

Abstract

The ultimate objective of IR systems is to obtain optimal retrieval effectiveness.

However, the best MAP values of the state-of-the-art IR systems are typically below

35% in the ad hoc automatic retrieval of TREC evaluations. This value is still far

below the theoretical optimal retrieval effectiveness of 100%. In this study, we in-

vestigate whether it is possible to achieve near optimal retrieval effectiveness using

the existing IR systems by formulating effective queries. These effective queries

are called near optimal queries because they lead the IR systems to achieve near

optimal retrieval effectiveness. Our near optimal queries are defined so as not to

include the trivially good effective terms. We propose two strategies, the Idealized

Relevance Feedback, and the Combinatorial Optimization Search, to find the near

optimal queries under some idealized conditions. We have experimented with a

substantial number of query-formulating methods based on the strategies and have

evaluated these by using TREC test collections. The best MAP values of our near

optimal queries for TREC-6, TREC-7 and TREC-8 test collections are 73%, 76%

and 75%, respectively. It appears that a suitable choice of terms and a suitable

choice of weights can substantially enhance the retrieval effectiveness of the exist-

ing IR systems. Based on the observations of the terms in the near optimal queries,

we develop a classifier to estimate a near optimal query. The experimental results

show that our classifier can improve the retrieval effectiveness of the user query in

existing IR systems.

ii

Acknowledgments

I would like to take this opportunity to offer my heartfelt acknowledgments to some

people. This thesis could not be done without their help and support.

Firstly, I would like to especially thank my supervisor, Dr. Robert Luk, for his

help and guidance. The research opportunities, ideas and advice he gave me played

an important role in completing my thesis. A number of discussions with him lead

me towards new and successful research directions. My deepest appreciation for his

encouragement during these years of my master study.

Additionally, I would also like to thank my co-supervisor, Dr. Hong-Va Leong,

for his help and suggestion. He gave me many valuable comments for improving

my research studies. I appreciate his support through my master study.

Furthermore, I would like to thank my family for their never-ending care and

support. This thesis is dedicated to my parents.

Lastly, I must thank my husband and my daughter. They make my life more

meaningful. Their love is the most important support to me.

iii

Contents

1 Introduction 1

2 Effects on system factors 6

2.1 Literature Review . 7

2.1.1 Retrieval Models . 7

2.1.2 Evaluation Measures . 8

2.2 Experimental Setup . 8

2.2.1 Test Collections and Evaluation Measures 9

2.2.2 Implementation of Retrieval Models 10

2.3 Evaluation of our retrieval models 13

2.4 Effects on Retrieval Models . 13

2.5 Establishing the baseline . 15

2.6 Summary . 16

3 Idealized Relevance Feedback Strategy 17

3.1 Literature Review . 18

3.1.1 Optimal Query . 18

3.1.2 Relevance Feedback . 19

3.2 Definition of Idealized Relevance Feedback 22

3.2.1 Definition and Assumptions 24

3.2.2 Greedy Term Selection algorithm 26

3.3 Examining User Bias . 29

iv

3.4 Dimensionality Selection - ω(.) . 31

3.4.1 What dimensions . 32

3.4.2 How many dimensions . 38

3.5 Asymptotic performance . 41

3.6 Positively Weighted Terms . 45

3.7 Negatively Weighted Terms . 50

3.8 Summary . 58

4 Combinatorial Optimization Search Strategy 61

4.1 Background and Literature Review 62

4.2 Modeling the problem of finding an optimal query 63

4.2.1 Problem Description . 63

4.2.2 Objective Function . 63

4.2.3 Cost Function . 64

4.2.4 Neighborhood Function 64

4.2.5 Stopping Criteria . 65

4.3 Hill Climbing Search . 66

4.4 Best First Search . 70

4.5 Simulated Annealing Search . 73

4.6 Combine Search . 76

4.6.1 Methodology . 76

4.6.2 Experiments on Combine Search 79

4.7 Summary . 85

5 Good Query Term Extraction 87

5.1 Background . 88

5.1.1 C4.5 classification method 88

5.1.2 Divergence Measure . 89

5.1.3 k-Fold Cross-Validation 90

5.2 Design of the GQTE . 90

v

5.2.1 Overall Structure . 90

5.2.2 Classification Module . 91

5.2.3 Query Generation Module 92

5.3 Features Selection . 93

5.3.1 General Characteristic . 94

5.3.2 Location Characteristic . 95

5.3.3 Part-Of-Speech Characteristic 100

5.3.4 Sentence Type Characteristic 104

5.3.5 Title Term Characteristic 109

5.3.6 Features used in GQTE . 110

5.4 Implementation of the GQTE . 112

5.4.1 Learning in GQTE . 112

5.4.2 Practice in GQTE . 114

5.5 Summary . 123

6 Conclusions and Future Work 125

Bibliography 129

vi

List of Figures

2.1 The query ratio of 3 types of queries against different relative scores 16

3.1 Greedy term selection algorithm for formulating asymptotic query . 28

3.2 Comparing the MAP with and without user query against the dif-

ferent query sizes to study the user bias assumption (1) 30

3.3 The MAP of 149 term ranking functions ω(.) 37

3.4 The MAP of 7 better term ranking functions ω(.) against the differ-

ent number of top ranked terms . 39

3.5 The MAP of different term ranking functions against the top num-

ber of retrieved documents for long (TDN: in solid lines) and title

(T: in dotted lines) queries. 43

3.6 The MAP of different term ranking functions against the mean re-

call for long (TDN: in solid lines) and title (T: in dotted lines) queries. 44

3.7 The MAP of different term weight normalization schemes against

the different parameter values α:β 47

3.8 The MAP of two better term weight normalization schemes against

the different number of top ranked positive terms 49

3.9 Greedy weighted term selection algorithm for formulating weighted

asymptotic query . 52

3.10 The different subsets of terms extracted from the relevant docu-

ments R and the top j retrieved and non-relevant document Vj . . . 53

vii

3.11 The MAP of negative term selection schemes φ(.) against the dif-

ferent parameter value γ. 55

3.12 The MAP of IRF with negative term selection schemes against the

different number of top nN ranked negatively weighted terms. . . . 57

4.1 Cost Function . 64

4.2 Neighborhood function . 65

4.3 Hill Climbing Search for finding the near optimal query 67

4.4 Comparing the R-prec with two different starting points against the

different query sizes . 68

4.5 Comparing the R-prec with two different starting points against the

different sizes of the relevant document set 68

4.6 Comparing the query size with two different starting points against

the different sizes of the relevant document set 69

4.7 Best First Search for finding the near optimal query 71

4.8 Comparing the R-prec with two different starting points against the

different query sizes . 72

4.9 Comparing the R-prec with two different starting points against the

different sizes of the relevant document set 72

4.10 Comparing the query size with two different starting points against

the different sizes of the relevant document set 73

4.11 Simulated Annealing Search for finding the near optimal query . . . 75

4.12 Combined Term Method . 78

4.13 The overall search flow in Combine Search 79

4.14 The search flow of one stage in Combine Search 80

4.15 Combine Search for finding the near optimal query 81

4.16 Comparing the R-prec against the query size and the number of

relevant documents . 84

viii

4.17 Comparing the query size against the number of relevant documents

and the number of unique terms in the relevant document set 84

5.1 The mechanism of the Good Query Term Extractor 91

5.2 The performance of the classification module in GQTE against the

different confidence levels . 116

5.3 The MAP of the GQTE . 119

5.4 The R-prec of the GQTE . 120

5.5 The prec@30 of the GQTE . 121

5.6 The retrieval effectiveness of different merge list methods against

two confidence levels and three test collections 124

ix

List of Tables

2.1 A summary of our test collections 10

2.2 Comparing the MAP values of our four retrieval models and those

known in TREC by using TDN queries 14

2.3 The thresholds for the three test collections and the three types of

queries . 15

3.1 IRF Assumptions . 26

3.2 Inter-document basis term ranking functions ω1(t) 33

3.3 Intra-document basis term ranking functions ω2(t) 34

3.4 Summary of the performance for the better term ranking functions . 36

3.5 The MAP of query with size of 100 and the best query size in each

topic . 40

3.6 The MAP of our IRF and the best known ad hoc retrieval results in

TREC . 40

3.7 Different term weight normalization schemes 46

3.8 The MAP of top 175 positive terms and the best query size in each

topic using the best term weight normalization scheme 48

3.9 The MAP of our IRF with Unweighted Terms and Positively Weighted

Terms with fixed query size . 50

3.10 Different negative term selection schemes φ(.) based on different

subsets of terms appearing in R and Vj 54

x

3.11 The MAP of top 250 negative terms and the best query size in each

topic using the best negative term selection scheme 58

3.12 The MAP of our IRF with unweighted terms, positively weighted

terms and negatively weighted terms with fixed query size 58

4.1 Summary of the performance of the Combine Search method 80

5.1 Term weight schemes for reformulating the user query with esti-

mated ‘Good’ query terms . 93

5.2 General Characteristics . 96

5.3 Location Characteristic - (1) Paragraph Based 98

5.4 Location Characteristic - (2) Paragraph and Sentence Based 99

5.5 Location Characteristic - (3) Paragraph and Words Based 100

5.6 Part-Of-Speech Characteristic - (1) Whole Document Based 101

5.7 Part-Of-Speech Characteristic - (2) Paragraph Based 102

5.8 Part-Of-Speech Characteristic - (3) Paragraph and Sentence Based

<part 1> . 103

5.9 Part-Of-Speech Characteristic - (3) Paragraph and Sentence Based

<part 2> . 104

5.10 Part-Of-Speech Characteristic - (3) Paragraph and Sentence Based

<part 3> . 105

5.11 Part-Of-Speech Characteristic - (4) Paragraph and Words based . . . 105

5.12 Sentence Type Characteristic - (1) Whole Document Based 106

5.13 Sentence Type Characteristic - (2) Paragraph Based 107

5.14 Sentence Type Characteristic - (3) Whole Document and POS Based 107

5.15 Sentence Type Characteristic - (4) Paragraph and POS Based <part

1> . 108

5.16 Sentence Type Characteristic - (4) Paragraph and POS Based <part

2> . 108

xi

5.17 Sentence Type Characteristic - (4) Paragraph and POS Based <part

3> . 109

5.18 Title Term Characteristic . 110

5.19 A summary of the features used for the classification module in GQTE111

5.20 Four datasets for training the classifier in GQTE 113

5.21 The cross training process of the dataset containing TREC-6, 7 and 8 114

5.22 The average precision and recall of the top 10 retrieved documents

of the title queries . 117

5.23 Merge list method for reorganizing the current retrieval list A with

the retrieval list of the title query B 122

6.1 Summary of our best performance 128

xii

Chapter 1

Introduction

An optimal query is a query that precisely retrieve all the relevant documents of a

user’s information needs (also known as a topic) from a pool of documents (also

known as a collection). In other words, when an optimal query is used, an Infor-

mation Retrieval (IR) system will achieve optimal retrieval effectiveness (i.e., Mean

Average Precision (MAP) is 100%). Achieving optimal retrieval effectiveness is

the ultimate objective of IR systems. However in practice, the best MAP values

of existing IR systems are typically below 35% in the English ad hoc automatic

retrieval of Text REtrieval Conference (TREC). If manual intervention is allowed

in the retrieval process so as to provide relevance information to the IR system,

the best MAP values are typically between 40% and 60% in the TREC evaluations

[VH98, VH99, VH00]. These values are still far below 100%.

The potential causes of the poor retrieval effectiveness in existing IR systems in-

clude system factors, query factors and practical limitation factors. System factors

refer to the algorithms of an IR system. Query factors refer to the selection of query

terms. Practical limitation factors refer to the limitations when an IR system works

in practice, such as the number of top ranked documents that a user is willing to

examine. Suppose some or all of the practical limitations can be overcome in ideal-

ized situations. Then, if one or more optimal queries on a given topic can be found,

it will reveal that the main cause of the poor retrieval effectiveness in an existing IR

system is not the system factor but the query factor. Therefore, the principal future

1

research question of IR systems is to examine how to find the right query terms

with the right weights. Conversely, if we cannot find any optimal queries in such

idealized situations, it will reveal that the main cause is the system factor. In this

case, the principal future research question is to examine how to enhance existing

IR models.

Two theoretical methods can be used to find the optimal queries on a given topic.

Salton’s optimal query [Sal71, SB88, Sal89] is a well-known method that uses Rel-

evance Feedback (RF) to approximate the optimal query. The basic idea is to give

positive weights to the terms in relevant documents and to give negative weights to

the terms in non-relevant documents. Although research has discussed how Salton’s

optimal query can be applied in information retrieval [RHP81, Kwo87], little has

been reported on how Salton’s optimal query can be achieved in practice [BH03],

even though more test collections from TREC and NTCIR are now available. The

other straightforward method to find the optimal queries is to simply try every single

possible subset of terms in the collection. However, this is very time consuming,

especially for a large collection.

Our work differs from the above theoretical methods in the following ways:

firstly, we report a systematic and practical study on achieving Salton’s optimal

query in different idealized RF situations. Secondly, we propose to investigate the

near optimal queries based on the view of the combinatorial optimization. That

is, the problem of finding an optimal query can be considered as the problem of

searching the best combination of terms out of all the combination of terms in all

the relevant documents with binary term weights. We propose to apply some local

search algorithms to find the optimal queries within polynomial bounded compu-

tation times. In addition, in order to prevent trivial high retrieval effectiveness in

practice, we restrict our study to examine the terms that occur in more than one

document in the relevant document set (i.e., the document frequency of the selected

query term should be larger than one). The optimal queries obtained in such a situ-

ation are so-called near optimal queries in our study.

2

The primary objective of this study is to investigate how to find and estimate

near optimal queries. More specifically, we will:

• determine the main cause of the poor retrieval effectiveness in existing IR

systems;

• apply Salton’s optimal query as well as Relevance Feedback to find the near

optimal queries;

• find the near optimal queries based on the view of the combinatorial opti-

mization search;

• investigate what and how the near optimal query terms and associated weights

would lead to the near optimal retrieval effectiveness;

• develop a mechanism to estimate the near optimal queries of a user’s infor-

mation needs.

The main contributions of this dissertation are as follows:

• Most of the near optimal queries about the topics in our test collections have

been found under some idealized situations. It appears that the main cause of

the poor retrieval effectiveness in existing IR systems is the query factor. We

believe that a suitable choice of terms and a suitable choice of weights can

substantially enhance the retrieval effectiveness of existing IR systems.

• A systematic and practical study of the impact of different idealized Rele-

vance Feedback situations (which is called IRF in our study) on finding the

near optimal queries is reported. Our IRF performs statistically significantly

better than the corresponding practical RF which is constrained by the set of

practical limitations.

• Many term ranking functions are examined and some novel term ranking

functions are proposed in order to provide a better ranked list for term se-

lection.

3

• A Combined Search method is proposed that can be used to find the near

optimal queries faster than our simulated annealing method. This method

achieves better retrieval effectiveness than our IRF.

• Many characteristics of the near optimal query terms are examined and dis-

cussed.

• A Good Query Term Extractor (GQTE) is proposed that can be used to esti-

mate the near optimal query regarding a user’s information need.

• A novel method to define the query size by the GQTE’s confidence value is

introduced. The query size will be different for different topics.

A review and comparision of four existing IR models is given in Chapter 2 that

illustrates that the main cause of the low retrieval effectiveness in existing IR sys-

tems may not be the system factor. Moreover, Chapters 3 and 4 examine the effects

on the query factors and the practical limitation factor by finding the near optimal

queries in idealized situations. In Chapter 3, our IRF is proposed to approximate

the near optimal queries in idealized situations. Five idealized assumptions are

explored, and several issues related to RF are examined, such as what terms to se-

lect and how many terms to select in each relevance feedback cycle. In Chapter

4, a novel Combined Search method is introduced to find the near optimal queries

based on the concepts of Combinatorial Optimization Search. The performance of

our Combined Search method is compared with several well known Combinatorial

Optimization Search methods, such as Hill Climbing, Best First Search and Simu-

lated Annealing. The experimental results in Chapters 3 and 4 tell us that the main

cause of the low retrieval effectiveness in existing IR systems is the query factor.

Additionally, in order to investigate how to find the effective query terms with the

effective weights, Chapter 5 explores the characteristics of those near optimal query

terms that there achieved in Chapters 3 and 4. Based on these observations, Chapter

5 further introduces a novel Good Query Term Extractor that can be used to estimate

4

the ‘Good’ query terms, and to generate the estimated near optimal query about a

user’s information needs. Several term weight schemes and confidence levels are

examined to decide the suitable query weights and query size. Finally, Chapter 6

concludes with suggestions some possible further developments.

5

Chapter 2

Effects on system factors

This chapter focuses on examining the effects on the system factors, which is one

of the potential causes of the poor retrieval effectiveness in existing IR systems.

This chapter begins by reviewing various state-of-the-art retrieval models in IR lit-

erature, as well as several evaluation measures for retrieval effectiveness. Then in

Section 2.2, we describe the experimental set up, including our test collections,

evaluation measures and our IR system with four state-of-the-art retrieval models.

This environment is used for the subsequent experiments in this study. Section 2.3

illustrates that our retrieval models perform as well as those in TREC. Section 2.4

examines the effects on the system factors by investigating the correlation between

query performance and retrieval models. The experimental results tell us that the

main cause of the poor retrieval effectiveness in existing IR systems may not be the

system factors. Furthermore, the experiments in Section 2.5 help us to establish our

baseline retrieval model and our baseline retrieval effectiveness for the subsequent

experiments in this study. Finally, a summary of this chapter is given in Section 2.6.

6

2.1 Literature Review

It this section, two kinds of literature reviews are given. Firstly, several retrieval

models in theoretical IR are reviewed and the corresponding state-of-the-art re-

trieval systems are introduced. Then, some evaluation measures of retrieval ef-

fectiveness are discussed.

2.1.1 Retrieval Models

Three major theoretical retrieval models in IR are Boolean Model, Vector Space

Model and Probabilistic Model. The Boolean Model is based on set theory and

Boolean algebra, in which the documents are sets of terms and queries are Boolean

expressions of terms. Roughly speaking, the Boolean Model only retrieves the ex-

actly matched documents. Therefore, few participants of TREC use the Boolean

Model. In the Vector Space Model (VSM), both documents and queries are vectors

over a set of term weights. The similarity of a document vector to a query vector

is equal to the cosine of the angle between them. There are many systems using

VSM that have achieved outstanding performance in TREC, such as the SMART

system [Sin97]. The Probabilistic Model uses probability theory to model the un-

certainty in the retrieval process, in which the documents are ranked in decreasing

order of probability of relevance to the query. Logistic Regression Model (LR),

Pircs Retrieval Model (PIRCS) and 2-Poisson Model are three famous examples

of the Probability Model. LR [GC97] estimates the weights of the Bayesian proba-

bilistic model in a principled manner by using regression to model the dependencies

among the data, whereas PIRCS [KGX97] calculates the document weight as a lin-

ear weighted sum of the activation of query terms and documents in a conceptual

network of query terms, index terms and documents. The 2-Poisson Model uses the

2-Poisson distribution to model the dependencies among the data. The 2-Poisson

Model with BM25 [WRB+97] is a model that has often shown to perform well at

TREC, and to perform better than other retrieval models.

7

2.1.2 Evaluation Measures

Precision and recall are two common evaluation measures for retrieval effectiveness

in IR. Precision is a measure of the ability of an IR system to present only relevant

documents. It is computed by the number of relevant documents retrieved and then

divided by the total number of documents retrieved, whereas, the recall is a mea-

sure to present all relevant documents. It is calculated by the number of relevant

documents retrieved and then divided by the number of relevant documents in the

collection.

Mean Average Precision (MAP) and R-precision (R-prec) are two popular eval-

uation measures used in TREC. MAP is the average of the precision values obtained

after each relevant document is retrieved. It is helpful to compare the performance

of different systems when the retrieved results are a ranked list of documents. For

example, consider a query that has three relevant documents which are retrieved at

ranks 1, 2 and 4. The precision obtained when each relevant document is retrieved

is 1, 1 and 0.75 respectively, the mean of which is 0.92. Therefore, MAP for this

query is 0.92.

R-prec is the precision after R documents have been retrieved, where R is the

number of relevant documents for the topic. It de-emphasizes the exact ranking of

the retrieved relevant documents, which can be useful when there are large numbers

of relevant documents in the collection. For example, assume the number of relevant

documents for a topic is three. If the query returns 2 relevant documents in the top

3 documents for the topic, then the R-prec for this query is 0.67.

2.2 Experimental Setup

In this section, the test collections and the evaluation measures in our experiments

are introduced. Our indexing method of the terms in collection is mentioned. Four

types of state-of-the-art retrieval models in IR are discussed and implemented for

8

subsequent experiments.

2.2.1 Test Collections and Evaluation Measures

The test collection in TREC is the most commonly used collection in IR research.

It can be used to evaluate the performance of an IR system by using the test topics

and the corresponding offical retrieval results. In general, there are two main tasks

in TREC: the ad hoc task, and the routing task. The ad hoc task investigates how the

IR system uses standing queries to search for new documents, whereas the routing

task investigates how the IR system searches for a static set of documents using new

topics. In our study, we use the ad hoc task rather than the routing task because we

focuses on examining how to formulate the effective queries rather than on how to

cluster the documents. In order to have more observation points and to investigate

the effects on different collections, three of the TREC collections in English ad hoc

tasks are selected for our experiments: TREC-6, TREC-7 and TREC-8.

The TREC collection in ad hoc task includes three parts: documents, topics

and relevance judgments. There are 556,077 documents in TREC-6 (nearly 2139

megabytes), and a subset of 528,155 documents in both TREC-7 and TREC-8

(nearly 1904 megabytes). The TREC-6 test collection contains Congressional Records

documents that are not found in TREC-7 and TREC-8. Additionally, each test col-

lection contains 50 topics. The topic represents the information need of the user.

This includes three sections: Title field (T), Description field (D), and Narrative

field (N). The common methods to formulate the user query are: long query, which

uses all the fields in the topic (i.e., TDN query); and title query, which uses the title

field only (i.e., T query). Furthermore, the relevance judgments include a set of

official relevant documents for each topic. Detailed information is shown in Table

2.1. It should be noted that the stop words are excluded in any type of measures

regarding the number of terms.

Two evaluation measures, MAP and R-precision, are used for our experiments.

9

TREC-6 TREC-7 TREC-8
Collections

Total number of documents 556077 528155 528155
Total number of unique terms 2049150 1791942 1797942

Relevant Documents
Avg number of documents 92 93 95
Avg number of unique terms 8725 6523 6987

Queries
Avg number of terms in T 2 2 2
Avg number of terms in TDN 57 37 37

Table 2.1: A summary of our test collections

In addition, our experiments index the documents using strings between two space

characters as index terms. Unwanted words are filtered using a list of 441 stop

words, and candidate index terms are stemmed by the Porter stemming algorithm

[Por80].

2.2.2 Implementation of Retrieval Models

We have implemented four types of state-of-the-art retrieval models in IR: VSM

with pivoted unique normalization, LR, PIRCS and 2-Poisson Models with BM25,

to examine whether different retrieval models will perform substantial differently

or similarly, and to demonstrate that the poor retrieval effectiveness of these state-

of-the-art retrieval models is not caused by our implementation skills. In addition,

Pseudo Relevance Feedback (PRF), collection enrichment and merge list method-

ologies are not used in our experiments because we want to examine direct retrieval

effectiveness. Otherwise, techniques of selecting terms in the top ranked documents

or from other collections may have an unknown impact on the evaluations.

Vector Space Model

Our VSM uses the pivoted unique normalization [SBM96] to compute the similarity

score sim(d, q) (also known as document weighting function) between the query q

10

and the document d as follows:

sim(d, q) =
∑

t∈q

ω(d, t) +
∑

t∈q

ω(q, t) (2.1)

where,

ω(d, t) = Lnu =
1 + log(TF(d, t))

1 + log

∑

d∈C

TF (d, t)

‖C‖1

×
1

1− δ + δ × ‖d‖1

4

ω(q, t) = TF (q, t)

where ω(d, t) is the document weighting function and ω(q, t) is the query weight-

ing function. TF (d, t) and TF (q, t) are the term frequency of the term t in the

document d and in the query q, respectively. δ is the slope and is set to 0.2 in our

experiments. ‖d‖1 is the City-Block length of the document d (i.e., the number of

terms in the document d), and ‖C‖1 is the City-Block length of the collection C. 4

is the pivot which is the mean number of terms in a document (i.e.,4 =
P

d∈C ‖d‖1

card(C)
),

card(C) is the number of documents in the collection C. This similarity calculation

is the same as the one used by AT & T in TREC [Sin97] except the query weighting

function. We use the query term frequency as the query weights rather than using

ltu formula (i.e., ltu =
∑

t∈q(1 + log(TF(q, t))) × log(card(C)+1
DF (C,t)

) × 1

1−δ+δ×
‖q‖1
4

,

where DF (C, t) is the number of documents in the collection C containing term t).

Logistic Regression Model

The similarity function of our LR is similar to UC Berkeley’s at TREC [GC97]. The

formula is shown in Equation 2.3 where ‖q‖1 is the City-Block length of the query

q:

sim(d, q) =
1

1 + e− log O(R|d,q)
(2.2)

11

where,

log O(R|d, q) = −3.51 +
1

√

card(C) + 1
Φ + 0.0929× card(C)

Φ = 37.4×
∑

t∈q

TF (q, t)

‖q‖1 + 35

+ 0.33×
∑

t∈q

log
TF (d, t)

‖d‖1 + 80

− 0.1937×
∑

t∈q

log

∑

d∈C

TF (d, t)

‖C‖1

Pircs Retrieval Model

Our PIRCS is similar to PIRCS at TREC [KGX97]. In order to ignore the effect on

the query terms, we simply set α = 1:

sim(d, q) = α
∑

t∈q

(

1

1 + e−TF (q,t)
× ω(d, t)

)

+(1−α)
∑

t∈q

(

1

1 + e−TF (d,t)
× ω(q, t)

)

(2.3)

where,

ω(d, t) = log









TF (d, t)

‖d‖1 − TF (d, t)
×

‖C‖1 − ‖d‖1 −
∑

d∈C

TF (d, t) + TF (d, t)

∑

d∈C

TF (d, t)− TF (d, t)









ω(q, t) = log









TF (q, t)

‖q‖1 − TF (q, t)
×

‖C‖1 −
∑

d∈C

TF (d, t)

∑

d∈C

TF (d, t)









2-Poisson Model

There are many variations of 2-Poisson Model, such as using BM11 or BM25

weighting function. We use the Okapi BM25 weighting function [WRB+97] to

compute the document weight and use Euclidean distance to calculate the docu-

ment length. Moreover, we use the similarity function in ACSys [HTC97] rather

12

than in OKAPI because ACSys has achieved the best results in TREC-6. We set

α = 1 and β = 1 in our experiments and named this model BM25:

sim(d, q) =
∑

t∈q

ω(d, t)× TF (d, t)

α×
(

1− β + β × ‖d‖eu

‖d‖eu/‖d‖1

)

+ TF (d, t)
(2.4)

where,

ω(d, t) = log

(

card(C)−DF (t) + 0.5

DF (t) + 0.5

)

2.3 Evaluation of our retrieval models

This section illustrates that our retrieval models are similar to the current state-of-

the-art retrieval models in TREC. This experiment uses TDN queries to investi-

gate the retrieval effectiveness of our four retrieval models: VSM, LR, PIRCS and

BM25. The reason for choosing TDN queries is because these are usually the better

retrieval effectiveness queries than their corresponding title queries.

The comparison of the retrieval effectiveness of our retrieval models and those

known in TREC is shown in Table 2.2. This comparison is based on using the

same techniques in automatic ad hoc retrieval, such as no PRF and no document

enrichment methods were applied. The dashes shown in Table 2.2 refers to no

related results in TREC. From Table 2.2 we can see that the MAP values of our

retrieval models are near to those known in TREC. Therefore, it is believed that our

implementations of the retrieval models are similar to those in TREC. Moreover,

our VSM achieves 0.231, 0.236 and 0.273 MAP value in TREC-6, TREC-7 and

TREC-8, respectively. This illustrates that the performance of our VSM is both

stable and is comparable to the existing system.

