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ABSTRACT 

 
 

Engineering structures continuously accumulate damage during their service life due 

to material degradation, human error, and unexpected catastrophic events. Such 

damage adversely affects the safety and performance of structures. The work 

described in this thesis is concerned with condition assessment of bridge structures 

using long-term monitoring data, including vibration-based damage detection and 

structural reliability evaluation, modelling of the temperature-frequency correlation, 

and condition assessment of bridge expansion joints. 

A crucial issue in vibration-based damage detection is the treatment of the ill-

conditioned and noisy system of equations, and it is pursued in this study by two 

numerical regularization methods, namely Tikhonov regularization and truncated 

singular value decomposition. Three approaches, including the L-curve method, 

generalized cross validation and minimum product criterion, to selecting the 

regularization parameters are presented. The performances of the two regularization 

methods with three regularization-parameter-selection approaches are rigorously 

examined and assessed through numerical studies of a truss bridge using both noise-

free and noisy ‘measurement’ data. Minimum product criterion is shown effective 

and robust in the selection of appropriate regularization parameters for these two 

regularization methods.  

In order to take into account the uncertainty in the measured modal parameters, a 

novel method for stochastic FE model updating is proposed. The proposed method 

follows a two-stage model updating scheme. The first stage refers to the 
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identification of probability density functions (PDFs) of updating parameters based 

on measured random modal parameters and the second stage deals with the 

determination of posterior PDFs of structural parameters from the identified PDFs 

and the prior PDFs of structural parameters. An improved perturbation method and 

the Monte Carlo simulation (MCS) method are used to perform the first-stage 

updating. At the second stage updating, the first-stage updating results are combined 

with the prior distribution of updating parameters (if available) by means of Bayesian 

theory to achieve the posterior distribution. Two numerical examples are provided to 

demonstrate and verify the proposed method. Three types of uncertainty in modal 

parameters are considered, and the updating parameter statistics is obtained using the 

improved perturbation method and verified by the MCS method for each type of 

uncertainties. The numerical studies show that the perturbation method generates 

satisfactory model updating results in the case of low uncertainty however the results 

may be less accurate in the case of high uncertainty.  

Using the stochastically updated FE model, structural reliability theory is applied to 

determine the failure probability and reliability index for the predefined limit state. 

With the obtained failure probability and reliability index, rational inspection and 

maintenance strategies can be laid down according to the correspondence between 

reliability index and required maintenance action established by other researchers. 

Such a systematic procedure bridges the gap currently existing between structural 

health monitoring technologies and bridge maintenance and management exercises, 

and the procedure is also capable of taking into account the uncertainty to make a 

decision on inspection/maintenance strategies. Following this approach, structural 

health monitoring is able to provide quantitative information regarding bridge 

inspection and maintenance. The proposed approach is demonstrated through 
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numerical studies with respect to the nominal, updated, and actual models of two 

truss bridges. 

A combined method of principal component analysis (PCA) for feature extraction 

and support vector regression (SVR) for data-based statistical learning is proposed to 

characterize the correlation between modal frequency and temperatures using one-

year monitoring data from the cable-stayed Ting Kau Bridge. The well-defined 

nature of temperature effects on modal parameters makes it possible to discriminate 

abnormal modal change caused by structural damage from normal modal change due 

to temperature variation. Research is focused on the optimal selection of 

predominant features and SVR hyper-parameters to achieve correlation models with 

good generalization capability. The performance of the formulated SVR models with 

the hyper-parameters determined by a grid search method with cross validation and a 

heuristic method, respectively, is examined. Both the ‘dynamic’ regression model 

taking into account thermal inertia effect and the ‘static’ regression model without 

considering thermal inertia effect are formulated and compared. Additionally, the 

proposed method is compared with the method directly using measurement data to 

train SVR models and the multivariate linear regression (MLR) method. 

A procedure for the assessment of bridge expansion joints making use of long-term 

monitoring data is developed. Based on the measurement data of expansion joint 

displacement and bridge temperature, the normal correlation pattern between the 

effective temperature and thermal movement is first established. Alarms will be 

raised when a future pattern deviates from this normal pattern. The extreme 

temperatures for a certain return period are derived using the measurement data for 

design verification. The annual or daily-average accumulative movements 
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experienced by expansion joints are then estimated from the monitoring data for 

comparison with the expected values in design. The proposed procedure is applied to 

the assessment of expansion joints in the Ting Kau Bridge with the use of one-year 

monitoring data.  

In summary, the research described in this dissertation involves the development of a 

systematic approach from statistical identification of structural parameters to 

assessment of component reliability and condition based on long-term monitoring 

data. This approach enables structural damage identification and monitoring-based 

reliability assessment to be explored both in a probabilistic framework taking into 

account uncertainty and randomness inherent in measurement data and structures. 

Following this approach, structural health monitoring technology can provide 

quantitative information for bridge managers to enable decision making on the 

optimization and prioritization of bridge inspection and maintenance. 
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Chapter 1 

INTRODUCTION 
 

 

1.1 Research Motivation 

Civil infrastructure systems (CIS) deteriorate with time and continuously accumulate 

damage throughout their service life due to material deterioration, human error, and 

natural hazards such as earthquakes, storms, fires, long-term fatigue and corrosion. 

Such damage left undetected and uncorrected could potentially cause more damage 

and eventually lead to catastrophic structural failure with loss of human life. In order 

to ensure the serviceability and safety of structures, structural damage detection is 

necessary at the earliest possible stage. Collected data would not only indicate 

potential damage arising from the detected damage, it would also be of essential 

value to the bridge authorities enabling faster and safe decisions on whether or not 

repair, partial replacement or demolition is necessary. Such information on structural 

damage is particularly crucial in cases of both severe natural hazards and long-term 

usage. 

Bridges are vital components of transportation infrastructure systems. They are 

important not only because of their representation of large capital investment, but 

also because of the cost implications if their capacity is impaired or if they fail to 

function. However, bridges cannot last forever. Whatever form of construction is 
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used and whatever materials adopted, sooner or later the effects of degradation 

appear. The contributory factors which affect the nature and degree of degradation 

and damage include inadequate maintenance, excessive loading, and adverse 

environmental conditions. The material deterioration and structural damage could 

make bridge components unserviceable and finally even might lead to collapse of 

bridge if damage develops to a significant level. Failures of important bridge 

components and even collapse of bridge arising from such as improper design and 

consideration, lack of inspection and maintenance, natural and man-made disasters 

have been widely addressed and acknowledged in the literature by the bridge 

engineering community (Shepherd and Frost 1995; Wang et al. 2002). A notable 

example is the failure of Ashtabula Bridge in 1876 attributed to the passage of a 

high-speed train during severe storm, approximate eighty deaths were caused. 

Investigation showed that this failure resulted from buckling and fracture of critical 

members due to lack of inspection and maintenance. 

The increasing demand for and interest in the ability to monitor a bridge structure 

and detect the onset of structural damage at the earliest possible stage, as a result of 

such catastrophic structural failure, has led to the development of a variety of 

damage detection methods. The approaches to detection, localization, and 

quantification of damage in structural systems are, in general, divided into two 

categories: local nondestructive evaluation (NDE) and global structural health 

monitoring (SHM). The former uses either visual inspection or nondestructive testing 

to examine the local properties of a structure, such as fatigue cracks in steel, 

corrosion of steel, and deterioration of concrete; while SHM explores the concept of 

system identification in which an analytical structural model and the measured 

response are combined via a parameter estimation procedure (Liu and Yao 1978; 
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Aktan et al. 1997). First category methods prevalent in the current bridge 

management and maintenance system (BMMS) have been proven inefficient for 

large-scale bridges, as they require the vicinity of damage to be known a priori and 

the portion of structures inspected to be readily accessible. Furthermore, execution of 

these methods in such situations is expensive, time consuming, and labour intensive. 

The most significant challenge for any local NDE technologies is the difficulty in 

directly relating the testing results to the global condition of the bridge in question 

for the purpose of maintenance and management. 

The need for global and cost-effective damage detection methods suitable to large-

scale bridges has led to the development of structural health monitoring technologies 

and research into damage detection methods that examine changes in the global 

characteristics of structures due to damage. Among various damage detection 

methods, the vibration-based ones are the most widely studied. Vibration-based 

damage detection methods for detecting, localizing, and characterizing the structural 

damage work based on the fact that changes in physical properties, such as mass, 

stiffness and boundary conditions, give rise to changes in dynamic properties. 

Therefore the monitoring and examination of changes in these dynamic properties 

allows the assessment of structural damage. SHM, in short, monitors and measures 

these changes either periodically or continuously throughout the lifecycle of a 

structure for the subsequent tracking and assessment of damage, condition, and 

health of the structure by integrating recent advances in sensing, data acquisition, 

computing, communication, and data and information management technology. 

Because of the great promise shown by SHM in damage detection and condition 

assessment of structures, on-structure instrumentation systems have been 
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implemented on bridges worldwide (Andersen and Pedersen 1994; Cheung et al. 

1997; Barrish et al. 2000; Sumitro et al. 2001; Mufti 2002; Koh et al. 2003; Wang et 

al. 2003; Wong 2004; Ko and Ni 2005; Ou and Li 2005; Wang 2005). So far over 40 

long-span bridges (more than 100 m main span) have been instrumented with SHM 

systems (Ni and Hua 2004). These systems continuously collect the measurement 

data regarding the health and condition of bridges and attempt to detect significant 

changes in structural properties. Although the underlying philosophy of vibration-

based damage detection appears intuitive and considerable research efforts have been 

devoted to it in recent years, assessing structural damage in large-scale bridges 

remains still a challenging task. The main pitfalls limiting the practical applicability 

of vibration-based damage detection methods include the insensitivity of modal 

properties to local damage of bridge structures, uncertainty and incompleteness in 

measurement data, modal variability arising from varying operational and 

environmental conditions, and modelling errors in the analytical model. The 

insensitivity of modal properties and the incompleteness of measurement data 

generally lead to the ill-conditioning of model updating and damage detection 

problems, where small measurement noises could be magnified. Furthermore, the 

uncertainty in the measured modal properties could give rise to damage identification 

results that are affected by both structural damage and measurement noise, and 

therefore requires probabilistic approaches for model updating and damage detection. 

Most importantly, as model updating or damage detection in itself is not an end, a 

gap between health monitoring technologies and bridge inspection, management and 

maintenance exercises currently exists which impedes bridge managers benefiting 

from the monitoring systems.  
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Stimulated by the deficiencies stated above, the aim of the present study is to develop 

a unified probabilistic approach for health monitoring and condition assessment of 

bridge structures. This approach starts with the statistical identification of structural 

parameters from the measured uncertain modal properties, and is capable of dealing 

with the ill-conditioning arising from parameter identification and model updating. 

Based on the statistical identification results, structural reliability analysis is then 

performed to obtain the reliability index and failure probability of the damaged 

structure. Next, the proposed approach utilizes the established correspondence 

between reliability index and required maintenance action to make a rational decision 

on maintenance and management exercise. Following this approach, health 

monitoring technology can provide the evidence for maintenance exercise and bridge 

managers can eventually benefit from monitoring systems. Besides the proposed 

probabilistic approach, methodologies for interpreting real measurement data from 

monitoring systems, which are imperative for bridge condition assessment, are also 

addressed. 

1.2 Research Objectives 

The aim of this research is to study vibration-based damage detection and structural 

reliability evaluation, modelling of temperature-frequency correlations, and condition 

assessment of expansion joints of bridge structures by using the monitoring data. The 

specific objectives of this research are: 

(1) To investigate the regularization methods for treatment of the ill-conditioning in 

output-error-based FE model updating from the measured modal properties. Two 



1-6 
 

regularization methods will be addressed with the research emphasis on 

optimization of their regularization parameters. 

(2) To develop a method, consistent with structural reliability analysis, for statistical 

identification of structural parameters (and therefore for probabilistic damage 

detection) using measured uncertain modal parameters. The method should also 

be capable of accounting for both the knowledge and confidence about the 

measurement data from experimentalists and about the FE model from structural 

analysts. 

(3) To propose a systematic approach for linking health monitoring technologies 

with bridge inspection/maintenance exercises. The envisaged approach will 

begin with stochastic finite element (FE) model updating. Then it is intended to 

combine the stochastically updated model with structural reliability analysis to 

determine reliability indices. Finally this approach will proceed to decision 

making on maintenance strategies according to the established correspondence 

between reliability index and required maintenance action.  

(4) To develop a program for linear FE reliability analysis which is able to compute 

the failure probability for both explicitly and implicitly given limit state 

functions. The developed program should also be capable of dealing with 

various distributions of random variables and incorporating most commonly 

used methods for structural reliability analysis. 

(5) To experimentally formulate a nonlinear regression model characterizing the 

temperature-frequency correlation for damage detection using long-term 

monitoring data. A method of combining principal component analysis (PCA) 
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and support vector regression (SVR) technique will be developed for modelling 

the temperature-frequency correlation. 

(6) To propose a procedure for condition assessment of bridge expansion joints 

based on long-term monitoring data. The procedure is intended to pursue the 

establishment and checking of the temperature-displacement pattern and the 

prediction and verification of the maximum displacement range, extreme 

temperature and accumulative movement. 

1.3 Outline of the Thesis 

This dissertation comprises nine chapters, and is organized as follows. 

Chapter 1 introduces the motivation for the present research and expounds the 

objective to be pursued in this PhD project. 

Chapter 2 contains a review of the literature on four topics: damage index methods 

for damage localization, FE model updating methods, stochastic FE model updating 

methods, and regularization methods for FE model updating. After an introduction to 

the general concept and overview of structural damage detection, damage index 

methods that utilize modal properties before and after structural damage to 

synthesize damage indices for damage localization are surveyed. Subsequently 

various FE model updating methods for both model refinement and damage detection 

applications are reviewed. These methods include optimal matrix updating methods, 

eigenstructure assignment methods, sensitivity-based updating methods, statistical 

methods for model updating, and regularization methods used in model updating 



1-8 
 

algorithms. In the end, a discussion on critical issues and shortcomings related to the 

existing methods is provided.  

Chapter 3 focuses on regularization methods for the solution of the ill-conditioned 

and noisy system of equations in the context of output-error-based model updating. 

First, the theoretical framework for model updating is presented on the basis of 

minimization of the discrepancies between analytical modal properties and 

experimental ones. Tikhonov regularization and truncated singular value 

decomposition (SVD) are implemented at each linearized step of the nonlinear 

optimization problem to alleviate the ill-conditioning. Three approaches to the 

optimal choice of regularization parameters in Tikhonov regularization and truncated 

SVD are presented. Intensive numerical studies in regard to a truss bridge are 

performed to assess the effectiveness and robustness of two regularization methods 

in combination with the optimization procedure of regularization parameters. 

In Chapter 4, a method for statistical identification of structural parameters is 

proposed. The approach pursues a two-stage model updating scheme. The first stage 

model updating refers to the identification of the probability density functions (PDFs) 

of updating parameters from measured uncertain modal properties; the second stage 

updating deals with the determination of the posterior PDFs from the identified PDFs 

and the prior PDFs of structural parameters. The first-stage stochastic model 

updating is accomplished by integrating uncertainty-propagation approaches with 

conventional FE model updating algorithms, in which an improved perturbation 

method and the Monte Carlo simulation (MCS) method are used to obtain the PDFs 

of updating parameters. At the second-stage updating, the statistically identified 

structural parameters incorporate the prior distribution of updating structural 
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parameters, if available, by means of the Bayesian theory to achieve the posterior 

distribution. Two numerical examples are provided to demonstrate and verify the 

proposed method. The stochastically updated structural parameters are further used 

for subsequent probabilistic structural analysis and reliability evaluation in order to 

assess the impact of damage on structural performance and safety as described in 

Chapter 6. 

In Chapter 5, a computer program for linear FE reliability analysis is developed. The 

developed program is able to compute the failure probability for explicitly and 

implicitly given limit-state functions. It is capable of dealing with various 

distributions of random variables and incorporating most commonly used methods 

for structural reliability analysis. Numerical examples are provided to demonstrate 

the reliability analysis and to verify the developed code. The achievement in this 

chapter indeed paves the way for reliability-based condition assessment of existing 

structures by using the stochastic model updating results given in Chapter 4.  

In Chapter 6, a systematic approach is explored, which bridges the gap currently 

existing between health monitoring technologies and bridge maintenance and 

management exercises. As consistent with structural reliability analysis, this unified 

approach begins with the statistical identification of structural parameters using 

monitoring data as addressed in Chapter 4, and proceeds to the determination of 

reliability index on the basis of the statistical identification results and FE reliability 

analysis. This approach finally makes use of the established correspondence between 

reliability index value and required maintenance action to decide maintenance/repair 

strategy. Following the proposed approach, the structural health monitoring system is 

capable of providing quantitative information for bridge inspection and maintenance. 
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Two examples are provided to demonstrate this approach, and for each example the 

reliability indices and failure probabilities computed from the nominal, updated, and 

actual models are compared.  

In Chapter 7, a combined method of principal component analysis (PCA) and support 

vector regression (SVR) is proposed to characterize the temperature-frequency 

correlation using long-term monitoring data. The philosophies of principal 

component analysis for predominant feature extraction and support vector regression 

for data-based statistical learning are presented. Research effort has been made on 

selecting appropriate temperature feature vectors and determining the optimal SVR 

hyper-parameters to achieve correlation models with good generalization capability. 

A grid search method with cross validation and a heuristic method are applied to 

determine the optimal values of SVR hyper-parameters. Making use of one-year 

monitoring data from the cable-stayed Ting Kau Bridge, the proposed method is 

compared with the method directly using measurement data to train SVR models and 

the multivariate linear regression (MLR) method. In addition, both the ‘dynamic’ 

regression model taking into account thermal inertia effect and the ‘static’ regression 

model without considering thermal inertia effect are examined in terms of their 

generalization performance. 

In Chapter 8, a procedure is presented for design verification and condition 

assessment of bridge expansion joints making use of long-term monitoring data. The 

normal correlation pattern between the effective temperature and thermal movement 

is first established with the use of expansion joint displacement and bridge 

temperature monitoring data. Alarms will be raised if a future pattern deviates from 

this normal pattern. With the established correlation pattern, the expansion joint 
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displacements under the design maximum and minimum temperatures are predicted 

and compared with the design allowable values for validation. The extreme 

temperatures for a certain return period are also derived for design verification. Then 

the annual or daily-average accumulative movements experienced by expansion 

joints are estimated using the monitoring data, which provide a basis for decision 

making on inspection or replacement of expansion joints. The proposed procedure is 

applied to the assessment of expansion joints in the cable-stayed Ting Kau Bridge 

with the use of one-year monitoring data. 

Chapter 9 summarizes the contributions, findings and conclusions achieved from 

both the theoretical and experimental studies in this PhD project. Recommendations 

for future work are also presented.  
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Chapter 2 

LITERATURE REVIEW 

 

 

2.1 General Concepts and Overview 

The interest in the ability to monitor a structure and detect damage at the earliest 

possible stage is pervasive, and damage detection has firmly established itself as a 

prominent concern in civil, mechanical, and aerospace engineering communities. The 

traditional damage detection methods include visual inspection and localized 

nondestructive evaluation (NDE) such as radiographic, X-ray, acoustic emission, 

eddy current, and ultrasonic techniques. All these techniques require that the damage 

locations are known a priori and the vicinity of damage regions or the portions of 

structures to be inspected are readily accessible. Subject to these deficiencies, the 

above methods can only detect damage on or near the surface of structures. In 

addition, these methods are inefficient when applied to large and complex structures. 

The need for global damage detection methods that can be applied to large and 

complex structures, such as cable-supported bridges, high-rise buildings, and 

offshore platforms, has led to the development and continued research of methods 

that examine changes in the global characteristics of structures (Doebling et al. 

1998). 
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The underlying premise of the damage detection methods based on changes in global 

dynamic characteristics is that modal parameters of a structure are functions of the 

physical parameters (mass, damping and stiffness) of the structure. As a result, 

changes in these physical parameters, such as reduction in stiffness resulting from the 

onset of cracks or loosening of a connection, will cause changes in vibration 

characteristics of the structure such as modal properties. Therefore, measuring and 

monitoring these changes allows the evaluation of occurrence, localization, and 

severity of structural damage. 

A typical procedure for damage detection and condition assessment of an existing 

structure based on vibration measurement is outlined in Figure 2.1. First, the 

responses of structure under ambient excitations are measured, and modal properties 

are extracted through experimental modal analysis. Then the extracted modal 

properties are combined with an initial FE model of the structure to achieve an 

updated FE model by means of model updating; a comparison of the updated model 

with the baseline FE model indicates the information on structural damage. The 

accomplishment of this step requires the integration of experimental techniques and 

analytical arts and has been widely addressed in literature (Aktan et al. 1997). Next, 

the updated FE model is further utilized to determine the safety and reliability of the 

structure (possibly damaged) for the predefined limit states under the expected future 

loadings. Finally, the resulting failure probability, reliability index, or the remaining 

load-carrying capacity is combined with the economical considerations to make 

decision on inspection and maintenance strategies. When combined with long-term 
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structural health monitoring, the procedure is able to continuously track the health, 

condition, as well as reliability of structures through the effective utilization of the 

continuously and reliably measured monitoring data. 

Decision analysis  Reliability 
    analysis

Damage detection
       results

Baseline finite 
element model

Updated finite 
element model

Finite element
      model

    Aalytical
modal analysis

Ambient 
excitations

 Experimental
modal analysis

 Existing 
structure

Expected future 
   loadings

 

Figure 2.1  Procedure for damage detection and condition assessment 

2.1.1 Classification of Structural Damage Detection 

Depending on the classification criterions used, the existing damage detection 

approaches can be categorized into various types. According to the amount of 

information provided regarding the damage state, the damage detection approaches 

can be classified into four levels, namely (Rytter 1993): 

 Level 1: Determination of the occurrence of structural damage 

 Level 2: Localization of structural damage if damage has occurred 

 Level 3: Quantification of the severity of damage 

 Level 4: Evaluation of the impact of damage on structure performance 

Most of the damage detection methods developed to date limit themselves to Level 1 

to Level 3. Level 4 methods require the knowledge associated with the disciplines 
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such as structural design, fracture mechanics and structural reliability, and are still 

very limited (Yao and Natke 1994; Park et al. 1997; Stubbs et al. 2000; Xia and 

Brownjohn 2003). 

2.1.2 Static- versus Vibration-Based Methods 

According to the type of measurement data used, damage detection methods can also 

be classified as the static-based methods and the vibration-based methods. The 

commonly used vibration-based methods assess structural damage based on the 

measured changes in modal properties before and after damage occurrence. As the 

modal properties can be identified through vibration testing, the vibration-based 

methods are therefore showing great promise for on-line SHM and have been 

extensively studied.  

Similarly, the static-based methods for damage detection are based on the premise 

that changes in stiffness of a structure will give rise to changes in displacements or 

strains of the structure. Likewise, monitoring and measuring these changes under 

designated loading cases allow the evaluation of changes in structural stiffness. 

However, as it requires simultaneous measurement of the applied loads and the 

resulting static responses being either displacements (Sanayei and Onipede 1991; 

Banan et al. 1994a, b; Hjelmstad and Shin 1997; Yeo et al. 2000) or strains (Sanayei 

and Saletnik 1996a, b; Liu and Chian 1997; Mehrabi et al. 1998), the traditional 

static-based methods might not be suitable for on-line SHM. Recently, Ko et al. 

(2006) proposed a static-based method that is particularly suited for the damage 
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detection of cable-stayed bridges. In recognition that the redistribution of dead load 

effects will take place when damage occurs for a statically indeterminate structure 

(there would be no redistribution of internal forces for statically determinate 

structures), the method uses the measured changes in cable forces to implement the 

damage detection in bridge girders. Shenton and his co-workers (Hu and Shenton 

2003; Zhao and Shenton 2005) have also developed a similar approach 

independently.  

The research area of damage detection is very broad and encompasses a variety of 

techniques ranging from the simple and straightforward comparison of damage index 

to the complicated statistical pattern recognition algorithms such as artificial neural 

networks (ANNs) and support vector machines (SVMs). Doebling et al. (1998) and 

Sohn et al. (2004) presented a comprehensive review of the existing global damage 

detection methods. Other review papers include those of Mottershead and Friswell 

(1993) who extensively surveyed the model updating methods and the accessory 

techniques, Carden and Fanning (2004) who summarized the state-of-the-art in 

vibration-based condition monitoring with the emphasis on structural engineering 

applications. The scope of literature review in this chapter will limit itself to the 

damage index methods and the model updating methods using modal data. The 

signal-based methods such as wavelet methods and recently developed empirical 

mode decomposition, which show promise for damage alarming but usually lack the 

capability in relating to damage magnitudes, are excluded from this review. ANN- 
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and SVM-based methods, which generally require a large amount of data regarding 

various damage states of a structure and have proven satisfactory for fault detection 

of rotating machinery but may become incompetent for civil applications, are also 

precluded from this review. 

In what follows, a survey of the damage index methods for damage localization 

directly using modal parameters from pre-damage and post-damage structures, 

respectively, is first presented. Then a review of the model updating methods both 

for damage detection and model refinement applications and the algorithms for 

treating the ill-conditioning problem in model updating is provided. Finally, some 

critical issues and shortcomings in the existing methods are discussed from the 

writer’s perspective. 

2.2 Damage Index Methods 

Making use of the measured modal properties of a structure at both intact and 

damage stages, the damage index methods seek to synthesize an appropriate damage 

indicator for damage localization. Modal properties of the intact structure can be 

either extracted from testing data or simulated from the analytical FE model that has 

been correlated to testing results of the intact structure; the measured modal 

properties can be acquired by testing the structure at different stages throughout its 

service life. The damage index methods are relatively simple and straightforward, 

and do not require complex computations. However, these methods generally do not 

provide the information regarding damage severity. Nevertheless, damage 
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localization is an important step in damage detection; after doing so, other techniques, 

such as local NDE techniques and model updating methods, can be subsequently 

applied for damage quantification. 

According to the type of modal properties used to synthesize damage indicators, the 

existing damage index methods may be roughly classified into the following five 

categories: (i) methods using modal frequencies; (ii) methods using mode shapes; (iii) 

methods using curvature or strain modes; (iv) methods using modal strain energy; 

and (v) methods using modal flexibility. 

2.2.1 Methods Using Modal Frequencies 

The vibration-based damage detection methods were initiated from the observation 

that changes in structural properties give rise to changes in modal frequencies. Modal 

frequencies can be more cheaply and reliably obtained from dynamic testing than 

other modal quantities, and the most direct damage detection methods are those using 

changes in modal frequencies. Furthermore, it is widely recognized that modal 

frequencies are least contaminated by measurement noise and can be generally 

measured with good accuracy. The amount of literature addressing damage detection 

using changes in modal frequencies is quite large (Salawu 1997). There are two types 

of methods. In the first type of methods, the damage detection problem is treated as a 

forward problem, where the patterns of measured frequency changes are compared 

with those of analytical frequency changes for all possible damage cases and then the 

damage case which produces the best match to the measured frequency changes is 
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regarded as the suspect one. This type of methods takes the advantage that some 

patterns of measured frequency changes are the function of damage location only. 

The second type of methods, which essentially is the model updating methods, deals 

with damage detection as an inverse problem and is able to calculate both damage 

location and damage magnitude. 

Cawley and Adams (1979) treated damage detection as a forward problem and 

proposed a formula for the localization of structural damage using changes in modal 

frequencies. In their method, the change in the natural frequency of mode i of a 

structure due to local damage, δωi, is expressed as a function of the position vector of 

the damage, r, and the reduction in stiffness caused by the damage, δk, as 

( )r,kfi δδω =                                (2.1) 

For single-damage case with small damage magnitude, they linearized Equation (2.1) 

at the undamaged state (δk = 0), as  
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Since there is no frequency change prior to damage, f(0, r) = 0 for all r. Thus the 

ratio of frequency changes between two modes is shown to be a function of damage 
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Location where theoretically determined ratio δωi/δωj equals the experimentally 

measured value is the possible damage location. When more than one pair of modes 

are used, the total error er, corresponding to the damage at position r, is the sum of 

the errors in all the mode pairs, ∑all pairs i, j erij. The damage location, r, corresponding 

to the minimal er is the most likely damage position. According to the underlying 

assumption made in the theoretical development, this method is only applicable to 

single-damage cases with small level of damage. Penny et al. (1993) and Friswell et 

al. (1994) attempted to improve this method by using a least squares fitting technique, 

and further used two criteria to assess the similarity of the two sets of ratios, namely 

the correlation coefficient and the closeness of exponent and coefficient to unity. 

Another improvement to Cawley and Adams’s method was presented by Messina et 

al. (1996). They adopted the straightforward concept of correlation factor between 

analytical frequency changes and measured frequency changes for detecting a 

single-damage site. If ∆f is the vector of measured frequency change and δfj 

represents the vector of analytical frequency change for a particular damage location 

j, Damage Location Assurance Criterion (DLAC) for location j is defined as 

( ) ( )
( ) ( )2T2T

2T

DLAC
jj

jj
δfδf∆f∆f

δf∆f
=           (2.4) 

where the subscript T denotes the vector/matrix transpose. DLAC value ranges 

between 0 and 1. The localization j giving the largest DLAC value indicates the best 

match to the measured frequency change pattern and therefore is determined as the 
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location most susceptible to damage. Later they extended the approach to multiple 

-damage cases (Messina et al. 1998). 

The above forward methods require the computation of modal frequency changes for 

all possible damage cases. They would have become impractical for detection of 

single-damage scenarios in large-scale structures with hundreds and thousands of 

structural members; even worse are the multiple-damage cases where the 

combinations of possible damage locations could grow explosively for large-scale 

structures. 

Lifshitz and Rotem (1969) were among the first to treat the damage detection using 

modal frequencies as an inverse problem. Systematic research work on this topic was 

due to Stubbs and his-coworkers (Stubbs et al. 1990; Stubbs and Osegueda 1990a, b). 

Making use of sensitivity analysis, they developed a method for identifying damage 

that relates changes in modal frequencies to changes in member stiffness. This 

method is essentially a sensitivity-based FE model updating method, and its accuracy, 

as most damage detection methods based on model updating, is dependent on the 

quality of the FE model used to compute the modal sensitivities. 

There are several merits associated with the frequency-based damage detection 

approaches, which include that: 1) the measurement of modal frequency can be 

performed only using very few sensors; and 2) the modal frequency has least 

statistical variation from random error sources than other modal properties. However, 



2-11 

the disadvantages seem to overwhelm their merits. Modal frequency is a global 

parameter and is insensitive to local damage. Furthermore, it generally does not 

provide spatial information regarding damage location in particular for symmetric 

structures. Multiple frequency changes can provide spatial information about 

structural damage because stiffness changes at different locations of a structure will 

cause different combinations of changes in the modal frequencies. However, as 

pointed out by many researchers there are often an insufficient number of modal 

frequencies with enough changes to determine damage locations uniquely. 

2.2.2 Methods Using Mode Shapes 

As the largest change in mode shapes is expected to occur in the vicinity of damage, 

it is intuitive to incorporate them for damage localization. Two most commonly used 

methods to compare two sets of measured mode shapes are the modal assurance 

criterion (MAC) and the coordinate modal assurance criterion (COMAC) where one 

set of data is measured from the intact structure and the other is measured after the 

structure is damaged. MAC indicates the correlation between two sets of mode 

shapes and COMAC indicates the correlation between the mode shapes at a selected 

measurement point on the structure. 

The MAC between mode i of the first data set A and mode j of the second data set B 

is defined as follows (Allemang and Brown 1982) 

( ) ( )
( ) ( )BjBjAiAi

BjAiji
φφφφ

φφ
TT

2T

,MAC
×

=                 (2.5) 
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where φAi is the mode shape vector for mode i of data set A; and φBj is the mode 

shape vector for mode j of data set B. A MAC value close to unity indicates that two 

modes are well correlated and a value close to zero is indicative of uncorrelated 

modes. The MAC technique was originally developed for mode correlation and 

matching between experimental and analytical mode shapes. West (1984) first 

adapted this technique for damage localization by directly comparing the mode 

shapes before and after damage in structure. To do this, he partitioned the structure 

into several segments using various partitioning techniques, and then MAC value for 

each segment was calculated to localize the damage. Small MAC values close to zero 

indicate possible damage locations. Fox (1992) showed that the single-member 

measures of mode shape changes such as MAC were relatively insensitive to damage 

in a beam with saw cut, and the node-line MAC, a MAC based on measurement 

point close to a node point for a particular mode, was a more sensitive indicator of 

mode shape changes due to damage. He also suggested scaling the relative changes 

in mode shapes to better identify the damage location. Mayes (1992) developed a 

method known as structural translational and rotational error checking (STREC) 

based on the changes in mode shapes. By using the ratios of relative modal 

displacements, STREC assessed the difference of structural stiffness between two 

different sets of degrees of freedom (DOFs). 

As the MAC technique only uses one pair of modes for damage localization, one 

potential problem is how to select an appropriate mode for MAC calculation. To 
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circumvent this problem, Lieven and Ewins (1988) proposed COMAC for damage 

localization, which is defined as 
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where φAr
i and φBr

i are modal component of the rth mode shape at measurement 

location i for the two paired mode shapes, respectively; and m is the number of 

measured modes. The location where a COMAC value is close to zero is the possible 

damage location. 

Ko et al. (1994) presented a method that uses a combination of MAC, COMAC, and 

sensitivity analysis to detect damage in steel-framed structures. The sensitivities of 

the analytically derived mode shapes to particular damage locations were first 

computed to determine which DOFs are the most relevant. The authors then analyzed 

the MAC between the measured modes from the pre-damage structure and those 

from the post-damage structure to select the modes to be used in the analysis. Using 

the modes and DOFs selected with the above criteria, the COMAC was computed 

and used as a damage indicator. The results demonstrated that particular mode pairs 

could indicate damage; but when all mode pairs were used, the indication of damage 

might be masked by modes that were not sensitive to the damage. Salawu and 

Williams (1995) conducted modal tests of a full-scale bridge before and after 

rehabilitation. They concluded that natural frequencies of the bridge did not change 

significantly as a result of structural repairs, and both MAC and COMAC were able 
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to give good indications of the presence and location of the repairs. It was also 

concluded that the performance of MAC and COMAC depends on the modes and 

measurement locations used for damage localization. 

Thus, one of key issues in implementing damage indicators using changes in mode 

shapes is the selection of the modes and the optimum placement of sensors in the 

case of limited sensors. Such an issue has been addressed by Cobb and Liebst (1997) 

and Shi et al. (2000a) via eigenvector sensitivity analysis. 

2.2.3 Methods Using Curvature/Strain Modes 

An alterative to using mode shapes to obtain spatial information regarding the 

damage location is to utilize the mode shape derivatives, such as curvatures. For 

beam, plate, and shell structures, there is a direct relationship between curvature and 

bending strain. Pandey et al. (1991) have demonstrated that absolute changes in 

mode shape curvature can be a good indicator of damage for beam structures. The 

curvature values are computed from the analytical modal displacements using a finite 

difference method, as 

2
11 )2( hiiii −+ +−= φφφκ                 (2.7) 

where  φi is the modal displacement at measurement point i; and h is the length of the 

elements. 

Chance et al. (1994) found that the numerical calculation of curvature by 
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differentiation of mode shapes could result in unacceptable errors. Instead, they 

utilized the measured strain mode shape which has shown a significant improvement 

for damage localization. Nwosu et al. (1995) evaluated changes in strain resulting 

from the appearance of a crack in a T-joint. They found these changes to be much 

greater than any shifts in frequency and to be measurable even at a relatively large 

distance from the crack. Ratcliffe (1997) developed an approach for damage 

localization that used the finite difference approximation of a Laplacian differential 

operator to mode shape. The approach was shown to be best suited for the mode 

shape of the fundamental natural frequency. The mode shapes from higher natural 

frequencies can be used to verify the identified location of damage, but they are not 

as sensitive as the lower modes. 

Wang et al. (2000) presented a numerical study of damage detection in the 

suspension Tsing Ma Bridge using the normalized changes in mode shape curvatures, 

namely 
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where i  represents the segment number along the longitudinal direction of bridge. 

The superscripts u and d denote the undamaged and damaged structures, respectively; 

and )(ijκ  is the jth mode shape curvature as defined in Equation (2.7). The above 

index has been combined with statistical methods to localize damage. 
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Despite the advantage of providing spatial information regarding the location of 

structural damage, methods of damage localization based on mode shapes and their 

derivatives suffer from several limitations in application: 1) dense array of 

measurement points is required for an accurate configuration of mode shapes and 

curvature mode shapes; 2) the mode shape has larger statistical variation than does 

modal frequency; 3) the mode shape based methods, especially the curvature mode 

shape based methods, are not readily applicable for structures with complex 

configuration; and 4) it is required to select a mode shape, yet it is a priori unknown 

which mode suffers from significant change due to particular structural damage. 

2.2.4 Methods Using Modal Strain Energy 

To achieve more effective approaches for damage localization, some researchers 

make use of the measured mode shapes and the information from a FE model to 

construct new damage indicators. Some studies indicated that modal strain energy is 

useful in localizing structural damage. The general definition of modal strain energy 

of a structure with respect to the rth mode can be expressed as 

rrr φφ KT

2
1MSE =                          (2.9) 

where K is the stiffness matrix of a structure. 

Stubbs et al. (1992) presented the pioneer work on using modal strain energy for 

damage localization. They proposed a damage localization method based on the 

decrease in modal strain energy between two structural DOFs defined by the 
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curvature. Topole and Stubbs (1995) examined the feasibility of using a limited set 

of modal properties for structural damage detection. Later, Stubbs and Kim (1996) 

improved the method by using modal strain energy to localize the damage and 

estimate the damage size without baseline modal properties. In their approach, the 

contribution of element j to the rth modal strain energy is given by 

rr

rjr
rj
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φφ

φφ

KT

T ~~
=                           (2.10) 

where rφ
~  is the displacement vector of the rth mode associated with the jth element; 

and kj is the stiffness matrix of element j. They assumed that modal strain energy 

kept same before and after damage. This approximation gives the ratio of the 

undamaged and damaged flexural rigidities of potential damage location, which is 

then used as a damage indicator on a statistical base. Law et al. (1998) presented 

another damage indicator on the use of modal strain energy, called element energy 

quotient (EEQ). The EEQ of element j for the rth mode is defined as 
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=                        (2.11) 

where mj is the mass matrix of element j. Shi et al. (1998) utilized the concept of 

modal strain energy change ratio (MSECR) and found it to be a good damage 

indicator. The MSECR is defined as the absolute relative change of element modal 

strain energy before and after damage 
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where MSErj
u and MSErj

d are modal strain energy of element j for the rth mode 

before and after damage, respectively. As the stiffness matrix of element j after 

damage is unknown, they approximated it with that of undamaged structure. 

The original formulation by Stubbs et al. (1992) is inherently limited to beam-like 

structures that are characterized by one-dimensional curvature (i.e., curvature that is 

uniquely a function of one independent spatial variable). Cornwell et al. (1999a) 

generalized this method to plate-like structures that are characterized by 

two-dimensional curvature. 

2.2.5 Methods Using Modal Flexibility 

Based on the governing equation of structural dynamics, Berman and Flannelly 

(1971) showed that higher modes contribute more to stiffness matrix than lower 

modes. Therefore, to obtain a good estimate of stiffness matrix or its change as 

required for damage localization, one needs to measure all the modes of a structure, 

especially the higher modes. Due to practical limitations, it is extremely difficult to 

measure higher frequency response data, and this presents a severe constraint on the 

accuracy of stiffness difference methods. To avoid this difficulty, another class of 

damage identification methods arise which use dynamically measured flexibility 

matrix to estimate the change in structural stiffness. 
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With the mode shapes normalized to unity as ΦTMΦ = I, the dynamically measured 

modal flexibility can be approximated using the first m mode shapes and modal 

frequencies (Berman and Flannelly 1971), as 
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The formula of flexibility matrix is approximate due to the fact that in general only 

the first few modes of a structure (typically the several lowest frequency modes) are 

measured. Hugue et al. (1991) developed a methodology for identification of 

constructed facilities that permits synthesis of the localized flexibility coefficients. 

The static and dynamic testing results indicated that the flexibility coefficients could 

be synthesized very accurately using only the low-order modes even when several 

closely spaced modes existed and a simple modal identification algorithm was used. 

Raghavendrachar and Aktan (1992) proposed the use of measured flexibility as a 

‘condition index’ to indicate the relative integrity of a bridge. Toksoy and Aktan 

(1994) computed the measured flexibility of a bridge and examined the 

cross-sectional deflection profile with and without a baseline data set, and showed 

that anomalies in the deflection profile could indicate damage even without a 

baseline data set. 

Based on the formula of modal flexibility matrix, some researchers directly utilized 

the changes in modal flexibility matrices before and after structural damage for 

damage localization. Pandey and Biswas (1994; 1995) presented a damage 

localization algorithm based on changes in the measured flexibility, and showed that 
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the damage localization could be achieved using only the first several modes. Mayes 

(1995) used the measured flexibility to locate damage from the results of a modal test 

on a bridge. He also proposed a method using the measured flexibility as input for 

damage detection, which evaluated changes in the load-deflection behaviour of a 

spring-mass model of the structure. Wang et al. (2000) defined the normalized 

changes in modal flexibility for achieving more reliable damage localization. Rather 

than direct utilization of the changes in measured modal flexibility for damage 

localization, Bernal (2002) first performed the singular value decomposition of the 

changes in modal flexibility matrices to attain the so-called damage localization 

vectors (DLVs). The internal force of each element under the action of DLVs is then 

analyzed, and finally the structural elements whose internal forces are zero are 

determined as the damage ones. Gao and Spencer (2005) discussed the issues relating 

to the synthesis of modal flexibility matrix from ambient and forced vibration data 

and implemented DLV method for online damage localization. 

Doebling and Peterson (1997) presented a method for computing the statically 

complete flexibility matrix from a dynamically measured flexibility matrix, which 

requires the solution of a system of linear equations only. The method was derived 

and applied to both numerically and experimentally measured flexibility matrices, 

and the improved accuracy of static flexibility over dynamically measured flexibility 

was demonstrated. 

It is known that the coefficients of the ith column of flexibility matrix are the 
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deflection of the structure with a unit load applied at the ith DOF. The sum of all 

columns of the flexibility matrix represents the deformed shape if a unit load is 

applied at each DOF, and this shape is referred to as uniform load surface (ULS). 

Zhang and Aktan (1995) stated that the change in curvature of the ULS could be used 

to determine the location of damage. They suggested calculating curvature of the 

ULS by finite difference method. Wu and Law (2004) extended this method for 

damage localization for a two-dimension plate-like structure where the Chebyshev 

polynomial approximation to ULS curvature was adopted to avoid the errors caused 

by finite difference method. 

The major advantage of the methods using dynamically measured flexibility for 

damage localization is that it can be constructed and synthesized with good accuracy 

from a few low-order modes without the need of a FE model. The underlying 

assumption made in the derivation of dynamically measured flexibility is that the 

mass-normalized mode shapes should be used which might become infeasible in 

ambient vibration tests. This kind of methods also need a fine mesh of measurement 

points for an enough accurate representation of mode shapes used for synthesis of 

modal flexibility. 

The experimental comparison of various damage index methods has also been 

conduced by a number of researchers through field testing. Farrar and Jauregui 

(1998), and Jauragui and Farrar (1998) conducted experimental and numerical 

comparison of five damage index methods using the simulated and experimental data 
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from I-40 Bridge. Most of the methods identified damage location correctly for the 

most severe damage case. However, for some of these methods, if they were applied 

blindly, it would be difficult to tell whether damage had not also occurred at 

locations other than the actual one. In addition, the methods were inconsistent and 

did not clearly identify the damage location when they were applied to the less 

severe damage cases. Park et al. (2001) compared the results of damage index 

methods with visual inspection results by using the periodical measurement data 

from a concrete box-girder bridge. They first applied a mode updating procedure to 

correct the boundary conditions and macro-parameters in the FE model based on 

measured modal frequencies, and then proceeded to the implementation of damage 

indicators using the measured mode shapes and the analytical mode shapes from the 

correlated FE model. The result indicated there was a strong correlation between 

predicted damage locations and observed damage locations. They further pointed out 

that the environmental conditions might significantly affect the accuracy of damage 

index methods. Huth et al. (2005) measured the modal data before and after damage 

and used them for implementing damage indicators. The results showed that it was 

difficult to localize the damage at earlier stage even using the modal flexibility 

matrix. Their study emphasized the need for elimination of temperature effect on 

modal data for practical implementation of damage detection methods. 

 



2-23 

2.3 Model Updating Methods 

With the use of system identification concepts, the measured modal properties can be 

used to construct or modify the structural analytical model as well as to diagnose 

structural damage. In contrast to modal system identification, which is used to 

identify the modal properties of structure, structural system identification basically 

falls into two categories. They either attempt to construct an analytical model, or 

seek to correct and modify a pre-established analytical model using the available 

experimental data. Due to the inconsistency in number of DOFs between analytical 

model and experimental test (sparseness of measurement data) as well as the 

incompleteness of measurement data, it is impossible to construct a unique analytical 

model directly from the testing data without resorting to a reference model. To 

eliminate the non-uniqueness in structural system identification, a reference model is 

required and structural system identification then reduces to modifying the system 

parameters to match as closely as possible the testing results, or more precisely, 

reduces to parameter estimation. Natke (1988a) named the first type of structural 

system identification as direct system identification while the second type, that 

essentially is model updating, as indirect one as it requires a reference model. 

Making use of the concept of indirect system identification and measured modal data, 

another category of damage detection method is established through the modification 

of intact (reference) structural model matrices such as mass, stiffness and damping, 

or the macro-parameters so that the modified ones reproduces as closely as possible 
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the measured modal properties. These methods solve for the updating parameters by 

forming a constrained optimization problem that minimizes some kind of 

errors/residuals subject to various constraints. Comparisons of the updated 

parameters with the original ones associated with the intact structure provide an 

indication of damage location as well as damage magnitude. Three commonly used 

residuals for model updating are equation residuals, output residuals, or a 

combination of them according to Natke (1988b). 

It should be noted that model updating algorithms used for model improvement and 

damage detection share the similar objectives, i.e. seeking an analytical model that is 

close to the real structure. The purpose of model improvement is to achieve an 

analytical model which is dynamically equivalent to the tested structure. The updated 

model is subsequently utilized for response prediction and structural modification. 

The model improvement is performed in face of numerous simplifications in FE 

model building. Often there are complex geometrical features that cannot be 

modelled accurately. In addition, boundary conditions and joint parameters between 

components are seldom fully understood. Mottershead and Friswell (1993) 

summarized three commonly encountered modelling errors, which could give rise to 

significant discrepancy between analytical predictions and testing values, as: 1) 

model structure errors, which are liable to occur when there is uncertainty concerning 

the governing equations of motion; 2) model order errors, which are often arising 

from discretizing the complex structures and can result in a model with insufficient 

order; and 3) model parameter errors, which typically include inappropriate boundary 
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conditions, inaccurate assumptions used in order to simplify the model, and 

inconsistent material properties. These modelling errors may exist only in a few 

locations or can be extensively distributed in the whole structure. 

On the other hand, the damage detection aims to detect and identify the changes in 

stiffness, mass and damping matrices due to damage instead of modelling errors. The 

changes in the measured quantities caused by structural damage are often smaller 

than those observed between the healthy (i.e. undamaged) structure and its FE model. 

Consequently, it becomes almost impossible to discern between inadequate 

modelling and actual changes due to damage. To distinguish damage from modelling 

errors, an original FE model that accurately represents the intact structure is required. 

This is accomplished with a first-stage model improvement procedure which is 

performed in order to correlate this original model with testing data of the intact 

structure (Titurus et al. 2003a). The improved model is commonly used as the 

baseline model and can be then further correlated with testing data of possibly 

damaged structures for damage detection by using a similar updating procedure 

(Titurus et al. 2003b). Therefore a two-step scheme is generally required for damage 

detection application using model updating methods with the first step correcting the 

modelling errors and the second step detecting structural damage. For a large-scale 

structure, the modelling errors could spread over the whole structure while the 

damage generally tends to concentrate on several locations. 
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Considerable research efforts have been devoted to developing various model 

updating methods during the past several decades. Survey literature on model 

updating in structural dynamics began to appear in the early 1970s. Among them, 

Hart and Yao (1977), Liu and Yao (1978), Natke (1988b), Imregun and Visser 

(1991), Natke (1991), Zimmerman and Smith (1992), Mottershead and Friswell 

(1993), and Link (2001) are worthy of attention. The model updating methods, either 

for model improvement or for damage detection applications, can be classified into 

three categories: 1) optimal matrix updating methods; 2) eigenstructure assignment 

methods; and 3) sensitivity-based updating methods. 

2.3.1 Optimal Matrix Updating Methods 

Methods that use a direct and sometimes closed-form solution to compute the 

correction (perturbation) to analytical system property matrices using the measured 

modal data are commonly referred to as optimal matrix updating methods. The 

system property matrices include the stiffness, mass and damping matrices. In these 

methods, the elements of these property matrices are treated as variables, and are 

estimated by using the constrained optimization techniques. Depending on the type 

of objective functions used, the optimal matrix updating methods can be classified as 

the minimum norm perturbation method, which minimizes the Frobenius or weighted 

Frobenius norm of the perturbation matrix, and the minimum rank perturbation 

method which minimizes the rank of the perturbation matrix. In order to determine 
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the correction to original analytical stiffness and mass matrices, the optimal matrix 

updating method uses the following constrained optimization function 

( ) ( ){ }KMKM
KM

∆∆+∆∆
∆∆

,,Min
,

RJ λ                (2.14) 

where ∆M = M - MA, is the correction to original mass matrix; ∆K = K - KA, is the 

correction to original stiffness matrix; MA and KA are the original (reference) mass 

and stiffness matrices, respectively; J is the objective function; λ  is the Lagrange 

multiplier; and R is the constraint function. The commonly used constraint function 

includes orthogonality, equation of motion, symmetry, sparseness, and positive 

definiteness, detailed as follows: 

Equation of motion:        KΦ = MΛΦT                             (2.15) 

Orthogonality condition:    ΦTKΦ = Λ;  ΦTMΦ = I                   (2.16) 

Symmetry:               K= KT; M = MT                          (2.17) 

Sparseness:      sparse(M) = sparse (MA); sparse(K) = sparse (KA)       (2.18) 

Positive definiteness:    xT∆Mx;   xT∆Kx                           (2.19) 

Early work in the area of optimal matrix updating for structure matrix identification 

using vibration tests dates from the late 1960’s. Rodden (1967) used the results from 

ground vibration tests to derive the matrix of structural influence coefficients, which 

required the number of coordinates used in the model be equal to the number of 

measured normal modes. Ross (1967), and Berman and Flannelly (1971) discussed 

the problem that the number of coordinates is often larger than the number of 
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measured modes to cover the frequency range of interest. They presented methods 

for identifying the parameters in the discrete, linear model of a structure using the 

measured incomplete number of normal modes but measured at all coordinates to 

modify an analytical model. 

Most recent optimal matrix updating methods follow a common idea from the work 

of Baruch and Bar Itzhack (1978), and Baruch (1978), in which the problem of 

model updating is formulated as a Lagrange-multiplier-based optimization problem 

with various constraints. This type of methods is also called reference basis methods 

because one of the quantities, namely the mass matrix, the stiffness matrix, or the 

measured modal data needs to be assumed to be exact or as the reference, and the 

other two are corrected. In their work on the orthogonalization of measured mode 

shapes, Baruch and Bar Itzhack developed a mass reference method for the weighted 

orthogonalization of measured mode shapes, in which the mass matrix is assumed to 

be known and the measured mode shapes are orthogonalized to the mass matrix. 

Making use of the orthogonalized modal data, they further calculated the updated 

stiffness matrix from the direct and closed-form solution to a constrained 

optimization problem, which is the closest matrix to a previously given stiffness 

matrix (generally estimated from its FE model) and complied with the required 

orthogonality conditions. In this method, the orthogonalized mode shapes and 

corrected stiffness matrix are expressed as X = Φ(ΦTMΦ)-1/2 and K = MXΛXTM, 

respectively, where Φ is the matrix of measured mode shapes, Λ is the diagonal 

matrix of measured eigenvalues, and M is the exact mass matrix. The analytical 
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model with the mass matrix and the updated stiffness matrix is able to exactly 

reproduce the measured modal data. Noting that both mass and stiffness matrices 

may be incorrect (Berman 1979), Baruch (1982) improved his previous work by 

sequentially updating the stiffness and mass matrices. Later, he suggested another 

approach for sequentially adjusting the mass and stiffness matrices (Baruch 1984), in 

which the stiffness matrix is first corrected using the incomplete set of static loads 

and deflections from static tests and the mass matrix is then modified to fulfill the 

eigenvalue equation based on the corrected stiffness matrix and the modal data. 

Berman and Nagy (1983) developed an analytical model improvement (AMI) 

procedure for model refinement which combined the stiffness matrix adjustment 

procedure of Baruch and Bar Itzhack (1978) with the mass matrix adjustment 

procedure of Berman (1979). In AMI procedure, static modal expansion method is 

first applied to expand the DOFs of measured mode shapes to the complete set of 

DOFs corresponding to analytical model. After doing that, AMI procedure then seeks 

a corrected mass matrix that is the closest to an analytical mass matrix and satisfies 

the mass orthogonality conditions by solving a constrained optimization problem as 

follows: 
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where M is the n×n the stiffness matrix to be determined; MA is the n×n analytical 

stiffness matrix which is generally estimated from a FE model; λij is a Lagrange 

multiplier used to enforce mass orthogonality conditions; Φ is the n×m expanded 
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modal shapes; I is the identity matrix; and n and m are the number of DOFs in 

analytical model and the number of measured modes, respectively. The minimization 

procedure results in the expression for the corrected mass matrix, as 

( ) A
T1

AA
1

AAA MΦmmIΦmMMM −− −+=                   (2.21) 

where mA = ΦTMAΦ. Following the computation of the corrected mass matrix M, a 

similar procedure for the correction of stiffness matrix can be applied by minimizing 

another constrained optimization function, as 
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where various Lagrange multipliers are used to enforce the equations of motion, the 

orthogonality conditions, and the symmetry of stiffness matrix; and KA is the 

analytical stiffness matrix which again is generally estimated from the FE model. 

The stiffness correcting equation can be finally written as 

( )T
A ∆∆KK ++=                             (2.23) 

where ( ) MΦΦKMΦΛΦKΦMΦ∆ T
A

T
A

T

2
1

−+= . It is seen that both Baruch and 

Berman’s method corrected the mass matrix and stiffness matrix in a sequential 

manner. Wei (1990a) noticed the effect of interaction between correction of stiffness 

and mass matrices and presented a generalized weighted method for simultaneous 

correction of these matrices, whose solution requires the inverse of a very large 

matrix. Wei (1990b) later found that the inverse of this large matrix could be avoided 
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at some specific weighting. Fiswell et al. (1997) extended this method to the 

simultaneous correction of stiffness and damping matrices. They further introduced 

an additional parameter to enable the norm of stiffness term and the norm of 

damping term to be weighted differently. However the inclusion of this parameter 

made the closed-form solution impossible. In addition, the measured modal data may 

not be reproduced exactly using the corrected matrices because a pseudo-inverse was 

required to calculate the Lagrange multiplier matrix. 

The previous approaches will generally produce a model whose analytical modes 

exactly replicate those used in the correction. However, the corrected mass and 

stiffness matrices could be drastically altered and become fully populated. 

Particularly the adjustment of the stiffness and mass coefficients from values of zero 

to large nonzero values violates the structural connectivity and introduces extra load 

paths which do not exists in the actual structures. As a result, the updated system 

matrices may not have any physical meanings and are hard to interpret. To avoid this 

problem, Kabe (1985) developed a procedure called stiffness K matrix adjustment 

(KMA) method where the structural connectivity conditions are enforced as an 

additional constraint through correcting only nonzero coefficients in the stiffness 

matrix. The addition of model connectivity information to the constrained 

minimization formulation enables the KMA method to identify the stiffness matrix 

exactly in certain cases even when some of the test modes are not known, while for 

Baruch’s method this is achieved only if all the test modes are used in the 

identification process. However, prior to correcting the stiffness matrix, KMA 
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requires the solution of an auxiliary system of linear equations to determine the 

involved Lagrange multiplier matrix, whose solution is quite computationally 

expensive because of large size and asymmetry of its coefficient matrix. KMA 

procedure is theoretically elegant but becomes quite complicated and 

computationally intractable for large-scale structures. Kammer (1988) developed a 

projector matrix (PM) method that was mathematically simple, computationally 

efficient and turned out to be equivalent to Kabe’s method in most cases. Chen and 

Garba (1988), and Lim (1990) developed a procedure similar to the Kabe’s method 

and presented numerical studies on damage detection of a relatively large structure. 

