Q THE HONG KONG
Q' db POLYTECHNIC UNIVERSITY
v T T AR

Pao Yue-kong Library
BIERIESE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

The Hong Kong Polytechnic University
Department of Computing

Improve the Service Quality of Multi-Agent System

Ontology Management

Ng Kwun Tak

A thesis submitted in partial fulfillment of the requirements for the Degree of

- Master of Philosophy

November 2 003

@Pao Yue-kong Library
PolyU < Hong Kong

Certificate of Originality

I hereby declare that this thesis is my own work and that, to the best of my
knowledge and belief, it reproduces no material previously published or written nor
material which has been accepted for the award of any other degree or diploma,

except where due acknowledgement has been made in the text.

(Signed)

Ng Kwun Tak (Name of student)

. Abstracts

Multi-agent model has become very popular in the distributed environment
in recent years. In order to fully realize its potentials, many studies have focused on
improving the service quality related issues such as security, standardization, open

environment architecture, integration with existing system, and discovery of services.

In this thesis, we mainly investigate issues related improving quality in
service discovery. Service discovery is the use of designated agent directory server
for agents to locate their required agent services autonomously based on the nature of
tasks required by agents. Currently, directory services only provide run-time binding
for an agent to a predefined agent service of which the agent has complete
knowledge before hand. However there 1s a lack of discovery service at development
cycle. There is no sufficient mec'hanism for an agent service to declare or export its
functionalities on-line throﬁgh the Internet so as to facilitate thg development of
agent applications. On the other hand, the client agent application development may
be limited to a closed proprietary environment where the developer follows the
service-provider-defined specification to implement the application. In this work, we
extend service discovery to the development cycle. By using the provision of

ontology and ontology management, the specification of agent services are linked to

ontology, enhancement to services are also kept track of through version controls in
ontology management. In addition, agents can declare its required services through a
language using a defined version the onfology. Thus making it possible for new
service providers to serve exists clients as needed services are declared explicitly.
The technology developed involves locating relevant ontology, accessing and storing
the ontology, keeping track of ontology changes, declaration of service through
ontology, mapping services to implementation, automatic and semi-automatic
wrapping for different versions of services and finally, at run-time, the binding of
agents to services and online directory service for agent mapping with respect to a

service type.

Il. Publications arising from the thesis

Ng, K.T., Lu, Qin and Le, Yu. Ontology Management for Agent Development. In the
Seventh International Conference on Knowledge-Based Intelligent Information &

Engineering Systems (KES 2003). 3-5, September, 2003. Oxford, United Kingdom.

Ng, K.T. and Lu, Qin. Improve the Service Quality of Multi-agent System: Ontology
Management. In the Second International Joint Conference on Autonomous Agents

and Multiagent Systems (AAMAS 2003). 14-18, July, 2003. Melbourne, Australia.
Lo, C.W,, Ng, K.T. and Lu, Qin. CJK Knowledge Management in Multi-agent

m-Learning System. In the First International Conference on Machine Learning and

Cybernetics 2002 (ICMLC 2002). 4-5, November 2002. Beijing, China.

lll. Acknowledegements

I would like to express sincere thanks to my supervisor, Dr. Lu Qin, who
helped me a lot throughout this thesis. She gave me valuable advices on the thesis
and provided a motivating atmosphere. Through her support and perseverance, I

worked diligently and seriously on this thesis.

I would like to thank my classmates for their friendship, encouragement and
the stimulating research discussions. Lastly, I would like to thank my parents Ng
Chok Yan and Wong Mun Mui. Without their sacrifice and spiritual support this

thesis is not possible.

IV. Table Of Content

L ABSTRACTS ereerrearanennroaanes

II. PUBLICATIONS ARISING FROM THE THESIS 10

Il ACKNOWLEDEGEMENTS.. v

IV. TABLE OF CONTENT \

V. LIST OF FIGURES AND TABLES VII
LISTOF FIGURESeceeeieee et e seevee e e eee e eetaaeretsnesee s teteseesssemeesesesss et sssosessesesessesssesneesesesseessssssas Vil
ST OF TABLES c.evec ettt et sttt e s e e e e e e s eeeses e bt be e e eseseseseee e e eeeseressamssmeseseseseemss et ene VI

1 INTRODUCTION

1.1 PROBLEM STATEMENT ..ottt e eeeee et ereetesarsssssmsasasessassesssasessssessssenssesssees e smsesessseeeenae

1.2 OBJECTIVESctvtrerintinsesestess sttt eseeeeaeeesessemsetatas st asesmsesaseee e saeasseses e sassen s s e sseseseeeemnes
1.3 METHODOLOGYoovmmiirreererernteiessessasisstrtssnsesesessnssessssaesstvessssreensasasasssesessssstasasasassenensens
2 BASIC CONCEPTS AND RELATED WORK........
2.1 BASIC CONCEPTS ...eeiiiieeee et snsaar st st m sttt st s et nen et et e e eeeememn et et enenease
2.2 OVERVIEW OF QUALITY OF SERVICE IN MULTI-AGENT SYSTEM........oovoooeeooeeeoeeeeean
2.3 STANDARD PLATFORMS OF MULTISFAGENT SYSTEMcooouivieeeeeierereeeeeseeereeresseeeessesessssasesens 11
2.3.1 Agent Management Reference Model.........................c.cocovooviviiveeerinieeseeeresiereeen e 14
2.3.2 Agent Communication Language...............ccco..ooiouieoeiooeoceoeeesoe oo 13
2.4 EXISTING DEVELOPMENT PLATFORMS -.evs- s eeeveseveseoe oo e eooeoeoeoee oo 17
25 ONTOLOGY oottt et b e ee e 21
251 OR1010gy COMSIPUCHON ... et 22
2.3.2 Ontology Management System and ToOIS................c...ccc..o.o oot 24
253 Ontology Versioning..............cccooocoeeeeee vt etee e et ee e 26
3 SYSTEM ARCHITECTURE AND DESIGN PRINCIPLES v wrrserssessnensersras 28
4 ONTOLOGY VERSIONING ... oo rereesererisssesesststsesosoesesesesmssssssesssssssssssarasensnsnsasonsssssonsnsans 33
4.1 ONTOLOGY EDITOR IMPLEMENTATION ..ot e eeeeee e 40
$00 User Interface ... e e, 40
412 Project Man@ger ...ttt 42

413 Ontolog EdiOr Core.............c..ccoooviiccioiiiiciniicitsiet sttt et 43

1.4 History ManGgerccoooioiiiiiiiioiiiiiiict et et 48

915 Undo Managerccccccooimmiviiciiinict e 33

4.2 COMPREHENSIVENESScourmmiimmiitoameeacenemcsncrensecssmessesesesssesesnesssssresassssessacescusassesses 56

5 SERVICE TEMPLATE 57
5.1 SERVICE TEMPLATE ONTOLOGY voivvieieieeieieresie s eesrssseseesasansestsseemtesesteeseseesee st eamesessemameenes 58
5.2 SERVICE PROVIDER TEMPLATE AND SERVICE REQUEST TEMPLATE........ccoeeeeeeeeeeeeeveeerareenes 63
53 ONLINE SERVICE TEMPLATE REPOSITORYovveeieeeieeeeeeeeeeeeeeeeereeeeeessessssssssssssssesessesenssses 65
54 AGENT CODE GENERATION.coviierureisieiirevemiessesstsseessesasessenssssssssssassesamamssmsesssmmsaenssamessnnes 67
55 VERSIONING ISSUE ...covoeoeeceee ettt eeeees s s snes b e mstamanen e sanesataseeeesesesenaseannessasassesens 70

6 AGENT WRAPPER FRAMEWORK 72
6.1 ADAPTER GENERATOR DESIGNuiiuveeietietcrisseee e eteete s e eeeeaeeeemee e seeeeeeeeeeseeee s eemmaeasveeseronnn 72
6.2 IMPLEMENTATION OF ADAPTER GENERATOR ...vviiveetieeeeieeeeeeiereeeteaeeeeesseseeaeeneseee st eemeeeeneeon 75
6.2.1 DOM HIstory File PArserccoccoooiieieeosi i sts s s 76

6.2.2 MeSSAGE FUILR...........ooveiieeveeeeeeee ettt e ettt 77

6.2.3 Adapter Code GeREralor..............ccoveveeeeeeeeaieieieeeet et e eveeeee v, &0

6.3 DESIGN OF ADAPTER AGENT SEEKERecutiiteeetieteeeeeessensesetetesaseeeeseeseesaeeesessemseenseeseemessenens 32
6.4 IMPLEMENTATION OF THE ADAPTER AGENT SEEKER ...evevvvevieereveeeesoraesesseessseessessesssessnesses 85
6.5 THE AGENT WRAPPER FRAMEWORK SCENARIO <..cooeeeeveiveereeseeeeeesseiesaressssssesssesesssssaessssesns 88

7 CONCLUSION AND FUTURE WORKcceeeressercemssressssnsssssssorssssssstssseseress .95
REFERENCE. . ereesssssntiesans eerseeeesasessseseasessnesseessrassransanes 97
APPENDIX.... eeeeeoeeesessee e, eeeeeeeeee e 101
A1 ONTOLOGY EDITOR ...c..roviictiriiets it eenesteses e e anea st estesas e e s teeeeeeeeee e e e ee et eesseeseeseeseseseseseseseseserseeas 101
A2 ADAPTER GENERATORcoooiitiiitiiiersitsosesterosessesasteteseaeeeeeeee e teeeee e eenees e e ee e s st o s sresarese eresssses 103
A3 SERVICE TEMPLATE ONTOLOGY SPEciFICATION .. 165

vi

V. List Of Figures And Tables

List of Figures

FIGURE 2-1 AGENT COLLABORATION DIAGRAMccocoviiiriiiiiiinririnisnrsrs s 8
FIGURE 2-2 FIPA ARCHITECTURE-QRIENTED SPECIFICATION STRUCTURE............c.......... 12
FIGURE 2-3 AGENT MANAGEMENT REFERENCE MODEL [9]......cocvemiiiiiicicisisneniens 14

FIGURE 2-4 STRUCTURE OF A MESSAGE [3]-v.ossvereeessrsecesssrsesessssssesossssesseesssses e 17

FIGURE 2-5 JADE AGENT PLATFORM DISTRIBUTED OVER SEVERAL CONTAINERS [12] 20
FIGURE 3-1 COLLABORATION DIAGRAM WITH ADAPTER AGENT ..., 30

FIGURE 3-2 THE REFERENCE MODEL AND THE SYSTEM COMPONENTS..........ccccovveieenn 31

FIGURE 4-1 SYSTEM FRAMEWORK OF ONTOLOGY EDITOR ..ot 36
FIGURE 4-2 THE CHANGE OF CONCEPT RELATIONSHIP AFTER DELETION......ccceimnvnnns 45
FIGURE 4-3 TWO JAVA FUNCTIONS GENERATED BY THE ONTOLOGY EDITOR................. 48
FIGURE 4-4 HISTORY FILE CONTENTcoiiimiiiiinirinci ettt sbe e 51
FIGURE 4-5 EXAMPLE QOF <ADD> TAG IN HISTORY FILE ..ot 53
FIGURE 4-6 CLASS DIAGRAM - UNDO SUPPORT CLASSES..........con 54

FIGURE 5-1SERVICE TEMPLATE ONTOLOGY REPRESENTED IN UML CLASS DIAGRAM .59

FIGURE 5-2 COMPONENTS OF THE ONLINE SERVICE TEMPLATE REPOSITORY 65
FIGURE 5-3 MAJOR COMPONENTS OF THE AGENT CODE GENERATION............................. 68
FIGURE 5-4 ONTOLOGY VERSIONING AND IMPLEMENTATION RELATIONSHIP................ 70
FIGURE 6-1 SYSTEM ARCHITECTURE OF ADAPTER GENERATOR e 73
FIGURE 6-2 STRUCTURE OF HISTORY FILE ..o s 77
FIGURE 6-3 INTERACTION WITH THE ADAPTER AGENT ... 83
FIGURE 6-4 COMPONENTS OF THE ADAPTER AGENT SEEKERcccoooniiiiiicininn, 85
FIGURE 6-5 MUSIC SHOP ONTOLOGY CONSTRUCTION AT THE ONTOLOGY EDITOR89
FIGURE 6-6 ADD A NEW CONCEPT TO THE ONTOLOGY ...t 90
FIGURE 6-7 SKELETON CODE OF THE SELLER AGENT ..o 91

FIGURE 6-8 SELLER AGENT REGISTRATION CODE TO THE ADAPTER AGENT SEEKER. .92

FIGURE 6-9 ADAPTER AGENT SKELETON CODE ... 93

vii

FIGURE 6-10 MESSAGE FILTERS ..ot g 94

FIGURE A-1 ONTOLOGY EDITOR USER INTERFACEccooooovivieiirtneitnerissssssssesseaneceseesres 102
FIGURE A-2 BEAN GENERATOR FOR PROTEGE 2000coovvvvirimirervnniinssseecserenesenecssenioes 103
List of Tables

TABLE 2-1 LEVEL OF MESSAGING ACTIVITIESeeooomeeevrumsrurasrecesissessssseseecesssesinesenssesessons 16
TABLE 4-1 ONTOLOGY CHANGE OPERATIONSooomervmuermisaieresssenemsesessssscsseesssosesenssessaseen 35
TABLE 4-2 ONTOLOGY CHANGE OPERATION SUMMARYocovmeeonriimcninieissescriesinensessssssseness 43
TABLE 4-3 CONVERSION RULES AND FUNCTIONSoooomorrvtimsroseeie s rsssesssesesesesconersseceees 47
TABLE 5-1 COMMON METHOD OF THE JAVA HELPER CLASScooccovmrmremrsensererersiemsessncres 69
TABLE 6-1 METHODS OVERLOADED FROM JADE.DOMAIN.DESERVICE CLASS 86

viil

1 Introduction

Due to the popularity of Intemet, computers are no longer a stand-alone
system. Computers are well connected in the network. The information system
becomes more complex. The distributed software components are useful for solving
complicated problems, l.Jy sharing computer resources on different host computers in

a distributed environment.

An agent i1s a software program which can act autonomously depending
on the c;.nvironment changes and its own knowledge. It is “a program that assists
people and acts on their behalf. Agents function by allowing people to delegate work
to them” [26]. A Multi-agent system contains a group of agents which interact with
each other to solve a problem or accomplish a task at run time environment on a the
agent platform. Agent interactions are goal-oriented and task-oriented [42]. Agents
can be stationary or mobile, A stationary agent always stays at its creation place,
while a mobile agent can be migrated to other hosts. A mobile agent can navigate on
an agent platform from one host to another with their code, state and data in order to
accomplish a task. Multi-agent systems become important in distributed

environments.

Multi-agent systems can be used in various applications such as
distributed information retrieval, electronic commerce, network management and
work flow scheduling [10]. Various multi-agent system platforms and standards are
proposed by different companies. As the popularity of the multi-agent model
increases, some multi-agent systems have already been launched in the market [11].
However, the multi-agent model is still in the early stage of its development. There is
a limited number of commercial multi-agent systems available. In order to fully
realize 'its potentials, many studies have focused on improving the service quality
related issues such as security, standardization, open architecture, integration with

existing system, and discovery of services.

1.1 Problem Statement

Researchers have raised the question on the homogeneity of agent systems
[41]. In some high-level applications example, such as information retrieval, it seems
that an agent has the intelligence to interact with the execution environment, to find
the appropriate data source, and to use the agent service interface. In fact, these kinds
of know-how knowledge were coded in the agent design phase. For the open
environment with different access control mechanisms and functionalities provided
by different agent services becoming available at different times, it is not reasonabie

to assume that agents have the prior knowledge to deal with all of them. There

should be ways to expose the specific access control mechanism and functionality of
a specific agent service which can then be used both at the agent’s development cycle

and also at run-time. This falls into the category of service discovery.

In this study, we mainly study issues related to service discovery. Due to an
agent’s autonomous characteristics, it needs to find available agent services without
an user intervention when it navigates through various hosts, which we call service
discovery. We use the term agent service to refer to a service provided by an agent
server to be used by a client agent. While an agent service developer is responsible
for developing various agent services, a client agent developer is responsible for
developing agent application to use some agent services. One of the most important
services on an agent platform is called service discovery which has some designated
agent directory servers for agents to locate their required agent services
autonomously based on the nature of tasks required by agents [11]. Currently,
directory service only provides run-time binding for an agent to a predefined agent
service of which the agent has a complete prior knowledge. However, there is a lack
of discovery of services at the development cycle. There is no mechanism for an
agent service to declare or export its functionalities on-line through the Internet so as
to facilitate the development of agent applications. On the other hand, the client

agent application development may be limited to a closed proprietary environment

where the developer follows the service-provider-defined specification to tmplement

the application.

