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ABSTRACT 

 

This project aims to investigate the influence of disorder on the optical properties of 

passive and active disordered dielectric media. Submicron/nano-scaled disordered 

dielectric structures can be integrated into polymeric fibers/films to form a base for 

flexible fabric display, which is capable of scattering photons and self-amplification.  

 

The theoretical investigation has been carried on the effect of position and size 

disorders on two-dimensional (2D) passive and active disordered dielectric systems 

with circular inclusions based on the time-dependent theory, which combines the 

time-dependent Maxwell’s equations with the semi-classical laser theory. The 

numerical framework has been developed and used for finite-difference time-domain 

simulation. In the numerical experiments, the disordered dielectric systems are 

generated from ordered systems. The ordered systems are equivalent to photonic 

crystals which consist of a square array of infinitely long, parallel dielectric 

cylinders with lattice constant a. The electromagnetic (EM) waves are assumed to 

propagate in a plane perpendicular to the cylinders. In the 2D case, the dielectric 

cylinders are used to mimic the circular scattering particles. For the case of position 

disorder, the positions of each particle are randomized within a certain range from its 

lattice point. To create a random configuration, the position of each particle is 

randomly decided within a range giving a position disorder parameter of dp. Size 

disorder is related to the uniformity in the radius of the cylinder. The position of 

each particle is fixed in its lattice position but the radius of particles can be random. 
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The radius of each particle is randomly changed within a distance dr . 

 

Numerically, the influence of the density of scattering particles on the mode 

distribution of passive ordered and disordered systems is examined. In a densely 

packed ordered system (particle density = 2x1013m-2), two photonic band gaps 

(PBGs) are found at f = 4.51 x1014 to 5.41x 1014Hz and 7.90 x1014 to 9.0x1014Hz. 

After a long time evolution, only long-lived modes, which locate close to the edge of 

the band gaps, survive in the passive disordered system. The lifetime of mode 

increases as the localization length of mode reduces. Since the modes close to the 

edge of PBGs have shorter localization length, the survived modes tend to lie on the 

edge of band gaps. It is demonstrated that the evolution of the mode energy is an 

exponential function of time. Furthermore, the competition of modes is revealed in 

the field distribution patterns at different time frames 

 

PBGs formed in the most densely packed ordered systems (particle density = 

2x1013m-2) are destroyed when a moderate degree of disorder is introduced into the 

medium. The first band gap vanishes when the position disorder 0.3pd a≥  and 

0.1rd a≥ , respectively. The second band gap is fully destroyed when the amount of 

disorder reaches 0.2pd a≥  and 0.05rd a≥ , respectively. It shows that a size 

disorder breaks down a gap more rapidly than position disorder does, which is 

consistent with previous published results by others. As the band gap is destroyed, 

the longest-lived modes emerge toward the band gap as the amount of disorder 

increases. From the field distribution patterns of the disordered medium, the field 
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patterns of the longest-lived modes become more localized when the amount of 

disorder intensifies.  

 
The amplification process of active disordered systems is also investigated. The 

amplification curve is following an exponential relation. The exponential growth of 

total field energy and the dramatic drop of population difference density are the 

evidences of laser emission. It is found that the laser emissions are suppressed by the 

photonic band gap. The strength of amplification of EM wave can be enhanced by 

increasing the amounts of disorder. The laser emission can also be modified by 

alternating the relative spectral position of the band gap and the gain profile. The 

results implicate that the laser emission can be actively controlled by varying the 

amount of the disorder and the central wavelength of gain profile.  

 

Experimentally, the stimulate emission of polymeric colloid liquid and solid random 

laser systems are investigated. The liquid random laser system is the ethanol solution 

which consists of Coumarin 480 dye and TiO2 submicron-particles. The solid 

random laser system is the PMMA films which consist of Rhodamine 590 and TiO2 

submicron-particles. Coherent and incoherent laser emissions were observed in the 

systems. The influences of particle concentration on light emission were explored 

and optimum particle concentration was obtained. Optics microscopy and Scanning 

Probe Microscopy were used to investigate the film structure and the principle of 

incoherent and coherent laser was analyzed. 

 

In the photoluminescence experiments, it was found that the slope of the peak 
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emission intensity curve of the colloid solution and PMMA films changed as the 

pump energy increased. These results indicate the lasing threshold and saturation 

behavior of the random laser system. The emission peaks of the colloid solution and 

PMMA films become narrower when pumping energy is above certain value. 

Several discrete peaks occurred in the emission spectra when the pump energy was 

further increased. This significant reduction of line-width and increase of the 

intensity of the emission peak confirm the existent of lasing threshold. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background 

Fibers consisting periodically ordered structures, such as fiber Bragg grating 

(Hill and Fujii, 1978, Kersey, 1996, Du, Tao and Tam, 1999, Bass, 2002), which 

have functions of transmitting and modulating photons, can be used as sensors 

and transmitting media in smart textile structural composites (Tao, 2001). Films 

made of polymer dispersed or encapsulated liquid crystals can be used as 

electrically reflective displays.  

 

On the other hand, disordered dielectric media integrating into polymeric 

fibers/films may be used as an element for flexible fabric display, which is 

capable of scattering and self-amplification of light. Disordered dielectric media 

are random structures that dielectric inclusions are random distributed. The 

disordered materials such as laser crystal powder, ceramic powder and 

suspensions of semiconductor particles form strongly scattering media. Light 

waves propagating in disordered dielectric media experiences random multiple 

scattering attributed to the fluctuations of random spatial and size distributions 

dispersion of the refractive index of the scattering elements.  
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By introducing optical gain materials such as laser dyes and conjugated polymer 

into disordered dielectric structures, optical amplification via stimulated emission 

can be achieved in the active disordered dielectric media. Active disordered 

dielectric media consists three basic components, i.e., the gain media, the 

scattering elements and the host. Light wave propagating in active disordered 

dielectric media is reinforced and scattered by the optical gain and scattering 

elements, respectively. Under certain conditions, laser-like emission (random 

laser) occurs in an active disordered medium as a result of combined actions of 

multiple scattering and stimulated emission amplification. In a random laser, the 

mode of laser is formed by a self-formed cavity rather than a regular cavity 

structure. Unlike a conventional laser, the feedback mechanism of random laser 

is due to multiple scattering of light in disordered dielectric structures. Random 

laser was predicted theoretically by Letokhov (Letokhov, 1967, 1968) and then 

observed experimentally in various types of active disordered systems such as 

semiconductor powders (Cao, Zhao, Ho, Seelig, Wang and Chang, 1999), laser 

dyer solution containing TiO2 particles (Lawandy, Belachandran, Gomes and 

Sauvin, 1994) and conjugated polymer films (Polson, Huang and Vardeny, 

2001).  
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Random laser systems have applications in the information technology and 

optoelectronic industry. Since random laser emissions can be generated in 

irregular cavities, random laser systems are easily fabricated down to 

micron-scale, they can be used to construct low-cost microsize sources of 

coherent light and minutial laser. The other applications such as lasing textiles 

(Lawandy, Belachandran, Gomes and Sauvin, 1994) and photonic paints 

(Balachandran and Lawandy, 1995) have been proposed. Furthermore, random 

laser systems open up the possibility of light self-amplification in polymeric 

composite fiber/film, which is a potential candidate of developing textile 

displays. 

 

Recently, great deals of experimental and theoretical studies have been devoted 

to the origin of the laser action in active disordered media. These studies 

included emission spectra, dynamics of stimulated emission and optimization of 

lasing threshold. Only limited research (Chang, Cao and Ho, 2003, Yamilov and 

Cao, 2004) has explored the relationship between the random laser and the 

degree of disorder of the active disordered media. 
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1.2 Objectives  

The present research is concerned with a study of nano- and submicron 

structured polymeric composite systems with passive and active disordered 

dielectric media in order to achieve light self-amplification. This project aims to 

investigate the influence of disorder on the optical properties of passive and 

active disordered dielectric media. The spatial and radial perturbations of 

scattering elements in the disordered dielectric media are selected as disorder 

parameters. The key issues to be addressed are: 

 

1. To compare various theoretical approaches and select a time-dependent 

theoretical framework for the simulation of passive and active disordered 

media consisting scattering dielectric particles. The framework should 

have abilities to predict the optical response and stimulated emission of 

active materials by taking consideration of the optical gain profile of 

active materials and the structural parameters.  

 

2. To implement numeric simulations based on the theoretical models to 

study the influences of disorder on the emission properties of both 

passive and active disordered dielectric systems. 
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3. To explore the emission properties of passive disordered dielectric 

systems in term of emission spectra, mode distribution and field 

distribution pattern in order to establish the relationship between the 

disorder and the localization properties of the passive disordered 

dielectric systems.  

 

4. To examine the amplification process, the lasing dynamics and the light 

confinement in active disordered dielectric systems and study the effect 

of disorder on random lasing modes in active disordered dielectric 

systems. 

 

5. To construct polymer composite disordered systems comprising gain 

medium and scattering particles, such as colloid solutions and polymeric 

films, and to achieve random laser emission in the polymer composite 

disordered systems and characterize the spontaneous and stimulated 

emission of the polymer composite disordered systems.  
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1.3 Methodology 

The research methodology adopted in this study includes the following details: 

 

1.3.1 Theoretical analysis and numeric simulation 

Several theoretical modelling of active disordered dielectric systems have been 

developed previously by others such as the diffusion model, Monte Carlo 

simulation and finite-difference time-domain (FDTD) method. Based on the 

existing models, the initial work is to select and verify a theoretical framework 

for the simulation of passive and active disordered dielectric systems, in which 

the light coherent, scattering and amplification properties of disordered systems 

are taken into account. Furthermore, the model should be able to predict the 

lasing and atomic dynamic in the active disordered dielectric systems.  

 

The time-dependent theory of random laser which combines the time-dependent 

Maxwell’s equations with the semi-classical laser theory is adopted to investigate 

the laser emission of two-dimensional (2D) active disordered dielectric systems. 

According to the time-dependent theory, the optical gain is described by the rate 

equations of an atomic system. The numeric simulation is implemented based on 

the finite-difference time-domain (FDTD) method and experimental 
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considerations such as dye properties, refractive index of dielectric materials and 

the structure parameters of scattering particles. Verification of FDTD simulations 

will be conducted by using published examples: materials and structural 

parameters as well as results of the passive and active systems. 

 

Various parameters of disordered dielectric system, i.e. the scattering particle 

concentration and the amount of disorder and the optical gain profile, are 

investigated in order to determine the significant light amplification and wave 

localization. In order to examine the amplification process, light localization and 

mode competition, the emission spectra, the population inversion and the field 

distribution of active disordered dielectric systems will be analyzed as functions 

of the degree of position and size disorder.  

 

1.3.2 Fabrication of polymeric disordered systems 

In the current works, liquid and solid-state polymeric active disordered systems 

will be constructed, i.e., dye colloid solution and dye-doped 

polymethylmethacrylate (PMMA) composite film. The amplification behavior 

and optical properties of the disordered systems are experimentally investigated. 

Organic dyes such as Coumarine and Rhodamine and TiO2 particles will be used 
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as gain media and scattering material, respectively.  

 

1.3.3 Characterization of polymeric disordered systems 

Characterization of the PMMA composite films will be carried out by using a 

range of analytical instruments. The structures and morphology of the films will 

be investigated by using optical microscopy and scanning probe microscopy. 

The emission spectrum will be measured by using photomultiplier detection 

system. The emission spectra of the dye colloid solution and PMMA films, and 

the relationship between the emission peak intensity, the scattering concentration 

and the pumping energy density will be examined.  

 

1.4 Thesis outline 

This thesis consists of seven chapters. Structure of this thesis is outlined as 

follows: 

 

Chapter 1 provides a brief introduction to the development and applications of 

random laser systems. The objectives of the current study also are stated. Finally, 

research methodology adopted in this thesis and the structures of the dissertation 

are summarized. 
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An overall review regarding to the fundamentals of random laser is presented in 

Chapter 2. The chapter begins with a description of basic characteristic length 

scales and diffusion theory. The features of random laser emission also are 

discussed. Various types of active disordered media and experimental research 

are reviewed. 

 

In Chapter 3, various theoretical treatments of passive and active random media 

are briefly introduced. Then the time dependent theory of random laser and 

finite-difference time-domain method, which is adopted in the current study, are 

discussed in details including the formalisms, algorithm and implementation of 

the numerical simulation. The verification of the numerical model and the 

algorithm are also provided in this chapter. 

 

Chapter 4 focuses on a theoretical investigation of the influence of disorder on 

passive disordered dielectric media. Definitions of position and size disorders are 

firstly provided. Then analysis of mode distribution of ordered and disordered 

media, effect of disorder on photonic band gap, mode distribution and 

competition of the passive disordered dielectric media are presented. 



                                                                      Chapter 1 

 10

 

In Chapter 5, experimental studies of the random laser in dye-doped colloid 

polymeric solutions and PMMA films are described. Experimental setup and 

results are discussed.  

 

In Chapter 6, influence of disorder on the active disordered media consisting of 

dielectric scattering particles will be examined by using the time-dependent 

theory. Investigations of amplification of electromagnetic wave and effect of 

particles density on laser emission are firstly presented. Then effect of disorder 

on laser emission at different transition frequency is discussed. 

 

Chapter 7 summarizes the major findings of the study and draws conclusions. 

The future work is also suggested. 
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CHAPTER 2 
LITERATURE REVIEW 

 

2.1 Introduction 

An overall literature review is presented in this chapter regarding to the 

fundamentals of the related topics covered in this dissertation. It starts with an 

introduction to disordered systems, diffusion theory and the basic characteristic 

length scales, then followed by the development of random lasers (active 

disordered media). 

 

2.2 Disordered media 

Disordered dielectric structures are random systems that the length scale of the 

refraction index variation is comparable to the light wavelength (John, 1987, 

Yablonovitch, 1987). In the visible frequency range, the wavelength is between 

400nm-760nm. In a disordered medium without optical gain (passive disordered 

medium), light wave is multiply scattered due to the spatial fluctuation of the 

refraction index. If an optical gain is introduced into the disordered medium 

(active disordered medium), light will be amplified as well as scattered. Under 

certain conditions, interesting phenomena such as backscattering of light (Gu, Lu, 

Martinez, Mendez and Maradudin, 1994, Peng and Gu, 1999, Gu and Peng, 2000, 

Peng and Gu, 2000, Gu and Peng, 2001) and laserlike emission (Cao, Zhao, Ho, 
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Seelig, Wang and Chang, 1999, Cao, Xu, Ling, Burin, Seeling, Liu and Chang, 

2003, Liu, Yamilov, Ling, Xu and Cao, 2003) would be exhibited in active 

disordered media due to the combined actions of multiple scattering and 

stimulated emission amplification. This phenomenon is unexpected to occur in a 

pure homogeneous gain medium.  

 

Submicron/nano-scaled disordered structures with optical gain have many 

potential applications in information technology and optoelectronic industry. 

Furthermore, active disordered systems open up the possibility of light 

self-amplification in polymeric composite photonic fiber, which is a potential 

candidate of developing textile displays. 

 

2.2.1 Basic characteristic length scales 

In order to understand the light transport properties in both passive and active 

disordered media, it is necessary to define the basic length scales for light 

scattering problems. The first important length scale is the scattering mean free 

path sl . It is the average distance between two consecutive scattering events 

when light travels in a disordered medium. It is obvious that sl  tends to infinity 

long when light travels in any vacuum as scattering element is missing. Another 
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important length scale is the transport mean free path tl . It is an average distance 

a photon travels before its propagation direction is totally changed. The 

scattering mean free path sl  and the transport mean free path tl  are related by 

the equation: 

1 cos
s

t
ll

θ
=

− < >
,           (2.1)  

 

where cosθ< >  is the average cosine of the scattering angle.  

Furthermore, there are two relevant length scales, i.e., the gain length lg and 

amplification length lamp, to characterize the amplification process. The gain 

length lg and the amplification length lamp are defined as the path length and the 

root-mean-square average net distance of the light trajectory over which the light 

intensity is increased by a factor e, respectively. In a homogeneous gain medium 

without scattering elements, the light trajectory is a straight line. Thus, one can 

easily show that the gain length is equal to the amplification length.  

 

According to the scattering properties of light, disordered media can be separated 

into three regimes (John, 1991): ballistic regime (S~lt), diffusive regime 

(S>>lt>>λ) and strongly scattering regime (klt~1). S represents the length of the 

disordered medium. λ and k denote the wavelength and the wave vector of light, 
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respectively.   

 

2.2.2 Diffusion theory 

In the ballistic regime, the transport mean free path is comparable to the system 

length of disordered medium, i.e., S~lt. The scattering strength is weak and the 

scattering events infrequently occur in ballistic disordered media. In general, the 

trajectories of light are almost straight-line paths. The residence time (dwell time 

τ) of the light in the ballistic disordered medium is very short and thus the 

amplification of light is insignificant when the optical gain is present. 

 

In the diffusive regime, the transport mean free path is much smaller than the 

length of the disordered medium but larger than the wavelength of photon, i.e., 

S>>lt>>λ. The transport of light is treated as a diffusion process and described 

by the diffusion equation. The scalar diffusion equation governing the diffusion 

process is expressed as 

 

2photon
photon photon

g

F
D F F

t l
ν∂

= ∇ +
∂

,         (2.2) 

 

where Fphoton is the function of photon density, ν is the transport speed of light 
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inside the medium, and D is the diffusion coefficient. The diffusion coefficient is 

related to the size of the system and the dwell time of light in the medium, i.e., 

2 /D S τ= .  The dwell time of photon in diffusive media is relatively longer 

than that in ballistic media as photons are multiply scattered. Since the photons 

are frequently scattered in the active disordered media, the longer light path 

length and dwell time facilitate the amplification of light. If the mean path length 

of light is long enough, the light intensity will be reinforced substantially and the 

amplified spontaneous emission (ASE) may arise. Under certain circumstances, 

active diffusive disordered media exhibit laser-like emission. The laser spikes are 

randomly distributed over the gain volume. This phenomenon is called as 

incoherent random laser.   

 

2.2.3 Localization of light 

In strongly scattering regime, the transport mean free path is in the same order of 

the photon wavelength, i.e., klt ~1. The scattering strength is very strong and 

thereby the photons are scattered very frequently. The diffusion mechanism 

alone is no longer appropriate to describe the light transport behavior. Instead of 

the diffusive transport, localization of light dominates in the strongly scattering 

regime. Photons are trapped inside the strongly scattering medium as a result of 
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the multiple scattering. Under the Ioffe-Regel condition (Mott, 1974), i.e., 1tkl ≤ , 

the scattering strength becomes very strong and recurrent scattering events 

probably arise. The recurrent scattering events lead to the formation of closed 

loop light paths. It means that the light returns to the starting point of the light 

path. A closed loop light path is depicted in Figure 2.1.  

 

Figure 2.1 A closed loop light path 

 

In other words, if the scattering strength is large enough, localized states will be 

formed randomly in the strongly disordered media. Light is tightly confined 

around the localization centers due to the multiple scatterings and the wave 

interferences. Away from the localization centers, light decays exponentially as 

described by the following equation: 
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/
0( ) rI r I e ξ−=             (2.3) 

 

where I(r) is the light intensity distribution function and I0 is the constant 

amplitude of light intensity. ξis the localization length. If the gain is introduced 

to the strongly scattering medium, one can expect that the light will be amplified 

nonlinearly because of the presence of localized state that serves as a resonator. 

The nonlinear light emissions due to the randomly formed localized state are 

named as coherent random lasers. 

 

2.3 Random Lasers 

In this section, detailed reviews of random laser systems will be presented. 

Random laser system is an active disordered medium that exhibits laser-like 

emission crossing a certain threshold. This laser action results from the mode of 

laser formed by a self-formed cavity rather than a regular cavity. Unlike a 

conventional laser, the feedback mechanism of random laser is due to the 

multiple scattering of light in a disordered medium. The random lasers are 

separated into two categories depending on the optical feedback.  

 

There are two types: incoherent random lasers and coherent random lasers. The 
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optical feedback of incoherent random laser is intensity feedback whereas the 

optical feedback of coherent random laser is field feedback. The field feedback 

leads to the interference effect, which is a distinctive feature of coherent random 

laser. In fact, the extreme low lasing threshold and the super-narrow spectral 

peaks of the coherent random laser result from the interplay of the interference 

effect and optical gain. The incoherent random laser can be realized in a diffusive 

random medium such as laser crystal powders (Gouedard, Husson, Sauteret, 

Auzel and Migus, 1993) and dilute colloidal laser dye solution (Lawandy, 

Belachandran, Gomes and Sauvin, 1994). On the other hand, the coherent 

random laser is realized in highly disordered system like dye-doped cholesteric 

liquid crystals (Kopp, Genack and Zhang, 2001, Schmidtke, Stille and 

Finkelmann, 2003) and dye-doped gel films (Sobel, Gindre, Nunzi, Denis, 

Dumarcher, Fiorini-Debuisschert, Kretsch and Rocha, 2004).  

 

Experimentally, it is reported that random lasers consist some common features 

such as threshold behavior of laser action(Cao, Zhao, Ho, Seelig, Wang and 

Chang, 1999), and dramatic narrowing of the emission band above the threshold 

(Cao, Xu, Chang and Ho, 2000), and nonisotropic multipeak properties (Cao, 

Zhao, Ong and Chang, 1999) in the emission spectra. 
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2.3.1 Spectral narrowing  

Spectral narrowing is a typical feature of a random laser, which has been 

unambiguously demonstrated in various random laser systems. For instance, the 

collapse of emission band was observed in the photoluminescence experiments 

of zinc oxide (ZnO) film (Cao, Zhao, Ong, Ho, Dai, Wu and Chang, 1998). In 

this experiment, a oxide ZnO film (300 to 350nm thickness) composed of 50 to 

150nm ZnO particles deposited on amorphous fused silica substrates was excited 

with 30ps pulses of a frequency-tripled Nd:YAG laser (λ=355nm). Figure 2.2 

shows the evolution of the emission spectra with different pump intensities. 

When the film was pumped at a low pump intensity, a single broad amplified 

spontaneous emission peak (ASE peak) first appeared in the emission spectrum. 

As the pump intensity increases, the amplification was enhanced near the central 

frequency of the gain spectrum and thus the linewidth of emission peak was 

collapsed. When the pump power exceeded the lasing threshold, discrete narrow 

peaks emerged in the spontaneous emission spectrum. The linewidth of discrete 

peaks is less than 1nm. The frequencies of the discrete spectral peaks depended 

on the pumping spot position. It was also found that the number of emission 

peaks is depended on the dye concentration and pump intensity in laser paint 
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systems (Sha, Liu and Alfano, 1994). 

 

In this strongly scattering system, the occurrence of the discrete emission peaks 

was originated from the closed loop light paths. Figure 2.3 shows that the laser 

resonance established in the close loop of light paths. It is believed that the 

constructive interference of the recurrent light in the closed loop light paths at 

certain frequencies is due to the inter-particle strong scattering rather than the 

total internal reflection inside the ZnO particles. It is because the nano-sized ZnO 

particles are too small to be the laser cavities.  
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Figure 2.2 Spectra of emission from ZnO film. Source: (Cao, Zhao, Ong, Ho, 

Dai, Wu and Chang, 1998) 

  

Figure 2.3  Amplified images of the excitation area above the lasing threshold 
on the film. Source: (Cao, Zhao, Ong, Ho, Dai, Wu and Chang, 
1998) 
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Recently, the discrete emission peaks were also demonstrated in the diffusive 

disordered media with optical gain (Mujumdar, Ricci, Torre and Wiersma, 2004). 

In the diffusive regime, the interference effect is absence and the localized states 

do not exist. It is corroborated that the narrow peaks are associated with the 

amplification along rare long light paths in diffusive disordered media rather than 

self-formed resonators.  

 

2.3.2 Lasing threshold 

Lasing threshold is one of the important characteristics for laser systems. In a 

regular cavity, it is known that the loss of cavity mode would suppress the laser 

emission. When the pump intensity exceeds a critical value, the gain 

compensates the loss of the cavity mode. Simultaneously, population inversion 

builds up and stimulated emission dominates. Similarly, the threshold behaviors 

are revealed in the random laser systems. Figure 2.4 shows the peak intensity for 

the emitted light from a random laser as a function of the pump intensity. It is 

obvious that there exists a well-defined threshold at which the slope of the 

input-output curve changes.  
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Figure 2.4  The input-output curves of the ZnO cluster random laser. The inset 
is the SEM image of the ZnO cluster Source: (Cao, Xu, Chang, Ho, 
Seelig, Liu and Chang, 2000) 

 

In the localized regime, the lasing threshold is critically dependent on the quality 

factor of random cavities in a random laser. The modes with the highest quality 

factor have the smallest decay rates which determine the value of lasing 

threshold. In the modes with smallest decay rate, photons are rapidly cumulated 

by amplification and emitted out. Based on this idea, the influence of disorder 

strength on the lasing threshold was studied (Yamilov and Cao, 2004a). 

Furthermore, Patra calculated the distribution of the decay rates of the eigenstates 

of a disordered medium and found a simple analytical formula to predict the 

Threshold 
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lasing threshold of the active disordered media, which is applicable in both 

diffusive and in the localized regimes (Patra, 2003). Another study of 

one-dimensional random laser showed that the lasing threshold decreased 

exponentially with the system size by using an analytical approach (Burin, 

Ratner, Cao and Chang, 2002).  

 

Several experimental and theoretical studies have been carried out to investigate 

the dependence of lasing threshold on the transport mean free path lt and beam 

diameter dbeam in amplifying random media. In a photoluminescence experiment 

of PMMA film doped with dye and titanium dioxide (TiO2) particles, it was 

found that the lasing threshold intensity varies with lt as 1/ 2
threshold tI l∝  and with 

ddeam as ,1 2a
threshold beamI d a−∝ ≤ ≤  (Ling, Cao, Burin, Ratner, Liu, Seelig and 

Chang, 2001, Cao, Ling, Xu, Burin and Chang, 2003). The analytical proofs have 

been reported by Burin et al (Burin, Cao and Ratner, 2003). Pinheiro and 

Sampaio also predicted that the lasing threshold of three-dimensional diffusive 

random lasers follows the power law 1/ 2
threshold tI l∝  (Pinheiro and Sampaio, 

2006). In this work, the lasing threshold was determined by using dipole model 

(Rusek and Orłowski, 1995).  
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Another attempt was to examine the dependence of threshold on the pump beam 

spot size (Soest, Tomita and Lagendijk, 1999). In a photoluminescence 

experiment of a solution containing sulforhodamine B dye and TiO2 particles, the 

results indicated that the threshold was increased by a factor of 70 when the spot 

diameter was reduced to a scale comparable to the mean free path. The similar 

results were recaptured and explained in a numerical simulation based on a 

diffusion model (Florescu and John, 2004).  

 

2.3.3 Various types of active disordered media 

In 1968, the first prediction of the laser-like emission from active disordered 

media was proposed. Letokhov (Letokhov, 1968) investigated theoretically the 

possibility of lasing in multiple light scattering media with gain by solving the 

diffusion equation in an amplifying media with strong randomness. After two 

decades, the experimental observations of the laser-like emission in dye-doped 

solution with TiO2 nanoparticles were reported (Lawandy, Belachandran, Gomes 

and Sauvin, 1994). The unusual behavior of stimulated emission in active 

disordered system stimulated the interest of the random laser both in theoretical 

and experimental studies. Up to now, the development of random lasers can be 

divided into two main catalogues: inorganic disordered system and organic 
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disordered system. 

 

Inorganic disordered system  

In the past twenty years, intense stimulated radiations were observed in a wide 

variety of laser crystal powder such as titanium-doped sapphire powder, 

semiconductor cluster and ceramic powder. Random laser action has been 

investigated in different forms of inorganic materials, such as powder, cluster 

and thin film. The inorganic particles are served as both the active medium and 

the light scattering element that light waves are multiply scattered and amplified. 

The studies of the inorganic disordered system are interesting because of the 

potential applications of compact, low-cost, simply designed amplification 

devices, which are easy to fabricate.  

 

Laser crystal powder random laser 

In 1986, Markushev et al. observed that the emission spectrum of a laser crystal 

Na5La1-x Ndx(MoO4)4  narrowed to a sharp peak and nanosecond output pulse 

appeared under the excitation of 30-ns pumping pulse (Markushev, Zolin and 

Briskina, 1986). Following this work, many novel laser crystal materials have 

been explored such as NdAl3(BO3)4, NdSc3(BO3)4 (Noginov, Zhu, Frantz, Novak, 
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Williams and Fowlkes, 2004), Nd:Sr5(PO4)3F (Noginov, Noginova, Caulfield, 

Venkateswarlu, Thompson, Mahdi and Ostroumov, 1996), Nd3+:Y3Al5O12 (Feng, 

Bisson, Lu, Huang, Takaichi, Shirakawa, Musha and Ueda, 2004), and  

Nd0.5La0.5Al3(BO3)4 (Bahoura, Morris and Noginov, 2002, Bahoura, Morris, Zhu 

and Noginov, 2005). It has been demonstrated that stimulated emission could be 

radiated without regular resonator. For example, Noginov et al. (Noginov, 

Noginova, Caulfield, Venkateswarlu, Thompson, Mahdi and Ostroumov, 1996) 

reported that the observation of shot pulses (>300-ps) stimulated emission in 

NdAl3(BO3)4, NdSc3(BO3)4 and Nd:Sr5(PO4)3F laser crystal powder during 532 

and 805nm excitation. The average particles size of the crystal powder were 

600nm to 24.8μm. It was found that the threshold pump intensity was inversely 

proportional to the small-signal amplification along the photon trajectory in the 

pumped volume. 

 

Semiconductor random laser 

Another type of active disordered medium is semiconductor material laser 

system. Random lasing has been demonstrated in ZnO (Thareja and Mitra, 2000, 

Mitra and Thareja, 2001) which is an efficient light emitter with a wide 

electronic band gap (3.37eV). The corresponding emission wavelength is near 
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the ultraviolet range (λ~385nm). Because of the high refractive index (n~2.2) of 

ZnO, it is feasible to construct strong scattering structures.  