2.4 Effects on Retrieval Models

This section examines whether different retrieval models will perform substantially

differently or similarly, as well as illustrates that the main cause of the poor retrieval

13

TREC-6 TREC-7 TREC-8
Models Known Ours Known Ours Known Ours
VSM 0.218 0.231 0.218 0.236 0.259 0.273
LR 0.205 0.198 - 0.199 - 0.255
PIRCS - 0.229 0.214 0.219 - 0.256
BM25 0.246 0.241 0.248 0.236 - 0.284

Table 2.2: Comparing the MAP values of our four retrieval models and those known
in TREC by using TDN queries

effectiveness in existing IR systems may not be the system factors. If the retrieval

effectivenesses of the same queries in different retrieval models are correlated, this

may imply that the poor/good retrieval results are not necessarily caused by the

models, but can be caused by the queries.

This experiment uses a novel evaluation measure the relative score RS(q), to ex-

amine the correlation query performance among the retrieval models. The equation

of the relative score is shown in Equation 2.5, in which ‖M‖1 is the total number of

the test retrieval models M , whereas, RC(q) is the number of the retrieval models

that achieve better or equal MAP values than a threshold value using the query q.

This threshold value is defined as the average MAP value of 50 topics in the collec-

tion by using one of the test retrieval models. If the relative score is equal to 1 or

-1, it means that all of the retrieval models achieve good retrieval effectiveness or

poor retrieval effectiveness, respectively. Therefore, if there are many queries that

achieve 1 or -1 value, it reveals that the test retrieval models perform similarly:

RS(q) =
2RC(q)− ‖M‖1

‖M‖1
(2.5)

In this experiment, four retrieval models: VSM, LR, PIRCS and VSM; three test

collections: TREC-6, 7 and 8; and three types of query: T, TD and TDN (totally

150 queries for each query type) are used, where TD and TDN are long queries

that are produced by concantenating the title with the description field and with the

description together with the narrative field of the topic, respectively. The threshold

14

TREC-6 TREC-7 TREC-8
T 0.211 0.185 0.247
TD 0.213 0.203 0.272
TDN 0.231 0.236 0.273

Table 2.3: The thresholds for the three test collections and the three types of queries

values used in this experiment are shown in Table 2.3. These values are the average

MAP values of 50 topics in each collection by using the VSM model. Since the

current number of retrieval models ‖M‖1 is four, if the query q achieves better or

the same threshold value in 4, 3, 2, 1, 0 retrieval model(s), the relative score RS(q)

will equal to 1, 0.5, 0, -0.5, -1, respectively.

The query ratio of 3 types of queries against different relative score values

RS(q) is shown in Figure 2.1. This query ratio is defined as the number of queries

divided by 150. From the figure we can see that most of the queries achieves

RS(q) = −1 (i.e., above 50%), and RS(q) = 1 (i.e., above 30%) for T, TD or TDN

queries. In other words, a good majority (i.e., 80%) of the queries that achieved

good or poor MAP values are independent of the use of different retrieval models.

Thus, we believe that the main cause of the poor retrieval effectiveness in existing

IR systems may not be the system factors.

2.5 Establishing the baseline

Section 2.4 illustrated that the good or poor MAP values are independent of the use

of our retrieval models. This implies that we can choose one of our retrieval models

as the baseline model for the subsequent experiments. According to the experiment

results in Section 2.3, our VSM achieves similarly good retrieval effectiveness com-

pared with other test retrieval models and state-of-the-art VSM systems in TREC.

Therefore, we choose our VSM as our baseline retrieval model for the subsequent

experiments in this study.

15

Figure 2.1: The query ratio of 3 types of queries against different relative scores

2.6 Summary

In this chapter, we have described our experimental setup as well as our four state-

of-the-art retrieval models. We have illustrated that our retrieval models are per-

forming as good as those in TREC. Also, the results on examining the correlation

between query retrieval effectiveness and different retrieval models tell us that the

queries achieved good or poor MAP values independent of the use of different re-

trieval models. This reveals that the main cause of the poor retrieval effectiveness

in existing IR systems may not be the system factors. Therefore, we will mainly fo-

cus on examining the query factors and practical limitation factors in the following

chapters. Finally, we have decided to use our VSM as the baseline retrieval model

for the subsequent experiments in this study.

16

Chapter 3

Idealized Relevance Feedback

Strategy

After examining the effects on the system factors in Chapter 2, this chapter focuses

on examining the effects on the query factors and the practical limitation factors,

which are the other two potential causes of the poor retrieval effectiveness in ex-

isting IR systems. We believe that if some or all of the practical limitations can be

overcome in idealized situations and if one or some optimal queries on a given topic

can be found, it will reveal that the main cause of the poor retrieval effectiveness

in existing IR systems is the query factor. Therefore, this chapter is devoted to the

study of finding the optimal queries in idealized situations.

This chapter begins with a review of various definitions of optimal query, as

well as the approximation methods in the IR literature. Then a detailed review on

Relevance Feedback (RF) is given. RF is one of the most well-known methods to

approximate Optimal Query and is used in this chapter. Afterwards, Section 3.2

describes the definitions of our approximation method, called Idealized Relevance

Feedback (IRF). Five related assumptions for relaxing the practical limitations are

given and are examined in turn. First, Section 3.3 examines the impact of the user

bias assumption (1) by comparing the effects of having and not having user query

terms on retrieval effectiveness. Second, Section 3.4 examines the dimensional-

ity reduction assumption (2) by comparing the effects of different term selection

17

functions and different query sizes on retrieval effectiveness. Third, Section 3.5 ex-

amines the asymptotic assumption (3) by comparing the retrieval effectiveness of

IRF and practical RF. Then, Section 3.6 examines the unweighted assumption (4)

by investigating the effects of positively weighted terms on retrieval effectiveness.

Next, Section 3.7 examines the non-negative weight assumption (5) by exploring

the effects of negatively weighted terms on retrieval effectiveness. Finally, Section

3.8 summarizes the findings in this chapter.

3.1 Literature Review

This section begins by introducing three different definitions of the optimal query

in IR literature. This is followed by reviewing Relevance Feedback, which is one of

the methods used to approximate the optimal query.

3.1.1 Optimal Query

The optimal query can be defined differently according to different retrieval models

in IR, such as the Boolean Model, Vector Space Model and Probabilistic Model.

From the view of the Boolean Model, the optimal query can be defined as a set

of Boolean expressions of terms which will exactly match all the known relevant

documents, whereas, from the view of the Probabilistic Model, the optimal query

can be defined as ”one which will recover all the known relevant documents of a

query in their best probability of relevance ranking” [Kwo87]. The most popular

definition of optimal query is in the view of the Vector Space Model and was first

proposed in the SMART system by Salton [Sal71], in which the optimal query is

defined as a vector which maximizes the difference in query-document correlation

between relevant and non-relevant document subsets. If we use cosine correlation

between two vectors as the distance function to calculate query-document correla-

tion, then the optimal query can be defined as in Equation 3.1, which is also called

18

Salton’s Optimal Query qs.

qs =
1

card(R)

∑

d∈R

d

‖d‖1
−

1

card(S)

∑

d∈S

d

‖d‖1
(3.1)

where d is the document vector, R and S are the set of all the relevant documents

(vectors) and all the non-relevant documents (vectors) for a particular topic, re-

spectively. card(.) returns the number of documents in the set. The researchers

[Sal71, Roc71] proposed that using Relevance Feedback with respect to retrieval

output can approximate this optimal query.

3.1.2 Relevance Feedback

Relevance Feedback (RF) is a popular and effective query reformulation technique

for improving retrieval effectiveness since its initial conception by Rocchio [Roc71,

Rob90] in the 1960’s. RF is used as a mechanism to estimate the practical best

retrieval effectiveness (called performance limits of retrieval in our study) of auto-

matic ad hoc retrieval [Wil96, VH98] because RF has been demonstrated to enhance

retrieval effectiveness in many studies.

RF modifies the query iteratively, based on the user’s judgments of the top re-

trieved documents. This approach is based on two hypotheses: firstly, some of the

retrieved documents are relevant documents; and secondly, the term-weight vectors

of the documents identified as relevant to a given query have similarities among

themselves. Furthermore, it is assumed that non-relevant documents have term-

weight vectors that are not similar to the ones for the relevant documents. There-

fore, reformulating the query with relevance information can shift the query vector

toward the term-weight vector space of the relevant documents. According to Salton

[Sal71] and some variations proposed by Rocchio [Roc71], the query vector qm at

the m-th RF iteration is defined as in Equation 3.2, in which qm−1 is the previous

query vector which is generated at the (m − 1)-th RF iteration, Um and Vm is the

set of relevant documents (vectors) and the set of non-relevant documents (vectors)

19

identified by the user up to the m-th iteration for a particular topic, respectively, and

α, β and γ are parameters. Rocchio [Roc71] proposed to set α = 1 and β > γ. This

is because firstly, he believed that the previous query vector (i.e., original query)

contained important information that should not be removed. Secondly, he believed

that the information in the relevant documents is more important than the informa-

tion in the non-relevant documents. A variant which is proposed by Ide [Ide71] sets

equal weights to the previous query vector, retrieved and relevant document vectors

and retrieved and non-relevant document vectors (i.e., α = β = γ = 1) and ignores

card(Um) and card(Vm), According to the experimental results from Salton and

Buckley [SB90], Ide’s method achieves better retrieval effectiveness than others:

qm ≡ αqm−1 +
β

card(Um)

∑

d∈Um

d−
γ

card(Vm)

∑

d∈Vm

d (3.2)

It is well known that it takes time and effort to obtain relevance judgment from

users. Therefore, another more efficient and automatic approach is called Pseudo

Relevance Feedback (PRF), which assumes that the top ranked documents retrieved

are relevant, so that user judgments are not needed. PRF is the most popular query

expansion method in blind feedback or automatic ad hoc retrieval. However, it is

difficult to decide the number of top ranked documents [Har92].

With respect to term selection, it is obvious that Equation 3.2 uses all the terms

in retrieved relevant documents Um and retrieved non-relevant documents Vm to

formulate the query qm+1 is very time consuming. Harman [Har92] have illustrated

that the queries expanded with 20 terms can achieve better retrieval effectiveness

than the queries expanded with all the terms in the retrieved relevant documents.

This means that we need a good term selection method to select the good effective

terms from the relevant and non-relevant documents. In fact, there are many term se-

lection methods proposed in the IR literature [YLC76, All96, RHP81, SB88, SB90,

Eft93, Dun97, CR02, FWX04, CL04, KK04, GL04]. We simply classify them into

three classes:

20

• Manual Selection: in this method, those selected terms are decided by the

users. It seems that this is a good term selection approach because users

know what they want. However, Magennis and van Rijsbergen [MR97] have

shown that Manual Selection is not a particularly good approach because the

user cannot understand the exact term distribution in the collection. Even for

the experienced user, he also cannot always produce the best selection. There-

fore, Manual Selection may not be able to obtain good retrieval performance

consistently for all queries.

• Top-N: this is an automatic and effective approach to select the terms based

on top ranked significant terms. This significance of a term can be calcu-

lated in many manners. The most popular method is TF-IDF [SB88], where

TF [Luh58] denotes the term frequency property that is local and content-

oriented to relevant documents, while IDF [Jon72] denotes the inverse docu-

ment frequency that is global and discrimination-oriented for the collection.

However, this method is sensitive to the size of relevant documents [MO01].

Several enhancements are proposed, such as [Kwo96] which normalizes the

size of relevant documents to reduce the sensitivity, and W4 (i.e., F4) [RJ76]

which normalizes the size of both relevant documents and collection. An-

other method applies the information gain concept to select significant terms

[CMRB01, HMIH99]. In our study, we explore and propose many term selec-

tion methods for the Top-N approach because we believe that this approach

is a stable, efficient and effective approach.

• Clustering: Top-N approach will carry a risk when selecting the terms which

are not directly related to the user information need but appear frequently in

relevant documents. This will happen if the relevant documents have multiple

topics but only one of the topics is related to the user information need. In

this case, Clustering is a useful approach to solve this problem. The basic idea

of Clustering [AF77] is to cluster the relevant documents into several topics,

21

and then select all the terms from the cluster, which is most related to the user

information need, to formulate the new query. Instead of using one topic in

the relevant documents, [XC96] have proposed to use the noun group which

is in the top ranked passage of the relevant documents, and [LAJ01] have

proposed to use the summary of the relevant documents, both of them have

achieved improved results. However, we do not consider Clustering approach

in our study because we want to examine the retrieval effectiveness of the IR

model without any pre-processing techniques.

3.2 Definition of Idealized Relevance Feedback

We propose to use RF in idealized situations to find the optimal query. Here, ‘ide-

alized’ means that some of the relevance feedback constraints have been relaxed or

some of the practical limitations have been overcome. For example, we assume that

all the relevant documents are discovered as the number of iterations of RF tends

to infinity. This assumption is likely to be valid by two approaches: (1) if the user

examines the entire retrieval list rather than just the top ten or twenty documents in

each RF iteration. Such RF in idealized situations is called Idealized RF (IRF) in

our study. Or (2) if Pseudo RF (PRF) has a classifier that identifies all relevant doc-

uments from the entire retrieval list without errors. Such PRF in idealized situations

is called Idealized PRF (IPRF).

We are interested in examining the retrieval effectiveness of IRF as well as IPRF

in this chapter for several reasons:

1. If IRF or IPRF can achieve near optimal retrieval effectiveness, it means that

the main cause of the poor retrieval effectiveness in existing IR systems is the

query factor. Therefore, the principal future research question of IR systems

is to examine how to find the effective query terms with appropriate weights.

2. If IRF performs substantially better than the corresponding practical RF, it

22

may be worthwhile investigating how to reduce the practical limitations of

RF. However, there is neither a theoretical nor a practical quarantee that IRF

will perform better than RF. We formulate our IRF hypothesis for verification

as follows:

IRF Hypothesis (1): The retrieval effectiveness of IRF is at least

as effective as its practical RF version.

3. If the IRF Hypothesis (1) is confirmed, this naturally leads to the IPRF hy-

pothesis stated without proof:

IPRF Hypothesis (2): The retrieval effectiveness of IPRF is at least

as high as that of its practical PRF version.

4. If the IRF Hypothesis (1) is confirmed, it would be less labor intensive and

better to estimate retrieval effectiveness limits using IRF rather than using RF.

In some TREC workshops, RF is used to estimate the performance limits of

ad hoc retrieval (e.g., [VH98]). However, due to user idiosyncrasies and the

information gap between the user’s knowledge and the information in the doc-

uments, the user may not be making the identical relevance judgment as the

TREC evaluators. The amount of user effort is also limited. Therefore, there

is some potential that IRF provides an alternative method to estimate the per-

formance limits of automatic ad hoc retrieval because the relevant judgement

is hard in the TREC evaluations.

5. If IRF performs substantially better than practical RF, it may be possible to

build test collections by using an approximation of IRF. It would allow the

formulation of a better query and the discovery of more relevant documents

for the user to identify as the last iteration.

6. By examining IRF and IPRF, we can separate the problems of (P)RF bet-

ter and therefore we can identify the problems of (P)RF better in this way.

23

For example, we can identify the better term selection method by asserting

assumption (2) of IRF in Table 3.1. In this case, problems due to limited

user effort and the user variability, can be isolated and studied by design-

ing an experiment where practical limitations due to other assumptions (e.g.,

assumption (3) in Table 3.1) are overcome.

7. The current sizeable test collections, such as TREC and NTCIR, provide an

opportunity to obtain more observations about (P)RF and query formulation

apart from using earlier collections like Cranfield, CACM, etc., as well as the

earlier techniques to find better queries using genetic algorithms [LPGBA02,

LPGBA03].

The rest of this section is organized as follows. Firstly the definition of our

IRF is given. Five assumptions about the practical limitations are introduced in

turn. Moreover, the evaluation measure of the performance limit of IRF (i.e., the

effectiveness of the optimal query) is mentioned. Finally, the term selection method

for formulating optimal query, named greedy term selection method, is presented.

3.2.1 Definition and Assumptions

Our IRF is based on Salton’s optimal query qs [Sal71, Sal89] (Equation 3.1), which

transcends the practical limitations of RF summarized by the set of assumptions

in Table 3.1. First, we assume that the optimal query qo for a user is displaced

slightly by his/her preferences expressed by his/her query vector q (i.e., qo ≡ qs+q).

This displacement accounts for the idiosyncrasies of the user’s graded relevance

judgment but it is assumed that this displacement only affects the ranking of the

documents but not the ultimate retrieval effectiveness performance. The RF biased

by the user query q can be expressed as the following successive approximation to

24

qo as:










fm ≡ 0 for m = 0

fm ≡ αfm−1 +
β

card(Um)

∑

d∈Um

d−
γ

card(Vm)

∑

d∈Vm

d for m > 0
(3.3)

qm ≡ q + (1− α)fm for m ≥ 0 (3.4)

where qm is the query vector generated at the m-th iteration, fm is the feedback

vector at the m-th iteration, and d is the document vector. Um is the set of relevant

documents (vectors) identified by the users up to the m-th iteration, Vm is the set

of non-relevant documents (vectors) identified by the user up to the m-th iteration,

card(.) returns the cardinality of the set, and α, β and γ are parameters.

Second, it is assumed that document d is represented by another vector d′ which

has a subset of terms in d. The difference in retrieval effectiveness using d and d′ is

assumed not to be substantial as suggested by some researches (such as [Har92]) in

the literature.

Third, as m tends to infinity, it is assumed that U∞ = R and V∞ = S, where R

and S are the sets of all the relevant documents and non-relevant documents for a

particular topic, respectively. As a result, the asymptotic query q∞ is equal to qo:

qo ≡ αq +
β

card(R)

∑

d′∈R

d′ −
γ

card(S)

∑

d′∈S

d′ = q∞ (3.5)

Fourth, it is assumed that terms in the document vectors have unity weights.

Equation 3.5 is further simplified to the following using set notations instead:

q∞ = αq ∪
β

card(R)

⋃

d′∈R

d′ −
γ

card(S)

⋃

d′∈S

d′ (3.6)

It might be obvious that Salton’s optimal query qs will always achieve good

(or near optimal) results because there are many negatively weighted terms in the

non-relevant documents but not in the relevant documents, so that the non-relevant

documents are filtered by these negatively weighted terms. However, if these nega-

tively weighted terms are discarded, it becomes interesting to know the performance

25

Assumption Name Description or condition
1 User Bias qo ≡ qs + q assuming that the retrieval effectiveness of qo

and qs are equally optimal while the document ranking of
qo is preferred by the user.

2 Dimensionality
Reduction

d is represented by another vector d′ which has a subset
of terms in d and the difference in retrieval effectiveness
using d and d′ is not substantial.

3 Asymptotic m→∞⇒ Um = R ∧ Vm = S

4 Unweighted Terms in the document vectors have unity weight.

5 Non-negative Weight γ = 0

Table 3.1: IRF Assumptions

limits with just positively weighted or unweighted terms, as used by some PRF al-

gorithms (e.g., [BAS93]). Therefore, the fifth assumption is assumed that negatively

weighted terms are discarded (i.e., γ = 0). If α = β = 1, the asymptotic query q∞

is simplified to the Equation 3.7. This is our basic IRF equation:

q∞ = q ∪
⋃

d′∈R

d′ (3.7)

3.2.2 Greedy Term Selection algorithm

According to assumption (2) in Table 3.1, q∞ can be approximated by a smaller

query q∞,n of n terms that can obtain performance similar to card(q∞) ≥ n. The

term selection algorithm should find the best performing query q∞,max as an ap-

proximation of q∞. The performance limit MAPo of our basic IRF (Equation 3.7)

is defined as:

MAPo ≡ MAP (q∞,max)

= MAP (arg max
n
{MAP (q∞,n)}) (3.8)

where n terms are the selected terms from relevant documents set R rather than

non-relevant documents set S nor user query q, and MAP (.) is the function that

26

returns the MAP value of the query in its argument (i.e., q∞,max), given our baseline

retrieval system VSM. However, there is more than one query with exact n terms

from q∞. Let us denote a particular asymptotic query with n terms as q∞,n,k where

k indicates a particular combination of n terms. Then, q∞,n can be specified as:

q∞,n ≡ arg max
k
{MAP (q∞,n,k)}) (3.9)

The number of queries that can be formulated by picking exact n terms from q∞ is

Cn
m−n where card(q∞) = m. Therefore, identifying q∞,n is not a trivial computa-

tional problem given that n and m could be hundreds or thousands of terms.

We propose to use a greedy term selection algorithm in Figure 3.1 to formulate

the asymptotic query q∞,n. This algorithm is based on the idea of selecting highly

ranked terms. It basically ranks the terms by a term ranking function ω(t) that

reflects whether the term t is useful for retrieval or not. A term is sequentially

added from the ranked list of terms to Q∞,n approximating the best query q∞,n until

card(Q∞,n) = n. Greedy term selection algorithm assumes that:

MAP (q∞,n) ≈MAP (Q∞,n) (3.10)

which may not be entirely unrealistic because only a near best MAP performance is

required and because n can be increased to a level where MAP (Q∞,n) ≈ MAP (Q∞,n+1).

In details, our greedy term selection algorithm (Figure 3.1) uses a term ranking

function ω(.) (will be defined later in Section 3.4), that indicates how good a term

is for retrieval. Initially, the algorithm starts with no good terms but with a set

R of relevant documents for a particular topic, the desired number n of terms in

the formulated query Q∞,n, and an initial set q of query terms for the user bias

assumption (1) (in Table 3.1). In step 2, all the terms in the relevant documents are

added to the set P ′. In step 3, any terms in P ′ are stemmed and then added to P

if they are not stop words and not numerals, and they must occur in more than one

document in the collection C. This is designed to avoid formulating trivial optimal

queries where each relevant document is picked up by one term that only occurred

27

Method: Greedy Term Selection Algorithm
Input: set R, integer n, set q

Output: set Q∞,n

1. set P ← ø;

2. set P ′ ←
⋃

d∈R d;

3. for each term t ∈ P ′ do

(a) if t is a stop word then goto step 3;

(b) t′ ← stem(t);

(c) if t′ ∈ q then goto step 3;

(d) if t′ is a numerical term then goto step 3;

(e) if (DF (C, t′) < 2) then goto step 3;

(f) P ← {t′} ∪ P ;

4. for each term t in P , calculate the weight by using term ranking function ω(t);

5. rank all the terms in P according to term weights in L;

6. select top n terms from ranked term list L to formulate the output query Q∞,n.

7. Q∞,n ← q ∪Q∞,n

Figure 3.1: Greedy term selection algorithm for formulating asymptotic query

in that relevant document. This is so-called near optimal query rather than optimal

query in our study. In step 4, the weight of each term is calculated according to the

term ranking function ω(.), that is supposed to reflect whether the term is good for

retrieval or not. Then, the terms are ranked by these weights in step 5. Finally, the

top n terms are selected from the ranked list. If q is the empty set, then the returned

query has no user bias. If q is the initial user query, then the returned query has user

bias.

28

3.3 Examining User Bias

In this section, we examine the impact of the user bias assumption (1) (in Table 3.1)

on retrieval effectiveness. User bias refers to the original query matters. Interests in

assumption (1) stem from the problem of topic lapse in practical RF [Sal71, SB90].

Apart from assumption (1), all other assumptions in Table 3.1 are assumed to hold

and are studied later in this chapter.

We compare the performance of our basic IRF without the user query (i.e., q is

an empty set in greedy term selection algorithm in Figure 3.1), and our basic IRF

with the user query. The user queries in this experiment are the title queries (T)

because these are realistic queries for many IR applications. Our VSM is used and

the experiment is carried out for the TREC-6, TREC-7 and TREC-8 test collections.

The term ranking function ω(.) (in Figure 3.1) in this experiment is W4 (i.e., F4)

[RJ76]:

ω(t) = W4(t) (3.11)

≡ log
(DF (R, t) + 0.5)× (card(C)−DF (C, t)− card(R) + DF (R, t) + 0.5)

(DF (C, t)−DF (R, t) + 0.5)× (card(R) + DF (R, t) + 0.5)

where DF (C, t) is the document frequency of term t in the collection C, DF (R, t)

is the document frequency of term t in the set R of relevant documents for a partic-

ular topic. card(.) is the number of documents in the given set.

In order to have more observation points, we use nine different query sizes to

formulate the test queries Q∞,n: n =3, 25, 50, 75, 100, 125, 150, 175 and 200. The

reason for selecting 3 terms as the minimum size is for comparison with the title

queries (T) that usually have three terms (i.e., there are 56%, 56% and 44% title

queries with 3 terms in TREC-6, TREC-7 and TREC-8 respectively). On the other

hand, the maximum size of long queries (TDN) in TREC-6, TREC-7 or TREC-8 is

about 150. We add two more observation points, 175 and 200, to ensure the operat-

ing range is large enough for us to decide a suitable query size for later experiments.

29

Figure 3.2: Comparing the MAP with and without user query against the different
query sizes to study the user bias assumption (1)

30

Figure 3.2 shows the experiment results of the MAP values of the optimal

queries Q∞,n with user query (labeled ‘With title’) and without user query (labeled

‘Without title’) against the different query sizes. This figure shows that ‘With title’

achieves better MAP value than ‘Without title’ for all the test query sizes in all of

the test collections. This better MAP value may be due to the fact that the same

user formulated the query and identified the relevant document set. However, the

MAP difference between ‘With title’ and ‘Without title’ diminishes as the query

size increases. This suggests that the user bias assumption (1) has less and less im-

pact on retrieval effectiveness, as expected. We use Wilcoxon 1-tailed sign test to

examine whether using the title query will achieve better retrieval effectiveness or

not. We choose ‘top 100’ queries to run this test (i.e., n = 100) because the MAP of

these queries are close to the asymptotic performance in Figure 3.2. The Wilcoxon

sign test results conclude that using title query can achieve better MAP value than

using without title query with 99.7% confidence. Hence, we believe that user bias

assumption (1) is valid. The title query will be added to Q∞,n in all the subsequent

experiments.

3.4 Dimensionality Selection - ω(.)

This section examines the impact of the dimensionality reduction assumption (2)

on retrieval effectiveness. Assumption (2) has been widely examined in practical

RF but seldom in the IRF context. The advantage of examining assumption (2) in

the IRF context is that the practical problems of RF are separated from the intrinsic

problems of Assumption (2) itself. This assumption has two aspects to examine: (a)

what dimensions should be selected, and (b) how many dimensions should be used.

Apart from assumption (2), assumption (1) is assumed to hold by using title query,

whereas assumptions (3), (4) and (5) are not asserted and are studied later.

31

3.4.1 What dimensions

In greedy term selection algorithm in Figure 3.1, the term ranking function ω(.) is

used to determine the dimensions (i.e., query terms). In Section 3.3, we have ap-

plied a well-known function, W4, to rank the term, the generated queries that have

achieved 0.5344, 0.522 and 0.4637 MAP values for TREC-6, 7 and 8, respectively.

In this section, we mainly focus on exploring the effects of using different term

ranking function ω(.). 23 basis term ranking functions are combined to yield 149

unique term ranking functions for our experiments. Some of these term ranking

functions have been widely used in IR, but some have not.

