

 2

ABSTRACT

The area of this PhD research is directed towards performance enhancement and

fault-tolerance at client/server(C/S) interaction over a logical Internet channel. The

aim is to effectively eliminate the user-level buffer overflow so that retransmissions

can be reduced to shorten the service roundtrip time (RTT) in the interaction. Since a

server may serve different clients simultaneously, the relationship is actually one-

server-to-many-clients, alternatively known as the asymmetric rendezvous. The

different streams of service requests from clients merge at the server’s queue and this

easily inundates the queue buffer to overflow at peak times. In fact, an asymmetric

rendezvous involves two levels: the system/router level that includes all activities

inside the TCP channel, and the user level that involves the client and the server. If

the collective error probability for a client/server interaction path is pathρ , then the

average number of trials (ANT) to send a message successfully from one end of the

C/S path to another is .
)1(

1)1(1

1 path
path

j
path

k

j

jANT
ρ

ρρ
−

≈−= −
∞→

=
∑ Since pathρ also

encapsulates the user-level buffer overflow error, eliminating the latter definitely

yields a smaller ANT and shorter end-to-end service roundtrip time (RTT).

My previous MPhil research concluded that dynamic buffer size tuning can

indeed eliminate the chance of user-level buffer overflow. This was clearly

demonstrated by the experimental results with the dynamic buffer controllers

proposed. These original controllers developed in the MPhil thesis are:

 3

1) PIDC (“proportional (P) + integral(I) + derivative(D)” Controller): It is

algorithmic and always eliminates user-level buffer overflow but has two

shortcomings: a) it locks unused memory, and b) it does not have a safety margin and

therefore the queue length can get dangerously close to the buffer length, threatening

possible overflow.

2) GAC (Genetic Algorithm Controller): It is the “PIDC + genetic algorithm (GA) +

2},0{ Δ objective function” combination. The GA moderates the PIDC process so that

the outcome is always within the Δ± safety margins about the steady-state reference

symbolically represented by “0” in 2},0{ Δ . The GA eliminates the PIDC

shortcomings but also produces occasional buffer overflow because it does not

guarantee the global-optimal solution of the solution hyper-plane.

3) FLC (Fuzzy Logic Controller): It is the combination: “PIDC + fuzzy logic +

2},0{ Δ objective function” combination, which was proposed to preserve the GAC

merits and eliminate the occasional buffer overflow. The fuzzy logic moderates the

PIDC control process similar to the GA.

4) NNC (Neural Network Controller): It works with the 2},0{ Δ objective function but

does not include PIDC. Its proposal was inspired by the successful experience of

using neural networks in AQM (active queue management) algorithms, which prevent

network congestion at the system/router level. AQM methods differ from the

dynamic buffer size tuners by using a fixed-size buffer.

When experiments were conducted to verify the above four dynamic buffer tuners,

it was observed that their performance was affected by the traffic patterns. The

conclusion is that measures must be taken to neutralize the ill effects by traffic on

 4

tuner stability and accuracy. My MPhil thesis left several unaddressed issues that

form the backbone of this PhD research. The issues include:

1) In the aspect of traffic ill effects: a) Is it possible to calibrate the ill effects off-

line so that the tuners can use these calibrations to ward off traffic changes by

fine-tuning its dynamic buffer tuning process adaptively? b) If so, then how

can the current Internet traffic pattern be deciphered on the fly (on-line) so

that the off-line calibrations can be applied selectively?

2) For FLC: a) Is it possible to have an optimal design? b) Is it possible to make

the tuner self-reconfigurable (especially with respect to traffic pattern

changes)?

3) For NNC: a) Is it possible to prune the NNC configuration on the fly so that

its control cycle time can be consistently and adaptively reduced? b) Is there a

correlation between control accuracy and the number of hidden neurons in the

NNC back-propagation architecture? (The procedure to provide the answer is

called sensitivity analysis.)

The motivation of my PhD research is to provide answers to the above

unaddressed issues. As a result the following solutions are proposed:

1) For real time traffic analysis: Two traffic filters have been proposed: real-time

modified QQ-plot (or simply RT-QQ) and self-similarity (2S) filter. These

filters identify the Internet traffic patterns on the fly. The RT-QQ recognizes

heavy-tailed distributions and the 2S filter identifies self-similarity.

2) For FLC: a) an optimal design range is found for FLC design, and b) a way is

 5

found to make the FLC adaptive/reconfigurable by squeezing the “don’t care”

state range threshold in a dynamic manner.

3) For NNC: a) the HBP (Hessian Based Pruning) approach was proposed for

pruning or optimizing the NNC configuration on the fly and as a result its

average execution time (i.e. control cycle time) is reduced, and b) sensitivity

analysis was conducted and the results confirm that more hidden neurons do

not necessarily mean better NNC performance.

The solutions proposed in my PhD research have contributed to 19 publications

so far (5 journals and 14 conferences). All the stated PhD research objectives have

been achieved. The research has also uncovered many relevant problems, which

should be resolved in the future work: a) investigation of the issue of how to choose

the limits for Gaussian tests effectively, b) deepening of the investigation into why

“heavy-tailedness” is not a necessary condition of self-similarity, and c) investigation

into how the dynamic buffer size controllers, especially the FLC, can best support

pervasive computing based e-applications such a telemedicine.

 6

TABLE OF CONTENTS

CERTIFICATE OF ORIGINALITY 1

ABSTRACT 2

ACKNOWLEDGEMENTS 11

LIST OF FIGURES 12

LIST OF TABLES 19

LIST OF ACRONYMS 20

CHAPTER 1 BACKGROUND AND MOTIVATION 25

1.0 INTRODUCTION 25

1.1 NETWORK CONGESTION PREVENTION 28

1.2 BUFFER TUNING SCHEMES 31

1.3 BUFFER OVERFLOW MANAGEMENT 33

1.4 SCOPE OF THESIS 37

CHAPTER 2 EVALUATION OF PREVIOUS RESEARCH 41

2.0 INTRODUCTION 41

2.1 CLASSIFICATION OF CONGESTION MANAGEMENT

TECHNIQUES 41

2.2 MECHANISMS INITIATED BY SYSTEM-LEVEL SENDER 43

2.3 ACTIVE QUEUE MANAGEMENT 48

2.4 USING BACKUP CHANNELS 49

 7

2.5 DYNAMIC BUFFER SIZE TUNING 53

2.6 PREVIOUS MPHIL RESEARCH 54

2.6.1 THE PID CONTROLLER (PIDC) 55

2.6.2 THE GENETIC ALGORITHM CONTROLLER (GAC) 58

2.6.3 THE FUZZY LOGIC CONTROLLER (FLC) 61

2.6.4 THE NEURAL NETWORK CONTROLLER (NNC) 65

2.6.5 TIMING ANALYSES OF THE DIFFERENT

CONTROLLERS 70

2.7 CONNECTIVE SUMMARY 74

CHAPTER 3 PROBLEM STATEMENT AND METHODOLOGY 76

3.0 INTRODUCTION 76

3.1 DEFINITIONS OF USEFUL TERMS 76

3.2 PBOBLEM DEFINITION 78

3.3 PROBLEM STATEMENT 82

3.4 RESEARCH METHODOLOGY 83

CHAPTER 4 OVERVIEW OF SOLUTIONS 88

4.0 BACKGROUND 88

4.1 PROPOSED SOLUTIONS 94

4.1.1 FOR FLC 94

4.1.2 FOR NNC 96

4.1.3 REAL-TIME TRAFFIC PATTERN ANALYSIS 98

 8

4.2 ORIGINALITY AND SIGNIFICANCE 100

4.3 CONNECTIVE SUMMARY 104

CHAPTER 5 REAL-TIME TRAFFIC DETECTION CONTRIBUTION 107

5.0 INTRODUCTION 107

5.1 TRAFFIC ANALYSIS IN GENERAL 113

5.1.1 GAUGING END-TO-END BEHAVIOR 113

5.1.2 OFF-LINE (POST-MORTEM) TRAFFIC ANALYSIS 115

5.1.3 REAL-TIME TRAFFIC PATTERN ANALYSIS (RTPA) 119

5.2 THE COMP TEAM 120

5.3 THE RTPD CONTRIBUTION 128

5.3.1 REAL-TIME MODIFIED QQ-PLOT FILTER 128

5.3.2 SELF-SIMILARITY (S2) FILTER 131

5.3.2.1 EXPERIMENTAL RESULTS 135

5.4 CONNECTIVE SUMMARY 143

CHAPTER 6 IN-DEPTH FLC RESEARCH 145

6.0 INTRODUCTION 145

6.1 OPTIMAL FLC DESIGN 146

 6.1.1 OPTIMAL FLC DESIGN IS POSSIBLE 151

 6.1.1.1 EXPERIMENTAL RESULTS 151

6.2 THE ADAPTIVE/RECONFIGURABLE FUZZY LOGIC

CONTROLLER (A-FLC) 152

 9

6.2.1 EXPERIMENTAL RESULTS 154

6.3 THE REAL-TIME RECONFIGURABLE FUZZY LOGIC

CONTROLLER (R2-FLC) 158

6.3.1 EXPERIMENTAL RESULTS 162

6.4 TIMING ANALYSIS OF THE THREE FUZZY LOGIC

CONTROLLERS 168

 6.4.1 FLC 168

 6.4.2 A-FLC 170

 6.4.3 R2-FLC 171

6.4.4 SUMMARY OF THE EXPERIMENTAL RESULTS

SHOWN ABOVE 172

6.5 CONNECTIVE SUMMARY 173

CHAPTER 7 IN-DEPTH NNC RESEARCH 174

7.0 INTRODUCTION 174

7.1 SENSITIVITY ANALYSIS OF THE HIDDEN LAYER 175

7.1.1 EXPERIMENTAL RESULTS 176

7.2 REAL-TIME NNC PRUNING 182

7.2.1 EXPERMENETAL RESULTS 188

7.3 CONNECTIVE SUMMARY 196

CHAPTER 8 LOCATION-AWARE TEST-BED 198

8.0 INTRODUCTION 198

 10

8.1 LOCATION-AWARE SIMULATIONS 205

8.2 CONNECTIVE SUMMARY 214

CHAPTER 9 CONCLUSION, ACHIEVEMENTS

AND FUTURE WORK 215

CHAPTER 10 BIBLIOGRAPHICAL REFERENCES 228

APPENDIX I MY MPHIL THESIS COMMENTS

BY PROFESSOR LI AS THE EXTERNAL EXAMINER 252

APPENDIX II THE CONVERGENCE ALGORITHM 254

APPENDIX III E-MAILS OF ACCEPTANCE (JOURNALS) 256

APPENDIX IV BEST PRESENTATION AWARD
(INDIN2005 CONFERENCE) 260

 11

ACKNOWLEDGEMENTS

I would like to express my gratitude to the thesis supervisors Dr. Allan Wong

and Prof. Tharam S. Dillon for their guidance and support throughout the study. I am

thankful to the Hong Kong Polytechnic University for my PhD Tuition scholarship

and clerical support from Ms. Miu Tai of the Department of Computing General

Office. I am grateful to the technical teams of the Department of Computing (The

Hong Kong Polytechnic University), Department of Computer Science & Computer

Engineering (Latrobe University, Melbourne, Australia), and Faculty of Information

Technology (University of Technology Sydney, Sydney, Australia) for their support

for effective data collection in the different experiments. I also acknowledge the

Visiting Scholar Appointment with University of Technology Sydney from 11th

December 2004 to 7th February 2005. I would like to extend my gratitude to Mr.

Richard Wu and Mr. Jason Lo, for discussions of their experience in the preliminary

investigation phase for this thesis.

Finally, I would like to express my gratitude to my family and friends with

their endless support.

Wilfred Lin

 12

LIST OF FIGURES

Figure 1.0.1 A simple representation of an asymmetric rendezvous

Figure 1.0.2 Client/server interaction over a logical channel with error probability ρ

Figure 1.3.1 Summary of the basis and evolution of my MPhil project

Figure 1.4.1 End-to-end logical channel between client and server

Figure 2.1.1 Brief taxonomy of different queue buffer management techniques

Figure 2.6.1.1 Illustration of the PID shortcomings

Figure 2.6.2.1 The GAC model for marginal buffer control

Figure 2.6.2.2 The GA logic flowchart

Figure 2.6.2.3 The GAC yields more responsive result than the PIDC

Figure 2.6.3.1 A case of performance comparison between the PIDC and the FLC

(8.0=RQOB , 2.0=Δ)

Figure 2.6.4.1 Backpropagation NNC control

Figure 2.6.4.2 Deviation by NNC from objective function with QOB=0.8 – test case 1

Figure 2.6.4.3 Deviation by (NNC+ RTM 3) from objective function, QOB=0.8 – test

case 2

Figure 2.6.4.4 Comparing the PIDC, FLC and NNC (QOBR = 0.8)

Figure 2.6.5.1 PIDC VTune Analysis (control cycle time is 205 clock/T cycles)

Figure 2.6.5.2 GAC VTune Analysis (control cycle time is 475 T cycles)

Figure 2.6.5.3 FLC VTune Analysis (control cycle time is 255 T cycles)

Figure 2.6.5.4 NNC VTune Analysis (control cycle time is 10800 T cycles)

Figure 3.4.1 Realization of the IET methodology into a road map

 13

Figure 4.0.1 End-to-end client/server asymmetric rendezvous

Figure 4.1.1.1 An optimal FLC design is possible (mean deviation stabilizes around

0.02)(excerpt of Figure 6.1.1.1)

Figure 4.1.1.2 A-FLC adjustment of the don’t care state range threshold on the fly

Figure 4.1.1.3 Mean Deviation Errors of different FLC designs versus traffic patterns

(excerpt of Figure 6.3.1.1)

Figure 4.1.2.1 The NNC – a twin system of two NNC clones (excerpt of Figure 7.1.2)

Figure 4.1.1.2 Mean deviation error for using different numbers of neurons in the

NNC hidden layer versus different possible Internet traffic patterns (excerpt of

Figure 7.1.1.6)

Figure 4.1.3.1 CAB mechanism has two real-time sub-operations (excerpt of Figure

5.2.3)

Figure 5.0.1 The setup for the subsequent tests

Figure 5.0.2 Different MD for specific traffic patterns by the FLC (Chapter 6)

Figure 5.1.1.1 The EE-path

Figure 5.1.1.2 Merged traffic at the user-level

Figure 5.1.2.1 The hierarchy of OTA methods

Figure 5.2.1 D/H correlation with respect to Table 5.3.2.1.1

Figure 5.2.2 Relationship among some common distributions

Figure 5.2.3 The CAB mechanism has two real-time sub-operations

Figure 5.3.1.1 Timing Analysis of the QQ Estimator (765 clock cycles) by the Intel

VTune Timing Analyzer

Figure 5.3.1.2 A heavy-tailed traffic trace

 14

Figure 5.3.1.3 Modified QQ-plot filter identifies heavy-tailed character for the trace

in Figure 5.3.1.2

Figure 5.3.2.1 The “aggregate based (AB)” approach

Figure 5.3.2.1.1 Setup for the 2S filter experiments

Figure 5.3.2.1.2 Kurtosis and skewness measurements for the 7 cases in Table

5.3.2.1.1

Figure 5.3.2.1.3 2S filter yields slope = -0.6809(β= 0.6809), R2= 97.74% for

2.0=ψ

Figure 5.3.2.1.4 2S filter yields slope = -0.4685(β= 0.4685), R2= 95.97% for

5.0=ψ

Figure 5.3.2.1.5 Faster convergence of the FLC+ 2S filter than the FLC working alone

Figure 5.3.2.1.6 Less MD deviation by FLC+ 2S than the FLC alone

Figure 5.3.2.1.7 D/H correlation for Table 5.3.2.1.1

Figure 5.3.2.1.8 The 2S filter execution time (1455 clock cycles) by Intel’s VTune

Figure 6.1.1 The basic PID controller (PIDC) algorithm

Figure 6.1.2 An FLC design/configuration example, FLC[6x6]

Figure 6.1.3 Membership function for dQ/dt

Figure 6.1.4 Membership function for QOB

Figure 6.1.1.1 An optimal FLC design is possible (mean deviation stabilizes around

0.02)

Figure 6.2.1 A-FLC adjustment of the range threshold of the don’t care state on the

fly

 15

Figure 6.2.1.1 MD value by the RTM 3 over time for A-FLC with “dynamic

threshold”

Figure 6.2.1.2 MD value by the RTM 3 over time for A-FLC “static threshold”

Figure 6.2.1.3 Comparing the AFLC[static threshold] and the A-FLC[dynamic

threshold]

Figure 6.2.1.4 MD value by the RTM 3 over time for A-FLC dynamic threshold

Figure 6.2.1.5 MD value by the RTM 3 over time for A-FLC static threshold

Figure 6.2.1.6 Comparing A-FLC[static threshold] and the A-FLC[dynamic threshold]

Figure 6.3.1 MD by R2-FLC for various traffic patterns versus GP values, for

FLC[6x6]

Figure 6.3.1.1 Mean Deviation Errors of different FLC designs versus traffic patterns

Figure 6.3.1.2 Comparing A-FLC[static range threshold(RT)] and R2-FLC [dynamic

RT]

Figure 6.3.1.3 For GP=5% and MD=0.027, the R2-FLC execution time is 280 clock

cycles for the Poisson distribution

Figure 6.3.1.4 For GP=7% and MD=0.027, the R2-FLC execution time is 340 clock

cycles for the heavy-tailed distribution

Figure 6.3.1.5 Better R2-FLC [6x6] performance than FLC[6x6] and A-FLC[6x6]

(alternatively known as R-FLC[6x6]) for the Poisson trace , GP=0.05

Figure 6.3.1.6 Better R2-FLC [6x6] performance than FLC[6x6] and A-FLC[6x6] for

the heavy-tailed trace, GP=0.05

Figure 6.3.1.7 Better R2-FLC [6x6] performance than A-FLC[6x6] for the self-similar

trace, GP=0.05

 16

Figure 6.4.1.1 FLC execution time is 250 clock cycles for the Poisson distribution

Figure 6.4.1.2 FLC execution time is 275 clock cycles for the heavy-tailed

distribution

Figure 6.4.1.3 FLC execution time is 255 clock cycles for the trace [Trace]

Figure 6.4.2.1 A-FLC execution time is 265 clock cycles for the Poisson distribution

Figure 6.4.2.2 A-FLC execution time is 310 clock cycles for the heavy-tailed

distribution

Figure 6.4.2.3 A-FLC execution time is 275 clock cycles for the trace [Trace]

Figure 6.4.3.1 R2-FLC execution time is 280 clock cycles for the Poisson distribution

Figure 6.4.3.2 R2-FLC execution time is 340 clock cycles for the heavy-tailed

distribution

Figure 6.4.3.3 R2-FLC execution time is 285 clock cycles for the trace [Trace]

Figure 7.1.1 A backpropagation model

Figure 7.1.2 The NNC – a twin system of two NNC clones

Figure 7.1.1.1 The NNC verification environment

Figure 7.1.1.2 SRD character confirmed by R/S estimator of Selfis

Figure 7.1.1.3 Experimental results for the Intranet Traffic

Figure 7.1.1.4 LRD confirmed by the R/S estimator in Selfis

Figure 7.1.1.5 NNC and PIDC performances for the self-similar trace confirmed in

Figure 7.1.1.4

Figure 7.1.1.6 Mean deviation error for using different numbers of neurons in the

NNC hidden layer versus different possible Internet traffic patterns

Figure 7.2.1 The HBP is as a renewal process

 17

Figure 7.2.2 The graph showing the effect of learning rate on mean square error

Figure 7.2.1.1 A set of experimental results to compare NNC, O-NNC and A-PID

Figure 7.2.1.2 Indication of the HBP convergence stability

Figure 7.2.1.3a Deviation profile of the original NNC

Figure 7.2.1.3b Deviation profile of the O-NNC

Figure 7.2.1.3c Deviation by the A-PID controller

Figure 7.2.1.4 Another comparison of three controllers

Figure 7.2.1.5 The QOB profiles of the three controllers

Figure 7.2.1.6 The deviation profile by the original NNC

Figure 7.2.1.7 The deviation profile by the O-NNC

Figure 7.2.1.8 The deviation profile by the A-PID

Figure 8.0.1 A pervasive computing environment

Figure 8.0.2 Client/server (surrogate) end-to-end wireless interaction

Figure 8.1.1 Verification of FLC stability in SFF-client/surrogate interactions

Figure 8.1.2 Trace analysis/identification by RTPD’s R/S estimator

Figure 8.1.3 FLC and PIDC performances in SFF-client/surrogate buffer overflow

control

Figure 8.1.4 More accurate and faster FLC trend line than the PIDC’s

Figure 8.1.5 Trace analysis/identification by RTPD(R/S estimator) H=0.716

Figure 8.1.6 FLC and PIDC responses to the Stanford Mosquito Net trace

Figure 8.1.7 Performance comparison between the FLC and the PIDC

Figure 8.1.8 UTS Trace analysis/identification by RTPD’s R/S estimator

 18

Figure 8.1.9 FLC and PIDC SFF-client/surrogate buffer overflow control

performances for the UTS trace used in Figure 8.1.8

Figure 8.1.10 More accurate and faster FLC trend line than the PIDC’s for the UTS

trace

Figure FA1 The iM prediction by RTM 3 for the “Hong Kong PolyU - LaTrobe”

TCP channel

 19

LIST OF TABLES

Table 2.1.1 A few overflow controller examples for illustration

Table 2.4.1 The connections sampled in two sampling periods within T

Table 2.6.2.1 A record of buffer overflow after chromosome replacement

Table 2.6.3.1 A FLC[4x6] design example

Table 2.6.4.1 Comparing three cases of deviations between NNC and “NNC+

RTM 3 ”

Table 2.6.5.1 Summary of the indicative control cycle times by the different

controllers

Table 4.0.1 Unaddressed issues in my MPhil that forms the basis of my PhD research

Table 4.2.1 Concise comparison of MPhil’s and PhD’s originality and contribution

Table 5.3.2.1.1 2S filter log(variance) versus log (aggregate level) to find β

Table 6.4.4.1 Summary of the experimental results shown above

Table 7.2.1.1 Mean deviations for Figure 7.2.1.2

Table 7.2.1.2 Comparing the average number of clock cycles per tuner cycle

Table 8.0.1 Average execution times (one control pass) for four controllers by VTune

Table 9.1 Empirical comparison of the four proposed controllers

 20

LIST OF ACRONYMS

AIMD Additive Increase and Multiplicative Decrease

ANT Average Number of Trials

AQM Active Queue Management

ATM Asynchronous Transfer Mode

A-FLC Adaptive Fuzzy Logic Controller

CA Convergence Algorithm

CAB Continuous Aggregate Based

CMT Consecutive Message Transmission

dQ/dt Rate of change of queue length

E-RTPD Enhanced Real-time Traffic Pattern Detection

FLB Fixed Length Buffer

 21

FLC Fuzzy Logic Controller

FRP Fractal Renewal Process

FSNDPP Fractal-Shot-Noise-Driven Poisson Process

GAC Genetic Algorithm Controller

GP Given Percentage

HBP Hessian Based Pruning

ICM Integral Control Mechanism

IEPM Internet End-to-End Performance Measurement

IET Investigate & Experiment & Iterate Methodology

IETF Internet Engineering Task Force

IP Internet Protocol

 22

LRD Long-Range Dependence

M2RT Mean Message Response Time

M3RT Micro Mean Message Response Time

MD Mean Deviation

MDS Mobile Distributed Systems

NNC Neural Network Controller

OTA Offline Traffic Analysis

O-NNC Optimized Neural Network Controller

PCI Pervasive Computing Infrastructure

PIDC Proportional (P) + Integral (I) + Derivative (D) Controller

QOB Queue Length over Buffer Length

QOBR Queue Length over Buffer Length Reference

 23

QoS Quality of Service

RED Random Early Detection

RFC Request for Comments

R/S Rescaled Adjusted Range Statistics

RTPA Real-time Traffic Pattern Analysis

RTPD Real-time Traffic Pattern Detection

RTT Round Trip Time

R2-FLC Real-time Reconfigurable Fuzzy Logic Controller

RT-QQ-plot Real-Time Modified QQ-plot

R/S Rescaled Adjusted Statistics

S2 filter Self-Similarity filter

 24

SAP Service Access Point

SFF Small Form Factor

SRD Short-Range Dependence

TCP Transmission Control Protocol

VLB Variable Length Buffer

 25

CHAPTER 1 BACKGROUND AND MOTIVATION

1.0 INTRODUCTION

The transport layer of the Internet supports two protocols: the connection-

oriented TCP (Transmission Control Protocol) and the connectionless UDP (User

Datagram Protocol) [Comer1995]. It is not easy to use the TCP for time-critical

applications because of the inevitable channel error probability ρ at the system level

that occurs due to the sheer size and heterogeneity of the underlying network.

Sending a message/segment from one TCP end to another physically means

traversing many different links and nodes of varying quality and capacities. Firstly,

the Internet conceptually is a collection of large backbones (e.g. US backbone and

European backbone) that are interconnected by the IP (Internet Protocol). In fact, it is

not unusual that two IP peers are sandwiched by incompatible protocols such as the

ATM (Asynchronous Transfer Mode). Then, the IP peers rely on the technique of

tunnelling to communicate properly [Hassan2000]. In another scenario the IP peers

may actually communicate in a transparent manner via the different wired and

wireless parts of the Internet. Wireless and wired communications have very different

requirements. For example, the wired part of Internet will opt to slow down

transmissions when the possibility of network congestion is envisioned. On the

contrary, in wireless communication packet loss due to congestion or other reasons

will trigger even more aggressive transmissions by the sender. The aim is to make up

for the lost messages quickly [Cen2003].

 26

Figure 1.0.1 A simple representation of an asymmetric rendezvous

A client/server interaction is considered to have two levels: system and user. The

system or router level (marked “Internet” in Figure 1.0.1) includes all the activities

within the TCP channel, and the user level includes the client and the server that

interact over the TCP channel in the end-to-end manner. Therefore the error

probability for a client/server interaction path (referred to as the “C/S path” in this

thesis) pathρ is made up of two parts: the collective channel error probability ρ at the

system/router level and the collective one at the user level Uρ ; Upath ρρρ += . Then,

the average number of trials to send a message successfully from one end of the C/S

path to another is .
)1(

1)1(1

1 path
path

j
path

k

j

jANT
ρ

ρρ
−

≈−= −
∞→

=
∑ Therefore,

lowering/eliminating either ρ or Uρ , or both, yields a smaller ANT and thus shorter

end-to-end service roundtrip time (RTT). There are many possible causes that

 27

contribute to ρ and/or Uρ such as hardware partial failures and buffer overflow. For

example, network congestion at the system level may lead to router buffer overflow,

which means message losses and timeouts by the respective senders, leading to

widespread retransmission and more network congestion. The buffer at the user-level

receiving end (i.e. server’s end) may also be inundated by fast incoming messages to

overflow unless the buffer can self-tune to ensure that buffer length always covers the

queue size. There is a need for research to explore how to enable a reception buffer at

the user level to self-tune on the fly, thereby eliminating the chance of overflow (i.e.

dynamic buffer size tuning).

Figure 1.0.2 Client/server interaction over a logical channel with error

probability ρ

The importance of reducing pathρ for better service response is well recognized.

The benefit of such reduction is best viewed from the point of system dependability

[Avizienis2004], which is defined by the following attributes: reliability, availability,

fault tolerance, security, integrity, and maintainability.

 28

1.1 NETWORK CONGESTION PREVENTION

From the literature, pathρ reduction in the area of network congestion prevention

and buffer overflow control may be achieved as follows:

1) System-level sender initiative:

a) Dynamic timeout window adjustment: The sender adjusts the timeout

window on the fly with respect to the current values of some chosen

parameters to avoid premature timeouts and unnecessary retransmissions (e.g.

the Adaptive and Aggressively Bounded Convergence Algorithm

[WongHC2001]).

b) Dynamic congestion window tuning: The AIMD (Additive Increase and

Multiplicative Decrease) is a well-known example proposed by Jacobson

[Jacobson1988] to adjust the congestion window of a TCP connection.

Another example is adaptive congestion window tuning for a Reno TCP

[Padhye1998].

c) Multiple copies of time-critical messages [Rama1992]: The sender sends

multiple copies of the same message immediately one after another. The

number of copies corresponds to the likelihood of congestion. The argument

is that if the C/S path error probability for sending a message is pathρ , then

the chance for mc number copies to be erroneous at the same time is

mc
path)(ρ , which is a smaller error.

 29

2) Active Queue Management (AQM) by the system-level receiver/router

[Braden1998]: If a router detects that its reception buffer is likely to

overflow, then it throttles the sender to slow down transmission voluntarily.

A router starts the throttling process by sending “choke” packets. If the

sender does not respond to the throttling, then the router drops the incoming

packets to facilitate smooth passage of those already queued. The message

dropping process may follow different strategies, for example, “drop from

front” [Lakshman1996]. In fact, dropping messages as a congestion and

buffer overflow prevention mechanism is deleterious. Recently the IETF

(Internet Engineering Task Force) proposed to use the RED (Random Early

Discard) algorithm for AQM purposed in the RFC 2309 [Braden1998]. The

subsequent analysis of RED found that it was unstable and this led to the

different RED mutants (e.g. the algorithmic ones, FRED (Fair RED)

[Kim1998], DS-RED [Zheng2001], LRU-RED [Reddy2001], M-RED

[Koo2001], REM [Athuraliya2001]) and the intelligent non-RED-based

versions (e.g. Fuzzy-PI [Ren2002]; P for proportional control and I for

integral control). Floyd and Jacobson call those routers in packet-switching

networks that adopt the RED algorithm the Random Early Detection

Gateways [Floyd1993].

3) Using backup channels [Kris2003, Shin2000]: There is always a urgent need

to control the message delivery/roundtrip time in real-time computing over

the Internet so that tasks can be meaningfully executed before the deadline

[Stankovic1998]. This is absolutely necessary for hard and firm real-time

 30

applications and less stringent for the soft type. Using backup channels,

which have the guaranteed level of reliability when congestion is detected, is

the state-of-the-art solution. It may be more expensive to temporarily

relinquish the normal channel and switch to the more reliable backup

channel that guarantees the QoS (quality of service) to reduce pathρ . The

meaningful timely result, however, could be worth much more than the cost.

Sometimes a reliable backup channel is time-shared by many normal

channels.

4) Dynamic buffer size tuning [Wong1999A, WongHC2001, Wong2002GAC]:

The principle is to tune the reception buffer size adaptively on the fly so that

the buffer length always covers the queue size and therefore eliminates any

chance of buffer overflow. So far all the dynamic buffer tuners, namely,

PIDC, GAC, FLC and NNC are aimed at user-level applications.

To summarize, the three basic techniques to deal with buffer overflow are

throttling, message dropping, and dynamic buffer tuning [Tanenbaum1996]. The four

techniques that effect pathρ reduction without tuning the buffer size are: a) tuning the

timeout window adaptively, b) tuning the congestion window adaptively, c) sending

multiple copies of the same message immediately one after another to logically

reduce pathρ , and d) using backup channels to bypass the bottlenecks.

The throughput of a communication channel depends on how efficiently by the

supporting system can recycle usable memory. If too much memory is locked up in

communication activities, then the whole system throughput may suffer because tasks

 31

are suspended on memory shortage. Likewise, if a communication system is

constantly starved of buffer memory random drop of messages [Lakshman1997,

Paxson1999] and buffer overflow inevitably happen. The result is massive

retransmissions by senders and widespread data traffic jams. Elimination of buffer

overflow in client/server interaction [Lewandowski1998] is a significant and yet

challenging balancing act in memory usage [Amir1995, Alvisi1998, Crawford2000,

Cristian1999, Garbinato2000, Ip2001, Markatos1998, Mishra1998, Morin1997,

Mukherjee1998, Ramani2000, Schmidt1995, Sobczak2001, Wong1999A,

Wong2000B, Wuytack1999]. For commercial applications such as ISP (Internet

Service Provider) setups any excessively long response delay/latency due to

retransmissions would cause business loss because it taxes customers' patience and

drives them away. In such cases it is justified to aggressively apply one or a

combination of the aforementioned basic techniques to reduce the response time to

make customers happy.

1.2 BUFFER TUNING SCHEMES

The fact that buffer overflow prevention shortens TCP channel RTT has

spurred development and deployment of different algorithmic and expert approaches

for applications at the system and user levels [Fisk2001, Dunigan2003, Aweya2002].

These algorithms can be classified in different ways by various attributes, as follows:

 32

a) Open loop versus closed loop: Open loop algorithms do not require behavioral

feedback for controlling the future trend, while feedback is mandatory for

closed loop systems [Yang1995].

b) FBL (fixed buffer length) versus VBL (variable buffer length): For FBL

algorithms the ultimate overflow prevention solution is to drop packets. This

may occur in two stages: i) firstly, the receiver throttles the sender to reduce

transmission, and ii) if this does not help then incoming packets are dropped

either “front on full” or “random on full” [Lakshman1996]. VBL algorithms

prevent overflow by dynamic buffer size adjustment without the necessity of

throttling the sender first [Wong1999A].

c) Algorithmic versus expert: Algorithmic approaches do not use soft computing

techniques but expert systems do [Karray2002, Ravindran2001].

d) System level versus user level: Algorithms at the system level operate without

user intervention, for example, the AQM operations [Braden1998]. If they

operate in the client and server domains independent of the system, they are

working at the user level [Wong1999A].

e) Implicit versus explicit: In implicit control the remedy is negotiable, for

example, the voluntary reaction by the sender when throttled by a router

[Ren2002]. If the remedial response is instantaneous and involuntary, it is

explicit control (e.g. [Wong2002GAC]).

f) Direct versus indirect: Direct control invokes immediate action, for example,

tuning the buffer size spontaneously [Ip2001]. Indirect control depends on

voluntary reaction.

