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ABSTRACT

The area of this PhD research is directed towards performance enhancement and
fault-tolerance at client/server(C/S) interaction over a logical Internet channel. The
aim is to effectively eliminate the user-level buffer overflow so that retransmissions
can be reduced to shorten the service roundtrip time (RTT) in the interaction. Since a
server may serve different clients simultaneously, the relationship is actually one-
server-to-many-clients, alternatively known as the asymmetric rendezvous. The
different streams of service requests from clients merge at the server’s queue and this
easily inundates the queue buffer to overflow at peak times. In fact, an asymmetric
rendezvous involves two levels: the system/router level that includes all activities
inside the TCP channel, and the user level that involves the client and the server. If

the collective error probability for a client/server interaction path is p,,, then the

average number of trials (ANT) to send a message successfully from one end of the

kK—o0

C/S path to another is ANT = jpli (- pou) ~ . Since p,,, also
1

(l_ppath)
encapsulates the user-level buffer overflow error, eliminating the latter definitely
yields a smaller ANT and shorter end-to-end service roundtrip time (RTT).

My previous MPhil research concluded that dynamic buffer size tuning can
indeed eliminate the chance of user-level buffer overflow. This was clearly
demonstrated by the experimental results with the dynamic buffer controllers

proposed. These original controllers developed in the MPhil thesis are:



1) PIDC (“proportional (P) + integral(l) + derivative(D)” Controller): It is
algorithmic and always eliminates user-level buffer overflow but has two
shortcomings: a) it locks unused memory, and b) it does not have a safety margin and
therefore the queue length can get dangerously close to the buffer length, threatening
possible overflow.

2) GAC (Genetic Algorithm Controller): It is the “PIDC + genetic algorithm (GA) +
{0,A}’ objective function” combination. The GA moderates the PIDC process so that
the outcome is always within the+ A safety margins about the steady-state reference

symbolically represented by “0” in {0,A} . The GA eliminates the PIDC

shortcomings but also produces occasional buffer overflow because it does not
guarantee the global-optimal solution of the solution hyper-plane.
3) FLC (Fuzzy Logic Controller): It is the combination: “PIDC + fuzzy logic +

{0,A}* objective function” combination, which was proposed to preserve the GAC

merits and eliminate the occasional buffer overflow. The fuzzy logic moderates the

PIDC control process similar to the GA.
4) NNC (Neural Network Controller): It works with the{0,A}* objective function but

does not include PIDC. Its proposal was inspired by the successful experience of
using neural networks in AQM (active queue management) algorithms, which prevent
network congestion at the system/router level. AQM methods differ from the
dynamic buffer size tuners by using a fixed-size buffer.

When experiments were conducted to verify the above four dynamic buffer tuners,
it was observed that their performance was affected by the traffic patterns. The

conclusion is that measures must be taken to neutralize the ill effects by traffic on



tuner stability and accuracy. My MPhil thesis left several unaddressed issues that

form the backbone of this PhD research. The issues include:

1)

2)

3)

In the aspect of traffic ill effects: a) Is it possible to calibrate the ill effects off-
line so that the tuners can use these calibrations to ward off traffic changes by
fine-tuning its dynamic buffer tuning process adaptively? b) If so, then how
can the current Internet traffic pattern be deciphered on the fly (on-line) so
that the off-line calibrations can be applied selectively?

For FLC: a) Is it possible to have an optimal design? b) Is it possible to make
the tuner self-reconfigurable (especially with respect to traffic pattern
changes)?

For NNC: a) Is it possible to prune the NNC configuration on the fly so that
its control cycle time can be consistently and adaptively reduced? b) Is there a
correlation between control accuracy and the number of hidden neurons in the
NNC back-propagation architecture? (The procedure to provide the answer is

called sensitivity analysis.)

The motivation of my PhD research is to provide answers to the above

unaddressed issues. As a result the following solutions are proposed:

1)

2)

For real time traffic analysis: Two traffic filters have been proposed: real-time
modified QQ-plot (or simply RT-QQ) and self-similarity (S?) filter. These
filters identify the Internet traffic patterns on the fly. The RT-QQ recognizes
heavy-tailed distributions and the S? filter identifies self-similarity.

For FLC: a) an optimal design range is found for FLC design, and b) a way is



found to make the FLC adaptive/reconfigurable by squeezing the “don’t care”
state range threshold in a dynamic manner.

3) For NNC: a) the HBP (Hessian Based Pruning) approach was proposed for
pruning or optimizing the NNC configuration on the fly and as a result its
average execution time (i.e. control cycle time) is reduced, and b) sensitivity
analysis was conducted and the results confirm that more hidden neurons do

not necessarily mean better NNC performance.

The solutions proposed in my PhD research have contributed to 19 publications
so far (5 journals and 14 conferences). All the stated PhD research objectives have
been achieved. The research has also uncovered many relevant problems, which
should be resolved in the future work: a) investigation of the issue of how to choose
the limits for Gaussian tests effectively, b) deepening of the investigation into why
“heavy-tailedness” is not a necessary condition of self-similarity, and c) investigation
into how the dynamic buffer size controllers, especially the FLC, can best support

pervasive computing based e-applications such a telemedicine.
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CHAPTER 1 BACKGROUND AND MOTIVATION

1.0 INTRODUCTION

The transport layer of the Internet supports two protocols: the connection-
oriented TCP (Transmission Control Protocol) and the connectionless UDP (User
Datagram Protocol) [Comer1995]. It is not easy to use the TCP for time-critical

applications because of the inevitable channel error probability p at the system level

that occurs due to the sheer size and heterogeneity of the underlying network.
Sending a message/segment from one TCP end to another physically means
traversing many different links and nodes of varying quality and capacities. Firstly,
the Internet conceptually is a collection of large backbones (e.g. US backbone and
European backbone) that are interconnected by the IP (Internet Protocol). In fact, it is
not unusual that two IP peers are sandwiched by incompatible protocols such as the
ATM (Asynchronous Transfer Mode). Then, the IP peers rely on the technique of
tunnelling to communicate properly [Hassan2000]. In another scenario the IP peers
may actually communicate in a transparent manner via the different wired and
wireless parts of the Internet. Wireless and wired communications have very different
requirements. For example, the wired part of Internet will opt to slow down
transmissions when the possibility of network congestion is envisioned. On the
contrary, in wireless communication packet loss due to congestion or other reasons
will trigger even more aggressive transmissions by the sender. The aim is to make up

for the lost messages quickly [Cen2003].
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Figure 1.0.1 A simple representation of an asymmetric rendezvous

A client/server interaction is considered to have two levels: system and user. The
system or router level (marked “Internet” in Figure 1.0.1) includes all the activities
within the TCP channel, and the user level includes the client and the server that
interact over the TCP channel in the end-to-end manner. Therefore the error
probability for a client/server interaction path (referred to as the “C/S path” in this

thesis) p,., Is made up of two parts: the collective channel error probability p at the
system/router level and the collective one at the user level o ; o .., = o+ p, - Then,

the average number of trials to send a message successfully from one end of the C/S

k—o0 _
path to  another s ANT:ijr‘,;fh(l—ppath)z#. Therefore,
j=1 (1_ppath)

lowering/eliminating either p or p,, or both, yields a smaller ANT and thus shorter

end-to-end service roundtrip time (RTT). There are many possible causes that
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contribute to p and/or p, such as hardware partial failures and buffer overflow. For

example, network congestion at the system level may lead to router buffer overflow,
which means message losses and timeouts by the respective senders, leading to
widespread retransmission and more network congestion. The buffer at the user-level
receiving end (i.e. server’s end) may also be inundated by fast incoming messages to
overflow unless the buffer can self-tune to ensure that buffer length always covers the
queue size. There is a need for research to explore how to enable a reception buffer at
the user level to self-tune on the fly, thereby eliminating the chance of overflow (i.e.

dynamic buffer size tuning).

Al Zlient) Internet

logical
channeal

2 B

BiSersaer

Figure 1.0.2 Client/server interaction over a logical channel with error

probability p

The importance of reducing p,, for better service response is well recognized.

The benefit of such reduction is best viewed from the point of system dependability
[Avizienis2004], which is defined by the following attributes: reliability, availability,

fault tolerance, security, integrity, and maintainability.
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1.1 NETWORK CONGESTION PREVENTION

From the literature, p ., reduction in the area of network congestion prevention

and buffer overflow control may be achieved as follows:
1) System-level sender initiative:

a) Dynamic timeout window adjustment: The sender adjusts the timeout
window on the fly with respect to the current values of some chosen
parameters to avoid premature timeouts and unnecessary retransmissions (e.g.
the Adaptive and Aggressively Bounded Convergence Algorithm
[WongHC2001]).

b) Dynamic congestion window tuning: The AIMD (Additive Increase and
Multiplicative Decrease) is a well-known example proposed by Jacobson
[Jacobson1988] to adjust the congestion window of a TCP connection.
Another example is adaptive congestion window tuning for a Reno TCP
[Padhye1998].

c¢) Multiple copies of time-critical messages [Ramal992]: The sender sends
multiple copies of the same message immediately one after another. The
number of copies corresponds to the likelihood of congestion. The argument

is that if the C/S path error probability for sending a message is p,,, then

the chance for mc number copies to be erroneous at the same time is

(Ppan)™ » Which is a smaller error.
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2)

3)

Active Queue Management (AQM) by the system-level receiver/router
[Braden1998]: If a router detects that its reception buffer is likely to
overflow, then it throttles the sender to slow down transmission voluntarily.
A router starts the throttling process by sending “choke” packets. If the
sender does not respond to the throttling, then the router drops the incoming
packets to facilitate smooth passage of those already queued. The message
dropping process may follow different strategies, for example, “drop from
front” [Lakshman1996]. In fact, dropping messages as a congestion and
buffer overflow prevention mechanism is deleterious. Recently the IETF
(Internet Engineering Task Force) proposed to use the RED (Random Early
Discard) algorithm for AQM purposed in the RFC 2309 [Braden1998]. The
subsequent analysis of RED found that it was unstable and this led to the
different RED mutants (e.g. the algorithmic ones, FRED (Fair RED)
[Kim1998], DS-RED [Zheng2001], LRU-RED [Reddy2001], M-RED
[K002001], REM [Athuraliya2001]) and the intelligent non-RED-based
versions (e.g. Fuzzy-Pl [Ren2002]; P for proportional control and I for
integral control). Floyd and Jacobson call those routers in packet-switching
networks that adopt the RED algorithm the Random Early Detection
Gateways [Floyd1993].

Using backup channels [Kris2003, Shin2000]: There is always a urgent need
to control the message delivery/roundtrip time in real-time computing over
the Internet so that tasks can be meaningfully executed before the deadline

[Stankovic1998]. This is absolutely necessary for hard and firm real-time
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4)

applications and less stringent for the soft type. Using backup channels,
which have the guaranteed level of reliability when congestion is detected, is
the state-of-the-art solution. It may be more expensive to temporarily
relinquish the normal channel and switch to the more reliable backup

channel that guarantees the QoS (quality of service) to reduce p,, . The

meaningful timely result, however, could be worth much more than the cost.
Sometimes a reliable backup channel is time-shared by many normal
channels.

Dynamic buffer size tuning [Wong1999A, WongHC2001, Wong2002GAC]:
The principle is to tune the reception buffer size adaptively on the fly so that
the buffer length always covers the queue size and therefore eliminates any
chance of buffer overflow. So far all the dynamic buffer tuners, namely,

PIDC, GAC, FLC and NNC are aimed at user-level applications.

To summarize, the three basic techniques to deal with buffer overflow are

throttling, message dropping, and dynamic buffer tuning [Tanenbaum1996]. The four

techniques that effect p ., reduction without tuning the buffer size are: a) tuning the

timeout window adaptively, b) tuning the congestion window adaptively, c) sending
multiple copies of the same message immediately one after another to logically

reduce p ., , and d) using backup channels to bypass the bottlenecks.

The throughput of a communication channel depends on how efficiently by the

supporting system can recycle usable memory. If too much memory is locked up in

communication activities, then the whole system throughput may suffer because tasks
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are suspended on memory shortage. Likewise, if a communication system is
constantly starved of buffer memory random drop of messages [Lakshmanl1997,
Paxson1999] and buffer overflow inevitably happen. The result is massive
retransmissions by senders and widespread data traffic jams. Elimination of buffer
overflow in client/server interaction [Lewandowskil998] is a significant and yet
challenging balancing act in memory usage [Amirl1995, Alvisi1998, Crawford2000,
Cristian1999, Garbinato2000, 1p2001, Markatos1998, Mishral998, Morin1997,
Mukherjee1998, Ramani2000, Schmidt1995, Sobczak2001, Wongl999A,
Wong2000B, Wuytack1999]. For commercial applications such as ISP (Internet
Service Provider) setups any excessively long response delay/latency due to
retransmissions would cause business loss because it taxes customers' patience and
drives them away. In such cases it is justified to aggressively apply one or a
combination of the aforementioned basic techniques to reduce the response time to

make customers happy.

1.2 BUFFER TUNING SCHEMES

The fact that buffer overflow prevention shortens TCP channel RTT has

spurred development and deployment of different algorithmic and expert approaches

for applications at the system and user levels [Fisk2001, Dunigan2003, Aweya2002].

These algorithms can be classified in different ways by various attributes, as follows:
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b)

d)

f)

Open loop versus closed loop: Open loop algorithms do not require behavioral
feedback for controlling the future trend, while feedback is mandatory for
closed loop systems [Yang1995].

FBL (fixed buffer length) versus VBL (variable buffer length): For FBL
algorithms the ultimate overflow prevention solution is to drop packets. This
may occur in two stages: i) firstly, the receiver throttles the sender to reduce
transmission, and ii) if this does not help then incoming packets are dropped
either “front on full” or “random on full” [Lakshman1996]. VBL algorithms
prevent overflow by dynamic buffer size adjustment without the necessity of
throttling the sender first [Wong1999A].

Algorithmic versus expert: Algorithmic approaches do not use soft computing
techniques but expert systems do [Karray2002, Ravindran2001].

System level versus user level: Algorithms at the system level operate without
user intervention, for example, the AQM operations [Braden1998]. If they
operate in the client and server domains independent of the system, they are
working at the user level [Wong1999A].

Implicit versus explicit: In implicit control the remedy is negotiable, for
example, the voluntary reaction by the sender when throttled by a router
[Ren2002]. If the remedial response is instantaneous and involuntary, it is
explicit control (e.g. [Wong2002GAC]).

Direct versus indirect: Direct control invokes immediate action, for example,
tuning the buffer size spontaneously [Ip2001]. Indirect control depends on

voluntary reaction.
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1.3 BUFFER OVERFLOW MANAGEMENT

The motivation of the research is to explore how soft computing techniques
[Pedrycz1997, Zadeh1994] can be used to gain efficacious user-level dynamic buffer
overflow control for Internet channels for better response timeliness [Kang2002,
Stankovic1998] and fault tolerance [Avizienis2004, Elnozahy1999, Gartner1999,
Jalote1994, Laprie1995]. This research project is a deeper continuation of my MPhil
thesis [Lin2002], in which four original dynamic buffer overflow controllers were
proposed [Appendix 1]. One of them, namely, the PID or “P+1+D” controller
(Proportional + Integral + Derivative controls) is algorithmic. The control
parameters of the PID controller or PIDC remain unchanged once the control process

has started. The other three controllers are soft computing based and work with the
{0, A}* objective function, where A is the safety margin to be maintained about the

reference symbolically represented by “0”. In reality the reference is a given queue

length over buffer length (QOB) ratio known as the QOB . The three intelligent

dynamic buffer controllers for user-level applications are: the GAC (Genetic
Algorithm Controller [Wong2002GAC]), the FLC (Fuzzy Logic Controller
[Lin2002FLC]), and the NNC (Neural Network Controller [Lin2001NNC]). The
PIDC was based on the “P+D” dynamic buffer size tuner controller for user-level
application [Wong1999A]. The “P+D” controller was the first of its kind but failed
frequently in actual deployment over the Internet. The cause was the unrealistic
expectation of using a set of static parameters to control the whole spectrum of

changes in TCP channel dynamics. The PIDC rectifies the “P+D” problem by adding
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the integral (1) control. It differs from the GAC, FLC and NNC by having no safety
margin (i.e. A) at all, and the accumulated performance data shows that the danger of
buffer overflow is still there under serious perturbations. The basis and evolution

process in my MPhil research is summarized in Figure 1.3.1.

\I._nrllhmlt uul

Intelligent (so 11Ln|1111Ll[|r1 1)
and with safety margin

Figure 1.3.1 Summary of the basis and evolution of my MPhil project

The previous Internet based experimental results with the four novel
controllers indicate that they represent the right direction to eliminate user-level
buffer overflow along the client/server interaction path. This path over a TCP
(Transmission Control Protocol) channel is also known as the asymmetric rendezvous.
The GAC was proposed to preserve the PIDC merits minus its shortcomings.
Nevertheless, as a result of the very nature of the genetic algorithm (GA), which does
not guarantee the global-optimal solution of the solution hyperplane [Mitchel1999],
the GAC produces occasional though rare buffer overflow. The GAC results do verify

that the {0, A}* objective function is a powerful concept, and it can serve as a solid

basis for other intelligent solutions. This led to the FLC proposal and subsequently
the NNC development. What | had achieved in my MPhil thesis can be summarized

as follows:
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a)

b)

d)

Four novel dynamic buffer overflow controllers for user-level applications
were proposed, one algorithmic (i.e. the PIDC) and three intelligent ones
(i.e. GAC, FLC and NNC).

The GAC was thoroughly tested and found to be unacceptable because it
yields occasional buffer overflow.

The FLC was proposed and two designs, namely, FLC [4x4] and FLC
[4x6] were tested. The results indicated this direction is the right one
because of the following: i) it eliminates buffer overflow completely, ii)
its execution time is comparable to the simpler PIDC’s due the presence of
the “don’t care” state [Lin2002FLC], and iii) it always maintains the
control output within £ A about the chosen QOB reference. Yet, its
convergence to QOB can be oscillatory.

The success of using {0, A}* as the operational principle and the desire to
have a smoother QOB convergence led to the proposal of the NNC. The
NNC differs from the GAC and the FLC because it does not include the
PIDC as a component. The NNC, however, has a much longer control
cycle time compared to the PIDC, GAC and the FLC and this is prone to
deleterious effects. The argument is that by the time the remedy is
computed the actual problem has already passed. Using the computed
remedy to resolve a spurious problem may lead to undesirable
consequences or deleterious effects. The NNC prototype, which works by
backpropagation with supervised training, has 10 input neurons, 20

neurons in the hidden layer, and one output neuron.
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e) Timing analyses confirmed that the four novel dynamic buffer size tuning
models are indeed suitable for time-critical applications over the Internet.

The area of user-level dynamic buffer size control, which tries to ensure that the

buffer length always covers the queue size on the fly, is pristine. For this reason my
MPhil research is able to produce 12 refereed publications (4 journal papers and 8
conference papers). The MPhil research, however, also left some important,
unaddressed issues:

a) Does the Internet traffic impede the controllers’ stability and accuracy? If so
how can the impedance be alleviated or neutralized? In fact, the internet
traffic can change without warning, for example, from LRD (long-range
dependence) such as heavy-tailed and self-similar to SRD (short-range
dependence) such as Poisson [Molnar1999]. Such changes may have a serious
impact on the controllers’ performance.

b) Is it possible to have an optimal (cost effective) FLC design?

c) Is there a correlation between the accuracy and the number of neurons in the
hidden layer of the NNC? In my PhD research finding such a correlation is
called sensitivity analysis.

d) Is it possible to cut down the NNC control cycle time and lower the chance of

a deleterious effect?
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1.4 SCOPE OF THESIS

The motivation to address the above issues becomes the problem statement of my

PhD project, with the aim to achieve the following objectives:

a)

b)

d)

Study the impact of traffic on the stability and accuracy of the FLC and the
NNC, and propose methods to counteract the negative impact effectively.
Explore and define the possible optimal range for the FLC design and
implementation.

Define the correlation between the number of neurons in the NNC hidden
layer and the control accuracy.

Propose a method(s) to optimize the NNC configuration to lower its control
cycle time.

Perform timing analyses of the improved or new FLC and NNC models to
confirm that they indeed suitable for time-critical applications over the
Internet.

Figure 1.4.1 accentuates the importance of buffer overflow control over the

path of asymmetric rendezvous (one-server-to-many-clients relationship) over a TCP

channel. Efficacious buffer overflow control is the prelude for running time-critical

applications over the Internet successfully [Stankovic1998] because it reduces the

service roundtrip time (SRTT or simply RTT). As a result the response timeliness is

enhanced. The server at the user level in an asymmetric rendezvous usually serves

many clients simultaneously [Lewandowskil998]. Any sudden influx of requests

from these clients to be queued at the server’s buffer could cause buffer overflow,
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which means request losses and possible widespread retransmissions [Lakshman1997,
Paxson1999, Jamjoom2004]. The average number of trials (ANT) to get a
transmission success depends on the C/S path error probability p ... If the P, is the

-1

probability for a transmission success at the j trial, then P, = 0pan

(1= Pyu) leads

k—o0 k—0 .
to ANT = > jP; or ANT = ij;;tlh(l—ppam)z;. Since the overflow
=1 j=1 A-p path )

probability is part of the overall p ., any overflow elimination along the client/sever
interaction path yields a smaller ANT and thus a shorter service RTT.
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Figure 1.4.1 End-to-end logical channel between client and server

In reality the buffer overflow can occur at both the system/router and user

levels. The system/router level includes all the routing activities within the TCP. Here

the sender and the receiver can contribute to prevent network congestion, which is
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manifested as buffer overflow at the congested routers or bottle-necks. The AIMD
(Additive Increase Multiplicative Decrease) approach proposed by Jacobson
[Jacobson1988], for example, is a measure for a sender within the TCP to control the
congestion window adaptively. This lowers the transmission rate thereby alleviating
congestion. The router can also choose to actively throttle any sender that sends too
much data in a short time. The throttling act is called AQM (active queue
management) [Braden1998]. Since the throttled sender reacts only voluntarily, the
AQM process may fail and the router then may to have to drop new incoming packets.
The goal is to ensure that those already queued have a smooth passage. Using
message dropping as a strategy [Floyd1993] to prevent network congestion is
deleterious even though it prevents router buffer overflow because on the other hand
it increases retransmission, which causes more congestion. System-level buffer
overflow or congestion prevention alone, however, cannot prevent the user-level
overflow. The reason is that “merged traffic” from the combined client requests
streams (Figure 1.4.1) can still inundate the buffer easily to overflow. My MPhil
research indicates that the inundation is definitely caused by the high traffic rate and
possibly by the embedded traffic pattern. Yet, the effect of the embedded traffic
pattern was not explored and studied. The buffer inundation problem can be
alleviated if the buffer is provided with the capability to self-tune and assure that the
buffer length always covers the queue size. The assurance is called dynamic buffer
size tuning in both of my MPhil and PhD research. If user-level buffer overflow is
allowed to occur after the system has dished out expensive congestion prevention

effort, the consequence could be disastrous. Not only are valuable resources wasted
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but the system also loses the chance of rectifying a serious problem earlier. Therefore,
user-level dynamic buffer tuning and system congestion prevention together is a
unified solution to stifle the chance of buffer overflow along the client/server
interaction path.

The potential of shorter service RTT in an asymmetric rendezvous by having
buffer overflow control has inspired the emergence of different strategies
[Chatranon2004]. These strategies are divided into two basic categories, namely,
fixed length buffer (FLB) [Aweyal998, Feng1999] and variable length buffer (VLB)
[Ip2001, Lin200INNC, Lin2002FLC, Wong2002GAC]. The FLB approach is
naturally deleterious because dropping incoming messages as the ultimate solution to
prevent congestion and buffer overflow would cause widespread request
retransmissions [Grinnemo2004, Jamjoom2004]. At this moment all the known AQM
approaches from literature to prevent network congestion and router buffer overflow
are exclusively FLB in nature. The VLB approach is relatively recent and the only
examples that can be identified from literature include the PIDC, FLC, GAC, and
NNC. These four controllers are designed for user-level applications. The desire to
eliminate the two PIDC shortcomings [Ip2001] led to the development of the
intelligent FLC, GAC and NNC. These shortcomings are: a) the controlled queue
length can get dangerously close to the buffer length leading to possible overflow
under serious perturbations, and b) too much buffer space is locked up even when it is

no longer needed for remedial action.
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CHAPTER 2 EVALUATION OF PREVIOUS RESEARCH

2.0 INTRODUCTION

In the last chapter, we identified the importance of controlling network

congestion on the Internet, in the presence of different traffic patterns.

We noted that network congestion prevention and buffer overflow control can be
carried as follows:

1) Initiated by system-level sender

2) Active Queue Management

3) Using backup channels

4) Dynamic buffer size tuning

Firstly we will show the taxonomy of the techniques being utilized for network

congestion control, and then we will discuss each of these techniques and evaluate

their effectiveness.

2.1 CLASSIFICATION OF CONGESTION MANAGEMENT TECHNIQUES

Table 2.1.1 shows a few overflow controllers and their attributes, and Figure

2.1.1is the brief taxonomy of different queue buffer management techniques.
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Algorithmic Expert

System level The RED AQM algorithm | The Pl fuzzy controller
[Braden1998] (closed loop, | [Ren2002] (closed loop,

implicit, FBL, indirect) implicit, FBL, indirect)

User level The basic PID controller | The genetic  algorithm
[Ip2001]  (closed loop, | controller
explicit, VBL, direct) [Wong2002GAC] (closed

loop, explicit, VBL, direct)

Table 2.1.1 A few overflow controller examples for illustration

Buffer overflowprevention/management
technigques and model for the TCP bazed
path of clientizerver interaction

A 4
inzide the TCP channal The end-zystem server
(systemiouter level) [uzer-level reception)

4

i ) . . Dynatnic buffer tuners that wark with 5
Traffic zource(sender) ASMIACtve GQueue Managemert) mainly . _oile uffer length (vEL)
wearking swvith a fixed buffer lencth{FBL)

I
L on-line timeat  Congestion avoidance
Zending L indowes tuning by =lavwy start or AIMD
multiple strategycongesetion . Algorithmi
copies wyinclowy tuning)) Algorithmic  Expertinteligent el
(e.q. RED) [e.g. Fuzzy-PI)

| r 1
Expert

I |
Examples: P+D, PIDC Examples: GAC FLC, MMC,
' A-FLC, and R-MMC

Figure 2.1.1 Brief taxonomy of different queue buffer management techniques
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2.2  MECHANISMS INITIATED BY THE SYSTEM-LEVEL SENDER

The aim is to prevent premature timeouts to maximize the TCP channel
bandwidth utilization. The mechanisms initiated by the system-level sender include

the following:

a) Dynamic timeout window adjustment: The sender adjusts the timeout window T,

on the fly with respect to the currently measured values of some chosen parameters.
The goal is to prevent premature timeouts and unnecessary retransmissions. How the

TCP manages its retransmission timer (i.e.T,, ) adaptively provides a good example.

out
Unlike the data link protocols, which usually have predictable roundtrip times (RTT)
with a low variance, the TCP (an Internet transport layer operation) has a large RTT

variability spread. This makes the dynamic T, ., adjustment process non-trivial

out

[Jacoson1988]. Most TCP implementations adjusts T, on the fly by using three

out

parameters: the predicted RTT (PRTT), the currently measured RTT (MRTT), and

the deviation D defined by D=¢D+(1-¢)|PRTT —MRTT | , where ¢ is a

smoothing factor typically set to 7/8. The PRTT value is predicted

by PRTT =¢PRTT +(1-¢)MRTT . Finally the next timeout interval for the
retransmission timer is set toT, = PRTT +4*D, where 4 is the commonly used

figure for better performance, as determined from experience [ Tanenbaum2003].

b) Dynamic congestion window tuning: The TCP is a full-duplex, connection-

oriented Internet transport set up that strives to provide a reliable end-to-end byte-
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stream based client/server interaction. A TCP connection is, however, considered
“point-to-point” because the client/server interaction is “port-to-port”. The client and
the server can communicate only via two specific end points or ports, which are also
known as the TSAP (Transport Service Access Points). A TCP connection is
established if the server successfully responds to the CONNECT protocol primitive
executed by a client. The server response includes the execution of the two primitives:
LISTEN and ACCEPT. In the CONNECT primitive a client/sender specifies the IP
address (i.e. the Network Service Access Point), the target port for connection, and
the maximum TCP segment size expected. In the connection establishment process
the server advertises the size of the sliding window for flow control
[Tanenbaum2003]. The actual management of this size in the TCP, however, is
decoupled from the acknowledgements. Since a segment sent through a TCP channel
may be fragmented into smaller packets to be routed through the network layer,
whether all the packets can be received correctly for assembly depends on the
network capacity. Some packets may get lost or become corrupted.