Smith and Beattie (1991) demonstrated the linkage between matrix updating methods 

and various constrained optimization algorithms. They further overcame the 

inconsistent problem existent in Kabe’s formulation by solving the simultaneous 

minimization of perturbation matrix norm and the norm of modal force residuals 

subject to matrix symmetry and structural connectivity, in which modal force 

residual of the ith mode is expressed as iiidi φφ 2ωMKf −= . This improvement 

makes the coefficient matrix of the auxiliary problem symmetric and positive 

semi-definite which could be solved efficiently using direct or iterative methods. 

Making use of the merits of FE method to preserve the global connectivity and to 

reduce the number of unknown updating parameters, Liu (1995) presented a 

straightforward method for identifying the element properties in truss structures 

using measured modal data. In this method, the model updating problem is 

formulated as minimization of the norm of modal force residuals. A perturbation 
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technique is further adapted for error propagation. Other studies that address the 

minimum norm perturbation methods include Abdalla et al. (1998) who examined 

the use of alternating projection method to iteratively enforce the constraints of the  

symmetry, sparseness, positive definiteness, and equation of motion for damage 

detection, Kenigsbuch and Halevi (1998) who incorporated the prior knowledge 

regarding the accuracy of the FE model using a general weighting scheme, and Cha 

and de Phillis (2001) who sequentially identified the mass and stiffness matrices 

using the modal data before and after attaching the known mass to the structure. 

The algorithms described above formulate the correction of property matrices as a 

constrained optimization problem in which the Frobenius norm of perturbation 

matrices is adopted as the objective function with a variety of constraints. Another 

type of the optimal matrix updating methods involves minimization of the rank of the 

perturbation matrices rather than the norm of the perturbation matrices. Zimmerman 

and Kaouk (1994) observed that modelling errors in model refinement and damage 

detection applications will generally tend to concentrate in a few structural members 

rather than distributing throughout a large number of structural members. Thus, the 

perturbation matrices will tend to be of small rank. They proposed an algorithm 

based on the minimum rank perturbation theory (MRPT) for adjusting the mass, 

stiffness, and damping matrices so that the ranks of the perturbation to these system 

matrices are minimal. In this approach, modal force residuals are computed and 

utilized to solve for the perturbation to the system matrices by means of MRPT. 

Further investigations were subsequently conducted by them and their colleagues to 
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correct any two of the three property matrices (Kaouk and Zimmerman 1994), to 

implement MRPT for damage detection using the combined multiple static and 

modal data (Zimmerman and Simmermacher 1995), to simultaneously identify these 

three property matrices (Kaouk et al. 2000), and to adjust the stiffness, mass and 

damping matrices using the measured frequency response function (FRF) data 

(Zimmerman et al. 2005). Doebling (1996) presented a method to compute a 

minimum rank update for elemental parameter vector rather than for global or 

elemental stiffness matrices. This approach adopted the same basic formulation as 

MRPT but constrained the global stiffness matrix perturbation to be an explicit 

function of the diagonal elemental stiffness parameter. A limitation of this method, 

as with all minimum rank procedures, is that the rank of perturbation matrix is 

always equal to the number of modes used in the computation of modal force 

residuals. In addition, as pointed out by Friswell and Penny (1997), MRPT does not 

necessarily ensure that the change in stiffness will be local, as the stiffness change 

could be global but of low rank. 

One of important features of many optimal matrix updating methods is that they 

reproduce the measured modes exactly; therefore the corrected model are said to be 

representational. This is strength in that the updated model is able to reproduce data. 

On the other hand, the measured data and the analytical data are unlikely to be equal 

due to model inadequacy as well as measurement noise. Model updating should be 

executed in an attempt to correct the parameters in the model but not with the 

intention of exactly producing the measurement noise. If the updated model exactly 
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reproduces inaccurate measurement, the analysis results based on this model may 

become unreliable. Furthermore, the updated model could produce additional, 

spurious modes in the frequency range of interest. One prominent problem in these 

methods is the necessities to expand the measured mode shapes to the full DOFs of 

the FE model, or to reduce DOFs of the FE model to the measured DOFs. Both of 

modal expansion and model reduction will introduce additional errors which could 

make error localization and damage detection impossible. A major drawback of these 

methods is that the corrected mass and stiffness cannot be related to physical 

parameters in the structure, such as Young’s modulus and mass density. 

2.3.2 Eigenstructure Assignment Methods 

Another group of matrix updating methods, known as eigenstructure assignment 

methods, is developed based on the design of a fictitious controller that would 

minimize the modal force residuals. The controller gains are then interpreted as the 

perturbation to the system matrices. The eigenstructure assignment methods were 

originally developed for structural control to force a structure to respond in a 

predetermined way, and were adapted to model updating by Minas and Inman (1988). 

In the eigenstructure assignment approach, state feedback is used to describe the 

right-hand side of the dynamic equation of motion in terms of the displacement and 

velocity states. The problem for model updating then reduces to determining the 

terms in the feedback gains matrix such that the eigenvalues and eigenvectors of the 

closed loop system are identical to the measured modal data. The result of this 
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procedure is that modifications are made to the stiffness and damping matrices but 

the analytical mass matrix remains unchanged. The corrected stiffness and damping 

matrices are given by 

00A GCBKK +=          10A GCBCC +=          (2.24) 

where B0 is an input distribution matrix; C0 and C1 are the matrices relating the 

outputs and states; and G is the feedback gain matrix. The matrices B0, C0 and C1 are 

derived from the excitation positions and the location and type of measurement. The 

matrix B0 may be chosen arbitrarily, and C0 and C1 must be chosen such that C1ΦΛ+ 

C0Φ is non-singular in which the matrices Φ and Λ contain the incomplete measured 

mode shapes and eigenvalues. In general the correction matrices B0GC0 and B0GC1 

will not be symmetric. Therefore an iterative procedure for the determination of 

symmetric corrections is generally required. Minas and Inman (1990) proposed a 

two-step, iterative scheme where C0 and C1 matrices are fixed, then the original 

stiffness and damping matrices are replaced by the symmetric updated matrices, and 

the eigenstructure assignment process is repeated. This forces the corrected matrices 

to be symmetric and to reproduce the measured modes. Zimmerman and Widengren 

(1990) developed another method to enforce the symmetry of stiffness and damping 

matrices that used a generalized algebraic Riccati equation to calculate symmetric 

corrections to the stiffness and damping matrices directly. An additional step is 

further introduced to enforce the structural connectivity. 
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Studies which addressed the correction to the global stiffness matrix or damage 

detection using eigenstructure assignment methods were reported by Zimmerman 

and Kaouk (1992). They used a subspace rotation algorithm to improve the 

assignability of the mode shapes and to preserve the structural connectivity in the 

updated model. A major difficulty associated with the approach is that the method 

identifies the matrix coefficient changes and thus requires an additional step to 

correlate these changes with structural damage. Lim and Kashangaki (1994) and Lim 

(1995) proposed a damage detection approach using eigenstructure assignment that 

directly identifies change of element-level stiffness. In this approach, the best 

achievable eigenvector is first expressed in terms of measured eigenvectors by 

selection of control gains such that the modal force residuals between the nominal 

structural model for intact structure and the modal parameters measured from the 

damaged structure is minimal. The relationship between the measured mode shapes 

and the best achievable eigenvectors is then used as a measure of damage location. 

For detection of multiple damage locations, they used a sequential damage detection 

scheme in which the most probable damage member was identified at a time in the 

sequential fashion. However, it is questionable that this procedure will correctly 

identify the damage members and damage magnitudes due to interaction effects 

between multiple damage locations. Other studies regarding the use of eigenstructure 

assignment methods include the work of Cobb and Liebst (1997) who developed an 

optimization strategy to minimize the deviations between measured and analytical 

modal data for determining the diagonal control gain matrix which directly related to 
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the damage coefficients, and the work of Kiddy and Pines (2000) who adapted the 

eigenstructure assignment approach to account for the centrifugal forces for damage 

detection in rotating structures. 

As indicated by Lim (1995), one special merit of eigenstructure assignment methods 

is that they can be not only used for damage detection and health monitoring of 

structures, but also for monitoring the sensor and actuator performance in a unified 

manner. However, the eigenstructure structure assignment methods for damage 

detection and model refinement suffer from the same drawbacks as the optimal 

matrix updating methods. Furthermore they may require a large amount of 

computation in particular for nonlinear optimization. In addition, there are no 

physical meanings of the assigned matrices. 

2.3.3 Sensitivity-Based Updating Methods 

The sensitivity-based updating methods are another class of model updating methods. 

In this approach, model updating problem reduces to the solution of an optimization 

problem which minimizes a penalty function of either the equation errors or the 

output errors. In the equation-error-based model updating methods, the errors in 

eigenvalue equations expressed in terms of measured modes are minimized (Fritzen 

1986; Fritzen and Zhu 1991; Friswell and Mottershead 1995). Minimization of the 

equation errors leads to a linear system of equations if the elements of stiffness are 

linear functions of updating parameters such as flexural rigidity, Young’s modulus. 

The disadvantage of the equation error approach is that it requires the measurement 
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data at all modelled DOFs; otherwise either a modal expansion or a model reduction 

procedure is necessary. In addition the estimated parameters are biased because of 

both sides of system of equations are contaminated with measurement errors (Fritzen 

1986). The instrumental variable method (Fritzen 1986) and total least squares 

method (Ziaei-Rad and Imregun 1999) have been applied to mitigate the biasness of 

parameter estimator. 

In contrast to model updating on the basis of equation error, the output error 

approaches for model updating minimize the output errors between analytical modal 

data and experimental ones. The virtues of the approaches encompass the unbiased 

estimation as well as the fact that the match between analytical and measurement 

DOFs is not required. As modal parameters are nonlinear functions of updating 

parameters, the output error approaches generally give rise to nonlinear optimization 

problems in which the problems of convergence and computation time could appear. 

Furthermore, the iterative scheme requires the evaluation of eigenvalue problem and 

eigensensitivity at each of iteration. Nevertheless the sensitivity-based methods have 

been widely accepted and have been proven very promising due to the fact that they 

can be readily applied to practical cases where measured coordinates are incomplete. 

When solving the nonlinear optimization problem with a gradient-based approach, 

the calculation of sensitivity is indispensable. Of concern is the eigensensitivity 

analysis, i.e. the calculation of changes in modal properties with respect to physical 

parameter variation, which is also very useful in other disciplines such as structural 



2-40 

modification, structural design optimization, and analysis of random system. The 

determination of eigenvalue derivatives is shown to be simple and straightforward 

(e.g. Fox and Kapoor 1968). Taking the derivative of the eigenvector equation for the 

ith eigenvalue, with respect to the jth design variable, one obtains 
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Premultiplying by the transpose of the eigenvector, φi, and then applying mass 

orthogonality, Equation (2.25) reads as 
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This expression in Equation (2.26) is simple to calculate and requires only the ith 

eigenvalue and eigenvector. However, the calculation of eigenvector derivatives is 

found much more complicated. Fox and Kapoor (1968) presented two approaches for 

the determination of eigenvector derivatives. In the first approach, the eigenvector 

derivative is expressed as a linear function of all the eigenvectors. Although 

analytically simple and mathematically elegant, this approach becomes prohibitively 

expensive for large-scale structures as it requires the calculation of all eigenvectors. 

The second approach involves the use of eigenvalue equations together with an 

equation derived from the mass orthogonality equation to generate n+1 equations 

with the n unknown element of eigenvector derivatives. The solution of this set of 

equations by a pseudo-inverse technique is also computationally expensive due to 

loss of symmetry and banded form of the equations. Nelson (1976) developed an 
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efficient method for the calculation of derivatives of the ith eigenvector by just using 

the modal data of that mode. However, a matrix inverse of system dimension (in fact, 

of dimension of n-1 where n is the dimension of the system), which is not readily 

available from the byproducts of generalized eigenvalue problem, is required for 

each mode in order to solve the linear algebraic equations involved. In order to 

improve the computational efficiency, an improved approach that utilized the 

calculated lower modes and the known flexibility matrix to approximate the required 

eigenvector derivatives was proposed by Lim et al. (1987). Ojalvo (1987), Sutter et 

al. (1988), Tan (1989), and Alvin (1997) used iterative methods for the calculation of 

eigenvector derivatives. Close or repeated eigenvalues can cause ill-conditioning or 

slow convergence in these methods, and in these systems the simple algorithms of 

Fox and Kapoor (1968) and Nelson (1976) cannot be implemented satisfactorily. 

Works that addressed the eigenvalue and eigenvector sensitivities of the systems with 

repeated eigenvalues were reported by Millscurran (1988) and Dailey (1988). 

Collins et al. (1974) were among the first to propose the sensitivity-based method of 

FE model updating. The solution is obtained by successively linearizing modal data 

as a function of structural parameters 
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where ∆θ is the perturbation in the parameters; ∆f and ∆φ are the discrepancies in 

eigenvalues and eigenvectors between analytical predictions and testing results, 
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respectively; and ∂f/∂θ and ∂φ/∂θ are the sensitivities of eigenvalues and 

eigenvectors with respect to updating parameters evaluated at the linearization point, 

respectively. Furthermore they incorporated the Bayesian theorem for parameter 

estimation in which confidence levels in the analytical models and the measurement 

data are considered. Both the measurements and the current parameter estimates are 

assumed to have uncertainties given in terms of their estimated variances, namely Vεε 

and Vθθ. The updated parameters with the minimum variance are then calculated as 

[ ] εVSVSSVθ εεθθθθ
1TT −

+=∆                  (2.28) 

and the variance of this updated parameter is estimated as 

[ ] θθεεθθθθθθθθ VSVSVSSVVV 1TT* −
+−=          (2.29) 

where ε is the combined vector of discrepancies in eigenvalues and eigenvectors, ε = 

{∆fT ∆φT}T; and similarly S is the combined vector of eigenvalue and eigenvector 

derivatives. However, this derivation is based on the assumption that the measured 

data and the analytical data are statistically independent. In general, this will be true 

only for the first iteration. After the first iteration, the measured data have been used 

to update the parameters, and therefore the assumption of statistical independence is 

a gross simplification. Friswell (1989) calculated the correlation between the 

measurements and the updated parameter estimates at each of iteration and the 

correlation matrix was used to calculate the next parameter vector estimate. This 

improvement seems to converge more quickly. Torkamani and Ahmadi (1988) 

argued that the method of Collins et al. (1974) is not realistic because it forces the 
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updating parameters at each iteration to converge to the initial parameters, and 

presented an improved method which is rapidly convergent to the desired solution. 

Ricles and Kosmatka (1992) combined the modal force residual method of Chen and 

Garba (1988) for damage localization and the statistical identification method of 

Collins et al. (1974) for damage quantification. 

Chen and Garba (1980) argued that it is difficult to determine the confidence levels 

associated with the updating parameters and the measurement data, and that only 

those data considered to be 100% accurate should be taken into consideration in 

order to avoid leading to totally erroneous updated model. Zhang et al. (1987) 

extended the sensitivity-based method first to localize the dominant modelling 

errors/damage and then to update the analytical model by iteratively correcting the 

selected parameters. Noticing that difficulties could be encountered in matching 

modes and convergence when the analyzed structure has quasi-multiple eigenvalues, 

Zhang and Lallement (1989) introduced the selective structural modifications to 

allow the separation of neighboring eigenvalues. Lin et al. (1995) proposed an 

improvement in which the computation of sensitivity matrix was accomplished using 

the combined analytical and experimental modal data, and the advantage of the 

improved method over the traditional method in terms of fast convergence and 

convergence region was demonstrated. Teughels et al. (2002) formulated damage 

functions as approximation to stiffness distribution within the damage area with the 

purpose of reducing the number of updating parameters. The application of 

sensitivity-based model updating methods for model refinement and damage 
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detection of bridge structures was reported by Brownjohn and Xia (2000), Zhang et 

al. (2000), Zapico et al. (2003), Unger et al. (2005), and Huth et al. (2005). 

Similar to damage index methods for damage localization, one of the distinctions 

between various sensitivity-based methods is the type of measurement data used for 

model updating. The selection of the residuals to be minimized is a crucial step as the 

residuals should be sensitive to local and small modelling errors or slight structural 

damage. Basically, in addition to commonly used modal data, FRF data, time series 

of response data, or the combination of these, can be used. For the modal domain 

data, besides the modal frequencies and mode shapes, the modal strain energy 

(Stubbs and Kim 1996; Shi et al. 2000b), modal flexibility (Wu and Law 2004), and 

curvature mode shape (Ruotolo and Surace 1997; Maeck and De Roeck 1999) also 

have been used for model refinement and damage detection. However, a study by 

Abdel Wahab (2001) indicated that the inclusion of curvature mode shapes does not 

improve the convergence of sensitivity-based model updating algorithms. In addition, 

one recent paper by Worden et al. (2005a) argued that the quantities that are sensitive 

to local structural damage will also be sensitive to environmental conditions and 

measurement noises. As modal data are indirect measurement data, they could be 

contaminated by measurement errors as well as modal extraction errors. To avoid the 

modal extraction errors, the FRF data in frequency domain may be used directly to 

update the FE model without extracting the natural frequencies and mode shapes 

(Fritzen and Zhu 1991; Friswell and Penny 1992; Fritzen et al. 1998; Zimmerman et 

al. 2005). One problem associated with model updating using FRF data is that the 
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damping must be considered in the analytical FE model to achieve good updating 

results. The system identification and model updating can also be accomplished with 

the direct use of time domain data (e.g., Choi and Stubbs 2005; Kang et al. 2005). 

Parameterization is a key issue in FE model updating (Friswell et al. 2001). It is 

important that the chosen updating parameters should be able to clarify the ambiguity 

of the model, and it is necessary for the model output to be sensitive to the 

parameters. Usually selection of elements in the mass and stiffness matrices as 

candidate parameters performs very poorly, and this is one reason why the direct 

methods of model updating such as optimal matrix updating methods and 

eigenstructure assignment methods are not favored (Friswell and Mottershead 1995). 

The strategy of selecting physical parameters such as the flexural rigidity of a beam 

element, Young’s modulus, and geometrical dimension, is commonly used in model 

refinement and damage detection applications. Despite the clear physical meanings, 

these methods are difficult to model the joint stiffness and cannot correct both the 

model structure and model order errors. The generic element theory proposed by 

Gladwell and Ahmadian (1995) shows a good balance between the matrix-element 

updating scheme and physical-parameter updating strategy. The updated model is 

correlated to the experimental data by automatically introducing relevant effects 

which original FE model does not possess, while keeping the structural connectivity 

defined by the original FE model. The main obstacle is that one cannot give physical 

explanation of updated generic parameters, which hinders the wide application of 
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generic element theory to damage detection and model refinement (Ahmadian et al. 

1997). 

2.3.4 Stochastic Model Updating Methods 

Although Chen and Garba (1980) argued only those data considered to be 100% 

accurate should be taken into consideration in order to avoid leading to totally 

erroneous updated model, such an argument is not justified in practice as the 

measurement data from the sensor always contains some, albeit small, amounts of 

noises superimposed in the desired signal. One important drawback existent in most 

of the previous model updating methods is that they do not account for the statistical 

variation both in the material properties and in the measured modal properties. The 

uncertainties in measured modal properties may arise from the following two 

obvious sources. 

Source A. The measured modal properties are inevitably corrupted with 

measurement noises no matter how precise the instrumentations are, whereby 

the measurement noises are generally characterized to have a zero mean and 

their magnitude depend on the experimental equipment, the test environment 

and data processing (Sanayei et al. 2001). Furthermore, the errors can also be 

introduced when identifying the modal properties from the time-domain signals 

such as accelerations. 

Source B. It is widely known that many structural parameters such as Young’s 

modulus and material strength are inherently random variables that can only be 
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characterized from the standpoint of statistics. However, for a specific structure, 

each of the above parameter value in this structure is given as the deterministic 

quantity rather than a random quantity, and this value represents a realization 

(sample) of random variable which is not exactly known. The determination of 

these quantities could resorts to the deterministic system identification/model 

updating approaches. Nevertheless, when the structure operates in varying 

operational and environmental conditions, some of parameters and therefore the 

whole structure exhibits a certain degree of randomness. One witness is natural 

modal variability mainly caused by the varying temperature which would alter 

the Young’s modulus of structures (Sohn et al. 1999; Peeters and De Roeck 200; 

Ko et al. 2003). As it is well known that the Young’s modulus varies with 

environmental temperature T, the Model Code 90 issued by the CEB in 1991 

suggested the correlation between temperature and Young’s modulus as: E(T) = 

E20℃× (1.06 – 0.003×T) in which E20℃ is Young’s modulus at the temperature of 

20 Celsius degree (Breccolotti et al. 2004). Accordingly the modal parameters 

measured from a SHM system will show their statistical variations. 

In practice both uncertainties contribute to the variability of measured modal data. In 

the presence of uncertain modal properties, it is important to study and quantify their 

effect on the model updating results, as well as to estimate the resulting statistics of 

updating parameters. For simplicity, the stochastic model updating or statistical 

system identification can be described as follows: given the statistics of measured 

modal data, determine the statistics of structural parameters in the updated FE model 
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by an uncertainty-propagation approach. This review will be concerned exclusively 

with probabilistic methods for the modelling of uncertainty in measured modal data. 

In other words, the measured modal properties are characterized with continuous 

random variables with known distributions. Other uncertainty models, such as fuzzy 

logic (Cherki et al. 1999) and interval method (Nakagiri and Suzuki 1999; Worden et 

al. 2005b), are equally valid, and model updating based on uncertain measured 

modal data may also be formulated for these uncertainty models. 

The commonly used method for uncertainty propagation is the Monte Carlo 

simulation (MCS) method. The basic concept behind the MCS method is simple and 

straightforward: the MCS method first generates large amounts of samples following 

the predefined probability density functions (PDFs) or the joint PDFs of modal 

properties; the model updating algorithm is then repeatedly executed for these 

samples to obtain the corresponding solution samples of updating parameters; and 

the PDFs of updating parameters are finally obtained from the solution samples. 

Agbabian et al. (1988) employed the MCS method to identify the statistical 

properties of stiffness coefficients in a linear system. In their simulation study, they 

computed the time histories of the applied excitation as well as the accelerations, 

velocities, and displacements of a system. The calculated data were then corrupted 

with a set of Gaussian noise. By separately applying the model updating procedure to 

different time segments, ensembles of stiffness coefficients were identified. 

Subsequent statistical analysis yielded statistical measures such as mean, variance, 

and PDF. This work has been later extended to statistical identification of a nonlinear 
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system approximated by an equivalent linear one (Smyth et al. 2000). Banan et al. 

(1994a, b), Sanayei and Saletnik (1996a, b), Yeo et al. (2000), and Zhou et al. (2003) 

adopted similar approaches for studying the effect of measurement noise on 

identification results. However, the MCS method is by itself computationally 

intensive as it requires a large number of simulations to obtain an accurate and valid 

statistics, and the further need for iterative scheme in each run of model updating 

algorithm would be prohibitive for most problems. 

Perturbation method is another very popular technique for uncertainty propagation. It 

has been applied very successfully in the discipline of stochastic structural analysis 

where the perturbation technique in conjunction with the FE analysis is applied to 

evaluate the response variability and failure probabilities associated with prescribed 

limit states (Kleiber and Hien 1992). Perturbation method expands the nonlinear 

function in terms of random variables either by a linear function or by a quadratic 

one at a particular point. Second moment technique is then applied to evaluate the 

mean and standard deviation of the response, or to evaluate the failure probabilities. 

Liu (1995) might be the first to adapt this technique to model updating. In her work, 

the identification of structural parameters is formulated in a linear least squares 

problem to minimize the modal force residuals. To investigate the influence of 

measurement errors, the author expanded each term in a system of linear equations 

(identification equations) in terms of random variables (random modal properties). 

Making use of the expanded sets of linear equations, the mean and covariance of 

updating parameters are finally derived. Papadopoulos and Garcia (1998) presented a 
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two-step probabilistic method for damage assessment to determine the statistics of 

stiffness coefficients (SC) of the damaged structure. They first used the measured 

statistical changes in modal frequencies and mode shapes to obtain the statistics of 

stiffness reduction factor (SFR). These statistics of SFR along with the statistics of 

SC corresponding to healthy structure are then combined to determine the statistics 

of SC of the damaged structure. A set of graphical and statistical probability damage 

quotients was then used to assess the existence of damage by the comparison of 

statistics of SC before and after damage. Xia et al. (2002), and Xia and Hao (2003) 

updated the statistics of stiffness of the damaged structure in a single step and used 

the statistics of stiffness before and after structural damage to implement 

probabilistic damage detection. Other researches addressing the statistical parameter 

estimation using uncertain modal data include the work of Li and Roberts (2001a, b) 

who incorporated the uncertainty-propagation approach with extended Kalman filter 

method for recursive identification of random structural parameters, Araki and 

Hjelmstad (2001) who used the higher-order perturbation method based on the 

concept of optimum sensitivity, Fonseca et al. (2005) who combined the maximum 

likelihood method with perturbation technique for estimating the statistics of random 

location of a mass.  

The method of statistical identification of structures which is capable of dealing with 

uncertainties both in FE model and measured modal properties was first developed 

by Collins et al. (1974), and later improved by Friswell (1989) to accelerate the 

convergence rate. They presented a minimum variance method for statistical 
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estimation of flexural and torsional stiffness based on Bayesian theorem. In their 

method, both structural parameters and measured modal properties are assumed to 

have errors given in terms of their variances. The estimation of mean and variance of 

the updating parameters is iteratively obtained and the iteration will cease if the 

difference of parameter estimation in two consecutive iterations is small. A more 

rigorous and comprehensive Bayesian updating has been developed by Beck and his 

co-workers (Beck and Katafygiotis 1998; Katafygiotis and Beck 1998; Yuen and 

Katafygiotis 2005). 

2.3.5 Regularization Methods 

Most of sensitivity-based model updating methods require the inversion of a matrix, 

which could lead to numerical difficulties as well as the general problem of 

conditioning and uniqueness in model updating due to incomplete measurement data 

(Hjelmstad 1996). It is usually not feasible to measure the response of physical 

system at all DOFs of the analytical model, and to collect the data from all natural 

modes that the analytical model possesses. Generally the measurement data only 

contain fewer modes than the order of the analytical model and are said to be 

incomplete. Thus the observed dynamic behaviour lies in a narrow knowledge space 

of the investigated structure (Mottershead and Friswell 1993). The problem 

introduced by the incompleteness can become significant in large structures where it 

is expensive to take measurements at a large number of locations and to process large 

volumes of data. It is well known that the incompleteness could lead to 
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under-determined system of equations as well as give rise to problems of 

ill-conditioning and non-uniqueness in model updating, resulting in an infinite 

number of least squares solution. The ill-conditioning associated with the 

under-determined system of equations is generally named as physical ill-conditioning. 

One approach to overcome the physical ill-conditioning is to take the missing 

information from a prior model instead of from the measurement records. Other 

techniques to overcome the physical ill-conditioning include the methods by 

reducing the number of updating parameters such as substructure technique (Koh et 

al. 1991; Yun and Lee 1997; Pothisiri and Hjelmstad 2003), damage function 

(Teughels et al. 2002), selective sensitivity technique (Ben-Haim and Prells 1993; 

Prells and Ben-Haim 1993; Pham and Bucher 2005), modelling errors/damage 

localization technique (Natke 1991), as well as the methods by enriching the 

observed knowledge space of the investigated structure such as attaching fictitious 

mass or stiffness to the structure (Nalitolela et al. 1993; Cha and de Phillis 2001), 

boundary perturbation technique (Rade and Lallement 1998), and combination of 

static and dynamic testing data (Hajela and Soeiro 1990; Wang et al. 2001). 

In contrast to the physical ill-conditioning associated with under-determined system 

of equations, the numerical ill-conditioning could take place for both of determined 

and over-determined systems of linear equations with a general form of Ax = b when 

one or more columns of matrix A can be expressed as a linear or nearly linear 

combination of the other columns. The linear or almost linear dependency occurs 

when two neighbouring elements of a FE model have nearly the same effects on the 
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dynamics of the structure. This can be manifested through the singular value 

decomposition (SVD) of matrix A whose singular values (SVs) can either decay 

gradually to zero or be separately clustered. Hansen (1998) defined two types of the 

ill-conditioned problems. The first type is a rank-deficient problem where there is a 

well-determined gap between large and small SVs of matrix A. The second type is 

the discrete ill-posed problem where all SVs decay gradually to zero. Both of them 

could lead to erroneous results as well as convergence issues in nonlinear 

optimization problems. This effect is exacerbated when the measurement data are 

contaminated by measurement noises. Therefore the treatment of ill-conditioned and 

noisy systems of equations is a problem central to FE model updating and has been 

addressed by Mottershead and Foster (1991), Natke (1993; 1998), Maia and Silva 

(1997), Fritzen et al. (1998), Ahmadian et al. (1998), and Friswell et al. (2001). 

Interested in this study is the numerical treatment of ill-conditioning of system of n 

equations with m unknown updating parameters (n ≥ m) in model updating by using 

the numerical regularization methods. 

The extended weighted least squares procedure is a form of regularization adopted 

by a number of researchers. In this method, the model updating problem reduces to 

minimization of the following quadratic objection function 

( ) ( ) ( ) ( ) ( )0
T

0
T θθWθθθεWθεθ θθεε −−+=J           (2.30) 

where ε(θ) is the residual vector between analytical predictions and measurement 

results of modal parameters; the vector θ0 designates the prior knowledge with 



2-54 

respect to θ; and Wεε and Wθθ are the weighting matrices for the residual norm and 

the solution norm, respectively. When Wεε and Wθθ are the diagonal matrices of 

inverse covariance matrices 1−
εεC  and 1−

θθC ,  Equation (2.30) leads to the 

well-known Bayesian approach (Collins at al. 1974; Torkamani and Ahmadi 1988). 

The determination of weighting matrices is a key issue. Link (1993; 2001) related the 

weighting matrix for the solution norm in Equation (2.30) to the inverse of squared 

sensitivity matrix, as 

BWθθ w=                               (2.31)  

where ( ) ( )11/meanmean −−×= gggB ; ( )SWSg εε
Tdiag= ; and S is the modal 

sensitivity with respect to parameter vector θ. This definition allows to constraining 

the parameter modification according to the sensitivity of the parameters. The kth 

parameter θk will remain unchanged if its sensitivity approaches zero. Otherwise, it 

could change significantly if its sensitivity is large. However, the method for 

choosing the parameter w was not discussed in his papers. Prells (1996) formulated a 

weighting matrix based on data sensitivities calculated from an approach similar to 

the MCS method. 

Another type of regularization is the well-known Tikhonov regularization, also called 

Tikhonov-Phillips method as Tikhonov and Phillips independently developed the 

method. In Tikhonov regularization, instead of minimization of the residual norm of 

2

2
bAx − , the regularized optimization problem is reformulated as the minimization 

of a quadratic objective function, as 
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2

2
22

2

~ xbAxx λ+−=J                       (2.32) 

in which λ, called Tikhonov parameter, controls the weight given to the solution 

norm 2

2
x , which is a smoothness measure of solution, relative to the residual 

norm 2

2
bAx − , which is a goodness-of-fit measure of solution. The difficulty in this 

class of regularization method is to choose the Tikhonov parameter λ such that it 

gives a suitable balance between the residual norm and the solution norm. Naturally, 

if λ is too small the regularized problem will be too close to the original ill-posed one 

and the solution process will still be highly oscillatory due to noise amplification; if 

λ is too large then the solution will be too smooth and have little connection with the 

original problem.  

Early work on the application of Tikhonov method to system identification and 

model updating includes those of Rothwell and Drachman (1989), Ojalvo and Ting 

(1990), Mottershead and Foster (1991), and Fregolent et al. (1996). In these studies 

the Tikhonov parameter was determined through trial-and-error. Problems will occur 

when Tikhonov method is blindly applied to the practical problems. Busby and 

Trujillo (1997) studied the effect of Tikhonov regularization in the reconstruction of 

dynamic loadings from the strain measurement. They applied both the L-curve 

method (LCM) and generalized cross validation (GCV) to choice of optimal 

regularization parameter. Ahmadian et al. (1998) numerically and experimentally 

investigated Tikhonov regularization for the equation-error-based FE model updating. 

They used GCV for determination of the truncation level in the truncated SVD and 
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LCM for choice of the optimal Tikhonov parameter. Ziaei-Rad and Imregun (1999) 

summarized the existing regularization methods applied to model updating. They 

further examined the performance of Tikhonov regularization, truncated SVD, total 

least squared method, and the maximum entropy method for FRF-based model 

updating technique. Mares et al. (2002) explored the robust estimation technique and 

Tikhonov regularization method for the output-error-based model updating using 

measured modal frequencies, and applied an uncertainty bound model and LCM to 

determine the regularization parameters, respectively. 

Truncated SVD is another form of regularization by truncating the last several 

smallest SVs to improve the conditioning of matrix. Likewise, the difficulty existing 

in this type of regularization is the determination of the truncation parameter. A 

trial-and-error procedure is used by Mottershead and Foster (1991) to determine the 

truncation parameter. D’Ambrogio and Fregolent (1998) determined the truncation 

parameter by simultaneous minimization of the natural frequency error and the 

response residual error. Ren (2005) presented a method for determination of the 

truncation level. In his method, those SVs, the ratios of which to residual norm are 

smaller than a prescribed value, are disregarded. However, the success of the method 

depends on the choice of the prescribed value which was not discussed in the study. 

The small value could cause the iteration divergent, while the large value gives rise 

to a low convergence rate. 
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2.4 Critical Issues and Shortcomings in Existing Methods 

Although the idea of vibration-based damage detection appears intuitive and 

considerable research effort has been devoted to it during the past decades, assessing 

structural damage in large-scale bridges still remains a challenging task for civil 

engineers. The primary sources of difficulty for reliable damage detection includes 

the insensitivity of modal properties to local damage, the uncertainty and 

incompleteness of measurement data, the natural modal variability arising from 

varying operational and environmental conditions, and the modelling errors in the 

analytical models. 

The first obstacle to reliable implementation of vibration-based damage detection 

methods is the insensitivity of modal properties (in particular modal frequencies and 

mode shapes) to local structural damage and the incompleteness of measurement data. 

Some derivatives (indices) which might be more sensitive to local structural damage 

have been constructed from the basic modal properties; however the statistical 

uncertainties associated with these derivatives have not yet been quantified, to the 

best of the writer’s knowledge. It is commonly acknowledged that modal frequencies 

are measured more accurately than mode shapes. Typical resolution for the modal 

frequencies of a lightly damped structure is 0.1%; whereas typical mode shape error 

is 10% or more (Friswell and Penny 1997). It is presumable that these synthesized 

derivatives could have more uncertainty than those associated with mode shapes. A 

study by Worden et al. (2005a) indicated that those indices sensitive to local damage 
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are also sensitive to environmental conditions and measurement noise. Thus, in the 

writer’s opinion, utilizing the derivatives for damage detection may be not very 

fruitful. The incompleteness of measurement data further complicates the reliable 

damage detection. Both the insensitivity and incompleteness of modal properties 

could lead to the ill-conditioned system of equations in both model refinement and 

damage detection. Recently, although there have been attempts to deal with the 

ill-conditioned and noisy system of equations, these attempts are largely restricted to 

the linear least squares problem formulated by minimization of the equation error 

(Ahmadian et al. 1998; Ziaei-Rad and Imregun 1999; Friswell et al. 2001). However 

many model updating algorithms, especially those used in civil engineering 

community, leads to the nonlinear optimization problems in terms of updating 

parameters. The investigation of regularization methods in this type of model 

updating algorithms, in particular the methods to optimize regularization parameters, 

is still limited and requires further exploration. 

The second obstacle is the uncertainty associated with measured modal parameters 

which also impedes reliable implementation of FE model updating algorithms. As 

uncertainty is inevitable in measurement data, it seems more natural to pursue the 

model updating in a framework of probability and statistics. However, most current 

investigations on system identification and model updating aim at developing 

methods for deterministic estimation of structural parameters on the assumption that 

all information about the structures (material properties, modal frequencies, and 

mode shapes, and so forth) is considered to be fixed quantities. These methods are 
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incapable of accommodating the stochastic nature of measured modal properties and 

lack robustness in dealing with uncertainties in the measured modal properties. In 

contrast to the myriad of literature addressing deterministic FE model updating, there 

is a paucity of publications on the statistical identification of structural systems. The 

application of statistical methods in model updating has been advocated by Collins et 

al. (1974) although their study was originally intended to overcome the 

ill-conditioning. The necessity to incorporate statistical methods into model updating 

algorithms has been recognized by several researchers (Liu 1995; Papadopoulos and 

Garcia 1998; Araki and Hjelmstad 2001; Xia et al. 2002; Fonseca et al. 2005; 

Zimmerman 2006). The current application of probabilistic methods in model 

refinement and damage detection is immature. More development and exploration 

are needed in the direction of stochastic model updating and probabilistic damage 

detection. 

One issue arising from the stochastic FE model updating is how to use the model 

updating results. On the basis of model updating results, the conclusion can be 

reached that one or more members are damaged. However, further to this conclusion 

is the question what action should the bridge authorities take? Hence, it is apparent 

that one more step is called for through which the model refinement and damage 

detection results can eventually be channeled to the managers for decision making. In 

recognizing structural reliability to be a major decision factor throughout the life 

cycle of a civil infrastructure system, Yao, Natke and their colleagues defined health 

monitoring and structural reliability as a value chain (Yao and Natke 1994; Wong 
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and Yao 2001). Based on this concept, Stubbs et al. (2000) presented a methodology 

to continuously assess the safety of civil engineering structures. In their method, 

structural damage is first identified using the measurement data of modal parameters, 

and structural reliability methods are then applied to the possibly damaged structure 

to determine the failure probability of structural systems. However, that study is 

based on the deterministic system identification/damage detection approach that 

lacks the capability to take into account uncertainties in measurement data. To the 

best of the writer’s knowledge, no work has been yet devoted to the use of stochastic 

model updating results for reliability evaluation and decision making. Additionally, a 

gap between health monitoring technology and bridge inspection, management and 

maintenance exercises currently exists which impedes bridge managers to benefit 

from the monitoring system. 

It has been recognized recently that the performance of vibration-based damage 

detection algorithms is seriously attenuated due to the natural modal variability. Such 

natural modal variability is caused by varying environmental/operational conditions. 

In reality, civil engineering structures are subject to varying environmental and 

operational conditions such as temperature, traffic, wind, humidity, and 

solar-radiation. These environmental effects cause changes in physical parameters 

such as Young’s module, structural mass, boundary conditions, and thermal-induced 

internal forces in redundant structures, and hence induce changes in modal 

parameters. For obtaining a reliable and accurate damage detection result, it is of 

paramount importance to characterize the normal modal variability and discriminate 
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such modal variability from the abnormal changes in modal parameters caused by 

structural damage. When the effects of normal environmental changes are well 

understood or quantified, it is possible to achieve reliable and accurate damage 

identification through incorporating the environmental effect models into the damage 

detection algorithms in either a statistical or deterministic way (Worden et al. 2002; 

Kim et al. 2004). Considerable research effort has been made on investigating the 

influence of environmental conditions on modal frequencies of bridges via field 

measurements and dynamic tests (Askegaard and Mossing 1988; Robert and Pearson 

1996; Abdel Wahab and De Roeck 1997; Farrar et al. 1997; Cornwell et al. 1999b; 

Sohn et al. 1999; Alampalli 2000; Lloyd et al. 2000; Rohrmann et al. 2000; Bolton et 

al. 2001; Peeters and De Roeck 2001; Ko et al. 2003). Most of these investigations 

indicated that temperature was the critical source causing the variability of modal 

parameters, and the changes in modal frequencies caused by temperature might reach 

up to 4% or more in highway bridges. Although many field measurements and 

observations have been made, very few studies have addressed the modelling of 

environmental effects on modal frequencies. 

Because of very few studies available in the literature, the following aspects deserve 

further exploration: 1) the treatment of ill-conditioning in output-error-based model 

updating; 2) the quantification of influence of uncertainty in measurement data on 

the quality of model updating/damage detection results; 3) the use of stochastically 

updated model for reliability analysis, condition assessment, and decision making; 

and 4) the interpretation of monitoring data in terms of structural health and 
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condition. The above issues will be addressed in this PhD study. 
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Chapter 3 

REGULARIZATION METHODS FOR FE MODEL 
UPDATING AND DAMAGE DETECTION 

 

 

3.1 Introduction 

A FE model which can accurately represent the physical behaviour of a structure is 

very important in the disciplines of structural design and analysis, damage detection, 

structural health monitoring, and structural control. For example, in order to make a 

reliable prediction on load-carrying capacity of a structure, an adequate FE model of 

the structure is necessary. Despite the high sophistication of FE modelling, practical 

applications often reveal considerable discrepancies between analytical predictions 

and experimental results, which may originate from the uncertainties in simplified 

assumptions of geometry configuration, inappropriate values of material properties, 

and inaccurate boundary conditions. Thus the analytical model should be adjusted to 

coincide with the testing results. In practice, the verification and updating of 

analytical model is mainly based on comparing experimental modal properties with 

the analytical ones by means of FE model updating procedures. 

Because of significant roles in model refinement and damage detection applications, 

FE model updating using experimental modal data has received wide attention from 

academic circles for several decades and has been increasingly acknowledged and 

used by engineering practitioners. Although many advanced and alternative 
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techniques, such as ANNs, genetic algorithms, and simulated annealing, have been 

developed and applied to model updating problems, sensitivity-based model updating 

algorithm still remains as a widely-accepted technique and is preferred in many 

applications due to its physical meanings. 

Despite a lot of research efforts made, one of critical issues that remain in the 

sensitivity-based methods is how to deal with the resulting ill-conditioned equations 

(Friswell et al. 2001). It is generally recognized that model updating based on 

experimental modal properties often leads to ill-posed system of equations, where the 

existence, uniqueness and stability of solution are not assured and numerical 

instability is likely to take place in the course of solution process (Kravaris and 

Seinfeld 1985). The situation is further complicated by measurement noises as small 

measurement noises could be amplified, leading to totally erroneous solutions and 

convergence problems. There have been attempts to deal with the ill-conditioning in 

mode updating by using the numerical regularization methods (Rothwell and 

Drachman 1989; Ojalvo and Ting 1990; Mottershead and Forster 1991; Fregolent et 

al. 1996; Ren 2005). Although these studies indicated that accuracy of model 

updating could be greatly improved using regularization methods, the determination 

of regularization parameters in these studies was performed by trial-and-error. 

Anonymous and automatic selection of these parameters is a critical issue for the 

implementation of regularization methods. Ahmadian et al. (1998) advocated the use 

of L-curve method (LCM) and generalized cross validation (GCV) for automatic 

selection of regularization parameters. They implemented GCV for the determination 

of truncation level in the truncated SVD and LCM for the choice of the Tikhonov 

parameter. D’Ambrogio and Fregolent (1998) applied the truncated SVD to alleviate 

the ill-conditioning of model updating from FRF data. In their method, the choice of 
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truncation level requires a trade-off between the different needs and necessitates 

some manual intervention. Ziaei-Rad and Imregun (1999) further studied a number 

of regularization methods and concluded that the determination of optimal 

regularization parameter seems straightforward using LCM. The previous studies are 

limited to the equation-error-based FE model updating method. Mares et al. (2002) 

explored a robust estimation method and Tikhonov regularization method for output-

error-based model updating by using only the measured modal frequencies, and 

applied an uncertainty bound model and LCM, respectively, to determine the 

regularization parameters for the two methods. In most applications of model 

updating for model refinement and damage detection, it is generally necessary to 

incorporate simultaneously both the measured modal frequencies and the measured 

mode shapes. It is presumable that the incorporation of mode shapes in model 

updating algorithms makes the system of equations more ill-conditioned as the 

magnitudes of eigenvalues and mode shapes often deviate in several orders. 

This chapter addresses the implementation of regularization methods for output-

error-based model updating using measured modal frequencies and mode shapes, 

with research focus on optimization of the regularization parameters. The outline of 

this chapter is as follows: First, the output-error-based model updating is procedure 

presented. The procedure consists of solving a nonlinear optimization problem in 

which an objective function measuring the discrepancies between analytical and 

experimental modal data is minimized. Two regularization techniques are then 

applied at each linearization step of the nonlinear optimization problem in order to 

alleviate the ill-conditioning, where regularization is accomplished either by adding 

an additional term or truncating the small singular values (SVs) of sensitivity matrix. 

Subsequently, three methods for optimal choices of the regularization parameters are 
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presented. The performances of the two regularization techniques accompanied with 

the three regularization-parameter-choice methods are rigorously examined and 

assessed through numerical studies on model updating of a truss bridge using both 

noise-free and noisy measurement data. 

3.2 Output-Error-Based Model Updating Method 

As outlined in Figure 3.1, sensitivity-based model updating using an output error 

approach is quite straightforward. The numerical modal data are first computed from 

the FE model with the initially estimated values of the unknown physical parameters; 

and the experimental modal data are obtained from ambient vibration tests on the 

structure. A process is devised for updating the parameter estimates to minimize the 

discrepancies between these two sets of modal properties, and it is repeatedly 

executed until the parameter variation between two consecutive iterations and the 

discrepancies between analytical and experimental modal data are small enough. 

3.2.1 Objective Function 

In FE model updating using the measured modal data, the identification of structural 

parameters is formulated in an optimization problem where structural parameters are 

sought so that the updated FE model can reproduce as closely as possible the 

measured modal properties. To this end, the objective function in the optimization 

problem, measuring the output error between analytical and experimental modal 

properties, is defined as 

( ) ( ) 2

2
T ~~~~ θzzεεθ −==J      with ( )θzzε −= ~~                        (3.1) 
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Figure 3.1  Flowchart of sensitivity-based FE model updating 

where ε~  is the output error of modal properties; z~  and ( ) nR∈θz  are vectors of the 

experimental and analytical modal properties with ( )1+×= mf nnn ; nf and nm are the 

numbers of measured natural frequencies and measured coordinates of each mode 

shape, respectively; mR∈θ  is a vector of m updating parameters; and the subscript 

T denotes vector/matrix transpose. In order to obtain a unique solution, the number of 

known modal data n should be not less than the number of unknown updating 

parameters m. The experimental modal data z~  consists of the eigenvalues and mode 

shapes, with the form of 

( )TT
22

T
11

T ~~~~~~~
ff nn φφφ λλλ=z                               (3.2) 
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where iλ~  is the ith experimental eigenvalues; and iφ
~  is the corresponding mode 

shapes. The analytical modal vector which is computed from initial FE model takes a 

similar form as 

 ( )TT
22

T
11

T
ff nn φφφ λλλ=z                              (3.3) 

where λi is the ith analytical eigenvalue; and φi is the corresponding mode shape. 

Equation (3.1) represents the basic least squares formulation of model updating 

problem. A more general formulation is the weighted least squares expression by 

multiplying each error with a weighting in order to take the relative importance of 

different types of modal data and their accuracy into account, that is, 

( )( )θzzWε ε −= ~                                                                    (3.4) 

in which Wε is a diagonal matrix whose element represents the relative importance 

of each error. The weighted squared sum of the error vector is then formulated as 

( ) ( )( ) 2

2
T ~~~ θzzWεWεθ ε −==J                                            (3.5) 

whose minimization is essentially a nonlinear least squares problem as the modal 

vector z generally is a nonlinear function in terms of the unknown updating 

parameter θ; and Wε = W1/2. It is worth noting that in the alternative model 

updating approach based on equation error, the resulting least squares problem can 

be linear or nonlinear depending on the choice of updating parameters. 

It has been shown that proper selection of the weighting matrix in Equation (3.4) is 

important to improve the updating results (Friswell and Mottershead 1995). 

Therefore the relative weights for eigenvalues and eigenvectors should be chosen 
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carefully. As the eigenvalues are measured more accurately than eigenvectors, more 

weights should be placed on the eigenvalues than on the eigenvectors. Throughout 

the simulation study in this chapter, the weights for eigenvalues are taken as unit 

and the weights for eigenvectors are taken as 0.1 (Friswell and Motteshead 1995; 

Xia et al. 2002). 

3.2.2 Mode Shape Paring 

Before analytical and experimental modal data in Equations (3.2) and (3.3) can be 

compared, they must be paired correctly, i.e., the data must relate the same modes. 

Arranging the eigenvalues in ascending order of magnitude is not sufficient since 

the order of the modes in the analytical FE model will differ from the testing one 

due to the poor initialization values of updating parameters. Furthermore, the 

structure may have closely-spaced eigenvalues. Another problem in model paring is 

that some of experimental modes may be measured inaccurately, usually because 

the force excitation or the accelerometer is closed to a node of a particular mode 

shape. If a mode is not excited in the experiment, it should be also eliminated from 

the analytical modal vector. 

Modal assurance criterion (MAC) is the most commonly used method for paring the 

experimental and analytical modes.  MAC defines the correlation between two 

mode shapes as 

( ) ( )
( ) ( )jjii

jiji
φφφφ

φφ
~~

~
,MAC

TT

2T

×
=                                              (3.6) 
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with φi and jφ
~  are analytical mode shape and experimental mode shape, 

respectively. MAC value always lies in between 0 and 1. A MAC value close to 0 

indicates bad correlation while a MAC value close to 1 is indicative of good 

correlation and therefore paired modes. In practice it is commonly accepted that a 

MAC value larger than 0.9 means the same mode pair. 

3.2.3 Sensitivity Analysis of Modal Properties 

The nonlinear least squares problem formulated in Equation (3.5) can be solved 

with a number of numerical optimization techniques among which the gradient-

based optimization approach is commonly used. In the gradient-based optimization 

method, the Jacobian matrix (or the sensitivity matrix) needs to be calculated in 

each of iteration to ensure a correct search direction. The first-order partial 

derivatives of eigenvalues and eigenvectors with respect to structural parameters are 

of concern in this study (Fox and Kapoor 1968). The sensitivities of modal 

properties include those of eigenvalues and the mode shapes, namely 
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                               (3.7) 

where  
j

i

θ
λ

∂
∂

 and 
j

i

θ∂
∂φ

 are the sensitivities of the ith eigenvalue and mode shape 

with respect to the jth updating parameter, and their derivations are given in 

Appendix I. 
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When only stiffness-related structural parameters are required for correction, the 

sensitivities of eigenvalues and mode shapes are simplified as 

i
j

i
j

i φφ
θθ

λ
∂
∂

=
∂
∂ KT                                                               (3.8) 

( )∑
≠=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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=

∂
∂ N

ikk
i

j
k

ki

k

j

i

,1

T φφ
φφ

θλλθ
K                                   (3.9) 

where iφ  is the ith mass-normalized mode shape, i.e. 1T =ii φφ M ; 
jθ∂

∂K  is the 

partial derivative of global stiffness matrix with respect to the jth updating 

parameters θj; and N  is the total number of DOFs in the analytical model. 

3.2.4 Solution of Nonlinear Least Squares Problem  

The solution of nonlinear optimization problem (3.5) is obtained using the gradient-

based optimization method. It begins with an initial guess of values of the updating 

parameter θ (0) and then generates a sequence of improved estimates θ (k) until they 

reach the solution. Making use of the first-order Taylor expansion series in each 

iteration k, one obtains a linearized estimation of the analytical modal data as 

( )( ) ( )( )
( )

( ) ( )( )kkkk

k

θθ
θ
zθzθz

θθ

−
∂
∂

+≈ +

=

+ 11                          (3.10) 

in which 
( )kθθθ

z

=∂
∂  represents the modal sensitivities with respect to updating 

parameters, evaluated at current parameter estimate θ(k). Substituting Equation (3.10) 

into Equation (3.5), and then forcing the first-order derivative of the objective 

function with respect to updating parameters θ to zero lead to a set of equations 
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( ) ( )( ) ( ) ( )( ) 0~ 1
T
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The solution for updating parameters at the kth iteration is finally obtained as 

( ) ( ) ( )kkk θθθ ∆+=+1                                                             (3.12) 
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                 (3.13) 

where ∆θ(k) is the parameter variation at the kth iteration; and ( ) ( )( )kk θzzε −= ~~  is 

discrepancies between the experimental and analytical modal properties at the kth 

iteration. By defining the weighted sensitivity matrix as 
θ
zWS

∂
∂

= 2/1 ,  Equation 

(3.13) becomes 

( ) [ ] ( )( )[ ]kk θzzWSSSθ −=∆
− ~2/1T1T                                    (3.14) 

As discussed early, an iterative procedure is required to obtain the solution to 

nonlinear least squares problem (3.5). With the new estimates of updating parameters 

θ(k+1) = θ (k) + ∆θ (k) at the next iteration, the analytical modal properties z (θ(k+1)) and 

the sensitivity matrix S are re-calculated. The solution process is repeated until the 

parameter difference between two consecutive iterations is smaller than a predefined 

tolerance level. 

3.3 Regularization Techniques 

In FE model updating, the modal sensitivity matrix is often ill-conditioned, and the 

direct least squares solution, as given by (3.14), yields very poor estimates if the data 
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are polluted by round-off error and measurement noise. It is therefore important to 

use proper techniques to solve the system of equations. Such techniques include 

Tikhonov regularization, truncated SVD, truncated generalized SVD, and others 

(Hansen 1998). 

3.3.1 Ill-Conditioning of Least Squares Problem 

Least squares solution in Equation (3.14) is essentially equal to that of a determined 

or over-determined system of equations with the form of  

eθS =∆                                                                      (3.15) 

with ( )( )( )kθzzWe −= ~2/1  is the weighted error vector at each iteration, in which ∆θ 

is used instead of ∆θ(k) for simplification. SVD is one of the most convenient tools to 

solve the system of linear equations as given in Equation (3.15). The SVD of the 

weighted sensitivity matrix S is applied as 

TVUΣS =                                                                    (3.16) 

where nnR ×∈U  and mmR ×∈V  are orthogonal matrices, i.e. nIUU =T  and 

mIVV =T ; and Σ = diag (σ1, σ2, …, σm) where SVs are arranged in a non-increasing 

order such that σ1 ≥ σ2 ≥ …≥ σm ≥0.  The condition number of S is defined as the 

ratio of the largest SV to the smallest one, as ρ = σ1/σm. It should be noted here that 

none of SVs will be numerically zero due to round-off error. A system of equations 

with a large condition number of coefficient matrix could be ill-conditioned. In the 

problem of ill-conditioning caused by round-off error on digital computers, the SVs 

tend to separate a group of large SVs and a second group of many orders of 

magnitude smaller; in the case of noisy vibration test data, this well-behaved 
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separation will not occur for equation-error-based model updating and, instead, the 

SVs spread evenly over a wide range (Mottershead and Foster 1991). 

Making use of the SVD, the left-hand side of Equation (3.15) is rewritten as 

( )∑
=

∆=∆
m

i
iii

1

T θvuθS σ                                                    (3.17) 

where iu , iσ , and iv are the ith left singular vector, singular value, and right 

singular vector of the weighted sensitivity matrix. Equation (3.17) shows that the 

high-order components related to small SVs have only a small contribution while 

they must have opposite effect on the inverse problem. After some manipulation of 

the SVD, the solution to Equation (3.17) and the solution norm are obtained as 
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which clearly indicates that the noise effect will be amplified if the Fourier 

coefficients euT
i  corresponding to the small SVs σi do not decay as fast as the 

singular values. A necessary condition for obtaining a good and stable solution is that 

the Fourier coefficients must decay to zero faster than the SVs (Hansen 1990). This 

condition has been commonly referred to as the Discrete Picard Condition (DPC) in 

the ill-posed problems. When DPC is not satisfied, the least squares solution ∆θLS 

will be dominated by the high-order components, and large oscillation in solution 

∆θLS could occur for small perturbation in vector e either due to round-off error or 
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measurement noise. This is further illustrated by the following formula of bounds on 

estimation errors (Friswell and Mottershead 1995), namely 

( )
ρδ

δ
≤

∆

∆−∆

2LS

2LSLS

θ
θθ

                                               (3.20) 

where 
( )

2

2

e
ee −

=
δ

δ  is the noise level in the weighted error vector e; and ρ is 

condition number of the weighted sensitivity matrix. Equation (3.20) indicates a 

small disturbance in measurement data cannot produce large relative change in 

parameter variation ∆θLS when the condition number ρ is small; while a large 

condition number may lead to quite large disturbance in parameter variation even for 

a small error in measurement data as the relative error in parameter variation could 

be amplified ρ times. This observation actually lays the theoretical foundation on 

many attempts to reduce the condition number by means of reduction of number of 

updating parameters and enrichment of measurement data. 

For the ill-posed nonlinear least squares problem, the fact that the least squares 

solution at each iteration could become considerable oscillation may lead to problem 

of instability and divergence during the iteration process. In order to obtain a stable 

solution at each iteration, methods for dampening or filtering out the effect of the 

small SVs are required to enforce the parameter variation not too large to give rise to 

divergence results or physically meaningless solutions. The numerical regularization 

methods for treatment of the ill-posed problems seek to overcome the problem 

associated with the large condition number by replacing the problem with a ‘nearby’ 

well-conditioned one whose solution approximates, albeit is different from, the 

required solution (Hansen 1992). The well-known regularization methods are 
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Tikhonov regularization and truncated SVD. The former uses a Tikhonov parameter 

to dampen the effect of the small SVs, and the latter truncates the small SVs and 

removes them from the summation of Equation (3.18). A common feature of the two 

regularization methods is that they depend on a regularization parameter that controls 

how much filtering is introduced by the regularization. A key issue associated with 

these methods is to find a regularization parameter that gives a good balance between 

filtering out enough noise without losing too much information in the obtained 

solution. 