1.2 Objectives

It 1s more desirable that client agent developers can access the features and
functionalities of agenf services when they are designing client agents. As a result,
there should be ways to describe the functionality and properties of agent services.
An agent management component is also needed to keep the stock of various agent
service classes and provides an interface for the agents to look for the required

classes [10].

It is also desirable that an agent can declare the kind of services it needs
once the development is over. The declared service type, which we call gereric
requested service, provides a way for agent service providers to find out what are
needed by client agents. Thus, a new agent service can be adapted to the existing
kind of generic requested service, so that a client agent coded earlier can use agent

services which are developed at a later time.

The objectives of this study is (1) to find a way for agent service providers
to declare and export the types of services it can provide with interfaces and methods

so as to facilitate the development of agent applications, (2) to find a way for client

agent developer to declare and export a generic requested service its needs at the
development stage. This way, a client agent can be developed independent of the
service agent which may be developed at a later stage, (3) methods for new agent
service providers to provide service to existing client agents which have declared
generic requested sefviée, and (4) find ways to bind client agent with appropriate

service agents at run-time.

1.3 Methodology

‘Our approach is to investigate how to make use of ontology to facilitate the
development of agent based systems. Ontology is used to model the agent world. It
generally specifies the concepts, objects and relationship between concepts of a
domain of interest. Methods of using ontology and its association with agent services
have been explored recently since ontology reflects the agent capability. The idea is
that if we can make the association of ontology with services, service providers can
declare their services through a well defined language with ser.nantic definitions.
Change and enhancement of agent services can be kept track of through the

management of ontology repository.

In this work, we will first study the architecture of multi-agent systems and
the implementation of multi-agent system platforms. Then, we try to investigate

agent service related problems and review current solutions. We will then explore

5

how to make use of an ontology repository for agent development. This involves
locating relevant ontology, accessing and storing ontology, keeping track of ontology
changes, mapping ontology to implementation, automatic and sem-automatic
generation of wrapping service so that new service providers can serve older client
agents, and online directory service from agent binding with respect to required

service types.

The r@st of the thesis is organized as follows. Chapter 2 gives basic concepts
and related work. It introduces two major agent system standards and agent platforms.
Ti"he detail of ontology application on mqlti-agent systems is studied. Chapter 3
presents our methodology and introduces our proposed system architecture. Chapter
4 descnbes the impleme_nﬁtion of the system componeﬁt related to ontology
versioning. Chapter 5 discusses the details of linking ontology with agent
implementation. Chapter 6 presents the Agent Wrapper Framework. Lastly, Chapter 7

concludes this thesis and discusses future work.

2 Basic concepts and Related Work

2.1 Basic concepts

An agent is a software component which acts autonomously when there are
environmental changes and coordinate with other agents [42]. A multi-agent system
often runs at an agent platform in which provides necessary development and
run-time environment. An agent platform provides online functions to facilitate agent
execution and agent management with the support of various underlying technology.
In order to facilitate agent communications, an agent platform provide higher level of
agent communication functions on top of some basic communication facilities
provided by an operating system such as Remote Procedure Call (RPC), Remote

Method Invocation (RMTI) or TCP/IP protocol.

Most of the agent systems are written in the Java programming language.
Java’s promise of ‘“write -once, run anywhere” makes its code portable on
heterogeneous hardware and operating system platforms over a network. Java’'s
Naming and Directory Interface (JNDI) is a standard extension to the Java platform,
providing Java technology enabled applications with a unified interface to multiple
naming and directory services. Agents can make use of JNDI service providers to

find out the required services.

MA Platform

SA

2. Coordinate with the service
agent by the agent interaction
protocol.

Figure 2-1 Agent Collaboration Diagram

Figure 2-1 shows a simplified multi-agent (MA) system mode! where agents
are categorized into service agents and user agents. A service agent (SA) provides
services for client agents. A client agent (CA) seeks services from server agents. Each
host in a MA platform has a directory facilitator which maintains a list of agent in the
current MA platform and an agent management system (AMS) component. There is
also a directory service which is used to publish agent services providing at other
MA platforms. Since an agent platform is not limited to a single host, intra-platform
agent migration is possible. In a multi-agent system, a service agent can serve as a
wrapper or sometimes called proxy through which a legacy application or an older

version of a client agent can be serviced by new service agents.

What makes MA system different from other paradigms is the autonomous
actions and interactions of agent to achieve a goal. While the constructed software

components are assumed to have the same goal in most sofiware engineering

practices, an agent acts autonomously according to its self-interest [43]. Agents
interact with each other by sending messages which are often written in the Agent
Communication Language (ACL). The content of the message 1s written based on
some agreed concepts defined in an ontology so that agents can do reasoning and

inference processes on a common ground.

Generally speakﬁg, an ontology is a semantic framework which can be used
to model the agent world. An ontology specifies the concepts, objects, and the
relationships b¢tween concepts in an area of interest [42]. It is similar to a database

" schema which describes concepts and relationship structures rather than storing the
actual instance of data. In this thesis, ontology is defined based on the FIPA

specification [2] that specifies concepts, proposition, rules, and actions.

2.2 Ovérview of Quality 6f Service in Multi-agent
Syste.m
In this thesis, quality of service is often measured in terms of functional
comprehensiveness and in this thesis it is viéwed from the perspective of agent
applications. Recent study on service quality of multi-agent system often includes
security, agent platform standardization, integration with existing system and
discovery of serviées. Although the development of multi-agent systems is still in its

infant stage, these studies help to make it more comprehensive (11, 15, 30].

9

Security 1s one of the high profile issues currently because MA systems are
designed for real applications over the internet or network, especially when agents
are mobile and can navigate from one host to another. Security issues should
consider access control, integrity, privacy and resource consumption [9). For
example, SOMA is one of the system framework studies security and interoperability

[10].

As the popularity of the multi-agent systems grows, various platforms are
implemented. However, inter-operation between heterogeneous agent platforms is
often not possible. Standardization of agent platforms and the design of common
architecture can provide a common ground for various applications. Currently, FIPA
and MASIF are the two main standards developed for MA systems. Details of

standards will be discussed in Section 2.3,

For existing legacy systems and applications, it is often too costly to
completely re-develop them. Therefore, integration with the existing systems is one
important topic in improving quality of service in a multi-agent system. Integration
ensures that existing applications can get the benefits from newly developed
multi-agent systems but will not involve a high re-development cost. Component
based architecture [30] and the open agent architecture system [15] addresses the

integration issue.

10

There is a number of works on run-time service discovery. Their main
contributions are on discovering services and resources in an agent platform
especially to address the problem of ad-hoc wireless network condition [27].
However, there is lack of work on service discovery in agent applications’
development cycle, nor any study on the linkage between service development and
the runtime. This binding by service types motivates our research to find solutions
for providing a better development environment as well as smooth and autonomous

binding at runtime.

2.3 Standard Platforms of Multi-agent system

There are many open agent system standards and agent-based software engineering
methodologies studied before. There were already over 60 agent platform systems
before the introduction of the first agent standardization. Standardization of agent
systems is introduced to address the interoperability issue. There are two main agent
standardization organizations working on these matters. The Object Management
Group (OMG) developed the Mobile Agent System Interoperability Faciiity
specification (MASIF) {33] and the Foundation for Intelligent Physical Agents (FIPA)

developed the FIPA specification [3].

MASIF specification aims at providing a unified middleware for

heterogeneous mobile agent system so that certain degree of interoperability can be

11

achieved without large modtification of existing systems. MASIF only addresses
interoperability between platforms written in the same programming language.
Interoperability in MASIF is standardized in terms of agent management, agent

migration and navigation, agent naming, and agent types.

The FIPA specification was ornginally concentrated on intelligent
co-operation in the context of multi-agent systems. Yet, the latest FIPA specification
included agent mobility support. As FIPA is more comprehensive, it will be used to
develop our system in this thesis. Thus, we will give a more thorough discussion

FIPA.

The FIPA specification can be divided into two main areas,
architecture-oniented and application-oriented. The FIPA Application specification
defines the way to use agents on different application areas. As FIPA Application
specification is informative and not considered as standard, we will not discuss it in

details.

Abstract
Architecture

Agent
Management
Interaction Communicative Content ACL Envelope Transport
Protocols Acts Languages Representations | | Represeniations Protocols

Figure 2-2 FIPA architecture-oriented specification structure

Agent Message
Transport

Agent
Communication

12

The FIPA architecture-oriented specification is concemed with building
agent services and agent environment. It is normative and technology-oriented.
Figure 2-2 shows the FIPA architecture-oriented specification structure. The
architecture includes fhree parts: agent commupication, agent management, and

agent message transport.

Agent communication deals with interaction protocol, communicative acts and
content languages [5]. In a FIPA compliant multi-agent system, agents co-ordinate
and communicate with each other by exchanging messages written in the Agent
= Communication Language (ACL), such as FIPA-ACL and Semantic Language 0
(SLO). Agent Communication Language is based oﬁ speech act theory: messages are
actions, or communicative acfs, as they are intended to perform some action by virtue

of being sent [25].

Agent Management deals with the control and management of agents within and
across agent platforms [4]. It specifies the agent platform reference model for the
creation, registration to the directory facilitator, location, communication, migration

and retirement of agents. The details are further discussed in Section 2.3.1.1.

FIPA Agent Message Transport deals with the transport and representation of

messages across different network transport protocols, including wireline and

13

wireless environments [5]. These specifications include ACL Representation,
Envelop Representation and Transport Protocols specification. Agent
Communication Language specification defines different representational format to
encode the ACL messages. The ACL messages can be encoded iq XML, String and
bit-efficient format. Envelop Representation specification defines how to use XML
or bit-efficient to encode the envelope. Transport Protocol Specification concerns
about the ways of transmitting ACL message using different network protocols, such

as WAP, IIOP and HTTP.

In this study, we will concentrate on the directory facilitator since it is
related to the online service registration and the agent service lookup in agent

management.

2.3.1 Agent Management Reference Model

Software
i S Agent Platform - Anentfléu‘rfdr"'-
’ Agent . gen i
Agent Management Elrﬁw - Agent Management [} fl__)als_"c::tr;
System aciiator e Sy;iem e
Message Transport System Message Transport System

Figure 2-3 Agent Management Reference Model [9]

14

The reference model in FIPA is shown in Figure 2-3. An agent platform
should have three service components: an Agent Management System, a Directory

Facilitator and a Message Transport System.

Besides to agents, the agent management system maintains the life cycle
of an agent and keeps track on it. It stores the transport addresses of the agent
registered with the Agent Platform. The directory facilitator provides yellow pages
service to other agents. It provides agent service registration and deregistration,
service update, and answering inquiries. The message transport service provides the
communication method between agents on different FIPA-compliant Agent

Platforms.

2.3.2 Agent Communication Language

In FIPA compliant platforms, agents communicate with each qther by
message passing. Message passing is not new in distributed computing. However, the
difference between ACL and the previous models such as RF;C system is the
semantic complexity and the object of discourse [25]. Since multi-agent system was
oniginated from Artificial Intelligence subject, ACL expresses propositions, rules and

actions to describe sernantics of message content.

15

Every communicative act in ACL is described with both a narrative form
and a formal semantics based on modal logic according to human communication
theory. The messaging activities between agents can be decomposed into the four

levels as summarized in Table 2-1.

Table 2-1 Level of messaging activities
Level Description Real World Example

Interaction Protocols [Social rules to conduct the Someone looks for an
conversation. Conversation |apple and he requests the
means exchanging a set of fruit seller to sell. Fruit
agent messages. seller replies with the

price and then sell it.

Agent Specify the communicative |[“Iwant....” Itisa
Communication act. FIFA aims at allowing request.
Language (ACL) heterogeneous agent

communicate through

FIPA-ACL.
Content Language [Specify the content of the “I want you to sell an
communicative act apple” apple is the
content.
Ontology Specify semantic meaning of (The meaning of apple

the content. It is the primitive |and sell.

term using in the content

language.

The highest level of agent communication is interaction protocol. Agents
talk to each other follows a pattern defined in the interaction protocols. The

communication language defines the format of an agent message and the

16

communicative act. While the content language specifies the content of the

communicative act, the content semantics is defined by ontology.

Figure 2-4 shows the structure of an agent message. The basic messaging
information such as sender, receiver, content language, protocol and communicative
act are expressed in Agent Communication Language. The content of a message
refers to the domain specific component of the communicative act and the content
expression may include propositions, actions or terms. The content is expressed in a
content-language, such as SL (Semaﬁtic Language} a formal language used to define
semantics. A content-language may reference an ontology defines the semantics of

the content. Ontology will be further discussed in the section 2.5.

Unique names,
regardiess of transport

: Sender Agentname -~
Recsiver, Agent-name f

Massagae content

T NI

;| Expressed ina content language
.| May referanca an ontology

T P L L P T GO R M TP o 1 |

Figure 2-4 Structure of a message [3]

24 Existing Development Platforms

FIPA is more comprehensive than MASIF. Not only does FIPA provide
support on mobility, but also on the intelligent agent communication and

co-ordination using agent messages. As we follow the FIPA Specification in this

17

thesis, we will give an overview of current major FIPA-compliant agent development

environments.

Agent Development Kit {8] i1s a mobile component-based and modular
architecture development platform. It provides a commercial development kit for
Java-based mobile agent applications and components. Compared with other open
platforms, it has fewer third party or research institutes research involvement since it

1S not an open source platform.

Like Agent Development Kit, Grasshopper [14] is a commercial product. It
has a mobile agent environment and provides plug-in add-ons for its core platform in
order to support both the MASIF standard and FIPA standard. However,-it is only
compliant to FIPA-97 specification and provides limited functions to compose an

ACL message.

Zeus [35] toolki£ provides a library of software components and tools for the
design, development and deployment of agent systems. It consists of three functional
components: an agent component library, an agent building tools and a suite utility
agent comprising name server, facilitator and visualiser agents. These components

provide visual environment for the generic agent functionality development and

support planning and scheduling of an agent actions. It is one of the early day agent

toolkits. But, its recent development or activity seems sluggish.

Java Agent Services [1] is designed by major computer vendors such as
Fyjitsu, Sun, IBM, HP, Comtec, etc. Java Agent Services defines an industry standard
specification and Java API for the implementation of the architectural features of the
FIPA Abstract Architecture. It aims at creating commercial applications using FIPA
specifications. However, it is still in the infant stage of development and no platform

implementation is available yet.

FIPA-OS [38] 1s a component-oriented toolkit for the development of FIPA
compliant agents. Agent is built from three types of components: mandatory
components, components with switchable implementation and optional components.
Major FIPA Experimental specifications are supported. It is an open source agent
toolkit and is going to -l?e improved by various developers from the agent

development community.

JADE [12] is a software framework fully implemented in the Java language.
It is compliant to the latest FIPA-2000 specification. It provides debugging tools and
deployment tools for the agent development. Besides, there are third-party add-ons to

enrich the functionality and features of the development kit. The agent platform can

19

be distributed on different hosts as shown in Figure 2-5. Each host has a Java Virtual
Machine, which serves as a container of agents to provide a runtime environment for
agent execution. As shown in Figure 2-5, the JADE platform contains only one main
container which contains Agent Management Service (AMS), Directory Facilitator
(DF) and RMI registry. In addition, the main container provides a front-end GUI
tools for agent debug and deployment. Containers on other hosts are also part of the
platform. They connect to the main container and form a complete run-time
environment for the execution of agent. Intra-platform agent migration is allowable.
It is an open source agent platform with lots of development features. Due to the
wide range of functionalities provided for JADE and the fact that it is provided free
of charge and it is fully compliant to FIPA-2000, we choose JADE as our agent

platform.

Host 1 Hos12 Host 3

waby vogeopddy
waby vogesyddy
uaby uoneoyddy

>
o
2
g
o=
o
3
I
=1
i3
2

waly uoneanday
walby uoneanddy

£
=
&
<
3
p -3
=]
]
2

waby uonesddy

waby uoneayddy
IBUIEIUOTD U BART N

RM?
Regisiry

Directory
Fadilitator

JBUIBIOD eaer
BuRIUOY B

AMS

Java Distributed Agent Prattarm

JRE 1.2 JRE 1.2 JRE 1.2

Figure 2-5 JADE agent Platform distributed over several containers [12]

20

2.5 Ontology

Before we going into details of ontology, we consider the following case.
Suppose there is a CD Buyer agent and a CD Seller agent in a virtual market. A CD
Buyer wanting to buy a CD must first specify the album name and the preferred price.
In other words, both the CD Buyer agent and the CD Seller must already have
reached the consensus on the semantic meaning of what “Album Name” and “Price”.

