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ABSTRACT 

 

Production planning and control systems based on the Material Requirements 

Planning (MRP) logic have been extensively implemented in the manufacturing 

industry. Despite its widespread use, MRP ignores capacity constraints, assumes that 

lead times are fixed, and does not consider operation sequences of items.  All of 

these create many problems on the shop floor for later production. Unquestionably, 

MRP and operations scheduling are closely interrelated and intertwined together. 

Consequently, they should be integrated together to generate realistic production 

schedules for the shop. This integration leads to the problem of Advanced Planning 

and Scheduling (APS) and this thesis mainly focuses on the modeling and 

optimization of APS. 

In this thesis, a Mixed Integer Programming (MIP) model for the APS, with 

the objective of minimizing cost of both production idle time and tardiness or 

earliness penalty of an order, is formulated. The proposed mathematical model 

explicitly considers capacity constraints, operation sequences, lead times and due 

dates in a multi-order environment and generates production schedules with 

operation starting time and finish time for the shop floor. Numerical results indicate 

that the established APS model can favorably produce optimal schedules. Since the 

APS problem has been proved to be NP-hard, a genetic algorithm (GA) is built to 

tackle it more efficiently. A series of computational tests demonstrate that the 

suggested GA approach is satisfactory in creating effective production plans and 

schedules. In order to cope with the Dynamic Advanced Planning and Scheduling 
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(DAPS) problem where new orders arrive on a continuous basis, both the MIP and 

the GA are further extended by incorporating a periodic policy with a frozen interval. 

The objective of the offered methodology is to find a schedule such that both 

production idle time and penalties on tardiness and earliness of both original orders 

and new orders are minimized at each rescheduling point. The provided dynamic 

mechanism is confirmed to be capable of improving the schedule stability while 

retaining efficiency. Furthermore, a prototype of the advanced planning and 

scheduling decision support system is designed to assist production planners to make 

effective decisions. Finally, a real APS problem arising from a specialist light source 

manufacturing company is illustrated to validate the applicability of the developed 

methods and system. 
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CHAPTER 1 

INTRODUCTION 

  

Due to stiff global competition, manufacturing companies become more and 

more customer-driven. The success of the manufacturing companies will rely on the 

ability to offer quality, cost effective products to increasingly demanding customers 

with incredible speed and accuracy. Meanwhile, over the past several decades, there 

have been rapid improvements in information technology. Nowadays, computer-

based information management systems are very common to manufacturing 

companies, from small and mid-size to large corporations. All the changes in the 

environment have caused the evolution of manufacturing production planning and 

control systems, from Material Requirements Planning (MRP) to Manufacturing 

Resource Planning (MRP-II), and to Enterprise Resource Planning (ERP). Despite 

the developments that the manufacturing production planning and control systems 

have gone through, one thing has never been changed, that is, MRP is always the 

focal point of all manufacturing applications. 

 

1.1 MATERIAL REQUIREMENTS PLANNING (MRP) 

Material Requirements Planning (MRP) first developed in the 1960’s is a set 

of procedures which transform a Master Production Schedule (MPS) into time-

phased net requirements. It follows a top-down hierarchical approach and its basic 

ideas are that the demands for components depend on the demands for the 
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subassemblies or final products they constitute; therefore, it generates the demands 

for components from the actual demands of the dependent final products.  

 

1.1.1 Inputs and outputs of MRP 

There are five main inputs to an MRP system: 

• Master Production Schedule (MPS) 

• Bills of materials (BOM) 

• Inventory records 

• Lot sizing rules 

• Planned lead time 

The primary outputs of an MRP system include: 

• Order release notices, for placement of planned orders 

• Replanning notices, when there are changes in open orders 

• Cancellation notices, when there is cancellation or suspension of open 

orders 

• Backup data 

Figure 1.1 illustrates in more detail how MRP functions within the overall 

framework of a production planning and control system. The front end in Figure 1.1 

represents the long term planning portion. Resource planning and production 

planning take a long term view to make decisions for the foreseeable future. The 

MPS which contains the detailed requirements for final products by date and quantity 

can then be created for an extended period on the basis of directions set by the 

production and marketing departments. The feasibility of MPS is verified by use of a 
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rough cut capacity planning (RCCP) tool. The engine portion describes the MRP 

system and its associated inputs and outputs. Based on the routing file which defines 

how to produce an item (machines, toolings, setup times, etc), the capacity 

requirements planning (CRP) module checks the plans generated by the MRP for 

feasibility. If infeasible, adjustments should be made in the MPS and/or to 

production capacity before a new MRP is run. If feasible, the time-phased MRP 

plans, which take the form of orders, are delivered to the shop floor. The back end in 

Figure 1.1 depicts the detailed shop floor and vendor control system [Orl69, Vol88, 

Vos03]. 

Resource 
Planning 

Shop Floor 
Control 

Order 
Release 

MRP 

MPS 

Production 
Planning 

RCCP 

Time-
Phased 
Plans 

Vendor 
Control 

Routing 

BOM 

CRP Inventory 

Lot Size 

Lead Time 

Front End

Engine 
Back End

 

Figure 1.1 MRP within the production planning and control system [Vol88] 
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1.1.2 MRP logic 

An MRP system operates in the following manner. From the gross 

requirements for end items as specified in the MPS, MRP considers scheduled 

receipts and on-hand inventory to determine net requirements. The net requirements 

are grouped into orders according to lot-sizing rules. The orders are then offset by the 

necessary lead time for fulfilment. The resulting planned order releases provide the 

gross requirements for the next level’s items in the BOM. The process repeats itself 

for all items, one by one. 

The basic MRP record is displayed in Table 1.1. The record includes the 

following: 

• Gross Requirements: the total amount needed in each period 

• Scheduled Receipts: existing replenishment orders due in each period 

• On-Hand Inventory: inventory status after the production and demand 

have occurred in each period 

• Net Requirements: Max { Gross Requirements – Scheduled Receipts – 

On-Hand Inventory, 0} 

• Planned Order Receipts: replenishment orders scheduled to arrive in each 

period 

• Planned Order Releases: generated from Planned Order Receipts by 

offsetting the lead time  

A simple example is used to illustrate the MRP logic. It is assumed that there 

is a two-level final product (F1) that has a bill of materials (BOM) as shown in 

Figure 1.2 and the properties presented in Figure 1.3. In the MRP system, BOM is 
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the central element, which identifies the components that are combined to make other 

subassemblies and ultimately the final products, and also reflects the production 

procedure. Usually, the items in the BOM are sorted in low level code order. In such 

a way, the list begins with the final products and no child item appears in the list 

before the parent item. As seen in Figure 1.2 and 1.3, the final product (F1) is 

assembled from several components, including two units of component C1. The lead 

times of F1 and C1 are 2 time buckets and 1 time bucket, respectively. While the lot 

size for F1 is 1, that is, it can be ordered in any quantity, the lot size for C1 is 40. The 

MRP records for F1 and C1 are listed in Table 1.2. From the table, it could be found 

that the planned orders for the parent (F1) become the gross requirements for the 

child component (C1). Records for other items would be filled exactly in the same 

way. According to the logic, the components are coordinated to arrive together for 

assembly. 

 

Table 1.1 A MRP record 

Period  1 2 3 4 5 6 7 

Gross Requirements        

Scheduled Receipts        

On-Hand Inventory        

Net Requirements        

Planned Order Receipts        

Planned Order Releases        
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Figure 1.2 BOM for a simple MRP example 

 

1. F1: 

Lead Time: 2 time buckets 

Lot Size: 1 

Components: 2 C1, 3 C2 

Initial Inventory: 50 

2. C1: 

Lead Time: 1 time bucket 

Lot Size: 40 

Components: N/A 

Initial Inventory: 225 

3. C2: 

Lead Time: 1 time bucket 

Lot Size: 100 

Components: N/A 

Initial Inventory: 0 

F1

C1 C2

2 3

 

Figure 1.3 Data for a simple MRP example 
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Table 1.2 (a) A simple example of MRP 

F1 1 2 3 4 5 6 7 

Gross Requirements 15 25 120  65  20 

Scheduled Receipts        

On-Hand Inventory(50) 35 10 0 0 0 0 0 

Net Requirements   110  65  20 

Planned Order Receipts   110  65  20 

Planned Order Releases 110  65  20   

 

Table 1.2 (b) A simple example of MRP 

C1 1 2 3 4 5 6 7 

Gross Requirements 220  130  40   

Scheduled Receipts 40       

On-Hand Inventory(225) 45 45 35 35 35 35 35 

Net Requirements   85  5   

Planned Order Receipts   120  40   

Planned Order Releases  120  40    

 

1.2 SCHEDULING 

Scheduling, which concerns execution of material plans, is a significant 

activity in production planning and operation systems. The function of scheduling in 

a manufacturing environment is depicted with the flow of information in Figure 1.4. 
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As illustrated in the figure, scheduling interacts with many other aspects of an 

organization and has an immediate effect on the company’s performance. 

 

MPS 

MRP 

Scheduling 

Dispatching 

Shop Floor 
Management 

Shop Floor 

Shop Orders 

Schedule 

Job Loading Data Collection

 

Figure 1.4 Scheduling within the production planning and control system 

 

Shop orders with certain production objectives are produced as the results of 

MRP. These shop orders have to be processed on the work centers in a given 

sequence. In view of operation sequential constraints and resource capacity 

constraints, a detailed schedule of the tasks to be performed should be developed to 

achieve the objectives. The performance of the scheduling directly impacts the 
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operating efficiency and production control. A good scheduling decision can reduce 

the idle time of machines or work centers and increase the throughput of production, 

while the poor one may affect capacity utilization, work-in-process (WIP) inventory, 

shop floor control, and so on. Ultimately, poor performance of the scheduling will 

lead to decisions that adversely influence a company’s sales and profitability. 

 

1.3 PROBLEMS 

Despite the wide spread use of MRP, it ignores capacity constraints, assumes 

that lead times are fixed, and does not consider operation sequences of items [Bil83, 

Kra87, Sum93, Taa97, Vos03].  This creates many problems on the shop floor for 

later production, such as varying workloads, changing bottleneck, etc. Moreover, 

there is no guarantee that a feasible production schedule exists for the generated 

production plan. When it is not feasible, a great deal of adjustments should be made 

to the production plan for the capacity levels, lot sizes, MPS, etc. The unreliable 

planning process drives planners to lengthen planned lead times in order to get better 

performance. However, longer planned lead times normally cause  

• higher forecast error,  

• longer queues,  

• more work-in-process (WIP), 

• lower machine utilization, 

• less throughput, 

• higher production costs, 

• more unreliable planned lead times.  
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According to the standard MRP doctrines, the above problems are alleviated 

by closed-loop capacity planning. However, typical MRP-based manufacturing 

planning and control systems only utilize capacity planning techniques such as rough 

cut capacity planning (RCCP) and capacity requirements planning (CRP). RCCP is 

designed to estimate capacity requirements to ensure the feasibility of the given MPS 

before MRP generates its plans, which is only approximate and based on infinite 

loading assumptions. CRP checks the plans created by MRP for feasibility by 

translating the plans into shop hours by work centre by period, which still does not 

take into account lead times, operation sequence, etc. Neither RCCP nor CRP 

provides any true closed loop feedback to the production planning and control 

process. 

Unquestionably, MRP and production scheduling are closely interrelated, and 

they should be integrated together to generate realistic production schedules for the 

shop floor, which leads to the problem of Advanced Planning and Scheduling (APS). 

In addition, Advanced Planning and Scheduling (APS) creates a unified solution 

space that covers both the production planning solution space and the scheduling 

solution space (although such a space may be complex), and provides a base to 

effectively combine the solution attempts on both production planning and shop floor 

scheduling. Tremendous savings in solution efforts would be anticipated when the 

two functions are successfully integrated. Consequently, Advanced Planning and 

Scheduling (APS) is the study focus of this project. 
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1.4 RESEARCH OBJECTIVES 

In this project, five distinctive objectives associated with the optimization of 

Advanced Planning and Scheduling (APS) are to be achieved. First of all, a 

mathematical model for the Advanced Planning and Scheduling (APS), with the 

objective of minimizing cost of both production idle time and tardiness or earliness 

penalty of an order, is to be built. The proposed model will explicitly consider 

capacity constraints, operation sequences, lead times and due dates in a multi-order 

environment and generate realistic operation schedules for the shop floor, which will 

overcome the principal difficulty inherent in the existing MRP procedures. 

The second objective is to develop a genetic algorithm to solve the APS 

problem effectively and efficiently. The APS problem has been proved to be NP-hard 

[Faa87, Moo03]. Any exact optimization approach is highly impossible to solve this 

kind of problem efficiently, and heuristic methods are often adopted to tackle this 

issue. Besides, the GA-based method is to be exploited to find good solutions to the 

APS problem due to its simplicity and flexibility. 

The third objective is to investigate the Dynamic Advanced Planning and 

Scheduling (DAPS) problem where new orders arrive on a continuous basis, and 

provide a dynamic strategy to enrich both the mathematical model and the GA 

approach. Traditional APS problems always include static environment assumptions, 

such as the availability of all orders. However, in practice, any plans and schedules 

are always subject to new conditions and constraints due to the highly dynamic 

environment. In other words, plans and schedules generation is only one aspect of the 
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production process. Dynamic control is equally important for the successful 

implementation of the APS system. 

The fourth objective is to construct a seamless decision support system for 

APS. Conventional decision support systems in production planning and control are 

structured on the basis of the hierarchical production planning (HPP) principle.  Most 

of these systems suffer from incompatibility of decisions at different levels.  To be 

effective, an APS-based production decision support system is to be designed. 

The fifth objective is to apply the established system to a real-life industrial 

case. Many manufacturing firms have products with a multi-level structure, and 

encounter the APS problem. A practical APS problem arising from a light source 

manufacturer is to be solved to test the developed methods and system. 

Overall, the objectives of this research are: 

• to establish a mathematical model for APS, with the integration of 

production planning and scheduling 

• to offer a modern heuristic approach for the optimization of APS 

• to introduce a Dynamic Advanced Planning and Scheduling (DAPS) 

mechanism  

• to develop an interactive Advanced Planning and Scheduling Decision 

Support System (APSDSS) 

• to apply the designed system to a real case 

These five research objectives form a guideline for this thesis. 
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1.5 SCOPE OF THIS THESIS 

This project is mainly devoted to Advanced Planning and Scheduling (APS) 

so as to minimize the total costs of both production idle time and tardiness or 

earliness penalty of an order. The structure of the thesis is organized as follows. 

In Chapter 2, an extensive literature review is conducted to demonstrate what 

have been studied on MRP, scheduling as well as APS in the past 50 years. Since the 

mathematical programming and genetic algorithm are adopted to tackle the APS 

problem in this project, the fundamental concepts and procedures of the pertinent 

exact algorithms and heuristic methods are also surveyed.  

In Chapter 3, a thorough description of the APS problem under investigation 

is presented. Then, a Mixed Integer Programming (MIP) model, which succeeds in a 

system integration of the production planning and shop floor scheduling, is 

formulated. The integrated model is verified with a commercial software package, 

CPLEX. Thereafter, the complexity of the APS problem is analyzed.  

In Chapter 4, a genetic algorithm for solving the APS problem is proposed. 

The primary procedure and key issues in the established GA method are elaborately 

introduced. The performance of the GA-based approach is examined and compared 

with the optimal solutions gained from Chapter 3.  

In Chapter 5, for the Dynamic Advanced Planning and Scheduling (DAPS) 

problem, both the MIP in Chapter 3 and the GA in Chapter 4 are further extended by 

incorporating a periodic policy with a frozen interval. The effectiveness of the 

mechanism in the dynamic environment is tested. 
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In Chapter 6, a prototype of the Advanced Planning and Scheduling Decision 

Support System (APSDSS) is constructed. The infrastructural framework and the 

functional modules included in the system are discussed. An example is illustrated to 

validate the applicability of the proposed system. 

In Chapter 7, a case study for the Advanced Planning and Scheduling (APS) 

problem in a light source manufacturer is reported. The case problem and the 

computational results obtained from the developed system are described in detail. 

In Chapter 8, the distinctive achievements of this project are provided. Both 

the academic and industrial contributions of this research are concluded. Finally, 

some recommendations for future work are suggested.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

This chapter is organized as follows. Section 2.2 highlights the evolution of 

Material Requirements Planning (MRP). In Section 2.3, the basic concepts and 

pertinent problems in scheduling are discussed with the emphasis on scheduling with 

earliness and tardiness penalties, job shop scheduling and dynamic scheduling. 

Afterwards, the studies on the problem of Advanced Planning and Scheduling (APS) 

as well as some APS systems developed by both academia and commercial 

companies are elaborately surveyed in Section 2.4. Generally, there are two classes 

of mathematical techniques to the optimization problems, that is, exact methods and 

heuristic methods. Section 2.5 provides an overview on the commonly used 

approaches in these two classes. Finally, some remarks concerning the reviews are 

summarized in Section 2.6. 

 

2.2 MATERIAL REQUIREMENTS PLANNING (MRP) 

In 1969, Orlicky [Orl69] first systematically proposed the Material 

Requirements Planning (MRP) associated with concepts and methods. Then MRP is 

widely believed to be a tremendous improvement over older production management 

systems that were just useful in the make-to-stock environment. Shortly after its 

development, MRP grew into a closed loop production planning system integrating 

MPS, MRP and capacity requirement planning (CRP). In such a closed loop system, 
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the capacity check is followed by adjustments to MPS before another execution of 

MRP, which essentially coordinated a company in terms of its manufacturing 

planning and control infrastructure. About a decade later, MRP became popular in 

general manufacturing planning and control strategies.  

The successful implementation of MRP systems initiated the development of 

Manufacturing Resource Planning (MRP-II) during the 1970’s. Wight [Wig74] who 

is widely believed to have invented MRP-II helped make MRP-II logic correct and 

lead MRP-II to successes. MRP-II was an extended planning system to support cost 

based functions through inclusion of accounting, finance and other important 

segments. During the 1980’s, MRP-II was further extended by incorporating the 

sales and marketing planning, which required the involvement of sales and marketing 

departments in the operation of the system [Sil98]. According to Plossl [Plo94], 

MRP-II has been the most widely used planning and control system in the 

manufacturing organizations. 

With the rapid advances in information technology, it is crucial for every 

manufacturing enterprise to have a well designed decision support system. This 

background gives rise to the use of Enterprise Resource Planning (ERP) on a 

universal basis. An ERP system is characterized by computerizing an entire business 

with all functional activities in an enterprise involved. In the past several years, more 

and more attentions have been directed to ERP systems. Many companies, from 

small and mid-size to large corporations, have been or are working hard to 

implement such a system. The market for ERP is growing at a high speed [Ole00, 

Gar03]. 
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Despite the developments that the manufacturing production planning and 

control systems have gone through, from MRP to MRP-II, and to ERP, one thing 

remains constant, that is, MRP is always the backbone of all manufacturing 

applications. For a broader scope of review on MRP, a number of writings can be 

taken as excellent references [New74, Cha85, Lan89, Mcc92, Gra93, Sil98]. A 

classic text by Vollmann et al. [Vol88] placed MRP and the associated planning tools 

right within the whole manufacturing planning and control (MPC) picture, which 

was generally considered to be an advanced concept. Meanwhile, numerous books 

and papers offer practical guidelines for carrying out MRP, MRP-II and ERP, such as 

White et al. [Whi82], Callerman and Heyl [Cal86], Cerveny and Scott [Cer89], 

Wallace [Wal90], Luscombe [Lus93] and Alberto [Alb02]. Moreover, many software 

packages are commercially available, on which Bourke [Bou80] and Schubert 

[Sch00] provided an overview.  

At about the same time, some of the drawbacks inherent in the overall 

principle of MRP were beginning to be identified and discussed [Ste80, Kru84, 

Kan88, Mcc90, Spe90, Bak93, Spe98]. In order to avoid only verbally describing the 

philosophy of MRP, tasks on developing formal mathematical models by means of 

objective functions and constraints have been undertaken in [Vos03]. 

 

2.3 SCHEDULING 

Scheduling has been a subject of a significant amount of literature in the 

operations research field since the early 1950’s. In this section, the basic concepts 

and related topics of scheduling are reviewed. 
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2.3.1 Overview 

Scheduling is a relatively mature research field with numerous research 

findings, such as White [Whi90], MacCarthy and Liu [Mac93], Blazewicz [Bla96], 

Pinedo [Pin02], Brucker [Bru04]. The problem of scheduling involves allocating 

various machines to a number of jobs over periods of time, with the objective of 

optimizing one or more performance measures. In scheduling theory, characters of 

the machines can be classified as single machine, parallel machines (possessing the 

same functions), and dedicated machines (specialized for the completion of certain 

jobs or operations) [Bla88].  

The single machine environment is a simplified and special one of all other 

more complex machine environments. In single-machine problems, there is only one 

machine and all jobs must be fulfilled on it. The machine can execute at most one job 

at any time. Once a job has been processed by the machine, it is completed.  

The parallel machines can be divided into three types according to their 

speeds. Machines are called identical, when all of them have equal job-processing 

speeds. If the machines are with different speeds, but the speed of each machine is 

constant and is not job-dependent, then the machines are referred to as uniform. 

Finally, if the speeds of the machines depend on the particular job that is processed, 

then they belong to the unrelated ones. 

In the case of dedicated machines, there are three modes of processing: flow 

shop, open shop and job shop, distinguished by how jobs go through machines. In the 

flow shop environment, there are a defined number of machines in series, and each 

job has to be processed on each machine while all jobs follow the same route. An 
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open shop is an environment where each job has to visit each of the machines; 

however, jobs may have different routes among the machines. In the classical job 

shop, each job has its own pre-defined route to follow, while all machines may not be 

required by all jobs. Moreover, a special case can exist where a particular job may 

visit a particular machine more than once in its route.  

An example of three jobs processed in a four-machine job shop is given in 

Figure 2.1. Job 1 consists of three operations, the first on machine B, the second on 

machine A, and the final operation on machine C. These operations must comply 

with the order specified by technological requirements. For example, drilling a hole 

(operation j) must precedes tapping it (operation j + 1). Job 2 is processed in the 

order A-B-D, while job 3 follows the route A-C-B-D. The data for this example 

including the technological sequence of machines for each job with the processing 

time are listed in Table 2.1. 

 

Machine CMachine A

Machine DMachine B

Job 3

Job 2

Job 1
Job 3

Job 1

Job 2

 

Figure 2.1 A typical job shop 
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Table 2.1 Data for a job shop example 

Job Machine (Processing Time) 

1 B(1) A(2) C(3)  

2 A(4) B(3) D(2)  

3 A(2) C(2) B(2) D(2) 

 

A Gantt chart is a pictorial representation of a schedule. It shows time units at 

the abscissa and machine numbers at the axis of the ordinate. One of the feasible 

schedules for the above example is represented in the Gantt chart as shown in Figure 

2.2. In the figure, each square box illustrates an operation with its left edge placed at 

its starting time and with its horizontal length indicating the processing time. The 

makespan of this schedule is 15 time units. 

 

A J2 J1 J3         

B J1    J2     J3    

C       J1 J3      

D        J2     J3  

0       1      2       3      4      5       6      7      8       9     10     11    12    13     14    15    16  

Figure 2.2 The Gantt chart of a job shop example 
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The main assumptions of job shop scheduling are as follows [Rin76]: 

• Machines are always available and never break down. 

• Each job is processed by one machine at any time. 

• A machine can perform only one operation at any time. 

• All operations are not preemptive. 

• The processing times are fixed and sequence-independent. 

• The processing order of each job is predetermined. 

Job shop scheduling has been proven to be one of the most complicated 

combinatorial problems [Gar76]. For instance, when sequencing 10 jobs (each 

including 10 operations) on 10 machines in the general job shop, there are (10!)10 or 

more than 1065 possible schedules. Although many researchers have invested a great 

deal of efforts in attacking job shop scheduling, a method of finding an optimal 

solution effectively and efficiently has not been yielded yet. 

 

2.3.2 Earliness and tardiness penalty 

Traditionally, scheduling researches focused on regular measures, which are 

non-decreasing in job completion times. Most of the studies deal with such 

performance measures as makespan, maximum lateness, and weighted number of 

tardy jobs. In line with the trends towards Just-In-Time (JIT) manufacturing 

strategies, where jobs are encouraged to be completed neither too late nor too early, 

non-regular scheduling objectives related to earliness and tardiness penalties become 

more and more popular. This stems from the fact that every job has its due date. If a 

job is finished before its due date, it has to be held in inventory until its due date and 
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hence incurs an earliness penalty. On the other hand, if a job is finished after the due 

date, it incurs a tardiness penalty due to customer dissatisfaction, contract penalty, or 

potential loss of reputation. For a comprehensive review of researches on earliness 

and tardiness objectives, a number of survey papers have been presented by Sen and 

Gupta [Sen84], Cheng and Gupta [Che89], Baker and Scudder [Bak90], Gordon et al. 

[Gor02].  

For the single machine case, the literature can be classified into two 

categories. One category involves a common due date for all jobs, while the other 

one allows due dates to be different. With respect to the common due date, it is 

useful to understand that there is a characteristic difference between the solutions 

when the due date is unrestricted and when it is restricted. The case of an unrestricted 

common due date for jobs to be scheduled on a single machine is treated by Kanet 

[Kan81], Hall and Posner [Hal91a]. Algorithms to determine optimal schedules 

under restricted assumptions about the common due date have been offered by 

Szwarc [Szw89], Hall et al. [Hal91b], Hoogeveen and van de Velde [Hoo91]. 

Among others, Bagchi et al. [Bag86, Bag87], De et al. [Dep91, Dep93] have studied 

the earliness and tardiness scheduling problem on a single machine when the 

common due date is arbitrary. Raghavachari [Rag86] concluded that for any common 

due date, the optimal schedule is V-shaped with no inserted idle time between the 

jobs. One job completes exactly at the due date and one starts at the due date. Jobs 

that complete before the due date are scheduled according to LPT (Longest 

Processing Time first rule), and jobs that complete after the due date are in SPT 

(Shortest Processing Time first rule) sequence. In the second important category, 
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where jobs have distinct due dates, the problems become more complicated, since the 

optimal schedule may contain idle times between the processing of consecutive jobs. 

Garey et al. [Gar88] proved that even with symmetric earliness and tardiness 

penalties, the single machine scheduling problem is NP-hard. Solutions to scheduling 

with distinct due dates for each job have been proposed by Abdul-Razaq and Potts 

[Abd88], Peng and Morton [Pen89], Yano and Kim [Yan91], Nandkeolyar et al. 

[Nan93], Sridharan and Zhou [Sri96]. 

For parallel machines, Sundararaghavan and Ahmed [Sun84], Hall [Hal86], 

Li and Cheng [Lic94], Webster [Web97], Mosheiov and Shadmon [Mos01] have 

investigated the earliness and tardiness performance in the identical setting. Emmons 

[Emm87], Sivrikaya-Serifoglu and Ulusoy [Siv99] provided efficient approaches to 

minimize the total weighted earliness and tardiness on both identical and uniform 

parallel machines. When parallel machines are unrelated, Kubiak et al. [Kub90] 

proposed an algorithm to reduce the weighted sum of absolute deviation problem to a 

corresponding transportation problem. 

There are also some results on open, flow and job shop scheduling with 

earliness and tardiness penalties, such as Sarper [Sar95], Sung and Min [Sun01b], 

Mosheiov [Mos03]. 

 

2.3.3 Job shop scheduling 

The specific area to be reviewed in this section is the job shop scheduling. 

Although it is simple to state, the job shop scheduling problem is one of the hardest 

combinatorial optimization problems. Even among the NP-hard problems, it appears 
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to be the most difficult one [Law82]. This is one of the reasons why the problem has 

been so broadly explored. 

The job shop scheduling problem was initially tackled by exact methods, 

such as integer programming, dynamic programming, etc. All of these methods 

require at least partial enumeration of possible solutions. Due to the fact that the 

number of possible solutions grows exponentially as the problem size increases 

slightly, these exact methods become very computationally intensive for even easy 

job shop scheduling problems, and in most cases they have not facilitated solutions 

for hard problems. However, in practice, it is critical to find acceptable solutions 

within a limited amount of time, especially for large scale problems. Heuristics, 

including rule-based heuristics and meta-heuristics, are such approximation methods 

for overcoming this problem. Heuristic methods usually generate satisfactory 

schedules in a reasonable computation time, but it is generally very difficult to 

evaluate the optimality of the solutions. The above two categories of solution 

methods for job shop scheduling are shown in Figure 2.3. 

 

Exact methods 

(e.g. integer programming, 
dynamic programming, etc.)

Heuristic methods 

(e.g. rule-based heuristics, 
meta-heuristics, etc.) 

Solution method category 

 

Figure 2.3 Two categories of solution methods for job shop scheduling 
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2.3.3.1 Exact methods 

Bowman [Bow59] was one of the pioneers to address job shop scheduling 

problems in the integer programming form, and found that a relatively simple 

problem involving only three jobs and four machines would need up to 600 variables 

and many more constraints. Manne [Man60] extended this earlier work with the use 

of a mixed integer programming formulation and established a more compact 

mathematical model. Balas [Bal67, Bal69] proposed integer programming methods 

for job shop scheduling based on the strategy of finding a mini-maximal path in a 

disjunctive graph, and exploited the growing power of the computer to store the 

pertinent data of nodes, which theoretically allows job shop scheduling problems to 

be solved optimally. A large number of integer programming formulations and 

procedures for job shop scheduling then followed [Fis73, Lag77, Fis83, Nem88, 

Rog91]. 

There are also numerous researchers concentrating on only adopting the 

branch and bound methods to attack job shop scheduling problems without 

presenting the detailed mathematical formulations. In such branch and bound 

techniques, schedules are derived through direct enumeration. Rather than 

enumerating all possible solutions, the procedure only detects the branch of the 

enumeration tree that has attributes associated with the optimal solution. On the basis 

of the gradually refined bounds, branches of the tree are examined and some are 

eliminated from further consideration. One of the first major published studies of 

employing branch and bound techniques for job shop scheduling problems was 

carried out by Brooks and White [Bro65]. Later, Florian et al. [Flo71] developed an 
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algorithm based on graph-theoretical representation of the job shop scheduling 

problem, where all operations with an unscheduled predecessor were candidates for 

branching. In 1989, Carlier and Pinson [Car89] constructed a branch and bound 

methodology to cope with the famous 10×10 instance formulated by Muth and 

Thompson [Mut63]. Applegate and Cook [App91], Brucker and Jurisch [Bru93] and 

Brucker et al. [Bru94] also concentrated on establishing lower bounds and using 

branch and bound approaches to reduce the number of schedule enumeration in the 

job shop environment. Although a considerable amount of interests and researches 

have focused on taking advantage of branch and bound algorithms for settling the 

issue of job shop scheduling, these algorithms are still impractical for larger size 

problems due to the computational complexity. 

In the 1960’s and 1970’s, Szwarc [Szw60] and others implemented dynamic 

programming for the job shop scheduling problems; however, such methods have 

been competitive with the integer programming as well as branch and bound 

methods mostly for a restricted class of problems.  

 

2.3.3.2 Heuristic methods 

There are two kinds of heuristic methods that have been comprehensively 

applied to the job shop scheduling problems: rule-based heuristics and meta-

heuristics.  

As early as 1960, Giffler and Thompson [Gif60] presented a number of 

heuristic rules. Then Panwalker and Iskander [Pan77] listed more than 100 

dispatching rules and offered a classification scheme. In 1996, Chang et al. [Cha96] 
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proposed 3750 test problems and utilized them to rank 42 dispatching rules 

according to the individual performance and the number of best solutions. In general, 

dispatching rules are myopic when creating production schedules, and as a result do 

not have satisfactory performance [Bla82, Gup89, Hau89]. In order to improve the 

inadequate performance of dispatching rules, efforts have been made to overcome 

the drawbacks by developing composite rules. Anderson and Nyirenda [And90] 

came up with two new combination rules, in which priorities of jobs are determined 

according to both process times and due dates. Raghu and Rajendran [Rag93] 

proposed efficient approaches to incorporate existing heuristic rules for scheduling in 

the job shop environment. Ramaswamy et al. [Ram94] also established a response 

surface modeling methodology for the integration of dispatching rules based on shop 

conditions. While combinations of priority rules perform better than the individual 

ones, their myopic natures have not been essentially changed.  

In comparison with rule-based heuristics, meta-heuristics including simulated 

annealing (SA), tabu search (TS), genetic algorithms (GAs) have been quite 

successfully applied to job shop scheduling.  

Matsuó et al. [Mat88], and Van Laarhoven et al. [Van92] provided simulated 

annealing (SA) based heuristics to solve the job shop scheduling problems. 

Computational experiments showed that compared with dispatching rules, SA-based 

methods always produced better production performances.  

Widmer [Wid91], Dell’Amico and Trubian [Del93], Taillard [Tai94], Barnes 

and Chambers [Bar95], and Nowicki and Smutmicki [Now96] proposed tabu search 
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techniques to attack job shop problems, and concluded that tabu search worked well 

in both solution quality and computational time according to their numerical results.  

Early in 1985, Davis [Dav85] first offered a genetic algorithm (GA) based 

technique to address job shop scheduling. Later, Nakano and Yamada [Nak91] 

established a conventional genetic algorithm using a binary genotype to represent 

each solution, and applied this approach to three job shop benchmarks. Meantime, 

Falkenauer and Bouffouix [Fal91] designed a GA method to optimize the job shop 

problem with release times, due dates and a specially defined cost function. To 

improve the previous results, DellaCroce et al. [Del95] introduced preference rules 

into the genetic algorithm, which was shown to be competitive with simulated 

annealing [Van92] and tabu search [Del93]. While most researchers proposed the 

literal permutation ordering encoding mechanisms for job shop problems [Bag91, 

Nak91, Par92], Bean [Bea94] presented a general genetic algorithm, based on 

random keys representation technique, to explore a wide variety of optimization 

problems including job shop scheduling. The main advantage of the random keys 

encoding is that it guarantees feasibility of all offspring. Recent surveys of Cheng et 

al. [Che96, Che99], Proudlove et al. [Pro98], Ponnambalam et al. [Pon01] and Aytug 

et al. [Ayt03] contain much more extensive and thorough discussions of GAs for job 

shop scheduling problems. 

  

2.3.4 Dynamic scheduling 

Much of the research in scheduling is based on the assumption that the 

manufacturing environment is static, which rarely holds in real situations. In practice, 
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some unexpected events, such as the arrival of new orders, machine breakdowns, etc., 

may arise and disrupt the manufacturing system. This leads to the study of dynamic 

scheduling [Mat93, Suh98, Cow02].  

Currently, more studies have considered scheduling problems in the dynamic 

condition. In 1991, Bean et al. [Bea91] provided a heuristic method by reconstructing 

part of the schedule, when a disruption occurs, to match up with the pre-schedule at 

some future time. Also, match-up approaches with minimum schedule changes were 

adopted for responding to disturbances [Sun01a]. Li et al. [Lir93] constructed an 

iterative two-step procedure to dynamically create product schedules in response to 

unexpected events that take place on the shop floor. For dynamic scheduling in 

flexible flow shops, Chang and Liao [Cha94] developed efficient algorithms based 

on Lagrangian relaxation to cope with changes in production environment. Jain and 

Elmaraghy [Jai97] built genetic algorithms to deal with different types of disruptions 

in the flexible manufacturing systems. 

Dynamic scheduling with only taking into account the arrival of new orders 

has been attempted by some researchers. Church and Uzsoy [Chu92] addressed the 

problem of production systems in the presence of dynamic job arrivals, and 

compared the performances of periodic and event-driven rescheduling policies. Unal 

et al. [Una97] modeled a single machine in the face of newly arrived jobs with part-

type dependent setup times, and provided efficient algorithms to insert the new jobs 

into the existing schedule so as to minimize the disruption of the jobs in the system. 

Bierwirth and Mattfeld [Bie99] described genetic algorithms for job shop scheduling 

and rescheduling, and demonstrated that their approaches produced far better results 
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than priority-rule based methods. Hall and Potts [Hal04] suggested efficient solution 

procedures to insert the new jobs into the existing schedule under the single machine 

condition, where the disruption was modeled either as a constraint or as a component 

in the objective. When jobs arrive at the job shop on a continuous basis, 

Rangsaritratsamee et al. [Ran04] proposed a genetic local search methodology that 

simultaneously considers efficiency and stability through a multi-objective measure. 

There are also approaches to handle machine breakdowns on the shop floor. 

Wu et al. [Wus93] presented heuristics for solving the one-machine dynamic 

problem subject to a machine breakdown, and the solutions showed to effectively 

increase the schedule stability with little sacrifice in efficiency. To settle machine 

breakdowns in job shops, Leon [Leo94] took a game-theoretic view, and came up 

with a heuristic search methodology. Jensen [Jen03a] proposed a genetic algorithm 

to find robust and flexible job shop schedules, and demonstrated that these schedules 

performed significantly better than ordinary ones after a machine breakdown. 

General references on dynamic scheduling include [Nof91, Sur93, Sab00, 

Mar01, Vie03]. One of the influential reviews by Vieira et al. [Vie03] presented 

standard definitions of rescheduling strategies, policies as well as methods, and also 

described a framework for better understanding rescheduling research. 

 

2.4 ADVANCED PLANNING AND SCHEDULING (APS) 

Advanced Planning and Scheduling (APS) aims at integrating production 

planning and shop floor scheduling, and deals with effectively allocating production 

resources to complete the multi-level products so that production constraints are 
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satisfied and production objectives are met. The Advanced Planning and Scheduling 

(APS) problem has received tremendous attentions in recent years [Lee02, Rom02, 

Moo04, Zen05]. 

 

2.4.1 Approaches for APS 

Studies on Advanced Planning and Scheduling (APS) have focused primarily 

on the development of heuristic approaches.  

An early paper by Hastings et al. [Has82] used a form of forward loading to 

plan and schedule jobs on the available capacity. Bahl and Ritzman [Bah84] 

provided an integrated model and a heuristic solution procedure which decomposes 

the overall problem into smaller sub-problems and solves them in an iterative fashion. 

Faaland and Schmitt [Faa87] devised a two-phase heuristic technique to generate 

feasible production schedules by solving a sequence of maximum flow problems. 

Sum and Hill [Sum93] proposed a new framework for manufacturing planning and 

scheduling systems. The framework formulates an iterative process between the 

order network and the operation network to determine order sizes and operation 

schedules. Agrawal et al. [Agr96] exploited a precedence network to represent the 

precedence relationships among items and then developed a heuristic approach to 

generate near-optimal schedules, employing critical path concept. Taal and 

Wortmann [Taa97] described an intuitive planning method that integrates MRP with 

several finite capacity planning, based on scheduling techniques. Reeja and 

Rajendran [Ree00a, Ree00b] developed new dispatching rules and compared with 

the best existing rules based on various measures of performance related to flow time 
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and tardiness through an exhaustive simulation. In order to provide a broad 

perspective to the planning and scheduling of the multi-level jobs (customer orders) 

on the shop floor, Yeh [Yeh00] presented a job-oriented finite capacity scheduling 

system, which has a basic similarity to the manual loading method of the Gantt chart. 

Riane et al. [Ria01] adopted a hierarchical approach with an iterative link between 

the planning module and the scheduling module for designing an integrated planning 

and control system.  

There appears to be scant research on presenting exact mathematical 

formulations and methods to settle the issue.  

Lasserre [Las92] proposed a decomposition approach to solve the APS 

problem. His approach alternated between solving a planning problem with a fixed 

sequence of products on the machines and a job shop scheduling problem for a fixed 

choice of the production plan. Dillenberger et al. [Dil94] established a Mixed Integer 

Programming (MIP) model for resource allocation and multi-period production 

planning and scheduling. However, these authors did not take into account the 

precedence relationships among the items. Kolish [Kol00] introduced an MIP model 

to address the APS problem in which different customer orders need the same part 

types, and proposed a two-level, backward oriented, top-down approach to solve it. 

A major limitation of this work is that it considered only a product with two levels, 

while a real product usually has many levels. Rom et al. [Rom02] exploited a 

resource constrained project scheduling model to augment MRP by incorporating 

precedence constraints as well as capacity constraints and utilizing variable lead time 

lengths. The efficacy of this approach was tested against the traditional MRP, while 
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assuming that MRP provides feasible production plans. More recently, Moon et al. 

[Moo04] suggested an advanced planning and scheduling model which integrates 

capacity constraints and precedence constraints to minimize the makespan only. 

In the general planning and scheduling problem, the most common objective 

is the minimization of the makespan. Due to the growing interests in JIT production 

strategy in industry, planning and scheduling with earliness-tardiness penalties has 

received attentions increasingly [Che89, Bak90, Gor02].  

In 1994, Czerwinski and Luh [Cze94] chose an improved Lagrangian 

relaxation technique to address the APS problem with the objective function 

containing quadratic earliness and tardiness penalties, but the solution oscillation has 

not been completely eliminated, which slows convergence of the algorithm. Wang 

[Wan95] presented a mathematical description of earliness-tardiness production 

systems with capacity constraints, and developed two approaches to solve it. One 

was to translate the problem into a linear programming model by means of 

mathematic deduction and solve it by a relaxation procedure. The other was to 

develop a heuristic algorithm and combine it with the branch-and-bound method to 

quicken the optimization process. However, only mass and one-of-a-kind product 

manufacturing systems, usually single-machine and flow shop environment, were 

studied. Although Kim and Kim [Kim96] explored a short-term production problem 

for products with multi-level structures, with the objective of minimizing the 

weighted sum of tardiness and earliness of the items, their research was based on 

group technology (GT) assumption which simplified the integrated problem. For the 

planning and scheduling of complex products with multiple resource constraints and 
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deep product structure, Pongcharoen et al. [Pon02, Pon04] developed a genetic 

algorithm-based tool which includes a repair process to rectify infeasible schedules. 

The tool takes account of the requirements to minimize the penalties caused by both 

early supply and late delivery of the products. Unfortunately, no comparisons of the 

results obtained from the algorithm with the optimal solutions have been offered. 

 

2.4.2 APS systems 

 The past decade has seen a great revolution in computer and information 

technology. Nowadays, the powerful hardware and the advanced computer 

programming languages support to embody optimization models and methods into 

Advanced Planning and Scheduling (APS) systems. This has attracted considerable 

attentions from both academia and commercial companies. 

 Taal and Wortmann [Taa97] proposed a consistent production system that 

incorporates several different planning and scheduling techniques. McKay and Wiers 

[Mck03] presented a design of an integrated decision support system for planning 

and control tasks in a focused factory. More recently, a software system architecture, 

referred to as collaborative agents for production activities, is constructed by 

Nishioka [Nis04]. 

 Meantime, many software vendors provide a broad range of APS software 

systems. A brief description of some of these systems is given below. 

 SAP, a German company, is always active in the APS market. The Advanced 

Planner and Optimizer (APO) was originally sold as an independent APS software, 

and now is a part of the “mySAP Supply Chain Management”. APO is a fast and 
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efficient decision support tool, and involves a variety of optimization methods. 

Production plans and schedules are created using intelligent heuristic algorithms in 

combination with mathematical computation. 

 i2 Technologies, established in 1988 and based in Dallas, releases an APS 

package called Factory Planner. Factory Planner offers detailed visibility over the 

production plans and schedules, and its graphical interface is powerful and intuitive. 

It generates plans and schedules in a heuristically forward and backward way while 

considering material and capacity constraints simultaneously. Furthermore, it 

provides what-is and what-if functions, and adds dynamic and interactive simulation 

and impact analyses on material planning, capacity planning and scheduling. 

 Preactor International, headquartered in the UK, is one of the companies 

specializing in APS software. Its flagship product, Preactor APS, includes the 

features of materials and capacity synchronization, real-time order promising, and 

multi-site planning and scheduling. Preactor APS is supplied with a simulation based 

APS engine with built in standard optimization rules, such as Forward, Backward, 

“Theory of Constraints” type rules, or any combination. 

 Elliott [Ell00] and Stadtler and Kilger [Sta05] provided reviews on APS 

systems. 

 

2.5 OPTIMIZATION METHODOLOGY 

Generally, there are two classes of mathematical approaches to combinatorial 

optimization problems, that is, exact methods and heuristic methods. The approaches 

in the first class yield the optimal solutions, but the computational requirements grow 
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exponentially as the problem size increases. The approaches in the second class 

require modest computation, but do not guarantee that the solutions are optimal. In 

this part, the commonly used approaches in these two classes are presented. 

 

2.5.1 Exact methods 

In this section, attention is confined to linear programming and integer 

programming, since the Advanced Planning and Scheduling (APS) problem to be 

investigated in this project will be formulated on the basis of these two types of 

methods. 

 

2.5.1.1 Linear programming  

Linear programming (LP) is a basic mathematical modeling technique 

designed to optimize the usage of the limited resources. In LP models, both the 

objective function and the constraints only involve linear expressions, and the 

decision variables are continuous. LP is the basis for the development of other types 

of operations research models, including integer programming, nonlinear 

programming, and so on. 

The simplex algorithm, introduced by G. B. Dantzig, is the general method 

for solving linear programming models. Because of its high computational efficiency, 

LP models are given much attention in practice. The simplex algorithm is developed 

from the idea that if the optimal solution of a linear programming model exists, it is 

attained at a basic feasible solution (a corner point of the solution space). A sequence 

of basic feasible solutions is generated by the simplex algorithm to improve the 
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objective value sequentially. To achieve this, the elemental pivoting operation is 

iteratively applied by exchanging basic variables and non-basic ones. The process 

terminates when the optimal solution is obtained, no feasible solution is detected, or 

unbounded solution is found to exist [Tah03]. 

Another technique for solving linear programs is the interior point algorithm, 

which was developed by N. Karmarkar [Kar84]. While the simplex algorithm 

searches for the optimal solution by traversing the extreme points of the feasible 

region, the interior point algorithm approaches the optimum from the strict interior of 

the feasible space. The interior point algorithm has a theoretical importance because 

it provides a polynomial bound on the computational efforts to solve a problem, and 

it also has a practical significance because it produces solutions to many industrial 

problems that previously were intractable [Car01, Jen03b]. 

 

2.5.1.2 Integer programming  

In the environment of job-shop, many decision variables actually make sense 

only if they have integer values. If requiring integer values is the only way in which a 

problem deviates from a linear programming formulation, then it is an integer 

programming (IP). The mathematical model for IP is the linear programming model 

with one additional restriction that the variables must have integer values. Generally, 

there are three types of integer programming. Firstly, if all of the variables are 

required to have integer values, the model is referred to as pure integer programming. 

Secondly, if only some of the variables are required to have integer values, the model 
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is referred to as mixed integer programming. Thirdly, if all the variables are required 

to be either 0 or 1, the model is referred to as binary integer programming. 

There are wide practical applications for integer programming. However, a 

good algorithm for solving IP problems has not been developed [Wil99]. Generally, 

the IP algorithms are based on exploiting the tremendous computational success of 

LP. The strategy of these algorithms involves three steps: 

Step 1: Relax the solution space of the IP by replacing any integer variable 

with the continuous value, and deleting the integer restrictions on all 

the integer variables. The result of the relaxation is a regular LP. 

Step 2:  Solve the LP and identify its continuous optimum. 

Step 3: Starting from the continuous optimum point, add special constraints 

that iteratively modify the LP solution space in a manner that will 

eventually render an optimum extreme point that satisfies the integer 

requirements. 

Two general methods have been developed for generating the special 

constraints referred to step 3, that is, the branch-and-bound (B & B) method and the 

cutting plane method.  

 

2.5.1.2.1 The branch-and-bound method 

The most popular method for IP algorithms is the branch-and-bound (B & B) 

technique and the related ideas to implicitly enumerate the feasible integer solutions. 

The basic concept underlying the branch-and-bound technique is to divide and 

conquer. Since the original “large” problem is too difficult to be solved directly, it is 
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divided into smaller and smaller sub-problems until these sub-problems can be 

conquered. The dividing (branching) is done by partitioning the entire set of feasible 

solutions into smaller and smaller subsets. The conquering is done partially by 

bounding how good the best solution in the subset can be and then discarding the 

subset if its bound indicates that it cannot contain an optimal solution for the original 

problem. The process terminates when an integer solution is found or the original 

model is shown to be infeasible [Cas02]. 

 

2.5.1.2.2 The cutting plane method 

The other methodology for solving IP problems is the cutting plane method. 