 33

1.3 BUFFER OVERFLOW MANAGEMENT

The motivation of the research is to explore how soft computing techniques

[Pedrycz1997, Zadeh1994] can be used to gain efficacious user-level dynamic buffer

overflow control for Internet channels for better response timeliness [Kang2002,

Stankovic1998] and fault tolerance [Avizienis2004, Elnozahy1999, Gartner1999,

Jalote1994, Laprie1995]. This research project is a deeper continuation of my MPhil

thesis [Lin2002], in which four original dynamic buffer overflow controllers were

proposed [Appendix 1]. One of them, namely, the PID or “P+I+D” controller

(Proportional + Integral + Derivative controls) is algorithmic. The control

parameters of the PID controller or PIDC remain unchanged once the control process

has started. The other three controllers are soft computing based and work with the

2},0{ Δ objective function, where Δ is the safety margin to be maintained about the

reference symbolically represented by “0”. In reality the reference is a given queue

length over buffer length (QOB) ratio known as the RQOB . The three intelligent

dynamic buffer controllers for user-level applications are: the GAC (Genetic

Algorithm Controller [Wong2002GAC]), the FLC (Fuzzy Logic Controller

[Lin2002FLC]), and the NNC (Neural Network Controller [Lin2001NNC]). The

PIDC was based on the “P+D” dynamic buffer size tuner controller for user-level

application [Wong1999A]. The “P+D” controller was the first of its kind but failed

frequently in actual deployment over the Internet. The cause was the unrealistic

expectation of using a set of static parameters to control the whole spectrum of

changes in TCP channel dynamics. The PIDC rectifies the “P+D” problem by adding

 34

the integral (I) control. It differs from the GAC, FLC and NNC by having no safety

margin (i.e. Δ) at all, and the accumulated performance data shows that the danger of

buffer overflow is still there under serious perturbations. The basis and evolution

process in my MPhil research is summarized in Figure 1.3.1.

Figure 1.3.1 Summary of the basis and evolution of my MPhil project

The previous Internet based experimental results with the four novel

controllers indicate that they represent the right direction to eliminate user-level

buffer overflow along the client/server interaction path. This path over a TCP

(Transmission Control Protocol) channel is also known as the asymmetric rendezvous.

The GAC was proposed to preserve the PIDC merits minus its shortcomings.

Nevertheless, as a result of the very nature of the genetic algorithm (GA), which does

not guarantee the global-optimal solution of the solution hyperplane [Mitchel1999],

the GAC produces occasional though rare buffer overflow. The GAC results do verify

that the 2},0{ Δ objective function is a powerful concept, and it can serve as a solid

basis for other intelligent solutions. This led to the FLC proposal and subsequently

the NNC development. What I had achieved in my MPhil thesis can be summarized

as follows:

 35

a) Four novel dynamic buffer overflow controllers for user-level applications

were proposed, one algorithmic (i.e. the PIDC) and three intelligent ones

(i.e. GAC, FLC and NNC).

b) The GAC was thoroughly tested and found to be unacceptable because it

yields occasional buffer overflow.

c) The FLC was proposed and two designs, namely, FLC [4x4] and FLC

[4x6] were tested. The results indicated this direction is the right one

because of the following: i) it eliminates buffer overflow completely, ii)

its execution time is comparable to the simpler PIDC’s due the presence of

the “don’t care” state [Lin2002FLC], and iii) it always maintains the

control output within Δ± about the chosen RQOB reference. Yet, its

convergence to RQOB can be oscillatory.

d) The success of using 2},0{ Δ as the operational principle and the desire to

have a smoother RQOB convergence led to the proposal of the NNC. The

NNC differs from the GAC and the FLC because it does not include the

PIDC as a component. The NNC, however, has a much longer control

cycle time compared to the PIDC, GAC and the FLC and this is prone to

deleterious effects. The argument is that by the time the remedy is

computed the actual problem has already passed. Using the computed

remedy to resolve a spurious problem may lead to undesirable

consequences or deleterious effects. The NNC prototype, which works by

backpropagation with supervised training, has 10 input neurons, 20

neurons in the hidden layer, and one output neuron.

 36

e) Timing analyses confirmed that the four novel dynamic buffer size tuning

models are indeed suitable for time-critical applications over the Internet.

The area of user-level dynamic buffer size control, which tries to ensure that the

buffer length always covers the queue size on the fly, is pristine. For this reason my

MPhil research is able to produce 12 refereed publications (4 journal papers and 8

conference papers). The MPhil research, however, also left some important,

unaddressed issues:

a) Does the Internet traffic impede the controllers’ stability and accuracy? If so

how can the impedance be alleviated or neutralized? In fact, the internet

traffic can change without warning, for example, from LRD (long-range

dependence) such as heavy-tailed and self-similar to SRD (short-range

dependence) such as Poisson [Molnár1999]. Such changes may have a serious

impact on the controllers’ performance.

b) Is it possible to have an optimal (cost effective) FLC design?

c) Is there a correlation between the accuracy and the number of neurons in the

hidden layer of the NNC? In my PhD research finding such a correlation is

called sensitivity analysis.

d) Is it possible to cut down the NNC control cycle time and lower the chance of

a deleterious effect?

 37

1.4 SCOPE OF THESIS

The motivation to address the above issues becomes the problem statement of my

PhD project, with the aim to achieve the following objectives:

a) Study the impact of traffic on the stability and accuracy of the FLC and the

NNC, and propose methods to counteract the negative impact effectively.

b) Explore and define the possible optimal range for the FLC design and

implementation.

c) Define the correlation between the number of neurons in the NNC hidden

layer and the control accuracy.

d) Propose a method(s) to optimize the NNC configuration to lower its control

cycle time.

e) Perform timing analyses of the improved or new FLC and NNC models to

confirm that they indeed suitable for time-critical applications over the

Internet.

Figure 1.4.1 accentuates the importance of buffer overflow control over the

path of asymmetric rendezvous (one-server-to-many-clients relationship) over a TCP

channel. Efficacious buffer overflow control is the prelude for running time-critical

applications over the Internet successfully [Stankovic1998] because it reduces the

service roundtrip time (SRTT or simply RTT). As a result the response timeliness is

enhanced. The server at the user level in an asymmetric rendezvous usually serves

many clients simultaneously [Lewandowski1998]. Any sudden influx of requests

from these clients to be queued at the server’s buffer could cause buffer overflow,

 38

which means request losses and possible widespread retransmissions [Lakshman1997,

Paxson1999, Jamjoom2004]. The average number of trials (ANT) to get a

transmission success depends on the C/S path error probability pathρ . If the jP is the

probability for a transmission success at the jth trial, then)1(1
path

j
pathjP ρρ −= − leads

to j

k

j
PjANT ∑

∞→

=

=
1

or .
)1(

1)1(1

1 path
path

j
path

k

j

jANT
ρ

ρρ
−

≈−= −
∞→

=
∑ Since the overflow

probability is part of the overall pathρ any overflow elimination along the client/sever

interaction path yields a smaller ANT and thus a shorter service RTT.

Figure 1.4.1 End-to-end logical channel between client and server

In reality the buffer overflow can occur at both the system/router and user

levels. The system/router level includes all the routing activities within the TCP. Here

the sender and the receiver can contribute to prevent network congestion, which is

 39

manifested as buffer overflow at the congested routers or bottle-necks. The AIMD

(Additive Increase Multiplicative Decrease) approach proposed by Jacobson

[Jacobson1988], for example, is a measure for a sender within the TCP to control the

congestion window adaptively. This lowers the transmission rate thereby alleviating

congestion. The router can also choose to actively throttle any sender that sends too

much data in a short time. The throttling act is called AQM (active queue

management) [Braden1998]. Since the throttled sender reacts only voluntarily, the

AQM process may fail and the router then may to have to drop new incoming packets.

The goal is to ensure that those already queued have a smooth passage. Using

message dropping as a strategy [Floyd1993] to prevent network congestion is

deleterious even though it prevents router buffer overflow because on the other hand

it increases retransmission, which causes more congestion. System-level buffer

overflow or congestion prevention alone, however, cannot prevent the user-level

overflow. The reason is that “merged traffic” from the combined client requests

streams (Figure 1.4.1) can still inundate the buffer easily to overflow. My MPhil

research indicates that the inundation is definitely caused by the high traffic rate and

possibly by the embedded traffic pattern. Yet, the effect of the embedded traffic

pattern was not explored and studied. The buffer inundation problem can be

alleviated if the buffer is provided with the capability to self-tune and assure that the

buffer length always covers the queue size. The assurance is called dynamic buffer

size tuning in both of my MPhil and PhD research. If user-level buffer overflow is

allowed to occur after the system has dished out expensive congestion prevention

effort, the consequence could be disastrous. Not only are valuable resources wasted

 40

but the system also loses the chance of rectifying a serious problem earlier. Therefore,

user-level dynamic buffer tuning and system congestion prevention together is a

unified solution to stifle the chance of buffer overflow along the client/server

interaction path.

The potential of shorter service RTT in an asymmetric rendezvous by having

buffer overflow control has inspired the emergence of different strategies

[Chatranon2004]. These strategies are divided into two basic categories, namely,

fixed length buffer (FLB) [Aweya1998, Feng1999] and variable length buffer (VLB)

[Ip2001, Lin2001NNC, Lin2002FLC, Wong2002GAC]. The FLB approach is

naturally deleterious because dropping incoming messages as the ultimate solution to

prevent congestion and buffer overflow would cause widespread request

retransmissions [Grinnemo2004, Jamjoom2004]. At this moment all the known AQM

approaches from literature to prevent network congestion and router buffer overflow

are exclusively FLB in nature. The VLB approach is relatively recent and the only

examples that can be identified from literature include the PIDC, FLC, GAC, and

NNC. These four controllers are designed for user-level applications. The desire to

eliminate the two PIDC shortcomings [Ip2001] led to the development of the

intelligent FLC, GAC and NNC. These shortcomings are: a) the controlled queue

length can get dangerously close to the buffer length leading to possible overflow

under serious perturbations, and b) too much buffer space is locked up even when it is

no longer needed for remedial action.

 41

CHAPTER 2 EVALUATION OF PREVIOUS RESEARCH

2.0 INTRODUCTION

In the last chapter, we identified the importance of controlling network

congestion on the Internet, in the presence of different traffic patterns.

We noted that network congestion prevention and buffer overflow control can be

carried as follows:

1) Initiated by system-level sender

2) Active Queue Management

3) Using backup channels

4) Dynamic buffer size tuning

Firstly we will show the taxonomy of the techniques being utilized for network

congestion control, and then we will discuss each of these techniques and evaluate

their effectiveness.

2.1 CLASSIFICATION OF CONGESTION MANAGEMENT TECHNIQUES

Table 2.1.1 shows a few overflow controllers and their attributes, and Figure

2.1.1 is the brief taxonomy of different queue buffer management techniques.

 42

 Algorithmic Expert

System level The RED AQM algorithm

[Braden1998] (closed loop,

implicit, FBL, indirect)

The PI fuzzy controller

[Ren2002] (closed loop,

implicit, FBL, indirect)

User level The basic PID controller

[Ip2001] (closed loop,

explicit, VBL, direct)

The genetic algorithm

controller

[Wong2002GAC] (closed

loop, explicit, VBL, direct)

Table 2.1.1 A few overflow controller examples for illustration

Figure 2.1.1 Brief taxonomy of different queue buffer management techniques

 43

2.2 MECHANISMS INITIATED BY THE SYSTEM-LEVEL SENDER

 The aim is to prevent premature timeouts to maximize the TCP channel

bandwidth utilization. The mechanisms initiated by the system-level sender include

the following:

a) Dynamic timeout window adjustment: The sender adjusts the timeout window outT

on the fly with respect to the currently measured values of some chosen parameters.

The goal is to prevent premature timeouts and unnecessary retransmissions. How the

TCP manages its retransmission timer (i.e. outT) adaptively provides a good example.

Unlike the data link protocols, which usually have predictable roundtrip times (RTT)

with a low variance, the TCP (an Internet transport layer operation) has a large RTT

variability spread. This makes the dynamic outT adjustment process non-trivial

[Jacoson1988]. Most TCP implementations adjusts outT on the fly by using three

parameters: the predicted RTT (PRTT), the currently measured RTT (MRTT), and

the deviation D defined by ||)1(MRTTPRTTDD −−+= ςς , where ς is a

smoothing factor typically set to 7/8. The PRTT value is predicted

by MRTTPRTTPRTT)1(ςς −+= . Finally the next timeout interval for the

retransmission timer is set to DPRTTTout *4+= , where 4 is the commonly used

figure for better performance, as determined from experience [Tanenbaum2003].

b) Dynamic congestion window tuning: The TCP is a full-duplex, connection-

oriented Internet transport set up that strives to provide a reliable end-to-end byte-

 44

stream based client/server interaction. A TCP connection is, however, considered

“point-to-point” because the client/server interaction is “port-to-port”. The client and

the server can communicate only via two specific end points or ports, which are also

known as the TSAP (Transport Service Access Points). A TCP connection is

established if the server successfully responds to the CONNECT protocol primitive

executed by a client. The server response includes the execution of the two primitives:

LISTEN and ACCEPT. In the CONNECT primitive a client/sender specifies the IP

address (i.e. the Network Service Access Point), the target port for connection, and

the maximum TCP segment size expected. In the connection establishment process

the server advertises the size of the sliding window for flow control

[Tanenbaum2003]. The actual management of this size in the TCP, however, is

decoupled from the acknowledgements. Since a segment sent through a TCP channel

may be fragmented into smaller packets to be routed through the network layer,

whether all the packets can be received correctly for assembly depends on the

network capacity. Some packets may get lost or become corrupted.

The major cause for packet loss in the wired Internet is router congestion. A

congested router drops the new incoming packets to prevent local buffer overflow

and ensure the smooth passage for those already queued. Segment/packet

retransmission can deleteriously aggravate network congestion and rapidly consume

the bandwidth leading to poor system throughput. Therefore, the TCP needs to

contribute actively to network congestion control. For example, the slow start

algorithm that adaptively tunes the congestion window is supported by all TCP

implementations [Jacobson1988]. In the algorithm if the receiver advertises a

 45

reception window of 10K bytes but timeout occurs at 4K bytes, then the congestion

window is set at 2K bytes to prevent any segment larger than this size to be sent. This

is independent of what the receiver advertises. Initially the sender sets the congestion

window to the size of the maximum segment in use by the connection, and then sends

one maximum segment. If the corresponding acknowledgement is received before the

timeout is triggered, it resets the retransmission timer and then sends a burst of two

maximum segments. This process repeats and the congestion window grows

exponentially by the factor of P2 until it encounters a timeout or hits the receiver’s

window. The exponent P indicates the successive successful acknowledgements,

for nP ,...,3,2,1= . To make the network congestion control by slow start even more

effective a threshold, which is typically set at 64K bytes initially (approximately the

IP payload size), is used together with the receiver and congestion windows. This is

the AIMD (Additive Increase and Multiplicative Decrease) approach. When a

timeout or “choke packet” is sent by the router, the threshold becomes half of the

current congestion window, which is set to one maximum segment size. Slow start

then determines how much transmission the network can handle, but the exponential

growth of the congestion window size stops once the threshold is hit. After this point

the congestion window can grow only linearly by one maximum segment in every

new burst. The AIMD approach, however, may create problems as follows:

i) Self-similar traffic generation: The AIMD encourages the maximum

bandwidth usage by allowing burst sending behaviour in an exponential

manner. This may create self-similar burst traffic that affects the receiver’s

stability as some of my experiments have revealed (Chapter 3 and section 6.3).

 46

ii) Impoverished bandwidth utilization: The approach is useful for short-haul

interactions, where the distance in terms of network latency between the client

and server is not serious. For long-haul operations such as the “long-fat-pipes”

[Nakamura2004] in high-bandwidth-high-latency networks the

acknowledgements can be seriously delayed leading to spurious timeouts by

the sender. As a result the subsequent decrease of the congestion window to

one maximum segment can inadvertently impoverish the client/server

interaction bandwidth utilization. This has inspired different solution

proposals and the RRTP (Reconfigurable and Reliable Transport Layer

Protocol) [Balakrishnan1997, Wang2004] is one example.

In fact, the quest for more effective adaptive congestion window tuning

models is continuing, for example, the model proposed by Padhye et al [Padhye1998]

for the Reno TCP applications.

c) Multiple copies of the same time-critical message [Rama1992]: The sender sends

multiple copies of the same message immediately one after another. The number of

copies ties with the likelihood of congestion. The argument is that if the C/S path

error probability for sending a message is pathρ , then the chance for mc number copies

to be erroneous at the same time is mc
path)(ρ ; it is much reduced. A design that is

based on the mc
path)(ρ criterion is also called the Consecutive Message Transmission

(CMT) approach [Wong1999A]. The evaluation of some recent CMT findings

[Wong1999A] has revealed the following:

 47

i) Possible orphan executions: If the server/receiver side is designed to receive

multiple copies of the same messages/requests, it must be able to support remote

invocations of the exactly-once semantics. This is necessary for services that are not

idempotent. An idempotent service differs by producing the same effect even when it

is repeatedly and inadvertently invoked. If a non-idempotent service is invoked by the

at-least-once semantics, then the additional copies of the same request would lead to

orphan executions and possibly disastrous side effects. This requires the server to

possess the power to differentiate the exactly-once semantics from the at-least-once

invocations. Judging from the complexity and size of the Internet operation precise

differentiation is not easy to accomplish.

ii) Balanced protocol design needed: The mc
path)(ρ alone is not enough for an

efficient CMT protocol. The number of copies in a CMT scheme should be supported

by a proper “acceptance criterion”, which is the number of copies of the same

message received correctly before the transmission of the “original/intended”

message is considered a successful reception. This can be demonstrated by comparing

the following two CMT schemes:

 A) Scheme 1: In a 4-copies CMT scheme, the receiver acknowledges correct

reception of a message provided that it has received any 2 correct copies out of the 4.

Every copy however has an error probability of 4.0=υ or 40%. This implies the

probability for a transmission success to be 8208.04324 =++= PRPRPRυ . XPR is

the error probability for having X number of correct copies

for 4,3,2,1=X ; 224
22)1()(υυ −=PR , 34

33)1()(υυ −=PR , 4
4)1(υ−=PR . Then, the

average number of trials (ANT) to send a message successfully from one end to

 48

another can be calculated in the same way as for a C/S path with the pathρ error

probability: .
)1(

1)1(1

1
1

path
path

j
path

k

j
Scheme jANT

ρ
ρρ

−
≈−= −

∞→

=
− ∑ In scheme 1 the ANT for

sending a message successfully means)1(4υρ −=path and

22.182.0
11

4
1 ≈≈=− υSchemeANT .

 B) Scheme 2: In this CMT scheme three copies of the same message are sent

and the receiver acknowledges reception as long as one of the copies is correctly

received. This scheme is of speculative nature but is useful when the heavy-tailed

traffic persists. If one of the copies can get through the channel quickly, then the

service roundtrip time can be shortened. Assuming 4.0=υ the probability for a

message transmission success is 936.03213 =++= PRPRPRυ ,

for)1()(23
11 υυ −=PR , 23

22)1()(υυ −=PR and 3
3)1(υ−=PR . Then, the

resultant 07.1
936.0
11

)1(
1

3
2 ≈≈≈

−
≈− υρ path

SchemeANT implies a shorter RTT than

scheme 1.

The comparison between the two schemes above indicates that the designer should

strike a balance between the number of multiple copies and acceptance criterion for

an efficacious CMT scheme.

2.3 ACTIVE QUEUE MANAGEMENT

In fact, prevention of TCP channel congestion by the sender’s effort alone

may not be effective in many cases. This led to the proposal of the Active Queue

 49

Management (AQM) concept in the RFC 2309 for system-level receiver/router

applications [Braden1998]. In this concept if a router detects that its reception buffer

is likely to overflow, then it throttles the sender to slow down transmission

voluntarily [Chatranon2004]. A router starts the throttling process by sending

“choke” packets. If the sender does not respond to the throttling, then the router drops

the incoming packets to facilitate smooth passage of those already queued. The

message dropping process may follow different strategies, for example, “drop from

front” [Lakshman1996]. In fact, dropping messages as a congestion and buffer

overflow prevention mechanism is deleterious. That is why the IETF (Internet

Engineering Task Force) proposes to use the RED (Random Early Discard) algorithm

for AQM purposes in the RFC 2309 [Braden1998]. The subsequent analyses of RED

by different researchers, however, found that it was unstable and this led to the

different RED mutants (e.g. the algorithmic ones FRED (Fair RED) [Kim1998], DS-

RED [Zheng2001], LRU-RED [Reddy2001], M-RED [Koo2001], REM

[Athuraliya2001]) and the intelligent non-RED-based versions (e.g. Fuzzy-PI

[Ren2002]; P for proportional control and I for integral control). Floyd and Jacobson

call those routers in packet-switching networks that adopt the RED algorithm the

Random Early Detection Gateways [Floyd1993].

2.4 USING BACKUP CHANNELS

Internet based time-critical applications, which require communication service

with guaranteed quality of service (QoS) in terms of timeliness and fault tolerance,

 50

are emerging quickly. They include different areas such as video-on-demand, video-

conferencing, and telemedicine. From the “average number of trials (ANT) to get a

transmission success” point of view, fault tolerance measures can reduce the

channel/connection error pathρ and thus the ANT value leading to a shorter RTT that

can satisfy the QoS requirements. The pathρ value actually encompasses different

errors that could occur along the C/S path including partial failures and router buffer

overflow. Therefore, some researchers argue that the ordinary TCP channels for best-

effort traffic (i.e. no real-time constraints) may not be good enough. They suggest the

use of backup channels [Kris2003, Shin2000] to create more dependable real-time

protocols. An ordinary primary TCP channel together with a backup connection

makes a more dependable connection referred to as DP-channel/connection here.

How dependable the backup channel is depends on the resources being reserved. For

example, [Han1998] proposes to reserve dedicated system resources as support for

backup channels. This means that the backup dependability depends on the quality of

the reserved resource, which is tied with the cost. The DP-connection is a basically a

primary-backup approach that involves three basic steps: i) establishing the primary

channel and backup, ii) detecting channel problems (e.g. network congestion, partial

failure, etc.), and iii) channel switching from primary to backup. Some researchers

argue that a backup channel should not be dedicated but shared for better system

throughput. The sharing can be as follows: i) backup multiplexing (BM) that lets two

or more primary channels share a backup, ii) backup-primary multiplexing (BPM)

that lets the backup be a temporary ordinary primary channel without real-time

 51

constraints. The pros and cons of the three basic schemes above are evaluated as

follows:

a) Dedicated scheme: The dedicated backup is expensive but it can better

support the primary channel to provide a high-quality DP-channel.

Unless the network always has extra resource to be reserved for backup

channels the reservations can consume system resources rapidly. As a

result the bandwidth utilization is impoverished leading to poor system

throughput.

b) BM scheme: If a backup channel is shared, the dependability of the DP-

connections (i.e. primary channel plus backup) can be evaluated by

equation (2.4.1) [Kris2003, Shin2000]. The parameter n is the number of

sampling operations within the period/window of interest T. iPTD is the

“product of the thi sampling period and the number of DP-connections”,

and iPTC is the “product of the thi sampling period and the total number

of primary and backup channels involved”. Table 2.4.1 illustrates some

statistics for the two separate sampling operations within the interval T.

In the 1st sampling operation that lasted 10 time units the original

primary connection 1 in the DP-channel 1 shared the backup in the time-

multiplexing manner with the original primary 2 connection. The backup

channel was used 5 times to support either DP-channel 1 or DP-channel

2. In the 2nd sampling operation the backup channel was used for similar

support 4 times. By equation (2.4.1) the dependability of the DP-

 52

connections in T is 31.0
118
36

)8*48*210*510*2(
)8*210*2(

≈=
+++

+ or 31%.

The important connotation from equation (2.4.1) is that the dependability

is 100% if the backup is not invoked at all.

)1.4.2...(..........

1

1

∑

∑

=

== n

i
i

n

i
i

PTC

PTD
ityDependabil

thi sampling
operation
(duration)

number of
connections

connection type remarks

1st (10 time units) 1 original primary
1

as main part of DP-channel
no. 1

 5 backup shared by DP-channels 1
and 2

 1 original primary
2

as main part of DP-channel
no. 2

 3 backup became a
temporary
“ordinary”
channel

2nd (8 time units) 1 original primary
1

as main part of DP-channel
no. 1

 4 backup shared by DP-channels 1
and 2

 1 original primary
2

as main part of DP-channel
no. 2

i.e. 2=n for
equation
(2.4.1)

 2 backup became a
temporary
“ordinary”
channel

Table 2.4.1 The connections sampled in two sampling periods within T

c) BMP scheme: In this scheme the backup channel can become a temporary

“ordinary” channel with no real-time quality as illustrated in Table 2.4.1. The

 53

argument is that when the backup channel is not needed as backup it may be used

temporarily to boost up the communication throughput. The drawback of this

approach is that it also makes the DP-channels temporarily insecure/undependable.

There are still many issues that need to be addressed for designing efficacious BMP

schemes, for example:

 i) When should a backup be allowed to become a temporary non-real-time

channel?

 ii) How could an “ordinary” channel be terminated gracefully when a DP-

channel needs it for support suddenly?

 In general it is difficult to harness the TCP channel RTT for time-critical

applications because of the sheer size and heterogeneity of the underlying network.

This leads to the use of backup channels for more dependability [Kris2003,

Shin2000]. This approach helps shorten the service RTT in critical applications over

the Internet. As a result tasks can be meaningfully executed before the deadline

[Stankovic1998]. This is absolutely necessary for hard and firm real-time

applications and less stringent for the soft type.

2.5 DYNAMIC BUFFER SIZE TUNING

The system-level channel congestion prevention methods cannot prevent user

level buffer overflow from happening. Firstly, the server may serve many different

clients simultaneously, and the merged traffic in the asymmetric rendezvous can

 54

create overflow because of its high rate. Secondly, the traffic pattern embedded in the

merged traffic is unpredictable and this can cause overflow because the pattern

affects the efficacy and stability of the reception buffer. One effective solution is

dynamic buffer tuning, which means tuning the reception buffer size adaptively on

the fly so that the buffer length always covers the queue size and thus eliminates any

chance of buffer overflow [Wong1999A, WongHC2001, Wong2002GAC]. The first

dynamic buffer size tuning scheme, “P+D” scheme, was proposed by Wong and

Dillon [Wong1999]. It is based on the concept of proportional (P) and the derivative

(D) control. The two parameters used in this approach are: the ratio of “queue length

over the buffer length” and the rate of change of queue length over time. The

instability of the “P+D” controller in real application led to the development of the

PID controller or PIDC [Ip2001], which is the “P+D” approach augmented by

integral (I) control. So far all the known dynamic buffer tuners, namely, PIDC, GAC,

FLC and NNC are aimed at user-level applications.

2.6 PREVIOUS MPHIL RESEARCH

 In my previous MPhil research four original dynamic buffer overflow

controllers/tuners were proposed, namely, the PID Controller (PIDC), the GAC, the

FLC and the NNC. Figure 1.3.1 illustrated the course of evolution from the PIDC to

the NNC, and in fact, the intelligent tuners, GAC, FLC, and NNC were intended to

preserve the PIDC merits minus its shortcomings [Ip2001]. In the rest of this section

 55

each of the four tuners will be concisely presented, and their performance in terms of

their control cycle time will also be compared.

2.6.1 THE PID CONTROLLER (PIDC)

 Buffer size tuning, similar to industrial control processes, may involve P, I

and D control elements [Karray2002]. In the PIDC the proportional (P) control is the

ratio of “queue length over buffer length (QOB)” to predict the chance of overflow.

The rate or derivative (D) control, which decides how fast the buffer would become

full, is the rate of change in the queue length (i.e. dt
dQ). The integral control is the

history of changes in the queue length. The P, I and D control elements in the PIDC

should be construed on a conceptual basis [Wong2000A], They are different from the

traditional meanings in process control theory because the PIDC does not consider

the feedback system gain. The PIDC is formed by adding integral control to the

previous “P+D” tuner, which was the first of its kind [Wong1999A]. Although the

“P+D” tuner worked well in simulations with selected datasets, it failed in real

situations over the Internet. The main cause of failure is the “hard-coded” nature of

the “P+D” control parameters. Since these parameters do not register new knowledge

the controller does not have enough power to anticipate what may happen in the

future proactively. The use of the history in predicting the trend of change is the basis

of integral (I) control in a general sense. The PIDC development needs to address the

following two issues:

 56

a) Would the P+D perform better if I control is incorporated to make it a PID

controller (PIDC)?

b) How should the I control be implemented, especially when direct data

measurement is the basis of the PID control process?

The need for direct data measurement and the impossibility of monitoring the

overwhelming number of dynamic network parameters in the sizeable Internet

directly require a new technique. This led to the consideration of using the IEPM

(Internet End-to-End Performance Measurement) approach [Cottrel1999]. The core

idea in this approach is to gauge the channel dynamics by measuring its mean

roundtrip time (RTT). The IEPM concept is relatively new [Prasad2003,

Barford2004], and the only known IEPM method that has its accuracy independent of

any type of distribution/waveform is the Convergence Algorithm (CA) [Wong1999B].

The CA was successfully implemented and tested as the M2RT [Wong2001] macro

IEPM tool. The waveform independent property of CA/M2RT is attributed to the fact

that it is derived from the Central Limit Theorem [Aloisio1980]. In its macro version

the M2RT must be installed at two nodes that represent the ends of a logical channel.

The micro implementation of the CA is known as the M3RT [Ip2002], which runs as

a logical object that can be invoked for service by message passing anytime and

anywhere.

The accumulated PIDC experience, however, shows that this tuner has two

distinctive shortcomings (Figure 2.6.1.1):

 57

a) The queue length can get dangerously close to the buffer length, and in very

serious dynamic traffic perturbations there could be a chance of overflow.

b) The buffer length lingers at the high value after every correction and this wastes

valuable memory and impedes system performance.

The desire to eliminate these shortcomings led to the introduction of the safety

margin Δ concept. The three intelligent tuners, GAC, FLC and NNC, adaptively

maintain Δ on the fly about the chosen reference (i.e. “0”) of the 2},0{ Δ objective

function. The difference between the controlled buffer length and the current queue

length should stay inside the user-specified tolerance band of Δ± about the reference

point. This reference point is the “queue length over buffer length” ratio chosen by

the user, namely, RQOB .

 Figure 2.6.1.1 Illustration of the PID shortcomings

 Figure 2.6.1.1 shows the following: a) the trace of queue length values for the

experiment, b) for this trace the “P+D” tuner buffer overflows at point E, and c) the

 58

PIDC working with same trace produces no overflow at all. In fact, the PIDC

consistently produces no overflow with all the deployment cases, but its two

shortcomings are always present.

2.6.2 THE GENETIC ALGORITHM CONTROLLER (GAC)

 Genetic algorithms are a form of evolutionary computing [Michalewicz1996] that

mimick natural evolution in the reproduction process, including chromosome

crossover and mutation of genes. From the perspective of conventional or algorithmic

PID control genes are the threshold values. The goal of the GAC is to eradicate the

shortcomings of the algorithmic PIDC by adjusting the set of thresholds. The safety

margin concept Δ and the 2},0{ Δ objective function were first introduced in the GAC

proposal and development [Wong2002GAC]. Conceptually the GAC is the “PIDC

plus GA plus the 2},0{ Δ objective function” combination.

 Since in the buffer length tuning process the GA treats the PIDC parameters as

genes every parameter set is a chromosome in the GA context. The buffer size

estimated by the refined PIDC is fed to the objective function {0,Δ}2 to check its

fitness. In effect, {0,Δ}2 is the fitness function. The aim is to ensure that the

difference between the controlled buffer length and the current queue length stays

within the Δ± tolerance band about RQOB . If there is an indication that the criterion

of Δ± may not be satisfied, the GA immediately reproduces new chromosomes by

mutation and crossover. It then selects the fittest chromosome to replace the existing

set of PIDC parameters as a refinement process. By doing so the GA tries to prevent

 59

the QOB deviating from RQOB by more than Δ± . The operation of the GAC, which

is a GA-augmented PIDC, is shown in Figure 2.6.2.1.

Figure 2.6.2.1 The GAC model for marginal buffer control

It was observed in different tests that oscillations might occur right after

replacements with new chromosomes, and this leads to subsequent system instability

and occasional buffer overflow. A solution to alleviate such vicious oscillations is to

give the GAC enough time to adjust to the new parameters. We call this grace period

the adaptation time window (ATW). The subsequent deeper analysis shows that the

ATW helps but cannot eliminate the chance of buffer overflow at all. The analysis of

this phenomenon as part of my PhD research overview had revealed that this is

caused by the very nature of the GA not to guarantee the global-optimal solution of

the hyperplane [Mitchel1999]. In the GAC the PIDC and the GA mechanism work in

parallel with the same data input. The chromosome is made up of two different sets of

 60

thresholds, namely, QOBL (Lower) and QOBU (Upper). The GA logic is illustrated

in the flowchart shown in Figure 2.6.2.2.

 Figure 2.6.2.2 The GA logic flowchart

 Figure 2.6.2.3 shows that for the given queue length trace the GAC eliminates

the shortcomings of the PIDC (non-GA) by yielding more responsive buffer overflow

control. For the same trace, however, it also produced an overflow as shown in Table

2.6.2.1. The overflow occurred at the time point of 548980 after chromosome

replacement at the time point 547781.

