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ABSTRACT 

Computational Aeroacoustics (CAA) has been developed for noise predictions, 

sound-flow interactions and noise control methodologies for some years.  There is a 

major difficulty in any CAA; that of resolving correctly the aerodynamic and 

acoustic scales which differ by three to four orders of magnitudes.  A frequently used 

method is to separate the calculation of the aerodynamics and acoustics field and to 

carry out the simulation sequentially, thus giving rise to the well known two-step 

method.  In this method, the unsteady flow field can be determined first using any 

conventional and established flow simulation schemes, such as direct numerical 

simulation (DNS) or large eddy simulation (LES).  Once the aerodynamic field is 

known, the sound in the far field can be analyzed using the acoustic analogy or the 

vortex sound theory.  In other words, the two-step method solves the Navier-Stokes 

equation, and a given wave equation with a specified sound speed.  Therefore, if the 

noise source generation mechanism is not of primary interest, the two-step method is 

most appropriate. 

If the noise source generation mechanism and the far field noise are to be 

determined, the acoustic disturbances in the whole field need to be deduced 

simultaneously with the aerodynamic field.  This means that both the aerodynamic 

and acoustic fields have to be calculated simultaneously.  This approach for CAA is 

either called the direct noise calculation (DNC) or the one-step method for CAA and 

is able to yield the aerodynamic and acoustic field as well as the sound propagation 

speed directly.  In view of scale disparity (the aerodynamic disturbances are 103 to 

104 times larger than acoustic fluctuations); the one-step method has to be highly 

accurate so that both aerodynamic and acoustic disturbances can be resolved 
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accurately.  Present research on one-step method indicates that a low-dispersion and 

low-dissipation scheme with high-order filters and high-order non-reflecting 

boundary conditions is required.  Such a code is very complicated because of the 

complex non-linear unsteady compressible Navier-Stokes equations that need to be 

solved.  Parallel computation could not be fully made used of; therefore, 

computational time becomes an important issue in any one-step method for CAA. 

This thesis proposes an alternative to conventional one-step methods and 

attempts to solve an improved Boltzmann equation (BE) rather than the non-linear 

Navier-Stokes equations.  This method offers the following advantage over DNS or 

LES methods.  Since the improved BE is linear, the computational code has a very 

simple structure.  An effective numerical simulation of the improved BE is the lattice 

Boltzmann method (LBM), where the continuous velocity space is discretized and 

the particles are allowed to move with specific speeds.  Conventional LBM has been 

developed mostly for incompressible and very low Mach number flows and is 

limited to mono-atomic gases.  If the LBM were to be applicable to aeroacoustics 

simulation, it should recover the specific heat ratio and gas properties correctly for 

diatomic gases.  Recent LBM simulations of compressible flows still invoke the 

mono-atomic gas model; hence the calculated specific heat ratio differs from 1.4 for 

diatomic gas and the Sutherland law and Fourier law of heat conduction are not 

recovered correctly.  In other words, the calculated Reynolds and Prandtl numbers 

would be different from the specified values.  Therefore, these methods could not be 

used to simulate aeroacoustic problems for air. 

If the LBM is to be adopted for one-step aeroacoustic simulation of low Mach 

number incompressible flows, the first task is to recover the specific heat ratio and 

the Sutherland law correctly, thus giving rise to a correct Reynolds number.  This is 
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accomplished by modifying the BGK model for the collision term in the BE by 

deriving an effective collision time that takes into account the role played by 

translational and rotational energy of the atoms.  The resultant equation is linear on 

the left hand side and can be solved using a 6th-order compact finite difference 

method to evaluate the streaming term and a second order Runge-Kutta time scheme 

to deal with the time dependent term on the left hand side of the improved BE.  This 

method of solving the improved BE proves to be quite successful in resolving the 

aerodynamic and acoustic scales accurately.  Furthermore, implementation of the 

non-reflecting boundary conditions on the computational boundary is relatively 

simple compared with the DNS scheme.  A fourth- to sixth-order accurate scheme is 

required for the boundary in a DNS solution while a first-order accurate boundary 

scheme in the improved LBM is sufficient to give the same accuracy as the DNS 

solutions. 

The improved LBM is tested against many classical problems of aeroacoustic 

propagation in stationary and moving medium.  These include developing acoustic, 

vortical and entropy pulses, speed of sound recovery and sound scattering by a 

vortex.  All improved LBM solutions are validated against DNS results and available 

theoretical predictions.  The comparisons show that the one-step LBM scheme can 

be used to accurately resolve the attempted aeroacoustic problems. 

The advantage of this one-step CAA method is that the code is only about 400 

lines for all cases tested, where as if the Navier-Stokes equations are solved using 

DNS a code with 1400 lines are not unusual.  Also, the simple structure of the LBM 

is most suitable for parallel computation, which means a significant reduction in 

computational time.  The other advantage of this one-step CAA method is that a very 

simple form of boundary condition could be developed for CAA problems.  The next 
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step is to require the improved BE to recover the Prandtl number correctly.  Once 

that is accomplished, the improved LBM could be extended to calculate 

compressible flows with shocks. 
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1  Introduction 

Aeroacoustics are concerned with sound generated by unsteady aerodynamic flows 

including turbulence and moving aerodynamic surfaces, rather than by externally 

applied forces or motions of classical acoustics.  Noise problems due to high-speed 

jets, unsteady cavity flow or whistler-nozzle tone are aeroacoustics, while the 

acoustics due to vibrating drums or strings would fall into the category of classical 

acoustics.  People are becoming more and more concern about their life qualities, 

noise complaints become more and more frequent especially in urban areas; some of 

the complaints are related to noise associated with airplanes at take-off and during 

the landing, jet flows and fan systems in factories, natural gas and water ducts in 

homes and commercial facilities.  Sometimes the sound-structure interaction can 

cause self-sustained vibrations and thus threaten the safety of the systems/facilities 

and human lives.  Self-sustained aeroacoustic pulsations were found (Bruggeman et 

al. 1991) in gas transport systems with closed side branches.  Research on 

aeroacoustics can be used to explore the noise generation mechanism inside sound 

sources, to develop new noise abatement strategy, and also to benefit the safety of 

the structures with aeroacoustics. 

In the study of aeroacoustics, both the unsteady aerodynamic flows and the 

noise radiation need to be predicted correctly if aeroacoustic problems are to be 

solved properly.  It is different from classical acoustics problems where only the 

noise fields are highlighted.  The need to calculate both the aerodynamic field and 

the acoustic field simultaneously constitutes one of the major difficulties in 

aeroacoustic research.  The difficulty stems from the difference in scales encountered 

in the aerodynamic field and the acoustics field.  Typically unsteady aerodynamics 
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would produce significant near-field pressure disturbances due to the vortical, 

eddying motions of the unsteady flows.  On the other hand, even for loud noises, 

such as those generated by early turbo-jets with a noise level of 114dB, the pressure 

fluctuations for the noise field is four orders of magnitude (10-4) less than the 

ambient pressure (Hall 1987).  Therefore, the radiated noise is far smaller than the 

near-field pressure fluctuations.  Predicting these very small acoustic disturbances in 

the midst of relatively very large unsteady flows becomes a very challenging 

problem for researchers working in the area of aeroacoustics (Hirschberg and 

Schram 2002). 

According to the classification by Colonius and Lele (2004), if the basic state 

of the flow is linear, aeroacoustic problems can be classified as linear and nonlinear 

on the basis of the physical processes involved in the problems.  Linear problems 

mean that the acoustic fluctuations tend to be small so that there are minimal 

distortions and the amplitude decreases when the disturbances transmit through the 

domain examined.  Typical linear acoustic problems include the classical boundary 

value problems of linear acoustics, sound propagation with reflecting walls, barriers, 

absorbing material, duct acoustics and scattering of sound in a prescribed non-

uniform medium (Colonius and Lele 2004). 

Noise generation in flowing medium is derived mainly from pressure 

fluctuations which occur in unsteady flows in order to balance momentum 

fluctuations.  These pressure fluctuations will propagate outward from the sources 

and will be recognized as sound (Goldstein 1976).  However, not all pressure 

disturbances are sinusoidally shaped waves and periodic (Pierce 1989).  Most 

aeroacoustic noise sources are nonlinear in nature.  Some examples are noise 

radiated from boundary layers (transition, turbulence, separation and mixing), noise 
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from turbulent jet flows, noise from discontinuities inside tubes, fan noise and 

blading noise.  The nonlinear noise sources will give rise to nonlinear wave 

propagations, nonlinear steepening and decay, focusing, nonlinear viscous effects, 

etc.  In an environment with real fluid, viscous effect readily dissipates high-

frequency components of a steepened wave, consequently, all that remain are the 

harmonic components of the disturbance field.  Therefore, the sound field in the near 

field of a turbulent jet is nonlinear because the disturbances do not behave 

harmonically; however, the far-field noise is linear because of viscous dissipation.  

Consequently, the classical acoustic theory can be used to analyze the noise in the far 

field (Wells and Renaut 1997). 

For aeroacoustic problems, the noise sources and the near-field acoustic 

disturbances are essentially nonlinear; therefore, classical acoustic theory cannot be 

used to analyze this class of problems.  Furthermore, theoretical solutions can 

seldom be found for this class of nonlinear aeroacoustic problems and experimental 

techniques could rarely be used to identify the very small fluctuations inside large-

scale aerodynamic flows (Hassall and Zaveri 1979).  As a result, if understanding of 

these nonlinear aeroacoustic problems were to be obtained, computational methods 

are frequently employed (Colonius and Lele 2004).  Computational aeroacoustics 

(CAA) becomes an important tool for researchers and has been developed for noise 

prediction, for the evaluation of sound-flow interactions and for noise control 

methodologies for some years (Wells and Renaut 2004).  Since both the acoustic 

fluctuations and the aerodynamic flows need to be evaluated correctly for CAA 

problems, one of the major difficulties encountered is the simultaneous solution of 

the aerodynamic and acoustic fields (Hirschberg and Schram 2002).  In most 

unsteady flows, the aerodynamic flow field has mean flow quantities and 
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fluctuations that are 103 to 104 times larger than their acoustic counterparts.  In other 

words, if the mean flow field is normalized to order 1, the acoustic disturbance field 

will be of order 10-4 to 10-3 (Goldstean 1976).  Therefore, any solution technique 

used should be able to resolve scales that are 3 to 4 orders of magnitude apart.  Most 

conventional computational fluid dynamics (CFD) methods can resolve the unsteady 

flow field correctly (Chung 2002); however, they could not compute the acoustic 

field with an acceptable accuracy.  To overcome this difficulty in CAA, two kinds of 

methods, namely the hybrid method and the direct noise calculation method, are 

frequently used.  Previous and recent work on these two methods is briefly reviewed 

below. 

1.1 Hybrid Method for Noise Prediction 

The hybrid method is essentially a two-step method whereby the aerodynamic 

solution is obtained first and the solution is used to determine the noise in the far 

field (Colonius & Lele 1993).  This means that details of noise source generation and 

propagation are lost.  In the first step, the unsteady aerodynamic field can be 

determined using any conventional and established flow simulation schemes, such as 

finite difference scheme, direct numerical simulation (DNS) scheme, or large eddy 

simulation (LES) scheme.  Once the aerodynamic field is known, the sound in the far 

field can be analyzed using the acoustic analogy (Lighthill 1952) or the vortex sound 

theory (Powell 1964; Howe 2002).  In other words, the two-step method solves the 

Navier-Stokes equation and a given wave equation with a specified sound speed.  

Therefore, if the noise source generation mechanism is not of primary interest, the 

two-step method is most appropriate.  Details in the solution of the aerodynamic 

field are available in the literature and will be described in subsequent chapters.  

Therefore, it will not be repeated here.  A brief review of the solution of the wave 
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equation and the associated noise is described below. 

Lighthill (1952) gave the acoustic analogy to predict jet noise using this hybrid 

method.  In brief, Lighthill (1952) devised an arrangement of the continuity and 

momentum equations where all terms not appearing in the linear wave operator are 

grouped into a double divergence of a source-like term now known as the Lighthill 

stress tensor.  The resultant equation becomes,  
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0−+=  is the stress tensor, 0c  is the speed of the sound in 

the stagnant uniform fluid surrounding the listener.  The density perturbation would 

therefore follow a wave operator on the left-hand side of Eq. (1.1) while all 

nonlinear effects are accounted for by the stress tensor Tij.  The right hand side of 

this equation can be identified as a source of sound.  Lighthill’s analogy therefore 

defined the mechanism of the sound sources inside this tensor.  Sound radiation can 

be calculated after all the sources are properly evaluated. 

Because of the appearance of the wave operator in Lighthill’s equation, the 

solution for certain boundary conditions can be obtained by taking advantage of the 

properties of linear equations, in particular, Green’s theorem.  The integral 

formulation can then be written as (Hirschberg and Schram 2002), 
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This integral can seldom be evaluated analytically and quite often numerical 

methods have to be used.  In addition, approximations have to be made to simplify 
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the stress tensor which consists of contributions from the mean and disturbance 

fields.  Furthermore, the integral is evaluated over time; this means that any 

turbulence contributions to the stress tensor could be smoothed out over time and 

hence incorrectly accounted for.  As a result, certain details of the flow and acoustic 

disturbance fields could be lost through this time integral over the whole domain. 

In practice, the unsteady flow solution used to compute the sound sources can 

be based on incompressible or compressible equations; either solved using finite 

difference methods, DNS or LES technique.  The difficulty in implementing 

Lighthill’s acoustic analogy is the determination of the stress tensor ijT  for unsteady 

flows.  Therefore, it is necessary to assume that the flow (or computational) domain 

already includes most of the noise-source region.  However, in some flow cases, 

even the computational outlet boundary (no matter how large in realistic 

computational terms) contains a strong unsteady flow, such as a developing 

boundary layer.  Therefore, care should be taken in the specification of the boundary 

conditions for the aerodynamic flow.  One important consideration is to ensure that 

most of the strong sound sources are included inside the computational domain and 

the outside sources are negligible (Gloerfelt et al 2003).  Another important issue is 

that the computational outlet boundary should be nonreflecting so that all 

disturbance waves are not reflected back into the computational domain to affect the 

aerodynamic calculations (Poinsot and Lele 1992).  A more detailed discussion of 

this latter consideration is given in Chapter 2. 

Much of the effort in using this acoustic analogy comes in the form of 

attempts to characterize the stress tensor.  Lighthill (1952) applied this analogy to the 

delicate problem of sound production by a free turbulent flow and found that the 

sound source power scales as the 8th power of the mean velocity of the jet.  The 
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scaling law was correct for clod jets.  However it is not valid for hot jets.  

Subsequently, Lighthill’s theory was improved by Ffowcs-Williams and Hawkings 

(1969) and this gave rise to the Ffowcs-Williams-Hawkings equation (Ffowcs-

Williams and Hawkings 1969), Leung and So (2001) used this equation to study the 

far-field noise generation from blade-vortex resonance.  Wang and Moin (2000) 

predicted the far-field noise of a turbulent flow over the trailing edge of a hydrofoil 

using an incompressible LES code to evaluate the half-plane Green’s function.  More 

recently, Gloerfelt et al. (2003) and Larsson (2004) studied the far-field noise 

radiations of a subsonic cavity flow using the Ffowcs-Williams-Hawkings model 

and aerodynamic flow results obtained from DNS simulations. 

Another widely used acoustic analogy is the vortex sound method.  Since 

vortex dynamics can also explain the lift on an airfoil, the sound sources could be 

expressed in the form of vorticity distribution (Powell 1964).  If Lighthill’s acoustic 

analogy is invoked, the whole unsteady flow region needs to be considered in 

performing the integration.  On the other hand, if the vortex sound method is used, 

only the region where vorticity is present needs to be included in the evaluation of 

the integral to deduce sound radiation.  The advantage of using the vortex sound 

method is that a smaller domain can be used so the noise prediction step can be 

faster.  This method provides a quick assessment of the design variables on radiated 

noises.  It should be stressed that the noise prediction is only correct if there is 

sufficient accuracy in the simplified flow model.  Howe (2002) studied blade-vortex 

interactions, interactions at the trailing edge and leading edge, and resonant 

oscillations inside tubes using the vortex sound method.  His prediction results 

compared favorably with experimental data.  The vortex sound method is more 

appropriate when used to explain the sound sources in vortex-structure interaction 
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flow, such as cavity noise, whistle-nozzle and human whistling. 

However the validity of acoustic analogy theory has not been universally 

accepted.  Lighthill’s analogy rearranged the compressible Navier-Stokes equations 

in a way that the linear acoustic propagation was shown in the left side of the 

Eq.(1.1), then, he called the right hand side of Eq.(1.1) jiij xxT ∂∂∂ /  be the noise 

source.  Actually, if realizing the mean flow refraction, the full wave propagation 

operator may not have the simple form as left hand side of Eq.(1.1).  It was proved 

by some experimental works that Lighthill’s analogy was correct for clod jets but not 

valid for hot jets (Atvars et al 1965, Grande 1965).  Lilley derived a new equation 

that included acoustic mean flow interaction (Tam 2002).  The noise source terms 

are quite different from Lighthill’s quadrupole source terms.  Tam (2002) gave four 

numerical examples to show the failure of acoustic analogy.  It was proved that the 

quadrupole noise source terms are not unique, and acoustic analogy theory may 

mislead the physics for the noise sources.  However, whether the Lilley’s source 

terms are more accurate for jet noise or not, has not been proved by experiments.  

Many jet noise problems are due to the turbulent of flows, Lighthill’s formula dose 

not distinguish whether the flow is turbulent or not, so it can hardly to be believed 

that this theory can predict turbulent noise sources correctly. 

For the hybrid methods, any conventional CFD programs can be used to 

calculate the unsteady flow field.  Since most, if not all, available CFD computer 

codes are well developed, there is no need to develop new CFD schemes for CAA 

problems.  Once the aerodynamic solution is available, noise in the far field can be 

calculated by solving the Lighthill equation.  This linear wave equation can be 

solved assuming either the acoustic analogy or the vortex-sound theory.  Both 

approaches presumed a known constant speed of sound in a stagnant uniform fluid 
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(In reality, this sound speed might need to be adjusted according to the fluid state.).  

Consequently, the hybrid method could only estimate the noise level due to the 

unsteady flow.  The method cannot provide information on sound generation 

mechanisms and the near-field acoustic disturbance behavior.  Furthermore, the 

hybrid method implies that the interaction between the unsteady aerodynamic flow 

and acoustic field cannot be properly accounted for.  Only the noise generated can be 

predicted but sound-flow interaction could not be studied.  For these interaction 

problems, the unsteady flow and the acoustic fluctuations should be calculated 

simultaneously in the same step.  This direct noise computation method is discussed 

below. 

1.2 Direct Noise Computation Using Navier-Stokes Equations 

If the noise source generation mechanism and the far field noise are to be determined, 

the acoustic disturbances in the whole field need to be calculated simultaneously 

with the aerodynamic field.  This means that both the aerodynamic and acoustic 

fields have to be calculated simultaneously so that their interaction is resolved in the 

same calculation.  This approach for CAA is either called the direct noise calculation 

(DNC) or the one-step method for CAA and is able to yield the aerodynamic and 

acoustic field as well as the sound propagation speed directly. This one-step 

computation should give the unsteady aerodynamic flow, and at the same time, 

predict the small acoustic disturbances and their propagation, thus giving rise to 

noises in the far field.  In view of scale disparity (the aerodynamic disturbances are 

103 to 104 times larger than acoustic fluctuations); the one-step method has to be 

highly accurate in order that both aerodynamic and acoustic disturbances can be 

resolved accurately.  Otherwise, the acoustic disturbances could not be distinguished 

from numerical errors and the whole computation is in doubt. 
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Present research on one-step method indicates that a low-dispersion, low-

dissipation scheme is required to give highly accurate solutions for the governing 

equations.  Most widely used CAA schemes are formulated based on finite 

difference methods, finite volume methods or the conservation element (CE) method.  

Among the more commonly used schemes are the dispersion-relation-preserving 

(DRP) scheme of Tam and Webb (1993), the method of minimization of group 

velocity error (MGV) scheme by Holberg (1992), the high-order compact 

differencing scheme of Lele (1992) and the Essentially Non-Oscillatory (ENO) 

scheme by Casper (1994).  The DRP, MGV and compact schemes are centered non-

dissipative schemes, a property which is desirable for liner wave propagation.  In this 

thesis, a 6th-order compact finite difference scheme suggested by Lele (1992) is 

introduced in Chapter 2.  This DNS scheme is used to provide the benchmark 

solutions to verify the results obtained by solving the Boltzmann equation using the 

lattice Boltzmann method to carry out a direct noise computation. 

An inherent lack of numerical dissipation of this high-order finite difference 

scheme might result in spurious numerical oscillations and instability in nonlinear 

problems, especially in boundary-layer type problems.  Thus, the computations could 

be susceptible to failure from the unrestricted growth of numerical instabilities.  

These difficulties originate from a variety of sources including mesh non-uniformity, 

approximate boundary conditions and nonlinearity.  A high-order filter is needed to 

suppress numerical instabilities in the computations arising from these sources 

(Gaitonde and Visbal 1999). 

In one-step aeroacoustic computation, the treatment of the boundary points is 

very important.  Incorrect treatment could cause serious numerical errors in the 

computations.  For example, the lack of grid points near the computational 
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boundaries will cause the accuracy of the 6th-order compact finite difference scheme 

and the high-order filtering scheme to reduce as the boundary is approached.  

Therefore, a lower-order finite difference scheme and a lower-order filtering scheme 

will have to be implemented near and at the boundary.  Furthermore, when a pulse is 

crossing the computational boundary, if the treatment of the pulse is not correct, 

numerical errors would arise and a spurious reflected wave would be created at the 

boundary.  These spurious reflected waves would propagate inward towards the 

computational domain.  For most high-order finite difference schemes (with low-

dispersion and low-dissipation), numerical viscosity could not erase the errors 

created by the spurious waves when they are transmitted over finite grid distances 

away from the boundary.  Since the aerodynamic flow scales are 103 times larger 

than the acoustic scales, the spurious reflected waves from the boundary could be 

much larger than the real sound waves in the problem under investigation.  The 

spurious waves could propagate into the region of interest, thus contaminating the 

calculation and contribute to a decrease in the computational accuracy.  They could 

even drive the whole solution to a wrong state.  Therefore, correct boundary 

conditions play a key role in aeroacoustic computations.  Much of the effort has been 

focused on finding proper and correct boundary conditions for CAA problems 

(Poinsot and Lele 1992), especially on non-reflecting boundary conditions (Colonius 

et al. 1993, Giles 1990, Freund 1997, Hu 1996). 

An effective DNC method has been proposed and verified against a number of 

classical aeroacoustic problems (Lele 1992).  This DNC scheme solves the complex 

nonlinear unsteady compressible Navier-Stokes equations using a combined a 6th-

order compact finite difference scheme for spatial differencing, 4th-order Runger-

Kutta scheme for time marching, and high-order filters and high-order non-reflecting 
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boundary conditions.  However, this code is very complicated and parallel 

computation could not be fully made used of.  Therefore, computational time 

becomes an important issue in one-step CAA using this numerical method.  In view 

of this, an alternative approach is proposed whereby a linear equation is solved 

instead of the Navier-Stokes equation.  This proposed method is based on the 

Boltzmann equation.  A brief discussion on previous work related to the Boltzmann 

equation and its application to aeroacoustic computation is given below. 

