Q THE HONG KONG
Q' db POLYTECHNIC UNIVERSITY
v T T AR

Pao Yue-kong Library
BIERIESE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

The Optimization of Line Cycle Time in

Printed Circuit Board Assembly

By

WAN Yuk Fong, Solar

A Thesis Submitted for the Degree of Master of Philosophy

DEPARTMENT OF MANUFACTURING ENGINEERING

THE HONG KONG POLYTECHNIC UNIVERSITY

2001

Q’ Pao Yue-Kong Library
& PolyU + Hong Kong

Abstract of thesis entitled "The Optimization of Line Cycle Time in Printed
Circuit Board Assembly’
submitted by Wan Yuk Fong, Solar

for the degree of Master of Philosophy
at The Hong Kong Polytechnic University in November 2000

This research addresses the problem of Printed Circuit Board (PCB)
assembly in an electronics manufacturing system. In the electronic industry, an
assembly line normally has several non-identical component placement machines
and the placement times of the different machines for the same component are
different. Faced with the global competition, an efficient component placement
operation is essential.

This research attempts to determine the allocation of components to
placement machines for the optimization of the line cycle time. A mathematical
model was constructed to represent the mechanism for determining the optimal line
cycle time. Initially the mathematical model was in a non-linear integer minimax
type formulation. It was then converted into an integer linear programming format.
The Branch-and-Bound (B&B) algorithm was applied to solve the integer linear
programming model in this research project. However, the B&B alogrithm was
found to have taken a very long time to get the optimal solution and hence a heuristic
method, the Tabu Search (TS) heuristic was proposed to solve the problem. The
performances of both the B&B algorithm and the TS heuristic were compared. The
result showed that the TS heuristic can achieve an acceptable solution with a shorter
computational time and less number of iterations while the B&B algorithm can
guarantee to arrive at the optimal solution.

Both the B&B algorithm and the Tabu Search procedure are found applicable

to determine the optimal line cycle time in PCB assembly efficiently. Moreover, the

cycle time of PCB assembly can be reduced as well as the cost of production by the
use of the model and methods presented in the project. A further study is required in
order to implement the model and the algorithms developed in this project in a real

industrial situation, such as, a graphical user interface.

1l

ACKNOWLEDGMENTS

First of all, the author would like to take this opportunity to express her
sincere gratitude to her chief supervisor, Dr. P. Ji, for his strong guidance, invaluable
advice and continuous encouragement that made this project to be completed
successfully. The gratitude also extends to her colleagues and friends, Mr. C. Y.

Cheung, Mr. K. H. Tang and Mr. S. L. Mok, for their thoughtful discussions and on-

going supports.

The author would also like to express her acknowledgement to The Hong

Kong Polytechnic University for the funding of this research project (Project No.: G-

V737)

Last but not least, special thanks must go to her father and mother, for their

continuous encouragement and patience during the past two years.

iv

TABLE OF CONTENTS

ABSTRACT .ooevtveerimrircceerentrssissstssssssemsasrassssssnssossasssessasssssnsssssnss sasssssssssassisssssasnesssssse i
ACKNOWLEDGMENTSoovreiirrerarsssasissesssasassssenssmsasssssssesssssnssmsassssssssasansassasss jii
TABLE OF CONTENTS . eererirecnirssassssasssenessrmsssesessssensssssasssastsssasnosssnsssnnassesssnss iv
LIST OF FIGURES ... reeeercvnnseiinssssssnnsssesansisssssisssssssssseesssnsssnssssssasasasssssssssases ix
LIST OF TABLES.......iiiiivirriniaimenimmenesiississniimmsnsissnssssssssssssmssstossstsssssasssssnass xi

CHAPTER ONE
INTRODUCGCTION. ..o ioververreeerereresrsserinnssissssssssssssssasssssasssssesssasasnsssssssensessssessst nssns 1
1.1 PRINTED CIRCUIT BOARD (PCB) ASSEMBLYoovoiimiiiiiiiiiiiiinins I
1.1.] PCB assembly Processccocoovoviiciieiiiiiiiiiiiie 1
1.1.2 Production Planning of PCB assembly................cc.cccooiiiiiiiina, 5
1.1.3 Component Grouping.cccc..coctimiiiiiiiiieiie s 6
1.2 OBJIECTIVES.cuiivieriestoseeiseestsstnaseatsatesaesreneesastessastese s baasn e s s st s se e s et e 8
1.3 RESEARCH SCOPE......coiiuieieieciieiiesieeeeeseaoeee b ab s eae s s nensnaa s es et 9

CHAPTER TWO
LITERATURE REVIEW........cicenineisiiniriememiisesmssermsiiiosssisasisesiiesnnes 1t
2.1 INTRODUCTION.oeiiuitirreeeeneeanteesaraannsesssmesemest s asscsasbr st s et o et a et s oo 11
2.2 REVIEW ON COMPONENT GROUPING AND SETUP STRATEGIEScoocoeiiinnn 13
2.2.1 Component grouping in a single machine.............................. 13
14

2.2.2 Component grouping in multiple machines ...

2.2.3 Setup strategies for PCB machines................cccccoeiiciiinio. 16

2.2.4 Machine asSigRmenL...............cccocococoiiiiniiiniiei e 18

2.3 LINEAR PROGRAMMING AND INTEGER LINEAR PROGRAMMING.........oocccueen 18

2.3.1 Linear Programmifgcc.ocoomeuieeeiiiomeesieessei e 19

2.3.1.1 Interior point algorithm ..o 20

2.3.2 Integer linear programming...............cccoeeviviiimniineeniee 2]

2.3.3 Algorithms for integer linear programming..................cccoooeil 22

2.3.3.1 EXact SOMIION.c.oiirieeceieceeimneece et 22

2.3.3.2 Cutting plane algorithm ... 23

2.3.3.3 Meta-heuriStiCs . c.ovrriree et 23

2.3.3.3.1 Lagrangian relaxation.........cccoocuieeminneicnninee 24

2.3.3.3.2 Genetic and evolutionary algorithm............c.... 25

2.3.3.3.3 Simulated anneallng 27

2.3.3.3.4 Artificial neural network ... 29

2.4 CONCLUSIONoiuiieite et ectcraea e eeoe e ereese e aa s ara e £ s s ae st en e 30
CHAPTER THREE

MATHEMATICAL MODEL.....coiiiiiitiiiinnnisanicesasninssssisinennssensieins 32

3.1 INTRODUCTION. o1 teit e ieiiecireceie e e e m s e 32

3.2 MODELING OF PCB ASSEMBLY ...coouviiiiiiiiitiein i 33

3.2.1 Machine-component relationsRip....................cccoviiiii 33

3.2.2 Minimizing the cycle time for the component insertion operation.......... 34

3.7 CASE STUDY ooveeeeeeereeetreesieesaastsesasessseessssessanssnesesseebaeoastne sssessosnanesannessssnnnss 38
T4 CONCLUSION ..ot eeeeeee e eesieaasassieseaeseesnreeseenasresseesassesanas s rnessernneesnnseeennaes 42
CHAPTER FOUR
A BRANCH-AND-BOUND ALGORITHM ...oriiemeicnerisiiinssssssivessssssnserisascsnsens 43
4.1 INTRODUCTION ..t eeecrteteiieserasteea s ses ot essassass e an s e ese e et es s eaes s easeat s 43

4.2 COMPUTATIONAL COMPLEXITY IN INTEGER LINEAR PROGRAMMING.............. 44

4.3 LINEAR PROGRAMMING RELAXATIONoovimiiioniiiimeini et 44

4.4 THE BRANCH-AND-BOUND (B & B) ALGORITHM.....cccoovimmiiiieiiiiiiciniiieae 46

4.4.1 A survey on the branch-and-bound algorithm 47

4.4.1.1 Depth-first s€arch ..o 51

4.4.1.2 Breath-first SEarch ..o 54

4.4.2 Performance evaluation.......................ccccieeiiniiin 57

4.5 NUMERICAL CASE STUDYciortiiiriiiteeiioe it sttt sta s sasssas s sssssn e 59

4.5.1 Solution procedurec.coooiinioniei 60

4.5.2 ReSult QRAIYSiS..........cocoooiiiiiiiiiiiiii s 63

B.6 CONCLUSION .ot eeeeteesia e eree e et s as s se s saraassn e e e s s et n st an s e 64
CHAPTER FIVE

A TABU SEARCH HEURISTICocoimimnerirnnninntnsssassnsnesssscssssssssnesssssssesssens 65

5.1 INTRODUCTION.....cocovvmririacaniiens SOOI UOP OOt 65

52 A SURVEY ON THE TABU SEARCH HEURISTIC....ccuiiiieieiec it 66

5.3 THE TABU SEARCH TECHNIQUE .coviiiiiuiriiier ettt 68
5.3.1 SROFLIEII IMEIMOTY ..ottt 69
5.3.2 Operation parQmeters................cc.cccomiiieiimusinin i 71

5.3.2.1 Candidate liSt STTALERY -..eeovvreereeiieisiiiet e 71
5.3.2.2 Tabu liSt.eocooieieie e e 71
53.2.3 Tabutenure.........ccccoovirinmnnrrrencnne e e 72
5.3.2.4 Aspiration Criteria........cooomiimrrininmnene i, 72
5.3.2.5 Strategic 0SCillation. ... 73
5.3.3 LORG T MEIIOTY ...ttt 73
5.3.4 Significance of the Tabu Search heuristic ..., 74

5.4 ALGORITHM FOR THE LINE CYCLE TIME DETERMINATION PROBLEM............. 74
5.4 0 JRHEQLIZEAEION ...ooeeeoe oo 75
5.4.2 The mechanism of tabu search with branching strategy........................ 76
5.4.3 The mechanism of diversification..................cccooiiiini 77
S.4.4 AIGOFIAM _...oooooooiiiiiit 77
545 Function evalu@lionc.cccoooiieiiiii e 78

5.5 NUMERICAL CASE STUDY ..oetiiriiiiiiiiiemiiee oottt e 78
550 TREHQIIZQUION .o 79
5.5.2 Result QnalySis...ccooooiiiiiiiiiiieiii 80

56 IDENTIFICATION OF CHANGING THE RANGE OF NUMERICAL SETTING IN TS ..83

57 THE TABU SEARCH HEURISTIC VS. THE BRANCH-AND-BOUND ALGORITHM . 88

viii

5.8 CONCLUSION ..etvettettirecemeeeieereeteemensaeeamss s sb bbbt s e e an e an e s e e an g srea s cc e %0
CHAPTER SIX
CONCLUSION...ooveeriescesesesserassssessssssssisesstssmsassssssssmsasssnasssssstost sosssasssasssssssssssssssssse 91
6.1 IMPLEMENTATIONootuieieutreeeeissrenermetssiemseessabssss e ssaes s e a s ssasn e e 91
6.2 CONCLUSIONSeiveieeieteieeis e escereteeesesssssses s sa s beass e s rssess e e m e b et an et 91
6.3 FURTHER INVESTIGATIONSotiioieriiatiimninressass s e ssessssebe st siseir et et 94
REFERENCES ...ooestaisserrsessssassiseasssasssssasessssmsasssssossssssasmsassnssssng sasssssssssssssssssssessssas 96
APPENDIX 1 Line layout for an electronic COMpany........ccococvieiniicinannnene 107
APPENDIX II Line configuration........cccooieinrinninnc i 109
APPENDIX III Component placement tImeSco.covoiinmnieeren i 111
APPENDIX IV Source codes for the B&B algonthm in C+..........ooon 113
APPENDIX V Source codes for the B&B algorithm in Matlab....................... 130

APPENDIX VI Source codes for the tabu search heuristic in Matlab................ 147

ix

LIST OF FIGURES

Figure 1.1

Figure 1.2

Figure 1.3
Figure 1.4
Figure 2.1

Figure 2.2

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Type I SMT manufacturing process sequence (without conventional

COMPONENTS} .e.eviaiirecieccreirtreter e e e saer st et oo eaeaens e seeeneeeseeeseeneerenns 2
Type II SMT manufacturing sequence (with conventional components

AN AEVICES).... oottt e et s e e e e s 3
A typical PCB assembly 1in€ccocovemeeeeiciieeeeeeeeeeeeeeee 4
An example for different component types to be assembled 7
The relationship in a PCB assembly systemccocoovoovicreeennn. 12

(2) Sequence-dependent scheduling (b) Group Setup production method

... 17
The B&B algorithm [Tah75] ..c.ccoiiiiicieci e 50
Graphical representation for DFS ..o, 51

Branching strategy with the DFS in the Branch-and-Bound algorithm 53

The branch-and-bound solution tree with DFS ..o, 54
Graphical representation of BFS..........ocooiii 55
The branch-and-bound solution tree with BFS ..o 56

Computational Implementation of the Branch-and-Bound Algorithm . 58
The tabu search short-term memory component [Glo%0b].................. 70

General structure of tabu search for the line cycle time determination

Problem .o 75
Graphical representation for the distribution of the feasible solution

o Lol o0 g £t Lol O PSPPSR 81
Graphical distribution tor various feasible solutions 86

Figure 5.5 Range of iterations in obtaining the optimum solution with different

SEHTIES ..vvvseeeseesreeorecsibessans s eesesee st es s e

X1

LIST OF TABLES
Table 1.1 Two combinations to component-machine relationshipccococen 8
Table 2.1 Mapping of physical parameters in simulation to combinatorial

Table 3.1

Table 3.2

Table 3.3

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

OPHIMIZALION -t

The relationship between machines and component types for a PCBA

EEIE et ettt e e et et e ne e e n e e bs s R e 33
Tableau for double-sided PCBA relationship ..o 38
Tableau form of the numerical case study........ccoveviivriiiininienins 39
Distribution of the feasible solution in 1000 running cycles 81
Combination of component type-machine relationship to different

OBJECHIVE VAIUEScoomeiiicciii e 82
Numerical setting range for the backtracking level ..., 83

Percentage of resulted feasible solution in each numerical setting range

Chapter 1: INTRODUCTION

CHAPTER ONE

INTRODUCTION

1.1 Printed Circuit Board (PCB) Assembly

The manufacturing of printed circuit boards (PCBs) is a primal activity in
many electronics manufacturing companies. Printed circuit board assembly (PCBA)
is a process-oriented operation that includes mounting of various types of
components on a board with an associated production volume. In order to stay
competitive, minimization of the line cycle time is required to increase productivity

and responsiveness to the market.

1.1.1 PCB assembly process

In PCB manufacturing, two main electronic assembly technologies have
been developed, which are Plated-Through Hole (PTH) Technology, and Surface
Mounting Technology (SMT). In most cases, a combination of both technologies is
utilized in a single PCB. Several advantages can be achieved with SMT: (1) Smaller
component can be made, with leads closer together. (2) Packing densities can be
increased. (3) Components can be mounted on both sides of the board. (4) Smaller
PCBs can be used for the same electronic system. (5) Drilling of many through
holes during board fabrication can be eliminated, but via holes are still required for

layers interconnected.

In order to accomplish greater packaging densities and functionality, the

Chapter I: INTRODUCTION

PCB assembly system has an absolute necessity in packing more surface mount

devices (SMDs). The type of surface mount design being assembled dictates the

sequence of steps in the manufacturing process.

There are two major types of

surface mount design. Type I has SMDs only without any conventional components

on both sides (Figure 1.1). When conventional components coexist with SMDs in

Type 11, the manufacturing sequence can proceed in two different ways depending

on the type of SMDs (Figure 1.2).

Incoming Solde-:r P fas{e Ad}.leSl.v ¢ SMD auto- Solder paste Reflow Solder
L ection —» application application bacement —M bakeou; — (VPS, IR etg)
pec {Top side) (option) P adhesive cure]
Reftow Solder Solder paste SMD auto- Adl?em.ve So[dflrr 4 ?ste Solvent
(VPS, IR 1) 4— bake out; acemen 4 application 4— application cleartin
T adhesive cure P {option) (Bottom side) 5 |
Solvent Final
. — . Test
cleaning Inspection

FIGURE 1.1 TYPE | SMT MANUFACTURING PROCESS SEQUENCE {WITHOUT CONVENTIONAL
COMPONENTS)

Chapter 1: INTRODUCTION

. Solder paste Adhesive SMD autoplacement Solder paste
ilr:'s“m:;i b application |~ application PLCCs, chips, |-» bakeout; M R\‘;’;S"“' Solder
pee (Top side) {option} SQOT's, etc adhesive cire (VPS, IR, et
Dual wave Solder paste SMD autoplacement Adhesive Solder paste
1 solder y bake out; (SOIC's, chips,SOTs) 4 application [€— application y
adhesive cmﬂ bottom side {option) (Bottom side)
Conventional device Conventional device
hand insertion hand insertion
{bottom side) {lop side)
Reflow Selder Solvent Final Test
(VPS, IR, etc) cleaning nspection ¢

FIGURE 1.2 TYPE Il SMT MANUFACTURING SEQUENCE (WITH CONVENTIONAL COMPONENTS AND
DEVICES)

A typical PCB assembly line (Figure 1.3) generally consists of six
manufacturing operations. (1) Application of solder paste: it can be performed by
several techniques: screen (stencil) printing, syringe dispensing and pin transfer
techniques. The stencil printing is the most extensively used technique for solder
paste application, whereas the syringe dispensing and pin transfer technique are
commonly used for adhesive cure application. An accurate decomposition of the
solder paste can prevent the solder bridging effect during the reflow soldering. (2}
Component placement: The component placement operation becomes significant
among the PCB assembly operations for two reasons: it usually proceeds with the
most expensive equipment in the PCB assembly line. And it is typically the process
that determines the output in term of productivity. (3) Reflow soldering: A reflow
soldering allows melting of the soldering and forms the bond between the devices

and the board. There are several types of reflow solder techniques to be used: vapor

Chapter 1: INTRODUCTION

phase reflow, infrared reflow, dual-wave reflow and laser reflow soldering. (4)
Cleaning: It is one of the final assembly stages in PCB assembly. It removes
contaminants during the fabrication and previous assembly processes. And these
contaminants may prevent electrical contact between the probes on a bed-of-nails
test fixture and the electrical assembly. (5) Testing: In-circuit and function level
tests are required to verify the package configuration and check whether the board
operates in correspondence with the customer’s design specifications. (6) Final

inspection: This can maintain the high quality and reliability of the PCB before the

line releases.

FIGURE 1.3 A TYPICAL PCB ASSEMBLY LINE

Among the assembly operations mentioned above, the component placement
process is the most crucial part in enhancing the productivity. This is undeniable
that the optimization of the component placement process can elevate not only the
productivity but also the utilization of the resources in the factory floor. The
occasion for this can be claimed in the following:

« Cost intensive and capacity limitation of the automatic component placement

machines may cause the bottleneck of the line. Thus, high utilization of the

Chapter 1: INTRODUCTION

machines should be carried.

o The reduction of the production cost can be obtained by the increment of the

production volume.

1.1.2 Production planning of PCB assembly

The electronics manufacturing industry is experiencing rapid technological
change that causes increasing the logistical complexity on process planning. The
task of allocating different types of components to the machines together with
balancing the assembly line becomes hard to perform in a good manner
concurrently. As a result, the placement time and the operation cost are the critical
consideration. Therefore, the optimization on both the product arrangement (which
line assembles which board) and line performance (minimum cycle time) are
necessary.

The electronics manufacturing factory with low-mix and high-volume and on
the surface resembles a flow shop in which the basic production problem is to put
the right items together with the right time. Basically, there are two successive tasks
in the production planning system. One is the determination of the optimal cycle
time and the other one is the decision making on which product to be assembled on
which line associated with its quantities to be allocated on the line. The former task
is what this research project is going to take into investigation and the latter one has
been studied by Ji er al, where the problem was formulated as a generalized
transportation problem (GTP) and a new algorithm on the dual of the model was

presented [Jip94].

Associated with the interaction between the process planning, production

Chapter 1: INTRODUCTION

planning and scheduling, there are different levels of related problems to be tackled.
The problems include the grouping of machines and components as well as feeder

arrangement and sequencing.

1.1.3 Component grouping

The component grouping problem in a PCB assembly system is a special
case of the mixed-model assembly line-balancing problem. It involves the
assignment of different components to machines in order to achieve specific
production objectives. In reality, a single PCB consists of a number of different
types of components, varying from several to several hundreds, in different sizes,
shapes and patterns according to the specifications. The decision regarded on how
to group different types of components to the machines in the assembly line is made.
Assuming that the line has three non-identical placement machines CP I, IP I & IP II
(Figure 1.4) and six different components to be assembled. There are many possible
combinations of component grouping associated with the machines with different
cycle times. The decision making on forming the component group to each machine
such that the line cycle time can be minimized, is the key problém to be coped with

in this research.

Chapter !: INTRODUCTION

Compoenent types
to be assembled
on the beard
C1,C2,C3,C4,C5C6

<>

Assignment of
compoments lo
machines

L,

Board
Unloading

Board —
Loading —|>

Feasible Combinations

1 c1.C2 5.06
c1.c2.Ca £3,¢4.€5 cs, C6

4 c2.C4 C3,c8 C1,Cs

IP1]

-4

FIGURE 1.4 AN EXAMPLE FOR DIFFERENT COMPONENT TYPES TO BE ASSEMBLED

There are many different combinations of component-machine relationship,
which can also obtain the optimal cycle time. The following tables (Table 1.1)

shown below demonstrate two of these combinations:

Chapter 1: INTRODUCTION

Component type C;

Machine Cl C2 C3 C4 C5 Cé6
CPI 20 12 0 0 0 0
IP1 0 0 26 23 0 0

IPII 0 0 0 0 35 38
(a)
Component type C;

Machine Cl C2 C3 C4 C5 Cé6
CP1 20 12 5 0 0 0
IPI 0 0 21 23 7 0

1P 11 0 0 0 0 28 38
(b)

TABLE 1.1 TWO COMBINATIONS TO COMPONENT-MACHINE RELATIONSHIP

1.2 Objectives

The research aimes at grouping different component types to the existing
placement machines, in order to either minimize the line cycle time or balance the

workload among machines, which will result in enhancing the productivity.

In the previous rescarch work, a revised simplex method was applied onto

Chapter 1: INTRODUCTION

the component placement problem to attain the optimal line cycle time [Sze98]. The
rounding method was used to fulfil the integer constraints in the integer linear
programming model. However, the solution obtained in this way may not be
optimal. Therefore, in this research, a branch-and-bound (B&B) algorithm and a
tabu search (TS) heuristic will be studied in order to determine an optimal line cycle
time for a large-scale PCB manufacturing company to solve this line cycle time
determination problem. |
The main objectives of this research study can be summarized as shown
below:
e To study the performance of the B&B algorithm with integer programming on
determining line cycle time in PCBA.
e To study the performance of Tabu Search heuristic towards the line cycle time
determination problem on PCBA.

e To compare the effectiveness of these algorithms.

1.3 Research Scope

With a high production volume, the reduction of line cycle time becomes a
critical task in PCB manufacturing in order to increase the productivity. In
production planning of PCB assembly, approaches to increasing the productivity are
board grouping, component grouping, and sequencing. The board grouping strategy
tries to reduce setup time, while component grouping strategy aims at minimizing
the assembly cycle time in the line. Therefore, the study on how to group

components in order to obtain an efficient line with high throughput rate has to be

made.

Chapter 1: INTRODUCTION 10

This thesis is organized on five additional chapters. Chapter 2 reviews the
literature concerning component grouping and setup strategies on a PCB assembly
system. The review also focuses on algorithms for integer programming as well as
mathematical and heuristics techniques developed for those optimization problems.
Chapter 3 presents a mathematical model formulated with an objective of
minimizing the line cycle time.

The analysis phase of the research begins on Chapter 4, where the integer-
programming model solved by the Branch-and-Bound Algorithm will be presented.
Based on the mathematical model developed in Chapter 3, the performance
evaluation will be made with a case study. A heuristic technique, Tabu Search, will
be developed on Chapter 5. This search heuristic téchnique is revised from the i1dea
of the general tabu search and branching strategy. The performance of this heuristic
approach is also discussed in this chapter. A concise conclusion is drawn on the last

chapter, which concludes this project and points out some possible work for further

investigation.

Chapter 2: LITERATURE REVIEW 11

Chapter Two

Literature Review

2.1 Introduction

For years, vast efforts have been made on the global optimization problem of
the throughput rate on printed circuit board assembly (PCBA) systems. Considering a
typical component placement operation, there are three basic categories of problems
that can be taken into account in improving productivity of a PCBA system. They are
(1) determination of which board(s) to be produced on which assembly line, or which
boards to be grouped into which assembly line; (2) determination of which machine in
the assembly line to assemble which components; (3) sequencing the insertion
operations and feeder arrangement of different component types. The hierarchy
between these categories was described in Figure 2.1 [Amm97]. Problems in each of
these categories are rather complex, so it is difficult to solve all of them
simultaneously. A great deal of literature can be found on Category (1) such as
[Mai91], [Sht92], [Des95], [San95], [Gar96], [Ask94], and Category (3) such as
[Bal88], [1iz91], [Jiz93), [Cha89], [Nel95] and [Bar94}. However a few studies
address problem category (2). Consequently, this research will focus on the line cycle

time determination problem, and a detailed review of which will be given in the next

sections.

This chapter is divided into two main sections. A detailed review of the
component grouping problems on both single and multiple machines, together with

several setup strategies to achieve the goal of minimizing the cycle time or

Chapter 2: LITERATURE REVIEW 12

maximizing the throughput rate is described in Section 2.2. Section 2.3 provides a
general review on the algorithms used in solving integer linear programming (ILP)

models. Two main parts are presented, exact solution algorithms and heuristics.

Assembly
Product Equipment
Descriptions Characteristics

FIGURE 2.1 THE RELATIONSHIP IN A PCB ASSEMBLY SYSTEM

Chapter 2: LITERATURE REVIEW 13

2.2 Review on Component Grouping and Setup Strategies

In the past few years, various research studies have been made on how to
group different component types on either single or multiple PCB assembly machines.
The major decisions made at the assembly system are the allocation of the

components to machine families in order to either minimize the manufacturing cycle

time or maximize the throughput rate.

2.2.1 Component grouping in a single machine

When the assembly system includes only a single machine in the assembly
line, PCBs may require more than one pass on the machine. Several setups are
needed for the insertion of all the required components. Sadiq et a/. developed a rule-
based approach to find a near optimal solution for sequencing a group of PCBs on a
single placement machine [Sad93). Referring to the historical record on the
component usage in the database, boards are firstly sequenced on the machine, and
then feeders are arranged to these boards to minimize the number of component
changes. Maimon and Shtub examined several approaches for partitioning various
component types into sets (families) that can be simultancously loaded on a single
machine when machine set-up time and board-loading costs were known [Mai91}].

Hiller and Brandeau explored a branch-and-bound (B&B) algorithm in both
single machine and multiple machines, using a linear programming {LP) relaxation to
obtain lower bounds, and the Lagrangian relaxation to obtain feasible solutions as
well as the upper bound [Hil98]. The results from the Lagrangian relaxation heuristic

yielded solutions that are very close to the optimal component assignment solution.

Chapter 2: LITERATURE REVIEW 14

Giinther et al. sub-divided the problem of sequencing PCB assembly jobs into
two sub-problems of job sequencing and component set-up, and solved them
heuristically [Giin98). For job sequencing, a heuristic construction was made by
choosing the job with the minimum changeover time to each stage of the initial job
sequence. The heuristic terminated when no further improvement could be achieved.
For the component setup problem, a so-called “keep component needed soonest”
(KCNS) policy was applied for the tool exchange problem in a flexible manufacturing
system, which sorts those components needed soon for future jobs and kept in the
magazine and removed later. The heuristic solution procedure adopted component
commonality between PCB types.

Daskin ef al. utilized the B&B algorithm to minimize a weighted sum of total
number of times that PCB types were switched to give the total subset cardinalities on
a single-machine assembly system with limited component staging capacity [Das97].
The branching in the B&B algorithm was based on whether two PCBs have to be in
the same group or different groups. The heuristic algorithm had the capability of

performing single PCB moves and pair-wise swaps of PCBs, based on cost

effectiveness.