 61

Figure 2.6.2.3 The GAC yields a more responsive result than the PIDC

Time Queue
length

Buffer
(GA)

Buffer
(non-GA)

RLQI
(GA)

RLQD
(GA)

RLQI
(non-GA)

RLQD
(non-GA)

Action

588 0 20 20 0.716605 0.574195 0.716605 0.574195

1174 1 20 20 0.716605 0.574195 0.716605 0.574195

1379 0 20 20 0.716605 0.574195 0.716605 0.574195

:
:
:

546589 18 20 26 0.856595 0.583624 0.716605 0.574195

547178 19 20 26 0.856595 0.583624 0.716605 0.574195

547781 20 20 26 0.856595 0.583624 0.716605 0.574195 REPLACE

547941 19 20 26 0.823966 0.539837 0.716605 0.574195

548374 20 20 26 0.823966 0.539837 0.716605 0.574195 INSIDE_ADAPTATION_
PERIOD

548980 21 20 26 0.823966 0.539837 0.716605 0.574195 INSIDE_ADAPTATION_
PERIOD

549391 20 26 32 0.823966 0.539837 0.716605 0.574195

549509 19 26 32 0.823966 0.539837 0.716605 0.574195

549587 20 26 32 0.823966 0.539837 0.716605 0.574195

Table 2.6.2.1 A record of buffer overflow after chromosome replacement

2.6.3 THE FUZZY LOGIC CONTROLLER (FLC)

Although the GAC produces occasional buffer overflow it eliminates the PIDC

shortcomings completely and confirms that the 2},0{ Δ objective function is a sound

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

1

23
9

47
7

71
5

95
3

11
91

14
29

16
67

19
05

21
43

23
81

26
19

28
57

30
95

33
33

35
71

38
09

40
47

42
85

45
23

47
61

49
99

T im e (m s)

Le
ng

th

Q u e u e le n g th B u ffe r (G A) B u ffe r (n o n -G A)

 62

and powerful concept. The FLC proposal represents the quest for a better intelligent

model that can: a) work with the PIDC as a component minus its shortcomings, b) use

the 2},0{ Δ objective function as the operational basis, and c) produce no overflow at

all. In this sense the FLC should be more powerful and accurate than the GAC. The

FLC conceptual framework is the “PIDC plus fuzzy logic plus the 2},0{ Δ objective

function” combination. The fuzzy logic divides the PIDC control domain into many

smaller fuzzy control regions (e.g. Table 2.6.3.1) and supports each of them with a

predefined fuzzy rule or a “don’t care” state. The “don’t care” state requires no

action/computation and in this way it offsets the FLC computation complexity and

reduces its control cycle time. Therefore, the FLC is a fuzzy region based (FRB)

approach [Berkan1997, Zadeh1994]. The control domain, which now consists of

many fuzzy regions, is known as the fuzzy knowledge base. The adaptive adjustment

of the buffer length, by addition or subtraction, depends on the current fuzzy region

of operation. In effect, the original algorithmic PIDC has only two fuzzy regions if

compared to the FLC approach. The “don’t care” is marked by X in the FLC[4x6]

design shown in Table 2.6.3.1.

 Table 2.6.3.1 A FLC [4x6] design example

 The “dot” in Table 2.6.3.1 marks the RQOB , which in this case is equal to 0.8

(80%). The FLC experimental result presented in this section is based on this design,

 63

and this implies Δ to be 0.2 or 20%. The linguistic variables (representations), which

are used for the fuzzy regions of the FLC design in Table 2.6.3.1, are defined as

follows:

a) For the Ratio of Queue Length Over Buffer Length (QOB)

• ML - Much Less than optimal point

• L - Less than optimal point

• G - Greater than optimal point

• MG - Much Greater than optimal point

b) For the Rate of change of queue length (dQ/dt)

• NL - Negative Large than optimal point

• NM - Negative Medium than optimal point

• NS - Negative Small than optimal point

• PS - Positive Small than optimal point

• PM - Positive Medium than optimal point

• PL - Positive Large than optimal point

The control action to be taken by the FLC depends on the two input parameters,

namely, QOB (i.e. proportional or P control) and dt
dQ (i.e. derivative or D control).

The three possible FLC decisions/actions are: a) Addition or “+”, b) Subtraction or

 “-” and don’t care or “X”. The X state prevents unnecessary oscillation in the

buffer length control process. The quantum for addition (buffer elongation) or

subtraction (buffer shortening) is still computed by the refined PIDC mechanism,

which is a component of the FLC. Refinement here means that the operation of the

PIDC algorithm depends on the fuzzy region that the controller is currently operating

 64

in. The FLC Java prototype for the FLC[4x6] design shown by Table 2.6.3.1 has the

following fuzzy rules, which moderate the integral control represent by RICM

(Refined Integral Control Mechanism [Lin2002FLC]):

Rule 1: If (QOB is ML) AND (dQ/dt is NL) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM

Rule 2: If (QOB is ML) AND (dQ/dt is NM) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM

Rule 3: If (QOB is ML) AND (dQ/dt is NS) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM

Rule 4: If (QOB is ML) AND (dQ/dt is PS) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM

Rule 5: If (QOB is ML) AND (dQ/dt is PM) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM

Rule 6: If (QOB is ML) AND (dQ/dt is PL) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM

Rule 7: If (QOB is L) AND (dQ/dt is NL) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM

Rule 8: If (QOB is L) AND (dQ/dt is NM) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM

Rule 9: If (QOB is L) AND (dQ/dt is NS) Then Action is “X”(Don’t care) AND Lnew = Lold

Rule 10: If (QOB is L) AND (dQ/dt is PS) Then Action is “X”(Don’t care) AND Lnew = Lold

Rule 11: If (QOB is L) AND (dQ/dt is PM) Then Action is “+”(Addition) AND Lnew = Lold + RICM

Rule 12: If (QOB is L) AND (dQ/dt is PL) Then Action is “+” (Addition) AND Lnew = Lold + RICM

Rule 13: If (QOB is G) AND (dQ/dt is NL) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM

Rule 14: If (QOB is G) AND (dQ/dt is NM) Then Action is “-”(Subtraction) AND Lnew = Lold - RICM

Rule 15: If (QOB is G) AND (dQ/dt is NS) Then Action is “X”(Don’t care) AND Lnew = Lold

Rule 16: If (QOB is G) AND (dQ/dt is PS) Then Action is “X”(Don’t care) AND Lnew = Lold

Rule 17: If (QOB is G) AND (dQ/dt is PM) Then Action is “+”(Addition) AND Lnew = Lold + RICM

Rule 18: If (QOB is G) AND (dQ/dt is PL) Then Action is “+”(Addition) AND Lnew = Lold + RICM

Rule 19: If (QOB is MG) AND (dQ/dt is NL) Then Action is “+”(Addition) AND Lnew = Lold + RICM

Rule 20: If (QOB is MG) AND (dQ/dt is NM) Then Action is “+”(Addition) AND Lnew = Lold + RICM

Rule 21: If (QOB is MG) AND (dQ/dt is NS) Then Action is “+”(Addition) AND Lnew = Lold + RICM

Rule 22: If (QOB is MG) AND (dQ/dt is PS) Then Action is “+”(Addition) AND Lnew = Lold + RICM

Rule 23: If (QOB is MG) AND (dQ/dt is PM) Then Action is “+”(Addition) AND Lnew = Lold + RICM

Rule 24: If (QOB is MG) AND (dQ/dt is PL) Then Action is “+”(Addition) AND Lnew = Lold + RICM

 65

Figure 2.6.3.1 A case of performance comparison between the PIDC and the

FLC (8.0=RQOB , 2.0=Δ)

 The FLC always yields more a responsive buffer tuning operation than the

PIDC minus the latter’s shortcomings. Figure 2.6.3.1 is one case in which the FLC

consistently maintains the safety marginΔ for the 2},0{ Δ objectivity function. Point A

in Figure 2.6.3.1 indicates that the FLC has eliminated the PIDC shortcoming of

staying at the high buffer length value (i.e. unused buffer space still being locked by

the controller).

2.6.4 THE NEURAL NETWORK CONTROLLER (NNC)

 Although the FLC preserves the PIDC merits minus its shortcomings, its

convergence towards RQOB can be oscillatory. The desire to attain a smoother

RQOB convergence for the 2},0{ Δ objectivity function led to the NNC proposal,

which was also inspired by the success of applying the neural network (NN)

 66

techniques in AQM (Active Queue Management) algorithms (e.g. [Aweya1998]).

After some detailed preliminary investigation it was concluded that the NN approach

should base on backpropagation (BP). The argument is that the BP approach is

simpler and the NN controller can be trained efficiently withΔ as the teacher signal.

Therefore, the NNC is proposed as a feed-forward BP perceptron [Lin2001NNC]

with supervised training [Rumelhart1986], as shown in Figure 2.6.4.1. The NNC

prototype’s configuration consists of: a) a single input layer of 10 neurons, b) a single

hidden layer of 20 neurons, and c) a single neuron in the output layer. The training

with Δ is based on the Sigmoid function represented by)0.1(0.1)(xexf −+= . The

activation energy (value) for the neurons in the hidden and output layers are

computed respectively as follows:

a) Sigmoid(∑ InputActivation * weight (input-hidden))

b) Sigmoid(∑ OutputActivation * weight(hidden-output))

Figure 2.6.4.1 Backpropagation NNC control

 The NNC has an input vector Qvector of ten variables with the following properties:

Input
layer

Hidden
 layer

Teacher signal for training
 (deserved value)

Output
 layer

10 neurons 20 neurons

1 neuron

Sigmoid (input)
Sigmoid(output)

 67

a) Nine queue-length samples: They are sampled at equal time distances within the

chosen renewal window or period of W. If we divide W equally into nine portions

then each sample is denoted by tXQ , where X is 1,2,…9.

b) 10th element: This is the queue length estimated by the M3RT at the t9. That is, at

the time point t9, which is the end point of the current W cycle, two samples are

included, namely, QueueCA_estimate and the queue length at that point. This means

that M3RT must run in parallel with the NNC as a logical entity.

The inclusion of QueueCA_estimate (output from the M3RT) is the basis for the argument

that the NNC has the capability to proactively maintain the safety margin Δ. The

rationale is that the main function of M3RT is to predict the trend of the queue length

distribution and therefore the instantaneous value of QueueCA_estimate at t9 should

reflect the next move of the queue length accurately. The output from the NNC is the

predicted buffer length required to ensure that the queue is completely covered so that

the safety margin Δ criterion will be met in the next W. The computation approach

for the NNC is given by equations (3.4.1) and (3.4.2). The predicted buffer length

)1(+WL for the W+1 cycle is a function (∫NN
(..) is the symbolic representation) of

the variables vector Qvector (W) and QueueCA_estimate (Wt9).

∫=+
NN vector WQWL),([)1(QueueCA_estimate(t9w)]……(3.4.1)

Wtvector QQ 1{= ,
WtQ 2 ,

WtQ 3 ,
WtQ 4 ,

WtQ 5 ,
WtQ 6 ,

WtQ 7 ,
WtQ 8 ,

WtQ 9 }…..(3.4.2)

 The NNC operation is divided into two phases, namely, training and prediction.

The first is the training process for the BP approach to learn to respond properly by

yielding the deserved value with respect to the teacher signal; in this case the teacher

 68

is the given Δ. Before training starts the weights of the NN arcs are randomized. The

error, which is the difference between the predicted output and the deserved value

(DV) defined by the)()(Δ+≤≤Δ− RR QOBDVQOB range, should gradually decay as

the learning process is progressing. The training is considered to be completed if the

controlled output is consistently within the DV range. The simulation performance by

the NNC and that by the “NNC+M3RT”, namely, the NNC supported by the M3RT in

the form of QueueCA_estimate or 10Q element in the Qvector, are depicted in Figure 2.6.4.2

and 2.6.4.3. M3RT is synonymous with CA (Convergence Algorithm) because the

former is the validated micro version of the CA macro Java implementation known as

the M2RT.

 Figure 2.6.4.2 Deviation by NNC from objective function with QOB=0.8 – test

case 1

 69

Figure 2.6.4.3 Deviation by (NNC+ RTM 3) from objective function, QOB=0.8 – test

case 2

 The average of the deviation of the NNC output is measured by the following

equation: kQOB
k

i
i ⎥
⎦

⎤
⎢
⎣

⎡
−Δ∑

=1
|| . Table 2.6.4.1 (Δ = 0.2, sample size k = 7200) shows

three cases out of the many simulations, which confirm that the “NNC+M3RT”

consistently has at least 5 percent or less of deviation from the RQOB than the NNC

working alone. Without the M3RT incorporation the deviation can be as large as 25%

in some cases, and our analysis indicates that this phenomenon is due to the fact that

the knowledge from the last training of the NNC is not enough to deal with

unexpected new situations. With the M3RT presence the largest deviation by the

“NNC+ M3RT” is around only 15%. This is the result of the integral effect provided

by the M3RT convergence process.

Figure 2.6.4.4 compares the smoothness of convergence towards RQOB by the

PIDC, FLC and NNC (supported by CA/ RTM 3). The NNC and the FLC eliminate

 70

the PIDC shortcomings and consistently maintain the safety margin Δ . The

maintenance by the NNC is much smoother than the FLC.

Figure 2.6.4.4 Comparing the PIDC, FLC and NNC (QOBR = 0.8)

Controller Case 1 Case 2 Case 3

NNC 0.02386 0.01853 0.02245
NNC+ M3RT 0.02260 0.01655 0.02115
Performance improvement:

%100*"" 3

NNC
RTMNNCNNC +−

5.28% 10.7% 5.8%

Table 2.6.4.1 Comparing three cases of deviations between NNC and “NNC+ M3RT”

2.6.5 TIMING ANALYSES OF THE DIFFERENT CONTROLLERS

Timing analysis of the individual dynamic buffer tuners, namely, PIDC, GAC,

FLC and NNC is an essential part of my MPhil research. A good dynamic buffer

tuner should be quick and accurate. If its control cycle time is too long, then it may

 71

yield deleterious effects because the computed remedy ends up correcting a long-

passed spurious problem. The timing analysis is carried out with the Intel’s VTune

Performance Analyzer [VTune2002]. The control cycle time or controller execution

time is measured in terms of the number of neutral clock cycles. Some of the results

are presented in Figure 2.6.5.1 to 2.6.5.4. The clock cycles can be converted into the

actual physical time for the chosen platform. For example, if the platform is operating

at 100 MHz, the control cycle time of 500 clock cycles yields 5)10*100(
500

6 ≈ micro

seconds.

Figure 2.6.5.1 PIDC VTune Analysis (control cycle time is 205 clock/T cycles)

 72

Figure 2.6.5.2 GAC VTune Analysis (control cycle time is 475 T cycles)

Figure 2.6.5.3 FLC VTune Analysis (control cycle time is 255 T cycles)

 73

Figure 2.6.5.4 NNC VTune Analysis (control cycle time is 10800 T cycles)

Intel VTune [VTune2002] Timing Analyses for four buffer controllers with the Intel-Pentium III as the reference architecture

Control
models

Lines of Java code
for controller

implementation

(Ln)

Average
number of

lines of code
in Pentium III

assembler

Clock/T cycles per
assembly line

(Pentium lll 933MHz)

(T)

Average number of
T cycles for

RQOB convergence

(NTC)

Measured average number
of T cycles per control

cycle
(TCC)

 Chosen
architecture:

Intel-
Pentium III
933MHz

(seconds)

 PIDC 105 525 9 4725 205 2.1972E-07

GAC 111 555 9 4995 475 5.0911E-07

 FLC 116 580 9 5220 255 2.7331E-07

 NNC (Input-
Hidden-

Output]: 10-
20-1)

240 1200 9 10800 10800 1.1576E-05

Table 2.6.5.1 Summary of the indicative control cycle times by the different controllers

 74

2.7 CONNECTIVE SUMMARY

To recap, my MPhil research had achieved the following:

a) Four novel dynamic buffer overflow controllers for user-level

applications were proposed; one algorithmic (i.e. the PIDC) and three

intelligent ones (i.e. GAC, FLC and NNC).

b) The GAC was thoroughly tested and found to be unacceptable because

it yields occasional buffer overflow.

c) The FLC was proposed and two designs, namely, FLC [4x4] and FLC

[4x6] were tested. The results indicate that this direction is the right

one because of the following: i) it eliminates buffer overflow

completely, ii) its execution time comparable to the simpler PIDC’s

due the presence of the “don’t care” state [Lin2002FLC], and iii) it

always maintains the control output within Δ± about the chosen

RQOB reference, but its convergence to RQOB can be oscillatory.

d) The success of using 2},0{ Δ as the operation principle and the desire to

have a smoother RQOB convergence led to the proposal of the NNC.

The NNC differs form the GAC and the FLC because it does not

include the PIDC as a component. The NNC, however, has a much

longer control cycle time compared to the PIDC, GAC and the FLC

and this is prone to deleterious effects. The argument is that by the

time the remedy is computed the actual problem has already passed.

Using the computed remedy to resolve a spurious problem may lead to

 75

undesirable consequences or deleterious effects. The NNC prototype,

which works by backpropagation with supervised training, has 10

input neurons, 20 neurons in the hidden layer, and one output neuron.

e) Timing analyses confirmed that the four novel dynamic buffer size

tuning models are indeed suitable for time-critical applications over

the Internet. The limit of application and accuracy is determined by the

controller’s mean control cycle time.

 Meanwhile my MPhil research also left behind some important but

unaddressed issues:

a) Does the Internet traffic impede the controllers’ stability and accuracy? If so

how can the impedance be alleviated or neutralized? In fact, the internet

traffic can change without warning, for example, from LRD (long-range

dependence) such as heavy-tailed and self-similar to SRD (short-range

dependence) such as Poisson [Molnár1999]. Such changes may have a serious

impact on the controllers’ performance.

b) Is it possible to have an optimal (cost-effective) FLC design?

c) Is there a correlation between the accuracy and the number of neurons in the

hidden layer of the NNC? In my PhD research finding such a correlation is

called sensitivity analysis.

d) Is it possible to cut down the NNC control cycle time and lower the chance of

deleterious effects?

 76

CHAPTER 3 PROBLEM STATEMENT AND METHODOLOGY

3.0 INTRODUCTION

In this section the problem tackled in my PhD research will be explained. In

order to achieve the research objectives in a qualitative manner and within the time

constraints imposed on the duration of the project, the “investigate & experiment &

iterate (IET)” methodology is adopted as the basis for evolution. This methodology

helped my MPhil research a great deal and enabled me to produce useful and

meaningful findings that led to several refereed journal and conference publications.

3.1 DEFINITIONS OF USEFUL TERMS

Client/server interaction - A client/server interaction has two levels: system and user.

The system or router level includes all the activities within the TCP channel, and the

user level includes the client and the server that interact over the TCP channel in the

end-to-end manner.

Buffer - A finite memory space where objects queue up.

Network congestion - This happens when a router is inundated by a large volume of

incoming packets and runs out of buffer space, leading to loss of packets and very

slow or no response to the clients’ requests

 77

Queue – It is a series of requests waiting to be processed in a FIFO (first in first out)

basis.

Adaptive buffer – It meets the “n <Buffer ≤ m” criterion with lower limit n ≥0 and

upper limit m.

Adaptive/dynamic buffer size control – The buffer size is adjusted on the fly by the

dynamic buffer size tuning function:

),,)(,(3
tttt ICMRTMdt

dQQOBfunctionBufferSize = , where t indicates the time

point. The parameters are defined as follows: QOB - ratio of queue length over buffer

length, dt
dQ - rate of change of queue length, RTM 3 - Micro Mean Message

Response Time implementation, and ICM - integral control mechanism.

Traffic pattern – It is the traffic waveform/distribution, which may be SRD (short-

range dependence) or LRD (long-range dependence).

Long-Range Dependence – A stationary process is long-range dependent if its

autocorrelation function r(k) is nonsummable (i.e. ∑ ∞=
k

kr)(), applied only to

infinite time series[Paxson1995].

 78

Short-Range Dependence – A stationary process is short-range dependent if its

autocorrelation function r(k) is summable (i.e. ∑ ∞<
k

kr)().

Intelligent buffer controller – It uses soft computing techniques, for example, the FLC

(Fuzzy Logic Controller) and the NNC (Neural Network Controller).

Roundtrip time (RTT): It is the delay/latency between the time that a client sends a

request and gets the correct result from the server.

Packet loss – It happens in the transmission process (e.g. dropped by the receiver to

prevent local buffer overflow as a congestion prevention measure).

 3.2 PROBLEM DEFINITION

The scope of this research is dynamic buffer size tuning at the user level. The

argument is that if the chance of overflow for the server’s reception buffer in a TCP

based client/server or C/S interaction path (Figure 1.01 and Figure 1.4.1) is

eliminated, then the service roundtrip time or RTT can be shortened. In this sense the

C/S path becomes more dependable and suitable for time-critical applications. My

previous MPhil thesis had explored different possibilities of achieving reasonable

user-level dynamic buffer size tuning, and as a result four novel dynamic buffer

tuners were proposed, namely, the algorithmic PIDC and the intelligent/expert GAC,

FLC and NNC [Lin2002]. These four models are unique because they operate with a

 79

variable buffer length (VBL) as indicated in Figure 2.1.1. My MPhil research,

however, left behind some important but unaddressed issues as follows:

a) Does the Internet traffic impede the controllers’ stability and accuracy? If so

how can the impedance be alleviated or neutralized? In fact, the internet

traffic can change without warning, for example, from LRD (long-range

dependence) such as heavy-tailed and self-similar to SRD (short-range

dependence) such as Poisson [Molnár1999]. Such changes may have a serious

impact on the controllers’ performance.

b) Is it possible to have an optimal (cost effective) FLC design?

c) Is there a correlation between the accuracy and the number of neurons in the

hidden layer of the NNC? In my PhD research finding such a correlation is

called sensitivity analysis.

d) Is it possible to cut down the NNC control cycle time and lower the chance of

deleterious effect?

Over a C/S path there are two levels of operations: system and user as shown by

Figure 1.4.1, which is duplicated here to support a clearer explanation of the problem.

The system level includes all the activities in the TCP channel, which inevitably has

the collective error probability ρ (as explained in section 1.0 Introduction) due to the

sheer size and heterogeneity of the Internet. There are existing mechanism that can

prevent the network congestion, which results in router buffer overflow, loss of

messages/segments, and widespread retransmission. The sender based mechanisms

 80

tune the timeout windows to alleviate premature timeouts and/or the congestion

window to reduce the sending rate and thus the amount of data across the network.

Although the sender mechanisms have their contributions in cutting down the chance

of network congestion, they are not powerful enough and have side effects. For

example, the well-known AIMD (Additive Increase and Multiplicative Decrease)

algorithm [Jacobson 1988] can impoverish bandwidth utilization in “long-fat-pipes”,

which are high-bandwidth-high-latency networks [Wang2004]. This side effect is a

relatively recent observation and since then different methods had been proposed to

reduce it [Balakrishnan1997]. One of the counter measures is the AQM (Active

Queue Management) approach proposed by the IETF’s RFC 2309. It allows the

router to throttle the sender(s) once it has detected a strong likelihood of overflow in

its reception buffer. The RED (Random Early Discard) algorithm is the candidate to

do the job. The system-level congestion prevention activities cannot, however,

prevent user-level reception buffer of a C/S path from overflowing. As shown in

Figure 1.4.1, the client/server interaction at the user level is usually an asymmetric

rendezvous, with the server simultaneously serving many different clients. At the

periods of peak service demands the torrents of incoming request traffic merge to

inundate the buffer to overflow easily. The cause is not only the high incoming traffic

rate but also the pattern embedded in the merged traffic [Molnár1999]. If the server’s

reception buffer on a C/S path overflows only after the system has dished out a large

amount of resources to prevent network congestion and ensure the smoother passage

for a message/segment/packet from the sender to the server, then the result can be

disastrous. Therefore, it makes sense to propose dynamic buffer size tuners such as

 81

the PIDC, GAC, FLC and NNC to eliminate the chance of user-level buffer overflow

by ensuring the buffer length always covers the queue size. This needs the support of

an efficient memory recycling system in the host where the server resides. Besides,

dynamic buffer size tuning at the user level could also break down as the congestion

problem is a persistent one. Conceptually the congestion prevention effort at the

system level and the user-level dynamic buffer tuning operation together form a

unified solution to stifle buffer overflow along a C/S path.

(Duplication of Figure 1.4.1 for clearer problem definition)

The Internet traffic pattern changes without warning, for example, from LRD

(long-range dependence) such as heavy-tailed and self-similar to SRD (short-range

dependence) such as Poisson. Since the traffic patterns and the sudden change from

one pattern to another can have a serious impact on the queue dynamics and thus the

dynamic buffer tuner performance, the buffer tuning mechanism should be able to

 82

detect them and react within a reasonable time. Therefore, the real-time nature of the

detection mechanism is important for it to be applied successfully.

3.3 PROBLEM STATEMENT

The aim of this PhD research is to address the following issues in-depth. The

objectives include the following:

a) Study and define the impact of traffic on the stability and accuracy of the FLC

and the NNC, and propose methods to counteract the negative impact

effectively.

b) Explore and define the possible optimal range for the FLC design and

implementation.

c) Define the correlation between the number of neurons in the NNC hidden

layer and the control accuracy.

d) Propose a method(s) to optimize the NNC configuration to lower its control

cycle time so that it becomes more suitable for time critical applications over

the Internet.

e) Perform timing analyses of the improved/new FLC and NNC models to

confirm that they are indeed suitable for time-critical applications over the

Internet.

 83

3.4 RESEARCH METHODOLOGY

The aim of any research is to address an issue or problem as thoroughly as

possible. In the process it may involve the following: a) forming a conceptual

framework, b) dissecting this preliminary framework into manageable pieces so that

their functionalities and relationship can be investigated, c) developing the respective

system supporting architecture so that the conceptual framework can be tested,

verified and evaluated as a prototype, and d) improving the prototype continuously

with new experimental results and observations. In the research process both

backtracking and cross referencing are natural. To get meaningful research results

within a given time frame, discipline is absolutely necessary in the course of action.

This relies on choosing the correct research methodology, which is a totality of

methods and tools that are appropriate for the problem domain. From the literature

research activities can be classified in various ways in terms of their objectives and

approaches. For example, the following types are summarized from the literature by

[Nunamaker1991], a) basic and applied, b) scientific and engineering, c) evaluative

and development, d) research and development, and e) “formulative” and

“verificational”.

The system development approach involves theory building (development of

new ideas and conceptual frameworks and models), experimentation (computer

simulations to validate the underlying theory), and observation (case studies and

formulation of hypotheses to be tested through experimentation). The work in this

 84

PhD thesis clearly fits this approach, which supports system development and is

therefore an information systems research methodology [Nunamaker1991]. The

theory building part in the thesis consists of defining new types of buffer control

strategies and formulating their mathematical structures. The experimentation

involves both simulations and experimental studies on the Internet so that

observations can be carried out for system validation, which is essential for proof of

concept.

From another angle my PhD research is in the domain of computer science.

According to [Philips1987] there are three basic types in this domain, namely, testing

out, problem solving, and exploratory. From this perspective, this research is

exploratory even though it ends up with a prototyping for rigorous testing and

supporting future deeper research. The prototyping process concurs with the

definition of system development by [Nunamaker1991]. Therefore, the concepts in

[Nunamaker1991] and [Philips1987] complement each other. The workflow in my

PhD research is top-down and includes literature search, problem statement definition,

proposed solutions, and data collection and analysis. It is inappropriate, however, to

apply the top down philosophy in a strict sense because the exploratory investigations

at different stages may involve repetitive backtracking, re-orientation, and cross-

referencing, to gain enough insight for going to the next step. For meeting the

iterative or spiral behavior of the research activities the “investigate & experiment &

iterate (IET)” methodology is adopted as the basis. The reason for adopting this basis

 85

is that it helped me finish my previous MPhil research effectively and efficiently

[Lin2002] and led to important findings and refereed publications.

Since the area of dynamic buffer overflow control over the Internet is relatively

new, previous techniques and experience are limited in scope. It is inevitable that in

my PhD research intermediary models would be proposed so that tests and

experiments could be carried out to determine whether they are actually milestones.

In this light the IET approach is natural for this project because experiments are

continuously and repetitively needed to confirm the right direction for further actions.

In the course of research it is only natural to have backtracking, concept refinement

and modularization, and cross referencing. The basic IET methodology is conceptual,

and this means that it can be realized in different ways. In this research the IET

realization should gain from the experience of my previous MPhil project and be

implemented as a roadmap (Figure 3.4.1). As the PhD research progresses the new

experience gained would inspire inevitable changes to the IET hierarchy in the

roadmap.

 The first step in the IET approach is to divide the research problem is into

sub-problems or tasks. The division is based on the knowledge gained from literature

search and my previous experience. Each task is studied and executed carefully and

the findings determine if a task should be further divided, eliminated, or combined

with another extant one. As the research activities progress through a hierarchy of

tasks and sub-tasks, backtracking and cross-referencing are sometimes necessary.

 86

Backtracking is usually caused by insufficient research in one or several of the

previous tasks higher in the hierarchy. Therefore, revisit(s) and more research are

necessary with this/these previous task(s) to gain more insight so that the temporarily

suspended task can continue and remains possible with proper re-orientation. Cross-

referencing allows the present research stage to utilize the previous findings directly.

In fact, tangible products may be produced by different tasks and sub-tasks, such as

refereed journal and conference publications. This is clearly manifested by my

previous MPhil research experience [Lin2002].

 87

Figure 3.4.1 Realization of the IET methodology into a road map

 88

CHAPTER 4 OVERVIEW OF SOLUTIONS

4.0 BACKGROUND

The area of my PhD research is directed at performance enhancement and

fault tolerance in Internet applications. It is the continued, deeper investigation using

my previous MPhil research experience as the basis. My MPhil research concentrated

on how to use dynamic buffer size tuning to eliminate user-level buffer overflow at

the receiver side. Figure 4.0.1 shows the end-to-end client/server interaction over a

logical Internet TCP channel. This interaction in reality is asymmetric rendezvous

because the server serves many different clients simultaneously (i.e. one-server-to-

many-clients relationship). The request streams from different clients merge at the

server’s queue buffer. Every request has to wait there for its turn to be served. The

queue length can grow very long during periods of peak demand, especially for a

popular server. The overflow due to the merged traffic of different request streams

that inundate the server buffer is called user-level overflow in the context of my PhD

research. It differs from those along and inside the TCP channel. The dynamic buffer

tuners proposed in my MPhil thesis include [Lin2002]: the algorithmic PIDC (i.e.

proportional (P) plus integral (I) plus derivative (D) controller), and the intelligent

trio, namely, GAC (Genetic Algorithm Controller), FLC (Fuzzy Logic Controller)

and NNC (Neural Network Controller). This trio contributes to shortening the service

roundtrip time (RTT) in the asymmetric rendezvous by eliminating the chance of

user-level buffer overflow at the receiver side.

 89

Figure 4.0.1 End-to-end client/server asymmetric rendezvous

Buffer overflow can occur at both the system/router level (all activities inside

and including the logical TCP channel) and the user-level. Different strategies were

proposed for reducing or preventing the chance of overflow at the system level by

preventing network congestion. They are formally referred to as AQM (active queue

management) algorithms by RFC2309 [Braden1998]. The more recent AQM

algorithms use neural networks and their potential benefits had inspired the proposal

of the NNC. Together with the system-level AQM mechanisms the user-level

dynamic buffer size tuners proposed in my MPhil research, PIDC, GAC, FLC, and

NNC, form a unified solution to stifle buffer overflow in an asymmetric rendezvous.

If ρ encapsulates all the error probabilities that cause overflow in an asymmetric

 90

rendezvous, the average number of trials (ANT) to get a successful transmission

is)1(
1)]1([

1

1

ρρρ −≈−∑
∞→

=

−
K

j

jj . Therefore, eliminating the chance of user-level

overflow reduces ρ and thus ANT. As a result it improves asymmetric rendezvous

fault tolerance and shortens its RTT. The development history of the tuners in my

MPhil research is summarized as follows:

a) PIDC – It was proposed to improve the efficacy of the first model,

namely, “P+D” (i.e. proportional (P) plus derivative (D) controls).

The “P+D” aims at eliminating user-level buffer overflow by

dynamic buffer size tuning, which adaptively ensures that the buffer

length always cover the queue length. It however produces overflow

in real-life deployments because of the unrealistic expectation of

using a set of static parameters to cover the whole spectrum of

system dynamics. When integral (I) control is added to the “P+D”

model the novel PIDC is formed. The PIDC always eliminates the

chance of user-level buffer overflow despite its two shortcomings: a)

it locks up unused buffer memory and this affects the overall system

performance, and b) it does not have a safety margin and therefore

the queue length can get dangerously close to the buffer length

threatening overflow during peak demand periods. The desire to

eliminate these two shortcomings prompted the investigation into

the use of soft computing techniques.

 91

b) GAC – It is basically the combination of “PIDC plus

2},0{ Δ objective function plus genetic algorithm (GA). The GA

moderates the PIDC control process to make sure that it always

stays within the Δ safety margin about the chosen reference

represented symbolically by “0”. The GAC eliminates the PIDC’s

shortcomings but produces rare user-level overflow. The reason is

that the GA, similar to other evolutionary computing approaches,

does not guarantee the global-optimal solution in the solution

hyperplane [Mitchel1999].

c) FLC – It represents the desire and effort to eliminate any user-level

overflow and preserve the GAC merits. The FLC is basically the

following combination: “PIDC plus fuzzy logic plus

2},0{ Δ objective function”. The FLC is more stable and faster than

the GAC, and most important of all it does not produce any buffer

overflow.

d) NNC – The success of some AQM algorithms at the experimental

level inspired the NNC research, which is conceptually this

combination: “neural network plus 2},0{ Δ objective function”.