Ontology specifies the concepts and taxonomy used in agent communication.

. People are often like to model the real world in order to build an application
capable of handling real life applications. Since the real world is so complex that it is
both hard and costly to represent all the details inside it, only a part of the real world
or a specific focus are called “domain” is considered in developing an application. A
domain 1s confined to a subject or an area of real world knowledge, such as
transportation, mathematics, physics, medicine, etc. Different methodologies were
developed to capture the domain knowledge. Ontology was one of the ways to
represent domain concepts and their relationships. Ontology has become a hot topic

in agent development society because of its suitability in agent communication.

“An ontology is an explicit specification of a conceptualization” according

to Thomas R. Gruber [18]. Ontology 1s mainly used for explicit information

21

representation. For human being, we use natural language to communicate and get
the work done. Yet, it is not an easy task for computers to understand a natural
language due to intrinsic ambiguity nature of natural languages. In order to let
machines or software agents to understand the semantic meaning of a language,
ontology specifies the concepts and their relationship in a formal ways [42]. This
greatly simplifies the representation of semantics in the natural language. It bndges
the semantic gap between syntactic representation and its concepts [28]. Other
miscellaneous usages are global query model and verification of the integration

description [40].

Agents can communicate and interact with each other according to their
functionality because they use the same communication language with a common
vocabulary, which contains keywords in a common application domain. The means

of the keywords are defined in a shared ontology [13].

2.5.1 Ontology Construction

A new ontology can be constructed from the ground or reuse the existing
ontology. Ontology reuse can be divided into two categories [36]: integration and
merging. Integration means assembling, extending, specializing and adapting
ontologies from different subjects or domains into a new ontology. The resulting

ontology 1s often customized for a specific application. Merging combines different

22

ontologies from the same domain or related domains into a common ontology. Since
organizations and industry in the same domain may construct their ontology similarly,
merging can update the definition of concepts to the industry standard and attain

consensus ontology.

Recent research studies have shown attempts to automate the process of
integration and merge [37]. However, a complete automatic solution is still not yet
possible. It needs human to resolve the ambiguity of domain knowledge, so it may

hard to attain this goal in the near future.

Both integration and merging finally result in some designated ontologies
for applications in certain domain. Variants of these ontologies are developed as
concepts are changed and expanded as time goes by. Consequently, there are two
kinds of relationships when ontology changes: the relationship between different or
similar domain ontologies'and the relationships between ontology of different
'versions in the same domain, we refer to the second relationship as ontology-variant
relationships. In this thesis, we only focus on the study of ontology-variant

relationships and how to transform one version of an ontology to the other.

23

2.5.2 Ontology Management Systém and Tools

At writing of this thesis, the OntoWeb [17] is still in its early stage.
OntoWeb provides a Service Description Language DAML-S and a DASD (DAML
agents for Service Discovery) to binding web service with client agents. However,

OntoWeb does not handle ontology change.

Semantic Network Ontology Base (SNOBASE) is designed by IBM [21]. It
is a framework that allows the access of ontologies from a file system and the
Internet and is used for locally creating, modifying, querying, and storing ontologies.
Its major feature is to provide a programming interface to access the ontology. There

1s no direct linking between ontology and an application.

Chimaera i1s a software system that supports users in creating- and
maintaining distributed ontologies on the web [32]. Two major functions it supports
are merging multiple onFologies together and diagnosing individual or multiple
ontologies. It is a knowledge management tool to build ontolbgy for experts in

certain domains. Again, it is not directly linked to any implementation of services

using the ontology.

Exteca is a collection of technologies which can form the foundation of

knowledge models to support knowledge management system [16]. When an

24

ontology needs to be transformed into another ontology, a set of filter rules can be

defined to describe how the transformation should take place.

OntoManager [19] tries to formalize the ontologies and transform them into
a more expressive representation, using RDF, DAML+OIL, OWL. It provides an
interactive tool to semi-automate the detection and the resolution of various

ontological mismatches in a workbench environment.

Protegé 2000 [34] is an ontology tool to help developers to construct
domain ontology, such as defining concepts, predicates, stots and agent actions. Due
d;o its well defined API structure, providing libraljy access, supporting third party
plug-in and large user commurlities; Protégé 2000 is chosen as our ontology editor
environment. With appropriate plug-in 7], the tool can generate Java class to support

the definition of ontology in JADE. However, Protégé 2000 does not keep track of

ontology change.

In short, most of the current ontology management systems are mainly for
ontology storage, knowledge management and semantic web. The links of ontology
with agent development is not addressed. That is what motivates us to investigate

methods to make use of ontology in agent development cycle so that service agents

25

can have declared types of service which in turn can help client agents to be bound to

the right type of service at run-time.

2.5.3 Ontology Versioning

When an ontology is used by a multi-agent system, the ontology
engineering process does not end at there. In real life, same concepts become
obsolete and new concepts are being created. This means that ontology is not static
and it needs to be updated as times goes by generating newer version of ontology.
Basically, if a service agent and the corresponding client agents are build based on
certain version of ontology, the service agent would not be able to serve some client
agents which “speak” a newer language involving new concepts. On the other hand,
an older client agent would not enjoy a newer service agent which provides some

service that the older client is not aware of nor understand.

Currently, there are a number of studies [20, 22, 29] on ontology versioning.
Versioning i1s a method to keep track of the ontology changes as i.t evolves. It makes
the relation of one version of a concept or relation to other version of that construct
explicit [24]. However, they are mainly concerned with Semantic Web to annotate
the web pages information. Ontology is linked to information in web pages so as to
allow software agent or machine understanding the web page. However, the

association of ontology with agent capabilities in the multi-agent system is not

26

entertained. In addition to representing instance of concepts, predicates, actions and

rules are required to be specified by ontology in the multi-agent system. We are

going to work on this issue.

27

3 System Architecture and Design

Principles

As mentioned in Chapter 2, if ontology evolves and the change is not
properly managed, agents using different versions of ontology cannot communicate
with each other. Existing agent implementation may need to be re-constructed which

can be very costly for agent application users.

In this work, we aim to use ontology management to link ontologies with
agent development. The linking includes three aspects. Firstly, each implementation,
which we call a declared service implementation, is linked with a particular version
of an ontology, thus making the “language” it speaks explicit. The service provided
by this implementation is also made explicit with respect to the part of the ontology
used In this implementation as an implementation does not need to implement every
construct in a particular vefsion of ontology. Secondly, an client ag.ents can make a so
called service request declaration where a client makes it explicit the concepts it
understands, the “language” it speaks, the service it requires and the interface it uses
for such a service. Even though a service request declaration can be identical to a
declared service implementation, which should be the case in more instances, such

declaration may be a declaration for a preferred service which can be implemented

28

later by someone who finds such a service is worthwhile to provide. Thirdly, we use
the mechanism of version control to keep track of ontology changes in a systematical
way. This makes it possible to know exactly what the difference between two
implementations linked to different versions of the ontology thus making wrapping

service for different service agents possible.

With the provision of service request declarations and wrapping service,
new agent services can be used by existing client agents. Here the term wrapping
refers to the construction of a proxy agent which understands two versions of an
ontology and act as the “translator” between a client agent and a service agent which
is built on different versions of the ontology. A wrapping service generates a so
called “adapter agent” which is an agent that converts ACL message from one
version to the other and it serves as a translator for different versions of the same

ontology. Detailed discussion will be given later in Chapter 6.

With the adapter agent as a proxy, a client agent can speak to a newer
service implementation (or even a newer version) because the wrapping has taken
care of the translation. In other words, the client built earlier can use the agent
service developed later. Wrapping service helps to save time and reduce the cost of
agent re-implementation. The service declaration allows a service agent to advertise

their available service. It also allows a client agent to declare the service it needs.

29

Figure 3-1 shows the proposed collaboration model with the newly
mtroduced adapter agent. When a client agent looks for a service agent by querying a
directory facilitator (shown in Step 1), the directory facilitator (DF) tries to locate the
best matched service agent (shown in Step 2). If the directory facilitator cannot find
the exact match, it will try to look for a service with the appropriate adapter agent
(44) (shown in Step 2'). In this case, the adapter agent acts as the interface between
the client agent and the service agent (S4) so that service of 4 can serve a CA even

if S4 and CA do not speak the same “language”.

Agent Platform

Directory
facilitator

1. Looking for the

service by sending
query message to
directory facilitatg

Agent Platform Agent Platform Agent Platform

2. Coordinate witr @@
he age

§ sefvice agent-by {
interaction protacal

15 transparent to the
client agent

Figure 3-1 Collaboration diagram with adapter agent

30

Framework

Layer Construct Support

Agent Application

Online Agent AdEDISY | 4 pent Platform
Service Agent Execute the agent
Seeker

implementation
and the adapter at
Agent S the agent
' platform
Agent Cnline Agent
Development Service Wreapper
Repaository | Framework
Define the
Ontology < ontology and the
Ontol onli construct used
ogy nling
Management Ontology 0““{'"8’)’
. Editor
’ Repository

Figure 3-2 The reference model and the system components

The proposed ontology management platform, referred to as the OntoWrap
in this thesis, provides three layers of services, namely ontology management,
agent development, and online agent service as shown in Figure 3-2. At the
ontology management layer, ontology is managed by one data component and a
functional component, namely, the Ontology Repository and the Ontology Editor.
The Ontology Repository keeps rec;ords of ontologies and ontology changes so that
the ontology-variant relationships between different versions of ontology and their
extensions are maintained.. The Ontology Editor provides an interface to modify and
create an ontology. At the agent development layer, service related declarations are
also carried out by a data component and a functional component, namely, the
Service Repository and the Agent Wrapping Framework. The Service Repository
keeps records of service request declarations and declared service implementations

as well as relationship data to link ontology with agent service specifications given in

31

the ontology repository. The Agent Wrapper Framework provides the interface
between service declaration and service implementation. It is also where the
wrapping code is generated for adapter agents. Note that we used the term
Framework in this component because we cannot guarantee automatic generation
adapter agents. If some of the changes in an ontology are semantic in nature,
wrapping service may still needs to be programmed by a person. In that case, the
skeleton code will be generated for programmer to insert the code. At the online
agent service layer, an extended directory service called the Adapter Agent Seeker is
provided to help locating the right implementation or the right adapter agent for a

requested service at run time as discussed in the collaboration model in Figure 3-1. .

Before the development of any multi-agent systems, the problem domain
must be analyzed first. Through conceptualization, the problem domain and the
planned target objectives are realized in a defined ontology, which. enables an agent
to understand the message content during agent communication. Consequently, the
produced ontology reflects and binds the capability of an agent. Various domains of
ontologies are created and stored in the ontology repository. When there are ontology
changes, its versioning function keeps track of these changes and distinguishes

ontology variants.

32

4 Ontology Versioning

In this thesis, we use ontology versioning to keep track of ontology changes.
It is one of the most important features of OntoWrap. Two types of ontology change
operations are identified as the syntactic change operations and the semantic change
operations. A syntactié change operation changes the ontology definition in its
syntax representation only. A semantic change operation, however, changes the
semantics meaning of the definition. In the following context, the term ontology
construct refers to a tree node in the ontology structure, such as, a concept, an agent
action or a predicate. Not all ontology change operations can be used for the
generation of adapter agent. When a totally new concept is introduced, such as a
Book concept added into a Music Shop Ontology, the automatic translation by
adapter agent may not be possible. At least the adapter agent knows that an older
client does not know what‘ a Book is, so it will block any message pieces related to

book service to client agent.

The Ontology Editor is designed to facilitate the development and the
evolution of domain specific ontology. It keeps track of ontology changes during the
editing of the ontology. Currently, most of the ontology editors [39] only provide

basic functions to construct ontologies. The agent construction and more

33

comprehensive ontology construction functionalities, such as undo function, are not
available in these editors. According to [39], an ontology editor is suggested to have

the following features:

Supporting evolutionary changes

Enabling users to resolve a change

Providing control over evolution changes
Declaring ways to undo previous change effects

Managing ontology change history

Providing support for continuous ontology improvement

Finding inconsistencies and reasons for easy ontology management

| The ontology management system, Protégé 2000, allows users to define
generic classes and class hierarchy, slots and slot-value restrictions, relationships
between classes and properties of these relationships. However, there is no class
constraint for agent development. In the FIPA 2000 specification, ontology includes
elements, such as concepts, actions, predicates and relationships. Currently, users can
only create these basic ele@ents as classes in Protégé 2000 and create subclasses that
inherit these basic element 'classes. For example, the buy action-and sell action are

the subclasses of agent action class. This approach does not have sufficient control

over ontology construction and declaration of ontology elements.

OntoWrap, makes use of the basic functionalities provided by Protégé 2000
so that we do not need to reinvent the wheels. In order to ensure the correctness and

consistency of ontology construction, we extended Protégé 2000, by implement our

34

extended service as a Protégé 2000 tab widget plug-in to allow ontology experts to
select the ontology elements and define appropriate element properties. For instance,
when the developer defines an agent action, an agent action property window dialog

is displayed to let a user enter the required action arguments that are constrained to

concepts.
Table 4-1 Ontology Change Operations
Change Operation Target Construct
Concept, Agent Action,
Add _
Predication, Slot, Argument
Concept, Agent Action,
Delete
§ Predication, Slot, Argument
5
§ Concept, Agent Action,
b5 Rename
g Predication, Slot, Argument
7]
= _§ Replace Stot and Argument
§ g
5 &

Table 4-1 lists the basic change operations such as add, delete, rename and
replace and the ontology constructs these operations can be applied to. Moreover, the
version information, that is the sequence of change operations performed, the version
number and meta-information, can be saved during the ontology update process.

Undo function is also implemented to facilitate ontology construction.

35

With reference to the Model-View-Controller paradigm [31], the Ontology
Editor is mainly composed of two parts: the User Interface (UI) and the Ontology
Editor Engine. This partition is to keep each component as much independent of the

other as possible so that either one can be modified without affecting the other.

Ontology Editor

User Interface

s

Ontology Editor Engine

History Manager

History Log
Ontotl
Editg?v Project Undo Geanaratar
Manager Manager G:D
Core
Version
Manager

T\ AN 7S
| Protégé 2000 API

@ S

History File

¢

Ontology Project

Figure 4-1 System Framework of Ontology Editor

The major components of the Ontology Editor are shown in Figure 4-1. The
User Interface 1s a graphical user interface (GUI) which mainly interacts with the
ontology designer. Ontology is represented. in a tree structure on the graphical user
interface. Through the manipulation of the ontology tree structure, an ontology

designer can create new constructs and make changes to the ontology. Those changes

36

are passed to the Ontology Editor Engine. After the engine has processed these
change operations, change effects are immediately reflects on the GUIL The
Ontology Editor Engine modifies the ontology according to the mput. It also keeps
a record of the changes performed as well as the version information. The Ontology
Editor Engine is composed of four components: the Ontology Editor Core, the
Project Manager, the History Manager and the Undo Manager. The Ontology
Editor Core modifies the underlying ontology model. The Project Manager is
responsible for opening and saving the project. The History Manager saves the
sequence of changes and the versioning information to a history file in XML format.
Undo and redo functions are provided by the Undo Manager as well. Note that the
Ontology Editor Engine is built on top of Protégé 2000. Thus Protégé 2000 is

supplied to OntoWrap as a development platform.

The main function' of the Ontology Editor Core is to modify the underlying
ontology model according to the request passed by the User Interface. It supports
those basic change operations such as add, delete, rename, and replace. Sometimes
an ontology developer may want to make use of a concept in an existing ontology in
order to maintain the consistency of all the ontologies developed. Protégé 2000
provides the function to import a whole ontology project. It may not be helpful since

not all the elements are needed. In OntoWrap, we have a function to copy and paste a

37

partial ontology construct of an existing ontology into the working ontology. As
shown in Table 4-1, the replace operation is applied to slot and arguments only. This
operation keeps track of changes related to slots and arguments to handle complex
changes that cannot be carried out easily by simple operations add, delete and
rename. Changes can be further categorized as arithmetic change and custom change
énd they can be declared for each change operation. A type change specifies the
primitive data type changes made to a concept slot or an action argument. It can be a
syntactic change, such as changing from integer type to string type. We use the
arithmetic change to record a slot or an argument value change in terms of arithmetic
expression. For example, while a price slot value of a product changes from HK
dollar to US dollar, the arithmetic change records currency exchange’s calculations.
A type change declaration and an arithmetic change declaration can help to fill the
information for automatic generation of adapter agent code. Lastly, a custom change
records the custom defmed programming code to specify the change. Custom change
declaration is useful for some complicated cases which cannot be recorded by type
change and arithmetic change. For instance, the date of birth slot of a person can be
changed to the age slot through manually inserted conversion code. Further details of

these conversions will be described in Section 4.1.