The major cause for packet loss in the wired Internet is router congestion. A
congested router drops the new incoming packets to prevent local buffer overflow
and ensure the smooth passage for those already queued. Segment/packet
retransmission can deleteriously aggravate network congestion and rapidly consume
the bandwidth leading to poor system throughput. Therefore, the TCP needs to
contribute actively to network congestion control. For example, the slow start
algorithm that adaptively tunes the congestion window is supported by all TCP

implementations [Jacobson1988]. In the algorithm if the receiver advertises a
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reception window of 10K bytes but timeout occurs at 4K bytes, then the congestion
window is set at 2K bytes to prevent any segment larger than this size to be sent. This
is independent of what the receiver advertises. Initially the sender sets the congestion
window to the size of the maximum segment in use by the connection, and then sends
one maximum segment. If the corresponding acknowledgement is received before the
timeout is triggered, it resets the retransmission timer and then sends a burst of two

maximum segments. This process repeats and the congestion window grows

exponentially by the factor of 2° until it encounters a timeout or hits the receiver’s
window. The exponent P indicates the successive successful acknowledgements,

forP =1,2,3,...,n. To make the network congestion control by slow start even more

effective a threshold, which is typically set at 64K bytes initially (approximately the
IP payload size), is used together with the receiver and congestion windows. This is
the AIMD (Additive Increase and Multiplicative Decrease) approach. When a
timeout or “choke packet” is sent by the router, the threshold becomes half of the
current congestion window, which is set to one maximum segment size. Slow start
then determines how much transmission the network can handle, but the exponential
growth of the congestion window size stops once the threshold is hit. After this point
the congestion window can grow only linearly by one maximum segment in every
new burst. The AIMD approach, however, may create problems as follows:

1) Self-similar traffic generation: The AIMD encourages the maximum

bandwidth usage by allowing burst sending behaviour in an exponential

manner. This may create self-similar burst traffic that affects the receiver’s

stability as some of my experiments have revealed (Chapter 3 and section 6.3).
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i) Impoverished bandwidth utilization: The approach is useful for short-haul
interactions, where the distance in terms of network latency between the client
and server is not serious. For long-haul operations such as the “long-fat-pipes”
[Nakamura2004] in high-bandwidth-high-latency networks the
acknowledgements can be seriously delayed leading to spurious timeouts by
the sender. As a result the subsequent decrease of the congestion window to
one maximum segment can inadvertently impoverish the client/server
interaction bandwidth utilization. This has inspired different solution
proposals and the RRTP (Reconfigurable and Reliable Transport Layer
Protocol) [Balakrishnan1997, Wang2004] is one example.

In fact, the quest for more effective adaptive congestion window tuning

models is continuing, for example, the model proposed by Padhye et al [Padhye1998]

for the Reno TCP applications.

c) Multiple copies of the same time-critical message [Ramal1992]: The sender sends

multiple copies of the same message immediately one after another. The number of

copies ties with the likelihood of congestion. The argument is that if the C/S path

error probability for sending a message is p,,, , then the chance for mc number copies

to be erroneous at the same time is(p,,,)"™ ; it is much reduced. A design that is

based on the (p,,)™ criterion is also called the Consecutive Message Transmission

(CMT) approach [Wong1999A]. The evaluation of some recent CMT findings

[Wong1999A] has revealed the following:
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1) Possible orphan executions: If the server/receiver side is designed to receive
multiple copies of the same messages/requests, it must be able to support remote
invocations of the exactly-once semantics. This is necessary for services that are not
idempotent. An idempotent service differs by producing the same effect even when it
is repeatedly and inadvertently invoked. If a non-idempotent service is invoked by the
at-least-once semantics, then the additional copies of the same request would lead to
orphan executions and possibly disastrous side effects. This requires the server to
possess the power to differentiate the exactly-once semantics from the at-least-once
invocations. Judging from the complexity and size of the Internet operation precise

differentiation is not easy to accomplish.

ii) Balanced protocol design needed: The (p,,,)™ alone is not enough for an

efficient CMT protocol. The number of copies in a CMT scheme should be supported
by a proper “acceptance criterion”, which is the number of copies of the same
message received correctly before the transmission of the “original/intended”
message is considered a successful reception. This can be demonstrated by comparing
the following two CMT schemes:

A) Scheme 1: In a 4-copies CMT scheme, the receiver acknowledges correct
reception of a message provided that it has received any 2 correct copies out of the 4.
Every copy however has an error probability of v =0.4 or 40%. This implies the
probability for a transmission success to bev, = PR, + PR, + PR, =0.8208. PR, is
the error probability for having X number of correct copies
for X =1,2,34; PR, =(5)v°(1-v)*, PR, =(3)v(l-v)*, PR, =(1-0v)*. Then, the

average number of trials (ANT) to send a message successfully from one end to
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another can be calculated in the same way as for a C/S path with the p,,, error

k—o0 i

probability: ANTg e = z Pl L= poan) = ; In scheme 1 the ANT for
j=1 (1_ ppath

sending a message successfully means P = 1—0,) and

ANT,. ., = % = 1 gr =122,

B) Scheme 2: In this CMT scheme three copies of the same message are sent
and the receiver acknowledges reception as long as one of the copies is correctly
received. This scheme is of speculative nature but is useful when the heavy-tailed
traffic persists. If one of the copies can get through the channel quickly, then the
service roundtrip time can be shortened. Assuming v = 0.4 the probability for a

message transmission success IS v,=PR,+PR, +PR;, =0.936 ,
for PR, =()v*(-v) , PR,=(G)v(l-v)*> and PR,=(1-v)> . Then, the

resultant ANT z; iz ! ~1.07 implies a shorter RTT than

Scheme-2 (l _ ppath) ~ v, 0.936

scheme 1.
The comparison between the two schemes above indicates that the designer should
strike a balance between the number of multiple copies and acceptance criterion for

an efficacious CMT scheme.

2.3 ACTIVE QUEUE MANAGEMENT

In fact, prevention of TCP channel congestion by the sender’s effort alone

may not be effective in many cases. This led to the proposal of the Active Queue
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Management (AQM) concept in the RFC 2309 for system-level receiver/router
applications [Braden1998]. In this concept if a router detects that its reception buffer
is likely to overflow, then it throttles the sender to slow down transmission
voluntarily [Chatranon2004]. A router starts the throttling process by sending
“choke” packets. If the sender does not respond to the throttling, then the router drops
the incoming packets to facilitate smooth passage of those already queued. The
message dropping process may follow different strategies, for example, “drop from
front” [Lakshman1996]. In fact, dropping messages as a congestion and buffer
overflow prevention mechanism is deleterious. That is why the IETF (Internet
Engineering Task Force) proposes to use the RED (Random Early Discard) algorithm
for AQM purposes in the RFC 2309 [Braden1998]. The subsequent analyses of RED
by different researchers, however, found that it was unstable and this led to the
different RED mutants (e.g. the algorithmic ones FRED (Fair RED) [Kim1998], DS-
RED [Zheng2001], LRU-RED [Reddy2001], M-RED [K002001], REM
[Athuraliya2001]) and the intelligent non-RED-based versions (e.g. Fuzzy-Pl
[Ren2002]; P for proportional control and I for integral control). Floyd and Jacobson
call those routers in packet-switching networks that adopt the RED algorithm the

Random Early Detection Gateways [Floyd1993].

2.4 USING BACKUP CHANNELS

Internet based time-critical applications, which require communication service

with guaranteed quality of service (QoS) in terms of timeliness and fault tolerance,
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are emerging quickly. They include different areas such as video-on-demand, video-
conferencing, and telemedicine. From the “average number of trials (ANT) to get a
transmission success” point of view, fault tolerance measures can reduce the

channel/connection error p ., and thus the ANT value leading to a shorter RTT that
can satisfy the QoS requirements. The p .. value actually encompasses different

errors that could occur along the C/S path including partial failures and router buffer
overflow. Therefore, some researchers argue that the ordinary TCP channels for best-
effort traffic (i.e. no real-time constraints) may not be good enough. They suggest the
use of backup channels [Kris2003, Shin2000] to create more dependable real-time
protocols. An ordinary primary TCP channel together with a backup connection
makes a more dependable connection referred to as DP-channel/connection here.
How dependable the backup channel is depends on the resources being reserved. For
example, [Han1998] proposes to reserve dedicated system resources as support for
backup channels. This means that the backup dependability depends on the quality of
the reserved resource, which is tied with the cost. The DP-connection is a basically a
primary-backup approach that involves three basic steps: i) establishing the primary
channel and backup, ii) detecting channel problems (e.g. network congestion, partial
failure, etc.), and iii) channel switching from primary to backup. Some researchers
argue that a backup channel should not be dedicated but shared for better system
throughput. The sharing can be as follows: i) backup multiplexing (BM) that lets two
or more primary channels share a backup, ii) backup-primary multiplexing (BPM)

that lets the backup be a temporary ordinary primary channel without real-time
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constraints. The pros and cons of the three basic schemes above are evaluated as

follows:

a)

b)

Dedicated scheme: The dedicated backup is expensive but it can better
support the primary channel to provide a high-quality DP-channel.
Unless the network always has extra resource to be reserved for backup
channels the reservations can consume system resources rapidly. As a
result the bandwidth utilization is impoverished leading to poor system
throughput.

BM scheme: If a backup channel is shared, the dependability of the DP-
connections (i.e. primary channel plus backup) can be evaluated by
equation (2.4.1) [Kris2003, Shin2000]. The parameter n is the number of

sampling operations within the period/window of interest T. PTD, is the

“product of the i" sampling period and the number of DP-connections”,
and PTC, is the “product of the i" sampling period and the total number

of primary and backup channels involved”. Table 2.4.1 illustrates some
statistics for the two separate sampling operations within the interval T.
In the 1% sampling operation that lasted 10 time units the original
primary connection 1 in the DP-channel 1 shared the backup in the time-
multiplexing manner with the original primary 2 connection. The backup
channel was used 5 times to support either DP-channel 1 or DP-channel
2. In the 2" sampling operation the backup channel was used for similar

support 4 times. By equation (2.4.1) the dependability of the DP-
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connections in T is

(2%10+2*8)

36 ~ 0.31 or 31%.

(2*10+5*10+2*8+4*8) T 118

The important connotation from equation (2.4.1) is that the dependability

is 100% if the backup is not invoked at all.

> PTD,

Dependability = —-——

> PTC,
i=1

j sampling | number of | connection type remarks
operation connections
(duration)
1°' (10 time units) 1 original primary | as main part of DP-channel
1 no.1
5 backup shared by DP-channels 1
and 2
1 original primary | as main part of DP-channel
2 no. 2
3 backup became a
temporary
“ordinary”
channel
2" (8 time units) 1 original primary | as main part of DP-channel
1 no. 1
4 backup shared by DP-channels 1
and 2
1 original primary | as main part of DP-channel
2 no. 2
e n=2 for| 2 backup became a
equation temporary
(2.4.1) “ordinary”
channel

Table 2.4.1 The connections sampled in two sampling periods within T

¢) BMP scheme: In this scheme the backup channel can become a temporary

“ordinary” channel with no real-time quality as illustrated in Table 2.4.1. The
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argument is that when the backup channel is not needed as backup it may be used
temporarily to boost up the communication throughput. The drawback of this
approach is that it also makes the DP-channels temporarily insecure/undependable.
There are still many issues that need to be addressed for designing efficacious BMP
schemes, for example:

i) When should a backup be allowed to become a temporary non-real-time
channel?

i) How could an “ordinary” channel be terminated gracefully when a DP-

channel needs it for support suddenly?

In general it is difficult to harness the TCP channel RTT for time-critical
applications because of the sheer size and heterogeneity of the underlying network.
This leads to the use of backup channels for more dependability [Kris2003,
Shin2000]. This approach helps shorten the service RTT in critical applications over
the Internet. As a result tasks can be meaningfully executed before the deadline
[Stankovic1998]. This is absolutely necessary for hard and firm real-time

applications and less stringent for the soft type.

2.5 DYNAMIC BUFFER SIZE TUNING

The system-level channel congestion prevention methods cannot prevent user

level buffer overflow from happening. Firstly, the server may serve many different

clients simultaneously, and the merged traffic in the asymmetric rendezvous can

53



create overflow because of its high rate. Secondly, the traffic pattern embedded in the
merged traffic is unpredictable and this can cause overflow because the pattern
affects the efficacy and stability of the reception buffer. One effective solution is
dynamic buffer tuning, which means tuning the reception buffer size adaptively on
the fly so that the buffer length always covers the queue size and thus eliminates any
chance of buffer overflow [Wong1999A, WongHC2001, Wong2002GAC]. The first
dynamic buffer size tuning scheme, “P+D” scheme, was proposed by Wong and
Dillon [Wong1999]. It is based on the concept of proportional (P) and the derivative
(D) control. The two parameters used in this approach are: the ratio of “queue length
over the buffer length” and the rate of change of queue length over time. The
instability of the “P+D” controller in real application led to the development of the
PID controller or PIDC [Ip2001], which is the “P+D” approach augmented by
integral (I) control. So far all the known dynamic buffer tuners, namely, PIDC, GAC,

FLC and NNC are aimed at user-level applications.

2.6 PREVIOUS MPHIL RESEARCH

In my previous MPhil research four original dynamic buffer overflow
controllers/tuners were proposed, namely, the PID Controller (PIDC), the GAC, the
FLC and the NNC. Figure 1.3.1 illustrated the course of evolution from the PIDC to
the NNC, and in fact, the intelligent tuners, GAC, FLC, and NNC were intended to

preserve the PIDC merits minus its shortcomings [Ip2001]. In the rest of this section
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each of the four tuners will be concisely presented, and their performance in terms of

their control cycle time will also be compared.
2.6.1 THE PID CONTROLLER (PIDC)

Buffer size tuning, similar to industrial control processes, may involve P, |
and D control elements [Karray2002]. In the PIDC the proportional (P) control is the
ratio of “queue length over buffer length (QOB)” to predict the chance of overflow.

The rate or derivative (D) control, which decides how fast the buffer would become
. . . dQ : .
full, is the rate of change in the queue length (i.e. dt)' The integral control is the

history of changes in the queue length. The P, I and D control elements in the PIDC
should be construed on a conceptual basis [Wong2000A], They are different from the
traditional meanings in process control theory because the PIDC does not consider
the feedback system gain. The PIDC is formed by adding integral control to the
previous “P+D” tuner, which was the first of its kind [Wong1999A]. Although the
“P+D” tuner worked well in simulations with selected datasets, it failed in real
situations over the Internet. The main cause of failure is the “hard-coded” nature of
the “P+D” control parameters. Since these parameters do not register new knowledge
the controller does not have enough power to anticipate what may happen in the
future proactively. The use of the history in predicting the trend of change is the basis
of integral (1) control in a general sense. The PIDC development needs to address the

following two issues:

55



a) Would the P+D perform better if 1 control is incorporated to make it a PID
controller (PIDC)?
b) How should the 1 control be implemented, especially when direct data

measurement is the basis of the PID control process?

The need for direct data measurement and the impossibility of monitoring the
overwhelming number of dynamic network parameters in the sizeable Internet
directly require a new technique. This led to the consideration of using the IEPM
(Internet End-to-End Performance Measurement) approach [Cottrel1999]. The core
idea in this approach is to gauge the channel dynamics by measuring its mean
roundtrip time (RTT). The IEPM concept is relatively new [Prasad2003,
Barford2004], and the only known IEPM method that has its accuracy independent of
any type of distribution/waveform is the Convergence Algorithm (CA) [Wong1999B].
The CA was successfully implemented and tested as the M?RT [Wong2001] macro
IEPM tool. The waveform independent property of CA/M?RT is attributed to the fact
that it is derived from the Central Limit Theorem [Aloisio1980]. In its macro version
the M?RT must be installed at two nodes that represent the ends of a logical channel.
The micro implementation of the CA is known as the M®RT [1p2002], which runs as
a logical object that can be invoked for service by message passing anytime and
anywhere.

The accumulated PIDC experience, however, shows that this tuner has two

distinctive shortcomings (Figure 2.6.1.1):
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a) The queue length can get dangerously close to the buffer length, and in very
serious dynamic traffic perturbations there could be a chance of overflow.

b) The buffer length lingers at the high value after every correction and this wastes
valuable memory and impedes system performance.
The desire to eliminate these shortcomings led to the introduction of the safety

margin A concept. The three intelligent tuners, GAC, FLC and NNC, adaptively
maintain A on the fly about the chosen reference (i.e. “0”) of the {0, A}’ objective

function. The difference between the controlled buffer length and the current queue
length should stay inside the user-specified tolerance band of + A about the reference
point. This reference point is the “queue length over buffer length” ratio chosen by

the user, namely, QOB .

aueus length Buffer length(P +0) = = - -Buffer length ("P+1+D" DrPID)l
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Figure 2.6.1.1 lllustration of the PID shortcomings

Figure 2.6.1.1 shows the following: a) the trace of queue length values for the

experiment, b) for this trace the “P+D” tuner buffer overflows at point E, and c) the
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PIDC working with same trace produces no overflow at all. In fact, the PIDC
consistently produces no overflow with all the deployment cases, but its two

shortcomings are always present.

2.6.2 THE GENETIC ALGORITHM CONTROLLER (GAC)

Genetic algorithms are a form of evolutionary computing [Michalewicz1996] that
mimick natural evolution in the reproduction process, including chromosome
crossover and mutation of genes. From the perspective of conventional or algorithmic
PID control genes are the threshold values. The goal of the GAC is to eradicate the
shortcomings of the algorithmic PIDC by adjusting the set of thresholds. The safety
margin concept A and the {0, A}* objective function were first introduced in the GAC
proposal and development [Wong2002GAC]. Conceptually the GAC is the “PIDC
plus GA plus the {0, A}’ objective function” combination.

Since in the buffer length tuning process the GA treats the PIDC parameters as
genes every parameter set is a chromosome in the GA context. The buffer size
estimated by the refined PIDC is fed to the objective function {0,A}* to check its
fitness. In effect, {0,A}* is the fitness function. The aim is to ensure that the
difference between the controlled buffer length and the current queue length stays
within the * A tolerance band aboutQOB,, . If there is an indication that the criterion
of £ A may not be satisfied, the GA immediately reproduces new chromosomes by
mutation and crossover. It then selects the fittest chromosome to replace the existing

set of PIDC parameters as a refinement process. By doing so the GA tries to prevent
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the QOB deviating from QOB by more than+ A . The operation of the GAC, which

is a GA-augmented PIDC, is shown in Figure 2.6.2.1.

InpLt Queve GAC-PID Applisd Buffer Length
[ Controller .

& =
Parameter Set

F 3

Ohjective

Replace|Parameter () Function = (0,4

[ The Fittest Chromosome |

I
| Fene Pool |

L Genetic Slgorithm k| Rutside Do

In=ide Bound

Figure 2.6.2.1 The GAC model for marginal buffer control

It was observed in different tests that oscillations might occur right after
replacements with new chromosomes, and this leads to subsequent system instability
and occasional buffer overflow. A solution to alleviate such vicious oscillations is to
give the GAC enough time to adjust to the new parameters. We call this grace period
the adaptation time window (ATW). The subsequent deeper analysis shows that the
ATW helps but cannot eliminate the chance of buffer overflow at all. The analysis of
this phenomenon as part of my PhD research overview had revealed that this is
caused by the very nature of the GA not to guarantee the global-optimal solution of
the hyperplane [Mitchel1999]. In the GAC the PIDC and the GA mechanism work in

parallel with the same data input. The chromosome is made up of two different sets of
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thresholds, namely, QOBL (Lower) and QOBU (Upper). The GA logic is illustrated

in the flowchart shown in Figure 2.6.2.2.
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Figure 2.6.2.2 The GA logic flowchart

Figure 2.6.2.3 shows that for the given queue length trace the GAC eliminates
the shortcomings of the PIDC (non-GA) by yielding more responsive buffer overflow
control. For the same trace, however, it also produced an overflow as shown in Table

2.6.2.1. The overflow occurred at the time point of 548980 after chromosome

replacement at the time point 547781.
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Figure 2.6.2.3 The GAC yields a more responsive result than the PIDC

Time Queue | Buffer | Buffer RLQI RLQD RLQI RLQD Action
length | (GA) | (non-GA) (GA) (GA) (non-GA) (non-GA)
588 0 20 20 0.716605 0.574195 0.716605 0.574195

1174 1 20 20 0.716605 0.574195 0.716605 0.574195

1379 20 20 0.716605 0.574195 0.716605 0.574195
546589 18 20 26 0.856595 0:583624 0.716605 0.574195
547178 19 20 26 0.856595 0.583624 0.716605 0.574195
547781 20 20 26 0.856595 0.583624 0.716605 0.574195|REPLACE
547941 19 20 26 0.823966 0.539837 0.716605 0.574195
548374 20 20 26 0.823966 0.539837 0.716605 0.574195 lF”\lESFIeIIDCI)EISADAPTAﬂON_
548980 21 20 26 0.823966 0.539837 0.716605 0.574195 lF”\IESFyIDCI)EISADAPTATlON_
549391 20 26 32 0.823966 0.539837 0.716605 0.574195
549509 19 26 32 0.823966 0.539837 0.716605 0.574195
549587 20 26 32 0.823966 0.539837 0.716605 0.574195

Table 2.6.2.1 A record of buffer overflow after chromosome replacement

2.6.3 THE FUZZY LOGIC CONTROLLER (FLC)

Although the GAC produces occasional buffer overflow it eliminates the PIDC

shortcomings completely and confirms that the {0, A} objective function is a sound
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and powerful concept. The FLC proposal represents the quest for a better intelligent

model that can: a) work with the PIDC as a component minus its shortcomings, b) use
the {0, A}’ objective function as the operational basis, and c) produce no overflow at
all. In this sense the FLC should be more powerful and accurate than the GAC. The
FLC conceptual framework is the “PIDC plus fuzzy logic plus the {0, A} objective

function” combination. The fuzzy logic divides the PIDC control domain into many
smaller fuzzy control regions (e.g. Table 2.6.3.1) and supports each of them with a
predefined fuzzy rule or a “don’t care” state. The “don’t care” state requires no
action/computation and in this way it offsets the FLC computation complexity and
reduces its control cycle time. Therefore, the FLC is a fuzzy region based (FRB)
approach [Berkan1997, Zadeh1994]. The control domain, which now consists of
many fuzzy regions, is known as the fuzzy knowledge base. The adaptive adjustment
of the buffer length, by addition or subtraction, depends on the current fuzzy region
of operation. In effect, the original algorithmic PIDC has only two fuzzy regions if
compared to the FLC approach. The “don’t care” is marked by X in the FLC[4x6]

design shown in Table 2.6.3.1.

Ja/dt

QOB ML NI NS PS PN PL
ML - - - - -

g; L D o o

III.B [ S ® + +

' LlE + + + + + +

Table 2.6.3.1 A FLC [4x6] design example

The “dot” in Table 2.6.3.1 marks the QOB;, which in this case is equal to 0.8

(80%). The FLC experimental result presented in this section is based on this design,
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and this implies A to be 0.2 or 20%. The linguistic variables (representations), which
are used for the fuzzy regions of the FLC design in Table 2.6.3.1, are defined as
follows:
a) For the Ratio of Queue Length Over Buffer Length (QOB)

e ML - Much Less than optimal point

o L - Less than optimal point

e G - Greater than optimal point

e MG - Much Greater than optimal point
b) For the Rate of change of queue length (dQ/dt)

e NL - Negative Large than optimal point

e NM - Negative Medium than optimal point

e NS - Negative Small than optimal point

e PS - Positive Small than optimal point

e PM - Positive Medium than optimal point

e PL - Positive Large than optimal point

The control action to be taken by the FLC depends on the two input parameters,
. : dQ/ . .
namely, QOB (i.e. proportional or P control) and ot (i.e. derivative or D control).

The three possible FLC decisions/actions are: a) Addition or “+”, b) Subtraction or

“-” and don’t care or “X”. The X state prevents unnecessary oscillation in the
buffer length control process. The quantum for addition (buffer elongation) or
subtraction (buffer shortening) is still computed by the refined PIDC mechanism,
which is a component of the FLC. Refinement here means that the operation of the

PIDC algorithm depends on the fuzzy region that the controller is currently operating
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in. The FLC Java prototype for the FLC[4x6] design shown by Table 2.6.3.1 has the
following fuzzy rules, which moderate the integral control represent by RICM

(Refined Integral Control Mechanism [Lin2002FLC]):

Rule 1: If (QOB is ML) AND (dQ/dt is NL) Then Action is “-”(Subtraction) AND Ley = Lo - RICM
Rule 2: If (QOB is ML) AND (dQ/dt is NM) Then Action is “-”(Subtraction) AND Lyew = Log - RICM
Rule 3: If (QOB is ML) AND (dQ/dt is NS) Then Action is “-”(Subtraction) AND Lyey = Lgig - RICM
Rule 4: If (QOB is ML) AND (dQ/dt is PS) Then Action is “-”(Subtraction) AND Ly = Lo - RICM
Rule 5: If (QOB is ML) AND (dQ/dt is PM) Then Action is “-”(Subtraction) AND Ley = Log - RICM
Rule 6: If (QOB is ML) AND (dQ/dt is PL) Then Action is “-”(Subtraction) AND Lyey = Lo - RICM
Rule 7: If (QOB is L) AND (dQ/dt is NL) Then Action is “-”(Subtraction) AND Lpey = Loig - RICM
Rule 8: If (QOB is L) AND (dQ/dt is NM) Then Action is “-”(Subtraction) AND Luew = Loig - RICM
Rule 9: If (QOB is L) AND (dQ/dt is NS) Then Action is “X”(Don’t care) AND Lpew = Loig

Rule 10: If (QOB is L) AND (dQ/dt is PS) Then Action is “X”(Don’t care) AND Lyew = Loy

Rule 11: If (QOB is L) AND (dQ/dt is PM) Then Action is “+”(Addition) AND Lpeyw = Loig + RICM
Rule 12: If (QOB is L) AND (dQ/dt is PL) Then Action is “+” (Addition) AND Ley = Loig + RICM
Rule 13: If (QOB is G) AND (dQ/dt is NL) Then Action is “-”(Subtraction) AND Lyew = Loig - RICM
Rule 14: If (QOB is G) AND (dQ/dt is NM) Then Action is “-”(Subtraction) AND Lpey = Loy - RICM
Rule 15: If (QOB is G) AND (dQ/dt is NS) Then Action is “X”(Don’t care) AND Lyew = Loig

Rule 16: If (QOB is G) AND (dQ/dt is PS) Then Action is “X”(Don’t care) AND Lpew = Loig

Rule 17: If (QOB is G) AND (dQ/dt is PM) Then Action is “+”(Addition) AND Ly = Log + RICM
Rule 18: If (QOB is G) AND (dQ/dt is PL) Then Action is “+”(Addition) AND Lpey = Lgg + RICM
Rule 19: If (QOB is MG) AND (dQ/dt is NL) Then Action is “+”(Addition) AND Lyey = Log + RICM
Rule 20: If (QOB is MG) AND (dQ/dt is NM) Then Action is “+”(Addition) AND Lyew = Loig + RICM
Rule 21: If (QOB is MG) AND (dQ/dt is NS) Then Action is “+”(Addition) AND Lpey = Loig+ RICM
Rule 22: If (QOB is MG) AND (dQ/dt is PS) Then Action is “+”(Addition) AND Lpeyw = Loig+ RICM
Rule 23: If (QOB is MG) AND (dQ/dt is PM) Then Action is “+”(Addition) AND Ly = Loig + RICM

Rule 24: If (QOB is MG) AND (dQ/dt is PL) Then Action is “+”(Addition) AND Ly = Log + RICM
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Figure 2.6.3.1 A case of performance comparison between the PIDC and the

FLC (QOB, =0.8,A =0.2)

The FLC always yields more a responsive buffer tuning operation than the

PIDC minus the latter’s shortcomings. Figure 2.6.3.1 is one case in which the FLC
consistently maintains the safety margin A for the{0, A}* objectivity function. Point A

in Figure 2.6.3.1 indicates that the FLC has eliminated the PIDC shortcoming of
staying at the high buffer length value (i.e. unused buffer space still being locked by

the controller).

