




CERTIFICATE OF ORIGINALITY 


I hereby declare that this thesis is my own work and that, to the best of my 

knowledge and belief, it reproduces no material previously published or written, nor 

material that has been accepted for the award of any other degree or diploma, except 

where due acknowledgement has been made in the text. 

______~__(Signed) 

__----'X""'IE=-...:X~u=d=o".,.n.::o_g___(Name of student) 

ii 



iii 

Abstract 

The aim of this research is to develop efficient algorithms for facial image 

analysis. Our research focuses on three areas: face recognition, illumination models 

and compensation, and facial expression recognition. We also review some well-

known face recognition techniques and the recent development of the methods for 

face recognition under varying illuminations and the methods for facial expression 

recognition.  

 

We have proposed two methods for face recognition under various conditions: 

Elastic Shape-Texture Matching (ESTM) and Doubly nonlinear mapping kernel 

Principal Component Analysis (DKPCA). ESTM uses not only the shape 

information but also the texture information in comparison of two faces without 

establishing any precise pixel-wise correspondence. Because elastic matching is 

carried out within the neighborhood of each edge pixel concerned, which is robust 

to small, local distortions of the feature points such as facial expression variations, 

this method is robust to small shape variations. DKPCA is a Gabor-based method 

which uses the Gabor wavelets to extract facial features. Then, a doubly nonlinear 

mapping kernel PCA is proposed to perform feature transformation and face 

recognition. The proposed nonlinear mapping not only considers the statistical 

property of the input features, but also adopts an eigenmask to emphasize those 

important facial feature points. Therefore, after this mapping, the transformed 

features have a higher discriminating power, and the relative importance of the 



iv 

features adapts to the spatial importance of the face images. This new nonlinear 

mapping is combined with the conventional kernel PCA for face recognition.  

 

 Lighting conditions have a serious impact on the performance of face 

recognition methods. Most of them will perform poorly under various conditions. 

Therefore, we investigate and propose two model-based methods for modeling 

illumination on the human face, so the effect of uneven lighting can be reduced or 

compensated for. Depending on the illumination model and human face model used, 

we model an illumination using a series of multiplicative factors and additive 

factors, which can be determined by the illumination model concerned and the 

shape of a human face. The first method can compensate for the uneven 

illuminations on human faces and reconstruct face images in normal lighting 

conditions, where a 2D face shape model is used to obtain a shape-free texture 

image. Instead of computing the multiplicative factors and the additive factors, the 

second illumination compensation method proposed in this thesis aims to reduce or 

even remove the effect of these factors. In this method, a local normalization 

technique is applied to an image, which can effectively and efficiently eliminate the 

effect of uneven illuminations while keeping the local statistical properties of the 

processed image the same as in the corresponding image under normal lighting 

conditions. After processing, the image under varying illumination will have similar 

pixel values to the corresponding image under normal lighting conditions. Then, the 

processed images can be used for face recognition. 
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We have also presented an efficient method for facial expression recognition. 

We first propose a representation model for facial expressions, namely spatially 

maximum occurrence model (SMOM), which is based on the statistical 

characteristics of training facial images and has a powerful representation 

capability. The ESTM algorithm is then used to measure the similarity between 

images for facial expression recognition. By combining SMOM and ESTM, the 

algorithm is called SMOM-ESTM and can achieve a higher recognition 

performance level. 

 

To reduce the computational complexity when face recognition is applied to 

a large-scale database, it is necessary to filter the large database to form a smaller 

one that contains face images similar to the query input. Therefore, we propose an 

efficient indexing structure for searching a human face in a large database, which 

can produce a condensed database including the target image and therefore reduce 

the search time.  

 

All these methods proposed in this thesis have been evaluated and compared 

to the existing methods. Experimental results show that our algorithms can have 

convincing and consistent performances.  
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Chapter 1.       Introduction 

 

The objective of this chapter is to introduce the general concepts of face image 

analysis, including the characteristics of human faces, and some applications of the 

face-based techniques. We will also address the originality and the organization of 

this thesis. 

1.1 Motivation 

The human face plays an important role in personal communication. Firstly, 

due to the uniqueness of the face of a person, it can be considered as the personal 

ID, which can comprise part of many applications [1-5], such as criminal 

identification, credit card verification, security system, scene surveillance, 

entertainments, etc. In fact, humans have used faces to recognize each other for 

thousands of years [6, 7]. Secondly, people mainly express their emotions through 

different facial expressions and tones of voice. Just as a mid-16th century proverb 

says, “the eyes are the window of the soul”, so the change of facial expression 

intuitively reflects the latent emotion. Furthermore, social psychology research has 

shown that facial expressions convey messages more powerful than the spoken 

words in meaningful conversations [8]. Finally, the face assists in a number of 

cognitive tasks in speach recognition; for example, the shape and motion of lips 

can contribute greatly to speech comprehension in a noisy environment. Therefore, 

the face can be considered the personal communication center. 
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Compared with other biometric characteristics, such as fingerprints, hand 

geometry, iris, retina, etc., face-based applications are more user-friendly and non-

intrusive. That is, the system has the ability to measure the characteristic, i.e. the 

face image, of an individual without contact. In addition, only very little 

cooperation or participation from the users is required. This property is very useful 

for some security applications [3-5]. Besides the above mentioned applications, 

face analysis techniques can also be applied to natural human-computer interface 

systems [9], such as virtual reality, computer games, robotic dogs, and so on. In 

2002, the Elsevier Advanced Technologies’ (EAT) report [10] quoted the facial 

recognition market as being US$32.9 million, and by 2006 this amount will have 

grown to US$242.7 million. We can see that face analysis techniques can be used 

in a myriad of commercial and law enforcement applications, which are potentially 

huge markets. 

Over the past few years, face image analysis has attracted researchers from 

disciplines such as image processing, pattern recognition, neural networks, 

computer vision, computer graphics, and psychology. The different applications 

have developed different techniques, such as face detection [11-15], face 

recognition [1, 2, 5, 16, 17], face tracking [18-20], facial expression recognition [5, 

21-25], gender determination [26-28], age classification [29, 30], aging simulation 

[29, 31], face synthesizing [32-34] and 3D face analysis [35-38]. In this thesis, we 

mainly consider the techniques for face recognition and facial expression 

recognition. Finally, we also investigate and devise a new indexing structure for 

searching for a particular face image from a large face database.  
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1.2 Statements of Originality 

The following contributions reported in this thesis are claimed to be original. 

1. A new elastic shape-texture matching method, namely ESTM, for human face 

recognition is derived. In our approach, both the shape and texture information 

are used to compare two faces without establishing any precise pixel-wise 

correspondence. Combining the shape and texture features together, a shape-

texture Hausdorff distance is devised to compute the similarity between two face 

images. 

2. A novel Gabor-based kernel Principal Component Analysis (PCA) with doubly 

nonlinear mapping is proposed for human face recognition. In this method, the 

Gabor wavelets are used to extract facial features, then a doubly nonlinear 

mapping kernel PCA is proposed to perform feature transformation and face 

recognition. 

3. A simple yet effective local contrast enhancement method, namely block-based 

histogram equalization (BHE), is proposed to estimate the category of the light 

source of an input face image. 

4. A novel illumination compensation algorithm, which can compensate for the 

uneven illuminations on human faces and reconstruct face images in normal 

lighting conditions, is proposed. Based on the light category identified, a 

corresponding lighting compensation model is used to reconstruct an image that 

will visually be under normal illumination. In order to eliminate the influence of 

uneven illumination while retaining the shape information about a human face, a 

2D face shape model is used. 
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5. An efficient representation method insensitive to varying illumination is 

presented for human face recognition. This method applies a local normalization 

technique to an image, which can effectively and efficiently eliminate the effect 

of uneven illuminations while keeping the local statistical properties of the 

processed image the same as in the corresponding image under normal lighting 

condition.  

6. A representation model for facial expressions, namely spatially maximum 

occurrence model (SMOM), which is based on the statistical characteristics of 

training facial images and has a powerful representation capability, is proposed.  

7. An efficient method for human facial expression recognition is devised. 

Combining ESTM algorithm with SMOM, a new method called SMOM-ESTM 

is used for facial expression recognition. 

8. An efficient indexing structure for searching a human face in a large database is 

also proposed. This method will form a small database, namely a condensed 

database, for face recognition, instead of considering the original large database. 

1.3 Outline of the Thesis 

This thesis is organized into nine chapters and each chapter is outlined as 

follows. 

Chapter 2 describes the principles of face recognition and facial expression 

recognition. We will briefly review some well-known face recognition techniques, 

such as Principal Component Analysis (PCA) [39-41], Linear Discriminant Analysis 

(LDA) [42], Independent Component Analysis (ICA) [43-46], Kerenl Principal 

Component Analysis (KPCA) [47-50], Hausdorff distance [51, 52] and Gabor 
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wavelets [44, 53, 54]. These methods are related to our methods proposed in this 

thesis, which will be described in the following chapters. We will also review the 

recent development of the face recognition methods for varying illuminations and of 

the methods for facial expression recognition. We will also compare in this thesis 

our proposed algorithms to some of the existing ones.  

In Chapter 3, we introduce a novel elastic shape-texture matching method, 

namely ESTM, for human face recognition. In our approach, both the shape and 

texture information are used to compare two faces without establishing any precise 

pixel-wise correspondence. The edge map is used to represent the shape of an image 

and is allowed to act as an elastic graph when performing matching, and the texture 

information is characterized by both the Gabor representations and the gradient 

direction of each pixel. Combining these features, a shape-texture Hausdorff 

distance is devised to compute the similarity between two face images. The elastic 

matching is carried out within the neighborhood of each edge pixel concerned, 

which is robust to small, local distortions of the feature points, such as facial 

expression variations. Due to the fact that the edge map, Gabor representations and 

the direction of image gradient can all alleviate the effect of illumination, ESTM is 

therefore robust to lighting condition variations. 

Chapter 4 presents a novel Gabor-based kernel Principal Component Analysis 

(KPCA) with doubly nonlinear mapping for human face recognition. In our 

approach, the Gabor wavelets are used to extract facial features, then a doubly 

nonlinear mapping kernel PCA is proposed to perform feature transformation and 

face recognition. The conventional kernel PCA nonlinearly maps an input image 
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into a high-dimensional feature space in order to make the mapped features linearly 

separable. However, this method does not consider the structure of the manifold on 

which the face images possibly reside, and it is difficult to determine which 

nonlinear mapping is more effective for face recognition. In this chapter, a new 

method of nonlinear mapping, which is performed in the original feature space, is 

defined. The proposed nonlinear mapping not only considers the statistical property 

of the input features, but also adopts an eigenmask [55, 56] to emphasize those 

important facial feature points. Therefore, after this mapping, the transformed 

features have a higher discriminating power, and the relative importance of the 

features adapts to the spatial importance of the face images. This new nonlinear 

mapping is combined with the conventional kernel PCA to be called ‘doubly’ 

nonlinear mapping kernel PCA (DKPCA). 

In Chapter 5, we propose a novel illumination compensation algorithm, 

which can compensate for the uneven illuminations on human faces and reconstruct 

face images in normal lighting conditions. According to the illumination model and 

human face model used, the effect of uneven illumination can be modeled as a 

series of multiplicative factors and additive factors, which can be determined by the 

illumination model concerned and the shape of a human face. To eliminate the 

influence of shape on different faces, a 2D face shape model is used to obtain a 

shape-free texture image. For an identified illumination category, the effect of a 

particular uneven lighting, i.e. a particular multiplicative factor and additive factor, 

can be computed using a set of training images, and are used for reconstructing an 
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image that will visually be under normal illumination. Then, these images can be 

used for face recognition. 

In Chapter 6, an efficient representation method insensitive to varying 

illumination is presented for human face recognition. Instead of computing the 

multiplicative factors and the additive factors, which are used to model the uneven 

illuminations for face recognition as described in Chapter 5, we aim to reduce or 

even remove the effect of these factors. In our method, a local normalization 

technique is applied to an image, which can effectively and efficiently eliminate the 

effect of uneven illuminations while keeping the local statistical properties of the 

processed image the same as in the corresponding image under normal lighting 

condition. After processing, the image under varying illumination will have similar 

pixel values to the corresponding image that is under normal lighting condition.  

Chapter 7 presents an efficient method for human facial expression 

recognition. We first propose a representation model for facial expressions, namely 

spatially maximum occurrence model (SMOM), which is based on the statistical 

characteristics of training facial images and has a powerful representation 

capability. The ESTM algorithm is then used to measure the similarity between 

images for facial expression recognition. By combining SMOM and ESTM, the 

algorithm is called SMOM-ESTM and can achieve a higher recognition 

performance level. 

In Chapter 8, an efficient indexing structure for searching a human face in a 

large database is proposed. In our method, a set of eigenfaces is computed based on 

the faces in the database. Each face in the database is then ranked according to its 
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projection onto each of the eigenfaces. A query input will be ranked similarly, and 

the corresponding nearest faces in the ranked position with respect to each of the 

eigenfaces are selected from the database. These selected faces will then form a 

small database, namely a condensed database, for face recognition, instead of 

considering the original large database. 

Finally, we give the conclusions of our work in Chapter 9, where some 

suggestions for further development are also provided. 
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Chapter 2.       Literature Review 

 

In this chapter, we introduce the general concepts of face recognition and facial 

expression recognition. We briefly review some well-known face recognition 

techniques related to the methods that we propose in this thesis. We also review the 

recent development of the methods for face recognition under varying illuminations 

and the methods for facial expression recognition, some of which will be compared 

to our proposed methods in the chapters that follow.  

2.1 Review of Face Recognition 

2.1.1 Problem Statement 

The face recognition problem is to automatically recognize the identity of a 

person from a new image by comparing it to human facial images annotated with 

identity in a stored database. In other words, we need to find the pictures of the 

same person as the input image that are in a large facial image database. Here we 

suppose that the location of a face in an image is known, so that we only need to 

consider the similarity between different facial images. Chellappa et al. [2] gave a 

more general statement for face recognition, which includes face detection from a 

scene, feature extraction from the face region, and feature matching for comparison. 

For a real face recognition application, we actually should perform these 

procedures, which starts with face detection. However, considering the different 

characteristics of face detection and face recognition, it is wise to divide them into 
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two stages and treat them separately. In fact, there have been many methods 

proposed for face detection [11-15, 57-60]. 

In real applications, face recognition techniques use various source formats 

ranging from static, controlled format photographs to uncontrolled video sequences, 

all of which have been produced in different conditions. Therefore, a practical face 

recognition technique needs to be robust to the image variations caused by different 

factors, such as: 

1. Pose: The images of a face vary due to the relative camera-face pose, and 

some facial features such as the eyes or the nose may become partially or 

wholly occluded, 

2. Presence or absence of structural components: Facial features such beards, 

mustaches, and glasses may or may not be present, and there is a great deal of 

variability among these components including shape, color, and size, 

3. Facial expression: The appearance of faces is directly affected by a person’s 

facial expression, 

4. Occlusion: A face may be partially occluded by other objects [61]. In an 

image with a group of people, some faces may partially occlude each other, 

5. Image orientation: Face images vary for different rotations about the 

camera’s optical axis, and 

6. Image conditions: When an image is formed, factors such as lighting and 

camera characteristics (sensor response, lenses) affect the appearance of the 

faces in the image. 
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In fact, there are two kinds of classification problems in face image analysis 

applications. The first is how to recognize a human face under the above mentioned 

variations, and the second is how to estimate the characteristics of a person, such as 

the age [29, 30], gender [26-28], hairstyle [62], expression [5, 21-25] and pose [63-

65], or the situation of the picture, e.g. the illumination [66-68]. These two 

problems are not isolated. In most cases, if we know who the person is, we can also 

judge his/her characteristics, such as age, gender, ethnic origin, etc. Similarly, if we 

have some information about the target, the corresponding compensation operation 

can be performed, or the search range can be greatly reduced, which accordingly 

results in a more accurate recognition result.  

In this thesis, Chapters 3 and 4 will describe our proposed methods for face 

recognition under various conditions. The methods presented in Chapters 5 and 6 

address the problem of face recognition under varying illuminations, which can be 

considered a special application for the first-class classification problem. In fact, in 

the method described in Chapter 5, a block-based histogram equalization (BHE) 

method is proposed to estimate the illumination category, which belongs to the 

second-class classification problem. Chapter 7 presents a method for facial 

expression recognition, which is a classical second-class application. Finally, the 

database condensing technique proposed in Chapter 8 is not a direct recognition 

application, but this method can narrow the searching range when face matching is 

performed. 
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2.1.2 History and Development of Face Recognition 

It is well known that humans have used their faces to recognize each other 

for thousands of years [6, 7]. The earliest work on face recognition can be traced 

back at least to the 1950s in psychology [69] and to the 1960s in the engineering 

literature [70]. In fact, Darwin did some work on facial profile-based biometrics in 

1888 [71]. However, research on automatic machine recognition of faces really 

started in the 1970s [72] after the seminal work of Kanade [73]. 

Over the past 30 years, psychophysicists and neuroscientists have been 

concerned with issues such as whether face perception is a dedicated process and 

whether it is done holistically or by local feature analysis [74, 75]. These findings 

have been combined with various techniques, such as image processing, pattern 

recognition, neural networks, computer vision, computer graphics, etc., to develop 

a sequence of algorithms and systems for machine recognition of human faces. In 

the last decade in particular, many significant advances have taken place. In the 

following section, some of the existing face recognition algorithms will be 

introduced and discussed.  

2.1.2.1 Linear Subspace Analysis 

Linear subspace analysis, which considers a feature space as a linear 

combination of a set of bases, has been widely used in face recognition 

applications. This is mainly due to its effectiveness and computational efficiency 

for feature extraction and representation. Different criteria will produce different 

bases and, consequently, the transformed subspace will also have different 

properties. Principal Component Analysis (PCA) [40, 41, 76], which is widely used 
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for face recognition and face reconstruction, decomposes an input image as a 

combination of a sequence of basis images, namely eigenfaces, and therefore has a 

low computational complexity and high representation ability. In 1997, Linear 

Discriminant Analysis (LDA) [42] is proposed, which not only maximizes the 

between-class scatters of different subjects, but also minimizes the within-class 

scatters of the same person when performing feature transformation. Therefore, 

LDA can preserve the discriminating information and is suitable for recognition.  

Because only the second-order dependencies in the PCA coefficients are 

eliminated, PCA cannot capture even the simplest invariance unless this 

information is explicitly provided in the training data [77]. Independent Component 

Analysis (ICA), which was proposed in 2002 [43], can be considered a 

generalization of PCA, and aims to find some independent bases by methods 

sensitive to high-order statistics. As opposed to PCA, 2DPCA [78] is based on 2D 

image matrices rather than 1D vectors so the image matrix does not need to be 

transformed into a vector prior to feature extraction. Instead, an image covariance 

matrix is constructed directly using the original image matrices, and its 

eigenvectors are derived for image feature extraction. Locality Preserving 

Projections (LPP) [79] obtains a face subspace that best detects the essential face 

manifold structure, and preserves the local information of the image space. When 

the proper dimension of the subspace is selected, the recognition rates using LPP 

are better than those using PCA or LDA, based on different databases. 
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2.1.2.2 Kernel-Based Methods 

With the Cover’s theorem, nonlinearly separable patterns in an input space 

will become linearly separable with a high probability if the input space is 

transformed nonlinearly to a high-dimensional feature space [36]. We can therefore 

map an input image into a high-dimensional feature space, so that linear 

discriminant methods can then be employed for face recognition. This mapping is 

usually realized via a kernel function [80] and, according to the methods used for 

recognition in the high-dimensional feature space, we have a set of kernel-based 

methods, such as the Kernel PCA (KPCA) [48-50], or the Kernel Fisher 

discriminant analysis (KFDA) [80-84]. KPCA and KFDA are linear in the high-

dimensional feature space, but nonlinear in the low-dimensional image space. In 

other words, these methods can discover the nonlinear structure of the face images, 

and encode higher order statistics [50].  

Support vector machine (SVM) [85-87], a pattern classification algorithm 

developed by V. Vapnik and his co-operators [87, 88], finds the hyperplane that 

separates the largest possible fraction of points of the same class on the same side, 

while maximizing the distance from either class to the hyperplane, for a two-class 

classification problem. According to Vapnik [89], this hyperplane is called Optimal 

Separating Hyperplane (OSH), which minimizes the risk of misclassifying not only 

the examples in the training set but also the unseen examples of the test set. The 

attractiveness of using neural network could be due to its nonlinearity in the 

network. 
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2.1.2.3 Neural Network 

One of the first artificial neural network techniques used for face recognition 

is a single layer adaptive network called WISARD, which contains a separate 

network for each stored individual [90]. However, when the number of persons 

increases, the computing expense will become more demanding. The probabilistic 

decision-based neural network (PDBNN) [91] is effectively applied to face 

detection and recognition. PDBNN has inherited the modular structure from its 

predecessor described in [92]. PDBNN-based identification systems have the 

merits of both neural networks and statistical approaches, and their distributed 

computing principle is relatively easy to implement on parallel computers.  

A radial basis function (RBF) neural classifier is used to cope with small 

training sets of high dimension, which is a problem frequently encountered in face 

recognition in 2002 [93]. In order to avoid overfitting and reduce the computational 

burden, face features are first extracted by the PCA method. Then, the resulting 

features are further processed by the LDA technique to acquire lower-dimensional 

discriminant patterns. A paradigm is proposed whereby data information is 

encapsulated in determining the structure and initial parameters of the RBF neural 

classifier before learning takes place. A hybrid learning algorithm is used to train 

the RBF neural networks so that the dimension of the search space is drastically 

reduced in the gradient paradigm. 

2.1.2.4 Graph Matching 

In [54], a dynamic link architecture (DLA) for distortion invariant object 

recognition is presented. The DLA first computes the Gabor jets of the face images, 
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and then elastic graph matching (EGM) is used to compare their resulting image 

decompositions.  Duc et al. [94] introduced an automatic weighting for the nodes of 

the elastic graph according to their significance, and also explored the significance 

of the elastic deformation for an application of face-based person authentication. 

Kotropoulos et al. [95] has proposed a morphological dynamic link architecture 

which adopts discriminatory power coefficients to weigh the matching error at each 

grid node. In general, these methods can preserve some texture features and local 

geometry information [96], and therefore are superior to other face recognition 

techniques in terms of rotation invariant; however, the matching process is 

computationally expensive.  

2.1.2.5 Hidden Markov Models 

Stochastic modeling of non-stationary vector time series based Hidden 

Markov model (HMM) has been very successful for speech applications. Samaria 

et al. [97] first applied this method to human face recognition. Samaria et al. [98] 

proposed to model human faces with a vertical top-to-bottom 1D HMM structure 

composed of superstates. Each superstate contains a horizontal left-to-right 1D 

Markov chain. In [99], a similar 1D HMM, which uses 2D-DCT coefficients as the 

feature vectors of the HMM, is proposed. Due to the compression properties of the 

DCT, the size of the observation vector is reduced, while preserving the same 

recognition rate. The embedded HMMs [100] models the two-dimensional data 

better than the one-dimensional HMM and is computationally less complex than 

the two-dimensional HMM. This model is appropriate for face images since it 

exploits an important facial characteristic: frontal faces preserve the same structure 
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of “super states” from top to bottom, and also the same left-to-right structure of 

“states” inside each of these “super states”. Embedded Bayesian network [101], a 

generalized framework of embedded HMM, is defined recursively as a hierarchical 

structure where the “parent” node is a Bayesian network that conditions the 

embedded Bayesian networks or the observation sequence that describes the nodes 

of the “child” layer. Embedded Bayesian network shows a significant complexity 

reduction. 2D HMM [102] builds on an assumption of conditional independence in 

the relationship between adjacent blocks. This allows the state transition to be 

separated into vertical and horizontal state transitions. This separation of state 

transitions brings the complexity of the hidden layer of the proposed model from 

the order of (N3T) to the order of (2N2T), where N is the number of the states in the 

model and T is the total number of observation blocks in the image. The system is 

tested on the facial database of AT&T Laboratories Cambridge and the more 

complex facial database of the Georgia Institute of Technology where recognition 

rates up to 100 percent and 92.8 percent have been achieved, respectively, with 

relatively low complexity. In [103], HMM was used in the temporal domain to 

perform face recognition in video signals, where each frame in the video sequence 

is considered as an observation. 

2.1.2.6 Geometrical Feature Matching and Template Matching 

Geometrical Feature Matching techniques are based on the computation of a 

set of geometrical features from the picture of a face. Bruneli et al. [104] 

automatically extracted geometrical features, such as nose width and length, mouth 

position, and chin shape, and used a Bayes classifier to face recognition. Manjunath 
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et al. [105] used Gabor wavelet decomposition to detect feature points for each face 

image which greatly reduced the storage requirement for the database. Tamura et 

al. [106] found that face recognition based on geometrical feature matching is 

possible for face images at resolution as low as 8×6 pixels when single facial 

features are hardly revealed. In summary, geometrical feature matching based on 

precisely measured distances between features may be most useful for finding 

possible matches in a large database such as a mug shot album. However, it will be 

dependent on the accuracy of the feature location algorithms. Current automated 

face feature location algorithms do not provide a high degree of accuracy and 

require considerable computational time. 