2.2.2 Component grouping in multiple machines

When the assembly system includes multiple machines, a decision regarding
the allocation of component types to an individual machine must be made. Chang and
Young explored a new PCB assembly mechanism by using multiple components
simultaneously [Cha90]. This mechanism was proposed through the analysis of

motion relationship in placing multiple surface mount components simultaneously. A

Chapter 2: LITERATURE REVIEW 15

mathematical model was formulated as a cardinality set covering problem. A
heuristic algorithm was proposed to obtain a near optimal component placement
strategy. Another heuristic, called GRASP, was presented by Klinecwicz and Rajan
in allocation of placement operations to the machines as well as the sequencing of
boards in a line {K1i94).

Giinther et al. delivered the component knitting problem in the semi-
automated PCB assembly, concerned about the allocation of the components among
various identical assembly stations and took production time and component
magazine capacity constraints into account [Giin96]. A heuristic solution containing
both job and machine selection was explored. It was stated that the knitting could
provide a considerable improvement on overall productivity due to reduced setup time
in the assembly shop.

Watkins and Cochran rendered a heuristic-based decision tool to rebalance
several product groups on a line by selecting and moving the components from the
bottleneck machines to non-bottleneck machines [Wat95]. Consequently, there was a
reduction of the component relocation cost.

Ammons ef al. discussed the component allocation problem for an electronic
assembly system with multiple, non-identical placement machines in an effort to
balance each PCB type with combined placement and setup times across the machines
[Amm97]. An integer programming (IP) formulation of the problem was developed,
and two alternative solution approaches were presented. One approach is list-

processing-based heuristic, which assumes that every machine has the identical

processing time in placing any components. However, the actual component
placement time is different, depending on the component’s configuration. Another

approach is the linear programming-based B&B procedure. A conventional LP-based

Chapter 2: LITERATURE REVIEW 16

B&B software package, called MINTO, was used to solve the problem. For the large-

scale integer linear programming model, MINTO is not an effective problem-solving

tool.

2.2.3 Setup strategies for PCB machines

As the production efficiency is related to the setup time, one of the main
approaches employed for reducing the overall set-up time for production is Group
Technology (GT). Applying Group Technology (GT) to PCBA gives an advantage of
saving setup time and maximizing machine utilization, as no component setup is
required when changing from one PCB type to another on boards that share the same
components. The concept of GT explores product similarity to minimize the impact
of changeover on system performance. Carmon ef al. firstly introduced a group setup
(GSU) (Figure. 2.2(b}) method to reduce the setup time for the PCB assembly
[Car89]. The proposed GSU method is somewhat a clustering heuristic based on the
group technology approach. The boards were divided into groups, each of which was
produced in two stages. At the first stage, the common components were set up on
the machines and assembled onto their respective PCBs. At the second stage, the set-
up and the assembly of the remaining components were made on each product. By
comparing this method with the traditional production approach, the GSU method
gave better throughput rate and production makespan. The implementation of the
GSU was said to be beneficial in the most high-mix, low volume production
environment. A comparison of Sequence Dependent Scheduling (SDS) (Figure
2.2(a)) with the above two methods was made by Maimon et al [Mai91]. The idea

underlying the SDS was that PCB types should be scheduled in a way that the

Chapter 2: LITERATURE REVIEW 17

subsequent PCB should have a maximum number of common components as the
current PCB. The ultimate goal for the SDS is to minimize the component changes
required during the sequence. The two scheduling methods outperformed the
traditional production in PCB assembly in terms of setup time and average work in
progress (WIP) level. It was found that the GSU scheduling method performed better
in line throughput, whereas SDS performed better in terms of average WIP level. The
SDS method was found to be superior to the others when the common components are
evenly distributed among the PCB types such that the difference in set-up time

between the GSU and the SDS is small.

SITIDEN. .

(a) (b)

FIGURE 2.2 (a) SEQUENCE-DEPENDENT SCHEDULING (b) GROUP SETUP PRODUCTION METHOD

McGinnis ef al imposed a multi-setup strategy, aiming at minimizing the
production time lost due to setup and avoiding excessive work in progress (WIP)
[Mcg92]. Two multi-setup strategies were proposed: decompose and sequence
(DAS), and partition and repeat (PAR). The first strategy broke the PCB family into
smaller subsets and looked for common components to pairs of subsets, and then
sequenced the subsets to minimize the incremental setups between them. The second
strategy partitioned the components required by the family into subsets such that a
group had enough staging capacity for each subset.

With medium-volume and medium variety manufacturing, a partial setup

Chapter 2: LITERATURE REVIEW 18

strategy was proposed by Leon and Peters [Leo96). The strategy was applied to the
optimization of a single-placement machine producing multiple products. Another
kind of setup strategy presented by Leon ef al. was group setup strategy [Leo98]. The
group setup strategy was developed on the basis of board grouping and component
sequencing. The similar PCBs were grouped into families using hierarchical
clustering algorithm, where similar boards were added to the family within the feeder

constraint of machines. Component sequencing was another consideration for this

strategy.

2.2.4 Machine assignment

Ben-Arieh and Dror examined the two-machine assignment problem \h;ith an
objective of maximizing the output [Ben92]. Two cases were stated on this problem.
The first case assumed that no component type could be inserted by more than one
machine. The second was that each type of components can be assigned to both
machines. Both cases of the problem were tested with real life industrial setting and

the resulting solutions were within 0.5% of optimality.

2.3 Linear Programming and Integer Linear Programming

After reviewing the optimization problem for the PCBA, different techniques
were found and a review on several techniques will be provided later in this section.
The optimization problem in PCBA is to find an optimal or close to optimal solution
for a number of decision variables so that an objective could be minimized (e.g. setup

time, number of setups, makespan, line cycle time) or maximized (e.g. throughput,

Chapter 2: LITERATURE REVIEW 19

profit) under certain constraints, such as limited resources. In fact, for the line cycle
time determination problem to be studied in this project, the model will be formulated
as an integer linear programming (the mathematical model will be described in

Chapter 3). So this section discusses several optimization techniques for solving an

integer linear programming model.

2.3.1 Linear programming

The development of linear programming (LP) has been amongst the most
important scientific advances in recent decades. The LP is the most common type
problem in allocating limited resources to activities in an optimal way. Linear
programming uses a mathematical model to describe this kind of problems with linear
functions. For instance, the optimality conditions put emphasis on the extreme points.
The solution methods are typically the simplex method, and the interior point method.
The simplex method follows a pathway to a solution through extreme points. It is
available for solving LP problems of enormous size. Given a set of m linear
inequalities or equations in n variables, that is, the constraints, linear programming
(LP) is utilized to find non-negative values of these variables. It can either satisfy all
the constraints or optimize the linear function of the variables. The general form of

LP model [Bea88]:

»n
min of max chxj +Cp
J=1

subject to the constraints:

"
Zang(S,:,Z)b,- 1=]5 ----- » M
j=

Chapter 2: LITERATURE REVIEW 20

where ¢y, ¢j, b; and a;; are constants or known data while x; are non-negative variables
to be determined.

The idea of the simplex method is to make a trip on the polyhedron underlying
a linear programming, from vertex to vertex along edges, until an optimal vertex is
reached. Two variants of the simplex method are the revised simplex and the dual
simplex method.

A revised simplex method applied on the component grouping problem was
studied [Sze98]. The resulting solution was found to be continuous instead of integer
decision variables. Fixing the non-integer variables by the rounding method, the

solution acquired becomes feasible.

2.3.1.1 Interior point algorithm

The introduction of the interior point algorithm shifted the interest towards the
interior point or more precise continuous interior trajectories. The basic idea of an
interior point algorithm is to enable the method to take long steps, by choosing
directions that do not immediately run into the boundary. Karmarkar proposed this
polynomial-time interior point algorithm, which produces a procedure that cuts across
the interior of the solution space [Kar84]. The effectiveness of the algorithm appears
to be in the solution of extremely large LP problems. Comparing both the simplex
method and the interior-point algorithm, the latter one is more likely to perform well

if certain conditions are met, such as no good initial solution is available, or the

problem is degenerate [Nas96].

Chapter 2: LITERATURE REVIEW 21

2.3.2 Integer linear programming

The mathematical model for integer linear programming 1is the linear
programming model with one additional restriction that the value of the decision
variables must be integer. In the real-life situation aimost all the component assembly
problems are integer-programming problems since no fractional part of a single unit
of component can be assembled. The integer programming problem is very difficult
to solve, in contrast to LP problems, since the computational time for an LP problem
is fairly predictable. For an LP, the time increases approximately proportionally with
the number of variables and with the number of constraints squareci. As the number
of integer variables is increased, the computational time for the ILP may increase
dramatically. In fact, a general ILP problem is NP-complete and hence generally
believed not to be polynomially solvable and confirmed that solving ILP problems
were difficult and time consuming [Gar79].

Ammons ef al. presented a bi-criterion integer-programming model with bin
packing heuristic, in allocation of placement operations to machines and sequencing
of boards through the shops [Amm85]. Later, Crama ef al set up integer
programming models on single board type, multiple machines with multiple
sequential placement head in a line for throughput rate optimization in PCBA
[Cra90]. An IP-based heuristic on optimization of robotic component placement with
single board type and sequential single-head machine was developed by Broad et al.
[Bro96]. Ammons e al. discussed the component allocation for an electronic
assembly system with multiple, non-identical machines, such that the workload of
PCB assembly of each machine for all boards can be balanced [Amm97]. The

problem of allocating components to machines was formulated into a large-scale

Chapter 2: LITERATURE REVIEW 22

integer linear programming model.

In some previous research, ILP was solved by LP relaxation, which neglected
the integral constraints, and then followed by a rounding solution to acquire the
variables with their nearest integer values. However, the resulting solution may or

may not be optimal to the problem. Therefore, some algorithms need to be explored

in ILP, such as [Kum95], [Cap95].

2.3.3 Algorithms for integer linear programming

2.3.3.1 Exact solution

Various exact solution algorithms were designedTo find an optimal solution in
a more efficient way than the complete enumeration of the past. Linear programming
became the first formulation of scheduling problems with the invention of the
Simplex algorithm by Dantzig in 1947 that provided efficient computation [Wil93].
Other important early Operations Research methodologies for Integer Programming
are the branch-and-cut and the B&B algorithm [Lan60], [Bar85].

The B&B algorithm directly divides a problem into several subproblems and
calculates the lower bound for each. This procedure usually generates a huge tree.
The computational complexity of the B&B algorithm is also exponential. Branch and
bound methods are therefore limited to less than one hundred activities. Other

enumerative methods also suffer from the exponential computational complexity for

reasonably large problems.

Unfortunately, most scheduling problems belong to the class of NP-complete

problems which are intractable since nobody has shown that a polynomial bounded

Chapter 2: LITERATURE REVIEW 23

algorithm exists for these problems. Exact solution methods are thus of limited
practical relevance in obtaining best solutions. Several algorithms are lied within the
exact solution, such as the cutting plane algorithm and the B&B algorithm. The

review of the former algorithm is presented below. A more detailed review of the

B&B algorithm will be given in Chapter 4.

2.3.3.2 Cutting plane algorithm

The cutting plane method is another common approach for ILP, and it is the
first systematic technique, developed by Gomory, for the pure integer-programming
problem [Gom58]. The algorithm generates extra constraints to “cut out” part of the
feasible region in an LP model. These extra constraints can also satisfy all the
feasible solutions but violate the optimal solution by the LP relaxation. A family of
facet defining inequalities is known for many classes of integer programming such as
the travelling salesman problem [Gro91], and the linear ordering problem [Gro84].
However, Taha suggested that when the choice is between the cutting plane method
and branch-and-bound method, the latter is generally superior [Tah97]. Nembhauser

and Wolsey gave more background on cutting plane methods for integer programming

methods [Nem88].

2.3.3.3 Meta-heuristics

Meta-heuristics are techniques which seek good (i.c. near optimal} solutions at
a reasonable computational cost without being able to guarantee optimality. Since an
exact integer solution needs a relative long computational time, many heuristic

techniques such as simulated annealing, genetic algorithms, tabu search and artificial

Chapter 2: LITERATURE REVIEW 24

neural networks have been applied to the operations research field to obtain a near-
optimal solution. They are the most recent development of approximate search
methods for solving complex optimization problems that arise in manufacturing and
business sectors. They have achieved a widespread success in tackling a variety of
practical and difficult combinatorial optimization problems, where they are the
mathematical study of finding an optimal arrangement, grouping, ordering, or
selection of discrete objects with a finite number. In fact, the advantages over an
exact algorithm are that they are much faster to execute (i.e. shorter computational
time), and have a higher flexibility to deal with many complex problems. As tabu
search is selected as a heuristic algorithm to solve the line cycle time determination

problem in this research project, it will be discussed separately in Chapter 5.

2.3.3.3.1 Lagrangian relaxation

In the early 1970s, Lagrangian Relaxation was utilized in solving the
travelling salesman problem and became a useful technique in generating lower
bounds for combinatorial problems. It was defined with respect to the constraint set
Ax > b by introducing a Lagrange multiplier vector A > 0 which is attached to the
constraint set and brought into the objective function. Ahmadi and Matsuo presented
a method to deal with the line segmentation problem in allocating the machines in a
multi-stage production line to a number of different ‘families’ of items [Ahm9la]. A
quadratic integer programming using the Lagrangian relaxation, sub-gradient
optimization and a Lagrangian heuristic was formulated with the large-scale circuit
board manufacturing problem. Noon and Bean applied a Lagrangian heuristic to an
asymmetric generalized travelling salesman problem [Noo91). The problem of

assignment operations was examined by Ahmadi and Tang using the Lagrangian

Chapter 2: LITERATURE REVIEW 25

relaxation to minimize the total movement of jobs between machines [Ahm91b].
Campbell and Mabert explored the batch production planning of a number of items on
a single machine as a mixed integer programming [Cam91]. Gavish and Pirkul
presented an approach to deal with the muiti-resources generalized assignment
problem with the objective of minimizing the total cost involved in assigning tasks to
agents, with each possible task/agent assignment being a vector of resources, and with

limited resources available to each agent [Gav9l].

2.3.3.3.2 Genetic and evolutionary algorithm
The idea of a genetic algorithm (GA) can be defined as the intelligent
exploitation of a random search. The name of the genetic algorithm originates from
the analogy between the representation of a complex structure by means of a vector of
components and the genetic structure of a chromosome.
A simple genetic algorithm can be described as follows [Gol89]:
Step 1. Initialization. Create an initial random population of chromosomes and
evaluate each chromosome. Set the current population as an initial population.
Step 2. Reproduction. Select two parent chromosomes from the current population.
The selection process is stochastic, so that a chromosome with a higher fitness
is more likely to be selected.
Step 3. Crossover. Generate two offspring from two parent chromosomes by
exchanging bit strings (crossover).
Step 4. Mutation. Apply a random mutation to each offspring (with a small
probability).
Step 5. Repeat steps 2, 3 and 4 until the number of offspring in the new population is

the same as the number of chromosomes in the old population.

Chapter 2: LITERATURE REVIEW 26

Step 6. Evaluate each offspring. Set the current population as the new population of

offspring and go back to Step 2.

The procedure is repeated for a fixed number of generations, or until no more
improvement is observed. In the context of obvious relevance in finding the optimum
solution to a large combinatorial problem, a genetic algorithm works by maintaining a
population of a number of chromosomes of potential parents, whose fitness values
have been calculated.

Major characteristics encountered in the GA are population-based selection,
crossover and mutation. The population size directly affects the performance of the
algorithm and gives a spatial dimension for selection. Small population size may take
the risk of serious under-covering the solution space, while large population may
incur severe computational penalty. Meanwhile, practical performance in the real
world with extremely large populations, may reduce the competitiveness with other
methods such as simulated annealing and tabu search. A population size as small as
30 was suggested in order to have a good output solution. The mutation helps to
preserve a reasonable level of population diversity for solving functional optimization
problems [Ree93].

By recombining two parent solutions, offspring usually inherit those variables
for which both parents share the same value. Thus the recombination essentially
results in a reduction of the size of the search space [Ree96].

The algorithm was applied to minimize the movement of the feeder rack (as a
surrogate of makespan) in the component sequencing problem by Dikos ef al
[Dik97]. Other applications of combinatorial problems were bin packing [Fal92],

[Ree93], machine sequencing [Ree95], and travelling salesman problem [Whi91].

Chapter 2: LITERATURE REVIEW 27

Some relevant research based on the genetic algorithm was studied by [Kho98a],
[Kho98b], [Mai98].

Schaffer et al. derived the application of the genetic algorithm to balance an
assembly line of robots that place surface mount devices (SMDs) on printed circuit
boards [Sch96]. A component grouping problem using a GA was explored [Sze98].

it was shown that a GA is closer to a neighborhood search and it reduced the
neighborhood and then searched in random fashion. Adding local optimization as an
extra ‘operator’ has been found to improve the GA’s performance albeit it may have a

cost in terms of computational requirements.

2.3.3.3.3 Simulated annealing

Simulated annealing has been used for discrete optimization since early 80s.
In the early research work, the implementation of simulated annealing was
characterized as a simple and widely applicable heuristic approach. This approach
can be regarded as a variant of the well-known heuristic technique of neighborhood
search, in which a subset of the feasible solutions is explored by repeatedly moving
from the current solution to a neighborhood solution. However, the strategy, 1n which
the search moves in the direction of improvement, resulted in convergence to a local
optimum rather than global optimal [Ree93]. Any local optimization algorithm can
be converted into an annealing algorithm by random sampling the neighborhoods and
allowing the acceptance of an inferior solution according to the probability as follows:

P(SE) = exp(-dE/kt)
where
k is a physical constant known as Boltzménn's constant

t is temperature

Chapter 2: LITERATURE REVIEW 28

SE is an increase in magnitude of energy
The mapping of elements of the physical cooling process onto the elements of

a combinatorial optimization problem is shown in Table 2.1:

Thermodynamic simulation

Combinatorial optimization

System states

Feasibie solution

Energy

Cost

Change of state

Neighborhood solution

Temperature

Control parameter

Frozen state

Heuristic solution

TABLE 2.1 MAPPING OF PHYSICAL PARAMETERS IN SIMULATION TO COMBINATORIAL OPTIMIZATION,

Many applications using simulated annealing reported in the Operational
Research fields involve scheduling or time-tabling problems - particularly production
scheduling, for example, determining an optimum sequence for a given set of jobs
through a set of machines in order to minimize the ma.kespan. Kutk and Solomon
tackled a multi-level problem for the reduction of setup time [Kui90]. Other research
using stimulated annealing on a PCBA system was done by Larrhovden and Zijm
[Lar93].

Simulated annealing was capable of providing good solutions to some very
difficult problems. However, long computational time even to approximate

convergence to the optimum, combined with the realization of fine-tuning of the

cooling schedule and a judicious choice of neighborhood structure, is needed to get

the best out of annealing.

Chapter 2: LITERATURE REVIEW 29

2.3.3.3.4 Artificial neural network (ANN)

Many combinatorial optimization problems were NP-complete. Different
heuristic approaches were therefore used to find reasonably good solutions. The
artificial neural networks (ANNs) offered a promising solution in the area of mapping
the manufacturing features of a component to a sequence of machining operation
[Kap92]. In addition, this methodology would ease the knowledge acquisition
bottleneck. It can also characterize by their learning ability, providing a promising
approach for automated knowledge acquisition. This approach deals better with a
non-linear model and creates its own relationship amongst information without the
presence of equations. It can also handle the noisy and missing data with good
predictive accuracy. The most widely used ANN is the Back Propagation ANN. This
type of ANN is excellent in dealing with prediction and classification tasks. Another
one is the Kohonen, or Self-Organizing Map, which is exceilent at finding
relationships amongst complex sets of data. The Kohonen self-organizing neural
network is based on somatotopical mapping [Koh89] and has been successfully used
for the travelling salesman problem [Ang88]. Since the two-dimensional
implementation of the mapping is very similar to the two-dimensional placement
problem, the Kohonen’s network has been applied to the circuit placement problem

by several researchers [Her90], [Rao92].

Placement sequence identification using artificial neural networks in surface
mount PCBA was explored by Su and Srihari [SuY96]. Detailed information on
ANN can be found on [Zur92]. For a mixed integer combinatorial optimization
problem in a power system, an approach combining the feedforward neural network
and the simulated annealing method to solve unit commitment was presented by

Nayak er at. [Nay00]. The type of neural network used in this method is a mutlti-layer

Chapter 2: LITERATURE REVIEW 30

perception trained by the back-propagation algorithm. The goal is to achieve

reduction of the computational time with an optimal generation schedule.

2.4 Conclusion

This chapter provided an extensive literature review on component grouping
problems in PCBA together with a brief review on the exact algorithms and heuristic
techniques for integer linear programming. Based on the review made above a
conclusion can be drawn as follows:

I. A wide range of research studies have been conducted on the optimization
problems in PCB assembly under the Categary (1) and (3), but only a few studies
have addressed the line cycle time determination problem. This, therefore,
deserves further study.

2. Computational time is an important efficiency measurement of an algorithm,
especially when the problem size becomes large in an integer linear
programming.

3. Heuristic techniques provide alternatives to have a near-optimal solution faster in
integer programming. The trends for meta-heuristics become significant in
solving a combinatorial problem. Several meta-heuristic techniques are presented
in the review.

Among the various heuristic techniques mentioned above and the tabu search
heuristic which will be discussed later in Chapter 5, they are useful methods for
discrete problems around strategtes for transcending local optimality. However, they
usually accomplish in a problem-specific design in the heuristics. Such that a method,

which works well on one problem, may not work well on another. The random start

Chapter 2: LITERATURE REVIEW 31

approach used in simulated annealing, which injects a randomizing element into the
generation of an initial starting point, results in longer running time to reach the
approximate solution. In addition, the choice of certain parameters like cooling rate
and the neighborhood structure, needs to be fine-tuned in order to acquire a better
solution. For genetic algorithms, the choice of parents to be matched in each
generation is also based on random or biased random sampling of population. It may
also need some control mechanism such as crossover and mutation rate, population
size, selection mechanism and so on. Furthermore, there is no prescription to indicate
how solutions might be combined systematically to achieve such exploitation. The
tabu search heuristic approach, by contrast, utilizes penalties and incentives to induce
the attributes of a good solution in the neighborhood structure. It is also shown to
offer an advantage in ease of implementation and in flexibility to handle additional
constraints during the optimization. In this research project, Tabu Search (TS) will be
used as a tool to solve the line cycle time determination problem, and a detail survey
will be presented later in Chapter 5.

In the next chapter, the line cycle time determination problem is formulated as a
mathematical model with the objective of minimizing the total cycle time for
machines. Meanwhile, a numerical case study will be demonstrated with the optimal

solution, solved by the integer linear programming model.

Chapter 3: MATHEMATICAL MODEL 32

CHAPTER THREE

MATHEMATICAL MODEL

3.1 Introduction

Constructing a mathematical model is the most effective way to explain real-
life optimization problems. The mathematical models exhibit these problems in
terms of mathematical representation by translating verbal descriptions of these
problems into equivalent mathematical formulation. During the model formulation
of the line cycle time determination problem, it is found that certain variables should
take the integer value in practice, it is not reasonable to process with a fractional
value. Problems in this case are called integer programming (LP).

Integer linear programming (ILP) occurs frequently because many decisions
are essentially discrete, having one or more options within a finite set of alternatives.
Although there are number of standard "tricks" available to cope with the situations
that often arise in formulating IPs, it is probably true to say that formulating IPs is a
much harder task than formulating LPs.

In this chapter, the line cycle time determination problem in PCBA is
formulated as a mathematical model. The formulation addresses the line cycle time
determination problem on assembling » types of components by m machines in the
production line. Furthermore, a numerical case study is presented as an integer

linear programming. A comparison is made between the rounding LP solution and

the pure IP solution.

Chapter 3: MATHEMATICAL MODEL 33

3.2 Modeling of PCB assembly

3.2.1 Machine-component relationship

In modeling of PCB assembly, suppose n different component types are
assembled by m machines (they may or may not be identical) in an assembly line,
where n is greater than'm. The placement time for machine i to assemble component
j is t; and the set up time (loading and unloading) for machine i is s; and the
requirements for different component type j are defined by ¢;.

The relationship between the machines and different component types can be

generalized as follows (Table 3.1):

Component type () Setup
time (s;)
f,j 1 2 3] e h
1 157 {12 £13 | oo tn Sy
2 {77 {77 £33 | e {on 52
= 3 I31 132 £33 | e fin 53
S
@
=
-
]
“ ---------------------------------------
=
m {mi Im2 In3 | Lrmn Sm
Quantity Ci <2 €3 | eeeeriieiiirerree e Cn
requirement of
component § {c;)

TABLE 3.1 THE RELATIONSHIP BETWEEN MACHINES AND COMPONENT TYPES FOR A PCBA LINE

Chapter 3: MATHEMATICAL MODEL 34

3.2.2 Minimizing the cycle time for the component insertion operation

Primarily, the line cycle time determination problem is in a form of min-max
nonlinear type programming. With the introduction of decision variable x; to
indicate how many component ;j are assigned to machine /, the model is transferred
into an Integer Linear Programming (ILP) model. In detail, the problem of

maximizing the throughput or minimizing the line cycle time can be formulated as

follows:
n
Minimize | max| (1% +5:)[i=1,2,com (3.1)
j=I
Subject to
Zx'j =c, forj=1,2 ..,n (3.2)
i=l
x;j2 0 and integers (3.3)

(LP3-1)

The model LP3-1 is formulated as the minimax type mathematical model of
minimizing the cycle time as the objective function (3.1). The constraint set (3.2)
guarantees that all components are assembled by machines. However, the type of
this model is non-linear and it is difficult to solve. Therefore, a revised model
should be constructed to convert the minimax type model into an integer linear

programming model as follows:

Chapter 3: MATHEMATICAL MODEL 35

Minimize
T (34)
Subject to:
n
T -2 1y X5 2 i for i=1,2,..,m (3.5)
j=1
m
Doxyo=c; forj=1,2,..,n (3.6)
i=17
x;> 0 and integers (3.7
(LP3-2)

In the formulation of LP3-2, a new decision variable T is introduced, which
simplifies the objective function of the problem in LP3-1 as well as the model. The
new model should meet the requirement for each component type in (3.6) and the
integrality constraint, which constrains the entire decision variables to be integer
values. Mathematically, LP3-1 and LP3-2 are equivalent, but LP3-2 1s an integer
linear programming model, and can be solved by general algorithms, such as, the
cutting plane method or the branch-and-bound (B&B) algorithm. Besides the
objective function, the major consideration for the modei LP3-2 is the line cycle time
as well as identifying the bottleneck machine.

Model LLP3-2 has nm + 1 variables and n + m constraints. In general, » is
large, for example, 300 component types in a board. If there are 3 machines in a line
to assemble these components, LP3-2 will have 303 constraints and 901 variables.
So, the formulation is bulky and difficult to handle. Fortunately, however, many

components on a board are of the same type.

In order to satisfy the increase in packaging density of the PCB in the recent

Chapter 3: MATHEMATICAL MODEL 36

electronics manufacturing, different component types are designed to be mounted on
both the top and bottom side of a single PCB. For a model with double-sided PCBA,
this can be simply decomposed into two single-sided PCB problems with two sets of
machine groups.

If n component types on the topside and ¢ component types on the bottom
side are required to be mounted, while j = 1, 2, .., n, nt+ I, n+2, ..., n+q is for the
éomponent types for both the top and boﬁom sides. There are two placement
stations in a production line (See Appendix I). Station 1 processes the components
on the bottom side, while Station 2 processes the components on the top. Station 1
and 2 possess m and p machines, respectively, (i.e. i = 1, 2, .. m, m+l, ..., m+p).
The notation for all other decision variables, placement time, setup time as well as
the component requirement is the same as above in a single-sided PCB. The model

for double-sided PCBA can be generalized as follows:

Minimize
{max (T, T3)} (3.8)
Subject to
n
Ty =Dty x5 25 for i=1,2,..,m (3.9)
j=1
J‘H-p
T, = D 4yx, 25, for i=m+l, m+2,...,m+p (3.10)

J=n+l

m
Doxi o=c¢ forj=1,2,...n (3.11)

=]

Chapter 3: MATHEMATICAL MODEL 37

mtp forj =ntl,nt2, .., ntq (3.12)

Zxr;r‘ =<

f=m+l

x;> 0 and integers (3.13)

(LP3-3)

Obviously, Model LP3-3 points out that the optimal objective value can be
determined by the decomposition method. With two workstations on the line, we
can also generate the following machine-component relationship (Table 3.2). The
placement times for Station 1 to assemble the components on the top side and for
Station 2 to assemble the components on the bottom side are assigned to be infinite

(). This means that the machines in Station 1 are unable to process any

components at the top side, and vice versa.