Firstly, the algorithm finds the optimal tableau for the IP’s linear programming 

relaxation. If all variables in the optimal solution assume integer values, an optimal 

solution to the IP has been found. Otherwise, a constraint in the LP relaxation 

optimal tableau whose right-hand side has the fractional part closest to 1/2. This 

constraint will be used to generate a cut, which is added to the tableau. The process is 

continued until a solution in which all variables are integers is obtained. This will be 

an optimal solution to the IP [Wil99, Jen03b]. 

 

2.5.2 Heuristic methods 

There are some heuristic procedures that have been termed meta-heuristics, 

including simulated annealing (SA), tabu search (TS), genetic algorithms (GAs). The 

word “meta” comes from the fact that these heuristics work in an iterative master 

process that guides and modifies the operations of subordinate heuristics by 
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combining intelligence, biological evolution, neural systems, and statistical 

mechanics. Although they do not guarantee optimal solutions to optimization 

problems, they are able to find near-optimal solutions efficiently by exploring and 

exploiting the search spaces using learning strategies. In this section, three meta-

heuristics, namely simulated annealing (SA), tabu search (TS), genetic algorithms 

(GAs), will be introduced briefly, since these three approaches are very general and 

have been applied to a wide variety of optimization problems with great successes. 

 

2.5.2.1 Simulated annealing 

Simulated annealing (SA), first proposed by Kirkpatrick et al. in 1983 [Kir83], 

is an optimization technique analogizing the thermodynamics process of annealing in 

physics. SA starts with an initial solution and repeatedly generates a new solution 

from the neighborhood. If the new solution is better, it is accepted as the current 

solution. If it is worse, the new solution may be accepted and the acceptance depends 

on the acceptance function, the temperature parameter, and the difference in the 

objective values of the two solutions. Initially, the temperature parameter is large, 

and the new solution is accepted quite frequently. As the algorithm progresses, the 

temperature is slowly reduced, lowering the probability that the acceptance function 

will accept a worse solution. Figure 2.4 summarizes the general SA procedure 

[Pha00]. 



CHAPTER 2: LITERATURE REVIEW  41 

 

Initial 

Evaluate the solution 

Accept? 

Update the solution 

Change 
temperature?

Terminate?

Decrease temperature 

Generate a new 
solution 

Final solution

Yes 

Yes 

Yes 

No 

No 

No 

Figure 2.4 Flowchart of a standard simulated annealing method 

 

2.5.2.2 Tabu search 

Tabu search (TS), primarily suggested by Glover and Hansen in 1986, is a 

strategy for solving combinatorial optimization problems by using especially 

designed memory structures to escape from the local optima. Like all other 

neighborhood search techniques, TS starts with an initial solution and evaluates all 

its neighborhood solutions. The best solution in the neighborhood will be selected to 

replace the current solution even though it may not be better than the current one. In 

some occasions, the best neighborhood solution may not be selected if the solution is 
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in the tabu memory lists. There are two classes of memory lists: recency (short term) 

memory and frequency (long term) memory. Both memories are responsible for 

recording the history of the search and storing the forbidden moves (attributes). This 

mechanism attempts to prevent cycling behavior and to force the search to new 

solution regions. If the selection is forbidden (tabu), the second best neighborhood 

solution will be chosen as the candidate to update the current one. Also there is such 

a case that a tabu move may be accepted if certain criteria, called aspiration criteria, 

are met, such as the solution obtained by the application of the move being better 

than the best solution found so far. Then the newly updated solution is set as the 

primal for the next iteration. The search process continues until the stopping rule is 

satisfied. The flowchart of a standard TS method is illustrated in Figure 2.5 [Glo93, 

Glo97]. 

 

Initial solution
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admissible solution
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Final solution
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No 

Evaluate the solutions 

Figure 2.5 Flowchart of a standard tabu search method 
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2.5.2.3 Genetic algorithms 

Genetic algorithms (GAs) were originally developed by Holland and his 

associates in the 1960’s. Essentially, the search methods a GA employs are inspired 

by the natural evolution process. Different from SA and TS, GA starts with an initial 

set of random solutions called population. Each potential solution in the search space 

is represented by the form of a chromosome. The chromosomes evolve through 

successive iterations, called generations. During each generation, the chromosomes 

are evaluated using some measures of fitness. The fitter the chromosomes, the higher 

the probabilities of being selected to perform genetic operations. There are two 

important genetic operators: crossover and mutation. The crossover operator serves 

to generate new offspring by combining existing parents (two chromosomes in the 

population). The mutation operator is used to randomly modify the chromosomes. 

Naturally, the crossover operator speeds up the process to reach better solutions, 

while the mutation operator explores a wider search space to avoid being trapped in 

local optima. Then a new generation is formed by selecting some of the parents and 

offspring according to their fitness and rejecting the others to keep the population 

size constant. When some termination condition is met, the algorithm converges to 

the best chromosome. The whole procedure is shown in Figure 2.6 [Dav91, Mit96, 

Cha99, Gen00]. 
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Figure 2.6 Flowchart of standard genetic algorithms 

 

2.6 SUMMARY 

In this chapter, an extensive literature review on MRP, scheduling as well as 

APS has been conducted. Since mathematical programming and genetic algorithm 

are to be adopted for solving the APS problem in this project, the fundamental 

concepts and procedures of the pertinent exact algorithms and heuristic methods have 

been also surveyed. Some remarks concerning the reviews can be itemized as follows. 
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1. Conventional planning and scheduling are considered hierarchically and 

separately, which creates many problems on the shop floor for production 

[Bil83, Har85, Sum93, Taa97, Rom02, Vos03]. Unquestionably, production 

planning and scheduling are closely interrelated, and they should be 

integrated together to generate realistic production schedules for the shop, 

which leads to the problem of Advanced Planning and Scheduling (APS). In 

recent years, the APS problem has received tremendous attentions, and many 

achievements have been obtained [Yeh00, Lee02, Moo04, Zen05]. However, 

the studies on APS have focused primarily on the development of heuristic 

approaches. There appears to be scant research on presenting exact 

mathematical formulations and methods to settle the issue, and besides, most 

of them [Las92, Dil94, Kol00, Moo04] are based on simplified assumptions. 

Hence, it is necessary to establish a complete mathematical model for the 

APS problem. 

2. The Advanced Planning and Scheduling (APS) problem has been proved to 

be NP-hard [Faa87, Moo03]. Any exact optimization approach is highly 

impossible to solve this kind of problems efficiently, and heuristic methods 

are often adopted to tackle this issue. Currently, due to their simplicity and 

flexibility, genetic algorithms (GAs) have been widely applied to find good 

solutions to the APS problems [Kim96, Lee02, Pon04, Cha05]. In this project, 

the GA technique will also be selected as a tool to attack the Advanced 

Planning and Scheduling (APS) problem. 
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3. Referring to Section 2.3.4, nowadays, more studies have considered planning 

and scheduling problems in the dynamic environment [Sur93, Sab00, Vie03]. 

Nevertheless, most of the research efforts have concentrated on one machine, 

flow shop, and job shop situations, assuming operations are performed in 

series. In summary, there is clearly a need for introducing dynamic 

mechanism into Advanced Planning and Scheduling (APS). 

4. Although both academia and commercial companies have invested great 

efforts in developing decision support for Advanced Planning and Scheduling 

(APS), most of the researches have restricted themselves to embed trial-and-

error methods in their computer-based systems. Better production plans and 

schedules can be generated by decision support tools with the employment of 

intelligent heuristic approaches, such as genetic algorithms (GAs).  

5. While the past decade has seen a substantial literature on Advanced Planning 

and Scheduling (APS), very few results are available on real world cases. 

Czerwinski and Luh [Cze94] explored the APS problem in Pratt & Whitney, 

a manufacturer of turbine engines, and proposed an improved Lagrangian 

relaxation technique for solving it. A major limitation of the developed 

method is that solution oscillation was not completely eliminated. For the 

planning and scheduling of complex products with multiple resource 

constraints and deep product structure in a company that produces capital 

goods, Pongcharoen et al. [Pon04] developed a genetic algorithm-based tool 

which includes a repair process to rectify infeasible schedules. Unfortunately, 

the tested problem and the results obtained from the algorithm have not been 
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described in detail. Therefore, it is concluded that the APS problem 

originating from the real industries has not been adequately studied and 

analyzed. 

 

The next chapter will present a thorough description of the APS problem 

under investigation. Then, a mathematical programming model, which succeeds in a 

system integration of the production planning and shop floor scheduling, will be 

formulated. The integrated model will be verified and illustrated with two examples. 

Thereafter, the complexity analysis of the APS problem will be made.  
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CHAPTER 3 

A MATHEMATICAL PROGRAMMING MODEL FOR 

ADVANCED PLANNING AND SCHEDULING (APS) 

 

3.1 INTRODUCTION 

Mathematical modeling is to describe a problem in a mathematical way, and 

is a significant activity for better understanding and analyzing the problem. In such a 

mathematical way, much of the ambiguity and imprecision verbal communication 

can be overcome. Meanwhile, an effective mathematical model can help to capture 

the essential features of the problem and provide considerable insights into the 

problem. Furthermore, by solving the model, the best solution to the problem can be 

obtained, which is the exact optimization approach. Although heuristic methods and 

simulation are alternative techniques for optimization, nobody can tell the quality of 

the solutions yielded by these techniques without comparing with the optimal 

solutions.  

In this chapter, a mathematical programming model is formulated for 

Advanced Planning and Scheduling (APS), which succeeds in a system integration of 

production planning and shop floor scheduling. The proposed model explicitly 

considers capacity constraints, operation sequences, lead times and due dates in a 

multi-order environment.  The objective of the model is to seek the minimum cost of 

both production idle time and tardiness or earliness penalty of an order.  The output 

of the model is production schedules with starting time and finish time for each item 
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of an order.  The integrated model is verified with a commercial software package 

and illustrated with two examples. 

This chapter is organized as follows: Section 3.2 introduces the problem 

under investigation. In Section 3.3, a Mixed Integer Programming (MIP) model for 

Advanced Planning and Scheduling (APS) is developed. To verify the model, two 

examples, a simple one and a representative one modified from the literature, are 

illustrated in Section 3.4. Section 3.5 analyzes the complexity of the APS problem. 

Finally, Section 3.6 concludes the chapter with a summary. 

 

3.2 PROBLEM DESCRIPTION 

We consider a production planning and scheduling problem for products with 

multi-level structures. A simple example of the product structure is shown in Figure 

3.1 (a). The root node represents the final product (F1) which is composed of one 

subassembly (S1) and two components (C1s). Meanwhile, the subassembly (S1) is 

made up of components C2 and C3. This multi-level product structure is typical in 

industry and is often more complex than this example. In such a structure, items 

(final products, subassemblies and components) have precedence constraints among 

them, that is, before processing parent items, their child items should be completed 

first. Here, a child item represents a lower level item that belongs to a parent item. 

Each of these items requires various operations on eligible machines which are 

continuously available for production. Therefore, constraints on the time capacity 

should be considered. Several additional assumptions are made here. The product 

structure, orders of items and their due dates are known in advance and similarly for 
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processing time of operations. A lot-for-lot strategy is adopted for making items, 

while the setup times (including the transfer times between operations) are negligible 

or are included in the processing times. If there are several operations needed for an 

item, this item is divided further into several items to reflect the operations. For 

example, if the item C1 has three operations (OP1, OP2, OP3) to process, C1 can be 

further divided into three child items: C1OP1, C1OP2, C1OP3.  In this case, C1OP3 

is a child item of C1OP2, C1OP2 is a child item of C1OP1, and C1OP1 is a child 

item of F1, as depicted in Figure 3.1 (b). Without loss of generality, we can only 

employ final products, subassemblies, and components in the problem. Furthermore, 

each operation can be processed on at most one machine at a given time and is non-

preemptive. A machine can perform one operation at a time and only works for eight 

hours a day.  

 

F1
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Figure 3.1 (a) A simple example of a product structure 
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Figure 3.1 (b) A simple example of a product structure 

 

Our problem is to find an optimal schedule for the orders such that both 

production idle time and penalties on tardiness and earliness are minimized. 

Minimizing production idle time is equivalent to minimizing flow time or 

maximizing machine utilization. In addition, production idle time is chosen as the 

objective to be reduced because it is able to reflect two focuses in shops: 

manufacturing lead time and WIP (work-in-process) inventory level. Another 

objective of the problem is to find a schedule with all jobs completed as close to their 

due dates as possible, which is predicated on the fact that either early or late delivery 

of an order results in an increase in the costs. If an order is finished before its due 

date, it has to be held in inventory until its due date and hence incurs an earliness 

penalty. On the other hand, if an order is finished after the due date, it incurs a 

tardiness penalty due to customer dissatisfaction, contract penalty, or potential loss of 

reputation. 
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A schematic diagram of the Advanced Planning and Scheduling (APS) 

problem is depicted in Figure 3.2. Hence, the APS problem is characterized by 

satisfying customer requests and reducing WIP inventory, subject to multiple 

resources capacity constraints and complex precedence constraints among operations. 

 

Optimal schedules with operations starting time and finish time 

Advanced planning and scheduling (APS) 

Multi-level 
product structure 

(BOM) 

Processing time 

for operations 
Orders 

 

Figure 3.2 A schematic diagram of the APS problem 

 

3.3 A MODEL FORMULATION FOR THE APS PROBLEM 

 The proposed APS model is primarily based on the production strategy, and 

explicitly takes into account capacity constraints of the manufacturing system, 

operation sequence among items, as well as lead times and due dates of products in a 

multi-order environment.  The objective of the model is to seek the minimum cost of 

both production idle time and tardiness or earliness penalty of an order.  The output 

of the model is production schedules with starting time and finish time for each item 

of an order. 
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3.3.1 Notation 

In order to formulate the APS model, the following parameters and variables 

are introduced: 

 

Parameters: 

n  Number of orders (i, j = 1, … , n) 

m  Number of machines (k, l = 1, … , m) 

Oi  Order i  

Mk  Machine k  

Pi  Final product of order Oi (p, q = 1, … , Pi) 

Qi  Quantity of order Oi

Nip  Number of item p needed for one final product Pi

tipk Processing time required by item p of order Oi on machine Mk 

rk  Ready time of machine Mk

DDi  Due date of order Oi

I  Cost of idle time per hour 

TC  Cost of tardy orders per day per job 

EC  Cost of early orders per day per job 

α  A large positive number 

A(p)  Set of child items of item p 
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B  Set of item p, where A(p) = ∅ 

 

Variables: 

Cmax  Production makespan 

Sipk  Production start time of item p of order Oi on machine Mk

Ci  Production completion time of order Oi

Li  Number of tardy days (real number) for order Oi

Ei  Number of early days (real number) for order Oi

Li
I  Number of tardy days (integer) for order Oi

Ei
I  Number of early days (integer) for order Oi

Xipjqk 1 if item p of order Oi precedes item q of order Oj on machine 

Mk; and 0 otherwise 

 

3.3.2 The model 

Now, we have the following Mixed Integer Programming (MIP) model for 

the Advanced Planning and Scheduling (APS) problem. 
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subject to: 

maxCCi ≤      i.∀     (3.2) 

kipk rS ≥      .i, kB,  p ∀∈    (3.3) 

iiqiqliqlipk QNtSS ⋅⋅≥−     .  ,,, l ki A(p)q ∀∈   (3.4) 

iikiiPkiiP CQtS =⋅+     .i, k∀     (3.5) 

)( ipjqkjjqjqkjqkipk XQNtSS α−⋅⋅+≥  .    qp,k,j,i,∀    (3.6) 

1=+ jqipkipjqk XX     .    qp,k,j,i,∀    (3.7) 

ii
i LDD

C
≤−

8
    i∀     (3.8) 
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DD ≤−
8

    i∀     (3.9) 

i
I
i LL ≥      i∀     (3.10) 

99.0−≥ i
I
i EE     i∀     (3.11) 

0max ≥C          (3.12) 

0≥ipkS      .i, p, k∀    (3.13) 

0,, ≥iii ELC      i∀     (3.14) 

0, ≥I
i

I
i EL and integer   i∀     (3.15) 

}1,0{∈ipjqkX      ., ki, p, j, q∀    (3.16) 

 

Since there are real variables, binary variables as well as integer variables in 

the objective function and the constraints, the formulation is a mixed integer linear 

programming model.  
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The objective (3.1) which contains two parts is to minimize the production 

idle time, order tardiness and earliness in order to minimize the machine idle costs 

and the penalty costs. In the first part, it is assumed that no other employment than 

orders O1, … , On are available for the machines from the release time until Cmax, 

then idle time costs are expressed as . Since the 

sum of the processing times ( ) and the sum of the ready times 

( ) are constant, minimizing production idle time 

( ) is equivalent to minimizing flow time or 

maximizing machine utilization. The second part represents the penalty costs for all 

orders, including the tardiness costs  of those orders that are completed 

after their due dates, and the earliness costs  of the orders that are 

fulfilled before their due dates. The objective function is to minimize the total 

excessive costs involved in the problem. 

)(
11 1

max ∑−∑ ∑ ⋅⋅−
== =

m

k
k

n

i

iP

p
iipipk rQNtmCI

∑ ∑ ⋅⋅
= =

n

i

iP

p
iipipk QNt

1 1

∑
=

m

k
kr

1

∑−∑ ∑ ⋅⋅−
== =

m

k
k

n

i

iP

p
iipipk rQNtmC

11 1
max

)(
1
∑ ×
=

n

i

I
iLTC

)(
1
∑ ×
=

n

i

I
iEEC

Constraints (3.2) show that the completion time of any order (Ci) has to be 

less than or equal to production makespan (Cmax).  

Constraints (3.3) ensure that the start time of the components (Sipk) should be 

greater than or equal to the machine ready time (rk).  

Precedence constraints among the items are satisfied in constraints (3.4). If 

item q is a child item of item p, the start time of the parent item p ( ) minus the ipkS
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start time of the child item q ( ) should be larger than or equal to the processing 

time of the child item q (

iqlS

iiqiql QNt ⋅⋅ ).  

The completion time of any order (Ci) is given by the start time of the final 

product ( ) plus the processing time of the final product ( ). The 

expression is specified in constraints (3.5).  

kiiPS ikiiP Qt ⋅

Constraints (3.6) and (3.7) require that no two operations can be processed 

simultaneously on the same machine. The formulation of this expression uses the 

type of 0–1 variables, which are the pairwise precedence variables Xipjqk, referred to 

as the “disjunctive graph” formulation.  In this formulation, the start time of an 

operation on a machine must follow the completion time of any other operation that 

is picked to precede it. For example, assume that both item p of order i and item q of 

order j should be processed on machine k. When Xipjqk = 0 and Xjqipk = 1, constraint 

(3.6) requires that the start time of item p of order i (Sipk) is larger than or equal to the 

start time of item q of order j (Sjqk) plus the total processing time of item q of order j 

( ), that is, item q of order j precedes item p of order i on machine k. 

On the other hand, when X

jjqjqk QNt ⋅⋅

ipjqk equals to 1, constraint (3.6) could always be ensured, 

since α represents a large positive number.  

Constraints (3.8) and (3.9) define tardiness and earliness of orders, 

respectively. Meanwhile, a unit conversion is conducted in order to transform all the 

hours into days. To do this, the completion time (Ci) is just divided by 8 in the 

equations because it is assumed that there are eight hours per day.  
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Expressions (3.10) and (3.11) are to convert the value of tardiness and 

earliness to an integer when the penalty costs are in the unit of days. That is to say, if 

an order is finished 4 hours or 0.5 day before its due date, we believe there is no 

earliness under such a situation. On the other hand, if an order is finished 4 hours or 

0.5 day after its due date, one day tardiness occurs. In view of calculation precision, 

the number 0.99 is introduced to help conduct the conversion.  

Finally, constraints (3.12)-(3.16) define the non-negative variables, the non-

negative integer variables, and the binary variables, respectively. 

 

3.4 NUMERICAL RESULTS 

In order to demonstrate how the APS problem is formulated using the 

proposed model and verify the model, two examples are illustrated and solved 

adopting the software CPLEX on a personal computer. One example is a simple one 

and consists of two orders, two machines as well as a four-level product structure, 

which is then denoted example 2 × 2 × 4. The other example, which is modified from 

the literature, deals with five orders, six machines and three different products among 

which the most complex one has a five-level structure; accordingly, it is called 

example 5 × 6 × 5. By solving the established Mixed Integer Programming (MIP) 

model, the optimal production schedules to these problems can be found. 

 

3.4.1 A simple example 

For an illustrative example, consider the four-level product structure shown in 

Figure 3.1 (b). A customer may order the final product F1, as well as some major 
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components, like S1 and C1. Meantime, component C1 has three operations (OP1, 

OP2, OP3) to process, and then C1 is further divided into three child items: C1OP1, 

C1OP2 and C1OP3. Two machines, with 8 hours available per day, are eligible to 

process the items (Table 3.1). The ready times of M1 and M2 are Hour 5 and Hour 

2.5, respectively. There are two orders, one requiring 10 Product F1s with due date 

Day 4 and the other requiring 15 Product S1s with due date Day 3. The following 

data are useful for calculating the costs. 

• Cost of idle time at $50 per hour. 

• Cost of tardiness at $250 per day per order. 

• Cost of earliness at $50 per day per order. 

 

Table 3.1 Machine processing time for the items in the simple example (2 × 2 × 4) 

Items Machine Number Processing Time (hours) 

F1 M1 0.7 

S1 M1 0.5 

C1OP1 M2 0.2 

C1OP2 M2 0.2 

C1OP3 M2 0.1 

C2 M2 0.1 

C3 M2 0.2 

 

Based on the above data, the whole MIP model for the simple example (2 × 2 

× 4) can be formulated as follows. 
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Minimize  

100Cmax - 2225 

+250LI1+250LI2 

+50EI1+50EI2 

 

Subject to  

(3.2): 

cons1:  C1-Cmax<=0  cons2:  C2-Cmax<=0  

 

(3.3): 

cons3:  S111>=5  

cons4:  S121>=5  

cons5:  S211>=5  

cons6:  S132>=2.5  

cons7:  S142>=2.5  

cons8:  S152>=2.5  

cons9:  S162>=2.5  

cons10:  S172>=2.5  

cons11:  S222>=2.5  

cons12:  S232>=2.5  

 

(3.4): 

cons13:  S111-S121>=5.000000  

cons14:  S111-S132>=4.000000  

cons15:  S121-S162>=1.000000  

cons16:  S121-S172>=2.000000  

cons17:  S132-S142>=4.000000  

cons18:  S142-S152>=2.000000  

cons19:  S211-S222>=1.500000  

cons20:  S211-S232>=3.000000  

 

(3.5): 

cons21:  C1-S111=7  cons22:  C2-S211=7.5  

 

(3.6) and (3.7): 

cons23:  S111-S121+999X11121>=5.000000  

cons24:  S121-S111+999X12111>=7.000000  

cons25:  X11121+X12111=1  

cons26:  S111-S211+999X11211>=7.500000  

cons27:  S211-S111+999X21111>=7.000000  
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cons28:  X11211+X21111=1  

cons29:  S121-S211+999X12211>=7.500000  

cons30:  S211-S121+999X21121>=5.000000  

cons31:  X12211+X21121=1  

cons32:  S132-S142+999X13142>=4.000000  

cons33:  S142-S132+999X14132>=4.000000  

cons34:  X13142+X14132=1  

cons35:  S132-S152+999X13152>=2.000000  

cons36:  S152-S132+999X15132>=4.000000  

cons37:  X13152+X15132=1  

cons38:  S132-S162+999X13162>=1.000000  

cons39:  S162-S132+999X16132>=4.000000  

cons40:  X13162+X16132=1  

cons41:  S132-S172+999X13172>=2.000000  

cons42:  S172-S132+999X17132>=4.000000  

cons43:  X13172+X17132=1  

cons44:  S132-S222+999X13222>=1.500000  

cons45:  S222-S132+999X22132>=4.000000  

cons46:  X13222+X22132=1  

cons47:  S132-S232+999X13232>=3.000000  

cons48:  S232-S132+999X23132>=4.000000  

cons49:  X13232+X23132=1  

cons50:  S142-S152+999X14152>=2.000000  

cons51:  S152-S142+999X15142>=4.000000  

cons52:  X14152+X15142=1  

cons53:  S142-S162+999X14162>=1.000000  

cons54:  S162-S142+999X16142>=4.000000  

cons55:  X14162+X16142=1  

cons56:  S142-S172+999X14172>=2.000000  

cons57:  S172-S142+999X17142>=4.000000  

cons58:  X14172+X17142=1  
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cons59:  S142-S222+999X14222>=1.500000  

cons60:  S222-S142+999X22142>=4.000000  

cons61:  X14222+X22142=1  

cons62:  S142-S232+999X14232>=3.000000  

cons63:  S232-S142+999X23142>=4.000000  

cons64:  X14232+X23142=1  

cons65:  S152-S162+999X15162>=1.000000  

cons66:  S162-S152+999X16152>=2.000000  

cons67:  X15162+X16152=1  

cons68:  S152-S172+999X15172>=2.000000  

cons69:  S172-S152+999X17152>=2.000000  

cons70:  X15172+X17152=1  

cons71:  S152-S222+999X15222>=1.500000  

cons72:  S222-S152+999X22152>=2.000000  

cons73:  X15222+X22152=1  

cons74:  S152-S232+999X15232>=3.000000  

cons75:  S232-S152+999X23152>=2.000000  

cons76:  X15232+X23152=1  

cons77:  S162-S172+999X16172>=2.000000  

cons78:  S172-S162+999X17162>=1.000000  

cons79:  X16172+X17162=1  

cons80:  S162-S222+999X16222>=1.500000  

cons81:  S222-S162+999X22162>=1.000000  

cons82:  X16222+X22162=1  

cons83:  S162-S232+999X16232>=3.000000  

cons84:  S232-S162+999X23162>=1.000000  

cons85:  X16232+X23162=1  

cons86:  S172-S222+999X17222>=1.500000  

cons87:  S222-S172+999X22172>=2.000000  

cons88:  X17222+X22172=1  

cons89:  S172-S232+999X17232>=3.000000  
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cons90:  S232-S172+999X23172>=2.000000  

cons91:  X17232+X23172=1  

cons92:  S222-S232+999X22232>=3.000000  

cons93:  S232-S222+999X23222>=1.500000  

cons94:  X22232+X23222=1  

 

(3.8) and (3.9): 

cons95:  0.125C1-L1<=4  

cons96:  E1+0.125C1>=4  

cons97:  0.125C2-L2<=3  

cons98:  E2+0.125C2>=3  

 

(3.10) and (3.11): 

cons99:  L1-LI1<=0  

cons100:  E1-EI1<=0.99  

cons101:  L2-LI2<=0  

cons102:  E2-EI2<=0.99  

 

Bounds 

LI1 free LI2 free EI1 free EI2 free 

 

Integers 

EI1 LI1 EI2  LI2 

 

X11121 X12111 

X11211 X21111 

X12211 X21121 

X13142 X14132 

X13152 X15132 

X13162 X16132 

X13172 X17132 

X13222 X22132 

X13232 X23132 

X14152 X15142 

X14162 X16142 

X14172 X17142 

X14222 X22142 

X14232 X23142 

X15162 X16152 

X15172 X17152 

X15222 X22152 

X15232 X23152 

X16172 X17162 

X16222 X22162 

X16232 X23162 

X17222 X22172 

X17232 X23172 

X22232 X23222 

 

End 
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3.4.2 The optimal solution to the simple example 

To solve the simple APS example, the mixed integer programming 

formulation can be input into CPLEX, a commercial package. Meanwhile, it should 

be noticed that 999 is taken as the large positive number α for the convenience in the 

CPLEX input process. 

The detailed results generated from the software CPLEX 9.1 on a personal 

computer with Pentium 2.66 GHz CPU and 512 MB RAM are listed in the following. 

The important data extracted from the optimal results are summarized in Table 3.2. 

For this simple example, the developed MIP model requires 102 constraints and 69 

variables, where 52 are integers, and CPLEX takes only 0.06 second to reach the 

optimal solution with the total costs of 475. 

 

Integer optimal 

Objective =   4.750000000e+002 

Solution time = 0.06 sec.   

Iterations = 535   

Nodes = 130  

 

Variable Name Solution Value 

Cmax 27.000000 

C1 27.000000 

C2 19.500000 

S111 20.000000 

S121 7.000000 

S211 12.000000 

S132 16.000000 

S142 12.000000 

Variable Name Solution Value 

S152 7.000000 

S162 2.500000 

S172 5.000000 

S222 3.500000 

S232 9.000000 

X12111 1.000000 

X21111 1.000000 

X12211 1.000000 
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X14132 1.000000 

X15132 1.000000 

X16132 1.000000 

X17132 1.000000 

X22132 1.000000 

X23132 1.000000 

X15142 1.000000 

X16142 1.000000 

X17142 1.000000 

X22142 1.000000 

X23142 1.000000 

X16152 1.000000 

X17152 1.000000 

X22152 1.000000 

X15232 1.000000 

X16172 1.000000 

X16222 1.000000 

X16232 1.000000 

X22172 1.000000 

X17232 1.000000 

X22232 1.000000 

E1 0.990000 

E2 0.990000 

 

All other variables are zero. 

 

Table 3.2 Optimal results of the simple example (2 × 2 × 4) 

Number of 

constraints 

Total number 

of variables 

No. of integer 

variables 

Makespan 

(hours) 

CPU time 

(sec.) 

102 69 52 27 0.06 

     

Number of 

tardiness 

Number of 

earliness 

Tardiness 

penalty 

Earliness 

penalty 
Total cost 

0 0 0 0 475 
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The results are graphically represented in the Gantt chart as shown in Figure 

3.3. For convenience, item p of order Oi is denoted Oip. From the Gantt chart, it is 

easy to recognize that the optimal makespan for the illustrative example is 27 hours. 

Both Order 1 and 2 are fulfilled on time. 

The results show that the developed model can generate the optimal schedule 

with operation starting time and finish time, which is more realistic for the shop floor. 

 

Figure 3.3 Optimal results of the example (2 × 2 × 4) in the form of Gantt chart 

 

3.4.3 A representative example and its optimal solution 

In this example, three typical product structures (Figure 3.4) were chosen: flat, 

tall and complex, which were defined in [Fry89]. A wide variety of products could 

be characterized by these three structures. Besides, it should be noted that S7, C2, 

and C3 are common items. Subassembly S7 is common to subassemblies S3 and S4. 

Component C2 is a common child of final products F1, F2 and F3. Component C3 is 

shared by final product F1 and subassembly S2. Meantime, component C13 has two 

operations (OP1, OP2) to process, and then C13 is further divided into two child 

items: C13OP1 and C13OP2. A customer may order the final products F1, F2 and F3, 

and also some major components, like S2 and C3. It was observed that the number of 

machines was not a significant factor in the shop and the consideration of shop size 

with more than six machines would suffice [Ree00a]. In this example, six machines, 

with 8 hours available per day, are eligible to process the items (Table 3.3). 
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Moreover, M5 and M6 are responsible for assembling, while the other machines deal 

with the components. The ready times of these machines are Hour 1, Hour 2, Hour 3, 

Hour 3, Hour 2 and Hour 1, respectively. There are five orders: 5 Product F1s with 

due date Day 6, 5 Product F2s with due date Day 7, 10 Product F3s with due date 

Day 14, 10 Product S2s with due date Day 3, and 30 Product C3s with due date Day 

1. The penalty rates are as follows: cost of idle time at $50 per hour, cost of tardiness 

at $250 per day per order, and cost of earliness at $50 per day per order. 

F1

C3

1

C4C2C1

1 1 1

 

Figure 3.4 (a) The product structure of F1 in example 5 × 6 × 5 

 

F2

C2 S1

C5

 

11

1 1

S4

 

  

1 1

1 1

C15C14

C6 S7

Figure 3.4 (b) The product structure of F2 in example 5 × 6 × 5 
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Figure 3.4 (c) The product structure of F3 in example 5 × 6 × 5 

 

F3

S3S2

1 2 3 

S5 S6 S7 C3

         C15C14 

1

1 1 1 11
1 1 1 1 

3
1 1 

C13OP1 

C2

C12C11C10C9 C8 C7 

 C13OP2 

1
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Table 3.3 Machine processing time for the items in the example (5 × 6 × 5) 

Items Machine number Processing time (hours) 

F1 M6 0.7 

F2 M6 0.6 

F3 M6 0.7 

S1 M6 0.5 

S2 M6 0.6 

S3 M5 0.5 

S4 M5 0.5 

S5 M6 0.6 

S6 M5 0.3 

S7 M5 0.3 

C1 M3 0.2 

C2 M1 0.1 

C3 M1 0.1 

C4 M2 0.2 

C5 M2 0.2 

C6 M3 0.4 

C7 M3 0.2 

C8 M3 0.2 

C9 M3 0.1 

C10 M2 0.2 

C11 M2 0.1 

C12 M2 0.3 

C13OP1 M4 0.2 

C13OP2 M4 0.2 

C14 M4 0.1 

C15 M4 0.1 
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The problem formulation for the representative example (5 × 6 × 5) is listed 

in Appendix I, and the corresponding optimal solution produced from the CPLEX 

9.1 on a personal computer with Pentium 2.66 GHz CPU and 512 MB RAM is 

attached in Appendix II. The large positive number α also takes the value 999 in the 

CPLEX input process. The important data extracted from the optimal results are 

summarized in Table 3.4. For the illustrative example, the developed MIP model 

requires 463 constraints and 313 variables, where 256 are integers, and CPLEX takes 

about 20 hours to reach the optimal solution with the total costs of 7575. 

 

Table 3.4 Optimal results of the example (5 × 6 × 5) 

Number of 

constraints 

Total number 

of variables 

No. of integer 

variables 

Makespan 

(hours) 

CPU time 

(sec.) 

463 313 256 45 69814.53 

     

Number of 

tardiness 

Number of 

earliness 

Tardiness 

penalty 

Earliness 

penalty 
Total cost 

0 13 0 650 7575 

 

The optimal results in the form of Gantt chart are illustrated in Figure 3.5. For 

convenience, item p of order Oi is denoted Oip. The Gantt chart clearly indicates that 

the optimal makespan for the illustrative example is 45 hours. Order 1, 2 and 3 are 

completed before their due dates, while the other two orders are satisfied on time. 
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 The results further confirm that the formulated model can generate the 

optimal schedule with operation starting time and finish time, which overcomes the 

principal difficulty inherent in MRP and is more realistic for the shop floor. 

 

3.5 COMPLEXITY ANALYSIS 

Early in 1976, Garey and Johnson [Gar76] have proved that the general job 

shop scheduling problem is NP-hard. On the basis of group technology (GT) 

assumption, Kim and Kim [Kim96] aggregated operations into two basic ones, 

machining and assembly, and assumed that the manufacturing system is composed of 

a machining shop and an assembly shop in an APS problem. Such an APS problem, 

with the objective of minimizing the weighted sum of tardiness and earliness of the 

items, has been shown to be a hard combinatorial optimization problem. More 

recently, Moon et al. [Moo04] suggested an advanced planning and scheduling 

model to minimize the makespan only, and concluded that it is among the class of 

NP-hard problems. The APS problem addressed in this project is much more 

complicated than these. It is reasonable to believe that the APS problem is strongly 

NP-hard. 

Besides, for the simple APS example (2 × 2 × 4), the developed MIP model 

requires 102 constraints and 69 variables, where 52 are integers, and it takes only 

0.06 second to reach the optimal solution. By contrast, in the representative APS 

example (5 × 6 ×5), there are 463 constraints and 313 variables including 256 integer 

ones, and the computational time is about 20 hours. The computing complexity also 
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demonstrates that the APS problem is among the NP-hard class and the solution time 

will grow exponentially as the problem size increases. 

 

3.6 SUMMARY 

In this chapter, a complete mathematical programming model for the 

Advanced Planning and Scheduling (APS) problem has been formulated. The 

insights gained from the model can be concluded in the following: 

1. The Advanced Planning and Scheduling (APS) problem aims to synthesize 

production planning and shop floor scheduling, and is characterized by 

satisfying customer requests and reducing WIP (work-in-process) inventory, 

subject to multiple resources capacity constraints and complex precedence 

constraints among operations. 

2. The objective of the APS problem is to find an optimal schedule for the 

orders such that both production idle time and penalties on tardiness and 

earliness are minimized. Minimizing production idle time is equivalent to 

minimizing flow time or maximizing machine utilization. Another objective 

of the APS problem is to derive a schedule with all orders completed as close 

to their due date as possible, which fits to the JIT production control policy 

where either early or late delivery of an order results in an increase in the 

production costs. 

3. A Mixed Integer Programming (MIP) model has been developed for the APS 

problem, which succeeds in a system integration of production planning and 

shop floor scheduling. 
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4. The proposed model explicitly considers capacity constraints, operation 

sequences, lead times and due dates in a multi-order environment and 

generates useful operation schedules for the shop floor, which overcomes the 

principal difficulty inherent in the existing MRP procedures. 

5. Two examples, a simple one and a representative one modified from the 

literature, are elaborately illustrated to verify the model and solved adopting 

the software CPLEX on a personal computer. The numerical results have 

demonstrated the optimality and effectiveness of the established model. 

6. For the simple example (2 × 2 × 4), the developed MIP model requires 102 

constraints and 69 variables, where 52 are integers, and it takes only 0.06 

second to reach the optimal solution. By contrast, in the representative 

example (5 × 6 ×5), there are 463 constraints and 313 variables including 256 

integer ones, and the computational time is about 20 hours. It is reasonable to 

believe that the APS problem is strongly NP-hard and the solution time will 

grow exponentially as the problem size increases. 

 

We have investigated the APS problem in this chapter and built an MIP 

model for the problem. Since the APS problem is NP-hard, a heuristic should be 

exploited to solve the problem in a reasonable time. In the next chapter, a genetic 

algorithm (GA) for efficiently settling the Advanced Planning and Scheduling (APS) 

problem will be proposed. The primary procedure and key issues in the established 

GA method will be introduced in detail. The performance of the GA-based approach 
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will be examined and compared with the optimal solutions gained from the 

mathematical model.  
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CHAPTER 4 

A GENETIC ALGORITHM FOR ADVANCED PLANNING AND 

SCHEDULING (APS) 

 

4.1 INTRODUCTION 

In Chapter 3, a mathematical programming model for Advanced Planning and 

Scheduling (APS) has been built. Although the optimal production plan and schedule 

for the APS problem can be yielded by the established Mixed Integer Programming 

(MIP) model, the APS problem is among the class of theoretically difficult problems 

(NP-hard), and the computational efforts will become extremely intensive when 

finding the global optimum to a large problem. Thus, meta-heuristics should be used 

to solve the problem more efficiently. 

Genetic algorithms (GAs), invented by Holland and his associates in the 

1960’s, are random search techniques for seeking “optimal” or “near-optimal” 

solutions within complex search spaces. Essentially, the search methods a GA 

employs are inspired by the natural evolution process, and implement a “survival-of-

the-fittest” strategy. GAs differ from conventional optimization approaches and have 

many attractive features. They conduct a multidirectional search using a population 

of solutions rather than a single solution. Moreover, no information on 

differentiability, convexity or other mathematical properties is required by GAs 

[Dav91, Mit96, Cha99, Gen00]. Due to their simplicity and flexibility, genetic 

algorithms (GAs) have been successfully applied to a wide variety of optimization 

problems, including the Advanced Planning and Scheduling (APS) problems [Kim96, 
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Lee02, Pon04]. Also, GAs have demonstrated to perform better in production 

planning and scheduling problems than other heuristic methods, such as simulated 

annealing (SA), tabu search (TS) and the shifting bottleneck procedure [Del95, 

Ree95]. In this chapter, a GA-based method for APS, with the objective of 

minimizing cost of both production idle time and tardiness or earliness penalty of an 

order, is to be developed. 

This chapter is organized as follows: Section 4.2 provides a GA-based 

approach for efficiently solving the Advanced Planning and Scheduling (APS) 

problem. In Section 4.3, the same representative example as in Chapter 3 (refer to 

Section 3.4.3) is used to evaluate the algorithm. In Section 4.4, the results of the GA 

are compared with the optimal solutions gained from the mathematical model. 

Finally, Section 4.5 concludes the chapter.  

 

4.2 A GENETIC ALGORITHM FOR THE APS PROBLEM 

 The key issues in developing a GA-based approach are the encoding scheme 

of the solution, the initialization of the population, the evaluation measurement, 

reproduction, crossover, mutation, and selection strategy. In this section, these issues 

are described in detail to present a GA-based approach for the APS problem. 

 

4.2.1 Encoding 

Our encoding scheme is based on the concept of random keys suggested by 

Bean [Bea94]. This scheme encodes a solution with a string of random numbers. 

Each item in the product structure has one random number generated from the range 
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[0, 1]. These random numbers denote the priorities of the items, while a smaller 

value represents the higher priority. Table 4.1 shows an example of the encoding 

scheme for the product whose structure is given in Figure 3.1 (a) and replicated in 

Figure 4.1. The random key encoding has the advantage that it eliminates the 

offspring feasibility problem and is robust to problem structures [Bea94]. 

 

F1

S1

 

Figure 4.1 A simple example of a product structure 

 

Table 4.1 A simple example of the encoding scheme 

Items Random number Machine number Processing time (hours)

F1 0.14 M1 7 

S1 0.27 M1 8 

C1 0.65 M2 5 

C2 0.31 M2 2 

C3 0.79 M2 4 

 

C1

C3

1 2 

1 1 

C2 
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A feasible schedule can be derived from the product structure and the string 

of random numbers. From the random numbers, the priorities of items are obtained 

first. An item with the highest priority is selected among the available items which 

have no child items or whose child items have all been scheduled. The starting time 

of the selected item is determined considering both the finish time of its child item 

and the available time of its processing machine. This procedure continues until all 

items are allocated. For instance, in Figure 4.1 and Table 4.1, when C1, C2 and C3 

have no child simultaneously, C2 is selected for the operation sequence because its 

priority number is 0.31, higher than those of C1 and C3. After selecting C2, only C1 

and C3 are available, and C1 is chosen for the next operation because it has a higher 

priority than C3. In the same manner, the operation sequence C2-C1-C3-S1-F1 is 

determined. Suppose that the corresponding machines and processing times are 

shown in Table 4.1. A feasible schedule is then obtained in Figure 4.2(a). Finally, 

since our objective is to minimize both production flow time and penalty costs 

including earliness and tardiness, unforced idle time may be introduced into the 

schedule. To achieve this, for the early orders in the obtained schedule, the final 

products are moved to their latest possible time, based on the fact that only the 

completion time of the final product affects the earliness and tardiness of an order. If 

the overall objective improves, the new schedule updates the former one; otherwise, 

the former one remains. For the above simple example, it is assumed that the order of 

F1 has the due date Day 5, and then the schedule in Figure 4.2(a) is early. According 

to the heuristic rules, only F1 is moved to its latest possible time, that is, F1 is 

completed at Hour (DDF1 - 1) × 8 + 1. Here, DDF1 represents the due date of F1. 
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Since the unit of production idle time is in hours and earliness and tardiness are 

measured in days, a new schedule with no earliness and tardiness could be obtained 

in Figure 4.2(b). These two schedules in Figure 4.2(a) and 4.2(b) are assessed on the 

basis of the objective function, and the one with fewer costs would be chosen. 

Meanwhile, if operation of F1 is not the last one on its processing machine M1, there 

are two cases: either small idle time or large idle time between F1 and the next 

operation, as depicted in Figure 4.2(c) and 4.2(e). In both cases, F1 is changed to its 

latest possible time, which are shown in Figure 4.2(d) and 4.2(f). The schedules in 

Figure 4.2(c) and 4.2(d) or Figure 4.2(e) and 4.2(f) are compared to keep the better 

one.  

 
M1  S1 F1  

M2 C2 C1 C3  

 

Figure 4.2 (a) The possible schedules for the simple example 

 
M1  S1  F1  

M2 C2 C1 C3  

0                              8                            16                          24                          32                          40

0                              8                            16                          24                           32                         40 

Figure 4.2 (b) The possible schedules for the simple example 

 
M1  S1 F1  X  

M2 C2 C1 C3  

0                              8                            16                         24                          32                          40 

Figure 4.2 (c) The possible schedules for the simple example 
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M1  S1 F1 X  

M2 C2 C1 C3  

0                              8                            16                          24                          32                          40 

Figure 4.2 (d) The possible schedules for the simple example 

 
M1  S1 F1  X 

M2 C2 C1 C3  

0                              8                            16                          24                          32                          40 

Figure 4.2 (e) The possible schedules for the simple example 

 
M1  S1  F1  X 

M2 C2 C1 C3  

0                              8                            16                          24                           32                         40 

Figure 4.2 (f) The possible schedules for the simple example 

 

4.2.2 Initialization 

The initialization of the population of chromosomes can be done by 

generating the chromosomes randomly as much as the desired population size. Each 

chromosome contains a string of random numbers that represent the priorities of the 

genes. The genetic operations are then performed on the chromosomes, that is, the 

random keys, not on the schedule, which always leads to a feasible solution. 

 

4.2.3 Evaluation 

In GAs, the chromosomes contain much information, and each one should be 

evaluated by some measures of fitness. The fitness values indicate relative 

superiority of the chromosomes, which is necessary for the subsequent procedures 
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including the selection operation and the reproduction operation. For the APS 

problem, the schedule represented by each chromosome is evaluated using the fitness 

function given in the following equation (4.1), which aggregates production idle time, 

earliness and tardiness penalty. The objective is to find a chromosome with the 

optimal schedule, minimizing the total costs. Let eval(Xh) be the fitness function for 

chromosome X  in the scheduling problem, then h
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where 

n  Number of orders (i = 1, … , n) 

m  Number of machines (k = 1, … , m) 

P Final product of order Oi  i (p = 1, … , P ) i

Q Quantity of order Oi  i

N Number of item p needed for one final product Pip  i

t Processing time required by item p of order O  on machine Mipk i k 

r Ready time of machine Mk  k

I  Cost of idle time per hour 

TC  Cost of tardy orders per day per job 

EC  Cost of early orders per day per job 

C Production makespan max  

I  L Number of tardy days (integer) for order Oi i

I  E Number of early days (integer) for order Oi i. 
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 For instance, if I = $ 50 / hour, TC = $ 250 / day / order, and EC = $ 50 / day / 

order, the fitness function for the schedule in Figure 4.2 (a) is: 

eval(X ) = 50 * [2 * 31 – ( 7 + 8 + 10 + 2 + 4 )] + 50 * 1 = 1600. h

 

4.2.4 Selection 

The well-known roulette wheel approach [Gol89, Gen00] is employed for 

selecting some chromosomes to conduct genetic operations. Based on this approach, 

the probability of selecting a chromosome is determined by its fitness. Chromosomes 

having larger fitness values are more likely being selected. Although the roulette 

wheel selection mechanism chooses chromosomes probabilistically, not 

deterministically, it is certain that on average a chromosome will be selected with the 

probability proportional to its fitness. Suppose that the population size is psize, then 

the selection procedure is as follows: 

 Step 1: Calcualte the total fitness of the population: 

∑=
=

psize

h
hXevalF

1
)( . 

 Step 2: Calculate the selection probability p  for each chromosome X : h h

)1(
)(

−×
−

=
psizeF

XevalF
p h

h , h = 1, 2, … , psize.    

 for each chromosome X Step 3: Calculate the cumulative probability q : h h

   ,  h = 1, 2, … , psize. ∑=
=

h

j
jh pq

1

 Step 4: Generate a random number r in the range (0, 1]. 

 Step 5: If , then chromosome Xhh qrq ≤<−1  is selected. h
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4.2.5 Genetic operations 

Genetic operations such as reproduction, crossover and mutation are executed 

to produce a new set of chromosomes called offspring. There are many variations of 

genetic operations that could be used in GAs. Since random key encoding preserves 

to generate feasible solutions, there is no need to design specialized operations. The 

genetic operations employed here are elitist reproduction, parameterized uniform 

crossover and immigration, which have been proved very robust in computational 

tests [Bea94]. Meanwhile, the number of chromosomes selected for carrying out 

reproduction, crossover and mutation are set by the GA user and denoted as Nr, Nc 

and Nm. Definitely, the total number of chromosomes for reproduction, crossover 

and mutation equals to the population size, that is, Nr + Nc + Nm = psize. 

Elitist reproduction is performed by directly copying the best Nr 

chromosomes from the current generation to the next. The advantage of the elitist 

strategy is that the best chromosomes associated with schedules are monotonically 

improving from one generation to another. 