 

Recently, extensive studies have been focus on the potential applications in ZnO 

random laser for ultraviolet emission (Cao, Zhao, Ong, Ho, Dai, Wu and Chang, 

1998). As early as 1981, the observation of stimulated emission in ZnO powder 

was reported (Nikitenko, Tereschenko, Kuz'mina and Lobachev, 1981) but the 

underlying mechanism was not investigated. Until the photoluminescence 

experiments of ZnO powders was performed by Cao’s group (Cao, Zhao, Ong, 

Ho, Dai, Wu and Chang, 1998, Cao, Zhao, Ho, Seelig, Wang and Chang, 1999, 

Cao, Xu, Chang, Ho, Seelig, Liu and Chang, 2000, Cao, Xu, Seelig and Chang, 

2000), it was confirmed that the strong light amplification and laser action in the 

highly disordered gain media are attributed to the self-formed cavities and the 

coherent feedback mechanism. In the experiments, the random laser actions were 

demonstrated in the micron-sized ZnO clusters (Cao, Xu, Seelig and Chang, 

2000). The micro-sized clusters (diameter ~ 1μm) were constructed by 

nano-sized powders synthesized by using the precipitation reaction method 

(Jézéquel, Guenot, Jouini and Fiévet, 1995). The scanning electronic microscope 

(SEM) image of the ZnO cluster is shown in the inset of Figure 2.4. The optical 
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experiment was conducted on a single cluster by using the fourth harmonic of a 

pulsed Nd:YAG laser (λ=266nm, tpulse=25μs). The input-output curves and the 

evolution of the emission are shown in Figure 2.4 and Figure 2.5 a, c, e, 

respectively. The results are qualitatively similar to that of previous studies (Cao, 

Zhao, Ong, Ho, Dai, Wu and Chang, 1998, Cao, Zhao, Ho, Seelig, Wang and 

Chang, 1999). Bright spots appear in the ZnO cluster above the lasing threshold, 

as shown in Figure 2.5f. Nevertheless, there is no bright spot below the lasing 

threshold, as shown in2.5b. It was concluded that the emission of bright spots 

were originated to the confinement of light in micron-sized ZnO clusters. The 

observation of localization of emission seems to be the evidence of Anderson 

localization of light in micrometer scale disordered structures (Anderson, 1958, 

John, 1984, 1991) 
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Figure 2.5  (a), (c), and (e) are the spectra of emission from the ZnO clusters.  

(b), (d), and (f) are the corresponding spatial distributions of 
emission intensity in the cluster. The incident pump pulse energy is 
0.26 nJ for (a) and (b), 0.35 nJ for (c) and (d), and 0.50 nJ for (e) 
and (f). (Source: Cao 2000 ) 

 

A number of attempts have been undertaken to achieve the random laser action in 

ZnO thin films (Zhang, 1995, Cao, Zhao, Ong, Ho, Dai, Wu and Chang, 1998, 

Cao, Zhao, Ong and Chang, 1999, Mitra and Thareja, 2001, Yu and Leong, 2004, 

Yu, Yuen, Lau and Lee, 2004, Lai, An and Ong, 2005, Stassinopoulos, Das, 

Giannelis, Anastasiadis and Anglos, 2005, Yuen, Yu, Leong, Yang, Lau and Hng, 

2005). The polycrystalline ZnO thin films were fabricated by using different 
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synthesis techniques including spin coating method (Stassinopoulos, Das, 

Giannelis, Anastasiadis and Anglos, 2005), the filtered cathodic vacuum arc 

technique (Zhang, Chua, Yong, Li, Yu and Lau, 2006), laser ablation method 

(Cao, Zhao, Ong, Ho, Dai, Wu and Chang, 1998). For example, Yu et al. 

demonstrated room-temperature ultraviolet lasing in the waveguides composed 

of ZnO, which were growth on silicon substrate (Yu, Yuen, Lau and Lee, 2004). 

By using filtered cathodic vacuum arc technique and the post-growth annealing, 

ZnO thin films with a high crystal quality formed light resonators. The 

resonances were related to the light scattering of the inhomogeneities of zinc 

oxide grains.  

 

Intense stimulated emission and threshold behavior were also observed in ZnO 

single-crystalline under optical excitation (Lv, Li, Guo, Wang, Wang, Xu, Yang, 

AI and Zhang, 2005). ZnO single-crystal star-shaped microcrystals were 

fabricated by electrochemical deposition method. This ZnO structure revealed 

the random laser actions with longer emission wavelength, 403.9nm, which was 

different from the known ZnO random laser, 380-390nm. 

 

On the other hand, a great deal of experimental work has been devoted to ZnO 
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nano-sized structures such as nanowires (Hsu, Wu and Hsieh, 2005, Lau, Yang, 

Yu, Li, Tanemura, Okita, Hatano and Hng, 2005), nanorod (Liu, Yamilov, Wu, 

Zheng, Cao and Chang, 2004, Qiu, Wong, Wu, Lin and Xu, 2004, Yu, Yuen, Lau, 

Park and Yi, 2004, Han, Wang, Wang, Cao, Liu, Zou and Hou, 2005), nanosaws 

(Wu, Hsu, Cheng, Yanga and Hsieh, 2006) due to their unique properties. One of 

the examples is ZnO nanorod arrays grown on sapphire by using a metalorganic 

vapor-phase epitaxy system (Park, Kim, Jung and Yi, 2002). The nanorods with 

good vertical alignment were randomly embedded in ZnO epilayers. MgO was 

first deposited on the sample as a buffer layer and a layer of ZnO thin film 

covering the buffer layer to form the epilayer. The investigation of the formation 

conditions of random laser cavities inside ZnO epilayers showed that the 

triggering of coherent and incoherent random laser actions of ZnO epilayers was 

controlled by the selection of crystalline orientation. 

 

GaAs and GaN are known to be the high gain semiconductor laser materials. 

Several active disordered systems based on the GaAs and GaN have been 

reported (Sun, Gal, Gao, Tan, Jagadish, Puzzer, Ouyang and Zou, 2003, Noginov, 

Zhu, Fowlkes and Bahoura, 2004, Gradečak, Qian, Li, Park and Lieber, 2005, 

Sun and Jiang, 2006). Demonstration of laser emission in GaAsN disordered 
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system was presented by Sun’s group (Sun, Gal, Gao, Tan, Jagadish, Puzzer, 

Ouyang and Zou, 2003). The samples of GaAsN alloys containing 0.6, 1.77, and 

2.8% nitrogen were grown on GaAs (100) substrates by metalorganic chemical 

vapor deposition (MOCVD). By pumping the samples with a frequency-doubled 

Nd:YAG laser (λ=532nm, tpulse=1μs), several high intensity discrete peaks 

appeared in the emission spectrum above the lasing threshold. The lasing 

behaviors exhibited in the GaAsN films were similar to that of ZnO random 

lasers. It is believed that the structural irregularities at the interface between 

GaAsN film and GaAs substrate are the scattering sources of the stimulated 

feedback.  

 

Recently, nano-sized GaN random laser system has been developed (Gradečak, 

Qian, Li, Park and Lieber, 2005). One example is GaN nanowire. GaN nanowires 

grown on sapphire substrates by MOCVD medthod. The samples were optically 

pumped by Nd:YVO4 laser (λ=266nm, tpulse=7ns). Since the GaN nanowires had 

single-crystal structures and triangular cross section, the GaN nanowires acted as 

laser cavity as well as gain medium. These optical excited studies also showed 

that the laser mode space is inversely proportional to the length of the nanowires. 

Furthermore, it was indicated that the lasing threshold was effectively reduced by 
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the excellent structural cavity property, crystalline growth direction and n-type 

doping. Tables 2.1(a)-(d) summarize the development of the inorganic random 

lasers including laser crystal powder random laser and semiconductor random 

laser. 
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Table 2.1a Parameters of different laser crystal powder and semiconductor random lasers 

Laser crystal powder 
and semiconductor 
random media 

Pumping 
Wavelength/ 
Pulse Duration 

Particle Size  Sample 
Thickness 

Pumped Area Threshold 
Energy 
Density  

Threshold 
Power 
Density/ 
Emission 
Lifetime  

Emission 
frequency 

Fabrication method 

ZnO nanowire 
(Hsu, Wu and Hsieh, 
2005) 

325nm/500ps diameter ~ 60 - 
200nm 
length ~ 3 μm,  

 diameter 
~100μm 

  3.2 - 3.25eV Vapor transport method 
mediated by 
vapor-liquid-solid 
growth 

ZnO whiskers 
(Qiu, Wong, Wu, Lin 
and Xu, 2004) 

325nm/250fs diameter 
~150-1000nm,  
length ~20μm 

  70μJcm-2 /30ps 378 nm Hydrothermal oxidation 
technique 

ZnO polycrystalline 
thin film 
(Zhang, Chua, Yong, 
Li, Yu and Lau, 2006) 

320nm/150fs  0.36μm diameter ~ 
300μm 

150μJcm-2 /30ps 3.181 - 
3.27eV 

Filtered cathodic 
vacuum arc technique 

ZnO nanorod arrays 
(Han, Wang, Wang, 
Cao, Liu, Zou and Hou, 
2005) 

325nm/150fs diameter  
~150-300nm 
length ~5.5μm 

  130μJcm-2   377 nm Metal-catalyst-free 
method and Pulsed 
laser deposition method 

ZnO nanoneedles 
(Lau, Yang, Yu, Li, 
Tanemura, Okita, 
Hatano and Hng, 2005) 

 diameter 
~100nm 
length ~ 
200-400nm 

   0.34 MWcm-2 390nm - 
400nm 

Ion-beam technique 

Colloidal 
CdS/CdSe/CdS 
quantum wells 
(Xu and Xiao, 2005) 

400nm/1ps  200nm area ~ 2mm x 
50μm 

 3 Wcm-2 510nm - 
550nm 

Successive ion layer 
adsorption and reaction 
technique 

ZnO rib waveguide 
(Leong, Yu, Abiyasa 
and Lau, 2006) 

355nm/6ns  180nm   0.28 MWcm-2 385nm Filtered cathodic 
vacuum arc technique 
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Table 2.1b Parameters of different laser crystal powder and semiconductor random lasers 

Laser crystal powder 
and semiconductor 
random media 

Pumping 
Wavelength/ 
Pulse Duration 

Particle Size  Sample 
Thickness 

Pumped Area Threshold 
Energy 
Density  

Threshold 
Power 
Density/ 
Emission 
Lifetime  

Emission 
frequency 

Fabrication method 

Nanostructured stars of 
ZnO microcrystals 
(Lv, Li, Guo, Wang, 
Wang, Xu, Yang, AI 
and Zhang, 2005) 

266nm/5ns Arc length 
0.5-2μm 

   318 kWcm-2 388.4nm Simple solution method 

ZnO nanostructures 
(Liu, Yamilov, Wu, 
Zheng, Cao and Chang, 
2004) 

355nm/20ps  600-750 
nm 

diameter ~ 20μm 6nJ  386 nm - 
393nm 

Plasma-enhanced 
chemical vapor 
deposition method 

ZnO polycrystalline 
thin film 
(Ong, Dai, Li, Du, 
Chang and Ho, 2001) 

410nm/2ns  400nm    3.2eV Pulsed laser deposition 
method 

ZnO nanosaws 
(Wu, Hsu, Cheng, 
Yanga and Hsieh, 2006) 

355nm/500ps diameter 
~50-100nm 
length ~1μm 

   0.96 MWcm-2 3.2eV Simple vapor transport 
method 

ZnO nanoparticles 
(Stassinopoulos, Das, 
Giannelis, Anastasiadis 
and Anglos, 2005) 

308nm/30ns diameter ~ 
250-300nm 

3μm area ~ 4mm x 
4mm 

2μJcm-2  385nm Spin coating method 

ZnO nanorod arrays 
embedded in ZnO 
epilayers 
(Yu, Yuen, Lau, Park 
and Yi, 2004) 

355nm/6ns diameter ~70nm 
length ~2μm,  
Density 
~1.7x1011 
rodcm-2 

 area ~ 5mm x 
60μm 

 TE mode ~ 
800 kWcm-2 
TM mode ~ 
1.6 MWcm-2 

380nm Filtered cathodic 
vacuum arc technique 
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Table 2.1c Parameters of different laser crystal powder and semiconductor random lasers 

Laser crystal powder 
and semiconductor 
random media 

Pumping 
Wavelength/ 
Pulse Duration 

Particle Size  Sample 
Thickness 

Pumped Area Threshold 
Energy 
Density  

Threshold Power 
Density/ Emission 
Lifetime  

Emission 
frequency 

Fabrication method 

ZnO film  
(Lau, Yang, Yu, Yuen, 
Leong, Li and Hng, 
2005) 

  200nm area ~ 0.003 
cm2 

 0.8MWcm-2 390nm Filtered cathodic 
vacuum arc 
technique 

para-sexiphenul 
nanofibers 
(Quochi, Cordella, 
Orru`, Communal, 
Verzeroli, Mura and 
Bongiovanni, 2004) 

380nm/ 150fs length = 220nm, 
height =110nm 

0.3μm diameter 
~120μm 

0.5 μJcm-2  425nm  

GaAsN  
(Sun, Gal, Gao, Tan, 
Jagadish, Puzzer, 
Ouyang and Zou, 2003) 

532nm/ 1μs  200nm area ~ 
2500μm2 

 0.1-10k Wcm-2 1080nm-108
8nm 

Metalorganic 
chemical vapor 
deposition method 

GaN nabowires 
(Gradečak, Qian, Li, 
Park and Lieber, 2005) 

266nm/ 7ns diameter 
~100-300nm 
length 10-30μm 

   22k Wcm-2 365nm Metalorganic 
chemical vapor 
deposition method 

Nd0.5La0.5Al3(BO3)4  
(Bahoura, Morris, Zhu 
and Noginov, 2005) 

532nm/ 10ns  1cm    1064nm  

NdAl3(BO3)4,  
(Noginov, Noginova, 
Caulfield, 
Venkateswarlu, 
Thompson, Mahdi and 
Ostroumov, 1996) 

532nm/10ns diameter ~ 
0.6-24.8μm 

0.35μm diameter ~ 
20μm 

200mJcm-2 200 mJcm-2 for 
powder form; 
600m mJcm-2 for 
single crystal form 

1063 nm  
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Table 2.1d Parameters of different laser crystal powder and semiconductor random lasers 

Laser crystal powder 
and semiconductor 
random media 

Pumping 
Wavelength/ 
Pulse Duration 

Particle Size  Sample 
Thickness 

Pumped Area Threshold 
Energy 
Density  

Threshold Power 
Density/ Emission 
Lifetime  

Emission 
frequency 

Fabrication 
method 

NdSc3(BO3)4  
(Noginov, Noginova, 
Caulfield, 
Venkateswarlu, 
Thompson, Mahdi and 
Ostroumov, 1996) 

532nm/10ns diameter ~ 
0.6-24.8μm 

  560mJcm-2 560 mJcm-2 for powder 
form;  
 

1061.5nm  

Nd:Sr5(PO4)3F 
(Noginov, Noginova, 
Caulfield, 
Venkateswarlu, 
Thompson, Mahdi and 
Ostroumov, 1996) 

805nm/20ns diameter ~ 
0.6-24.8μm 

  170mJcm-2 170 mJcm-2 for powder 
form; 
625 mJcm-2 for 8-mm 
polished plate of single 
crystal;  
920 mJcm-2 for 1.5-mm 
polished plate of single 
crystal;  
1080 mJcm-2 for  
0.8-mm unpolished 
plate of single crystal 

1059nm  

NdSc3(BO3)4 
(Noginov, Zhu, Frantz, 
Novak, Williams and 
Fowlkes, 2004) 

532nm/10ns diameter ~ 
3.55μm 

 diameter ~ 
0.3-0.7mm 

 /1-2ns  Czochralaski 
technique 
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Organic disordered system  

In this section, organic active disordered systems are discussed such as liquid dye 

and solid-state polymer random lasers. Nearly all organic active disordered 

systems consist of scattering element and gain medium. Generally, conjugated 

polymer and dye-doped polymer are utilized to provide the optical gain while 

dielectric particles are served as scattering centers. Since the gain medium and 

the scattering elements are separated, the scattering strength and the randomness 

of the disordered systems can be varied independently.  

 

Dye-doped polymer random laser 

Recently, random lasing has been reported in a variety of organic active 

disordered systems such as colloidal dye solutions (Ahmed, Zang, Yoo, Ali and 

Alfano, 1994, Lawandy, Belachandran, Gomes and Sauvin, 1994, Sha, Liu and 

Alfano, 1994, Balachandran and Lawandy, 1995, Noginov, Noginova, Caulfield, 

Venkateswarlu and Mahdi, 1995, Sha, Liu, Liu and Alfano, 1996, Siddique, 

Alfano, Berger, Kempe and Genack, 1996, Prasad, Ramachandran, Sood, 

Subramanian and Kumar, 1997, Sfez and Kotler, 1997, Eradat, Shkunov, Frolov, 

Gellermann, Vardeny, Zakhidov, Baughma and Yoshino, 1999, Cao, Xu, Chang 

and Ho, 2000, Soest, Poelwijk and Lagendijk, 2002, Zacharakis, Papadogiannis 

and Papazoglou, 2002), films of dye-doped polymer consisting of dielectric 

particles (Cao, Ling, Xu, Burin and Chang, 2003, Watanabe, Oki, Maeda and 

Omatsu, 2005), biological tissues (Zhang, Cue and Yoo, 1995, Polson and 

Vardeny, 2004, Polson and Vardeny, 2005). The first demonstration of the 

narrowing of the spontaneous emission spectrum from a dye-doped methanol 

solution was presented by Lawandy et al. (Lawandy, Belachandran, Gomes and 
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Sauvin, 1994). A Rhodamine 640 dye solution consisting of TiO2 sub-micron 

particles was optically excited. When the pumping density exceeded some 

threshold value, strong spectral narrowing and nonlinear emission enhancement 

were observed. Following  Lawandy’s investigation, active disordered media 

consisting of colloidal suspension of scatterers in a dye-doped solution attracted 

much attention. It was shown that the lasing threshold for simulated emission 

was dependent on the concentration of laser dye and scattering particles (Sha, 

Liu and Alfano, 1994, Noginov, Noginova, Caulfield, Venkateswarlu and Mahdi, 

1995, Zhang, Cue and Yoo, 1995, Siddique, Alfano, Berger, Kempe and Genack, 

1996, Sfez and Kotler, 1997). Furthermore, Zhang et al. (Zhang, Cue and Yoo, 

1995) experimentally examined the effect of the gain length on the emission 

bandwidth in order to study the spectral properties of the diffusive random laser. 

It was found that the spectral shift of the stimulated emission peak was 

dependent on the concentration of scattering particles and the pumping density. 

These results were explained by using with an amplified spontaneous emission 

(ASE) model (Noginov, Noginova, Caulfield, Venkateswarlu and Mahdi, 1995). 

 

Furthermore, coherent random laser also was realized in colloidal dye solution. 

Cao’s group successfully observed the transition between the incoherent random 

laser to coherent random laser by increasing the amount of scattering particles in 

the dye solutions, the gain medium (Cao, Xu, Chang and Ho, 2000). In the 

Rhodamine 640 dye solutions containing ZnO nanoparticles, a drastic spectral 

narrowing which was identical to the finding of Lawandy’s experiments 

appeared when the pump intensity surpassed the threshold. The emission 

linewidth collapsed to ~5nm. This phenomenon is due to the incoherent feedback. 



                                                                      Chapter 2 

 41

By increasing the ZnO particle density, an unexpected spectral narrowing 

phenomenon was observed. Several discrete spectral peaks (linewidth ~ 0.2nm) 

appeared before the collapse of the emission linewidth. The lasing with coherent 

feedback is attributed to the resonant feedback caused by recurrent light 

scattering in strong scattering regime.  

 

Conjugated polymer random laser 

Conjugated polymers do not undergo concentration quenching, which is different 

from the laser dyes (Diaz-Garcia, Hide, Schwartz and Andersson, 1997). The 

gains of undiluted conjugated polymers are much higher than that of liquid dyes. 

In some π- conjugated polymers, high optical gain and stimulated emission have 

been noted (Diaz-Garcia, Hide, Schwartz and Andersson, 1997, Polson, Huang 

and Vardeny, 2001b, Polson and Vardeny, 2003). Experimentally, the low 

threshold light amplification was demonstrated in blue, green and red spectral 

ranges via amplified spontaneous emission in optically pumped planar 

waveguides based on fluorine polymer gain media (Xia, Heliotis and Bradley, 

2003). Another study revealed that the stimulated emission of different 

semiconducting polymer films covered almost the full range of visible light 

(Hide, Diaz-Garcia, Schwartz and Andersson, 1996, Diaz-Garcia, Hide, Schwartz 

and Andersson, 1997). The detailed studies on the chemical structures, 

absorption and emission spectra of conjugated polymers have been conducted 

(Diaz-Garcia, Hide, Schwartz and Andersson, 1997). The absorption and 

photoluminescence spectra of 12 neat polymer thin films are shown in Figure 

2.6.  
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In the past, several random lasers based on conjugated polymers have been 

reported such as 2,5-dioctyloxy poly(p-phenylene-vinylene) [DOO-PPV] film 

(Eradat, Shkunov, Frolov, Gellermann, Vardeny, Zakhidov, Baughma and 

Yoshino, 1999, Polson, Huang and Vardeny, 2001b, Polson, Raikh and Vardeny, 

2002), quinquethienyl S,S-dioxide [T5OCx] film (Anni, Lattante, Cingolani, 

Gigli, Barbarella and Favaretto, 2003, 2004, Anni, Lattante, Stomeo, Cingolani 

and Gigli, 2004), poly(9,9-dioctylfluorene) and poly(phenylene-ethynylene) / 

poly(phenylene-vinylene) [PPE-PPV] film (Tong, Sheng, Yang, Vardeny and 

Pang, 2004). Various types of dye and conjugated polymers random laser 

systems are summarized in Tables 2.2a-  
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Figure 2.6  Absorption (heavy smooth curves) and photoluminescence (thin, 
slightly noisy curves) spectra of neat thin films of BuEH-PPV, 
BCHA-PPV, MEH-PPV, BEH-PPV, BuEH-PPV/MEH-PPV 
copolymers at different monomer ratios, HEH-PF. BDOO-PF, and 
CN-PPP. Insets: molecular structures. (Source: Hide 1997) 
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Table 2.2a Parameters of different dye random lasers 
Dye and polymer random 
media 

Pumping Source Particle Size / 
concentration 

Dye 
concentration 

Sample 
Thickness 

Pumped Area Threshold 
Energy  

Emission 
frequency 

ZnO PMMA hybrid 
(Vutha, Tiwari and Thareja, 
2006) 

Third harmonic 
(355nm) of Nd: YAG 
laser (5ns pulse width 
FWHM) 

diameter ~1-4μm   Spot diameter 
~400μm 

7MW/cm2 380-385nm 

Waveguide dye laser including 
active random scattering layer 
with Rhodamine-6G and SiO2 
nanoparticles 
(Watanabe, Oki, Maeda and 
Omatsu, 2005) 

Frequency-doubled 
Q-switched Nd: YAG 
laser (pulse duration 
~0.5ns ) 
 

diameter ~50nm 30mM  area ~ 1.5cm x 
250μm 

0.34μJ 594.2nm 

DCM doped polycarbonate 
film with silica spheres 
(Zhang, Chua, Yong, Li, Yu 
and Lau, 2006) 

Frequency-doubled 
Q-switched Nd: YAG 
laser (10Hz repetition 
rate, 35ps pulse 
width) 

diameter ~ 75nm  Thickness of 
PC 
waveguide 
laser = 
340nm 

area ~ 20mm x 
150μm 

70μJ/cm2 600-610nm 

Rhodamine 640 perchlorate 
suspension containing TiO2 
nanoparticles  
(Sha, Liu and Alfano, 1994) 

Frequency-doubled 
(532nm) Nd: YAG 
laser (20Hz repetition 
rate) 

diameter  
~0.26μm / 
2.5x1012 cm-3 

5x10-4 – 
2.5x10-2M 

 Spot diameter 
~1cm 

0.07mJ 620nm and 
650nm 

Neat film of substituted 
quinquethienyl S,S-oxide 
(Anni, Lattante, Cingolani, 
Gigli, Barbarella and 
Favaretto, 2004) 

Third harmonic 
(355nm) of Nd: YAG 
laser (10Hz repetition 
rate, 3ns pulse 
width ) 

   area ~ 7mm x 
100μm 

0.75mJ/cm2 625nm 

Methanol solutions of 
Rhodamine 6G dye containing 
Al2O3 particles 
(Noginov, Noginova, 
Caulfield, Venkateswarlu and 
Mahdi, 1995) 

Frequency-doubled 
(532nm) Nd: YAG 
laser (80ns pulse 
width) 

diameter ~ 1μm 3.5x1016 – 
3.6x1018 cm-3 

Thickness of 
cuvette = 
1mm 

  565nm 
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Table 2.2b Parameters of different dye random lasers 
Dye and polymer random 
media 

Pumping Source Particle Size/ 
concentration 

Dye 
concentration 

Sample 
Thickness 

Pumped Area Threshold 
Energy  

Emission 
frequency 

Nylon-6 fibers containing 
Rhodamine 640 perchlorate 
and TiO2 nanoparticles 
(Balachandran, Pacheco and 
Lawandy, 1996) 

Frequency-doubled 
Q-switched (355nm) 
of Nd: YAG laser 
(7ns pulse width) 

diameter 
=250nm  

2x10-3M Fiber 
diameter 
=200μm 

Spot diameter 
~400μm 

8mJ/cm2 608nm 

Solution of Rhodamine 640 
perchlorate and TiO2 
nanoparticles 
(Lawandy, Belachandran, 
Gomes and Sauvin, 1994) 

Frequency-doubled 
Q-switched Nd: YAG 
laser (pulse duration 
~7ns ) 
 

diameter 
=250nm / 
1011cm-3 

2.5x10-3M     

Methanol Solution of 
Rhodamine 640 perchlorate 
and alumina-coated titanic 
particles 
(Siddique, Alfano, Berger, 
Kempe and Genack, 1996) 

Frequency-doubled 
(527nm)single-shot 
Nd: glass laser (10ps 
pulse width) 

diameter ~ 
0.25μm/ 
5x1011cm-3 

50mol/L Solution 
contained 
within 1cm x 
1cm x3cm 
glass cvette 

Spot diameter 
~0.5mm 

13μJ  

Methanol solution containing 
Sulforhodamine 640 and TiO2 
nanoparticles 
(Sha, Liu, Liu and Alfano, 
1996) 

Frequency-doubled 
(532nm) Nd: YAG 
laser (20Hz repetition 
rate, 3ns pulse width) 

diameter  
~210nm 
/ 1011 cm-3 

2.5x10-2M  Spot diameter 
~0.5cm 

0.2mJ for 
610-620nm 
band, 8.8mJ for 
645-650nm band 

610-620nm, 
645-650nm 

Methanol solution of 
Rhodamine 640 perchlorate 
and TiO2 nanoparticles 
(Balachandran and Lawandy, 
1995) 

Frequency-doubled 
Q-switched (532nm) 
Nd: YAG laser (pulse 
duration ~100ns ) 
 

diameter  
~250nm 
/ 2x1011 cm-3 

2.5x10-3M  Spot diameter 
~300μm 

16mJ/cm2 610nm 

Rhodamine 610 solutions  
containing TiO2 particles 
(Sfez and Kotler, 1997) 

Q-switched (532nm) 
Nd: YAG laser (10Hz 
repetition rate, 7ns 
pulse width) 

diameter ~32nm 
/ 3x1013 cm-3 

1.4x 10-4 M  Spot diameter 
~2.5mm 

0.8mJ/cm2 590nm 
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Table 2.2c Parameters of different dye random lasers 
Dye and polymer random 
media 

Pumping Source Particle Size/ 
concentration 

Dye 
concentration 

Sample 
Thickness 

Pumped Area Threshold 
Energy  

Emission 
frequency 

Methanol solution of 
Sulforhodamine B and TiO2 
particles 
(Soest, Tomita and Lagendijk, 
1999) 

Frequency-doubled 
Q-switched of Nd: 
YAG laser (20Hz 
repetition rate,  6ns 
pulse width) 

diameter 
=220± 20μm  

0.1mM Sample 
thickness = 
1cm 

Spot diameter 
~80μm - 2mm 

~0.03mJ/mm2 590nm 

Coumarin 307 dye-infiltrated 
random gain media containing 
TiO2 particles 
(Zacharakis, Papadogiannis 
and Papazoglou, 2002) 

Mode-locked (800nm) 
Ti: Sapphire laser 
(82Hz repetition rate, 
pulse duration =200fs ) 
 

diameter 
=400nm / 
1.33x10-3M 

4x10-3M Sample size 
= 1x1x1 cm  

Spot area 
~0.15mm2 

60μJ 480nm 

Methanol solution of 
Rhodamine 640 perchlorate 
and ZnO particles 
(Cao, Xu, Chang and Ho, 
2000) 

Frequency-doubled 
(532nm)single-shot Nd: 
glass laser (10Hz 
repetition rate, 25ps 
pulse width) 

diameter ~ 
100nm/ 
1x1012cm-3 

5x10-3M Solution 
contained 
within 1cm x 
1cm x3cm 
cvette 

Spot diameter 
~0.5mm 

1μJ 605-610nm 

PMMA polymer film 
containing Rhodamine 640 
and TiO2 particles 
(Ling, Cao, Burin, Ratner, Liu, 
Seelig and Chang, 2001) 

Frequency-doubled 
(532nm) Nd: YAG 
laser (10Hz repetition 
rate, 25ns pulse width) 

diameter  
~400nm/ 
8x1010 -6x1012 
cm-3 

1 x10-2- 
5x10-2M 

Sample 
thickness = 
150-400μm  

Spot diameter 
~50μm 

3.6x103 μJ/cm2 382-386nm 

Methanol solution of 
Rhodamine 640 perchlorate 
and TiO2 nanoparticles 
(Balachandran, Lawandy and 
Moon, 1997) 

Frequency-doubled,  
Q-switched, 
mode-locked (532nm) 
Nd: YAG laser 

diameter  
~250nm 
/20-50mg/mL 

5x10-4M  Spot diameter 
~500μm 

1.2μJ  

Methanol solution of 
Rhodamine 6G and Al2O3 
nanopowder 
(Dice, Mujumdar and 
Elezzabi, 2005) 

Frequency-doubled 
(532nm) Nd: YAG 
laser (10Hz repetition 
rate, 10ns pulse width) 

diameter  
~100nm 
/2.3 x1013 
-4.2x109 cm-3 

10-3mol/L   ~4.9mJ/cm2 564nm 
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Table 2.2d Parameters of different dye random lasers 
Dye and polymer random 
media 

