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Abstract 

The objective of this research is to develop novel algorithms for face tracking 

and verification in video. Our research focuses on the areas of facial feature 

representations and feature matching algorithms, both of which are efficient and 

effective for tracking and verification. The outputs from this research can be 

integrated to build a real-time face tracking and verification system. 

The automatic detection and tracking of human faces has many valuable 

applications, such as human computer interaction, visual surveillance, access control 

in special areas, etc. An accurate face tracker will definitely improve the 

performance of face recognition and other human activity analysis applications that 

are currently beyond the capabilities of current face tracking technology. We have 

proposed an effective face tracking algorithm based on the combination of shape and 

texture information. The edge map is used to represent the shape of a face, while the 

texture information is characterized by the local binary pattern (LBP). As the face 

patterns to be tracked in consecutive frames are highly correlated, accurate tracking 

can be achieved by searching for the shortest weighted feature distance between the 

face pattern and the possible face candidates. The weights of the shape and the 

texture can be adapted for real-time tracking. Both the edge map and the LBP can, to 
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a certain extent, alleviate the illumination effect. Moreover, skin-color-like objects 

will not be falsely tracked as a face. Our proposed algorithm complements the 

AdaBoost face detection algorithm to form a multi-view face-tracking system. 

Experimental results show that our algorithm can track faces in varying poses (tilted 

or rotated) in real time. 

Beyond the detection or tracking of faces, recognition is performed to verify the 

identity of the tracked faces for visual surveillance. In order to make a practical 

surveillance system, the face recognition algorithm must be both accurate and 

efficient. We have proposed that simplified Gabor wavelets (SGWs) be applied to 

face recognition. Gabor wavelets (GWs) are commonly used to extract texture 

features for various applications, such as object detection, recognition and tracking. 

However, extracting Gabor feature is very computationally intensive, so 

Gabor-related methods are impractical for most real-time applications. This has 

inspired us to investigate a simplified version of Gabor wavelets and an integral 

image based algorithm for extracting Gabor-like feature efficiently. We have 

evaluated the performance of the SGW feature for face recognition. Experimental 

results show that using SGWs can achieve a performance level similar to that of 

using GWs, while the runtime for feature extraction by using SGWs is, at most, 4.39 
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times faster than that using GWs implemented by using the fast Fourier transform 

(FFT). Extracting the SGW features of 5 different scales and 4 different orientations 

from a 64×64 image takes only 16.09ms. This is a very encouraging result which 

allows the use of SGW features for real-time applications. 
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1 

 

 

This chapter outlines the motivation for the research on face tracking and 

verification in video. The problem of face tracking and verification will then be 

stated. An overview of the techniques for face tracking and verification, and the 

organization of this thesis will be presented at the end of this chapter. 

 

1.1. Motivation for face tracking and verification in video 

The automatic detection, tracking and verification of human faces is currently 

one of the most active and challenging research topics in computer vision. It is the 

broad range of applications, including human computer interaction, interactive 

visual surveillance, access control in special areas, and detection of anomalous 

behaviors, etc, that motivates the interests of researchers worldwide. For example, 

the IEEE has sponsored the IEEE International Workshop on Visual Surveillance [1] 

on three occasions, in India (1998), the U.S. (1999), and Ireland (2000). In [2] and 

[3], a special section on visual surveillance was published in June and August of 

2000, respectively. In [4], a special issue on visual analysis of human motion was 

published in March 2001. In [5], a special issue on third-generation surveillance 
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systems was published in October 2002. Furthermore, the amount of attention paid 

to visual surveillance has been noticeably increased since the ‘9/11’ event. This 

attention comes not only from the academic community, but also from industry and 

governments. 

 Many large research projects on this topic have been under taken. For instance, 

the teleservices of the European Project Banca [6] aims for multimodal biometric 

access control with face verification as the core of the system. Moreover, a 

significant percentage of the basic technologies for video-based detection and 

tracking have been developed under a U.S. government-funded program called 

Video Surveillance and Monitoring (VSAM) [7]. All these are indications which 

reflect the fact that human face tracking and verification, or visual surveillance, is an 

active, challenging and significant research topic. 

 

1.2. Introduction to face tracking and verification in video 

Automatic face tracking and verification in video involves different facial 

image analysis techniques, which mainly include face detection and tracking, human 

face representation, and human face verification. In addition, different image 

pre-processing and enhancement techniques must also be applied so as to improve 
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the detection and verification performance. 

 Detecting human faces in a scene is the first crucial stage in a fully automatic 

human face tracking and verification system. The detection scheme can be classified 

according to a cluttered or an uncluttered background in the digital video scene. For 

example, crowd surveillance is associated with a cluttered or complex background, 

while passport identification has an uncluttered background. Finding human faces 

automatically in a cluttered background and under different poses is still a 

challenging and significant problem. 

 Face detection is a computational process. In order to maintain the real-time 

performance, face tracking can be employed to identify the position of the detected 

face in subsequent frames. However, the tracking algorithm must be able to cope 

with the changes in poses and occlusion of the tracked face and variations in 

environment. These problems are still unsolved and under investigation. Facial 

feature modeling, template matching and estimators are the existing approaches for 

tracking faces. Some of these can be incorporated to improve the tracking accuracy. 

However, the tracking results are still not satisfactory yet, due to the unstable 

environment of the tracking process. For example, lighting variations remain a 

problem in tracking. In such a situation, facial feature modeling and template 
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matching methods will probably not work when the model (template) and the 

candidate faces are very dissimilar. In addition, camera motion further increases the 

difficulty in tracking as it degrades the performance of the approaches that utilize 

motion for tracking. To handle these difficulties in tracking, adaptive modeling 

methods that are able to cope with the changes in environment must be studied.  

 Face verification in a visual surveillance system is performed after a face has 

being tracked. The identity of the tracked face can be determined. This kind of 

system is useful for access control in special areas and person-specific identification 

in certain scenes. When a face is being tracked, a number of its features can be 

extracted for recognition or verification. Linear subspaces analysis like PCA, LDA 

and Gabor wavelet features can be employed for face recognition, but these 

algorithms are relatively slow in processing and, therefore, not suitable for real-time 

visual surveillance system. As a result, face variation approaches that are both 

accurate and efficient must be developed to use in real-time visual surveillance 

system. 

 

1.3. Our methods on face tracking and verification in video 

 The objectives of this research are to develop efficient techniques for analyzing 
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and verifying human faces in videos. Face detector which is trained by the Adaboost 

algorithm will be utilized. This is because the face detector is highly accurate, 

efficient and reliable for detecting frontal faces in still images. Our tracking 

algorithm incorporates the Adaboost face detector to track non-frontal faces in 

videos. Edges and texture will be used as features to track faces. These features 

complement to each other. For instance, poor and variations in lighting make edge 

detection difficult. In this situation, texture feature can make up the deficiency of the 

other feature as it is relatively less sensitive to lighting variations. The matching 

score of the features is in the form of a weighted sum, such that the importance of 

the respective features in different environments can be adjusted. The features in the 

current frame will be incorporated with the feature in the previous frame and served 

as a template for the next frame. In this way, the template feature is adapted to the 

new appearance of the tracked face. 

 For face verification in videos, we use a simplified version of the Gabor 

wavelets to extract features from a tracked face. Gabor wavelets have been shown to 

have high performance in face recognition, but it is rather computationally intensive 

for feature extraction. The simplified Gabor wavelets are used to extract features 

which have a comparable performance to the original Gabor wavelets, but with a 
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much higher efficiency in feature extraction. Such an efficient feature extraction tool 

is absolutely useful for real-time demanding visual surveillance systems. 

 

1.4. Organization of the thesis 

 This thesis is organized into 5 chapters, and each of the chapters is outlined as 

follows: 

Chapter 2 is a literature review. The definitions and the challenges of face 

tracking and face recognition/verification are described. We review some important 

techniques and current advances on face tracking and face recognition/verification. 

The problems associated with the techniques will be stated. 

 Chapter 3 describes our face tracking algorithm. An effective face tracking 

algorithm based on a combination of shape and texture information is proposed. The 

edge map is used to represent the shape of a face, while the texture information is 

characterized by the local binary pattern (LBP). As the face patterns to be tracked in 

consecutive frames are highly correlated, an accurate tracking can be achieved by 

searching for the shortest weighted feature distance between the face pattern and the 

possible face candidates. The weights of the shape and texture can be adapted for 

real-time tracking. Both the edge map and the LBP can, to a certain extent, alleviate 
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the illumination effect. Moreover, skin-color-like objects will not be falsely tracked 

as a face. Our proposed algorithm complements the AdaBoost face detection 

algorithm to form a multi-view face-tracking system. Experimental results show that 

our algorithm can track faces in varying poses (tilted or rotated) in real time. 

 Chapter 4 introduces a simplified version of Gabor wavelets (SGWs) and an 

efficient algorithm for extracting the features based on an integral image. Gabor 

wavelets (GWs) are commonly used for extracting local features for various 

applications such as object detection, recognition and tracking. However, extracting 

Gabor features is computationally intensive, so the features are impractical for 

real-time applications. This has inspired us to develop the SGW and an efficient 

feature extraction algorithm. As SGW is effective and efficient for face recognition, 

it is suggested that SGW can be the core component for face verification in a visual 

surveillance system. 

 The last chapter concludes this thesis and suggests further development for this 

research. 
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Face tracking and recognition may be an easy task for human beings, but 

computerized algorithms are still not mature enough to achieve completely reliable 

face tracking and a high recognition performance. In this chapter, we will firstly 

define face tracking and face recognition/verification. The challenges or difficulties 

will then be discussed. A review of some important algorithms and of progress in 

made algorithms for face tracking and recognition/verification will also be given. 

 

2.1. Review of Face Tracking 

2.1.1. Problem Definition 

The goal of face tracking is to localize a face and return the extent of the face 

from a video or an image [8]. Face tracking can be divided into two types, head 

tracking and facial feature tracking. Head tracking means that the head of a human is 

localized from an image in different situations, such as heads with different poses 

and facial expressions, under occlusion, and with different lighting conditions in a 

complex background. Facial feature tracking localizes the positions of facial features, 

such as the eyes, nose and mouth of a face, in an image and correlates the features to 

Literature Review 

Chapter 2 
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track a face. Most of the tracking algorithms have two assumptions that the 

inter-frame motion of the target object is almost constant, and that the inter-frame 

changes are either small or predictable. A target face is said to be “loss of lock” [9] 

or “out of tracked” if a tracking algorithm fails to localize it. Most of the papers 

present their results in a subjective way. A rectangle or an ellipse which encloses a 

face is said to be a correct tracking. Figure 2-1 shows some examples of correctly 

tracked faces. Some papers also present their results in an objective way. The 

deviations between the tracked target’s x-y position and that of the ground truth data 

against the frame index are plotted. This type of graph can show the tracking 

accuracy along a video sequence. 

 

Figure 2-1 Examples of correctly tracked faces. 

 

2.1.2. Challenges 

A computerized algorithm interprets a human face as a set of numbers called 

the face pattern. This face pattern can have a large variation in its appearance. For 

example, different poses and facial expressions, the presence or absence of structural 
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components, and non-constant environmental lighting, make the distributions of face 

patterns highly complex [10-12]. Specifically, uncontrolled environmental lighting is 

the utmost problem for face tracking in practice. Adini et al. [13] have made a 

detailed study of the effect of illumination on face pattern. They drew several 

conclusions: 1) lighting conditions, in particular the lighting angles, greatly affect 

the appearances of a face pattern. 2) The distance between the same face with 

different lighting conditions is even larger than the distance between two different 

faces under the same lighting condition. These findings suggest that a face tracking 

algorithm should adapt to the human face and to environmental changes in order to 

achieve a reliable tracking. Apart from tracking accuracy, the real-time performance 

is also an important factor in judging the effectiveness of a tracking algorithm. This 

is because most of the tracking applications online processes. 