In template matching methods, several standard patterns for a face are stored 

to describe the face as a whole or the facial features separately. The correlations 

between an input image and the stored patterns are computed for detection. The 

templates are allowed to translate, scale, and rotate. Segments obtained from the 

curvature discontinuities of the head outline can be used as templates. A simple 

version of template matching is that a test image represented as a two-dimensional 

array of intensity values is compared using a suitable metric, such as the Euclidean 

distance, with a single template representing the whole face. There are several other 

more sophisticated methods based on template matching for face recognition [107, 

108]. 

Line Edge Map (LEM) [109] approach, which extracts lines from a face edge 

map as features, can be considered as a combination of template matching and 

geometrical feature matching. LEM integrates the structural information with 
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spatial information of a face image by grouping pixels of face edge map to line 

segments. After thinning the edge map, a polygonal line fitting process [110] is 

applied to generate the LEM of a face. The LEM representation, which records 

only the end points of line segments on curves, further reduces the storage 

requirement. LEM is also expected to be less sensitive to illumination changes due 

to the fact that it is an intermediate-level image representation derived from low-

level edge map representation. Therefore, the LEM approach not only possesses the 

advantages of feature-based approaches, such as invariant to illumination and low 

memory requirement, but also has the advantage of high recognition performance 

of template matching. Comparing with LEM, a more reliable method, Elastic 

Shape-Texture Matching (ESTM) [111], which is also based on the combination of 

template matching and geometrical feature matching, is proposed. In ESTM, the 

edge map is used to represent the shape of an image and is allowed to act as an 

elastic graph when performing matching, and the texture information is 

characterized by both the Gabor representations and the gradient direction of each 

pixel. Combining these features, a shape-texture Hausdorff distance is devised to 

compute the similarity between two face images. 

2.1.3 Some Related Methods 

In this section, we will briefly introduce some techniques that are related to 

our approaches proposed in the later chapters. 

2.1.3.1 Principal Component Analysis 

PCA is a classical method that has been widely used for human face 

representation and recognition. The major idea of PCA is to decompose a data space 
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into a linear combination of a small collection of bases, which are pairwise 

orthogonal and which capture the directions of maximum variance in the training 

set. Suppose there are a set of centered N-dimensional training samples iY , 

1, 2, ,i M= L , such that N
i R∈Y  and 

1
0M

ii=
=∑ Y
r

. The covariance matrix of the 

input can be estimated as follows: 

1

1 M
T

i i
iM =

∑ = ∑Y Y .      (2.1) 

The PCA leads to solve the following eigenvector problem: 

λ = ∑v v ,       (2.2) 

where v  are the eigenvectors of Σ, and λ  are the corresponding eigenvalues. These 

eigenvectors are ranked in a descending order according to the magnitudes of their 

eigenvalues, and the first L (generally, L < N) eigenvectors are selected as the bases, 

which are commonly called eigenfaces. These eigenfaces with large eigenvalues 

represent the global, rough structure of the training images, while the eigenfaces 

with small eigenvalues are mainly determined by the local, detailed components. 

Therefore, after projecting onto the eigenspace, the dimension of the input is 

reduced while the main components are maintained. For face recognition, when the 

testing images have variations caused by local deformation, such as different facial 

expressions [112], PCA can alleviate this effect. However, when the variations are 

caused by global components such as lighting or perspective variations, the 

performance of PCA will be greatly degraded [67].  
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2.1.3.2 Independent Component Analysis  

PCA can remove the pair-wise linear dependencies between pixels in an 

image, but high-order dependencies still exist in the joint distribution of the PCA 

coefficients. ICA [43-46] can be considered a generalization of PCA, which can find 

some independent bases, namely Independent Components (ICs), by methods 

sensitive to high-order statistics. Suppose s  is the vector of unknown source image, 

and Y is the vector of observed mixtures. If A is the unknown mixing matrix, then 

the mixing process is shown as 

=Y As .        (2.3) 

The goal of ICA is find the separating matrix W such that 

=s WY .        (2.4) 

However, there is no closed form expression to find W. Instead, many iterative 

algorithms are used to approximate W in order to optimize independence of Y. 

According to [43], there are two types of implementation frameworks for ICA in the 

image recognition task. Framework I treats images as random variables and pixels 

as observations; while Framework II coins pixels as random variables and images as 

observations. In framework I, the basis vectors obtained are approximately 

independent, but the coefficients representing each image are not necessarily 

independent. On the other hand, framework II finds a representation in which all the 

coefficients are statistically independent. Therefore, framework I and II can be 

interpreted as local features and global texture features extractor, respectively. ICA 

architecture I is used for localized tasks, and ICA architecture II for holistic tasks. 

There are different algorithms implemented for different ICA architecture, e.g. the 
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InfoMax [113] approach for the ICA architecture I, and the FastICA [114] algorithm 

for architecture II. 

Although the ICs are independent to each other, while the eigenfaces are 

uncorrelated to each other, we cannot argue that ICA always performs better than 

PCA for face recognition. Bartlett, et al. [115, 116], Liu and Wechsler [117], and 

Yuen and Lai [118] claim that ICA outperforms PCA for face recognition, while 

Baek et al. [119] claim that PCA outperforms ICA and Moghaddam [120] claims 

that there is no statistical difference in performance between the two. The 

experimental results in [46] show that comparisons between PCA and ICA are 

complex, because differences in tasks, architectures, ICA algorithms, and distance 

metrics must be taken into account. 

2.1.3.3  Linear Discriminant Analysis 

Let ijY  be an N-dimensional vector representing the jth image of the ith person, 

K the number of distinct persons in a database, and M the number of images of each 

person. The within-class scatter matrix wS  and the between-class scatter matrix bS  

can be written as follows: 

( )( )
1 1

1 1K M T

w ij i ij i
i jK M= =

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑ ∑S Y μ Y μ ,   (2.5) 

( )( )
1

1 K
T

b i i
iK =

= − −∑S μ μ μ μ ,     (2.6) 

where iμ  is the mean of the ith class and μ  is the mean of all the classes. The 

optimal discriminant vectors V are computed by maximizing the following criterion: 

( )
T

b
T

w

J =
V S VV
V S V

.      (2.7) 
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Then, a generalized eigenvalue problem can be solved as follows: 

b i i w iλ=S V S V ,       (2.8) 

where iV  represents an optimal vector for the criterion J(V) and iλ  is a scalar 

( 1, 2,...i = ). If wS  is a nonsingular matrix, the optimal discriminant vectors (ODVs) 

can be solved with the following equation: 

( )1
w b i i iλ− =S S V V ,      (2.9) 

In other words, iV  is an eigenvector of 1
w b
−S S  and iλ  is the corresponding 

eigenvalue. The computation of the above eigenvalue problem might be unstable 

because the matrix 1
w b
−S S  may not be symmetric due to limited precision in number 

representation. More importantly, wS  is usually a singular matrix due to the small 

sample size. Several algorithms [17, 121-125] have been proposed to solve this 

problem. However, the work in [14] shows that, when the training data set is small, 

PCA can outperform LDA, and also that PCA is less sensitive to different training 

data sets. 

2.1.3.4 Kernel PCA 

With the Cover’s theorem, nonlinearly separable patterns in an input space 

will become linearly separable with high probability if the input space is 

transformed nonlinearly into a high-dimensional feature space. We can therefore 

map an input variable into a high-dimensional feature space, and then perform PCA. 

For a given nonlinear mapping Φ , the input data space RN can be mapped into a 

potentially much higher dimensional feature space F : 

( )
: ,    

.

NR FΦ →
→ΦY Y

               (2.10) 
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Performing PCA in the high-dimensional feature space can obtain high-order 

statistics of the input variables; that is also the initial motivation of the KPCA. 

However, it is difficult to directly compute both the covariance matrix and its 

corresponding eigenvectors and eigenvalues in the high-dimensional feature space. 

It is computationally intensive to compute the dot products of vectors with a high 

dimension. Fortunately, kernel tricks can be employed to avoid this difficulty, which 

compute the dot products in the original low-dimensional input space by means of a 

kernel function [47, 48]: 

( ) ( ) ( )( ),i j i jk = Φ ⋅ΦY Y Y Y .              (2.11) 

Define an M M×  Gram matrix R, where M is the number of training images used, 

and the elements of R can be determined by virtue of the kernel function: 

( ) ( ) ( ) ( )( ) ( ),T
ij i j i j i jR k= Φ Φ = Φ ⋅Φ =Y Y Y Y Y Y ,           (2.12) 

The orthonormal eigenvectors 1 2, , , mγ γ γL  of R corresponding to the m largest 

positive eigenvalues 1 2 mλ λ λ≥ ≥ ≥L  are computed. Then, the corresponding 

eigenvectors 1 2, , , mβ β βL  for the KPCA can be derived as follows [48, 84]: 

1 , 1, , .j j
j

j m
λ

= =β Qγ L ,              (2.13) 

where ( ) ( )1 , , M⎡ ⎤= Φ Φ⎣ ⎦Q Y YL  is the mapped data matrix in the high-dimensional 

feature space. For a mapped test sample ( )Φ Y , it should be projected onto the 

eigenvector system 1 2, , , mβ β βL , and the projection vector of ( )Φ Y , 

( )1 2, , T
mw w w=w L , in the transformed subspace is computed by 

( ) ( )1 2, where , , .T
m= Φ =w P Y P β β βL             (2.14) 
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Specifically, the jth component jw  is given as follows: 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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L

L

L

L L

(2.15) 

Therefore, from (2.12) and (2.15), we can see that the explicit mapping process is 

not required, and that all the procedures are performed in the low-dimensional input 

space instead of the high-dimensional feature space.  

In a practical face recognition application, three classes of kernel functions 

have been widely used, which are the polynomial kernels, Gaussian kernels, and 

sigmoid kernels, [47], respectively: 

Polynomial kernel: ( ) ( ),
d

i j i jk = ⋅Y Y Y Y ,                                                      (2.16) 

Gaussian kernel: ( )
2

2, exp
2

i j
i jk

σ

⎛ ⎞−⎜ ⎟= −
⎜ ⎟
⎝ ⎠

Y Y
Y Y , and                                      (2.17) 

Sigmoid kernel: ( ) ( )( ), tanhi j i jk κ ϑ= ⋅ +Y Y Y Y ,                                         (2.18) 

where d ∈ N, 0σ > , 0κ > , and 0ϑ < . In [50], the polynomial kernels are 

extended to include fractional power polynomial (FPP) models, i.e. 0 1d< < , where 

a more reliable performance can be achieved. 
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2.1.3.5 Gabor Wavelets 

The Gabor wavelets, whose kernels are similar to the response of the two-

dimensional receptive field profiles of the mammalian simple cortical cell [53], 

exhibit the desirable characteristics of capturing salient visual properties such as 

spatial localization, orientation selectivity, and spatial frequency [44]. The Gabor 

wavelets can effectively abstract local and discriminating features, which are useful 

for texture detection [127] and face recognition [54, 128, 129].  

In the spatial domain, a Gabor wavelet is a complex exponential modulated by 

a Gaussian function, which is defined as follows [53, 54, 130]: 
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⎢ ⎥⎣ ⎦
,      (2.19) 

where u, v denote the pixel position in the spatial domain, ω is the radial center 

frequency of the complex exponential, θ is the orientation of the Gabor wavelet, and 

σ is the standard deviation of the Gaussian function. The value of σ can be derived 

as follows [130]: 

ωκσ = ,                (2.20) 

where ( ) ( )( ),12122ln2 −+= φφκ  and φ is the bandwidth in octaves. By selecting 

different center frequencies and orientations, we can obtain a family of Gabor 

kernels from (2.19), which can be used to extract features from an image. Given a 

gray-level image f(u,v), the convolution of f(u, v) and ( ), ,u vω θψ  is given as follows: 

( ) ( ) ( ), ,, , ,Y u v f u v u vω θ ω θψ= ∗ ,              (2.21) 

where * denotes the convolution operator. The convolution can be computed 

efficiently by performing the fast Fourier transform (FFT), then point-by-point 
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multiplications, and finally the inverse fast Fourier transform (IFFT). Concatenating 

the convolution outputs, we can produce a one-dimensional Gabor representation of 

the input image denoted as follows: 

( ) ( ) ( ) ( ) ( ), , , , , ,0,0 , 0,1 , , 0, , 1,0 , , ,
T

r c rY Y Y N Y Y N Nω θ ω θ ω θ ω θ ω θ ω θ⎡ ⎤= ⎣ ⎦Y L L ,   (2.22) 

where T represents the transpose operation, and Nc and Nr are the numbers of 

columns and rows in an image. In this thesis, we consider only the magnitude of the 

output of Gabor representations, which can provide a measure of the local properties 

of an image [54] and is less sensitive to the lighting conditions [131] (for 

convenience, we also denote it as ,ω θY ). ,ω θY  is normalized to have zero mean and 

unit variance; and then the Gabor representations with different ω and θ  are 

concatenated to form a high-dimensional vector for face recognition as follows:  

1 1 1 2, , ,, , ,
l n

TT T T
ω θ ω θ ω θ⎡ ⎤= ⎣ ⎦Y Y Y YL ,                 (2.23) 

where l and n are numbers of center frequencies and orientations used for the Gabor 

wavelets. Figure 2-1 shows the Gabor representations of a human face with 4 center 

frequencies and 8 orientations. It is clear that the outputs based on the Gabor 

wavelets exhibit strong characteristics of spatial locality, and scale and orientation 

selectivities. 

 
 
 
 

  
(a) 
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(b) 

Figure 2-1 Gabor wavelet representations of a human face. (a) The original face of 

size 64×64. (b) The magnitudes of the Gabor representations with 4 different center 

frequencies and 8 orientations. The frequencies are 2π , 2 4π , 4π  and 2 8π  

from the top to the bottom row, respectively. The orientations are from 0 to 7 8π  in 

steps of 8π , from the left to the right column, respectively. 

2.1.3.6 Hausdorff Distances 

Hausdorff distance is one of the shape comparison methods. This distance 

measure is more tolerant to perturbations in the location of points than the binary 

correlation techniques are. This is because the distances are measured in proximity 

rather than by exact superposition [51]. This method does not need to build a one-

to-one pairing between the two point sets or edge maps, and only considers the 

spatial information about the original images. Given two finite point sets A = 

{a1, …, am} and B = {b1, …, bn}, where m and n are the number of points in sets A 

and B. The Haudorff distance is defined as follows: 

( ) ( ) ( ){ }ABhBAhBAH ,,,max, = ,             (2.24) 
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where                   ( ), max min ,
b Ba A

h A B a b
∈∈

= −                                                    (2.25) 

and ⋅  is an underlying norm on the point sets A and B. The function h(A, B) is 

called directed Hausdorff distance from point set A to B. For each point a ∈ A, its 

distance to the nearest neighbor in point set B is measured, and the maximum 

distance among the points in A to B is h(A, B). h(B, A) is computed similarly. The 

maximum of h(A, B) and h(B, A) is the Hausdorff distance H(A, B). 

There are many different ways to define the distance measure h(A, B), so a 

number of modified Hausdorff distance measures have been proposed. Dubuisson et 

al. [52] introduced a modified Hausdorff distance (MHD), which uses the average 

distance instead of the maximum distance for the points in A when computing h(A, 

B). This can make the distance measure less sensitive to noise. The formulation of 

this h(A,B) is 

( ) ,min1, ∑
∈ ∈

−=
Aa Bba

ba
N

BAh               (2.26) 

where Na is the number of points in set A. Takács [132] has proposed the “doubly” 

modified Hausforff distance (M2HD) for human face recognition, which is defined 

as follows: 

( ) ( )∑
∈ ∈ ⎟⎟

⎠

⎞
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⎝

⎛
⋅−−⋅=

Aa Nba
PIbaI
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a
B

1,minmax1, ,            (2.27) 

where a
BN  is the neighborhood of the point a in set B, I is an indicator, where I = 1 

if there exists a point b within a
BN  and I = 0 otherwise, and P is an associated 

penalty. M2HD has been proved suitable for face recognition, where small, non-

rigid local distortions are accounted for, while overall shape similarity is maintained. 
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2.1.3.7 Elastic Graph Matching 

The dynamic link architecture (DLA) [54] is an effective face recognition 

approach that can handle slight perspective variations and non-rigid motion of 

human faces. This technique recognizes an object by using a sparse graph, where 

each of the vertices or nodes is labeled by a multi-resolution description in terms of 

a local power spectrum, and the edges of the graph are labeled by geometrical 

distance vectors. Object recognition can be formulated as an elastic graph matching, 

which is performed by minimizing a matching cost function. The local features at 

each vertice are extracted by using the Gabor wavelets to form a Gabor jet.  

For face matching, the graph of a model face with m×n vertices is placed on 

the query face, and is then allowed to deform to match the query image. Let ix , 

where i = 1, …, m×n, denote the ith vertice of a graph arranged in the order from left 

to right and top to bottom. The Gabor jet at a vertice xi is denoted as J(xi). The graph 

of the model face has its Gabor jet values equal to the Gabor wavelets 

representations of the image at the respective vertices. With an input image I, the 

model graph M is placed on it and is then allowed to deform in such a way that the 

cost function in (2.28) is a minimum. 
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where ijΔ
r

 is the Euclidean distance vector of the labeled edges between vertices xi 

and xj.  ( )M
ij

I
ijeS ΔΔ
rr

,  is a function which measures the difference between the edge 

labels of the image graph and the model graph. ( )( )M
i

I
i

I
v JxJS ,  is a function used to 

measure the similarity of the corresponding vertex labels between the image graph 
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and model graph, where ( )I
i

I xJ  and M
iJ  represent the ith jet of the image graph and 

model graph, respectively. The coefficient λ  is used to control the rigidity of the 

image graph; large value will penalize distortion of the graph I with respect to the 

graph M. Therefore, elastic graph matching of a model graph to an image graph in 

the image domain amounts to a search for a set of vertex positions, { }I
ix  where i = 1, 

…, m×n, which optimizes the matching of the vertex labels and the edge labels. 

2.2 Review of Face Recognition under Varying Illumination 

2.2.1 Problem Statement 

As we reviewed in Section 2.1, human face recognition, as one of the most 

successful applications of image analysis and understanding, has received 

significant attention in the last decade. However, due to difficulty in controlling the 

lighting conditions in practical applications, variable illumination is one of the most 

challenging problems with face recognition. As stated by Adini et al. [67], “The 

variations between the images of the same face due to illumination and viewing 

direction are almost always larger than image variations due to change in face 

identity”, most existing methods for face recognition, such as PCA, and ICA, 

encounter difficulties under varying lighting conditions. Figure 2-2 shows some 

images under varying illuminations. We can see that although these images are from 

the same person, due to the effect of uneven lighting, they look quite different. 

Therefore, when the images are under varying illumination, we should build some 

special methods to perform the face recognition.  
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Figure 2-2 Samples of cropped faces from the YaleB database [133]. The azimuth 

angles of the lighting of images from left to right column are: 0°, 0°, 20°, 35°, 70°, -

50° and -70°, respectively. The corresponding elevation angles are: 20°, 90°, -40°, 

65°, -35°, -40° and 45°, respectively.  

2.2.2 Literature Review 

Many methods have been proposed to handle the illumination problem. The 

linear subspace method [42, 134-136] considered a human face image as a 

Lambertian surface, which can use three or more images of an object under different 

lighting conditions to compute a basis for the 3D illumination subspace. Without 

ignoring the shadows, the 3D illumination subspace model was extended to a more 

elaborate one, namely the illumination convex cone [66, 137, 138]. Ishiyama et al. 

[139] proposed a geodesic illumination basis model, which calculates pose-

independent illumination bases for a 3D model. Batur et al. [140] presented a 

segmented linear subspace model by segmenting the images into regions that have 

surface normals with directions close to each other. Kouzani et al. [141] used an 

embossing technique to process a face image before presenting it to a standard face 

recognition system. Zhao and Yang [142] attempted to account for the arbitrary 

effects of illumination on PCA-based vision systems by first generating an 

analytically closed-form formula of the covariance matrix of faces under a particular 

lighting condition, and then converting it to an arbitrary illumination via an 

illumination equation. All the above-mentioned methods usually require a set of 
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known face images under different lighting conditions for training. 

Zhao and Chellappa [143] developed a shape-based face recognition system 

by means of an illumination-independent ratio image derived by applying a 

symmetric shape-from-shading technique to face images. Chen et al. [144] adopted 

a probabilistic approach in which a probability distribution for the image gradient is 

analytically determined. Shashua et al. [145, 146] used quotient images to solve the 

problem of class-based recognition and image synthesis under varying illumination. 

Zhao et al. [32] proposed illumination ratio images, which can be used to generate 

new training images for face recognition with a single frontal view image. Xie et al. 

[68] proposed a model-based illumination compensation scheme for face 

recognition, which adopts a 2D face shape model to eliminate the effect of 

difference in the face shape of different persons. Liu et al. [147] also proposed a 

method that can restore a face image captured under an arbitrary lighting condition 

to the one with frontal illumination by using a ratio image. 

2.3 Review of Facial Expression Recognition 

2.3.1 Problem Statement 

Over the last decade, the research on automatic facial expression analysis has 

become active; this has potential applications in areas such as human-computer 

interfaces, lip reading, face-image compression, synthetic face animation, video 

conferencing, human emotion analysis [20, 21], etc. Facial expressions are 

generated by the contractions of facial muscles, which result in the deformation of 

facial features such as the eyelids, eyebrows, nose and lips, and also result in 

changes to their relative positions. Similar muscle movements or facial feature 
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deformations of different identities can be arranged in a same expression model, 

and this process is called facial expression recognition. 

2.3.2 Literature Review 

The facial action coding system (FACS) [25] provides the most widely used 

method to measure facial movement. In the FACS, a face is divided into 44 action 

units (AUs) according to their locations as well as their intensities. A combination of 

the AUs is used to model the respective expressions. Similar coding schemes [148, 

149] have also been proposed. The MPEG-4-SNHC [150] is a standard that consists 

of analysis, coding [151] and animation of faces (talking heads) [152]. Donato et al. 

[23] compared different techniques for the automatic recognition of facial actions, 

and the best performance was achieved using the Gabor wavelet representation and 

the independent component representation, both of which can achieve an accuracy 

of 96% for classifying 12 facial actions of the upper and lower face. Tian et al. [24] 

developed an automatic face analysis (AFA) system to analyze facial expressions 

based on both permanent facial features (brows, eyes, mouth) and transient facial 

features (deepening of facial furrows) in a nearly frontal-view face image sequence. 

This system can achieve average recognition rates of 96.4% for the upper face AUs 

and 96.7% for the lower face AUs. Pantic et al. [153] presented an automatic facial 

gesture recognition system based on static, frontal- and/or profile-view color face 

images, and a recognition rate of 86% was achieved. 

Similar to FACS, a facial expression also represents the shape or position 

variations of the facial features between a query image and its corresponding image 

under normal expression. Therefore, most methods of facial expression recognition 
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are based on a sequence of images or a video shot, which includes face images with 

various expressions and images under normal expression as a reference. Donohue et 

al. [154] used the back-propagation algorithm to train a neural network, and a 

recognition rate of 85% based on 20 test cases was reported. Choi et al. [155] 

analyzed an input image sequence and estimated a 3D facial model, which was then 

used for synthesizing various facial expressions. Yacoob et al. [156] utilized the 

optical flow computation to identify the direction of rigid and nonrigid motions 

caused by human facial expressions, and also developed a mid-level symbolic 

representation motivated by psychological considerations. Huang et al. [157] 

applied a point distribution model and a gray-level model to locate the facial 

features, which are described by 10 action parameters (APs). For facial expression 

recognition, the 10 APs of a query image sequence are extracted and analyzed using 

PCA. Essa et al. [22] described a computer vision system for observing facial 

motion by using an optimal estimation method for optical flow, coupled with 

geometric, physical and motion-based dynamic models to describe a facial structure. 

The expression recognition accuracy was reported as 98% on a database of 52 

sequences, using either the proposed muscle models or 2D motion energy models 

for classification. Oliver et al. [158] proposed a method based on 2D blob features, 

which are spatially compact clusters of pixels similar in terms of low-level image 

properties, and the HMM was adopted for facial expression and head movement 

classification. In [159], the HMM method was also used for recognition, while the 

moment invariants were used as features; the recognition rate was reported as 

96.77%.  
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Due to the absence of reference images with a normal expression, it is more 

difficult to analyze facial feature actions based on a single still image, as well as to 

recognize the corresponding facial expression. A psychological study [160] shows 

that a moving display of expressions can be recognized more accurately than static 

images. However, for many multimedia and man-machine interface applications, 

such as multimedia data retrieval over the Internet, expression-based face 

recognition and interactive Internet games, only static images are available [161]. 

Therefore, in recent years, more and more attention has been focused on this field. 

