddenly, H also rescales accordingly to indicate 

possible traffic nonlinearity. In contrast, if H scales linearly, it is a sign of 

monofractal traffic. The intrinsic average 2S filter execution time as observed from 

all the experiments is 1455 clock cycles as measured by the Intel’s VTune 

Performance Analyzer. It is intrinsic because it works with immediately available 

data (without any actual IAT delay) in a trace. For a platform of 100 mega hertz the 

corresponding physical time is )10*100/(1455 6  or 14.55 micro seconds. In real-life 

applications the 2S filter has to collect enough IAT samples on the fly before 

computingβ . This sampling latency can be significant, and therefore the success of 

2S filter application depends on choosing size m for the mX  aggregate correctly. For 

example, if the average IAT is one second, 1000=m  means 1000 seconds. On the 

contrary for the same size m and mean IAT of 1 ms, the physical time is only one 

second. Therefore, the m value for the 2S filter Java prototype is a variable rather 

than a chosen constant, and the user/tester should fix the time span T instead of 

collecting the fixed m samples on the fly. That is, the number of samples (i.e. m ) in 

an aggregate within T depends on the IAT; shorter IAT delays yield a larger m . Then, 

the 2S filter works adaptively with the m  value decided by the IAT for the “timed 

aggregate” based on the chosen T.  

 



 143

 

5.3.2.1.8 The 2S filter execution time (1455 clock cycles) by Intel’s VTune 

 

5.4 CONNECTIVE SUMMARY 

 

It was observed in my previous MPhil research that changes in traffic patterns 

can affect the performance of the different dynamic buffer size tuners for user-level 

applications, namely, PIDC, GAC, FLC and NNC. Therefore, there is a need to 

neutralize the ill effects of changes in traffic patterns on the tuners’ performance. As a 

result I made use of the COMP Team’s accumulated experience in real-time traffic 

pattern detection and analysis. In return I contributed two real-time traffic filters to 

enhance the extant RTPD (real-time traffic pattern detector) proposed by the team. 

Now the RTPD is renamed Enhanced RTPD or E-RTPD to include my PhD 

contributions: the real-time modified QQ-plot and self-similarity ( 2S ) traffic filters. 

In order to confirm that these two traffic filters indeed work correctly over the 

Internet, which follows the power law and has widely varying traffic patterns over 

time, the FLC dynamic buffer size tuner is chosen for the tests. The choice is natural 

because there is a need to make the FLC adaptive and reconfigurable [p12]. The 

preliminary experience with the E-RTPD is positive and encouraging. In different 
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experiments the FLC made use of the E-RTPD to reconfigure itself (mainly the 

derivative control) to neutralize the ill effects arising from traffic characteristics 

successfully. The CAB concept is followed in my experiments that verify the self-

similarity ( 2S ) filter. It involves the following stages: a) sample and examine the data 

in a discrete stochastic process X, b) use the sampled data to confirm the appearance 

of the Gaussian property, which means stationarity, c) start the 2S  filter to confirm 

self-similarity for the aggregates of m
lX , where l   and m identify the lag and the 

block size of the aggregate respectively, and d) examine the H values for all the m
lX  

aggregates on the time axis to differentiate the monofractal property from the 

multifractal one. Monofractal property means that the H value remains virtually 

constant. In fact, the Gaussianity test continues and in parallel with the 2S  filter 

operation. If Gaussianity has disappeared, then the 2S  filter stops operation because 

its pivot is “asymptotically second-order self-similarity”, which is stationary and 

LRD. Gaussianity confirmation at the present stage is achieved by computing the 

kurtosis and skewness values and comparing them to the chosen limits. The argument 

is that these limits help indicate the existence of a bell curve (maybe skewed), which 

resembles a known distribution, for example the Weibull with a known gamma value. 

The issue of how to choose the proper limits for real-time applications is a non-trivial 

one and relatively unexplored. One of the major future work items, therefore, is to 

deepen the investigation of how to choose the limits effectively.  
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CHAPTER 6 IN-DEPTH FLC RESEARCH 

 

6.0 INTRODUCTION 

 

The basic version of the FLC (Fuzzy Logic Controller) dynamic buffer tuning 

model was proposed [Lin2002]. It is basic in the sense that only two designs, namely 

FLC[4x4] and FLC [4x6] were investigated. The FLC is conceptually the 

combination: “PIDC plus fuzzy logic plus the 2},0{ Δ objective function”. The fuzzy 

logic divides the PIDC control domain into a set of smaller fuzzy control regions and 

supports each region with either a “don’t care” state or a predefined the fuzzy rule. 

The fuzzy rule moderates the PIDC dynamics to ensure that the controlled output 

would not deviate outside the Δ±  safety band about the chosen reference. This 

reference point, which is symbolically represented by “0” in 2},0{ Δ , is actually a 

chosen QOB (queue length over buffer length) ratio known as the RQOB . For the 

FLC [4x4] and FLC [4x6] Java prototypes different RQOB values were tested and it 

was confirmed that these prototypes not only eliminated the PIDC shortcomings 

when they worked alone but also produced no overflow at all. The following issues 

were not addressed in my MPhil thesis [Lin2002]: a) the possibility of having an 

optimal FLC design, b) the due techniques to smoothen the FLC convergence process 

towards RQOB , and c) the impact of Internet traffic patterns on the FLC’s accuracy.  

This section presents the results of the deeper research work on these issues in 

my PhD project as follows: 



 146

a) Firstly it is empirically found that an optimal FLC design range does exist 

[p14]. 

b) Secondly, the FLC can be made more adaptive by manipulating the “don’t-

care range-threshold” in a dynamic manner. This led to the proposal of the 

new A-FLC (Adaptive/Reconfigurable FLC [p12]) concept. 

c) Thirdly, the adaptive capability of the A-FLC can be further improved with 

respect to different Internet traffic patterns. The investigation in this aspect 

created the R2-FLC (Real-time Reconfigurable FLC). 

Experiments verifying the main results have been carried out and the results obtained 

are presented here. 

 

6.1 OPTIMAL FLC DESIGN 

 

The FLC expert dynamic buffer tuner is conceptually the “fuzzy logic plus 

PIDC plus the 2},0{ Δ objective function” combination. The fuzzy logic refines and 

moderates the PIDC control process so that it adaptively maintains the given Δ  

safety/tolerance margin of the 2},0{ Δ  objective function. By itself the PIDC control 

does not work by the 2},0{ Δ  principle and therefore has no safety margin. This 

means there is potential overflow and buffer space wastage. The algorithmic PIDC 

operation (i.e. “P+I+D” Controller; P for proportional control, I for integral control, 

and D for derivative control) is shown in Figure 6.1.1. 

The PIDC parameters are: ICM (integral control mechanism) for integral or I 

control, nowL  for current buffer length, Lminimum for the minimum buffer size estimated 



 147

from the past performance, iQOB  as the “queue length (Q) over buffer length” ratio 

in the thi  PIDC control cycle for proportional control, and dt
dQ  as the current rate of 

change in Q for derivative control. ICM is defined in terms of the current RIC value. 

RIC uses the current mean queue length estimatedCAQueue _  predicted by the RTM 3  

(Micro Mean Message Response Time) mechanism, as well as the mathematical 

average of the queue length, QueueReference. CONP  is the damping factor that smoothens 

the convergence towards the estimated mean iM  (now realized as estimateCAQueue _ ) 

for the time window of interest. The width of the thi window is defined by the total 

time required to collect the (F-1) i
jm  number of samples, for )1,..(2,1 −= Fj . F is the 

flush limit chosen for the RTM 3  operation. 0M  is the first sample recorded after the 

RTM 3  has started running, and 1−iM  is the feedback of the last predicted result into 

the current prediction cycle. Ba is a prescribed constant or “seed” for the particular 

ICM implementation. The RTM 3  mechanism is the micro implementation of the 

Convergence Algorithm (CA) [Wong1999B], which is derived form the Central Limit 

Theorem and predicts the mean of any waveform quickly and accurately. Being micro 

the tool runs as a logical object, which can be invoked for a prediction via message 

passing anytime and anywhere. In contrast a macro tool must be installed at the nodes 

that represent the two ends of a logical channel before measurement can start. The 

RTM 2 (Mean Message Response Time) IEPM tool [Wong2001] is a macro example 

and the predecessor to micro RTM 3  implementation. 
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If {(dQ/dt > prescribed_positive_threshold) OR  

    [(dQ/dt is_ positive) AND   

                   ( iQOB  > prescribed__positive_threshold)]} 

 Then Lnow = Lnow +ICM;  Lnow  ≥  Lminimum 

Else If {(dQ/dt < prescribed_negative_threshold) OR  

     [(dQ/dt is_ negative) AND  

       ( iQOB  < prescribed_negative_threshold)]} Then  

        Lnow = Lnow-- ICM;  Lnow  ≥  Lminimum 

   Figure 6.1.1 The basic PID controller (PIDC) algorithm  

 

The fuzzy logic in the FLC divides the PIDC control domain into a set of 

smaller fuzzy control regions for more refined operation. Each fuzzy region is then 

supported by a either a fuzzy rule or a “don’t care” state. The fuzzy rules maintain the 

given Δ  safety margin about the reference point of 2},0{ Δ , symbolically represented 

by “0”. For the FLC prototypes the reference point is the chosen QOB (queue length 

over buffer length) ratio or RQOB . For RQOB  equal to 0.8 (i.e. 2.0=Δ  ) the FLC 

operates in the QOB range from 0.6 to 1. The extant FLC model maintains Δ  by 

tuning only the ICM value on the fly by the QOB and dt
dQ  parameters. When the 

FLC control enters an inert “don’t care” state, it requires no action. The inertness of 

the “don’t care” states offsets the FLC computational complexity due to the fuzzy 

logic presence. As a result the FLC execution time is comparable to the much simpler 
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PIDC. Figure 6.1.2 is the matrix of fuzzy regions for the FLC[6x6] design. The “dot” 

defines the RQOB  value of 0.8 and X marks a “don’t care” state.  

                

    Figure 6.1.2 An FLC design/configuration example, FLC[6x6] 

 

The FLC linguistic variables are: 

a) Current QOB ratio (or QOBi): ML for Much Less than QOBR, L for Less than 

QOBR, G for Greater than QOBR, and MG for Much Greater than QOBR. 

b) Current dtdQ / : NL for Negative and Larger than the threshold, NM for 

Negative but Medium to the threshold, NS for Negative and Smaller than the 

threshold, PS for Positive and Smaller than the threshold, PM for Positive and 

Medium to the threshold, and PL for Positive and Larger than the threshold. 