2.6.4 THE NEURAL NETWORK CONTROLLER (NNC)

Although the FLC preserves the PIDC merits minus its shortcomings, its

convergence towards QOB can be oscillatory. The desire to attain a smoother

QOB, convergence for the {0,A}* objectivity function led to the NNC proposal,

which was also inspired by the success of applying the neural network (NN)
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techniques in AQM (Active Queue Management) algorithms (e.g. [Aweyal998]).
After some detailed preliminary investigation it was concluded that the NN approach
should base on backpropagation (BP). The argument is that the BP approach is
simpler and the NN controller can be trained efficiently with Aas the teacher signal.
Therefore, the NNC is proposed as a feed-forward BP perceptron [Lin2001NNC]
with supervised training [Rumelhart1986], as shown in Figure 2.6.4.1. The NNC
prototype’s configuration consists of: a) a single input layer of 10 neurons, b) a single

hidden layer of 20 neurons, and c) a single neuron in the output layer. The training
with A is based on the Sigmoid function represented by f(x) =1.0/(1.0+e™). The
activation energy (value) for the neurons in the hidden and output layers are
computed respectively as follows:

a) Sigmoid(>’ InputActivation * weight (input-hidden))
b) Sigmoid(> OutputActivation * weight(hidden-output))

Hidden
layer

Input
layer Output
Sigmoid (input) layer
Sigmoid(outpug o

A Teacher sgnal fortraining
(deserved value)

1 neuron

10 neuron
0 neurons 20 neurons

Figure 2.6.4.1 Backpropagation NNC control

The NNC has an input vector Quector Of ten variables with the following properties:
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a) Nine queue-length samples: They are sampled at equal time distances within the
chosen renewal window or period of W. If we divide W equally into nine portions

then each sample is denoted by Q,, , where Xis 1,2,...9.

b) 10" element: This is the queue length estimated by the M°RT at the t9. That is, at
the time point t9, which is the end point of the current W cycle, two samples are
included, namely, Queueca esimate @nd the queue length at that point. This means
that M®RT must run in parallel with the NNC as a logical entity.

The inclusion of Queueca_estimate (OUtput from the M?3RT) is the basis for the argument

that the NNC has the capability to proactively maintain the safety margin A. The

rationale is that the main function of M®RT s to predict the trend of the queue length
distribution and therefore the instantaneous value of Queueca esiimae at t9 should
reflect the next move of the queue length accurately. The output from the NNC is the
predicted buffer length required to ensure that the queue is completely covered so that
the safety margin A criterion will be met in the next W. The computation approach

for the NNC is given by equations (3.4.1) and (3.4.2). The predicted buffer length
L(W +1)for the W+1 cycle is a function (jNN (..)is the symbolic representation) of

the variables vector Quector (W) and Queueca estimate (19, )-

LW +1) = jNN [Quector W), Queueca_estimate(t9w)]... ...(3.4.1)

Quecior ={Qu, » Q2+ Qug, » Qua, + Qs » Qi+ Qur,, 1 Qug, » Qug,, 3-----(34.2)
The NNC operation is divided into two phases, namely, training and prediction.
The first is the training process for the BP approach to learn to respond properly by

yielding the deserved value with respect to the teacher signal; in this case the teacher
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is the given A. Before training starts the weights of the NN arcs are randomized. The
error, which is the difference between the predicted output and the deserved value
(DV) defined by the (QOB, - A) <DV <(QOB, +A) range, should gradually decay as
the learning process is progressing. The training is considered to be completed if the
controlled output is consistently within the DV range. The simulation performance by
the NNC and that by the “NNC+M®RT”, namely, the NNC supported by the M*RT in
the form of Queueca estimate OF Q;, element in the Quector, are depicted in Figure 2.6.4.2
and 2.6.4.3. M®RT is synonymous with CA (Convergence Algorithm) because the
former is the validated micro version of the CA macro Java implementation known as

the M°RT.

+ Deviation{(HHC)

Deviation

B650000 1050000 1450000 1850000
Simulation Time{ms)

Figure 2.6.4.2 Deviation by NNC from objective function with QOB=0.8 - test

case 1
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Figure 2.6.4.3 Deviation by (NNC+ M ®RT) from objective function, QOB=0.8 — test

case 2

The average of the deviation of the NNC output is measured by the following

k
equation: [Z| A —QOBi q/k . Table 2.6.4.1 (A = 0.2, sample size k = 7200) shows

i=1
three cases out of the many simulations, which confirm that the “NNC+M°RT”
consistently has at least 5 percent or less of deviation from the QOB than the NNC
working alone. Without the M®RT incorporation the deviation can be as large as 25%
in some cases, and our analysis indicates that this phenomenon is due to the fact that
the knowledge from the last training of the NNC is not enough to deal with
unexpected new situations. With the M®RT presence the largest deviation by the
“NNC+ M3RT” is around only 15%. This is the result of the integral effect provided

by the M®RT convergence process.

Figure 2.6.4.4 compares the smoothness of convergence towards QOB by the

PIDC, FLC and NNC (supported by CA/M*RT ). The NNC and the FLC eliminate
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the PIDC shortcomings and consistently maintain the safety margin A . The

maintenance by the NNC is much smoother than the FLC.

Gueue Length

Buffer(hMC+CAY

Bufier(FLC) Bufier(PIDC)

Queue Length

£50000 850000 1050000 1250000 1450000

Simulation Duration{ms)

Figure 2.6.4.4 Comparing the PIDC, FLC and NNC (QOBgr = 0.8)

Controller Case 1 Case 2 Case 3
NNC 0.02386 0.01853 0.02245
NNC+ M°RT 0.02260 0.01655 0.02115
Performance improvement: | 5.28% 10.7% 5.8%
n 3 n
NNC-"NNC + M °RT *100%
NNC

Table 2.6.4.1 Comparing three cases of deviations between NNC and “NNC+ M°RT”

2.6.5 TIMING ANALYSES OF THE DIFFERENT CONTROLLERS

Timing analysis of the individual dynamic buffer tuners, namely, PIDC, GAC,

FLC and NNC is an essential part of my MPhil research. A good dynamic buffer

tuner should be quick and accurate. If its control cycle time is too long, then it may
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yield deleterious effects because the computed remedy ends up correcting a long-
passed spurious problem. The timing analysis is carried out with the Intel’s VTune
Performance Analyzer [VTune2002]. The control cycle time or controller execution
time is measured in terms of the number of neutral clock cycles. Some of the results
are presented in Figure 2.6.5.1 to 2.6.5.4. The clock cycles can be converted into the

actual physical time for the chosen platform. For example, if the platform is operating

at 100 MHz, the control cycle time of 500 clock cycles yields 500(100*106) ~5 Micro
seconds.
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Figure 2.6.5.1 PIDC VTune Analysis (control cycle time is 205 clock/T cycles)
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Figure 2.6.5.2 GAC VTune Analysis (control cycle time is 475 T cycles)
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Figure 2.6.5.3 FLC VTune Analysis (control cycle time is 255 T cycles)
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Figure 2.6.5.4 NNC VTune Analysis (control cycle time is 10800 T cycles)

Intel VTune [VTune2002] Timing Analyses for four buffer controllers with the Intel-Pentium 11l as the reference architecture

i Chosen
Lines of Java code | Average Clock/T cycles per |Average number of i )
c | for controller number of assembly line [T cycles for MeafsTured Iaverage num?er arct:lteclture.
ontro implementation | lines of code | (Pentium Il 933MHz) |ooB, CONvergence of T cycles per contro ntel-
models in Pentium Il R cycle Pentium Il
(TCC) 933MHz
(Ln) assembler (T) (NTC) (seconds)
PIDC 105 525 9 4725 205 2.1972E-07
GAC 111 555 9 4995 475 5.0911E-07
FLC 116 580 9 5220 255 2.7331E-07
NNC (Input-
Otljtg{?t]e'niO— 240 1200 9 10800 10800 1.1576E-05
20-1)

Table 2.6.5.1 Summary of the indicative control cycle times by the different controllers
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2.7 CONNECTIVE SUMMARY

To recap, my MPhil research had achieved the following:

a)

b)

d)

Four novel dynamic buffer overflow controllers for user-level
applications were proposed; one algorithmic (i.e. the PIDC) and three
intelligent ones (i.e. GAC, FLC and NNC).

The GAC was thoroughly tested and found to be unacceptable because
it yields occasional buffer overflow.

The FLC was proposed and two designs, namely, FLC [4x4] and FLC
[4x6] were tested. The results indicate that this direction is the right
one because of the following: i) it eliminates buffer overflow
completely, ii) its execution time comparable to the simpler PIDC’s
due the presence of the “don’t care” state [Lin2002FLC], and iii) it
always maintains the control output within + A about the chosen
QOB,, reference, but its convergence to QOB can be oscillatory.
The success of using {0, A} as the operation principle and the desire to
have a smoother QOB convergence led to the proposal of the NNC.
The NNC differs form the GAC and the FLC because it does not
include the PIDC as a component. The NNC, however, has a much
longer control cycle time compared to the PIDC, GAC and the FLC
and this is prone to deleterious effects. The argument is that by the

time the remedy is computed the actual problem has already passed.

Using the computed remedy to resolve a spurious problem may lead to
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undesirable consequences or deleterious effects. The NNC prototype,
which works by backpropagation with supervised training, has 10
input neurons, 20 neurons in the hidden layer, and one output neuron.
e) Timing analyses confirmed that the four novel dynamic buffer size
tuning models are indeed suitable for time-critical applications over
the Internet. The limit of application and accuracy is determined by the

controller’s mean control cycle time.

Meanwhile my MPhil research also left behind some important but

unaddressed issues:

a)

b)

d)

Does the Internet traffic impede the controllers’ stability and accuracy? If so
how can the impedance be alleviated or neutralized? In fact, the internet
traffic can change without warning, for example, from LRD (long-range
dependence) such as heavy-tailed and self-similar to SRD (short-range
dependence) such as Poisson [Molnar1999]. Such changes may have a serious
impact on the controllers’ performance.

Is it possible to have an optimal (cost-effective) FLC design?

Is there a correlation between the accuracy and the number of neurons in the
hidden layer of the NNC? In my PhD research finding such a correlation is
called sensitivity analysis.

Is it possible to cut down the NNC control cycle time and lower the chance of

deleterious effects?
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CHAPTER 3 PROBLEM STATEMENT AND METHODOLOGY

3.0 INTRODUCTION

In this section the problem tackled in my PhD research will be explained. In
order to achieve the research objectives in a qualitative manner and within the time
constraints imposed on the duration of the project, the “investigate & experiment &
iterate (IET)” methodology is adopted as the basis for evolution. This methodology
helped my MPhil research a great deal and enabled me to produce useful and

meaningful findings that led to several refereed journal and conference publications.

3.1 DEFINITIONS OF USEFUL TERMS

Client/server interaction - A client/server interaction has two levels: system and user.

The system or router level includes all the activities within the TCP channel, and the

user level includes the client and the server that interact over the TCP channel in the

end-to-end manner.

Buffer - A finite memory space where objects queue up.

Network congestion - This happens when a router is inundated by a large volume of

incoming packets and runs out of buffer space, leading to loss of packets and very

slow or no response to the clients’ requests
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Queue — It is a series of requests waiting to be processed in a FIFO (first in first out)

basis.

Adaptive buffer — It meets the “n <Buffer < m” criterion with lower limit n >0 and

upper limit m.

Adaptive/dynamic buffer size control — The buffer size is adjusted on the fly by the

dynamic buffer size tuning function:

BufferSize, = function(QOB (d(y) M3RT,ICM,) , where t indicates the time
t T ty dt/t! ' t/) s

point. The parameters are defined as follows: QOB - ratio of queue length over buffer

length, d% - rate of change of queue length, M®RT - Micro Mean Message

Response Time implementation, and ICM - integral control mechanism.

Traffic pattern — It is the traffic waveform/distribution, which may be SRD (short-

range dependence) or LRD (long-range dependence).

Long-Range Dependence — A stationary process is long-range dependent if its

autocorrelation function r(k) is nonsummable (i.e. Zr(k):oo ), applied only to
k

infinite time series[Paxson1995].

77



Short-Range Dependence — A stationary process is short-range dependent if its

autocorrelation function r(k) is summable (i.e. z r(k) <o).
k

Intelligent buffer controller — It uses soft computing techniques, for example, the FLC

(Fuzzy Logic Controller) and the NNC (Neural Network Controller).

Roundtrip time (RTT): It is the delay/latency between the time that a client sends a

request and gets the correct result from the server.

Packet loss — It happens in the transmission process (e.g. dropped by the receiver to

prevent local buffer overflow as a congestion prevention measure).

3.2 PROBLEM DEFINITION

The scope of this research is dynamic buffer size tuning at the user level. The
argument is that if the chance of overflow for the server’s reception buffer in a TCP
based client/server or C/S interaction path (Figure 1.01 and Figure 1.4.1) is
eliminated, then the service roundtrip time or RTT can be shortened. In this sense the
C/S path becomes more dependable and suitable for time-critical applications. My
previous MPhil thesis had explored different possibilities of achieving reasonable
user-level dynamic buffer size tuning, and as a result four novel dynamic buffer
tuners were proposed, namely, the algorithmic PIDC and the intelligent/expert GAC,

FLC and NNC [Lin2002]. These four models are unique because they operate with a
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variable buffer length (VBL) as indicated in Figure 2.1.1. My MPhil research,

however, left behind some important but unaddressed issues as follows:

a)

b)

d)

Does the Internet traffic impede the controllers’ stability and accuracy? If so
how can the impedance be alleviated or neutralized? In fact, the internet
traffic can change without warning, for example, from LRD (long-range
dependence) such as heavy-tailed and self-similar to SRD (short-range
dependence) such as Poisson [Molnar1999]. Such changes may have a serious
impact on the controllers’ performance.

Is it possible to have an optimal (cost effective) FLC design?

Is there a correlation between the accuracy and the number of neurons in the
hidden layer of the NNC? In my PhD research finding such a correlation is
called sensitivity analysis.

Is it possible to cut down the NNC control cycle time and lower the chance of

deleterious effect?

Over a C/S path there are two levels of operations: system and user as shown by

Figure 1.4.1, which is duplicated here to support a clearer explanation of the problem.

The system level includes all the activities in the TCP channel, which inevitably has

the collective error probability p (as explained in section 1.0 Introduction) due to the

sheer size and heterogeneity of the Internet. There are existing mechanism that can

prevent the network congestion, which results in router buffer overflow, loss of

messages/segments, and widespread retransmission. The sender based mechanisms
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tune the timeout windows to alleviate premature timeouts and/or the congestion
window to reduce the sending rate and thus the amount of data across the network.
Although the sender mechanisms have their contributions in cutting down the chance
of network congestion, they are not powerful enough and have side effects. For
example, the well-known AIMD (Additive Increase and Multiplicative Decrease)
algorithm [Jacobson 1988] can impoverish bandwidth utilization in “long-fat-pipes”,
which are high-bandwidth-high-latency networks [Wang2004]. This side effect is a
relatively recent observation and since then different methods had been proposed to
reduce it [Balakrishnan1997]. One of the counter measures is the AQM (Active
Queue Management) approach proposed by the IETF’s RFC 2309. It allows the
router to throttle the sender(s) once it has detected a strong likelihood of overflow in
its reception buffer. The RED (Random Early Discard) algorithm is the candidate to
do the job. The system-level congestion prevention activities cannot, however,
prevent user-level reception buffer of a C/S path from overflowing. As shown in
Figure 1.4.1, the client/server interaction at the user level is usually an asymmetric
rendezvous, with the server simultaneously serving many different clients. At the
periods of peak service demands the torrents of incoming request traffic merge to
inundate the buffer to overflow easily. The cause is not only the high incoming traffic
rate but also the pattern embedded in the merged traffic [Molnar1999]. If the server’s
reception buffer on a C/S path overflows only after the system has dished out a large
amount of resources to prevent network congestion and ensure the smoother passage
for a message/segment/packet from the sender to the server, then the result can be

disastrous. Therefore, it makes sense to propose dynamic buffer size tuners such as
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the PIDC, GAC, FLC and NNC to eliminate the chance of user-level buffer overflow
by ensuring the buffer length always covers the queue size. This needs the support of
an efficient memory recycling system in the host where the server resides. Besides,
dynamic buffer size tuning at the user level could also break down as the congestion
problem is a persistent one. Conceptually the congestion prevention effort at the
system level and the user-level dynamic buffer tuning operation together form a

unified solution to stifle buffer overflow along a C/S path.
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(Duplication of Figure 1.4.1 for clearer problem definition)

The Internet traffic pattern changes without warning, for example, from LRD
(long-range dependence) such as heavy-tailed and self-similar to SRD (short-range
dependence) such as Poisson. Since the traffic patterns and the sudden change from
one pattern to another can have a serious impact on the queue dynamics and thus the

dynamic buffer tuner performance, the buffer tuning mechanism should be able to
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detect them and react within a reasonable time. Therefore, the real-time nature of the

detection mechanism is important for it to be applied successfully.

3.3 PROBLEM STATEMENT

The aim of this PhD research is to address the following issues in-depth. The

objectives include the following:

a)

b)

d)

Study and define the impact of traffic on the stability and accuracy of the FLC
and the NNC, and propose methods to counteract the negative impact
effectively.

Explore and define the possible optimal range for the FLC design and
implementation.

Define the correlation between the number of neurons in the NNC hidden
layer and the control accuracy.

Propose a method(s) to optimize the NNC configuration to lower its control
cycle time so that it becomes more suitable for time critical applications over
the Internet.

Perform timing analyses of the improved/new FLC and NNC models to
confirm that they are indeed suitable for time-critical applications over the

Internet.
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3.4 RESEARCH METHODOLOGY

The aim of any research is to address an issue or problem as thoroughly as
possible. In the process it may involve the following: a) forming a conceptual
framework, b) dissecting this preliminary framework into manageable pieces so that
their functionalities and relationship can be investigated, ¢) developing the respective
system supporting architecture so that the conceptual framework can be tested,
verified and evaluated as a prototype, and d) improving the prototype continuously
with new experimental results and observations. In the research process both
backtracking and cross referencing are natural. To get meaningful research results
within a given time frame, discipline is absolutely necessary in the course of action.
This relies on choosing the correct research methodology, which is a totality of
methods and tools that are appropriate for the problem domain. From the literature
research activities can be classified in various ways in terms of their objectives and
approaches. For example, the following types are summarized from the literature by
[Nunamaker1991], a) basic and applied, b) scientific and engineering, c) evaluative
and development, d) research and development, and e) “formulative” and

“verificational”.

The system development approach involves theory building (development of
new ideas and conceptual frameworks and models), experimentation (computer
simulations to validate the underlying theory), and observation (case studies and

formulation of hypotheses to be tested through experimentation). The work in this
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PhD thesis clearly fits this approach, which supports system development and is
therefore an information systems research methodology [Nunamaker1991]. The
theory building part in the thesis consists of defining new types of buffer control
strategies and formulating their mathematical structures. The experimentation
involves both simulations and experimental studies on the Internet so that
observations can be carried out for system validation, which is essential for proof of

concept.

From another angle my PhD research is in the domain of computer science.
According to [Philips1987] there are three basic types in this domain, namely, testing
out, problem solving, and exploratory. From this perspective, this research is
exploratory even though it ends up with a prototyping for rigorous testing and
supporting future deeper research. The prototyping process concurs with the
definition of system development by [Nunamaker1991]. Therefore, the concepts in
[Nunamaker1991] and [Philips1987] complement each other. The workflow in my
PhD research is top-down and includes literature search, problem statement definition,
proposed solutions, and data collection and analysis. It is inappropriate, however, to
apply the top down philosophy in a strict sense because the exploratory investigations
at different stages may involve repetitive backtracking, re-orientation, and cross-
referencing, to gain enough insight for going to the next step. For meeting the
iterative or spiral behavior of the research activities the “investigate & experiment &

iterate (IET)” methodology is adopted as the basis. The reason for adopting this basis
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Is that it helped me finish my previous MPhil research effectively and efficiently

[Lin2002] and led to important findings and refereed publications.

Since the area of dynamic buffer overflow control over the Internet is relatively
new, previous techniques and experience are limited in scope. It is inevitable that in
my PhD research intermediary models would be proposed so that tests and
experiments could be carried out to determine whether they are actually milestones.
In this light the IET approach is natural for this project because experiments are
continuously and repetitively needed to confirm the right direction for further actions.
In the course of research it is only natural to have backtracking, concept refinement
and modularization, and cross referencing. The basic IET methodology is conceptual,
and this means that it can be realized in different ways. In this research the IET
realization should gain from the experience of my previous MPhil project and be
implemented as a roadmap (Figure 3.4.1). As the PhD research progresses the new
experience gained would inspire inevitable changes to the IET hierarchy in the

roadmap.

The first step in the IET approach is to divide the research problem is into
sub-problems or tasks. The division is based on the knowledge gained from literature
search and my previous experience. Each task is studied and executed carefully and
the findings determine if a task should be further divided, eliminated, or combined
with another extant one. As the research activities progress through a hierarchy of

tasks and sub-tasks, backtracking and cross-referencing are sometimes necessary.
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Backtracking is usually caused by insufficient research in one or several of the
previous tasks higher in the hierarchy. Therefore, revisit(s) and more research are
necessary with this/these previous task(s) to gain more insight so that the temporarily
suspended task can continue and remains possible with proper re-orientation. Cross-
referencing allows the present research stage to utilize the previous findings directly.
In fact, tangible products may be produced by different tasks and sub-tasks, such as
refereed journal and conference publications. This is clearly manifested by my

previous MPhil research experience [Lin2002].
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CHAPTER 4 OVERVIEW OF SOLUTIONS

4.0 BACKGROUND

The area of my PhD research is directed at performance enhancement and
fault tolerance in Internet applications. It is the continued, deeper investigation using
my previous MPhil research experience as the basis. My MPhil research concentrated
on how to use dynamic buffer size tuning to eliminate user-level buffer overflow at
the receiver side. Figure 4.0.1 shows the end-to-end client/server interaction over a
logical Internet TCP channel. This interaction in reality is asymmetric rendezvous
because the server serves many different clients simultaneously (i.e. one-server-to-
many-clients relationship). The request streams from different clients merge at the
server’s queue buffer. Every request has to wait there for its turn to be served. The
queue length can grow very long during periods of peak demand, especially for a
popular server. The overflow due to the merged traffic of different request streams
that inundate the server buffer is called user-level overflow in the context of my PhD
research. It differs from those along and inside the TCP channel. The dynamic buffer
tuners proposed in my MPhil thesis include [Lin2002]: the algorithmic PIDC (i.e.
proportional (P) plus integral (1) plus derivative (D) controller), and the intelligent
trio, namely, GAC (Genetic Algorithm Controller), FLC (Fuzzy Logic Controller)
and NNC (Neural Network Controller). This trio contributes to shortening the service
roundtrip time (RTT) in the asymmetric rendezvous by eliminating the chance of

user-level buffer overflow at the receiver side.
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Figure 4.0.1 End-to-end client/server asymmetric rendezvous

Buffer overflow can occur at both the system/router level (all activities inside
and including the logical TCP channel) and the user-level. Different strategies were
proposed for reducing or preventing the chance of overflow at the system level by
preventing network congestion. They are formally referred to as AQM (active queue
management) algorithms by RFC2309 [Braden1998]. The more recent AQM
algorithms use neural networks and their potential benefits had inspired the proposal
of the NNC. Together with the system-level AQM mechanisms the user-level
dynamic buffer size tuners proposed in my MPhil research, PIDC, GAC, FLC, and
NNC, form a unified solution to stifle buffer overflow in an asymmetric rendezvous.

If o encapsulates all the error probabilities that cause overflow in an asymmetric
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rendezvous, the average number of trials (ANT) to get a successful transmission

K —0

IS Zj[p”l(l—p)]z 1-p) - Therefore, eliminating the chance of user-level
j=1

overflow reduces p and thus ANT. As a result it improves asymmetric rendezvous

fault tolerance and shortens its RTT. The development history of the tuners in my

MPhil research is summarized as follows:

a)

PIDC - It was proposed to improve the efficacy of the first model,
namely, “P+D” (i.e. proportional (P) plus derivative (D) controls).
The “P+D” aims at eliminating user-level buffer overflow by
dynamic buffer size tuning, which adaptively ensures that the buffer
length always cover the queue length. It however produces overflow
in real-life deployments because of the unrealistic expectation of
using a set of static parameters to cover the whole spectrum of
system dynamics. When integral (1) control is added to the “P+D”
model the novel PIDC is formed. The PIDC always eliminates the
chance of user-level buffer overflow despite its two shortcomings: a)
it locks up unused buffer memory and this affects the overall system
performance, and b) it does not have a safety margin and therefore
the queue length can get dangerously close to the buffer length
threatening overflow during peak demand periods. The desire to
eliminate these two shortcomings prompted the investigation into

the use of soft computing techniques.
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b) GAC - It is basically the combination of “PIDC plus
{0, A} objective function plus genetic algorithm (GA). The GA

moderates the PIDC control process to make sure that it always
stays within the A safety margin about the chosen reference
represented symbolically by “0”. The GAC eliminates the PIDC’s
shortcomings but produces rare user-level overflow. The reason is
that the GA, similar to other evolutionary computing approaches,
does not guarantee the global-optimal solution in the solution
hyperplane [Mitchel1999].

C) FLC — It represents the desire and effort to eliminate any user-level
overflow and preserve the GAC merits. The FLC is basically the
following  combination: “PIDC  plus fuzzy logic plus
{0, A}’ objective function”. The FLC is more stable and faster than
the GAC, and most important of all it does not produce any buffer
overflow.

d) NNC — The success of some AQM algorithms at the experimental
level inspired the NNC research, which is conceptually this

combination: “neural network plus {0,A}* objective function”.

Although the NNC provides smoother and more accurate control
than the FLC, it has a much longer control cycle time. This makes
the NNC less suitable for time-critical applications.

When the above dynamic buffer size tuners were verified, it was observed that

traffic patterns can affect their performance and stability. In all the experiments the
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FLC has remained the most efficient and stable dynamic buffer size tuner compared

to other versions. For this reason the FLC is always the candidate for different testing

purposes. The MPhil research, however, had left many unaddressed issues, which

form the basis for this deeper PhD research of mine. The unaddressed issues are

summarized in Table 4.0.1.

Tuner(s)

Unaddressed issues in my MPhil research

FLC

1) Is it possible to have an optimal design?

2) Is it possible to make it reconfigurable (especially with

respect to traffic pattern changes)?

NNC

1) Is it possible to prune the NNC configuration on the fly so
that its control cycle time can be consistently and adaptively

reduced?

2) Is there a correlation between control accuracy and the
number of hidden neurons in the NNC back-propagation
architecture? (The procedure to provide the answer is called

sensitivity analysis.)

Traffic

ill effects

for PIDC, FLC and

NNC

1) It is possible to calibrate the ill effects off-line so that the
tuners can use these calibrations to ward off the impedance by

fine-tuning its dynamic buffer tuning process adaptively?

2) If so, then how can the current Internet traffic pattern be
deciphered on the fly (on-line) so that the off-line calibrations

can be applied selectively?

Table 4.0.1 Unaddressed issues in my MPhil that forms the basis of my PhD research
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Finding solutions for the unaddressed issues in Table 4.0.1 forms the
backbone of my PhD research. It was difficult to rely on previous experience in
solving some of the problems, in particular “on-line” traffic detection. Firstly, the off-
line traffic analysis techniques are generally not well-established [Molnar1999] even
though there are many relevant publications [Abry2000, Arvotham2001, Cao2001,
Cottrel2001, Ryul1996, Crovellal997, Karagiannis2003, Leland1994, Resnick1997,
Tagqu2003, Willinger2003]. Secondly, “on-line” traffic detection techniques were
absent from the literature until the paper published by the COMP Team (or simply the
Team) [ATNAC]. The team analyzed the available off-line or post-mortem statistical
techniques and concluded that they are basically lump analysis. For example,
Gaussianity test [Zhang2003] is used to determine the stationarity of a discrete
stochastic process X. This is at best an estimate that can be reasonably accurate or a
crude approximation because Gaussianity is continuous but the target process is
discrete in contrast. A Gaussian distribution can be used to approximate a Poisson or
binomial process only under certain conditions [Jain1992]. Since in most published
cases the continuous and discrete ideas are lumped as one, the Team calls these cases
lump analysis. The Team uses the Hurst parameter as the yardstick to determine if
any aggregate X" of block size m and lag | “H_” or not. The aggregate is H for
O<H <1, and the range 0<H <0.5 indicates SRD (short-range dependence)
traffic (e.g. Markovain) and 0.5<H <1 for LRD (long-range dependence) traffic
(e.g. heavy-tailed and self-similar). The limitation or criterion of application for the
real-time traffic pattern detector (RTPD) [ATNAC] proposed by the COMP Team is

“H, and stationarity” because self-similar traffic can be non-stationary (i.e. non-
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linear). In non-linear situations the H value/effect does not scale linearly as a constant
[Zhang2003]. In the remaining section on overview of the solutions proposed in my

PhD research for the unaddressed issues in Table 4.0.1 are concisely described.