1.3 Objectives of the Present Thesis 

This thesis proposes an alternative to conventional one-step methods and attempts to 

solve a modeled Boltzmann equation (BE) rather than the nonlinear Navier-Stokes 

equations.  Since the BE is linear (Harris 1999, Wolf-Gladrow 2000), the 

computational code has a very simple structure.  An effective numerical simulation 

of the modeled BE is the lattice Boltzmann method (LBM) where the collision 

function is approximated by the commonly used BGK model involving a single 

relaxation time (Bhatnagar et al. 1954), the continuous velocity space is discretized 

and the particles are allowed to move with specific speeds (Chen and Doolen 1998).  

The LBM has been developed mostly for incompressible flows (He and Doolen 1997, 

Guo 2000, Premnath and Abraham 2004) and very low Mach number flows (He and 

Luo 1997, Filippova and Hänel 2000, Ricot et al 2002) and is limited to mono-

atomic gases.  If the LBM were to be applicable to aeroacoustics simulation, it 

should recover the specific heat ratio and gas properties correctly for diatomic gases.  

Recent LBM simulations of compressible flows still invoke the mono-atomic gas 

model (Palmer and Rector 2000, Tsutahara et al 2002, Kang et al 2003); hence the 

calculated specific heat ratio differs from 1.4 for diatomic gas and the Sutherland law 

and Fourier law of heat conduction are not recovered correctly.  In other words, the 
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calculated Reynolds and Prandtl numbers would be different from the specified 

values.  Therefore, the conventional LBM methods could not be used to simulate 

aeroacoustic problems for diatomic gases, such as air. 

The present thesis proposes to tackle the problem in a systematic way.  A three 

step approach is adopted; recovering the specific heat ratio for diatomic gas, 

recovering the correct first coefficient of viscosity and recovering the correct thermal 

conductivity.  In the present study, focus is put on sound propagation in low Mach 

number flows.  Therefore, it is most important to treat the first two concerns, i.e., 

recovering the specific heat ratio and the coefficient of viscosity correctly.  The last 

concern will be tackled after the present approach has been fully validated and the 

present study completed.  Therefore, the present thesis would concentrate on 

modifying conventional LBM methods so that the specific heat ratio for diatomic 

gases and the first coefficient of viscosity are recovered correctly.  Thus, the 

calculated Reynolds number is ensured to be the same as the specified Reynolds 

number for the problem.  In order to recover the specific heat ratio for diatomic 

gases, the rotation energy of the diatomic particles needs to be considered in the 

energy conservation equation.  Therefore, a revised energy conservation law for 

diatomic particles is proposed so that the fully unsteady Navier-Stokes equations 

could be recovered from the modeled BE.  In order to recover the viscosity 

coefficient correctly, a proposed approach is to modify the relaxation time using the 

Sutherland law as a constraint.  The improved modeled BE can be used to carry out 

one-step aeroacoustic calculations of compressible flows in air.  From this point on, 

the terminology improved BE is used to denote the improved modeled BE. 

The improved BE is solved using a 6th-order compact finite difference method 

to evaluate the streaming term combined with a second order Runge-Kutta scheme 
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for time marching.  Some classical CAA problems are used to validate this one-step 

LBM computation.  From this point on, the term improved LBM is used to designate 

the LBM based on the improved BE.  These problems are: propagation of plane 

pressure pulse, propagation of circular pulse, simulations of acoustic, entropy and 

vortex pulses, speed of sound and sound scattering by a vortex.  All these LBM 

solutions will be validated against DNS benchmark results and/or theoretical 

solutions.  The structure of this code is quite simple and is about 400 lines, whereas 

the DNS code for the solution of the Navier-Stokes equations will involve at least 

1400 lines.  The simple structure of the improved LBM code is most suitable for 

parallel computation, which means a significant saving in computational time.  The 

other advantage of this improved LBM is that a very simple form of boundary 

condition could be developed for CAA problems.  The next step is to require the 

modeled BE to recover the Prandtl number correctly.  Once that is accomplished, the 

improved LBM could be extended to calculate compressible flows with shocks. 

1.4 Outline of the Thesis 

The thesis is organized in the following manner.  Chapter 2 outlines the one-step 

CAA solving the Navier-Stokes equations using a DNS technique, the finite-

difference schemes, the time marching scheme, the boundary filters and the 

boundary treatment techniques.  The proposed boundary techniques would be 

validated against some specific aeroacoustic problems in Chapter 3.  Then using this 

proposed boundary technique, some basic aeroacoustic problems are calculated and 

the solutions are used to validate those obtained from the improved LBM.  Chapter 4 

outlines the derivation of the improved BE and the improved LBM.  In this chapter, 

the approaches used to recover the specific heat ratio and the viscosity coefficient are 

discussed and a one-step CAA method based on the improved LBM is proposed.  
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Some basic aeroacoustic problems are calculated using this improved LBM in 

Chapter 5 and the results are validated against previously obtained DNS solutions (in 

Chapter 3) and/or theoretical predictions.  The problem of sound scattering by a 

vortex is calculated using the improved LBM and a modified boundary treatment in 

Chapter 6 where the LBM results are also verified against DNS computations.  This 

last example is essentially used to test the ability of the improved LBM to replicate 

the prediction of directivity in aeroacoustic problems correctly.  Chapter 7 

summarizes the contributions of this thesis with recommendations for further work. 
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2  One-Step Computational Aeroacoustics Method 

Using Navier-Stokes Equations 

Two basic methods for computational aeroacoustics (CAA) have been introduced in 

Chapter 1; namely a two-step method and a one-step method.  For two-step methods, 

there is an unsteady flow prediction step and a noise radiation step.  The 

aerodynamic flow state is used to estimate the noise sources for noise prediction 

using either Lighthill’s acoustic analogy (Lighthill 1952, Ffowcs-Williams and 

Hawkings 1969) or vortex sound theory (Davies 1988, Howe 1999, Freund 2000, 

Agarwal et al. 2004).  The unsteady flow and acoustic fields are not evaluated 

simultaneously so the interaction between the noise and the flow could not be 

explored, hence the noise source generation mechanism.  Using direct noise 

computation (DNC) method, better known as the one-step method, both the far-field 

sound and the near-field aerodynamics are evaluated in the same calculation step.  

This way, the method takes into account the direct interaction between the noise and 

aerodynamic fields, thus it is able to yield important information on the noise source 

generation mechanism. 

In view of the large difference in scales between the aerodynamic and acoustic 

fluctuations, the solutions should be highly accurate to fully reveal the acoustic 

fluctuations within the aerodynamic solutions.  Since DNC methods could yield 

noise predictions in one step and the results are likely to give near-field information 

on noise source as well as far-field noise compared to two-step methods, an effective 

DNC method using Navier-Stokes equations would be first discussed in detail in this 

chapter.  This method is then used as a benchmark to gage the success of a proposed 
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one-step method based on the solution of the Boltzmann equation making use of the 

lattice Boltzmann method.  This latter one-step method is the main objective of the 

present thesis.  Altogether, there are four sections in this chapter; they are: (1) the 

governing Navier-Stokes equations; (2) a 6th-order compact finite difference scheme; 

(3) a 4th-order Runge-Kutta method and filters; and (4) boundary treatment schemes 

for open as well as solid boundaries.  In presenting the DNS scheme, its ability to 

accurately resolve the disparity in scales is pointed out.  These sections are described 

in detail below. 

2.1 Governing Equations 

The governing equations for the DNC method proposed in this thesis are the two-

dimensional (2D) fully unsteady compressible Navier-Stokes equations and they are 

cast in a strong conservation form.  The vector form of the equations in Cartesian 

coordinates (x, y) can be written in a compact form as 

yxyxt ∂
∂

+
∂

∂
=

∂
∂

+
∂
∂

+
∂
∂ νν FEFEQ     , (2.1) 

where Q denotes the conservative variable matrix [ ], , , T
tu v E=Q ρ ρ ρ , and 

2/)()1/( 22 vupEt ++−= ργ .  The equation of state for a perfect gas is 

RTp ρ=     , (2.2) 

where R is the Universal gas constant.  Equations (2.1) and (2.2) as given are 

dimensional; however, they will be made dimensionless by normalizing with 

appropriate characteristic length, velocity and time scales when solved numerically.  

The inviscid flux vectors and the viscous flux derivative terms are represented by 

2, , ,
T

tρu u p ρuv (E p)u⎡ ⎤= + +⎣ ⎦E ρ     , (2.3a) 

2, , ,
T

tρv ρuv ρv p (E p)v⎡ ⎤= + +⎣ ⎦F     , (2.3b) 
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where the stress tensor components and the heat fluxes are given as 
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The first coefficient of viscosity μ can be related to the fluid temperature by 

Sutherland law, i.e., 
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where 0μ  and 0T  are reference values and S is an effective temperature called 

Sutherland constant.  The coefficient of thermal conductivity could be evaluated 

from the definition of the Prandtl number, Pr 

( )1PrPr
Pr

−
=⇒=⇒=

γ
μγμμ Rk

C
k

k
C pp     , (2.6) 

where pC  is the specific heat at constant pressure and can be evaluated from 

vp CC /=γ  and RCC vp =− , and γ is the specific heat ratio.  For air, Pr = 0.71 

which can be substituted into Eq. (2.6) to give an equation for k. 

These governing equations for the fluid can be normalized using appropriately 

defined characteristic length, time and velocity scales.  For the acoustics problem 

under investigation, let the characteristic scales be defined as the characteristic 

length L*, the characteristic speed of the flow u*, the mean temperature T*, and the 

mean density ρ*.  Thus defined, the dimensionless parameters can be written as 

2******** ,,,,/, uppTTTuuuuLttLxx ρρρρ ′=′=′=′=′=′=     , 
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where the “prime” is used to denote the dimensionless values.  After normalization, 

Eq. (2.1) can be written as 

1
Re

v v

t x y x y
′ ′′ ′ ′ ⎛ ⎞∂ ∂∂ ∂ ∂

+ + = +⎜ ⎟′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂⎝ ⎠

E FQ E F     , 

where ′Q denotes the non-dimensional conservative variable vector, and 

**** /Re μρ Lu=  is the Reynolds number of the flow under investigation.  All 

definitions for the inviscid fluxes, viscous fluxes, stress tensors and the heat fluxes 

have the same forms as their dimensional counterparts; however, the dimensional 

quantities are replaced by their non-dimensional ones.  In order to simplify the 

writing of the dimensionless Navier-Stokes equations in the following chapters, the 

“prime” will be dropped from all non-dimensional quantities from this point on and 

Eq. (2.1) will become 

1
Re

v v

t x y x y
⎛ ⎞∂ ∂∂ ∂ ∂

+ + = +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

E FQ E F     . (2.7) 

The gas equation of state becomes ( ) TuRTp ρ2** /= .  If a Mach number 

**** // RTucuM γ==  is defined, where c* is the dimensional speed of sound for 

the gas with temperature T*, then the state equation can be reduced to 

T
M

p ρ
γ 2

1
=     . 

The non-dimensional viscosity can be reduced to *

*
2/3

/
/1

TST
TST

+
+

=μ  and it follows 

that the dimensionless k is given by k/k* = μ/μ*.  In the following computations, 

KS 4.110=  and KT 2.288* =  are assumed. 

In the course of numerical computation of flows with different boundary 

geometries, a body-fitted grid or grid stretching is quite often used.  Therefore, 

coordinate transformation is needed to bridge the coordinate system in the physical 
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domain to that in the computational domain.  Since the grid in the physical domain is 

by necessity non-uniform and a uniform grid would be preferred in the 

computational domain, a transformation should be sought such that a non-uniform 

grid can be transformed into a uniform grid.  The computation would be further 

simplified if the grid size is constant in the computational domain.  The normalized 

equations are then solved in the computational domain using such a grid.  Let the 

grid in the physical domain (x, y) be transformed into the computational domain (ξ, η) 

such that the grid size along each direction is constant and is given by MΔ =ξ  and 

NΔ =η .  The Jacobian matrix is defined as 

yx

yx

ηη
ξξ
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=     . (2.8) 

The corresponding Navier-Stokes equations in the transformed computational 

domain can be written as 
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where 

Q1Q̂
J

=     , (2.10a) 

( ) ( )FE1F̂,FE1Ê yxyx ηη
JJ

+=+= ξξ     , (2.10b) 

( ) ( )vyvxvvyvxv ηη
J

ξξ
J

FE1F̂,FE1Ê +=+=     . (2.10c) 

The other governing equations can be similarly transformed and the complete set of 

governing equations is solved in the transformed plane. 

Once the governing equations are written in terms of the transformed 

coordinates, they can be solved numerically in the computational domain.  Firstly the 

grids in the physical domain ( )x,y  are cast into the computational domain ( )ηξ ,  
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where the grid size is uniform.  All the transformed functions yxyx ,η,η,ξξ  and the 

Jacobian J  are evaluated at each grid point.  Then the convection terms in Eq.(2.10b, 

c) can be evaluated at grid point.  Substituting these values into Eq.(2.9) and using an 

ordinary finite difference scheme on the uniform mesh, the physical solutions can be 

determined from Q̂Q J= .  Similarly, all other variables can be obtained as well. 

2.2 A 6th-Order Finite Difference Scheme 

The need for a highly accurate numerical method was recognized from the earliest 

stages in the development of CAA (Tam 1995).  A simple analysis of the linearized 

compressible Euler equations reveals that basically three types of waves could exist 

in a uniform mean flow, namely acoustic, entropy and vorticity waves (Tam and 

Webb 1993).  The acoustic waves are isotropic, low-dispersive, low-dissipative and 

propagate with the speed of sound.  The entropy and vorticity waves are non-

dispersive, non-dissipative, and highly directional.  They propagate in the direction 

of the mean flow with essentially the same speed as the flow itself. 

In most current CFD schemes, there is no guarantee that the finite difference 

equations could support waves with these diverse characteristics.  In fact, many 

popular codes are dispersive, anisotropic, and even highly dissipative (Lele 1992, 

Bogey and Bailly 2004).  Therefore, new schemes with improved accuracy have 

been proposed by various researchers.  These schemes are usually low-dispersive 

and low-dissipative so they can be used to resolve the widely diverse waves 

encountered in CAA.  In general, the spatial derivatives in the Navier-Stokes 

equations are replaced by some high-order finite-difference equations and the time 

derivatives are approximated by a lower-order finite-difference scheme.  The 

accuracy of the scheme is usually ranked by the order where the Taylor series 
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expansion of the original governing equations was truncated.  Therefore, it is 

expected that a fourth-order scheme is better than a second-order one.  A proven 

scheme was proposed by Lele (1992) where a 6th-order compact finite-difference 

scheme and a 4th-order time march scheme was used to solve the governing 

equations.  In the present treatment of CAA, the Lele (1992) scheme, which is a 

central-difference scheme, was used to solve the governing Navier-Stokes equations.  

This finite-difference method is briefly described below while the 4th-order time 

marching scheme is discussed in the next section. 

For any scalar quantity, f, such as a flux component or a convective flow 

variable, the spatial derivative f ′  is obtained in the transformed plane by solving the 

following tri-diagonal system.  Suppose f are known at points { }nni ,1...,,2,1 −∈ , 

where { }2...,,3 −∈ ni  are the inner points, 2,1=i  and nni ,1−=  are the boundary 

points on the left side and the right side of the computational domain, respectively.  

For the inner points, the first derivative can be solved by 
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where h is the grid size.  At the boundary points, high-order one-sided formulas are 

invoked.  For the boundary points 1=i  and ni = , the derivatives are calculated from 
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At the boundary points 2=i  and 1−= ni , the derivatives are given by 
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Finally, the resulting algebraic equations can be simply written as 
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This tri-diagonal system is solved by the Thomas algorithm or the tri-diagonal 

matrix algorithm (TDMA) (Ferziger and Peric 1999).  It is easily programmed and, 

more importantly, the number of operations is proportional to n, the number of 

unknowns, rather than n3 of a full matrix Gaussian elimination scheme.  In other 

words, the cost per unknown is independent of the number of unknowns, which is 

almost as good a scaling as one could desire.  The low cost suggests that this 

algorithm can be employed whenever possible. 

2.3 4th-Order Runge-Kutta Method and High-Order Filter 

A 4th-order Runge-Kutta method is used for time matching.  Rewriting the original 

governing equations (2.7) as: 
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Once Q is known at time step n as Qn, R(Qn) can be evaluated using a finite 

difference scheme such as Eq. (2.14).  A few inter-step predictors are used to find 
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the next time step solutions Qn+1.  The first two steps of this method assume an 

explicit Euler predictor and an implicit Euler corrector at n+1/2.  This is followed by 

a midpoint rule predictor for the full step.  These steps can be written in 

mathematical form as 
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From time step n to time step n+1, this 4th-order Runge-Kutta method only involves 

solution Qn, and gives a 4th-order time advancement solution for time step n+1.  For 

other high-order time advancement methods such as the normal predictor-corrector 

or multipoint methods, the earlier time solutions such as n-1 or even n-2 are required 

for high-order time schemes.  The Runge-Kutta method can reduce memory cost in 

the computations. 

Like other central-difference approaches, this 6th-order compact finite 

difference scheme is low-dissipative, thus it is known to be susceptible to failure 

from the unrestricted growth of numerical instabilities (Lele 1992).  These 

difficulties originate from a variety of sources including mesh non-uniformity, 

approximate boundary conditions and nonlinearity.  A filter is used to suppress 

numerical instabilities in the computations arising from these sources (Gaitonde and 

Visbal 1999).  In this thesis, a 10th-order filter that requires an 11-point stencil is 

introduced.  Suppose a computational solution is known as f, the filtered values f̂  

satisfy the following equation 
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where 495.0=α  and the coefficients ka can be evaluated from the formulas given in 

Table 2.1. 

The relatively large stencil of high-order filters requires special formulations at 

several points near the boundaries.  For the near boundary points { }5,...,1∈i  and 

correspondingly at { }nni ,...,4−∈  where it protrudes the boundary, this 10th-order 

interior filter requires an 11-points stencil and thus cannot be applied at these points.  

The values at points 1 and n are specified explicitly through the boundary conditions 

and are not filtered.  For the point 5=i  and 4−= ni , an 8th-order centered formula 

is used: 

( ) 5,
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ˆˆˆ
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11 =+=++ ∑

=
−++− iffbfff

k
kiki

k
iii αα  or 4−= ni     , (2.18) 

where the coefficients can be determined from the formulas given in Table 2.1a. 

An 8th-order centered formula for 5=i  and 4−= ni  has been introduced in 

this thesis.  If the stencil-size is reduced by applying lower-order centered formulas, 

the error induced by these low-order central techniques may eventually become 

unacceptable and adversely affect the global solution accuracy.  A more general 

approach is to use higher-order one-sided filter formulas (The coefficients are list in 

Table 2.1b) 

{ }4,3,2,ˆˆˆ
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,11 ∈=++ ∑

=
+− ifafff k

k
ikiii αα     , (2.19a) 

{ }1,2,3,ˆˆˆ
1

9

1
1,11 −−−∈=++ +−

=
+−+− ∑ nnnifafff kn

k
inkiii αα     . (2.19b) 

This choice retains the tri-diagonal form of the filter for these boundary points.  

Finally the algebraic equations can be written into a tri-diagonal matrix form as 
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  (2.20) 

A 10th-order centered formula has been chosen for the inner points, an 8th-

order centered formula for point 5=i  and 4−= ni , an 8th-order one-sided formula 

for { }4,3,2∈i  and { }1,2,3 −−−∈ nnni , while the values at points 1 and n are not 

filtered.  All coefficients in the above matrix are respected to α  where α  must 

satisfy 5.05.0 ≤<− α  for a stable filter.  Higher values of α  correspond to a less 

dissipative filter (Gaitonde and Visbal 1999); when 5.0=α , there is no filtering 

effect.  In the present computations, 495.0=α  is fixed and the solutions are filtered 

once after the final stage of the 4th-order Runge-Kutta scheme. 

2.4 Boundary Treatment Schemes 

For the above finite difference scheme and filters, the lack of grid points near 

computational boundaries will cause the accuracy of the 6th-order compact finite 
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difference scheme and the high-order filtering scheme to reduce as the boundary is 

approached.  Therefore, lower-order finite difference schemes and lower-order 

filtering schemes will have to be implemented near and at the boundary.  

Furthermore, when a pulse is crossing the computational boundary, if the treatment 

of the pulse is not correct, numerical errors would arise and a spurious reflected 

wave would be created at the boundary.  These spurious reflected waves would 

propagate inward towards the computational domain and cause disturbances that 

could lead to unstable numerical behavior. 

For most high-order finite difference schemes (with low-dispersion and low-

dissipation), numerical viscosity could not erase the errors created by the spurious 

waves when they are transmitted over finite grid distances away from the boundary.  

Since the aerodynamic flow scales are 103 times larger than the acoustic scales, the 

spurious reflected waves from the boundary could be much larger than the real sound 

waves in the problem under investigation.  The spurious waves could propagate into 

the region of interest, thus contaminating the calculation and contribute to a decrease 

in computational accuracy.  They could even drive the whole solution to a wrong 

state.  Therefore, correct boundary treatments play a key role in aeroacoustic 

computations.  Much of the effort has been focused on finding proper and correct 

boundary conditions for CAA problems (Poinsot and Lele 1992, Grinstein 1994), 

especially on non-reflecting boundary conditions (Rudy and Strikwerda 1980, Giles 

1990, Colonius et al. 1993, Hu 1996, Freund 1997, Rowley and Colonius 2000) to 

treat acoustic waves. 

In general, three types of non-reflecting boundary conditions are wildly used 

in high-order scheme simulations; these are characteristic–based boundary 

conditions for Navier-Stokes equations (NSCBC), absorbing boundaries (Freund 
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1997) and the recently developed perfectly matched layer (PML) method of Hu 

(1996).  A brief summary of these three different treatments is given below; a more 

detailed review of these artificial boundary conditions can be found in Colonius and 

Lele (2004). 

2.4.1 Characteristic-Based Boundary Conditions 

The most widely used boundary conditions are the characteristic-based relations.  

This method was derived by Engquist and Majda (1977) and improved by Roe 

(1986), Thompson (1987), Giles (1990), Colonius et al. (1993), and Kim and Lee 

(2000).  Characteristic variables can be identified from an analysis of the Euler 

equations.  Each variable then follows its own transmission equation, which is a 

wave-like equation.  Consequently, each variable has wave property with specific 

propagating speed in the flow.  Therefore, once these analyses are applied to the 

computational boundaries, outgoing waves (propagating outwards away from the 

boundary) and incoming waves (propagating inward towards domain) are created.  In 

order to achieve a non-reflecting condition for the numerical boundaries, all 

incoming waves are set to zero in the characteristic variable equations.  As a result, 

there are no incoming waves generated at the boundaries.  This then is the basic idea 

of the non-reflecting characteristic boundary conditions (Yee et al 1982, Thompson 

1987). 

Mathematically, the starting point is the original Euler equations.  Written in 

the primitive variable vector form, the 2-D Euler equation can be expressed as 

0V V VA B
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
    , (2.21a) 

2 2

0 0 0 0
0 0 1 0 0 0,0 0 0 0 0 1
0 0 0 0

/A B /

u v
u v

u v
c u c v

ρ ρ⎡ ⎤ ⎡ ⎤
ρ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ρ

⎢ ⎥ ⎢ ⎥ρ ρ⎣ ⎦ ⎣ ⎦

    , (2.21b) 
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where [ ]T,,,V pvuρ=  is the primitive variable vector.  Since the idea of the 

characteristic relations is deriving from the incoming waves and outgoing waves 

(Thompson 1987, Rowley and Colonius 2000), a simple wave-like solution can be 

assumed so that (K X )ˆV V i te ⋅ −=
r

ω  where K
r  is the wave direction vector. 

