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ABSTRACT

The work presented in this thesis is related to an intelligent power system in a
modern home. Results in the following areas will be reported: a power line based data
network infrastructure with hardware modules for an intelligent home, a home electric
load forecasting system, and a home electric load balancing system.

A power line data network based on the spread-spectrum technology is proposed
and implemented. It facilitates digital data communications at a rate of 10 Kbps in the
noisy and signal-distorting environment of tﬁe AC power line. This power line data
network serves as a backbone of communication in an intelligent home through which
electrical appliances can be controlled via line/mobile phones, personal digital ass;istants
(PDAs), keﬁads or personal computers anytime and anywhere, ‘inside or outside the
home. It can provide a basis for the plug-and-play features of electrical appliances
without the need of installing additional cables.

Short-term electric load forecasting (STELF) is essential to improve the reliability
of the AC power line data network and provide optimal load scheduling in an intelligent
home. Three computational intelligence techniques are developed to realize STELF.
The first approach is by using a fuzzy genetic algorithm (GA)-based neural network
(NN). It can forecast the electric load accurately with respect to different day types and
weather information. The proposed fuzzy GA is modified from a published GA with
arithmetic crossover and non-uniform mutation. Fuzzy logic is used to incorporate
expert knowledge and experience {(in terms of linguistic rules) into the crossover and

mutation operations. With fuzzy logic, the number of iteration and the rate of change of
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fitness value can be fine-tuned. By using some benchmark test functions, it can be
shown that the fuzzy GA performs better than the traditional GA. In many applications
of NNs, the networks are fully connected. However, the performance of a fuily
connected NN may not be better than that of a partly connected NN with the same
number of hidden nodes. This is because some links in an NN could be redundant. A
three-layer NN with a switch introduced to each link is proposed to facilitate the tuning
of the network structure. By turning on or off these link-switches during the training
process, the optimal neural network structure can be obtained. This implies that the cost
of implementing the proposed NN in terms of hardware, processing and simulation time
can be reduced.

The second approach for realizing STELF involves a fuzzy GA-based neural
fuzzy network (NFN). The optimal NFN structure can be found by the fuzzy GA when
switches in the links of the network are introduced. The membership functions and the
number of rules of the NFN can be generated automatically. Results for implementing
STELF in an mtelligent home by using the proposed NFN will be given.

The third approach for realizing STELF is based on a modified fuzzy GA-based
neural network, which involves a new neuron model. Under this model, the neuron has
two activation transfer functions and exhibits a node-to-node relationship within the
hidden layer. The proposed neural network can offer a better performance and a smaller
number of hidden nodes than the traditional feed-forward neural network. This network
1s trained by the fuzzy GA.

The electric load forecasting system is further applied in a home electric load

balancing system. After an electric load forecasting system can successfully forecast
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the power consumption profile of a home, the load balancing system can adjust the
amount of energy stored in batteries accordingly and prevent it from reaching some
practical limits. A steady consumption pattern can then be obtained which will benefit
both the power users and the utility company. An example will be given to illustrate the

accuracy of the forecaster, and its ability of achieving load balancing.
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STATEMENT OF ORIGINALITY

The following contributions reported in this thesis are claimed to be original.

1.

An AC power lfne data network for an intelligent home is implemented (Chapter 3.)
With this home system, any alteration or expansion imposes no extra cost on the
installation of network cables. The AC power line data network is based on the
spread-spectrum technology and is applied as a wired network in an intelligent home
system.

A fuzzy genetic algorithm is proposed (Chapter 4, Section 4.2.) This algorithm is
modified from the published GA with anthmetic crossover and non-uniform
mutation. By implementing fuzzy logic in the genetic operations, the proposed
algorithm performs better and converges faster than the tradition GA.

A fuzzy GA-based neural network with link switches is proposed (Chapter 4, Section
4.3.) By introducing link switches to the neural network, the optimal network
structure can be obtained. This implies that the cost of implementing the proposed
neural network can be reduced.

The application of the fizzy GA-based neural network to short-term electric load
Sforecasting is presented (Chapter 4, Section 4.3.2) A short-term electric load
forecasting system has been realized by the fuzzy GA-based neural network. It can
forecast the electric load accurately with respect to different day types and weather
information.

A fuzzy GA-based neural fuzzy network with rule switches is proposed (Chapter 4,

Section 4.4.) The optimal NFN structure can be found by the fuzzy GA when rule
v



switches are introduced. The membership functions and the number of rules can be
generated automatically.

The application of the fuzzy GA-based neural fuzzy network to short-term electric
load forecasting is presented (Chapter 4, Section 4.4.2.)

. A modified fuzzy GA-based neural network with two activation transfer functions in
the neuron is proposed (Chapter 4, Section 4.5) A new neuron model is introduced.
The proposed modified network can offer a better performance and a smailer
number of hidden nodes.

The application of the modified fuzzy GA-based neural network to short-term
electric load forecasting is presented (Chapter 4, Section 4.5.3.)

. A home electric load balancing system is proposed (Chapter 5.) The electric load
balancing system can adjust the amount of energy stored in batteries accordingly
and prevent it from reaching some practical limits. A relatively steady consumption

pattern can then be obtained which will benefit both the power users and the utility

company.
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CHAPTER ONE

INTRODUCTION

In an information age, homes should take full advantage of modem technology
and offer intelligent features in order to enhance the comfort and security of their
residents. A data network for the communication between the home users and the home
should be present. In particular, the AC power line has gradually been accepted as the
backbone of the home network thanks to its low cost and readiness of interfacing with
domestic appliances. To enhance the reliability of AC power line data network, an
accurate short-term electric load forecasting should be realized. Furthermore, the short-
term electric load forecasting can form the basis for the development of an intelligent
load balancing system. At present, the peak demand of electricity are generally met by
operating costly auxiliary generators, or by purchasing power from other utility
companies. The cost for supplying peak power is therefore much higher than that for
supplying the average power. A reduction in the peak value of electricity demand can
be achieved if we can realize load forecasting, and schedule the demands on the utility
company accordingly. This has to be supported by batteries installed in the intelligent

home that are responsible for balancing the load demand.

Short-term electric load forecasting and balancing systems exhibit non-linear, non-
stationary, and non-Gaussian characteristics that are difficult to model and forecast
using traditional mathematical methods. Computational Intelligence (CI} [Pedrycz 97]
techniques are known to be capable of solving complex and non-linear problems. They

are proposed in this thesis to realize short-term electric load forecasting and balancing.
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Chapter 1: Intreduction

The main components of CI encompass fuzzy logic [Zadeh 65], neural network [Haykin

94] and genetic algorithm [Michalewicz 94].

The aims of this thesis are to report home electric load forecasting systems and a
load balancing systém based on CI techniques. An AC power line data network
infrastructure for an intelligent home will be discussed. Three different CI approaches
for shdrt—term home electric load forecasting are proposed. Based on one of the home
electric load forecasting systems, a home electric load balancing system will be designed

and presented. The achievements reported in this thesis are summarized as follows;
1.1 POWER LINE DATA NETWORK INFRASTRUCTURE

One of the requirements for realizing an intelligent home system is the
establishment of a commum'cationr channel [Ferrerira 96, Amita;va 99] among home
apphances and users. Without having to consult the manufacturers of electrical
appliances and install a LAN, one simple way to realize this communication channel is
to make use of the AC power line. However, the electric power line at home has many
appliances connected to it, and each appliance has different characteristics that affect the
power line conditions. When using an AC power line as a networking medium, one has
to deal with problems such as electromagnetic interference, varying impedance, narrow
frequency impairments (owing to noise), and signal attenuation. On the other hand,
video or voice signals that require a high data rate may be transmitted in an intelligent

home. These bring difficulties to the design problem of an intelligent home system

based on a power line data network.
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Chapier 1: Introduction

In this thesis, we propose a power line data network based on the spread-spectrum
technology [Radford 96], which facilitates communications at 10 Kbps in the noisy and
signal-distorting environment of the AC power line. This power line network serves as
a backbone of communication in an intelligent home through which electrical
appliances can be controlled via line/mobile phones, PDAs, keypads or personal
computers anytime and anywhere, inside or outside the home. The power line data
network can provide a basis for the plug-and-play features of electrical appliances
without the need of installing additional cables. Various sensors are employed to
monitor the home's real time conditions in order to enhance its security and comfort.

Details about the intelligent home system will be given in Chapter 3.
1.2 ELECTRIC LOAD FORECASTING SYSTEM

Three intelligent techniques for short-term home electric load forecasting are
proposed in this thesis. First, a fuzzy genetic algorithm (GA)-based neural network is
proposed. A three-layer neural network with a switch introduced in each link is
proposed to facilitate the tuning of the optimal network structure. A proposed fuzzy GA
1s used to help tuning the structure as well as the parameters of the proposed neural
network. Such a fuzzy GA is modified from the published GA with arithmetic
crossover and non-uniform mutation operations [Michalewicz 94]. Fuzzy logic [Zadeh
65] is good in representing expert knowledge and experience with some linguistic rules,
which can be easily understood by human beings. In the fuzzy GA, a fuzzy crossover is
used to exchange information in two selected parents. The offspring to be generated is

governed by some fuzzy rules. The rules of this fuzzy crossover should be set such that
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Chapter 1: Introduction

the offspring will look closer to the parent with a larger fitness value. On applying the
traditional GA, the non-uniform mutation operation on the chromosomes is only
governed by the iteration number. In the proposed fuzzy mutation, the operation is not
only governed by the iteration number but also the rate of change of the fitness value
with respect to the mutated gene of the offspring. Consequently, human knowledge on
the crossover and mutation can be incorporated using fuzzy rules. It will be shown that
the proposed fuzzy GA is more efficient and provides a faster convergence than the

tradittonal GA in some benchmark test functions [De Jong 75, Yao 99 and Araujo 00].

Second, a short-term electric load forecasting realized by a fuzzy GA-based neural
fuzzy network (NFN) is proposed. In this thesis, a neural fuzzy network (NFN) with
switches is proposed. By using the proposed fuzzy GA, the optimal number of fuzzy

rules can be found. This implies a lower cost of implementing the proposed NFN.

Third, a modified fuzzy GA-based neural network is proposed for short-term
electric load forecasting. In this modified neural network, two different activation
transfer functions are used in the neuron and a node-to-node relationship is proposed in
the hidden layer. This network model is found to be able to give a better performance
with a smaller number of hidden nodes than the traditional feed-forward neural network
[Bryson 69 and Lecun 85]. The proposed fuzzy GA is used to tune the parameters of the
neural rietwork. Details about the computational intelligence techniques, the electric
load forecasting systems, and the simulation results will be given in Chapter 4. A

comparison for the three approaches will also be given.
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Chapter I: Introduction

1.3 ELECTRIC LOAD BALANCING SYSTEM

A home electrical load balancing system based on the proposed fuzzy GA-based
neural network forecaster will be reported. It is realized with the installation of batteries
for energy storage at home. In this system, the power supplied to the home is regulated
to a predicted reference value. If the home needs more power than the reference, the
batteries will discharge to provide the extra power. If the home draws less power than
the reference, the energy in excess will be used to charge the batten’es.- As a result, the
power drawn from the mains will approach a constant despite the presence of large
fluctuations in the power consumption. The proposed system not only solves the
overloading problem, but also helps power utility companies reduce the budget for peak-
hour power generation. To make the system work probably, the capacity of the batteries
should be high enough so that they are not fully charged or discharged during the
operation. In this thesis, the proposed short-term electric load forecasting system
forecasts the loading of the home and suggests a suitable reference amount of energy to
be stored in the batteries. The system will spare some control power to regulate the
amount of energy stored in the batteries. By doing so, the performance of the home load
balancing is sacrificed a bit for the system reliability. Details about the electric load
balancing system will be given in Chapter 5. A ;:onclusion to the whole thesis will be ‘

given in Chapter 6. The achievement will be summarized and the direction for further

development will be discussed.
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CHAPTER TWO

LITERATURE REVIEW

A review on intelligent home, computational intelligence techniques, home load
forecasting and load balancing will be given in this chapter. The advantages and

disadvantages of them will be discussed.

2.1 INTELLIGENT HOME

At present, many researchers and companies are developing intelligent home
systems. Some researchers have designed a phone-based remote controller through
which home users can issue control commands to their home appliances using a
telephone [Wong 94]. In UK, a small two-arm mobile robot in an intelligent home can
be controlled via an ISDN link [Gray 96]. Existing intelligent home systems usually are
implemented with a wired local area network (LAN). This involves extra cabling, and
the systems have to be well designed before it is built. Moreover, additions and
removals of network components might entail costly re-cabling. In the U.S., X-10
systems [Ferrerira 96] are commonly used in intelligent home systems. The AC power
line is used as the medium for data transmission. As AC power lines exist in nearly
every comer of a house, the installation cost for the data network can be significantly

reduced. However, the data transmission rate of the X-10 system is very low (typically

60 bps).
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2.2 COMPUTATIONAL INTELLIGENCE TECHNOLOGY

The main components of computational inteliigence technology encompass fuzzy

logic, neural network and genetic algorithm.