3.3.2 Tikhonov Regularization 

The most common and well-known form of regularization is Tikhonov regularization, 

which is also referred to as Tikhonov-Phillips regularization because Tikhonov and 

Phillips have independently developed the method. In Tikhonov regularization, 

instead of minimization of residual norm of 2

2
eθS −∆ , the regularized optimization 

problem is redefined as the minimization of a quadratic cost function as 

2

2
22

2

~ dθLeθSθ −∆+−∆=∆ λλ λ
λ

J                              (3.21) 

in which λ, called Tikhonov parameter, controls the weight given to minimization of 

some kind of the solution norm 2

2
dθL −∆ λ , which is a smoothness measure of 

solution, relative to minimization of the residual norm 2

2
eθS −∆ λ , which is a 

goodness of fit measure of solution. The second term in right-hand side of Equation 

(3.21) is called side constraint which enforces the solution of least squares problem 

to behave in a predefined manner by appropriate choice of matrix L and vector d. 

The matrix L is typically either the n×n identity matrix I, or a p×n discrete 
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approximation of the (n-p)th derivative operator (Liu and Han 2003). One constraint 

could be that the parameter variation ∆θ(k) in each iteration k is minimized, whereby 

matrix L will become an identity matrix; another constraint is to minimize the 

difference between two neighboring parameters at each iteration; and so forth. 

Throughout this study, the matrix L is assumed to be an identity matrix and the 

vector d is zero for the minimization of the norm of parameter variation.  

By letting L = I and d = 0, the minimization of Equation (3.21) is equivalent to the 

following regularized least squares problem 

 ( ) eSθISS T2T =∆+ λλ                                                  (3.22) 

Likewise, the solution to Equation (3.22), as a function of Tikhonov parameter λ, is 

obtained as 
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in which the quantities  ( )222 / λσσ += iiif  (i = 1, 2, …, m), are called filter factors. 

It is clear that Tikhonov regularization uses the filter factors to dampen the effects 

associated with the small SVs iσ . Making use of the orthogonality of singular 

vectors, the solution norm 
2λθ∆  and residual norm 

2
eθS −∆ λ  can be similarly 

expressed as 
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These two quantities represent the smoothness and fitness of the solution, and they 

should be balanced appropriately to have a good selection of the regularization 

parameter. The methods for selection of the Tikhonov parameter will be discussed 

in Section 3.4. 

3.3.3 Truncated Singular Value Decomposition 

A fundamental observation regarding Tikhonov regularization is the use of filter 

factors to dampen the effects associated with small SVs. An alternative way is to 

discard the items associated with small SVs from the summation in Equation (3.18) 

as they contribute very little to the vector e. This is accomplished with the use of 

truncated SVD. This method amounts to truncating the SVD of the coefficient matrix 

S in such a way that the last several smallest SVs of S are discarded, and then solving 

the modified least squares problem 

( ) eθvuθS =∆=∆ ∑
=

t

ttt

m

i
miiimm

1

Tσ                                      (3.26) 

where 
tmS  is the truncated sensitivity matrix; and mt ≤ m is the truncation parameter 

that controls the number of SVs set to zero. The truncated SVD yields the regularized 

solution 
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                                                      (3.27) 

Hansen (1987) investigated the truncated SVD as a means of regularization and 

compared it with Tikhonov regularization. He proved that, under suitable conditions, 

for any valid truncation parameter mt there always exists a regularization parameter λ 

for Tikhonov method such that the truncated SVD solution is close to the Tikhonov 
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solution.  

Actually, both Tikhonov regularization and truncated SVD are developed for the 

solution of linear ill-posed problems. It is reasonably expected that a natural 

extension in the case of nonlinear least squares problems is to apply them at each of 

linearized iteration. However the connection between the stability and ill-posedness 

of a nonlinear problem and its linearization is not as strong as one might think (Engl 

et al. 1996). It is possible to construct a nonlinear operator such that the 

corresponding nonlinear problem is everywhere ill-posed, whereas the linearized 

operator is well-posed everywhere; on the other hand, well-posed nonlinear problems 

may have ill-posed linearization, which often occurs due to poorly assigned initial 

linearization point. 

3.4 Determination of Regularization Parameter 

Central to Tikhonov regularization and truncated SVD is the choice of the 

regularization parameters, namely the Tikhonov parameter λ for Tikhonov 

regularization and the truncation parameter mt for truncated SVD. For a variety of 

regularization methods, it is well known that the optimal value of the regularization 

parameter is a function of some unknown parameters and the unknown noise level as 

it relates to the smoothness of solution. When the noise level in the measurement 

data is available, the discrepancy principle developed by Morozov (1984) can be 

applied to determine an appropriate regularization parameter. Following the 

discrepancy principle, the regularization parameter is chosen such that the residual 

norm for the regularized solution satisfies 
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22reg reθS =−∆                                                    (3.28) 

in which 
22

~zr δ=  is the norm of measurement noise with noise level of δ. This 

criterion could produce very good regularization parameter for linear ill-posed 

problem, while sometimes it gives conservative choice of the regularization 

parameter and therefore yields over-smoothed solutions (Hansen 1998). In many 

practical applications, a further limitation of this method is that the information 

regarding the noise level and therefore the noise norm is not always available or 

reliable. 

It is therefore necessary to consider alternative regularization-parameter-choice 

methods that do not require the knowledge of the noise level. In this study, three 

commonly used methods for choice of regularization parameters have been studied in 

the context of output-error-based model updating. The first method examined is 

LCM in which the curvatures of the L-curve, a log-log plot of residual norm versus 

solution norm for a wide range of the regularization parameter, are first computed at 

discrete points of the curve and the regularization parameter corresponding to the 

maximum-curvature point in the L-curve is selected as the optimal one. GCV is 

another very popular method. The idea of GCV is to maximize the predictability of 

the model through a proper setting of the regularization parameter. In comparison 

with LCM and GCV, minimum product criterion (MPC) seems less well known. 

This method selects the optimal regularization parameter on the basis of 

minimization of product of residual norm and solution norm. 

The capability of the first two methods has been studied by a number of authors, and 

is shown to be satisfactory in most cases (Ahmadian et al. 1998; Ziaei-Rad and 
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Imregun 1999; Friswell et al. 2001). However the model updating algorithms used in 

their studies are based on the equation error approach which often leads to a linear 

least squares formulation for model updating. Contrarily, the output-error-based 

model updating algorithms used in the present study lead to a nonlinear least squares 

problem of which the solution requires an iterative scheme. To the best of the 

writer’s knowledge, the performance of the first two methods has not been examined 

when both modal frequencies and mode shapes are used for output-error-based 

model updating. In addition, the last method, MPC, has not been used for 

determining the regularization parameter in model updating problem. Therefore there 

is a need to examine the performance of these methods in the output-error-based FE 

model updating. 

3.4.1 L-Curve Method 

The first criterion examined in this study is the L-curve method.  This method, as 

advocated by Hansen (1992) works by plotting the residual norm 
2reg∆ eθS − versus 

the solution norm 
2reg∆θ  in a log-log scale for a wide spectrum of regularization 

parameter, either the Tikhonov parameter λ or the truncation parameter mt. An 

example of the L-curve is shown in Figure 3.2 for the case of the Tikhonov 

parameter λ; each point in the curve corresponds to a certain value of λ. The typical 

shape of the curve, giving the curve its name, is consisting of a steep part above a 

corner and a flat part to its right. The value of λ and hence the smoothness of 

solution increase from left to right. The flat portion (large value of λ) represents 

over-smoothed solutions, which have had the measurement noise filter out, but also 

to some extent have lost genius information inherent in the data; conversely, the 
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steep portion (small value of λ) corresponds under-smoothed solutions which may 

exhibit large oscillations due to only small measurement errors. The ‘corner’ of the 

curve therefore represents the point at which two types of error norm are balanced 

appropriately, and the corresponding regularization parameter is a good one. For an 

idealized L-curve, this point would be exactly at the ‘corner’. For most real cases, the 

‘corner’ of L-curve becomes a region. Hansen and O’Leary (1993) specified the 

‘corner’ of L-curve as the point at which the curvature of L-curve is maximal. 
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Figure 3.2  A typical L-curve 

For simplification of notation, we define  

( )
2reg∆logˆ θ≡η                 ( )

2reg∆logˆ eθS −≡ρ                 (3.29) 

As a result, the L-curve becomes a plot of which abscissa and ordinate are ρ̂  and η̂  

respectively. For Tikhonov regularization, both the residual norm and solution norm 

can be expressed as a continuous function of the Tikhonov parameter λ,  and 
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therefore the curvature of L-curve could be either determined analytically using 

direct differential method (DDM) or approximated numerically by means of finite 

difference method (FDM). However, as the regularized solution norm and residual 

norm of truncated SVD are discrete functions in terms of the truncation parameter mt, 

the curvature of L-curve can only be determined numerically using FDM. 

Given the log-log plot of residual norm and solution norm in L-curve, the curvature κ 

of L-curve, as a function of the regularization parameter, can be expressed as 

(Hansen and O’Leary 1993) 

( ) ( )( ) 2/32'2'
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≡                                                  (3.30) 

where '''' ˆ,ˆ,ˆ ηρη , and ''ρ̂  denote the first- and second-order derivatives of η̂  and ρ̂  

with respect to the regularization parameter, respectively. 

3.4.1.1 Curvature computation by FDM 

Probably the simplest procedure to compute the curvature of L-curve is FDM. 

Suppose that the L-curve is defined by a series of discrete points 

ljjjj ,,2,1),ˆ,ˆ,( =ρηλ , the first- and second-order derivatives of η̂  and ρ̂  are 
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The merit of FDM is its capability of computing the curvature of both continuous 

and discrete functions, thus it is suitable to both Tikhonov regularization and 

truncated SVD. The main disadvantage of FDM lies in the fluctuations which may 

appear because of the changes in local curvatures of L-curve, especially at the region 

of small value of the regularization parameter. Although the L-curve is nearly 

smooth, the local curvature can fluctuate because of computational error. 

3.4.1.2 Curvature computation by DDM 

As shown in Equations (3.24) and (3.25), both the solution norm and residual normal 

in the case of Tikhonov regularization can be explicitly expressed in terms of the 

regularization parameter, and therefore DDM can be applied to compute these 

derivatives. For simplicity, by defining 

( ) 2

2λλη θ∆=        ( ) 2

2
∆ eθS −= λλρ                        (3.33) 

and recalling  
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the first- and second-order derivatives of if  with respect to λ , '
if  and ''

if , are 

derived, respectively, as 

( )iii fff −−= 12'
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            ( )( )iiii ffff 4312

2
'' −−=

λ
                       (3.35) 

Combining Equations (3.24) and (3.25) with Equations (3.33) to (3.35), the first- and 

second-order derivates of η  and ρ  are obtained as 
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Making use of Equations (3.29) and (3.33), the first- and second-order derivatives of 

η̂  and ρ̂  with respect to λ  are then expressed as 
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Substitution of Equations (3.36) to (3.39) into Equation (3.32) allows evaluation of 

the curvature κ(λ). The maximal curvature is found by evaluating κ(λ) over a wide 

spectrum of λ. 

3.4.2 Generalized Cross Validation 

Another very popular and successful method for choosing the regularization 

parameter is GCV. The GCV method is developed based on statistical considerations 

that a good regularized solution corresponding to one particular regularization 

parameter should predict the missing/unknown data well. In the GCV method, the 

regularized solution [ ]k
regθ∆ corresponding to a particular regularization parameter is 

obtained by leaving out one data nkzk ,,2,1,~ = , at a time, and the prediction error 

of this omitted data point is then determined using the regularized solution; this 

procedure is repeated for n times until the prediction error of each omitted data has 
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been determined, and the mean prediction error is finally calculated over these 

prediction errors. GCV determines the optimal regularization parameter as the one 

that minimizes the mean prediction error. This procedure is explained in the 

following steps for Tikhonov regularization. 

(1) Find the estimate [ ]k
λθ∆  which minimizes 

2

2
2

,1

2

1
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⎠
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≠= =

λθ
n
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m

j
jiji se                                        (3.40) 

(2) Predict the missing data point using the estimate 

( ) [ ]∑
=

∆=
m

j

k
jkjk se

1
,ˆ λθλ                                                           (3.41) 

in which [ ]k
j,λθ∆  represents the jth element of solution vector [ ]k

λθ∆ . 

(3) Choose the value of λ which minimizes the mean prediction error or the cross-

validation (CV) function, as 

( ) ( )( )∑
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−=
n

k
kk ee

n
V

1

2
0 ˆ1 λλ                                                 (3.42) 

It has been proved that Equation (3.42) can be rewritten in the form of (Craven and 

Wahba 1979) 
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where  
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iir-1
1diagQ , i = 1, 2, …, n                               (3.44) 
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and rii is the ith diagonal element of the influence matrix ( ) ( ) T12T SISSSR −
+= λλ . 

Golub et al. (1979) showed that the ordinary cross-validation method led to the 

solution of λ that was rotationally dependent. They replaced rii(λ) in Equation (3.44) 

with trace(R(λ))/n to give the GCV function 
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in which trace(•) represents the matrix trace whose value is equal to the summation 

of all the diagonal elements. Taking the advantage of the property of matrix trace, 

Equation (3.45) is then simplified as 
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where fi is the filter factor defined in Equation (3.23) 

Similarly, the GCV function for truncated SVD is defined as 
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m
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eθS
                                                  (3.47) 

In summary, the GCV minimizes the GCV function in Equation (3.46) and Equation 

(3.47) for determination of the Tikhonov parameter λ and the truncation parameter mt, 

respectively.  
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3.4.3 Minimum Product Criterion 

Another less known technique to determine the optimal regularization parameter is 

MPC, which was initiated by Reginska (1996). Based on the observation that the 

‘corner’ of L-curve is visible in the log-log plot of residual norm and solution norm, 

and could disappear in some scales, as also found in our studies, Reginska suggested 

the minimization of product of residual norm and solution norm as an alternative 

approach to the determination of regularization parameters. On the basis of the 

notations in Equation (3.29), the product function in MPC is defined as 

Tikhonov regularization:     ( ) ( ) ( )λρληλ λλ ×=∆×−∆= 2

2

2

2
θeθSP                (3.48) 

Truncated SVD:                  ( ) ( ) ( )ttmmmt mmmP
ttt

ρη ×=∆×−∆=
2

2

2

2
θeθS      (3.49) 

Letting the first-order derivative of Equation (3.48) with respect to the Tikhonov 

parameter λ equal to zero leads to the following expression, 

( )
( ) ( ) 0
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2

222
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i
i

i

i u
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which is indeed the same as another approach referred to as zero crossing criterion 

used in the inverse problem of Electrocardiography  (Johnston and Gulrajani 1997). 

The previous methods, in particular the first two methods, have been extensively 

studied and have received wide applications in various linear ill-posed problems. 

However, many model updating algorithms have been formulated in terms of 

nonlinear least squares problems, whose linearization around some approximate 

solution often leads to a series of ill-conditioned systems of linearized equations. 
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This requires applying regularization methods in combination with the 

regularization-parameter-choice methods at each of linearized iteration. 

3.5 Numerical Examples 

In this section, a steel truss bridge is used as an example to investigate the 

performance of two regularization methods with different regularization-parameter-

selection methods in the context of the output-error-based model updating algorithm 

for damage detection application. The truss bridge, as shown in Figure 3.3, is a 

simply-supported pin-jointed steel bridge consisting of top members, bottom 

members, vertical members and diagonal members. An analytical model is 

established which has been correlated with the modal properties of as-built or 

undamaged state of the bridge, and therefore this baseline model is considered as a 

description of the bridge without damage. In this analytical model, a total of 21 

planar truss elements, each with two DOFs at every node, are used. The material 

properties used in the baseline model are as follows: mass density ρ = 7800 kg/m3, 

area of cross section for each member A = 10-2 m2, and the Young’s modulus E = 200 

GPa. 

73
15

m
m

6@5321mm

 

Figure 3.3  Geometry configuration of truss bridge 
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In order to accurately model real damage such as cracks and corrosion, a correct 

damage model should be used, which is out of the scope of this study. In the present 

study, the damage is simply modelled by a reduction of Young’s modulus as adopted 

by a number of researchers (e.g. Fritzen and Zhu 1991; Xia and Hao 2003). 

Nevertheless, most model updating algorithms can be readily adapted to detect the 

change in other structural parameters than Young’s modulus before and after damage, 

including the geometric dimensions of structural members, flexural and torsional 

stiffness, and generic parameters (Friswell et al. 2001). 

5%10%10%

10%10%5%15%10%

5%

20 2118 191716

15141312119 108765

4321

126

7 8 9 10 11

54321

"Measured" DOFs in vertical direction  

Figure 3.4  Finite element model and simulated reduction factors of  
Young’s modulus for truss bridge 

Another FE model with the same topology as the baseline model is constructed to 

generate the simulated experimental modal properties by artificial reduction of 

Young’s modulus of each member to different levels, as shown in Figure 3.4. The 

modal properties computed from this FE model serve as the ‘measured’ modal 

properties from the damaged structure, thus the damage detection problem reduces to 

updating the 21 Young’s modulus in an initial FE model to achieve a new FE model 

whose prediction results coincide with the ‘measured’ modal properties. The 

comparison in Young’s modulus between the baseline model and the updated model 
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directly indicates the damage locations and damage magnitudes. In general, the 

baseline FE model is employed as the initial FE model for achievement of good 

convergence. 

In reality, it is impractical to measure complete eigenvalues and eigenvectors, and it 

is also not economical to collect data at all DOFs corresponding to the analytical 

model for each eigenvector. For civil structures, only low-order eigenvalues and 

several components of the eigenvectors are available. To simulate incomplete 

measurement, only the first several eigenvalues and five vertical modal 

displacements for each of the eigenvectors, namely vertical modal displacements at 

nodes 7, 8, 9, 10, and 11 as illustrated in Figure 3.4, are assumed available 

throughout this numerical study. Table 3.1 shows the analytical and simulated 

experimental eigenvalues, and the relative difference between them. 

Table 3.1  Comparison of ‘experimental’ and analytical eigenvalues 

Mode No. ‘Experimental’ Analytical Relative difference (%)
1 5967.5 6261.7 4.93 
2 17884.9  19211.0  7.41 
3 45620.6 48837.3  7.05 
4 98005.4 103285.0  5.39 
5 131231.3 133520.3  1.74 
6 141289.7 151629.9  7.32 

 

3.5.1 Illustration of Ill-Conditioning 

As the total number of updating parameters is 21, the minimum number of measured 

modes, each consisting of one eigenvalue and five components of the eigenvector, is 

four in order to obtain the over-determined system of equations. Figure 3.5 shows 
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the condition number versus the number of modes measured. It is obvious that the 

condition number deceases with the increase of the number of measured modes. 

Therefore the enrichment of available measurement data will make the model 

updating problem towards the direction of well-conditioning, although they are 

subject to the limitations from practical and economical considerations. 
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Figure 3.5  Condition number versus number of measured modes 

For illustration of the ill-conditioning in model updating, Figure 3.6 shows the 

discrete SV σi, Fourier coefficient |ui
Te|, and Picard condition number |ui

Te/σi | at the 

first iteration when the first four modes are used for updating. It is seen that the 

Fourier coefficients for small SVs stagnate around at the order of 10-6 while their 

SVs still decay gradually. Therefore DPC is not satisfied and regularization methods 

must be applied to obtain a regularized and stable solution. Similarly, Figure 3.7 and 

Figure 3.8 illustrate the Picard plot at the first iteration when 5 modes and 6 modes 

are used, respectively. The discrete Picard conditions for these two cases are also 
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violated. Further numerical studies indicate that the iterations don’t converge because 

the equations are too ill-conditioned for direct least-squares solution due to rounding-

off error even when the noise-free measured modal properties are used.  
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Figure  3.6  Plot of discrete SV, and Fourier coefficient plotted (left ordinate) 
and Picard condition number (right ordinate) when using 4 modes 

0 2 4 6 8 10 12 14 16 18 20 22
1E-17

1E-13

1E-9

1E-5

0.1

1000

0

5

10

15

20

25

30

35

40

 Singular value σi

 Fourier coefficient |ui
Te|

Number

(

×

1
0
1
0
)

 Picard condition number |ui
Te/σi|

 

Figure  3.7  Plot of discrete SV, and Fourier coefficient plotted (left ordinate) 
and Picard condition number (right ordinate) when using 5 modes 
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Figure  3.8  Plot of discrete SV, and Fourier coefficient plotted (left ordinate) 
and Picard condition number (right ordinate) when using 6 modes 

3.5.2 Model Updating Using Noise-Free Data 

First, the regularization methods are applied for model updating using noise-free 

simulated experimental modal data to mitigate the effect of rounding error. To assess 

the effectiveness and robustness of various regularization-parameter-choice methods 

for Tikhonov regularization and truncated SVD, three cases with different numbers 

of measured modes, namely 4 modes, 5 modes, and 6 modes, are considered for 

updating 21 unknown Young’s modulus, respectively. Illustrated in Figure 3.9 is the 

Picard plot of regularized system of equations at the first iteration when using 4 

modes and 5 modes, respectively, in which LCM is used to determine the 

regularization parameter for Tikhonov regularization (other two methods can also be 

used). It is seen that DPC is satisfied due to the effect of filter factor fi for both cases. 
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Figure 3.9 Plot of discrete regularized SV, and Fourier coefficient plotted  
(left ordinate) and Picard condition number (right ordinate):  

(a) using 4 modes; (b) using 5 modes 

3.5.2.1 Tikhonov Regularization 

Adaptive regularization parameter versus fixed regularization parameter 

When applying Tikhonov method at each iteration, the Tikhonov parameter λ can 

either be fixed at the value determined at the first iteration or be adaptable at each 

iteration. Figure 3.10 and Figure 3.11 compare the model updating results with 

fixed regularization parameter and adaptive regularization parameter, respectively, 

when using 4 modes. In the fixed regularization parameter scheme, the regularization 

parameter throughout the iteration is fixed to the value determined at the first 

iteration by means of LCM; whereas LCM is sequentially applied at each iteration to 

determine the regularization parameter for the adaptive regularization parameter 

scheme. It is clear from Figure 3.10 and Figure 3.11 that the former scheme causes 

excessive iterations to attain required convergence due to the inappropriate 

regularization parameters and may cause the convergence problem if the 

regularization parameter at the first iteration is too small. A detailed inspection of the  
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Figure 3.10  Iteration results of model updating using fixed regularization 
parameter scheme 
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Figure 3.11  Iteration results of model updating using adaptive regularization 
parameter scheme 

convergence curves for all updating parameters reveals that the fixed regularization 

parameter scheme does not produce consistently converged results and instead, they 

oscillate around their exact simulated values despite of the fluctuation level being 

small. In the case of adaptive regularization parameter scheme, the iteration 
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converges rapidly. Therefore the adaptive regularization parameter scheme is used 

for the subsequent analysis. 

Comparison of three parameter-choice methods 

Figures 3.12 to 3.14 show the evolution of the regularization parameters for the three 

methods at different iteration steps when using 4 modes. Figure 3.12 clearly 

indicates that the so-called L-curve is not always to exhibit a well-behaved L-shape 

even plotted in the log-log scale and therefore the resulting large curvature could 

spread over the SV spectrum instead of concentrating on a local region. While for 

GCV and MPC methods, a specific region which is insensible to the Tikhonov 

parameter exists, which indicates a wide nearly optimal value of the regularization 

parameter. Furthermore, the regularization parameter varies significantly between 

two successive iterations, substantiating that adaptive regularization parameter 

algorithm is more efficient in terms of convergence rate of iteration.  
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Figure 3.12  L-curve and its curvature at different iteration steps 
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Figure 3.12  L-curve and its curvature at different iteration steps (Cont’d) 
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Figure 3.12  L-curve and its curvature at different iteration steps (Cont’d) 
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Figure 3.13  GCV function at different iteration steps 
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Figure 3.14  Product function at different iteration steps 

Figure 3.15 plots four L-curves superimposed with the optimal regularization 

parameters chosen by LCM, GCV, and MPC, respectively. The two L-curves in the 

first row has a distinct L-shape; the left L-curve in the second row has an ambiguous 
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L-shape; to this right the L-curve possesses moderate L-shape. It shows that the 

regularization parameters chosen by LCM and GCV can be close each other and may 

also differ significantly, whether the L-shape is well behaved or poorly posed. A 

surprising observation, which also occurs for the other two cases (model updating 

using 5 modes and 6 modes), is that the regularization parameter chosen by MPC 

tends to be adjacent to that chosen by LCM when the curve has a well-behaved L-

shape while it will be close to that selected by GCV in the case of a poorly-posed L-

curve. This observation is worthy of further exploration. 
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Figure 3.15  Four L-curves superimposed with optimal regularization 
parameters 
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Table 3.2 summarizes the model updating results using Tikhonov regularization with 

different methods for selection of the regularization parameter. When using 4 modes, 

the model updating results from three methods, namely LCM, GCV, and MPC, are 

very close to the exact simulated reduction factors, indicating that both damage 

location and damage extent are well identified. GCV method uses the least number 

of iterations to achieve the convergence while seven iterations are required for LCM. 

In addition the evaluation of curvature for LCM is more computationally expensive 

than function values for GCV and MPC. When 5 modes are used for model updating, 

both LCM and MPC yield convergent model updating results; whereas GCV fails to 

give converged results as it chooses an extremely small regularization parameter at 

the first iteration and therefore gives rise to essentially a similar ill-posed system of 

equations in which the DPC is violated as shown in Figure 3.16. Although both 

LCM and MPC can give convergent results as well as the resulting errors of modal 

properties are quite small, damage is not correctly identified for some members. The 

reason is that the fifth mode is a local mode dominated by longitudinal displacements 

that are not used in the present analysis. Illustrated in Figure 3.17 is the difference 

between analytical and experimental modal properties before and after updating. The 

small difference after updating indicates that the quality of FE model has been 

greatly improved after updating although the damage extents of some members are 

not exactly identified. It is shown that the identification results by using 6 modes 

agree well with the simulated values. In particular, the results from GCV method are 

surprisingly good and almost exactly reproduce the simulated damage. 
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Figure 3.16  Plot of discrete regularized SV, and Fourier coefficient plotted 
(left ordinate) and Picard condition number (right ordinate)  

obtained by GCV method when using 5 modes 
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Figure 3.17  Relative difference in eigenvalues after model updating by LCM 
and MPC when using 5 modes 
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Table 3.2  Comparison of model updating results using noise-free data 

 
Identified reduction factor (%) 

4 modes 5 modes 6 modes 
Element 

No. 
Exact damage 

extent (%) 
LCM (6)* MPC (5) GCV (4) LCM (6) MPC (6) GCV (N/A) LCM (6) MPC (6) GCV (8) 

1 5 5.136 5.018 4.987 5.346 5.387  5.634 5.401 5.000 
2 0 0.228 -0.009 0.010 -0.043 -0.038  0.071 -0.021 0 
3 0 -0.050 0.031 -0.021 0.700 0.524  -2.088 -0.741 0 
4 0 -0.009 -0.054 0.036 -1.354 -1.211  1.464 0.495 0 
5 10 9.914 9.996 10.002 9.923 9.907  9.767 9.890 10.000 
6 0 0.026 0.013 -0.007 0.284 0.333  0.736 0.417 0 
7 0 0.023 -0.005 0.003 -0.159 -0.169  -0.181 -0.120 0 
8 15 15.063 15.005 14.997 14.849 14.866  14.763 14.911 15.000 
9 5 5.035 5.000 5.000 5.000 4.997  4.973 4.978 5.000 

10 0 0.033 -0.001 0.001 -0.082 -0.068  0.238 0.128 0 
11 10 10.035 10.001 10.000 10.022 10.02  9.879 9.939 10.000 
12 0 0.021 0.020 -0.012 1.201 1.27  0.896 0.349 0 
13 0 0.021 0.011 -0.006 0.170 0.176  0.152 0.081 0 
14 0 0.011 -0.016 0.010 -0.214 -0.218  -0.436 -0.191 0 
15 10 9.943 10.035 9.978 10.642 10.644  10.350 10.21 10.000 
16 10 10.144 9.993 10.015 8.685 8.837  12.774 11.407 10.000 
17 10 9.820 10.007 9.984 11.425 11.29  7.103 8.542 10.000 
18 5 5.031 4.978 5.016 3.624 3.641  4.240 4.640 5.000 
19 0 -0.041 0.025 -0.018 1.557 1.529  0.661 0.324 0 
20 0 0.025 0.127 -0.079 1.653 1.637  0.430 0.368 0 
21 0 -0.133 -0.289 0.178 -5.008 -5.018  -1.626 -1.204 -0.001 

* The figure in parentheses indicates the number of iterations used; N/A – no solution is found.
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3.5.2.2 Truncated SVD 

Likewise, truncated SVD is successively applied at each linearized step of the 

nonlinear least squares problem. For truncated SVD, the plot of L-curve is a discrete 

function in terms of the truncation parameter mt and is considerably dispersed as 

illustrated in Figure 3.18; therefore the evaluation of curvature at the truncation 

parameter would be difficult and may not be accurate. As a result only GCV and 

MPC methods are used for choice of the truncation parameter in truncated SVD. 
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Figure 3.18  L-curve for truncated SVD 

Figure 3.19 illustrates the GCV and product functions at the first iteration when 

using 4 modes. In this case, the GCV function is minimal when retaining the first 

seventeen SVs while the product function achieves its global minima after 

disregarding the last two smallest SVs. Figure 3.20 shows the values of GCV 

function and the determined truncation parameter at different iteration steps when 

using 4 modes. Except for the first iteration, the remaining iterations tend to use all 
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the SVs to obtain the solution, indicating that no regularization is required for these 

remaining iterations. Should the solutions of the first iteration be used as the initial 

estimate of parameters, no regularization is needed when noise-free modal data are 

used for updating. With this observation, it is concluded that the ill-posedness 

associated with model updating may partially stem from the poorly-initialized 

estimate of updating parameters. Table 3.3 lists the values of the truncation 

parameters at different iteration steps when using 4 modes, 5 modes, and 6 modes, 

respectively. For all the cases considered, GCV and MPC yield similar values of the 

truncation parameter. 
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Figure 3.19  GCV and product functions for truncated SVD  
at 1st iteration  when using 4 modes 

Table 3.3  Summary of truncation parameter at different iteration steps 

Iteration number Truncation parameter 
1 2 3 4 5 6 7 

GCV 17 21 21 21 21 -- -- 
4 modes 

MPC 19 21 21 21 21 -- -- 
GCV 18 19 20 21 21 21 20 

5 modes 
MPC 18 19 20 21 21 21 21 
GCV 16 19 19 21 21 21 -- 

6 modes 
MPC 16 19 19 21 21 21 -- 
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When using truncated SVD, it is observed that all model updating results for the 

three cases are almost the same although different regularization-parameter-choice-

methods and different number of modes are used, and both damage locations and 

damage magnitudes are exactly identified as illustrated in Table 3.4. The results 

from truncated SVD are better than those obtained from Tikhonov regularization 

(Tables 3.2). It can be explained as follows: when noise-free data are used for model 

updating, the ill-conditioning is completely caused by round-off errors; truncated 

SVD effectively eliminates the ill-conditioning by ignoring the last several smallest 

SVs while Tikhonov regularization only mitigates the ill-conditioning by means of 

the filter factors which dampen the effects of both the small SVs and, to some extent, 

the large SVs.  
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Figure 3.20  GCV function for truncated SVD at different iteration steps when 
using 4 modes 
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Figure 3.20  GCV function for truncated SVD at different iteration steps when 
using 4 modes (Cont’d) 

Table 3.4  Model updating results using truncated SVD 

Identified reduction factor (%) Element No. Exact damage extent (%)
MPC GCV  

1 5 5.000 5.000 
2 0 0 0 
3 0 0 0 
4 0 0 0 
5 10 10.000 10.000 
6 0 0 0 
7 0 0 0 
8 15 15.000 15.000 
9 5 5.000 5.000 

10 0 0 0 
11 10 10.000 10.000 
12 0 0 0 
13 0 0 0 
14 0 0 0 
15 10 10.000 10.000 
16 10 10.000 10.000 
17 10 10.000 10.000 
18 5 5.000 5.000 
19 0 0 0 
20 0 0 0 
21 0 0 0 
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3.5.3 Model Updating Using Noise-Corrupted Data 

The performance of regularization methods accompanied with the parameter-choice 

methods is now investigated using the ‘measured’ noisy modal properties. The noisy 

modal properties are generated by adding simulated experimental modal properties 

with a random sequence following normal distribution with zero mean, as 

( ) iii ,d
~1~ zz α+=                                                  (3.51) 

where z~  is the noise-corrupted vector of modal properties; d
~z  is the vector of 

simulated noise-free modal properties; and α is Gaussian random variable with zero 

mean, whose standard deviation equals to the proportional noise level. For example, 

1% measurement noise in a modal parameter implies that the standard deviation of 

this parameter is 0.01. 

3.5.3.1 Tikhonov Regularization 

Figure 3.21 shows the Picard plot obtained from noisy modal data when using 4 

modes, 5 modes, and 6 modes, respectively. It is observed again that the Fourier 

coefficients stagnate around at certain levels while the SVs decay gradually to zero, 

indicating that DPC is violated. Tikhonov regularization is now applied to alleviate 

the effect of measurement noise in solving the ill-conditioned system of equations. 

Table 3.5 summarizes the identified reduction factors in the case using 4 modes with 

1% measurement noise. In this case, the L-curve method leads to divergence problem 

due to the poorly-posed L-shape during iterations and no solution is sought out; 

while both MPC and GCV give rise to convergent solutions. On the assumption that 

the value of the reduction factor larger than 5% is indicative of structural damage, the 
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correctly identified members are enclosed with solid lines in Table 3.5; and the 

members that are falsely identified are enveloped with dash lines. It is seen that most 

of the damaged members have been correctly identified. Table 3.6 and Table 3.7 

present the model updating results when using 5 modes and 6 modes, respectively. 

As discussed earlier, the fifth mode is not informative, and the inclusion of this mode 

leads to worse results as given in Table 3.6. 
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Figure 3.21 Plot of discrete SV, and Fourier coefficient plotted (left ordinate) 
and Picard condition number (right ordinate) for noisy data: (a) using 4 modes; 

(b) using 5modes; (c) using 6 modes 
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Figure 3.22 shows a comparison of real and identified reduction factors and the 

relative difference between the analytical modal properties of updated FE model and 

simulated noise-free modal properties in the case of 2% measurement noise. It is 

observed that the identification results of some elements, such as elements 5, 9, 11, 

and 15, are less insensitive to the number of modes and regularization-parameter-

choice method used.  

 

Table 3.5  Model updating results when using 4 modes with 1% measurement 
noise for Tikhonov regularization 

 
Identified reduction factor (%) Element No. Exact damage extent (%) 

LCM (N/A) MPC (4) * GCV (4) * 
1 5  3.618 3.608 
2 0  3.744 2.984 
3 0  -3.406 -0.831 
4 0  -1.597 -0.216 
5 10  9.7007 10.356 
6 0  3.135 1.494 
7 0  0.365 1.570 
8 15  0.407 0.664 
9 5  6.0238 6.071 

10 0  -1.444 -0.370 
11 10  12.749 12.118 
12 0  -0.631 0.260 
13 0  -4.056 -3.319 
14 0  1.315 1.075 
15 10  9.275 9.257 
16 10  6.459 6.260 
17 10  7.242 6.157 
18 5  0.247 -0.633 
19 0  -1.533 -1.432 
20 0  4.917 3.745 
21 0  3.238 2.825 
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Table 3.6  Model updating results when using 5 modes with 1% measurement 
noise for Tikhonov regularization 

 
Identified reduction factor (%) Element No. Exact damage extent (%) 

LCM (8) MPC (4) * GCV (4) * 
1 5 6.126 5.109 6.101 
2 0 -9.920 -7.692 -9.629 
3 0 -4.909 -2.626 -3.197 
4 0 2.522 0.903 1.393 
5 10 11.608 11.367 11.809 
6 0 -1.300 -3.210 -3.088 
7 0 1.258 3.623 2.709 
8 15 -5.053 -1.778 -2.544 
9 5 7.003 6.07 6.739 

10 0 -2.454 2.584 0.978 
11 10 10.836 9.628 9.799 
12 0 9.522 4.154 6.33 
13 0 -7.995 -6.673 -7.555 
14 0 6.939 3.359 4.886 
15 10 6.947 9.95 8.153 
16 10 5.161 5.813 5.698 
17 10 8.192 6.661 6.897 
18 5 1.377 -1.366 -0.511 
19 0 0.665 0.76 1.564 
20 0 9.783 9.364 9.841 
21 0 8.735 7.22 8.155 
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Table 3.7  Model updating results when using 6 modes with 1% measurement 
noise for Tikhonov regularization 

 
Identified reduction factor (%) Element No. Exact damage extent (%) 

LCM (8) MPC (4) * GCV (4) * 
1 5 6.827 4.877 6.463 
2 0 -6.848 -2.606 -5.491 
3 0 -2.612 -1.341 -1.554 
4 0 -2.181 -3.131 -2.993 
5 10 10.255 9.091 10.154 
6 0 -0.386 0.393 0.012032 
7 0 1.978 2.976 2.144 
8 15 5.165 3.325 4.851 
9 5 7.695 7.031 7.554 

10 0 -6.202 -3.773 -5.719 
11 10 10.315 10.278 10.289 
12 0 5.714 3.23 5.164 
13 0 -4.173 -3.385 -3.955 
14 0 3.858 2.512 3.566 
15 10 9.307 11.624 9.606 
16 10 8.934 7.956 8.514 
17 10 6.88 6.968 7.186 
18 5 -2.365 -2.958 -2.688 
19 0 2.906 0.968 2.768 
20 0 6.547 6.263 5.996 
21 0 7.227 6.305 7.112 

 

3.5.3.2 Truncated SVD 

Table 3.8 lists the model updating results by means of truncated SVD in the case of 

1% measurement noise when using 4 modes, 5 modes and 6 modes, respectively. 

The results from GCV when using 6 modes is seem better than the others. Using 

truncated SVD, a similar analysis is also conducted in the case of 2% measurement 

noise and the corresponding model updating results are shown in Figure 3.23. A 

comprehensive comparison between Tikhonov regularization and truncated SVD will 

be made in the next section. 
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Figure 3.22  Model updating results with 2% measurement noise for Tikhonov regularization: 
(a) reduction factor; (b) relative difference in eigenvalues 
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Figure 3.23  Model updating results with 2% measurement noise for truncated SVD: 
(a) reduction factor; (b) relative difference in eigenvalues 
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Table 3.8  Model updating results using modal properties with 1% 
measurement noise for truncated SVD 

Using 4 modes Using 5 modes Using 6 modes Element  No. Simulated 
damage (%) MPC GCV MPC GCV MPC GCV 

1 5 2.686 2.686 -5.952 -5.952 -2.596 5.497 
2 0 1.954 1.954 0.121 0.121 1.467 1.649 
3 0 -3.870 -3.870 -3.019 -3.019 -3.805 -0.169 
4 0 -3.148 -3.148 -0.329 -0.329 -3.271 -5.407 
5 10 10.767 10.767 11.805 11.805 7.198 8.237 
6 0 -0.319 -0.319 1.900 1.900 -5.612 5.898 
7 0 0.096 0.096 -0.005 -0.005 1.982 0.593 
8 15 0.910 0.910 -2.123 -2.123 -1.330 5.411 
9 5 5.124 5.124 6.578 6.578 7.282 6.817 

10 0 -2.148 -2.148 -3.915 -3.915 -5.877 -2.022 
11 10 13.091 13.091 11.833 11.833 12.875 11.367 
12 0 0.161 0.161 -6.173 -6.173 -4.721 1.827 
13 0 -5.161 -5.161 -5.292 -5.292 -2.391 -2.250 
14 0 2.332 2.332 -8.011 -8.011 -1.342 0.627 
15 10 9.931 9.931 12.653 12.653 14.336 9.947 
16 10 7.421 7.421 7.367 7.367 8.822 7.750 
17 10 6.661 6.661 7.180 7.180 6.309 6.038 
18 5 0.383 0.383 1.416 1.416 -1.046 -3.837 
19 0 -0.322 -0.322 -2.54 -2.54 -2.614 1.387 
20 0 3.645 3.645 5.983 5.983 9.338 5.994 
21 0 2.883 2.883 1.446 1.446 3.373 7.651 

 

Figure 3.24 illustrates the ratio of consecutive SVs at different iteration steps when 

using 4 modes, in which a large ratio indicates a clear separation of the last two SVs 

from the others. It is shown that a well-behaved separation of SVs also occurs at all 

iteration steps even for noisy measurement data. In input-error-based FE model 

updating, however, the distinct separation disappears when using noisy measurement 

data (Mottershead and Foster 1991; Ahmadian et al. 1998; Ziaei-Rad and Imregun 

1999). 
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Figure 3.24  Ratio of consecutive SVs at different iteration steps 

3.5.3.3 Comparison of different method combinations 

The identification results discussed in the previous two sections are limited to a 

particular realization of random noise. In order to investigate the robustness of 

various combinations of the methods, random noise with zero mean and 

progressively increased variances is added to simulate the experimental modal 

properties. For each noise level, a total of 100 sets of ‘measured’ modal properties 

are generated by adding different realizations of random noise to the calculated 

modal properties. These noise-corrupted modal properties are then used for model 

updating; for each updating result, the relative error between the updating solutions 

and the exact simulated values is defined as 

( )
( )

2d

2d
RE

θ

θθ −
=

i
i                                                      (3.52) 

in which  θd and θ(i)
 denote the exact simulated value and the ith updating result. The 
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mean of relative error (MRE) is eventually obtained by averaging over the 100 sets 

of relative errors. 

Figure 3.25 presents a comparison of MRE obtained by Tikhonov regularization and 

truncated SVD with different regularization-parameter-choice methods. As expected, 

MRE increase steadily with increasing noise level. It is also found that the 

regularization methods are more effective even for high noise levels. Tikhonov 

regularization and truncated SVD in conjunction with MPC, on average, are 

consistently shown to give better results than the others. Figure 3.26 illustrates the 

number of divergences for various combinations of the methods among the 100 trials. 

Tikhonov regularization and truncated SVD along with MPC always converge to a 

solution in the case of low noise level and they occasionally break down when the 

noise standard deviation exceeds 1.5%, regardless whether a local-minima solution 

or a global one is obtained. The Tikhonov method in combination with either LCM 

or GCV often gives rise to a large number of divergences. Obviously the number of 

divergences also increases with increasing noise level. It is noted that the results 

obtained from Tikhonov regularization along with GCV as shown in the second 

diagram of Figure 3.26 are not convincing as such a method combination fails to 

obtain good results even for the noise-free data.  
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Figure 3.25  Comparison of MRE obtained by different methods:  
(a) using 4 modes; (b) using 5 modes; (c) using 6 modes 
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Figure 3.26  Comparison of number of divergences for different methods:  
(a) using 4 modes; (b) using 5 modes; (c) using 6 modes 
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3.6 Summary 

The treatment of ill-conditioned and noisy system of equations is one of central 

problems in model updating. This problem was tackled with numerical regularization 

methods in this chapter. The performance of Tikhonov regularization and truncated 

SVD in combination with various regularization-parameter-choice methods for 

output-error-based model updating was rigorously investigated through numerical 

studies using both noise-free and noisy ‘measurement’ data. The procedures explored 

in this chapter lay the base for the study in the next chapter, which deals with the 

statistical model updating to take into account model uncertainty and measurement 

uncertainty. 

The numerical results obtained from this chapter show that: (i) the well-behavedness 

of L-curve is not guaranteed in model updating, and a poorly-posed L-curve could 

make LCM fail to choose an appropriate regularization parameter; (ii) the 

regularization parameter obtained from MPC is close to that determined by LCM in 

the case of a well-behaved L-curve; otherwise it is close to that determined by GCV; 

(iii) truncated SVD and Tikhonov regularization when working with MPC are the 

most robust techniques for output-error-based model updating; (iv) in the output-

error-based model updating approach, the SV spectrum has a distinct gap separating 

large SVs from small ones for both noise-free and noisy data. It is different from the 

equation-error-based in which the SVs spread evenly over the SV spectrum when 

noise-corrupted modal data are used for model updating. 
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Chapter 4 

A NOVEL APPROACH FOR STOCHASTIC FE  
MODEL UPDATING 

 

 

4.1 Introduction 

The need for incorporating the concept of probability and statistics in analysis and 

design of modern structures has led to the development of stochastic structural 

analysis techniques and structural reliability methods. The impetus to the research of 

structural reliability is originated from fluctuations of loadings, variability of material 

properties and uncertainties regarding analytical models (Madsen et al. 1986). 

Likewise, because of uncertainties in measured modal properties, there is also a 

necessity to integrate the methods of probability and statistics with the algorithms of 

FE model updating for uncertainty propagation, aiming at evaluating the effect of the 

uncertainties on model updating results. 

The uncertainties in measured modal properties may arise from two sources, namely 

the measurement noise (source A) and the normal modal variability (source B), as 

discussed in section 2.3.4. Regarding the uncertainty associated with source A, it can 

be effectively diminished by averaging over large sets of the measured modal 

properties and taking the mean as true values. However the averaging technique does 

not resolve the problem of irreducible and natural uncertainties arising from source 

B. To consider the uncertainty due to the so-called natural modal variability, repeated 
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executions of model updating algorithms are necessary using all naturally-varying 

modal properties and the desired statistics of updating parameters are then estimated 

based on the model updating results. It is desired to eliminate the uncertainty 

associated with source A as thoroughly as possible to obtain nearly noise-free and 

‘true’ modal properties. Unfortunately, in reality both reducible and irreducible 

uncertainties are often blended with each other, and it is difficult to separate them in 

the measurement data. In the case of uncertain modal properties, it is of considerable 

importance to estimate the statistical properties of updating parameters, and the 

model updating problem should be reasonably formulated in the statistical 

framework. With this in mind, the model updating from uncertain modal properties is 

stated as follows: given the distribution functions of input (measured modal 

properties), find certain statistical indices of output (updating parameters). Much 

research attention has recently been devoted to the application of statistical methods 

for model updating (Mares et al. 2006; Zimmerman 2006). 

In general, the stochastic model updating works on the basis of integration of 

uncertainty-propagation approaches with conventional model updating algorithms. 

Two commonly-used numerical approaches to uncertainty propagation are Monte 

Carlo simulation (MCS) method and perturbation method. In MCS method, a large 

number of samples following the given probability distribution of modal properties 

are generated and then repeatedly used for model updating; the desired statistics are 

eventually estimated from these resulting updating results. An alternative approach to 

uncertainty propagation is the perturbation method. This approach expands a 

nonlinear function with a truncated Taylor series expansion at a known point and 

then proceeds to the approximation of the moments of solutions from the expansion. 

Intuitively, all model updating algorithms can be combined with MCS method and 
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perturbation method for uncertainty propagation. The combination of MCS method 

and model updating techniques has been used by a number of researchers (Agbabian 

et al. 1988; Banan et al. 1994b; Sanayei and Saletnik 1996b; Smyth et al. 2000; Yeo 

et al. 2000; Zhou et al. 2003). The minimum variance method making use of the 

concept of perturbation method was pioneered by Collins et al. (1974) to identify the 

statistical properties of updating parameters, and was later extended by Friswell et al. 

(1989). Beck and his-workers have reformulated this method in a more general 

framework of Bayesian theorem (Beck and Katafygiots 1998; Katafygiots and Beck 

1998; Yuen and Katafygiots 2005). Similar approaches include those of perturbation 

method in combination with linear least squares method (Liu 1995; Papadopoulos 

and Garcia 1999), with extended Kalman filter method (Li and Roberts 1999a, b), 

with nonlinear least squares method (Araki and Hjelmstad 2001; Xia et al. 2002; Xia 

and Hao 2003), with maximum likelihood method (Fonseca et al. 2005), and with 

minimum rank perturbation method (Zimmerman 2006). 

As discussed in the previous chapter, output-error-based model updating approach is 

effective in implementation as it does not require measuring all coordinates of a 

mode shape. However, this approach leads to a nonlinear least squares problem 

where it is very difficult, if not impossible, to obtain a closed-form solution of the 

distribution functions of output (updating parameters) in terms of those of input 

(measured modal properties). In the existing perturbation methods for approximating 

the distribution functions of updating parameters, it is assumed that the measured 

modal properties and updating parameters in the FE model are statistically 

independent. In general, however, this will be true only for the first iteration. After 

that, the measured data have been used to update the structural parameters and the 



4-4 

updated parameters are correlated with the measured modal properties for all of the 

remaining iterations (Hua et al. 2005). 

This chapter develops a novel approach to stochastic model updating using uncertain 

modal properties. This approach pursues a two-stage updating scheme. The first 

stage refers to the identification of the probability distributions of updating 

parameters from measured uncertain modal properties, and the second stage deals 

with the determination of posterior distributions from the identified probability 

distributions and the prior probability distributions of updating parameters. The 

remaining of this chapter is organized as follows. The theoretical method of the first-

stage stochastic model updating is first presented. Making use of an improved first-

order perturbation method, the terms in the governing equation is expressed as 

Taylor series expansions at specific values of random variables. This leads to two 

recursive systems of deterministic equations of which the solutions are used to 

estimate the first-order approximation of the mean and covariance of updating 

parameters. Then Bayesian updating is applied to obtain the posterior distribution on 

the basis of the identified statistics and the prior distributions of structural parameters. 

The proposed method is finally applied for simulation study of stochastic model 

updating of two truss bridges. Both the improved perturbation method and MCS 

method are used to calculate the statistical properties of updating parameters based 

on simulated uncertain modal properties, and the results of the perturbation method 

for various types of uncertainty are discussed and compared with those of MCS 

method. The stochastically updated FE model enables structural damage detection, 

and condition assessment and evaluation in the framework of probability and 

statistics, which will be discussed in the following chapters.  
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4.2 First-Stage Stochastic FE Model Updating 

The underlying philosophy of the present approach is quite straightforward. There 

are a variety of sources (data) which can be used to estimate the parameters of an 

unknown system, and each of the estimators is subject to a certain level of 

confidence and uncertainty due to the uncertainty in the sources. A combination of 

the estimators for different sources may lead to a better representation of the 

unknown system. Figure 4.1 shows the flowchart of the proposed approach for 

stochastic FE model updating. Following this approach, stochastic FE model 

updating is first performed using the measured uncertain modal properties. Both 

MCS method and an improved perturbation method are employed to conduct the 

model updating. Next, the identified distributions of updating parameters are 

combined with the prior distributions of updating parameters (if available) via 

Bayesian updating to achieve the posterior distributions of the updating parameters. 

Thus the obtained posterior distributions rationally incorporate the knowledge and 

confidence in both experimentalist and structural analyst and could provide a better 

representation of the investigated structure. In this section, the first-stage stochastic 

model updating using an improved perturbation method is presented.  

4.2.1 Basis of FE Model Updating 

The basic formulation in Chapter 3 is briefly reviewed before proceeding to the 

presentation of the proposed method. In FE model updating using measured modal 

data, the identification of structural parameters is formulated as an optimization 

problem where structural parameters are sought so that the updated FE model can 

reproduce as closely as possible the measurement data. The objective function is 
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Figure 4.1  Flowchart of proposed stochastic FE model updating 

defined as a sum of weighted squared error 

( ) ( )( ) 2

2
T ~~~ θzzWεWεθ ε −==J      with ( )θzzε −= ~~                (4.1) 

where ε~  is the output error of modal properties; z~  and ( ) nR∈θz  are vectors of the 

experimental and analytical modal properties with ( )1+×= mf nnn ; nf and nm are the 

numbers of measured natural frequencies and measured coordinates of each mode 

shape, respectively; mR∈θ  is a vector consisting of m updating parameters; Wε = 

W1/2 is the diagonal weighting matrix; and the subscript T represents the transpose of 

matrix/vector. In order to obtain a unique solution, the number of known modal data 

n should be not less than the number of unknown updating parameters m. 

The nonlinear least squares problem in Equation (4.1) can be solved with a gradient-

based optimization approach. Beginning with an initial estimate of updating 

parameters, the solution for updating parameters in at the kth iteration is obtained as 

Bayesian updating 

Posterior distribution of 
structural parameters 

Uncertain modal 
parameters 

Identified uncertain 
structural parameters 

Knowledge in experimentalist 

The first-stage stochastic  
FE model updating  

Prior distribution in 
structural parameters 

Knowledge in analyst  
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( ) ( ) ( )kkk θθθ ∆+=+1
                                                    (4.2) 

( ) ( ) ( )kkk eθS =∆                                                           (4.3) 

where ( ) ( )( )( )kk θzzWe −= ~2/1  is the weighted error vector at the current iteration; 

and 
θ
zWS
∂
∂

= 2/1  is the weighted sensitivity matrix of modal properties. The weights 

for eigenvalues are taken as unit, and the weights for eigenvectors are taken as 0.1 

throughout this chapter (Friswell and Motteshead 1995; Xia et al. 2002). 

In deterministic model updating, the measured modal properties z~  are known as 

fixed quantities which are obtained either from one test or by averaging the results 

from a series of tests. Due to the presence of irreducible randomness such as normal 

modal variability, the averaging technique does not make sense and a stochastic 

model updating procedure is necessary. A simple and straightforward yet brute-force 

approach to stochastic model updating is the MCS method. The problem with this 

approach is that a great many runs are required for a reliable estimate of updating 

parameter statistics, and the number of runs grows explosively with the number of 

modal properties used. The computational complexity is further exacerbated as the 

model updating algorithm itself is nonlinear and requires an iterative scheme. An 

alternative to MCS method is the perturbation method as will be elaborated later. 

Throughout this chapter, the uncertain modal properties are characterized by 

continuous random variables complying with normal distributions, and as a result the 

stochastic model updating reduces to finding the mean and covariance information of 

updating parameters when adopting the perturbation method. 
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4.2.2 First-Order Perturbation Method 

When the uncertainties in measured modal properties are taken into consideration, 

the model updating problem becomes much complicated in the sense that updated 

structural parameters at each iteration will be random and consequently the modal 

sensitivity matrix S will also become stochastic. In order to take the uncertainty into 

account, the measured modal properties are expressed as the summation of a 

deterministic part and a random part 

( )niXzz iii ,,2,1~~ =+=                                 (4.4) 

where iz~ is the mean of the measured modal parameter iz~ ; Xi, called basic random 

variable (BRV), represents the uncertainties in the measured modal parameters due 

to natural randomness and measurement noises.  

Depending on the truncation order of Taylor series expansion used by the 

perturbation method, different accuracies of approximation to the solution statistics 

can be achieved. In practical applications, either the first-order second moment 

(FOSM) approach or the second-order second moment (SOSM) approach is 

employed to approximate the solution moments. FOSM approximates the nonlinear 

function with a linear expansion at a point of random variables, and the obtained 

mean and covariance are of first-order accuracy. A limitation of the first-order 

perturbation method is that uncertainties must not be too large as well as that the 

nonlinearity is not significant. Quadratic accuracy can be achieved by approaching 

the nonlinear function with a second-order Taylor series expansion. For 

overwhelming majority of applications in structural engineering, the simple first-
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order theory fulfills all practical needs and its numerical accuracy is usually more 

than sufficient (Rackwitz 2001). 

Making use of the first-order perturbation technique, the terms in Equation (4.3), 

namely the change in structural parameters (CSP) ( )kθ∆ , modal sensitivity ( )kS , and 

weighted error ( )ke  at the kth iteration can be approximately expanded as linear 

functions in terms of BRVs around the mean value point, as 

( ) ( )
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= ∂
∂

+=
n

i
i

i

k
kk X

X1

SSS                                             (4.5) 
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kk X
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eee                                               (4.7) 

where ( )niX i ,,2,1=  represents the ith BRV; and the sensitivity coefficients 

above are often termed as experimental sensitivities which relate the change of the 

involved quantities with respect to the change in the measurement data. 

Substituting Equations (4.5) to (4.7) into Equation (4.3) and comparing the zeroth-

order and first-order terms of Xi lead to two recursive systems of deterministic 

equations (Hart and Collins 1970; Kleiber and Hien 1992), as 

( ) ( ) ( )kkk eθS =∆                                                              (4.8) 
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or                                    ( )
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where the partial derivatives of ( )kz  and ( )kS  with respect to the BRV iX  at each 

iteration can be evaluated by means of the chain rule of differential calculus, as  
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in which 
( )

( )k

k

θ
z
∂
∂  and 

( )

( )k
j

k

θ∂
∂S  are essentially the first-order and the weighted second-

order modal sensitivities, respectively. The expressions of them are given in 

Appendix I. 