As an illustration, the characteristic method under a 1-D assumption will be 

presented first.  By means of 1-D, it is assumed that the outgoing waves and 

incoming waves only have components that are perpendicular to the computational 

boundaries.  In other words, these waves would incident and transmit through these 

boundaries in the normal direction only.  Consider a 2-D rectangular computational 

area in Cartesian coordinate (x, y); the left and right hand side boundaries are 

parallel to the y-axis.  The 1-D assumption only considers waves with directions 

parallel to the x-axis.  The flow is assumed uniform along the y-direction, so the 

gradient of the scale quantity along the y-direction is essentially zero; i.e., 

0/V ≈∂∂ y .  It should be noted that spurious errors would be created when an 

outgoing pulse is incorrectly estimated on the boundary; therefore, most error 

contributions come from an incorrect estimate of x∂∂ /V  under the 1-D assumption.  

As a result, the Matrix A needs to be diagonalized in order to determine the 

characteristic variables along the x-direction. 

This process implies that it is necessary to deduce the sets of left (row) 

eigenvectors iL , right (column) eigenvectors iR , and the eigenvalues iλ  for matrix 

A.  This requires diagonalizing matrix A using the formula ΛAPP-1 = , where the 

rows of P-1 are the left eigenvectors and the columns of P are the right eigenvectors, 

and the matrix Λ  is diagonal with iii λ=Λ , .  Analysing the characters of the matrix 

A, the appendant matrix P and P-1 can be determined to be 
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Four eigenvalues are obtained and they are: cucuuu −=+=== 4321 ,,, λλλλ .  

Then Eq.(2.21) can be reduced to a characteristic wave equation through the 

following process 
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where a set of new variables are defined and if written into vector form it is given by 

[ ]T- cpucpuvcp ρρρ /,/,,/VPW 21 ∂+∂−∂+∂∂−∂−∂=∂=∂     . (2.24) 

The variables inside the square bracket are called the characteristic variables.  

Obviously Eq. (2.23) can be separated into four independent wave-like equations  

{ }4,3,2,1,0// ∈=∂∂+∂∂ ixwtw iii λ     . (2.25) 

Each characteristic variable iw  is moving with the corresponding speed iλ  along the 

x-direction.  These four characteristic variables represent four independent waves in 

the fluid; they are respectively the entropy wave 2
1 / cpw ∂−∂=∂ ρ , the vorticity 

wave vw −∂=∂ 2 , and two acoustic pressure waves cpuw ρ/3 ∂+∂=∂  and 

cpuw ρ/4 ∂+−∂=∂ .  Since independent waves are found in the flow, the incoming 

waves and outgoing waves could be specified by checking their propagating speeds 

on the numerical boundaries.  If the flow is from left to right, for the right hand 

boundary, the waves 321, www  have speeds u, u and u+c, respectively, so these 
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waves are outgoing waves.  The other wave 4w  has speed u-c < 0 (mostly a subsonic 

flow is assumed) and would propagate into the computational domain.  If this part is 

set to zero, then there would have no acoustic waves propagating away from the 

boundary and into the computational domain.  Consequently, a non-reflecting 

condition would exist at the boundary.  If the upper and lower boundaries also need 

to be treated as non-reflecting, the same basic idea can be applied, but only the terms 

related to the y-direction in Eq. (2.21) need be considered.  The derivation essentially 

follows that presented above for the x-direction and will not be repeated again. 

The idea behind this characteristic-based boundary treatment is simple and 

only the boundary points need to be re-calculated in the computational method, this 

would have very little cost implication on the boundary treatment computations.  The 

method has been widely used for CAA problems, e.g. Rudy and Strikwerda (1980), 

Yee et al (1982), Grinstein (1994), Mu and Mahalingam (1996), Stanley and Sarkar 

(1997), and Lockard and Morris (1998).  Since the characteristic-based boundary 

conditions are derived from the Euler equations, all viscous terms are neglected.  As 

a result, computations in the presence of a strong shear flow might not be stable.  

Poinsot and Lele (1992) attempted to improve the stability by considering the 

characteristic-based boundary conditions derived from the Navier-Stokes equations 

(NSCBC) with a local one-dimensional inviscid (LODI) assumption.  The result was 

not too encouraging because the computation was still not stable enough in the 

presence of strong shear flows.  Damping (Colonius et al. 1993) and grid stretching 

(Visbal and Gaitonde 2001) techniques were used to absorb the strong nonlinear 

fluctuations before they approached the boundaries.  This technique was further 

extended by Kim and Lee (2000) to a general coordinate system.  However, this kind 

of 1-D characteristic boundary condition works well only if the waves are incident 
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normally on a boundary.  Even though the 1-D characteristic boundary condition was 

used widely, the inherent weakness limits its accuracy for common use (Hixon and 

Mankbadi 1995, Hixon 2004). 

Under the 1-D assumption, the incident waves are assumed to be 

perpendicular to the boundary.  This condition is not exactly correct if the incident 

waves approach the boundary at an angle.  The error will then become dependent on 

the deviation of the incident angle away from π/2.  If wave direction is known, a 

more general formulation can be found to analyze the outgoing and incoming waves.  

Assuming that the wave vector is given by )( yx k,k=K
r

, a general appendant matrix P 

and P-1 can be found.  The resulting characteristic equations can be expressed as 
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 (2.26) 

These equations would reduce to the 1-D relations (2.23) when 1, 0x yk k= = .  The 

1-D characteristic-based non-reflecting boundary conditions only estimate the 

normal parts of the four waves (entropy, vorticity and two acoustic waves).  The 2-D 

formulation also defines wave direction different from the normal wave direction.  

Therefore, theoretically, these formulas can deal with the conditions when the 

outgoing waves are not necessary perpendicular to the computational boundaries.  In 

principle, the 2-D formulation should yield better non-reflecting performance 

compared to the 1-D formulation.  However, numerical test of the 2-D formulation 

fails to show much improvement as anticipated. 

The test is carried out assuming a simple circular Gaussian pulse in a stagnant 

fluid (Fig. 2.1).  When this circular pulse is developing from the center of a 
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rectangular computational region (height equal to 10 and width equal to 2.5), the 

wave front would cross the computational boundaries shortly after the pulse is 

released.  The real physical wave direction can be determined, and the result is 

2 2 2 2,/ /x yk x x y k y x y= + = + , where ),( yx  is the position of the boundary 

point.  At a non-dimensional time T equal to 2, the solutions (pressure contours) 

based on a 1-D characteristic method show significant reflection from the 

computational boundary, but there is relatively much less reflection using the 2-D 

characteristic-based method.  However, as the computation proceeds to larger and 

larger time, the wave would cross the computational boundaries with a bigger and 

bigger angle.  When T = 3, both the 1-D and 2-D approaches give significant 

spurious reflecting waves from the computational boundaries. 

The linear analysis of the compressible Euler equations given above reveals 

that these partial differential equations support three types of waves, namely entropy, 

vorticity and acoustic waves.  Actually these three types of waves are the basic 

fluctuations in aeroacoustic flows (Tam and Webb 1993).  The flow solutions can be 

viewed as linear combinations of these waves.  Physically these waves may not have 

the same direction, so the linear wave-like solution of the Euler equations could not 

be defined as (K X )ˆV V i te ⋅ −=
r

ω , where a single wave-vector K
r

 is defined for all the 

waves.  This is the reason why even after a general wave direction is defined as in 

Eq. (2.26) it is not possible to separate the characteristic variables (non-diagonal 

terms still exist in the convection matrices).  After assuming the wave direction to be 

parallel to the x-axis and neglecting the gradients along the y-direction, Eq. (2.26) 

could be reduced to Eq. (2.25).  Therefore, not much improvement could be realized 

by formulating the boundary treatment based on a 2-D assumption.  After this test, it 

was concluded that generalizing the treatment by including 2-D effects would not 
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lead to improved performance for characteristic-based non-reflecting boundary 

treatment. 

Originally the characteristic-based method is derived from the Euler equations 

where flow changes are due to convection only.  These inviscid terms are related to 

the first order spatial derivatives of the primitive variables.  The basic equations for 

the characteristic-based method are inviscid.  If viscosity could not be neglected in 

the flow, such as a boundary-layer flow, the second order spatial derivative terms 

would give rise to instability behavior if characteristic-based boundary treatment is 

used.  To stabilize shear flow computations, Colonius et al. (1993) proposed to add 

damping terms into the NSCBC formulation.  An alternative is to use filtering and/or 

artificial viscosity with a buffer zone to damp out the vortical structure before it 

leaves the computational domain. 

The damping technique could also be applied to damp out the spurious 

reflected waves created by incorrect estimate of the outgoing waves at the 

boundaries.  This suggests that a buffer zone could be added to characteristic-based 

boundary method to provide an even better technique for non-reflecting boundary 

treatment.  This buffer zone technique will be further discussed below. 

2.4.2 Buffer Zone/Absorbing Boundary Condition 

In the present study, a widely used technique adopted is the buffer zone technique.  

This technique was used to absorb the perturbations before they cross the 

computational boundaries.  Ta’asan and Nark (1995) added a convective term to the 

linearized Euler equations and thereby force the solution to be supersonic at the 

border of the computational domain.  Freund (1997) improved this for the Navier-

Stokes equations with an exit zone.  By prescribing a desired flow, the damping 

terms drive the solution to this desired flow.  The equation in the damping region can 
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be written as 

0)( =−+
∂
∂

+
∂
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+
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∂

Tyxt
VVVBVAV σ     , (2.27) 

where T
T pvu ],,,[ρ=V  is the target vector of the desired flow, σ is the absorption 

coefficient that varies smoothly from zero at the edge of the buffer to a constant 

value near the boundaries.  With this damping function )( TVV −σ , the solutions 

would be forced to approach the desired flow near the computational boundaries.  In 

general, a uniform mean flow is used as the target, so most disturbances originating 

from the inner field would be absorbed in the damping region and minimal 

fluctuations would pass the computational boundaries.  This way, spurious reflected 

waves are reduced to a minimum and the solutions at and near the computational 

boundaries would be very close to the target flow quantities. 

Additional grids are needed outside the computational area to accommodate 

the buffer region.  It means that additional computing time is required to solve the 

governing equations over the complete domain.  If really effective non-reflecting 

boundary conditions were to be realized, large damping regions are needed.  This 

would increase the computational cost significantly.  An attractive alternative is the 

perfectly matched layer technique. 

2.4.3 Buffer Zone/Perfectly Matched Layer (PML) 

Berenger (1994) introduced a perfectly matched layer (PML) technique for solving 

the Maxwell equation for electromagnetic waves.  The idea is similar to the 

absorbing boundary condition but the damping terms were introduced based on a 

perfectly matched method.  In the physical domain, the PML equations are the same 

as the original equations, in the damping region, all the disturbances are absorbed 

and the solutions near the computational boundaries are forced to a desired solution.  
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For the linearized Euler equations, there are two kinds of PML formulations.  The 

first used split physical variables in the PML domain (Ta’asan et al. 1995, Hesthaven 

1998, Turkel and Yefet 1998).  The second formulation was given by Hu (1996, 

2001) and did not split the physical variables.  Instead, Hu (1996, 2001) introduced 

additional terms to the linearized Euler equations.  The split variables method was 

not as effective as the method of Hu (1996, 2001).  Therefore, in the following, the 

PML method in a no mean flow condition (Hu 1996) is discussed first and this is 

followed by a discussion of an improved method where uniform mean flow is not 

assumed. 

(i)      Zero mean flow condition 

Referring to the linearized Euler equation given in Eq. (2.21), the linear solution can 

be split into two parts, 21 VVV += , so that 1V  is propagating along the x-direction 

and 2V  is propagating along the y-direction.  The split version of the PML equations 

can then be written as 

0VAV
V

1
1 =

∂
∂

++
∂

∂
xt xσ     , (2.28a) 

0VBVV
2

2 =
∂
∂

++
∂

∂
yt yσ     , (2.28b) 

where xσ  and yσ  are positive absorption coefficients.  In the frequency domain, the 

equations can be written as 

01 1
VV V Axi
x

∂
− + + =

∂

%
% %ω σ     , (2.29a) 

02 2
VV V Byi
y

∂
− + + =

∂

%
% %ω σ     . (2.29b) 

These two split equations can be combined to give one non-split form as 
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Introducing an auxiliary variable q, Eq. (2.30) can be converted back to the time 

domain as 
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These equations are correct when there is no mean flow in the computational domain.  

In the presence of a mean flow, there exist acoustic waves that have positive group 

velocity but a negative phase velocity in the direction of the mean flow and these 

waves will be amplified under the previous formulation, thus giving rise to 

computational instability.  To remedy this shortcoming, Hu (1996) gave a stable 

PML formulation in unsplit physical variables for the linearized Euler equations as 

follow 

0=+
∂
∂

+
∂
∂

+
∂
∂

D
V

B
V

A
V

yxt
    , (2.32a) 

q V
t

∂
=

∂
    , (2.32b) 
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+
∂
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=  is the 

damping term. 

The derivation of this damping term D is quite complicated; as a result, it is 

very difficult to recover the Euler equation from Eq. (2.32).  A simple coordinate 

transformation can be used to derive a similar PML damper for the Euler equation.  

The results showed that the PML thus derived has the same character as that given 

by Hu’s method.  The PML method is preferable compared to the damping method 
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for the following reasons.  Firstly, the absorbing boundary conditions are constructed 

in a rude way to force the solutions to a prescribed form.  Secondly, the damping 

terms in the PML are formulated to absorb the waves inside the buffer zone.  

Therefore, theoretically, the PML damping domain usually is more effective than the 

absorbing boundary conditions. 

(ii)      With mean flow 

With a mean flow, the pressure equation will become a convective wave equation 

(Turkel 1998).  In order to deal with a local mean flow, it is suggested that the PML 

formulation should be set up in a new coordinate system so that the pressure 

equation will be reduced to a standard wave equation.  That way, the instability 

introduced by the local mean flow could be eliminated in the solution process and 

stable solutions could be achieved again.  A simple idea to derive the new coordinate 

system is to follow the mean flow speed to study the waves. 

Starting with the Euler equation in primitive variables, i.e., Eq. (2.21), the 

velocity perturbations (disturbances) in vector form could be written as V-VV =′ .  

From Eq. (2.21), the perturbations are governed by the following equation 

0V V V V V VA B A B
t x y t x y
′ ′ ′⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
+ + + + + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

    . (2.33) 

Invoking the linear assumption again and assuming the perturbations to be much less 

than either V  or V , the first bracketed term of Eq. (2.33) is very small compared 

with the second bracketed term.  In other words, it can be neglected as a first 

approximation.  Eq. (2.33) is then reduced to 

0)( ≅
∂
∂

+
∂
∂

+
∂
∂

yxt
VBVAV     , (2.34) 

and the Euler equation for the perturbations, Eq. (2.33), reduces to 
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0≅
∂

′∂
+

∂
′∂

+
∂

′∂
yxt

VBVAV     . (2.35) 

A coordinate transformation can be proposed to allow the wave to follow the mean 

flow speed.  Such a transformation can be defined as 
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where u  and v  are the mean x- and y-component of V .  In this coordinate 

transformation, it should be pointed out that when the mean flow velocity is uniform 

and steady 0///,0/// =∂∂=∂∂=∂∂=∂∂=∂∂=∂∂ tvyvxvtuyuxu , the first 

partial derivatives in the new coordinate system ),,( τηξ  can be derived as 
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Therefore, in terms of the new coordinates ),,( τηξ , Eq. (2.35) becomes 

0V V V(A - I) (B - I)u v
′ ′ ′∂ ∂ ∂

+ + =
∂ ∂ ∂τ ξ η

    . (2.37) 

Again, if 1 2V V V′ ′ ′= +  is assumed and introducing an auxiliary variable q, 

equations similar to Eq. (2.31) can be deduced.  In terms of the coordinates ),,( τηξ , 

they are 

0V V V q qA B A B ( )V q
′ ′ ′∂ ∂ ∂ ∂ ∂ ′+ + + + + + + =

∂ ∂ ∂ ∂ ∂
% %% %

η ξ ξ η ξ ησ σ σ σ σ σ
τ ξ η ξ η

, (2.38a) 

q V∂ ′=
∂τ

    , (2.38b) 

where ,A (A I) B (B I)u v= − = −% % .  Transforming back to the original coordinates 

),,( tyx , Eq. (2.38) can be written as 
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V V V q qA B A B ( )V
t x y x yη ξ ξ η
′ ′ ′∂ ∂ ∂ ∂ ∂ ′+ + + + + +

∂ ∂ ∂ ∂ ∂
σ σ σ σ  

0q qq I Iu v
x yξ η η ξ

∂ ∂
+ − − =

∂ ∂
σ σ σ σ     , (2.39a) 

Vqqq ′=
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∂
∂

+
∂
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tx
v

x
u     . (2.39b) 

It should be noted that under the linear assumption, Eq. (2.39) can be written as 

( )V V V q qA B A B ( ) V V
t x y x yη ξ ξ η

∂ ∂ ∂ ∂ ∂
+ + + + + + −

∂ ∂ ∂ ∂ ∂
σ σ σ σ  

0q qq I Iu v
x yξ η η ξ

∂ ∂
+ − − =

∂ ∂
σ σ σ σ     , (2.40a) 

q q q V Vu v
x x t

∂ ∂ ∂
+ + = −

∂ ∂ ∂
    . (2.40b) 

There are two more damping terms in Eq. (2.40a) compared to Eq. (2.31) for the 

case where V  = 0.  These two terms are ( ) ( )I q/ I q/u x v y− ∂ ∂ − ∂ ∂η ξσ σ .  In addition, 

there is a convective contribution to the equation for q.  The convective part is given 

by the first two terms on the left hand side of Eq. (2.40b).  Together these four terms 

allow the modified PML to take the mean flow contribution into account in the 

formulation of the non-reflecting boundary conditions. 

2.5 Summary 

 In this chapter, a one-step CAA method is introduced.  The 2-D unsteady 

compressible Navier-Stokes equations are numerically solved using a 6th-order 

compact finite-difference scheme and with a 4th-order Runge-Kutta technique for 

time advancement.  Since the scheme has low dissipation, a high-order filter is used 

to suppress numerical instabilities.  Some special boundary treatment methods 

(characteristic-based method, absorbing technique and PML method) are discussed.  

Since most high-order schemes are time consuming, it is important to implement 
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proper boundary treatment to reduce the computational domain and hence 

computational time.  As a result, much work has been devoted to identify the best 

boundary treatment technique for CAA computations with the aim to reduce the 

computational time effectively for CAA.  In the following chapter, a detail 

comparison would be given for these three types of non-reflecting boundary methods. 
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Table 2.1 Filter Coefficients. 

a. For ka , { }5,6,...,7,6 −−∈ nni  and kb , 5=i  or 4−= ni . 

 K=0 K=1 K=2 K=3 K=4 K=5 

ka  
256

126193 α+
 

256
302105 α+

64
3015 α+−

512
9045 α−

256
105 α+−

 
512

21 α−

kb  
128

7093 α+
 

16
187 α+

 
32

147 α+−
16

21 α−
 

128
21 α+−

 0 

 

b. For 4,ka , 4=i  or 3−= ni ; 3,ka , 3=i  or 2−= ni  and 2,ka , 2=i  or 1−= ni . 

 K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 

4,ka
 256

21 α−  32
21 α+−

 
64
507 α+

 
32

1425 α+
128

5835 α+
32

147 α+−

 
64
147 α−

 
32

21 α+−

 256
21 α−

3,ka
 

256
21 α+−

 32
301 α+  64

1457 α+

 32
187 α+

128
7035 α+−

 32
147 α−

64
147 α+−

 32
21 α−  256

21 α+−

 

2,ka
 

256
2541 α+

 32
231 α+  64

507 α+

 
32

147 α+−

 128
7035 α−

32
147 α+−

 
64
147 α−

 
32

21 α+−

 256
21 α−
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Figure 2.1 Gaussian pulse in the computational domain. 
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Figure 2.2 Non-reflecting boundaries with 1D NSCBC (upper) and 2D NSCBC 

(lower). 
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3  DNS Calculations of Benchmark Aeroacoustic 

Problems 

In Chapter 2, a full description of an effective one-step CAA method based on direct 

numerical simulation (DNS) of the governing Navier-Stokes equations has been 

presented.  In this chapter, the DNS scheme would be validated against some 

classical aeroacoustic problems.  Since this scheme has been used to successfully 

calculate some complex aeroacoustic flows (Grinstein 1994, Freund 1997, Kim and 

Lee 2000, Gloerfelt et al 2003), its validation against these flow cases would not be 

repeated in this Chapter.  Instead, the DNS scheme will be used to calculate some 

benchmark aeroacoustic problems in anticipation that these same cases will be used 

to validate the proposed lattice Boltzmann model (LBM) simulations.  The purpose 

of this thesis is to develop a new one-step CAA scheme using LBM.  The DNS 

calculations obtained in this Chapter could then serve as reference solutions for all 

LBM computations.  Therefore, in the following, validation of the DNS scheme 

against a few classical pulse problems would be discussed. 

The first part of this chapter would be used to validate the accuracy of 

computations and, at the same time, to seek proper boundary schemes for these open 

boundary problems.  A propagation of entropy, acoustic and voriticity pulses in the 

mean flow would be calculated.  There are no walls in all these computations.  Even 

then, careful artificial boundary treatment should be applied to these boundaries, 

because physically there are no boundaries and all pulses should pass through the 

virtual boundaries freely.  This means that if computational boundaries are imposed 

on the physical domain, they should be non-reflecting for all waves.  Different 
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boundary techniques would be test for the same problem.  A larger domain 

computation would be used as reference.  After the comparison, the proper non-

reflecting boundary schemes would be found. 

The proper non-reflecting boundary scheme would be used to calculate some 

basic acoustic pulses; those are the second part of this chapter.  These are: (i), 

propagation of a plane pressure pulse; (ii), propagation of a circular pressure pulse; 

(iii), propagation of continuous plane waves; (iv), propagation speed of sound in 

different Mach number flow. 

3.1 Propagation of Entropy, Vortex and Acoustic Pulses in a Mean 

Flow 

The linear analysis of Euler equations shows that basically there are three kind of 

linear waves in the flow, these are entropy, vortex and acoustic waves.  The acoustic 

waves have the propagation speed of sound but the entropy and vortex waves are 

translating with the mean flow.  Proper non-reflecting boundary techniques should 

have the ability to let all these pulses pass freely.  A propagation of entropy, vortex 

and acoustic pulses in the mean flow were studied to compare the boundary 

techniques. 

The half-distance between the acoustic pulse and vortex pulse 0l  is chosen as 

the characteristic length.  The characteristic scales for speed, time, density, pressure 

and temperature are defined from the mean flow quantities 0u , 00 /ul , 0ρ , 2
00uρ  and 

0T , respectively.  The Mach number of this mean flow is 5.0/ 00 == cuM  and the 

Reynolds number is taken to be 10000/ 0000 == μρ LcRe .  After normalization, the 

center of the acoustic pulse is placed at x = -1, y = 0, the vortex pulse and the entropy 

center are located at x = 1, y = 0 as shown in Fig. 3.1.  The initial condition for the 
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computations can be defined as follow: 

( )[ ] ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧ +−

×−+
⎭
⎬
⎫

⎩
⎨
⎧ ++

×−+=′+= ∞ 2

22

22

22

1 2.0
12lnexp

2.0
12lnexp1 yxyx εερρρ

 (3.1a) 

( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧ +−

×−+=′+= ∞ 2

22

3 2.0
12lnexp1 yxyuuu ε     , (3.1b) 

( ) ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧ +−

×−−−=′+= ∞ 2

22

3 2.0
12lnexp1 yxxvvv ε     , (3.1c) 

( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧ ++

×−+=′+= ∞ 2

22

2
1

2 2.0
12lnexp1 yx

MM
ppp

ε
γ

    . (3.1d) 

A uniform mesh (Δx = Δy = 0.05) is assumed for this case. The strength of the pulses 

are defined as 001.0,0001.0 21 == εε  and 0001.03 =ε , respectively. 