The FLC control decision in the ith control cycle depends on the current QOBi and 

dQ/dt. It may be Addition (buffer elongation) or “+”, Subtraction (buffer shrinkage) 

or “- ” or don’t care “X”. Different fuzzy rules can be formulated as required by 

different FLC designs. Some examples of the fuzzy rules for Figure 6.1.2 are as 

follows: 

 

Rule 1: If (QOBi is L) AND (dQ/dt is NM) Then Action is “-”(Subtraction) AND Lnew = Lold - ICM 

Rule 2: If (QOBi is L) AND (dQ/dt is NS) Then Action is “X”(Don’t care) AND Lnew = Lold 
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Rule 3: If (QOBi is L) AND (dQ/dt is PS) Then Action is “X”(Don’t care) AND Lnew = Lold 

Rule 4: If (QOBi is L) AND (dQ/dt is PM) Then Action is “+”(Addition) AND Lnew = Lold + ICM 

 

  
Figure 6.1.3 Membership function for dt

dQ            Figure 6.1.4 Membership function for QOB 

The two control parameters for the FLC[6x6] design are QOB and dt
dQ . The 

dt
dQ  membership function is in gradient, and the y-axis of Figure 6.1.3 is the degree 

of membership measurement. The x-axis is the gradient difference between two 

successive dt
dQ  measurements. For this design the values from a to f are: a=0.003, 

b=0.002, c=0.001, d=0.001, e=0.002 and f=0.003. Figure 6.1.4 shows the QOB 

membership function for the same design, and the x-axis is the QOB ratio that 

changes in a dynamic manner. The values for the p, q, r, s, t, u are respectively: 0.65, 

0.7, 0.75, 0.85, 0.9 and 0.95. The current dt
dQ  and QOB values decides which fuzzy 

region that the FLC should operate. For example, if the degree of the 

dt
dQ membership function is between b and c (i.e. 5.0=y ) and that for QOB is 

between q and r, four fuzzy regions are candidates: [SL,NM], [SL,NS], [L,NM] and 
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[L,NS]. With respect to Figure 6.1.2, the possible operations are: -,-,- and X, and the 

majority rule selects the minus (-) operation. 

 

6.1.1 OPTIMAL FLC DESIGN IS POSSIBLE 

 

There are basically two approaches to find out if an optimal FLC design is 

possible. The first approach is to represent the FLC in its mathematic form and use 

mathematical manipulation such as a theorem proving to confirm the possibility. The 

second approach is empirical and this means the following: a) carry out experiments 

for different FLC designs, and b) find the correlation between the FLC structural 

complexity and the chosen performance index such as the mean QOB deviation from 

the given RQOB  reference. The second approach is chosen for addressing the issue 

because the different designs have to be tested against different Internet traffic 

patterns [p11]. 

 

6.1.1.1 EXPERIMENTAL RESULTS 

 

The accumulated FLC experimental data indicates that it is possible to have an 

optimal FLC design. Figure 6.1.1.1, which is plotted with the mean deviations from 

RQOB  by the different FLC designs tested in different experiments, reveals 

approximately where the optimal region is. This region may vary with respect to 

different traffic patterns. In this plot the mean deviation from the RQOB  reference 

stabilizes around 0.02 (or 2%) after the FLC[4x6] design. More experiments confirm 



 152

that more complex FLC designs do not yield less deviation after this point. The 

possibility of having optimal FLC designs makes it worthwhile to explore the 

correlation among the following in the future work: the mean deviation from QOB, 

the FLC design complexity (i.e. the matrix size), and the metrics being leveraged (e.g. 

traffic pattern). If this correlation could be formally established, then proper 

intelligence could be incorporated to let the FLC timely auto-tune its configuration 

(i.e. the matrix size and the matrix entries) for cost and effectiveness. A simpler FLC 

design is always desirable because it yields shorter execution and better RTT 

timeliness to enhance the chance of success for time-critical applications. 

 

Figure 6.1.1.1 An optimal FLC design is possible (mean deviation stabilizes 

around 0.02) 

 

6.2 THE ADAPTIVE/RECONFIGURABLE FUZZY LOGIC CONTROLLER 

(A-FLC) 

 

The A-FLC (adaptive/reconfigurable FLC) model uses a static adjustment size to 

tune the “don’t-care region’s range-threshold” by using a static adjustment size. The 

A-FLC is basically the combination: “don’t-care region’s range-threshold auto-
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tuning capability + FLC”. The PIDC component in the FLC uses two static 

thresholds to achieve its control purpose, namely, Th1 and Th2. The PIDC working 

alone conceptually should have four control regions, defined by different ± Th1 and 

± Th2 combinations. The FLC fuzzy logic divides these thresholds into the finer 

membership functions, with range-thresholds among them (e.g. the range-threshold 

in Figure 6.1.4 between 003.0=a  and 002.0=b  is 0.001). In the original FLC the 

range-thresholds are static and decide which region the dynamic buffer tuner should 

operate at the time. The static nature of the range-thresholds introduces an intrinsic 

delay for the corrective action by a fuzzy control. For example, if the 
dt

dQ  value 

increases but less than the range-threshold of the current “don’t care” region, there 

will be no control action. By the time any control action is triggered (range-threshold 

exceeded) there would be significant overshoot or undershoot already. The 

overshoot/undershoot accumulations make the FLC control process oscillate. The A-

FLC differs by preventing any significant overshoot/undershoot proactively in a 

timely manner. The prevention is achieved by adapting the range-threshold of the 

current “don’t care” fuzzy region on-line. At anytime, if the increase (or decease) of 

dt
dQ  is more than (or less than) the given “gradient threshold (GT)”, the range-

threshold is adjusted by the “given percentage (GP)” in a timely manner.  Even 

though the GT and GP are fixed values, the experimental results shows that the A-

FLC has much better performance than the original FLC by yielding less mean 

deviation from the RQOB  reference. Figure 6.2.1 shows how the “don’t care” range-

threshold of a growing dt
dQ  value is “squeezed” to enlarge the range-threshold on 
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the right side (now larger than Ra). This enlargement, in effect, urges the A-FLC to 

take immediate action instead of waiting passively for the “ dt
dQ  predefined range-

threshold” condition to hold. The dynamic “squeezing” action based the GT and GP 

parameters quicken the A-FLC response. In the R2-FLC model GP is adjusted again 

in a dynamic manner with respect to the traffic pattern identified by the RTPD 

capability. 

   

Figure 6.2.1 A-FLC adjustment of the range threshold of the don’t care state on the fly  

 

6.2.1 EXPERIMENTAL RESULTS 

 

Different experiments were conducted over the Internet to verify the A-FLC 

prototype implemented in Java.  The preliminary results indicate that it is indeed 

more efficient and less oscillatory than its FLC predecessor. Different RQOB  and 

Δ values were tried in the experiments, and the results presented here are based on: 

2.0=Δ  (or 20%), and 8.0=RQOB  (or 80%). The RQOB  value is the reference point 

chosen for the 2},0{ Δ  objective function. Similar to its predecessor the A-FLC never 

failed to upkeep the Δ safety/tolerance margin in the experiments. Figure 6.2.1.1 
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shows both the deviations and the MD of the A-FLC control that auto-tuned the range 

threshold over the entire control process. The MD is measured by the RTM 3  

component in the A-FLC. If the A-FLC operation stops the last MD value together 

with the given safety margins: Th1 (for QOB or P control) and Th2 (for dt
dQ  or D 

control) become a new point, namely, [MD,(Th1,Th2)] in the MD-vs-Thresholds 

graph. In this way the graph records the past experience for the future determination 

of sounder Th1 and Th2 initialisations for the A-FLC to run again. Figure 6.2.1.2 

shows the A-FLC deviation situations with the same set of data as for Figure 6.2.1.1 

but the capability to auto-tune the range threshold for “dynamic threshold” operations 

is absent. The absence makes the deviations more prominent. Figure 6.2.1.3 shows 

Figure 6.2.1.1 and Figure 6.2.1.2 in a comparative manner to make the difference in 

the deviations conspicuous. Figure 6.2.1.4, 6.2.1.5 and 6.2.1.6 are plots for another 

experiment. The result from this set concurs with the observations for the previous 

one. In fact, all the experiments indicate that auto-tuning of the range thresholds for 

the “don’t care” fuzzy regions are important for yielding smoother, more responsive 

buffer overflow control. For the experimental results presented in this paper, the GT 

and GP values are respectively 0.003 radians and 5%.   

 



 156

 

Figure 6.2.1.1 MD value by the RTM 3  over time for A-FLC with “dynamic threshold” 

 

 

Figure 6.2.1.2 MD value by the RTM 3  over time for A-FLC “static threshold” 
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Figure 6.2.1.3 Comparing the A-FLC[static threshold] and the A-FLC[dynamic 

threshold] 

 

Figure 6.2.1.4 MD value by the RTM 3  over time for A-FLC dynamic threshold 
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Figure 6.2.1.5 MD value by the RTM 3  over time for A-FLC static threshold 

 

 

Figure 6.2.1.6 Comparing A-FLC[static threshold] and the A-FLC[dynamic threshold] 

 

6.3 THE REAL-TIME RECONFIGURABLE FUZZY LOGIC CONTROLLER 

 

The novel R2-FLC model has two main components, namely, the A-FLC 

(adaptive fuzzy logic controller) and the RTPD (real-time traffic pattern detection). 

The A-FLC reconfigures itself on-line with respect to the traffic pattern currently 
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identified by the RTPD capability. It achieves this by using the current RTPD result 

to tune the RAC capability, which tunes GP in a dynamic manner. The RTPD, as 

explained in Chapter 5, is statistical by nature. Therefore, its traffic detection and 

identification accuracy is independent of the traffic changes in the Internet, which 

follows the power law. Over time the Internet traffic pattern switches frequently, for 

example, from SRD to LRD or multifractal [Leland1994, Paxson1995, Crovella1997].  

To recap, the RTPD carries out the following on the fly: a) differentiates LRD 

from SRD by measuring the Hurst (H) effect/value, and b) identifies the traffic 

pattern (e.g. heavy-tailed) through a filtration process. The H value indicates LRD 

behaviour for 15.0 ≤≤ H  and SRD for 5.00 << H . In the filtration process the 

appropriate filter is invoked to identify the specific traffic pattern (e.g. the modified 

QQ-plot filter identifies “heavy-tailedness”). Many methods/algorithms in literature 

can be adopted for measuring the H value or to differentiate LRD from SRD. The 

examples include the R/S (rescaled adjusted statistics), periodogram and whittle 

estimators. After experimenting with different estimators from literature (e.g. 

[Molnár1999]) the R/S is chosen as the backbone for the RTPD capability. This 

choice is natural because the R/S estimator requires only simple calculations and is 

therefore naturally suitable for time-critical applications. In contrast any complex 

calculations would lead to serious time delay and higher chance of deleterious effects. 

The traditional R/S (rescaled adjusted statistics) estimator (Molnár [Molnár1999] and 

others) is used primarily for analyzing pre-collected 

traces:
)var(

},...,2,1:min{},....,2,1:max{
X

kiWkiW
S

R ii =−=
= . In the R/S expression iW and 
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X  are represented by the following: ∑
=
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m
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1

1 . The best value for k, however, should be found by trial and error. 