2.2.1 Fuzzy Logic

Since the initial work by Zadeh [Zadeh 65] and Gogien [Gogien 67], many
theoretical advances on fuzzy set theory have been made in many areas. These include
fuzzy algebra, fuzzy subset, fuzzy logic and reasoning, fuzzy inference, fuzzy relation
and equation, fuzzy number, fuzzy computing theory [Nauck 97, Jang 97, Wang 97 and
Kaimal 97] etc. Fuzzy logic offers a paradigm for representing and processing linguistic
or non-numeric information. It is a logic system that is much closer in spirit to human
thinking and natural language than the traditional logic systems [Lee 90]). By processing
fuzzy information, reasoning with respect to a linguistic knowledge base can be done.
These féatures have made fuzzy logic useful for dealing with complicated decision-

making problems with muitiple objectives. A typical fuzzy rule has the following

format:
Rulej: IF x, is N/ AND x, is NJ ... AND x, is N/
THENy=w,,j =1,2,..,r, 2.1

where x; (i = 1, 2, ..., n) are the input variables to the fuzzy system, y is the output

variable of the fuzzy system, N/ is a fuzzy term of rule j, j = 1, 2, ..., r,; r, denotes
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the number of rules, w, is a singleton output.

Ym; =1, m, &0, 1] forallj (22)

=1
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Hy (x,.) is the membership function corresponding to N/. The output of the fuzzy

system y is defined as,

(2.4)
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One limitation of a fuzzy logic system is that the fuzzy rules and the parameters inside

must be available, which may not be obtained directly through some- self-learning or

tuning algorithms.

2.2.2 Neural Network

Neural networks mimic the biological information processing mechanism. They
are typically designed to perform a nonlinear mapping from a set of inputs to a set of
outputs. Neural networks attempt to achieve a biological system type performance
using a dense interconnection of simple processing elements that are analogous to
biological neurons. They are adaptive information processing systems that can
autonomously develop operational capabilities in response to an information

environment. Hence, neural networks can leam from experience and generalize from
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previous examples, and are ideal in cases where the required mapping algorithm is not
known and tolerance to faulty input information is required. The processing elements
(PEs) are connected in a particular fashion. The behaviour of a trained neural network
depends on the weights, which are also referred to as the strengths of connections
between the PEs. Neural networks offer some advantages over conventional electronic
processing techniques. These advantages include generalization capability, parallelism,
distributed memory, redundancy, and learning. Currently, many neural network models
and learning algorithms [Nauck 97, Jang 97, Kaimal 97 and Haykin 94] are being used.
The famous ones include the back propagation [Rumelhart 86], the self-organizing map
[Kohonen 88], and the Hopfield nets [Hopfield 84]. The main drawback of a neural
network is its “black box” nature, i.e. the way that the weights affect the input-output

relationship is difficult to know.

2.2.3 Genetic Algorithm

Genetic algorithm (GA) [Michalewicz 94] is a directed random search technique
that is powerful in handling optimisation problems [Michalewicz 94]. It is especiaily
useful for complex optimisation problems with a large number of parameters such that
analytical solutions are difficult to obtain. GA can help to find out the globally optimal
solution over a domain [Michalewicz 94]). It has been widely applied in different areas
such as fuzzy control [Lam Ola], neural network [Lam 01b], forecasting [Ling Ola],
path planning [Juidette 00], greenhouse climate control [Caponetto 00], modelling and

classification [Setnes 00], recognition [Lam 0lc] etc.
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Procedure simple GA
begin
t—0 // 7. iteration generation
initialize P( 7 ) #/ P(t ). population for iteration ¢
evaluate (P(1))
while (not termination condition) do
begin
T—7T+1
select 2 parents p; and p, from P( 7 -1)
perform genetic operations (crossover and mutation)
reproduce a new P(7)
evaluate (P{ 7))
end
end

Fig. 2.1. Simple GA process in pseudo-codes.

The basic structure of a simple GA 1s shown in Fig. 2.1. To implement a typical
GA, a population of chromosomes P 1s mnitialised and then evolves from generation 7 to
7+1 by repeating the following procedures: (1) Two parents are selected from P in such
a way that the probability of selection 1s proportional to their fitness values. (2) A new
offspring 1s generated from these parents using crossover and mutation operationé,
which are govermned by the probabilities of crossover and mutation. (3) The population
thus generated replaces the current population. The above procedures are repeated until
a certain termination condition is satisfied. The termination condition may be that the

algorithm stops when a predefined number of generations has been processed.

Traditional binary GA [Michalewicz 94] has some drawbacks when applying to
multidimensional, high-precision numerical problems. For example, if 100 vanables in
the range [-500, 500] are involved, and a precision of 6 digits after the decimal point is
required, the length of the binary solution vector is 3000. This, in turn, generates a

search space of about 10'™ . The performance of the binary GA will then be poor. The
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situation can be improved if GA in floating-point numbers is used. Each chromosome is
coded as a vector of floating point numbers of the same length as the solution vector. A

large domain can thus be handled (e.g. the parameter space of a neural network.)

Different genetic operators have been proposed to improve the efficiency of the
GA. Genetic operators usually refer to crossover and mutation. Traditionally, random
mutation and crossover are employed. Yet, different modifications in the crossover and
mutation operations have been reported. For the crossover operation, arithmetic
crossover and heuristic crossover have been proposed [Michalewicz 94 and Wang 96].
For the mutation operation, uniform mutation and non-uniform mutation can be found
[Michalewicz 94 and Wang 96]. The details about these genetic operations are given in
Appendix. In the published GA with non-uniform mutation, the operation on the
chromosomes is governed by the generation number only. Some other factors (such as

the rate of change of the fitness value) that may slow down the convergence are not

considered.

2.3 ELECTRIC LOAD FORECASTING SYSTEM

Computational intelligence techniques have been applied in short-term electric
load forecasting (STELF). In particular, artificial neural networks have been considered
as a very promising tool to short-term electric load forecasting [Hsu 91, Part 91, Lee92,
Lu93, Kiartzis 97, Bakirtzls 96, Momoh 97, Rewagad 98 and Drezga 99]. In recent

years, fuzzy logic has been used to deal with vanable linguistic information in load
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forecasting [Hse 92]. By processing fuzzy information, reasoning with respect to a
linguistic knowledge base can be done. When the back-propagation feed-forward neural
networks were used [Hsu 91, Part 91, Lee92, Lu93, Kiartzis 97, Bakirtzls 96, Momoh
97, Rewagad 98 and Drezga 99], the common problems of convergence to a local
minima and sensitivity to initial values persist. Most of the reported NNs for STELF are
fully connected. However, the performance of a fully connected NN may not be better
than that of a partly connected NN with the same number of hidden nodes. This is
because some links in an NN could be redundant. In [Hse 92], a fuzzy system has been
apphied for electric load forecasting. In this electric load forecasting system, the fuzzy

rules or the fuzzy membership functions are determined by trial and error. The resulting

system is not necessarily optimal.

2.4 ELECTRIC LOAD BALANCING SYSTEM

The basic purpose of an electric load balancing system is to maintain a relatively
steady pattern of power demand on the utility company. Schemes serving a similar
purpose were proposed under different names such as time-of-use, load management
program, demand-side management, and load balancing. Among them, some
researchers proposed pricing schemes for electricity supply in order to achieve the aim
. [David 94, 96, He 97, Sheen 94, 95 and Maeda 92]. Based on charging more in peak
hours, these schemes employ complex mathematical methods to optimise the electricity

pricing and attract a reduction of loading at peak hours. However, this method is not
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applicable in the areas where the utility companies charge the same at all time. Some
researchers [Naga Raj 95 and Lee 92] focus on the method of implementation, like the
load balancing that uses feeders in a distribution system. Although these methods are

suitable for large power systems, it is too expensive to be implemented at home.
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CHAPTER THREE

POWER LINE DATA NETWORK

3.1 INTRODUCTION

In this chapter, a power line data network based on the spread-spectrum
technology [Radford 96], which facilitates communications at 10 Kbps in the noisy and
signal-distorting environment of AC power lines, will be reported. This power line
network serves as a backbone of communication among home appliances and users in
an intelligent home. In this way, a low-cost data network can be built without resorting

to manufacturers of electrical appliances and the installation of a LAN. Besides the

developed power line data network, this chapter will also discuss the features offered by

the intelligent home system.

3.2 AC POWER LINE DATA NETWORK

3.2.1 Background of AC Power Line Data Network

Wireless and wired LAN are two common physical media for data transmission.
Besides the acceptable data rate and the high reliability, a wireless LAN has a number of

advantages. First, no extra cost is required for the installation of cables. Second, every
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hardware component can be portable. Third, it requires no amendment to the
infrastructure on expanding the system. However, it is difficult to limit the coverage of
the transmission media strictly within a house and not to affect or be affected by other
networks. It is an especially serious problem for the highly populated residential
environment. A wired LAN with dedicated cables gives the fastest data rate and most
reliable data transmission. Unfortunately, a wired LAN requires an extra cabling cost,
and the system has to be well designed before building it. Moreover, additions or

removals of components may imply a costly re-cabling.

To compromise the above advantages and disadvantages, we propose to use the
existing AC power line as a networking media for an intelligent home system. The AC
power lines have already existed in every comner of a house. By using the AC power
line network, all electrical appliances plugged to a power socket wiil not only obtain
electric power but also digital data. Still, we have to face some problems. Two main
concerns are the noisy environment and the low impedance of the power line in the
operating bandwidth [Liu 99 and Schickhuber 97]. Noise in an AC power line will
disturb the data signals and decrease the network reliability. When the line impedance
is low in the operating bandwidth, the maximum transmission speed will be affected.
To alleviate this problem, the spread-spectrum technology [Radford 96] is applied in

signal transmission that can facilitate a data rate of 10 Kbps.

3.2.2 Power Line Data Network Design

With the power line network, electrical appliances can be controlled via
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line/mobile phones, PDAs, keypads or personal computers anytime and anywhere,
inside or outside the home. The network employs the spread spectrum carrier Consumer
Electronics Bus (CEBus) standard (which wiil be discussed in sub-section 3.2.3). A

diagram of the power line data network 1n the intelligent home is shown in Fig. 3.1.

TR r ~ - 2

Line/Mabite e F_w Keypad witn | [ Sensars
Phone (Server) Camera LCD
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[ 2 [ 2 k k3
Power line Power line Power line
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Receiver . Interface : Interface .
unit unit ueit
Qutdear A C. MCB Telephone Joterface modole RS132 Laterface medole RS132 laterface module
Power Line___| LC low-pass (fuse
line Filter box) AL, Pawer Line
Power line wer line IR ( L
Yy Power Socket Power ! ? IR Remote simd_| Audio-visual
ransceiver with relays ransceiver [+ Transmitter Appliances
ngit unit L pp
Power sockel modnle IR Remute controller modale
I
Electrical
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Fig. 3.1. Diagram of the power line data network.

The system contains two types of units: control u.nits and slave units. A control
unit can be a telephone interface module accessed by a line/mobile phone, or a serial
(RS232) interface module in a PC accessed by a PDA or a keypad. Signals input to a
control unit is captured by a video camera or sensors. A slave unit can be a power
socket module for on/off control of electrical appliances, or an infrared (IR) remote
control module for AV equipment. The details about each module and the features of

the intelligent system will be described in next section.

A data packet in the power line data network is either a control packet (generated
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by a control unit) or a status packet (generated by a slave unit) as shown in Fig. 3.2. The

control packet has three bytes defined as follows:
Destination Address (byte 0): defining the device address of the receiving node.

Control Command (byte 1): defining the action or the request for feedback status

information (from the slave unit).

Reserved (byte 2): reserved for future development. Normally, we set this byte to
OxFF so that the transmission rate is the fastest (a property of the spread spectrum

CEBus standard).

The feedback packet has one byte only, which contains the electrical appliance’s

on/off status or other information.

Data transmission packet Data feedback packet
1 byte 1 byte
H—D—l I-Q——D-I
Destination Control Feedback
Reserved
Address Command Data
Byte 0 Byte 1 Byte 2 Byte 0

Fig. 3.2. Data packet format.

To interface a unit into the power line, a power line transceiver has to be
developed which is the basic unit of every functional module. There are many
transceivers employing different modulation techniques available in the market
[Schickhuber 97]. The simplest modulation techniques are amplitude shift keying (X10

and Philips TDAS5051A) and frequency shift keying (SGS Thomson ST7537). These
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techniques provide a low-cost sclution for power line networking but give a very low bit
rate (typically 1.2 Kbps). Moreover, with a higher noise level as compared with UTP
network cables, the power lines may suffer from a high error rate. Some chips applying
the spread spectrum carrier technique can give a better performance. For example,
Adaptive Networks ANI1000, LonWorks, and Intellon P300C all contain chipsets
employing spread spectrum techniques. The AN1000 can achieve a data rate of 100
Kbps, while the other two can achieve 10 Kbps. The cost of AN1000 and LonWorks are

relatively expensive. To trade off performance against cost, the Intellon P300 is selected

in the development.

A block diagram of the power line transceiver unit embedded with a P300 chip is
shown in Fig. 3.3. The prototyped power line transceiver is shown in Fig. 3.4. The
P300 chip is the power line network interface controller chip that serves as a power line
transceiver and channel access interface for CEBus [Douligenis 93] compatible products.
It is a host interface transmitting and receiving data to and from the power line via the
Serial Penipheral Interface (SPI). There are a filter, a driving amplifier, and a coupling
circuit between the unit and the power line. The 8051 MCU is to support data or
command (defined by the manufacturer) transfer between the SPI and the application

umt (control unit or slave unit).