Face tracking can basically be seen as motion estimation. However, some 

regions of faces are too smooth to estimate accurately, and some changes in the local 

appearances of faces are too large to give a reliable result. Sections 2.1.3.1 to 2.1.3.5 

will review the different approaches for face tracking, and will comment on their 

benefits and deficiencies concerning face tracking. 
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2.1.3. Approaches to Face Tracking 

As mentioned at the beginning of this chapter, human beings can track faces 

relatively effortlessly in different poses and lighting conditions. This tells us that 

there must exist some primary properties or low-level features in faces that are, to a 

certain extent, invariant over different conditions for tracking. The face tracking 

approaches based on different features will be reviewed below. 

 

2.1.3.1. Skin-Color Based Approaches 

Among the various low-level features, skin color is the most intuitive for 

tracking faces. This is because skin color is a prominent feature for identifying 

human faces. The normalized RGB, HSV and YCbCr are the common choices for 

representing the skin color. These color spaces are less sensitive to lighting 

conditions, ethnicity and camera characteristics when compared to other color 

spaces [14-17]. This is because the luminance component is explicitly separated. The 

Bayesian classifier, with the histogram technique and the Gaussian classifier, is 

effective, and is commonly used for modeling and classifying skin color pixels [18]. 

The conditional pdfs of the skin color and the non-skin color pixels in the classifiers 

are estimated using histograms or parametric density estimation techniques [19-22]. 
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After skin color-pixel classification, the connected components are identified, and 

small components are treated as noise, and deleted. For each connected component, 

an ellipse or a rectangle which best fits the connected component is computed. The 

ellipse or rectangle, whose major to minor axis ratio is closest to the golden ratio of 

an ideal face according to the anthropometric recommendation [23], is chosen to 

represent a face. Faces can be tracked by applying this method in successive frames. 

Figure 2-2 shows the results of skin-color segmentation and face identification. 

The robustness against rotations, scaling and partial occlusions are high for face 

tracking via skin color. In addition, it is computationally efficient for processing skin 

color as a feature. However, this face tracking approach will fail if the illumination 

condition varies, or if the background image has a skin-like color. Several papers 

have tried to tackle this problem. In [24], a Gaussian mixture model to represent the 

skin-color model and update the model’s parameters over time was proposed. In [25], 

an adaptive color model was proposed, which uses the basic structure of 

condensation for model updating. In [26], a color model switching strategy has been 

proposed, which tracks faces under different illumination by using different color 

models. Nevertheless, all these algorithms will fail when the lighting condition 

changes drastically or the background contains skin-color-like objects. 
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(a)         (b) 

     

(c)         (d) 

Figure 2-2 The results of skin-color segmentation and face identification. (a) The original 

image, (b) the skin-color pixel segmentation results, (c) the connected regions which are 

the face candidates, and (d) the identified face region. (Figure reprinted from [17]) 

 

2.1.3.2. Facial Feature Based Approaches 

Each face consists of different facial features by which we can identify faces. 

Facial features include eyes, nose, mouth, hair and a face’s contour shape. There are 

several different representations methods for facial features. Maure and Malsburg 

[27] and Mckenna et al [28] used the texture feature extracted by Gabor filters as the 
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cues for face tracking (a more detailed review on Gabor wavelets is given in Section 

2.2.3.2). Only the selected positions on a face shape template or a face-mesh model 

are considered. This approach is usually insensitive to global intensity changes and, 

to a certain extent, insensitive to illumination changes. However, texture feature 

extraction is computationally expensive, and is therefore hard to implement for a 

real-time application. In addition, the error in tracking will cause drifting in the 

template face model, without error recovery. Figure 2-3 shows some tracking results, 

based on tracking Gabor features, for the selected facial features. 

 

Figure 2-3 Tracking based on matching the Gabor features of the selected facial features. (Figure 

reprinted from [28]) 

 

 A face can also be tracked using elliptical contour tracking [29-31]. This 

method is not sensitive to background color and illumination changes, but a highly 
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cluttered background fails this tracking approach. Birchfield [32] used gradient 

intensity to measure an object’s boundary shape, and a color histogram to measure 

the color of an object’s interior. In this way, only the elliptical contours with a 

skin-color interior will be extracted in a cluttered background. However, the shape 

and the color features are not integrated properly, so it occasionally fails to extract  

the face contour. Figure 2-4 shows the results of the tracking method proposed in 

[32]. 

 

 

Figure 2-4 Tracking based on using gradient intensity to measure an object’s boundary shape and a 

color histogram to measure the color of an object’s interior. (Figure reprinted from [32]) 

 

2.1.3.3. Rapid Continuous Face Detection Based Approaches 

As mentioned at the beginning of Section 2.1.2, the most primitive approach for 

tracking is by motion estimation or block matching [37, 38]. However, this approach 

is computationally inefficient. Recently, face pattern classifiers have received a great 

deal of attention from researchers. A learning-based approach has so far been the 
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most effective for constructing face and non-face classifiers. Learning-based 

approaches attempt to learn a boundary between the face and non-face patterns 

which is highly non-linear due to the fact that the face manifold, formed by 

variations in facial appearance, lighting, head pose and expression, is highly 

complex [39, 40]. Among the different learning algorithms, the AdaBoost learning 

algorithm for learning a frontal face classifier is the most impressive. AdaBoost 

solves the following three fundamental problems of learning a highly non-linear 

decision boundary in one boosting procedure:  

(1) learning effective features from a large feature set, 

(2) constructing weak classifiers each of which is based on one of the selected 

feature and  

(3)  boosting the weak classifiers into a stronger classifier. 

The classifier processes all the sub-windows of an image to detect faces. This 

process is speeded-up via cascading. Figure 2-5 shows the structure of a cascade 

classifier. Simple, boosted classifiers can reject many negative candidates while 

detecting all positive instances. A series of such simple classifiers can achieve good 

detection performance while also eliminating the need for any further processing of 

those negative candidates. This cascaded classifier can achieve a real-time 
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performance for detecting frontal faces (14 frames per second) in 320×240 images 

[41]. A detection rate of 82.7% with 10 false alarms on the CMU+MIT test set has 

been reported. Figure 2-6 shows some detection results for the AdaBoost trained 

classifier. Its long learning time and its dedication to frontal-face detection are the 

weaknesses of the Adaboost learned face classifier.  

Figure 2-5 The structure of cascade classifier. A series of classifiers are applied to every candidate. 

The initial classifier eliminates a large number of negative candidates examples with very little 

processing. Subsequent layers eliminate additional negative but require additional computation. After 

several stages of processing, the number of candidates has been reduced radically. Further processing 

can take other forms, such as additional stages of the cascade, or another face detection algorithm. 

All sub-windows 

1 2 3 4 Further Processing 

Reject Sub-window 

T T T T 

F F F F 
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Figure 2-6 The face detection results of the AdaBoost-trained classifier. (Figure reprinted from [41]) 

 

S. Li et al. developed the FloatBoost learning method and a detector pyramid 

architecture [42], which improve the Adaboost learned classifier for face detection. 

It uses a backtrack mechanism after each iteration of AdaBoost learning to minimize 

the error rate directly, rather than minimizing an exponential function of the margin, 

as in the AdaBoost algorithm. It requires fewer weak classifiers and can achieve 

lower error rates in both training and testing for multi-view face detection. A 

detection rate of 83.6% with 10 false alarm on the CMU+MIT test set has been 
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reported. However, when comparing the number of weak classifiers used, the 

FloatBoost requires approximately 5 times longer in training than the AdaBoost 

algorithm does, and the real-time performance is lowered to about 5 frames per 

second. Figure 2-7 shows some face detection results of the FloatBoost trained 

classifier. 

 

Figure 2-7 Multi-view face detection results for the classifier trained by the FloatBoost algorithm. 

(Figure reprinted from [42]) 

 

2.1.3.4. Active Appearance Model (AAM) Based Approaches 

Active appearance model (AAM) based approaches can also be treated as 

template matching approaches. The AAMs for a face are generative, parametric 

models that show both shape and appearance variations of a face [33]. These 

variations are represented via subspace methods such as principal component 
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analysis (PCA), which finds a subspace representing the maximum variance of a 

given set of data. An AAM face model can be constructed from training data, and 

face tracking is achieved by fitting the trained model to a face candidate. Figure 2-8 

shows an example of the model fitting using the AAM-based approach.  

 

Figure 2-8 Model fitting using the AAM-based approach. (Figure reprinted from [34]) 

 

In [34-36], the view-based AAM and the background robust AAM, respectively, 

were proposed. The former handles the problem of face rotation, while the later can 

solve the problem of cluttered backgrounds. However, the fitting process using 

AAM fails occasionally, and an error will be propagated into subsequent frames, 

which causes drifting of the AAM. Moreover, this approach cannot be used a 
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real-time applications. 

 

2.1.3.5. Statistical Estimation Based Approaches 

This type of face tracking approach is also known as analysis-by-synthesis, and 

it is used in a predict-match-update style. Firstly, the face status for the next frame is 

predicted according to prior knowledge and the tracking history. Then, the predicted 

face status is synthesized and projected onto the image plane for comparison with 

the image data. An evaluation function is needed to measure the similarity between 

the projected face status and the image data. According to different search strategies, 

this is done either recursively or using sampling techniques until the correct status is 

finally found and is used to update the face status. 

A Kalman filter is a classical computational mechanism for incorporating 

predictions from an autoregressive model of the face status’s dynamics [9, 44] into a 

stream of observations for updating the face status. In terms of face tracking,  the 

Kalman filter addresses the problem of estimating a face state (position and size) in a 

dynamic process. The prediction of the next state of a tracked face is done by a 

state-transition matrix which determines the dynamic of the tracked face. The 

predicted state is refined by a measurement, and this refined state is used to predict 
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the next state of the face. Figure 2-9 shows the flow of the Kalman filter cycle. 

 

Figure 2-9 The Kalman filter cycle 

 

The most straightforward setting is for face contour tracking by using the idea 

of normal displacement as measurement [44], as shown in Figure 2-10. This setting 

of the Kalman filter for face tracking suffers from the problem of clutter, as shown in 

Figure 2-11, which tends to generate multiple observations at each location, and 

from the problem of dynamics, which assumes the linear dynamic of a target face is 

assumed. The extended Kalman filter [45] has been designed to deal with non-linear 

dynamics, but only a mild non-linearity can be handled by local linearization of 

motion dynamics and noise co-variances. 

 

Estimation 

Measurement 

Estimated position 
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Figure 2-10 Tracking a moving object by using the Kalman filter. The prediction and measurement 

phases for contours, with observations (double arrows) of normal displacement are shown. (Figure 

reprinted from [9]) 

 

 

Figure 2-11 An active contour and the normals are shown. Crosses mark observations of high contrast 

features, some of which are triggered by a true object outline, while others are responding to clutter, 

both inside and outside the object. (Figure reprinted from [46]) 

 

 Recently, the particle filter has been developed to solve the problems of the 

Kalman filter. The pioneers of using the particle filter for visual tracking are M. 

Isard and A. Blake [47]. The particle filter is a kind of conditional density 
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propagation method for visual tracking. Based upon sampling the posterior 

distribution estimated in the previous frame, it is extended to propagate these 

samples iteratively to successive images. By combining a tractable dynamic model 

with visual observations, it can accomplish a highly robust tracking of face motion. 