This is the drawback of the traditional R/S estimator because the R/S accuracy and 

speed depend on k. The R/S ratio is the rescaled range of the stochastic process over 

a time interval k, where X is the discrete time for },...2,1:{ kiX i = . The most useful 

R/S feature is the relationship for a large k: Hk
S

R )2(= . The H (Hurst) effect/value 

is the slope of the log-log plot: log(R/S) versus log(k). The filtration process is 

invoked after the traffic differentiation stage. For example if the LRD traffic type is 

recognized, the modified QQ-plot and De Haan’s moment filters can be then invoked 

from the library to confirm the “heavy-tailedness” of the recognized LRD waveform 

by consensus. Similarly the “ μδ = ” filter, where δ  and μ  are the standard 

deviation and mean of the waveform, confirms a Poisson process.  For the R2-FLC 

the RTM 3  micro IEPM technique is adopted to support quicker and more accurate 

iW computations. That is, ∑
=

−=
i

m
imi MXW

1

)( is used instead of the traditional 

∑
=

−=
i

m
mi XXW

1
)(  approach. To summarize the RTPD essence consists of: 

a) It runs as a traditional R/S computation if the RTM 3  support is inhibited. 

b) The RTM 3 converts the traditional R/S into the enhanced R/S (E-R/S) 

estimator. 

c) The RTM 3  estimates the mean of the waveform (i.e. iM ) with F=14 samples. 
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d)  The E-R/S computes with ∑
=

−=
i

m
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)( but not the ∑
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m
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1
)( .    

The R2-FLC uses the RTPD result to reconfigure itself on-line by auto-tuning its 

RAC capability. In the process the RAC selects a more appropriate GP value for its 

operation. Both RTM 3  and RTPD capabilities are realized as logical object entities 

in the R2-FLC prototype. They run in parallel with the R2-FLC main body, namely, 

the A-FLC. Timing analysis with the Intel’s VTune Performance Analyzer 

[VTune2002] shows the following (explained in more details later): a) the RTPD with 

RTM 3  support needs an average of 890 clock cycles to execute and 950 without, and 

b) the R2-FLC module, which runs in parallel with the RTPD, needs 350 clock cycles 

to execute on average, and this means the de facto R2-FLC execution time depends on 

the RTPD.  

The Th1 and Th2 thresholds for the PIDC component in the R2-FLC model are 

not assigned by the user but generated by the system automatically from past 

performance. The important salient feature for the R2-FLC model is the MD-vs-

Thresholds graph, which accumulates all the previous R2-FLC experience. Whenever 

R2-FLC has stopped running it contributes a new point, which is defined by the last 

three values used: MD (mean deviation), Th1 and Th2. If the R2-FLC control is 

started again, from the [MD, (Th1, Th2)] points a good estimate for the best starting 

Th1 and Th2 values will be automatically determined. The best choice is the pair that 

yields the minimum MD value on the MD-vs-Thresholds graph. The R2-FLC needs 

the RTM 3 object in the MD computation. 

In order to demonstrate how traffic patterns affect R2-FLC performance, some of 

the results obtained with the FLC[6x6] design are presented here (Figure 6.3.1). The 



 162

significant observation is that different traffic patterns need different GP values to 

yield the same MD value from the RQOB  reference. For example, for MD=0.026 the 

R2-FLC needs GP=0.07 (or 7%) for Poisson, GP=0.08 (or 8%) for heavy-tailed 

(Pareto), and 1.0>GP (or 10%) for self-similar traffic. This means that the GP value 

should be chosen appropriately in a real-time fashion for attaining better dynamic 

buffer tuning cost effectiveness, with respect to different traffic patterns. 

Detecting/identifying the exact traffic pattern and selecting the corresponding correct 

GP value is real-time reconfiguration in the R2-FLC context. 

 

Figure 6.3.1 MD by R2-FLC for various traffic patterns versus GP values, for 

FLC[6x6] 

 

6.3.1 EXPERIMENTAL RESULTS 

 

Experimental results shows that for the same FLC design bases (e.g. FLC[6x6]) 

the R2-FLC performance is upward compatible to the A-FLC tuner. In the 



 163

experiments different FLC design bases and traffic patterns were involved. For 

example, Figure 6.3.1.1 plots the mean deviations from the RQOB  reference 

produced by the R2-FLC with different FLC design bases versus different traffic 

patterns. Each mean deviation (MD) value in the plot is for a FLC design basis versus 

the specific traffic pattern. It is the average of the results from ten separate 

experiments with different TCP traces. For comparison purposes the mean deviation 

for by the PIDC tuner is also shown. For the results shown in the plot, the R2-FLC 

works with the initializations: GT=0.003 radians and GP=0.05 (i.e. 5%). The striking 

similarities between the R2-FLC and A-FLC are as follows: a) they show the same 

trend of mean deviations with the same FLC basic design matrices, b) they both yield 

the same optimal FLC design range (Figure 6.3.1.1), as well as no more mean 

deviation reduction than the more complex FLC[4x6] design, and c) the R2-FLC 

model produces less mean deviation on average than the A-FLC, with or without 

RTM 3 support (Figure 6.3.1.2). 

 

Figure 6.3.1.1 Mean Deviation Errors of different FLC designs versus traffic patterns 
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Figure 6.3.1.2 Comparing A-FLC[static range threshold(RT)] and R2-FLC [dynamic RT] 

 

The execution times of the Java R2-FLC prototype were measured against 

different GP values. The measurements in terms of the number of neutral clock cycles 

were carried out with the Intel’s VTune Performance Analyzer [VTune2002]. For all 

the experiments the prototype needs less than 400 clock cycles to execute its control 

pass/cycle. For example, Figures 6.3.1.3 and 6.3.1.4 show the prototype execution 

times for the Poisson and heavy-tailed traces. The given/static GP values for these 

two cases are 5% and 7% respectively, for the given mean deviation of 0.027.  The 

VTune measurements show that the R2-FLC needs only 280 clock cycles for the 

Poisson trace but 340 clock cycles for the heavy-tailed one. If the RTPD component 

detects that the traffic pattern has changed from heavy-tailed to Poisson, the R2-FLC 

tuner should self-configure immediately to deal with the situation. This means 

squeezing the GT by 5% instead of 7% and the action improves the dynamic buffer 

tuning cycle time by (340 - 280)/340 or 17.65 %. As a result this lessens the chance 

of having deleterious effects for the buffer size tuning process.  
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Figure 6.3.1.3 For GP=5% and MD=0.027, the R2-FLC execution time is 280 

clock cycles for the Poisson distribution 

 

Figure 6.3.1.4 For GP=7% and MD=0.027, the R2-FLC execution time is 340 

clock cycles for the heavy-tailed distribution 

 

The preliminary experimental results indicate that the R2-FLC, with or without 

the support of the RTPD capability, is consistently more accurate than the A-FLC and 

the FLC predecessors by yielding less MD values. This is demonstrated by Figures 

6.3.1.5, 6.3.1.6 and 6.3.1.7, in which for GP=5% (or 0.05) the novel R2-FLC tuner 
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with the FLC[6x6] design basis consistently produces less mean deviations than the 

basic FLC[6x6] and the more adaptive A-FLC[6x6] version. The three different 

traffic traces used in the experiments were: Poisson, heavy tailed, and self-similar. 

The different experiments confirm that the R2-FLC tuner consistently has better 

performance than the FLC and the A-FLC predecessors.  

 

Figure 6.3.1.5 Better R2-FLC [6x6] performance than FLC[6x6] and A-FLC[6x6] 

(alternatively known as R-FLC[6x6]) for the Poisson trace , GP=0.05 
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Figure 6.3.1.6 Better R2-FLC [6x6] performance than FLC[6x6] and A-FLC[6x6] 

for the heavy-tailed trace, GP=0.05 

 

 

Figure 6.3.1.7 Better R2-FLC [6x6] performance than A-FLC[6x6] for the self-

similar trace, GP=0.05 
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6.4 TIMING ANALYSIS OF THE THREE FUZZY LOGIC CONTROLLERS  

 

The timing analyses of three fuzzy logic controllers (FLC, A-FLC and R2-FLC) were 

carried out with the Intel’s VTune Performance Analyzer [VTune2002]. Different 

traffic distributions, which include known waveforms (e.g. Poisson and heavy-tailed) 

as well as Internet traffic traces, were used in the experiments. Some of the 

experimental results were selected for demonstration in this section. 

 

6.4.1 FLC 

 

 

Figure 6.4.1.1 FLC execution time is 250 clock cycles for the Poisson distribution 
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Figure 6.4.1.2 FLC execution time is 275 clock cycles for the heavy-tailed distribution 

 

 

Figure 6.4.1.3 FLC execution time is 255 clock cycles for the trace [Trace] 
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6.4.2 A-FLC 

 

Figure 6.4.2.1 A-FLC execution time is 265 clock cycles for the Poisson distribution 

 

 

Figure 6.4.2.2 A-FLC execution time is 310 clock cycles for the heavy-tailed distribution 

 

 

Figure 6.4.2.3 A-FLC execution time is 275 clock cycles for the trace [Trace] 
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6.4.3 R2-FLC 

 

Figure 6.4.3.1 R2-FLC execution time is 280 clock cycles for the Poisson distribution 

 

 

Figure 6.4.3.2 R2-FLC execution time is 340 clock cycles for the heavy-tailed distribution 

 

 

Figure 6.4.3.3 R2-FLC execution time is 285 clock cycles for the trace [Trace] 
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6.4.4 SUMMARY OF THE EXPERIMENTAL RESULTS SHOWN ABOVE 

 

 Measured average number of T cycles per control cycle 

Control models Poisson distribution Heavy-tailed 

distribution 

Trace 

FLC 250 275 255 

A-FLC 265 310 275 

R2-FLC 280 340 285 

Table 6.4.4.1 Summary of the experimental results shown above 

  

In the experimental results including the ones tabulated above all three FLC 

versions require less than 350 clock cycles to execute; that is, their control cycle 

times are less than 350 clock cycles. The R2-FLC control cycle time is always 

relatively the longest for all the distributions, namely, Poisson, heavy-tailed and self-

similar. The FLC controller requires the lowest control cycle because it does not 

include the RTPD (real-time traffic pattern detection) in its control process and the 

threshold values used by the FLC controller do not change during execution. 

Similarly the A-FLC does not have the RTPD component to determine the type of the 

traffic either, and its “don't care” range threshold value changes during execution. 

The amount of change, which is administered once the threshold is exceeded, is fixed.  

The R2-FLC has the longest control cycle because it needs the RTPD component to 

determine the type of the traffic so that it adjusts its threshold values accordingly. In 

fact, the RTPD exists as a software entity that runs in parallel with the R2-FLC main 

body. Therefore it does not contribute to lengthen the execution time of the R2-FLC 

main body directly, but the result of its traffic pattern detection may invoke extra R2-
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FLC computation to finely adjust the “don't’ care” range threshold value in a dynamic 

manner.      

 

6.5 CONNECTIVE SUMMARY 

 

To recap, this section presents what I have achieved in the deeper FLC research work: 

a) It is experimentally confirmed that an optimal FLC design range does exist 

[p14]. 

b) It is confirmed that that the FLC can be made more adaptive by manipulating 

the “don’t-care range-threshold” in a dynamic manner. This is the basis for 

the new A-FLC (Adaptive/Reconfigurable FLC [p12]) concept. 

c) It was discovered that the dynamic buffer tuning capability of the A-FLC can 

be improved if it is allowed to self-tune itself with respect to the current 

Internet traffic pattern. This is the conceptual framework for the R2-FLC 

(Real-time Reconfigurable FLC) tuner, which is experimentally more 

efficacious than the FLC and the A-FLC. 
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CHAPTER 7 IN-DEPTH NNC RESEARCH 

 

7.0 INTRODUCTION 

 

 The in-depth NNC research addresses the following major issues left behind 

by my previous MPhil thesis as follows: 

 

a) The possibility of a correlation between the accuracy and the number of 

neurons in the hidden layer of the NNC.  

b) The need for a timing analysis of the NNC. 

c) The possibility of cutting down the NNC control cycle time and lowering the 

chance of deleterious effect. 