4.1 PROPOSED SOLUTIONS

411FORFLC

The empirical results indicate that an optimal design range exists for the FLC
design. Figure 4.1.1.1 shows the optimal range. Any complex design not in this range
yields no obvious advantage measured in terms of the amount of mean deviations

(MD) from the given steady-state reference symbolically represented by “0” in the

{0, A}’ objective function.

Fean Deviation

0.14

0.12 -
E 01
E 0.08 e
= D08 e
£ 0.04

0.0z \!—2

0 ; . . .
PID FLC{ 4] FLCGxd) FLC4 %E) FLCG#E)

Figure 4.1.1.1 An optimal FLC design is possible (mean deviation stabilizes

around 0.02) (excerpt of Figure 6.1.1.1)
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It is found that it is possible to make the FLC adaptive or reconfigurable (i.e.

A-FLC) [p12]. The approach is to squeeze the “don’t care” state range threshold as

shown by Figure 4.1.1.2. The amount of squeeze can be fixed/static or dynamic. The

dynamic approach is suitable for neutralizing the ill effects by IAT traffic patterns on

the tuner stability and efficacy on the fly.
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Figure 4.1.1.2 A-FLC adjustment of the don’t care state range threshold on the

fly

The calibration of the amount of squeeze versus traffic pattern (e.g. self-

similar) was carried out for the FLC, as shown by Figure 4.1.1.3. Real-time

application of the squeeze calibration, however, is possible only if the RTPD is

included to detect the current traffic pattern on the fly. This led to the proposals of

two traffic filters in my PhD research for enhancing the RTPD. The inclusion of these
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two traffic filters into the RTPD framework produces the Enhanced RTPD or E-
RTPD. The E-RTPD provides the basis of on-line traffic pattern
detection/identification and neutralization of the traffic ill effects in the process of

dynamic buffer size tuning.

‘ —+— Trace —=— Foisson —&— Heawy talled —=— Self-similar

T

0.15 A

Q\\

=
=S
03

AN

.:
—_
—

N

Mean Devation
[’
[}
s}

=
o
b

S

0.05 Ep——

0.03 1 L L L 1
PIDC FLG(Ex4) FLO@Ex4) FLCMxA) FLO(EE)

Figure 4.1.1.3 Mean Deviation Errors of different FLC designs versus traffic

patterns (excerpt of Figure 6.3.1.1)

4.1.2 FOR NNC

The HBP (Hessian Based Pruning) approach was proposed to reduce the
NNC execution time (i.e. control cycle time) on the fly. This on-line
pruning/optimization technique always works with the same skeletal neural network.
In operation the NNC has two modules: Chief and Learner. Figure 4.1.2.1 is the twin
system of two NNC clones (Chief and Learner). The NNC operates in two distinctive
phases, namely, training/learning, and dynamic buffer tuning. In action it is a twin

system consisting of the “Chief” NNC module and the “Learner” NNC module as
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shown in Figure 4.1.2.1. The Chief , which has already learnt previous patterns,
carries out actual dynamic buffer tuning while the Learner undergoes training to
acquire new knowledge to deal with new phenomena. Before training starts all the
weights of the arcs in the Learner’s neural network are randomized. As training
progresses the error (difference) between the “trainee” output and the NNC
desired/deserved output A decays gradually. After training the Chief and the Learner

swap positions; the Chief becomes the learner.

I
 Learner NNC module I
o ot e, i | Role swap after Learner
is sufficiently trained -

< twin system
Chief NNC module

E‘GE) A s A2
=] ] w B
Q'E o g 20
E3 35 5 S
. 88| [d° |33
A
< L+ —] i | > Server >
NS
. 90\\)
S Buffer

Figure 4.1.2.1 The NNC - a twin system of two NNC clones (excerpt of Figure

7.1.2)

Thorough analysis was carried out to determine if the number of hidden
neurons would have an impact on the NNC performance. The preliminary empirical
results shown in Figure 4.1.2.2 indicate that having 20 neurons in the NNC hidden
layer is more or less the break point. Using more neurons does not produce better
performance by yielding a lower MD. For the Poisson trace (a SRD pattern), the

mean deviation error settles down for 15 hidden neurons in the hidden layer but for
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other traffic patterns at least 20 neurons are needed. All the experimental results from

this stage indicate that it is safer to use 20 neurons for the hidden layer for Internet

applications because the traffic pattern, which includes all the patterns in Figure

4.1.1.2, can switch quickly without warning.
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Figure 4.1.1.2 Mean deviation error for using different numbers of neurons in

the NNC hidden layer versus different possible Internet traffic patterns (excerpt

of Figure 7.1.1.6)

4.1.3 REAL-TIME TRAFFIC PATTERN ANALYSIS

I made use of the accumulated experience by the COMP Team in real-time

traffic analysis. In return my PhD research contributed two traffic filters: real-time

modified QQ-plot (or simply RT-QQ) filter/estimator and self-similarity (S?) filter
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for real time traffic pattern detection. The S? filter operation follows the CAB
concept proposed by the Team. This concept helps find the starting point of a data
section for meaningful RTPA evaluation. This point should satisfy the Gaussianity
test, and only then the S? filter starts to find the necessary outcomes, including the H
and D values for the successive aggregates X ™ of a stochastic process X long the
time axis. The block size mis a variable because the aggregate size for a pre-defined
time interval depends on the average IAT of the aggregate; longer IAT means a
smallerm . This "timed aggregate" approach avoids significant real-time sampling
latency due to the unpredictable IAT. Figure 4.1.3.1 summarizes the CAB mechanism
that the S? filter works with. The mechanism involves two separate real-time sub-
operations: Gaussianity test, and traffic pattern detection. The Gaussinaity test
continues throughout the CAB mechanism’s service life. K1, K2 and K3 are blocks
(timed aggregates of variable lengths) for three Gaussiainity tests. The second half of
K1 is basically the first half of K2 to indicate that data in the current block/window is
always half and half as the window is shifting forward along the time axis. For

example, if Gaussianity is confirmed for K1 at Agl, then the S? filter starts to collect
the first timed aggregate X ™ (between Agl and Ag2) so that the corresponding H

value can be calculated. In the Figure 4.1.3.1 the S? filter tries to confirm self-

similarity in X™ for the “First aggregate” and finds H by the P1 linear regression.

The same process repeats if the K2 block is also Gaussian. If the K3 block were

found to possess no Gaussianity, then the S? filter would stop operation because the

data has become non-stationary. More details are presented in Chapter 5.
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Figure 4.1.3.1 CAB mechanism has two real-time sub-operations (excerpt of

Figure 5.2.3)

4.2 ORIGINALITY AND SIGNIFICANCE

This PhD research is a deeper exploration based on my previous MPhil
findings [Lin2002] as the basis. In the MPhil project four original dynamic buffer size
tuners for user-level applications were proposed: PIDC [Ip2001], GAC
[Lin2001GAC], FLC [Lin2002FLC], and the NNC [Lin2001NNC]. In fact, these four
tuners represent an evolutionary process. The PIDC, which is algorithmic, eliminates
buffer overflow by proportional (P), derivative (D) and integral (I) controls despite
the presence of performance shortcomings. The GAC uses genetic algorithms (GA) to
eliminate these shortcomings. Unfortunately it produces occasional buffer overflow
despite the fact that it has completely eliminated the PIDC shortcomings. Yet, the GA

experience has confirmed that the effectiveness of the expert or soft computing
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approach for dynamic buffer size tuning. The desire to preserve this effectiveness and
prevent occasional buffer overflow at the same time led the proposal of the FLC,
which uses fuzzy logic instead of GA. Meanwhile, the published positive experience
of using neural networks in the AQM (active queue management) area [Braden1998]
inspired the NNC proposal. The significant contribution by the four dynamic buffer
size tuners is that they eliminate buffer overflow at the user level. As a result they
shorten the client/server roundtrip time (RTT) over the Internet. These tuners are
original because similar models have never been proposed before. They warrant
deeper investigations for their positive impact on the performance of time-critical
applications over a sizeable network such as the Internet. The findings from such
deeper investigations should be original because they add new values to the original

tuners.

This PhD research addresses those issues uncovered in my previous MPhil

thesis, and they include the following:

a) To prevent occasional buffer overflows under GAC: The aim is to find a way to
rectify the overflow problem. The preliminary conclusion is that the overflow is due
to the very nature of any evolutionary techniques, which guarantee no global-optimal
solution in the hyperplane [Mitchell1999]. Since this is a fundamental problem in
evolutionary computing, it is outside the scope of the present research and no further

pursuit was warranted.
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b) To confirm that the FLC is a complete design approach: In the MPhil research only
a few FLC configurations were proposed and tested. The aim is to ensure the
following: i) these configurations need only short execution times, ii) they could
indeed eliminate the PIDC shortcomings without causing buffer overflow and iii) the
findings would pave a solid way for deeper investigation into the following:
i) Is the FLC indeed a generic design approach in the sense that any
configurations would work correctly even with somewhat different
performance?
i) Is it possible to have optimal FLC design(s)?
The PhD findings confirm that the FLC is indeed a generic design approach and it is
possible to have optimal FLC designs. This original contribution was not part of my

MPhil findings.

c) To shorten the NNC execution time: The NNC proposed in my MPhil thesis has
the longest execution time compared to PIDC, GAC and FLC and this can easily
produce deleterious effects. The desire to shorten the NNC execution time led to the
proposal of the Hessian based dynamic pruning technique, which successfully
optimizes the neural network configuration of the skeletal NNC on the fly. This
technique is original because no real-time dynamic neural network optimization by
pruning as such has been proposed before. The success of using this technique to
optimize the NNC continuously provides some insight into how real-time

optimization of neural networks could be achieved.
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d) To neutralize traffic ill effects on system performance in a dynamic manner: It was
observed from the MPhil’s experimental data that Internet traffic patterns can produce
negative impact on a tuner’s performance. Since the PIDC, GAC, FLC and NNC
tuners operate in a real-time manner, a solution is needed to identify the traffic pattern
at any time so that the traffic ill effects on tuner performance could be nullified. The
deeper PhD investigation of this issue led to the following: i) it is possible to include
real-time traffic detection capability into a tuner and ii) two novel real-time traffic
pattern filters, namely the modified QQ-plot that identifies heavy-tailed traffic and
the S? filter that detects self-similar traffic were proposed. The contribution from this
area of investigation is original and significant because how real-time traffic pattern
detection capability can be paired with time-critical applications for better system

stability and performance is demonstrated for the first time.

The following table concisely differentiates the original and significant

achievements by this PhD research from my previous MPhil thesis.

MPhil’s original contribution PhD’s original contribution

*Four basic novel dynamic buffer size | *The unaddressed issues for the four
controllers/tuners  were proposed, | original tuners from the MPhil thesis
namely PIDC, GAC, FLC and NNC. form the problem statement of the PhD
research.

*The GAC was found to be unacceptable | * Deeper investigation of the GAC
because it yields occasional buffer | confirms that the buffer overflow is due
overflow. to the very nature of evolutionary
computing. Since this is a fundamental
issue in this discipline, no further work
was pursued because the GAC is
application of GA in nature.

103



* A few FLC designs were proposed
(e.g. [4x4] and [4x6]) and tested with the
aim to preserve the merits of the soft-
computing approach as it was
demonstrated by GAC and eliminate the
buffer overflow at the same time.

* Different FLC designs were proposed
and tested, and the empirical results
confirm the following: i) the FLC is
indeed a generic design approach, ii) an
optimal design range exists, and iii) the
FLC can be made to reconfigure on the
fly for better performance (i.e. A-FLC
and R2-FLC).

* The following had encouraged the
NNC proposal: 1) success of using the
objective function for both GAC and
FLC as the operation principle, ii) the
desire to have a smoother convergence
than the FLC, and iii) positive
experience in using neural networks in
the AQM area was published.

* Two NNC designs, which both work
as a twin parallel system: Chief (in
control) and Learner (in training): a)
recurrent NNC (i.e. NNC+CA), where
CA is the feedback loop and b) basic
NNC without feedback loop -
oscillatory {The NNC+CA framework is
the basis for the PhD investigation}.

* The real-time nature of dynamic buffer
size tuning requires short tuner
execution time, and this led to the choice
of backpropagation as the NNC
configuration because of its simplicity.
Preliminary empirical analysis indicated
that configuration of 10 input neurons,
20 neurons in the hidden layer, and one
output neuron could be cost-effective.
The NNC still has the longest execution
time compared to PIDC, GAC and FLC.

* It is desirable to shorten the NNC
execution time for successful real-time
applications. For this reason the original
Hessian based technique that optimizes
the NNC tuner by pruning its
configuration on the fly was proposed.
This technique is generic in nature and
works correctly when incorporated into
the NNC framework. The logical
pruning process always starts with the
same skeletal NN configuration.

* Sensitivity analysis was carried out to
find optimal NNC configuration(s), and
the result confirmed that the [10, 20, 1]
backpropagation configuration is indeed
cost-effective. The analysis finds the
correlation between the number of
neurons in the NNC’s hidden layer and
the control/tuning accuracy.

* Traffic patterns can affect system
performance as observed from the
empirical data.

* Real-time traffic detection capability
was considered and incorporated into the
dynamic buffer size tuning process
successfully. It is an original example of
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utilizing real-time detection to improve
the performance of time-critical systems.
In the process two real time traffic
pattern detectors were proposed and
verified: real-time modified QQ-plot (or
simply RT-QQ) and self-similarity (S°)
filter.

* The RTPD capability was incorporated
successfully into the FLC and the NNC
frameworks.

Table 4.2.1 Concise comparison of MPhil’s and PhD’s originality and contribution

To summarize, the original PhD contributions are the following findings:
a) The overflow under GAC is due to the very nature of genetic algorithms not to
guarantee the global optimal solution in the solution hyperplane.
b) The FLC design approach is indeed generic.
¢) Sensitivity analysis indicated that the [10, 20, 1] NNC configuration is indeed cost-
effective.
d) The generic HBP technique can optimize the NNC execution time and makes it
more suitable for time-critical application.
e) Real-time traffic detect capability is a powerful mechanism that neutralizes the ill

effects by traffic patterns on system stability and performance.

f) The traffic filters, namely, RT-QQ plot and S* are effective for time-critical

applications, independent of the composite nature of a traffic trace.

105

@ Pao Yue-kong Library
PolyU + Hong Kong



4.3 CONNECTIVE SUMMARY

This chapter has given a concise summary of all the solutions proposed in my
PhD research with respect to the unaddressed issues from my MPhil as listed in Table
4.0.1. The details of these solutions and my PhD research contributions will be
presented in details in the following chapters: a) Chapter 5 describes the real-time
traffic detection contribution, b) Chapter 6 is the in-depth FLC research, c) Chapter 7
is the in-depth NNC research, and Chapter 8 is the location-aware test-bed with the

FLC as the chosen dynamic buffer size tuner.
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CHAPTER 5 REAL-TIME TRAFFIC DETECTION CONTRIBUTION

5.0 INTRODUCTION

The PIDC, GAC, FLC, and NNC dynamic tuner models proposed in my
previous MPhil research [Lin2002] were verified with pre-collected Internet IAT
traces (inter-arrival times among the requests from client to server). They provide the
solid basis for my present deeper PhD research. The verification exercises of these
tuners for my MPhil thesis, however, showed that they might produce various mean
deviations (MD) from the given steady-state references. This inspired the
investigation of the correlation between IAT traffic patterns and tuner stability in my
present PhD study, using the FLC dynamic buffer size tuner as the test-bed. The setup
for the experiments in my PhD investigations is shown in Figure (5.0.1). It has
evolved over time to meet the changing experimental objectives. The dotted lines

show the new additions to the basic setup shown in solid lines.
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Figure 5.0.1 The setup for the subsequent tests

The setup for conducting experiments in my PhD research (Figure 5.0.1) is an
Aglets mobile agent platform environment. The aim is to make the experimental
results scalable because the platform is designed for the internet. The driver and the
server in the setup are aglets (agile applets). The driver picks a waveform to simulate
the desired IAT distribution/pattern for the requested traffic into the server’s queue.
The tuner (e.g. FLC) utilizes the buffer length (B) and the queue length (Q) to
adaptively compute the buffer adjustment size for the dynamic tuning process. Figure
5.0.2 shows the different MD values produced by the FLC for different IAT traffic
patterns. Besides detecting traffic patterns on the fly, the E-RTPD (Enhanced Real-
Time Traffic Pattern Detector) also helps visualize the correlation between a traffic
pattern and the corresponding MD value. Figure 5.0.2 is a result of the research work

described in sections 6.2 and 6.3 of Chapter 6.

108



—+— Trace —®— Paizson —&— Heavy-tailed —— Self-similar

0.05

0.045

0.04

0.035

0.03

Mean Deviation

0.025

0.0z

GP (%)

Figure 5.0.2 Different MD for specific traffic patterns by the FLC (Chapter 6)

Requirements for real-time traffic analysis differ from that for non-real-time or
“post-mortem” purposes. Real-time analysis recognizes a specific pattern embedded

in the data segment sampled on the fly. If an IAT collection of size m is made from a

stochastic process X, then the data segment is the aggregate X ™. Over time X may

yield many aggregates, which are uniquely identified by the aggregate level I
[Tagqu2003], i.e. X". In my present research we call any entity that recognizes a

specific pattern (e.g. self-similar) is a traffic pattern filter. For example, the statistical
modified QQ-plot is a “post-mortem” filter to recognize heavy-tailed distributions
[Molnar1999].

At the time of my PhD traffic investigation the research team (called the
“COMP Team” hereafter) led by Dr. Allan Wong (my PhD supervisor) was deep into

real-time traffic pattern detection and analysis already. The COMP Team proposed,
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verified and published the novel Real-Time Traffic Pattern Detector (RTPD) [p11]. |
was involved with the RTPD verification and that experience proved useful for traffic
investigation. The RTPD design was gained from experience with the post-mortem,
statistical Selfis tool [Karagiannis2003]. My participation and experience in the
RTPD experiments has inspired my pursuit into proposing effective real-time traffic
pattern filters. As a result | have achieved the following for my PhD thesis:
a) Converting the post-mortem modified QQ-plot for real-time applications.
b) Developing the novel self-similarity (S*) filter because the original RTPD
by the COMP Team does not detect self-similar traffic.
The RTPD uses the Hurst parameter/effect as the yard stick and calls a stochastic

process H, if its H value is within the 0 <H <1 range. The range 0 < H < 0.5 is for

the short-range dependence (SRD) and 0.5< H <1 indicates long-range dependence
(LRD). The value H =0.5 indicates “white noise” and is ignored. SRD includes
Markovian traffic and LRD includes heavy-tailed[Resnick1997] and self-similar
patterns[Leland1994, Crovellal997, Tsybakov1998]. The RTPD puts emphasis on
stationary traffic. A stationary stochastic process has independent increments in

its X" aggregates [Willinger2003]. For example, the distribution of the arrivals

between time t and t+s depends solely on the interval s but not the starting point t.
In the literature stationary processes are frequently associated with “Gaussinianity”.

A Gaussian, H_, stationary process is called the fractional Brownian motion and the

ss !

independent increment is the fractional Gaussian noise. A H_ process may be SRD

or LRD, and a LRD process can be heavy-tailed and self-similar. The reverse may not
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be true, for example, a self-similar process may not be stationary [Ca02001]. There is,
however, a strong correspondence between self-similarity and stationarity.

The core of the original RTPD proposed by the COMP Team is the traditional
R/S (rescaled adjusted statistics) approach for non-real-time applications. It is the

max{W, :i=12,....kK}—min{W, :i=12,...,.k}

Jvar(X)

statistical expression: %: . The W,

parameter is defined by W, =Y (X, —X) for i=12..k , and X is the mean

m=1
o k
of X = %Z X, . Yet, the best value for k in this traditional approach has to be found
i=1

by trial and error. This is the main drawback of the R/S approach because its speed

and accuracy depend on k. The R/S ratio is the rescaled range of the discrete process

X, {X,:1=12,.k}. The log-log plot of the R/S = (|%)H feature yields the H value.

The time to compute X is unpredictable because of k. The COMP Team resolved this
unpredictability and converted the R/S into the enhanced R/S version (i.e. E-R/S) for
real-time applications by incorporating the Convergence Algorithm (CA)
[Wong2001]. This involves transferring and adapting CA, which is from the IEPM
(Internet End-to-End Performance Measurement) domain [Cottrel1999], for effective
application in real-time traffic analysis.

The CA operation is based on the Central Limit Theorem, and its accuracy is
therefore independent of the traffic waveform. It is summarized by the equations: (5.1)

and (5.2).
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M, =—— 2% (5.1;M, =mih....... (5.2);i>1

The estimated mean M, in the i" prediction cycle is based on the fixed F (flush
limit) number of data samples. The cycle time is the interval for collecting the F

samples physically. It was previously confirmed that M, has the fastest convergence
for F=14 [Wong2001]. Other parameters include: a) M,_, is the feedback of the last
predicted mean to the current M, prediction cycle, b) m! is the j" data item sampled

in the current i M, cycle, j=12_3,....,(F-1), and c) M, is the first data sample

when the MCA had first started running. M, replacesYto yield W, = Z(Xm -M,)

m=1
for the E-R/S, which is more suitable for real-time applications because the number

of data items (e.g. IAT) needed to calculate W, is fixed (predictable), namely F =14.

To summarize, my PhD contributions to real-time traffic analysis are threefold:

a) Development of two novel real-time traffic pattern filters: RR-QQ (real-time
modified QQ-plot) and self-similarity (S?)

b) Conversion of the RTPD to its enhanced version (i.e. Enhanced RTPD or E-RTPD)
by including RR-QQ and S? filters.

c) Addition of these two novel filters to enable the FLC to reconfigure (i.e. the
Reconfigurable FLC (R-FLC) in section 6.2 of Chapter 6) by using the results
detected by the E-RTPD on the fly. The reconfiguration adjusts the FLC’s derivative
(D) control to neutralize the ill effects arising from changing traffic patterns. As a

result more accurate dynamic buffer size tuning can be carried out and maintained.
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5.1 TRAFFIC ANALYSIS IN GENERAL

Three goals for traffic analysis can be identified from the literature: a) gauging the
end-to-end channel traffic to interpret the channel behavior, b) trace-based, post-
mortem or off-line traffic analysis (OTA) to understand the network behavior in the
period where the trace was collected, and c) real-time traffic pattern analysis (RTPA)
so that the result can be used immediately by a running application to self-tune or
reconfigure to maintain high performance. Trace-based, off-line analyses pertain only
to the traces concerned because the empirical results cannot be construed as the
general network behavior. For example, the different traces may exhibit similar
behavior because when the traces were collected the same network parameters

happened to be coincidentally dominant.

5.1.1 GAUGING END-TO-END BEHAVIOR

It is always desirable to gauge the end-to-end client/server path (EE-path)
(Figure 5.1.1.1) or a TCP channel for more reliable and efficient communication
purposes. This approach is the basis of the IEPM (Internet End-to-End Performance
Measurement) school of thought [Cottrel1999]. The off-line tools that manipulate
pre-collected traces include the Skitter, PingER, M?RT [Wong2001M?RT] and
SURVEYOR [Cottrel2001]. The M *RT (Micro Mean Message Response Time) tool

is the only known IEPM model capable of on-line applications. It can predict the
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mean of an IAT aggregate X ™ accurately and quickly on the fly. The difference
between channel traffic and EE-path traffic is subtle and therefore they are used
interchangeably. Precisely, channel traffic means those that have reached the exit of a
logical channel. A server on the user-level is normally an asymmetric rendezvous (i.e.
one-server-to-many-client relationship). In Figure 5.1.1.2 different service request
streams from different channels merge at the server’s service access point (SAP)
before entering its queue of service requests. Therefore, a channel traffic pattern

could be very different from the composite “merged traffic” or “EE-path” behavior.

Channel provided by the
underlying system
(e.g. TCP)

N
210

User domain |

I
I *
1 System domain

User domain

EE-path

A
 J

Figure 5.1.1.1 The EE-path

Server buffer

Merged trnfhr

A

Figure 5.1.1.2 Merged traffic at the user-level
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5.1.2 OFF-LINE (POST-MORTEM) TRAFFIC ANALYSIS

The aim is to understand the network/channel behavior with respect to the
trace being examined. The off-line traffic analyzing (OTA) techniques are not well-
established at this moment [Molnar1999, Taqqu2003]. From the COMP Team’s point
of view, the results from using these techniques should be accepted only from the
trace perspective. They cannot be generalized to represent the underlying network.
The OTA techniques are basically statistical [Karagiannis2003] and aim at

determining the following properties:

a) Stationarity: A stochastic process X is stationary if its aggregates X ™ of block
size m have independent increments. Conceptually stationarity is an expression of the
Gaussian property (i.e. "Gaussianity™). It is generally accepted that the Gaussian
(normal), Poisson, Erlang, and binomial distributions belong to the exponential family,
which is memoryless [Mitrani1l987] and is therefore stationary. Consequently any
bell curve that fits an Erlang variant of a specified shape parameter is exponential.
This provides the basis for the "kurtosis/skewness" test that can verify Gaussianity
[Jain1991]. The kurtosis value determines if a bell curve is peaked (for positive
values) or flat (for negative values). The skewness value decides if the bell curve
skews to the right (for positive values) or to the left (for negative values). For
example, skewing to the right means the right tail in the distribution is heavier than
the left. The pivotal point is that Gaussianity of a normal distribution is perfect for

kurtosis =3 and skewness =0 , which are the “standards or references” for
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comparison. It is reasonable to decide if a bell curve is Gaussian by comparing with
these “standards” in a test for Gaussianity. Statistically estimated kurtosis and
skewness values from a trace are rarely perfect. Reasonably predefined kurtosis and
skewness limits, however, help determine if a bell curve of the exponential property
does exist. For example, if the following are computed: kurtosis =15 and
skewness = 0.5 , statistically the bell curve is somewhere between a Weibull

distribution ( gamma=1.5, skewness~4.5 and skewness~1 ) and a normal

distribution. Therefore it may be regarded as part of the exponential family to possess
stationarity. The COMP Team regards the Gaussianity test as a crude but workable
way to look for the sign of existence of an exponential bell curve. Choosing the
appropriate kurtosis and skewness limits, however, depends on empirical experience
and is therefore an art rather than a science. Guessing the nature of the Gaussianity
test by kurtosis and skewness becomes obvious if the properties of relevant
distributions are examined. A normal distribution is inherently continuous but
Poisson and binomial processes (such as packet traffic flow over the Internet) are
discrete. The normal, binomial and Poisson processes can possess approximately the
same behavior only under certain constraints (to be explained later). Therefore, there
is ample room for making wrong guesses in using only the kurtosis/skewness test for

Gaussianity.

b) Hurst (H) effect: H effect/value measurement originated from hydrology (water

flow), and only much later was adopted by researchers for traffic analysis

[Molnar1999]. Statistical methods to estimate H include the R/S (rescaled adjusted
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statistics) method and the Periodogram [Molnar1999, Karagiannis2003]. The H value

of aH stochastic process is divided into three sections: 0 < H < 0.5 for SRD (short-

range dependence; e.g. Markovian inter-arrival times (IAT) traffic), H =0.5 for
"white noise” and 0.5 < H <1 for LRD (long-range dependence). The relatively more
complex LRD has two basic components: heavy-tailed and self-similar. Self-similar
patterns often result from heavy-tailed traffic but the latter is not a necessary
condition for self-similarity [Ryul996]. For example, the self-similar FSNDPP
(Fractal-Shot-Noise-Driven Poisson Process) has no heavy-tailed property. Fractal
and self-similar are synonymous except that the fractal dimension (D) is non-integer
(i.e. real number). Objects are self-similar or fractal if they can be derived from others
by scaling, rotation, and translation. The different existing definitions for the fractal
dimension are non-converging. The Cantor Set, however, provides a reasonable
conceptual basis. If an object is geometrically, recursively split into similar pieces,
then at the K" iteration step the total measure of the object is the “product of the
number of similar pieces andOP ”. The parameter O is the splitting resolution or
reduction. For example, the Cantor Set considers drawing a line segment of interval

[0,1] as the first step (i.e. K =0). This line is then manipulated by the subsequent

steps: a) divide the line into three equal portions (i.e. resolution is% ) and remove

the middle portion (i.e. K =1), b) remove the middle portions from the remaining two

(i.e.K =2), and c) repeat the last step ad infinitum. The K™ iteration produces 2

similar line segments of length s = (%)K . The Cantor Set’s self-similarity dimension

is defined by the formula D, = 2% * (%)K or alternatively

S
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D =[(K|09(2)) )]z0.63. In fact, the extant FD3 tool [Sarraille] can

(K'log(3)

determine if an object or image is fractal and measures its D value.