The 23 basis term ranking functions can be divided into two major classes: inter-

document term ranking functions ω1(t) which is shown in Table 3.2, and intra-

document term ranking functions ω2(t) which is shown in Table 3.3. The combined

term ranking function ω(t) is the product of ω1(t) and ω2(t), similar to the standard

TF-IDF term ranking functions [SB88]:

ω(t) = ω1(t)× ω2(t) (3.12)

Two types of inter-document term ranking functions can be distinguished: point-

based ranking functions (i.e., ranking function 1 to 4 in Table 3.2); and distribution-

based ranking functions (i.e., ranking function 5 to 14 in Table 3.2). For the chi-

square and relative entropy ranking functions, we provide two more variations of

the probability definitions other than the one in the original paper [CMRB01]: one

is based on the probability of whether the term is in the document (i.e., ranking

function 5, 6, 8 and 9 in Table 3.2), and the other is based on the probability that a

term in the document is the desired term (i.e., ranking function 7 and 10 in Table

3.2). The intra-document term ranking functions can be divided into three types:

without any normalizations (i.e., ranking function 15 to 17 in Table 3.3); with intra-

document normalization (i.e., ranking function 18 to 20 in Table 3.3); and with

inter- and intra-document normalization (i.e., ranking function 21 to 23 in Table

32

Point-based term ranking functions
1. W4(t) as in equation 3.11
2. DF (R, t) = card(r ∈ R, t ∈ r)

3. IDF (R, t) = log card(R)+1
DF (R,t)

4. IDF (C, t) = log
card(C)+1
DF (C,t)

Distribution-based term ranking functions
Chi-squared term ranking functions (inspired by [CMRB01])

5. CHI1(t) =

[
DF (R, t)

card(R)
−

DF (C, t)

card(C)
]2

DF (C, t)

card(C)

6. CHI2(t) =

[
X

d∈R

TF (d, t)

‖d‖1
−

X

d∈C

TF (d, t)

‖d‖1
]2

X

d∈C

TF (d, t)

‖d‖1

as in [CMRB01]

7. CHI3(t) =

[
1

card(R)

X

d∈R

TF (d, t)

‖d‖1
−

1

card(C)

X

d∈C

TF (d, t)

‖d‖1
]2

1

card(C)

X

d∈C

TF (d, t)

‖d‖1

Relative entropy term ranking functions (inspired by [CMRB01])

8. KLD1(t) =
DF (R, t)

card(R)
× log10

DF (R, t) × card(C)

DF (C, t) × cardR

9. KLD2(t) =
X

d∈R

TF (d, t)

‖d‖1
× log10

X

d∈R

TF (d, t)

‖d‖1

X

d∈C

TF (d, t)

‖d‖1

as in [CMRB01]

10. KLD3(t) = 1
card(R)

X

d∈R

TF (d, t)

‖d‖1
× log10

card(C)
X

d∈R

TF (d, t)

‖d‖1

card(R
X

d∈C

TF (d, t)

‖d‖1

Robertson Selection Value(RSV) by Robertson et al. [RJ76]
11. RSV1(t) = W4(t) × (DF (R,t)

card(R)
− 0.15 × DF (C,t)−DF (R,t)

card(C)−card(R)
)

as used in Okapi at TREC-6 & 7

12. RSV2(t) = W4(t) × (DF (R,t)
card(R)

− DF (C,t)−DF (R,t)
card(C)−card(R)

) as in [Eft93]

13. RSV3(t) = DF (R, t) × IDF (C, t) − log

„

card(R)
DF (R, t)

«

− log
X

d∈C

‖d‖1

as used in Okapi at TREC-8
Expected Mutual Information Measure (EMIM) by [RHP81]
14. EMIM(t) = log10

DF (R,t)×card(C)
card(R)×DF (C,t)

× DF (R, t) − log10
(DF (C,t)−DF (R,t))×card(C)
(card(C)−card(R))×DF (C,t)

×(DF (C, t) − DF (R, t)) + log10
(card(C)−DF (C,t)−card(R)+DF (R,t))×card(C)

(card(C)−DF (C,t))×(card(C)−card(R))

×(card(C) − DF (C, t) − card(R) + DF (R, t))

−log10
(card(R)−DF (R,t))×card(C)
(card(C)−DF (C,t))×card(R)

× (card(R) − DF (R, t))

Table 3.2: Inter-document basis term ranking functions ω1(t)

33

No normalization
15. MaxTF (R, t) = max

d∈R
TF (d, t)

16. MinTF (R, t) = min
d∈R

TF (d, t)

17. SumTF (R, t) =
∑

d∈R

TF (d, t)

Intra-document normalization

18. MaxNTF (R, t) = max
d∈R

TF (d, t)

‖d‖1

19. MinNTF (R, t) = min
d∈R

TF (d, t)

‖d‖1

20. SumNTF (R, t) =
∑

d∈R

TF (d, t)

‖d‖1

Fully normalization

21. NMaxNTF (t) = MaxNTF (t)

max
d∈C

TF (d, t)

‖d‖1

22. NMinNTF (t) = MinNTF (t)

min
d∈C

TF (d, t)

‖d‖1

23. NSumNTF (t) = SumNTF (t)
∑

d∈C

TF (d, t)

‖d‖1

Table 3.3: Intra-document basis term ranking functions ω2(t)

34

3.3). Each type has three term ranking functions: one that is based on the maximum

term frequency, or the minimum term frequency or the total term frequency of a

term in the documents.

In this experiment, we use greedy term selection algorithm in Figure 3.1 to

formulate the asymptotic query, except that step 4 has been modified to cater for a

second term ranking function because many terms have tied term ranking function

scores after visual inspection. We use W4(.) as the second term ranking function

for all the term ranking functions except W4(.) itself. For W4(.), SumNTF (.) is

the second term ranking function. In addition, the number of terms n appended on

the title queries is 100.

The MAP values obtained using different term ranking functions are shown in

Figure 3.3. We have observed many interesting results. First, the term ranking func-

tion (7) using CHI3 marginally achieved the best MAP value in TREC-6, 7 and

8 without any intra-document ranking function (i.e., labeled ‘none’ in Figure 3.3

and ω2(.) = 1). Second, in terms of multiplying intra-document ranking function

ω2(.) without normalization, MaxTF and MinTF , actually degraded the MAP

values (i.e., worse than with ω2(.) = 1), except the CHI3, KLD2 and KLD3 with

SumTF in TREC-6 achieved better results. This implies that adding raw term fre-

quency may not be a good method to improve the retrieval effectiveness. Third,

better MAP values were obtained by multiplying ω2(.) with intra-document nor-

malized term frequencies (i.e., MaxNTF , MinNTF and SumNTF) than with-

out normalized term frequencies (i.e., MaxTF , MinTF and SumTF). Fourth,

NMaxNTF and NSumNTF , which normalized the term frequency with respect

to the document and the entire collection, achieved better MAP values than oth-

ers except EMIM . Fifth, the results reveal that using minimum term frequency

(normalized or not) do not enhance the retrieval effectiveness compared with that

without intra-document term ranking. Sixth, CHI3 achieved better MAP value than

CHI1 and CHI2. Similarly, KLD2 achieved the worst performance among other

KLD term ranking functions. This implies that macro-average of the normalized

35

ω2(t)
NMaxNTF NSumNTF

ω1(t) TREC-6 TREC-7 TREC-8 TREC-6 TREC-7 TREC-8
Unity - 0.527 0.478 0.533 - -
W4 0.549 0.530 0.496 - - -
DF - - - 0.541 0.527 0.474
IDF 0.543 0.521 0.473 - - -
CHI3 - - - 0.555 0.534 0.488
KLD1 - - - 0.547 0.529 0.475
RSV1 - - - 0.550 0.531 0.478

Table 3.4: Summary of the performance for the better term ranking functions

probability of term occurrence is a more appropriate probability function for term

rankings. Seventh, RSV1 is the best among other RSV term ranking functions.

Eighth, RSV3 and EMIM perform worst than others. Finally, the common inverse

document frequency (i.e., IDF), has a MAP better than 0.5, except for TREC-8.

Therefore, existing IDF function is already effective in selecting good terms for

RF.

Table 3.4 summarizes the retrieval effectiveness of the better term ranking func-

tions which are highlighted with rectangles in Figure 3.3. We can see that the ω2(.)

of the better ranking functions is either the fully normalized maximum term fre-

quency or the fully normalized summed term frequency. Moreover, it seems that

the combination of a particular ω1(.) with another ω2(.) that produces the best re-

sult is stable across different TREC test collections, except when ω1(.) is unity.

Furthermore, the combination of CHI3 with the fully normalized summed term fre-

quency (CHI3 × NSumNTF) produces the overall best results for TREC-6 and

TREC-7 test collections, and W4 combined with the fully normalized maximum

term frequency (W4×NMaxNTF) produces the overall best results for TREC-8.

However, these overall best results are not statistically significantly different from

the results of other better term ranking functions in Table 3.4.

36

Figure 3.3: The MAP of 149 term ranking functions ω(.)

37

3.4.2 How many dimensions

The other aspect of the dimension reduction assumption (2) is how many dimen-

sions should be used, which is equal to deciding the number of query terms n in

asymptotic query q∞. In the previous experiment of evaluating different term rank-

ing function, the number of appended terms is fixed to top 100 to eliminate the

effects of query size. In this experiment, on the other hand, we pick the seven better

term ranking functions in Table 3.4 and vary the query size from 0 to 200: 0, 3,

25, 50, 75, 100, 125, 150, 175 and 200. The experimental results can be used to

examine the impacts of different query sizes and to determine if any better retrieval

effectiveness can be obtained.

Figure 3.4 shows the experimental results. The MAP values of all the seven

term ranking functions do not change much when the query with size of 100 or

larger (i.e., Top 100 terms). These experimental results are then analyzed with

the ANOVA test to determine whether the changes are significance. According to

the ANOVA test with 95% confidence, queries with size of 100 have significant

improvement in MAP compared with those query sizes smaller than 100 (i.e., from

size 0 to 75); however, no significant improvement can be gained when comparing

with those query sizes larger than 100 (i.e., from size 125 to 200). Therefore, we

believe that query size of 100 is already the (near) best.

Nevertheless, many researchers [BH03] have illustrated that the sizes of the

optimal query of different topics are different. It means that we cannot use the same

query size for all the topics. In order to investigate this effect, we compare the MAP

of using best query size in each topic and the MAP of using same query size 100

for all topics with two of our best term ranking functions, CHI3 × NSumNTF

and W4 × NMaxNTF . From Table 3.5 we can see that using best query size in

each topic is always better than using same query size 100. However, according to

the ANOVA test with 95% confidence, these improvements are not significant.

If we use the marginally better term ranking function CHI3 × NSumNTF

38

Figure 3.4: The MAP of 7 better term ranking functions ω(.) against the different
number of top ranked terms

39

Term rank function ω(t) Top 100 Best size BestSize>Top100
(95% conf.)

TREC-6 CHI3 ×NSumNTF 0.5546 0.6162 No
W4×NMaxNTF 0.5487 0.6098 No

TREC-7 CHI3 ×NSumNTF 0.5343 0.5917 No
W4×NMaxNTF 0.5298 0.5941 No

TREC-8 CHI3 ×NSumNTF 0.4884 0.5557 No
W4×NMaxNTF 0.4946 0.5574 No

Table 3.5: The MAP of query with size of 100 and the best query size in each topic

Retrieval Mode Known
Best

IRF IRF>KnownBest
(95% conf.)

TREC-6 Manual(RF) 0.463 0.616 Yes
Automatic 0.300 Yes

TREC-7 Manual(RF) 0.370 0.592 Yes
Automatic 0.303 Yes

TREC-8 Manual(RF) 0.469 0.556 No
Automatic 0.327 Yes

Table 3.6: The MAP of our IRF and the best known ad hoc retrieval results in TREC

with the best query size in each topic, the average retrieval effectiveness of our IRF

for TREC-6, 7 and 8 can be improved to MAPo = 0.6162, MAPo = 0.5917 and

MAPo = 0.5557, respectively. It should be noted that these results are better than

those best in TREC ad hoc retrieval (as shown in Table 3.6), and the improvements

are statistically significant with 95% confidence. Therefore, we believe that our

IRF may be useful as a mechanism to determine the performance limits of retrieval

systems in an open evaluation workshop, such as TREC or NTCIR. Furthermore,

we can conclude that there is still rooms to improve the current RF.

40

3.5 Asymptotic performance

In this section, we explore the asymptotic assumption (3) by using different num-

bers of top ranked retrieved documents from the initial retrieval list. In general, as

the number of RF iteration m increases, the retrieved and relevant documents Um

get larger, and the corresponding recall of retrieval increases. As m tends to infin-

ity, U∞ tends to R. In practice, this increase of the size of Um can be simulated

by getting different numbers of top j ranked retrieved documents from the initial

retrieval list. Therefore, we can plot the performance against the number of top re-

trieved documents and the recall which would represent the trend of the IRF. This

experiment also can illustrate the issue in practical RF and PRF that where to select

feedback terms is better.

The process of this experiment is similar to PRF but has an idealized classifier

that identifies all relevant documents from top retrieved relevant documents without

errors (this is called IPRF in our study). Firstly, an initial query q is used to retrieve

the initial ranked retrieval list. Then, the top j retrieved document is classified into

relevant documents Uj and non-relevant documents Vj by the idealized classifier.

Finally, the query qj is formulated by Equation 3.13. This equation is similar to

Equation 3.7 but it discards the asymptotic assumption (3). It is because we are

interested in investigating how many top j retrieved documents in practical RF can

formulate the asymptotic query q∞ (i.e., approximate optimal query qo):

qj = q ∪
⋃

d′∈Uj

d′ (3.13)

Two types of user queries, title (T) and long (TDN), are used to examine the impact

of the initial query q as well as initial retrieval list on performance. The MAP values

obtained by select terms from the relevant documents in the top 10, 20, 40, 80, 160,

320, 640, 1000, 10000, possibly 100000 and the entire retrieved list are plotted

for visualization. The seven better term ranking functions listed in Table 3.4 are

used to formulate the query qj with size of 100. In Figure 3.5, we plotted the IRF

41

performance at 556077, 528155 and 528155, which is the number of documents

in TREC-6, 7 and 8 collections, respectively. Moreover, the average number of

retrieved documents in the entire retrieval list for T initial query is equal to 59387,

35781 and 42395 for TREC-6, 7 and 8, respectively, and for TDN initial query is

equal to 409,902, 305,827 and 297,049 for TREC-6, 7 and 8, respectively, which is

close to the size of each collection. In Figure 3.6, we plot the mean recall of each

query against the MAP, and the IRF is plotted with a recall of 100%. The numbers

of top retrieved documents are labeled near the data points in both figures.

Figure 3.5 clearly shows that the MAP values of different top j retrieved docu-

ments are lower than IRF. This implies that many practical RF will achieve a per-

formance lower than IRF as the user examines a limited number of top j retrieved

documents in practice. This serves to confirm our IRF Hypothesis (1). Moreover,

Figures 3.5 and 3.6 illustrate that using more top retrieved documents achieves bet-

ter MAP and mean recall for all kinds of initial queries and term ranking functions.

This implies that if the user examines more top j retrieved documents, the retrieval

effectiveness of practical RF will be improved. However, Figure 3.6 suggests that if

the practical RF (i.e., from top 10 retrieved documents to the entire retrieved list in

Figure 3.6) cannot achieve near 100% recall, then it is highly unlikely that the MAP

of the practical RF can approach the MAP performance of its IRF. So it is not nec-

essary to examine the whole retrieval list in practice. From Figure 3.5 we can see

that the retrieval effectiveness is increased sharply until the top 100. Therefore, we

believe that selected feedback terms from top 100 retrieved documents are effective

in RF as well as PRF. Furthermore, for long queries, using the entire the retrieval list

can achieve similar performance to the IRF. This implies that we can simulate our

IRF by using the entire relevant retrieval list. For title queries, the MAP using the

entire retrieval list is about 5% lower than that of the IRF version. This suggests that

for title queries RF needs at least two iterations in order to ensure that the retrieval

list has an adequately high recall to obtain the potential IRF performance.

42

Figure 3.5: The MAP of different term ranking functions against the top number
of retrieved documents for long (TDN: in solid lines) and title (T: in dotted lines)
queries.

43

Figure 3.6: The MAP of different term ranking functions against the mean recall
for long (TDN: in solid lines) and title (T: in dotted lines) queries.

44

3.6 Positively Weighted Terms

This section examines the unweighted assumption (4) that allows us to assign weights

to query terms instead of using unity weights for all query terms. However, only

positive weights are considered (i.e., γ = 0), and negative weights will be exam-

ined in the next section. Three other assumptions hold in the case. The asymptotic

query q∞ is simply modified from Equation 3.5 to the Equation 3.14 instead, and

step 7 of greedy term selection algorithm in Figure 3.1 is modified to Q∞,n ←

α
∑

t∈q(σq(t) × t) + β
∑

t∈Q∞,n
(σf (t) × t), where σq(t) and σf (t) are the term

weight functions of user query q and feedback terms Q∞,n, respectively, these are

used to assign the weight to term t. In this experiment, the marginally best term

ranking function (i.e., CHI3 × NSumNTF), is used to formulate the query with

size of 100. The weights are mixed using the parameter α and β(= 1− α):

q∞ = αq +
β

card(R)

∑

d′∈R

d′ (3.14)

Five term weight normalization schemes are proposed in Table 3.7. First, Roo-

chio positive scheme (1) is the standard Rocchio relevance feedback, except that

there are no negatively weighted terms. The weights of user query q are calculated

by the inverse of the number of terms in the user query. The weights of feed-

back terms are calculated by the term ranking function ω(.), which is CHI3 ×

NSumNTF in this experiment. Second, Ide-Regular scheme (2) [IS71] is similar

to scheme (1) but the term weights are linearly mixed as shown in Equation 3.15:

q∞ = αq + β
∑

d′∈R

d′ (3.15)

Third, city-block normalization scheme (3) can be considered as the scheme (2)

where the feedback term weights are normalized by the sum of its term weight.

Fourth, rank normalization scheme (4) can also be considered as the scheme (2)

where the term weight of term t is normalized by its rank, rank(t). This rank is

45

User query
weights

Feedback terms
weights

Asymptotic query
formula

No. Scheme Name σq(t) σf (t) q∞

1 Rocchio Positive
1

|q|term

ω(t) as in Equation 3.14

2 Ide-Regular
1

|q|term

ω(t) as in Equation 3.15

3 City-block Normalization
1

|q|term

ω(t)
∑

t∈Q∞,n

ω(t)
as in Equation 3.15

4 Rank Normalization
1

|q|term

n− rank(t) + 1
∑

t∈Q∞,n

rank(t)
as in Equation 3.15

5 Unity Weight 1 1 as in Equation 3.15

Table 3.7: Different term weight normalization schemes

determined by the term ranking function: CHI3×NSsumNTF in this experiment.

The last scheme, unity weight scheme (5), is essentially without any weighting since

every term is as important as the other.

Figure 3.7 shows the MAP values of the queries using five different term weight

normalization schemes and different parameter values α and β. It is obvious that the

MAP values of the Ide-regular scheme (2) and unity weight scheme (5) are fairly

independent of the parameter values, whereas the other three schemes are sensitive

to different parameter values. Moreover, only the rank normalization scheme (4)

with specific parameter values (i.e., when α = 0.1) achieves higher MAP value

than the unity weight scheme (5). Therefore, we only choose schemes (4) and (5)

to further examine whether the rank normalization scheme (4) can perform better if

the number of terms selected is different. In addition, when user query is ignored

(i.e., when α = 0), most of the schemes achieve lower MAP value than those with

user query (i.e., when α =0.1 to 0.9, β =0.9 to 0.1) except Rocchio positive scheme

(1). This indicates that the user bias assumption (1) is valid in either unweighted

query or weighted query.

46

Figure 3.7: The MAP of different term weight normalization schemes against the
different parameter values α:β

47

Top 175 Best size Best Size>Top 175
(95% conf.)

TREC-6 0.5972 0.6402 No
TREC-7 0.5684 0.5985 No
TREC-8 0.5351 0.5743 No

Table 3.8: The MAP of top 175 positive terms and the best query size in each topic
using the best term weight normalization scheme

In order to determine the suitable query size for positively weighted terms, we

picked the best two term weight normalization schemes, the rank normalization

scheme (4) with α = 0.1 and the unity weight scheme (5) with α = 0.8, and vary

the query size from 0 to 300 to examine the effects. The reason for adding four

more observation points (i.e., 225, 250, 275 and 300) is because the MAP values

are continuously increasing from query size of 0 to 200. These points are used to

determine if any better retrieval effectiveness can be obtained. The experimental

results are shown in Figure 3.8. From the figure we can see that the MAP values of

the scheme (4) are always slightly better than scheme (5). The best MAP value of

the scheme (4) is obtained when the query size is about 175.

Table 3.8 shows the MAP value of rank normalization scheme (4) with top 175

positive terms and with the best query size in each topic. The MAP value of the

best query size is better. However, according to the result of the ANOVA test with

95% confidence, these improvements are not statistically significant. Hence, we

conclude that the MAP values may not be improved by using various query sizes

for different topics in positively weighted terms.

Comparing the best MAP value of the queries using positively weighted terms

(the results in Table 3.8) and unweighted terms (the results in Table 3.5) for fixed

query size, using positively weighted terms is about 4% higher than using un-

weighted terms. However, from Table 3.9 we can see that this difference in MAP

value is not statistically significant [VB02]. Therefore, we conclude that positively

weighted terms can only slightly enhance the retrieval effectiveness.

48

Figure 3.8: The MAP of two better term weight normalization schemes against the
different number of top ranked positive terms

49

Unweighted
(Un)

Positively
Weighted
(Pos)

Pos > Un
(95% conf.)

TREC-6 0.555 0.597 No
TREC-7 0.534 0.568 No
TREC-8 0.495 0.535 No

Table 3.9: The MAP of our IRF with Unweighted Terms and Positively Weighted
Terms with fixed query size

3.7 Negatively Weighted Terms

In this section, we examine the impact of non-negative weight assumption (5) on

retrieval effectiveness. This assumption adds terms with negative weights. In the

literature, negative weights did not always have a positive impact on performance

[Ide71, Dun97]. Here, the assumptions (1), (2) and (3) are held and the asymptotic

query q∞ is similar to Equation 3.5, but uses a subset Vj of the top j retrieved

and non-relevant documents of the user query rather than the whole set S of non-

relevant documents for the topic. The reason for using the top j retrieved documents

is because the whole set S of non-relevant documents is too large in TREC test

collections and it is similar to practical RF. The asymptotic query is modified as

follows:

q∞ = αq +
β

card(R)

∑

d′∈R

d′ −
γ

card(Vj)

∑

d′∈V

d′ (3.16)

An enhanced greedy term selection algorithm, greedy weighted term selection

algorithm, is used to select the query terms from relevant documents and/or non-

relevant documents. The ultimate aim is to select good positive terms that can

retrieve exactly relevant documents and good negative terms that can suppress the

highly ranked but non-relevant documents. The detail algorithm is shown in Figure

3.9. Initially, the algorithm starts with no good terms but with a set R of relevant

documents for a particular topic, a subset Vj of top j retrieved and non-relevant

50

documents for the user query, the desired number nP of positive terms and nN of

negative terms in the output query Q∞,nP ,nN
, and an initial set q of the terms in

the user query. In step 2, all the terms in the relevant documents and non-relevant

documents are added to the P ′ and N ′, respectively. In steps 3 and 4, any terms

in P ′ and N ′ are stemmed and then added to positive set P and negative set N ,

respectively, if they are not stop words and not numerals, and they must occur in

more than one document in the collection C. In step 5, the weight of each term t

in positive set P and each term t in negative set N is calculated according to the

term ranking function ω(t). Next, the terms are ranked by these weights in positive

ranked term list LP and negative ranked term list LN . In steps 7 and 8, the positive

query Q∞,nP
and the negative query Q∞,nN

are generated by using the top np terms

and top nN terms in the ranked term list LP and LN , respectively. This selection

is based on the negative term selection scheme φ(LP , LN , nP , nN) in Table 3.10.

Finally, use term weight function σq(t) to calculate the weights of user query q, and

use σf(t) to calculate the weights of the terms in positive query Q∞,nP
and negative

query Q∞,nN
. Then mix the output query with parameters α, β and γ and return.

Figure 3.10 shows various subsets of terms that can be selected to assign positive

and negative weights. This figure is used to explain some terminologies in the

negative term selection scheme. Let TC be all the terms in the document collection.

Let TR be the set of terms in the relevant document for a particular topic. Let TVj

be the set of terms in the top j retrieved and non-relevant documents for the user

query q. These two subsets of terms can be used to define three smaller subsets of

terms that are useful for defining term selection schemes as follows. Let us define

Aj = TR − TVj. This set of terms appeared in the relevant documents but not

in the non-relevant documents of the top j retrieved documents. These terms are

like beacons of the relevant documents and they are weighted positively. Another

set Bj of terms is the intersection of TR and TVj. These terms appeared in both

the relevant and non-relevant documents of the top j retrieved documents and these

terms do not seem to have any discrimination ability. In general, these terms could

51

Method: Greedy Weighted Term Selection Algorithm
Input: set R, set Vj , set q, integer nP , integer nN , integer α, integer β, integer γ

Output: set Q∞,nP ,nN

1. set P ← ø, N ← ø;

2. set P ′ ←
⋃

d∈R d, N ′ ←
⋃

d∈Vj
d;

3. for each term t ∈ P ′ do

(a) if t is a stop word then goto step 3;

(b) t′ ← stem(t);

(c) if t′ ∈ q then goto step 3;

(d) if t′ is a numerical term then goto step 3;

(e) if (DF (C, t′) < 2) then goto step 3;

(f) P ← {t′} ∪ P ;

4. for each term t ∈ N ′ do

(a) if t is a stop word then goto step 4;

(b) t′ ← stem(t);

(c) if t′ ∈ q then goto step 4;

(d) if t′ is a numerical term then goto step 4;

(e) if (DF (C, t′) < 2) then goto step 4;

(f) N ← {t′} ∪N ;

5. for each term t in P and each term t in N , calculate the weight by using term ranking
function ω(t);

6. rank all the terms in P according to term weights in LP and rank all the terms in N

according to term weights in LN ;

7. select top nP terms from ranked term list LP to formulate the positive query Q∞,nP

by using negative term selection scheme φ(LP , LN , nP , nN)

8. select top nN terms from ranked term list LN to formulate the negative query Q∞,nN

by using negative term selection scheme φ(LP , LN , nP , nN)

9. Q∞,nP ,nN
← α

∑

t∈q

(σq(t)× t) + β
∑

t∈Q∞,nP

(σf (t)× t)− γ
∑

t∈Q∞,nN

(σf (t)× t)

Figure 3.9: Greedy weighted term selection algorithm for formulating weighted
asymptotic query

52

Figure 3.10: The different subsets of terms extracted from the relevant documents
R and the top j retrieved and non-relevant document Vj

be assigned a zero weight. The set Zj of terms is defined as TVj−TR. These terms

only appeared in the retrieved and non-relevant documents. Therefore, these terms

should be strongly negatively weighted.

Six negative term selection schemes φ(.) can be defined using different combi-

nations of the subsets of terms, Aj , Bj and Zj. Table 3.10 shows the combination

of these subsets for different term selection schemes. First, positively weighted

scheme (1) is the same as to the previous section for selecting positively weighted

terms. This scheme is included for comparison. Moreover, true positive terms

scheme (2) only picks terms that appear in the relevant documents but not in the

non-relevant documents of the top j retrieved documents. Therefore, extracting

more (negatively weighted) terms for Vj from the top j retrieved and non-relevant

documents reduces the number of terms in Aj (i.e., there are less ”true positive”

terms). However, true positive and true negative scheme (3) does not explicitly as-

sign negative weights to terms during retrieval. In scheme (3), only terms that can

indicate clearly whether documents are relevant or non-relevant are used because

these terms only occur in the relevant documents or they only occur in the non-

relevant and retrieved documents but not both. Furthermore, all subsets scheme (4)

53

No. Scheme Name Positively
Weighted Terms

Negatively
Weighted Terms

1 Positively Weighted Aj ∪Bj Bj

2 True Positive Terms Aj ∅

3 Ture Positive and True Negative Aj Zj

4 All Subsets Aj ∪Bj Bj ∪ Zj

5 Negatively Weighted Bj Bj ∪ Zj

6 True Negative Terms ∅ Zj

Table 3.10: Different negative term selection schemes φ(.) based on different sub-
sets of terms appearing in R and Vj

uses all the subsets of terms. Furthermore, negatively weighted scheme (5) selects

terms that appear in the top j retrieved and non-relevant documents. Finally, true

negative terms scheme (6) only picks terms that appear in the top j retrieved and

non-relevant documents. Terms that appear in any of the relevant documents will

not appear in the query for this scheme.