 

Therefore, the objectives of the in-depth research include: 

 

a) Define the correlation between the number of neurons in the NNC hidden 

layer and the control accuracy; this is carried out by the sensitivity analysis. 

b) Propose a method(s) to optimize the NNC configuration to lower its control 

cycle time in an on-line manner. 

c) Timing analyses of the optimized NNC model to confirm that it is indeed 

more suitable for time-critical applications over the Internet.  

d) Study the impact of different traffic waveforms/distributions on the stability 

and accuracy on the NNC control process in different experiments. 
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7.1 SENSITIVITY ANALYSIS OF THE HIDDEN LAYER 

 

The NNC model, which works by backpropagation and supervised training, is 

shown in Figure 7.1.1. The NNC operates in two distinctive phases, namely, 

training/learning, and dynamic buffer tuning. In action it is a twin system consisting 

of the “Chief” NNC module and the “Learner” NNC module as shown in Figure 7.1.2. 

The Chief, which has already learnt previous patterns, carries out actual dynamic 

buffer tuning while the Learner undergoes training to acquire new knowledge to deal 

with new phenomena. Before training starts all the weights of the arcs in the 

Learner’s neural network are randomized. As training progresses the error (difference) 

between the “trainee” output and the NNC desired/deserved output Δ decays 

gradually. After training the Chief and the Learner swap positions. The NNC stability 

is analyzed by measuring the mean deviation (MD) from the chosen RQOB  reference 

in terms of “the number of neurons in the NNC hidden layer versus different traffic 

patterns”. 

Figure 7.1.1  A backpropagation model 

 

Input
layer

Hidden
  layer

Teacher signal  for training
      (deserved  value)

Output
  layer

10 neurons 20 neurons

1 neuron

Sigmoid (input)
Sigmoid(output)
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Figure 7.1.2 The NNC – a twin system of two NNC clones 

 

7.1.1 EXPERIMENTAL RESULTS  

 

The NNC model was verified by simulations over the Aglets, which is a 

mobile agent platform specifically designed for Internet applications [Mitsuru1998]. 

The Aglets is chosen for three reasons: a) it is stable, b) it has rich user experience, 

and c) it makes the verification results scalable for the open Internet. The set up for 

the verification simulations is shown in Figure 7.1.1.1, where the driver and the 

server are aglets (agile applets) collaborating within a single computer. The driver 

picks a waveform (e.g. Poisson) or trace from the table and uses it to generate the 

inter-arrival times for the simulated merged traffic for the server queue. A trace 

contains the RTT data pre-collected from a TCP channel, and it usually embeds an 

unknown traffic pattern. The aim of using data traces in simulations is to verify that 

the NNC control precision and stability are indeed traffic independent.  

The waveform picked by the driver was first checked for its LRD (long-range 

dependence) or SRD (short-range dependence) behavior. The checking process is 
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indicated by the box deisgnated “traffic pattern analysis”. Different tools were used 

to identify the waveform’s exact nature once its LRD/SRD character had been 

determined. For example, the R/S (rescaled adjusted statistics) estimator in the Selfis 

Tool [Karagiannis2003] was used to compute the Hurst (H) parameter/value for 

different traces. The character is identified as follows: 15.0 ≤< H  for LRD and 

5.00 ≤< H  for SRD. Other tools were then employed to identify the exact 

waveform/distribution, for example, the modified QQ-plot for heavy-tailed 

identifications. 

In this section two sets of experimental results among the many collected for 

analytical purposes are presented for demonstration. The first set, “Case 1”, 

demonstrates how the NNC behaves with random (i.e. SRD) traffic. The second set, 

namely, “Case 2”, demonstrates that the NNC stability is independent of the self-

similar nature of the traffic (i.e. LRD). The plots are obtained with the help of the 

Selfis tool.  
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Figure 7.1.1.1 The NNC verification environment 

 

Case 1 - Random Traffic  

 

For the random RTT trace for demonstration here the Selfis’s R/S plot yields 

H=0.483 and 99.66% confidence of its SRD character (Figure 7.1.1.2). Figure 7.1.1.3 

shows that both NNC and PIDC produce no overflow for the trace, but the former 

eliminates the shortcomings of the latter. The exponential/random nature of the trace 

is also confirmed by comparing its mean ( m ) and standard deviation (δ ), which are 

100 ms and 101 ms respectively. The “ 101100 ≈ ” (i.e. δ≈m ) condition indicates that 

the traffic comes from a Poisson process, which is SRD by nature. 
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Figure 7.1.1.2 SRD character confirmed by R/S estimator of Selfis 

 

 

Figure 7.1.1.3 Experimental results for the Intranet Traffic 
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Case 2 – Self-similar Traffic 

 

Self-similar traffic [Tsybakov1998] contains bursts that easily inundate the 

server queue buffer. It is important therefore for the NNC to have the capability to 

tune the buffer responsively at runtime to ensure that it always covers the queue 

length. Different experimental results verified that the NNC indeed has this capability. 

The self-similar traffic patterns were generated by the tool proposed by G. Kramer 

[Kramer]. For example, the trace for Figure 7.1.1.4 is generated by this tool, and for it 

the R/S plot yields H=0.615, with 98.67% confidence of its LRD character. Both 

PIDC and NNC (no CA support for this case) produce no overflow for different self-

similar traffic patterns, as shown by Figure 7.1.1.5. The NNC maintains the safety 

margin Δ  of the 2},0{ Δ  objective function consistently minus the PIDC 

shortcomings. 

 

 

Figure 7.1.1.4 LRD confirmed by the R/S estimator in Selfis  
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Figure 7.1.1.5 NNC and PIDC performances for the self-similar trace confirmed 

in Figure 7.1.1.4 

 

The NNC stability is analyzed by measuring the mean deviation (MD) from 

the chosen RQOB  reference in terms of “the number of neurons in the NNC hidden 

layer versus different traffic patterns”. The preliminary empirical results shown in 

Figure 7.1.1.6 indicate that having 20 neurons in the NNC hidden layer is more or 

less the break point. Using more neurons does not produce better performance by 

yielding a lower MD. For the Poisson trace, the mean deviation error settles down for 

15 hidden neurons in the hidden layer but for other traffic patterns at least 20 neurons 

are needed. All the experimental results from this stage indicate that it is safer to use 

20 neurons for the hidden layer for Internet applications because its traffic pattern, 

which includes all the patterns in Figure 7.1.1.6, switches quickly without warning. 
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Figure 7.1.1.6 Mean deviation error for using different numbers of neurons in 

the NNC hidden layer versus different possible Internet traffic patterns 

 

7.2 REAL-TIME NNC PRUNING 

 

The aim is to optimize the NNC configuration in an on-line manner to 

adaptively lower its control cycle time. After a thorough literature search it was found 

that the existing pruning techniques are for off-line application. In the off-line process, 

the neural network (NN) is first run to obtain some data for analysis and then 

optimized manually before it is run for the next round. This is basically a trial and 

error process [Gallant1992, Hagan1996]. The off-line approach is not suitable for 

real-time application because the NN should be able to adapt its configuration on the 

fly to suit the current operational conditions. With the on-line and timeliness 



 183

requirements in mind the Hessian-based pruning (HBP) technique is proposed. The 

HBP optimizes the NNC configuration at run-time in an adaptive, dynamic and 

cyclical manner. The “NNC plus HBP” combination is the new O-NNC (Optimized 

NNC) controller.  In action the HBP is a renewal process, and the optimisation in 

every renewal cycle has two phases of operations, as shown in Figure 7.2.1: 

a) First phase: The Learner computes the weights of all the arcs in its 

neural network. After that all the insignificant arcs are marked by 

the principle of dynamic sensitivity analysis. 

b) Second phase: After the Learner becomes the Chief all the marked 

arcs are virtually pruned (excluded) from its computation to shorten 

the control cycle time. Virtual pruning means that the physical 

skeletal NNC configuration is intact and provides the bare basis for 

every pruning operation.  

 

 

 

      Figure 7.2.1 The HBP is as a renewal process 
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The choice of HBP over other techniques is dictated by the fact that the NNC 

optimisation process is real-time and simplicity is the key to success. Other 

techniques from the literature normally require complex mathematical manipulations. 

Besides, the published experience for the feed-forward neural network pruning is 

exclusively off-line. This makes them unsuitable for the on-line NNC application. 

The HBP operation is based on dynamic sensitivity analysis. The rationale is to mark 

and skip a neural network connection if the error/tolerance of the neural computation 

is insensitive to its presence. For the NNC the error/tolerance is the Δ±  band about 

the RQOB  reference. The core of the HBP technique is this concept: “if a neural 

network converges toward a target function so will its derivatives [Gallant1992]”. In 

fact, the main difference among all the identified performance-learning laws from the 

literature [Hagan1996] is how they leverage the different parameters (e.g. weights 

and biases).  

 

Figure 7.2.2 The graph showing the effect of learning rate on mean square error 
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The HBP adopts the Taylor Series [Finney1994] (equation (7.1)) as the 

vehicle to differentiate the relative importance of the different neural network (NN) 

parameters. The meanings of the parameters in equation (7.1) are: F() - the function, 

w - the NN connection weight, Δw – the change in w, ∇F(w) - the gradient matrix 

(7.2), and ∇2F(w) - the Hessian matrix (7.3).  The symbols in the equations mean the 

following:  T for transpose, O for higher order term, n for the nth term, and 
1w∂

∂ for 

partial differentiation. Thus the expansion about w of F(w+Δw) is given by equation 

(7.1). 

 F(w+Δw) = F(w) + ∇F(w)TΔw + 
2
1 ΔwT∇ 2F(w)Δw + O(||Δw ||3)+……..(7.1) 
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The preliminary O-NNC results confirm that the HBP performs as expected. 

The findings from the preliminary HBP experiments concur with similar experience 

published previously [Oh1998]. That is, the weighing factors (synaptic weights or 

learning rates) affect the convergence speed. Many different experiments were 
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carried out to study the effect of different learning rates, and one set of results is 

presented in Figure 7.2.2 for demonstration purposes. It shows how the correlation 

between the learning rate and the mean square error (MSR) varies. A learning rate is 

the magnitude of change when a connection weight is adjusted in training. For 

example, the desired output is m
ji

m
ji

m
ji w

xFkwkw
,

,,
)()()1(
∂

∂−=+ α , with )(, kwm
ji  as 

current weight and α  as the learning rate. The MSR, defined as, =MSR E[(target 

output – actual output)2], measures the control accuracy, with E as the averaging 

operator. The MSR should decrease when the convergence gets closer to the RQOB  

reference. The experimental results, however, indicate that bigger learning rates may 

yield oscillatory convergence, as shown by the rates 23 and 24 in Figure 7.2.2. In 

contrast, the smaller rates 21 and 22 produce much smoother control. Under the 

equation (7.1), the learning/training process should converge to the RQOB  reference, 

which is mathematically known as the target global minimum surface. The 

convergence makes the gradient vector ∇F(w) insignificant and eliminates the 

“∇F(w)T Δw” term from equation (7.1). This implies not only that the larger ordinal 

terms in equation (7.1) can be ignored but also a simplified form (equation (7.4)) is 

possible for the equation. Further simplification of equation (7.4), based on: 

ΔF=F(w+Δw)-F(w), yields equation (7.5). 