Although the NNC provides smoother and more accurate control

than the FLC, it has a much longer control cycle time. This makes

the NNC less suitable for time-critical applications.

 When the above dynamic buffer size tuners were verified, it was observed that

traffic patterns can affect their performance and stability. In all the experiments the

 92

FLC has remained the most efficient and stable dynamic buffer size tuner compared

to other versions. For this reason the FLC is always the candidate for different testing

purposes. The MPhil research, however, had left many unaddressed issues, which

form the basis for this deeper PhD research of mine. The unaddressed issues are

summarized in Table 4.0.1.

Tuner(s) Unaddressed issues in my MPhil research

FLC 1) Is it possible to have an optimal design?

2) Is it possible to make it reconfigurable (especially with

respect to traffic pattern changes)?

NNC 1) Is it possible to prune the NNC configuration on the fly so

that its control cycle time can be consistently and adaptively

reduced?

2) Is there a correlation between control accuracy and the

number of hidden neurons in the NNC back-propagation

architecture? (The procedure to provide the answer is called

sensitivity analysis.)

Traffic ill effects

for PIDC, FLC and

NNC

1) It is possible to calibrate the ill effects off-line so that the

tuners can use these calibrations to ward off the impedance by

fine-tuning its dynamic buffer tuning process adaptively?

2) If so, then how can the current Internet traffic pattern be

deciphered on the fly (on-line) so that the off-line calibrations

can be applied selectively?

Table 4.0.1 Unaddressed issues in my MPhil that forms the basis of my PhD research

 93

Finding solutions for the unaddressed issues in Table 4.0.1 forms the

backbone of my PhD research. It was difficult to rely on previous experience in

solving some of the problems, in particular “on-line” traffic detection. Firstly, the off-

line traffic analysis techniques are generally not well-established [Molnar1999] even

though there are many relevant publications [Abry2000, Arvotham2001, Cao2001,

Cottrel2001, Ryu1996, Crovella1997, Karagiannis2003, Leland1994, Resnick1997,

Taqqu2003, Willinger2003]. Secondly, “on-line” traffic detection techniques were

absent from the literature until the paper published by the COMP Team (or simply the

Team) [ATNAC]. The team analyzed the available off-line or post-mortem statistical

techniques and concluded that they are basically lump analysis. For example,

Gaussianity test [Zhang2003] is used to determine the stationarity of a discrete

stochastic process X. This is at best an estimate that can be reasonably accurate or a

crude approximation because Gaussianity is continuous but the target process is

discrete in contrast. A Gaussian distribution can be used to approximate a Poisson or

binomial process only under certain conditions [Jain1992]. Since in most published

cases the continuous and discrete ideas are lumped as one, the Team calls these cases

lump analysis. The Team uses the Hurst parameter as the yardstick to determine if

any aggregate m
lX of block size m and lag l “ ssH ” or not. The aggregate is ssH for

10 << H , and the range 5.00 << H indicates SRD (short-range dependence)

traffic (e.g. Markovain) and 15.0 << H for LRD (long-range dependence) traffic

(e.g. heavy-tailed and self-similar). The limitation or criterion of application for the

real-time traffic pattern detector (RTPD) [ATNAC] proposed by the COMP Team is

“ ssH and stationarity” because self-similar traffic can be non-stationary (i.e. non-

 94

linear). In non-linear situations the H value/effect does not scale linearly as a constant

[Zhang2003]. In the remaining section on overview of the solutions proposed in my

PhD research for the unaddressed issues in Table 4.0.1 are concisely described.

4.1 PROPOSED SOLUTIONS

4.1.1 FOR FLC

The empirical results indicate that an optimal design range exists for the FLC

design. Figure 4.1.1.1 shows the optimal range. Any complex design not in this range

yields no obvious advantage measured in terms of the amount of mean deviations

(MD) from the given steady-state reference symbolically represented by “0” in the

2},0{ Δ objective function.

Figure 4.1.1.1 An optimal FLC design is possible (mean deviation stabilizes

around 0.02) (excerpt of Figure 6.1.1.1)

 95

It is found that it is possible to make the FLC adaptive or reconfigurable (i.e.

A-FLC) [p12]. The approach is to squeeze the “don’t care” state range threshold as

shown by Figure 4.1.1.2. The amount of squeeze can be fixed/static or dynamic. The

dynamic approach is suitable for neutralizing the ill effects by IAT traffic patterns on

the tuner stability and efficacy on the fly.

Figure 4.1.1.2 A-FLC adjustment of the don’t care state range threshold on the

fly

The calibration of the amount of squeeze versus traffic pattern (e.g. self-

similar) was carried out for the FLC, as shown by Figure 4.1.1.3. Real-time

application of the squeeze calibration, however, is possible only if the RTPD is

included to detect the current traffic pattern on the fly. This led to the proposals of

two traffic filters in my PhD research for enhancing the RTPD. The inclusion of these

 96

two traffic filters into the RTPD framework produces the Enhanced RTPD or E-

RTPD. The E-RTPD provides the basis of on-line traffic pattern

detection/identification and neutralization of the traffic ill effects in the process of

dynamic buffer size tuning.

Figure 4.1.1.3 Mean Deviation Errors of different FLC designs versus traffic

patterns (excerpt of Figure 6.3.1.1)

4.1.2 FOR NNC

The HBP (Hessian Based Pruning) approach was proposed to reduce the

NNC execution time (i.e. control cycle time) on the fly. This on-line

pruning/optimization technique always works with the same skeletal neural network.

In operation the NNC has two modules: Chief and Learner. Figure 4.1.2.1 is the twin

system of two NNC clones (Chief and Learner). The NNC operates in two distinctive

phases, namely, training/learning, and dynamic buffer tuning. In action it is a twin

system consisting of the “Chief” NNC module and the “Learner” NNC module as

 97

shown in Figure 4.1.2.1. The Chief , which has already learnt previous patterns,

carries out actual dynamic buffer tuning while the Learner undergoes training to

acquire new knowledge to deal with new phenomena. Before training starts all the

weights of the arcs in the Learner’s neural network are randomized. As training

progresses the error (difference) between the “trainee” output and the NNC

desired/deserved output Δ decays gradually. After training the Chief and the Learner

swap positions; the Chief becomes the learner.

Figure 4.1.2.1 The NNC – a twin system of two NNC clones (excerpt of Figure

7.1.2)

Thorough analysis was carried out to determine if the number of hidden

neurons would have an impact on the NNC performance. The preliminary empirical

results shown in Figure 4.1.2.2 indicate that having 20 neurons in the NNC hidden

layer is more or less the break point. Using more neurons does not produce better

performance by yielding a lower MD. For the Poisson trace (a SRD pattern), the

mean deviation error settles down for 15 hidden neurons in the hidden layer but for

 98

other traffic patterns at least 20 neurons are needed. All the experimental results from

this stage indicate that it is safer to use 20 neurons for the hidden layer for Internet

applications because the traffic pattern, which includes all the patterns in Figure

4.1.1.2, can switch quickly without warning.

Figure 4.1.1.2 Mean deviation error for using different numbers of neurons in

the NNC hidden layer versus different possible Internet traffic patterns (excerpt

of Figure 7.1.1.6)

4.1.3 REAL-TIME TRAFFIC PATTERN ANALYSIS

I made use of the accumulated experience by the COMP Team in real-time

traffic analysis. In return my PhD research contributed two traffic filters: real-time

modified QQ-plot (or simply RT-QQ) filter/estimator and self-similarity (2S) filter

 99

for real time traffic pattern detection. The 2S filter operation follows the CAB

concept proposed by the Team. This concept helps find the starting point of a data

section for meaningful RTPA evaluation. This point should satisfy the Gaussianity

test, and only then the 2S filter starts to find the necessary outcomes, including the H

and D values for the successive aggregates mX of a stochastic process X long the

time axis. The block size m is a variable because the aggregate size for a pre-defined

time interval depends on the average IAT of the aggregate; longer IAT means a

smaller m . This "timed aggregate" approach avoids significant real-time sampling

latency due to the unpredictable IAT. Figure 4.1.3.1 summarizes the CAB mechanism

that the 2S filter works with. The mechanism involves two separate real-time sub-

operations: Gaussianity test, and traffic pattern detection. The Gaussinaity test

continues throughout the CAB mechanism’s service life. K1, K2 and K3 are blocks

(timed aggregates of variable lengths) for three Gaussiainity tests. The second half of

K1 is basically the first half of K2 to indicate that data in the current block/window is

always half and half as the window is shifting forward along the time axis. For

example, if Gaussianity is confirmed for K1 at 1Ag , then the 2S filter starts to collect

the first timed aggregate mX (between 1Ag and 2Ag) so that the corresponding H

value can be calculated. In the Figure 4.1.3.1 the 2S filter tries to confirm self-

similarity in mX for the “First aggregate” and finds H by the P1 linear regression.

The same process repeats if the K2 block is also Gaussian. If the K3 block were

found to possess no Gaussianity, then the 2S filter would stop operation because the

data has become non-stationary. More details are presented in Chapter 5.

 100

Figure 4.1.3.1 CAB mechanism has two real-time sub-operations (excerpt of

Figure 5.2.3)

4.2 ORIGINALITY AND SIGNIFICANCE

This PhD research is a deeper exploration based on my previous MPhil

findings [Lin2002] as the basis. In the MPhil project four original dynamic buffer size

tuners for user-level applications were proposed: PIDC [Ip2001], GAC

[Lin2001GAC], FLC [Lin2002FLC], and the NNC [Lin2001NNC]. In fact, these four

tuners represent an evolutionary process. The PIDC, which is algorithmic, eliminates

buffer overflow by proportional (P), derivative (D) and integral (I) controls despite

the presence of performance shortcomings. The GAC uses genetic algorithms (GA) to

eliminate these shortcomings. Unfortunately it produces occasional buffer overflow

despite the fact that it has completely eliminated the PIDC shortcomings. Yet, the GA

experience has confirmed that the effectiveness of the expert or soft computing

 101

approach for dynamic buffer size tuning. The desire to preserve this effectiveness and

prevent occasional buffer overflow at the same time led the proposal of the FLC,

which uses fuzzy logic instead of GA. Meanwhile, the published positive experience

of using neural networks in the AQM (active queue management) area [Braden1998]

inspired the NNC proposal. The significant contribution by the four dynamic buffer

size tuners is that they eliminate buffer overflow at the user level. As a result they

shorten the client/server roundtrip time (RTT) over the Internet. These tuners are

original because similar models have never been proposed before. They warrant

deeper investigations for their positive impact on the performance of time-critical

applications over a sizeable network such as the Internet. The findings from such

deeper investigations should be original because they add new values to the original

tuners.

This PhD research addresses those issues uncovered in my previous MPhil

thesis, and they include the following:

a) To prevent occasional buffer overflows under GAC: The aim is to find a way to

rectify the overflow problem. The preliminary conclusion is that the overflow is due

to the very nature of any evolutionary techniques, which guarantee no global-optimal

solution in the hyperplane [Mitchell1999]. Since this is a fundamental problem in

evolutionary computing, it is outside the scope of the present research and no further

pursuit was warranted.

 102

b) To confirm that the FLC is a complete design approach: In the MPhil research only

a few FLC configurations were proposed and tested. The aim is to ensure the

following: i) these configurations need only short execution times, ii) they could

indeed eliminate the PIDC shortcomings without causing buffer overflow and iii) the

findings would pave a solid way for deeper investigation into the following:

i) Is the FLC indeed a generic design approach in the sense that any

configurations would work correctly even with somewhat different

performance?

ii) Is it possible to have optimal FLC design(s)?

The PhD findings confirm that the FLC is indeed a generic design approach and it is

possible to have optimal FLC designs. This original contribution was not part of my

MPhil findings.

c) To shorten the NNC execution time: The NNC proposed in my MPhil thesis has

the longest execution time compared to PIDC, GAC and FLC and this can easily

produce deleterious effects. The desire to shorten the NNC execution time led to the

proposal of the Hessian based dynamic pruning technique, which successfully

optimizes the neural network configuration of the skeletal NNC on the fly. This

technique is original because no real-time dynamic neural network optimization by

pruning as such has been proposed before. The success of using this technique to

optimize the NNC continuously provides some insight into how real-time

optimization of neural networks could be achieved.

 103

d) To neutralize traffic ill effects on system performance in a dynamic manner: It was

observed from the MPhil’s experimental data that Internet traffic patterns can produce

negative impact on a tuner’s performance. Since the PIDC, GAC, FLC and NNC

tuners operate in a real-time manner, a solution is needed to identify the traffic pattern

at any time so that the traffic ill effects on tuner performance could be nullified. The

deeper PhD investigation of this issue led to the following: i) it is possible to include

real-time traffic detection capability into a tuner and ii) two novel real-time traffic

pattern filters, namely the modified QQ-plot that identifies heavy-tailed traffic and

the 2S filter that detects self-similar traffic were proposed. The contribution from this

area of investigation is original and significant because how real-time traffic pattern

detection capability can be paired with time-critical applications for better system

stability and performance is demonstrated for the first time.

The following table concisely differentiates the original and significant

achievements by this PhD research from my previous MPhil thesis.

MPhil’s original contribution PhD’s original contribution
*Four basic novel dynamic buffer size
controllers/tuners were proposed,
namely PIDC, GAC, FLC and NNC.

*The GAC was found to be unacceptable
because it yields occasional buffer
overflow.

*The unaddressed issues for the four
original tuners from the MPhil thesis
form the problem statement of the PhD
research.

* Deeper investigation of the GAC
confirms that the buffer overflow is due
to the very nature of evolutionary
computing. Since this is a fundamental
issue in this discipline, no further work
was pursued because the GAC is
application of GA in nature.

 104

* A few FLC designs were proposed
(e.g. [4x4] and [4x6]) and tested with the
aim to preserve the merits of the soft-
computing approach as it was
demonstrated by GAC and eliminate the
buffer overflow at the same time.

* The following had encouraged the
NNC proposal: i) success of using the
objective function for both GAC and
FLC as the operation principle, ii) the
desire to have a smoother convergence
than the FLC, and iii) positive
experience in using neural networks in
the AQM area was published.

* Two NNC designs, which both work
as a twin parallel system: Chief (in
control) and Learner (in training): a)
recurrent NNC (i.e. NNC+CA), where
CA is the feedback loop and b) basic
NNC without feedback loop –
oscillatory {The NNC+CA framework is
the basis for the PhD investigation}.

* The real-time nature of dynamic buffer
size tuning requires short tuner
execution time, and this led to the choice
of backpropagation as the NNC
configuration because of its simplicity.
Preliminary empirical analysis indicated
that configuration of 10 input neurons,
20 neurons in the hidden layer, and one
output neuron could be cost-effective.
The NNC still has the longest execution
time compared to PIDC, GAC and FLC.

* Traffic patterns can affect system
performance as observed from the
empirical data.

* Different FLC designs were proposed
and tested, and the empirical results
confirm the following: i) the FLC is
indeed a generic design approach, ii) an
optimal design range exists, and iii) the
FLC can be made to reconfigure on the
fly for better performance (i.e. A-FLC
and R2-FLC).

* It is desirable to shorten the NNC
execution time for successful real-time
applications. For this reason the original
Hessian based technique that optimizes
the NNC tuner by pruning its
configuration on the fly was proposed.
This technique is generic in nature and
works correctly when incorporated into
the NNC framework. The logical
pruning process always starts with the
same skeletal NN configuration.

* Sensitivity analysis was carried out to
find optimal NNC configuration(s), and
the result confirmed that the [10, 20, 1]
backpropagation configuration is indeed
cost-effective. The analysis finds the
correlation between the number of
neurons in the NNC’s hidden layer and
the control/tuning accuracy.

* Real-time traffic detection capability
was considered and incorporated into the
dynamic buffer size tuning process
successfully. It is an original example of

 106

4.3 CONNECTIVE SUMMARY

This chapter has given a concise summary of all the solutions proposed in my

PhD research with respect to the unaddressed issues from my MPhil as listed in Table

4.0.1. The details of these solutions and my PhD research contributions will be

presented in details in the following chapters: a) Chapter 5 describes the real-time

traffic detection contribution, b) Chapter 6 is the in-depth FLC research, c) Chapter 7

is the in-depth NNC research, and Chapter 8 is the location-aware test-bed with the

FLC as the chosen dynamic buffer size tuner.

 107

CHAPTER 5 REAL-TIME TRAFFIC DETECTION CONTRIBUTION

5.0 INTRODUCTION

The PIDC, GAC, FLC, and NNC dynamic tuner models proposed in my

previous MPhil research [Lin2002] were verified with pre-collected Internet IAT

traces (inter-arrival times among the requests from client to server). They provide the

solid basis for my present deeper PhD research. The verification exercises of these

tuners for my MPhil thesis, however, showed that they might produce various mean

deviations (MD) from the given steady-state references. This inspired the

investigation of the correlation between IAT traffic patterns and tuner stability in my

present PhD study, using the FLC dynamic buffer size tuner as the test-bed. The setup

for the experiments in my PhD investigations is shown in Figure (5.0.1). It has

evolved over time to meet the changing experimental objectives. The dotted lines

show the new additions to the basic setup shown in solid lines.

 108

Figure 5.0.1 The setup for the subsequent tests

The setup for conducting experiments in my PhD research (Figure 5.0.1) is an

Aglets mobile agent platform environment. The aim is to make the experimental

results scalable because the platform is designed for the internet. The driver and the

server in the setup are aglets (agile applets). The driver picks a waveform to simulate

the desired IAT distribution/pattern for the requested traffic into the server’s queue.

The tuner (e.g. FLC) utilizes the buffer length (B) and the queue length (Q) to

adaptively compute the buffer adjustment size for the dynamic tuning process. Figure

5.0.2 shows the different MD values produced by the FLC for different IAT traffic

patterns. Besides detecting traffic patterns on the fly, the E-RTPD (Enhanced Real-

Time Traffic Pattern Detector) also helps visualize the correlation between a traffic

pattern and the corresponding MD value. Figure 5.0.2 is a result of the research work

described in sections 6.2 and 6.3 of Chapter 6.

 109

Figure 5.0.2 Different MD for specific traffic patterns by the FLC (Chapter 6)

Requirements for real-time traffic analysis differ from that for non-real-time or

“post-mortem” purposes. Real-time analysis recognizes a specific pattern embedded

in the data segment sampled on the fly. If an IAT collection of size m is made from a

stochastic process X, then the data segment is the aggregate mX . Over time X may

yield many aggregates, which are uniquely identified by the aggregate level l

[Taqqu2003], i.e. m
lX . In my present research we call any entity that recognizes a

specific pattern (e.g. self-similar) is a traffic pattern filter. For example, the statistical

modified QQ-plot is a “post-mortem” filter to recognize heavy-tailed distributions

[Molnar1999].

At the time of my PhD traffic investigation the research team (called the

“COMP Team” hereafter) led by Dr. Allan Wong (my PhD supervisor) was deep into

real-time traffic pattern detection and analysis already. The COMP Team proposed,

 110

verified and published the novel Real-Time Traffic Pattern Detector (RTPD) [p11]. I

was involved with the RTPD verification and that experience proved useful for traffic

investigation. The RTPD design was gained from experience with the post-mortem,

statistical Selfis tool [Karagiannis2003]. My participation and experience in the

RTPD experiments has inspired my pursuit into proposing effective real-time traffic

pattern filters. As a result I have achieved the following for my PhD thesis:

a) Converting the post-mortem modified QQ-plot for real-time applications.

b) Developing the novel self-similarity (2S) filter because the original RTPD

by the COMP Team does not detect self-similar traffic.

The RTPD uses the Hurst parameter/effect as the yard stick and calls a stochastic

process ssH if its H value is within the 10 << H range. The range 5.00 << H is for

the short-range dependence (SRD) and 15.0 << H indicates long-range dependence

(LRD). The value 5.0=H indicates “white noise” and is ignored. SRD includes

Markovian traffic and LRD includes heavy-tailed[Resnick1997] and self-similar

patterns[Leland1994, Crovella1997, Tsybakov1998]. The RTPD puts emphasis on

stationary traffic. A stationary stochastic process has independent increments in

its m
lX aggregates [Willinger2003]. For example, the distribution of the arrivals

between time t and st + depends solely on the interval s but not the starting point t .

In the literature stationary processes are frequently associated with “Gaussinianity”.

A Gaussian, ssH , stationary process is called the fractional Brownian motion and the

independent increment is the fractional Gaussian noise. A ssH process may be SRD

or LRD, and a LRD process can be heavy-tailed and self-similar. The reverse may not

 111

be true, for example, a self-similar process may not be stationary [Cao2001]. There is,

however, a strong correspondence between self-similarity and stationarity.

The core of the original RTPD proposed by the COMP Team is the traditional

R/S (rescaled adjusted statistics) approach for non-real-time applications. It is the

statistical expression:
)var(

},...,2,1:min{},....,2,1:max{
X

kiWkiW
S

R ii =−=
= . The iW

parameter is defined by ∑
=

−=
i

m
mi XXW

1
)(for ki ,...2,1= , and X is the mean

of ∑
=

=
k

i
iXkX

1

1 . Yet, the best value for k in this traditional approach has to be found

by trial and error. This is the main drawback of the R/S approach because its speed

and accuracy depend on k. The R/S ratio is the rescaled range of the discrete process

X , },...2,1:{ kiX i = . The log-log plot of the Hk
S

R)2(= feature yields the H value.

The time to compute X is unpredictable because of k. The COMP Team resolved this

unpredictability and converted the R/S into the enhanced R/S version (i.e. E-R/S) for

real-time applications by incorporating the Convergence Algorithm (CA)

[Wong2001]. This involves transferring and adapting CA, which is from the IEPM

(Internet End-to-End Performance Measurement) domain [Cottrel1999], for effective

application in real-time traffic analysis.

The CA operation is based on the Central Limit Theorem, and its accuracy is

therefore independent of the traffic waveform. It is summarized by the equations: (5.1)

and (5.2).

 112

The estimated mean iM in the thi prediction cycle is based on the fixed F (flush

limit) number of data samples. The cycle time is the interval for collecting the F

samples physically. It was previously confirmed that iM has the fastest convergence

for F=14 [Wong2001]. Other parameters include: a) 1−iM is the feedback of the last

predicted mean to the current iM prediction cycle, b) i
jm is the jth data item sampled

in the current ith iM cycle,)1(,....,3,2,1 −= Fj , and c) 0M is the first data sample

when the MCA had first started running. iM replaces X to yield ∑
=

−=
i

m
imi MXW

1
)(

for the E-R/S, which is more suitable for real-time applications because the number

of data items (e.g. IAT) needed to calculate iW is fixed (predictable), namely 14=F .

To summarize, my PhD contributions to real-time traffic analysis are threefold:

a) Development of two novel real-time traffic pattern filters: RR-QQ (real-time

modified QQ-plot) and self-similarity (2S)

b) Conversion of the RTPD to its enhanced version (i.e. Enhanced RTPD or E-RTPD)

by including RR-QQ and 2S filters.

c) Addition of these two novel filters to enable the FLC to reconfigure (i.e. the

Reconfigurable FLC (R-FLC) in section 6.2 of Chapter 6) by using the results

detected by the E-RTPD on the fly. The reconfiguration adjusts the FLC’s derivative

(D) control to neutralize the ill effects arising from changing traffic patterns. As a

result more accurate dynamic buffer size tuning can be carried out and maintained.

1);2.5.(..........);1.5(.......... 1
00

1

1
1

≥=
+

= =
=

−=

=
− ∑

imM
F

mM
M i

j

Fj

j

i
ji

i

 113

5.1 TRAFFIC ANALYSIS IN GENERAL

Three goals for traffic analysis can be identified from the literature: a) gauging the

end-to-end channel traffic to interpret the channel behavior, b) trace-based, post-

mortem or off-line traffic analysis (OTA) to understand the network behavior in the

period where the trace was collected, and c) real-time traffic pattern analysis (RTPA)

so that the result can be used immediately by a running application to self-tune or

reconfigure to maintain high performance. Trace-based, off-line analyses pertain only

to the traces concerned because the empirical results cannot be construed as the

general network behavior. For example, the different traces may exhibit similar

behavior because when the traces were collected the same network parameters

happened to be coincidentally dominant.

5.1.1 GAUGING END-TO-END BEHAVIOR

It is always desirable to gauge the end-to-end client/server path (EE-path)

(Figure 5.1.1.1) or a TCP channel for more reliable and efficient communication

purposes. This approach is the basis of the IEPM (Internet End-to-End Performance

Measurement) school of thought [Cottrel1999]. The off-line tools that manipulate

pre-collected traces include the Skitter, PingER, RTM 2 [Wong2001M2RT] and

SURVEYOR [Cottrel2001]. The RTM 3 (Micro Mean Message Response Time) tool

is the only known IEPM model capable of on-line applications. It can predict the

 114

mean of an IAT aggregate mX accurately and quickly on the fly. The difference

between channel traffic and EE-path traffic is subtle and therefore they are used

interchangeably. Precisely, channel traffic means those that have reached the exit of a

logical channel. A server on the user-level is normally an asymmetric rendezvous (i.e.

one-server-to-many-client relationship). In Figure 5.1.1.2 different service request

streams from different channels merge at the server’s service access point (SAP)

before entering its queue of service requests. Therefore, a channel traffic pattern

could be very different from the composite “merged traffic” or “EE-path” behavior.

Figure 5.1.1.1 The EE-path

Figure 5.1.1.2 Merged traffic at the user-level

 115

5.1.2 OFF-LINE (POST-MORTEM) TRAFFIC ANALYSIS

 The aim is to understand the network/channel behavior with respect to the

trace being examined. The off-line traffic analyzing (OTA) techniques are not well-

established at this moment [Molnar1999, Taqqu2003]. From the COMP Team’s point

of view, the results from using these techniques should be accepted only from the

trace perspective. They cannot be generalized to represent the underlying network.

The OTA techniques are basically statistical [Karagiannis2003] and aim at

determining the following properties:

a) Stationarity: A stochastic process X is stationary if its aggregates mX of block

size m have independent increments. Conceptually stationarity is an expression of the

Gaussian property (i.e. "Gaussianity"). It is generally accepted that the Gaussian

(normal), Poisson, Erlang, and binomial distributions belong to the exponential family,

which is memoryless [Mitrani1987] and is therefore stationary. Consequently any

bell curve that fits an Erlang variant of a specified shape parameter is exponential.

This provides the basis for the "kurtosis/skewness" test that can verify Gaussianity

[Jain1991]. The kurtosis value determines if a bell curve is peaked (for positive

values) or flat (for negative values). The skewness value decides if the bell curve

skews to the right (for positive values) or to the left (for negative values). For

example, skewing to the right means the right tail in the distribution is heavier than

the left. The pivotal point is that Gaussianity of a normal distribution is perfect for

3=kurtosis and 0=skewness , which are the “standards or references” for

 116

comparison. It is reasonable to decide if a bell curve is Gaussian by comparing with

these “standards” in a test for Gaussianity. Statistically estimated kurtosis and

skewness values from a trace are rarely perfect. Reasonably predefined kurtosis and

skewness limits, however, help determine if a bell curve of the exponential property

does exist. For example, if the following are computed: 5.1=kurtosis and

5.0=skewness , statistically the bell curve is somewhere between a Weibull

distribution (5.1=gamma , 5.4≈skewness and 1≈skewness) and a normal

distribution. Therefore it may be regarded as part of the exponential family to possess

stationarity. The COMP Team regards the Gaussianity test as a crude but workable

way to look for the sign of existence of an exponential bell curve. Choosing the

appropriate kurtosis and skewness limits, however, depends on empirical experience

and is therefore an art rather than a science. Guessing the nature of the Gaussianity

test by kurtosis and skewness becomes obvious if the properties of relevant

distributions are examined. A normal distribution is inherently continuous but

Poisson and binomial processes (such as packet traffic flow over the Internet) are

discrete. The normal, binomial and Poisson processes can possess approximately the

same behavior only under certain constraints (to be explained later). Therefore, there

is ample room for making wrong guesses in using only the kurtosis/skewness test for

Gaussianity.

b) Hurst (H) effect: H effect/value measurement originated from hydrology (water

flow), and only much later was adopted by researchers for traffic analysis

[Molnar1999]. Statistical methods to estimate H include the R/S (rescaled adjusted

 117

statistics) method and the Periodogram [Molnar1999, Karagiannis2003]. The H value

of a ssH stochastic process is divided into three sections: 5.00 << H for SRD (short-

range dependence; e.g. Markovian inter-arrival times (IAT) traffic), 5.0=H for

"white noise" and 15.0 << H for LRD (long-range dependence). The relatively more

complex LRD has two basic components: heavy-tailed and self-similar. Self-similar

patterns often result from heavy-tailed traffic but the latter is not a necessary

condition for self-similarity [Ryu1996]. For example, the self-similar FSNDPP

(Fractal-Shot-Noise-Driven Poisson Process) has no heavy-tailed property. Fractal

and self-similar are synonymous except that the fractal dimension (D) is non-integer

(i.e. real number). Objects are self-similar or fractal if they can be derived from others

by scaling, rotation, and translation. The different existing definitions for the fractal

dimension are non-converging. The Cantor Set, however, provides a reasonable

conceptual basis. If an object is geometrically, recursively split into similar pieces,

then at the thK iteration step the total measure of the object is the “product of the

number of similar pieces and DO ”. The parameter O is the splitting resolution or

reduction. For example, the Cantor Set considers drawing a line segment of interval

[0,1] as the first step (i.e. 0=K). This line is then manipulated by the subsequent

steps: a) divide the line into three equal portions (i.e. resolution is 3
1) and remove

the middle portion (i.e. 1=K), b) remove the middle portions from the remaining two

(i.e. 2=K), and c) repeat the last step ad infinitum. The thK iteration produces K2

similar line segments of length Ks)3
1(= . The Cantor Set’s self-similarity dimension

is defined by the formula =sD K2 * K)3
1(or alternatively

 118

63.0]))3log((
))2log(([≈= K

KDs . In fact, the extant FD3 tool [Sarraille] can

determine if an object or image is fractal and measures its D value.

c) Linearity: Self-similar traffic can be linear and non-linear. Linear fractal

traffic scales with a specific H value, but for the non-linear cases H becomes a

variable. The following two methods can test and confirm linearity effectively: a) the

"wavelet partitioning function (WPF) [Abry2000]" approach and b) the “CAB-based

D/H plot” proposed by the COMP Team (explained later).

Figure 5.1.2.1 The hierarchy of OTA methods

 119

All the OTA discussions above are summarized in Figure 5.1.2.1. As a

demonstration this hierarchy is walked through in order to find the self-similarity

dimension D for an IAT aggregate mX . The steps involved are as follows: a)

determine the Guassianity of mX by computing its kurtosis and skewness values and

comparing them with the chosen limits, b) if Gaussianity is positive then compute H

by the R/S or Periodogram methods, c) for 15.0 << H determine D by using the

FD3 tool [Sarraille], and d) use the WPF approach to confirm that D is correct due to

the existence of linearity.

5.1.3 REAL-TIME TRAFFIC PATTERN ANALYSIS (RTPA)

Post-mortem traffic analysis is useful to understand what happened in a

network, but only in the trace perspective. It is, however, impractical to engineer a

system and expect it to work correctly in a time-variant environment, based on partial

past performance data. The real-time traffic pattern detector (RTPD) published by

the COMP Team is an example of the RTPA approach [Lin2004a]. If the RTPD is

incorporated as a component in a time-critical application, the latter can use the

detected traffic pattern to self-tune for more stable performance in a dynamic and

adaptive fashion.

 120

5.2 THE COMP TEAM

Real-time traffic pattern detection proposed by the COMP Team is a novel

concept. Before that the known methods are basically post-mortem. The relevant

experience accumulated by COMP Team that is useful for my PhD study includes the

following, namely:

a) Lump analysis

b) Essence of time

c) Traffic independence

d) Micro implementation

e) D/H correlation

a) Lump analysis: The COMP Team considers the OTA techniques as lump analysis.

The reason behind this is that the raw trace used in an OTA exercise can be

composite. It has no demarcation where one traffic pattern begins and ends before the

next. Therefore, the overall result indicates the composite effect of the different

traffic types interleaved together. This is misleading in terms of system behavior. For

real-time applications the response to stimulation, however, is immediate and clear.

For example, a dynamic buffer tuner must respond adaptively to the continuous IAT

traffic pattern changes, which are interleaved along the time axis. To trace where a

traffic pattern begins and ends means scrutinizing the true characteristic of

a mX aggregate by having the size m as a variable. To have a meaningful scrutiny the

m value should represent a sufficient number of samples to make the traffic

 121

characteristic of mX stand out. The RTPD approach is time based and this makes m

a variable. Being time based means we have to denote it as m
TtX = , where the suffix T

indicates a pre-defined interval. The m
TtX = aggregates are examined one after another

until the analytical process has ended. This kind of successive aggregate inspections

makes the RTPD approach differ from the OTA lump analysis

b) Essence of time: For the success of any real-time application, time is of the essence.

OTA techniques normally work with immediately available data in the trace. For

example, if an OTA method needs an average of 200 time units to compute the result

from 1000 samples in the IAT trace (i.e. 1000=mX), then the computation/execution

time is intrinsic. It is intrinsic because it does not include the actual sampling latency

for the 1000 samples. If the average IAT for the 1000 samples is 1 second, then the

actual time needed to compute the result is 1000*1+200 or 1200 time units on-line.