Cottrell et al. [162] and Padgett et al. [163] used PCA to recognize facial 

expressions. Lyons et al. [164] proposed a method for classifying facial images 

automatically based on the labeled elastic graph matching, 2D Gabor wavelet 

representation, and LDA. For recognizing facial expressions, the recognition rate is 

92%. Gao et al. [161] used structural and geometrical features of a user-sketched 

expression model to match the line edge map (LEM) descriptor of an input face 

image. Chen et al. [165] described a new feature extraction method, called 

clustering-based discriminant analysis (CDA), for facial expression recognition, 

which outperforms the traditional PCA and LDA methods. Matsugu et al. [166] 

described a rule-based algorithm combined with robust face detection using a 

convolutional neural network. The result shows the reliable detection of smiles, with 

a recognition rate of 97.6% for 5600 still images of more than 10 subjects. Abboud 

et al. [167] used an active appearance model for facial expression recognition and 

synthesis, which can normalize the facial expression on a given face and artificially 

synthesize novel expressions on the same face. Ma et al. [168] employed the 2D 
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discrete cosine transform on face images as a feature detector, and a constructive 

one-hidden-layer feed-forward neural network as a facial expression classifier. The 

best recognition rates are 100% and 93.75% (without rejection) for the training and 

testing images, respectively. 

2.4 Conclusions 

This chapter has described the principles of face recognition and facial 

expression recognition. We have reviewed some well-known face recognition 

techniques, such as PCA, LDA, ICA, Kernel PCA, Hausdorff distance, Gabor 

wavelets and elastic graph matching (EGM). We have also reviewed the recent 

development of the methods for face recognition under varying illuminations and 

the methods for facial expression recognition. In the chapters that follow, we will 

present our proposed algorithms, and compare them to those existing methods 

described in this chapter. 
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Chapter 3.       Elastic Shape-Texture Matching 
for Human Face Recognition 

 

In this chapter, we will present a novel elastic shape-texture matching method, 

namely ESTM, for human face recognition under various conditions. This method 

considers not only the shape information of an input image, but also adopts the 

corresponding texture features. 

3.1 Introduction 

The morphable face model [169-172] has achieved great success in encoding 

and representing human face images. This approach separates a given image into its 

shape and texture information. The shape encodes the feature geometry of the face, 

which is represented by a set of facial feature points and can be used to construct a 

pixel-wise correspondence on a reference image. The texture, which is shape-free, 

can be obtained after mapping the original image onto the reference image. 

Therefore, the shape-free texture information can be constructed only after the shape 

information about a face has been obtained. In other words, the first step of this 

approach is to detect and locate the important facial feature points. Then these 

points are used as control points to build a correspondence to the reference model in 

order to construct the shape-free texture information about the face image. Many 

different methods have been proposed to locate facial features [173, 104] and detect 

face contours [59, 174]. Although the morphable face approach has been reported 
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for some special applications, it is still difficult to accomplish this automatically and 

to achieve robust performance for images under various conditions [171]. 

Psychological studies have indicated that line drawings of objects can be 

recognized as quickly and almost as accurately as photographs [175, 176], which 

means that the edge-like retinal images of faces can be used for face recognition at 

the level of early vision. Therefore, the edges of a face image can be considered the 

aggregate of important feature points that are useful for face recognition. Hausdorff 

distance [51, 52] is such an approach, whereby the distance between two edge maps 

or point sets can be calculated without the explicit pairing of the points. This means 

that we can use Hausdorff distance to compute the similarity and perform face 

recognition between two edge maps. The smaller the Hausdorff distance, the smaller 

the difference or deformation between the two corresponding edge maps is, and the 

more similar the two corresponding face images are. Takács [132] has introduced a 

modified Hausdorff distance, which provides a more reliable and robust distance 

measure between two point sets than the original one. A spatially weighted modified 

Hausdorff distance [177] has also been proposed, which considers the importance of 

facial features and allocates different weights to the points according to the 

importance of the facial regions. Lin et al. [56] incorporates the a priori structure of 

a human face, namely eigen-mask, to emphasize the importance of facial regions 

and achieves a better performance level. All these methods are based on edge maps 

without considering any texture information about the input images. 

The Gabor wavelets, whose kernels are similar to the response of the two-

dimensional receptive field profiles of the mammalian simple cortical cell [53], 
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exhibit the desirable characteristics of capturing salient visual properties such as 

spatial localization, orientation selectivity, and spatial frequency [44]. The Gabor 

wavelets can effectively abstract local and discriminating features, which are useful 

for texture detection [127] and face recognition [54, 128, 129]. In [54], the Gabor 

wavelets have been applied for face recognition via the dynamic link architecture 

(DLA) framework. The DLA first computes the Gabor jets of the face images, then 

elastic graph matching (EGM) is used to compare their resulting image 

decompositions. Duc et al. [94] has introduced an automatic weighting for the nodes 

of the elastic graph according to their significance, and also explored the 

significance of the elastic deformation for an application of face-based person 

authentication. Kotropoulos et al. [95] has proposed a morphological dynamic link 

architecture which adopts discriminatory power coefficients to weigh the matching 

error at each grid node. Although these methods can preserve some texture features 

and local geometry information [96], the graph structure cannot sufficiently and 

effectively represent the distribution of all the feature points of human faces. 

The shape and texture of a face image are complementary and supplementary 

to each other. Therefore, in this chapter, we propose a novel elastic shape-texture 

matching (ESTM) method for face recognition. Our method considers the edge map, 

which represents the shape information about a face image, and the Gabor wavelets, 

which characterize the corresponding texture information. The angles (gradient 

direction) of the edge points [178], which provide additional information about the 

shape, are also incorporated in our algorithm. Based on the shape and texture 

information, an elastic matching is proposed for face recognition. Unlike the 
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morphable face model, our method does not need to find the pixel-wise 

correspondence between images, which is a very difficult task in practical 

applications. Our algorithm, ESTM, can combine the shape, texture and angle 

information effectively for face recognition. Experimental results based on different 

databases show that ESTM outperforms other methods that employ either the shape 

(edge map) or the texture (Gabor wavelets) information only under various image 

conditions. 

This chapter is organized as follows. Section 3.2 describes our proposed 

ESTM method. Experimental results are given in Section 3.3, which compare the 

performances of our proposed algorithm to other face recognition algorithms based 

on the Yale database, the AR database, the ORL database [179] and the YaleB 

database. Finally, conclusions are drawn in Section 3.4. 

3.2 Elastic Shape-Texture Matching 

It has been shown that the combined shape and texture feature carries the most 

discriminating information for human face recognition [169]. In fact, these two 

features are complementary to each other, and they contain the complete 

information about face images. We therefore propose an efficient algorithm, which 

combines these two types of information for face recognition. This algorithm is 

called Elastic Shape-Texture Matching (ESTM). In our approach, the edge map is 

used to represent the shape information about a face image, instead of using some 

specific feature points that are very difficult to locate accurately in practice. The 

Gabor wavelets, which exhibit strong characteristics of spatial locality and 

orientation selectivity, are used to extract the texture information. As only the 
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magnitudes of the Gabor representations are employed, we also consider the 

gradient direction [178] of each edge point in representing a shape. The gradient 

direction in this chapter is called the angle information, which is defined as follows: 
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where fx(x, y) = f(x, y)*Kx(x, y), fy(x, y) = f(x, y)*Ky(x, y), f(x, y) represents the gray-

level intensity of an image at the coordinates (x, y), * denotes a 2D convolution 

operation, and Kx(x, y) and Ky(x, y) are the Sobel horizontal and vertical gradient 

kernels, respectively. 

3.2.1 The Edge Maps, Gabor Maps and Angle Maps 

In order to obtain the edge map of a face image, morphological operations 

[178] are first applied. In this thesis, the output of an image after edge detection is 

called an edge image, while after a thresholding procedure, the binary image 

produced is called an edge map of the image. The optimal parameters for an edge 

detector are strongly dependent on the image itself [180]; this means that a fixed 

threshold cannot achieve an optimal performance of converting different edge 

images to their corresponding binary images. In our approach, when determining the 

threshold to be used, we consider not only the edge image EG(x, y), but also the 

intensity values of the original image f(x, y). This is because the important facial 

features, such as the eyes, mouth, etc., usually have lower gray-level intensities than 

other parts of a face. We define 
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Therefore, a pixel which has a larger value of n(x, y) can be considered more likely 

to be an edge point of the facial features. The values of n(x, y) are sorted in 

descending order, and the threshold is set so that 12% of the points with the largest 

magnitudes of n(x, y) are selected. This threshold is obtained based on the Yale 

database; therefore it can be considered a trade-off of different image variations. If a 

query image is under normal conditions, fewer edge points are enough, while in 

cases of large variations, i.e. uneven lighting, more edge points are required to 

provide a reliable edge map. The binary edge map obtained is denoted as E(x,y). 

Figure 3-1(b) shows the edge images obtained by the morphological edge detection, 

and Figure 3-1(c) displays the corresponding edge maps by using this adaptive 

thresholding scheme.  

 
(a)                           (b)                          (c) 

Figure 3-1 (a) The original facial images. (b) The edge images obtained by 

morphological operations. (c) The edge maps obtained by the adaptive thresholding 

method. 

The Gabor map of an image is denoted as ( )yxG ,~ , which is obtained by 

concatenating the Gabor wavelet representations, as shown in Figure 2-1(b), at 

different center frequencies and orientations. The dimension of ( )yxG ,~  is therefore 
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determined by the numbers of center frequencies and orientations used. To reduce 

the dimension of this representation, only one center frequency and eight 

orientations are considered in our algorithm. The center frequency is chosen to be 

π/2, and the orientation varies from 0 to 7π/8 in steps of π/8. 

Using (3.1), the gradient direction or angle of each point of an image can be 

computed. The gradient direction of a pixel varies from -π/2 to π/2. This angle 

information is also useful for describing the shape, and the angle map of an image is 

denoted as A(x, y).  

3.2.2 Shape-Texture Hausdorff Distance 

For the edge map E(x, y), Gabor map ( )yxG ,~ , and angle map A(x, y), our 

shape-texture Hausdorff distance is defined as follows: 

Given two human face images A and B, two finite point sets AP = {a1, …, aNA} and 

BP = {b1, …, bNB} can be obtained, where the elements in AP and BP correspond to 

the points in the edge maps EA and EB of the original images, and NA and NB are the 

corresponding numbers of points in sets AP and BP, respectively. Then, the shape-

texture Hausdorff distance is 

H(A,B) = max(hst(A,B), hst(B,A)).    (3.3) 

hst(A,B) is called the directed shape-texture Hausdorff distance, and is defined as 

follows: 

( ) ( ) ( ) ,1,,minmax1, ∑
∈ ∈

⎟
⎠
⎞

⎜
⎝
⎛ ⋅−⋅=

P

a
PBAa Nb

A
st PIbadI

N
BAh   (3.4) 

where a
BP

N  is the neighborhood of the point a in the set BP, P is an associated 

penalty, and I is an indicator, which is equal to 1 if there exists a point b ∈ a
BP

N , and 
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equal to 0 otherwise. d(a, b) is a distance measure between the point pair (a, b), 

which consists of three different terms as follows: 

d(a, b)= α·de(a, b)+ β·dg(a, b)+ γ·da(a, b),   (3.5) 

where de(a, b), dg(a, b) and da(a, b) are the edge distance, Gabor distance and angle 

distance, respectively, for the pixel a ∈ AP to a pixel b within the neighborhood of a 

in BP, and α, β, and γ are the coefficients used to adjust the weights of these three 

distance measures. All these three measures are independent of each other and are 

defined as follows: 

( ) babade −=, ,      (3.6) 

( ) ( ) ( )bGaGbad BAg
~~, −= , and     (3.7) 

( ) ( ) ( )bAaAbad BAa −=, ,     (3.8) 

where .  is an underlying norm, AG~ , BG~ , AA, and AB are the Gabor maps and angle 

maps of the two images, respectively.  

In fact, the penalty P in (3.4) can also be considered as a combination of three 

parts, similar to (3.5), i.e. 

P= α·Pe+ β·Pg+ γ·Pa,      (3.9) 

where Pe, Pg, and Pa are the corresponding penalties for these three distance 

measures, respectively, and α, β, and γ have the same values as in (3.5). An 

advantage of using (3.9) instead of a fixed P is that this allows us to adopt different 

penalties for different distance measures. For example, when the lighting conditions 

vary significantly, some edges cannot be detected in the edge map. Due to the fact 

that the representations by Gabor wavelets magnitudes are less sensitive to the 

lighting conditions [131], we define 
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( ) ( ) ( )aGaGaP BAg
~~

−= .              (3.10) 

Therefore, if a point of BP cannot be found in a
BP

N  for the point a ∈ AP, the 

corresponding Gabor representations for image B at position a will be considered 

when computing the penalty for Gabor distance. In other words, the value of the 

penalty Pg(a) is adaptive to the point under consideration. This is useful to alleviate 

the effect of being unable to detect the edges under poor lighting. A similar 

mechanism can also be considered for computing Pa in some cases. As described in 

[144], the probability of the angles between two image gradients can serve as a 

measure for face recognition under varying illumination, where an empirically 

collected database is used to obtain the probability function. However, for a 

practical face recognition approach, we should consider images not only under 

varying illumination, but also under other conditions, such as facial expression 

variation and perspective variation. It is therefore difficult to obtain a proper 

probability function for all these cases; so we simply use a fixed value for Pa(a) to 

compute the penalty P in our algorithm. As the penalty P is dependent on the pixel 

location a concerned, we use P(a) instead of a fixed value P in (3.4), i.e. 

( ) ( ) ( ) ( ) .1,,minmax1, ∑
∈ ∈

⎟
⎠
⎞

⎜
⎝
⎛ ⋅−⋅=

P

a
PBAa Nb

A
st aPIbadI

N
BAh          (3.11) 

3.2.3 ESTM for Face Recognition 

Using the shape-texture Hausdorff distance, an elastic shape-texture matching 

for face recognition is proposed. For two similar face images A and B, each point in 

the edge point set AP should have a corresponding near point from the edge point set 

BP, with a similar texture, and vice versa. All matching pairs should fall within a 
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given neighborhood. In other words, this matching is non-rigid, i.e. elastic, which 

can tolerate small local distortions of a human face. Only edge points are considered 

when computing the distance, which can greatly reduce the computational 

complexity and memory requirement. Furthermore, the Gabor map and angle map 

can provide complementary discriminating information for face recognition. 

Therefore, this ESTM approach can be considered as a combination of template 

matching and geometrical feature matching [104].  

As shown in (3.5), the values of {α, β, γ} are the weights of the three distance 

measures, which affect the recognition results. If α ≠ 0, β = 0 and γ = 0, ESTM is 

equivalent to M2HD. Table 3-1 shows some combinations of {α, β, γ}, which will 

be tested in Section 3.3. For each of the combinations, the corresponding optimal set 

of parameters is also tabulated, where the Yale database is used as the training data. 

Table 3-1 The optimal sets of parameter for different conditions of {α, β, γ}. 

Abbreviation Conditions Parameter Set 

M2HD α ≠ 0, β = 0, γ = 0 α = 1, Pe = 4.8 

ESTMa α = 0, β = 0, γ ≠ 0 γ  = 1, Pa = π /20 

ESTMg α = 0, β ≠ 0, γ = 0 β = 1 

ESTMea α ≠ 0, β = 0, γ ≠ 0 α = 0.04, γ = 0.96, Pe = 4.8, Pa = π /20 

ESTMeg α ≠ 0, β ≠ 0, γ = 0 α = 0.32, β = 0.68, Pe = 4.8 

ESTM α ≠ 0, β ≠ 0, γ ≠ 0 α = 0.02, β = 0.05, γ = 0.93, Pe = 4.8, Pa = π /30 

3.3 Experimental Results 

In this section, we will evaluate the performances of the ESTM algorithm with 

different conditions of the parameter set {α, β, γ} for face recognition based on 

different face databases. The databases used include the Yale database [193], the 
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AR database [194], the ORL database [179] and the YaleB database [133]. The 

number of distinct subjects and the number of testing images in the respective 

databases are tabulated in Table 3-2.  

Table 3-2 The test databases used in the experiments. 

 Yale AR ORL YaleB 

Number of subjects 15 121 40 10 

Number of test images 150 605 360 640 

The face images in different databases are captured under different conditions, 

such as varied lighting conditions, facial expressions, etc. Figure 3-2 shows some 

examples of the images. In order to investigate the effect of the different conditions 

on the face recognition algorithms, the face images in the databases are divided 

manually into several sub-classes according to their different conditions, and the 

corresponding numbers are tabulated in Table 3-3. A normal image means that the 

face image is of frontal view, and under even illumination and neutral expression. In 

our experiments, a face is under even illumination if the azimuth angle and the 

elevation angle of the lighting are both less than 20°. In Table 3-3, we have also 

combined the respective sub-classes of the same conditions to form the combined 

databases. For each of the combined databases, the training set consists of images 

from the corresponding sub-classes, e.g. the training and testing images of the 

combined database under normal conditions come from the Yale database, ORL 

database and YaleB database only. 

 (a) 
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 (b) 

 (c) 

 (d) 
Figure 3-2 Some cropped faces used in our experiments. (a) Images from the Yale 

database. (b) Images from the AR database. (c) Images from the ORL database. (4) 

Images from the YaleB database. 

Table 3-3 The sub-classes of the test databases used in the experiments. 

 Normal Facial Expression 
Variation 

Lighting 
Variation 

Perspective 
Variation 

Yale 45 75 30 - 

AR - 242 363 - 

ORL 189 63 - 108 

YaleB 160 - 480 - 

Combined 394 380 873 108 

In each database, one frontal image for each subject with normal illumination 

and neutral expression was selected as a training sample, and others form the testing 

set. The respective eye locations of each image are detected and used for 

normalization and alignment. All images are cropped to a size of 64×64 based on 

the eye locations. In our system, the position of the two eyes can be located either 

manually or automatically [173, 181], and the input color images are converted to 

gray-scale ones. In order to enhance the global contrast of the images, and reduce 
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the effect of uneven illuminations, histogram equalization is applied to all the 

images. In all our experiments, we set the neighborhood size at 9×9, which is 

suitable for small, non-rigid local distortions in human face recognition. 

The performances of our proposed ESTM and its several simplified versions, 

as listed in Table 3-1, are evaluated and compared with the PCA, M2HD [132], 

Gabor wavelets (GW), and EGM [54]. For PCA, all the eigenfaces available for 

each database are used, i.e. at most M−1, where M is the total number of training 

samples. In other words, 100% of the variance is kept. For example, for the Yale 

database, AR database, ORL database and YaleB database, 14, 120, 39 and 9 

eigenfaces, respectively, are employed, respectively. For the combined databases 

under normal conditions, facial expression variation, lighting variation and 

perspective variation, the corresponding numbers of Eigenfaces used are 64, 175, 

145 and 39, respectively. The GW adopts one center frequency and eight 

orientations, which are the same as the ESTM. For GW, the Gabor wavelets 

representations are concatenated to form a high-dimensional vector, which is used 

directly to compute the distance between two images pixel by pixel. The number of 

center frequencies and orientations used in EGM are five and eight, respectively, 

and the dimension of the elastic graph is 6×8.  

3.3.1 Face Recognition Under Normal Conditions 

The respective recognition rates based on the different sub-databases with 

normal faces are shown in Table 3-4. From the result, we can observe that:  

1. Under normal conditions, most of the algorithms can also achieve a high 

recognition rate. In particular, PCA, GW, and ESTM can achieve a 
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recognition rate of 100% for the YaleB database, which contains 10 distinct 

subjects only. The performances of the algorithms are the worst with the ORL 

database, because the faces in the ORL database have some small facial 

expression and perspective variations.  

2. The GW always outperforms the PCA, EGM and M2HD. This is consistent 

with the results in [169], i.e. the texture carries more discriminating 

information than the shape. The M2HD considers only the shape information, 

while the GW uses the texture information only in the matching. Although the 

ESTMg uses only 12% of the pixels in an image as edge points, this method 

can still achieve similar recognition rates to the GW with the same numbers of 

center frequencies and orientations for the Gabor filters. This observation 

shows that the edge points can be considered as the aggregate of important 

feature points that carry the most discriminating information for face 

recognition. 

3. The recognition rates using ESTMa are similar to the results using M2HD. 

Furthermore, ESTMea, which adopts not only the edge information, but also 

the angle information, can achieve a better performance than both ESTMa and 

M2HD in most cases. Therefore, the angle information can be considered a 

complementary feature to the edge map. 

4. Our proposed ESTM method, which combines the edge information, texture 

information and angle information, always outperforms other methods. This 

shows that the combined features carry the most discriminating information, 

rather than using only one or two of them. 
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Table 3-4 Face recognition results under normal conditions. 

Recognition 
Rate (%) PCA GW EGM M2HD ESTMa ESTMg ESTMea ESTMeg ESTM

Yale 82.2 88.9 73.3 80.0 91.1 86.7 93.3 88.9 93.3 

ORL 64.0 82.0 72.5 79.4 77.8 84.1 79.9 84.7 84.7 

YaleB 100.0 100.0 98.1 99.4 98.1 99.4 99.4 99.4 100.0 

Combined 80.2 89.8 81.0 86.8 87.3 90.6 88.8 91.1 91.4 

3.3.2 Face Recognition Under Varying Lighting Conditions 

The experimental results based on the images under varying lighting are 

shown in Table 3-5. In the Yale database, the lighting is either from the left or the 

right of the face images. In the AR database, besides the lighting from the left and 

the right, lighting from both sides of a face is also adopted. The YaleB database, 

which consists of 10 people and each person has 65 images with different lighting 

conditions, is often used to investigate the effect of lighting on face recognition. In 

this part of the experiments, we select only those images with obviously uneven 

illuminations as the testing images. In other words, only those images with azimuth 

angles or elevation angles of lighting larger than 20° are considered. Consequently, 

for each subject in the YaleB database, only 48 different illumination models are 

chosen for testing. 

The performance of PCA degrades significantly compared to the results based 

on normal faces. The recognition rate based on the combined database falls from 

80.2% to 45.1%. The major idea of PCA is to represent faces with their principal 

components. However, the variations between the images of the same face due to 

illumination and viewing direction are almost always larger than image variations 
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due to change in face identity [67]. Hence, PCA cannot represent a face under 

severe lighting variations or perspective variations.  

The edge map can serve as a robust representation to illumination changes if 

the objects concerned have sharp edges only. However, for objects with smooth 

surfaces, such as human faces, some of the edges may not be detected in a 

consistent manner [182]. Moreover, when the lighting is not from the front of a face, 

the shadows produced will also affect the edge map generated. Therefore, in the 

case of large illumination variation, such as the YaleB database, the performances of 

those algorithms that rely on the edge information for recognition, such as the 

M2HD, will be greatly affected. When the lighting conditions are not so poor, e.g. 

in the Yale database or the AR database, ESTMa always outperforms M2HD. This 

result is consistent with the conclusion in [144] that the direction of the image 

gradient is insensitive to changes in illumination direction.  

It is interesting to note that the GW can still obtain a very high recognition 

rate, which is 97.9%, based on the YaleB database. This shows that the Gabor 

wavelets representations can effectively reduce the effect of varying illuminations. 

The EGM also adopts the Gabor representations. However, this approach uses a 

limited number of Gabor jets and a deformed graph in its representation. When the 

lighting is under very poor conditions, its recognition performance becomes poor, 

even poorer than that of the PCA and M2HD. 

ESTM outperforms other algorithms in most cases, except when the YaleB 

database is used. In this case, the GW performs the best. This is due to the fact that 

ESTM also employs the edge map; this representation becomes inaccurate under 
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poor lighting. However, for the Yale database and the AR database, where the 

illumination variations are not large, the ESTM outperforms the GW. Furthermore, 

compared to the results of the M2HD which is also based on edge maps, the ESTM 

can achieve higher recognition rates of 13.2% to 26.8%.  

Table 3-5 Face recognition results under varying lighting conditions. 

Recognition 
Rate (%) PCA GW EGM M2HD ESTMa ESTMg ESTMea ESTMeg ESTM 

Yale 46.7 73.3 83.3 76.7 90.0 76.7 90.0 83.3 90.0 

AR 80.4 94.5 71.3 84.0 94.2 93.7 96.4 94.8 97.2 

YaleB 60.8 97.9 50.0 59.2 57.1 77.7 68.0 81.5 86.0 

Combined 45.1 74.7 42.3 49.8 55.6 59.7 62.1 63.0 65.5 

3.3.3 Face Recognition Under Different Facial Expressions and 

Perspective Variations 

Experiments based on the face images under different facial expressions are 

performed and the recognition results are summarized in Table 3-6. The 

performance of the GW degrades as compared to the results in Section 3.3.1. 

Furthermore, its recognition rate is lower than others in some cases. This is because 

facial expressions often cause some local distortions of the feature points, which 

will then affect the corresponding local texture and shape properties. The GW 

considers the texture information about the neighborhood of each pixel, which is 

disturbed by local distortions caused by changes in facial expression.  

The PCA uses the principal components to represent the face images, which 

are less sensitive to small local distortions. Therefore, the performance of PCA also 

degrades in this case, but to a less extent when compared to the GW. Both the EGM 

and M2HD adopt elastic matching techniques, which search for matching pairs 
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within a neighborhood, and can therefore partially alleviate the effect of local 

distortions caused by facial expressions. 