One important advantage of particle filter is that it allows the information from 

different measurement sources to be fused in a principled manner [48-51]. Data 

fusion with particle filters has been mostly confined to skin color and edge cues 

inside and around simple face shapes [52]. Figure 2-12 shows the face tracking 

results obtained using the skin-color based particle filter and the skin color and 

shape feature fused particle filter. We can see that the tracking result from the 

multi-features fused particle filter is not affected by skin-color like objects (the 

hand), while the skin-color based particle filter cannot track accurately. 
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(a) 

 

(b) 

Figure 2-12 The face tracking results obtained by (a) the skin-color-based particle filter, and (b) the 

skin color and shape feature fused particle filter. (Figure reprinted from [52]) 

 

However, the particle filter usually requires a relatively large number of 

samples to ensure a fair estimation of a face’s current state. In other words, the 

number of samples, or particles, used is an unknown, and is tracking scenario 

dependent. Moreover, the larger the number of particles used, the slower the tracking 

is. 
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2.2. Review of Face Recognition/Verification 

2.2.1. Definition of Face Recognition/Verification 

Face recognition is understood as automatically recognizing the identity of a 

person from all facial images in a database. In terms of computing, it is defined as 

presenting a probe sample, and a face recognition algorithm returns all the 

similarities between the probe sample and all gallery samples in a database. Feature 

extraction and classification are the main steps in all face recognition algorithms. 

Employing different features and classification algorithms will certainly produce 

different face recognition results. The efficiency of a face recognition algorithm is 

measured by its face recognition rate, which is the ratio between the number of 

testing face images that are being correctly recognized and the total number of 

testing face images. 

The definition of face verification is quite similar to face recognition. Face 

verification can be divided into two types. The first type involves confirming or 

denying the identity claimed by a person. The question, “Is this person whom he/she 

claims to be?” is asked. An algorithm verifies the provided identity of a person by 

computing the similarities or distances between the person and the gallery images of 

the claimed identity in a database. This is a one-to-one matching, and is often called 
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verification or authentication. The second type involves establishing the identity of a 

given person out of N people in a database. The question, “Who is this?” is asked. 

An algorithm identifies the person by comparing the similarities or distances 

between the person and all gallery images in a database. This is a one-to-N 

matching ,and is called face identification. 

People often confuse the definitions of face verification and face recognition. In 

fact, they are different in three fundamental aspects [53]: 

(1) An authorized user of a personal identification system, who is called a 

client, is assumed to be cooperative and makes an identity claim. It is not 

necessary to perform matching between the face of a client and the entire 

gallery in a database. The face image of a client is thus compared to a 

subset of the gallery in a database only, while for face recognition, the 

potentially large gallery in a database is matched with the face image of a 

client. 

(2)  The processing performance of an automatic authentication system must 

operate in near real-time to be acceptable to users. 

(3)  The case of a previously unseen person, who is called an imposter, is 

presented to the system. This is of the utmost importance for 
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authentication, whereas in face recognition, only images of people from 

the training database are presented to the system. 

The algorithms for face verification are often directly transplanted from those 

used for face recognition. For the task of personal verification, a standard protocol 

for performance assessment has been defined. The Lausanne protocol randomly 

splits all subjects into a client and an imposter group. Three different sets of images 

are built as follows [53]: 

Set 1. Training set: 

It is used to construct client models. 

Set 2. Evaluation set: 

 It is selected to produce client and impostor access scores, which are 

used to find a threshold that determines if a person is accepted or not. 

This threshold is often called the client-specific threshold, or global 

threshold. According to the Lausanne protocol, the threshold is set to 

satisfy certain performance levels (error rates) in the evaluation set. 

Set 3. Testing set: 

It is selected to simulate realistic authentication tests where an 

impostor’s identity is unknown to the system. 
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 The False Acceptance rate (FA) and the False Rejection rate (FR) are used to 

measure the performance of a verification algorithm. FA is for cases where an 

impostor is accepted, while FR is for cases where a client is rejected. FA and FR are 

computed by: 

%100        %100 ×=×=
C

EC
FR

I

EI
FA     (2-1) 

where EI is the number of impostor acceptances, I is the number of impostor claims, 

EC is the number of client rejections, and C is the number of client claims. Both FA 

and FR are influenced by an acceptance threshold. To simulate a real application, a 

threshold is set based on the evaluation set such that false acceptance error set (FAE) 

and false rejection error (FRE) are obtained. This threshold is then applied to 

measure the FA, FR based on the test data. Three thresholds are defined in the 

evaluation set: 

(1) TFAE=0 = arg minT(FRE | FAE = 0) 

(2) TFAE=FRE = (T | FRE = FAE)     (2-2) 

(3)  T FRE=0 = arg minT(FAE | FRE = 0) 

Consequently, performance in the test set is characterized by six error rates: 

(1) FAFAE=0 

(2) FAFAE=FRE 
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(3) FAFRE=0        (2-3) 

(4) FRFAE=0 

(5) FRFAE=FRE 

(6)  FRFRE=0 

In general, the lower the values of FA and FR, the better an algorithm is. 

 

2.2.2. Challenges of Face Recognition/Verification 

 The large variation in face patterns is the main challenge for all face processing 

algorithms. Face recognition and verification also suffer from face manifolds caused 

by different factors: 

(1) Pose: The images of a face vary due to the relative camera-face pose, and some 

facial features, such as the eyes or the nose may become partially or wholly 

occluded. 

(2) Facial expression: The appearance of a face is directly affected by a person’s 

facial expression. 

(3) Occlusion: A face may be partially occluded by other objects. In an image with 

a group of people, some faces may partially occlude each other. 

(4) Face orientation: A Face varies with different rotations about the camera’s 
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optical axis. 

(5) Presence or absence of structural components: Structural components, such as 

glasses, beards and different hair styles, vary the face patterns to a large extent. 

This is because these structural components vary in shape, color, size and 

texture, which further increase the variability of a face pattern. 

(6) Lighting conditions: As mentioned in Section 2.1.2, the distance between the 

same face with different lighting conditions is even larger than the distance 

between two different faces under the same lighting condition. Moreover, 

camera characteristics (sensor response, lenses) affect the appearance of faces 

in an image. 

In addition, real-time performance is important for practical face verification 

systems. Therefore, feature extraction and classification of a face 

recognition/verification algorithm should be computationally efficient to fulfill the 

real-time requirement. 

Most of the literature has assumed that each face in an image is normalized in 

terms of position, orientation, size and lighting condition. These pre-processing step 

are called face alignment and normalization. The next section will discuss different 

approaches to tackling the problems of face recognition/verification. 
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2.2.3. Approaches for Face Recognition/Verification 

Research on the automatic machine recognition/verification of faces has been 

carried out over 30 years, and is on going. Researchers have been concerned with the 

issue of whether face perception is done holistically or by local feature analysis. This 

concern is combined with different techniques, such as image processing, pattern 

recognition, computer vision, computer graphics, etc., to develop a sequence of 

algorithms, as well as systems for automatic machine recognition/verification of 

human faces. In sections 2.2.3.1 to 2.2.3.3, the most significant advances in face 

recognition/verification, which include linear subspace analysis, textural analysis 

and graph matching techniques, will be reviewed. 

 

2.2.3.1. Linear Subspace Analysis (Holistic approach) 

The most popular technique for face recognition/verification is the subspace 

methods. This is mainly due to its effectiveness and computational efficiency for 

feature extraction and representation. The subspace algorithms represent a facial 

image by a feature vector. With a set of feature vectors, projections or bases that 

optimize some criteria defined over the feature vectors that correspond to different 

classes are found. Afterwards, the original high-dimensional image space is 
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projected into a low-dimensional one. So, the subspace methods reduce the 

dimensionality and represent the global feature of facial images. Feature 

classification is usually performed according to a simple similarity measure (usually 

employing the Euclidean distance) in the projected multi-dimensional space. Figure 

2-13 shows the general scheme of the linear subspace methods. 

 

 

Figure 2-13 The general scheme of the linear subspace methods 

 

Different criterion will produce different bases and, as a result, the projected 
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[54-56] is a classical method and is widely used for face recognition and face 

reconstruction. The major idea of PCA is to decompose an input image into a linear 

combination of a small collection of basis images, which is called the eigenfaces. 

The eigenfaces are orthogonal and capture the directions of maximum variance in 

the training face images. Therefore, the eigenfaces capture the global feature of the 

training face images and the projected input image will have a reduction in 

dimension while the main components are maintained. For face recognition, when 

the testing images have variations caused by global components such as lighting or 

perspective variations, the performance of PCA will be greatly reduced [49]. 

A better alternative of PCA is the Linear Discriminant Analysis (LDA) [57, 58]. 

LDA often outperform PCA because it expressly provides discrimination among the 

classes, while PCA deals with the input data in their entirely and without considering 

the underlying structure. The main objective of LDA is to find a base of vectors 

providing the best discrimination among the classes. This base of vectors maximizes 

the between-class difference and minimizes the within-class difference. The 

between- and within-class differences are represented by the corresponding scatter 

matrices. Although LDA is often considered to outperform PCA, LDA provides 

better performance only when a large training set is available [59]. In addition, LDA 
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is more sensitive to different training data sets when compared to PCA. 

 

2.2.3.2. Textural Analysis 

 The intensity of an image is the only source from a camera used for face 

recognition. However, a lot of variations, such as albedo and shape of the face, 

lighting, etc., are all encoded as intensity. To eliminate these extrinsic factors, 

invariance textural feature analysis for face recognition is widely studied. By 

invariance, not only are features meant which are invariant to a set of geometric 

transforms, but also methods to perform face recognition regardless of pose and 

image conditions using features which are not invariant. Textural features refer to the 

spatial arrangement of intensity in an image. In other words, it is a local feature 

descriptor. In face recognition, the most typical invariance requirements are the 

illumination, orientation, scale and translation. General textural descriptor such as 

moment invariants do exist, but have problems in practice since they require precise 

segmentation and uniform lighting. Among different textural descriptors, Gabor 

wavelet (GW) and local binary pattern (LBP) have recently received more attention. 
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2.2.3.2.1. Gabor Wavelets 

 The Gabor wavelets, whose kernels are similar to the response of the 

two-dimensional receptive field profiles of mammalian simple cortical cell [60], 

exhibit the desirable characteristics of capturing salient visual properties such as 

spatial localization, orientation selectivity, and spatial frequency [61]. The Gabor 

wavelets can effectively abstract local and discriminating features, which are useful 

for face recognition [62-64]. In the spatial domain, a Gabor wavelet is a complex 

exponential modulated by a Gaussian function [60, 62, 65]. By selecting different 

frequencies and orientation of the complex exponential, a family of Gabor kernels 

can be obtained which can be used to extract features from an image by convolution. 

The convolution can be computed efficiently by performing the fast Fourier 

transform (FFT), then point-by-point multiplications, and finally the inverse fast 

Fourier transform (IFFT). This IFFT output is the Gabor representation of an image. 

The magnitude of the IFFT is considered to be the local properties of an image [62] 

and is less sensitive to the lighting conditions [66].  Euclidean distance is usually 

chosen to compare the similarity between the Gabor representations of two different 

face images. High computational complexity is the major disadvantage of using 

Gabor wavelets for face representation. Figure 2-14 shows the Gabor representation 
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of a face image at 4 different frequencies and 8 different orientations. 

 

Figure 2-14 Gabor representations of a human face. (a) The original face, (b) The magnitudes of 

Gabor representations with 4 different frequencies and 8 orientations. 

 

2.2.3.2.2. Local Binary Pattern (LBP) 

 The local binary pattern (LBP) [67] is one of the best performing texture 

descriptors and it has been widely used in various applications. It has proven to be 

highly discriminative and its key advantages are its invariance to monotonic 

gray-level changes and computational efficiency. These advantages make it suitable 

for demanding image analysis tasks. The first use of LBP features for face 

representation is in the ECCV 2004 conference [68]. After this, several research 

groups [69-75] have adopted LBP for face recognition. 

 

(a) (b) 
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 The LBP operator was originally designed for texture description. The operator 

assigns a label to every pixel of an image by thresholding the 3×3 neighborhood of 

each pixel with the center pixel value and considering the result as a binary number. 

Then, the histogram of the labels can be used as a texture descriptor. Figure 2-15 

shows an illustration of the basic LBP operator. 