Pumping Source Particle Size/ 
concentration 

Dye 
concentration 

Sample 
Thickness 

Pumped Area Threshold 
Energy  

Emission 
frequency 

Rhodamine 6G doped gel film 
with SiO2 balls 
(Frolov, Vardeny, Yoshino, 
Zakhidov and Baughman, 
1999) 

Frequency-doubled 
(532nm) Nd: YAG 
laser (100Hz 
repetition rate,  
100ps pulse width) 

diameter = 
300nm/ 2x1010 
cm-3 

 30000nm area ~ 3mm x 
30μm 

250 mJ/cm2 555-565nm 

Solution of Rhodamine 590 
infiltrated in opal of SiO2 balls 
(Eradat, Shkunov, Frolov, 
Gellermann, Vardeny, 
Zakhidov, Baughma and 
Yoshino, 1999) 

Frequency-doubled 
(532nm) Nd: YAG 
laser (100Hz 
repetition rate,  
100ps pulse width) 

Silica balls 
close-packed in a 
fcc lattice 
 

10-3M crystallite 
sizes = 
20-100μm 

 ~3μJ/pulse 580nm 

Solution of DOO-PPV 
infiltrated in opal of SiO2 balls 
(Eradat, Shkunov, Frolov, 
Gellermann, Vardeny, 
Zakhidov, Baughma and 
Yoshino, 1999) 

Frequency-doubled 
(532nm) Nd: YAG 
laser (100Hz 
repetition rate,  
100ps pulse width) 

Silica balls 
close-packed in a 
fcc lattice 
 

 crystallite 
sizes = 
20-100μm 

 0.05mJ/pulse 598nm 

PMMA hybrid with ZnO 
powder 
(Vutha, Tiwari and Thareja, 
2006) 

Third harmonic 
(355nm) Nd: YAG 
laser (10Hz repetition 
rate,  5ns pulse 
width) 

diameter  
~1-4μm/  

  Spot diameter = 
400μm 

6MW/cm2 ~384nm 

MEH-PPV/glass waveguide 
with TiO2 particles 
(Liu, Liu, Zhang and Dou, 
2005) 

Ti:Sapphire laser 
(544nm, 1kHz 
repetition rate, 150fs 
pulse width) 

Diameter =20nm    45μJ/ cm2 ~612nm 

 



 

 48

Table 2.3a Parameters of different polymer random lasers 
Material Emission frequency Pumping 

wavelength/pulse width 
Sample Thickness Threshold Energy  Reference 

BuEH-PPV 520,560nm 435nm/10ns 126-252nm 0.4± 0.2μJ/pulse 
BuEH-PPV 520,560nm 435nm/10ns 87-208nm 0.2± 0.1μJ/pulse 
BCHA-PPV 540,630nm 532nm/10ns 277-650nm 1.0± 0.4μJ/pulse 
MEH-PPV 585,625nm 532nm/10ns 87-405nm 1.1± 0.4μJ/pulse 
MEH-PPV 585,625nm 532nm/10ns 355nm 3μJ/pulse 
MEH-PPV 585,625nm 532nm/10ns 325nm 4μJ/pulse 
BEH-PPV 580,650nm 532nm/10ns 300nm 0.5μJ/pulse 
BuEH-MEH copolymers 
10:90 

580,625nm 532nm/10ns 330nm 3.2μJ/pulse 

BuEH-MEH copolymers 
70:30 

565,600nm 532nm/10ns 420nm 1.0μJ/pulse 

BuEH-MEH copolymers 
90:10 

550,580nm 435nm/10ns 370nm 1.0μJ/pulse 

BuEH-MEH copolymers 
95:5 

545,580nm 435nm/10ns 450nm 1.6μJ/pulse 

BuEH-MEH copolymers 
97.5:2.5 

540,570nm 435nm/10ns 500nm 1.0μJ/pulse 

HEH-PF 425,445nm 355nm/10ns 120nm 4.2μJ/pulse 
BDOO-PF 430,450,540nm 355nm/10ns  2.3μJ/pulse 
CN-PPP 420nm 355nm/10ns 100nm 4.0μJ/pulse 
DCM/PS (2.6%w/v) 640nm 532nm/10ns 390-4800nm 400± 150μJ/pulse 

(Hide, Diaz-Garcia, 
Schwartz and Heeger, 
1997) 

BuEH-PPV 555-570nm 435nm/10ns 210nm ~0.6μJ/pulse 
CN-PPP ~420nm 355nm/10ns 100nm ~9μJ/pulse 
BCHA-PPV ~600nm 532nm/10ns 580nm ~2μJ/pulse 

(Hide, Schwartz, 
Diaz-Garcia and 
Heeger, 1997) 
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Table 2.3b Parameters of different polymer random lasers 
Material Emission frequency Pumping 

wavelength/pulse width 
Sample Thickness Threshold 

Energy  
Reference 

DOO-PPV ~630nm 540nm/150ps 30-2000nm ~60μ J/cm2 (Frolov, Ozaki, Gellermann, Vardeny 
and Yoshino, 1996) 
 

DOO-PPV ~630nm 400nm/150fs 200nm <50 μJ/cm2 (Lee, Wong, Huang, Frolov and 
Vardeny, 1999) 

DOO-PPV 625-635nm 532nm/100ps ~1000nm 0.05μJ/pulse (Frolov, Shkunov, Fujii, Yoshino and 
Vardeny, 2000) 

DOO-PPV 625-640nm 532nm/100ps 1000nm 1μJ/pulse (Polson, Huang and Vardeny, 2001b) 
DOO-PPV 630-640nm 532nm/100ps ~1000nm <2μJ/pulse (Polson, Huang and Vardeny, 2001a) 
DOO-PPV 625-640nm 532nm/100ps 500-000nm 0.03μJ/pulse (Frolov, Vardeny, Yoshino, Zakhidov 

and Baughman, 1999) 
T5OCx ~615-625nm 355nm/3ns 450nm 300μJ/cm2 (Anni, Lattante, Cingolani, Gigli, 

Barbarella and Favaretto, 2003, Anni, 
Lattante, Stomeo, Cingolani and Gigli, 
2004) 

PPE-PPV ~446nm 375nm/100fs  7μJ/cm2 (Tong, Sheng, Yang, Vardeny and 
Pang, 2004) 
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2.4 Summary 

In the development of random lasers, a lot of effort has been devoted to study the 

underlying mechanism of the random laser. The investigations of random laser 

always link to the localization theory and diffusion theory. On the other hand, 

much work has been attempted to optimize and control the laser-like emission of 

disordered system. One important aspect is to reduce the lasing threshold by 

controlling the scattering strength in the disordered medium. It is believed that 

the randomness of the scattering structure is one of the key factors to control the 

scattering strength. Up to now, only limited research (Chang, Cao and Ho, 2003, 

Yamilov and Cao, 2004b) has been reported on the studies of the influence of 

disorder on the random laser. It is valuable to explore the disorder effect on the 

random laser systems.   
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CHAPTER 3 
THEORETICAL ANALYSIS AND NUMERIC SIMULATION 

 

3.1 Introduction 

Theoretically, several models have been established to study the temporal and 

spectral properties of active disordered media, such as the diffusion model with 

gain (Letokhov, 1967, 1968, John and Pang, 1996, Wiersma and Lagendijk, 1996, 

Burin, Cao and Ratner, 2003, Florescu and John, 2004), the Monte Carlo 

simulation (Balachandran, Lawandy and Moon, 1997, Berger, Kempe and 

Genack, 1997, Soest, Tomita and Lagendijk, 1999, Noginov, Novak, Grigsby, 

Zhu and Bahoura, 2005), and finite-difference time-domain (FDTD) simulation 

(Jiang and Soukoulis, 2000, Vanneste and Sebbah, 2001, Jiang and Soukoulis, 

2002, Sebbah and Vanneste, 2002, Soukoulis, Jiang, Xu and Cao, 2002, Liu, 

Yamilov, Ling, Xu and Cao, 2003, Yamilov and Cao, 2004, Wang, Liu and Yuan, 

2005, Wang and Liu, 2006). Those models successfully explained the 

experimental results such as ASE peak narrowing, lasing threshold behavior and 

nonlinear input-output characteristics.  

 

In this chapter, it begins with a description of the existing models of random 

lasers such as Monte Carlo simulation and finite-difference time-domain (FDTD) 
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modeling. Followed the review of existing modeling, the work principle and 

formulism of the time dependent theory will be presented. The time-dependent 

theory (Jiang and Soukoulis, 2000) which combines the time-dependent 

Maxwell’s equations with the semi-classical laser theory (Siegman, 1986) is 

selected for investigation in the current study. The modeling and analysis specific 

for the present research are clarified in the latter section. 

 

3.2 Existing theoretical models of random laser  

3.2.1 Diffusion model 

John and Pang speculated the random laser system by solving the coupling 

diffusion equations and the electron rate equations with nonlinear gain and loss, 

but without the saturation effect (John and Pang, 1996). Similarly, Wiersma et al. 

(Wiersma and Lagendijk, 1996) proposed a diffusion model to investigate the 

powdered lasing crystal powder. A slab of powder was considered as a disorder 

medium and the amplification mechanism was proposed as four-level atomic 

systems. In the numerically experiments, pump pulse and probe pulse were 

injected into the powder slab. The energy density of pump light, probe light, and 

amplified spontaneous emission (ASE) were described by three diffusion 

equations, which coupled with the rate equation. The four equations can be 
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written as 
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where ( , )GW r tr , ( , )RW r tr  and ( , )AW r tr represent the energy density of pump light, 

probe light, and amplified spontaneous emission, respectively. 1( , )A r tr  is the 

concentration of the excited atomic particles. totalA  is the total concentration of 

atomic particles, υ  is the velocity of light in the medium. Gl  and Rl  are the 

mean free paths of pump light and probe light, respectively. absσ  and emσ  are 

the absorption and emission cross section, D is the diffusion coefficient, eτ  is 

the life time of the excited state. ν is the transport speed of light in the medium 

Numerically, these coupled differential equations were solved and a time 
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dependent solution can be obtained.  

 

3.2.2 Monte Carlo simulation 

In the past ten years, Monte Carlo simulation of the random walk of photons has 

been employed to study the properties of emission from optically pumped 

diffusive active disordered media. Balachandran developed a laser model to 

explain the results of dye solution experiments (Balachandran1997). The laser 

model is schematically shown in Figure 3.1 

 

Figure 3.1 Schematic diagram of the laser model. Source: (Balachandran1997) 

It was assumed that photon performs a random walk in the scattering medium. 

Photons P2 experience optical gain though the spontaneous emission process due 

to the excited dye molecules in gain volume V1. When the photons reach the 

boundaries of V1, photons travel to either V2 or out of the scattering medium. 



                                                                      Chapter 3 

 55

The photons P1 are probably scattered back to the V1. The threshold gain ( thγ ) 

for the diffusive random laser was determined by using the Monte Carlo 

simulation. Equation 3.5 defines the threshold condition for the random laser.  

 

1 2ln( )
th

path

R R
l

γ −
= ,             (3.5) 

 

where lpath is average total path length; R1 and R2 are the probabilities of photon 

returning and escaping in the gain volume, respectively. 

 

The emission linewidth and peak intensity of the random laser can be evaluated 

by integrating the laser intensity over time. The laser intensity ( , )laserI tλ  can be 

obtained from the following two equations:   

 

22
2 2

[1 ( )] ( )( ) ( ) ( ) ( , ) ( )p pump
l pump

n t B I tdn t n t d B I t n t
dt

λ λ λ
υ

−
= − − Γ∫   (3.6) 

 

0 2 2
( , ) [ ( ) ( ) ] ( , ) ( ) ( ),laser

con th laser
dI t C n t I t n t

dt
λ γ λ γ λ η λ= − +     (3.7) 

 

where n2 is the excited population density function, thγ  is the threshold gain, 

0γ  is the constant gain. Bp and Bl are the Einstein coefficients for the pump and 
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the laser emissions, respectively. Ipunp and Ilaser are the pump and the laser 

intensities, respectively, Γ is the spontaneous emission rate, η is the spontaneous 

emission coefficient that initiates the laser action. Ccon is the proportion constant. 

The emission spectra, the input-output characteristics, the evolution of 

population inversion of dye molecules can be obtained in the simulation. 

 

 

3.2.3 Finite-difference time-domain (FDTD) modeling 

The previous models established for the random laser with incoherent feedback 

are inadequate to describe the random laser with coherent feedback because of 

the phase of the optical field is neglected. The models only take account of light 

intensity rather than the electromagnetic field in the calculation. Thus the 

interference effect, which is essential to coherent feedback, is excluded. 

 

To explain the optical properties and the phenomena exhibiting in the disordered 

media, a model should be based on Maxwell’s time-dependent equations that can 

be adapted to different random configuration of dielectric structures. For the 

active disordered system, the model has to include a realistic amplifying 

mechanism. Accordingly, Taflove (Taflove and Brodwin, 1975, Taflove, 1995) 
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proposed a finite-difference time-domain (FDTD) method to deal with 

electromagnetic scattering problem in amplifying media. FDTD technique is a 

computationally efficient method of directly solving Maxwell’s time-dependent 

curl equations or their equivalent integral equations using the finite-difference 

technique. It can fully describe the behavior of classical electromagnetic 

properties in both passive and active disordered media. The time-dependent 

Maxwell’s equations are expressed as follows: 

 

BE M
t

∂
∇× + = −

∂

r
r r

          (3.8) 

DH J
t

∂
∇× − =

∂

r
r r

          (3.9) 

D ρ∇⋅ =
r

            (3.10) 

0B∇⋅ =
r

            (3.11) 

 

where E
v

 is the electric field, H
v

 is the magnetic field, D
v

 is the electric flux 

density, B
v

 is the magnetic flux density, ρ  is the free charge density. J
v

 and 

M
r

 are the electric conduction current density and the magnetization, 

respectively. In linear and nondispersive materials, D
v

 and B
v

 can be related to 

E
v

 and H
v

, respectively, by using simple proportions.  
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0rD E Eε ε ε= =
r r r

          (3.12) 

0rB H Hμ μ μ= =
r r r

          (3.13) 

 

where εr is the relative permittivity, ε0 is the free space dielectric permittivity, μr 

and μ0 are the relative permeability and the free space permeability. To consider 

the conductive property of material, the external current and conductivity terms 

should be included. This yields : 

 

sourceM M Hσ ∗= +
r r r

          (3.15) 

source
PJ J E
t

σ∂
= + +

∂

r
r r r

         (3.16) 

 

where σ is the electric conductivity. σ* is equivalent magnetic loss. sourceJ
r

 and 

sourceM
r

 are the external electric and equivalent magnetic current density, 

respectively, which are the independent sources of electric and magnetic field 

energy. P
v

 is electric polarization density. By using standard FDTD method 

(Taflove, 1995), the electrodynamics of random media can be fully described.  

 

Negative conductance 

Recently, a variety of FDTD approaches has been proposed to combine the 
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amplification mechanism with the Maxwell’s equations in order to investigate the 

optical amplification in active random media.  

 

The first approach introduces optical gain into the Maxwell’s equations by 

negative conductance (Taflove and Haginess, 2000). The spectral gain linesharp 

of the dye solution is described by  

 

0

2 2

/ 2( )
1 ( ) 1 ( )t ti T i T

σσ ω
ω ω ω ω

=
+ − + + +

,      (3.17) 

 

where ( )σ ω  is the frequency-dependent conductivity function, 0σ  represents 

the constant amplitude of conductivity which is maximum value of the gain 

magnitude, ωt represents the transition frequency which is the central frequency 

of the gain profile and T2 is the dipole relaxation time, which is inversely 

proportional to the width of the spectral gain. In this model, it is assumed that the 

gain and absorption are dependent on the frequency of electromagnetic wave. By 

using this model, the transition from ASE to laser oscillation in a two 

dimensional active random medium was reported (Cao, Xu, Chang and Ho, 

2000). Lately, the influence of absorption in the diffusive random medium was 

also examined (Yamilov, Wu, Cao and Burin, 2005).    
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Electric susceptibility of the material 

The second approach is to embed a electric susceptibility of the material ( )χ ω  

into Maxwell’s equations in order to describe the amplifying effect of the gain 

medium (Hawkins and Kallman, 1993, Wang, Liu and Yuan, 2005). The 

frequency-dependent electric susceptibility ( )χ ω  is expressed as  

 

2
0

2 2( ) t

t i
χ ωχ ω

ω ζω ω
=

+ −
         (3.18) 

 

where ωt is the resonant frequency, ζ  is a damping coefficient, χ0 is the 

constant amplitude of electric susceptibility. The optical gain profile of the gain 

medium is derived from the imagine part of ( )χ ω . The gain can be expressed as 

the following: 

 

2
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2 2
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− +

,        (3.19) 

 

where χ0 and ζ determine the peak value and spectral width of the gain, 

respectively. By using the polarization equation 0 ( )P Eε χ ω= , where P is 

polarization density and ε0 is free space dielectric permittivity, and the classical 
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electron oscillator model (Siegman, 1986), a second-order different equation can 

be obtained: 

 

2
2 2

0 02 t t
P P P E

t t
ζ ω ε χ ω∂ ∂

+ + =
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.        (3.20) 

 

This equation is directly coupled to the Maxwell’s equation and numerically 

solved by using the FDTD method. The advantage of this model is that the gain 

lineshape can be arbitrarily modified by varying χ0, ω0 and ζ. Accordingly, the 

effect of gain lineshape on the localized modes in active disordered media has 

been reported (Wang, Liu and Yuan, 2005). 
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3.3 Time-dependent theory 

Time-dependent theory for random laser was firstly proposed by Jiang and 

Soukoulis (Jiang and Soukoulis, 2000). It demonstrated that the time-dependent 

theory has the ability to count for the nonlinear effect in the disordered lasing 

material. By using this theory, one can follow the evolution of the 

electromagnetic (EM) field and the population inversion. In the time-dependent 

theory, Maxwell’s equations combining with the rate equations of a four-level 

atomic system are used to deal with active disordered media in order to describe 

the key characteristics of the random lasers. The equations can be solved 

numerically via the finite-difference time-domain (FDTD) method (Taflove, 

1995).  

 

Maxwell’s equations coupling with the rate equations of electronic material was 

firstly reported in the study of wave propagation in nonlinear absorbing and gain 

media (Nagra and York, 1998). Following the development of the time dependent 

theory for random laser, many research works were presented on the localized 

mode in one-dimensional (Jiang and Soukoulis, 2000) and two-dimensional 

active random media (Vanneste and Sebbah, 2001, Sebbah and Vanneste, 2002), 

the polarization dependence of lasing modes (Wang and Liu, 2006). By using the 
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time-dependent theory and FDTD method, the emission spectra and the field 

intensity distribution of localized lasing modes inside the random laser system 

were obtained (Jiang and Soukoulis, 2000, 2002) random media. Lately, this 

model was extended to include a partial quantum mechanic effect in which the 

Pauli Exclusion Principle was taken into account. This model is more suitable to 

analyze the dynamic response in random lasers because one can follow the 

evolution of energy level population and field strength simultaneously.  The 

FDTD simulations are valid both for ballistic, diffusive and strongly scattering 

regime.  

 

3.3.1 Formalisms of the time-dependent theory  

The time-dependent theory can be used to describe dynamics of the 

electromagnetic (EM) field in random media with gain. This theory is adequate 

to study the active disordered medium that the gain medium and the scattering 

elements are separated. The typical examples are colloidal dye solutions 

(Lawandy, Belachandran, Gomes and Sauvin, 1994, Sha, Liu and Alfano, 1994)  

and films of dye-doped polymer consisting of scattering particles (Cao, Xu, Ling, 

Burin, Seeling, Liu and Chang, 2003). In the model, it is assumed that 

electromagnetic waves propagate in an active matrix material comprising 
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complex disordered structure. In the amplifying random medium, light waves are 

both multiply scattered and amplified. Electromagnetic waves are scattered by 

the complex disordered structure without gain and amplified in the active matrix 

material background. The time-dependent theory, which bases on the Maxwell’s 

equations, is capable of describing the optical properties of different materials. 

Thus, it is valid over a various type of disordered structures such as 

semiconductor, dielectric and metallic material. In order to mimic real 

experiments (Cao, Xu, Ling, Burin, Seeling, Liu and Chang, 2003), a disordered 

system consisting of dielectric particles randomly distributed in an active matrix 

material is under consideration. The particles have a relatively higher dielectric 

constant. The active matrix material is a homogenous non-magnetic and 

dispersive dielectric medium which has a lower dielectric constant. The average 

distance between the particles is in the order of light wavelength. In the 

numerical treatment, continuity of the tangential electric and magnetic field is 

naturally maintained across an interface of dissimilar materials. Hence, there is 

no need to specifically enforce field boundary conditions at the interface between 

the scattering particles and the active matrix material.  

 

In the classical electrodynamics theory, Maxwell’s equations govern the 
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propagation of electromagnetic wave. As mentioned in the section 3.2.3, the 

Maxwell’s equations 3.8 and 3.9 can fully describe the transport behavior of 

electromagnetic wave in both dielectric and metallic material. It is assumed that 

sourceM
r

 = sourceJ
r

= 0 and σ = σ* = 0 in the Equation 3.14 and 3.15. If the 

scattering particles and the active matrix medium are made of non-metallic 

material. Maxwell’s equations 3.8 and 3.9 are read as  

 

0HE
t

μ ∂
∇× + =

∂

r
r

           (3.21) 

0E PH
t t

ε ∂ ∂
∇× − − =

∂ ∂

r r
r

         (3.22) 

 

Equation 3.21 and 3.22 can only describe the transport and scattering behavior of 

electromagnetic wave but they are not adequate to describe the behavior of light 

amplification of an active matrix material. In order to simulate the gain of 

amplifying material, the electric polarization density term P
v

 should be linked 

the gain properties of laser dye. Using the classical electron oscillator model 

(Siegman, 1986) and the quantum theory, the electric polarization density P
v

(t) 

is described by the quantum polarization equation of motion (Siegman, 1986). 

The modified Maxwell’s equations and the polarization equation are given as  
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0HE
t

μ ∂
∇× + =

∂

r
r

           (3.23) 

0E PH
t t

ε ∂ ∂
∇× − − =

∂ ∂

r r
r

         (3.24) 

2
2

2

( ) ( ) ( ) ( ) ( )t
d P t dP t P t N t E t

dt dt
ω ω κ+ Δ + = Δ

v v
v v

     (3.25) 

 

where tω  is the transition frequency, ωΔ = 1/τ32 +1/Tcollision is the linewidth of 

the atomic transition. τ32 is the lifetime of lasing level. Tcollision is the collision 

time of the atom. κ  = 3 2
0 326 / tcπε τ ω  is the classical rate (Jiang and Soukoulis, 

2000). c is the speed of light. ε0 is the free-space permittivity.  

( ) 2( ) 3( )N t N t N tΔ = −  is the population difference density of lasing energy 

levels, which can be determined by using the atomic rate equations. 

 

For active disordered systems, the gain medium can be considered as a four-level 

electronic material. The four-level atomic system is normally used to fully 

describe the properties of laser dyes. The energy level structure of the atomic 

system is shown in Figure 3.2. The lifetimes of atomic level L2, L3 and L4 are 

denoted by τ21, τ32 and τ43, respectively. 
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Figure 3.2 Energy levels of a four-level atomic system 

 

Initially, the electrons at the ground energy state L1 are pumped to the highest 

energy state L4 at a certain pumping rate Q. The excited electrons can 

nonradiatively decay to the next lower state L3 with a lifetime of τ43. The energy 

state L3 and L2 are the upper lasing level and the lower lasing level. After the 

radiative transition from energy state 3 to 2, the electrons nonradiative transfer 

back to the ground state. The non-radiative transitions of L4→L3 and L2→L1 are 

proportional to the decay rates 1/τ43 and 1/τ21, respectively. The rate equations are 

used to describe the atomic transition of atomic systems and the population of 

energy levels. The rate equations of a four-level atomic system are given as 

(Jiang and Soukoulis, 2000) 
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211/ 2 / 1dN dt N QNτ= −          (3.26) 

32 212 / 3/ 2 / (2 / ) /tdN dt N N E h dP dtτ τ π ω= − −      (3.27) 

43 323 / 4 / 3 / (2 / ) /tdN dt N N E h dP dtτ τ π ω= − +      (3.28)  

43 14 / 4 /dN dt N QNτ= − + ,         (3.29) 

 

where N1, N2, N3 and N4 are the population density of atomic level L1, L2, L3 

and L4, respectively. h is Planck’s constant. Q is the pumping rate which is 

proportional to the pump energy intensity in the real experiment (Jiang and 

Soukoulis, 2001). The lasing transition with transition wavelength ωt is 

contributed by the spontaneous emission and stimulated emission. The stimulated 

emission rate is proportional to the term (2 / ) /tE h dP dtπ ω . The Maxwell’s 

equations coupled to the nonlinear polarization equation can be solved 

numerically together with the four rate equations for the time variation of ( )N tΔ . 

The algorithm of the Finite-Difference Time-Domain (FDTD) method, the initial 

and boundary conditions of numerical simulations will be discussed in the next 

section. 

 

3.3.2 Algorithm of FDTD method 

The set of Equations 3.23-3.29 can be solved simultaneously by the 
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Finite-Difference Time-Domain (FDTD) method (Taflove, 1995, Taflove and 

Haginess, 2000). FDTD is a computationally efficient method of directly solving 

Maxwell’s time-dependent curl equations or their equivalent integral equations 

using the finite-difference technique. By using the FDTD method, a full-vector 

solution of Maxwell’s equations can be obtained. Thus, the phase information of 

the wave electromagnetic wave can be retained.  

 

The FDTD approach was first proposed in a paper by Yee (Yee, 1966a). In FDTD 

scheme, the Maxwell’s equations are discretized and adapted to a discrete space 

mesh. Both the electric field and magnetic field, which are discretized on 

numerical grids, can be calculated at successive discrete time step series. 

According to Yee’s algorithm, the electric and magnetic field components in 

three-dimensional space centered in a cube are depicted in the Figure 3.3. Every 

electric field E
v

 component is surrounded by four magnetic field H
v

 

components, and every H
v

 component is also enclosed by four E
v

 components. 

The algorithm centers its E
v

 and H
v

 components in time in a leapfrog 

arrangement. The leapfrog time-stepping is illustrated in Figure 3.4. All of the 

E
v

 components in the current time step are computed by using the H
v

 

components obtained in the previous time step according to the discretized 
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Maxwell’s equations. The cycle can be completed by recomputation of the H
v

 

components based on the newly obtained E
v

. 
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Figure 3.3  E and H components are placed into a cubic unit cell of the Yee 

Cube. Source: (Yee, 1966a) 

  

 

 
Figure 3.4  Space-time chart of the Yee algorithm for a one-dimensional wave 

propagation example showing the use of central differences for the 
space derivatives and leapfrog for the time derivatives. Source: 
(Taflove and Haginess, 2000) 
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Reduction to the two-dimensional (2D) transverse-magnetic (TM) mode 

In the real experiment, the lasing actions were generated in three-dimensional 

(3D) random laser systems such as colloidal dye solution (Zacharakis, 

Papadogiannis and Papazoglou, 2002). Despite FDTD method is adequate to 

simulate 3D disordered system, 3D FDTD simulation requires huge computer 

memory and is very time consuming. Instead of the 3D disordered system, 2D 

disordered system is considered in the numerical experiments. Hence, the 

computation time and computer memory are significantly reduced for 2D 

computer simulations.  

 

The 3D Yee’s algorithm can be reduced to the proper algorithms for the 2D 

transverse-magnetic mode case. In a 2D system, it assumes that the structure 

being modeled extends to infinity in a direction, i.e., z-direction, perpendicular to 

the transverse x-y plane with no change in the shape or position of its transverse 

cross section. If the incident wave is also uniform in the z-direction, then all 

partial derivatives of the fields with respect to the z-direction must be equal to 

zero. Under these conditions, the electromagnetic wave can be classified into two 

distinct polarizations. Transverse-electric (TE) modes have E
v

 perpendicular to 

the z-direction, ˆ( ) 0E r z⋅ =
v

and H
uuv

parallel to the z-direction, ˆ( )H H r z=
v

. 
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Transverse-magnetic (TM) modes have just the reverse: ˆ( )E E r z=
v

 

and ˆ( ) 0H r z⋅ =
v

. 

 

A 2D problem of a TM wave propagating in the z direction is considered as 

follows. The vector components of the curl operator in Equation 3.23, 3.24 and 

3.25 to yield the following three scalar equations are given as:  

 

1 y xz z
H HE P

t x y tε
∂⎡ ⎤∂∂ ∂

= − −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
         (3.30) 

1x zH E
t yμ

∂ ∂
= −

∂ ∂
           (3.31) 

1y z
H E
t xμ

∂ ∂
=

∂ ∂
            (3.32) 

 

where Hx and Hy are the magnetic field component along the x-direction and 

y-direction, respectively. Ez is the z-direction component of electric field. Pz is 

electric polarization density along the z-direction.  

 

Discretized equations for 2D TM wave propagation 

In FDTD manner, the field equations, the polarization equation and the rate 

equations can be discretized by using central differencing scheme and Yee’s grid 

technique (Yee, 1966b). According to the Yee algorithm, the central differencing 
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approximations of the spatial and temporal partial derivatives are second–order 

accuracy.  In order to discretize the Maxwell’s equations and the rate equations, 

it should firstly specify the space and time notation. Since the coupled scalar 

equations are valid for all values of x, y and t, it is assumed that the components 

of the electric and magnetic fields are continuous or at least piecewise 

continuous with respect to the x, y and t variables. Let xΔ and yΔ represent the 

lattice spatial increment along x and y coordinates, respectively, and tΔ  

represent the discretized time increment. It can denote a space point in a uniform, 

rectangular lattice as 

 

( , ) ( , )i j i x j y= Δ Δ           (3.33) 

 

Furthermore, any function u of space and time evaluated at a discrete point in the 

grid and at a discrete point in time is 

 

( , , )u i x j y n tΔ Δ Δ           (3.34) 

 

where tΔ  is the time increment, assumed uniform over the observation interval, 

and n is an integer. The spatial and temporal partial derivatives of the field 
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components are given by 

 

( )2

( , , , )

( 1/ 2, , ) ( 1/ 2, , ) [ ]
n n
x x

u i x j y k z n t
x

u i j k u i j k O x
x

∂ Δ Δ Δ Δ
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+ − −

+ Δ
Δ

     (3.35) 
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( , , , )
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    (3.38) 

 

In Equations 3.35-3.38, the second-order terms of spatial and temporal increment, 

i.e., 2[( ) ]O xΔ , 2[( ) ]O yΔ  and 2[( ) ]O tΔ , can be neglected. By applying the 

notation and the central differencing approximation, the discretized equations are 

obtained and expressed as  
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2 2
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where Δt, Δx and Δy represent the time increment, the x-direction and the 

y-direction space increment, respectively. The index n and i denote the time step 

and the space step, respectively. For given initial and boundary conditions, the 

polarization density, the electric field, the magnetic field and the electronic 

numbers at each energy level in the time step n+1 can be calculated and updated 

according to Equations 3.39 to 3.46, respectively, which are based on the data in 

the previous time step n.       
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3.4 Numerical implementation 

In the previous section, the full set of discretized equation is presented. The next 

step is to adapt random configurations to the computational domain. Figure 3.5 

shows one of random configuration of active disordered medium. 