F(w+Δw) = F(w) + 
2
1 ΔwT∇ 2F(w)Δw…(7.4) 

ΔF=
2
1 ΔwT∇ 2F(w)Δw…(7.5) 
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The HBP optimization cycle has two phases. The first phase is applied only to 

the Learner and the second to the current Chief role. The details involved are as 

follows (first three points belong to the first phase and the fourth point to the second 

phase): 

a) Use Taylor series (equation (7.1)) to identify the significant neural network 

parameters. 

b) Choose appropriate learning rates for the significant parameters to avoid 

convergence oscillations, as illustrated in Figure 7.2.2. 

c) Mark the synaptic weights that have insignificant impact on the Taylor series. 

d) After the Learner has become the Chief, it excludes all the marked 

connections in its neural computation. The exclusion, represented by equation 

(7.6), is, in effect, virtual pruning of the insignificant connections. It is a 

logical, virtual process because the skeletal NNC neural network 

configuration remains intact except for excluding the marked connections in 

the subsequent O-NNC control. The pruning decision is based on the 

Lagrangian index S (to be explained later). 

Since the optimisation starts anew every time the Learner has completed training, 

which means new weights for the neural network connections, the optimized outcome 

should be unique, and this makes the HBP optimisation process dynamic and 

adaptive.  

wi+Δwi=0…(7.6)   

)()(
2
1 2 wUw i

T

i

T wwwFS +Δ−ΔΔ= ∇ λ …(7.7) 
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If Δw in equation (7.5) is replaced by equation (7.6), then the Lagrangian 

equation (7.7) is formed. Now, equation (7.1) has become a typical constrained 

optimization problem [Bertsekas1982]. The symbols: U T

i
and λ in equation (7.8) are 

the unit vector and the Lagrange multiplier respectively. The optimum change in the 

weight vector wi (equation (7.6)) is shown in equation (7.8). Every entry in wi 

associates with a unique Lagrangian index Si (equation (7.9)). In the first phase of the 

HBP optimisation process the Si values are sorted so that the corresponding less 

significant wi (neural network connection) can be excluded from the sChief ' neural 

computation, starting from the lowest Si. The pruning stops if the exclusion of the 

current Si affects the accuracy of convergence process. Only after the virtual pruning 

process has been completed does the Learner become the Chief. 
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7.2.1 EXPERMENETAL RESULTS 

 

Different experiments with different waveforms (e.g. SRD and LRD) were 

conducted to verify the efficacy and correctness of the HBP technique and the O-

NNC. The set up for the experiments is the same as Figure 7.1.1.1. The preliminary 

results confirm that HBP technique shortens the O-NNC control cycle time 
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consistently. The skeletal configuration of the O-NNC in the experiments is the same 

as the NNC prototype with 10 input neurons, 20 neurons for the hidden layer, and one 

output neuron. This configuration is fully connected, with 200 connections between 

the input layer and the hidden layer, as well as 20 connections between the hidden 

layer and the output layer. The O-NNC result in Figure 7.2.1.1 is produced by a 

configuration that has a hidden layer of 187 arcs instead of the 220 full connections 

because 33 of them are pruned by the dynamic HBP. Different experimental results 

indicate that the O-NNC has the capability to yield the same level of buffer overflow 

elimination efficacy as the un-optimized NNC, but with shorter convergence time to 

reach RQOB . Figure 7.2.1.2 shows that O-NNC always ensures that the QOB value is 

within the tolerance band of |2| Δ  (QOBR=0.8). It compares the QOB deviation 

profiles of the three controllers. As illustrated by Table 7.2.1.1, the O-NNC, however, 

has a larger mean deviation (MD) than the un-optimized NNC, 

kQOBMD
k

i

i ⎥
⎦

⎤
⎢
⎣

⎡
−Δ= ∑

=1

|| . 

 

The PID controller (PIDC) is algorithmic in nature, and it is therefore also referred to 

as the Algorithmic PID controller [Ip2001]. Therefore PIDC and A-PID are 

synonymous in my research. The PIDC makes use of the Convergence Algorithm 

(CA), which is implemented at the micro level. At this level the CA exists as an 

independent logical object that runs in parallel with the PIDC main body. In this form 

the CA is called the RTM 3  entity that can be invoked for service anytime and 

anywhere by message passing.  
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Figure 7.2.1.1 A set of experimental results to compare NNC, O-NNC and A-PID  

 

Controller/tuner Mean Deviation 
NNC (Original) 0.0536 
O-NNC (Pruned) 0.0916 
A-PID 0.1279 

         Table 7.2.1.1 Mean deviations for Figure 7.2.1.2 

 

Controller/tuner The measured average number 
of clock cycles per tuner 
control cycle 

NNC (Original and  

un-optimized)] 

               10800 

O-NNC 
(Pruned/optimized) 

                9250 
( 857.010800
9250 ≈ ; 85.7%) 

 Table 7.2.1.2 Comparing the average number of clock cycles per tuner 

cycle 
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Figure 7.2.1.2. Indication of the HBP convergence stability  

 

The average control cycle time or CCT for the O-NNC is only 9250 clock 

pulses compared to the 10800 for the NNC (Table 4). The CCT in clock pulses are 

measured with the Intel’s VTune Performance Analyzer [VTune2002], and they can 

be converted easily into the physical control cycle time for any platform by 

HzCCTCCTP 1*=− , where Hz is the platform’s operating speed in hertz. Figure 

7.2.1.2 also compares the three controllers O-NNC, NNC and A-PID in terms of the 

convergence smoothness. Figure 7.2.1.3 provides more convergence stability details 

for Figure 7.2.1.2 in term of the individual deviations over time from the QOBR 

reference of the 2},0{ Δ . The performance of the NNC (Original) and the O-NNC 
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(Pruned) is better than A-PID with respect to the deviation error. Figure 7.2.1.4 is 

another comparison of the three controllers. Figure 7.2.1.4 compares their efficacy in 

the dynamic buffer adjustment/tuning process. Figure 7.2.1.5 compares the QOB 

profiles of the three controllers, and Figure 7.2.1.6 to Figure 7.2.1.8 show the 

deviations of the individual controllers.  From the many different experimental results 

we conclude that both the NNC and the O-NNC performs as well as the A-PID but 

without its shortcomings. Despite its consistency in converging accurately to the 

QOBR reference of the 2},0{ Δ , the O-NNC dynamic tuning process is more 

oscillatory than the un-optimized NNC. The oscillation is an undesirable side effect 

from the dynamic HBP optimization cycles. In the future work this problem will be 

studied in detail so that the oscillation can be smoothened. 

 

 

Figure 7.2.1.3a. Deviation profile of the original NNC 
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Figure 7.2.1.3b. Deviation profile of the O-NNC 

 

 

Figure 7.2.1.3c. Deviation by the A-PID controller 
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  Figure 7.2.1.4. Another comparison of three controllers 

 

Figure 7.2.1.5. The QOB profiles of the three controllers in Figure 7.2.1.9a 
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Figure 7.2.1.6. The deviation profile by the original NNC 

 

Figure 7.2.1.7. The deviation profile by the O-NNC 
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Figure 7.2.1.8. The deviation profile by the A-PID 

7.3 CONNECTIVE SUMMARY 

 

The in-depth NNC research has achieved the following:  

a) It was confirmed empirically that there is indeed a correlation between the 

number of neurons in the NNC hidden layer and the control accuracy. The 

sensitivity analysis shows that mean deviation error depends on the number of 

neurons in the hidden layer as well as the traffic pattern (Figure 7.1.1.6).  

b) The HBP technique is proposed to let the NNC self-optimize itself on the fly 

so that its control cycle time can be consistently reduced. The experimental 

results confirm that this technique cuts the NNC control cycle time by more 

than 10%. This makes the optimized NNC or O-NNC is more suitable for 

time-critical applications over the Internet.  
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c) In all the experiments different waveforms (e.g. SRD and LRD) were used. 

The experimental results confirm that the control accuracy and stability of 

NNC and O-NNC models are independent of the traffic patterns.  
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CHAPTER 8 LOCATION-AWARE TEST-BED 

 

8.0 INTRODUCTION 

 

The original forms of the following intelligent dynamic buffer size tuners 

were proposed and verified in my previous MPhil research in the Aglets environment: 

GAC, FLC, and NNC. In this thesis, we developed improvements, particularly the 

use of a real time traffic detector, which is employed in conjunction with FLC. As a 

result they improve the fault tolerance and shorten the service roundtrip time (RTT) 

of a client/server interaction. The timing analyses by Intel’s VTune Performance 

Analyzer [VTune2002] indicate these novel intelligent tuners and their PIDC 

predecessor are all suitable for time-critical applications because of their short 

execution times (Table 8.0.1). The results in the table are based on repeated VTune 

measurements with the corresponding Java tuner prototypes. Although the three 

original intelligent dynamic buffer tuners eliminate the two shortcomings of their 

PIDC predecessor, the FLC is by far the most stable, simplest and fastest. The FLC 

needs only 255 clock cycles to execute and does not produce any overflow at all.  
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Figure 8.0.1 A pervasive computing environment 

       Number of Java 
lines 
for 

implementation 

Average number of clock/T cycles 
per control pass measured by 

using Intel’s VTune Performance 
Analyzer [VTune2002] 

Basic PID controller (or PIDC)            105                          205 
Fuzzy Logic Controller 

[FLC(6x4)] 
           116                          255 

Neural Network Controller 
(NNC) with 

MCA/ RTM 3 support 

          240                        10800 

Genetic Algorithm Controller 
(GAC) 

           111                          475 

 Table 8.0.1 Average execution times (one control pass) for four controllers by 

VTune 

 

 In this chapter, we investigate buffer tuning in the case of nomadic users with 

small form factor (SFF) devices passing through a wireless smart space. 

In order to thoroughly and vigorously investigate how dynamic buffer size 

tuning can benefit time-critical applications a natural environment is needed as the 

test-bed. The FLC is naturally the tuner candidate for the tests because of its stability 

and speed. The natural environment in which critical timing is always a consideration 
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is the pervasive computing as shown by Figure 8.0.1. Every pervasive computing 

environment has two parts: the wireless smart space and the wired Internet part, 

which provides the pervasive computing infrastructure (PCI). The smart space is a 

wireless cell served by at least one surrogate, which provides the necessary assistance 

to the clients and serves as a gateway to other PCI nodes. A client in the smart space 

is actually a SFF (small-form-factor) device carried by the nomadic user. The 

duration of stay by a human nomadic user in the smart space is normally short and is 

characterized by the mass transit traffic through the cell (e.g. train station or airport). 