Page 18



Chapter3: Power Line Data Network

Intellon P300 Chip
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Fig. 3.3. Block diagram of the power line transceiver.
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Fig. 3.4. The outlook of the power line transceiver.

3.2.3 Spread Spectrum Carrier Consumer Electronics Bus Standard

Consumer Electronics Bus (CEBus) [Douligenis 93] is the Electronic Industry
Association's (EIA) standard for home automation. It is an easy-to-install and effective
standard that uses four of the seven open systems interconnection (OSI) layers and omits
the transport, session and presentation layers. These omissions reduce the packet length

and the node complexity. The interface between different layers in the CEBus is defined
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as a set of service primitives. Each layer provides service to the layer above it; higher

layers subscribe to the service of the lower layers.

CEBus allows communication améng any CEBus compatible devices regardless
of their manufacturing companies. It uses a broad-spectrum frequency, which is swept
from 100 kHz to 400 kHz over a 100 ps unit symbol time (UST). The UST is the
building block of a data stream. Each UST consists of a frequency swept chirp of the

range of 100 kHz to 400 kHz. The sweeping time is 100 ps for the packet body and 114

us for the preamble.

Unlike most transmission formats, CEBus uses a set of four medium symbols
instead of the more common binary symbols. The symbols are: 1 (binary one), 0 (binary
zero), EOF (end of field), which is used to separate packet fields, and EOP (end of
packet), which is used to identify the end of a transmitted packet. The four symbols are
encoded on each medium by using four different frequencies. The 1 symbol is
represented by 10 kHz (a period of 100 us), 0 symbol is represented by 5 kHz (a period
of 200 ps), EOF is represented by 3.3 kHz (a period of 300 ps), and EOP is represented
by 2.5 kHz (a period of 400 ps.) Spread spectrum is used in the CEBus power line
standard. Its signalling works by. spreading a transmitted signal over a range of

frequencies, rather than using a single frequency.
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3.3 FEATURES OF THE INTELLIGENT HOME SYSTEM

To make the proposed intelligent home system highly flexible and easily
expandable, a modular base solution is employed. This means that every module can
work independently without relying on others. In this c.ase, users can install 2 minimum
of one control unit and one slave unit to implement the intelligent system. If users want
to include more features, their systems can be expanded at any time without significant
altematigns to the existing system.

Fig. 3.1 illustrates some modules which can be included in the intelligent home
system. As a control unit, a telephone interface module enables the whole system to be
connected and accessed via a mobile/line telephone or a PDA with a GSM/CDMA card.
As a mobile phone is common to everyone nowadays, we can easily c;)ntrol home
appliances through an outdoor access. If a PDA is used, the images captured by a video
camera connected to a2 PC can be monitored via a wireless LAN or a GSM/CDMA
network. It allows users to have surveillance of their home anywhere and anytime. An
RS232 interface module can interface with any device that supports the RS232 standard.
In particular, a personal computer having a serial port that éupports RS232 can connect
to the power line data network via this module. Application programs have been written
to control the intelligent home system. A home server (the PC) can be included to
enhance the intelligent features within the home, including the load forecasting and
balancing to be discussed in Chapters 4 and 5 respectively. A keypad connected with the
RS232 module can also be used to control the intelligent home system inside the home.

Sensor modules are used to sense motion, temperature, smoke etc. so that the system
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can be informed of any change via the power line data network for suitable actions. As a
slave unit, the power socket module consists of relay-controlled AC power sockets. It
can turn on or off any appliance connected to it. This module can also report the on/off
status of each socket at the request of a control unit. With a data rate of 10 Kbps, not
only the on/off control but also other programming features can be realized in real time.
The IR remote control module consists of a multi-function remote controller. Ideally, an
intelligent appliance should support communications within the network according to
certain hardware and software protocols. However, a widely adopted protocol has not
come yet. The IR remote control module is therefore an intermediate solution before any
real intelligent appliance that supports communications within a network is available in
the market.

An emulated intelligent home [Wong 00] has been built in a flat of about 20m>
inside the Hong Kong Polytechnic University (Fig. 3.5). Different modules have been
developed to illustrate the proposed features. These features will be introduced in the

following sub-sections.

Fig. 3.5 Intelligent home.
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3.3.1 Telephone Interface Module

A telephone interface (Fig. 3.6) enables the whole system to be connected and
accessed via a mobile or a line phone. This telephone interface module provides a
complete solution for outdoor control of home appliances without relying on the
Internet. The heart of this module is a DTMF decoder (MT8870), which is a dialing
system with a 4-bit DTMF decoder. On dialing in, the module will connect the phone
line and wait for commands in DTMF from the caller. Caller can check the status of the

electrical appliance through audio feedback from the module to the phone.

Fig. 3.6. Telephone interface module.

3.3.2 Power Socket Module

The power socket module (Fig. 3.7) consists of four relay-controlled AC power
sockets. The four relays can be accessed individually via the power line network. Any
appliance requiring on/off control can be connected to this module. For example, we
have connected a lamp and a TV set in the room. This module can report the on/off

status of each socket at the request of other control units in the network.
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Fig. 3.7. Power socket module.

3.3.3 RS8232 Interface Module

Personal computers (PCs) and many other equipment have a standard RS232
serial port for communication. To link them to the power line network, an RS232
module is developed. This module makes use of the build-in serial port of the MCU
8051 inside the power line transceiver unit, with a MAX232 to interface. The module is
connected to a PC or a keypad (with an LCD display) such that the PC or keypad can

send control commands and receive data through the power line network.

3.3.4 IR Remote Interface Module

The heart of this module (Fig. 3.8) is a power line transceiver unit connecting
with an IR remote controller unit. The IR remote controller unit consists of an RS232
interface and a universal remote IR controller. An audio-visual appliance can be
controlled by this module when the power line transceiver transfers the control code

from a control unit via the power line.
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Fig. 3.8. IR remote interface module.

335 PD4

To control the electrical appliances inside the intelligent home, a control interface
in a handheld Pocket PC (Compaq iPAQ H3630) has been implemented. An additional
PCMCIA GSM card phone can be inserted into the Pocket PC to allow connection to
the power line data network through the GSM data channel. The Pocket PC can also
connect to a video server inside the intelligent home through a wireless LAN, or outside
the intelligent home through the GSM network. Users can watch the captured real-time
video signal using the Pocket PC, and remotely control the pan and tilt motion of the
camera to adjust the viewing angle. The Pocket PC with the developed user interface is

shown in Fig. 3.9.
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Fig. 3.9. Pocket PC with the developed user interface.

3.3.6 Personal Computer with Application Programs

In the intelligent home, an RS232 module is connected with a PC so that the PC
can send control commands and receive data through the power line network. An
application program (Fig. 3.10) that can control the power socket and TR remote control
modules has been developed. This program has a timer feature that can pre-set the
operation period of the electrical appliances, and allows the real time control of audio-
visual appliances through the IR remote control module. The PC is also the platform for

the future implementation of the home load forecasting and balancing system.
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Fig. 3.10. Application program.
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3.3.7 LC Low Pass Line Filter

The digital signals in the power line data network can be isolated from the outside
network by using a two-pole LC low-pass line filter installed near the main circuit
breaker (MCB). Interference with other house can then be prevented. The schematics
of the LC low-pass line filter and its effect are shown in Fig. 3.11. The output of the
CRO’s channel 1 is a data signal at the input of this filter. The output of the CRO’s

channel 2 shows that the data signals can be blocked after passing through this filter.

Mains power Filtered
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Fig. 3.11. LC low-pass line filter and its effect.
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3.4. CHAPTER CONCLUSION

In this chapter, an intelligent home system realized by a spread spectrum AC
power line data network has been discussed. The network and the system features have
been presented. The points of ,consideration include cost, reliability, speed of
communication and effectiveness. Using this system, communications among electrical
appliances and home users can take place at any time and place. This serves as a low
cost backbone of communication to enhance the secunity and comfort of the home users.
One advantage of this system is that every module can be easily added or removed, and
placed anywhere in a house without too much influence to the whole system and the
need of re-routing any cable. Hence a prudent plan for the infélligent home system

before building is not needed. Any existing homes can implement this system.
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ELECTRIC LOAD FORECASTING SYSTEM

4.1 INTRODUCTION

Computational intelligence techniques for short-term electric load forecasting in
an intelligent home will be presented in this chapter. The intelligent home system has
already been discussed in Chapter 3. In this system, the AC power line serves as a data
communication channel for electrical appliances. With this AC power line data network,
a short-term electric load forecasting can be realized. An accurate load forecasting can

bring the following benefits to the intelligent home.

1) Increasing the reliability of the AC power line data network - On using the AC
power line as the networking medium, we may suffer from the possible low impedan(l:e
of the power line in the operating bandwidth [Liu 1999] [Schickhuber 1997] for data
transmission. When this occurs, the maximum transmission rate, the reliability and the
throughput of the AC power line data network will decrecase. The attenuation of the
data signal in an AC power line is proportional to the load connected to it. The
reliability of the power line data network can be enhanced if the load is kept at an
optimal level through forecasting and power backup (load balancing). We can also
adaptively set a suitable data transmission rate based on the forecasted load condition in

order to reduce the overhead of data retransmission.

2) Optimal electric load - At present, the peak demand of electricity is met by
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operating costly auxiliary generators, or by purchasing power from other utility
companies. The cost for supplying peak power is therefore much higher than that for
supplying the average power. A reduction in the peak value of electricity demand can
be achieved if we can realize electric load forecasting, and schedule the demands on the
utility company accordingly. This has to be supported by battenes installed in the
intelligent home that are responsible for sharing the load demand. The design of the

home load balancing system based on an electric load forecaster will be presented in

Chapter 5.

Existing electric load forecasting systems using computational intelligence
methods and their difficulties have been discussed in Chapter 2. In this chapter, three
computational intelligence techniques for short-term electric load forecasting (STELF)
will be reported.  The first approach for realizing STELF is by using an 6ptima1 neural
network. A neural network with a switch introduced in each link is proposed. By
introducing the switches to the links, the proposed neural network is able to learn the
input-output relationships of an application as well as the network structure. The
second approach for realizing STELF is by using a neural fuzzy network (NFN). The
optimal network structure (number of fuzzy rules) can be found when switches in the
links of the network are introduced. This implies that the cost of implementing the
proposed NFN can be reduced. The third approach for realizing STELF is by using a
modified neural network. ;l“wo different activation transfer functions are used in the
neuron and a node-to-node relationship is proposed in the hidden layer. This network
model 1s found to be able to give a better performance with a smaller number of hidden

nodes. All the three approaches are trained by a proposed fuzzy genetic algorithm (GA).
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The proposed fuzzy GA is modified from the traditional GA with arithmetic crossover
and non-uniform mutation. Fuzzy logic can express expert knowledge and experience
in some linguistic rules, which can be easily understood by human beings. In the
proposed fuzzy GA, fuzzy logic is used to help realize the crossover and mutation
operations. Consequently, the human knowledge on the crossover and mutation can be
incorporated using fuzzy rules. It will be shown that the proposed fuzzy GA performs
more efficiently and provides a faster convergence than the traditional GA in some

benchmark test functions.

This chapter is organized as follows. The proposed fuzzy GA and its benchmark
tests will be introduced in Section 4.2. The short-term electric load forecasting with the
proposed fuzzy GA-based neural network will be presented in Section 4.3. In Section
4.4, the design and impiementation of the short-term electric load forecasting using the
proposed fuzzy GA-based neural fuzzy network will be discussed. The short-terrﬁ
electric load forecasting realized by the modified fuzzy GA-based neural network will

be introduced in Section 4.5. A chapter conclusion will be drawn in Section 4.6.
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4.2 Fuzzy GENETIC ALGORITHM

Genetic Algonthm (GA) is a directed random search technique, which is a
powerful searching algorithm for complex optimisation problems. It helps to find out

the globally optimal solution over a domain,

In this sebtion, a fuzzy GA is proposed which is developed from the traditional
GA with arithmetic crossover and non-uniform mutation [Michalewicz 94]. Fuzzy logic
is applied 1n the crossover and mutation operations. As a result, human knowledge on
the crossover and mutation can be mcorporated using fuzzy rules. It will be shown that
the proposed fuzzy GA performs more efficiently and provides a faster convergence
than the traditional GA in some benchmark test functions [De Jong 75 and Yao 99].
This section is organized as follows. The proposed fuzzy GA 1s presented 1n sub-
section 4.2.1. The applicability and efficiency of the fuzzy GA are tested by some

benchmark functions in sub-section 4.2.2.

4.2.1 Fuzzy Genetic Algorithm

The pseudo-codes of the proposed fuzzy GA are shown in Fig. 4.1. The details

are presented as follows.
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begin

end

Procedure fuzzy GA.

=0 {1 iteration

inihahze P(t) HP(z): population for iteration.t
evaluate-P(t)
while (not termination condition) do
begin
> 1 +1

select 2 parents p) and pz from Pz -1)
perform _fuzzy crossover
input p; and pz to fuzzy system
offspring o, to be generated by crossover operation

perform fuzzy mutation _ _
for 1.te k {1 &: number. of genes
if random number < p,, ¥ p,, : probability of mutation

gene of the offspring o, to be generated by mutation
operation
end
end

il reproduce a new P(t)
if random number < r, - //r, : probability of acceptance
0g replaces thé chromosome-with the smallest fitness value
elseif 7 (0,)> smallest fitness value in the P(z - 1)
o, replaces the chromosome with the smallest fitness value

end

evaluate P(t)
end

Fig. 4.1. Fuzzy GA process in pseudo-codes.

