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ABSTRACT 

Robotic systems have been used in stroke rehabilitation to restore upper limb 

functions. In this study, an innovative myoelectrically controlled robotic system with 

one degree of freedom (DOF) was developed. The axis of the robotic system was 

aligned with the elbow joint and a torque from a servo motor was applied directly to 

the elbow based on the electromyographic (EMG) signal of the subject’s affected 

muscle at the elbow joint. This could help subjects after stroke to perform active 

elbow training in the horizontal plane. Two control strategies were investigated for the 

robotic system: the recurrent artificial neural network (RANN) model and 

proportional control. The RANN model was investigated on six subjects without 

impairment and three subjects after stroke. After training, the average cross-

correlation coefficients between the expected and the predicted torque of subjects 

without impairment were 0.97±0.01 in the training data and 0.92±0.03 in the test data, 

respectively. It appeared that the output of the RANN was highly correlated to the 

expected torque. However, the performance of the RANN model on the three subjects 

after stroke did not show results as good as that on the subjects without impairment. 

The average cross-correlation coefficients of the subjects after stroke were 0.73±0.10 

in the training data and 0.41±0.07 in the test data, respectively. Proportional control 

with a resistive load was used as an alternative control strategy. With the application 

of proportional control, the system could provide assistive extension torque which 

was proportional to the amplitude of the subject’s processed and normalized triceps 

EMG. The EMG-torque gain was set at 0%, 50%, 100% and 150% for the assistive 

torque. The system could also provide a resistive load, the level of which ranged from 

0%-20% of the maximum isometric voluntary extension (MIVE) torque and the 

maximum isometric voluntary flexion (MIVF) torque of the affected elbow when the 

elbow angle was at 90 deg. Effects of the resistive loads and EMG-torque gains on the 

performance of the elbow extension were investigated on the affected arms of nine 

subjects after stroke in a tracking experiment. Results showed that the design could 

enable eight subjects with weak triceps to extend their affected elbows to a more 

extended position with the assistance of the myoelectrically controlled robotic system 

except for one subject who could already extend her elbow to the full extension 

position (0 deg) without the assistance of the system. There was a significant decrease 

in triceps EMG along with the increase in the EMG-torque gain during the elbow 
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movement from 90 deg to 60 deg, which implied that it took less effort for subjects 

after stroke to perform the same movement with a larger gain. Since the 

myoelectrically controlled robotic system could facilitate elbow movement, its long-

term training effect on the functional improvement of the affected arm in three 

subjects after stroke was investigated in a 20-session training program for four weeks. 

In each session, there were 18 trials with different combinations of the EMG-torque 

gain and the resistive load. In each trial, the subject was asked to follow a target 

trajectory which ranged from 0 deg to 90 deg, and complete five-cycle repetitive 

elbow flexion and extension with the myoelectrically controlled robotic system. 

Outcome measurements on the muscle strength at the elbow joint showed that there 

were increases in the MIVE and MIVF torques of the affected arms of all the subjects 

after the four-week rehabilitation training. The subjects could also reach a more 

extended position without the assistance of the robotic system after the four-week 

rehabilitation training. Moreover, there were a decrease in the modified Ashworth 

scale and an increase in the Fugl-Meyer score for all three subjects after the four-week 

rehabilitation training.  

In addition, another sinusoidal arm tracking experiment was designed to 

quantitatively evaluate the elbow control function on nine subjects after stroke in 

dynamic situations. The movement performance was analyzed in terms of three 

parameters: root mean square error (RMSE) between the actual elbow angle and the 

target angle, root mean square jerk (RMSJ) and response delay (RD) at six velocities 

(10, 20, 30, 40, 50 and 60 deg/s). Results showed the RMSE and RMSJ increased in 

both the affected and the unaffected arms with the increase in the tracking velocity. 