C) Linearity: Self-similar traffic can be linear and non-linear. Linear fractal
traffic scales with a specific H value, but for the non-linear cases H becomes a
variable. The following two methods can test and confirm linearity effectively: a) the
"wavelet partitioning function (WPF) [Abry2000]" approach and b) the “CAB-based

D/H plot” proposed by the COMP Team (explained later).

Oft-line traffic analysis techniques

Stationary or Gaussian \

(kurtosis and skewness tests) Hurst (H) effect (method: R/S plot

\ and Periodogram)

SRD (short-range dependence) LRD (long-range dependence)

Dichotomy

Nota n-.cusary

Heavy-tailed condition

e %clt similar

madified QQ-plot,
Hill estimator)
Method: wavelet partitioning function (WPF)

Linear (monofractal) Non-linear (multi-fractal)

Figure 5.1.2.1 The hierarchy of OTA methods
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All the OTA discussions above are summarized in Figure 5.1.2.1. As a

demonstration this hierarchy is walked through in order to find the self-similarity
dimension D for an IAT aggregate X™ . The steps involved are as follows: a)

determine the Guassianity of X ™ by computing its kurtosis and skewness values and
comparing them with the chosen limits, b) if Gaussianity is positive then compute H
by the R/S or Periodogram methods, ¢) for 0.5 < H <1 determine D by using the
FD3 tool [Sarraille], and d) use the WPF approach to confirm that D is correct due to

the existence of linearity.

5.1.3 REAL-TIME TRAFFIC PATTERN ANALYSIS (RTPA)

Post-mortem traffic analysis is useful to understand what happened in a
network, but only in the trace perspective. It is, however, impractical to engineer a
system and expect it to work correctly in a time-variant environment, based on partial
past performance data. The real-time traffic pattern detector (RTPD) published by
the COMP Team is an example of the RTPA approach [Lin2004a]. If the RTPD is
incorporated as a component in a time-critical application, the latter can use the
detected traffic pattern to self-tune for more stable performance in a dynamic and

adaptive fashion.
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5.2 THE COMP TEAM

Real-time traffic pattern detection proposed by the COMP Team is a novel
concept. Before that the known methods are basically post-mortem. The relevant
experience accumulated by COMP Team that is useful for my PhD study includes the
following, namely:

a) Lump analysis

b) Essence of time

c¢) Traffic independence
d) Micro implementation

e) D/H correlation

a) Lump analysis: The COMP Team considers the OTA techniques as lump analysis.
The reason behind this is that the raw trace used in an OTA exercise can be
composite. It has no demarcation where one traffic pattern begins and ends before the
next. Therefore, the overall result indicates the composite effect of the different
traffic types interleaved together. This is misleading in terms of system behavior. For
real-time applications the response to stimulation, however, is immediate and clear.
For example, a dynamic buffer tuner must respond adaptively to the continuous IAT
traffic pattern changes, which are interleaved along the time axis. To trace where a

traffic pattern begins and ends means scrutinizing the true characteristic of

a X "aggregate by having the size m as a variable. To have a meaningful scrutiny the

m value should represent a sufficient number of samples to make the traffic
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characteristic of X "stand out. The RTPD approach is time based and this makes m

a variable. Being time based means we have to denote it as X", , where the suffix T

indicates a pre-defined interval. The X", aggregates are examined one after another

until the analytical process has ended. This kind of successive aggregate inspections

makes the RTPD approach differ from the OTA lump analysis

b) Essence of time: For the success of any real-time application, time is of the essence.
OTA techniques normally work with immediately available data in the trace. For
example, if an OTA method needs an average of 200 time units to compute the result
from 1000 samples in the IAT trace (i.e. X "), then the computation/execution
time is intrinsic. It is intrinsic because it does not include the actual sampling latency
for the 1000 samples. If the average IAT for the 1000 samples is 1 second, then the
actual time needed to compute the result is 1000*1+200 or 1200 time units on-line.
The data items have to be sampled one by one before the computation. For
immediately available data in a pre-collected trace, however, there is no such
sampling latency. A long sampling latency/delay can lead to deleterious effect
because by the time the traffic characteristic is identified it has become history and
would have changed and is, therefore, useless for on-line application. Therefore time
essence requires the RTPD mechanism to produce a result quickly so that it is can be

used immediately by a real-time application to self-tune and rectify itself.

c) Traffic independence: The essential quality for any tool to analyze traffic and

identify its characteristic(s) correctly is traffic independence. This was repeatedly
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demonstrated by the previous IEPM (Internet End-to-End Performance Measurement)
applications [Cottrel1999]. Any tools that are based on the Central Limit Theorem

(CLT) [Aloisio1980] are inherently traffic independent [Wong2001M?RT].

d) Micro implementation: Any successful tool for RTPA purposes should be simple
so that it executes quickly to produce the result needed for real-time applications
[1p2002]. It should run independently so that: a) it can be invoked for service anytime
and anywhere, and b) it does not burden/delay the execution time of its service user.
For example, if the tool executes much faster than its service requestor running in
parallel, then when the requestor needs the result it is immediately available (i.e. no

substantial waiting).

e) D/H correlation: The fractal dimension D is proportional to the H value and the
resolution (as in the Cantor Set). Figure 5.2.1 correlates the D and H values computed
by seven experiments. The self-similar traffic traces were artificially generated for the
experiments by using Kramer’s tool [Kramer]. The D measurements were conducted
with the FD3 tool [Sarraille], and the H values were estimated by using the Selfis tool

[Karagiannis2003]. If we assumed that the traces for the seven experiments were

aggregates (i.e. X", , ;) of the same stochastic process X, then X is nonlinear. The

D/H correlation shows the non-linearity of X because H changes as a variable. In fact,

in Figure 5.2.1 the D value is proportional to H and the splitting resolution (e.g. the

Cantor set’s resolution of%).
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Figure 5.2.1 D/H correlation with respect to Table 5.3.2.1.1

Some of the COMP Team’s conclusions such as the following directly pertain
to my PhD research of real-time traffic analysis and filter design, namely:
a) M°RT adoption
b) Conceptual discrepancy
c) CAB (continuous aggregate based)

d) CAB-based D/H plot

a) M*RT adoption: M *RT is the unique micro implementation of the Convergence
Algorithm (CA) [Wong2001]. It is CLT based and needs only 250 clock cycles to
execute and predict on the fly the mean of a waveform [Ip2002]. It is very useful for

calculating the mean values needed by a real-time traffic filter quickly and accurately.
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It has converted the traditional R/S method for measuring H to the enhanced R/S

version (i.e. E-R/S), which is a component in the RTPD [Lin2004a].

b) Conceptual discrepancy: One reason for off-line traffic analysis or OTA
techniques being not well-established is the conceptual discrepancy between
continuous and discrete processes. Some OTA tools just lump the two concepts
together in a high-level manner, and consequently these tools could hardly produce
qualitative results. For example, many publications try to explain the association
between the Hurst parameter and Gaussianity in the light of a continuous stochastic
process such as hydrology (i.e. water flow) [Hurst1965]. This is probably fine for
both phenomena originated from the continuous domain. Yet, when researchers
directly transfer/apply their Gaussian explanations to the discrete domain such as
packet traffic in the Internet, problems emerge. The transfer may be logical, but it is
only "approximately or marginally correct” in the discrete domain. In fact, the
problem of direct transfer as such is well known. In the area of process control
[Courriou2004], digital (discrete) and analog (continuous) implementations of the
same controller model produce different results. Discrete control (e.g. digital motor)
works with different equations and falls into the domain of Z Transform, but
continuous controllers work with Laplace Transform. Although the analog controller
delivers the expected controlled system behavior, its supposedly equivalent digital
version can shift the 3 db down point to create system instability. This implies that
discrete control needs compensation to yield the same behavior as its analog

counterpart. The COMP Team grasped this conceptual discrepancy by reviewing the
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relationship among different discrete and continuous distributions. The discrepancy is
summarized in Figure 5.2.2. Conceptually the Bernoulli Trials experiment (e.g.
throwing a coin until a head appears) produces a memoryless binomial distribution. If

o is the probability of having a head, then the probability P, of producing a head at

- th . - i - -
the j trial IS P,=0(l-0)’ ! : Consider the F@)

K K
distribution F(j)=>"P, =) ol-0)' =1-(1-0)".

j=1 j=1
The F(j) distribution obtained by summing P; above is power, geometric and

binomial. This binomial distribution can be approximated by the Poisson distribution
for rare events. An event is rare if it has less than 10% chance (i.e. o =0.1) to occur
in a sample of size n>50 [Mitranil987], no <5 is the criterion for rarity. The
approximation deteriorates as o increases and ndecreases. The normal distribution,
which is in the continuous domain, can approximate both the discrete, memoryless
binomial and Poisson distributions. The approximation is good for the binomial
distribution for no > 25 and for the Poisson distribution (i.e. e *e* =1) for 1 >9
(or A=no ). The conceptual discrepancy, which lies in the constraint differences
shown in Figure 5.2.2, can sometimes make the Gaussianity test based on using
kurtosis and skewness values unreliable. The constraints are, namely, C1= no <5,
C2=>no>25, and C3=no >9 [Jain1991]. The Gaussianity test based on
kurtosis and skewness is, however, empirically a workable but crude approach to
verify the memoryless (i.e. exponential) property of X ™as a necessary condition for

stationarity. The success, however, depends on choosing correct Kkurtosis and
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skewness limits for comparison with other distributions in the exponential family, for

example, the Weibull and normal distributions.

| Bernoulli Trials

& F pa » P
Binomial |« Cl Poisson

Discrete domain

Continuous domain

Normal (Gaussian)

Figure 5.2.2 Relationship among some common distributions

¢) CAB (continuous aggregate based) approach: This is for finding the beginning of
a data section for meaningful RTPA evaluation. This starting point should satisfy the
Gaussianity test. Only then, could the RTPA mechanism (e.g. the RTPD) start to find

the necessary outcomes, for example, the H and D values for the successive

aggregates X ™ of a stochastic process X along the time axis. The block size mis a
variable because the aggregate size for a pre-defined time interval depends on the
average IAT of the aggregate; a longer IAT means a smaller m . This "timed
aggregate™ approach avoids significant real-time sampling latency due to
unpredictable IAT. Figure 5.2.3 summarizes the CAB mechanism, which has two
separate real-time sub-operations: the Gaussianity test, and RTPD. The Gaussinaity
test continues throughout the CAB mechanism’s service life. K1, K2 and K3 are
blocks (timed aggregates of variable lengths) for Gaussiainity tests. The second half

of K1 is basically the first half of K2 to indicate that data in the current block/window
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is always half and half as the window is shifting forward. For example, if Gaussianity

is confirmed for K1 at Agl, then the RTPD mechanism starts to collect the first timed
aggregate X™ (between Agl and Ag2) so that the corresponding H value can be

calculated. In the Figure 5.2.3 example, the novel self-similar (S?) filter, which is my

PhD contribution, tries to confirm self-similarity in X™ for the “First aggregate” and
finds H by the P1 linear regression (explained in detail later). This process repeats if

the K2 block is also Gaussian. If the K3 block was found to possess no Gaussianity,

then the S? filter stops operation because the data has become non-stationary.
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Figure 5.2.3 The CAB mechanism has two real-time sub-operations

d) CAB-based D/H plot: This is an extension of the S? filter investigation and

theoretically the correlation between D and H can be found for every aggregate in a
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real-time manner. If the H values of all the aggregates along the time axis of
stochastic process X are approximately the same, then X is monofractal; otherwise it

is multifractal. At this moment the CAB-based D/H plotter makes use of the extant

FD3 tool [Sarraille] to compute D for every timed X "aggregate. The plotter is being
refined and the focus is on how to construct a real-time mechanism that is

functionally similar to FD3 but needs less time to execute.
5.3THE RTPD CONTRIBUTION
5.3.1 REAL-TIME MODIFIED QQ-PLOT FILTER

A distribution F is LRD and heavy-tailed [Resnick1997] if
1-F(x) =x"“L(x) holds.
L is slowly varying, if

Lim L(tx)

X—>00

L(x)zl fort>0.

The simplest case of heavy-tailed distribution is the Pareto in the form
of F(x) =1—x". The preliminary experimental results with different heavy-tailed

traces show that the E-R/S always recognizes their LRD character. The rationale of

the modified QQ-plot[Kratz] consists of the following: a) pick k upper order statistics

from the samples {X,, X,,..., X,}, namely, X; > X, >..> X, =u and discard the

*

X i
rest, b) plot {(log(—), - Iog(ﬁ)), 1< j<k}, and c) best-fit the data points to
u +
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estimate « . Physically the X, > X, >..> X, =u set consists of the following: a)

X, represents the event that has the highest frequency of occurrence in the set, b) the

set is arbitrarily chosen from a much larger set of ranked events by their frequencies

of occurrences, and c) u is the value of the lowest ranked event in the set, namely,
X . The coefficient of determination R? characterizes the regression (fitting) quality,

the higher the better. The modified QQ-plot is one of the many tools that can identify
the heavy-tailed character. In my PhD research | have converted this popular post-
mortem statistical technique for real-time applications, namely, the RT-QQ. The
conversion in the form of a Java object is actually a traffic filter to be invoked by the
filtration process, which is part of my RTPA (real-time traffic pattern analysis)

contribution.

A MFunctions : Table]

File Edit View [Insdt Formet ERecords Tools  Window  Help Twpe a question for help - .8 X
E-Hx &RV 2LEL YR Y (8 K EE- [,
FunctionName | Otfset | Length [InsttCount] Pairings | Penalty | Clocks |
| |javadutilVector. <init= ¥ 1] 23 g 50 2 17
| |javadobilVector. <iit= I}V 0 48 15 67 1 23
| |javadutilVector.ad dElement(LavadangiObject) ¥ 1] ik} 25 72 1 34
| |javadutilVector elementd tT)LjavalangADbect; 1] 255 a5 Kis) 4 113
| |javasutilVector ensureCapacity(T) 7 1] 104 41 73 1 48
P |javahtilVector size ()1 1} 24 0 60 4 i
| |qyplot.caledlope() 1] 5 3 15 5 32
|| gplot.caledlope (Vector vector, Vector vectorl ) 1] 21 9 7 1 56
| |qyplotiond 0 180 75 73 2 765
aolot.stat) 1} 4 2 14 1 10>
Record: 14 « | 454] v [v1[v#] of 498 1] | ’
Datasheet Tiew NUM BCREL A

Figure 5.3.1.1 Timing Analysis of the QQ Estimator (765 clock cycles) by the

Intel VTune Timing Analyzer
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Figure 5.3.1.2 A heavy-tailed traffic trace

Timing analysis of the of the real-time modified QQ-plot Java-based or RT-
QQ filter by the VTune [VTune2002] show that it needs an average of 750 clock

cycles to execute. If the filter is running on a platform that operates at 100Mhz, the

physical time is PT=750/(100*106)z7.5 micro seconds only. This is the

operational limit of the filter because what it identifies is meaningless if the IAT of
the waveform is shorter than 7.5 micro seconds. The physical limit, indicates that the
RT-QQ filter can cater for a wide spectrum of time-critical applications. Figure
5.3.1.1 shows the VTune analytical result of 765 clock cycles that the filter needed to
identify the heavy-tailed IAT traffic pattern shown in Figure 5.3.1.2. Like other
traffic filters the RT-QQ runs independently as a logical entity to provide service
anytime and anywhere even though it is structurally an E-RTPD component. The
filter indicates that the traffic pattern in Figure 5.3.1.2 as heavy-tailed because strong
likelihood is confirmed by the high coefficient of determination for the R* = 0.9231

regression. The meaning of strong likelihood is user-defined. The criterion is that the

computed R*value should be greater than the chosen threshold Th_, ; R? >Th,. In
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light of the heavy-tailed property defined by the 1— F(x) = x “L(x) expression for a
LRD trace, « is equal to 0.5989 in this case. Although the Java RT-QQ filter
prototype recognizes “heavy-tailedness” by the quality of the linear regression,

namely, R® in on-line applications, it also provides the function to produce plots like
the post-mortem approach. The plot in Figure 5.3.1.3 is produced by the RT-QQ filter

for demonstration purposes.
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Figure 5.3.1.3 Modified QQ-plot filter identifies heavy-tailed character for the

trace in Figure 5.3.1.2

5.3.2 SELF-SIMILARITY (S?) FILTER

LRD traffic has two basic components: heavy-tailed and self-similar. The

proposed self-similarity (S?) filter differentiates heavy-tailed IAT patterns from self-

similar ones. Self-similarity in many fractal point processes results from heavy-tailed
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distributions, for example, FRP (Fractal Renewal Process) inter-arrival times. The
heavy-tailed property, however, is not a necessary condition for self-similarity

because at least the FSNDPP (Fractal-Shot-Noise-Driven Poisson Process) does not
have the heavy-tailed property. The S?filter basis is the “asymptotically second-

order self-similarity” concept, or simply called statistical 2" OSS or S20SS, which is

associated with a sufficiently large aggregate level or lagl in a discrete stochastic
process X. For an aggregate X" ={X," : 1 >1} of sizem in X, S20SS for m — «
means that the associated autocorrelation function (ACF), namely r™(l) (for X™) is

proportional to 1?2 S20SS is LRD for its ACF is non-summable, as indicated by
r"()= > r"=ow The condition of * r"()ecl®* for m—oo " is
1-1

mathematically equivalent to the slowly decaying variance property. That is, the

variance of the mean of sample size m decays more slowly than m . This
phenomenon is represented by the expression: Var(X ™) «c m™ . For a S20SS process
X and 0.5< H <1 the value of f=2-2H should apply. Equations (5.3.2.1) and

(5.3.2.2) summarize the S20SS property and they hold for the weaker condition in
equation (5.3.2.3). The slowly decaying variance property is clear if a log-log plot is

produced for equation (5.3.2.1). As shown by equation (5.3.2.4), log(Var(X)) is a

constant, log(Var(X ™)) versus log(m) yields a straight line with slope — 3. The H
value can then be calculated by the H :1—(%) formula. The S?filter finds £

for X™ on the fly. The Var(X™) calculation uses the mean value E(X ™) estimated
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Im
by the M°RT process. E(X™) is m™ an conceptually, and the key for

n=(1-1)m+1
the S filter operation is to choose a sufficiently large m, which is the multiples (i.e.
C) of F =14 to virtually satisfy m — o; m=C*F for estimating . The detected
result is available at the Ag time point. In Figure 5.3.2.1 for example, the /S result for
aggregate 2 is available at the point of Ag =2.

Var(X™) = ﬁVar(X) ..... (5.3.2.1)

r"(1)=r(k)...(632.2) lim r"(1) = r(k)...(5.32.3)

log(Var(X ™)) =log(Var (X)) — B log(m)....(5.3.2.4)

The process in the S*filter to calculate S is the “continuous aggregate based
(CAB)” concept, which is proposed by the COMP Team. The CAB evaluates if an
aggregate is stationary by checking its Gaussian property or “Gaussianity”
[Arvotham2001] by the kurtosis and skewness metrics. A symmetrical normal
distribution has perfect Gaussianity indicated by kurtosis =3 and skewness =0 .
Statistically measured kurtosis and skewness values are rarely perfect, and reasonable
limits can be used to indicate the presence of a bell curve, which belongs to the
exponential family that is capable of independent stationary increments. The S*filter

uses the CAB concept and finds £ by linear regression, and the quality of which can

be judged by the coefficient of determination or R?between 0 and 1 [Jain1991]. A
higher R? implies better quality for the linear regression. By the predefined

threshold Th_, (e.g. 0.85 or 85%) the S? filter can reject a hypothesis of self-
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similarity in X ™ for R? <Th_,. The CAB operation in Figure 5.3.2.1 works with the

aggregates X x_, in a discrete stochastic process X along the time axis. Assuming: a)

P1, P2, and P3 are the log-log plots for three successive aggregates based on

equation (5.3.2.4), b) these plots yield different B values: g, for P1 withR? =0.82,
B, for P2 withR? =0.98, and g, for P3 withR® =0.95, ¢) Ag =1is the aggregate

level, and d) Th_, =0.9, then both P2 and P3 confirm self-similar traffic but not P1

(for R? <Th., ). If P2 and P3 yield very different S values, their H values by

H=1- (%) indicate different dimensions or D. The D value may change over time

due to wvarious factors, for example, ON/OFF situations in the network
[Willinger2003]. A changing D or H is a sign of non-linearity in the stochastic

process being examined.

el | Al Ay N
l Fistaggreqtesze m) | Second aggregate | Thirdaggregate |IimeoxisomsmchasﬂcprooessX

|
IPl | F

Lincar tegression '

T.og(variance)

Loglagaregatelevel(Ag))

Figure 5.3.2.1 The “aggregate based (AB)”” approach
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Skewness is represented by ZL(Xi—})B, where x and sd are the measured
(m-1)sgd’

mean and standard deviation respectively for the aggregate of m samples. It measures
the symmetry of a bell-shaped aggregate distribution. A positive value indicates that

the bell curve skews right and the right tail is heavier than the left one. Kurtosis is

represented by ZL(Xi—X) , and its value decides whether the bell curve is peaked (for
m-Dsd’

positive value) or flat (or negative value) compared to the normal distribution with

kurtosis=3 and skewness = 0.

5.3.2.1 EXPERIMENTAL RESULTS

The S? filter was verified by simulations based on the CAB approach. The
experiments were conducted on the stable Aglets mobile agent platform, which is
designed for Internet applications. The Aglets makes the experimental results scalable
for the open Internet. The setup for the experiments is shown in Figure 5.3.2.1.1, in

which the driver and server are both aglets (agile applets).
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Figure 5.3.2.1.1 Setup for the S? filter experiments

The driver picks a known waveform or a pre-collected IAT trace that may
embed different traffic patterns over time. The pick simulates the IAT among the
requests that enter the server queue. The FLC dynamic buffer size tuner is the test-
bed for the S filter. It adjusts the buffer size on the fly by leveraging the current
queue length, buffer length, and detected traffic pattern. The traffic pattern(s) that
drives the IAT is also recorded by the E-RTPD that has included the S? filter. This
helps matching the FLC control behavior with the specific traffic pattern. The VTune
measures the E-RTPD's average execution time so that its contribution to time-critical
applications on the Internet can be evaluated. Experiments with different IAT traffic
patterns were carried out. The results conclude that the S? filter indeed detects self-
similar traffic and helps the FLC deliver more accurate dynamic buffer size tuning.
The experimental results presented here include: self-similarity detections, traffic and

FLC accuracy, and D/H correlation.
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Table 5.3.2.1.1 summarizes seven of the many different simulations

conducted. The self-similar traces, which simulate the inter-arrival times (IAT) for

the request into the server’s buffer being controlled by the FLC (Figure 5.3.2.1.1), are

generated by using Kramer’s tool [Kramer].

P H =(1‘%) Rz(coeffi_cieqt loading v/ kurtosis skewness
of determination)
0.6583 0.671 0.956 (95.6%) 0.1 (10%) 0.597045 | 1.180861
0.6809 0.660 0.975 (97.5%) 0.2 -0.56218 | 0.798282
0.6425 0.679 0.977 (97.7%) 0.3 0.40215 1.277175
0.6473 0.677 0.972 (97.2%) 0.4 -0.53386 | 0.861215
0.4685 0.766 0.959 (95.9%) 0.5 -0.58417 | 0.892037
0.3762 0.812 0.885 (88.5%) 0.6
(less thanTh,,) (rejected) -1.01033 | 0.446756
0.1978 0.901 0.605 (60.5%) 0.7_ 116043 | 0.388599
(rejected)

Table 5.3.2.1.1. S? filter log(variance) versus log (aggregate level) to find S

b)

The useful information from the Table 5.3.2.1.1 summary is listed as follows:

The S? filter always detects and recognizes self-similarity in the IAT traffic

as long as the network loading or utilization y is 50% (i.e. 0.5 simulated by

the same tool) or less.

w is proportional to the self-similarity dimension (explained later with Figure

5.3.2.1.7). For y > 0.4the traffic self-similarity scales differently as indicated

in Figures 5.3.2.1.3 and 5.3.2.1.4. Our analysis indicates that this is possibly

the beginning of non-linear scaling or a sign of possible multifractal traffic.

Both Figures 5.3.2.1.3 and 5.3.2.1.4 work withTh_, =0.9.
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Measures of Kurtosis and Skewness
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Figure 5.3.2.1.2 Kurtosis and skewness measurements for the 7 cases in Table 5.3.2.1.1
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Figure 5.3.2.1.3 S?filter yields slope = -0.6809(B= 0.6809), R?= 97.74% for

w=0.2
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Figure 5.3.2.1.4 S?filter yields slope = -0.4685(B= 0.4685), R?= 95.97% for

w =0.5

c) The scaling exponent H (Hurst effect) changes with v, which is inversely

proportional to the IAT length that is the *reduction/resolution” in light of

traffic. For  <0.4 the scaling is basically the same (i.e. a monofractal sign).
The g value in every case (row) in Table 5.3.2.1.1 is the average of several

aggregates for the same stochastic process X.
d) The kurtosis and skewness are different for the different self-similar traces.

Nevertheless they always indicate the presence of a bell curve.
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Figure 5.3.2.1.5 Faster convergence of the FLC+ S” filter than the FLC working alone

The kurtosis and skewness values for each case (row) in Table 5.3.2.1.1 are
plotted for comparison (Figure 5.3.2.1.2). These values are obviously affected by the
loading. When the loading is high (e.g. 60% and 70%) the bell curve tends to skew
less but still to the right. Meanwhile the bell curve tends to get flatter. Comparatively
the skewness of the bell curves for the seven simulation cases in Table 5.3.2.1.1 are
less than a Weibull (gamma=1.5) distribution, which is relatively more peaked
(kurtosis=4.5).

The trend-lines in Figure 5.3.2.1.5 for the IAT traffic trace in Figure 5.3.2.1.3
shows that the “ FLC + S”filter” combination converges much faster to the given
steady state than the FLC working alone. In fact, this combination is one of the
working modes in the Adaptive/Reconfigurable FLC [p12], the details of which will
be discussed in section 6.2. With help from the S? filter the FLC main body adjusts

the GP value for the derivative (D) control element on the fly and according to the
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self-similarity property currently detected. As a result it produces less MD than the

FLC working alone (Figure 5.3.2.1.6).
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Figure 5.3.2.1.6 Less MD deviation by FLC+ S? than the FLC alone
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Figure 5.3.2.1.7 D/H correlation for Table 5.3.2.1.1

In the experiments the FD3 tool [Sarraille], which confirms if an image (e.g.
a time series generated by the Kramer’s tool) is really fractal and measures its
dimension D, was used. The purpose is to evaluate the D/H correlations

[Peitgen2004]. This correlation for Table 5.3.2.1.1 is plotted and shown in Figure
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5.3.2.1.7. It shows that if D changes suddenly, H also rescales accordingly to indicate
possible traffic nonlinearity. In contrast, if H scales linearly, it is a sign of
monofractal traffic. The intrinsic average S’ filter execution time as observed from
all the experiments is 1455 clock cycles as measured by the Intel’s VTune
Performance Analyzer. It is intrinsic because it works with immediately available

data (without any actual IAT delay) in a trace. For a platform of 100 mega hertz the

corresponding physical time is 1455/(100*10°) or 14.55 micro seconds. In real-life

applications the S filter has to collect enough IAT samples on the fly before

computing #. This sampling latency can be significant, and therefore the success of

S?filter application depends on choosing size m for the X ™ aggregate correctly. For
example, if the average IAT is one second, m =1000 means 1000 seconds. On the
contrary for the same size mand mean IAT of 1 ms, the physical time is only one
second. Therefore, the mvalue for the S*filter Java prototype is a variable rather
than a chosen constant, and the user/tester should fix the time span T instead of
collecting the fixed m samples on the fly. That is, the number of samples (i.e. m) in
an aggregate within T depends on the IAT; shorter IAT delays yield a larger m. Then,
the S?*filter works adaptively with the m value decided by the IAT for the “timed

aggregate” based on the chosen T.