The physical area is bounded by 5.25.2 ≤≤− x  and 5.25.2 ≤≤− y .  Four 

artificial boundaries are needed to close this physical area.  Outside the physical area, 

there are no pulses and disturbances, so physically all the disturbances could only 

propagate to outside.  Different non-reflecting boundary techniques would be used to 

close this area.  A reference solution is obtained by carrying out the calculation using 

a larger computational domain.  The size of the computational domain for this 

calculation is chosen such that the results in the smaller region are free of any 

disturbances.  The errors are then deduced by subtracting the reference solution from 

the bounded solutions.  The performance of the boundary techniques would be 

compared and the optimized boundary method would be found out.  Another 

comparison is also made with the computing time and costs. 

As shown in Table 3.1, Test 1 is based on the NSCBC method and no damping 

region is needed.  Test 2 invokes the PML method.  There are 4 damping layers with 

equal width of 0.5 added to the area outside of the physical domain.  Test 3 uses 
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Freund’s absorbing technique with the same damping areas as specified in Test 2.  

Test 4 uses Freund’s absorbing layers with width equal to 2, which is 4 times that of 

Test 3.  Finally, the reference solution is included as Test 5. 

3.1.1 Damping Effect 

In the NSCBC method, the instantaneous values for the boundary points ( 1=i  and 

ni = ) are corrected by the characteristics analysis.  It should be noted that, only the 

convection terms in the Naver-Stokes equations are greatly emphasized when using 

this linear analysis.  This requires an inviscid flow condition.  Fig. 3.2 shows the 

vorticity contours obtained using NSCBC (the dimensionless time for panels a, b, c 

and d are 1.2, 1.5, 1.8 and 2.1, respectively), where the dashed line is used to mark 

the computational outlet for Test 1.  The vortex contours in Fig. 3.2a have the same 

shape as those in Fig. 3.2b.  It shows that viscosity effect is very small in this case 

and the physical solution is close to an inviscid flow solution.  Furthermore, it shows 

that the vortex can pass through the outlet (NSCBC) freely and without reflection.  It 

should be noted that this does not mean that the NSCBC is a purely non-reflecting 

outlet.  Actually, after the convection vortex passes through the outlet, some spurious 

acoustic waves come out from the artificial outlet.  This would be discussed later in 

the accuracy comparison section. 

In the other 4 tests with absorbing boundaries, damping layers are used to 

absorb the outgoing waves.  Since most of the spurious waves are caused by the 

vorticity pulses, the damping effect on the vortex strength would be discussed first.  

Fig. 3.3 and Fig 3.4 are the vorticity contours for Test 2 and Test 3, respectively.  

Before the vortex touches the damping region, the vortex strength is almost the same 

as in the physical domain.  When it enters the damping region, the vortex strength is 

decreased quickly by the damping effect.  So the reflection caused by the vorticity 



49  

pulse could be reduced.  Since different damping terms are used in different methods, 

the PML and Freund’s method give different solutions inside the damping region.  

The solutions inside the damping layer do not have any physical meaning.  They 

only suggest how the vorticity pulse is absorbed step by step inside the damping 

layer. 

The pressure contours of the physical field for all tests are plotted in Fig. 3.5 

(Test 1), Fig. 3.6 (Test 2), Fig. 3.7 (Test 3) and Fig. 3.8 (Test 5).  It should be noted 

that the irregularities in Fig. 3.5 and Fig. 3.7 are due to inappropriate boundary 

conditions.  When the acoustic pulse passes through a boundary with NSCBC 

specified, there are clear reflections coming from the boundaries.  This is especially 

true in the vicinity of the four corners where the wave fronts are close to 4/π  of the 

computational boundaries.  In principle, the whole domain should not be bounded; 

however, because of the truncated computational boundary and the inaccuracy of the 

boundary methods some reflecting waves are created at the boundaries.  The 

spurious reflecting waves are clearly visible in Fig. 3.5 (NSCBC) and Fig. 3.7 

(Freund’s absorbing technique).  These results demonstrate that PML performs better 

than the methods of NSCBC and Freund.  If damping technique is used (Test 2 and 

Test 3), the solutions are improved.  The PML method is better than Freund’s 

absorbing technique, but details of the accuracy comparison are discussed in the 

following. 

3.1.2 Accuracy Comparison 

Since the vorticity pulse would cause the most spurious waves on the boundaries, the 

solutions at the physical outlet (dashed line) are chosen for the accuracy comparisons 

because the vorticity pulse would pass through this line.  Three kinds of errors are 

reported in the following comparisons. 
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At any instantaneous time, if any quantity (pressure, density or velocity 

component) for the local point i  has a value if , and the unbounded solution has a 

value irf , then at this time, the mean error 1L , root-mean-square error 2L  and 

maximum error mL  can be defined as 

( ) NffL
N

i
iri∑

=

−=
1

1     , (3.2a) 

( ) NffL
N

i
iri∑

=

−=
1

2
2     , (3.2b) 

( )irim ffL −= max     , (3.2c) 

where N = 101.  In the following, the p and u errors are assessed and compared. 

The pressure errors are compared in Fig. 3.9, Fig. 3.10 and Fig. 3.11 where the 

figures show the time-histories of 1L , 2L  and mL , respectively.  The errors of “u” 

histories are compared in Fig. 3.12, Fig. 3.13 and Fig. 3.14.  In all these comparisons, 

NSCBC gives the biggest error at the physical outlet.  The absorbing methods (PML 

or Freund’s absorbing technique) could increase the non-reflecting accuracy by 2 

orders higher than that of the NSCBC method.  Using equal width damping layers, 

the PML method (Test 2) performs much better than the absorbing BC (Test 3).  It 

means that the PML region is more efficient in absorbing disturbances than the 

corresponding Freund’s damping region.  It should be noted that, even after the 

Freund’s damping domain size is increased by 4 times (Test 4), the error is still 

larger than that given by the PML with D = 0.5.  In another words, the PML method 

could produce a solution with the same accuracy as the Freund’s absorbing technique 

using a much smaller damping region.  This will undoubtedly lead to reduced 

computing cost.  However, the formulation of PML introduced an auxiliary variable 

q inside the damping region.  This would cause additional computations for the 
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spatial derivations of q.  A detailed analysis of the computing cost is given below. 

3.1.3 Computing Cost Comparison 

From the previous discussion on damping effect and accuracy comparisons, the 

absorbing techniques show a coherent advantage in absorbing fluctuations of both 

aerodynamic and acoustical pulses; they are much better than NSCBC.  The PML is 

more accurate than the Freund’s absorbing method, but an auxiliary variable q is 

defined for the PML.  Sine q depends on space and time it could give rise to 

additional computational cost.  Instinctively, it can be expected that NSCBC has 

lowest cost, then Freund’s technique, while the PML would take the most computing 

time. 

The CPU time for Test 1, Test 2, Test 3, Test 4 and the reference computation 

are equal to 12:40, 24:49, 18:03, 53:06 and 74:44, respectively (1000 time-steps for 

each test).  Test 1 (NSCBC) does not include any non-physical region; therefore, this 

time 12:40 represents the computing time for the solution of the physical domain.  

The additional time rang up for Test 2, Test 3 and Test 4 compared to Test 1 is 12:09, 

5:23 and 40:26, respectively.  It should be pointed out that, only Test 4 (absorbing 

BC with D = 2) has an accuracy comparable with Test 2 (PML), but the additional 

cost is at lest 3 times larger than Test 2.  It suggests that, if computing cost and 

accuracy is a criterion, the PML is much more preferable than the Freund’s 

absorbing technique. 

3.2 Propagation of a Plane Pressure Pulse 

A plane pulse is initiated in the quiescent fluid and it is allowed to propagate into the 

computational domain.  The non-dimensional parameters for the length, time, density, 

velocity, pressure and temperature are specified as; 2
0 0 0 0 0 0 0, , , , ,/L L c c c Tρ ρ  and 
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the Reynolds number is defined as μρ 000 cLRe = .  Since the speed of sound 0c  is 

chosen as the characteristic velocity scale, the computational speed of sound within 

the computational region is set to 1 at every grid point initially.  The dimensionless 

speed of sound at the various grid points in subsequent time will take on values given 

by the solution of the modeled Boltzmann equation. 

This 1-D problem aims to validate the robustness of DNS computations and, at 

the same time, to test the NSCBC boundary.  The initial fluid state is defined as a 

small plane pressure fluctuation in the center of a tube, such that 

∞= ρρ , 0=u , 0=v , )
08.0

2lnexp( 2

2xpp ×−+= ∞ ε     , (3.3) 

where mean field density and pressure are given by 1∞ =ρ  and 1/p∞ = γ , the pulse 

amplitude ε  is set to 6104 −× , 61016 −×  and 610100 −× , respectively, and Re 5000=  

is specified in this case. 

For this open region problem, the initialed 1-D disturbance would propagate to 

the left-hand side and right-hand side, the solutions should be only related to the x-

location and time.  In another word, if using a finite computational domain to 

simulate this open region problem, the upper and lower numerical boundaries should 

let the 1-D wave propagating along it without any change.  Therefore the buffer-zone 

techniques such as PML or absorbing BC can not be used at upper and lower 

boundaries.  Otherwise, the disturbances would be “damped”, then, near the upper 

and lower boundaries, the solutions would not 1-D only.  To simulate this 1-D 

problem correctly, NSCBC is selected to treat these boundaries.  Because NSCBC 

can let the disturbances out in the normal direction, and at the same time do not 

affect waves along the boundaries.  Therefore if a 1-D wave is propagating along the 

boundary, the wave front would be rectangular to the boundary all the time.  This 
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property would be proved in the following discussion. 

For the left-hand side and right-hand side boundaries, PML absorbing 

boundaries are used to give non-reflecting boundaries.  The physical domain of this 

problem is defined as 55 ≤≤− x  by 20 ≤≤ y .  A uniform grid of size 0.02x0.02 is 

adopted.  The buffer regions for the left-hand side and right-hand side absorbing 

boundary conditions are located at 57 −≤≤− x  and 75 ≤≤ x  respectively.  

0001.0=Δt  is chosen for the present computations. 

Fig. 3.15 shows the contours of density fluctuations inside the physical region 

at t = 1.0 and t = 3.0 for the case 6100 10−= ×ε .  It can be proved that this 1-D pulse 

is normal to the upper and lower NSCBC boundaries.  NSCBC keeps this 1-D wave 

without any changes near the boundaries. 

Fig. 3.16 and Fig. 3.17 show the density and pressure fluctuations along the 

centerline of the tube at t = 1.0 and t = 3.0 respectively.  It is obviously that, after the 

acoustic waves go away, the density fluctuations in the central region appear and 

stay in the center, these fluctuations are actually solutions of the entropy wave.  If 

checking the acoustic waves, the two positive density fluctuation peaks are leaving 

the center with a propagation speed 1=c  and the amplitude of this density 

fluctuation is 54 10ˆ −= ×ρ  (t = 3.0).  At the same corresponding positions, there are 

two pressure fluctuation peaks with a value of 5104ˆ −×=p .  Actually these two 

waves are the exact acoustic waves because the transmission speed is the physical 

sound speed and the amplitudes follow the acoustic relation, ρ̂ˆ 2cp = .  These results 

show that the proposed DNS can replicate the correct acoustic waves and the 

calculated macroscopic quantities are developing correctly. 
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3.3 Propagation of a Circular Pressure Pulse 

If an initial circular pulse were imparted to a uniform fluid, the fluctuations thus 

created would propagate equally in all directions.  This means that, at any time, the 

pulse would remain circular in shape.  A circular initial pressure pulse is used to 

validate the direction problem of this DNS scheme.  The distribution is defined as 

∞= ρρ , 0=u , 0=v , )
2.0

2lnexp( 2

22 yxpp +
×−+= ∞ ε     , (3.4) 

where 1∞ =ρ , γ/1=∞p , 616 10−= ×ε  and 5000=Re .  The physical domain is 

1010 ≤≤− x  and 1010 ≤≤− y , the grid size is 0.05x0.05.  The physical region is 

closed by four buffer layers with width are equal to 1.  PML absorbing technique is 

used for these buffer regions.  Fig. 3.18 and Fig. 3.19 show contours of pressure 

fluctuations and “u” fluctuations at time t=2.5 and t=5.0 respectively.  It can be 

shown that, the pressure fluctuations inside Fig. 3.18a and Fig. 3.18b are in good 

circular shape, it means that the disturbances are developing equally from all the 

directions to the outside. 

3.4 Plane Sinusoidal Wave Propagation in Quiescent Fluid 

Plane sinusoidal wave propagation in quiescent fluid is calculated in this case.  The 

initial conditions of the fluid are 1== ∞ρρ , 0=u , 0=v  and γ/1== ∞pp .  The 

pressure at location exx =  is forced to follow a weak excitation with amplitude pε  

and wavelength λ , Fig. 3.20 shows the specification of this problem, 
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πε 2sin1     , (3.5) 

where c=1 is the speed of sound.  Because it is still a plane wave problem, the same 

boundary set-up as case 1 is used.  PML absorbing boundary condition is adopted on 

the inlet and outlet boundaries with two buffer regions with respective size 
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1== OI DD .  The upper and lower are using NSCBC.  Two calculations are 

performed and the calculated density fluctuations.  One is excited with 2=λ  (short 

waves) and 510−=pε  (Fig. 3.21) where the other is with 10=λ  (long waves) and 

4108.1 −×=pε  (Fig. 3.22). Obviously, this DNS scheme can calculated all these 

waves correctly and there is no spurious reflecting from all the boundaries. 

3.5 Speed of Sound in Flows with Different Mach Numbers 

This section aims to validate the propagation speed of sound is correct in different 

Mach number flow conditions.  As mentioned in Chapter 1, using the one-step 

method, the Navier-Stokes equations together with the gas equation of state are 

solved directly; the propagation speed of sound inside the flow is not defined but 

calculated from these governing equations.  Therefore there is a need to validate the 

calculated speed of sound is indeed correct under different mean flow conditions.  A 

simple 1-D Gaussian acoustic pulse is developing inside the mean flow.  The 

characteristic scales for speed, time, density, pressure and temperature are defined 

from the mean flow quantities 0u , 00 /ul , 0ρ , 2
00uρ  and 0T , respectively.  Therefore 

a Mach number for this mean flow could be defined as 00 / cuM = .  Thus normalized, 

in the computational domain, the mean flow density, velocity, pressure and 

temperature are 1=∞ρ , 1=∞u , 0=∞v , 2/1 Mp γ=∞  and 1=∞T , respectively.  

Physically the speed of sound should be Mc /1=∞ .  The initial condition is set to: 

( ) )
2.0

12lnexp( 2

22 yx ++
×−+= ∞ ερρ    , (3.6a) 

∞= uu     , (3.6b) 

∞= vv     , (3.6c) 
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( ) )
2.0

12lnexp(1
2

22

2

yx
M

pp ++
×−+= ∞ ε     , (3.6d) 

where 410−=ε .  Altogether 9 different inlet flows are investigated M = 0.01, 0.0125, 

0.02, 0.05, 0.1, 0.3, 0.5, 0.7 and 0.9 respectively. 

Some sample plots of the pressure pulse for four M cases are shown in Fig. 

3.23.  From these plots, the distance S between the peaks can be determined and 

since the time lapse is known, the speed with which the peaks moved away from 

each other can be determined.  The calculations are carried out for different S and t 

and sample plots for M = 0.01 and 0.9 are shown in Fig. 3.24.  In this figure is also 

shown the least square fit of all the S and t points chosen for the two M cases 

presented.  It should be noted that the gradients of these lines are in fact twice the 

sound speed for each individual Mach number flow.  After deducing the sound speed 

values, the calculated propagation speeds of sound c  are plotted in Fig. 3.25 versus 

different Mach number flows.  These results show little or no error in the 

determination of c under different Mach number conditions within the range tested. 

3.6 Summary 

In this chapter, the boundary techniques were investigated.  The comparisons show 

that the PML gives the most accurate solutions and the best time cost performance.  

In general, the PML requires a smaller computational domain, has a wider frequency 

range, and requires less computational time for the same aeroacoustic simulation 

problem.  This method is used to calculate some basic aeroacoustic problems: single 

plane pressure pulse, single circular pressure pulse, continuous pulses, acoustic pulse 

under different Mach number flow conditions.  These solutions would be used as 

reference in Chapter 5 to validate the LBM. 
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Table 3.1 Computational configurations for the test with three pulses. 

Grids Test Computational Region:
X direction, Y direction

Boundary Conditions 
(Damping layer width 

D) 

1 X(-2.5, 2.5), Y(-2.5, 
2.5) NSCBC 

2 X(-3, 3), Y(-3, 3) PML (D = 0.5) 
3 X(-3, 3), Y(-3, 3) Freund (D = 0.5) 

4 X(-4.5, 4.5), Y(-4.5, 
4.5) Freund (D = 2) 

Uniform 
(∆X = ∆Y = 

0.05) 

5 
(Reference) X(-6, 6), Y(-6, 6) Freund (D = 1) 
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Figure 3.1 Configuration of three pulses in the flow. 
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a b 

c d 

Figure 3.2 (NSCBC) Vorticity contours when time t is equal to 1.2, 1.5, 1.8 and 

2.1. 
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a b 

c d 

Figure 3.3 (PML) Vorticity contours when time t is equal to 1.2, 1.5, 1.8 and 2.1. 
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a b 

c d 

Figure 3.4 (Freund’s absorbing BC)Vorticity contours when time t is equal to 1.2, 

1.5, 1.8 and 2.1. 
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a b 

c d 

Figure 3.5 (NSCBC) Pressure contours when time t is equal to 1.2, 1.5, 1.8 and 

2.1. 

 



63  

 

a b 

c d 

Figure 3.6 (PML) Pressure contours when time t is equal to 1.2, 1.5, 1.8 and 2.1. 
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a b 

c d 

Figure 3.7 (Freund) Pressure contours when time t is equal to 1.2, 1.5, 1.8 and 2.1. 
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a b 

c d 

Figure 3.8 (Reference) Pressure contours when time t is equal to 1.2, 1.5, 1.8 and 

2.1. 
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Figure 3.9 Pressure error 1L  histories for different boundary schemes: -о NSCBC; 

-- Freund’s absorbing BC; — PML; —* Freund’s absorbing BC with 

D=2. 
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Figure 3.10 Pressure error 2L  histories for different boundary schemes: -о NSCBC; 

-- Freund’s absorbing BC; — PML; —* Freund’s absorbing BC with 

D=2. 
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Figure 3.11 Pressure error mL  histories for different boundary schemes: -о NSCBC; 

-- Freund’s absorbing BC; — PML; —* Freund’s absorbing BC with 

D=2. 
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Figure 3.12 “u” error 1L  histories for different boundary schemes: -о NSCBC; -- 

Freund’s absorbing BC; — PML; —* Freund’s absorbing BC with 

D=2. 
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Figure 3.13 “u” error 2L  histories for different boundary schemes: -о NSCBC; -- 

Freund’s absorbing BC; — PML; —* Freund’s absorbing BC with 

D=2. 
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Figure 3.14 “u” error mL  histories for different boundary schemes: -о NSCBC; -- 

Freund’s absorbing BC; — PML; —* Freund’s absorbing BC with 

D=2. 
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Figure 3.15 Density fluctuations contours of a plane pressure pulse (t=1.0 and 

t=3.0). 
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Figure 3.16 Density fluctuations along the center of tube for a plane pressure pulse 

(t=1.0 and t=3.0). 
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Figure 3.17 Pressure fluctuations along the center of tube for a plane pressure pulse 

(t=1.0 and t=3.0). 
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Figure 3.18 Pressure contours for a circular pressure pulse (t=2.5 and t=5.0). 
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Figure 3.19 Velocity “u” contours for a circular pressure pulse (t=2.5 and t=5.0). 
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Figure 3.20 Specification of computation plane sinusoidal wave propagation in 

quiescent fluid. 
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Figure 3.21 Propagation of sound wave in the x-direction: (a) density fluctuation 

contours; (b) distributions along the center-tube for continuous waves 

( 2=λ ). 
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Figure 3.22 Propagation of sound wave in the x-direction: (a) density fluctuation 

contours; (b) distributions along the center-tube for continuous waves 

( 10=λ ). 
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(a) (b) 

(c) (d) 

Figure 3.23 Instantaneous pressure fluctuations along the x-axis: (a) M = 0.01, t = 

0.02; (b) M = 0.1, t = 0.2; (c) M = 0.5, t = 1.0; (d) M = 0.9, t = 1.8. 
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Figure 3.24 A plot of the distance S between two maximum peaks versus time t. 
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Figure 3.25 A plot of the propagation speed of sound c  versus Mach number M. 
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4  Introduction to Lattice Boltzmann Method 

In Chapter 2 and Chapter 3, an effective one-step CAA method has been used to 

calculate some basic acoustic pulse cases and some classical aeroacoustic problems.  

In all cases studied, the 2-D fully unsteady compressible Navier-Stokes equations are 

solved.  These equations are derived based on the continuum assumption for the fluid.  

The higher-order transport terms such as the viscous stress and heat flux terms are 

derived by invoking the Stokes stress hypothesis and the Fourier law.  As a result, 

second-order spatial derivatives appear in the governing equations.  These inherent 

features cause certain difficulties in solving these governing equations numerically; 

such as stability considerations when these second-order terms are evaluated 

numerically.  At the same time, it is not easy to build parallel algorithm codes to 

fully utilize the efficiency of the computers; this consideration is especially 

important in CAA because the computational time is an important issue to consider.  

In view of this, a numerical simulation scheme for CAA that is most amenable to 

parallel computation should be developed.  The Boltzmann equation is a scalar 

equation (Cercignani 1975) and is quite amenable to parallel computation if it is used 

for CAA.  Therefore, in this chapter, a one-step CAA method using LBM will be 

introduced.  The Chapter begins with a brief discussion of the Navier-Stokes 

equations, because if the LBM is used to simulate aeroacoustic problems it is 

necessary to show that the LBM should recover the fully unsteady compressible 

Navier-Stokes equations and the equation of state correctly. 

4.1 Navier-Stokes Equations 

The Navier-Stokes equations are derived by invoking the continuum hypothesis, 
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where the various fluid properties such as the density, velocity and temperature (or 

the internal energy) are assumed to be continuous functions of position with 

characteristic volume scale of 10-9 cm3 (Batchelor 1970).  In other words, the particle 

nature of the material is already smoothed in this scale, small though this volume is, 

it contains about 10103×  molecules of air at normal temperature and pressure.  

Therefore, when given a specified volume, the fluid should follow the conservation 

of mass, momentum and energy equations since all the scale quantities should be 

continuous.  These conservation equations can be expressed as 

( ) 0=
∂

∂
+

∂
∂

α

αρρ
x
u

t
     , (4.1) 

( ) ( )
β

αβ

αβ

βαα τρρ
xx

p
x

uu
t
u

∂

∂
+

∂
∂
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∂ ∂
. (4.3) 

Summation over repeated indices α  and β  is assumed.  The viscous stress and the 

heat flux are derived from the Stokes stress hypothesis and the Fourier law, 

respectively, and are given by 

⎟
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⎠
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⎜
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⎛

∂
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αβχχαβαβαβ δμτ
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SSS
2
1,

3
12     , (4.4a) 

α
α x

Tkq
∂
∂

−=     . (4.4b) 

They are related to the fluid transport coefficients μ and k, the first coefficient of 

viscosity of the fluid and the fluid thermal conductivity, respectively.  These fluid 

properties are regarded as functions of temperature.  Equations (4.1) - (4.3) are 

closed with the thermodynamic coupling of the internal energy, the pressure and the 

density through the equation of state for a perfect gas, i.e. 
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RTp ρ=     , (4.5) 

where the gas constant is given by vp ccR −= .  Conventional approaches for direct 

aeroacoustic simulations proceed by truncating Eqs. (4.1) to (4.5), or their linearized 

forms, in the spatial domain and then resolve their temporal evolution by means of 

finite difference or finite volume techniques. 