Chapter 3: MATHEMATICAL MODEL

38

Components on bottom side Components on top side set up
1 2 n n+l nt?2 ntq |time, s;
co 1 1y i tn 0o o o0 $
a C
E g 2 {2 12 I @ @ o0 5z
£ o
38
S®
n Lmi b2 Yorn ag [ee] oo Sm
m+1 b o @ | lmrimrd) Lmr D) Ui ppnogy | St
Lo
22 m+2| w w© @ |lmednty me 2y lmsgmrg) | Sme2
£c
£8
&8
Ss®
m+p o0 7 S a Umipn+ 1) Ymrppine2) Umapinsg) [Smep
Component <y c; Cn Cnet Crt2 e Cnog
Quantity ¢;

TABLE 3.2 TABLEAU FOR DOUBLE-SIDED PCBA RELATIONSHIP

3.3 Case Study

Since a double-sided PCBA model can be simplified as two single-sided

models, a case study exemplifying the mathematical formulation of a single-sided

PCB is presented. The numerical case study illustrates how the model LP3-2 is

implemented in grouping the component types into a machine such that workload

among the machines can be balanced in the line. In this case, the line consists of 3

machines and 6 different component types associated with their total quantity of 478

to be assembled (i.e. m = 3 and n = 6). The relative placement times and setup times

are illustrated in Table 3.3 (in 0.1 seconds). The infinity (c0) 1s given to machine i, if

it is unable to process component j. In practice, a significant large value (e.g. 90000)

is assigned in the mathematical model.

Chapter 3: MATHEMATICAL MODEL

39

. Component type j Setup
Machine i time s;
1 2 4 5 6
1 3 7 0 0 o0 110
2 7 12 17 24 17 24 147
3 23 38 35 38 38 36 147
Quantity
requirement of 321 67 35 12 31 12
Component c;

TABLE 3.3 TABLEAU FORM OF THE NUMERICAL CASE STUDY

The line cycle time determination problem in the form of LP3-2 can be

represented as follows:

Mintmize
T

Subject to

1) T - 3%y ~ 7X12 - 7x)3 - 90000x,4 - 90000x,5 -90000x,6 >= 110

2) T - 7Xa) - 12X23 - 17X23 - 24X24 - 17X25 - 2dx36 >= 147
3) T- 23)(3] - 38X32 - 35){33 - 38){34 - 38){35 - 36X35 >= 147

4y Xy + X1 + X3y =321
5) X1z + X2 + X33 = 67
6) Xi3 + Xo3 + X33 =35
T) Xia+Xoa +X3a=12
8) Xis + Xz5 + X35 =31
9) X16 + Xog + X3 =12
10) T, x;;=0 and integers.

for 1=1,2,3,)=12,,5,6

The model is then solved by relaxing integer requirement as a linear

programming model. By using a commercial software package, LINDO, the result 1s

generated as follows:

Chapter 3: MATHEMATICAL MODEL

40

LP OPTIMUM FOUND AT STEP 14

OBJECTIVE FUNCTION VALUE

1) 1328.562
VARIABLE VALUE
T 1328.562378
X11 321.000000
X12 1.508918
X13 35.000000
X14 0.000000
X15 0.000000
X16 0.000000
X21 0.000000
X22 65.491081
X23 0.000000
X24 0.000000
X25 23274673
X26 0.000000
X31 0.000000
X32 0.000000
X33 0.000000
X34 12.000000
X35 7.725327
X36 12.000000

REDUCED COST

0.000000
0.000000
(.000000
0.000000

48793.671875
48793.671875
48793.953125

0.587396
0.000000
1.581451

2.214031
0.000000

2.497027
1.627824
1.581451
1.156956
0.000000

0.000000
0.000000

With the rounding method (i.e. the value decision variables are rounded to

the nearest integer) used in obtaining the optimum solution in this example, a

comparison is made between the result obtained in this way and the solution from

the pure integer programming. The pure IP solution is also obtained from LINDO

with the integer requirement. The results are as follows:

Chapter 3: MATHEMATICAL MODEL

41

Variables Value Value
(Rounding (Pure integer
method) programming)
X1 321 319
Xi2 2 3
X13 35 35
X14 0 0
X15 0 0
X16 0 0
X21 0 1
X2 65 64
X23 0 0
X24 0
X215 23 24
X26 0 0
X371 1
X32 0 ¢
X33 0 0
X34 12 12
X35 8 7
X36 12 12
T 1339 1333

The optimum cycle time in the pure integer-programming model for the

above formulation is 133.3 seconds. However, there was a 0.6 seconds difference

for the rounding method. For a high volume production on this PCB (e.g. 10000

units produced in a batch), there is 6000 seconds difference. The production line

will become inefficient and the cost of production will be high and some profit will

be lost.

Chapter 3: MATHEMATICAL MODEL 42

3.4 Conclusion

In order to present the line cycle time determination problem in PCBA in the
form of mathematical representation, a mathematical model of the problem was
formulated in this chapter. A model based on the minimax type was developed
initially. This model was the evolution from an integer non-linear programming into
a general integer linear programming (ILP). Later, a general ILP model with an
additional decision variable T was presented, making it possible to reduce the
problem size. In addition, an optimization model for the double-sided PCB
assembly was further developed. The model can then be sub-divided into two
independent sub-problems with less computational time required than with one
model formulation. In this research, the techniques proposed in solving the line
cycle time determination problem in PCBA are based on the simplified model, i.e.

LP3-2. In the next chapter, a branch-and-bound algorithm will be applied to solving

the mode] developed.

Chapter 4: BRANCH-AND-BOUND ALGORITHM 43

CHAPTER FOUR

A Branch-and-Bound Algorithm

4.1 Introduction

An integer linear programming (ILP) model involves maximizing or
minimizing a linear expression subject to a set of linear constraints. Either pure or
mixed integer variables are restricted to take integer values. If variables are
considered as representing the coordinates of the points in the multi-dimensional
space, then the constraints correspond to the region of the space. Many ILP
algorithms rely on solving the LP relaxation by neglecting the integer constraints on
the variables at the beginning. Different ILP representations of the same problem
may result in different LP relaxation.

So far, the strategy to be adopted in integer programming is in a sense of
minimizing the degradation in objective value between successive LP relaxations.
Three possible, but conflicting, aims are:

1) To obtain the proven optimal solution as quickly as possible.
2) To obtain a desirable integer (feasible) solution and terminate the tree search

within a reasonable computational time.
3) To obtain a large number of integer solutions at a reasonable price.
To increase the efficiency of the tree search some useless branches should be
fathomed. The higher the solution tree is done, the less the computation effort will

be needed. To do that, the cutting off method for the objective function should be

Chapter 4;: BRANCH-AND-BOUND ALGORITHM 44

used. Once the solution value of the LP relaxation at a branch becomes worse than
the bound, the branching operation will be terminated. This may either cause
backtracking or termination of the optimization process.

The intention of this chapter is to determine the optimal cycle time for the
line cycle time determination problem by using the branch-and-bound (B&B)
procedure, and the decision is made on how to group different types of components

into multiple non-identical machines in an assembly line.

4.2 Computational complexity in integer linear programming

To be more precise about the solvability issue of integer linear programming,
definitions from the theory of NP-completeness are described [Gar79). This theory
deals with so-called recognition problems, also referred to as feasibility or decision
problems. Given an optimization problem, the corresponding recognition problem,
requiring a yes/no answer, can be constructed in the following manner. Suppose we
have a minimization problem, Min f(x), then the recognition problem is asking for

the existence of a solution x such that f(x) < z for some threshold value z.

4.3 Linear programming relaxation

LP relaxation neglects the integer constraint when solving an integer
programming model. The vertices of the feasible region of an LP relaxation are in
general not integer points. If the solution obtained by LP relaxation is not feasible,
neither is the original 1P model, since both share the same solution space. It gives a

bound on the model (lower bound for a minimization model, upper bound for a

Chapter 4: BRANCH-AND-BOUND ALGORITHM 45

maximization model). In addition, a feasible integer solution resulted from the LP
relaxation gives a bound on the full IP model (upper bound for minimization model
and lower bound for maximization).

The B&B algorithm requires the simplex method to acquire the initial solution
as well as the solution at each node of the tree structure. In fact, it is a quite efficient
pivot method for solving LP models arising in real-world applications. Before
applying the simplex method to an LP, all the constraints on which pivot operations
are carried out must be transformed into equality constraints by introducing the
appropriate slack or artificial variables. If a primal feasible basic vector is not
available, it tries to find one by temporarily ignoring the goal in the objective
function. The two-phase method is then constructed. The Phase I problem is to
prove whether or not the original LP has a feasible solution. If an initial feasible
basic vector for the original problem is available, Phase II then directly solves the
problem with the simplex method, which is initialized by the specially constructed
LP from Phase I. The following steps are used to illustrate the general procedure of
a minimization model:

1. Formulate the mathematical model into a standard form.

2. Multiply the “>” constraint row(s) with the sign ">", by -1 and add a slack
variable on each of these constraints in order to make it into an equality
constraint. When the simplex method is completed, the right-hand side (RHS)

constant(s) vector will become nonnegative again.

3. Find the first basic feasible solution. (Iterate through these steps with a slightly
expanded form of the problem.)
4. Calculate the reduced costs.

5. Test for optimality.

Chapter 4: BRANCH-AND-BOUND ALGORITHM 46

6. Choose the entering variable.

7. Calculate the Search Direction.

8. Test for unboundedness.

9. Choose the leaving variabie by the minimum Ratio Test.
10. Update the solution.

11. Change the basis.

12. Go to Step 5.

4.4 The branch-and-bound (B & B) algorithm

The branch-and-bound algorithm is an approach developed for wbrking out
discrete and combinatorial optimization problems. In the meantime, searching for an
optimum feasible solution is done by a partial enumeration. The idea of imposing
the B&B algorithm for integer programming using linear relaxation was proposed by
Land and Doig in the early 60’s [Lan60]. The process involves keeping a list of
solutions from the linear programming relaxation, which relaxes the constraints for
integrity of all the decision variables. Denote the optimal solution by z* and L is the
list of the current solution for the decision variable(s) that does not satisfy the
integrity requirement. The discrete optimization problems are the problems in which
the decision variables are assumed to be discrete values from a specific set (i.e. a set
of integers). The combinatorial optimization problems, on the other hand, are the
question of choosing the best one out of all possible combinations. The effectiveness
of the B&B procedure for solving integer linear programming (ILP) problem using

LP relaxation has been well documented in past decades.

Chapter 4: BRANCH-AND-BOUND ALGORITHM 47

4.4.1 A survey on branch-and-bound (B & B) algorithm

Aghezzaf et al. addressed a balancing problem in order to achieve a given
production rate or to optimize the use of workstations with the B&B algorithm
[Agh95]. Daskin et al. formulated the PCB component grouping problem into an
integer-programming model in order to minimize the total component and PCB
loading cost subject to a capacity constraint on the number of types of components
and obtained the optimal solution with the B&B algorithm [Das95]. An optimization
algorithm based on the B&B method was developed by Asano et al. to minimize the
maximum tardiness in single machine scheduling problem with ready and due time
constraints on jobs [Asa95].

A B&B algorithm was proposed by Sprecher for solving the Type I simple
assembly line balancing problem (SALB-I} [Spr96]. The algorithm, based on the
precedence tree guided enumeration scheme, was proposed for dealing with a board
class of resource-constrained project scheduling problem. Another exact B&B
algorithm was formulated to find optimal solutions and to provide a guidance on the
source of the gap between a heuristic, the pick and rule (PAR) heuristic, and the
lower bound results. This PAR heuristic was presented by Kumar et al. to minimize
the total number of processors, while determining the number of processors at each

type, the sequence of the processor, and the operations to be performed at a flexible

assembly system [KumO0].
The main phases for the B&B algorithm used to solve the discrete and
combinatorial problems are: selection branching, bounding and fathoming. The

selection phase normally uses a backtracking technique to systematically go through

all the possible configurations of a space. These configurations may be all possible

Chapter 4: BRANCH-AND-BOUND ALGORITHM 48

arrangements of objects (permutations) or all possible ways of building a collection
of them (subsets). There are two backtracking techniques, the depth-first search and
the breath-first search. Sections 4.4.2 and 4.4.3 will give a brief description of these
two search techniques.
In the branching phase, the solution of a model is partitioned into two
mutually exclusive subsets, and each of these is represented by a node connected in
the B&B tree. In the bounding phase, in the case of a minimization model, lower
bounds on the optimal solutions of the sub-modeis are determined. Finally, in the
fathoming phase, sub-models are excluded for further consideration because a better
solution has been found.
The LP-based branch-and-bound algorithm is stated as follow (Figure 4.1):
1. Initialize
z* = current best solution with LP relaxation, that is the imitial node.

2. Select
Choose one of the decision variables (x;) from L.

3. Branch
Fix x; by defining it into two possible sub-regions: |_xj J and I_xJJ + 1. ij,J
denoted as the greatest integer value approaching to x; - 1. Take an
additional constraint into the model and process it with LP. If the
improved solution is found, record it.

4. Optimality checking / terminate

If L = 0, then terminate, as the optimal solution has been obtained. If L. >
0 and the improved solution is found, go to step 2. Otherwise, go to step

5.

Chapter 4: BRANCH-AND-BOUND ALGORITHM 49

5. Bounding

Apply the compliment of current node and solve it with LP. If the
solution 1s not improved, backtrack one level and repeat solving with LP

by selecting with compliment of that node. Otherwise, go to step 4.

The major difficulty in the algorithm is the optimality conditions to check if a
given (feasible) solution is optimal or not. Given a candidate solution, how to find

an “improving feasible direction” for the next move is a challenge.

Chapter 4: BRANCH-AND-BOUND ALGORITHM 50

Start

Initialize
Set the list of fixed variables to be empty
Set the current best solution to be infinitely bad

v

Select
Select unfixed variable {make sure not te pick one in the
previously explored partial solution)

v

Bound
Calculate implied or explicit bounds on solution values for each
valid value of the selected variable. Eliminate the values that are
sure to yield solutions inferior ta the current best solution,

Yes

All values
eliminated ?

h, 4
Branch
Fix value of a variable included in partial
solution

dditional unfixe
variable 7

Yes

Solution complete
Save solution and its value if it is best

v

Backtrack
Release one of the variables r—
{(Normally, but not necessarily the last one to be fixed)

\\W op

FIGURE 4.1 THE B&B ALGORITHM [TAHTS]

Chapter 4: BRANCH-AND-BOUND ALGORITHM 51

4.4.1.1 Depth-first search

Depth-first search (DFS) begins with expanding the initial node and
generating its successors. In each subsequent step, the DFS expands one of the most
recently generated nodes. If this node has no successors (or cannot lead to any
solutions), the DFS backtracks and expands a different node. A major advantage of
the DFS is that its storage requirement is linear to the depth of the state space being
searched. The graphical representation for the tree structure of the DFS is as follow

(Figure 4.2):

OO
ORO
ONO

FIGURE. 4.2 GRAPHICAL REPRESENTATION FOR DFS

There are two major DFS algorithms: simple backtracking, and depth-first
branch-and-bound.
o Simple Backtracking

The DFS search method terminates upon finding the first solution (not
necessarily optimal). The simple backtracking does not use heuristic information to

order the successors of an expanded node. Variant ordered backtracking uses a

Chapter 4: BRANCH-AND-BOUND ALGORITHM 52

heuristic to order the successors of an expanded node.

o Depth-First Branch-and-Bound
It exhaustively searches the state space even after finding a solution path. If a
solution is found, it will compare with the current value of the solution. If the new

. one is better than the previous value, the previous value will be replaced by the new

value.

Example
A simple example in an ILP model is done to illustrate how DFS performs.
Minimize

2x1 + 5x2 + 3x3

Subject to

3x1 +2x2+x3 >=10 (4.1)
x1 +3x2+2x3 >=12 4.2)
x1 +2x2-x3 >=0 (4.3)

x1, x2, x3 > 0 and integer

Step 0 Solve with LP relaxation
In this example, this yields

x1 =1.375, x2=1.125, x3=3.625 Objective = 19.25

Step ! Branch-and-bound algorithm with the DFS

Decision variable x2 is first selected as a branching variable. Since x2 can
only take integer values, there is no loss of generality in stipulating that either x2 <1

or x2 = 2. These conditions are appended individually to the original model to create

Chapter 4: BRANCH-AND-BOUND ALGORITHM 53

two new sub-models. For this example with the minimization of the objective
function, we start from choosing x2 < 1 to build the tree with the DFS. The process

can be diagrammatically illustrated by using tree structures (Figure 4.3 & 4.4):

obj. = 19.25 obj. = 19.25
x1= 1375 xl = 1375
x2=1.125 a2=112%
x3 = 13.625 x3=13.62%
x2 <=1 x2 <=1
ohj. = 19.333
ob). = 19.333 xI = 1.667
x} = 1.667 x2 = L.000
x2 = 1.000 x3=3667
x3 =3.667

%3 <=3

obj. = 20.000
x1 =3.000
x2 = 1.000
3 = 3.000

FIGURE 4.3 BRANCHING STRATEGY WITH THE DFS IN THE BRANCH-AND-BOUND ALGORITHM

Chapter 4: BRANCH-AND-BOUND ALGORITHM 54

obj = 19.2%
abh=1.378

x2=LI25
x1=1625

b, = 19333
x| = L6467
x1= 1000
x}= 1667

x3>=3

obj. = 20,000 oby. = 19.704 obj = 11000
x| = 3.000 / »] = 4000 x| = 1142 b = 1.000 /
3 %] = 0000 a2 =118 = = 2000
1= 3000 \ / 23 = 400G =200 \ /
Integer Inreger Integer
obi, = 20 000 obg, = 20,000
xl= o0 x| = 2.000
=100 x} = 2.000
=10 a3 = 2,000

integer Integer

FIGURE 4.4 THE BRANCH-AND-BOUND SOLUTION TREE WITH DFS

The numbers of the node indicate the sequence of the branching operation. It
is shown that the complete structure of the tree consists of 8 nodes and an optimal

solution is found firstly at node 2.

4.4.1.2 Breath-first search

It is not necessary to terminate branches where the objective value has
become worse than that of the best integer solution so far found. The breath-first

search (BFS) maintains two lists, open and closed. At the beginning, the initial node

Chapter 4: BRANCH-AND-BOUND ALGORITHM 55

is placed on the open list, then sorted according to a heuristic evaluation function
that measures how likely each node is to yield a solution. The graphical
representation for the tree structure of the BFS is shown in Figure 4.5.

At each step, the most promising node from the open list is removed. If the
node is the goal node, the algorithm terminates, otherwise the node is expanded. The

expanded node is placed on the closed list, and the node with the highest heuristic

value is deleted.

FIGURE 4.5 GRAPHICAL REPRESENTATION OF BFS

The basic idea in the above algorithm is that the nodes are expanded
according to the priority (here the priority is the selected heuristic function). The
successors of the expanded node are put into the priority queue, while in the DFS, a
stack is used. The successors of a newly expanded node will be explored before the
old nodes. The main drawback of the BFS is that its memory requirement is linear to
the size of the search space explored. With the same example in the previous
section, we elaborate it with the BFS. The diagrammatic illustration of the B&B

solution tree can be shown as below (Figure 4.6):

Chapter 4: BRANCH-AND-BOUND ALGORITHM 56

obj. = 19.25
Al =178
x2=1125
323625

x2<=1]

obj, = 19333
Al = 1667
x2 = 1.000
xd = 1507

Y obi.= 19.714

sl = 4000 a=Lia
2= 1.000 4 2= 0.000 2w 2286
%3 = 1.060 \ / 43 = 4.000 x] = 2000

Inleger

Integer Integer

obj. = 20000 obj. = 20000
nl = 1.000 X =200
n} =000 x2 =2 000
2} =1 000 AL FaLiY

Integer Integer

FIGURE 4.6 THE BRANCH-AND-BOUND SOLUTION TREE WITH BFS

The sequence for the branching operation is different compared with the
DFS. Although the complete structure of tree still consists of 8 nodes, the optimal
solution is found in node 3. It is noticed that it needs one more node or branch
before reaching the optimal solution. However, with the increase on the number of
decision variables, the solution space will become larger, and may need more

computational time to reach the optimal solution.

Chapter 4: BRANCH-AND-BOUND ALGORITHM 57

4.4.2 Performance evaluation

The presentation of the B&B algorithm in this section shows the special data
structure of the line cycle determination problem in PCBA. A procedure with the
simplex method together with the B&B algorithm is implemented by the computer
language C++ (See Appendix IV) and MATLAB (See appendix V). A numerical
case study is used to obtain the optimal solution of the algorithm, and compared with
the solution from a commercial software package.

In the computational implementation of the B&B algorithm, the depth-first
search is used in the branching procedure (Figure 4.7). Both the lower bound and
the upper bound are generated at each node in the B&B algorithm. The lower bound
of the current node acts as an index to fathom in the usual way when it is greater than
the upper bound of the previous node. In fact, in the described branching
procedures, the branch is developed on one side only (i.e. left-side branch or right-
side branch) until the node is fathomed and backtracking is needed in the algorithm.
Moreover, the replacement of the upper bound is taken when the current one is less
than the previous or reserves the previous one if the current one is larger. When an
additional constraint enters the problem, the problem is repeatedly solved by the
simplex method. The following structure is the implementation of the B&B

algorithm with the depth first search strategy:

Chapter 4: BRANCH-AND-BOUND ALGORITHM 58

DFS_Branch (Problem T1):
{
// Fathom the node
if (T1.L > T1_Previous_U)
return,

// Branch for the selected variables with non-integer value

for (inti=1;1<=m;1++)
for (intj=1;j <=n; j++)
{
if T1.basis [i]{j] != round (T1.basis[i][j])
continue;

//Generate an additional constraint to the problem
newT] =TI;

perform the simplex method over new T1;

if (newT1 is not feasible)

¢

backtrack to the upper node;
Set the constraint with another branch;
modify record and save the new bound,;

return;

compute the newT1.L;
DFS_Branch (Problem newT1);
until all variables are integers or newT1.L = newT1.U

}

FIGURE 4.7 COMPUTATIONAL IMPLEMENTATION OF THEE BRANCH-AND-BOUND ALGORITHM

Chapter 4: BRANCH-AND-BOUND ALGORITHM 59

4.5 Numerical case study

The B&B algorithm is applied to the case with a single-sided PCBA described
in Chapter Three. With the objective of minimizing the line cycle time, the optimal
solution acquired by the B&B algorithm is found. Recall the mathematical model

for the case in the line cycle time determination problem as stated below:

Minimize

Subject to

DT - 3xy1 - 742 - 7X13 - 90000x,4 - 90000x,5 -90000x,6 >= 110
2) T - TXay - 12x22 - 17%z3 - 24%34 - 17x35 - 24%26 >= 147
3) T - 23x3; - 38x3 - 35x33 - 38x3q - 38x35 - 36X36 >= 147
4 Xy1 + Xa1 + Xa1 = 321
5) Xi2 + Xaz2 + X352 = 67
6) X3+ X3 + X33 =35
7) Xia+ Xoa + X34 = 12
8) Xis + Xas + X35 =31
9) X6 + X6 + Xag = 12
10) T, x;;>0 and integers. fori=1,2,3;5=1,2,....,5,6

Chapter 4: BRANCH-AND-BOUND ALGORITHM

60

4.5.1 Solution procedures

e Step O (Initialization)

3 7 7
000 O 0 0 7 12
000 O 0 0 00
100 0 0 0 1 0
A=|0 1 0 0 0 0 0 1
001 0 0 0 00
000 1 0 0 00
000 0 i 0 0 0
000 0 0 1 00

b=[-110 -147 -147 321 67 35 12 31 12]";

c=[0000000000000000G001];

o Step I (The simplex method)

In the simplex method, the two-phase method is performed.

Phase 1
The basis obtained in Phase I is:

bas =
5 7 13 19 2 3 10 11 12

The current basic variable values are:

b=
1.0e+003 *
0.0000
0.2093
0.1117
2.7151
0.0670
0.0350
0.0120
0.0310
0.0120

0

L= R = =]

0

o O = O o O

0

Lo T e R e T - I -]

0

-0 O o O O

23 38

(== = R I R

90000 90000 90000 0 0 0 O 0 0 0 O
17 24

0

(== e T o R o

0 0 0 O
17 24 0 0 0 0 0 O

35 38

- = R e R =

0

(== e BT Tt I o

38

e = T == B - T i

36

- 0 O O O O

[ome SR e B s B e B e S

Chapter 4: BRANCH-AND-BOUND ALGORITHM 61

The pivot step is done using the 'Gauss-Jordan' elimination. No special

factorizations are used to ensure stability. A final check on the rounding error is

made.

Phase 11

The solution obtained in Phase Il is:
bas =
1 8 17 19 2 3 16 11 18
The current basic variable values are:
b=

1.0e+003 *
0.3210
0.0655
0.0077
1.3286
0.0015
(.0350
0.0120
0.0233
0.0120

The current objective value is:

T=

1.3286e+003

The number of iterations is 6

Final tableau

1.0e+004 *

Chapter 4: BRANCH-AND-BOUND ALGORITHM

62

Columns 1 through 7

0.0001
0

OO C O C OO

0

0

0
0.0001

o

o o o o o

Columns 8 through 14

0
0.0001
0

o0 O O O o ©

0
0.0001
0
-0.0002
-0.0001
0.0001
0
0
0
0.0002

Columns 15 through 21

0
0.0001
0

e e B e N e B = R B

0
0.0001
0
-0.0002
-0.0001
0.0001
0
0
0
0.0002

Columns 22 through 23

0
0

0.0321
0.0065

Qo ©

0.000]

oo o Q

0

0
-0.0001
0.0002

0

0
0.0001
-0.0001

0
0.0002

-0.0001
0.0002

(.0001
-0.0001
0
0.0002

0
-0.5887
-0.1285
-4.8794
0.5887

0.0001
0.1285

4.8794

- B e A e T = I = T

0
0.0001
0.0001

0

[= R en S o D ==)

0
0.0001
0.0001

0

0
-0.5887
-0.1285

-4.8794

0.5887

0.1285

4.8794

0.0001
-0.0002

0.0001

0.0002

0.0001
-(.0002

0.0001

0.0002

0
-0.5887
-0.1285
-4.8794
0.5887

0.1285
0.0001
4.8794

0.0001
0.0001
-0.0001
-0.0002
-0.0001

0.0001

0.0002

0.0001
0.0001
-0.0001
-0.0002
-0.0001

(.0001

0.0002

0.0001
0.0001
-0.0002

0.0001

0.0002

0.0001
0.000i
-0.0002

(.0001

0.0002

Chapter 4: BRANCH-AND-BOUND ALGORITHM 63

0.0008
0.1329
0.0002
0.0035
0.0012
0.0023
0.0012
-0.1329

[cox R s N e B ~u- N o B e S e

Step 3 (Branch-and-Bound)

Substitute the resulted solution from the simplex method to the initialization
of the B&B algorithm. The optimal solution obtained from the algorithm is stated as
below:

[X11, X12, X13, X14, X15, X16, X21, X22, X23, X24, X25, X26, X31, X32, X33, X34, X35, X35)
=[319,3,35,0,0,0,1,64,0,0,24,0,1,0,0,12,7, 12]

For machine i, the machine processing time MT; {in 0.1 sec) is:
=1, MT, = 1333
i=2 MT, =1330
i=3 MT; = 1324

Therefore, the line cycle time is equal to:

max {MT, MT; MT3} =max { 1333, 1330, 1324} = 1333

The objective function value from the computational program is T = 1333,

4.5.2 Result analysis

The line cycle time determination problem has been formulated as an integer
linear programming and solved by the branch-and-bound algorithm. The optimal

solutions obtained are all integers. Previously, the task of grouping different

Chapter 4: BRANCH-AND-BOUND ALGORITHM 64

component types can be solved with a linear programming, by rounding the decision
variable that have fraction values, into integers. If the rounding method is applied,
the solution becomes:
[X11,X12, X13, X14, X135, X16, X21, X22, X23, X24, X25, X26, X31, X32, X33, X34, X35, X36)
=[321, 2, 35,0,0,0,0,65,0,0,23,0,0,0,0, 12,8, 12]
and the objective function value T = 1339,
However, in the integer linear programming, the optimal solution obtained 1s:
[X11. X12, X13, X14, X15, X16, X21, X22, X23, X24, X25, X26, X31, X32, X33, X34, X35, X36]
=[319,3,35,0,0,0,1,64,0,0,24,0,1,0,0, 12,7, 12]
and the objective function value T = 1333
There is a difference of 0.6 second and the relative error is about 0.45%.