38

The Project Manager is responsible for opening and saving the ontology
projects. It makes uses of the existing functions and the same file format of Protégé
2000. An ontology developer can open an existing ontology project using the Project
Manager. When the ontology is modified, the Project Manager saves the ontology
project in the appropriate location based on the version information given by the

History Manager.

The Undo Manager is responsible for the undo and redo functionality. It gets
the ontology change operation history from the History Manager to restore a
previous version of ontology. The undo function not only allows a user to correct his
mistakes but also enables a user to try different ways of constructing an ontology.
This satisfies the reversibility requirement which states that “an ontology editor has

to allow undo changes at the user’s request” [39].

The History Manager is responsible for saving a seqﬁence of change
transactions performed to the history file during ontology update. Each change
transaction includes the change operation and its operands. The operand is composed
of the original ontology construct and the modified ontology construct. The history
file records the version information, which includes the change transaction, the
identifier of the ontology, the location of the ontology, the name of the previous

version of the ontology, the author and the description of the ontology.

39

The Protégé 2000 Application Programming Interface (API) is an interface
that allows an external application to access the Protégé knowledge base. As shown
in Figure 4-1, the Ontology Editor Core and the Project Manager make use of this
APT’s underlying classes and methods to manipulate the ontology model and access
the ontology project respectively. The ontology project is a set of files that stores the

ontology constructs and their relationships.

41 Ontology Editor Implementation

The Ontology Editor is implemented as a tab widget of the Protégé 2000
"using the JAVA programming language. Details of each component will be discussed

in separate subsections.

4.1.1 User Interface :

The graphic User Interface acts as a bridge Vbetween the ontology developer
and the backend OntoIogy\E&ditor engine. It is composed of several sub-components:
the ontology panel, the versioning information panel, the history p‘a.nel, the operation

panel, the toolbar and the menu.

The ontology panel allows users to view details of an ontology. It displays
the main elements of an ontology in a tree structure. The main ontology constructs

includes concepts, predicates and agent actions according to the FIPA 2000

40

specification. These constructs are representéd as JTree’s node. As mentioned in
chapter 2, while slots describe a concept’s characteristics, arguments are input
parameters of predicates and agent actions. Details of these construct are shown at
the U Three types of replace operations, such as the type conversion, the arithmetic

conversion and the custom conversion, can be applied on a concept slot or an action

argument,

The versioning information panel shows the ontology meta information such
as, the name of the ontology, the version number, the author name and the location of
the previous version of the ontology. The version number is updated by the History

Manager whenever the modified ontology is saved.

The operation panel provides functions to add concepts, predicates and
agent actions from other ontology projects. User can browse the ontology repository
and use the import function to use other ontology project’s constructs. The import
function is achieved by copying the entire selected ontology construct including its
concept slots or action arguments from the imported external ontology project to the

current working project.

The toolbar provides a set of basic actions to manipulate the ontology, such

as, add, delete, rename, edit, import, browse, save and generate adapter agent. These

41

functions invoke the Ontology Editor engine to modify or manipulate the underlying

ontology model. The adapter agent generator can be called to generate an adapter

agent.

While the add operation is used to add an ontology construct as a child to a
concept, a predicates or a agent actions node, the delete operation provides two
different ways to de]etel a construct: 1) the deleted construct’s child nodes are
attached to ‘its parent; and 2) the deleted construct’s child node is also deleted. The
rename operafion 1s used to rename concepts, agent actions and predicates. In short,
add, delete and rename are the syntactic change operations which do not affect the
original construct’s semantic meaning.

4.1.2 Project Man.ag'er

The Project Manager is _responsi.ble for opening and saving the ontology
projects. It uses the Protégé 2000 API to perform these functions. The Project
Manager maps the ontology identifier to the path of the ontolo‘gy file in order to
locate the appropriate project. The version number is implicitly integrated with the
location path in this format: <working paths/<ontology project
identifier>/<major version number>/<minor version numbers. For
example, an ontolqu named “MgsicShopOntology” with version number 1.2

would be saved in the file path <working paths>/MusicShopOntology/1/2/.

42

The <working path> can either be a path in the local driver, or a URL specifying a
location in the Internet. When a new version of the ontology is created, a new

directory is made to store the ontology according to the ontology identifier.

4.1.3 Ontolog Editor Core

The Ontology Editor Core provides backend functions support for the
ontology manipulation. As mentioned in Section 4.1.1, these functions are add,
delete, rename, replace and import operations. When a user interacts with the UL, it
invokes the Ontology Editor Core’s corresponding function to make changes to the
underlying ontology model. Table 4-2 summarizes the ontology change operation to

ontology constructs, concept slots and action arguments.

Table 4-2 Ontology change operation summary

Type of operation | Operation Description
Construct ontology | Add Use to add new concept, predicate or
operation agent action

Delete Use to delete old or obsolete .concept,

predicate or agent action

Rename Use to rename concept, predicate, agent
action
Slot/argument Add Use to add new concept slot or action
operation argument. After adding slot or argument,

a default value can be assigned.

Delete Use to delete new concept slot or action
argument.
Rename Use to rename concept slot or action

argument name

43

Replace

Use to convert or relate old concept slot
to the new slot by three types of

conversion: type, arithmetic and custom.

In order to help an adapter agent to determine the slot value, a default value
can be assigned to the concept slot or action argument when adding or deleting a new
slot. This default value is saved in the history file. The adapter agent helps to fill in a
default concept slot or action argument value because the agents using the older
version of ontology may not understand the slots or arguments added in the newer
version of ontology. Only after filling in a default value and forming a valid message

content, agents using the older version of ontology can use the new services

developed later.

In ontology construct deletion, the descendent nodes are either all deleted as
shown in case (a) of Figure 4-2 or attached to the parent node as shown in case (b) of

Figure 4-2. It should be noted that Protégé 2000 supports only case (a) type of

deletion. OntoWrap also supports case (b) type of deletion.

44

After concept a is deleted,
the relationship may result

either case (a) or (b)

(Original)
]
= [
b | [J[a JL b]

(a) d

Figure 4-2 The change of concept relationship after deletion

No matter the rename operation is applied to the ontology construct
operation, concept slot or action argument, it changes the name of the item
syntactically. Since no two items in an ontology project is allowed to have the same
name, the Editor Core Manager helps to validate the user input. If items with
duplicate names are found, an integer is appended to the name of one item so that
they will be different. For example, suppose an object named “CD” is already in the
ontology. When the ontolpgy developer names another item to “CD”, the new “CD”
will be modified to “CD_1". The number increases automatically.'This mechanism is

also used in the add operation to avoid two items with the same name in an ontology

project.

We allow an imported construct to be added to a working project. Since

ontology constructs may be related to each other, there is an option to specify

45

whether to import relations as well. So, if a concept C; has a slot that refers to

another concept C,, when C, is imported, reference to C; can also be imported.

So far, all rename operations applied to the concept slot or the action
argument are syntactic operations without changing the original meaning of the
slot/argument. For example, after renaming a concept CD to CompactDisc, it still
refers to the same conceptr semantically. However, there may be a case that the name
change of a slot gives the item new meaning even if it may be related to the original
one. For example, a customer record’s slot age is changed to theDateOfBirth due
"to requiremnent changes. This rkind of semantic change is handled by the replace
operation. Again replace can be used for either: type conversion, arithmetic

conversion, or custom conversion.

The type conversion is the conversion between the data types of a slot or an
argument. For example, a slot named seriallID of a concept CD- can be converted
from an integer type to a string type qsing replace operation. Since JAVA supports
the conversion between these kinds of primitive types, the basic conversion functions
is written before hand. In the ontology devélopment phase, an ontology developer
only needs to choose the type. The Ontology Editor Core selects the appropriate

functions according to the source type and destination type. These functions are

46

recorded in the history file as a set of rules. Conversion functions are implemented

corresponding to each rule and is shown in the following table.

Table 4-3 Conversion Rules and Functions

Rule Functions

Integer to String | Public String Integer2String(Integer i)

Integer to Float | Public Float Integer2Float (Integer i)

String to Integer | Public Integer String2Integer (String s)

String to Float Public Float String2Float{String s)

Float to Integer | Public Integer Float2Integer (Float f)

Float to String Public String Float2String(Float f)

Boolean to Public String Boolean2String (Boolean b)
String

String to Public Boolean String2Boolean(String s)
Boolean

The arithmetic conversion provides ways to specify arithmetic relations
between slots. The arithmetic conversion provides two text fields for an ontology
developer to fill in the arithmetic expression used to convert the concept slot or
action argument. It requires two arithmetic expressions because translation of an
adapter agent requires two- ways communication. The two arithm.etic expressions are
parsed using a mathematical expression parser called JEP [6]. The expression is
parsed and represented in a tree data structure in order to generate the slot value
conversion code. For example, a slot named “price” of a concept “CD” may be
converted from using the HK dollar to using the US dollar. The arithmetic

expressions are priceX=priceY*7.9 and priceY=pricex/7.9, in which

47

priceX denotes the price in HK dollar and priceY denotes the price in US dollar.

The resulting JAVA programs are shown is the following figure.

float priceY; ; -
priceY=priceX/7.8; 9
retum pricey;

float priceX;
’! priceX=priceY*7.9;
| retum priceX;

i

o
oy~

A

Figure 4-3 Two JAVA Funcnons Generated by the Ontology Edltor

The custom conversion is used to provide customized conversions which
may require coding. The Ontology Editor facilitates the ontology developers to write
their own conversion code. In OntoWrap, only Java language is allowed since our
agent platform is based on Java. The customized codes are saved in the history file
by the History Manager.

4.1.4 History Manager
The History manager is composed of the History Log Generator and the

Version Manager. The History Log Generator keeps the sequence of change

operations during ontology editing. It then saves log and the version information of

48

an ontology project in a history file in XML format. The Version Manager is also

responsible for the version generation and management.

Version information includes: the identifier of the ontology, the identifier of
any previous version of the ontology, the location of the ontology file, the author and

the description of the ontology

According to [23], the ontology identifier uses the URI as the identification
mechanism. According to the URI definition, a “generic URI” has the following
format: ?scheme>:// <authority><path>? <query>. In this project, we use the name
“ontowrap” for the scheme, constitute the <authonty> and <path> from the server
name and path of a URL, and uses the major and minor number as the last two
elements of the path. The location of the ontology is specified by the file identifier.
The file identifier 1s a URL associated with the ontology identifier. Every time the
ontology changes, a2 new ontology identifier and file identifier are épeciﬁed. This has
the advantage that file change and location changes can be isolated from ontological

changes.

The ontology identifier uses a two level numbering scheme where the minor
numbers are used for backward compatible modification and the major numbers are

used for incompatible changes. In OntoWrap, it is assumed that the conceptualization

_ 49

will not change, only the minor number is increased by one when a new version of an
ontology is created. It is the responsibility of the author to decide whether the change

is compatible or not.

The above version information is generated automatically by the Version
Manager. The author and the description of the ontology are passed from the User
Interface to the Version Manager. Moreover, the Version Manager reads in the header
of the history file and extracts the versioning information for the User Interface every

time a new project is opened.

The History Log Generator saves the sequences of changes and version
information in the history file. The history file is composed of two parts: the header
and the body. The header contains the versioning information, i.e., the identifier of
the ontology, the identifier of previous version of the ontology, the location of the
ontology file, the author anc} the description of the ontology. The body contains the
sequence of changes performed. Figure 4-4 shows a history file structure which

contains header and the change sequence main body.

50

<OntoWrap>

— <ontology about="">

ispeay

<identifier>ontowrap://C:\Program Files\Protege-

200C\projects\ontelogy\MusicShopOntology\140\</

identifier>

<derivation>
<from resource="ontowrap://C:\Program Files\

Protege~-2000\projectsi\ontology\

MusicShopOntology\1\0\"/>

</derivation>
<location resource=" file://C:\Program Files\

Protege-2000\projects\ontology\
MusicShopOntology\1\0\ "/>
<author>PolyU</author>

<description>This is a music shop ontology</

description>

L </ontology>

r—<changeSeq>
=
2 e
=
L_</changeSeq>

</OntoWrap>

Figure 4-4 History File Content

information. Several new classes are created for every type of elements in the
ontology so that the operand and the resulting ontology item can be recorded. They
are different from the classes used in the Protégé 2000. For example, the class

SlotXML has the Object dvalue as the attribute for the default value. The relation

The sequence of changes is saved in an ArrayList during the processing

of the ontology. The information needed includes the type of chang,;e, the operand and

the resulting ontology item. A new class called ChangeOp is created to save this

51

between slots and argument are saved in the class called ReplacedLogic. After the
change is performed, the History Manager creates a new instance of Change0Op, set
the type of changes, and add the operands and resulting ontology element. Finally,
the History Manager saves the two functions usgd to convert the slots and arguments
in the ReplacedLogic if necessary. In the mean time, the History Manager passes
the instance to the User Interface. The User Interface extracts the information and

displays the changes in the history panel.

After the ontology evolution process is finished, the ArrayList of ChangeOp
. is passed to a DOM parser to form the XML document tag-by-tag and
element-by-element. The parser reads in every ChangeOp in the sequence they are
performed. The Change.O:p is classified according to thertypes of operations. The
operation tag is formed in this step. Then the operand and resulting ontology element
are passed to the functions to form the XML elements according to their types.
Finally, the XML elements are appended as the children of the E)peration tag. The
sequence of operation tags represents the sequences of changes performed. For
example, an add operation that adds a concept named CD to the parent concept ITtem
will be formed as shown in Figure 4-5. The instance of the ChangeOp is first
classified into the a'dd operation. An <add> tag is formed. The concept CD and its

parent Item are passed to the function ConceptTag to form the XML elements for

52

the concepts. The function also makes use of other functions such as <Slot> tag
since the concept €D have slots such as name. Finally, the XML element concept is

appended as the child of the <add> tag. The result is shown below:

<add>
<concept parentConcept="Item">
<name>CD</name:>
<slotList:

<slot belongToConcept="CD">
<primitiveType type="string"/>
<name>DiscName</names
</slot>
</slotList>
</concept>
</add>

Figure 4-5 Example of <add> Tag in History File

4.1.5 Undo Manager

Undo Manager is designed for the undo mechanism. Generally speaking, it
should allow the user to revert the last change operation they just performed. Each
change operation is atomic which contains all the information to restore the
pre-execution state. As shown in Figure 4-6, we make use of the Java Swing’s undo
support to create a set of Java classes to store all the essential information of each
operation, such as AddEdit, DeleteEdit, RenameEdit and ReplaceEdit. This

makes each operation is self-contained with data and effect.

53

1

AbstractUndoableEdit

AddEdic DeleteEdit RenameBdit ReplaceEdit
-cBase : Defaultknowledpe Base -cBase : DefaultKnowledge Base -cOp : ChangeOp <Op : ChangeQOp
<Op : ChangeOp «cOp : ChangeOp currentCls : Cls -currentCls : Cls
-currentCls : Cls -curreniCls : Cls -historyMode] : DefaulllistModel] |histaryMode] ; DeflaultListModel
-historyModel : DefaultListvode] histaryModel : DefaulilisiModel -slot : Slot -shot ¢ Slot
-slot - Slot -slot : Sk [+ RenameBdil) '+ ReplaceEdit))
+AdEdiN) -i=ChildDelete : boclean LcanRedof) : Boolean +canRedo() ; Boolean
+canRedo() : Bootean |-stotList : ArmayList +canUnde() : Boolean +cant/ndo(} : Boolean
[+cantindo() : Boalezn -subCls : Collection +geiPresentationName() : String | |+ getPresentationName() : String
+getPresentztianMameq) : String +Detet=Fdit(y +redo() : voud +redol) : void
. J+redo) : void +canRedo{) - Boclean +undod) ; void +undo() : void
+undo} : void +canUndo() : Boolean -undClsRename(X) : void
+getPresentationName() : String -undoSlotRename() ; void
+redal) : void
Hrardo() : veid
-undoCls() - void
-undoSlot() : vaid

Figure 4-6 Class Diagram - Undo Support classes

Yet, it 1s not as simple as taking the inverse of an action. For example, there
are two different ways to perform the delete operation, such as deleting all the child
nodes or attach the child nodes to the parent node. It cannot add back the deleted
node. In fact, the whole hierarchy is restored. Thus we have to keep all the operation
information and the pre-execution state. In the following code shows the undo
operation. It determines thqappropriate undo effect to be executed and updates the

editor’s user interface.