4.2.1.1. Initial population

The initial population is a potential solution set P. The first set of population is

usually generated randomly.
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P= {p]’pz’...,ppop_size} (41)

p; = [p‘.l P, P, pi,..,_m] =12, .., pop size;j=1,2,...,n0 vars
(4.2)
paral < p;, < paral  ,i=1,2, ... pop size;j=1,2, ..., no_vars (4.3)

where pop_size denotes the population size; no_vars denotes the number of variables to

be tuned; P, i=1,2, .., pop_size; j = 1, 2, ..., no_vars, are the parameters to be
tuned; paraZ; and parai, are the minimum and maximum values of the parameter
p;, respectively. It can be seen from (4.1) to (4.3) that the potential solution set P

contains some candidate solutions p; (chromosomes). The chromosome p, contains

some variables p;, (genes).

4.2.1.2 Evaluation

Each chromosome in the popuiation will be evaluated by a defined fitness
function. The better chromosomes will return higher values in this process. The fitness

function to evaluate a chromosome in the population can be written as,
ﬁmess = f(pi) (4.4)

The fitness value should have a non-negative nature and the form of the fitness function

depends on the application.
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4.2.1.3. Selection

Two chromosomes in the population will be selected to undergo fuzzy genetic
operations for reproduction. It is believed that the high potential parents will produce
better offspring (survival of the best ones). The chromosome having a higher fitness

value should therefore have a higher chance to be selected. The selection can be done

by assigning a probability ¢, to the chromosome p; such that:

= &, i=1,2,..., pop_size (4.5)

q: = pop’_ size

Zf(Pj)

The cumulative probability ¢, for the chromosome p;, is defined as,
g, = qu ,i=1,2, ..., pop size (4.6)
j=1

The selection process starts by randomly geqerating a nonzero floating-point
number, d e[O I]. Then, the chromosome p, is chosen if ¢, , <d <¢g,,i=1, 2, ...,
pop_size (g, =0). It can be observed from this selection process that a chromosome
.having ‘a larger f{p,) will have a higher chance to be selected. Consequently, the best

chromosomes will get more copies, the average will stay and the worst will die off. In

the selection process, only two chromosomes will be selected to undergo the fuzzy

genetic operations.
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4.2.1.4. Fuzzy genetic operations

The fuzzy genetic operations are to generate some new chromosomes (offspring)
from their parents after the selection process. They include the fuzzy crossover and the

fuzzy mutation operations.

A. Fuzzy Crossover

The fuzzy crossover operation is mainly for exchanging information from the two

parents obtained in the selection process. If the two selected chromosomes are p; and
p2 with fitness values f(p,) and f(p,) respectively, the offspring to be generated is

governed by the following fuzzy rules,

Rulei: TF f(p,)- /(p,) is M, THEN w, =w, @.7)

where M, is a fuzzy term of rule i, i = 1, 2, ..., r,; 7, denotes the number of rules.
w, € [O 1] is a singleton to be determined. The value of w, determines the offspring

o, after the fuzzy crossover:
0, =w,p, +(1-w,)p, (4.8)

and

(4.9)

5
[

T e
=
R

where
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= (@) - /®.)) (4.10)
S U@ -7@2))

Moy (f(,)- f(p,)) is the membership function corresponding to M’. From (4.10),
Yw,=1, welo, 1] forall: @.11)
i=1

The rule of this fuzzy crossover should be set such that the offspring will look closer to

the parent with a larger fitness value.

B. Fuzzy Mutation

The offspring (4.8) may then undergo a fuzzy mutation operation. The mutation
operation changes the genes of the offspring 'chromosomes. Eve(ry gene of the offspring
o; of (4.8) will have a chance to mutate govemned by a probability of mutation,
P, € [O 1], which is defined by the user. This probability gives an expected number
( p,, x no_vars) of genes that undergo the mutation. For each gene, a random number
between O and 1 will be generated such that if it is less than or equal to p_, the
operation of mutation will take place on that gene. The gene of the offspring of (4.8) 1s
then mutated by:

. o, +4a] if f(o,+A0.)2 f(0, - Ao, )
o, = {0& _AO:; if /o, +Aoﬁi) < /o, —Aoi ), =1,2,...,n0_vars (4.12)

where

AoY =r" (para,';m -o, ) (4.13)

a0l =r"™ (o, — parat,) (4.14)
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AOLt=[O 0 .- Aoi 0] (4.16)

re[O 1] is a randomly generated number; w, € [O l] is a weight goveming the

magnitudes of Ao; and Ao, . The value of weight w, is determined by two factors:

the rate of change of the fitness with respect to o, , i.e. Qg(o,)
i o

Sk

, and the value of%. A

9 (o,)
8

(2

5t

large value of implies the gene o, has a large search space. A large weight

—aé ) 1s large in order to obtain a significant mutation
7

S

w, is thus necessary when

(large Ao, or Ao, ). On the other hand, 7 and T denote the current iteration number

and the total number of iterations respectively, and—;-' is used for the fine-tuning. The

. T . .
value of weight w, should approach 0 as T increases in order to reduce the

significance of the mutation. Based on these two factors, the weight w,, is governed by

the following fuzzy rules:

Rule j: IF %

()

Sk

is N/ AND — is N, THEN w,, =w, ,j = 1,2, ..r: k=1,
T v

2, ..., no_vars (4.17)

where ‘N/ and N} are fuzzy terms of rule j, », denotes the number of rules,

w, € [O 1], W, e[O ]] is a singleton to be determined. The final value of W, 18

given by
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W, = imjwlj Lk=1,2, ..., no_vars (4.18)
J=1

where

==

\
0o

7]
LY )

" el (e
n o, T
iy ?}“‘w "fn
\

Sk

#N{ o ,)

(4.19)

7~

d

I

] and g ; (%] are the membership functions corresponding to N/ and N

o

respectively.

rimj =1, m, elo, 1] forall; | (4.20)

=

4.2.1.5. Reproduction

After going through the fuzzy mutation process, the new offspring will be
evaluated using the fitness function of (4.4). This new offspring will replace the

chromosome with the smallest fitness value among the population if a randomly
generated number within 0 to 1 is smaller than », € [O 1], which 1s the probability of
acceptance defined by users. Otherwise, the new offspringl will replace the chromosome
with the smallest fitness value if the fitness value of the offspring is greater than the

fitness value of that chromosome in the population.

After the operation of selection, fuzzy crossover and fuzzy mutation, a new

population is generated. This new population will repeat the same process to produce
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another offspring. Such an iterative process can be terminated when a defined condition

is reached, e.g. a sufficiently large number of iterations has been reached.

4.2.1.6. Choosing the parameters

We can regard the GA as a balance between the exploration of new regions and
the exploitation of already sampled regions in the search space. This balance, which
critically controls the performance of the GA, is governed by the right choices of

control parameters: the probability of fuzzy mutation (p,), the probability of
acceptance (7, ) and the population size (pop_size). Some views about these parameters

are included as follows:

- Increasing the probability of fuzzy mutation tends to transform the genetic search
into a random search. This probability gives us an expected number
( p., X no_vars) of genes that undergo the mutation. When p, =1, all genes will
mutate. The value of the fuzzy mutation probability depends on the desirable

number of genes that undergo the mutation operation.

- Increasing the probability of acceptance will increase the chance that a poor
offspring joins the population. This reduces the probability that the GA
prematurely converges to a local optimum. From experience, a probability of

acceptance of 0.1 is a good enough choice for many optimization problems.

- Increasing the population size will increase the diversity of the search space, and
reduce the probability that the GA prematurely converges to a local optimum.

However, it also increases the time required for the population to converge to the
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optimal region in the search space. From experience, a population size of 10 is

an acceptable choice.

4.2.2 Benchmark Test Functions

Benchmark test functions [De Jong 75 and Yao 99] are used to examine the

applicability and efficiency of the proposed fuzzy GA. Six test functions, f,(x), i =1,
2,3,4,5, 6, will be used, where x = [x, x, x,w_x] . no_x is an integer denoting

the dimension of the vector x.

The six test functions are defined as follows,

£ =37, —5.125x, <5.12 (4.21)

i=t

where n = 3 and the minimum point is at £(0, 0, 0) = 0.

-1

£,(x)= Z(lOO(xm —x2f 4 (x, - 1) ) ~2.048 < x, <2.048 4.22)
i=1
where n = 2 and the minimum point is at f3(0, 0) = 0.

fs(x)=6n+zn:ﬂ00r(x,.), ~-512<x,£5.12 (4.23)

i=1
where 7 = 5 and the minimum point is at /3([-5.12, -5], ..., [-5.12, =5]) =0. The floor

function, floor(-), is to round down the argument to an integer.

fo(x) =2 ix} + Gauss(0,1), -1.28 < x, <1.28 (4.24)

i=1
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where n = 3 and the minimum point is at f3(0, 0, 0) = 0. Gauss(0, 1) is a function to

generate uniformly a floating-point number between 0 and 1 inclusively.

25 1

f,(x) = %+Z _ , —65356<x, <65.356 (4.25)

= j+Z(xi —arj)6

i=]

where

{ } -32 -16 0 16 32 -32 -16 O 16 32
a= =
Y 32 32 32 32 32 -16 -16 -16 -16 -16

-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32
0 0 0 0 0 16 16 16 16 16 32 32 32 32 327

k =500 and the minimum point is at f5(-32, -32) 1.

£, =3 [x* —10cos(2m,) +10], -5.12 < x, <5.12 (4.26)
i=1 .

where n = 3 and the minimum point is at f¢(0, 0, 0) =0

The benchmark test functions belong to three main classes: unimodal functions,
multimodal functions with only a few local minima, and multimodal functions with
many local minima problem. In this thesis, functions 1 to 4 are unimodal function,
function 5 i1s a multimodal function with only a few local minima and function 6 is

amultimodal function with many local minima. A brief description of each function and

the problem 1t represents are given as follows:

* f, is a sphere function, which is probably the most widely used test function. It is

smooth, unimodal and symmetric. The performance on this function is a measure of

Page 42



Chapterd: Electric Load Forecasiing System

the general efficiency of an algorithm.

e f, is a Rosenbrock function of which the optimum is located in a very narrow ridge.
The tip of the ridge is very sharp, and it runs around a parabola. Algorithms not

able to discover good directions will perform poorly in this problem.

e [, is a step function that is a representative of flat surfaces. Flat surfaces are

obstacles for optimisation algorithms because they do not give any information

about the search direction. Unless the algorithm has a vanable step size, it can get

stuck 1n one of the flat surfaces.

e f, 1s a quartic function, which is a simple unimodal function, padded with noise.

The Gaussian noise causes the algorithm never getting the same value at the same

point. Algornithms that do not do well in this function will perform poorly on noisy

data,

» £, 1s a foxholes function that has many local minima (25 in this case). Many

standard optimisation algorithms get stuck in the first maximum they find.

e f, is a Rastrigin function, which is similar to the foxholes function. However, this

function has even more local minima.

It should be noted that the minimum values of all functions in the defined domain

are zero except for f,(x). The fitness functions for f| to f, and fare defined as,

1
t =——,i=1,2,3,4,6. 4.27
fitness ) i (4.27)
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and the fitness function for f; is defined as,

(4.28)

fitness =

S (®)

The proposed fuzzy GA goes through these six test functions. The results are
compared with those obtained by the traditional GA with arithmetic crossover and non-
uniform mutation {Michalewicz 94]. For each test function, the simulation takes 500
iterations and the population size i1s 10. The probability of crossover is set at 0.8 for all
functions, and the probabilities of mutation for functions f, to f, are 0.8, 0.8, 0.7, 0.8,

0.8 and 0.35 respectively. The shape parameters b of the traditional GA for non-

uniform mutation are set at » = 5 for function f,, f, and f;; & =1 for function f, and
fs; b =10.1 for function f;. For the proposed fuzzy GA, the probability of acceptance
r, is set at 0.1 for all functions, and the probabilities of mutation p, for functions f, to
Sfs are 0.5, 0.8, 0.7, 0.8, 0.8, and 0.35 respectively. The probabilities of the genetic
operators (7. and p,) are sélccted by trial and error. Fig. 4.2 and Fig. 4.3 show the

membership functions for the fuzzy crossover and fuzzy mutation respectively. Bell-
shaped membership functions are chosen. Considering the fuzzy rules for genetic
operators as discussed in sub-section 4.2.1, the rule tables are designed and shown in
Fig. 4.4. From these two rule tables, the output singleton values for the fuzzy crossover
are 0 for L, 0.5 for M and 1.0 for H. The output singleton values for the fuzzy mutation
are 0.2 for L, 0.7 for M and 1.0 for H. All the initial genes, i.e. the initial values of x, in

the population for a test function are set to be the same. For tests 1 to 6, the initial

values are[l 1 1], [05 05],[t - 1],[05 - 05],[10 -~ 10]and 1 1 1]
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respectively. The results of the average fitness values over 100 times of simulations
(500 iterations each) based on the proposed and traditional GAs are shown in Fig. 4.5
and tabulated in Table 4.1. It can be seen that the performance of the proposed fuzzy

GA i1s better than that of the traditional GA.