142



ess - [AllFunctions : Table]

File Edit W¥iew [nwrt Format Records Tools Window Help Tuwpe a question for help - _ 8 X
E-Ha &kv =) 2L EL T E Y Ba- 2.
FunctinnName | oOffset | Length [InstCount] Pairings | Penslty | Clocks |
| |javafotilVector. <indts (I1)¥ a 48 15 67 1 23
|| javasotilVector.add Element(Ljava/lan gfObject )V 0 63 25 72 1 34
|| javastl/V ector elementd W) LisvalangObject; 0 255 a5 Kis} 4 113
| |javasoblVector ensureCapacitw )V 0 104 41 73 1 48
| |jawvalotilV ector size ()T a 24 10 60 4 30
|| Warisnee Time. init(JT 7 1] 119 38 53 3 47
|| Varisnce Time. <init= (¥ a 102 3z 61 5 45
|| Warianee Time Caloulate (Ljavalotil Vector )V 1] 1305 402 T 73 1455
Wariance Time Mean(LiavafntlVector;) D 0 135 45 44 1] 60—
Wariamce T ime. Varsnce (TiavantlVectoriD 1] 199 Ta 46 15 130 =
Record: 14 ] « ] 500 [k | kil #] of 500 4| | »
Datasheet ¥iew i

5.3.2.1.8 The S*filter execution time (1455 clock cycles) by Intel’s VTune

5.4 CONNECTIVE SUMMARY

It was observed in my previous MPhil research that changes in traffic patterns
can affect the performance of the different dynamic buffer size tuners for user-level
applications, namely, PIDC, GAC, FLC and NNC. Therefore, there is a need to
neutralize the ill effects of changes in traffic patterns on the tuners’ performance. As a
result 1 made use of the COMP Team’s accumulated experience in real-time traffic
pattern detection and analysis. In return | contributed two real-time traffic filters to
enhance the extant RTPD (real-time traffic pattern detector) proposed by the team.
Now the RTPD is renamed Enhanced RTPD or E-RTPD to include my PhD
contributions: the real-time modified QQ-plot and self-similarity (S?) traffic filters.
In order to confirm that these two traffic filters indeed work correctly over the
Internet, which follows the power law and has widely varying traffic patterns over
time, the FLC dynamic buffer size tuner is chosen for the tests. The choice is natural
because there is a need to make the FLC adaptive and reconfigurable [p12]. The

preliminary experience with the E-RTPD is positive and encouraging. In different
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experiments the FLC made use of the E-RTPD to reconfigure itself (mainly the
derivative control) to neutralize the ill effects arising from traffic characteristics

successfully. The CAB concept is followed in my experiments that verify the self-

similarity (S?) filter. It involves the following stages: a) sample and examine the data

in a discrete stochastic process X, b) use the sampled data to confirm the appearance
of the Gaussian property, which means stationarity, c) start the S filter to confirm

self-similarity for the aggregates of X", where I and m identify the lag and the

block size of the aggregate respectively, and d) examine the H values for all the X"

aggregates on the time axis to differentiate the monofractal property from the

multifractal one. Monofractal property means that the H value remains virtually
constant. In fact, the Gaussianity test continues and in parallel with the S* filter

operation. If Gaussianity has disappeared, then the S? filter stops operation because
its pivot is “asymptotically second-order self-similarity”, which is stationary and
LRD. Gaussianity confirmation at the present stage is achieved by computing the
kurtosis and skewness values and comparing them to the chosen limits. The argument
is that these limits help indicate the existence of a bell curve (maybe skewed), which
resembles a known distribution, for example the Weibull with a known gamma value.
The issue of how to choose the proper limits for real-time applications is a non-trivial
one and relatively unexplored. One of the major future work items, therefore, is to

deepen the investigation of how to choose the limits effectively.
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CHAPTER 6 IN-DEPTH FLC RESEARCH

6.0 INTRODUCTION

The basic version of the FLC (Fuzzy Logic Controller) dynamic buffer tuning
model was proposed [Lin2002]. It is basic in the sense that only two designs, namely
FLC[4x4] and FLC [4x6] were investigated. The FLC is conceptually the
combination: “PIDC plus fuzzy logic plus the {0, A}’ objective function”. The fuzzy
logic divides the PIDC control domain into a set of smaller fuzzy control regions and
supports each region with either a “don’t care” state or a predefined the fuzzy rule.
The fuzzy rule moderates the PIDC dynamics to ensure that the controlled output
would not deviate outside the +A safety band about the chosen reference. This
reference point, which is symbolically represented by “0” in{0,A}’, is actually a
chosen QOB (queue length over buffer length) ratio known as the QOB . For the
FLC [4x4] and FLC [4x6] Java prototypes different QOB values were tested and it
was confirmed that these prototypes not only eliminated the PIDC shortcomings
when they worked alone but also produced no overflow at all. The following issues
were not addressed in my MPhil thesis [Lin2002]: a) the possibility of having an
optimal FLC design, b) the due techniques to smoothen the FLC convergence process
towards QOB , and c) the impact of Internet traffic patterns on the FLC’s accuracy.

This section presents the results of the deeper research work on these issues in

my PhD project as follows:
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a) Firstly it is empirically found that an optimal FLC design range does exist
[p14].

b) Secondly, the FLC can be made more adaptive by manipulating the ““don’t-
care range-threshold” in a dynamic manner. This led to the proposal of the
new A-FLC (Adaptive/Reconfigurable FLC [p12]) concept.

¢) Thirdly, the adaptive capability of the A-FLC can be further improved with
respect to different Internet traffic patterns. The investigation in this aspect
created the R%-FLC (Real-time Reconfigurable FLC).

Experiments verifying the main results have been carried out and the results obtained

are presented here.

6.1 OPTIMAL FLC DESIGN

The FLC expert dynamic buffer tuner is conceptually the “fuzzy logic plus
PIDC plus the {0,A}* objective function” combination. The fuzzy logic refines and
moderates the PIDC control process so that it adaptively maintains the given A

safety/tolerance margin of the {0, A} objective function. By itself the PIDC control

does not work by the {0,A}* principle and therefore has no safety margin. This
means there is potential overflow and buffer space wastage. The algorithmic PIDC
operation (i.e. “P+1+D” Controller; P for proportional control, I for integral control,
and D for derivative control) is shown in Figure 6.1.1.

The PIDC parameters are: ICM (integral control mechanism) for integral or |

control, L, for current buffer length, Liinimum for the minimum buffer size estimated
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from the past performance, QOB; as the “queue length (Q) over buffer length” ratio

in the i™ PIDC control cycle for proportional control, and dQ/dt as the current rate of

change in Q for derivative control. ICM is defined in terms of the current RIC value.
RIC uses the current mean queue length QuUeues, e Predicted by the M°RT

(Micro Mean Message Response Time) mechanism, as well as the mathematical

average of the queue length, Queuegreference: Peoy 1S the damping factor that smoothens
the convergence towards the estimated mean M; (now realized as QUeUE., cimate )

for the time window of interest. The width of the i" window is defined by the total

time required to collect the (F-1) m‘j number of samples, for j =1,2,..(F —=1). F is the
flush limit chosen for the M °RT operation. M, is the first sample recorded after the

M®RT has started running, and M, , is the feedback of the last predicted result into

the current prediction cycle. B, is a prescribed constant or “seed” for the particular
ICM implementation. The M*RT mechanism is the micro implementation of the
Convergence Algorithm (CA) [Wong1999B], which is derived form the Central Limit
Theorem and predicts the mean of any waveform quickly and accurately. Being micro
the tool runs as a logical object, which can be invoked for a prediction via message
passing anytime and anywhere. In contrast a macro tool must be installed at the nodes
that represent the two ends of a logical channel before measurement can start. The
M ?RT (Mean Message Response Time) IEPM tool [Wong2001] is a macro example

and the predecessor to micro M °RT implementation.
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If {(dQ/dt > prescribed_positive_threshold) OR
[(dQ/dt is_ positive) AND
(QOB, > prescribed__positive_threshold)]}
Then I—nOW: Lnow"'lCM; I—now P I—minimum
Else If {(dQ/dt < prescribed_negative_threshold) OR
[(dQ/dt is_ negative) AND
(QOB, < prescribed_negative_threshold)]} Then
I—nowz I—now—' |CM; I—now P I—minimum

Figure 6.1.1 The basic PID controller (PIDC) algorithm

The fuzzy logic in the FLC divides the PIDC control domain into a set of
smaller fuzzy control regions for more refined operation. Each fuzzy region is then
supported by a either a fuzzy rule or a “don’t care” state. The fuzzy rules maintain the
given A safety margin about the reference point of{0, A}*, symbolically represented
by “0”. For the FLC prototypes the reference point is the chosen QOB (queue length
over buffer length) ratio or QOB . For QOB equal to 0.8 (i.e. A=0.2 ) the FLC

operates in the QOB range from 0.6 to 1. The extant FLC model maintains A by
. dQ
tuning only the ICM value on the fly by the QOB and ot parameters. When the

FLC control enters an inert “don’t care” state, it requires no action. The inertness of
the “don’t care” states offsets the FLC computational complexity due to the fuzzy

logic presence. As a result the FLC execution time is comparable to the much simpler
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PIDC. Figure 6.1.2 is the matrix of fuzzy regions for the FLC[6x6] design. The “dot”

defines the QOB value of 0.8 and X marks a “don’t care” state.

@0B Reference d G/t
ML I et M5 =] P PL
WL - - - -

07 oL - -
L “ ot + +
8| G X ® % + +
08 ={E] + + + + + +
' LE] + + + + + +

Figure 6.1.2 An FLC design/configuration example, FLC[6x6]

The FLC linguistic variables are:
a) Current QOB ratio (or QOB;): ML for Much Less than QOBg, L for Less than
QOBgR, G for Greater than QOBg, and MG for Much Greater than QOBk.

b) Current dQ/dt: NL for Negative and Larger than the threshold, NM for

Negative but Medium to the threshold, NS for Negative and Smaller than the

threshold, PS for Positive and Smaller than the threshold, PM for Positive and

Medium to the threshold, and PL for Positive and Larger than the threshold.
The FLC control decision in the i control cycle depends on the current QOB; and
dQ/dt. It may be Addition (buffer elongation) or “+”, Subtraction (buffer shrinkage)
or “- ” or don’t care “X”. Different fuzzy rules can be formulated as required by
different FLC designs. Some examples of the fuzzy rules for Figure 6.1.2 are as

follows:

Rule 1: If (QOB; is L) AND (dQ/dt is NM) Then Action is “-”(Subtraction) AND Lyey = Log - ICM

Rule 2: If (QOB; is L) AND (dQ/dt is NS) Then Action is “X”(Don’t care) AND Ly = Loy
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Rule 3: If (QOB; is L) AND (dQ/dt is PS) Then Action is “X”(Don’t care) AND Lpew = Loig

Rule 4: If (QOB; is L) AND (dQ/dt is PM) Then Action is “+”(Addition) AND Lyey = Lgg + ICM

A A
ML MM NS | PS5 FMW FL ML SL L S5 560 MG
- - - -
a b cUd e p g r0s t U
Figure 6.1.3 Membership function for dQ/dt Figure 6.1.4 Membership function for QOB

The two control parameters for the FLC[6x6] design are QOB and d%. The

dQ/dt membership function is in gradient, and the y-axis of Figure 6.1.3 is the degree
of membership measurement. The x-axis is the gradient difference between two
successive d% measurements. For this design the values from a to f are: a=0.003,

b=0.002, ¢=0.001, d=0.001, e=0.002 and f=0.003. Figure 6.1.4 shows the QOB
membership function for the same design, and the x-axis is the QOB ratio that

changes in a dynamic manner. The values for the p, g, r, s, t, u are respectively: 0.65,
0.7, 0.75, 0.85, 0.9 and 0.95. The current dQ/dt and QOB values decides which fuzzy
region that the FLC should operate. For example, if the degree of the
dQ/dt membership function is between b and ¢ (i.e. y=0.5) and that for QOB is

between q and r, four fuzzy regions are candidates: [SL,NM], [SL,NS], [L,NM] and
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[L,NS]. With respect to Figure 6.1.2, the possible operations are: -,-,- and X, and the

majority rule selects the minus (-) operation.

6.1.1 OPTIMAL FLC DESIGN IS POSSIBLE

There are basically two approaches to find out if an optimal FLC design is
possible. The first approach is to represent the FLC in its mathematic form and use
mathematical manipulation such as a theorem proving to confirm the possibility. The
second approach is empirical and this means the following: a) carry out experiments
for different FLC designs, and b) find the correlation between the FLC structural
complexity and the chosen performance index such as the mean QOB deviation from
the given QOB; reference. The second approach is chosen for addressing the issue
because the different designs have to be tested against different Internet traffic

patterns [p11].

6.1.1.1 EXPERIMENTAL RESULTS

The accumulated FLC experimental data indicates that it is possible to have an
optimal FLC design. Figure 6.1.1.1, which is plotted with the mean deviations from
QOB; by the different FLC designs tested in different experiments, reveals
approximately where the optimal region is. This region may vary with respect to
different traffic patterns. In this plot the mean deviation from the QOB reference

stabilizes around 0.02 (or 2%) after the FLC[4x6] design. More experiments confirm
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that more complex FLC designs do not yield less deviation after this point. The
possibility of having optimal FLC designs makes it worthwhile to explore the
correlation among the following in the future work: the mean deviation from QOB,
the FLC design complexity (i.e. the matrix size), and the metrics being leveraged (e.g.
traffic pattern). If this correlation could be formally established, then proper
intelligence could be incorporated to let the FLC timely auto-tune its configuration
(i.e. the matrix size and the matrix entries) for cost and effectiveness. A simpler FLC
design is always desirable because it yields shorter execution and better RTT

timeliness to enhance the chance of success for time-critical applications.
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Figure 6.1.1.1 An optimal FLC design is possible (mean deviation stabilizes

around 0.02)

6.2 THE ADAPTIVE/RECONFIGURABLE FUZZY LOGIC CONTROLLER

(A-FLC)

The A-FLC (adaptive/reconfigurable FLC) model uses a static adjustment size to
tune the “don’t-care region’s range-threshold” by using a static adjustment size. The

A-FLC is basically the combination: “don’t-care region’s range-threshold auto-
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tuning capability + FLC”. The PIDC component in the FLC uses two static
thresholds to achieve its control purpose, namely, Thl and Th2. The PIDC working
alone conceptually should have four control regions, defined by different £ Th1 and
+ Th2 combinations. The FLC fuzzy logic divides these thresholds into the finer
membership functions, with range-thresholds among them (e.g. the range-threshold
in Figure 6.1.4 between a =0.003 and b =0.002 is 0.001). In the original FLC the
range-thresholds are static and decide which region the dynamic buffer tuner should
operate at the time. The static nature of the range-thresholds introduces an intrinsic

delay for the corrective action by a fuzzy control. For example, if the d%t value

increases but less than the range-threshold of the current “don’t care” region, there
will be no control action. By the time any control action is triggered (range-threshold
exceeded) there would be significant overshoot or undershoot already. The
overshoot/undershoot accumulations make the FLC control process oscillate. The A-
FLC differs by preventing any significant overshoot/undershoot proactively in a
timely manner. The prevention is achieved by adapting the range-threshold of the

current “don’t care” fuzzy region on-line. At anytime, if the increase (or decease) of

d%t is more than (or less than) the given “gradient threshold (GT)”, the range-

threshold is adjusted by the “given percentage (GP)” in a timely manner. Even
though the GT and GP are fixed values, the experimental results shows that the A-
FLC has much better performance than the original FLC by yielding less mean

deviation from the QOB reference. Figure 6.2.1 shows how the “don’t care” range-

threshold of a growing d%t value is “squeezed” to enlarge the range-threshold on

153



the right side (now larger than Ra). This enlargement, in effect, urges the A-FLC to

take immediate action instead of waiting passively for the * d%t predefined range-

threshold” condition to hold. The dynamic “squeezing” action based the GT and GP
parameters quicken the A-FLC response. In the R?>-FLC model GP is adjusted again

in a dynamic manner with respect to the traffic pattern identified by the RTPD

capability.

Reduced membership
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Figure 6.2.1 A-FLC adjustment of the range threshold of the don’t care state on the fly

6.2.1 EXPERIMENTAL RESULTS

Different experiments were conducted over the Internet to verify the A-FLC
prototype implemented in Java. The preliminary results indicate that it is indeed
more efficient and less oscillatory than its FLC predecessor. Different QOB and
Avalues were tried in the experiments, and the results presented here are based on:
A =0.2 (or 20%), and QOB =0.8 (or 80%). The QOB value is the reference point
chosen for the {0, A} objective function. Similar to its predecessor the A-FLC never

failed to upkeep the A safety/tolerance margin in the experiments. Figure 6.2.1.1
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shows both the deviations and the MD of the A-FLC control that auto-tuned the range

threshold over the entire control process. The MD is measured by the M°RT

component in the A-FLC. If the A-FLC operation stops the last MD value together
: - . dQ
with the given safety margins: Th1l (for QOB or P control) and Th2 (for at ©F D

control) become a new point, namely, [MD,(Th1,Th2)] in the MD-vs-Thresholds
graph. In this way the graph records the past experience for the future determination
of sounder Thl and Th2 initialisations for the A-FLC to run again. Figure 6.2.1.2
shows the A-FLC deviation situations with the same set of data as for Figure 6.2.1.1
but the capability to auto-tune the range threshold for “dynamic threshold” operations
IS absent. The absence makes the deviations more prominent. Figure 6.2.1.3 shows
Figure 6.2.1.1 and Figure 6.2.1.2 in a comparative manner to make the difference in
the deviations conspicuous. Figure 6.2.1.4, 6.2.1.5 and 6.2.1.6 are plots for another
experiment. The result from this set concurs with the observations for the previous
one. In fact, all the experiments indicate that auto-tuning of the range thresholds for
the “don’t care” fuzzy regions are important for yielding smoother, more responsive
buffer overflow control. For the experimental results presented in this paper, the GT

and GP values are respectively 0.003 radians and 5%.
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Figure 6.2.1.2 MD value by the M *RT over time for A-FLC “static threshold”
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Figure 6.2.1.3 Comparing the A-FLCJstatic threshold] and the A-FLC[dynamic

threshold]
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Figure 6.2.1.4 MD value by the M *RT over time for A-FLC dynamic threshold
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Figure 6.2.1.5 MD value by the M *RT over time for A-FLC static threshold
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Figure 6.2.1.6 Comparing A-FLC[static threshold] and the A-FLC[dynamic threshold]

6.3 THE REAL-TIME RECONFIGURABLE FUZZY LOGIC CONTROLLER

The novel R%-FLC model has two main components, namely, the A-FLC

(adaptive fuzzy logic controller) and the RTPD (real-time traffic pattern detection).

The A-FLC reconfigures itself on-line with respect to the traffic pattern currently
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identified by the RTPD capability. It achieves this by using the current RTPD result
to tune the RAC capability, which tunes GP in a dynamic manner. The RTPD, as
explained in Chapter 5, is statistical by nature. Therefore, its traffic detection and
identification accuracy is independent of the traffic changes in the Internet, which
follows the power law. Over time the Internet traffic pattern switches frequently, for
example, from SRD to LRD or multifractal [Leland1994, Paxson1995, Crovellal997].

To recap, the RTPD carries out the following on the fly: a) differentiates LRD
from SRD by measuring the Hurst (H) effect/value, and b) identifies the traffic
pattern (e.g. heavy-tailed) through a filtration process. The H value indicates LRD
behaviour for 0.5<H <1 and SRD for 0<H <0.5. In the filtration process the
appropriate filter is invoked to identify the specific traffic pattern (e.g. the modified
QQ-plot filter identifies “heavy-tailedness”). Many methods/algorithms in literature
can be adopted for measuring the H value or to differentiate LRD from SRD. The
examples include the R/S (rescaled adjusted statistics), periodogram and whittle
estimators. After experimenting with different estimators from literature (e.g.
[Molnar1999]) the R/S is chosen as the backbone for the RTPD capability. This
choice is natural because the R/S estimator requires only simple calculations and is
therefore naturally suitable for time-critical applications. In contrast any complex
calculations would lead to serious time delay and higher chance of deleterious effects.
The traditional R/S (rescaled adjusted statistics) estimator (Molnar [Molnar1999] and

others) is used primarily for analyzing pre-collected

traces: % _ MW, :1=12,.... K} min{W, -1 =12, K} | e R/S expression W, and

Jvar(X)
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X are represented by the following: W, =Y (X,-X) for i=12,..k
m=1

. k
and X = %Z X; . The best value for k, however, should be found by trial and error.
i=1

This is the drawback of the traditional R/S estimator because the R/S accuracy and
speed depend on k. The R/S ratio is the rescaled range of the stochastic process over

a time interval k, where X is the discrete time for{X, :i=12,..k}. The most useful
R/S feature is the relationship for a large k: R/S = (|%)H . The H (Hurst) effect/value

is the slope of the log-log plot: log(R/S) versus log(k). The filtration process is
invoked after the traffic differentiation stage. For example if the LRD traffic type is
recognized, the modified QQ-plot and De Haan’s moment filters can be then invoked
from the library to confirm the “heavy-tailedness” of the recognized LRD waveform
by consensus. Similarly the *“ &= " filter, where 6 and x are the standard
deviation and mean of the waveform, confirms a Poisson process. For the R-FLC

the M ®RT micro IEPM technique is adopted to support quicker and more accurate

W, computations. That is, W, :Z(Xm—Mi) Is used instead of the traditional

m=1

W, = Z(Xm —Y) approach. To summarize the RTPD essence consists of:

m=1
a) It runs as a traditional R/S computation if the M *RT support is inhibited.

b) The M®RT converts the traditional R/S into the enhanced R/S (E-R/S)

estimator.

¢) The M°RT estimates the mean of the waveform (i.e. M, ) with F=14 samples.
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d) The E-R/S computes with W, = > (X, — M) but not the W, =" (X, = X) .
m=1 m=1

The R%-FLC uses the RTPD result to reconfigure itself on-line by auto-tuning its

RAC capability. In the process the RAC selects a more appropriate GP value for its

operation. Both M ®RT and RTPD capabilities are realized as logical object entities
in the R®-FLC prototype. They run in parallel with the R>-FLC main body, namely,
the A-FLC. Timing analysis with the Intel’s VTune Performance Analyzer
[VTune2002] shows the following (explained in more details later): a) the RTPD with
M ®RT support needs an average of 890 clock cycles to execute and 950 without, and
b) the R%-FLC module, which runs in parallel with the RTPD, needs 350 clock cycles
to execute on average, and this means the de facto R?-FLC execution time depends on
the RTPD.

The Thi and Th2 thresholds for the PIDC component in the R-FLC model are
not assigned by the user but generated by the system automatically from past
performance. The important salient feature for the R>-FLC model is the MD-vs-
Thresholds graph, which accumulates all the previous R-FLC experience. Whenever
R%-FLC has stopped running it contributes a new point, which is defined by the last
three values used: MD (mean deviation), Thl and Th2. If the R-FLC control is
started again, from the [MD, (Th1, Th2)] points a good estimate for the best starting
Thl and Th2 values will be automatically determined. The best choice is the pair that
yields the minimum MD value on the MD-vs-Thresholds graph. The R?-FLC needs
the M °RT object in the MD computation.

In order to demonstrate how traffic patterns affect R>-FLC performance, some of

the results obtained with the FLC[6x6] design are presented here (Figure 6.3.1). The
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significant observation is that different traffic patterns need different GP values to
yield the same MD value from the QOB reference. For example, for MD=0.026 the
R%FLC needs GP=0.07 (or 7%) for Poisson, GP=0.08 (or 8%) for heavy-tailed
(Pareto), and GP > 0.1 (or 10%) for self-similar traffic. This means that the GP value
should be chosen appropriately in a real-time fashion for attaining better dynamic
buffer tuning cost effectiveness, with respect to different traffic patterns.
Detecting/identifying the exact traffic pattern and selecting the corresponding correct

GP value is real-time reconfiguration in the R>-FLC context.
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Figure 6.3.1 MD by R*-FLC for various traffic patterns versus GP values, for

FLC[6x6]

6.3.1 EXPERIMENTAL RESULTS

Experimental results shows that for the same FLC design bases (e.g. FLC[6x6])

the R®FLC performance is upward compatible to the A-FLC tuner. In the
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experiments different FLC design bases and traffic patterns were involved. For
example, Figure 6.3.1.1 plots the mean deviations from the QOB reference

produced by the R*-FLC with different FLC design bases versus different traffic
patterns. Each mean deviation (MD) value in the plot is for a FLC design basis versus
the specific traffic pattern. It is the average of the results from ten separate
experiments with different TCP traces. For comparison purposes the mean deviation
for by the PIDC tuner is also shown. For the results shown in the plot, the R*-FLC
works with the initializations: GT=0.003 radians and GP=0.05 (i.e. 5%). The striking
similarities between the R’>-FLC and A-FLC are as follows: a) they show the same
trend of mean deviations with the same FLC basic design matrices, b) they both yield
the same optimal FLC design range (Figure 6.3.1.1), as well as no more mean
deviation reduction than the more complex FLC[4x6] design, and c) the R?*-FLC
model produces less mean deviation on average than the A-FLC, with or without

M *RT support (Figure 6.3.1.2).
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Figure 6.3.1.1 Mean Deviation Errors of different FLC designs versus traffic patterns
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Figure 6.3.1.2 Comparing A-FLC[static range threshold(RT)] and R*-FLC [dynamic RT]

The execution times of the Java R%-FLC prototype were measured against
different GP values. The measurements in terms of the number of neutral clock cycles
were carried out with the Intel’s VTune Performance Analyzer [VTune2002]. For all
the experiments the prototype needs less than 400 clock cycles to execute its control
pass/cycle. For example, Figures 6.3.1.3 and 6.3.1.4 show the prototype execution
times for the Poisson and heavy-tailed traces. The given/static GP values for these
two cases are 5% and 7% respectively, for the given mean deviation of 0.027. The
VTune measurements show that the R?-FLC needs only 280 clock cycles for the
Poisson trace but 340 clock cycles for the heavy-tailed one. If the RTPD component
detects that the traffic pattern has changed from heavy-tailed to Poisson, the R%-FLC
tuner should self-configure immediately to deal with the situation. This means
squeezing the GT by 5% instead of 7% and the action improves the dynamic buffer
tuning cycle time by (340 - 280)/340 or 17.65 %. As a result this lessens the chance

of having deleterious effects for the buffer size tuning process.
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Figure 6.3.1.3 For GP=5% and MD=0.027, the R-FLC execution time is 280

clock cycles for the Poisson distribution

Microsft Aecess - [AlFunctions : BEE] J_I- m| ﬂ
|E 820 £8E HRD BAD #%0 E$E 18D REW HHE =l81x|
|- BERY JER o & HH YEY MK Ba D,
FunctionName | Offset | Length |InstiCount| Pairings | Penslty | Clocks =]

| |comdmshutilort dofort 1)V 0 448 173 75 0 230
| [corndmsbemd WeakReference. <clinit=(F a k)| 12 ) 1 17
| |comimatm/WeakReference. <init= Liava/langDhject) ¥ 0 31 12 87 1 19
| [corndmsten WeakReference. getReferent) LinvalangObject; 0 119 43 87 b o
L commshemn/ WeakR eference setReferent(LiavaTangOhect) ¥ 0 127 49 4] 5 B3_J
| |FLC calenlate(int, double, double, long, double) 0 116 i 0 a 340
| |javadioBuffered lnputdtrean. <init> (LjavalioTnputitesm )V 0 24 b 33 0 13
| |javadin/Buftered Tnputdtreamm, <inits (LiavafioTnputitream T}V I 47 15 03 0 =
G- UL RN | TN 11 [ i a4 I b
EHTTEERA | I ™ I

Figure 6.3.1.4 For GP=7% and MD=0.027, the R*-FLC execution time is 340

clock cycles for the heavy-tailed distribution

The preliminary experimental results indicate that the R>-FLC, with or without
the support of the RTPD capability, is consistently more accurate than the A-FLC and
the FLC predecessors by yielding less MD values. This is demonstrated by Figures

6.3.1.5, 6.3.1.6 and 6.3.1.7, in which for GP=5% (or 0.05) the novel R*-FLC tuner
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with the FLC[6x6] design basis consistently produces less mean deviations than the
basic FLC[6x6] and the more adaptive A-FLC[6x6] version. The three different
traffic traces used in the experiments were: Poisson, heavy tailed, and self-similar.
The different experiments confirm that the R?-FLC tuner consistently has better

performance than the FLC and the A-FLC predecessors.
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Figure 6.3.1.5 Better R?-FLC [6x6] performance than FLC[6x6] and A-FLC[6x6]

(alternatively known as R-FLC[6x6]) for the Poisson trace , GP=0.05
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Figure 6.3.1.6 Better R%-FLC [6x6] performance than FLC[6x6] and A-FLC[6x6]

for the heavy-tailed trace, GP=0.05
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Figure 6.3.1.7 Better R*>-FLC [6x6] performance than A-FLC[6x6] for the self-

similar trace, GP=0.05
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6.4 TIMING ANALYSIS OF THE THREE FUZZY LOGIC CONTROLLERS

The timing analyses of three fuzzy logic controllers (FLC, A-FLC and R*-FLC) were

carried out with the Intel’s VTune Performance Analyzer [VTune2002]. Different

traffic distributions, which include known waveforms (e.g. Poisson and heavy-tailed)

as well as Internet traffic traces, were used in the experiments. Some of the

experimental results were selected for demonstration in this section.