As compared to other methods, our proposed ESTM can achieve the best 

performance. The elastic matching adopted in ESTM can effectively reduce the 

effect of small and non-rigid local distortions caused by changes in facial 

expression. Moreover, the Gabor features and angle information can provide 

complementary information for face recognition. The recognition rate of ESTMg is 

slightly higher than that of the ESTM when using the AR database, and both 

methods have a recognition rate higher than 98%. 

Table 3-6 Face recognition results under different facial expressions. 

Recognition 
Rate (%) PCA GW EGM M2HD ESTMa ESTMg ESTMea ESTMeg ESTM

Yale 66.7 73.3 57.3 66.7 77.3 78.7 78.7 84.0 85.3 

AR 84.3 92.1 92.1 89.7 97.5 98.8 97.1 97.5 98.3 

ORL 71.4 66.7 69.8 84.1 77.8 76.2 79.4 88.9 90.5 

Combined 76.3 79.7 74.2 78.2 86.6 86.8 86.8 89.2 90.0 

The relative performances of the different algorithms were also evaluated for 

faces under perspective variations. All the testing images are selected from the ORL 

database with the faces either rotated out of the image plane, e.g. looking to the 

right, left, up and down, or rotated in the image plane, clockwise or anti-clockwise. 

The experimental results are tabulated in Table 3-7, and show that none of these 

face recognition methods can achieve a satisfactory performance under perspective 

variations. Nevertheless, the ESTM still outperforms the other methods. 
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Table 3-7 Face recognition results under various perspectives. 

Recognition 
Rate (%) PCA GW EGM M2HD ESTMa ESTMg ESTMea ESTMeg ESTM

ORL 39.8 56.5 42.6 43.5 50.9 56.5 48.1 57.4 60.0 

3.3.4 Face Recognition with Different Databases 

We have evaluated and discussed the effect of different conditions on 

different face recognition methods. In this section, we also show the performances 

of the respective face recognition methods based on the different databases without 

dividing them into sub-databases. The recognition results are tabulated in Table 3-8, 

and also show that the ESTM outperforms all the other methods based on the 

different databases, except for the YaleB database. In this case, the GW achieves the 

best performance. In addition, the simplified versions of ESTM, i.e. ESTMa, 

ESTMg, ESTMea and ESTMeg, also outperform the traditional methods, such as 

PCA, GW, EGM and M2HD, in most of the cases. With these four databases, the 

recognition rate for the ORL database is always lower than the others, no matter 

which method is adopted. This is due to the effect of perspective variations, which 

has been discussed in Section 3.3.3. 

Table 3-8 Face recognition results based on different databases. 

Recognition 
Rate (%) PCA GW EGM M2HD ESTMa ESTMg ESTMea ESTMeg ESTM

Yale 67.3 78.0 67.3 72.7 84.0 80.7 85.3 85.3 88.7 

AR 82.0 93.6 79.7 86.3 95.5 95.7 96.7 95.9 97.7 

ORL 58.1 71.7 63.1 69.4 69.7 74.4 70.3 77.2 78.3 

YaleB 70.6 98.4 62.0 69.2 67.3 83.1 75.9 85.9 89.5 
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3.3.5 Storage Requirements and Computational Complexity 

For our approach, the data stored in a database for a face image include its 

edge map, Gabor map, and angle map. Suppose that the size of the normalized face 

is N×N, and η  percent of the points are selected as edge points in the edge map. The 

average number of feature points for an edge map is 2N⋅η , where a feature point is 

the x- and y-coordinates, and can be represented by two bytes. The dimensions of 

the Gabor map and angle map are 2Nnn af  and 2N , respectively, where nf and na 

are the numbers of center frequencies and orientations used for the Gabor filters. 

Each element in the Gabor map and the angle map is represented by a 16-bit 

floating-point number. Therefore, the total number of bits used to represent a face 

image in the database is ( ) 2116 Nnn af ++η . 

For a query image, the computational time for face recognition includes two 

parts: feature extraction and matching. The runtime required for feature extraction is 

the time spent computing the corresponding edge map, Gabor map, and angle map. 

As all these maps of the training images have been computed and stored in the face 

database, we only need to consider the time required to compute these maps of the 

query image. The computational complexities for computing an edge map, Gabor 

map and angle map are in the order of ( )2NO , ( )( )2
2

2 log NNO  and ( )2NO , 

respectively. For searching in a large database, the runtime for matching is the most 

significant part for the whole process. Suppose that the size of the neighborhood 

considered when searching for a matching pair is D×D. This means that the possible 

number of pixels to be compared when matching each point pair is D2. In this 
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matching, the edge distance de(a, b), Gabor distance dg(a, b) and angle distance da(a, 

b) between pixel a ∈ A and pixel b ∈ B are to be computed. Suppose that the 

average runtimes required to compute these three distances for one point pair (a, b) 

are te, tg and ta, respectively, and that the total runtime tall = te + tg + ta, then the 

computational complexity of ESTM is in the order of ( )allMtDNO 222η , where a 

factor of 2 is multiplied, since both hst(A, B) and hst(B, A) in (3.3) are to be 

computed, and M is the number of images stored in the database. Experiments were 

conducted on a computer system with Pentium IV 2.4GHz CPU and 512MB RAM. 

The average runtime using ESTM for face recognition based on the ORL database 

(40 face subjects) is 0.6s. 

3.4 Conclusions 

In this chapter, we have proposed a novel elastic shape-texture matching 

algorithm, namely ESTM, for human face recognition. In our approach, the edge 

map is used to represent the shape information about an input image, and the Gabor 

wavelets are employed to characterize the corresponding texture information. The 

gradient direction can also provide additional discriminating information, which is 

called angle information. For a query image, its edge map, Gabor map and angle 

map are first computed, and then a shape-texture Hausdorff distance is proposed to 

compute the difference between a query input and the faces in a database. This 

method does not need to construct a precise pixel-wise correspondence between the 

two images to be compared, and the matching is performed within a neighborhood. 

This makes this approach robust to small and local distortions of the facial feature 

points, and suitable for face recognition. 
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This chapter also addresses the performances of different face recognition 

algorithms in terms of changes in facial expressions, uneven illuminations, and 

perspective variations. Experiments were conducted based on different databases, 

which show that our algorithm can always achieve the best performance as 

compared to other algorithms, such as PCA, GW, EGM and M2HD, under different 

conditions. The only exception is when the face images are under very poor lighting 

conditions, in which case the GW performs the best while the ESTM achieves the 

second highest recognition rate. With our approach, the recognition rates based on 

the Yale database, AR database, ORL database and YaleB database are 88.7%, 

97.7%, 78.3% and 89.5%, respectively. 

The ESTM method proposed in this chapter can achieve a high performance 

level under different conditions. However, the method requires the use of an edge 

map. Under severe lighting conditions, it is difficult to obtain a faithful edge map, 

and so the performance will degrade. In the next chapter, we will present another of 

our proposed face recognition algorithms, which is based on a Doubly nonlinear 

mapping Kernel PCA (DKPCA). DKPCA, which employs Gabor features and does 

not need an edge map, is more robust for lighting variations.  
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Chapter 4.       Gabor-Based Kernel PCA with 
Doubly Nonlinear Mapping for Face 
Recognition 

 

In Chapter 3, the method for recognizing human face images is based on the shape 

and texture information. This is mainly an edge-based method. When the input 

image is under varying illumination, an accurate edge map cannot be obtained and 

its performance will degrade. In this chapter, we will propose a novel Gabor-based 

kernel PCA with doubly nonlinear mapping method, which is robust to the image 

variations caused by the illumination conditions, facial expressions and 

perspectives.  

4.1 Introduction 

Although kernel-based methods [48-50, 80-84] can overcome many 

limitations of linear transformation, He et al. [79] pointed out that none of these 

methods explicitly considers the structure of the manifold on which the face images 

possibly reside. In this chapter, we propose a novel method for face recognition, 

which uses a single image per person for training, and is robust to lighting, 

expression and perspective variations. In our method, the Gabor wavelets are used 

to extract facial features, then a Doubly nonlinear mapping Kernel PCA (DKPCA) 

is proposed to perform the feature transformation and face recognition. Doubly 

nonlinear mapping means that, besides the conventional kernel function, a new 

mapping function is also defined and used to emphasize those features, which have 
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higher statistical probabilities and spatial importance for face images. More 

specifically, this new mapping function considers not only the statistical distribution 

of the Gabor features, but also the spatial information about human faces. After this 

nonlinear mapping, the transformed features have a higher discriminating power, 

and the importance of the features adapts to the spatial importance of the face 

images. Therefore, it has the ability to reduce the effect of feature variations due to 

illumination, expression and perspective disturbance. We evaluate the performance 

of the proposed algorithm for face recognition with the use of different databases, 

which in total involve 186 identities and 1755 testing images produced under 

various conditions. Consistent and promising results were obtained, which show that 

our method can greatly improve recognition performances in all conditions. 

This chapter is organized as follows. Section 4.2 describes our new doubly 

nonlinear mapping kernel PCA. Experimental results are given in Section 4.3, which 

compare the performances of our proposed algorithm to other face recognition 

algorithms based on the Yale database, the AR database, the ORL database and the 

YaleB database. Finally, conclusions are drawn in Section 4.4. 

4.2 Doubly Nonlinear Mapping Kernel PCA  

As described in Section 2.1.3.4, although we do not need to perform the 

nonlinear mapping explicitly in KPCA, and all the computations are implemented in 

the input space instead of the high-dimensional feature space, it is still meaningful 

to investigate how to design a “good” mapping that has an explicit physical meaning 

and is suitable for pattern recognition applications, such as face recognition. In fact, 

as mentioned in [79], none of the kernel-based methods explicitly considers the 
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structure of the manifold on which the face images possibly reside. In this section, 

we will propose a novel KPCA with doubly nonlinear mapping, which considers not 

only the statistical property of the input Gabor features, but also the spatial 

information about human faces.  

In traditional KPCA, kernel tricks are employed to compute the dot products 

in the original low-dimensional input space by means of a kernel function [47, 48]. 

From (2.16) to (2.18), three classes of kernel functions which are widely adopted, 

we can see that whichever kernel function is used, the input N-dimensional variable 

Y is holistically considered. In other words, each element y∈Y  is treated equally 

and acts in the same role. However, due to the uneven statistical probability of y and 

the different spatial importance in a face image, the elements with different values 

and spatial locations should be assigned different weights for discrimination. In our 

approach, the statistical probability distribution of y is approximated by a normal 

density function, and an element with a higher probability should provide more 

discriminant information for recognition. In addition, the elements derived from the 

important facial features such as eyes, mouth, nose, etc., should also be emphasized. 

The spatial importance can be measured by means of the eigenmask E  [55, 56], 

which is shown in Figure 4-1. Therefore, nonlinear mapping, Ψ , is devised to 

emphasize those features that have both higher statistical probabilities and spatial 

importance: 

( )
: ,     

.

N NR RΨ →
⎯⎯→ΨEY Y

      (4.1) 
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Figure 4-1 The eigenmask used in our method. 

This mapping is operated in the original input space, and Y has the same dimension 

as ( )Ψ Y . For each y∈Y , there is a corresponding z in the transformed feature 

space, i.e. ( )z y= Ψ . The spatial importance of y is determined by the value of the 

eigenmask s at a pixel position, i.e. ( ),s u v= E , where u, v are the coordinates of a 

pixel, and y is the corresponding Gabor representation for the same pixel. The same 

value of y with a different s should have a different mapped value. In other words, z 

at the pixel position is determined by its Gabor representation y and its eigenmask 

value s. Therefore, we have 

( ), .y z y s→ =Ψ       (4.2) 

As the statistical property of the Gabor representation and the spatial information 

about faces are complementary to each other, and y  and s are independent of each 

other, Ψ  can be represented as follows: 

( ) ( ) ( )1 2, .y s y sΨ = Ψ ⋅Ψ      (4.3) 

The mapping is therefore the product of two nonlinear mapping functions. This has 

the advantage that 1Ψ  and 2Ψ  can be designed independently according to their 

respective properties. 
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For face recognition, the difference between a query input and the faces in a 

database is computed, and the input is assigned to the one that has the minimal 

difference. Therefore, the following total differential equation is considered: 

y s
y s

∂Ψ ∂Ψ
ΔΨ = ⋅Δ + ⋅Δ

∂ ∂
.     (4.4) 

With (4.3), we have 

( ) ( ) ( ) ( )

( ) ( )

1 2
2 1

1
2 ,                                

y s
s y y s

y s
y

s y
y

∂Ψ ∂Ψ
ΔΨ = Ψ ⋅ ⋅Δ +Ψ ⋅ ⋅Δ

∂ ∂

∂Ψ
= Ψ ⋅ ⋅Δ

∂

  (4.5) 

where 0sΔ =  because the eigenmask E is generated based on a set of training 

images and is supposed to be a fixed structure. 

Firstly, we consider the characteristics of 1Ψ , which maps the Gabor 

representations of a face image in a nonlinear manner. Each input Y is normalized 

to have zero mean and unit variance. By the central limit theorem [183], we can use 

a normal distribution to estimate the probability density function (PDF) ( )p y , 

where y represents an element of Y. The nearer the value of y to the mean or zero 

for demeaned vectors, the more likely it is that the elements will be the expected 

pattern, and the more important will be their role for recognition. Therefore, the 

mapping function 1Ψ  should satisfy the following condition. 

Condition 1: ( )1 ( )
y

p y
y

∂Ψ
∝

∂
.                                                                        (4.6) 

By (4.5) and (4.6), we have 

( )p y yΔΨ ∝ ⋅Δ ,       (4.7) 
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which implies that after the nonlinear mapping 1Ψ , the feature variation Δy of the 

element y with a higher statistical probability should be given a larger weight, and 

so act in a more important role for discrimination, and vice versa. 

Secondly, the nonlinear mapping 2Ψ  is based on the spatial information about 

human faces. The spatial information is represented by an eigenmask, which is a 

modification of the first eigenface derived from a set of training images [55, 56] and 

which is normalized between [0,1]. The higher the magnitude of an element s in the 

eigenmask, the more important the feature point it represents. Hence, 2Ψ  should 

satisfy the following condition. 

Condition 2:  2Ψ  and its derivative function 2

s
∂Ψ
∂

 are monotonically 

increasing functions.  

In Condition 2, 2Ψ  is monotonically increasing so that those pixels belonging to the 

important facial features will be emphasized. Furthermore, the increase of 2Ψ  is 

nonlinear and at a higher rate when s has a higher value. Therefore, 2

s
∂Ψ
∂

 should 

also be a monotonically increasing function. 

From (4.5), we can see that  

( )2 s yΔΨ ∝Ψ ⋅Δ ,      (4.8) 

which means that after the mapping 2Ψ , the feature variation yΔ  at an important 

facial point should be enhanced, and vice versa. In other words, the important facial 

features will provide more discriminant information for distinguishing two face 
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images. This is coincident with the fact that the facial features should be assigned 

different weights according to their importance for face recognition [55, 56]. 

From Condition 1, the differential of 1Ψ  is directly proportional to a normal 

distribution with zero mean and unit variance, i.e. N(0,1). More generally, we have 

( ) ( ) ( )2 221 1(0, )
2

y ay
N a e

y a π
−∂Ψ

= =
∂

,    (4.9) 

where (0, )N a  is a normal distribution with zero mean and a variance of a, and a is 

a positive constant. Then, we have 
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where ξ  is a constant and ( )erf y  is the “error function” which is the integration of 

the normal distribution [184] and is defined as follows: 

( ) 2

0

2 .
y terf y e dt

π
−≡ ∫                           (4.11) 

As it is desirable that the data after the mapping should also be centered, as required 

for performing the KPCA [48] in the next step, ξ  is set at –0.5.  

From Condition 2, 2Ψ  and 2

s
∂Ψ
∂

 are monotonically increasing, therefore we 

set 2Ψ  as follows: 

( )2
ss bΨ = ,                     (4.12) 

where b > 1. Considering (4.2), (4.3), (4.10) and (4.12), we have the doubly 

nonlinear mapping function as follows: 
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Figures 4-2(a) and (b) illustrate the graphs of 1Ψ  and 2Ψ  with different values of a 

and b, respectively. 

 (a) 

 (b) 

Figure 4-2 (a) The graph of function ( )1 yΨ  with different values of the parameter 

a, and (b) the graph of function ( )2 sΨ  with different values of the parameter b. 
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After this nonlinear mapping, an element in Y, which has a higher statistical 

probability and spatial importance, can act in a more important role for face 

recognition. This mapping takes place in the input space and does not increase the 

data dimensionality. Combined with the conventional KPCA, we can obtain a novel 

‘doubly’ nonlinear mapping KPCA. This process is equivalent to performing two 

nonlinear mappings – the first nonlinear mapping is Ψ  as shown in (4.1), and is 

then followed by the nonlinear mapping Φ  as shown in (2.10) – on an input feature 

Y  to a high-dimensional feature space, and then performing PCA for recognition. 

(Certainly, the second mapping Φ  is not explicitly processed and all procedures are 

implemented in the original space, as discussed in Section 2.1.3.4.) Combining 

(2.10) and (4.1), the doubly nonlinear mapping KPCA defines a nonlinear mapping 

( )Φ Ψ  as follows: 

( )
( ) ( )( )

: ,                   
,

N NR R FΦ Ψ → →
⎯⎯→Ψ →Φ ΨEY Y Y

             (4.14) 

and PCA is performed in the mapped feature space for recognition. 

4.3 Experimental Results 

In this section, we will evaluate the performances of the proposed doubly nonlinear 

mapping KPCA for face recognition based on different face databases. The 

databases used include the Yale database, the AR database, the ORL database, and 

the YaleB database. The number of distinct subjects and the number of testing 

images in the respective databases are tabulated in Table 4-1.  

The face images in the different databases are captured under different 

conditions, such as varied lighting conditions, facial expressions and perspectives. 
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As shown in Table 3-3, the face images in the databases are divided manually into 

several sub-classes according to their different properties. In this chapter, we also 

adopt these sub-databases to investigate the effect of the different conditions on the 

face recognition algorithms. 

Table 4-1 The test databases used in the experiments. 

 Yale AR ORL YaleB 

Number of subjects 15 121 40 10 

Number of test images 150 605 360 640 

In each database, one frontal image of each subject with normal illumination 

and neutral expression is selected as a training sample, and the rest form the testing 

set. All images are cropped to a size of 64×64 based on the eye locations. In our 

system, the position of the two eyes can be located either manually or automatically 

[55, 173, 181], and the eye locations are then used for normalization and alignment. 

The input color images are converted to gray-scale ones. To enhance the global 

contrast of the images and reduce the effect of uneven illuminations, histogram 

equalization is applied to all the images.  

Our method is to perform an additional nonlinear mapping for the 

conventional KPCA. In this chapter, we select the KPCA with fractional power 

polynomial (FPP) models [50], and evaluate its performance with and without use 

of the proposed doubly nonlinear mapping for face recognition. The polynomial 

kernel (2.16) is used, and the power is set at 0.8. To derive the real features of 

KPCA (2.15), we apply only those KPCA eigenvectors that are associated with 

positive eigenvalues. Furthermore, (2.16) is modified as 
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( ) ( ) ( ),
d

i j i j i jk sign= ⋅ ⋅ ⋅Y Y Y Y Y Y ,                       (4.15) 

where sign( ) is a signum function. As discussed in [50, 185], a PCA classifier will 

perform better when the Mahalanobis distance is used. Therefore, in our 

experiments, the Mahalanobis distance is also employed as the distance measure.  

4.3.1 Determination of Parameters for the Nonlinear Mapping 

Functions 

In (4.13), two parameters, a and b, are involved in the mapping function. 

From Figure 4-2, we can see that nonlinear mapping functions with different 

parameter values have different properties. Therefore, proper values for the 

parameters are to be determined so as to obtain an optimal result. In our 

experiments, we use the Yale database for training and determining the optimal 

values for a and b, and the mapping functions 1Ψ  and 2Ψ . Then, these mapping 

functions are evaluated using other databases. To obtain the optimal values for a and 

b, different values of a and b are tested, and then DKPCA is employed for face 

recognition. If only 1Ψ  is considered, the value of b in (4.13) is set at 1; and if only 

2Ψ  is used, (4.13) is changed to the following form, 

z = y⋅bs.                                     (4.16) 

Experimental results are shown in Figure 4-3, where we can see that the best 

performance is achieved if the values of a and b are set at [1.0, 2.5] and [3, 6] when 

only Ψ1 and only Ψ2, respectively, are employed in face recognition. When we 

consider these two parameters at the same time, i.e. Ψ = Ψ1⋅Ψ2 is used for nonlinear 

feature transformation, experimental results show that they should be set at a = 1.0 

and b = 3.0 for the best performance. This result coincides with the discussion in 
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Section 4.2. With Condition 1, when ( )1 ( )
y

p y
y

∂Ψ
∝

∂
 is satisfied, the optimal 

transformation for face recognition can be achieved. Considering the assumption 

that ( )( ) 0,1p y N∝ , the value of the parameter a should be close to 1. 

 (a) 

 (b) 
Figure 4-3 Face recognition using (a) nonlinear mapping 1Ψ  with different values 

of a and (b) nonlinear mapping 2Ψ  with different values of b. 
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4.3.2 Face Recognition Under Normal Conditions 

The respective performances of several face recognition methods based on the 

normal faces from the different databases are shown in Table 4-2. GW+PCA means 

using Gabor representations as the facial features, and then adopting PCA to reduce 

the feature dimension and perform face recognition. GW+KPCA is the KPCA with 

FPP proposed in [40]. GW+DKPCA1, GW+DKPCA2 and GW+DKPCA represent 

our doubly nonlinear mapping KPCA, and the mapping functions used are 1Ψ , 2Ψ  

and Ψ , respectively. From the result, we can observe that: 

1. Under normal conditions, most of the algorithms can achieve a high 

recognition rate. In particular, all the methods considered can achieve a 

recognition rate of 100% for the YaleB database, which contains 10 distinct 

subjects only. The performances of the algorithms are the worst with the ORL 

database, because the faces in the ORL database have some small variations in 

facial expression and perspective.  

2. The Gabor-based methods outperform the PCA method. This is because 

Gabor filters can extract detailed local textures, which exhibit the desirable 

characteristics of capturing salient visual properties such as spatial 

localization, orientation selectivity, and spatial frequency, while the PCA 

method mainly focuses on maintaining the global structure of training images, 

and is not optimal for discrimination.  

3. The performance of the KPCA with FPP can be the same but is sometimes 

worse than the conventional Gabor-based PCA. This is due to the fact that the 

optimal value of the power d in (2.16) is obtained based on a combined 
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database, which includes more than 1,000 images under various conditions. 

This method may not consistently perform better for the respective databases. 

4. Our proposed doubly nonlinear mapping KPCA outperforms all other 

methods, regardless of which mapping function is used. The method using 

only 1Ψ  performs better than that using only 2Ψ . This is because the latter 

applies a fixed eigenmask to all images, while the former transforms the 

inputs according to their probability distribution. Therefore, the method based 

on the statistical property of the input is more elastic and suitable for human 

face recognition. When the statistical characteristic and the spatial information 

are considered together, i.e. Ψ  is used as the mapping function, the best 

performance can be achieved. This implies that these two kinds of information 

are complementary to each other.  

Table 4-2 Face recognition results under normal conditions. 

Recognition Rate (%) PCA GW+
PCA 

GW+
KPCA

GW+ 
DKPCA1

GW+ 
DKPCA2 

GW+ 
DKPCA 

Yale 91.1 93.3 93.3 93.3 93.3 93.3 

ORL 80.4 85.2 84.7 88.4 86.8 89.4 

YaleB 100.0 100.0 100.0 100.0 100.0 100.0 

4.3.3 Face Recognition Under Varying Lighting Conditions 

In the Yale database, the lighting is either from the left or the right of the face 

images. In the AR database, besides the lighting from the left and the right, lighting 

from both sides of each face is also adopted. The YaleB database, which consists of 

10 people with each person having 65 images under different lighting conditions, is 

often used to investigate the effect of lighting on face recognition. In this part of the 

experiments, we select only those images with obviously uneven illuminations as 
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the testing images. In other words, only those images with azimuth angles or 

elevation angles of lighting larger than 20° are considered. Consequently, for each 

subject in the YaleB database, only 48 different illumination models are chosen for 

testing. The experimental results based on the images under varying lighting from 

different databases are shown in Table 4-3. 

The performance of PCA degrades significantly compared to the results based 

on the normal faces. PCA represents faces with their principal components, but the 

variations between the images of the same face due to illumination are almost 

always larger than image variations due to change in face identity [67]. Hence, PCA 

cannot represent and discriminate a face under severely uneven lighting conditions.  

Compared to the PCA method, the Gabor wavelets can greatly increase the 

recognition performance based on the different databases. This shows that the Gabor 

wavelets representations can effectively reduce the effect of varying illumination. 

For the Yale database and the YaleB database, KPCA with FPP outperforms the 

conventional Gabor-based KPCA but the latter can achieve a better performance for 

the AR database. 