1
Q.9
0B
[hg 4
as
ost M H
0.4
2.3
02t

0.1

o L : : 1 L " L h
4 08 05 04 02 o 92 04 06 08 1

Fig. 4.2. Membership functions for fuzzy crossover operation (x-axis: f(p,}— f(p,),

y-axis: p (f(p)— f(P2) )
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Fig. 4.4. Fuzzy rule tables: (a) for fuzzy crossover (b) for fuzzy mutation.
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{a) The averaged fitness value of the test function f£{x) obtained by the proposed fuzzy GA (solid
line) and traditional GA (dotted line).
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(b) The averaged fitness value of the test function f,(x) obtained by the proposed fuzzy GA (solid
line) and traditional GA (dotted line).
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(c) The averaged fitness value of the test function f,(x) obtained by the proposed fuzzy GA (solid
line) and traditional GA (dotted line}.
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(d) The averaged fitness value of the test function £, (x) obtained by the proposed fuzzy GA (solid
line} and traditional GA (dotted line).
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(e} The averaged fimess value of the test function f,(x) obtained by the proposed fuzzy GA (solid
line) and traditional GA (dotted line).
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(f) The averaged fitness value of the test function f,(x) obtained by the proposed fuzzy GA (solid line)
and traditional GA (dotted line).

Fig. 4.5. Simulation results of the proposed and traditional GAs.

Test function Proposcd Fuzzy GA Traditional GA
fi(x) 1.0000 1.0000
S2(x) 0.8724 0.6393
5(x) 1.0000 1.0000
f.(x) 0.8956 0.8037
Js(x) 1.0000 1.0000
Js(x) 0.8989 0.7297

Table 4.1. Average fitness values obtained from the proposed fuzzy GA and the

traditional GA for the benchmark test functions.
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4.3 ELECTRIC LOAD FORECASTING WITH FuzzZY GA-BASED NEURAL

NETWORK

Electric load forecasting with a fuzzy GA-based neural network will be reported
in this section. Thanks to its specific structure, neural networks can realize learning
[Rumelhart 86] by executing some algorithms such as GA [Michalewicz 94] and back-
propagation [Rumethart 86]. Usually, the structure of a neural network is fixed for a
learning process. However, a fixed structure may not provide the best performance
within a given training period. Some network links could be redundant. If the network

structure is too complicated, the training period will be long and the implementation

cost will be high.

In this section, a three-layer neural network with a switch introduced in each link
is proposed to facilitate the tuning of the optimal network structure. Fuzzy GA (as
discussed in Section 4;2) is used to help tuning the structure as well as the parameters of
the proposed neural network. The proposed neural network is then used to forecast the
daily electric load in an intelligent home. Simulation results will be given to illustrate

the performance of the proposed neural network.

4.3.1 Fuzzy GA Based Neural Network with Link Switches

A neural network with link switches is to be presented. The tuning of the network

parameters and structure using the fuzzy GA will also be discussed.

Page 49



Chapterd: Electric Load Forecasting System

4.3.1.1. Neural network with link switches

The proposed three-layer network is shown in Fig. 4.6. Specifically, a unit step

function is introduced to each link. This unit step function is defined as,

0ifa<0
5(a) = aeR 429
@ {1 ifaz0" %€ (4.29)

O switch

Fig. 4.6. Proposed three-layer neural network.
The introduction of the step function is equivalent to adding a switch to each link of the
neural network. Referring to Fig. 4.6, the input-output relationship of the proposed

multiple-input-multiple-output three-layer neural network is given by,

()= Z"a(si)w,-ktogsfg[ (50 vyzi() = 5558} )} =SB k=12, . 1y
j= i=t

(4.30)
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where z(t), i =1, 2, ..., n,, are the inputs which are functions of a varnable ¢; n,,
denotes the number of inputs; v, j =1, 2, ..., n,, denotes the weight of the link
between the i-th input node and the j-th hidden node, n, denotes the number of hidden
nodes; w,, k=1,2, ..., n,,, denotes the weight of the link between the j-th hidden
node and the k-th output node, n,, denotes the number of outputs; s; denotes the
parameter of the link switch from the i-th input to the j-th hidden node; sfk denotes the
parameter of the link switch from the j-th hidden node to the -th output node; b} and

b} denote the biases for the hidden nodes and output nodes respectively; s} and s,

denote the parameters of the link switches of the biases to the hidden and output layers

respectively; logsig(-) denotes the logarithmic sigmoid function:

logsig(a) = —,aecR (4.31)
1+e“

y(1); £=1,2, ..., n,,, is the k-th output of the proposed neural network. The weights
v, and the switch states are to be tuned. It can be seen that the weights of the links

govern the input-output relationship of the neural network while the switches of the

links govern the structure of the neural network.

4.3.1.2 Tuning

In this sub-section, the proposed neural network is employed to learn the input-
output relationship of an application using the proposed fuzzy GA. The input-output

relationship is described by,
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v =g'®),t=1,2,..., n, (4.32)
where y*(t) = [y," O e - v (t)] is the desired output corresponding to the
input 27(1) =[2/(®) 2(®) - 2. ()] of an unknown nonlinear function g(); n,

denotes the number of input-output data pairs. The fitness function is defined as,

fitness = (4.33)
1+err
1o 1w 0-50)
err=—> 7 (4.34)
Ry o= M, k= Yi (t)

The objective is to minimize the mean absolute percentage error (MAPE) of (4.34)
using GA by setting the chromosome to be [sjk wi SV S, b s b,f] for all
i, j, k. The range of (4.33) is from O to 1. A larger value of the fitness function indicates

a smaller value of (4.34).

4.3.2 Short-Term Daily Electric Load Forecasting System

The idea of daily load forecasting is to construct seven multi-input multi-output
neural networks, one for each day of a week. Each neural network has 24 outputs
representing the expected hourly load for a day. One important job in designing the
forecasting system is the selection of input variables. In this electric load forecasting

system, there are three main kinds of input variables:

1. Historical data of loads: hourly loads of the previous day were collected and

used as historical load inputs. The historical load data reflect the habit of the
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family on power consumption.

2. Temperature inputs: the average temperatures of the previous day and the
present day are used as two inputs in this forecasting system. The value of the
average temperature of the present day is got from the temperature forecast of

the weather observatory.

3. Rainfall index inputs: the average rainfall indexes of the previous day and the
present day are used as two inputs in this forecasting system. The range of the

rainfall index is from 0 to 1. 0 represents no rain and 1 represents heavy rain.

LI (= 1)

L)

L a-)—" " L,0)

past 24 hour Neural forecﬁsted 24
loads network for hour loads
| daily load |
' forecasting '

L-)— ) Ly (1)
L -1y— (28 inputs- | — . L,4(0)

ave. temp. at previous day ——™] 24 outputs)

ave. temp. at present day ————=

ave, rainfall index at previous day —————"

ave. rainfall index at present day —————"

Fig. 4.7. Proposed neural network for daily load forecasting.

A diagram of one of the seven NNs for the daily load forecasting is shown in Fig.
4.7. Each neural network has 28 inputs, 24 outputs with link switches. Among the 28

inputs nodes, the first 24 input nodes (z, ..., z24) represent the previous 24 hourly loads

[Momoh 97] and are denoted by z; = L{ (¢ -1),i =1, 2, ..., 24. Node 25 (z;5) and node
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26 (z26) represent the average temperatures of the previous day and the present day
respectively. Node 27 (z27) and node 28 (z2;) represent the average rainfall indexes at
the previous day and the present day respectively. The output layer consists of 24

output nodes that represent the forecasted 24 hourly loads of a day, and are denoted by

w(® = L(t), i =1,2, ..., 24. Such a network structure is chosen based on the

assumption that the consumption patterns of the seven days within a week would differ
significantly among each other, while the patterns among the same day of weeks are
similar. By using the past 24 hourly loads as the inputs, the relationship between a
given hour’s load and the 24 hourly loads of the pervious day can be considered. The
accuracy of the forecasting can then be increased. The first-time off-line training is a
time consuming process. However, once trained, the system can do the forecast quickly.
In this example, 12 sets of historical data are used for off-line training with 1000
iterations. After the first-time off-line training, the forecasting system can operate and
continue to be off-line trained daily using updated data. During the daily off-line
training, the system will update the weights of the neural network with 200 iterations.

From (4.30), the proposed neural network used for the daily load forecasting is

governed by,

23

v ()= iﬁ(sfk)wjklogsig[z (5(8;)\1,].2,.(() - 5(5})!)})]—5(5:)175 , k=1,2,..,24. (4.35)

The number of hidden nodes (n,) is changed from 8 to 13 in order to compare the

learning performance. The fitness function is defined as follows,

(4.36)

fitness =
- 1+ err
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121 ao-y0)

2

—_ (4.37)
12 i=l 24 k=1 y:(t)

The proposed fuzzy GA is employed to tune the parameters and structure of the
neural network of (4.35). The objective is to maximize the fitness function of (4.36).
The best fitness value is 1 and the worst value is 0. The population size used for the GA

is 10. The lower and the upper bounds of the link weights are defined as

- 2 1
and —lzsjl,s,j,

3
b}

n_+1 n, +1

in

1 2 1 2 . « g =
ZV-.,wjk)b}-,b1 z sj:lsl 21 ] i = 1’ 2’ ] nl'n H -’ - 1’

2, ..,n, ,k=1,2, .. 24 [Brown 94]). The chromosomes used for the GA are

2

2 w, s v, s& 8 & B forallij,k The initial values of the link weights

1 . .
are set at —. For comparison purpose, the proposed neural network trained by the
n

traditional GA with arithmetic crossover and non-uniform mutation [Michalewicz 94], a
traditional neural network trained by the proposed fuzzy GA, and a traditional neural
network trained by the traditional GA, are also applied in electric load forecasting. The
working conditions are kept the same. For the traditional GA with arithmetic crossover
and non-uniform mutation, the probability of crossover and mutation are set at 0.8 and
0.01 respectively, and the shape parameter & of the non-uniform mutation operation is
set at 5. For the proposed fuzzy GA, the probabilities of mutation p,, and acceptance
r, are 0.01 and 0.1 respectively. The learning results of the daily electnic load
forecasting systems using the proposed neural network trained by the fuzzy GA and the

traditional GA on Wednesday and Sunday are tabulated m Table 4.2 and Table 4.3

respectively. These tables show the fitness values and the percentages of reduction of
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the number of links of the neural network. From these two tables, the best result is

obtained when the number of hidden node n, is equal to 12. From Table 4.2, n, =12,

the number of links being reduced is 69 after training. The number of links of a fully
connected network is 660. It is about a 10.45% reduction. Fig. 4.8 and Fig. 4.9 show
the simulation results when the proposed fuzzy GA (solid lines) and the traditional GA
(dotted lines) are used respectively. From these two figures, we can see that the time of
convergence of the proposed fuzzy GA is faster. The leaming results of the daily
electric load forecasting systems using a traditional neural network trained by the fuzzy
GA and the traditional GA on Wednesday and Sunday are tabulated in Table 4.4 and
Tabie 4.5 respectively. Comparing the results in Table 4.2 to Table 4.5, the proposed

fuzzy GA-based neural network gives the best result.

Once the first-time off-line training is done, the forecasting system is put to daily
operation. The system will then update the weights of the neural network daily with
200 iterations. The training error and the forecasting error in term of MAPE from

Monday to Sunday under n,=12 are shown in Table 4.6. This table shows the off-line

training error and the forecasting error for week 13 to week. 15. The average errors of
training and forecasting are 1.6572 and 1.9878 respectively. Fig. 4.10 and Fig. 4.11
show the sfmulation results of the daily electric load forecasting on Wednesday and
Sunday respectively using the proposed network. In Fig. 4.10 and Fig. 4.11, the dashed

line represents the forecasted result and the solid line 1s the actual load.
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Fig. 4.8. Simulation results of training the daily electric load forecasting system on

Wednesday with traditional GA (dotted line) and the proposed fuzzy GA (solid line) for
1000 iterations at n, =12.
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Fig. 4.9. Simulation resulis of training the daily electric load forecasting system on

Sunday with traditional GA (dotted line) and the proposed fuzzy GA (solid line) for
1000 iterations at n, =12.
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Fig. 4.10. Load forecasting result for Wednesday (Week13) with the proposed network

(dashed line), and the actual load (solid line).
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Fig. 4.11. Load forecasting result for Sunday (Week13) with the proposed network

(dashed line), and the actual load (solid line).
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Fuzzy GA Traditional GA
n, | Fimess | Training | Ratio of the number of | Fitness | Training Ratio of the number of
Values error links being reduced to | Values error links being reduced to
(MAPE) the total number of (MAPE) the total number of
links (Percentage of links (Percentage of
reduction) reduction)
9 | 0.9834 1.6880 22/501 (4.3%) 0.9832 1.7087 33/501 (6.59%)
10 | 0.9840 1.6260 30/554 (5.42%) 0.9831 1.7191 29/554 (5.03%)
11 | 09829 1.7397 43/607 (7.08%) 0.9791 2.1346 33/607 (5.44%)
12 | 0.9842 1.6054 69/660 (10.45%) 0.9835 1.6777 25/660 (3.79%)
13 | 0.9837 1.6570 30/713 (4.21%) 0.9823 1.8019 271713 (3.79%)
Table 4.2. Leaming results of the daily electric load forecasting system with the
proposed neural network for Wednesday.
Fuzzy GA Traditional GA
n, | Fitness | Training | Ratio of the numberof | Fitness Training Ratio of the number of
Values error links being reduced to Values error links being reduced to
(MAPE) the total number of {MAPE) the total number of
links (Percentage of links (Percentage of
reduction) reduction)
9 | 09825 1.7812 40/501 (7.98%) 0.9794 2.1033 29/501 (5.79%)
10 | 0.9827 1.7605 37/554 (6.63%) 0.9781 2.2390 22/554 (3.97%)
11 | 0.9826 1.7708 39/607 (6.43%) 0.9820 1.8330 34/607 (5.60%)
12 | 0.9833 1.6984 35/660 (5.30%) 0.9825 1.7812 22/660 (3.33%)
13 | 0.9822 1.8123 40/713 (5.61%) 0.9819 1.8434 32/713 (4.49%)

Table 4.3. Learning results of the daily electric load forecasting system with the

proposed neural network for Sunday.