 

 

Figure 3.5 Schematic diagram of 2D disordered dielectric system 

 

The size of the 2D disordered medium is SxS, where S is the length of the 

medium. The medium consists of relatively high dielectric circular particles 

(black color area) with a radius of R and refractive index of n2. The circular 

particles act as scattering particles distributed randomly in a background medium 

(white color area) with a lower refractive index n1. The scattering of EM waves is 
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due to the difference of dielectric constant between the background medium and 

the particles. The background medium can be considered as a homogenous active 

material, which is modeled as a four-level atomic systems. The population 

density of electrons is uniformly distributed across the whole system.  

 

3.4.1 Boundary conditions 

Special boundary conditions are employed in the simulation, which models an 

open system. In others words, the system is bounded by a perfectly matched 

layer (PML) (Berenger, 1995) which is unphysical absorption layer. All outgoing 

EM wave is absorbed without reflection in PML. The boundary conditions for 

the field at the interfaces between the disordered system and PML are 

self-satisfied numerically because of the continuity of EM field.  

 

3.4.2 Initial conditions 

In the present FDTD algorithm, it is necessary to assign the initial values of the 

polarization density, the electric field, the magnetic field and the electronic 

numbers at each level for all the meshes in the computation domain. At t = 0, it 

assumes that 0 0zP = , 0 0zE = , 0 0 0x zH H= = and 0 0 02 3 4 0N N N= = =  everywhere 

in grid. The electron number of the ground state 01N  is equal to the total 
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number of the atomic system at t = 0. It means that all the atomic systems lie in 

the ground state. When t>0, the electrons in the ground state L1 are pumped to 

the highest energy state L4 with a pumping rate Q, which model as the external 

optical pumping. After certain time steps, a Gaussian excitation electric pulse is 

introduced in the computation domain in order to trigger the stimulated emission. 

The evolution of field, the population density of lasing levels and the spatial field 

distribution of the system are recorded. By using Fourier transformation, the 

emission spectra of the system can be calculated. 

 

3.4.3 Numerical stability 

In the FDTD algorithm, the selection of the space increment Δx and time step Δt 

can affect the numerical stability and the numerical error. To ensure the stability 

and accuracy of the algorithm, the value Δx = 10nm and Δt = 2.4x10-17s are used 

in all the simulations. The space increment is sufficiently small as compared with 

the optical wavelength, i.e., / 20x λΔ < . The selection of time step Δt fulfills the 

stability criterion (Taflove and Brodwin, 1975), i.e., / 2t x cΔ ≤ Δ .  

 

In the current work, the computational codes of the FDTD algorithm were written 

in FORTRAN 90 language. The codes were compiled and run on the UNIX 
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environment in a mainframe Sun Microsystems Sun-Fire E6900. The program 

codes of the FDTD modeling of the active disordered systems are shown in 

Appendix.  

 

3.4.4 Validation of the FDTD program 

After the set-up of the algorithm of FDTD method, verification of the FDTD 

program was carried out. In order to verify the program, simulations of passive and 

active system based on the time dependent theory and FDTD method were 

conducted to duplicate published results (Villeneuve, Fan and Joannopoulos, 1996, 

Qiu and He, 2000, Sebbah and Vanneste, 2002, Guo and Albin, 2003).  

 

Passive System 

The first numerical experiment was conducted to determine defect states of TM 

mode in 2D photonic crystals with dielectric inclusions. Since the photonic crystal 

is a passive system (without optical gain), the polarization equation (Equation 

3.39), the rate equations (Equations 3.43 -3.46) and the polarization terms 

( 1,n n
z zP P+ ) in Equation 3.40 can be neglected in the modeling. The structure of the 

2D photonic crystals is depicted in Figure 3.6, which is the same as the system 

described in the reference (Qiu and He, 2000). The photonic crystal consists of 
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infinity long dielectric cylinders arranged in a square array. A defect is introduced 

into the photonic crystal by modifying the size of the central cylinder. The 

computational domain is enclosed by perfectly matched layers (PML). The 

simulation parameters are listed in Table 3.1.  

 
Figure 3.6 Schematic diagram of 2D photonic crystal. Black spots denote 

dielectric cylinders. 
 

Table 3.1 Parameters of the photonic crystal and the FDTD simulation 
Spatial increment Δx =Δy =100nm 
Time increment Δt = 2.33 x10-16s 

Total number of time step 30000 
Size of system SxS = 280Δx x 280Δx 

Lattice constant of photonic crystal a=40Δx 
Radius of cylinder 8Δx  

Radius of central defect cylinder 0.6a=24Δx 
Dielectric constant of background 

medium 
1 

Dielectric constant of cylinder and 
defect  

11.56 
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In order to determine the defects modes of the photonic crystal, the simulation 

procedures exactly followed what Qiu did (Qiu and He, 2000). Qiu’s results were 

obtained by using standard FDTD method of TM mode. The photonic crystal was 

initially excited by a magnetic field pattern. The initial conditions are given as: 

2 2 2 2

2 2

5 5 5 5( 1) ( ) ( ) ( 1)
2

5 5( ) ( )
3 5

5( , , 0) / 3 3(1 )

5 510[ ( ) ( ) ]

x y x y
a a a a

y

x y
a a

xH x y t e e
a

x x y e
a a a

⎡ ⎤ ⎡ ⎤− + − − − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤− −⎢ ⎥⎣ ⎦

= = − + −

− − −

, 

( , , 0) 0xH x y t = = , 

( , , 0) 0zE x y t = = ,  

where a is lattice constant.  

 

Electric field is recorded in 10 observation points assigned randomly in the 

computational domain. The power spectrum is calculated by using Fourier 

transform of the recorded electric field signal. Figure 3.7 shows the power spectra 

of the photonic crystal including present calculation and Qin’s results. Four peaks 

are found in the power spectrum, which associate with the four defect modes. 

Table 3.2 summarizes the frequency of the four defect modes. Compared to Qin’s 

and the present results, the maximum percentage difference is 0.51%. Figure 3.8 

shows the electric field distribution of the four defect modes. The electric field 

distribution is consistent with the published results obtaining by FDTD and 
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plane-wave explanation methods (Villeneuve, Fan and Joannopoulos, 1996, Qiu 

and He, 2000, Guo and Albin, 2003). The agreements of the published results 

confirm the validation of the FDTD theoretical framework and numerical 

implementation for the simulation of passive dielectric system. 
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Figures 3.7   Power spectra of photonic crystal. (a) Results of current calculation 

and (b) Results of Qin’s calculation. Source: (Qiu and He, 2000) 

 

Table 3.2 Frequency of defect mode in the photonic crystal. 
 Defect mode 

frequency calculated 
by the present  

simulation, (2πc/a)  

Defect mode frequency 
listed in reference (Qiu 
and He, 2000), (2πc/a) 

Percentage 
difference  

First defect 
mode 

0.2975 0.297 0.17% 

Second defect 
mode 

0.320 0.319 0.31% 

Third defect 
mode 

0.336 0.335 0.30% 

Forth defect 
mode 

0.393 0.391 0.51% 

 

(a) (b) 
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(a)  f=0.2975(2πc/a)     (b)  f=0.320(2πc/a)  

 

(c) f=0.336(2πc/a)     (d) f=0.3932(2πc/a) 
Figures 3.8 Electric field distribution of defect modes with frequency of (a) 0.2975, (b) 0.320, (c) 0.336 and (d) 0.3932(2πc/a) 
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Active system 

Verification of FDTD modeling on active systems was carried out on a 2D active 

disordered dielectric system described in reference (Sebbah and Vanneste, 2002). 

An attempt was undertaken to compute the multi-mode emission spectra and the 

time evolution of electric field of the 2D active disordered dielectric system. The 

configuration of the 2D active disordered dielectric system is depicted in Figure 

3.9. The simulation parameters are listed in Table 3.3. The values of parameters 

of the system are the same as the parameters listed in the reference (Sebbah and 

Vanneste, 2002).  

 

 

Figures 3.9 Configuration of 2D active disordered dielectric system 
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Table 3.3  Parameters of the four-level atomic structure and the FDTD 
simulation 

Wavelength of the lasing transition  λt= 446.9nm 
Frequency of the lasing transition tω  = 2πc/λt = 6.71x1014 Hz 

Collision time Tcollision = 2x10-14s 
Life time of energy state L2 τ21 = 5x10-12s 
Life time of energy state L3 τ32 = 1x10-10s 
Life time of energy state L4 τ43 = 1x10-13s 

Total atomic density 3.313x1024m-3 
Pumping rate Q =1x1014s-1 
Size of system SxS = 5500nm x5500nm 

Radius of scattering particle R = 60nm 
Volume fraction of scattering particles 40% 
Refractive index of scattering particles n2 =2 

Refractive index of background medium n1 = 1 
Spatial increment Δx =Δy =10nm 
Time increment Δt = 2.36 x10-17s 

Total number of time step 250000Δt (=5.9 x10-12s) 
   

Initially, all the field components were set to be zero and the atomic systems 

stayed in the ground level, i.e., Ex(x,y,t=0) = Hx(x,y,t=0) = Hy(x,y,t=0) = 0, 

N4(x,y,t=0) = N3(x,y,t=0) = N2(x,y,t=0) = 0 and N1(x,y,t=0) =3.313x1024m-3. 

Then a Gaussian pulse of duration 10-16s was injected inside the system. The 

impulse response was recorded during a time window [0, 250000Δt] at several 

observation points. Power spectrum was calculated by using Fourier transform of 

electric fields in a time window [1250000Δt, 250000Δt].  

 

Figures 3.10 and 3.11 show the power spectra and the time evolution of electric 

field, respectively. The main features of multimode laser emission such as 

discrete multi-peaks and great amplification of electric field amplitude are 

captured in the present simulation, which qualitatively agrees with the results of 

Sebbah. Since the pumping rate and amplitude of excite pulse are not mentioned 

in the reference, different values may be used in the present simulation and 

therefore spectral peak intensity and emission profile (Figure 3.10) of our system 
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are different from Sebbah’s results. The discrepancies are also attributed to the 

difference of system configuration. In the current numerical experiments, it 

cannot exactly mimic the configuration of the system described in Sebbah’s work 

because the configuration of the active disordered system is randomly generated.  

 

The FDTD simulation results of passive and active systems are consistent with 

the published results. It suggests that the algorithm of FDTD method is valid and 

feasible for studying both passive and active dielectric system. 

 

3.5 Summary 

Various existing theoretical treatments for random laser emission in amplifying 

random media have been reviewed. Among the existing methods, the 

time-dependent theory, which combines the time-dependent Maxwell’s equations 

with the semi-classical laser theory, is employed for studying the random laser 

with coherent feedback. This theory is applicable in the investigation of the 

optical properties of passive and active disordered media with dielectric 

inclusions as well as metallic inclusions. It is adequate to explore the stimulated 

emission of active random media with arbitrary scatting structures.  

 

A numerical framework has been set up based on the time-dependent theory.  

Maxwell’s equations coupling with the rate equations of electronic population are 

solved with a finite-difference time-domain (FDTD) method. The optical gain of 

active material is described by the rate equations of electronic population of the 

four-level electronic system. Arbitrary disordered structures can be adopted in the 

simulation if the structure and material information are given. The temporal and 
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spatial distribution of EM field in the computational domain can be obtained and 

the emission spectra are determined by using Fourier transform of EM field. 

 

After the set-up of the algorithm of FDTD method, verification of the FDTD 

program was conducted to duplicate the published results of defect modes of 

two-dimensional (2D) photonic crystal and lasing spectrum of a 2D active 

random medium. It is unambiguously shown that the numerical simulation is 

feasible to study the emission properties of both passive and active disordered 

media with dielectric inclusions. 
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 (a) 

 
  (b) 

 
Figures 3.10  Power spectrum of (a) present method and (b) Sebbah’s 

simulation. Source: (Sebbah and Vanneste, 2002) 
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(a) 

 
(b) 

 
Figures 3.11  Time evolution of electric field amplitude of (a) present method 

and (b) Sebbah’s simulation. Source: (Sebbah and Vanneste, 2002) 
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CHAPTER 4  

INFLUENCE OF DISORDER ON PASSIVE DISORDERED 

MEDIA WITH DIELECTRIC SCATTERING PARTICLES 

 

4.1 Introduction 

In Chapter 3, the time-dependent theory and the numerical framework of 

finite-difference time-domain (FDTD) simulation were discussed. The FDTD 

method is adequate to describe the propagation of electromagnetic wave in both 

active and passive disordered media. In this chapter, the transport properties of 

electromagnetic wave in a two-dimensional (2D) passive disordered dielectric 

system with circular scattering particles are investigated with a numerical 

approach. Since the scale of the dielectric structure of the disordered system is 

comparable to the scale of visible wavelength, the system may exhibit interest 

phenomena in the optical frequency range such as photonic band gaps (PBGs) 

and localized states. It is valuable to study the influence of the disorder on the 

wave localization of passive disordered systems. Furthermore, the study of the 

disorder effects on the mode distribution of disordered systems can facilitate to 

understand the nature of random lasing in active disordered media.  
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4.2  Two-dimensional passive disordered system 

By using FDTD numerical method, numerical experiments are preformed in 

order to study the effects of disorder on the mode distribution disordered systems. 

Our disordered dielectric system is a disordered medium without optical gain. 

The amplification of electromagnetic wave is neglected in the numerical 

simulations. In the numerical experiments, the disordered media are generated 

from ordered systems. The ordered systems are equivalent to photonic crystals 

which consist of a square array of infinitely long, parallel dielectric cylinders, 

each with a circular cross section of radius R and characterized by a dielectric 

constant ε2. The array of cylinders is embedded in a background dielectric 

material with a dielectric constant ε1. The intersections of these cylinders with a 

perpendicular plane form a square lattice. The lattice constant is a. The 

electromagnetic waves are assumed to propagate in a plane perpendicular to the 

cylinders. In the 2D case, the dielectric cylinders are used to mimic the circular 

scattering particles. The schematic diagram of the ordered system is shown in 

Figure 4.1.  
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Figure 4.1 Two-dimensional (2D) ordered photonic crystal (square lattice) 

 

By including certain randomness into the ordered system, we can create a 

random media with varying disorder. Hence, the degree of disorder can be 

quantified by using randomness. In the following, the definition of the random 

disorder is given. In this study, two kinds of disorder, i.e., position and size 

disorders are considered. In order to manifest their individual effects, the position 

and size disorders are investigated independently in the numerical simulations. 

Hence, the cases with both position and size disorders are not studied here.   

 

4.2.1 Definition of position disorder 

For the case of position disorder, the positions of each particle are randomized 

within a certain range from its lattice point. To create a random configuration, the 

position of each particle is randomly decided within a range giving a position 

disorder parameter of dp. Figures 4.2a and 4.2b show a position disorder 
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configuration of 2D medium and the range (the square of the dashed line) of a 

particle position (x,y) allowed by a given dp. The spatial position (x,y) of the 

particles is a random that 0 x px x dγ= + , 0 y py y dγ= + , where xγ  and yγ are  

random variables. We assume that the probability density function xγ  and yγ  

are uniform density functions between -1 and 1, i.e. , [ 1,1]x yγ γ ∈ − . In order to 

standardize the quantity of position disorder, the position disorder dp is expressed 

in unit of lattice constant a. For example, if the lattice constant is 200nm and the 

amplitude of position disorder is 50nm, the position disorder can be expressed as 

0.25pd a= . 

 

 
(a)       (b) 

Figure 4.2  (a) The position disorder of 2D disordered medium. (b) The 
definition of position disorder dp. 

 

4.2.2 Definition of size disorder 

Size disorder is related to the uniformity in the radius of the cylinder. The 

position of each particle is fixed in its lattice position but the radius of particles 
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can be random. The radius of each particle is randomly changed within a distance 

dr . The radius (R) of the circular particles is a random value rr R dγ= + , where 

γ is a uniform density function between -1 and 1, i.e. [ 1,1]γ ∈ − . The probability 

density function γ is a uniform density function. Similarly, the size disorder dr is 

standardized the same as the position disorder does, i.e., 50 0.25rd nm a= =  

where a = 200nm. 

 

 

(a)       (b) 

Figure 4.3  (a) The size disorder of 2D disordered medium. (b) The definition 
of size disorder dr. 

 

4.3  Mode distribution of ordered and disordered media 

In the first serial of numerical experiments, the mode distributions of disordered 

medium are first analyzed. By controlling the filling fraction of scattering 

particles, the influence of the density of scattering particles on the mode 

distribution of disordered medium is examined.  
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4.3.1 Ordered media 

We start with the ordered system of size 4μm x 4μm, which consists of circular 

particles. The radius is 60nm. The dielectric constant of the particles and the host 

matrix medium are chosen as 7 and 1, respectively, because the larger dielectric 

contract can produce a significant scattering effect.  

 

To determine the mode distribution of the ordered system over a wide frequency 

range, a short Gaussian pulse (pulse duration = 7 x10-16s) is utilized to excite the 

system, which launches at the center of the medium. The bandwidth of the pulse 

covers the whole visible to near ultraviolet region. The temporal and spectral 

profiles of the Gaussian pulse are shown in Figure 4.4. 
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Figure 4.4 (a) Temporal and (b) spectral profiles of the Gaussian pulse 

 

The transverse magnetic (TM) fields are calculated by using FDTD method 

within a time window (duration = 11.79 x10-12s). Since the value of the electric 

and magnetic fields are calculated at every mesh of the computational domain, 

the field distribution pattern can be easily obtained. To observe the pulse 

response, the evolution of electromagnetic wave is recorded at several 

observation points which are evenly distributed cross the whole computational 

domain. By using Fourier transformation, the recorded time domain signals are 

converted to the frequency domain in order to obtain the spectral information.  

 

Figure 4.5 shows the configurations of ordered media with various filling 

fractions. In order to control the filling fraction of the ordered medium, the 

density of particles is varied from 1x1012m-2 to 2x1013m-2 while the radius of 
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particles is kept as a constant. Figure 4.6 shows the particular configurations of 

the disordered system, in which the position disorder is applied. The parameters 

of the numerical simulation and the FDTD calculation are listed in table 4.1. 

 

Table 4.1 Parameters of the numerical simulation and the FDTD calculation 

Refractive index of matrix medium n1 = 1, ε1= n1
2= 1 

Refractive index of scattering particle n2 = 2.646, ε2= n2
2= 7 

The radius of scattering particle R = 60nm 
Spatial increment Δx =Δy =10nm 
Time increment Δt = 2.36 x10-17s 

Total number of time step 500000Δt  (=11.79 x10-12s) 
Size of system SxS = 4000nm x4000nm 

Perfectly matched layer thickness 100nm 
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(a)        (b) 

 

(c)        (d) 

 

(e)        (f) 

Figure 4.5 Schematic diagrams of 2D passive ordered media with various 
particle density: (a) 2x1013m-2, (b) 9x1012m-2, (c) 6.25x1012m-2, (d) 
4x1012m-2, (e) 2.25x1012m-2, (f) 1x1012m-2. The lattice constant of 
the disorder systems is: (a) a = 200nm, (b) a = 320nm, (c) a = 
400nm, (d) a = 500nm, (e) a = 660nm, (f) a = 1120nm 
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(a)        (b) 

 

(c)        (d) 

 

(e)        (f) 

Figure 4.6 Schematic diagrams of particular configurations of 2D passive 
disordered media generated from the ordered media of Figure 
4.5(a)-(f), respectively. The position disorder dp of the disordered 
systems is: (a) dp = 0.2a, (b) dp = 0.19a, (c) dp = 0.2a, (d) dp = 0.2a, 
(e) dp = 0.21a, (f) dp = 0.23a 
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4.3.2 Disordered media 

Figure 4.7 shows the power spectra of the ordered and disordered systems with 

various particle densities. The dash line curves denote the power spectra of the 

disordered systems, which represent the averaged results of 10 random 

configurations of position disorder. The spectral information is determined from 

the averaged field signals recorded at observation points in a time window [0, 

500000Δt]. It can be observed that many spectral peaks emerge in the spectra, 

which associate with the eigen-states of the systems. At a lower particle density, 

both disordered and ordered systems exhibit smoother spectral curves in which 

the intensities of the spectral peaks are relatively low. The results demonstrate 

that the intensity of the peaks is increased as the density of scattering particles 

increases. In the mean time, more high intensity peaks emerge in the system with 

a higher particle density, as shown in Figure 4.7a and Figure 4.7b. The peaks 

associated with eigen-states may be created when the particle density of the 

system is increased. It is believed that the strength of scattering and the number 

of scattering event of the electromagnetic wave are reinforced in the densely 

packed system.  

 

Another finding is that some spectral dips emerge in the spectra of both ordered 
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and disordered system, as shown in Figure 4.7a. The corresponding system has a 

high particle density of 2x1013m-2. The formation of spectral dips is a direct 

consequence of the photonic band gaps (PBGs), as shown in Figure 4.8. Inside 

the frequency range of the PBG, the propagation of electromagnetic wave is 

forbidden. The density of states (DOS), which represents the density of 

propagation mode, is equal to zero. Since there is no eigen-state inside in the 

PBG, the spectral intensity in the frequency range of PBG is extremely low and 

thereby the dips are developed.  
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Figure 4.7 Intensity spectra for the 2D passive ordered and disordered systems with a particle density of (a) 2x1013m-2, (b) 
9x1012m-2, (b) 6.25x1012m-2, (d) 4x1012m-2, (e) 2.25x1012m-2, (f) 1x1012m-2 
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Figure 4.8 illustrates the intensity spectra of the disordered system with a particle 

density of 2x1013m-2. The frequency range is from the near infrared (3x1014Hz) 

to near ultraviolet region (1x1015Hz). The PBGs are denoted by the shade area. In 

the current simulation, the spectra are obtained from two consecutive time 

windows. The duration of the first and second time windows are [0, 250000Δt] 

and [250000Δt, 500000Δt], respectively. The configuration of the disordered 

system with position disorder (dp = 0.1a) is shown in the inset of Figure 4.8. In 

the spectrum of the first time window (solid line), it is observed that several 

peaks appear over the whole frequency range except the frequency range of the 

PBGs. Compared to the spectrum captured from the first time window, only two 

main peaks remain in the that from the second time window (dot line). The two 

peaks are located in the band edge of PBGs. It is believed that the modes 

remaining in the spectrum of the second time window (dot line) are the 

longest-lived states of the system. 
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Figure 4.8  Intensity spectrum of the 2D passive disordered system with particle density of 2x1013m-2. Inset: schematic diagram of the 
particular configuration of the 2D passive disordered medium (dp = 0.1a). Lattice constant a is equal to 200nm. 
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These results may be understood in the following way. After the passive 

disordered medium is triggered by the Gaussian pulse, all the modes are excited 

and compete against each other. Therefore, several spectral peaks emerge in the 

spectrum. With the time evolution of the electromagnetic wave, the strength of 

the field reduces and the excited modes begin to decay. Since the excited modes 

have different lifetimes, the excited modes decay at different rates. The modes 

that have shorter lifetime decay more rapidly than that the modes that have 

longer lifetime. After a long time evolution, only few modes can survive while 

other modes are diminishing. Therefore, the spectral peaks illustrated in Figure 

4.8 (dash line spectrum) are associated with the longer-lived modes. 

 

Another interpretation of the results is related to the localization length of the 

eigen-state. As mentioned in Chapter 2, the energy stored in a mode decays 

exponentially away from the localization centers. Each mode has a different 

localization length. If the localization length is large, the energy of the mode may 

extend to the whole system. Since the disordered medium is an open system with 

a definite size, the field energy may leak out from the boundaries of the system to 

the surround environment. Hence, the loss of the field energy of the mode is 

depended on their localization length. A mode which has a large localization 

length will suffer a large high energy loss and diminish more quickly. With small 

localization lengths, light is well confined inside the modes and the energy loss is 

relatively low. To conclude, modes with shorter localization lengths have longer 

lifetimes and will survive after the long time evolution and mode competition. It 

also can explain why the survived modes tend to lie on the low frequency edge of 

PBGs, as the modes closed to the lower band edge of PBGs have shorter 
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localization lengths.  

 

The full decay process of the modes can be illustrated in the evolution of the total 

energy of electric field UE of the disordered medium, as shown in Figure 4.9. The 

configuration of the disordered medium (dp = 0.2a) is depicted in the inset of 

Figure 4.8. The results are obtained by integrating the electric field intensity of 

all the meshes, i.e., 2

,

1 ( , ) ( , )
2E z

i j

U i j E i jε∝ ∑  at every time step. In the first 

stage of the evolution, the intensity of the energy drops dramatically because the 

extended modes begin to decay. The field energy of the extended modes radiates 

out from the boundaries of the passive system. In the second stage, the modes 

with longer lifetimes dominate the system. The evolution of the mode energy is 

following an exponential relation. The violent oscillation of the curve is caused 

by the interplay of the surviving modes. Figure 4.9b shows the exponential fitting 

curve which can well describe the time evolution of the total energy of electric 

field. 



                                                                      Chapter 4 

 110

 

 

 

Figure 4.9  (a) Time evolution of total electric field energy of a 2D passive 
disordered medium with in a time window [0, 500000Δt]. The 
configuration of the disordered medium is depicted in the inset of 
Figure 4.8. (b) Time evolution of total electric field energy with in a 
time window [250000Δt, 500000Δt] 
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4.4 Effects of disorder on passive media 

4.4.1 Effect of disorder on photonic band gap 

In the previous numerical experiments, the mode distribution and the time 

evolution of electromagnetic wave of the disordered medium have been 

characterized. In the following sections, the effects of disorder on the mode 

distribution of the 2D passive disordered medium are examined. In the numerical 

experiments, the same disordered system described in section 4.3 is used but 

various amounts of random disorder are assigned. The information of the 

numerical simulation and the FDTD calculation are summarized in Table 4.2. 

The configurations of the disordered systems are illustrated in Figure 4.10. 

 

Disordered media involved position disorder are considered. The simulations are 

performed at various amounts of random disorder which varies from dp = 0 to 

0.4a. Figure 4.11 shows the power spectra of the disordered media with various 

amount of disorder. The spectrum for each amount of dp is obtained by averaging 

over 10 different configurations. The spectra are obtained from the recorded field 

signals within a time window [0, 250000Δt]. From the results, it is revealed that 

the quality and the size of band gap are depended on the amount of disorder. At 

dp =0, the ordered medium exhibits two band gaps in the optical frequency range. 

The first and second band gaps locate at 4.51 x1014Hz to 5.41 x1014Hz and 7.90 

x1014Hz to 9.0x1014Hz, respectively. As the amount of disorder increases, the 

bandwidth of PBGs is narrowed. When a larger amount of disorder is applied, 

more defects are created in the ordered medium. Consequently, more extra states 

are induced and the size of the band gaps becomes smaller. If the position 

disorder is further intensified, some states may be induced inside the band gaps 
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and destroy the band gaps. 

Table 4.2 Parameters of the numerical simulation for the 2D passive disordered 
medium 

Size of system SxS = 4000nm x4000nm 
Refractive index of matrix medium n1 = 1, ε1= n1

2= 1 
Refractive index of scattering particle n2 = 2.646, ε2= n2

2= 7 
Radius of scattering particle R = 60nm 
Number of scattering particle 324 
Density of particle 2x1013m-2 
Lattice constant a = 200nm 
Filling fraction 22.6% 
Spatial increment Δx =Δy =10nm 
Time increment Δt = 2.36 x10-17s 
Total number of time step 500000Δt (11.79 x10-12s) 
Prefect match layer thickness 100nm 

 

 

(a) 

 

(b) 

Figure 4.10  (a) configuration of disordered medium with position disorder, dp 
=0.2a. (b) configuration of disordered medium with size disorder, 
dr=0.2a 
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Figure 4.11  Intensity spectra of the 2D passive disordered systems with  
   particle density of 2x1013m-2 and various amounts of position  
   disorder 
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Figure 4.12  Intensity spectra of the 2D passive disordered systems with 

particle density of 2x1013m-2 and various amounts of size disorder 
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Figure 4.13  Photonic band gaps of the 2D passive disordered systems with a 

particle density of 2x1013m-2  
 

The influence of the disorder effect on the band gaps can be further clarified by 

plotting the upper and lower limits for the band gap as a function of the amount 

of disorder, as shown in Figure 4.13. It is observed that the first and second band 

gap vanish when 0.3pd a≥  and 0.2pd a≥ , respectively. It is found that the 

band gaps at a higher frequency vanish firstly. One would expect that the high 

frequency band gap is more sensitive to the disorder because the equivalent 

wavelength of high frequency band gap is shorter. Therefore, the electromagnetic 

wave with short wavelength is more sensitive to the position fluctuations of 

scattering particles.  

 

The effect of size disorder on the PBGs is also evident in Figure 4.13. In the 

numerical experiments, the parameters of the disordered media are the same as 
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the previous simulation cases of position disorder. The power spectra of the 

disordered media are calculated with various amounts of size disorder. dr varies 

from 0 to 0.2a. The results are obtained by averaging over 10 configurations of 

disordered medium. Figure 4.12 shows the power spectra of the disordered media 

with various amount of size disorder. The results of the size disorder case are 

similar to those of position disorder case. However, the results of the size 

disorder demonstrate that the band gaps diminish at much smaller amount of the 

size disorder, as shown in Figure 4.13.  