The data items have to be sampled one by one before the computation. For

immediately available data in a pre-collected trace, however, there is no such

sampling latency. A long sampling latency/delay can lead to deleterious effect

because by the time the traffic characteristic is identified it has become history and

would have changed and is, therefore, useless for on-line application. Therefore time

essence requires the RTPD mechanism to produce a result quickly so that it is can be

used immediately by a real-time application to self-tune and rectify itself.

c) Traffic independence: The essential quality for any tool to analyze traffic and

identify its characteristic(s) correctly is traffic independence. This was repeatedly

 122

demonstrated by the previous IEPM (Internet End-to-End Performance Measurement)

applications [Cottrel1999]. Any tools that are based on the Central Limit Theorem

(CLT) [Aloisio1980] are inherently traffic independent [Wong2001M2RT].

d) Micro implementation: Any successful tool for RTPA purposes should be simple

so that it executes quickly to produce the result needed for real-time applications

[Ip2002]. It should run independently so that: a) it can be invoked for service anytime

and anywhere, and b) it does not burden/delay the execution time of its service user.

For example, if the tool executes much faster than its service requestor running in

parallel, then when the requestor needs the result it is immediately available (i.e. no

substantial waiting).

e) D/H correlation: The fractal dimension D is proportional to the H value and the

resolution (as in the Cantor Set). Figure 5.2.1 correlates the D and H values computed

by seven experiments. The self-similar traffic traces were artificially generated for the

experiments by using Kramer’s tool [Kramer]. The D measurements were conducted

with the FD3 tool [Sarraille], and the H values were estimated by using the Selfis tool

[Karagiannis2003]. If we assumed that the traces for the seven experiments were

aggregates (i.e. m
lX 7,..2,1=) of the same stochastic process X, then X is nonlinear. The

D/H correlation shows the non-linearity of X because H changes as a variable. In fact,

in Figure 5.2.1 the D value is proportional to H and the splitting resolution (e.g. the

Cantor set’s resolution of 3
1).

 123

Figure 5.2.1 D/H correlation with respect to Table 5.3.2.1.1

Some of the COMP Team’s conclusions such as the following directly pertain

to my PhD research of real-time traffic analysis and filter design, namely:

a) RTM 3 adoption

b) Conceptual discrepancy

c) CAB (continuous aggregate based)

d) CAB-based D/H plot

a) RTM 3 adoption: RTM 3 is the unique micro implementation of the Convergence

Algorithm (CA) [Wong2001]. It is CLT based and needs only 250 clock cycles to

execute and predict on the fly the mean of a waveform [Ip2002]. It is very useful for

calculating the mean values needed by a real-time traffic filter quickly and accurately.

 124

It has converted the traditional R/S method for measuring H to the enhanced R/S

version (i.e. E-R/S), which is a component in the RTPD [Lin2004a].

b) Conceptual discrepancy: One reason for off-line traffic analysis or OTA

techniques being not well-established is the conceptual discrepancy between

continuous and discrete processes. Some OTA tools just lump the two concepts

together in a high-level manner, and consequently these tools could hardly produce

qualitative results. For example, many publications try to explain the association

between the Hurst parameter and Gaussianity in the light of a continuous stochastic

process such as hydrology (i.e. water flow) [Hurst1965]. This is probably fine for

both phenomena originated from the continuous domain. Yet, when researchers

directly transfer/apply their Gaussian explanations to the discrete domain such as

packet traffic in the Internet, problems emerge. The transfer may be logical, but it is

only "approximately or marginally correct" in the discrete domain. In fact, the

problem of direct transfer as such is well known. In the area of process control

[Courriou2004], digital (discrete) and analog (continuous) implementations of the

same controller model produce different results. Discrete control (e.g. digital motor)

works with different equations and falls into the domain of Z Transform, but

continuous controllers work with Laplace Transform. Although the analog controller

delivers the expected controlled system behavior, its supposedly equivalent digital

version can shift the 3 db down point to create system instability. This implies that

discrete control needs compensation to yield the same behavior as its analog

counterpart. The COMP Team grasped this conceptual discrepancy by reviewing the

 125

relationship among different discrete and continuous distributions. The discrepancy is

summarized in Figure 5.2.2. Conceptually the Bernoulli Trials experiment (e.g.

throwing a coin until a head appears) produces a memoryless binomial distribution. If

σ is the probability of having a head, then the probability jP of producing a head at

the thj trial is 1)1(−−= j
jP σσ . Consider the F(j)

distribution Kj
K

j

K

j
jPjF)1(1)1()(1

11

σσσ −−=−== −

==
∑∑ .

The F(j) distribution obtained by summing jP above is power, geometric and

binomial. This binomial distribution can be approximated by the Poisson distribution

for rare events. An event is rare if it has less than 10% chance (i.e. 1.0=σ) to occur

in a sample of size 50>n [Mitrani1987], 5≤σn is the criterion for rarity. The

approximation deteriorates as σ increases and n decreases. The normal distribution,

which is in the continuous domain, can approximate both the discrete, memoryless

binomial and Poisson distributions. The approximation is good for the binomial

distribution for 25>σn and for the Poisson distribution (i.e. 1=− λλee) for 9>λ

(or σλ n=). The conceptual discrepancy, which lies in the constraint differences

shown in Figure 5.2.2, can sometimes make the Gaussianity test based on using

kurtosis and skewness values unreliable. The constraints are, namely, 51 ≤⇒ σnC ,

252 >⇒ σnC , and 93 >⇒ σnC [Jain1991]. The Gaussianity test based on

kurtosis and skewness is, however, empirically a workable but crude approach to

verify the memoryless (i.e. exponential) property of mX as a necessary condition for

stationarity. The success, however, depends on choosing correct kurtosis and

 126

skewness limits for comparison with other distributions in the exponential family, for

example, the Weibull and normal distributions.

Figure 5.2.2 Relationship among some common distributions

c) CAB (continuous aggregate based) approach: This is for finding the beginning of

a data section for meaningful RTPA evaluation. This starting point should satisfy the

Gaussianity test. Only then, could the RTPA mechanism (e.g. the RTPD) start to find

the necessary outcomes, for example, the H and D values for the successive

aggregates mX of a stochastic process X along the time axis. The block size m is a

variable because the aggregate size for a pre-defined time interval depends on the

average IAT of the aggregate; a longer IAT means a smaller m . This "timed

aggregate" approach avoids significant real-time sampling latency due to

unpredictable IAT. Figure 5.2.3 summarizes the CAB mechanism, which has two

separate real-time sub-operations: the Gaussianity test, and RTPD. The Gaussinaity

test continues throughout the CAB mechanism’s service life. K1, K2 and K3 are

blocks (timed aggregates of variable lengths) for Gaussiainity tests. The second half

of K1 is basically the first half of K2 to indicate that data in the current block/window

 127

is always half and half as the window is shifting forward. For example, if Gaussianity

is confirmed for K1 at 1Ag , then the RTPD mechanism starts to collect the first timed

aggregate mX (between 1Ag and 2Ag) so that the corresponding H value can be

calculated. In the Figure 5.2.3 example, the novel self-similar (2S) filter, which is my

PhD contribution, tries to confirm self-similarity in mX for the “First aggregate” and

finds H by the P1 linear regression (explained in detail later). This process repeats if

the K2 block is also Gaussian. If the K3 block was found to possess no Gaussianity,

then the 2S filter stops operation because the data has become non-stationary.

Figure 5.2.3 The CAB mechanism has two real-time sub-operations

d) CAB-based D/H plot: This is an extension of the 2S filter investigation and

theoretically the correlation between D and H can be found for every aggregate in a

 128

real-time manner. If the H values of all the aggregates along the time axis of

stochastic process X are approximately the same, then X is monofractal; otherwise it

is multifractal. At this moment the CAB-based D/H plotter makes use of the extant

FD3 tool [Sarraille] to compute D for every timed mX aggregate. The plotter is being

refined and the focus is on how to construct a real-time mechanism that is

functionally similar to FD3 but needs less time to execute.

5.3 THE RTPD CONTRIBUTION

5.3.1 REAL-TIME MODIFIED QQ-PLOT FILTER

A distribution F is LRD and heavy-tailed [Resnick1997] if

)()(1 xLxxF α−=− holds.

L is slowly varying, if

1)(
)(=∞→ xL

txLLimx for 0>t .

The simplest case of heavy-tailed distribution is the Pareto in the form

of α−−= xxF 1)(. The preliminary experimental results with different heavy-tailed

traces show that the E-R/S always recognizes their LRD character. The rationale of

the modified QQ-plot[Kratz] consists of the following: a) pick k upper order statistics

from the samples },...,,{ 21 nXXX , namely, uXXX k =≥≥≥ **
2

*
1 ... and discard the

rest, b) plot {()log(
*

u
X j ,)

1
log(

+
−

k
j), kj ≤≤1 }, and c) best-fit the data points to

 129

estimate α . Physically the uXXX k =≥≥≥ **
2

*
1 ... set consists of the following: a)

*
1X represents the event that has the highest frequency of occurrence in the set, b) the

set is arbitrarily chosen from a much larger set of ranked events by their frequencies

of occurrences, and c) u is the value of the lowest ranked event in the set, namely,

*
kX . The coefficient of determination 2R characterizes the regression (fitting) quality,

the higher the better. The modified QQ-plot is one of the many tools that can identify

the heavy-tailed character. In my PhD research I have converted this popular post-

mortem statistical technique for real-time applications, namely, the RT-QQ. The

conversion in the form of a Java object is actually a traffic filter to be invoked by the

filtration process, which is part of my RTPA (real-time traffic pattern analysis)

contribution.

Figure 5.3.1.1 Timing Analysis of the QQ Estimator (765 clock cycles) by the

Intel VTune Timing Analyzer

 130

Figure 5.3.1.2 A heavy-tailed traffic trace

Timing analysis of the of the real-time modified QQ-plot Java-based or RT-

QQ filter by the VTune [VTune2002] show that it needs an average of 750 clock

cycles to execute. If the filter is running on a platform that operates at 100Mhz, the

physical time is 5.7)10*100(
750

6 ≈=PT micro seconds only. This is the

operational limit of the filter because what it identifies is meaningless if the IAT of

the waveform is shorter than 7.5 micro seconds. The physical limit, indicates that the

RT-QQ filter can cater for a wide spectrum of time-critical applications. Figure

5.3.1.1 shows the VTune analytical result of 765 clock cycles that the filter needed to

identify the heavy-tailed IAT traffic pattern shown in Figure 5.3.1.2. Like other

traffic filters the RT-QQ runs independently as a logical entity to provide service

anytime and anywhere even though it is structurally an E-RTPD component. The

filter indicates that the traffic pattern in Figure 5.3.1.2 as heavy-tailed because strong

likelihood is confirmed by the high coefficient of determination for the 9231.02 =R

regression. The meaning of strong likelihood is user-defined. The criterion is that the

computed 2R value should be greater than the chosen threshold 2R
Th ; 2

2
R

ThR > . In

 131

light of the heavy-tailed property defined by the)()(1 xLxxF α−=− expression for a

LRD trace, α is equal to 0.5989 in this case. Although the Java RT-QQ filter

prototype recognizes “heavy-tailedness” by the quality of the linear regression,

namely, 2R in on-line applications, it also provides the function to produce plots like

the post-mortem approach. The plot in Figure 5.3.1.3 is produced by the RT-QQ filter

for demonstration purposes.

Figure 5.3.1.3 Modified QQ-plot filter identifies heavy-tailed character for the

trace in Figure 5.3.1.2

5.3.2 SELF-SIMILARITY (2S) FILTER

LRD traffic has two basic components: heavy-tailed and self-similar. The

proposed self-similarity (2S) filter differentiates heavy-tailed IAT patterns from self-

similar ones. Self-similarity in many fractal point processes results from heavy-tailed

 132

distributions, for example, FRP (Fractal Renewal Process) inter-arrival times. The

heavy-tailed property, however, is not a necessary condition for self-similarity

because at least the FSNDPP (Fractal-Shot-Noise-Driven Poisson Process) does not

have the heavy-tailed property. The 2S filter basis is the “asymptotically second-

order self-similarity” concept, or simply called statistical OSSnd2 or S2OSS, which is

associated with a sufficiently large aggregate level or lag l in a discrete stochastic

process X. For an aggregate }1:{ ≥= lXX m
l

m of size m in X, S2OSS for ∞→m

means that the associated autocorrelation function (ACF), namely)(lr m (for mX) is

proportional to)22(Hl −− . S2OSS is LRD for its ACF is non-summable, as indicated by

=)(lr m ∞=∑
∞

−1l

mr .The condition of “)22()(Hm llr −−∝ for ∞→m ” is

mathematically equivalent to the slowly decaying variance property. That is, the

variance of the mean of sample size m decays more slowly than m . This

phenomenon is represented by the expression: β−∝ mXVar m)(. For a S2OSS process

X and 15.0 << H the value of H22 −=β should apply. Equations (5.3.2.1) and

(5.3.2.2) summarize the S2OSS property and they hold for the weaker condition in

equation (5.3.2.3). The slowly decaying variance property is clear if a log-log plot is

produced for equation (5.3.2.1). As shown by equation (5.3.2.4),))(log(XVar is a

constant,))(log(mXVar versus)log(m yields a straight line with slope β− . The H

value can then be calculated by the)2(1 β−=H formula. The 2S filter finds β

for mX on the fly. The)(mXVar calculation uses the mean value)(mXE estimated

 133

by the RTM 3 process.)(mXE is ∑
+−=

−
lm

mln
nXm

1)1(

1 conceptually, and the key for

the 2S filter operation is to choose a sufficiently large m , which is the multiples (i.e.

C) of 14=F to virtually satisfy ∞→m ; FCm *= for estimating β . The detected

result is available at the Ag time point. In Figure 5.3.2.1 for example, the β result for

aggregate 2 is available at the point of 2=Ag .

)1.2.3.5).....((1)()22(XVar
m

XVar H
m

−=

)2.2.3.5)....(()(krlr m =
∞→m

lim)3.2.3.5)....(()(krlr m =

)4.2.3.5)....(log())(log())(log(mXVarXVar m β−=

The process in the 2S filter to calculate β is the “continuous aggregate based

(CAB)” concept, which is proposed by the COMP Team. The CAB evaluates if an

aggregate is stationary by checking its Gaussian property or “Gaussianity”

[Arvotham2001] by the kurtosis and skewness metrics. A symmetrical normal

distribution has perfect Gaussianity indicated by 3=kurtosis and 0=skewness .

Statistically measured kurtosis and skewness values are rarely perfect, and reasonable

limits can be used to indicate the presence of a bell curve, which belongs to the

exponential family that is capable of independent stationary increments. The 2S filter

uses the CAB concept and finds β by linear regression, and the quality of which can

be judged by the coefficient of determination or 2R between 0 and 1 [Jain1991]. A

higher 2R implies better quality for the linear regression. By the predefined

threshold 2R
Th (e.g. 0.85 or 85%) the 2S filter can reject a hypothesis of self-

 134

similarity in mX for 2
2

R
ThR < . The CAB operation in Figure 5.3.2.1 works with the

aggregates m
lAgX = in a discrete stochastic process X along the time axis. Assuming: a)

P1, P2, and P3 are the log-log plots for three successive aggregates based on

equation (5.3.2.4), b) these plots yield different β values: 1β for P1 with 82.02 =R ,

2β for P2 with 98.02 =R , and 3β for P3 with 95.02 =R , c) lAg = is the aggregate

level, and d) 9.02 =R
Th , then both P2 and P3 confirm self-similar traffic but not P1

(for 2
2

R
ThR <). If P2 and P3 yield very different β values, their H values by

)2(1 β−=H indicate different dimensions or D. The D value may change over time

due to various factors, for example, ON/OFF situations in the network

[Willinger2003]. A changing D or H is a sign of non-linearity in the stochastic

process being examined.

Figure 5.3.2.1 The “aggregate based (AB)” approach

 135

Skewness is represented by ()
sd

x
m

xi
N

i
3

1

3

)1(−
−∑ = , where x and sd are the measured

mean and standard deviation respectively for the aggregate of m samples. It measures

the symmetry of a bell-shaped aggregate distribution. A positive value indicates that

the bell curve skews right and the right tail is heavier than the left one. Kurtosis is

represented by
sd

xx
m

i
N

i
4

1

4

)1(

)(
−

∑ −= , and its value decides whether the bell curve is peaked (for

positive value) or flat (or negative value) compared to the normal distribution with

kurtosis=3 and skewness = 0.

5.3.2.1 EXPERIMENTAL RESULTS

The 2S filter was verified by simulations based on the CAB approach. The

experiments were conducted on the stable Aglets mobile agent platform, which is

designed for Internet applications. The Aglets makes the experimental results scalable

for the open Internet. The setup for the experiments is shown in Figure 5.3.2.1.1, in

which the driver and server are both aglets (agile applets).

 136

 Figure 5.3.2.1.1 Setup for the 2S filter experiments

The driver picks a known waveform or a pre-collected IAT trace that may

embed different traffic patterns over time. The pick simulates the IAT among the

requests that enter the server queue. The FLC dynamic buffer size tuner is the test-

bed for the 2S filter. It adjusts the buffer size on the fly by leveraging the current

queue length, buffer length, and detected traffic pattern. The traffic pattern(s) that

drives the IAT is also recorded by the E-RTPD that has included the 2S filter. This

helps matching the FLC control behavior with the specific traffic pattern. The VTune

measures the E-RTPD's average execution time so that its contribution to time-critical

applications on the Internet can be evaluated. Experiments with different IAT traffic

patterns were carried out. The results conclude that the 2S filter indeed detects self-

similar traffic and helps the FLC deliver more accurate dynamic buffer size tuning.

The experimental results presented here include: self-similarity detections, traffic and

FLC accuracy, and D/H correlation.

 137

Table 5.3.2.1.1 summarizes seven of the many different simulations

conducted. The self-similar traces, which simulate the inter-arrival times (IAT) for

the request into the server’s buffer being controlled by the FLC (Figure 5.3.2.1.1), are

generated by using Kramer’s tool [Kramer].

β)21(β−=H 2R (coefficient
of determination)

loading ψ kurtosis skewness

0.6583 0.671 0.956 (95.6%) 0.1 (10%) 0.597045 1.180861
0.6809 0.660 0.975 (97.5%) 0.2 -0.56218 0.798282
0.6425 0.679 0.977 (97.7%) 0.3 0.40215 1.277175
0.6473 0.677 0.972 (97.2%) 0.4 -0.53386 0.861215
0.4685 0.766 0.959 (95.9%) 0.5 -0.58417 0.892037
0.3762 0.812 0.885 (88.5%)

(less than 2R
Th)

0.6
(rejected) -1.01033 0.446756

0.1978 0.901 0.605 (60.5%) 0.7
(rejected) -1.16043 0.388599

Table 5.3.2.1.1. 2S filter log(variance) versus log (aggregate level) to find β

The useful information from the Table 5.3.2.1.1 summary is listed as follows:

a) The 2S filter always detects and recognizes self-similarity in the IAT traffic

as long as the network loading or utilization ψ is 50% (i.e. 0.5 simulated by

the same tool) or less.

b) ψ is proportional to the self-similarity dimension (explained later with Figure

5.3.2.1.7). For 4.0>ψ the traffic self-similarity scales differently as indicated

in Figures 5.3.2.1.3 and 5.3.2.1.4. Our analysis indicates that this is possibly

the beginning of non-linear scaling or a sign of possible multifractal traffic.

Both Figures 5.3.2.1.3 and 5.3.2.1.4 work with 9.02 =R
Th .

 138

Figure 5.3.2.1.2 Kurtosis and skewness measurements for the 7 cases in Table 5.3.2.1.1

Figure 5.3.2.1.3 2S filter yields slope = -0.6809(β= 0.6809), R2= 97.74% for

2.0=ψ

 139

Figure 5.3.2.1.4 2S filter yields slope = -0.4685(β= 0.4685), R2= 95.97% for

5.0=ψ

c) The scaling exponent H (Hurst effect) changes with ψ , which is inversely

proportional to the IAT length that is the “reduction/resolution” in light of

traffic. For 4.0≤ψ the scaling is basically the same (i.e. a monofractal sign).

The β value in every case (row) in Table 5.3.2.1.1 is the average of several

aggregates for the same stochastic process X.

d) The kurtosis and skewness are different for the different self-similar traces.

Nevertheless they always indicate the presence of a bell curve.

 140

Figure 5.3.2.1.5 Faster convergence of the FLC+ 2S filter than the FLC working alone

The kurtosis and skewness values for each case (row) in Table 5.3.2.1.1 are

plotted for comparison (Figure 5.3.2.1.2). These values are obviously affected by the

loading. When the loading is high (e.g. 60% and 70%) the bell curve tends to skew

less but still to the right. Meanwhile the bell curve tends to get flatter. Comparatively

the skewness of the bell curves for the seven simulation cases in Table 5.3.2.1.1 are

less than a Weibull (5.1=gamma) distribution, which is relatively more peaked

(kurtosis=4.5).

The trend-lines in Figure 5.3.2.1.5 for the IAT traffic trace in Figure 5.3.2.1.3

shows that the “ 2SFLC + filter” combination converges much faster to the given

steady state than the FLC working alone. In fact, this combination is one of the

working modes in the Adaptive/Reconfigurable FLC [p12], the details of which will

be discussed in section 6.2. With help from the 2S filter the FLC main body adjusts

the GP value for the derivative (D) control element on the fly and according to the

 141

self-similarity property currently detected. As a result it produces less MD than the

FLC working alone (Figure 5.3.2.1.6).

Figure 5.3.2.1.6 Less MD deviation by FLC+ 2S than the FLC alone

Figure 5.3.2.1.7 D/H correlation for Table 5.3.2.1.1

 In the experiments the FD3 tool [Sarraille], which confirms if an image (e.g.

a time series generated by the Kramer’s tool) is really fractal and measures its

dimension D, was used. The purpose is to evaluate the D/H correlations

[Peitgen2004]. This correlation for Table 5.3.2.1.1 is plotted and shown in Figure

 142

5.3.2.1.7. It shows that if D changes suddenly, H also rescales accordingly to indicate

possible traffic nonlinearity. In contrast, if H scales linearly, it is a sign of

monofractal traffic. The intrinsic average 2S filter execution time as observed from

all the experiments is 1455 clock cycles as measured by the Intel’s VTune

Performance Analyzer. It is intrinsic because it works with immediately available

data (without any actual IAT delay) in a trace. For a platform of 100 mega hertz the

corresponding physical time is)10*100/(1455 6 or 14.55 micro seconds. In real-life

applications the 2S filter has to collect enough IAT samples on the fly before

computingβ . This sampling latency can be significant, and therefore the success of

2S filter application depends on choosing size m for the mX aggregate correctly. For

example, if the average IAT is one second, 1000=m means 1000 seconds. On the

contrary for the same size m and mean IAT of 1 ms, the physical time is only one

second. Therefore, the m value for the 2S filter Java prototype is a variable rather

than a chosen constant, and the user/tester should fix the time span T instead of

collecting the fixed m samples on the fly. That is, the number of samples (i.e. m) in

an aggregate within T depends on the IAT; shorter IAT delays yield a larger m . Then,

the 2S filter works adaptively with the m value decided by the IAT for the “timed

aggregate” based on the chosen T.

 143

5.3.2.1.8 The 2S filter execution time (1455 clock cycles) by Intel’s VTune

5.4 CONNECTIVE SUMMARY

It was observed in my previous MPhil research that changes in traffic patterns

can affect the performance of the different dynamic buffer size tuners for user-level

applications, namely, PIDC, GAC, FLC and NNC. Therefore, there is a need to

neutralize the ill effects of changes in traffic patterns on the tuners’ performance. As a

result I made use of the COMP Team’s accumulated experience in real-time traffic

pattern detection and analysis. In return I contributed two real-time traffic filters to

enhance the extant RTPD (real-time traffic pattern detector) proposed by the team.

Now the RTPD is renamed Enhanced RTPD or E-RTPD to include my PhD

contributions: the real-time modified QQ-plot and self-similarity (2S) traffic filters.

In order to confirm that these two traffic filters indeed work correctly over the

Internet, which follows the power law and has widely varying traffic patterns over

time, the FLC dynamic buffer size tuner is chosen for the tests. The choice is natural

because there is a need to make the FLC adaptive and reconfigurable [p12]. The

preliminary experience with the E-RTPD is positive and encouraging. In different

 144

experiments the FLC made use of the E-RTPD to reconfigure itself (mainly the

derivative control) to neutralize the ill effects arising from traffic characteristics

successfully. The CAB concept is followed in my experiments that verify the self-

similarity (2S) filter. It involves the following stages: a) sample and examine the data

in a discrete stochastic process X, b) use the sampled data to confirm the appearance

of the Gaussian property, which means stationarity, c) start the 2S filter to confirm

self-similarity for the aggregates of m
lX , where l and m identify the lag and the

block size of the aggregate respectively, and d) examine the H values for all the m
lX

aggregates on the time axis to differentiate the monofractal property from the

multifractal one. Monofractal property means that the H value remains virtually

constant. In fact, the Gaussianity test continues and in parallel with the 2S filter

operation. If Gaussianity has disappeared, then the 2S filter stops operation because

its pivot is “asymptotically second-order self-similarity”, which is stationary and

LRD. Gaussianity confirmation at the present stage is achieved by computing the

kurtosis and skewness values and comparing them to the chosen limits. The argument

is that these limits help indicate the existence of a bell curve (maybe skewed), which

resembles a known distribution, for example the Weibull with a known gamma value.

The issue of how to choose the proper limits for real-time applications is a non-trivial

one and relatively unexplored. One of the major future work items, therefore, is to

deepen the investigation of how to choose the limits effectively.

 145

CHAPTER 6 IN-DEPTH FLC RESEARCH

6.0 INTRODUCTION

The basic version of the FLC (Fuzzy Logic Controller) dynamic buffer tuning

model was proposed [Lin2002]. It is basic in the sense that only two designs, namely

FLC[4x4] and FLC [4x6] were investigated. The FLC is conceptually the

combination: “PIDC plus fuzzy logic plus the 2},0{ Δ objective function”. The fuzzy

logic divides the PIDC control domain into a set of smaller fuzzy control regions and

supports each region with either a “don’t care” state or a predefined the fuzzy rule.

The fuzzy rule moderates the PIDC dynamics to ensure that the controlled output

would not deviate outside the Δ± safety band about the chosen reference. This

reference point, which is symbolically represented by “0” in 2},0{ Δ , is actually a

chosen QOB (queue length over buffer length) ratio known as the RQOB . For the

FLC [4x4] and FLC [4x6] Java prototypes different RQOB values were tested and it

was confirmed that these prototypes not only eliminated the PIDC shortcomings

when they worked alone but also produced no overflow at all. The following issues

were not addressed in my MPhil thesis [Lin2002]: a) the possibility of having an

optimal FLC design, b) the due techniques to smoothen the FLC convergence process

towards RQOB , and c) the impact of Internet traffic patterns on the FLC’s accuracy.

This section presents the results of the deeper research work on these issues in

my PhD project as follows:

 146

a) Firstly it is empirically found that an optimal FLC design range does exist

[p14].

b) Secondly, the FLC can be made more adaptive by manipulating the “don’t-

care range-threshold” in a dynamic manner. This led to the proposal of the

new A-FLC (Adaptive/Reconfigurable FLC [p12]) concept.

c) Thirdly, the adaptive capability of the A-FLC can be further improved with

respect to different Internet traffic patterns. The investigation in this aspect

created the R2-FLC (Real-time Reconfigurable FLC).

Experiments verifying the main results have been carried out and the results obtained

are presented here.

6.1 OPTIMAL FLC DESIGN

The FLC expert dynamic buffer tuner is conceptually the “fuzzy logic plus

PIDC plus the 2},0{ Δ objective function” combination. The fuzzy logic refines and

moderates the PIDC control process so that it adaptively maintains the given Δ

safety/tolerance margin of the 2},0{ Δ objective function. By itself the PIDC control

does not work by the 2},0{ Δ principle and therefore has no safety margin. This

means there is potential overflow and buffer space wastage. The algorithmic PIDC

operation (i.e. “P+I+D” Controller; P for proportional control, I for integral control,

and D for derivative control) is shown in Figure 6.1.1.

The PIDC parameters are: ICM (integral control mechanism) for integral or I

control, nowL for current buffer length, Lminimum for the minimum buffer size estimated

 147

from the past performance, iQOB as the “queue length (Q) over buffer length” ratio

in the thi PIDC control cycle for proportional control, and dt
dQ as the current rate of

change in Q for derivative control. ICM is defined in terms of the current RIC value.

RIC uses the current mean queue length estimatedCAQueue _ predicted by the RTM 3

(Micro Mean Message Response Time) mechanism, as well as the mathematical

average of the queue length, QueueReference. CONP is the damping factor that smoothens

the convergence towards the estimated mean iM (now realized as estimateCAQueue _)

for the time window of interest. The width of the thi window is defined by the total

time required to collect the (F-1) i
jm number of samples, for)1,..(2,1 −= Fj . F is the

flush limit chosen for the RTM 3 operation. 0M is the first sample recorded after the

RTM 3 has started running, and 1−iM is the feedback of the last predicted result into

the current prediction cycle. Ba is a prescribed constant or “seed” for the particular

ICM implementation. The RTM 3 mechanism is the micro implementation of the

Convergence Algorithm (CA) [Wong1999B], which is derived form the Central Limit

Theorem and predicts the mean of any waveform quickly and accurately. Being micro

the tool runs as a logical object, which can be invoked for a prediction via message

passing anytime and anywhere. In contrast a macro tool must be installed at the nodes

that represent the two ends of a logical channel before measurement can start. The

RTM 2 (Mean Message Response Time) IEPM tool [Wong2001] is a macro example

and the predecessor to micro RTM 3 implementation.

 148

If {(dQ/dt > prescribed_positive_threshold) OR

 [(dQ/dt is_ positive) AND

 (iQOB > prescribed__positive_threshold)]}

 Then Lnow = Lnow +ICM; Lnow ≥ Lminimum

Else If {(dQ/dt < prescribed_negative_threshold) OR

 [(dQ/dt is_ negative) AND

 (iQOB < prescribed_negative_threshold)]} Then

 Lnow = Lnow-- ICM; Lnow ≥ Lminimum

 Figure 6.1.1 The basic PID controller (PIDC) algorithm

The fuzzy logic in the FLC divides the PIDC control domain into a set of

smaller fuzzy control regions for more refined operation. Each fuzzy region is then

supported by a either a fuzzy rule or a “don’t care” state. The fuzzy rules maintain the

given Δ safety margin about the reference point of 2},0{ Δ , symbolically represented

by “0”. For the FLC prototypes the reference point is the chosen QOB (queue length

over buffer length) ratio or RQOB . For RQOB equal to 0.8 (i.e. 2.0=Δ) the FLC

operates in the QOB range from 0.6 to 1. The extant FLC model maintains Δ by

tuning only the ICM value on the fly by the QOB and dt
dQ parameters. When the

FLC control enters an inert “don’t care” state, it requires no action. The inertness of

the “don’t care” states offsets the FLC computational complexity due to the fuzzy

logic presence. As a result the FLC execution time is comparable to the much simpler

 149

PIDC. Figure 6.1.2 is the matrix of fuzzy regions for the FLC[6x6] design. The “dot”

defines the RQOB value of 0.8 and X marks a “don’t care” state.

 Figure 6.1.2 An FLC design/configuration example, FLC[6x6]

The FLC linguistic variables are:

a) Current QOB ratio (or QOBi): ML for Much Less than QOBR, L for Less than

QOBR, G for Greater than QOBR, and MG for Much Greater than QOBR.

b) Current dtdQ / : NL for Negative and Larger than the threshold, NM for

Negative but Medium to the threshold, NS for Negative and Smaller than the

threshold, PS for Positive and Smaller than the threshold, PM for Positive and

Medium to the threshold, and PL for Positive and Larger than the threshold.

The FLC control decision in the ith control cycle depends on the current QOBi and

dQ/dt. It may be Addition (buffer elongation) or “+”, Subtraction (buffer shrinkage)

or “- ” or don’t care “X”. Different fuzzy rules can be formulated as required by

different FLC designs. Some examples of the fuzzy rules for Figure 6.1.2 are as

follows:

Rule 1: If (QOBi is L) AND (dQ/dt is NM) Then Action is “-”(Subtraction) AND Lnew = Lold - ICM

Rule 2: If (QOBi is L) AND (dQ/dt is NS) Then Action is “X”(Don’t care) AND Lnew = Lold

 150

Rule 3: If (QOBi is L) AND (dQ/dt is PS) Then Action is “X”(Don’t care) AND Lnew = Lold

Rule 4: If (QOBi is L) AND (dQ/dt is PM) Then Action is “+”(Addition) AND Lnew = Lold + ICM

Figure 6.1.3 Membership function for dt

dQ Figure 6.1.4 Membership function for QOB

The two control parameters for the FLC[6x6] design are QOB and dt
dQ . The

dt
dQ membership function is in gradient, and the y-axis of Figure 6.1.3 is the degree

of membership measurement. The x-axis is the gradient difference between two

successive dt
dQ measurements. For this design the values from a to f are: a=0.003,

b=0.002, c=0.001, d=0.001, e=0.002 and f=0.003. Figure 6.1.4 shows the QOB

membership function for the same design, and the x-axis is the QOB ratio that

changes in a dynamic manner. The values for the p, q, r, s, t, u are respectively: 0.65,

0.7, 0.75, 0.85, 0.9 and 0.95. The current dt
dQ and QOB values decides which fuzzy

region that the FLC should operate. For example, if the degree of the

dt
dQ membership function is between b and c (i.e. 5.0=y) and that for QOB is

between q and r, four fuzzy regions are candidates: [SL,NM], [SL,NS], [L,NM] and

 151

[L,NS]. With respect to Figure 6.1.2, the possible operations are: -,-,- and X, and the

majority rule selects the minus (-) operation.