When nomadic users are passing through the smart space, they may make different 

kinds of requests to a popular server, which could be located in the surrogate (as 

shown in Figure 8.0.1 as an agent). If the agent server cannot provide the service, it 

enlists help from other nodes in the PCI through the surrogate in a transparent manner. 

This kind of cooperation is called cyber foraging [Garlan2002]. If dt (i.e. delta t) 

represents the average transit interval/duration through the smart space, then many 

requests dRQ  (i.e. delta RQ; where RQ means requests) may be made to the agent 

server within the interval. The rate of request, namely, dt
dRQ can be steep. The 

requests are usually queued in the agent’s request buffer before they are served. The 

number of requests, however, is tied with the characteristic of the mass transit traffic 

and dt
dRQ . At peak periods the agent is easily inundated by a sudden influx of 

requests, which leads to the following undesirable consequences:  

a) Overflow in the agent’s buffer: If this happens, then there could be widespread 

retransmissions by the SFF clients leading to more congestion and longer 
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service roundtrip time (RTT). The SFF clients do not even have the chance to 

exploit the benefit of cyber foraging before they leave the smart space. 

b)  E-business failure: The nomadic users become unhappy because they could 

not make use of the wireless cell to complete the necessary business on the 

run. This means that the e-business, which provides the agent server, would 

be the ultimate victim. This can be prevented if the communication congestion 

is resolved in a user-transparent manner so that the benefits from cyber 

foraging can be obtained.  

A solution to enhance the chance of cyber foraging exploitation is dynamic buffer 

size tuning. The aim is to tune the agent’s buffer size adaptively on the fly so that the 

buffer length always covers the queue length. In this way the chance of buffer 

overflow at the user level is eliminated. The FLC dynamic buffer size tuner for user-

level application easily achieves this goal.   

 

Location sensitivity is an essential element in both mobile and pervasive 

computing. In mobile computing this sensitivity lets the Internet-based system know 

exactly the locations of the SFF clients [Garlan2002]. Pervasive computing takes 

mobile computing one step further by tracing and anticipating a nomadic user’s intent 

and movement so that service can be prepared proactively in an invisible (non-

intrusive) manner. An important attribute for a pervasive system is to effectively 

maintain a smart space [Weiser1991] and support it with rich information technology 

capabilities. This is demonstrated by several well-know experimental examples today, 

namely, Endeavor (at UC Berkeley), Aura (at Carnegie Mellon University) and 
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Oxygen (at MIT). There is presently no dominant location sensing 

mechanism/technology because any extant mechanism (e.g. Cricket, Blue-tooth, GPS, 

active badge, e911, and the IEEE802.11 family) is good for only a narrow band of 

situations. Therefore, effective location sensing is still an active area of research 

[Hightower2001]. Once the position is sensed and known, the client’s intent can be 

anticipated and supported. One possible intention is location-aware information 

retrieval [Cool2002]. In this aspect the client, which is a SFF (small-for-factor) 

mobile device (e.g. PDA or a portable PC carried by a user) communicates with the 

pervasive-computing infrastructure [Brown2001, Brown2002]. The client-

infrastructure communication is wireless and the surrogate, which is a sever node 

wired to the rest of the Internet, provides the necessary assistance to serve the user’s 

requests through the client device.   

A reasonable business scenario of location-aware information retrieval in Hong 

Kong is a foreign buyer who has just arrived at the airport trying to locate a list of 

reputable furniture manufacturers in town. After the plane has landed the buyer 

immediately engages the local pervasive-computing environment through a SFF 

device and discovers the appropriate surrogate. A surrogate is any assigned hardware 

device, which is physically wired to the Internet by a high-speed network and assists 

a mobile client temporarily. Through wireless communication provided by the smart 

space the buyer passes its request for a list of manufacturers to the surrogate 

(gateway). This surrogate tries to find the information within its database or it may 

pass the request to other information stations (nodes) in the PCI. A surrogate solicits 

help from other collaborating Internet nodes under the following conditions: a) it is 
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too busy because there are too many similar requests, and b) the site has 

impoverished bandwidth and thus it is necessary to re-direct the request to another 

surrogate to speed up the service and reduce the overall roundtrip time (RTT). 

Soliciting help from other wired nodes is known as cyber foraging 

[Satyanarayanan2001, Patterson2003]. Dynamic buffer size tuning by using the FLC 

can prevent a surrogate from being inundated by the clients’ requests. The 

consequence of inundation is buffer overflow, which can happen easily during 

periods of peak demand if the situation is not handled properly. User-level buffer 

overflow as such makes the service provision link unreliable/undependable, and a 

client may need to repeatedly resend the same request many times.   

 

Figure 8.0.2 Client/server (surrogate) end-to-end wireless interaction 
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In a public place such as the airport service, requests to the local surrogate or 

gateway ties in with the traffic of the physical travellers. If the physical traveller 

traffic is LRD (long-range dependence), then the service requests traffic to the 

surrogate would likely follow suit. If the surrogate has a fixed buffer size to 

accommodate these requests, then overflow can occur. This is a serious problem 

because no matter how powerful the underlying pervasive-computing infrastructure is, 

the user cannot benefit from it. Buffer overflow means that some requests would be 

delayed from reaching the stage of cyber foraging, leading to much longer service 

roundtrip times. The observation by [Lewis1996], makes the point that cyber foraging 

yields speedup because different servers/surrogates work in parallel to provide the 

necessary service. Under Markovian conditions cyber foraging can be represented by 

the M/M/n model, where n is the number of collaborating surrogates or information 

stations. The speedup S by cyber foraging with n nodes can, therefore, be visualized 

as
)1(

)/1(
ρ

ρ
−
−

=
nS , where ρ  is the surrogate utilization.   

In reality the transient mass transit population would definitely increase the 

volume of the communication between SFF mobile clients and a surrogate 

[Malla2003], especially at peak hours. It is inevitable that in any smart space, which 

is supported by a predefined number of SFF-surrogate connections, new connection 

requests are dropped once the maximum number is exceeded. As a result further 

client requests will be lost and retransmissions increase [Jamjoom2004]. From our 

own experience and that of others, we note that any sudden change in the traffic 

pattern of client requests to a surrogate can make the latter’s buffer overflow. The 

Internet traffic pattern involves both wired and wireless communications. It is 
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normally unpredictable because it can change suddenly, for example, from SRD 

(short-range dependence) such as Markovian to LRD (long-range dependence) such 

as heavy-tailed and self-similar, or multifractal [Medina2000, Molnar1999]. 

 

8.1 LOCATION-AWARE SIMULATIONS 

 

The FLC’s efficacy in supporting more dependable location-aware information 

retrieval is verified by simulation. There are two different sets of experiments. The 

first set evaluates the execution time of the FLC Java prototype because dynamic 

buffer tuning is naturally time-critical. If the execution time is too long, the computed 

solution cannot remedy the actual problem in a real-time manner because it has long 

passed. The computed solution would end up correcting a spurious problem leading 

to undesirable/deleterious effects. The timing analysis is carried out with the Intel’s 

VTune Performance Analyzer [VTune2002], which measures the FLC execution time 

in the number of neutral clock cycles. The second set of experiments verifies that the 

FLC indeed eliminates surrogate buffer overflow independent of the IAT (inter-

arrival time) traffic patterns.   

The experiments were carried out on the Aglets mobile agent platform, which is 

chosen for the following reasons: a) it is stable, b) it has rich user experience, and c) it 

is designed for the Internet and this makes the experimental results scalable for the 

open Internet. The set up for the experiments is shown in Figure 8.1.1, in which the 

driver and the server are aglets (agile applets) collaborating in a client/server 

relationship within a single computer. The driver picks a known waveform (e.g. 
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Poisson) or a trace, which embeds an unknown waveform for the wireless 

client/surrogate request traffic, from the table. It uses the pick to generate the inter-

arrival times for the simulated merged traffic into the surrogate buffer. A “trace” is a 

file of pre-collected RTT, and the use of traces in simulations helps confirm that the 

FLC control precision and stability are indeed insensitive to the sudden changes in 

the incoming request traffic pattern. This confirmation is necessary because real-life 

Internet related traffic usually follows the power law and changes suddenly, for 

example, from LRD (long-range dependence) such as self-similar and heavy-tailed to 

SRD (short-range dependence) such as Markovian. 

 

Figure 8.1.1 Verification of  FLC stability in SFF-client/surrogate interactions  
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The waveforms in the experiments are always checked and identified, as 

indicated by the “traffic pattern analysis” box in Figure 8.1.1. In this way the 

response of the FLC to any specific waveform can be visualized in one-to-one 

correspondence. Waveform checking and identification is achieved by using the E-

RTPD Tool [ATNAC2004], which includes different traffic filters/estimators (e.g. the 

real-time modified QQ-plot or RT-QQ). The basis of the RTPD tool is the R/S 

(rescaled adjusted statistics) mechanism. It is renamed the enhanced R/S or E-R/S 

because the Convergence Algorithm is incorporated as a component. It measures the 

Hurst (H) value and differentiates LRD (for 15.0 << H ) from SRD (for 5.00 << H ) 

for a discrete stochastic process X. After the LRD character is confirmed, for example, 

the RT-QQ filter can be invoked to check and confirm if the traffic pattern is heavy-

tailed. Some traces used in the experiments are from the in-house SFF 802.11b 

connections [Trace] with the Lucent ORINOCO pc24e-h-fc wireless LAN card as the 

interface. In this section three different sets of experimental results are presented. 

Case 1 shows how the FLC makes the Hong Kong PolyU wireless environment more 

dependable. Case 2 shows how well the FLC can work with the wireless traces from 

the Stanford Mosquito Net. Case 3 shows that the FLC has worked well in the 

Faculty of Information Technology in the University of Technology Sydney campus. 

 

Case 1: Department of Computing, The Hong Kong Polytechnic University 

 

The aim is to evaluate how the FLC dynamic buffer tuning process performs 

in the Hong Kong PolyU wireless SFF-Client/surrogate environment. For the wireless 



 208

LAN traffic trace chosen for demonstration the R/S plot of the RTPD Tool yields 

H=0.7069, with 97.89% confidence for its LRD character (Figure 8.1.2).  

 

 

Figure 8.1.2 Trace analysis/identification by RTPD’s R/S estimator 

 

From the preliminary experimental results, as shown in Figure 8.1.3, the 

following are concluded: a) the FLC maintains the Δ  safety margin correctly and 

consistently for different RQOB  values and traffic conditions, b) it eliminates the 

surrogate buffer overflow efficaciously, and c) it has a shorter control cycle time than 

the PIDC’s, which was also tested for comparison purposes. The “buffer overflow 

controller/tuner” remark in Figure 8.1.1 indicates where the FLC or PIDC can be 

installed for the particular simulation. Figure 8.1.4 is plotted for the same trace as 

Figure 8.1.3 and it shows that the FLC convergence to the RQOB  reference is quicker, 

smoother and more accurate than the PIDC.  
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Figure 8.1.3 FLC and PIDC performances in SFF-client/surrogate buffer 

overflow control 

 

 

Figure 8.1.4 More accurate and faster FLC trend line than the PIDC’s  
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Case 2. Stanford Mosquito Net 

 

This simulation shows how FLC would respond in a different SFF-

clients/surrogate traffic environment. In this case the wireless traffic is the Stanford 

Mosquito Net [Tang2000]. The plot by E-R/S in the E-RTPD shown in Figure 8.1.5 

indicates that the trace is LRD (H=0.716) with 98.34% of confidence. 