 

Comparing to the position disorder case, the effect of the size disorder on the 

band gap is more serious. The first and second band gap are fully destroyed when 

the amount of disorder reaches 0.1rd a≥  and 0.05rd a≥ , respectively, while 

the band gap still remains with the same amount of position disorder. This is 

consistent with the results of previous studies that size disorder breaks down a 

gap more rapidly than position disorder does (Fan, Villeneuve and Joannopoulos, 

1995, Sigalas, Soukoulis, Chan and Turner, 1996, Li, Zhang and Zhang, 2000). 
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4.4.2 Effect of disorder on mode distribution 

The investigations of the disordered effect on the long-lived mode are also 

carried out. In order to trigger the eigen-states near and inside the first band gap,   

a modified Gaussian pulse with a narrower bandwidth is used. The frequency 

range of this pulse is from 4.2x1014Hz to 5.7x1014Hz and the central peak 

frequency is at 4.93x1014Hz. The wave form of the pulse can be expressed in the 

following equation, 

14
2

15
1.18 10( )14 8.25 10( ) sin(2 4.93 10 )

t s
s

zE t t Hz eπ
−

−
− ×

−
×= × ×

 

Since the central peak of the modified Gaussian pulse is close to the central 

frequency of the first band, it facilitates to excite the modes inside the band gap 

of disordered systems. Furthermore, modes lying on the band edge of the gap can 

also be excited because the bandwidth of the modified Gaussian pulse covers the 

full range of the first band gap. The temporal and spectral profiles of the pulse 

are plotted in Figure 4.14.  
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Figure 4.14 (a) Temporal and (b) spectral profiles of excitation pulse 
 

Figure 4.15 shows the spectral locations of the highest intensity long-lived modes 

for various amounts of disorder. The spectral positions of the modes are 

determined in the time window [250000Δt, 500000Δt]. At each level of disorder, 

the longest-lived modes of 10 configurations are determined. The results of the 

position disorder cases are shown in Figure 4.15a. It is easy to observe that the 

longest-lived modes emerge toward the band gap as the disorder increases. When 

the amount of position disorder is small, i.e., dp = 0.05a to 0.15a, the modes are 

mainly distributed at the lower edge of the band gap. At a larger amount of 

disorder dp = 0.2a to 0.4a, the mode distribution spread toward the center of the 

band gap. Similar results are obtained for the size disorder cases, as shown in 

Figure 4.15b.  

 

Compared to the case of position disorder, the size disorder is more influential on 

the quality of the band gap. For example, even the amount of size disorder is 

small, i.e., dr = 0.1a, the modes are created inside the band gap. At dr = 0.15a and 

dr = 0.2a, it is obvious that the modes widely distribute in a high frequency 

region which is far away from the band gap range.  
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Figure 4.15  Counterplot of the long-lived modes for (a) position disorder and 
(b) size disorder. Frequency range of band gap is denoted by the 
gray area. Lattice constant a is 200nm 
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It is interesting to study the field distribution pattern of the disorder media with 

variation in the amount of disorder. Figure 4.16 and Figure 4.17 show the field 

distribution patterns for position and size disorder, respectively. The results are 

obtained after a long time evolution of electromagnetic wave with a duration of 

11.79x10-12s (total time steps = 500000). From Figure 4.16a, the field distribution 

pattern of the ordered medium (dp =0) is regular and symmetrical around the 

centre. As the amount of disorder increases, the regular pattern is destroyed. 

Instead of the symmetry field pattern, some spots of high intensity are formed 

randomly (see Figures 4.16d and 4.17c), which correspond to the long-lived 

modes. At the highest amount of disorder, the electromagnetic field is more 

concentrated at a small spot area. As shown in Figures 4.16e and 4.17d, EM 

waves are confined in small areas rather that extended to the whole media. The 

high intensity spots are attributed to the localization of EM wave in the highly 

disordered media. It is believed that the field spots pertain to the localized modes 

of the disordered systems. Our results demonstrate that localized modes will be 

formed in both position and size disordered media.  
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(a)      (b)  

 

(c)       (d)  

 

(e) 

 

Figure 4.16  Field distribution patterns of 2D passive ordered media with 
various amounts of position disorder: (a) dp = 0, (b) dp = 0.1a, (c) 
dp = 0.2a, (d) dp = 0.3a, (e) dp = 0.4a. Lattice constant a is 200nm  
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(a)      (b)  

 
 

(c)       (d)  

 
Figure 4.17  Field distribution patterns of 2D passive ordered media with 

various amounts of size disorder: (a) dr = 0.05a, (b) dr = 0.1a, (c) 
dr = 0.15a, (d) dr = 0.2a. Lattice constant a is 200nm 
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According to Figure 4.16e, the spots of high intensity are obtained after a long 

time evolution. In order to investigate the evolution of the localized modes, the 

field distribution patterns of the highly disordered system are recorded in 

different time frames, as shown in Figure 4.18. The amount of position disorder 

dp in the system is equal to 0.4a. The configuration of the disordered medium is 

depicted in Figure 4.19. From t=3.54x10-14s (=1500Δt) to t=5.89x10-13s 

(=25000Δt), the excited modes are revealed gradually in the system. As time 

increases, the field energy becomes more concentrated because the localized 

modes retain in the system while the extended modes diminish. At t=2.36x10-13s 

(=100000Δt), two clusters of field spots are substantially formed in the 

disordered medium. Cluster A and B are indicated by solid line circle and dash 

line circle (see Figure 4.18e), respectively. As is illustrated in Figure 4.18e to 

Figure 4.18i, the competition of the localized modes is exhibited in the time 

evolution process. Since the energy field is exchanged between the localized 

modes, the localized modes repeatedly dominate the system. Consequently, the 

intensities of the modes are changed at different time frames and thereby the total 

field energy of the disordered medium oscillated. It consists with the observation 

of the time evolution of the total energy field energy (see Figure 4.9).  
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    (a) t=3.54x10-14s (=1500Δt)   (b) 7.07x10-14s (=3000Δt) 

 

 

    (c) t=2.36x10-13s (=10000Δt)   (d) 5.89x10-13s (=25000Δt) 

 

 (e) t=2.36x10-12s (=100000Δt)  (f) t=4.71x10-12s (=200000Δt) 

A       B 
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(g) t=7.07x10-12s (=300000Δt)   (h) t=9.43x10-12s (=400000Δt) 

 

(i) t=11.79x10-12s (=500000Δt) 

Figure 4.18  Time evolution of the field distribution pattern 

 

 

 

Figure 4.19 Configuration of the disordered medium with dp = 0.4a. Lattice 
constant a is 200nm. 
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4.5 Summary 

Using FDTD method, numerical experiments are performed to study of the 

effects of disorder on the field distribution and spectra of disordered systems. 2D 

passive disordered dielectric systems with position and size disorders (dp and dr) 

are considered in the simulations.  

 

The influence of the density of scattering particles on the mode distribution of 

ordered and disordered systems is examined for the first time. In the most 

densely packed ordered system (particle density = 2x1013m-2), two PBGs can be 

observed at f = 4.51 x1014 to 5.41x 1014Hz and 7.90 x1014 to 9.0x1014Hz. After a 

long time evolution, only long-lived modes, which locate close to the edge of the 

band gaps, survive in the disordered system. These results can be explained in 

term of localization length of the eigen-state. The lifetime of mode increases as 

the localization length of mode reduces. Since the modes close to the edge of 

PBGs have shorter localization length, the survived modes tend to lie on the edge 

of band gaps. The decay process and mode competition of the disordered media 

are also studied. It is found that the evolution of the mode energy is an 

exponential function of time. Furthermore, the competition of modes is revealed 

in the field distribution patterns in different time frames. 

 

The effect of both position and size disorder on the disordered medium is 

investigated. The numerical results demonstrate that the PBGs formed in the 

most densely packed ordered systems (particle density = 2x1013m-2) are 

destroyed when a moderate degree of disorder is introduced into the medium. 

Since the spatial and radial perturbations of scattering particles sitting on the 
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regular lattice points create defects in the ordered systems, more extra states may 

be induced in the band gap. The first band gap vanishes when 0.3pd a≥  and 

0.1rd a≥ , respectively. The second band gap is fully destroyed when the amount 

of disorder reaches 0.2pd a≥  and 0.05rd a≥ , respectively. Our results show 

that a size disorder breaks down a gap more rapidly than position disorder does, 

which is consistent with previously published results by others. 

 

As the band gap is destroyed, the longest-lived modes emerge toward the band 

gap as the amount of disorder increases. From the field distribution patterns of 

the disordered medium, the field patterns of the longest-lived modes become 

more localized when the amount of disorder intensifies. To conclude the results 

of numerical simulations of 2D passive disordered dielectric systems, the effect 

of disorder can enhance the confinement of EM waves in passive disordered 

dielectric media as the localized modes are more easily to be created in the 

highly disordered media. 
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CHAPTER 5 

CHARACTERIZATION OF LASING IN ACTIVE 

DISORDERED MEDIA 

 

5.1 Introduction 

In 1994, Lawandy reported stimulated emission from laser dye solutions 

containing micro-particles (Lawandy, Belachandran, Gomes and Sauvin, 1994). 

This discovery triggered many experimental studies (Sha, Liu and Alfano, 1994, 

Noginov, Noginova, Caulfield, Venkateswarlu and Mahdi, 1995, Zhang, Cheng, 

Yang, Zhang, Hui and Li, 1995, Siddique, Alfano, Berger, Kempe and Genack, 

1996, Cao, Zhao, Ong and Chang, 1999, Soest, Tomita and Lagendijk, 1999, Cao, 

Xu, Chang and Ho, 2000, Cao, Xu, Ling, Burin, Seeling, Liu and Chang, 2003). 

The studies focused on light amplification in diffusive media, that is, Amplified 

Spontaneous Emission (ASE) with incoherent feedback. Zacharakis used a 

femtosecond pulse laser at 800nm to two-photon excite a Coumarin 307 colloid 

solution and obtained 480nm blue emission (Zacharakis, Papadogiannis and 

Papazoglou, 2002). Yellow emission was achieved by using a frequency-doubled 

Nd:YAG laser to pump a colloid solution containing Rhodamine 590 perchlorate 

and polystyrene micro-spheres . Red emission in colloid solutions was reported 

by Lawandy and Cao et al (Cao, Xu, Chang and Ho, 2000, Cao, Ling, Xu, Burin 

and Chang, 2003). 

 

Random lasers with coherent feedback stimulated emission were realized with 

disordered semiconductor and organic materials in the late 1990s (Cao, Zhao, 

Ong, Ho, Dai, Wu and Chang, 1998, Cao, Zhao, Ho, Seelig, Wang and Chang, 
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1999, Frolov, Vardeny, Yoshino, Zakhidov and Baughman, 1999). However, up 

to now, very few workable polymeric systems have been reported. Only red 

emission was realized in PMMA at a threshold of 15mJ/cm2 by Balachandran et 

al (Balachandran, Pacheco and Lawandy, 1996b) and by Ling et al (Ling, Cao, 

Burin, Ratner, Liu, Seelig and Chang, 2001). Overall the published results, it is 

interesting to study the random laser based on polymeric systems such as 

composite PMMA film because the stimulated emission from polymeric solids is 

very attractive in terms of applications, stability and cost. 

 

In the previous chapter, the passive disordered media were investigated in a 

numerical approach. To understand the origin of the laser emission phenomena in 

active disordered media, it is necessary to explore the active disordered media in 

both experimental and theoretical approaches. In this chapter, experimental 

studies of dye-doped nano-composite solutions and films will be carried out to 

gain understanding of the amplification behavior and optical properties of 

polymer random lasers. Effects of parameters of the material systems and 

pumping conditions are discussed. Optical microscopy and scanning probe 

microscopy are used to investigate the film structure, and the principle of 

incoherent and coherent laser is analyzed. The experimental work devoted to the 

random lasers phenomenon can act as a reference for the theoretical studies of 

active disordered media. Although the random laser systems investigated in the 

experiments are three-dimensional, most of their parameters are relevant to the 

2D numerical simulation of the active disordered media. 
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5.2 Experimental  

5.2.1 Materials 

In the research, both liquid and solid-state random laser systems, i.e., dye colloid 

solution and dye-doped polymethylmethacrylate (PMMA) nano-composite film, 

were considered. The polymer random laser systems consisted of a scattering 

element, gain medium and host. Laser dye was utilized to be a gain medium. The 

laser dye was dissolved in an organic solvent, which was used as a host. 

Nano-scaled titanium dioxide TiO2 particles acted as the scattering element, 

which were deposited in hosts. In the experiments, ethanol and PMMA were used 

as the hosts for the liquid-state and solid-state random laser, respectively. Since 

the gain medium and the scattering elements were separated, the scattering 

strength and the randomness of the disordered systems can be varied 

independently. The light propagated in the active disordered system is scattered 

due to the difference of refractive index between the scattering element and the 

active matrix material.  

 

Laser dye 

In the current study, two organic laser dyes, Rhodamine 590 (C28H31N2O3) and 

Coumarin 480 (C16H17NO2), were used as the gain medium in the random laser 

systems. The laser dyes used in the experiments were provided by Exciton Inc. 

The molecule structures of Rhodamine 590 and Coumarin 480 are depicted in 

Figure 5.1. The absorption, emission and excitation spectra of Coumarin 480 and 

Rhodamine 590 are shown in Figures 5.2 and 5.3, respectively. The emission 

bands of Rhodamine 590 and Coumarin 480 locate at yellow (~590nm) and blue 

(~460nm) wavelength ranges, respectively. The laser dyes are soluble in a few 
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solvents such as methanol, ethanol and water. Because of their strong absorption 

of light in an organic solvent, common liquid lasers are based on laser dyes. The 

light absorption of dyes is rather difficult to be derived exactly from their 

molecular structure as the complex structure of the dye molecule consisting of a 

larger number of atoms. The basic mechanism responsible for light absorption of 

dye molecules in an organic solvent is the transitions of conjugate π electrons 

owning to the change in electronic densities over the bonds constituting the 

conjugated chain. The radiative emission of dye is dominated by the transition of 

singlet bands. Instead of isolated energy state, the singlet bands are formed as a 

result of the vibrational and rotational vibrations associated with the binding of 

the atoms of dye molecule. 
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(a)        (b) 

Figure 5.1 Structure of dye molecule: (a) Rhodamine 590 and (b) Coumarin 480 
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Figure 5.2  (a) Absorption and (b) emission and excitation spectra of Coumarin 
480. The measurements are carried out on a dye ethanol solution 
with dye concentration of 10-3M (1M=1mole/liter)   
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Figure 5.3  (a) Absorption and (b) emission and excitation spectra of 
Rhodamine 590. The spectra are measured on a PMMA film with 
Rhodamine 590. (dye concentration = 10-3M) 
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Figure 5.4 Energy level structure of laser dye molecule dissolved in a solvent 

 

The typical energy diagram of dye molecule is depicted in Figure 5.4, which is 

suitable to describe the lasing transition of most organic laser dye including 

Coumarin 480 and Rhodamine 590 (Schafer, 1977, Weichel, 1991). The energy 

level structure of the dye molecule consists of two singlet states, i.e., the ground 

state singlet S0 and the excited state singlet S1. The two singlet states can be 

treated as two vibrational-rotational bands because each singlet state is 

constituted by a number of vibrational and rotational sub-levels. At room 

temperature, all the dye molecules are at the bottom of the ground state singlet 

S0. The molecules can be excited to the excited state singlet S1 at a high 

vibrational-rotational level under an external pumping. Within a very short 

lifetime (~ 0.1x10-12s), the molecules will decay to a lower energy level, i.e., the 

bottom vibrational-rotational level of S1. This decay occurs by non-radiation 

transitions by transferring some energy to other dye molecules during collisions. 
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Then the excited dye molecules will transit back to the ground state singlet S0 

and emit photons. Finally, the dye molecules decay non-radiationally from a high 

vibrational level to the initial position in the ground state singlet S0 during 

collisions. In fact, the laser dye molecule consists of other energy band such as 

triplet states T1 and T2. Since the transition between the singlet and triplet bands 

only occurs in very concentrated dye condition (>10-2 mol/L) (Sha, Liu and 

Alfano, 1994, John and Pang, 1996), the triplet transition was be neglected in our 

low concentration dye systems. Instead the complicated energy level structure, a 

simplified four-level laser system is considered in the time dependent theory. The 

four-level model is simple but accurate analytical model for the dye laser systems 

(Siegman, 1986). In fact, dye models were developed based on this ideal 

four-level energy system and have been successfully explained experimental 

results (Jiang and Soukoulis, 2000, 2002). In the current research, the four-level 

models are utilized to simulation the gain of dye in the numerical simulations 

(see Chapter 3 and 6). 

 

Scattering particle and host 

Titanium dioxide TiO2 particles of 168nm were used as a scattering element in 

the dye-doped solution and polymer composite film because of its high refractive 

index (~2.4). Unlike other high refractive materials such as ZnO and metallic 

materials, TiO2 particle is a passive scatterer in which visible light is only 

scattered rather than absorbed and amplified. 

 

Various materials such as organic solvent, polymer and gel media can be used as 

the host of laser dye and scattering particle. Ethanol and Polymethyl 
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methacrylate (PMMA) were selected in the experiments because they are 

transparent and easy to handle. For a liquid-state random laser, laser dye is 

necessarily dissolved in an organic solvent. Ethanol is a versatile solvent, which 

has a low refractive index of 1.36. Thus, it is suitable for acting as a liquid-state 

host medium. PMMA has been widely used as the host of polymer random lasers 

such as dye-doped thin film and fiber because it is chemically stable. The typical 

refractive index of PMMA is 1.42. The PMMA macromolecular chain is formed 

by repeating the methyl methacrylate (MMA) monomer units. The chemical 

structure of MMA and PMMA are depicted in Figure 5.5. In the experiments, 

PMMA chips were supplied from Mitsubishi Rayon Corporation (trade name 

VH-001) with a viscosity-average molecular weight (MWV) of 12.3×104. Ethanol 

was supplied by BDH Laboratory Supplies, England. Anatase TiO2 particles were 

purchased from Advanced Technology & Industrial Co. Ltd, Hong Kong. 

 
Figure 5.5 Chemical structures of ethanol, MMA monomer and PMMA 

 

5.2.2 Sample preparation 

In our experiments, two types of active disordered systems have been fabricated, 

i.e., PMMA nano-composite film and colloidal dye solution. PMMA 

nano-composite films were prepared by the cell casting method. We first 

prepared two dichloromethane (CH2Cl2) solutions. We took 2.2mg Rhodamine 
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590 and 2.4mg TiO2 nano-particles and mixed in 2ml of dichloromethane 

(CH2Cl2) solution until the dye was dissolved completely. At the same time, 

PMMA was dissolved in another dichloromethane solution to form 2ml 13wt.%  

PMMA  dichloromethane solution. Then this PMMA dichloromethane solution 

was added to the mixture solution of Rhodamine 590 and TiO2. The final mixture 

was sonicated until a homogeneous solution was formed. A PMMA film 

containing Rhodamine 590 and TiO2 particles was formed by cell-casting of 1ml 

of the solution. The fabrication process was carried out at room temperature. The 

high-reflectivity mould made of aluminum foil acted as a mirror. The films were 

left at room condition for nine hours before further experiments. 

 

On the other hand, colloid solutions were prepared by dissolving Coumarin 480 

dye (concentration = 10-3M= 10-3mole/liter) in ethanol and mixing with TiO2 

particles (concentration = 3.25x1011cm-3). Because of large specific gravity the 

sedimentation of particle was rather serious, especially for those of large 

diameter. To eliminate the effect caused by sedimentation the colloid solution 

stored in cuvette was shaken for a long time by an ultrasonic unit before 

measurement. 

 

5.2.3 Experimental setup 

The PMMA composite films were pumped by linearly polarized 532nm radiation 

from a double-frequency Nd:YAG laser (Model LAB–170-10, Spectra Physics) 

operating at 1.064μm. Similarly, the colloid solutions were pumped by linearly 

polarized 355nm radiation from a triple frequency Nd:YAG laser. The excitation 

beam was incident at an angle of 45o with respect to the sample surface. The 
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experiments were performed with a Q-switched laser which produced pulses of 

8ns at a repetition rate of 10Hz. The beam spot on the film and solution cell 

surface had an area of 0.9 cm2. The emission from the film surface was collected 

by using a lens and sent to a spectrometer equipped with a Model 810/814 

Photomultiplier Detection System provided by Photon Technology International, 

Inc, whose resolution is 0.25nm. The schematic diagram of the experimental 

setup is shown in Figure 5.6.  
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Figure 5.6 Schematic diagram of the experimental setup 
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5.3 Results and discussions 

5.3.1 Structures of PMMA composite films 

The structure of the PMMA composite films was investigated by using optic 

microscopy and Scanning Probe Microscopy (SPI4000 SERIES Scanning Probe 

Microscope System, Seiko Instruments Inc.). In the film sample, the 

concentration of Rhodamine 590 and TiO2 particles was 10-3M (=10-3 mol/L 

=1mol/m3) and 1.25x1011cm-3, respectively. TiO2 particles had a mean diameter 

of 168nm. Figure 5.7a shows the internal structure of PMMA film doped with 

Rhodamine 590 and TiO2 particles with an amplification of 400 times. The 

particles are distributed very randomly. There exist single particles and clusters 

with multiple particles. Figure 5.7b is the external or surface photograph. These 

are some ordered structures. Figure 5.7c is the topography of Scanning Probe 

Microscopy (SPM) in a localized area. Disordered distribution of particles is seen. 

These particles scatter photons and increase the path length which the photons 

walk in the film.  

 
Figure 5.7  (a) Internal (b) Surface structure photograph of PMMA film 

doped with Rhodamine 590 and TiO2 particles by using 400 times 
optic microscopy  (c) topography of Scanning Probe Microscopy 

a b 

c 
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5.3.2 Effect of particle concentration 

The influence of the concentration of the scattering particle on the emission 

intensity of the PMMA composite film was investigated. The film samples 

consisting of TiO2 particles of different concentration were excited at three 

different pumping energy intensities. The concentration of Rhodamine 590 in all 

the sample films was 10-3M. Figure 5.8 shows the plot of emission peak intensity 

as functions of the scattering particle concentration. As the pumping energy 

intensity increases, the emission peak intensity arises and reaches a maximum 

level which is associated with an optimum concentration of TiO2, i.e., 

concentration = 0.6mg/ml (1.25x1011cm-3). The particles concentration of PMMA 

composite film ((1.25x1011cm-3)2/3=2.5x1011m-2) is lower than that of the least 

densely packed disordered system (1x1012m-2) described in Chapters 6. It is 

obvious that the film sample with this optimum particle concentration of 

0.6mg/ml has the largest emission intensity under different pumping energy 

intensities. In order to enhance the emission strength of the PMMA composite 

film, the PMMA composite film which had an optimum particle concentration 

was used in the photoluminescence experiments in the next section.  
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Figure 5.8  The influence of particle concentration on the light emission 

intensity of PMMA films 
 

5.3.3 Lasing threshold  

After the investigations of the structure of the PMMA composite films, 

photoluminescence experiments were conducted in order to study the incoherent 

and coherent lasing emission of the PMMA composite film and the colloid 

solution. The concentration of Rhodamine 590 and TiO2 particles in the PMMA 

film sample were 10-3M and 1.25x1011cm-3, respectively. The concentration of 

Coumarin 480 and TiO2 particles in the colloid solution were 10-3M and 

3.25x1011cm-3, respectively. The peak intensity and line-width plotted against 

increasing pump energy density are shown in Figures 5.9 and 5.10, respectively.  

 

The variations of the slope of the input-output curve indicate that the lasing 

threshold and saturation behavior of the random laser system. It is found that the 

saturation is above the pump energy density of 70mJ/cm2 in the PMMA 

composite film while the saturation effect is absent in the colloid solution within 



                                                                      Chapter 5 

 142

the experimental range. The lasing threshold is observed in both the film and 

solution samples. The lasing threshold of the PMMA composite film and the 

colloid solution is below 13mJ/cm2 and 18mJ/cm2, respectively.  

 

Furthermore, the significant reduction of line-width of the emission peak 

provides an experimental proof for the existent of lasing threshold, which is given 

in Figure 5.10. The lasing threshold is much lower than the previous reported 

value (Balachandran, Pacheco and Lawandy, 1996a). This may be because the 

reflective mould stops the photons escaping from the disordered media and 

decreases the loss.  
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Figure 5.9  (a) Peak emission intensity of PMMA film plotted against pump 

energy density in logarithmic representation. (b) Peak emission 
intensity of colloid solution plotted against pump energy density 
in logarithmic representation. 
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Figure 5.10  (a) Peak line-width of PMMA film plotted against pump energy 
density. (b) Peak line-width of colloid solution plotted against 
pump energy density 
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5.3.4 Amplified spontaneous emission  

The emission spectra below and above the lasing threshold are shown in Figure 

5.11. In Figure 5.11(a), solid and dash lines represent the emission spectra of the 

PMMA composite film at a pump energy density of 1.9mJ/cm2 and 50mJ/cm2, 

respectively. The solid line is scaled up by a factor of 5. In Figure 5.11(b), solid 

and dash line are denoted for the emission spectra of the colloid solution at a 

pump energy density of 0.4mJ/cm2 and 79mJ/cm2, respectively. The solid line is 

scaled up by a factor of 10. As shown in Figure 5.11, a board spontaneous 

emission band could be observed in the emission spectra at the pump energy 

density below the lasing threshold. When the pump energy density increases and 

exceeds the lasing threshold, a narrow emission peak appears at the central 

frequency close to the maximum gain of the laser dyes. The emission peak 

intensities are higher than that at the lower pump energy density by at least one 

order of magnitude. The full width at half maximum (FWHM) of the emission 

peak is about 13nm. It is known that the collapse of emission spectrum is due to 

the amplified spontaneous emission.  
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Figure 5.11  (a) Emission spectra of PMMA film with a pumping energy 

density (solid line) 1.9mJ/cm2, (dash line) 50mJ/cm2. Solid line is 
scaled up by a factor of 5. (b) Emission spectra of colloid solution 
with a pumping energy density (solid line) 0.4mJ/cm2, (dash line) 
79mJ/cm2. Solid line is scaled up by a factor of 10. 
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5.3.5 Coherent laser emission  

Figure 5.12 shows the random laser emission spectrum of the PMMA composite 

film. When the pump energy density increases, discrete emission peaks are 

observed. The linewidth of the discrete narrow peaks is less than 1nm, which is 

an evidence of random laser with coherent feedback. When a photon travels in 

the disorder active system, it may induce the stimulated emission of a second 

photon and the light intensity is amplified. The amplification of light can be 

reinforced by increasing the probability of stimulated emission which directly 

relates to the pumping energy intensity and the optical path of photons in the 

disordered dielectric media. At the low pumping energy intensity, the 

spontaneous transitions dominate the atomic transitions. The spontaneous 

emission mainly contributes to the gain of modes near the central wavelength of 

the gain profile of the active medium. When the pumping energy intensity is 

further increased and reaches the threshold value, the stimulated emission rate 

exceeds the spontaneous emission rate and the light amplification grows 

significantly along the scattering light paths. If the light paths are longer than the 

gain saturation length, gain saturation can be achieved. In the disordered 

dielectric systems, photons may be trapped in the localized modes due to the 

multiple scattering of photons. Thus, the scattering light path of photons and the 

gain in the localized modes can be significantly reinforced. Consequently, the 

discrete narrow peaks corresponding to the different frequencies of the 

localization modes emerge into the emission spectrum. In fact, the observation of 

the discrete narrow peaks unambiguously shows the random laser emission of 

PMMA composite film. 
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Figure 5.12  The multimode output well above the threshold in PMMA film 

containing Rhodamine 590 and TiO2 nano-particles pumped at 
60mJ/cm2  

 

 

5.4 Summary  

The laser actions of polymeric colloid liquid and solid random laser systems 

were investigated experimentally. The liquid random laser system is the ethanol 

solution which consists of Coumarin 480 dye and TiO2 nano-particles. The solid 

random laser system is the PMMA films which consist of Rhodamine 590 and 

TiO2 nano-particles. The TiO2 particles had a mean diameter of 168nm. Coherent 

and incoherent laser emission were observed in the systems. The influences of 

particle concentration on light emission were explored and optimum particle 

concentration was obtained. Optics microscopy and Scanning Probe Microscopy 

were used to investigate the film structure and the principle of incoherent and 

coherent laser was analyzed. 
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In the photoluminescence experiments, it was found that the slope of the peak 

emission intensity curve of the colloid solution and PMMA films changed as the 

pump energy increased. These results indicate the lasing threshold and saturation 

behavior of the random laser system. The emission peaks of the colloid solution 

and PMMA films become narrower when pumping energy is above certain value. 

Several discrete peaks emerge in the emission spectra when the pump energy was 

further increased. This is a direct consequence of random laser emission with 

coherent feedback. This significant reduction of line-width and increase of the 

intensity of the emission peak confirm the existent of lasing threshold.  
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CHAPTER 6 

INFLUENCE OF DISORDER ON ACTIVE DISORDERED 

MEDIA WITH DIELECTRIC SCATTERING PARTICLES 

 

6.1 Introduction 

In Chapter 4, disorder effects on passive disordered media were investigated in a 

numerical approach. In Chapter 5, experimental studies of the random laser in 

dye-doped colloid polymeric solutions and PMMA films were described. In this 

chapter, the study is extended to the active disorder media based on the numeric 

simulations of passive disordered systems and the experimental investigation of 

the dye-doped PMMA composite films. The influence of disorder on the active 

disordered media consisting of dielectric scattering particles will be examined by 

using the time-dependent theory which has been described in Chapter 3.  

 

6.2 Numeric simulation  

6.2.1 Methods and material parameters  

In this section, the amplification process of electromagnetic (EM) wave in an 

active disordered medium is considered. The numerical experiments are 

performed based on a two-dimensional (2D) active disordered dielectric system 

with circular dielectric scattering particles. An optical gain, which is absent in 

passive systems, is presented in the host matrix background. According to the 

model in Chapter 3, the optical gain is described by a four-level electronic 

structure. The parameters of the four-level atomic system are chosen based on 

the published results (Sebbah and Vanneste, 2002) and listed in Tables 6.1. The 

values of the parameters are close to the dye molecules of Rhodamine 590. τ21, 
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τ32 and τ43 represent the lifetimes of atomic level L2, L3 and L4, respectively, 

which are inversely proportional to the decay rates of atomic levels, i.e., 1/τ21, 

1/τ32 and 1/τ43. Tcollision is the dephasing time which represents the mean collision 

time of dye molecules in the solvent solution. The collision time Tcollision and the 

lifetime of energy states L4 and L2 are much shorter than that of energy states of 

the lasing level L3. In order to keep a good numerical accuracy, the time 

increment Δt is set to be shorter than the collision time Tcollision by three orders of 

magnitude. The parameters of the simulation and the active disordered system 

are summarized in 6.2. 