 

 

Figure 2-15 An illustration of the basic LBP operator. 

 

To deal with textures at different scales the LBP operator can be extended to use 

neighborhoods of different sizes [76]. Defining the local neighborhood as a set of 

sampling points evenly spaced on a circle centered at the pixel to be labeled allows 

any radius and number of sampling points. Bilinear interpolation is used when a 

sampling point does not fall in the center of a pixel. Figure 2-16 shows examples of 

these advanced versions of LBP operator.
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Figure 2-16 The advanced versions of the LBP operators. (a) a 8 circular sampling points LBP 

operator with radius equal to 1 pixel, (b) a 16 circular sampling points LBP operator with radius equal 

to 2 pixels 

 

 The invariance to monotonic lighting variation of the LBP is illustrated in 

Figure 2-17. Monotonic lighting variation will either shift-up or shift-down the 

gray-levels in an image. Although the lighting varies considerably in Figure 2-17(b) 

when compared to Figure 2-17(a), the two LBP are the same. This is because LBP at 

a pixel is computed by thresholding with its neighborhoods. Shifting-up or 

shifting-down the gray-levels of an image has no effect on the thresholding. 

 

 

 

 

 

 

Figure 2-17 An illustration of the invariance to monotonic illumination variations of the LBP. (a) an 

face image; (b) the face image of (a) with brightness increased monotonically; (c) the LBP of (a); (d) 

the LBP of (b). 

(a) (b) 

(a) (b) 

(c) (d) 
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 The idea of using LBP for face description is motivated by the fact that faces 

can be seem as a composition of micro-patterns which are well described by such 

local feature-based method. In contrast with the holistic texture descriptors, holistic 

texture descriptors tend to average over a large image area and have invariance on 

translation and large scale rotation. This is a desirable property only for ordinary 

textures but not appropriate for faces. This is because holistic texture descriptors fail 

to retain the information about spatial relations of the micro-patterns of a face, due 

to its invariance feature properties. In addition, holistic texture description methods 

seem to be less robust against variations in pose or illumination than the 

local-feature based methods [76-78], which is understandable given the limitation of 

the holistic representations. This reasoning leads to the use of LBP for face 

representation. 

 

The face recognition is performed by comparing the normalized LBP labeled 

histograms of two faces. The comparisons can be a correlation distance or Chi 

square distance which are both commonly used for comparing two histograms. As a 

face is composed of several facial features with different importance, the comparison 

can be divided into several weighted regions. In [79], a face is divided into 49 
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regions and weighting is assigned to each of the regions. Salient facial regions like 

eyes and mouth are assigned with a higher weighting. The comparison of two faces 

is in the form of summing the weighted Chi square distances of the regions. Through 

this configuration, the face recognition result is improved by 8% on average when 

compared with the approach without region dividing. 

 

 

2.2.3.3. Graph Matching 

 As mentioned in Section 2.2.2, one of the difficulties of face recognition is to 

recognize faces with different variations such as facial expressions, poses and 

uneven lighting conditions. The dynamic link architecture (DLA) [62] is an effective 

face recognition approach to handle the above mentioned difficulties. An object is 

recognized by using sparse graphs, whose vertices are labeled by a multi-resolution 

description in terms of a local power spectrum, and whose edges are labeled by 

geometric distance vectors. The local features are extracted by using Gabor wavelet. 

Object recognition can be formulated as an elastic graph matching, which is 

performed by minimizing a matching cost function. There are two stages within a 

graph matching process. The first stage one is to position the grid over a face, and 



 42 

the second stage is to allow the grid structure to deform until each node has achieved 

a minimum of the cost function. The difference between the edge labels of the image 

graph and the model graph, and the Gabor features’ similarity of the corresponding 

vertex labels between the image graph and the model graph, are weighted and 

summed to form a matching cost. As the grid structure is allowed to deform, this 

graph matching approach can handle face recognition with facial expression and 

pose variations. However, it is time-consuming to let define grid structure to deform 

and to compute the matching cost for each of the nodes of the grid. 

 

2.2.4. Conclusion 

 In this chapter, the definitions and the challenges for face tracking and face 

recognition/verification have been described. We have reviewed some well-known 

techniques and current advances on face tracking and face recognition/verification. 

The approaches to face tracking can be divided into five major categories: (1) 

skin-color based, (2) facial feature based, (3) rapid continuous face detection based, 

(4) active appearance based, and (5) statistical estimation based. For face 

recognition/verification approaches, three major approaches have been reviewed: 

(1) linear subspace analysis, (2) textural analysis, and (3) graph matching 
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techniques. In the following chapters, we will present our proposed algorithms on 

face tracking and face recognition/verification. 



 44 

 

 

 

In this chapter, an effective face tracking algorithm based on the combination of 

shape and texture features is presented. As the face patterns to be tracked in 

consecutive frames are highly correlated, an accurate tracking can be achieved by 

searching for the shortest weighted feature distance between the face pattern and the 

possible face candidates. The weights of the shape and texture can be adapted for 

real-time tracking. This tracking algorithm employs the Adaboost face detection to 

form an accurate multi-view face tracking system. 

 

3.1. Introduction 

The automatic detection and tracking of human faces has many valuable 

applications, such as human-computer interaction, visual surveillance, access control 

in special areas, etc. An accurate face tracker will definitely improve the 

performance of face recognition and other human activity analysis applications that 

are currently beyond face tracking. 

An Effective Shape-Texture Weighted Algorithm for 

Multi-view Face Tracking in Videos 

Chapter 3 
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In recent years, many researchers have been motivated to develop efficient face 

detection algorithms. The most successful one was proposed by Viola and Jones [80]. 

The AdaBoost algorithm is used to train a cascade classifier for the rapid detection 

of faces. Some advanced versions [81, 82] of the AdaBoost-trained face detector 

have been proposed to improve the accuracy and achieve real-time performance. 

However, these algorithms only work for detecting frontal faces, which cannot fulfill 

the varying head poses (multi-view faces) tracking requirement. 

Multi-view face tracking is critical in many practical applications. Cootes et al. 

[33] have proposed an adaptive active appearance model, and Batur et al. [83] 

improved that model. Wiskott et al. [84] used an elastic bunch graph template for 

multi-view face detection and tracking. These methods use a labeled graph to 

represent a face. The nodes of the graph represent the texture information about local 

face regions, while the links of the nodes represent the shape of the face. Tracking is 

achieved by matching the labeled graph with those candidate positions. The tracking 

accuracy level is satisfactory, but it is too slow for real-time applications. 

Skin-color models [14, 17, 18] have also been widely studied and applied to 

face tracking [26, 85]. The color distribution of a face candidate is compared with 

the skin-color model for tracking. Color-model-based methods are computationally 
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efficient, but their performances will be degraded significantly if the lighting 

conditions are unstable. Objects which are skin color-like will be falsely tracked as a 

face. 

In this chapter, an effective shape-texture weighted algorithm for multi-view 

face tracking is proposed. Both the edge map and the local binary pattern (LBP) [87] 

of a face region are used as features for tracking. Having observed that the target 

face patterns in consecutive frames are highly correlated, a face can be tracked by 

searching for the least weighted feature distance between a face region and those 

possible face candidates. The weights of the shape and texture feature distances can 

adapt to the tracking in an unstable lighting situation. The edge map and the LBP 

can, to a certain extent, alleviate the effect of changing illumination during tracking. 

Moreover, skin-color-like objects will not be falsely tracked as a face. The proposed 

algorithm complements the AdaBoost face detection algorithm to form a multi-view 

face-tracking system. 

The rest of this chapter is organized as follows. Section 3.2 gives an overview of 

our tracking system. Section 3.3 introduces the features used in the tracking 

algorithm. Section 3.4 describes the shape-texture weighted face-tracking algorithm. 
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Section 3.5 presents the experimental results, and the conclusion will be drawn in 

Section 3.6. 

 

3.2. Tracking system overview 

Our face tracking system is composed of two modes of detection. The first 

mode is to use the AdaBoost face detection algorithm to detect the first appearance 

of frontal faces. If a face is continuously detected, the features (which will be 

discussed in Section 3.3) of the detected face will be extracted. If no face is detected, 

the system will switch to a tracking mode, which tracks faces using our 

shape-texture weighted algorithm. The status of the face being tracked will then be 

updated. Figure 3-1 shows the flow of our tracking system. 

 

 

Figure 3-1 The flow of the tracking system. 
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3.3. Features for tracking 

Face shape and texture are the prominent features for representing and tracking 

faces. This is because the shape of a face, or a head, is ellipse-like under different 

poses, and the texture feature selected for representing faces can be insensitive to 

lighting variations [86]. In addition, the variations of these two features are usually 

small in successive frames, and are therefore suitable for accurate and efficient 

tracking. In order to alleviate the lighting effect, our algorithm does not utilize skin 

color for tracking. Moreover, skin-color-like objects are often incorrectly tracked as 

faces. 

 

3.3.1. Shape feature 

The shape feature used includes the shape of a face and its facial features. It is 

represented by the binary edge map. We employ the Canny edge detector to detect 

edges. In order to obtain a good representation of a face shape in a video frame, the 

background of a video frame should first be removed. Let Et−1(x, y) and Et(x, y) be 

the binary edge maps of two successive frames. Then, the binary edge map of the 

current frame with the background removed, E’t(x, y), can be computed as follows: 
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x
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T(x) is a threshold function used to remove the edge points of the objects from frame 

t−1. 

Figure 3-2 shows the binary edge maps of two successive frames with and 

without background removal. The edge points inside the blue-colored rectangle are 

used to represent the shape of a face. 

 

   

(a) 

     

(b) 

Figure 3-2 (a) The binary edge maps of two successive frames, and (b) the corresponding edge maps 

with background removal. 
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3.3.2. Texture feature 

The shape feature alone is not sufficient to track a face in a situation with 

unstable lighting. This is because edge points used to represent a face shape will 

change rapidly under poor lighting conditions. This problem can be alleviated, to 

some extent, by using the texture feature, which is less sensitive to lighting 

variations.  

Most of the texture descriptors, e.g. Gabor wavelets [62] and autocorrelation, 

are computationally intensive for feature extraction. Recently, the LBP [87] has 

received much attention in terms of texture analysis. This feature can describe an 

object’s local structural properties effectively. The main characteristics of the LBP 

are its invariance to monotonic changes in grayscale and its simple computation. 

This feature has also been applied to face recognition with an outstanding result 

[79]. 

The LBP has several variants. Our tracking algorithm adopts the basic LBP 

operator, in which a pixel is compared to its eight neighborhoods to form a binary 

number as follows: 
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gc is the gray value of the center pixel (xc, yc) of a local region, and gn represents the 

gray values of its neighborhoods, respectively. Figure 3-3 shows an example of the 

LBP representation of a face. The texture of a face region will then be represented 

by a histogram of the LBPs within the face region. We refer to this histogram as 

HLBP(). 

       

 

Figure 3-3 (a) The original image, and (b) its LBP representation at the face region. 

 

3.4. Shape-texture weighted distance 

Having described the shape and texture features, this section will describe our 

shape-texture weighted algorithm for face tracking.  

Videos provide temporal properties. Successive frames are highly correlated in 

a single shot. Having observed this important property, we should be able to track 

faces in consecutive frames by searching for the shortest feature distance between a 

face, f, and the possible face candidates, fc, within a search region in the next frame. 

(a) (b) 
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The feature distance, d(f, fc), can be effectively described using a weighted sum of 

the shape distance, dS(), and the texture distance, dT() as follows: 

( ) ( )( ) ( ) ( )( ),,,),( ''
fcHLBPfHLBPdfcEfEdfcfd TS ⋅+⋅= βα  (3-3) 

where α and β are the respective weights of the two distance measures. The 

subscripts S and T represent the shape and the texture features, respectively. The 

shape distance, dS(), and the texture distance, dT() are computed as follows: 
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where N(E’(f) is the total number of edge points in the face region; O(E’(f), E’(fc)) is 

the number of edge points from the face region and a face candidate which are 

spatially overlapped. The more similar the shapes of the face and a face candidate is, 

the larger the value of O(). corr() computes the correlation of the LBP histograms of 

the face and the candidate.  