From Equations (4.8) to (4.14), one can sequentially solve for the mean of CSP and 

the first-order derivatives of CSP. The mean of CSP can be readily obtained from 

Equation (4.8). Further substitution of the obtained mean of CSP along with 

Equations (4.11) to (4.14) into Equation (4.10) allows the computation of the first-

order derivative of CSP with respect to BRV Xi. Repeating this operation over all 

BRVs one obtains the (m × n)-dimension matrix of ( ) Xθ ∂∆∂ /k  needed to compute 
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the covariance matrix. It is noted that the derivative of CSP with respect to BRVs 

takes the form of  
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In practice the first two moments, i.e. the expected value and variance of a random 

variable, are often of interests. Thus, taking the expected values of both sides of 

Equation (4.2) gives rise to the means of updating parameters at the kth iteration 

( ) ( ) ( )kkk θθθ ∆+=+1                                                   (4.16) 

The variance-covariance matrix of updating parameters at the kth iteration is then 

defined as 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )[ ]111111 E,Var ++++++ −−= kkkkkk θθθθθθ              (4.17) 

By substituting Equations (4.2) and (4.16) into Equation (4.17) and further using 

Equation (4.6), Equation (4.17) is rewritten as  
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or in the matrix form  
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where Σx is the covariance matrix of BRVs, as 
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It is shown that the mean and covariance of updating parameters at each iteration are 

explicitly expressed in terms of the statistics of the measured modal properties. The 

existing perturbation methods for model updating assume that the measured modal 

properties and updating parameters in the FE model are statistically independent. 

Under this assumption, the quantity in Equation (4.13) becomes zero and therefore 

the first three quantities in the right-hand side of Equation (4.18) will vanish (Xia and 

Hao 2003). In general, however, this assumption is true only for the first iteration. 

After that, the measured data have been used to update structural parameters, and the 

updated parameters will be correlated with the measured modal properties for all 

remaining iterations. As a substantial improvement to the existing methods, the 

present approach calculates the partial derivatives of updating parameters, ( ) Xθ ∂∂ /k , 
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and CSP, ( ) Xθ ∂∆∂ /k , with respect to BRVs and therefore the correlation between 

them at each iteration. The covariance of updating parameters is then evaluated with 

the updated partial derivatives at each iteration. Therefore the present approach is 

accurate in the first-order sense for nonlinear least squares problems.  

For the algorithm implementation of the proposed approach, the following remarks 

are made: 

1) As the measured modal properties are uncorrelated random variables, 

( ) ( ) T
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~11~1
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nii

iX
z at all iteration steps; 

2) The vector 
( )

i

k

X∂
∂θ  is 0 for the first iteration as there is no correlation between 

updating parameters and measurement data. It is then determined from Equation 

(4.14) along with the solution to Equation (4.10) for the remaining iterations. 

In the present approach, the derived mean and covariance of updating parameters are 

of the first-order accuracy as a linear Taylor series expansion is employed to 

approximate the nonlinear function between the updating parameters and the modal 

data. Furthermore, the distribution functions of updating parameters generally will 

not comply with the normal ones even when each of the measured modal properties 

follows a normal distribution. It is therefore required to verify the accuracy and 

applicability of this approximation using the MCS method. 
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4.2.3 Computational Issues 

Because the modal sensitivity matrix in FE model updating is often ill-conditioned, 

direct solution to Equations (4.8) and (4.10) may yield very poor estimates. The 

regularization methods elaborated in the previous chapter should be applied to obtain 

a stable and sound solution. For the convenience of presentation, Equations (4.8) and 

(4.9) are expressed as a general form of  

bAx =                                                                   (4.25) 

Regularization methods combined with various regularization-parameter-choice 

procedures can be applied to Equation (4.25) to obtain a regularized solution. In the 

case of Tikhonov regularization, the regularized solution is 

∑
= +

=
m

i
i

i

i

i

i

1

T

22

2

v
bu

x
σλσ

σ
λ                                        (4.26) 

in which λ is the Tikhonov parameter; and the quantities ,,2
ii uσ and iv  are the ith 

SV, left singular vector, and right singular vector of the weighted sensitivity matrix, 

respectively. In the case of truncated SVD, the regularization solution becomes 

∑
=

=
t

t

m

i
i

i

i
m

1

T

v
bu

x
σ

                                                 (4.27) 

in which mt is the truncation parameter that controls the number of SVs set to zero. 

The computer implementation of the stochastic FE model updating procedure is as 

follows: 

1) Determine the mean and covariance from a series of measured modal properties 

z~ , and set k  = 0;  
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2) Compute the analytical modal properties z(k) and the weighted modal sensitivity 

matrix with respect to updating parameter S(k) from the FE model; 

3) Solve Equation (4.8) for the mean of CSP ( )kθ∆ ; solve Equation (4.10) to obtain 

the first-order derivatives of CSP with respect to BRV, ( )
i

k X∂∆∂ /θ , and repeat 

this procedure for all random variables. In the solution course, the regularized 

solutions are obtained; 

4) Check whether the convergence criterion is satisfied. If yes, go to step (5), 

otherwise k = k + 1, return to step (2); 

5) Derive the means and covariance matrix of updating structural parameters using 

Equations (4.18) to (4.24) and update FE model with structural parameters ( )1+kθ . 

4.3 Bayesian Updating for Determination of Posterior 
Distribution 

The first-stage stochastic model updating involves the use of measured uncertain 

modal properties to determine the statistical properties of updating parameters. The 

updating results in this stage correspond to the experimentalist’s knowledge and 

confidence on the estimates of structural parameters. In practice, structural 

parameters may be also estimated from other sources which are also subject to 

uncertainties. Such an estimate of structural parameters, termed as prior information, 

can be obtained, for example, by another group of experimentalist, local 

nondestructive evaluation technique, and engineering judgment. Interested here is the 

case that the prior information on the estimates of structural parameters is given by 

structural analyst. As a result, two (or more) sets of information on the estimates of 
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structural parameters with uncertainties exist and the second-stage updating reduces 

to a rational combination of them to yield a new estimate. 

Bayesian updating approach is very useful when one faces with two sets of uncertain 

information and needs to know which to believe. It uses both the prior information 

and the newly obtained information to account for the relative uncertainty associated 

with each other. In the present study, the prior information is given by structural 

analyst prior to testing of a structure while the newly obtained information is from 

the first-stage stochastic model updating results, and Bayesian updating is applied to 

achieve a new (posterior) distribution from the above information. 

Assume that before the new information is available, a random structural parameter 

θ  is believed to have a probability density function (PDF) ( )θ1f . Through the first-

stage stochastic model updating using measured uncertain modal properties, the 

identified PDF of updating parameter can be described by ( )θ2f . Following the 

theory of Bayesian updating, the posterior PDF of structural parameter which uses 

both sets of information and provides the best use of both can be expressed as (Ang 

and Tang 1975) 

( ) ( ) ( )θθθ 2fkLf =                                               (4.28) 

where ( )θL  represents the likelihood function; and k  is the normalizing constant. 

For the case where the PDFs of both ( )θ1f  and ( )θ2f  are normally distributed, the 

posterior PDF of structural parameter ( )θf  will also comply with a normal 

distribution whose mean and standard deviation are obtained, respectively, as 
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=                                                (4.30) 

where 1µ  and 2µ  are the means of prior and identified distribution functions, 

respectively; and 1σ  and 2σ  are the corresponding standard deviations, respectively. 

It is clear that both mean and standard deviation of the posterior distribution 

functions are weighted average of the prior and the identified distribution functions 

of structural parameters. As a result of increasing knowledge on the estimate of 

structural parameters, it is important to observe that the posterior variance of 

structural parameters σ  is always less than the variance of the prior variance 1σ  and 

the identified variance 2σ . By using the Bayesian theory, the knowledge in the 

analyst and experience in the experimentalist can be rationally incorporated. 

With the stochastically updated FE model of a structure, probabilistic damage 

detection can be carried out to determine the probability of damage occurrence 

(Papadopoulos and Garcia 1999; Xia et al. 2002; Xia and Hao 2003; Beck et al. 2001; 

Ching and Beck 2004), and safety reliability analysis can be performed taking into 

account the random structural parameters (Natke and Yao 1988; Papadimitriou et al. 

2001). 
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4.4 Case Study 1: A Statically Determinate Truss Bridge 

A statically determinate truss bridge, as shown in Figure 4.2, is used as the first 

example to illustrate and verify the proposed method. The truss bridge, which is the 

same as in Figure 3.3, is a simply supported pin-jointed steel bridge consisting of top 

members, bottom members, vertical members and diagonal members. An analytical 

FE model is established which has been correlated with the modal properties of as-

built or undamaged state of the bridge, and therefore this baseline model is 

representative of the bridge without damage. In this analytical model as shown in 

Figure 4.2, a total of 21 planar truss elements, each with two DOFs at every node, 

are used. The material properties used in this analytical model are as follows: mass 

density ρ = 7800 kg/m3, area of cross section for each member A = 10-2 m2, and the 

Young’s modulus E = 200 GPa. 

Another FE model with the same topology as the baseline model is constructed to 

provide the simulated experimental modal properties by artificial reduction of 

Young’s modulus of each member to different levels, as shown in Figure 4.3. The 

modal properties computed from this FE model serve as the mean of ‘measured’ 

modal properties from the damaged structure (the covariance of ‘measured’ modal 

properties will be discussed in the following sections). For the purpose of simulating 

incomplete measurement, only the first six eigenvalues and five vertical modal 

displacements for each of the eigenvectors, namely vertical modal displacements at 

nodes 7, 8, 9, 10 and 11 as shown in Figure 4.3, are assumed available throughout 

this numerical study.  
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In this study, different sources of uncertainties in the measured modal properties are 

considered. The first case (case 1) investigates the stochastic model updating by 

using the uncertain modal properties arising from natural randomness of structure. 

For simplicity, the natural randomness is modelled as a result of variation in Young’s 

modulus with the environmental temperature, which has been shown to be a major 

contribution to the measured natural modal variability (Xia et al. 2006). The 

covariance matrix of updating parameters obtained in this case indicates the natural 

randomness in the updating parameters. The next case (case 2) studies the stochastic 

model updating with uncertain modal properties associated with measurement noise. 

The obtained covariance matrix in this case indeed gives the evidence on how 

reliable the model updating results are in view of the measurement noise in the data. 

The last case (case 3) addresses the stochastic model updating by using the 

uncertainties in modal properties due to both natural randomness and measurement 

noise. For each case, the statistics of updating structural parameters are first obtained 

by the improved perturbation method and then verified by the MCS method. 

73
15

m
m

6@5321mm

 

Figure 4.2  Geometry configuration of statically determinate truss bridge 
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Figure 4.3  Finite element model and simulated reduction factors of Young’s 
modulus for statically determinate truss bridge 

4.4.1 Uncertainty due to Natural Randomness 

In this section, the stochastic model updating method is applied to obtain the statistic 

properties of updating parameters using the measured uncertain modal properties 

caused by the natural randomness of structure. The natural randomness of a structure 

may be caused by the temperature-dependent Young’s modulus. By modelling the 

temperature data in one year as random variables, one can obtain the distribution 

function of temperature. The distribution function of Young’s modulus of a member 

can then be readily derived from the relation between temperature and Young’s 

modulus. In this case, as both the mean and the covariance of updating parameters 

are known, the accuracy of both the perturbation method and the MCS method in 

identifying the statistics of updating parameters can be assessed. 

For brevity, it is assumed that the coefficient of variation (COV) of Young’s 

modulus of each member in the damaged structure, which is defined as the ratio of 

standard deviation to the mean, is 0.1, and the assumed variability in structural 

parameters are then used to obtain covariance of the modal properties. To do so, the 
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perturbation-based stochastic finite element method (PSFEM) is employed (Kleiber 

and Hien 1992). Following the first-order PSFEM, the means of modal properties are 

directly computed from the means of Young’s modulus in the damaged structure, and 

the covariance matrix are approximated as 

( ) T
dd

~,~Var SΣSzz E=                                                (4.31) 

where Sd is the modal sensitivity matrix with respect to Young’s modulus evaluated 

at their means for the damaged structure; and ΣE is the given covariance matrix of 

Young’s modulus. Alternatively, the MCS method can be performed to obtain the 

statistics of modal properties by conducting the following steps: (1) generation of 

samples of Young’s modulus in accordance with the given distribution functions; (2) 

repeat executions of modal analysis to obtain solutions; and (3) assembly of the mean 

and covariance from a series of modal solutions. 

4.4.1.1 Stochastic Model Updating Using Perturbation Method 

Given the mean and the covariance of simulated experimental modal properties, the 

mean and the covariance of updating structural parameters can be estimated by the 

improved perturbation method. The means of updating parameters are computed on 

the basis on Equation (4.8) and the estimation of covariance matrix is accomplished 

with Equations (4.18) to (4.24) with the help of regularization methods at each 

iteration step.  

Figure 4.4 compares the mean and the coefficient of variance of updating results 

obtained under different combinations of regularization methods with regularization-

parameter-choice procedures. For the convenience of comparison and presentation, 

the means of reduction factors, instead of the means of updating parameters, are 
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shown in Figure 4.4(a). It seems that all methods produce favorable identification 

results of the means of updating parameters. However, they produce quite different 

estimates on COV as illustrated in Figure 4.4(b). For the purpose of providing 

quantitative information regarding the performance of various methods, the average 

relative errors (ARE) of mean and standard deviation of the updating results using 

perturbation method are defined, respectively, as 

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

m

i i

i

m 1

2
p

mean 11ARE
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µ

                                         (4.32) 
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2
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                                          (4.33) 

where µp, and µ are means of updating parameters obtained by the perturbation 

method and the simulated exact values, respectively; σp and σ are standard 

deviations of the updating parameters obtained by the perturbation method and the 

simulated exact values, respectively; and m is the number of updating parameters. 

Table 4.1 lists a comparison of ARE values obtained from different method 

combinations. All the method combinations are satisfactory for the estimation of 

mean value but some of them perform poorly for the estimation of covariance matrix. 

It is shown that Tikhonov regularization along with MPC gives the closest results to 

the exact values. 

Table 4.1  ARE of mean and standard deviation of updating parameters 

Tikhonov regularization Truncated SVD ARE 
MPC LCM GCV MPC GCV 

Mean 0.006 0.013 0.000 0.000 0.000 
STD 0.390 2.199 4.723 0.849 0.682 
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In practice the variance-covariance matrix of measured modal properties often 

reduces to a diagonal matrix rather than a fully-populated one because the covariance 

between two variables is not readily available or is often ignored (Doebling and 

Farrar 1997; Arici and Mosalam 2005). Therefore it is worth further investigating the 

accuracy of the perturbation method in the absence of correlation between random 

variables. In comparison with the simulated exact values, Figure 4.5 shows the 

updating results obtained from the fully-populated covariance matrix and the 

diagonal covariance matrix. It is found that neglecting the correlation between 

measured modal properties may give unreliable estimation on the standard deviation. 
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Figure 4.4  Comparison of model updating results using perturbation method for 10% natural randomness:  
(a) mean of reduction factor; (b) COV 
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Figure 4.5  Comparison of model updating results using fully-populated covariance matrix  
and diagonal covariance matrix 
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Figure 4.6  Variation in mean and COV with respect to trail number of MCS for 10% natural randomness: 
(a) mean of reduction factor; (b) COV 
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4.4.1.2 Stochastic Model Updating Using MCS Method 

The MCS method is now applied to obtain the statistics of updating parameters, and 

the updating results are compared with both the simulated exact values and those 

from the perturbation method. In the MCS method, we first compute a series of 

modal properties from a number of generated samples (5,000) of uncertain structural 

parameters; these modal properties are then used to identify the statistical properties 

of updating parameters through repeated runs of the deterministic model updating 

algorithm; and finally the statistic properties of updating parameters are estimated 

from the sequences of updating results. The combined Tikhonov-MPC method is 

used to obtain the regularized solution for the consistency in comparison. 

Figure 4.6 illustrates the variation in mean and COV of several updating parameters 

with respect to the trial number of MCS. These variations are observed to become 

stable when the trial number of MCS exceeds 2,000. Thus it is concluded that 5,000 

trials of MCS are sufficient to approximate the mean and COV of updating 

parameters. Figure 4.7 shows the MCS sample sequences of reduction factors for 

updating parameters. Among the 5,000 simulation runs, more than 4,800 runs 

converge, demonstrating a good performance of the combined Tikhonov-MPC 

method.  It is shown that the sample sequences of some elements are rather scattered, 

indicating large COV; and vice versa. Table 4.2 compares the mean and COV 

estimated from MCS sample sequences with the simulated exacted values. It is clear 

that the larger the COV is, the more dispersed the plot of sample sequences is. 

Furthermore, the estimated means do not coincide well with the exact values for 

some elements. The discrepancy between the MCS results and the exact values 

comes from two reasons. The first reason is that the finite number of MCS samples is 
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not distributed exactly as the target distribution of uncertain modal properties, 

introducing bias in the estimates. Apart from this, the existence of many local 

minima associated with the nonlinear least squares problem also contributes to the 

observed discrepancy. In a nonlinear least squares problem, many simulation runs 

may be entrapped to local minima due to improper initialization of starting values. 

One effective solution to this problem is to combine the gradient-based optimization 

approach with a global optimization method, such as genetic algorithm, to attain the 

global minima of objective functions. However the genetic algorithm is very slow in 

execution since the method employed is based on a stochastic search. 

Table 4.2  Comparison of MCS results with the simulated exact values 

Simulated exact values MCS results Element No. 
µ  (%) σ µ  (%) σ 

1 5 0.1 6.122 0.116 
2 0 0.1 1.745 0.089 
3 0 0.1 0.143 0.091 
4 0 0.1 0.599 0.088 
5 10 0.1 9.579 0.077 
6 0 0.1 -2.041 0.116 
7 0 0.1 1.834 0.102 
8 15 0.1 6.752 0.186 
9 5 0.1 6.871 0.088 

10 0 0.1 2.201 0.110 
11 10 0.1 9.583 0.103 
12 0 0.1 -1.493 0.116 
13 0 0.1 -0.314 0.092 
14 0 0.1 -2.112 0.101 
15 10 0.1 9.0572 0.096 
16 10 0.1 10.513 0.086 
17 10 0.1 9.1005 0.086 
18 5 0.1 3.4363 0.093 
19 0 0.1 1.8863 0.093 
20 0 0.1 3.4428 0.111 
21 0 0.1 0.753 0.080 
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The PDFs of updating parameters constructed from the MCS sample sequences are 

plotted in Figure 4.8, and the corresponding CDFs are shown in Figure 4.9. For the 

purpose of comparison, the theoretical normal distribution with the mean and 

standard deviation of the updating sequences is also superimposed in the figures. The 

observed PDF of each updating parameter is well approximated with a normal 

distribution. Figure 4.10 compares the results from the perturbation and MCS 

methods with the simulated exact values. The perturbation method gives acceptable 

estimation of COV though it is less accurate than the MCS method. 
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Figure 4.7  Sample sequences of reduction factors in MCS method  
for 10% natural randomness 
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Figure 4.7  Sample sequences of reduction factors in MCS method  
for 10% natural randomness (Cont’d) 
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Figure 4.7  Sample sequences of reduction factors in MCS method  
for 10% natural randomness (Cont’d) 
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Figure 4.8  Probability density functions of reduction factors in MCS method 
for 10% natural randomness 
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Figure 4.8  Probability density functions of reduction factors in MCS method 
for 10% natural randomness (Cont’d) 
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Figure 4.8  Probability density functions of reduction factors in MCS method 
for 10% natural randomness (Cont’d) 
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Figure 4.9  Cumulative density function of reduction factors in MCS method  
for 10% natural randomness 
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Figure 4.9  Cumulative density function of reduction factors in MCS method  
for 10% natural randomness (Cont’d) 
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Figure 4.9  Cumulative density function of reduction factors in MCS method  
for 10% natural randomness (Cont’d) 
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Figure 4.10  Comparison of perturbation method and MCS method for 10% 
natural randomness: (a) mean of reduction factor; (b) COV 

4.4.2 Uncertainty due to Measurement Noise 

The stochastic FE model updating method is then applied to obtain the statistics of 

updating parameters using the uncertain modal properties due to measurement noise. 

In this case, the uncertainty in modal parameters is caused by the measurement noise 

and the modal parameter estimation error, and the obtained covariance matrix of 

updating parameters indeed tells us how reliable the model updating results are in 

view of the measurement noise in the data. Small values of the diagonal entries in 

covariance matrix imply that the estimates of updating parameters are robust to 
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measurement noise, while large values indicate that they are sensitive to 

measurement noise and therefore are unreliable. It is noted that, in contrast to the 

first case where both the means and standard deviations of updating parameters are 

known, the means of updating parameters are known while their standard deviations 

are unknown in this case. 

Only normally distributed random noise with zero mean is considered in this study. 

In order to analyze the effect of measurement noise on model updating results, it is 

assumed that 1% Gaussian uncorrelated random noise exists in each of uncertain 

modal properties (the perturbation method is also applicable to the case with 

correlated random variables). Therefore the covariance matrix of basic random 

variables X becomes a diagonal matrix as follows 

( ) ( )⎩
⎨
⎧

=
≠

=
jiz
ji

XX
i

ji for%1
for0

,Var 22                 (4.34) 

where iz  is the mean of the ith measured modal parameter. 

4.4.2.1 Stochastic Model Updating Using Perturbation Method 

Similarly, the means and covariance of updating parameters can be estimated by the 

perturbation method from the statistic properties of measured uncertain modal 

properties.  Likewise, the means are computed from Equation (4.8) and the 

estimation of covariance matrix is estimated from Equation (4.24) in conjunction 

with Equations (4.9) to (4.14) incorporating regularization methods. 

Figure 4.11 compares the mean and the coefficient of variance of updating results 

obtained under different combinations of regularization methods with regularization-
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parameter-choice procedures. Again, it is observed that all the method combinations 

produce fairly agreeable identification results of the means of updating parameters, 

but, quite different estimates on COV are obtained for some elements as illustrated in 

Figure 4.11(b) for some elements. In addition, the identified COVs of updating 

parameters are significantly different in magnitude for different members, ranging 

from 1% to almost 20%. A small value of COV of updating parameter assures that 

the updating parameter can be identified with good accuracy in the presence of 

measurement noise, while a large one indicates the identification result could be 

totally annihilated by measurement noise.  
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Figure 4.11  Comparison of model updating results using perturbation 
method for 1% measurement noise: (a) mean of reduction factor; (b) COV 
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Figure 4.12 shows the modal sensitivities with respect to each of updating 

parameters for the first six eigenvalues. It is found that the updating parameters with 

low coefficients of sensitivity are consistent with those with large values of COVs in 

Figure 4.11(b). This explains why in most cases those updating parameters with 

large modal sensitivity should be included for model improvement and damage 

detection, otherwise erroneous results may be obtained. 
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Figure 4.12   Modal sensitivities of the first six eigenvalues 

4.4.2.2 Stochastic Model Updating Using MCS Method 

The MCS method is now applied to obtain the statistics of updating parameters for 

verifying updating results obtained by the perturbation method. The number of MCS 

trials is adjusted as 5,000 because little change was observed in the estimated 

statistics of updating parameters when more trials are used as shown in Figure 4.13. 

The updating solutions from 5,000 trials are used to construct the probability density 

function and cumulative density function, as well as to approximate the means and 

standard deviations of updating structures. Figure 4.14 shows the probability density 

functions of reduction factors constructed using the simulation results along with the
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Figure 4.13  Variation in mean and COV with respect to trail number of MCS for 1% measurement noise 
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Figure 4.14  Probability density functions of reduction factors in MCS method 
for 1% measurement noise 
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Figure 4.14  Probability density functions of reduction factors in MCS method 
for 1% measurement noise (Cont’d) 
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Figure 4.14  Probability density functions of reduction factors in MCS method 
for 1% measurement noise (Cont’d) 
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Figure 4.15  Comparison of perturbation method and MCS method for 1% measurement noise:  
(a) mean of reduction factor; (b) COV 
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fitted normal distributions whose mean and standard deviation are estimated from 

MCS samples. Goodness-of-fit test on the hypothesized normal distribution of 

updated parameters is performed in terms of Kolmogorov-Smirnov (K-S) test and 

Chi-Squared test (Kottegoda and Rosso 1997). Results show that the hypothesized 

normal distributions of most updating parameters are accepted with a confidence 

level of 95%, implying that they can be well approximated with a normal distribution. 

Figure 4.15 presents a comparison of the statistics of updating parameters between 

the perturbation method and the MCS method. It is seen that the results from the 

perturbation method are generally in accordance with those obtained from the MCS 

method. 

Now we look back the plot of probability density functions of updating parameters 

shown in Figure 4.15. From these diagrams, two observations are made: 

(i) The PDFs of some updating parameters with a large COV seem to have a 

tendency to bifurcate the way in which two or more peaks exist. As 

mentioned previously, the bifurcation into several peaks in the plot of PDF 

may be attributed to many local minima in the identification problem 

whereby many simulation runs are attracted. More local minima a nonlinear 

least squares problem poses, more peaks may appear in the plot of PDF of 

estimator (updating parameter) when local optimization methods such as 

gradient-based methods are used.  

(ii) The probability density function for each updating parameter is often 

peaked at particular value(s) which deviates from the mean of sample 

sequences, or rather, the summits of observed PDF and fitted normal PDFs 

separate with each other. Partially caused by the existence of local minima 
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in the identification problem, the separation between the observed peak of 

PDF plot and the mean value is attributed to the nonlinear relation between 

modal properties and updating parameters as elaborated in the following 

paragraph.  

Figure 4.16 illustrates the map of probability density function between the known 

input (measured modal frequency) and the unknown estimator (updating parameter) 

in the case of single input and single output. Due to the nonlinearity between input 

and estimator, it is clear that the probability density function of estimator is 

essentially non-normal even when the PDF of input is normal. The non-normality in 

estimator causes the deviation of the mean of the MCS results from the peak of PDF 

(or the simulated exact value). As shown in Figure 4.16 when the input y (modal 

frequency) concentrates on a single value the estimator x (updating parameter) will 

take a fixed value; otherwise, as the standard deviation of y increases, the mean of 

estimator x value will shift away from its original mean value, and vice versa. Larger 

standard deviation in y value, larger shifts in x value away from its original mean 

value. Figure 4.17 illustrates the nonlinear relationship between the first six modal 

frequencies and the first updating parameter, which implies the possible separation of 

means and summits of PDFs of updating parameters in Figure 4.14. 
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Figure 4.16  Map of probability density function between input and output 
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Figure 4.17  Relationship between the first six modal frequencies and the first 
updating parameter 
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Figure 4.17  Relationship between the first six modal frequencies and the first 
updating parameter (Cont’d) 

4.4.2.3 Effect of Uncertainty Level 

The effect of the level of measurement noise is further addressed for the perturbation 

method and the MCS method. As the perturbation method generally produces 

solutions with acceptable accuracy for nonlinear least squares problems only at small 

level of measurement noise, it is important to investigate the accuracy of the 

perturbation method with respect to noise level. It should be noted that in the first-

order perturbation method the means of updating parameters remain constant for 

varying noise levels while the standard deviations of the updating parameters will 

vary linearly with noise levels. 

The stochastic model updating using the perturbation method and the MCS method 

are carried out at different uncertainty levels from 0.1% to 3%, where 5,000 MCS 

trials are again used to obtain the means and variances of updating parameters. 

Figure 4.18 illustrates the sample sequences, PDFs and CDFs of updating 

parameters for both element 1 and element 8 using the MCS method when the 

uncertainty level is 0.1%. As expected, the normality is more preserved than those in 
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the case of 1% uncertainty level. Figure 4.19 shows the variation in sample means of 

reduction factors with uncertainty levels. In the considered range of noise levels, the 

reduction factors may gradually decrease or decrease with the increasing uncertainty 

levels; also the rate of change of reduction factors is different for different elements. 

The smaller value of the rate of change indicates that the computed reduction factor 

is more robust to measurement noise. Due to the nonlinearity between updating 

parameters and modal properties as illustrated in Figures 4.16 and 4.17, it is easy to 

understand that the mean of updating parameter will vary with the noise levels. 

Figure 4.20 shows the variation in COVs of updating parameters using the MCS 

method with respect to the noise level. 
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Figure 4.18  Sample sequences, PDFs, and CDFs of elements 1 and 8  
for 0.1% measurement noise 
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Figure 4.18  Sample sequences, PDFs, and CDFs of elements 1 and 8  
for 0.1% measurement noise (Cont’d) 
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(b) 

Figure 4.19  Variation in mean of reduction factors with respect to noise level:  
(a) elements 1-10; (b) elements 11-21 
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Figure 4.20  Variation in COVs of updating parameters versus noise level:  
(a) elements 1-10; (b) elements 11-21 

Figure 4.21 illustrates the evolution of PDFs of updating parameters with 

uncertainty level. As expected, the geometry of the PDF of updating parameters 

becomes increasingly complex with increase of noise level. Figure 4.22 compares 

the coefficients of variation obtained from the MCS method and the perturbation 

method under different noise levels. Note that small offset between the MCS results 

and the perturbation results for some updating parameters appears even at the 

extremely small uncertainty level (0.1%). It may be attributed to the effect of 

regularization method. It was known that the perturbation method results in linear 

relations between COVs of updating parameters and uncertainty level (or COV) of 

measured modal properties as the first-order Taylor series expansion is employed for 

approximation; whereas the MCS method produces nonlinear relations. In general,  
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     (a)                                                 (b)                                               (c) 

Figure 4.21  Probability distribution functions of reduction factors at different 
noise levels: (a) element 1; (b) element 5; (c) element 8 
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Figure 4.22  Comparison of COVs between perturbation method and MCS 
method under different noise levels 
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Figure 4.22  Comparison of COVs between perturbation method and MCS 
method under different noise levels (Cont’d) 
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Figure 4.22  Comparison of COVs between perturbation method and MCS 
method under different noise levels (Cont’d) 

the deviation of results between the perturbation method and the MCS method 

increases with the uncertainty level. Figure 4.23 shows the average relative errors 

between the MCS method and the perturbation methods.  
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Figure 4.23  Average relative errors between MCS method and  
perturbation method 

4.4.2.4 Effect of Random Modal Properties 

Because the measured uncertain modal properties do not have equal influence on the 

statistics of updating parameters, it is of significant importance to identify the modal 

variables that contribute notably to the statistics of updating parameters. This can be 

accomplished with the experimental sensitivity of updating parameters with respect 

to a random variable Xj, normalized with its standard deviation, as 

jX
j

i
ij X

σ
θ

γ
∂
∂

=                                                          (4.35) 

where γij refers to as the normalized sensitivity index (NSI) of updating parameter θi 

with respect to basic random variable Xj; and 
jXσ  the standard deviation of random 

variable Xj. Taking average over all updating parameters, one gets the average 

normalized sensitivity index  (ANSI) as 
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∑
= ∂
∂

=
m

i
X

j

i
j jXm
γ

1

1 σ
θ

                                                (4.36) 

where γj  represents the contribution of the jth random variables to the statistics of 

updating parameters. 

As NSI and ANSI combine the effect of both experimental sensitivity to a random 

variable and its uncertainty (standard deviation), these two quantities could be 

helpful to select measurement points (component of mode shape) and to identify the 

most significant random variables. It is straightforward to see that large values in 

NSI and ANSI could produce large standard deviation of updating parameters, thus 

making the model updating and damage detection results unreliable. In order to 

reduce the standard deviation of updating results, the modal properties that have 

small values of NSI and ANSI should be used for FE model improvement and 

damage detection. 

The NSI and ANSI for all updating parameters are listed in Table 4.3. It is observed 

that the NSIs of eigenvalues are many orders larger than those of eigenvectors, 

indicating that the statistics of updating parameters are predominantly caused by the 

uncertainty in eigenvalues. It is widely accepted that the accuracy of measured modal 

frequencies can be considerably higher than that of mode shapes. This implies that 

the weighting scheme used in the study (relative ratio of weight for eigenvalues to 

weight for eigenvector is 10) takes advantage of attenuating the effect of uncertainty 

in mode shapes but at a cost of more ill-conditioning in the solution course. 

On account of the magnitudes of NSIs and ANSIs of eigenvalues and eigenvectors 

being of several orders difference, they are separately visualized. Figure 4.24 shows 
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NSIs of the measured modal properties with respect to all updating parameters, and 

Figure 4.25 illustrates NSIs of the eigenvectors with a clearer presentation of 

significance of each mode shape component. Similarly ANSIs of the eigenvalues and 

eigenvectors are shown in Figure 4.26. It is seen that both NSIs and ANSIs for high-

order eigenvalues and eigenvectors may have relatively large values, implying that 

the high-order modal properties may significantly contribute to the uncertainty in 

updating parameters and therefore leading to unreliable model improvement and 

damage detection results.  

The commonly acknowledged thumb-of-rule indicates that the high-order modes 

should be used for model updating as well as damage detection because they have 

large damage sensitivity. Here the damage sensitivity is referred to as the sensitivity 

of modal properties with respect to updating parameters. On the other hand, the 

uncertainties existing in high-order modes may be significantly larger than those in 

low-order modes. Figure 4.27 shows the damage sensitivity S for eigenvalues and 

eigenvectors, respectively. As expected, the high-order modes have relatively larger 

sensitivity coefficients than the low-order modes do. However, as discussed in the 

above paragraph, the inclusion of high-order modes does not necessarily improve the 

accuracy of updating results as they might have larger uncertainty than low-order 

ones. 
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Figure 4.24  Illustration of NSI of eigenvalues and eigenvectors 
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Figure 4.25  Illustration of NSI of eigenvectors 
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Figure 4.26  Illustration of ANSI of modal properties:  
(a) eigenvalues; (b) eigenvectors 
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Figure 4.27  Illustration of damage sensitivity of modal properties:  
(a) eigenvalues; (b) eigenvectors 
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Table 4.3  Summary of normalized sensitivity index and average normalized sensitivity index  
 
 

       zi 

θi 

1 
(×108)

2 
(×108)

3 
(×108) 

4 
(×108)

5 
(×108)

6 
(×108)

7 
(×10-8)

8 
(×10-8)

9 
(×10-8)

10 
(×10-8) 

11 
(×10-8)

12 
(×10-8)

13 
(×10-8)

14 
(×10-8)

15 
(×10-8)

16 
(×10-8)

17 
(×10-8)

18 
(×10-8) 

1 1.82 8.65 198.30 34.54 61.11 144.22 1.53 8.41 3.40 0.58 0.47 0.24 2.62 6.08 12.31 6.04 9.93 5.51 

2 27.46 5.61 85.30 66.76 34.69 52.96 1.18 7.57 1.95 0.92 0.52 0.08 1.99 4.83 9.36 4.37 13.15 3.83 

3 10.83 3.36 61.36 48.01 27.95 39.27 1.55 0.76 2.31 7.06 2.46 0.64 5.97 6.35 1.73 0.12 5.77 7.81 

4 8.94 3.76 107.4 50.10 63.77 38.72 1.90 1.64 1.45 6.68 2.86 0.66 5.27 4.81 2.67 1.07 8.68 8.12 

5 6.56 2.85 2.91 7.45 10.14 5.46 12.06 10.62 2.30 1.73 1.07 2.87 6.54 9.39 22.10 10.66 93.13 47.24 

6 33.80 3.67 12.96 0.60 20.92 15.99 0.91 0.14 0.37 0.05 0.37 0.03 0.46 0.23 0.12 0.28 28.66 4.82 

7 45.26 16.21 6.06 49.17 8.46 15.01 4.50 8.81 5.42 2.42 0.73 1.60 5.74 2.46 11.06 5.57 24.56 6.10 

8 107.10 44.77 93.84 134.60 39.87 210.36 0.30 0.29 0.47 0.41 0.63 0.01 0.59 0.07 0.48 0.50 7.12 6.40 

9 45.30 12.62 22.95 32.94 12.13 5.49 1.76 2.98 0.99 0.54 0.61 1.12 9.77 10.74 7.79 2.30 3.83 51.90 

10 23.43 13.72 27.95 105.10 7.71 77.06 0.04 0.16 3.14 0.030 0.01 0.03 0.26 2.16 0.68 0.33 0.10 0.52 

11 15.53 0.01 15.27 19.48 0.68 2.51 0.02 2.04 3.65 7.71 4.37 0.15 0.06 2.56 9.22 2.63 51.03 7.44 

12 28.15 23.32 4.088 69.65 11.04 89.70 0.270 0.36 0.50 0.53 0.32 0.04 0.15 0.04 0.07 0.12 2.33 0.62 

13 3.78 3.27 44.94 21.23 16.58 10.89 1.89 2.10 0.11 4.14 4.11 0.39 0.19 2.03 4.54 0.20 14.06 2.64 

14 26.52 2.57 52.57 29.44 3.76 25.12 0.19 0.24 0.53 0.44 0.56 0.017 0.44 0.27 0.01 1.34 3.94 1.79 

15 18.54 1.58 20.51 0.80 22.17 36.24 4.86 6.08 1.82 10.93 12.72 0.81 5.02 6.35 0.76 7.16 26.52 0.46 

16 0.17 32.32 31.23 0.62 1.97 23.53 2.79 8.34 18.34 15.15 6.03 0.22 7.64 20.18 15.75 6.24 1.50 0.33 

17 7.34 34.35 4.281 3.87 12.75 6.83 2.70 7.49 16.61 13.83 5.34 0.18 6.79 18.16 14.63 5.87 0.98 0.44 

18 52.58 17.32 44.46 1.78 18.71 15.76 4.04 6.58 1.04 5.99 2.53 0.69 4.70 3.81 5.78 3.04 4.29 2.04 

19 69.91 40.16 10.67 34.71 37.80 14.94 3.31 4.83 0.60 4.00 2.04 0.46 3.14 2.37 3.74 1.89 5.33 1.63 

20 28.74 4.96 89.21 0.39 40.85 58.73 1.64 3.11 2.82 0.29 3.18 0.05 0.68 1.47 1.26 0.68 10.04 1.20 

21 6.98 13.73 67.94 16.20 23.84 27.85 1.117 1.76 1.16 1.30 2.36 0.09 0.24 0.27 0.25 0.67 6.12 1.12 

ANSI 568.7 288.8 1004 727.4 476.9 916.5 48.55 84.31 68.95 84.71 53.31 10.35 68.26 104.6 124.3 61.08 321.1 161.9 
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Table 4.3  Summary of normalized sensitivity index and average normalized sensitivity index (Cont’d ) 
 

      zi 

θi 

19 
(×10-8)

20 
(×10-8)

21 
(×10-8) 

22 
(×10-8)

23 
(×10-8)

24 
(×10-8)

25 
(×10-8)

26 
(×10-8)

27 
(×10-8)

28 
(×10-8) 

29 
(×10-8)

30 
(×10-8)

31 
(×10-8)

32 
(×10-8)

33 
(×10-8)

34 
(×10-8)

35 
(×10-8)

36 
(×10-8) 

1 1.22 12.03 0.50 16.81 0.34 5.49 0.20 7.23 2.47 0.25 0.17 1.06 2.71 12.74 0.17 0.049 0.38 1.27 
2 1.02 10.02 2.38 22.31 0.08 12.17 1.10 7.62 35.13 1.76 5.27 25.09 63.55 6.36 5.01 0.20 14.02 45.95 
3 0.85 2.09 6.62 4.74 0.075 15.17 2.11 46.55 10.02 4.02 10.68 17.06 121.3 1.81 2.57 0.42 28.99 62.98 
4 1.07 1.78 6.80 5.74 0.59 18.29 2.42 52.31 3.51 2.53 16.24 0.38 87.13 3.57 0.59 0.34 21.55 44.50 
5 3.64 14.96 26.79 104.4 14.48 51.05 5.74 32.37 68.91 17.73 43.18 102.9 364.1 87.00 12.09 0.37 61.38 237.3 
6 0.29 1.63 4.26 105.1 4.00 28.88 1.53 7.77 2.91 0.27 4.20 1.44 3.16 41.43 10.59 0.52 2.70 10.74 
7 0.03 7.20 8.69 122.3 6.34 63.87 5.14 90.23 45.81 9.51 49.08 22.24 165.3 82.35 29.85 1.73 38.71 67.62 
8 0.47 0.81 4.23 7.94 0.51 1.56 0.06 5.54 3.04 0.77 0.20 4.93 14.68 48.68 3.11 0.58 12.45 19.29 
9 3.66 19.31 51.21 208.2 7.61 84.81 7.10 48.49 102.2 9.27 21.4 54.71 108.5 59.60 6.36 0.89 29.6 77.43 

10 0.05 0.20 0.40 26.48 1.78 114.2 2.22 19.49 3.46 0.10 4.83 3.42 18.34 1.93 0.14 0.01 1.61 5.15 
11 4.44 39.17 9.13 80.18 2.36 72.71 9.31 178.1 18.74 1.64 2.62 10.42 82.34 181.2 42.48 0.35 25.72 178.3 
12 0.24 3.47 6.46 4.24 0.18 4.32 0.32 14.25 16.05 2.49 0.93 15.34 90.48 4.14 2.41 0.09 25.11 32.24 
13 0.77 0.34 6.28 25.27 3.31 36.91 12.80 115.5 111.2 11.14 33.27 113.1 216.7 113.1 8.43 0.37 56.75 231.9 
14 0.19 4.81 29.78 9.83 1.41 22.64 5.94 98.64 30.41 3.74 11.24 37.34 117.3 31.53 2.56 0.13 12.51 30.79 
15 2.73 31.54 62.53 9.88 6.70 50.22 17.46 56.58 7.58 1.75 12.52 0.58 42.63 22.70 11.23 2.02 31.78 67.43 
16 0.15 4.52 4.50 9.76 1.36 9.33 2.88 10.77 5.34 1.21 1.35 9.59 30.29 29.11 0.34 0.38 5.64 10.91 
17 0.09 3.42 3.18 4.57 0.74 3.28 1.72 5.07 2.77 0.61 0.55 4.94 15.19 11.29 0.54 0.17 2.26 4.27 
18 0.15 3.12 2.52 25.31 0.10 14.15 4.33 41.35 26.81 0.08 33.23 15.37 25.22 6.27 2.66 0.12 2.82 7.63 
19 0.24 3.58 4.13 24.45 0.69 15.86 4.78 35.20 12.33 1.50 22.21 4.56 59.61 4.41 1.60 0.33 8.86 18.76 
20 0.94 9.73 18.21 7.05 1.84 4.87 2.87 1.01 25.14 5.11 2.49 32.59 33.08 24.27 6.97 0.37 21.90 97.24 
21 0.61 7.71 13.16 1.61 1.51 6.95 3.96 13.39 18.79 2.94 4.65 25.22 42.90 15.92 3.79 0.02 9.89 63.32 

ANSI 22.83 181.4 271.8 826.2 55.97 636.7 93.98 887.5 552.6 78.40 280.3 502.2 1705 789.4 153.5 9.451 414.6 1315 
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4.4.3 Uncertainty due to Measurement Noise and Natural Randomness  

The last case studied is the stochastic model updating using the uncertain model 

properties arising from both the natural randomness of structure and measurement 

noise. Similarly, the natural randomness of structure is simulated by means of 

temperature-caused variability in Young’s modulus of each member and the 

measurement noise in each modal parameter is modeled by a normally distributed 

random variable with zero mean. In order to obtain the covariance of stochastic 

modal properties, it is assumed that the Young’s modulus and measurement noise are 

uncorrelated random variables. In practice, the covariance of measured modal 

properties can be readily estimated from a series of measured modal properties 

obtained by the monitoring system (Ko et al. 2003). Making use of the statistical 

independence between Young’s modulus and measurement noise, the covariance of 

simulated experimental modal properties is expressed as 

( ) Var2Var1~,~Var +=zz                                      (4.37) 

where T
dd1Var SΣS E= , is the covariance caused by natural randomness of Young’s 

modulus; and ( ) ( )222
1

2 diag1%2Var ni zzz=  represents the covariance in 

modal properties due to measurement noise. 

4.4.3.1 Stochastic Model Updating Using Perturbation and MCS Methods 

Both the perturbation method and the MCS method have been applied to conduct the 

stochastic model updating. A summary of the stochastic model updating results using 

these two methods is shown in Table 4.4 together with the updating results for the 

previous two cases. The model updating results are also illustrated in Figure 4.28. 

Despite the simultaneous presence of uncertainties in both natural randomness and 
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measurement noise, the updating results from the perturbation method still agree 

with those from the MCS method. It is observed that the means of reduction factors 

obtained in this case are approximately the average of those obtained in the previous 

two cases, and that the COV (or standard deviation) of updating parameters obtained 

in this case are approximately squared root of those obtained in the previous two 

cases. That is 

( )
2

21
3

µµ
µ

+
=                                             (4.38) 

2
2

2
13 σσσ +=                                           (4.39) 
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Figure 4.28  Comparison of perturbation method with MCS method  
for 10% randomness and 1% measurement noise (case study 1):  

(a) mean of reduction factor; (b) COV  
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Table 4.4  Comparison of MCS method with perturbation method for three cases 

Case 1  
(Natural randomness) 

Case 2  
(Noise) 

Case 3 
(Natural randomness + noise) 

Perturbation MCS Perturbation MCS Perturbation MCS 
Element No. Simulated 

damage (%) 

Mean COV Mean COV Mean COV Mean COV Mean COV Mean COV 
1 5 5.40 0.184 6.122 0.116 5.40 0.128 0.97 0.131 5.40 0.224 4.51 0.160 
2 0 -0.02 0.124 1.745 0.089 -0.02 0.064 3.02 0.062 -0.02 0.139 2.27 0.096 
3 0 -0.74 0.091 0.143 0.091 -0.74 0.046 -2.8 0.035 -0.74 0.102 -1.16 0.092 
4 0 0.50 0.157 0.599 0.088 0.50 0.070 -1.25 0.064 0.50 0.172 -0.50 0.099 
5 10 9.89 0.025 9.579 0.077 9.89 0.008 9.09 0.010 9.89 0.026 9.23 0.075 
6 0 0.43 0.076 -2.041 0.116 0.43 0.022 -1.20 0.038 0.43 0.080 -3.55 0.126 
7 0 -0.12 0.049 1.834 0.102 -0.12 0.036 1.00 0.035 -0.12 0.060 2.54 0.102 
8 15 14.91 0.148 6.752 0.186 14.91 0.147 9.35 0.170 14.91 0.208 1.17 0.228 
9 5 4.98 0.071 6.871 0.088 4.98 0.032 4.76 0.035 4.98 0.078 7.31 0.089 

10 0 0.13 0.108 2.201 0.110 0.13 0.068 1.26 0.059 0.13 0.127 2.98 0.118 
11 10 9.94 0.051 9.583 0.103 9.94 0.015 9.86 0.011 9.94 0.053 9.84 0.100 
12 0 0.35 0.099 -1.493 0.116 0.35 0.060 1.25 0.078 0.35 0.116 -1.60 0.136 
13 0 0.08 0.058 -0.314 0.092 0.08 0.027 0.10 0.027 0.08 0.064 -0.11 0.091 
14 0 -0.19 0.076 -2.112 0.101 -0.19 0.035 -3.20 0.045 -0.19 0.084 -3.96 0.105 
15 10 10.21 0.052 9.057 0.096 10.21 0.025 11.21 0.026 10.21 0.058 8.49 0.099 
16 10 11.41 0.068 10.513 0.086 11.41 0.025 10.49 0.029 11.41 0.072 10.68 0.083 
17 10 8.54 0.074 9.101 0.086 8.54 0.019 10.27 0.026 8.54 0.077 9.37 0.085 
18 5 4.64 0.082 3.436 0.093 4.64 0.038 3.16 0.042 4.64 0.091 2.04 0.092 
19 0 0.32 0.104 1.886 0.093 0.32 0.049 0.30 0.062 0.32 0.115 3.43 0.099 
20 0 0.37 0.101 3.443 0.111 0.37 0.059 2.76 0.058 0.37 0.117 5.21 0.115 
21 0 -1.20 0.093 0.753 0.080 -1.20 0.040 -0.49 0.058 -1.20 0.101 3.02 0.073 
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4.4.3.2 Second-Stage Bayesian Updating 

After conducting the first-stage stochastic model updating, the updating results 

corresponds to the experimentalist’s knowledge and confidence on the estimates of 

updating structural parameters. When the prior knowledge of structural parameters, 

which embodies the analyst’s confidence, is available, the identified statistics of 

structural parameters from the first-stage updating can be further updated to achieve 

a posterior distribution function by means of Bayesian theorem. It should be noted 

that although the use of Bayesian theorem for model updating is quite natural in 

theoretical consideration, objections to this have been raised that the selection of the 

priors is an extremely controversial aspect of the method since it is a subjective 

judgment. Also the selection of prior distributions will significantly affect the 

posterior distributions.  

For illustration, it is assumed that all updating parameters comply with a normal 

distribution with mean of 200 GPa and COV of 0.1. Table 4.5 summarizes the 

posterior statistics of updating parameters. Some results are also illustrated in Figure 

4.29. For all updating parameters, the posterior distribution functions of structural 

parameters are sharper than both the prior distribution function and the identified 

distribution function. This is expected because the variance of a variable decreases 

when more information is utilized The Bayesian estimator gives rise to more 

confidence in the information with small variance. When the variance in the prior 

distribution is smaller than that in the identified distribution, the Bayesian estimator 

is closer to the prior distribution than to the identified distribution as shown in 

Figure 4.29(a); when the variance in the prior distribution is larger than that in the 

identified distribution, the Bayesian estimator is closer to the identified distribution 
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than to the prior distribution as shown in Figure 4.29(b); and when the variance in 

the prior distribution is identical with that in the identified distribution, the Bayesian 

estimator is balanced between the prior distribution and the identified distribution as 

shown Figure 4.29(c-d). 

 

Table 4.5  Summary of prior, identified, and posterior distribution parameters 

Prior statistics Identified statistics Posterior statistics Element No. 
Mean COV Mean COV Mean COV 

1 0 0.1 0.054 0.224 0.009 0.091 
2 0 0.1 0.000 0.139 0.000 0.081 
3 0 0.1 -0.007 0.102 -0.004 0.071 
4 0 0.1 0.005 0.172 0.002 0.086 
5 0 0.1 0.099 0.026 0.093 0.025 
6 0 0.1 0.004 0.080 0.003 0.062 
7 0 0.1 -0.001 0.060 0.000 0.052 
8 0 0.1 0.149 0.208 0.028 0.090 
9 0 0.1 0.050 0.078 0.031 0.062 

10 0 0.1 0.001 0.127 0.000 0.079 
11 0 0.1 0.099 0.053 0.077 0.047 
12 0 0.1 0.003 0.116 0.001 0.076 
13 0 0.1 0.000 0.064 0.001 0.054 
14 0 0.1 -0.002 0.084 -0.001 0.064 
15 0 0.1 0.102 0.058 0.076 0.050 
16 0 0.1 0.114 0.072 0.075 0.058 
17 0 0.1 0.085 0.077 0.054 0.061 
18 0 0.1 0.046 0.091 0.025 0.067 
19 0 0.1 0.003 0.115 0.001 0.075 
20 0 0.1 0.004 0.117 0.002 0.076 
21 0 0.1 -0.012 0.101 -0.006 0.071 
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(c)                                                                          (d) 

Figure 4.29  Prior, identified and posterior PDFs of structural parameters:  
(a) element 1; (b) element 5; (c) element 3; (d) element 21 

4.5 Case Study 2: A Statically Indeterminate Truss Bridge 

The first example shown in section 4.4 is a statically determinate bridge where 

failure of any member will lead to the collapse of the whole structural system. 

Provided in this section is the stochastic model updating of a statically indeterminate 

structure which could continuously carry the required load when a single member 
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fails. The two examples are given in this chapter for consistency with the subsequent 

analysis of structural reliability in the following chapters. 

Illustrated in Figure 4.30 is the geometry configuration of the statically 

indeterminate truss bridge. Likewise, each member of the bridge is modelled as a 

planar truss element. An analytical FE model is established which has been 

correlated with the modal properties of as-built or undamaged state of the bridge, and 

therefore this baseline model is representative of the bridge without damage. In this 

analytical model as shown in Figure 4.30, a total of 31 planar truss elements, each 

with two DOFs at every node, are used. The material properties used in this 

analytical model are as follows: mass density ρ = 7800 kg/m3, area of cross section 

for each member A = 10-2 m2, and the Young’s modulus E = 200 GPa. 
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Figure 4.30  Geometry configuration of statically indeterminate truss bridge 

Similar to the first example, another FE model with the same topology as the 

baseline model is constructed to provide the simulated experimental modal properties 

by artificially reducing Young’s modulus of each member to different levels to 

different levels, as shown in Figure 4.31. The modal properties computed from this 

FE model serve as the ‘measured’ modal properties corresponding to the damaged 
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structure. In order to simulate incomplete measurement, only five vertical modal 

displacements for each of the eigenvectors, namely vertical modal displacements at 

nodes 9, 10, 11, 12 and 13 as shown in Figure 4.31, are assumed to be available 

throughout this numerical study. 
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Figure 4.31  Finite element model and simulated reduction factor of Young’s 
modulus for statically indeterminate truss bridge 

The first-stage stochastic model updating is performed to identify the statistics of 

updating parameters using the uncertain modal properties. The first six modes are 

first used for stochastic model updating. It is found that COVs of updating 

parameters become considerably large, which are meaningless updating results. Then, 

the first seven modes are then used for the improvement of identification accuracy. 

For brevity, only the identified results for the last case with uncertainties in both 

natural randomness and measurement noise are presented here.  

Figure 4.32 compares the stochastic model updating results using the perturbation 

method and the MCS method. Once more, the perturbation method gives acceptable 

approximation to the means and COVs of updating parameters in comparison with 

the results of the MCS method.  
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(b) 

Figure 4.32  Comparison of perturbation method with MCS method for 10% 
natural randomness and 1% measurement noise (case study 2):  

(a) mean of reduction factor; (b) COV 

When the prior distributions of updating parameters are available, they can be 

combined with the above identified distributions of updating parameters to obtain the 

posterior distribution functions as illustrated in Figure 4.33. In this numerical 

example, the prior distributions of all the updating parameters are assumed as a 

normal distribution with mean of 200 GPa and COV of 0.1. 
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(c)                                                                         (d) 

Figure 4.33  Prior, identified and posterior PDFs of structural parameters:  
(a) element 4; (b) element 8; (c) element 16; (d) element 28 

4.6 Summary 

A novel two-stage approach for stochastic FE model updating was presented in this 

chapter. The proposed approach involves a first-stage stochastic FE model updating 

from statistics of measured modal properties and a second-stage Bayesian updating. 

It is able to incorporate the knowledge and confidence about the measurement data 

from experimentalists and about the FE model from analysts. An improved 
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perturbation method and the MCS method are employed for the first-stage model 

updating, and the accuracy of the improved perturbation method for three types of 

uncertainties are compared with the MCS method through numerical studies of two 

truss bridges. Furthermore, based on the improved method, two indices were 

proposed to identify the most significant variables which considerably contribute to 

the variance of updating parameters. As the model updating and damage detection 

are not an end in the framework of structural health monitoring, the method 

developed in this chapter lay the base for the studies in the following chapters with 

the intention of the reliability-based condition assessment of bridge structures. 

The numerical studies conclude the following points: i) for each type of uncertainties 

studied, the improved perturbation method generates satisfactory model updating 

results when that the uncertainty does not exceed a certain level (say 2%) but may be 

less accurate in the case of high uncertainty; ii) neglecting the correlations of modal 

parameter may result in an unreliable estimation of the covariance matrix of updating 

parameters; (iii) with the increase of uncertainty level, the geometry of updating 

parameter PDFs becomes more complicated and the PDFs could have several distinct 

peaks; iv) some high-order modal components significantly contribute to the 

updating parameter variance, indicating the limitations of the commonly 

acknowledged rule-of-thumb methods in the selection of the relevant modes in model 

updating and damage detection. 
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Chapter 5 

DEVELOPMENT OF COMPUTER CODE FOR LINEAR FE 
RELIABILITY ANALYSIS 

 

 

5.1 Introduction 

The design and analysis of modern structures is performed in the face of numerous 

uncertainties. These uncertainties arise due to the inherent variability present in 

nature and due to the imperfect state of our knowledge. Furthermore, it may also 

arise due to the improper modelling of actual structural behaviour. Under the 

conditions of the uncertainty, it is essential to recognize that any structure always has 

a non-zero, albeit small, probability of failure or of not performing as intended. It is 

therefore impossible to guarantee the satisfactory performance of a structure. 

Employing the concept of probability, the method of structural reliability computes 

the probability that a structure does not perform as intended by taking into account 

the uncertainties in both the structure and its external loadings, and then a rational 

analysis and design will be achieved by reducing the computed failure probability to 

an acceptable level. In the general theory and method of structural reliability, the 

uncertainties in a structure and its external loadings are characterized by continuous 

random variables with known distributions and then many approximation methods, 

such as the first-order reliability method (FORM) and the second-order reliability 

method (SORM), can be used to compute the probability that the random variables 
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fall into a predefined failure domain (Rackwitz 2001). Due to the rational basis and 

mathematical background, methods of structural reliability have gained increasing 

acceptance in academic circles and are beginning to be acknowledged and used by 

engineering practitioners (Estes and Frangopol 2005). 