54

import javax.swing.*;
import javax.swing.undo.*;
import javax.swing.event.*;

public class DeleteEdit extends AbstractUndoableEdit |
pﬁﬁiié-void undo{) throws CannotUndoException |
if {slot == null){
undoCls();

else]
undoSlot{);

historyModel.removeElementAt { historyModel.size{} - 1):
}

// Undo Class deletion
private void undoCls{}{
Cls parentCls = cBase.getCls{cOp.getOperand{0}.getName{});
Cellection parents = new ArrayList():
parents.add{ parentCls };
currentCls = cBase.createCls{cOp.getOperand{l}.getName{l, parents);

// Add back deleted slot!
if {slotlist != null){
ITterator it = sleotlist.iterator(};
while (it.hasNext(}}{
Slot slot = (Slot} it.next();
currentCls.addDirectTemplateSlot {slot};

H

if (isChildDelete == false}{
// Lower one ievel down of the original direct subclass of
//the current node From the parent
Iterator it = subCls.iterator();
while (it.hasNext{}){
Cls ¢ls = {Cls) it.next(};
cls.addDirectSuperclass(currentCls);
) cls.removeDirectSuperclass{parentCls);
}
}

// Undo slot deletion

private void undoSlot{}{
Cls parentCls = cBase.getCls(cOp.getOperandtD).getName());
parentCls.addDirectTemplateSlot(slot);

Swing provides UndoableEditSupport class to manage the listeners
which listen to those edit events generated by each change operation. We registers
our Undo Manager to the UndoableEditListener by
addUndableEdi tListener () method. By invoking the postEdit () method, the

edit event is sent to the listener. For example, this is shown in the addop () method.

public void addOp(ChangeCp op, Slot slot){
UndoableEdit edit;
switch{op.getActionType(}){
case ChangeOp.RENAME ACTION:
// Create EditUndo
edit = new RenameEdit (historyModel, op, slot);
undoSupport.postEdit [edit):
break;
case ChangeOp.DELETE_ACTION:
// Create EditUndo
edit = new DeleteEdit (historyModel, cBase, op, slot);
undoSupport.postEdit(edit 1;
break;
dafault:
System.err.println{”add0Opi}: Cannct handle this
operation: " + opl;

)
agddOp (op) ;

55

4.2 Comprehensiveness

As mentioned in Table 4-1, we have the basic ontology change operations
add, delete, rename and replace. They are the atomic change operations which
cannot be further decdmposed by any simpler operations. A complex change
operation 1s composed of a sequence of atomic change operations. For example, a
move operation is often useful in building a slot from one specific concept to a
generic concept or vice versa. At this time of implementation, OntoWrap only
support a set of basic atomic change operations. A complex change operation is only

-carried by a sequence of atomic operations specified explicitly by users.

Having a basic set of atorhic change operations, a set of complex change
operations can also be defined as atomic operations in the future. Complex chﬁnge
operations can also be attached with additional semantic meanings and constraints.
Even though some complex change operations maybe composed by the same
sequence of atomic operations, they may have different semantic meanings. For
example, we can distinguish a move of a slot from one class to the other class from a
move of a slot along the class hierarchy. Copy-and-paste operation can also be

defined as an atomic operation.

56

5 Service Template

We would like to make use of ontology to facilitate the development of
agent based systems. We first need a platform where an agent service provider to
declare and export the types of services it can provide with interfaces and methods so
that such service are made public with well defined functions. We also need a
platform where a client agent developer can declare and export the generic requested
service. The system where the ontologies are maintained would naturally be the
binding place for such declaration and exports‘for both service agents and client

agents.

We use a so called Service Template construct to keep the declared service
type or a declared request linked to a specific version only ontology. Each service
agent implementation, must be associated with a declared service which is linked
with a particular version of ontology. Then an agent build accorciing to a declared
service request, which is also linked to a certain version of ontology, would be very
easy to locate a service agent as long as the service agents ontology version is made

known at runtime.

A service template is associated with each declared service. It contains

service information, such as, the service type, the service address, the used ontology

57

(includes version), the service provider and the service parameters. The service
parameters, which include preconditions, input and output, are directly related to the.
agent service invocation. Since a service template describes all the necessary
information related to an agent service, it naturally binds a service with an ontology.
In OntoWrap, gewice template is also used to generate agent implementation code
skeleton. An upper level meta ontology, which we call Service Template Ontology,
is defined as a service template description language. A service template is written

using the Service Template Ontology.

A service template is _fuﬂher classified into two types called: the Service
Provider Templhte and the Service Request Template. A Service Provider
Template is used tordescri.be-a deqlared service i'm_plemen‘tation in details. The run
time informatioh of a service (carried out by a sewice agent), such as service address,
agent identifier and- servicer category, arc contained in a service provider template.
The Service Request Template is user for service request declartion with only an

abstract service description without implementation.

5.1 Service Template Ontology

58

Provider N

ServicaProfile

hservicaName ; #string
FsarviceAddr ; #atring
I-balongCategery : ServiceCategory]
usedOniology : Ontology
I-providedBy ; Provider

+ |-writtenBy : Author]
L wabURL

1: Varslon
[FservicaProfilaDescription : #string
eomposedOf : FIPAConatrutt
|-directoryFacilitator

g

1.+ [ontoRaf; #sting

<<datalypa>>

Ontology

¥string

lagentiD
|-protocol : (nteractionProtocol

1

hitp:iiwvww Wi argr200 1 XMLSchamafsiring [j

<<datatype>>

Version

Author
FsurNamae : patring

-firsthtams : #siring
email : #atring I

|-catagoryName : #string|
|-catagoryRef : #siring

[-versionRetsasaDale : #dale

Al
varsiocnNumbar : SnonNagativeiniager| L}
]
L

— 1

FIPAConstruct InteractionProtoco)
[eonstruciName ; ¥string| o T SOUTTE
AgentAction Predicate IRE
FinputList : Argurnent ksubjec! : Argumant] p 1: P
Foutpullist : Argument j-object : Argumeni l-var : Argumant
-praConditiantist : Condition *
FpostCanditionList : Condition
1 -sulfiegy -objsct
inputs 1
Argumant
. [argName : &string
1" LotorTo : ArgDetal| Variable
1. .
Condition _autpuls 1.
-conditionName : #string
-satisfyVith : LogicalExp
ArgDotalt

1."

LogicalExpression|

-IExpraasion

[orttaContruct : #sting
[argOntoLocation : #siing
Fversion ; #string

hitp:iveww w3 org/2001 XMLSchamagsring B]

[<<datatype>>
Fdate M

\
A}
A}
A}

hitp:iwww,w arg 2001/ XMLSchemaRdate ﬁ

<<datatype>>
#resourcs

h

Ay
\
A

hitp:frwww. w.amg2000/0 Vrdf-achama®Re source Bl

CommunlcativeAct}
-act : #resourca

Figure 5-1Service Template Ontt;logy Represented in UML Class Diagram

Any service template must be specified by the Service Template Ontology.
The service template ontology is an upper level ontology describing an agent service.

The Service Template Ontology is represented in a UML class diagram as shown in

Figure 5-1 defined in the DARPA Agent Markup Language (DAML).

59

The ServiceProfile class is the main class describing all the necessary
information conceming a service in the Service Template Ontology. The
ServiceProfile class consists of service provider information, service category,
basic FIPA construct, used ontology and version information. The service provider
information is represented by the Provider class. It stores the provider name,
contact e-mail and the service related web address. When there are any query
concerning the agent service, users can contact the relevant provider based on this

information.

e,

The ServiceCategory class specifies the service category and its
classification reference. A classification reference is identified by the classification
" system’s URI. The category éan be refer?ed to the current cla;siﬁcation system, such
as, Open Directory Project. Assigning category to an agent service makes browsing

more easily by client agent developers.

The Version class defines the service template’s release date and the
version number. The version number stores the major, the minor and the revision
numbers. Fér example, the agent service and the client agent with different revision
number, the existing client agent can still use the agent service without compatibility

problem.

60

The CommunicativeActs class defines the acts of an agent message. As
mentioned in Chapter 2, communicative acts are the basic blocks of a dialogue
between agents. Although there are 22 communicative acts defined in the FIPA
specification, they can be classified into request, query and inform acts. For example,
in a shopping scenario, a buyer agent sends a query message to a seller agent for a
product price. The buyer agent gets the price from the seller agent’s inform message.
Finally, the buyer sends a request message to buy a product. These are the basic

interactions between agents.

The FIPAConstruct class defines the basic construct class of FIPA. It is
the parent class of three main classes. They are AgentAction class, Predicate
class and IRE class. These constructs have the corresponding communicative acts.
An agent service contains a number of agent actions which are invoked during agent
interaction. AgentAction class provides functional description such as agent action
name, input argument, precondition and the output. These are important information
when invoking an agent action in a service. For instance, in a virtual CD shop, a
buyer agent as a client can invoke the sell action of a seller service agent. However,
the buyer agent needs to provide the CD name and a valid credit card number. Then,
the seller agent can return the order confirmation number to the buyer agent.

Predicate class specifies a predicate which can be either true or false. Predicate is

61

often used in the agent query message to check conditions. For example, if a
precondition in the Predicate classes, the agent action can only be executed when
those precondition’s predicate are declared true. The IRE class specifies the
Inferential Reference Expression. Like the Predicate class, it is used in the agent
query message. But, it gets a reference variable value if the given condition is true.
For example, a client can query price by sending a Price IRE expression by giving
the CD name and the inferential variable x. When the seller agent matches the CD
name (that 1s the given condition is true), the value of x will return to the buyer

~agent.

The oOntology class spéciﬁes the ontologies involved in the service
template and stores its URI reference. For example, a CD selling agent service may
involve E-Commerce ontology and the music shop ontology. These information will

be recorded by the Ontology class.

The Argument class contains the argument name and the details of an
argument, which 1s defined as Argbetail Class. The Argument Class is used in the
AgentAction class, Predicate class, IRE class since they have a set of arguments.
For example, a Predicate class has two arguments, the subject and the object. The
ArgDetail Class stores the reference of an ontology construct. It keeps the name of

the construct, the location of the reference ontology construct and its version.

62

The Condition class contains the condition name and the logical
expression. This class defines the agent action’s pre-conditions and post-condition.
The core of the Condition class is the logical expression, which is represented by
the LogicalExpression class. The truth value of the logical expression is checked

during the execution of an agent action.

The InteractionProtocol class defines a list of interaction protocols
defined in the FIPA specification. An interaction protocol specifies how agents send
the communicative acts and interact with each other. This InteractionProtocol
class just stores the name reference. The details of interaction specification should

refer to the FIPA specification during agent implementation.

5.2 Service Provider Template and Service

Request Template

In a traditional client-server model, a service i1s first defined with an
application program interface (API). The client implementation follows the service
specification exactly. This is a service-provider-oriented approach. In other words, a
third party client developer needs to strictly follow the service provider’s service
specification in order to use the corresponding service. When the service
implementation is changed, the client program may need to be re-implemented.

Indeed, some current system, such as CORBA and the web service, are still using this

63

approach. A service provider constructs the service agent with the corresponding

Service Provider Template.

OntoWrap does support the traditional service-provider-oriented approach,
we also support the client-developer-oriented approach where client agent developers
can declare its required service through the Service Request Templates to make
known what clients want to service developers. Then, client agents can be
implemented based on service declared by the Service Request Template. As a result,
a client agent can be developed ﬁ?st even when the requested service is not vyet
implemented. In this approach, the client developer takes the active role. With the
declaration of Generic Service, a service provider would know that such a service is
needed. Consequently the service provider can try to either adapt their existing
service to the client declared generic service request or to create a new concrete
agent service implementation based on the Service Request Template specification.
This also makes it possible for a new service provider to provide service for an older

client agent using older version of an ontology.

Comparing with the Service Request Template, the Service Provider
Template not only includes interface information and ontology construct information
but also specifies information necessary for run-time tdentification and binding such

as agent address, the registry address, the interaction protocol and the provider

64

information. The Service Provider Template is registered to the directory facilitator

so that client agents can look up the service at run-time.

5.3 Online Service Template Repository

The Online Service Template Repository (OSTR) maintains the declared
service templates to allow users for look up using a web-based interface. OSTR is
implemented as a file repository which stores the Service Template in DAML file.
Users can browse the repository by category or search by keywords. The keywords
are matched against the meta-description in the service templates and the basic
constructs used in the template. This is similar to the Semantic Web’s Universal

Description, Discovery and Integration {UDDI) Directory approach.

Repository
Management
Engine

@ Registration
Handler
Service <ﬁ> <ﬁ> Web
Interface

Template Search
Repository Handler
____—___/
Presentation
Handler

Figure 5-2 Components of the Online Service Template Repository

Figure 5-2 shows the major components of the Online Service Template

Repository. It is a three-tier system with three major components: the Service

65

Template Repository, the Repository Management Engine and the Web Interface.
The Service Template Repository is responsible for storing the Service Request
Template and the Service Provider Template. The Repository Management Engine
deals with the basic functionality of the repository such as service template
registration, deregistration, and search. The Web Interface provides presentation
service to online users for searching the repository. A user can access the repository
by browsing the repository’s web-based interface. A user can also register their
service templates to the repository by uploading the template generated by the
Service Template Generator. Details of Service Template Generator will be

introduced in Chapter 6.

The Service Template Repository stores service templates organized service
categories. We use the Open Directory Project’s category schema. However, service
category schemes are not limited. The repository is implemented as a simple file
repository. The directory structure is indexed by the service category and the type of

the service template.

The Repository Management Engine provides the basic functionalities of
the repository. It consists of three sub-components: the Registration Handler, the
Search Handler and the Presentation Handler. The Registration Handler is

responsible for registering and deregistering a service template. For registration

66

purpose, it first parses the submitted service template and gets all the necessary
information in order to place the template in the repository. Then, it stores the service
template in an appropriate category and creates an index entry. Deregistration of a
service template requires both service template identifier and the service category.
After getting this info, the Registration Handler finds a matching entry in the index

table and then removes the template in the file space.

The Search Handler is responsible for searching the service template.
Currently, it supports searching by keywords, service name, service category and
service provider. After getting a search request from a user, it looks up the index
table to match the search request. If there are matching templates, it will pass the

details of the templates to the Presentation Handler to generate the result in web

page.

The Presentation Handler is responsible for generating the web page. It
sends the formatted web page to the Web Interface or web browser. It also provides
browsing functions for the service template by reading the index table entry.

5.4 Agent Code Generation

Since each Service Provider Template is defined with service interface

spectfication and linked ontology version. It is important that agent code generated

67

conforms to such declarations. To ensure conformance, system provide an agent code
generator to produce the skeleton code for agent implementers. The generated
skeleton code ensures the external behavior of an agent implementation is understood

for any agents who uses the declared version of the ontology

Servica Template
Ganerator

ServicaTemplate
ul
(Protégé 2000)

_ Sat g:;:w ServiceTemplate
Agent Code ServicaTemplata
Genarator Parger
Agant Code

Figure 5-3 Major components of the agent code generation

Figure 5-3Error! Reference source not found. shows the major
components involved in agent code skeleton generation. The major components are
the Service Template Generator, a set of helper class, the Service Template

Parser and the Agent Code Generator.

The Service Template Generator is used to export the Protégé 2000’s
ontology model to a service template. Since there is a gap between the ontology
model and the DAML model, a set of helper classes are used to bridge this gap. The

helper classes provide high level class manipulation. Its main functions are

68

representing the Service Template model’s basic elements in Java classes and
creating Service Profile instance in DAML Model. These classes contains a set of
core methods are summarized in Table S;IError! Reference source not found..
After the DAML model for the Service Template is constructed, the JENA API [31]

is used to save the model in memory to a DAML file on hard disk.

Table 5-1 Common method of the Java Helper class

Helper class common methods | Description

public DAMLJavaHandler Get a reference to DAML-Java Handler

tDAMLJ Handl
getDAMLJavaHandler () which helps to convert from and to DAML

to JAVA class.

Public createInstance() | Create a DAML instance in the model.

Public updateInstance(} |Update an existing DAML instance in the

model.
public ArrayList Get a set of property values from the DAML
getPropertyValues () .

instance.

The Service Template Parser is used to parse and get the template elements
from the service template’s DAML file. After parsing, information such as, provider,
agent actions, predicate, used ontologies and service name, are stored in the helper
classes. The Code Generator generates the agent code skeleton based on the helper
classes. Each agent action class and its arguments in the service profile are

69

implemented as a Java functional method and the input arguments respectively. Since

the preconditions are represented as predicates, their truth values are checked before

execution of agent action.