Figure 3.11 shows the MAP of different negative term selection schemes against

different value of γ. This query is composed by adding top 175 ranked positively

weighted terms and top 175 ranked negatively weighted terms to title queries. These

negative weighted terms are extracted from the top 100 retrieved and non-relevant

documents which use title query as the initial user query. There are two reasons for

choosing top 100 retrieved documents: (1) The average number of relevant docu-

ments for each topic in TREC-6, 7 and 8 is about 100, and (2) From Figures 3.5

and 3.6, we find that the performance increased sharply until top 100. Moreover,

the marginally best term ranking function CHI3×NSumNTF and the better term

weight normalization scheme, rank normalization scheme (4), with α = 0.1 and

β = 0.9 is used in this experiment.

There are many interesting findings in Figure 3.11. Firstly, scheme (2) does

54

Figure 3.11: The MAP of negative term selection schemes φ(.) against the different
parameter value γ.

55

not add any negatively weighted terms into the query, so that the γ does not have

any effect on this scheme. Secondly, the MAP value of scheme (1) is larger than

scheme (2), but after approaching a maximum, higher γ value has a negative impact

on MAP for this scheme. Thirdly, the performance of scheme (3) is similar to

scheme (2) because this scheme only uses terms with a clear signal that the terms

should be weighted positively or negatively. Fourthly, the MAP of scheme (4) is

the highest among the other schemes because this scheme includes all the subsets

of terms (i.e., Aj, Bj and Zj). Intuitively, this is expected since the impact of

positively weighted terms does not necessarily decrease, and the number of terms

lost in Aj is compensated for the increase in the number of terms in Bj . Fifthly,

the best γ is 0.4 for scheme (4) so that the negative weights in the query will not

overwhelm the positively weighted terms. Finally, schemes (5) and (6) are lower

than the other schemes because these schemes only use negative impact.

In order to determine the suitable query size for negatively weighted terms,

we picked the best two negative term selection schemes, the positively weighted

scheme (1) with γ = 0.6, and the all subsets scheme (4) with γ = 0.4 and vary

the query size from 0 to 300 to examine the effects. The experimental results are

shown in Figure 3.12. Figure 3.12 shows that when more top ranked negative terms

are added to the query using scheme (1) or scheme (4), the MAP value increases

to a maximum and then begins taper off. The best MAP is achieved with about the

top 250 negative terms by using scheme (4) with parameters α = 0.1, β = 0.9 and

γ = 0.4.

Table 3.11 shows the MAP value of negative term selection scheme (4) with the

top 250 negative terms and with the best query size in each topic. The MAP value

of the best query size is better. However, according to the results of the ANOVA test

with 95% confidence, these improvements are not statistically significant. Hence,

we concluded that the MAP values may not be improved by using various query

sizes for different topics in negatively weighted terms.

Finally, from Table 3.12 we can see that, the improvement in MAP between

56

Figure 3.12: The MAP of IRF with negative term selection schemes against the
different number of top nN ranked negatively weighted terms.

57

Top 250 Best size BestSize>Top250
(95% conf.)

TREC-6 0.6250 0.6369 No
TREC-7 0.6101 0.6242 No
TREC-8 0.5711 0.5907 No

Table 3.11: The MAP of top 250 negative terms and the best query size in each
topic using the best negative term selection scheme

Unweighted
(Un)

Positively
Weighted
(Pos)

Negatively
Weighted
(Neg)

Neg > Un
(95% conf.)

Neg > Pos
(95% conf.)

TREC-6 0.555 0.597 0.625 Yes No
TREC-7 0.534 0.568 0.610 Yes No
TREC-8 0.495 0.535 0.571 Yes No

Table 3.12: The MAP of our IRF with unweighted terms, positively weighted terms
and negatively weighted terms with fixed query size

the best MAP value achieved in this section (using both positively and negatively

weighted terms, labeled ‘Neg’), and the best MAP value achieved in Section 3.6

(using the top 175 ranked positively weighted terms, labeled ‘Pos’) is about 4%.

This is not statistically significant with 95% confidence [VB02]. However, the im-

provement in MAP between the best MAP value achieved in this section and in

Section 3.4 (using top the 100 ranked unweighted terms, labeled ‘Un’) is about 7%.

This difference is statistically significant. Therefore, we conclude that negatively

weighted terms have a significant improvement in MAP value.

3.8 Summary

The contribution of this chapter is to illustrate that Relevance Feedback in idealized

situations can perform statistically significantly better than the corresponding prac-

tical Relevance Feedback which is constrained by the set of practical limitations.

58

We confirm this IRF and IPRF hypothesis in our experiments using three TREC

test collections for English ad hoc retrieval. Moreover, this chapter reported a sys-

tematic study of the impact of different idealized RF situations that are summarized

as assumptions in Table 3.1 on retrieval effectiveness. We conclude that:

• The user bias assumption (1) is valid and it has more impact if the number of

dimensions is small.

• The experimental results in dimensionality reduction assumption (2) illus-

trates that the performance difference between the better term ranking func-

tions ω(.) actually do not differ substantially using the log-odds ratio of Robert-

son and Karen Sparck Jones or the Chi-square or Kullback-Leibler divergence

or the RSV by Robertson, provided either the average normalized term fre-

quency or the average of the maximum of the normalized term frequencies

are used.

• By exploring the asymptotic assumption (3), we find that using more top re-

trieved documents achieve better retrieval effectiveness independent of the

initial query and the term ranking function ω(.). In addition, we realize that

the IRF can be implemented by using a perfect classifier that identifies all rel-

evant documents from the entire retrieval list of long query (i.e., TDN query)

without errors. If we use title query rather than long query, the optimal re-

trieval effectiveness may not be achieved. It appears that the information in

title query is not enough for optimal retrieval.

• By exploring the unweighted assumption (4), we conclude that if query terms

are assigned weights, then better retrieval effectiveness can be achieved. The

best term weights scheme σ(.) is the rank normalization scheme (4), which

assigns term weights based on the rank of the individual term.

• By exploring the non-negative weight assumption (5), we realize that if query

terms are drawn from non-relevant documents and are assigned negative weights,

59

then significantly better retrieval effectiveness can be achieved. The best neg-

ative term selection scheme φ(.) is the all subsets scheme (4), which selects

all the terms in relevant documents and in the top retrieved but non-relevant

documents.

• The best MAP value of the various query sizes for different topics of any

type of IRF: unweighted terms method, positively weighted terms method,

and negatively weighted terms method, are not significantly better than that

achieved using the fixed query size. This reveals that various query sizes for

different topics may not be better. The best fixed query size for unweighted

terms method is the top 100; for positively weighted terms method it is the

top 175; and for negatively weighted terms method it is the top 175 positive

terms and top 250 negative terms.

• The best MAP value of any type of IRF is significantly better than that achieved

using the best interactive manual retrieval in the formal runs in TREC. It ap-

pears that a suitable choice of terms and a suitable choice of weights can sub-

stantially enhance the retrieval effectiveness of RF and PRF. The best MAP

value for unweighted terms method is 62%, 59% and 56% for TREC-6,7 and

8, respectively; for positively weighted terms method it is 64%, 60% and 57%

for TREC-6,7 and 8, respectively; and for negatively weighted terms method

it is 64%, 62% and 59% for TREC-6, 7 and 8, respectively. In addition, for

TREC-2005 robust track, the best MAP values of our IRF for unweighted

terms method, positively weighted terms method and negatively weighted

terms method is 0.5460, 0.6064 and 0.6297, respectively [WWL+05]. These

results are better than those known best in TREC-2005 robust track (i.e.,

MAP = 0.332).

The best MAP value of IRF is still below the optimal retrieval effectiveness (i.e.,

MAP = 1.0). Therefore, we will explore other methods in Section 4 to determine

any better retrieval effectiveness that can be obtained.

60

Chapter 4

Combinatorial Optimization Search

Strategy

This chapter applies combinatorial optimization search algorithms to find the near

optimal query in order to determine if any better retrieval effectiveness can be

reached. In Chapter 3, we looked at our IRF method that can in principle be used to

find the near optimal query. However, the MAP value for TREC test collections is

still below the optimal retrieval effectiveness. In this chapter, we propose to inves-

tigate the near optimal queries based on the view of the combinatorial optimization

problem. From this perspective, the problem of finding an optimal query can be

considered as the problem of searching for the best combination of terms out of all

the possible combination of terms in all the relevant documents with binary term

weights. We propose to apply local search algorithms to find the optimal queries

within polynomial bounded computation times. We tested the ideas in our experi-

ments using three TREC test collections for English ad hoc retrieval.

This chapter is organized as follows. Firstly, the background and literature re-

view are given. Then, the optimization problem in finding the optimal query is

formulated in Section 4.2. Moreover, three well-known local search methods: Hill

Climbing, Best First Search and Simulated Annealing, are discussed and explored

in Sections 4.3, 4.4 and 4.5, respectively. Section 4.6 introduces a novel search

61

method, Combine Search. Definitions, algorithms and experimental results are pre-

sented. Finally, a summary of this chapter is given in Section 4.7.

4.1 Background and Literature Review

Combinatorial optimization problem is a kind of optimization problem in which

the constraint functions are linear functions and the number of values in each op-

timization variable is finite. The aim of the combinatorial optimization problem

is to find the best combination out of all possible combinations. There are some

search methods that can find the global optimum solution of the combinatorial opti-

mization problem in literature, such as the enumeration method and the branch and

bound method. However, these methods are very time consuming especially when

the search space is large. In order to control the search time, there are some faster

search methods but these can only find the local optimum solution not the global

optimum solution. Local search is an example of this method that promises to find

the optimal solution within polynomial bounded computation times. Hill Climbing

and Best First Search method, are examples of the local search method. Simulated

Annealing and Genetic Algorithm are relatively slower local search methods but

they are less likely to be trapped in local optima.

Local search methods in IR literature have been used widely. Some research has

applied local search to discover term ranking functions [WYB88, FGP00, Ore02,

LPGBA02, LPGBA03, FWX04, FGP05], whereas others have applied local search

to automatically extract relations (e.g., hyponym relation) from documents [BJN00,

Tro04]. Recently, local search has been applied to fuse multiple data sources [BBM02,

ZCF+05]. However, there are very few direct studies in IR literature that apply local

search to find the optimal queries.

62

4.2 Modeling the problem of finding an optimal query

This section begins by describing our near optimal query searching problem. Then

several functions used in the local search are defined in turn. Some of our IRF

functions in Section 3 are altered in order to cater to the concepts of the local search.

4.2.1 Problem Description

The problem of finding an optimal query can be considered as the problem of

searching for the best combination of terms out of all the combination of terms

in the collection. However, when the collection is big, it is diffcult to implement

such large searching space. In order to reduce the searching space, we simplify our

problem to search for the best combination of terms out of all the combination of

terms in all the relevant documents with binary term weights. That is, we assume

that: (1) the optimal query term should appear in the relevant documents; and (2)

the query term weights are not necessary for optimal retrieval. These assumptions

are similar to assumptions (4) and (5) in Chapter 3.

The equation of finding an optimal query is defined in Equation 4.1. This equa-

tion is similar to the basic IRF equation (i.e., Equation 3.7) in Chapter 3, but it uses

the residue of the relevant documents Um in each state (i.e., iteration) m rather than

the whole set of relevant documents R. This is because we are interested in investi-

gating how many relevant documents have not been retrieved by the current query

(i.e., current combination of terms):

qm = qm−1 ∪
⋃

d′∈Um

d′ (4.1)

4.2.2 Objective Function

The objective of this problem is to find the optimal query qo of F , such that:

qo ≡ arg min
q∈F

cost(q) (4.2)

63

Method: Cost function–cost(.)
Input: set Q, set R

Output: integer c, set U

1. select relevant documents from top R retrieved documents of the query Q into U ;

2. set the residue of relevant documents U ← (R− U);

3. set the cost c← card(U)
card(R) ;

4. return c and U .

Figure 4.1: Cost Function

where F is the feasible solution set of all the combinations of terms in the relevant

documents of a particular topic. cost(.) is the cost function to be defined in the next

section.

4.2.3 Cost Function

A cost function is used to measure the effectiveness of the solutions. The detailed

algorithm of our cost function cost(.) is defined in Figure 4.1. The cost c is equal

to 1−R-prec of the query Q. The reason for choosing the R-prec measure but not

the MAP measure is because calculating the R-prec measure is easier than the MAP

measure. The set U in the algorithm is the relevant documents that are not present

at the top R retrieved documents of the given query Q. The card(U) and card(R)

are the number of documents in set U and in the relevant documents set R.

4.2.4 Neighborhood Function

A neighborhood function in local search is used to control the searching path (i.e.,

it decides the candidates in each search state). The neighborhood function for our

problem can be considered as the term selection function in IR. We use our greedy

term selection algorithm that was presented in Figure 3.1 on page 28 to be the

neighborhood function neighbor(.) except the terms are selected from the residue

64

Method: Neighborhood function–neighbor(.)

Input: set U , integer i, set qm−1

Output: set qmi

1. P ← ø;

2. P ′ ←
⋃

d∈U d;

3. for each term t ∈ P ′ do

(a) if t is a stop word then goto step 3;

(b) t′ ← stem(t);

(c) if t′ ∈ qm−1 then goto step 3;

(d) if t′ is a numerical term then goto step 3;

(e) if (DF (C, t′) < 2) then goto step 3;

(f) P ← {t′} ∪ P ;

4. for each term t in P , calculate the weight by using term ranking function ω(t);

5. rank all the terms in P according to term weights in L;

6. qmi ← (qm∪ the ith term in the ordered term list L);

7. return qmi.

Figure 4.2: Neighborhood function

set of relevant documents in each state (i.e., iteration) rather than from all the rele-

vant documents. The detailed algorithm is shown in Figure 4.2. This neighborhood

function returns a new query qmi which is formulated by the given query qm−1 and

the ith neighbor of that given query.

4.2.5 Stopping Criteria

Stopping criteria are used to control the searching time (i.e., attempts) in local

search. When a stopping criterion is satisfied, the searching process will be ter-

minated and a local optimum will be returned. This local optimum is the optimal

65

solution in the visited searching space. There are many methods to define the stop-

ping criteria and the searching path in local search. The concepts in the Hill Climb-

ing are the most simple and easy to understand in local search. Therefore, we begin

by exploring the Hill Climbing search method in the next section.

4.3 Hill Climbing Search

Hill Climbing Search is a simple and efficient search method. The basic idea of

the Hill Climbing Search is to head towards a state which is better than the current

state. That is it only makes a move if the new query is better than the current

query. This move is based on the path in the neighborhood function. Hill Climbing

Search terminates when there are no neighbors (i.e., terms) of the current query

that are better than the current query itself. Therefore, the chance of arriving at the

goal state (i.e., optimal query) depends on the cost function and the neighborhood

function.

The implementation of the Hill Climbing Search on finding the near optimal

query is shown in Figure 4.3. Firstly, the search starts with the initial query q.

Then the algorithm uses the cost function cost(.), which is shown in Figure 4.1 to

calculate the cost clocal. If the cost is equal to zero, the search terminates and the

optimal query is returned. Then, in step 3, the query Qlocal becomes the current

query Qglobal and the cost clocal becomes the current cost cglobal. In step 3(d), a new

query Qlocal is formulated by the current query Qglobal and a neighbor (i.e., a term) of

current query. This neighbor is selected by the neighborhood function neighbor(.)

that is shown in Figure 4.2. Moreover, the new query Qlocal is evaluated in step

3(e). Finally, if the cost of this new query is lower than the current query, then the

new query achieves better R-prec value, so step 3 is repeated; otherwise, the search

process is terminated and the current query Qglobal is returned.

The Hill Climbing Search algorithm is evaluated using TREC-6 test collection

and our VSM retrieval system. The term ranking function ω(t) of the neighborhood

66

Method: Hill Climbing Search algorithm
Input: set R, set q

Output: set Qglobal

1. Qlocal ← q;

2. (clocal, U local)← cost(Qlocal, R, |R|doc);

3. repeat

(a) Qglobal ← Qlocal;

(b) Uglobal ← U local;

(c) cglobal ← clocal;

(d) Qlocal ← neighbor(U global, Qglobal, 1);

(e) (clocal, U local)← cost(Qlocal, R, |R|doc);

4. until clocal ≥ cglobal;

5. return Qglobal.

Figure 4.3: Hill Climbing Search for finding the near optimal query

function is CHI3 × NSumNTF (in Table 3.2, page 33), which is our best term

ranking function in Chapter 3. In order to explore the impact of different starting

points in the Hill Climbing Search, we compare the performance of the Hill Climb-

ing Search starting with the title query and starting without any query (i.e., starting

at zero). This is similar to examining the user bias assumption (1) in Chapter 3.

The experimental results shows that the average R-prec when starting with the title

query (=0.46) is slightly better than starting at zero (=0.44). However, these value

are still far below the optimal effectiveness 1.0. In order to explore the potential

causes of the poor performance of the Hill Climbing Search, we use three different

views to observe this experimental results: (1) the R-prec values of the near optimal

queries for each topics in the collection against the query size of that topic (i.e.,

Figure 4.4); (2) the R-prec against the different sizes of the relevant document set

(i.e., Figure 4.5); and (3) the query size against the different sizes of the relevant

document set (i.e., Figure 4.6). Moreover, there are two figures in any type of the

67

Figure 4.4: Comparing the R-prec with two different starting points against the
different query sizes

Figure 4.5: Comparing the R-prec with two different starting points against the
different sizes of the relevant document set

views: the figure on the left side is the experimental results of the Hill Climbing

Search starting at zero (labeled ‘zero’), whereas the figure on the right side is start-

ing with the title query (labeled ‘title’). It should be noted that the query size in

the experiment of starting at ‘title’ includes the number of terms in the title query

except stopwords.

From Figures 4.4 and 4.5, we conclude that the performance of the Hill Climb-

ing Search is independent of the sizes of the query and the sizes of the relevant

document set in both types of the starting points. This performance is measured

in the R-prec of the obtained query (i.e., the near optimal query). This reveals that

68

Figure 4.6: Comparing the query size with two different starting points against the
different sizes of the relevant document set

more relevant documents in the collection may not represent poor retrieval effective-

ness. Figure 4.6 illustrates that more relevant documents need more query terms to

retrieve them. Moreover, Figure 4.4 shows that there are many optimal queries with

sizes smaller than 2. This illustrates that the Hill Climbing Search algorithm stops

very quickly for all types of starting points in many topics. The average searching

time in the experiments are 6.38 and 4.24 attempts for starting at ‘zero’ and starting

at ‘title’, respectively. One of the possible reasons for stopping too fast is that there

are many local optima in the search space, so that it is very easy to be trapped in the

local optimum.

The Hill Climbing method is a fast method to find the near optimal query be-

cause it does not attempt to exhaustively try every combination of terms in relevant

documents. However, the average R-prec value it achieved is still far below the op-

timal retrieval effectiveness, and even below the retrieval effectiveness of any type

of the IRF algorithms in Chapter 3. We believe that the main reason is trapped in

the local optima in the search space. Therefore, in the next section, we explore

another method, Best First Search, which is a slower method but may achieve bet-

ter retrieval effectiveness. This method attempts more than one term to decide the

optimal value in each state.

69

4.4 Best First Search

Best First Search is similar to Hill Climbing Search, but in Hill Climbing Search,

once a move is chosen, the others are rejected and is never reconsidered. In contrast,

in Best First Search the attempted terms are saved to enable revisits if an impasse

occurs on the apparent best path. Basically, Best First Search is a combination of

Depth First Search and Breadth First Search. Depth First Search is good because a

solution can be found without computing all nodes. Breadth First is good because

it does not get trapped in dead ends. The Best First Search allows us to switch

between paths thus gaining the benefit of both approaches. If one of the terms

chosen generates terms that are less promising, it is possible to choose another term

at the same level and in effect the search changes from depth search to breadth

search.

Figure 4.7 shows the algorithm of Best First Search on finding the near optimal

query. This algorithm is similar to the Hill Climbing Search algorithm in Figure 4.3

except for step 3. In step 3, it attempts a number of neighbors n (i.e., breadth) of

the current query Qglobal rather than attempting only one neighbor. Then it chooses

the best one to formulate the new query Qlocal. Finally, if this new query achieves

better R-prec value, then make it Qglobal and repeat step 3; otherwise, return the

query Qglobal and terminate the search process.

In order to reduce the searching time, we only attempted 5 terms in each state

(i.e., n = 5). The experiments are similar to the experiments in Section 4.3. We

also used the TREC-6 test collection and two different starting points, ‘zero’ and

‘title’ to examine the impact of the starting point on retrieval effectiveness. The

experimental results happened as expected, the retrieval effectiveness was improved

but the searching time was increased. The average R-prec value of ‘zero’ and ‘title’

were 0.49 and 0.56, respectively, whereas, the average searching time of ‘zero’ and

‘title’ were 38.4 and 35.6 attempts, respectively. It is obvious that starting with the

title query is significantly better than starting at zero. This observation is similar to

70

Method: Best First Search algorithm
Input: set R, set q, integer n

Output: set Qglobal

1. Qlocal ← q;

2. (clocal, U local)← cost(Qlocal, R, |R|doc);

3. repeat

(a) Qglobal ← Qlocal;

(b) Uglobal ← U local;

(c) cglobal ← clocal;

(d) i← 1;

(e) Qlocal ← neighbor(U global, Qglobal, i);

(f) (clocal, U local)← cost(Qlocal, R, |R|doc);

(g) repeat

i. i← (i + 1);

ii. Qi ← neighbor(U global, Qglobal, i);

iii. (ci, U i)← cost(Qi, R, |R|doc);

iv. if ci < clocal then

(I) Qlocal ← Qi;

(II) U local ← U i;

(III) clocal ← ci;

(h) until i > n;

4. until clocal ≥ cglobal;

5. return Qglobal.

Figure 4.7: Best First Search for finding the near optimal query

71

Figure 4.8: Comparing the R-prec with two different starting points against the
different query sizes

Figure 4.9: Comparing the R-prec with two different starting points against the
different sizes of the relevant document set

the observation in the user bias assumption (1) in Chapter 3.

From Figures 4.8 and 4.9 we can conclude that the performance of the Best

First Search is also independent of the sizes of the query and the sizes of the rel-

evant document set in both types of starting points. Therefore, it is more likely to

say that more relevant documents in the collection may not represent poor retrieval

effectiveness. In addition, Figure 4.10 also illustrates that more relevant documents

need more query terms to retrieve them. Furthermore, From Figure 4.4 we can see

that there are one fifth of the optimal queries with a size smaller than 2. This implies

that the Best First Search algorithm still stops very quickly on many topics.

Obviously, Best First Search algorithm achieves better retrieval effectiveness

than Hill Climbing Search. However, the best retrieval effectiveness is still lower

72

Figure 4.10: Comparing the query size with two different starting points against the
different sizes of the relevant document set

than the IRF in Chapter 3. Therefore, we will continue our exploration of other

local search methods that are less likely to be trapped in the local optima. Both

Simulated Annealing and Genetic Algorithm are good for this kind of problem, but

we will only examine Simulated Annealing Search method in this chapter because

Genetic Algorithm is diffcult to implement when there are too many terms in the

relevant document set.

4.5 Simulated Annealing Search

In the physical process of metallurgy, metals are heated to high temperatures and

then cooled. The quality of the finished product depends on the cooling rate. A

faster cooling rate leads to form large crystal structures and results in lower quality;

this is equivalent to a local optimum. On the other hand, a suitable cooling rate can

leads to a more uniform structure and results in better quality. This is equivalent

to a global optimum. The heating and cooling processes are repeated until the final

product is obtained. Simulated Annealing algorithm is designed based upon this

phenomenon. The probability of making a large improvement move is lower than

a small improvement move, and the probability of making large moves decreases

with temperature. In addition, worse moves are also allowed but under some specific

conditions. The acceptable probability p that the metal will make an improvement

73

move (i.e., will jump to a higher energy level), is given by Equation 4.3, where k is

Boltzmann’s constant, ∆E is the change in the cost of the objective function, and

T is the temperature:

p = exp
−∆E
kT (4.3)

The implementation of the Simulated Annealing Search on finding the near op-

timal query is shown in Figure 4.11. This algorithm is the refinement of Best First

Search algorithm in Figure 4.7. In steps 3(i), 3(j) and 4, if the new query Qlocal

is not better then the current query Qglobal, then we still accept the new query if

the acceptable probability p (in Equation 4.3) is larger than our experimentally sug-

gested threshold of 0.7, where ∆E is defined as the difference between the cost of

Qglobal and Qlocal, and the constant k is set to 1. The temperature T is controlled

by the annealing schedule in Equation 4.4, where Tj is the temperature for the jth

non-improved state:







Tj = 1 for ∆E > 0

Tj = Tj−1 × 0.9 for ∆E ≤ 0
(4.4)

In this experiment, we only explore the effects on starting with the ‘title’ query

because the previous results illustrated that starting with the ‘title’ query is better

than starting at ‘zero’. Similarly, we use TREC-6 test collection and set n = 5 to get

the best among five neighbors in each state. Unexpectedly, this experiment failed

because the search process stops too slowly. Even if we increase the acceptable

probability value to 0.8, the annealing process still takes a lot of time. It seems that

the algorithm of the annealing schedule and the probability of jumping to the next

energy level are not very suitable for finding the next optimal query. Therefore,

we will introduce a novel search algorithm in the next section that can enhance the

search performance.

74

Method: Simulated Annealing algorithm
Input: set R, set q, integer n

Output: set Qglobal

1. Qlocal ← q, temperature T ← 1;

2. (clocal, U local)← cost(Qlocal, R, |R|doc);

3. repeat

(a) Qglobal ← Qlocal;

(b) Uglobal ← U local;

(c) cglobal ← clocal;

(d) i← 1;

(e) Qlocal ← neighbor(U global, Qglobal, i);

(f) (clocal, U local)← cost(Qlocal, R, |R|doc);

(g) repeat

i. i← (i + 1);

ii. Qi ← neighbor(U global, Qglobal, i);

iii. (ci, U i)← cost(Qi, R, |R|doc);

iv. if ci < clocal then

(I) Qlocal ← Qi;

(II) U local ← U i;

(III) clocal ← ci;

(h) until i > n;

(i) if clocal ≥ cglobal then

i. probability p← exp(
−(cglobal−clocal)

T);

ii. T ← (T × 0.9);

(j) else

i. p← 1;

ii. T ← 1;

4. until p ≤ 0.7;

5. return Qglobal.

Figure 4.11: Simulated Annealing Search for finding the near optimal query

75

4.6 Combine Search

In this section a novel search method is proposed that is a combination of Best First

Search and Simulated Annealing Search, Combine Search. The methodology and

implementation is described in detail with experiments evaluated using TREC-6, 7

and 8 collections.

4.6.1 Methodology

According to the experimental results in previous sections, we realize that finding

the near optimal query in a reasonable search time is not an easy task. It does not

simply depend on the number of relevant documents in the collection or the query

size, but it seems that there are some relations between them. We observe that when

the number of the residue set of relevant documents gets smaller or the query size

gets larger, the next improvement move is more difficult to get to. Therefore, we

propose to refine the breadth (i.e., the number of neighbors of the current query to

be attempted) of the Best First Search algorithm and the annealing schedule of the

Simulated Annealing Search algorithm based on the query size and the cost in each

state dynamically. The enhanced breadth definition is shown in Equation 4.5, and

the enhanced annealing schedule is shown in Equations 4.6 to 4.8:

n = ceil(cglobal × ‖Qglobal‖1) (4.5)







T = log100(‖Qglobal‖1) for ∆E 6= 0

T = T × cglobal for ∆E = 0
(4.6)



















p = 1 for ∆E > 0

p = 0 for ∆E < 0

p = T for ∆E = 0

(4.7)

∆E = cglobal − clocal (4.8)

76

In detail, if the new query achieves better R-prec value than the current query

(i.e., ∆E > 0), then this new query is accepted as the current query. Moreover, if

the R-prec of the new query and the current query are equal, then this new query is

still accepted when the acceptable probability p is larger than 0.05. This acceptable

probability is calculated by the log of the number of query terms in the current

query ‖Qglobal‖1. The reason for normalizing the value with log100 is because the

best query size of the unweighted query in our IRF is about 100. Furthermore, if the

new query achieves poor R-prec value than the current query, then it will attempt

other neighbors. The number of neighbors n that will be attempted is dependent on

the number of query terms in the current query and the current cost. However, if

the number of query terms in the current query is too small (e.g., smaller than 3) or

too large (e.g., larger than 100), the number of neighbors n will be too small or too

large, respectively. In order to filter this outlier, it is set to 5 if the value is smaller

than 5, and it is set to 30 if the value is larger than 30. Therefore, the largest number

of attempts in one state is 30 and the smallest number of attempts is 5. The function

ceil(x) gives the smallest integer ≥ x.