6.1.1 OPTIMAL FLC DESIGN IS POSSIBLE

There are basically two approaches to find out if an optimal FLC design is

possible. The first approach is to represent the FLC in its mathematic form and use

mathematical manipulation such as a theorem proving to confirm the possibility. The

second approach is empirical and this means the following: a) carry out experiments

for different FLC designs, and b) find the correlation between the FLC structural

complexity and the chosen performance index such as the mean QOB deviation from

the given RQOB reference. The second approach is chosen for addressing the issue

because the different designs have to be tested against different Internet traffic

patterns [p11].

6.1.1.1 EXPERIMENTAL RESULTS

The accumulated FLC experimental data indicates that it is possible to have an

optimal FLC design. Figure 6.1.1.1, which is plotted with the mean deviations from

RQOB by the different FLC designs tested in different experiments, reveals

approximately where the optimal region is. This region may vary with respect to

different traffic patterns. In this plot the mean deviation from the RQOB reference

stabilizes around 0.02 (or 2%) after the FLC[4x6] design. More experiments confirm

 152

that more complex FLC designs do not yield less deviation after this point. The

possibility of having optimal FLC designs makes it worthwhile to explore the

correlation among the following in the future work: the mean deviation from QOB,

the FLC design complexity (i.e. the matrix size), and the metrics being leveraged (e.g.

traffic pattern). If this correlation could be formally established, then proper

intelligence could be incorporated to let the FLC timely auto-tune its configuration

(i.e. the matrix size and the matrix entries) for cost and effectiveness. A simpler FLC

design is always desirable because it yields shorter execution and better RTT

timeliness to enhance the chance of success for time-critical applications.

Figure 6.1.1.1 An optimal FLC design is possible (mean deviation stabilizes

around 0.02)

6.2 THE ADAPTIVE/RECONFIGURABLE FUZZY LOGIC CONTROLLER

(A-FLC)

The A-FLC (adaptive/reconfigurable FLC) model uses a static adjustment size to

tune the “don’t-care region’s range-threshold” by using a static adjustment size. The

A-FLC is basically the combination: “don’t-care region’s range-threshold auto-

 153

tuning capability + FLC”. The PIDC component in the FLC uses two static

thresholds to achieve its control purpose, namely, Th1 and Th2. The PIDC working

alone conceptually should have four control regions, defined by different ± Th1 and

± Th2 combinations. The FLC fuzzy logic divides these thresholds into the finer

membership functions, with range-thresholds among them (e.g. the range-threshold

in Figure 6.1.4 between 003.0=a and 002.0=b is 0.001). In the original FLC the

range-thresholds are static and decide which region the dynamic buffer tuner should

operate at the time. The static nature of the range-thresholds introduces an intrinsic

delay for the corrective action by a fuzzy control. For example, if the
dt

dQ value

increases but less than the range-threshold of the current “don’t care” region, there

will be no control action. By the time any control action is triggered (range-threshold

exceeded) there would be significant overshoot or undershoot already. The

overshoot/undershoot accumulations make the FLC control process oscillate. The A-

FLC differs by preventing any significant overshoot/undershoot proactively in a

timely manner. The prevention is achieved by adapting the range-threshold of the

current “don’t care” fuzzy region on-line. At anytime, if the increase (or decease) of

dt
dQ is more than (or less than) the given “gradient threshold (GT)”, the range-

threshold is adjusted by the “given percentage (GP)” in a timely manner. Even

though the GT and GP are fixed values, the experimental results shows that the A-

FLC has much better performance than the original FLC by yielding less mean

deviation from the RQOB reference. Figure 6.2.1 shows how the “don’t care” range-

threshold of a growing dt
dQ value is “squeezed” to enlarge the range-threshold on

 154

the right side (now larger than Ra). This enlargement, in effect, urges the A-FLC to

take immediate action instead of waiting passively for the “ dt
dQ predefined range-

threshold” condition to hold. The dynamic “squeezing” action based the GT and GP

parameters quicken the A-FLC response. In the R2-FLC model GP is adjusted again

in a dynamic manner with respect to the traffic pattern identified by the RTPD

capability.

Figure 6.2.1 A-FLC adjustment of the range threshold of the don’t care state on the fly

6.2.1 EXPERIMENTAL RESULTS

Different experiments were conducted over the Internet to verify the A-FLC

prototype implemented in Java. The preliminary results indicate that it is indeed

more efficient and less oscillatory than its FLC predecessor. Different RQOB and

Δ values were tried in the experiments, and the results presented here are based on:

2.0=Δ (or 20%), and 8.0=RQOB (or 80%). The RQOB value is the reference point

chosen for the 2},0{ Δ objective function. Similar to its predecessor the A-FLC never

failed to upkeep the Δ safety/tolerance margin in the experiments. Figure 6.2.1.1

 155

shows both the deviations and the MD of the A-FLC control that auto-tuned the range

threshold over the entire control process. The MD is measured by the RTM 3

component in the A-FLC. If the A-FLC operation stops the last MD value together

with the given safety margins: Th1 (for QOB or P control) and Th2 (for dt
dQ or D

control) become a new point, namely, [MD,(Th1,Th2)] in the MD-vs-Thresholds

graph. In this way the graph records the past experience for the future determination

of sounder Th1 and Th2 initialisations for the A-FLC to run again. Figure 6.2.1.2

shows the A-FLC deviation situations with the same set of data as for Figure 6.2.1.1

but the capability to auto-tune the range threshold for “dynamic threshold” operations

is absent. The absence makes the deviations more prominent. Figure 6.2.1.3 shows

Figure 6.2.1.1 and Figure 6.2.1.2 in a comparative manner to make the difference in

the deviations conspicuous. Figure 6.2.1.4, 6.2.1.5 and 6.2.1.6 are plots for another

experiment. The result from this set concurs with the observations for the previous

one. In fact, all the experiments indicate that auto-tuning of the range thresholds for

the “don’t care” fuzzy regions are important for yielding smoother, more responsive

buffer overflow control. For the experimental results presented in this paper, the GT

and GP values are respectively 0.003 radians and 5%.

 156

Figure 6.2.1.1 MD value by the RTM 3 over time for A-FLC with “dynamic threshold”

Figure 6.2.1.2 MD value by the RTM 3 over time for A-FLC “static threshold”

 157

Figure 6.2.1.3 Comparing the A-FLC[static threshold] and the A-FLC[dynamic

threshold]

Figure 6.2.1.4 MD value by the RTM 3 over time for A-FLC dynamic threshold

 158

Figure 6.2.1.5 MD value by the RTM 3 over time for A-FLC static threshold

Figure 6.2.1.6 Comparing A-FLC[static threshold] and the A-FLC[dynamic threshold]

6.3 THE REAL-TIME RECONFIGURABLE FUZZY LOGIC CONTROLLER

The novel R2-FLC model has two main components, namely, the A-FLC

(adaptive fuzzy logic controller) and the RTPD (real-time traffic pattern detection).

The A-FLC reconfigures itself on-line with respect to the traffic pattern currently

 159

identified by the RTPD capability. It achieves this by using the current RTPD result

to tune the RAC capability, which tunes GP in a dynamic manner. The RTPD, as

explained in Chapter 5, is statistical by nature. Therefore, its traffic detection and

identification accuracy is independent of the traffic changes in the Internet, which

follows the power law. Over time the Internet traffic pattern switches frequently, for

example, from SRD to LRD or multifractal [Leland1994, Paxson1995, Crovella1997].

To recap, the RTPD carries out the following on the fly: a) differentiates LRD

from SRD by measuring the Hurst (H) effect/value, and b) identifies the traffic

pattern (e.g. heavy-tailed) through a filtration process. The H value indicates LRD

behaviour for 15.0 ≤≤ H and SRD for 5.00 << H . In the filtration process the

appropriate filter is invoked to identify the specific traffic pattern (e.g. the modified

QQ-plot filter identifies “heavy-tailedness”). Many methods/algorithms in literature

can be adopted for measuring the H value or to differentiate LRD from SRD. The

examples include the R/S (rescaled adjusted statistics), periodogram and whittle

estimators. After experimenting with different estimators from literature (e.g.

[Molnár1999]) the R/S is chosen as the backbone for the RTPD capability. This

choice is natural because the R/S estimator requires only simple calculations and is

therefore naturally suitable for time-critical applications. In contrast any complex

calculations would lead to serious time delay and higher chance of deleterious effects.

The traditional R/S (rescaled adjusted statistics) estimator (Molnár [Molnár1999] and

others) is used primarily for analyzing pre-collected

traces:
)var(

},...,2,1:min{},....,2,1:max{
X

kiWkiW
S

R ii =−=
= . In the R/S expression iW and

 160

X are represented by the following: ∑
=

−=
i

m
mi XXW

1
)(for ki ,...2,1=

and ∑
=

=
k

i
iXkX

1

1 . The best value for k, however, should be found by trial and error.

This is the drawback of the traditional R/S estimator because the R/S accuracy and

speed depend on k. The R/S ratio is the rescaled range of the stochastic process over

a time interval k, where X is the discrete time for },...2,1:{ kiX i = . The most useful

R/S feature is the relationship for a large k: Hk
S

R)2(= . The H (Hurst) effect/value

is the slope of the log-log plot: log(R/S) versus log(k). The filtration process is

invoked after the traffic differentiation stage. For example if the LRD traffic type is

recognized, the modified QQ-plot and De Haan’s moment filters can be then invoked

from the library to confirm the “heavy-tailedness” of the recognized LRD waveform

by consensus. Similarly the “ μδ = ” filter, where δ and μ are the standard

deviation and mean of the waveform, confirms a Poisson process. For the R2-FLC

the RTM 3 micro IEPM technique is adopted to support quicker and more accurate

iW computations. That is, ∑
=

−=
i

m
imi MXW

1

)(is used instead of the traditional

∑
=

−=
i

m
mi XXW

1
)(approach. To summarize the RTPD essence consists of:

a) It runs as a traditional R/S computation if the RTM 3 support is inhibited.

b) The RTM 3 converts the traditional R/S into the enhanced R/S (E-R/S)

estimator.

c) The RTM 3 estimates the mean of the waveform (i.e. iM) with F=14 samples.

 161

d) The E-R/S computes with ∑
=

−=
i

m
imi MXW

1

)(but not the ∑
=

−=
i

m
mi XXW

1
)(.

The R2-FLC uses the RTPD result to reconfigure itself on-line by auto-tuning its

RAC capability. In the process the RAC selects a more appropriate GP value for its

operation. Both RTM 3 and RTPD capabilities are realized as logical object entities

in the R2-FLC prototype. They run in parallel with the R2-FLC main body, namely,

the A-FLC. Timing analysis with the Intel’s VTune Performance Analyzer

[VTune2002] shows the following (explained in more details later): a) the RTPD with

RTM 3 support needs an average of 890 clock cycles to execute and 950 without, and

b) the R2-FLC module, which runs in parallel with the RTPD, needs 350 clock cycles

to execute on average, and this means the de facto R2-FLC execution time depends on

the RTPD.

The Th1 and Th2 thresholds for the PIDC component in the R2-FLC model are

not assigned by the user but generated by the system automatically from past

performance. The important salient feature for the R2-FLC model is the MD-vs-

Thresholds graph, which accumulates all the previous R2-FLC experience. Whenever

R2-FLC has stopped running it contributes a new point, which is defined by the last

three values used: MD (mean deviation), Th1 and Th2. If the R2-FLC control is

started again, from the [MD, (Th1, Th2)] points a good estimate for the best starting

Th1 and Th2 values will be automatically determined. The best choice is the pair that

yields the minimum MD value on the MD-vs-Thresholds graph. The R2-FLC needs

the RTM 3 object in the MD computation.

In order to demonstrate how traffic patterns affect R2-FLC performance, some of

the results obtained with the FLC[6x6] design are presented here (Figure 6.3.1). The

 162

significant observation is that different traffic patterns need different GP values to

yield the same MD value from the RQOB reference. For example, for MD=0.026 the

R2-FLC needs GP=0.07 (or 7%) for Poisson, GP=0.08 (or 8%) for heavy-tailed

(Pareto), and 1.0>GP (or 10%) for self-similar traffic. This means that the GP value

should be chosen appropriately in a real-time fashion for attaining better dynamic

buffer tuning cost effectiveness, with respect to different traffic patterns.

Detecting/identifying the exact traffic pattern and selecting the corresponding correct

GP value is real-time reconfiguration in the R2-FLC context.

Figure 6.3.1 MD by R2-FLC for various traffic patterns versus GP values, for

FLC[6x6]

6.3.1 EXPERIMENTAL RESULTS

Experimental results shows that for the same FLC design bases (e.g. FLC[6x6])

the R2-FLC performance is upward compatible to the A-FLC tuner. In the

 163

experiments different FLC design bases and traffic patterns were involved. For

example, Figure 6.3.1.1 plots the mean deviations from the RQOB reference

produced by the R2-FLC with different FLC design bases versus different traffic

patterns. Each mean deviation (MD) value in the plot is for a FLC design basis versus

the specific traffic pattern. It is the average of the results from ten separate

experiments with different TCP traces. For comparison purposes the mean deviation

for by the PIDC tuner is also shown. For the results shown in the plot, the R2-FLC

works with the initializations: GT=0.003 radians and GP=0.05 (i.e. 5%). The striking

similarities between the R2-FLC and A-FLC are as follows: a) they show the same

trend of mean deviations with the same FLC basic design matrices, b) they both yield

the same optimal FLC design range (Figure 6.3.1.1), as well as no more mean

deviation reduction than the more complex FLC[4x6] design, and c) the R2-FLC

model produces less mean deviation on average than the A-FLC, with or without

RTM 3 support (Figure 6.3.1.2).

Figure 6.3.1.1 Mean Deviation Errors of different FLC designs versus traffic patterns

 164

Figure 6.3.1.2 Comparing A-FLC[static range threshold(RT)] and R2-FLC [dynamic RT]

The execution times of the Java R2-FLC prototype were measured against

different GP values. The measurements in terms of the number of neutral clock cycles

were carried out with the Intel’s VTune Performance Analyzer [VTune2002]. For all

the experiments the prototype needs less than 400 clock cycles to execute its control

pass/cycle. For example, Figures 6.3.1.3 and 6.3.1.4 show the prototype execution

times for the Poisson and heavy-tailed traces. The given/static GP values for these

two cases are 5% and 7% respectively, for the given mean deviation of 0.027. The

VTune measurements show that the R2-FLC needs only 280 clock cycles for the

Poisson trace but 340 clock cycles for the heavy-tailed one. If the RTPD component

detects that the traffic pattern has changed from heavy-tailed to Poisson, the R2-FLC

tuner should self-configure immediately to deal with the situation. This means

squeezing the GT by 5% instead of 7% and the action improves the dynamic buffer

tuning cycle time by (340 - 280)/340 or 17.65 %. As a result this lessens the chance

of having deleterious effects for the buffer size tuning process.

 165

Figure 6.3.1.3 For GP=5% and MD=0.027, the R2-FLC execution time is 280

clock cycles for the Poisson distribution

Figure 6.3.1.4 For GP=7% and MD=0.027, the R2-FLC execution time is 340

clock cycles for the heavy-tailed distribution

The preliminary experimental results indicate that the R2-FLC, with or without

the support of the RTPD capability, is consistently more accurate than the A-FLC and

the FLC predecessors by yielding less MD values. This is demonstrated by Figures

6.3.1.5, 6.3.1.6 and 6.3.1.7, in which for GP=5% (or 0.05) the novel R2-FLC tuner

 166

with the FLC[6x6] design basis consistently produces less mean deviations than the

basic FLC[6x6] and the more adaptive A-FLC[6x6] version. The three different

traffic traces used in the experiments were: Poisson, heavy tailed, and self-similar.

The different experiments confirm that the R2-FLC tuner consistently has better

performance than the FLC and the A-FLC predecessors.

Figure 6.3.1.5 Better R2-FLC [6x6] performance than FLC[6x6] and A-FLC[6x6]

(alternatively known as R-FLC[6x6]) for the Poisson trace , GP=0.05

 167

Figure 6.3.1.6 Better R2-FLC [6x6] performance than FLC[6x6] and A-FLC[6x6]

for the heavy-tailed trace, GP=0.05

Figure 6.3.1.7 Better R2-FLC [6x6] performance than A-FLC[6x6] for the self-

similar trace, GP=0.05

 168

6.4 TIMING ANALYSIS OF THE THREE FUZZY LOGIC CONTROLLERS

The timing analyses of three fuzzy logic controllers (FLC, A-FLC and R2-FLC) were

carried out with the Intel’s VTune Performance Analyzer [VTune2002]. Different

traffic distributions, which include known waveforms (e.g. Poisson and heavy-tailed)

as well as Internet traffic traces, were used in the experiments. Some of the

experimental results were selected for demonstration in this section.

6.4.1 FLC

Figure 6.4.1.1 FLC execution time is 250 clock cycles for the Poisson distribution

 169

Figure 6.4.1.2 FLC execution time is 275 clock cycles for the heavy-tailed distribution

Figure 6.4.1.3 FLC execution time is 255 clock cycles for the trace [Trace]

 170

6.4.2 A-FLC

Figure 6.4.2.1 A-FLC execution time is 265 clock cycles for the Poisson distribution

Figure 6.4.2.2 A-FLC execution time is 310 clock cycles for the heavy-tailed distribution

Figure 6.4.2.3 A-FLC execution time is 275 clock cycles for the trace [Trace]

 171

6.4.3 R2-FLC

Figure 6.4.3.1 R2-FLC execution time is 280 clock cycles for the Poisson distribution

Figure 6.4.3.2 R2-FLC execution time is 340 clock cycles for the heavy-tailed distribution

Figure 6.4.3.3 R2-FLC execution time is 285 clock cycles for the trace [Trace]

 172

6.4.4 SUMMARY OF THE EXPERIMENTAL RESULTS SHOWN ABOVE

 Measured average number of T cycles per control cycle

Control models Poisson distribution Heavy-tailed

distribution

Trace

FLC 250 275 255

A-FLC 265 310 275

R2-FLC 280 340 285

Table 6.4.4.1 Summary of the experimental results shown above

In the experimental results including the ones tabulated above all three FLC

versions require less than 350 clock cycles to execute; that is, their control cycle

times are less than 350 clock cycles. The R2-FLC control cycle time is always

relatively the longest for all the distributions, namely, Poisson, heavy-tailed and self-

similar. The FLC controller requires the lowest control cycle because it does not

include the RTPD (real-time traffic pattern detection) in its control process and the

threshold values used by the FLC controller do not change during execution.

Similarly the A-FLC does not have the RTPD component to determine the type of the

traffic either, and its “don't care” range threshold value changes during execution.

The amount of change, which is administered once the threshold is exceeded, is fixed.

The R2-FLC has the longest control cycle because it needs the RTPD component to

determine the type of the traffic so that it adjusts its threshold values accordingly. In

fact, the RTPD exists as a software entity that runs in parallel with the R2-FLC main

body. Therefore it does not contribute to lengthen the execution time of the R2-FLC

main body directly, but the result of its traffic pattern detection may invoke extra R2-

 173

FLC computation to finely adjust the “don't’ care” range threshold value in a dynamic

manner.

6.5 CONNECTIVE SUMMARY

To recap, this section presents what I have achieved in the deeper FLC research work:

a) It is experimentally confirmed that an optimal FLC design range does exist

[p14].

b) It is confirmed that that the FLC can be made more adaptive by manipulating

the “don’t-care range-threshold” in a dynamic manner. This is the basis for

the new A-FLC (Adaptive/Reconfigurable FLC [p12]) concept.

c) It was discovered that the dynamic buffer tuning capability of the A-FLC can

be improved if it is allowed to self-tune itself with respect to the current

Internet traffic pattern. This is the conceptual framework for the R2-FLC

(Real-time Reconfigurable FLC) tuner, which is experimentally more

efficacious than the FLC and the A-FLC.

 174

CHAPTER 7 IN-DEPTH NNC RESEARCH

7.0 INTRODUCTION

 The in-depth NNC research addresses the following major issues left behind

by my previous MPhil thesis as follows:

a) The possibility of a correlation between the accuracy and the number of

neurons in the hidden layer of the NNC.

b) The need for a timing analysis of the NNC.

c) The possibility of cutting down the NNC control cycle time and lowering the

chance of deleterious effect.

Therefore, the objectives of the in-depth research include:

a) Define the correlation between the number of neurons in the NNC hidden

layer and the control accuracy; this is carried out by the sensitivity analysis.

b) Propose a method(s) to optimize the NNC configuration to lower its control

cycle time in an on-line manner.

c) Timing analyses of the optimized NNC model to confirm that it is indeed

more suitable for time-critical applications over the Internet.

d) Study the impact of different traffic waveforms/distributions on the stability

and accuracy on the NNC control process in different experiments.

 175

7.1 SENSITIVITY ANALYSIS OF THE HIDDEN LAYER

The NNC model, which works by backpropagation and supervised training, is

shown in Figure 7.1.1. The NNC operates in two distinctive phases, namely,

training/learning, and dynamic buffer tuning. In action it is a twin system consisting

of the “Chief” NNC module and the “Learner” NNC module as shown in Figure 7.1.2.

The Chief, which has already learnt previous patterns, carries out actual dynamic

buffer tuning while the Learner undergoes training to acquire new knowledge to deal

with new phenomena. Before training starts all the weights of the arcs in the

Learner’s neural network are randomized. As training progresses the error (difference)

between the “trainee” output and the NNC desired/deserved output Δ decays

gradually. After training the Chief and the Learner swap positions. The NNC stability

is analyzed by measuring the mean deviation (MD) from the chosen RQOB reference

in terms of “the number of neurons in the NNC hidden layer versus different traffic

patterns”.

Figure 7.1.1 A backpropagation model

Input
layer

Hidden
 layer

Teacher signal for training
 (deserved value)

Output
 layer

10 neurons 20 neurons

1 neuron

Sigmoid (input)
Sigmoid(output)

 176

Figure 7.1.2 The NNC – a twin system of two NNC clones

7.1.1 EXPERIMENTAL RESULTS

The NNC model was verified by simulations over the Aglets, which is a

mobile agent platform specifically designed for Internet applications [Mitsuru1998].

The Aglets is chosen for three reasons: a) it is stable, b) it has rich user experience,

and c) it makes the verification results scalable for the open Internet. The set up for

the verification simulations is shown in Figure 7.1.1.1, where the driver and the

server are aglets (agile applets) collaborating within a single computer. The driver

picks a waveform (e.g. Poisson) or trace from the table and uses it to generate the

inter-arrival times for the simulated merged traffic for the server queue. A trace

contains the RTT data pre-collected from a TCP channel, and it usually embeds an

unknown traffic pattern. The aim of using data traces in simulations is to verify that

the NNC control precision and stability are indeed traffic independent.

The waveform picked by the driver was first checked for its LRD (long-range

dependence) or SRD (short-range dependence) behavior. The checking process is

 177

indicated by the box deisgnated “traffic pattern analysis”. Different tools were used

to identify the waveform’s exact nature once its LRD/SRD character had been

determined. For example, the R/S (rescaled adjusted statistics) estimator in the Selfis

Tool [Karagiannis2003] was used to compute the Hurst (H) parameter/value for

different traces. The character is identified as follows: 15.0 ≤< H for LRD and

5.00 ≤< H for SRD. Other tools were then employed to identify the exact

waveform/distribution, for example, the modified QQ-plot for heavy-tailed

identifications.

In this section two sets of experimental results among the many collected for

analytical purposes are presented for demonstration. The first set, “Case 1”,

demonstrates how the NNC behaves with random (i.e. SRD) traffic. The second set,

namely, “Case 2”, demonstrates that the NNC stability is independent of the self-

similar nature of the traffic (i.e. LRD). The plots are obtained with the help of the

Selfis tool.

 178

Figure 7.1.1.1 The NNC verification environment

Case 1 - Random Traffic

For the random RTT trace for demonstration here the Selfis’s R/S plot yields

H=0.483 and 99.66% confidence of its SRD character (Figure 7.1.1.2). Figure 7.1.1.3

shows that both NNC and PIDC produce no overflow for the trace, but the former

eliminates the shortcomings of the latter. The exponential/random nature of the trace

is also confirmed by comparing its mean (m) and standard deviation (δ), which are

100 ms and 101 ms respectively. The “ 101100 ≈ ” (i.e. δ≈m) condition indicates that

the traffic comes from a Poisson process, which is SRD by nature.

 179

Figure 7.1.1.2 SRD character confirmed by R/S estimator of Selfis

Figure 7.1.1.3 Experimental results for the Intranet Traffic

 180

Case 2 – Self-similar Traffic

Self-similar traffic [Tsybakov1998] contains bursts that easily inundate the

server queue buffer. It is important therefore for the NNC to have the capability to

tune the buffer responsively at runtime to ensure that it always covers the queue

length. Different experimental results verified that the NNC indeed has this capability.

The self-similar traffic patterns were generated by the tool proposed by G. Kramer

[Kramer]. For example, the trace for Figure 7.1.1.4 is generated by this tool, and for it

the R/S plot yields H=0.615, with 98.67% confidence of its LRD character. Both

PIDC and NNC (no CA support for this case) produce no overflow for different self-

similar traffic patterns, as shown by Figure 7.1.1.5. The NNC maintains the safety

margin Δ of the 2},0{ Δ objective function consistently minus the PIDC

shortcomings.

Figure 7.1.1.4 LRD confirmed by the R/S estimator in Selfis

 181

Figure 7.1.1.5 NNC and PIDC performances for the self-similar trace confirmed

in Figure 7.1.1.4

The NNC stability is analyzed by measuring the mean deviation (MD) from

the chosen RQOB reference in terms of “the number of neurons in the NNC hidden

layer versus different traffic patterns”. The preliminary empirical results shown in

Figure 7.1.1.6 indicate that having 20 neurons in the NNC hidden layer is more or

less the break point. Using more neurons does not produce better performance by

yielding a lower MD. For the Poisson trace, the mean deviation error settles down for

15 hidden neurons in the hidden layer but for other traffic patterns at least 20 neurons

are needed. All the experimental results from this stage indicate that it is safer to use

20 neurons for the hidden layer for Internet applications because its traffic pattern,

which includes all the patterns in Figure 7.1.1.6, switches quickly without warning.

 182

Figure 7.1.1.6 Mean deviation error for using different numbers of neurons in

the NNC hidden layer versus different possible Internet traffic patterns

7.2 REAL-TIME NNC PRUNING

The aim is to optimize the NNC configuration in an on-line manner to

adaptively lower its control cycle time. After a thorough literature search it was found

that the existing pruning techniques are for off-line application. In the off-line process,

the neural network (NN) is first run to obtain some data for analysis and then

optimized manually before it is run for the next round. This is basically a trial and

error process [Gallant1992, Hagan1996]. The off-line approach is not suitable for

real-time application because the NN should be able to adapt its configuration on the

fly to suit the current operational conditions. With the on-line and timeliness

 183

requirements in mind the Hessian-based pruning (HBP) technique is proposed. The

HBP optimizes the NNC configuration at run-time in an adaptive, dynamic and

cyclical manner. The “NNC plus HBP” combination is the new O-NNC (Optimized

NNC) controller. In action the HBP is a renewal process, and the optimisation in

every renewal cycle has two phases of operations, as shown in Figure 7.2.1:

a) First phase: The Learner computes the weights of all the arcs in its

neural network. After that all the insignificant arcs are marked by

the principle of dynamic sensitivity analysis.

b) Second phase: After the Learner becomes the Chief all the marked

arcs are virtually pruned (excluded) from its computation to shorten

the control cycle time. Virtual pruning means that the physical

skeletal NNC configuration is intact and provides the bare basis for

every pruning operation.

 Figure 7.2.1 The HBP is as a renewal process

 184

The choice of HBP over other techniques is dictated by the fact that the NNC

optimisation process is real-time and simplicity is the key to success. Other

techniques from the literature normally require complex mathematical manipulations.

Besides, the published experience for the feed-forward neural network pruning is

exclusively off-line. This makes them unsuitable for the on-line NNC application.

The HBP operation is based on dynamic sensitivity analysis. The rationale is to mark

and skip a neural network connection if the error/tolerance of the neural computation

is insensitive to its presence. For the NNC the error/tolerance is the Δ± band about

the RQOB reference. The core of the HBP technique is this concept: “if a neural

network converges toward a target function so will its derivatives [Gallant1992]”. In

fact, the main difference among all the identified performance-learning laws from the

literature [Hagan1996] is how they leverage the different parameters (e.g. weights

and biases).

Figure 7.2.2 The graph showing the effect of learning rate on mean square error

 185

The HBP adopts the Taylor Series [Finney1994] (equation (7.1)) as the

vehicle to differentiate the relative importance of the different neural network (NN)

parameters. The meanings of the parameters in equation (7.1) are: F() - the function,

w - the NN connection weight, Δw – the change in w, ∇F(w) - the gradient matrix

(7.2), and ∇2F(w) - the Hessian matrix (7.3). The symbols in the equations mean the

following: T for transpose, O for higher order term, n for the nth term, and
1w∂

∂ for

partial differentiation. Thus the expansion about w of F(w+Δw) is given by equation

(7.1).

 F(w+Δw) = F(w) + ∇F(w)TΔw +
2
1 ΔwT∇ 2F(w)Δw + O(||Δw ||3)+……..(7.1)

∇F(w):)2.7(..........
21

)()...()(⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

∂
∂ wF

w
wF

w
wF

w n

T

∇2F(w):
)3.7.........(

)(...)()(

............

)(...)()(

)(...)()(

2

2

2

2

1

2

2

2

2

2

2

12

2
1

2

21

2

2

1

2

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂∂∂∂∂

∂∂∂∂∂

∂∂∂∂

∂∂∂

∂∂∂

∂∂∂

wFwFwF

wFwFwF

wFwFwF

wwwww

wwwww

wwwww

nnn

n

n

The preliminary O-NNC results confirm that the HBP performs as expected.

The findings from the preliminary HBP experiments concur with similar experience

published previously [Oh1998]. That is, the weighing factors (synaptic weights or

learning rates) affect the convergence speed. Many different experiments were

 186

carried out to study the effect of different learning rates, and one set of results is

presented in Figure 7.2.2 for demonstration purposes. It shows how the correlation

between the learning rate and the mean square error (MSR) varies. A learning rate is

the magnitude of change when a connection weight is adjusted in training. For

example, the desired output is m
ji

m
ji

m
ji w

xFkwkw
,

,,
)()()1(
∂

∂−=+ α , with)(, kwm
ji as

current weight and α as the learning rate. The MSR, defined as, =MSR E[(target

output – actual output)2], measures the control accuracy, with E as the averaging

operator. The MSR should decrease when the convergence gets closer to the RQOB

reference. The experimental results, however, indicate that bigger learning rates may

yield oscillatory convergence, as shown by the rates 23 and 24 in Figure 7.2.2. In

contrast, the smaller rates 21 and 22 produce much smoother control. Under the

equation (7.1), the learning/training process should converge to the RQOB reference,

which is mathematically known as the target global minimum surface. The

convergence makes the gradient vector ∇F(w) insignificant and eliminates the

“∇F(w)T Δw” term from equation (7.1). This implies not only that the larger ordinal

terms in equation (7.1) can be ignored but also a simplified form (equation (7.4)) is

possible for the equation. Further simplification of equation (7.4), based on:

ΔF=F(w+Δw)-F(w), yields equation (7.5).

F(w+Δw) = F(w) +
2
1 ΔwT∇ 2F(w)Δw…(7.4)

ΔF=
2
1 ΔwT∇ 2F(w)Δw…(7.5)

 187

The HBP optimization cycle has two phases. The first phase is applied only to

the Learner and the second to the current Chief role. The details involved are as

follows (first three points belong to the first phase and the fourth point to the second

phase):

a) Use Taylor series (equation (7.1)) to identify the significant neural network

parameters.

b) Choose appropriate learning rates for the significant parameters to avoid

convergence oscillations, as illustrated in Figure 7.2.2.

c) Mark the synaptic weights that have insignificant impact on the Taylor series.

d) After the Learner has become the Chief, it excludes all the marked

connections in its neural computation. The exclusion, represented by equation

(7.6), is, in effect, virtual pruning of the insignificant connections. It is a

logical, virtual process because the skeletal NNC neural network

configuration remains intact except for excluding the marked connections in

the subsequent O-NNC control. The pruning decision is based on the

Lagrangian index S (to be explained later).

Since the optimisation starts anew every time the Learner has completed training,

which means new weights for the neural network connections, the optimized outcome

should be unique, and this makes the HBP optimisation process dynamic and

adaptive.

wi+Δwi=0…(7.6)

)()(
2
1 2 wUw i

T

i

T wwwFS +Δ−ΔΔ= ∇ λ …(7.7)

 188

If Δw in equation (7.5) is replaced by equation (7.6), then the Lagrangian

equation (7.7) is formed. Now, equation (7.1) has become a typical constrained

optimization problem [Bertsekas1982]. The symbols: U T

i
and λ in equation (7.8) are

the unit vector and the Lagrange multiplier respectively. The optimum change in the

weight vector wi (equation (7.6)) is shown in equation (7.8). Every entry in wi

associates with a unique Lagrangian index Si (equation (7.9)). In the first phase of the

HBP optimisation process the Si values are sorted so that the corresponding less

significant wi (neural network connection) can be excluded from the sChief ' neural

computation, starting from the lowest Si. The pruning stops if the exclusion of the

current Si affects the accuracy of convergence process. Only after the virtual pruning

process has been completed does the Learner become the Chief.