For large-scale and complex structures, their performance can be predicted only by 

numerical techniques, since no closed-form solution for response of the realistic 

structures is available. The most commonly used numerical technique for analyzing 

the response of a structure is the finite element (FE) method. In order to analyze the 

failure probability of a realistic structure with numerous uncertainties, the structural 

reliability method must be performed in connection with the FEM. The combination 

of the reliability method with the FE technique is often referred to as the finite 

element reliability method (FERM) in the literature (Haldar and Mahadevan 2000; 

Sudret and Der Kiureghian 2002). 

The aim of this chapter is to describe the basic theory of structural reliability analysis 

and the approximation methods for computing the component failure probability, and 

to develop a computer code for the linear FERM by linking the well-established 

FORM/SORM with the FE technique. The contents presented in this chapter pave the 

way for the reliability-based condition assessment of existing structures to be 

addressed in the next chapter. The remaining of this chapter is organized as follows. 

The theory and method of structural component reliability is first outlined. It consists 

of the selection of random variables, formulation of limit-state function, and 

computation of failure probability. Two well-established methods, namely FORM 

and SORM, are employed to compute the probability of failure. Linear FERM is then 

presented for the analysis of failure probability of realistic structures. In compliance 
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with the reliability analysis, the FE technique is employed to compute the structural 

responses involved in the predefined limit-state function and the response gradients 

with respect to the random variables. Several numerical examples are provided for 

illustration of the FE reliability analysis. 

5.2 First- and Second-Order Reliability Methods 

5.2.1 Fundamentals of Structural Reliability 

The structural reliability problems of interest here are based on two fundamental 

assumptions. First, the uncertainties in the structure and its external loadings are 

assumed to be time-invariant and modelled by continuous random variables. These 

random variables include the load-related, resistance-related, and geometry-related 

quantities (Nowak and Collins 2000). The set of basic random variables describing 

these uncertainties are represented by a random vector ( )T
1 nxx=x . Second, 

the structure may fail in any of a finite number of failure modes, and with respect to 

each mode it is either in a safe state or in a failure state. The evaluation of the failure 

probability for a single failure mode (or a single limit-state function) is called 

component reliability analysis. The probability due to the combination of numerous 

failure modes requires a system reliability analysis, for which the component failure 

probability is the basic ingredient. Present study will focus on component reliability 

analysis. Details on system reliability can be found in references (Ditlevsen 1979; 

Madsen et al. 1986; Ditlevsen and Madsen 1996; Melchers 1999). The term failure is 

used in a general sense. It may denote the physical failure of a structure or its 

member, or the exceeding of a serviceability limit state. In other words, the reliability 

analysis can be formulated for both the safety and serviceability limit states.  



5-4 

Structural limit states are usually defined in terms of the structural responses and the 

response thresholds. The structural responses, denoted by a vector y, are functions of 

the basic random variables, that is 

( )xyy =                                                                (5.1)  

For example, the limit-state function may be expressed as g(x) = y0 – y(x) with y0 

being the predefined response threshold. However, for large-scale and complex 

structures, the analytical expression in Equation (5.1) between structural responses 

and random variables seldom exits. In that case, the reliability analysis should be 

integrated with the FE technique for computing the required ingredients, including 

the response y(x) and the response gradients ∂y/∂x.  

Classical reliability methods deal with the explicitly given limit-state function g(x). 

The limit-state surface g(x) = 0 divides the outcome space of x into a safe set (or 

domain) and a failure set (or domain). In general, the set with g(x) > 0 defines the 

safe domain and the set with g(x) < 0 defines the failure domain as illustrated in 

Figure 5.1. Thus, the probability of failure (denoted as the shaded area in Figure 5.1) 

associated with the prescribed limit-state function g(x) is the probability that the 

random variables fall in the failure domain and is given by an n-fold integral, namely 

( )
( )

∫ ∫
<

=
0

2121,,, ,,,
21

xg
nnXXXf dxdxdxxxxfp

n
            (5.2) 

which may also be written as 

( )
( )
∫
<

=
0x

X xx
g

f dfp                                                        (5.3) 
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where ( )nXXX xxxf
n

,,, 21,,, 21
 denotes the joint probability density function (PDF) 

of random vector x. An alternative to failure probability pf as a measure of safety is 

the reliability index β defined as 

( ) ( )ff pp 11 1 −− Φ−=−Φ=β                                        (5.4) 

in which Φ-1(.)  is the inverse cumulative distribution function (CDF) of the standard 

normal variate.  

g (x) < 0: failure domain (set)

g(x) > 0: safe domain (set)

x2

Limit-state surface: g(x)=0

x1

Contour lines of f x(x)

p f

 

Figure 5.1  Safe and failure sets separated by limit-state surface 

Although the expression in Equation (5.3) for computing the failure probability 

appears simple, direct analytical computation of this probability integral for most 

limit-state functions with a large number of random variables is a formidable task. 

Furthermore, straightforward numerical integration techniques are generally also 

impractical when the limit-state function is complicated and the number of random 

variables is large. Over the past decades, a number of approximation methods have 

been developed to compute this probability integral as summarized by Melchers 
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(1999). The present study employs two widely used methods: the first-order 

reliability method and the second-order reliability method, which have been proved 

satisfactory for most of engineering problems (Rackwitz 2001). 

In general, the computation of failure probability using FORM and SORM 

encompasses the following four steps: (1) transformation of the random variables in 

the original x-space into the standard normal u-space; (2) determination of the 

nearest point, often called the design point, in the failure surface to the origin in the 

u-space; (3) approximation of the failure surface in the u-space around the design 

point; and (4) computation of the failure probability corresponding to the 

approximating failure surface. Common to FORM and SORM are the first two steps. 

The difference lies in that a tangent hyperplane is used to approximate the limit-state 

surface around the design point in the case of FORM while a quadratic surface is 

employed to approach the limit-state surface when using SORM. These steps are 

explained in the following sections. 

5.2.2 Transformation to Standard Normal Space 

One of the major developments in the approximation methods of structural reliability 

is the invention of a generally applicable method for transformation of a random 

vector x into a standard normal vector u, thus enabling the reliability analysis for 

random variables with arbitrary distribution types. The standard normal space is 

defined by a set of independent and standard normal variates u having zero means 

and unit covariance matrix and the following joint PDF: 

( ) ( )
( )

uu

U uu
T

2
1

2/ e
2

1 −
== nnf

π
φ                                          (5.5) 
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In principle, a one-to-one transformation between the original x-space and the u-

space  

( )xTu =                                                                    (5.6)  

can always be established for the random variables having strictly increasing 

continuous CDF for each argument, although it may not be unique. As the algorithm 

to find the design point requires iterative scheme, both transformation and the inverse 

of transformation are required. The inverse of transformation is expressed as 

( )uTx 1−=                                                                  (5.7)  

Suppose the random variables x are normally distributed with mean vector µx and 

covariance matrix Σ. In this case, a convenient form of the transformation to the 

standard normal space is 

( )xµxDLu −= −− 11                                                   (5.8) 

where the diagonal matrix D contains the standard deviation of each random 

variable, D = diag (σi); L is the lower triangular matrix obtained from Cholosky 

decomposition of the correlation matrix R of random vector such that R = LLT; and 

the relation between covariance matrix and correlation matrix is Σ = DRD. The 

inverse of Equation (5.8) then becomes 

LDuµx x +=                                                          (5.9) 

and the Jacobian matrix of the transformation needed to compute the gradient of 

limit-state function in the u-space is obtained as 

11
,

−−= DLJ xu                                                         (5.10) 
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Now suppose that the random variables x are statistically independent non-normal 

variables such that ( ) ( ) ( ) ( )nn xfxfxff 2211=x  where ( )ii xf  denotes the marginal 

PDF of xi. The needed transformation is diagonal (each variable is transformed 

independently of other variables) and has the form 

( )( ) nixFu iii ,,2,11 =Φ= −                           (5.11)  

where ( ) ( )∫ ∞−
= ix

iiiii dxxfxF  denotes the marginal CDF of xi; and ( )⋅Φ−1  is the 

inverse CDF of the standard normal variate. Figure 5.2 shows a graphical 

representation of this transformation. Each point ( )ii ux ,  on the curve is obtained by 

equating the cumulative probabilities ( )ii xF  and ( )iuΦ . The corresponding inverse 

of the transformation in this case is written as 

( )( ) niuFx iii ,,2,11 =Φ= −                            (5.12)  

As xi is non-normal, both transformations in Equations (5.11) and (5.12) are 

nonlinear. Following the above method, all random variables can be sequentially 

transformed to the u-space. As the random variables are statistically independent, the 

Jacobian matrix of the transformation to the u-space is a diagonal matrix having the 

elements 

( )
( ) ⎥⎦

⎤
⎢
⎣

⎡
=

i

ii

u
xf

ϕ
diag,xuJ                                            (5.13) 

where ( ) ( ) ( )2/exp2 22/1 uu −= −πϕ  is the standard normal PDF of univariate.  

In the more general case of statistically dependent non-normal variables, the 

required transformation is necessarily coupled. Two methods, namely Nataf model 
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(Der Kiureghian and Liu 1986) and Rosenblatt transformation (Ditlevsen 1981; 

Hobenbichler and Rackwitz 1981), are available to transform the original variables 

to the standard normal uncorrelated ones. 

x

u

f (x)

Equal 
probabililities

( )( )xFu 1−Φ=

( )uϕ

 

Figure 5.2  Transformation to standard normal space for  
a single random variable 

The one-to-one transformation u = T (x) maps the limit-state surface in the x-space, 

{x | g(x) = 0}, into the limit-state surface in the u-space, {u | G(u) = 0}, as 

illustrated in Figure 5.3. The transformation preserves the probability content, pf, of 

failure domain in the original x-space and thus the failure probability integral may 

be expressed as 

( )
( )

( )
( )
∫∫
<<

==
00 ux

x uuxx
G

n
g

f ddfp φ                                      (5.14) 

The standard normal space has three important properties: (1) the probability 

density function is rotationally symmetric about the origin; (refer Figure 5.3; (2) the 

probability density decays exponentially with the square of the distance from the 
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origin; and (3) the probability contents of some simple sets in this space are 

available for arbitrary dimensions. From the first two points, it follows that the 

contribution to the probability integral in Equation (5.14) comes mostly from the 

region around the point on the failure surface that is nearest to the origin. The last 

property is used to construct simple approximations to the probability integral. 

These approximations are achieved by replacing the limit-state surface with an 

approximating surface fitted at the nearest point, for which the probability content is 

readily known. 

x1

g(x)=0

x2

Contour lines of  f x(x)

( )UTX 1−=

Design point  x* in the x-space

u* 

Region of most 
contribution to p f

Design point

G(u)=0

SO
RMFORM

Contour lines 
of  φn (u)

u2

u1

U = T (X)

 

Figure 5.3  One-to-one mapping from x-space to u-space 

5.2.3 Determination of Design Point 

One major effort in the development of reliability methods is to find the minimum-

distance point from the limit-state surface to the origin in the standard normal space. 

This point is also known as the mostly likely failure point (MLFP) or design point 

or also β-point in the literature. The finding of the design point requires the solution 

of a constrained optimization problem in the standard normal space, namely 
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uuT

2
1Minimize            subject to ( ) 0=uG                               (5.15) 

Many algorithms are available to solve this problem. The HL-RF method, originally 

proposed by Hasofer and Lind (1974) for second-moment reliability analysis and 

later extended by Rackwitz and Fiessler (1978) to take into account the distribution 

information transformation, is currently the most widely used method for solving the 

optimization problem in structural reliability. The HL-RF method is a simple 

gradient-based algorithm with the following recursive formula 

( )
( )( )

( )( ) ( ) ( )( )[ ] ( )( )T2

2

1 1 kkkk

k

k GGG
G

uuuu
u

u ∇−⋅∇
∇

=+                 (5.16) 

where [ ]nuGuGG ∂∂∂∂=∇ // 1  denotes the gradient row vector of G(u). The 

algorithm starts at an initial point u(1) (usually u(1) = T(x(1))) where the limit-state 

function and its gradient vector are computed. After substituting these values into the 

recursive formula, a new iteration point u(2) is obtained. If convergence has not been 

reached, a new iteration cycle is performed and the process is continued until the 

difference in point coordinates between two successive iterations is less than a 

threshold. The algorithm is illustrated in Figure 5.4. It should be noted that the above 

iteration process is performed in the transformed u-space; however, it is usually more 

convenient to compute the limit-state function and its gradient in the original space 

rather than in the standard normal space. For this purpose, each iteration point u(k) is 

first mapped back into the original space by the one-to-one inverse of transformation 

in Equation (5.7), and then the value of limit-state function and its gradient at the 

iteration point x(k)
 in the original space are evaluated. Next, making use of the chain 
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rule of differential calculus, the gradient of the limit-state surface in the standard 

normal space is obtained from 

( ) ( ) uxJxu ,gG ∇=∇                                                   (5.17) 

in which Jx,u = [∂xi/∂uj] denotes the Jacobian matrix of the probability transformation 

in Equation (5.6) and 1−= ux,ux, JJ . 
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( ) ( )( )kGG uu =
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∇
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'
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Figure 5.4  HL-RF algorithm for finding design point in u-space 

The algorithm implementation of the HL-RF method is as follows: 

(1) Assume initial guesses of the design point x(1) in the original space. Typically, the 

initial values may be assumed to be the mean values (or the medians) of random 

variables; and let k = 1; 

(2) Evaluate the value of limit-state function g(x), its gradient ( )xg∇ , and Jacobian 

matrix Jx,u at the point x(k); 
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(3) Compute the gradient ( )uG∇  in the standard normal space using Equation (5.17) 

and then determine the next iteration point u(k+1) according to Equation (5.16);   

(4) Check the convergence criterion; if not satisfied, map the iteration point u(k+1) to 

the original space using inverse of the transformation, namely x(k+1)
 = T-1 (u(k+1)), 

retrun to step 2; otherwise stop. 

5.2.4 First-Order Reliability Method 

From the foregoing second property in the u-space, it follows that the design point u*, 

which is the point on the failure surface {u | G (u) =  0} closest to the origin, has the 

highest probability density among all failure points in the standard normal space. As 

a result, the main contribution to the probability integral comes from the 

neighborhood of the design point u*, provided that the limit-state surface is not 

strongly distorted and there is only one design point. In such a case, the limit-state 

surface in the neighborhood of design point can be well approximated by a tangent 

hyperplane for which the probability content is readily available. 

In the first-order reliability method, the limit-state surface is approximated by the 

tangent hyperplane at design point (Hasofer and Lind 1974; Rackwitz and Fiessler 

1978; Ditlevsen 1981; Hobenbichler and Rackwitz 1981), namely, the limit-state 

surface in the u-space is replaced by its first-order Taylor series expansion at u* as 

( ) ( ) ( )( )*** uuuuu −∇+= GGG                                     (5.18) 

where ( )*uG∇  is the gradient ( )uG  evaluated at the design point u*. The first-order 

estimate of failure probability, pf1, is then equal to the probability content defined by 

the linearized failure domain, as given by 
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( )
( )( )

( )βφ −Φ== ∫
≤−∇ 0

1
** uuu

uu
G

f dp                                 (5.19) 

where Φ(.) is the CDF of the standard normal variate; and β, called the first-order 

reliability index, corresponds to the distance from the origin to the approximating 

tangent hyperplane in the u-space and is given by  

( )
( )

*

2

*

*
* u

u
uuα

G
G

∇
∇

−=⋅=β                                        (5.20) 

in which α is the normal row vector (directional cosine) at the design point, 

directing towards the failure domain as shown in Figure 5.4. 

The first-order reliability method provides a satisfactory approximation of the exact 

failure probability if the transformed limit-state surface in the u-space is flat or 

nearly flat. Non-flatness in this surface may arise from the nonlinearity in the limit-

state function g(x) and the nonlinearity in distribution information transformations 

when x has a non-normal distribution. In such a case, a higher-order approximating 

surface, such as a quadratic surface, may be used to improve the accuracy of the 

approximation as described in the following section.  

5.2.5 Second-Order Reliability Method 

In the second-order reliability method, the limit-state surface is approached by a 

second-order surface fitted to the design point. Such an approximation was first 

investigated by Fiessler et al. (1979). However, their results, which are derived for 

the general quadratic surfaces, are too cumbersome for practical use and the 

resulting probability integrals can only be solved numerically. After that, it soon 

became obvious that a parabolic approximation to the limit-state surface is more 
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preferred, for which the probability content is much easier to compute (Breitung 

1984; Der Kiureghian et al. 1987; Tvedt 1990).  

As its name implies, the second-order reliability method involves a second-order 

approximation to the limit-state surface. Making use of ( ) 0=uG  at the design point, 

the second-order Taylor series expansion of the limit-state function G(u) at the 

design point u* is expressed as  

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−

∇
+−∇=

−−+−∇=

*T*

2

*2

*

*T***

2
1

2
1

uuHuu
u

αuu

uuHuuuuuu

G
G

GG

β
             (5.21) 

where α and β are defined earlier in Equation (5.20); and H is the Hessian matrix 

evaluated at the design point having the elements ( ) njiuuGH jiij ,,1,/2 =∂∂= u . 

To construct the approximating paraboloid, the coordinates of standard normal space 

are first rotated through an orthogonal transformation 

Quu ='                                                                   (5.22) 

such that the new '
nu  axis coincides with the normal vector at the design point α, as 

illustrated in Figure 5.4 (the dash line) in the case of two random variables. This is 

achieved by selecting the n-th row of the transformation matrix Q as the directional 

cosine of limit-state function at the design point, i.e. ),,1( njQ jnj == α . The 

remaining rows of Q are determined by a suitable orthogonalization scheme, such as 

the Gram-Schmdit orthogonalization procedure. In other words, this rotation 

positions the design point on the '
nu  axis of rotated space 'u  such that the coordinates 
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of the design point are T]00[ β .  After doing that and keeping only second-

order term in '
1−nu , the limit-state surface in Equation (5.21) is then rewritten in 

terms of a parabolic approximation in the rotated standard normal space 'u , as  

'
1

T'
1

'

2
1

−−+= nnnu Auuβ                                                   (5.23) 

where the matrix A is of the size (n-1)×(n-1), whose elements, denoted as aij, are 

computed as  

( )
( )

2

*

T

u

QHQ

G
A ij

ij
∇

=       ( )1,,1, −= nji                     (5.24) 

Equation (5.23) represents a paraboloid with its apex at the design point. In the 

special case where the coordinate axes 1,,2,1,' −= niui  coincide with the 

principal axes of the paraboloid, the matrix A will be diagonal and the paraboloid 

becomes 

( )∑
−

=

+=
1

1

2''

2
1 n

i
iin uu κβ                                             (5.25) 

where iκ ’s are the principal curvatures needed to compute the probability content 

for a paraboloid. In the more general case, Equation (5.25) can be obtained through 

an additional orthogonal rotation of the '
1−nu  space with each column of the rotation 

matrix being the eigenvector of matrix A, and in that case the κi's are the 

eigenvalues of the matrix A. The paraboloid in Equation (5.25) is tangent to the 

limit-state surface at the design point and its principal curvatures match those of the 

limit-state surface at the design point. Thus the approximating paraboloid is also 

termed as the curvature-fitted paraboloid.  
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The paraboloid defined in Equation (5.23) is only approximate to the complete 

second-order surface around the design point since only second-order terms in '
1−nu  

are kept. However, the probability content associated with the above-defined 

paraboloid is much easier to compute. Because the standard normal space is 

rotationally symmetric, this probability, denoted as pf2, is completely defined by β 

and the set of curvatures κi, i =1, …, n-1. Several formulae available for computing 

the probability content for the paraboloid are provided in the following. 

A simple closed-form formula was presented by Breitung (1984) using the theory of 

asymptotic analysis, as  

( ) ( ) 5.0
1

1

Breitung 1
2

−
−

=
+Π−Φ≅ i

n

ifp βκβ                                     (5.26) 

where κi denotes the principal curvatures of paraboloid at the design point, and β is 

the reliability index determined using FORM. Breitung proved that this second-order 

probability estimate approaches asymptotically the first-order estimate and the true 

failure probability when β is sufficiently large and βκi remains constant. For small β 

values, the approximation was slightly modified by Hohenbichler and Rackwitz 

(1988) as 

( ) ( )
( )

5.0
1

1

RH 1
2

−
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=

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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−

+Π−Φ= i

n

ifp κ
β
βφβ                             (5.27) 

Tvedt derived a three-term approximation to probability content of the paraboloid by 

a power series expansion in terms of '
1

T'
1 −− nn Auu , neglecting the terms of the order 

higher than two (Madsen et al. 1986). The resulting formula is 

21
BreitungTvedt1

22
AApp ff ++=                                           (5.28) 
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where 
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where Re(.) is real part of the quantity in the parentheses; and 1−=i . 

Tvedt (1990) further derived an exact result for probability content of the paraboloid 

in the form of the single-fold integral, which is more complex to evaluate. Tvedt’s 

exact formula is 
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                (5.31) 

In summary, computing the second-order estimate of failure probability according to 

the above formulae involves the following steps after determining the design point 

(1) Construct the orthogonal matrix Q with α as its last row; 

(2) Evaluate the Hessian matrix H at the design point in the standard normal space 

by the finite difference method; 

(3) Calculate the matrix A and then determine its eigenvalues; 

(4) Compute the second-order approximation of the failure probability using either 

formula described above. 
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5.2.6 Parameter Sensitivity Measures 

An important feature of FORM is that it provides measures of the reliability index 

sensitivity and the first-order failure probability sensitivity with respect to the basic 

random variables and with respect to the parameters defining the probability 

distributions. The first set of such sensitivity measures is with respect to the variation 

of the design point u* in the standard normal space. This sensitivity measure is given 

by the normal vector at the design point, namely 

T
* α

u
=

∂
∂β                                                                (5.32) 

where [ ]T**
1

* /// nuu ∂∂∂∂=∂∂ βββ u denotes the column vector of partial 

derivatives, providing a measure of relative importance of each standard normal 

variates ui. According to the chain rule of differentiation, the reliability index 

sensitivity with respect to the design point in the original x-space which is given by 

( )*1* uTx −= , is 

xu,Jα
x

T
* =

∂
∂β                                                          (5.33) 

However, it is noted that the sensitivity in Equation (5.33) depends on the units of 

basic variables xi. Therefore, to compare the relative importance of each variable, 

Der Kiureghian and Ke (1985) defined the unit dimensionless vector as 

2

T

T

DJα
DJα

γ
xu,

xu,=                                                      (5.34) 

where D is the diagonal matrix of standard deviations of the variables x. 
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Other sensitivity measures of reliability index are with respect to the parameter θ in 

distribution function of x. The reliability index sensitivity with respect to distribution 

parameter θ is given by 

( )
θθθ

β
∂

∂
=

∂
∂

=
∂
∂ xTαuα                                            (5.35) 

Of particular interest among the sensitivities to the distribution parameters are the 

sensitivity vectors with respect to the mean vector, { }nµµ1=µ , and the 

standard deviation vector { }nσσ 1=σ  of the random variables. When scaled 

by the diagonal matrix of standard deviations, these sensitivity vectors are expressed 

as 

( )
µ

δ
∂
∂

=
βσdiag          ( )

σ
η

∂
∂

=
βσdiag                   (5.36) 

which represent dimensionless variation in β with respect to variation in the mean 

and standard deviation of each variable. The former vector gives the relative 

importance of the random variables in terms of their central values; whereas the 

latter gives the relative importance with respect to their variability. 

The sensitivities of the first-order failure probability with respect to the above-

mentioned quantities are readily obtained by the chain rule of differentiation to 

Equation (5.19). For example, the first-order failure probability sensitivity with 

respect to the distribution parameter is obtained as 

( )
θ
ββϕ

θ ∂
∂

−=
∂

∂
1f

p
                                                    (5.35) 
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All above sensitivity measures have been shown useful to reduce the number of 

random variables, as FORM/SORM is presently limited to several hundreds up to 

about a thousand basic random variables (Rackwitz 2001). When the variability of a 

random variable has a relatively small influence on reliability index, then that 

variable can be replaced with a deterministic quantity, such as mean value or median 

value, thus reducing the dimension of basic random variables. The above sensitivity 

measures are also useful in the structural design and condition assessment (Melchers 

1999). They can be used to identify the variables or parameters which have major 

contributions to the failure probability, thus providing an effective means to improve 

the design. These measures also help in gaining insights into the complex behaviour 

of structural systems. 

5.3 Linear FE Reliability Analysis Method 

As discussed in the previous section, the first- and second-order structural reliability 

methods require the computation of structural response involved in the limit-state 

function and the response gradient. When the limit-state function is explicitly given, 

the computation of the limit-state function and its gradient at a particular point is 

straightforward. However, for a realistic structure, the structural response involved in 

the limit-state function can only be numerically solved by the FE technique as the 

relation between structural response and random structural parameters is not 

analytically known. For example, for a large-scale bridge, it is difficult to express 

analytically the displacement of a node in terms of random structural parameters 

such as Young’s modulus and cross-section areas. In addition, in such a case the 

response gradient needs also to be computed numerically by the FE technique. 

Therefore, in order to analyze the failure probability for a realistic structure, the FE 
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technique should be embedded into the reliability method to compute the structural 

response and response gradient. The flowchart of FERM is outlined in Figure 5.5. 

The use of the FE technique for computing structural response (nodal displacement 

and internal force) and its gradient is briefly explained in the next two sections. 

Iteration point

Compute response and response 
gradient with respect to random 
variables x, namely y=y(x), Jy ,x

Compute limit-state function and 
its gradient in the x-space, 
namely, g=g(y), x,x J yygg ∇=∇

Compute new iteration 
point G(u)=g; 
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Figure 5.5  Flowchart of FE reliability method 

5.3.1 Computation of Response 

The static equilibrium equation for a constrained linear elastic structure is expressed 

as 

( ) ( ) ( )xpxyxK =                                                (5.36) 
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where x represents a random vector consisting of both the stiffness-related and load-

related variables such as Young’s modulus, area of cross-section, moment of inertia, 

and external loadings; K is the global stiffness matrix in terms of the stiffness-related 

structural parameters; p is the equivalent random nodal load vector; and the 

displacement vector y is a function of the random vector x. For a specific realization 

of the random vector x, standard procedures are available to assemble Equation (5.36) 

and to solve for the nodal displacements (Bathe 1996). 

After determining the nodal displacements, the internal forces of each element can 

also be obtained. Figure 5.6 illustrates a general planar truss element connecting 

with two nodes i and j, where u and v are the nodal displacements in the global 

coordinate system XY and u  is the nodal displacement in the local coordinate system. 

The member forces of a truss element are given by  
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                                      (5.37) 

where e
iF  and e

jF  are internal forces at both ends of element e; EA and L are the 

axial rigidity and length of element e, respectively; and iu  and ju  are the nodal 

displacements in the local coordinate system. As the nodal displacements solved 

from Equation (5.36) are in the global coordinate system, it is required to transform 

them into the local coordinate system as 
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Figure 5.6  Illustration of a planar truss element 
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Figure 5.7  Illustration of a planar frame element 

where xxl  and yxl  are the directional cosines between local X -axis and global 

coordinate system XY. Substituting Equation (5.38) into Equation (5.37) allows 

evaluation of the axial forces of truss members.  

Figure 5.7 shows a general planar frame element with two nodes, for which the 

member forces are given by 
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where EA and EI are the axial and flexural rigidities of element e; L is the element 

length; and ,, vu and θ  are the nodal displacements in the local coordinate system. 

Similar to truss elements, the transformation of such nodal displacements to the 

nodal displacements in the local coordinate system reads as 
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After presenting Equation (5.40) into Equation (5.39), the member forces of planar 

frame elements are obtained.  

5.3.2 Computation of Response Gradient 

Taking derivatives of both sides of Equation (5.36) with respect to the kth random 

variable xk, one obtains the nodal displacement gradients, as 
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where  
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with N being the number of degrees of freedom. In the case that xk is the stiffness-

related variable, the derivatives of the external loadings with respect to xk will be 

zero; otherwise, the derivates of stiffness matrix K with respect to xk will vanish. 

Only back-substitution is required for solving Equation (5.41) as the global stiffness 

matrix K has been decomposed during solving Equation (5.36). Making use of the 

correlation between internal forces and nodal displacements given in Equations (5.37) 

and (5.39), we can obtain the gradient of the internal forces with respect to the 

random variables. 

In the above two sections, the expressions of nodal displacement and its gradient 

have been derived, both of which are essential for analyzing the failure probabilities 

associated with the displacement limit-state function. Likewise, both the derived 

expressions of internal force and its gradient are indispensable to determine the 

failure probabilities associated with the stress limit-state function.  

5.4 Numerical Examples 

In this section, four examples are provided to demonstrate the reliability analysis 

using the developed computer code for the linear FERM. The first example involves 

the computation of failure probability defined by a linear limit-state function. In this 
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example, the nonlinearity in the limit-state function in standard normal space arises 

from the probability transformation. In the second example, the failure probability 

defined by a nonlinear limit-state function is computed. The last two examples 

address the reliability analysis for two truss bridges, namely a statically determinate 

truss and a statically indeterminate one, in which the displacement and stress limit-

state functions are considered. For each example in study, the failure probability is 

computed by FORM/SORM and verified by the Monte Carlo simulation. 

5.4.1 Example 1: Reliability for a Linear Limit-State Function 

First, the failure probability defined by a linear limit-state function with five random 

variables is calculated. The limit-state function is given as 

( ) 654321 5522 xxxxxxg −−+++=x                                  (5.43) 

where xi’s (i = 1, 2, ⋅⋅⋅, 6) are statistically independent random variables following the 

Lognormal distribution. The random variables x1 to x4 have the same mean of 150 

and standard deviation of 15; x5 has a mean of 50 and a standard deviation of 15; x6 

has a mean of 60 and a standard deviation of 18. The unit of each quantity is kN.m. 

Failure occurs when the limit-state function g(x) < 0.  

As described earlier, even the limit-state function in the original x-space g(x) is 

linear, the corresponding limit-state function in the standard normal space G(u) 

becomes nonlinear due to the nonlinearity in probability transformation of the 

Lognormal distribution to the normal one. Starting with the initial design point at the 

mean value and following each step of FORM/SORM, the iteration converges to the 

solution point *u = [-0.1906, -0.3744, -0.3744, -0.1906, 1.3734, 1.9521]T, which 
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corresponds to *x = [146.44, 143.78, 143.78, 146.44, 71.67, 101.93]T in the original 

x-space. After finding the design point, the failure surface is approximated either by 

a hyperplane or by a paraboloid at the design point, and the corresponding failure 

probabilities are computed according to the approximating failure surfaces. The first- 

and second-order failure probabilities and the reliability indices are summarized in 

Table 5.1. The exact failure probability and corresponding reliability index are 

obtained as 9.293×10-3 and 2.354, respectively, by performing the Monte Carlo 

simulation. It is seen that both FORM and SORM give a very accurate 

approximation of the true failure probability.  

Table 5.1  Failure probability and reliability index for example 1 (pf ×10-3) 

FORM SORM 
Parameter 

1f
p  1β  Breitung

2f
p Breitung

2β
R-H

2fp R-H
2β

Tvedt1
2fp  Tvedt1

2β  Tvedt2
2fp Tvedt2

2β

Value 6.954 2.460 9.092 2.362 9.604 2.342 9.336 2.352 9.230 2.356 

 

Table 5.2 gives the sensitivities of the first-order failure probability and the reliability 

index with respect to distribution parameters, namely the mean and standard 

deviation. The larger the mean value of the first four random variables, the lower the 

probability that the limit-state function is larger than zero. This implies that µ∂∂ /
1f

p  

< 0 for these four variables. While for the last two variables, the larger their mean 

values, the higher of failure probability. Thus, µ∂∂ /
1f

p  is positive for the last two 

random variables. The values of σ∂∂ /
1f

p  for all the variables take negative values. 

This is explained as that the standard deviation of the limit-state function increases 

with the increase in the standard deviation of each variable, resulting in an increase 

in the failure probability.  
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Now it is assumed that the last two variables follow the type I extreme value 

distributions (EVD) for the largest value which is commonly used to model 

environmental loads such as wind loadings and temperature loadings. Following the 

HL-RF algorithm, the design point in the original x-space is determined as [146.70, 

144.26, 144.26, 146.70, 69.65, 104.43]T. Table 5.3 summarizes the FORM and 

SORM results. The exact failure probability and corresponding reliability index in 

this case are 11.049×10-3 and 2.289, respectively. Although both FORM and SORM 

give satisfactory results, the relative error in this case (6.1% for FORM) is larger 

than that when the random variables following the Lognormal distribution (4.5% for 

FORM). The reason is that the nonlinearity in the probability transformation in this 

case is more significant than that in the previous case. 

Table 5.2  Sensitivities of failure probability and reliability index with respect to 
distribution parameters 

Variable µ∂∂ /
1f

p  σ∂∂ /
1f

p  µβ ∂∂ /1  σβ ∂∂ /1  

1 -1.032×10-4 2.892×10-5 5.329×10-3 -1.493×10-3 
2 -2.063×10-4 9.273×10-5 1.065×10-2 -4.787×10-3 
3 -2.063×10-4 9.273×10-5 1.065×10-2 -4.787×10-3 
4 -1.032×10-4 2.892×10-5 5.329×10-3 -1.493×10-3 
5 5.129×10-4 7.460×10-4 -2.648×10-2 -3.851×10-2 
6 4.658×10-4 1.357×10-3 -2.405×10-2 -7.007×10-2 

Table 5.3  Failure probability and reliability index when following type I EVD 
for the largest value (pf ×10-3) 

FORM SORM 
Parameter 

1f
p  1β  Breitung

2fp Breitung
2β

R-H
2fp R-H

2β
Tvedt1

2fp Tvedt1
2β  Tvedt2

2fp Tvedt2
2β

Value 7.579 2.429 10.822 2.297 11.759 2.267 11.272 2.281 10.900 2.294 

 

 



5-30 

5.4.2 Example 2: Reliability for a Nonlinear Limit-State Function 

The reliability analysis for a nonlinear limit-state function is conducted in this 

example, where the limit-state function is defined as 

( )
2
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4

6
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2

3

1

3
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⎠
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⎛
−−=

x
x

x
x

x
x

x
xg x                    (5.44) 

where xi’s (i = 1, 2, ⋅⋅⋅, 6) are statistically independent random variables following the 

Lognormal distribution as summarized in Table 5.4.  

Table 5.5 summarizes the failure probability and reliability index results for this 

example obtained by FORM/SORM. Following the Monte Carlo simulation, the 

exact failure probability and reliability index are obtained as 1.910×10-1 and 0.874, 

respectively. It is seen that both the FORM and SORM results are fairly satisfactory.  

Table 5.4  Distribution type and its parameters 

Variable Distribution type Mean Standard deviation Coefficient of variation
1 Lognormal 500 100 0.2 
2 Lognormal 2000 600 0.3 
3 Lognormal 5 1.5 0.3 
4 Lognormal 450 180 0.4 
5 Lognormal 1800 720 0.4 
6 Lognormal 4.5 0.9 0.2 

Table 5.5  Failure probability and reliability index results (pf ×10-1) 

FORM SORM 
Parameter 

1f
p  1β  Breitung

2f
p Breitung

2β
R-H

2fp R-H
2β

Tvedt1
2fp Tvedt1

2β  Tvedt2
2fp Tvedt2

2β

Value 1.350 1.103 1.790 0.919 2.121 0.799 2.044 0.826 1.938 0.864 
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5.4.3 Example 3: Reliability for a Statically Determinate Truss 

The above two examples are concerned with the reliability analysis with explicitly 

given limit-state functions. Addressed in this example is the reliability analysis for a 

statically determinate truss bridge through the linear FERM in which both structural 

response and its gradient are obtained by a numerical manner. For this bridge, the 

failure of a single member leads to the collapse of the whole bridge. 

The truss bridge, as illustrated in Figure 5.8, is a simply-supported pin-jointed steel 

bridge consisting of top members, bottom members, vertical members and diagonal 

members. In the FE model, a total of 21 planar truss elements, each with two DOFs 

at every node, are used. Each member has the same area of cross-section A = 10-2 m2 

and the same mass density ρ = 7800 kg/m3. The Young’s modulus for each member 

is assumed to be a random variable following the Lognormal distribution with a 

mean of 200GPa and a standard deviation of 20GPa. The bridge is subject to five 

vertical loadings and one horizontal loading, all of which are also random variables 

following the Lognormal distribution. The five vertical loadings have the same mean 

of 120 kN and standard deviation of 24 kN; and the horizontal loading has a mean of 

60 kN and a standard deviation of 12 kN. As a result, a total of 27 random variables 

are included in this problem. The bridge is considered failure when the vertical 

displacement at node 9 exceeds a threshold v0. Thus the limit-state function is 

formulated as 

( ) ( )xx 90 vvg −=                                                          (5.45) 
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Figure 5.8  Example of statically determinate truss bridge 
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Figure 5.9  Variation of reliability index with displacement threshold for 
statically determinate truss bridge 

Making use of the linear FERM, both FORM and SORM are performed for a variety 

of the threshold v0 ranging from 0.01 m to 0.02 m. Figure 5.9 shows the variation of 

the first- and second-order reliability index versus the displacement threshold. For 

each threshold, the FORM and SORM results are in a close agreement. This indicates 

that the vertical displacement at node 9 is almost a linear function of the random 

variables and the resulting limit-state surface is nearly flat in the standard normal 
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space, at least at the neighborhood of the design point. In addition, each reliability 

index grows almost linearly with the displacement threshold. 

Table 5.6  Comparison of mean-value point and design point 

Variable Mean value Design point Variable Mean value Design point 

x1 2×1011 1.865×1011 x15 2×1011 1.817×1011 
x2 2×1011 1.865×1011 x16 2×1011 1.942×1011 
x3 2×1011 1.870×1011 x17 2×1011 1.942×1011 
x4 2×1011 1.870×1011 x18 2×1011 1.783×1011 
x5 2×1011 1.828×1011 x19 2×1011 1.783×1011 
x6 2×1011 1.978×1011 x20 2×1011 1.946×1011 
x7 2×1011 1.882×1011 x21 2×1011 1.946×1011 
x8 2×1011 1.978×1011 x22 6×104 6.219×104 
x9 2×1011 1.943×1011 x23 1.2×105 1.348×104 
x10 2×1011 1.892×1011 x24 1.2×105 1.581×105 
x11 2×1011 1.932×1011 x25 1.2×105 2.143×105 
x12 2×1011 1.978×1011 x26 1.2×105 1.581×105 
x13 2×1011 1.871×1011 x27 1.2×105 1.348×105 
x14 2×1011 1.978×1011    

 

For each of the cases studied, the coordinates of design point *x  define the most 

likely failure values of the basic variables in the failure set. As an example, Table 5.6 

lists the most likely values of the basic variables and Figure 5.10 illustrates the 

corresponding deformed configuration of the truss bridge when v0 = 0.016 m 

superimposed with the undeformed configuration for comparison. As expected, the 

values of the most likely failure point for the resistance-related variables x1 to x21 are 

below their mean values, and those for the load-related variables are above their 

mean values. The dimensionless sensitivities of the failure probability and reliability 

index as formulated in Equation (5.35) are summarized in Table 5.7. The zero 

sensitivity values imply that the corresponding distribution parameters completely do 

not affect reliability index, which helps to reduce the number of random variables. 
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Similar to the first example, the sensitivities µ∂∂ /
1f

p  take positive values for the 

resistance-related variables and become negative in the case of load-related variable, 

Again, all the sensitivities σ∂∂ /
1f

p  are negative.  

Table 5.7  Sensitivities of failure probability and reliability index with respect to 
distribution parameters 

Variable µσ ∂∂ /
1f

p  σβσ ∂∂ /1  Variable σσ ∂∂ /
1f

p  σβσ ∂∂ /1  

x1 0.686 -0.339 x15 1.016 -0.649 
x2 0.686 -0.339 x16 0.207 -0.053 
x3 0.656 -0.315 x17 0.207 -0.053 
x4 0.656 -0.315 x18 1.265 -0.936 
x5 0.935 -0.565 x19 1.265 -0.936 
x6 0 0 x20 0.181 -0.044 
x7 0.576 -0.255 x21 0.181 -0.044 
x8 0 0 x22 -0.336 -0.027 
x9 0.200 -0.051 x23 -0.756 -0.396 
x10 0.515 -0.213 x24 -1.359 -2.279 
x11 0.265 -0.076 x25 -1.660 -10.114 
x12 0 0 x26 -1.358 -2.279 
x13 0.648 -0.309 x27 -0.755 -0.396 
x14 0 0    

 

Undeformed shape
Deformed shape

 

Figure 5.10  Deformed shape at design point for statically determinate  
truss bridge 
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5.4.4 Example 4: Reliability for a Statically Indeterminate Truss 

In this example, the reliability analysis for a statically indeterminate truss bridge is 

conducted. Figure 5.11 shows the statically indeterminate truss bridge in study. 

Similarly, each member of the bridge is modelled as a planar truss element, and a 

total of 31 planar truss elements are used to model the bridge. Each member in the 

bridge has the same area of cross-section A = 10-2 m2 and the same mass density ρ = 

7800 kg/m3. The Young’s modulus for each member is assumed to be a random 

variable following the Lognormal distribution with a mean of 200 GPa and standard 

deviation of 60 GPa. The truss bridge is subject to five vertical loadings and seven 

horizontal loadings, all of which are random variables following the type I EVD for 

the largest value and are uncorrelated. The five vertical loadings have the same mean 

of 240 kN and the same standard deviation of 4.8 kN; and the seven horizontal 

loadings have the same mean of 120 kN and the same standard deviation of 1.2 kN. 

As a result, a total of 43 random variables are included in this problem. Two types of 

the limit states, namely the displacement and stress limit states, are considered in this 

example. 
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Figure 5.11  Example of statically indeterminate truss bridge 
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The first limit state studied is that the vertical displacement at node 11 exceeds a 

threshold v0. Thus, the limit-state function in this case is formulated as 

( ) ( )xx 1101 vvg −=                                                         (5.45) 

The resulting first- and second-order reliability indices are illustrated in Figure 5.12 

for a series of prescribed threshold v0. The FORM and SORM results are again in a 

close agreement and each reliability index grows linearly with the displacement 

threshold. Figure 5.13 shows the deformed shape at the design point superimposed 

with the undeformed shape for v0 = 0.03 m. Figure 5.14 presents the corresponding 

dimensionless reliability index sensitivities with respect to the distribution 

parameters of each variable. Similarly, the reliability index sensitivities have positive 

values for the mean of the resistance-related variables, and become negative for the 

mean of the load-related variables.  
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Figure 5.12  Variation of reliability index with displacement threshold for 
statically indeterminate truss bridge 
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Figure 5.13  Deformed shape at design point s for statically indeterminate  
truss bridge 
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Figure 5.14  Dimensionless reliability index sensitivity with respect to 
distribution parameters for displacement limit-state function:  

(a) mean; (b) standard deviation 



5-38 

Table 5.8  Comparison of mean-value point and design point for displacement 
and stress limit states 

Design point Design point Variable Mean 
value Displacement Stress 

Variable Mean 
value Displacement Stress 

x1 2×1011 1.882×1011 1.909×1011 x23 2×1011 1.67×1011 1.910×1011

x2 2×1011 1.633×1011 2.016×1011 x24 2×1011 1.760×1011 1.920×1011

x3 2×1011 1.119×1011 7.463×1010 x25 2×1011 1.835×1011 1.918×1011

x4 2×1011 1.220×1011 2.031×1011 x26 2×1011 1.764×1011 1.938×1011

x5 2×1011 1.673×1011 1.902×1011 x27 2×1011 1.38×1011 1.738×1011

x6 2×1011 1.899×1011 1.916×1011 x28 2×1011 8.166×1010 2.989×1011

x7 2×1011 1.864×1011 1.906×1011 x29 2×1011 1.007×1011 1.755×1011

x8 2×1011 1.816×1011 1.896×1011 x30 2×1011 1.590×1011 1.933×1011

x9 2×1011 1.822×1011 1.930×1011 x31 2×1011 1.868×1011 1.915×1011

x10 2×1011 1.916×1011 1.919×1011 x32 1.2×105 1.197×105 1.199×105

x11 2×1011 1.835×1011 2.018×1011 x33 1.2×105 1.197×105 1.199×105

x12 2×1011 1.916×1011 1.928×1011 x34 1.2×105 1.197×105 1.199×105

x13 2×1011 1.907×1011 2.077×1011 x35 1.2×105 1.196×105 1.198×105

x14 2×1011 1.855×1011 2.334×1011 x36 1.2×105 1.196×105 1.198×105

x15 2×1011 1.963×1011 2.105×1011 x37 1.2×105 1.196×105 1.198×105

x16 2×1011 1.942×1011 2.111×1011 x38 1.2×105 1.196×105 1.198×105

x17 2×1011 1.888×1011 1.878×1011 x39 2.4×105 2.396×105 2.402×105

x18 2×1011 1.770×1011 2.041×1011 x40 2.4×105 2.399×105 2.413×105

x19 2×1011 1.915×1011 1.919×1011 x41 2.4×105 2.401×105 2.415×105

x20 2×1011 1.803×1011 1.935×1011 x42 2.4×105 2.399×105 2.407×105

x21 2×1011 1.757×1011 1.889×1011 x43 2.4×105 2.396×105 2.399×105

x22 2×1011 1.912×1011 1.920×1011     

 

Then a stress limit state is considered. The failure criterion is the exceeding of the 

axial stress of member 28 over 150 MPa, and therefore the limit-state function is 

( ) ( )xx 282 150 sg −=                                                         (5.46) 

where s28 is the axial stress of member 28. Similarly the reliability analyses are 

performed by FORM. Table 5.8 compares the design point and the mean-value point 

for the displacement and stress limit states. For the displacement limit state, it is 
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apparent that values of all resistance-related variables at the design point are below 

their respective mean values. However, for the stress limit state, some of them are 

below their mean values and some of them are above the mean values. This is 

because an increase in the mean of some variables causes the increase in the axial 

stress of member 28, thus they have a positive effect on the failure of this member. It 

is further substantiated in Figure 5.15 which shows the dimensionless reliability 

index sensitivities with respect to the mean of the basic variables. For example, the 

dimensionless reliability index sensitivity with respect to the mean of the 3rd 

variable takes a positive value, implying that the decrease of the mean will reduce the 

reliability index. Thus any structural damage in the third member (corresponding to 

the third random variable) could significantly change the stress reliability index of 

member 28. More detailed analysis of the effect of structural damage on reliability 

index will be made in the next chapter addressing the reliability-based condition 

assessment based on the stochastic model updating results.  
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Figure 5.15  Dimensionless reliability index sensitivity with respect to means of 
variables for stress limit state 
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5.5 Summary 

In this chapter, the fundamental concepts of reliability methods were first outlined. 

The popular approximation methods like FORM/SORM were described in detail. 

The key ingredients of reliability methods including the transformation of the basic 

random variables into a standard normal space, determination of the design point, 

approximation of the failure surface and computation of the probability content were 

discussed. The reliability index sensitivity to distribution parameter was also 

explained. To analyze the failure probability of large-scale structures with uncertain 

parameters, the reliability method must be accompanied with the FE technique with 

the help of which structural responses and response gradients are computed. Based 

on the established structural reliability method and the FE technique, a computer 

program for linear FE reliability analysis was developed. This program is able to 

compute the failure probability defined by both displacement and stress limit-state 

functions. It is capable of dealing with the various distributions of random variables 

and provides the reliability index sensitivity to distribution parameters. The 

developed code will be used to perform the reliability-based condition assessment of 

existing structures based on stochastic model updating results.  

Four examples are provided to demonstrate the reliability analysis using both the 

explicitly and implicitly defined limit-state functions. The results indicate that both 

FORM and SORM perform satisfactorily in all the examples. The sensitivity 

measures of reliability index to distribution parameters are important to identify the 

significant variables affecting structural reliability.  
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Chapter 6 

RELIABILITY-BASED CONDITION ASSESSMENT OF 
BRIDGES USING STOCHASTIC FE MODEL  

UPDATING RESULTS 
 

 

6.1 Introduction 

Engineering structures continuously deteriorate and accumulate damage during their 

service life due to material degradation and unexpected catastrophic events.  Such 

deterioration and accumulated structural damage will adversely affect the safety and 

performance of structures. Accordingly, after a period of operation, the condition of 

an existing structure may be very different from that of the as-built one and the 

analytical model used for analysis and assessment of structural performance and 

safety is therefore in need of continuous updating and improvement to incorporate 

the effect of deterioration and structural damage in the model. For bridge structures, 

the present demand to carry the ever increasingly heavier vehicles may also differ 

significantly from that adopted in design. As a result, it is of vital importance to 

reevaluate structural safety and performance after a period of operation by using the 

collected data on the structure and external loadings to which the structure may be 

subject. Due to structural complexity and incomplete data, predicting the reliability 

for a realistic civil engineering structure is much more difficult than for an idealized 

system in design stage. 
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In bridge engineering community, instrumentation-based monitoring has been an 

accepted technology for surveilling and assessing structural health and condition 

(Aktan et al. 1997; Ko and Ni 2005; Wang 2005). With this innovative technology, 

the monitoring data can be obtained and used to modify an initial analytical model so 

that the updated analytical model is more accurate in representing the present 

structural condition than the initial one. Many FE model improvement algorithms 

and structural damage detection methods have been developed during the past 

several decades and some of them have got successful applications in practice. While 

the development of bridge structural health monitoring systems for model 

improvement and damage detection has now attained some degree of maturity, the 

application of monitoring data for instructing bridge inspection, maintenance, and 

management is still in its infancy. A gap between health monitoring technologies and 

bridge inspection, maintenance and management exercises exists currently which 

impedes bridge managers to benefit from the monitoring system. From the 

monitoring data, the bridge managers want to get answers to the serviceability and 

safety reliability issues of the structure: (i) has the load capacity or resistance of the 

structure changed? (ii) what is the probability of failure of structural members and 

the whole structural system? (iii) how much life is still out there? Indicators of these 

performance issues are indeed needed to enable the bridge authorities to allocate 

resources towards inspection, maintenance and rehabilitation of the structure. 

In comparison with the myriad of literature addressing on FE model improvement 

algorithms and structural damage detection methods, research efforts devoted to 

above issues are very few. As structural reliability is the major decision factor 

throughout the life cycle of civil engineering structures, methodologies that accept 

the processed monitoring data as input and produce as output the reliability of the 



6-3 

concerned structure are indeed desirable. The prominent work is due to Yao and his 

colleagues (Yao 1979; Yao 1983; Natke and Yao 1988; Yao and Natke 1994; Wong 

and Yao 2001). They proposed a holistic view where health monitoring, damage 

detection, and reliability evaluation are defined as the sequential components in a 

value chain. In order to cater for the reliability analysis of instrumented structures, 

the symptom-based reliability method compatible with health monitoring 

technologies was introduced in their study. Following this study, Stubbs et al. (1998; 

2000) developed a methodology to continuously assess the safety of civil engineering 

structures in which structural damage was first identified using the measurement data 

of modal parameters and reliability method was then applied to the possibly damaged 

structure to determine the failure probability and reliability index. However, as 

discussed earlier, the deterministic model updating approach lacks the capability in 

accounting for the uncertainties in measurement data, such as measurement errors 

and inherent randomness. In response to this problem, an improved perturbation 

method and the MCS method have been applied for statistical identification of 

structural parameters and Bayesian updating is further implemented to incorporate 

the prior information if available, as presented in Chapter 4. 

The objective of this chapter is to develop a systematic methodology from 

identifying the statistics of updating parameters, assessing the component reliability 

index, to making decision on bridge inspection and maintenance using long-term 

monitoring data. As consistent with reliability analysis, the updating parameters in 

the FE model are treated as random variables and their statistics are identified from 

the measured modal parameters taking into account uncertainties; and the updating 

parameter statistics may be further revised through Bayesian updating when the prior 

knowledge of structural parameters is available. Making use of the stochastically 
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updated FE model, structural reliability analysis is then performed to obtain the 

failure probabilities and reliability indices associated with the predefined limit-state 

functions using the developed code for linear FE reliability analysis. The established 

correspondence between reliability index value and required maintenance action is 

finally used to decide maintenance/repair strategy. Following the proposed approach, 

health monitoring technology is able to provide quantitative information for bridge 

inspection and maintenance. Case studies of a statically determinate truss bridge and 

a statically indeterminate truss bridge are provided to demonstrate the proposed 

approach.  

6.2 Probabilistic Approach for Health Monitoring and  
Condition Assessment 

Figure 6.1 shows the flowchart of the proposed methodology. Following this 

methodology, stochastic FE model updating is first performed using the statistics of 

the measured modal parameters obtained from long-term monitoring systems. In this 

study, the improved perturbation method described in Chapter 4 is used to achieve 

the stochastically updated FE model obtained. Making use of this model, structural 

reliability analysis is then carried out to obtain the reliability indices and failure 

probabilities for predefined limit-state functions under expected future loads. The 

established correspondence between reliability index and required maintenance 

strategy is finally used to decide an appropriate inspection/maintenance action. These 

steps are explained in detail in the following sections. 
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Figure 6.1  Probabilistic approach for health monitoring and condition 
assessment 

6.2.1 Stochastic FE Model Updating 

The content of stochastic FE model updating is briefed for completeness. In FE 

model updating using measured modal parameters, the identification of structural 

parameters is formulated in terms of an optimization problem where structural 

parameters are sought so that the updated FE model can reproduce as closely as 

possible the measurement data. The objective function is defined as a sum of the 

weighted squared error 

( ) ( )( ) 2

2
T ~~~ θzzWεWεθ ε −==J      with ( )θzzε −= ~~                (6.1) 

where ε~  is the output error of modal parameters; z~  and ( ) nR∈θz  are vectors of the 

experimental and analytical modal parameters with ( )1+×= mf nnn ; nf and nm are 

the numbers of measured natural frequencies and measured coordinates of each mode 

shape, respectively; mR∈θ  is a vector consisting of m updating parameters; Wε = 

W1/2 is the diagonal weighting matrix; and the subscript T represents the transpose of 
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matrix/vector. In order to obtain a unique solution, the number of known modal data 

n should be not less than the number of unknown updating parameters m. 

In practice, the measured modal parameters are uncertain due to natural randomness 

and measurement errors. In order to take into consideration the uncertainties in 

measured modal parameters, stochastic FE model updating should be used. The 

uncertainties in measured modal parameters are assumed herein as normally 

distributed independent random variables with known statistics. In this study, the 

measured uncertain modal properties are expressed as the summation of a 

deterministic part and a random part, that is  

( )niYzz iii ,,2,1~~ =+=                                 (6.2) 

where iz~ is the mean of the measured modal parameter iz~ ; Yi represents the 

uncertainties in the measured modal parameters due to natural randomness and 

measurement noise.  

With the use of the first-order perturbation method and after some manipulations, the 

mean and covariance of the updated structural parameters at each iteration step are 

obtained as 

( ) ( ) ( )kkk θθθ ∆+=+1                                                                                 (6.3) 
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in which the quantities have been defined in Chapter 4. 
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After calculating the updating parameter statistics from the perturbation algorithm, 

the posterior statistics of structural parameters will be obtained using Bayesian 

theorem in the case when the prior knowledge on the updating parameters is 

available. Assume that the structural parameter θ was known a prior to have a 

normal distribution with a mean of µ1 and a standard deviation of σ1 before 

performing FE model updating, and with the measurement data the structural 

parameter is also identified as a normal distribution with a mean of µ2 and a standard 

deviation of σ2. According to Bayesian theorem, the mean µ and standard deviation 

σ of the structural parameter posterior distribution are obtained as  

( ) ( )
( ) ( )2

2
2

1

2
12

2
21

σσ
σµσµ

µ
+
+

=                                           (6.5) 

( ) ( )
( ) ( )2

2
2

1

2
2

2
1

σσ
σσσ
+
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6.2.2 Structural Reliability Evaluation 

During the life cycle, the health and condition of a structure may deteriorate from 

material degradation such as fatigue or corrosion, or from structural damage induced 

in structural members or joints by a severe loading event such as strong wind loads 

or earthquakes. In other cases, the structure may also be rehabilitated after observing 

the distress in the structure. All these changes in condition of the structure may lead 

to a significant change in the structural reliability. Therefore, it is of paramount 

significance to reevaluate the performance and safety of an existing structure for a 

certain period.  
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In the proposed approach, the reassessment of structural reliability is made based on 

stochastic FE model updating results. After obtaining the identified material property 

parameters, expected external loading parameters, and the limit-state function g(x) in 

terms of a random vector ( )T
1 nxx=x , the failure probability associated with 

the limit-state function g(x) is defined as the probability that the random vector falls 

in the failure domain g(x) < 0, and is given by the following n-fold integral 

( )
( )

∫ ∫
<

=
0

2121,,, ,,,
21

xg
nnXXXf dxdxdxxxxfp

n
           (6.7) 

where ( )nXXX xxxf
n

,,, 21,,, 21
 denotes the joint PDF of basic random variables x. 

An alternative to failure probability pf as a measure of safety is the reliability index β 

obtained as 

( ) ( )ff pp 11 1 −− Φ−=−Φ=β                                        (6.8) 

in which Φ-1(.)  is the inverse of the standard normal cumulative distribution function 

(CDF). 