There are two novel methods in our Combine Search. First, it accepts more than

one term in one state if these terms can achieve better R-prec value than using a

single term. This method can be used to handle the term dependence problem, such

as bi-gram terms. The detailed algorithm is shown in Figure 4.12. In this algo-

rithm, the Breadth search route switches between single term and combined terms

according to the cost. If the cost of the query Qi and the new query Qlocal in this

state are the same, then the ith neighbor (i.e., term) and the new query Qlocal are

combined to a query Qcombine. The cost ccombine of the query Qcombine is evaluated.

If this cost ccombine is lower than the cost clocal of the new query, then the combined

query Qcombine will become the new query Qlocal in this state. Of course, if this cost

is lower than the cost cglobal of current query Qglobal, then the Breadth search will

stop and will continue Depth search. Otherwise, it will continue Breadth search.

77

• if ci < clocal then

1. Qlocal ← Qi, U local ← U i, clocal ← ci;

2. Qcombine ← Qlocal;

• else if ci = clocal then

1. Qcombine ← Qcombine

⋃

lastterm(Qi);

2. (ccombine, U combine)← cost(Qcombine, R, m);

3. if ccombine < clocal then set Qlocal ← Qcombine, U local ← U combine,
clocal ← ccombine;

Figure 4.12: Combined Term Method

It should be noted that this is a variation of the Breadth search because it will im-

mediately stop when the lower cost (i.e., lower than cglobal) is achieved rather than

attempt after all the possible neighbors.

Second, it attempts multiple neighborhood function to decide the search path

rather than only one neighborhood function. This is based on the idea that the

search path can be sepearated into several stages, and different stages are suitable

for different neighborhood functions. This idea is presented in Figure 4.13 with

three different neighborhood functions. In detail, the Combine Search starts at the

first stage g1 with first neighborhood function and with starting point at ’title’ query.

The first neighborhood function selects the terms (i.e., neighbors) from the top R

retrieved and relevant documents based on CHI3×NSumNTF term ranking func-

tion. If the search is terminated but the goal state has not been arrived at (i.e., the

R-prec is lower than 1.0), then the second stage g2 with second neighborhood func-

tion is applied and is started with the optimal query obtained by g1. The second

neighborhood function selects the terms from the top R retrieved and relevant doc-

uments based on W4 term ranking function. Again, if the search is terminated but

the goal state still has not been reached, then the third stage g3 with third neigh-

borhood function is applied with the starting point as the optimal query obtained by

78

Figure 4.13: The overall search flow in Combine Search

g2. The third neighborhood function selects the terms from the top 1000 retrieved

and relevant documents based on CHI3 ×NSumNTF term ranking function. Fi-

nally, when the search in stage g3 finishes, the Combine Search will finish no matter

whether the goal state has been reached or not.

Figure 4.14 shows the search flow of one stage in Combine Search. It is obvious

that our Combine Search is a combination of Best First Search and Simulated An-

nealing Search. Best First Search is good because a solution can be found without

computing all the nodes and the search does not get trapped in dead ends. Simulated

Annealing Search is good because a non improvement move is accepted. The Com-

bine Search switches the search method based on the current cost and the current

query size thus gaining the benefit of both approaches. The detailed algorithm of

our Combine Search for finding the near optimal query is shown in Figure 4.15.

4.6.2 Experiments on Combine Search

The Combine Search algorithm is evaluated using TREC-6, 7 and 8 test collections

and our VSM retrieval system. Table 4.1 shows the experimental results based

on the different performance measures: (1) Retrieval Effectiveness, and (2) Search

Performance.

79

Figure 4.14: The search flow of one stage in Combine Search

TREC-6 TREC-7 TREC-8 Avg
Retrieval Effectiveness

R-prec 0.774 0.785 0.785 0.781
MAP 0.733 0.755 0.752 0.747
Queries with optimal effectiveness 6% 0% 0% 2%
Queries with MAP > 0.8 40% 38% 46% 41%
Queries with MAP < 0.5 4% 4% 4% 4%

Search Performance
Avg search time 327 312 378 339
Avg query size 66 68 71 68
Terms obtained by breadth search 26% 27% 28% 25%
Terms obtained by simulated annealing 8% 8% 8% 8%
Terms obtained by combined term 11% 14% 14% 13%
Terms obtained by 2nd neighborhood func. 6% 11% 10% 9%
Terms obtained by 3th neighborhood func. 1% 1% 1% 1%

Table 4.1: Summary of the performance of the Combine Search method

80

Method: Combine Search algorithm
Input: set R, set q

Output: set Qglobal

1. Qlocal ← q, strategy g ← 1, the number of top documents m← |R|doc;

2. use CHI3NSumNTF as term ranking function ω(t);

3. repeat

(a) (clocal, U local)← cost(Qlocal, R, m);

(b) repeat

i. Qglobal ← Qlocal, Uglobal ← U local, cglobal ← clocal;

ii. temperature T ← log100(|Qglobal|term);

iii. if T > 1 then set T ← 1;

iv. the number of iteration n← ceil(cglobal × |Qglobal|term);

v. if n < 5 then set n← 5, if n > 30 then set n← 30;

vi. i← 1;

vii. Qlocal ← neighbor(Uglobal, Qglobal, i);

viii. (clocal, U local)← cost(Qlocal, R, m);

ix. Qcombine ← Qlocal;

x. repeat

(I) i← (i + 1);

(II) Qi ← neighbor(Uglobal, Qglobal, i);

(III) (ci, U i)← cost(Qi, R, m);

(IV) if ci < clocal then

• Qlocal ← Qi, U local ← U i, clocal ← ci;

• Qcombine ← Qlocal;

(V) else if ci = clocal then

• Qcombine ← Qcombine

⋃

lastterm(Qi);

• (ccombine, U combine)← cost(Qcombine, R, m);

• if ccombine < clocal then

Qlocal ← Qcombine, U local ← U combine, clocal ← ccombine;

xi. until (i > n) or (clocal < cglobal);

xii. if clocal < cglobal then set probability p← 1;

xiii. else if clocal > cglobal then set p← 0;

xiv. else

(I) T ← (T × cglobal);

(II) p← T ;

(c) until p ≤ 0.05;

(d) if cglobal > 0 then Qlocal ← Qglobal;

i. if g = 1 then g ← 2, m← |R|doc, ω(t)←W4(t)

ii. else if g = 2 then g ← 3, m← 1000, ω(t)← CHI3NSumNTF (t)

4. until (g > 3) or (cglobal = 0);

5. return Qglobal.

Figure 4.15: Combine Search for finding the near optimal query
81

Retrieval effectiveness indexes are used to measure the retrieval performance of

the queries. From Table 4.1 we can see that the average R-prec and MAP of the

three test collections are 0.781 and 0.747, respectively. This is much higher than

the performance of the IRF in Chapter 3. Although there are only 2% real optimal

queries (i.e., R-prec=1.0 and MAP=1.0), 41% of the queries have MAP larger than

0.8, and only 4% of the queries have MAP smaller than 0.5. This illustrates that

a suitable choice of terms can substantially enhance the retrieval effectiveness in

existing IR systems. In addition, the R-prec and MAP of the TREC-2005 robust

track test collection is 0.743 and 0.711, respectively. These results indicate that the

Combine Search algorithm also can achieve good retrieval effectiveness for hard

topics.

Search Performance indexes are used to measure the performance of the search

algorithms. Table 4.1 shows that the average search time of the three test collections

is 339. This value is measured by the number of attempts in the search process rather

than in terms of seconds. It is obvious that our Combine Search is much faster than

trying every combinations of unique terms in the relevant document set, which is

near 27412 ≈ 1.7E + 2231 attempts. Moreover, we can see that the average query

size is about 68 terms, in which title terms are included. This is shorter than the

queries obtained by the IRF in Chapter 3. This reveals that the query terms that

are obtained by Combine Search have more discriminability than the query terms

obtained by our IRF.

In order to investigate how to obtain these good query terms, we sepearate our

Combine Search algorithm into 5 modules: (1) breadth search method; (2) simu-

lated annealing method; (3) combined term method; (4) second neighborhood func-

tion; and (5) third neighborhood function. The number of query terms that are

obtained by those modules are shown at the bottom of Table 4.1. First, on aver-

age, there are 25% query terms that are obtained by using the benefit of the breadth

search method. It appears that the optimal query terms are not always the highest

82

ranking terms in the relevant document set. This reveals that the term ranking func-

tion still has room to improve. Second, on average there are only 8% and 13% query

terms which are obtained by using the benefit of the simulated annealing method and

the combined term method, respectively. This illustrates that the contribution of the

simulated annealing method is less than the combined term method. This reveals

that there are some dependencies between terms in the collection. We should select

those terms altogether; otherwise, the search will be trapped in the local optima (i.e,

the retrieval effectiveness will be poor). Finally, it seems that applying more than

one neighborhood functions method is not very useful. On average, there are 9%

and 1% query terms that are obtained by using the benefit of the second neighbor-

hood function and third neighborhood function, respectively. It appears that using

two different neighborhood functions is enough.

Figure 4.16 shows clearly the R-prec values of the near optimal queries for each

topics in the three collections against the size of the query (on the left hand side of

the figure) and the relevant document set (on the right hand side of the figure) of that

topic. It appears that more attempts may not achieve higher retrieval effectiveness.

Most of the real optimal queries (i.e., R-prec=1.0) are short queries and come from

the topic with a small number of relevant documents in the collection. This can be

illustrated clearly in the left hand side of Figure 4.17. From the figure we can see

that the size of the near optimal queries for the topics with small relevant document

sets are shorter than those with large relevant document sets. One of the possible

reasons is that more documents include more information, so more query terms are

needed to retrieve them. We believe that this information can be measured by the

number of unique terms in the documents. However, the figure tells us that we

cannot simply use the number of unique terms in the documents to measure the

variety of the information in the documents. The figures show that the query size is

more related to the number of relevant documents than the number of unique terms.

There are many topics that still cannot reach optimal retrieval effectiveness by

using our Combine Search method. This may be due to the fact that either the

83

Figure 4.16: Comparing the R-prec against the query size and the number of rele-
vant documents

Figure 4.17: Comparing the query size against the number of relevant documents
and the number of unique terms in the relevant document set

84

near optimal query should use the weights to give the different weighting to the

query terms, or it should use the negative terms to discriminate the non-relevant

documents from the collection. This is one of the possible future directions in our

study.

4.7 Summary

The contributions of this chapter are to illustrate how to apply combinatorial opti-

mization search algorithms to find the near optimal query and to verify that the main

cause of the poor retrieval effectiveness in existing IR systems is the query factor.

We believe that a suitable choice of terms can substantially enhance the retrieval

effectiveness in existing IR systems.

Several kinds of local search methods are examined in turn. Hill Climbing

Search, Best First Search and Simulated Annealing Search are implemented and

evaluated with the TREC collections. However, the performance was worse than

our Combine Search. The Combine Search method is a combination of Best First

Search and Simulated Annealing Search. Best First Search is good because a so-

lution can be found without computing all the nodes and the search does not get

trapped in dead ends. Simulated Annealing Search is good because a non improve-

ment move is accepted. The Combine Search switches the search method based

on the current cost and the current query size, thus gaining the benefits of both

approaches.

From the experimental results in this chapter, we conclude that:

• When the number of residual sets of relevant documents gets smaller or the

query size gets longer, the query enhancement becomes more difficult. Based

on the current query size and the current cost to define either the annealing

schedule or the number of neighbors can enhance the performance effectively.

• The breadth search and the simulated annealing method can be used to escape

85

the local optima. It appears that the optimal query terms are not always the

highest ranking terms in the relevant document set. This implies that there is

still room to improve the term ranking function.

• Combined term method is an effective method to enhance the retrieval effec-

tiveness. This method can be used to solve the term dependency problem.

• Using multiple neighborhood functions is slightly better than using single

neighborhood function. This shows that the retrieval effectiveness impact of

using different subsets of relevant documents as well as different term ranking

functions is small.

• The optimal query size is related to the number of relevant documents for the

topic but is not directly related to the number of unique terms in the relevant

document set.

86

Chapter 5

Good Query Term Extraction

The experimental results in Chapters 2, 3 and 4 illustrates that a suitable choice of

terms can substantially enhance the retrieval effectiveness in existing IR systems.

Moreover, Chapter 3 shows that by using Relevance Feedback (RF) and Pseudo

Relevance Feedback (PRF) in idealized situations, we can obtain about 60% MAP

value for unweighted terms. Therefore, we believe that one of the possible research

directions for improving the retrieval effectiveness in existing IR systems is to en-

hance the query terms selection method in PRF. In this chapter, we propose a novel

query term expansion method, Good Query Term Extractor or GQTE, to expand the

user query using a ‘Good’ query term classifier with PRF information. The terms in

the near optimal queries that were obtained in Chapters 3 and 4 are used for training

and testing the classifier with C4.5 classification method [Qui93]. Our GQTE is

evaluated using the three TREC test collections for English ad hoc retrieval.

This chapter is organized as follows. It begins by introducing the C4.5 clas-

sification method, the divergence measure and the cross-validation procedure in

Section 5.1. Then our GQTE is proposed in Section 5.2. The designs of the clas-

sification modules and the query generation module are described. Moreover, a

discussion on the characteristics of the terms in the near optimal queries is pre-

sented in Section 5.3. The features which are used in GQTE are determined in

this section. Furthermore, the implementation and practice in GQTE is described

in Section 5.4. Our machine learning procedure, cross training, is introduced and

87

10-fold cross-validation is applied. Several methods for generating the new queries

are also examined in this section. In addition, the evaluation based on estimation

accuracy and retrieval effectiveness are reported. Finally, a summary of this chapter

is given in Section 5.5.

5.1 Background

This section begins by introducing the C4.5 classification technique that is used

for the classification module in GQTE. Then, a brief introduction on the diver-

gence measure is given. The divergence is used for selecting the features with good

discriminatory capabilities. Finally, a commonly used method for estimating the

accuracy of a classifier, k-fold cross-validation, is mentioned.

5.1.1 C4.5 classification method

There are several kinds of methods for classification, such as the Nearest Neighbor

rule [CH67], the Perceptron algorithm [Ros58], Support Vector Machines [HDO+98]

and Decision Tree [Qui93]. Some research [DHB90, SMT91, Qui94, Moo96] has

compared these classification methods on a wide variety of problems. However,

there seems to be no single type of classification method that is best for all the prob-

lems. Additionally, there do not seem to be any general conclusions that would

enable one to say which classification method is best for which types of classifica-

tion problems. In our study, we believe that a non-linear classifier is more suitable

for our classification problem. Decision tree is one of a well-known non-linear clas-

sifier and is easy to derive an understandable rule set, so we use the decision tree

classification method in our study.

A decision tree is a tree whose nodes are non-categorical attributes and whose

arces are the attribute values. A leaf node of the tree specifies the expected value of

the categorical attribute for the records described by the path from the root to that

88

leaf. The most popular method for inducing decision trees is C4.5 [Qui93]. In C4.5,

the decision tree at each node should be associated with the non-categorical attribute

that is the most informative among the attributes not yet considered in the path from

the root. This information is measured by the gain ratios. In addition, C4.5 accounts

for missing values, interval attribute values and pruning of the decision trees. The

pruning of the decision tree is done by replacing a whole subtree by a leaf node.

The replacement takes place if a decision rule establishes that the expected error

rate in the subtree is greater than in the single leaf node.

5.1.2 Divergence Measure

The divergence is a well-known class separability measure [MG63]. It can be used

to determine the discriminatory capabilities of the features. The divergence is a

measure of statistical distance between the probability densities of the classes. For

example, there are two classes A and B, if the distance between these two class

densities pA(x) and pB(x) is greater for feature 1 than for feature 2, then we would

like to use feature 1 for classification rather than feature 2. The divergence D is

defined as:

D =

∫

x

[pA(x)− pB(x)]loge
pA(x)

pB(x)
dx (5.1)

where the integral is taken over the entire feature space. If the class densitites pA(x)

and pB(x) are Gaussian densities with µA and µB and covariance matrices ΣA and

ΣB then the divergence D can be revised as in Equation 5.2, where trM denotes the

trace of matrix M , M−1 denotes the inverse of M , and MT denotes the transpose

of M . In our study, we assume that all of our class densities are Gaussian densities,

so we use Equation 5.2 to calculate the divergence for all the features:

D =
1

2
tr[ΣA − ΣB][Σ−1

B − Σ−1
A] +

1

2
tr[Σ−1

A + Σ−1
B][µA − µB][µA − µB]T (5.2)

89

5.1.3 k-Fold Cross-Validation

In k-fold cross-validation, the dataset D is randomly split into k mutually exclusive

subsets (i.e., the folds) D1 to Dk of equal size. The induced classifier is trained and

tested k times. In each time t, the induced classifier is trained on Dt and tested on

the remaining subsets.

5.2 Design of the GQTE

In this section, a novel query term expansion method is proposed, Good Query

Term Extractor or GQTE. It includes two modules: classification module and query

generation module. The classification module is used to estimate the ‘Good’ query

terms, whereas the query generation module is used to generate the estimated ‘Good’

query. The methodologies of each module are described in detail in the rest of this

section.

5.2.1 Overall Structure

GQTE is a kind of query term expansion method based on PRF information. It re-

formulates the user query with the estimated ‘Good’ query terms that are selected

from the top retrieved documents about the user query. This idea is proposed based

on two assumptions: (1) the top retrieved documents about the user query are rele-

vant to the user information’s need (i.e., topic), which is similar to the assumption

in PRF, and (2) the terms in the relevant documents of a particular topic can be

classified into two classes: ‘Good’ and ‘Normal’. ‘Good’ means the term is a good

query term that has good retrieval capability, whereas ‘Normal’ means the term is

not suitable to be a query term because its retrieval capability is poor. This assump-

tion is likely to be valid if the ‘Good’ query terms have similar characteristics and

have dissimilar characteristics to ‘Normal’ query terms for any topic in the collec-

tion, so that we can find a class boundary to sepearate them. We believe that this

90

Retrieval

Good Query Term Extractor

Classification

Query Generation

Retrieval

User query
 Top n retrieved documents

Reformulated query composited by the user query

and the estimated 'Good' query terms

Final retrieval

list

Figure 5.1: The mechanism of the Good Query Term Extractor

boundary is non-linear.

The overall structure of GQTE is shown in Figure 5.1. Firstly, the top n re-

trieved documents about the user query are obtained. Secondly, the terms in this

set of documents are then sent to GQTE. The GQTE uses its classification mod-

ule to estimate the possible class (i.e.,‘Good’ or ‘Normal’) of the given terms. The

estimated ‘Good’ query terms are then sent to the query generation module to re-

formulate the user query using the defined weighting scheme and confidence level.

Finally, the reformulated query is used to retrieve the documents again. This final

retrieval list of documents is returned to the user.

5.2.2 Classification Module

The classification module in GQTE is used to estimate the ‘Good’ query terms. This

classification module is a well trained classifier based on the C4.5 classification

method. In detail, first, the classifier uses the pre-defined features to classify the

incoming terms into two classes, ‘Good’ and ‘Normal’. Then a list of ‘Good’ query

terms is returned along with a confidence value. In this study, the classifier is trained

by using the terms in our best near optimal queries as the ‘Good’ query terms, and

91

using the remaining terms in the relevant document of that topic as the ‘Normal’

query terms. Our best near optimal query is the best among all the near optimal

queries about a particular topic in Chapters 3 and 4. Moreover, in order to apply

good discriminatory features into the classifier, we use a class separability measure,

divergence, to select the relatively good features from a pile of possible features.

The details are described in Section 5.3.

5.2.3 Query Generation Module

The query generation module in GQTE is used to generate an estimated ‘Good’

query about the user’s information needs based on a user-defined confidence level.

Firstly, the query generation module receives a set G of estimated ‘Good’ query

terms from the classification module in GQTE. Secondly, the terms in G are filtered

based on a user-defined confidence level. That is, if the confidence value of a term t

is smaller than the confidence level, then the term t will be omitted. Therefore, the

query size will be different for different topics because it is based on a confidence

level rather than a fixed number. Finally, the reformulated query qm is generated by

using the Equation 5.3, where σq(t) is a term weight functions for the user query q,

σf (t) is a term weight functions for the estimated ‘Good’ query terms, and α and β

are parameters:

qm ≡ α
∑

t∈q

σq(t)t + β
∑

t∈G

σf (t)t (5.3)

Four different term weight schemes are proposed to calculate the term weight

functions of the user query σq(t) and the estimated ‘Good’ query terms σf (t). The

details are shown in Table 5.1. The term weight schemes (1) and (2) are the best

term weight schemes in Chapter 3. The term weight schemes (3) and (4) are newly

proposed in this chapter. In particular, the unity weight scheme (1) is essentially

without any weighting. The parameters α and β are equal to 1. The rank normaliza-

tion scheme (2) is similar to the rank normalization scheme in Chapter 3 where the

92

User query weight ‘Good’ query terms weight Parameter
No. Scheme Name σq(t) σf (t) α β

1 Unity Weight 1 1 1 1

2 Rank Normalization
1

|q|term

max
t∈qm

(rank(t) − rank(t) + 1)
∑

t∈qm

rank(t)
0.1 0.9

3 Rank Normalization 2
1

|q|term

max
t∈qm

(rank(t) − rank(t) + 1)
∑

t∈qm

rank(t)
1 1

4 Confidence 1 conf(t) 1 1

Table 5.1: Term weight schemes for reformulating the user query with estimated
‘Good’ query terms

term weight in the user query q is normalized by the user query size; and the term

weight in the estimated ‘Good’ query terms G is normalized by its rank rank(t);

and with the parameters α and β are also equal to 0.1 and 0.9, respectively. How-

ever, the rank in this chapter is ordered by the confidence value conf(t) rather than

the score of the term ranking function. If the terms have the same confidence value,

the rank of these terms will be the same. Moreover, scheme (3) can be considered

as a variation of scheme (2), where the parameters α and β are equal to 1. Fi-

nally, confidence scheme (4) uses the confidence of a term, conf(t), to calculate the

‘Good’ query term weight directly. The user query weight are set to 1, and with the

parameters α and β are also set to 1.

5.3 Features Selection

How to select features is an important issue in classification problems. In general,

a good feature is a good discriminatory feature that can be used to separate the

classes. In this study, we use the divergence measure to determine the discrimina-

tory capability of the term, and to select the better discriminatory features. This

divergence value is calculated using the Equation 5.2, in which the ‘Good’ class

density pA(x) is calculated using the best near optimal query terms for 150 topics

93

(i.e., all the topics in TREC-6, 7 and 8), and the ‘Normal’ class density pB(x) is

calculated using the remaining terms in the relevant documents for that topic. In

order to provide a balanced comparison, the number of ‘Good’ terms and ‘Normal’

terms for a topic is the same.

There are a lot of possible features for classifying the ‘Good’ and ‘Normal’

terms in the relevant documents. In the rest of this section, these possible fea-

tures are introduced based on five major characteristic: (1) General Characteristic;

(2) Location Characteristic; (3) Part-of-speech Characteristic; (4) Sentence Type

Characteristic; and (5) Title Term Characteristic. The divergence of each feature is

calculated, and then the final features using for the classification module in GQTE

is determined by using this divergence value.

5.3.1 General Characteristic

General characteristic refers to the general term ranking functions, such as term fre-

quency in the relevant document set and the document frequency in the collection.

The detailed definitions of these kinds of features are shown in Table 5.2. Some

of these features have been used for term ranking functions in Chapter 3. These

features can be divided into three types: (1) ‘relevant documents based’ which in-

cludes Features 1 to 6, (2) ‘collection based’ which includes Features 7 to 11 and

(3) ‘both based’ which includes Features 12 to 17. The features in Type (1) are

mainly focused on the relevant document set, whereas the features in Type (2) are

mainly focused on the collection. The features in Type (3) are focused on both the

relevant document set and the collection. In general, Both Type (1) and Type (2)

have two features calculated based on the document frequency, DF (.) and IDF (.).

These two functions have been widely used in IR. Moreover, each type has four fea-

tures: one that is based on the total term frequency (SumNTF), or the average term

frequency (AvgNTF), or the maximum term frequency (MaxNTF), or the minimum

94

term frequency (MinNTF) of a term in the documents. Furthermore, two more fea-

tures are examined in Type (3), which is CHI3 ∗NSumNTF (t) (i.e., Feature 16),

and the other is W4∗NMaxNTF (t) (i.e., Feature 17). These are the best two term

ranking functions in Chapter 3, where with the detailed definitions shown in Item 7

of Table 3.2 and Equation 3.11 of Chapter 3, respectively.

The divergence value of each feature in General characteristic are shown in the

last column of Table 5.2. It is obvious that Feature CHI3 ∗ NSumNTF (t) and

Feature W4 ∗ NMaxNTF (t) achieve the highest divergence value among all the

features. Moreover, it appears that the features in Type (3) achieve higher diver-

gence value than Types (1) and (2) on average. Furthermore, Features (1), (2), (7)

and (8) perform poorly. This reveals that the document frequency is not a good fea-

ture for our classification problem. Finally, minimum term frequency (i.e., Features

6 and 11) is better than total, average and maximum term frequency in Type (1) and

Type (2) but not in Type (3). In Type (3), total term frequency is better (i.e., Feature

12).

5.3.2 Location Characteristic

Location characteristic are the features related to the location of the query term in

the relevant documents (i.e., ‘Relevance Documents Based’). Several definitions are

given. First, a paragraph is defined as a line of words that has a line break character

at the last position and is preceded by a full stop, question mark or exclaimation

mark character at the second to last position. Moreover, the first and last paragraph

are defined as the line after the 〈text〉 tag and the line before the 〈/text〉 tag, respec-

tively, and the body paragraphs are the lines between the first and last paragraph.

Furthermore, a sentence is defined as a token of words with a full stop, question

mark or exclaimation mark at the last position. However, if a token has a full stop

at the last position and the number of characters in the token is smaller than 5, then

this token is merged with the next token because it is likely to be an abbreviation

95

No. Feature Divergence
(1) Relevant Documents Based

1. DF (R, t) = card(r ∈ R, t ∈ r) 0.528
2. IDF (R, t) = log

card(R)+1
DF (R,t) 0.739

3. SumNTF (R, t) =
∑

d∈R

TF (d, t)

‖d‖1
6.109

4. AvgNTF (R, t) = SumNTF (R,t)
card(R) 3.046

5. MaxNTF (R, t) = max
d∈R

TF (d, t)

‖d‖1
0.410

6. MinNTF (R, t) = min
d∈R

TF (d, t)

‖d‖1
18.291

(2) Collection Based
7. DF (C, t) = card(r ∈ C, t ∈ r) 5.019

8. IDF (C, t) = log
card(C)+1
DF (C,t) 6.350

9. SumNTF (C, t) =
∑

d∈C

TF (d, t)

‖d‖1
3.303

10. MaxNTF (C, t) = max
d∈C

TF (d, t)

‖d‖1
6.384

11. MinNTF (C, t) = min
d∈C

TF (d, t)

‖d‖1
44.756

(3) Both Based

12. NSumNTF (t) = SumNTF (R,t)
SumNTF (C,t) 29.342

13. NAvgNTF (t) = AvgNTF (R,t)
SumNTF (C,t)

card(R)

11.451

14. NMaxNTF (t) = MaxNTF (R,t)
MaxNTF (C,t) 15.600

15. NMinNTF (t) = MinNTF (R,t)
MinNTF (C,t) 3.697

16. CHI3 ∗NSumNTF (t) = CHI3(t)×NSumNTF (t) 133.984
17. W4 ∗NMaxNTF (t) = W4(t)×NMaxNTF (t) 31.576

Table 5.2: General Characteristics

96

word rather than a sentence. Finally, the first and last sentence are defined as the

first and last token in a paragraph, and the body sentences are the tokens between

the first and last sentence in a paragraph.