This percentage is high since the production volume is very large.

4.6 Conclusion

In this chapter, a review on the branch-and-bound algorithm was carried out
since it is a widely used optimization technique in integer linear programming. In
addition, the line cycle time determination problem was formulated as an ILP.
Instead of using the rounding method to obtain an all-integer solution to the problem,
the branch-and-bound algorithm was implemented to optimize the line cycle time.
This algorithm is based on the tree search strategies. There are two major tree search
strategies, the depth-first search and the breath-first search. Obviously, the resuits
obtained are based on depth-first search, since this storage requirement is linear to

the depth of the state space being searched.

Chapter 5: TABU SEARCH HEURISTIC 65

CHAPTER FIVE

A TABU SEARCH HEURISTIC

5.1 Introduction

Tabu search (TS) is a search heuristic that can be used to guide any search
process. It employs a set of moves for transforming one solution to another and
provides an evaluation function for measuring the attractiveness of the move. It is
designed to cross boundaries of feasibility or local optimality normally treated as a
barrier, to impose systematically and release the constraints to permit exploration of
the forbidden regions. Restrictions are imposed to guide the search process in
negotiating difficult regions. These restrictions operate in several forms, both by
direct exclusion of certain search alternatives classified as tabu (forbidden), and also
by translation into modified evaluations and probability in selection.

The main problem of a basic local search is that the search space exploration
often gets trapped in solution states, called local minima, in which ne improving
operator applies. To cope with this problem of being trapping in a local minimum, a
control tactic in tabu search is implemented. In the computational effort, the issue
relative to the speeding up of the execution on each iteration of the search is
addressed.

It uses a flexible structure memory to record the varying time span in the
intensification and diversification in order to accelerate the searching process.

In section 5.2 of this chapter, some previous applications of tabu search

Chapter 5: TABU SEARCH HEURISTIC 66

heuristics are described. Section 5.3 gives a brief description on the tabu search
heuristic technique. Sections 5.4 and 5.5, respectively, present the technique used
for the line cycle time determination problem and a numerical case study. Finally, in

section 5.6, a comparison is made on this heuristic search technique and the branch-

and-bound algorithm used for the problem.

5.2 A survey on tabu search heuristic

Tabu search is an iterative procedure for solving discrete combinatorial
optimization problems. It was first suégested by Glover in 1977 and since then it has
been increasingly used [Glo77]. It has been successfully applied to obtain optimal or
sub-optimal solutions to such problems as scheduling, timetabling, travelling
salesman and layout optimization. Varieties of applications were made from
scheduling to telecommunications. Early applications of tabu search focused on the
flow-shop scheduling problem. Daniel er al presented the TS method for the
flexible resource flow shop scheduling problem, which employed a nested search
strategy based on the decomposition of the problem into three main components
such as resources-allocation, job sequencing and operation start time [Dan93].
Dell’Amico and Trubian applied TS to the job shop scheduling problem with a bi-
directional method to find feasible starting solutions [Del93]. A partial schedule
was initially obtained by this method. Several points were taken into consideration:
* How to choose the initial heuristic to produce the starting point.

» How to modify the starting point into several starting points, to allow multiple

search attempts.

* How to find a small enough neighborhood to make computation tractable with

Chapter 5: TABU SEARCH HEURISTIC 67

an excellent solution.

* How to filter out most choices in the neighborhood by an approximate
evaluation of the interchange.

e How to calculate the remaining interchanges efficiently.

» How to deal with various technical issues such as tabu list size and aspiration
criteria.

Woodruff et al. presented a TS procedure for production scheduling,
addressed a general sequencing problem with objectives of minimizing deadlines
and setup times [Wo0092]. They used an insertion move to transform one trial
solution to another. A candidate list was used as a mean of reducing the
computational effort involved in evaluating the neighborhood. The tabu list was
based on the concept of hashing function in controlling the function of searching,
and supported the contention of long-term memory characteristics. Tabu search was
also applied to the quadratic assignment problem [Kap94], a machine-scheduling
problem and the clustered travelling salesman problem [Lap96]. Also, Vakharia ef
al. explored the TS method to group technology in the cell formulation {Vak97].

Tsubakitani et al. studied the problem of optimizing the size of the tabu list
when applying tabu search with a short-term memory function to the symmetric
travelling salesman problem [Tsu98]. The study also identified the best tabu list size
within a given computational time limit. Moreover, it revealed that a good tabu list
size is smaller that generally believed and that smaller neighborhoods require large

tabu list sizes in order to be effective.
Baar er af illustrated the resource-constrained project-scheduling problem
with a tabu search algorithm in order to determine a schedule with a minimal

makespan. A schedule scheme consisting of sets of relations, which defined a set of

Chapter 5: TABU SEARCH HEURISTIC 68

possible schedule, was introduced on the basis of parallelity [Baa99].

Since the robotics board and magazine simultaneously move at different
speeds during a robotic assembly, the routing of robotic travel is based on relative
coordinates. Consequently, the coordinates of placement points and the magazine
are constantly changing. In one study, a novel tabu search (TS) based approach was
presented [Suc98]. The proposed approach arranged the placement sequence and

assigned the magazine slots to yield a performance better than the conventional one.

5.3 The Tabu Search technique

The philosophy of tabu search is to derive and exploit a collection of
principles of intelligent problem solving. A fundamental element underlying tabu
search is the use of flexible memory that embodies the dual processes of creating
and exploiting memory structures.

Tabu search has two high-level control strategies, intensification and
diversification [Glo89], [Glo90a]). Intensification aims at focusing the search on
promising areas of the search space, while diversification directs the search to yet
unexplored, but promising, regions.

Initially, tabu search was only useci with a short-term memory, which
emphasized for escaping local minima [Pir96]. One of the main features of short-
term memory 1s to store attributes of the solution already visited in the recent past.
A restriction rule is associated with these attributes in order to forbid the occurrence
with their complements.

The memory structures of tabu search are operated by reference to four

principle dimensions, consisting of recency, frequency, quality, and influence. These

Chapter 5: TABU SEARCH HEURISTIC 69

dimensions are set against a background of logical structure and connectivity. Tabu

search is founded in three primary themes:

1. The use of flexible attribute-based memory structures designed to permit
evaluation criteria and historical search information to be exploited more
thoroughly than by rigid memory structures.

2. Associated mechanism of control — for employing the memory structure — based
on the interplay between conditions that constrain and free the search process
(embodied in tabu restrictions and aspiration criteria).

3. The incorporation of memory functions of different time spans (from short term
to long term) to implement strategies for intensifying and diversifying the

search.

5.3.1 Short-term memory

The core of tabu search is embedded in the short-term memory process.
The short-term memory of tabu search constitutes a form of aggressive exploration
that seeks to make the best possible move, subject to requiring available choices to
salisfy certain constraints. These constraints embody the tabu restrictions by
rendering selected attributes of these moves forbidden. In general the tabu
restrictions are used to prevent the search from repeating swap combinations tried in
the recent past, potentially reversing the effects of previous moves by interchanges
that might return to a previous position. The tabu will classify all the swaps in the

most recent pair of modules. A structure for the short-term memory in TS can be

generalized as follows (Figure 5.1}

Chapter 5: TABU SEARCH HEURISTIC 70

Step 1
Begin with Initial Solution
Designate it the Current Best Solution

Step 2
Go through a Sample Set of Candidate Moves
Each move would generate a new solution from the
existing solution.

Step 3
Pick another move Evaluate the Current Move
"| Does this move have a higher evaluation than any other so
far found admissible (from the current Sample Set)?
I
Yes
{Potential
Yes No acceptance)
h 4
Step 4
Check Tabu Status
Is the Candidate move
Step 7 tabu?
Checking Sampling Criteria
Should another move from

Sample Set be examined? Not g bu
(e.g. is there a "good probability”
of higher evaluation moves lefi)
Step 6 Step 5
Maove is admissible |, Yes | Check Aspiration Level
Store as new Does move satisfy
No T current best move aspiration criteria?
No
t
Step 8 Sto Sinep(?rileria Stepl0
Stopping Cntenia ;
Make the Chosen Best Move - Update Tabu Lists and
- - Has a specified number of No "
Record the resulting solution as . . . »> Aspiration_Level
Lo iterations elapsed in total or " - -
the new Current Best Solution if . Establish basis for new
I) since the last Current Best
it improves on the previous best. R’ Sampte Set.
Solution was found.

Yes

4

Stwop

FIGURE 5.1 THE TABU SEARCH SHORT-TERM MEMORY COMPONENT [GLOS0b]

Chapter 5: TABU SEARCH HEURISTIC 71

5.3.2 Operation parameters

5.3.2.1 Candidate list strategy

Candidate list strategy intends to isolate a candidate subset of moves from a
large neighborhood, to reduce the computational expense of evaluating all the moves
in the entire neighborhood. A simple form of candidate list strategy is to construct a
single element list by sampling from the neighborhood space at random, and to
repeat the process if the outcome is deemed unacceptable. Another kind of
candidate list strategy periodically examines larger portions of the neighborhood,
creating a master list of several best alternatives found. The master list then
identifies moves for additional iterations until a threshold of acceptability triggers
the creation of a new master list. Moves can be selected by choosing the best

candidate from several processes, or each process can execute its own preferred

move [Glo93b].

5322 Tabulist

Tabu list records a complete description of last visited solutions, in which the
number of records kept is previously defined. This serves as the tabu restriction to
inhibit the cycling or revisit to the branch and implicitly keep track of moves by
recording attributes complementary to the running list. The size for the list is
generally within the range v(n) and 2*V(n), where n is the number of decision
variables. The tabu list management concerns updating the tabu list (i.e. deciding on
how many and which moves have (o be set to be tabu in an iteration of the search).

Tabu list management carries on two different memory structures: recency based and

Chapter 5: TABU SEARCH HEURISTIC 72

frequency based. Recency based structure maintains the records individually for

different attributes or different kinds of attributes. Frequency based structure is one

of the features in long term memory.

5.3.2.3 Tabu tenure

In general, recency-based memory is managed by creating one or several
tabu lists, which record the tabu-active attributes that both implicitly and explicitly
identify the current status. Tabu tenure can vary for different types or combinations
of attributes, and can also vary over different intervals of time and stages of the
search. Effective tabu tenure is empirically dependent on the size of the problem.
However, no single rule has been designed to yield an effective tenure for all
problem classes. Tenures that are too small can be recognized by periodically
repeating objective functions or occurrence of cycle. Tenures that are too large can
be recognized by resulting deterioration in the quality of the solutions found. There
are two major types of tabu tenure: random dynamic tenure and systernatic dynamic
tenure. Random tabu tenure is to randomly select a range, usually following a

uniform distribution. Systematic tenure consists of creating a sequence of tabu

search tenure in a range.

Once a good range of tenure values is located, first ievel improvement

generally results by selecting different values from this range on different iterations.

5.3.2.4 Aspiration criteria

An aspiration criteria is used to determine when tabu activation rules can be

Chapter 5: TABU SEARCH HEURISTIC 73

overridden to remove a tabu classification, or applied to a move with improved-best
and aspiration-by-default criteria. The appropriate use of such criteria can be very

important for enabling a TS heuristic to achieve its best performance level in the

search strategy.

5.3.25 Strategic oscillation

The strategic oscillation in tabu search illustrates an intimate relationship
between changes in neighborhood and changes in evaluation. It provides an
effective interplay between intensification and diversification over the intermediate
to long term. A standard neighborhood that only allows moves among feasible
solutions enlarges by this approach to encompass non—feasible solutions. The search
is then strategically driven to cross the feasibility boundary into the non-feasible
region. The emphasis on guidance differentiates a meta-heuristic from a simple
random restart procedure or a random perturbation procedure.

The use of strategic oscillation in some applications maintains this
construction at a given level. The applications, including alternating constructive
and destructive processes, can be accompanied by exchanging moves. A proximate
optimality principle motivates the exchange on either side of the candidate solution
at different levels of the spanning tree before proceeding to the adjacent level. The
principle roughly states that good constructions at one level are likely to be close to

good constructions at another.

Chapter 5: TABU SEARCH HEURISTIC 74

5.3.3 Long term memory

For long-term memory, frequency based memory is often used, which is
decomposed into subclasses by taking account of the dimension of solution quality
and move influence. Its improvement begins to be manifest in a relatively modest
length of time. Attributes that have greater frequency measures can trigger a tabu

activation rule if they are based on consecutive solutions that end with the current

solution.

5.3.4 Significance of the Tabu Search heuristic

Although the global solution of an objective function is not guaranteed to be
found, TS always performs a better search than the existing tree search strategy.
Since TS processes the searching operation with random neighbor solution, the
existence of a tabu list provides an effective way on iterative deepening and
avoiding cycling behavior. In addition, this heuristic gives a stable solution and
better solution performance for a smail problem size. For a large problem, it can also

have a better performance if a sufficient computational time is allowed.

5.4 Algorithm for the Line Cycle Time Determination Problem

The general structure of the TS heuristic for the line cycle time determination
problem is shown in Figure 5.2. The algorithm starts with an initial solution, which
is generated by solving the problem with the simplex method, and then it acts as the
lower bound of the objective function in the model LP3-3. The fundamental

branching moves, which are already assigned to different values or bounds to integer

Chapter 5: TABU SEARCH HEURISTIC 75

variables, generate alternatives that arise in the tree search strategies in the branch-
and-bound algorithm, and can be readily embedded in tabu search. When the TS is
used to guide branching strategies, various branching moves that are not considered
in the usual branch-and-bound algorithm, become natural to include. An approach
for guiding branching decisions in a TS procedure is considered in the line cycle

time determination problem in PCBA.

Initial
Solution

Tree search strategy

v

Create a candidate list
of solution

-

Evaluate the solution

+

Randomly choosen
branching variables
{in backtracking
move)

Update
memory

Stopping criteria

Yes
Final
solution

FIGURE 5.2 GENERAL STRUCTURE OF TABU SEARCH OF THE LINE CYCLE TIME DETERMINATION
PROBLEM

5.4.1 Initialization

The following initialization procedure is used to generate a feasible solution

Chapter 5: TABU SEARCH HEURISTIC 76

for the line cycle time determination problem in PCB assembly:

Step 1: Solve the mathematical model with the LP relaxation where dectsion

variables are allowed to be fractional.

Step 2: Select one of the decision variables, x;;, with a fractional value.

Step 3: Fix x;; by defining it into two possible sub-region: | x;;J and Lx] + 1.
where Lx,J,J is denoted as the greatest integer value approaching to x; - 1. Take the
additional constraint into the model and process it with LP relaxation.

At this stage, i.e., at each node of the search tree, an analysis is performed to
identify which decision variable x;; and which branching alternative for the variable
will be selected for immediate exploration. The imposition of the branching
inequality that will generate a more constrained linear program, is solved to continue
the process, while the alternative branch is saved, to be explored. Tabu search then

randomly selects a decision variable to resume the search from the early stages of

the search tree.

5.4.2 The mechanism of tabu search with branching strategy

This mechanism is initially based on the branch-and-bound algorithm. Three

types of moves are relevant to a tabu search based approach:

Restriction : impose a branch of the form xj; < Lxsid or x> Lxi) + 1.
Relaxation :relax (undo) a branch previously imposed.
Reversal : impose a branch that complements a branch previously imposed.

This set of moves describes the options that differ from those customarily

Chapter 5: TABU SEARCH HEURISTIC 77

available to the classic branch-and-bound algorithm. Tabu search, by contrast, can
reverse a branch search process at a “full resolution level” of the tree (i.e. at a level

where the branches yield integer values for all integer variables).

5.4.3 The mechanism of diversification

The mechanism seeks to drive the search into unexplored regions. The
imposed randomization is a means for achieving diversity without reliance on
memory. The use of randomization, via assigned probabilities, allows gains in
efficiency by obviating extensive record kept so that a more systematic pursuit of
diversity is necessary. However, this mechanism entails a loss of efficiency by

allowing duplications and potentially unproductive wandering.

5.4.4 Algorithm

Given a feasible solution x* with the objective function value T*, let x := x*
with z(x) = T*. The iteration proceeds if the stopping criterion is not fulfilled:
e Randomly select the best admissible move that transforms x into x’ with the
objective function value z(x") and add its attributes to the running list
e Perform tabu list management, that is, compute moves to be set tabu and update
the tabu list.

¢ Perform exchanges: x := x” and z(x) = z(x’); if z(x) <T*.

The elements that underlie the assignment of probabilities to the tabu search

heuristic, by contrast, maintain the distinction function between the relative

Chapter 5: TABU SEARCH HEURISTIC 78

attractiveness of alternative moves at all stages without giving the non-improving
moves higher status at the beginning. In addition, progressiveness diminishing their
chances for considerations at the later stages can be eliminated. Furthermore, the
tabu search heuristic does not specify that the process should start with a solution far
from the optimality or the best solution is to be identified as the local optimal, which

can be reached at the conclusion of an eventual undeviating descent.

5.4.5 Function evaluation

Combinatorial optimization problems are not always conveniently structured
to assure a feasible path exists between all feasible solutions, and allowing non-
feasible solutions to be evaluated and visited. The presentation of the tabu search
heuristic in this section shows the data structure to optimize the line cycle time
determination problem. The procedure for the tabu search is implemented by the
computer language MATLAB (See appendix VI). A numerical case is used to

obtain the proof of the performance with the classic branch-and-bound method.

5.5 Numerical Case Study

The TS heuristic is applied to the case with the single-sided PCBA in the
sense of the line cycle time determination problem described in Chapter Three.

With the objective of minimizing the line cycle time, near optimal or optimal

solutions acquired by the TS heuristic can be found. Recall the mathematical model

for the case in the line cycle time determination problem:

Chapter 5: TABU SEARCH HEURISTIC

79

Minimize

T

Subject to

1) T- 3X|] - 7)(]2 - 7){]3 - 90000}(14 - 90000){15 -90000X|5 >=110

2) T - Tx21 - 12%2 - 17X23 - 24%324 - 17X35 - 24%x6 >= 147

3) T - 23x3) - 38x32 - 35%33 - 38x34 - 38x35 - 36X3, >= 147

4) Xy + Xy + X5 =321

5) X1z + Xa2 + X352 = 67
6) X3+ X3+ X33=35
T Xia+ Xos + Xag =12

8) Xis + X5 + X35 = 31

9) X15+X26+X36= 12

10) T, x;; >0 and all are integers.fori=1,2,3,j=1,2,.,6

5.5.1 Initialization

the same as the simplex method described in the previous chapter.

The initialization of the TS for the line cycle time determination problem is

The initial

solution is based on the linear programming relaxation and not all decision variables

are integers. For the model described as above (LP 3-3):

» Step ! Initialization from LP relaxation — the simplex method

The initial solution resulted from simplex method

X

LY}

Xi3

Xis

Xis

Xis

in

X1

X2

X2

p

Xn

x.\]

X34

Value

321

1.51

35

65.49

23.27

7.73

1328.56

* Step 2 Tabu search in branching strategy

Chapter 5: TABU SEARCH HEURISTIC 80

The probability assigned to different backtracking levels provided a jumping
step that can speed the searching process. The example using one set of numerical

setting range with the assignment of the probabilities is stated as below:

if random_n<=0.875
stacksize step=1;
end

if (random_n>0.875 & random n<=0.925)
stacksize step=2;

end
if (random_n>0.925 & random_n<=0.975)

stacksize step=3;
end
if random_n>0.975
stacksize_step=4;

end

5.5.2 Result analysis

The line cycle time determination problem has been formulated as an integer
linear program and solved by the TS heuristic with the branching strategy. The final
solutions obtained are all integers. Provided the backtracking procedure or the move
is randomly selected with respect to different levels, the best solution obtained may
have variations among the lower and the upper bounds. With the above model, there
are several numerical setting ranges presented within the TS heuristic. Moreover,
the result is found to be closer to the optimal solution rather than the upper bound of

the solution. The distribution of the feasible solution resulted from the computation

is shown in Table 5.1 and Figure 5.3:

Chapter 5: TABU SEARCH HEURISTIC

31

Feasible objective value T

running cycles

1333 1335 1336 1339
Solution Frequency 463 332 201 4
Ratic in 1000 '
0.463 0.332 0.201 0.004

TABLE 5.1 DISTRIBUTION OF THE FEASIBLE SOLUTION IN 1000 RUNNING CYCLES

Number of occurance

FIGURE 5.3 GRAPHICAL REPRESENTATION FOR THE DISTRIBUTION OF THE FEASIBLE SOLUTION

Frequancy occumed on differont feasitie soiution

OCCURRENCE

o
hi]

running cycles

Ratio on 1000

From the resulting solution, there are a total of 4 variations of the feasible

objective value including the optimal solution and the upper bound of the numerical

case. The optimum solution of this problem is 133.3 seconds, whereas the upper

bound 1s 133.9 seconds and feasible solutions lie within this range.

Chapter 5: TABU SEARCH HEURISTIC 82

Upon the feasible objective value as well as the optimal one obtained,
general combinations of component type — machine assignment with different

feasible objective values are shown as below (Table 5.2):

Decision Value of decision variables with objective value T
Variable 1333 1335 1336 1339
XN - 319 319 320 321
X1z 3 3 4 3
X3 35 35 34 35
X4 0
X3 0
X6 0
X7 I
X2 64 63 63 63
X723 0
X24 1
Xas 24 25 24 25
X26 0 0 0
X3 1 1 1
X32 0 1 0 1
X33 0 0 1 0
) 12 12 1 12
X1s 7 6 7 6
X16 12 12 12 12

TABLE 5.2 COMBINATION OF COMPONENT TYPE-MACHINE RELATIONSHIP TG DIFFERENT OBJECTIVE
VALUES

Chapter 5: TABU SEARCH HEURISTIC 23

5.6 Identification of changing the range of numerical setting in TS

The backtracking operation performed in tabu branching is based on the
randomly generated number in order to determine which level of the nodes is
backtracked. This project investigates the effect of this range of numerical settings.

Ten sets of numerical setting range are performed as follows (Table 5.3):

Settings(starting Numerical setting range (n) for backtracking level

probability / range of Level 1 Level 2 Level 3 Level 4
settings)

1{(0.10/0.30) n <0.100 n>0.100or n > 0.400 or n > 0.700
n < (.400 n <0.700

2 (0.20/0.267) n<0.200 n> 0.200 or n>0.467 or n>0.733
n < 0.467 n<0.733

3(0.30/0.233) n <0.300 n>0.300 or n>0533 or n>0.767
n <0533 n < 0.767

4 (0.40/0.20) n < 0.400 n> 0.400 or n > 0.600 or n> 0.800
n £0.600 n < 0.800

5 (0.59/0.167) n <0.500 n>0.500 or n>0.667 or n>0.833
n € 0.667 n <0833

6 (0.60/0.133) n < 0.600 n > 0.600 or n>0.733 or n > 0.867
n<0.733 n < 0.867

7 (0.70/0.10) n<0.700 n > 0,700 or n > 0.800 or n > 0.900
n < 0.800 n < 0.900

8 (8.80/0.067) n < 0.800 n> 0.800 or n>0.867 or n>0.933
n <0.367 n <0933

9 {(0.85/0.05) n <0.850 n> 0.850 or n>0.900 or n>0.950
n < 0.900 n < 0.950

10 (0.90/0.033) n £0.900 n > 0.900 or n>0.933 or n > 0.967
n £0.933 n < 0.967

TABLE 5.3 NUMERICAL SETTING RANGE FOR THE BACKTRACKING LEVEL.

At each numerical setting range in the TS heuristic, 1000 iterations were run.

Chapter 5: TABU SEARCH HEURISTIC 84

In the TS heuristic, one of the major operations is the backtracking operation. In
general, the backtracking operation is normally retreated to one level, based on one
of two available bounds.

If the backtracking operation proceeds, a number is randomly generated to
determine which level to be backtracked by falling into the numerical setting ranges.
The performance evaluation of these different numerical setting ranges is made on
the proportion of various feasible soluttons obtained within 1000 program runs and
the number of iterations in each run before achieving those feasible solutions.

After 1000 running cycles of each numerical setting range, the percentage of
various feasible solution illustrated in Table 5.4 and the graphical representation of

the percentage distribution of various feasible solutions is shown in Figure 5.4:

Chapter 5: TABU SEARCH HEURISTIC 85

Settings for numerical setting ranges

1 2 3 4 5 6 7 8 9 10

1333 0% 0% 1% 3% 5% 8% 15% 28% 40% 54%
133 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
1335 1% 3% 6% 11% 14% 20% 26% 32% 31% 31%
1336 31% 34% 37% 33% 44% 49% 46% 36% 28% 15%
1337 0% 0% 0% 0% 0 0% 0% 0% 0% 0%
1338 1% 1% 1% 2% 2% 1% 0% 0% 0% 0%
1339 41% 40% 34% 37% 23% 14% 9% 3% 1% 0%
1340 17% 16% 16% 13% 10% 7% 3% 1% 0% 0%
1341 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
1342 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
1343 3% 3% 2% 1% 1% 0% 1% 0% 0% 0%
1344 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
1345 3% 2% 1% 1% 1% 0% 0% 0% 0% 0%
1346 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

1347 3% 2% 1% 1% 1% 0% 0% 0% 0% 0%

TABLE 5.4 PERCENTAGE OF RESULTED FEASIBLE SOLUTION IN EACH NUMERICAL SETTING RANGE

Chapter 5: TABU SEARCH HEURISTIC 86

Proportion of feasible solution with different parameter settings

60%
——0.10,0,30

50% —8—0.200.267

—a—0.300.233

40% —%—0.40,020

—*—0300.167

30%

—e—0.600.133

20% ——0.70/0.10
———0.800.067

10% — -0 B5 .05

% obtained with 1000 iterations

——{0.50,0.033

0%

1323 1335 1337 1339 1341 1343 1345 1347
Feasible Ene cycle time

FIGURE 5.4 GRAPHICAL DISTRIBUTION FOR VARIOUS FEASIBLE SOLUTIONS

From the results shown above, there is 5% or less of the runs found to be the
optimal solution (i.e. 1333) from setting (1) to (5). There is a trend of increase in the
percentage in obtaining the optimal solution. There is also an increase in the
percentage in obtaining the feasible solutions between 1335 and 1336. For the
feasible solution greater than 1339, there is still a certain proportion in the running
samples that are within setting (1) to (5). However, there are almost zero
occurrences starting from setting (6). Ranging from the setting (6) towards setting
(10), the feasible solutions are focused on 3 key points: 1333, 1335 and 1336. In
setting (10), over 50% of the running cycles can obtain the optimal solution.
Meanwhile, all other feasible solutions that are greater than 1336 are zero
occurrence. This suggests that there is a higher chance to obtain the optimal
solution when the numerical setting range tends to be closer to 1. In addition, it will

become similar to the classic branch-and-bound algorithm, as the numerical setting

Chapter 5: TABU SEARCH HEURISTIC 87

range for one level is closer to one. Moreover, the probability of chance to higher

level is reduced onwards.