 

 

Figure 8.1.5 Trace analysis/identification by RTPD(R/S estimator) H=0.716 

 

Figure 8.1.6 compares the FLC and PIDC performance for the same trace. It 

shows that the FLC controlled buffer length always covers the queue length by the 

safety margin of 2.0=Δ . The buffer length controlled by the PIDC, however, differs 

by locking up unused buffer space consistently. This kind of unnecessary memory 

locking may deprive the system of recyclable memory and lead to poor performance. 
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Figure 8.1.7 shows that the FLC controlled output is smoother and more accurate 

than the PIDC’s. 

 

Figure 8.1.6 FLC and PIDC responses to the Stanford Mosquito Net trace 

 

Figure 8.1.7 Performance comparison between the FLC and the PIDC 
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Case 3. Faculty of Information Technology, University of Technology Sydney 

 

It evaluates how the FLC dynamic buffer tuning process performs for the UTS 

wireless SFF versus client/surrogate environment. The UTS wireless traffic traces 

selected for demonstration here have H=0.54 with 95.8% confidence for its LRD 

character. The plot in Figure 8.1.8 is produced by the E-R/S of the E-RTPD package. 

The experimental results given in Figure 8.1.9 show the following: a) the FLC 

maintains the Δ  safety margin correctly and consistently for different RQOB  values 

and traffic conditions, b) it eliminates the surrogate buffer overflow efficaciously, and 

c) it has a shorter control cycle time than the PIDC’s, which was also tested for 

comparison purposes. Figure 8.1.10 is plotted for the same trace as Figure 8.1.9 and it 

shows that the FLC convergence to the RQOB  reference is quicker, smoother and 

more accurate than the PIDC.  

 

 

Figure 8.1.8 UTS Trace analysis/identification by RTPD’s R/S estimator 
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Figure 8.1.9 FLC and PIDC SFF-client/surrogate buffer overflow control performances 

for the UTS trace used in Figure 8.1.8 

 

 

Figure 8.1.10 More accurate and faster FLC trend line than the PIDC’s for the UTS 

trace  
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8.2 CONNECTIVE SUMMARY 

 

Within a smart space for mobile/pervasive computing the number of SSF 

clients trying to hook onto the surrogate ties in with the transient mass transit traffic. 

The asymmetric rendezvous between the surrogate and the many clients that demand 

its service may inundate the surrogate request buffer to overflow. If this happens, the 

clients would lose the chance to benefit from the cyber foraging supported by the 

background mobile/pervasive computing infrastructure. The FLC, however, can tune 

the surrogate buffer size on the fly to make sure that it always covers the request 

queue size by the given Δ safety margin. As a result it eliminates any chance of 

transient buffer overflow due to the transient transit mass and makes the SFF-

client/surrogate interaction more dependable. The simulations with different wireless 

traces indicate that the FLC is indeed an efficacious solution for more dependable 

location-aware applications such as pervasive information retrieval. From the 

literature search while preparing for the location-aware experiments, it was found that 

dynamic buffer size tuning is very useful for e-health applications that are usually 

time-critical [Epocrates]. Tele-diagnosis over the Internet is a typical time-critical 

example because timeliness of the diagnostic result determines if a patient would be 

saved in time in an emergency case. Dynamic buffer size tuning can reduce 

“procrastination” due to retransmissions caused by user-level buffer overflow. As a 

result it could help save lives.   
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CHAPTER 9 CONCLUSION, ACHIEVEMENTS AND FUTURE WORK 

 

In my MPhil thesis I proposed four original dynamic buffer size tuners for 

user-level applications. They are as follows: 

1) PIDC  (“proportional (P) + integral(I) + derivative(D)” Controller): It is 

algorithmic and always eliminates user-level buffer overflow even with two 

shortcomings: a) it locks unused buffer space, and b) it does not have a safety margin 

and therefore the queue length can get dangerously close to the buffer length 

threatening possible overflow. 

2) GAC (Genetic Algorithm Controller): It is the “PIDC + genetic algorithm (GA) + 

2},0{ Δ  objective function” combination. The GA moderates the PIDC process so that 

the outcome is always within the Δ±  safety margins about the steady-state reference 

symbolically represent by “0” in 2},0{ Δ . The GA eliminates the PIDC shortcomings 

but produces occasional buffer overflow because it does not guarantee the global-

optimal solution of the solution hyperplane. 

3) FLC (Fuzzy Logic Controller): It was proposed to preserve the GAC merits and 

eliminate the occasional buffer overflow. It is this combination: “PIDC + fuzzy logic 

+ 2},0{ Δ  objective function”. The fuzzy logic moderates the PIDC control process 

functionally similar to the GA. 

4) NNC (Neural Network Controller): It works with the 2},0{ Δ  objective function but 

does not include PIDC. Its proposal was inspired by the successful experience of 

using neural networks in AQM (active queue management) algorithms that prevent 
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network congestion at the system/router level. AQM methods differ from the 

dynamic buffer size tuners by using a fixed-size buffer.  

These tuners succeed in providing performance enhancement and fault 

tolerance to client/server interactions over logical TCP channels of the Internet by 

eliminating the user-level overflow. They are suitable for time-critical applications 

because they have short control cycle times as measured by the Intel’s VTune 

Performance Analyzer. The sizes of their Java prototypes and execution/cycle times 

are listed in Table 9.1. 
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Control 
models 

Lines of Java 
code for controller 

implementation 
 

(Ln) 

Average 
line of code 
in Pentium 

III 
assembler 
program 

Clock/T 
cycles per 
assembly 

line 
(Pentium lll 
933MHz) 

 
(T) 

Average 
number of 
T cycles 
required for 
convergenc
e 

 
(NTC) 

Measured average number 
of T cycles per convergence 

computation cycle 
 

(TCC) 

Proportional 
Integral 

Derivative 
Controller 

(PIDC) 

105 525 9 4725 205 

Genetic 
Algorithm 
Controller 

(GAC) 

111 555 9 4995 475 

Fuzzy Logic 
Controller 

(FLC) 
116 580 9 5220 255 

Neural 
Network 

Controller 
(NNC) 
(Back 

propagation 
architecture 

[Input-
Hidden-

Output]: 10-
20-1) 

240 1200 9 10800 10800 

 Table 9.1 Empirical comparison of the four proposed controllers 

 

Although my MPhil research had significant contributions in user-level buffer 

overflow control and provision of shorter service roundtrip time (RTT) for 

client/server interactions over the Internet, it has left several unaddressed issues as 

follows: 

 

1) In the aspects of traffic ill effects: a) Is it possible to calibrate the ill effects 

off-line so that the tuners can use these calibrations to ward off traffic 
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impedance by fine-tuning its dynamic buffer tuning process adaptively? b) If 

so, then how can the current Internet traffic pattern be deciphered on the fly 

(on-line) so that the off-line calibrations can be applied selectively? 

2) For FLC: a) Is it possible to have an optimal design? b) Is it possible to make 

the tuner self-reconfigurable (especially with respect to traffic pattern 

changes)? 

3) For NNC: a) Is it possible to prune the NNC configuration on the fly so that 

its control cycle time can be consistently and adaptively reduced? b) Is there a 

correlation between control accuracy and the number of hidden neurons in the 

NNC back-propagation architecture? (The procedure to provide the answer is 

called sensitivity analysis.)  

 

Providing solutions to these unaddressed issues has become the motivation of my 

PhD research. In the process I have achieved the following: 

 

1)  For real time traffic analysis: Two traffic filters have been proposed: real-

time modified QQ-plot (or simply RT-QQ) and self-similarity ( 2S ) filter. 

These filters identify the Internet traffic patterns on the fly. The RT-QQ 

recognizes heavy-tailed distributions and the 2S filter identifies self-similarity. 

2) For FLC: a) an optimal range is found for FLC design, and b) a way was 

found to make the FLC adaptive/reconfigurable by squeezing the “don’t care” 

state range threshold in a dynamic manner. 

3) For NNC: a) the HBP (Hessian Based Pruning) approach was proposed for 
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pruning or optimizing the NNC configuration on the fly and as a result its 

average execution time (i.e. control cycle time) is reduced, and b) sensitivity 

analysis was conducted and the results confirm that more hidden neurons do 

not necessarily mean better NNC performance 

 

The results from my PhD research have contributed to 19 publications (5 journals 

and 14 conferences) so far, and I have achieved all the objectives planned for my 

thesis at the outset. Following the experience gained in my research I propose that the 

future work should include the following: 

a) to investigate the issue of how to choose the limits for effective Gaussianity tests in 

the CAB mechanism,  

b) to deepen the investigation into why “heavy-tailedness” is not a necessary 

condition of self-similarity, and  

c) to investigate how the dynamic buffer size controllers, especially the FLC, can best 

support pervasive computing based e-applications such a telemedicine. 

 

My PhD research has achieved the planned objectives, which provide solutions 

to all the unaddressed issues left behind by my previous MPhil thesis. The new 

findings include the following: 

1) For FLC (Fuzzy Logic Controller): a) an optimal FLC design range is confirmed 

empirically and b) a reconfigurable/adaptive FLC model is proposed and verified.      

2) For NNC (Neural Network Controller): a) sensitivity analysis confirms that there is 

no obvious advantage in having more than 20 hidden neurons in the NNC’s back-
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propagation neural network (NN) and b) the Hessian Based Pruning (HBP) method is 

proposed and verified for optimizing the NN architecture on the fly and this reduces 

the NNC control cycle time successfully by at least seven percent. 

3) For real-time traffic analysis: I successfully made use of the accumulated 

experience by the COMP Team and in return I proposed and verified two real-time 

traffic filters/estimators: real-time modified QQ-plot (or RT-QQ) and self-similarity 

( 2S ) filter. The inclusion of these filters into the real-time traffic detector (RTPD) 

proposed by the Team converts it into the Enhanced RTPD or E-RTPD. I successfully 

used these filter to help the reconfigurable FLC (i.e. A-FLC [p12]) to fine-tune itself 

on the fly to nullify the ill effects on its stability and accuracy by traffic pattern 

changes.    

The findings from my PhD research, as listed above, not only provide a solid basis 

and directions for future exploration in the area of dynamic buffer size control but 

also contributed to 19 publications (5 journal and 14 conferences) as follows:.  