The RMSE and RMSJ of the unaffected arms were significantly lower than those of 

the affected arms at all the velocities studied. The RD of the affected arms was larger 

than that of the unaffected arms at the velocities of 20, 30, 40 and 60 deg/s. There 

were significant correlations between the RMSJ and the modified Ashworth scale at 

the velocities of 10, 20, 30, 40 and 60 deg/s. The sinusoidal arm tracking experiment 

was also conducted on the three subjects after stroke before and after the four-week 

training. Results showed that there were decreases in the RMSE and RD of the 

affected arms after the four-week training, which indicated the improvement of the 

elbow control function in the affected arms for the three subjects. 
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CHAPTER 1 BACKGROUND 

1.1 Introduction  

1.1.1 Stroke 

Stroke is a primary cause of serious disabilities and the third leading cause of death in 

Hong Kong. Approximately 25,000 strokes occur each year in Hong Kong, causing 

3,000 deaths and significant disability for many survivors (Fig. 1.1) (Hong Kong 

Hospital Authority Statistical Report, 2004), and the number of disability increases in 

recent years because of the increasing population of aged people. The World Health 

Organization (WHO) has defined stroke as a condition with ‘Rapidly developing 

clinical signs of focal loss of cerebral function, with symptoms lasting more than 24 

hours or leading to death, with no apparent cause other than that of vascular origin’ 

(Hatano et al., 1976). There are two main kinds of stroke. One is ischemic stroke 

which results from occlusion of or low flow in one or more vessels by blood clots or 

other particles; the other is hemorrhagic stroke which is caused by bleeding. The 

rupture or blood clot reduces the blood supply to an area of brain and the neurons in 

this area are affected. Disabilities occur when the neurons in these areas are killed and 

the abilities or functions they control are disrupted. The types and degrees of 

disability that follow a stroke vary considerably, depending upon the origin part of the 

brain and the size of affected area. Generally, stroke can cause five types of 

disabilities (National Institute of Neurology Disorder and Stroke, US, 2005):  

1. Paralysis or problems controlling movement 

2. Sensory disturbances including pain 

3. Problems using or understanding language 

4. Problems with thinking and memory    

5. Emotional disturbances  

Patients after stroke have often been reported to have a lower quality of life (QOL) 

than normal subjects of similar age due to the disabilities (Jonkman et al., 1998; 

Wyller et al., 1998). Post-stroke depression was also reported in these patients with 

impaired QOL (Angeleri et al., 1993). It is important to help such patients with 
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disabilities to regain optimal physical, psychosocial, and vocational functioning and 

allow them to take an active independent role in both family and community life.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1 Mortality and morbidity statistics of cerebrovascular disease (Stroke) in Hong 

Kong from 1994 to 2002 (Hong Kong Hospital Authority Statistical Report, 

2004).  

Stroke rehabilitation begins during acute hospitalization after the patient’s medical 

condition has been stabilized and continues sequentially in three main settings: 

hospital, specialized rehabilitation units, and the community (Greshman et al., 1997; 

Pollack et al., 2002). Since most patients after stroke are affected by hemiplegia or 

hemiparesis, a neurological impairment that could restrict sensory and motor abilities 

on one side of the body, the objective of physiotherapy is to focus on helping patients 

with motor function impairment to restore the lost functions, perform normal 

activities independently and improve the quality of daily life (Teasell et al., 2003; 

Sivenius et al., 1985). Different kinds of rehabilitation approaches or rehabilitation 

with different intensities could result in different outcomes (Dobkin, 2004; Sivenius 

et al., 1985; Bode et al., 2004). In order to find a better rehabilitation strategy or to 

design a suitable rehabilitation device for patients after stroke, it is necessary to 

understand how spontaneous recovery takes place and how it can be facilitated for 
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maximum recovery. The answers to these questions can reveal what is the mechanism 

behind the rehabilitation that causes the recovery.  

1.1.2 Brain plasticity  

Neuroscientific knowledge about basic mechanisms for motor control, cognition, 

learning, and memory has been developed to explain rehabilitative practices during 

the last decade. Brain plasticity means ability of the brain to reorganize neural 

pathways based on new experiences. Brodal (1973) found that stroke might damage 

the neuromuscular system and this damage was irreversible. Since no neurons could 

regenerate after stroke, the mechanism behind the rehabilitation could only be 

explained by intact fibers taking over the function for the damaged ones. It is still not 

very clear about the recovery process and there are two main explanations. One was 

that neurons in the unaffected hemisphere region took the place of the functions of the 

damaged ones (Fisher et al., 1992); the other explanation was that the remaining intact 

neurons in the same hemisphere took on the functions of the damaged ones. Many 

techniques and theoretical models have been adopted to investigate the change in the 

brain caused by different kinds of stimulation. Nelles et al. (2001) used serial positron 

emission tomography (PET) to study training-induced brain plasticity after stroke. 