It should be pointed out that for certain fluids, such as non-Newtonian fluid, 

Eqs. (4.1) – (4.3) can still be derived by invoking the continuum assumption, but the 

high-order transport terms are not necessarily given by Eqs. (4.4a, b).  In fact, these 

two hypotheses for the transport terms can be derived, with certain simplification, 

from particle collision theory.  As will be shown later, the viscosity and the thermal 

conductivity could be obtained from the basic particle collision theory.  This means 

that in order to deduce the conventional Navier-Stokes equations, some particle 

theories have to be invoked to evaluate the high-order transport terms.  Since particle 

motion is considered, the governing equation for particle theory, namely the 

Boltzmann equation, should be considered. 

4.2 Boltzmann Equation and the Conservation Law for Particles 

Boltzmann equation (BE) considers the kinetic energy of discrete particles.  If there 

is no external force, this equation can be simply expressed as the evolution of the 

single-particle distribution function based on a linear convection operator (steaming 

term) and a nonlinear collision (Harris 1999, Wolf-Gladrow 2000) term.  The 

collision term should satisfy the conservation law for the particles, where the 

macroscopic quantities for the fluid, such as density, momentum, internal energy and 

energy flux, can be derived via moment integrations of this distribution function.  It 

should be stressed that, using a multiscale Chapman-Enskog expansion about the 
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Knudsen number, the Navier-Stokes equations can be derived from the modeled BE 

(Harris 1999). 

The lattice Boltzmann method (LBM) is originated from the lattice gas 

automata and is a numerical method used to solve the modeled BE.  The LBM is 

discretized in phase (or velocity) space.  It was proposed as an alternative to 

conventional computational fluid dynamics techniques (Chen et al 1992, Qian et al 

1992) more than a decade ago.  A variety of lattice Boltzmann methods have been 

established for different hydrodynamic systems (Chen & Doolen 1998), such as 

single component hydrodynamics (Michael and Dani 2003), multiphase and 

multicomponent flows (Gunstensen and Rothman 1993, Grunau et al 1993), 

particulate suspensions in fluid (Ladd 1993 and 1997, Behrend 1995, Aidun and Lu 

1995), reaction-diffusion systems (Dawson et al 1993, Chen et al 1995), flows 

through porous media (Guo and Zhao 2002), etc.  In kinetic theory of gases, the 

evolution of a fluid is described by the solutions to the continuous BE.  Development 

of LBM for single-phase compressible flow, such as air, has received particular 

attention because they all recover the macrosopic Navier-Stokes equations in 

asymptotic limit of the Knudsen number (Chen et al 1992, Qian 1992, Frisch et al 

1986, Frisch et al 1987).  Due to the symmetry of the lattice, the conventional LBM 

was only able to simulate low Mach number flows in the incompressible limit.  Here, 

the term conventional LBM is used to designate the lattice method used to solved the 

BE modeled by the (Bhatnagar, Gross and Krook 1954) BGK model.  Using a fully 

discrete particle velocity model, where space and time are also discretized on a 

square lattice, internal energy of the particle is fixed; therefore, only isothermal 

flows can be simulated.  This represents a limitation of the conventional LBM and 

remedies have been sought in the past. 
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There have been attempts to incorporate the effects of temperature variations 

in LBM for simulations of compressible flows and wave propagation.  Sun (1998) 

introduced a particle potential energy term with arbitrarily adjusted specific heat 

ratio into conventional LBM on hexagonal lattice for shock wave simulations.  

Palmer and Rector (2000) modeled the internal energy as a secondary scalar 

distribution driven by the isothermal velocity distribution function and obtained 

good agreement in several thermal convection cases.  However, the application of 

their model to aeroacoustic simulations is questionable because the equation of state 

is not explicitly recovered.  Tsutahara et al. (2002) and Kang et al. (2003) attempted 

to include a particle rotational degree of freedom into the conventional LBM.  Their 

approach was to define a new distribution function which was given by the product 

of the velocity distribution and a rotational energy term.  They used the method to 

calculate shock reflection and the Aeolian tone of a circular cylinder and obtained 

qualitative agreement with DNS results.  However, they have to use 21 discrete 

velocities at each lattice location for their computations. 

In kinetic theory, a simple dilute gas, such as air, is represented as a cloud of 

particles and is fully described by a continuous particle distribution function 

( )tf ,,ξx , which is the probability of finding a particle at location x moving with 

microscopic velocity ξ .  This function describes the distribution of the number of 

particles with speed ξ  per unit volume.  Thus f has the dimension of ( ) 33/ −− msm  for 

the three-dimensional speed space.  Therefore, the total number of particles N per 

unit volume can be calculated by ∫= ξfdN .  It is a mesoscopic description of the 

fluid, which is intermediate between the macroscopic continuum model and the 

microscopic description.  In this formulation, the fluid is treated as an avalanche of 

discrete interacting gas molecules.  For a dilute gas in which only binary collisions 
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between particles occur, the evolution of the distribution function is governed by the 

continuous Boltzmann equation (BE), 

( ) ( ) ( ) ( ) ( ){ } ( )ffQffffddff
t
f

ex ,111
3 =−′′−ΩΩ=∇⋅+∇⋅+

∂
∂

∫∫ ξξξξξξξFξ ξx σ

 (4.6) 

The left-hand side of Eq. (4.6) describes the streaming of particle motions.  The 

variable exF  indicates external body force due to gravity or electromagnetic origin.  

Since the rate of particle collision is unaffected by external body forces, 0=exF  is 

assumed in the present study.  The operator Q accounts for the binary particle 

collision occurring within a differential collision cross section ( )Ωσ  which 

transforms the velocities from { }1,ξ ξ  (incoming) to { }1,′ ′′ξ ξ  (outgoing).  In elastic 

collisions, the mass, momentum and kinetic energy of the particles are conserved.  In 

other words, before the collision and after the collision, the total number of particles, 

their momentum and their translational energy would remain the same.  

Consequently, Q must possess exactly five collision invariants 

( ) ( )0,1, 2, 3, 4 s s =ψ ξ  in the sense that ( ) ( ) 3, 0sQ f f d =∫ ψ ξ ξ .  The elementary 

collision invariants are 10 =ψ , ( )1 2 3, , =ψ ψ ψ ξ  and 2
4 = ξψ  which are 

proportional to mass, momentum and kinetic energy, respectively.  These are the 

fundamental conservation laws for the particles.  It would be demonstrated later in 

this chapter that these conservation laws can be used to recover the macroscopic 

properties and that the macroscopic Navier-Stokes equations for unsteady 

compressible flows are recovered correctly. 

4.3 Density, Momentum and Internal Energy of Fluid 

From the definition of the particle distribution function ( )tf ,,ξx , which is the 
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probability of finding a particle at location x moving with microscopic velocity ξ .  If 

the particle mass m is included in both sides of the formula ∫= ξfdN , it can be seen 

that ∫= ξfmdNm .  Since m is a constant for a single component gas, the left hand 

side of this equation could be interpreted as the physical definition of density for the 

fluid.  Because m is a constant for a single component gas, this constant is absorbed 

into the physical meaning of f in the following derivations and equations.  Thus 

defined, f has the dimension of ( ) 33/ −− msmkg .  Therefore the macroscopic fluid 

density and momentum can be easily derived as the zero-order and first-order 

integration of f over the whole velocity space.  They are then given by 

∫= ξfdρ     , (4.7) 

∫= ξξu fdρ     . (4.8) 

The definition of fluid internal energy e needs consideration of the molecular nature 

of the fluid.  As indicated in the following arguments, the realization of the diatomic 

nature of the fluid molecules is key to the successful recovery of the ideal gas 

equation of state, which is instrumental in a correct aeroacoustic simulation. 

Monoatomic gas model is commonly adopted in most previous LBM.  In this 

model each gas particle supports only translational motions with TD  degrees of 

freedom.  This appears not appropriate to aeroacoustics since the fluid medium of 

interest is mostly air, which is mainly composed of diatomic nitrogen and oxygen 

gases.  Generally, a polyatomic gas particle can undergo rotational motions with 

additional RD  degrees of freedom.  This indicates that both translational and 

rotational kinetic energies of the polyatomic gas particles should be taken fully into 

account for a correct definition of the macroscopic internal energy.  For diatomic gas 
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like air, the total number of degrees of freedom is 5=+ RT DD .  From statistical 

mechanics theory, the kinetic energy should be equally distributed on each degree of 

freedom.  It should be noticed that the term, 21
2

f d∫ ξ ξ , represents the summation 

of translational energies of TD  degrees.  The kinetic energy on each degree of 

freedom may be defined as 21 1
2T

f d
D ∫ ξ ξ .  Therefore, with the total number of 

degrees of freedom given by RT DD + , the internal energy of the particles can be 

defined 21
2

T R

T

D D f d
D
+

∫ ξ ξ , and the second order velocity moment integration 

would give the macroscopic internal energy for the fluid as 

2 21 1
2 2

u T R

T

D De f d
D
+

+ = ∫ρ ρ ξ ξ     . (4.9) 

The fluid energy flux can be defined via the second and third velocity moments as 

follows, 

2 21 1
2 2

u u T R

T

D De p f d
D
+⎛ ⎞+ + =⎜ ⎟

⎝ ⎠
∫ρ ρ ξ ξ ξ     . (4.10) 

Integration of Eq. (4.9) suggests an explicit internal energy definition 

( ) 2/RTDDe RT +=  for diatomic gas (Appendix A).  Actually, it can be shown that, 

with the definitions of macroscopic fluid variables described in Eqs. (4.7) - (4.10), 

the unsteady compressible Navier-Stokes equations and the ideal gas equation of 

state can be completely recovered from the BE with a certain microscopic collision 

model and the Chapman-Enskog expansion assumed (Chapman & Cowling 1970). 

4.4 Recovery of Navier-Stokes Equations 

The collision operator Q contains all the details of the binary particle interactions but 

it is very difficult to evaluate due to the complicated structure of the integral.  
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Simpler models for Q have been proposed.  The idea behind modeling is that the vast 

amount of details of the particle interactions is not likely to influence significantly 

the values of many experimentally measured macroscopic quantities (Cercignani 

1990).  It is expected that the fine structure of ( )f,fQ  can be replaced by a blurred 

image based on a simpler operator ( )fJ  which retains only the qualitative and 

average properties of the true operator.  Furthermore, the H-theorem shows that the 

average effect of collisions is to modify f by an amount proportional to the departure 

from the local Maxwellian-Boltzmann equilibrium distribution eqf  which is 

expressed in D spatial dimensions as, 

( )

2

2 exp
22

u
 eq

Df
RTRT

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟π ⎝ ⎠

ξρ     . (4.11) 

Therefore, the collision operator is approximated as ( ) ( )eqfffJ −−= ω .  In case of 

a fixed collision interval, i.e. τω 1= , the well-known BGK, or single-relaxation-

time (SRT) model for monoatomic gas (Bhatnagar et al. 1954) is recovered and Eq. 

(4.6) is expressed as the modeled BE as, 

( )x
1 eqf f f f

t
∂

+ ⋅∇ = − −
∂

ξ
τ

    , (4.12) 

where τ  corresponds to the time taken for a non-equilibrium f to approach eqf . 

The relaxation time τ  is the basic time scale in the BE.  In real gas the 

relaxation time scales are of the order of 98 1010 −− ~  seconds for most application 

range of the pressure and temperature (Hirschfelder et al. 1964).  On the other hand, 

macroscopic properties of the fluid such as density, velocity, etc., usually possess a 

time-scale of about 410−  seconds.  The disparity in the Boltzmann and macroscopic 

time scales indicates that all the macroscopic quantities have converged to local 
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equilibrium states at a very fast rate and it is practically valid to replace f by eqf  in 

Eqs. (4.7) - (4.10).  The two disparate time scales, in fact, facilitate the derivation of 

the macroscopic unsteady compressible Navier-Stokes equation and its transport 

coefficients from the kinetic model given in Eq. (4.11) by means of a Chapman-

Enskog expansion about the Knudsen number (Chapman and Cowling 1970).  The 

Knudsen number ε  is the ratio of the mean free path between two successive 

particle collisions and the characteristic spatial scale of the fluid system.  In essence, 

it is a standard multi-scale expansion (Frisch et al. 1987) in which time and spatial 

dimensions are rescaled with ε  as a small expansion parameter as follows 

2
1 2 1, ,t t t t x x= = =ε ε ε     , (4.13a) 
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and the distribution function f is expanded as 

( ) ( ) ( ) ( )32210 εεε Ο+++=+= ffffff neqeq     . (4.14) 

When ( )1Ο~ε  or larger, the gas in the system under consideration can no longer be 

considered as a fluid. 

Inserting Eq. (4.13) into Eq. (4.12), balancing ε  order by order, multiplying 

the resulting equation with ( )ξsψ  and performing subsequent integration over 3ξd  

in velocity space (Appendix B), the following conservation laws are deduced 
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If the definition of pressure is given by ( )RT DDep += ρ2  and the gas constant (the 

ratio of the specific heats) is defined as ( ) ( )RTRT DDDD +++= 2γ , then the ideal 

gas equation of equation (Eq. (4)) naturally follows, 

( ) RTep ρργ =−= 1     . (4.18) 

Evidently, Eqs. (4.15) to (4.18) are the macroscopic conservation equations 

needed for an unsteady compressible Navier-Stokes flow with the first coefficient of 

viscosity, second coefficient of viscosity, and the thermal diffusivity defined as 

follows, 

( ) τργμ e1−=′     , (4.19) 

( ) τργλ e1−=′     , (4.20) 

( ) μγτργγκ ′=−=′ e1     . (4.21) 

The thermal conductivity term in eq. (4.17) can be derived as 
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Comparing this expression with the macroscopic energy conservation Eq. (4.3), it 

leads to kc p =′μ  and consequently a unity Prandtl number in the present 

formulation.  A different Prandtl number could be deduced by scaling the value 

( ) TRT DDD +  in Eqs. (4.9) and (4.10) or derived in an alternative way.  As will be 

seen from the discussion given below on the correct recovery of the first coefficient 

of viscosity, Sutherland law has to be invoked.  If the thermal conductivity were to 

be recovered correctly, Fourier law has to be used as a constraint also.  Therefore, in 
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principle, correct recovery of the Prandtl number could be sought from a proper 

recovery of the Fourier law of heat conduction in the derivation of the macroscopic 

Navier-Stokes equation.  However, this is not the main objective of the present thesis; 

it will not be discussed further. 

4.5 Recovery of First Coefficient of Viscosity 

In Eqs. (4.16) and (4.17), the terms associated with the second viscosity, i.e., 

( )γγλ xu ∂∂′ , is generally small compared to the other terms in practical flows 

(White 1991), therefore, it could be neglected in the following analysis.  Therefore, 

the only viscosity coefficient that needs to be recovered is ′μ  = μ (from this point on, 

following convention, μ is used to denote the first coefficient of viscosity).  In most 

numerical simulations of aerodynamics and aeroacoustics based on macroscopic 

conservation laws, the value of μ  is usually estimated from the Sutherland law.  For 

the sake of completeness the proposed kinetic model is required to recover μ  

correctly, otherwise, the Reynolds number effect of unsteady flows would be 

incorrectly captured.  The law of viscosity based on Sutherland’s model of 

intermolecular force potential takes the following form (Ferziger and Kaper 1975), 
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μ     , (4.23) 

where S  is an effective temperature, called the Sutherland constant, equal to 111K, 

107K and 139K for air, nitrogen and oxygen, respectively (White 1991).  The error 

associated with the approximation is within 2 - 4% over a temperature range of 210K 

- 1900K. 

Physically, the relaxation phenomenon depends on the temperature.  For 

instance, assuming a ‘rigid sphere’ collision, the kinetic model admits a relaxation 
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time for particle velocity expressed as (Cercignani 1975), 
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σ σξ ξ

    , (4.24) 

where τ  is the mean collision time of the particles and 8 B nk T M= πξ  is the 

magnitude of mean particle velocity.  Substituting the relaxation time given in Eq. 

(4.24) into Eq.(4.19), ( )1 e p RT′ = = − = =μ μ γ ρ τ τ ρ τ , the following expression 

can be deduced for μ, 

TkM Bn
m
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1
16

5
σπ

μ ≈     . (4.25) 

Eq. (4.25) clearly shows that the first coefficient of viscosity has a different 

temperature dependence compared to the Sutherland law, Eq. (4.23).  This means 

that real gas effects on viscosity cannot be correctly deduced from the microscopic 

single relaxation time model. 

The phenomenon of fluid viscosity could be attributed to momentum transfer 

between gas particles before and after collisions.  The distributions of momenta of 

the particles depend on the momentum of each particle when they are far separated, 

as well as the interactions of intermolecular potentials when two particles are in close 

encounter.  The intermolecular potential represents the contributions of 

intermolecular attraction and repulsion to the potential function.  According to 

Ferziger and Kaper (1975), from the kinetic theory point of view, single relaxation 

time is equivalent to the adoption of a ‘rigid sphere’ model in which the short range 

force potential behaves as if a Dirac-delta function with finite repulsion at the 

separation when two rigid particles are in contact ( )mmr σ= .  The model yields an 

exaggerated potential change at mmr σ≈  and predicts poorly the temperature 
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dependence of the macroscopic fluid properties.  Sutherland (Ferziger and Kaper 

1975) then suggests to include a weak but rapidly decaying repulsive potential, 

( )νσ mm r~ , in the interaction and successfully provides a more realistic description 

of the dependence of the first coefficient of viscosity on temperature, such as given 

by Eq. (4.23).  The effects of this weak potential might be more pronounced in the 

relaxation of a diatomic gas due to its more complicated molecular structure. 

It is evident that the effects of the weak repulsive potential should be included 

in the present LBM if correct viscosity prediction is to be achieved.  In the present 

formulation, a proper account of the effects is mainly carried out through the 

modification of the collision term in Eq. (4.12).  The ‘rigid sphere’ gives a relaxation 

time 1τ  for momentum transport and this can be derived from Eq. (4.24) as 

2/1
01 4

5 −∝≈ Tττ     . (4.26) 

The determination of another relaxation time 2τ  for the weak potential is much more 

complicated because it depends on the particle velocity as well as on the physical 

nature of the gas under consideration.  It could be argued that since the weak 

potential is a long range potential, its effects can be felt at a reasonably not-too-close 

separation and 2τ  could be postulated to be proportional to the average approach 

velocity of the particles, i.e., 

21
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/T∝∝ ξτ     . (4.27) 

Consequently, the simplified collision operator J could be expressed as 
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for the improved BE based on Eq. (4.12) and the first coefficient of viscosity can be 

expressed as 
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From Eqs. (4.26) and (4.27), the temperature dependence of the ratio of the two 

relaxation times can be expressed as TS021 =ττ , where 0S  is a constant 

depending on the physical properties of the gas.  Eventually, by choosing 0S  equal 

to S, Eq. (4.29) is recovered for the correct prediction of μ .  If the two relaxation 

times 1τ  and 2τ  are known, it is straightforward to calculate the effective relaxation 

time effτ  for Eq. (4.29) to get a correct estimate of μ .  The calculated effτ  can then 

be used to replace τ  in Eq. (4.12) for the improved LBM simulation.  Fig. 4.1 

illustrates the difference in the variation of μ  for two common diatomic gases, 

nitrogen and oxygen, depicted using Eqs. (4.25) and (4.29).  It is evident that the 

single relaxation time model over predicts the values of μ  for a wide range of 

temperature with errors ranging from 28% at high temperature to 70% at low 

temperature. 

Theoretical analysis (Lallemand and Luo 2003) shows that the acoustic 

properties of a fluid can be fully resolved by a multiple-relaxation-time (MRT) 

model in which τ  for each velocity moment can be adjusted separately.  However, 

adopting the proposed MRT model would require complicated programming and 

higher computational cost.  Furthermore, the proposed MRT model has different τ 

for each velocity moment; these relaxation times are empirically determined and 

could not be generalized easily for problems different from those treated in 

Lallemand and Luo (2003).  From the above analysis, the modified SRT model (as 
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given by Eqs. (4.12) and (4.28)) has the ability to recover the viscosity correctly after 

considering the weak potential force in the physical relaxation time τ .  This implies 

that temperature dependence of μ could be recovered according to Sutherland law.  

In other words, viscous effect can be correctly recovered in any LBM simulations.  

Therefore, the improved BE is preferred over other proposed multiple relaxation 

time models for Eq. (4.12).  Further discussion of this is given in the next chapter. 

4.6 Numerical Scheme for Finite Difference Lattice Boltzmann 

Method 

4.6.1 Lattice Models and Coefficients 

Instead of tracking the evolutions of the primitive variables in the flow solutions in 

conventional numerical flow simulations, the method of LBM solves only the 

evolution of f as prescribed in Eq. (4.12) with τ replaced by τeff.  This equation is first 

discretized in a velocity space using a finite set of velocity vectors { }iξ  in the 

context of the conservation laws (Chen and Doolen 1998) such that, 

( )eq
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ξ 1     , (4.30) 

where ( ) ( )t,,ft,f ii ξxx =  is the distribution function associated with the ι-th 

discrete velocity iξ , and eq
if  is the corresponding equilibrium distribution function 

in the discrete velocity space.  The continuous local Maxwellian eqf  may be 

rewritten up to the third order of the velocity after a Taylor expansion in u and can 

be expressed in the discrete velocity space as, 
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where RT=θ .  The weighting factors iA  are dependent on the lattice model 

selected to represent the discrete velocity space.  They are evaluated from the 

constraints of local macroscopic variables, Eqs. (7) – (10), in the lattice with N 

discrete velocity sets, as 
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For the two-dimensional lattice with a diatomic gas flow considered in the present 

study, 2=TD and 3=RD  are given (two-dimensional lattice speed is considered 

and the total degree of freedom should be equal to 5), so the specific heat ratio is 

given by 4.1=γ .  Two discrete velocity sets are attempted for the lattice, namely a 

two-dimensional nine-velocity (D2Q9) model and a two-dimensional thirteen-

velocity (D2Q13) model.  Their definitions and the associated weighting factors are 

illustrated in Fig. 4.2.  Since the Sutherland law can be correctly recovered from Eq. 

(4.29) with the definition of the effective relaxation time effτ  given in Eq. (4.28), the 

viscosity can be determined from ( ) ( ) ( )3 2/
/ /ref refT T T S T S⎡ ⎤≈ + +⎣ ⎦μ , once the 

local temperature is known.  Alternatively, effτ  in the present formulation can be 

obtained from ( )1/eff e⎡ ⎤= −⎣ ⎦τ μ γ ρ . 

4.6.2 Finite Difference Scheme and Time Marching 

In conventional methods, Eq. (4.30) is solved by first evaluating the collision process 

while the streaming process is calculated at every time step.  In the present study, 

these processes are replaced by a combination of finite difference method in which 

the convective derivatives of if  on the right hand side of Eq. (4.30) are evaluated by 
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a sixth-order finite difference scheme (Chapter 2), followed by a time advancement 

using a second-order Runge-Kutta scheme.  This high-order spatial difference 

scheme provides a very low dispersive and low dissipative numerical solution to 

approximate the modeled BE.  These efforts could minimize the numerical viscosity 

for the small quantity disturbances, so one-step numerical simulations with the 

Boltzmann model could predict the aeroacoustic problems with the solutions 

essentially the same as those obtained by solving the Navier-Stokes equations using 

DNS. 