Fuzzy GA Traditional GA
n, Fitmess Training Fitness Training
Values error Values error

{MAPE) (MAPE)
9 0.9830 1.7294 0.9793 2.1138
10 0.9833 1.6984 0.9823 1.8019
11 0.9835 1.6777 0.9811 1.9264
12 0.9838 1.6467 0.9831 1.7191
i3 0.9827 1.7605 0.9826 1.7708

Table 4.4. Learning results of the daily electric load forecasting system with a

traditional neural network for Wednesday.
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Fuzzy GA Traditional GA
ny Fitness Training Fitness Training
Values error Values error

(MAPE) (MAPE)
9 0.9810 1.9368 0.9781 2.2390
10 0.9813 1.9056 0.9780 2.2495
11 0.9824 1.7915 0.9821 1.8226
12 0.9826 1.7708 0.9823 1.8019
13 0.9815 1.8849 0.9808 1.9576

Table 4.5. Learning results of the daily electric load forecasting system with a

traditional neural network for Sunday.

First-time Forecasting Daily off- Forecasting Daily off- Forecasting
off-line error at line training error at line training error at
training Week 13 error for Week 14 error for Week 15
error for- Week 2- Week 3-
Week 1- Week 13 Week 14
Week 12
Monday 1.6502 24174 1.6198 1.3578 1.4907 1.9942
Tuesday 1.7321 1.9180 1.6858 1.6747 1.6646 2.2151
Wednesday 1.6075 2.0265 1.6347 2.0004 1.6621 2.4037
Thursday 1.7012 1.6767 1.6486 2.1213 1.7119 1.5012
Friday 1.7177 2.1913 1.6718 2.4073 1.8705 2.0092
Saturday 1.6717 1.6646 1.5506 1.9754 1.5779 2.2299
Sunday 1.7094 1.4369 1.6065 2.2732 1.5854 2.2492

Table 4.6. Off-line training error and forecasting error in terms of MAPE from Monday

to Sunday.
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4.4 ELECTRIC LOAD FORECASTING WITH FUZZY GA-BASED NEURAL

Fuzzy NETWORK

Electric load forecasting using a fuzzy GA-based neural fuzzy network will be
reported 1n this section. By introducing switches in the links of the neural fuzzy
network (NFN), the optimal network structure can be found by the proposed fuzzy GA
(as discussed in Section 4.2.) The membership functions and the number of rules of the
NFN can be generated automatically. This implies that the cost of implementing the
proposed NFN can be reduced. The proposed NFN will be presented in sub-section
4.4.1. A short-term electric load forecasting realized by the proposed NFN tuned by the

proposed fuzzy GA will be presented in sub-section 4.4.2. Simulation results will be

given.

4.4.1 Fuzzy GA-Based Neural Fuzzy Network with Rule Switches

In this section, a neural fuzzy network with link switches will be presented. The
tuning of the network parameters and structure is done by the proposed fuzzy GA. The
optimal number of rules can be found by introducing swiiches to the fuzzy rules, which

are realized as switches in some links of the NFN.

4.4.1.1 Neural fuzzy network with rule switches

A fuzzy associative memory (FAM) [Kosko 91] rule base 1s adopted. An FAM is

formed by partitioning the universe of discourse of each fuzzy variable according to the
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level of fuzzy resolution chosen for the antecedents. A grid of FAM elements.is then
generated. The entry at each grid element in the FAM corresponds to a fuzzy premise.
The FAM is therefore a geometric or tabular representation of a fuzzy logic rule base.
For an NFN, the number of possible rules may be too large. This makes the network
complex while some rules may be unnecessary. The implementation cost is also
unnecessarily high. Thus, a multi-input-single-output NFN is proposed which can have
an optimal number of rules and membership functions. The main difference between
the proposed network and the traditional network is that a unit step function is

introduced to each rule. The unit step function is defined as,

0if ¢ <0
o = s R 438
() {1ifg>0 ce (4.38)

This 1s equivalent to adding a switch to each rule in the NFN. Referring to Fig. 4.11,

the input and output variables of the NFN are z, and y respectively; wherei =1, 2, ...,

n and n is the number of input variables. The behaviour of the NFN is governed by p
fuzzy rules in the following format:

Rg: IF z,(z) is A% (z,(t)) AND z,{¢) is 4% (x,(t)) AND ... AND z,(¢) is

A (z,(0)) THENy)is w,,t=1,2,...,u (4.39)

where u denotes the number of input-output data pairs; g = 1, 2, ..., p, is the rule

number; w, is the output singleton of rule g. From Fig. 4.11, it can be seen that

p= H m; (4.40)
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where m, is the number of membership functions of the input variable z; and

8 E [ls"-smj] s = 1, ey 1L
In this network, the membership function is a bell-shaped function as given by,

(= (-5 )

fo@0)=e 7 4.41)

where the parameter z°* and o' are the mean value and the standard deviation of the

membership function H e respectively. The grade of membership of each rule is

defined as,

ﬂg (t) = #A,g' (zl (t)).ﬂ/lfz (ZZ (t)) vre .pA:" (Z" (t)) (4°42)

The output of the neural fuzzy network y(¢) is defined as,

> 4 0,5,
ey =E— (4.43)
D 10

where ¢, denotes the rule switch parameter of the g-th rule.
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Fig. 4.11. Proposed neural fuzzy network.

4.4.1.2. Tuning

The proposed fuzzy GA can be employed to learn the multi-input-single-output
relationship of the proposed NFN in an application. The desired input-output

relationship is described by,

Y {)=qlz? (), 1=1,2, ....,u (4.44)

where y(¢) is the desired output, z°{t) = [z," () 22() - z° (t)] is the desired input

vector and ¢(-) is an unknown non-linear function. The fitness function is defined as,
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fitness= Tsorr (4.45)
where
1y 6)-y0)
LA N i AL 4.46
err u; yd(t) ( )

The objective is to minimize the value of (4.46) using the proposed fuzzy GA by
setting the chromosome to be [Z &} ¢ ] forall i, g;, g. The value of (4.46) 1s the

mean absolute percentage error (MAPE). The range of fitness in (4.45) 1s [0, 1]. A
larger value of fitness indicates a smaller err. By using the proposed neural fuzzy
network and the proposed fuzzy GA, an optimal neural fuzzy network in terms of the

number of rules and the membership functions can be obtained.

4.4.2 Short-Term Electric Load Forecasting System

It is desired to forecast the load demand in a home with respect to the week’s day
type number and the hour number. The load forecasting system involves 168 multi-
input-single-output NFNs, one for a given hour number in a week’s day type number
(7x24 =168). If the network structure descrnibed in Section 4.3, which has 28 inputs
and 24 outputs, is applied to this NFN, the system will become complex because the
number of rules is large. Thus, 168 NFNs with seven inputs and one output per network
are used. With a larger number of NFNs, a smaller number of rules in each NFN can be
used. One important task in the short-term load-forecasting problem is to select the
input variables. In this system, the input variables are historical load data, temperature

inputs and rainfall index inputs. One of the 168 NFNs for daily load forecasting is
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shown in Fig. 4.12. It is a 7-input-1-output network with rule switches. The inputs, z;,
of the proposed NFN are: z, = L/(d —1,h 1), which represents the load value at the
previous hour of the previous day; z, = L?(d —1,k), which represents the load value at
the forecasting hour of the previous day; z, = L? (d ~LA+ 1), which represents the load
value at the next hour of the previous day; z, = average temperature at the previous day,
z, = average temperature at the present day, z, = average rainfall index at the previous
day, z,= average rainfall index at the present day. The output y(t)= L(d,h), where 4

=1, 2, ..., 7 is the week’s day type number {(e.g. d = 1 for Monday, d = 7 for Sunday),
h=1,2, ..., 24 is the hour number. One should note the special case thatifd =1, (d - 1)

should be 7. L(d,h) is the forecasted load for day-4 and hour-4.

d-1,h-1) ——m

d-1,)) ——

Purposed Neural
L'(d-1h+1) ~———» Fuzzy Network
ave. temp. at previous day g for IO&FI S (d h)
forecasting ’
ave. temp. at present day  —————n- (7 inputs~
1 output)

ave. rainfall index at previous
day

ave. rainfall index at present

———f
day

Fig. 4.12. Proposed neural fuzzy network for electric load forecasting.
Before putting the daily load forecasting system into operation, the NFN should
be trained by sampled data. The first-time off-line training is a time consuming process.

However, once trained, the NFN can forecast quickly. Comparing with the NN
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discussed in section 4.3, this NFN requires a smaller number of iterations in the first-
time off-line training. For this example, data of 12 weeks (week 1 to week 12) for
training and data of 2 weeks (week 13 to week 14) for testing are prepared. The number

of membership function for each input variable is chosentobe 2 (m; =2,i=1,2,...,7)

such that the number of rules is p = 2’ = 128. Referring to (4.43), the proposed NFN

used for the load forecasting of a particular hour is governed by,

128

. g (0w, 5(c, )
)= —5 (4.47)

Zﬂg Q)

The fitness function is defined as follows,

(4.48)

fitness = -
1+err

err = 22 —__yd(t) (4.49)

It should be noted that (4.47) describes one of the 168 NFNs in the proposed load

forecaster.

The proposed fuzzy GA is employed to tune the parameters and structure of the
NEN of (4.47). The population size is 10. The bounds of the parameters are set at

0<z¥ <1,0<0f <04 and ~-1< g".g <1. The chromosomes used for the proposed

fuzzy GA are [Z' o) ¢, ), i=1,..7,g,=1,2,g=1,..,128. The initial values of

i

zf of ¢, are arbitrarily set at 0.5, 0.2 and 1 respectively. The probabilities of
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mutation p, and acceptance r, are set at 0.1 and 0.1 respectively. The number of

iterations to train the NFN is 500. Once the first-time off-line training is done, the
forecasting system will be put to daily operation. During the operation, the system will
update the weights of the NFN with 100 iterations daily. For comparison, a 7-input-1-
output NFN without rule switches trained by the traditional GA with anthmetic
crossover and non-uniform mutation [Michalewicz 94] is aiso applied for the ioad

forecasting. The probabilities of crossover and mutation are 0.8 and 0.03 respectively.

The results are tabulated in Table 4.7 and Table 4.8. Table 4.7 shows the
simulation results of electric load forecasting for Wednesday and Table 4.8 shows the
results for Sunday. From Table 4.7 and Table 4.8, we observe that the proposed NFN
trained by the proposed fuzzy GA provides better results than those of the traditional
NEFN trained by the traditional GA in terms of fitness value and number of rules. From
Table 4.7 and Table 4.8, the average numbers of rules for the proposed NFNs are 67.29

and 70.25 respectively. They imply a 47.4% and 45.11% reduction in the number of

rules after training.