9.5 Versioning Issue

Vi 11 2 | [1n
V2 |21 22 l2n
JL Suppose 131 is not exist after
Ontology V3 is developed, 131 can
V3 [31 be fast generated as prototype
- from V2.

Figure 5-4 Ontology versioning and implementatibn reiationship

If ontology changes, it will affect the current agent implementation since an
agent may send messages to agent which use different ontology verstons and thus
they do not fully understand the message content. As mentioned before, ontology
changes are managed by versioning which keeps track of changes. The connection

between an ontology version to an implementation is linked by a declared service

provider template.

A Service Template is associated with a set of specific versions of
ontologies. When there is a new set of ontology version, it may have a corresponding

set of agent service implementation available. As illustrated in Figure 5-4, where Vv

70

represents a set of ontology versions and I represents a set of agent implementations,
each ontology version may have a set of implementations. The notation v, means a
set of ontologies of a specific version. Supposing there is another new ontology
version V,. A corresponding set of new agent implementation may be developed. Our
wrapper framework tries to adapt the implementation from I,, to I,, by ontology
management based on the ontologies changes. The adapter generation details will be
discussed in Chapter 6. As the ontology V, comes out and there is no corresponding
agent implementation I,,, it can still generate the adapter from I,, to serve for the

future service request.

71

6 Agent Wrapper Framework

With the provision of linking ontology with development specification, we
have designed an agent wrapper framework for automatic or semiautomatic
wrapping service, to provide agent message translation service. Currently, there is
some works [7] on using ontology to generate Java classes. The agent is still

implemented by programmers.

Agents send messages to communicate with each other. Message contents
are specified by an ontology. So that the semantic meaning of the message contents
are well understood. Agents using different ontology versions may not understand
either due to semantic change or syntactic change in the ontology definitions. As
mentioned in Chapter 4, an ontology changes are kept track of, wrapping service can
generate a so called “adapter agent” to convert ACL message from one version to the

other acting as a translator for different versions of the same ontology.

6.1 Adapter Generator Design

As mentioned in chapter 3, adapter generator can generate the adapter agent
that can converts the content of the ACL messages from one ontology to another

provided that these two ontologies having some commonality or relationship. It

72

operates in a semi-automatic way since not all the mapping issues can be resolved

automatically.

The architecture of the Adapter Generator is shown in Figure 6-1. It 1s
composed of three components: the DOM History File Parser, the Message Filter and
the Adapter Code Generator. The DOM History File Parser parses the history file and
constructs the sequence orf changes performed. The sequence of changes 1s then
passed to the Adapter Code Generator. The Adapter Code Generator generates the
code of the adapter agent by filling in the parameters of the Message Filter based on
" the sequence of changes. The Message Filter 1s a set of filters that can convert the

content of the ACL message.

XML History
File

Adapter iﬁenerator

DOM History File Parser

I

Adapter Code Generator

<: Message Filter

Adapter Agent

Code

Figure 6-1 System Architecture of Adapter Generator

73

A message filter is a pre-defined implementation code that converts the
content of the ACL message according to the changes performed to the ontology. A
set of message filters are defined with reférence to the ontology change operation
mentioned in the chapter 4. They are add filter, delete filter, rename filter and
replace filter. According to the sequence of changes performed, the corresponding
operation message filter executes in the same sequence. These filters are independent
of each other. Their input is the content of the ACL messages before the conversion
and the .output is the content of the ACL message after the conversion. Their

functions can be extendedly easily without affecting each other.

Add filter is used for the slot and argument add operation. It does not support
add concept, predicate or agent actions since these change the
conceptualization and make the ontologies incompatible. The add filter
simply adds the concept slot or action argument to their appropriate parent

with the default value.

Delete filter performs the reverse function of the add filter. It removes the
concept slot or action argument. Since the communication is a two way

process, the delete filter and add filter are used as a pair.

74

Rename filter deals with the rename operation. In OntoWrap, the rename
operation 1s considered as syntactic changes only. It does not affect the
semantics of the ontology. In an ACL message, the name of the ontology item
1s simply a string. Therefore, the rename filter can replaces the name of the

ontology item with only string manipulation.

Replace filter deals with the conversions of slots and arguments. This
conversion is done through the functions recorded in the history file or the

pre-defined functions for the type conversions.

The Adapter Code Generator generates the code of the adapter agent using
the Message Filter and the skeletons of the adapter agent. It reads in the list of
operations passed by the DOM History File Parser. The information is then used to

fill in the parameters of the message filters.

6.2 Implementation of Adapter Generator

The Adapter Generator generates the adapter agent based on the information
saved in the history file. In OntoWrap, we choose JADE as the multi-agent platform,
since it is compliant with the FIPA 2000 specification. As mentioned in chapter 2,
JADE is implemented in the JAVA programming language. Therefore, an adapter

agent 1s also implemented in the JAVA programming language. This makes the

75

adapter agent more flexible. It can run on any platform provided that it equips with

JAVA virtual machine.

6.2.1 DOM History File Parser

The DOM History File Parser is responsible for the construction of a
sequence of changes performed and passing the information to the Adapter Code
Generator. It is implemented based on the existing XML parser Document Object
Model (DOM). The parser reads in the content from the XML history file. The
information is then represented by a tree structure called DOM tree. As is shown in
Figure 6-2, the root of the tree is the ontowrap element. It has two children:
ontology element for the header part and changeSeq element for the body part.
The child nodes of the changeSeqg elements represent the sequences of changes
performed. The parser then traverses the sub-tree of the changeSeq element. The
information of every change performed is extracted and saved in an instance of the
ChangeOp class. After the traversing of the whole sub-tree is finished, the sequence
of changes is saved in a JList instance. The JList instance is then passed to the

Adapter Code Generator to generate the code of the adapter agent.

76

ontowrap ontology

Root

changeSeq Add

—

Rename

Figure 6-2 Structure of History File

6.2.2 Message Filter

- The message filter is a set of filters that can convert the content of ACL
messages according to changes performed to the ontology. By default, the ACL
messages are encoded via string format defined by FIPA. However, an agent platform
can be configured to add additional codec that can be used by agents on that platform.
In this project, the XML based implementation of the codec is used. It provides extra

functions and easy approach to facilitate the implementation of the message filters.

The message filters are implemented based on the XeréesZ Java Parser 2.3.
The Xerces2 Java Parser 2.3 supports the APIs of both Document Object Model
(DOM) and Simple API for XML (SAX) 2.0. The messages filters make use of the
SAX parser to extract the content of the ACL messages. The DOM parser is then
used to form the DOM tree of the message content for easy of manipulation. SAX is

not used since it provides only sequential access to the XML documents and does not

77

allow random access. After the conversion is finished, the DOM parser is used to

reformat the message content and the re-formatted message is passed to the adapter

agent.

The add filter is used to add slots and arguments to their appropriate parents.
The add filter first calls the createElement function to construct the node of the
concept slot or action argument. In ACL messages, the attributes of the node is
represented in the sub-nodes. Therefore, a function is written to construct the
sub-nodes and fill in the attributes. It uses the name of the parent to find the
corresponding node in the DOM tree of the message content. The function

“appendChild” is then called to actually append the node.

The delete filter performs the reverse function of the add filter. It removes
the node of the concept slot or action argument from its parent. The delete filter finds
the parent node in the DOM tree using the name. In the sub-tree of the parent node,
the delete filter uses the name to find the node of concept slot or action argument.

Finally, the removeChild function is called to remove the node.

The rename filter replaces the name of the ontology ttem according to the
parameters. The parameters should include: the name of the ontology item before the

replacement and the name after the replacement. In the ACL message, all the names

78

of the ontology items are strings in text nodes. Therefore, the replacement can be
done easily using the SAX parser. The SAX parser provides a callback function
“characters” to handle the text nodes in the XML document. The replacement is done

within the callback function with simple string manipulation.

The replace filter converts the value of the concept slot or the action
argument. There are three types of conversions supported: primitive type conversion,
arithmetic conversion and customized conversion. As mentioned in Chapter 4, the
conversion functions and classes are predefined for primitive type conversion. The
-conversion functions of the last two types are obtained from user input. As a result, a
reflection technique is used to accommodate this situation. According to the JAVA
specification, reflection allows programmatic access to information about the fields,
methods and constructors of loaded classes, and the reflected fields, methods, and
constructors are used to operale on their underlying objects within security
restrictions. The replace filter takes the name of a concept slot or action argument to
find the node in the DOM tree. If the conversion falls into the last two types, the
conversion functions from the user input are retrieved from the history file and saved
in another class with the name in a predefined format. Finally, the delete filter creates

an instance of the conversion class, passes the value and type as the argument, and

79

invokes the appropriate method to get the result. The value and the type of concept

slot or action argument 1s replaced with the result accordingly.

6.2.3 Adapter Code Generator

The Adapter Code Generator generates the code of the adapter agent using
message filters. The -adapter 1s separated into two parts: the main part and the
messing processing part. The main part deals with the basic agent operation while the
message processing part converts the content of the ACL messages using the

message filters. Both parts are implemented in two JAVA programs.

The main part of the adapter agent, that is adapter.java, contains the
main body of the adapter agent. It registers the codec and ontologies used by the
adapter agent. Upon receiving the request of generating the adapter agent, the
Adapter Code Generator reads in the skeleton of adapter.java line by line and
fills up the adapter.java according to information provided by the DOM History
File Parser. The Adapter Code Generator also leaves the instructions in the

adapter . java for the developer to fill in the blanks.

The message processing part contains two JAVA programs:
processMsgl.java and processMsg2.java. They are generated simultaneously by

the Adapter Code Generator from the skeletons. The skeletons contain only the

80

definitions of classes. Which are then used by the Adapter Code Generator in the

message filters according to the sequence of changes.

The Adapter Code Generator obtains the information on the sequence of
changes from the JList of ChangeOps in the DOM History File Parser. These
ChangeOp is then pé.ssed to different methods to extract their operands and resulting
ontology elements according the type of the change. For example, the ChangeOp
with the type of ChangeOp.ADD _ACTION is passed to handleAdd method. The
method checks whether the change is semantic or not. As mentioned in Chapter 3,
the changes in conceptualization cannot be adapted. These changes include: adding
concept, agent action, and predicate as well as deleting concept, agent action and
predicate. The rename operation is considered a syntactic change. Those rename
operations that changes the semantics of the ontology element is not considered. For
example, the concept “CD” is renamed to “DVD”. Although it is a rename operation,
the semantic meaning of the concept is changed. If the adapter simply renames the
“CD” to “DVD”, the buyer that wants to buy a DVD may get a CD as a resuit.

Therefore, the adapter service will not be provided.

If the change s only syntactic change, the methods extracts the operand and
resulting ontology element from the ChangeOp. The information is then used to fill

in the parameters of the message filters. The replace operation needs conversion

81

functions. As mentioned in chapter 4, these functions are either predefined or saved
in the ReplacedLogic within the ChangeOp. Before filling in the parameters of the
replace filter, these functions are saved in another file in the predefined format. For
example, the conversion class for the primitive type Integer to Float is named

IntegerFloatConversion.

After all the message filters are added, the message processing part is
finished. The developer only needs to write the code in the “adapterjava” to register

the ontologies used by the adapter agent. Finally, the adapter agent is generated.

6.3 Design of Adapter Agent Seeker

The Adapter Agent Seeker is a run time directory facilitator. When the client
agents looks up a service at this directory facilitator, service agents advertise their
service using the Service Provider Template here. In addition to this basic directory
functionality, it tries to find a service adapter if the exact service implementation is
not found. Figure 6-3 shows the interaction between client agent, service agent and
the adapter agent while the client agent and the service agent use different versions of

the ontology.

32

;Adapter
.Clien Agent :Adapter ‘Seller
(AAS)

1. Look for| a service agent with the
provision i

3. Begin interaction with (he adapter

4. Convert the mgssage content
which can be urg:rslood by

| original ser\.vilz;_e|
5. Send reply mepsage to

| edagter agent SA'

8. Convert the messagefthat can be
#nderslood by the client{agent

7. Send a message contfnt which contains
L obsolete conceptinthe gntology o f

8. Reformatted Inform Mgssage that notify
w understand the obsolele concept

Figure 6-3 Interaction with the adapter agent

In Figure 6-3, we assume that a client agent (CA) uses Ontology O, and the
service agent (SA) uses Ontology O,. O, is a changed version derived from O,. The
client agent searches for the required agent service at the directory facilitator as
shown in Step 1. The Adapter Agent Seeker tries to match the submitted the service
request template from the client agent with the service provider templates registered
by the service agent. If no service provider template is found, it tries to match against
the service agent which has the adapter agent provided. The Adapter Agent Seeker

returns the address of the adapter agent ID if the search is successful as shown in

33

Step 2. The client agent can then interact with the adapter agent as shown in Step 3.
From a client agent’s perspective, an adapter agent is simply a service agent. The
translation service is transparent to the client agent. The adapter agent converts the
message content using O to the content using O, as shown in Step 4. The service
agent processes the request from the client after getting the converted agent message
ﬁom the client agent as shown in Step 5. CA’ returns the message reply written in O,
The adapter agent then converts the message from O; to Oy, so that it can be

understood by the client agent as shown in Step 6.

There are some cases when an adapter agent cannot convert agent messages.
For example, an obsolete concept in O, deleted from O, cannot be handled by the
adapter agent. If a client agent composes a message with an obsolete concept as
shown in Step 7. The adapter can only return a not-understood message to the client
agent as shown in Step 8. Further processing or response of the not-understood

message 1s up to the client implementation.

B4

6.4 Implementation of the Adapter Agent Seeker

Adapter Agent Seeker

Registry
Handler

4

Service
Template
Matching

Handler

&2

Service
Template
Parser

Service Template
Repository

Figure 6-4 Components of the Adapter Agent Seeker

The Adapter Agent Seeker is composed of the Registry Handler, the
Service Template Matching Handler, the Service Template Parser and the
Service Template Repository, as shown in Error! Reference source not found..

The Adapter Agent Seeker is an extended on the JADE’s Directory Facilitator’s

implementation.

Main functionalities of the Registry Handler are getting the service request
from the client agent, receiving the service provider template registration and
managing the Service Template Repository. It interacts with service agents, client
agents and the Adapter Agent Seeker. The Adapter Agent Seeker extends on

jade .domain.DFService class so that it can still provides the same service and

85

interface to existing agents. A set of registration and searching methods are

overloaded with different input arguments. Table 6-1 summarizes the overloaded

methods.

Table 6-1 Methods overloaded from jade.domain.DFService class

Methods Description

public static void deregister({ Deregister the ServiceTemplate
Agent a, AID dfName, ServiceTemplate | from an agent in a specific

template) - directory facilitator.

public static void register{ Register the ServiceTemplate

Agent a, AID dfName, ServiceTemplate | with an agent to a specific

template} directory facilitator

public static void register(Register the ServiceTemplate

~Agent a, ServiceTemplate template) | with an agent.

public static ServiceTemplate(] Search a service agent with the

search (provision of the service template
Agent a, AID dfName, ServiceTemplate | given search constraints.

template, SearchConstraints

constraints)

The Service Template Matching Handler is the core of the Agent Adapter
Seeker which tries to find a service provider template of a service agent matching the

request from a client agent. The algorithm is shown as follows.

Search Algorithm(ServiceTemplate t){
// Get the Service Template Category requested by the client agent
€ = get_ServiceTemplateCategory(t);
// Get the Service Template Ontology requested by the client agent
cList([] = get_SeryiceTemplateOntology(];
// Get the Service Template Onto.logy Actions requested by the client agent

actionList [] = get_ServiceTemplateAgentAction();

86

//Retrieve the list of Service Provider Template from the Service Template

Repository

serviceTmp(] = get ConcreteServiceTemplateFromRepository(c);

// Iterate all the shortlisted service provider template
for (i = 0; i <« serviceTmp.size; ++i){
s = match(c, oList, actionList, serviceTmp);
if (s is not empty}{
//return the adéress of the service address
addr = get_ServiceAddress({s);

return;

// Tries to match if any adapted service available
serviceTmp() = get_ AdaptedConcreteServiceTemplateFromRepository(c};
// Iterate all the shortlisted concrete service template
for (i = 0; i < serviceTmp.size; ++i){
8 = match(c, olist, actionList, serviceTmp);
if (s is not empty){
//return the address of the adapter agent address
addr = get_ServiceAddress(s):;

return addr;

The Service Template Parser is based on the JENA API [31]. The Service
Template Parser gets the service template from the Service Template Repository.
Then, it creates an instance of DAMLModel from the JENA APl The DAMLModel

stores the parsed content of the service template. The Service Template Parser

87

provides some utilities functions to access those often used information, such as,

service address, service agent ID, service category, directory facilitator address.