UwF
wF
w

i

ii

i
wi)(

])([
2

12

1

,

∇
∇

−

−
−=Δ …(7.8)

])([122
,

2

wF
wS

ii

i
i −
=

∇

…(7.9)

7.2.1 EXPERMENETAL RESULTS

Different experiments with different waveforms (e.g. SRD and LRD) were

conducted to verify the efficacy and correctness of the HBP technique and the O-

NNC. The set up for the experiments is the same as Figure 7.1.1.1. The preliminary

results confirm that HBP technique shortens the O-NNC control cycle time

 189

consistently. The skeletal configuration of the O-NNC in the experiments is the same

as the NNC prototype with 10 input neurons, 20 neurons for the hidden layer, and one

output neuron. This configuration is fully connected, with 200 connections between

the input layer and the hidden layer, as well as 20 connections between the hidden

layer and the output layer. The O-NNC result in Figure 7.2.1.1 is produced by a

configuration that has a hidden layer of 187 arcs instead of the 220 full connections

because 33 of them are pruned by the dynamic HBP. Different experimental results

indicate that the O-NNC has the capability to yield the same level of buffer overflow

elimination efficacy as the un-optimized NNC, but with shorter convergence time to

reach RQOB . Figure 7.2.1.2 shows that O-NNC always ensures that the QOB value is

within the tolerance band of |2| Δ (QOBR=0.8). It compares the QOB deviation

profiles of the three controllers. As illustrated by Table 7.2.1.1, the O-NNC, however,

has a larger mean deviation (MD) than the un-optimized NNC,

kQOBMD
k

i

i ⎥
⎦

⎤
⎢
⎣

⎡
−Δ= ∑

=1

|| .

The PID controller (PIDC) is algorithmic in nature, and it is therefore also referred to

as the Algorithmic PID controller [Ip2001]. Therefore PIDC and A-PID are

synonymous in my research. The PIDC makes use of the Convergence Algorithm

(CA), which is implemented at the micro level. At this level the CA exists as an

independent logical object that runs in parallel with the PIDC main body. In this form

the CA is called the RTM 3 entity that can be invoked for service anytime and

anywhere by message passing.

 190

Figure 7.2.1.1 A set of experimental results to compare NNC, O-NNC and A-PID

Controller/tuner Mean Deviation
NNC (Original) 0.0536
O-NNC (Pruned) 0.0916
A-PID 0.1279

 Table 7.2.1.1 Mean deviations for Figure 7.2.1.2

Controller/tuner The measured average number
of clock cycles per tuner
control cycle

NNC (Original and

un-optimized)]

 10800

O-NNC
(Pruned/optimized)

 9250
(857.010800
9250 ≈ ; 85.7%)

 Table 7.2.1.2 Comparing the average number of clock cycles per tuner

cycle

 191

Figure 7.2.1.2. Indication of the HBP convergence stability

The average control cycle time or CCT for the O-NNC is only 9250 clock

pulses compared to the 10800 for the NNC (Table 4). The CCT in clock pulses are

measured with the Intel’s VTune Performance Analyzer [VTune2002], and they can

be converted easily into the physical control cycle time for any platform by

HzCCTCCTP 1*=− , where Hz is the platform’s operating speed in hertz. Figure

7.2.1.2 also compares the three controllers O-NNC, NNC and A-PID in terms of the

convergence smoothness. Figure 7.2.1.3 provides more convergence stability details

for Figure 7.2.1.2 in term of the individual deviations over time from the QOBR

reference of the 2},0{ Δ . The performance of the NNC (Original) and the O-NNC

 192

(Pruned) is better than A-PID with respect to the deviation error. Figure 7.2.1.4 is

another comparison of the three controllers. Figure 7.2.1.4 compares their efficacy in

the dynamic buffer adjustment/tuning process. Figure 7.2.1.5 compares the QOB

profiles of the three controllers, and Figure 7.2.1.6 to Figure 7.2.1.8 show the

deviations of the individual controllers. From the many different experimental results

we conclude that both the NNC and the O-NNC performs as well as the A-PID but

without its shortcomings. Despite its consistency in converging accurately to the

QOBR reference of the 2},0{ Δ , the O-NNC dynamic tuning process is more

oscillatory than the un-optimized NNC. The oscillation is an undesirable side effect

from the dynamic HBP optimization cycles. In the future work this problem will be

studied in detail so that the oscillation can be smoothened.

Figure 7.2.1.3a. Deviation profile of the original NNC

 193

Figure 7.2.1.3b. Deviation profile of the O-NNC

Figure 7.2.1.3c. Deviation by the A-PID controller

 194

 Figure 7.2.1.4. Another comparison of three controllers

Figure 7.2.1.5. The QOB profiles of the three controllers in Figure 7.2.1.9a

 195

Figure 7.2.1.6. The deviation profile by the original NNC

Figure 7.2.1.7. The deviation profile by the O-NNC

 196

Figure 7.2.1.8. The deviation profile by the A-PID

7.3 CONNECTIVE SUMMARY

The in-depth NNC research has achieved the following:

a) It was confirmed empirically that there is indeed a correlation between the

number of neurons in the NNC hidden layer and the control accuracy. The

sensitivity analysis shows that mean deviation error depends on the number of

neurons in the hidden layer as well as the traffic pattern (Figure 7.1.1.6).

b) The HBP technique is proposed to let the NNC self-optimize itself on the fly

so that its control cycle time can be consistently reduced. The experimental

results confirm that this technique cuts the NNC control cycle time by more

than 10%. This makes the optimized NNC or O-NNC is more suitable for

time-critical applications over the Internet.

 197

c) In all the experiments different waveforms (e.g. SRD and LRD) were used.

The experimental results confirm that the control accuracy and stability of

NNC and O-NNC models are independent of the traffic patterns.

 198

CHAPTER 8 LOCATION-AWARE TEST-BED

8.0 INTRODUCTION

The original forms of the following intelligent dynamic buffer size tuners

were proposed and verified in my previous MPhil research in the Aglets environment:

GAC, FLC, and NNC. In this thesis, we developed improvements, particularly the

use of a real time traffic detector, which is employed in conjunction with FLC. As a

result they improve the fault tolerance and shorten the service roundtrip time (RTT)

of a client/server interaction. The timing analyses by Intel’s VTune Performance

Analyzer [VTune2002] indicate these novel intelligent tuners and their PIDC

predecessor are all suitable for time-critical applications because of their short

execution times (Table 8.0.1). The results in the table are based on repeated VTune

measurements with the corresponding Java tuner prototypes. Although the three

original intelligent dynamic buffer tuners eliminate the two shortcomings of their

PIDC predecessor, the FLC is by far the most stable, simplest and fastest. The FLC

needs only 255 clock cycles to execute and does not produce any overflow at all.

 199

Figure 8.0.1 A pervasive computing environment

 Number of Java
lines
for

implementation

Average number of clock/T cycles
per control pass measured by

using Intel’s VTune Performance
Analyzer [VTune2002]

Basic PID controller (or PIDC) 105 205
Fuzzy Logic Controller

[FLC(6x4)]
 116 255

Neural Network Controller
(NNC) with

MCA/ RTM 3 support

 240 10800

Genetic Algorithm Controller
(GAC)

 111 475

 Table 8.0.1 Average execution times (one control pass) for four controllers by

VTune

 In this chapter, we investigate buffer tuning in the case of nomadic users with

small form factor (SFF) devices passing through a wireless smart space.

In order to thoroughly and vigorously investigate how dynamic buffer size

tuning can benefit time-critical applications a natural environment is needed as the

test-bed. The FLC is naturally the tuner candidate for the tests because of its stability

and speed. The natural environment in which critical timing is always a consideration

 200

is the pervasive computing as shown by Figure 8.0.1. Every pervasive computing

environment has two parts: the wireless smart space and the wired Internet part,

which provides the pervasive computing infrastructure (PCI). The smart space is a

wireless cell served by at least one surrogate, which provides the necessary assistance

to the clients and serves as a gateway to other PCI nodes. A client in the smart space

is actually a SFF (small-form-factor) device carried by the nomadic user. The

duration of stay by a human nomadic user in the smart space is normally short and is

characterized by the mass transit traffic through the cell (e.g. train station or airport).

When nomadic users are passing through the smart space, they may make different

kinds of requests to a popular server, which could be located in the surrogate (as

shown in Figure 8.0.1 as an agent). If the agent server cannot provide the service, it

enlists help from other nodes in the PCI through the surrogate in a transparent manner.

This kind of cooperation is called cyber foraging [Garlan2002]. If dt (i.e. delta t)

represents the average transit interval/duration through the smart space, then many

requests dRQ (i.e. delta RQ; where RQ means requests) may be made to the agent

server within the interval. The rate of request, namely, dt
dRQ can be steep. The

requests are usually queued in the agent’s request buffer before they are served. The

number of requests, however, is tied with the characteristic of the mass transit traffic

and dt
dRQ . At peak periods the agent is easily inundated by a sudden influx of

requests, which leads to the following undesirable consequences:

a) Overflow in the agent’s buffer: If this happens, then there could be widespread

retransmissions by the SFF clients leading to more congestion and longer

 201

service roundtrip time (RTT). The SFF clients do not even have the chance to

exploit the benefit of cyber foraging before they leave the smart space.

b) E-business failure: The nomadic users become unhappy because they could

not make use of the wireless cell to complete the necessary business on the

run. This means that the e-business, which provides the agent server, would

be the ultimate victim. This can be prevented if the communication congestion

is resolved in a user-transparent manner so that the benefits from cyber

foraging can be obtained.

A solution to enhance the chance of cyber foraging exploitation is dynamic buffer

size tuning. The aim is to tune the agent’s buffer size adaptively on the fly so that the

buffer length always covers the queue length. In this way the chance of buffer

overflow at the user level is eliminated. The FLC dynamic buffer size tuner for user-

level application easily achieves this goal.

Location sensitivity is an essential element in both mobile and pervasive

computing. In mobile computing this sensitivity lets the Internet-based system know

exactly the locations of the SFF clients [Garlan2002]. Pervasive computing takes

mobile computing one step further by tracing and anticipating a nomadic user’s intent

and movement so that service can be prepared proactively in an invisible (non-

intrusive) manner. An important attribute for a pervasive system is to effectively

maintain a smart space [Weiser1991] and support it with rich information technology

capabilities. This is demonstrated by several well-know experimental examples today,

namely, Endeavor (at UC Berkeley), Aura (at Carnegie Mellon University) and

 202

Oxygen (at MIT). There is presently no dominant location sensing

mechanism/technology because any extant mechanism (e.g. Cricket, Blue-tooth, GPS,

active badge, e911, and the IEEE802.11 family) is good for only a narrow band of

situations. Therefore, effective location sensing is still an active area of research

[Hightower2001]. Once the position is sensed and known, the client’s intent can be

anticipated and supported. One possible intention is location-aware information

retrieval [Cool2002]. In this aspect the client, which is a SFF (small-for-factor)

mobile device (e.g. PDA or a portable PC carried by a user) communicates with the

pervasive-computing infrastructure [Brown2001, Brown2002]. The client-

infrastructure communication is wireless and the surrogate, which is a sever node

wired to the rest of the Internet, provides the necessary assistance to serve the user’s

requests through the client device.

A reasonable business scenario of location-aware information retrieval in Hong

Kong is a foreign buyer who has just arrived at the airport trying to locate a list of

reputable furniture manufacturers in town. After the plane has landed the buyer

immediately engages the local pervasive-computing environment through a SFF

device and discovers the appropriate surrogate. A surrogate is any assigned hardware

device, which is physically wired to the Internet by a high-speed network and assists

a mobile client temporarily. Through wireless communication provided by the smart

space the buyer passes its request for a list of manufacturers to the surrogate

(gateway). This surrogate tries to find the information within its database or it may

pass the request to other information stations (nodes) in the PCI. A surrogate solicits

help from other collaborating Internet nodes under the following conditions: a) it is

 203

too busy because there are too many similar requests, and b) the site has

impoverished bandwidth and thus it is necessary to re-direct the request to another

surrogate to speed up the service and reduce the overall roundtrip time (RTT).

Soliciting help from other wired nodes is known as cyber foraging

[Satyanarayanan2001, Patterson2003]. Dynamic buffer size tuning by using the FLC

can prevent a surrogate from being inundated by the clients’ requests. The

consequence of inundation is buffer overflow, which can happen easily during

periods of peak demand if the situation is not handled properly. User-level buffer

overflow as such makes the service provision link unreliable/undependable, and a

client may need to repeatedly resend the same request many times.

Figure 8.0.2 Client/server (surrogate) end-to-end wireless interaction

 204

In a public place such as the airport service, requests to the local surrogate or

gateway ties in with the traffic of the physical travellers. If the physical traveller

traffic is LRD (long-range dependence), then the service requests traffic to the

surrogate would likely follow suit. If the surrogate has a fixed buffer size to

accommodate these requests, then overflow can occur. This is a serious problem

because no matter how powerful the underlying pervasive-computing infrastructure is,

the user cannot benefit from it. Buffer overflow means that some requests would be

delayed from reaching the stage of cyber foraging, leading to much longer service

roundtrip times. The observation by [Lewis1996], makes the point that cyber foraging

yields speedup because different servers/surrogates work in parallel to provide the

necessary service. Under Markovian conditions cyber foraging can be represented by

the M/M/n model, where n is the number of collaborating surrogates or information

stations. The speedup S by cyber foraging with n nodes can, therefore, be visualized

as
)1(

)/1(
ρ

ρ
−
−

=
nS , where ρ is the surrogate utilization.

In reality the transient mass transit population would definitely increase the

volume of the communication between SFF mobile clients and a surrogate

[Malla2003], especially at peak hours. It is inevitable that in any smart space, which

is supported by a predefined number of SFF-surrogate connections, new connection

requests are dropped once the maximum number is exceeded. As a result further

client requests will be lost and retransmissions increase [Jamjoom2004]. From our

own experience and that of others, we note that any sudden change in the traffic

pattern of client requests to a surrogate can make the latter’s buffer overflow. The

Internet traffic pattern involves both wired and wireless communications. It is

 205

normally unpredictable because it can change suddenly, for example, from SRD

(short-range dependence) such as Markovian to LRD (long-range dependence) such

as heavy-tailed and self-similar, or multifractal [Medina2000, Molnar1999].

8.1 LOCATION-AWARE SIMULATIONS

The FLC’s efficacy in supporting more dependable location-aware information

retrieval is verified by simulation. There are two different sets of experiments. The

first set evaluates the execution time of the FLC Java prototype because dynamic

buffer tuning is naturally time-critical. If the execution time is too long, the computed

solution cannot remedy the actual problem in a real-time manner because it has long

passed. The computed solution would end up correcting a spurious problem leading

to undesirable/deleterious effects. The timing analysis is carried out with the Intel’s

VTune Performance Analyzer [VTune2002], which measures the FLC execution time

in the number of neutral clock cycles. The second set of experiments verifies that the

FLC indeed eliminates surrogate buffer overflow independent of the IAT (inter-

arrival time) traffic patterns.

The experiments were carried out on the Aglets mobile agent platform, which is

chosen for the following reasons: a) it is stable, b) it has rich user experience, and c) it

is designed for the Internet and this makes the experimental results scalable for the

open Internet. The set up for the experiments is shown in Figure 8.1.1, in which the

driver and the server are aglets (agile applets) collaborating in a client/server

relationship within a single computer. The driver picks a known waveform (e.g.

 206

Poisson) or a trace, which embeds an unknown waveform for the wireless

client/surrogate request traffic, from the table. It uses the pick to generate the inter-

arrival times for the simulated merged traffic into the surrogate buffer. A “trace” is a

file of pre-collected RTT, and the use of traces in simulations helps confirm that the

FLC control precision and stability are indeed insensitive to the sudden changes in

the incoming request traffic pattern. This confirmation is necessary because real-life

Internet related traffic usually follows the power law and changes suddenly, for

example, from LRD (long-range dependence) such as self-similar and heavy-tailed to

SRD (short-range dependence) such as Markovian.

Figure 8.1.1 Verification of FLC stability in SFF-client/surrogate interactions

 207

The waveforms in the experiments are always checked and identified, as

indicated by the “traffic pattern analysis” box in Figure 8.1.1. In this way the

response of the FLC to any specific waveform can be visualized in one-to-one

correspondence. Waveform checking and identification is achieved by using the E-

RTPD Tool [ATNAC2004], which includes different traffic filters/estimators (e.g. the

real-time modified QQ-plot or RT-QQ). The basis of the RTPD tool is the R/S

(rescaled adjusted statistics) mechanism. It is renamed the enhanced R/S or E-R/S

because the Convergence Algorithm is incorporated as a component. It measures the

Hurst (H) value and differentiates LRD (for 15.0 << H) from SRD (for 5.00 << H)

for a discrete stochastic process X. After the LRD character is confirmed, for example,

the RT-QQ filter can be invoked to check and confirm if the traffic pattern is heavy-

tailed. Some traces used in the experiments are from the in-house SFF 802.11b

connections [Trace] with the Lucent ORINOCO pc24e-h-fc wireless LAN card as the

interface. In this section three different sets of experimental results are presented.

Case 1 shows how the FLC makes the Hong Kong PolyU wireless environment more

dependable. Case 2 shows how well the FLC can work with the wireless traces from

the Stanford Mosquito Net. Case 3 shows that the FLC has worked well in the

Faculty of Information Technology in the University of Technology Sydney campus.

Case 1: Department of Computing, The Hong Kong Polytechnic University

The aim is to evaluate how the FLC dynamic buffer tuning process performs

in the Hong Kong PolyU wireless SFF-Client/surrogate environment. For the wireless

 208

LAN traffic trace chosen for demonstration the R/S plot of the RTPD Tool yields

H=0.7069, with 97.89% confidence for its LRD character (Figure 8.1.2).

Figure 8.1.2 Trace analysis/identification by RTPD’s R/S estimator

From the preliminary experimental results, as shown in Figure 8.1.3, the

following are concluded: a) the FLC maintains the Δ safety margin correctly and

consistently for different RQOB values and traffic conditions, b) it eliminates the

surrogate buffer overflow efficaciously, and c) it has a shorter control cycle time than

the PIDC’s, which was also tested for comparison purposes. The “buffer overflow

controller/tuner” remark in Figure 8.1.1 indicates where the FLC or PIDC can be

installed for the particular simulation. Figure 8.1.4 is plotted for the same trace as

Figure 8.1.3 and it shows that the FLC convergence to the RQOB reference is quicker,

smoother and more accurate than the PIDC.

 209

Figure 8.1.3 FLC and PIDC performances in SFF-client/surrogate buffer

overflow control

Figure 8.1.4 More accurate and faster FLC trend line than the PIDC’s

 210

Case 2. Stanford Mosquito Net

This simulation shows how FLC would respond in a different SFF-

clients/surrogate traffic environment. In this case the wireless traffic is the Stanford

Mosquito Net [Tang2000]. The plot by E-R/S in the E-RTPD shown in Figure 8.1.5

indicates that the trace is LRD (H=0.716) with 98.34% of confidence.

Figure 8.1.5 Trace analysis/identification by RTPD(R/S estimator) H=0.716

Figure 8.1.6 compares the FLC and PIDC performance for the same trace. It

shows that the FLC controlled buffer length always covers the queue length by the

safety margin of 2.0=Δ . The buffer length controlled by the PIDC, however, differs

by locking up unused buffer space consistently. This kind of unnecessary memory

locking may deprive the system of recyclable memory and lead to poor performance.

 211

Figure 8.1.7 shows that the FLC controlled output is smoother and more accurate

than the PIDC’s.

Figure 8.1.6 FLC and PIDC responses to the Stanford Mosquito Net trace

Figure 8.1.7 Performance comparison between the FLC and the PIDC

 212

Case 3. Faculty of Information Technology, University of Technology Sydney

It evaluates how the FLC dynamic buffer tuning process performs for the UTS

wireless SFF versus client/surrogate environment. The UTS wireless traffic traces

selected for demonstration here have H=0.54 with 95.8% confidence for its LRD

character. The plot in Figure 8.1.8 is produced by the E-R/S of the E-RTPD package.

The experimental results given in Figure 8.1.9 show the following: a) the FLC

maintains the Δ safety margin correctly and consistently for different RQOB values

and traffic conditions, b) it eliminates the surrogate buffer overflow efficaciously, and

c) it has a shorter control cycle time than the PIDC’s, which was also tested for

comparison purposes. Figure 8.1.10 is plotted for the same trace as Figure 8.1.9 and it

shows that the FLC convergence to the RQOB reference is quicker, smoother and

more accurate than the PIDC.

Figure 8.1.8 UTS Trace analysis/identification by RTPD’s R/S estimator

 213

Figure 8.1.9 FLC and PIDC SFF-client/surrogate buffer overflow control performances

for the UTS trace used in Figure 8.1.8

Figure 8.1.10 More accurate and faster FLC trend line than the PIDC’s for the UTS

trace

 214

8.2 CONNECTIVE SUMMARY

Within a smart space for mobile/pervasive computing the number of SSF

clients trying to hook onto the surrogate ties in with the transient mass transit traffic.

The asymmetric rendezvous between the surrogate and the many clients that demand

its service may inundate the surrogate request buffer to overflow. If this happens, the

clients would lose the chance to benefit from the cyber foraging supported by the

background mobile/pervasive computing infrastructure. The FLC, however, can tune

the surrogate buffer size on the fly to make sure that it always covers the request

queue size by the given Δ safety margin. As a result it eliminates any chance of

transient buffer overflow due to the transient transit mass and makes the SFF-

client/surrogate interaction more dependable. The simulations with different wireless

traces indicate that the FLC is indeed an efficacious solution for more dependable

location-aware applications such as pervasive information retrieval. From the

literature search while preparing for the location-aware experiments, it was found that

dynamic buffer size tuning is very useful for e-health applications that are usually

time-critical [Epocrates]. Tele-diagnosis over the Internet is a typical time-critical

example because timeliness of the diagnostic result determines if a patient would be

saved in time in an emergency case. Dynamic buffer size tuning can reduce

“procrastination” due to retransmissions caused by user-level buffer overflow. As a

result it could help save lives.

 215

CHAPTER 9 CONCLUSION, ACHIEVEMENTS AND FUTURE WORK

In my MPhil thesis I proposed four original dynamic buffer size tuners for

user-level applications. They are as follows:

1) PIDC (“proportional (P) + integral(I) + derivative(D)” Controller): It is

algorithmic and always eliminates user-level buffer overflow even with two

shortcomings: a) it locks unused buffer space, and b) it does not have a safety margin

and therefore the queue length can get dangerously close to the buffer length

threatening possible overflow.

2) GAC (Genetic Algorithm Controller): It is the “PIDC + genetic algorithm (GA) +

2},0{ Δ objective function” combination. The GA moderates the PIDC process so that

the outcome is always within the Δ± safety margins about the steady-state reference

symbolically represent by “0” in 2},0{ Δ . The GA eliminates the PIDC shortcomings

but produces occasional buffer overflow because it does not guarantee the global-

optimal solution of the solution hyperplane.

3) FLC (Fuzzy Logic Controller): It was proposed to preserve the GAC merits and

eliminate the occasional buffer overflow. It is this combination: “PIDC + fuzzy logic

+ 2},0{ Δ objective function”. The fuzzy logic moderates the PIDC control process

functionally similar to the GA.

4) NNC (Neural Network Controller): It works with the 2},0{ Δ objective function but

does not include PIDC. Its proposal was inspired by the successful experience of

using neural networks in AQM (active queue management) algorithms that prevent

 216

network congestion at the system/router level. AQM methods differ from the

dynamic buffer size tuners by using a fixed-size buffer.

These tuners succeed in providing performance enhancement and fault

tolerance to client/server interactions over logical TCP channels of the Internet by

eliminating the user-level overflow. They are suitable for time-critical applications

because they have short control cycle times as measured by the Intel’s VTune

Performance Analyzer. The sizes of their Java prototypes and execution/cycle times

are listed in Table 9.1.

 217

Control
models

Lines of Java
code for controller

implementation

(Ln)

Average
line of code
in Pentium

III
assembler
program

Clock/T
cycles per
assembly

line
(Pentium lll
933MHz)

(T)

Average
number of
T cycles
required for
convergenc
e

(NTC)

Measured average number
of T cycles per convergence

computation cycle

(TCC)

Proportional
Integral

Derivative
Controller

(PIDC)

105 525 9 4725 205

Genetic
Algorithm
Controller

(GAC)

111 555 9 4995 475

Fuzzy Logic
Controller

(FLC)
116 580 9 5220 255

Neural
Network

Controller
(NNC)
(Back

propagation
architecture

[Input-
Hidden-

Output]: 10-
20-1)

240 1200 9 10800 10800

 Table 9.1 Empirical comparison of the four proposed controllers

Although my MPhil research had significant contributions in user-level buffer

overflow control and provision of shorter service roundtrip time (RTT) for

client/server interactions over the Internet, it has left several unaddressed issues as

follows:

1) In the aspects of traffic ill effects: a) Is it possible to calibrate the ill effects

off-line so that the tuners can use these calibrations to ward off traffic

 218

impedance by fine-tuning its dynamic buffer tuning process adaptively? b) If

so, then how can the current Internet traffic pattern be deciphered on the fly

(on-line) so that the off-line calibrations can be applied selectively?

2) For FLC: a) Is it possible to have an optimal design? b) Is it possible to make

the tuner self-reconfigurable (especially with respect to traffic pattern

changes)?

3) For NNC: a) Is it possible to prune the NNC configuration on the fly so that

its control cycle time can be consistently and adaptively reduced? b) Is there a

correlation between control accuracy and the number of hidden neurons in the

NNC back-propagation architecture? (The procedure to provide the answer is

called sensitivity analysis.)

Providing solutions to these unaddressed issues has become the motivation of my

PhD research. In the process I have achieved the following:

1) For real time traffic analysis: Two traffic filters have been proposed: real-

time modified QQ-plot (or simply RT-QQ) and self-similarity (2S) filter.

These filters identify the Internet traffic patterns on the fly. The RT-QQ

recognizes heavy-tailed distributions and the 2S filter identifies self-similarity.

2) For FLC: a) an optimal range is found for FLC design, and b) a way was

found to make the FLC adaptive/reconfigurable by squeezing the “don’t care”

state range threshold in a dynamic manner.

3) For NNC: a) the HBP (Hessian Based Pruning) approach was proposed for

 219

pruning or optimizing the NNC configuration on the fly and as a result its

average execution time (i.e. control cycle time) is reduced, and b) sensitivity

analysis was conducted and the results confirm that more hidden neurons do

not necessarily mean better NNC performance

The results from my PhD research have contributed to 19 publications (5 journals

and 14 conferences) so far, and I have achieved all the objectives planned for my

thesis at the outset. Following the experience gained in my research I propose that the

future work should include the following:

a) to investigate the issue of how to choose the limits for effective Gaussianity tests in

the CAB mechanism,

b) to deepen the investigation into why “heavy-tailedness” is not a necessary

condition of self-similarity, and

c) to investigate how the dynamic buffer size controllers, especially the FLC, can best

support pervasive computing based e-applications such a telemedicine.

My PhD research has achieved the planned objectives, which provide solutions

to all the unaddressed issues left behind by my previous MPhil thesis. The new

findings include the following:

1) For FLC (Fuzzy Logic Controller): a) an optimal FLC design range is confirmed

empirically and b) a reconfigurable/adaptive FLC model is proposed and verified.

2) For NNC (Neural Network Controller): a) sensitivity analysis confirms that there is

no obvious advantage in having more than 20 hidden neurons in the NNC’s back-

 220

propagation neural network (NN) and b) the Hessian Based Pruning (HBP) method is

proposed and verified for optimizing the NN architecture on the fly and this reduces

the NNC control cycle time successfully by at least seven percent.

3) For real-time traffic analysis: I successfully made use of the accumulated

experience by the COMP Team and in return I proposed and verified two real-time

traffic filters/estimators: real-time modified QQ-plot (or RT-QQ) and self-similarity

(2S) filter. The inclusion of these filters into the real-time traffic detector (RTPD)

proposed by the Team converts it into the Enhanced RTPD or E-RTPD. I successfully

used these filter to help the reconfigurable FLC (i.e. A-FLC [p12]) to fine-tune itself

on the fly to nullify the ill effects on its stability and accuracy by traffic pattern

changes.

The findings from my PhD research, as listed above, not only provide a solid basis

and directions for future exploration in the area of dynamic buffer size control but

also contributed to 19 publications (5 journal and 14 conferences) as follows:.

Five refereed journal papers

[p1] Wilfred W.K. Lin, Allan K.Y. Wong and Tharam S. Dillon, Application of Soft

Computing Techniques to Adaptive User Buffer Overflow Control on the Internet, to

appear in the IEEE Transactions on Systems, Man and Cybernetics, Part C

[p2] Wilfred W.K. Lin, Allan. K. Y. Wong and Richard S.L. Wu, Applying Fuzzy

Logic and Genetic Algorithms to Enhance the Efficacy of the PID Controller in

 221

Buffer Overflow Elimination for Better Channel Response Timeliness over the

Internet, to appear in the Concurrency and Computation: Practice & Experience

[p3] Wilfred W.K. Lin, Allan K. Y. Wong and Tharam S. Dillon, A Novel Fuzzy-PID

Dynamic Buffer Tuning Model to Eliminate Overflow and Shorten the End-to-End

Roundtrip Time for TCP Channels, Lecture Notes in Computer Science, Volume

3358 / 2004, pp.783-787

[p4] Wilfred W.K. Lin, Allan K. Y. Wong and Tharam S. Dillon, HBP: An

Optimization Technique to Shorten the Control Cycle Time of the Neural Network

Controller (NNC) that Provides Dynamic Buffer Tuning to Eliminate Overflow at the

User Level, International Journal of Computer Systems Science & Engineering, 19(2),

March 2004, pp. 85-94

[p5] Wilfred W.K. Lin and Allan K.Y. Wong, A Novel Neural Network Controller to

Eliminate Buffer Overflow in Client/Server Based Internet Applications, WSEAS

Transactions on Systems, 2(3), July 2003, pp.607-615

Fourteen refereed conference papers

[p6] Wilfred W.K. Lin, Allan K.Y. Wong and Tharam S. Dillon, A Novel R^2-FLC

Dynamic Buffer Size Tuner to Support Time-Critical Applications over the Internet

by Improving Logical Channel Fault Tolerance to Shorten Roundtrip Time, to appear

 222

in the 11th International Symposium on Pacific Rim Dependable Computing (PRDC-

2005) Changsha, Hunan, China

[p7] Wilfred W.K. Lin, Allan K.Y. Wong and Tharam S. Dillon, FLC: A Novel

Dynamic Buffer Tuner for Shortening Service Roundtrip Time over the Internet by

Eliminating User-Level Buffer Overflow on the Fly, to appear in the 6th International

Workshop on Advanced Parallel Processing Technologies(APPT'05), Hong Kong

[p8] Wilfred W.K. Lin, Allan K. Y. Wong, Tharam S. Dillon and Richard S.L. Wu, A

Novel Real-Time Self-Similar Traffic Detector/Filter to Improve the Reliability of a

TCP Based End-to-End Client/Server Interaction Path for Shorter Roundtrip Time, to

appear in the 2nd International Conference on E-Business and Telecommunication

Networks, Reading, United Kingdom

[p9] Wilfred W. K. Lin, Tharam S. Dillon and Allan K.Y. Wong, An Internet-Based

Distributed Manufacturing System Utilizing a Recurrent Neural Network Controller

for Dynamic Buffer Size Tuning to Prevent User-level Buffer Overflow and Shorten

the Service Roundtrip Time, to appear in the 3rd International IEEE Conference on

Industrial Informatics 2005, Perth, Australia (Best presentation award)

[p10] Wilfred W.K. Lin, Tharam S. Dillon and Allan K.Y. Wong, Apply FLC-based

Dynamic Buffer Size Tuning to Shorten the Information Retrieval Round Trip Time

 223

in the Mobile Location-aware Environments, Proceedings of the 4th International

Conference on Mobile Business, Sydney, Australia, pp. 507-513

[p11] Wilfred W.K. Lin, Allan K. Y. Wong and Tharam S. Dillon, A Novel Traffic

Independent NNC for Dynamic Buffer Tuning to Shorten the RTT of a TCP Channel,

Proceedings of the 3rd International Conference on Information Technology and

Applications, Sydney, Australia, pp. 647-652

[p12] Wilfred W.K. Lin, Tharam S. Dillon and Allan K.Y. Wong, A Recurrent

Neural Network Controller for Dynamic Buffer Size Tuning to Provide More

Dependable Client Server Communications, Proceedings of the International

Conference on Dependable Systems and Networks (Fast Abstract), Yokohama, Japan,

pp. 20-21

[p13] Wilfred W. K. Lin, Allan K. Y. Wong and Tharam S. Dillon, A Novel Fuzzy

Logic Controller (FLC) for Shortening the TCP Channel Roundtrip Time by

Eliminating User Buffer Overflow Adaptively, Proceedings of the 28th Australasian

Computer Science Conference 2005 (ACSC’2005), Newcastle, Australia, pp. 29-37

[p14] Wilfred W. K. Lin, Richard S.L. Wu, Tharam S. Dillon and Allan K. Y. Wong,

A Novel Real-Time Traffic Pattern Detector for Internet Applications, Proceedings of

the 2004 Australian Telecommunication Networks and Applications

Conference(ATNAC), Sydney, Australia, December 2004, pp. 224-227

 224

[p15] Wilfred W.K. Lin, Allan K. Y. Wong and Tharam S. Dillon, A Novel Adaptive

Fuzzy Logic Controller (A-FLC) to Reduce Retransmission and Service Roundtrip

Time for Logical TCP Channels over the Internet, Proceedings of the 2004

International Conference on Embedded And Ubiquitous Computing (EUC04), LNCS

3207, Aizu, Japan, August 2004, pp.941-951

[p16] Allan K. Y. Wong, Wilfred W.K. Lin and Tharam S. Dillon, HBP: A Novel

Technique for Dynamic Optimisation of the Feed-Forward Neural Network

Configuration, Proceedings of the 1st International Conference on Informatics in

Control, Automation and Robotics, Setubal, Portugal, August 2004, pp.346-349

[p17] Wilfred W.K. Lin and Allan K.Y. Wong, A Novel Fuzzy Logic Controller to

Eliminate Buffer Overflow at the User Level over the Internet, Proceedings of the

24th IEEE International Real-Time Systems Symposium, (WIP Session), Cancun,

Mexico, December 2003, pp.71-74

[p18] Wilfred W.K. Lin and Allan K.Y. Wong, A Novel Adaptive Fuzzy Logic

Controller (FLC) to Improve Internet Channel Reliability and Response Timeliness,

Proceedings of the IEEE Symposium on Computers and Communications

(ISCC'2003), Antalya, Turkey, July 2003, vol. II, pp.1347-1352.