 

Table 6.1 Parameters of the four-level electronic structure 
Wavelength of the lasing transition  λt= 590nm 
Frequency of the lasing transition tω  = 2πc/λt = 325 x1013 Hz 

Collision time Tcollision = 5x10-14s 
Life time of energy state L2 τ21 = 5x10-12s 
Life time of energy state L3 τ32 = 1x10-10s 
Life time of energy state L4 τ43 = 1x10-13s 

Total atomic density (dye concentration) 10-3M (=6.022x1023m-3) 
Pumping rate Q =1x1014s-1 

 
 

Table 6.2 Parameters of the active disordered system and the FDTD simulation 
Size of system SxS = 4000nm x4000nm 

Refractive index of matrix medium n1 = 1, ε1= n1
2= 1 

Refractive index of scattering particle n2 = 2.646, ε2= n2
2= 7 

Radius of scattering particle R = 60nm 
Number of scattering particle 324 

Density of particle 2x1013m-2 
Lattice constant a = 200nm 
Filling fraction 22.9% 

Position disorder dp=0.4a 
Spatial increment Δx =Δy =10nm 
Time increment Δt = 2.36 x10-17s 

Total number of time step 500000Δt (11.79 x10-12s) 
Perfectly matched layer thickness 100nm 
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6.2.2 Configuration of the disordered media 

The schematic diagram of an active disordered system is shown in Figure 6.1. 

The amount of position disorder is 0.4a, where the lattice constant a is 200nm. 

Based on the experiment of PMMA composite film described in Chapter 5, the 

central wavelength of the lasing transition of the four-level electronic system is 

chosen as 590nm in order to mimic the laser dye Rhodamine 590. It is assume 

that the electronic systems are pumped uniformly over the entire active medium 

at a constant pumping rate Q. 

 

 

Figure 6.1  Configuration of the active disordered system with a position 
disorder of dp = 0.4a. (a= 20Δx =200nm) 
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6.3 Results and discussions 

6.3.1 Results of simulation 

Figures 6.2 and 6.3 show the time evolution of the total electric field energy 

21 ( , ) ( , )
2EU x y E x y dxdyε= ∫

r
 and the population difference density of electrons 

with lasing energy levels 3 2N N NΔ = − , respectively. In our computation, the 

total electric field energy is proportional to the summation of the electric field 

energy term over all the mesh points, i.e., 2

,

1 ( , ) ( , )
2E z

i j

U i j E i jε∝ ∑ . At the initial 

time step (t = 0), a short Gaussian pulse (pulse duration = 7 x10-16s) launches at 

the center of the system in order to trigger the evolution of the EM wave. As 

shown in Figure 6.2, the total field energy decreases slightly and then begins to 

increase after the first 100 femtoseconds (~1x10-13s). The population difference 

density, however, shows a strong upward trend initially. The accumulation of the 

population difference density is due to a constant pumping rate Q (=1x1014s-1). 

In fact, the whole active medium is pumped homogenously at a constant rate 

within the time window. Since the active system is pumped continually, the 

atomic systems are excited to the highest energy state N4 and fast decay to the 

upper lasing state N3. As the population difference density increases, the total 

electric field energy exponentially increases and reaches a peak. The rising curve 

follows an exponential relation, i.e., 4( ) 5.06 10 ampty t eξ−= × , as shown in the inset 

of Figure 6.2. The exponential coefficient ampξ  is defined as the amplification 

rate and equal to 1.37x1014s-1. At this stage, the amplification of EM wave is 

dominated by the spontaneous emission. In Figure 6.3, the initial monotonic 

increasing curve indicates that the rate of the spontaneous emission is lower than 
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the excitation rate of the atomic systems. The excited atomic systems are 

accumulated continually and the population inversion is built up finally. 

Transiently, a large number of excited electrons transits to lower energy level N2. 

In the meantime, the simulated emission induces a significant amplification of 

the EM wave. Therefore, a dramatic drop of the population difference density 

and a huge amplification of the total field energy can be observed simultaneously. 

As shown in Figure 6.3, the trigger time of the dramatic drop of the population 

difference density are denoted by Tt.  



                                                                      Chapter 6 

 155

 

Figure 6.2  Time evolution of the total electric field energy. The total electric 
field energy expresses in arbitrary unit due to the summation of 
energy term at discrete grid points. Inset: Fitting curve for the 
amplification process from t = 1.5 x10-13s to 4 x10-13s.  

 

Figure 6.3 Population difference density of lasing energy levels 3 2N N NΔ = −  
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Figure 6.4  Time evolution of the electric field recorded in the central 

position of the disordered system: (a) electric field and (b) 
absolute amplitude of the electric field 
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Figure 6.4 illustrates the time evolution of the electric field recorded the central 

position of the active disorder system. The trigger time Tt also indicates that the 

EM wave is subjected to a great amplification that the amplitude of electric field 

is enlarged by six orders of magnitude (see Figure 6.4b). Initially, the amplitude 

of the electric field is very small. At Tt, a large amplitude vibration of the electric 

field is shown. Followed by the great amplification of the electric field, it is 

observed that several oscillation envelops are formed. The formation of the 

oscillation envelops of the electric field can be attributed to the interaction 

between the excited modes of the active disordered system. Similarly, the 

oscillations of the population difference density and the total electric field energy 

are associated with the random laser. 

 

Beside the time evolution of the field energy and population difference density, it 

is valuable to study the change of the emission modes and the field distribution 

pattern in the amplification process. Figures 6.5 and 6.6 show the emission 

spectra and the field distribution pattern at different stages of the amplification 

process, respectively. In Figure 6.5, the spectra are calculated from five different 

time windows. In the first time window [0, 3000Δt] (duration =7.07x10-14s), 

there is no sharp peak emerging in the emission spectrum, as shown in Figure 

6.6a. EM wave is evenly distributed over the active disordered medium. It is 

difficult to specify any clear field patterns for excited modes. The eigen-states 

are not well formed immediately after the injection of Gaussian excitation pulse. 

At t = 2.36x10-13s (=10000Δt), it can be seen from curve b in Figure 6.5 that a 

peak with a wide linewidth appears at 590nm. The shape of peak is similar to the 

gain profile of the four-level atomic structure. During the amplification process, 
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the gain profile dominates the emission spectrum and thereby a smooth peak is 

shown. From t = 5.89x10-13s (=25000Δt) to 23.57 x10-13s (=100000Δt), several 

spectral peaks are gradually revealed in the spectra. The typical linewidth of the 

peaks is approximately 1~2nm. The narrow peaks emerge as a result of the 

coherent random laser. The highest intensity peaks are formed around the central 

wavelength of the gain profile. It seems that the modes closed to the center 

position of the gain profile would experience a larger amplification.  

 

In Figure 6.5, a large number of narrow peaks show in the emission spectrum 

determined in the spectral curve e (time window = [0, 100000Δt]). It is argued 

that only few peaks corresponding to the long-lived modes can survive in the 

mode competition. Some modes have diminished in the amplification process. In 

order to demonstrate the mode competition, two spectra are captured from two 

consecutive time windows and plotted in Figure 6.7. The dash and solid lines 

represented the spectra determined in two consecutive time windows [0, 50000Δt] 

and [50000Δt, 100000Δt], respectively. The duration of each time window is 

11.78x10-13s. Several spectral peaks are observed in the spectrum of the first time 

window. In the second time window, all peaks except a, b, c, d decay and 

diminish, as indicated in Figure 6.7. In active disordered system, eigen-modes 

are subject to the amplification caused by the stimulated emission. In the mean 

time, the mode energy may leak out. If the gain cannot compensate the loss rate 

of the mode, the mode will decay.  

 

The evolution of the lasing mode may be revealed in the field distribution pattern. 

As shown in Figure 6.6b, several high intensity spots corresponding to the lasing 
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modes are clearly illustrated in the field distribution. In order to determine the 

decay process of the lasing mode, for instance, one mode denoted by dash circle 

in different frames is being traced. Initially, the intensity of the mode increases 

and then reaches to a high level at t = 11.78x10-13s. However, the intensity of the 

mode begins to decline and completely diminish at t = 23.57 x10-13s. It is 

observed that the field distribution pattern at t = 11.78x10-13s is approximately 

the same as that at t = 23.57 x10-13s. It may indicate that the mode competition 

trends to become steady. The results unambiguously show that some excited 

modes would decay even though the optical gain is introduced in the disordered 

systems.  
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Figure 6.5  Spectra of the disorder system captured in different time windows: [0, 3000Δt], (b) [0, 10000Δt], (c) [0, 25000Δt], (d) [0, 50000Δt], 
(e) [0, 100000Δt]  
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    (a)         (b) 

 
 (c)         (d) 

 
(e) 

Figure 6.6  Field distribution pattern recorded at different times: (a) t =7.1x10-14s 
(=3000Δt), (b) t = 2.35x10-13s (=10000Δt), (c) t = 5.89x10-13s 
(=25000Δt), (d) t = 11.78x10-13s (=50000Δt), (e) t = 23.57 x10-13s 
(=100000Δt)  
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Figure 6.7 Spectra of the active disorder system in two consecutive time windows [0, 50000Δt] and [50000Δt, 100000Δt] 

a  b  c  d 
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6.3.2 Effect of particle density on the laser emission  

In the previous section, the amplification process and mode competition in active 

disordered systems have been investigated. In this section, the studies of the laser 

action in active disordered media with various particle densities are presented. In the 

numerical experiments, both active ordered and disordered systems are considered. 

The simulation parameters of the active systems are listed in Table 6.3.  

 

Table 6.3 Parameters of the simulation and the system 
Wavelength of the lasing transition λt= 590nm 
Frequency of the lasing transition tω  = 2πc/λt = 325 x1013 Hz 

Collision time Tcollision = 5x10-14s 
Life time of energy state L2 τ21 = 5x10-12s 
Life time of energy state L3 τ32 = 1x10-10s 
Life time of energy state L4 τ43 = 1x10-13s 

Total atomic density (dye concentration) 10-3M (=6.022x1023m-3) 
Pumping rate Q =1x1014s-1 
Size of system SxS = 4000nm x4000nm 

Refractive index of matrix medium n1 = 1, ε1= n1
2= 1 

Refractive index of scattering particle n2 = 2.646, ε2= n2
2= 7 

Radius of scattering particle R = 60nm 
Spatial increment Δx =Δy =10nm 
Time increment Δt = 2.36 x10-17s 

Total number of time step 500000Δt (11.79 x10-12s) 
Prefect match layer thickness 100nm 
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The particle density of the active ordered systems varies from 1x1012m-2 to 2x1013m-2. 

The configurations of the active ordered systems are exactly the same as those 

described in Section 4.3, and shown in Figures 4.5. Figures 6.8 and 6.9 show the time 

evolution of the total electric field energy and the population difference density of the 

ordered systems respectively. Table 6.4 shows the amplification rate ampξ  and the 

trigger time Tt of the ordered systems with various particle densities.  
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Figure 6.8  Time evolution of the total electric field energy of the ordered systems 

with various particle densities 
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Figure 6.9  Time evolution of the population difference density of the ordered 

systems with various particle densities 
 

 

Table 6.4 Amplification rates and trigger times of the ordered systems 
Particle density Amplification rate ampξ  Trigger time Tt 

Pure dye medium 1.23 x1014s-1 5.26 x10-13s (=22300Δt) 
1x1012m-2 2.24 x1014s-1 2.82 x10-13s (=11950Δt) 

2.25x1012m-2 2.20 x1014s-1 2.14 x10-13s (=9100Δt) 
4x1012m-2 2.15 x1014s-1 2.45 x10-13s (=10400Δt) 

6.25x1012m-2 2.25 x1014s-1 2.56x10-13s (=10850Δt) 
9x1012m-2 2.20 x1014s-1 2.37x10-13s (=10050Δt) 
2x1013m-2 0.33 x1014s-1 1.17x10-12s (=49800Δt) 
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Figure 6.8 reveals that the EM wave is subjected to a huge amplification in all the 

ordered systems within the time window [0, 100000Δt]. In the pure dye system 

(particle density = 0), there is a peak in the curve of the total electric field energy (see 

Figure 6.8) and a dramatic drop of population difference correspondingly (see Figure 

6.9). This means that EM wave would be amplified in a pure dye medium. After the 

total field energy of the pure dye system reaches a maximum peak, the field energy 

curve declines steadily. Since the pure dye system does not contain any scattering 

particle, EM wave leak out from the computational domain in a short time. Therefore, 

the total field energy of the medium decreases continuously. 

 

For the least densely packed system, i.e., particle density = 1x1012m-2, the time 

evolution of the total field energy shows decrease then increase after the trigger times 

Tt. Whereas the total field energy of other ordered systems, i.e., particle density = 

2.25x1012m-2 to 9x1012m-2, show a leveling off and relatively smaller amplitude 

oscillation at a high intensity level after the trigger times Tt. The results can be 

attributed to the multiple scattering of EM wave which facilitates effectively the 

amplification of EM wave. As the particle density increases, the scattering effect 

becomes more significant and thereby the total field energy can keep at a high level.  

 

For the most densely packed system, i.e., particle density = 2x1013m-2, however, 

unexpected results are obtained. It is found that the amplification rate of the system is 

much smaller than that of the less densely packed systems. Furthermore, a longer 

trigger time is shown in the most densely packed system. The trigger time is equal to 

1.17x10-12s (=49800Δt) which is much longer than that of the less densely packed 

systems. The results indicate that the amplification of EM wave is suppressed in the 



                                                                           Chapter 6 
 

 167

most densely packed system. The origin of the suppression may be related to the 

photonic band gap. Since the most densely packed system exhibits a band gap which 

overlaps the lasing transition wavelength (λt=590nm), the laser emission may be 

delayed under the circumstances. This interpretation is consistent with the results of 

the passive ordered media (see Figure 4.7). There is no photonic band gap which 

covers the lasing transition frequency (ft=c/λt=5.08x1014Hz) in the less densely 

packed systems, i.e., particle density = 1x1012 - 9x1012m-2. Compared to the most 

densely packed system, relatively higher amplification rates can be observed in the 

less densely packed systems (see Figure 6.8 and Table 6.4).  
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The configurations of the disordered systems are shown in Figures 4.6 in Section 4.3. 

Table 6.5 show the amount of position disorder dp and the lattice constant a of the 

disordered systems with various particle densities.  

 

Table 6.5 Amount of position disorder in disordered systems 
Particle density Position disorder, dp Lattice constant, a 

1x1012m-2 0.23a 1120nm 
2.25x1012m-2 0.21a 660nm 

4x1012m-2 0.2a 500nm 
6.25x1012m-2 0.2a 400nm 

9x1012m-2 0.19a 320nm 
2x1013m-2 0.2a 200nm 

 

Figures 6.10 and 6.11 show the time evolution of the total electric field energy and the 

population difference density of the disordered systems, respectively. For the 

disordered systems with a particles density ranging from 2.25x1012m-2 to 9x1012m-2, 

the amplification process are similar to that of the corresponding ordered systems. 

However, a different result is found for the most densely packed disordered system. 

Compared to the corresponding ordered system, the amplification rate of the most 

densely packed disordered system increases sharply, as shown in Figures 6.8 and 6.10. 

It is believed that the disorder can enhance the amplification rate under the influence 

of photonic band gap. 
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Figure 6.10  Time evolution of the total electric field energy of the disordered 

systems with various particle densities 
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Figure 6.11  Time evolution of the population difference density of the disordered 

systems with various particle densities 
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Table 6.6 summarizes the amplification rate ampξ  and the trigger time Tt of the 

disordered systems. It is found that the amplification rate of the most densely packed 

disordered system is increased by doubled and the trigger time is significantly 

reduced from those of the ordered systems (see Table 6.4). Hence, only a small 

deviation of the trigger time and amplification rate can be observed in the other 

disordered systems. It is clear that the disorder effect on the densely packed 

disordered system is serious while the effect of the disorder on the less densely 

packed disordered systems is insignificant. 

 
Table 6.6 Amplification rates and trigger times of the disordered systems 

Particle density Amplification rate ampξ  Trigger time Tt 
Pure dye medium 1.23 x1014s-1 5.26 x10-13s (=22300Δt) 

1x1012m-2 1.98 x1014s-1 2.66x10-13s (=11300Δt) 
2.25x1012m-2 2.14 x1014s-1 2.43 x10-13s (=10300Δt) 

4x1012m-2 2.17x1014s-1 2.18x10-13s (=9250Δt) 
6.25x1012m-2 2.06 x1014s-1 2.25 x10-13s (=9550Δt) 

9x1012m-2 1.97 x1014s-1 2.35 x10-13s (=9950Δt) 
2x1013m-2 0.64 x1014s-1 6.51x10-13s (=27600Δt) 

 

Figure 6.12 shows the field distribution patterns of the ordered systems. The field 

patterns are recorded after a very long time evolution (t=650000Δt=1.532x10-11s) in 

order to eliminate the short-lived modes. In the ordered systems, the field patterns are 

regular and symmetric. The dashed lines represent the symmetric axes which clarify 

the symmetric patterns. The formation of the symmetric field pattern is a consequence 

of the coherent diffraction of EM wave in the ordered system. When a random 

position disorder (the amount of position disorder is listed in Table 6.5) is introduced 

in the ordered system, the symmetric field patterns are broken down (see Figure 6.13) 

because the square lattice is disturbed.  

 

As shown in Figures 6.13e and 6.13f, EM energy is evenly distributed in the less 
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densely packed disordered systems (particles density varied from 1x1012m-2 to 

2.25x1012m-2). Since these two systems contain few scattering particles, the strength 

of scattering of EM wave is weak. Therefore, the eigen-modes of EM wave would 

leak out and extended to the whole medium. As localized modes are seldom found in 

the less densely disordered systems, the field energy can be evenly distributed in the 

media. When the number of the scattering particle increases, the scattering strength is 

reinforced and the localization of EM wave is more easily to be observed. As shown 

in Figure 6.13b, high intensity spots corresponding to a localized mode can be found 

in the densely packed disordered system with a particle density = 9x1012m-2. However, 

as shown in Figure 6.13a, high intensity field clusters are found in the densely packed 

system. This field pattern of the disordered system pertains to the field pattern of the 

ordered system (see Figure 6.12a). A possible explanation is that the amount of 

disorder (dp =0.2a) is not sufficient to destroy the coherent diffraction of EM wave of 

the ordered system.  
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(a)         (b) 

 

(c)         (d) 

 

(e)         (f) 

Figure 6.12  Field distribution pattern recorded in the ordered systems with various 
particle densities at t = 1.532x10-11s (=650000Δt): (a) particle density = 
2x1013m-2, (b) particle density = 9x1012m-2, (c) particle density = 
6.25x1012m-2, (d) particle density = 4x1012m-2, (e) particle density = 
2.25x1012m-2, (f) particle density = 1x1012m-2.  
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(a)         (b) 

 

(c)         (d) 

 

(e)         (f) 

Figure 6.13  Field distribution pattern recorded in the disordered systems with 
various particle densities at t=1.532x10-11s (=650000Δt): (a) particle 
density = 2x1013m-2, (b) particle density = 9x1012m-2, (c) particle 
density = 6.25x1012m-2, (d) particle density = 4x1012m-2, (e) particle 
density = 2.25x1012m-2, (f) particle density = 1x1012m-2. 
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Beside the investigation of the field pattern, the emission spectra of the active 

disordered systems are also considered. Figures 6.14 and 6.15 show the emission 

spectra of the ordered and disordered systems, respectively, which are determined in a 

time window of [487500Δt, 650000Δt] (duration =3.83x10-12s). It is found that the 

spectra of the disordered systems are roughly the same as those of the ordered 

systems. For the ordered systems, most of the spectral peaks locate close to the 

central wavelength of the gain profile (λt= 590nm) except the emission peak of the 

most densely packed system. As shown in Figure 6.14, the peaks of the most densely 

packed ordered system emerge near wavelength of λ = 550nm (f =545x1014Hz). In 

fact, this peak is very close to the edge of the first band gap.  

 

For the disordered system, the emission peak of the most densely packed disordered 

system is again found at the edge of the band gap (see Figure 6.15). The wavelength 

of the peak is λ = 554nm (f =541x1014Hz), which is approximately the same as the 

result of the ordered system. The emission peak of the most densely packed 

disordered system is higher than that of ordered system by one order of magnitude. It 

can see that the emission peaks of the most densely packed disordered system shift 

from the central wavelength of the gain profile to the edge of the band gap. Obviously, 

the shift of the wavelength of the emission peak of the most densely packed 

disordered system is caused by the band gap. Inside the photonic band gap, there is no 

eigen-mode and the amplification is suppressed significantly. Hence, the modes 

nearest the edge of band gap are firstly reinforced instead. Since the edge of band gap 

is far away from the central wavelength of the gain profile, the strength of the 

amplification is relatively weaker. As a result of the weak amplification, the most 

densely packed disordered system exhibits a lower amplification rate and long trigger 
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Figure 6.14  Emission spectra of the active ordered systems. 
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Figure 6.15  Emission spectra of the active disordered systems. The amounts of the 

position disorder are shown in Table 6.5. 
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6.3.3 Effect of disorder on the laser emission 

In Section 6.3.2, it has been reported that the amplification of EM wave seems to be 

suppressed by the photonic band gap in the most densely packed disordered system. 

The reduction of the amplification rate, the time lag of the trigger time Tt and the shift 

of lasing frequency perhaps indicate that the photonic band gap is a detrimental factor 

for the random laser emission. According to the investigation of the passive 

disordered system in Chapter 4, photonic band gaps in the most densely packed 

ordered system are destroyed by the position ( 0.3pd a≥ ) and size disorders 

( 0.1rd a≥ ), where a = 200nm. Therefore, it is expected that the suppression of the 

photonic band gap on the amplification process can be improved by controlling the 

amount of disorder in the active disordered media. Therefore, it is valuable to study, 

the interplay of band gap and disorder effect on the random laser emission.  

 

In the numerical experiments, position and size disorders were assigned into the most 

densely packed ordered system. i.e., particle density = 2x1013m-2, which was 

described in Section 6.3.2. In order to determine the disorder effect, the amounts of 

the position and size disorders were varied from dp = 0.05a to dp = 0.4a and dr = 0.05a 

to dr = 0.2a, respectively, where a = 200nm. The simulation results were obtained by 

averaging 10 different configurations of disordered systems with the same amount of 

disorder. Figures 6.16 and 6.17 plot the time evolution of the total electric field energy 

of the disordered systems with various amounts of position and size disorders, 

respectively. In Figure 6.16, it is easy to see that the slope of the rising curves 

gradually increases as the amount of the position disorder increases from dp = 0.05a to 

0.4a. However, for the size disorder, it is surprising to see from Figure 6.17 that there 

is a sudden rise of the slope of the rising curves even when dr=0.05a. From dr=0.05a 
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to 0.2a, however, the slopes of the rising curves are almost the same.  

 

The amplification rates estimated from the slope of the rising curves are plotted as a 

function of the amount of the position and size disorders, as shown in Figure 6.18. It 

is obvious that the amplification rate slightly increases when a small amount of the 

position disorder is assigned. It is followed by a sharp upward trend. It seems that the 

change of amplification rate becomes steady and reaches a saturation level at dp = 

0.35a.  
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Figure 6.16  Time evolution of the total electric field energy of the disordered 

systems with various amounts of position disorder. Lattice constant a is 
200nm. 
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Figure 6.17  Time evolution of the total electric field energy of the disordered 
systems with various amounts of size disorder. Lattice constant a is 
200nm. 
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Figure 6.18  Plot of amplification rates of the disordered systems as a function of 

the amount of the position and size disorder. Lattice constant a is 
200nm. 
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Next the dependence of the population difference density is studied as a function of 

the disorder, as illustrated in Figures 6.19 and 6.20, respectively. In Figure 6.19, it is 

found that the population inversion build up more quickly as the amount of the 

position disorder increases. When the amount of the disorder is higher than 0.3a, it is 

observed that a dip occurs after the drop of population difference density. This dip 

indicates that a large number of excited electrons transited to the lower energy level 

simultaneously, which induces a stronger amplification of the EM wave. It is again 

found that the dip occurs in the active disordered system when the amount of the size 

disorder is larger than 0.1a. In fact, a stronger amplification of EM wave is 

demonstrated in highly disordered systems. 
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Figure 6.19  Population difference density of the disordered systems with various 
amounts of the position disorder. Lattice constant a is 200nm. 
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Figure 6.20 Population difference density of the disordered systems with various 

amounts of the size disorder. Lattice constant a is 200nm. 
 

The results can be understood in term of the deformation process of the photonic band 

gap. In Chapter 4, it is shown that a band gap is found in the frequency range of f = 

4.58x1014-5.41x1014Hz. The corresponding wavelength range is from 555 to 655nm. 

In the current study, the wavelength of lasing transition is chosen as 590nm. The gain 

profile overlaps with the photonic band gap and thereby the amplification is 

suppressed. Therefore, the amplification rate of the most densely packed disordered 

system is significantly lower than those do not exhibit photonic band gap, as shown in 

Table 6.6. Hence, the amplification is enhanced when disorders are assigned in the 

ordered system.  

 

As mentioned in Chapter 4, the eigen-states emerge in the photonic band gap as the 

amount of disorder increases. If the eigen-states are created inside the band gap, they 

dip 
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will experience a large amplification because the eigen-states have shorter localization 

lengths. Thus, the EM field confined in the localized states is significantly reinforced 

and thereby the amplification rate of the active disordered system increases. When the 

amount of disorder reaches a high value, more localized states are created deeply 

inside the band gap and the band gap seems to be destroyed completely. Therefore, the 

amplification rate reaches the maximum value. Even though the amount of disorder 

increases, the amplification rate does not further increase because the band gap is 

fully destroyed. As shown in Figure 6.18, the curve of the amplification rate shows a 

saturation trend at dp = 0.35a.  

 

A similar explanation can be applied on the results of the size disorder. Since the band 

gap is more sensitive to the size disorder, the eigen-states can be created deeply inside 

the band gap even though the amount of the size disorder is small. It is believed that 

the band gap is deformed seriously at dr = 0.05a. Consequently, the saturation of 

amplification rate is observed at the higher amounts of size disorder.  

 

In the above discussions, it is suggested that the eigen-states would emerge in the 

band gap and facilitate the random laser emission under certain circumstances. In 

order to support this suggestion, the lasing mode distribution in the active disordered 

system is analyzed. The emission spectra of the active disordered systems with 

various amounts of disorder are calculated and shown in Figures 6.21 and 6.22. To 

obtain the longest-lived modes, the spectra are recorded after a long time evolution of 

EM wave in a time window of [487500Δt, 650000Δt]. The duration of the time 

window is 3.83x10-12s.  
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Figure 6.21 shows the long-time emission spectra of four disorder systems with 

position disorder, i.e., dp = 0.1a, 0.2a, 0.3a and 0.4a. It is evident that the shift of the 

emission peaks is from the short wavelength to the long wavelength. The emission 

peaks lie outside the band gap at dp = 0.1a. At this level of the position disorder, the 

band gap still keeps in good shape. As the amount of the position disorder rises, the 

emission peaks slightly shift toward the edge of the band gap. At dp = 0.3a, it is 

obvious that several emission peaks emerge inside the band gap and the number of 

peaks increases significantly.  

 

Figure 6.22 shows the long-time emission spectra of four disorder systems with the 

size disorder, i.e., dr = 0.05a, 0.1a, 0.15a and 0.2a. The emission peaks are created 

inside the band gap even though the amount of the size disorder is small (dr = 0.05a). 

When dr≥ 0.05a, there are several emission peaks emerge deep inside the band gap. It 

is not surprising that the size disorder is more easily to destroy the band gap. The 

wavelength of the emission peaks with the highest spectral intensity and the number 

of peaks of the active disordered systems with various amounts of disorder are 

summarized in Tables 6.7 and 6.8. 

 

For the size disordered system, the effective refractive index of the disordered system 

is changed as results of the random deviation of the size of the high dielectric 

scattering particles. For the position disordered system, however, the effective 

refractive index of the disordered system does not alternate.  
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Figure 6.21  Emission spectra of four disorder systems with various amounts of 
position disorder: (a) dp= 0, (b) dp = 0.1a, (c) dp = 0.2a, (d) dp = 0.3a 
and (e) dp = 0.4a. Lattice constant a is 200nm.Time window is 
[487500Δt, 650000Δt] (duration =3.83x10-12s) 
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Figure 6.22  Emission spectra of four disorder systems with various amounts of size 

disorder: (a) dr = 0, (b) dr = 0.05a, (c) dr = 0.1a, (d) dr = 0.15a and (e) 
dr = 0.2a. Lattice constant a is 200nm.Time window is [487500Δt, 
650000Δt] (duration =3.83x10-12s) 
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Table 6.7  Wavelength of the emission peaks and number of peaks of the active 
disordered systems with position disorder. Time window is [487500Δt, 
650000Δt] (duration =3.83x10-12s) 

 
Amount of the 

position disorder, dp 
Wavelength of the emission peaks 
with the highest spectral intensity 

Number of 
emission peaks 

0 547.8nm 3 
0.1a 549nm 4 
0.2a 551.8nm 4 
0.3a 613.6nm 7 
0.4a 612.4nm 10 

 

Table 6.8  Wavelength of the emission peaks and number of peaks of the active 
disordered systems with size disorder. Time window is [487500Δt, 
650000Δt] (duration =3.83x10-12s) 

 
Amount of the size 

disorder, dr 
Wavelength of the emission peaks 
with the highest spectral intensity 

Number of 
emission peaks 

0 547.8nm 3 
0.05a 563.4nm 6 
0.1a 585nm 13 
0.15a 590nm 12 
0.2a 596nm 7 
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Figures 6.23 and 6.24 illustrate the field distribution patterns of the active systems 

with position and size disorders, respectively. The field patterns are recorded at t = 

1.53x10-11s. After a long time of mode competition, it is believed that only the 

longest-lived modes survive in the system. In Figure 6.23, the difference in the field 

patterns of disordered systems is notable. It may reveal the effect of disorder on the 

emission mode. At dp = 0.1a, two regions of high intensity field are observed, which 

may correspond to the collective behavior of the extended modes in which the field 

energy extends cross the whole system. As the amount of the disorder increases, the 

area of high intensity field region reduces. The reduction of the area of high intensity 

field region is more serious for the systems shown in Figures 6.23c and 6.23d. The 

field energy is concentrated in few spots. It can be attributed to the confinement of 

EM wave in localized modes. Similar phenomena can be found in the size disordered 

systems. The shape of high intensity region for the size disordered systems seems to 

be rectangular because the scatter particles are arranged in square lattice. When the 

size of the particle is randomly varied, rectangular cavity is easily created. It is 

illustrated by comparing the configuration and the field distribution pattern of the size 

disordered system, as shown in Figure 6.25.  