Investigations are made on how the number of iterations required reaches the
optimal solution with different numerical setting ranges. In 1000 running cycles for
each numerical setting range, the maximum and minimum number of iterations to
obtain the optimum solution (i.e. 1333) are found. Table 5.5 shows the finding on

the number of iterations required with graphical representation in Figure 5.5 as

below:

Number of iterations required

Settings
Minimum Maximum
1 Inf. Inf.
2 Inf. Inf.
3 16 32
4 16 35
5 16 47
6 15 55
7 14 9
8 20 127
9 21 133
10 24 170

TABLE 5.5 FINDINGS ON NUMBER OF ITERATIONS REQUIRED TO OBTAIN THE OPTIMAL SOLUTION

Chapter 5: TABU SEARCH HEURISTIC 28

No. of iterations with different setting in obtaining the optimal solutions {i.e. 1333)
200

180

—¢— Minimum _g Maximum l /

160
140 /

2 ’/K
S
2 120
o /
w 100
o
2 s)
= /
3
Z 60

0 /

s
20 - - - _ — — =%
0 .
1 2 3 4 5 6 7 8 9 10

FIGURE 5.5 RANGE OF ITERATIONS IN OBTAINING THE OPTIMUM SOLUTION WITH DIFFERENT SETTINGS

From the graph above, it is found that the maximum numbers of iterations
are gradually increased from setting (3) toward (10} and meet the peak of 170
iterations in obtaining the optimum solution. By comparing it with the results
obtained from the branch-and-bound algorithm, the number of iterations required to
reach the optimum solution is 174 iterations. It is suggested that it is closer to the

B&B algorithm when the numerical setting range is narrow and approaches 1.

5.7 The Tabu search heuristic vs. the branch-and-bound algorithm

The fundamental branching moves, which assign different values or bound to
integer variables, generate alternatives in the tree search strategy of the branch-and-

bound algorithm. The tree search strategy can be readily embedded in the tabu

Chapter 5: TABU SEARCH HEURISTIC 89

search heuristic. As the guiding branching decisions in a “TS branching” are
considered, the move is represented in two ways: the first one is by leaving the
reversed branch in place, and the second one is by shifting the branch to the end of
the tree. Since tabu tenures and aspiration criteria may not mean that the latest move
is the last to be free from tabu restrictions, unlike the branch-and-bound algorithm,
there is no precise meaning to a sequential representation of a tabu search with the
branching strategy procedure. The ability to make decisions that are not constrained
by sequence, in the more limited sense that sequence is interpreted in the branch-
and-bound algorithm, is an important characteristic of TS in this setting. The
backtracking operation for the TS heuristic is not one level of nodes only, although
the complement branch for the previous node is available. Another difference with
the B&B algorithm is the ability to conduct a large part of the search close to a full
resolution level, which has implications for the quality of information used to make
choices of new moves. The quality of bounds and other information that compose
choices made at earlier levels of a tree are not as good as the quality available at
deeper levels of the tree. Consequently, a TS trajectory that chooses moves to stay
close to full resolution level generally provides better information at each step than
that is available from a tree search approach. Moreover, the B&B lies with the
decisions made at the earlier level, as it explores descendants of the corresponding
nodes. The computation performance can be evaluated by the reduction on the

number of iterations in the TS heuristic in comparison with the traditional branch-

and-bound algorithm.

Chapter 5: TABU SEARCH HEURISTIC 90

5.8 Conclusion

In this chapter, a foregoing application of the tabu search (TS) heuristic
demonstrated the usefulness of the approach and the adapting method with the
probabilities assigned. The TS heuristic guides the search strategy to continue
exploration without becoming confounded by an absence of improving moves, and
without falling back into a local optimum. From its ability to diversify the search of
solution space, it may gain the computational efficiency in acquiring the optimum or
near optimum solutions. The performance in evaluation of the number of iterations

in getting the solutions is better than the way of using the traditional branch-and-

bound algorithm.

Chapter 6: CONCLUSION 91

CHAPTER SIX
CONCLUSION

6.1 Implementation

This project studied the line cycle time determination problem by means of
grouping different component types to different machine (i.e. Level 2 in the
hierarchical relationship of PCBA system). However, in the real-life situation, all
problems in the 3 levels should be taken into considerations in order to obtain a
complete solution. Furthermore, the placement times used in the case study are only
the average times. In a real situation, the placement times vary according to the
distance traveled between the feeder and the destination location. Besides, some
additional constraints like minimum placement quantity of each component type for
machines, should be taken into account to reduce the number of setups by each

machine. Finally, a graphical user interface (GUI) should be designed and

implemented for end users in practice.

6.2 Conclusions

Optimizing the line cycle time is one of the crucial activities in printed circut
board assembly (PCBA). Appropriate component-machine relationships can lead to
shorter line cycle time together with increase in the productivity, which can enhance
competitiveness in the market. The determination of the component—machine
relationships may be refined to PCB grouping to assembly lines, component

grouping to placement machines and sequencing of assembly operations.

Chapter 6: CONCLUSION 9?2

This research aimed at exploring the assignment of different component
types to multiple non-identical placement machines in order to optimize the line
cycle time in PCBA. Various approaches to the determination of optimal or near
optimal cycle time including linear programming and heuristics like genetic
algorithms were exploited previously. The line cycle time determination problem
was initially formulated as a minimax type integer programming. However, due to
the non-linearity characteristic of the minimax model, it is difficult to compute such
a function with an irregular behavior. A simplified model formulated as an integer
linear programming in printed circuit board assembly (PCBA) system is presented.
The double-sided PCB assembly model can be sub-divided into two individual ones,
being the same as formulating two single-sided PCBA models.

In solving integer linear programming, the branch-and-bound (B&B)
algorithm has been widely used. It can be described as corresponding to a tree
strategy composed of nodes and branches. The initialization of this algorithm can be
done by the resulting solution obtained from the LP relaxation. Previously, the
solving of the problem concerned was limited by LP relaxation. The solution was
found to be continuous and the integer solution could be acquired by rounding to the
nearest integers. However, the rounded solution was feasible but not optimal. By
adding extra constraints with bound in the B&B algorithm, it eliminated the current
LP relaxed optimum from further considerations. In this project, the depth-first
search was chosen as a searching strategy rather than the breath-first search in the
B&B algorithm, as it can obtain the optimum solution more efficiently with reduced
searching space. Computer programs were written in Matlab and C++. Matlab was
selected because it has a large library that has been tested as a powerful tool to solve

many engineering problems. Satisfactory results have been obtained during the

Chapter 6: CONCLUSION 93

algorithm validation process. A comparison between this programming
implementation and a commercial software package has been made. It is important
to remark that the solution found in the algorithm is the same as the one found in the
commercial software with the same mathematical model. However, one of the
disadvantages for the B&B algorithm is the length of time required to get the optimal
solution. The B&B procedure increases exponentially with the number of variables
in the large size problem.

To encounter with the long computational time, a heuristic method, called
Tabu search, was designed to seek the optimal solution for the line cycle time
determination problem. Tabu search is widely regarded as a high-level heuristic for
solving combinatorial optimization problems owing to its ability to overcome the
problem of being trapped in a local optimum. The heuristic technique introduces
tabu list and restrictions, which attempt to avoid cycling behavior of the algorithm
and guide the search process to negotiate in different regions. The commitment of
the branching strategy to the TS heuristic with a random assignment in the
backtracking procedure has successfully generated the optimal or near optimal
solution with less number of iterations and shorter computational time. The
implementation of the TS heuristic search takes place with Matiab. The solution is
found to be as close as expected. There are almost 50% reduction in both the
number of iterations and the computing time, compared with the program of the
B&B algorithm. The imperfection for this heuristic in the line cycle time
determination problem is that it cannot guarantee the optimal solution in every
iteration due to randomly selecting the node in the backtracking operation.

Implementation of the heuristic approach demonstrated that the time required

to determine the line cycle time for PCBA can be reduced by comparing with the

Chapter 6: CONCLUSION 94

B&B algorithm. The solution recommended can contribute to the PCBA system
with optimal line cycle time. The major contribution of this research can be
summarized as follows:

1. In optimizing the ILP model, the B&B algorithm was found to be a promising
approach to guarantee the resulted optimal éolution. However, the performance
of the B&B algorithm is limited by the number of decision variables. The
computational time increases greatly as the number of decision variables grows.
In fact, it is not an efficient method for the large size combinatorial problem.

2. This study can be seen as the first attempt to employ the Tabu Search (TS)
heuristic approach together with the branching strategy embedded in
optimization of a PCBA system. With the use of the TS heunstic approach, the
computational time for the optimization problem can be reduced. This can help
to generate optimal or close to optimal line cycle time in a more efficient way

especially when faced with a large combinatorial problem.

6.3 Further Investigations

Future work related to this project is suggested as follows:
1. Additional constraints to reduce the number of setups.
Observing the results generated by both the branch-and-bound algorithm and the
TS, there were some component type(s) with one or two in quantity being
assembled by a machine in the assembly line. It may be impractical to have
setup for one unit of that component type, a compromise between the setup times
and the optimal cycle time should be is considered. Additional constraints may

need to be included to prevent this from happening as well as to reduce the

Chapter 6: CONCLUSION 95

number of setups.

2. Enriching the TS heuristic’s performance.
In this project, some basic techniques in the TS were performed. It may be
worth hybridizing with other heuristic approaches such as genetic algorithms

(GA) or artificial neural network (ANN) to enrich the diversification and

intensification operations.

REFERENCES

96

REFERENCES

REFERENCES 97

[Ahm91a] Ahmadi, R. H., and Matsuo, H., The line segmentation problem.
Operations Research, 1991. 39: pp. 42-55.

[Ahm91b] Ahmadi, R. H., and Tang, C. S., An operation partitioning problem
Jor automated assembly system design. Operations Research, 1991.
39: pp. 824-835.

[Amm85] Ammons, J.C., and Mcginnis, L. F., CA generation expansion
planning model for electric utilities. Engineering Economist, 1985.
30(3): pp- 205-226.

[Amm97] Ammons, J.C., Carlyle, M., Cranmer, L., Deepuy, G., Ellis, K.,
Mcginnis, L. F., Tovey, C. A., and Xu, H., Component allocation to
balance workload in printed circuit card assembly systems. IIE
Transactions, 1997. 29: pp. 265-275.

{Asa95} Asano, M., and Ohta, H., Single machine scheduling to minimize
weighted earliness subject to ready and due times. Transactions of the
Institue of Systems, Control and Information Engineers, 1995. 8(10):
pp. 523-528.

[Ask94] Askin, R.G., Dror, M., and Varkhana, A. I, Printed circuit board
Jfamily grouping and component allocation for a multimachine, open-
shop assembly cell. Naval Research Logistic, 1994. 41: pp. 587-608.

[Bal38] Ball, M.O., and Magazine, M. 1., Sequencing of insertions in printed
circuit board assembly. Operations Research, 1988. 36(2): pp. 192-

201.
[Bar94] Bard, J.F, Clayton, R. W, and Feo, T. A, Machine setup and
component placement in printed circuit board assembly. The

International Journal of Flexible Manufacturing System, 1994. 6: pp.

REFERENCES

98

[Ben92]

[Bro96]

[Cam91]

[Cap95].

[Car89]

[Cha89]

[Cha90]

[Cra90]

5-31.

Ben-Arieh, D., and Maimon, O., Annealing method for PCB a&sembly
scheduling on two sequential machines, International Journal of
Computer Integrated Manufacturing, 1992. 5(6): pp. 361-367.

Broad, K., Mason, A., Ronngvist, M., and Frater, M., Optimal robotic
component placement. Journal of the Operation Research Society,
1996. 47(11): pp. 1343-1354.

Campbell, G. M., and Mabert, V. A., Cyclical schedules for
capacitated lot sizing with dynamic demands. Management Sciences,
37: pp. 409-427

Caprara, A. and Fischetti, M.; Maio, D., Exact and approximate
algorithms for the index selection problem in physical database
design, IEEE Transaction on Knowledge and Data Engineering, 1995,
7(6), pp. 955-967

Carmon, T.F., Maimen, O. Z., and Dar-El, E. M., Group set-up for
printed circuit board assembly, Intemnational Journal of Production
Research, 1989. 27(10): pp. 1795-1810.

Chan, D., and Mercier, D., IC chip insertion. an application of the
travelling salesman problem. International Joumnal of Production
Research, 1989. 27(10): pp. 1837-1841.

Chang, C.M., and Young, L., A simultaneous-mounting process for
automated printed circuit board assembly. International Journal of
Production Research, 1990. 28(11): pp. 2051-2064.

Crama, Y., Kolen, A. W.], Oerlemans, A. G., and Spieksma, F. C.

R., Throughput rate optimization in the awtomated assembly of

REFERENCES 99

printed circuit boards. Annals of Operations Research, 1990. 26: pp.
455-480.

[Dan93] Daniels, R. L., and Mazzola, J. B., A4 tabu search heuristic for the
flexible-resource flow shop scheduling problem. Annals of Operations
Research, 1993. 41(1-4): pp. 207-230.

[Das97] Daskin, M.S., Maimon, O., Shtub, A., and Braha, D., Grouping
components in printed circuit board assembly with limited component
staging capacity and single card setup: problem characteristics and
solution procedures. International Journal of Production research,
1997. 35(6): pp. 1617-1638.

[Del93] Dell'Amico, M.A.T., M., Applying tabu search to the job-shop
scheduling problem. Annals of Operations Research, 1993. 41: pp.
231-252.

[Des95] Dessouky, M.M., Adiga, S., and Park, K., Design and scheduling of
flexible assembly lines for printed circuit boards. International
Journal of Production Research, 1995. 33(3): pp. 757-775.

[Dik97] Dikos, A., Nelson, P. C., Tripak, T. M., and Wang, W., Optimization
of high-mix printed circuit card assembly using genetic algorithms.
Annal of Operations Research, 1997. 75: pp. 303-324.

[Fal92] Falkenauer, E. and Delchambre, A., 4 genetic algorithm for bin
packing and line balancing, Proceedings of IEEE 1992 International
Conference on Robotics and Automation, Nice, France, 1992
pp.1186-1192.

[Fel93] Feldmann, K., Franke, J., and Rothhaupt, A. Automated generating

and simulation of insertion. in IEEE/CHMT International Electronic

REFERENCES 100

Manufacturing Technology Symposium. 1993, pp. 206-210.

[Gar70] Garfinkel, R., An improved algorithm for the bottieneck assignment
problem. Operation Research, 1970. 19: p. 1747-1751.

[Gar79] Garey, M. R. and Johnson, D. S., Computer and Intractability. A
Guide to the Theory of NP-Completeness, 1979, San Francisco, CA:
W. H. Freeman and Company.

[Gar96] Garetti, M., Pozzetti, A., and Tavecchio, R., Production scheduling in
SMT electronic board assembly. Production Planning and Control,
1996. 7(2): pp. 197-204.

[Gav9l] Gavish, B., and Pirkul, H., Algorithms for the multi-resource
generalized assignment problem. Management Sciences, 37: pp. 695-
713.

[{Glo77] Glover, F., Heuristics for Integer programming using surrogate
constraints. Decision Sciences, 1977. 8(1): pp. 156-166.

[Glo89] Glover, F., Tabu search - Part I. ORSA Journal of Computing, 1989.
1: pp. 190-206.

[Glo90] Glover, F., Tabu search - Part I, in Operations Research Society of
America, 1990.

[Glo90] Glover, F., Tabu search: A tutorial. Interfaces, 1990. 20: pp. 74-94.

[Glo93] Glover, F., Wand Laguna, M., Tabu search. Modern Heuristic
Techniques for Combinatorial Problems. 1993: Blackwell Scientific
Publishing, Oxford. pp. 70-141.

[Glo93] Glover, F., A user's guide to tabu search. Annals of Operations

Research, 1993. 41: pp. 3-28.

[Gol89] Goldberg, D. E., Genetic Algorithms in Search, Optimization and

REFERENCES

101

[Gom58)

[Gro84]

[Gro91a]

[Gro91b]

[Gun96]

[Gun98]

[Hi198]

[Jiz91]

Machine Learning, Addison Wesley Published, 1989.

Gomory, R. E., Qutline of an algorithm for integer solution to linear
programs. Bulletin of the American Mathematical Society, 1958. 64:
pp- 275-278.

Grotschel, M. and Junger, M., and Reinelt, G., 4 cufting plane
algorithm for the linear ordering problem, Operations Research,
1984. 32: pp. 1195-1220.

Grotschel, M. and Holland, O., Solution of large-scale travelling
salesman problems, Mathematical Programming, 1991. 51(2): pp.
141-202.

Grotschel, M. and Jiinger, M., and Reinelt, G., A cutting plane
algorithm for the linear ordering problem, Operations Research,
1984. 32: pp. 1195-1220.

Gunther, H.O., Gronalt, M., and Piller, F., Component knitting in
semi-automated printed circuit board assembly. International Journal
of Production Economics, 1996. 43: pp. 213-226.

Gunther, H.O., Gronalt, M., and Zeller, R., Job sequencing and
component set-up on a surface mount placement manchine.
Production, Planning & Control, 1998. 9(2): pp. 201-211.

Hiller, M.S., and Brandeau, M. L., Optimal Component Assignment
and Board Grouping in Printed Circuit Board Manufacturing.
Operations Research, 1998. 46(5): pp. 675-689.

Ji, Z., Leu, M. C., and Wong, H., Application of linear assignment
model for planning of robotic printed circuit board assembly. ASME
Manufacturing Processes and Materials Challenges in Microelectronic
5'73 Pao Yue-Kong Library

2

% PolyU « Hong Kong

102

REFERENCES
Packaging, 1991. ADM v131/ EEP v1: pp. 35-41.

[Jiz93] Ji, Z., Leu, M. C., and Wong, H., Development and implementation of
linear assignment algorithm for assembly of PCB components. ASME
Advances in Electronic Packaging, 1993. 4(1): pp. 365-371.

[Jip94] Ji, P, Wong, Y. S., Loh, H. T, and Lee, L. C., SMT production
scheduling: a generalized transportation approach. International
Journal of Production Research, 1994. 32(10): pp. 2323-2333.

[Kap94] Kapov, 1.S., Extensions of a tabu search adaptation to quardratic
assignment problem. Computers and Operations Research, 1994.
21(8): pp. 855-865.

[Kar84] Karmarkar, N., 4 new polynomial-time algorithm for linear

programming, Combinatorica, 1984. 4: pp. 373-395.

[Kho98a] Khoo, L.P, and Ong, N. S., PCB assembly planning using genetic
algorithms. The International Journal of Advanced Manufacturing
Technology, 1998. 14: pp. 363-368.

[Kho98b] Khoo, L.P,, and Ng, T. K., A genetic algorithm-based planning system
Jfor PCB component placement. International Journal of Production
Economics, 1998. 54: pp. 321-332.

[K1u90] Kiu, R., and Salomon, M., Multi-level lot-sizing problem: evaluation
of a simulated annealing heuristic, European Journal of Operations
Research, 1990. 45: pp. 25-37.

[K1i94] Klincewicz, J. G., and Rajan, A., Using GRASP to solve the
component grouping problem, Naval Research Logistics, 1994. 41(7):

pp. 893-912.

[Koh95] Kohonen, T., Self Organization Map, 1995. Springer-Verlag, Berlin.

REFERENCES

103

[Kum95]

[Kum00]

[Laa93]

[Lan60]

[Lap96]

fLeo96]

[Leo98]

[Mai91]

[Mai93]

Kumar, R.and Haomin Li., Integer programming approach to printed
circuit board assembly time optimization, IEEE Transactions, 1995,
18 (4), pp. 720 -727.

Kumar, A., Jacobson, S. H., Sewell, E. C., and Salomon, M,,
Computational analysis of a flexible assembly system design problem,
European Journal of Operations Research, 2000. 123(3): pp. 453-472.
Laarhoven Van, P. J. M., and Zijm, W. H. M., Production preparation
and numerical control in-PCB assembly, International Journal of
Flexible Manufacturing System, 1993. 5(3): pp. 187-207.

Land, A., and Doig, A., An automatic method of solving discrete
programming problems, Econometric, 1960. 28(3): pp. 497-520.
Laporte, G., Potvin, J. Y. and Quilleret, F., 4 tabu search heuristic
using genetic diversification for the clustered traveling salesman
problem. Journal of Heuristics, 1996. 2: pp. 187-200.

Leon, V.J., and Peters, B. A., Replanning and analysis of partial setup
strategies in printed circuit board assembly systems. International
Journal of Flexible Manufacturing Systems, 1996. 8(4): pp. 289-412.
Leon, V.J., and Peters, B.A., 4 comparison of setup strategies for
printed circuit board assembly. Computers & Industrial Engincering,
1998. 34(1): pp. 219-234.

Maimon, O.Z., and Shtub, A., Grouping method for printed circuit
board assembly. International Journal of Production Research, 1991.
29(7): pp. 1379-1390.

Maimon, O.Z., and Dar-El, E. M., Set-up schemes for printed circuit

boards assembly. European Journal of Operational Research, 1993.

REFERENCES 104

70: pp. 177-190.
[Mai98] Maimon, O.Z., and Braha, D., 4 genetic algorithm approach to
scheduling PCBs on a single machine. International Journal of
Production Research, 1996. 36(3): pp. 761-784.
[Mcg92] McGinnis, L.F., Ammons, J. C., Carlyle, M., Cranmer, L., Depuy, G.
W., Ellis, Y. P, Tovey, C. A., and Xu, H., Automatic process planning
Jfor printed circuit card assembly. 1IE Transactions, 1992. 24(4): pp.
18-30.
[Muk92] Mukai, S., PCB continuous line system proceeds from manufacture to
inspection. Journal of Electronics Engineering, May 1994. pp. 34-39.
[Nas96] Nash, S. G. and Sofer, A.: Linear and Nonlinear Programming. The
McGraw-Hill Company, 1996.
[Nay00] Nayak, A., and Sharma, J.: A hybrid neural network and simulated
annealing approach to the unit commitment problem. Computers and
Electrical Engineering, 2000. 26(6): pp. 461-477.
[Nel95] Nelson, K.M., and Wille, L. T. Comparative study of heuristics for
optimal printed circuit board assembly. in Southcon Conference
Record. 1995.
[Nem88] Nemhauser, G. L. and Wolsey, L. A., Integer and Combinatorial
Optimization, John Wiley, New York, 1988.
[Noo%i] Noon, C. E. and Bean, J. C., A Lagrangian based approach for the
asymmetric generalized travelling saleman problem. Operations
Research, 1991. 39: pp. 623-632.
[Pir96] Pirlot, M., General local search methods. European Journal of

Operational Research, 1996. 92: pp. 493-511.

REFERENCES

105

[Ree93]

[Ree95]

[Ree96]

[Sad93]

[San95]

[Sch86]

[Sch96)

[Sht92]

Reeves, C.R., Improving efficiency of tabu search for machine
sequencing probime. Journal of Operations Research Society, 1993.
44(4): pp. 382-385.

Reeves, C. R., Genetic algorithms and combinatorial optimization, in
Rayward-Smith, V. J., Applications of Modern Heuristic Methods,
1995. pp. 111-126, Alfred Waller, Henley-on-Thames, UK.
Rayward-Smith, V. J., Osman, I. H,, Reeves, C. R. and Smith, G. H,,
Modern Heuristic Search Method, John Wiley & Sons Ltd., 1996
Sadiq, M., Landers, T. L., and Don Taylor, G., 4 heuristic algorithm
Jor minimizing total production time for a sequence of jobs on a
surface mount placement machine. International Journal of
Production Research, 1993. 31(6): pp. 1327-1341.

Santos, D., Kane, J., Caballero, F., and Nagarajan, K., On the
selection of a printed circuit board assembly line system. Computer
Industrial Engineering, 1995. 29(1-4): pp. 591-595.

Schrijver, A., Theory of linear and integer programming, Modern
Heuristic Search Method, John Wiley & Sons Ltd., 1986.

Schaffer, J. David and Eshelman, J. Larry, Combinatorial
optimization by genetic algorithms: the value of the genotype /
phenotype distinction, in Rayward-Smith, V. J., Osman, 1. H., Reeves,
C. R. and Smith, G. H., Modern Heuristic Search Method, John Wiley
& Sons Ltd., 1996.

Shtub, A., and Maimon, O. Z., Role of similarity measures in PCB
grouping procedures. International Journal of Production Research,

1992. 30(5): pp. 973-983.

REFERENCES 106

[Spro8] Sprecher, A., Competitive branch-and-bound algorithm for the simple
assembly line balancing problem. International Journal of Production
Research, 1992. 30(5): pp. 973-983.

[Suy96] Su, Y. Y., and Srihari, K., Placement sequence identification using
artificial neural networks in surface mount PCB assembly. The
International Journal of Advanced Manufacturing Technology, 1996.
11(4): pp. 285-299.

[Sze98] Sze, M.T., Component grouping for printed circuit board assembly, in
Department of Manufacturing Engineering. 1998, The Hong Kong
Polytechnic University.

[Tah75] Taha, H.A., Integer programming: theory, application and
computations. 1975: Academic Press, Inc.

[Vak97] Vakharia, A.Ja.C., Y. L., Cell formation in-group technology: A
combinatorial search approach. International Journal of Production
Research, 1997. 35(7): pp. 2043.

[Wat95] Watkins, R.E., and Cochran, J. K., 4 fine bélancing heuristic case
study for existing automated surface mount assembly line setups.
Computers and Industrial Engineering, 1995. 29(1-4): pp. 681-685.

[Whi9l] Whitley, D., Starkweather, T., and Shaner, D, The travelling
salesman and sequence scheduling: quality solutions using genetic
edge recombination, in Davis, L., Handbook of Genetic Algorithms,
Van Nostrand Reinhold, New York, 1991

[Wo0092] Woodruff, D. L., and Spearman, M. L., Sequencing and batching for
two classes of jobs with deadlines and setup times, The Journal of

Production and Operation Management Society, 1992, pp. 26-34.

APPENDIX] LINELAYOUT FOR AN ELECTRONIC COMPANY 107

APPENDIX I

LINE LAYOUT FOR AN

ELECTRONIC COMPANY

108

LINE LAYOUT FOR AN ELECTRONIC COMPANY

APPENDHX |

wnokuTue|d § ENTIWHIVLLY

| o) .

=S (oo e FE_M:W%_L e ik
0oo

00 =

i
ﬁ_,. : e EETve— -Hn.imniﬂ P FIR S =S 2.0 2 o) T e ﬁm._m.g.. ETLN S g) T %UE il

e Ty

v .y

14) MOUVLS e
ALY OxI ¥ /W

%
z
H
H
[]
= |
E.
]
£
CTH

-
ot
0] o, | . S - GEE _l
21355 o o s e 8 T) QYT et el e s o)
ELYIT L) 40N CNwvR {20 A vis Yeom @ D E E ﬁ it
ATV QNI 0 WSw {F) S¥vEsrad _(
T
-
100 [

m.liTlLuuu.’..u?u al d..—“g@ﬂ'ﬁmlﬂhmﬁr‘l _\G.I._ . . ”El lnl_-

q . 000 0.0 =
=t o s e el hlwlmlﬂi_al«n:mm
TR OSEEa = E TN 0~ e

YT V1) raiwrs ST v MG 14

e B B o

P N1AD 2y

U

APPENDIX II LINE CONFIGURATION 109

APPENDIX II
LINE
CONFIGURATION

APPENDIX II LINE CONFIGURATION 110

R

LT P, el e

[ANUFACTURING ENCINEERING XXX Company

#1§ =28 438 248 855

IR

GUET FiIM

™
i Porarp
PotEy
b
= lEar
]
S5]
I | -1
* bt IS o1
w2292 (@ GR-2282 @ Gr-2222 @ cR-2p82 [CR-2082 [T
-2t (0 Gr-2276 G cR-2275 @ tR-22% [0 R-2275 O
Seeeatin @ PEBESTALS [PECESTALS (3) FELESTALS PERESTALE [X
way “EE{D) 2O307TS @
LECEND :-
UNOCCUPIED 7757 AYAILABLE .
MACHINE SPACE ieceis) BY SEP REVISION : 03

FILE : E:\ONG\SLCI
[9 pirecT oRIVE DATE : .