The features in the location characteristic can be divided into three types: (1)

‘paragraph based’ which is shown in Table 5.3 (i.e., Features 18 to 35); (2) ‘para-

graph and sentence based’ which is shown in Table 5.4 (i.e., Features 36 to 62); and

(3) ‘paragraph and words based’ which is shown in Table 5.5 (i.e., Features 63 to

71). In Type (1), the term frequency is counted when the query term appears in a

particular paragraph, whereas in Type (2) the term frequency is counted when the

query term appears in a particular sentence of a particular paragraph. In Type (3),

the term frequency is counted when the query term appears in the top 30 words of

a particular paragraph. The function Location(p, s, d) shown in Tables 5.3, 5.4 and

5.5 refers to the term appearing in the sentence s of the paragraph p of the document

d. For instance, TF (Location(first, body, d), t) refers to the term frequency of the

term t appearing in the body sentence of the first paragraph of the document d.

There are three types of inter-document normalization methods to normalize

the term frequency in a document: one that is divided by the document size (NTF),

one that is divided by the term frequency in the document (NTF2), and one that

is divided by the number of words in the given location (NTF3), such as the first

paragraph. Moreover, there are two types of intra-document normalization methods

to calculate the term frequency in the relevant document set: one that is based on the

total term frequency (Sum), and the other is based on the average term frequency

(Avg) in all the relevant documents of the given topic. For instance, the feature,

SumNTFFirstWhole(R, t) (i.e., Feature 18 in Table 5.3), is calculated by three

steps: step 1, the term frequency of the term t appearing in the first paragraph

(i.e., ‘FirstWhole’) of a relevant document is calculated, step 2, the obtained term

frequency is divided by the document size of that relevant document (i.e., ‘NTF’),

step 3, where step 1 is repeated until all the relevant documents are calculated. Step

4, the term frequency in each relevant document, are added together (i.e., Sum) and

97

No. Feature Divergence

18. SumNTFFirstWhole(R, t) =
∑

d∈R
TF (Location(first,whole,d),t)

‖d‖1
14.443

19. AvgNTFFirstWhole(R, t) = SumNTFFirstWhole(R,t)
card(R) 19.234

20. SumNTF2FirstWhole(R, t) =
∑

d∈R
TF (Location(first,whole,d),t)

TF (d,t) 3.212

21. AvgNTF2FirstWhole(R, t) = SumNTF2FirstWhole(R,t)
card(R) 4.199

22. SumNTF3FirstWhole(R, t) =
∑

d∈R
TF (Location(first,whole,d),t)
‖Location(first,whole,d)‖1

2.502

23. AvgNTF3FirstWhole(R, t) = SumNTF3FirstWhole(R,t)
card(R) 1.841

24. SumNTFBodyWhole(R, t) =
∑

d∈R
TF (Location(body,whole,d),t)

‖d‖1
15.672

25. AvgNTFBodyWhole(R, t) = SumNTFBodyWhole(R,t)
card(R) 11.758

26. SumNTF2BodyWhole(R, t) =
∑

d∈R
TF (Location(body,whole,d),t)

TF (d,t) 3.331

27. AvgNTF2BodyWhole(R, t) = SumNTF2BodyWhole(R,t)
card(R) 3.611

28. SumNTF3BodyWhole(R, t) =
∑

d∈R
TF (Location(body,whole,d),t)
‖Location(body,whole,d)‖1

2.715

29. AvgNTF3BodyWhole(R, t) = SumNTF3BodyWhole(R,t)
card(R) 1.813

30. SumNTFLastWhole(R, t) =
∑

d∈R
TF (Location(last,whole,d),t)

‖d‖1
14.636

31. AvgNTFLastWhole(R, t) = SumNTFLastWhole(R,t)
card(R) 18.698

32. SumNTF2LastWhole(R, t) =
∑

d∈R
TF (Location(last,whole,d),t)

TF (d,t) 3.464

33. AvgNTF2LastWhole(R, t) = SumNTF2LastWhole(R,t)
card(R) 1.599

34. SumNTF3LastWhole(R, t) =
∑

d∈R
TF (Location(last,whole,d),t)
‖Location(last,whole,d)‖1

2.703

35. AvgNTF3LastWhole(R, t) = SumNTF3LastWhole(R,t)
card(R) 1.838

Table 5.3: Location Characteristic - (1) Paragraph Based

the final result is obtained. In addition, the equation avgd∈R in Tables 5.4 and 5.5

equal to sumd∈R

card(R)
.

From Tables 5.3, 5.4 and 5.5 we can see that the ‘NTF’ intra-document nor-

malization method always achieves the highest divergence value among all the lo-

cations. On the other hand, the ‘NTF3’ normalization method always achieves the

lowest divergence value. This implies that using ‘NTF3’ intra-document normal-

ization method cannot generate good features for classification. Therefore ‘NTF3’

normalization method is not considered in the following experiments. Moreover,

on average, the ‘Avg’ inter-document normalization method is better than the ‘Sum’

method. Therefore, we only use ‘Avg’ normalization method in the following exper-

iments. Finally, it appears that the divergence values of the features in Type (1) (i.e.,

98

No. Feature Divergence

36. AvgNTFFirstF irst(R, t) = avgd∈R
TF (Location(first,first,d),t)

‖d‖1
3.691

37. AvgNTF2FirstF irst(R, t) = avgd∈R
TF (Location(first,first,d),t)

TF (d,t) 7.324

38. AvgNTF3FirstF irst(R, t) = avgd∈R
TF (Location(first,first,d),t)
‖Location(first,first,d)‖1

0.247

39. AvgNTFFirstBody(R, t) = avgd∈R
TF (Location(first,body,d),t)

‖d‖1
4.755

40. AvgNTF2FirstBody(R, t) = avgd∈R
TF (Location(first,body,d),t)

TF (d,t) 8.057

41. AvgNTF3FirstBody(R, t) = avgd∈R
TF (Location(first,body,d),t)
‖Location(first,body,d)‖1

0.302

42. AvgNTFFirstLast(R, t) = avgd∈R
TF (Location(first,Last,d),t)

‖d‖1
1.690

43. AvgNTF2FirstLast(R, t) = avgd∈R
TF (Location(first,Last,d),t)

TF (d,t) 4.900

44. AvgNTF3FirstLast(R, t) = avgd∈R
TF (Location(first,Last,d),t)
‖Location(first,Last,d)‖1

0.045

45. AvgNTFBodyF irst(R, t) = avgd∈R
TF (Location(body,first,d),t)

‖d‖1
6.073

46. AvgNTF2BodyF irst(R, t) = avgd∈R
TF (Location(body,first,d),t)

TF (d,t) 4.999

47. AvgNTF3BodyF irst(R, t) = avgd∈R
TF (Location(body,first,d),t)
‖Location(body,first,d)‖1

0.047

48. AvgNTFFBodyBody(R, t) = avgd∈R
TF (Location(body,body,d),t)

‖d‖1
3.096

49. AvgNTF2BodyBody(R, t) = avgd∈R
TF (Location(body,body,d),t)

TF (d,t) 1.707

50. AvgNTF3BodyBody(R, t) = avgd∈R
TF (Location(body,body,d),t)
‖Location(body,body,d)‖1

0.245

51. AvgNTFBodyLast(R, t) = avgd∈R
TF (Location(body,Last,d),t)

‖d‖1
2.099

52. AvgNTF2BodyLast(R, t) = avgd∈R
TF (Location(body,Last,d),t)

TF (d,t) 2.474

53. AvgNTF3BodyLast(R, t) = avgd∈R
TF (Location(body,Last,d),t)
‖Location(body,Last,d)‖1

0.170

54. AvgNTFLastF irst(R, t) = avgd∈R
TF (Location(Last,first,d),t)

‖d‖1
2.033

55. AvgNTF2LastF irst(R, t) = avgd∈R
TF (Location(Last,first,d),t)

TF (d,t) 1.766

56. AvgNTF3LastF irst(R, t) = avgd∈R
TF (Location(Last,first,d),t)
‖Location(Last,first,d)‖1

0.086

57. AvgNTFLastBody(R, t) = avgd∈R
TF (Location(Last,body,d),t)

‖d‖1
1.516

58. AvgNTF2LastBody(R, t) = avgd∈R
TF (Location(Last,body,d),t)

TF (d,t) 1.481

59. AvgNTF3LastBody(R, t) = avgd∈R
TF (Location(Last,body,d),t)
‖Location(Last,body,d)‖1

0.014

60. AvgNTFLastLast(R, t) = avgd∈R
TF (Location(Last,Last,d),t)

‖d‖1
2.012

61. AvgNTF2LastLast(R, t) = avgd∈R
TF (Location(Last,Last,d),t)

TF (d,t) 1.564

62. AvgNTF3LastLast(R, t) = avgd∈R
TF (Location(Last,Last,d),t)
‖Location(Last,Last,d)‖1

0.252

Table 5.4: Location Characteristic - (2) Paragraph and Sentence Based

99

No. Feature Divergence

63. AvgNTFFirst30(R, t) = avgd∈R
TF (Location(first,30,d),t)

‖d‖1
4.586

64. AvgNTF2First30(R, t) = avgd∈R
TF (Location(first,30,d),t)

TF (d,t) 1.426

65. AvgNTF3First30(R, t) = avgd∈R
TF (Location(first,30,d),t)
‖Location(first,30,d)‖1

0.072

66. AvgNTFBody30(R, t) = avgd∈R
TF (Location(body,30,d),t)

‖d‖1
6.248

67. AvgNTF2Body30(R, t) = avgd∈R
TF (Location(body,30,d),t)

TF (d,t) 4.180

68. AvgNTF3Body30(R, t) = avgd∈R
TF (Location(body,30,d),t)
‖Location(body,30,d)‖1

0.437

69. AvgNTFLast30(R, t) = avgd∈R
TF (Location(last,30,d),t)

‖d‖1
5.452

70. AvgNTF2Last30(R, t) = avgd∈R
TF (Location(last,30,d),t)

TF (d,t) 7.870

71. AvgNTF3Last30(R, t) = avgd∈R
TF (Location(last,30,d),t)
‖Location(last,30,d)‖1

0.269

Table 5.5: Location Characteristic - (3) Paragraph and Words Based

paragraph based) are better than Type (2) (i.e., paragraph and sentence based), and

Type (3) (i.e., paragraph and words based). Therefore, we believe that the paragraph

based features are good for our classification problem.

5.3.3 Part-Of-Speech Characteristic

Part-Of-Speech characteristic are the features related to the part-of-speech of the

query term in the relevant documents (i.e., ‘Relevance Documents Based’). We use

Brill’s tagger with Brown’s corpus to determine the part-of-speech of the term. The

part-of-speech tags can be divided into 5 classes: (a) JJ which includes adjectives,

comparatives and superlatives; (b) NN which includes singular nouns and plural

nouns; (c) NNP which includes proper noun both singular and plural; (d) RB which

includes adverbs, compartives and superlatives; (e) VB which includes all the tenses

of the verb (such as present tense, past tense and present participle tense).

The features in the part-of-speech (POS) characteristic can be divided into four

types: (1) ‘whole document based’, which is shown in Table 5.6 (i.e., Features 72

to 81); (2) ‘paragraph based’, which is shown in Table 5.7 (i.e., Features 82 to 111);

(3) ‘paragraph and sentence based’, which is shown in three tables: Table 5.8 (i.e.,

100

No. Feature Divergence

72. AvgNTFWholeJJ(R, t) = avgd∈R
TF (d,POS(JJ,t))

‖d‖1
0.479

73. AvgNTF2WholeJJ(R, t) = avgd∈R
TF (d,POS(JJ,t))

TF (d,t) 3.001

74. AvgNTFWholeNN(R, t) = avgd∈R
TF (d,POS(NN,t))

‖d‖1
13.776

75. AvgNTF2WholeNN(R, t) = avgd∈R
TF (d,POS(NN,t))

TF (d,t) 13.291

76. AvgNTFWholeNNP (R, t) = avgd∈R
TF (d,POS(NNP,t))

‖d‖1
10.838

77. AvgNTF2WholeNNP (R, t) = avgd∈R
TF (d,POS(NNP,t))

TF (d,t) 10.622

78. AvgNTFWholeRB(R, t) = avgd∈R
TF (d,POS(RB,t))

‖d‖1
0.031

79. AvgNTF2WholeRB(R, t) = avgd∈R
TF (d,POS(RB,t))

TF (d,t) 0.045

80. AvgNTFWholeV B(R, t) = avgd∈R
TF (d,POS(V B,t))

‖d‖1
1.081

81. AvgNTF2WholeV B(R, t) = avgd∈R
TF (d,POS(V B,t))

TF (d,t) 1.188

Table 5.6: Part-Of-Speech Characteristic - (1) Whole Document Based

Features 112 to 129), Table 5.9 (i.e., Features 130 to 147) and Table 5.10 (i.e., Fea-

tures 148 to 165); and (4) ‘paragraph and words based’, which is shown in Table

5.11 (i.e., Features 166 to 183). Type (1) only considers the part-of-speech charac-

teristic, whereas Types (2), (3) and (4) consider both the part-of-speech and loca-

tion characteristics. In addition, two better types of inter-document normalization

method, ‘NTF’ and ‘NTF2’ are used and the ‘Avg’ intra-document normalization

method is used.

Based only on consider the location characteristic, from Table 5.6 we can see

that the noun and the proper noun (i.e., NN and NNP) calculate the term frequency

to achieve the highest divergence value, whereas, the adverb and verb (i.e., RB and

VB) achieve the lowest divergence value. If the location of the term is considered,

Table 5.7 shows that the noun and proper noun method also achieve good divergence

values, but the adverb and verb achieve poor divergence values. Therefore, the ad-

verb and verb features are not considered in the following experiments. Moreover,

from Tables 5.6 and 5.7 we can see that calculating the term frequency based on the

paragraph location can achieve higher divergence value than the frequency based

101

No. Feature Divergence

82. AvgNTFFirstWholeJJ(R, t) = avgd∈R
TF (Location(first,whole,d),POS(JJ,t))

‖d‖1

9.890

83. AvgNTF2FirstWholeJJ(R, t) = avgd∈R
TF (Location(first,whole,d),POS(JJ,t))

TF (d,t)
2.632

84. AvgNTFFirstWholeNN(R, t) = avgd∈R
TF (Location(first,whole,d),POS(NN,t))

‖d‖1

48.437

85. AvgNTF2FirstWholeNN(R, t) = avgd∈R
TF (Location(first,whole,d),POS(NN,t))

TF (d,t)
9.417

86. AvgNTFFirstWholeNNP (R, t) = avgd∈R
TF (Location(first,whole,d),POS(NNP,t))

‖d‖1

15.325

87. AvgNTF2FirstWholeNNP (R, t) = avgd∈R
TF (Location(first,whole,d),POS(NNP,t))

TF (d,t)
5.379

88. AvgNTFFirstWholeRB(R, t) = avgd∈R
TF (Location(first,whole,d),POS(RB,t))

‖d‖1

0.252

89. AvgNTF2FirstWholeRB(R, t) = avgd∈R
TF (Location(first,whole,d),POS(RB,t))

TF (d,t)
0.037

90. AvgNTFFirstWholeV B(R, t) = avgd∈R
TF (Location(first,whole,d),POS(V B,t))

‖d‖1

3.556

91. AvgNTF2FirstWholeV B(R, t) = avgd∈R
TF (Location(first,whole,d),POS(V B,t))

TF (d,t)
0.984

92. AvgNTFBodyWholeJJ(R, t) = avgd∈R
TF (Location(body,whole,d),POS(JJ,t))

‖d‖1

10.060

93. AvgNTF2BodyWholeJJ(R, t) = avgd∈R
TF (Location(body,whole,d),POS(JJ,t))

TF (d,t)
1.931

94. AvgNTFBodyWholeNN(R, t) = avgd∈R
TF (Location(body,whole,d),POS(NN,t))

‖d‖1

26.658

95. AvgNTF2BodyWholeNN(R, t) = avgd∈R
TF (Location(body,whole,d),POS(NN,t))

TF (d,t)
6.392

96. AvgNTFBodyWholeNNP (R, t) = avgd∈R
TF (Location(body,whole,d),POS(NNP,t))

‖d‖1

11.997

97. AvgNTF2BodyWholeNNP (R, t) = avgd∈R
TF (Location(body,whole,d),POS(NNP,t))

TF (d,t)
5.828

98. AvgNTFBodyWholeRB(R, t) = avgd∈R
TF (Location(body,whole,d),POS(RB,t))

‖d‖1

0.014

99. AvgNTF2BodyWholeRB(R, t) = avgd∈R
TF (Location(body,whole,d),POS(RB,t))

TF (d,t)
0.072

100. AvgNTFBodyWholeV B(R, t) = avgd∈R
TF (Location(body,whole,d),POS(V B,t))

‖d‖1

3.682

101. AvgNTF2BodyWholeV B(R, t) = avgd∈R
TF (Location(body,whole,d),POS(V B,t))

TF (d,t)
0.823

102. AvgNTFLastWholeJJ(R, t) = avgd∈R
TF (Location(last,whole,d),POS(JJ,t))

‖d‖1

14.183

103. AvgNTF2LastWholeJJ(R, t) = avgd∈R
TF (Location(last,whole,d),POS(JJ,t))

TF (d,t)
2.217

104. AvgNTFLastWholeNN(R, t) = avgd∈R
TF (Location(last,whole,d),POS(NN,t))

‖d‖1

59.418

105. AvgNTF2LastWholeNN(R, t) = avgd∈R
TF (Location(last,whole,d),POS(NN,t))

TF (d,t)
8.979

106. AvgNTFLastWholeNNP (R, t) = avgd∈R
TF (Location(last,whole,d),POS(NNP,t))

‖d‖1

15.152

107. AvgNTF2LastWholeNNP (R, t) = avgd∈R
TF (Location(last,whole,d),POS(NNP,t))

TF (d,t)
5.833

108. AvgNTFLastWholeRB(R, t) = avgd∈R
TF (Location(last,whole,d),POS(RB,t))

‖d‖1

0.040

109. AvgNTF2LastWholeRB(R, t) = avgd∈R
TF (Location(last,whole,d),POS(RB,t))

TF (d,t)
0.027

110. AvgNTFLastWholeV B(R, t) = avgd∈R
TF (Location(last,whole,d),POS(V B,t))

‖d‖1

2.255

111. AvgNTF2LastWholeV B(R, t) = avgd∈R
TF (Location(last,whole,d),POS(V B,t))

TF (d,t)
0.991

Table 5.7: Part-Of-Speech Characteristic - (2) Paragraph Based

102

No. Feature Divergence

112. AvgNTFFirstF irstJJ(R, t) = avgd∈R
TF (Location(first,first,d),POS(JJ,t))

‖d‖1

0.073

113. AvgNTF2FirstF irstJJ(R, t) = avgd∈R
TF (Location(first,first,d),POS(JJ,t))

TF (d,t)
34.054

114. AvgNTFFirstF irstNN(R, t) = avgd∈R
TF (Location(first,first,d),POS(NN,t))

‖d‖1

6.101

115. AvgNTF2FirstF irstNN(R, t) = avgd∈R
TF (Location(first,first,d),POS(NN,t))

TF (d,t)
56.458

116. AvgNTFFirstF irstNNP (R, t) = avgd∈R
TF (Location(first,first,d),POS(NNP,t))

‖d‖1

5.947

117. AvgNTF2FirstF irstNNP (R, t) = avgd∈R
TF (Location(first,first,d),POS(NNP,t))

TF (d,t)
13.996

118. AvgNTFFirstBodyJJ(R, t) = avgd∈R
TF (Location(first,body,d),POS(JJ,t))

‖d‖1

0.601

119. AvgNTF2FirstBodyJJ(R, t) = avgd∈R
TF (Location(first,body,d),POS(JJ,t))

TF (d,t)
2.862

120. AvgNTFFirstBodyNN(R, t) = avgd∈R
TF (Location(first,body,d),POS(NN,t))

‖d‖1

6.321

121. AvgNTF2FirstBodyNN(R, t) = avgd∈R
TF (Location(first,body,d),POS(NN,t))

TF (d,t)
7.568

122. AvgNTFFirstBodyNNP (R, t) = avgd∈R
TF (Location(first,body,d),POS(NNP,t))

‖d‖1

5.457

123. AvgNTF2FirstBodyNNP (R, t) = avgd∈R
TF (Location(first,body,d),POS(NNP,t))

TF (d,t)
11.007

124. AvgNTFFirstLastJJ(R, t) = avgd∈R
TF (Location(first,last,d),POS(JJ,t))

‖d‖1

0.723

125. AvgNTF2FirstLastJJ(R, t) = avgd∈R
TF (Location(first,last,d),POS(JJ,t))

TF (d,t)
1.218

126. AvgNTFFirstLastNN(R, t) = avgd∈R
TF (Location(first,last,d),POS(NN,t))

‖d‖1

5.840

127. AvgNTF2FirstLastNN(R, t) = avgd∈R
TF (Location(first,last,d),POS(NN,t))

TF (d,t)
7.161

128. AvgNTFFirstLastNNP (R, t) = avgd∈R
TF (Location(first,last,d),POS(NNP,t))

‖d‖1

4.778

129. AvgNTF2FirstLastNNP (R, t) = avgd∈R
TF (Location(first,last,d),POS(NNP,t))

TF (d,t)
9.332

Table 5.8: Part-Of-Speech Characteristic - (3) Paragraph and Sentence Based <part
1>

on the whole document. Moreover, it appears that the divergence values of the fea-

tures in Type (2) (i.e., paragraph based) are better than in Type (3) (i.e., paragraph

and sentence based) and Type (4) (i.e., paragraph and words based). This is sim-

ilar to the results in the location characteristic section. Therefore, we believe that

the paragraph based features are good for our classification problem. We will only

consider paragraph based features in the following experiments. Furthermore, com-

paring the features with the same type in location characteristic and part-of-speech

characteristic (i.e., Table 5.7 vs. Table 5.3; Tables 5.8, 5.9 and 5.10 vs. Table 5.4;

Table 5.11 vs. Table 5.5), we realize that using a combination of the part-of-speech

and the location characteristics can achieve higher divergence value than using the

location only. Therefore, we believe that using part-of-speech to calculate the term

frequency can improve the classification performance.

103

No. Feature Divergence

130. AvgNTFBodyF irstJJ(R, t) = avgd∈R
TF (Location(body,first,d),POS(JJ,t))

‖d‖1

0.122

131. AvgNTF2BodyF irstJJ(R, t) = avgd∈R
TF (Location(body,first,d),POS(JJ,t))

TF (d,t)
0.328

132. AvgNTFBodyF irstNN(R, t) = avgd∈R
TF (Location(body,first,d),POS(NN,t))

‖d‖1

5.807

133. AvgNTF2BodyF irstNN(R, t) = avgd∈R
TF (Location(body,first,d),POS(NN,t))

TF (d,t)
6.016

134. AvgNTFBodyF irstNNP (R, t) = avgd∈R
TF (Location(body,first,d),POS(NNP,t))

‖d‖1

7.465

135. AvgNTF2BodyF irstNNP (R, t) = avgd∈R
TF (Location(body,first,d),POS(NNP,t))

TF (d,t)
7.861

136. AvgNTFBodyBodyJJ(R, t) = avgd∈R
TF (Location(body,body,d),POS(JJ,t))

‖d‖1

0.548

137. AvgNTF2BodyBodyJJ(R, t) = avgd∈R
TF (Location(body,body,d),POS(JJ,t))

TF (d,t)
1.471

138. AvgNTFBodyBodyNN(R, t) = avgd∈R
TF (Location(body,body,d),POS(NN,t))

‖d‖1

9.202

139. AvgNTF2BodyBodyNN(R, t) = avgd∈R
TF (Location(body,body,d),POS(NN,t))

TF (d,t)
9.532

140. AvgNTFBodyBodyNNP (R, t) = avgd∈R
TF (Location(body,body,d),POS(NNP,t))

‖d‖1

9.543

141. AvgNTF2BodyBodyNNP (R, t) = avgd∈R
TF (Location(body,body,d),POS(NNP,t))

TF (d,t)
10.049

142. AvgNTFBodyLastJJ(R, t) = avgd∈R
TF (Location(body,last,,d),POS(JJ,t))

‖d‖1

0.635

143. AvgNTF2BodyLastJJ(R, t) = avgd∈R
TF (Location(body,last,,d),POS(JJ,t))

TF (d,t)
0.562

144. AvgNTFBodyLastNN(R, t) = avgd∈R
TF (Location(body,last,,d),POS(NN,t))

‖d‖1

2.271

145. AvgNTF2BodyLastNN(R, t) = avgd∈R
TF (Location(body,last,,d),POS(NN,t))

TF (d,t)
25.081

146. AvgNTFBodyLastNNP (R, t) = avgd∈R
TF (Location(body,last,,d),POS(NNP,t))

‖d‖1

4.800

147. AvgNTF2BodyLastNNP (R, t) = avgd∈R
TF (Location(body,last,,d),POS(NNP,t))

TF (d,t)
8.230

Table 5.9: Part-Of-Speech Characteristic - (3) Paragraph and Sentence Based <part
2>

5.3.4 Sentence Type Characteristic

Sentence type characteristic are the features related to the type of the sentence where

the query term appears. The sentence type includes three types: (a) ‘Stat’ refers to

the statement sentence; (2) ‘Quest’ refers to the question sentence; and (3) ‘Ex-

claim’ refers to the exclamation sentence.

The features in the sentence type characteristic can be divided into four types:

(1) ‘whole document based’, which is shown in Table 5.12 (i.e., Features 184 to

189); (2) ‘paragraph based’, which is shown in Table 5.13 (i.e., Features 190 to 207);

(3) ‘whole document and POS based’, which is shown in Table 5.14 (i.e., Features

208 to 225); (4) ‘paragraph and POS based’, which is shown in three tables: Table

5.15 (i.e., Features 226 to 243), Table 5.16 (i.e., Features 244 to 261) and Table 5.17

(i.e., Features 262 to 279). Type (1) only considers the sentence type characteristic.