 

Five refereed journal papers 

 

[p1] Wilfred W.K. Lin, Allan K.Y. Wong and Tharam S. Dillon, Application of Soft 

Computing Techniques to Adaptive User Buffer Overflow Control on the Internet, to 

appear in the IEEE Transactions on Systems, Man and Cybernetics, Part C 

 

[p2] Wilfred W.K. Lin, Allan. K. Y. Wong and Richard S.L. Wu, Applying Fuzzy 

Logic and Genetic Algorithms to Enhance the Efficacy of the PID Controller in 
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Buffer Overflow Elimination for Better Channel Response Timeliness over the 

Internet, to appear in the  Concurrency and Computation: Practice & Experience  

 

[p3] Wilfred W.K. Lin, Allan K. Y. Wong and Tharam S. Dillon, A Novel Fuzzy-PID 

Dynamic Buffer Tuning Model to Eliminate Overflow and Shorten the End-to-End 

Roundtrip Time for TCP Channels, Lecture Notes in Computer Science, Volume 

3358 / 2004, pp.783-787 

 

[p4] Wilfred W.K. Lin, Allan K. Y. Wong and Tharam S. Dillon, HBP: An 

Optimization Technique to Shorten the Control Cycle Time of the Neural Network 

Controller (NNC) that Provides Dynamic Buffer Tuning to Eliminate Overflow at the 

User Level, International Journal of Computer Systems Science & Engineering, 19(2), 

March 2004, pp. 85-94 

 

[p5] Wilfred W.K. Lin and Allan K.Y. Wong, A Novel Neural Network Controller to 

Eliminate Buffer Overflow in Client/Server Based Internet Applications, WSEAS 

Transactions on Systems, 2(3), July 2003, pp.607-615 

 

Fourteen refereed conference papers 

 

[p6] Wilfred W.K. Lin, Allan K.Y. Wong and Tharam S. Dillon, A Novel R^2-FLC 

Dynamic Buffer Size Tuner to Support Time-Critical Applications over the Internet 

by Improving Logical Channel Fault Tolerance to Shorten Roundtrip Time, to appear 
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in the 11th International Symposium on Pacific Rim Dependable Computing (PRDC-

2005) Changsha, Hunan, China 

 

[p7] Wilfred W.K. Lin, Allan K.Y. Wong and Tharam S. Dillon, FLC: A Novel 

Dynamic Buffer Tuner for Shortening Service Roundtrip Time over the Internet by 

Eliminating User-Level Buffer Overflow on the Fly, to appear in the 6th International 

Workshop on Advanced Parallel Processing Technologies(APPT'05), Hong Kong 

 

[p8] Wilfred W.K. Lin, Allan K. Y. Wong, Tharam S. Dillon and Richard S.L. Wu, A 

Novel Real-Time Self-Similar Traffic Detector/Filter to Improve the Reliability of a 

TCP Based End-to-End Client/Server Interaction Path for Shorter Roundtrip Time, to 

appear in the 2nd International Conference on E-Business and Telecommunication 

Networks, Reading, United Kingdom 

 

[p9] Wilfred W. K. Lin, Tharam S. Dillon and Allan K.Y. Wong, An Internet-Based 

Distributed Manufacturing System Utilizing a Recurrent Neural Network Controller 

for Dynamic Buffer Size Tuning to Prevent User-level Buffer Overflow and Shorten 

the Service Roundtrip Time, to appear in the 3rd International IEEE Conference on 

Industrial Informatics 2005, Perth, Australia (Best presentation award) 

 

[p10] Wilfred W.K. Lin, Tharam S. Dillon and Allan K.Y. Wong, Apply FLC-based 

Dynamic Buffer Size Tuning to Shorten the Information Retrieval Round Trip Time 
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in the Mobile Location-aware Environments, Proceedings of the 4th International 

Conference on Mobile Business, Sydney, Australia, pp. 507-513 

 

[p11] Wilfred W.K. Lin, Allan K. Y. Wong and Tharam S. Dillon, A Novel Traffic 

Independent NNC for Dynamic Buffer Tuning to Shorten the RTT of a TCP Channel, 

Proceedings of the 3rd International Conference on Information Technology and 

Applications, Sydney, Australia, pp. 647-652 

 

[p12] Wilfred W.K. Lin, Tharam S. Dillon and Allan K.Y. Wong, A Recurrent 

Neural Network Controller for Dynamic Buffer Size Tuning to Provide More 

Dependable Client Server Communications, Proceedings of the International 

Conference on Dependable Systems and Networks (Fast Abstract), Yokohama, Japan, 

pp. 20-21 

 

[p13] Wilfred W. K. Lin, Allan K. Y. Wong and Tharam S. Dillon, A Novel Fuzzy 

Logic Controller (FLC) for Shortening the TCP Channel Roundtrip Time by 

Eliminating User Buffer Overflow Adaptively, Proceedings of the 28th Australasian 

Computer Science Conference 2005 (ACSC’2005), Newcastle, Australia, pp. 29-37 

 

[p14] Wilfred W. K. Lin, Richard S.L. Wu, Tharam S. Dillon and Allan K. Y. Wong, 

A Novel Real-Time Traffic Pattern Detector for Internet Applications, Proceedings of 

the 2004 Australian Telecommunication Networks and Applications 

Conference(ATNAC), Sydney, Australia, December 2004, pp. 224-227 
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[p15] Wilfred W.K. Lin, Allan K. Y. Wong and Tharam S. Dillon, A Novel Adaptive 

Fuzzy Logic Controller (A-FLC) to Reduce Retransmission and Service Roundtrip 

Time for Logical TCP Channels over the Internet, Proceedings of the 2004 

International Conference on Embedded And Ubiquitous Computing (EUC04), LNCS 

3207, Aizu, Japan, August 2004, pp.941-951 

 

[p16] Allan K. Y. Wong, Wilfred W.K. Lin and Tharam S. Dillon, HBP: A Novel 

Technique for Dynamic Optimisation of the Feed-Forward Neural Network 

Configuration, Proceedings of the 1st International Conference on Informatics in 

Control, Automation and Robotics, Setubal, Portugal, August 2004, pp.346-349 

 

[p17] Wilfred W.K. Lin and Allan K.Y. Wong, A Novel Fuzzy Logic Controller to 

Eliminate Buffer Overflow at the User Level over the Internet, Proceedings of the 

24th IEEE International Real-Time Systems Symposium, (WIP Session), Cancun, 

Mexico, December 2003, pp.71-74 

 

[p18] Wilfred W.K. Lin and Allan K.Y. Wong, A Novel Adaptive Fuzzy Logic 

Controller (FLC) to Improve Internet Channel Reliability and Response Timeliness, 

Proceedings of the IEEE Symposium on Computers and Communications 

(ISCC'2003), Antalya, Turkey, July 2003, vol. II, pp.1347-1352. 
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[p19] Wilfred W.K. Lin, Allan K. Y. Wong and Tharam S. Dillon, HBM: A Suitable 

Neural Network Pruning Technique to Optimize the Execution Time of the Novel 

Neural Network Controller (NNC) that Eliminates Buffer Overflow, Proceedings of 

the 8th 2003 International Conference on Parallel and Distributed Processing 

Techniques and Applications (PDPTA'2003), Las Vegas, USA, June 2003, vol. II, pp. 

555-560 

 

The contributions by the published papers above can be divided into different 

groups as follows: 

 

Group 1: It consists of the following: p1, p2, p3, p6, p7, p10, p13, p15, p17, p18. The 

specific contributions by these papers are: a) an optimal design range is confirmed for 

FLC design, and b) a way was found to make the FLC adaptive/reconfigurable by 

squeezing the “don’t care” state range threshold in a dynamic manner. 

Group 2: It consists of the following: p1, p4, p5, p9, p11, p12, p16, p19. The specific 

contributions by these papers are: a) the Hessian Based Pruning method can indeed 

optimize the NNC configuration on the fly and as a result reduces its average 

execution time (i.e. control cycle time), and b) sensitivity analysis confirms that  

more hidden neurons in the NNC architecture does not necessarily yield better 

performance 

Group 3: It consists of the following: p8 and p14. The specific contributions by these 

papers are real-time traffic analysis and pattern detection. The inclusion of my real-
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time modified QQ-plot (or simply RT-QQ) and the S2 filter into the extant RTPD 

(real-time traffic pattern detector) convert it to the enhanced version (i.e. E-RTPD). 

 

AREA OF FUTURE RESEARCH 

 

In the research process I have uncovered different relevant problems, and after 

scrutinizing carefully I suggest that the following items should be investigated first in 

the near future because of their “bridging nature” to other relevant issues in dynamic 

buffer size tuning: 

a) The first is to investigate how limits can be appropriately chosen for on-line 

Gaussianity tests. The successful use of traffic filters depends on whether stationarity 

for an aggregate in a discrete stochastic process can be confirmed. For example, the 

RT-QQ and 2S filters for on-line application work for the “Hurst and stationarity” 

conditions.  

b) The second is to deepen the investigation into why “heavy-tailedness” is not a 

necessary condition of self-similarity. So far, this issue has rarely been explored. 

More confirmation is needed so that the real need of designing different real-time 

filters for heavy-tailed distributions and self-similar waveforms is there.  

c) Although the PIDC, FLC and NNC tuners proposed in my MPhil thesis were 

deployed, they were applied only in the wired Internet environment. In fact, the 

Internet is getting more mixed in the sense that it is made up of wireless and wired 

(W&W) parts. The W&W setup is typical of pervasive computing environments, 

which are called mobile distributed systems (MDS). This kind of setup is getting 
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more popular in different areas of applications such as telemedicine. Therefore, there 

is a need to investigate how the dynamic buffer size controllers, especially the 

improved versions for the FLC and NNC. In particular the FLC should be examined 

more carefully in the light of how it can best support pervasive computing based e-

applications. 
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APPENDIX II THE CONVERGENCE ALGORITHM 

 

The CA (Convergence Algorithm) is an IEPM (Internet En-to-End Performance 

Measurement) technique [Cottrel1999]. It can estimate the mean service roundtrip 

time (RTT) of a logical channel quickly and accurately. The Java-based CA prototype: 

M2RT was verified and validated as a macro tool [Wong2001]. In its macro form the 

tool must be installed at the two nodes that represent the ends of the logical channel. 

Micro IEPM tools differ by operating as a logical entity to be invoked anytime and 

anywhere for service by message passing. The M2RT (Mean Message Response Time) 

experience led to the development of the Java-base micro CA (MCA) prototype: 

M3RT (Micro Mean Message Response Time) [Ip2002]. The CA operation treats a 

traffic pattern simply as a waveform. Its speed and accuracy does not depend on to 

the pattern being worked on because it is based on the central limit theorem. The 

MCA version supporting the PIDC and the NNC is modified from the M3RT object 

class. The CA operation is summarized by the equations: (A.1) and (A.2), where 

iM is the distribution mean estimated for the time in which the F (flush limit) number 

of data samples is collected. The previous experience shows that F=14 yields the 

fastest convergence to the estimated mean [Wong2001]. The other parameters are: a) 

1−iM  is the feedback of the last estimated mean to the current estimation cycle, b) i
jm  

is the jth sample in the ith iM estimation cycle, )1(,3,2,1 −= Fj , and c) 0M is the first 
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data sample when the MCA had first started. Figure FA1 shows the iM predicted by 

MCA over time, and the RTT trace is for the TCP channel between the Hong Kong 

PolyU and the LaTrobe University site in Australia. In this case iM always settles to 

the value of 480ms in the steady state.  

 

Figure FA1. The iM prediction by RTM 3  for the “Hong Kong PolyU - 

LaTrobe” TCP channel  
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