Parameterized uniform crossover introduced by [Bea94, Had97] could be 

detailed as: first, choose two chromosomes as parents from the current generation 

according to the selection mechanism stated above. Let X = (x1, x2, … , xk) and Y = 

(y1, y2, … , yk) be the k random key alleles in these two chromosomes (parents), 

respectively. Next, k independent random numbers could be uniformly generated 

from [0, 1], and denoted as Z = (z1, z2, … , zk). Then, let U = (u1, u2, … , uk) and V = 

(v1, v2, … , vk) be the two offspring that will result from the crossover of the two 
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parents, and Pc be the probability of crossover for each gene. The two offspring U 

and V could be determined as  

⎩
⎨
⎧

≥==
<==

.  if    and  
,  if    and  

ciiiii

ciiiii

Pzxvyu
Pzyvxu

 

All these chromosomes X, Y, U, and V are evaluated, and only those two with better 

fitness are permitted to enter into the next generation. This parameterized uniform 

crossover operation has shown to be computationally better than the one-point or 

two-point crossover [Had97]. 

Mutation is implemented by randomly generating one or more entirely new 

chromosomes from the same distribution as the original generation and including 

them in the next generation, which is referred as “immigration” in [Bea94, Had97]. 

Such an immigration operation plays an important role in preventing premature 

convergence of the population [Bea94, Had97]. 

 

4.2.6 The algorithm 

On the whole, the genetic algorithm shown in Figure 4.3 is described as 

follows. After the parameters are set, including the maximum generation, the 

population size, the number of reproduction, the number of crossover, the crossover 

probability, and the number of mutation, the GA creates an initial set of random 

solutions. Each potential solution in the search space is represented by the form of a 

chromosome, a string of random numbers. All the obtained chromosomes are 

evaluated using the measure of fitness. On the basis of their fitness values, three 

genetic operations, elitist reproduction, parameterized uniform crossover and 
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immigration, are executed to produce a new set of chromosomes, the offspring. 

These steps form an iteration, and then the evaluation is performed again to start the 

next iteration. When the maximum generation is reached, the algorithm converges to 

the best solution. 

 

 

GA parameters 

Evaluate the solutions 

Select the fittest solutions 

Terminate? 

The best solution

Yes

No 

Select some solutions 

Elitist 
reproduction 

Initial solutions 

Parameterized uniform
crossover

Immigration 

Figure 4.3 The overall structure of the genetic algorithm 
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The overall procedure of the proposed GA approach for the APS problem is 

listed in the following. 

Step 1: Set the GA parameters, including the maximum generation (genno), 

the population size (psize), the number of reproduction (Nr), the number of crossover 

(Nc), the crossover probability (Pc), and the number of mutation (Nm). 

Step 2: Generate initial psize chromosomes according to the encoding 

strategy in Section 4.2.1. 

Step 3: Evaluate the fitness value eval(Xh) for all chromosomes in the 

population according to the evaluation strategy in Section 4.2.3. 

Step 4: Perform the elitist reproduction in Section 4.2.5. 

Step 5: Perform the parameterized uniform crossover in Section 4.2.5. 

Step 6: Perform the immigration in Section 4.2.5. 

Step 7: Repeat Steps 3-6 until the maximum generation is reached. 

 

4.3 NUMERICAL RESULTS 

 With respect to the simple example (2 × 2 × 4) in Section 3.4.1, the 

established genetic algorithm can easily find the optimal solution. In this section, the 

performance of the proposed GA method is investigated by use of the same 

representative example (5 × 6 × 5) as in Section 3.4.3. The developed GA-based 

approach was coded in the C language, as in the enclosed CD-ROM, and run on a 

personal computer with a Pentium 2.66 GHz CPU and 512 MB RAM. 
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4.3.1 The first iteration 

 In order to illustrate how the GA works, the procedure of seeking the best 

operation schedule for the APS example is elaborately described as follows. 

Step 1:  Set the GA parameters, including the maximum generation (genno), 

the population size (psize), the number of reproduction (Nr), the 

number of crossover (Nc), the crossover probability (Pc), and the 

number of mutation (Nm). In this case, genno = 20, psize = 8, Nr = 2, 

Nc = 4, Pc = 0.7, and Nm = 2. That is to say, the best 2 chromosomes 

from the current generation will be directly copied to the next, while 

the number of chromosomes for undergoing the crossover operation is 

4. Meantime, at each iteration, 2 entirely new chromosomes will be 

created and included in the next generation. 

Step 2:  Generate the population size (psize = 8) initial chromosomes 

according to the encoding strategy in Section 4.2.1. The randomly 

created chromosomes are listed in Table 4.2. Each chromosome (Xh) 

contains a string of random numbers that represent the priorities of the 

items. 
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Table 4.2 The initial chromosomes obtained by the GA 

Items X1 X2 X3 X4 X5 X6 X7 X8

O1F1 0.98 0.01 0.28 0.74 0.55 0.23 0.35 0.53 
O1C1 0.20 0.45 0.34 0.26 0.32 0.01 0.88 0.17 
O1C2 0.68 0.67 0.71 0.71 0.33 0.32 0.40 0.68 
O1C3 0.02 0.73 0.46 0.16 0.53 0.19 0.30 0.88 
O1C4 0.75 0.38 0.89 0.47 0.01 0.58 0.89 0.80 
O2F2 0.51 0.20 0.47 0.77 0.27 0.22 0.32 0.01 
O2C2 0.01 0.18 0.24 0.17 0.19 0.35 0.44 0.46 
O2S1 0.02 0.22 0.83 0.03 0.69 0.42 0.98 0.51 
O2S4 0.67 0.14 0.26 0.28 0.44 0.43 0.65 0.57 
O2C5 0.68 0.15 0.31 0.33 0.84 0.38 0.29 0.55 
O2C6 0.53 0.83 0.14 0.10 0.61 0.27 0.03 0.45 
O2S7 0.78 0.65 0.53 0.06 0.22 0.56 0.55 0.41 

O2C14 0.15 0.95 0.47 0.10 0.78 0.09 0.41 0.58 
O2C15 0.68 0.18 0.23 0.62 0.52 0.62 0.29 0.95 
O3F3 0.78 0.05 0.05 0.29 0.90 0.72 0.36 0.15 
O3S2 0.64 0.09 0.25 0.89 0.87 0.10 0.79 0.24 
O3S3 0.43 0.07 0.81 0.46 0.21 0.68 0.70 0.01 
O3C2 0.97 0.02 0.77 0.35 0.18 0.10 0.26 0.19 
O3S5 0.39 0.03 0.30 0.42 0.64 0.29 0.64 0.90 
O3C3 0.45 0.25 0.31 0.10 0.57 0.17 0.20 0.76 
O3S6 0.62 0.98 0.59 0.01 0.94 0.28 0.69 0.29 
O3S7 0.81 0.29 0.57 0.71 0.02 0.59 0.96 0.89 
O3C7 0.39 0.66 0.61 0.70 0.50 0.50 0.51 0.91 
O3C8 0.98 0.04 0.89 0.82 0.77 0.61 0.06 0.71 
O3C9 0.98 0.59 0.44 0.04 0.94 0.14 0.21 0.08 
O3C10 0.90 0.34 0.01 0.08 0.04 0.28 0.62 0.76 
O3C11 0.80 0.78 0.58 0.61 0.60 0.57 0.58 0.89 
O3C12 0.41 0.40 0.49 0.48 0.97 1.00 0.32 0.36 

O3C13OP1 0.05 0.11 0.81 0.89 0.02 0.33 0.50 0.27 
O3C13OP2 0.12 0.01 0.74 0.64 0.15 0.40 0.82 0.05 

O3C14 0.56 0.20 0.42 0.04 0.87 0.20 0.91 0.38 
O3C15 0.88 0.32 0.87 0.98 0.82 0.40 1.00 0.77 
O4S2 0.65 0.68 0.08 0.86 0.33 0.06 0.49 0.60 
O4S5 0.07 0.15 0.09 0.28 0.62 0.02 0.97 0.13 
O4C3 0.61 0.78 0.80 0.04 0.87 0.32 0.30 0.27 
O4C7 0.29 0.26 0.89 0.90 0.46 0.08 0.66 0.42 
O4C8 0.03 0.59 0.02 0.96 0.47 0.24 0.06 0.46 
O4C9 0.42 0.11 0.77 0.94 0.18 0.05 0.18 0.35 
O4C10 0.02 0.29 0.35 0.02 0.50 0.20 0.67 0.05 
O4C11 0.63 0.09 0.31 0.33 0.30 0.30 0.01 0.43 
O5C3 0.39 0.73 0.50 0.95 0.50 0.01 0.04 0.16 
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Step 3:  Evaluate the fitness value eval(Xh) for all chromosomes in the 

population (psize = 8) according to the evaluation strategy in Section 

4.2.3. Table 4.3 below summarizes the fitness values of all 8 

chromosomes. 

 

Table 4.3 The fitness values of the initial chromosomes 

Chromosome  Fitness value  Chromosome  Fitness value  

X1 9325 X5 8975 

X2 9775 X6 8925 

X3 9375 X7 10575 

X4 10175 X8 9525 

 

Step 4:  Perform the elitist reproduction in Section 4.2.5. In this initial 

population, chromosomes X5 and X6 have the lowest fitness values, 

8975 and 8925, and then they are the elitist ones. Thus, these two 

chromosomes are straightforwardly reproduced to the next generation. 

Step 5:  Perform the parameterized uniform crossover in Section 4.2.5.  

Firstly, two chromosomes should be selected as parents according to 

the selection mechanism stated in 4.2.4. The procedure of the roulette 

wheel approach is depicted in the following. 
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Step 5.1: Calcualte the total fitness of the population: 

∑=
=

psize

h
hXevalF

1
)( = 76,650. 

Step 5.2: Calculate the selection probability ph for each chromosome 

X : h

)1(
)(

−×
−

=
psizeF

XevalF
p h

h , h=1, 2, … , 8.     

The selection probability  for each chromosome Xhp h is listed in 

Table 4.4. 

 

Table 4.4 The selection probabilities of the initial chromosomes 

Chromosome Selection probability Chromosome Selection probability

X X0.125478 0.126130 1 5

X X0.124639 0.126223 2 6

X X0.125384 0.123148 3 7

X X0.123893 0.125105 4 8

 

Step 5.3: Calculate the cumulative probability qh for each 

chromosome X , as given in Table 4.5: h

    ,  h=1, 2, … , 8. ∑=
=

h

j
jh pq

1
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Table 4.5 The cumulative probabilities of the initial chromosomes 

Chromosome Cumulative probability Chromosome Cumulative probability 

X1 0.125478 X5 0.625524 

X2 0.250116 X6 0.751747 

X3 0.375501 X7 0.874895 

X4 0.499394 X8 1.000000 

 

Step 5.4: Generate two random numbers r1 and r2 in the range (0, 1]. 

It is supposed that the two random numbers are 0.114875 and 

0.200223. 

Step 5.5: Since r1 = 0.114875 < q1 = 0.125478 and q1 < r2 = 0.200223 

< q2 = 0.250116, chromosomes X1 and X2 are selected as parents. 

Secondly, since there are 41 alleles in each chromosome, another 41 

independent random numbers should be uniformly generated from [0, 

1] to execute the crossover, and denoted as: 

Z = (0.80, 0.99, 0.94, 0.71, 0.57, 0.81, 0.09, 0.17, 0.67, 0.40, 

0.84, 0.35, 0.42, 0.74, 0.46, 0.06, 0.17, 0.70, 0.11, 0.89, 

0.26, 0.32, 0.16, 0.05, 0.18, 0.68, 0.29, 0.62, 0.24, 0.42,  

0.28, 0.46, 0.31, 0.01, 0.54, 0.51, 0.25, 0.44, 0.11, 0.37, 0.13). 

Then, we have the two offspring, X9 and X10, that result from the 

crossover of the two parents, X1 and X2, as shown in Table 4.6. For 

instance, since z1 = 0.80 > Pc = 0.7, the first alleles in the offspring   

x9, 1 = x2, 1 = 0.01 and x10, 1 = x1, 1 = 0.98. 
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Table 4.6 Two illustrative offspring obtained by a crossover 

Items X9 X10

O1F1 0.01 0.98 
O1C1 0.45 0.20 
O1C2 0.67 0.68 
O1C3 0.73 0.02 
O1C4 0.75 0.38 
O2F2 0.20 0.51 
O2C2 0.01 0.18 
O2S1 0.02 0.22 
O2S4 0.67 0.14 
O2C5 0.68 0.15 
O2C6 0.83 0.53 
O2S7 0.78 0.65 

O2C14 0.15 0.95 
O2C15 0.18 0.68 
O3F3 0.78 0.05 
O3S2 0.64 0.09 
O3S3 0.43 0.07 
O3C2 0.02 0.97 
O3S5 0.39 0.03 
O3C3 0.25 0.45 
O3S6 0.62 0.98 
O3S7 0.81 0.29 
O3C7 0.39 0.66 
O3C8 0.98 0.04 
O3C9 0.98 0.59 

O3C10 0.90 0.34 
O3C11 0.80 0.78 
O3C12 0.41 0.40 

O3C13OP1 0.05 0.11 
O3C13OP2 0.12 0.01 

O3C14 0.56 0.20 
O3C15 0.88 0.32 
O4S2 0.65 0.68 
O4S5 0.07 0.15 
O4C3 0.61 0.78 
O4C7 0.29 0.26 
O4C8 0.03 0.59 
O4C9 0.42 0.11 

O4C10 0.02 0.29 
O4C11 0.63 0.09 
O5C3 0.39 0.73 
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The fitness values of X9 and X10 are 9575 and 10775, respectively. All 

these chromosomes X1, X2, X9 and X10 are compared by their fitness 

values, and X1 and X9 with better fitness are permitted to enter into the 

next generation. Similarly, the remaining 2 (= Nc - 2) chromosomes 

can be produced. 

Step 6:  Perform the immigration in Section 4.2.5. Referring to Table 4.7, two 

(Nm = 2) completely new chromosomes, X11 and X12, are randomly 

generated and included in the next generation. 

 

Table 4.7 Two new chromosomes obtained by a mutation 

Items X11 X12 Items X11 X12
O1F1 0.49 0.49 O3S7 0.79 0.83 
O1C1 0.10 0.55 O3C7 0.97 0.59 
O1C2 0.43 0.60 O3C8 0.89 0.40 
O1C3 0.55 0.08 O3C9 0.99 0.52 
O1C4 0.19 0.54 O3C10 0.51 0.87 
O2F2 0.13 0.19 O3C11 0.18 0.49 
O2C2 0.79 0.01 O3C12 0.47 0.77 
O2S1 0.98 0.19 O3C13OP1 0.98 0.82 
O2S4 0.38 0.15 O3C13OP2 0.70 0.78 
O2C5 0.68 0.83 O3C14 0.58 0.71 
O2C6 0.59 0.85 O3C15 0.25 0.24 
O2S7 0.47 1.00 O4S2 0.54 0.33 

O2C14 0.36 0.96 O4S5 0.69 0.46 
O2C15 0.31 0.57 O4C3 0.66 0.42 
O3F3 0.95 0.85 O4C7 0.41 0.31 
O3S2 0.17 0.39 O4C8 0.33 0.42 
O3S3 0.19 0.37 O4C9 0.35 0.22 
O3C2 0.70 0.45 O4C10 0.08 0.42 
O3S5 0.57 0.06 O4C11 0.42 0.42 
O3C3 0.66 0.23 O5C3 0.22 0.57 
O3S6 0.60 0.05    
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Step 7:  Repeat Steps 3-6 until the maximum generation (genno = 20) is 

reached. 

 

4.3.2 Identifying efficient genetic parameters 

It is well known that the performance of a genetic algorithm is influenced by 

various genetic parameters. When solving the Advanced Planning and Scheduling 

(APS) problem, the population size and the number of generations are the main 

factors [Moo04, Pon04]. These two parameters determine the total number of 

chromosomes generated which further affect the amount of search, the chance of 

finding an optimal solution, the execution time and the computer storage space 

needed. In order to explore the effect of the population size and the number of 

generations, the GA program is tested with different levels of parameters and 

replicated five times at each level. The levels of parameters in Table 4.8 were chosen 

on the basis of the results of [Moo04, Pon04]. The other parameters of the GA for the 

problem are preset as: reproduction rate = 0.1, crossover rate = 0.8, crossover 

probability = 0.7, mutation rate = 0.1. The tests were run on a personal computer 

with a Pentium 2.66 GHz CPU and 512 MB RAM. 

 

Table 4.8 Experimental parameters 

Parameters Levels 

Population size (psize) 20, 100, 200 

Number of generation (genno) 20, 100, 200 
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 Figure 4.4 provides a scatter plot that illustrates the final total penalty costs 

arising from the schedules produced with different parameters. It could be seen from 

the scatter plot that the runs that employ a population of 200 with 200 generations 

obtain the lowest costs with a small spread. This may be due to the fact that more 

offspring are generated at each iteration and more generations are produced to 

explore the search space. Although the GA with psize = 200 and genno = 200 has 

better performance, it also requires longer computation time, about 90 times 

compared with psize = 20 and genno = 20. The comparison among the different GA 

parameter values is summarized in Table 4.9. 

 

7500

8000

8500

9000

9500

10000

10500

P=20
,G=20

P=20
,G=10

0

P=20
,G=20

0

P=10
0,G

=20

P=10
0,G

=100

P=10
0,G

=200

P=20
0,G

=20

P=20
0,G

=100

P=20
0,G

=200

P = Population size,
G = Number of generation

To
ta

l p
en

al
ty

 c
os

ts

1st  replicate

2nd replicate

3rd replicate

4th replicate

5th replicate

 

Figure 4.4 Scatter plot of results from five replications 
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Table 4.9 A comparison of different GA parameter values 

Parameters values 
Mean of best one in the 

initial population(s) 

Mean of final 

best solution(s) 

Mean of computation 

time (sec.) 

psize = 20, genno = 20 9935 9285 0.063 

psize = 20, genno = 100 9525 9145 0.266 

psize = 20, genno = 200 9535 9445 0.547 

psize = 100, genno = 20 9105 8755 0.262 

psize = 100, genno = 100 9205 8745 1.301 

psize = 100, genno = 200 9125 8515 2.675 

psize = 200, genno = 20 9085 8255 0.531 

psize = 200, genno = 100 9085 8235 2.703 

psize = 200, genno = 200 9085 8205 5.403 

 

4.3.3 Results analysis  

 When psize = 200 and genno = 200, the best solution associated with the 

chromosome obtained by the GA method is illustrated in Table 4.10 and 4.11, 

whereas the lowest cost in each generation is depicted in Figure 4.5. It can be seen in 

Figure 4.5 that the total penalty cost decreases and converges as the number of 

generation increases. In this particular case, the best production schedule with the 

total costs of 7725 was produced after 36 generations. Meanwhile, the best operation 

sequences are graphically represented in the Gantt chart as shown in Figure 4.6. For 

convenience, item p of order Oi is denoted Oip. From the Gantt chart, it is easy to 

find that the best makespan generated by the GA-based approach for the illustrative 

example is 45.5 hours. Orders 1, 2 and 3 are finished before their due dates. 
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Table 4.10 (a) The best schedule with the chromosome obtained by the GA for 

the example (5 × 6 × 5) 

Items Starting time (hour) Finish time (hour) Random number 

O1F1 5.5 9.0 0.09 

O1C1 4.0 5.0 0.23 

O1C2 5.0 5.5 0.64 

O1C3 1.5 2.0 0.37 

O1C4 3.0 4.0 0.05 

O2F2 42.5 45.5 0.99 

O2C2 1.0 1.5 0.21 

O2S1 21.0 23.5 0.29 

O2S4 15.5 18.0 0.13 

O2C5 2.0 3.0 0.01 

O2C6 12.0 14.0 0.86 

O2S7 14.0 15.5 0.72 

O2C14 3.0 3.5 0.14 

O2C15 3.5 4.0 0.25 

O3F3 35.5 42.5 0.24 

O3S2 29.5 35.5 0.06 

O3S3 24.0 34.0 0.18 

O3C2 5.5 8.5 0.65 

O3S5 23.5 29.5 0.85 

O3C3 11.5 14.5 0.87 
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Table 4.10 (b) The best schedule with the chromosome obtained by the GA for 

the example (5 × 6 × 5) 

Items Starting time (hour) Finish time (hour) Random number 

O3S6 18.0 24.0 0.10 

O3S7 8.0 14.0 0.55 

O3C7 14.0 16.0 0.87 

O3C8 10.0 12.0 0.80 

O3C9 9.0 10.0 0.72 

O3C10 14.0 16.0 0.63 

O3C11 6.0 7.0 0.28 

O3C12 8.0 14.0 0.43 

O3C13OP1 12.0 16.0 0.78 

O3C13OP2 8.0 12.0 0.94 

O3C14 6.0 8.0 0.61 

O3C15 4.0 6.0 0.53 

O4S2 15.0 21.0 0.19 

O4S5 9.0 15.0 0.69 

O4C3 8.5 11.5 0.85 

O4C7 5.0 7.0 0.27 

O4C8 7.0 9.0 0.61 

O4C9 3.0 4.0 0.17 

O4C10 4.0 6.0 0.14 

O4C11 7.0 8.0 0.34 

O5C3 2.0 5.0 0.54 
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Table 4.11 The best solution obtained by the GA for the example (5 × 6 × 5) 

Makespan (hour) Number of tardiness Number of earliness Total cost CPU time (sec.) 

45.5 0 13 7725 5.393 
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Figure 4.5 The lowest cost in each generation 

 

The optimal solution obtained from the developed Mixed Integer 

Programming (MIP) model is with the total costs of 7575. The gap between the 

optimal costs and the best costs of our GA method is 1.98% ((7725-

7575)/7575*100%), which is relatively small. However, it took the MIP model about 

20 hours to reach the optimal solution. Obviously, our GA method spends much less 

time, which only needs 5.393 seconds. 

 The results also indicate that the presented genetic algorithm can generate 

realistic schedules with operation starting time and finish time for the shop floor. 
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4.4 COMPARISON TO OPTIMAL SOLUTIONS 

 A series of experiments using randomly generated problems were conducted 

to test the developed Mixed Integer Programming (MIP) and genetic algorithm (GA). 

The test problems are synthesized from the work of [Fry89, Kim96, Lee02, Pon02, 

Ran04]. The structure of each product is extracted or modified from [Fry89, Lee02, 

Pon02], and the number of levels in the structure ranges from 3 to 5. In any product 

structure, the number of subassemblies is between 5 and 15, whereas components are 

in [5, 30]. It should be noted that there are common items in the product structures, 

and all items in the product structure, including final products, subassemblies and 

components, could be ordered by the customers. Number of machines is drawn from 

a uniform distribution between 4 and 6. The time capacity of each machine is 8 hours 

a day. The machines, with varying ready time between 0 and 4 hours, are randomly 

assigned to process the items in the product structure. The processing time of 

components range from 0.1 to 0.4 hour in steps of 0.1, and those of subassemblies 

and final products are from 0.3 to 0.7. At the beginning of the planning horizon, 

between 1 and 5 orders arrive in the production system. While the due dates of orders 

in days are uniformly generated from [1, 15], the order quantities are from [5, 30] in 

steps of 5. The penalty rates, including cost of idle time and cost of earliness, are 

selected from the range between 50 and 100 in steps of 10, and then the tardiness 

penalty is set 5 times the earliness penalty. The tests were run on a personal 

computer with a Pentium 2.66 GHz CPU and 512 MB RAM. 

 The results of four typical examples are given in Table 4.12, which includes 

the optimal solution and the CPU time by CPLEX, the best solution and the CPU 



CHAPTER 4: A GENETIC ALGORITHM FOR APS 103 

time by the GA with the efficient parameter settings identified in Section 4.3.2, and 

the gap between the optimal costs and the best costs of the GA for each problem size. 

 

Table 4.12 Comparisons between the MIP and the GA 

Numbers of 

orders, machines

and levels 

Optimal solution

by CPLEX 

(obj) 

CPU time 

by CPLEX

(hh:mm:ss)

Best solution

by GA 

(obj’) 

CPU time 

by GA 

(sec.) 

The gap  

((obj’-obj)/obj

*100%) 

3 × 4 × 5 1810 00:00:03 1810 2.667 0 

4 × 5 × 5 5550 00:02:15 5550 5.328 0 

5 × 5 × 4 6550 11:52:07 6750 5.236 3.05 

5 × 6 × 5 7575 19:23:34 7725 5.393 1.98 

 

 By solving the established MIP model, the optimal production schedules can 

be obtained for all test problems. For the problems, the optimal costs are 1810, 5550, 

6550, and 7575, respectively. Although the global optimum could be found, the MIP 

is inefficient in doing so. From Table 4.12, it can be seen that the needed CPU time 

are 2.68 seconds, 2.25 minutes, 11.87 hours, and 19.39 hours, respectively. 

Obviously, the computational time grows exponentially with the problem size. In 

Appendices I and II, the CPLEX formulation and optimal results of the APS problem 

with five orders, six machines and five-level product structures are illustrated in 

detail. Moreover, Appendices III, IV and V list the data of example 3 × 4 × 5, 4 × 5 × 

5, and 5 × 5 × 4, as well as their CPLEX solutions. 
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On the contrary, the best solutions generated by the GA are 1810, 5550, 6750, 

and 7725, respectively. In other words, the GA, as a heuristic method, can reach the 

global optima for the small size problems, and only achieve the near-optimal 

solutions as the problem size increases. For the examples of 5 × 5 × 4 and 5 × 6 × 5, 

the gaps between the optimal costs and the best costs of the GA are 3.05% and 

1.98%, both of which are relatively small. Furthermore, to compensate this, the GA 

requires much shorter computation time. As shown in Table 4.12, the longest time 

spent is only 5.393 seconds for the example 5 × 6 × 5. The results demonstrate that 

the suggested GA-based approach can efficiently find effective schedules for the 

APS problems with operation starting time and finish time in a reasonable 

computational time. 

 

4.5 SUMMARY 

 In this chapter, a genetic algorithm (GA) is developed for the Advanced 

Planning and Scheduling (APS) problem. Some remarks can be summarized as 

follows. 

1. The proposed GA-based approach explicitly takes into account due dates of 

products, operation sequences among items, and capacity constraints of the 

manufacturing system. The objective of the approach is to seek the minimum 

cost of both production idle time and tardiness or earliness penalty of an order. 

2. The performance of the established genetic algorithm is investigated by the 

use of the same representative example (5 × 6 × 5) as in Chapter 3. The 

results indicate that the presented methodology can efficiently generate 
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realistic operation schedules with operation starting time and finish time for 

the shop floor and perform well on the tested problem. It is also found that 

the better results could be produced with higher levels of population size and 

number of generations. These two factors together determine the amount of 

search and the algorithm execution time. 

3. The developed genetic algorithm constitutes a general approach that can be 

easily modified to adapt to a variety of APS problems, such as dynamic 

situation. 

4. A series of computational experiments using randomly generated problems 

were conducted to compare the developed Mixed Integer Programming (MIP) 

and genetic algorithm (GA). By solving the established MIP, the optimal 

production schedules can be obtained for all test problems. However, the 

computational time grows exponentially with the problem size. On the 

contrary, the GA, as a heuristic method, can reach the global optima for the 

small size problems, and only achieve the near-optimal solutions for large 

problems, but it requires much less computation time.  

 

For the APS problem, we have constructed an MIP model in Chapter 3 and a 

GA method in Chapter 4. An assumption made so far is that the APS problem is 

under a static environment. However, in a practical situation, the assumption is 

unrealistic. Thus, the next chapter will cope with the Dynamic Advanced Planning 

and Scheduling (DAPS) problem where new orders arrive on a continuous basis. 

Both the MIP in Chapter 3 and the GA in Chapter 4 will be further extended by 
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incorporating a periodic policy with a frozen interval. The objective is to obtain a 

good schedule such that both production idle time and penalties on tardiness and 

earliness of both original orders and new orders are minimized at each rescheduling 

point. The effectiveness of the mechanism in the dynamic environment will be tested. 
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CHAPTER 5 

DYNAMIC APS AND ITS SOLUTIONS 

 

5.1 INTRODUCTION 

 Much of the research in the Advanced Planning and Scheduling (APS) is 

based on the assumption that the manufacturing environment is static, which rarely 

holds in real situations. In practice, some unexpected events, such as the arrival of 

new orders, may arise and disrupt the manufacturing system. This leads to the study 

of Dynamic Advanced Planning and Scheduling (DAPS). 

 In recent years, more studies have considered planning and scheduling 

problems in the dynamic environment, as reviewed in Chapter 2 (refer to Section 

2.3.4). Unfortunately, most of the research efforts have been concentrated on one 

machine, flow shop, and job shop situations, assuming operations are performed in 

series. There appears to be scant research on introducing dynamic mechanism into 

Advanced Planning and Scheduling (APS). 

 For the dynamic production problems, traditional methods only consider the 

capability of generating new plans and schedules to optimize the efficiency measure 

like mean flow time, earliness and tardiness, etc. These strategies often make the 

plans and schedules experience large changes when new conditions occur, which are 

simply unacceptable in practice. For example, if the starting time of a job is delayed, 

excess inventory will be held to support the new schedule. On the other hand, when 

materials and tools are required to be delivered earlier than originally planned, rush 
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costs will surely be added. Clearly, the trade-off between efficiency and stability 

should be addressed in the dynamic systems [Wus93, Ran04]. 

 This chapter investigates a Dynamic Advanced Planning and Scheduling 

(DAPS) problem where new orders arrive on a continuous basis. A periodic policy 

with a frozen interval is adopted to increase stability on the shop floor. Both the MIP 

model in Chapter 3 and the GA method in Chapter 4 are further extended by 

incorporating the dynamic policy to find a schedule such that both production idle 

time and penalties on tardiness and earliness of both original orders and new orders 

are minimized at each rescheduling point. The two examples in Chapter 3 with the 

arrival of new orders are illustrated to indicate that the suggested approach can 

improve the schedule stability while retaining efficiency. 

 This chapter is organized as follows. In Section 5.2, the proposed 

methodology for the Dynamic Advanced Planning and Scheduling (DAPS) is 

presented. The numerical examples to illustrate the methodology are shown in 

Section 5.3. Finally, Section 5.4 concludes this chapter. 

 

5.2 THE PROPOSED METHODOLOGY 

 Much of the previous research on dynamic problems only takes into account 

efficiency performance to minimize the cost objectives like mean flow time, 

earliness and tardiness, etc. Usually, doing so will greatly change the production 

schedule when new conditions occur and induce instability, which is highly 

undesirable in the practical shop. This section is to investigate a Dynamic Advanced 

Planning and Scheduling (DAPS) problem where new orders arrive on a continuous 
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basis. Both the MIP model in Chapter 3 and the GA method in Chapter 4 are further 

extended by incorporating a periodic policy with a frozen interval to increase 

stability on the shop floor. 

 

5.2.1 Policy 

 This research addresses a Dynamic Advanced Planning and Scheduling 

(DAPS) problem where new orders arrive on a continuous basis. In such a situation, 

if we construct a new schedule every time when a new order arrives, the system may 

be in a permanent state of replanning and rescheduling, and instability will be 

induced on the shop floor. Meanwhile, it is observed that the stability of the 

production system will decrease more when changes are made closer to the current 

period [Lin94, Ran04]. Therefore, this study adopts a periodic policy with a frozen 

interval. In other words, the schedule is revised periodically at the rescheduling point 

but not every time a new order arrives. Moreover, operations near the current time 

and within the frozen interval are fixed. Those operations outside the frozen interval 

and the newly arrived orders are available for building a new schedule. This policy 

provides a framework for balancing efficiency and stability. 

 The dynamic policy can be introduced into the developed MIP model. At 

each rescheduling point, the original orders and the new orders are combined to form 

a new APS problem. To fix the operations within the frozen interval, their start times 

(Sipk) are given the optimal values ( ) in the original problem. In other words, the 

following constraints are added to the MIP model. 

*
ipkS
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*
ipkipk SS =      .i, kC,  p ∀∈    (5.1) 

 

where 

Sipk  Production start time of item p of order Oi on machine Mk

*
ipkS  The optimal start time of item p of order Oi on machine Mk in 

the original problem 

 C  Set of fixed items 

 

 The established GA method can also be extended by incorporating the 

periodic policy with a frozen interval. Our genetic algorithm is based on the random 

keys encoding of Bean [Bea94]. The idea of random keys encoding is to represent a 

solution with a string of random numbers. At each rescheduling point, the length of 

the random number string equals to the number of unfrozen items in both original 

orders and new orders, that is, each unfrozen item takes a random value in the range 

[0, 1]. These random numbers act as sort keys to decode the string into a feasible 

schedule, while the smaller value means the higher priority of the corresponding item.  

 

5.2.2 The objective function 

 At each rescheduling point, our problem is to find a schedule for all the 

orders including original orders and new orders such that both production idle time 

and penalties on tardiness and earliness are minimized. Minimizing production idle 

time is equivalent to minimizing flow time or maximizing machine utilization. In 

addition, production idle time is chosen as the objective to be reduced because it is 
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able to reflect two focuses in shops: manufacturing lead time and WIP (work-in-

process) inventory level. Another objective of the problem is to find a schedule with 

all orders completed as close to their due dates as possible, which is on the fact that 

either early or late delivery of an order results in an increase in the costs.  

 

5.2.3 Additional assumptions 

 To implement the methodology, some additional assumptions are made. In 

the make-to-assemble manufacturing system, there are multiple eligible machines 

with varying ready times. A machine can perform one operation at a time and only 

works for eight hours a day. Each operation can be processed on at most one 

machine at a given time and is non-preemptive. A lot-for-lot strategy is employed for 

making items, while the setup times (including the transfer times between operations) 

are negligible or are included in the processing times. Finally, it is assumed that new 

orders are continuously introduced into the production system on the infinite time 

horizon, and at the beginning, a preschedule has been generated that is optimal or 

near optimal with respect to the above objective function. If no new order occurs at 

some rescheduling point, the entire original schedule will be followed. 

 

5.3 NUMERICAL RESULTS 

 To examine the effectiveness of the proposed mechanism in the dynamic 

environment, the two examples in Chapter 3 with the arrival of new orders are 

illustrated in the following. With respect to the simple example, there are two orders 

at the beginning of the planning horizon, and then one more order arrives at the first 
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rescheduling point. In terms of the representative example, there are five orders at the 

beginning, and afterwards two new orders are received. The results indicate that the 

suggested approach can improve the schedule stability while retaining efficiency. 

 

5.3.1 The simple DAPS example and its optimal solutions 

With respect to the simple example in Section 3.4.1, there are two orders at 

the beginning of the planning horizon (t = 0): one requiring 10 Product F1s with due 

date Day 4 and the other requiring 15 Product S1s with due date Day 3. The 

rescheduling interval is determined as 1 day, that is, 8 hours. Then, at the first 

rescheduling point (t = Day 1), one more order arrives: 20 Product C1s with due date 

Day 4. 

 

5.3.1.1 The MIP with a frozen interval 

For the original problem, the optimal preschedule has been obtained in 

Section 3.4.2 by solving the developed Mixed Integer Programming (MIP). In the 

optimal preschedule, both Order 1 and 2 are fulfilled on time. 

On Day 1 when the new order arrives, frozen interval = 1 day (8 hours) was 

used. The Gantt chart in Figure 3.3 clearly indicates that items O1S1, O1C1OP2, 

O1C1OP3, O1C2, O1C3, O2C2 and O2C3 have been completed when t = Hour 16 

(= 8 + 8), while item O2S1 has begun its processing but has not finished yet. Hence, 

these items are fixed in the production schedule. The other items, including 

O1C1OP1 and O1F1, are outside the frozen interval, and they, together with the 

newly arrived order, are required to build a new schedule. 
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The MIP model with the dynamic policy is applied to this new situation as 

follows. 

 

Minimize  

100Cmax-2725 

+250LI1+250LI2+250LI3 

+50EI1+50EI2+50EI3 

 

Subject to  

(3.2): 

cons1:  C1-Cmax<=0  

cons2:  C2-Cmax<=0  

cons3:  C3-Cmax<=0  

 

(3.3): 

cons4:  S111>=19.5  

cons5:  S132>=16  

cons6:  S312>=16  

cons7:  S322>=16  

cons8:  S332>=16 

 

(3.4): 

cons9:  S111-S121>=5.000000  

cons10:  S111-S132>=4.000000  

cons11:  S121-S162>=1.000000  

cons12:  S121-S172>=2.000000  

cons13:  S132-S142>=4.000000  

cons14:  S142-S152>=2.000000  

cons15:  S211-S222>=1.500000  

cons16:  S211-S232>=3.000000  

cons17:  S312-S322>=4.000000  

cons18:  S322-S332>=2.000000  

 

(3.5): 

cons19:  C1-S111=7  

cons20:  C2-S211=7.5  

cons21:  C3-S312=4   
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(3.6) and (3.7): 

cons22:  S111-S121+999X11121>=5.000000  

cons23:  S121-S111+999X12111>=7.000000  

cons24:  X11121+X12111=1  

cons25:  S111-S211+999X11211>=7.500000  

cons26:  S211-S111+999X21111>=7.000000  

cons27:  X11211+X21111=1  

cons28:  S121-S211+999X12211>=7.500000  

cons29:  S211-S121+999X21121>=5.000000  

cons30:  X12211+X21121=1  

cons31:  S132-S142+999X13142>=4.000000  

cons32:  S142-S132+999X14132>=4.000000  

cons33:  X13142+X14132=1  

cons34:  S132-S152+999X13152>=2.000000  

cons35:  S152-S132+999X15132>=4.000000  

cons36:  X13152+X15132=1  

cons37:  S132-S162+999X13162>=1.000000  

cons38:  S162-S132+999X16132>=4.000000  

cons39:  X13162+X16132=1  

cons40:  S132-S172+999X13172>=2.000000  

cons41:  S172-S132+999X17132>=4.000000  

cons42:  X13172+X17132=1  

cons43:  S132-S222+999X13222>=1.500000  

cons44:  S222-S132+999X22132>=4.000000  

cons45:  X13222+X22132=1  

cons46:  S132-S232+999X13232>=3.000000  

cons47:  S232-S132+999X23132>=4.000000  

cons48:  X13232+X23132=1  

cons49:  S132-S312+999X13312>=4.000000  

cons50:  S312-S132+999X31132>=4.000000  

cons51:  X13312+X31132=1  
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cons52:  S132-S322+999X13322>=4.000000  

cons53:  S322-S132+999X32132>=4.000000  

cons54:  X13322+X32132=1  

cons55:  S132-S332+999X13332>=2.000000  

cons56:  S332-S132+999X33132>=4.000000  

cons57:  X13332+X33132=1  

cons58:  S142-S152+999X14152>=2.000000  

cons59:  S152-S142+999X15142>=4.000000  

cons60:  X14152+X15142=1  

cons61:  S142-S162+999X14162>=1.000000  

cons62:  S162-S142+999X16142>=4.000000  

cons63:  X14162+X16142=1  

cons64:  S142-S172+999X14172>=2.000000  

cons65:  S172-S142+999X17142>=4.000000  

cons66:  X14172+X17142=1  

cons67:  S142-S222+999X14222>=1.500000  

cons68:  S222-S142+999X22142>=4.000000  

cons69:  X14222+X22142=1  

cons70:  S142-S232+999X14232>=3.000000  

cons71:  S232-S142+999X23142>=4.000000  

cons72:  X14232+X23142=1  

cons73:  S142-S312+999X14312>=4.000000  

cons74:  S312-S142+999X31142>=4.000000  

cons75:  X14312+X31142=1  

cons76:  S142-S322+999X14322>=4.000000  

cons77:  S322-S142+999X32142>=4.000000  

cons78:  X14322+X32142=1  

cons79:  S142-S332+999X14332>=2.000000  

cons80:  S332-S142+999X33142>=4.000000  

cons81:  X14332+X33142=1  

cons82:  S152-S162+999X15162>=1.000000  
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cons83:  S162-S152+999X16152>=2.000000  

cons84:  X15162+X16152=1  

cons85:  S152-S172+999X15172>=2.000000  

cons86:  S172-S152+999X17152>=2.000000  

cons87:  X15172+X17152=1  

cons88:  S152-S222+999X15222>=1.500000  

cons89:  S222-S152+999X22152>=2.000000  

cons90:  X15222+X22152=1  

cons91:  S152-S232+999X15232>=3.000000  

cons92:  S232-S152+999X23152>=2.000000  

cons93:  X15232+X23152=1  

cons94:  S152-S312+999X15312>=4.000000  

cons95:  S312-S152+999X31152>=2.000000  

cons96:  X15312+X31152=1  

cons97:  S152-S322+999X15322>=4.000000  

cons98:  S322-S152+999X32152>=2.000000  

cons99:  X15322+X32152=1  

cons100:  S152-S332+999X15332>=2.000000  

cons101:  S332-S152+999X33152>=2.000000  

cons102:  X15332+X33152=1  

cons103:  S162-S172+999X16172>=2.000000  

cons104:  S172-S162+999X17162>=1.000000  

cons105:  X16172+X17162=1  

cons106:  S162-S222+999X16222>=1.500000  

cons107:  S222-S162+999X22162>=1.000000  

cons108:  X16222+X22162=1  

cons109:  S162-S232+999X16232>=3.000000  

cons110:  S232-S162+999X23162>=1.000000  

cons111:  X16232+X23162=1  

cons112:  S162-S312+999X16312>=4.000000  

cons113:  S312-S162+999X31162>=1.000000  
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cons114:  X16312+X31162=1  

cons115:  S162-S322+999X16322>=4.000000  

cons116:  S322-S162+999X32162>=1.000000  

cons117:  X16322+X32162=1  

cons118:  S162-S332+999X16332>=2.000000  

cons119:  S332-S162+999X33162>=1.000000  

cons120:  X16332+X33162=1  

cons121:  S172-S222+999X17222>=1.500000  

cons122:  S222-S172+999X22172>=2.000000  

cons123:  X17222+X22172=1  

cons124:  S172-S232+999X17232>=3.000000  

cons125:  S232-S172+999X23172>=2.000000  

cons126:  X17232+X23172=1  

cons127:  S172-S312+999X17312>=4.000000  

cons128:  S312-S172+999X31172>=2.000000  

cons129:  X17312+X31172=1  

cons130:  S172-S322+999X17322>=4.000000  

cons131:  S322-S172+999X32172>=2.000000  

cons132:  X17322+X32172=1  

cons133:  S172-S332+999X17332>=2.000000  

cons134:  S332-S172+999X33172>=2.000000  

cons135:  X17332+X33172=1  

cons136:  S222-S232+999X22232>=3.000000  

cons137:  S232-S222+999X23222>=1.500000  

cons138:  X22232+X23222=1  

cons139:  S222-S312+999X22312>=4.000000  

cons140:  S312-S222+999X31222>=1.500000  

cons141:  X22312+X31222=1  

cons142:  S222-S322+999X22322>=4.000000  

cons143:  S322-S222+999X32222>=1.500000  

cons144:  X22322+X32222=1  
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cons145:  S222-S332+999X22332>=2.000000  

cons146:  S332-S222+999X33222>=1.500000  

cons147:  X22332+X33222=1  

cons148:  S232-S312+999X23312>=4.000000  

cons149:  S312-S232+999X31232>=3.000000  

cons150:  X23312+X31232=1  

cons151:  S232-S322+999X23322>=4.000000  

cons152:  S322-S232+999X32232>=3.000000  

cons153:  X23322+X32232=1  

cons154:  S232-S332+999X23332>=2.000000  

cons155:  S332-S232+999X33232>=3.000000  

cons156:  X23332+X33232=1  

cons157:  S312-S322+999X31322>=4.000000  

cons158:  S322-S312+999X32312>=4.000000  

cons159:  X31322+X32312=1  

cons160:  S312-S332+999X31332>=2.000000  

cons161:  S332-S312+999X33312>=4.000000  

cons162:  X31332+X33312=1  

cons163:  S322-S332+999X32332>=2.000000  

cons164:  S332-S322+999X33322>=4.000000  

cons165:  X32332+X33322=1 

 

(3.8) and (3.9): 

cons166:  0.125C1-L1<=4  

cons167:  E1+0.125C1>=4  

cons168:  0.125C2-L2<=3  

cons169:  E2+0.125C2>=3  

cons170:  0.125C3-L3<=4  

cons171:  E3+0.125C3>=4  

 

(3.10) and (3.11): 

cons172:  L1-LI1<=0  

cons173:  E1-EI1<=0.99  

cons174:  L2-LI2<=0  

cons175:  E2-EI2<=0.99  

cons176:  L3-LI3<=0  

cons177:  E3-EI3<=0.99   
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(5.1): 

cons178: S121=7 

cons179: S152 =7.0 

cons180: S162 = 2.5 

cons181: S172= 5.0 

cons182: S222=3.5 

cons183: S232=9 

cons184: S211=12 

cons185: S142=12 

 

Bounds 

LI1 free 

LI2 free 

LI3 free 

EI1 free 

EI2 free 

EI3 free 

 

Integers 

EI1   LI1 EI2   LI2 EI3   LI3 

 

X11121 X12111 

X11211 X21111 

X12211 X21121 

X13142 X14132 

X13152 X15132 

X13162 X16132 

X13172 X17132 

X13222 X22132 

X13232 X23132 

X13312 X31132 

X13322 X32132 

X13332 X33132 

X14152 X15142 

X14162 X16142 

X14172 X17142 

X14222 X22142 

X14232 X23142 

X14312 X31142 

X14322 X32142 

X14332 X33142 

X15162 X16152 

X15172 X17152 

X15222 X22152 

X15232 X23152 

X15312 X31152 

X15322 X32152 

X15332 X33152 

X16172 X17162 

X16222 X22162 

X16232 X23162 

X16312 X31162 

X16322 X32162 

X16332 X33162 

X17222 X22172 

X17232 X23172 

X17312 X31172 

X17322 X32172 

X17332 X33172 

X22232 X23222 

X22312 X31222 

X22322 X32222 

X22332 X33222 

X23312 X31232 

X23322 X32232 

X23332 X33232 

X31322 X32312 

X31332 X33312 

X32332 X33322 

 

End 
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 The simple DAPS example was solved using CPLEX 9.1 on a personal 

computer with Pentium 2.66 GHz CPU and 512 MB RAM. It should be noticed that 

999 is taken as the large positive number α for the convenience in the CPLEX input 

process. The optimal solution generated by CPLEX is intensively shown in the 

following. The important data derived from the optimal results are summarized in 

Table 5.1, while Figure 5.1 displays the optimal solution in the form of Gantt chart. 

For convenience, item p of order Oi is denoted Oip. In this simple DAPS example, all 

of the orders, including the original ones and the new one, are exactly completed 

without earliness or tardiness. 

 

Integer optimal 

Objective =   2.750000000e+002 

Solution time = 0.02 sec.   

Iterations = 15   

Nodes = 0  

 

Variable Name Solution Value 

Cmax 30.000000 

C1 27.000000 

C2 19.500000 

C3 30.000000 

S111 20.000000 

S121 7.000000 

S211 12.000000 

S132 16.000000 

S142 12.000000 

S152 7.000000 

Variable Name Solution Value 

S162 2.500000 

S172 5.000000 

S222 3.500000 

S232 9.000000 

S312 26.000000 

S322 22.000000 

S332 20.000000 

X12111 1.000000 

X21111 1.000000 

X12211 1.000000 
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X14132 1.000000 

X15132 1.000000 

X16132 1.000000 

X17132 1.000000 

X22132 1.000000 

X23132 1.000000 

X13312 1.000000 

X13322 1.000000 

X13332 1.000000 

X15142 1.000000 

X16142 1.000000 

X17142 1.000000 

X22142 1.000000 

X23142 1.000000 

X14312 1.000000 

X14322 1.000000 

X14322 1.000000 

X14332 1.000000 

X16152 1.000000 

X17152 1.000000 

X22152 1.000000 

X15232 1.000000 

X15312 1.000000 

X15322 1.000000 

X15332 1.000000 

X16172 1.000000 

X16222 1.000000 

X16232 1.000000 

X16312 1.000000 

X16322 1.000000 

X16332 1.000000 

X22172 1.000000 

X17232 1.000000 

X17312 1.000000 

X17322 1.000000 

X17332 1.000000 

X22232 1.000000 

X22312 1.000000 

X22322 1.000000 

X22332 1.000000 

X23312 1.000000 

X23322 1.000000 

X23332 1.000000 

X32312 1.000000 

X33312 1.000000 

X33322 1.000000 

E1 0.990000 

E2 0.990000 

E3 0.990000 

 

All other variables are zero. 
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  Table 5.1 Optimal results of the simple DAPS example when frozen interval = 

1 day 

Number of 

constraints 

Total number 

of variables 

No. of integer 

variables 

Makespan 

(hours) 

CPU time 

(sec.) 