Type (2) combines the characteristics of the sentence type and location. Type (3)

104

No. Feature Divergence

148. AvgNTFLastF irstJJ(R, t) = avgd∈R
TF (Location(last,first,d),POS(JJ,t))

‖d‖1

0.529

149. AvgNTF2LastF irstJJ(R, t) = avgd∈R
TF (Location(last,first,d),POS(JJ,t))

TF (d,t)
2.426

150. AvgNTFLastF irstNN(R, t) = avgd∈R
TF (Location(last,first,d),POS(NN,t))

‖d‖1

2.069

151. AvgNTF2LastF irstNN(R, t) = avgd∈R
TF (Location(last,first,d),POS(NN,t))

TF (d,t)
1.408

152. AvgNTFLastF irstNNP (R, t) = avgd∈R
TF (Location(last,first,d),POS(NNP,t))

‖d‖1

4.418

153. AvgNTF2LastF irstNNP (R, t) = avgd∈R
TF (Location(last,first,d),POS(NNP,t))

TF (d,t)
9.406

154. AvgNTFLastBodyJJ(R, t) = avgd∈R
TF (Location(last,body,d),POS(JJ,t))

‖d‖1

0.653

155. AvgNTF2LastBodyJJ(R, t) = avgd∈R
TF (Location(last,body,d),POS(JJ,t))

TF (d,t)
1.910

156. AvgNTFLastBodyNN(R, t) = avgd∈R
TF (Location(last,body,d),POS(NN,t))

‖d‖1

2.943

157. AvgNTF2LastBodyNN(R, t) = avgd∈R
TF (Location(last,body,d),POS(NN,t))

TF (d,t)
2.519

158. AvgNTFLastBodyNNP (R, t) = avgd∈R
TF (Location(last,body,d),POS(NNP,t))

‖d‖1

11.711

159. AvgNTF2LastBodyNNP (R, t) = avgd∈R
TF (Location(last,body,d),POS(NNP,t))

TF (d,t)
9.604

160. AvgNTFLastLastJJ(R, t) = avgd∈R
TF (Location(last,last,d),POS(JJ,t))

‖d‖1

2.548

161. AvgNTF2LastLastJJ(R, t) = avgd∈R
TF (Location(last,last,d),POS(JJ,t))

TF (d,t)
2.256

162. AvgNTFLastLastNN(R, t) = avgd∈R
TF (Location(last,last,d),POS(NN,t))

‖d‖1

2.236

163. AvgNTF2LastLastNN(R, t) = avgd∈R
TF (Location(last,last,d),POS(NN,t))

TF (d,t)
3.396

164. AvgNTFLastLastNNP (R, t) = avgd∈R
TF (Location(last,last,d),POS(NNP,t))

‖d‖1

4.392

165. AvgNTF2LastLastNNP (R, t) = avgd∈R
TF (Location(last,last,d),POS(NNP,t))

TF (d,t)
7.991

Table 5.10: Part-Of-Speech Characteristic - (3) Paragraph and Sentence Based
<part 3>

No. Feature Divergence

166. AvgNTFFirst30JJ(R, t) = avgd∈R
TF (Location(first,30,d),POS(JJ,t))

‖d‖1

1.575

167. AvgNTF2First30JJ(R, t) = avgd∈R
TF (Location(first,30,d),POS(JJ,t))

TF (d,t)
2.545

168. AvgNTFFirst30NN(R, t) = avgd∈R
TF (Location(first,30,d),POS(NN,t))

‖d‖1

4.789

169. AvgNTF2First30NN(R, t) = avgd∈R
TF (Location(first,30,d),POS(NN,t))

TF (d,t)
7.568

170. AvgNTFFirst30NNP (R, t) = avgd∈R
TF (Location(first,30,d),POS(NNP,t))

‖d‖1

5.801

171. AvgNTF2First30NNP (R, t) = avgd∈R
TF (Location(first,30,d),POS(NNP,t))

TF (d,t)
5.539

172. AvgNTFBody30JJ(R, t) = avgd∈R
TF (Location(body,30,d),POS(JJ,t))

‖d‖1

3.876

173. AvgNTF2Body30JJ(R, t) = avgd∈R
TF (Location(body,30,d),POS(JJ,t))

TF (d,t)
1.226

174. AvgNTFBody30NN(R, t) = avgd∈R
TF (Location(body,30,d),POS(NN,t))

‖d‖1

6.553

175. AvgNTF2Body30NN(R, t) = avgd∈R
TF (Location(body,30,d),POS(NN,t))

TF (d,t)
9.653

176. AvgNTFBody30NNP (R, t) = avgd∈R
TF (Location(body,30,d),POS(NNP,t))

‖d‖1

10.295

177. AvgNTF2Body30NNP (R, t) = avgd∈R
TF (Location(body,30,d),POS(NNP,t))

TF (d,t)
4.718

178. AvgNTFLast30JJ(R, t) = avgd∈R
TF (Location(last,30,d),POS(JJ,t))

‖d‖1

0.572

179. AvgNTF2Last30JJ(R, t) = avgd∈R
TF (Location(last,30,d),POS(JJ,t))

TF (d,t)
2.622

180. AvgNTFLast30NN(R, t) = avgd∈R
TF (Location(last,30,d),POS(NN,t))

‖d‖1

13.807

181. AvgNTF2Last30NN(R, t) = avgd∈R
TF (Location(last,30,d),POS(NN,t))

TF (d,t)
9.395

182. AvgNTFLast30NNP (R, t) = avgd∈R
TF (Location(last,30,d),POS(NNP,t))

‖d‖1

2.575

183. AvgNTF2Last30NNP (R, t) = avgd∈R
TF (Location(last,30,d),POS(NNP,t))

TF (d,t)
5.482

Table 5.11: Part-Of-Speech Characteristic - (4) Paragraph and Words based

105

No. Feature Divergence

184. AvgNTFWholeStat(R, t) = avgd∈R
TF (Location(whole,stat,d),t)

‖d‖1

8.964

185. AvgNTF2WholeStat(R, t) = avgd∈R
TF (Location(whole,stat,d),t)

TF (d,t)
8.935

186. AvgNTFWholeQuest(R, t) = avgd∈R
TF (Location(whole,quest,d),POS(NN,t))

‖d‖1

18.971

187. AvgNTF2WholeQuest(R, t) = avgd∈R
TF (Location(whole,quest,d),POS(NN,t))

TF (d,t)
4.808

188. AvgNTFWholeExclaim(R, t) = avgd∈R
TF (Location(whole,exclaim,d),POS(NNP,t))

‖d‖1

5.417

189. AvgNTF2WholeExclaim(R, t) = avgd∈R
TF (Location(whole,exclaim,d),POS(NNP,t))

TF (d,t)
7.779

Table 5.12: Sentence Type Characteristic - (1) Whole Document Based

combines the charactertistics of the sentence type and part-of-speech. Type (4)

combines the charatertistics of the sentence type, location and part-of-speech. In

addition, ‘NTF’ and ‘NTF2’ inter-document normalization methods are used, and

the ‘Avg’ intra-document normalization method is used.

For considering only the sentence type characteristic, from Table 5.12 we can

see that based on the question sentence (i.e., Quest) to calculate the term frequency

achieves the highest divergence value. Moreover, if the paragraph location of the

term is considered, Table 5.13 shows that the divergence values are similar to that

not considered the location. However, if the part-of-speech of the term is consid-

ered, Table 5.14 illustrates that the features based on the question sentence also

achieve higher divergence value, especially for the noun and proper noun. Further-

more, if both the location and the part-of-speech are considered (features in Table

5.15, Table 5.16 and Table 5.17), it appears that in the first and last paragraph,

the ‘Stat’ and ‘Exclaim’ features achieve better divergence values, whereas in the

body paragraph, the ‘Quest’ features are better. In addition, it seems that the adjec-

tive features are weaker than the noun features and proper noun features. Finally,

we believe that combing the paragraph location characteristic, the part-of-speech

characteristic and the sentence type characteristic to calculate the term frequency

properly can improve the classification performance.

106

No. Feature Divergence

190. AvgNTFFirstStat(R, t) = avgd∈R
TF (Location(first,stat,d),t)

‖d‖1

3.106

191. AvgNTF2FirstStat(R, t) = avgd∈R
TF (Location(first,stat,d),t)

TF (d,t)
1.704

192. AvgNTFFirstQuest(R, t) = avgd∈R
TF (Location(first,quest,d),POS(NN,t))

‖d‖1

1.616

193. AvgNTF2FirstQuest(R, t) = avgd∈R
TF (Location(first,quest,d),POS(NN,t))

TF (d,t)
7.746

194. AvgNTFFirstExclaim(R, t) = avgd∈R
TF (Location(first,exclaim,d),POS(NNP,t))

‖d‖1

2.696

195. AvgNTF2FirstExclaim(R, t) = avgd∈R
TF (Location(first,exclaim,d),POS(NNP,t))

TF (d,t)
4.595

196. AvgNTFBodyStat(R, t) = avgd∈R
TF (Location(body,stat,d),t)

‖d‖1

1.642

197. AvgNTF2BodyStat(R, t) = avgd∈R
TF (Location(body,stat,d),t)

TF (d,t)
6.933

198. AvgNTFBodyQuest(R, t) = avgd∈R
TF (Location(body,quest,d),POS(NN,t))

‖d‖1

0.329

199. AvgNTF2BodyQuest(R, t) = avgd∈R
TF (Location(body,quest,d),POS(NN,t))

TF (d,t)
1.689

200. AvgNTFBodyExclaim(R, t) = avgd∈R
TF (Location(body,exclaim,d),POS(NNP,t))

‖d‖1

0.797

201. AvgNTF2BodyExclaim(R, t) = avgd∈R
TF (Location(body,exclaim,d),POS(NNP,t))

TF (d,t)
6.336

202. AvgNTFLastStat(R, t) = avgd∈R
TF (Location(last,stat,d),t)

‖d‖1

12.011

203. AvgNTF2LastStat(R, t) = avgd∈R
TF (Location(last,stat,d),t)

TF (d,t)
4.196

204. AvgNTFLastQuest(R, t) = avgd∈R
TF (Location(last,quest,d),POS(NN,t))

‖d‖1

0.076

205. AvgNTF2LastQuest(R, t) = avgd∈R
TF (Location(last,quest,d),POS(NN,t))

TF (d,t)
6.780

206. AvgNTFLastExclaim(R, t) = avgd∈R
TF (Location(last,exclaim,d),POS(NNP,t))

‖d‖1

0.085

207. AvgNTF2LastExclaim(R, t) = avgd∈R
TF (Location(last,exclaim,d),POS(NNP,t))

TF (d,t)
1.725

Table 5.13: Sentence Type Characteristic - (2) Paragraph Based

No. Feature Divergence

208. AvgNTFWholeStatJJ(R, t) = avgd∈R
TF (Location(whole,stat,d),POS(JJ,t))

‖d‖1

0.450

209. AvgNTF2WholeStatJJ(R, t) = avgd∈R
TF (Location(whole,stat,d),POS(JJ,t))

TF (d,t)
2.941

210. AvgNTFWholeStatNN(R, t) = avgd∈R
TF (Location(whole,stat,d),POS(NN,t))

‖d‖1

13.591

211. AvgNTF2WholeStatNN(R, t) = avgd∈R
TF (Location(whole,stat,d),POS(NN,t))

TF (d,t)
13.080

212. AvgNTFWholeStatNNP (R, t) = avgd∈R
TF (Location(whole,stat,d),POS(NNP,t))

‖d‖1

10.903

213. AvgNTF2WholeStatNNP (R, t) = avgd∈R
TF (Location(whole,stat,d),POS(NNP,t))

TF (d,t)
10.426

214. AvgNTFWholeQuestJJ(R, t) = avgd∈R
TF (Location(whole,quest,d),POS(JJ,t))

‖d‖1

9.986

215. AvgNTF2WholeQuestJJ(R, t) = avgd∈R
TF (Location(whole,quest,d),POS(JJ,t))

TF (d,t)
2.641

216. AvgNTFWholeQuestNN(R, t) = avgd∈R
TF (Location(whole,quest,d),POS(NN,t))

‖d‖1

47.835

217. AvgNTF2WholeQuestNN(R, t) = avgd∈R
TF (Location(whole,quest,d),POS(NN,t))

TF (d,t)
9.919

218. AvgNTFWholeQuestNNP (R, t) = avgd∈R
TF (Location(whole,quest,d),POS(NNP,t))

‖d‖1

15.163

219. AvgNTF2WholeQuestNNP (R, t) = avgd∈R
TF (Location(whole,quest,d),POS(NNP,t))

TF (d,t)
5.301

220. AvgNTFWholeExclaimJJ(R, t) = avgd∈R
TF (Location(whole,exclaim,d),POS(JJ,t))

‖d‖1

0.045

221. AvgNTF2WholeExclaimJJ(R, t) = avgd∈R
TF (Location(whole,exclaim,d),POS(JJ,t))

TF (d,t)
2.088

222. AvgNTFWholeExclaimNN(R, t) = avgd∈R
TF (Location(whole,exclaim,d),POS(NN,t))

‖d‖1

7.955

223. AvgNTF2WholeExclaimNN(R, t) = avgd∈R
TF (Location(whole,exclaim,d),POS(NN,t))

TF (d,t)
10.893

224. AvgNTFWholeExclaimNNP (R, t) = avgd∈R
TF (Location(whole,exclaim,d),POS(NNP,t))

‖d‖1

7.103

225. AvgNTF2WholeExclaimNNP (R, t) = avgd∈R
TF (Location(whole,exclaim,d),POS(NNP,t))

TF (d,t)
10.798

Table 5.14: Sentence Type Characteristic - (3) Whole Document and POS Based

107

No. Feature Divergence

226. AvgNTFFirstStatJJ(R, t) = avgd∈R
TF (Location(first,stat,d),POS(JJ,t))

‖d‖1

1.043

227. AvgNTF2FirstStatJJ(R, t) = avgd∈R
TF (Location(first,stat,d),POS(JJ,t))

TF (d,t)
2.289

228. AvgNTFFirstStatNN(R, t) = avgd∈R
TF (Location(first,stat,d),POS(NN,t))

‖d‖1

3.493

229. AvgNTF2FirstStatNN(R, t) = avgd∈R
TF (Location(first,stat,d),POS(NN,t))

TF (d,t)
2.477

230. AvgNTFFirstStatNNP (R, t) = avgd∈R
TF (Location(first,stat,d),POS(NNP,t))

‖d‖1

6.522

231. AvgNTF2FirstStatNNP (R, t) = avgd∈R
TF (Location(first,stat,d),POS(NNP,t))

TF (d,t)
8.622

232. AvgNTFFirstQuestJJ(R, t) = avgd∈R
TF (Location(first,quest,d),POS(JJ,t))

‖d‖1

2.149

233. AvgNTF2FirstQuestJJ(R, t) = avgd∈R
TF (Location(first,quest,d),POS(JJ,t))

TF (d,t)
2.120

234. AvgNTFFirstQuestNN(R, t) = avgd∈R
TF (Location(first,quest,d),POS(NN,t))

‖d‖1

1.569

235. AvgNTF2FirstQuestNN(R, t) = avgd∈R
TF (Location(first,quest,d),POS(NN,t))

TF (d,t)
10.382

236. AvgNTFFirstQuestNNP (R, t) = avgd∈R
TF (Location(first,quest,d),POS(NNP,t))

‖d‖1

6.586

237. AvgNTF2FirstQuestNNP (R, t) = avgd∈R
TF (Location(first,quest,d),POS(NNP,t))

TF (d,t)
12.091

238. AvgNTFFirstExclaimJJ(R, t) = avgd∈R
TF (Location(first,exclaim,d),POS(JJ,t))

‖d‖1

0.580

239. AvgNTF2FirstExclaimJJ(R, t) = avgd∈R
TF (Location(first,exclaim,d),POS(JJ,t))

TF (d,t)
2.622

240. AvgNTFFirstExclaimNN(R, t) = avgd∈R
TF (Location(first,exclaim,d),POS(NN,t))

‖d‖1

0.808

241. AvgNTF2FirstExclaimNN(R, t) = avgd∈R
TF (Location(first,exclaim,d),POS(NN,t))

TF (d,t)
9.477

242. AvgNTFFirstExclaimNNP (R, t) = avgd∈R
TF (Location(first,exclaim,d),POS(NNP,t))

‖d‖1

294.198

243. AvgNTF2FirstExclaimNNP (R, t) = avgd∈R
TF (Location(first,exclaim,d),POS(NNP,t))

TF (d,t)
5.477

Table 5.15: Sentence Type Characteristic - (4) Paragraph and POS Based <part 1>

No. Feature Divergence

244. AvgNTFBodyStatJJ(R, t) = avgd∈R
TF (Location(body,stat,d),POS(JJ,t))

‖d‖1

0.589

245. AvgNTF2BodyStatJJ(R, t) = avgd∈R
TF (Location(body,stat,d),POS(JJ,t))

TF (d,t)
1.581

246. AvgNTFBodyStatNN(R, t) = avgd∈R
TF (Location(body,stat,d),POS(NN,t))

‖d‖1

2.215

247. AvgNTF2BodyStatNN(R, t) = avgd∈R
TF (Location(body,stat,d),POS(NN,t))

TF (d,t)
8.966

248. AvgNTFBodyStatNNP (R, t) = avgd∈R
TF (Location(body,stat,d),POS(NNP,t))

‖d‖1

3.404

249. AvgNTF2BodyStatNNP (R, t) = avgd∈R
TF (Location(body,stat,d),POS(NNP,t))

TF (d,t)
10.886

250. AvgNTFBodyQuestJJ(R, t) = avgd∈R
TF (Location(body,quest,d),POS(JJ,t))

‖d‖1

38.309

251. AvgNTF2BodyQuestJJ(R, t) = avgd∈R
TF (Location(body,quest,d),POS(JJ,t))

TF (d,t)
2.307

252. AvgNTFBodyQuestNN(R, t) = avgd∈R
TF (Location(body,quest,d),POS(NN,t))

‖d‖1

0.192

253. AvgNTF2BodyQuestNN(R, t) = avgd∈R
TF (Location(body,quest,d),POS(NN,t))

TF (d,t)
2.490

254. AvgNTFBodyQuestNNP (R, t) = avgd∈R
TF (Location(body,quest,d),POS(NNP,t))

‖d‖1

67.227

255. AvgNTF2BodyQuestNNP (R, t) = avgd∈R
TF (Location(body,quest,d),POS(NNP,t))

TF (d,t)
8.816

256. AvgNTFBodyExclaimJJ(R, t) = avgd∈R
TF (Location(body,exclaim,d),POS(JJ,t))

‖d‖1

5.459

257. AvgNTF2BodyExclaimJJ(R, t) = avgd∈R
TF (Location(body,exclaim,d),POS(JJ,t))

TF (d,t)
0.647

258. AvgNTFBodyExclaimNN(R, t) = avgd∈R
TF (Location(body,exclaim,d),POS(NN,t))

‖d‖1

4.774

259. AvgNTF2BodyExclaimNN(R, t) = avgd∈R
TF (Location(body,exclaim,d),POS(NN,t))

TF (d,t)
12.285

260. AvgNTFBodyExclaimNNP (R, t) = avgd∈R
TF (Location(body,exclaim,d),POS(NNP,t))

‖d‖1

0.429

261. AvgNTF2BodyExclaimNNP (R, t) = avgd∈R
TF (Location(body,exclaim,d),POS(NNP,t))

TF (d,t)
11.514

Table 5.16: Sentence Type Characteristic - (4) Paragraph and POS Based <part 2>

108

No. Feature Divergence

262. AvgNTFLastStatJJ(R, t) = avgd∈R
TF (Location(last,stat,d),POS(JJ,t))

‖d‖1

5.514

263. AvgNTF2LastStatJJ(R, t) = avgd∈R
TF (Location(last,stat,d),POS(JJ,t))

TF (d,t)
2.622

264. AvgNTFLastStatNN(R, t) = avgd∈R
TF (Location(last,stat,d),POS(NN,t))

‖d‖1

468.493

265. AvgNTF2LastStatNN(R, t) = avgd∈R
TF (Location(last,stat,d),POS(NN,t))

TF (d,t)
9.395

266. AvgNTFLastStatNNP (R, t) = avgd∈R
TF (Location(last,stat,d),POS(NNP,t))

‖d‖1

15.130

267. AvgNTF2LastStatNNP (R, t) = avgd∈R
TF (Location(last,stat,d),POS(NNP,t))

TF (d,t)
5.482

268. AvgNTFLastQuestJJ(R, t) = avgd∈R
TF (Location(last,quest,d),POS(JJ,t))

‖d‖1

0.141

269. AvgNTF2LastQuestJJ(R, t) = avgd∈R
TF (Location(last,quest,d),POS(JJ,t))

TF (d,t)
1.471

270. AvgNTFLastQuestNN(R, t) = avgd∈R
TF (Location(last,quest,d),POS(NN,t))

‖d‖1

2.192

271. AvgNTF2LastQuestNN(R, t) = avgd∈R
TF (Location(last,quest,d),POS(NN,t))

TF (d,t)
9.532

272. AvgNTFLastQuestNNP (R, t) = avgd∈R
TF (Location(last,quest,d),POS(NNP,t))

‖d‖1

0.563

273. AvgNTF2LastQuestNNP (R, t) = avgd∈R
TF (Location(last,quest,d),POS(NNP,t))

TF (d,t)
10.049

274. AvgNTFLastExclaimJJ(R, t) = avgd∈R
TF (Location(last,exclaim,d),POS(JJ,t))

‖d‖1

0.001

275. AvgNTF2LastExclaimJJ(R, t) = avgd∈R
TF (Location(last,exclaim,d),POS(JJ,t))

TF (d,t)
2.293

276. AvgNTFLastExclaimNN(R, t) = avgd∈R
TF (Location(last,exclaim,d),POS(NN,t))

‖d‖1

0.559

277. AvgNTF2LastExclaimNN(R, t) = avgd∈R
TF (Location(last,exclaim,d),POS(NN,t))

TF (d,t)
2.508

278. AvgNTFLastExclaimNNP (R, t) = avgd∈R
TF (Location(last,exclaim,d),POS(NNP,t))

‖d‖1

50.291

279. AvgNTF2LastExclaimNNP (R, t) = avgd∈R
TF (Location(last,exclaim,d),POS(NNP,t))

TF (d,t)
8.877

Table 5.17: Sentence Type Characteristic - (4) Paragraph and POS Based <part 3>

5.3.5 Title Term Characteristic

Title term characteristic are the features related to the relationship between the query

term and the title query terms. The features in the title term characteristic are shown

in Table 5.18. These features can be divided into three types: (1) ‘Dist2TitleInPara’

is the average distance between the query term and each title query term in each

paragraph of a relevant document, (i.e., Features 280 and 281); (2) ‘TitlePairFre-

qInPara’ is the average number of pairs of query terms and title query terms in each

paragraph of a particular document (i.e., Features 282 and 283); and (3) ‘ParaFre-

qHaveTitlePair’ is the number of paragraphs that have both query term and any one

of title query terms (i.e., Features 284 and 285). The equations for calculating Types

(1), (2) and (3) features are shown in Equation 5.4, 5.5 and 5.6, respectively. The

Position(Location(p, whole, d), t) is a list of positions of the given term t that ap-

pears in the paragraph p of the document d, and the avgp∈d(.) is equal to the
∑

p∈d(.)

divided by the number of paragraphs in the document d. The abs(.) function returns

109

No. Feature Divergence

280. SumDist2T itleInPara(R, t) =
X

d∈R

avgp∈dDist2T itle(Location(p, whole, d), t, T) 0.855

281. AvgDist2T itleInPara(R, t) =
SumDist2TitleInPara(R,t)

card(R)
0.182

282. SumTitlePairFreqInPara(R, t) =
X

d∈R

avgp∈dPairFreq(Location(p,whole, d), t, T) 0.813

283. AvgT itlePairFreqInPara(R, t) = SumTitlePairFreqInPara(R,t)
card(R)

0.189

284. SumParaFreqHaveT itlePair(R, t) =
X

d∈R

avgp∈dHavePair(Location(p, whole, d), t, T) 0.985

285. AvgParaFreqHaveT itlePair(R, t) = SumParaFreqHaveTitlePair(R,t)
card(R)

0.915

Table 5.18: Title Term Characteristic

the absolute value. In addition, the ‘Sum’ and ‘Avg’ intra-document normalization

methods are also used to normalize the term frequency:

Dist2T itle(Location(p, whole, d), t, T) =
P

Wt∈Position(Location(p,whole,d),t)

P

k∈T
X

Wk∈Position(Location(p,whole,d),k)

abs(Wt − Wk) (5.4)

PairFreq(Location(p,whole, d), t, T) = TF (Location(p, whole, d), t)×
X

k∈T

TF (Location(p, whole, d), k)
(5.5)

8

<

:

HavePair(Location(p, whole, d), t, T) ≡ 0 for PairFreq(Location(p,whole, d), t, T) = 0

HavePair(Location(p, whole, d), t, T) ≡ 1 for PairFreq(Location(p,whole, d), t, T) > 0
(5.6)

From Table 5.18 we can see that all of the features achieve poor divergence

values. This reveals that title terms characteristic is not good for classification.

5.3.6 Features used in GQTE

The features used for the classification module in GQTE are determined by the

divergence value of the features. According to the divergence values of each feature

shown in Tables 5.2 to 5.18, we realize that there are many features that achieve

lower than 15 divergence value. Therefore, we choose 15 as the threshold value

for determining the features used in GQTE. Table 5.19 shows the summary of the

features used for the classification module in GQTE. These features are bold-faced

and underlined in Tables 5.2 to 5.18.

110

No. Feature Divergence
1. AvgNTFLastStatNN(R, t) 468.493
2. AvgNTFFirstExclaimNNP (R, t) 294.198
3. CHI3 ∗NSumNTF (t) 133.984
4. AvgNTFBodyQuestNNP (R, t) 67.227
5. AvgNTFLastWholeNN(R, t) 59.418
6. AvgNTF2FirstF irstNN(R, t) 56.458
7. AvgNTFLastExclaimNNP (R, t) 50.291
8. AvgNTFFirstWholeNN(R, t) 48.437
9. AvgNTFWholeQuestNN(R, t) 47.835
10. MinNTF (C, t) 44.756
11. AvgNTFBodyQuestJJ(R, t) 38.309
12. AvgNTF2FirstF irstJJ(R, t) 34.054
13. W4 ∗NMaxNTF (t) 31.576
14. NSumNTF (t) 29.342
15. AvgNTFBodyWholeNN(R, t) 26.658
16. AvgNTF2BodyLastNN(R, t) 25.081
17. AvgNTFFirstWhole(R, t) 19.234
18. AvgNTFWholeQuest(R, t) 18.971
19. AvgNTFLastWhole(R, t) 18.698
20. MinNTF (R, t) 18.291
21. SumNTFBodyWhole(R, t) 15.672
22. NMaxNTF (t) 15.600
23. AvgNTFFirstWholeNNP (R, t) 15.325
24. AvgNTFWholeQuestNNP (R, t) 15.163
25. AvgNTFLastWholeNNP (R, t) 15.152
26. AvgNTFLastStatNNP (R, t) 15.130

Table 5.19: A summary of the features used for the classification module in GQTE

111

5.4 Implementation of the GQTE

The implementation of the GQTE is described in this section. Firstly, the learn-

ing procedure of the classification module in GQTE is introduced, which uses a

new method, cross training method, to train the classifier based on different collec-

tions. The accuracy of the classifier is estimated based on a 10-fold cross-validation.

Moreover, some practices in GQTE are presented and evaluated based on the esti-

mation accuracy and the retrieval effectiveness. Several methods for generating the

new queries and merging the retrieval lists are also investigated and examined.

5.4.1 Learning in GQTE

In order to investigate the impact on different collections, such as TREC-6, 7 and 8,

we propose to train and test the dataset by combining the collections in turn rather

than by a single collection only. This method is called cross training in our study.

Cross training is a supervised, multi-collection learning method based on the

C4.5 classification method. This method is designed for training the dataset that

contains different data collections. The dataset D is split into c subset. Each subset

contains one collection. The classifier is trained
∑c

r=1
c!

r!(c−r)!
times. Each time, the

classifier is trained on r subsets and tested on the remaining (c − r) subsets. The

accuracy of each induced classifier is estimated by using 10-fold cross-validation,

where the induced classifier is generated using 90% of the dataset as training set

and the remaining 10% as test set repeating ten times with changing training and

test sets. The accuracy value is calculated by two measures: precision and recall.

The precision is computed by the total number of the correct classifications and

then divided by the number of the estimated ‘Good’ query terms for a given topic,

whereas the recall is calculated by the total number of the correct classifications

and then divided by the number of terms in the near optimal query (i.e., the query

obtained in Chapter 3 or Chapter 4) for a given topic. The correct classification

means that the estimated ‘Good’ query term is a near optimal query term of that

112

No. Data subset No. of queries No. of ‘Good’ cases No. of ‘Normal’ cases
1. TREC-6 50 3315 3315
2. TREC-7 50 3648 3648
3. TREC-8 50 3800 3800

Table 5.20: Four datasets for training the classifier in GQTE

topic. It is be noticed that the correct classifications of ‘Normal’ query term are not

calculated.

Table 5.20 shows the detailed information of the dataset used in this training.