APPENDIX III COMPONENT PLACEMENT TIMES

111

APPENDIX III

COMPONENT PLACEMENT TIMES

APPENDIX III COMPONENT PLACEMENT TIMES

112

(A CPIi & CP i

[MACHINE BASIC TIME i
—

1) CHp Components
(Resigtor, Cepaditor, Oiode, LED, Transistor)

2) S0IC (8~ 28 PINS)

3} Tartalum

* Fudkctal mark, load & uniod PCB board

[BY P=1

1) CHp Componenis
{ Resistor, Capacitor, Dlode, LED, Transletor)

2) SOIC (8~ 28 PINS)
3) SOJ IC (24 ~ 28 PINS)

4) PLCC (20784 PINS)

5) PLCC SOCKET
6] QFPIC (48~ 160 PINS)
7) SM CONNECTOR {32~ 44 x 12~ 24 skze)

* Fudicial mark, lkoad & uniod PCB board

(G P=i

}

1) Chip Co

MOOrents
{ Reslistor, Capaciter, Diode. LED, Transistory
2) SOIC (8™ 28 PINS)
3) SOJIC (24 ~ 28 PINS)

4} PLCC (20~ 84 PINS)

5) PLCC SOCKET

) QFP IC (43~ 180 PINS)

73 SM CONNECTOR (327~ 44 x 12™ 24 sizo)
* Fudicial mark, load & unlod PCB board

(5]

HP

)

1} Chp Components
{ Resistor, Capacitor, Diode, LED, Transistor)

2) SOIC (8™ 26 PINS)

3) B8OJIC (24 ~ 24 PINS)

4) PLCC (20~ B4 PINS)

5) PLCC SOCKET
5} QFP IC {48~ 144 PIND)

= Fudiclal mad¢, load & uniod PCB board

TIME

0.3 sec/comp.

0.7 soc/comp.
0.7 sac/comp.

11.0 sec/panel

1.5 secfcomp.

2.5 sac/comp.
3.5 gec/comp.
3.5 gec/comp.
4.5 sec/comp.
2.5 zsec/eomp,

1.5 sec/comp.

14.87 soc/pane!

0.7 sec/oomp.

1.2 sec/comp.
1.7 sec/comp.
1.7 secicomp.
1.7 sec/comp.
1.7 sec/comp.

1.7 secfcomp.

14.67 secihHranse!

2.3 sac/comp.

3.8 sec/comp.
3.8 soc/comp.
3.8 socicomp.
3.8 sec/comp.
3.8 sec/comp.

14.87 socoanel

APPENDIX IV SOURCE CODES FOR THE B&B ALGORITHM IN C++ 113

APPENDIX IV

SOURCE CODES FOR THE B&B ALGORITHM IN C++

APPENDIX IV SOURCE CODES FOR THE B&B ALGORITHM IN C++

114

#include <jostream.h>
#include <stdlib.h>
#include <conio.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <stdio.h>
#include <dos.h>
#include <conio.h>

#define MAX 90

void mcsetup(double Setup[MAX], int machine, double B[MAX])
{

cout<<"\n"<<"\n";

for (int i=1; i<=machine; i++)

{ cout << "Enter the set up time for machine M"<<i<<" in second: ";
cin >> Setupli];

B[i]=Setup[i};
}

cout <<"\nll<<ll\nll;

}

void comptype(double Quantity[MAX], int component, int machine, double B[IMAX])
{
for (int i=1; i<=component; i++)
{cout << "Enter the quantity for component type C" <<i<<": ",
cin >> Quantity[i);
B[machine+i]=Quantity[i];

}
}

void plactime(double Time[MAX][MAX], int component, int machine}

{
cout << "\n\nPlease enter the component placement time. \n";
cout << "Tij refers to component placement time for component j at machine i.\n";
for (int j=1; j<=component; j++)
{ for (int i=1; i<=machine; i++)
[cout << "T["<<i<<"]["<<je<"]:";
cin >> Time[i][j];}
cout << endl; }

}
double abstemp(double KKK)

if (KKK<0}
{ KKK=-KKK; }
return KKK;
}

void INV{double matrix[MAX]J[MAX], int N, int L)

{
int IS{IMAX], JSIMAX];

APPENDIX IV SOURCE CODES FOR THE B&B ALGORITHM IN C++ 115

double D, T;

for (int K=1; K<=N; K++)

D=0.0; //this part gets the maximum volume from the matrix
for (int [=K; 1<=N; {++)

for (int J=K; J<=N; J++)

{
if (abstemp (matrix[1][J]}> D)
{ D= abstemp (matrix[1][J]);
IS[K]=I;
JS[K]=1;

} /fend getting the maximum volume from the matrix

if (D==0)
{
cout<<"matrix is sigular"<<endl,
LL=0;

char addd;
cin>>addd;
refum;

}

for (int J=1; J<=N; J++) //rows exchange
{
T=matrix[K][}];
matrix[K}{Jl=matrix[IS[K]][J];
matrix[1S[K]J[J]=T;
} /fend rows exchange

for (int I=1; I<=N; I++) /fcols exchange
T=matrix[[][K];
matrix[1][K]=matrix[1]{JS[K}];
matrix[[J[JS[K}=T,;
} ffends cols exchange

matrix[K][K]}=/matrix[K][K]; //change the volume of row K

for (int J=1; J<=N; J++)

{
if (J1I=K)
matrix[K][J]= marrix[K][K}*matrix(K][J];
}
for (int I=1; [<=N; I++) /ichange the volume of cells except Row K and Col K
if (I'=K)

for (int J=1; 1<=N; J++)

APPENDIX IV SOURCE CODES FOR THE B&B ALGORITHM IN C++ 116

if (J1=K)
matrix[1][J]= matrix[1)[J]-matrix[1][K]*matrix [KI[J];
!
}

} /fend changing the volume of cells except Row K and Col K

for (int I=1; I<=N; I++}
{
if (I'=K)
matrix[1][K]=-matrix[1][K]* matrix[K][K];
) /fend changing the volume of row K

for (int K=N; K>=1; K--)

{
for (int J=1; J<=N; J++)
{
T=matrix[K]{J];
matrix[K{}=matrix[JS(K][]];
matrix[IS[K]IU]=T;
}

for (int I=1; I<=N; I++)
{

T=matrix[1][K];
matrix[1][K]=matrix[1){IS[K]];
matrix[1J[1IS[K]]=T;

}
'

}

void MUL(double A[MAX][MAX], double BIMAX][MAX],int M, int N, int K, double
CIMAX]}[MAX])
{

for (int i=1; i<=M, i++)
{ for (int j=I; j<=K; j++)
{ CliIL1=0;
{ for (int kk=1; kik<=N; kk++)
CLilG)=CLl1+ATIXK]* BIkK]L);
1
}

}

void LPLQ(double A[MAX][MAX], double B[MAX], double C[MAX], double X[MAX], int M, int N,
int MN, double S, int PINT[MAX], int L)

{
int JSIMAX];
double PIMAX]{MAX],D{MAX][MAX];

int K,

APPENDIX IV SOURCE CODES FOR THE B&B ALGORITHM IN C++ 117

double DD, Z, Y,
int slack, slack];

slack=N;

for (int I=1; 1<=M; I++)

{ for (int J=N+1; J<=MAX; J++)
{A[1][}]=0;}

1

for (int i=t; i<=M; i++)

{
if (PINT[i]==2)

{

* slack=slack+1;
Ali][slack])=-1;
C[slack]=0;

}

}

slack 1=slack;
for (int i=1; i<=M; i++)

if (PINT[i]==2)
{
slack=slack+1;
Alil[slack)=1;
C[slack]=1.0E+8;
1

if (PINT[i]==1)

slack=slack+1;
Ali}[slack]=1,
Clslack]=0;

H

if (PINT[i]==0)
{
slack=slack+1,;
Ali]l[slack]=1;
Cl[slack]=1.0E+8;
)
}

MN=slack;

for (int I=1; [<=M; I++)
{JS[1]=slack1+};}

Again:

H=1;

for (int I=1; [<=M; 1++)

{
for (int J=1; J<=M; H++)
{

APPENDIX IV SoOURCE CODES FOR THE B&B ALGORITHM IN C++ 118

PI=ANILIS[I

}

INV(P, M, L); //outout inverse P
MUL(P, A, M, M, MN, D); //foutput D

for (int I=1; [<=MN, [++)
{X[1)=0.0;}

for (int [=1; I<=M; I++)

{
S=0.0;
for (int J=1; I<=M; J4++)}
{ S=S+P{I][J]*BU];}

X[IS[]F=S;

K=0;
DD=1.0E-5;
for (int J=1; J<=MN; J-++)

{
Z=0.0;

for (int I=1; I<=M; I++)

{ Z=Z+C{JS[1]]*D[]0]:}
Z2=Z-C[J];

if (Z>DD)

{

DD=Z;
K=I;

}

if (K==0)

S=0.0;
for (int J=1; J<=MN; J++)}
{ S=S+C[I]*X[]]; }

for (int J=1; J<=MN, J++)
{
if (X[1]'=0)

{
if (abstemp(X[J])<1.0E-10) // attention 10 is changed into 2
{X[J]=0:}
if (abstemp{ceil(X[J])-X[J])<1.0E-10)
{X[J]=ceil(X[]}
if (X[J]-floor(X[J])<1.0E-10)
{X[I}=Noor(X[J]);}

APPENDIX IV SOURCE CODES FOR THE B&B ALGORITHM IN C+++ 119

// cout<<"the optimal solution of linear programming is S: "<<S<<endl,
return ;

}

J=0,
DD=1.0E+20;
for (int I=1; [<=M; I++)

if (DH}[K[>=1.0E-10)

{
Y=X[S[1]}/DIK];
if (Y<DD)
{
DD=Y;

I=I;

}

}

}

if (J==0)
{
L=0;
cout<<"frot testing JJ and L"<<L;
return;

}

JS[I=K;
goto Again;

void roundoff(double A[MAX][MAX], double XB[MAX][MAX], int N, int machine, int component,
double B{MAX], int counter, double SB[MAX])
{

double temp[MAX][MAX];

int KKK;

for (int J=1; J<=component; J++)

for (int [=1; I<=machine; [++)
{
if (XB[counterj[((I-1)}*component+J+1)]=0)
{ KKK=I,
temp[J+machine]{((1-1Y*component+J+1)]=ceil{ X B[counter][((l- 1)*component+J+i)])-
XB[countet]{{(]-1)*component+J+1)];
if (tempfJ+machine][({(I-1)*component+J+1)]>=0.5)
{ XB[counter][((I-1)*component+J+1)J=floor(X B[counter][((I-1)*component+]+I M}
if (temp[J+machine]{((I-1)*component+J+1)]<0.5)
{ XBfcounter][((-} }*component+)+1)]=ceil(XB[counter][((I-1 Y*component+J+1}]);}
}
}

double §=0;
for (int I=1; I<=machine; I++)

$=S+XB{counter][((I-1)*component+J+1}];

APPENDIX IV SOURCE CODES FOR THE B&B ALGORITHM IN C++ 120

}
XB[counter]{(KKK-1)*component+J+] J=XB[counter][(KKK-1)*component+J+1]+B[J-+machine]-
S,

}

for {int I=1; I<=machine; I++)
{ double SB1=0;
for (int J=2; J<=N; J++)

SB[1]=((-A[11[J])* XB[counter][J]);
icout<<"XB["<<counter<<"]["<<]<<"]: "<<XB[counter][J]<<endi;
Jleout<<"(-A["<<l<<"|["<<)<<"]) "<<C-ATU);

SBI1=SB[I]+SBl;

}

SB({I]=8Bl;
SB[I]=SB[I}+B[l];

!
double SB2=0;
for (int I=1; [<=machine; [++)

{
if (SB2<SB[1])
{ SB2=SBIlj}; }
H

SB{counter]=SB2;

}
T e e e
i /"

i The following is the Main Programme i i
i i
O L e s
int main()

{

int L=1;

int M, N, MN;

int Mleft;

double $=0.0, S§[MAX], SB{MAX];

double A[MAX][MAX], BIMAX], C[MAX], BBMAX][MAX];
double X[MAX], XB[MAX][MAX],XX[MAX][MAX];

int PINT[MAX];

int counter;

int check;

int machine, component;

double Setup[MAX], Quantity]MAX], Time[MAX][MAX],
time_t first, second,

int iteration=0;

APPENDIX IV SOURCE CODES FOR THE B&B ALGORITHM IN C++

121

cout<<"please enter the number of machine: ";
cin>>machine;

cout<<endl<<"please enter the number of components: ";
cin>>component,

mcsetup(Setup, machine, B);

comptype(Quantity, component, machine, B),
plactime(Time, component, machine};

first = time(NULL);

M=machine+component;
N=machine*component+I;
MN=M+N;

for (int I=1; I<=M; |++)

{
if (I<=machine)
{A{II[1]=1;}
else
{A[NI]=0;}
}
for (int J=2; J<=N; J++)

{
for (int I=1; I<=M; [++}

AllBI=0;
}
}

for (int I=1; 1<=machine; H++)

for (int J=1; J<=component; J-++)
{
A[1[(1-1)*component+)+1]=-Time[I][J];
A[J+machine][(1-1}*component+J+1]=1;
}
}

for (int J=2; J<=N; J++)

{
C[h=0;
H
Cl1)=1;
for (int I=1; 1<=M; [++)

¢
if ({<=machine)
{PINT[1]=2;}
if (I>machine)
{PINT[1]=0;}

}

iteration+=1;
LPLQ(A, B, C, X, M, N, MN, §, PINT, L),
for (int I=1; [<=N; 1++)
for (int 1=1; [<=N; [++)
{
if (X[1]<0.01)
{X[1)=0:}

APPENDIX IV SOURCE CODES FOR THE B&B ALGORITHM IN C++

122

if {(ceil(X[1])-X[1])<0.01)
{X[1}=ceil(X[1]);}
if (X[1}-(floor{X[1]))<0.01)
{X[1]=floor(X[1]);}
H

S5=0;

for (int I=1; [<=MN;, 1++)

{S=S+C[1)*X[1];}

int check0=0; //this part to check whether the solution of linear programming is optimal
for (int J=1; J<=N; J++)
{
if (abstemp(abstemp(ceil(X{J])-abstemp(X[1])})>1.0E-6)
{check(+=1;}
}

if (check0==0)
§ cout<<endi<<endl<<endi<<endl<<end]l,
cout(("****t***l#t#ttt#**#******#*t*##*********************"<<end|<<end];

cout<<"the optimal integer function value: "<<5<<endl,
cout<<"the optimal solution: "<<endl;

for (int I=1; I<=machine; I++)

{

for (int J=1; J<=component; J++)
XX[N[I=X[(1-1)*component+I+1];

}
}

for (int [=1; I<=machine; [++)
{
for (int J=1; J<=component; J++)

{
cout.width(5);
cout<<"XX["<<l<<]["<<I<<"): "<<X X[1][]];

}

cout<<endl;

}

cout<<endl;
Com<<--:tttttatttt****v#t*****t**t*:t*****t**t#*:hu::t:****"<<end|<<end|.

cout<<"The iteration tirne(s); "<<iteration<<endl;
second = time(NULL);

printf("The running time is: %f seconds\n" difftime(second,first));
cout<<"*t‘*##‘************tt**t********t*t***t**t*t****#***"((endl.((endl-

cout<<"Enter y/n to terminate it"<<end!;
char temppp;
cin>>temppp;

retun O
' /fend checking whether the solution of linear programming is optimal

counter=M;

APPENDIX IV SOURCE CODES FOR THE B&B ALGORITHM IN C++ 123

SS{counter]=S; //geting the upper bound SB[0]
for (int J=1; J<=N; J++)
{

XX[counter][J]=X[J];

XB[counter][J]1=X[J};
}
cout<<"the current SS[0] is: "<<SS[counter]<<endi;
roundoff(A, XB, N, machine, component, B, counter, SB),
cout<<"the current SB["<<counter<<"] is: "<<SB[counter]<<end];
cout<<"the current XB is: "<<endl;
for (int J=1; J<=N; J++)

if (XB[counter][J]!=0)
fcout<<"XB["<<counter<<"]["<<J<<"]is: "<<XB[counter]){J]<<endl,

cout<<"",
cout<<"XX["<<counter<<"]["<<J<<"]is: "<<XX[counter][J]<<endl;

cout<<"";

}
} //geting the upper bound SB[0] and XB[0](J]

COut<<"";

leftside:
int krun=0;

int JX;

double TX=0;

for (int J=2;J <=N; }++)
{

double number=0;
if (XX[counter][J]>=0.001}
{
number=ceil{ XX[counter][}])-XX[counter][J];
if (number>=0.01)
{
krun=1;
if (TX<XX[counter][I])
{
TX=XX[counter][J];
I1X=J;
}
}
}
}

if (krun==1)

{
M+=1;
PINT[M]=1;
B[M]=MNoor(XX[counter][JX]),
BB[M][1}=B[M];
BB[M][2]=BB[M][1}+1;
cout<<"\nThe left B["<<M<<"] is: "<<B[M]J<<endl,
cout<<"";
A[M]IX]=L;
for (int Ji=1; J1<=N; J1++)

it a1t=Jx)

APPENDIX IV SOURCE CODES FOR THE B&B ALGORITHM IN C++

124

} {AM][31]=0;}

for (int J=1; J<=N; I++)
{X[J]=XX[counter][J];}

iteration+=1,

LPLQ(A, B,C, X, M, N, MN, §, PINT, L);
cout<<"";
for (int 1=1; [<=N; I++)

if (X[1]<0.01)
{X[11=0;}
if ((ceil(X[I-X[11)<0.01)
{X[M}=ceil(X[1]);}
if (X[1]-(floor(X{1]))<0.01)
{X[1]=Roor(X[1]};}

for (int I=1; I<=N; I++)

if (X[1}1=0)
{cout<<"X["<<l<<"]is:"<<X[i]<<end]; }

}

cout<<"the current N is: "<<N<<endl;
couf<<"";

if (L==1)
{
counter+=1;
for (int J=1; J<=N; J++)
{
XX[counter][J]=X[J];
XB[counter]{J]1=X[}];
}
=0;
for (int J=1; J<=N; J++)
{S=S+C[J]*X[J]:}
check=0;
for {int J=1; J<=N; J++)

{

if (ceil(X X{counter][J])-X X[counter){J]>0.001)
{check+=1;}

!

if (check==0)//if we have got an integer solution

{
if (S<=8B[counter-1])
{ cout<<endl<<endl<<endi<<endl<<endl;

cout<<'
cout<<"the optimal integer function value: "<<S<<endl,

cout<<"the optimal solution: "<<endl;

for (int I=1; I<=machine; 1++)
{ .
for (int J=1; J<=component; J++)

{

'*****ﬂtt*#****##****#**************#******i**‘lt“ll‘lﬁl'(<end!<<f:ndl-

APPENDIX IV SoOURCE CODES FOR THE B&B ALGORITHM IN C++ 125

XXM[I=XI(1-1)* component+]+1];

}
}
for (int I=1; I<=machine; 1++)
{
for (int J=1; J<=component; J++)
{
cout.width(5);
cout<<"XX["<<I<<" " <<J <) <X X INTT;
}
cout<<endl;
1
cout<<endl;
Cout<<"**il‘i‘.‘l**** ek RFEEEE tt*t***###‘*l**t*#*#*t***t**#t"<<endl<<endl-

cout<<"The iteration time(s): "<<iteration<<endl;

second = time(NULL);

printf("The running time is: %f seconds\n”, difftime(second, first));
Cout<<_"t*t!*t******t*ttttittttitt#**t***##t*8ttit*t********"<<endl<<end|;
cout<<"Enter y/n to terminate it"<<endl;

cout<<endl<<endl<<endl<<endl,

char tempp;

cin>>tempp;

return 0;

if (S>SB[counter-1])
{ .

for {int J=M, I>(machine+component};J--}

if (PINT[J]=1)
{
Mleft=J;
cout<<"teh current PINT["<<J<<"] is"<<PINT[J];
cout<<"the current Mleft is"<<Mleft;
cout<<"";
break;
}
H
M=Mleft;
counter=M-1;
cout<<"the current M is: "<<M<<endl;
cout<<"the current counter is "<<counter<<endl;
cout<<"";
goto rightside;
}

if (check!=0)//still fraction solution

¢
if ((SB[counter-1]-5)<1)

{ counter=M-1,;

APPENDIX IV SOURCE CODES FOR THE B&B ALGORITHM IN C++

126

goto rightside; }
if ((SB[counter-1]-S)>=1)

{

roundoff{A, XB, N, machine, component, B, counter, SB);

if {SB[counter]>=SB[counter-1])

{ SB[counter]=SB[counter-1];}
cout<<"the current SB["<<counter<<"]: "<<SB[counter]<<endi;
cout<<"";

goto lefiside;

}

}
}

if (L==0)
{
counter=M-1;
goto rightside;
1

if (krun==0)
{ cout<<endl<<endi<<endl<<endl<<endl;
COU!((“#*******t*tt*it**t*#tttt*t*ll‘t‘ttttllIi*t**t#***i*t*"<<end]<<endl-
1

cout<<"the optimal integer function value: "<<S<<endl,
cout<<"the optimal soluticn: "<<endl;

for (int I=I; I<=machine; [++)

{

for (int J=1; J<=component; J++)
XX[{N=X[(I-1)*component+J+1]; -

}
}

for (int I=1; [<=machine; I++)

{

for (int J=1; J<=component; J++)

{

cout.width(5);

cout<<"XX["<<l<<" << "< XX [J];
}

cout<<endt,

}

cout<<endl,
Coul((“*#*tttttii*#*‘****#i‘l#****‘t*l*#*******##‘.t!tt#*#‘l"((enc"((end];
cout<<"The iteration time(s); "<<iteration<<endl,

second = time{NULL);

print{{("The running time is: %f seconds\n”,difRime(second, first));
Cout((“t*****#********t‘3‘*‘#*#*#**‘*"*3‘**#*#*#'tit******"((cndl<<endl.

APPENDIX [V SOURCE CODES FOR THE B&B ALGORITHM IN C++

127

cout<<"Enter y/n to terminate it"<<endl;
cout<<endl<<endl<<endi<<endl;

char tempp;

cin>>tempp;

return (;

}

rightside:

PINT(M]=2;
B[M]-BB[MI[2];

cout<<"\nThe (Right) current B["<<M<<"] is: "<<B[M]<<endl
cout<<"";

/*for (int [=1; I<=M; [++)
{
for (int J=1; J<=MN;J++)
fif (A[1](J]!=0)
{cout.width{4),
cout<<"A["<<l<<"|["<<)<<"]"<<A[H][I];}}
cout<<endl;

}

cout<<"";*/

for (int J=1; J<=N; J++)
{X[J]=XX[counter][]];}

iteration+=1;
LPLQ(A, B, C, X, M, N, MN, S, PINT, L);
cout<<"";
for (int 1=1; [<=N; I++)
{
if (X[1]<0.01)
{X[1]=0;}
if ((ceil(X[1])-X[11)<0.01)
{X{1)=ceil(X[1]};}
if (X[1]-{fMloor(X[I])<0.01)
{X{1)=floeor(X[1]);}

for (int I=1; 1<=N; I++)

{
if (X[1]!=0)
{eout<< X["<<t<<"Jis:"<<X [[]<<endl; }

}

cout<<"the current N is: "<<N<<endl;
cout<<"";
if (L==1)
{ counter+=1,
5=0;
for {int 1=1; 1<=N; 1++}
{S=S+C[1]*X[1};}
for (int J=1; J<=N; J++)
§ XX [counter][J]=X[J];
XB[counter]{J]=X{J}}
check=0;

APPENDIX IV SOURCE CODES FOR THE B&B ALGORITHM IN C++

128

for (int J=1; J<=N; J++)

{
if (ceil(XX[counter][J]}-XX[counter][J]>0.01)

{check+=1;}
H
if (check==0)//if we have got an integer soiution
{

if (S<=SB[counter-1])
{ cout<<endl<<endl<<endl<<endl<<endl,
COULCC T HERR R REEXE RSB HARRLXESEER AR S AMREEEEEEED AT EXERERIN " Con] |<<end]:

cout<<"the optimal integer function value: "<<S<<endl,
cout<<"the optimal solution: "<<endl;

for (int I=1; [<=machine; [++)
for {int J=1; J<=component; J++)

XX[MI=X[(1-1)*component+]J+1];

}
}

for (int 1=1; I<=machine; [++)
{

for (int J=1; J<=component; J++)

{
cout, width(5);
cout<<"XX["<<I<<")["<<]<<"]: "<<XX[I}{]];

}

cout<<endl;

}

cout<<endl;
cout<<"**t!t“*****ttt‘l##********t#**i*#****ﬂ##ﬂ""‘l‘l###‘**"((endl<<end[;

cout<<"The iteration time(s): "<<iteration<<endl;

second = time{(NULL);

printf("The running time is: %f seconds\n"”,difftime(second,first));

COU(<<"**t*ttt*t#**##*ittt*t********t##******ﬂt#*#*###*#**#“((end]<<endr
;

cout<<"Enter y/n to lerminate it"<<end|,
cout<<endl<<endl<<endl<<endl;

char tempppp;
cin>>tempppp;

return 0;

}
if (§>SB{counter-1])
for (int J=M; J>(machine+component);!--)
{if(PINT[J]==l)
l Mleft=J;

break;

APPENDIX IV SOURCE CODES FOR THE B&B ALGORITHM IN C++

129

M=Mleft;
counter=M-1;

goto rightside;
}
)

if (check!=0)//still fraction solution
if ((SB[counter-1]-S)>=1})

roundoff(A, XB, N, machine, component, B, counter, SB);

if (SB[counter]>=SB[counter-1])

{ SB[counter]=SB[counter-1];}
cout<<"the current SB["<<counter<<"} is: "<<SB[counterj<<endl,
cout<<"";
goto leftside;

}

if ((SB{counter-1]-8)<1)
{

for (int J=M; J>(machine+component);J--)

{
if (PINT[i]==1)

{
Mieft=1;

break;}
}
M=Mleft;
counter=M-1;

goto rightside;
)
H
}
if (L==0)
{

for (int J=M; J>(machine+component};J--)
if (PINT[J]==1)

Mlefi=J;
break;
H
}
M=Mlefi;
counter=M-1;
goto rightside;

}

APPENDIXV SOURCE CODES FOR THE B&B ALGORITHM IN MATLAB 130

APPENDIX V

SOURCE CODES FOR THE B&B ALGORITHM IN MATLAB

APPENDIXV SOURCE CODES FOR THE B&B ALGORITHM IN MATLAB 131

U ha Y n % % Y e % %e Y Y% Yo Y0 3 % % Y Y% e % Y e % Ye b6 %% Y Y% %t e e T it T e U b et
%9%0%

Y%%o% User Interface Input Data

%%

LAYt Ve % Yo e Y% Yo% % % % o %% %% Ya % Yo Y0 %6 %% 0 Y M ¥ % % % % %% e Vet e T %0 % e Y

disp(" Select the Input Mode ');
disp(INTERACTIVE MODE ----------— 1
disp(FILE MODE FROM DATA FILE ---- 2");

CH =input('Enter 1 or 2 ===>");

while (CH~=1 & CH ~= 2)==
CH=input('Please Re-enter the choice of input mode - 1 or 2: ');
if CH==1 | CH==
break;
end
end

if CH==1
InputData;
else
[filename,path] = uigetfile("™.mat’, '‘Get File"),
eval(['load’ [path filename]]);
end

disp('Time is >")
disp(PT)
disp('Quantity is >')
disp(Q)

disp('Setup time is >)
disp(Setup)

ml=M,
m2=C,;

a = zeros(m1+m2, m1*m2+1);
for row = I'm1+m2
forcol= 1:(ml * m2} + |

if row <=ml
if col ==
a(row, col) =-1;
else

row_ml = floor({col-2)/C +1);
col_mt = (mod(col-2, C)) +1;
a(row_ml, coly= PT(row_m1i, col_ml},
cnd
else
forcol=2:(ml*m2)+ 1|
if (mod(col-row+mt-1, m2) == 0}
a(row, col) = 1;
end
end
end
end
end

b= zeros(m1+m2, 1);