In most cases, our doubly nonlinear mapping KPCA outperforms other 

algorithms, except for the YaleB database, where the KPCA with FPP performs 

better than our method when only 2Ψ  is used as the mapping function. This is due 

to the fact that 2Ψ  is derived from the eigenmask, which emphasizes the important 

features in a human face under normal conditions. With severe illumination 

variations, such as those shown in Figure 3-2(d), the Gabor features abstracted from 

some feature points may not be reliable for face recognition. Emphasizing these 
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features may result in adverse performance. However, when combined with 1Ψ , the 

spatial information can still provide additional and useful information and improve 

the recognition rate. Like the results in Section 4.3.2, DKPCA with 1Ψ  outperforms 

DKPCA with 2Ψ , and DKPCA with Ψ  achieves the best performance. 

Table 4-3 Face recognition results under varying lighting conditions. 

Recognition Rate (%) PCA GW+
PCA 

GW+
KPCA

GW+ 
DKPCA1

GW+ 
DKPCA2 

GW+ 
DKPCA 

Yale 60.0 90.0 93.3 96.7 93.3 100.0 

AR 81.3 96.4 96.1 98.9 97.3 98.9 

YaleB 53.3 91.7 94.2 97.9 92.7 98.1 

4.3.4 Face Recognition with Variations in Facial Expressions and 
Perspective  

Experiments based on the face images with different facial expressions are 

conducted and the recognition results are summarized in Table 4-4. The 

performance when using Gabor wavelets degrades compared with the results in 

Sections 4.3.2 and 4.3.3. Furthermore, the recognition rates of the Gabor wavelets-

based methods are even lower than that of the PCA method in some cases. This is 

because facial expressions are formed from the local distortions of the facial feature 

points, which will then affect the corresponding local texture and shape properties. 

In this case, the Gabor representations, which abstract the textural information about 

the neighborhood of each pixel, are also disturbed by the local distortions caused by 

changes in facial expression, which results in degradation of the performance. In 

contrast, PCA maintains the global structure of the input, while discarding the 

detailed, local information. Therefore, PCA is less sensitive to local distortions, as 

was also discussed in Section 2.1.3.1.  
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When compared to other Gabor-based methods, our proposed doubly 

nonlinear mapping KPCA can achieve the best performance. The nonlinear mapping 

function 1Ψ  considers the statistical property of the input features, so that a feature 

with a higher probability will be more greatly emphasized. In contrast, 2Ψ , which is 

derived from the eigenmask, emphasizes the features from the important facial 

feature points. These two mapping functions can therefore enhance two different 

types of complementary information for face recognition, and the method that 

combines both 1Ψ  and 2Ψ  can provide the optimal performance. 

Table 4-4 Face recognition results with different facial expressions. 

Recognition Rate (%) PCA GW+
PCA 

GW+
KPCA

GW+ 
DKPCA1

GW+ 
DKPCA2 

GW+ 
DKPCA 

Yale 81.3 82.7 82.7 88.0 88.0 92.0 

AR 87.2 94.2 93.8 98.4 95.9 98.8 

ORL 84.1 71.4 71.4 77.8 79.4 81.0 

The relative performances of the different algorithms were also evaluated for 

faces under perspective variations. All the testing images are selected from the ORL 

database with the faces either rotated out of the image plane, e.g. looking to the 

right, left, up and down, or rotated in the image plane, clockwise or anti-clockwise. 

The experimental results are tabulated in Table 4-5 and show that none of these face 

recognition methods can achieve a satisfactory performance under perspective 

variations. Nevertheless, the DKPCA still outperforms other methods. 

Table 4-5 Face recognition results under various perspectives. 

Recognition Rate (%) PCA GW+
PCA 

GW+
KPCA

GW+ 
DKPCA1

GW+ 
DKPCA2 

GW+ 
DKPCA 

ORL 48.2 56.5 57.4 64.8 60.2 66.7 
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4.3.5 Face Recognition with Different Databases 
We have evaluated and discussed the effect of different conditions on the 

different face recognition methods. In this section, we also show the respective 

performances of the different face recognition methods based on the different 

databases without dividing them into sub-databases. The recognition results are 

tabulated in Table 4-6, which also show that the proposed doubly nonlinear 

mapping Gabor-based KPCA outperforms all the other methods based on the 

databases. In addition, our method using either 1Ψ  or 2Ψ  also outperforms the 

conventional Gabor-based methods in most of the cases. With these four databases, 

the recognition rate for the ORL database is always the lowest, irrespective of which 

method is used because most of the faces in this database are under perspective 

variations, as discussed in Section 4.3.4. Comparing the experimental results in 

Table 4-6 and Table 3-8, we can find that for the PCA method, the Mahalanobis 

distance outperforms the Euclidean distance in most cases; however, if the lighting 

conditions are violently uneven, such as in the YaleB database, the latter performs 

better. 

Table 4-6 Face recognition results based on different databases. 

Recognition Rate (%) PCA GW+
PCA 

GW+
KPCA

GW+ 
DKPCA1

GW+ 
DKPCA2 

GW+ 
DKPCA 

Yale 80.0 87.3 88.0 91.3 90.7 94.0 

AR 83.6 95.5 95.2 98.7 96.7 98.8 

ORL 71.4 74.2 74.2 79.4 77.5 81.1 

YaleB 65.0 93.8 95.6 98.4 94.5 98.6 
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4.3.6 Face Recognition with Empirical Modeling of the Feature 

Distribution  

In Condition 1 (4.6), we assume that the probability density function (pdf) of 

an input feature, ( )p y , is approximated by a normal distribution with zero mean 

and unit variance. Experimental results in Section 4.3.1 also show that when the 

parameter a (the variance of the normal distribution) is set at 1.0, the best 

performance can be achieved. In this section, we will discuss how this assumption 

satisfies the real case, and whether there are other pdf that can be used to build a 

more reliable mapping function.  

We combine the four training sets together to form a new database, which has 

a total of 186 training images. All the images have a frontal view, with normal 

illumination and neutral expressions. Gabor wavelets are used to abstract the input 

features, which are then normalized to have zero mean and unit variance. Then, the 

pdf of y is represented by a series of discrete values, which can be computed by   

( )( ) ,kT
p

k total

np y y kT
n

δ
+∞

=−∞

= ⋅ −∑               (4.17) 
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1 if 0
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, nkT is the number of features within the range [kT, 

(k+1)T], totaln  is the total number of input features, and T is the interval, which is set 

at 0.1 in our experiment. Considering (4.6) and (4.17), we have 
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where ξ  is a constant used to center the mapped data. As 1kT

k total

n
n

+∞

=−∞

=∑ , so ξ  is set 

at -0.5. ( )1p yΨ  is represented as a sequence of discrete values. For an input y, the 

value of ( )1p yΨ  is computed by a linear interpolation method. Figure 4-4 shows 

the graphs of pp  and 1pΨ . 

From Figure 4-4(a), we can see that the real distribution of y is close to a 

normal distribution; however, it is not symmetrical. Compare Figure 4-4(b) and 

Figure 4-2(a), the graphs are also similar. We substitute this estimated 1pΨ  for 1Ψ  

into (4.3), then repeat the procedures in Section 4.3.5. The experimental results are 

tabulated in Table 4-7. We can see that the recognition rates are slightly better than 

the results shown in Table 4-6. Considering this more simply, we can still use a 

normal distribution to estimate the pdf of input, which also achieves a satisfied 

result. 

 
(a) 
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(b) 

Figure 4-4 The graphs of the functions (a) ( )pp y  and (b) ( )1p yΨ . 

Table 4-7 Face recognition results based on different databases. 

Recognition Rate (%) Yale AR ORL YaleB 

GW+DKPCA 94.7 98.8 82.8 98.8 

 

4.4 Conclusions 

In this chapter, we have proposed a novel doubly nonlinear mapping Gabor-

based KPCA for human face recognition. In our approach, the Gabor wavelets are 

used to extract facial features, then a doubly nonlinear mapping KPCA is proposed 

to perform feature transformation and face recognition. Compared with the 

conventional KPCA, an additional nonlinearly mapping is performed in the original 

space. Our new nonlinear mapping not only considers the statistical property of the 

input features, but also adopts an eigenmask to emphasize those features derived 

from the important facial feature points. Therefore, after the mappings, the 
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transformed features have a higher discriminant power, and the importance of the 

features adapts to the spatial importance of the face image.  

This chapter has also evaluated the performances of the different face 

recognition algorithms in terms of changes in facial expressions, uneven 

illuminations, and perspective variations. Experiments were conducted based on 

different databases and show that our algorithm always outperforms the other 

algorithms, such as PCA, Gabor wavelets plus PCA, Gabor wavelets plus kernel 

PCA with FPP models, under different conditions. Furthermore, only one image per 

person is used for training in our experiments, which makes it useful for practical 

face recognition applications. With our approach, the recognition rates based on the 

Yale database, the AR database, the ORL database and the YaleB database are 

94.7%, 98.8%, 82.8% and 98.8%, respectively. These results always outperform the 

results shown in Table 3-8, which is based on the ESTM method; this is because the 

former can encode higher order statistics and the features are recoded according to 

their statistical property and shape importance. 

In Chapters 3 and 4, we describe two different face recognition techniques. 

We observe that, although they are robust to lighting conditions to a certain extent, 

their performances will also degrade when the lighting conditions are poor. To 

achieve good performance under poor lighting conditions, it is necessary to have 

pre-processing techniques for modeling the lighting to reduce or compensate for the 

effect. In the next two chapters, we will present two different approaches to tackling 

the lighting problems. 
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Chapter 5.       Face Recognition under Varying 
Illumination Based on a 2D Face Shape Model 

 
 

In Chapters 3 and 4, we present two methods for for face recognition under various 

conditions. In this chapter, we consider the case that the input image is under 

varying lighting conditions, and propose a novel illumination compensation 

algorithm, which can compensate for the uneven illuminations on human faces and 

reconstruct face images in normal lighting conditions based on a 2D face shape 

model. 

5.1 Introduction 

As discussed in Section 2.2, due to difficulty in controlling the lighting 

conditions in practical applications, variable illumination is one of the most 

challenging problems with face recognition. Section 2.2.2 has reviewed some 

methods, which are used for face recognition under varying illumination. In fact, 

there are also some methods, which can be considered as preprocessing algorithms 

before recognition. These methods are simple and computationally efficient, and 

also can improve the system performance to a certain extent. Histogram equalization 

(HE) is a commonly used method to convert an image so it has a uniform histogram, 

which is considered to produce an “optimal” overall contrast in the image. However, 

after being processed by HE, the lighting condition of an image under uneven 

illumination may sometimes turn to be even more uneven. Adaptive histogram 
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equalization (AHE) [186] computes the histogram of a local image region centered 

at a given pixel to determine the mapped value for that pixel; this can achieve a 

local contrast enhancement. However, the enhancement often leads to noise 

amplification in “flat” regions, and “ring” artifacts at strong edges. In addition, this 

technique is computationally intensive. [187, 188] introduced some modified AHE 

methods. Fahnestock and Schowengerdt [189] proposed a Local Range 

Modification, but similar problems still occur. Zhu et al. [190] proposed an 

illumination correction method, which uses an affine transformation lighting model 

based on a local estimation of background and the gain. However, the method is 

useful only when the images are under slowly varying illumination. 

In this chapter, we first propose a block-based histogram equalization (BHE) 

method, which enhances local contrast. The locally enhanced image is then 

compared to a globally enhanced image, which is obtained by performing histogram 

equalization on the whole image; an illumination map for the face image is 

generated. The illumination map reflects the effect of the light source on different 

locations over the face image, and can therefore be used to determine the category 

of the light source. Based on the category, a corresponding lighting model is 

selected to compensate for the uneven illumination, and an image with normal 

lighting condition can be reconstructed. In order to correct uneven illumination 

without disturbing the shape information on a face image, a 2D face shape model is 

adopted, and all the lighting compensation is performed on the texture image. This 

can preserve the shape of the human face under processing. 
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This chapter is organized as follows. Our BHE algorithm is presented in 

Section 5.2. Section 5.3 describes our scheme to identify a lighting category and a 

new illumination correction method based on a 2D face shape model. Experimental 

results are given in Section 5.4, which shows the compensation results and measures 

the face recognition rates based on the PCA method with and without using our 

algorithm. Finally, conclusions are drawn in Section 5.5. 

5.2 Block-based Histogram Equalization Method 

A light source should have a different effect on different regions of a human 

face. Therefore, to determine the type of light source, one effective method is to 

compare the face images enhanced locally and globally. Local enhancement is 

described in this section, while a globally enhanced image is obtained by 

performing histogram equalization (HE) over the whole image. In our approach, an 

image is divided into a number of small blocks, and histogram equalization is 

performed within each of the image blocks. The pixel intensities in each image 

block are altered such that the resulting block has a histogram of constant intensity. 

In other words, all the pixel intensities within a block are modified after the BHE 

processing. Histogram equalization can increase the contrast in an image block, and 

the detailed information such as textures and edges weakened by varying 

illumination can be strengthened. However, this equalization process will increase 

the difference between the pixels at the borders of adjacent blocks. 

In order to avoid the discontinuity between adjacent blocks, they are 

overlapped by half with each other. Weighted averaging is then applied to smooth 

the boundaries, i.e.  
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where fi(x, y) and f(x, y) are the intensity values at (x, y) of block i and the smoothed 

image, respectively, N is the number of overlapping blocks involved in computing 

the value at (x, y), and ωi(x, y), where i = 1, …, N, is a weighting function for block 

i. The value of N depends on the position of the image block under consideration, 

which is 4 when the block is not at the border, and 2 or 1 when it is located at the 

border or at one of the four corners of an image. The weighting function ωi(x, y) is 

simply a product of individual weighting functions in the x and y directions, i.e. 

( ) ( ) ( )yxyxi ωωω ′∗′=, ,      (5.2) 

where ( )⋅′ω  is a triangle (hat) function, as shown below, 

( )
2

21
B

B

S
Sxx −

−=′ω ,      (5.3) 

where SB is the length of a block, and x is its relative x-coordinate in the block. 

Thus, we have ( ) 00 =′ω , ( ) 0=′ BSω  and ( ) 12 =′ BSω . 

Figure 5-1 illustrates how to determine the combined intensity values of those 

pixels overlapped by the four adjacent blocks, i.e. block i, where i = 1, …, 4. 

Histogram equalization is first performed in each of the blocks, and the combined 

pixel intensities can be computed by means of (5.1). BHE is simple and the 

computation required is much lower than that of AHE. The uneven illumination can 

be compensated for without the requirement of any prior knowledge, such as the 

direction and distribution of the light source. However, similar to AHE, noises are 

also enhanced after being processed by BHE. Therefore, in our approach, we only 
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use BHE to produce a reference image, which will then be compared to the image 

equalized globally. 

Overlapped
Area

 

Figure 5-1 Block-based histogram equalization. 

5.3 A Varying Illumination Compensation Algorithm 

A face image is assumed to be a Lambertian surface, which can be described 

by the product of the albedo and the cosine angle between the point light source and 

the surface normal as follows: 

( ) ( ) ( ), , ,I x y x y x yρ= ⋅n s ,     (5.4) 

where ( ),I x y  is the intensity value observed of the pixel at (x, y) in the image, 

( ) 1,0 ≤≤ yxρ  is the corresponding albedo, ( ),x yn  is the surface normal direction, 

s  is the light source direction, and its magnitude is the light source intensity. 

Shashua [146] proposed that different people have the same surface normal 

but with different albedo, and Zhao et al. [32] also adopted this idea. However, in 

most natural images, albedo change is the predominant factor that causes the 

gradient of intensity [144], and the geometric influence cannot be neglected, 

especially under severe uneven lighting conditions. In these situations, the shadow 
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is highly dependent on the shape of a face. Therefore, in our approach, a 2D face 

shape model is adopted to eliminate the shape effect. 

5.3.1 2D Face Shape Model 

Suppose that the pixelwise correspondence between an input image and a 

reference face image is known, which can be determined by facial feature detection 

[174, 181]. The input image can be separated into texture and shape using a 2D face 

shape model [169]. The shape of a face is coded as the displacement field from the 

reference image, and the texture denotes an intensity map, which results from 

mapping the original image onto the reference image. All texture images have the 

same shape as the reference image. In our approach, uneven illumination 

compensation is performed on the texture image in order to avoid disturbing the 

shape information on the original image. After illumination compensation, the 

compensated texture and the original shape are combined to obtain the reconstructed 

image. 

It is a challenge to find the pixelwise correspondence between two pictures, 

especially when they are under uneven lighting conditions. In our method, the 

position of some facial feature points, such as the eyebrows, eyes, nose and mouth, 

are first determined manually, as shown in Figure 5-2. Then, the displacements of 

these key points between a facial image and the reference image are computed. The 

reference shape is obtained from the average 10 size-normalized and aligned images 

from the YaleB database [133]. Then, using a triangle-based cubic interpolation 

method [191], we can map the input to the reference shape model. After processing 
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the mapped texture, it can be mapped backwards from the reference shape to that of 

the original shape. 

 
Figure 5-2 Facial feature points that are used to build a pixelwise correspondence. 

5.3.2 Categories of Light Source 

In our approach, the YaleB database is used as the training set, which includes 

10 people; each person has 65 images with different lighting conditions. According 

to the illumination categories used in the YaleB database, we also divide the lighting 

conditions into 65 categories. Each of the categories has different azimuth angles 

and elevation angles of the lighting. The azimuth angles in the database vary from -

130° to +130°, and the range of the elevation angle is from -40° to +90°. If both the 

azimuth angle and the elevation angle are equal to 0°, we say that the subject is 

under normal illumination. 

Besides the effect of illumination on appearance, face images of distinct 

subjects actually look quite different. This is because the appearance of a human 

face is also dependent on other factors, such as gender, race, makeup, etc. 

Therefore, if we want to estimate the light source category, we have to eliminate the 

personal appearance as much as possible while keeping the illumination information 

unchanged. In this chapter, we use the illumination map to determine the 

illumination category. An image processed by BHE is considered as a reference 
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image. This BHE-processed image is then compared to the same image processed 

by HE to obtain a pixelwise difference between the two images. This difference 

image, which is called an illumination map, reflects the effect of the light source on 

different locations on the face image, and can therefore be used to estimate the 

illumination category. Figure 5-3 shows some examples of the illumination map 

with different lighting conditions. 

 
(a)                     (b)                      (c)                      (d)                      (e)                      (f) 

Figure 5-3 Some examples of illumination map: The azimuth angles of images (a) to 

(f) are: 0°, 0°, 20°, 70°, -35°, -70°, respectively. The corresponding elevation angles 

are: 0°, 90°, -40°, 45°, -20°, 45°, respectively. 

To determine the illumination category of a query image, its illumination map 

is first computed. Then, LDA [42] is used to determine the illumination category of 

the image. In order to overcome the limitation of LDA on a small sample size, we 

adopt the method proposed by Zhao et al. [192] by adding a small perturbation to all 

the eigenvalues such that the within-class scatter matrix wS  becomes non-singular. 

In our approach, the training images are divided into 65 different categories, and 

each category includes 9 images that are under the same lighting condition and 

belong to different people in the YaleB database.  

5.3.3 Lighting Compensation 

For each point (x, y) in an image, the effect of illumination can be written as 

follows: 
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( ) ( ) ( ) ( ), , , , ,  = 1, , 65,i if x y A x y f x y B x y i′ = ⋅ + L  (5.5) 

where f(x, y) and ( ),f x y′  represent the intensity values of the image under normal 

lighting condition and the image under a certain kind of illumination, respectively. 

Ai(x, y) denotes the multiplication noise and Bi(x, y) is the additive noise for the 

illumination mode i. The procedure deriving (5.5) from (5.4) is proved in Section 

6.2. 

After mapping a face image to a specific shape by the 2D face shape model 

and determining its illumination mode, we can compensate for the lighting effect on 

the face in order to generate an image with a normal lighting condition by means of 

the functions Ai(x, y) and Bi(x, y). These two functions depend on the lighting 

category, and we assume that they are more or less the same for images under the 

same illumination condition. Based on the training images in the YaleB database, 

we can estimate the optimal values for Ai(x, y) and Bi(x, y) for each illumination 

category by means of the least-squared method. For each illumination category i, 

suppose that the number of training samples equals m; then we rewrite (5.5) as 

follows: 

( )

( )

( )

( )

( )

( )
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f x yf x y

⎡ ⎤ ⎡ ⎤
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  (5.6) 

Let ( ) ( ) ( )' ' '
1 , ... , ... ,

T

k mf x y f x y f x y′ ⎡ ⎤= ⎣ ⎦F , where T represents the transpose, 

( )yxfk ,'  is the kth subject under the ith lighting category in the training set, and 
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( ) ( ) ( )1 , , ,
1 1 1

T
k mf x y f x y f x y⎡ ⎤

= ⎢ ⎥
⎣ ⎦

F
L L

L L
, where fk(x, y) represents a face 

under normal lighting condition of the kth subject in the training set. Then, (5.6) can 

be written as follows: 

( )
( )

,
,   1, ..., 65.

,
i

i

A x y
i

B x y
⎡ ⎤

′ = =⎢ ⎥
⎣ ⎦

F F     (5.7) 

As the images in the different row of F, i.e. fk(x, y), are images of different people, 

they are therefore independent of each other. The least-squared solution to (5.7) can 

be calculated as follows: 

( )
( ) ( ) 1,

, 1, ..., 65.
,

i T T

i

A x y
i

B x y
−⎡ ⎤

′= =⎢ ⎥
⎣ ⎦

F F F F    (5.8) 

Using (5.8), we can compute the optimal value of Ai(x, y) and Bi(x, y) for the ith 

lighting category, and Ai(x, y) and Bi(x, y) are called A-map and B-map, 

respectively. Some examples of these two maps are shown in Figure 5-4.  

 
(a)                     (b)                      (c)                      (d)                      (e)                      (f) 

Figure 5-4 Some examples of the A-map and B-map: A-maps are shown on the top 

row, and B-maps in the bottom row. The azimuth angles of images (a) to (f) are: 0°, 

70°, 110°, -50°, -110°, and -130°, respectively. The corresponding elevation angles 

are: 20°, 45°, -20°, -40°, 40°, and 20°, respectively. 
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Based on the A-map and B-map of a category, the corresponding image f(x, y) 

which is under normal lighting can be computed from f’(x, y), i.e. 

( ) ( ) ( )
( )

, ,
, ,   1, ..., 65.

,
i

i

f x y B x y
f x y i

A x y
′ −

= =    (5.9) 

In order to avoid overflowing, all the intensity values of f(x, y) are restricted to the 

range of [0, 255], so (5.9) is rewritten as below. 

( )
( ) ( )

( )

( )
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0 , 0
, 255 , 255,  1,...,65.

otherwise, ,
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i
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f x y
f x y f x y i
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⎪
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⎪= > =⎨
⎪ ′ −⎪
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 (5.10) 

As Ai(x, y) and Bi(x, y) are known if the lighting category i has been determined, we 

can use (5.10) to construct a face image whose texture is under normal illumination. 

The illumination-compensated texture is then mapped from the normal shape to its 

original shape, and the final face image under normal lighting condition can be 

constructed. 

5.4 Experimental Results 

5.4.1 The Block Size for BHE 

The block size for the BHE process will affect the performance in determining 

the lighting category, as well as so the performance in compensating for the 

illumination effect and the rate for face recognition. Table 5-1 shows the recognition 

rates with different block sizes used in BHE. The number of training images used is 

15, and the number of test images is 150. All these images come from the Yale 

database [193]; they have different facial expressions and are under different 

illumination conditions. The PCA was used in the experiment. 
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Table 5-1 BHE with different block sizes. 

α  0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 HE 

Recognition Rate (%) 52.7 62.7 66.7 60.7 62.0 60.0 60.7 56.7 54.0 

The block size to be used should be proportional to the size of the face under 

consideration. In our scheme, the block size is set based on the distance between the 

two eyes of a face. The block size SB is therefore set at α*DisEye, where α is a 

coefficient and DisEye denotes the distance between the two eyes. If the block size 

increases to the width of the whole image, BHE will be the same as HE. This result 

is shown in the last column of Table 5-1. 

From the experimental results, a block size of 0.5*DisEye will give the best 

performance level. Therefore, in the rest of the experiments, the block size for BHE 

is also set at 0.5*DisEye. 

5.4.2 Face Recognition Based on Different Databases 

Our algorithm pre-processes a face image so that a face under uneven lighting 

will be converted to having even lighting. The training of our algorithm is based on 

the YaleB database. In this section, we will evaluate the performance of the 

algorithm with the use of other databases. The databases to be used include the Yale 

face database, YaleB face database, and AR face database [194]. The number of 

distinct subjects and the number of testing images in the respective databases, as 

well as a combination of the three databases, are tabulated in Table 5-2. For each 

database, only images with an upright frontal view and a neutral expression are 

selected. Figures 5-5, 5-6, and 5-7 illustrate the original images in the databases on 

the first row, those images processed by HE on the second row, those processed by 

BHE on the third row, and those processed by our algorithm on the fourth row. 
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 (a) 

 (b) 

 (c) 

 (d) 

Figure 5-5 Some experimental results based on the YaleB database: (a) Original 

images, (b) images processed by HE, (c) images processed by BHE, and (d) images 

processed by our algorithm. 