The first-order reliability method (FORM) can be used to compute the probability 

integral defined in Equation (6.7). FORM uses a linearized hyperplane at the design 

point in the transformed standard normal space u to approach the limit-state surface 

G(u) = 0, and the first-order estimate of failure probability, pf1, is then equal to the 

probability content for this linearized failure domain in u-space. That is  

( )
( )( )

( )βφ −Φ== ∫
≤−∇ 0

1
** uuu

uu
G

f dp                                  (6.9) 
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where Φ(.) is the CDF of the standard normal variate; and the reliability index β 

corresponds to the distance from the origin to the approximating tangent hyperplane 

and is given by  

( )
( )

*

2

*

*
* u

u
uuα

G
G

∇
∇

−=⋅=β                                        (6.10) 

where α is the normal row vector (directional cosine) at the design point *u  directing 

towards the failure domain. For reliability analysis of a realistic structure, the 

reliability analysis must be performed in parallel with the FE technique to compute 

structural response and response gradient needed for searching the design point. 

An important feature of FORM is that it provides sensitivity measures of the 

reliability index or the first-order estimate of failure probability with respect to the 

random variables. Such sensitivities of the reliability index and the failure probability 

with respect to the parameters θ in the distribution function of x, are given, 

respectively, by 

( )
θθθ

β
∂

∂
=

∂
∂

=
∂
∂ xTαuα                                         (6.11) 

( )
θ
ββϕ

θ ∂
∂

−=
∂

∂
1f

p
                                              (6.12) 

Of particular interests among the sensitivities to the distribution parameters are those 

with respect to the mean vector { }nµµ1=µ  and the standard deviation vector 

{ }nσσ 1=σ  of the random variables. When scaled by the diagonal matrix of 

standard deviations, these sensitivity vectors read as 
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( )
µ

δ
∂
∂

=
βσdiag               ( )

σ
η

∂
∂

=
βσdiag                          (6.13) 

which represent dimensionless variation in β with respect to variation in the mean 

and standard deviation of each variable. The former vector gives relative 

importance of the random variables in terms of their central values; whereas the 

latter gives relative importance with respect to their variances. 

6.2.3 Decision Making on Maintenance 

In the past, the inspection/maintenance of bridge structures was conducted without 

using reliability- or risk-informed approaches. The traditional technologies for bridge 

inspection/maintenance may not be ensuring necessary serviceability and cost-

effective maintenance and management of structures. Nowadays, research efforts are 

being made towards the application of reliability-based or risk-informed approaches 

to maintenance optimization of structures, with the aim of reducing the operation and 

maintenance expenditures while still providing the structure with a high value of 

reliability index (Frangopol and Hearn 1996). 

When the reliability indices of structural components are obtained at regular intervals, 

it is possible to decide bridge inspection/maintenance strategy because several 

researchers have investigated this issue and proposed the correspondence between 

reliability index value and required maintenance action (Frangopol et al. 2001; Lark 

and Flaig 2005). Table 6.1 shows such a correspondence adopted in the present study 

(Frangopol et al. 2001). Figure 6.2 illustrates the bridge reliability level versus 

bridge age assuming no maintenance is made. Note that a new bridge structure is not 

necessary in excellent condition (state 5) and that the linear bridge reliability profile 
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represents an approximation to the nonlinear reliability degradation that might exist 

in reality. According to this correspondence, no action is required when the existing 

reliability index is larger than 9.0; inspection may become necessary if the reliability 

index lies in the range from 6.0 to 9.0; possible strengthening in advance may reduce 

the life-cycle costs if the reliability index is further degraded; and finally immediate 

action, such as reducing the loads or rehabilitation of the structure, is required when 

the estimated reliability index falls below 4.6. Thus a linkage among the structural 

health monitoring, bridge reliability assessment, and decision making on bridge 

maintenance has been established, with which the health monitoring technology is 

able to provide quantitative information on maintenance and management exercises. 

Table 6.1  Relation between reliability index and maintenance action 

Safety state 5 4 3 2 1 
Reliability index β > 9.0 9.0 > β > 8.0 8.0 > β > 6.0 6.0 > β > 4.6 4.6 > β 

Attribute for Safety excellent very good Good fair unacceptable

Maintenance 
Action 

no action preventive  
inspection 

detailed  
inspection 

possible  
strengthening rehabilitation

State 4

State 2

State 3

State 1

State 5

6

8

9

R
el

ia
bi

lit
y 

in
de

x 
β

Bridge age (year)

Target reliability level

4.6

 

Figure 6.2  Bridge reliability profile without maintenance and management 
(after Frangopol et al. 2001) 
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It should be pointed out that while the establishment of the correspondence between 

reliability index and optimum maintenance action is possible but the development of 

such a correspondence is not necessarily straightforward and is still faced with 

several difficulties (Frangopol 1999; Frangopol et al. 2001). In order to achieve the 

optimum strategy that ensures an adequate level of reliability at the lowest possible 

life-cycle cost, life-cycle cost analysis is required to integrate with structural 

reliability analysis for each of the possible inspection/maintenance strategies. Issues 

such as target reliability level, whole life performance (reliability) assessment, and 

optimum inspection/maintenance strategies for bridges have to be analyzed and 

solved from a life-cycle cost perspective (Ang and De Deon 1997; Melchers 1999).  

6.3 Applications 

6.3.1 Example 1: A Statically Determinate Truss Bridge 

A statically determinate truss bridge is used as the first example to illustrate the 

proposed methodology. The truss bridge, as shown in Figure 6.3, is a simply-

supported pin-jointed steel bridge consisting of top members, bottom members, 

vertical members and diagonal members. An analytical model (nominal model) is 

assumed for structural analysis and condition assessment; this model may also 

represent the bridge without structural damage as used in the previous chapters. In 

the nominal model as shown in Figure 6.4, a total of 21 planar truss elements, each 

with two DOFs at every node, are used. The material properties used in this model 

are as follows: mass density ρ = 7800 kg/m3, area of cross section A = 10-2 m2 for 

each member, and the Young’s modulus E = 200 GPa for each member.  
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Figure 6.3  Configuration of statically determinate truss bridge 
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Figure 6.4  Nominal model for statically determinate truss bridge 

After a period of service, the structure may experience some extent of structural 

damage. Thus another analytical FE model with the same topology as the nominal 

model is constructed to represent the present condition of the bridge with structural 

damage through reducing Young’s modulus of each member in the nominal model to 

different levels, as illustrated in Figure 6.5. However, in practice the structural 

parameter values in the damaged bridge are not exactly known. Nevertheless, when 

the testing data such as modal parameters are available, FE model updating can be 

performed by adjusting the structural parameter values in the nominal model to 

obtain an updated model which reproduce as closely as possible the testing data. 

Generally the updated model provides a better representation of the damaged 
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structure than the nominal model. In all, three analytical models are available to 

represent the bridge, namely the nominal model, the actual model, and the updated 

model. The nominal model does not account for possible damage appearing in the 

bridge and therefore it may not be able to reflect satisfactorily the behaviour of the 

damaged bridge; the actual model is the exact representation of the structural 

behaviour but it is unknown in practice; and the updated model presumably gives a 

better representation of the structure as the model has been calibrated to the testing 

data. In the following, the failure probability and reliability index results obtained 

from the three models will be presented and compared. 

5%10%10%

10%10%5%15%10%

5%

20 2118 191716

15141312119 108765

4321

126
7 8 9 10 11

54321H1

V1 V2 V3 V4 V5  

Figure 6.5  Actual model for statically determinate truss bridge 

In this study the reliability of the structure to expected future static loadings will be 

considered. The loadings include five vertical loadings and one horizontal loading, 

all of which are random variables and follow the Lognormal distribution. The five 

vertical loadings have the same mean of 120 kN and the same standard deviation of 

24 kN, and the horizontal loading has a mean of 60 kN and a standard deviation of 

12 kN. The loadings are also shown in Figures 6.4 and 6.5. The failure probability 

and reliability index corresponding to a displacement limit-state function are 

considered in this example. The displacement limit state assumes that the bridge will 

fail (or unserviceable) when the vertical displacement at node 9 exceeds 0.02 m. 
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Two cases are investigated. The first case considers that all the structural parameters 

in the damaged bridge are deterministic. Therefore, for this case, the structural 

parameters in the nominal and actual models are deterministic, and the structural 

parameters in the updated model are random due to the uncertainty in modal 

parameters where the uncertainty is caused only by measurement noise. In order to 

incorporate the temperature effect on Young’s modulus, the second case assumes 

that the structural parameters in the damaged bridge are independent and normally 

distributed random variables, all of which have the same coefficient of variation 

(COV) of 0.1. Thus, in this case, the structural parameters in the nominal and actual 

models are also regarded as independent and normally distributed random variables 

with the same COV of 0.1, and the structural parameters in the updated model are 

random as the modal parameters used for updating are uncertain not only because of 

measurement noise but also due to natural randomness. For both cases, the detailed 

information on the statistics of structural parameters in the updated model has been 

provided in Tables 4.4 and 4.5, and is not repeated herein. For each analytical model 

the failure probability and reliability index associated with the displacement limit-

state function are determined by FORM. The results for the two cases are tabulated 

in Tables 6.2 and 6.3.  

The reliability index and failure probability for case 1 are provided in Table 6.2. As 

expected, the updated model gives an improved representation of the actual damaged 

bridge, and therefore provides a more accurate estimate to the actual failure 

probability than the nominal model. However, this is not necessarily the case when 

the variance of structural parameters in the updated model is very large which is 

likely to occur when uncertainties in the modal parameters were considerably notable. 

For example, should if the standard deviations of structural parameters in the updated 
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model be doubled and their means remain unchanged, the resulting reliability index 

is now computed as 3.594 which would provide a less accurate estimate than the 

nominal model. With the reliability index computed from the updated model and 

following the correspondence given in Table 6.1, the bridge state is characterized by 

‘State 3’, indicating that detailed inspection may be necessary. Additionally, the 

elements mostly contributing the failure probability and therefore deserving detailed 

inspection may be identified from sensitivity analysis where the sensitivities of 

reliability index with respect to the distribution parameters (means and standard 

deviations) in the updating parameters are of concern. The sensitivity coefficients 

provided in Table 5.7 can be used for ranking inspection priority of all elements 

when a detailed inspection exercise is to be executed. Thus, a complete methodology 

from statistical model updating using measurement data of modal parameters, 

reliability evaluation using the updated model, to decision making on inspection and 

maintenance strategies based on the reliability index has been developed. 

Table 6.2  Failure probability for displacement limit state (case 1) 

 Nominal model Updated model Actual model 
Reliability index 6.648 6.264 6.316 

Failure probability 1.428×10-11 1.878×10-10 1.339×10-10 

 

To generate the situation where the reliability index falls below 4.6, three elements 

with the largest sensitivity coefficients and another three elements with the smallest 

ones are selected according to the reliability index sensitivity provided in Table 5.7, 

and the damage extent of each of these elements, in turn, is assumed to become 

progressively severe. More precisely, the means of updating parameters for these 

selected elements are gradually reduced while keeping their standard deviations 
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unchanged. The reliability index is then recomputed and is illustrated in Figure 6.6. 

As consistent with the sensitivity analysis, it is shown that the reliability index drops 

rapidly when the damage level of the element with the largest sensitivity coefficient 

is gradually severe. From Figure 6.6, reliability indices will fall below 4.6 when the 

damage extent of the elements 5, 15, and 18 approaches approximately 70%, 

respectively, and the damage in each of another three elements does not significantly 

alter the reliability index. Nevertheless, it should be noted that the requirement of 

reliability index associated with other limit states, such as stress limit state, might 

have been violated when the elements have experienced severe structural damage. 

The probability due to the combination of numerous limit states (or failure modes) 

requires a system reliability analysis, which is out of the scope of the present study. 

Details on system reliability can be found in references (Ditlevsen 1979; Madsen et 

al. 1986; Ditlevsen and Madsen 1996; Melchers 1999). Figure 6.6 shows that the 

reliability index profile can be well approximated by a straight line at the small level 

of damage.  
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Figure 6.6  Reliability index profile versus damage level 
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The reliability index and failure probability for case 2 are analyzed and the results 

are provided in Table 6.3. In this case, two updated models are used for reliability 

analysis. The updated model 1 is the statistically updated model from the first-stage 

updating; it is further revised to achieve the updated model 2 by incorporating the 

prior information of structural parameters through Bayesian theorem. The statistics 

of structural parameters in the updated model 1 and in the updated model 2 are given 

in columns 4∼5 and columns 6∼7 of Table 4.5, respectively. As shown in columns 3 

and 4 of Table 6.3, the updated models again give the improved estimate to the 

failure probability than the nominal model. By comparing column 3 with column 4, it 

is seen that the updated model 1 produces a closer result to the failure probability 

than the updated model 2, indicating that Bayesian updating is not effective in this 

case. In this study, the application of Bayesian updating does improve the estimate to 

the actual failure probability in the case where the variance of structural parameters 

in updated model 1 is considerably large. Likewise, with the reliability index and 

following Table 6.1, the bridge state is also characterized by ‘State 3’. 

Table 6.3  Failure probability for displacement limit state (case 2) 

 Nominal model Updated model 1 Updated model 2 Actual model 
Reliability index 6.457 6.121 6.340 6.124 

Failure probability 5.345×10-11 4.660×10-10 1.145×10-10 4.552×10-10 

 

6.3.2 Example 2: A Statically Indeterminate Truss Bridge 

The first example illustrated in above section is the reliability analysis of a statically 

determinate truss bridge where failure of any member will lead to collapse of the 

whole structural system. Presented in this section is the reliability-based condition 
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assessment of a statically indeterminate truss bridge. Figure 6.7 shows the geometry 

configuration of the statically indeterminate truss bridge. Likewise, each member of 

the bridge is modelled as a planar truss element. An analytical model (nominal model) 

is assumed for structural analysis and condition assessment. In this nominal model as 

shown in Figure 6.7, a total of 31 planar truss elements, each with two DOFs at 

every node, are used. The material properties used in this model are as follows: mass 

density ρ = 7800 kg/m3, area of cross section A =  10-2 m2 for each member, and the 

Young’s modulus of E = 200 GPa for each member.  

Likewise, in order to represent the present condition of the bridge with structural 

damage, another analytical FE model with the same topology as the nominal model 

is constructed through reducing Young’s modulus of each member in the nominal 

model to different levels, as shown in Figure 6.8.  The measurement data of modal 

parameters from this damaged bridge are assumed available, and they are used to 

implement stochastic model updating to achieve an updated model. Similarly, three 

analytical models are available to represent the bridge, namely the nominal model, 

the actual model, and the updated model, and all of which are used for reliability 

analysis. To avoid lengthy presentation, only the random structure incorporating the 

behaviour of temperature-dependent Young’s modulus is studied. The structural 

parameters in the nominal model and the actual model are assumed as independent 

and normally distributed random variables with the same COV of 0.1, and the 

structural parameters in the updated model are random because the modal parameters 

used for updating are uncertain due to both measurement noise and natural 

randomness. The statistics of updating parameters in the updated model are adopted 

from section 4.5 of Chapter 4. In the following, the reliability index for each of the 

three models will be obtained and compared. The resulting reliability index is then 
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utilized to determine the appropriate inspection and maintenance strategy using the 

correspondence given in Table 6.1. 
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Figure 6.7  Configuration of statically indeterminate truss bridge 
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Figure 6.8  Actual model for statically indeterminate truss bridge 

The reliability of the structure to expected future static loadings will be considered 

for both displacement and stress limit states. The displacement limit state assumes 

that the bridge will fail when the vertical displacement at node 11 exceeds 0.03 m; 

whereas in the stress limit state the member is considered failure when the axial 

stress exceeds 150 MPa. The truss is subject to five vertical loadings and seven 

horizontal loadings, all of which are random variables following the Lognormal 

distribution and are uncorrelated. The five vertical loadings have the same mean of 
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240 kN and the same standard deviation of 48 kN, and the seven horizontal loadings 

have the same mean of 120 kN and the same standard deviation of 24 kN. The 

loadings are schematically shown in Figures 6.7 and 6.8. For each model, the failure 

probabilities and reliability indices defined by the displacement and stress limit-state 

functions are determined using FORM. The results are given in Tables 6.4 and 6.5. 

The reliability index and failure probability corresponding to the displacement limit-

state function are provided in Table 6.4. Similar to the first example, two updated 

models are used for reliability analysis. The updated model 1 is the statistically 

updated model from the first-stage updating; and it is further revised to achieve the 

updated model 2 by incorporating the prior information of structural parameters 

using Bayesian theorem. Once again, the updated models are shown to provide an 

improved representation of actual damaged bridge, and therefore provide more 

accurate estimates to the actual failure probability than the nominal model. It is 

interesting to note: i) the nominal model always gives a larger reliability index value 

than the actual model as it ignores the structural damage which adversely affects the 

performance and safety of the structure; ii) the updated model 1 (without application 

of the Bayesian updating) always produce a smaller reliability index value than the 

actual model because the variances of updating parameters in this model are larger 

than true values due to the presence of both measurement noise and natural 

randomness, thus yielding a conservative estimate of reliability index. However, 

when the measurement noise is significant, the variances of updating parameters will 

be very large and therefore the resulting reliability index will be too conservative and 

unreliable; and iii) the performance of updated model 2 is significantly affected by 

the prior information. With the reliability index computed from the updated model 1 

and following Table 6.1, the bridge state is characterized by ‘State 1’, indicating  
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Table 6.4  Failure probability for displacement limit state 

 Nominal model Updated model 1 Updated model 2 Actual model 
Reliability index 5.577 4.508 5.293 4.590 

Failure probability 1.226×10-8 3.269×10-6 6.022×10-8 2.208×10-6 

 

Table 6.5  Failure probability for stress limit state 

Element No. Nominal model Updated model 1 Actual model 
1 12.517 12.538 12.560 
2 8.372 8.580 8.582 
3 6.562 6.314 6.324 
4 6.727 6.786 6.789 
5 8.746 8.694 8.716 
6 12.717 12.489 12.522 
7 12.846 13.161 12.871 
8 11.652 11.962 12.587 
8 11.892 11.714 11.719 

10 13.565 13.285 13.299 
11 12.202 13.058 13.260 
12 13.250 13.805 13.907 
13 13.508 9.158 10.056 
14 9.774 9.708 9.725 
15 13.895 9.351 9.664 
16 10.059 9.334 13.203 
17 13.011 9.055 12.834 
18 13.315 13.058 13.069 
19 13.303 13.918 13.934 
20 12.284 11.194 13.148 
21 11.323 11.058 11.263 
22 12.796 7.290 13.071 
23 10.420 10.185 10.187 
24 11.321 7.416 11.265 
25 11.996 7.458 11.861 
26 7.406 7.321 7.321 
27 4.722 4.488 4.514 
28 3.753 4.025 4.011 
29 5.055 4.932 4.958 
30 8.556 8.596 8.591 
31 13.95 8.031 12.970 
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immediate action such as rehabilitation is required. Similarly, the sensitivity 

coefficients illustrated in Figure 5.14 provide the priority of structural members to 

be rehabilitated. 

The reliability index and failure probability corresponding to the stress limit-state 

function for each element are analyzed and the results are tabulated in Table 6.5. In 

general the updated model provides a better estimate to the actual reliability index 

than the nominal model. However, there are cases where the situation is reversed. 

With the obtained reliability index, each component can be characterized according 

to Table 6.1.  

6.4 Summary 

An issue of great concern with bridge health monitoring systems is how to use the 

monitoring data to aid the bridge authorities in decision making. The information 

generated by monitoring systems must be channeled towards the goal to support the 

bridge managers in making financial decision. In this chapter, a systematic approach 

was proposed to bridge the gap currently existing between health monitoring 

technologies and bridge inspection/maintenance exercises. As consistent with 

structural reliability analysis, this unified approach begins with the statistical 

identification of structural parameters using modal parameters, and then proceeds to 

the determination of reliability index on the basis of the statistical identification 

results. Finally this approach makes use of the established correspondence between 

reliability index and required maintenance action to decide maintenance and repair 

strategy. Following the proposed approach, structural health monitoring system is 

able to provide quantitative information for bridge inspection and maintenance.  
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Two examples are provided for demonstration of the proposed methodology. For 

each example, the failure probabilities and reliability indices with respect to the 

nominal, updated, and actual models, are computed and compared. The results 

indicate that: (i) the reliability index obtained from the updated model is much closer 

to true reliability index than that obtained from the nominal model in the case of low 

uncertainty in measured modal parameters; in the case of high uncertainty, the 

updated model may become unreliable as the reliability index computed from the 

nominal model rather than from the updated model is closer to the true value; (ii) the 

nominal model always gives a larger reliability index value than the actual model, as 

it ignores structural damage which adversely affects the reliability of structure; iii) 

the updated model from the first-stage updating always produces a smaller reliability 

index value than the actual model, because the variances of updating parameters in 

the model are larger than the actual ones due to the simultaneous occurrence of 

measurement noises and natural randomness. 



7-1 
 

Chapter 7 

MODELLING OF TEMPERATURE-FREQUENCY 
CORRELATION USING COMBINED PCA AND SVR 

TECHNIQUE 
 

 

7.1 Introduction 

Recent advances in sensing, data acquisition, computing, communication, data and 

information management, have made it possible to implement long-term structural 

health monitoring systems for obtaining objective indices on structural conditions 

and guiding management and maintenance of large-scale bridges (Pines and Aktan 

2002; Casciati 2003; Koh et al. 2003; Fujino and Abe 2004; Wong 2004; Wang 

2005). The core of a structural health monitoring system is the diagnostic algorithms 

for detection of the presence, location, and extent of structural damage followed by 

evaluating the impact of the damage on structural performance and reliability. 

Among various diagnostic algorithms, the vibration-based damage detection 

technique, which achieves the capabilities in identifying the presence, location, and 

severity of structural damage through examining the changes in modal parameters, 

has been shown to be one of the most promising methods (Doebling et al. 1998; 

Sohn et al. 2004). 

However, it has been recognized recently that the performance of vibration-based 

diagnostic algorithms in locating and quantifying local-level structural damage 
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suffers from the fact that changes in modal parameters are also caused by varying 

environmental and operational conditions for in-service large-scale civil structures. 

In reality, civil engineering structures are subject to varying environmental and 

operational conditions such as traffic, wind, humidity, solar-radiation and most 

important, temperature. These environmental effects cause changes in physical 

parameters such as Young’s modulus, structural mass, boundary conditions, and 

thermal-induced internal forces for redundant structures, and thereby induce changes 

in modal parameters, which may yield false indication of damage when vibration-

based damage detection algorithms are applied. For practical implementation and 

reliable performance of the damage detection algorithms, it is of paramount 

importance to characterize normal variability of modal parameters due to 

environmental and operational conditions, and to discriminate such normal 

variability from abnormal changes in modal parameters caused by structural damage. 

When the effects of normal environmental changes are well understood or quantified, 

it is possible to achieve reliable and accurate damage identification through 

incorporating the environmental effect models into the damage detection algorithms 

in either a statistical or deterministic way (Worden et al. 2002; Kim et al. 2004). 

Considerable research efforts have been made on investigating the influence of 

environmental conditions on modal frequencies of bridges via field measurements 

and dynamic tests (Robert and Pearson 1996; Abdel Wahab and De Roeck 1997; 

Farrar et al. 1997; Cornwell et al. 1999; Sohn et al. 1999; Alampalli 2000; Lloyd et 

al. 2000; Rohrmann et al. 2000; Bolton et al. 2001; Peeters and De Roeck 2001; Ko 

et al. 2003). Most of these investigations indicated that temperature was the critical 

source causing variability of modal parameters, and the changes in modal 

frequencies caused by temperature might reach up to 4% or more in highway bridges. 
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Although a lot of field measurements and observations have been made, very few 

studies addressed the modelling of environmental effects on modal properties. Based 

on field measurement data of temperature and modal frequency, Sohn et al. (1999) 

proposed a linear adaptive model (multivariate regression model) to represent the 

frequency variations caused by temperature for the Alamosa Canyon Bridge. Peeters 

and De Roeck (2001) derived an auto-regressive and moving average (ARMA) 

model using long-term measurement data to formulate the relation between 

temperature and modal frequency for the Z24 Bridge. These linear regression models 

were generally acceptable in reproducing the measurement data, but their 

generalization capability in predicting unseen data was not satisfactory. Both studies 

showed that the measured temperatures from different locations of a structure are 

highly correlated, and the correlated features could seriously deteriorate the 

generalization performance of regression model. Therefore, selecting appropriate 

feature vectors from all candidate variables was essential for improving the model 

performance. 

In this chapter, a method that utilizes the attractive merits of principal component 

analysis (PCA) for extracting predominant feature vectors and support vector 

regression (SVR) for data-based statistical learning is proposed for modelling 

temperature-caused variability of structural modal frequencies with the use of long-

term measurement data. PCA is first performed to extract principal components (PCs) 

from the measured temperatures. SVR analysis is then conducted on the extracted 

PCs and the measured modal frequencies to formulate empirical models quantifying 

the effect of temperature on modal frequencies. Research efforts have been made on 

properly choosing the hyper-parameters to formulate SVR models with good 

generalization performances and comparing the prediction capability of the 
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formulated models with and without considering temporal correlation. With the use 

of long-term monitoring data from the cable-stayed Ting Kau Bridge, the 

generalization performance of the formulated SVR models with the hyper-parameters 

determined by a grid search method with cross validation and a heuristic method, 

respectively, is examined. Both ‘dynamic’ and ‘static’ SVR models with and without 

considering thermal inertia effect are formulated. The PCA-based SVR model is 

compared with the SVR model which is trained by directly using measurement data 

in terms of model accuracy and computational costs, and with a multivariate linear 

regression (MLR) model in terms of model accuracy and adaptability. Both 

hypothesis test and goodness-of-fit test are adopted to assess the model performance. 

7.2 Presentation of Method 

7.2.1 Overview of Combined PCA and SVR Method 

Figure 7.1 shows the flowchart of the proposed PCA-SVR method for modelling 

temperature-frequency correlation based on long-term measurement data. Following 

this method, the PCs of temperature measurement data are first extracted by 

projecting the original data to eigenvectors of its covariance matrix, and the extracted 

PCs together with frequency measurement data are then fed into a support vector 

algorithm to formulate SVR models. Since the performance of a SVR model depends 

on a proper setting of its hyper-parameters, a key issue in applying SVR in practice is 

how to select these parameters to achieve good generalization performances. 

Unfortunately, the existing SVR packages, e.g. LIBSVM (Hsu et al. 2003), require 

SVR hyper-parameters to be specified a priori by users. In the present study, a grid 

search method with cross validation and a heuristic method are explored to determine 
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the optimal SVR hyper-parameters, while the number of PCs is selected by trial-and-

error. The outer and inner blocks illustrated in Figure 7.1 indicate the process to loop 

over the number of PCs and to loop over the hyper-parameters, respectively. When 

the grid search method is used, the SVR models are formulated using the training 

data for a wide spectrum of SVR hyper-parameters, and the prediction errors are 

obtained by comparing the predicted values and the target values for new validation 

data following a k-fold cross-validation scheme. Then the optimal hyper-parameters 

for a specific number of PCs are determined which produce the minimal prediction 

error. By repeating this process from taking only the first PC to taking all the PCs, 

the optimal number of PCs is determined with the global smallest prediction error 

and the hyper-parameters are finally selected as the optimal values corresponding to 

the optimal number of PCs. When the heuristic method is adopted, the hyper-

parameters are determined from empirical formulae and then used to formulate SVR 

models for a given number of PCs. By comparing the prediction errors obtained 

using different number of PCs, the optimal number of PCs and the optimal hyper-

parameters are determined which achieve the smallest prediction error. 

PCA
Principal componentsTemperature 

     data

Validation data

Training data

Modal frequency 
    training data

SVR training

SVR model

Modal frequency 
  validation data

Prediction error

Loop over SVR hyper-parameters

Loop over number of PCs

εγ ,,C

Select number of PCs and 
SVR hyper-parameters with
minimal prediction error

 

Figure 7.1  Flowchart of the combined PCA-SVR method 
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7.2.2 PCA for Extracting Feature Vectors 

In multivariate regression, the highly correlated data could result in a 

multicolinearity problem and are prone to producing unstable regression estimates 

(Rencher 2002). It is desired to reduce the data to a smaller subset of predominant 

feature vectors that give rise to more stable estimate of regression coefficients. When 

large-scale bridges such as suspension bridges and cable-stayed bridges are 

instrumented with long-term monitoring systems, temperature sensors are usually 

installed at different structural parts (deck, tower, cable, etc.) for temperature 

measurement of various materials (steel, concrete, asphalt, air, etc.) (Wong 2004). As 

a result, a large number of temperature measurement data from different locations of 

a bridge are available and some of the data may be closely correlated. PCA provides 

a powerful mathematical tool to select predominant feature vectors (Jolliffe 2002). It 

also has the capability of eliminating measurement noise (Ni et al. 2006). 

Using an orthogonal projection, the original set of correlated variables (temperature 

measurement data) in an n-dimensional space can be transformed into a new set of 

uncorrelated variables, the so-called principal components, in a p-dimensional 

orthogonal space such that p≤n. This process seeks to project the high-dimensional 

data into a new low-dimensional set of Cartesian coordinates ),,,( 21 pzzz . The 

new coordinates have the following properties: 1z  is the linear combination of the 

original coordinate ),,2,1( nixi =  with maximal variance, 2z  is the linear 

combination that explains most of the remaining variance and so on. The calculation 

of the orthogonal matrix can be described as follows: given the jth measurement data 

set { } ,),,,( T
21 jnjjj xxx=x  mj ,,2,1=  where the subscript T denotes 



7-7 
 

transposition and m  is the total number of measurements, the nn×  dimension 

covariance matrix C is formed as 

{ } { }∑
=

=
m

j
jj

1

TxxC              (7.1) 

The singular value decomposition on the covariance matrix is conducted as 

TUUΛC =                      (7.2) 

where U  is the orthogonal eigenvector matrix with IUU =T ; and Λ  is the 

eigenvalue or singular value matrix which has the form of 

⎥
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⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nλ

λ
λ

00

00
00
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1

Λ             (7.3) 

with 021 ≥≥≥≥ nλλλ . The transformation to the PCs is then applied as 

{ } { } { }( )xxUz −= jj
T               (7.4) 

where { }x  is the vector of means of x -data. It can be shown that the covariance 

matrix of { }jz  ( mj ,,2,1= ) has the expression 

{ } { } [ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=== ∑
=

n

m

j
jjz

λ

λ
λ

00

00
00

zz 2

1

1

T ΛC           (7.5) 

which implies that the vectors { }jz  ( mj ,,2,1= ) are uncorrelated. 
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From the dimensionality reduction point of view, PCA works by discarding those 

linear combinations of the data which contribute least to the overall variance or range 

of the data set. In practice, the smallest eigenvalue will not vanish due to 

measurement noise, i.e., none of components can be completely described by the 

linear combinations of the remaining components. Nevertheless when the input data 

are highly correlated, the eigenvalue of the covariance matrix C will decrease 

drastically. The proportion of variance explained by the first p eigenvalues is defined 

as 

∑

∑

=

== n

j
j

p

i
i

p

1

1Prop
λ

λ
               (7.6) 

then the transformation to the first p principal components is 

{ } { } { }( )xxUz −= × jpnj
T~~              (7.7) 

In the above formulation, PCA is conducted on the set { }jx  which consists of the 

temperature data measured at the same time. The SVR models formulated using such 

obtained PCs will be the ‘static’ regression models for correlation between the 

instant temperature and the instant frequency. As the change of modal frequency may 

lag behind the temperature change due to thermal inertia effect, ‘dynamic’ regression 

models which account for temporal correlation presumably possess stronger 

prediction capability. When continuously measured data are available, ‘dynamic’ 

SVR models can be formulated using the PCs extracted from the following 

augmented temperature vector 

{ } { }TTT
1 iii xxt −=              (7.8) 
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where i}{x  is the set of temperature data measured at the ith time step, and 1}{ −ix  is 

the set of temperature data measured at the (i−1)th time step. Such obtained 

‘dynamic’ SVR models will relate the current output (modal frequency) with not 

only the current input (temperature) but also the input in the previous time step. 

7.2.3 SVR for Data-Based Statistical Learning 

SVR provides a new statistical learning algorithm for regression estimate which 

employs the structural risk minimization (SRM) principle rather than the commonly 

used empirical risk minimization (ERM) principle (Vapnik 1999; Smola and 

Schölkopf 2004). In SVR, an upper bound on the generalization error, R(f), is 

minimized as opposed to ERM which minimizes the error on the training data set, 

Remp(f). This formulation equips SVR with a greater potential to generalize the input-

output relation and predict the unseen data more accurately. In this study, we apply 

SVR technique to formulate regression models by use of the PCs of temperature 

measurement data and the corresponding frequency measurement data for each 

vibration mode. 

Consider a set of m measurement data set ( ) ( ) ( ){ }mm yyyS ,,,,,, 2211 xxx= , such 

that P
i R∈x  is a p-dimensional vector of input variables (features) and Ryi ∈  the 

corresponding scalar output (target). The objective is to find a regression function, 

( )xfy = , such that it minimizes the error of predicting new data set 1S , which is 

derived from the same joint probability distribution ( )yP ,x  as the training data set. 

To fulfill the stated goal, SVR considers the following linear estimation function 

( ) bxf += xw,               (7.9) 
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where w  denotes the weighting vector; b  is a constant known as bias; ∗∗,  denotes 

the inner product. As opposed to the ERM principle which minimizes the error on the 

training data set, ( )fRemp , the SRM principle which minimizes an upper bound on 

the generalization error, ( )fR , is adopted in SVR to avoid over-fitting and thereby 

improve generalization performance. The relationship between the structural risk 

( )fR  and the empirical risk ( )fRemp  can be expressed as (Burges 1998) 

( ) ( ) ( )( ) 2

1

2 1 wxw λλ +−=+≤ ∑
=

m

i
iiemp yfL

m
fRfR           (7.10) 

where λ  is a regularization parameter; w,ww =2  is the Euclidean norm; and 

( )( )ii yfL −x  is some kind of cost function measuring the empirical risk of the 

training data. There are various kinds of loss functions with respect to different noise 

conditions, such as Huber’s robust loss, polynomial, ε -insensitive, and Gaussian 

(Smola and Schölkopf 2004). The commonly used loss function is the ε -insensitive 

loss function expressed as 

( )( ) ( ) ( )
⎩
⎨
⎧ ≥−−−

=−
otherwise0
for εε yfyf

yfL
xx

x            (7.11) 

where ε  is a parameter representing the radius of tube located around the regression 

function as illustrated in Figure 7.2. The region enclosed by the tube is known as the 

ε -insensitive zone. In Figure 7.2, the values with excess positive and negative 

deviations are depicted by ξ  and *ξ , respectively, which are termed as slack 

variables. The optimization criterion penalizes those data points whose values of y  

lie more than ε  distance away from the fitted function ( )xf . By substituting the ε -

insensitive loss function into Equation (7.10), the optimization object becomes 
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minimize   ( )∑
=

++
m

i
iiC

1
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2
1 ξξw            (7.12) 
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where the positive constant C, which combines the effect of m and λ, determines the 

trade-off between the flatness of ( )xf  and the empirical error. 

ξ

*ξ

x

y

( )xf

( ) ε+xf

( ) ε−xf

 

Figure 7.2  ε -insensitive loss function for linear SVR 

The solution to the optimization problem of Equation (7.12) under constraints of 

Equation (7.13) is given by the saddle point of the Lagrange function 
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xww
     (7.14) 

where ** ,,, iiii ηηαα  are Lagrange multipliers (dual variables). It follows from the 

saddle point condition that the partial derivatives of L  with respect to primal 

variables ( )*,,, iib ξξw  have to vanish for optimality. That is, 
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( ) 0
1

* =−=∂ ∑
=

m

i
iib L αα             (7.15) 

( ) 0
1

*
w =−−=∂ ∑

=

m

i
iiiL xw αα             (7.16) 

0=−−=∂ iiCL
i

ηαξ             (7.17) 

0**
* =−−=∂ iiCL
i

ηα
ξ

                       (7.18) 

Substituting Equations (7.15) to (7.18) into Equation (7.14) yields the following dual 

optimization problem 

minimize  ( )( ) ( ) ( )∑ ∑∑
= ==

−++−−−−
m
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m
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The dual variables *, ii ηη  have been eliminated in deriving Equation (7.19) through 

conditions in Equations (7.17) and (7.18). Thus the solution for *, ii αα  is obtained 

from the above optimization problem after specifying the parameters C and ε. The 

weighting vector in Equation (7.16) can be rewritten as 

( )∑
=

−=
m

i
iii

1

* xw αα              (7.21) 

and therefore 
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( ) ( )∑
=

+−=
m

i
iii bf

1

* ,xxx αα              (7.22) 

This is the so-called support vector expansion, where w  is completely described as a 

linear combination of the training samples ix . The parameter b in Equation (7.22) is 

calculated using the Karush-Kuhn-Tucker (KKT) conditions which state that at the 

optimal solution the product between dual variables and constraints has to vanish. 

For the above problem, the KKT conditions give rise to 

( ) 0, =++−+ by iiii xwξεα            (7.23) 

( ) 0,** =−−++ by iiii xwξεα            (7.24) 

and 

( ) 0=− iiC ξα              (7.25) 

( ) 0** =− iiC ξα              (7.26) 

From Equations (7.23) to (7.26) the parameter b is obtained as 

ε−−= iiyb xw,    for  ( )Ci ,0∈α                      (7.27) 

ε+−= iiyb xw,    for  ( )Ci ,0* ∈α           (7.28) 

where ix  refer to those samples located at the tube bound. Furthermore, from 

Equations (7.23) and (7.24), for all samples inside the ε tube, their Lagrange 

coefficients become zero. The samples with nonzero coefficients are called support 

vectors. 
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The power of SVR lies in its ability to transform data to a high-dimensional feature 

space endowed with an inner product. The above derived linear SVR algorithm can 

be easily extended to nonlinear regression with the aid of kernel methods (Müller et 

al. 2001). The kernel methods map the input data in original space PR , which is a 

low-dimension space, into a much higher-dimensional feature space F  using a 

nonlinear mapping φ , i.e., ( )ii xz φ= . The linear support vector algorithm is then 

conducted in the feature space, which represents nonlinear support vector algorithm 

in the original space. For some nonlinear mappings φ , such as polynomial, sigmoidal 

and radial-basis functions, there exists a highly effective trick for calculating inner 

products in the feature space using a kernel function 

( ) ( ) ( )jijiK xxxx φφ ,, =             (7.29) 

A significant merit of this formulation is that for certain classes of mapping functions 

( )ixφ , the kernel function ( )jiK xx ,  for inner products in the feature space can be 

expressed explicitly without probing real characteristics of the feature space. In this 

way we can avoid dealing directly with the high-dimensional space and excessive 

computations that result from the space transformation. By using different kernel 

functions for inner product evaluations, various types of nonlinear models in the 

original space could be constructed. Three common choices for kernel functions are 

listed as follows. 

(i) Polynomial kernel function 

                            ( ) ( ) 0,,, >+= ccK
d

jiji xxxx      (7.30) 

(ii) Radial basis kernel function (RBF) 
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  ( ) ( ) 0,exp,
2

>−−= γγ jijiK xxxx   (7.31) 

(iii) Sigmoidal kernel function 

    ( ) ( ) 0,0.,tanh >>+= ccK jiji γγ x,xx,x   (7.32) 

where γ , c , and d  are kernel parameters. 

Substituting ( )jiK xx ,  for ji xx ,  in Equation (7.19) allows to rewriting the support 

vector algorithm as 

minimize  ( )( ) ( ) ( ) ( )∑ ∑∑
= ==

−++−−−−
m

i

m

i
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m
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jijjii yK
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The expression of w  is accordingly obtained as 

( ) ( )∑
=

−=
m

i
iii K

1

* xw αα             (7.35) 

and therefore 

( ) ( ) ( )∑
=

+−=
m

i
iii bKf

1

* ,xxx αα                       (7.36) 

The difference of nonlinear support vector algorithm from linear support vector 

algorithm lies in that w  and ( )xf  is no longer explicitly given. 

The kernel parameters in Equations (7.30) to (7.32) and the parameters ε and C in 

Equation (7.33), referred to as SVR hyper-parameters, need to be specified a priori. 
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After doing that, the model parameters iα , *
iα  and b  in Equation (7.36) are 

determined using training data ( )ii y,x  by solving the constrained optimization 

problem defined in Equation (7.33) and (7.34). In the present study, the sequential 

minimal optimization (SMO) algorithm (Platt 1999; Shevade et al. 2000) has been 

employed to solve the quadratic programming (QP) convex problem of Equation 

(7.33). For the problem in concern, only a subset of the coefficients )( *
ii αα −  will be 

nonzero in most cases. Making use of the sparseness, the SMO algorithm 

decomposes a large QP problem into a series of small QP sub-problems of size two 

(two variables). Each sub-problem can be analytically solved without use of a QP 

solver. The SMO algorithm is efficient to deal with large-size sparse data sets. 

7.2.4 Determination of SVR Hyper-Parameters 

A key issue of applying SVR for ‘real-world’ problems is how to set the hyper-

parameter values to achieve good generalization performances for SVR models 

trained by given data sets. In the present study, a grid search method and a heuristic 

method are utilized to determine the optimal values of SVR hyper-parameters. When 

using the grid search method, a series of SVR models are first trained by assuming a 

wide spectrum of SVR hyper-parameters. If all available data are used to train the 

SVR models, the trained models are expected to simulate (reproduce) the training 

data well but may perform poorly in generalizing (predicting) unseen data. A cross-

validation scheme is performed to circumvent this over-fitting problem. The total 

measurement data are divided into k  subsets of equal size. Each subset is tested by 

feeding the data into the SVR models trained on the remaining ( 1−k ) subsets for 

each combination of the hyper-parameters. This procedure is repeated until all 
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subsets have been used for a validation test. Then the mean squared error (MSE) is 

calculated from each omitted subset and is averaged over all subsets. The optimal 

values of SVR hyper-parameters are determined which produce the minimal average 

MSE. MSE for each subset of validation data is defined as 

( )∑ −=
=

l

j
rjpj yy

l 1

21MSE             (7.37) 

where ypj and yrj denote the jth model-predicted value and the target value, 

respectively; and l is the number of validation data. 

A heuristic method has been proposed by Cherkassky and Ma (2004) for practical 

selection of SVR hyper-parameters to achieve good model performances. This 

method provides empirical formulae for analytic parameter selection directly from 

the training data and the estimated noise level. When using the RBF kernel function, 

they obtained the following formulae: 

( )yy yyC σσ 3,3max −+=           (7.38) 

m
mln3σε =             (7.39) 

( )[ ] pr /25.0~1.0
2
1

×=γ            (7.40) 

where y  and yσ  are the mean and the standard deviation of the y data for training; σ  

is the standard deviation of the noise in the y data; p is the dimension of input 

variables; and r is the range of each feature. The above empirical formulae have been 

validated only using simulation data; their applicability to ‘real-world’ data will be 

examined in the present study. 
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7.3 Experimental Data 

The Ting Kau Bridge in Hong Kong, as shown in Figure 7.3, is a multi-span cable-

stayed bridge with three monoleg towers supporting two main spans of 448 m and 

475 m respectively and two side spans of 127 m each. After completing its 

construction in 1998, the bridge has been instrumented with a long-term structural 

health monitoring system by the Hong Kong SAR Highways Department (Wong 

2004). This system consists of more than 230 sensors of various types, including 

accelerometers, displacement transducers, strain gauges, anemometers, temperature 

sensors, weigh-in-motion sensors and global positioning systems. A total of 83 

temperature sensors (five categories) have been installed at different locations of the 

bridge to measure: (i) steel-girder temperature, (ii) temperature inside concrete deck, 

(iii) temperature in tower legs, (iv) temperature in asphalt pavement, and (v) 

atmosphere temperature. Likewise, 24 uni-axial accelerometers, 20 bi-axial 

accelerometers and one tri-axial accelerometer (a total of 67 channels) have been 

installed on the deck of two main spans and two side spans, the longitudinal 

stabilizing cables, the top of three towers, and the base of central tower to monitor 

ground excitation and dynamic response of the bridge. The deployment of 

temperature sensors and accelerometers is illustrated in Figure 7.3. 

One-year (the year of 1999) continuous measurement data from all the sensors 

installed on the bridge have been collected to establish a database in the Hong Kong 

Polytechnic University for damage detection related research (Wang 2003). The 

measurement data were acquired with sampling rates of 25.6 Hz and 0.07 Hz for 

acceleration and temperature, respectively. With a careful inspection of the 
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measurement data, a total of 770-hour data from all the temperature sensors and 

accelerometers were selected after removing the signals which were not triggered or 

likely to be abnormal even at one signal channel. They are composed of 185-hour 

data in February, 35-hour data in March, 95-hour data in June, 208-hour data in July, 

95-hour data in August, and 152-hour data in December. 

   

Ting Kau Tower 
  

Central Tower
 

Tsing Yi Tower
 

127m 
  127m

 
448m

 
475m 

  

164.74m
 

201.45m
 

173.53m 
  

Accelerometer 
  Temperature Sensor 

  

B D E G J L M 
O

F K

H

C N

 

Figure 7.3  Deployment of temperature sensors and accelerometers on  
Ting Kau Bridge 

7.3.1 Measurement Data of Temperature 

For each of the five temperature monitoring categories, four sensors are selected after 

sensitivity and correlation analysis among the data sequences from all the 

temperature sensors. As a result, a total of 20 temperature sensors are chosen to 

provide data for modeling of the temperature-frequency relationship. Statistical 

analysis of the hourly-average temperatures has been conducted to obtain minimum 

and maximum values and histograms of the measured temperatures. It is observed 

that the measured temperatures on the bridge range from 2.83 to 53.46 oC. The 

average temperatures in one-hour duration for the 20 selected sensors are plotted in 

Figure 7.4.  
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Figure 7.4  Variation of hourly-average temperatures from  
20 temperature sensors 
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Figure 7.5  Variation of measured modal frequencies: (a) from vertically 
oriented accelerometers; (b) from laterally oriented accelerometers 
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7.3.2 Measurement Data of Modal Frequency 

An automatic modal identification program has been developed for continuous 

extraction of modal parameters from ambient vibration measurements (Ni et al. 

2005). This program employs the Complex Modal Indication Function (CMIF) 

algorithm and uses simultaneously all the measured data from 67 accelerometer 

channels for output-only modal identification. With the 770-hour data, the program 

automatically identifies modal parameters of the bridge at one-hour intervals. 

Figure 7.5 shows the variation of the identified modal frequencies from vertically 

and laterally oriented accelerometers, respectively. Table 7.1 summarizes the 

statistics of identified modal frequencies. For the Ting Kau Bridge, it is found that 

the first ten modes lie in the frequency range of 0.1 to 0.4 Hz, indicating closely 

spaced modes in this bridge. Except that the first mode is almost a purely vertical 

mode, all other modes are coupled modes with participation of both vertical and 

lateral modal components. Variance of the measured frequencies for the first ten 

modes is between 0.20% and 1.43%. The standard deviation given in the table 

represents the absolute error (variability) of the measured modal frequencies. The 

larger value of standard deviation for the 6th mode indicates that this mode exhibits a 

relatively large frequency variation, as observed in Figure 7.5 where the 6th mode 

has a wider frequency band. It means that the 6th mode is sensitive to environmental 

change. It is also possible that there exist two close modes within that frequency 

band. These effects may mask the modal change caused by structural damage, and 

therefore must be well understood before reliable use of vibration-based damage 

identification algorithms. 
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             (a)                                                                              (b) 

Figure 7.6  Modal frequency versus hourly-average temperature:  
(a) 1st mode; (b) 5th mode 

Figure 7.6 illustrates the measured frequency versus the hourly-average temperature 

from all 20 sensors for the first and fifth modes, respectively. For all the measured 

modes, an overall decrease in modal frequency with the increase of temperature is 

observed. However, the temperature-frequency plotting is far from a linear 

relationship and highly dispersed. It implies that linear regression models should be 

incompetent for characterizing such a scattered relation. 

Table 7.1  Statistics of identified modal frequencies 

Mode Frequency  
range (Hz) 

Average 
frequency 

(Hz) 

Standard 
deviation (10-3)

Variance
(%) 

Description 

1 0.150-0.175 0.1659 2.378 1.43 Predominantly vertical mode 
2 0.215-0.235 0.2273 0.783 0.34 Coupled torsional & lateral mode
3 0.245-0.275 0.2618 2.506 0.96 Predominantly lateral mode 
4 0.275-0.305 0.2902 2.036 0.70 Coupled lateral & torsional mode
5 0.290-0.308 0.2999 0.746 0.25 Predominantly vertical mode 
6 0.305-0.335 0.3186 4.302 1.35 Coupled torsional & lateral mode
7 0.340-0.370 0.3600 1.675 0.47 Predominantly vertical mode 
8 0.369-0.381 0.3731 0.840 0.23 Predominantly vertical mode 
9 0.380-0.390 0.3849 0.685 0.18 Predominantly torsional mode 

10 0.388-0.402 0.3942 0.791 0.20 Coupled lateral & torsional mode
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7.4 Model Development 

In this section, SVR models are first trained using the original temperature data to 

compare the performance of the models with their hyper-parameters determined by 

the grid search method and the heuristic method, respectively. Then both ‘static’ and 

‘dynamic’ SVR models are formulated using 87-hour continuously measured data to 

examine the influence of temporal correlation on model accuracy. Next, SVR models 

are developed using PCA-compressed data and their performances are compared 

with those trained directly using the original measurement data in terms of model 

accuracy and computational costs. The PCA-based SVR model is also compared 

with a MLR model obtained using the same training data. Finally, both hypothesis 

test and goodness-of-fit test are conducted to assess the performance of the 

formulated SVR model. In this study, a normalization of the training and validation 

data has been made to achieve a fixed feature range [−1, 1] (r = 2). 

7.4.1 Training and Validation Using Original Data 

SVR models are first trained directly using the original measurement data. The gird 

search method is first implemented to determine the optimal SVR hyper-parameters 

(C, γ, ε). The grid points are generated by dividing the intervals of C ~ (2-10, 2-9,…, 

23), γ ~ (2-15, 2-14, …, 25) and ε ~ (0, 1×10-4, …, 10-3). For each combination (grid 

point) of the hyper-parameters, SVR models are trained using the original 

temperature and frequency data and evaluated by a 10-fold cross validation scheme. 

The total 770-hour measurement data have been used. Because they were not 

continuously measured, only ‘static’ SVR models can be formulated. All the 

formulation and validation are performed on a 2.8 GHz Pentium IV processor 
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running of Windows XP, with a total CPU time of about 1,254 minutes. Figure 7.7 

shows the average MSE versus the regularization parameter C  and the kernel 

parameter γ  under different values of the insensitive loss coefficient ε  in the case of 

the first modal frequency. It is seen that MSE varies significantly with C and γ. 

Furthermore, there exists a dependency between C and γ for a good model with small 

MSE; for example, a small C should be accompanied by a large γ and vice versa. 

This inverse dependency can be justified from Equations (7.12) and (7.31). As the 

regularization parameter C is used to take a trade-off between the model complexity 

and the empirical error, small model errors should be accommodated by a ‘flat’ 

kernel, thus enforcing a large value of the kernel parameter γ according to Equation 

(7.31). 

Figure 7.8 illustrates the variation of minimal MSE with ε, where the minimal MSE 

is obtained by picking up the valley of the previous MSE versus (C, γ) surface for 

each ε. It is observed that the variation of MSE with ε is relatively smooth, 

particularly in the range of ε from 4×10-4 to 7×10-4. As a result, it can be reasonably 

assumed that the selection of ε can be independent of C and γ. Such an observation 

coincides with the performance of υ in the ν-SVR formulation in which the MSE 

exhibits a relatively flat curve in terms of hyper-parameter ν (Chalimourda et al. 

2004). The SVR model with the smallest MSE is obtained when ε is approximately 

equal to 0.0006. In this way the optimal SVR hyper-parameters are finally 

determined as C = 0.03125, γ = 8.0, and ε = 0.0006, and the corresponding MSE is 

1.58×10-6. 
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Figure 7.7  MSE versus C  and γ :  

(a) ε = 0; (b) ε = 0.0001; (c) ε = 0.0005; (d) ε = 0.001 
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Figure 7.8  Minimal MSE versus ε 

(a) (b) 
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SVR models are then formulated with the hyper-parameters determined by the 

heuristic method. With a general assumption that the noise level in measured modal 

frequency is 1% (Doebling et al. 1998), the heuristic ‘optimal’ values of SVR hyper-

parameters are obtained using Equations (7.38) to (7.40). They are listed in Table 7.2 

and also shown in Figure 7.7(c) for comparison. It is found that the optimal values of 

ε obtained from the heuristic method and the grid search method agree very well but 

both C and γ deviate significantly from each other. This difference is attributed to the 

fact that the optimal values of C and γ were determined independently in the heuristic 

method while those obtained from the grid search method were found to be 

interdependent (a more detailed observation on the dependency between C and γ will 

be made later in formulating SVR models using PCA-compressed data). Making use 

of the heuristic ‘optimal’ values of the hyper-parameters, SVR models are trained 

again using the same original data and evaluated by 10-fold cross validation. The 

average MSE is obtained to be 1.92×10-6 in this case. It is therefore found that the 

difference of MSE values obtained from the two methods is relatively small although 

the heuristic ‘optimal’ values are quite different from those obtained by the grid 

search method. This indicates that there are a number of ‘nearly optimal’ hyper-

parameter values with good model performances. 

Table 7.2  Heuristic optimal values of SVR hyper-parameters 

 

Parameter y  (Hz) σy (Hz) σ (Hz) m p r C ε γ 

Value 0.1661 0.0025 0.0017 770 20 2 0.1735 0.0005 0.5~0.5873 
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7.4.2 SVR Model Considering Thermal Inertia Effect 

In order to examine the influence of temporal correlation on model performance, a 

‘static’ SVR model (SVR1) without considering temporal correlation and a 

‘dynamic’ SVR model (SVR2) with considering temporal correlation are formulated, 

respectively, using 87-hour continuously measured original data. The grid search 

method together with 10-fold cross validation is employed to determine the optimal 

values of SVR hyper-parameters. An augmented temperature vector defined as 

Equation (7.8) should be constructed in formulating the ‘dynamic’ SVR model. In 

10-fold cross validation, the data measured in the last time step for the (i−1)th subset 

has been included to construct the first element of the augmented vector for the ith 

subset to keep temporal correlation. 

The MSE values for SVR1 and SVR2 are obtained following the same approach as 

before. Figures 7.9 and 7.10 show the average MSE versus the regularization 

parameter C  and the kernel parameter γ  under different values of the insensitive 

loss coefficient ε  in the case of the first modal frequency for the ‘static’ regression 

model and the ‘dynamic’ regression model, respectively. Figure 7.11 presents the 

resulting minimal MSE versus ε for the two models, from which the smallest MSE is 

determined to be 2.24×10-6 for SVR1 and 1.08×10-6 for SVR2, respectively. After 

specifying the optimal hyper-parameters which achieve the smallest MSE, the two 

models are tested by presenting the 87-hour measurement data, and the residual is 

obtained by the formula 

),,2,1( miyye pirii =−=                      (7.41) 
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where ypi denotes the prediction value of the ith sample and yri represents the target 

(observation) value of the ith sample; m is equal to 87 in this case. 
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Figure 7.9  MSE versus C  and γ  for SVR1:  

(a) ε = 0; (b) ε = 0.0001; (c) ε = 0.0005; (d) ε = 0.001 

Figure 7.12 illustrates the residual sequences generated by SVR1 and SVR2, 

respectively. By comparing both MSE and residual obtained from the two models, it 

is concluded the ‘dynamic’ SVR model is superior to the ‘static’ SVR model. It 

validates that the change of modal frequency indeed lags behind the temperature 

variation, and ‘dynamic’ regression models incorporating thermal inertia effect are 

preferable to represent the temperature-frequency correlation when continuous  

(a) 
(b) 

(c) 
(d) 
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Figure 7.10  MSE versus C  and γ  for SVR2:  

(a) ε = 0; (b) ε = 0.0001; (c) ε = 0.0005; (d) ε = 0.001 
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Figure 7.11  Minimal MSE versus ε for SVR1 and SVR2 
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measurement data are available. However, the long-term measurement data from an 

on-line monitoring system are usually discontinuous because of the existence of an 

automatic trigger system and abnormal signals. 
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Figure 7.12  Residual of SVR1 and SVR2 

7.4.3 PCA-Based Compression of Temperature Data 

PCA is conducted on the total 770 sets of temperature measurement data from 20 

sensors to extract predominant feature vectors. Table 7.3 summarizes the eigenvalues 

of covariance matrix for the 770 sets of temperature data, and Figure 7.13 shows the 

graph of eigenvalues. It is found that the first two principal components account for 

99.1% and the first 14 principal components account for 99.99% of the total variance. 