 

According to the series of the field patterns, the transition between the extended 

modes and localized modes is confirmed. The transitions are demonstrated in both 

position and size disordered systems. Obviously, the localized modes are created as a 

result of the large amount of disorder.     
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(a)           (b) 

 
(c)           (d) 

 
Figure 6.23  Field distribution patterns of the disordered systems with various amounts of position disorder: (a) dp = 0.1a, (b) dp = 0.2a, (c) dp 

= 0.3a and (d) dp = 0.4a. Field patterns are recorded at t = 650000Δt = 1.53x10-11s. Lattice constant a is 200nm 
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(a)           (b) 

 
(c)           (d) 

Figure 6.24  Field distribution patterns of the disordered systems with various amounts of size disorder: (a) dr= 0.05a, (b) dr= 0.1a, (c) dr = 
0.15a and (d) dr = 0.2a. Field patterns are recorded at t = 650000Δt = 1.53x10-11s. Lattice constant a is 200nm 
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(a)              (b) 

 
Figure 6.25  (a) Configuration of the active disordered system with size disorder of dr = 0.1a. (b) Field distribution pattern of the active 

disordered system described in (a), which is recorded a t = 1.53x10-11s. Lattice constant a is 200nm 
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6.3.4 Effect of disorder on the laser emission at different lasing transition 

frequency 

In the previous sections, it has been found that the laser emission of the active 

disorder systems is disturbed due to the spectral overlap of the photonic band gap 

and the gain profile. The spectral position of the gain profile would alternate the 

amplification of the EM wave in the active disorder system. In this section, the 

lasing emission with different gain profiles will be examined. The spectral 

wavelength of the gain profiles varies, locating at the upper, middle and lower 

position of the band gap. In the numerical experiments, three lasing transition 

wavelengths, λt = 550, 620 and 650nm are chosen. For each lasing transition 

wavelength, five levels of the position disorder, i.e., dp = 0.1a, 0.2a, 0.3a and 0.4a, 

are considered.  

 

Figures 6.26, 6.27 and 6.28 show the emission spectra of the active disordered 

systems with λt = 550, 620 and 650nm, respectively. Figure 6.29, 6.30 and 6.31 

depicts the time evolution of the total electric field energy of the disordered 

systems with λt = 550, 620 and 650nm, respectively.  

 

For λt = 550nm, the emission peaks of the systems with various amounts of 

disorder emerge around the wavelength of 550nm, as shown in Figure 6.26. The 

shifts of the emission peaks are relatively small. In fact, the distortion on the 

amplification caused by the band gap is not serious. In Figure 6.29, the rising 

curves indicate that the amplification rates of the systems with various amounts 

of disorder are the same. The results are expected because the central wavelength 

of the gain profile lies just outside the band gap and the band gap does not affect 
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the laser emission.  

 

For λt = 620nm, it is interesting that two emission peaks appear individually in 

the upper and lower edge of the band gap, as shown in Figures 6.27a and 6.27b. 

As the amount of the disorder increases, the emission peaks shift toward the 

central wavelength of the band gap. At a highly disordered system, the emission 

peaks with longer wavelength dominate the lasing emission while the emission 

peaks near the upper edge vanish.  

 

For λt = 650nm, the results are similar to those of the systems with λt = 620nm. 

However, the emission peak at the lower edge is missing in current results (see 

Figure 6.28). It is again found that the emission peaks shift from the upper edge 

to the central wavelength of the band gap as the amount of the disorder increases. 

In cases of λt = 620nm and λt = 650nm, the amplification rates of the disordered 

systems are enhanced in the highly disordered systems, as indicated in Figures 

6.30 and 6.31. Accordingly, the disorder can improve the laser emission 

significantly when the gain profile of the gain material overlaps the photonic 

band gap. It is concluded that the effect of the band gap is significant when the 

central wavelength of the gain profile overlaps with the band gap.  
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Figure 6.26  Emission spectra of the active disordered systems with λt = 550nm. 
Amount of the position disorder in the systems: (a) dp= 0, (b) dp = 
0.1a, (c) dp = 0.2a, (d) dp = 0.3a and (e) dp = 0.4a. Lattice constant 
a is 200nm.Time window is [487500Δt, 650000Δt] (duration 
=3.83x10-12s) 

Lower edge Upper edge 
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Figure 6.27  Emission spectra of the active disordered systems with λt = 620nm. 

Amount of the position disorder in the systems: (a) dp= 0, (b) dp = 
0.1a, (c) dp = 0.2a, (d) dp = 0.3a and (e) dp = 0.4a. Lattice constant 
a is 200nm.Time window is [487500Δt, 650000Δt] (duration 
=3.83x10-12s) 

Upper edge Lower edge 
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Figure 6.28  Emission spectra of the active disordered systems with λt = 650nm. 

Amount of the position disorder in the systems: (a) dp= 0, (b) dp = 
0.1a, (c) dp = 0.2a, (d) dp = 0.3a and (e) dp = 0.4a. Lattice constant 
a is 200nm.Time window is [487500Δt, 650000Δt] (duration 
=3.83x10-12s) 

Lower edge Upper edge 
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Figure 6.29  Time evolution of the total electric field energy of the active 

disordered systems with λt = 550nm. Lattice constant a is 200nm. 
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Figure 6.30  Time evolution of the total electric field energy of the active 

disordered systems with λt = 620nm. Lattice constant a is 200nm. 
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Figure 6.31  Time evolution of the total electric field energy of the active 

disordered systems with λt = 650nm. Lattice constant a is 200nm. 
 

6.4 Summary 

In this chapter, the disorder effects on the active disordered media have been 

investigated in a numerical approach. The numerical experiments were 

preformed based on a two-dimensional (2D) active disordered dielectric system 

with circular dielectric scattering particles.  

 

The amplification process of active disordered systems was investigated. It has 

been found that the amplification curve is following an exponential relation. The 

exponential growth of total field energy and the dramatic drop of population 

difference density are the evidences of laser emission. It is observed that laser 

emissions are suppressed by the photonic band gap. By increasing the amount of 
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disorder, the strength of amplification of EM wave can be enhanced. The laser 

emission can also be modified by alternating the relative spectral position of the 

band gap and the gain profile. The results implicate that the laser emission can be 

actively controlled by varying the amount of the disorder and the central 

wavelength of gain profile.  
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CHAPTER 7  

CONCLUSIONS AND RECOMMENDED FUTURE WORK 

 

7.1 Conclusions 

A theoretical investigation has been carried out on 2D passive and active 

disordered dielectric systems with circular inclusions, based on the 

time-dependent Maxwell’s equations combined a semi-classical laser theory. 

This approach is adequate to analyse the optical properties of passive and active 

disordered media with arbitrary scattering structures. The Maxwell’s equations 

coupled with the rate equations of electronic population of a four-level electronic 

system are solved numerically by using with finite-difference time-domain 

method. The following have been determined: the emission spectra, time 

evolution of electromagnetic fields and spatial distribution of eigen-modes of 

passive disordered media, the lasing modes and the electronic population of 

atomic levels of active disordered media. Numerical simulations have been 

carried out to compare with the published results of other research groups. The 

present simulation results are in agreement with the experimental and simulation 

results of other research groups in both passive and active media.  

 

In addition to the theoretical investigation, experiments were conducted with 
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polymeric colloid liquid and solid random laser systems, their laser emission 

were explored. In the course of the research, several significant conclusions have 

been drawn, which represent original contributions to knowledge in the area of 

optical material systems. These are summarized as follows: 

 

7.1.1 Disorder effect on photonic band gap deformation  

Among various two-dimensional passive periodic dielectric systems with 

different scattering particle density, photonic band gaps are demonstrated in the 

most densely packed systems (scattering particle density = 2x1013m-2). The 

dependence of the photonic band gap deformation on the position and size 

disorder is systemically examined. In order to introduce the position and size 

disorder into the periodic system with circular inclusions, the positions and the 

radius of each scattering particle are randomized with a moderate degree, 

respectively. The bandwidth of the photonic band gaps decreases as the amount 

of position and size disorder increase. When a high amount of disorder is 

introduced into the periodic system, the photonic band gaps diminish. The 

phenomenon can be understood in term of defect modes induced by the disorder. 

The spatial and radial perturbations of scattering particles sitting on the regular 

lattice points create defects in the periodic systems and thereby extra states may 

be created in the band gap. Consequently, extra states are induced and the size of 
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the band gaps becomes smaller when the disorder is intensified. The numerical 

results also confirm that the effect of the size disorder on the photonic band gap 

is more serious than that of the position disorder. It is shown that the photonic 

band gap is very robust against the presence of position disorder and the induced 

states appear close to the band edge. For the case of size disorder, states can 

appear well inside the gap with a relatively smaller amount of disorder. This is in 

agreement with the previously published results by others.  

 

7.1.2 Disorder effect on electromagnetic wave localization  

The localization of electromagnetic waves are achieved in both passive and 

active disordered systems when the periodic structure transits to the highly 

disorder structure. The regular and symmetrical field distribution patterns are 

demonstrated in the two-dimensional periodic systems due to coherent feedback 

from the periodic structure. As the amount of disorder increases, the regular 

pattern is destroyed and high intensity spots are emerged randomly in the 

disordered systems. The high intensity spots in the field distribution pattern 

provide an evidence of the existence of localized modes. It suggests that the 

effect of disorder can enhance the confinement of EM waves in passive and 

active disordered dielectric media as the localized modes are more easily to be 
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created in the highly disordered media. Furthermore, the lasing emission can be 

facilitated in highly disordered active system due to the short localization length 

and long residence time of the localized modes. 

 

7.1.3 Disorder effect on lasing emission 

The amplification processes in active ordered and disordered systems have been 

analyzed in term of the total field energy and the population difference density of 

the electronic systems. The energy-time curve is an exponential function. The 

exponential growth of the total field energy and the dramatic drop of population 

difference density unambiguously show the occurrence of the laser emission in 

active disordered systems.  

 

Light amplification is suppressed by the photonic band gap in a densely packed 

disordered active system, when the gain profile of the active material overlaps 

with the photonic band gap. Emission modes emerge close to the edge of the 

band gap rather than the central frequency of gain profile of active material. By 

controlling the amounts of disorder, the amplification rate of EM wave can be 

reinforced in active disordered systems because of the vanished band gap. The 

emission modes shift to the central frequency of gain profile.  
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The laser emission can also be modified by alternating the relative spectral 

position of the band gap and the gain profile. The results imply that the laser 

emission can be actively controlled by varying the amount of the disorder and the 

central wavelength of gain profile.  

 
7.1.4 Characterization of lasing emission in random laser system 

Liquid and solid random laser systems have been fabricated and studied. 

Coherent and incoherent laser emission exhibit in the colloid dye solution 

consisting of Coumarin 480 and TiO2 nano-particles and PMMA films doped 

with Rhodamine 590 and TiO2 nano-particles. The structure of the PMMA 

composite films was investigated by using optic microscopy and scanning probe 

microscopy. Single particles and clusters with multiple particles are found and 

distributed randomly on the surface of PMMA films. In the photoluminescence 

experiments, the lasing threshold and saturation behavior are demonstrated in the 

PMMA composite films while the saturation effect is absent in the colloid 

solution within the experimental range. The existent of lasing threshold is 

corroborated by experimental observations such as the dramatic reduction of 

line-width and intensification of the intensity of the emission peak. Discrete 

peaks emerge in the emission spectra of the PMMA composite films when the 
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pump energy was over the lasing threshold. This is a direct consequence of 

random laser emission with coherent feedback of the random laser system.  

 

7.2 Project significance  

This project is concerned with the behavior of EM waves in the intermediate 

regime between perfect order and disorder structure, where little have been 

known previously in the literature It is valuable to investigate the interplay 

between the disorder effect and the photonic band gap in active random media. In 

the current study, extensive computational work shows that the degree of 

disorder is crucial to compensate the detrimental effect of the photonic band gap 

in photonic crystals with optical gain. The results of numeric simulation 

unambiguously demonstrate the lasing mode shifting in active disordered media 

under the influence of the photonic band gap deformation. By modifying the 

uniformity of the scattering element of the periodic system with optical gain, the 

gain and lasing frequency can be selectively excited that may open up the 

possibility of active wavelength tuning in photonic device. It will bring great 

benefits to the development of new photonic fiber. It will contribute to the 

development of new technologies of smart textile and highly value-added 

products such as light emitting fibers and flexible fabric displays.  
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7.3 Recommended future work 

The major objectives of this thesis have been achieved. However, further work 

should be considered to develop a more comprehensive method for analyzing the 

mechanism of light amplification in polymeric composite systems. The following 

aspects are suggestions for future work: 

 

7.3.1 Active disordered metallic system 

In the current research, the studies only focus on the disordered dielectric 

systems because of time limitation. Further investigation of random laser 

emission should be extended to the active disordered metallic system based on 

the established theoretical framework and FDTD method. Recently, random 

lasers have been reported in a dye solution consisting nanometer-sized metallic 

silver particles (Dice, Mujumdar and Elezzabi, 2005). Compared to dielectric 

particles with the same size, the scattering cross section of the metallic silver 

particles is enhanced due to the surface phamsons. The collective scattering 

strength and the gain volume of the system are also intensified, which facilitates 

the reduction of lasing threshold. Thus, it is valuable to study the origin of the 

enhancement of light amplification caused by the surface phamson of metallic 
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particles. Investigations should address the relationship between the surface 

phamson and light confinement. The time-dependent theory of random laser and 

modified FDTD methods should be extended in order to predict the surface 

phamson effect on the random laser emission of the metallic systems. 

 

7.3.2 Simulation of three-dimensional (3D) active disordered system 

The localization of EM wave in 2D active disordered systems has been 

demonstrated in the current study by using a numerical simulation framework. If 

the simulation of 3D active disordered system is built up, random laser emission 

and light confinement in active disordered systems can be manifested and 

comparable to the real random laser systems. Hence, it is a challenging task to 

simulate the light localization in 3D active disordered systems by using 3D 

FDTD technique because of a very high demand on the computer resource and 

time.  
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APPENDIX 
 

Program of the finite-difference time-domain (FDTD) modeling for active 
disordered system 
 
The following program is used for calculating the emission spectrum, the time 
evolution of the electronic population of atomic levels, the electric and magnetic 
fields of two-dimensional (2D) disordered system with gain. The calculation is 
performed using FDTD method. A discretization of Maxwell’s equations, 
polarization equation and rate equation in both the space and time domains leads 
to the finite difference equations (equation 3.39-3.46 in Chapter 3) linking the 
electric and magnetic fields and the electronic population of atomic levels at one 
time step to the next time step. After calculating the electric and magnetic fields 
in the time domain, Fourier transform is performed to obtain the power spectrum 
of the field signal. In the 2D FDTD simulation, the transverse-magnetic (TM) 
fields are absorbed in the perfectly matched layer (PML) boundary condition and 
terminated by prefect conducting boundary. The program is written in 
FORTRAN 90 and executed in Unix environment.  
 
 
c**************************************************************** 
c  This 2D FDTD TM code with PML absorbing boundary conditions calculates 
c  the electric field, the magnetic field and electronic population of 2D  
c  disordered system in time domain. The 2D system is a square size active 
c  medium. 
c**************************************************************** 
 
c**************************************************************** 
c  Fundamental constant declarations: 
c  dx is sspatial increment, dt is time increment, nmax is total time step, 
c  ie is the total number of grid point of x-direction, je is the total number of  
c  grid point in y-direction, iebc is the number of grid point of the perfectly 
c  matched layer in  
c**************************************************************** 
        MODULE Globals 
        real, parameter :: cc=2.99792458e8 
        real, parameter :: pi=3.141592653589793d0 
        real, parameter :: muz=4*pi*(1.0e-7) 
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        real, parameter :: epsz=1.0/(cc*cc*muz)  
        real, parameter :: dx=10.0e-9 !dt=2.36e-17  
        real, parameter :: dt=dx/(1.414213562*cc)  
        real, parameter :: lattice=20 
        integer, parameter :: nmax=50002  
        integer, parameter :: numx=18; numy=18 
        integer, parameter :: rodn=numx*numy 
        integer, parameter :: ie=402; je=402 
        integer, parameter :: ib=ie+1; jb=je+1 
        integer, parameter :: iebc=10; jebc=10 
        integer, parameter :: ibbc=iebc+1; jbbc=jebc+1 
        integer, parameter :: iefbc=ie+2*iebc; jefbc=je+2*jebc 
        integer, parameter :: ibfbc=iefbc+1; jbfbc=jefbc+1 
        END MODULE Globals 
 
        Program ftdt 
        use globals 
        implicit none 
 
c**************************************************************** 
c   Variables declarations: 
c**************************************************************** 
        integer :: i,j,n,ij,nn,limit,tt,abc,gg 
        integer :: is,orderbc,media 
        real :: eps(4),sig(4),mur(4),sim(4) 
        integer :: diam,halfd,icenter,jcenter 
        real :: rmax,rtau,tau,delay 
        real :: eaf,haf 
        real :: delbc,sigmam,bcfactor 
        real :: y1,y2,sigmay,sigmays  
        real :: x1,x2,sigmax,sigmaxs 
        real :: ca1,cb1,da1,db1 
        real :: source(300) 
        real :: ca(4),cb(4),da(4),db(4) 
        real :: aa,bb 
        real :: a(rodn),b(rodn) 
 
c**************************************************************** 
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c   Variables declarations and initializations for the coefficient of PML layer: 
c**************************************************************** 
 
        real :: dahy(1:ie,1:jb)=0.0; dbhy(1:ie,1:jb)=0.0 
        real :: dahx(1:ib,1:je)=0.0; dbhx(1:ib,1:je)=0.0 
        real :: caez(1:ib,1:jb)=0.0; cbez(1:ib,1:jb)=0.0 
        real :: dahybcf(1:iefbc,1:jebc)=0.0; dbhybcf(1:iefbc,1:jebc)=0.0 
        real :: dahybcl(1:iebc,1:jb)=0.0; dbhybcl(1:iebc,1:jb)=0.0 
        real :: dahybcr(1:iebc,1:jb)=0.0; dbhybcr(1:iebc,1:jb)=0.0 
        real :: dahybcb(1:iefbc,1:jbbc)=0.0; dbhybcb(1:iefbc,1:jbbc)=0.0 
        real :: dahxbcf(1:ibfbc,1:jebc)=0.0; dbhxbcf(1:ibfbc,1:jebc)=0.0 
        real :: dahxbcl(1:iebc,1:je)=0.0; dbhxbcl(1:iebc,1:je)=0.0 
        real :: dahxbcr(1:ibbc,1:je)=0.0; dbhxbcr(1:ibbc,1:je)=0.0 
        real :: dahxbcb(1:ibfbc,1:jebc)=0.0; dbhxbcb(1:ibfbc,1:jebc)=0.0 
        real :: caezxbcf(1:ibfbc,1:jebc)=0.0; cbezxbcf(1:ibfbc,1:jebc)=0.0 
        real :: caezxbcl(1:iebc,1:jb)=0.0; cbezxbcl(1:iebc,1:jb)=0.0 
        real :: caezxbcr(1:ibbc,1:jb)=0.0; cbezxbcr(1:ibbc,1:jb)=0.0 
        real :: caezxbcb(1:ibfbc,1:jbbc)=0.0; cbezxbcb(1:ibfbc,1:jbbc)=0.0 
        real :: caezybcf(1:ibfbc,1:jebc)=0.0; cbezybcf(1:ibfbc,1:jebc)=0.0 
        real :: caezybcl(1:iebc,1:jb)=0.0; cbezybcl(1:iebc,1:jb)=0.0 
        real :: caezybcr(1:ibbc,1:jb)=0.0; cbezybcr(1:ibbc,1:jb)=0.0 
        real :: caezybcb(1:ibfbc,1:jbbc)=0.0; cbezybcb(1:ibfbc,1:jbbc)=0.0 
        real :: hy(1:ie,1:jb)=0.0,hx(1:ib,1:je)=0.0; ez(1:ib,1:jb)=0.0 
        real :: nhy(1:ie,1:jb)=0.0,nhx(1:ib,1:je)=0.0; nez(1:ib,1:jb)=0.0 
        real :: hybcf(1:iefbc,1:jebc)=0.0; hxbcf(1:ibfbc,1:jebc)=0.0 
        real :: nhybcf(1:iefbc,1:jebc)=0.0; nhxbcf(1:ibfbc,1:jebc)=0.0 
        real :: hybcb(1:iefbc,1:jbbc)=0.0; nhybcb(1:iefbc,1:jbbc)=0.0 
        real :: hxbcb(1:ibfbc,1:jebc)=0.0; nhxbcb(1:ibfbc,1:jebc)=0.0 
        real :: hybcl(1:iebc,1:jb)=0.0; nhybcl(1:iebc,1:jb)=0.0 
        real :: hxbcl(1:iebc,1:je)=0.0; nhxbcl(1:iebc,1:je)=0.0 
        real :: hybcr(1:iebc,1:jb)=0.0; nhybcr(1:iebc,1:jb)=0.0 
        real :: hxbcr(1:ibbc,1:je)=0.0; nhxbcr(1:ibbc,1:je)=0.0 
        real :: ezxbcf(1:ibfbc,1:jebc)=0.0; ezybcf(1:ibfbc,1:jebc)=0.0 
        real :: nezxbcf(1:ibfbc,1:jebc)=0.0; nezybcf(1:ibfbc,1:jebc)=0.0 
        real :: ezxbcb(1:ibfbc,1:jebc)=0.0; ezybcb(1:ibfbc,1:jebc)=0.0 
        real :: nezxbcb(1:ibfbc,1:jebc)=0.0; nezybcb(1:ibfbc,1:jebc)=0.0 
        real :: ezxbcl(1:iebc,1:jb)=0.0; ezybcl(1:iebc,1:jb)=0.0 
        real :: nezxbcl(1:iebc,1:jb)=0.0; nezybcl(1:iebc,1:jb)=0.0 
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        real :: ezxbcr(1:ibbc,1:jb)=0.0; ezybcr(1:ibbc,1:jb)=0.0 
        real :: nezxbcr(1:ibbc,1:jb)=0.0; nezybcr(1:ibbc,1:jb)=0.0 
 
c**************************************************************** 
c   Variables declarations and initializations for discrete fourier transformation 
c**************************************************************** 
        integer :: im,jm,m 
        real :: ow oww  
        complex :: ft3ez(1:10,1:10,1:600)=0.0 
        complex :: ft3ezb(1:10,1:10,1:600)=0.0 
        complex :: ft4ez(1:10,1:10,1:600)=0.0 
        complex :: ft4ezb(1:10,1:10,1:600)=0.0 
        complex :: ft3ezw(1:10,1:10,1:600)=0.0 
        complex :: ft3ezbw(1:10,1:10,1:600)=0.0 
        complex :: ft4ezw(1:10,1:10,1:600)=0.0 
        complex :: ft4ezbw(1:10,1:10,1:600)=0.0 
        complex,parameter :: ci=(0.0,1.0) 
        real :: ftezi(1:600)=0.0; ftezib(1:600)=0.0 
        real :: fteziw(1:600)=0.0; ftezibw(1:600)=0.0 
        real :: fffi(1:600)=0.0; fffw(1:600)=0.0 
 
c**************************************************************** 
c   Variables declarations and initializations for random number generator  
c**************************************************************** 
        integer :: seed=2,ssd(1:2)=2 
        real :: randx,randy 
        intrinsic :: random_seed 
        intrinsic :: random_number 
        real :: distxs 
        real :: gatez(1:ib,1:jb)=0.0; gz(1:ib,1:jb)=1.0 
        real :: gsum(1:1001)=0.0; gtemp=0.0 
 
c**************************************************************** 
c  Variables declarations and initializations for atomic system 
c**************************************************************** 
        real :: t21,t32,t43  
        real :: pcon,time2,wtran  
        real :: u1(1:ib,1:jb)=0.0; u2(1:ib,1:jb)=0.0  
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        real :: u3(1:ib,1:jb)=0.0; u4(1:ib,1:jb)=0.0  
        real :: nu1(1:ib,1:jb)=0.0; nu2(1:ib,1:jb)=0.0  
        real :: nu3(1:ib,1:jb)=0.0; nu4(1:ib,1:jb)=0.0  
        real :: pold(1:ib,1:jb)=0.0; p(1:ib,1:jb)=0.0; newp(1:ib,1:jb)=0.0   
        real :: kcon,wrate,density  
        real :: pump=0.0  
        real :: a1z,a2z,a3z,a4z,a5z,a6z  
        real :: a7z,a8z,a9z,a10z,a11z  
        real :: a12z,a13z  
        real :: te(1:1001)=0.0; temax(1:1001)=0.0   
 
c**************************************************************** 
c  Variables definition:  
c  density is the total number of atomic system, wtran is the lasing transition  
c  frequency, t43, t32, t21 are the lifetime of the energy state L4 L3 L2,  
c  respectively, time2 is the collision time, pump is the pumping rate  
c**************************************************************** 
        pcon=1.05459e-34 
        kcon=6.0*pi*epsz*(cc**3)/((wtran**2)*t32)  
        wrate=(1.0/t32)+(2/time2) 
        pump=1.0e+14  
 
        tt=1; gg=1 
        density=6.02217e+23  
        wtran=2.0*pi*5.0847e+14 
        t43=1.0e-13; t32=1.0e-10; t21=5.0e-12; time2=2.0e-14   
        pcon=1.05459e-34 
        kcon=6.0*pi*epsz*(cc**3)/((wtran**2)*t32)  
        wrate=(1.0/t32)+(2/time2) 
        pump=1.0e+14  
        u1(1:ib,1:jb)=density   
 
        a1z=(2.0-(wtran*dt)**2)/(1.0+wrate*dt/2.0)  
        a2z=((wrate*dt/2.0)-1.0)/(1.0+wrate*dt/2.0)  
        a3z=((dt**2)*kcon)/(1.0+wrate*dt/2.0)  
        a4z=(2.0*t21-dt)/(2.0*t21+dt); a5z=t21*dt/(t32*(2.0*t21+dt))  
        a6z=t21/(pcon*wtran*(2.0*t21+dt))  
        a7z=(2.0*t32-dt)/(2.0*t32+dt); a8z=t32*dt/(t43*(2.0*t32+dt))  
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        a9z=t32/(pcon*wtran*(2.0*t32+dt))  
        a10z=(2.0*dt*t43*pump)/(2.0*t43+dt) !remark  
        a11z=(2.0*t43-dt)/(2.0*t43+dt)  
        a12z=(1.0-dt*pump); a13z=dt/(2.0*t21)  
 
c**************************************************************** 
c  Assignation of the material parameters: 
c  eqs(1) represents the dielectric constant of air 
c  eqs(2) represents the dielectric constant of titanium dioxide 
c**************************************************************** 
        eps(1)=1.0; sig(1)=0.0; mur(1)=1.0; sim(1)=0.0  
        eps(2)=7.0; sig(2)=0.0; mur(2)=1.0; sim(2)=0.0 
 
c**************************************************************** 
c    Gaussian pulse function 
c**************************************************************** 
        tau=5.0; delay=20.0; source=0.0 
        do n=1,299 
           source(n)=10*exp(-((n-delay)/tau)**2) 
        enddo 
 
c**************************************************************** 
c     Update the coefficients of the discretized Maxwell’s equations 
c**************************************************************** 
 
        do i=1,media 
             eaf=dt*sig(i)/(2.0*epsz*eps(i)) 
           ca(i)=(1.0-eaf)/(1.0+eaf) 
           cb(i)=dt/(epsz*eps(i)*dx*(1.0+eaf)) 
             haf=dt*sim(i)/(2.0*muz*mur(i)) 
           da(i)=(1.0-haf)/(1.0+haf) 
           db(i)=dt/(muz*mur(i)*dx*(1.0+haf)) 
        enddo 
 
c**************************************************************** 
c  Assign the material parameters to the system grid   
c**************************************************************** 
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         caez=ca(1); cbez=cb(1); dahx=da(1); dbhx=db(1) 
         dahy=da(1); dbhy=db(1) 
 
         do i=2,401 
          do j=2,401 
         caez(i,j)=ca(1); cbez(i,j)=cb(1) 
         gatez(i,j)=1.0; gz(i,j)=eps(1) 
          enddo 
         enddo 
 
c**************************************************************** 
c    Generateg the array of the cylinder with square lattice  
c  halfd is the radius of the cylinder 
c**************************************************************** 
         halfd=6; icenter=ie/2; jcenter=je/2; limit=2 
         ij=1 
 
         do i=-numx/2,(numx/2)-1 
          do j=-numy/2,(numy/2)-1 
         a(ij)=(i+0.5)*lattice+icenter; b(ij)=(j+0.5)*lattice+jcenter 
         ij=ij+1     
          enddo 
         enddo 
        
         call random_seed(size=seed) 
         call random_seed(put=ssd(1:2)) 
 
c**************************************************************** 
c    Randomize the position of the cylinder using random number generator 
c**************************************************************** 
 
         do i=1,ij-1 
         call random_number(randx) 
         a(i)=a(i)-limit/2+nint(randx*limit) 
         call random_number(randy) 
         b(i)=b(i)-limit/2+nint(randy*limit) 
         enddo 
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         do nn=1,rodn  
         do i=1,ib 
         do j=1,jb 
           distxs=sqrt((a(nn)-i)**2+(b(nn)-j)**2) 
            if(distxs.le.halfd)then  
            caez(i,j)=ca(2); cbez(i,j)=cb(2) 
            gatez(i,j)=0.0; gz(i,j)=eps(2) 
            endif 
        enddo 
        enddo 
       enddo 
 
c**************************************************************** 
c     Assign the coefficient of PML  
c**************************************************************** 
         delbc=iebc*dx 
         sigmam=-log(rmax/100.0)*epsz*cc*(orderbc+1)/(2*delbc) 
         bcfactor=eps(1)*sigmam/(dx*(delbc**orderbc)*(orderbc+1)) 
 