The values of α and β can be changed according to the tracking environments. 

For instance, if the lighting becomes poor, the number of detected edge points will 

be too small to represent a face shape. In this case, the shape feature is unreliable. 

Our tracking system can decrease the importance of the shape feature by decreasing 
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α, and it relies more on the texture feature more by increasing  β. Through this 

adaptation, the multi-view of a face can be tracked under environmental changes. 

 

3.5. Experimental Results 

Our face-tracking system has been implemented on a standard PC (Pentium4, 

3GHz) with C++ and the OpenCV library [88]. Three different test sequences were 

used in the experiments; two of them are from the MPEG-7 video databases (Akiyo 

and foreman), while the last one is a sequence captured using an ordinary webcam. 

All the tracking results are available on web [89]. Examples of faces being correctly 

tracked are shown in Figure 3-4 

 

 

Figure 3-4 Examples of faces that are correctly tracked. 

 

The tracking results based on the two MPEG-7 test sequences are very 

impressive. Almost all the frames with faces are correctly tracked (Akiyo: 295 out of 

297, Foreman: 176 out of 186). This high correctly tracked rate is due to the fact that 
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the motions of the faces in these two sequences are not intensive. Therefore, the 

features extracted from consecutive frames are highly correlated and can be tracked 

easily. 

In our self-captured video sequence, we have intentionally included those 

difficult tracking situations that usually cause face tracking to fail. Figure 3-5 shows 

some of the frames in our sequence. Our tracking system can track a face when it is 

tilted (frames 163-190), occluded by the hand (frames 469-480), under out-of-plane 

rotation (frames 501-510), and under-going scale changes (frames 572-587). Many 

face-tracking algorithms fail to track faces in these situations [1, 2, 3]. The tracking 

system runs at 17 frames/sec on average. 

We have also evaluated the accuracy of our algorithm by comparing the 

tracked-face positions to the ground-truth face positions measured manually, as 

shown in Figure 3-6. The positions of the tracked face are very close to the 

ground-truth positions, except for the frames from 213 to 264 only. This is because 

the face in these frames is being under a heavy out-of-plane rotation. When the face 

rotates too heavy, it is not able to detect the edges of facial features accurately. This 

degrades the effectiveness of the shape matching in our tracking algorithm, and 

therefore causes tracking errors. 
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(Tilted) 

 

(Occluded by hand) 

 

(Out-of-plane rotation) 

  

(Large scale changes) 

 

(Motion) 

Figure 3-5 Results of multi-view face tracking. These show that our algorithm can track a face when 

it is tilted (frames 163-190), occluded by hand (frames 469-480), under out-of-plane rotation (frames 

501-510), under-going scale changes (frames 572-587), and has motions (frames 641-654). 
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 (a) 

 (b) 

Figure 3-6 The ground-truth positions and the tracked positions of the face: (a) x-coordinate, and (b) 

y-coordinate. 

 

3.6. Conclusion 

In this chapter, we have proposed an effective face tracking algorithm based on 

a combination of the shape (edge-map) and the texture (LBP) information. The 

algorithm utilizes the observation that the face patterns to be tracked in consecutive 

frames are highly correlated. A face region is tracked by searching for the shortest 

weighted feature distance between the face pattern and the possible face candidates. 

The weights of the features can be adapted during tracking, so that an accurate 
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tracking can be achieved. Our proposed algorithm complements the AdaBoost 

face-detection algorithm to form a multi-view face-tracking system. Experimental 

results show that our algorithm can track faces in varying poses (tilted or rotated) 

with 17 fps on average. 

In visual surveillance applications, the identities of the tracked faces are 

recognized for higher level events like private area access-control. Accurate and 

efficient face recognition algorithms are required to compose a reliable and usable 

surveillance application. In the next chapter, we will introduce the simplified Gabor 

wavelets which are highly efficiently and effective on face recognition. 
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In chapter 3, we have presented a face tracking algorithm which can track 

multi-view faces in real-time. The succeeding task a surveillance system is to 

recognize or to verify the identities of the tracked faces. Apart from accuracy, 

computations involved in this task should also be low such that real time 

performance can be achieved. In this chapter, we will present a simplified version of 

the Gabor wavelet which is a highly efficient feature extraction tool. Moreover, the 

feature extracted by simplified Gabor wavelet has a high representative power in 

representing human faces. Therefore, it is favorable to use simplified Gabor wavelet 

for recognizing or verifying the tracked faces. 

 

4.1. Introduction 

The Gabor wavelet (GW) [65, 90] is well known for its effectiveness as a 

feature for image processing and pattern recognition. Its kernels are similar to the 

response of the two-dimensional receptive field profiles of the mammalian simple 

cortical cell [60], and exhibit the desirable characteristics of capturing salient visual 

Simplified Gabor Wavelets for Human Face 

Recognition 

Chapter 4 
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properties such as spatial localization, orientation selectivity, and spatial frequency 

selectivity [61]. In the spatial domain, a GW is a complex exponential modulated by 

a Gaussian function, which is defined as follows [64]: 
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where x, y denote the pixel position in the spatial domain, ω is the radial center 

frequency of the complex exponential, θ is the orientation of the GW, and σ is the 

standard deviation of the Gaussian function. By selecting different center 

frequencies and orientations, we can obtain a family of Gabor kernels from (4.1), 

which can then be used to extract features from an image. 

GWs can effectively abstract local and discriminating features. In textural 

analysis [91, 92] and image segmentation [93], GW features have achieved 

outstanding results, while in machine vision, they are found to be effective in object 

detection [94, 95], recognition [63, 92, 95] and tracking [96-98]. The most 

successful application of the GWs is for face recognition. In [84, 99-102], GWs are 

employed for face recognition, and achieve very high performance levels. As the 

dimension of the feature vectors using GWs is very large, linear subspace methods 

such as PCA and LDA are used to reduce the dimension. To further improve the 
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performance, kernel methods are also used with the Gabor features. The 

improvement of both the linear methods and the kernel methods is due to the fact 

that the GW features are robust to illumination, rotation, and scale [90]. 

In spite of its superior performance, extracting GW features is highly 

computational. Given an image f(x,y), GW features are extracted by convolving f(x, 

y) with Ψω,θ(x, y) as follows: 

( ) ( ) ( ),,,, ,, yxyxfyxY θωθω ψ∗=  (4.2) 

where * denotes the convolution operator. Usually, convolution is implemented by 

the fast Fourier transform (FFT) to reduce the computation required for feature 

extraction. However, the computation required is still very intensive; this, in turn, 

creates a bottleneck for real-time processing. Hence, an efficient method for 

extracting Gabor features is important for many practical applications. 

The main purpose of this chapter is to introduce a simplified version of Gabor 

wavelets, whose features can be computed efficiently and can achieve a similar 

performance level for face recognition. These simplified Gabor wavelets (SGWs) 

can be viewed as an approximation of the original Gabor wavelets (GWs). A SGW is 

generated by quantizing a corresponding GW into a certain number of levels. With 

SGWs, features can be computed efficiently using an integral image. Our proposed 
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SGWs can replace the GWs for the purpose of real-time processing and applications. 

The rest of this chapter will describe the structure and the properties of SGWs. Fast 

algorithms for extracting features by using SGWs will be described, and their 

corresponding computational complexity will be analyzed. Finally, we will compare 

the performances of the SGW features and the GW features for face recognition, and 

discuss the discriminative power of these features. 

 

4.2. Simplified Gabor Wavelets 

In this section, we will describe the structure of our proposed SGW. This 

includes the shape of the SGW, the number of quantization levels, and the methods 

which determine the respective quantization values. 

 

4.2.1. Shape of a SGW 

To simplify our discussion, a one-dimensional GW is first considered, whose 

equation is shown as follows: 
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where the term exp(–ωσ2
/2) in (4.1) is ignored. Fig.4-1(a) shows the real part of this 
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GW, whose values are continuous. To simplify the GW, its values are quantized to a 

certain number of levels. Fig.4-1(b) illustrates a quantized SGW with 2 quantization 

levels for the positive values and 1 quantization level for the negative values. 

Including a level of zero value, the wavelet is said to be quantized into 4 levels. 

Fig.4-1(c) and Fig.4-1(d) illustrate the corresponding imaginary part of the GW and 

its simplified version, respectively. The same number of quantization levels is used 

for the positive and the negative values of the wavelet, because their magnitudes are 

the same. In Fig.4-1(d), the total number of quantization levels used is 5. For 

2-dimensional cases, Fig.4-2(a) and Fig.4-2(d) show the real and imaginary parts of 

the original 2-D GWs with the gray-level intensities representing the magnitudes of 

the wavelet. The contours of Ψω,θ (x,y) whose values equal those quantization levels 

in Fig.4-1(b) and Fig.4-1(d) are illustrated in Fig.4-2(b) and Fig.4-2(e), respectively. 

In SGWs, the contours are approximated by rectangles. We have derived two 

approximation methods for forming the rectangles, as shown in Fig.4-3(a) and 

Fig.4-3(b), respectively. The first method is to use a rectangle of a size just large 

enough to contain the corresponding contour of the quantized GW. The second 

method is to choose a rectangle such that the squared error between the elliptical 

contour of the GW and the corresponding rectangle is a minimum. To simplify the 
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approximation, we adopt the first method in our algorithm. Fig.4-2(c) and Fig.4-2(f) 

illustrates the corresponding quantized GWs in Fig.4-2(b) and Fig.4-2(e), 

respectively, approximated by rectangles. 
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(c)        (d) 

Fig.4-1. (a) The real part of a one-dimensional GW; (b) the imaginary part of the wavelet; (c) the 

simplified version of (a); and (d) the simplified version of (c). 
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 (a) (b) (c) 

   

 (d) (e) (f) 

Fig.4-2. (a) The real part of a 2-D GW; (b) the contours of the quantized GW of (a); (c) the 

approximation of the contours in (b) by rectangles; (d) the imaginary part of the 2-D GW; (e) the 

contours of the quantized GW of (d); and (f) the approximation of the contours in (e) by rectangles. 

 

4.2.2. Number of Quantization Levels 

The number of rectangles in a SGW depends on the number of quantization 

levels used to quantize the GW. If more quantization levels are employed, the SGWs 

will be more similar to the original GW, but more computation will then be involved 
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for feature extraction. In other words, there is a trade-off between computation and 

approximation accuracy. In Section 4.4, the computational analysis of using SGWs 

and GWs for feature extraction will be performed, and the experiments to evaluate 

the relative performances of SGWs and GWs with different numbers of quantization 

levels for face recognition will be conducted in Section 4.5. 

 

                   

 (a) (b) 

Fig.4-3. (a) Approximation of an elliptical contour using a rectangle just large enough to enclose it; 

and (b) approximation of the elliptical contour using a rectangle such that the squared error between 

the rectangle and the contour is a minimum. 

 

4.2.3. Determination of Quantization Levels 

We describe two methods for determining the quantization levels to be used in 

constructing the SGWs. One of the quantization levels of the SGW is set to zero. 

Assume that the number of quantization levels for the positive and negative values 
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are np and nn, respectively. Then, the total number of quantization levels is np+nn+1. 

Uniform Quantization: In this method, the positive and negative parts of a GW are 

quantized uniformly according to the corresponding number of levels, as shown in 

Fig.4-4(a) and Fig.4-4(b). Suppose the most positive and negative values of a GW 

are A+ and A–, respectively, the corresponding quantization levels for positive levels 

q+(k) and negative levels q–(k) are as follows: 
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k-means Clustering: As the GWs are not evenly distributed, so the k-means 

algorithm is used to determine the respective optimal quantization levels. The 

positive values and the negative values are sampled, and are then partitioned into 

np+1 and nn+1 clusters, respectively. However, after each iteration, the cluster whose 

centroid is the closest to zero will be set at zero. 