It comes to the conclusion that temperatures measured at different locations are 

heavily correlated. We can retain the first p components (p < 20 in this case) as 

predominant feature vectors for dimension reduction of the input vectors used in 

regression. 
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Figure 7.14 shows the measured frequency versus the first PC for the first and fifth 

vibration modes with the correlation coefficient being -0.1733 and -0.6142, 

respectively. Again the temperature-frequency plotting is considerably scattered. It 

indicates that one PC might be inadequate for charactering the correlation. However, 

instead of arbitrary selection of feature vectors from the original space, the selection 

of feature vectors in the transformed PC space is straightforward since the first 

several PCs represent the major variation in the original data. 

Table 7.3  Eigenvalues of covariance matrix for temperature data 

No. Eigenvalue Proportion of variance Cumulative proportion 
1 1042.368 0.947 0.94727 
2 47.949 0.044 0.99085 
3 3.106 0.003 0.99367 
4 2.581 0.002 0.99602 
5 0.951 8.6×10-4 0.99688 
6 0.882 8.0×10-4 0.99768 
7 0.798 7.2×10-4 0.99841 
8 0.532 4.8×10-4 0.99889 
9 0.444 4.0×10-4 0.99929 

10 0.233 2.1×10-4 0.99951 
11 0.198 1.8×10-4 0.99969 
12 0.125 1.1×10-4 0.99980 
13 0.061 5.5×10-5 0.99985 
14 0.046 4.2×10-5 0.99990 
15 0.039 3.6×10-5 0.99993 
16 0.029 2.6×10-5 0.99996 
17 0.022 2.0×10-5 0.99998 
18 0.012 1.1×10-5 0.99999 
19 0.009 8.4×10-6 1.00000 
20 0.002 1.8×10-6 1.00000 
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Figure 7.13  Graph of eigenvalues of covariance matrix for temperature data 
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               (a)                                                                              (b) 

Figure 7.14  Modal frequency versus the first PC: (a) 1st mode; (b) 5th mode 

7.4.4 Training and Validation Using PCA-Compressed Data 

SVR models are now trained using the PCA-compressed feature vectors, and 

compared with those trained directly using the original measurement data in terms of 

model accuracy and computational costs. First, all the 20 normalized principal 

components are fed into the support vector algorithm for model formulation. So the 
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function of PCA in this case is just a coordinate transformation. Because PCA was 

conducted on the total 770-hour data which were intermittently measured, only the 

‘static’ SVR model is trained. The grid search method with 10-fold cross validation 

is used again for choosing the optimal values of SVR hyper-parameters. 
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Figure 7.15  MSE versus C and γ when using 20 PCs:  
    (a) ε = 0; (b) ε = 0.0001; (c) ε = 0.0005 (d) ε = 0.001 

Figure 7.15 illustrates the average MSE versus C  and γ  under different values of ε  

in the case of the first modal frequency. The MSE surface shows a similar 

dependency between C and γ as that in Figure 7.7. For a small value of γ, the SVR 

model has its optimal performance at large C values. This is further validated by 

(a) (b) 

(c) (d) 
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Figure 7.16 which shows the optimal values of C for a series of given γ when ε = 0. 

It is observed that the optimal C is approximately inversely proportional to γ. 
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Figure 7.16  Dependency between optimal C and γ for ε = 0 

Figure 7.17 illustrates the variation of minimal MSE with ε, where the minimal MSE 

is obtained by picking up the valley of the MSE surface for each ε. From this figure 

the optimal values of SVR hyper-parameters are determined as C = 0.00781, γ = 2.0, 

and ε = 0.0005, which achieve the smallest MSE of 1.44×10-6. This smallest MSE 

value indicates an improvement of model performance even when using all 20 PCs. 

The optimal values of the parameters C and γ obtained in the PC space differ 

significantly from those obtained in the original data space because they depend on 

the distribution of the x data, while the optimal value of the parameter ε remains 

almost unchanged as it depends on the noise level in the y data. For comparison, the 

‘optimal’ values of SVR hyper-parameters obtained by the heuristic method are also 

indicated in Figure 7.15. 
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Figure 7.17  Minimal MSE versus ε when using 20 PCs 

Then the number of PCs is selected to achieve the optimal SVR model. By increasing 

the number of PCs from 1 to 20, SVR models are formulated with the optimal hyper-

parameters resulting from the grid search method and the heuristic method, 

respectively, and the corresponding MSE values are evaluated using 10-fold cross 

validation as shown in Table 7.4. The CPU time for formulation and validation of 

each SVR model when using the grid search method is also provided in the table for 

comparison. It is observed that when the number of PCs is increased from one to six, 

MSE has a dramatic reduction. Then MSE has insignificant change with the increase 

in the number of PCs. It is therefore concluded that selecting the first six PCs as 

feature vectors will achieve a SVR model with favorable generalization performance. 

As the smallest MSE value (1.38×10-6) is achieved when the first 16 PCs are 

included, the optimal SVR model is defined as SVR16 which incorporates the first 

16 PCs and has the hyper-parameters C = 0.0156, γ = 2.0, and ε = 0.0004. The 

SVR16 model outperforms the SVR model trained using the original data in both 

model accuracy and computational costs. 
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Table 7.4  Comparison of MSE values for different PCs 

Grid search method Heuristic method No. of 
PCs (C, γ, ε) 

MSE 
(×10-6) 

CPU time 
(minutes)

(C, γ, ε) 
MSE 

(×10-6)
1 (0.0313, 8, 0.0009) 4.64 264 (0.1735, 1.39, 0.0005) 5.12 
2 (0.0625, 8, 0.0008) 3.54 398 (0.1735, 0.83, 0.0005) 3.93 
3 (0.0625, 8, 0.0009) 2.46 452 (0.1735, 0.70, 0.0005) 2.97 
4 (0.0156, 8, 0.0009) 2.20 460 (0.1735, 0.64, 0.0005) 2.75 
5 (0.0313, 8, 0.0008) 1.97 480 (0.1735, 0.61, 0.0005) 2.60 
6 (0.0313, 8, 0.0007) 1.66 517 (0.1735, 0.59, 0.0005) 2.60 
7 (0.0313, 8, 0.0007) 1.70 1100 (0.1735, 0.58, 0.0005) 2.56 
8 (0.0156, 8, 0.0007) 1.71 495 (0.1735, 0.57, 0.0005) 2.42 
9 (0.0156, 8, 0.0005) 1.62 539 (0.1735, 0.56, 0.0005) 2.42 

10 (0.0156, 8, 0.0006) 1.67 587 (0.1735, 0.55, 0.0005) 2.24 
11 (0.0781, 8, 0.0005) 1.59 656 (0.1735, 0.55, 0.0005) 2.00 
12 (0.0781, 4, 0.0005) 1.54 672 (0.1735, 0.54, 0.0005) 1.88 
13 (0.0156, 2, 0.0006) 1.45 711 (0.1735, 0.54, 0.0005) 1.75 
14 (0.0156, 2, 0.0006) 1.42 756 (0.1735, 0.54, 0.0005) 1.60 
15 (0.0313, 2, 0.0004) 1.40 780 (0.1735, 0.54, 0.0005) 1.61 
16 (0.0156, 2, 0.0004) 1.38 760 (0.1735, 0.53, 0.0005) 1.58 
17 (0.0156, 2, 0.0005) 1.44 852 (0.1735, 0.53, 0.0005) 1.63 
18 (0.0156, 2, 0.0004) 1.40 902 (0.1735, 0.53, 0.0005) 1.64 
19 (0.0156, 2, 0.0004) 1.45 905 (0.1735, 0.53, 0.0005) 1.69 
20 (0.0781, 2, 0.0005) 1.44 980 (0.1735, 0.50, 0.0005) 1.70 

 
  

 

7.4.5 Comparison between SVR  and MLR Models 

In this section the SVR model is compared with a multivariate linear regression 

(MLR) model. We also include the first 16 PCs of temperature data in the 

formulation of the MLR model. The MLR model using the first 16 PCs is expressed 

by 

∑+=
=

16

1
0

i
ii zwwy                                                   (7.42) 
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where zi (i = 1, 2, …, 16) are the PCs, and wi (i = 0, 1, …., 16) are unknown 

coefficients which are estimated using the measurement data by the least squares 

method. 

Figure 7.18 provides a comparison of the residual generated by the SVR model and 

the MLR model. In Figure 7.18(a), the SVR model is SVR16 with the optimal 

hyper-parameters. It is seen that the SVR16 model notably outperforms the MLR 

model in prediction capability. The SVR model shown in Figure 7.18(b) is trained 

by using a linear kernel and taking a very large C (=103) and zero ε. In this case the 

SVR model approximately reduces to a linear regression model, and the residual 

generated by this model matches well with that from the MLR model as shown in 

Figure 7.18(b). It is therefore concluded that the SVR model performs much better 

and equips with more flexibility than the MLR model. 
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       (a)                                                                                     (b) 

Figure 7.18  Residual of SVR model and MLR model:  
(a) optimal SVR model; (b) linear SVR model with extremely large C and zero ε 
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7.4.6 Assessment of Model Performance 

The performance of the SVR16 model is assessed by different methods. Figure 7.19 

shows the modal frequency sequence predicted by the SVR16 model in comparison 

with the measured modal frequency sequence for the first mode. A favorable 

agreement between the predicted and measured results is observed. Similar 

observations are also obtained for the higher modes. Because of the discontinuous 

measurement data, the SVR16 model was formulated without considering temporal 

correlation. A more accurate SVR model is expected when continuous measurement 

data is available and temporal correlation is accounted for. 
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Figure 7.19  Comparison between predicted and observed modal frequencies 

A hypothesis test and a goodness-of-fit test are further conducted on the SVR16 

model to provide more quantitative performance measures. It is generally assumed in 

statistical analysis that the measurement noise follows a normal distribution with 
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zero mean. As a result, if the residual generated by the model complies with a normal 

distribution with zero mean, it can be reasonably assumed that no useful information 

can be further extracted from the residual. The mean and the standard deviation of 

the residual are calculated by 

∑
=

=
m

i
ie

m 1

1µ              (7.43) 

∑
=−

=
m

i
ie

pm
s

1

21                        (7.44) 

where m is the number of samples; p is the dimension of feature vectors, which is 

equal to sixteen for the SVR16 model. 

In the hypothesis test, the hypothesis of interest is that the mean of the residual is 

equal to zero (null hypothesis), versus the alternative that it is not equal to zero: 

0:0: 10 ≠= µµ HvsH                      (7.45) 

using the t-statistic 

ms
t

/
0−

=
µ

                        (7.46) 

If Ho is true, t is distributed as tm-1. Ho will be rejected if 1,2// −≥ mt
ms α

µ , where 

1,2/ −mtα  is a critical value that can be found in the t -table (Rencher 2002). Table 7.5 

shows the hypothesis test results for the residual generated by the SVR16 model, 

where the value of α is taken as 0.05. The results indicate that Ho is accepted as the 
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absolute value of t-statistic is less than the critical value. The acceptance of Ho 

implies that the mean of the residual is equal to zero (µ = 0) in a statistical sense. 

Figure 7.20 shows the observed probability density function (PDF) and cumulative 

distribution function (CDF) of the residual and the corresponding theoretical curves 

produced by the best-fitted normal distribution. By conducting the Kolmogorov-

Smirnov goodness-of-fit test (Kottegoda and Rosso 1997) on the observed PDF and 

CDF, the residual is shown to agree with a normal distribution. It is therefore 

concluded that the residual generated by the SVR16 model complies statistically with 

a normal distribution with zero mean. 

Table 7.5  Residual statistics and hypothesis test results 

Residual Item 
Mean value Standard derivation 

t statistic Critical value 

Value -3.76×10-5 7.13×10-4 -1.46 1.96 
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           (a)                                                                          (b) 

Figure 7.20  Probability distribution of residual: (a) PDF; (b) CDF 
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7.5 Summary 

In this chapter, a combined PCA and SVR method is presented for modelling 

temperature-caused variability of structural modal frequencies based on long-term 

measurement data. Various types of vector, including original temperature vector, 

augmented temperature vector and principal components of original temperature 

vector, have been used as input feature for support vector regression. It has been 

shown that the SVR model trained using the PCA-compressed feature vector 

outperforms the SVR model trained using original data in both model accuracy and 

computational costs. When continuous measurement data are available, the 

‘dynamic’ SVR model which is trained using augmented temperature vector to 

account for temporal correlation provides more accurate frequency prediction than 

the ‘static’ SVR model without considering temporal correlation. The PCA-based 

SVR model is superior to the MLR model in terms of generalization capability and 

model flexibility. The combined PCA and SVR method was proposed for modelling 

the temperature-frequency correlation in this study; however, the same approach can 

be applied to other data-based regression problems. 

The influence of SVR hyper-parameters on the model performance has been studied 

in detail by the use of ‘real-world’ data acquired from a large-scale bridge. A grid 

search method with 10-fold cross validation has been applied to determine the 

optimal values of SVR hyper-parameters to achieve good generalization 

performances, and compared with the heuristic method proposed by Cherkassky and 

Ma (2004). It is shown that the optimal values of the hyper-parameters C  and γ  

obtained from the two methods may deviate largely, but the difference in the 

corresponding MSE values is insignificant. For the problem in study, the grid search 
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method shows that there is an approximate inversely proportional relation between 

the optimal values of C and γ. This finding on the parameter interdependency shall 

be helpful for developing better empirical formulae to calculate the optimal hyper-

parameters as the current heuristic formulae estimate the optimal hyper-parameters 

independently. This issue deserves further investigation. 
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Chapter 8 

ASSESSMENT OF BRIDGE EXPANSION JOINTS USING 
LONG-TERM DISPLACEMENT AND TEMPERATURE 

MEASUREMENT 
 

 

8.1 Introduction 

Long-term structural health monitoring has become an important tool for diagnosing 

and prognosing structural performance and conditions in civil engineering 

community (Aktan et al. 2002; Ko and Ni 2005; Wang 2005). This is witnessed by 

tremendous growth in the implementation of long-term monitoring systems in bridge 

structures. Successful implementation and operation of structural health monitoring 

systems on bridges have been widely reported in different countries (Andersen and 

Pedersen 1994; Cheung et al. 1997; Barrish et al. 2000; Sumitro et al. 2001; Mufti 

2002; Koh et al. 2003; Wang et al. 2003; Wong 2004; Wang 2005). When a bridge is 

instrumented with a structural health monitoring system, the bridge administrative 

authority and managers want to know how the monitoring system benefits the 

inspection, maintenance, and management of the bridge, and how to use the 

monitoring data for bridge health and condition assessment. Research attention has 

recently been paid to the use of monitoring data for improved operational efficiency 

of structures, safety/reliability enhancement, and lower maintenance costs (Chang 

2003). 
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Expansion joints are important components in bridge structures which are used to 

accommodate bridge movements due to creep and shrinkage of concrete, temperature 

fluctuations, traffic loadings, and uneven settlement without imposing significant 

secondary stress to the superstructure (Dornsife 2000). The thermal movements of 

expansion joints due to temperature fluctuations are an important consideration in 

bridge design. Temperature in a deck cross-section can be divided into effective 

temperature which results in thermal movements and differential temperature 

(temperature gradient) which gives rise to internal forces and stresses for restrained 

structures. Bridge design codes in some countries have provided provisions related to 

the range of effective temperature, as well as the differential temperature for the 

calculation of structural response caused by thermal effects (e.g., British Standards 

Institution 1978; Hong Kong Highways Department Structures Division 1997; 

Canadian Standards Association 2000). Continuous monitoring of actual thermal 

movements at expansion joints and their comparison with design values can provide 

verification on the design. Likewise, since the service life of an expansion joint rely 

to a great extent on its accumulative displacement (the total displacement 

experienced by the expansion joint), an accurate prediction of the accumulative 

displacement based on measurement data will offer reliable information for decision 

making on prolonging or shortening the interval for replacement. 

A long-term structural health monitoring system for a large-scale bridge usually 

includes the measurement of both displacement at expansion joints and temperature 

on one or several deck cross-sections (Cheung et al. 1997; Aktan et al. 2002; Wong 

2004; Ku et al. 2005). In this chapter, a procedure for condition assessment based on 

long-term monitoring of expansion joint displacement and bridge temperature is 

presented and applied to the cable-stayed Ting Kau Bridge with the use of one-year 
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measurement data. A regression analysis is first conducted to establish the normal 

correlation pattern with an appropriate confidence interval, which will be used for 

anomaly alarming if the future monitoring data disobeys the normal pattern. Making 

use of the established correlation pattern and extreme value analysis, the maximum 

thermal movements of expansion joints and the extreme temperatures are predicted 

and compared with the corresponding design values for verification and actual safety 

reserve checking. Finally, annual or daily-average accumulative displacements of 

expansion joints are estimated by using the measurement data, which will provide 

information to justify or amend the scheduled interval for replacement of expansion 

joints. 

8.2 Presentation of Procedure 

8.2.1 Establishment of Normal Correlation Pattern 

Temperature in a bridge deck cross-section can be divided into the differential 

temperature and the effective temperature (Li et al. 2004; Fu and DeWolf 2004). The 

differential temperature refers to temperature differences between the top surface and 

other levels in that cross-section, and will result in the temperature-induced internal 

forces and bending stresses in continuous structures. The current design code for 

highway bridges in Hong Kong specifies both positive temperature profile and 

reverse temperature profile across the section for design of thermal effects of 

differential temperature. Four types of differential temperatures are defined in the 

code for different types of construction and materials used. The effective temperature 

is an average of temperature distributed along the cross-section. According to the 

definition, the effective temperature can be expressed as 
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( )∫∫=
A

dxdyyxT
A

T ,1                             (8.1) 

where A is the area of the cross-section; ( )yxT ,  is a two-dimensional temperature 

over the cross-section. 

For the measurement of temperature on a deck cross-section, the cross-section 

section is usually divided into a number of sub-areas, and sensors are deployed to 

measure the temperature in each sub-area. On the assumption that the temperature in 

all locations of a sub-area is the same, the effective temperature can be obtained by 

weighted averaging of the temperatures measured at all sub-areas, where the 

weighting is the ratio of each sub-area to the total area of the cross-section. That is 

∑=
=

k

i
i

i T
A
AT

1
        (8.2) 

where iA  is the ith sub-area; iT  is the measured temperature at the ith sub-area; and 

k is the number of sub-areas divided for the cross-section. 

The thermal movement due to effective temperature T can be calculated by 

( )0TTLT −=∆ α                       (8.3) 

where α  is the coefficient of thermal expansion, which can be taken as 

Cper 1012 o6−×  for structural steel and Cper 109 o6−×  for concrete; L is the 

expansion length of structure subject to thermal variation; and 0T  is the reference 

temperature. 
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Provided the maximum and minimum effective temperatures maxT  and minT  for a 

certain return period, the design allowable displacements at expansion joints 

accounting for thermal effects are obtained as 

( )minmaxtemp TTL −=∆ α     (8.4) 

It should be noted that for long-span cable-stayed bridges, the expansion length L is 

usually difficult to accurately determine since it is affected by the presence of stay 

cables and cross girders. In addition, temperatures are not uniformly distributed 

along the bridge length. With the measurement data of displacement at expansion 

joints and effective temperature in a deck cross-section, a regression analysis can be 

carried out by assuming the following linear relationship 

01 ββ +=∆ T                  (8.5) 

where ∆  is the displacement of an expansion joint; and T  is the effective 

temperature at a deck cross-section. The regression coefficients 1β  and 0β  can be 

obtained by the least-squares method as 

TT

T

S
S∆=1β                 (8.6) 

T10 ββ −∆=       (8.7) 

where TTS  is the variance of the measured temperature sequence; TS∆  is the 

covariance between the measured displacement and temperature sequences; and T  

and ∆  are means of the measured temperature and displacement sequences, 

respectively. 
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The residual of the regression model, which is defined as the difference between the 

observed and predicted values, is calculated by 

( )01 ββ +−∆= iii Te     (8.8) 

and the variance of the residual is obtained as 

( )∑
=

−−∆
−

=
n

i
ii T

n 1

2
01

2

2
1ˆ ββσ    (8.9) 

where n is the number of samples. 

For real applications, an interval under a certain confidence level is necessary to 

account for the inherent uncertainties due to randomness in the measurement data, 

incompleteness of the empirical model, and so on. The upper and lower bounds of an 

interval under a confidence of α−1  for the predicted output 0∆  at a given input 0T  

are described as 

( )
TT

n S
TT

n
t

2
0

2/,20
11ˆˆ −
++±∆ − σα    (8.10) 

where 0100
ˆ Tββ +=∆ ; and 2/,2 α−nt  is a critical value which can be obtained from the 

t-table (Kottegoda and Rosso 1997). 

With the measurement data of expansion joint displacement and bridge deck 

temperature, the regression model expressed in Equation (8.5) and bounds of the 

confidence interval described by Equation (8.10) can be readily obtained. Once the 

normal correlation pattern is established, the newly measured displacement and 

temperature data can be fed into the established model for anomaly detection of the 

expansion joints. By substituting the design maximum and minimum effective 
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temperatures into the regression model, the displacement range of expansion joints 

due to temperature variation is predicted. Then a design validation can be conducted 

by comparing the predicted displacement range with the corresponding design value. 

8.2.2 Prediction of Extreme Temperatures 

During the design of long-span bridges, it is of importance to estimate, as accurately 

as possible, the extreme temperatures with a certain return period. Overestimation of 

the extreme temperatures will lead to economical over-design, whereas 

underestimation may pose a danger to bridge safety and serviceability. With the 

long-term monitoring data, a reasonable estimation of the extreme temperatures can 

be made. 

Extreme value analysis (EVA) has been widely used in various engineering fields 

where extreme values are of importance (Castillo 1988; Castillo et al. 2005). EVA is 

a statistical technique that concentrates on the behavior of the extreme observations 

instead of the complete sample population and allows the generalization of return 

periods of extreme events. In the present study, EVA technique is employed for the 

evaluation of extreme effective temperatures at bridge deck based on a set of maxima 

and minima of the measured temperatures, with the intention of estimating the 

magnitudes of thermal variables for a certain return period. 

Given the samples of maxima and minima from original observations, EVA attempts 

to parametrically fit the data to one of the three limiting distributions, namely the 

Frechet distribution, the Gumbel distribution, and the Weibull distribution (Castillo 

1988). Gumbel (1958) has observed that tails of the frequency distributions of most 
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climatic variables such as temperature fall off in an exponential manner, and the 

extreme values of these variables comply with the following Gumbel distribution 

( ) +∞<<∞−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −
−−= TTTF

δ
λexpexp       (8.11) 

where δλ,  are constants to be determined from measurement data. The formulated 

distribution model is then used to extrapolate extremes with a specified return period. 

Rearranging Equation (8.11) leads to 

( )( )TFT lnln −−= δλ                                (8.12) 

Denoting the sample sequence of maxima or minima for the measured effective 

temperatures by kTTT ,,, 21  where Ti’s are increasingly ordered with 

kTTT ≤≤≤ 21  and k is the number of total samples, the cumulative probability of 

the sample Ti is estimated as 

1+
=

k
ipi                                                                (8.13) 

As ip  is a rational estimate of the limiting distribution function ( )iTF , it follows 

from Equation (8.12) that 

( )ii pT lnln −−= δλ                                                (8.14) 

Thus the coefficients λ  and δ  can be best fitted from the above equation with the 

use of the temperature samples iT  and the corresponding cumulative probabilities ip  

( ,1=i k,,2 ). Extreme temperatures with a return period of y  years are then 

estimated by 
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11lnlnδλ                          (8.15) 

or 

RTR δλ +≈                                                   (8.16) 

where )ln(kyR =  is termed as the reduced variate. 

Making use of the long-term temperature monitoring data and Equation (8.15), the 

maximum and minimum effective temperatures for a return period equal to the 

bridge design life can be predicted. Verification is then conducted by comparing the 

predicted extreme temperatures with the corresponding design values. 

8.2.3 Estimation of Accumulative Displacements 

As the service life and interval for replacement of an expansion joint rely to a great 

extent on the accumulative displacement that the expansion joint experienced, it is of 

significance to obtain the actual daily and annual accumulative displacement. Upon 

the assumption of linear evolution of the accumulative displacement with time, 

annual and daily-average accumulative displacements can be readily estimated from 

the continuous monitoring data. Suppose that the design value of daily accumulative 

displacement is Dd from which the scheduled interval for replacement of expansion 

joints is determined as Nd years. When the actual daily-average accumulative 

displacement is measured to be Dm, a reasonable alteration of the interval for 

replacement of expansion joints can be made by assuming a linear dependence of the 

required replacement interval on the accumulative displacement, i.e., 
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d
m

d
m N

D
DN =       (8.17) 

where Nm is the updated interval (years) for replacement of expansion joints. If Dm is 

less than Dd and no rupture and damage due to over-strength are observed in the 

expansion joints after Nd years, it can be considered to prolong the interval for 

replacement of expansion joints as Nm years. 

8.3 Application to Ting Kau Bridge 

8.3.1 Measurement Data 

The Ting Kau Bridge in Hong Kong, as shown in Figure 8.1, is a multi-span cable-

stayed bridge with three towers supporting two main spans of 448 m and 475 m 

respectively and two side spans of 127 m each. Each of the three towers consists of a 

single reinforced concrete leg. The bridge deck comprises two separated composite 

beam- and-slab decks interconnected by cross girders as shown in Figure 8.1(b). The 

bridge deck is supported by four planes of stay cables anchored at the tower tops. It 

is constrained laterally at the three towers and is fixed to the central tower 

longitudinally while being free with longitudinal movements at the other two towers. 

Additional longitudinal stabilizing cables have been used to stabilize the central 

tower. 

After completing its construction in 1998, the bridge has been instrumented with a 

long-term structural health monitoring system by the Hong Kong SAR Highways 

Department (Wong 2004). This system consists of more than 230 sensors of various 

types, including anemometers, accelerometers, displacement transducers, 
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temperature sensors, strain gauges, weigh-in-motion sensors and global positioning 

system. The displacement transducers have been used for the measurement of 

displacements at two expansion joints located at two ends of the continuous deck. A 

total of 83 temperature sensors have been installed at different locations of the bridge 

to measure: (i) steel- girder temperature, (ii) temperature inside concrete deck, (iii) 

temperature in tower legs, (iv) temperature in asphalt pavement, and (v) atmosphere 

temperature. The deployment of displacement transducers and temperature sensors 

on the Ting Kau Bridge is illustrated in Figure 8.1. Figure 8.2 shows the layout of a 

displacement transducer at the Tsing Yi abutment and temperature sensors on the 

deck cross-section nearly in the middle of the Tsing Yi main span. The displacement 

transducer was installed for the measurement of longitudinal movement of the 

expansion joint and a total of 51 temperature sensors were installed on the deck 

cross-section for the measurement of steel, concrete, asphalt and atmosphere 

temperature. 

 
 

Ting Kau Tower 
Central Tower

Tsing Yi Tower 

127m 127m448m 475m

164.74m

201.45m

173.53m 

Tem perature sensor 

Displacement transducer 

(a) 

CL

(b) 

Figure 8.1  Ting Kau Bridge: (a) elevation; (b) cross-section 
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(b)   

Figure 8.2  Layout of sensors on Ting Kau Bridge: (a) displacement 
transducer at Tsing Yi abutment; (b) temperature sensors on deck cross-section 

Available for this study is one-year (the year of 1999) continuous measurement data 

from all sensors installed on the Ting Kau Bridge (Wang 2003). The data obtained in 

1999 is used herein because they reflect the behavior of a healthy bridge. The 

temperature and displacement measurement data was acquired with the sampling 

rates of 0.07 Hz and 2.56 Hz respectively, from which the hourly-average values of 

the temperatures and displacements have been obtained. Figure 8.3 shows the 

hourly-average temperatures for a 24-hour duration on the deck cross-section nearly 

in the middle of the Tsing Yi main span, which were obtained from 4 sensors in 

structural steel, 4 sensors in concrete, 4 sensors in atmosphere and 4 sensors in 

asphalt. The locations of these sensors on the cross-section are specified in Figure 

8.2(b). It is observed that in general the temperatures in asphalt are the highest and 
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the temperatures in atmosphere are the lowest. The temperatures measured at 

different locations on the same cross-section attain their maxima almost at the same 

hour. 
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     (c)                                                                 (d) 

Figure 8.3  Hourly-average temperatures on deck cross-section: (a) in 
structural steel; (b) in structural concrete; (c) in atmosphere; (d) in asphalt 

Figure 8.4 illustrates the hourly-average displacements of expansion joints at the 

Ting Kau and Tsing Yi abutments for a 24-hour duration, where DSGAW01 denotes 

the displacement at the Ting Kau abutment and DSGPW01 denotes the displacement 
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at the Tsing Yi abutment. It is observed that the displacement change rates coincide 

with each other very well. 
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Figure 8.4  Hourly-average displacements of expansion joints 

8.3.2 Analysis and Assessment 

The measured displacements at the two expansion joints and the measured 

temperatures on the deck cross-section nearly in the middle of the Tsing Yi main 

span are used for analysis. According to the provision (Hong Kong Highways 

Department Structure Division 1997), the effective temperature on a deck cross-

section should be estimated by using only the measured temperatures in structural 

components exclusive of those in asphalt and air. As a result, the measured 

temperatures from 39 sensors on the deck cross-section, including 15 in structural 

steel and 24 in concrete, are used to calculate the effective temperature. By dividing 

the cross-section into 39 sub-areas, the effective temperature can be readily estimated 

from Equation (8.2) making use of the measured temperatures from the 39 sensors. 
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Figure 8.5  Time histories of displacement and effective temperature 

After obtaining the effective temperature, a check on the correlation between the 

expansion joint displacement and the deck effective temperature is made. Figure 8.5 

shows the evolution of both the deck effective temperature and the expansion joint 

displacement at the Tsing Yi abutment with time. A good correlation is observed and 

it is therefore concluded that the temperature fluctuations mainly account for the 

movement of the expansion joint. 

Before proceeding to the regression analysis, the one-year monitoring data were 

carefully screened to identify the outliers and eliminate unrealistic values. A total of 

3400-hour data were finally selected for the regression analysis. Table 8.1 provides 

the regression parameters obtained from Equations (8.5) to (8.9), while Figure 8.6 

shows the measured and best-fitted relations between the displacement and effective 

temperature. It is known from Table 8.1 that the slopes of the linear regression 

functions are 8.13 mm/ Co  and 7.08 mm/ Co  for the expansion joints at the Ting Kau 

and Tsing Yi abutments, respectively. The regression functions are expressed as 
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( ) abutmentKau  Tingfor mm46.19213.8 −=∆ T      (8.18) 

( ) abutment  Yi Tsingfor mm61.15808.7 −=∆ T      (8.19) 

Design verification is made with Equations (8.18) and (8.19). Since the expansion 

lengths for spans at the left and right sides of the central tower are 575 m and 602 m, 

respectively, the corresponding thermal expansion coefficients are estimated as 

Cper 101.14 o6−×  and Cper 108.11 o6−× , which are close to the design value of 

Cper 100.12 o6−× . The design maximum and minimum effective temperatures are 

40 Co  and −2 Co  (Wong et al. 2002). By presenting these design values into 

Equations (8.18) and (8.19), the displacement range of the expansion joints due to 

temperature variation is calculated to be 341.46 mm and 297.36 mm for the Ting 

Kau and Tsing Yi abutments, respectively. They are very close to the design values 

of 339 mm and 297 mm. 

Table 8.1 Statistical parameters in regression analysis 

Expansion  
joint n TTS  

(℃2) 
TS∆  

(mm×℃) 
T  

(℃) 
∆  

(mm)
1β  

(mm/℃) 
0β  

(mm) 

2σ  
(mm2)

Ting Kau side 3400 29.29 238.14 23.28 -3.15 8.13 -192.46 7.84 

Tsing Yi side 3393 29.47 208.64 23.26 6.09 7.08 -158.61 7.59 

 

The upper and lower bounds with a confidence level of 0.95 are also obtained from 

Equation (8.10) and illustrated in Figure 8.6. The bounds corresponding to an 

appropriate confidence level should be set to avoid false alarming. It is generally 

necessary to adjust the bounds after trial operation with the measurement data 
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obtained in the first few years. Once the normal correlation pattern is determined, 

new measurement data can be fed into it for anomaly detection of the expansion 

joints. 
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           (a)                                                                          (b) 

Figure 8.6  Measured and fitted relations between displacement and effective 
temperature: (a) at the Ting Kau abutment; (b) at the Tsing Yi abutment 

To predict the extreme temperatures with a certain return period, the sequence of the 

measured effective temperature is first obtained as shown in Figure 8.7 which 

comprises 3400 samples. EVA begins with the identification of peaks and valleys to 

generate extreme sequences on the basis of the total samples. As a rule of thumb, 

usually about 0.5%n peak and valley values are picked up to generate extreme 

sequences (Maes et al. 1992), where n is the total number of data points. Therefore 

the largest 17 (=0.5%×3400) peaks and the smallest 17 valleys of the measured 

temperature sequence are selected to form the maximum and minimum effective 

temperature sequences as shown in Figure 8.8 for EVA. The Gumbel parameters λ  

and δ  are then obtained by least-squares fitting to Equation (8.14). Table 8.2 lists 

the identified parameters and Figure 8.9 shows the measured and fitted relations 
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between the extreme temperature and reduced variate R. With the identified Gumbel 

parameters, the predicted extreme temperatures with a return period of y years are 

represented as 

( )yTR 8760ln31.061.32 +=   for maximum temperature         (8.20) 

( )yTR 8760ln82.071.7 −=    for minimum temperature         (8.21) 

where 8,760 is the number of hours per year. 

The design lifespan of the Ting Kau Bridge is 120 years. With Equations (8.20) and 

(8.21), the maximum and minimum effective temperatures for a return period of 120 

years are predicted to be 36.9 Co  and -3.6 Co , respectively. In comparison with 

these prediction values, the design maximum and minimum effective temperatures 

for bearing expansions are 40 Co  and  -2 Co  with a return period of 120 years. 
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Figure 8.7  Sequence of measured effective temperatures 
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           (a)                                                                            (b) 

Figure 8.8  Sequences of measured maximum and minimum effective 
temperatures: (a) maximum temperature; (b) minimum temperature 

Table 8.2  Identified Gumbel parameters for extreme temperature prediction 

Item λ  δ  

Maximum temperature 32.61 0.31 
Minimum temperature 7.71 -0.82 

 

 

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
32.2

32.4

32.6

32.8

33

33.2

33.4

33.6

Reduced variate 

Te
m

pe
ra

tu
re

 ( 
o C

)

Measured
Best fit

R
-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
5

5.5

6

6.5

7

7.5

8

8.5

9

Reduced variate

Te
m

pe
ra

tu
re

 ( 
o C

)

R

Measured
Best fit
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Figure. 8.9  Measured and fitted relations between extreme temperature and 
reduced variate R: (a) maximum temperature; (b) minimum temperature 
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Figure 8.10 plots the measured instantaneous displacements of the expansion joints, 

from which the accumulative displacements are obtained as shown in Figure 8.11. It 

is found from Figure 8.11 that the accumulative displacements increase with time in 

nearly linear proportion, with a rate of approximately 3.41 mm per hour for the Ting 

Kau abutment and 3.06 mm per hour for the Tsing Yi abutment, respectively. Hence 

the monthly or annual accumulative displacements can be easily estimated. The 

daily-average accumulative displacements are obtained from the measurement data 

as 81.82 mm and 73.48 mm for the Ting Kau and Tsing Yi abutments, respectively, 

which are much less than the design value of 120 mm. Following Equation (8.17), 

we obtain 

ddm NNN 5.1
2/)48.7382.81(

120
≈

+
=           (8.22) 

It is therefore expected that the service life of the expansion joints is longer than the 

design specification and the interval for replacement can be appropriately prolonged if 

no damage is observed in the expansion joints. 
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Figure 8.10  Instantaneous displacements of expansion joints 
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Figure 8.11  Accumulative displacements of expansion joints 

8.4 Summary 

An issue of great concern with bridge health monitoring systems is how to use the 

monitoring data for health and condition assessment of the instrumented bridges. In 

this study, a procedure for design verification and condition assessment of bridge 

expansion joints based on long-term monitoring of expansion joint displacement and 

bridge temperature was presented. It pursues the establishment and checking of the 

temperature-displacement pattern and the prediction and verification of the maximum 

displacement range, extreme temperature and accumulative movement. A case study 

of applying the procedure to the instrumented Ting Kau Bridge concludes the 

following points: (i) Movements of the expansion joints are highly correlated with 

the effective temperature. A linear regression model with an appropriate confidence 

interval can be formulated for condition alarming; (ii) Prediction results of the 

maximum displacement range and the extreme temperature agree well with the 
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design values, justifying the design assumptions; (iii) Accumulative displacements of 

the expansion joints are approximately in linear proportion to the service time, and it 

is therefore possible to predict the time taken to achieve a specified threshold value 

of accumulate displacements for making inspection and replacement. The measured 

daily-average accumulative displacements of the expansion joints in the bridge are 

much less than the design value. 
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Chapter 9 

CONCLUSIONS AND RECOMMENDATIONS 
 

 

9.1 Conclusions 

Vibration-based damage detection and structural reliability evaluation, modelling of 

temperature-frequency correlation, and condition assessment of bridge expansion 

joints using long-term monitoring data are the subjects of this study. The research 

aim has been to i) develop a systematic approach from statistical identification of 

structural parameters to assessment of component reliability and condition based on 

long-term monitoring data; ii) propose a method for modelling the temperature-

frequency correlation; and iii) present a procedure for condition assessment of bridge 

expansion joints. 

In this study, a systematic approach for health monitoring and condition assessment 

has been developed. This approach enables both structural damage identification and 

monitoring-based reliability assessment to be explored in the probabilistic framework, 

taking into account uncertainty and randomness inherent in measurement data and 

structures. Additionally, a combined method of principal component analysis (PCA) 

and support vector machine (SVM) has been proposed for modelling the 

temperature-frequency correlation. A procedure for design verification and condition 

assessment of bridge expansion joints has also been achieved. The numerical 
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examples presented in this study are derived from bridge structures; however, most 

of the developed methods are general and can be used in connection with other 

engineering structures such as high-rise buildings and offshore platforms. The major 

contributions of the work are as follows. 

(i) Investigation of regularization methods for output-error-based FE 
model updating 

The treatment of the ill-conditioned and noisy system of equations is one of the 

critical problems for model updating, and has been tackled with the regularization 

methods in this study. The previous investigations focused on the application of 

regularization methods to equation-error-based model updating, the contribution of 

this stage of study lies in solving the ill-conditioned problem in output-error-based 

model updating using both modal frequency and mode shape information, and 

applying minimum product criterion (MPC) in model updating for the first time. The 

performances of regularization methods with regularization-parameter-selection 

methods have been rigorously examined and assessed through numerical studies. The 

specific findings and conclusions are as follows: 

1. The regularization parameter obtained from MPC is close to that determined by 

L-curve method (LCM) in the case of a well-behaved L-curve; otherwise it is 

close to that determined by generalized cross validation (GCV). The LCM 

chooses the regularization parameter on the premise that the L-curve has a well-

behaved L-shape. Unfortunately this is not guaranteed in model updating, and a 

poorly-posed L-curve could make LCM fail to choose an appropriate 

regularization parameter. MPC is able to select good regularization parameters 

for both Tikhonov regularization and truncated singular value decomposition 
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(SVD). Among various method combinations investigated, truncated SVD and 

Tikhonov regularization when working with MPC are the most robust techniques 

for output-error-based model updating; 

2. In an output-error-based model updating approach, the singular value (SV) 

spectrum has a distinct gap separating large SVs from small ones for both the 

noise-free and the noisy data. It is different from equation-error-based model 

updating, where the SVs spread evenly over the SV spectrum when noisy modal 

data are utilized. 

(ii) Development of a procedure for stochastic FE model updating  
of structures 

The contribution of this study includes the development of an improved perturbation 

method and its combination with the Bayesian technique for stochastic model 

updating, and the formulation of two indices to identify the most relevant modal 

components which significantly contribute to the updating parameter variance. The 

developed procedure has been demonstrated on numerical studies with three types of 

uncertainty which frequently appear in measured modal parameters. The specific 

findings and conclusions are as follows: 

1. For each type of uncertainties the improved perturbation method generates 

satisfactory model updating results when the uncertainty does not exceed a 

certain level (say 2%), however the results may be less accurate in the case of 

high uncertainty. It is found that neglecting the correlations of modal parameters 

may result in an unreliable estimation of the covariance matrix of updating 

parameters, hence highlighting the necessity to estimate the correlation among 

the modal parameters; 
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2. In the MCS method, the probability density functions (PDFs) of updating 

parameters can be well approximated with normal distributions in the case of low 

uncertainty. With the increase of uncertainty level, the geometry of updating 

parameter PDFs becomes more complicated due to the nonlinearity between 

updating parameters and modal parameters as well as the existence of many local 

minima for nonlinear least squares problems. In addition, the PDFs may have 

several distinct peaks. 

3. The result from the two proposed indices indicates that some high-order modal 

components significantly contribute to the updating parameter variance. This 

implies that the commonly acknowledged rule-of-thumb method for selection of 

relevant modes in model updating and damage detection has significant 

limitations. They only assure the large damage sensitivity but neglect the 

uncertainties in these modes. Hence, the mode, which is sensitive to updating 

parameters while has large statistical uncertainties, might be not the best 

candidate for reliable model updating. 

(iii) Development of computer code for linear FE reliability analysis 

A computer program for linear FE reliability analysis has been developed. This 

program can compute the failure probability defined either by the displacement limit 

state or by the stress limit state in the context of finite element reliability analysis. It 

is capable of dealing with various distributions of random variables and provides 

reliability index sensitivity to distribution parameters.  

Numerical examples have been provided to demonstrate the reliability analysis for 

both explicitly and implicitly defined limit state functions. The results have shown 
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that both first- and second-order reliability methods perform satisfactorily in all cases 

considered. It was revealed that the reliability index sensitivity to the distribution 

parameters is important in identifying the significant variables affecting structural 

reliability. 

(iv) Establishment of a systematic approach linking health monitoring 
technologies with bridge maintenance exercises 

The contribution of this study is the establishment of a systematic approach linking 

structural health monitoring technology and bridge inspection/maintenance exercise. 

Numerical examples with respect to the nominal, updated, and actual models have 

been provided to demonstrate the proposed approach. The specific findings and 

conclusions are as follows: 

1. The reliability index obtained from the updated model is much closer to true 

reliability index than that obtained from the nominal model in the case of low 

uncertainty in measured modal parameters, hence ensuring the quality of the 

stochastically updated model. In the case of high uncertainty the updated model 

may be unreliable as the reliability index computed from the nominal model 

rather than from the updated model is closer to the true value; 

2. The nominal model always gives a larger reliability index value than the actual 

model as it ignores structural damage. The updated model from the first-stage 

updating always produces a smaller reliability index value than the actual model, 

because structural parameter variances in the updated models are larger than the 

true values due to the simultaneous occurrence of measurement noises and 

natural randomness. 
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(v) Formulation of nonlinear SVR models for characterizing temperature-
frequency correlation 

The contribution of this study is the development of a method for modelling the 

temperature-frequency correlation based on long-term monitoring data. It utilizes the 

attractive merits of PCA for extracting predominant feature vectors and SVR for 

data-based statistical learning. The proposed method has been applied to characterize 

the temperature-frequency correlation with the use of one-year monitoring data from 

the cable-stayed Ting Kau Bridge. The specific findings and conclusions are as 

follows: 

1. In both model accuracy and computational costs, the SVR model trained using 

the PCA-compressed feature vector outperforms the SVR model trained using 

original data. When continuous measurement data is available, the ‘dynamic’ 

SVR model trained using an augmented temperature vector to account for 

temporal correlation provides a more accurate frequency prediction than the 

‘static’ SVR model which is trained without considering temporal correlation. 

The PCA-based SVR model is also superior to the multivariate linear regression 

(MLR) model in terms of generalization capability and model flexibility; 

2. The optimal values of the hyper-parameters obtained using the grid search and 

the heuristic methods may deviate to a large extent, but the difference in the 

corresponding mean squared error values is insignificant. The grid search 

method shows that there is an approximate inversely proportional relation 

between the optimal values of the two hyper-parameters. This finding on the 

parameter interdependency is helpful for developing better empirical formulae to 

calculate the optimal hyper-parameters. 
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(vi) Development of a methodology for condition assessment of bridge 
expansion joints 

The contribution of this study is the development of a general procedure for design 

verification and condition assessment of bridge expansion joints making use of long-

term monitoring data of expansion joint displacement and bridge temperature. The 

procedure enables the establishment and checking of the temperature-displacement 

pattern and the prediction and verification of the maximum displacement range, 

extreme temperature and accumulative movement. The proposed procedure has been 

applied to the assessment of expansion joints in the cable-stayed Ting Kau Bridge 

with the use of one-year monitoring data. The specific findings and conclusions are 

as follows: 

1. Movements of the expansion joints are highly correlated with bridge effective 

temperature. A linear regression model with an appropriate confidence interval 

can be readily formulated as a normal pattern. Alarms are raised when a future 

pattern deviates from the normal one; 

2. Accumulative displacements of expansion joints are approximately in linear 

proportion to the service time. Therefore it is possible to predict the time taken 

to reach a specified threshold value of accumulated displacements for making 

inspection and replacement. 

9.2 Recommendations 

In this PhD study, methods for stochastic model updating, damage identification and 

condition assessment of bridge structures making use of long-term monitoring data 

have been developed. However, there are some limitations on the developed methods: 
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i) the number of modes to produce a reliable stochastic model updating is determined 

by trial-and-error in this study; ii) the perturbation method may not give accurate 

stochastic model updating results in the case of high uncertainty level; iii) only the 

natural randomness caused by temperature-dependent Young’s modulus is 

considered in this study, but in practice temperature variations also cause change in 

boundary conditions, structural configuration and internal forces; iv) the ingredients 

of the developed probabilistic method for bridge health monitoring and reliability 

assessment have been validated by numerical examples only and still need to be 

verified using the real-world data; and iv) the incorporation of the established 

temperature-frequency correlation model in damage detection algorithms is not 

addressed. The following recommendations are provided for further research and 

exploration. 

(i) Quantification of statistical uncertainties in other modal quantities 

The modal quantities used for FE model updating in the present study are basic 

modal parameters. Other modal quantities more sensitive to structural damage and 

updating parameters have been synthesized from the basic modal parameters for 

damage localization. They also have been used for model improvement and damage 

quantification. These modal quantities include such as mode shape curvature, strain 

mode shape, modal flexibility. Although being more sensitive to structural damage, 

the statistical uncertainties in these modal quantities may also be larger than those in 

basic modal parameters. For example, the mode shape curvature can be expressed 

approximately in terms of modal displacements as ( )11 2 −+ +−= iiii φφφκ . By 

assuming that each modal component is a statistically independent random variable 

and has the same standard deviation of σφ, it is straightforward to obtain the standard 
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deviation in mode shape curvature as σκ = 60.5σφ, hence indicating statistical 

uncertainty has been significantly amplified in the mode shape curvature. Therefore, 

in order to make a reasonable comparison of the model updating performance based 

on basic modal parameters and based on synthesized modal quantities, the statistical 

uncertainty in synthesized modal quantities must be quantified. After doing so, the 

stochastic method for model updating formulated in the present work should be 

employed to obtain the statistics of updating parameters. The modal quantity which 

produces the least statistical uncertainty of updating parameters from noisy 

measurement is finally determined as the best candidate for model updating and 

damage detection. This is still an unaddressed research field, yet meaningful and 

promising. 

 

(ii) Improvement of stochastic methods for FE model updating 

This study employed an improved perturbation method and the MCS method for 

stochastic FE model updating. In the field of stochastic mechanics, several other 

stochastic methods, such as the Numan expansion method (Yamazaki et al. 1988), 

Polynomial chaos expansion method (Spanos and Ghanem 1989) and weighted 

integral method (Deodatis 1991), are available to obtain the statistics of response 

quantities, and have been proven more satisfactory than the perturbation method in 

the presence of high uncertainty. It would be of value to further explore the 

applicability of these methods to stochastic model updating. 

Apart from the probabilistic descriptions of uncertainty in measured modal 

parameters, there are also alternative approaches such as fuzzy set theory, possibility 
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theory, interval analysis method, and evidence theory to depict such uncertainty. It is 

not very likely for a modal parameter to span all the values endowed by its 

probability distribution function. Instead, such a modal parameter generally falls into 

an interval with low and upper limits. In such cases, the interval analysis method 

would provide a better solution approach. 

(iii) Integrated research of structural health monitoring and structural 
reliability analysis 

The established linkage between structural health monitoring technologies and bridge 

inspection/maintenance exercises is still preliminary and in its infancy, more 

thorough research is required to completely realize the potential of this linkage to 

benefit bridge authorities from health monitoring technologies. The writer feels that 

this goal can be achieved by developing coordinated research programs involving 

participation of the researchers from both structural health monitoring and structural 

reliability disciplines.  

(iv) Interpretation of monitoring data in terms of structural condition  
and performance 

A long-term monitoring system accumulates a sizeable volume of measurement data 

regarding structural responses and imposed loadings. Ultimately these data must be 

channeled towards the goal of supporting bridge authorities in decision making. 

Integration of long-term monitoring data and reliability-based assessment techniques 

provide a viable approach for health and condition evaluation of bridge structures 

(Ko and Ni 2005). In the writer’s opinion, this area deserves more research effort if 

bridge authorities are to be provided with more information useful for maintenance 

and management of bridge structures.  
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(v) Incorporation of temperature-frequency model for damage detection 
under varying environmental conditions 

In this study, a stochastic FE model updating method has been proposed to take 

account of the varying environmental effect on model updating results, and then 

probabilistic approaches can be implemented for damage detection on the basis of 

stochastic model updating results (Xia et al. 2002; Xia and Hao 2003). An alternative 

approach for damage detection under varying environmental conditions is 

eliminating the changes in modal parameters due to temperature effect by using the 

formulated temperature-frequency model. This issue should be further studied. 



Ref.-1 

REFERENCES 

Abdalla, M. O., Grigoriadis, K. M., and Zimmerman, D. C. (1998), “Enhanced 

structural damage detection using alternating projection methods”, AIAA 

Journal, 36, 1305-1311. 

Abdel Wahab, M. M. (2001), “Effect of modal curvatures on damage detection 

using model updating”, Mechanical Systems and Signal Processing, 15, 439-

445. 

Abdel Wahab, M. M., and De Roeck, G. (1997), “Effect of temperature on 

dynamic system parameters of a highway bridge”, Structural Engineering 

International, 7, 266-270. 

Agbabian, M. S., Masri, S. F., Miller, R. K., and Caughey, T. K. (1988), “A 

system identification approach to the detection of changes in structural 

parameters”, Structural Safety Evaluation Based on System Identification 

Approach, Friedrick Vieweg & Son, Wiesbaden, 341-356. 

Ahmadian, H., Gladwell, G. M. L., and Ismail, F. (1997), “Parameter selection 

strategies in finite element model updating”, Journal of Vibration and 

Acoustics, ASME, 119, 37-45. 

Ahmadian, H., Mottershead, J. E., and Friswell, M. I. (1998), “Regularization 

methods for finite element model updating”, Mechanical Systems and Signal 

Processing, 12, 47-64. 

Aktan, A. E., Catbas, F. N., Grimmelsman, K. A. , Pervizpour, M., Curtis, J. M., 

Shen, K., and Qin, X. (2002), “Health monitoring for effective management 

of infrastructure”, Smart Structures and Materials 2002: Smart Systems for 

Bridges, Structures, and Highways, Liu, S. C., and Pines, D. J., (editors), The 



Ref.-2 

International Society for Optical Engineering, Bellingham, Washington, 17-

29. 

Aktan, A. E., Farhey, D. N., Helmicki, A. J., Brown, D. L., Hunt, H. J., Lee, K. 

L., and Levi, A. (1997), “Structural identification for condition assessment: 

experimental arts”, Journal of Structural Engineering, ASCE, 123, 1674-

1684. 

Alampalli, S. (2000), “Effects of testing, analysis, damage, and environment on 

modal parameters”, Mechanical Systems and Signal Processing, 14, 63-74. 

Allemang, R. J., and Brown, D. L. (1982), “A correlation coefficient for modal 

vector analysis”, Proceedings of the 1st International Modal Analysis 

Conference, Society for Experimental Mechanics, Bethel, 110-116. 

Alvin, K. F. (1997), “Efficient computation of eigenvector sensitivities for structural 

dynamics”, AIAA Journal, 35, 1760-1766. 

Andersen, E. Y., and Pedersen, L. (1994), “Structural monitoring of the Great Belt 

East Bridge”, Strait Crossings 94, Krokeborg, J. (editor), A.A. Balkema, 

Rotterdam, 189-195. 

Ang, A. H. S., and Tang, W. H. (1975), Probability Concepts in Engineering 

Planning and Design I: Basic Principals, Wiley, New York. 

Ang, A. H. S., and De Leon, D. (1997), “Determination of optimal target 

reliabilities for design and upgrading of structures”, Structural Safety, 19, 91-

103. 

Araki, Y., and Hjelmstad, K. D. (2001), “Optimum sensitivity-based statistical 

parameters estimation from modal response”, AIAA Journal, 39, 1166-1174. 

Arici, Y., and Mosalam, K. M. (2005), “Statistical significance of modal 

parameters of bridge systems identified from strong motion data”, 

Earthquake Engineering and Structural Dynamics, 34, 1323-1341. 



Ref.-3 

Askegaard, V., and Mossing, P. (1988), “Long-term observation of RC-bridge 

using changes in natural frequencies”, Nordic Concrete Research, 7, 20-27. 

Banan, M. R., Banan, M. R., and Hjelmstad, K. D. (1994a), “Parameter estimation 

of structures from static response I: computational aspects”, Journal of 

Structural Engineering, ASCE, 120, 3243-3258. 

Banan, M. R., Banan, M. R., and Hjelmstad, K. D. (1994b), “Parameter 

estimation of structures from static response II: numerical simulation studies”, 

Journal of Structural Engineering, ASCE, 120, 3259-3283. 

Barrish, R. A., Jr., Grimmelsman, K. A., and Aktan, A. E. (2000), “Instrumented 

monitoring of the Commodore Barry Bridge”, Nondestructive Evaluation of 

Highways, Utilities, and Pipelines IV, Aktan, A. E., and Gosselin, S. R. 

(editors), The International Society for Optical Engineering, Bellingham, 112-

126. 

Baruch, M. (1978), “Optimization procedure to correct stiffness and flexibility 

matrices using vibration tests”, AIAA Journal, 16, 1208-1210. 

Baruch, M. (1982), “Optimal correction of mass and stiffness matrices using 

measured modes”, AIAA Journal, 20, 1623-1626. 

Baruch, M. (1984), “Methods of reference basis for identification of linear dynamic 

structures”, AIAA Journal, 22, 561-564. 

Baruch, M., and Bar Itzhack, I. Y. (1978), “Optimal weighted orthogonalization of 

measured modes”, AIAA Journal, 16, 346-351. 

Bathe, K. J. (1996), Finite Element Procedures, Prentice Hall, Englewood Cliffs, 

New Jersey. 

Beck, J. L., Au, S. K., and Vanik, M. V. (2001), “Monitoring structural health 

using a probabilistic measure”, Computer-Aided Civil and Infrastructure 

Engineering, 16, 1-11.  



Ref.-4 

Beck, J. L., and Katafygiotis, L. S. (1998), “Updating models and their 

uncertainties I: Bayesian statistical framework”, Journal of Engineering 

Mechanics, ASCE, 124, 455-461. 

Ben-Haim, Y., and Prells, U. (1993), “Selective sensitivity in the frequency domain 

- I: theory”, Mechanical Systems and Signal Processing, 7, 461-475. 

Berman, A. (1979), “Mass matrix correction using an incomplete set of measured 

modes”, AIAA Journal, 17, 1147-1148. 

Berman, A., and Flannelly, W. G. (1971), “Theory of incomplete models of 

dynamic structures”, AIAA Journal, 9, 1481-1487. 

Berman, A., and Nagy, E. J. (1983), “Improvement of a large analytical model 

using test data”, AIAA Journal, 21, 1168-1173. 

Bernal, D. (2002), “Load vectors for damage localization”, Journal of Engineering 

Mechanics, ASCE, 128, 7-14. 

Bolton, R., Stubbs, N., Park, S., Choi, S., and Sikorsky, C. (2001), 

“Documentation of changes in modal properties of a concrete box-girder 

bridge due to environmental and internal conditions”, Computer-Aided Civil 

and Infrastructure Engineering, 16, 42-57. 

Breccolotti, M., Franceschini, G., and Materazzi, A. L. (2004), “Sensitivity of 

dynamic methods for damage detection in structural concrete bridges”, Shock 

and Vibration, 11, 383-394. 

Breitung, K. (1984), “Asymptotic approximations for multinormal integrals”, 

Journal of Engineering Mechanics, ASCE, 110, 357-366. 

British Standards Institute (1978), BS5400: Steel, Concrete, and Composite 

Bridges, Part 2: Specifications for Loads, British Standards Institute, London, 

20-22. 