4.7 Non-Reflection Boundary Conditions for Open Boundaries 

The coherence feature of the Boltzmann equation already implies different orders of 

conservations (mass, momentum, energy and energy flux) for the particles.  

Physically, if all these conservation laws were satisfied at the computational 

boundaries, the artificial boundaries would be non-reflecting for mass, momentum, 

energy and energy flux.  This may give a simple non-reflecting boundary condition 

for the CAA problems.  In the following two chapters, a simple zero and first order 

continuity conditions, and buffer zone technique are tested for different aeroacoustic 

problems using LBM.  For the DNS method solving the Navier-Stokes equations, it 

has been explained in Chapter 2 that the characteristic-based boundary conditions 

(NSCBC), the absorbing technique (ABC) and the perfectly matched layer method 

(PML) are suitable nonreflecting boundary methods for aeroacoustic computations.  

Sometimes, the conservation element (CE) boundary method could also be used.  It 

should be noted that most of these DNS nonreflecting boundary methods are derived 

from the Euler equations and maybe not stable for shear layers, where the second 

order partial derivatives inside the Navier-Stokes equations would dominate the flux 

terms.  These linear analyses could not deal with the viscous terms.  Using a simple 
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absorbing region, the computations could be made stable for shear flows.  However, 

a large number of nonphysical grids have to be added inside the buffer; therefore, it 

would cause the computational cost to increase.  On the other hand, as it has been 

mentioned before, the simple form of the Boltzmann equation already implied 

viscosity for the flow (Eq. (4.29)); only first order derivatives appear in the 

convection terms for the particles.  This allows the use of a very simple linear 

analysis to deduce the proper nonreflecting boundary conditions.  If a suitable 

nonreflecting boundary technique with no buffer region is found for one-step CAA 

using LBM, the computational domain could be reduced to a much smaller size and 

the associated reduction in computational cost of the LBM makes it a very attractive 

alternative to the DNS. 

Three simple methods were used in the following cases.  The first one is zero-

order continuity of the particle velocity distribution function.  For the solutions if , 

{ }NNi ,1,...,2,1 −∈ , where i=1 and i=N are the boundary points.  In the 

computations, after using the 6th-order finite difference scheme and second-order 

time marching, the whole solutions for new time-step could be valued.  After that, 

the boundary solutions 1f  and Nf would be corrected by nearby inner points values, 

thus 21 ff =  and 1−= NN ff .  If there were no pulses passing through the boundaries, 

this boundary condition is proved to be stable for the improved LBM (in §5.1).  

There are no spurious waves appeared near the boundaries. 

The second method is using the first-order continuity.  Similar to the first 

method, for the boundary points, the gradients normal to the boundary were set equal 

to the nearby inner value, such as ( ) ( )21 // nfnf ∂∂=∂∂  and ( ) ( ) 1// −∂∂=∂∂ NN nfnf , 

where n is along the normal direction of the boundaries.  This technique is applied to 

the upper and lower boundaries of the plane pulse interacting with a zero circulation 
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vortex case treated in chapter 6 where 1-D continuous waves are transmitted through 

boundaries.  Therefore, the upper and lower boundaries should keep the wave front 

normal to the boundaries at all time.  Simultaneously, this technique should be non-

reflecting for the disturbances passing through the boundaries.  It was shown that 

this simple first order technique could be extended as an appropriate non-reflecting 

boundary condition for the improved LBM. 

The third method is using the buffer technique.  Similar to the absorbing BC 

for Navier-Stokes equations, this absorbing is adopted to the particle distribution 

function.  A damping term is added into the governing equation, thus the governing 

equation is revised to: 

( ) ( )eqfffff
t
f

−−=−+∇⋅+
∂
∂

τ
σ 1

xξ     . (4.34) 

where f  is the particle distribution value when the flow quantities are in 

homogenous mean state, σ  is the absorption coefficient that varies smoothly from 

zero at the edge of the buffer to a constant value near the boundaries.  The buffer is 

used to absorb the disturbances from the inner field and when close to boundaries, 

the solutions are forced to become equal to the mean state solutions so there are no 

reflections from boundaries.  This method is applied in §5.3 and scattering cases.  In 

these cases, continuous 1-D waves were excited inside domains, these buffer regions 

lie in the opposite direction of the waves.  All disturbances energy would be 

absorbed before they touch the boundaries.  Otherwise, if there are any small 

reflections, the continuous waves would generate more and more spurious waves 

inside and could drive the computation to attain a wrong state.  This buffer technique 

provides good results for these cases. 
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4.8 Advantages of One-Step CAA Using the Improved LBM 

The simple structure of the improved LBM code is most suitable for parallel 

computation, which means a significant saving in computational time.  Because of 

the complexity of the Navier-Stokes equations, the code is very complicated and 

parallel computation could not be fully made used of.  Therefore, computational time 

becomes an important issue in one-step CAA using the DNS method.  Furthermore, 

the structure of the improved LBM code is quite simple and is about 400 lines, 

whereas the DNS code for the solution of the Navier-Stokes equations will involve at 

least 1400 lines. 

The high-order solutions of the Boltzmann equation could also help the 

understanding of the physics of particle transport.  As mentioned in the beginning of 

this chapter, the Stokes hypothesis and the Fourier law have to be specified in the 

solution of the Navier-Stokes equations if the high-order transport, such as viscous 

stress and heat flux, were to be determined.  Consequently, the Navier-Stokes 

equations cannot be used to explore the mechanism of these high-order transports.  

On the other hand, the Boltzmann equation studies particles, so these high-order 

transports can be evaluated directly from the conservation laws.  An example is the 

recovery of the first coefficient of viscosity.  A two-relaxation time model is 

postulated so that Sutherland law can be recovered correctly.  A following work for 

LBM is the recovery of the Prandtl number, which is related to energy flux.  This 

could be achieved by stipulating that the analysis should lead to the recovery of the 

Fourier law of conduction. 

4.9 Summary 

In this chapter, a lattice Boltzmann method is proposed for computational 

aeroacoustics.  The basic Boltzmann equation is the governing equation for a single 
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particle velocity distribution function by translation and collision motions (§4.2).  

The macroscale fluid properties such as density, momentum, energy and energy flux 

can be assumed as different orders integrations of this function on the whole velocity 

space (§4.3).  A new description on the internal energy is suggested in §4.3 after 

considering the rotational energy of particles (especially for the diatomic gases such 

as air).  Using a multiscale “Chapman-Enskog” expansion about the Knudsen 

number, the full set of unsteady compressible Navier-Stokes equations are recovered 

(§4.4).  Following the suggestion of §4.3, the gas equation of state is recovered 

correctly with the gas specific heat ratio for diatomic gases given by 1.4.  In the 

process of deriving the Navier-Stokes equations, the viscosity of the fluid is shown 

to be related to the collision time ( ) τργμ e1−= .  If τ in this equation is assumed to 

be given by the rigid sphere model of collision, the viscosity would have a wrong 

dependence on temperature (Eq.(4.25)), the resultant error can be as large as 70% 

(Fig. 4.1).  By considering an additional “weak force” for the collision process (§4.5), 

the relation between viscosity and temperature can be shown to have the same form 

as Sutherland law.  It can be shown that in numerical simulation using the improved 

BE, the viscosity is recovered correctly and so is the Reynolds number.  The detailed 

numerical scheme used to solve the improved LBM is described in §4.6.  Some 

benchmark aeroacoustic problems used to validate this LBM are discussed in 

Chapter 6 and Chapter 7.  Finally, §4.7 lists some advantages of the improved LBM 

scheme.  Comparing with the DNS method, the improved LBM code has a very 

simple structure and is more efficient on parallel machine; therefore, the 

computational time can be deduced. 

However, the disadvantages of LBM can not be ignored.  Which would be 

described in following chapter, the major disadvantage is that the time step for LBM 
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is very small, compared with DNS computations.  According to the LBM stability 

criterion of Tsutahara et al. (2002), Δt < τ /2, the time step is proportional to the 

collision time.  If realized Eq. (4-19), the collision time is proportional to the 

viscosity of fluid, so, if the viscosity is smaller, the time step is smaller.  This would 

result that the LBM time-step is related to the Reynolds number after the 

normalization.  For a higher Reynolds number flow, a smaller time-step should be 

used.  As it would be shown in the next chapter, for the same problem, LBM used a 

much smaller time-step than DNS. 



106  

 

Appendix A: Internal Energy and Temperature 

The internal energy e is defined by the following relation, 

2 21 1
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T R
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D De f d
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+ = ∫ρ ρ u ξ ξ     . (A.1) 

In general, the particle distribution function f  can be decomposed into an 

equilibrium part and a non-equilibrium part, i.e., neqeq fff += .  The non-

equilibrium part neqf  is required to satisfied the nullity requirement for moments of 

different velocity orders, i.e., 
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Therefore, making use of Eq. (11) for eqf , Eq. (A.1) can be expressed as: 
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The total number of degrees of freedom for diatomic gas motions is always RT DD +  

= 5 (where 3=TD  and 2=RD ).  Therefore, the right hand side of Eq. (A.3) is a 

function of temperature alone.  The sole temperature effect on e is realized in the 

redistribution of the particle momentum due to particle collision and should be 

independent of the ‘mean’ flow velocity carrying the particles (Tsutahara et al 2002).  

Therefore, e should be the same irrespective of whether 0=u .  Integration of Eq. 

(A-3) in 3-D simulations (D = 3) leads to 
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where uξr −= . 

In a 2-D simulation, only two planar translational motions are allowed, thus 

giving 2=TD .  If similar arguments for the temperature dependence in the 3-D case 

is applied, then, with uξr −=  in 2-D, 
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Evidently the definition of e in the present LBM holds for both 2- and 3-D flows.  It 

is interesting to note that the integration results of Eqs. (A.3) and (A.5) perfectly 

match the classical equipartition theorem of the kinetic theory of gases, which states 

that, for a polyatomic gas, each degree of freedom equally contributes 2/RT  to the 

total amount of internal energy. 
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Appendix B: Derivation of Navier-Stokes Equations 

The Chapman-Enskog expansion is a multi-scale expansion in which time and 

spatial dimensions are rescaled with a very small parameter ε  (Knudsen number) as 

follows: 

2
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and the distribution function f is expanded as 

( ) ( ) ( ) ( )32210 εεε Ο+++=+= ffffff neqeq     . (B.2) 

Here, the Knudsen number ε  is defined as the ratio of the mean free path between 

two successive particle collisions and the characteristic spatial scale of the fluid 

system.  Substituting Eq. (B.2) into the modeled Boltzmann equation (4.12) gives 
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Collecting terms with the same order of ε , the following results up to )1(f  are 

obtained, 
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(i) The mass conservation equation 

Integrating equation (B.4a) over the particle velocity space, and realizing that the 
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integration of the non-equilibrium term ( ) ξdf∫ 1  should be zero, this would give the 

mass conservation law as 

( )( ) ( )( ) 000

1

=
∂
∂

+
∂
∂

∫∫ ξξξ α
α

df
x

df
t

    , (B.5) 

where αξ  is the particle speed along α-axis.  It should be noted that, for simple 

expressions, the second term represents the summation along all axes of the 

coordinate; in the following, if not specified, this would not be noted again.  Using 

the macro-scale definition of density and momentum Eqs. (4.7) and (4.8) gives, 

( ) 0
1

=
∂

∂
+

∂
∂

α

αρρ
x
u

t
    , (B.6) 

If Eq. (B.4b) is also integrated over the particle velocity space, the following is 

obtained, 

( )
( )

( ) ( ) ( )
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∂
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ξξξξ
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t
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xt

df

t

ξξξξ
  ,

 (B.7) 

with αβ ≠  replacing all other terms that do not align with the α-axis.  The second 

term is zero because it is the integration of a non-equilibrium function.  The term 

inside the square bracket is also zero because they are equivalent to the integration of 

Eq. (B.4a) times αξ .  Thus the result is obtained, 

0
2

=
∂
∂
t
ρ , (B.8) 

Combine Eq. (B.6) and Eq. (B.8) together, the mass conservation equation is 

obtained as 

( ) 0=
∂

∂
+

∂
∂

α

αρρ
x
u

t
    . (B.9) 
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(ii) The momentum conservation equation 

Multiplying both sides of Eq. (B.4a) and Eq. (B.4b) by αξ  and integrating over the 

velocity space leads to 

( ) ( ) ( ) 02

1

=
∂
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+
∂
∂

+
∂

∂
∫∫ ξξ df

x
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xt
u
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α
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α ξξξ
ρ     , (B.10) 

( ) ( ) ( ) ( ) 01211
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∫∫∫ ξξξ df
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α
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α
α ξξξξ

ρ     . (B.11) 

The second term of Eq. (B.11) is zero because it integrates the non-equilibrium 

function over the whole velocity space.  Substituting Eq. (B.4a) into Eq. (B.11) gives 

rise to 
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    . (B.12) 

Compare the time scale 1t  and 2t , leads to the realization that 21 tt ∂∂≈∂∂ ε .  

Substituting this relation into Eq. (B.12) and resetting all ε  order terms to zero 

(because a very small ε  is assumed here), the following result is obtained, 
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β

α
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α

ξξτξξτ

ξξτξτ
ρ

    . (B.13) 

In order to simplify Eqs. (B.10) and (B.13) the integrals in Eq. (B.13) should be 

evaluated as functions of macroscopic fluid quantities first; these integrals are: 

∫ ξdf 20
αξ , ∫ ξdf βαξξ0 , ∫ ξdf 30

αξ  and ∫ ξdf βαξξ 20 . 

To generalize the derivation, a 3-D approach is adopted.  A Cartesian coordinate (x, 

y, z) is defined with (u, v, w) taken to be the macro-scale fluid velocity along the x-
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axis, the y-axis and the z-axis, respectively.  The conservation laws for density and 

momentum can be expressed as 

∫= ξdfρ 0     , (B.14) 

( ) 000 =−⇒= ∫∫ ξξ duξfdξfρu xx     , (B.15) 

where ux −ξ  is defined as the hot speed of the particles along the x-axis.  For the y-

axis and the z-axis, similar formulations can be made but would not be repeated here.  

Because the equilibrium function 
( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−=

RTRT
f

2
exp

2

2

2/3
0 uξ

π
ρ  is symmetrically 

distributed around the hot speed, it can be shown that, 

( )( ) 00 =−−∫ ξdvξuξf yx     ,  

00000 =+−−⇒ ∫∫∫∫ ξξξξ dfuvdξfudξfvdξξf yxyx     , 

uvdξξf yx ρ=⇒ ∫ ξ0     . (B.16) 

Similarly, it can be shown that uwdξξf zx ρ=∫ ξ0  and vwdξξf zy ρ=∫ ξ0 .  Realizing 

that the internal energy should be only related to the hot speed of the particles, the 

internal energy conservation could be expressed as, 

( ) ( ) ( )[ ]∫ −+−+−
+

= ξdwξvξuξf
D

DDρe zyx
T

RT 2220

2
1     , (B.17) 

where 3=TD  and 2=RD  are defined for the diatomic gases.  Thus, Eq. (B.17) can 

also be expressed as, 

( ) ( ) ( ) ( )[ ]∫ −+−+−=− ξγ dwξvξuξfρe zyx
2220

3
11     , (B.18) 

where γ=1.4.  On the other hand, since the internal energy is also equally distributed 

along the x-, y- and z-directions, it can be easily shown that, 

( ) ( ) ( ) ( )[ ] ( ) edξwξvξuξfdξuξf zyxx ργ 1
3
1 222020 −=−+−+−=− ∫∫     , 
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( ) 220 1 uedξξf x ρργ +−=⇒ ∫     . (B.19) 

Since the equilibrium function is symmetrically distributed for the hot speed, it leads 

to 

( ) ( ) 020 =−−∫ dξvξuξf yx     , (B.20) 

( ) 030 =−∫ dξuξf x     , (B.21) 

Similar expressions could also be derived but not be repeated here.  Eqs. (B.20) and 

(B.21) would give the following useful expressions, 

( )220 uvdf yx ρξξξ +Φ=∫     , (B.22) 

( )230 3 uudf x ρξξ +Φ=∫     , (B.23) 

where ( ) eργ 1−=Φ  is used to simplify the writings.  Substituting the expressions 

(B.16), (B.19), (B.22) and (B.23) into Eqs. (B.10) and (B.13), the following results 

are obtained 
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 (B.25) 

It should be noted here, in the expansion of Eq. (4.31) for Eq. (4.11), a condition has 

been assumed that u  should be small, otherwise, if the macro-speed u  is large, Eq. 

(4.31) can not be used to replace the physical formulation of Eq. (4.11).  Therefore 

the expression ( ) 21 ue ρργ >>−=Φ  could be written.  Then it follows that 

,33 2 Φ≈+Φ uρ  Φ≈+Φ 2uρ     . (B.26) 
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Substituting these relations into the right hand side of Eq. (B.25) and also 

eliminating the other terms, it gives 

( ) ( ) ( ) ( ) ( ) ( )
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  . (B.27) 

For each term inside the squared brackets on the right hand side of Eq. (B.27) such 

as ( ) xu ∂Φ∂ 3 , it can be calculated as follow 

( )
x
u

x
uu

x ∂
∂

Φ+
∂
Φ∂

=Φ
∂
∂ 333     . (B.27a) 

If ( ) γρργ /1 2ce =−=Φ  is substituted into Eq. (B.28), the following result is 

obtained, 
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 (B.27b) 

Obviously, the first term inside the squared brackets in Eq. (B.27b) can be neglected 

when compared with the second term.  Thus, Eq. (B.27b) is reduced to 

( )
x
u

x
u

∂
∂

Φ≈
∂

Φ∂ 33
    . (B.28) 

Using the same consideration as Eq. (B.28) to simplify Eq. (B.27) leads to 
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    , (B.29) 

where 
z
w

y
v

x
u

∂
∂

+
∂
∂

+
∂
∂

=Λ  is the fractional rate of change of the volume of a material 

element, or called the local rate of expansion or rate of dilatation.   

Rearranging Eq. (B.29) and combining with Eq. (B.24), it would give the 
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momentum equation along the x-axis as 
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    , (B.30) 

where the first coefficient of viscosity inside this equation is defined as 

( ) τργτμμ e1−=Φ=′= , the second coefficient of viscosity is 

( ) τργτλλ e1−=Φ=′= .  It is not difficult to derive similar expressions for the y-

axis and the z-axis.  Together, these expressions constitute the x-, y- and z-

component momentum equation of the Navier-Stokes equations.  At the same time, 

the thermodynamic pressure p is given by ( ) RTep ρργ =−=Φ= 1 , which is the 

correct gas equation of state of a perfect gas. 

 

 (iii) The energy conservation equation 

Multiplying both sides of Eq. (B.4a) by ( )2222

2
1

2
1

zyx ξξξ ++=ξ  and integrating over 

the whole velocity space gives rise to 
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 (B.31) 

In this derivation, higher order terms have been neglected.  The first term on the left 

side of Eq. (B.31) can be expressed as 220

2
1

2
3

2
1 uξξ ρ+Φ=∫ df .  In the present 

formulation, two rotational degrees of freedom are assumed.  They would contribute 

to the fluid kinetic energy but would not appear explicitly as transport and collision 

terms in the Boltzmann equation.  Each degree of freedom would have an energy 
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contribution of Φ
2
1 , thus the kinetic energy of the fluid should be governed by, 
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where 22

2
1

2
1

2
5 uu ρρρ +=+Φ= eEk  is just the definition of kinetic energy for 

the fluid element. 

 Similarly, multiplying both sides of Eq. (B.4b) by ( )2222

2
1

2
1

zyx ξξξ ++=ξ  

and integrating over the whole velocity space leads to 
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 (B.33) 

Since ( ) kEdf 1
2
1 20 −=∫ γξξ , the energy flux terms on the right hand side, such as 

ξξ df yxξξ
20∫  could be written as ( )∫ − ξdE yxk ξξγ 1 , which can be eventually 

simplified as ( ) uvEk1−γ .  Thus Eq. (B.33) can be simplified as, 
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    , (B.34) 

Since the lowest order integration of 0f  gives ρξ =∫ df 0 , the first order integration 

yields udf x ρξ =∫ ξ0 , the second order integration gives ( ) Φ+=∫ uudf x ρξ ξ20 , and 

the third order integration leads to ( ) uuudf x Φ++Φ=∫ 2230 ρξ ξ , then the fourth 
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order integration can be defined as ( ) WuuWdfudf xx ++Φ=+= ∫∫ 2220240 ρξξ ξξ .  

If Ф is used to represent the second order energy from the particle point of view, 

then W is the forth order energy from the particle point of view.  Checking the 

dimensions of this formulation leads to W having the same dimension as 2eρ .  This is 

a very important parameter that could relate to the heat flux within energy 

conservation. 

 From the forth order integration expression, it can be shown that 

WEudE kxk +=∫ 22 ξξ .  Substituting this into Eq. (B.34) yields 
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where ( ) ( ) τργτγλλμμ eEk 11)()( −≈−=′=′  and 
z
w

y
v

x
u

∂
∂

+
∂
∂

+
∂
∂

=Λ .  For the first 

three terms in the right hand side, because we know Since W should have the same 

dimension as 2eρ , an approximate formulation for W could be defined here as 

2ekW ρ= , where k is a constant.  Therefore, the first three terms on the right hand 
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side of Eq. (B.39) could be simplified and the result for the first term is reduced to 
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This means that thermal conductivity is defined as eRkτρκ 2= , so the Prandtl number 

is derived as, 
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Finally, combining Eqs. (B.32) and (B.39) together, it would give the right 

formulation for the kinetic energy of the fluid as, 
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where 2

2
1 uρρ += eEk , eRkτρκ 2=  and ( ) ( ) τργτγλμ eEk 11 −≈−== .  Therefore, 

starting from the basic Boltzmann equation and the BGK model, the mass, 

momentum and kinetic energy equations for the fluid can be derived.  The full set of 

unsteady compressible Navier-Stokes equations and the gas equation of state for 

diatomic gases are correctly recovered.  The only assumption is that the Knudsen 

number should be very small. 
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Figure 4.1 Variations of the first coefficient of viscosity with temperature: ––––––, 

oxygen; – – – – – , nitrogen; *, single relaxation time model, Eq. (4.25); 

ο, two relaxation time model, Eq. (4.29). 
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Figure 4.2 Definitions of the lattice velocity models: (a) D2Q9; (b) D2Q13. 
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5  Application of the Lattice Boltzmann Method to 

Aeroacoustic Problems 

In Chapter 4, a full description of a one-step CAA method using LBM has been 

given.  It is shown that the improved LBM can recover the Navier-Stokes equations, 

the gas equation of state for diatomic gases, and the viscosity-temperature relation 

(Sutherland law) correctly.  The lattice models and the numerical scheme have been 

introduced.  The purpose of this chapter is to validate this technique against standard 

DNS calculations of some benchmark aeroacoustic problems.  Many practical 

aeroacoustic simulations aim to predict sound radiation created by unsteady flows 

and their interactions with solid boundaries.  Correct simulation of wave propagation 

is an important measure of the success of a numerical model for aeroacoustic 

simulation.  With all viscous terms neglected, the Navier-Stokes equations reduce to 

the Euler equations which support three modes of waves, namely acoustic, vorticity 

and entropy waves.  The acoustic waves are isotropic, non-dispersive, non-

dissipative and propagate with the speed of sound, RTc γ= .  The vorticity and 

entropy waves are non-dispersive, non-dissipative and propagate in the same 

direction of the mean flow with the same velocity of the flow.  Propagations of these 

three different types of waves are selected for the validation of the improved LBM in 

this chapter. 