Fig.4-5 illustrates the real part and the imaginary part of a GW and their 

corresponding simplified versions. These SGWs are then convolved with an image 

to extract the SGW features at different center frequencies and orientations, which 

then form a simplified Gabor jet. 
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 (c) (d) 

Fig.4-4. (a) The quantization levels for the real part of a GW based on uniform quantization with np = 

2 and nn = 1, (b) the quantization levels for the imaginary part of the GW based on uniform 

quantization with np = 2 and nn = 2, (c) the quantization levels for the real part of the GW based on 

k-means clustering with np = 2 and nn = 1, and (d) the quantization levels for the imaginary part of the 

GW based on k-means clustering with np = 2 and nn = 2. 

 



 68 

 

 

 

 

Fig.4-5. The 3-D structures of (a) the real part and (b) the imaginary part of a 2-D GW, and (c) the 

real part and (d) the imaginary part of the corresponding SGW. 

 

4.2.4. Demeaned SGW (DMSGW) 

The term 2

2ωσ
−

e  in (4.1) makes the GW have a zero mean. A SGW formed by 

quantizing a GW has a non-zero mean; this makes the SGW features sensitive to the 

lighting conditions of an image. Hence, each of the SGWs has to be demeaned. The 

mean of a SGW is computed by summing all of its values, and then dividing this 

sum by the size of the filter. A demeaned simplified Gabor wavelet (DMSGW) is 

obtained by subtracting the SGW from its mean value. In the rest of this chapter, we 

(a) (b) 

(c) (d) 
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will use SGW to refer to a demeaned SGW, and the mean of a SGW is denoted as qm. 

The next section will describe an efficient algorithm for computing the SGW 

features using our proposed SGWs. 

 

4.3. Fast Algorithm for Feature Extraction 

The feature extraction process with a SGW is far more efficient than that with a 

GW. This section will, firstly, describe the extraction of GW features using the FFT, 

and then devise the fast algorithms for extracting features using the SGWs. The 

computational complexities of using the GW and the proposed SGW for different 

orientations will be analyzed in Section 4.4, and their respective runtimes will be 

measured in Section 4.5. In addition to requiring less computation, the SGW features 

for any pixel position can be extracted. This is particularly an advantage if the SGW 

features are used for object tracking. To use the FFT, the size of the image must be a 

power of 2. 

 

4.3.1. Feature Extraction Using the Original GWs 

By selecting different center frequencies and orientations, we can obtain a 

family of GW kernels from (4.1), which can be used for extracting features from 
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images. Given a gray-level image f(x,y), the convolution of f(x,y) and ψω,θ (x,y) is 

given by (4.2). The convolution can be computed efficiently by performing the FFT, 

then point-by-point multiplications, and finally the inverse FFT (IFFT). By 

concatenating the convolution output, we can obtain a GW feature vector Yω,θ of 

dimension Nw⋅NH. 

( ) ( ) ( ) ( ) ( )[ ] ,1,1,,0,1,1,0,,1,0,0,0 ,,,,,,
T

HWH NNYYNYYY −−−= θωθωθωθωθωθω KKY  (4.5) 

where T represents the transpose operation, and Nw and NH are the width and height 

of the image, respectively. We consider only the magnitude of the GW 

representations, which can provide a measure of the local properties of an image [62] 

and is less sensitive to the lighting conditions [66] (for convenience, we denote it as 

Yω,θ). Yω,θ is normalized to have zero mean and unit variance distribution; and then 

the Gabor representations with different ω and θ are concatenated to form a 

high-dimensional vector, as shown in (4.6), and are used for face recognition, 

[ ] ,           ,,,,, 1212111

TTTTTT

nln θωθωθωθωθω YYYYYY LL=  (4.6) 

where l and n are the number of center frequencies and the number of orientations 

used, respectively. Although the FFT is employed so as to reduce the computational 

complexity, it is still very computationally intensive because a total of l×n GWs are 

involved. In addition, the size of the image must be a power of 2, so that the FFT can 
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be used to implement the convolution for saving the computation. 

 

4.3.2. Fast Algorithms for Feature Extraction based on SGWs 

In this section, we will present fast algorithms for feature extraction with the 

SGW at different orientations. Consider a SGW that is convolved with an image 

f(x,y), and the SGW is shifted to the pixel position (xc, yc), as shown in Fig.4-6. The 

convolution output at this point is given as follows: 
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where S+(k), S–(k) and SF are the sum of the gray-level intensities of those pixels 

covered by the rectangles with quantization values q+(k), q–(k), and the rectangular 

region of the filter, respectively. NRp and NRn are the numbers of rectangles with 

positive quantization values and negative quantization values, respectively. As an 

example in Fig.4-2(c), np = 2 and nn = 1, then NRp = 2 and NRn = 2. 

S+(k), S–(k) and SF are computed based on the idea of an integral image [80], 

which can calculate the sum of pixel values within a rectangle efficiently. In addition, 

a fast algorithm for rectangles rotated by 45° or 135° is also available [81]. 

Consequently, our SGW considers 4 orientations only, which are 0°, 45°, 90°, and 
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135°. Denote ii(x, y) as the integral image, then its value at location (x, y) is the sum 

of the pixel values above and to the left of (x, y) inclusive, i.e. 

.),(),(
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∑
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′′=
yyxx

yxfyxii   (4.8) 

The following pair of recursive equations is used to compute the integral image in 

one pass over the image: 

),,(),1(),(

and  ),()1,(),(

yxsyxiiyxii

yxfyxsyxs

+−=

+−=
 (4.9) 

where .0),1()1,( =−=− yiixs  Let us denote  ),,( 11
kk yx  ),,( 22

kk yx  ),,( 33
kk yx  and 

),( 44
kk yx  as the respective coordinates of the four corners of the rectangle for the k

th
 

quantization level. Fig.4-6 shows the four corners for k = np. Hence, we have 







<+−−−−−−−+

=−−−−−−+
=

+

+
.),1(),1()1,()1,1(),(

,),,1()1,()1,1(),(
)(

33221144

33221144

pkkkkkkkk

pnnnnnnnn

nkkSyxiiyxiiyxiiyxii

nkyxiiyxiiyxiiyxii
kS pppppppp (4.10) 

Similarly, if k = nn, we have 
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Fig.4-6. Image f(x,y) is convolved with a SGW whose center is shifted to the pixel position (xc, yc). 

For a rectangle at an orientation of 45°, the rotated integral image, rii(x, y) at 

location (x, y) contains the sum of the pixel values of the rectangle rotated by 45°, 

with the rightmost corner at (x, y) and extended to the boundaries of the image, as 

shown in Fig.4-7, i.e. 

 

( ) ( ).,,
,

∑
′−−≤′≤′

′′=
yyxxxx

yxfyxrii    (4.12) 

Two passes over an image are required to compute the rotated integral image. The 

first pass is performed from left to right and top to bottom as follows: 

( ) ( ) ( ) ( ) ( )1,2,,11,1, −−−+−+−−= yxriiyxfyxriiyxriiyxrii , (4.13) 

where ( ) ( ) ( ) 0,2,11, =−=−=− yriiyriixrii . The second pass is performed from 

(x1,y1) 

y 

(x4,y4) 

(x2,y2) 

(x3,y3) 

(xc,yc) 

x 
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right to left and bottom to top as follows: 

( ) ( ) ( ) ( )yxriiyxriiyxriiyxrii ,21,1,, −−+−+= . (4.14) 

 

 

Fig.4-7. Rotated integral image rii(x,y), which is equal to the sum of pixel intensities inside the 

shaded and rotated rectangle. 

 

Let us denote (xk, yk, wk, hk) as the x-coordinate, y-coordinate, width, and height, 

respectively, of the rotated rectangle in Fig.4-8. Then, we have 

( )

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( )
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(4.15) 

Similar formulation can be derived for the computation of S–(k), as well as for the 

case when a rectangle is at an orientation of 135°. 

rii(x,y) 
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Fig.4-8. The computation scheme for a rotated rectangle. 

 

To further speed up feature extraction, let us denote RS(k) as the sum of pixel 

intensities inside a rectangle with the coordinates of its four corners  being ),,( 11
kk yx  

),,(
22
kk yx  ),,( 33

kk yx  and ),( 44
kk yx , respectively. Thus 

( ) ( ) ( ) ( ) ( )33221144 ,11,1,1, kkkkkkkk yxiiyxiiyxiiyxiikRS −−−−−−+= .(4.16) 

Let RS+(k), RS–(k) and RSF be the sum of the gray-level intensities of those pixels 

inside the rectangles with quantization values q+(k), q–(k) and the rectangular region 

covered by the SGW, respectively. Fig.4-9 shows the real part of a SGW with nn = np 

= 2 or NRn = 4 and NRp = 2. Then, the convolution output at the pixel position (xc, yc) 

is: 

wk hk 

wk 

hk 

(xk,yk) (xk−1−hk,yk+1+hk) (xk−1,yk−1) 

(xk+wk−1,yk+wk−1) (xk+wk−1−hk,yk+wk−1+hk) 
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where ( )
( )

( ) ( )
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Hence, instead of using q(k) directly, the m(k)s are employed in the computation.  
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Fig.4-9. The rectangles in a SGW. 

 

For implementation, a number of parameters are required to describe a rectangle, 

which govern the computation of RS+(k), RS–(k) and RSF. These parameters include 

the orientation, m+(k), m−(k), mF, (x, y) coordinates, and the width and height of each 

rectangle. Fig.4-10 defines the (x, y) coordinates, and the width and height of an 

upright rectangle and a rotated rectangle, which is similar to that in [80] and [81]. 

Fig.4-11(a) shows a SGW, while Fig.4-11(b) describes the parameters of this SGW. 

RS+(1) 

RS−(3) 

(xc, yc) 

RS−(2) 

RS−(1) 

RS−(4) 

RSF 

RS−(1), RS−(3) and RS+(1) 

are the outermost 

RS−(2), RS−(4) and RS+(2) 

are the inner rectangles 

RS+(2) 
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(a)                            (b) 

Fig.4-10. Definition of the (x, y)-coordinates, width and height of a rectangle in a SGW at an 

orientation of (a) 0°, and (b) 45°. 

 

 

 

Fig.4-11. (a) A SGW and (b) the corresponding parameters of this wavelet. 

 

4.4. Computational Analysis for Feature Extraction 

In this section, we will analyze and compare the computations required for 

extracting features using GW and SGW, respectively. Within our context, 

16 16 // width & height of the SGW 

0.785398 // scale of the SGW 

0  // orientation of the SGW (0 = 0°, 1 = 45°, 2 = 90°, 3 = 135°) 

0  // real or imaginary part (0=real, 1=imaginary) 

-0.000082 // mean of SGW 

2  // number of quantization levels in the positive side 

1  // number of quantization levels in the negative side 

-0.004159 0.000082 0.004032 0.007982  // quantization values 

4  // number of rectangles 

// Quantization value m(k) x  y  w  h 

 -0.004159 -0.004241 3 3 3 10 

 -0.004159 -0.004241 10 3 3 10 

 0.004032 0.003950 6 2 4 12 

 0.007982 0.003950 7 4 2 8 

(b) (a) 
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computations refer to the number of real additions and real multiplications required 

for extracting the GW features of an image using a GW. In our analysis, we assume 

that the image size is a power of 2 so that the FFT can be applied when using GWs 

for faster feature extraction. Actually, for the use of SGW, the image may be any size 

and the features at any individual pixel position can be computed efficiently. 