6.5 The Agent Wrapper Framework Scenario

In short, the Agent Wrapper Framework tries to automate the wrapping
service as much as possible. It links ontology with the agent implementation and

generates the adapter agent for the existing agent service reuse purpose.

To sum up, we present a simple music shop to illustrate the features of
OntoWrap. Firstly, the ontology of music shop as a service needs to be constructed
using the Ontology Editor. Suppose an expert constructs the music shop by importing
the music ontology and the e-commerce ontology which are already available in the

ontology repository. The resulting ontology 1s shown 1n Figure 6-5.

88

- [©mo
¢ (D) Agentaction A
L@ sel
® ©Hem
--(Sich)
{©) Tratk
- {C) Composer
= -{E) Publisher
© D Lyic
© ¢ (B MusicNote
¢ (© Predicate 4

Stot(title)
Stot(serialiD)

Figure 6-5 Music Shop Ontology construction at the Ontology Editor

Through the Ontology Editor add operation, they can add new concepts,
such as new music media type MP3 as shown in Figure 6-6. The delete operation
helps to remove irrelevant concepts and slots in the imported ontologies, such as
music note concept. After these steps, a designated ontology is constructed for the

online music shop service.

89

D:\pr
P

T

ojccts'beanGenerator\Musicsho pOatolagy ppr i) o

R

e THing X [=] r{As
& (D SYSTEMCLASB A E%f 3
Eé;'
£

e S i o e
-

& (TiConcept?
I - EaD
@ Tiagentachon A

At o O concept A

.- &SPzl |Mp3 is added to

!

I AC]
i} + ®co
% L]
il

i

|

the Music Shop

- 1GiTrach

+ {€:Composer
;[Publisha
- D Lye

Hi

Ontology

LR

SRTA AT

ADD] Concept:[Np3] has Pareni:[Item]

- Content
R

S sertalin)
i1l

L == :Iﬂk

e — ra -

Figure 6-6 Add a new concept to the ontology

Then, the music shop seller agent developer uses the Service Template
Generator to build a service provider template which can then be exported to
implementation code by using the Agent Code Generator. Since it is only a code
skeleton as shown in Figure 6-7, the implementation details are written by the service
developer. For example, the programmer need to wnite the agent interaction logic in a
class called HandleSellRequestBehaviour to handle the sell action as shown in
Figure 6-7. The template is then registered to the Online Service Template

Repository.

90

public class SellService_Server extends Agent [
private ContentManager manager = { ContentManager
getContencManager|}:

// This agent "speaks” the SL lanquage
private Codec c¢odec = new RDFCedeci):

/¢ This agent "knows" the Music-Shop ontology
//User need to add the ontology here
private Ontology musicShepOntologyd =
MusicShopOntologyl.gatinstancedl)
private Ontology nusicShopOntotogyl =
MusicShopOntologyl.getlnstanced);
//User need to specify the AIDs of the two agents here
privata String AIDL = ™ ;
private String AID2 = " 7;
protected void setup{) {
manager.registerLanguage(codec):
//user need to register the ontelogy here
wmanager.registerOntology(musicShopOntology }:
manager.registerontology(mesicShopOntologyl }:

//Usar implemant the Sall Action Behavior
addBehavicur{ new HandlaSallRequestBehaviour(this }

¥

praotectad void takeDown() {
System.out.println{ getNamel(} +

exiting ...")

)

Figure 6-7 Skeleton code of the seller agent

The client agent developer who develops the buyer agent first looks for the
music shop’s service provider template in the Online Service Template Repository.
The developer exports the service template into client agent skeleton code and fills
the implementation details. The communication and binding between a client agent
and a service provider agent or its adapter agent through a directory facilitator have
been described in the coordination model in Chapter 3 Figure 3-1. Thus it will not be

repeated.

The service provider agent and the corresponding adapter agent must first
register their service with the director facilitator to make this coordination model
work. The registration codes of the service agent and the adapter agent are generated

automatically as shown in Figure 6-8 and Figure 6-9 respectively. When they are

91

starting up at a agent platform by the method setup (), they first get the address of

the Adapter Agent Seeker by the method getAAD () and then register their service

description by the method register ().

public class SellerAgent extends GuiAgent (
private ContentManager manager = {ContentManager)

getContentManager(};

// This agent "knows" the Music-Shop entology
private Ontology ontology = MusicShopOntology.getInstance():

protected void setup{} |
// BAdapter Agent Seeker Agent ID

AID aafAlID = new AIDI():

// Look for Adapter Agent Seeker
aafAID = getRAF():;

// Add behavior to handle different kind of message
addBehaviour (new HandleQueryBehaviour{this));

private AID getAAF ()i
AID aafAID = new AID():
// Create Adapter Agent Seeker description and use it to look for AAF

DFAgentDescription dfd = new DFAgentDescription(}:

ServiceDescription sd = new ServiceDescription();

while (true) {

// Search for the Adapter Agent Seeker here
= DFService.search(this,dfd,c):

DFAgentDescription(] result =
if {({result != null) && (result.length > 0}) {
dfd = result(0};

break;

return aafAID;

H

// Register to the Agent Adapter Seeker

private void register (DFAgentDescription desc, AID aaf) throws Exception(
DFService.register(this, aaf, desc):

t

Figure 6-8 Seller Agent registration code to the Adapter Agent Seeker

92

public class adapter extends GuiAgent {
private ContentManager manager = { ContentManager !}

getContentManager () ;
protected void setup() {
//hdapter Agent Seeker Agent ID
AID aafAID;
// Looking for Adapter Agent Seeker address
aafAID = getRAF(); '

// Add the behavior to handle the message from buyer agent and

seller agent
addBehaviour (new HandleMsgBehaviour (this)});

class HandleMsgBehaviour extends CyclicBehaviour {
public wvoid action(} |{
ACLMessage msg = receivel(};

// Convert the message by the message filters
handlemsg(msg):
}

//Register to Agent Adapter Seeker

private void register (DFAgentDescription desc, AID aaf) throws
Exception{ .
DFService.register{this, aaf, desc);

}

}

Figure 6-9 Adapter agent skeleton code

Message filters are also generated for the adapter agent in order to convert
different version of ontology as shown in Figure 6-10. These message filters are
corresponding to the change operation to an ontology. Since it is two way
communications, two sets of filter are generated for messages armving from the client

agent and the service agent.

//Filters used to convert message from buyer to seller

DeleteFilter df = new DeleteFilter(content, "LD");

AddFilter af = new AddFilter(content, "MD"):

RenameFilter renamefilter = new RenameFilter (content, "CD", "COMPACTDISK"};
ReplaceFilter rf = new ReplaceFilter{temp, "duration”, new

FloatIntegerConversion{), Integer.class, "Integer”, "Float"};

//Filters used to ceonvert message from seller to buyer

AddrFilter af = new AddFilter{(content, "LD");

93

DeleteFilter df = new DeleteFilter{content, "MD");
RenameFilter renamefilter = new RenameFilter(content, "COMPACTDISK",
ReplaceFilter rf = new ReplaceFilter(temp, “duration", new

FloatIntegerConversion{), Fleoat.class, "Float", "Integer");

IICDII) ;

Figure 6-10 Message filters

Currently, the registration of adapter agent is done separately from a

provider agent. It is possible that an adapter agent is running but there is no

corresponding provider available at runtime. The next step is to automatically

associate an adapter agent with a provider agent so that they can be registered in a

coordmnated way.

94

7 Conclusion and Future Work

In this thesis, we investigated issues related improving quality in service
discovery. Service discovery is the use of designated agent directory server for agents
to locate their required agent services autonomously based on the nature of tasks
required by agents. Currently, directory services only provide run-time binding for an
agent to a predefined agent service of which the agent has complete knowledge
before hand. By the provision of ontology and ontology management, the
specification of agent services are linked to ontology. Enhancement to services are
;lso kept track of through version controls in ontology management. In addition,
agents can declare its required services through a language using a defined version
the ontology. Thus making it possible for new service providers to serve existing
clients as needed services are declared explicitly. The technology developed involves
locating relevant ontology, accessing and storing the ontology, keeping track of
ontology changes, declaration of service through ontology, mapping services to
implementation, automatic and semi-automatic wrapping for different versions of

services and finally, at run-time, the binding of agents to services and online

directory service for agent mapping with respect to a service type.

05

Currently, the Ontology Editor only supports basic change operations.
However, the granulanty of these basic changes is at the lowest level and may not
always be appropriate. As filter is based on these basic changes and a filter is built
for each change operation, the resulting filter sequence can be repetitive and
inefficient. Composite changes as atomic operation for coarse-grained operations can
be added to make update ontology more semantically sound meaningful to avoid
going through every single step of a sequence of basic changes. The auditing
information can also be implemented as part of the‘version information saved in the

history file.

There are limitations on the adapter agent ability to convert agent messages
from one version to another. For example, when an obsolete concept 1s deleted, the
service agent which uses a new ontology cannot understand the obsolete concept.
The adapter agent currently only returns the not-understood message to the client
agent. In the future, this issue can be further investigated so that a much more
intelligent response can be produced for client agents. A knowledge base can be
created to allow adapter agent to infer any semantically close substitution rather than

simply giving a fail response.

96

Reference

10.

11.

12.

13.

Fujitsu Limited, Hewlett-Packard, IBM, InterX PLC, Spydell, Andy, Suguri,
Hiroki, Sun Microsystems, Inc., Tolety, Siva, Perraju, University of West
Florida, Institute of Human-Machine Cognition, Java Agent Services
Initiative,

[http://java.sun.com/aboutlava/communityprocess/jsr/jst_087_jas.htmi]

Foundation for Intelligent Physical Agent, FIPA 2000 Specification, 2000,
[http://www. fipa.org/specifications/index.html]

Foundation for Intelligent Physical Agents, XC00001J FIPA Abstract
Architecture Specification, 2001,

Foundation for Intelligent Physical Agents, XC00023 FIPA Agent
Management Specification, 2001,

Foundation for Intelligent Physical Agents, XC0006! FIPA ACL Message
Structure Specification, 2001,

JAVA Mathematical Expression Parser. 2002, Singular System.

Ontology Bean Generator for Jade 2.5. 2002, IBROW Project, Universiteit
van Amsterdam.

Tryllian Agent Development Kir. 2002, Tryllian.

Alberto Rodrigues da Silva, A.R., Dwight Deugo, Miguel Mira da Silva,
Towards a Reference Model! for Surveying Mobile Agent Systems.
Autonomous Agents and Multi-Agent Systems, 2001. 4(3): p. 187-231.

Bellavista, P., Corradi, A., and Stefanelli, C. 4 secure and open mobile agent
programming environment. in Proceedings of the Fourth International
Symposium on Autonomous Decentralized Systems (ISADS '99). 1999. Tokyo,

Japan,
Bellavista, P., Corradi, A., Stefanelli, C., Mobile agent middleware for mobile

computing, in Computer. 2001. p. 73-81.

Bellifemine, F., Poggi, A., Rimassa, G. JADE - 4 FIPA-compliant agent
Sframework. in Practical Application of Intelligent Agents and Multi-Agents.
1999. London.

Brugali, D. and Sycara, K., Towards agent oriented application frameworks.
ACM Computing Surveys (CSUR), 2000. 32(les): p. 21.

97

14.

15.

16.
17.
18.

19.

20.

21

22.

23.

24.

25.

Bumer, C., et al. Grasshopper - A universal agent platform based on OMG
MASIF and FIPA standards. 1999.

Cheyer, A. and Martin, D., The Open Agent Architecture. Journal of
Autonomous Agents and Multi-Agent Systems, March 2001. 4(1): p.
143-148.

Exteca, 2003, [http://exteca.sourceforge.net/]

Graves, A., Lalmas, M., and Stutt, A., OntoWeb Deliverable 9.2.1. 2003.

Gruber, T.R., Towards Principles for the Design of Ontologies Used for
Knowledge Sharing, in Formal Ontology in Conceptual Analysis and
Knowledge Representation. 1993, Kluwer Academic Publishers.

Hameed, A., Sleeman, D., and Preece, A. OntoManager:A Workbench
Environment to facilitate Ontology Management and Interoperability. in
Workshop on Evaluation of Ontology-based Tools at the 13th International
Conference on Knowledge Engineering and Knowledge Management.

October, 2002. Siguenza, Spain.

Heflin, J. and Hendler, J. Searching the Web with SHOE. in Artificial
Intelligence for Web Search Workshop (AAAI Workshop). 2000. Menlo Park,
CA: AAAI Press.

Semantic Network Ontology Base, 2003,

[http://www.alphaworks.ibm.com/tech/snobase]

Klein, M. Supporting evolving ontologies on the internet. in Proceedings of
the EDBT 2002 PhD Workshop. 2002. Prague, Czech Republic.

Klein, M. and Fensel, D. Ontology versioning for the semantic web. in
Proceedings of the International Semantic Web Working Symposium (SWWS).
2001. Stanford University, California, USA.

Klein, M., et al. Ontology versioning and change detection on the web. In
13th International Conference on Knowledge Engineering and Knowledge
Management (EKAW02). 2002. Siguenza, Spain.

Labrou, Y.F., T. Yun Peng, Agent Communication Languages: the Current
Landscape. Intelligent Systems, IEEE, 1999. 14(2): p. 45-52.

Lange, D. and Isguna, M., Programming and Deploying Java Mobile Agents
with Aglets. 1998: Addison-Wesley.

98

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

Ludwig, S.A. and van Santen, P. A Grid Service Discovery Matchmaker
Based on Ontology Description. in EuroWeb 2002 Conference. December,
2002. Oxford, UK.

Maedche, A., Ontology learning for the semantic web. 2002: Kluwer

Academic Publisher.

Maedche, A., et al. Managing multiple ontologies and ontology evolution in
Ontologging. in Proceedings of the Conference on Intelligent Information
Processing. 2002. Montreal, Canada: Kluwer Academic Publishers.

Marques, P., et al. Providing applications with mobile agent technology. in
Open Architectures and Network Programming Proceedings. 2001: IEEE.

McBride, B. Jena: Implementing the RDF Model and Syntax Specification. in
Semantic Web Workshop (WWW2001). 2001.

McGuinness, D.L., et al. The Chimaera Ontology Environment. in the
Seventeenth National Conference on Artificial Intelligence Proceedings. 2000.

Austin, Texas.

Milojicic, D., et al. MASIF The OMG Mobile Agent System Interoperability
Facility. in Proceedings of the International Worshop on Mobile Agents
(MA'98). 1998. Stuttgart.

Noy, N.F.,, Fergerson, R.W., and Musen, M.A. The knowledge model of
Protege-2000: combining interoperability and flexibility. in 12th
International Conference on Knowledge Engineering and Knowledge
Management (EKAW'2000). 2000. Juan-les-Pins, France.

Nwana, H.S., Ndumu, D.T,, and Lee, L.C. ZEUS: 4n Advanced Tool-Kit for
Engineering Distributed Multi-Agent Systems. in Proceedings of the Practical
Application of Intelligent Agents and Multi-Agent Systems (PAAM'98). 1998.
London, UK.

Pinto, H.S., Gomez-Perez, A., and Martins, J.P. Some Issues on Ontology
Integration. in Proceedings of the IJCAI-99's Workshop on Ontologies and
Problem-Solving Methods (KRR5). 1999. Stockhotm, Sweden.

Pinto, H.S. and Martins, J.P., A methodology for ontology integration, in
Proceedings of the international conference on Knowledge capture. 2001,
ACM Press. p. 131-138.

S.Poslad, Buckle, P., and Hadingham, R. The FIPA-OS agent platform: Open

Source for Open Standards. in Proceedings of the 5th Inteynational

99

39.

40.

41.

42.

43.

Conference and Exhibition on the Practical Application of Intelligent Agents
and Multi-Agents. 2000. Manchester, UK.

Stojanovic, L. and Motik, B. Ontology evolution within ontology editors. In
Proceedings of the OntoWeb-SIG3 Workshop at the 13th International
Conference on Knowledge Engineering and Knowledge Management. 2002.

Wache, H., et al. Ontology-based integration of information - a survey of
existing approaches. in IJCAI Proceedings of the Workshop Ontologies and
Information Sharing. 2001. Seattle, USA.

Waldo, ., Mobile code, distributed computing, and agents. Intelligent
Systems, [EEE, 2001. 16(2): p. 10-12.

Weiss, G., Multiagent systems: a modern approach to distributed artificial
intelligence. 1999: MIT Press.

Wooldridge, M., An Introduction to Multiagent Systems. 2002: John Wiley &

Sons.