185 125 102 30 0.02 

     

Number of 

tardiness 

Number of 

earliness 

Tardiness 

penalty 

Earliness 

penalty 
Total cost 

0 0 0 0 275 

 

 Figure 5.1 Optimal results of the simple DAPS example in the form of Gantt 

chart when frozen interval = 1 day 

 

 

5.3.1.2 The MIP without a frozen interval 

 In order to examine the effect of the frozen interval, we also adopted the MIP 

model without a frozen interval to tackle the simple dynamic problem. In this case, 

items O1C1OP2, O2C3 as well as O2S1 are not fixed and also free for rescheduling. 

That is, at the rescheduling point (t = Day 1), items O1C1OP1, O1C1OP2, O2C3, 

O2S1 and O1F1, together with the newly arrived order, are needed to construct a 

new schedule. The MIP model in the following is the mathematical formulation for 

this situation.  



CHAPTER 5: DAPS AND ITS SOLUTIONS  123 

Minimize  

100Cmax-2725 

+250LI1+250LI2+250LI3 

+50EI1+50EI2+50EI3 

 

Subject to  

(3.2): 

cons1:  C1-Cmax<=0  

cons2:  C2-Cmax<=0  

cons3:  C3-Cmax<=0  

 

(3.3): 

cons4:  S111>=12  

cons5:  S211>=12  

cons6:  S132>=9  

cons7:  S142>=9  

cons8:  S232>=9  

cons9:  S312>=9  

cons10:  S322>=9  

cons11:  S332>=9 

 

(3.4): 

cons12:  S111-S121>=5.000000  

cons13:  S111-S132>=4.000000  

cons14:  S121-S162>=1.000000  

cons15:  S121-S172>=2.000000  

cons16:  S132-S142>=4.000000  

cons17:  S142-S152>=2.000000  

cons18:  S211-S222>=1.500000  

cons19:  S211-S232>=3.000000  

cons20:  S312-S322>=4.000000  

cons21:  S322-S332>=2.000000   

 

(3.5): 

cons22:  C1-S111=7  

cons23:  C2-S211=7.5  

cons24:  C3-S312=4    

 

(3.6) and (3.7): 

cons25:  S111-S121+999X11121>=5.000000  

cons26:  S121-S111+999X12111>=7.000000  

cons27:  X11121+X12111=1  
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cons28:  S111-S211+999X11211>=7.500000  

cons29:  S211-S111+999X21111>=7.000000  

cons30:  X11211+X21111=1  

cons31:  S121-S211+999X12211>=7.500000  

cons32:  S211-S121+999X21121>=5.000000  

cons33:  X12211+X21121=1  

cons34:  S132-S142+999X13142>=4.000000  

cons35:  S142-S132+999X14132>=4.000000  

cons36:  X13142+X14132=1  

cons37:  S132-S152+999X13152>=2.000000  

cons38:  S152-S132+999X15132>=4.000000  

cons39:  X13152+X15132=1  

cons40:  S132-S162+999X13162>=1.000000  

cons41:  S162-S132+999X16132>=4.000000  

cons42:  X13162+X16132=1  

cons43:  S132-S172+999X13172>=2.000000  

cons44:  S172-S132+999X17132>=4.000000  

cons45:  X13172+X17132=1  

cons46:  S132-S222+999X13222>=1.500000  

cons47:  S222-S132+999X22132>=4.000000  

cons48:  X13222+X22132=1  

cons49:  S132-S232+999X13232>=3.000000  

cons50:  S232-S132+999X23132>=4.000000  

cons51:  X13232+X23132=1  

cons52:  S132-S312+999X13312>=4.000000  

cons53:  S312-S132+999X31132>=4.000000  

cons54:  X13312+X31132=1  

cons55:  S132-S322+999X13322>=4.000000  

cons56:  S322-S132+999X32132>=4.000000  

cons57:  X13322+X32132=1  

cons58:  S132-S332+999X13332>=2.000000  
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cons59:  S332-S132+999X33132>=4.000000  

cons60:  X13332+X33132=1  

cons61:  S142-S152+999X14152>=2.000000  

cons62:  S152-S142+999X15142>=4.000000  

cons63:  X14152+X15142=1  

cons64:  S142-S162+999X14162>=1.000000  

cons65:  S162-S142+999X16142>=4.000000  

cons66:  X14162+X16142=1  

cons67:  S142-S172+999X14172>=2.000000  

cons68:  S172-S142+999X17142>=4.000000  

cons69:  X14172+X17142=1  

cons70:  S142-S222+999X14222>=1.500000  

cons71:  S222-S142+999X22142>=4.000000  

cons72:  X14222+X22142=1  

cons73:  S142-S232+999X14232>=3.000000  

cons74:  S232-S142+999X23142>=4.000000  

cons75:  X14232+X23142=1  

cons76:  S142-S312+999X14312>=4.000000  

cons77:  S312-S142+999X31142>=4.000000  

cons78:  X14312+X31142=1  

cons79:  S142-S322+999X14322>=4.000000  

cons80:  S322-S142+999X32142>=4.000000  

cons81:  X14322+X32142=1  

cons82:  S142-S332+999X14332>=2.000000  

cons83:  S332-S142+999X33142>=4.000000  

cons84:  X14332+X33142=1  

cons85:  S152-S162+999X15162>=1.000000  

cons86:  S162-S152+999X16152>=2.000000  

cons87:  X15162+X16152=1  

cons88:  S152-S172+999X15172>=2.000000  

cons89:  S172-S152+999X17152>=2.000000  
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cons90:  X15172+X17152=1  

cons91:  S152-S222+999X15222>=1.500000  

cons92:  S222-S152+999X22152>=2.000000  

cons93:  X15222+X22152=1  

cons94:  S152-S232+999X15232>=3.000000  

cons95:  S232-S152+999X23152>=2.000000  

cons96:  X15232+X23152=1  

cons97:  S152-S312+999X15312>=4.000000  

cons98:  S312-S152+999X31152>=2.000000  

cons99:  X15312+X31152=1  

cons100:  S152-S322+999X15322>=4.000000  

cons101:  S322-S152+999X32152>=2.000000  

cons102:  X15322+X32152=1  

cons103:  S152-S332+999X15332>=2.000000  

cons104:  S332-S152+999X33152>=2.000000  

cons105:  X15332+X33152=1  

cons106:  S162-S172+999X16172>=2.000000  

cons107:  S172-S162+999X17162>=1.000000  

cons108:  X16172+X17162=1  

cons109:  S162-S222+999X16222>=1.500000  

cons110:  S222-S162+999X22162>=1.000000  

cons111:  X16222+X22162=1  

cons112:  S162-S232+999X16232>=3.000000  

cons113:  S232-S162+999X23162>=1.000000  

cons114:  X16232+X23162=1  

cons115:  S162-S312+999X16312>=4.000000  

cons116:  S312-S162+999X31162>=1.000000  

cons117:  X16312+X31162=1  

cons118:  S162-S322+999X16322>=4.000000  

cons119:  S322-S162+999X32162>=1.000000  

cons120:  X16322+X32162=1  
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cons121:  S162-S332+999X16332>=2.000000  

cons122:  S332-S162+999X33162>=1.000000  

cons123:  X16332+X33162=1  

cons124:  S172-S222+999X17222>=1.500000  

cons125:  S222-S172+999X22172>=2.000000  

cons126:  X17222+X22172=1  

cons127:  S172-S232+999X17232>=3.000000  

cons128:  S232-S172+999X23172>=2.000000  

cons129:  X17232+X23172=1  

cons130:  S172-S312+999X17312>=4.000000  

cons131:  S312-S172+999X31172>=2.000000  

cons132:  X17312+X31172=1  

cons133:  S172-S322+999X17322>=4.000000  

cons134:  S322-S172+999X32172>=2.000000  

cons135:  X17322+X32172=1  

cons136:  S172-S332+999X17332>=2.000000  

cons137:  S332-S172+999X33172>=2.000000  

cons138:  X17332+X33172=1  

cons139:  S222-S232+999X22232>=3.000000  

cons140:  S232-S222+999X23222>=1.500000  

cons141:  X22232+X23222=1  

cons142:  S222-S312+999X22312>=4.000000  

cons143:  S312-S222+999X31222>=1.500000  

cons144:  X22312+X31222=1  

cons145:  S222-S322+999X22322>=4.000000  

cons146:  S322-S222+999X32222>=1.500000  

cons147:  X22322+X32222=1  

cons148:  S222-S332+999X22332>=2.000000  

cons149:  S332-S222+999X33222>=1.500000  

cons150:  X22332+X33222=1  

cons151:  S232-S312+999X23312>=4.000000  
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cons152:  S312-S232+999X31232>=3.000000  

cons153:  X23312+X31232=1  

cons154:  S232-S322+999X23322>=4.000000  

cons155:  S322-S232+999X32232>=3.000000  

cons156:  X23322+X32232=1  

cons157:  S232-S332+999X23332>=2.000000  

cons158:  S332-S232+999X33232>=3.000000  

cons159:  X23332+X33232=1  

cons160:  S312-S322+999X31322>=4.000000  

cons161:  S322-S312+999X32312>=4.000000  

cons162:  X31322+X32312=1  

cons163:  S312-S332+999X31332>=2.000000  

cons164:  S332-S312+999X33312>=4.000000  

cons165:  X31332+X33312=1  

cons166:  S322-S332+999X32332>=2.000000  

cons167:  S332-S322+999X33322>=4.000000  

cons168:  X32332+X33322=1 

 

(3.8) and (3.9): 

cons169:  0.125C1-L1<=4  

cons170:  E1+0.125C1>=4  

cons171:  0.125C2-L2<=3  

cons172:  E2+0.125C2>=3  

cons173:  0.125C3-L3<=4  

cons174:  E3+0.125C3>=4   

 

(3.10) and (3.11): 

cons175:  L1-LI1<=0  

cons176:  E1-EI1<=0.99  

cons177:  L2-LI2<=0  

cons178:  E2-EI2<=0.99  

cons179:  L3-LI3<=0  

cons180:  E3-EI3<=0.99    

 

(5.1): 

cons181: S121 = 7 

cons182: S152 = 7.0 

cons183: S162 = 2.5 

cons184: S172 = 5.0 
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cons185: S222 = 3.5 

 

Bounds 

LI1 free 

LI2 free 

LI3 free 

EI1 free 

EI2 free 

EI3 free 

 

Integers 

EI1   LI1 EI2   LI2 EI3   LI3 

 

X11121 X12111 

X11211 X21111 

X12211 X21121 

X13142 X14132 

X13152 X15132 

X13162 X16132 

X13172 X17132 

X13222 X22132 

X13232 X23132 

X13312 X31132 

X13322 X32132 

X13332 X33132 

X14152 X15142 

X14162 X16142 

X14172 X17142 

X14222 X22142 

X14232 X23142 

X14312 X31142 

X14322 X32142 

X14332 X33142 

X15162 X16152 

X15172 X17152 

X15222 X22152 

X15232 X23152 

X15312 X31152 

X15322 X32152 

X15332 X33152 

X16172 X17162 

X16222 X22162 

X16232 X23162 

X16312 X31162 

X16322 X32162 

X16332 X33162 

X17222 X22172 

X17232 X23172 

X17312 X31172 

X17322 X32172 

X17332 X33172 

X22232 X23222 

X22312 X31222 

X22322 X32222 

X22332 X33222 

X23312 X31232 

X23322 X32232 

X23332 X33232 

X31322 X32312 

X31332 X33312 

X32332 X33322 

 

End 
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The optimal schedule obtained from CPLEX is given as follows and 

summarized in Table 5.2, whereas the Gantt chart is portrayed in Figure 5.2. 

 

Integer optimal 

Objective =   2.750000000e+002 

Solution time = 0.02 sec.   

Iterations = 72   

Nodes = 9  

 

Variable Name Solution Value 

Cmax 30.000000 

C1 29.000000 

C2 19.500000 

C3 30.000000 

S111 22.000000 

S121 7.000000 

S211 12.000000 

S132 18.000000 

S142 12.000000 

S152 7.000000 

S162 2.500000 

S172 5.000000 

S222 3.500000 

S232 9.000000 

S312 26.000000 

S322 22.000000 

S332 16.000000 

X12111 1.000000 

X21111 1.000000 

X12211 1.000000 

Variable Name Solution Value 

X14132 1.000000 

X15132 1.000000 

X16132 1.000000 

X17132 1.000000 

X22132 1.000000 

X23132 1.000000 

X13312 1.000000 

X13322 1.000000 

X33132 1.000000 

X15142 1.000000 

X16142 1.000000 

X17142 1.000000 

X22142 1.000000 

X23142 1.000000 

X14312 1.000000 

X14322 1.000000 

X14332 1.000000 

X16152 1.000000 

X17152 1.000000 

X22152 1.000000 
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X15232 1.000000 

X15312 1.000000 

X15322 1.000000 

X15332 1.000000 

X16172 1.000000 

X16222 1.000000 

X16232 1.000000 

X16312 1.000000 

X16322 1.000000 

X16332 1.000000 

X22172 1.000000 

X17232 1.000000 

X17312 1.000000 

X17322 1.000000 

X17332 1.000000 

X22232 1.000000 

X22312 1.000000 

X22322 1.000000 

X22332 1.000000 

X23312 1.000000 

X23322 1.000000 

X23332 1.000000 

X32312 1.000000 

X33312 1.000000 

X33322 1.000000 

E1 0.990000 

E2 0.990000 

E3 0.990000 

 

All other variables are zero. 

 

Table 5.2 Optimal results of the simple DAPS example without a frozen interval 

Number of 

constraints 

Total number 

of variables 

No. of integer 

variables 

Makespan 

(hours) 

CPU time 

(sec.) 

185 125 102 30 0.02 

     

Number of 

tardiness 

Number of 

earliness 

Tardiness 

penalty 

Earliness 

penalty 
Total cost 

0 0 0 0 275 
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Figure 5.2 Optimal results of the simple DAPS example without a frozen 

interval in the form of Gantt chart  

 

 

5.3.1.3 Comparison of performance 

In this section, the effectiveness of the frozen interval, as measured by 

efficiency and stability, will be investigated. 

The measure of stability defined by Rangsaritratsamee et al. [Ran04] includes 

two components. One is the starting time deviation for all operations between the 

new schedule and the original one, and the other is the penalty associated with total 

deviation from the current time. If the current time is t, the operation starting time in 

the original schedule is ti, and in the new schedule is , the stability is defined 

as

'it

∑ −+−+∑ −
i

ii
i

ii ttttPFtt )  '(' , where PF(x) is the penalty function. In particular, 

PF(x) =  is used, and moreover, when the total derivation from the current 

time is zero, the penalty is assumed to be zero.  

)/(10 5.0x

Table 5.3 shows the deduction of the stability measure when the frozen 

interval is 1 day, while Table 5.4 lists the calculation of the stability when the MIP 

without a frozen interval. Table 5.5 summarizes the testing results from different 

methodologies. It can be seen that the suggested approach is capable of improving 

the schedule stability while retaining efficiency, which is particularly significant in 

the DAPS problem. 
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       Table 5.3 The stability of the simple DAPS example when frozen interval = 

1 day 

 

Table 5.4 The stability of the simple DAPS example without a frozen interval  

Items 

Current 

time t 

(hour) 

Original 

starting 

time ti 

(hour) 

New 

starting 

time  

(hour) 

'it
|  –t'it )'( ttttPF ii −+−i |  Stability

O1F1 8 20 20 0 2.041 2.041 

O1C1OP1 8 16 16 0 2.500 2.500 

O1C1OP2 8 12 12 0 3.536 3.536 

O2S1 8 12 12 0 3.536 3.536 

O2C3 8 9 9 0 7.071 7.071 

Total    0 18.684 18.684 

Items 

Current 

time t 

(hour) 

Original 

starting 

time ti 

(hour) 

New 

starting 

time  

(hour) 

'it
|  –t'it )'( ttttPF ii −+−i |  Stability

O1F1 8 20 22 2 1.961 3.961 

O1C1OP1 8 16 12 4 2.887 6.887 

O1C1OP2 8 12 18 6 2.673 8.673 

O2S1 8 12 12 0 3.536 3.536 

O2C3 8 9 9 0 7.071 7.071 

Total    12 18.128 30.128 
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Table 5.5 The optimal results from different methodologies in the simple DAPS 

example 

Methodology Objective function Stability 

MIP with a frozen interval 275 18.684 

MIP without a frozen interval 275 30.128 

 

5.3.2 The representative DAPS example and its optimal solutions 

In terms of the representative example in Section 3.4.3, the rescheduling 

interval is also chosen as 1 day, that is, 8 hours. Originally (t = 0), there are five 

orders in the production system: 5 Product F1s with due date Day 6, 5 Product F2s 

with due date Day 7, 10 Product F3s with due date Day 14, 10 Product S2s with due 

date Day 3, and 30 Product C3s with due date Day 1. Afterwards, at the first 

rescheduling point (t = Day 1), two new orders are received: 10 Product S1s with due 

date Day 5 and 5 Product S5s with due date Day 3.  

 

5.3.2.1 The MIP with a frozen interval 

The optimal solution of the original problem has been generated in Section 

3.4.3. In the optimal solution, Orders 1, 2 and 3 are completed before their due dates, 

while the other two orders are satisfied on time. 

When two new orders arrive at the first rescheduling point (t = Day 1), frozen 

interval = 1 day (8 hours) was employed. On the basis of the Gantt chart in Figure 

3.5, items O1F1, O1C1, O1C2, O1C3, O1C4, O2S1, O2S4, O2S7, O2C2, O2C5, 

O2C6, O2C14, O2C15, O3S7, O3C3, O3C10, O3C11, O3C12, O3C13OP1, 
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O3C13OP2, O3C14, O3C15, O4S5, O4C3, O4C7, O4C8, O4C9, O4C10, O4C11 

and O5C3 are fixed in the schedule, whereas items O2F2, O3F3, O3S2, O3S3, O3S5,  

O3S6, O3C2, O3C7, O3C8, O3C9 and O4S2 together with the two newly arrived 

orders are needed to derive a new production schedule. 

To settle the dynamic issue, the MIP model with a frozen interval is 

formulated as in Appendix VI. The optimal solution generated by CPLEX 9.1 on a 

personal computer with Pentium 2.66 GHz CPU and 512 MB RAM is attached in 

Appendix VII and summarized in Table 5.6, while the optimal operation sequences 

in the form of Gantt chart are displayed in Figure 5.3. For convenience, item p of 

order Oi is denoted Oip. In this DAPS example, Order 7 can not be fulfilled on time 

with one day delay, while Orders 1, 2 and 3 are early. 

 

Table 5.6 Optimal results of the representative DAPS example when frozen 

interval = 1 day 

Number of 

constraints 

Total number 

of variables 

No. of integer 

variables 

Makespan 

(hours) 

CPU time 

(sec.) 

821 543 466 53 0.45 

     

Number of 

tardiness 

Number of 

earliness 

Tardiness 

penalty 

Earliness 

penalty 
Total cost 

1 12 250 600 8775 
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5.3.2.2 The MIP without a frozen interval 

 When the MIP without a frozen interval is applied to this representative 

DAPS problem, not only items O2F2, O3F3, O3S2, O3S3, O3S5, O3S6, O3C2, 

O3C7, O3C8, O3C9, O4S2 but also items O2S1, O2C2, O3S7, O3C3, O3C10, 

O3C12, O3C13OP1, O3C13OP2, O4S5, O4C7, O4C9, combined with the new 

orders, are required to construct a new schedule at the rescheduling point (t = Day 1). 

The MIP model in Appendix VIII is the mathematical formulation for this situation, 

and the corresponding optimal solution obtained from CPLEX is listed in Appendix 

IX. The summary of the optimal solution is shown in Table 5.7. The optimal 

production schedule is graphically represented in the Gantt chart as illustrated in 

Figure 5.4. 

 

Table 5.7 Optimal results of the representative DAPS example without a frozen 

interval 

Number of 

constraints 

Total number 

of variables 

No. of integer 

variables 

Makespan 

(hours) 

CPU time 

(sec.) 

821 543 466 53 426.41 

     

Number of 

tardiness 

Number of 

earliness 

Tardiness 

penalty 

Earliness 

penalty 
Total cost 

1 11 250 550 8725 
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5.3.2.3 Comparison of performance 

Table 5.8 lists the optimal results from different methodologies in the 

representative DAPS example. The tests reveal that when the frozen interval is 

adopted, the stability improves while efficiency worsens. Specifically, the 

improvement in the stability is as much as 26.79% ((172.342-

126.163)/172.342*100%), while the sacrifice in the objective function is only 0.57% 

((8775-8725)/8775*100%). The results are considerably exciting, since the stability 

improves much more than efficiency degrades. Moreover, with regard to the 

representative DAPS example, the MIP with a frozen interval can find its optimal 

solution in much less computation time. 

 

Table 5.8 The optimal results from different methodologies in the representative 

DAPS example 

Methodology Objective function Stability CPU time (sec.) 

MIP with a frozen interval 8775 126.163 0.45 

MIP without a frozen interval 8725 172.342 426.41 

 

5.3.3 GA solutions to the representative DAPS example  

 The GA with a frozen interval as well as without a frozen interval is utilized 

to solve the representative DAPS example. The results confirm that the dynamic 

policy improves the stability much more than it degrades efficiency. 
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5.3.3.1 The GA with a frozen interval 

The GA method has been used to solve the original problem in Section 4.3. 

The best production schedule obtained by the GA shows that Orders 1, 2 and 3 are 

early relative to their due dates. 

At the first rescheduling point (t = Day 1), frozen interval = 1 day (8 hours) 

was adopted. Thus, the fixed items are O1F1, O1C1, O1C2, O1C3, O1C4, O2S4, 

O2S7, O2C2, O2C5, O2C6, O2C14, O2C15, O3S7, O3C2, O3C3, O3C7, O3C8, 

O3C9, O3C10, O3C11, O3C12, O3C13OP1, O3C13OP2, O3C14, O3C15, O4S2, 

O4S5, O4C3, O4C7, O4C8, O4C9, O4C10, O4C11 and O5C3. The other items, 

including O2F2, O2S1, O3F3, O3S2, O3S3, O3S5 and O3S6, are outside the frozen 

interval, and they, together with the two recently arrived orders, are required to build 

a new schedule. 

We apply our established GA approach to this new situation. Our 

methodology was coded in the C Language, as in the enclosed CD-ROM, and run on 

a personal computer with a Pentium 2.66 GHz CPU and 512 MB RAM. The genetic 

parameters were set to maximum generation = 200, population size = 100, number of 

reproduction = 10, number of crossover = 80, crossover probability = 0.7, number of 

mutation = 10. The GA-based program was replicated 5 times, and the same best 

operation sequences were achieved. The best solution with the total costs of 8875, as 

displayed in Figure 5.5, was reached in 0.968 second on average, whereas Table 5.9 

lists the best schedule with the chromosome created by the genetic algorithm. 

Obviously, only Order 7 could not be fulfilled on time with one day delay, while 

Orders 1 and 3 are early. The summary of the results is illustrated in Table 5.10. 
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Table 5.9 The best schedule with the chromosome obtained by the GA when 

frozen interval = 1 day 

Items Starting time (hour) Finish time (hour) Random number 

O2F2 50.5 53.5 0.96 

O2S1 30.0 32.5 0.79 

O3F3 43.5 50.5 0.95 

O3S2 37.5 43.5 0.95 

O3S3 32.0 42.0 0.83 

O3S5 21.0 27.0 0.09 

O3S6 18.0 24.0 0.03 

O6S1 32.5 37.5 0.44 

O6S4 27.0 32.0 0.49 

O6C5 17.5 19.5 0.57 

O6C6 

O6S7 

O6C14 

O6C15 

O7S5 

O7C7 

O7C8 

O7C9 

O7C10 

O7C11 

16.5 

24.0 

16.0 

17.0 

27.0 

21.5 

20.5 

16.0 

16.0 

17.0 

20.5 

27.0 

17.0 

18.0 

30.0 

22.5 

21.5 

16.5 

17.0 

17.5 

0.24 

0.01 

0.09 

0.83 

0.71 

0.42 

0.24 

0.08 

0.34 

0.49 
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Table 5.10 The best solution obtained by the GA for the representative DAPS 

example when frozen interval = 1 day 

Makespan (hour) Number of tardiness Number of earliness Total cost CPU time (sec.) 

53.5 1 11 8875 0.968 

 

5.3.3.2 The GA without a frozen interval 

 The GA without a frozen interval is also implemented in the representative 

DAPS example to compare the results. Under such a condition, on Day 1, items 

O2F2, O2S1, O2S4, O2S7, O2C6, O3F3, O3S2, O3S3, O3S5, O3S6, O3S7, O3C3, 

O3C7, O3C8, O3C9, O3C10, O3C12, O3C13OP1, O3C13OP2, O4S2, O4S5 and 

O4C3, together with the newly arrived orders, need rescheduling. The problem was 

solved using the proposed GA on a personal computer with Pentium 2.66 GHz CPU 

and 512 MB RAM. The same genetic parameters as in Section 5.3.3.1 were adopted, 

and the GA was also replicated 5 times. The best production schedule generated by 

the GA from the 5 replications is summarized in Table 5.11 and graphically 

represented in Figure 5.6. 

 

Table 5.11 The best solution obtained by the GA for the representative DAPS 

example without a frozen interval 

Makespan (hour) Number of tardiness Number of earliness Total cost CPU time (sec.) 

53.5 0 14 8775 2.231 
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5.3.3.3 Comparison of performance 

Table 5.12 summarizes the GA results from different methodologies. The GA 

with a frozen interval improves the schedule stability by up to 40.45% ((158.816-

94.574)/158.816*100%), whereas it degrades efficiency by merely 1.13% ((8875-

8775)/8875*100%). The results clearly demonstrate that the proposed dynamic 

policy is capable of improving the stability much more than it worsens efficiency. 

Besides, it can be found that the GA with a frozen interval can seek its best schedule 

more quickly. 

 

Table 5.12 The GA results from different methodologies in the representative 

DAPS example 

Methodology Objective function Stability CPU time (sec.) 

GA with a frozen interval 8875 94.574 0.968 

GA without a frozen interval 8775 158.816 2.231 

 

5.4 SUMMARY 

 In this chapter, a periodic policy with a frozen interval is introduced into both 

the MIP model and the GA method to cope with the Dynamic Advanced Planning 

and Scheduling (DAPS) problem. A summary of the chapter is provided in the 

following. 

1. Generally, assuming the manufacturing environment is static, Advanced 

Planning and Scheduling (APS) deals with effectively allocating production 

resources to complete the multi-level products so that production constraints 
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are satisfied and production objectives are met. In many real production 

situations, the problem is even more complicated because of the changing 

environment, where some unexpected events, such as the arrival of new 

orders, may arise and disrupt the manufacturing system. Such a problem 

henceforth is called Dynamic Advanced Planning and Scheduling (DAPS). 

2. Much of the previous research on dynamic problems only takes into account 

efficiency performance to minimize the cost objectives like mean flow time, 

earliness and tardiness, etc. Usually, doing so will greatly change the 

production schedule when new conditions occur and induce instability, which 

is highly undesirable in reality.  

3. This chapter studies the issue of Dynamic Advanced Planning and 

Scheduling (DAPS) to allow for the arrival of new orders. In order to trade 

off efficiency and stability, a periodic policy with a frozen interval is 

suggested and introduced into both the MIP in Chapter 3 and the GA in 

Chapter 4. The objective of the proposed methodology is to minimize cost of 

both production idle time and earliness-tardiness penalty for all orders 

including both original orders and new orders at each rescheduling point.  

4. The two examples in Chapter 3 with the arrival of new orders are illustrated 

to examine the effectiveness of the proposed mechanism in the dynamic 

environment. The numerical results confirm that the presented methodology 

can improve the schedule stability while retaining efficiency.  
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In the previous chapters, we have developed a mathematical model and a GA 

method for the APS problem. Both static and dynamic APS have been studied. In 

order to apply these results, a prototype of the Advanced Planning and Scheduling 

Decision Support System (APSDSS) will be constructed in the next chapter. The 

infrastructural framework and the functional modules included in the system will be 

discussed. An example will be offered to validate the applicability of the proposed 

system. 
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CHAPTER 6 

A PROTOTYPE OF THE ADVANCED PLANNING AND 

SCHEDULING DECISION SUPPORT SYSTEM (APSDSS) 

 

6.1 INTRODUCTION 

With the advances in computer technologies, many production management 

decision support systems have been developed for various manufacturing processes 

[Tsu91, Art97, Kov05]. As shown in Figure 6.1, conventional decision support 

systems in production planning and control are structured on the basis of the 

hierarchical production planning (HPP) principle [Mck95, Per99, Ria01]. The 

general strategy of HPP is that the higher level (planning) creates a production plan 

for the lower level (scheduling) to detail. However, the higher level only uses 

aggregated information and does not consider the inner workings of the lower level. 

In other words, the hierarchical paradigm deals with different levels with different 

scopes and objectives. Most of the decision support systems based on the paradigm 

suffer from incompatibility of decisions at different levels, and create many problems 

on the shop floor for later production.  To be effective, production planning and 

scheduling should be integrated together rather than separately, when designing such 

a production decision support system. 
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HPP task structure Common DSS structure APS task structure

Planning 

Scheduling 

Planning 

& 

Scheduling 

Planning module 

Scheduling module

 Interface 

 

Figure 6.1 Production control tasks and decision support [Mck03] 

With reference to developing decision support for Advanced Planning and 

Scheduling (APS), both academia and commercial companies have invested 

significant efforts, as reviewed in Section 2.5. Nevertheless, most of the efforts have 

restricted themselves to embed trial-and-error methods in their computer-based 

systems. Better production plans and schedules can be generated by decision support 

tools with the employment of intelligent heuristic approaches, such as genetic 

algorithm (GA). 

This chapter presents a seamless decision support system, on the basis of the 

developed genetic algorithm (GA), for integrating production planning and 

scheduling. As in the enclosed CD-ROM, the Advanced Planning and Scheduling 

Decision Support System (APSDSS) is such a Windows application that can manage 

the data electronically, handle the Advanced Planning and Scheduling (APS) 

problem as well as the Dynamic Advanced Planning and Scheduling (DAPS) 

problem efficiently, and create the production plans and schedules automatically. 

Moreover, APSDSS is a promising decision support tool for production planners. It 

will not only free the production planners from the labor-concentrated jobs, such as 

constructing the production plans and schedules, but also assist them to take effective 
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decisions depending on the various situations of the manufacturing system. The 

APSDSS was implemented using VC++, an object oriented programming language. 

The following reasons lead to choose this object oriented approach [Art97, Hai01, 

Sch05]: 

• Simplicity. It is natural to represent the real world objects (products, orders 

and machines) using VC++. 

• Modularity. Each object forms an independent entity whose internal 

procedures or methods are separated from other entities of the system in 

VC++. 

• Extensibility. It is easy to introduce new functionalities or features to 

response to changing environments by use of VC++. 

• Reusability. An object can be a standard one across systems and can be 

reused in VC++. Not only does reusing speed the development, but also it 

improves the quality of the system.  

The remainder of this chapter is structured as the following three sections. In 

Section 6.2, the functional architecture of the decision support system is developed. 

The use of the system with an illustrative example is presented in Section 6.3. Finally, 

Section 6.4 is the summary of the chapter. 

 

6.2 FUNCTIONAL ARCHITECTURE OF THE APSDSS 

The principle of the Advanced Planning and Scheduling Decision Support 

System (APSDSS) is to consider operation sequences among items, capacity 

constraints of the manufacturing system as well as the dynamic arrival of orders, and 
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translate the orders of the various products into detailed production schedules with 

operation starting time and finish time. The infrastructure of the proposed APSDSS, 

which aggregates the different levels of the order fulfillment process, is depicted in 

Figure 6.2. The APSDSS was implemented using VC++, an object oriented 

programming language, and is composed of four major elements: 

• A database  

• An advanced planning and scheduling module 

• A performance evaluation module 

• A set of interfaces for interactively using the APSDSS 

 

Database management 

Advanced planning and scheduling 

Performance evaluation 

Interfaces 

User 

Product 
data

Order  
data

Machine 
data

 

Figure 6.2 Infrastructure of the APSDSS 
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The following sections introduce each of the subsets of the APSDSS in detail. 

 

6.2.1 Database management 

A database plays a crucial role in the functionality of the decision support 

system. Great efforts are required to make a system’s database accurate, consistent 

and complete. The database of the APSDSS contains information about the 

manufacturing system under study, and is maintained in Microsoft Access. 

Specifically, the data information includes: 

• Products (names, BOMs, processing times, manufacturing machines) 

• Orders (names, ordered products, ordered quantities, due dates) 

• Machines (names, ready times, time capacities) 

The product information is the basic data required in the APSDSS system. 

They include items names, BOMs, processing times, and manufacturing machines. A 

BOM defines the production information of a final product by specifying the 

precedence constraints among the items needed to make the product, together with 

the quantities of the items at each operation. Meanwhile, the eligible machines and 

the processing time for the items are also described in the product data. In terms of 

the representative example in Section 3.4.3, the corresponding product data are 

shown in Figure 6.3. For instance, the final product F1, requiring 0.70 hour on M6, is 

composed of four components C1, C2, C3, and C4; then, it is defined as: 
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{ 

 Item name = “F1”; 

 Father = NULL; 

 Quantity = 1; 

 Child number = 4; 

 Processing time = 0.70; 

 Machine = 6; 

} 

With regard to the common items, their parent (father) items are also included in 

their names. Thus, the component C2 of F1 is expressed as: 

{ 

 Item name = “C2(F1)”; 

 Father = F1; 

 Quantity = 1; 

 Child number = 0; 

 Processing time = 0.10; 

 Machine = 1; 

} 

 The order data are provided by customers and involve the detailed 

requirements for the products. They are made up of four components: order names, 

ordered products, ordered quantities, and due dates. The ordered products can be the 

final products and also any items described in the product data. 
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 The machine-related attributes, such as machine names, ready times, and time 

capacities, are clarified in the machine data. The ready times specify the times when 

the machines become available, while the time capacities state how long the 

machines work a day. 

 

 

Figure 6.3 The product data of the representative example 
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6.2.2 Advanced planning and scheduling 

Both APS and DAPS have been proved to be NP-hard, and many heuristic 

methods have been widely studied in the literature [Moo03, Vie03]. The plans and 

schedules generation procedure of the proposed APSDSS is based on the developed 

genetic algorithm (GA). 

Our GA encoding scheme utilizes the concept of random keys as discussed 

earlier. This scheme encodes a solution with a string of random numbers. Each item 

in the product structure has one random number generated from the range [0, 1]. For 

the DAPS problem, a periodic policy with a frozen interval is introduced into the 

GA. Consequently, the length of the random number string equals to the number of 

unfrozen items in both original orders and new orders, that is, each unfrozen item 

takes a random value in the range [0, 1]. These random numbers denote the priorities 

of the items, while the smaller value represents the higher priority. The random key 

encoding has the advantage that it eliminates the offspring feasibility problem and is 

robust to problem structures [Bea94]. 

 The established genetic algorithm starts with generating the chromosomes 

randomly as much as the desired population size. Each chromosome contains a string 

of random numbers that represent the priorities of the genes, and is evaluated using 

the fitness function given in Equation (4.1), which aggregates production idle time, 

earliness and tardiness penalty. The well-known roulette wheel approach [Gol89] is 

employed for choosing some chromosomes to conduct genetic operations. Genetic 

operations such as reproduction, crossover and mutation are executed to produce a 

new set of chromosomes called offspring. There are many variations of genetic 
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operations that could be used in GAs. Since random key encoding preserves to create 

feasible solutions, there is no need to design specialized operations. The genetic 

operations employed here are elitist reproduction, parameterized uniform crossover 

and immigration, which have been proved very robust in computational tests. Then a 

new generation is formed by selecting some of the parents and offspring according to 

their fitness and rejecting the others to keep the population size constant. When the 

maximum generation is reached, the algorithm converges to the best chromosome.  

 

6.2.3 Performance evaluation 

The quality of a generated operation sequence is evaluated using the 

performance measure of minimizing the total costs of both production idle time and 

tardiness or earliness penalty of an order. Minimizing production idle time is 

equivalent to minimizing production flow time or maximizing machine utilization. 

Meanwhile, earliness and tardiness penalty is chosen as the performance measure 

because it is able to reflect the just-in-time (JIT) rule, which is on the fact that either 

early or late delivery of an order results in an increase in the production costs.  

With respect to the DAPS problem where new orders arrive on a continuous 

basis, the APSDSS utilizes the GA method with the dynamic policy to determine the 

best production plan and schedule such that both production idle time and penalties 

on tardiness and earliness of both original orders and new orders are minimized at 

each rescheduling point.  
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6.2.4 Interfaces 

The interface module offers the user the possibility of access to the APSDSS. 

The menu structure of the APSDSS is illustrated in Figure 6.4. 

 

Figure 6.4 The menu structure of the APSDSS 

The user can operate the menu to input his/her APS as well as DAPS 

problems according to the general definition and assumptions of the manufacturing 

system given in the previous chapters. The menu helps to specify the suitable 

attributes of the products, orders and machines. If the user wants to make some 

changes to the data set of a particular problem, he/she can interactively add, modify, 

or delete the relevant information in the windows. Once the problem configuration is 

determined, the user can run the embedded genetic algorithm to obtain the operation 

sequences. The APSDSS system also gives the user the control over the parameters. 

When the production schedule is derived by the GA, a Gantt chart window is 

displayed on the screen. The Gantt chart window graphically illustrates the generated 

schedule, and provides a good overview of the schedule relative to time. 

Simultaneously, a text file will be created and reports the produced results. In the text 

file, the generated schedule information, such as starting time, finish time as well as 

random key, is listed next to the corresponding operation, together with the 

performance measures. Such a display has the advantage that when there are many 

orders and machines, it is easy to recognize all attributes of each processing 

operation, including the resulting ones.  
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6.3 USE OF THE APSDSS 

 A prototype software system has been established based on the APSDSS 

infrastructure proposed in this chapter. In the following, the representative example 

in Section 5.3.2, which deals with five orders at the beginning of the planning 

horizon (t = 0) and then receives two new orders at the first rescheduling point (t = 

Day 1), is given to illustrate the effectiveness of the developed system.  

 Actually, there are two ways to input the product, order, and machine data. 

One is to enter the data by screen dialogues, and the second type is to input the data 

in the Access database. When the system is launched, the default database is 

accessed. Then, the data can be easily inputted or modified by operating the menu. 

The snapshots of the data input screens are demonstrated in Figures 6.5, 6.6 and 6.7. 

 

 

Figure 6.5 The product data input screen 
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Figure 6.6 The order data input screen 

 

 

Figure 6.7 The machine data input screen 
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 The original problem is to find a detailed plan and schedule for the orders 

such that both production idle time and tardiness or earliness penalty of an order are 

minimized. To solve the problem, the user can choose Run | Gantt chart on the 

menu bar (Figure 6.8).  

 

 

Figure 6.8 The “Run” menu of the APSDSS 

 

Thereafter, it is necessary for the user to input the penalty rates as well as the 

genetic parameters. The penalty rates are as follows: cost of idle time at $50 per hour, 

cost of tardiness at $250 per day per order, and cost of earliness at $50 per day per 

order, while the genetic parameters are set to maximum generation = 200, population 

size = 100, number of reproduction = 10, number of crossover = 80, crossover 
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probability = 0.7, number of mutation = 10. Figure 6.9 depicts the dialogue box for 

specifying the parameters. 

 

 

Figure 6.9 The parameters input screen 

 

 By calling the embodied GA approach, the system generates the best 

schedule with operation starting time and finish time, which is graphically 

represented in a Gantt chart as portrayed in Figure 6.10. When the user positions the 

mouse cursor on an operation and leaves it there for a certain interval, a tip appears 

and displays the name of the operation. 
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Figure 6.10 The Gantt chart output window of the original problem  

 

If the user wants to know more about the produced results like those in 

Tables 4.10 and 4.11, he/she can press the menu Run | Report (Figure 6.8) and open 

a text file to see each processing operation’s starting time, finish time and random 

key, together with the resulting performance measure. 

On Day 1 when two new orders arrive, one can select Dynamic | Gantt chart 

in the menu and utilize the GA with the dynamic policy to handle the dynamic 

situation (Figure 6.11). After the parameters in Figure 6.9 and 6.12 have been 

determined, the system produces the Gantt chart as shown in Figure 6.13. The 

detailed results like those in Tables 5.9 and 5.10 can be viewed by clicking Dynamic 

| Report. 
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Figure 6.11 The “Dynamic” menu of the APSDSS 

 

 

Figure 6.12 The dynamic parameters input screen 
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Figure 6.13 The Gantt chart output window of the dynamic problem  

  

The results indicate that the decision support system seamlessly integrates 

production planning and shop floor scheduling, and efficiently produces effective 

operation sequences that take into account the real-life constraints as well as the 

dynamic condition. 

 

6.4 SUMMARY 

 In this chapter, a prototype of the Advanced Planning and Scheduling 

Decision Support System (APSDSS) has been established. A brief conclusion is 

drawn as follows. 
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1. In order to avoid incompatibility of decisions at different levels, production 

planning and scheduling should be combined together rather than separately, 

when designing the production decision support system. 

2. This chapter proposes an infrastructural framework, involving various 

functional modules, for the development of an Advanced Planning and 

Scheduling Decision Support System (APSDSS). The system employs a GA-

based method to generate realistic plans and schedules for the shop floor, and 

is endowed with a set of interfaces for easy implementation. 

3. The same example as in Section 5.3.2 is illustrated to validate the 

applicability of the constructed system. The implementation indicates that the 

decision support system seamlessly integrates production planning and shop 

floor scheduling, and efficiently produces effective operation sequences that 

take into account the real-life constraints as well as the dynamic condition. 

4. The advantages of the APSDSS are: 

• Finding the effective production plans and schedules for the APS 

problem as well as the DAPS problem in a short time; 

• Allowing extension of the functionalities with ease; 

• Providing user-friendliness and user control; 

• Improving the management of the data. 

 

We have established a decision support system for APS, so it is natural to 

apply the system to a real situation. A case study for the Advanced Planning and 

Scheduling (APS) problem in a light source manufacturer will be reported in the next 
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chapter. The case problem and the computational results obtained by use of the 

developed APSDSS will be described in detail. 
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CHAPTER 7 

A CASE STUDY FOR ADVANCED PLANNING AND 

SCHEDULING (APS) 

 

7.1 INTRODUCTION 

Many manufacturing firms produce products with a multi-level structure, that 

is, final products comprise several subassemblies and components, and each 

subassembly may also require subassemblies and components. Such a product 

structure specifies the dependent relationships and precedence constraints among the 

items. This structural complexity associated with multi-level products planning and 

scheduling arouses unique coordination problems that do not exist when scheduling 

string-type operations in the general job shop. Advanced Planning and Scheduling 

(APS) deals with effectively allocating production resources to complete the multi-

level products so that production constraints are satisfied and production objectives 

are met [Lee02, Moo04]. This chapter presents a case study for the Advanced 

Planning and Scheduling (APS) problem encountered in a light source manufacturer.  

The chapter is arranged in the following way. Section 7.2 describes the case 

problem in detail. The computational results obtained on applying the APSDSS to 

the case study are presented in section 7.3. Finally, section 7.4 concludes the chapter 

with some remarks. 
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7.2 THE CASE PROBLEM 

The Advanced Planning and Scheduling (APS) problem solved and reported 

in this chapter is extracted from a company located in China, which is one of the 

technology and market leaders in the production of specialist light sources. In 2004, 

the company had an annual turnover of 760 million RMB and employed 626 workers 

and staff. They develop, manufacture and market infrared heaters and ultraviolet 

lamps for applications in manufacturing, industrial process technology, 

environmental protection, medicine and cosmetics, research and analytical 

measurement technology. Currently, there are approximately 3000 different types of 

light sources, and the products can be grouped in the following main categories, as 

samples shown in Figure 7.1. 

(a) infrared heaters and systems  

(b) ultraviolet light sources for optical and analytical instrumentation  

(c) ultraviolet lamps for disinfection and oxidation  

(d) ultraviolet lamps for curing and exposure  

(e) pulse and continuous wave laser lamps  
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(a) (b) 

  

(c) (d) 

 

 

(e)  

Figure 7.1 The sample products 
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The specialist light source products are manufactured through eight basic 

operations including cutting, polishing, slotting, welding, finishing, manual 

processing, grinding, and inspection. A light source may need processing of all eight 

operations or fewer operations based on combinations of these eight operations. 

Technological requirements specify an order in which operations must be processed. 

The maximum operations per product is 30 while the minimum is two. There is a 

variety of parallel processors to complete the operations in the shop. Some 

processors are eligible for fulfilling two or more operations. Each operation can be 

processed on at most one processor at a given time, and once started, must be 

finished before another operation may be started on that processor. A processor can 

perform one operation at a time and works for 24 hours a day. In this chapter, we 

ignore the parallel situation and adopt only one processor of each type with modified 

processing times to reflect the parallel property. 

The production shop operates on a make-to-order (MTO) basis. The unit 

processing time is multiplied by a factor to cover lost time due to non-availability of 

processors. A lot-for-lot strategy is employed for making items. The unit processing 

time is multiplied by the lot size, while the setup times and the transfer times 

between operations are negligible or are included in the processing times. 

The company’s goals are to schedule the production on the shop floor in 

order to minimize costs of both production idle time and tardiness or earliness 

penalty of an order. The minimum production idle time implies less production flow 

time or higher utilization of the machines, which after discussion is identified as an 

important objective to be considered. The company also feels that to find a schedule 
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with all orders completed as close to their due dates as possible is essential for 

sustainable business. This stems from the fact that if a product is finished earlier than 

its due date, inventory carrying costs will increase. On the other hand, when products 

are late relative to their due dates, tardiness costs will be incurred due to contract 

penalties, goodwill losses, and so on. 

At present, the production planning and scheduling is performed by the staff 

in the production department. Considering the availability of production capacity and 

the orders provided by the marketing department, they derive the production plan and 

schedule based on their own experiences. The planning period for the production is 

four weeks, rolling week by week. One of the main problems with the current 

planning procedure is that the production shop is usually behind schedule which 

results in many tardy jobs. Moreover, it is very difficult for the planners to trace all 

of about 3000 products. Due to the difficulty of tracing, the production completion 

times of the orders cannot be exactly determined or anticipated. Now, the company is 

experiencing a great surge in demands. Better planning and scheduling is required for 

improving the productivity without a proportional increase in the production 

facilities. 

 

7.3 COMPUTATIONAL RESULTS 

Our APSDSS developed in Chapter 6 is tested using a set of data describing 

the current scenario of the specialist light source manufacturing company. Due to 

business confidentiality, the real data have been modified after discussions with the 

production department of the company.  
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Three typical product structures were chosen as shown in Figure 7.2. Besides, 

it should be noted that C12 is a common item, which is shared by subassembly S4 

and component C13. A customer may order the final products F1, F2 and F3, and 

also some major components, like S1 and C13 etc. Six machines, with 24 hours 

available per day, are eligible to process the items (Table 7.1). The penalty rates are 

as follows: cost of idle time at $50 per hour, cost of tardiness at $250 per day per 

order, and cost of earliness at $50 per day per order.  

At the beginning of the planning horizon (t = 0), the ready times of these six 

machines are Hour 16, Hour 4, Hour 10, Hour 4, Hour 2 and Hour 1, respectively. 