Table 4.9 show the average training error (MAPE) and the average forecasting
error (MAPE) for Monday to Sunday. Fig. 4.13 and Fig. 4.14 show the forecasted daily
load curve on Wednesday (weekday) and Sunday respectively at Week 13. We can

observe that the proposed NFN offers a satisfactory performance in load forecasting.
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Fig. 4.13. Actual load (solid line) and forecast results for Wednesday (Week13) from
the proposed forecasting system (dashed line).
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Fig. 4.14. Actual load (solid line) and forecast results for Sunday (Week13) from the
proposed forecasting system (dashed line).
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Our Approach Traditional Approach
Hour Fimess Training Number of | Fitness value Training Number of
value error rules error rules
{MAPE) {MAPE)

1 0.9943 0.5733 64 0.9895 1.0611 128

2 0.9946 0.5429 63 0.9879 1.2248 128

3 0.9952 0.4823 65 0.9812 1.9160 128

4 0.9883 1.1839 66 0.9808 1.9576 128

5 0.9926 0.7455 77 0.9838 1.6467 128

6 0.9925 0.7557 65 0.9841 1.6157 128

7 0.9945 0.5530 71 0.9793 2.1138 128

8 0.9827 1.7605 73 0.9831 1.7191 128

9 0.9894 1.0714 59 0.9803 2.0096 128
10 0.9853 1.4919 72 0.9801 2.0304 128
3 0.9885 1.1634 68 0.9875 1.2658 128
12 0.9889 1.1225 64 0.9792 2.1242 128
13 0.9835 1.6777 70 0.9751 2.5536 128
14 0.9856 1.4610 71 0.9848 1.5435 128
15 0.9844 1.5847 73 0.9781 2.2390 128
16 0.9813 1.9056 64 0.9733 2.7432 128
17 0.9857 1.4507 67 0.9776 22913 128
18 0.9889 1.1225 70 0.9829 1.7397 128
19 0.9801 2.0304 56 0.9764 2.4170 128
20 0.9827 1.7605 70 0.9783 2.2181 128
2] 0.9851 1.5125 68 0.9850 1.5228 128
22 0.9899 1.0203 71 0.9887 1.1429 128
23 0.9791 2.1346 63 0.9801 2.0304 128
24 0.9834 1.6880 635 0.9791 2.1346 128
Average: 0.9874 1.2761 67.29 0.9815 1.8849 128

Table 4.7. Simulation results of electric load forecasting for Wednesday after training.
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Our Approach Fraditional Approach
Hour Fitness value Training Number of | Fitness value Training Number of
error rules error rules
{(MAPE) {MAPE)

1 0.9941 0.5935 63 0.9918 0.8268 128
2 0.9903 0.9795 65 0.9911 0.8980 128
3 0.9889 1.1225 81 0.9792 2.1242 128
4 0.9960 0.4016 82 0.9817 1.8641 128
5 0.9928 0.7252 75 0.9887 1.1429 128
& 0.9897 1.0407 69 0.9836 1.6673 128
7 09906 0.9489 67 0.5889 1.1225 128
8 0.9825 1.7812 77 0.9800 2.0408 128
9 0.9890 1.1§22 74 0.9871 1.3069 128
i0 0.9811 1.9264 71 0.9773 2.3227 128
11 0.9837 1.6570 68 0.9825 1.7812 128
12 0.9895 1.0611 61 0.9798 2.0616 128
13 0.9801 2.0304 81 0.9733 2.7432 128
14 0.9781 2.2390 65 0.9748 2.5851 128
15 0.9835 1.6777 70 0.9781 2.2390 128
16 0.9791 2.1346 73 0.9720 2.8807 128
17 0.9775 2.3018 75 0.9717 2.9124 128
18 0.9821 1.8226 60 0.9721 2.8701 128
19 0.9779 2.2599 69 0.9751 2.5536 128
20 0.9885 1.1634 62 0.6788 2.1659 128
21 0.9921 0.7963 71 0.9808 1.9576 128
22 (.9884 1.1736 67 0.9824 1.7915 128
23 0.9802 2.0200 68 0.9819 1.8434 128
24 0.9863 1.38%0 72 0.9823 1.8019 128
Average: 0.9859 1.4302 70.25 0.9806 1.9784 - 128

Table 4.8. Simulation results of electric load forecasting for Sunday after training.
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First-time Forecasting Daily off- Forecasting Daily off- Forecasting
off-line error at line training error at line training error at
training Week 13 error from Week 14 error from Week 15
error from Week 2- Week 3-
Week 1- Week 13 Week 14
Week 12
Monday 1.3013 1.5211 1.2951 1.2059 1.2833 1.5037
Tuesday 1.3354 1.4893 1.3523 1.3215 1.3329 1.4988
Wednesday 1.2831 1.3522 1.2983 1.4021 1.2865 1.6129
Thursday 1.3152 1.3095 1.3028 1.4253 1.3107 1.2553
Friday 1.4257 1.4753 1.3851 1.4953 1.4055 1.5951
Saturday 1.4019 1.3992 1.2897 1.4059 1.3033 1.6803
Sunday 1.4316 1.3515 1.3503 1.5201 1.3012 1.4741

Table 4.9. Off-line training error and forecasting error in term of MAPE from Monday

to Sunday.
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4.5 ELECTRIC LOAD FORECASTING WITH MODIFIED FUZZY GA-BASED

NEURAL NETWORK

Electric load forecasting with 2 modified fuzzy GA-based neural network will be
reported in this section. A modified neural network model 1s to be pfoposed. Two
different activation transfer functions are used in the neurons of the hidden layer, and a
node-to-node relationship is proposed. This network model is found to be able to give a
better performance with a smaller number of hidden nodes than the traditional feed-
forward neural network [Lecun 85]. The proposed fuzzy GA (in Section 4.2) can help
tuning the parameters of the proposed network. The tuned network is then used to
forecast the short-term daily electric load in an intelligent home. Simulation results
show that the proposed network can forecast the short-term daily electric load
successfully. The proposed modified neural network will be presented in sub-section
4.5.1. Training of the neural network with the proposed fuzzy GA will be presented in

sub-section 4.5.2. The short-term daily load forecasting will be presented in sub-section

4.5.3.

4.5.1 Neural Network Model

Fig. 4.15 shows the proposed neuron. It has two activation transfer functions to
govern the input-output relationships of the neuron. The two activation transfer

functions are called static activation transfer functions (SATF) and dynamic activation
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transfer functions (DATF). For the SATF, the parameters are fixed and its output
depends on the input of the neuron. For the DATF, the parameters of the activation

transfer function depend on the outputs of other neurons in the same layer and its SATF.

The modified neural network as shown in Fig. 4.16 is a 3-layer network. The first
layer is the input layer, which simply distributes the input. The second layer is the
hidden layer, and two different activation transfer functions are used in the neuron. The
two different activation transfer functions are, namely, static and dynamic activation
transfer functions (SATF and DATF). The SATF determines hyper-planes as switching
surfaces. It can select convex regions in the input space for firing and/or forecasting.
Owing to the DATF, the upper neighbor’s output concerns the bias term while the lower
neighbor’s output influences the sharpness of the edges of the hypér—planes. They

eventually combine into convex regions by the output layer.

By introduced this modified neural network, a node-to-node relationship is
introduced in the hidden layer. Comparing with the traditional feed-forward neural

network [Lecun 85], the proposed neural network can offer a better performance.
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Fig. 4.16. Connection of the modified neural network.

4.5.1.1 Proposed neuron model
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For the SATF, let v; be the synaptic connection weight from the i-th mput node

z; to the j-th neuron. The output «; of the j-th neuron’s SATF is defined as,
K, =net!Xzv), i=1,2, oy gy j= 1,2, .0 1 (4.50)
i=1

where n,, denotes the number of input and net/(?) is a static activation transfer

function. The activation transfer function i1s defined as:

iy ; :
_Elz,-v‘;,-—m_,
i=|

7 . ;
o, e % -1 if Xzv. <m’ _
netj(iizl.v,j)=< =l . Jj=1,2,.. ., m
=

i2 .
: otherwise

(4.51)

where m/ and o/ are the static mean and static standard deviation for the j-th SATF

respectively. The parameters (m/ and 0';" ) are fixed after the training process. By

using the proposed activation function in (4.51), the output value is ranged from -1 to 1.
The shape of the proposed activation transfer function is shown in Fig. 4.17 and Fig.

4.18. In Fig. 4.17, the effect of the mean value to the activation transfer function is

shown. The standard deviation o, of the function is fixed at 0.2 and the mean value
m_is chosen from —0.4 to 0.4. In Fig. 4.18, the effect of the standard deviation to the
activation transfer function is shown. The mean value m, is fixed at 0. The standard

deviation o, is chosen from 0.1 to 0.5. It can be observed from these two figures that
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net (f)—>1as f > and net,(f} > -1 as f > —o.

"1 08 06 04 02 o0 02 04 06 08 1

Fig. 4.17. Sample activation transfer functions of the proposed neuron (o, = 0.2).

04ar
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-1 .
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Fig. 4.18. Sample activation transfer functions of the proposed neuron (m, =0).

For the DATF, the neuron output £ ; of the j-th neuron is defined as,
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¢, =neti(x,), j=1,2, .. 1y (4.52)
and,
‘("i‘"’ﬁ)z
Za'j2 - 4
) o e 7 -1 if x.<m’
netj(xj,mj,aj)zj ( J,)z ! d, i=1L2,..,n, (4.53)
K omy
| 1-¢ 295 otherwise
where
m; =DPja; x§j+l (4.54)
(4.55)

i _
Oy =DPj,;% C_‘llj-l

m and crj are the dynamic mean and dynamic standard deviation for the j-th DATF;
¢, and ¢, represent the output of the j —1-th and j+1-th neurons respectively, p;,, ;
denotes the weight of the link between the j+1-th node and the j-th node, and p,, ;
denotes the weight of the link between the j—1-th node and the j-th node. It should be

noted from Fig.4.15 that if j=1, p, , ; isequalto p, ., andif j=n,, p,, ; 1s equal

fo Py

Unlike the SATF, the DATF is dynamic as the parameters of its activation transfer

function depend on the outputs of the j—1-th and j+1-th neurons. Referring to (4.50 -

4.53), the input-output relationship of the proposed neuron is as follows:
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g._nez;(neﬂ(iz, v;))J = . n, (4.56)

i=l

4.5.1.2. Connection of the proposed neural network

The proposed MIMO neural network has three layers with #,, nodes in the input
layer, n, nodes in the hidden layer, and #n,,, nodes in the output layer. In the hidden

layer, the neuron model presented in sub-section 4.5.1.1 is employed. A node-to-node
relationship is introduced in the hidden layer. In the output layer, a static activation

transfer function is employed. Considering an input-output pair (z,y), the output of the

J-th node of the hidden layer is given by
= net? (net’(z 2V, ). J = , n, (4.57)

where v;, i= 1,2,..., n,;j= 1, 2, ... n,, denotes the weight of the link between the i-

th input and the j-th hidden nodes. The output of the proposed neural network (Fig.

4.19) 1s defined as,

yy=nel (S Cw), 1=1,2, ..., nyy (4.58)
i=1
= net (Znet’(net" Zz, v;) (4.59)
where w;,/=1,2, ..., n,; {=1,2,...n,, denotes the weight of the link between the j-

th hidden and the /-th output nodes; net;(-) denotes the activation transfer function of

the output neuron:
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2

EICJ‘”IJ-"‘L
20’2 . i
n e ° -1 i D &w,<m
netl (3¢ wy) =1 2 ﬁ 7 =T (4.60)
i=1 n
’ :l .ZhCi"ff'"’L
=1
z
f-g 2 otherwise

where m’ and o are the mean and the standard deviation of the output node activation
transfer function respectively. The parameters of the proposed modified neural network

can be trained by the proposed fuzzy GA.

kth output neuron

Fig. 4.19. Model of the proposed output neuron.

4.5.2 Training with Fuzzy Genetic Algorithm

In this sub-section, the proposed neural network is employed to learn the input-
output relationship of an application using the proposed fuzzy GA (as discussed in

Section 4:2). The input-output relationship of the NN can be described by,

v =gl/ ), t=1,2 .., n, (4.61)
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where y?(t) = [y,d O e - yfm (t)] is the desired output corresponding to the

input z"(t):[z," 0 z@ - zi (t)] of an unknown nonlinear function g(), n,

denotes the number of input-output data pairs. The fitness function is defined as,

fitness = (4.62)

1+ err

) jy,(,) %)
err = ff | o (4.63)

n,xXn,,

The objective is to maximize the fitness value of (4.62) using the proposed fuzzy GA by

setting the chromosome to be [v; m! o! Py Pj-j Wa m! &) for all i, ,

I. The range of fitness function in (4.62) is [0, 1]. A larger value of fitness indicates a

smaller err.

4.5.3  Short-Term Daily Electric Load Forecasting System

The structure of the short-term daily electric load forecasting system is the same
as that in sub-section 4.3.2. Twelve sets of historical data are used for first-time off-line
training with 1000 iterations. Once the first-time off-line training is done, the
forecasting system can be put to daily operation. During the operation, the system will
update the weights of neural network based on new data with 200 iterations daily. From

(4.59), the proposed neural network used for the daily load forecasting is governed by, '

y,(t):net;(inet({(net{(zz,vy))wj,) I=1,2,...,24 (4.64)
j= i=
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The number of hidden node (n;) is changed from 3 to 9 in order to test the learning

performance. The fitness function is defined as follows,

fitness = (4.65)
14 err
d
12 24 |y, (8) — 3, (F)
_1s1 _.___l * k (4.66)

m= d
12 =1 24 k=1 Vi (t)

The proposed fuzzy GA is employed to tune the parameters of the modified
neural network of (4.64). The objective is to maximize the fitness function of (4.65).
The value of err indicates the mean absolute percentage error (MAPE) of the
forecasting result. The best fitness value is 1 and the worst value is 0. The population

size used for the fuzzy GA is 10. The probability of acceptance 7, is set at 0.1 and the

probability of mutation p,, is set at 0.03. The chromosomes used for the fuzzy GA are

5

v, m' &/ pu, Pm,; w; m ol]foralli j, I The number of iterations to train

the proposed neural network for the first time is 1000. For comparison purpose, a
traditional neural network trained by the proposed fuzzy GA is also applied to do the
electric load forecasting. The working conditions are kept the same. The results are
tabulated in Table 4.10 and Table 4.11. Table 4.10 shows the simulation resuits of the
daily load forecasting for Wednesday, and Table 4.11 shows the daily load forecasting
for Sunday. These tables show the fitness value and the number of parameters of the
network. We can observe that the performance of the proposed modified neural
network is better than that from a traditional neural network. The worst result offered

by the proposed neural network is even better than the best result offered by the
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traditional neural network. Table 4.12 shows the off-line training error and the
forecasting error (week 13-week 15) on using the proposed modified neural network at

n, = 4. The average errors of training and forecasting are 1.6488 and 1.9604

respectively. Fig. 4.20 and Fig. 4.21 show the simulation results of the daily load
forecasting on Wednesday (week 13) and Sunday (week 13) using the proposed neural
network. In these figures, the dotted line in black represents the forecasted result using
the proposed neural network, and the dashed line in red is the forecasted result using the
traditional neural network. The actual load is represented by a solid line in blue. We

can see that the forecasting result using the proposed modified neural network is better.