100

Appendix

A1 Ontology Editor

Installation

1. Download the Protégé 2000 from
http://protege.stanford.edu/download/release/index.html

2. Install the Protégé 2000

3. Download the Bean Generator plug-in from
http://www.swi.psy.uva.nl/ust/aart/beangenerator/ This plug-in is used to
convert the ontology to JAVA beans to be used by the agent

4. Install the Bean Generator plug-in according to the instructions in the

homepage.

5. Download and 1install the Xerces2 JAVA parser for XML from
http://xml.apache.org/#xerces. This parser provides APIs of both SAX
and DOM implementation.

6. Download and install the Java Mathematical Expression Parser from
http://www.singularsys.com/jep/. This parser is used to parse the

mathematical expression input by the user.

7. Put the JAR file “tabnew.jar” in the directory “plugins” under the home
directory of the Protégé 2000.

101

User Guide

Version panel

Toolbar
External
‘.-@l‘-omam‘ P
Ontology |+ Brmacem < ontology
displayer \ displayer
ontent ﬁ.,“‘*m.. alll History panel
isplayer
- e A e o d
Figure A-1 Ontology Editor User Interface
1. The toolbar provides a set of button for the elementary changes and save,
generate adapter operation.
2. The ontology displayer displays the main ontology element such as
concepts, predicates and agent actions.
3. The content displayer displays the slots or arguments of the selected
ontology element.
4. The version panel displays the versioning information such as version
number, author, location and description.
5. The external ontology displayer displays the content of the ontology.

The user can import ontology elements from this panel.

6. The history panel displays the change sequence performed.

102

A2 Adapter Generator

User Guide

1. After the ontology evolution process 1s finished, user needs to save the

ontology first.

2. The new version of ontology will be saved according to name of the
ontology and the version number. The path is displayed in the version

panel.

3. Use the bean generator to generate the JAVA beans for both versions of

ontologies.

3 Cmng #
ol Yy e ey gt el bhyd o3 LS R

Oniology Bean Garomior for Jods 2 8

Package name

Favoprane oG Fyimoiaga wres |

] Opramahamorvcogrte
e

WBIED AW SALIIEE 8 g D R YR AT PRI S

Thi g1y ¢ wel e vl o Sowas S wAy s

Location

[

B 754282 dewbmn rmppnom 1iADE)
u " 1204 s od Jew 1.1 cempeirohe [JARE, JADE-LEAP

'lh"Ontology main

5 £ JTME EemOn 1B le HAGELEAR)

Figure A-2 Bean Generator for Protégé 2000

4. In package name and ontology main, fill in the name of the ontology with
the version number. Choose the appropriate location. The version number
is used since in adapter agent, both version of the ontology with the same

name may be used. The version number 15 appended to make a

distinction.

5. Press the “Generate” button. The source code of the JAVA beans is put in

the location spectfied.

6. Press the adapter generator button in the toolbar of the ontology editor

7. The source code of “adapterjava™ ‘“processMsgl java” and

“processMsg2.java” are saved in the same directory as the new version of

ontology.

10.

Edit the file “adapterjava”. Under the line “//User need to add the
ontology here”, fill in the two names used in the ontology main in the
bean generator. Under “//User need to specify the AIDs of the two agents
here”, fill in the two agent IDs.

Compile the source code of the ontology and adapter agent.

The adapter agent can be executed on the agent platformm JADE.

104
Pao Yue-kong Library
PolyU « Hong Iiong

A3 Service Template Ontology Specification

<?xml version="1.0" encoding="150-8859%-1"7?>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1959/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema$"
xmlns:xsd="http://www.wl.org/2001XMLSchema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:ss="http://www.comp.polyu.edu.hk/~csktng/daml/ServiceProfile"
xml:base="http://www.comp.polyu.edu.hk/~csktng/daml/ServiceProfile">
<daml :Ontology>
<daml :versiconInfo>ServiceProfile.dam}l v0.1l</daml:versionInfo>
<daml :comment >Service Profile Schema</daml:comments
<daml: imports
rdf :resource="http://www.w3 .org/1999/02/22-rdf -syntax-ns"/>
<daml : imports
rdf :resource="http://www.daml.org/2001/03/daml+0il"/>
</daml :Ontology>
<daml:Class rdf:ID="ServiceProfile">
<rdfs:label>Service Profile</rdfs:label>
</daml:Class>
<daml :DatatypeProperty rdf:ID="ServiceName":>
<daml :domain rdf:resource="#ServiceProfile"/>
<daml : range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#fstring"/>
</daml:DatatypeProperty>
<daml :ObjectProperty rdf:ID="serviceAddr">
<daml :domain rdf:rescurce="#ServiceProfile"/>
<daml : range
rdf:resource="http://www.w3.0rg/2000/01/rdf -schema##Resource" />
</daml :0ObjectProperty>
<daml:ObjectProperty rdf:ID="belongCategory":>
<daml :domain rdf:resource="#ServiceProfile"/>
<daml :range rdf:resource="#ServiceCategory"/>
</dam1:objectpr§berty>
<daml :ObjectProperty rdf:ID="usedOntology">
<daml :domain rdf:resource="#ServiceProfile"/>
<daml:range rdf:resource="#0Ontology"/>
</daml :ObjectPropertys
<daml :ObjectProperty rdf:ID="providedBy">

105

rdf:

rdf

ar

rdf:

rdf

<daml :domain rdf:resource="#ServiceProfile" />
<daml :range rdf:resource="#Provider"/>
</daml :0bjectProperty:
<daml :ObjectProperty rdf:ID="hasVersion"s
<rdfs:label>hasVersion</rdfs:label>
<daml:domain rdf:resource="#ServiceProfile"/>
<daml :range rdf:resource="#Version"/>
</daml :ChjectProperty>
<daml:DatatypeProperty rdf:ID="ServiceProfileDescription”s
<daml:domain'rdf:resource:"#ServiceProfile"/>
<daml : range
resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</daml :DatatypeProperty>
<daml:ObjectProperty rdf:ID="composedOf":>
<daml :domain rdf:resource="#ServiceProfile"/>
<daml:range rdf:resource="#FIPAConstruct"/>
</daml :CbjectPropertys>
<daml :DatatypeProperty rdf:ID="directoryFacilitator"s
<daml :domain rdf:resource="#ServiceProfile"/>
<daml : range
resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</daml :DatatypePropertys
<daml :DatatypeProperty rdf:ID="directoryFacilitator">
<daml :domain rdf:resource="#ServiceProfile"/>
<daml: range
resource="http://www.w3.0rg/2001/XMLSchemaistring" />
</daml :DatatypeProperty>
<daml :DatatypeProperty rdf:ID="agentID">
<daml :domain rdf:resource="#ServiceProfile"/»

<daml : range

:resource:"http://www.w3.org/2OOI/XMLSChema#string"/>

</daml :DatatypeProperty>
<daml :CbjectProperty rdf:ID="protocol"s
<daml:domain rdf:resource="#ServiceProfile"/>
<daml:range rdf:resource="#InteractionProtocol"/>
</daml :ObjectPropertys

<i--

Author

106

Organization

//-->

<daml :Class rdf:ID="Provider">

</daml:Class>

rdf:

rdf:

rdf

rdf :

<daml :Class rdf:ID="Author">
<rdfs:labels>Author</rdfs:label>
</daml:Class>
<rdf :ObjectProperty rdf:ID="writtenBy">
<daml :domain rdf :resource="#Provider"/>
<dam1:rangelrdf:resource:"#Author"/>
</rdf :0ObjectProperty>
<daml : DatatypeProperty rdf:ID="surname">
<daml :domain rdf:resource="#Author"/>
<daml : range
resource="http://www.w3.0org/2001/XMLSchema#fstring"/>
</daml :DatatypeProperty>
<daml : DatatypeProperty rdf:ID="firstname">
<daml:domain rdf:resource="#author"/>
<daml : range
resource="http://www.w3.org/2001/XMLSchema#string"/>
</daml :DatatypeProperty>
<daml :DatatypeProperty rdf:ID="email">
<daml :domain rdf:resource="#Author"/>

<daml : range

:resource="http://www.w3.org/2001/XMLSchema#tstring" />

</daml :DatatypeProperty>
<daml :DatatypeProperty rdf:ID="webURL">
<daml :domain rdf:resource="#Providexr"/>
<daml : range
resource="http://www.w3.org/2001/XMLSchemafistring"/>
</daml :DatatypeProperty>

<!l--

Versioning Class

rf-->

<daml :Class rdf:ID="Version">
<rdfs:label>Version</rdfs:label>
</daml:Clasgs>

<daml :DatatypeProperty rdf:ID="versionNumber":>

107

<daml :domain rdf:resource="#vVersion"/>
<daml : range
rdf :resource="http://www.w3 . org/2001/XMLSchemafistring" />
</daml :DatatypePropercy>
<daml:DatatypeProperty rdf:ID="versionReleaseDate">
<daml :domain rdf:resource="#Version"/>
<daml:range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#fdate" />
</daml :DatatypeProperty>
<l--
Service Category Class
//__)
<daml :Class rdf:ID="ServiceCategory">
</daml:Class>
<daml :DatatypeProperty rdf:ID="categoryName">
<daml :domain rdf:resource="#ServiceCategory"/>
<daml :range
rdf:resource="http://www.w3.org/2001/XMLSchemafistring" />
</daml :DatatypePropertys
<daml:DatatypeProperty rdf:ID="categoryRef"s>
<daml :domain rdf:resource="#ServiceCategory"/>
<daml: range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string" />
</daml :DatatypeProperty>
<l--
FIPA Construct
/f-->
<daml:Class rdf:ID="FIPAConstruct"/>

<) --

AgentAction
- Arguments
- Conditions
f/-=->

<daml:Class rdf:ID="AgentAction">

<rdfs:subClassOf rdf:resource="#FIPAConstruct"/>
</daml:Class>
<dam1:DatatypeProperty rdf :ID="constructName" >

<daml :domain rdf:resource="#FIPAConstruct"/>

108

<daml : range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</daml :DatatypeProperty>
<daml :ObjectProperty rdf:ID="inputList">
<daml :domain rdf:resource="#AgentAction"/>
<daml : range rdf:resource="#Argument"/>
</daml :ObjectProperty>
<daml :ObjectProperty rdf:ID="outputList">
<daml :domain rdf:resource="#AgentAction"/>
<daml :range rdf:resource="#Argument"/>
</daml :ObjectProperty>
<daml:0ObjectProperty rdf:ID="preConditionList">
<daml:domain rdf:resource="#AgentAction"/>
<daml :range rdf:resource="#Condition"/>
</daml:0ObjectProperty>
<daml :ObjectProperty rdf:ID="postConditionList">
<daml :domain rdf:resource="#AgentAction"/>
<daml:range rdf:resource="#Condition"/>»
</daml:0ObjectProperty>
<l--
Predicate {IOTA)
- Subject
- Object
f/-->
<daml:Class rdf:ID="Predicate">
<rdfs:subClassOf rdf:resource="#FIPAConstruct"/>
</daml:Class>
<daml :ObjectProperty rdf:ID="subject">
<daml :domain rdf:resource="#Predicate"/>
<daml:range rdf:resource="#Argument"/>
</daml:ObjectProperty>
<daml :ObjectProperty rdf:ID="object">
<daml :domain rdf:resource="#Predicate"/>
<daml :range rdf:resource="#Argument"/>
</daml :ObjectPropertys
<l--
Identifying Referential Expression class

- proposition

109

- variable
//")
<daml :Class rdf:ID="IRE">
<rdfs:subClassOf rdf:resource="#FIPAConstruct"/>
</daml:Class>
<daml :ObjectProperty rdf:ID="proposition"s>
<daml :domain rdf:resource="#IRE"/>
<daml :range rdf:resource="#Predicate"/>
</daml :ObjectProperty>
<dam1:objectPropérty rdf:ID="var">
<daml :domain rdf:resource="#IRE"/>
<daml:range rdf:resource="#Argument"/>
</daml :ObjectProperty>
<!=--
Argument
An argument can be used for input or output and is associated with values
//-->
<daml:Class rdf:ID="Argument"/>
<daml :DatatypeProperty rdf:ID="argName">
<daml :domain rdf:resocurce="#Argument"/>
<daml : range
rdf :resource="http://www.w3.org/2001/XMLSchema#istring"/>
</daml :DatatypeProperty>
<daml :ObjectProperty rdf:ID="referTo">
<daml:domain rdf:resource="#Argument"/>
<daml:range rdf:rescurce="#ArgDetail"/>
</daml:0ObjectProperty>
<daml:Class rdf:ID="ArgDetail"/>
<!-- Construct Identifier //-->
<daml :DatatypeProperty rdf:ID="ontoConstruct®>
<daml :domain rdf:rescurce="#ArgDetail"/>
<daml : range
rdf :resource="http://www.w3.0org/2001/XMLSchema#istring"/>
</daml :DatatypeProperty>
<!-- Ontology Location //-->
<daml :ObjectProperty rdf:ID="argOntologyLocation"s>
<daml :domain rdf:resource="#Argletail"/>

<daml: range

110

rdf : resource="http://www.w3.0org/2000/01/rdf -schema#fResource"/>
</daml;:ObjectProperty>
<!-- Version: Should have a complex type //-->
<!-- Simplified it here //--»
<daml :ObjectProperty rdf:ID="version"s
<daml :domain rdf:rescurce="#ArgDetail"/>
<daml :range
rdf :resource="http://www.w3.0rg/2000/01/rdf -schemafistring"/>
</daml:ObjectProperty»>
<!-- Condition should have a set of predefined states //-->
<daml:Class rdf:ID="Condition">
</daml:Class>
<daml :DatatypeProperty rdf:ID="conditionName">
<dam}l :domain rdf:resource="#Condition"/>
<daml : range
rdf:resource="http://www.w3.0org/2001/XMLSchemaf{string"/>
</daml:DatatypeProperty>
<daml :ObjectProperty rdf:ID="satisfyWith">
<daml :domain rdf:resource="#Condition"/>
<daml:range rdf:resource="#LogicalExpression"/>
</daml :ObjectProperty>
<!--
Logical Expression
/H-->
<daml:Class rdf:ID="LogicalExpression">
</daml:Class>
<daml :DatatypeProperty rdf:ID="1Expression">
<daml :domain rdf:resource="#LogicalExpression"/>
<daml : range
rdf : resource="http://www.daml .org/2001/03/daml+oil#Thing"/>
</daml :DatatypeProperty>
<l--
InteractionProtocol
Define a list of protocol: reference JADE!
//-->
<daml :Class rdf:ID="InteractionProtocol">
«</daml:Class>

<b--

111

CommunicativeAct complies with FIPA

/H-->

<daml : Class rdf:ID="Communicativelct"»

<rdfs:comment>Communicative Act is defined in FIPA</rdfs:comments

<daml :oneQf rdf:parseType="daml:collection">

<daml
<daml
<daml:
<daml
<daml :
<daml
<daml
<daml
<daml
<daml :
<daml
<daml
<daml
<daml
<daml :
<daml
<daml:

<daml :

<daml
<daml :
<daml:
<daml :

<daml :

:Thing

:Thing

Thing

:Thing

Thing

:Thing
:Thing
: Thing
: Thing

Thing

: Thing
:Thing
:Thing
: Thing

Thing

:Thing

Thing
Thing

: Thing

Thing
Thing
Thing

Thing

</daml:one0fs

</daml:Class>

<t--

Ontology

Note that more than

[/-->

rdf :

raf
rdf
rdf

rdf:
rdf:
rdf:

rdf

rdf:
rdf:
rdf:
rdf:
rdf:

rdf
rdf

rdf:
rdf:

rdf

rdf:
rdf:

rdf
rdf

rdf:

ID="Accept Proposal"/>

:ID="Agree"/>
:ID="Cancel"/>

:ID="CFP"/>

ID="Confirm"/>
ID="Disconfirm"/>

ID="Failure"/>

:ID="Inform"/>

ID="InformIf"/>
ID="InformREF"/>
ID="NotUnderstood" />
ID="Propagate"/>

ID="Propose"/>

:ID="Proxy"/>
:ID="QueryIf"/>

ID="QueryREF"/>
ID="Refuse"/>

:ID="RejectProposal"/>

ID="Reqguest"/>

ID="RequestWhen"/>

: ID="RequestWhenever"/»

:ID="Subscribe"/>

ID="Unknown"/>

one ontologies can be used in a service template.

<daml :Class rdf:ID="Ontoclogy">

</daml:Class>

<daml :DatatypeProperty rdf:ID="ontoRef"s

12

<daml :domain rdf :resource="#0Ontology"/>
<daml : range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#fstring"/>
</daml :DatatypeProperty>
</rdf :RDF>