There are 35 orders for the specialist light sources, as depicted in Table 7.2. The 

rescheduling interval is determined as 1 day, that is, 24 hours. Then, at the first 

rescheduling point (t = Day 1), three new orders are received: 5 Product F1s with due 

date Day 100, 10 Product S3s with due date Day 55, and 20 Product C12s with due 

date Day 14. 
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Figure 7.2 (a) The product structure of F1 in the case study 



CHAPTER 7: A CASE STUDY FOR APS  174 

F2

 S2

S3 

  

 

 

 

 

 

 

 

 C6OP3 C8

C6OP4

C6OP2

C6OP1

C7OP3

C7OP4

C7OP2

C7OP1

C9OP3

C9OP2

C9OP1

 
Figure 7.2 (b) The product structure of F2 in the case study 
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Figure 7.2 (c) The product structure of F3 in the case study 
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Table 7.1 Machine processing time for the items in the case study 
Items Machine number Processing time (hours)

F1 M1 0.2 
F2 M1 0.2 
F3 M1 0.2 
S1 M1 0.2 
S2 M1 0.2 
S3 M1 0.2 
S4 M1 0.2 
S5 M1 0.2 
C1 M2 1 
C2 M2 0.5 
C3 M2 0.5 

C4OP1 M3 8 
C4OP2 M4 1 
C4OP3 M6 5 
C4OP4 M5 3 
C4OP5 M4 1 
C5OP1 M3 8 
C5OP2 M5 3 
C5OP3 M4 2 
C5OP4 M6 6 
C5OP5 M5 3 
C6OP1 M3 8 
C6OP2 M4 1 
C6OP3 M5 3 
C6OP4 M6 5 
C7OP1 M3 8 
C7OP2 M6 6 
C7OP3 M5 3 
C7OP4 M4 2 

C8 M2 1 
C9OP1 M4 1 
C9OP2 M6 6 
C9OP3 M4 2 
C10OP1 M3 10 
C10OP2 M6 5 
C10OP3 M5 3 
C10OP4 M4 1 
C10OP5 M5 3 
C10OP6 M4 1 

C11 M2 1 
C12 M5 3 
C13 M4 1 
C14 M2 0.5 
C15 M2 0.5 
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Table 7.2 Specialist light source customer orders 

Order Item Amount Due date 
1 F1 10 80 
2 F1 15 130 
3 F2 5 28 
4 F2 5 50 
5 F3 15 98 
6 F3 20 105 
7 S1 20 154 
8 S1 10 180 
9 S2 10 120 
10 S2 15 140 
11 S4 10 70 
12 S4 5 90 
13 S4 20 160 
14 S5 5 60 
15 S5 30 126 
16 S3 10 84 
17 S3 15 100 
18 C4 1 30 
19 C4 5 48 
20 C5 5 100 
21 C5 2 112 
22 C5 1 120 
23 C6 10 20 
24 C6 7 40 
25 C7 2 42 
26 C7 10 60 
27 C7 1 80 
28 C9 5 24 
29 C9 15 56 
30 C10 3 28 
31 C10 5 42 
32 C12 50 36 
33 C12 30 150 
34 C13 15 60 
35 C13 20 90 
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To solve the original problem, the genetic parameters were set to maximum 

generation = 200, population size = 200, number of reproduction = 20, number of 

crossover = 160, crossover probability = 0.7, number of mutation = 20. The 

experiments were repeated five times and run on a personal computer with Pentium 

2.66 GHz CPU and 512 MB RAM. The best solution obtained by the system over the 

five runs is illustrated in Appendix X and summarized in Table 7.3. Besides, Table 

7.4 presents the more detailed information about the order tardiness and earliness. 

The best operation sequences are graphically represented in a Gantt chart as shown in 

Figure 7.3. For convenience, item p of order Oi is denoted Oip.  

 

Table 7.3 The case results obtained by APSDSS and by hand when t = 0 

Schedule 
Makespan 

(hour) 

Number of 

Tardiness 

Number of 

Earliness 
Total Cost 

CPU Time 

(sec.) 

APSDSS 2439 268 689 493500 122.953 

Manual 3148 820 652 842350 - 
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Table 7.4 Order tardiness and earliness in the case study when t = 0 

Order Tardiness (days) Earliness (days) 
1 0 6 
2 0 34 
3 46 0 
4 12 0 
5 0 10 
6 0 9 
7 0 52 
8 0 99 
9 0 25 
10 0 45 
11 0 22 
12 0 16 
13 0 58 
14 14 0 
15 0 38 
16 0 9 
17 0 26 
18 46 0 
19 42 0 
20 0 25 
21 0 24 
22 0 32 
23 0 1 
24 20 0 
25 0 12 
26 0 31 
27 0 37 
28 21 0 
29 0 15 
30 30 0 
31 36 0 
32 1 0 
33 0 57 
34 0 1 
35 0 5 

Total 268 689 
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In order to compare the results, a production schedule was manually 

constructed based on the rules the company is using and the results are listed in Table 

7.3. It can be found that for the problem instance, the schedule obtained by the 

APSDSS system indicates a significant improvement and shows an up to 41.4% 

((842350-493500)/842350*100%) reduction in the total penalty costs. Meanwhile, 

the established MIP model was also applied to this practical APS problem. For such 

a problem, the MIP model requires 15405 constraints, 340 real variables as well as 

9914 integer variables, and could not obtain the optimal production plan and 

schedule in 30 days. 

On Day 1 when three new orders arrive, frozen interval = 1 day (24 hours) 

was adopted and the same genetic parameters as previous were utilized. The best 

production schedule generated by the system from 5 replications is shown in 

Appendix X and summarized in Table 7.5. The results of Day 1 to Day 5 in the form 

of Gantt chart are portrayed in Figure 7.4. 

 

Table 7.5 The case results obtained by APSDSS when t = Day 1 

Makespan (hour) Number of tardiness Number of earliness Total cost CPU time (sec.) 

2484 197 926 482400 129.453 
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The results further confirm that the suggested approaches and system can find 

effective schedules with operation starting time and finish time in a reasonable 

computation time, which is more realistic and useful for the shop floor. 

 

7.4 SUMMARY 

 In this chapter, the important Advanced Planning and Scheduling (APS) 

problem arising from a specialist light source manufacturing company is thoroughly 

investigated. The following observations can be made. 

1. The APSDSS proposed in Chapter 6 is applied to the practical APS problem 

in the company. The computational results indicate that for the problem 

situation studied, the developed system can generate realistic operation 

schedules for the shop floor in a reasonable run time and perform very well 

when compared to the manual schedule, which will be an improvement over a 

completely intuitive procedure. 

2. The implementation of the suggested methodology and system may make it 

possible to ensure a better customer satisfaction at minimum costs, improve 

the internal efficiency of the company, and extend the market area. The 

potential benefits of this work have been communicated to the company, and 

the system together with the algorithm is being considered for execution. 

 

The next chapter, which is the last part of this dissertation, will present an 

overall summary of this project and also provide some recommendations for future 

research. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

 

8.1 DISTINCTIVE ACHIEVEMENTS 

Customer driven manufacturing, in which production activities are driven by 

customer orders, has become a key concept if a manufacturer wishes to be successful 

in business. To make fast and accurate responses to market demands and ensure 

reliable delivery for customer orders, manufacturing companies require detailed, 

realistic, and flexible operational plans and schedules, along with an effective control 

mechanism for easy tracing of production status of customer orders. In line with this 

irreversible trend, Advanced Planning and Scheduling (APS), with the integration of 

production planning and scheduling and the use of holistic and collaborative 

approaches to provide global optimization, has evolved. With an APS system, 

manufacturing enterprises offer new potential to increase flexibility and 

responsiveness to customer orders and market requirements, which thereby enhances 

customer satisfaction and expands market share. 

In this research, the remarkable achievements in the APS study are 

summarized in the following:  

1. Conventional Material Requirements Planning (MRP) dose not sufficiently 

help the planner in settling production planning and control issues, and create 

many problems on the shop floor for later production. Hence, in this project, 

MRP and production scheduling have been considered simultaneously and 
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integrated together to generate realistic production schedules for the shop 

floor. 

2. A Mixed Integer Programming (MIP) model for Advanced Planning and 

Scheduling (APS), with the objective of minimizing cost of both production 

idle time and tardiness or earliness penalty of an order, has been formulated. 

The proposed model explicitly considers capacity constraints, operation 

sequences, lead times and due dates in a multi-order environment and 

generates useful operation schedules for the shop floor, which overcomes the 

principal difficulty inherent in the existing MRP procedures. Numerical 

examples extracted or modified from the literature have been illustrated to 

verify the model and solved adopting the software CPLEX on a personal 

computer. The numerical results have demonstrated the optimality and 

effectiveness of the established model. 

3. Since the APS problem has been proved to be NP-hard, any exact 

optimization approach is highly impossible to solve this kind of problem 

efficiently, and a genetic algorithm (GA) has been built to tackle this issue. 

Different size problems were utilized to test the established GA approach. 

The results have indicated that the presented methodology can efficiently find 

effective schedules with operation starting time and finish time for all of the 

problems tested. It has been also found that the better results could be 

produced with higher levels of population size and number of generations. 

These two factors together determine the amount of search and the algorithm 

execution time. 
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4. A series of computational experiments using randomly generated problems 

were conducted to compare the developed Mixed Integer Programming (MIP) 

and genetic algorithm (GA). By solving the established MIP, the optimal 

production schedules can be obtained for all test problems. However, the 

computational time grows exponentially with the problem size. On the 

contrary, the GA, as a heuristic method, can reach the global optima for the 

small size problems, and only achieve the near-optimal solutions for large 

problems, but it requires much less computation time. 

5. In order to cope with the Dynamic Advanced Planning and Scheduling 

(DAPS) problem where new orders arrive on a continuous basis, a periodic 

policy with a frozen interval has been adopted to increase stability on the 

shop floor, and introduced into both the MIP and the GA. The objective of 

the proposed methodology is to minimize cost of both production idle time 

and earliness-tardiness penalty for all orders including both original orders 

and new orders at each rescheduling point. The numerical results proved that 

the offered methodology can improve the schedule stability while retaining 

efficiency.  

6. A prototype of the Advanced Planning and Scheduling Decision Support 

System (APSDSS) has been designed. The principle of APSDSS is to 

consider operation sequences among items, capacity constraints of the 

manufacturing system as well as the dynamic arrival of orders, and employ a 

GA-based method to translate the orders of the various products into detailed 

production schedules with operation starting time and finish time. The system 
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was implemented using VC++, an object oriented programming language, 

and is endowed with a set of interfaces for easy use. An example has been 

illustrated to validate the applicability of the constructed system. 

7. For the APS problem arising from a specialist light source manufacturing 

company, the proposed system has been applied to the practical problem, and 

the results further confirmed that the suggested approaches and system can 

find effective schedules with operation starting time and finish time in a 

reasonable computation time, which is more realistic and useful for the shop 

floor. 

 

8.2 ACADEMIC CONTRIBUTIONS 

This research investigates Advanced Planning and Scheduling (APS) in detail 

and formulates a mathematical model for APS, with the objective of minimizing cost 

of both production idle time and tardiness or earliness penalty of an order. A genetic 

algorithm (GA) is established to solve the APS problem more efficiently. Both the 

mathematical model and the GA are further extended by incorporating a periodic 

policy with a frozen interval to settle the Dynamic Advanced Planning and 

Scheduling (DAPS) problem where new orders arrive on a continuous basis. 

Furthermore, a prototype of the Advanced Planning and Scheduling Decision 

Support System (APSDSS) is built on the basis of the GA method and applied to a 

real case in a light source manufacturing company. 

 In this project, six academic contributions associated with the optimization of 

APS are made. 
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First of all, Advanced Planning and Scheduling (APS) studied in this work 

performs a higher level of integration on production planning and shop floor 

scheduling. Traditionally, production planning and scheduling are treated 

hierarchically and separately, which has been proved to be ineffective and creates 

many problems on the shop floor for production. It is therefore expected that 

Advanced Planning and Scheduling (APS) will significantly reduce conflicts on the 

shop floor and provide better performance. 

Secondly, the APS problem is based on a more realistic performance measure. 

The APS problem investigated in this research is to find a production schedule for 

the orders that both production idle time and earliness and tardiness penalty are 

minimized. The minimum production idle time implies less production flow time or 

higher utilization of the machines. In addition, production idle time is chosen as the 

objective to be reduced because it is able to reflect two focuses on the shop floor: 

manufacturing lead time and WIP (work-in-process) inventory level. Another 

objective of the problem in this research is to seek a schedule with all orders 

completed as closed to their due date as possible, which is on the basis of the fact 

that either an early or a late delivery of an order results in an increase in the 

production costs. Because of the common goal of avoiding either earliness or 

tardiness of an order to keep the cost as low as possible, the earliness and tardiness  

problem leads itself to a just-in-time (JIT) production system. 

Thirdly, a Mixed Integer Programming (MIP) model, which succeeds in a 

system integration of the production planning and shop floor scheduling problems 

and favorably produces optimal operation sequence, is developed. This contribution 
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is believed to be a significant advance in APS optimization since none of the other 

researchers has provided such a complete and verified mathematical model. 

Fourthly, a GA-based method is designed for solving the APS problem more 

efficiently. The established genetic algorithm adopts the random key encoding 

mechanism, and constitutes a general approach that can be easily modified to adapt 

to a variety of APS problems. 

Fifthly, a periodic policy with a frozen interval is first introduced into the 

Dynamic Advanced Planning and Scheduling (DAPS) problem. Much of the 

previous research on dynamic problems only takes into account efficiency 

performance to minimize the cost objectives like mean flow time, earliness and 

tardiness, etc. Usually, doing so will greatly change the production schedule when 

new conditions occur and induce instability. Meanwhile, it is observed that the 

stability of the production system will decrease more when changes are made closer 

to the current period. Therefore, this research adopts a periodic policy with a frozen 

interval. This policy provides a framework for balancing efficiency and stability, 

which fills up a gap in the DAPS research. 

 Finally, the APSDSS prototype built in this project can generate better 

production plans and schedules for APS. With the employment of an intelligent 

heuristic approach, genetic algorithm, the APSDSS can provide the desirable 

solution or hopefully optimal solution to the APS problem. Such a feature is absent 

in the current computer-based APS systems, most of which only incorporate trial-

and-error methods. 
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8.3 POSSIBLE BENEFITS TO INDUSTRY 

 Many manufacturing firms have products with a multi-level structure, and 

encounter the Advanced Planning and Scheduling (APS) problem. 

In this project, a prototype of the Advanced Planning and Scheduling 

Decision Support System (APSDSS) has been established and successfully applied to 

the practical APS problem in a specialist light source manufacturing company. The 

case study indicates that developed system can generate realistic operation schedules 

for the shop floor in a reasonable run time and perform very well when compared to 

the manual schedule, which will be an improvement over a completely intuitive 

procedure. The implementation of the suggested methodology and system may make 

it possible to ensure a better customer satisfaction at minimum costs, improve the 

internal efficiency of the company, and extend the market area. The potential 

benefits of this work have been communicated to the company, and the system 

together with the algorithm is being considered for execution. 

 The APSDSS prototype is such a Windows application that can manage the 

data electronically, handle the Advanced Planning and Scheduling (APS) problem as 

well as the Dynamic Advanced Planning and Scheduling (DAPS) problem efficiently, 

and create the production plans and schedules automatically. Although some 

refinements need to be carried out, the APSDSS prototype has been constructed as a 

promising decision support tool for production planners in manufacturing industry. It 

will not only free the production planners from the labor-concentrated jobs, such as 

constructing the production plans and schedules, but also assist them to take effective 
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decisions depending on the various situations of the manufacturing system. 

Consequently, the company’s competitiveness and productivity can be enhanced. 

 

8.4 FUTURE WORK 

 Some possible further work related to this project in future is suggested as 

follows: 

1. Introducing setup time into the APS problem 

In this APS problem, the setup time, including the transfer time between 

operations, is assumed to be negligible or included in the processing times. 

Actually, the machine setup time is common in the shop, and also has an 

effect on the performance of production. It is worth extending APS by taking 

into account the setup time. 

2. Enriching the genetic algorithm’s performance 

The random key encoding strategy with some standard GA techniques has 

been utilized to tackle the APS problem. Definitely, certain permutation-

based encoding methods can be designed to compare the results. Meanwhile, 

some other genetic operations, for instance heuristic-featured ones, or some 

local search approaches can be adopted to enrich the GA and to improve the 

performance.  

3. Investigating other dynamic events 

This project has studied the DAPS problem where new orders arrive on a 

continuous basis. However, in the practical shop, there are many uncertainties 

that may disturb the production system and require the modification of the 
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existing production plans and schedules. An area of future research might be 

the investigation of other dynamic events, such as machine failure, order 

cancellation, due date change, and so on. 

4. Extending the APSDSS functionalities 

An APSDSS, on the basis of a GA method, has been presented in this project. 

The APSDSS can be further strengthened by integrating the formulated MIP 

model to generate optimal solutions, designing more output windows to 

report the results, and so forth. After adding all these functions, the system 

may be viewed as a powerful tool for APS in manufacturing industry.  

5. Implementing the research results in manufacturing industry 

Advanced Planning and Scheduling plays an important role in manufacturing 

companies, and also is a crucial factor for factories’ success. Thus, it is useful 

to apply the research results to the manufacturing industry such that 

enterprises can sharpen their competitive edge through substantial reduction 

in production costs and flexible reaction to market requirements.  
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APPENDIX I 

THE PROBLEM FORMULATION  

(5 ORDERS, 6 MACHINES AND 5 LEVELS) 

 

Minimize  
300Cmax-6575 

+250LI1+250LI2+250LI3+250LI4+250LI5 
+50EI1+50EI2+50EI3+50EI4+50EI5 

 
Subject to  

(3.2): 
cons1:  C1-Cmax<=0 
cons2:  C2-Cmax<=0 
cons3:  C3-Cmax<=0 

cons4:  C4-Cmax<=0 
cons5:  C5-Cmax<=0 

 
(3.3): 
cons6:  S131>=1 
cons7:  S141>=1 
cons8:  S221>=1 
cons9:  S351>=1 
cons10:  S371>=1 
cons11:  S431>=1 
cons12:  S511>=1 
cons13:  S152>=2 
cons14:  S252>=2 
cons15:  S3162>=2 
cons16:  S3172>=2 
cons17:  S3182>=2 
cons18:  S472>=2 
cons19:  S482>=2 

cons20:  S123>=3 
cons21:  S263>=3 
cons22:  S3133>=3 
cons23:  S3143>=3 
cons24:  S3153>=3 
cons25:  S443>=3 
cons26:  S453>=3 
cons27:  S463>=3 
cons28:  S2124>=3 
cons29:  S2134>=3 
cons30:  S3194>=3 
cons31:  S3204>=3 
cons32:  S3214>=3 
cons33:  S3224>=3 

 
(3.4): 
cons34:  S116-S123>=1.000000  
cons35:  S116-S131>=0.500000  
cons36:  S116-S141>=0.500000  
cons37:  S116-S152>=1.000000  
cons38:  S216-S221>=0.500000  
cons39:  S216-S236>=2.500000  
cons40:  S236-S245>=2.500000  
cons41:  S236-S252>=1.000000  
cons42:  S245-S263>=2.000000  

cons43:  S245-S2115>=1.500000  
cons44:  S2115-S2124>=0.500000  
cons45:  S2115-S2134>=0.500000  
cons46:  S316-S326>=6.000000  
cons47:  S316-S335>=10.000000  
cons48:  S316-S351>=3.000000  
cons49:  S326-S366>=6.000000  
cons50:  S326-S371>=3.000000  
cons51:  S335-S385>=6.000000  
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cons52:  S335-S3105>=6.000000  
cons53:  S366-S3133>=2.000000  
cons54:  S366-S3143>=2.000000  
cons55:  S366-S3153>=1.000000  
cons56:  S366-S3162>=2.000000  
cons57:  S366-S3172>=1.000000  
cons58:  S385-S3182>=6.000000  
cons59:  S385-S3194>=4.000000  
cons60:  S3105-S3204>=2.000000  

cons61:  S3105-S3214>=2.000000  
cons62:  S3194-S3224>=4.000000  
cons63:  S416-S426>=6.000000  
cons64:  S416-S431>=3.000000  
cons65:  S426-S443>=2.000000  
cons66:  S426-S453>=2.000000  
cons67:  S426-S463>=1.000000  
cons68:  S426-S472>=2.000000  
cons69:  S426-S482>=1.000000 

 
(3.5): 
cons70:  C1-S116=3.5  
cons71:  C2-S216=3  
cons72:  C3-S316=7  

cons73:  C4-S416=6  
cons74:  C5-S511=3

 
(3.6) and (3.7): 
cons75:  S131-S141+999X13141>=0.500000  
cons76:  S141-S131+999X14131>=0.500000  
cons77:  X13141+X14131=1  
cons78:  S131-S221+999X13221>=0.500000  
cons79:  S221-S131+999X22131>=0.500000  
cons80:  X13221+X22131=1  
cons81:  S131-S351+999X13351>=3.000000  
cons82:  S351-S131+999X35131>=0.500000  
cons83:  X13351+X35131=1  
cons84:  S131-S371+999X13371>=3.000000  
cons85:  S371-S131+999X37131>=0.500000  
cons86:  X13371+X37131=1  
cons87:  S131-S431+999X13431>=3.000000  
cons88:  S431-S131+999X43131>=0.500000  
cons89:  X13431+X43131=1  
cons90:  S131-S511+999X13511>=3.000000  
cons91:  S511-S131+999X51131>=0.500000  
cons92:  X13511+X51131=1  
cons93:  S141-S221+999X14221>=0.500000  
cons94:  S221-S141+999X22141>=0.500000  
cons95:  X14221+X22141=1  
cons96:  S141-S351+999X14351>=3.000000  
cons97:  S351-S141+999X35141>=0.500000  
cons98:  X14351+X35141=1  
cons99:  S141-S371+999X14371>=3.000000  
cons100:  S371-S141+999X37141>=0.500000  
cons101:  X14371+X37141=1  
cons102:  S141-S431+999X14431>=3.000000  
cons103:  S431-S141+999X43141>=0.500000  
cons104:  X14431+X43141=1  
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cons105:  S141-S511+999X14511>=3.000000  
cons106:  S511-S141+999X51141>=0.500000  
cons107:  X14511+X51141=1  
cons108:  S221-S351+999X22351>=3.000000  
cons109:  S351-S221+999X35221>=0.500000  
cons110:  X22351+X35221=1  
cons111:  S221-S371+999X22371>=3.000000  
cons112:  S371-S221+999X37221>=0.500000  
cons113:  X22371+X37221=1  
cons114:  S221-S431+999X22431>=3.000000  
cons115:  S431-S221+999X43221>=0.500000  
cons116:  X22431+X43221=1  
cons117:  S221-S511+999X22511>=3.000000  
cons118:  S511-S221+999X51221>=0.500000  
cons119:  X22511+X51221=1  
cons120:  S351-S371+999X35371>=3.000000  
cons121:  S371-S351+999X37351>=3.000000  
cons122:  X35371+X37351=1  
cons123:  S351-S431+999X35431>=3.000000  
cons124:  S431-S351+999X43351>=3.000000  
cons125:  X35431+X43351=1  
cons126:  S351-S511+999X35511>=3.000000  
cons127:  S511-S351+999X51351>=3.000000  
cons128:  X35511+X51351=1  
cons129:  S371-S431+999X37431>=3.000000  
cons130:  S431-S371+999X43371>=3.000000  
cons131:  X37431+X43371=1  
cons132:  S371-S511+999X37511>=3.000000  
cons133:  S511-S371+999X51371>=3.000000  
cons134:  X37511+X51371=1  
cons135:  S431-S511+999X43511>=3.000000  
cons136:  S511-S431+999X51431>=3.000000  
cons137:  X43511+X51431=1  
cons138:  S152-S252+999X15252>=1.000000  
cons139:  S252-S152+999X25152>=1.000000  
cons140:  X15252+X25152=1  
cons141:  S152-S3162+999X153162>=2.000000  
cons142:  S3162-S152+999X316152>=1.000000  
cons143:  X153162+X316152=1  
cons144:  S152-S3172+999X153172>=1.000000  
cons145:  S3172-S152+999X317152>=1.000000  
cons146:  X153172+X317152=1  
cons147:  S152-S3182+999X153182>=6.000000  
cons148:  S3182-S152+999X318152>=1.000000  
cons149:  X153182+X318152=1  
cons150:  S152-S472+999X15472>=2.000000  
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cons151:  S472-S152+999X47152>=1.000000  
cons152:  X15472+X47152=1  
cons153:  S152-S482+999X15482>=1.000000  
cons154:  S482-S152+999X48152>=1.000000  
cons155:  X15482+X48152=1  
cons156:  S252-S3162+999X253162>=2.000000  
cons157:  S3162-S252+999X316252>=1.000000  
cons158:  X253162+X316252=1  
cons159:  S252-S3172+999X253172>=1.000000  
cons160:  S3172-S252+999X317252>=1.000000  
cons161:  X253172+X317252=1  
cons162:  S252-S3182+999X253182>=6.000000  
cons163:  S3182-S252+999X318252>=1.000000  
cons164:  X253182+X318252=1  
cons165:  S252-S472+999X25472>=2.000000  
cons166:  S472-S252+999X47252>=1.000000  
cons167:  X25472+X47252=1  
cons168:  S252-S482+999X25482>=1.000000  
cons169:  S482-S252+999X48252>=1.000000  
cons170:  X25482+X48252=1  
cons171:  S3162-S3172+999X3163172>=1.000000  
cons172:  S3172-S3162+999X3173162>=2.000000  
cons173:  X3163172+X3173162=1  
cons174:  S3162-S3182+999X3163182>=6.000000  
cons175:  S3182-S3162+999X3183162>=2.000000  
cons176:  X3163182+X3183162=1  
cons177:  S3162-S472+999X316472>=2.000000  
cons178:  S472-S3162+999X473162>=2.000000  
cons179:  X316472+X473162=1  
cons180:  S3162-S482+999X316482>=1.000000  
cons181:  S482-S3162+999X483162>=2.000000  
cons182:  X316482+X483162=1  
cons183:  S3172-S3182+999X3173182>=6.000000  
cons184:  S3182-S3172+999X3183172>=1.000000  
cons185:  X3173182+X3183172=1  
cons186:  S3172-S472+999X317472>=2.000000  
cons187:  S472-S3172+999X473172>=1.000000  
cons188:  X317472+X473172=1  
cons189:  S3172-S482+999X317482>=1.000000  
cons190:  S482-S3172+999X483172>=1.000000  
cons191:  X317482+X483172=1  
cons192:  S3182-S472+999X318472>=2.000000  
cons193:  S472-S3182+999X473182>=6.000000  
cons194:  X318472+X473182=1  
cons195:  S3182-S482+999X318482>=1.000000  
cons196:  S482-S3182+999X483182>=6.000000  
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cons197:  X318482+X483182=1  
cons198:  S472-S482+999X47482>=1.000000  
cons199:  S482-S472+999X48472>=2.000000  
cons200:  X47482+X48472=1  
cons201:  S123-S263+999X12263>=2.000000  
cons202:  S263-S123+999X26123>=1.000000  
cons203:  X12263+X26123=1  
cons204:  S123-S3133+999X123133>=2.000000  
cons205:  S3133-S123+999X313123>=1.000000  
cons206:  X123133+X313123=1  
cons207:  S123-S3143+999X123143>=2.000000  
cons208:  S3143-S123+999X314123>=1.000000  
cons209:  X123143+X314123=1  
cons210:  S123-S3153+999X123153>=1.000000  
cons211:  S3153-S123+999X315123>=1.000000  
cons212:  X123153+X315123=1  
cons213:  S123-S443+999X12443>=2.000000  
cons214:  S443-S123+999X44123>=1.000000  
cons215:  X12443+X44123=1  
cons216:  S123-S453+999X12453>=2.000000  
cons217:  S453-S123+999X45123>=1.000000  
cons218:  X12453+X45123=1  
cons219:  S123-S463+999X12463>=1.000000  
cons220:  S463-S123+999X46123>=1.000000  
cons221:  X12463+X46123=1  
cons222:  S263-S3133+999X263133>=2.000000  
cons223:  S3133-S263+999X313263>=2.000000  
cons224:  X263133+X313263=1  
cons225:  S263-S3143+999X263143>=2.000000  
cons226:  S3143-S263+999X314263>=2.000000  
cons227:  X263143+X314263=1  
cons228:  S263-S3153+999X263153>=1.000000  
cons229:  S3153-S263+999X315263>=2.000000  
cons230:  X263153+X315263=1  
cons231:  S263-S443+999X26443>=2.000000  
cons232:  S443-S263+999X44263>=2.000000  
cons233:  X26443+X44263=1  
cons234:  S263-S453+999X26453>=2.000000  
cons235:  S453-S263+999X45263>=2.000000  
cons236:  X26453+X45263=1  
cons237:  S263-S463+999X26463>=1.000000  
cons238:  S463-S263+999X46263>=2.000000  
cons239:  X26463+X46263=1  
cons240:  S3133-S3143+999X3133143>=2.000000  
cons241:  S3143-S3133+999X3143133>=2.000000  
cons242:  X3133143+X3143133=1  
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cons243:  S3133-S3153+999X3133153>=1.000000  
cons244:  S3153-S3133+999X3153133>=2.000000  
cons245:  X3133153+X3153133=1  
cons246:  S3133-S443+999X313443>=2.000000  
cons247:  S443-S3133+999X443133>=2.000000  
cons248:  X313443+X443133=1  
cons249:  S3133-S453+999X313453>=2.000000  
cons250:  S453-S3133+999X453133>=2.000000  
cons251:  X313453+X453133=1  
cons252:  S3133-S463+999X313463>=1.000000  
cons253:  S463-S3133+999X463133>=2.000000  
cons254:  X313463+X463133=1  
cons255:  S3143-S3153+999X3143153>=1.000000  
cons256:  S3153-S3143+999X3153143>=2.000000  
cons257:  X3143153+X3153143=1  
cons258:  S3143-S443+999X314443>=2.000000  
cons259:  S443-S3143+999X443143>=2.000000  
cons260:  X314443+X443143=1  
cons261:  S3143-S453+999X314453>=2.000000  
cons262:  S453-S3143+999X453143>=2.000000  
cons263:  X314453+X453143=1  
cons264:  S3143-S463+999X314463>=1.000000  
cons265:  S463-S3143+999X463143>=2.000000  
cons266:  X314463+X463143=1  
cons267:  S3153-S443+999X315443>=2.000000  
cons268:  S443-S3153+999X443153>=1.000000  
cons269:  X315443+X443153=1  
cons270:  S3153-S453+999X315453>=2.000000  
cons271:  S453-S3153+999X453153>=1.000000  
cons272:  X315453+X453153=1  
cons273:  S3153-S463+999X315463>=1.000000  
cons274:  S463-S3153+999X463153>=1.000000  
cons275:  X315463+X463153=1  
cons276:  S443-S453+999X44453>=2.000000  
cons277:  S453-S443+999X45443>=2.000000  
cons278:  X44453+X45443=1  
cons279:  S443-S463+999X44463>=1.000000  
cons280:  S463-S443+999X46443>=2.000000  
cons281:  X44463+X46443=1  
cons282:  S453-S463+999X45463>=1.000000  
cons283:  S463-S453+999X46453>=2.000000  
cons284:  X45463+X46453=1  
cons285:  S2124-S2134+999X2122134>=0.500000  
cons286:  S2134-S2124+999X2132124>=0.500000  
cons287:  X2122134+X2132124=1  
cons288:  S2124-S3194+999X2123194>=4.000000  
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cons289:  S3194-S2124+999X3192124>=0.500000  
cons290:  X2123194+X3192124=1  
cons291:  S2124-S3204+999X2123204>=2.000000  
cons292:  S3204-S2124+999X3202124>=0.500000  
cons293:  X2123204+X3202124=1  
cons294:  S2124-S3214+999X2123214>=2.000000  
cons295:  S3214-S2124+999X3212124>=0.500000  
cons296:  X2123214+X3212124=1  
cons297:  S2124-S3224+999X2123224>=4.000000  
cons298:  S3224-S2124+999X3222124>=0.500000  
cons299:  X2123224+X3222124=1  
cons300:  S2134-S3194+999X2133194>=4.000000  
cons301:  S3194-S2134+999X3192134>=0.500000  
cons302:  X2133194+X3192134=1  
cons303:  S2134-S3204+999X2133204>=2.000000  
cons304:  S3204-S2134+999X3202134>=0.500000  
cons305:  X2133204+X3202134=1  
cons306:  S2134-S3214+999X2133214>=2.000000  
cons307:  S3214-S2134+999X3212134>=0.500000  
cons308:  X2133214+X3212134=1  
cons309:  S2134-S3224+999X2133224>=4.000000  
cons310:  S3224-S2134+999X3222134>=0.500000  
cons311:  X2133224+X3222134=1  
cons312:  S3194-S3204+999X3193204>=2.000000  
cons313:  S3204-S3194+999X3203194>=4.000000  
cons314:  X3193204+X3203194=1  
cons315:  S3194-S3214+999X3193214>=2.000000  
cons316:  S3214-S3194+999X3213194>=4.000000  
cons317:  X3193214+X3213194=1  
cons318:  S3194-S3224+999X3193224>=4.000000  
cons319:  S3224-S3194+999X3223194>=4.000000  
cons320:  X3193224+X3223194=1  
cons321:  S3204-S3214+999X3203214>=2.000000  
cons322:  S3214-S3204+999X3213204>=2.000000  
cons323:  X3203214+X3213204=1  
cons324:  S3204-S3224+999X3203224>=4.000000  
cons325:  S3224-S3204+999X3223204>=2.000000  
cons326:  X3203224+X3223204=1  
cons327:  S3214-S3224+999X3213224>=4.000000  
cons328:  S3224-S3214+999X3223214>=2.000000  
cons329:  X3213224+X3223214=1  
cons330:  S245-S2115+999X242115>=1.500000  
cons331:  S2115-S245+999X211245>=2.500000  
cons332:  X242115+X211245=1  
cons333:  S245-S335+999X24335>=10.000000  
cons334:  S335-S245+999X33245>=2.500000  
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cons335:  X24335+X33245=1  
cons336:  S245-S385+999X24385>=6.000000  
cons337:  S385-S245+999X38245>=2.500000  
cons338:  X24385+X38245=1  
cons339:  S245-S3105+999X243105>=6.000000  
cons340:  S3105-S245+999X310245>=2.500000  
cons341:  X243105+X310245=1  
cons342:  S2115-S335+999X211335>=10.000000  
cons343:  S335-S2115+999X332115>=1.500000  
cons344:  X211335+X332115=1  
cons345:  S2115-S385+999X211385>=6.000000  
cons346:  S385-S2115+999X382115>=1.500000  
cons347:  X211385+X382115=1  
cons348:  S2115-S3105+999X2113105>=6.000000  
cons349:  S3105-S2115+999X3102115>=1.500000  
cons350:  X2113105+X3102115=1  
cons351:  S335-S385+999X33385>=6.000000  
cons352:  S385-S335+999X38335>=10.000000  
cons353:  X33385+X38335=1  
cons354:  S335-S3105+999X333105>=6.000000  
cons355:  S3105-S335+999X310335>=10.000000  
cons356:  X333105+X310335=1  
cons357:  S385-S3105+999X383105>=6.000000  
cons358:  S3105-S385+999X310385>=6.000000  
cons359:  X383105+X310385=1  
cons360:  S116-S216+999X11216>=3.000000  
cons361:  S216-S116+999X21116>=3.500000  
cons362:  X11216+X21116=1  
cons363:  S116-S236+999X11236>=2.500000  
cons364:  S236-S116+999X23116>=3.500000  
cons365:  X11236+X23116=1  
cons366:  S116-S316+999X11316>=7.000000  
cons367:  S316-S116+999X31116>=3.500000  
cons368:  X11316+X31116=1  
cons369:  S116-S326+999X11326>=6.000000  
cons370:  S326-S116+999X32116>=3.500000  
cons371:  X11326+X32116=1  
cons372:  S116-S366+999X11366>=6.000000  
cons373:  S366-S116+999X36116>=3.500000  
cons374:  X11366+X36116=1  
cons375:  S116-S416+999X11416>=6.000000  
cons376:  S416-S116+999X41116>=3.500000  
cons377:  X11416+X41116=1  
cons378:  S116-S426+999X11426>=6.000000  
cons379:  S426-S116+999X42116>=3.500000  
cons380:  X11426+X42116=1  
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cons381:  S216-S236+999X21236>=2.500000  
cons382:  S236-S216+999X23216>=3.000000  
cons383:  X21236+X23216=1  
cons384:  S216-S316+999X21316>=7.000000  
cons385:  S316-S216+999X31216>=3.000000  
cons386:  X21316+X31216=1  
cons387:  S216-S326+999X21326>=6.000000  
cons388:  S326-S216+999X32216>=3.000000  
cons389:  X21326+X32216=1  
cons390:  S216-S366+999X21366>=6.000000  
cons391:  S366-S216+999X36216>=3.000000  
cons392:  X21366+X36216=1  
cons393:  S216-S416+999X21416>=6.000000  
cons394:  S416-S216+999X41216>=3.000000  
cons395:  X21416+X41216=1  
cons396:  S216-S426+999X21426>=6.000000  
cons397:  S426-S216+999X42216>=3.000000  
cons398:  X21426+X42216=1  
cons399:  S236-S316+999X23316>=7.000000  
cons400:  S316-S236+999X31236>=2.500000  
cons401:  X23316+X31236=1  
cons402:  S236-S326+999X23326>=6.000000  
cons403:  S326-S236+999X32236>=2.500000  
cons404:  X23326+X32236=1  
cons405:  S236-S366+999X23366>=6.000000  
cons406:  S366-S236+999X36236>=2.500000  
cons407:  X23366+X36236=1  
cons408:  S236-S416+999X23416>=6.000000  
cons409:  S416-S236+999X41236>=2.500000  
cons410:  X23416+X41236=1  
cons411:  S236-S426+999X23426>=6.000000  
cons412:  S426-S236+999X42236>=2.500000  
cons413:  X23426+X42236=1  
cons414:  S316-S326+999X31326>=6.000000  
cons415:  S326-S316+999X32316>=7.000000  
cons416:  X31326+X32316=1  
cons417:  S316-S366+999X31366>=6.000000  
cons418:  S366-S316+999X36316>=7.000000  
cons419:  X31366+X36316=1  
cons420:  S316-S416+999X31416>=6.000000  
cons421:  S416-S316+999X41316>=7.000000  
cons422:  X31416+X41316=1  
cons423:  S316-S426+999X31426>=6.000000  
cons424:  S426-S316+999X42316>=7.000000  
cons425:  X31426+X42316=1  
cons426:  S326-S366+999X32366>=6.000000  
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cons427:  S366-S326+999X36326>=6.000000  
cons428:  X32366+X36326=1  
cons429:  S326-S416+999X32416>=6.000000  
cons430:  S416-S326+999X41326>=6.000000  
cons431:  X32416+X41326=1  
cons432:  S326-S426+999X32426>=6.000000  
cons433:  S426-S326+999X42326>=6.000000  
cons434:  X32426+X42326=1  
cons435:  S366-S416+999X36416>=6.000000  
cons436:  S416-S366+999X41366>=6.000000  
cons437:  X36416+X41366=1  
cons438:  S366-S426+999X36426>=6.000000  
cons439:  S426-S366+999X42366>=6.000000  
cons440:  X36426+X42366=1  
cons441:  S416-S426+999X41426>=6.000000  
cons442:  S426-S416+999X42416>=6.000000  
cons443:  X41426+X42416=1 
 
(3.8) and (3.9): 
cons444:  0.125C1-L1<=6  
cons445:  E1+0.125C1>=6  
cons446:  0.125C2-L2<=7  
cons447:  E2+0.125C2>=7  
cons448:  0.125C3-L3<=14  

cons449:  E3+0.125C3>=14  
cons450:  0.125C4-L4<=3  
cons451:  E4+0.125C4>=3  
cons452:  0.125C5-L5<=1  
cons453:  E5+0.125C5>=1

 
(3.10) and (3.11): 
cons454:  L1-LI1<=0  
cons455:  E1-EI1<=0.99  
cons456:  L2-LI2<=0  
cons457:  E2-EI2<=0.99  
cons458:  L3-LI3<=0  

cons459:  E3-EI3<=0.99  
cons460:  L4-LI4<=0  
cons461:  E4-EI4<=0.99  
cons462:  L5-LI5<=0  
cons463:  E5-EI5<=0.99 

 
Bounds 

LI1 free 
LI2 free 

LI3 free 
LI4 free 

LI5 free 
EI1 free 

EI2 free 
EI3 free 

EI4 free 
EI5 free 

 
Integers 

EI1 LI1 EI2 LI2 EI3 LI3 EI4 LI4 EI5 LI5 
 

X13141 X14131 
X13221 X22131 
X13351 X35131 
X13371 X37131 
X13431 X43131 
X13511 X51131 
X14221 X22141 

X14351 X35141 
X14371 X37141 
X14431 X43141 
X14511 X51141 
X22351 X35221 
X22371 X37221 
X22431 X43221 

X22511 X51221 
X35371 X37351 
X35431 X43351 
X35511 X51351 
X37431 X43371 
X37511 X51371 
X43511 X51431 
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X15252 X25152 
X153162 X316152 
X153172 X317152 
X153182 X318152 
X15472 X47152 
X15482 X48152 
X253162 X316252 
X253172 X317252 
X253182 X318252 
X25472 X47252 
X25482 X48252 
X3163172 X3173162 
X3163182 X3183162 
X316472 X473162 
X316482 X483162 
X3173182 X3183172 
X317472 X473172 
X317482 X483172 
X318472 X473182 
X318482 X483182 
X47482 X48472 
X12263 X26123 
X123133 X313123 
X123143 X314123 
X123153 X315123 
X12443 X44123 
X12453 X45123 
X12463 X46123 
X263133 X313263 
X263143 X314263 
X263153 X315263 
X26443 X44263 
X26453 X45263 
X26463 X46263 

X3133143 X3143133 
X3133153 X3153133 
X313443 X443133 
X313453 X453133 
X313463 X463133 
X3143153 X3153143 
X314443 X443143 
X314453 X453143 
X314463 X463143 
X315443 X443153 
X315453 X453153 
X315463 X463153 
X44453 X45443 
X44463 X46443 
X45463 X46453 
X2122134 X2132124 
X2123194 X3192124 
X2123204 X3202124 
X2123214 X3212124 
X2123224 X3222124 
X2133194 X3192134 
X2133204 X3202134 
X2133214 X3212134 
X2133224 X3222134 
X3193204 X3203194 
X3193214 X3213194 
X3193224 X3223194 
X3203214 X3213204 
X3203224 X3223204 
X3213224 X3223214 
X242115 X211245 
X24335 X33245 
X24385 X38245 
X243105 X310245 

X211335 X332115 
X211385 X382115 
X2113105 X3102115 
X33385 X38335 
X333105 X310335 
X383105 X310385 
X11216 X21116 
X11236 X23116 
X11316 X31116 
X11326 X32116 
X11366 X36116 
X11416 X41116 
X11426 X42116 
X21236 X23216 
X21316 X31216 
X21326 X32216 
X21366 X36216 
X21416 X41216 
X21426 X42216 
X23316 X31236 
X23326 X32236 
X23366 X36236 
X23416 X41236 
X23426 X42236 
X31326 X32316 
X31366 X36316 
X31416 X41316 
X31426 X42316 
X32366 X36326 
X32416 X41326 
X32426 X42326 
X36416 X41366 
X36426 X42366 
X41426 X42416 

 
End 
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APPENDIX II 

THE OPTIMAL RESULTS  

(5 ORDERS, 6 MACHINES AND 5 LEVELS) 

 

Integer optimal 
Objective =   7.5750000000e+003 
Solution time = 69814.53 sec.   
Iterations = 454420772   
Nodes = 133237299  
 
Variable Name Solution Value Variable Name Solution Value 
Cmax 45.000000 
EI1                        4.000000 
EI2 1.000000 
EI3 8.000000 
C1 8.080000 
C2 45.000000 
C3 42.000000 
C4 23.000000 
C5 8.000000 
S131 1.000000 
S141 1.500000 
S221 8.000000 
S351 32.000000 
S371 8.500000 
S431 2.000000 
S511 5.000000 
S152 3.000000 
S252 2.000000 
S3162  14.000000 
S3172 4.000000 
S3182 8.000000 
S472 6.000000 
S482 5.000000 
S123 3.000000 
S263 4.000000 
S3133 19.000000 
S3143 21.000000 
S3153 18.000000 
S443 8.000000 
S453 6.000000 

S463 10.000000 
S2124 3.000000 
S2134 3.500000 
S3194 15.000000 
S3204 6.500000 
S3214 4.000000 
S3224 11.000000 
S116 4.580000 
S216 42.000000 
S236 8.500000 
S245 6.000000 
S2115 4.000000 
S316 35.000000 
S326 29.000000 
S335 25.000000 
S366 23.000000 
S385 19.000000 
S3105 8.500000 
S416 17.000000 
S426 11.000000 
X13141                        1.000000 
X13221                        1.000000 
X13351                        1.000000 
X13371                        1.000000 
X13431                        1.000000 
X13511                        1.000000 
X14221                        1.000000 
X14351                        1.000000 
X14371                        1.000000 
X14431                        1.000000 
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X14511                        1.000000 
X22351                        1.000000 
X22371                        1.000000 
X43221                        1.000000 
X51221                        1.000000 
X37351                        1.000000 
X43351                        1.000000 
X51351                        1.000000 
X43371                        1.000000 
X51371                        1.000000 
X43511                        1.000000 
X25152                        1.000000 
X153162 1.000000 
X153172 1.000000 
X153182 1.000000 
X15472                        1.000000 
X15482                        1.000000 
X253162 1.000000 
X253172 1.000000 
X253182 1.000000 
X25472                        1.000000 
X25482                        1.000000 
X3173162 1.000000 
X3183162 1.000000 
X473162 1.000000 
X483162 1.000000 
X3173182 1.000000 
X317472 1.000000 
X317482 1.000000 
X473182 1.000000 
X483182 1.000000 
X48472                        1.000000 
X12263                        1.000000 
X123133 1.000000 
X123143 1.000000 
X123153 1.000000 
X12443                        1.000000 
X12453                        1.000000 
X12463                        1.000000 
X263133 1.000000 
X263143 1.000000 
X263153 1.000000 
X26443 1.000000 
X26453 1.000000 
X26463 1.000000 
X3133143 1.000000 

X3153133 1.000000 
X443133 1.000000 
X453133 1.000000 
X463133 1.000000 
X3153143 1.000000 
X443143 1.000000 
X453143 1.000000 
X463143 1.000000 
X443153 1.000000 
X453153 1.000000 
X463153 1.000000 
X45443                        1.000000 
X44463                        1.000000 
X45463                        1.000000 
X2122134 1.000000 
X2123194 1.000000 
X2123204 1.000000 
X2123214 1.000000 
X2123224 1.000000 
X2133194 1.000000 
X2133204 1.000000 
X2133214 1.000000 
X2133224 1.000000 
X3193224 1.000000 
X3203194 1.000000 
X3203224 1.000000 
X3213194 1.000000 
X3213204 1.000000 
X3213224 1.000000 
X211245 1.000000 
X24335 1.000000 
X24385                        1.000000 
X243105 1.000000 
X211335 1.000000 
X211385 1.000000 
X2113105 1.000000 
X38335                        1.000000 
X310335 1.000000 
X310385 1.000000 
X11216                        1.000000 
X11236                        1.000000 
X11316                        1.000000 
X11326                        1.000000 
X11366                        1.000000 
X11416                        1.000000 
X11426                        1.000000 
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X23216                        1.000000 
X31216                        1.000000 
X32216                        1.000000 
X36216                        1.000000 
X41216                        1.000000 
X42216                        1.000000 
X23316                        1.000000 
X23326                        1.000000 
X23366                        1.000000 
X23416                        1.000000 
X23426                        1.000000 
X32316                        1.000000 
X36316                        1.000000 

X41316                        1.000000 
X42316                        1.000000 
X36326                        1.000000 
X41326                        1.000000 
X42326                        1.000000 
X41366                        1.000000 
X42366                        1.000000 
X42416                        1.000000 
E1 4.990000 
E2 1.990000 
E3 8.990000 
E4 0.990000 
E5 0.990000 

 
All other variables are zero. 
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APPENDIX III 

THE APS PROBLEM (3 ORDERS, 4 MACHINES AND 5 LEVELS) 

 

The five-level product structure in [Lee02] is adopted (Figure III-1). Four 

machines, with 8 hours available per day, are eligible to process the items (Table III-

1). It should be noted that item S6 has three operations (OP1, OP2, OP3) to process, 

and then S6 is further divided into three child items: S6OP1, S6OP2, S6OP3. 