c******For the front region of PML*********************************** 
         do j=2,jebc 
            y1=(jebc-j+1.5)*dx ; y2=(jebc-j+0.5)*dx 
            sigmay=bcfactor*(y1**(orderbc+1)-y2**(orderbc+1)) 
            ca1=exp(-sigmay*dt/(epsz*eps(1))) 
            cb1=(1.0-ca1)/(sigmay*dx) 
            caezybcf(1:ibfbc,j)=ca1 ; cbezybcf(1:ibfbc,j)=cb1 
         enddo 
       
         sigmay=bcfactor*((0.5*dx)**(orderbc+1)) 
         ca1=exp(-sigmay*dt/(epsz*eps(1))) 
         cb1=(1-ca1)/(sigmay*dx) 
         caezybcl(1:iebc,1)=ca1; cbezybcl(1:iebc,1)=cb1 
         caez(1:ib,1)=ca1; cbez(1:ib,1)=cb1 
         caezybcr(1:iebc,1)=ca1; cbezybcr(1:iebc,1)=cb1 
 
         do j=1,jebc 
            y1=(jebc-j+1)*dx; y2=(jebc-j)*dx 
            sigmay=bcfactor*(y1**(orderbc+1)-y2**(orderbc+1)) 
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            sigmays=sigmay*(muz/(epsz*eps(1))) 
            da1=exp(-sigmays*dt/muz) 
            db1=(1-da1)/(sigmays*dx) 
            dahxbcf(1:ibfbc,j)=da1; dbhxbcf(1:ibfbc,j)=db1 
            caezxbcf(1:ibfbc,j)=ca(1); cbezxbcf(1:ibfbc,j)=cb(1) 
            dahybcf(1:iefbc,j)=da(1); dbhybcf(1:iefbc,j)=db(1) 
         enddo 
 
c******For the back region of PML*********************************** 
        do j=2,jebc  
            y1=(j-0.5)*dx; y2=(j-1.5)*dx 
            sigmay=bcfactor*(y1**(orderbc+1)-y2**(orderbc+1)) 
            ca1=exp(-sigmay*dt/(epsz*eps(1))) 
            cb1=(1-ca1)/(sigmay*dx) 
            caezybcb(1:ibfbc,j)=ca1; cbezybcb(1:ibfbc,j)=cb1 
        enddo 
 
        sigmay=bcfactor*((0.5*dx)**(orderbc+1)) 
        ca1=exp(-sigmay*dt/(epsz*eps(1))) 
        cb1=(1-ca1)/(sigmay*dx) 
        caezybcl(1:iebc,jb)=ca1; cbezybcl(1:iebc,jb)=cb1 
        caez(1:ib,jb)=ca1; cbez(1:ib,jb)=cb1 
        caezybcr(1:iebc,jb)=ca1; cbezybcr(1:iebc,jb)=cb1 
 
       do j=1,jebc 
          y1=j*dx; y2=(j-1)*dx 
          sigmay=bcfactor*(y1**(orderbc+1)-y2**(orderbc+1)) 
          sigmays=sigmay*(muz/(epsz*eps(1))) 
          da1=exp(-sigmays*dt/muz) 
          db1=(1-da1)/(sigmays*dx) 
          dahxbcb(1:ibfbc,j)=da1; dbhxbcb(1:ibfbc,j)=db1 
          caezxbcb(1:ibfbc,j)=ca(1); cbezxbcb(1:ibfbc,j)=cb(1) 
          dahybcb(1:iefbc,j)=da(1); dbhybcb(1:iefbc,j)=db(1) 
       enddo 
          dahybcb(1:iefbc,jbbc)=da(1); dbhybcb(1:iefbc,jbbc)=db(1) 
 
c******For the left region of PML*********************************** 
       do i=2,iebc 
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          x1=(iebc-i+1.5)*dx; x2=(iebc-i+0.5)*dx 
          sigmax=bcfactor*(x1**(orderbc+1)-x2**(orderbc+1)) 
          ca1=exp(-sigmax*dt/(epsz*eps(1))) 
          cb1=(1-ca1)/(sigmax*dx) 
          caezxbcb(i,1:jbbc)=ca11; cbezxbcb(i,1:jbbc)=cb1 
          caezxbcl(i,1:jb)=ca1; cbezxbcl(i,1:jb)=cb1 
          caezxbcf(i,1:jebc)=ca1; cbezxbcf(i,1:jebc)=cb1 
       enddo 
 
       sigmax=bcfactor*((0.5*dx)**(orderbc+1)) 
       ca1=exp(-sigmax*dt/(epsz*eps(1))) 
       cb1=(1-ca1)/(sigmax*dx) 
       caezxbcb(iebc+1,1:jbbc)=ca1; cbezxbcb(iebc+1,1:jbbc)=cb1 
       caez(1,1:jb)=ca1; cbez(1,1:jb)=cb1 
       caezxbcf(iebc+1,1:jebc)=ca1; cbezxbcf(iebc+1,1:jebc)=cb1 
 
       do i=1,iebc 
          x1=(iebc-i+1)*dx; x2=(iebc-i)*dx 
          sigmax=bcfactor*(x1**(orderbc+1)-x2**(orderbc+1)) 
          sigmaxs=sigmax*(muz/(epsz*eps(1))) 
          da1=exp(-sigmaxs*dt/muz) 
          db1=(1-da1)/(sigmaxs*dx) 
          dahybcb(i,1:jbbc)=da1; dbhybcb(i,1:jbbc)=db1 
          dahybcl(i,1:jb)=da1; dbhybcl(i,1:jb)=db1 
          dahybcf(i,1:jebc)=da1; dbhybcf(i,1:jebc)=db1 
          caezybcl(i,2:je)=ca(1) ; cbezybcl(i,2:je)=cb(1) 
          dahxbcl(i,1:je)=da(1); dbhxbcl(i,1:je)=db(1) 
        enddo 
 
c******For the right region of PML*********************************** 
        do i=2,iebc 
           x1=(i-0.5)*dx; x2=(i-1.5)*dx 
           sigmax=bcfactor*(x1**(orderbc+1)-x2**(orderbc+1)) 
           ca1=exp(-sigmax*dt/(epsz*eps(1))) 
           cb1=(1-ca1)/(sigmax*dx) 
           caezxbcb(i+iebc+ie,1:jbbc)=ca1 
           cbezxbcb(i+iebc+ie,1:jbbc)=cb1 
           caezxbcr(i,1:jb)=ca1; cbezxbcr(i,1:jb)=cb1 
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           caezxbcf(i+iebc+ie,1:jebc)=ca1; cbezxbcf(i+iebc+ie,1:jebc)=cb1 
        enddo 
 
        sigmax=bcfactor*((0.5*dx)**(orderbc+1)) 
        ca1=exp(-sigmax*dt/(epsz*eps(1))) 
        cb1=(1-ca1)/(sigmax*dx) 
        caezxbcb(iebc+ib,1:jbbc)=ca1; cbezxbcb(iebc+ib,1:jbbc)=cb1 
        caez(ib,1:jb)=ca1; cbez(ib,1:jb)=cb1 
        caezxbcf(iebc+ib,1:jebc)=ca1; cbezxbcf(iebc+ib,1:jebc)=cb1 
 
        do i=1,iebc 
           x1=i*dx; x2=(i-1)*dx 
           sigmax=bcfactor*(x1**(orderbc+1)-x2**(orderbc+1)) 
           sigmaxs=sigmax*(muz/(epsz*eps(1))) 
           da1=exp(-sigmaxs*dt/muz) 
           db1=(1-da1)/(sigmaxs*dx) 
           dahybcb(i+ie+iebc,1:jbbc)=da1; dbhybcb(i+ie+iebc,1:jbbc)=db1 
           dahybcr(i,1:jb)=da1; dbhybcr(i,1:jb)=db1 
           dahybcf(i+ie+iebc,1:jebc)=da1; dbhybcf(i+ie+iebc,1:jebc)=db1 
           caezybcr(i,2:je)=ca(1); cbezybcr(i,2:je)=cb(1) 
           dahxbcr(i,1:je)=da(1); dbhxbcr(i,1:je)=db(1) 
        enddo 
           dahxbcr(ibbc,1:je)=da(1); dbhxbcr(ibbc,1:je)=db(1) 
 
c**************************************************************** 
c     Terminate the 2D system at perfect conducting boundary 
c**************************************************************** 
         caezxbcf(1:ibfbc,1)=1.0; cbezxbcf(1:ibfbc,1)=0.0 
         caezybcf(1:ibfbc,1)=1.0; cbezybcf(1:ibfbc,1)=0.0 
         caezxbcb(1:ibfbc,jbbc)=1.0; cbezxbcb(1:ibfbc,jbbc)=0.0 
         caezybcb(1:ibfbc,jbbc)=1.0; cbezybcb(1:ibfbc,jbbc)=0.0 
         caezxbcf(1,1:jebc)=1.0; cbezxbcf(1,1:jebc)=0.0 
         caezybcf(1,1:jebc)=1.0; cbezybcf(1,1:jebc)=0.0 
         caezxbcf(ibfbc,1:jebc)=1.0; cbezxbcf(ibfbc,1:jebc)=0.0 
         caezybcf(ibfbc,1:jebc)=1.0; cbezybcf(ibfbc,1:jebc)=0.0 
         caezxbcb(1,1:jbbc)=1.0; cbezxbcb(1,1:jbbc)=0.0 
         caezybcb(1,1:jbbc)=1.0; cbezybcb(1,1:jbbc)=0.0 
         caezxbcb(ibfbc,1:jbbc)=1.0; cbezxbcb(ibfbc,1:jbbc)=0.0 
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         caezybcb(ibfbc,1:jbbc)=1.0; cbezybcb(ibfbc,1:jbbc)=0.0 
         caezxbcl(1,1:jb)=1.0; cbezxbcl(1,1:jb)=0.0 
         caezybcl(1,1:jb)=1.0; cbezybcl(1,1:jb)=0.0 
         caezxbcr(ibbc,1:jb)=1.0; cbezxbcr(ibbc,1:jb)=0.0 
         caezybcr(ibbc,1:jb)=1.0; cbezybcr(ibbc,1:jb)=0.0 
 
c**************************************************************** 
c     Start the time–stepping loop 
c**************************************************************** 
       do n=1,nmax 
 
c**************************************************************** 
c     Calculate the value of electric fields (Ez) in main grid  
c     in n+1 time step 
c**************************************************************** 
         newp(2:ie,2:je)=(a1z*p(2:ie,2:je)+a2z*pold(2:ie,2:je)+   
     &            a3z*(u2(2:ie,2:je)-u3(2:ie,2:je))*ez(2:ie,2:je))* 
     &            gatez(2:ie,2:je) 
 
          nez(2:ie,2:je)=ez(2:ie,2:je)+cbez(2:ie,2:je)* 
     &    (hy(2:ie,2:je)-hy(1:ie-1,2:je)-(hx(2:ie,2:je)-hx(2:ie,1:je-1)))- 
     &    (1/(epsz*eps(3)))*(newp(2:ie,2:je)-p(2:ie,2:je))* 
     &     gatez(2:ie,2:je) 
 
          nez(2:ie,1)=caez(2:ie,1)*ez(2:ie,1)+cbez(2:ie,1)* 
     &             (hy(2:ie,1)-hy(1:ie-1,1)- 
     &             (hx(2:ie,1)-hxbcf(2+iebc:ie+iebc,jebc))) 
 
          nez(2:ie,jb)=caez(2:ie,jb)*ez(2:ie,jb)+cbez(2:ie,jb)* 
     &              (hy(2:ie,jb)-hy(1:ie-1,jb)- 
     &              (hxbcb(2+iebc:ie+iebc,1)-hx(2:ie,je))) 
 
          nez(1,2:je)=caez(1,2:je)*ez(1,2:je)+cbez(1,2:je)* 
     &             (hy(1,2:je)-hybcl(iebc,2:je)-(hx(1,2:je)-hx(1,1:je-1))) 
 
          nez(ib,2:je)=caez(ib,2:je)*ez(ib,2:je)+cbez(ib,2:je)* 
     &           (hybcr(1,2:je)-hy(ie,2:je)- (hx(ib,2:je)-hx(ib,1:je-1))) 
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          nez(1,1)=caez(1,1)*ez(1,1)+cbez(1,1)* 
     &           (hy(1,1)-hybcl(iebc,1)- (hx(1,1)-hxbcf(iebc+1,jebc))) 
 
          nez(1,jb)=caez(1,jb)*ez(1,jb)+cbez(1,jb)* 
     &             (hy(1,jb)-hybcl(iebc,jb)-(hxbcb(iebc+1,1)-hx(1,je))) 
 
          nez(ib,jb)=caez(ib,jb)*ez(ib,jb)+cbez(ib,jb)* 
     &             (hybcr(1,jb)-hy(ie,jb)-(hxbcb(iebc+ie+1,1)-hx(ib,je))) 
 
          nez(ib,1)=caez(ib,1)*ez(ib,1)+cbez(ib,1)* 
     &             (hybcr(1,1)-hy(ie,1)-(hx(ib,1)-hxbcf(iebc+ie+1,jebc))) 
 
c**************************************************************** 
c     Gaussian pulse is injected at the center part of the computation 
c     domains 
c**************************************************************** 
        if(n.le.250)then 
          do i=1,ib 
          do j=1,jb 
           distxs=(200-i)**2+(200-j)**2 
           if(distxs.le.180)then  
           nez(i,j)=source(n) 
           endif 
         enddo 
        enddo 
        endif 
 
c**************************************************************** 
c     Calculate the value of electronic populations (N1, N2, N3 and  
c     N4) in active part in n+1 time step 
c**************************************************************** 
        nu4(2:ie,2:je)=(a10z*u1(2:ie,2:je)+a11z*u4(2:ie,2:je))* 
     &                 gatez(2:ie,2:je) 
        nu3(2:ie,2:je)=(a7z*u3(2:ie,2:je)+ 
     &           a8z*(nu4(2:ie,2:je)+u4(2:ie,2:je))+   
     &           a9z*(nez(2:ie,2:je)+ez(2:ie,2:je))*   
     &           (newp(2:ie,2:je)-p(2:ie,2:je)))*gatez(2:ie,2:je) 
        nu2(2:ie,2:je)=(a4z*u2(2:ie,2:je)+a5z* 
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     &           (nu3(2:ie,2:je)+u3(2:ie,2:je))-  
     &           a6z*(nez(2:ie,2:je)+ez(2:ie,2:je))*  
     &           (newp(2:ie,2:je)-p(2:ie,2:je)))*gatez(2:ie,2:je) 
        nu1(2:ie,2:je)=(a12z*u1(2:ie,2:je)+a13z* 
     &            (nu2(2:ie,2:je)+u2(2:ie,2:je)))*gatez(2:ie,2:je) 
 
 
c**************************************************************** 
c     Update the value of electric fields in PML grids in n+1 time step 
c**************************************************************** 
 
c******For the front region of PML*********************************** 
           nezxbcf(2:iefbc,2:jebc)=caezxbcf(2:iefbc,2:jebc)* 
     &                  ezxbcf(2:iefbc,2:jebc)+cbezxbcf(2:iefbc,2:jebc)* 
     &                  (hybcf(2:iefbc,2:jebc)-hybcf(1:iefbc-1,2:jebc)) 
           nezybcf(2:iefbc,2:jebc)=caezybcf(2:iefbc,2:jebc)* 
     &                 ezybcf(2:iefbc,2:jebc)-cbezybcf(2:iefbc,2:jebc)* 
     &                  (hxbcf(2:iefbc,2:jebc)-hxbcf(2:iefbc,1:jebc-1)) 
c******For the back region of PML*********************************** 
           nezxbcb(2:iefbc,2:jebc)=caezxbcb(2:iefbc,2:jebc)* 
     &                  ezxbcb(2:iefbc,2:jebc)+cbezxbcb(2:iefbc,2:jebc)*     
     &                  (hybcb(2:iefbc,2:jebc)-hybcb(1:iefbc-1,2:jebc)) 
           nezybcb(2:iefbc,2:jebc)=caezybcb(2:iefbc,2:jebc)* 
     &                  ezybcb(2:iefbc,2:jebc)-cbezybcb(2:iefbc,2:jebc)* 
     &                  (hxbcb(2:iefbc,2:jebc)-hxbcb(2:iefbc,1:jebc-1)) 
c******For the left region of PML*********************************** 
           nezxbcl(2:iebc,1:jb)=caezxbcl(2:iebc,1:jb)* 
     &                 ezxbcl(2:iebc,1:jb)+cbezxbcl(2:iebc,1:jb)*  
     &                  (hybcl(2:iebc,1:jb)-hybcl(1:iebc-1,1:jb)) 
           nezybcl(2:iebc,2:je)=caezybcl(2:iebc,2:je)* 
     &             ezybcl(2:iebc,2:je)-cbezybcl(2:iebc,2:je)* 
     &                  (hxbcl(2:iebc,2:je)-hxbcl(2:iebc,1:je-1)) 
           nezybcl(2:iebc,1)=caezybcl(2:iebc,1)* 
     &                  ezybcl(2:iebc,1)-cbezybcl(2:iebc,1)* 
     &                  (hxbcl(2:iebc,1)-hxbcf(2:iebc,jebc)) 
           nezybcl(2:iebc,jb)=caezybcl(2:iebc,jb)* 
     &                   ezybcl(2:iebc,jb)-cbezybcl(2:iebc,jb)* 
     &                   (hxbcb(2:iebc,1)-hxbcl(2:iebc,je)) 
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c******For the right region of PML*********************************** 
           nezxbcr(2:iebc,1:jb)=caezxbcr(2:iebc,1:jb)* 
     &                  ezxbcr(2:iebc,1:jb)+cbezxbcr(2:iebc,1:jb)* 
     &                  (hybcr(2:iebc,1:jb)-hybcr(1:iebc-1,1:jb)) 
           nezybcr(2:iebc,2:je)=caezybcr(2:iebc,2:je)* 
     &                  ezybcr(2:iebc,2:je)-cbezybcr(2:iebc,2:je)* 
     &                  (hxbcr(2:iebc,2:je)-hxbcr(2:iebc,1:je-1)) 
           nezybcr(2:iebc,1)=caezybcr(2:iebc,1)* 
     &            ezybcr(2:iebc,1)-cbezybcr(2:iebc,1)* 
     &           (hxbcr(2:iebc,1)-hxbcf(2+iebc+ie:iebc+iebc+ie,jebc)) 
           nezybcr(2:iebc,jb)=caezybcr(2:iebc,jb)*ezybcr(2:iebc,jb)- 
     &                   cbezybcr(2:iebc,jb)* 
     &           (hxbcb(2+iebc+ie:iebc+iebc+ie,1)-hxbcr(2:iebc,je)) 
 
c**************************************************************** 
c     Substitute the value of electric field in n time step by those in n+1 time 
c     step 
c**************************************************************** 
        ez=nez; ezxbcf=nezxbcf; ezybcf=nezybcf; ezxbcb=nezxbcb 
        ezybcb=nezybcb; ezxbcl=nezxbcl; ezybcl=nezybcl;  
        ezxbcr=nezxbcr; ezybcr=nezybcr 
 
c**************************************************************** 
c     Calculate the value of magnetic fields (Hx,Hz) in main grid  
c     in n+1 time step 
c****************************************************************          
    nhx(1:ib,1:je)=hx(1:ib,1:je)- 
     &              dbhx(1:ib,1:je)*(ez(1:ib,2:je+1)-ez(1:ib,1:je)) 
          nhy(1:ie,1:jb)=hy(1:ie,1:jb)+ 
     &              dbhy(1:ie,1:jb)*(ez(2:ie+1,1:jb)-ez(1:ie,1:jb)) 
 
c**************************************************************** 
c     Calculate the value of magnetic fields in PML grids in n+1 
c     time step 
c**************************************************************** 
 
c******For the front region of PML*********************************** 
          nhybcf(1:iefbc,2:jebc)=dahybcf(1:iefbc,2:jebc)* 
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     &           hybcf(1:iefbc,2:jebc)+dbhybcf(1:iefbc,2:jebc)* 
     &                 (ezxbcf(2:iefbc+1,2:jebc)- 
     &           ezxbcf(1:iefbc,2:jebc)+ezybcf(2:iefbc+1,2:jebc)-  
     &                 ezybcf(1:iefbc,2:jebc))  
          nhxbcf(2:iefbc,1:jebc-1)=dahxbcf(2:iefbc,1:jebc-1)* 
     &         hxbcf(2:iefbc,1:jebc-1)-dbhxbcf(2:iefbc,1:jebc-1)* 
     &         (ezxbcf(2:iefbc,2:jebc)-ezxbcf(2:iefbc,1:jebc-1)+ 
     &         ezybcf(2:iefbc,2:jebc)-ezybcf(2:iefbc,1:jebc-1)) 
        nhxbcf(2:iebc,jebc)=dahxbcf(2:iebc,jebc)*hxbcf(2:iebc,jebc)- 
     &         dbhxbcf(2:iebc,jebc)*(ezxbcl(2:iebc,1)-ezxbcf(2:iebc,jebc)+ 
     &         ezybcl(2:iebc,1)-ezybcf(2:iebc,jebc)) 
          nhxbcf(iebc+1:iebc+ib,jebc)=dahxbcf(iebc+1:iebc+ib,jebc)* 
     &         hxbcf(iebc+1:iebc+ib,jebc)-dbhxbcf(iebc+1:iebc+ib,jebc)* 
     &         (ez(1:ib,1)-ezxbcf(iebc+1:iebc+ib,jebc)-  
     &         ezybcf(iebc+1:iebc+ib,jebc)) 
        nhxbcf(iebc+ib+1:iefbc,jebc)=dahxbcf(iebc+ib+1:iefbc,jebc)* 
     &        hxbcf(iebc+ib+1:iefbc,jebc)- dbhxbcf(iebc+ib+1:iefbc,jebc)* 
     &        (ezxbcr(2:iefbc-(iebc+ib)+1,1)-ezxbcf(iebc+ib+1:iefbc,jebc)+ 
     &        (ezybcr(2:iefbc-(iebc+ib)+1,1)-ezybcf(iebc+ib+1:iefbc,jebc))) 
 
c******For the back region of PML*********************************** 
          nhybcb(1:iefbc,2:jebc)=dahybcb(1:iefbc,2:jebc)* 
     &           hybcb(1:iefbc,2:jebc)+dbhybcb(1:iefbc,2:jebc)* 
     &                 (ezxbcb(2:iefbc+1,2:jebc)- 
     &           ezxbcb(1:iefbc,2:jebc)+ezybcb(2:iefbc+1,2:jebc)-  
     &                 ezybcb(1:iefbc,2:jebc))  
          nhxbcb(2:iefbc,2:jebc)=dahxbcb(2:iefbc,2:jebc)* 
     &        hxbcb(2:iefbc,2:jebc)-dbhxbcb(2:iefbc,2:jebc)*       
     &        (ezxbcb(2:iefbc,3:jebc+1)-ezxbcb(2:iefbc,2:jebc)+ 
     &        ezybcb(2:iefbc,3:jebc+1)-ezybcb(2:iefbc,2:jebc)) 
          nhxbcb(2:iebc,1)=dahxbcb(2:iebc,1)*hxbcb(2:iebc,1)- 
     &         dbhxbcb(2:iebc,1)*(ezxbcb(2:iebc,2)-ezxbcl(2:iebc,jb)+ 
     &         ezybcb(2:iebc,2)-ezybcl(2:iebc,jb)) 
          nhxbcb(iebc+1:iebc+ib,1)=dahxbcb(iebc+1:iebc+ib,1)* 
     &         hxbcb(iebc+1:iebc+ib,1)-dbhxbcb(iebc+1:iebc+ib,1)* 
     &     (ezxbcb(iebc+1:iebc+ib,2)+ezybcb(iebc+1:iebc+ib,2)- 
     &      ez(1:ib,jb)) 
          nhxbcb(iebc+ib+1:iefbc,1)=dahxbcb(iebc+ib+1:iefbc,1)* 
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     &        hxbcb(iebc+ib+1:iefbc,1)-dbhxbcb(iebc+ib+1:iefbc,1)* 
     &        (ezxbcb(iebc+ib+1:iefbc,2)-ezxbcr(2:iefbc-(iebc+ib)+1,jb)+ 
     &        ezybcb(iebc+ib+1:iefbc,2)-ezybcr(2:iefbc-(iebc+ib)+1,jb)) 
 
c******For the left region of PML*********************************** 
          nhybcl(1:iebc-1,1:jb)=dahybcl(1:iebc-1,1:jb)* 
     &                hybcl(1:iebc-1,1:jb)+dbhybcl(1:iebc-1,1:jb)* 
     &                 (ezxbcl(2:iebc,1:jb)-ezxbcl(1:iebc-1,1:jb)+ 
     &                 ezybcl(2:iebc,1:jb)-ezybcl(1:iebc-1,1:jb))  
          nhybcl(iebc,1:jb)=dahybcl(iebc,1:jb)*hybcl(iebc,1:jb)+ 
     &                    dbhybcl(iebc,1:jb)* 
     &                    (ez(1,1:jb)-ezxbcl(iebc,1:jb)-ezybcl(iebc,1:jb)) 
          nhxbcl(2:iebc,1:je)=dahxbcl(2:iebc,1:je)* 
     &       hxbcl(2:iebc,1:je)-dbhxbcl(2:iebc,1:je)* (ezxbcl(2:iebc,2:je+1)- 
     &       ezxbcl(2:iebc,1:je)+ezybcl(2:iebc,2:je+1)-ezybcl(2:iebc,1:je)) 
 
c******For the right region of PML*********************************** 
       nhybcr(2:iebc,1:jb)=dahybcr(2:iebc,1:jb)*hybcr(2:iebc,1:jb)+ 
     &                  dbhybcr(2:iebc,1:jb)* 
     &             (ezxbcr(3:iebc+1,1:jb)-ezxbcr(2:iebc,1:jb)+ 
     &             ezybcr(3:iebc+1,1:jb)-ezybcr(2:iebc,1:jb))  
       nhybcr(1,1:jb)=dahybcr(1,1:jb)*hybcr(1,1:jb)+dbhybcr(1,1:jb)* 
     &                 (ezxbcr(2,1:jb)+ezybcr(2,1:jb)-ez(ib,1:jb))  
         nhxbcr(2:iebc,1:je)=dahxbcr(2:iebc,1:je)* 
     &           hxbcr(2:iebc,1:je)-dbhxbcr(2:iebc,1:je)* 
     &           (ezxbcr(2:iebc,2:je+1)- ezxbcr(2:iebc,1:je)+ 
     &            ezybcr(2:iebc,2:je+1)-ezybcr(2:iebc,1:je)) 
  
 
c**************************************************************** 
c     Substitute the value of magnetic field in n time step by those in n+1 time 
c     step 
c**************************************************************** 
       pold=p; p=newp; hx=nhx; hy=nhy 
       hxbcf=nhxbcf; hybcf=nhybcf; hxbcb=nhxbcb; hybcb=nhybcb 
       hxbcl=nhxbcl; hybcl=nhybcl; hxbcr=nhxbcr; hybcr=nhybcr 
       u1=nu1; u2=nu2; u3=nu3; u4=nu4; 
c**************************************************************** 
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c**************************************************************** 
c     Perform the Discrete Fourier Transformation 
c     The electric field signal is transformed from time domain to spectral  
c     domain  
c**************************************************************** 
 
        do i=1,10 
         do j=1,10 
 
          im=(i-1)*40+10 
          jm=(j-1)*40+10 
 
         do m=1,600 
          oww=2*pi*cc/(m*0.5e-9+450.0e-9) 
          ow=2*pi*(m*1e12+3.5e14) 
          ft3ezw(i,j,m)=ez(im,jm)*(cexp(ci*oww*n*dt))/(100*nmax) 
          ft4ezw(i,j,m)=ft4ezw(i,j,m)+ft3ezw(i,j,m) 
          ft3ez(i,j,m)=ez(im,jm)*(cexp(ci*ow*n*dt))/(100*nmax) 
          ft4ez(i,j,m)=ft4ez(i,j,m)+ft3ez(i,j,m) 
         enddo 
         enddo 
        enddo 
 
c**************************************************************** 
c    Record the total electric field energy of the system  
c**************************************************************** 
       if(mod(n,50).eq.0)then 
         do i=1,ib 
         do j=1,jb 
           gtemp=0.5*gz(i,j)*ez(i,j)*ez(i,j) 
           gsum(gg)=gsum(gg)+gtemp  
        enddo 
        enddo 
          gg=gg+1 
          te(tt)=ez(200,200) 
          temax(tt)=maxval(ez) 
          tt=tt+1 
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       endif 
 
c**************************************************************** 
c     End the time loop 
c**************************************************************** 
       enddo 
 
c**************************************************************** 
c     Output data of the powder spectrum and the time evolution of field  
c**************************************************************** 
 
c**************************************************************** 
c     Generate the data file of the powder spectrum 
c**************************************************************** 
       open(unit=21,file="spe_ez_full",status="unknown") 
       open(unit=22,file="spe_ez_half",status="unknown") 
       open(unit=221,file="spe_wave_full",status="unknown") 
       open(unit=222,file="spe_wave_half",status="unknown") 
        
        do m=1,600 
         do i=1,10      
          do j=1,10      
          ftezi(m)=ftezi(m)+abs(ft4ez(i,j,m)*conjg(ft4ez(i,j,m))) 
          ftezib(m)=ftezib(m)+abs(ft4ezb(i,j,m)*conjg(ft4ezb(i,j,m))) 
          fteziw(m)=fteziw(m)+abs(ft4ezw(i,j,m)*conjg(ft4ezw(i,j,m))) 
          ftezibw(m)=ftezibw(m)+abs(ft4ezbw(i,j,m)* 
     &    conjg(ft4ezbw(i,j,m))) 
          enddo 
         enddo 
 
        write(21,888) 
     &  m*0.01+3.5,ftezi(m) 
        write(22,888) 
     &  m*0.01+3.5,ftezib(m) 
        write(221,888) 
     &  (m*0.5+450),fteziw(m) 
        write(222,888) 
     &  (m*0.5+450),ftezibw(m) 
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        enddo 
 
c**************************************************************** 
c     Generate the data file of the electric field distribution pattern 
c**************************************************************** 
        open(unit=24,file="ez_final",status="unknown") 
        write(24,'(403e15.6)') ez 
        close(24) 
 
 666   format(i10,e25.15) 
 777   format(i8,e16.7) 
 888   format(e16.7,e16.7) 
       stop 
       end 
 
c**************************************************************** 
c     End of program 
c**************************************************************** 
 
 


	theses_copyright_undertaking
	b21458923