 225

[p19] Wilfred W.K. Lin, Allan K. Y. Wong and Tharam S. Dillon, HBM: A Suitable

Neural Network Pruning Technique to Optimize the Execution Time of the Novel

Neural Network Controller (NNC) that Eliminates Buffer Overflow, Proceedings of

the 8th 2003 International Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA'2003), Las Vegas, USA, June 2003, vol. II, pp.

555-560

The contributions by the published papers above can be divided into different

groups as follows:

Group 1: It consists of the following: p1, p2, p3, p6, p7, p10, p13, p15, p17, p18. The

specific contributions by these papers are: a) an optimal design range is confirmed for

FLC design, and b) a way was found to make the FLC adaptive/reconfigurable by

squeezing the “don’t care” state range threshold in a dynamic manner.

Group 2: It consists of the following: p1, p4, p5, p9, p11, p12, p16, p19. The specific

contributions by these papers are: a) the Hessian Based Pruning method can indeed

optimize the NNC configuration on the fly and as a result reduces its average

execution time (i.e. control cycle time), and b) sensitivity analysis confirms that

more hidden neurons in the NNC architecture does not necessarily yield better

performance

Group 3: It consists of the following: p8 and p14. The specific contributions by these

papers are real-time traffic analysis and pattern detection. The inclusion of my real-

 226

time modified QQ-plot (or simply RT-QQ) and the S2 filter into the extant RTPD

(real-time traffic pattern detector) convert it to the enhanced version (i.e. E-RTPD).

AREA OF FUTURE RESEARCH

In the research process I have uncovered different relevant problems, and after

scrutinizing carefully I suggest that the following items should be investigated first in

the near future because of their “bridging nature” to other relevant issues in dynamic

buffer size tuning:

a) The first is to investigate how limits can be appropriately chosen for on-line

Gaussianity tests. The successful use of traffic filters depends on whether stationarity

for an aggregate in a discrete stochastic process can be confirmed. For example, the

RT-QQ and 2S filters for on-line application work for the “Hurst and stationarity”

conditions.

b) The second is to deepen the investigation into why “heavy-tailedness” is not a

necessary condition of self-similarity. So far, this issue has rarely been explored.

More confirmation is needed so that the real need of designing different real-time

filters for heavy-tailed distributions and self-similar waveforms is there.

c) Although the PIDC, FLC and NNC tuners proposed in my MPhil thesis were

deployed, they were applied only in the wired Internet environment. In fact, the

Internet is getting more mixed in the sense that it is made up of wireless and wired

(W&W) parts. The W&W setup is typical of pervasive computing environments,

which are called mobile distributed systems (MDS). This kind of setup is getting

 227

more popular in different areas of applications such as telemedicine. Therefore, there

is a need to investigate how the dynamic buffer size controllers, especially the

improved versions for the FLC and NNC. In particular the FLC should be examined

more carefully in the light of how it can best support pervasive computing based e-

applications.

 228

CHAPTER 10 BIBLIOGRAPHICAL REFERENCES

[Abry2000] P. Abry, P. Flandrin, M. S. Taqqu and D.Veitch, Wavelets for

the Analysis, Estimation and Synthesis of Scaling Data, in Self

Similar Network Traffic Analysis and Performance Evaluation,

K. Park and W. Willinger, Eds., Wiley, pp.39-89

[Aloisio1980] A. Aloisio, The Central Limit Theorem for Real and Banach

Valued Random Variables, Wiley, 1980

[Alvisi1998] L. Alvisi and K. Marzullo, Message Logging: Pessimistic,

Optimistic, Causal, and Optimal, IEEE Transactions on

Software Engineering, 24(2), February 1998, 149 -159

[Amir1995] Y. Amir, L. Moser, P. Melliar-Smith, D. Agarwal, and P.

Ciarfella, The Totem Single-ring Ordering and Membership

Protocol, ACM Transactions on Computer Systems, 13(4),

November 1995, 311-342

[Arvotham2001] S. Arvotham, R. Riedi and R. Barabniuk, Connection-Level

Analysis and Modeling of Network Traffic, Proc. of the

IEEE/ACM Internet Measurement Workshop, 2001

 229

[Athuraliya2001] S. Athuraliya, S.H. Low, V.H. Li and Q.H. Yin, REM: Active

Queue Management, IEEE Network, 15(3), May-June 2001,

48-53

[Avizienis2004] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, Basic

Concepts and Taxonomy of Dependable and Secure

Computing, IEEE Transactions on Dependable and Secure

Computing, 1(1), January-March 2004, 11-33

[Aweya1998] J. Aweya, Neurocontroller for Buffer Overload Control in a

Packet Switch, IEE Proc. Communications, 145(4), August

1998, 227-233

[Aweya2002] J. Aweya, M. Ouellette and D.Y. Montuno, Multi-level Active

Queue Management with Dynamic Thresholds, Computer

Communications, 25(8), May 2002, 756-771

[Balakrishnan1997] H. Balakrishnan et al, A comparison of Mechanisms for

Improving TCP performance over Wireless Links, IEEE/ACM

Transactions on Networking, 5(6), 1997, 756-769

[Braden1998] Braden et.al., Recommendations on Queue Management and

Congestion Avoidance in the Internet, RFC 2309, April 1998

 230

[Barford2004] P. Barford and J. Sommers, Comparing Probe- and Router-

Based Packet-Loss Measurement, IEEE Internet Computing

8(5), September - October 2004, 50-56

[Berkan1997] R.C. Berkan, Fuzzy Systems Design Principles: Building

Fuzzy IF-THEN Rule Bases, IEEE Press, 1997

[Bertsekas1982] D.P. Bertsekas, Constrained Optimization and Lagrange

Multiplier Methods, New York, Academic Press, 1982

[Brown2001] P. J. Brown and G. J. F. Jones, Context-aware Retrieval:

Exploring a New Environment for Information Retrieval and

Information Filtering, Personal and Ubiquitous Computing,

5(4), December 2001, pp.253-263

[Brown2002] P.J. Brown, G.J.F. Jones, Information Access and Retrieval:

Exploiting Contextual Change in Context-aware Retrieval,

Proceedings of the 2002 ACM symposium on Applied

computing, Madrid, Spain, March 2002, 650 - 656

[Cao2001] Cao et al, On the Nonstationarity of Internet Traffic, Proc. of

the ACM SIGMETRICS’01, 2001, 102-112

 231

[Cen2003] S. Cen, P.C. Cosman, G.M. Voelker, End-to-End

Differentiation of Congestion and Wireless Losses, IEEE/ACM

Transactions on Networking, 11(5), October 2003, 703-717

[Chatranon2004] G. Chatranon, M.A. Labrador and S. Banerjee, A Survey of

TCP-Friendly Router-based AQM Schemes, Computer

Communications, 27(15), September 2004, 1424-1440

[Comer1995] D. Comer, Internetworking with TCP/IP: v.1 Principles,

Protocols, and Architecture, Englewood Cliffs, N.J. Prentice

Hall, 1995

[Cool2002] C. Cool and A. Spink, Issues of Context in Information

Retrieval (IR): An Introduction to the special issue.

Information Processing & Management, 38(5), September

2002, pp.605-611

[Courriou2004] J.P. Courriou, Process Control : Theory and Applications,

London ; New York : Springer, 2004

 232

[Cottrel1999] L. Cottrel, M. Zekauskas, H. Uijterwaal and T. McGregor,

Comparison of Some Internet Active End-to-End Performance

Measurement Projects,

http://www.slac.stanford.edu/comp/net/wan-mon/iepm-cf.html,

1999

[Cottrel2001] L. Cottrel, Passive vs. Active Monitoring,

http://www.slac.stanford.edu/comp/net/wan-mon/passive-vs-

active.html, March 2001

[Crawford2000] J.M. Crawford, A Scalable Architecture for Maximizing

Concurrency, The 8th NASA Goddard Space Flight Center

Conference on Mass Storage Systems and Technologies in

cooperation with Seventeenth IEEE Symposium on Mass

Storage Systems, College Park, USA, March 2000, 253-258

[Cristian1999] F. Cristian and C. Fetzer, The Timed Asynchronous

Distributed System Model, IEEE Transactions on Parallel and

Distributed Systems, 10(6), June 1999, 642 -657

[Crovella1997] Mark E. Crovella and Azer Bestavros, Self-Similarity in World

Wide Web Traffic: Evidence and Possible Causes, in

http://www.ulanr-net/viz/End2end
http://www.slac.stanford.edu/comp/net/wan-mon/passive-vs-active.html
http://www.slac.stanford.edu/comp/net/wan-mon/passive-vs-active.html

 233

IEEE/ACM Transactions on Networking, 5(6), December 1997,

835-846

[Dunigan2003] T. Dunigan, TCP Auto-tuning Zoo,

ww.csm.ornl.gov/~dunigan/net100/auto.html, 2003

[Elnozahy1999] M. Elnozahy, L. Alvisi, Y. M. Wang and D. B. Johnson, A

Survey of Rollback-Recovery Protocols in Message-Passing

Systems. Technical Report CMU-CS-99-148, School of

Computer Science, Carnegie Mellon University, June 1999

[Epocrates] e-Pocrates, e-Pocrates http://www.epocrates.com

[Feng1999] W. Feng, D. Kandlur, D. Saha and K. Shin, "Blue: A New

Class of Active Queue Management Algorithms" IBM

Research Report, April 1999

[Finney1994] R. L. Finney, G. B. Thomas and M. D. Weir, Calculus,

Addison-Wesley, 1994

[Fisk2000] M. Fisk and W. Feng, Dynamic Adjustment of TCP window

Sizes, Technical Report LAUR 00-3321, Los Almos National

Laboratory, 2000

http://www.epocrates.com/

 234

[Floyd1993] S. Floyd and V. Jacobson, Random Early Detection Gateways

for Congestion Avoidance, IEEE/ACM Transactions on

Networking, 1(4), August 1993, 397-413

[Gallant1992] A. R. Gallant and H. White, On Learning the Derivatives of an

Unknown Mapping and Its Derivatives Using Multiplayer

Feedforward Networks, Neural Networks, vol. 5, 1992

[Gartner1999] F. Gärtner, Fundamentals of Fault-tolerant Distributed

Computing in Asynchronous Environments, ACM computing

surveys, 31(1), March 1999, 1-26

[Garbinato2000] B. Garbinato and R. Guerraoui, An Open Framework for

Reliable Distributed Computing, ACM Computing Surveys

32(1) 2000, 1-4

[Hagan1996] M. Hagan et al, Neural Network Design, PWS Publishing

Company, 1996

[Han1998] S. Han and K. G. Shin, A primary –Backup Channel to

Dependable Real-Time Communication in Multihop Networks,

IEEE Transactions on Computers, 47(1), January 1998, 46-61

 235

[Hassan2000] M. Hassan, Performance of TCP/IP over ATM networks,

Boston, Mass. : Artech House, 2000

[Hightower2001] J. Hightower and G. Borriello, Location Systems for

Ubiquitous Computing, IEEE Computer, 34(8), August 2001,

57-66

[Hurst1965] H.E. Hurst, Long-term Storage : An Experimental Study,

London Constable, 1965.

[Ip2001] May T.W. Ip, Wilfred W.K. Lin, Allan K.Y. Wong, Tharam S.

Dillon and Dian Hui Wang, An Adaptive Buffer Management

Algorithm for Enhancing Dependability and Performance in

Mobile-Object-Based Real-time Computing, Proc. of the IEEE

ISORC’2001, Magdenburg, Germany, May 2001, 138-144

[Ip2002] Allan K.Y. Wong, May T.W. Ip and Tharam S. Dillon, M3RT:

An Internet End-to-End Performance Measurement Approach

for Real-Time Applications with Mobile Agents, Proc. of the

ISPAN'’002, 2002, 119-124

 236

[Jacobson1988] V. Jacobson, Congestion avoidance and control. ACM

SIGCOMM Computer Communication Review, 1988, 18(4),

314 - 329

[Jamjoom2004] H. Jamjoom, P. Pillai and K.G. Shin, Resynchronization and

Controllability of Bursty Service Requests, IEEE/ACM

Transactions on Networking, 14(4), August 2004, pp. 582- 594

[Jain1992] R. Jain, The Art of Computer Systems Performance Analysis,

Techniques for Experimental Design, Measurement,

Simulation, and Modeling, Wiley, 1992

[Jalote1994] P. Jalote, Fault Tolerance in Distributed Systems, Prentice Hall,

1994

[Jamjoom2004] H. Jamjoom, P. Pillai and K.G. Shin, Resynchronization and

Controllability of Bursty Service Requests, IEEE/ACM

Transactions on Networking, 14(4), August 2004, 582- 594

[Kang2002] K.D. Kang, S.H. Son and J.A. Stankovic, STAR: secure real-

time transaction processing with timeliness guarantees, the 23rd

IEEE real-Time Systems Symposium, 2002(RTSS’2002) 3-5

Dec. 2002, 303 -314

 237

[Karagiannis2003] T. Karagiannis, M. Faloutsos, M. Molle, A User-friendly Self-

similarity Analysis Tool, ACM SIGCOMM Computer

Communication Review, 33(3), July 2003, 81-93

(http://www.cs.ucr.edu/~tkarag/Selfis/Selfis.html)

[Karray2002] K.D. Kang, S.H. Son and J.A. Stankovic, STAR: secure real-

time transaction processing with timeliness guarantees, the 23rd

IEEE real-Time Systems Symposium, 2002(RTSS’2002) 3-5

Dec. 2002, 303 -314

[Kim1998] W.J. Kim; B.G. Lee; FRED-fair random early detection

algorithm for TCP over ATM networks, Electronics Letters ,

Volume: 34 Issue: 2 , 22 January 1998, 152 -154

[Koo2001] J. Koo, B.H. Song, K.S. Chung, H.J. Lee and H.K. Kahng,

MRED: A New Approach to Random Early Detection,

Proceedings of 15th International Conference on Information

Networking, 31 January -2 February 2001, 347 -352

[Kramer] Generator of Self-Similar Network Traffic,

http://wwwcsif.cs.ucdavis.edu/~kramer/code/trf_gen1.html

http://www.cs.ucr.edu/~tkarag/Selfis/Selfis.html
http://wwwcsif.cs.ucdavis.edu/~kramer/code/trf_gen1.html

 238

[Kratz] M.F. Kratz and S.I. Resnick, The QQ-Estimator and Heavy

Tails, http://www.orie.cornell.edu/trlist/trlist.html

[Kris2003] G.P. Krishna, M.J. Pradeep and S.R. Murphy, An Efficient

Primary-Segmented Backup Scheme for Dependable Real-

Time Communication in Multiphop Networks, IEEE/ACM

Transactions on Networking, 11(1), February 2003

[Lakshman1996] T. Lakshman, A. Neidhardt and T. Ott, The Drop from Front

Strategy in TCP over ATM and Its Internetworking with other

Control Features, INFOCOMM 1996

[Lakshman1997] T. Lakshman U. Madlow, The Performance of TCP/IP for

Networks with High Bandwidth-Delay Products and Random

Loss, IEEE/ACM Transactions on Networking, 5(3), June 1997,

336-350

[Laprie1995] J.C.Laprie, Dependable Computing: Concepts, Limits,

Challenges, the 5th IEEE International Symposium on Fault-

Tolerant Computing (FTCS-25), Pasadena, CA, USA, 42-54

[Leland1994] Will Leland, Murad Taqqu, Walter Willinger, and Daniel

Wilson, On the Self-Similar Nature of Ethernet Traffic

 239

(Extended Version), IEEE/ACM Transactions on Networking,

2(1), February 1994, 1-15

[Lewandowski1998] S.M. Lewandowski, Frameworks for Component-based

Client/Server Computing, ACM Computing Surveys 30(1),

March 1998, 3-27

[Lewis1996] T. Lewis, The Next 10,0002 Years: Part 1," IEEE Computer,

29(4), April 1996, pp. 64-70

[Lin2001NNC] W.W.K. Lin, M.T.W. Ip, D.H. Wang, A.K.Y. Wong and T.S.

Dillon, A Neural Network Based Proactive Buffer Control

Approach for Better Reliability and Performance for Object-

Based Internet Applications, Proc. of the PDPTA2001, Las

Vegas, USA, June 2001, 451-456

[Lin2002] W.W.K. Lin, An adaptive IEPM (Internet End-to-end

Performance Measurement) based approach to enhance fault

tolerance and performance in object based distributed

computing over a sizeable network (exemplified by the

Internet), Master of Philosophy Thesis, Department. of

Computing, Hong Kong Polytechnic University, 2002.

 240

[Lin2002FLC] W.W.K. Lin and A.K.Y. Wong, A Fuzzy Controller for

Adaptive Buffer Control Leading to Better Channel Reliability

and System Performance for Object-based Internet

Applications, Proc. of the PDPTA2002, Las Vegas, USA, June

2002, 345-350

[Malla2003] A. Malla, M. El-Kadi, S. Olariu and P. Todorova, A Fair

Resource Allocation Protocol for Multimedia Wireless

Networks, IEEE Transactions on Parallel and Distributed

Systems, 14(1), January 2003, 63 - 71

[Markatos1998] E. P. Markatos, M. G. H. Katevenis, and P. Vatsolaki. The

Remote Enqueue Operation on Networks of Workstations. In

Proceedings. of the 2nd International Workshop on

Communication and Architectural Support for Network-Based

Parallel Computing (CANPC'98), number 1362 in Lecture

Notes in Computer Science, Springer, February 1998, 1-14

[Michalewicz1996] Z. Michalewicz, Genetic algorithms + Data Structures =

Evolution Programs, 3rd Ed., Springer, Berlin, 1996

[Mitrani1987] I. Mitrani, Modelling of Computer and Communication

Systems, Cambridge University Press, 1987.

 241

[Mishra1998] S. Mishra and L. Wu, An Evaluation of Flow Control in Group

Communication. IEEE/ACM Transactions on Networking,

6(5), October 1998, 571-587

[Mitsuru1998] O. Mitsuru and K. Guenter, IBM Aglets Specification,

www.trl.ibm.com/aglets/spec11.htm

[Mitchel1999] E. Mitchell, An Introduction to Genetic Algorithms, MIT Press,

1999

[Molnár1999] S. Molnár, T.D. Dang and A. Vidács, Heavy-Tailedness, Long-

Range Dependence and Self-Similarity in Data Traffic,

Proceedings of 7th International Conference on

Telecommunication Systems, Modelling and Analysis, March

1999, Nashville, USA, 18-21.

[Morin1997] C. Morin and I. Puaut, A Survey of Recoverable Distributed

Shared Virtual Memory Systems, IEEE Transactions on

Parallel and Distributed Systems, 8(9), September 1997, 959 -

969

 242

[Mukherjee1998] S.S. Mukherjee and M.D. Hill. The Impact of Data Transfer

and Buffering Alternatives on Network Interface Design, In

4th International Symposium on High-Performance Computer

Architecture (HPCA), Las Vegas, USA, 1998, 207-218

[Nakamura2004] M. Nakamura, H. Kamezawa, J. Tamatsukuri, M. Inaba, K.

Hiraki, K. Mizuguchi, K. Torii, S. Nakano, S. Yoshita, R.

Kurusu, M. Sakamoto, Y. Furukawa, T. Yanagisawa, Y. Ikuta,

J. Shitami, A. Zinzaki, Long Fat Pipe Congestion Control for

Multi-Stream Data Transfer, Proceedings of the 2004

International Symposium on Parallel Architectures, Algorithms

and Networks (ISPAN'04), May 10 - 12, 2004, Hong Kong,

SAR, China, 294-300

[Nunamaker1991] J. F. Nunamaker, JR., M. Chen and T. D. M. Purdin, System

Development in Information Systems Research, Journal of

Management Information Systems, 7(3), Winter 1990-91, 89-

106

[Oh1998] S.H. Oh, S.Y. Lee, S. Shin and H. Lee, Adaptive Learning Rate

and Limited Error Signal for Multilayer Perceptrons with nth

Order Cross-Entropy Error, Proc. of the IEEE World Congress

 243

on Computational Intelligence, The 1998 IEEE International

Joint Conference on Neural Network, vol. 3, May 1998

[Padhye1998] J. Padhye, V. Firoiu, D. Towsley and J. Kurose, Modeling TCP

Throughput: A Simple Model and its Empirical Validation,

Proc. of the ACM SIGCOMM '98 Conference, Vancouver,

Canada, 1998

[Patterson2003] C.A. Patterson, R.R. Muntz and C.M. Pancake, Challenges in

Location-aware Computing, IEEE Pervasive Computing, 2(2),

April-June 2003, 80 – 89

[Paxson1995] V. Paxson and S. Floyd, Wide-Area Traffic: The Failure of

Poisson Modeling. IEEE/ACM Transactions on Networking,

3(3), June 1995, 226-244.

[Paxson1999] V. Paxson, End-to-end Internet Packet Dynamics, IEEE/ACM

Transactions on Networking, 7(3), June 1999, 277 -292

[Pedrycz1997] W. Pedrycz, Computational Intelligence : an Introduction,

Boca Raton, Fla., CRC Press, 1997.

 244

[Peitgen2004] H.O.Peitgen, H.Jurgens, D.Saupe, Chaos and Fractals: New

Frontiers of Science 2nd edition, Springer, 2004, pp.686

[Philips1987] E.M. Philips and D.S. Pugh, How to Get a PhD: a Handbook

for Students and Their Supervisors, Open University Press,

1987

[Prasad2003] R.S. Prasad, M. Murray, C.Dovrolis, K.Claffy, Bandwidth

Estimation: Metrics, Measurement Techniques, and Tools,

IEEE Network 17(6), Nov.-Dec. 2003, 27-35

[Rama1992] P. Ramanathan and K.G. Shin, Delivery of Time Critical

Messages Using a Multiple Copy Approach, ACM

Transactions on Computer Systems, 10(2), May 1992, 144-166

[Ramani2000] S. Ramani, B. Dasarathy and K. S. Trivedi: Building a Reliable

Message Delivery System Using the CORBA Event Service.

IPDPS Workshops, Cancun, Mexico, 2000, 1276-1280

[Ravindran2001] B. Ravindran, P. Kachroo and T. Hegazy, Intelligent Feedback

Control-Based Adaptive Resource Management for

Asynchronous, Decentralized Real-time Systems, IEEE

 245

Transactions on Systems, Man, and Cybernetics - Part C:

Applications and Reviews, 31(2), 2001, 261-265

[Reddy2001] S.A.L.N. Reddy, LRU-RED: an active queue management

scheme to contain high bandwidth flows at congested routers,

Proceedings of the 2001 IEEE Global Telecommunications

Conference, vol. 4 , 25-29 November 2001, 2311 -2315

[Ren2002] F. Ren, Y. Ren and X. Shan, Design of a Fuzzy Controller for

Active Queue Management, Computer Communications, v. 25,

2002, 874-883

[Resnick1997] S.I. Resnick, Heavy Tail Modeling and Teletraffic Data, The

Annals of Statistics, 25(5), 1997, 1805-1869

[Rumelhart1986] D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning

Internal Representations by Error Propagation, in Parallel

Distributed Processing: Explorations in the Microstructure of

Cognition, D.E. Rumelhart and J.L. McClelland, Eds., vol. 1,

MIT Press, 1986

[Ryu1996] B.K. Ryu and S.B. Lowen, Point Process approaches to the

Modeling and Analysis of Self-similar Traffic I. Model

 246

Construction, Fifteenth Annual Joint Conference of the IEEE

Computer Societies. Networking the Next Generation vol.3 ,

24-28 March 1996, pp.1468 - 1475

[Sarraille] J. Sarraille and P. DiFalco, FD3,

 http://life.bio.sunysb.edu/morph/fd3.html

[Schmidt1995] D. C. Schmidt and S. Vinoski, Object Interconnections:

Comparing Alternative Client- Side Distributed Programming

Techniques (Columns 3), SIGS C++ Report Magazine, May,

1995

[Shin2000] K.G. Shin, C.C. Chou and S.K. Kweon, Distributed Route

Selection for Establishing Real-Time Channels, IEEE

Transactions on Parallel and Distributed Systems, 11(3), March

2000, 318-355

[Sobczak2001] M.Sobczak, the YAMI Project,

 http://www.maciejsobczak.com/prog/yami/copyright.html,

2001

[Stankovic1998] J.A. Stankovic et al, Deadline Scheduling for Real-Time

Systems,

http://life.bio.sunysb.edu/morph/fd3.html
http://www.maciejsobczak.com/prog/yami/copyright.html

 247

Kluwer Publishers, 1998

[Tanenbaum1996] A.S. Tanenbaum, Computer Networks, 3rd Edition, Prentice

Hall, 1996

[Tanenbaum2003] A. S. Tanenbaum, Computer Network, 4th Edition, Prentice

Hall, 2003

[Tang2000] D. Tang and M. Baker, Analysis of a Local-area Wireless

Network, Proceedings of the 6th annual international

conference on Mobile computing and networking, Boston,

Massachusetts, United States, pp.1-

10http://mosquitonet.stanford.edu/software.html

[Taqqu2003] M.S. Taqqu, Fractional Brownian Motion and Long-Range

Dependence, in Theory and Applications of Long-Range

Dependence, P. Doukhan et al., Eds., Birkhuser 2003, 5-38

[Trace] http://www4.comp.polyu.edu.hk/~cswklin/research/traces/

[Tsybakov1998] B. Tsybakov and N.D. Georganas, Self-Similar Processes in

Communications Networks, IEEE Transactions on Information

Theory, 44(5), September 1998, 1713-1725

http://mosquitonet.stanford.edu/software.html
http://www4.comp.polyu.edu.hk/~cswklin/research/traces/

 248

[VTune2002] Intel’s VTune Performance Analyzer,

 http://ww.intel.com/support/performancetools/vtune/v5

[Wang2004] T. Wang and A. Singh, Communication Using a

Reconfigurable and Reliable Transport Layer Protocol,

Proceedings of the 2nd International Symposium, ISPA’04,

December 2004, Hong Kong, PRC, 788-797

[Weiser1991] M. Weiser, The Computer for the Twenty-First Century,

Scientific American, September 1991, 94-104

[Willinger2003] W. Willinger, V. Paxson, R.H. Hiedi and M.S. Taqqu, Long-

Range Dependence and Data Network Traffic, in Theory and

Applications of Long-Range Dependence, P. Doukhan et al.,

Eds., Birkhuser 2003, 373-408

[Wong1999A] Allan K.Y. Wong and Tharam S. Dillon, A Fault-Tolerant Data

Communication Setup to Improve Reliability and Performance

for Internet-Based Distributed Applications, Proc. of the 1999

Pacific Rim International Symposium on Dependable

http://ww.intel.com/support/performancetools/vtune/v5

 249

Computing (PRDC’99), Dec.1999, Hong Kong (SAR), China,

268-275

[Wong1999B] Allan K.Y. Wong and Joseph H.C. Wong, A Convergence

Algorithm to Help Enhance the Performance of Distributed

Systems on Large Networks, Proc. of the 1999 International

Symposium on Parallel Architectures, Algorithms, and

Networks (I-Span'99), Fremantle Australia, June 1999, 302-

307

[Wong2000A] Allan K.Y. Wong and Tharam S. Dillon, A Fault Tolerant

Model to Attain Reliability and High Performance for

Distributed Computing over the Internet, Journal of Computer

Communications, vol. 23, 2000, 1747-1762

[Wong2001] Allan K.Y. Wong, Tharam S. Dillon, Wilfred W.K. Lin and

T.W. Ip, M2RT: A Tool Developed for Predicting the Mean

Message Response Time for Internet Channels, The Journal

Computer Networks (and ISDN Systems), vol. 36, 2001, 557-

577

[WongHC2001] H.C.Wong, May T.W. Ip and Allan K.Y. Wong, An Adaptive

and Aggressively Bounded Convergence Algorithm for

 250

Enhancing and Measuring the Performance of Applications

Running on Networks with Heavy-Tailed Distributions, Proc.

of the 15th International Parallel and Distributed Processing

Symposium, San Francisco, April 2001

[Wong2002GAC] Allan K.Y. Wong, W.W.K. Lin, M.T.W. Ip and T.S. Dillon,

Genetic Algorithm and PID Control Together for Dynamic

Anticipative Marginal Buffer Management: An Effective

Approach to Enhance Dependability and Performance for

Distributed Mobile Object-based Real-time Computing over

the Internet, Journal of Parallel and Distributed Computing, vol.

62, No.9, September 2002, 1433-1453

[Wuytack1999] S. Wuytack, J.L. da Silva, F. Catthoor, G. de Jong, and C.

Ykman-Couvreur, Memory Management for Embedded

Network Applications, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 18(5), May 1999,

533 –544

[Yang1995] C. Yang and A.V.S. Reddy, A Taxonomy for Congestion

Control Algorithms in Packet Switching Networks, IEEE

Network Magazine, v.9, July/August 1995, 34-35

 251

[Zadeh1994] L.A. Zadeh, Fuzzy Logic, Neural Networks, and Soft

Computing, Communications of the ACM, 37(3), March 1994,

77-84

[Zhang2003] L.Zhang, V. J. Ribeiro, S. Moon and C. Diot, Small-time

scaling behaviours of Internet backbone traffic: an empirical

study, Infocomm2003,

[Zheng2001] B. Zheng and M. Atiquzzaman, DSRED: Improving

Performance of Active Queue Management over

Heterogeneous Networks, Proceedings of the IEEE

International Conference on Communications (ICC 2001),

vol.8 , 11-14 June 2001, 2375 -2379

 254

APPENDIX II THE CONVERGENCE ALGORITHM

The CA (Convergence Algorithm) is an IEPM (Internet En-to-End Performance

Measurement) technique [Cottrel1999]. It can estimate the mean service roundtrip

time (RTT) of a logical channel quickly and accurately. The Java-based CA prototype:

M2RT was verified and validated as a macro tool [Wong2001]. In its macro form the

tool must be installed at the two nodes that represent the ends of the logical channel.

Micro IEPM tools differ by operating as a logical entity to be invoked anytime and

anywhere for service by message passing. The M2RT (Mean Message Response Time)

experience led to the development of the Java-base micro CA (MCA) prototype:

M3RT (Micro Mean Message Response Time) [Ip2002]. The CA operation treats a

traffic pattern simply as a waveform. Its speed and accuracy does not depend on to

the pattern being worked on because it is based on the central limit theorem. The

MCA version supporting the PIDC and the NNC is modified from the M3RT object

class. The CA operation is summarized by the equations: (A.1) and (A.2), where

iM is the distribution mean estimated for the time in which the F (flush limit) number

of data samples is collected. The previous experience shows that F=14 yields the

fastest convergence to the estimated mean [Wong2001]. The other parameters are: a)

1−iM is the feedback of the last estimated mean to the current estimation cycle, b) i
jm

is the jth sample in the ith iM estimation cycle,)1(,3,2,1 −= Fj , and c) 0M is the first

1);2..(..........);1.(.......... 1
00

1

1
1

≥=
+

= =
=

−=

=
− ∑

iAmMA
F

mM
M i

j

Fj

j

i
ji

i

 255

data sample when the MCA had first started. Figure FA1 shows the iM predicted by

MCA over time, and the RTT trace is for the TCP channel between the Hong Kong

PolyU and the LaTrobe University site in Australia. In this case iM always settles to

the value of 480ms in the steady state.

Figure FA1. The iM prediction by RTM 3 for the “Hong Kong PolyU -

LaTrobe” TCP channel

 257

Submission" button in the "Submitted Manuscripts" chart in your
Author Center to complete and send the form.

A Completed copy of the Final Manuscript Checklist must accompany
the final manuscript materials. You can find this form by clicking
on the link titled information for authors of accepted papers on the
IEEE Transactions on Systems, Man, and Cybernetics: Part C website
at http://www.ieee-smc.org/webpages/publications/index.html. The
link also contains instructions for Preparing the Final Manuscript,
instructions for labeling the disks or CDs, and links to the IEEE
Tools for Authors and other important information for preparing your
final manuscript materials. If your computer does not allow you to
reach the website from the link, please copy the web address and
paste into your browser's home page.

Be sure that you understand the rules governing over length page
charges discussed in the Instructions for Authors which can also be
found on the Transactions website.

Please reference the manuscript id number when submitting your
manuscript. We congratulate you on acceptance of your manuscript for
publication as a Regular Paper and look forward to receiving the
needed publication material.

Sincerely,

Prof. Chelsea White
Editor-in-Chief
IEEE Transactions on Systems, Man, and Cybernetics: Part C