Moreover, M1 and M2 are responsible for assembling, while M3 and M4 deal with 

the components. The ready times of the four machines are Hour 3, Hour 2, Hour 2 

and Hour 1, respectively. There are three orders: 5 Product F1s with due date Day 5, 

10 Product S3s with due date Day 3, and 30 Product C4s with due date Day 1. The 

penalty rates are as follows: cost of idle time at $60 per hour, cost of tardiness at 

$250 per day per order, and cost of earliness at $50 per day per order.  

F1

C1 S4S3 C2 S5S2  S1 

S7 

 

 

 

 

C4 C3 S8

C4

C7 C8C6C5

C9 

S9 S6OP3

S6OP2

S6OP1

 
Figure III-1 The product structure in example 3 × 4 × 5 
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Table III-1 Machine processing time for the items in example 3 × 4 × 5 

Items Machine number Processing time (hours) 

F1 M1 0.7 

S1 M1 0.4 

S2 M1 0.6 

S3 M1 0.5 

S4 M2 0.5 

S5 M2 0.3 

S6OP1 M1 0.4 

S6OP2 M2 0.4 

S6OP3 M3 0.1 

S7 M2 0.4 

S8 M2 0.3 

S9 M2 0.3 

C1 M3 0.2 

C2 M3 0.2 

C3 M4 0.4 

C4 M3 0.1 

C5 M4 0.2 

C6 M4 0.2 

C7 M4 0.3 

C8 M4 0.4 

C9 M3 0.1 
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 The optimal solution generated by solving the developed MIP using CPLEX 

9.1 is listed below. The important data extracted from the optimal results are 

summarized in Table III-2. 

 

SOLVE SUMMARY 

Integer optimal solution 

Objective =   1.8100000000e+003  

Solution time = 2.68 sec.   

Iterations = 26621   

Nodes = 5537 

 

Variable Name Solution Value 

Cmax   21.000000 

EI1   2.000000 

C1   21.000000 

C2   17.500000 

C3   6.500000 

S111   17.500      

S121   8.500      

S131   5.500      

S143   8.000      

S151   3.000      

S162   12.500      

S172   9.500      

S183   7.000      

S191   10.500      

S1102   5.500      

 

Variable Name Solution Value 

S1114   3.000      

S1123   3.000      

S1132   4.000      

S1144   1.000      

S1154   2.000      

S1164   11.000      

S1174   7.000      

S1182   7.500      

S1192   2.500      

S1203   2.500      

S1213   6.500      

S1223   2.000      

S211   12.500      

S224   5.000      

S234   9.000      

S313   3.500   
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Table III-2 The optimal result of example 3 × 4 × 5 

Number of 

constraints 

Total number 

of variables 

No. of integer 

variables 

Makespan 

(hours) 

CPU time 

(sec.) 

271 186 150 21 2.68 

     

Number of 

tardiness 

Number of 

earliness 

Tardiness 

penalty 

Earliness 

penalty 
Total cost 

0 2 0 100 1810 
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APPENDIX IV 

THE APS PROBLEM (4 ORDERS, 5 MACHINES AND 5 LEVELS) 

 

The product structure modified from [Pon02] is adopted (Figure IV-1). Five 

machines, with 8 hours available per day, are eligible to process the items (Table IV-

1). Moreover, M1 and M2 deal with the components, while M3, M4 and M5 are 

responsible for assembling. The ready times of the four machines are Hour 2, Hour 2, 

Hour 3, Hour 4 and Hour 4, respectively. There are four orders: 10 Product F1s with 

due date Day 14, 5 Product S2s with due date Day 5, 20 Product S8s with due date 

Day 3, and 10 Product S4s with due date Day 7. The penalty rates are as follows: 

cost of idle time at $50 per hour, cost of tardiness at $250 per day per order, and cost 

of earliness at $50 per day per order.  
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Figure IV-1 The product structure in example 4 × 5 × 5 
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Table IV-1 Machine processing time for the items in example 4 × 4 × 5 

Items Machine number Processing time (hours) 

F1 M5 0.6 

S1 M5 0.4 

S2 M4 0.6 

S3 M3 0.4 

S4 M5 0.5 

S5 M3 0.3 

S6 M3 0.3 

S7 M4 0.4 

S8 M4 0.5 

S9 M5 0.3 

S10 M3 0.3 

S11 M3 0.3 

C1 M1 0.1 

C2 M2 0.2 

C3 M2 0.4 

C4 M1 0.2 

C5 M1 0.2 

C6 M2 0.3 

C7 M1 0.1 
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 The optimal solution generated by solving the developed MIP using CPLEX 

9.1 is listed below. The important data extracted from the optimal results are 

summarized in Table IV-2. 

 

SOLVE SUMMARY 

Integer optimal solution 

Objective =   5.5500000000e+003  

Solution time = 134.86 sec.   

Iterations = 1206081   

Nodes = 213748 

 

Variable Name Solution Value 

Cmax 47.000000 

LI3 3.000000 

EI1 8.000000 

EI4 1.000000 

C1 47.000000 

C2 37.000000 

C3 47.000000 

C4 41.000000 

S1141 2.000000 

S1171 7.000000 

S1181 13.000000 

S1201  9.000000 

S1211 5.000000 

S261 4.000000 

S281 23.500000 

Variable Name Solution Value 

S321 25.000000 

S441 3.000000 

S471 27.000000 

S1152 6.000000 

S1162 17.000000 

S1192 12.000000 

S1222 8.000000 

S272 4.000000 

S332 33.000000 

S452 2.000000 

S462 25.000000 

S115 41.000000 

S125 32.000000 

S134 24.000000 

S143 34.000000 
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S155 24.000000 

S163 21.000000 

S173 18.000000 

S184 30.000000 

S194 9.000000 

S1105 21.000000 

S1113 15.000000 

S1123 12.000000 

S1134 14.000000 

S214 34.000000 

S223 7.000000 

S233 26.500000 

S243 5.500000 

S253 25.000000 

S314 37.000000 

S415 36.000000 

S424 4.000000 

S435 29.000000  

                

Table IV-2 The optimal result of example 4 × 5 × 5 

Number of 

constraints 

Total number 

of variables 

No. of integer 

variables 

Makespan 

(hours) 

CPU time 

(sec.) 

513 351 298 47 134.86 

     

Number of 

tardiness 

Number of 

earliness 

Tardiness 

penalty 

Earliness 

penalty 
Total cost 

3 9 750 450 5550 
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APPENDIX V 

THE APS PROBLEM (5 ORDERS, 5 MACHINES AND 4 LEVELS) 

 

The product structure in Figure V-1 is adopted. It should be noted that S3, C2, 

and C3 are common items. Five machines, with 8 hours available per day, are 

eligible to process the items (Table V-1). The ready times of these machines are 

Hour 1, Hour 2, Hour 3, Hour 2 and Hour 1, respectively. There are five orders: 10 

Product F1s with due date Day 12, 5 Product F2s with due date Day 14, 10 Product 

S1s with due date Day 11, 30 Product C2s with due date Day 2, and 15 Product C3s 

with due date Day 10. The penalty rates are as follows: cost of idle time at $50 per 

hour, cost of tardiness at $250 per day per order, and cost of earliness at $50 per day 

per order.  

 

F1

S2 S3 
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1
2
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Figure V-1 (a) The product structure of F1 in example 5 × 5 × 4 
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Figure V-1 (b) The product structure of F2 in example 5 × 5 × 4 

 

Table V-1 Machine processing time for the items in example 5 × 5 × 4 

Items Machine 
No. 

Processing Time
 (hours) 

Items Machine 
No. 

Processing Time
 (hours) 

F1 M5 0.7 C3 M5 0.3 

F2 M5 0.6 C4 M1 0.1 

S1 M4 0.7 C5 M1 0.2 

S2 M5 0.5 C6 M1 0.3 

S3 M4 0.6 C7 M2 0.3 

S4 M4 0.5 C8 M2 0.4 

S5 M5 0.4 C9 M1 0.4 

S6 M4 0.4 C10 M2 0.2 

S7 M4 0.3 C11 M1 0.1 

S8 M3 0.3 C12 M1 0.2 

C1 M3 0.2 C13 M2 0.3 

C2 M3 0.3    
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 The optimal solution generated by solving the developed MIP using CPLEX 

9.1 is listed below. The important data extracted from the optimal results are 

summarized in Table V-2. 

 

SOLVE SUMMARY 

Integer optimal solution 

Objective =   6.5500000000e+003  

Solution time = 42726.78 sec.   

Iterations = 172306508   

Nodes = 52142248 

 

Variable Name Solution Value 

Cmax 57.000000 

LI4 6.000000 

EI1 5.000000 

EI2 6.000000 

EI3 3.000000 

EI5 3.000000 

C1 49.000000 

C2 57.000000 

C3 57.000000 

C4 57.000000 

C5 53.500000 

S153 24.000000 

S1103 12.000000 

S1133 18.000000 

S1143 6.000000 

Variable Name Solution Value 

S1201 5.000000 

S1211 9.000000 

S1221 21.000000 

S1232 21.000000 

S1242 2.000000 

S1251 12.000000 

S1262 16.000000 

S1271 7.000000 

S1281 1.000000 

S1155 2.500000 

S2163 3.000000 

S2175 1.000000 

S2185 5.500000 

S2382 24.000000 

S383 42.000000 
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S3141 35.000000 

S3151 36.000000 

S3161 32.000000 

S3172 35.000000 

S3182 6.000000 

S4113 48.000000 

S5125 49.000000 

S115 42.000000 

S134 28.000000 

S145 28.000000 

S164 36.000000 

S195 24.000000 

S1114 20.000000 

S1124 9.000000 

S225 54.000000 

S274 6.000000 

S284 45.000000 

S2193 33.000000 

S334 50.000000 

S375 38.000000 

 

Table V-2 The optimal result of example 5 × 5 × 4 

Number of 

constraints 

Total number 

of variables 

No. of integer 

variables 

Makespan 

(hours) 

CPU time 

(sec.) 

498 337 282 57 42726.78 

     

Number of 

tardiness 

Number of 

earliness 

Tardiness 

penalty 

Earliness 

penalty 
Total cost 

6 17 1500 850 6550 
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APPENDIX VI 

THE PROBLEM FORMULATION OF THE DAPS EXAMPLE 

(FROZEN INTERVAL = 1 DAY) 

 

Minimize  
300Cmax-7975 

+250LI1+250LI2+250LI3+250LI4+250LI5+250LI6+250LI7 
+50EI1+50EI2+50EI3+50EI4+50EI5+50EI6+50EI7 

 
Subject to  

(3.2): 
cons1:  C1-Cmax<=0  
cons2:  C2-Cmax<=0  
cons3:  C3-Cmax<=0  
cons4:  C4-Cmax<=0  

cons5:  C5-Cmax<=0  
cons6:  C6-Cmax<=0  
cons7:  C7-Cmax<=0

 
(3.3): 
cons8:  S351>=16  
cons9:  S632>=16  
cons10:  S752>=16  
cons11:  S762>=16  
cons12:  S3133>=16  
cons13:  S3143>=16  
cons14:  S3153>=16  
cons15:  S643>=16  
cons16:  S723>=16  
cons17:  S733>=16  
cons18:  S743>=16  
cons19:  S664>=19  

cons20:  S674>=19  
cons21:  S335>=16 
cons22:  S385>=16 
cons23:  S625>=16 
cons24:  S655>=16 
cons25:  S216>=17 
cons26:  S316>=17 
cons27:  S326>=17 
cons28:  S366>=17 
cons29:  S416>=17 
cons30:  S616>=17 
cons31:  S716>=17

 
(3.4): 
cons32:  S116-S123>=1.000000  
cons33:  S116-S131>=0.500000  
cons34:  S116-S141>=0.500000  
cons35:  S116-S152>=1.000000  
cons36:  S216-S221>=0.500000  
cons37:  S216-S236>=2.500000  
cons38:  S236-S245>=2.500000  
cons39:  S236-S252>=1.000000  
cons40:  S245-S263>=2.000000  
cons41:  S245-S2115>=1.500000  

cons42:  S2115-S2124>=0.500000  
cons43:  S2115-S2134>=0.500000  
cons44:  S316-S326>=6.000000  
cons45:  S316-S335>=10.000000  
cons46:  S316-S351>=3.000000  
cons47:  S326-S366>=6.000000  
cons48:  S326-S371>=3.000000  
cons49:  S335-S385>=6.000000  
cons50:  S335-S3105>=6.000000  
cons51:  S366-S3133>=2.000000  
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cons52:  S366-S3143>=2.000000  
cons53:  S366-S3153>=1.000000  
cons54:  S366-S3162>=2.000000  
cons55:  S366-S3172>=1.000000  
cons56:  S385-S3182>=6.000000  
cons57:  S385-S3194>=4.000000  
cons58:  S3105-S3204>=2.000000  
cons59:  S3105-S3214>=2.000000  
cons60:  S3194-S3224>=4.000000  
cons61:  S416-S426>=6.000000  
cons62:  S416-S431>=3.000000  
cons63:  S426-S443>=2.000000  
cons64:  S426-S453>=2.000000  
cons65:  S426-S463>=1.000000  

cons66:  S426-S472>=2.000000  
cons67:  S426-S482>=1.000000  
cons68:  S616-S625>=5.000000  
cons69:  S616-S632>=2.000000  
cons70:  S625-S643>=4.000000  
cons71:  S625-S655>=3.000000  
cons72:  S655-S664>=1.000000  
cons73:  S655-S674>=1.000000  
cons74:  S716-S723>=1.000000  
cons75:  S716-S733>=1.000000  
cons76:  S716-S743>=0.500000  
cons77:  S716-S752>=1.000000  
cons78:  S716-S712>=0.500000

 
(3.5): 
cons79:  C1-S116=3.5  
cons80:  C2-S216=3  
cons81:  C3-S316=7  
cons82:  C4-S416=6  

cons83:  C5-S511=3  
cons84:  C6-S616=5  
cons85:  C7-S716=3

 
(3.6) and (3.7): 
cons86:  S131-S141+999X13141>=0.500000  
cons87:  S141-S131+999X14131>=0.500000  
cons88:  X13141+X14131=1  
cons89:  S131-S221+999X13221>=0.500000  
cons90:  S221-S131+999X22131>=0.500000  
cons91:  X13221+X22131=1  
cons92:  S131-S351+999X13351>=3.000000  
cons93:  S351-S131+999X35131>=0.500000  
cons94:  X13351+X35131=1  
cons95:  S131-S371+999X13371>=3.000000  
cons96:  S371-S131+999X37131>=0.500000  
cons97:  X13371+X37131=1  
cons98:  S131-S431+999X13431>=3.000000  
cons99:  S431-S131+999X43131>=0.500000  
cons100:  X13431+X43131=1  
cons101:  S131-S511+999X13511>=3.000000  
cons102:  S511-S131+999X51131>=0.500000  
cons103:  X13511+X51131=1  
cons104:  S141-S221+999X14221>=0.500000  
cons105:  S221-S141+999X22141>=0.500000  
cons106:  X14221+X22141=1  
cons107:  S141-S351+999X14351>=3.000000  
cons108:  S351-S141+999X35141>=0.500000  
cons109:  X14351+X35141=1  
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cons110:  S141-S371+999X14371>=3.000000  
cons111:  S371-S141+999X37141>=0.500000  
cons112:  X14371+X37141=1  
cons113:  S141-S431+999X14431>=3.000000  
cons114:  S431-S141+999X43141>=0.500000  
cons115:  X14431+X43141=1  
cons116:  S141-S511+999X14511>=3.000000  
cons117:  S511-S141+999X51141>=0.500000  
cons118:  X14511+X51141=1  
cons119:  S221-S351+999X22351>=3.000000  
cons120:  S351-S221+999X35221>=0.500000  
cons121:  X22351+X35221=1  
cons122:  S221-S371+999X22371>=3.000000  
cons123:  S371-S221+999X37221>=0.500000  
cons124:  X22371+X37221=1  
cons125:  S221-S431+999X22431>=3.000000  
cons126:  S431-S221+999X43221>=0.500000  
cons127:  X22431+X43221=1  
cons128:  S221-S511+999X22511>=3.000000  
cons129:  S511-S221+999X51221>=0.500000  
cons130:  X22511+X51221=1  
cons131:  S351-S371+999X35371>=3.000000  
cons132:  S371-S351+999X37351>=3.000000  
cons133:  X35371+X37351=1  
cons134:  S351-S431+999X35431>=3.000000  
cons135:  S431-S351+999X43351>=3.000000  
cons136:  X35431+X43351=1  
cons137:  S351-S511+999X35511>=3.000000  
cons138:  S511-S351+999X51351>=3.000000  
cons139:  X35511+X51351=1  
cons140:  S371-S431+999X37431>=3.000000  
cons141:  S431-S371+999X43371>=3.000000  
cons142:  X37431+X43371=1  
cons143:  S371-S511+999X37511>=3.000000  
cons144:  S511-S371+999X51371>=3.000000  
cons145:  X37511+X51371=1  
cons146:  S431-S511+999X43511>=3.000000  
cons147:  S511-S431+999X51431>=3.000000  
cons148:  X43511+X51431=1  
cons149:  S152-S252+999X15252>=1.000000  
cons150:  S252-S152+999X25152>=1.000000  
cons151:  X15252+X25152=1  
cons152:  S152-S3162+999X153162>=2.000000  
cons153:  S3162-S152+999X316152>=1.000000  
cons154:  X153162+X316152=1  
cons155:  S152-S3172+999X153172>=1.000000  
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cons156:  S3172-S152+999X317152>=1.000000  
cons157:  X153172+X317152=1  
cons158:  S152-S3182+999X153182>=6.000000  
cons159:  S3182-S152+999X318152>=1.000000  
cons160:  X153182+X318152=1  
cons161:  S152-S472+999X15472>=2.000000  
cons162:  S472-S152+999X47152>=1.000000  
cons163:  X15472+X47152=1  
cons164:  S152-S482+999X15482>=1.000000  
cons165:  S482-S152+999X48152>=1.000000  
cons166:  X15482+X48152=1  
cons167:  S152-S632+999X15632>=2.000000  
cons168:  S632-S152+999X63152>=1.000000  
cons169:  X15632+X63152=1  
cons170:  S152-S752+999X15752>=1.000000  
cons171:  S752-S152+999X75152>=1.000000  
cons172:  X15752+X75152=1  
cons173:  S152-S762+999X15762>=0.500000  
cons174:  S762-S152+999X76152>=1.000000  
cons175:  X15762+X76152=1  
cons176:  S252-S3162+999X253162>=2.000000  
cons177:  S3162-S252+999X316252>=1.000000  
cons178:  X253162+X316252=1  
cons179:  S252-S3172+999X253172>=1.000000  
cons180:  S3172-S252+999X317252>=1.000000  
cons181:  X253172+X317252=1  
cons182:  S252-S3182+999X253182>=6.000000  
cons183:  S3182-S252+999X318252>=1.000000  
cons184:  X253182+X318252=1  
cons185:  S252-S472+999X25472>=2.000000  
cons186:  S472-S252+999X47252>=1.000000  
cons187:  X25472+X47252=1  
cons188:  S252-S482+999X25482>=1.000000  
cons189:  S482-S252+999X48252>=1.000000  
cons190:  X25482+X48252=1  
cons191:  S252-S632+999X25632>=2.000000  
cons192:  S632-S252+999X63252>=1.000000  
cons193:  X25632+X63252=1  
cons194:  S252-S752+999X25752>=1.000000  
cons195:  S752-S252+999X75252>=1.000000  
cons196:  X25752+X75252=1  
cons197:  S252-S762+999X25762>=0.500000  
cons198:  S762-S252+999X76252>=1.000000  
cons199:  X25762+X76252=1  
cons200:  S3162-S3172+999X3163172>=1.000000  
cons201:  S3172-S3162+999X3173162>=2.000000  
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cons202:  X3163172+X3173162=1  
cons203:  S3162-S3182+999X3163182>=6.000000  
cons204:  S3182-S3162+999X3183162>=2.000000  
cons205:  X3163182+X3183162=1  
cons206:  S3162-S472+999X316472>=2.000000  
cons207:  S472-S3162+999X473162>=2.000000  
cons208:  X316472+X473162=1  
cons209:  S3162-S482+999X316482>=1.000000  
cons210:  S482-S3162+999X483162>=2.000000  
cons211:  X316482+X483162=1  
cons212:  S3162-S632+999X316632>=2.000000  
cons213:  S632-S3162+999X633162>=2.000000  
cons214:  X316632+X633162=1  
cons215:  S3162-S752+999X316752>=1.000000  
cons216:  S752-S3162+999X753162>=2.000000  
cons217:  X316752+X753162=1  
cons218:  S3162-S762+999X316762>=0.500000  
cons219:  S762-S3162+999X763162>=2.000000  
cons220:  X316762+X763162=1  
cons221:  S3172-S3182+999X3173182>=6.000000  
cons222:  S3182-S3172+999X3183172>=1.000000  
cons223:  X3173182+X3183172=1  
cons224:  S3172-S472+999X317472>=2.000000  
cons225:  S472-S3172+999X473172>=1.000000  
cons226:  X317472+X473172=1  
cons227:  S3172-S482+999X317482>=1.000000  
cons228:  S482-S3172+999X483172>=1.000000  
cons229:  X317482+X483172=1  
cons230:  S3172-S632+999X317632>=2.000000  
cons231:  S632-S3172+999X633172>=1.000000  
cons232:  X317632+X633172=1  
cons233:  S3172-S752+999X317752>=1.000000  
cons234:  S752-S3172+999X753172>=1.000000  
cons235:  X317752+X753172=1  
cons236:  S3172-S762+999X317762>=0.500000  
cons237:  S762-S3172+999X763172>=1.000000  
cons238:  X317762+X763172=1  
cons239:  S3182-S472+999X318472>=2.000000  
cons240:  S472-S3182+999X473182>=6.000000  
cons241:  X318472+X473182=1  
cons242:  S3182-S482+999X318482>=1.000000  
cons243:  S482-S3182+999X483182>=6.000000  
cons244:  X318482+X483182=1  
cons245:  S3182-S632+999X318632>=2.000000  
cons246:  S632-S3182+999X633182>=6.000000  
cons247:  X318632+X633182=1  
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cons248:  S3182-S752+999X318752>=1.000000  
cons249:  S752-S3182+999X753182>=6.000000  
cons250:  X318752+X753182=1  
cons251:  S3182-S762+999X318762>=0.500000  
cons252:  S762-S3182+999X763182>=6.000000  
cons253:  X318762+X763182=1  
cons254:  S472-S482+999X47482>=1.000000  
cons255:  S482-S472+999X48472>=2.000000  
cons256:  X47482+X48472=1  
cons257:  S472-S632+999X47632>=2.000000  
cons258:  S632-S472+999X63472>=2.000000  
cons259:  X47632+X63472=1  
cons260:  S472-S752+999X47752>=1.000000  
cons261:  S752-S472+999X75472>=2.000000  
cons262:  X47752+X75472=1  
cons263:  S472-S762+999X47762>=0.500000  
cons264:  S762-S472+999X76472>=2.000000  
cons265:  X47762+X76472=1  
cons266:  S482-S632+999X48632>=2.000000  
cons267:  S632-S482+999X63482>=1.000000  
cons268:  X48632+X63482=1  
cons269:  S482-S752+999X48752>=1.000000  
cons270:  S752-S482+999X75482>=1.000000  
cons271:  X48752+X75482=1  
cons272:  S482-S762+999X48762>=0.500000  
cons273:  S762-S482+999X76482>=1.000000  
cons274:  X48762+X76482=1  
cons275:  S632-S752+999X63752>=1.000000  
cons276:  S752-S632+999X75632>=2.000000  
cons277:  X63752+X75632=1  
cons278:  S632-S762+999X63762>=0.500000  
cons279:  S762-S632+999X76632>=2.000000  
cons280:  X63762+X76632=1  
cons281:  S752-S762+999X75762>=0.500000  
cons282:  S762-S752+999X76752>=1.000000  
cons283:  X75762+X76752=1  
cons284:  S123-S263+999X12263>=2.000000  
cons285:  S263-S123+999X26123>=1.000000  
cons286:  X12263+X26123=1  
cons287:  S123-S3133+999X123133>=2.000000  
cons288:  S3133-S123+999X313123>=1.000000  
cons289:  X123133+X313123=1  
cons290:  S123-S3143+999X123143>=2.000000  
cons291:  S3143-S123+999X314123>=1.000000  
cons292:  X123143+X314123=1  
cons293:  S123-S3153+999X123153>=1.000000  
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cons294:  S3153-S123+999X315123>=1.000000  
cons295:  X123153+X315123=1  
cons296:  S123-S443+999X12443>=2.000000  
cons297:  S443-S123+999X44123>=1.000000  
cons298:  X12443+X44123=1  
cons299:  S123-S453+999X12453>=2.000000  
cons300:  S453-S123+999X45123>=1.000000  
cons301:  X12453+X45123=1  
cons302:  S123-S463+999X12463>=1.000000  
cons303:  S463-S123+999X46123>=1.000000  
cons304:  X12463+X46123=1  
cons305:  S123-S643+999X12643>=4.000000  
cons306:  S643-S123+999X64123>=1.000000  
cons307:  X12643+X64123=1  
cons308:  S123-S723+999X12723>=1.000000  
cons309:  S723-S123+999X72123>=1.000000  
cons310:  X12723+X72123=1  
cons311:  S123-S733+999X12733>=1.000000  
cons312:  S733-S123+999X73123>=1.000000  
cons313:  X12733+X73123=1  
cons314:  S123-S743+999X12743>=0.500000  
cons315:  S743-S123+999X74123>=1.000000  
cons316:  X12743+X74123=1  
cons317:  S263-S3133+999X263133>=2.000000  
cons318:  S3133-S263+999X313263>=2.000000  
cons319:  X263133+X313263=1  
cons320:  S263-S3143+999X263143>=2.000000  
cons321:  S3143-S263+999X314263>=2.000000  
cons322:  X263143+X314263=1  
cons323:  S263-S3153+999X263153>=1.000000  
cons324:  S3153-S263+999X315263>=2.000000  
cons325:  X263153+X315263=1  
cons326:  S263-S443+999X26443>=2.000000  
cons327:  S443-S263+999X44263>=2.000000  
cons328:  X26443+X44263=1  
cons329:  S263-S453+999X26453>=2.000000  
cons330:  S453-S263+999X45263>=2.000000  
cons331:  X26453+X45263=1  
cons332:  S263-S463+999X26463>=1.000000  
cons333:  S463-S263+999X46263>=2.000000  
cons334:  X26463+X46263=1  
cons335:  S263-S643+999X26643>=4.000000  
cons336:  S643-S263+999X64263>=2.000000  
cons337:  X26643+X64263=1  
cons338:  S263-S723+999X26723>=1.000000  
cons339:  S723-S263+999X72263>=2.000000  
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cons340:  X26723+X72263=1  
cons341:  S263-S733+999X26733>=1.000000  
cons342:  S733-S263+999X73263>=2.000000  
cons343:  X26733+X73263=1  
cons344:  S263-S743+999X26743>=0.500000  
cons345:  S743-S263+999X74263>=2.000000  
cons346:  X26743+X74263=1  
cons347:  S3133-S3143+999X3133143>=2.000000  
cons348:  S3143-S3133+999X3143133>=2.000000  
cons349:  X3133143+X3143133=1  
cons350:  S3133-S3153+999X3133153>=1.000000  
cons351:  S3153-S3133+999X3153133>=2.000000  
cons352:  X3133153+X3153133=1  
cons353:  S3133-S443+999X313443>=2.000000  
cons354:  S443-S3133+999X443133>=2.000000  
cons355:  X313443+X443133=1  
cons356:  S3133-S453+999X313453>=2.000000  
cons357:  S453-S3133+999X453133>=2.000000  
cons358:  X313453+X453133=1  
cons359:  S3133-S463+999X313463>=1.000000  
cons360:  S463-S3133+999X463133>=2.000000  
cons361:  X313463+X463133=1  
cons362:  S3133-S643+999X313643>=4.000000  
cons363:  S643-S3133+999X643133>=2.000000  
cons364:  X313643+X643133=1  
cons365:  S3133-S723+999X313723>=1.000000  
cons366:  S723-S3133+999X723133>=2.000000  
cons367:  X313723+X723133=1  
cons368:  S3133-S733+999X313733>=1.000000  
cons369:  S733-S3133+999X733133>=2.000000  
cons370:  X313733+X733133=1  
cons371:  S3133-S743+999X313743>=0.500000  
cons372:  S743-S3133+999X743133>=2.000000  
cons373:  X313743+X743133=1  
cons374:  S3143-S3153+999X3143153>=1.000000  
cons375:  S3153-S3143+999X3153143>=2.000000  
cons376:  X3143153+X3153143=1  
cons377:  S3143-S443+999X314443>=2.000000  
cons378:  S443-S3143+999X443143>=2.000000  
cons379:  X314443+X443143=1  
cons380:  S3143-S453+999X314453>=2.000000  
cons381:  S453-S3143+999X453143>=2.000000  
cons382:  X314453+X453143=1  
cons383:  S3143-S463+999X314463>=1.000000  
cons384:  S463-S3143+999X463143>=2.000000  
cons385:  X314463+X463143=1  
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cons386:  S3143-S643+999X314643>=4.000000  
cons387:  S643-S3143+999X643143>=2.000000  
cons388:  X314643+X643143=1  
cons389:  S3143-S723+999X314723>=1.000000  
cons390:  S723-S3143+999X723143>=2.000000  
cons391:  X314723+X723143=1  
cons392:  S3143-S733+999X314733>=1.000000  
cons393:  S733-S3143+999X733143>=2.000000  
cons394:  X314733+X733143=1  
cons395:  S3143-S743+999X314743>=0.500000  
cons396:  S743-S3143+999X743143>=2.000000  
cons397:  X314743+X743143=1  
cons398:  S3153-S443+999X315443>=2.000000  
cons399:  S443-S3153+999X443153>=1.000000  
cons400:  X315443+X443153=1  
cons401:  S3153-S453+999X315453>=2.000000  
cons402:  S453-S3153+999X453153>=1.000000  
cons403:  X315453+X453153=1  
cons404:  S3153-S463+999X315463>=1.000000  
cons405:  S463-S3153+999X463153>=1.000000  
cons406:  X315463+X463153=1  
cons407:  S3153-S643+999X315643>=4.000000  
cons408:  S643-S3153+999X643153>=1.000000  
cons409:  X315643+X643153=1  
cons410:  S3153-S723+999X315723>=1.000000  
cons411:  S723-S3153+999X723153>=1.000000  
cons412:  X315723+X723153=1  
cons413:  S3153-S733+999X315733>=1.000000  
cons414:  S733-S3153+999X733153>=1.000000  
cons415:  X315733+X733153=1  
cons416:  S3153-S743+999X315743>=0.500000  
cons417:  S743-S3153+999X743153>=1.000000  
cons418:  X315743+X743153=1  
cons419:  S443-S453+999X44453>=2.000000  
cons420:  S453-S443+999X45443>=2.000000  
cons421:  X44453+X45443=1  
cons422:  S443-S463+999X44463>=1.000000  
cons423:  S463-S443+999X46443>=2.000000  
cons424:  X44463+X46443=1  
cons425:  S443-S643+999X44643>=4.000000  
cons426:  S643-S443+999X64443>=2.000000  
cons427:  X44643+X64443=1  
cons428:  S443-S723+999X44723>=1.000000  
cons429:  S723-S443+999X72443>=2.000000  
cons430:  X44723+X72443=1  
cons431:  S443-S733+999X44733>=1.000000  
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cons432:  S733-S443+999X73443>=2.000000  
cons433:  X44733+X73443=1  
cons434:  S443-S743+999X44743>=0.500000  
cons435:  S743-S443+999X74443>=2.000000  
cons436:  X44743+X74443=1  
cons437:  S453-S463+999X45463>=1.000000  
cons438:  S463-S453+999X46453>=2.000000  
cons439:  X45463+X46453=1  
cons440:  S453-S643+999X45643>=4.000000  
cons441:  S643-S453+999X64453>=2.000000  
cons442:  X45643+X64453=1  
cons443:  S453-S723+999X45723>=1.000000  
cons444:  S723-S453+999X72453>=2.000000  
cons445:  X45723+X72453=1  
cons446:  S453-S733+999X45733>=1.000000  
cons447:  S733-S453+999X73453>=2.000000  
cons448:  X45733+X73453=1  
cons449:  S453-S743+999X45743>=0.500000  
cons450:  S743-S453+999X74453>=2.000000  
cons451:  X45743+X74453=1  
cons452:  S463-S643+999X46643>=4.000000  
cons453:  S643-S463+999X64463>=1.000000  
cons454:  X46643+X64463=1  
cons455:  S463-S723+999X46723>=1.000000  
cons456:  S723-S463+999X72463>=1.000000  
cons457:  X46723+X72463=1  
cons458:  S463-S733+999X46733>=1.000000  
cons459:  S733-S463+999X73463>=1.000000  
cons460:  X46733+X73463=1  
cons461:  S463-S743+999X46743>=0.500000  
cons462:  S743-S463+999X74463>=1.000000  
cons463:  X46743+X74463=1  
cons464:  S643-S723+999X64723>=1.000000  
cons465:  S723-S643+999X72643>=4.000000  
cons466:  X64723+X72643=1  
cons467:  S643-S733+999X64733>=1.000000  
cons468:  S733-S643+999X73643>=4.000000  
cons469:  X64733+X73643=1  
cons470:  S643-S743+999X64743>=0.500000  
cons471:  S743-S643+999X74643>=4.000000  
cons472:  X64743+X74643=1  
cons473:  S723-S733+999X72733>=1.000000  
cons474:  S733-S723+999X73723>=1.000000  
cons475:  X72733+X73723=1  
cons476:  S723-S743+999X72743>=0.500000  
cons477:  S743-S723+999X74723>=1.000000  
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cons478:  X72743+X74723=1  
cons479:  S733-S743+999X73743>=0.500000  
cons480:  S743-S733+999X74733>=1.000000  
cons481:  X73743+X74733=1  
cons482:  S2124-S2134+999X2122134>=0.500000  
cons483:  S2134-S2124+999X2132124>=0.500000  
cons484:  X2122134+X2132124=1  
cons485:  S2124-S3194+999X2123194>=4.000000  
cons486:  S3194-S2124+999X3192124>=0.500000  
cons487:  X2123194+X3192124=1  
cons488:  S2124-S3204+999X2123204>=2.000000  
cons489:  S3204-S2124+999X3202124>=0.500000  
cons490:  X2123204+X3202124=1  
cons491:  S2124-S3214+999X2123214>=2.000000  
cons492:  S3214-S2124+999X3212124>=0.500000  
cons493:  X2123214+X3212124=1  
cons494:  S2124-S3224+999X2123224>=4.000000  
cons495:  S3224-S2124+999X3222124>=0.500000  
cons496:  X2123224+X3222124=1  
cons497:  S2124-S664+999X212664>=1.000000  
cons498:  S664-S2124+999X662124>=0.500000  
cons499:  X212664+X662124=1  
cons500:  S2124-S674+999X212674>=1.000000  
cons501:  S674-S2124+999X672124>=0.500000  
cons502:  X212674+X672124=1  
cons503:  S2134-S3194+999X2133194>=4.000000  
cons504:  S3194-S2134+999X3192134>=0.500000  
cons505:  X2133194+X3192134=1  
cons506:  S2134-S3204+999X2133204>=2.000000  
cons507:  S3204-S2134+999X3202134>=0.500000  
cons508:  X2133204+X3202134=1  
cons509:  S2134-S3214+999X2133214>=2.000000  
cons510:  S3214-S2134+999X3212134>=0.500000  
cons511:  X2133214+X3212134=1  
cons512:  S2134-S3224+999X2133224>=4.000000  
cons513:  S3224-S2134+999X3222134>=0.500000  
cons514:  X2133224+X3222134=1  
cons515:  S2134-S664+999X213664>=1.000000  
cons516:  S664-S2134+999X662134>=0.500000  
cons517:  X213664+X662134=1  
cons518:  S2134-S674+999X213674>=1.000000  
cons519:  S674-S2134+999X672134>=0.500000  
cons520:  X213674+X672134=1  
cons521:  S3194-S3204+999X3193204>=2.000000  
cons522:  S3204-S3194+999X3203194>=4.000000  
cons523:  X3193204+X3203194=1  
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cons524:  S3194-S3214+999X3193214>=2.000000  
cons525:  S3214-S3194+999X3213194>=4.000000  
cons526:  X3193214+X3213194=1  
cons527:  S3194-S3224+999X3193224>=4.000000  
cons528:  S3224-S3194+999X3223194>=4.000000  
cons529:  X3193224+X3223194=1  
cons530:  S3194-S664+999X319664>=1.000000  
cons531:  S664-S3194+999X663194>=4.000000  
cons532:  X319664+X663194=1  
cons533:  S3194-S674+999X319674>=1.000000  
cons534:  S674-S3194+999X673194>=4.000000  
cons535:  X319674+X673194=1  
cons536:  S3204-S3214+999X3203214>=2.000000  
cons537:  S3214-S3204+999X3213204>=2.000000  
cons538:  X3203214+X3213204=1  
cons539:  S3204-S3224+999X3203224>=4.000000  
cons540:  S3224-S3204+999X3223204>=2.000000  
cons541:  X3203224+X3223204=1  
cons542:  S3204-S664+999X320664>=1.000000  
cons543:  S664-S3204+999X663204>=2.000000  
cons544:  X320664+X663204=1  
cons545:  S3204-S674+999X320674>=1.000000  
cons546:  S674-S3204+999X673204>=2.000000  
cons547:  X320674+X673204=1  
cons548:  S3214-S3224+999X3213224>=4.000000  
cons549:  S3224-S3214+999X3223214>=2.000000  
cons550:  X3213224+X3223214=1  
cons551:  S3214-S664+999X321664>=1.000000  
cons552:  S664-S3214+999X663214>=2.000000  
cons553:  X321664+X663214=1  
cons554:  S3214-S674+999X321674>=1.000000  
cons555:  S674-S3214+999X673214>=2.000000  
cons556:  X321674+X673214=1  
cons557:  S3224-S664+999X322664>=1.000000  
cons558:  S664-S3224+999X663224>=4.000000  
cons559:  X322664+X663224=1  
cons560:  S3224-S674+999X322674>=1.000000  
cons561:  S674-S3224+999X673224>=4.000000  
cons562:  X322674+X673224=1  
cons563:  S664-S674+999X66674>=1.000000  
cons564:  S674-S664+999X67664>=1.000000  
cons565:  X66674+X67664=1  
cons566:  S245-S2115+999X242115>=1.500000  
cons567:  S2115-S245+999X211245>=2.500000  
cons568:  X242115+X211245=1  
cons569:  S245-S335+999X24335>=10.000000  
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cons570:  S335-S245+999X33245>=2.500000  
cons571:  X24335+X33245=1  
cons572:  S245-S385+999X24385>=6.000000  
cons573:  S385-S245+999X38245>=2.500000  
cons574:  X24385+X38245=1  
cons575:  S245-S3105+999X243105>=6.000000  
cons576:  S3105-S245+999X310245>=2.500000  
cons577:  X243105+X310245=1  
cons578:  S245-S625+999X24625>=5.000000  
cons579:  S625-S245+999X62245>=2.500000  
cons580:  X24625+X62245=1  
cons581:  S245-S655+999X24655>=3.000000  
cons582:  S655-S245+999X65245>=2.500000  
cons583:  X24655+X65245=1  
cons584:  S2115-S335+999X211335>=10.000000  
cons585:  S335-S2115+999X332115>=1.500000  
cons586:  X211335+X332115=1  
cons587:  S2115-S385+999X211385>=6.000000  
cons588:  S385-S2115+999X382115>=1.500000  
cons589:  X211385+X382115=1  
cons590:  S2115-S3105+999X2113105>=6.000000  
cons591:  S3105-S2115+999X3102115>=1.500000  
cons592:  X2113105+X3102115=1  
cons593:  S2115-S625+999X211625>=5.000000  
cons594:  S625-S2115+999X622115>=1.500000  
cons595:  X211625+X622115=1  
cons596:  S2115-S655+999X211655>=3.000000  
cons597:  S655-S2115+999X652115>=1.500000  
cons598:  X211655+X652115=1  
cons599:  S335-S385+999X33385>=6.000000  
cons600:  S385-S335+999X38335>=10.000000  
cons601:  X33385+X38335=1  
cons602:  S335-S3105+999X333105>=6.000000  
cons603:  S3105-S335+999X310335>=10.000000  
cons604:  X333105+X310335=1  
cons605:  S335-S625+999X33625>=5.000000  
cons606:  S625-S335+999X62335>=10.000000  
cons607:  X33625+X62335=1  
cons608:  S335-S655+999X33655>=3.000000  
cons609:  S655-S335+999X65335>=10.000000  
cons610:  X33655+X65335=1  
cons611:  S385-S3105+999X383105>=6.000000  
cons612:  S3105-S385+999X310385>=6.000000  
cons613:  X383105+X310385=1  
cons614:  S385-S625+999X38625>=5.000000  
cons615:  S625-S385+999X62385>=6.000000  
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cons616:  X38625+X62385=1  
cons617:  S385-S655+999X38655>=3.000000  
cons618:  S655-S385+999X65385>=6.000000  
cons619:  X38655+X65385=1  
cons620:  S3105-S625+999X310625>=5.000000  
cons621:  S625-S3105+999X623105>=6.000000  
cons622:  X310625+X623105=1  
cons623:  S3105-S655+999X310655>=3.000000  
cons624:  S655-S3105+999X653105>=6.000000  
cons625:  X310655+X653105=1  
cons626:  S625-S655+999X62655>=3.000000  
cons627:  S655-S625+999X65625>=5.000000  
cons628:  X62655+X65625=1  
cons629:  S116-S216+999X11216>=3.000000  
cons630:  S216-S116+999X21116>=3.500000  
cons631:  X11216+X21116=1  
cons632:  S116-S236+999X11236>=2.500000  
cons633:  S236-S116+999X23116>=3.500000  
cons634:  X11236+X23116=1  
cons635:  S116-S316+999X11316>=7.000000  
cons636:  S316-S116+999X31116>=3.500000  
cons637:  X11316+X31116=1  
cons638:  S116-S326+999X11326>=6.000000  
cons639:  S326-S116+999X32116>=3.500000  
cons640:  X11326+X32116=1  
cons641:  S116-S366+999X11366>=6.000000  
cons642:  S366-S116+999X36116>=3.500000  
cons643:  X11366+X36116=1  
cons644:  S116-S416+999X11416>=6.000000  
cons645:  S416-S116+999X41116>=3.500000  
cons646:  X11416+X41116=1  
cons647:  S116-S426+999X11426>=6.000000  
cons648:  S426-S116+999X42116>=3.500000  
cons649:  X11426+X42116=1  
cons650:  S116-S616+999X11616>=5.000000  
cons651:  S616-S116+999X61116>=3.500000  
cons652:  X11616+X61116=1  
cons653:  S116-S716+999X11716>=3.000000  
cons654:  S716-S116+999X71116>=3.500000  
cons655:  X11716+X71116=1  
cons656:  S216-S236+999X21236>=2.500000  
cons657:  S236-S216+999X23216>=3.000000  
cons658:  X21236+X23216=1  
cons659:  S216-S316+999X21316>=7.000000  
cons660:  S316-S216+999X31216>=3.000000  
cons661:  X21316+X31216=1  
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cons662:  S216-S326+999X21326>=6.000000  
cons663:  S326-S216+999X32216>=3.000000  
cons664:  X21326+X32216=1  
cons665:  S216-S366+999X21366>=6.000000  
cons666:  S366-S216+999X36216>=3.000000  
cons667:  X21366+X36216=1  
cons668:  S216-S416+999X21416>=6.000000  
cons669:  S416-S216+999X41216>=3.000000  
cons670:  X21416+X41216=1  
cons671:  S216-S426+999X21426>=6.000000  
cons672:  S426-S216+999X42216>=3.000000  
cons673:  X21426+X42216=1  
cons674:  S216-S616+999X21616>=5.000000  
cons675:  S616-S216+999X61216>=3.000000  
cons676:  X21616+X61216=1  
cons677:  S216-S716+999X21716>=3.000000  
cons678:  S716-S216+999X71216>=3.000000  
cons679:  X21716+X71216=1  
cons680:  S236-S316+999X23316>=7.000000  
cons681:  S316-S236+999X31236>=2.500000  
cons682:  X23316+X31236=1  
cons683:  S236-S326+999X23326>=6.000000  
cons684:  S326-S236+999X32236>=2.500000  
cons685:  X23326+X32236=1  
cons686:  S236-S366+999X23366>=6.000000  
cons687:  S366-S236+999X36236>=2.500000  
cons688:  X23366+X36236=1  
cons689:  S236-S416+999X23416>=6.000000  
cons690:  S416-S236+999X41236>=2.500000  
cons691:  X23416+X41236=1  
cons692:  S236-S426+999X23426>=6.000000  
cons693:  S426-S236+999X42236>=2.500000  
cons694:  X23426+X42236=1  
cons695:  S236-S616+999X23616>=5.000000  
cons696:  S616-S236+999X61236>=2.500000  
cons697:  X23616+X61236=1  
cons698:  S236-S716+999X23716>=3.000000  
cons699:  S716-S236+999X71236>=2.500000  
cons700:  X23716+X71236=1  
cons701:  S316-S326+999X31326>=6.000000  
cons702:  S326-S316+999X32316>=7.000000  
cons703:  X31326+X32316=1  
cons704:  S316-S366+999X31366>=6.000000  
cons705:  S366-S316+999X36316>=7.000000  
cons706:  X31366+X36316=1  
cons707:  S316-S416+999X31416>=6.000000  
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cons708:  S416-S316+999X41316>=7.000000  
cons709:  X31416+X41316=1  
cons710:  S316-S426+999X31426>=6.000000  
cons711:  S426-S316+999X42316>=7.000000  
cons712:  X31426+X42316=1  
cons713:  S316-S616+999X31616>=5.000000  
cons714:  S616-S316+999X61316>=7.000000  
cons715:  X31616+X61316=1  
cons716:  S316-S716+999X31716>=3.000000  
cons717:  S716-S316+999X71316>=7.000000  
cons718:  X31716+X71316=1  
cons719:  S326-S366+999X32366>=6.000000  
cons720:  S366-S326+999X36326>=6.000000  
cons721:  X32366+X36326=1  
cons722:  S326-S416+999X32416>=6.000000  
cons723:  S416-S326+999X41326>=6.000000  
cons724:  X32416+X41326=1  
cons725:  S326-S426+999X32426>=6.000000  
cons726:  S426-S326+999X42326>=6.000000  
cons727:  X32426+X42326=1  
cons728:  S326-S616+999X32616>=5.000000  
cons729:  S616-S326+999X61326>=6.000000  
cons730:  X32616+X61326=1  
cons731:  S326-S716+999X32716>=3.000000  
cons732:  S716-S326+999X71326>=6.000000  
cons733:  X32716+X71326=1  
cons734:  S366-S416+999X36416>=6.000000  
cons735:  S416-S366+999X41366>=6.000000  
cons736:  X36416+X41366=1  
cons737:  S366-S426+999X36426>=6.000000  
cons738:  S426-S366+999X42366>=6.000000  
cons739:  X36426+X42366=1  
cons740:  S366-S616+999X36616>=5.000000  
cons741:  S616-S366+999X61366>=6.000000  
cons742:  X36616+X61366=1  
cons743:  S366-S716+999X36716>=3.000000  
cons744:  S716-S366+999X71366>=6.000000  
cons745:  X36716+X71366=1  
cons746:  S416-S426+999X41426>=6.000000  
cons747:  S426-S416+999X42416>=6.000000  
cons748:  X41426+X42416=1  
cons749:  S416-S616+999X41616>=5.000000  
cons750:  S616-S416+999X61416>=6.000000  
cons751:  X41616+X61416=1  
cons752:  S416-S716+999X41716>=3.000000  
cons753:  S716-S416+999X71416>=6.000000  
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cons754:  X41716+X71416=1  
cons755:  S426-S616+999X42616>=5.000000  
cons756:  S616-S426+999X61426>=6.000000  
cons757:  X42616+X61426=1  
cons758:  S426-S716+999X42716>=3.000000  
cons759:  S716-S426+999X71426>=6.000000  
cons760:  X42716+X71426=1  
cons761:  S616-S716+999X61716>=3.000000  
cons762:  S716-S616+999X71616>=5.000000  
cons763:  X61716+X71616=1 
 