 

4.4.1. Feature Extraction with GW 

Given an N×N image, f, and a GW, g, with an arbitrary scale and orientation, GW 

features can be extracted by convolution, i.e. f*g. The convolution is implemented 

by using the FFT, then point-by-point multiplications, and finally the IFFT. In our 

analysis, we assume that the FFTs of the GWs are pre-computed. 

The FFT of an N×N image requires N
2
log2N

2
 complex additions and 0.5N

2
log2N

2
 

complex multiplications. The IFFT requires the same amount of computation as the 

FFT. The point-by-point multiplications involve N
2
 complex multiplications. 

Performing one complex addition requires 2 real additions, while one complex 

multiplication requires 2 real additions and 4 real multiplications. Therefore, feature 

extraction based on a GW requires a total of 2N
2
log2N

2
 complex additions and 

N
2
log2N

2
+N

2
 complex multiplications; this is equivalent to a total of 6N

2
log2N

2
+2N

2
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real additions and 4N
2
log2N

2
+4N

2
 real multiplications. 

 

4.4.2. Feature Extraction with SGW 

As described in Section 4.3, fast algorithms are available for extracting SGW 

features using SGWs at 4 different orientations. These fast algorithms are based on 

the use of integral images and rotated integral images, such that features at any 

position in an image can be computed efficiently. Our algorithm will first perform a 

table look-up operation to compute the sum of pixel values for the respective 

rectangles of the SGW. Then, each of the pixel sums is multiplied by the 

quantization value of the corresponding rectangle. The sum of these products is the 

SGW feature at a given pixel position. 

The computation for extracting features using a SGW at orientation 0° or 90° (a 

non-rotated SGW) is different from that when using a SGW at orientation 45° or 

135° (a rotated SGW). This is because, for feature extraction, the non-rotated SGW 

uses the integral image, while the rotated SGW uses the rotated integral image. The 

computations involved are different for different orientations. Consequently, we 

separate our analysis into two parts: the non-rotated SGW (NR-SGW) and the 

rotated SGW (R-SGW). 
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4.4.2.1. The non-rotated SGW (NR-SGW) 

Before extracting features using a NR-SGW, the integral image must be 

computed. From (4.9), 4 real additions are required to compute an entry of the 

integral image. For an image of size N×N, 4N
2
 real additions are required for the 

whole integral image. Suppose that the SGW contains a total of N
t
rect rectangles. 

From (4.16) and (4.17), 3N
t
rect real additions are required to compute all the 

rectangular pixel sums, and N
t
rect real multiplications and (N

t
rect−1) real additions are 

required to compute the SGW feature for a given pixel position. The coordinates of 

the four corners in (4.16) can be generated by a table look-up operation. 

Consequently, a total of 4N
2
N

t
rect + 3N

2 
real additions and N

2
N

t
rect

 
real 

multiplications are required to extract the SGW feature. 

 

4.4.2.2. The rotated SGW (R-SGW) 

The rotated integral image is computed for extracting feature with a rotated SGW. 

From (4.13) and (4.14), 9 real additions are required to compute an entry in the 

rotated integral image. For an image of size N×N, 9N
2
 real additions are required to 

compute the whole rotated integral image. 

Feature extraction with a R-SGW is computed in a similar way to that with the 
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NR-SGW. The rotated pixel sums covered by the rotated rectangles of the R-SGW 

are computed. Suppose that the R-SGW contains N
t
rect rectangles, then from (4.16) 

and (4.17), 3N
t
rect real additions are required to compute all the rotated rectangular 

pixel sums, and N
t
rect real multiplications and (N

t
rect−1) real additions are required to 

compute the R-SGW feature at a pixel position. Therefore, a total of 4N
2
N

t
rect+8N

2
 

real additions and N
2
N

t
rect real multiplications is required to extract the feature from 

the whole image. Table 4-1 shows the summarization of the computational 

complexities of feature extraction using GW and SGW. 
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 + ×××× 

A: Compute FFT of image (floating point 

operations) 
3N

2
log2N

2
 2N

2
log2N

2
 

B: Compute feature by multiplying FFT image 

and FFT GW (floating point operations) 
2N

2
 4N

2
 GW 

C: Compute IFFT of feature (floating point 

operations) 
3N

2
log2N

2
 2N

2
log2N

2
 

 Total 6N
2
log2N

2
+2N

2
 4N

2
log2N

2
+4N

2
 

D: Compute SAT (integer additions) 4N
2
 0 

E: Compute rectangular pixel sums (integer 

additions) 
3N

2
N

t
rect 0 

F: Compute feature by multiplying rectangular 

pixel sums and quantization value of 

rectangles (floating point multiplications) 

0 N
t
rectN

2
 

G: Add all products in F (floating point 

additions) 
N

2
(N

t
rect-1) 0 

NR-SGW 

Total 4N
2
N

t
rect + 3N

2
 N

2
N

t
rect 

H: Compute RSAT (integer additions) 9N
2
 0 

I: Compute rotated rectangular pixel sums 

(integer additions) 
3N

2
(N

t
rect-1) 0 

J: Compute SGW background pixel sums 

(integer additions) 
3N

2
 0 

K: Compute feature by multiplying rectangular 

pixel sums and quantization value of 

rectangles (floating point multiplications) 

0 N
t
rectN

2
 

L: Add all products in K (floating point 

additions) 
N

2
(N

t
rect-1) 0 

R-SGW 

Total 8N
2
+4N

2
N

t
rect N

t
rectN

2
 

Table 4-1(a) Computational complexities of feature extraction using GW and SGW. 

*1: Image dimension = N×N, where N must be to the power of 2 in order to speed up the GW feature 

extraction process. 

*2: N
t
rect is the total number of rectangles in a SGW, which is listed in Table 4-3. 
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To illustrate the computational advantage of using SGWs over GWs, Table 4-2 

tabulates the respective numbers of arithmetic operations required for extracting GW 

features and SGW features, and Table 4-3 shows the respective numbers of 

rectangles used to represent the different level quantized SGWs. It is found that 

about 2.85 times and 2.44 times the arithmetic operations are saved if a 3-level 

quantized NR-SGW and R-SGW, respectively, are used. Moreover, the number of 

multiplications required for SGW feature extraction is reduced significantly when 

compared to that for GW. In general, the runtime required for multiplication is 

longer than that for addition. Furthermore, the runtime consumed by a floating point 

arithmetic operation is longer than that for an integer arithmetic operation. Feature 

extraction with SGW involves fewer floating point operations than does GW, 

therefore, the runtime for SGW feature extraction should in practice have a speed-up 

rate higher than 2.85 times. 
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 + ×××× Total 

GW 303,104 212,992 516,096 

3 levels 147,844 32,768 180,612 

5 levels 229,764 53,248 283,012 NR-SGW 
No. of quantization 

levels used 

7 levels 344,452 81,920 426,372 

3 levels 179,049 32,768 211,817 

5 levels 260,969 53,248 314,217 R-SGW 
No. of quantization 

levels used 

7 levels 375,657 81,920 457,577 

Table 4-2  Number of arithmetic operations required for extracting GW features from a 64×64 pixel 

image using a GW and a SGW with different numbers of quantization levels. 

 

Number of 

quantization 

levels 

(nn + np + 1) 

Number of rectangles in 

the real part of a SGW 

(N
r
rect) 

Number of rectangles in 

the imaginary part of a 

SGW (N
i
rect) 

Total number of 

rectangles in a 

SGW, including the 

background of 

SGW 

(Nt
rect) = (Nr

rect) + (Ni
rect) + 1 

3 (nn = 1, np = 1) (Nr
rect) = (nn × 2 + np) = 3 (Ni

rect) = ((nn + 1) + (np + 1)) = 4 8 

5 (nn = 2, np = 2) (Nr
rect) = (nn × 2 + np) = 6 (Ni

rect) = ((nn + 1) + (np + 1)) = 6 13 

7 (nn = 3, np = 3) (Nr
rect) = (nn × 2 + (np + 2)) = 11 (Ni

rect) = ((nn + 1) + (np + 1)) = 8 20 

Table 4-3  The number of rectangles of a SGW with different numbers of quantization levels, where 

nn and np are the number of negative quantization levels and the number of negative quantization 

levels in a SGW. 

 

4.5. Experimental Results 

In this section, we will evaluate the respective performances of the proposed 
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SGWs with different numbers of quantization levels. The two different methods for 

determining the quantization values of a SGW will also be evaluated. Then, we will 

compare the performances of the SGW features and the GW features for face 

recognition. Finally, we will compare the runtimes for extracting the SGW features 

and the GW features. 

 

4.5.1. Face Databases and Experimental Set-up 

The standard face databases used include the Yale database, YaleB database and 

AR database. The number of distinct subjects, the number of testing images and the 

characteristics of the databases are tabulated in Table 4-4. 

 

Databases Characteristics 
Number of 

distinct subjects 

Number of 

images 

Number of 

images per 

subject 

Yale 
Variations in 

facial expression 
15 150 10 

YaleB 
Large variations 

in lighting 
10 640 64 

AR 
Variations in 

facial expression 
121 605 5 

Overall 146 1395  

Table 4-4  The number of distinct subjects, the number of images and the characteristics of the face 

databases. 
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For face recognition, a frontal-view image of each subject in the databases is 

selected as a training image, and the remaining faces are used for testing. Each face 

image is normalized to a size of 64×64, and is aligned based on the position of the 

two eyes for matching. In order to enhance the global contrast of the images and 

reduce the effect of uneven illuminations, histogram equalization is applied to all 

images. As described in Section 4.2.3, we have two different ways to determine the 

quantization levels of SGWs. The SGWs derived based on uniform quantization and 

on k-means clustering are denoted as SGW1 and SGW2, respectively. The GW and 

SGW adopt 3 to 5 center frequencies with 4 orientations. In other words, 12 to 20 

GWs and SGWs are used for feature extraction. The extracted features with each 

Gabor filter are concatenated to form a feature vector, which is then normalized to 

have zero mean and unit variance. These Gabor jets are then used directly to 

compute the distance between two images, pixel position by pixel position. 

 

4.5.2. Relative Performances of SGW1 and SGW2 

Table 4-5 shows the recognition rates based on SGW1 and SGW2 with different 

numbers of quantization levels for the different databases. For the real part of a GW, 

the dynamic range of the positive values is usually larger than that of the negative 
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values. Hence, np should be set larger than nn. However, for the imaginary part of the 

GW, the dynamic ranges of the positive values and negative values are the same, so 

np should be equal to nn. To simplify the experiment, we set np equal to nn for both 

the real and imaginary parts. Consequently, including the level for zero, the numbers 

of quantization levels considered in the experiments are 3, 5, and 7. 

From Table 4-5, the relative performances of SGW1 and SGW2 are very similar. 

The face recognition rate increases slightly with an increase in the number of 

quantization levels. If more quantization levels are used, the SGW can better 

approximate the GW, and its performance will then be closer to that of the GW. 

However, using the SGW with more quantization levels will involve more 

computations. 