6.41FLC
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Figure 6.4.1.1 FLC execution time is 250 clock cycles for the Poisson distribution
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Figure 6.4.1.3 FLC execution time is 255 clock cycles for the trace [Trace]
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6.4.2 A-FLC
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Figure 6.4.2.1 A-FL.C execution time is 265 clock cycles for the Poisson distribution
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Figure 6.4.2.2 A-FL.C execution time is 310 clock cycles for the heavy-tailed distribution
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6.4.3 R>-FLC
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Figure 6.4.3.1 R?-FLC execution time is 280 clock cycles for the Poisson distribution
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Figure 6.4.3.2 R-FLC execution time is 340 clock cycles for the heavy-tailed distribution
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Figure 6.4.3.3 R>FLC execution time is 285 clock cycles for the trace [Trace]
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6.4.4 SUMMARY OF THE EXPERIMENTAL RESULTS SHOWN ABOVE

Measured average number of T cycles per control cycle
Control models Poisson distribution | Heavy-tailed Trace
distribution
FLC 250 275 255
A-FLC 265 310 275
R*FLC 280 340 285

Table 6.4.4.1 Summary of the experimental results shown above

In the experimental results including the ones tabulated above all three FLC
versions require less than 350 clock cycles to execute; that is, their control cycle
times are less than 350 clock cycles. The R?FLC control cycle time is always
relatively the longest for all the distributions, namely, Poisson, heavy-tailed and self-
similar. The FLC controller requires the lowest control cycle because it does not
include the RTPD (real-time traffic pattern detection) in its control process and the
threshold values used by the FLC controller do not change during execution.
Similarly the A-FLC does not have the RTPD component to determine the type of the
traffic either, and its “don't care” range threshold value changes during execution.
The amount of change, which is administered once the threshold is exceeded, is fixed.
The R%-FLC has the longest control cycle because it needs the RTPD component to
determine the type of the traffic so that it adjusts its threshold values accordingly. In
fact, the RTPD exists as a software entity that runs in parallel with the R*-FLC main
body. Therefore it does not contribute to lengthen the execution time of the R-FLC

main body directly, but the result of its traffic pattern detection may invoke extra R
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FLC computation to finely adjust the “don't’ care” range threshold value in a dynamic

manner.

6.5 CONNECTIVE SUMMARY

To recap, this section presents what | have achieved in the deeper FLC research work:
a) It is experimentally confirmed that an optimal FLC design range does exist
[p14].

b) It is confirmed that that the FLC can be made more adaptive by manipulating
the “don’t-care range-threshold™ in a dynamic manner. This is the basis for
the new A-FLC (Adaptive/Reconfigurable FLC [p12]) concept.

¢) It was discovered that the dynamic buffer tuning capability of the A-FLC can
be improved if it is allowed to self-tune itself with respect to the current
Internet traffic pattern. This is the conceptual framework for the R*-FLC
(Real-time Reconfigurable FLC) tuner, which is experimentally more

efficacious than the FLC and the A-FLC.
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CHAPTER 7 IN-DEPTH NNC RESEARCH

7.0 INTRODUCTION

The in-depth NNC research addresses the following major issues left behind

by my previous MPhil thesis as follows:

a) The possibility of a correlation between the accuracy and the number of
neurons in the hidden layer of the NNC.

b) The need for a timing analysis of the NNC.

c) The possibility of cutting down the NNC control cycle time and lowering the

chance of deleterious effect.

Therefore, the objectives of the in-depth research include:

a) Define the correlation between the number of neurons in the NNC hidden
layer and the control accuracy; this is carried out by the sensitivity analysis.

b) Propose a method(s) to optimize the NNC configuration to lower its control
cycle time in an on-line manner.

c) Timing analyses of the optimized NNC model to confirm that it is indeed
more suitable for time-critical applications over the Internet.

d) Study the impact of different traffic waveforms/distributions on the stability

and accuracy on the NNC control process in different experiments.
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7.1 SENSITIVITY ANALYSIS OF THE HIDDEN LAYER

The NNC model, which works by backpropagation and supervised training, is
shown in Figure 7.1.1. The NNC operates in two distinctive phases, namely,
training/learning, and dynamic buffer tuning. In action it is a twin system consisting
of the “Chief” NNC module and the “Learner” NNC module as shown in Figure 7.1.2.
The Chief, which has already learnt previous patterns, carries out actual dynamic
buffer tuning while the Learner undergoes training to acquire new knowledge to deal
with new phenomena. Before training starts all the weights of the arcs in the
Learner’s neural network are randomized. As training progresses the error (difference)
between the “trainee” output and the NNC desired/deserved output A decays
gradually. After training the Chief and the Learner swap positions. The NNC stability

is analyzed by measuring the mean deviation (MD) from the chosen QOB, reference

in terms of “the number of neurons in the NNC hidden layer versus different traffic

4 TJeacher signal fortraining
(deserved value)

Inp ut
layer Outp ut
Sigmoid (input) layer
Sigmoid(outpup_. -

10 neurons

patterns”.

20 neurons

Figure 7.1.1 A backpropagation model
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Figure 7.1.2 The NNC - a twin system of two NNC clones

7.1.1 EXPERIMENTAL RESULTS

The NNC model was verified by simulations over the Aglets, which is a
mobile agent platform specifically designed for Internet applications [Mitsuru1998].
The Aglets is chosen for three reasons: a) it is stable, b) it has rich user experience,
and c) it makes the verification results scalable for the open Internet. The set up for
the verification simulations is shown in Figure 7.1.1.1, where the driver and the
server are aglets (agile applets) collaborating within a single computer. The driver
picks a waveform (e.g. Poisson) or trace from the table and uses it to generate the
inter-arrival times for the simulated merged traffic for the server queue. A trace
contains the RTT data pre-collected from a TCP channel, and it usually embeds an
unknown traffic pattern. The aim of using data traces in simulations is to verify that
the NNC control precision and stability are indeed traffic independent.

The waveform picked by the driver was first checked for its LRD (long-range

dependence) or SRD (short-range dependence) behavior. The checking process is
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indicated by the box deisgnated “traffic pattern analysis”. Different tools were used
to identify the waveform’s exact nature once its LRD/SRD character had been
determined. For example, the R/S (rescaled adjusted statistics) estimator in the Selfis
Tool [Karagiannis2003] was used to compute the Hurst (H) parameter/value for
different traces. The character is identified as follows: 0.5<H <1 for LRD and
0<H <05 for SRD. Other tools were then employed to identify the exact
waveform/distribution, for example, the modified QQ-plot for heavy-tailed
identifications.

In this section two sets of experimental results among the many collected for
analytical purposes are presented for demonstration. The first set, “Case 17,
demonstrates how the NNC behaves with random (i.e. SRD) traffic. The second set,
namely, “Case 2”, demonstrates that the NNC stability is independent of the self-
similar nature of the traffic (i.e. LRD). The plots are obtained with the help of the

Selfis tool.
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FigUre 7.1.1.1 The NNC verification environment

Case 1 - Random Traffic

For the random RTT trace for demonstration here the Selfis’s R/S plot yields
H=0.483 and 99.66% confidence of its SRD character (Figure 7.1.1.2). Figure 7.1.1.3
shows that both NNC and PIDC produce no overflow for the trace, but the former
eliminates the shortcomings of the latter. The exponential/random nature of the trace
is also confirmed by comparing its mean (m) and standard deviation (o), which are
100 ms and 101 ms respectively. The “100 ~101” (i.e.m ~ &) condition indicates that

the traffic comes from a Poisson process, which is SRD by nature.
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Case 2 — Self-similar Traffic

Self-similar traffic [Tsybakov1998] contains bursts that easily inundate the

server queue buffer. It is important therefore for the NNC to have the capability to

tune the buffer responsively at runtime to ensure that it always covers the queue

length. Different experimental results verified that the NNC indeed has this capability.

The self-similar traffic patterns were generated by the tool proposed by G. Kramer

[Kramer]. For example, the trace for Figure 7.1.1.4 is generated by this tool, and for it

the R/S plot yields H=0.615, with 98.67% confidence of its LRD character. Both

PIDC and NNC (no CA support for this case) produce no overflow for different self-

similar traffic patterns, as shown by Figure 7.1.1.5. The NNC maintains the safety

margin A of the {0,A}" objective function consistently minus the PIDC

shortcomings.
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self-similar-irace .dat

R/S Estimator
Hurst Exponent Estimate - 0.615
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Figure 7.1.1.4 LRD confirmed by the R/S estimator in Selfis
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Figure 7.1.1.5 NNC and PIDC performances for the self-similar trace confirmed

in Figure 7.1.1.4

The NNC stability is analyzed by measuring the mean deviation (MD) from
the chosen QOB reference in terms of “the number of neurons in the NNC hidden

layer versus different traffic patterns”. The preliminary empirical results shown in
Figure 7.1.1.6 indicate that having 20 neurons in the NNC hidden layer is more or
less the break point. Using more neurons does not produce better performance by
yielding a lower MD. For the Poisson trace, the mean deviation error settles down for
15 hidden neurons in the hidden layer but for other traffic patterns at least 20 neurons
are needed. All the experimental results from this stage indicate that it is safer to use
20 neurons for the hidden layer for Internet applications because its traffic pattern,

which includes all the patterns in Figure 7.1.1.6, switches quickly without warning.

181



—+— Trace —— Poisson —— Heavy-tailed —— Self-similar

015

012 &
“:\-31\

=]
=]
(=]
-
-

[ =]

=]

(=]
[~
*

/

Mean Deviation

l... .“.-H-H“"-..
——_
003 . e

20
Number of Hidden Newrons

Figure 7.1.1.6 Mean deviation error for using different numbers of neurons in

the NNC hidden layer versus different possible Internet traffic patterns

7.2 REAL-TIME NNC PRUNING

The aim is to optimize the NNC configuration in an on-line manner to
adaptively lower its control cycle time. After a thorough literature search it was found
that the existing pruning techniques are for off-line application. In the off-line process,
the neural network (NN) is first run to obtain some data for analysis and then
optimized manually before it is run for the next round. This is basically a trial and
error process [Gallant1992, Hagan1996]. The off-line approach is not suitable for
real-time application because the NN should be able to adapt its configuration on the

fly to suit the current operational conditions. With the on-line and timeliness

182



requirements in mind the Hessian-based pruning (HBP) technique is proposed. The
HBP optimizes the NNC configuration at run-time in an adaptive, dynamic and
cyclical manner. The “NNC plus HBP” combination is the new O-NNC (Optimized
NNC) controller. In action the HBP is a renewal process, and the optimisation in
every renewal cycle has two phases of operations, as shown in Figure 7.2.1:

a) First phase: The Learner computes the weights of all the arcs in its
neural network. After that all the insignificant arcs are marked by
the principle of dynamic sensitivity analysis.

b) Second phase: After the Learner becomes the Chief all the marked
arcs are virtually pruned (excluded) from its computation to shorten
the control cycle time. Virtual pruning means that the physical
skeletal NNC configuration is intact and provides the bare basis for

every pruning operation.

First phase Second phase
by Learner by Chief
» :
2 bhosés

HBP optimization renewal cycle

d
|

<« O-NNC service life span >

Figure 7.2.1 The HBP is as a renewal process
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The choice of HBP over other techniques is dictated by the fact that the NNC
optimisation process is real-time and simplicity is the key to success. Other
techniques from the literature normally require complex mathematical manipulations.
Besides, the published experience for the feed-forward neural network pruning is
exclusively off-line. This makes them unsuitable for the on-line NNC application.
The HBP operation is based on dynamic sensitivity analysis. The rationale is to mark
and skip a neural network connection if the error/tolerance of the neural computation
IS insensitive to its presence. For the NNC the error/tolerance is the + A band about

the QOB, reference. The core of the HBP technique is this concept: “if a neural

network converges toward a target function so will its derivatives [Gallant1992]”. In
fact, the main difference among all the identified performance-learning laws from the
literature [Hagan1996] is how they leverage the different parameters (e.g. weights

and biases).

Sraph showing the effect of Learning Rate on Mean Square Error
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Figure 7.2.2 The graph showing the effect of learning rate on mean square error

184



The HBP adopts the Taylor Series [Finney1994] (equation (7.1)) as the
vehicle to differentiate the relative importance of the different neural network (NN)
parameters. The meanings of the parameters in equation (7.1) are: F() - the function,

w - the NN connection weight, Aw — the change in w, VF(w) - the gradient matrix

(7.2), and V2F(w) - the Hessian matrix (7.3). The symbols in the equations mean the

following: T for transpose, O for higher order term, n for the n" term, and %’iw for
1

partial differentiation. Thus the expansion about w of F(w+A4w) is given by equation

(7.2).

F(w+A4w) = F(w) + VFE(W) Aw + %AWT V2FW)Aw + O(||aw ||P)+........ (7.1)

)
N, 0 0
VEW): | = F (w) ——FW)...—F (W) | . (7.2)
an aW2 aWn
G?IVZF(W) 8v(3w P 6W86W W
V2F(w): : o e
awaaw W a?NZF(W) aWaaw FWL..(73)
e e -
ﬁwn@wlF(W) owow, awiF(W)

The preliminary O-NNC results confirm that the HBP performs as expected.
The findings from the preliminary HBP experiments concur with similar experience
published previously [Oh1998]. That is, the weighing factors (synaptic weights or

learning rates) affect the convergence speed. Many different experiments were
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carried out to study the effect of different learning rates, and one set of results is
presented in Figure 7.2.2 for demonstration purposes. It shows how the correlation
between the learning rate and the mean square error (MSR) varies. A learning rate is

the magnitude of change when a connection weight is adjusted in training. For

example, the desired output is w", (k +1) =w", (k)—aﬁF(%W_m_ , with w (k) as
1)

current weight and o as the learning rate. The MSR, defined as, MSR = E[(target
output — actual output)?], measures the control accuracy, with E as the averaging
operator. The MSR should decrease when the convergence gets closer to the QOB
reference. The experimental results, however, indicate that bigger learning rates may
yield oscillatory convergence, as shown by the rates 23 and 24 in Figure 7.2.2. In
contrast, the smaller rates 21 and 22 produce much smoother control. Under the
equation (7.1), the learning/training process should converge to the QOB reference,
which is mathematically known as the target global minimum surface. The
convergence makes the gradient vector VF(w) insignificant and eliminates the
“PF(w)" Aw” term from equation (7.1). This implies not only that the larger ordinal
terms in equation (7.1) can be ignored but also a simplified form (equation (7.4)) is
possible for the equation. Further simplification of equation (7.4), based on:

AF=F(w+4w)-F(w), yields equation (7.5).
F(w+4w) = F(w) + %AWT V2E(W)Aw...(7.4)

AF=% AW' VAF(w)Aw...(7.5)
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The HBP optimization cycle has two phases. The first phase is applied only to

the Learner and the second to the current Chief role. The details involved are as

follows (first three points belong to the first phase and the fourth point to the second

phase):

a)

b)

d)

Use Taylor series (equation (7.1)) to identify the significant neural network
parameters.

Choose appropriate learning rates for the significant parameters to avoid
convergence oscillations, as illustrated in Figure 7.2.2.

Mark the synaptic weights that have insignificant impact on the Taylor series.
After the Learner has become the Chief, it excludes all the marked
connections in its neural computation. The exclusion, represented by equation
(7.6), is, in effect, virtual pruning of the insignificant connections. It is a
logical, virtual process because the skeletal NNC neural network
configuration remains intact except for excluding the marked connections in
the subsequent O-NNC control. The pruning decision is based on the

Lagrangian index S (to be explained later).

Since the optimisation starts anew every time the Learner has completed training,

which means new weights for the neural network connections, the optimized outcome

should be unique, and this makes the HBP optimisation process dynamic and

adaptive.

wi+4,;=0... (7.6)

s =%AWTVZF(w)Aw—z(UiTAW+Wi) (1)
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If Aw in equation (7.5) is replaced by equation (7.6), then the Lagrangian

equation (7.7) is formed. Now, equation (7.1) has become a typical constrained

optimization problem [Bertsekas1982]. The symbols: | J IT and A in equation (7.8) are

the unit vector and the Lagrange multiplier respectively. The optimum change in the
weight vector w; (equation (7.6)) is shown in equation (7.8). Every entry in w;
associates with a unique Lagrangian index S; (equation (7.9)). In the first phase of the
HBP optimisation process the S; values are sorted so that the corresponding less
significant w; (neural network connection) can be excluded from the Chief's neural
computation, starting from the lowest S;. The pruning stops if the exclusion of the

current S; affects the accuracy of convergence process. Only after the virtual pruning

process has been completed does the Learner become the Chief.

- :_[szgiv) 5 VR U0

S VA ()
2[v2F(w) Y,

7.2.1 EXPERMENETAL RESULTS

Different experiments with different waveforms (e.g. SRD and LRD) were
conducted to verify the efficacy and correctness of the HBP technique and the O-
NNC. The set up for the experiments is the same as Figure 7.1.1.1. The preliminary

results confirm that HBP technique shortens the O-NNC control cycle time
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consistently. The skeletal configuration of the O-NNC in the experiments is the same
as the NNC prototype with 10 input neurons, 20 neurons for the hidden layer, and one
output neuron. This configuration is fully connected, with 200 connections between
the input layer and the hidden layer, as well as 20 connections between the hidden
layer and the output layer. The O-NNC result in Figure 7.2.1.1 is produced by a
configuration that has a hidden layer of 187 arcs instead of the 220 full connections
because 33 of them are pruned by the dynamic HBP. Different experimental results
indicate that the O-NNC has the capability to yield the same level of buffer overflow
elimination efficacy as the un-optimized NNC, but with shorter convergence time to

reach QOB . Figure 7.2.1.2 shows that O-NNC always ensures that the QOB value is
within the tolerance band of |2A| (QOBg=0.8). It compares the QOB deviation

profiles of the three controllers. As illustrated by Table 7.2.1.1, the O-NNC, however,

has a larger mean deviation (MD) than the un-optimized NNC,

MD{?A—QOBiq/k.

The PID controller (PIDC) is algorithmic in nature, and it is therefore also referred to
as the Algorithmic PID controller [Ip2001]. Therefore PIDC and A-PID are
synonymous in my research. The PIDC makes use of the Convergence Algorithm
(CA), which is implemented at the micro level. At this level the CA exists as an
independent logical object that runs in parallel with the PIDC main body. In this form
the CA is called the M®RT entity that can be invoked for service anytime and

anywhere by message passing.
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Figure 7.2.1.1 A set of experimental results to compare NNC, O-NNC and A-PID

Controller/tuner Mean Deviation
NNC (Original) | 0.0536
O-NNC (Pruned) | 0.0916
A-PID 0.1279
Table 7.2.1.1 Mean deviations for Figure 7.2.1.2

Controller/tuner The measured average number
of clock cycles per tuner
control cycle

10800
NNC (Original and
un-optimized)]
O-NNC 9250
imi 9250 ~ :
(Pruned/optimized) ( 10800 = 0-857 85.7%)

Table 7.2.1.2 Comparing the average number of clock cycles per tuner

cycle
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Figure 7.2.1.2. Indication of the HBP convergence stability

The average control cycle time or CCT for the O-NNC is only 9250 clock

pulses compared to the 10800 for the NNC (Table 4). The CCT in clock pulses are

measured with the Intel’s VTune Performance Analyzer [VTune2002], and they can

be converted easily into the physical control cycle time for any platform by

P-CCT =CCT *}{_'Z, where Hz is the platform’s operating speed in hertz. Figure

7.2.1.2 also compares the three controllers O-NNC, NNC and A-PID in terms of the

convergence smoothness. Figure 7.2.1.3 provides more convergence stability details

for Figure 7.2.1.2 in term of the individual deviations over time from the QOBg

reference of the {0,A}°. The performance of the NNC (Original) and the O-NNC
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(Pruned) is better than A-PID with respect to the deviation error. Figure 7.2.1.4 is
another comparison of the three controllers. Figure 7.2.1.4 compares their efficacy in
the dynamic buffer adjustment/tuning process. Figure 7.2.1.5 compares the QOB
profiles of the three controllers, and Figure 7.2.1.6 to Figure 7.2.1.8 show the
deviations of the individual controllers. From the many different experimental results
we conclude that both the NNC and the O-NNC performs as well as the A-PID but

without its shortcomings. Despite its consistency in converging accurately to the
QOBg reference of the {0,A}*, the O-NNC dynamic tuning process is more

oscillatory than the un-optimized NNC. The oscillation is an undesirable side effect
from the dynamic HBP optimization cycles. In the future work this problem will be

studied in detail so that the oscillation can be smoothened.
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Figure 7.2.1.3a. Deviation profile of the original NNC
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Figure 7.2.1.3c. Deviation by the A-PID controller

193




—— (ueve Length —— BufferMWNC[Original]) —— Boffer(O-NNC[Froned]) Buffer(A-FID)

150 ¢

1007

Euffer Length

[y |
=]
T

|:| I I I 1 I I I
500000 00000 900000 1100000 1300000 1500000 1700000 1900000

Time(ms)

Figure 7.2.1.4. Another comparison of three controllers
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Figure 7.2.1.5. The QOB profiles of the three controllers in Figure 7.2.1.9a

194



0.2
0.15
0.1
0.05
0

Deviaticon

Deviation(NNC[Original])

* Deyvigdon(MMC [Driginal]y

200000 700000 900000 1100000 1300000 1500000 1700000 1900000

Time(ms)

Figure 7.2.1.6. The deviation profile by the original NNC

0.3
0.25
0.2
(.15
0.l
0.05
0

Deviation

Deviation(O-NNC[Pruned])

B [eviaton(CHHNE [Fruned])

500000 700000 900000 1100000 1300000 1500000 1700000 1900000

Time(ms)

Figure 7.2.1.7. The deviation profile by the O-NNC

195




Deviation

Deviation

DeyviagonA-FI0%

0.4

0.3
0.2 |2 - L4 BB i dMhihd MBs F_ .

0.l - - e iz

|:| 1 1 1 1 1 1 1
S00000 700000 900000 1100000 1300000 1500000 1700000 1900000

Time(ms)

Figure 7.2.1.8. The deviation profile by the A-PID

7.3 CONNECTIVE SUMMARY

The in-depth NNC research has achieved the following:

a)

b)

It was confirmed empirically that there is indeed a correlation between the
number of neurons in the NNC hidden layer and the control accuracy. The
sensitivity analysis shows that mean deviation error depends on the number of
neurons in the hidden layer as well as the traffic pattern (Figure 7.1.1.6).

The HBP technique is proposed to let the NNC self-optimize itself on the fly
so that its control cycle time can be consistently reduced. The experimental
results confirm that this technique cuts the NNC control cycle time by more
than 10%. This makes the optimized NNC or O-NNC is more suitable for

time-critical applications over the Internet.
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¢) In all the experiments different waveforms (e.g. SRD and LRD) were used.
The experimental results confirm that the control accuracy and stability of

NNC and O-NNC models are independent of the traffic patterns.
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CHAPTER 8 LOCATION-AWARE TEST-BED

8.0 INTRODUCTION

The original forms of the following intelligent dynamic buffer size tuners
were proposed and verified in my previous MPhil research in the Aglets environment:
GAC, FLC, and NNC. In this thesis, we developed improvements, particularly the
use of a real time traffic detector, which is employed in conjunction with FLC. As a
result they improve the fault tolerance and shorten the service roundtrip time (RTT)
of a client/server interaction. The timing analyses by Intel’s VTune Performance
Analyzer [VTune2002] indicate these novel intelligent tuners and their PIDC
predecessor are all suitable for time-critical applications because of their short
execution times (Table 8.0.1). The results in the table are based on repeated VTune
measurements with the corresponding Java tuner prototypes. Although the three
original intelligent dynamic buffer tuners eliminate the two shortcomings of their
PIDC predecessor, the FLC is by far the most stable, simplest and fastest. The FLC

needs only 255 clock cycles to execute and does not produce any overflow at all.
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Wired Internet part of the
pervasive computing infrastructure

Figure 8.0.1 A pervasive computing environment

Number of Java

Average number of clock/T cycles

lines per control pass measured by
for using Intel’s VTune Performance
implementation Analyzer [VTune2002]
Basic PID controller (or PIDC) 105 205
Fuzzy Logic Controller 116 255
[FLC(6x4)]
Neural Network Controller 240 10800
(NNC) with
MCA/M °RT support
Genetic Algorithm Controller 111 475
(GAC)

Table 8.0.1 Average execution times (one control pass) for four controllers by

VTune

In this chapter, we investigate buffer tuning in the case of nomadic users with

small form factor (SFF) devices passing through a wireless smart space.

In order to thoroughly and vigorously investigate how dynamic buffer size

tuning can benefit time-critical applications a natural environment is needed as the

test-bed. The FLC is naturally the tuner candidate for the tests because of its stability

and speed. The natural environment in which critical timing is always a consideration
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is the pervasive computing as shown by Figure 8.0.1. Every pervasive computing
environment has two parts: the wireless smart space and the wired Internet part,
which provides the pervasive computing infrastructure (PCI). The smart space is a
wireless cell served by at least one surrogate, which provides the necessary assistance
to the clients and serves as a gateway to other PCI nodes. A client in the smart space
is actually a SFF (small-form-factor) device carried by the nomadic user. The
duration of stay by a human nomadic user in the smart space is normally short and is
characterized by the mass transit traffic through the cell (e.g. train station or airport).
When nomadic users are passing through the smart space, they may make different
kinds of requests to a popular server, which could be located in the surrogate (as
shown in Figure 8.0.1 as an agent). If the agent server cannot provide the service, it
enlists help from other nodes in the PCI through the surrogate in a transparent manner.
This kind of cooperation is called cyber foraging [Garlan2002]. If dt (i.e. delta t)
represents the average transit interval/duration through the smart space, then many

requests dRQ (i.e. delta RQ; where RQ means requests) may be made to the agent

server within the interval. The rate of request, namely, dRQ/dt can be steep. The

requests are usually queued in the agent’s request buffer before they are served. The

number of requests, however, is tied with the characteristic of the mass transit traffic
anddRQ/ At peak periods th t is easily inundated by a sudden influx of
gt - peak periods the agent is easily inundated by a sudden influx o

requests, which leads to the following undesirable consequences:
a) Overflow in the agent’s buffer: If this happens, then there could be widespread

retransmissions by the SFF clients leading to more congestion and longer
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service roundtrip time (RTT). The SFF clients do not even have the chance to
exploit the benefit of cyber foraging before they leave the smart space.

b) E-business failure: The nomadic users become unhappy because they could
not make use of the wireless cell to complete the necessary business on the
run. This means that the e-business, which provides the agent server, would
be the ultimate victim. This can be prevented if the communication congestion
is resolved in a user-transparent manner so that the benefits from cyber
foraging can be obtained.

A solution to enhance the chance of cyber foraging exploitation is dynamic buffer
size tuning. The aim is to tune the agent’s buffer size adaptively on the fly so that the
buffer length always covers the queue length. In this way the chance of buffer
overflow at the user level is eliminated. The FLC dynamic buffer size tuner for user-

level application easily achieves this goal.