 (a) 

 (b) 

 (c) 

 (d) 

Figure 5-6 Some experimental results based on the Yale database: (a) Original 

images, (b) images processed by HE, (c) images processed by BHE, and (d) images 

processed by our algorithm. 
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 (a) 

 (b) 

 (c) 

 (d) 

Figure 5-7 Some experimental results based on the AR database: (a) Original 

images, (b) images processed by HE, (c) images processed by BHE, and (d) images 

processed by our algorithm. 

Table 5-2 The test databases used in the experiments. 

 YaleB Yale AR Combined 

Subject 10 15 121 146 

Testing set 640 30 363 1033 
 

In order to evaluate the effectiveness of our algorithm on face recognition, 

PCA is used in our experiments to measure the recognition rates after processing the 

images using the different illumination compensation techniques. Yambor et al. 

[185] reported that a standard PCA classifier performed better when the 

Mahalanobis distance was used. Therefore, in our experiments, the Mahalanobis 

distance is also selected as the distance measure. The Mahalanobis distance is 

formally defined in [195], and Yambor et al. [185] gave a simplification, which is 

used here as follows: 
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= −∑x y                (5.11) 

where λi is the ith eigenvalue corresponding to the ith eigenvector, ix  and iy  are the 

ith parameters of the vector x  and y , respectively. 

In each database, one image for each subject with normal illumination was 

selected as a training sample, and others form the testing set. All images are cropped 

to a size of 64×64 and the locations of the two eyes are fixed. The number of 

eigenfaces used for the YaleB database, Yale database, AR database and the 

combined database are 9, 14, 120, and 145, respectively. The respective recognition 

rates based on the different databases are shown in Table 5-3. 

 

Table 5-3 Face recognition results using deferent preprocessing methods. 

Recognition 
Rate (%) None HE BHE New Method 

YaleB 43.4 61.4 77.5 99.5 

Yale 36.7 36.7 80.0 90.0 

AR 25.9 37.7 71.3 81.8 

Combined 30.1 32.2 60.0 92.7 
 

In order to compare the recognition performances of different databases, we 

have also generated a common set of eigenfaces to test the performance based on 

different databases. In this experiment, we randomly selected 74 training samples 

from the three databases, 5 samples from YaleB, 8 samples from Yale, and 61 from 

AR, which produced 73 eigenfaces. Table 5-4 tabulates the recognition rates when 

these 73 eigenfaces are used.  
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Table 5-4 Face recognition results using PCA method with common eigenfaces. 

Recognition 
Rate (%) None HE BHE New Method 

YaleB 47.2 67.2 76.1 96.4 

Yale 43.3 43.3 70.0 86.7 

AR 22.3 40.5 56.7 73.6 

Combined 24.1 25.7 48.5 86.0 

 

Determination of the illumination category of an input face image is a very 

important procedure. In our method, we use the illumination maps (IMs) to estimate 

the category of a light source. As a comparison, some experiments which use the 

image processed by HE to estimate the illumination category are executed, and the 

corresponding recognition rates are tabulated in Table 5-5. For each database, its 

own eigenfaces and the common eigenfaces are both used.  

Table 5-5 Face recognition results using different methods to determine illumination 

categories. 

Using Respective Eigenfaces Using Common Eigenfaces Recognition 
Rate (%) Using HE Using IM Using HE Using IM 

YaleB 99.2 99.5 93.8 96.4 

Yale 63.3 90.0 83.3 86.7 

AR 79.1 81.8 71.1 73.6 

Combined 90.4 92.7 84.5 86.0 

 

From the experimental results, we can conclude that: 

1. When the testing image set includes images under varying illumination, using 

HE can improve the recognition performance as compared to that without 

using any pre-processing procedure. However, the improvement is very small 

in some cases, e.g. for the Yale database. 
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2. Using BHE or our new algorithm can improve the recognition rates 

significantly. The improvement using BHE is from 29.9% to 45.4%, and from 

53.3% to 62.6% when our algorithm is used. In other words, these two 

methods are both effective in eliminating the effect of uneven illumination on 

face recognition. In addition, our new algorithm can achieve the best 

performance level of all the methods used in the experiment. 

3. The BHE method is very simple and does not need any prior knowledge. 

Comparing to the traditional local contrast enhancement methods [186-188], 

its computational burden is much lower. The main reason for this is that all 

the pixels within a block are equalized in the process, rather than just a single 

pixel in the adaptive block enhancement method. Nevertheless, similar to the 

traditional local contrast enhancement methods, noise is also amplified after 

this process. 

4. If we use the images processed by HE to estimate the illumination category, 

the corresponding recognition rates using the different databases will be 

lowered when compared to using the IM algorithm. This is because the 

variations between the images are affected not only by the illumination, but 

also other factors, such as age, gender, race, make-up, etc. The illumination 

map can eliminate the personal information as much as possible, while 

keeping the illumination information unchanged. Therefore, the illumination 

category can be estimated more accurately, and a more suitable illumination 

mode is selected.  
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5. The reconstructed facial images using our algorithm appear to be very natural, 

and can produce a great visual improvement and lighting smoothness. The 

effect of uneven lighting is almost eliminated, including shadows. However, if 

there are glasses or a mustache, which are not Lambertian surface, in an 

image, some side-effects may occur under some special light source models. 

For instance, glasses may disappear or a mustache can be weakened. 

Zhao, et al. [32] used the illumination ratio image to synthesize and recognize 

face image under varying illuminations. Their recognition error rate, based on the 

YaleB database, was reported as 6.7%, while ours is 0.5%. Our algorithm uses the 

original images as training images, while in Zhao’s method, one original image and 

44 synthesized images per person were used.  

5.5 Conclusions 

In this chapter, we propose a new algorithm which can compensate for 

uneven illumination over face images. In our approach, we divide the lighting 

models into 65 categories. An image processed by BHE is used as a reference, and 

is compared to the image processed by HE to estimate the lighting category. Then, 

the corresponding lighting model is used to compensate for the uneven illumination. 

All these procedures are based on a 2D face shape model. 

This approach is not only useful for face recognition when the faces 

concerned are under varying illumination, but can also serve for face reconstruction. 

More importantly, the images of a query input are not required for training. In our 

algorithm, the 2D face shape model is adopted in order to tackle the effect of 

different geometries or shapes of human faces. Therefore, a more reliable and exact 
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reconstruction of a human face is possible, and the reconstructed face will be under 

normal illumination and will appear more natural visually. Experimental results also 

show that preprocessing the faces using our algorithm will greatly improve the 

recognition rate. 

The major disadvantage of the algorithm proposed in this chapter is that 

facial feature points must be located. Under poor lighting conditions, the detection is 

very difficult. Therefore, in the next chapter, we will propose a simple method to 

reduce the effect of uneven lighting on face recognition by means of local 

normalization. 
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Chapter 6.       An Efficient Illumination 
Normalization Method for Face Recognition 

 

In Chapter 5, we have proposed a method to compensate for the uneven illumination 

based on a 2D shape model. However, when the lighting is uneven, it is difficult to 

detect the position of the feature points, and to construct an accurate shape-free 

texture. In this chapter, we propose an efficient and effective illumination 

normalization algorithm, which need not perform any shape normalization and is 

totally automatic.  

6.1 Introduction 

In this chapter, a novel illumination normalization method for human face 

recognition is proposed. In our method, a human face is treated as a combination of 

a sequence of small and flat facets. The effect of the illumination on each facet is 

modeled by a multiplicative noise and an additive noise. Therefore, a local 

normalization (LN) technique [196] is applied to the image, which can effectively 

and efficiently eliminate the effect of uneven illumination. Then the generated 

images, which are insensitive to illumination variations, are used for face 

recognition using different methods, such as PCA, ICA and Gabor wavelets.  

This chapter is organized as follows. In Section 6.2, the human face and 

illumination models adopted in this chapter are introduced. The LN method, which 

is used to eliminate the effect of uneven illuminations, is presented in Section 6.3. In 

Section 6.4, experimental results are detailed and the use of different illumination 
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compensation/normalization algorithms with different face recognition algorithms 

based on different databases are evaluated. Finally, in Section 6.5, conclusions are 

drawn. 

6.2 Human Face Model and Illumination Model 

As discussed in Section 5.3, a face image is supposed to be a Lambertian 

surface, which can be described as the product of the albedo and the cosine angle 

between the point light source and the surface normal as follows: 

( ) ( ) ( ), , ,I x y x y x yρ= ⋅n s ,     (6.1) 

where ( ),I x y  is the intensity value of the pixel at ( ),x y  in the image, 

( ) 1,0 ≤≤ yxρ  is the corresponding albedo, ( ),x yn  is the surface normal 

direction, s  is the light source direction, and its magnitude is the light source 

intensity. 

 
Figure 6-1 A human face image and its corresponding CANDIDE-3 model. 

In computer graphics applications, a human face is treated as a combination of 

a sequence of small and flat facets [197, 170], which can be determined by 
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important facial feature points. Figure 6-1 shows a face image overlaid with an 

updated version of the CANDIDE model [198], which is composed of a sequence of 

triangular facets.  

The area of each facet W is small enough to be considered a planar patch. 

Therefore, for each point ( ),x y W∈ , the surface normal direction ( ),x yn  is a 

constant. Furthermore, we assume that the light source used is directional, and 

therefore a good approximation of real situations [142]. Thus, the light source 

direction s  is almost constant within W. Then, from (6.1), it is clear that the 

intensity value of the pixel at ( ),x y  is equal to the multiplication of the albedo at 

( ),x y  and a scalar, which is constant within W. Suppose ( ),f x y  and ( ),f x y′  

represent the pixel intensity values at ( ),x y  of the image under normal lighting 

conditions and the image under a certain kind of illumination, and s  and ′s  are the 

corresponding light source directions. Then the corresponding illumination ratio 

image [32] is given as follows: 

( ) ( )
( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( )

, ,

, , , ,

, , , , ,

iR f x y f x y

x y x y x y x y

x y x y A x y W

ρ ρ

′=

′= ⋅ ⋅

′= ⋅ ⋅ = ∈

n s n s

n s n s

  (6.2) 

where A is determined by the surface normal direction n  of W and the kind of 

illumination concerned. For a special kind of illumination, the value of A is fixed 

within the facet W. From (6.2), we can obtain:  

( ) ( ) ( ), , , , .f x y A f x y x y W′ = ⋅ ∈    (6.3) 

If we consider the effect of noise at each point ( ),x y W∈ , the illumination model in 

(6.3) can be extended to the following: 
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( ) ( ) ( ), , , , ,f x y A f x y B x y W′ = ⋅ + ∈    (6.4) 

where A and B denote the multiplicative noise and the additive noise for the pixel 

( ),x y , respectively, and they are constant within W. In (6.4), ( ),f x y′  is the 

intensity value at ( ),x y . A and B are unknown, and the problem is how, given 

( ),f x y′ , to estimate the intensity value ( ),f x y  of the face image under normal 

illumination. This is an ill-posed problem. Although we assume that the values of A 

and B are constant in a facet W, the real range of W is unknown as it depends on the 

shape of a face image and is difficult to obtain under varying illumination. In 

Chapter 5, a 2D face shape model is adopted to map an image into a shape-free 

texture, and the YaleB database was then used to form the training set to obtain the 

A and B values pixel by pixel for each lighting category (A and B are called A-map 

and B-map, respectively, in this case). In this chapter, instead of estimating the 

values of A and B, we eliminate the effect of A and B by using the local 

normalization technique. 

6.3 Local Normalization Technique 

The main idea behind the LN technique is that, after processing an image 

( ),f x y′ , its intensity value ( ),Pf x y′  is of local zero mean and with unit variance 

within a facet W, i.e.  

( )( ), 0PE f x y′ =  and ( )( ), 1PVar f x y′ = ,     (6.5) 

where ( ) Wyx ∈, . We define 

( ) ( ) ( )( )
( )( ) ( )

, ,
, , , ,

,P

f x y E f x y
f x y x y W

Var f x y

′ ′−
′ = ∈

′
  (6.6) 
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where ( )( ),E f x y′  is the mean of ( ),f x y′  within W and ( )( ),Var f x y′  is the 

corresponding variance. Then, from (6.4), we have 

( )( )
( ) ( )( )( )

( ) ( )( )( )

( )( ) ( )

2

2

, ,
,

, ,

, ,        , ,

f x y E f x y
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f x y E f x y
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N
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∑

∑
   (6.7) 

and 

( )( ) ( )( )
( )( ) ( )

, ,

                   , , , ,

E f x y E A f x y B

A E f x y B x y W

′ = ⋅ +

= ⋅ + ∈
  (6.8) 

where N is the number of pixels within W, ( )( ),E f x y  and ( )( ),Var f x y  are the 

corresponding local mean and local variance of ( ),f x y . From (6.4), (6.6) – (6.8), 

we have 
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In order to avoid overflow, a small constant (equal to 0.01) is added to all the 

variance values, which does not affect the derivation of (6.9). The image ( )yxf P ,′  

satisfies the conditions in (6.5), as proved in (6.10) and (6.11), i.e. 
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and 
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This means that, after the LN processing, the image under varying illumination will 

have the same intensity values as the image under normal lighting conditions. This 

property is very useful, and we can use the images, after LN processing, for face 

recognition.  

Our discussion in this chapter is based on the assumption that a human face 

can be considered a combination of a sequence of small and flat facets. Within each 

facet, applying the LN technique can obtain the illumination insensitive property for 

each pixel. However, it is difficult to determine the range or size of a facet, 

especially for images under varying illuminations. In our method, we simply apply a 

filter of size N×N to each pixel. In other words, the filter is centered on the pixel 

under consideration and the corresponding mean and variance of the pixel 

intensities within the window are computed, then (6.6) is applied to normalize the 

intensity of the pixel. This process is repeated pixel by pixel to obtain a 

representation that is insensitive to lighting.  

In (6.6), the local mean and variance of an image are computed point by point. 

The images formed by the local means and variances, denoted as ( )( ),E f x y  and 

( )( ),Var f x y , are called the local mean and variance maps, respectively. Figure 6-2 

illustrates some original images in the YaleB database in the first row, those images 

processed by histogram equalization (HE) in the second row, the corresponding 

local mean maps and local variance maps in the third and fourth rows, respectively, 

and those processed by our LN algorithm in the last row. For Figures 6-2(c) – (e), 

the block size used is 7×7 for local normalization. 
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(a) Original images. 

       
(b) Images processed using histogram equalization. 

       
(c) Local mean maps. 

       
(d) Local variance maps. 

       
(e) Images processed using LN. 

Figure 6-2 Samples of cropped faces used in our experiments. The azimuth angles 

of  the lighting of images from left to right column are: 0°, 0°, 20°, 35°, 70°, -50° 

and -70°, respectively. The corresponding elevation angles are: 20°, 90°, -40°, 65°, -

35°, -40° and 45°, respectively. 

Figure 6-2 shows that the local mean map of an image represents its low-

frequency contents, while the local variance map carries the high-frequency 

components, or more accurately, the edge information about the image. This is 

because those pixels that lie in edge areas should have higher local variance values, 

and vice versa. In the case of uneven lighting conditions, the local mean maps are 
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dominated by the varying illuminations, and the edge information is disturbed by 

the varying local contrast and shadows. Therefore, from (6.6), we can see that in the 

local normalization process, the subtraction of an image by its local mean map can 

reduce the global uneven lighting effect, and then dividing it by its local variance 

map can further reduce the effect of unreliable edge information. In other words, 

after these two procedures, the effects of uneven illumination on both the low-

frequency and high-frequency components of an image will be reduced or even 

eliminated. The processed image becomes robust to illumination variation and can 

therefore be used to achieve a more reliable performance for face recognition.  

6.4 Experimental Results 

In this section, we will evaluate the performance of the LN algorithm for face 

recognition based on different face databases. The databases used include the Yale 

database, the AR database, the YaleB database and the PIE database [199]. We have 

also combined the four databases in the experiments. The number of distinct 

subjects and the total number of testing images in the respective databases are 

tabulated in Table 6-1.  

Table 6-1 The test databases used in the experiments. 

 Yale AR YaleB PIE Combined 

Subject 15 121 10 68 214 

Testing set 30 363 640 1564 2597 

For each database, the lighting conditions are different. In the Yale database, 

the lighting is either from the left or the right of the face images. In the AR 

database, besides the lighting from the left and the right, there is also lighting from 



110 

both sides of a face. The YaleB database, which consists of 10 people with 65 

images of each person under different lighting conditions, is often used to 

investigate the effect of lighting on face recognition. In the PIE database, 24 

different illumination models are adopted. 

All images are cropped and normalized to a size of 64×64, and are aligned 

based on the two eyes. In our system, the position of the two eyes can be located 

either manually or automatically [173, 181], and the input color images are 

converted to gray-scale ones. Our method is based on the local statistical properties 

of images. Therefore, in order to reduce the effect of pepper noise, a 3×3 filter is 

adopted to detect any isolated noise point, whose intensity value will then be 

replaced by the mean value of the pixels within its 3×3 neighborhood. 

6.4.1 The Block Size for Local Normalization 

The block size used in the LN process will affect the performance in 

compensating for the illumination effect and, thus, the rate for face recognition. 

Figure 6-3 shows some images processed using the LN method with different block 

sizes. When the block size is very small, the statistical parameters E(f(x, y)) and 

Var(f(x, y)) at (x, y) are not reliable, and the output images will be noisy. However, 

if the block size is too large, the assumption that all the pixels within a block are 

located within a facet is no longer tenable, and the illumination insensitive property 

of the processed images also becomes invalid. Therefore, an appropriate block size 

is important for LN processing. 
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(a) The azimuth angle is 0° and the elevation angle is 20°. 

       
(b) The azimuth angle is -50° and the elevation angle is -40°. 

Figure 6-3 Face images processed using the LN technique with different block sizes. 

The first column shows the original images. The block sizes of other images range 

from 3 to 13 in increments of 2, from the left to the right column, respectively. 

 
Figure 6-4 Face recognition with different block sizes. 

In order to select a proper block size, PCA is used for face recognition with 

images processed using the LN method with different block sizes. In order to 

enhance the global contrast on the input images, histogram equalization is also 

adopted for image preprocessing (Section 6.4.2 will provide a more detailed 

discussion of the effect of histogram equalization). In other words, all images are 
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first processed by histogram equalization and local normalization sequentially, and 

are then followed by feature extraction and face recognition using the PCA method. 

Figure 6-4 shows the recognition rates based on different databases. For each 

database, with an increase of the block size, the recognition rate will rapidly 

increase until the block size reaches a critical value. Then, the recognition rate will 

decrease slowly. The critical or optimal filter size varies for different databases; 

each database has distinct characteristics in terms of the lighting conditions. We can 

see that the Yale and AR databases are more sensitive to the block size compared to 

the other databases, and the PIE database is almost independent of the window size. 

In our algorithm, we set the block size at 7×7, at which the combined database can 

obtain the best recognition rate. 

6.4.2 Face Recognition Based on Different Databases 

In this section, we will evaluate the performances of different lighting 

compensation/normalization methods for different face recognition techniques such 

as PCA, ICA and Gabor wavelets. The lighting compensation/normalization 

schemes evaluated in the experiments include the histogram equalization (HE) 

method, our proposed local normalization (LN) method, and the use of both HE and 

LN, i.e. HE+LN. We use the databases shown in Table 6-1 for testing. In each 

database, one frontal image of each subject with normal illumination and neutral 

expression was selected as a training sample, and others form the testing set.  

6.4.2.1 Face Recognition Using PCA  

In order to compare the recognition performances using the different 

databases, we used the combined database as the training set to generate a common 
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set of eigenfaces, which are then used for image transformation and feature 

extraction. The number of eigenfaces used is 213. The Mahalanobis distance metric, 

which is a more suitable distance measure than the Euclidean distance metric for a 

standard PCA classifier [185, 46], is employed, and the nearest neighbor rule is then 

used to classify the face images. The experimental results are shown in Table 6-2. In 

the second row of Table 6-2, “None” means without using any preprocessing 

method to normalize/compensate the varying illuminations, and directly applying 

PCA for face recognition. 

Table 6-2 Face recognition results based on different databases using PCA. 

(%) Yale AR YaleB PIE Combined 

None 43.3 78.0 60.3 88.6 60.8 

HE 50.0 81.0 63.3 96.8 68.4 

LN 93.3 86.0 99.5 100.0 96.4 
HE+LN 93.3 86.2 99.7 100.0 96.5 

Tables 6-2 shows that, with the different databases, our algorithm can 

achieve a better performance level than if no compensation/normalization scheme is 

used or if only the histogram equalization is used. The performance will slightly 

improve when the histogram equalization is used with the local normalization 

method; this shows that the global contrast enhancement can improve illumination 

compensation to a certain extent. Comparing with the case that without using any 

preprocessing method, the error rate using HE plus LN based on the combined 

database can be reduced by 91.1%, i.e. from 39.2% to 3.5%. 

As the YaleB database is commonly used to evaluate the performance of 

illumination invariant face recognition, so we first compare our performance with 

other face recognition methods based on this database. Georghiades et al. [138] 
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proposed the individual illumination cone model and achieved 100% recognition 

rates, but the method requires seven images of each person to obtain the shape and 

albedo of a face. Lee et al. [200] used a nine-point light source method to achieve a 

99.1% recognition rate. However, the approach requires nine simulated images with 

different illumination variations for each person. Zhao et al. [32] synthesized 45 

images per person, which are adopted for training, and a 93.3% recognition rate was 

achieved. Liu et al. [147] reported a 98.4% recognition rate. However, the iterative 

algorithm, which is used to restore the input image, is more computational than our 

method. All the above methods only consider the situation where the light source 

directions are within 75º, and so only 45 illumination models were used for testing. 

However, in our experiment, a total of 65 lighting conditions were tested. In our 

method proposed in Chapter 5, the recognition rates are 99.5% and 96.4% when the 

respective eigenfaces and common eigenfaces are adopted for PCA method, 

respectively. The results are similar to those proposed in this chapter. However, our 

previous method requires twenty feature points per image to determine the 2D shape 

of the input and to construct a shape-free texture, which is very difficult when the 

image is under varying or poor illumination. In [147], the recognition rate with the 

Yale database is reported to be 81.7%. The method proposed in Chapter 5 has also 

been tested based on the Yale database and AR database, and the results are 90.0% 

and 81.8%, respectively, when the respective eigenfaces are used, and 86.7% and 

73.6%, respectively, when the common eigenfaces are adopted. 

Compared to other methods, our proposed algorithm is much simpler. We 

neither require multiple images with different illumination variations as training, nor 
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require the detection of important facial feature points to perform shape 

normalization. Our method is robust to illumination conditions and is 

computationally simple, which is important as a preprocessing method. Therefore, 

our method can also be used for other face recognition methods. 

6.4.2.2 Face Recognition Using ICA 

In this chapter, we employed the FastICA [201] to compute the ICs of a set of 

training images. FastICA provides rapid convergence and estimates the ICs by 

maximizing a measure of independence among the estimated original components 

[45, 46]. The results in [43, 46] show that ICA will have a better performance when 

the cosine similarity measure is used. Therefore, we also adopt this similarity 

measure, which is defined as follows: 
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where ui and vi represent the ith element of two k-dimensional feature vectors u and 

v, respectively. We also use the combined database as shown in Table 6-1 to produce 

the ICs, the number of ICs used being 214. The experimental results are shown in 

Table 6-3. 

Table 6-3 Face recognition results based on different databases using ICA. 

(%) Yale AR YaleB PIE Combined 

None 40.0 77.4 65.6 95.1 64.8 

HE 53.3 78.5 72.0 97.5 75.4 

LN 83.3 82.4 98.1 100.0 90.6 

HE+LN 86.7 82.6 99.8 100.0 94.5 
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Comparing Table 6-2 and Table 6-3, we can see that when the first two 

methods (‘None’ and HE) are used, ICA outperforms PCA in most of the cases. 

However, when our proposed LN method is employed with or without using the HE 

method, PCA outperforms ICA in most of the cases. As described in [67], uneven 

illuminations mainly affect the global components of a face image. Therefore, when 

the input image is under varying lighting conditions without any preprocessing 

method or when the HE method only is used for illumination normalization, ICA, 

which maintains more local, detailed information, performs better than PCA, which 

mainly considers the global structure of an input. This result coincides with the 

analysis in [46]. When our LN method, which can effectively enhance the local 

structure of an image and reduce the global effect of the varying illumination, is 

used, more local and detailed texture will appear in the processed image. In this case, 

PCA can more effectively represent the more important structure of an image and 

reduce the effect of the noise enhanced by local normalization. Therefore, after the 

LN process, PCA outperforms ICA. In fact, the difference between these two 

methods is not large, especially for the YaleB database and the PIE database, where 

both methods can achieve a recognition rate near 100% (the Yale database is an 

exception, but its size is very small). We have also conducted some experiments in 

which the Euclidean distance metric is employed. For the combined database, the 

recognition rate without using any illumination normalization method is 62.4%, and 

the results using HE, LN and HE plus LN are 68.0%, 89.1% and 93.7%, respectively. 