APPENDIXY SOURCE CODES FOR THE B&B ALGORITHM INMATLAB 132

fori=l:ml+m2
ifi <=ml
b(i) = -Setup(i);
else
b(i} = Q(i-m1),
end
end

¢ = zeros(1, mI*m2+1);
fori=I:ml1*m2+1;
if i== m1*m2+I]
c(i)=1;
end
end

APPENDIXV SOURCE CODES FOR THE B&B ALGORITHM INMATLAB 133

Y% Y Ya % Yo% %% Yo% Y% Yol % %o e Y% % % % %% Yo% Yo % % %% Y6 % % % Y% Yo % M

Y%

Yo% % User input the required data — info.m
%a%0%
Yo% Ye Y% %YV Y YV Y YaY e Y % Y % %Yo Yo Ve Yo Yoo Vo Y6 Yo% % % %0 % e Yo Y e Yo

M = input(Input the number of machine(s)>");
C = input('Input the number of Component Type(s) > '),

2% %Y % %o %% Y% %% Ve % Yo% Yo% Yo% Yo e %% Yo% %% Y e % Yo Mo b Yo Vi
%% %

%a%6% Read the Setup Time for different machines

%6%0%)

b0 Y% % YoY% Yo Y %% Yo Y% Yo Y %% %o % Ve %% %% %% % % % % %o Y % % Yo Yo e

a ='Please enter the setup time for the Machine',
fori=1:M

I = num2str(i);

P=[a, L' >}

Setup(i) = input(P);
end

LA 2
A K a6 VALYV Ye YV 0% e Ve Yo% e Ve Yo% Y% Yo e Yo e e bV

e

4% o“fo Read the quantities for different component types
n 0/ l.)/

" u” %0 % %% % % %6 % %% %% %% YoY% Yo /o%%%%%%%%%%%%%%‘/o% Yaa¥%o

a = 'Please enter the quantity for the Component’;
forj=1.C
= num2str{j);
P=(a,]," >]
QQ)) = input(P);

end

A% Y Y0 Yo% Yo Yo% Y% Yo Yoo Y Ve Y % Yo Yo% e % % Vo % Y Y%

s
0 0() ',0 >

245 0% Read the Placement Time for different machines to components

Pt

) L}
okt

n < 1 (J i FSOF Dy k2O 0)
04,0 00 e 01 0.0 00 T e e 0 D D 0 00008 00507 0,04 0 00 YV % e Yo% % Y% e % T ia w0

a = 'Please enter the placement time PT';

fori=1:M
forj=1.C
= num2str{i};

J = num2str(});
P=[a,1,]," =},
PT(i,j) = input(P);
end
end

fil = input('Save the data into file, y/n?",'s");

if (fil ==Y [fil=="y")
[filename, path] = uiputfile("* mat',Save As’);
eval('save', [path filenamel]);
end

APPENDIXV SOURCE CODES FOR THE B&B ALGORITHM IN MATLAB 134

a0 % Y Y% Yo Yl a % Yo %% Yo% % %0 %o % o Y Y M e o e Ya % Y Y Y% Y Yt T % e
Yu%o%

A Start the Program - Start.m

0% %

%o %% Y% Yo% %0 % Yo Ye Yo% Y% %0 e % %o Y % %% %% % % Mo % i Y %t e
global A;

global B,

global counter,

global ixsep_guess;

templat3;

A=a(l:ml,l:(m1*m2));

B=-b(1:ml};
Aeg=a((m1+1):(m1+m2),1:(mi*m2));
Beg=b((m1+1):(m1+m2));

simplex;

guess_s_t=round(sortrows([bas’ b],1)};
[n_r,n_c]=size(guess_s_t);
guess_s=guess_s_t{1:(n_r-1),1:n_c);

x0=zeros{(m1*m2,1);

for g=t:(n_r-1),
x0(guess_s(q,1))=guess_si(q,2);

end

xstatus=ones(m1*m2,1);
xstatus(4)=2;

xstatus(5)=2;
xstatus(6)=2,;

xlb=zeros(m1*m2,1); %

for p=I:ml, % Initial lower and upper bound vectors
xub({m2*(p-1)+1}:{m2*p),1)=Beq; %

cnd Yo

OPTIONS =

optimset('TolPCG',0.1, TolCon',0.05, Tol X',0.03, TolFun',0.1,'DiffMaxChange’,0.] ,DiffMinChange',0.0
001, "MaxFunEvals’, 10*numberOfVariables',' Display','final',Maxiter',400);

% I counter=0. set the first ixsep with the value of ixsep_guess.

counter=1;
2, 3 counter= 1 let the BNB20 program sclects the liest ixsep by itself.

ixsep _guess=18§;

deviation _bas=5;
deviation_nbas=1,

for u=1:{ml1*m2), by
deviation=deviation_nbas; b
foro=1:(n_r-1), b
if (u==guess_s(o,1}) 3

deviation=deviation_bas; "

end 0

end 0
if (x0(u)-deviation) > xIb{u)} Y

x1b(u)=x0(u)-deviation; i

APPENDIXV SOURCE CODES FOR THE B&B ALGORITHM IN MATLAB

135

end %oMudified lower and upper bound vectors
if (x0(u)+deviation) < xub{u) %
xub{u)=x0(u)+deviation; %
end %
end %
Ale=[];
Bie=[];

[errmsg,Z, X, t,¢,fail]=BNB20('BnB',x0,xstatus,xIb,xub,Aie,Bie,Aeq,Beq,(],[J, OPTIONS),

P A /0 / 20S 07000, : - 0, ’ 0
O %0 e 2004 %0 %0 % % % %4 0% 0% %% 20 % M %0 Y % %0 % o % T MY Y % 26 % e U % e v

a0 % 02000 %" o'

%%

T Ohjective Function = Bnb.m

i

Ltk bas et ate%e Yo e e %o e Ve % 3% e % Y Y% Yo Yo% 20 % ¥ M Y Y e ka2 Tt 2a S

function [Tmax] = BnB(x);
global A;
global B;

T=A*x+B;
Tmax=max(T);
end

APPENDIX V SOURCE CODES FOR THE B&B ALGORITHM IN MATLAB 136

Y%V %n % Y %e YoY% %Yo % MY %0 0%0%6 % % %Y 0% % Y M 1 % %% % %% % % % Y % e
%%%%

Yoo Simplex Method — simplex.m

%%

%% %% %00 %% e Y00 Ve Yo% e Yt 40t 2% 0 Mt M Ve o % M %t Yo i e Ve

tl = cputime;

nbas=[]; % initinlize 10 avoid compiler definition error
epsd=.00001; % accuracy parameter

eps0=107(-10); % numerical zero

eps1=107(-5); % accuracy parameter for optimality check
z=0; % initial objective value

[m,n1]=size(a); % number of rows and columns of a

ifml >0, % incquality constraints exist

a=[a [eye(m 1) zeros(m1,m2)]};
c=[c zeros(1,m1)];

end
if m2==0, % if no equality consiraints
disp{['start phase2 '])
reg,
return
-clse
corig=c; Saindex tor the objective Tunction

c=[zeros(1,n1+m1) ones(1,m2)];
a=[a {zeros(m2,m[) eye(m2)}'];
bas=[nl+1:n1+m1+m2];
reg; % solve phase T using the regan file
if z <-epsd,
disp(['optimal value from phase | is: ' num2str(z)}])
disp(['the above shows that the problem is infeasible'])

disp(['Final tableau])
[ab
cz]
return
else

a=a(:;, l:nl+ml);
c=c(l:nt+ml};

while ~all(bas<nl+mi+1),

disp{['an anificial variable remains in the basis after phasel'])

disp(['pivot to remove the remaining artificial variables])
mtol=[1:m};

i=miol(bas>nl+ml}; Yo ivol row

i=i(1)

nimltol=[1:nl+ml];

t=nimltol{abs(a(i,:))>epsl); % pivot column

t=1(1)

v=nbas(nbas==t}); % variuble eniering the basis

nbas(v)=bas(i);
bas(i)=t;

APPENDIXV SOURCE CODES FOR THE B&B ALGORITHM IN MATLAB 137

alpha=a(i,t); % pivot element

4 Store the data in ap,bp
ap=a;
bp=b;
fork=1:m,

ratio=ap(k,t)/ap(i,t);

a(k,’)=ap(k,:)-ap(i,:)*ratio;

b(k)=bp(k)-bp(i)*ratio;
end .

% Now for the objective row update
ratio=c(t)/ap(i,t);
c=c-ap(i,:)*ratio;
z=z-bp(i)*ratio;
a(i,:)=ap(i,:)ap(i,t);
b(i)=bp(i)/ap(i,t);

end

c=corig;
reg
end

% solve the problem using file reg.in

e = cputime - t1

end

APPENDIXV SOURCE CODES FOR THE B&B ALGORITHM IN MATLAB

138

R A (T o (L L X Y P R

n, ﬂ/ﬂ
"’n“fu"’n Phase {1 for Simplex Method - reg.m
%%

o Y Ve e T AL Ve UV Voo Yo Yo Yo NV Y A Ve Yo% o YoY% Vi

rmderr=0;

iterm=500;

stop=1; % use lo overcame the bug in the return statement
eps0=107(-10); % numerical zero

eps1=107(-5); % accuracy parameter for optimality check
eps2=107(-8); " accuracy parameter pivot element (threshold test)
eps3=107(-6); % accuracy parameter for final roundoft error check
a0=a; % save the matrix a for the final roundof¥ error test
b0=b; o5 save the vector b for the final roundoft error test
¢0=c;bas0=bas;

[m,mn]=size(a); % -row and column size of a

z=-c{bas)*b; % initial value for z

% price out Lthe cost vector
= - c(bas)*b;
Sacle
fori=t:m,
¢ = ¢ - ¢{bas(i))*a(i,:);
end

iter=0; % initiabize the iteration coun
n=mn-m; % number of nonbasic variables
% nhas - indices of 1he nonbasic variables
nbas=[];
for j=1:mn,
if all(j~=bas),
nbas=[nbas j];
end
end
% Perform simplex iterations as long as there 1s a neg cost
while iter<iterm,
% Vind a negative reduced cost.
ctemp=c; o4 temporary work vector
neg=1;
for j=1:n,
if ctemp(nbas(j))<-epsl,
neg=[neg nbas(j}];

end
end
ct=-1;
if length(neg)y==0,

d:sp([This phase is completed - current basis is: ']}
bas=bas
disp(["The current basic variable values are :])
b

disp(['The current objective value is:'])

T = cO(bas)*b

disp({'The number of iterations is ' int2str(iler) b

if norm(a0(;,bas)*b-b0,inf)>eps3, % check solution
disp(['* * WARNING** roundofF error is significant’ b
end

if any(b<-eps0), " chueck positive final solution

APPENDIXV SOURCE CODES FOR THE B&B ALGORITHM IN MATLAB

139

disp(["**WARNING** final b not nonnegative'])
end

stop=0;

return

else
while ct<-epsl, % continue till we find a suitable pivot

[et,i]=min(ctemp(neg));

if ct>=-epsl, %5 no suitable pivol columns are left
disp({'a suitable pivot element cannot be found'])
disp(['probable cause: roundofT error or ill-cond prob')
disp([‘equilibrate problem before solving'])
stop=0;,
return

end

t=neg(i); %o index of the most neg reduced cost

% Now. let x sub t cnter the basis

0,)
% First, we need to Gnd the variable which leaves the basis
pos=(};
ind=(];
fori=1:m,
if a(i,t)>eps0,
ind=[ind i]; % suitable rows
end
end
if length(ind)==0,
disp(['The problem is unbounded 'J)
stop=0;
return
end
{alpha,i]=min{b(ind)./a(ind,t)});
i=ind(i); % pivol row
if a(i,t)>eps2, ¥ a suitable pivot element is found
ct=0;
else
ctemp(t)=0; % column i ts unsuitable pivot col.
end
end
if stop==0,
return % Ensure that we returm
end
%Y Ulpdate the basic and nonbasic vectors.

nbas(nbas==t)=bas(i);
bas(i)=t;
alpha=a(i,t); “a pivot clement
o Stare the data in ap.bp
ap=a,;
bp=b;
%% Now prvot by row
iter=iter+1;
fork=1:m,
ratio=ap(k,t)/ap(i,t};
a(k,:)=ap(k,:)-ap{i,:)* ratio;
b(k)=bp(k)-bp(i)*ratio;
end
5 Now for the ohjective row update
ratio=c(1)/ap(i,t);
c=c-ap(i,:)*ratio;
z=z-bp(i)*ratio;

APPENDIXV SOURCE CODES FOR THE B&B ALGORITHM IN MATLAB 140

a(i,;)=ap(i,-)ap(i,t);
b(iy=bp(iMap(i.t);
end
end
if iter>=300,
text="Iteration bound has been exceeded ******'
end

APPENDIXV SoOURCE CODES FOR THE B&B ALGORITHM INMATLAB 141

0% %% %0 Y %% Yo % Yo v Y% Y Y% %Yo Yo % M Yo Yo e MY e Y ¥ %o Yo %6 Y0 % Yo Yt 26 %% %
%00%%%0

%60 Branch-and-Bound Algorithm — BNB20.m

%% %

Va%a% %0 %% %% % Y0 %0 %0 %% %0 e % % Yo% %a %6 Yo% Yo Ye Yo Yo% % %% % M % M Y % %

function [errmsg,Z, X, t,c,fail] = BNB20{fun,x0,xstat,xl,xu,a,b,aeq,beq,nonlc,setts, opts, varargin);

global maxSQPiter;
global counter;
global ixsep_guess;

9% STEP O CHECKING INPUT
Z=[]; X=[]; t=0; c=0; fail=0;
if nargin<2, errmsg="BNB needs at least 2 input arguments.’; return; end;
if isempty(fun), errmsg="No fun found."; return;
elseif ~ischar(fun), errmsg="fun must be a string.’; return; end;
if isempty(x0), errmsg="No x0 found."; return;
elseif ~isnumeric(x0) | ~isreal(x0) | size(x0,2)>1
errmsg="x0 must be a real column vector.’; return;
end;
xstatus=zeros(size(x0));
if nargin>2 & ~isempty(xstat)
if isnumeric(xstat) & isreal(xstat) & all(size(xstat)<=size(x0))
if all(xstat==round(xstat) & 0<=xstat & xstat<=2)
xstatus{ 1 :size(xstat))=xstat;
else errmsg="xstatus must consist of the integers 0,1 en 2."; return; end,
else errmsg="xstatus must be a real column vector the same size as x(."; return; end;
end;
xlb=zeros(size(x(1));
xIb(find(xstatus==0))=-inf;
if nargin>3 & ~isempty(x!)
if isnumeric{x{) & isreal(x]) & all(size(xI)<=size(x0)}
xIb(1:size(xl,1))=x1;
else errmsg="x1b must be a real column vector the same size as x0."; return; end;
end;
if any(x0<xIb), ermsg="x0 must be in the range xIb <= x0.’; return;
elseif any(xstatus==1 & (~isfinite(x1b) | xIb~=round(xlb}))
errmsg="xIb(i) must be an integer if x(i) is an integer variabele.’; return;
end;
xIb(find{xstatus==2})=x0(find(xstatus==2)),
xub=ones(size(x(});
xub(find(xstatus==0))=inf;
if nargin>4 & ~isempty(xu)
it isnumeric({xu) & isreal(xu) & all(size(xu)<=size(x0))
xub(1:size(xu,1))=xu;
¢lse errmsg="xub must be a real column vector the same size as x0.'; return; end,
cnd;
if any(x0>xub), errmsg="x0 must be in the range x0 <=xub.'; return;
elscif any(xstatus==1 & (~isfinite(xub) | xub~=round(xub)))
errmsg="xub(i) must be an integer if x(i) is an integer variabale.'; return;
end;
xub{ find(xstatus==2))=x0(find{xstatus==2));
A=l];
if nargin>5 & ~isempty(a)
if isnumeric(a) & isreal{a) & size(a,2)==size(x0,1), A=a;
clse errmsg="Matrix A not correct.’; return; end;
end;

B=(].

APPENDIXV SOURCE CODES FOR THE B&B ALGORITHM IN MATLAB

142

if nargin>6 & ~isempty(b)
if isnumeric(b) & isreal(b) & all(size(b)==[size(A,1) 1]), B=b;
else errmsg="Column vector B not correct.’; return; end;
end;
if isempty(B) & ~isempty(A), B=zeros(size(A,1),1); end;
Aegq={];
if nargin>7 & ~isempty(aeq)
if isnumeric(aeq) & isreal(aeq) & size(aeq,2)==size(x0,1}, Aeq=aeq;
else errmsg="Matrix Aeq not correct.’; retum; end;
end;
Beg=[];
if nargin>8 & ~isempty(beq)
if isnumeric(beq) & isreal(beq) & all{size(beq)==[size(Aeq,1) 1]), Beq=beq;
clse errmsg="Column vector Beq not correct.’; return; end;
end;
if isempty(Beq) & ~isempty(Aeq), Beq=zeros(size(Aeq,!1),1); end;
nonlcon=";
if nargin>9 & ~isempty(nonlc)
if ischar(nonic), nonlcon=nonlc;
else errmsg="fun must be a string.”; retum; end;
end;
settings = {0 0];
if nargin>10 & ~isempty(setts)
if isnumeric(setts) & isreal(setis) & all(size(setts)<=size(settings))
settings(setis~=0)=setts(setts~=0);
else errmsg="settings should be a row vector of length | or 2.'; return; end,
end,
maxSQPiter=1000;
options=optimset('fmincon’);
if nargin>11 & ~isempty(opts)
if isstruct{opts)
if isfield{opts,' MaxSQPlter’)
if isnumeric{opts.MaxSQPlter) & isreal(opts. MaxSQPlter) & ...
all(size(opts.MaxSQPlter)==1) & opts.MaxSQPlter>0 & ...
round(opts. MaxSQPlter)==0pts. MaxSQPlter
maxSQPiter=opts. MaxSQPlter;
opts=rmfield(opts,'MaxSQPIter’);
else errmsg="'options.maxSQPiter must be an integer >0."; return; end;
end;
options=optimset{options,opts),
clse errmsg="options must be a structure.’; return; end;
end;
evalreturn=0;
eval(['z=",fun,'{(x0 varargin{:}).']'errmsg="fun caused error.”; evalreturn=1,");
il evalreturn==1, return; end;
il ~isempty(nonlcon)

eval(['[C. Ceq]=",nonlcon,' (x0.varargin{:}).'],'emmsg="nonlcon caused error.”; evalreturn=1.");

if evalreturn==1, return; end;

if size(C,2)>1 | size{(Ceq,2)>1, errmsg="C en Ceq must be column vectors.’; return; end;

cnd;

Y STEP TINITIALISATION
currentwarningstate=waming;
warning off;

tic;

Ix = size(x0,1);
z_incumbent=inf;
x_incumbent=inf*ones(size(x0}),

[= ceil(sum(tog2(xub(find(xstatus==1))-xIb{find(xstatus==1)}+ 1))+size(find(xstatus==1), 1}+1);

APPENDIXY SoOURCE CODES FOR THE B&B ALGORITHM IN MATLAB

143

stackxO=zeros(Ix,[);
stackx0(:,1)=x0;
stackxIb=zeros(Ix,I};
stackxIb(:,1)=xlb;
stackxub=zeros(Ix,1};
stackxub(:, [)=xub;
stackdepth=zeros(1,1);
stackdepth(1,1)=1;
stacksize=1;
xchoice=zeros(size(x0));
if ~isempty(Aeq)
=0;
for i=1:size(Aeq,1) o
if Beq(i)==1 & all(Aeq(i,:)==0| Aeg(i,.)==1)
J=find(Aeq(i,:)==1);
if all(xstatus(J}~=0 & xchoice(J}==0 & xIb{})==0 & xub())==1}
if all{xstats(J}~=2) | all(x0(J(find(xstatus(J)==2)))==0)
=L
xchoice(J)=j;
if sum(x0(J))==0, errmsg="x0 not correct.’; returmn; end;
end;
end;
end;
end;
end;
errx=optimget({options, TolX");
handleupdate=[];
if ishandle(settings(2))
taghandlemain=get(settings(2), Tag'};
if stremp(taghandlemain,'main BNB GUI’)
handleupdate=guiupd,
handleupdatemsg=findobj(handleupdate, Tag', updatemessage’);
bnbguich{'hide main’);
drawnow;
end;
end,
optionsdisplay=getfield(options, Display’),
if strcmp{optionsdisplay,'iter') | strcmp(optionsdisplay, final’)
show=1;
eise show=0; end;

CYSTEP 2 TERMINIATION
while stacksize>0
c=c+l1;

G STEP S LOADING OF CsP
x0=stackx0(:,stacksize);
xIb=stackxib(;,stacksize);
xub=stackxub(:,stacksize);
x0(find(x0<x1b))=xtb(find(x0<xIb});
xO(find(x0>xub))=xub(find(x0>xub));
depth=stackdepth(]1,stacksize);
if z_incumbent==inf

stacksize=stacksize-1;
else

random_n=rand(1);

if random_n<=0.85

stacksize_step=1;
end

APPENDIXV SOURCE CODES FOR THE B&B ALGORITHM INMATLAB

144

if (random_n>0.85 & random_n<=0.925)
stacksize step=2;

end

if (random_n>0.925 & random_n<=0.975)
stacksize_step=3;

end

if random_n>0.975
stacksize step=4;

end
stacksize=stacksize-stacksize_step;
if stacksize<0 %
stacksize=0; Yall slacksize=0. sel stacksize=0 (stacksize can only be posttive or zero)
end %%
end

percdone=round(100*(1-sum(0.5."(stackdepth(1:(stacksize+1))-1))));

% UPDATE FOR USER
if ishandie(handleupdate) & stremp(get(handleupdate, Tag'),'update BNB GU!')
t=toc;
updatemsg={ ...
sprintf(’searched %3d %% of three',percdone) ...
sprintf('’Z @ %12.4¢’,z_incumbent} ...
sprintf{('t : %12.11 secs',p) ...
sprintf'c : %I12d cycles',c-1) ...
sprintf{’fail : %12d cycles'fail}};
set(handleupdatemsg,'String',updatemsg),
drawnow;
else
t=toc;
disp(sprintf(*** searched %3d %% of three',percdone));
disp(sprintf(*** Z : %I12.4¢',z_incumbent)},
disp(sprintf(*** 1t : %1211 secs',t));
disp(sprintf(*** ¢ : %I2d cycles',c-1});
disp(sprintf(’*** fail : %12d cycles'fail));
end;

% STEP 4 RELAXATION
[x z convflag]=fmincon(fun,x0,A,B,Aeq,Beq,xlb,xub,nonlcon,options,varargin{:});

0% STERP S FATHOMING
K = find(xstatus==1 & xlb~=xub};
separation=1;
if convflag<0 | (convflag==0 & settings(1))
"% IFC |
separation=0;
if show, disp(**** branch pruned’); end;
if convilag==0,
fail=fail+1,
if show, disp("*** not convergent’); end;
clscif show, disp("*** not feasible’);
end;
elseif z»=z_incumbent & convflag>0
S 17C 2
separation=0;
if show
disp("*** branch pruncd’),
disp("*** phosted’);
end;

APPENDIXY SOURCE CODES FOR THE B&B ALGORITHM IN MATLAB

145

elseif ali(abs(round(x(K))-x(K))<errx) & convflag>0
%o FC 3
z_incumbent = z;
x_incumbent = x;
separation = 0;
if show
disp("*** branch pruned’;
disp("*** new best solution found’),
end,
end;

% STEP 6 SELECTION
if separation == 1 & ~isempty(K)
dzsep=-1;
for i=1:size(K,1)
dxsepc = abs(round(x(K(1)))}-x(K(i)));
if dxsepc>=errx | convilag==
xsepc = x; xsepe{K(i))=round{x(K(i)));
dzsepc = abs{feval(fun,xsepc,varargin{:})-z);
if dzsepc>dzsep
dzsep=dzsepc;
ixsep=K(i};
end;
end;
end;

if counter==0
ixsep=ixsep_guess
counter=counter+1;
end

% STEP 7 SEPARATION
if xchoice(ixsep)==

% XCHOICE==0
branch=1,
domain=[xib(ixsep} xub(ixsep)];
sepdepth=depth;
while branch==
xboundary=(domain{1)+domain(2))/2;
if' x(ixsep)<xboundary
domainA=[domain(1) floor(xboundary)];
domainB=[floor(xboundary+1} domain(2)];
else
domainA=[floor(xboundary+1) demain(2}];
domainB={domain(1) floor{xboundary)};
end;
sepdepth=sepdepth-+1;
stacksize=stacksize+1,
stackx0(;,stacksize)=x;
stackxIb(:,stacksize)=xlb;
stackx|Ib(ixsep,stacksize)=domainB(1);
stackxub(:,stacksize)=xub;
stackxub(ixsep,stacksize)=domainB(2);
stackdepth(1,stacksize)=sepdepth;
if domainA(1)==domainA(2)
stacksize=stacksize+1;
stackx0(:,stacksize)=x;
stackxIb(:,stacksize)=xIb;

APPENDIXV SOURCE CODES FOR THE B&B ALGORITHM IN MATLAB

146

stackxIb{ixsep,stacksize)=domainA(l),
stackxub(:,stacksize)=xub;
stackxub(ixsep,stacksize)=domainA(2);
stackdepth(1,stacksize)=sepdepth;
branch=0;

else
domain=domainA;
branch=1;

end;

end;
else

% XCHOQICE~=0
L=find(xchoice==xchoice{ixsep));
M=intersect(K,L);
[dummy,N]=sort(x(M});
part1=M(N(1 :floor(size(N)/2))); part2=M(N(floor(size(N)/2)+1:size(N)));
sepdepth=depth+1;
stacksize=stacksize+1;
stackx0(:,stacksize)=x;
O = (i-sum(stackxO(part | stacksize)))/size(partl,1);
stackx0(part | stacksize)=stackx0(part! stacksize)+0,
stackxIb(:,stacksize)=xlb;
stackxub(:,stacksize)=xub;
stackxub(part2 stacksize)=0;
stackdepth(1,stacksize)=sepdepth;
stacksize=stacksize+];
stackx0(:,stacksize)=x;
O = (1-sum(stackxO(part2,stacksize)))/size(part2,1),
stackx0(part2 stacksize)=stackxQ{part2,stacksize}+0;
stackxlb(:,stacksize)=xlb;
stackxub(:,stacksize)}=xub;
stackxub(part | ,stacksize)=0;
stackdepth(1,stacksize)}=sepdepth;

end;

elseif separation==1 & isempty(K)

fail=fail+1;

if show
disp("*** branch pruned’);
disp("*** leal not convergent');

end;

end;
end,

Y STEP S OUTPUT
t=toc,

Z = z_incumbent;

X = x_incumbent;
errmsg=",

i ishandle(handleupdate)
taghandleupdate=get(handleupdate, Tag’);
if stremp(taghandleupdate,'update BNB GUI')
close(handleupdate);
end;
end;

eval(['warning ",currentwarningstatej);

APPENDIX VI SoURCE CODES FOR THE TABU HEURISTIC IN MATLAB 147

APPENDIX VI

SOURCE CODES FOR THE TABU SEARCH HEURISTIC IN

MATLAB

APPENDIX VI Sourci CODES FOR THE TABU HEURISTIC INMATLAB 148

940494049 % % Yo Y Y% % %6 % % T %% Y% Y % % %0 %6 %0 6 e %0 %% % % %% %% % %% Yo % Yo % M % Y e % Ye
%% %
%% User Interface Input Data

07 0407
gl
000 Ve Y0¥ U5 % % %504 Y Y Yo o BT Yo Y4 ¥t %0 % Yo b e Yo % % e % et 9 e T 96 %% %t e M e Y %o %o

disp{' Seiect the Input Mode ');
disp(INTERACTIVE MODE ---eeveevee- 1Y
disp(FILE MODE FROM DATA FILE ---- 27,