The accuracy of the improved LBM aeroacoustic simulation is assessed by 

comparing the LBM calculations with the results obtained using a convectional one-

step DNS to carry out CAA by solving the Navier-Stokes equations (in Chapter 2).  

In the following, “LBM” would be used to denote the one-step CAA method solving 



121  

the improved BE and “DNS” would be used to signify the other one-step method 

using DNS to solve the Navier-Stokes equations.  Generally, a measure of the 

difference between the LBM and DNS results of a macroscopic variable b  is 

expressed in terms of the pL  integral norm, i.e. 

( )
pM

j

p

jjp M
L

1

1
DNS,LBM,

1
⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=

bbb     , (5.1) 

( ) LBM, DNS,max j jj
L∞ = −b b b     . (5.2) 

for any integer p  and for the maximum norm, respectively. 

Five test cases are carried out to validate the proposed LBM.  These are: (i) the 

propagation of a plane pressure pulse in a stationary fluid, (ii) the propagation of a 

circular pulse in a stationary fluid, (iii) a plane sinusoidal wave propagation in 

quiescent fluid, (iv) simulations of an acoustic, an entropy and a vortex pulse 

convected with subsonic plug flow with a velocity ∞u  and (v) the propagation speed 

of sound under different Mach number conditions. 

In the first three cases the non-dimensional parameters for the length, time, 

density, velocity, pressure and temperature are specified as 

2
0 0 0 0 0 0 0, , , , ,/L L c c c Tρ ρ  and the Reynolds number is defined by 

μρ 000 cLRe = .  For the LBM, the pressure is implied in the kinetic equation and 

can be deduced from the state equation 1( )p e= −γ ρ .  The normalized internal 

energy and sound speed are given by ( )1/e T ⎡ ⎤= −⎣ ⎦γ γ  and Tc = .  In the third 

and forth cases, the non-dimensional parameters for time, density, velocity, pressure 

and temperature are 2
0 0 0 0 0 0, , , ,/L u u u Tρ ρ , respectively, and 00 cuM =  is the 

Mach number.  The LBM and DNS solutions are compared in all these cases.  
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Mostly when we defined an initial condition for ρ , u , v  and p, the equilibrium 

distribution of eq
if  can be calculated by Eq. (4.31) with the given weights and 

coefficients given in Fig. 4.2, then, the initial particle distribution if  was set equal to 

the corresponding eq
if .  In case (iii), analytical solutions are also available; these too 

will be shown for comparisons with the LBM and DNS solutions.  All physical 

quantities in the following discussion are dimensionless, except where specified. 

5.1 Propagation of a Plane Pressure Pulse 

This 1-D problem aims to validate the accuracy and robustness of the proposed LBM 

and, at the same time, to assess the efficiency of the proposed lattice models.  The 

distribution function ( ) ( )t,,ft,f ii ξxx =  is developing with the collision function 

and the streaming function of Eq. (5-30).  The initial fluid state is specified with the 

same conditions as the DNS case §3.2: a small plane pressure fluctuation in the 

center of a tube, such that 

∞= ρρ , 0=u , 0=v , )
08.0

2lnexp( 2

2xpp ×−+= ∞ ε     , (5.3) 

where the mean field density and pressure are given by 1∞ =ρ  and 1/p∞ = γ , the 

pulse amplitude ε  is set to 6104 −× , 61016 −×  and 610100 −× , respectively, and 

Re 5000=  is specified in this case.  The computational domain size of the tube is 

55 ≤≤− x  by 20 ≤≤ y .  A uniform grid of size 0.02x0.02 is adopted.  Slip 

boundary conditions are applied on the upper and lower tube surfaces in the DNS 

calculation.  The stability criterion of the collision term requires that the time step 

should be 2/τ<Δt  (Tsutahara et al. 2002); therefore, 0001.0=Δt  is chosen for the 

present LBM computations.  Two buffer zones are specified in the DNS calculation 

in order to simulate a true non-reflecting inlet and outlet boundary condition.  For all 



123  

LBM calculations, the gradient of the distribution function f on all boundaries are set 

to zero.  When all disturbances are far away from the numerical boundaries, these 

conditions can ensure that there is essentially no error contribution coming from the 

boundary treatment. 

In this case the initial conditions Eq. (5.3) essentially combine one acoustic 

wave and one entropy wave.  These two waves overcome the density fluctuations 

with each other only for the initial state.  After the acoustic wave leaves the center 

area, the density fluctuations created by the entropy wave would appear in the center.  

Fig. 5.1 shows the fluctuations along the centerline of the tube at t = 1.0 and t = 3.0 

for the case 6100 10−= ×ε .  The LBM and DNS simulations show a slight difference 

in the density at the center when the acoustic pulse propagates towards 

computational boundaries.  However, the density distribution in the central region is 

essentially the same.  The two positive density fluctuation peaks are leaving the 

center with a propagation speed 1=c  and the amplitude of this density fluctuation is 

54 10ˆ −= ×ρ  (t = 3.0).  At the same corresponding positions, there are two pressure 

fluctuation peaks with a value of 5104ˆ −×=p .  Actually these two waves are the 

exact acoustic waves because the transmission speed is the physical sound speed and 

the amplitudes follow the acoustic relation, ρ̂ˆ 2cp = .  These results show that the 

proposed LBM can replicate the correct acoustic waves and the calculated 

macroscopic quantities are developing correctly, just as the DNS solution indicates. 

This is evident from a comparison of the calculated )( pLp  (pressure).  Fig 

5.2 shows the time-dependent difference in the behavior of )(,)( 21 pLpL  and 

)( pL∞  ( 64 10−= ×ε ).  Both lattice (D2Q9 and D2Q13) solutions are reported.  The 

differences between the LBM and DNS solutions using the D2Q13 lattice are much 
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smaller than those using the D2Q9 lattice.  For example, consider the )(2 pL  value, 

the difference obtained for the D2Q13 lattice is about 1110−  while the corresponding 

value for the D2Q9 lattice is close to 910− .  This shows that the D2Q13 lattice could 

effect an improvement in )( pLp  of 2 orders of magnitude when only 4 more 

discrete velocities are specified.  In view of this, only the D2Q13 lattice model 

results are presented in the following discussion. 

The pulse amplitude effect on the difference )(2 pL  is compared in Fig. 5.1.  

The criterion of a Taylor expansion on a Maxwellian distribution requires that the 

flow speed u to be much smaller than the particle speed ξ  and the error of this 

expansion would occur in the term of ( )4 2/O θu .  When the pulse amplitude is 

smaller, the disturbance u  is also smaller. This would lead to a smaller error term 

( )4 2/O θu .  Therefore, )(2 pL  would be smaller for 64 10−= ×ε  than for 

616 10−= ×ε  and 6100 10−= ×ε .  This result is clearly demonstrated in Fig. 5.1, 

which shows that the performance of the LBM is better with smaller fluctuations 

than those large fluctuations. 

5.2 Propagation of a Circular Pressure Pulse 

If an initial circular pulse were imparted to a uniform fluid, the fluctuations thus 

created would propagate equally in all directions.  This means that, at any time, the 

pulse would remain circular in shape.  However, the lattice velocity model restricts 

the particles to move in certain discrete directions, such as 2/,4/,0 ππ ±±  and π .  

In order to test the ability of the LBM with a D2Q13 lattice model to replicate the 

symmetry property of the circular pulse, it is used to simulate a circular initial 

pressure pulse in a uniform flow.  The initial conditions are specified as the same as 
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the DNS case in §3.3, such that 

∞= ρρ , 0=u , 0=v , )
2.0

2lnexp( 2

22 yxpp +
×−+= ∞ ε     , (5.4) 

where 1∞ =ρ , γ/1=∞p , 616 10−= ×ε  and Re 5000= .  The computational domain 

is 20x20 and the grid size is 0.05x0.05.  Both LBM and DNS are used to simulate 

this problem. 

Since the only disturbance lies in the middle domain, the boundary condition 

for the LBM is very simple.  A zero order continuity of particle distribution function 

is used for all the boundaries (§4.7).  That is, the boundary solutions 1f  and Nf  

would be corrected by nearby inner point values, or 21 ff =  and 1−= NN ff , etc.  This 

technique proves to be non-reflecting; before the outgoing waves touch the 

boundaries, the solution on the boundary is stable and no spurious waves are created 

by the boundaries.  Furthermore, this technique is simple in terms of programming. 

The contours of the pressure and u fluctuations are plotted in Fig. 5.4.  The 

upper half of the computation domain is plotted the LBM solution and the lower half 

the DNS solution at the same time.  It is clear that the contours of the LBM solution 

have no discernible difference with those of the DNS result.  This is despite of the 

fact that the LBM solution is derived from a D2Q13 velocity lattice model where 

particle velocities are specified for discrete directions only.  This shows that the 

LBM simulation is just as valid as the DNS result. 

5.3 Plane Sinusoidal Wave Propagation in Quiescent Fluid 

Similar to previous comparisons, this test aims to validate LBM computations for 

continuous waves in quiescent fluid.  The DNS solutions have been discussed in §3.4, 

therefore, they will be used as benchmarks for the LBM simulations.  In LBM 
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computations, the particle velocity distribution functions are primitive variables, thus 

the sinusoidal pressure excitation given by Eq. (3.5) (in §3.4) could be directly 

defined.  Even though the relation between pressure and if  has not been defined, the 

sinusoidal excitation method still could be used to drive the particle distribution 

functions.  Using these excitations, the mean velocity at this local area should be 

zero at all time.  This means that, for this line source, the particle distribution should 

be symmetric about the line source and the particles should have the same change 

going from the left hand side or from the right hand side.  On the other hand, if a 

point source is considered, the distribution should be equal in all directions.  Thus, an 

isotropic consideration should be taken for all distribution functions if , such that 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+= tcff ii λ

πε 2sin1     , (5.5) 

where if  is the particle equilibrium of the i-th direction in the mean state. 

The boundary conditions for this problem are very important, because 

continuous waves are excited inside and, if there is any reflection, the continuous 

waves would generate more and more spurious waves inside.  This would drive the 

whole solution to a wrong state.  As mentioned in Chapter 4, for LBM, a first-order 

continuity of distribution function is used for the upper and lower boundaries, two 

buffer regions were attached outside the left hand and right hand side boundaries; the 

absorbing term has already been introduced in §4.7. 

Invoking these assumptions for the excitations, the LBM scheme gives proper 

sinusoidal wave solutions for 2=λ  and 10=λ .  The excitation amplitudes are then 

selected ( 8102 −×=ε  for 2=λ , 7102 −×=ε  for 10=λ ) to recover the same density 

fluctuations as the DNS solutions.  The density contours and distributions are plotted 

in Fig. 5.5 ( 2=λ ) and Fig. 5.6 ( 10=λ ).  Evidently the present LBM scheme is 
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truly isotropic and no distortion in sound propagation is observed. 

5.4 Simulations of Acoustic, Entropy and Vortex Pulses 

The acoustic, entropy and vorticity pulses are basic fluctuations in aeroacoustics 

problems.  In this case, the pulses are developing in a uniform mean flow.  Basically, 

only the acoustic pulse is propagating with the sound speed, the entropy pulse and 

the vortex pulse would move with the mean flow.  The initial conditions are: 
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where M = 0.2 and 1 2 30.0001, 0.001, 0.001= = =ε ε ε .  The mean field has density, 

speed and pressure given by ( )21, 1, 0, 1/u v p M∞ ∞ ∞ ∞= = = =ρ γ  and Re = 1000.  

These pulse models follow the definitions of Tam and Webb (1993).  The acoustic 

pulse is initialized at the point x = -1, y = 0.  The entropy pulse and the vorticity 

pulse are initialized at x = 1, y = 0.  The computational domain is 1010 ≤≤− x  by 

1010 ≤≤− y  and the grid size is 0.05x0.05.  For this problem with a relatively large 

mean flow, the mean flow effect could become critical because the symmetry lattice 

coefficients are based on the assumption that the flow speed is much smaller than the 

particle speed.  An improvement to the proposed LBM model is given in the 

Appendix to address this problem.  For this problem, the only source lies in the 
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middle domain, a zero order continuity of the distribution function f (§4.7) is used 

for all the boundaries of the LBM calculation. 

The pressure and the u velocity fluctuation contours are shown in Fig. 5.7 at t 

= 1.0 and t = 1.5.  Both LBM and DNS results are shown together.  The initial 

acoustic pulse causes disturbances.  Since the mean flow speed is defined as 1.0, the 

center of the pulse has moved to x = 0, y = 0 at t = 1.0, and to x = 0.5, y = 0 at t = 1.5.  

The acoustic pressure fluctuation is propagating with 51 == Mc  and exhibit circles 

of radii equal to 5 and 7.5 at the same moment.  The u velocity fluctuation is 

symmetric about the x-axis.  For the vorticity pulse, the center of the vortex would 

move to x = 2, y = 0 at t = 1.0 and to x = 2.5, y = 0 at t = 1.5.  The distribution of the 

u velocity fluctuation from this pulse would give the same absolute fluctuations that 

propagate along the negative x-axis.  The pressure and u velocity fluctuations are 

plotted in Fig. 5.8.  The LBM and DNS simulations are essentially identical and they 

agree well with the analytical inviscid solution. 

The same case with Re = 100 is also calculated in order to investigate the 

effect of viscosity on the LBM simulation.  The pressure and velocity fluctuations at 

t = 1.0 are compared in Fig. 5.9 where the distributions along 6 0x− ≤ ≤  are shown.  

The star point represents the LBM solution while the DNS result is given by the 

dotted line.  The solid line shows the analytical inviscid solution.  Again, LBM and 

DNS give essentially the same solution and are close to the inviscid result.  There is 

a discernible viscous effect on the acoustic pulse which is essentially a disturbance 

generated from the viscous effect on the entropy pulse.  The pL  differences for 

pressure and u velocity fluctuations are list in Table 5.1. 

There are two macroscopic velocity scales in this case, namely the mean flow 

velocity and the fluctuation propagation velocity.  In order to assess the correctness 
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of the LBM in resolving small fluctuation propagation in a mean flow, it is 

worthwhile to study the spreading of the acoustic pulse.  Fig. 5.10 reports the decay 

of the acoustic pulse peak in LBM and DNS solutions at Re = 100 and 1000.  The 

analytical result is also illustrated.  For an acoustic pulse spreading in two 

dimensions, the local intensity of the wave I  should be proportional to r1  due to 

conservation of total energy 2e I r= ⋅ π , where r is the radial distance.  In the 

absence of viscosity, the intensity bears a relationship with instantaneous pressure 

peak amplitude A as 2AI ∝ .  Therefore, the analytical result should be a straight line 

in Fig. 5.10 with slope equal to –1/2.  For Re = 1000, the amplitudes are very close 

to the inviscid solution, indicating the acoustic propagation is correctly captured with 

a viscous formulation in the DNS and LBM calculations at this Re.  For Re = 100, 

the LBM and DNS solutions are essentially identical.  The difference in peak 

amplitude is only 6% after the pulse has propagated a distance equal to 19 times the 

initial pulse-width (r = 7.5).  It can be observed that viscosity has a significant effect 

and gives rise to a difference of about 20% between the Re = 100 and Re = 1000 

case at the same distance. 

5.5 Speed of Sound in Flows with Different Mach Numbers 

In the previous three sections, the plan pulse, the circular pulse and the three pulses 

are calculated using the LBM scheme.  The conversional DNS solutions are used as 

the reference to validate the LBM calculations.  The validity of LBM for a direct 

aeroacoustic simulation depends on its ability to recover the equation of state of the 

gas and its first coefficient of viscosity correctly.  It has been demonstrated that LBM 

can replicate these pulses.  Furthermore, because of the very small energy of the 

acoustics field, a low dispersive and low dissipative scheme is required if the wave 
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propagation speed were to be resolved accurately.  If the governing equations are 

normalized with the uniform stream speed, in the non-dimensional equations, the 

propagation speed of sound should be the inverse of the Mach number, or Mc /1= .  

Therefore, a smaller Mach number would mean a larger sound speed.  In this section, 

calculations were carried out to verify that the LBM could replicate c correctly over 

the Mach number range 9.001.0 ≤≤ M  where no shock is present.  Furthermore, it 

is also the objective to show that the theoretical relation between c and e can be 

recovered exactly over this range of M and a shock free environment.  A Gaussian 

sound pulse in a uniform flow is used as the vehicle to demonstrate the validity and 

extent of the proposed LBM and the results are calibrated against theoretical results 

and DNS calculations of the same problem.  Zero order continuity of distribution 

function is used to treat all the boundaries (§4.7). 

The low dispersive and low dissipative nature of the scheme is verified by 

analyzing the power spectral density (PSD) of the wave form of the Gaussian sound 

pulse.  According to Hu et al. (1996), the maximum resolvable wave number *
ck xΔ  

for this scheme is 0.433, where ∆x is the spacing of a uniform mesh.  This is 

determined using a criterion 0 005* .k x k xΔ − Δ < .  In other words, the scheme can 

only resolve long waves with a cut off around 0.433.  The PSD of the wave in each 

of these nine cases are essentially identical.  The ∆x chosen is independent of M and 

is taken to be 0.1.  On the other hand, ∆t varies from 2x10-7 to 1x10-4 for the range 

0.01 ≤ M ≤ 0.9.  It is found that this choice of ∆x and ∆t gives very stable 

calculations over the range of M calculated.  A sample plot of the PSD versus the 

dimensionless k* (= k∆x/π) is shown in Fig. 5.11.  It can be seen that the PSD is 

essentially zero beyond k* = 1/2.  Therefore, it can be concluded that the low 

dispersive and low dissipative Lele scheme (1992) can be used to simulate a 
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Gaussian sound pulse in a uniform flow.  It will be shown later that the c and e thus 

recovered are in excellent agreement with theoretical results over the M range 

examined. 

The Re specified for the range of M investigated is 103.  Altogether 9 different 

inlet flows are investigated and these range from M = 0.01 to M = 0.9.  The exact 

choices of M are listed in Table 5.2.  The same Gaussian sound pulse is specified and 

it is defined as 

( )
⎥
⎦

⎤
⎢
⎣

⎡ ++
×−+= ∞ 2

22

2.0
12lnexp yxερρ     , (5.7a) 

∞= uu     , (5.7b) 

∞= vv     , (5.7c) 

( )
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⎦

⎤
⎢
⎣

⎡ ++
×−+= ∞ 2

22

2 2.0
12lnexp1 yx

M
pp ε     , (5.7d) 

where the inlet conditions are given by ( )21, 1, 0, 1/u v p M∞ ∞ ∞ ∞= = = =ρ γ  and 

410−=ε  is chosen for the present calculations.  The accuracy of the numerical 

scheme used to solve the DNS and LBM equations has already been demonstrated in 

Fig. 5.11, it will not be repeated. 

The objective of this section is to show that c can be recovered correctly using 

the modified LBM and the theoretical relation between c and e is validated.  In order 

to verify that this is the case, two different ways of estimating c is proposed; one is 

to determine c by tracking the speed with which the peaks of the pulse move away 

from each other, a second method is to calculate c from ( )ec 1−= γγ .  Some 

sample plots of the pressure pulse for four M cases are shown in Fig. 5.12.  These 

plots further show that the DNS and the LBM results are essentially identical.  From 

these plots, the distance S between the peaks can be determined and since the time 
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lapse is known, the speed with which the peaks moved away from each other can be 

determined.  The calculations are carried out for different S and t and sample plots 

for M = 0.01 and 0.9 are shown in Fig. 5.13.  In this figure is also shown the least 

square fit of all the S and t points chosen for the two M cases presented.  These 

results show little or no error in the determination of c by this method. 

From the calculated aerodynamic and acoustic fields, p, ρ and e are known.  

The p and ρ values can be substituted into ( )ec 1−= γγ  to determine c and the c 

thus determined can be plotted against the expression for γ and e.  The plots of c 

versus M for the two different ways of determining c are given in Figs. 5.14 and 5.15.  

The plot of c versus e for diatomic gas where γ = 1.4 is shown in Fig. 5.16.  In these 

plots, the DNS and LBM results are shown with symbols while the theoretical 

analysis is represented by a solid curve.  The errors in the determination of c 

compared to the theoretical values are listed in Table 5.2.  It can be seen that a 

maximum error of 2.7% occurs in the M = 0.9 case; all other cases have errors less 

than this.  The same error is calculated for the DNS and LBM schemes.  The 

agreement between the theoretical, DNS and LBM results shown in Figs. 5.12, 5.12 

and 5.14 is excellent.  Both the aerodynamic and acoustic fields are resolved 

correctly within this M range and Re investigated.  This shows that the modified 

LBM scheme is a valid alternative to the DNS scheme in DAS calculations for M 

varying from 0.01 to 0.9. 

5.6 Relative Merits of LBM versus DNS 

Having compared the performance of the LBM with the DNS in the simulations of 

one-step aeroacoustics problems, a word about the programming and computational 

requirements of the two different methods is in order.  In terms of programming, the 
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LBM is much simpler.  The LBM code consists of 420 lines compared to 1350 lines 

required for the DNS code.  As for the computational time required, the CPU time 

for calculating 1000 time steps using a 100x100 grid differ for the three cases tested.  

For the plane pressure pulse case (1-D), the LBM is 25% more efficient than the 

DNS; for the circular pulse case (2-D) the DNS is about 20% more efficient; while 

for the three pulses case the DNS is about 30% more efficient.  These comparisons 

are made with the D2Q13 velocity lattice model.  If the D2Q9 model is used instead, 

the LBM is more efficient by a margin ranging from 15% to 50% for the 3 cases 

tested.  However, the ( )pL b  accuracy suffers by two orders of magnitude (Fig. 5.2).  

In view of this, the most suitable lattice to use is the D2Q13 for all aeroacoustic 

problems tested. 

5.7 Summary 

The proposed LBM scheme has been validated in Chapter 5.  Altogether 5 

benchmark aeroacoustic problems were calculated to validate the one-step LBM 

technique for CAA.  They are the 1-D acoustic pulse propagation, the circular 

acoustic pulse propagation, the plane sinusoidal wave propagation, the propagation 

of acoustic, vorticity and entropy pulses in a uniform mean flow, and the propagation 

speed for the Gaussian sound pulse.  The accuracy of the method is established by 

comparing the calculations with analytical solutions and with DNS results.  All 

comparisons show that the LBM aeroacoustic simulation possesses the same 

accuracy as DNS solutions for CAA and is a simpler numerical method.  This is 

accomplished using a D2Q13 lattice only for all calculations. 
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Table 5.1 The Lp difference and the effect of Re.  Here, ∞−= ppp̂ , 

∞−= uuû and ,r rp u  are the analytical solutions. 
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rp pp
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⎝

⎛
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 1L  2L  ∞L  

LBM ( 1000Re = ) 8.8339e-007 1.8589e-006 8.9069e-006 
DNS ( 1000Re = ) 8.0505e-007 1.6447e-006 7.5991e-006 
LBM ( 100Re = ) 6.8489e-006 1.3173e-005 5.8618e-005 
DNS ( 100Re = ) 6.4574e-006 1.2113e-005 5.1829e-005 
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 1L  2L  ∞L  

LBM ( 1000Re = ) 1.8577e-007 3.7268e-007 1.7917e-006 
DNS ( 1000Re = ) 1.6058e-007 3.2878e-007 1.5348e-006 
LBM ( 100Re = ) 1.4394e-006 2.6432e-006 1.1803e-005 
DNS ( 100Re = ) 1.2827e-006 2.4207e-006 1.0477e-005 
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Table 5.2 Comparison of the numerically calculated c with its theoretical value. 