1200——————— ———

800

600

loads in W

400 !

200

2 4 6 8 10 12 14 16 18 20 22 24
Fig. 4.20. Daily load forecast results on Wednesday (Week13) with the proposed neural

network (dotted line in black) and the traditional neural network (dashed line in red), as

compared with the actual load (solid line in blue).
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1200 - —

1000

loads in W
8

400

200

2 4 6 B 10 12 14 16 18 20 22 24
hour

Fig. 4.21. Daily load forecast results on Sunday (Week13) with the proposed neural

network (dotted line in black) and the traditional neural network (dashed line in red), as

compared with the actual load (solid line in blue).

Proposed Neural Network I raditional Neural
Network
ny, Fitness Traming Number of | Fitness Traaiiag Number of
Value o parameters | Value s parameters
(MAPE) (MAPE)

3 0.9830 1.7294 216 0.9640 3.7344 183
4 0.9842 1.6054 272 0.9684 3.2631 236
5 0.9831 1.7191 328 0.9708 3.0078 289
6 0.9832 1.7087 384 0.9620 3.9501 342
7 0.9815 1.8849 440 0.9742 2.6483 395
8 0.9818 1.8537 496 0.9738 2.6905 448

Table 4.10. Simulation results of the proposed neural network and the traditional neural

network for daily load forecasting for Wednesday.
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Proposed Newral Newwork

Traditional Xewral Neiwork

n, Fitness Training | o ber of | Fitness Training Number of
Value error parameters | Value error parameters
(MAPE) (MAPE)

3 0.9810 1.7294 216 0.9567 4.5260 183
4 0.9833 1.9368 272 0.9683 3.2738 236
5 0.9815 1.6984 328 0.9705 3.0397 289
6 0.9801 1.8849 384 0.9610 4.0583 342
7 0.9799 2.0304 440 0.9712 2.9654 395
8 0.9791 2.0512 496 0.9701 3.0822 448

Table 4.11. Simulation results of the proposed neural network and the traditional neural

network for daily load forecasting for Sunday.

First-time Forecasting Daily off- Forecasting Daily off- Forecasting
off-line error at line training erTor at line training error at
training Week 13 error from Week 14 error from Week 15
error from Week 2- Week 3-
Week 1- Week 13 Week 14
Week 12
Monday 1.6417 2.3821 1.6188 1.3327 1.5022 2.0012
Tuesday 1.7035 1.8525 1.6803 1.6713 1.6388 2.1056
Wednesday 1.6063 2.0117 1.6331 1.9982 1.6682 2.4321
Thursday 1.6952 1.6602 1.6415 2.0299 1.7099 1.4894
Friday 1.7036 2.0985 1.6682 2.3055 1.8601 1.9827
Saturday 1.6682 1.6536 1.5411 1.9034 1.5793 2.3021
Sunday 1.7049 1.4331 1.6102 2.2753 1.5714 2.2077

Table 4.12. Off-line training error and forecasting error in terms of MAPE from

Monday to Sunday.
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4.6 CHAPTER CONCLUSION

Short-term home electric load forecasting systems realized by computational
intelligence techniques have been discussed in this chapter. These techniques involve a
GA-based neural network, a GA-based neural fuzzy network, and a modified GA-based
neural network. All parameters of the proposed networks are tuned by a proposed fuzzy
genetic algorithm. The proposed fuzzy GA is modified from the published GA with
arithmetic crossover and non-uniform mutation. Modified genetic operators have been

introduced. Based on the benchmark test functions, it has been shown that the fuzzy

GA performs better than the traditional GA.

On implementing these home electric load forecasting systems, the objectives are
to minimize the training errors and forecast the electric load. In a normal environment,
the home power consumption pattern of a given week should not deviate too much from
that of its next week. Thus, a small training error can be obtained and yet given a smalil
forecasting error.  In some special cases, when the habit of the family on power

consumption changes suddenly, the forecasting error may be affected.

By introducing a switch to each link; a GA-based neural network that facilitates
the tuning of its structure has been proposed. Using the proposed fuzzy GA, the neural
network is able to learn both the input-output relationship of an application and the
optimal network structure. As a result, a given fully connected neural network will

become a partly connected neural network after training. This implies a lower cost of

implementation.
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A GA-based neural fuzzy network has been proposed in which a switch is
introduced in each fuzzy rule. Thus, the number of rules can be optimized using the

proposed fuzzy GA. The cost of implementing the proposed NFN can be reduced,

while the network parameters can be optimised.

A proposed modified neural network trained by the proposed fuzzy GA has also
been presented._ A neuron model with two activation transfer functions has been
introduced. With this proposed neuron, the connection of the proposed neural network
exhibits a node-to-node relationship in the hidden layer. On using this network, the

performance is found to be better than that of a traditional feed-forward neural network.

The performance of these three proposed computational intelligence techniques
are satisfactory when applying to short-term home electric load forecasting. Comparing
the neural network approaches and the neural fuzzy network approach, the training and
forecasting errors of the neural fuzzy network are found to be smaller than those of
neural network approaches. However, more networks are necessary (7 networks in the
neural network approaches against 168 networks in the neural fuzzy network approach).
The modified neural network discussed in Section 4.5 can be regarded as an improved
version of the neural network discussed in Section 4.3. By using the modified neural

network, the number of the hidden nodes can be reduced and a better performance can

be obtained.
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HOME ELECTRIC LOAD BALANCING SYSTEM

5.1 INTRODUCTION

With the recent technological advancement in consumer electronics and the
improvement in the quality of life, a significant increase in the consumption of domestic
electrical power is seen [Lee 99). This increase, which causes overloading in existing
power systems, may not occur at all time but only at some peak hours. The average
power consumption is not increased drastically. Reinstalling a more sophisticated
power system is not an economic solution to solve this type of overloading problem.
Rather, implementing schemes that schedule the power consumption in order to
decrease/increase the load demand from the utility company during peak/off-peak period
is preferred. It is because an evenly distributed power consumption profile from the
point of view of the utility company can result in an efficient way of using power. It can
reduce the operation cost of the power system and relieve the need of adding new
generator units. To achieve this goal, rechargeable batteries are needed to share the
loading. Thanks to the advancement in the power electronics technology, it is not too

difficult to install low-cost high-power rechargeable batteries at our homes.

This chapter proposes a home electric load balancing system that employs

rechargeable batteries at home. The power drawn by the home loads will be monitored
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and the power drawn from the utility company will be regulated to a reference vaiue. If
the home needs more power than the reference value, the batteries will provide the extra
power. If the home draws less power than the reference value, the energy in excess will
be used to charge the batteries. As a result, the power drawn from the mains will be
kept near to a constant. The proposed system not only alleviates the overloading
problem in the user side, but also relieves the instantaneous demand to the utility

company. The reference value can be determined by a home electric load forecasting

system discussed in Chapter 4.

Apart from the primary objective of regulating the power drawn from the utility
company, a secondary control objective is to prevent the amount of energy stored in the
batteries from reaching the practical limits. If the upper/lower limit is reached, the
batteries can no longer be charged/diséharged and the regulation will fail. The short-
term home electric load forecasting system may help in suggesting a suitable amount of
energy to be stored in the batteries with respect to time. Whenever necessary, the
system will spare some control power to prevent the battery-stored energy from reaching

the limits by sacnificing a bit of the performance tn the regulation.

The proposed home electrical load balancing system will be described in Section

5.2. An example will be shown in Section 5.3. A chapter conclusion will be drawn in

Section 5.4.
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5.2 DESIGN AND CONTROL

5.2.1 System Architecture

The system block diagram is shown in Fig. 5.1. Let P4 be the power drawn from
the AC mains, which is to be regulated; L4 be the power consumption of the home, R be
the reference power consumption which is the mean value of the forecasted daily power

consumption of the home, £, be the difference between R and Ly, B, and B, be the

forecasted stored energy of the batteries and the actual stored energy of the batteries

respectively, £, be the difference between B, and B,,. The primary control

objective of the proposed system is to regulate P, to the reference value R under a
varying L,. The control signal U controls the amount of power flowing to or from the
batteries via the bi-directional converter (U is the reference input power of the bi-
directional converter). A positive U/ makes the bi-directional converter act as a power
converter drawing power Pg = U from the batteries to the power line. A negative U
makes the bi-directional converter act as a charger to charge the batteries with power Ly
= —U. Theoretically, the storage capacity of the batteries should be as large as possible
to prevent them from fully charged or discharged during operation. However, the
physical size and cost of the batteries are practical constraints. The value of U depends
on two values: Uy and Uz. U, is for reducing £, while Uy attempts to prevent the
amount of energy stored in the batteries from reaching the limits. The latter, in fact, is

the secondary control objective of the system. The values of U, and Up are governed by

the gain values of K| and K; respectively.
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It can be seen from Fig. 5.1 that the values of L and Pp can be controlled and the
values of the disturbance input L, are measured. Since the dynamics of the bi-
directional converter is fast, its transfer function can be approximated as a constant. The
transfer functions from the disturbance input (L,) to the output (P,), and from the

control input (U) to the output (P,) are also constants.

5.2.2 Battery Capacity

The capacity of the installed batteries for the home load balancing system can be
determined based on the historical daily power consumption profiles of L. Assuming
that L, is roughly daily periodic in some sense, a set of historical daily power
consumption profiles can be sampled. A typical power consumption profile and the
corresponding required energy profile stored in the batteries are shown in Fig. 5.2.
From the sampled profiles, the profile with the maximum mean value of power:
consumption 1s selected. Let this value be R,, then the total discharging energy A+ (the
sum of areas above R,) equals the total charging energy 4_ (the sum of areas below R,).
In practice, we do not want the stored energy of the batteries to reach zero or a specified
maximum value. An upper limit and a lower linit for the stored energy should be set as

shown in Fig. 5.2c. ‘The capacity of the batteries is effectively the upper limit C, . as

required by the proposed system:

C. =B K (5.1)

upper BClmax

where B, is the maximum required energy stored in the batteries for the load

balancing, and K is a scaling factor greater than unity for the tolerance of any
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discrepancy between the predicted and the actual profiles. Then, the lower limit for the

stored energy of the batteries is given by:

c. =g (&=l (5.2)

lower — “actg,, )

5.2.3 System Design
The roles of the home electric load forecasting inside the load balancing system
are to determine R and B, . A typical forecasted home electric load consumption

profile and the corresponding forecasted stored energy of the batteries are shown in Fig.

5.3. As seen from Fig. 5.3, R is the mean power consumption of the forecasted daily

load. B, is the forecasted stored energy of the batteries given by:

Brre = Ble + Crper (5.3)

Jore

where B, is the forecasted required energy stored in the batteries for supporting the
load balancing. Based on the primary objective (to regulate P,), an output control

signal U, should be designed:
U,=-K,(R-L)) (5.4)
or U,=-K,E, (5.5)

where K, is a positive gain. If the forecast error is equal to zero, only the primary

objective in the balancing system has to be satisfied. Unfortunately, the forecast error is

seldom equal to zero. With forecast errors, the amount of energy stored in the batteries
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may reach the upper/lower limit of the batteries. To alleviate this problem, the
secondary objective (to prevent the amount of energy stored in the battenes from

reaching the practical limits) has to be achieved, and an output control signal U, should

be designed:

UB = _Kz (B ore _Bact) (56)
or Uy, =—-K,E, 5.7

where K, is a positive gain.

It can be seen that if E, is positive, B, > B,,, and the amount of the stored

energy may not be enough for future use. Therefore, the control signal U, should be

more negative so that the charging of the batteries will be made faster. On the other

hand, if £, is negative, B, <B,,, and the amount of the stored energy is more than

enough for future use. Therefore, the control signal U/, should be more positive so that

the charging of the batteries will be made slower.
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Load of a AC Power
Home Source
L, P,
Ly P, B
Bi-directional Batteries
converter
U B,
+ + .
-K 1 -K b
E A U, U, EB *
B fore

Home electric load
forecasting system

Fig. 5.1. System block diagram.
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Fig. 5.2. (a) Actual home daily power consumption profile (b) required stored energy of

batteries, (c) practical stored energy of batteries with upper and lower limits.
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Fig. 5.3. (a) Forecasted home power consumption profile, (b) forecasted stored energy

of battenes.
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5.3 SIMULATION EXAMPLE

A home load balancing system based on the GA-based neural network forecaster
presented in section 4.3 will be used. The system diagram is shown in Fig. 5.1. The
actual and forecast week-13 results are considered in this simulation example. Details
about the forecast result have been presented in section 4.3. Referring to Fig. 5.1, the
values of K; and K, are 1 and 0.02 respectively, which are tuned by trail-and-error.
From a set of actual consumption profiles, the one with the maximum mean power

r p—

consumption R, is selected. From (5.2), it is found that R, = 780.8W, and B, =
1698Wh. Let K = 1.4, from (5.1), Cypper = 2377.2 kWh and C,,, = 339.6Wh. Fig. 5.4

shows the regulation results of the home load balancing system for 168 hours (7 days).
The home power consumption Ly has large ﬂuctqatio