The dataset contains three subsets, TREC-6, TREC-7 and TREC-8, corresponding

to the collections of each TREC. In particular, each data subset consists of an equal

number of ‘Good’ cases and ‘Normal’ cases. The ‘Good’ cases are the query terms

in the best near optimal queries that are the best among all the near optimal queries

for each topic in Chapters 3 and 4, whereas the ‘Normal’ cases are randomly chosen

from the remaining terms in the relevant documents for that topic. The features are

those good features shown in Table 5.19.

The detailed training process and the accuracy of the induced classifier are

shown in Table 5.21. From the table we can see that the precision and the recall

of all the training processes are higher than 0.930 and 0.87, respectively. Moreover,

the average precision and recall, which is calculated by the average of the precision

values and the recall values among all the processes, is about 0.950 and 0.943, re-

spectively. These reveal that the accuracy of our classifier is good. Moreover, the

precision and recall of using training sets containing the TREC-6 collection (i.e.,

Nos. 1, 4, 5 and 7) perform better than other collections. This may be due to

the fact that the TREC-6 collection contains more documents (i.e., Congressional

Records documents), than TREC-7 and TREC-8. Furthermore, we can see that the

precision and recall of the training set containing all the collections (i.e. No. 7) are

the highest among others. Therefore, the induced classifier based on training set

No. 7 is chosen as the classification module in GQTE.

113

No. Training Set Test Set 1 Test Set 2
Prec Recall Prec Recall

1. TREC-6 TREC-7 TREC-8
0.932 0.972 0.938 0.976

2. TREC-7 TREC-6 TREC-8
0.951 0.884 0.953 0.968

3. TREC-8 TREC-6 TREC-7
0.951 0.870 0.957 0.945

4. TREC-6, 7 TREC-8 -
0.946 0.977

5. TREC-6, 8 TREC-7 -
0.949 0.962

6. TREC-7, 8 TREC-6 -
0.954 0.885

7. TREC-6, 7, 8 TREC-6, 7, 8 -
0.958 0.972

Average Precision 0.950
Average Recall 0.943

Table 5.21: The cross training process of the dataset containing TREC-6, 7 and 8

5.4.2 Practice in GQTE

It is a fact that the relevant documents about regarding the user’s information needs

are unknown during the retrieval process in the real world. However, most of the

features used in the classification module of GQTE are calculated based on the

relevant documents set. In order to fulfil this criterion in practice, we assume that

there are only 10 documents related to the given user’s information needs in the

collection, and that all of these documents can be retrieved in the top 10 of the given

title query. This is similar to the assumption in Pseudo Relevance Feedback, and the

number is determined by the observations in Section 3.6 of Chapter 3. Therefore,

all the terms in the top 10 retrieved documents of the title query can be estimate the

class by the classification module in GQTE. The estimated ‘Good’ query terms are

then used to reformulate the title query by Equation 5.3. The number of estimated

‘Good’ query terms added is decided by the confidence level, and the query term

weight is determined by the term weight scheme shown in Table 5.1.

114

Evaluation on estimation accuracy

In order to investigate the effects on the estimation accuracy of the different con-

fidence levels, seven confidence levels: 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.98 are

examined and are shown in Figure 5.2. In the figure, the Y-axis on the left hand

side is used for the precision and recall, whereas the Y-axis on the right hand side

is used for the number of the estimated ‘Good’ query terms. This precision and

recall are calculated similarly to the previous section. The precision is computed

by the total number of the correct classifications and then divided by the number of

the estimated ‘Good’ query terms for a given topic, whereas the recall is calculated

by the total number of the correct classifications and then divided by the number of

terms in the near optimal query (i.e., the query obtained in Chapter 3 or Chapter 4)

for a given topic. The correct classification means that the estimated ‘Good’ query

term is the near optimal query term of that topic. This experiment is carried out for

the TREC-6, TREC-7 and TREC-8 test collections.

From Figure 5.2, we can see that when the confidence level is increased, the

precision will increase, whereas the recall will decrease and the number of terms

will decrease as expected. Moreover, it is obvious that the performance of TREC-7

and TREC-8 is similar. This may be due to the fact that the corpus in TREC-7 and

TREC-8 are the same. Furthermore, we realize that all of the precision, recall and

the number of terms will increase or will decrease significantly when the confidence

level changes from 0.95 to 0.98. This implies that the confidence level at 0.95 may

be a good threshold value for determining the query size. Finally, we can see that

both of the precision and recall are smaller than 0.1; This is very poor. It implies

that there is a big difference of the characteristic between the term features of using

the top 10 retrieved documents of the title query and the term features of using the

entire relevant documents set, so that the top 10 retrieved documents of the title

query cannot be used to simulate the entire relevant document set for classification.

In fact, the top 10 retrieved documents of title query are only a small subset of the

115

Figure 5.2: The performance of the classification module in GQTE against the dif-
ferent confidence levels

116

Collection Precision Recall
TREC-6 0.396 0.132
TREC-7 0.428 0.088
TREC-8 0.472 0.113

Table 5.22: The average precision and recall of the top 10 retrieved documents of
the title queries

entire relevant document set. Table 5.22 shows the average precision and recall of

the top 10 retrieved documents of the title queries in TREC-6, 7 and 8 collections,

respectively, where the precision and recall are calculated by the total number of

relevant documents in the top 10 retrieved documents divided by the number of

all the relevant documents for the topic and the number of retrieved documents

(i.e., 10), respectively. From the table we can see that the precision and recall

are lower than 0.5 and 0.2, respectively. This emphasizes that using the top 10

retrieved documents of the title query to simulate the entire relevant documents set

is inaccurate.

Evaluation on Retrieval Effectiveness

In order to investigate the effects of retrieval effectiveness of the different term

weight schemes and the different confidence levels, four term weight scheme are

shown in Table 5.1, with the same seven confidence levels examined and shown

in Figures 5.3, 5.4 and 5.5. In particular, Figure 5.3 shows the MAP values of

the reformulated queries, whereas Figure 5.4 shows the R-prec values and Figure

5.5 shows the P@30 values. Four term weight schemes in Table 5.1 are labeled

in sequence: (1) ‘unity’ refers to the unity weight scheme; (2) ‘rank’ refers to the

rank normalization scheme; (3) ‘rank2’ refers to the rank normalization 2 scheme;

and (4) ‘conf’ refers to the confidence scheme. In addition, the label ‘Title’ refers

to the retrieval effectiveness of the Title query, which can be used for the baseline

performance. This experiment is carried out for the TREC-6, TREC-7 and TREC-8

117

test collections, and our VSM is used.

There are some interesting results in this experiment. First, the ‘rank2’ term

weight scheme achieves highest retrieval effectiveness for all the measures (i.e.,

MAP, R-prec and P@30) in all the test collections. This value is even higher than the

retrieval effectiveness of the title query (i.e., labeled ‘Title’). Therefore, we believe

that our GQTE can improve the retrieval effectiveness of the user query. Second,

some of the term weight schemes achieve lower retrieval effectiveness than the title

query. This reveals that a suitable choice of weights can improve the performance.

Third, similar to the results shown in Figure 5.2, the performance of TREC-7 and

TREC-8 is alike. Therefore, we believe that our GQTE will achieve similar retrieval

effectiveness for the same corpus. Fourth, by comparing with the title query, the

P@30 performance is improved most among all the measures. This implies that

our GQTE is good at pushing up the relevant documents in the retrieval list rather

than excluding the irrelevant documents from the retrieval list. Finally, it is obvious

that the retrieval effectiveness of using our GQTE is still far below the retrieval

effectiveness of the near optimal queries (Table 4.1 in Chapter 4). We believe that

there are two possible causes of low retrieval effectiveness; first, we improperly used

the top retrieved documents of title query to simulate the entire relevant document

set; Second, we improperly filtered out the relevant documents in the initial retrieval

list of the title query.

In order to further improve the retrieval effectiveness of the GQTE, four differ-

ent merge list methods are proposed and are shown in Table 5.23. These methods

are used to reorganize the new retrieval list B with retrieval list A of the title query.

In the table, A ∩B is a set of the documents that appears in both the retrieval list A

and B, and the value ‘0’, ‘1’ and ‘2’ are the weights used for ranking. The rank of

the documents in the merged retrieval list is computed by the similarity score of the

document in the original retrieval list, divided by the maximum similarity score in

the original retrieval list, and then multiple by the weights (i.e., 0, 1 or 2 or simply

fix the document). In particular, ‘Fix A’ method returns the same retrieval list A

118

Figure 5.3: The MAP of the GQTE

119

Figure 5.4: The R-prec of the GQTE

120

Figure 5.5: The prec@30 of the GQTE

121

No. Method Name Weights on (A ∩ B) Weights on A Weights on B

1 Fix A fix at top 1 0
2 Fix B fix at top 0 1
3 Highly A 2 1 0
4 Highly B 2 0 1
5 Combined 3 top 10*4, other*1 2

Table 5.23: Merge list method for reorganizing the current retrieval list A with the
retrieval list of the title query B

but pushes the documents, which appear in A ∩ B, to the top. ‘Fix B’ method is

similar to ‘Fix A’ method but keeps the B rather than A. Moreover, ‘Highly A’ and

‘Highly B’ methods push up the documents in A∩B according to the weights rather

than simply pushing up to the top of the retrieval list. The last method, ‘Combined’

method, does not only push up the documents in A ∩ B, but also pushes up the

top 10 retrieved documents of the title query. This is designed for considering the

rank freeze effects. This experiment is carried out by using the ‘rank 2’ term weight

scheme with two different confidence levels: 0.8 and 0.9.

Figure 5.6 shows the retrieval effectiveness of different merge list methods

against two confidence levels and three test collections. In the figure, the labels

‘Title’ and ‘rank2’ refer to the retrieval effectiveness of the title query and the query

reformulated by using ‘rank2’ term weight scheme, respectively. These two datasets

can be used for the baseline performance. From the figure we can see that most of

the merge list methods perform more poorly than the ‘rank2’ for all the measures

(i.e., MAP, R-prec and P@30) in all the test collections except the ‘Combined’

merge list method. The ‘Combined’ method performs better MAP and R-prec val-

ues only in the TREC-8 collection. It reveals that our merge list methods cannot sig-

nificantly improve the retrieval effectiveness. Moreover, we realize that the merge

list method based on the new retrieval list (i.e., B) performs better than based on

the retrieval list of the ‘title’ query (i.e., ‘Fix B’ and ‘Highly B’ method performs

better). Finally, we can see that ‘Highly A’ and ‘Highly B’ methods are performed

better than ‘Fix A’ and ‘Fix B’ methods, respectively. This illustrates that pushing

122

up the documents by weights is better than pushing up the documents to the top.

5.5 Summary

The contribution of this chapter is to propose a novel query term expansion method,

Good Query Term Extractor (GQTE). The GQTE can be used to reformulate the

user query with the estimated ‘Good’ query terms. The experimental results tell us

that this method is a useful method to enhance the query retrieval effectiveness, but

the improvement is still far below the expected improvement (i.e., similar to the re-

trieval effectiveness of the near optimal queries). We believe that a suitable choice

of the retrieved documents can substantially enhance the retrieval effectiveness of

the GQTE. Moreover, a novel term weight scheme is proposed which uses the con-

fidence value of the estimation to calculate the weights and ranks. This scheme

performs better than other term weight schemes. Furthermore, a new method based

on the confidence level to decide the number of terms added to the user query is in-

troduced. Finally, many characteristics of the near optimal queries are investigated.

These will be helpful in understanding what kind of query terms will perform better.

123

Figure 5.6: The retrieval effectiveness of different merge list methods against two
confidence levels and three test collections

124

Chapter 6

Conclusions and Future Work

The contribution of this study is to illustrate that the optimal retrieval effectiveness

as well as the near optimal queries can be obtained in existing IR systems. We con-

firm this in our experiments using three TREC test collections for English ad hoc

retrieval. In this dissertation we presented a systematic and practical study on how

to find and estimate the near optimal queries based on two strategies, IRF and Com-

binatorial Optimization Search. Based in the observations on this study, we pro-

posed a novel query term expansion method, Good Query Term Extractor (GQTE),

to reformulate the user query with the estimated ‘Good’ query terms. From our

experimental results, the following major conclusions can be drawn:

• Most of the queries achieved either good or poor MAP values independent of

the use of different retrieval models. This finding reveals that the main cause

of the poor retrieval effectiveness in existing IR systems may not be the sys-

tem factor. Moreover, most of the near optimal queries about the topics in test

collections have been found under some idealized situations. It appears that

a suitable choice of terms and a suitable choice of weights can substantially

enhance the retrieval effectiveness in existing IR systems.

• An IRF method is proposed to find the near optimal query. This method is

the Relevance Feedback method in idealized situations. The term ‘idealized’

means that some of the relevance feedback constraints have been relaxed or

125

some of the practical limitations have been overcome. Our IRF can be im-

plemented by using a perfect classifier that identifies all relevant documents

from the entire retrieval list of long query (i.e., TDN query) without errors. If

we use title query rather than long query, the optimal retrieval effectiveness

may not be achieved. This suggests that for title queries RF needs at least two

iterations in order to ensure that the retrieval list has an adequately high recall

to obtain the potential IRF performance.

• The performance difference between the better term ranking functions in IRF

actually does not differ substantially using the log-odds ratio of Robertson

and Karen Sparck Jones, the Chi-square, Kullback-Leibler divergence, or the

RSV by Robertson, provided either the average normalized term frequency or

the average of the maximum of the normalized term frequencies are used.

• We have experimented with our IRF and our GQTE on weighted query. Our

best term weight scheme is to assign the term weight based on the rank of the

individual term. This rank can be determined by the term ranking function

or by the GQTE’s confidence value. In addition, the experimental results

illustrate that a suitable choice of negative terms can enhance the retrieval

effectiveness.

• Our best MAP value of the various query sizes for different topics in IRF is

not significantly better than that achieved using the fixed query size. This

reveals that various query size for different topics may not be better. Our best

fixed query size was 100, 175 and 250 for unweighted terms, and positively

weighted terms and negatively weighted terms, respectively. In addition, the

query size can be determined by the confidnece value of the estimation when

using our GQTE.

• A Combined Search method is proposed that can be used to find the near op-

timal query faster than our Simulated Annealing method. This method is a

126

combination of Best First Search and Simulated Annealing Search. The re-

trieval effectiveness of our Combined Search is better than the local search

methods, which have been implemented in this study (i.e., Hill Climbing

Search, Best First Search and Simulated Annealing Search), and is also better

than our IRF.

• Many characteristics of the near optimal query terms have been investigated.

Table 6.1 shows a summary of our best near optimal queries obtained in this

study. We can see that the combine search method is the best method for all the

measures (i.e., the MAP, the R-prec and the query size). In addition, although the

performance of our GQTE is poor, it is better than using the original title query.

This reveals that GQTE is also an effective method to expand the user query.

This research can be extended in several ways, such as:

1. Many topics still cannot obtain optimal retrieval effectiveness by using our

combine search method. One of the possible reasons is that the near optimal

query should have a weight for each term. The other possible reason is that

the near optimal query should use the negative terms to discriminate the non-

relevant documents from the collection.

2. There is still a lot of room to enhance our GQTE. One of the possible fu-

ture directions is to enhance the estimation accuracy of the entire relevant

documents set. We think that a well-trained relevant document classifier or

relevant feedback with user judgement for the top retrieved documents may

be an effective method.

127

Proposed Method TREC-
6

TREC-
7

TREC-
8

TREC-
2005

Average MAP
Original title query 0.211 0.185 0.247 0.173
Original long query 0.231 0.236 0.273 -
IRF with unweighted terms 0.616 0.592 0.556 0.546
IRF with positively weighted terms 0.640 0.599 0.574 0.606
IRF with positively and negatively weighted terms 0.637 0.624 0.591 0.630
Combine Search 0.726 0.755 0.752 0.711
GQTE 0.232 0.223 0.269 -

Average R-prec
Original title query 0.250 0.235 0.296 0.237
Original long query 0.268 0.268 0.321 -
IRF with unweighted terms 0.614 0.582 0.547 0.543
IRF with positively weighted terms 0.625 0.582 0.561 0.582
IRF with positively and negatively weighted terms 0.619 0.603 0.572 0.607
Combine Search 0.774 0.785 0.785 0.743
GQTE 0.292 0.265 0.302 -

Average query size
Original title query 2 2 2 3
Original long query 57 37 37 66
IRF with unweighted terms 100 105 88 100
IRF with positively weighted terms 173 172 190 175
IRF with positively and negatively weighted terms 165 165 174 369
Combine Search 66 68 71 50
GQTE 198 185 186 -

Table 6.1: Summary of our best performance

128

Bibliography

[AF77] R. Attar and A. S. Frankel. Local feedback in full-text retrieval sys-

tems. Journal of the ACM, 24(3):397–417, 1977.

[All96] J. Allan. Incremental Relevance Feedback for Information Filtering.

In ACM SIGIR’96, pages 270–278, 1996.

[BAS93] C. Buckley, J. Allan, and G. Salton. Automatic routing and ad hoc re-

trieval using SMART: TREC 2. In TREC-2, NIST Special Publication,

pages 45–56, 1993.

[BBM02] H. Billhardt, D. Borrajo, and V. Maojo. Using Genetic Algorithms to

Find Suboptimal Retrieval Expert Combination. In ACM Symposium

on Applied computing, pages 657–662, 2002.

[BH03] C. Buckley and D. Harman. Reliable Information Access Final Work-

shop Report. In RIA, NRRC, pages 1–30, 2003.

[BJN00] A. Bergstrom, P. Jaksetic, and P. Nordin. Enhancing Information Re-

trieval by Automatic Acquisition of Textual Relations using Genetic

Programming. In ACM International Conference on Intelligent user

interfaces, pages 29–32, 2000.

[CH67] T. M. Cover and P. Hart. Nearest neighbor pattern classification. IEEE

Transactions on Information Theory, 13(1):21–27, 1967.

129

[CL04] Y. M. Chung and J. Y. Lee. Optimization of some factors affecting

the performance of query expansion. In Information Processing and

Management, in press, 2004.

[CMRB01] C. Carpineto, R. D. Mori, G. Romano, and B. Bigi. An Information-

Theoretic Approach to Automatic Query Expansion. ACM Transac-

tions on Information Systems, 19(1):1–27, 2001.

[CR02] C. Carpineto and G. Romano. Improving retrieval feedback with mul-

tiple term-ranking function combination. ACM Transactions on Infor-

mation Systems, 20(3):259–290, 2002.

[DHB90] T. Dietterich, H. Hild, and G. Bakiri. A Comparative Study of ID3 and

Back propagation for English Text-to-Speech Mapping. In Seventh

Intl. Conference on Machine Learning, pages 24–31, 1990.

[Dun97] M. D. Dunlop. The effect of accessing nonmatching documents on

relevance feedback. ACM Transactions on Information Systems, pages

137–153, 1997.

[Eft93] E. N. Efthimiadis. A user-centred evaluation of ranking algorithms

for interactive query expansion. In ACM SIGIR’93, pages 148–159,

1993.

[FGP00] W. Fan, M. D. Gordon, and P. Pathak. Personalization of search en-

gine services for effective retrieval and knowledge management. In

Proceedings of the Twenty First International Conference on Infor-

mation Systems, pages 20–34, 2000.

[FGP05] W. Fan, M. Gordon, and P. Pathak. Genetic Programming-Based Dis-

covery of Ranking Functions for Effective Web Search. Journal of

Management Information Systems, 21(4):37–56, Spring 2005.

130

[FWX04] W. Fan, L. Wang, and W. Xi. Tuning before feedback: combining

ranking discovery and blind feedback for robust retrieval. In ACM

SIGIR ’04, pages 138–145, 2004.

[GC97] F. C. Gey and A. Chen. Phrase Discovery for English and Cross-

language Retrieval at TREC-6. In TREC-6, NIST Special Publication,

pages 637–648, 1997.

[GL04] Z. Gu and M. Luo. Comparison of using passages and documents for

blind relevance feedback in information retrieval. In ACM SIGIR’04,

pages 482–483, 2004.

[Har92] D. Harman. Relevance Feedback Revisited. In ACM SIGIR’92, pages

77–88, 1992.

[HDO+98] M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf.

Support vector machines. IEEE Intelligent Systems and Their Appli-

cations, 13(4):18–28, July-August 1998.

[HMIH99] K. Hoashi, K. Matsumoto, N. Inoue, and K. Hashimoto. Query Expan-

sion Method Based on Word Contribution. In ACM SIGIR’99, pages

303–304, 1999.

[HTC97] D. Hawking, P. Thistlewaite, and N. Craswell. ANU/ACSys TREC-6

Experiments. In TREC-6, NIST Special Publication, pages 275–290,

1997.

[Ide71] E. Ide. New experiments in relevance feedback. In G. Salton editor,

The SMART Retrieval System. Prentice Hall Inc., 1971.

[IS71] E. Ide and G. Salton. Interactive search strategies and dynamic file or-

ganization in information retrieval. In Rep. ISR-16, Dept. of Computer

Science, Cornell Univ., Ithaca, N.Y. Reprinted in the Smart Retrieval

System, 1971.

131

[Jon72] K. Sparck Jones. A statistical interpretation of term specificity and its

application in retrieval. In Journal of Documentation, 8, pages 11–21,

1972.

[KGX97] K. L. Kwok, L. Grunfeld, and J. H. Xu. TREC-6 English and Chi-

nese Retrieval Experiments using PIRCS. In TREC-6, NIST Special

Publication, pages 207–214, 1997.

[KK04] M. S. Khan and S. Khor. Enhanced web document retrieval using

automatic query expansion. Journal of the American Society for In-

formation Science and Technology, 55(1):29–40, 2004.

[Kwo87] K. L. Kwok. Some consideration for approximate optimal queries. In

ACM Symposium on Applied computing, pages 19–24, 1987.

[Kwo96] K. L. Kwok. A New Method of Weighting Query Terms for Ad-Hoc

Retrieval. In ACM SIGIR’96, pages 187–195, 1996.

[LAJ01] A. M. Lam-Adesina and G. J. F. Jones. Applying Summarization

Techniques for Term Selection in Relevance Feedback. In ACM SI-

GIR’01, pages 1–9, 2001.

[LPGBA02] C. Lopez-Pujalte, V. P. Guerrero-Bote, and F. M. Anegon. A test of

genetic algorithms in relevance feedback. Information Processing and

Management, 38:793–805, 2002.

[LPGBA03] C. Lopez-Pujalte, V. P. Guerrero-Bote, and F. M. Anegon. Genetic

algorithms in relevance feedback: a second test and new contributions.

Information Processing and Management, 39:669–687, 2003.

[Luh58] H. P. Luhn. The Automatic Creation of Literature Abstracts. IBM

Journal of Research and Development, 2(2):159–165, 1958.

132

[MG63] T. Marill and D. M. Green. On the Effectiveness of Receptors in

Recognition Systems. IEEE Transactions on Information Theory, IT-

9:11–17, 1963.

[MO01] H. Mano and Y. Ogawa. Selecting Expansion Terms in Automatic

Query Expansion. In ACM SIGIR’01, pages 390–391, 2001.

[Moo96] R. J. Mooney. Comparative experiments on disambiguating word

senses: An illustration of the role of bias in machine learning. In

Empirical Methods in Natural Language Processing, 1996.

[MR97] M. Magennis and C. J. Van Rijsbergen. The potential and actual ef-

fectiveness of interactive query expansion. In ACM SIGIR’97, pages

324–332, 1997.

[Ore02] N. Oren. Reexamining tf.idf based information retrieval with Genetic

Programming. In Proceedings of the 2002 annual research conference

of the South African institute of computer scientists and information

technologists on Enablement through technology SAICSIT ’02, pages

224–234, 2002.

[Por80] M. F. Porter. An algorithm for suffix strippng. Program, 14(3):130–

137, 1980.

[Qui93] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-

mann, San Mateo, CA., 1993.

[Qui94] J. R. Quinlan. Comparing Connectionist and Symbolic Learning

Methods. Computational Learning Theory and Natural Learning Sys-

tems, 1:445–456, 1994.

[RHP81] C. J. Van Rijsbergen, D. J. Harper, and M. F. Porter. The selec-

tion of good search terms. Information Processing and Management,

17(2):77–91, 1981.

133

[RJ76] S. E. Robertson and K. S. Jones. Relevance weighting of search terms.

Journal of the American Society for Information Science, 27(3):129–

146, 1976.

[Rob90] S. E. Robertson. On term selection for query expansion. Journal of

Documentation, 46(4):359–364, 1990.

[Roc71] J. J. Rocchio. Relevance feedback in information retrieval. In G.

Salton editor, The SMART Retrieval System: Experiments in Auto-

matic Document Processing. Prentice-Hall, Inc., 1971.

[Ros58] F. Rosenblatt. The perceptron: A probabilistic model for information

storage and organization in the brain. Psychological Review, 65:386–

408, 1958.

[Sal71] G. Salton. The SMART Retrieval System: Experiments in Automatic

Document Processing. Prentice-Hall, Inc., 1971.

[Sal89] G. Salton. Automatic text processing: the transformation, analysis,

and retrieval of information by computer. Addison-Wesley, 1989.

[SB88] G. Salton and C. Buckley. Term weighting approaches in automatic

text retrieval. 24(5):513–523, 1988.

[SB90] G. Salton and C. Buckley. Improving Retrieval Performance by Rel-

evance Feedback. Journal of the American Society for Information

Science, 41(4):288–297, 1990.

[SBM96] A. Singhal, C. Buckley, and M. Mitra. Pivoted Document Length

Normalization. In ACM SIGIR’96, pages 21–29, 1996.

[Sin97] A. Singhal. AT&T at TREC-6. In TREC-6, NIST Special Publication,

pages 215–226, 1997.

134

[SMT91] J. Shavlik, R. Mooney, and G. Towell. Symbolic and Neural Learn-

ing Algorithms: An Experimental Comparison. Machine Learning,

6:111–143, 1991.

[Tro04] A. Trotman. An artificial intelligence approach to information re-

trieval. In ACM SIGIR’04, pages 603–607, 2004.

[VB02] E. M. Voorhee and C. Buckley. The effect of topic set size on retrieval

experiment errors. In ACM SIGIR’02, pages 316–323, 2002.

[VH98] E. M. Voorhees and D. Harman. Overview of the sixth Text REtrieval

Conference (TREC-6). In TREC-6, NIST Special Publication, 1998.

[VH99] E. M. Voorhees and D. Harman. Overview of the seventh Text RE-

trieval Conference (TREC-7). In TREC-6, NIST Special Publication,

1999.

[VH00] E. M. Voorhees and D. Harman. Overview of the eighth Text REtrieval

Conference (TREC-8). In TREC-8, NIST Special Publication, 2000.

[Wil96] W. J. Wilbur. Human subjectivity and performance limits in document

retrieval. Information Processing and Management, 32(5):515–527,

1996.

[WRB+97] S. Walker, S. E. Robertson, M. Boughanem, G. J. F. Jones, and

K. Sparck Jones. Okapi at TREC-6 Automatic ad hoc, VLC, rout-

ing, filtering and QSDR. In TREC-6, NIST Special Publication, pages

125–136, 1997.

[WWL+05] W. S. Wong, H. C. Wu, R. W. P. Luk, H. V. Leong, K. F. Wong, and

K. L. Kwok. MATRIX at the TREC2005 Robust Track. In TREC-

2005, NIST Special Publication, 2005.

135

[WYB88] S. K. M. Wong, Y. Y. Yao, and P. Bollmann. Linear structure in infor-

mation retrieval. In ACM SIGIR’88, pages 219–232, 1988.

[XC96] J. Xu and W. B. Croft. Query expansion using local and global docu-

ment analysis. In ACM SIGIR’96, pages 4–11, 1996.

[YLC76] C. T. Yu, W. S. Luk, and T. Y. Cheung. A statistical model for

relevance feedback in information retrieval. Journal of the ACM,

23(2):273–286, 1976.

[ZCF+05] B. Zhang, Y. Chen, W. Fan, E. A. Fox, M. Goncalves, M. Cristo, and

P. Calado. Intelligent GP fusion from multiple sources for text classi-

fication. In Proceedings of the 14th ACM International Conference on

Information and Knowledge Management CIKM ’05, pages 477–484,

2005.

136

	theses_copyright_undertaking
	b20940464