 

M 0.01 0.0125 0.02 0.05 0.1 0.3 0.5 0.7 0.9 

Theoretical c 100 80 50 20 10 3.33 2 1.43 1.11 

LBM/DNS 
calculated c 100 80 49.75 20.25 10.2 3.33 2 1.45 1.14 

Error (%) 0 0 0.5 1.25 2 0 0 1.39 2.7 
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(a) (b) 

 

Figure 5.1 The density, pressure and velocity “u” fluctuations along the x-axis at 

(a) t = 1.0 and (b) t = 3.0 for 610100 −×=ε : *, LBM (D2Q13); ———

 ,DNS. 
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Figure 5.2 Time history of the difference )( pLp . 
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Figure 5.3 Time history of the difference )(2 pL  with D2Q13. 
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(a) (b) 

Figure 5.4 Pressure and velocity fluctuations at (a) t = 2.5 and (b) t = 5.0. Upper 

half of the domain is the LBM solution; lower half the domain is the 

DNS solution. For pressure fluctuations, 6 contours are equally 

distributed between 6104.0 −×−  and 6104.0 −× , for velocity 

fluctuations, 6 contours are equally distributed between 6101 −×−  and 

6101 −× . ––––––––, positive levels; – – – – – –, negative levels. 
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Figure 5.5 Propagation of sound wave in the x-direction: (a) density fluctuations 

contours; (b) comparison with DNS solutions; *, LBM, —— DNS 

( 2=λ ). 
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Figure 5.6 Propagation of sound wave in the x-direction: (a) density fluctuations 

contours; (b) comparison with DNS solutions; *, LBM, —— DNS 

( 10=λ ). 
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(a) (b) 

Figure 5.7 Pressure and velocity fluctuations (a) t = 1.0 and (b) t = 1.5. Upper half 

of the domain is the LBM solution; lower half the domain is the DNS 

solution. For pressure fluctuations, 6 contours are equally distributed 

between 5105 −×−  and 5105 −× , for velocity fluctuations, 6 contours 

are equally distributed between 5105 −×−  and 5105 −× . ––––––––, 

positive levels; – – – – – –, negative levels. 
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Figure 5.8 Pressure and velocity fluctuation distributions along the x-axis at t = 

1.0 and Re = 1000: ——— analytical inviscid solution; *, LBM 

solution; ● DNS solution. 
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Figure 5.9 Pressure and “u” velocity fluctuation distributions along the x-axis at t 

= 1.0 and Re = 100: ———— analytical inviscid solution; *, LBM; ● 

DNS. 
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Figure 5.10 The variation of pressure peak amplitude with the radius of acoustic 

pulse travels. ————, analytical inviscid solution; * LBM (Re = 

1000); ● DNS (Re = 1000); ○ LBM (Re = 100); □ DNS (Re = 100). 
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Figure 5.11 Power of spectrum density (PSD) of the effective wave-number *k  

(normalized by xk Δ= /max π ). 
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(a) (b) 

(c) (d) 

Figure 5.12 Instantaneous pressure fluctuations along the y-axis: (a) M = 0.01, t = 

0.02; (b) M = 0.1, t = 0.2; (c) M = 0.5, t = 1.0; (d) M = 0.9, t = 1.8. 
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Figure 5.13 A plot of the distance S between two maximum peaks versus time t. 
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Figure 5.14 A plot of the propagation speed of sound ργ /pC =  versus Mach 

number M and its comparison with its theoretical value. 
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Figure 5.15 A plot of the propagation speed of the wave C  versus Mach number M 

and its comparison with the theoretical value. 
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Figure 5.16 A plot of the internal energy e versus the propagation speed of sound C 

and its comparison with the theoretical value. 
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6  On the Calculation of Acoustic Directivity Using 

LBM 

The LBM developed in Chapter 4 has been validated against the propagation of 

plane pressure pluses, circular pressure pulses, acoustic, entropy and acoustic pulses.  

In addition, the ability of the LBM to replicate isotropy property has also been 

validated against plane sinusoidal wave propagation in quiescent fluid.  If the LBM 

is truly applicable for one-step aeroacoustic simulation, its ability to replicate 

acoustic directivity is necessary.  Therefore, this chapter is devoted to an 

examination of the LBM and its ability to replicate acoustic directivity.  The vehicle 

used is the scattering of plane sound waves by a zero circulation vortex.  As before, 

two one-step aeroacoustic computational techniques; namely, DNS and LBM, are 

employed.  Thus, the one-step LBM simulation can be validated against the DNS 

results, which have been shown to agree with the linear approximation results if the 

M/Re parameter is less or equal to 10-5 (Colonius et al. 1994).  As mentioned in 

previous chapters, linear analysis of the Euler equations provides three basic 

aeroacoustic pulses in the flow; these are the entropy pulse, the vorticity pulse and 

the acoustic pulse.  In the low Mach number regime, the flow is close to 

incompressible.  Under this incompressible condition, only the vorticity pulse could 

exist.  Therefore, the vorticity structures would dominate the whole flow.  The 

scattering problem allows a direct investigation of the interaction between the 

acoustic field and the vortex, and could be used to explain the acoustic wave 

interaction with shear flows.  If LBM can simulate this problem correctly, then it can 

deal with some other complicated aeroacoustic problems.  The first part of this 
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chapter will introduce the theoretical basis of this scattering problem.  Then the short 

incident wave case will be calculated and presented. 

6.1 Theoretical Work on Sound Scattering by a Zero Circulation 

Vortex 

Fig. 6.1 shows a schematic drawing of the flow configuration in the two-dimensional 

system.  Continuous small amplitude, plane sound waves with wavelength λ 

propagate in the positive direction of the x-axis in a uniform, homogeneous fluid.  

The wave impinges on a line (or “point”) vortex of zero circulation lying along the z-

axis that is normal to the plane where the vortex lies.  This specification allows the 

vortex to approximate a rigid body of very small size.  Therefore, the physical 

picture of this scattering problem is: when sound waves impinge upon this vortex, 

the vortex will oscillate with flow associated with the continuous waves.  From 

vortex sound theory, this would lead to sound radiation.  This picture is qualitatively 

correct, at least for long wavelength incident waves, the whole vortex is oscillating 

with continuous waves.  For short wavelength incident waves, systematic 

formulations should be derived.  The flow is supposed to be of very low Mach 

number, and the incident waves are supposed to be weak enough not to perturb the 

vortex (i.e., the vortex remains a rigid body). 

Since the problem can be solved using a linear formulation, the dynamical 

quantities can be split into two parts (in vector form of primitive variables): 

s0 VVV +=     , (6.1) 

where subscript 0 refers to the background flow (in the absence of incoming sound), 

and s refers to the small correction due to the incoming sound.  Similar to Lighthill’s 
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acoustic analogy, the resulting equation governing the scattering field can be derived, 

up to first order Mach number, it can be written as (Lund 2002, Fabrikant 1981): 
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012
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Eq. (6.2) can be analyzed using Fourier transform, which would explore the 

solutions in the frequency domain.  In this two-dimensional system, taking the 

Fourier transform for the density and velocity gives 
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The solution for the scattering density can be obtained from Eq. (6.2) as 

( )
( ) ( ) ( ) ( ) kkkk

k
k ′′′−

−
= ∫ 2

2222
0 ~~

2
2~ dvu

c
kk

sij
ji

s ωπ

ρ
ρ     . (6.4) 

For the plane incident waves, velocity siv  and density fluctuations siρ  can be 

approximated by using the incident wave characters, frequency ω , wave vector 0k , 

velocity amplitude a
siv  and density amplitude a

siρ , thus 

( ) ( )xkx ⋅−= 0exp itivt,v a
sisi ω     , (6.5a) 

( ) ( )xkx ⋅−= 0exp itit, a
sisi ωρρ     , (6.5b) 

where a
si

ia
si

ckv ρ
ωρ0

2
0= .  Replacing these values in Eq. (6.4), the scattering density in a 

polar coordinate system ( θθ sin,cos ryrx == ) can be finally written as, 

( ) ( ) ( )crirft
a
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s /exp, 2/1 ωθ
ρ

ρ −=
x     , (6.6) 
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where ( ) ( )0
~

1cos
cossin kk −Ω

−
=

θ
θθθf  is the directivity function and is independent of 

frequency, Ω~  is the Fourier transform of the voriticity distribution.  If this vorticity 

Fourier transform is expanded and only keeping the highest order, the directivity 

function can be expressed as (Fabrikant 1983) 

( ) ( )[ ]θθ
θ

θθθ sin~1cos~
1cos

cossin
xyf Ω−+Ω

−
=     . (6.7) 

where ( ) rrr~ d∫=Ω ω .  Once the vorticity distribution is known, Ω  can be integrated 

and then the directivity of the acoustic scattering can be calculated. 

6.2 Computations of Sound Scattering by a Zero Circulation 

Vortex 

This problem can be normalized by the mean fluid quantities such as density 0ρ , 

speed of sound 0c  and temperature 0T .  The characteristic length is defined by the 

size 0L  of the vortex.  With this normalization, two constants will result; one is the 

Reynolds number defined as 0000 / μρ LcRe =  while another is the Mach number 

defined as 0/ cuM m= .  Here, mu  is the maximum angular velocity of the vortex. 

The strength of the scattering field is very weak; mostly it is 2 orders less than 

the incoming waves, which are already of acoustic strength.  Thus the scattering field 

is always submerged inside the background of the continuous waves.  A better way 

to study this problem is to show the difference between these two cases.  The first 

case is to calculate the single vortex pulse plus continuous waves.  The second case 

only introduces continuous waves in the same computational domain.  Then the 

difference between these two cases can be viewed as the effect due to the vortex 

pulse.  On the other hand, the initial vortex would also create some waves 
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propagating outwards; the effect of this part should also be considered in the 

scattering field. 

The numerical simulations are very difficult because of great disparities in 

scales in this problem.  Firstly, the incident acoustic waves are at least three-orders 

less than the mean flow quantities, and the scattered wave amplitude is usually two 

orders smaller than the incident sound wave amplitude.  Non-reflecting numerical 

boundaries are needed in both DNS and LBM simulations.  For DNS, the boundary 

method follows the arrangement given in §3.4, where an absorbing buffer zone is 

invoked for the left hand side and the right hand side open boundaries, and NSCBC 

method is applied to the upper and lower open boundaries.  For LBM, a buffer 

technique is also invoked for the left hand side and right hand side but in the manner 

of absorbing the fluctuations of f.  For the upper and lower boundaries, a simple 

continuity for the gradient of f, i.e., nf ∂∂ /  is used.  The solution proves that this 

simple method works well for this problem and there are no conspicuous errors 

found from these boundaries.  Thus, altogether three cases are calculated before the 

scattering field can be valued: (i) only continuous waves, (ii) only vortex pulse, (iii) 

continuous waves plus vortex pulse. 

To achieve a correct solution for the scattering, the LBM should calculate 

these three cases correctly.  The solutions of case 1 to case 3 would be compared 

with DNS respectively. 

6.2.1 Only Continuous Waves 

These plane sound waves would be excited in the -x region.  The sound waves are 

excited at exx =  (Fig. 6.2) and the calculations are following the excitations Eq. (3.5) 

(§3.4) and Eq. (5.5) (§5.3) for DNS and LBM, respectively.  In §5.3, plane 
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sinusoidal wave propagation in quiescent fluid has already been studied and 

compared with DNS solutions.  Good agreement achieved between LBM and DNS, 

so this comparison would not be repeated here. 

6.2.2 Only Vortex Pulse 

Vorticity distribution plays an important role in this scattering problem.  In the 

theoretical derivation, it was found that the scattering field was related to the Fourier 

transform of the vorticity distribution.  Thus, correct representation of a single vortex 

pulse by LBM is very important.  In this case, a single vortex pulse is calculated by 

LBM and DNS.  In the previous derivations, it is noted that the integration of 

vorticity on the whole volume should vanish so the Green’s function can be used to 

integrate the integral to yield a solution.  In this two-dimensional case, this is 

essentially the consequence of a zero circulation vortex.  The definition for a zero 

circulation vortex or Taylor vortex (Berthet et al. 2000) is given by 
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where 0ω  is the characteristic vorticity strength that would dominate the 

corresponding Mach number, 0L  is the characteristic length for this vortex.  This is 

the vortex considered in the problem and used throughout the computations.  So in 

the computations, the initial vortex is given by: 
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Fig. 6.3a and Fig. 6.3b show the contours of “u” and “v” respectively by using LBM 

when time equal to 5.  Fig. 6.4a and Fig. 6.4b show the same plots by using DNS.  

Fig. 6.5 shows the “u” distribution along a o45  line which is cross the center of the 

vortex, the solid line is the reference (DNS), the stars are for LBM.  All these plots 
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show that good agreement achieved between LBM and DNS.  Thus LBM and DNS 

give the same result for this single vortex. 

6.2.3 Continuous Waves Plus Vortex Pulse 

In this case, the waves were excited once previous Taylor vortex is initialized in the 

center of the domain.  Because the scattering field is very small compare to the 

incoming waves, mostly 2 orders less than the strength of the continuous waves.  The 

effect of this scattering could be obtained by subtracting two solutions, that is, 

wwvs ρρρ −= + , where the subscript ( wv + ) indicates the condition of vortex plus 

sound waves, and w  indicates sound waves only (Case 1). 

Fig. 6.6a and Fig. 6.6b are the scattering fields (density contours) for the λ = 2 

condition.  Both DNS and LBM solutions show similar directivity for the scattering 

field.  That is, for the λ = 2 condition, most of the scattering energy is inside a short 

angle between x-axis, and no clear backward scattering (propagating to –x direction) 

is found. 

Since the directivity function has been derived for Eq. (6.7), it can be seen that 

the scattering energy along certain direction should be also distributed according to 

this angular function.  Thus, for each point, the root-mean-square of the scattering 

density should be proportional to this function, which can be written as: 

( ) ( )θρ ftrms
s ∝,x     . (6.10) 

Therefore, the directivity feature of sound scattering by a zero circulation vortex can 

be compared with this theoretical result.  The root-mean-square scattering density is 

calculated by recording 20 equal time interval solutions in one cycle of the excitation 

waves, for each point, the computational root-mean-square value is calculated from: 
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20

2∑
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ρ
ρ , (i=1, …, 20)    . (6.11) 

This root-mean square value is plotted in Fig. 6.7 for the 2=λ  case versus 

scattering angle.  The solid line is the theoretical solution derived from Eq. (6.7) with 

a known vorticity distribution given by 
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Both DNS and LBM solutions are approaching the theoretical values.  A good 

agreement is found between numerical simulations and theoretical distributions.  The 

major difference is near the angle of 10/π− , where the DNS solution is close to 

6.578e-8, but LBM gives 5.849e-8 at the same angle.  The maximum error is close to 

11% for the scattering field.  Even this error shows LBM hasn’t achieved a good 

result as DNS did, but in the sense of 8 orders less than the mean quantities, LBM 

has already gives a good result for scattering case.  The future improvement of LBM 

model maybe can fix this problem.  It means that the current LBM scheme can 

simulate sound and vortex interactions correctly, so it can handle other aeroacoustic 

problems besides those discussed in Chapter 5 as well. 

6.3 Summary 

In this chapter, sound scattering by a zero circulation vortex was investigated.  The 

first part of this chapter reviewed theoretical work for this problem, especially for the 

two-dimensional zero circulation vortex condition.  The final expression of the 

scattering solution indicated a directivity term that would distribute the scattering 

energy in certain directions.  Since most of the scattering waves are much weaker 

than the incoming sound waves, the directivity feature of this problem presents a 

challenge for the ability of the one-step CAA schemes.  Correct computations should 
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reveal the scattering field whose strength is two or three orders of magnitude less 

than the incoming waves.  Furthermore, the solutions should have the same 

directivity distributions so the interaction between sound and vortex is correctly 

reproduced.  All the one-step numerical solutions reported in the second part of this 

chapter show that the present LBM scheme could simulate the interaction problems 

correctly much the same as those given by the DNS scheme. 
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Figure 6.1 Schematic diagram of flow configuration. 
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Figure 6.2 Specification of computations for sound scattering by vortex. 
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Figure 6.3 Velocity contours of single vortex pulse by LBM computation: (a) “u”; 

(b) “v”. 
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Figure 6.4 Velocity contours of single vortex pulse by DNS computation: (a) “u”; 

(b) “v”. 
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Figure 6.5 Distribution of “u” along a o45  line which is cross the center of vortex: 

stars for LBM, solid line for DNS. 
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Figure 6.6 Scattering field (density contours) for short wave length 2=λ  (a) 

DNS; (b) LBM. 

 



167  

 

Figure 6.7 Directivity of the scattering for short wave length condition 2=λ , ● 

for DNS; * for LBM, solid line is the theoretical distribution. 
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7  Conclusions 

In this thesis, a new one-step CAA scheme is derived based on an improved modeled 

Boltzmann equation solved using the lattice Boltzmann method and validated against 

various benchmark aeroacoustic problems.  In order to validate the improved LBM 

scheme, an established one-step CAA scheme based on the direct numerical 

simulation (DNS) of the unsteady compressible Navier-Stokes equations (DNS) is 

introduced and validated against some basic aeroacoustic pulses.  Then the improved 

BE solved is shown to recover the fully unsteady compressible Navier-Stokes 

equations, including the correct recovery of the fluid first coefficient of viscosity and 

the specific heat ratio for diatomic gases.  Assuming the benchmark solutions 

derived from DNS to be reliable and correct, the LBM computations are compared 

with these solutions and theoretical results whenever available. 

The work of this thesis is divided into two parts.  The first part is to recover 

the fully unsteady compressible Navier-Stokes equation from the improved BE and 

numerically validate the resulting formulation against benchmark aeroacoustic 

problems.  This is not simply to repeat previous work on the study of the Boltzmann 

equation.  The approach taken is to invoke a two-relaxation time model for the 

collision term and using the second relaxation time to correctly recover the first 

coefficient of viscosity by requiring the derived relation between viscosity and 

temperature to replicate the Sutherland law.  In addition, the gas equation of state 

and the specific heat ratio is recovered correctly by taking into consideration the 

effect of rotational energy for diatomic gases.  It should be emphasized that these 

assumptions and derivations have strong physical background.  This part is 

essentially theoretical and is able to demonstrate that the improved BE can be used 



169  

to calculate gas flow where the viscosity, specific heat ratio and speed of sound are 

recovered correctly; thus the resulting equation could be used to carry out direct 

computations of one-step aeroacoustic problems. 

The second part of this thesis focuses on the numerical validation of the 

improved LBM.  The DNS computations give benchmark solutions for the LBM 

validation.  A series of basic aeroacoustic pulses are calculated using DNS and LBM, 

and the results are compared with each other and with theoretical solutions whenever 

available.  These include single pressure pulses (1-D and 2-D), continuous pulses, 

three different (pressure, vorticity and entropy) pulses in a mean flow and recovery 

of the speed of sound in different Mach number flows.  The results show that 

improved LBM can calculate these pulses correctly.  In order to demonstrate that the 

improved LBM can also replicate the calculation of sound directivity correctly in an 

aeroacoustic problem much like the DNS does, a final validation is carried out for a 

sound-vortex scattering problem.  This case is used to test the ability of the improved 

LBM to replicate the interaction between acoustics and aerodynamics.  In all these 

comparisons, the improved LBM results show good agreement with conventional 

DNS simulations.  Therefore, the viability of the improved LBM scheme as an 

alternative to the DNS scheme for one-step CAA is established. 

Furthermore, due to the simple form of the improved BE, the proposed one-

step LBM CAA scheme has certain advantages compared to the DNS method.  A 

major advantage is the simplicity of the LBM code.  In DNS, the governing 

equations are the fully unsteady compressible Navier-Stokes equations.  These 

equations consider the continuity of mass, momentum and energy of the medium 

under the continuum assumption.  However, with only the continuum assumption, 

the viscous stress and heat transfer terms in these equations could not be evaluated.  
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Only after invoking the Stokes stress hypothesis and the Fourier law, which are 

derived from particle collision theory, these higher-order transport terms can be 

related to viscosity and thermal conductivity, respectively.  At the same time, the 

computer codes used to solve these governing equations become complicated 

because the transport terms are related to second-order spatial derivatives, and 

parallel computation could not be easily and fully made used of.  Therefore, 

computational time is an important consideration in one-step CAA using the DNS 

method.  Using the improved LBM scheme, the governing equation only involves 

first-order spatial derivatives and a simply model for the collision term.  For a simple 

rectangular computational domain, a DNS code needs about 1350 lines (in Fortran 

language) whereas the improved LBM code only needs about 420 lines.  Besides, the 

simple structure of the LBM code is readily amenable to parallel computation which 

means a reduction in computation time is possible.  These advantages mean that the 

LBM code could be easily put together and could be extended to cover irregular 

domains (e.g., cavity, backward-facing step or other discontinuity inside tubes). 

A second advantage is that the improved LBM has a high-order numerical 

boundary.  This advantage could be a consequence of the highly-conservative 

particles in the Boltzmann equation.  It should be noted that, in DNS computations, 

the spurious waves are mostly coming from the numerical boundaries.  When 

approaching the numerical boundaries, a different formulation has to be used to 

calculate the spatial derivatives; conventionally a 6th-order compact scheme is used 

for inner points away from the boundaries while a 4th-order upwind scheme is 

usually assumed for the boundary points.  In a DNS scheme where the Navier-Stokes 

equations are solved, the conservative variables are strongly depending on these 

spatial derivatives.  If the computational values for these derivatives are not correct, 
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spurious waves could develop at the boundaries.  From the numerical point of view, 

the conservation of mass, energy and energy flux are incorrectly estimated at the 

boundaries.  This puts a great burden on the boundary method in DNS simulations.  

In particular, this is true for purely non-reflecting boundaries; some complex 

techniques (NSCBC, PML and absorbing BC) have been introduced but they are not 

easy to implement into the computer code.  In a LBM formulation, the original 

Boltzmann equation already has a high-conservation feature for the particles built in; 

therefore, conservation of primitive variables is quite independent of spatial 

derivatives.  Thus, even if the same set of compact scheme is used to solve the 

improved BE and errors for the spatial derivatives result, conservation laws for the 

particles are still in compliance.  This means that non-reflecting boundary conditions 

could be very simple for any LBM scheme.  Even a relatively simple first-order 

continuity of the particle distribution function could give good non-reflecting 

property at the computational boundary.  This would lead to a reduction of 

computational time since a smaller domain can be used in improved LBM. 

On the other hand, there are certain disadvantages in the improved LBM 

compared to the DNS.  Firstly, the computational time-step is too small, especially 

for high Reynolds number flows.  In DNS scheme, the time-step is governed by the 

CFL condition which can be expressed as ( )min, 3/t x y cΔ ≤ Δ Δ , where ( )min,x yΔ Δ  

is the minimum value of the grid sizes, c is the speed of sound.  This formulation is 

independent of the viscosity.  For LBM, the time-step should be smaller than half of 

the relaxation time.  The relaxation time is related to the viscosity and hence the 

Reynolds number, so the time-step for LBM is affected by the Reynolds number of 

the flow.  For high Reynolds number flows, the time-step has to be very small.  

Secondly, other transport coefficients of the gases are still not recovered correctly.  
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An example is the Prandtl number.  A theoretical derivation is needed to recover the 

correct Prandtl number for air.  Once all these features for air are recovered correctly, 

the LBM could be used to simulate more complicated aeroacoustic problems. 

This one-step CAA scheme using the improved LBM is new.  Unlike the DNS 

scheme where the equation of state and the speed of sound have to be specified, 

these two properties are part of the solutions in the LBM formulation.  Existing LBM 

schemes in the literature fail to reproduce these two properties correctly and are not 

suitable for aeroacoustic problems.  The improved LBM scheme proposed in this 

thesis is the first step towards deriving a true one-step CAA based on the improved 

BE. 
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