We have also investigated the effect of using more scales of the SGW with a 

fixed number of quantization levels. Experimental results show that using 4 scales of 

SGW results in the best recognition rate. Theoretically, using 5 scales should 

produce a better performance than using 4 scales only. However, the error in 

representing a GW is large when its scale is large. As discussed in Sections 4.2.1 and 

4.3, in order to utilize fast algorithms to extract the features, the SGWs must be 

approximated with rectangles after quantizing the GWs. This constraint will alter the 
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effective regions of the SGWs. Fig.4-12 shows a GW, a GW after quantization, and a 

SGW approximated by rectangles. We can observe that part of the effective regions 

of the quantized GW is removed or extended in order to form a rectangular shape, 

which will therefore introduce quantization errors. As the size of a SGW is 16×16 

pixels only, large rectangles cannot be formed. As a result, the quantization errors in 

forming the rectangles are significant for those large-scale SGWs. On the contrary, 

for small-scale SGWs, small rectangles will be formed without requiring much of 

the original shape of the quantized GW to be changed. This will introduce fewer 

quantization errors. For SGWs with 5 scales, the approximation of some of the 

large-scale GWs is not accurate. This, in turn, will degrade the overall recognition 

performance. 
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 GW Quantized GW SGW with rectangular shape 

Small scale (ωωωω=ππππ/2) 

   

Large scale (ωωωω=ππππ/8) 

   

Fig.4-12.  The first column is the GW, the second column is the quantized form of GW, and the third 

column is the SGW with a rectangular shape. The top row is the small-scale (ω=π/2) GW being 

quantized and formed into a rectangular-shaped SGW. The bottom row is the large-scale (ω=π/8) GW 

being quantized and formed into a rectangular-shaped SGW. 
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Recognition rate 

 
Different combinations of 

scales-orientations-quantization levels Yale YaleB AR 

5 scales 4 orientations 3 quantization levels 82.00% 90.16% 92.40% 

5 scales 4 orientations 5 quantization levels 84.67% 92.19% 92.40% 

5 scales 4 orientations 7 quantization levels 82.67% 92.66% 92.89% 

4 scales 4 orientations 3 quantization levels 82.67% 93.13% 92.07% 

4 scales 4 orientations 5 quantization levels 82.00% 94.69% 91.74% 

4 scales 4 orientations 7 quantization levels 82.67% 94.84% 92.07% 

3 scales 4 orientations 3 quantization levels 82.67% 92.97% 92.23% 

3 scales 4 orientations 5 quantization levels 82.67% 93.91% 92.23% 

SGW1 

3 scales 4 orientations 7 quantization levels 83.33% 94.69% 92.23% 

5 scales 4 orientations 3 quantization levels 82.67% 91.09% 91.90% 

5 scales 4 orientations 5 quantization levels 82.67% 92.50% 92.23% 

5 scales 4 orientations 7 quantization levels 82.67% 92.50% 92.56% 

4 scales 4 orientations 3 quantization levels 82.67% 93.91% 91.74% 

4 scales 4 orientations 5 quantization levels 82.67% 95.00% 91.74% 

4 scales 4 orientations 7 quantization levels 83.33% 95.47% 91.90% 

3 scales 4 orientations 3 quantization levels 82.00% 93.59% 92.40% 

3 scales 4 orientations 5 quantization levels 82.67% 95.00% 91.90% 

SGW2 

3 scales 4 orientations 7 quantization levels 83.33% 94.53% 92.23% 

5 scales 4 orientations 80.00% 94.69% 92.73% 

4 scales 4 orientations 78.00% 97.50% 92.23% GW 

3 scales 4 orientations 74.00% 99.22% 89.92% 

Table 4-5  Face recognition performances of SGW1, SGW2 and GW with different scales, 

orientations, and quantization levels (SGW1: uniformly quantized SGWs, SGW2: k-means quantized 

SGWs, GW: Gabor wavelets). 
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4.5.3. Performances of the SGW and the GW 

The use of the SGW can save a lot of computation when compared to the GW, 

while maintaining a comparable performance to the GW. Table 4-5 tabulates the 

performances using SGW1, SGW2 and GW for face recognition with different 

numbers of center frequencies and orientations. The face recognition results show 

that, with the same number of center frequencies and orientations, the relative 

performances of the SGW and the GW are very similar; and in some cases, the SGW 

outperforms the GW. Actually, the center frequency of a SGW should be very 

similar to its original GW. A SGW is a quantized version of its GW; their rates of 

variation should be maintained. Hence, in the frequency domain, the center 

frequencies of the SGW and the GW should be very close, while the shape of their 

spectra will differ. The features extracted by a GW and the corresponding SGW 

should be similar. Fig.4-13 shows the magnitudes of the GW features and the SGW 

features at 3 scales and 4 orientations. We can observe that the general shapes of 

SGW features and GW features are similar; however, SGWs introduce a directional 

pattern on the features, which is a drawback with quantizing GWs coefficients to a 

certain number of levels. 

From Table 4-5, the performance of the SGW is slightly worse than that of the 
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GW with the YaleB database, while the SGW has a very similar performance to the 

GW with the other databases. The reason for this is that the images in the YaleB 

database have a wide variation in lighting conditions. As we discussed in Section 

4.2.4, a SGW is the quantized version of a GW, so the values of the SGWs are 

changed in step. Therefore, when two images of the same person have a significant 

difference in lighting conditions, the features extracted by GWs and SGWs will also 

differ greatly. Hence, the performance of the SGW will be degraded in this 

circumstance. 
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Fig.4-13. The magnitudes of SGW features and GW features at 3 scales and 4 orientations. 

 

4.5.4. Runtimes for Feature Extraction with the SGW and the GW 

In our experiments, we also measure the runtimes required for feature 

extraction using the SGW and the GW. One of the images from the Yale database 

was used, and the size of each face region is 64×64 pixels. Feature extractions using 
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the SGW and the GW at 5 scales and 4 orientations were performed for 100 times, 

and the respective total runtimes were measured. Table 4-6 tabulates the runtimes for 

extracting features using the SGW and the GW. With a 3-level quantized SGW, the 

speed-up rate for feature extraction is 4.39 times that of a GW. The reduction in 

runtime will decrease if the SGW uses more quantization levels. For SGWs with 5 

and 7 quantization levels, the runtimes for feature extraction are 27.5ms and 

37.97ms, respectively, and the corresponding speed-up rates are 2.57 and 1.86, 

respectively.  

To conclude our experiment results, the performance of the SGW is comparable 

to that of the GW, while the computation required by the SGW is significantly less 

than that for the GW. GWs can extract features which are discriminative and useful 

for many applications, but they are impractical for real-time applications due to their 

high complexity in feature extraction. Consequently, SGWs can be propelled to 

replace GWs for real-time applications and processing. 
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5 scales, 4orientations 4 scales, 4 orientations 3 scales, 4 orientations 

3-Lv 5-Lv 7-Lv 3-Lv 5-Lv 7-Lv 3-Lv 5-Lv 7-Lv SGW 

16.09 ms 27.50 ms 37.97 ms 12.81 ms 22.50 ms 30.94 ms 9.37 ms 17.50 ms 23.44 ms 

GW 70.64 ms 56.73 ms 42.67 ms 

Speed-up 

rate 

4.39 2.57 1.86 4.43 2.52 1.83 4.55 2.44 1.82 

Table 4-6  The average runtimes for feature extraction using the GW and the SGW with different 

scales, orientations, and numbers of quantization levels. The speed-up rate is equal to the runtime 

required by the GW divided by that of the SGW. 

 

4.6. Conclusion 

In this chapter, we have proposed a simplified version of GWs, which can 

achieve a performance level similar to the original GWs for face recognition. We 

have also described fast algorithms for feature extraction based on SGWs at different 

orientations. In addition, we have presented how to construct these SGWs and their 

performance with different numbers of quantization levels, center frequencies and 

orientations. When 5 center frequencies and 4 orientations are employed, the relative 

performances of the SGWs and the GWs are very similar, while, at most, a speed-up 

rate of 4.39 times can be achieved if 3-level quantized SGWs are used. The runtimes 

required for feature extraction in a 64×64 image, based on a SGW with 3 
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quantization levels and a GW, are 16.09 ms and 70.64 ms, respectively. These 

results can propel SGWs to replace GWs for realizing real-time applications and 

processing. However, the simplified Gabor features are slightly more sensitive to 

lighting variations than the original Gabor features are. 

In Chapters 3 and 4, we have presented our face tracking algorithm and face 

recognition/verification algorithm, respectively. These algorithms are highly 

efficient and have desirable performances which are favorable for building a 

real-time visual surveillance system. 
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5.1. Conclusion 

In this thesis, we have firstly stated the motivation and the problems of research 

on face tracking and verification in videos. Our research focuses on the area of facial 

feature representations and feature matching algorithms, which are both efficient and 

effective methods for face tracking and verification. In Chapter 2, we have reviewed 

some well-known techniques and the current advances in face tracking and 

recognition/verification. 

A good face tracking algorithm must be able to track faces varying poses and 

scales, under occlusion, and in a non-constant environment. In Chapter 3, we have 

proposed an effective face tracking algorithm based on the combination of shape and 

texture information. As the face patterns to be tracked in consecutive frames are 

highly correlated, an accurate tracking can be achieved by searching for the shortest 

weighted feature distance between the face pattern and the possible face candidates. 

The features used to represent a face include the edge map, which describes the 

shape of a face, and the local binary pattern (LBP), which describes the texture 

information about a face. The weights of the shape and texture feature distances can 

Conclusion and Future Work 

Chapter 5 
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be adapted for real-time tracking. Both the edge map and the LBP can, to a certain 

extent, alleviate changes in environmental lighting. Moreover, skin-color-like 

objects will not be falsely tracked as a face. Our proposed algorithm complements 

the AdaBoost face detection algorithm to form a multi-view face-tracking system. 

Experimental results show that our algorithm can track faces in varying poses and 

scales, under occlusion and in a non-constant environment in real time. 

In most of the current visual surveillance systems, face recognition/verification 

is a task beyond the capability of face tracking. In this scenario, accuracy is not the 

only criterion for the face recognition algorithms being used. Efficiency of the 

algorithms is also a critical issue so that real time processing in the surveillance 

systems can be ensured. The Gabor wavelet has been shown to have a high 

performance in face recognition, but it is rather computationally intensive in feature 

extraction. In Chapter 4, we have proposed a simplified version of GWs, which can 

achieve a performance level similar to the original GWs for face recognition, but 

with a much higher efficiency in feature extraction. We have also described fast 

algorithms for feature extraction based on SGWs at different orientations. In 

addition, we have outlined how to construct these SGWs and their performance with 

different numbers of quantization levels, center frequencies and orientations. When 5 
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center frequencies and 4 orientations are employed, the relative performances of the 

SGWs and the GWs are very similar, while, at most, a speed-up rate of 4.39 times 

can be achieved if 3-level quantized SGWs are used. The runtimes required for 

feature extraction in a 64×64 image, based on a SGW with 3 quantization levels and 

a GW, are 16.09 ms and 70.64 ms, respectively. These encouraging results imply that 

SGWs can replace GWs for realizing real-time applications and processing. 

However, the simplified Gabor features are slightly more sensitive to lighting 

variations than the original Gabor features are. 

 

5.2. Future works 

Outdoor tracking is much more difficult than indoor tracking. This is because 

the changes in lighting and the complexness of the background are far more 

complicated in an outdoor environment. In an outdoor environment, lighting can 

vary randomly by clouds moving in the sky. The background of an outdoor-tracking 

scene consists of many moving objects, which confuse most of the existing indoor 

tracking algorithms. A possible future work of this research is the tracking of faces 

in outdoor environments. One feasible way to approach this is to model the features 

of a detected face in a time-series sense. A time-series of feature models can tolerate 
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to a certain extent, the effect of outdoor environmental changes. Models in the 

time-series can be weighted such that the individual importance of the models at 

different times can be reflected. Our shape-texture weighted algorithm can be 

modified to a time-series of weighted shape-texture models to track faces in outdoor 

environments. 

The simplified Gabor wavelet (SGW) that we have proposed in Chapter 4 is not 

optimized in terms of quantization and reshaping. In our proposed method, we 

employ uniform quantization and the K-mean algorithm to quantize a Gabor 

function. The shape of a SGW is fixed such that a rectangle with dimension just 

large enough to enclose the quantized GW is used. However, these approaches are 

not optimal. We can obtain, through training, a set of optimal quantization values 

and rectangular shape. The bootstrap method [103] can be included to increase the 

reliability of the training. One drawback of this approach is that the training time can 

be very lengthy, as a large set of quantization values and rectangular shapes will be 

tested during the training. We believe that the SGW obtained from training can 

further increase its applicability to face recognition. 
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