These results are lower than those shown in Table 6-3, but the relative performances 

of these methods remain the same.  
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6.4.2.3 Face Recognition Using Gabor Wavelets 

Section 2.1.3.5 describes how to use the Gabor wavelets to perform face 

recognition. In this part, we select one center frequency, which is equal to 2,π  and 

eight orientations from 0 to 87π  in increments of 8π . The Euclidean distance 

metric is adopted and the nearest neighbor rule is used for classification. The 

experimental results are shown in Table 6-4. 

Table 6-4 Face recognition results based on different databases using Gabor wavelets. 

(%) Yale AR YaleB PIE Combined 

None 63.3 90.9 86.7 99.9 86.1 

HE 73.3 94.5 98.4 100.0 90.8 

LN 100.0 98.3 99.4 100.0 98.4 

HE+LN 100.0 98.6 99.5 100.0 98.7 

Tables 6-2 ~ 6-4 demonstrate that, of the three feature extraction methods, 

Gabor wavelets can achieve the best performance. Especially for the PIE database, a 

99.9% recognition rate can be obtained based on the original images. This is 

because Gabor wavelets can effectively abstract local and discriminating features, 

which are less sensitive to illumination variations. It is clear that applying our LN 

method can further increase the performance when using Gabor wavelets for face 

recognition based on different databases. Liu et al. [147] also uses Gabor wavelets 

to extract features based on the restored images, and the recognition rate is 95.3% 

for the combined Yale database and YaleB database.  

6.4.3 Computational Complexity 

We have proposed an efficient method of reducing the effect of varying 

illumination on face recognition. Suppose that the size of a normalized face is M×M, 
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and the block size used in the LN method is N×N. The computational complexity for 

pre-processing an image using LN is O(M2N2). All our experiments were conducted 

on a computer system with Pentium IV 2.4GHz CPU and 512MB RAM. The 

average runtime of our algorithm to normalize the illumination of a face image in 

the AR database (363 face images) is about 6.2 milliseconds, where M and N are 

equal to 64 and 7, respectively. As our method has a low complexity, it can also be 

applied to some real-time applications such as illumination normalization in video 

sequences. 

6.5 Conclusions 

In this chapter, a novel and simple illumination normalization method for 

human face recognition under varying lighting conditions is proposed. A human face 

is treated as a combination of a sequence of small and flat facets. For each facet, the 

effect of the illumination can be modeled by a multiplicative term and an additive 

term. Therefore, a local normalization technique is applied to the image point by 

point. Local normalization can effectively and efficiently eliminate the effect of 

uneven illumination, and keep the local statistical properties of the processed image 

the same as for the corresponding image under normal lighting conditions. Then, the 

generated images, which are insensitive to illumination variations, are used for face 

recognition, and the performances are evaluated using different face recognition 

methods. Experimental results show that, with the use of PCA, ICA and Gabor 

wavelets for face recognition, the error rates can be reduced by 91.1%, 84.4% and 

90.6%, respectively, based on the combined database when our illumination 

normalization algorithm is used.  
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A major advantage of our proposed method is that, for training, only one 

image per person under normal illumination is required; this is very important for 

real applications. In addition, there is no need to perform any facial feature detection 

and shape normalization, which can be very complicated when the lighting is 

uneven or complex. Furthermore, our method is computationally simple, can serve 

as a preprocessing technique and also combine with other methods for face 

recognition. In this chapter, we only consider the situation where the human faces 

are frontal and have a neutral expression. For a practical face recognition 

application, various poses and expressions may combine with varying illuminations. 

If these effects are also considered, the overall recognition rates will be further 

improved. 
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Chapter 7.       Facial Expression Recognition 
based on Shape and Texture 

 

In Chapter 3, we propose a novel elastic shape-texture matching method, namely 

ESTM, for human face recognition under various conditions. In this chapter, we will 

apply this method for facial expression recognition. Besides ESTM, we also propose 

a new representation model for facial expressions, namely spatially maximum 

occurrence model (SMOM), which is based on the statistical characteristics of 

training facial images and has a powerful representation capability. Finally, ESTM 

and SMOM are combined together to obtain an optimal performance. 

7.1 Introduction 

In this chapter, a novel and accurate method is proposed for facial expression 

recognition. Our method includes two major techniques: spatially maximum 

occurrence model (SMOM), which is used to describe the different facial 

expressions; and elastic shape-texture matching (ESTM), which is proposed in 

Chapter 5 and is used to compute the similarity between two images. The 

combination of these two techniques, namely the SMOM-ESTM method, is used to 

classify the facial expressions. Due to the fact that facial expression is such a pattern 

whose within-class variation sometimes is larger than the between-class variation, 

we propose to use SMOM, which is based on the statistical properties of training 

images and has a powerful representation capability, instead of a sequence of fixed 

images to describe the expressions. The shape and texture information about a face 
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image are complementary and supplementary to each other, and both of which are 

useful for expression recognition. In [161], the line edge map, which mainly 

represents the shape information about a face, is used to describe an expression. 

Although the direction of an edge line can reflect some texture information, that 

information is still insufficient. Lyons et al. [164] adopted the 2D Gabor wavelet to 

describe the texture, but the feature points, which represent the shape information, 

have to be detected manually. ESTM can compute the similarity between two 

images based on both the shape and texture information, requiring only the positions 

of the two eyes and middle of the mouth for alignment. In our algorithm, ESTM is 

combined with SMOM for facial expression recognition. 

This chapter is organized as follows. In Section 7.2, the principle of our 

proposed facial expression representation method, SMOM, is described. The ESTM 

for facial expression recognition is presented in Section 7.3. Then, the combination 

of SMOM and ESTM used for expression recognition is introduced in Section 7.4. 

Experimental results are given in Section 7.5, which shows the performances of our 

algorithms based on the AR database and the Yale database. Finally, conclusions are 

drawn in Section 7.6. 

7.2 Spatially Maximum Occurrence Model for Representing 

Facial Expressions 

Human facial expression is a complex pattern, which relies on the emotion of 

the expressor and varies from person to person. On the one hand, the expression is 

determined by the movements or changes in facial features, which means that it is 

person-dependent and is affected by the characteristics of the expressor, such as the 
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shapes or positions of the facial features, motion habits, and so on. On the other 

hand, for the same person, there are also variations in the same expression due to 

different degrees of emotion. Therefore, the within-class variation of an expression 

is relatively large, and the between-class variation of different expressions is 

relatively small. In fact, even human beings sometimes cannot judge the expressions 

correctly based on a still image. In this case, knowing how to build proper 

expression models is very important. Using the mean image of a training set to 

represent a particular expression is simple, however, most of the information is lost, 

and the within-class variations cannot be reflected. In this section, we will propose a 

new expression representation scheme, namely Spatially Maximum Occurrence 

Model (SMOM), which is based on the statistical properties of the training set and 

contains most of the significant visual content. 

SMOM is constructed based on the probability of the occurrence of pixel 

values at each pixel position for all the training images, which is illustrated in 

Figure 7-1. Suppose that the number of training images is equal to N, and the size of 

an image is M×H. Therefore, there are N possible values at each pixel position (x,y). 

Ranking these N intensity values, we can obtain the histogram Hx,y(b) for the pixel 

position (x,y) as follows: 
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 for 0 ≤ b < B. B is the number of bins in the histogram, 

and fk(x, y) is the intensity value of the kth image at position (x, y). In general, B is 

equal to the number of intensity levels in the images. However, when the number of 
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training images is small, the number of bins should be reduced and the histogram 

should be smoothed using a Gaussian filter as follows: 

),,(*)()( ,, bGbHbH yxyx σ=′      (7.2) 

where G(σ, b) is a Gaussian filter with variance σ, * is the convolution operator, and 

)(, bH yx′  is the smoothed histogram of the pixel position (x, y). For each smoothed 

histogram, its peak values are identified and ranked in descending order. A peak 

occurs at a bin if its value is higher than its two adjacent bins. If a bin is the first (or 

the last) bin in a histogram, and its value is larger than the right (or the left) bin, we 

also consider it a peak. If m consecutive bins have the same value and this value is 

higher than the two adjacent bins of the consecutive bins, a peak also exists, and the 

bin value of the peak is set at the middle of the m consecutive bins. The gray levels 

corresponding to those bins that are the peaks of a histogram will be used in 

constructing SMOM. In other words, at each pixel position (x, y), the gray levels 

corresponding to the peaks are ranked according to their probabilities of occurrence. 

SMOM is therefore defined as follows: 

SMOM(x, y, k) = {b1, b2, …, bk},    (7.3) 

where 0 ≤ bk < B, for 0 ≤ x < M and 0 ≤ y < H, k is the number of peaks to be 

considered in the representation, b1, b2, …, bk are the gray levels corresponding to 

the peaks of the histogram for pixel position (x, y), and the conditions ( ), 1x yH b′  ≥ 

( ), 2x yH b′  ≥ … ≥ ( ),x y kH b′  are satisfied. Usually, k is a small value. If the number of 

peaks p in a histogram is less than k, the remaining k−p values will be corresponding 

to those bins with the largest probabilities of occurrence. 
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Figure 7-1 The construction of a SMOM. 

 

In our algorithm, the gray levels of those bins corresponding to the highest 

peaks, rather than the highest values, are used to represent the pixel intensities. As a 

histogram can be considered as a multi-cluster distribution and a peak is the 

representation of a bin cluster, so the peak values can provide useful statistical 

information at a pixel position, and are suitable for modeling complex patterns, such 

as facial expressions. An advantage of SMOM is its powerful representation 

capability. Each pixel position (x, y) in SMOM is represented by k values. For an 

image with size M×H, the number of possible images that can be generated from 

SMOM is KMH. Suppose that k = 2, M and H are both equal to 64, SMOM can be 

used to represent 264×64 ≈ 101233 different images. Furthermore, because the 

representation values are based on the statistical properties of the training images, 

most of the significant visual content of the training set is maintained in SMOM. In 

our method, SMOM is used for modeling the facial expression patterns. 
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7.3 Elastic Shape-Texture Matching 

As the statement in Chapter 3, ESTM is a method that measures the similarity 

between images based on their shape and texture information. The shape is 

represented by the edge map E(x, y), and the texture is characterized by the Gabor 

wavelets and the gradient direction of each pixel, which are described by the Gabor 

map ( ),G x y%  and the angle map A(x, y), respectively.  

Nastar et al. [112] have investigated the relationship between variations in 

facial appearance and their deformation spectrum. They found that, when a facial 

expression varied, only the high-frequency spectrum was affected, and this is called 

a high-frequency phenomenon. This suggests that the high-frequency components 

are more discriminant for facial expressions. Therefore, in our method, we apply the 

Gabor wavelets on the edge images, instead of the original images, to obtain the 

corresponding texture information, i.e. the Gabor map, in the high-frequency 

spectrum.  

7.4 Facial Expression Recognition 

In our approach, SMOM is used to represent the different facial expressions 

for recognition. Suppose that there are W classes of facial expression, then W 

expression models, SMOM1, SMOM2, …, and SMOMW, are constructed. For each 

model, k peak values are used to represent the gray-level intensity at each pixel 

position, and these peak values are ranked according to their probabilities of 

occurrence. Then, the difference between the facial expression in a query input and 

each of the models will be computed. As discussed in Section 7.2, a SMOM 

describes the possible distribution of a certain expression in the image space. The 
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distance from a query input to the image space generated by a SMOM is defined as 

follows: 
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where ( ),),,(),(minarg uyxSMOMyxfu l
u

−=′  for u = 1, …, k and l = 1, …, W. 

)(up ′  is a penalty function and is set as )(1)( , uHup yx ′′=′ , where )(, uH yx ′′  is the 

smoothed histogram of the pixel position (x, y), and reflects the probability of 

occurrence of u′ . This distance measure is simple, and it computes the minimum 

distance between the gray-level intensities of the query and the respective peak 

values at each position. The smaller the value of Dm, the closer the query image is to 

SMOMl, and the more reliable the lSMOM  being used to represent the query image, 

and vice versa. 

ESTM is adopted to perform the recognition. There are Nl training images for 

the expression class l, and the corresponding mean image is denoted as ),( yxfl , 

where 1 ≤ l ≤ W. Each of these W mean images provides the shape and texture 

characteristics of the corresponding facial expression class, and is used in matching 

for the expression class based on the ESTM. Therefore, the shape-texture Hausdorff 

distance H(A, B) (3.3) is used as the distance measure, which considers the 

similarity between images based on their shape and texture properties. Combining 

H(A, B) with the model distance Dm, a new distance measure between the facial 

expressions in the query f(x,y) and that of class l is defined as follows: 

        ( )
( )( )

( )
( )( )
( , ), ( , )( , ),

( ( , ), ) (1 ) ,
max ( , ), max ( , ), ( , )

lm

m ii i

H f x y f x yD f x y l
D f x y l

D f x y i H f x y f x y
λ λ= ⋅ + − ⋅ (7.5) 
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where l = 1, …, W and 0 ≤ λ ≤ 1. This distance measure contains two different 

distance measures for facial expressions, which are normalized by their respective 

maximum distances. λ is used to adjust the relative weights for these two terms in 

the distance measure. The first term is used to measure the reliability of using the lth 

SMOM to model the input expression, while the second term provides a distance 

measure based on the shape and texture of the lth mean image. In other words, the 

first term considers the statistical properties of the training set at each position and 

the second term uses the shape and texture information in the spatial domain. These 

two terms are supplementary to each other, and the combined distance measure is 

called the SMOM-ESTM algorithm, which can achieve a good performance in 

facial expression recognition. 

7.5 Experimental Results 

In this section, we will evaluate the performance of the SMOM-ESTM 

algorithm for facial expression recognition based on different face databases. The 

databases used include the AR database and the Yale database. All images are 

cropped to a size of 64×64 and are normalized to make the two eyes and the vertical 

position of the mouth aligned. In our system, the position of the two eyes and the 

middle point of the mouth can be located either manually or automatically [173, 

181], and the input color images are converted to gray-scale ones. In order to 

enhance the global contrast of the images and to reduce the effect of uneven 

illuminations, histogram equalization is applied to all the images. The parameters 

used in (3.5) and (3.9) are set at α = 0.1, β = 0.1, γ = 0.8, Pe = 3 and Pa = π/10. For 

ESTM, the neighborhood size used is set at 7×7, which allows the expression to 
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vary to a certain extent. As most of the facial muscle movements focus on the eyes 

(including eyebrows) and mouth area, which represent different expressions [20, 

161, 163], we adopt the face model proposed in [173] to produce a facial mask, 

which maintains the eye and mouth areas while blocking other parts of a face. This 

can reduce the effect of the personal characteristics and emphasize the actions of 

these key features. 

7.5.1 Expression Recognition based on the AR database 

In the AR database, there are 121 persons, comprising 70 males and 51 

females. For each person, there are three expressions: neutral, smile and scream. 

Figure 7-2 shows some examples from the database. We randomly selected 60 

samples for each class as the training images to generate SMOM; the remaining 61 

identities are used for testing. For each pixel position of the SMOM, there are k 

representation values. Combining the ith peak values (1 ≤ i ≤ k) at each pixel 

position, we can construct a pattern image, which is called the ith peak image. Figure 

7-3 illustrates the first five peak images produced by the SMOM. The 1st peak 

image may be considered to be the most likely pattern of the expression concerned, 

while the kth peak image is the least likely one. These k peak images distribute 

evenly, to a certain extent, over the corresponding pattern space, and can therefore 

represent the pattern space well. The mean image of the training images of each 

expression class is also computed and shown in the last column in Figure 7-3. We 

can see that the peak images look similar to the mean image, while the mean image 

looks smoother. This is due to the fact that the intensity values of the k peak images 

are obtained based on the statistical characteristics of the training data, and this 
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process is dependent on the pixel position. In other words, the correlations between 

neighboring pixels are reduced, and the image becomes less smooth.  

 (a) 

 (b) 

 (c) 

Figure 7-2 Some cropped faces in the AR database. Facial expressions: (a) Neutral, 

(b) Smile, and (c) Scream. 

 

 (a) 

 (b) 

 (c) 

Figure 7-3 The masked mean images and peak images produced by SMOM. The 

right-most column displays the mean images for the expression classes, and the first 

to the fifth columns show the first five peak images, respectively. Facial 

expressions: (a) Neutral, (b) Smile, and (c) Scream. 



130 

If only SMOM is considered, (7.4) provides a distance measure to classify the 

input images. This is actually equivalent to setting λ to 1 in (7.5). In Section 7.4, we 

have used (7.4) to determine the reliability of SMOM. In fact, a more reliable 

SMOM means that we can recognize or classify the expressions more accurately. 

Therefore, (7.4) can be used for recognition directly. The experimental results are 

shown in the Table 7-1, where the last column shows the result when the mean 

images are used as the expression patterns, and the minimum distance measure is 

used for classification. We can see that the performance using SMOM is better than 

that using the mean images, even if k is equal to 1. When k increases, the 

recognition rate also increases until k is larger than 8. Then, the recognition rate will 

decrease slowly. A slight decrease in the recognition rate happens when k increases 

from 3 to 4; this may be caused by the perturbation of the statistical properties of the 

training data. 

Table 7-1 Facial expression recognition rates using SMOM. 

Value of k 1 2 3 4 5 6 7 8 9 10 Mean 
Image 

Recognition 
Rate (%) 71.6 75.4 79.2 78.1 79.8 80.3 83.1 84.7 83.6 83.1 66.1 

If only ESTM is employed for recognition, i.e. λ = 0 in (7.5), and the mean 

images are used for training, the result is 92.9%. The performance using ESTM is 

better than the case of using SMOM only, due to the latter being based on the gray-

level intensities, while the former abstracts more shape and texture features. 

Combining SMOM and ESTM, i.e. using (7.5) with different values of λ, we 

can obtain a better result than only using either one of them. Figure 7-4 shows the 

recognition performances of the SMOM-ESTM algorithm with different values of 
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λ, and the number of peaks used in SMOM is set at 8. The best performances are 

achieved for both the AR database and Yale database when λ is equal to 0.25. For 

the AR database, the highest recognition rate achieved is 94.5%. In order to 

compare our method with other algorithms, we also build a testing set, which 

includes all 121 subjects, and we then employ the SMOM-ESTM method for 

recognition, where the training data is unchanged. The results are shown in Table 7-

2. The results reported in [161], which is also based on the AR database (only 61 

males and 51 females are used), are tabulated in Table 7-3. 

Table 7-2 Facial expression recognition results using the SMOM-ESTM method. 

 Neutral Smile Scream Average 

Male 91.4 94.3 98.6 94.8 
Female 100.0 98.0 98.0 98.7 
Average 95.0 95.9 98.3 96.4 

Table 7-3 Facial expression recognition results reported in [161]. 

 Neutral Smile Scream Average 

Male 91.8 68.9 88.5 83.1 
Female 96.1 90.2 86.3 90.9 
Average 93.8 78.6 87.5 86.6 

Our method outperforms the method proposed in [161], which can be 

explained by the following: 1) SMOM, which is based on the statistical properties of 

the training set, can provide more reliable expression models; 2) more texture 

information, which is based on the Gabor wavelets and gradient direction, is 

abstracted and useful for describing the expression; and 3) edge points are more 

elastic and suitable than edge lines for expression matching, especially in the case of 

the existence of large shape variations. In fact, [161] also adopted a splitting process 
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to divide a long edge line into a sequence of short lines in order to improve its 

performance. 

 

Figure 7-4 Facial-expression recognition performances of the SMOM-ESTM 

algorithm with different values of λ based on the AR database and the Yale 

database. 

7.5.2 Facial Expression Recognition based on the Yale database 

The Yale database includes 15 persons (14 males and 1 female). For each 

person, there are five expressions: neutral, smile, surprise, blink and grimace (where 

grimace means the left eye is closed). Some examples from the Yale database are 

shown in Figure 7-5. Compared with the AR database, there are far fewer subjects 

here but expression patterns. A leave-one-out mechanism is adopted to evaluate the 

recognition performances. In the experiments, all samples but one identity are used 

for training, and the images of that person are used for testing. This process repeats 

for every identity, and the results are averaged. Because SMOM is a statistical 
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representation of the expression classes, using 14 images for training is insufficient. 

By translating each original image into a pixel distance along the eight directions, 

we can produce eight new images. These produced images and the original image 

have a different type of importance when constructing the SMOM. A matrix, 

1 2 1
2 4 2
1 2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, is therefore used to weigh the importance in computing the histograms. 

With this matrix, the number of pixels from the original image will be multiplied by 

4, and the number of pixels from those images shifted along either the x-axis or the 

y-axis will be multiplied by 2 in the construction of the histograms. Thus, each 

identity has 16 images, and each expression class contains 224 images for training. 

The first five peak images produced by SMOM are shown in Figure 7-6. These peak 

images look similar to the corresponding mean images, which are displayed in the 

last column. However, due to the shift in the training images, the edges of the peak 

images become blurred. When computing the mean images, only the original 

images are used. 

 (a) 

 (b) 

 (c) 
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 (d) 

 (e) 
Figure 7-5 Some cropped faces in the Yale database. Facial expressions: (a) Neutral, 

(b) Smile, (c) Surprise, (d) Blink and (e) Grimace. 

 (a) 

 (b) 

 (c) 

 (d) 

 (e) 

Figure 7-6 The masked mean images and peak images produced by SMOM. The 

right-most column displays the mean images for each expression class, the first to 

fifth columns show the first five peak images, respectively. Facial expressions: (a) 

Neutral, (b) Smile, (c) Surprise, (d) Blink and (e) Grimace. 
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In the following experiments, we set k at 8 for SMOM and λ at 0.25 in (7.5), 

as in Section 7.5.1. We evaluated the performances of the respective algorithms for 

different expression categories, which are tabulated in Table 7-4. For ESTM, the 

recognition rates are lower than those based on the AR database. This is because the 

expressions “Blink” and “Grimace” mainly involve movements of the eyelids. Due 

to the low contrast in the eye areas (even human beings cannot correctly judge the 

movements based on some of the original images), it is difficult to abstract valuable 

shape and texture information in these areas (see Figure 7-5). With the different 

methods, the performance for recognizing the “Smile” is always the best. This can 

be explained by the fact that the smile expressions of different identities are more or 

less the same, i.e. its within-class variation is small (unlike the expression 

“Surprise”). In addition, the smile expression is quite distinct from other 

expressions, such as “Neutral”, “Blink” and “Grimace”, so its between-class 

variation is relative large. Based on the experimental results, the SMOM-ESTM 

algorithm can always give the best recognition performance for different 

expressions. 

Table 7-4 Facial expression recognition rates using different methods. 

(%) Neutral Smile Surprise Blink Grimace Average 

SMOM 86.7 100.0 93.3 86.7 93.3 92.0 

ESTM 53.3 93.3 73.3 73.3 73.3 73.3 

SMOM-ESTM 93.3 100.0 93.3 86.7 100.0 94.7 

7.5.3 Storage Requirements and Computational Complexity 

In our approach, the data stored in a database includes the expression models 

produced by SMOM, and by the edge maps, Gabor maps and angle maps of the 



136 

mean images for ESTM. Suppose that there are W expression models (SMOM1, 

SMOM2, …, SMOMW), and for each model, k representative values are used at each 

pixel position with 8 bits per value. As a facial mask is adopted to emphasize the 

actions at the eye and mouth areas, only the points in these areas are stored. The 

number of pixels involved in these areas is denoted as NS. Then, the number of bytes 

used for these expression models is WNSk. For ESTM, W mean images are used for 

the expression classes. The numbers of bytes for the edge map, Gabor map, and 

angle map of an image are 2ηNS, 2nfnaNS, and 2NS, respectively, where η is the 

percentage of the points selected as edge points in an edge map, and nf and na are the 

numbers of center frequencies and orientations used for the Gabor filters, 

respectively. Therefore, the total number of bytes or the storage requirement is (k + 

2η + 2nfna + 2)WNS. 

The computational complexity for recognizing a query face image includes 

two parts: feature extraction and matching. The runtime required for feature 

extraction is the time spent on computing the edge map, Gabor map, and angle map 

of the query image (SMOM performs matching based on the gray-level intensities, 

and does not need to extract additional features). As all the maps of the model 

images for the expression classes have been computed and stored in the face 

database, we need to consider only the time required to generate the maps of the 

query image. The computations required for computing an edge map, Gabor map 

and angle map are in the order of O(NS), O(NS log2(NS)) and O(NS), respectively. For 

searching in a large database, the runtime for matching is the most significant part 

of the whole process. For SMOM, the computation required for the model distance 
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is in the order of O(kWNS). For ESTM, the computational complexity is in the order 

of O(2ηNSD2Wtall), where D is the size of the neighborhood considered when 

performing the elastic matching, and all e g at t t t= + + , where et , gt , at  are the 

average runtimes required to compute the edge distance, Gabor distance and angle 

distance, respectively, for a point pair. Therefore, the total computational 

complexity for recognizing the facial expression of a query face image is in the 

order of O(kWNS)+ O(2ηNSD2Wtall). Experiments were conducted on a computer 

system with Pentium IV 2.4GHz CPU and 512MB RAM. The average times 

required to compute the edge map, Gabor map and angle map of a face image are 

about 0.001 s, 0.10 s and 2.4×10-4 s, respectively. The average runtimes for feature 

matching using our SMOM-ESTM algorithm based on the AR database (3 

expression models, 3 mean images as model images, and 183 images for testing) 

and the Yale database (5 expression models, 5 mean images as model images, and 

75 images for testing) are 0.10 s and 0.17 s, respectively. 