(3.8) and (3.9): 
cons764:  0.125C1-L1<=6  
cons765:  E1+0.125C1>=6  
cons766:  0.125C2-L2<=7  
cons767:  E2+0.125C2>=7  
cons768:  0.125C3-L3<=14  
cons769:  E3+0.125C3>=14  
cons770:  0.125C4-L4<=3  

cons771:  E4+0.125C4>=3  
cons772:  0.125C5-L5<=1  
cons773:  E5+0.125C5>=1  
cons774:  0.125C6-L6<=5  
cons775:  E6+0.125C6>=5  
cons776:  0.125C7-L7<=3  
cons777:  E7+0.125C7>=3

 
(3.10) and (3.11): 
cons778:  L1-LI1<=0  
cons779:  E1-EI1<=0.99  
cons780:  L2-LI2<=0  
cons781:  E2-EI2<=0.99  
cons782:  L3-LI3<=0  
cons783:  E3-EI3<=0.99  
cons784:  L4-LI4<=0  

cons785:  E4-EI4<=0.99  
cons786:  L5-LI5<=0  
cons787:  E5-EI5<=0.99  
cons788:  L6-LI6<=0  
cons789:  E6-EI6<=0.99  
cons790:  L7-LI7<=0  
cons791:  E7-EI7<=0.99

 
(5.1): 
cons792:  S131=1.0 
cons793:  S141=1.5 
cons794:  S221=8.0 
cons795:  S371=8.5 
cons796:  S431=2.0 
cons797:  S511=5.0 
cons798:  S152=3.0 
cons799:  S252=2.0 
cons800:  S3162=14.0 
cons801:  S3172=4.0 
cons802:  S3182=8.0 
cons803:  S472=6.0 
cons804:  S482=5.0 
cons805:  S123=3.0 
cons806:  S263=4.0 

cons807:  S443=8.0 
cons808:  S453=6.0 
cons809:  S463=10.0 
cons810:  S2124=3.0 
cons811:  S2134=3.5 
cons812:  S3194=15.0 
cons813:  S3204=6.5 
cons814:  S3214=4.0 
cons815:  S3224=11.0 
cons816:  S245=6.0 
cons817:  S2115=4.0 
cons818:  S3105=8.5 
cons819:  S116=4.58 
cons820:  S236=8.5 
cons821:  S426=11.0 
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Bounds 
LI1 free 
LI2 free 
LI3 free 
LI4 free 
LI5 free 
LI6 free 
LI7 free 

EI1 free 
EI2 free 
EI3 free 
EI4 free 
EI5 free 
EI6 free 
EI7 free 

 
Integers 

EI1 LI1 
EI2 LI2 

EI3 LI3 
EI4 LI4 

EI5 LI5 
EI6 LI6 

EI7 LI7 

 
X13141 X14131 
X13221 X22131 
X13351 X35131 
X13371 X37131 
X13431 X43131 
X13511 X51131 
X14221 X22141 
X14351 X35141 
X14371 X37141 
X14431 X43141 
X14511 X51141 
X22351 X35221 
X22371 X37221 
X22431 X43221 
X22511 X51221 
X35371 X37351 
X35431 X43351 
X35511 X51351 
X37431 X43371 
X37511 X51371 
X43511 X51431 
X15252 X25152 
X153162 X316152 
X153172 X317152 
X153182 X318152 
X15472 X47152 
X15482 X48152 
X15632 X63152 
X15752 X75152 
X15762 X76152 
X253162 X316252 
X253172 X317252 
X253182 X318252 

X25472 X47252 
X25482 X48252 
X25632 X63252 
X25752 X75252 
X25762 X76252 
X3163172 X3173162 
X3163182 X3183162 
X316472 X473162 
X316482 X483162 
X316632 X633162 
X316752 X753162 
X316762 X763162 
X3173182 X3183172 
X317472 X473172 
X317482 X483172 
X317632 X633172 
X317752 X753172 
X317762 X763172 
X318472 X473182 
X318482 X483182 
X318632 X633182 
X318752 X753182 
X318762 X763182 
X47482 X48472 
X47632 X63472 
X47752 X75472 
X47762 X76472 
X48632 X63482 
X48752 X75482 
X48762 X76482 
X63752 X75632 
X63762 X76632 
X75762 X76752 

X12263 X26123 
X123133 X313123 
X123143 X314123 
X123153 X315123 
X12443 X44123 
X12453 X45123 
X12463 X46123 
X12643 X64123 
X12723 X72123 
X12733 X73123 
X12743 X74123 
X263133 X313263 
X263143 X314263 
X263153 X315263 
X26443 X44263 
X26453 X45263 
X26463 X46263 
X26643 X64263 
X26723 X72263 
X26733 X73263 
X26743 X74263 
X3133143 X3143133 
X3133153 X3153133 
X313443 X443133 
X313453 X453133 
X313463 X463133 
X313643 X643133 
X313723 X723133 
X313733 X733133 
X313743 X743133 
X3143153 X3153143 
X314443 X443143 
X314453 X453143 
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X314463 X463143 
X314643 X643143 
X314723 X723143 
X314733 X733143 
X314743 X743143 
X315443 X443153 
X315453 X453153 
X315463 X463153 
X315643 X643153 
X315723 X723153 
X315733 X733153 
X315743 X743153 
X44453 X45443 
X44463 X46443 
X44643 X64443 
X44723 X72443 
X44733 X73443 
X44743 X74443 
X45463 X46453 
X45643 X64453 
X45723 X72453 
X45733 X73453 
X45743 X74453 
X46643 X64463 
X46723 X72463 
X46733 X73463 
X46743 X74463 
X64723 X72643 
X64733 X73643 
X64743 X74643 
X72733 X73723 
X72743 X74723 
X73743 X74733 
X2122134 X2132124 
X2123194 X3192124 
X2123204 X3202124 
X2123214 X3212124 
X2123224 X3222124 
X212664 X662124 
X212674 X672124 
X2133194 X3192134 
X2133204 X3202134 
X2133214 X3212134 

X2133224 X3222134 
X213664 X662134 
X213674 X672134 
X3193204 X3203194 
X3193214 X3213194 
X3193224 X3223194 
X319664 X663194 
X319674 X673194 
X3203214 X3213204 
X3203224 X3223204 
X320664 X663204 
X320674 X673204 
X3213224 X3223214 
X321664 X663214 
X321674 X673214 
X322664 X663224 
X322674 X673224 
X66674 X67664 
X242115 X211245 
X24335 X33245 
X24385 X38245 
X243105 X310245 
X24625 X62245 
X24655 X65245 
X211335 X332115 
X211385 X382115 
X2113105 X3102115 
X211625 X622115 
X211655 X652115 
X33385 X38335 
X333105 X310335 
X33625 X62335 
X33655 X65335 
X383105 X310385 
X38625 X62385 
X38655 X65385 
X310625 X623105 
X310655 X653105 
X62655 X65625 
X11216 X21116 
X11236 X23116 
X11316 X31116 
X11326 X32116 

X11366 X36116 
X11416 X41116 
X11426 X42116 
X11616 X61116 
X11716 X71116 
X21236 X23216 
X21316 X31216 
X21326 X32216 
X21366 X36216 
X21416 X41216 
X21426 X42216 
X21616 X61216 
X21716 X71216 
X23316 X31236 
X23326 X32236 
X23366 X36236 
X23416 X41236 
X23426 X42236 
X23616 X61236 
X23716 X71236 
X31326 X32316 
X31366 X36316 
X31416 X41316 
X31426 X42316 
X31616 X61316 
X31716 X71316 
X32366 X36326 
X32416 X41326 
X32426 X42326 
X32616 X61326 
X32716 X71326 
X36416 X41366 
X36426 X42366 
X36616 X61366 
X36716 X71366 
X41426 X42416 
X41616 X61416 
X41716 X71416 
X42616 X61426 
X42716 X71426 
X61716 X71616

 
End 
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APPENDIX VII 

THE OPTIMAL RESULTS OF THE DAPS EXAMPLE  

(FROZEN INTERVAL = 1 DAY) 

 

Integer optimal 
Objective =   8.7750000000e+003 
Solution time = 0.45 sec.   
Iterations = 5069  
Nodes = 1463 
 
Variable Name Solution Value Variable Name   Solution Value
Cmax   53.000000 
LI7   1.000000 
EI1  4.000000 
EI2  1.000000 
EI3                        7.000000 
C1                             8.080000 
C2                            46.000000 
C3                            53.000000 
C4                           23.000000 
C5                             8.000000 
C6                            37.000000 
C7                           32.000000 
S351                          16.000000 
S632                          16.500000 
S752                          28.000000 
S762                          16.000000 
S3133                         19.000000 
S3143                         17.000000 
S3153                        16.000000 
S643                          21.000000 
S723                          27.000000 
S733                          25.000000 
S743                          26.000000 
S664                          19.000000 
S674                          20.000000 
S335                          36.000000 
S385                          30.000000 
S625                          25.000000 
S655                          21.000000 
S216                          43.000000 

S316                          46.000000 
S326                          37.000000 
S366                          23.000000 
S416                          17.000000 
S616                         32.000000 
S716                          29.000000 
S116                           4.580000 
S123                           3.000000 
S131                           1.000000 
S141                           1.500000 
S152                           3.000000 
S221                           8.000000 
S236                           8.500000 
S245                           6.000000 
S252                           2.000000 
S263                           4.000000 
S2115                          4.000000 
S2124                          3.000000 
S2134                          3.500000 
S371                           8.500000 
S3105                          8.500000 
S3162                         14.000000 
S3172                          4.000000 
S3182                          8.000000 
S3194                         15.000000 
S3204                          6.500000 
S3214                          4.000000 
S3224                         11.000000 
S426                          11.000000 
S431                           2.000000 
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S443                           8.000000 
S453                           6.000000 
S463                          10.000000 
S472                           6.000000 
S482                           5.000000 
S511                           5.000000 
X13141                        1.000000 
X13221                        1.000000 
X13351                        1.000000 
X13371                        1.000000 
X13431                        1.000000 
X13511                        1.000000 
X14221                        1.000000 
X14351                        1.000000 
X14371                        1.000000 
X14431                        1.000000 
X14511                        1.000000 
X22351                        1.000000 
X22371                        1.000000 
X43221                        1.000000 
X51221                        1.000000 
X37351                        1.000000 
X43351                        1.000000 
X51351                        1.000000 
X43371                        1.000000 
X51371                        1.000000 
X43511                        1.000000 
X25152                        1.000000 
X153162                      1.000000 
X153172                      1.000000 
X153182                      1.000000 
X15472                        1.000000 
X15482                        1.000000 
X15632                        1.000000 
X15752                        1.000000 
X15762                        1.000000 
X253162                      1.000000 
X253172                      1.000000 
X253182                      1.000000 
X25472                        1.000000 
X25482                        1.000000 
X25632                        1.000000 
X25752                        1.000000 
X25762                        1.000000 
X3173162                    1.000000 
X3183162                    1.000000 

X473162                      1.000000 
X483162                      1.000000 
X316632                      1.000000 
X316752                      1.000000 
X316762                      1.000000 
X3173182                    1.000000 
X317472                      1.000000 
X317482                      1.000000 
X317632                      1.000000 
X317752                      1.000000 
X317762                      1.000000 
X473182                      1.000000 
X483182                      1.000000 
X318632                      1.000000 
X318752                      1.000000 
X318762                      1.000000 
X48472                        1.000000 
X47632                        1.000000 
X47752                        1.000000 
X47762                        1.000000 
X48632                        1.000000 
X48752                        1.000000 
X48762                        1.000000 
X63752                        1.000000 
X76632                        1.000000 
X76752                        1.000000 
X12263                        1.000000 
X123133                      1.000000 
X123143                      1.000000 
X123153                      1.000000 
X12443                        1.000000 
X12453                        1.000000 
X12463                        1.000000 
X12643                        1.000000 
X12723                        1.000000 
X12733                        1.000000 
X12743                        1.000000 
X263133                      1.000000 
X263143                      1.000000 
X263153                      1.000000 
X26443                        1.000000 
X26453                        1.000000 
X26463                        1.000000 
X26643                        1.000000 
X26723                        1.000000 
X26733                        1.000000 



APPENDIX VII: THE OPTIMAL RESULTS OF THE DAPS EXAMPLE  
 (FROZEN INTERVAL = 1 DAY) 267 

X26743                        1.000000 
X3143133                    1.000000 
X3153133                    1.000000 
X443133                      1.000000 
X453133                      1.000000 
X463133                      1.000000 
X313643                      1.000000 
X313723                      1.000000 
X313733                      1.000000 
X313743                      1.000000 
X3153143                    1.000000 
X443143                      1.000000 
X453143                      1.000000 
X463143                      1.000000 
X314643                      1.000000 
X314723                      1.000000 
X314733                      1.000000 
X314743                      1.000000 
X443153                      1.000000 
X453153                      1.000000 
X463153                      1.000000 
X315643                      1.000000 
X315723                      1.000000 
X315733                      1.000000 
X315743                      1.000000 
X45443                        1.000000 
X44463                        1.000000 
X44643                        1.000000 
X44723                        1.000000 
X44733                        1.000000 
X44743                        1.000000 
X45463                        1.000000 
X45643                        1.000000 
X45723                        1.000000 
X45733                        1.000000 
X45743                        1.000000 
X46643                        1.000000 
X46723                        1.000000 
X46733                        1.000000 
X46743                        1.000000 
X64723                        1.000000 
X64733                        1.000000 
X64743                        1.000000 
X73723                        1.000000 
X74723                        1.000000 
X73743                        1.000000 

X2122134                    1.000000 
X2123194                    1.000000 
X2123204                    1.000000 
X2123214                    1.000000 
X2123224                    1.000000 
X212664                      1.000000 
X212674                      1.000000 
X2133194                    1.000000 
X2133204                    1.000000 
X2133214                    1.000000 
X2133224                    1.000000 
X213664                      1.000000 
X213674                      1.000000 
X3203194                    1.000000 
X3213194                    1.000000 
X3223194                    1.000000 
X319664                      1.000000 
X319674                      1.000000 
X3213204                    1.000000 
X3203224                    1.000000 
X320664                      1.000000 
X320674                      1.000000 
X3213224                    1.000000 
X321664                      1.000000 
X321674                      1.000000 
X322664                      1.000000 
X322674                      1.000000 
X66674                        1.000000 
X67664                        0.000000 
X211245                      1.000000 
X24335                        1.000000 
X24385                        1.000000 
X243105                      1.000000 
X24625                        1.000000 
X24655                        1.000000 
X211335                      1.000000 
X211385                      1.000000 
X2113105                    1.000000 
X211625                      1.000000 
X211655                      1.000000 
X38335                        1.000000 
X310335                      1.000000 
X62335                        1.000000 
X65335                        1.000000 
X310385                      1.000000 
X62385                        1.000000 
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X65385                        1.000000 
X310625                      1.000000 
X310655                      1.000000 
X65625                        1.000000 
X11216                        1.000000 
X11236                        1.000000 
X11316                        1.000000 
X11326                        1.000000 
X11366                        1.000000 
X11416                        1.000000 
X11426                        1.000000 
X11616                        1.000000 
X11716                        1.000000 
X23216                        1.000000 
X21316                        1.000000 
X32216                        1.000000 
X36216                        1.000000 
X41216                        1.000000 
X42216                        1.000000 
X61216                        1.000000 
X71216                        1.000000 
X23316                        1.000000 
X23326                        1.000000 
X23366                        1.000000 
X23416                        1.000000 
X23426                        1.000000 
X23616                        1.000000 
X23716                        1.000000 
X32316                        1.000000 

X36316                        1.000000 
X41316                        1.000000 
X42316                        1.000000 
X61316                        1.000000 
X71316                        1.000000 
X36326                        1.000000 
X41326                        1.000000 
X42326                        1.000000 
X61326                        1.000000 
X71326                        1.000000 
X41366                        1.000000 
X42366                        1.000000 
X36616                        1.000000 
X36716                        1.000000 
X42416                        1.000000 
X41616                        1.000000 
X41716                        1.000000 
X42616                        1.000000 
X42716                        1.000000 
X71616                        1.000000 
E1                         4.990000 
E2                         1.990000 
E3                         7.990000 
E4                        0.990000 
E5                         0.990000 
E6                        0.990000 
L7                             1.000000 
E7                         0.990000

 
All other variables are zero. 
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APPENDIX VIII 

THE PROBLEM FORMULATION OF THE DAPS EXAMPLE 

(FROZEN INTERVAL = 0) 

 

Minimize  
300Cmax-7975 

+250LI1+250LI2+250LI3+250LI4+250LI5+250LI6+250LI7 
+50EI1+50EI2+50EI3+50EI4+50EI5+50EI6+50EI7 

 
Subject to  

(3.2): 
cons1:  C1-Cmax<=0  
cons2:  C2-Cmax<=0  
cons3:  C3-Cmax<=0  
cons4:  C4-Cmax<=0  

cons5:  C5-Cmax<=0  
cons6:  C6-Cmax<=0  
cons7:  C7-Cmax<=0 

 
(3.3): 
cons8:  S221>=8 
cons9:  S351>=8 
cons10:  S371>=8 
cons11:  S3162>=8 
cons12:  S3182>=8 
cons13:  S632>=8  
cons14:  S752>=8  
cons15:  S762>=8  
cons16:  S3133>=8 
cons17:  S3143>=8 
cons18:  S3153>=8 
cons19:  S443>=8 
cons20:  S463>=8 
cons21:  S643>=8  
cons22:  S723>=8  
cons23:  S733>=8  
cons24:  S743>=8  
cons25:  S3194>=8.5 

cons26:  S3224>=8.5 
cons27:  S664>=8.5  
cons28:  S674>=8.5  
cons29:  S335>=8.5 
cons30:  S385>=8.5 
cons31:  S3105>=8.5 
cons32:  S625>=8.5 
cons33:  S655>=8.5 
cons34:  S216>=8 
cons35:  S236>=8 
cons36:  S316>=8 
cons37:  S326>=8 
cons38:  S366>=8 
cons39:  S416>=8 
cons40:  S426>=8 
cons41:  S616>=8 
cons42:  S716>=8 

 
(3.4): 
cons43:  S116-S123>=1.000000  
cons44:  S116-S131>=0.500000  
cons45:  S116-S141>=0.500000  
cons46:  S116-S152>=1.000000  
cons47:  S216-S221>=0.500000  

cons48:  S216-S236>=2.500000  
cons49:  S236-S245>=2.500000  
cons50:  S236-S252>=1.000000  
cons51:  S245-S263>=2.000000  
cons52:  S245-S2115>=1.500000  
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cons53:  S2115-S2124>=0.500000  
cons54:  S2115-S2134>=0.500000  
cons55:  S316-S326>=6.000000  
cons56:  S316-S335>=10.000000  
cons57:  S316-S351>=3.000000  
cons58:  S326-S366>=6.000000  
cons59:  S326-S371>=3.000000  
cons60:  S335-S385>=6.000000  
cons61:  S335-S3105>=6.000000  
cons62:  S366-S3133>=2.000000  
cons63:  S366-S3143>=2.000000  
cons64:  S366-S3153>=1.000000  
cons65:  S366-S3162>=2.000000  
cons66:  S366-S3172>=1.000000  
cons67:  S385-S3182>=6.000000  
cons68:  S385-S3194>=4.000000  
cons69:  S3105-S3204>=2.000000  
cons70:  S3105-S3214>=2.000000  
cons71:  S3194-S3224>=4.000000  

cons72:  S416-S426>=6.000000  
cons73:  S416-S431>=3.000000  
cons74:  S426-S443>=2.000000  
cons75:  S426-S453>=2.000000  
cons76:  S426-S463>=1.000000  
cons77:  S426-S472>=2.000000  
cons78:  S426-S482>=1.000000  
cons79:  S616-S625>=5.000000  
cons80:  S616-S632>=2.000000  
cons81:  S625-S643>=4.000000  
cons82:  S625-S655>=3.000000  
cons83:  S655-S664>=1.000000  
cons84:  S655-S674>=1.000000  
cons85:  S716-S723>=1.000000  
cons86:  S716-S733>=1.000000  
cons87:  S716-S743>=0.500000  
cons88:  S716-S752>=1.000000  
cons89:  S716-S712>=0.500000

 
(3.5): 
cons90:  C1-S116=3.5  
cons91:  C2-S216=3  
cons92:  C3-S316=7  
cons93:  C4-S416=6  

cons94:  C5-S511=3  
cons95:  C6-S616=5  
cons96:  C7-S716=3

 
(3.6) and (3.7): 
cons97:  S131-S141+999X13141>=0.500000  
cons98:  S141-S131+999X14131>=0.500000  
cons99:  X13141+X14131=1  
cons100:  S131-S221+999X13221>=0.500000  
cons101:  S221-S131+999X22131>=0.500000  
cons102:  X13221+X22131=1  
cons103:  S131-S351+999X13351>=3.000000  
cons104:  S351-S131+999X35131>=0.500000  
cons105:  X13351+X35131=1  
cons106:  S131-S371+999X13371>=3.000000  
cons107:  S371-S131+999X37131>=0.500000  
cons108:  X13371+X37131=1  
cons109:  S131-S431+999X13431>=3.000000  
cons110:  S431-S131+999X43131>=0.500000  
cons111:  X13431+X43131=1  
cons112:  S131-S511+999X13511>=3.000000  
cons113:  S511-S131+999X51131>=0.500000  
cons114:  X13511+X51131=1  
cons115:  S141-S221+999X14221>=0.500000  
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cons116:  S221-S141+999X22141>=0.500000  
cons117:  X14221+X22141=1  
cons118:  S141-S351+999X14351>=3.000000  
cons119:  S351-S141+999X35141>=0.500000  
cons120:  X14351+X35141=1  
cons121:  S141-S371+999X14371>=3.000000  
cons122:  S371-S141+999X37141>=0.500000  
cons123:  X14371+X37141=1  
cons124:  S141-S431+999X14431>=3.000000  
cons125:  S431-S141+999X43141>=0.500000  
cons126:  X14431+X43141=1  
cons127:  S141-S511+999X14511>=3.000000  
cons128:  S511-S141+999X51141>=0.500000  
cons129:  X14511+X51141=1  
cons130:  S221-S351+999X22351>=3.000000  
cons131:  S351-S221+999X35221>=0.500000  
cons132:  X22351+X35221=1  
cons133:  S221-S371+999X22371>=3.000000  
cons134:  S371-S221+999X37221>=0.500000  
cons135:  X22371+X37221=1  
cons136:  S221-S431+999X22431>=3.000000  
cons137:  S431-S221+999X43221>=0.500000  
cons138:  X22431+X43221=1  
cons139:  S221-S511+999X22511>=3.000000  
cons140:  S511-S221+999X51221>=0.500000  
cons141:  X22511+X51221=1  
cons142:  S351-S371+999X35371>=3.000000  
cons143:  S371-S351+999X37351>=3.000000  
cons144:  X35371+X37351=1  
cons145:  S351-S431+999X35431>=3.000000  
cons146:  S431-S351+999X43351>=3.000000  
cons147:  X35431+X43351=1  
cons148:  S351-S511+999X35511>=3.000000  
cons149:  S511-S351+999X51351>=3.000000  
cons150:  X35511+X51351=1  
cons151:  S371-S431+999X37431>=3.000000  
cons152:  S431-S371+999X43371>=3.000000  
cons153:  X37431+X43371=1  
cons154:  S371-S511+999X37511>=3.000000  
cons155:  S511-S371+999X51371>=3.000000  
cons156:  X37511+X51371=1  
cons157:  S431-S511+999X43511>=3.000000  
cons158:  S511-S431+999X51431>=3.000000  
cons159:  X43511+X51431=1  
cons160:  S152-S252+999X15252>=1.000000  
cons161:  S252-S152+999X25152>=1.000000  
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cons162:  X15252+X25152=1  
cons163:  S152-S3162+999X153162>=2.000000  
cons164:  S3162-S152+999X316152>=1.000000  
cons165:  X153162+X316152=1  
cons166:  S152-S3172+999X153172>=1.000000  
cons167:  S3172-S152+999X317152>=1.000000  
cons168:  X153172+X317152=1  
cons169:  S152-S3182+999X153182>=6.000000  
cons170:  S3182-S152+999X318152>=1.000000  
cons171:  X153182+X318152=1  
cons172:  S152-S472+999X15472>=2.000000  
cons173:  S472-S152+999X47152>=1.000000  
cons174:  X15472+X47152=1  
cons175:  S152-S482+999X15482>=1.000000  
cons176:  S482-S152+999X48152>=1.000000  
cons177:  X15482+X48152=1  
cons178:  S152-S632+999X15632>=2.000000  
cons179:  S632-S152+999X63152>=1.000000  
cons180:  X15632+X63152=1  
cons181:  S152-S752+999X15752>=1.000000  
cons182:  S752-S152+999X75152>=1.000000  
cons183:  X15752+X75152=1  
cons184:  S152-S762+999X15762>=0.500000  
cons185:  S762-S152+999X76152>=1.000000  
cons186:  X15762+X76152=1  
cons187:  S252-S3162+999X253162>=2.000000  
cons188:  S3162-S252+999X316252>=1.000000  
cons189:  X253162+X316252=1  
cons190:  S252-S3172+999X253172>=1.000000  
cons191:  S3172-S252+999X317252>=1.000000  
cons192:  X253172+X317252=1  
cons193:  S252-S3182+999X253182>=6.000000  
cons194:  S3182-S252+999X318252>=1.000000  
cons195:  X253182+X318252=1  
cons196:  S252-S472+999X25472>=2.000000  
cons197:  S472-S252+999X47252>=1.000000  
cons198:  X25472+X47252=1  
cons199:  S252-S482+999X25482>=1.000000  
cons200:  S482-S252+999X48252>=1.000000  
cons201:  X25482+X48252=1  
cons202:  S252-S632+999X25632>=2.000000  
cons203:  S632-S252+999X63252>=1.000000  
cons204:  X25632+X63252=1  
cons205:  S252-S752+999X25752>=1.000000  
cons206:  S752-S252+999X75252>=1.000000  
cons207:  X25752+X75252=1  
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cons208:  S252-S762+999X25762>=0.500000  
cons209:  S762-S252+999X76252>=1.000000  
cons210:  X25762+X76252=1  
cons211:  S3162-S3172+999X3163172>=1.000000  
cons212:  S3172-S3162+999X3173162>=2.000000  
cons213:  X3163172+X3173162=1  
cons214:  S3162-S3182+999X3163182>=6.000000  
cons215:  S3182-S3162+999X3183162>=2.000000  
cons216:  X3163182+X3183162=1  
cons217:  S3162-S472+999X316472>=2.000000  
cons218:  S472-S3162+999X473162>=2.000000  
cons219:  X316472+X473162=1  
cons220:  S3162-S482+999X316482>=1.000000  
cons221:  S482-S3162+999X483162>=2.000000  
cons222:  X316482+X483162=1  
cons223:  S3162-S632+999X316632>=2.000000  
cons224:  S632-S3162+999X633162>=2.000000  
cons225:  X316632+X633162=1  
cons226:  S3162-S752+999X316752>=1.000000  
cons227:  S752-S3162+999X753162>=2.000000  
cons228:  X316752+X753162=1  
cons229:  S3162-S762+999X316762>=0.500000  
cons230:  S762-S3162+999X763162>=2.000000  
cons231:  X316762+X763162=1  
cons232:  S3172-S3182+999X3173182>=6.000000  
cons233:  S3182-S3172+999X3183172>=1.000000  
cons234:  X3173182+X3183172=1  
cons235:  S3172-S472+999X317472>=2.000000  
cons236:  S472-S3172+999X473172>=1.000000  
cons237:  X317472+X473172=1  
cons238:  S3172-S482+999X317482>=1.000000  
cons239:  S482-S3172+999X483172>=1.000000  
cons240:  X317482+X483172=1  
cons241:  S3172-S632+999X317632>=2.000000  
cons242:  S632-S3172+999X633172>=1.000000  
cons243:  X317632+X633172=1  
cons244:  S3172-S752+999X317752>=1.000000  
cons245:  S752-S3172+999X753172>=1.000000  
cons246:  X317752+X753172=1  
cons247:  S3172-S762+999X317762>=0.500000  
cons248:  S762-S3172+999X763172>=1.000000  
cons249:  X317762+X763172=1  
cons250:  S3182-S472+999X318472>=2.000000  
cons251:  S472-S3182+999X473182>=6.000000  
cons252:  X318472+X473182=1  
cons253:  S3182-S482+999X318482>=1.000000  
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cons254:  S482-S3182+999X483182>=6.000000  
cons255:  X318482+X483182=1  
cons256:  S3182-S632+999X318632>=2.000000  
cons257:  S632-S3182+999X633182>=6.000000  
cons258:  X318632+X633182=1  
cons259:  S3182-S752+999X318752>=1.000000  
cons260:  S752-S3182+999X753182>=6.000000  
cons261:  X318752+X753182=1  
cons262:  S3182-S762+999X318762>=0.500000  
cons263:  S762-S3182+999X763182>=6.000000  
cons264:  X318762+X763182=1  
cons265:  S472-S482+999X47482>=1.000000  
cons266:  S482-S472+999X48472>=2.000000  
cons267:  X47482+X48472=1  
cons268:  S472-S632+999X47632>=2.000000  
cons269:  S632-S472+999X63472>=2.000000  
cons270:  X47632+X63472=1  
cons271:  S472-S752+999X47752>=1.000000  
cons272:  S752-S472+999X75472>=2.000000  
cons273:  X47752+X75472=1  
cons274:  S472-S762+999X47762>=0.500000  
cons275:  S762-S472+999X76472>=2.000000  
cons276:  X47762+X76472=1  
cons277:  S482-S632+999X48632>=2.000000  
cons278:  S632-S482+999X63482>=1.000000  
cons279:  X48632+X63482=1  
cons280:  S482-S752+999X48752>=1.000000  
cons281:  S752-S482+999X75482>=1.000000  
cons282:  X48752+X75482=1  
cons283:  S482-S762+999X48762>=0.500000  
cons284:  S762-S482+999X76482>=1.000000  
cons285:  X48762+X76482=1  
cons286:  S632-S752+999X63752>=1.000000  
cons287:  S752-S632+999X75632>=2.000000  
cons288:  X63752+X75632=1  
cons289:  S632-S762+999X63762>=0.500000  
cons290:  S762-S632+999X76632>=2.000000  
cons291:  X63762+X76632=1  
cons292:  S752-S762+999X75762>=0.500000  
cons293:  S762-S752+999X76752>=1.000000  
cons294:  X75762+X76752=1  
cons295:  S123-S263+999X12263>=2.000000  
cons296:  S263-S123+999X26123>=1.000000  
cons297:  X12263+X26123=1  
cons298:  S123-S3133+999X123133>=2.000000  
cons299:  S3133-S123+999X313123>=1.000000  
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cons300:  X123133+X313123=1  
cons301:  S123-S3143+999X123143>=2.000000  
cons302:  S3143-S123+999X314123>=1.000000  
cons303:  X123143+X314123=1  
cons304:  S123-S3153+999X123153>=1.000000  
cons305:  S3153-S123+999X315123>=1.000000  
cons306:  X123153+X315123=1  
cons307:  S123-S443+999X12443>=2.000000  
cons308:  S443-S123+999X44123>=1.000000  
cons309:  X12443+X44123=1  
cons310:  S123-S453+999X12453>=2.000000  
cons311:  S453-S123+999X45123>=1.000000  
cons312:  X12453+X45123=1  
cons313:  S123-S463+999X12463>=1.000000  
cons314:  S463-S123+999X46123>=1.000000  
cons315:  X12463+X46123=1  
cons316:  S123-S643+999X12643>=4.000000  
cons317:  S643-S123+999X64123>=1.000000  
cons318:  X12643+X64123=1  
cons319:  S123-S723+999X12723>=1.000000  
cons320:  S723-S123+999X72123>=1.000000  
cons321:  X12723+X72123=1  
cons322:  S123-S733+999X12733>=1.000000  
cons323:  S733-S123+999X73123>=1.000000  
cons324:  X12733+X73123=1  
cons325:  S123-S743+999X12743>=0.500000  
cons326:  S743-S123+999X74123>=1.000000  
cons327:  X12743+X74123=1  
cons328:  S263-S3133+999X263133>=2.000000  
cons329:  S3133-S263+999X313263>=2.000000  
cons330:  X263133+X313263=1  
cons331:  S263-S3143+999X263143>=2.000000  
cons332:  S3143-S263+999X314263>=2.000000  
cons333:  X263143+X314263=1  
cons334:  S263-S3153+999X263153>=1.000000  
cons335:  S3153-S263+999X315263>=2.000000  
cons336:  X263153+X315263=1  
cons337:  S263-S443+999X26443>=2.000000  
cons338:  S443-S263+999X44263>=2.000000  
cons339:  X26443+X44263=1  
cons340:  S263-S453+999X26453>=2.000000  
cons341:  S453-S263+999X45263>=2.000000  
cons342:  X26453+X45263=1  
cons343:  S263-S463+999X26463>=1.000000  
cons344:  S463-S263+999X46263>=2.000000  
cons345:  X26463+X46263=1  
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cons346:  S263-S643+999X26643>=4.000000  
cons347:  S643-S263+999X64263>=2.000000  
cons348:  X26643+X64263=1  
cons349:  S263-S723+999X26723>=1.000000  
cons350:  S723-S263+999X72263>=2.000000  
cons351:  X26723+X72263=1  
cons352:  S263-S733+999X26733>=1.000000  
cons353:  S733-S263+999X73263>=2.000000  
cons354:  X26733+X73263=1  
cons355:  S263-S743+999X26743>=0.500000  
cons356:  S743-S263+999X74263>=2.000000  
cons357:  X26743+X74263=1  
cons358:  S3133-S3143+999X3133143>=2.000000  
cons359:  S3143-S3133+999X3143133>=2.000000  
cons360:  X3133143+X3143133=1  
cons361:  S3133-S3153+999X3133153>=1.000000  
cons362:  S3153-S3133+999X3153133>=2.000000  
cons363:  X3133153+X3153133=1  
cons364:  S3133-S443+999X313443>=2.000000  
cons365:  S443-S3133+999X443133>=2.000000  
cons366:  X313443+X443133=1  
cons367:  S3133-S453+999X313453>=2.000000  
cons368:  S453-S3133+999X453133>=2.000000  
cons369:  X313453+X453133=1  
cons370:  S3133-S463+999X313463>=1.000000  
cons371:  S463-S3133+999X463133>=2.000000  
cons372:  X313463+X463133=1  
cons373:  S3133-S643+999X313643>=4.000000  
cons374:  S643-S3133+999X643133>=2.000000  
cons375:  X313643+X643133=1  
cons376:  S3133-S723+999X313723>=1.000000  
cons377:  S723-S3133+999X723133>=2.000000  
cons378:  X313723+X723133=1  
cons379:  S3133-S733+999X313733>=1.000000  
cons380:  S733-S3133+999X733133>=2.000000  
cons381:  X313733+X733133=1  
cons382:  S3133-S743+999X313743>=0.500000  
cons383:  S743-S3133+999X743133>=2.000000  
cons384:  X313743+X743133=1  
cons385:  S3143-S3153+999X3143153>=1.000000  
cons386:  S3153-S3143+999X3153143>=2.000000  
cons387:  X3143153+X3153143=1  
cons388:  S3143-S443+999X314443>=2.000000  
cons389:  S443-S3143+999X443143>=2.000000  
cons390:  X314443+X443143=1  
cons391:  S3143-S453+999X314453>=2.000000  
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cons392:  S453-S3143+999X453143>=2.000000  
cons393:  X314453+X453143=1  
cons394:  S3143-S463+999X314463>=1.000000  
cons395:  S463-S3143+999X463143>=2.000000  
cons396:  X314463+X463143=1  
cons397:  S3143-S643+999X314643>=4.000000  
cons398:  S643-S3143+999X643143>=2.000000  
cons399:  X314643+X643143=1  
cons400:  S3143-S723+999X314723>=1.000000  
cons401:  S723-S3143+999X723143>=2.000000  
cons402:  X314723+X723143=1  
cons403:  S3143-S733+999X314733>=1.000000  
cons404:  S733-S3143+999X733143>=2.000000  
cons405:  X314733+X733143=1  
cons406:  S3143-S743+999X314743>=0.500000  
cons407:  S743-S3143+999X743143>=2.000000  
cons408:  X314743+X743143=1  
cons409:  S3153-S443+999X315443>=2.000000  
cons410:  S443-S3153+999X443153>=1.000000  
cons411:  X315443+X443153=1  
cons412:  S3153-S453+999X315453>=2.000000  
cons413:  S453-S3153+999X453153>=1.000000  
cons414:  X315453+X453153=1  
cons415:  S3153-S463+999X315463>=1.000000  
cons416:  S463-S3153+999X463153>=1.000000  
cons417:  X315463+X463153=1  
cons418:  S3153-S643+999X315643>=4.000000  
cons419:  S643-S3153+999X643153>=1.000000  
cons420:  X315643+X643153=1  
cons421:  S3153-S723+999X315723>=1.000000  
cons422:  S723-S3153+999X723153>=1.000000  
cons423:  X315723+X723153=1  
cons424:  S3153-S733+999X315733>=1.000000  
cons425:  S733-S3153+999X733153>=1.000000  
cons426:  X315733+X733153=1  
cons427:  S3153-S743+999X315743>=0.500000  
cons428:  S743-S3153+999X743153>=1.000000  
cons429:  X315743+X743153=1  
cons430:  S443-S453+999X44453>=2.000000  
cons431:  S453-S443+999X45443>=2.000000  
cons432:  X44453+X45443=1  
cons433:  S443-S463+999X44463>=1.000000  
cons434:  S463-S443+999X46443>=2.000000  
cons435:  X44463+X46443=1  
cons436:  S443-S643+999X44643>=4.000000  
cons437:  S643-S443+999X64443>=2.000000  
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cons438:  X44643+X64443=1  
cons439:  S443-S723+999X44723>=1.000000  
cons440:  S723-S443+999X72443>=2.000000  
cons441:  X44723+X72443=1  
cons442:  S443-S733+999X44733>=1.000000  
cons443:  S733-S443+999X73443>=2.000000  
cons444:  X44733+X73443=1  
cons445:  S443-S743+999X44743>=0.500000  
cons446:  S743-S443+999X74443>=2.000000  
cons447:  X44743+X74443=1  
cons448:  S453-S463+999X45463>=1.000000  
cons449:  S463-S453+999X46453>=2.000000  
cons450:  X45463+X46453=1  
cons451:  S453-S643+999X45643>=4.000000  
cons452:  S643-S453+999X64453>=2.000000  
cons453:  X45643+X64453=1  
cons454:  S453-S723+999X45723>=1.000000  
cons455:  S723-S453+999X72453>=2.000000  
cons456:  X45723+X72453=1  
cons457:  S453-S733+999X45733>=1.000000  
cons458:  S733-S453+999X73453>=2.000000  
cons459:  X45733+X73453=1  
cons460:  S453-S743+999X45743>=0.500000  
cons461:  S743-S453+999X74453>=2.000000  
cons462:  X45743+X74453=1  
cons463:  S463-S643+999X46643>=4.000000  
cons464:  S643-S463+999X64463>=1.000000  
cons465:  X46643+X64463=1  
cons466:  S463-S723+999X46723>=1.000000  
cons467:  S723-S463+999X72463>=1.000000  
cons468:  X46723+X72463=1  
cons469:  S463-S733+999X46733>=1.000000  
cons470:  S733-S463+999X73463>=1.000000  
cons471:  X46733+X73463=1  
cons472:  S463-S743+999X46743>=0.500000  
cons473:  S743-S463+999X74463>=1.000000  
cons474:  X46743+X74463=1  
cons475:  S643-S723+999X64723>=1.000000  
cons476:  S723-S643+999X72643>=4.000000  
cons477:  X64723+X72643=1  
cons478:  S643-S733+999X64733>=1.000000  
cons479:  S733-S643+999X73643>=4.000000  
cons480:  X64733+X73643=1  
cons481:  S643-S743+999X64743>=0.500000  
cons482:  S743-S643+999X74643>=4.000000  
cons483:  X64743+X74643=1  
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cons484:  S723-S733+999X72733>=1.000000  
cons485:  S733-S723+999X73723>=1.000000  
cons486:  X72733+X73723=1  
cons487:  S723-S743+999X72743>=0.500000  
cons488:  S743-S723+999X74723>=1.000000  
cons489:  X72743+X74723=1  
cons490:  S733-S743+999X73743>=0.500000  
cons491:  S743-S733+999X74733>=1.000000  
cons492:  X73743+X74733=1  
cons493:  S2124-S2134+999X2122134>=0.500000  
cons494:  S2134-S2124+999X2132124>=0.500000  
cons495:  X2122134+X2132124=1  
cons496:  S2124-S3194+999X2123194>=4.000000  
cons497:  S3194-S2124+999X3192124>=0.500000  
cons498:  X2123194+X3192124=1  
cons499:  S2124-S3204+999X2123204>=2.000000  
cons500:  S3204-S2124+999X3202124>=0.500000  
cons501:  X2123204+X3202124=1  
cons502:  S2124-S3214+999X2123214>=2.000000  
cons503:  S3214-S2124+999X3212124>=0.500000  
cons504:  X2123214+X3212124=1  
cons505:  S2124-S3224+999X2123224>=4.000000  
cons506:  S3224-S2124+999X3222124>=0.500000  
cons507:  X2123224+X3222124=1  
cons508:  S2124-S664+999X212664>=1.000000  
cons509:  S664-S2124+999X662124>=0.500000  
cons510:  X212664+X662124=1  
cons511:  S2124-S674+999X212674>=1.000000  
cons512:  S674-S2124+999X672124>=0.500000  
cons513:  X212674+X672124=1  
cons514:  S2134-S3194+999X2133194>=4.000000  
cons515:  S3194-S2134+999X3192134>=0.500000  
cons516:  X2133194+X3192134=1  
cons517:  S2134-S3204+999X2133204>=2.000000  
cons518:  S3204-S2134+999X3202134>=0.500000  
cons519:  X2133204+X3202134=1  
cons520:  S2134-S3214+999X2133214>=2.000000  
cons521:  S3214-S2134+999X3212134>=0.500000  
cons522:  X2133214+X3212134=1  
cons523:  S2134-S3224+999X2133224>=4.000000  
cons524:  S3224-S2134+999X3222134>=0.500000  
cons525:  X2133224+X3222134=1  
cons526:  S2134-S664+999X213664>=1.000000  
cons527:  S664-S2134+999X662134>=0.500000  
cons528:  X213664+X662134=1  
cons529:  S2134-S674+999X213674>=1.000000  
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cons530:  S674-S2134+999X672134>=0.500000  
cons531:  X213674+X672134=1  
cons532:  S3194-S3204+999X3193204>=2.000000  
cons533:  S3204-S3194+999X3203194>=4.000000  
cons534:  X3193204+X3203194=1  
cons535:  S3194-S3214+999X3193214>=2.000000  
cons536:  S3214-S3194+999X3213194>=4.000000  
cons537:  X3193214+X3213194=1  
cons538:  S3194-S3224+999X3193224>=4.000000  
cons539:  S3224-S3194+999X3223194>=4.000000  
cons540:  X3193224+X3223194=1  
cons541:  S3194-S664+999X319664>=1.000000  
cons542:  S664-S3194+999X663194>=4.000000  
cons543:  X319664+X663194=1  
cons544:  S3194-S674+999X319674>=1.000000  
cons545:  S674-S3194+999X673194>=4.000000  
cons546:  X319674+X673194=1  
cons547:  S3204-S3214+999X3203214>=2.000000  
cons548:  S3214-S3204+999X3213204>=2.000000  
cons549:  X3203214+X3213204=1  
cons550:  S3204-S3224+999X3203224>=4.000000  
cons551:  S3224-S3204+999X3223204>=2.000000  
cons552:  X3203224+X3223204=1  
cons553:  S3204-S664+999X320664>=1.000000  
cons554:  S664-S3204+999X663204>=2.000000  
cons555:  X320664+X663204=1  
cons556:  S3204-S674+999X320674>=1.000000  
cons557:  S674-S3204+999X673204>=2.000000  
cons558:  X320674+X673204=1  
cons559:  S3214-S3224+999X3213224>=4.000000  
cons560:  S3224-S3214+999X3223214>=2.000000  
cons561:  X3213224+X3223214=1  
cons562:  S3214-S664+999X321664>=1.000000  
cons563:  S664-S3214+999X663214>=2.000000  
cons564:  X321664+X663214=1  
cons565:  S3214-S674+999X321674>=1.000000  
cons566:  S674-S3214+999X673214>=2.000000  
cons567:  X321674+X673214=1  
cons568:  S3224-S664+999X322664>=1.000000  
cons569:  S664-S3224+999X663224>=4.000000  
cons570:  X322664+X663224=1  
cons571:  S3224-S674+999X322674>=1.000000  
cons572:  S674-S3224+999X673224>=4.000000  
cons573:  X322674+X673224=1  
cons574:  S664-S674+999X66674>=1.000000  
cons575:  S674-S664+999X67664>=1.000000  
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cons576:  X66674+X67664=1  
cons577:  S245-S2115+999X242115>=1.500000  
cons578:  S2115-S245+999X211245>=2.500000  
cons579:  X242115+X211245=1  
cons580:  S245-S335+999X24335>=10.000000  
cons581:  S335-S245+999X33245>=2.500000  
cons582:  X24335+X33245=1  
cons583:  S245-S385+999X24385>=6.000000  
cons584:  S385-S245+999X38245>=2.500000  
cons585:  X24385+X38245=1  
cons586:  S245-S3105+999X243105>=6.000000  
cons587:  S3105-S245+999X310245>=2.500000  
cons588:  X243105+X310245=1  
cons589:  S245-S625+999X24625>=5.000000  
cons590:  S625-S245+999X62245>=2.500000  
cons591:  X24625+X62245=1  
cons592:  S245-S655+999X24655>=3.000000  
cons593:  S655-S245+999X65245>=2.500000  
cons594:  X24655+X65245=1  
cons595:  S2115-S335+999X211335>=10.000000  
cons596:  S335-S2115+999X332115>=1.500000  
cons597:  X211335+X332115=1  
cons598:  S2115-S385+999X211385>=6.000000  
cons599:  S385-S2115+999X382115>=1.500000  
cons600:  X211385+X382115=1  
cons601:  S2115-S3105+999X2113105>=6.000000  
cons602:  S3105-S2115+999X3102115>=1.500000  
cons603:  X2113105+X3102115=1  
cons604:  S2115-S625+999X211625>=5.000000  
cons605:  S625-S2115+999X622115>=1.500000  
cons606:  X211625+X622115=1  
cons607:  S2115-S655+999X211655>=3.000000  
cons608:  S655-S2115+999X652115>=1.500000  
cons609:  X211655+X652115=1  
cons610:  S335-S385+999X33385>=6.000000  
cons611:  S385-S335+999X38335>=10.000000  
cons612:  X33385+X38335=1  
cons613:  S335-S3105+999X333105>=6.000000  
cons614:  S3105-S335+999X310335>=10.000000  
cons615:  X333105+X310335=1  
cons616:  S335-S625+999X33625>=5.000000  
cons617:  S625-S335+999X62335>=10.000000  
cons618:  X33625+X62335=1  
cons619:  S335-S655+999X33655>=3.000000  
cons620:  S655-S335+999X65335>=10.000000  
cons621:  X33655+X65335=1  
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cons622:  S385-S3105+999X383105>=6.000000  
cons623:  S3105-S385+999X310385>=6.000000  
cons624:  X383105+X310385=1  
cons625:  S385-S625+999X38625>=5.000000  
cons626:  S625-S385+999X62385>=6.000000  
cons627:  X38625+X62385=1  
cons628:  S385-S655+999X38655>=3.000000  
cons629:  S655-S385+999X65385>=6.000000  
cons630:  X38655+X65385=1  
cons631:  S3105-S625+999X310625>=5.000000  
cons632:  S625-S3105+999X623105>=6.000000  
cons633:  X310625+X623105=1  
cons634:  S3105-S655+999X310655>=3.000000  
cons635:  S655-S3105+999X653105>=6.000000  
cons636:  X310655+X653105=1  
cons637:  S625-S655+999X62655>=3.000000  
cons638:  S655-S625+999X65625>=5.000000  
cons639:  X62655+X65625=1  
cons640:  S116-S216+999X11216>=3.000000  
cons641:  S216-S116+999X21116>=3.500000  
cons642:  X11216+X21116=1  
cons643:  S116-S236+999X11236>=2.500000  
cons644:  S236-S116+999X23116>=3.500000  
cons645:  X11236+X23116=1  
cons646:  S116-S316+999X11316>=7.000000  
cons647:  S316-S116+999X31116>=3.500000  
cons648:  X11316+X31116=1  
cons649:  S116-S326+999X11326>=6.000000  
cons650:  S326-S116+999X32116>=3.500000  
cons651:  X11326+X32116=1  
cons652:  S116-S366+999X11366>=6.000000  
cons653:  S366-S116+999X36116>=3.500000  
cons654:  X11366+X36116=1  
cons655:  S116-S416+999X11416>=6.000000  
cons656:  S416-S116+999X41116>=3.500000  
cons657:  X11416+X41116=1  
cons658:  S116-S426+999X11426>=6.000000  
cons659:  S426-S116+999X42116>=3.500000  
cons660:  X11426+X42116=1  
cons661:  S116-S616+999X11616>=5.000000  
cons662:  S616-S116+999X61116>=3.500000  
cons663:  X11616+X61116=1  
cons664:  S116-S716+999X11716>=3.000000  
cons665:  S716-S116+999X71116>=3.500000  
cons666:  X11716+X71116=1  
cons667:  S216-S236+999X21236>=2.500000  
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cons668:  S236-S216+999X23216>=3.000000  
cons669:  X21236+X23216=1  
cons670:  S216-S316+999X21316>=7.000000  
cons671:  S316-S216+999X31216>=3.000000  
cons672:  X21316+X31216=1  
cons673:  S216-S326+999X21326>=6.000000  
cons674:  S326-S216+999X32216>=3.000000  
cons675:  X21326+X32216=1  
cons676:  S216-S366+999X21366>=6.000000  
cons677:  S366-S216+999X36216>=3.000000  
cons678:  X21366+X36216=1  
cons679:  S216-S416+999X21416>=6.000000  
cons680:  S416-S216+999X41216>=3.000000  
cons681:  X21416+X41216=1  
cons682:  S216-S426+999X21426>=6.000000  
cons683:  S426-S216+999X42216>=3.000000  
cons684:  X21426+X42216=1  
cons685:  S216-S616+999X21616>=5.000000  
cons686:  S616-S216+999X61216>=3.000000  
cons687:  X21616+X61216=1  
cons688:  S216-S716+999X21716>=3.000000  
cons689:  S716-S216+999X71216>=3.000000  
cons690:  X21716+X71216=1  
cons691:  S236-S316+999X23316>=7.000000  
cons692:  S316-S236+999X31236>=2.500000  
cons693:  X23316+X31236=1  
cons694:  S236-S326+999X23326>=6.000000  
cons695:  S326-S236+999X32236>=2.500000  
cons696:  X23326+X32236=1  
cons697:  S236-S366+999X23366>=6.000000  
cons698:  S366-S236+999X36236>=2.500000  
cons699:  X23366+X36236=1  
cons700:  S236-S416+999X23416>=6.000000  
cons701:  S416-S236+999X41236>=2.500000  
cons702:  X23416+X41236=1  
cons703:  S236-S426+999X23426>=6.000000  
cons704:  S426-S236+999X42236>=2.500000  
cons705:  X23426+X42236=1  
cons706:  S236-S616+999X23616>=5.000000  
cons707:  S616-S236+999X61236>=2.500000  
cons708:  X23616+X61236=1  
cons709:  S236-S716+999X23716>=3.000000  
cons710:  S716-S236+999X71236>=2.500000  
cons711:  X23716+X71236=1  
cons712:  S316-S326+999X31326>=6.000000  
cons713:  S326-S316+999X32316>=7.000000  
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cons714:  X31326+X32316=1  
cons715:  S316-S366+999X31366>=6.000000  
cons716:  S366-S316+999X36316>=7.000000  
cons717:  X31366+X36316=1  
cons718:  S316-S416+999X31416>=6.000000  
cons719:  S416-S316+999X41316>=7.000000  
cons720:  X31416+X41316=1  
cons721:  S316-S426+999X31426>=6.000000  
cons722:  S426-S316+999X42316>=7.000000  
cons723:  X31426+X42316=1  
cons724:  S316-S616+999X31616>=5.000000  
cons725:  S616-S316+999X61316>=7.000000  
cons726:  X31616+X61316=1  
cons727:  S316-S716+999X31716>=3.000000  
cons728:  S716-S316+999X71316>=7.000000  
cons729:  X31716+X71316=1  
cons730:  S326-S366+999X32366>=6.000000  
cons731:  S366-S326+999X36326>=6.000000  
cons732:  X32366+X36326=1  
cons733:  S326-S416+999X32416>=6.000000  
cons734:  S416-S326+999X41326>=6.000000  
cons735:  X32416+X41326=1  
cons736:  S326-S426+999X32426>=6.000000  
cons737:  S426-S326+999X42326>=6.000000  
cons738:  X32426+X42326=1  
cons739:  S326-S616+999X32616>=5.000000  
cons740:  S616-S326+999X61326>=6.000000  
cons741:  X32616+X61326=1  
cons742:  S326-S716+999X32716>=3.000000  
cons743:  S716-S326+999X71326>=6.000000  
cons744:  X32716+X71326=1  
cons745:  S366-S416+999X36416>=6.000000  
cons746:  S416-S366+999X41366>=6.000000  
cons747:  X36416+X41366=1  
cons748:  S366-S426+999X36426>=6.000000  
cons749:  S426-S366+999X42366>=6.000000  
cons750:  X36426+X42366=1  
cons751:  S366-S616+999X36616>=5.000000  
cons752:  S616-S366+999X61366>=6.000000  
cons753:  X36616+X61366=1  
cons754:  S366-S716+999X36716>=3.000000  
cons755:  S716-S366+999X71366>=6.000000  
cons756:  X36716+X71366=1  
cons757:  S416-S426+999X41426>=6.000000  
cons758:  S426-S416+999X42416>=6.000000  
cons759:  X41426+X42416=1  
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cons760:  S416-S616+999X41616>=5.000000  
cons761:  S616-S416+999X61416>=6.000000  
cons762:  X41616+X61416=1  
cons763:  S416-S716+999X41716>=3.000000  
cons764:  S716-S416+999X71416>=6.000000  
cons765:  X41716+X71416=1  
cons766:  S426-S616+999X42616>=5.000000  
cons767:  S616-S426+999X61426>=6.000000  
cons768:  X42616+X61426=1  
cons769:  S426-S716+999X42716>=3.000000  
cons770:  S716-S426+999X71426>=6.000000  
cons771:  X42716+X71426=1  
cons772:  S616-S716+999X61716>=3.000000  
cons773:  S716-S616+999X71616>=5.000000  
cons774:  X61716+X71616=1 
 