Ref.-5 

Brownjohn, J. M. W., and Xia, P. Q. (2000), “Dynamic assessment of curved 

cable-stayed bridge by model updating”, Journal of Structural Engineering, 

ASCE, 126, 252-260. 

Burges, C. J. C. (1998), “A tutorial on support vector machines for pattern 

recognition”, Data Mining and Knowledge Discovery, 2, 121-167. 

Busby, H. R., and Trujillo, D. M. (1997), “Optimal regularization of an inverse 

dynamics problem”, Computers and Structures, 63, 243-248. 

Canadian Standards Association (2000), Design of Highway Bridges, Standard 

CAN/CSA-S6-00, Canadian Standards Association, Rexdale, Ontario. 

Carden, E. P., and Fanning, P. (2004), “Vibration based condition monitoring: a 

review”, Structural Health Monitoring, 3, 355-377. 

Casciati, F. (2003), “An overview of structural health monitoring expertise within 

European Union”, Structural Health Monitoring and Intelligent 

Infrastructure, Wu, Z. S., and Abe, M. (editors), A.A. Balkema, Lisse, 31-37. 

Castillo, E. (1988), Extreme Value Theory in Engineering, Academic Press, Boston. 

Castillo, E., Hadi, A. S., Balakrishnan, N., and Sarabia, J. M. (2005), Extreme 

Value and Related Models with Applications in Engineering and Science, 

Wiley, New Jersey. 

Cawley, P., and Adams, R. D. (1979), “The locations of defects in structures from 

measurements of natural frequencies”, Journal of Strain Analysis for 

Engineering Design, 14, 49-57. 

Cha, P. D., and de Phillis, L. G. (2001), “Model updating by adding known 

masses”, International Journal for Numerical Methods in Engineering, 50, 

2547-2571. 



Ref.-6 

Chalimourda, A., Schölkopf, B., and Smola, A. J. (2004), “Experimentally optimal 

υ in support vector regression for different noise models and parameter 

settings”, Neural Networks, 17, 127-141. 

Chance, J., Tomlinson, G. R., and Worden, K. (1994), “Simplified approach to the 

numerical and experimental modeling of the dynamics of a cracked beam”, 

Proceedings of the 12th International Modal Analysis Conference, Society 

for Experimental Mechanics, Bethel, 778-785. 

Chang, F. K. (editor) (2003), Structural Health Monitoring – From Diagnosis & 

Prognostics to Structural Health Management, DEStech Publications, 

Lancaster, Pennsylvania. 

Chen, J. C., and Garba, J. A. (1980), “Analytical model improvement using modal 

test results”, AIAA Journal, 18, 684-690. 

Chen, J. C., and Garba, J. A. (1988), “On-orbit damage assessment for large space 

structures”, AIAA Journal, 26, 1119-1126. 

Cherkassky, V., and Ma, Y. Q. (2004), “Practical selection of SVM parameters and 

noise estimation for SVM regression”, Neural Networks, 17, 113-126. 

Cherki, C., Lallemand, B., Tison, T., and Level, P. (1999), “Improvement of 

analytical model using uncertain test data”, AIAA Journal, 37, 489-195. 

Cheung, M. S., Tadros, G. S., Brown, T., Dilger, W. H., Ghali, A., and Lau, D. T. 

(1997), “Field monitoring and research on performance of the Confederation 

Bridge”, Canadian Journal of Civil Engineering, 24, 951-962. 

Ching, J. Y., and Beck, J. L. (2004), “Bayesian analysis of the Phase II IASC-

ASCE structural health monitoring experimental benchmark data”, Journal of 

Engineering Mechanics, ASCE, 130, 1233-1244.  

Choi, S., and Stubbs, N. (2005), “Damage identification in structures using the 

time-domain response”, Journal of Sound and Vibration, 275, 577-590. 



Ref.-7 

Cobb, R. G., and Liebst, B. S. (1997), “Structural damage identification using 

assigned partial eigenstructure”, AIAA Journal, 35, 152-158.  

Collins, J. D., Hart, G. C., Hasselman, T. K., and Kennedy, B. (1974), “Statistical 

identification of structures”, AIAA Journal, 12, 185-190. 

Cornwell, P., Doebling, S. W., and Farrar, C. R. (1999a), “Application of the 

strain energy damage detection method to plate-like structures”, Journal of 

Sound and Vibration, 224, 359-374. 

Cornwell, P., Farrar, C. R., Doebling, S. W., and Sohn, H. (1999b), 

“Environmental variability of modal properties”, Experimental Techniques, 

23, 45-48. 

Craven, P., and Wahba, G. (1979), “Smoothing noisy data with spline functions”, 

Numerische Mathematik, 31, 377-403. 

Dailey, R. L. (1988), “Eigenvector derivatives with repeated eigenvalues”, AIAA 

Journal, 27, 486-491. 

D’Ambrogio, W., and Fregolent, A. (1998), “On the use of consistent and 

significant information to reduce ill-conditioning in dynamic model updating”, 

Mechanical Systems and Signal Processing, 12, 203-222. 

Deodatis, G. (1991), “Weighted integral method I: stochastic stiffness matrix”, 

Journal of Engineering Mechanics, ASCE, 117, 1851-1864. 

Der Kiureghian, A., and Ke, J. B. (1985), “The stochastic finite element method in 

structural reliability”, Probabilistic Engineering Mechanics, 3, 83-91. 

Der Kiureghian, A., and Liu, P. L. (1986), “Structural reliability under incomplete 

probability information”, Journal of Engineering Mechanics, ASCE, 112, 85-

104. 



Ref.-8 

Der Kiureghian, A., Lin, Z. H., and Hwang, S. J. (1987),“Second-order reliability 

approximations”, Journal of Engineering Mechanics, ASCE, 113, 1208-1225. 

Ditlevsen, O. (1979), “Narrow reliability bounds for structural systems”, Journal of 

Structural Mechanics, 7, 453-472. 

Ditlevsen, O. (1981), “Principle of normal tail approximation”, Journal of the 

Engineering Mechanics Division, ASCE, 107, 1191-1208. 

Ditlevsen, O., and Madsen, H. O. (1996), Structural Reliability Methods, Wiley, 

New York.  

Doebling, S. W. (1996), “Minimum-rank optimal update of elemental stiffness 

parameters for structural damage identification”, AIAA Journal, 34, 2615-

2621. 

Doebling, S. W., and Farrar, C. R. (1997), “Effect of measurement statistics on the 

detection of damage in the Alamosa Canyon Bridge”, Proceedings of the 15th 

International Modal Analysis Conference, Society for Experimental 

Mechanics, Bethel, 919-929. 

Doebling, S. W., Farrar, C. R., and Prime, M. B. (1998), “A summary review of 

vibration-based damage identification methods”, The Shock and Vibration 

Digest, 30, 91-105. 

Doebling, S. W., and Peterson, L. D. (1997), “Computing statically complete 

flexibility from dynamically measured flexibility”, Journal of Sound and 

Vibration, 205, 631-645.  

Dornsife, R. J. (2000), “Expansion joints”, Bridge Engineering Handbook, Chen, W. 

F., and Duan, L. (editors), CRC Press, Boca Raton, Florida, Chapter 25. 



Ref.-9 

Estes, A. C., and Frangopol, D. M. (2005), “Reliability-based condition 

assessment”, Structural Condition Assessment, Ratay, R. T. (editor), John 

Wiley, New Jersey, 25-66.  

Engl, H. W., Hanke, M., and Neubauer, A. (1996), Regularization of Inverse 

Problems, Kluwer Academic Publishers, Dordrecht. 

Farrar, C. R., Doebling, S. W., Cornwell, P. J., and Straser, E. G. (1997), 

“Variability of modal parameters measured on the Alamosa Canyon Bridge”, 

Proceedings of the 15th International Modal Analysis Conference, Society 

for Experimental Mechanics, Bethel, 257-263. 

Farrar, C. R., and Jauregui, D. A. (1998), “Comparative study of damage 

identification algorithms applied to a bridge: I. experiment”, Smart Materials 

and Structures, 7, 704-719. 

Fiessler, B., Neumann, H. J., and Rackwitz, R. (1979), “Quadratic limit states in 

structural reliability”, Journal of the Engineering Mechanics Division, ASCE, 

105, 661-676. 

Fonseca, J. R., Friswell, M. I., Mottershead, J. E., and Lees, A. W. (2005), 

“Uncertainty identification by the maximum likelihood method”, Journal of 

Sound and Vibration, 288, 587-599. 

Fox, C. H. J. (1992), “The location of defects in structures: a comparison of the use 

of natural frequency and mode shape data”, Proceedings of the 10th 

International Modal Analysis Conference, Society for Experimental 

Mechanics, Bethel, 552-558. 

Fox, R. L., and Kapoor, M. P. (1968), “Rates of change of eigenvalues and 

eigenvectors”, AIAA Journal, 6, 2426-2429. 

Frangopol, D. M. (1999), “Life-cycle cost analysis for bridges”, Bridge Safety and 

Reliability, Frangopol, D. M. (editor), ASCE, Reston, 210-236. 



Ref.-10 

Frangopol, D. M., and Hearn, G. (1996), Structural Reliability in Bridge 

Engineering: Design, Inspection, Assessment, Rehabilitation, and 

Management, McGraw-Hill, New York.  

Frangopol, D. M., Kong, J. S., and Gharaibeh, E. S. (2001), “Reliability-based 

life-cycle management of highway bridges”, Journal of Computing in Civil 

Engineering, ASCE, 15, 27-34. 

Fregolent, A., D’Ambrogio, W., Salvini, P., and Sestieri, A. (1996), 

“Regularization techniques for dynamic model updating using input residual”, 

Inverse Problems in Engineering, 2, 171-200. 

Friswell, M. I. (1989), “The adjustment of structural parameters using a minimum 

variance estimator”, Mechanical Systems and Signal Processing, 3, 143-155. 

Friswell, M. I., Inman, D. J., and Pilkey, D. F. (1997), “Direct updating of 

damping and stiffness matrices”, AIAA Journal, 36, 491-493. 

Friswell, M. I., and Mottershead, J. E. (1995), Finite Element Model Updating in 

Structural Dynamics, Kluwer Academic Publishers, London. 

Friswell, M. I., Mottershead, J. E., and Ahmadian, H. (2001), “Finite element 

model updating using experimental test data: parameterization and 

regularization”, Philosophical Transactions of the Royal Society of London A: 

Mathematical, Physical and Engineering Sciences, 359, 169-186. 

Friswell, M. I., and Penny, J. E. T. (1992), “The effect of close or repeated 

eigenvalues on the updating of model parameters from FRF data”, Journal of 

Vibration and Acoustics, ASME, 114, 514-520. 

Friswell, M. I., and Penny, J. E. T. (1997), “Is damage location using vibration 

measurements practical”, Damage Assessment of Structures Using Advanced 

Signal Processing Procedures: DAMAS 97, Dulieu-Smith, J. M., Staszewski, 



Ref.-11 

W. J., and Worden, K. (editors), Sheffield Academic Press, Sheffield, 351-

362. 

Friswell, M. I., Penny, J. E. T., and Wilson, D. A. L. (1994), “Using vibration data 

and statistical measures to locate damage in structures”, The International 

Journal of Analytical and Experimental Modal Analysis, 9, 239-254. 

Fritzen, C. P. (1986), “Identification of mass, damping, and stiffness matrices of 

mechanical systems”, Journal of Vibration, Acoustics, Stress, and Reliability 

in Design, ASME, 108, 9-16. 

Fritzen, C. P., Jennewein, D., and Kiefer, T. (1998), “Damage detection based on 

model updating methods”, Mechanical Systems and Signal Processing, 12, 

163-186. 

Fritzen, C. P., and Zhu, S. (1991), “Updating of finite-element models by means of 

measured information”, Computers and Structures, 40, 475-486. 

Fu, Y. D., and DeWolf, J. T. (2004), “Effect of differential temperature on a curved 

post-tensioned concrete bridge”, Advances in Structural Engineering, 7, 385-

397. 

Fujino, Y., and Abe, M. (2004), “Structural health monitoring − current status and 

future”, Proceedings of the 2nd European Workshop on Structural Health 

Monitoring, Boller, C., and Staszewski, W. J. (editors), DEStech Publications, 

Lancaster, Pennsylvania, 3-10. 

Gao, Y., and Spencer, B. F., Jr. (2005), “Online damage diagnosis for civil 

infrastructure employing a flexibility-based approach”, Smart Materials and 

Structures, 15, 9-19. 

Gladwell, G. M. L., and Ahmadian, H. (1995), “Generic element matrices suitable 

for finite-element model updating”, Mechanical Systems and Signal 

Processing, 601-614. 



Ref.-12 

Golub, G. H., Heath, M., and Wahba, G. (1979), “Generalized cross-validation as 

a method for choosing a good ridge parameter”, Technometrics, 21, 215-223. 

Gumbel, E. J. (1958), Statistics of Extremes, Columbia University Press, New York. 

Hajela, P., and Soeiro, F. J. (1990), “Structural damage detection based on static 

and modal analysis”, AIAA Journal, 28, 1110-1115. 

Haldar, A., and Mahadevan, S. (2000), Reliability Assessment Using Stochastic 

Finite Element Analysis, John Wiley & Sons, New York.  

Hansen, P. C. (1987), “The truncated SVD as a method of regularization”, BIT, 72, 

534-553. 

Hansen, P. C. (1990), “The discrete Picard condition for discrete ill-posed 

problems”, BIT, 30, 658-672. 

Hansen, P. C. (1992), “Analysis of discrete ill-posed problems by means of the L-

curve”, SIAM Review, 34, 561-581. 

Hansen, P. C. (1998), Rank-Deficient and Discrete Ill-Posed Problem: Numerical 

Aspects and Linear Inversion, SIAM, Philadelphia. 

Hansen, P. C., and O’Leary, D. P. (1993), “The use of the L-curve in the 

regularization of discrete ill-posed problems”, SIAM Journal of Scientific 

Computing, 14, 1487-1503. 

Hart, G. C., and Collins, J. D. (1970), “The treatment of randomness in finite 

element modeling”, Transactions of the SAE, 79, 2509-2520. 

Hart, G. C., and Yao, J. T. P. (1977), “System identification in structural 

dynamics”, Journal of the Engineering Mechanics Division, ASCE, 103, 

1089-1104. 

Hasofer, A. M., and Lind, N. C. (1974), “Exact and invariant second-moment code 

format”, Journal of the Engineering Mechanics, ASCE, 100, 111-121. 



Ref.-13 

Hjelmstad, K. D. (1996), “On the uniqueness of modal parameter estimation”, 

Journal of Sound and Vibration, 192, 581-598. 

Hjelmstad, K. D., and Shin, S. (1997), “Damage detection and assessment of 

structures from static response”, Journal of Engineering Mechanics, ASCE, 

123, 568-576. 

Hohenbichler, M., and Rackwitz, R. (1981), “Non-normal dependent vectors in 

structural safety”, Journal of the Engineering Mechanics Division, ASCE, 

107, 1227-1238. 

Hohenbichler, M., and Rackwitz, R. (1988), “Improvement of second-order 

reliability estimates by importance sampling”, Journal of the Engineering 

Mechanics Division, ASCE, 114, 2195-2199 

Hong Kong Highways Department Structures Division (1997), Structures Design 

Manual for Highways and Railways, Highways Department, Hong Kong 

Government, Hong Kong, 25-27. 

Hsu, C. W., Chang, C. C., and Lin, C. J. (2003), “A practical guide to support 

vector classification”, <http://www.csie.ntu.edu.tw/~cjlin/libsvm>. 

Hu, X., and Shenton, H. W. (2003), “Damage identification in a two span 

continuous beam”, Structural Health Monitoring and Intelligent 

Infrastructure, Wu, Z. S., and Abe, M. (editors), A.A. Balkema, Lisse, 431-

436. 

Hua, X. G., Ni, Y. Q., and Ko, J. M. (2005), “Probabilistic identification of 

structural parameters using an integrated perturbation and Bayesian method”, 

Structural Health Monitoring and Intelligent Infrastructure, Ou, J. P., Li, H., 

and Duan, Z. D. (editors), Taylor & Francis, London, 1021-1027. 



Ref.-14 

Hugue, T. D., Aktan, A. E., and Hoyos, A. (1991), “Localized identification of 

constructed facilities”, Journal of Structural Engineering, ASCE, 117, 128-

148. 

Huth, O., Feltrin, G., Maeck, J., Kilic, N., and Motavalli, M. (2005), “Damage 

identification using modal data: experiences on a prestressed concrete bridge”, 

Journal of Structural Engineering, ASCE, 131, 1898-1910. 

Imregun, M., and Visser, W. J. (1991), “A review of model updating techniques”, 

Shock and Vibration Digest, 23, 9-20. 

Jauregui, D. A., and Farrar, C. R. (1998), “Comparative study of damage 

identification algorithms applied to a bridge II: numerical study”, Smart 

Materials and Structures, 7, 720-731. 

Johnston, P. R., and Gulrajani, R. M. (1997), “A new method for regularization 

parameter determination in the inverse problem of electrocardiography”, 

IEEE Transactions on Biomedical Engineering, 44, 19-39. 

Jolliffe, I. T. (2002), Principal Component Analysis, Second Edition, Springer-

Verlag, New York. 

Kabe, A. M. (1985), “Stiffness matrix adjustment using mode data”, AIAA Journal, 

23, 1431-1436. 

Kammer, D. C. (1988), “Optimum approximation for residual stiffness in linear 

system identification”, AIAA Journal, 26, 104-112. 

Kang, J. S., Park, S. K., Shin, S., and Lee, H. S. (2005), “Structural system 

identification in time domain using measured acceleration”, Journal of Sound 

and Vibration, 288, 215-234. 

Kaouk, M., and Zimmerman, D. C. (1994), “Structural damage assessment using a 

generalized minimum rank perturbation theory”, AIAA Journal, 32, 836-842. 



Ref.-15 

Kaouk, M., Zimmerman, D. C., and Simmermacher, T. W. (2000), “Assessment 

of damage affecting all structural properties using experimental modal 

parameters”, Journal of Vibration and Acoustics, ASME, 122, 456-463. 

Katafygiotis, L. S., and Beck, J. L. (1998), “Updating models and their 

uncertainties II: model identifiability”, Journal of Engineering Mechanics, 

ASCE, 124, 463-467. 

Kenigsbuch, R., and Halevi, Y. (1998), “Model updating in structural dynamics: a 

generalized reference basis approach”, Mechanical Systems and Signal 

Processing, 12, 75-90. 

Kiddy, J., and Pines, D. J. (1998), “Eigenstructure assignment technique for 

damage detection in rotating structure”, AIAA Journal, 36, 1680-1685. 

Kim, J. T., Yun, C. B., and Yi, J. H. (2004), “Temperature effects on modal 

properties and damage detection in plate-girder bridges”, Advanced Smart 

Materials and Structures Technology, Chang, F. K., Yun, C. B., and Spencer, 

B. F. Jr. (editors), DEStech Publications, Lancaster, Pennsylvania, 504-511. 

Kleiber, M., and Hien, T. D. (1992), The Stochastic Finite Element Method: Basic 

Perturbation Technique and Computer Implementation, Wiley, New York. 

Ko, J. M., Hua, X. G., and Ni, Y. Q. (2006), “Structural damage detection of cable-

stayed bridges using change in cable force”, Proceedings of the 3rd 

International Workshop on Advanced Smart Materials and Smart Structures 

Technology, Lake Tahoe, USA. 

Ko, J. M., and Ni, Y. Q. (2005), “Technology developments in structural health 

monitoring of large-scale bridges”, Engineering Structures, 27, 1715-1725. 

Ko, J. M., Wang, J. Y., Ni, Y. Q., and Chak, K. K. (2003), “Observation on 

environmental variability of modal properties of a cable-stayed bridge from 

one-year monitoring data”, Structural Health Monitoring 2003: From 



Ref.-16 

Diagnosis and Prognostics to Structural Health Management, Chang, F. K. 

(editor), DEStech Publications, Lancaster, Pennsylvania, 467-474. 

Ko, J. M., Wong, C. W., and Lam, H. F. (1994), “Damage detection in steel 

framed structures by vibration measurement approach”, Proceedings of the 

12th International Modal Analysis Conference, Society for Experimental 

Mechanics, Bethel, 280-286. 

Koh, C. G., See, L. M., and Balendra, T. (1991), “Estimation of structural 

parameters in time domain – a substructure approach”, Earthquake 

Engineering and Structural Dynamics, 20, 787-801. 

Koh, H. M., Choo, J. F., Kim, S. K., and Kim, C. Y. (2003), “Recent application 

and development of structural health monitoring systems and intelligent 

structures in Korea”, Structural Health Monitoring and Intelligent 

Infrastructure, Wu, Z. S., and Abe, M. (editors), A.A. Balkema, Lisse, 99-

111. 

Kottegoda, N. T., and Rosso, R. (1997), Probability, Statistics and Reliability for 

Civil and Environmental Engineers, McGraw-Hill, New York.  

Kravaris, C., and Seinfeld, J. H. (1985), “Identification of parameters in distributed 

parameter systems by regularization”, SIAM Journal on Control and 

Optimization, 23, 217-241. 

Ku, B. S., Ji, D. H., Lee, S. S., and Park, J. C. (2005), “Structural health 

monitoring of the Seohae cable-stayed bridge”, Safety and Reliability of 

Engineering Systems and Structures, Augusti, G., Schuëller, G. I., and 

Ciampoli, M. (editors), Millpress, Rotterdam, 2937-2943. 

Lark, R. J., and Flaig, K. D. (2005), “The use of reliability analysis to aid bridge 

management”, The Structural Engineer, 83, 27-31. 



Ref.-17 

Law, S. S., Shi, Z. Y., and Zhang, L. M. (1998), “Structural damage detection from 

incomplete and noisy modal test data”, Journal of Engineering Mechanics, 

ASCE, 124, 1280-1288. 

Lloyd, G. M., Wang, M. L., and Singh, V. (2000), “Observed variations of mode 

frequencies of a prestressed concrete bridge with temperature”, Proceedings 

of the 14th Engineering Mechanics Conference, Tassoulas, J. L. (editor), 

ASCE, Reston (CD-ROM). 

Li, D. N., Maes, M. A., and Dilger, W. H. (2004), “Thermal design criteria for deep 

prestressed concrete girders based on data from Confederation Bridge”, 

Canadian Journal of Civil Engineering, 31, 813-825. 

Li, J., and Roberts, J. B. (1999a), “Stochastic structural system identification, Part 

1: mean parameter estimation”, Computational Mechanics, 24, 206-210. 

Li, J., and Roberts, J. B. (1999b), “Stochastic structural system identification, Part 

2: variance parameter estimation”, Computational Mechanics, 24, 211-215. 

Lieven, N. A. J., and Ewins, D. J. (1988), “Spatial correlation of mode shapes: the 

coordinate modal assurance criterion (COMAC)”, Proceedings of the 6th 

International Modal Analysis Conference, Society for Experimental 

Mechanics, Bethel, 690-695. 

Lifshitz, J. M., and Rotem, A. (1969), “Determination of reinforcement unbonding 

of composites by a vibration technique”, Journal of Composite Materials, 3, 

412-423. 

Lim, K. B., Junkins, J. L., and Wang, B. P. (1987), “Re-examination of 

eigenvector derivatives”, AIAA Journal of Guidance, Control, and Dynamics, 

10, 581-587. 

Lim, T. W. (1990), “Submatrix approach to stiffness matrix correction using modal 

test data”, AIAA Journal, 28, 1123-1130. 



Ref.-18 

Lim, T. W. (1995), “Structural damage detection using constrained eigenstructure 

assignment”, Journal of Guidance, Control, and Dynamics, 18, 411-418. 

Lim, T. W., and Kashangaki, T. A. L. (1994), “Structural damage detection of 

space truss structures using best achievable eigenvectors”, AIAA Journal, 32, 

1049-1057. 

Lin, R. M., Lim, M. K., and Du, H. (1995), “Improved inverse eigensensitivity 

method for structural analytical model updating”, Journal of Vibration and 

Acoustics, ASME, 117, 192-198. 

Link, M. (2001), “Updating of analytical models – review of numerical procedures 

and application aspects”, Structural Dynamics @2000: Current Status and 

Future Directions, Ewins, D. J., and Inman, D. J. (editors), Research Studies 

Press, Philadelphia, 193-223. 

Liu, G. R., and Han, X. (2003), Computational Inverse Technique in 

Nondestructive Evaluation, CRC Press, Boca Raton, Florida. 

Liu, P. L. (1995), “Identification and damage detection of trusses using modal data”, 

Journal of Structural Engineering, ASCE, 121, 599-608. 

Liu, P. L., and Chian, C. C. (1997), “Parametric identification of truss structures 

using static strains”, Journal of Structural Engineering, ASCE, 123, 927-933. 

Liu, S. C., and Yao, J. T. P. (1978), “Structural identification concept”, Journal of 

the Structural Division, ASCE, 104, 1845-1858. 

Madsen, H. O., Krenk, S., and Lind, N. C. (1986), Methods of Structural Safety, 

Prentice-Hall, Englewood Cliffs, New York.  

Maeck, J., and De Roeck, G. (1999), “Dynamic bending and torsion stiffness 

derivation from modal curvatures and torsion rates”, Journal of Sound and 

Vibration, 225, 153-170. 



Ref.-19 

Maes, M. A., Dilger, W. H., and Ballyk, P. D. (1992), “Extreme values of thermal 

loading parameters in concrete bridges”, Canadian Journal of Civil 

Engineering, 19, 935-946. 

Maia, N. M. M., and Silva, J. M. M. (1997), Theoretical and Experimental Modal 

Analysis, Research Studies Press, Somerset. 

Mares, C., Friswell, M. I., and Mottershead, J. E. (2002), “Model updating using 

robust estimation”, Mechanical Systems and Signal Processing, 16, 169-183. 

Mares, C., Mottershead, J. E., and Friswell, M. I. (2006), “Stochastic model 

updating, Part 1: theory and simulated examples”, Mechanical Systems and 

Signal Processing, 20, 1674-1695. 

Mayes, R. L. (1992), “Error localization using mode shapes – an application to a two 

link robot arm”, Proceedings of the 10th International Modal Analysis 

Conference, Society for Experimental Mechanics, Bethel, 886-891. 

Mayes, R. L. (1995), “An experimental algorithm for detecting damage applied to 

the I-40 Bridge over the Rio Gande”,  Proceedings of the 13th International 

Modal Analysis Conference, Society for Experimental Mechanics, Bethel, 

219-225. 

Mehrabi, A. B., Tabatabai, H., and Lotfi, H. R. (1998), “Damage detection in 

structures using precursor transformation method”, Journal of Intelligent 

Material Systems and Structures, 9, 808-817. 

Melcher, R. L. (1999), Structural Reliability Analysis and Prediction, Second 

Edition, John Wiley, Chichester. 

Messina, A., Jones, I. A., and Williams, E. J. (1996), “Damage detection and 

localization using natural frequency changes”, Identification in Engineering 

Systems, Friswell, M. I., and Mottershead, J. E. (editors), University of Wales 

Swansea, Swansea, 67-76. 



Ref.-20 

Messina, A., Williams, E. J., and Contursi, T. (1998), “Structural damage 

detection by a sensitivity and statistical-based method”, Journal of Sound and 

Vibration, 216, 791-808. 

Millscurran, W. C. (1988), “Calculation of eigenvector derivatives for structures 

with repeated eigenvalues”, AIAA Journal, 26, 867-871. 

Minas, C., and Inman, D. J. (1988), “Correcting finite element models with 

measured modal results using eigenstructure assignment method”, 

Proceedings of the 6th International Modal Analysis Conference, Society for 

Experimental Mechanics, Bethel, 583-587. 

Minas, C., and Inman, D. J. (1990), “Matching finite element models to modal 

data”, Journal of Vibration and Acoustics, ASME, 112, 84-92. 

Morozov, V. A. (1984), Methods for Solving Incorrectly Posed Problems, Springer-

Verlag, New York. 

Mottershead, J. E., and Foster C. D. (1991), “On the treatment of ill-conditioning 

in spatial parameter estimation from measured vibration data”, Mechanical 

Systems and Signal Processing, 5, 139-154. 

Mottershead, J. E., and Friswell, M. I. (1993), “Model updating in structural 

dynamics: a survey”, Journal of Sound and Vibration, 167, 347-375. 

Mufti, A. A. (2002), “Structural health monitoring of innovative Canadian civil 

engineering structures”, Structural Health Monitoring, 1, 89-103. 

Müller, K. R., Mika, S., Rätsch, G., Tsuda, K., and Schölkopf, B. (2001), “An 

introduction to kernel-based learning algorithms”, IEEE Transactions on 

Neural Networks, 12, 181-201. 

Nakagiri, S., and Suzuki, K. (1999), “Finite element interval analysis of external 

loads identified with displacement input with uncertainty”, Computer 

Methods in Applied Mechanics and Engineering, 168, 63-72. 



Ref.-21 

Nalitolela, N., Penny, J. E. T., and Friswell, M. I. (1993), “Updating model 

parameters by adding an imagined stiffness to the structure”, Mechanical 

Systems and Signal Processing, 7, 161-172. 

Natke, H. G. (1988a), Application of System Identification in Engineering, Springer, 

Vienna. 

Natke, H. G. (1988b), “Updating computational models in frequency domain based 

on measured data: a survey”, Probabilistic Engineering Mechanics, 3, 28-35. 

Natke, H. G. (1991), “Error localization within spatially finite-dimensional models”, 

Computational Mechanics, 8, 153-160. 

Natke, H. G. (1993), “Regularization methods within system identification”, Inverse 

Problems in Engineering Mechanics, Tanaka, M., and Bui, H. D. (editors), 

Springer-Verlag, New York, 3-20. 

Natke, H. G. (1998), “Problems of model updating procedures: a perspective 

resumption”, Mechanical Systems and Signal Processing, 12, 64-74. 

Natke, H. G., and Yao, J. T. P. (1988), Structural Safety Evaluation Based on 

System Identification Approach, Friedrick Vieweg & Son, Wiesbaden.  

Nelson, R. B. (1976), “Simplified calculation of eigenvector derivatives”, AIAA 

Journal, 14, 1201-1205. 

Ni, Y. Q., and Hua, X. G. (2004), “State-of-the-art and state-of-the-practice in 

bridge monitoring systems: a review”, Research Report No. SHMASES-01, 

Department of Civil and Structural Engineering, The Hong Kong Polytechnic 

University, Hong Kong. 

Ni, Y. Q., Fan, K. Q., Zheng, G., and Ko, J. M. (2005), “Automatic modal 

identification and variability in measured modal vectors of a cable-stayed 

bridge”, Structural Engineering and Mechanics, 19, 123-139. 



Ref.-22 

Ni, Y. Q., Zhou, X. T., and Ko, J. M. (2006), “Experimental investigation of 

seismic damage identification using PCA-compressed frequency response 

functions and neural networks”, Journal of Sound and Vibration, 290, 242-

263. 

Nowak, A. S., and Collins, K. R. (2000), Reliability of Structures, McGraw-Hill, 

Boston. 

Nwosu, D. I., Swamidas, A. S. J., Guigne, J. Y., and Olowokere, D. O. (1995), 

“Studies on influence of cracks on the dynamic response of tubular T-Joints 

for nondestructive evaluation”, Proceedings of the 13th International Modal 

Analysis Conference, Society for Experimental Mechanics, Bethel, 1122-

1128. 

Ojalvo, I. U. (1987), “Efficient computation of mode shape derivatives for large 

dynamic systems”, AIAA Journal, 25, 1386-1390. 

Ojalvo, I. U., and Ting, T. (1990), “Interpretation and improved solution approach 

for ill-conditioned linear equations”, AIAA Journal, 28, 1976-1979. 

Ou, J. P., and Li, H. (2005), “The state-of-the-art and practice of structural health 

monitoring for civil infrastructures in the mainland of china”, Structural 

Health Monitoring and Intelligent Infrastructure, Ou, J. P., Li,  H., and Duan, 

Z. D. (editors), Taylor & Francis, London, 69-93. 

Pandey, A. K., and Biswas, M. (1994), “Damage detection in structures using 

changes in flexibility”, Journal of Sound and Vibration, 169, 3-17.  

Pandey, A. K., and Biswas, M. (1995), “Damage diagnosis of truss structures by 

estimation of flexibility change”, The International Journal of Analytical and 

Experimental Modal Analysis, 10, 104-117. 



Ref.-23 

Pandey, A. K., Biswas, M., and Samman, M. M. (1991), “Damage detection from 

changes in curvature mode shapes”, Journal of Sound and Vibration, 145, 

321-332. 

Papadopoulos, L., and Garcia, E. (1998), “Structural damage identification: a 

probabilistic approach”, AIAA Journal, 36, 2137-2145. 

Papadimitriou, C., Beck, J. L., and Katafygiotis, L. S. (2001), “Updating robust 

reliability using structural test data”, Probabilistic Engineering Mechanics, 

16, 103-113. 

Park, S., Stubbs, N., Bolton, R., Choi, S., and Sikorsky, C. (2001), “Field 

verification of the damage index method in a concrete box-girder bridge via 

visual inspection”, Computer-Aided Civil and Infrastructure Engineering, 16, 

58-70. 

Park, S., Stubbs, N., and Sikorsky, C. (1997), “Linkage of nondestructive damage 

evaluation to structural system reliability”, Smart Systems for Bridges, 

Structures, and Highways, Stubbs, N. (editor), The International Society for 

Optical Engineering, Bellingham, 234-245. 

Peeters, B., and De Roeck, G. (2001), “One-year monitoring of the Z24-Bridge: 

environmental effects versus damage events”, Earthquake Engineering and 

Structural Dynamics, 30, 149-171. 

Penny, J. E. T., Wilson, D. A. L., and Friswell, M. I. (1993), “Damage location in 

structures using vibration data”, Proceedings of the 11th International Modal 

Analysis Conference, Society for Experimental Mechanics, Bethel, 861-867. 

Pham, H. A., and Bucher, C. (2005), “On model updating of existing structures 

utilizing measured dynamic response”, Structure and Infrastructure 

Engineering, 1, 1-9. 



Ref.-24 

Platt, J. C. (1999), “Fast training of support vector machines using sequential 

minimal minimization”, Advances in Kernel Methods – Support Vector 

Learning, Schölkopf, B., Burges, C. J. C., and Smola, A. J. (editors), MIT Press, 

Cambridge, Massachusetts, 185-208. 

Pines, D. J., and Aktan, A. E. (2002), “Status of structural health monitoring of 

long-span bridges in the United States”, Progress in Structural Engineering 

and Materials, 4, 372-380. 

Pothisiri, T., and Hjelmstad, K. D. (2003), “Structural damage detection and 

assessment from modal response”, Journal of Engineering Structures, ASCE, 

129, 135-145. 

Prells, U., and Ben-Haim, Y. (1993), “Selective sensitivity in the frequency domain 

- II: applications”, Mechanical Systems and Signal Processing, 7, 551-574. 

Prells, U. (1996), “A regularization method for the linear error localization of modes 

of elastomechanical systems”, Inverse Problems in Engineering, 3, 197-217. 

Rackwitz, R., (2001), “Reliability analysis – a review and some perspectives”, 

Structural Safety, 23, 365-395. 

Rackwitz, R., and Fiessler, B. (1978), “Structural reliability under combined 

random load sequences”, Computers and Structures, 9, 489-494. 

Rade, D. A., and Lallement, G. (1998), “A strategy for the enrichment of 

experimental data as applied to an inverse eigensensitivity-based FE model 

updating”, Mechanical Systems and Signal Processing, 12, 293-307. 

Raghavendrachar, M., and Aktan, A. E. (1992), “Flexibility by multireference 

impact testing for bridge diagnostics”, Journal of Structural Engineering, 

ASCE, 118, 2186-2203. 

Ratcliffe, C. P. (1997), “Damage detection using a modified Laplacian operator on 

mode shape”, Journal of Sound and Vibration, 204, 505-517. 



Ref.-25 

Reginska, T. (1996), “A regularization parameter in discrete ill-posed problems”, 

SIAM Journal on Scientific Computing, 17, 740-749. 

Ren, W. X. (2005), “A singular value decomposition based on truncation algorithm 

in solving the structural damage equations”, Acta Mechanica Solida Sinica, 

18, 181-188. 

Rencher, A. C. (2002). Methods of Multivariate Analysis, Second edition, Wiley, 

New York. 

Ricles, J. M., and Kosmatka, J. B. (1992), “Damage detection in elastic structures 

using vibratory residual forces and weighted sensitivity”, AIAA Journal, 30, 

2310-2316. 

Roberts, G. P., and Pearson, A. J. (1996), “Dynamic monitoring as a tool for long 

span bridges”, Bridge Management 3: Inspection, Maintenance, Assessment and 

Repair, Harding, J. E., Parke, G. E. R., and Ryall, M. J. (editors), E & FN Spon, 

London, 704-711. 

Rodden, W. P. (1967), “A method for deriving structural influence coefficients from 

ground vibration tests”, AIAA Journal, 5, 991-1000. 

Rohrmann, R. G., Baessler, M., Said, S., Schmid, W., and Ruecker, W. F. (2000), 

“Structural causes of temperature affected modal data of civil structures 

obtained by long time monitoring”, Proceedings of the 18th International 

Modal Analytical Conference, Society for Experimental Mechanics, Bethel, 

1-7. 

Ross, R. G., Jr. (1971), “Synthesis of stiffness and mass matrices from experimental 

vibration modes”, SAE National Aeronautic and Space Engineering and 

Manufacturing Meeting, SAE Paper, No. 710787.  



Ref.-26 

Rothwell, E., and Drachman, B. (1989), “A unified approach to solving ill-

conditioned matrix problems”, International Journal for Numerical Methods 

in Engineering, 28, 609-620. 

Ruotolo, R., and Surace, C. (1997), “Damage assessment of multiple cracked 

beams: numerical results and experimental validation”, Journal of Sound and 

Vibration, 206, 267-588. 

Rytter, A. (1993), Vibration Based Inspection of Civil Engineering Structures, PhD 

Thesis, Department of Building Technology and Structural Engineering, 

Aalborg University, Denmark.  

Salawu, O. S. (1997), “Detection of structural damage through changes in frequency: 

a review”, Engineering Structures, 19, 718-723. 

Salawu, O. S., and Williams, C. (1995), “Bridge assessment using forced-vibration 

testing”, Journal of Structural Engineering, ASCE, 121, 161-173. 

Sanayei, M., and Onipede, O. (1991), “Damage assessment of structures using 

static test data”, AIAA Journal, 29, 1174-1179. 

Sanayei, M., and Saletnik, M. J. (1996a), “Parameter estimation of structures from 

static strain measurements I: formulation”, Journal of Structural Engineering, 

ASCE, 122, 555-562. 

Sanayei, M., and Saletnik, M. J. (1996b), “Parameter estimation of structures from 

static strain measurements II: error sensitivity analysis”, Journal of Structural 

Engineering, ASCE, 122, 563-572. 

Sanayei, M., Wadia-Fascetti, S., Arya, B., and Santini, E. M. (2001), 

“Significance of modeling error in structural parameter estimation”, 

Computer-Aided Civil and Infrastructure Engineering, 16, 12-27. 

Shepherd, R., and Frost, J. D. (1995), Failures in Civil Engineering: Structural, 

Foundation, and Geo-environmental Case Studies, ASCE, New York.  



Ref.-27 

Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., and Murthy, K. R. K. (2000), 

“Improvements to the SMO algorithm for SVM regression”, IEEE 

Transactions on Neural Networks, 11, 1188-1193. 

Shi, Z. Y., Law, S. S., and Zhang, L. M. (1998), “Structural damage localization 

from modal strain energy change”, Journal of Sound and Vibration, 218, 825-

844. 

Shi, Z. Y., Law, S. S., and Zhang, L. M. (2000a), “Optimum sensor placement for 

structural damage detection”, Journal of Engineering Mechanics, ASCE, 126, 

1173-1179.  

Shi, Z. Y., Law, S. S., and Zhang, L. M. (2000b), “Structural damage detection 

from modal strain energy change”, Journal of Engineering Mechanics, ASCE, 

126, 1216-1223. 

Smith, S. W., and Beattie, C. A. (1991), “Secant-method adjustment for structural 

models”, AIAA Journal, 29, 119-126. 

Smola, A. J., and Schölkopf, B. (2004), “A tutorial on support vector regression”, 

Statistics and Computing, 14, 199-222. 

Smyth, A. W., Masri, S. F., Caughey, T. K., and Hunter, N. F. (2000), 

“Surveillance of mechanical systems on the basis of vibration signature 

analysis”, Journal of Applied Mechanics, ASME, 67, 540-551. 

Sohn, H., Dzwonczyk, M., Straser, E. G., Kiremidjian, A. S., Law, K. H., and 

Meng, T. (1999), “An experimental study of temperature effect on modal 

parameters of the Alamosa Canyon Bridge”, Earthquake Engineering and 

Structural Dynamics, 28, 879-897. 

Sohn, H., Farrar, C. R., Hemez, F. M., Shunk, D. D., Stinemates, D. W., and 

Nadler, B. R. (2004), “A review of structural health monitoring literature: 



Ref.-28 

1996-2001”, Report No. LA-13976-MS, Los Alamos National Laboratory, 

Los Alamos, New Mexico. 

Spanos, P. D., and Ghanem, R. (1989), “Stochastic finite element expansion for 

random media”, Journal of Engineering Mechanics, ASCE, 115, 1035-1053. 

Stubbs, N., Broome, T. H., and Osegueda, R. (1990), “Nondestructive construction 

error detection in large space structures”, AIAA Journal, 28, 146-152. 

Stubbs, N., and Osegueda, R. (1990a), “Global non-destructive damage evaluation 

in solids”, The International Journal of Analytical and Experimental Modal 

Analysis, 5, 67-79. 

Stubbs, N., and Osegueda, R. (1990b), “Global damage detection in solids – 

experimental verification”, The International Journal of Analytical and 

Experimental Modal Analysis, 5, 81-97. 

Stubbs, N., and Kim, J. T. (1996), “Damage localization in structures without 

baseline modal parameters”, AIAA Journal, 34, 1644-1649. 

Stubbs, N., Kim, J. T., and Topole, K. (1992), “An efficient and robust algorithm 

for damage localization in offshore platforms”, Proceedings of the 10th ASCE 

Structure Congress, ASCE, New York, 543-546. 

Stubbs, N., Park, S., Sikorsky, C., and Choi, S. (1998), “A methodology to 

nondestructively evaluate the safety of offshore platforms”, Proceedings of 

the 8th International Offshore and Polar Engineering Conference, The 

International Society of Offshore and Polar Engineers, California, 71-79. 

Stubbs, N., Park, S., Sikorsky, C., and Choi, S. (2000), “A global non-destructive 

damage assessment methodology for civil engineering structures”, 

International Journal of System Science, 31, 1361-1373. 



Ref.-29 

Sumitro, S., Matsui, Y., Kono, M., Okamoto, T., and Fujii, K. (2001), “Long-

span bridge health monitoring system in Japan”, Health Monitoring and 

Management of Civil Infrastructure Systems, Chase, S. B., and Aktan, A. E. 

(editors), The International Society for Optical Engineering, Bellingham, 517-

524. 

Sudret, B., and Der Kiureghian, A. (2002), “Comparison of finite element 

reliability methods”, Probabilistic Engineering Mechanics, 17, 337-348. 

Sutter, T. R., Camarda, C. J., Walsh, J. L., and Adelman, H. M. (1988), 

“Comparison of several methods for calculating vibration mode shape 

derivatives”, AIAA Journal, 26, 1506-1511. 

Tan, R. C. E. (1989), “Some acceleration methods for the iterative computation of 

derivatives of eigenvalues and eigenvectors”, AIAA Journal, 28, 1505-1519. 

Teughels, A., Maeck, J., and De Roeck, G. (2002), “Damage assessment by FE 

model updating using damage functions”, Computers and Structures, 80, 

1869-1879. 

Titurus, B., Friswell, M. I., and Starek, L. (2003a), “Damage detection using 

generic elements, Part I: model updating”, Computers and Structures, 81, 

2273-2286. 

Titurus, B., Friswell, M. I., and Starek, L. (2003b), “Damage detection using 

generic elements, Part II: damage detection”, Computers and Structures, 81, 

2287-2299. 

Toksoy, T., and Aktan, A. E. (1994), “Bridge-condition assessment by modal 

flexibility”, Experimental Mechanics, 34, 271-278. 

Topole, K, G., and Stubbs, N. (1995), “Nondestructive damage evaluation of a 

structure from limited modal parameters”, Earthquake Engineering and 

Structural Dynamics, 24, 1427-1436. 



Ref.-30 

Torkamani, M. A. M., and Ahmadi, A. K. (1988), “Stiffness identification of 

frames using simulated ground excitations”, Journal of Engineering 

Mechanics, ASCE, 114, 753-776. 

Tvedt, L. (1988), “Second order reliability by an exact integral”, Reliability and 

Optimization of Structural Systems, Thoft-Christensen, P. (editor), Springer-

Verlag, New York.  

Tvedt, L. (1990), “Distribution of quadratic-forms in normal space – application to 

structural reliability”, Journal of Engineering Mechanics, ASCE, 116, 1183-

1197. 

Unger, J. F., Teughels, A., and De Roeck, G. (2005), “Damage detection of a 

prestressed concrete beam using modal strains”, Journal of Structural 

Engineering, ASCE, 131, 1456-1463. 

Vapnik, V. N. (1999), “An overview of statistical learning theory”, IEEE 

Transactions on Neural Networks, 10, 988-999. 

Wang, B. S., Liang, X. B., Ni, Y. Q., and Ko, J. M. (2000), “Comparative study of 

damage indices in application to a long-span suspension bridge”, Advances in 

Structural Dynamics, Ko, J. M., and Xu, Y. L. (editors), Elsevier, Oxford, 

UK, Vol. 2, 1085-1092. 

Wang, C. H., Chen, W. Z., and Chen, A. R. (2002), “Damage safety assessment 

and maintenance management strategy of bridges”, Journal of Traffic and 

Transportation Engineering, 2, 21-28 (in Chinese). 

Wang, C. Y., Wang, H. L., Wu, C. Y., and Chen, C. H. (2003), “Development of 

bridge health monitoring systems in Taiwan”, Structural Health Monitoring 

and Intelligent Infrastructure, Wu, Z. S., and Abe, M. (editors), A.A. 

Balkema, Lisse, 1067-1072. 



Ref.-31 

Wang, J. Y. (2003), “Construction of data management system based on one-year 

monitoring data from WASHMS”, Research Report, Department of Civil and 

Structural Engineering, The Hong Kong Polytechnic University, Hong Kong. 

Wang, M. L. (2005), “Damage assessment and monitoring of long-span bridges”, 

Structural Health Monitoring 2005: Advancements and Challenges for 

Implementation, Chang, F. K. (editor), DEStech Publications, Lancaster, 

Pennsylvania, 61-79. 

Wang, X., Hu, N., Fukunaga, H., and Yao, Z. H. (2001), “Structural damage 

identification using static test data and changes in frequencies”, Engineering 

Structures, 23, 610-621. 

Wei, F. S. (1990a), “Analytical dynamic model improvement using vibration test 

data”, AIAA Journal, 28, 175-177. 

Wei, F. S. (1990b), “Mass and stiffness interaction effects in analytical model 

modification”, AIAA Journal, 28, 1686-1688. 

West, W. M. (1984), “Illustration of the use of modal assurance criterion to detect 

structural changes in an orbiter test specimen”, Proceedings of Air Force 

Conference on Aircraft Structural Integrity, 1-6.  

Wong, F. S., and Yao, J. T. P. (2001), “Health monitoring and structural reliability 

as a value chain”, Computer-Aided Civil and Infrastructure Engineering, 16, 

71-78. 

Wong, K. Y. (2004), “Instrumentation and health monitoring of cable-supported 

bridges”, Structural Control and Health Monitoring, 11, 91-124. 

Wong, K. Y., Man, D. K. L., and Chan, K. W. Y. (2002), “Thermal load and 

response monitoring of Ting Kau (cable-stayed) Bridge”, Proceedings of the 

International Conference on Innovation and Sustainable Development of 



Ref.-32 

Civil Engineering in the 21st Century, China Civil Engineering Society, 

Beijing, China, 249-252. 

Worden, K., Sohn, H., and Farrar, C. R. (2002), “Novelty detection in a changing 

environment: regression and interpolation approaches”, Journal of Sound and 

Vibration, 258, 741-761. 

Worden, K., Farrar, C. R., Manson, G., and Park, G. (2005a), “Fundamental 

axioms of structural health monitoring”, Structural Health Monitoring 2005: 

Advancements and Challenges for Implementation, Chang, F. K. (editor), 

DEStech Publications, Lancaster, Pennsylvania, 26-41. 

Worden, K., Manson, G., Lord, T. M., and Friswell, M. I. (2005b), “Some 

observations on uncertainty propagation through a simple nonlinear system”, 

Journal of Sound and Vibration, 288, 601-621. 

Wu, D., and Law, S. S. (2004), “Damage localization of plate structures from 

uniform load surface curvature”, Journal of Sound and Vibration, 276, 227-

244. 

Xia, P. Q., and Brownjohn, J. M. W. (2003), “Residual stiffness assessment of 

structurally failed reinforced concrete structure by dynamic testing and finite 

element model updating”, Experimental Mechanics, 43, 372-378. 

Xia, Y., and Hao, H. (2003), “Statistical damage identification of structures with 

frequency changes”, Journal of Sound and Vibration, 263, 853-870. 

Xia, Y., Hao, H., Brownjohn, J. M. W., and Xia, P. Q. (2002), “Damage 

identification of structures with uncertain frequency and mode shape data”, 

Earthquake Engineering and Structural Dynamics, 31, 1053-1066. 

Xia, Y., Hao, H., Zanardo, G., and Deeks, A. (2006), “Long term vibration 

monitoring of an RC slab: temperature and humidity effect”, Engineering 

Structures, 28, 441-452. 



Ref.-33 

Yamazuki, F., Shinozuka, M., and Dasgupta, G. (1988), “Neumann expansion for 

stochastic finite element analysis”, Journal of Engineering Mechanics, ASCE, 

114, 1335-1654. 

Yao, J. T. P. (1979), “Damage assessment and reliability evaluation of existing 

structures”, Engineering Structures, 1, 245-251. 

Yao, J. T. P. (1983), “Damage evaluation for structural reliability assessment”, 

Nuclear Engineering and Design, 75, 205-212. 

Yao, J. T. P. (1985), Safety and Reliability of Existing Structures, Pitman Advanced 

Publication Program, Boston.  

Yao, J. T. P., and Natke, H. G. (1994), “Damage detection and reliability 

evaluation of existing structures”, Structural Safety, 15, 3-16. 

Yeo, I., Shin, S., Lee, H. S., and Chang, S. P. (2000), “Statistical damage 

assessment of framed structures from static responses”, Journal of 

Engineering Mechanics, ASCE, 126, 414-421. 

Yuen, K. V., and Katafygiotis, L. S. (2005), “Model updating using noisy response 

measurements without knowledge of the input spectrum”, Earthquake 

Engineering and Structural Dynamics, 34, 167-187. 

Yun, C. B., and Lee, H. J. (1997), “Substructural identification for damage 

estimation of structures”, Structural Safety, 19, 121-140. 

Zapico, J. L., Gonzalez, M. P., Friswell, M. I., Taylor, C. A., and Crew, A. J. 

(2003), “Finite element model updating of a small scale bridge”, Journal of 

Sound and Vibration, 268, 993-1012. 

Zhang, Q., Lallement, G., Fillod, R., and Piranda, J. (1987), “A complete 

procedure for the adjustment of a mathematical model from the identified 



Ref.-34 

complex modes”, Proceedings of the 5th International Modal Analysis 

Conference, Society for Experimental Mechanics, Bethel, 1183-1190. 

Zhang, Q., and Lallement, G. (1989), “Selective structural modifications: 

applications to the problems of eigensolutions sensitivity and model 

adjustment”, Mechanical Systems and Signal Processing, 3, 55-69. 

Zhang, Q. W., Chang, C. C., and Chang, T. Y. P. (2000), “Finite element model 

updating for structures with parametric constraints”, Earthquake Engineering 

and Structural Dynamics, 29, 927-944. 

Zhang, Z., and Aktan, A. E. (1995), “The damage indices for constructed facilities”, 

Proceedings of the 13th International Modal Analysis Conference, Society 

for Experimental Mechanics, Bethel, 1520-1529. 

Zhao, L., and Shenton, H. W. (2005), “Structural damage detection using best 

approximated dead load redistribution”, Structural Health Monitoring, 4, 

319-339. 

Zhou, J., Feng, X., and Fan, Y. F. (2003), “A probabilistic method for structural 

damage identification using uncertain data”, Structural Health Monitoring 

and Intelligent Infrastructure, Wu, Z. S., and Abe, M. (editors), A.A. Balkma, 

Lisse, 487-492, 

Ziaei-Rad, S., and Imregun, M. (1999), “On the use of regularization techniques 

for finite element model updating”, Inverse Problems in Engineering, 7, 471-

503. 

Zimmerman, D. C. (2006), “Statistical confidence using minimum rank perturbation 

theory”, Mechanical Systems and Signal Processing, 20, 1155-1172. 

Zimmerman, D. C., and Kaouk, M. (1992), “Eigenstructure assignment approach 

for structural damage detection”, AIAA Journal, 30, 1848-1855. 



Ref.-35 

Zimmerman, D. C., and Kaouk, M. (1994), “Structural damage detection using a 

minimum rank update theory”, Journal of Vibration and Acoustics, ASME, 

116, 222-231. 

Zimmerman, D. C., and Simmermacher T. W. (1995), “Model correlation using 

multiple static loads and vibration tests”, AIAA Journal, 33, 2182-2188. 

Zimmerman, D. C., Simmermacher, T. W., and Kaouk, M. (2005), “Model 

correlation and system health monitoring using frequency domain 

measurements”, Structural Health Monitoring, 4, 213-227. 

Zimmerman, D. C., and Smith, S. W. (1992), “Model refinement and damage 

location for intelligent structures”, Intelligent Structural Systems, Tzou, H. S., 

and Anderson, G. L. (editors), Kluwer Academic Publishers, Boston, 

Massachusetts, 403-452.  

Zimmerman, D. C., and Widengren, M. (1990), “Correcting finite element models 

using a symmetric eigenstructure assignment technique”, AIAA Journal, 28, 

1670-1676. 



 A-1

Appendix I 

FIRST-ORDER AND SECOND-ORDER DERIVATIVES OF 

EIGENVALUE AND EIGENVECTOR 

 
 

Many engineering optimization problems, such as optimal design, structural 

modification, and model updating, lead to a sensitivity analysis of the eigenvalue 

problem. The system of equations for eigenvalue problem is expressed as 

( ) 0MK =− ii φλ                           (A-1) 

Letting  

( ) 0MKF =−= iii φλ                       (A-2) 

and then differentiating Equation (A-1) with respect to structural parameter θj yield 
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where 
j

i

θ
λ

∂
∂  and 

j

i

θ∂
∂φ

 are the first-order derivatives of eigenvalue λi and 

eigenvector φi with respect to structural parameter θj, respectively; 
jθ∂

∂K  and 
jθ∂

∂M  

denote the matrices formed by differentiating the elements of K and M with respect 

to structural parameterθj, respectively. 
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First-Order Partial Derivatives 

Pre-multiplying Equation (A-3) by T
iφ  leads to 
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By using orthogonal condition ( ) 0T =− MK ii λφ , the first-order derivative of 

eigenvalue with respect to θj is formulated as 
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Since the eigenvectors form a complete set of n-dimensional vector space, any 

n-component vector can be represented as a linear combination of these eigenvectors. 

Thus the derivatives of eigenvector, 
j

i

θ∂
∂φ

, can be represented as 

∑
=

=
∂
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s
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                          (A-6) 

where N is the total number of degree of freedoms.  

Substituting Equation (A-6) into Equation (A-3) and pre-multiplying both sides of 

Equation (A-3) by ( )iss ≠Tφ  gives 
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Making use of ( ) ( ) ijsis

N

s
sijsis cc λλλ −=− ∑

=1

T φφ MK  as well as 0T =is φφ M , the 
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coefficients ijsc  are 
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Differentiating the equation 1T =ii φφ M  with respect to θj yields 
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Substituting Equation (A-6) into Equation (A-9) one gets 
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The first-order derivative of eigenvector is finally obtained as 
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Second-Order Partial Derivatives 

Differentiating Equation (A-4) with respect to θk, one derives 
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Pre-multiplying Equation (A-12) by T
iφ  yields 
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Likewise, the second-order derivative of eigenvector is expressed as the weighted 

summation of all eigenvectors 
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Following similar manipulation to Equations (A-6) to (A-10), the coefficients cijks for 

the case of is ≠  are 
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In the case of s = i, the expression for coefficient cijks is 
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Substituting Equations (A-15) and (A-16) into equation (A-14) allows the evaluation 

of second-order partial derivative of eigenvector. 
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