Location sensitivity is an essential element in both mobile and pervasive
computing. In mobile computing this sensitivity lets the Internet-based system know
exactly the locations of the SFF clients [Garlan2002]. Pervasive computing takes
mobile computing one step further by tracing and anticipating a nomadic user’s intent
and movement so that service can be prepared proactively in an invisible (non-
intrusive) manner. An important attribute for a pervasive system is to effectively
maintain a smart space [Weiser1991] and support it with rich information technology
capabilities. This is demonstrated by several well-know experimental examples today,

namely, Endeavor (at UC Berkeley), Aura (at Carnegie Mellon University) and
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Oxygen (at MIT). There is presently no dominant location sensing
mechanism/technology because any extant mechanism (e.g. Cricket, Blue-tooth, GPS,
active badge, €911, and the IEEE802.11 family) is good for only a narrow band of
situations. Therefore, effective location sensing is still an active area of research
[Hightower2001]. Once the position is sensed and known, the client’s intent can be
anticipated and supported. One possible intention is location-aware information
retrieval [Cool2002]. In this aspect the client, which is a SFF (small-for-factor)
mobile device (e.g. PDA or a portable PC carried by a user) communicates with the
pervasive-computing infrastructure [Brown2001, Brown2002]. The client-
infrastructure communication is wireless and the surrogate, which is a sever node
wired to the rest of the Internet, provides the necessary assistance to serve the user’s
requests through the client device.

A reasonable business scenario of location-aware information retrieval in Hong
Kong is a foreign buyer who has just arrived at the airport trying to locate a list of
reputable furniture manufacturers in town. After the plane has landed the buyer
immediately engages the local pervasive-computing environment through a SFF
device and discovers the appropriate surrogate. A surrogate is any assigned hardware
device, which is physically wired to the Internet by a high-speed network and assists
a mobile client temporarily. Through wireless communication provided by the smart
space the buyer passes its request for a list of manufacturers to the surrogate
(gateway). This surrogate tries to find the information within its database or it may
pass the request to other information stations (nodes) in the PCI. A surrogate solicits

help from other collaborating Internet nodes under the following conditions: a) it is
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too busy because there are too many similar requests, and b) the site has
impoverished bandwidth and thus it is necessary to re-direct the request to another
surrogate to speed up the service and reduce the overall roundtrip time (RTT).
Soliciting help from other wired nodes is known as cyber foraging
[Satyanarayanan2001, Patterson2003]. Dynamic buffer size tuning by using the FLC
can prevent a surrogate from being inundated by the clients’ requests. The
consequence of inundation is buffer overflow, which can happen easily during
periods of peak demand if the situation is not handled properly. User-level buffer
overflow as such makes the service provision link unreliable/undependable, and a

client may need to repeatedly resend the same request many times.
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Figure 8.0.2 Client/server (surrogate) end-to-end wireless interaction
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In a public place such as the airport service, requests to the local surrogate or
gateway ties in with the traffic of the physical travellers. If the physical traveller
traffic is LRD (long-range dependence), then the service requests traffic to the
surrogate would likely follow suit. If the surrogate has a fixed buffer size to
accommodate these requests, then overflow can occur. This is a serious problem
because no matter how powerful the underlying pervasive-computing infrastructure is,
the user cannot benefit from it. Buffer overflow means that some requests would be
delayed from reaching the stage of cyber foraging, leading to much longer service
roundtrip times. The observation by [Lewis1996], makes the point that cyber foraging
yields speedup because different servers/surrogates work in parallel to provide the
necessary service. Under Markovian conditions cyber foraging can be represented by
the M/M/n model, where n is the number of collaborating surrogates or information

stations. The speedup S by cyber foraging with n nodes can, therefore, be visualized

ass = % , Where p is the surrogate utilization.
-pP

In reality the transient mass transit population would definitely increase the
volume of the communication between SFF mobile clients and a surrogate
[Malla2003], especially at peak hours. It is inevitable that in any smart space, which
is supported by a predefined number of SFF-surrogate connections, new connection
requests are dropped once the maximum number is exceeded. As a result further
client requests will be lost and retransmissions increase [Jamjoom2004]. From our
own experience and that of others, we note that any sudden change in the traffic
pattern of client requests to a surrogate can make the latter’s buffer overflow. The

Internet traffic pattern involves both wired and wireless communications. It is
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normally unpredictable because it can change suddenly, for example, from SRD
(short-range dependence) such as Markovian to LRD (long-range dependence) such

as heavy-tailed and self-similar, or multifractal [Medina2000, Molnar1999].

8.1 LOCATION-AWARE SIMULATIONS

The FLC’s efficacy in supporting more dependable location-aware information
retrieval is verified by simulation. There are two different sets of experiments. The
first set evaluates the execution time of the FLC Java prototype because dynamic
buffer tuning is naturally time-critical. If the execution time is too long, the computed
solution cannot remedy the actual problem in a real-time manner because it has long
passed. The computed solution would end up correcting a spurious problem leading
to undesirable/deleterious effects. The timing analysis is carried out with the Intel’s
VTune Performance Analyzer [VTune2002], which measures the FLC execution time
in the number of neutral clock cycles. The second set of experiments verifies that the
FLC indeed eliminates surrogate buffer overflow independent of the IAT (inter-
arrival time) traffic patterns.

The experiments were carried out on the Aglets mobile agent platform, which is
chosen for the following reasons: a) it is stable, b) it has rich user experience, and c) it
is designed for the Internet and this makes the experimental results scalable for the
open Internet. The set up for the experiments is shown in Figure 8.1.1, in which the
driver and the server are aglets (agile applets) collaborating in a client/server

relationship within a single computer. The driver picks a known waveform (e.g.
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Poisson) or a trace, which embeds an unknown waveform for the wireless

client/surrogate request traffic, from the table. It uses the pick to generate the inter-

arrival times for the simulated merged traffic into the surrogate buffer. A “trace” is a

file of pre-collected RTT, and the use of traces in simulations helps confirm that the

FLC control precision and stability are indeed insensitive to the sudden changes in

the incoming request traffic pattern. This confirmation is necessary because real-life

Internet related traffic usually follows the power law and changes suddenly, for

example, from LRD (long-range dependence) such as self-similar and heavy-tailed to

SRD (short-range dependence) such as Markovian.
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Figure 8.1.1 Verification of FLC stability in SFF-client/surrogate interactions
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The waveforms in the experiments are always checked and identified, as
indicated by the “traffic pattern analysis” box in Figure 8.1.1. In this way the
response of the FLC to any specific waveform can be visualized in one-to-one
correspondence. Waveform checking and identification is achieved by using the E-
RTPD Tool [ATNAC2004], which includes different traffic filters/estimators (e.g. the
real-time modified QQ-plot or RT-QQ). The basis of the RTPD tool is the R/S
(rescaled adjusted statistics) mechanism. It is renamed the enhanced R/S or E-R/S
because the Convergence Algorithm is incorporated as a component. It measures the
Hurst (H) value and differentiates LRD (for0.5< H <1) from SRD (for 0<H <0.5)
for a discrete stochastic process X. After the LRD character is confirmed, for example,
the RT-QQ filter can be invoked to check and confirm if the traffic pattern is heavy-
tailed. Some traces used in the experiments are from the in-house SFF 802.11b
connections [Trace] with the Lucent ORINOCO pc24e-h-fc wireless LAN card as the
interface. In this section three different sets of experimental results are presented.
Case 1 shows how the FLC makes the Hong Kong PolyU wireless environment more
dependable. Case 2 shows how well the FLC can work with the wireless traces from
the Stanford Mosquito Net. Case 3 shows that the FLC has worked well in the

Faculty of Information Technology in the University of Technology Sydney campus.

Case 1: Department of Computing, The Hong Kong Polytechnic University

The aim is to evaluate how the FLC dynamic buffer tuning process performs

in the Hong Kong PolyU wireless SFF-Client/surrogate environment. For the wireless
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LAN traffic trace chosen for demonstration the R/S plot of the RTPD Tool yields

H=0.7069, with 97.89% confidence for its LRD character (Figure 8.1.2).

+ Data Series = Linear Eegression

y = 07068 + 0.0096
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Figure 8.1.2 Trace analysis/identification by RTPD’s R/S estimator

From the preliminary experimental results, as shown in Figure 8.1.3, the
following are concluded: a) the FLC maintains the A safety margin correctly and
consistently for different QOB values and traffic conditions, b) it eliminates the
surrogate buffer overflow efficaciously, and c) it has a shorter control cycle time than
the PIDC’s, which was also tested for comparison purposes. The “buffer overflow
controller/tuner” remark in Figure 8.1.1 indicates where the FLC or PIDC can be
installed for the particular simulation. Figure 8.1.4 is plotted for the same trace as

Figure 8.1.3 and it shows that the FLC convergence to the QOB reference is quicker,

smoother and more accurate than the PIDC.
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Case 2. Stanford Mosquito Net

This simulation shows how FLC would respond in a different SFF-

clients/surrogate traffic environment. In this case the wireless traffic is the Stanford

Mosquito Net [Tang2000]. The plot by E-R/S in the E-RTPD shown in Figure 8.1.5

indicates that the trace is LRD (H=0.716) with 98.34% of confidence.
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R* = 0.9672 /”"
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Figure 8.1.5 Trace analysis/identification by RTPD(R/S estimator) H=0.716

Figure 8.1.6 compares the FLC and PIDC performance for the same trace. It

shows that the FLC controlled buffer length always covers the queue length by the

safety margin of A =0.2. The buffer length controlled by the PIDC, however, differs

by locking up unused buffer space consistently. This kind of unnecessary memory

locking may deprive the system of recyclable memory and lead to poor performance.
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Figure 8.1.7 shows that the FLC controlled output is smoother and more accurate

than the PIDC’s.
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Figure 8.1.6 FL.C and PIDC responses to the Stanford Mosquito Net trace
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Case 3. Faculty of Information Technology, University of Technology Sydney

It evaluates how the FLC dynamic buffer tuning process performs for the UTS
wireless SFF versus client/surrogate environment. The UTS wireless traffic traces
selected for demonstration here have H=0.54 with 95.8% confidence for its LRD
character. The plot in Figure 8.1.8 is produced by the E-R/S of the E-RTPD package.
The experimental results given in Figure 8.1.9 show the following: a) the FLC
maintains the A safety margin correctly and consistently for different QOB values
and traffic conditions, b) it eliminates the surrogate buffer overflow efficaciously, and
c) it has a shorter control cycle time than the PIDC’s, which was also tested for
comparison purposes. Figure 8.1.10 is plotted for the same trace as Figure 8.1.9 and it

shows that the FLC convergence to the QOB reference is quicker, smoother and

more accurate than the PIDC.
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Figure 8.1.8 UTS Trace analysis/identification by RTPD’s R/S estimator
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8.2 CONNECTIVE SUMMARY

Within a smart space for mobile/pervasive computing the number of SSF
clients trying to hook onto the surrogate ties in with the transient mass transit traffic.
The asymmetric rendezvous between the surrogate and the many clients that demand
its service may inundate the surrogate request buffer to overflow. If this happens, the
clients would lose the chance to benefit from the cyber foraging supported by the
background mobile/pervasive computing infrastructure. The FLC, however, can tune
the surrogate buffer size on the fly to make sure that it always covers the request
queue size by the given A safety margin. As a result it eliminates any chance of
transient buffer overflow due to the transient transit mass and makes the SFF-
client/surrogate interaction more dependable. The simulations with different wireless
traces indicate that the FLC is indeed an efficacious solution for more dependable
location-aware applications such as pervasive information retrieval. From the
literature search while preparing for the location-aware experiments, it was found that
dynamic buffer size tuning is very useful for e-health applications that are usually
time-critical [Epocrates]. Tele-diagnosis over the Internet is a typical time-critical
example because timeliness of the diagnostic result determines if a patient would be
saved in time in an emergency case. Dynamic buffer size tuning can reduce
“procrastination” due to retransmissions caused by user-level buffer overflow. As a

result it could help save lives.
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CHAPTER 9 CONCLUSION, ACHIEVEMENTS AND FUTURE WORK

In my MPhil thesis | proposed four original dynamic buffer size tuners for
user-level applications. They are as follows:
1) PIDC (“proportional (P) + integral(l) + derivative(D)” Controller): It is
algorithmic and always eliminates user-level buffer overflow even with two
shortcomings: a) it locks unused buffer space, and b) it does not have a safety margin
and therefore the queue length can get dangerously close to the buffer length
threatening possible overflow.
2) GAC (Genetic Algorithm Controller): It is the “PIDC + genetic algorithm (GA) +
{0,A}’ objective function” combination. The GA moderates the PIDC process so that
the outcome is always within the+ A safety margins about the steady-state reference

symbolically represent by “0” in {0,A}*. The GA eliminates the PIDC shortcomings

but produces occasional buffer overflow because it does not guarantee the global-
optimal solution of the solution hyperplane.
3) FLC (Fuzzy Logic Controller): It was proposed to preserve the GAC merits and

eliminate the occasional buffer overflow. It is this combination: “PIDC + fuzzy logic
+ {0,A}* objective function”. The fuzzy logic moderates the PIDC control process
functionally similar to the GA.

4) NNC (Neural Network Controller): It works with the{0,A}* objective function but

does not include PIDC. Its proposal was inspired by the successful experience of

using neural networks in AQM (active queue management) algorithms that prevent
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network congestion at the system/router level. AQM methods differ from the
dynamic buffer size tuners by using a fixed-size buffer.

These tuners succeed in providing performance enhancement and fault
tolerance to client/server interactions over logical TCP channels of the Internet by
eliminating the user-level overflow. They are suitable for time-critical applications
because they have short control cycle times as measured by the Intel’s VTune
Performance Analyzer. The sizes of their Java prototypes and execution/cycle times

are listed in Table 9.1.
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Clock/T |Average
Lines of Java i Average | cycles per jnumber of Measured average number
de for controller| "¢ of cpde assgmbly T .CyCIeSoch cles per convergence
Control  [° . in Pentium line required for Y per 9
implementation . computation cycle
models [ (Pentium llliconvergenc
(Ln) assembler | 933MHz) e (TCC)
program
(M (NTC)
Proportional
Integral
Derivative 105 525 9 4725 205
Controller
(PIDC)
Genetic
Algorithm 111 555 9 4995 475
Controller
(GAC)
Fuzzy Logic
Controller 116 580 9 5220 255
(FLC)
Neural
Network
Controller
(NNC)
(Back
propagation 240 1200 9 10800 10800
architecture
[Input-
Hidden-
Output]: 10-
20-1)

Table 9.1 Empirical comparison of the four proposed controllers

Although my MPhil research had significant contributions in user-level buffer
overflow control and provision of shorter service roundtrip time (RTT) for
client/server interactions over the Internet, it has left several unaddressed issues as

follows:

1) In the aspects of traffic ill effects: a) Is it possible to calibrate the ill effects

off-line so that the tuners can use these calibrations to ward off traffic
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2)

3)

impedance by fine-tuning its dynamic buffer tuning process adaptively? b) If
so, then how can the current Internet traffic pattern be deciphered on the fly
(on-line) so that the off-line calibrations can be applied selectively?

For FLC: a) Is it possible to have an optimal design? b) Is it possible to make
the tuner self-reconfigurable (especially with respect to traffic pattern
changes)?

For NNC: a) Is it possible to prune the NNC configuration on the fly so that
its control cycle time can be consistently and adaptively reduced? b) Is there a
correlation between control accuracy and the number of hidden neurons in the
NNC back-propagation architecture? (The procedure to provide the answer is

called sensitivity analysis.)

Providing solutions to these unaddressed issues has become the motivation of my

PhD research. In the process | have achieved the following:

1)

2)

3)

For real time traffic analysis: Two traffic filters have been proposed: real-
time modified QQ-plot (or simply RT-QQ) and self-similarity (S?) filter.
These filters identify the Internet traffic patterns on the fly. The RT-QQ
recognizes heavy-tailed distributions and the S filter identifies self-similarity.
For FLC: a) an optimal range is found for FLC design, and b) a way was
found to make the FLC adaptive/reconfigurable by squeezing the “don’t care”
state range threshold in a dynamic manner.

For NNC: a) the HBP (Hessian Based Pruning) approach was proposed for
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pruning or optimizing the NNC configuration on the fly and as a result its
average execution time (i.e. control cycle time) is reduced, and b) sensitivity
analysis was conducted and the results confirm that more hidden neurons do

not necessarily mean better NNC performance

The results from my PhD research have contributed to 19 publications (5 journals
and 14 conferences) so far, and | have achieved all the objectives planned for my
thesis at the outset. Following the experience gained in my research | propose that the
future work should include the following:

a) to investigate the issue of how to choose the limits for effective Gaussianity tests in
the CAB mechanism,

b) to deepen the investigation into why “heavy-tailedness” is not a necessary
condition of self-similarity, and

c) to investigate how the dynamic buffer size controllers, especially the FLC, can best

support pervasive computing based e-applications such a telemedicine.

My PhD research has achieved the planned objectives, which provide solutions
to all the unaddressed issues left behind by my previous MPhil thesis. The new
findings include the following:

1) For FLC (Fuzzy Logic Controller): a) an optimal FLC design range is confirmed
empirically and b) a reconfigurable/adaptive FLC model is proposed and verified.
2) For NNC (Neural Network Controller): a) sensitivity analysis confirms that there is

no obvious advantage in having more than 20 hidden neurons in the NNC’s back-
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propagation neural network (NN) and b) the Hessian Based Pruning (HBP) method is
proposed and verified for optimizing the NN architecture on the fly and this reduces
the NNC control cycle time successfully by at least seven percent.

3) For real-time traffic analysis: | successfully made use of the accumulated
experience by the COMP Team and in return | proposed and verified two real-time
traffic filters/estimators: real-time modified QQ-plot (or RT-QQ) and self-similarity
(S?) filter. The inclusion of these filters into the real-time traffic detector (RTPD)
proposed by the Team converts it into the Enhanced RTPD or E-RTPD. | successfully
used these filter to help the reconfigurable FLC (i.e. A-FLC [p12]) to fine-tune itself
on the fly to nullify the ill effects on its stability and accuracy by traffic pattern
changes.

The findings from my PhD research, as listed above, not only provide a solid basis
and directions for future exploration in the area of dynamic buffer size control but

also contributed to 19 publications (5 journal and 14 conferences) as follows:.

Five refereed journal papers

[p1] Wilfred W.K. Lin, Allan K.Y. Wong and Tharam S. Dillon, Application of Soft

Computing Techniques to Adaptive User Buffer Overflow Control on the Internet, to

appear in the IEEE Transactions on Systems, Man and Cybernetics, Part C

[p2] Wilfred W.K. Lin, Allan. K. Y. Wong and Richard S.L. Wu, Applying Fuzzy

Logic and Genetic Algorithms to Enhance the Efficacy of the PID Controller in

220



Buffer Overflow Elimination for Better Channel Response Timeliness over the

Internet, to appear in the Concurrency and Computation: Practice & Experience

[p3] Wilfred W.K. Lin, Allan K. Y. Wong and Tharam S. Dillon, A Novel Fuzzy-PID
Dynamic Buffer Tuning Model to Eliminate Overflow and Shorten the End-to-End
Roundtrip Time for TCP Channels, Lecture Notes in Computer Science, Volume

3358 / 2004, pp.783-787

[p4] Wilfred W.K. Lin, Allan K. Y. Wong and Tharam S. Dillon, HBP: An
Optimization Technique to Shorten the Control Cycle Time of the Neural Network
Controller (NNC) that Provides Dynamic Buffer Tuning to Eliminate Overflow at the
User Level, International Journal of Computer Systems Science & Engineering, 19(2),

March 2004, pp. 85-94

[p5] Wilfred W.K. Lin and Allan K.Y. Wong, A Novel Neural Network Controller to

Eliminate Buffer Overflow in Client/Server Based Internet Applications, WSEAS

Transactions on Systems, 2(3), July 2003, pp.607-615

Fourteen refereed conference papers

[p6] Wilfred W.K. Lin, Allan K.Y. Wong and Tharam S. Dillon, A Novel R*2-FLC

Dynamic Buffer Size Tuner to Support Time-Critical Applications over the Internet

by Improving Logical Channel Fault Tolerance to Shorten Roundtrip Time, to appear
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in the 11th International Symposium on Pacific Rim Dependable Computing (PRDC-

2005) Changsha, Hunan, China

[p7] Wilfred W.K. Lin, Allan K.Y. Wong and Tharam S. Dillon, FLC: A Novel
Dynamic Buffer Tuner for Shortening Service Roundtrip Time over the Internet by
Eliminating User-Level Buffer Overflow on the Fly, to appear in the 6th International

Workshop on Advanced Parallel Processing Technologies(APPT'05), Hong Kong

[p8] Wilfred W.K. Lin, Allan K. Y. Wong, Tharam S. Dillon and Richard S.L. Wu, A
Novel Real-Time Self-Similar Traffic Detector/Filter to Improve the Reliability of a
TCP Based End-to-End Client/Server Interaction Path for Shorter Roundtrip Time, to
appear in the 2nd International Conference on E-Business and Telecommunication

Networks, Reading, United Kingdom

[p9] Wilfred W. K. Lin, Tharam S. Dillon and Allan K.Y. Wong, An Internet-Based
Distributed Manufacturing System Utilizing a Recurrent Neural Network Controller
for Dynamic Buffer Size Tuning to Prevent User-level Buffer Overflow and Shorten
the Service Roundtrip Time, to appear in the 3 International IEEE Conference on

Industrial Informatics 2005, Perth, Australia (Best presentation award)

[p10] Wilfred W.K. Lin, Tharam S. Dillon and Allan K.Y. Wong, Apply FLC-based

Dynamic Buffer Size Tuning to Shorten the Information Retrieval Round Trip Time
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in the Mobile Location-aware Environments, Proceedings of the 4th International

Conference on Mobile Business, Sydney, Australia, pp. 507-513

[p11] Wilfred W.K. Lin, Allan K. Y. Wong and Tharam S. Dillon, A Novel Traffic
Independent NNC for Dynamic Buffer Tuning to Shorten the RTT of a TCP Channel,
Proceedings of the 3rd International Conference on Information Technology and

Applications, Sydney, Australia, pp. 647-652

[p12] Wilfred W.K. Lin, Tharam S. Dillon and Allan K.Y. Wong, A Recurrent
Neural Network Controller for Dynamic Buffer Size Tuning to Provide More
Dependable Client Server Communications, Proceedings of the International
Conference on Dependable Systems and Networks (Fast Abstract), Yokohama, Japan,

pp. 20-21

[p13] Wilfred W. K. Lin, Allan K. Y. Wong and Tharam S. Dillon, A Novel Fuzzy
Logic Controller (FLC) for Shortening the TCP Channel Roundtrip Time by
Eliminating User Buffer Overflow Adaptively, Proceedings of the 28th Australasian

Computer Science Conference 2005 (ACSC’2005), Newcastle, Australia, pp. 29-37

[p14] Wilfred W. K. Lin, Richard S.L. Wu, Tharam S. Dillon and Allan K. Y. Wong,
A Novel Real-Time Traffic Pattern Detector for Internet Applications, Proceedings of
the 2004 Australian  Telecommunication  Networks and  Applications

Conference(ATNAC), Sydney, Australia, December 2004, pp. 224-227
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[p15] Wilfred W.K. Lin, Allan K. Y. Wong and Tharam S. Dillon, A Novel Adaptive
Fuzzy Logic Controller (A-FLC) to Reduce Retransmission and Service Roundtrip
Time for Logical TCP Channels over the Internet, Proceedings of the 2004
International Conference on Embedded And Ubiquitous Computing (EUCO04), LNCS

3207, Aizu, Japan, August 2004, pp.941-951

[p16] Allan K. Y. Wong, Wilfred W.K. Lin and Tharam S. Dillon, HBP: A Novel
Technique for Dynamic Optimisation of the Feed-Forward Neural Network
Configuration, Proceedings of the 1st International Conference on Informatics in

Control, Automation and Robotics, Setubal, Portugal, August 2004, pp.346-349

[p17] Wilfred W.K. Lin and Allan K.Y. Wong, A Novel Fuzzy Logic Controller to
Eliminate Buffer Overflow at the User Level over the Internet, Proceedings of the
24th IEEE International Real-Time Systems Symposium, (WIP Session), Cancun,

Mexico, December 2003, pp.71-74

[p18] Wilfred W.K. Lin and Allan K.Y. Wong, A Novel Adaptive Fuzzy Logic
Controller (FLC) to Improve Internet Channel Reliability and Response Timeliness,
Proceedings of the IEEE Symposium on Computers and Communications

(ISCC'2003), Antalya, Turkey, July 2003, vol. 11, pp.1347-1352.
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[p19] Wilfred W.K. Lin, Allan K. Y. Wong and Tharam S. Dillon, HBM: A Suitable
Neural Network Pruning Technique to Optimize the Execution Time of the Novel
Neural Network Controller (NNC) that Eliminates Buffer Overflow, Proceedings of
the 8th 2003 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA'2003), Las Vegas, USA, June 2003, vol. I, pp.

555-560

The contributions by the published papers above can be divided into different

groups as follows:

Group 1: It consists of the following: pl, p2, p3, p6, p7, pl10, p13, p15, p17, p18. The
specific contributions by these papers are: a) an optimal design range is confirmed for
FLC design, and b) a way was found to make the FLC adaptive/reconfigurable by
squeezing the “don’t care” state range threshold in a dynamic manner.

Group 2: It consists of the following: p1, p4, p5, p9, pl1, p12, p16, p19. The specific
contributions by these papers are: a) the Hessian Based Pruning method can indeed
optimize the NNC configuration on the fly and as a result reduces its average
execution time (i.e. control cycle time), and b) sensitivity analysis confirms that
more hidden neurons in the NNC architecture does not necessarily yield better
performance

Group 3: It consists of the following: p8 and p14. The specific contributions by these

papers are real-time traffic analysis and pattern detection. The inclusion of my real-
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time modified QQ-plot (or simply RT-QQ) and the S? filter into the extant RTPD

(real-time traffic pattern detector) convert it to the enhanced version (i.e. E-RTPD).

AREA OF FUTURE RESEARCH

In the research process | have uncovered different relevant problems, and after
scrutinizing carefully | suggest that the following items should be investigated first in
the near future because of their “bridging nature” to other relevant issues in dynamic
buffer size tuning:

a) The first is to investigate how limits can be appropriately chosen for on-line
Gaussianity tests. The successful use of traffic filters depends on whether stationarity
for an aggregate in a discrete stochastic process can be confirmed. For example, the
RT-QQ and S*filters for on-line application work for the “Hurst and stationarity”
conditions.

b) The second is to deepen the investigation into why “heavy-tailedness” is not a
necessary condition of self-similarity. So far, this issue has rarely been explored.
More confirmation is needed so that the real need of designing different real-time
filters for heavy-tailed distributions and self-similar waveforms is there.

¢) Although the PIDC, FLC and NNC tuners proposed in my MPhil thesis were
deployed, they were applied only in the wired Internet environment. In fact, the
Internet is getting more mixed in the sense that it is made up of wireless and wired
(W&W) parts. The W&W setup is typical of pervasive computing environments,

which are called mobile distributed systems (MDS). This kind of setup is getting
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more popular in different areas of applications such as telemedicine. Therefore, there
iIs a need to investigate how the dynamic buffer size controllers, especially the
improved versions for the FLC and NNC. In particular the FLC should be examined
more carefully in the light of how it can best support pervasive computing based e-

applications.
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APPENDIX Il THE CONVERGENCE ALGORITHM

The CA (Convergence Algorithm) is an IEPM (Internet En-to-End Performance
Measurement) technique [Cottrel1999]. It can estimate the mean service roundtrip
time (RTT) of a logical channel quickly and accurately. The Java-based CA prototype:
M?RT was verified and validated as a macro tool [Wong2001]. In its macro form the
tool must be installed at the two nodes that represent the ends of the logical channel.
Micro IEPM tools differ by operating as a logical entity to be invoked anytime and
anywhere for service by message passing. The M’RT (Mean Message Response Time)
experience led to the development of the Java-base micro CA (MCA) prototype:
M3RT (Micro Mean Message Response Time) [Ip2002]. The CA operation treats a
traffic pattern simply as a waveform. Its speed and accuracy does not depend on to

the pattern being worked on because it is based on the central limit theorem. The

M, = % .......... (AL);M, =mid........ (A2)i>1
MCA version supporting the PIDC and the NNC is modified from the M°RT object

class. The CA operation is summarized by the equations: (A.1) and (A.2), where

M, is the distribution mean estimated for the time in which the F (flush limit) number

of data samples is collected. The previous experience shows that F=14 yields the

fastest convergence to the estimated mean [Wong2001]. The other parameters are: a)

M, , is the feedback of the last estimated mean to the current estimation cycle, b) m‘j

is the | sample in the i M, estimation cycle, j=1,2,3,(F —1), and ¢) M, is the first

254



data sample when the MCA had first started. Figure FAL shows the M, predicted by

MCA over time, and the RTT trace is for the TCP channel between the Hong Kong
PolyU and the LaTrobe University site in Australia. In this case M, always settles to

the value of 480ms in the steady state.
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Figure FALl. The M, prediction by M°®RT for the “Hong Kong PolyU -

LaTrobe” TCP channel
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