CH =input(‘'Enter | or 2 ===> '};

while (CH~=1& CH ~=2)==
CH=input('Please Re-enter the choice of input mode - | or 2: '),
if CH==1 | CH==2
break;
end
end

if CH==
InputData;
else
[filename,path] = uigetfile("*.mat’, ‘Get File");
eval(['load' [path filename]});
end

disp('Time is >)
disp(PT)
disp('Quantity is >)
disp(Q)

disp('Setup time is >")
disp(Setup)

a = zeros{m 1+m2, m1*m2+1);
for row = I:m1+m2
forcol=I:{m]1 *m2) + |

if row <= ml
if col ==
a(row, coly =-1;
else

row_m| = floor({(col-2)/C +1};
col_m! = (mod(col-2, C)) +1,
a(row_ml, col) = PT(row_ml, col_mi);
end
else
forcol=2:{ml*m2)+ |
if (mod(col-row+m1-1, m2} == 0}
a(row, col})=1;
end
end
end
end
end

b = zeros(ml1-+m2, 1);

APPENDIX VI SouURCE CODES FOR THE TABU HEURISTIC IN MATLAB 149

fori= l:ml+m2
if i <=ml
b(i) = -Setup({i);
else
b(i) = Q(i-m1);
end
end

c=zeros(l, m1*m2+1);

fori=l:ml*m2+I,
ifi==ml*m2+1
ci)=1;
end

end

APPENDIX VI SOURCE CODES FOR THE TABU HEURISTIC INMATLAB

150

g A 0 000, 0 0 0 0/,0/007,07, 0,0 0% h % Y %0 % e % % % % % 7o % Y % % %% Y%

|5”.ﬂ/ ﬂ/o

Sl User input the required data — info.m

()/"ﬂ 00 °

Bl 07004 04 07 00,0407 004,07, 02040 % 1 %600 %% ¥ %% %% e %% % %% % % Y % Y e M % %

M = input(Input the number of machine(s) >");
C = input(Input the number of Component Type(s) >);

9% Y% Y% Voo Ya %% %o Y% Yol h % Y% % % Ya e M Y % %% Y %% Y0 % % Y e e e Y
LY 00/60/ n
%% Read the Setup Time for different machines
%%
9420 % M %% 00 % %Y 2% %% %4009 %%Y n%nﬁ)"/nq-/o%(%n/o%%%%%%%%/ Yo% %% %% %% %
a ='Please enter the setup time for the Machine’;
fori=1:M
1 = num2str(i);
P=[a,l,’ >'];
Setup(i) = input(P);
end

0250004 Y 0% %0 %% %% 2 % e Y% Ye Y ke %Y % % % Yh % Y6 % % % % Y% Y Yo Ve e et Y Y%
lJ.'"()_-blllf)
Tt Read the quantities for ditferent component types
i ﬂn "0 (1}
U it D% Ve kY 0e b Sl 4 e e M Yo Y M % 9 e % Y e Y 2 e Yo et Yo M e A

B (IU) ,;1 OO | el a1
a = 'Please enter the quantity for the Component’,
forj=1:C

J = num2str(j);

P=[a,J," >}

Q(j) = input(P);

end

B9 LR 040004 Y b Y 000 0% Y e Y T % 060 Y W% %% % %% 6% %0 Y% 00 Y Y Ve
Y% %%

0004% Read the Placement Time tor different machines to components

%4 "r) Yo
D 02000 B 0 008,000,007, 0404090040 % %20 Yt Y YoM %% Yo% % %0 %6907 Y 0% Y Y e %
a = 'Please enter the placement time PT,
fori=1:M
forj=1.C
| = num2str(i};
J = num2str(j);
P=[a, I,}," >'L
PT(i,j) = input(P);
end
end

fil = input{'Save the data into file, y/n?",'s');

if ([l =="Y"| fil=="y")
[filename, path] = uiputfile("*.mat’,'Save As’),
eval('save', [path filename]);
end

APPENDIX VI SoOURCE CODES FOR THE TABU HEURISTIC IN MATLAB

151

Yo Y YoV e e YoV Yo% Yo Yo Ve U Y Yo YooY Yo% %% V6% Y

Ca%%

“4%% Start the Program - Start.m
to%o%

240% %% %% %% Yo% % %Y a0 % %% % % %% e Yo %% Yo% Y Y% e Y% Yo Y % %% % Ve Y Ve M Yo
global A;

global B;

global counter,

global ixsep_guess;
templat3;

A=a(l:ml,1:(m1*m2));
B=-b(I:m1);

- Aeg=a((m | +1):(m1+m2),1:(m1*m2));
Beq=b{(m1+1}:(m1+m2));

simplex;

guess_s_t=round{sortrows(fbas' b}, 1)};
[n_r,n_c]=size(guess_s_t);
guess_s=guess_s_t(1:{n_r-1),1:n_c),

x0=zeros(ml*m2,1);

for g=1:(n_r-1),
x0(guess_s(q,1))=guess_s(q,2);

end

xstatus=ones(m1*m2,1};

xstatus(4)=2;
xstatus{5)=2;
xstatus(6)=2;

3,
(()

xIlb=zeros(m1*m2,1};

for p=1:ml, % Intial lower and upper bound vectors
xub({m2*(p-1)+1).(m2*p),1)=Beq; %

end %

OPTIONS =

optimset('TolPCG',0.1, TolCon’,0.05, Tol X',0.05, TolFun',0.1 JDiffMaxChange’,0.1,'DiffMinChange’,0.0

001, MaxFunEvals’,'10*numberQfVariables', Display’, linal',Maxlter',400),
counter=1,; 2% 10 counter=0. set the first iasep with the value of ixsep_puess.
ixsep_guess=18,

deviation_bas=5;
deviation_nbas=1;

for u=1:(m1*m2),
deviation=deviation_nbas; Y
foro=1:(n_r-1),
if (u==guess_s{o,1}}
deviation=deviation_ bas; o
end
end o
it (x0(u)-deviation) > xtb(u) i
x1b(u)=x0(u)-deviation; Yo

2 A coumer=1. let the BNB20 program selects the Drst ixsep by itself.

APPENDIX VI SoURCE CODES FOR THE TaBU HEURISTIC IN MATLAB

152

%Maoditied lower and upper bound vectors

end
if (x0(u)+deviation) < xub(u) Y
xub(u)=x0(u)+deviation; %
end %
end %
Aie=[];
Bie=[];

[errmsg,Z, X, t,¢,fail[=BNB20{'BnB',x0,xstatus,xIb,xub,Aie,Bie,Aeq,Beq,[],[], OPTIONS);

%% %% %% %% Y% Yo% % Yo% %0 % Y% % Ve %o 0% Y Y Y% Yo %o %e %0 6% Yo Ye % %% % Yo% Y
%%%%

%% Objective Function — BnB.m -

%%% .

%% %% %% %% %% % Y% % % % %% % %% %0 % % %0 % %6 %% %% % %% Yo Y0 Yo % % %0 Yo %

function [Tmax] = BnB(x);
global A;
global B;

T=A*x+B,
Tmax=max(T);
end

APPENDIX VI SoOURCE CODES FOR THE TABU HEURISTIC N MATLAB 153

0006 %% %% % %% Yo% Yo Y% %% %% % e %0 % %0 % %% % Y% Y% % Y% Y% % % 1t % et Y

%%

%% Simplex Method — simplex.m

0% %

004 %% Y %% % %% 0% ¥ 240 % Yo% %o %0 Ve Y Y0 %190 % % %% % %0 e % 1% % M % e Y et % Y% %

tl = cputime;

nbas=[];
eps4=.00001;
eps0=10"(-10);
epsl=107(-5);

z=0;
[m,n1]=size(a);

ifml >0,
a={a [eye(m) zeros{m1,m2)]'];
c=[c zeros(1,m1)];

end

if m2==0,
disp(['start phase2)
reg,
return
else
corig=c;
c=[zeros(1,n1+m1) ones(l,m2)];
a=[a [zeros(m2,m1} eye(m2)J'];
bas=[nl+1:nl+ml+m2];
reg,
ifz < -eps4,

%
Y
Yo
D) o

%

Yo

inttialize 10 avoid compiler definition error
accuracy parameter

numertcal zero

accuracy parameter for optimality check

initial objective value
number of rows and columns of i

% inequality constraints exist

% if no equality constrainis

Zaindex for the objective function

o sotve phase | using the reg.m file

disp([‘optimal value from phase 1 is: " num2str(z)])
disp(['the above shows that the problem is infeasible’])

disp(['Final tableau'])
fab
cz]
relurn
else

a=a(;,l:nl+ml);
c=c{1:nl+ml);

while ~all(bas<n!+m1+1},

disp{['an artificial variable remains in the basis alter phasel'])
disp(['pivot to remove the remaining artificial variables'])

mtol=[1:m];
i=mtol(bas>nl+ml);
i=i(1)

nimltol=[1:n14+m1l];

%% pivol row

t=nlm ltol{abs{a(i,;))>epsl); % pivot column

t=t(1)
v=nbas(nbas==t);
nbas{v)=bas(i);
bas(i)=t;

% variable entering the basis

APPENDIX VI SOURCE CODES FOR THE TaBU HEURISTIC N MATLAB 154

alpha=za(i,t); % pivot clement
% Store the data in ap.bp
ap=a;
bp=b;
for k=1:m,
ratio=ap(k,t)/ap(i,t};
a(k,:y=ap(k,:)-ap(i,:)*ratio;
b{k)=bp(k)}-bp(i)*ratio;
end
% Now for the objective row update
ratio=c(t)/ap(i,t);
c=c-ap(i,’)*ratio;
z=z-bp(i)*ratio;
a(i,-)=ap(i,:Yap(i,t);
b(i)=bp(i)/ap(i,t);
end

c=corig;
reg % solve the problem using fife reg.m
end

e = cputime - t1

end

APPENDIX VI SOURCE CODES FOR THE TABU HEURISTIC INMATLAB 155

0040406 YoY% %Yo Y% b Yo% e Ya Yoo e e Y %% %6 %% %% %% % 60090 %0 %6 %0 M4 %% %
W%

%% Phase 11 for Simplex Method - reg.m

%% %

%% %% %% %% %% Yo% %o Yo % Y % % %% Y Yo Yo% % Yo % % %% % %% % % %% % % W Y % %

mderr=0;

iterm=500;

stop=1; % use to overcome the bug in the rewrn statement
eps0=107(-10); % numerical zero

epsl=107(-5); % accuracy parameter for optimality check
eps2=10"(-8); % accuracy parameter pivot element (threshold test)
eps3=10°(-6); % accuracy parameter for final roundoff error check
al=a; % save the matrix a for the final roundofT error test
b0=b; % save the vectar b for the final roundoft error test
c0=c;bas0=bas;

[m,mn]=size(a); % row and column size of a

z=-c(bas)*b; % initiat value for z

% price out the cost vector
= . c(bas)*b;
Yacle
for i=1:m,
¢ = ¢ - c(bas(1))*a(i,:);
end

iter=0; % initialize the itcration count
n=mn-m; % number of nonbasic variables
% nbas - indices ol the nonbasic variables
nbas=[];
for j=1:mn,
if all(j~=bas),
nbas=[nbas j];
end
end
% Perform simplex iterations as long as there is a neg cost
while iter<iterm,
% Find a negative reduced cost.
ctemp=c; % temporary work vector
neg=[];
for i=1:n,
if ctemp{nbas(j))<-epsl,
neg={neg nbas(j}];
end
end
ci=-1;
if length(neg)==0,
disp(['This phase is completed - current basis is: '])
bas=bas
disp{['The current basic variable values are : '])
b
disp(['The current objective value is:'])
T = cO(bas)*b
disp(['The number of itcrations is ' int2str(iter)])
if norm(a0(:,bas)*b-b0,inf)>eps3, ¥ check solution
disp(["** WARNING** roundeff error is significant'])
end
if any(b<-eps0), " check positive Tinal solution

APPENDIX VI SoURCE CODES FOR THE TABU HEURISTIC IN MATLAB

156

disp(['** WARNING** final b not nonnegative'])
end
stop=0;
return
else
while ct<-epsl, % continue till we find a suitable pivol
[ct,i]J=min{ctemp(neg));
if ct>=-epsl, % no suitable pivot columns are lefi
disp(['a suitable pivot element cannot be -found'])
disp(['probable cause: roundoff error or ill-cond prob'])
disp{['equilibrate problem before solving')
stop=0;
return
end
t=neg(i); % index ol the most neg reduced cost
%o Now, let x sub t enfer the basis

%
% First, we need 10 find the variable which leaves the basis
pos=[];
ind=[];
for i=1:m,
if a(i,t)>eps0,
ind=[ind i]; % suitable rows
end
end

tf length(ind)==0,
disp(['The problem is unbounded 'T)
stop=0;
return
end
[alpha,i]=min(b(ind)./a(ind,t));
i=ind(i); % pivot row
if a(i,t>eps2, Y% a suitable pivot element is found
ct=0;
else
ctemp(t)=0; % column t is unsuitabic pivot col.
end
end
if stop==0,
return % tnsure that we return
end
%4 Llpdate the basic and nonbasic vectors.
nbas{nbas==t)=bas(i);
bas(i)=t;
alpha=a(i,t); % pivot clement
%4 Store the data in ap.bp
ap=a;
bp=b;
Yo Now pivel by row
iter=iter+1;
for k=1:m,
ratio=ap(k,t)/ap(i,t);
a(k,)=ap(k,:)-ap(i,)*ratio;
b{k)=bp(k)-bp(i)*ratio;
end
% Now for the objective row update
ratio=c(t)/ap(i,t};
c=c-ap{i,:)*ratio;
z=z-bp(i}*ratio;

APPENDIX VI SouURCE CODES FOR THE TABU HEURISTIC IN MATLAB 157

a(i,:y=ap(i,.)/ap(i,t);
b(i)=bp(i)/ap(i,t);
end
end
if iter>=300,
text='lteration bound has been exceeded *****+"
end

APPENDIX V]I SOURCE CODES FOR THE TABU HEURISTIC IN MATLAB 158

0000 0008 0 0 B0 A 04040004505 %0 %% % %0 % Y0 %% % % ¥ %1 %6 % %% % 1 W % % Y % % Y
26%o%0

AR A Branch-and-Bound Algorithm — BNB20.m

Yo

04 D QU000 B0 00040414 04 0 V%0 %0 o Yo Ma Yo Ve e Y6 % 0% Y0 e 25 % 690 M M e e v

function [errmsg,Z, X, t,¢,fail] = BNB20(fun,x0,xstat,xl,xu,a,b,aeq,beq,nonlc,setts,opts, varargin);
global maxSQPiter;

global counter_wan,

global ixsep_puess;

2% STEP O CHECKING INPUT
Z=[]; X=[]; =0; c=0; fail=0;
if nargin<2, errmsg="BNB needs at least 2 input arguments.’; return; end;
if isempty(fun), errmsg="No fun found.’; return;
elseif ~ischar{fun), errmsg="fun must be a string."; return; end,
if isempty(x0), errmsg="No x0 found.’; return;
elseil ~isnumeric(x0) | ~isreal(x0} | size(x0,2)>1
errmsg="x0 must be a real column vector.'; retum;
end;
xstatus=zeros(size(x0));
if nargin>2 & ~isempty(xstat)
if isnumeric(xstat) & isreal(xstat) & ali(size(xstat}<=size(x0))
if all(xstat==round(xstat} & 0<=xstat & xstat<=2)
xstatus(1:size(xstat))=xstat;
else errmsg="xslatus must consist of the integers 0,1 en 2.'; return; end;
else errmsg="xstatus must be a real column vector the same size as x0."; return; end,

end;
xIb=zeros(size(x0));
xIb(find(xstatus==0Y)}=-inf;
if nargin>3 & ~isempty(xl)
if isnumeric(xl) & isreal(x]) & all(size(xl)<=size(x())
xIb(1:size(x1,1))=xl],
else errmsg="x|b must be a reai column vector the same size as x0."; retun; end,
end;
if any(x0<xIb), errmsg='x0 must be in the range xIb <= x0."; return;
clseif any(xstatus==1 & (~isfinite(x1b) | xIb~=round(xIb})}
errmsg="xIb(i) must be an integer if x(i) is an integer variabele.’; return;
end;
xIb(find({xstatus==2))=x0(find(xstatus==2)),
xub=ones(size(x0});
xub(find(xstatus==0})=inf;
if nargin>4 & ~isempty(xu)
if isnumeric{xu} & isreal(xu) & all(size(xu)<=size(x0))
xub(1:size(xu,1))=xu;
else errmsg='xub must be a real column vector the same size as x0."; return; end;
end;
if any(x0>xub), errmsg='x0 must be in the range x0 <=xub.’; return;
clseif any(xstatus==1 & (~isfinite{xub) | xub~=round(xub)))
errmsg="xub(i) must be an integer if x(i) is an integer variabale."; return;
end,
xub{find(xstatus==2))=x0(find(xstatus==2)),
A=(];
if nargin>5 & ~isempty(a)
if isnumeric(a) & isrcal{a) & size(a,2)==size(x0,1), A=g;
clse errmsg='"Malrix A not coirect.’; return; end;
end;
B=(};
if nargin>6 & ~isempty(b)

APPENDIX VI SoOURCE CODES FOR THE TABU HEURISTIC IN MATLAB

159

if isnumeric(b) & isreal(b) & all(size(b)==[size(A,1} 1]), B=b;
else errmsg="Column vector B not correct.’; return; end;
end;
if isempty(B) & ~isempty(A), B=zeros(size(A,1),1}; end;
Aeq=[];
if nargin>7 & ~isempty(aeq)
if isnumeric(aeq) & isreal(aeq) & size(aeq,2)==size(x0,1), Aeg=aeq;
else errmse="Matrix Aeq not correct.’; return; end;
end;
Beq=(];
if nargin>8 & ~isempty(beq)
if isnumeric(beq) & isreal(beq) & all(size(beq)==(size(Aeq,1} 1]}, Beq=beq;
else errmsg='Column vector Beq not correct.’; return; end,
end;
if isempty(Beq) & ~isempty(Aeq), Beq=zeros(size(Aeq,1),1}; end;
nonlcon=";
if nargin>9 & ~isempty(nonlic)
if ischar(nonlc), nonlcon=nonlc;
else errmsg="fun must be a string.’; return, end;.
end;
settings = [0 0];
if nargin>10 & ~isempty(setts)
if isnumeric(setts) & isreal(setts) & all(size(setts)<=size(settings))
settings(setts~=0)=setts(setts~=0),
else errmsg="settings should be a row vector of length 1 or 2", return; end,
end;
maxSQPiter=1000;
options=optimset(' fmincon"),
if nargin>11 & ~isempty(opts)
if isstruct{opts)
if isfield(opts, MaxSQPliter")
if isnumeric(opts.MaxSQPlter) & isreal{opts.MaxSQPlter) & ...
all{size(opts.MaxSQPIter)==1) & opts.MaxSQPIter>0 & ...
round(opts.MaxSQPlter)==opts. MaxSQPlter
maxSQPiter=opts.MaxSQPlter;
opts=rmfield(opts,'MaxSQPlter’);
else errmsg="options.maxSQPiter must be an intcger >0."; return; end;
end;
options=optimset(options,opts);
else errmsg="options must be a structure.’; return; end;
end;
evalreturn=0;
eval(['z="fun, (x0.varargin{:}).'],'errmsg="fun caused error."; cvalreturn=1;");
if evalretum==1, return; end;
if ~isempty(nonlcon)

eval(['[C. Ceq)=",nonlcon,'(x0,varargin{:}):'], errmsg="nonlcon caused error.”; evalrcturn=1.;

if evalreturn==1, retumn; end;

if size(C,2)>1 | size(Ceq,2)>1, errmsg="C en Ceq must be column vectors.’; return; end;

cnd;

WSTER TINFEIALISATION
curreniwarningstate=warming,;
warning off;

tic;

Ix = size(x0,1);
z_incumbent=inf;
x_incumbent=inf*ones(size(x0));

I = ceil(sum(log2(xub{find(xstatus==1))-xIb(find(xstatus==1))+1 Wsize(find(xstatus==1).1}+1);

stackx0=zeros(Ix,[};

APPENDIX V] SOURCE CODES FOR THE TABU HEURISTIC IN MATLAB

160

stackx0(:, 1)y=x0;
stackxlb=zeros(Ix,I);
stackxIb(:, 1)=xIb;
stackxub=zeros(Ix,1};
stackxub(:,1)=xub;
stackdepth=zeros{1,I);
stackdepth(1,1)=1;
stacksize=1;
xchoice=zeros(size(x());
if ~isempty(Aeq)
i=0;
for i=1:size{Aeq,1)
if Beq(i)==1 & all(Aeq(i,))==0 | Aeq(i,:)==1)
J=find(Aeq(i,.}=1}
if atl(xstatus(Jy=0 & xchoice(J)==0 & x1b(J}==0 & xub(f)==1)
if all(xstatus(J}—=2) | all(x0(J(find(xstatus())==2)) ==0}
i
xchoice{1=j;
if sum(x0(J))==0, errmsg="x0 not correct.’; return; end;
end;
end,
end;
end;
end; .
errx=optimget{options, TolX");
handleupdate=[];
if ishandle(settings(2)}
taghandlemain=get(settings(2), Tag);
if stremp(taghandlemain,'main BNB GUT)
handleupdate=guiupd;
handleupdatemsg=ﬁndobj(handIeupdate,‘Tag','updatemessage');
bnbguicb(hide main’);
drawnow;
end,
end;
optionsdisplay=getfield(options, Display’);
if stremp{optionsdisplay,'iter’) | stremp(optionsdisplay, final’)
show=1;
clse show=0; end;

% STEP 2 TERMINIATION
while stacksize>0
c=ctl;

% STEP 3 LOADING OF CsP
x0=stackx0(:,stacksize};
xIb=stackx|b(:,stacksize);
xub=stackxub(:,stacksize),
x0(find(x0<xIb))=x1b(find(x0<x1b));
x0(find(x0>xub))=xub(find(x0>xub});
depth=stackdepth(l stacksize};
if z_incumbent==inf

stacksize=stacksize-1;
else

random_n=rand(1);

if random_n<=0.875

stacksize_step=1;

end
if (random_n>0.875 & random_n<=0.925)

APPENDIX VI SOURCE CODES FOR THE TABU HEURISTIC INMATLAB 161

stacksize_step=2;
end
if (random_n>0.925 & random_n<=0.975}
stacksize_step=3;
end
if random_n>0.975
stacksize_step=4;
end
stacksize=stacksize-stacksize_step;
if stacksize<Q %
stacksize=0; %I f stacksize=0, set stacksize=0 (stacksize can only be positive or zero)
end %
end o
percdone=round(100*(1-sum(0.5."(stackdepth(1 :(stacksize+1))-1))));

% LUPDATE FOR USER
if ishandle(handleupdate) & stremp(get(handlevpdate, Tag’),'update BNB GUI')
t=toc;
updatemsg={ ...
sprintf{’searched %3d %% of three',percdone) ...
sprintf’Z : %]12.4¢',z_incumbent) ...
sprintf{'t : %12.1fsecs't) ...
sprintf(’c @ %12d cycles',c-1) ...
sprintf{'fail : %12d cycles',fail)};
set(handleupdatemsg, String',updatemsg);
drawnow;
else
t=toc;
disp(sprintf("*** searched %3d %% of three',percdone));
disp(sprintf(*** Z : %I12.4¢',z_incumbent)),
disp(sprintf(’*** t : %12.1f secs',1));
disp(sprintf(*** ¢ : %12d cycles',c-1));
disp(sprintf('*** fail : %12d cycles'fail)),
end;

% STE 4 RELAXATION
[x z convflag]=fmincon(fun,x0,A,B,Aeq,Beq,xIb,xub,nonlcon,options,varargin{:});

%o STEP 3 FATHOMING
K = find(xstatus==1 & xlb~=xub);
separation=1,
if convflag<0 [(convflag==0 & settings(1))
Y FC I
separation=0;
if show, disp{’*** branch pruned'); end;
if convflag==0,
fail=fail+1;
if show, disp("*** not convergent'’); end,
elseif show, disp("*** not feasible');

end;
clseif Z>=z_incumbent & convflag>0
N KO 2
separation=0;
if show

disp('*** branch pruned’),
disp('*** ghosted’);
end;

elseif all(abs(round(x(K))-x(K))<errx) & convilag>0

APPENDIX VI SOURCE CODES FOR THE TABU HEURISTIC IN MATLAB 162

% FC 5

z_incumbent =z,

x_incumnbent = x;

separation = 0;

if show
disp('"*** branch pruned’);
disp("*** new best solution found’);

end,

end;

%, STEP 6 SELECTION
if separation == 1 & ~isempty(K)
dzsep=-1;
for i=1:size(K,1)
dxsepe = abs(round(x(K(i}))-x(K(1)));
if dxsepc>=errx | convflag==0
xsepc = X; xsepc(K(i))=round(x(K(i)));
dzsepc = abs(feval(fun,xsepc,varargin{:})-z);
if dzsepc>dzsep
dzsep=dzsepc;
ixsep=K(i};
end;
end;
end;

il counter_wan==
ixsep=iXsep_guess
counter_wan=counter_wan+1;
end

2 STEP 7 SEPARATION
if xchoice(ixsep)==

% XCHOICE==0
branch=1;
domain=[xIb(ixsep) xub(ixsep)];
sepdepth=depth;
while branch==1
xboundary=(domain(1 }+domain(2))/2;
if x(ixsep)<xboundary
domainA=fdomain{1) floor(xboundary}];
domainB=[floor(xboundary+1} domain(2)];
else
domainA=[floor(xboundary+1} domain(2)],
domainB=[domain(1) floor(xboundary)];
end;
sepdepth=sepdepth+1;
stacksize=stacksize+1;
stackx0(:,stacksize)=x;
stackx1b(:,stacksize)=xIb;
stackxIb(ixsep,stacksize)=domainB(1);
stackxub{:,stacksize)=xub;
stackxub(ixsep,stacksize)=domainB(2);
stackdepth(1 ,stacksize)=sepdepth;
if domainA(1)==domainA(2)
stacksize=stacksize+1;
stackx0(:,stacksize)}=x;
stackx|b(:,stacksize)=xIb;
stackx!b(ixsep,stacksize)=domainA(1);

APPENDIX VI SOURCE CODES FOR THE TABU HEURISTIC INMATLAB

163

stackxub(:,stacksize)=xub;
stackxub(ixsep,stacksize)=domainA(2),
stackdepth(l,stacksize)=sepdepth;
branch=0;

else
demain=domainA,;
branch=1;

end;

end;

else

% XCHOICE~=0

L=find(xchoice==xchoice(ixsep));
M=intersect(K,L);

[dummy,N]=sort(x(M));
part1=M(N(1:floor(size(N)/2))}; part2=M{(N (floor(size(N)/2)+1:size(N))),;
sepdepth=depth+1;

stacksize=stacksize+1;

stackx0(;,stacksize)=x;

O = (1-sum(stackx0(part1,stacksize)))/size(partl, 1);
stackx0O(part 1 ,stacksize)=stackxO(part],stacksize)}+O;
stackxIb(:,stacksize)=xIb;

stackxub(:,stacksize}=xub;
stackxub(part2,stacksize)=0;
stackdepth(1,stacksize)=sepdepth;
stacksize=stacksize+1;

stackx0(:,stacksize)=x;

0 = (1-sum(stackx0(part2 stacksize)))/size(part2,1);
stackxQ(part2,stacksize)=stackx0(part2,stacksize)+O,
stackxIb(:,stacksize)=xlb;

stackxub(:,stacksize)=xub;
stackxub{part],stacksize)=0;
stackdepth(},stacksize)=sepdepth;

end;s

elseif separation==1 & isempty(K)
fail=fail+1;
if show

disp("*** branch pruned’),
disp("*** leaf not convergent’);

end;
end;

end;

Y STEP S OUTPUT
t=toc;

Z = z_incumbent;

X = x_incumbent;
errmsg=",;

if ishandle(handleupdate)
taghandleupdate=get(handleupdate,Tag’};
if stremp(taghandleupdate,'update BNB GUI')
close(handleupdate);
end;

end;

eval(['warning ',currentwarningstate]};