7.6 Conclusions 

In this chapter, we have proposed a novel and accurate algorithm for human 

facial expression recognition. In our algorithm, a statistical model, namely Spatially 

Maximum Occurrence Model (SMOM), is proposed to model the different facial 

expressions, and the distance between a query input and an expression model is a 

measure of the precision of using the model to represent the expression in the query 

input. Another method, ESTM, is used to measure the similarity based on the shape 

and texture information using the shape-texture Hausdorff distance between the 

input image and the mean images of the training set. These two methods are 
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combined to form the SMOM-ESTM algorithm, which can achieve a good 

performance level for expression recognition. 

In our algorithm, only the position of the eyes and the middle of the mouth are 

required for normalization and alignment. The expression models produced by 

SMOM contain most of the significant visual content in the training data, and are 

suitable for representing the expression patterns, which have large within-class 

variations. For ESTM, the shape information and texture information about an 

image are complementary and supplementary to each other, which can provide a 

more detailed and exact description of a facial expression. Furthermore, the elastic 

matching allows expression to vary to a certain extent. With our approach, the 

recognition rates based on the AR database and the Yale database are 94.5% and 

94.7%, respectively. 
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Chapter 8.       Human Face Indexing 
 

In the previous chapter, we proposed different methods for face recognition, lighting 

modeling and facial expression recognition. All the methods are important for the 

development of a practical and reliable face recognition system. However, human 

faces are usually represented by a high dimensional feature vector. The computation 

required for face recognition will become prohibitively large if the size of the 

database is very large. In this chapter, we will propose an efficient indexing 

structure for searching for a human face in a large database.  

8.1 Introduction 

As more and more information is captured and stored in digital form, the 

requirement of digital libraries/databases has significantly increased, for example, 

video data, human face images, etc. In the meantime, computational complexity for 

indexing and retrieving the information will become prohibitively heavy when the 

size of the database concerned becomes very large. The range of applications for a 

digital library is wide, covering electronic commerce, security, human computer 

interaction, etc. Human face recognition is an example of such applications, and it 

usually involves a large database that can have a size of thousands. However, the 

computational time for retrieving a matched human face from a database will 

increase with the size of the face database. Hence, efficient indexing of human 

faces in a large database is an important issue in making the application practical. 

In a face recognition system, each human face in the database is pre-processed and 
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its feature for recognition is extracted. This feature vector is stored along with the 

corresponding face image. With a query input face image, the same type of feature 

is extracted and then compared to each of those in the database. The similarity 

between the query input and a face in the database is measured by the distance 

between their respective feature vectors. Therefore, the runtime required for the 

face recognition process can be reduced if the number of face images in the 

database to be considered is smaller. 

Currently, there are many techniques for quick image retrieval or image 

indexing, such as the color-based approach [202, 203] and shape-contour retrieval 

[204-206]. However, these methods may not be applied for indexing face images in 

a database because each human face has a similar facial shape and color. In this 

chapter, we introduce a new efficient indexing algorithm for face recognition with 

a large database. This is a two-stage approach. In the first stage, a small set of faces 

in the database similar to the input is selected to a smaller database, namely a 

condensed database, with the computation to be required independent of the 

database size. Then, in the second stage, a more accurate but more computational 

method is applied to search for the required face in the condensed database. 

8.2 Indexing for a Human Face Database 

The purpose of indexing is to allow for the retrieving of required images 

from a database quickly. Usually, when the size of the feature vector is less than 

20, many efficient indexing schemes based on tree structures can be used. 

However, for human face recognition, the dimension of the feature vector to 

represent a human face is much larger than 20. In our approach, eigenfaces are used 
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to form a vantage-object structure [207], which can efficiently select similar faces 

in a database. This can therefore reduce a large database problem to a small one, 

and can afford to use an accurate yet computational face recognition method in the 

second stage.  

8.2.1 Eigenfaces as Vantage Object 

As discussed in Section 2.1.3.1, PCA has been a popular technique for 

human face recognition. The eigenvectors obtained by PCA, which have the best 

representation of the original training faces, are called eigenfaces. This technique 

can also reduce the dimension of the input image to a dimension depending on the 

number of eigenfaces being used to represent the image. The input image is 

projected onto the eigenfaces to form a feature vector for its representation and face 

recognition.  

Suppose that each face is normalized to a size of N×M, and the face images 

are denoted as Γ1, Γ2, Γ3,…, Γk, where k is the number of face images stored in a 

database. Then, the average face, ψ, and difference faces, Φi, are defined as 

follows: ψ −= ii ΓΦ , where  

∑
=

=
k

i
ik 1

1
Γψ .       (8.1) 

Then, the covariance matrix Ω, which is of dimension NM×NM, is computed as 

follows: 

TΦ⋅Φ=Ω ,       (8.2) 

where Φ = [Φ1 Φ2…Φk], a NM×k matrix. The eigenvectors and the corresponding 

eigenvalues of the covariance matrix can be computed as follows: 
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Ωvi = λivi.       (8.3) 
The covariance matrix has up to P eigenvectors associated with non-zero 

eigenvalues, where P = minimum(NM, k). The eigenvectors vi are sorted from high 

to low according to their associated eigenvalues λi. The set of eigenvectors V 

represents the principal components of the training face images, and the 

eigenvectors are denoted as follows: 

V = [v1, v2, …, vP].      (8.4) 

A normalized difference face image, ϕ, is projected onto the eigenspace to form a 

feature vector, κ, of dimension P.  

κ = [κ1, κ2, …, κP]T = VT· ϕ.     (8.5) 

The ith value of κ is computed as the dot product of the face image, ϕ, and the ith 

eigenvector, vi. This feature vector κ can then be used to represent the input face 

image for face recognition. In practice, the actual number of eigenvectors or 

eigenfaces to be used, p, is much smaller than P. In our indexing structure, the 

magnitude of each projection, κi, is used individually in ranking the face images to 

form p ranked lists. With different eigenfaces, the face images are ranked in 

different orders. 

8.2.2 Formation of a Condensed Database 

The computation required to search a query face image in a database is a 

function of the feature vector dimension and the number of subjects in the database. 

Therefore, the search process will become much faster if a small sub-set of the 

faces in the database can be selected efficiently to form a condensed database, 

which also includes the matched face. Therefore, in our indexing scheme, a 

condensed database is generated from a large database for a query face image. 
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Figure 8-1 The structure of our indexing scheme. The faces in the database are 

ranked with respect to p eigenfaces to form p ranked lists. 

Suppose   that   each   face    image   in    the   database, Γi, is normalized and 

subtracted by the average face, and projected onto the p eigenfaces with the 

corresponding largest eigenvalues. Therefore, the face image is decomposed into p 

projected values [κi,1,κi,2, …,κi,p]. For each of the eigenfaces, the face images are 

ranked in either an ascending or descending order. In the following, the discussion 

assumes that the faces are ranked in ascending order, and each face is ranked p 

times to form p ranked lists. Figure 8-1 illustrates the indexing scheme with p 

eigenfaces. The projected value onto the mth eigenface with corresponding rank j is 

denoted as m
jx . The rank of a face with respect to an eigenface depends on its 

similarity to the eigenface relative to other face images in the database. Similar 

faces should have similar ranks with respect to the eigenfaces. In our method, a 

query image is normalized and then ranked with respect to each of the eigenfaces. 
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Suppose that Y denotes the normalized difference face. Its projections onto each of 

the eigenfaces vi are computed as follows: 

yi = vi
T·Y, where i = 1, …, p.    (8.6) 

The input Y is then ranked in the p ranked lists. Similar face images in the database 

are then selected by considering its neighbors in each of the ranked list, as 

illustrated in Figure 8-2. Suppose that the input is ranked between position j and j+1 

in the mth ranked list. The one with its projected value, i.e. m
jx  or m

jx 1+ , nearest to ym 

is selected and then put into the condensed database B. Similar faces from the 

database are selected by considering the p ranked lists one by one and repetitively 

until the condensed database B containing the required number of distinct faces. 

 
Query input

Query input

Query input

 

Figure 8-2 Ranking a query face image and selecting similar faces to the condensed 

database B. 
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The computation required for this scheme depends on the number of 

eigenfaces to be used. The smaller number of eigenfaces used, the less the amount 

of computation required. However, a larger condensed database B will then be 

needed in order to guarantee the inclusion of the matched face to the query. 

Furthermore, the number of eigenfaces to be used and the size of the condensed 

database B depend on the size of the large face database concerned.  

8.3 Experimental Results 

8.3.1 Indexing Using Eigenfaces 

To investigate the performance of our proposed indexing scheme based on 

eigenfaces, a number of standard face databases and self-captured face images were 

used in the experiments. Those databases used include the ORL database, Yale face 

database, MIT face database [208], AR face database, BioID face database [209], 

UMIST face database [210], and Bern face database [211]. Including our self-

captured ones, we form a database of 523 distinct subjects, with 752 different facial 

images for testing. The face images of each subject were captured at different 

times, under slightly different lighting conditions, and with slightly perspective 

variations.  

The experiment setup is that an upright frontal view of each of the 523 

subjects with a suitable scale and normal facial expression was chosen to form a 

database consisting of 523 persons. Some of the remaining face images are selected 

to form a testing set of 752 faces. The eigenfaces based on the 523 face images in 

the database are generated, and our proposed indexing structure is formed with 

different numbers of eigenfaces. In our experiments, we will investigate the 
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number of eigenfaces to be used such that the size of the condensed database will 

be a minimum. With an optimal number of eigenfaces, the size of the condensed 

database, which guarantees the inclusion of the matched face, will be investigated. 

The objective is, with a certain sized large face database, to investigate the 

corresponding number of eigenfaces to be used and the size of the condensed 

database to achieve the best performances in terms of computation and recognition 

rate. In the following experiments, the effect of database size on the optimal 

number of eigenfaces to be used and the size of the condensed database will be 

studied, and two different database sizes, 330 and 523, will be considered. 

With a particular database size, different numbers of eigenfaces used will 

affect the required size of the condensed database. Figures 8-3(a) and 8-3(b) 

illustrate the number of eigenvectors used in our indexing scheme and the 

corresponding size of the condensed database which will include all the matching 

faces among the testing faces. From the experimental results, the required size of 

the condensed database decreases with an increase in the number of eigenfaces 

being used, until a certain number. These are 83 and 128, when the database sizes 

are 330 and 523, respectively. In order words, the optimal number of eigenfaces to 

be used is roughly 25% of the total number of different faces in a database. 

When the size of a database grows, the corresponding size of the condensed 

database will also increase. From Figure 8-3, the size of the condensed database 

should be set at 35% of the size of the database. The runtime required by our 

indexing scheme to produce the condensed database depends on the number of 

eigenfaces used. Experiments show that the average runtimes for using 25% of 



147 

eigenfaces with a database size of 523 is less than 1 second. The experimental 

results were conducted on a Pentium 4 2.4GHz computer system. 
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Figure 8-3 The required sizes of the condensed database with different numbers of 

eigenfaces used in our indexing scheme when the sizes of the database concerned 

are (a) 330 and (b) 523, respectively. 
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Indexing Using Gaborfaceshis part, Gaborfaces, which are produced by using 

the Gabor wavelets, are used instead of eigenfaces for human face indexing. The 

performance of this approach will also be evaluated and compared to the eigenface 

approach.  

The Gabor representations of an input image are the convolution outputs of 

the image and a set of Gabor wavelet filters [2.19] with different center frequencies 

and orientations. Some Gabor representations are shown in Figure 2-1. In our 

experiments, we select the three center frequencies ( )2,42,4 πππ  with a scale 

factor of 2  [54]. In addition, 8 orientations are used in our experiments. 

Therefore, 24 Gabor wavelet kernels are used to extract the features in an image. 

For each training image, 24 outputs are generated based on the different Gabor 

wavelet kernels. For each kernel, an average representation, which is called a 

Gaborface, is computed. Then, we use these Gaborfaces instead of the eigenfaces 

in section 8.3.1 to build a human face indexing scheme. As 3 scales and 8 

orientations are used, we also compute 3 average images for the three different 

scales, and 8 average images for the eight different orientations. In totally, we have 

24+3+8=35 Gaborfaces for human face indexing. In our experiments, 433 images 

were selected as training images, and the Gaborfaces generated are shown in Figure 

8-4. These Gaborfaces are similar to the Gabor representations shown in Figure 2-

1, because the former are the average images of the latter based on different 

identities. Compared to the eigenface approach, the Gaborfaces retain more local 

features, which exhibit the desirable characteristics of capturing salient visual 

properties such as spatial localization, orientation selectivity, and spatial frequency. 
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(a) Gaborfaces with different orientations and 4π  center frequency 

 
(b) Gaborfaces with different orientations and 42π  center frequency 

 
(c) Gaborfaces with different orientations and 2π  center frequency 

         
(d) Gaborfaces with three different center frequencies 

 
(e) Gaborfaces with eight different orientations 

Figure 8-4 The magnitudes of the Gaborfaces with 3 scales and 8 orientations. 

 

It is not necessary to use all these Gaborfaces in face indexing. Four different 

configurations of the Gaborfaces are used in our experiments. Configuration A 

selects the first 24 Gaborfaces which have different scales and orientations; 

Configuration B selects the 3 average Gaborfaces with different center frequencies; 

Configuration C selects the 8 average Gaborfaces with different orientations, and 

Configuration D considers all the total 35 Gaborfaces. In our database, 282 images 

are used for testing. The respective experimental results are shown in Figure 8-5. 
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Figure 8-5 Human face indexing using Gaborfaces. 

In Figure 8-5, the condensation ratio measures the condensation efficiency of 

the testing database; recall indicates the proportion of desired images that are 

returned among the condensed database. Although different numbers of Gaborfaces 

are used, the results based on these four configurations are very similar. The use of 

Configuration C achieves the best performance. When the size of the condensed 

database is set at 35% of the size of the database, the recall of the testing images is 

about 85%. Compared to the performance of the human face indexing scheme 

using eigenfaces, this result is not satisfactory. This can be explained by the fact 

that the Gaborfaces mainly consider the local texture of the image, and 

consequently are sensitive to scaling, translation, and the variations of expressions, 

etc. Therefore, for some query images, no matter which Gaborface is used, more 

neighbors in the ranked list should be considered. [109] used the line edge map 

(LEM) to prefilter a face database, and for the AR face database, when the size of 
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the condensed database is set at 49.69% of the size of the database (i.e. 50.31% of 

images are filtered out), the recall rate of the testing images is about 88.39%. This 

performance is not only lower than our method based on the Gaborfaces (recall rate 

of about 92% for 50% condensation ratio), but also much lower than the result 

based on the eigenfaces (recall rate of 100% for 35% condensation ratio). 

8.4 Conclusions 

In this chapter, a new efficient indexing scheme, which produces a condensed 

database from a large face database, is proposed. Our approach is based on 

eigenfaces and the projections of a face image onto each of the eigenfaces are used 

for its ranking. The computational complexity of this scheme is proportional to the 

number of eigenfaces used. Experimental results show that the optimal number of 

eigenfaces to be used and the size of the condensed database are about 25% and 

35%, respectively, of the size of the database. This allows us to consider a small 

condensed database instead of the original large face database when performing 

face recognition. We have also proposed another human face indexing scheme 

using Gaborfaces, and discussed the reason why its performance is lower than that 

of using eigenfaces.  
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Chapter 9.       Conclusions and Future Work 

 

9.1 Conclusion on our current work 

In this thesis, we first describe the principles of face image analysis techniques. Our 

research focuses on three areas: face recognition, face recognition under varying 

illuminations, and facial expression recognition. We make a brief review on some 

well-known face recognition techniques; and also review the recent developments of 

the methods for face recognition under varying illuminations and the methods for 

facial expression recognition.  

We propose two methods for face recognition under various conditions: 

ESTM and DKPCA. ESTM, elastic shape-texture matching method, is devised in 

Chapter 3. In this approach, not only the shape information but also the texture 

information is used for comparing two faces without establishing any precise pixel-

wise correspondence. Because the elastic matching is carried out within the 

neighborhood of each edge pixel concerned, which is robust to small, local 

distortions of the feature points, such as facial expression variations, this method is 

robust to small shape variations. The edge map, Gabor representations and the 

direction of image gradient can all alleviate the effect of illumination to a certain 

extent. However, when violent illumination variations exist, the edge map is not 

reliable, and the performance of ESTM will degrade. DKPCA, Doubly nonlinear 

mapping kernel Principal Component Analysis, is a Gabor-based method and is 

proposed in Chapter 4. In our approach, the Gabor wavelets are used to extract 
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facial features, then a doubly nonlinear mapping kernel PCA is proposed to perform 

feature transformation and face recognition. The proposed nonlinear mapping not 

only considers the statistical property of the input features, but also adopts an 

eigenmask to emphasize those important facial feature points. Therefore, after this 

mapping, the transformed features have a higher discriminating power, and the 

relative importance of the features adapts to the spatial importance of the face 

images. This new nonlinear mapping is combined with the conventional kernel PCA 

for face recognition.  

 The experiments using ESTM and DKPCA are performed, and the 

corresponding performances are compared with other methods in Chapter 3 and 

Chapter 4, respectively. From Table 3-8 and Table 4-6, we can see that DKPCA 

always outperforms ESTM; this is because the former can encode higher order 

statistics and the features are recoded according to their statistical property and 

shape importance. However, if there are large expression variations exist, e.g. see 

the ORL database in Table 3-6 and Table 4-4, ESTM can perform better. This is 

because the elastic matching is more suitable for comparison under local shape 

variations. Here we should point out that in order to compare the performances of 

different methods with the same conditions, all methods shown in Table 3-8 adopt 

the Euclidean distance measure for computing the similarity, while the methods in 

Table 4-6 use the Mahalanobis distance measure. It is difficult to determine which 

distance measure is better for a method. Although Liu [50] and Yambor et al. [185] 

argued that a PCA classifier will perform better when the Mahalanobis distance is 

used, the result in Table 3-8 and Table 4-6 show that, if there are large illumination 
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variations exist, e.g. the YaleB database, the Euclidean distance measure performs 

better. 

Besides the methods for face recognition under various conditions, we also 

investigate the techniques for face recognition under varying illuminations, which 

can be considered a sub-problem of the former. We propose two methods, which are 

describes in Chapter 5 and Chapter 6, respectively. These two methods are model-

based methods. According the illumination model and human face model we used, 

the effect of uneven illumination can be modeled by a sequence of multiplicative 

factors and additive factors, which are only determined by the illumination model 

concerned and the shape of a human face. Firstly, we propose a method, which can 

compensate for the uneven illuminations on human faces and reconstruct face 

images in normal lighting conditions, in Chapter 5. In order to eliminate the 

influence of shape about different faces, a 2D face shape model is used to obtain a 

shape-free texture image. For an identified illumination category, the effects of the 

uneven lighting, i.e. the multiplicative factor and the additive factor, can be 

computed using a set of training images, and are used for reconstructing an image 

that will visually be under normal illumination. Then these images can be used for 

face recognition. This method can produce a great visual improvement and lighting 

smoothness. However, it is difficult determine the feature points when the input 

image is under varying lightings. Therefore, we propose another illumination 

compensation method in Chapter 6, which is much simpler and efficient. Instead of 

computing the multiplicative factors and the additive factors, we aim to reduce or 

even remove the effect of these factors. In our method, a local normalization (LN) 
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technique is applied to an image, which can effectively and efficiently eliminates 

the effect of uneven illuminations while keeping the local statistical properties of the 

processed image the same as in the corresponding image under normal lighting 

condition. After processing, the image under varying illumination will have similar 

pixel values to the corresponding image that is under normal lighting condition. 

Then, the processed images are used for face recognition. 

The results shown in Table 5-3 and Table 6-2 are similar. It seems that the 

method using LN technique is more efficient and effective than the method based on 

a 2D shape model. However, the latter method still has its advantages. Firstly, due 

to the shape normalization, it is robust to local distortion of a human face, such as 

the expression variations. Secondly, it can construct a visually nature human face, 

which is under normal illumination, therefore the results can be used for image 

reconstruction. Finally, in the Chapter 5, due to limitation of shape morphing, we 

only consider the central facial areas (see Figure 5-5, 5-6 and 5-7), which do not 

include the cheek and chin areas, and are more difficult for face recognition. In 

Chapter 3 and Chapter 4, we also evaluate the ESTM and DKPCA for face 

recognition under varying illuminations, and the results are shown in Table 3-5 and 

Table 4-3, respectively. The results are also similar to those in Table 5-3 and Table 

6-2. We should notice that the methods in Chapter 3 and Chapter 4 are Gabor-based 

methods, while the methods in Chapter 5 and Chapter 6 directly perform the PCA 

on the intensity images. Table 6-4 shows the results if we adopt the Gabor wavelets 

to extract features based on the images processed by LN technique, the recognition 

rate is 98.7% for the combined database.  
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We also present an efficient method for human facial expression recognition 

in Chapter 7. We first propose a representation model for facial expressions, 

namely spatially maximum occurrence model (SMOM), which is based on the 

statistical characteristics of training facial images and has a powerful representation 

capability. The ESTM algorithm is then used to measure the similarity between 

images for facial expression recognition. By combining SMOM and ESTM, the 

algorithm is called SMOM-ESTM and can achieve a higher recognition 

performance level. 

In order to reduce the computational time when perform face recognition 

based on a large-scale database, it is necessary to prefilter a smaller face database, 

which includes the target. In Chapter 8, an efficient indexing structure for searching 

a human face in a large database is proposed. In our method, a set of eigenfaces is 

computed based on the faces in the database. Each face in the database is then 

ranked according to its projection onto each of the eigenfaces. A query input will be 

ranked similarly, and the corresponding nearest faces in the ranked position with 

respect to each of the eigenfaces are selected from the database. These selected 

faces will then form a small database, namely a condensed database, for face 

recognition, instead of considering the original large database. 

9.2 Future Work 

9.2.1 Face Recognition Using Morphable Models 

For images with non-frontal presentation, the 2002 Face Recognition Vendor 

Test (FRVT 2002) [212] examined the use of morphable models ― a technique that 

takes a facial image from any angle and projects what the subject might look like 
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facing forward. It has been shown that there is a dramatic improvement in 

performance using the morphable models. One of the top three systems increased its 

performance from 26 percent on non-processed, non-frontal images to 84 percent on 

morphed images. In fact, in our illumination compensation algorithm proposed in 

Chapter 5, a morphable face model is also used. In order to build the 

correspondence between the query image and the reference image, similar to [170], 

a set of feature points is determined manually. Then, the displacements of these key 

points are computed. With this correspondence, a triangle-based cubic interpolation 

method is used to build a displacement field on the whole face. In order to build this 

correspondence automatically, the edge detection method and our facial expression 

analysis algorithm will be used. Therefore, we can automatically detect the locations 

of feature points, and use the morphable face model for face analysis. 

Zhang et al. [213] creates a 3-D face structure from multiple image views of a 

human face taken in prior unknown poses by appropriately morphing a generic 3-D 

face. In fact, our morphable face model can also be extended from 2-D to 3-D. 

Nevertheless, the key issue to be investigated is how to build the correspondence 

between different images with varying poses. 

9.2.2 Face Recognition Under Various Illuminations and with 

Different Expressions 

As stated by Adini et al. [67], “The variations between the images of the same 

face due to illumination and viewing direction are almost always larger than image 

variations due to change in face identity”, the varying illuminations, expressions and 

perspectives are great challenges for automatic face recognition techniques. In 
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Chapters 5 and 6, we propose two methods to handle the illumination problem, and 

in Chapter 7 we describe a method to analyze facial expressions. When we consider 

the effect of varying illumination, we do not consider the expression variations, and 

vice versa. For a real face recognition application, these two factors may appear at 

the same time and affect each other. Therefore, we should propose a method which 

is robust to both the illumination and the expressions. A possible two-step procedure 

is to first perform the illumination normalization using the LN technique, and then 

to analyze the facial expression and perform the shape normalization, where a 

feature point detection technique is required.  

For variations caused by perspectives or poses, it is difficult to recognize an 

identity based on a single frontal training image, and the multi-view techniques are 

required. In this case, morphable models can improve the performance as stated in 

Section 9.2.1. Therefore, how to combine these techniques to produce an automatic 

face analysis system which can analyze the illumination, facial expression and pose 

is an interesting and challenging research topic. 

9.2.3 Other Applications of Human Face Analysis 

Our human face analysis techniques, such as the recognition and 

representation of facial expressions, compensation for illumination conditions, use 

of texture and shape information for the morphable models, etc., can be applied for 

many purposes, e.g. face image compression, face image denoising, face image 

enhancement or super-resolution, and face image reconstruction. In these 

applications, we should combine our methods with other techniques according to the 

characteristics of the respective applications. 
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