(3.8) and (3.9): 
cons775:  0.125C1-L1<=6  
cons776:  E1+0.125C1>=6  
cons777:  0.125C2-L2<=7  
cons778:  E2+0.125C2>=7  
cons779:  0.125C3-L3<=14  
cons780:  E3+0.125C3>=14  
cons781:  0.125C4-L4<=3  

cons782:  E4+0.125C4>=3  
cons783:  0.125C5-L5<=1  
cons784:  E5+0.125C5>=1  
cons785:  0.125C6-L6<=5  
cons786:  E6+0.125C6>=5  
cons787:  0.125C7-L7<=3  
cons788:  E7+0.125C7>=3

 
(3.10) and (3.11): 
cons789:  L1-LI1<=0  
cons790:  E1-EI1<=0.99  
cons791:  L2-LI2<=0  
cons792:  E2-EI2<=0.99  
cons793:  L3-LI3<=0  
cons794:  E3-EI3<=0.99  
cons795:  L4-LI4<=0  

cons796:  E4-EI4<=0.99  
cons797:  L5-LI5<=0  
cons798:  E5-EI5<=0.99  
cons799:  L6-LI6<=0  
cons800:  E6-EI6<=0.99  
cons801:  L7-LI7<=0  
cons802:  E7-EI7<=0.99

 
(5.1): 
cons803:  S131=1.000000 
cons804:  S141=1.500000 
cons805:  S431=2.000000 
cons806:  S511=5.000000 
cons807:  S152=3.000000 
cons808:  S252=2.000000 
cons809:  S3172=4.000000 
cons810:  S472=6.000000 
cons811:  S482=5.000000 
cons812:  S123=3.000000 

cons813:  S263=4.000000 
cons814:  S453=6.000000 
cons815:  S2124=3.000000 
cons816:  S2134=3.500000 
cons817:  S3204=6.500000 
cons818:  S3214=4.000000 
cons819:  S116=4.580000 
cons820:  S245=6.000000 
cons821:  S2115=4.000000 
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Bounds 
LI1 free 
LI2 free 
LI3 free 
LI4 free 
LI5 free 

LI6 free 
LI7 free 
EI1 free 
EI2 free 
EI3 free 

EI4 free 
EI5 free 
EI6 free 
EI7 free 

 
Integers 

EI1 LI1 
EI2 LI2 

EI3 LI3 
EI4 LI4 

EI5 LI5 
EI6 LI6 

EI7 LI7 

 
X13141 X14131 
X13221 X22131 
X13351 X35131 
X13371 X37131 
X13431 X43131 
X13511 X51131 
X14221 X22141 
X14351 X35141 
X14371 X37141 
X14431 X43141 
X14511 X51141 
X22351 X35221 
X22371 X37221 
X22431 X43221 
X22511 X51221 
X35371 X37351 
X35431 X43351 
X35511 X51351 
X37431 X43371 
X37511 X51371 
X43511 X51431 
X15252 X25152 
X153162 X316152 
X153172 X317152 
X153182 X318152 
X15472 X47152 
X15482 X48152 
X15632 X63152 
X15752 X75152 
X15762 X76152 
X253162 X316252 
X253172 X317252 
X253182 X318252 
X25472 X47252 
X25482 X48252 

X25632 X63252 
X25752 X75252 
X25762 X76252 
X3163172 X3173162 
X3163182 X3183162 
X316472 X473162 
X316482 X483162 
X316632 X633162 
X316752 X753162 
X316762 X763162 
X3173182 X3183172 
X317472 X473172 
X317482 X483172 
X317632 X633172 
X317752 X753172 
X317762 X763172 
X318472 X473182 
X318482 X483182 
X318632 X633182 
X318752 X753182 
X318762 X763182 
X47482 X48472 
X47632 X63472 
X47752 X75472 
X47762 X76472 
X48632 X63482 
X48752 X75482 
X48762 X76482 
X63752 X75632 
X63762 X76632 
X75762 X76752 
X12263 X26123 
X123133 X313123 
X123143 X314123 
X123153 X315123 

X12443 X44123 
X12453 X45123 
X12463 X46123 
X12643 X64123 
X12723 X72123 
X12733 X73123 
X12743 X74123 
X263133 X313263 
X263143 X314263 
X263153 X315263 
X26443 X44263 
X26453 X45263 
X26463 X46263 
X26643 X64263 
X26723 X72263 
X26733 X73263 
X26743 X74263 
X3133143 X3143133 
X3133153 X3153133 
X313443 X443133 
X313453 X453133 
X313463 X463133 
X313643 X643133 
X313723 X723133 
X313733 X733133 
X313743 X743133 
X3143153 X3153143 
X314443 X443143 
X314453 X453143 
X314463 X463143 
X314643 X643143 
X314723 X723143 
X314733 X733143 
X314743 X743143 
X315443 X443153 
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X315453 X453153 
X315463 X463153 
X315643 X643153 
X315723 X723153 
X315733 X733153 
X315743 X743153 
X44453 X45443 
X44463 X46443 
X44643 X64443 
X44723 X72443 
X44733 X73443 
X44743 X74443 
X45463 X46453 
X45643 X64453 
X45723 X72453 
X45733 X73453 
X45743 X74453 
X46643 X64463 
X46723 X72463 
X46733 X73463 
X46743 X74463 
X64723 X72643 
X64733 X73643 
X64743 X74643 
X72733 X73723 
X72743 X74723 
X73743 X74733 
X2122134 X2132124 
X2123194 X3192124 
X2123204 X3202124 
X2123214 X3212124 
X2123224 X3222124 
X212664 X662124 
X212674 X672124 
X2133194 X3192134 
X2133204 X3202134 
X2133214 X3212134 
X2133224 X3222134 
X213664 X662134 
X213674 X672134 
X3193204 X3203194 

X3193214 X3213194 
X3193224 X3223194 
X319664 X663194 
X319674 X673194 
X3203214 X3213204 
X3203224 X3223204 
X320664 X663204 
X320674 X673204 
X3213224 X3223214 
X321664 X663214 
X321674 X673214 
X322664 X663224 
X322674 X673224 
X66674 X67664 
X242115 X211245 
X24335 X33245 
X24385 X38245 
X243105 X310245 
X24625 X62245 
X24655 X65245 
X211335 X332115 
X211385 X382115 
X2113105 X3102115 
X211625 X622115 
X211655 X652115 
X33385 X38335 
X333105 X310335 
X33625 X62335 
X33655 X65335 
X383105 X310385 
X38625 X62385 
X38655 X65385 
X310625 X623105 
X310655 X653105 
X62655 X65625 
X11216 X21116 
X11236 X23116 
X11316 X31116 
X11326 X32116 
X11366 X36116 
X11416 X41116 

X11426 X42116 
X11616 X61116 
X11716 X71116 
X21236 X23216 
X21316 X31216 
X21326 X32216 
X21366 X36216 
X21416 X41216 
X21426 X42216 
X21616 X61216 
X21716 X71216 
X23316 X31236 
X23326 X32236 
X23366 X36236 
X23416 X41236 
X23426 X42236 
X23616 X61236 
X23716 X71236 
X31326 X32316 
X31366 X36316 
X31416 X41316 
X31426 X42316 
X31616 X61316 
X31716 X71316 
X32366 X36326 
X32416 X41326 
X32426 X42326 
X32616 X61326 
X32716 X71326 
X36416 X41366 
X36426 X42366 
X36616 X61366 
X36716 X71366 
X41426 X42416 
X41616 X61416 
X41716 X71416 
X42616 X61426 
X42716 X71426 
X61716 X71616

 
End 
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APPENDIX IX 

THE OPTIMAL RESULTS OF THE DAPS EXAMPLE  

(FROZEN INTERVAL = 0) 

 

Integer optimal 
Objective =   8.7250000000e+003 
Solution time = 426.41 sec. 
Iterations = 3894808 
Nodes =1117938 
 
Variable Name Solution Value Variable Name  Solution Value
Cmax                          53.000000 
LI4                            1.000000 
EI1                        4.000000 
EI3                        7.000000 
C1                             8.080000 
C2                            53.000000 
C3                            50.000000 
C4                           26.000000 
C5                             8.000000 
C6                            37.000000 
C7                            20.000000 
S221                           8.000000 
S351                           8.500000 
S371                          11.500000 
S3162                          9.500000 
S3182                         11.500000 
S632                          17.500000 
S752                          8.500000 
S762                           8.000000 
S3133                         17.000000 
S3143                         24.000000 
S3153                         15.000000 
S443                           9.000000 
S463                          8.000000 
S643                          19.000000 
S723                          16.000000 
S733                          11.000000 
S743                          12.000000 
S3194                         12.500000 
S3224                          8.500000 

S664                         23.000000 
S674                         22.000000 
S335                          33.000000 
S385                          17.500000 
S3105                          8.500000 
S625                          27.000000 
S655                          24.000000 
S216                          50.000000 
S236                          8.500000 
S316                          43.000000 
S326                          37.000000 
S366                          26.000000 
S416                          20.000000 
S426                          11.000000 
S616                          32.000000 
S716                          17.000000 
S116                           4.580000 
S123                          3.000000 
S131                           1.000000 
S141                           1.500000 
S152                           3.000000 
S245                           6.000000 
S252                           2.000000 
S263                           4.000000 
S2115                          4.000000 
S2124                          3.000000 
S2134                          3.500000 
S3172                          4.000000 
S3204                          6.500000 
S3214                          4.000000 
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S431                          2.000000 
S453                           6.000000 
S472                           6.000000 
S482                           5.000000 
S511                           5.000000 
X13141                        1.000000 
X13221                        1.000000 
X13351                        1.000000 
X13371                        1.000000 
X13431                        1.000000 
X13511                        1.000000 
X14221                        1.000000 
X14351                        1.000000 
X14371                        1.000000 
X14431                        1.000000 
X14511                        1.000000 
X22351                        1.000000 
X22371                        1.000000 
X43221                        1.000000 
X51221                        1.000000 
X35371                        1.000000 
X43351                        1.000000 
X51351                        1.000000 
X43371                        1.000000 
X51371                        1.000000 
X43511                        1.000000 
X25152                        1.000000 
X153162                      1.000000 
X153172                      1.000000 
X153182                      1.000000 
X15472                        1.000000 
X15482                        1.000000 
X15632                        1.000000 
X15752                        1.000000 
X15762                        1.000000 
X253162                      1.000000 
X253172                      1.000000 
X253182                      1.000000 
X25472                        1.000000 
X25482                        1.000000 
X25632                        1.000000 
X25752                        1.000000 
X25762                        1.000000 
X3173162                    1.000000 
X3163182                    1.000000 
X473162                      1.000000 

X483162                      1.000000 
X316632                      1.000000 
X753162                      1.000000 
X763162                      1.000000 
X3173182                    1.000000 
X317472                      1.000000 
X317482                      1.000000 
X317632                      1.000000 
X317752                      1.000000 
X317762                      1.000000 
X473182                      1.000000 
X483182                      1.000000 
X318632                      1.000000 
X753182                      1.000000 
X763182                      1.000000 
X48472                        1.000000 
X47632                        1.000000 
X47752                        1.000000 
X47762                        1.000000 
X48632                        1.000000 
X48752                        1.000000 
X48762                        1.000000 
X75632                        1.000000 
X76632                        1.000000 
X76752                        1.000000 
X12263                        1.000000 
X123133                      1.000000 
X123143                      1.000000 
X123153                      1.000000 
X12443                        1.000000 
X12453                        1.000000 
X12463                        1.000000 
X12643                        1.000000 
X12723                        1.000000 
X12733                        1.000000 
X12743                        1.000000 
X263133                      1.000000 
X263143                      1.000000 
X263153                      1.000000 
X26443                        1.000000 
X26453                        1.000000 
X26463                        1.000000 
X26643                        1.000000 
X26723                        1.000000 
X26733                        1.000000 
X26743                        1.000000 
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X3133143                    1.000000 
X3153133                    1.000000 
X443133                      1.000000 
X453133                      1.000000 
X463133                      1.000000 
X313643                      1.000000 
X723133                      1.000000 
X733133                      1.000000 
X743133                      1.000000 
X3153143                    1.000000 
X443143                      1.000000 
X453143                      1.000000 
X463143                      1.000000 
X643143                      1.000000 
X723143                      1.000000 
X733143                      1.000000 
X743143                      1.000000 
X443153                      1.000000 
X453153                      1.000000 
X463153                      1.000000 
X315643                      1.000000 
X315723                      1.000000 
X733153                      1.000000 
X743153                      1.000000 
X45443                        1.000000 
X46443                        1.000000 
X44643                        1.000000 
X44723                        1.000000 
X44733                        1.000000 
X44743                        1.000000 
X45463                        1.000000 
X45643                        1.000000 
X45723                        1.000000 
X45733                        1.000000 
X45743                        1.000000 
X46643                        1.000000 
X46723                        1.000000 
X46733                        1.000000 
X46743                        1.000000 
X72643                        1.000000 
X73643                        1.000000 
X74643                        1.000000 
X73723                        1.000000 
X74723                        1.000000 
X73743                        1.000000 
X2122134                    1.000000 

X2123194                    1.000000 
X2123204                    1.000000 
X2123214                    1.000000 
X2123224                    1.000000 
X212664                      1.000000 
X212674                      1.000000 
X2133194                    1.000000 
X2133204                    1.000000 
X2133214                    1.000000 
X2133224                    1.000000 
X213664                      1.000000 
X213674                      1.000000 
X3203194                    1.000000 
X3213194                    1.000000 
X3223194                    1.000000 
X319664                      1.000000 
X319674                      1.000000 
X3213204                    1.000000 
X3203224                    1.000000 
X320664                      1.000000 
X320674                      1.000000 
X3213224                    1.000000 
X321664                      1.000000 
X321674                      1.000000 
X322664                      1.000000 
X322674                      1.000000 
X67664                        1.000000 
X211245                      1.000000 
X24335                        1.000000 
X24385                        1.000000 
X243105                      1.000000 
X24625                        1.000000 
X24655                        1.000000 
X211335                      1.000000 
X211385                      1.000000 
X2113105                    1.000000 
X211625                      1.000000 
X211655                      1.000000 
X38335                        1.000000 
X310335                      1.000000 
X62335                        1.000000 
X65335                        1.000000 
X310385                      1.000000 
X38625                        1.000000 
X38655                        1.000000 
X310625                      1.000000 
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X310655                      1.000000 
X65625                        1.000000 
X11216                        1.000000 
X11236                        1.000000 
X11316                        1.000000 
X11326                        1.000000 
X11366                        1.000000 
X11416                        1.000000 
X11426                        1.000000 
X11616                        1.000000 
X11716                        1.000000 
X23216                        1.000000 
X31216                        1.000000 
X32216                        1.000000 
X36216                        1.000000 
X41216                        1.000000 
X42216                        1.000000 
X61216                        1.000000 
X71216                        1.000000 
X23316                        1.000000 
X23326                        1.000000 
X23366                        1.000000 
X23416                        1.000000 
X23426                        1.000000 
X23616                        1.000000 
X23716                        1.000000 
X32316                        1.000000 
X36316                        1.000000 

X41316                        1.000000 
X42316                        1.000000 
X61316                        1.000000 
X71316                        1.000000 
X36326                        1.000000 
X41326                        1.000000 
X42326                        1.000000 
X61326                        1.000000 
X71326                        1.000000 
X41366                        1.000000 
X42366                        1.000000 
X36616                        1.000000 
X71366                        1.000000 
X42416                        1.000000 
X41616                        1.000000 
X71416                        1.000000 
X42616                        1.000000 
X42716                        1.000000 
X71616                        1.000000 
E1                         4.990000 
E2                         0.990000 
E3                         7.990000 
L4                             1.000000 
E4                         0.990000 
E5                         0.990000 
E6                         0.990000 
E7                         0.990000

 
All other variables are zero. 
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APPENDIX X 

THE RESULTS FOR THE CASE STUDY 

 

Table X-1 (a) The results obtained by APSDSS when t = 0 

Items Starting time (hour) Finish time (hour) Random number 
O1F1 1761.0 1763.0 0.029 
O1S1 1759.0 1761.0 0.907 
O2F1 2289.0 2292.0 0.987 
O2S1 2286.0 2289.0 0.994 
O3F2 1768.0 1769.0 0.181 
O3S2 1767.0 1768.0 0.178 
O3S3 1766.0 1767.0 0.293 
O4F2 1480.0 1481.0 0.822 
O4S2 1479.0 1480.0 0.550 
O4S3 1130.0 1131.0 0.606 
O5F3 2087.0 2090.0 0.698 
O5S4 1774.0 1777.0 0.950 
O5S5 1777.0 1780.0 0.801 
O6F3 2282.0 2286.0 0.595 
O6S4 2278.0 2282.0 0.090 
O6S5 89.0 93.0 0.255 
O7S1 2431.0 2435.0 0.556 
O8S1 1937.0 1939.0 0.771 
O9S2 2276.0 2278.0 0.452 
O9S3 2274.0 2276.0 0.991 
O10S2 2271.0 2274.0 0.275 
O10S3 1770.0 1773.0 0.932 
O11S4 1131.0 1133.0 0.862 
O12S4 1769.0 1770.0 0.902 
O13S4 2435.0 2439.0 0.997 
O14S5 1773.0 1774.0 0.942 
O15S5 2090.0 2096.0 0.185 
O16S3 1780.0 1782.0 0.837 
O17S3 1763.0 1766.0 0.077 
O1C1 104.0 114.0 0.315 
O1C2 219.0 224.0 0.906 
O1C3 24.0 29.0 0.151 
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Table X-1 (b) The results obtained by APSDSS when t = 0 

Items Starting time (hour) Finish time (hour) Random number 
O2C1 114.0 129.0 0.374 
O2C2 169.0 176.5 0.437 
O2C3 4.0 11.5 0.046 
O3C8 194.0 199.0 0.601 
O4C8 189.0 194.0 0.586 
O5C11 154.0 169.0 0.423 
O5C14 231.5 239.0 0.952 
O5C15 224.0 231.5 0.923 
O6C11 199.0 219.0 0.622 
O6C14 11.5 21.5 0.098 
O6C15 79.0 89.0 0.287 
O9C8 129.0 139.0 0.399 
O10C8 89.0 104.0 0.305 
O11C11 49.0 59.0 0.273 
O12C11 29.0 34.0 0.213 
O13C11 59.0 79.0 0.278 
O14C14 21.5 24.0 0.116 
O14C15 186.5 189.0 0.560 
O15C14 239.0 254.0 0.974 
O15C15 34.0 49.0 0.242 
O16C8 176.5 186.5 0.440 
O17C8 139.0 154.0 0.421 

O1C4OP1 1026.0 1106.0 0.309 
O1C5OP1 1679.0 1759.0 0.259 
O2C4OP1 452.0 572.0 0.506 
O2C5OP1 898.0 1018.0 0.503 
O3C6OP1 1106.0 1146.0 0.302 
O3C7OP1 698.0 738.0 0.573 
O4C6OP1 1146.0 1186.0 0.187 
O4C7OP1 1439.0 1479.0 0.671 

O5C10OP1 1937.0 2087.0 0.141 
O6C10OP1 1479.0 1679.0 0.899 
O7C4OP1 2271.0 2431.0 0.715 
O7C5OP1 738.0 898.0 0.516 
O8C4OP1 1857.0 1937.0 0.767 
O8C5OP1 1266.0 1346.0 0.664 
O9C7OP1 1186.0 1266.0 0.301 

O10C7OP1 2151.0 2271.0 0.062 
O18C4OP1 1799.0 1807.0 0.245 
O19C4OP1 2111.0 2151.0 0.732 
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Table X-1 (c) The results obtained by APSDSS when t = 0 

Items Starting time (hour) Finish time (hour) Random number 
O20C5OP1 1759.0 1799.0 0.193 
O21C5OP1 2095.0 2111.0 0.250 
O22C5OP1 2087.0 2095.0 0.857 
O23C6OP1 372.0 452.0 0.419 
O24C6OP1 1376.0 1432.0 0.511 
O25C7OP1 682.0 698.0 0.330 
O26C7OP1 602.0 682.0 0.084 
O27C7OP1 1018.0 1026.0 0.675 

O30C10OP1 1346.0 1376.0 0.818 
O31C10OP1 1807.0 1857.0 0.763 

O1C4OP2 969.0 979.0 0.793 
O1C5OP3 1405.0 1425.0 0.907 
O1C4OP5 372.0 382.0 0.443 
O2C4OP2 326.0 341.0 0.032 
O2C5OP3 536.0 566.0 0.621 
O2C4OP5 4.0 19.0 0.089 
O3C6OP2 979.0 984.0 0.793 
O3C9OP1 1584.0 1589.0 0.272 
O3C7OP4 424.0 434.0 0.594 
O3C9OP3 1544.0 1554.0 0.914 
O4C6OP2 984.0 989.0 0.329 
O4C9OP1 1125.0 1130.0 0.662 
O4C7OP4 382.0 392.0 0.450 
O4C9OP3 1085.0 1095.0 0.854 

O5C13 989.0 1004.0 0.806 
O5C10OP4 1789.0 1804.0 0.832 
O5C10OP6 1004.0 1019.0 0.851 

O6C13 2036.0 2056.0 0.991 
O6C10OP4 1229.0 1249.0 0.685 
O6C10OP6 1145.0 1165.0 0.881 
O7C4OP2 2251.0 2271.0 0.256 
O7C5OP3 446.0 486.0 0.621 
O7C4OP5 566.0 586.0 0.642 
O8C4OP2 1779.0 1789.0 0.955 
O8C5OP3 814.0 834.0 0.395 
O8C4OP5 761.0 771.0 0.717 
O9C9OP1 1634.0 1644.0 0.931 
O9C7OP4 741.0 761.0 0.689 
O9C9OP3 156.0 176.0 0.277 

O10C9OP1 141.0 156.0 0.016 
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Table X-1 (d) The results obtained by APSDSS when t = 0 

Items Starting time (hour) Finish time (hour) Random number 
O10C7OP4 1589.0 1619.0 0.922 
O10C9OP3 19.0 49.0 0.222 

O11C13 392.0 402.0 0.298 
O12C13 1619.0 1624.0 0.922 
O13C13 716.0 736.0 0.113 

O16C9OP1 1769.0 1779.0 0.047 
O16C9OP3 341.0 361.0 0.360 
O17C9OP1 1529.0 1544.0 0.592 
O17C9OP3 180.0 210.0 0.316 
O18C4OP2 1669.0 1670.0 0.206 
O18C4OP5 361.0 362.0 0.373 
O19C4OP2 1981.0 1986.0 0.184 
O19C4OP5 736.0 741.0 0.684 
O20C5OP3 1624.0 1634.0 0.165 
O21C5OP3 1081.0 1085.0 0.368 
O22C5OP3 1930.0 1932.0 0.659 
O23C6OP2 362.0 372.0 0.391 
O24C6OP2 1330.0 1337.0 0.687 
O25C7OP4 176.0 180.0 0.313 
O26C7OP4 404.0 424.0 0.524 
O27C7OP4 402.0 404.0 0.521 
O28C9OP1 1069.0 1074.0 0.485 
O28C9OP3 1019.0 1029.0 0.853 
O29C9OP1 954.0 969.0 0.303 
O29C9OP3 834.0 864.0 0.738 
O30C10OP4 1142.0 1145.0 0.145 
O30C10OP6 1130.0 1133.0 0.878 
O31C10OP4 1664.0 1669.0 0.608 
O31C10OP6 1644.0 1649.0 0.938 

O34C13 1390.0 1405.0 0.073 
O35C13 2016.0 2036.0 0.618 

O1C5OP2 1425.0 1455.0 0.721 
O1C4OP4 626.0 656.0 0.645 
O1C5OP5 475.0 505.0 0.613 
O2C5OP2 566.0 611.0 0.401 
O2C4OP4 170.0 215.0 0.299 
O2C5OP5 275.0 320.0 0.415 
O3C6OP3 611.0 626.0 0.641 
O3C7OP3 454.0 469.0 0.140 
O4C6OP3 926.0 941.0 0.818 
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Table X-1 (e) The results obtained by APSDSS when t = 0 

Items Starting time (hour) Finish time (hour) Random number 
O4C7OP3 1330.0 1345.0 0.891 
O5S3C12 65.0 110.0 0.216 

O5C10OP3 1804.0 1849.0 0.722 
O5C13C12 941.0 986.0 0.821 
O5C10OP5 1684.0 1729.0 0.963 
O6S3C12 215.0 275.0 0.343 

O6C10OP3 1249.0 1309.0 0.714 
O6C13C12 986.0 1046.0 0.838 
O6C10OP5 1169.0 1229.0 0.719 
O7C5OP2 505.0 565.0 0.565 
O7C4OP4 2061.0 2121.0 0.995 
O7C5OP5 2.0 62.0 0.067 
O8C5OP2 1079.0 1109.0 0.865 
O8C4OP4 896.0 926.0 0.752 
O8C5OP5 140.0 170.0 0.283 
O9C7OP3 1046.0 1076.0 0.857 

O10C7OP3 2016.0 2061.0 0.990 
O11S3C12 866.0 896.0 0.710 

O11C13C12 320.0 350.0 0.470 
O12S3C12 1109.0 1124.0 0.867 

O12C13C12 1154.0 1169.0 0.881 
O13S3C12 1455.0 1515.0 0.923 

O13C13C12 656.0 716.0 0.656 
O18C4OP4 1076.0 1079.0 0.865 
O19C4OP4 1941.0 1956.0 0.974 
O20C5OP2 1634.0 1649.0 0.904 
O20C5OP5 1515.0 1530.0 0.923 
O21C5OP2 1935.0 1941.0 0.964 
O21C5OP5 469.0 475.0 0.598 
O22C5OP2 1932.0 1935.0 0.385 
O22C5OP5 62.0 65.0 0.089 
O23C6OP3 110.0 140.0 0.226 
O24C6OP3 1309.0 1330.0 0.883 
O25C7OP3 350.0 356.0 0.490 
O26C7OP3 424.0 454.0 0.188 
O27C7OP3 404.0 407.0 0.147 
O30C10OP3 1145.0 1154.0 0.204 
O30C10OP5 1133.0 1142.0 0.878 
O31C10OP3 1669.0 1684.0 0.303 
O31C10OP5 1649.0 1664.0 0.296 
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Table X-1 (f) The results obtained by APSDSS when t = 0 

Items Starting time (hour) Finish time (hour) Random number 
O32C12 716.0 866.0 0.693 
O33C12 2121.0 2211.0 0.995 

O34C13C12 1345.0 1390.0 0.894 
O35C13C12 1956.0 2016.0 0.987 
O1C4OP3 704.0 754.0 0.193 
O1C5OP4 644.0 704.0 0.177 
O2C4OP3 251.0 326.0 0.340 
O2C5OP4 446.0 536.0 0.082 
O3C7OP2 614.0 644.0 0.467 
O3C6OP4 141.0 166.0 0.229 
O3C9OP2 1554.0 1584.0 0.824 
O4C7OP2 1409.0 1439.0 0.332 
O4C6OP4 166.0 191.0 0.257 
O4C9OP2 1095.0 1125.0 0.713 

O5C10OP2 1849.0 1924.0 0.068 
O6C10OP2 1309.0 1409.0 0.525 
O7C4OP3 2151.0 2251.0 0.053 
O7C5OP4 326.0 446.0 0.394 
O8C4OP3 954.0 1004.0 0.747 
O8C5OP4 754.0 814.0 0.724 
O9C7OP2 1125.0 1185.0 0.314 
O9C9OP2 191.0 251.0 0.062 

O10C7OP2 2061.0 2151.0 0.206 
O10C9OP2 51.0 141.0 0.139 
O16C9OP2 1709.0 1769.0 0.954 
O17C9OP2 1439.0 1529.0 0.913 
O18C4OP3 1614.0 1619.0 0.945 
O19C4OP3 1956.0 1981.0 0.912 
O20C5OP4 1584.0 1614.0 0.908 
O21C5OP4 1069.0 1081.0 0.853 
O22C5OP4 1924.0 1930.0 0.963 
O23C6OP4 1.0 51.0 0.070 
O24C6OP4 1004.0 1039.0 0.823 
O25C7OP2 602.0 614.0 0.566 
O26C7OP2 542.0 602.0 0.154 
O27C7OP2 536.0 542.0 0.149 
O28C9OP2 1039.0 1069.0 0.301 
O29C9OP2 864.0 954.0 0.038 
O30C10OP2 1185.0 1200.0 0.344 
O31C10OP2 1684.0 1709.0 0.948 
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Table X-2 (a) The results obtained by APSDSS when t = Day 1 

Items Starting time (hour) Finish time (hour) Random number 
O1F1 2122.0 2124.0 0.044 
O1S1 2120.0 2122.0 0.827 
O2F1 2324.0 2327.0 0.417 
O2S1 2040.0 2043.0 0.613 
O3F2 2048.0 2049.0 0.744 
O3S2 2047.0 2048.0 0.251 
O3S3 2046.0 2047.0 0.886 
O4F2 1245.0 1246.0 0.247 
O4S2 1244.0 1245.0 0.825 
O4S3 938.0 939.0 0.589 
O5F3 2058.0 2061.0 0.879 
O5S4 2055.0 2058.0 0.441 
O5S5 196.5 199.5 0.544 
O6F3 2320.0 2324.0 0.485 
O6S4 623.0 627.0 0.600 
O6S5 1181.0 1185.0 0.722 
O7S1 2480.0 2484.0 0.195 
O8S1 1920.0 1922.0 0.276 
O9S2 1587.0 1589.0 0.852 
O9S3 1177.0 1179.0 0.026 
O10S2 2330.0 2333.0 0.190 
O10S3 2327.0 2330.0 0.354 
O11S4 1179.0 1181.0 0.625 
O12S4 1243.0 1244.0 0.396 
O13S4 1922.0 1926.0 0.181 
O14S5 195.5 196.5 0.231 
O15S5 2049.0 2055.0 0.111 
O16S3 2043.0 2045.0 0.923 
O17S3 2124.0 2127.0 0.073 
O36F1 2045.0 2046.0 0.673 
O36S1 1586.0 1587.0 0.814 
O37S3 1111.0 1113.0 0.406 
O1C1 201.5 211.5 0.822 
O1C2 131.5 136.5 0.430 
O2C1 259.0 274.0 0.991 
O2C2 114.0 121.5 0.337 
O3C8 196.5 201.5 0.700 
O4C8 126.5 131.5 0.430 
O5C11 211.5 226.5 0.883 
O5C14 161.5 169.0 0.560 
O5C15 189.0 196.5 0.589 
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Table X-2 (b) The results obtained by APSDSS when t = Day 1 

Items Starting time (hour) Finish time (hour) Random number 
O6C11 49.0 69.0 0.055 
O6C15 101.5 111.5 0.293 
O9C8 179.0 189.0 0.583 
O10C8 136.5 151.5 0.511 
O11C11 151.5 161.5 0.549 
O13C11 69.0 89.0 0.074 
O14C15 111.5 114.0 0.335 
O15C14 229.0 244.0 0.962 
O16C8 169.0 179.0 0.582 
O17C8 244.0 259.0 0.984 
O36C1 121.5 126.5 0.351 
O36C2 99.0 101.5 0.275 
O36C3 226.5 229.0 0.928 
O37C8 89.0 99.0 0.256 

O1C4OP1 2040.0 2120.0 0.975 
O1C5OP1 601.0 681.0 0.250 
O2C4OP1 1920.0 2040.0 0.921 
O2C5OP1 1426.0 1546.0 0.251 
O3C6OP1 1018.0 1058.0 0.202 
O3C7OP1 441.0 481.0 0.165 
O4C6OP1 1058.0 1098.0 0.630 
O4C7OP1 1098.0 1138.0 0.025 

O5C10OP1 1586.0 1736.0 0.415 
O6C10OP1 2120.0 2320.0 0.454 
O7C4OP1 2320.0 2480.0 0.727 
O7C5OP1 1154.0 1314.0 0.455 
O8C4OP1 1736.0 1816.0 0.159 
O8C5OP1 1840.0 1920.0 0.813 
O9C7OP1 286.0 366.0 0.082 

O10C7OP1 848.0 968.0 0.131 
O18C4OP1 1314.0 1322.0 0.415 
O19C4OP1 561.0 601.0 0.080 
O20C5OP1 681.0 721.0 0.113 
O21C5OP1 1816.0 1832.0 0.257 
O22C5OP1 1322.0 1330.0 0.695 
O23C6OP1 481.0 561.0 0.138 
O24C6OP1 1370.0 1426.0 0.614 
O25C7OP1 1138.0 1154.0 0.090 
O26C7OP1 758.0 838.0 0.183 
O27C7OP1 1832.0 1840.0 0.379 

O30C10OP1 721.0 751.0 0.548 
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Table X-2 (c) The results obtained by APSDSS when t = Day 1 

Items Starting time (hour) Finish time (hour) Random number 
O31C10OP1 968.0 1018.0 0.137 
O36C4OP1 1330.0 1370.0 0.100 
O36C5OP1 1546.0 1586.0 0.742 
O1C4OP2 1793.0 1803.0 0.666 
O1C5OP3 371.0 391.0 0.373 
O1C4OP5 209.0 219.0 0.171 
O2C4OP2 606.0 621.0 0.005 
O2C5OP3 1187.0 1217.0 0.723 
O3C6OP2 773.0 778.0 0.315 
O3C9OP1 1898.0 1903.0 0.961 
O3C7OP4 74.0 84.0 0.111 
O3C9OP3 1614.0 1624.0 0.873 
O4C6OP2 219.0 224.0 0.178 
O4C9OP1 933.0 938.0 0.260 
O4C7OP4 274.0 284.0 0.267 
O4C9OP3 778.0 788.0 0.661 

O5C13 1217.0 1232.0 0.725 
O5C10OP4 1313.0 1328.0 0.546 
O5C10OP6 259.0 274.0 0.267 

O6C13 421.0 441.0 0.245 
O6C10OP4 1713.0 1733.0 0.498 
O6C10OP6 1624.0 1644.0 0.893 
O7C4OP2 2198.0 2218.0 0.650 
O7C5OP3 441.0 481.0 0.422 
O7C4OP5 224.0 244.0 0.217 
O8C4OP2 1598.0 1608.0 0.604 
O8C5OP3 1393.0 1413.0 0.844 
O8C4OP5 1177.0 1187.0 0.705 
O9C9OP1 1167.0 1177.0 0.703 
O9C7OP4 52.0 72.0 0.062 
O9C9OP3 486.0 506.0 0.429 

O10C9OP1 1903.0 1918.0 0.992 
O10C7OP4 661.0 691.0 0.593 

O11C13 941.0 951.0 0.678 
O12C13 1238.0 1243.0 0.002 
O13C13 1803.0 1823.0 0.253 

O16C9OP1 1353.0 1363.0 0.128 
O16C9OP3 621.0 641.0 0.465 
O17C9OP1 1883.0 1898.0 0.883 
O17C9OP3 89.0 119.0 0.132 
O18C4OP2 1166.0 1167.0 0.158 
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Table X-2 (d) The results obtained by APSDSS when t = Day 1 

Items Starting time (hour) Finish time (hour) Random number 
O18C4OP5 294.0 295.0 0.359 
O19C4OP2 481.0 486.0 0.426 
O19C4OP5 84.0 89.0 0.128 
O20C5OP3 284.0 294.0 0.281 
O21C5OP3 1610.0 1614.0 0.259 
O22C5OP3 939.0 941.0 0.509 
O23C6OP2 295.0 305.0 0.365 
O24C6OP2 1334.0 1341.0 0.315 
O25C7OP4 696.0 700.0 0.600 
O26C7OP4 641.0 661.0 0.565 
O27C7OP4 72.0 74.0 0.070 
O28C9OP1 1243.0 1248.0 0.340 
O28C9OP3 305.0 315.0 0.373 
O29C9OP1 1363.0 1378.0 0.803 
O29C9OP3 391.0 421.0 0.381 
O30C10OP4 206.0 209.0 0.165 
O30C10OP6 49.0 52.0 0.060 
O31C10OP4 691.0 696.0 0.596 
O31C10OP6 119.0 124.0 0.160 

O34C13 244.0 259.0 0.266 
O35C13 1413.0 1433.0 0.849 

O36C4OP2 1293.0 1298.0 0.198 
O36C4OP5 1248.0 1253.0 0.780 
O36C5OP3 1383.0 1393.0 0.384 
O37C9OP1 1101.0 1111.0 0.340 
O37C9OP3 951.0 971.0 0.682 
O1C5OP2 503.0 533.0 0.480 
O1C4OP4 1713.0 1743.0 0.899 
O1C5OP5 218.0 248.0 0.199 
O2C5OP2 1349.0 1394.0 0.829 
O2C4OP4 458.0 503.0 0.455 
O2C5OP5 836.0 881.0 0.672 
O3C6OP3 758.0 773.0 0.602 
O3C7OP3 338.0 353.0 0.336 
O4C6OP3 152.0 167.0 0.137 
O4C7OP3 443.0 458.0 0.446 
O5S4C12 1893.0 1938.0 0.966 

O5C10OP3 1409.0 1454.0 0.861 
O5C13C12 623.0 668.0 0.522 
O5C10OP5 1268.0 1313.0 0.787 
O6S4C12 563.0 623.0 0.506 
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Table X-2 (e) The results obtained by APSDSS when t = Day 1 

Items Starting time (hour) Finish time (hour) Random number 
O6C10OP3 1938.0 1998.0 0.985 
O6C13C12 353.0 413.0 0.391 
O6C10OP5 1653.0 1713.0 0.550 
O7C5OP2 887.0 947.0 0.681 
O7C4OP4 1998.0 2058.0 0.994 
O8C5OP2 1623.0 1653.0 0.887 
O8C4OP4 1454.0 1484.0 0.862 
O8C5OP5 947.0 977.0 0.687 
O9C7OP3 167.0 197.0 0.164 

O10C7OP3 698.0 743.0 0.197 
O11S4C12 980.0 1010.0 0.706 

O11C13C12 413.0 443.0 0.416 
O12S4C12 122.0 137.0 0.058 

O12C13C12 1223.0 1238.0 0.744 
O13S4C12 1163.0 1223.0 0.728 

O13C13C12 1743.0 1803.0 0.908 
O18C4OP4 977.0 980.0 0.702 
O19C4OP4 137.0 152.0 0.054 
O20C5OP2 548.0 563.0 0.492 
O20C5OP5 62.0 77.0 0.013 
O21C5OP2 1614.0 1620.0 0.864 
O21C5OP5 1484.0 1490.0 0.865 
O22C5OP2 1160.0 1163.0 0.721 
O22C5OP5 833.0 836.0 0.669 
O23C6OP3 248.0 278.0 0.280 
O24C6OP3 1313.0 1334.0 0.792 
O25C7OP3 881.0 887.0 0.675 
O26C7OP3 668.0 698.0 0.020 
O27C7OP3 1620.0 1623.0 0.879 

O30C10OP3 209.0 218.0 0.001 
O30C10OP5 197.0 206.0 0.168 
O31C10OP3 743.0 758.0 0.307 
O31C10OP5 533.0 548.0 0.481 

O32C12 1010.0 1160.0 0.713 
O33C12 1803.0 1893.0 0.940 

O34C13C12 77.0 122.0 0.030 
O35C13C12 278.0 338.0 0.296 
O36C4OP4 1253.0 1268.0 0.721 
O36C5OP2 1394.0 1409.0 0.846 
O36C5OP5 1334.0 1349.0 0.822 

O38C12 773.0 833.0 0.609 
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Table X-2 (f) The results obtained by APSDSS when t = Day 1 

Items Starting time (hour) Finish time (hour) Random number 
O1C4OP3 1743.0 1793.0 0.595 
O1C5OP4 311.0 371.0 0.292 
O2C4OP3 531.0 606.0 0.312 
O2C5OP4 939.0 1029.0 0.583 
O3C7OP2 411.0 441.0 0.039 
O3C6OP4 286.0 311.0 0.235 
O3C9OP2 1624.0 1654.0 0.001 
O4C7OP2 873.0 903.0 0.637 
O4C6OP4 51.0 76.0 0.016 
O4C9OP2 903.0 933.0 0.280 

O5C10OP2 1473.0 1548.0 0.559 
O6C10OP2 1998.0 2098.0 0.159 
O7C4OP3 2098.0 2198.0 0.191 
O7C5OP4 76.0 196.0 0.065 
O8C4OP3 1548.0 1598.0 0.843 
O8C5OP4 1101.0 1161.0 0.086 
O9C7OP2 226.0 286.0 0.117 
O9C9OP2 606.0 666.0 0.497 

O10C7OP2 758.0 848.0 0.426 
O10C9OP2 1383.0 1473.0 0.841 
O16C9OP2 1293.0 1353.0 0.802 
O17C9OP2 1793.0 1883.0 0.952 
O18C4OP3 1161.0 1166.0 0.688 
O19C4OP3 386.0 411.0 0.327 
O20C5OP4 196.0 226.0 0.081 
O21C5OP4 1598.0 1610.0 0.438 
O22C5OP4 933.0 939.0 0.137 
O24C6OP4 1166.0 1201.0 0.746 
O25C7OP2 1029.0 1041.0 0.641 
O26C7OP2 698.0 758.0 0.541 
O27C7OP2 1654.0 1660.0 0.487 
O28C9OP2 1201.0 1231.0 0.764 
O29C9OP2 441.0 531.0 0.204 
O30C10OP2 371.0 386.0 0.310 
O31C10OP2 848.0 873.0 0.160 
O36C4OP3 1268.0 1293.0 0.189 
O36C5OP4 1353.0 1383.0 0.373 
O37C9OP2 1041.0 1101.0 0.032 
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