They found that the group who received passive movement improved much more than 

the control group after treatment. They also found a bilateral improvement of 

activation in the inferior parietal cortex using statistical parametric mapping after the 

training. Karni et al. (1995) used functional magnetic resonance imaging (fMRI) of 

local blood oxygenation to study the neural changes underlying the learning of finger 

movements. They found that a slowly evolving, long-term, experience-dependent 

reorganization of the adult primary motor cortex might explain the acquisition and 

retention of the motor skill. Robertson et al. (1999) studied the brain as a circuit, and 

rehabilitation of the brain could be viewed as the reconnection of a damaged circuit 

and the targeted input was useful to reconnect it. Hallet (2001) found that there was a 

competition between different limbs in the motor cortex. The cortex area of the 

inactivated muscle diminished in spinal excitability or motor threshold. Increases 

were also observed in motor output area size and motor evoked potential amplitudes 

for subjects with stroke after training the muscles, which indicated enhanced neuronal 

excitability in the damaged hemisphere (Liepert et al., 1998; Johansson, 2000). Brain 
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plasticity is the basic theory behind physiotherapy. The clinical practice and therapy 

goals should be integrated with this principle of rehabilitation strategy to improve the 

outcome of stroke rehabilitation. 

Ward et al. (2004) gave hypothesis-driven approaches to neuro-rehabilitation on how 

to improve the motor performance of a paretic hand based on brain plasticity. The 

factors that have the possibility of affecting the neuro-reorganization are: 

1. Reduction of somatosensory input from the intact hand 

2. Increase in somatosensory input from the paretic hand 

3. Anesthesia of a body part proximal to the paretic hand 

4. Plasticity within the affected motor cortex may be enhanced 

5. Activity within the intact motor cortex may be down-regulated 

6. Pharmacological interventions may enhance recovery processes acting on 

adrenergic and dopaminergic neurotransmission 

On the basis of this increased understanding of brain plasticity, better interventional 

strategies and rehabilitation device are being developed, which will optimize the 

outcome of stroke rehabilitation. 

1.1.3 Conventional rehabilitation approaches  

Conventionally, therapists design appropriate one-on-one rehabilitation exercises and 

training protocols based on the patient’s ability, which are represented by various 

approaches. 

Bobath is the most commonly used approach for stroke rehabilitation. It is defined as 

‘a problem-solving approach to assess and treat individuals with disturbances of 

function, movement and postural control due to a lesion of the central nervous 

system’ (International Bobath Tutors Association, 2000). The therapist tries to 

optimize and facilitate automatic and volitional movements through specific handling 

techniques and the techniques are modified or withdrawn depending on the 

individual’s ability to maintain effective task performance (Bobath et al., 1990; Luke 

et al., 2004). Another commonly used approach is the motor relearning program 

(MRP). It was first introduced to stroke rehabilitation by Carr and Shepherd in 1982 

as a new rehabilitation theory and technique which emphasized specific training of 
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motor control in everyday activities (Carr and Shepherd, 1987). Motor relearning 

means goal oriented repetitive movement training. If people lose the special motion 

function, they can repetitively perform the training of this function which may help 

him/her to regain the control of the lost function. In order to investigate the effects of 

these two methods in early post-stroke treatment, Langhammer et al. (2000) carried 

out a randomized control trial. The results indicated that patients treated by MRP 

improved more in motor function and stayed fewer days in hospitals than those 

treated by Bobath. On the other hand, van Vliet et al. (2005) found that there was no 

significant difference between these two therapy methods in another randomized 

control trial.  

The controversy in the current rehabilitation treatments implies that conventional 

rehabilitation approaches need to be improved for better outcome and the 

improvement should depend on increased understanding of brain plasticity and also 

on the development of rehabilitation devices. The objective of this study is to design a 

new rehabilitation strategy based on new theory and technology in order to optimize 

the outcome of stroke rehabilitation. 

1.2 Recent rehabilitation approaches and devices 

Although conventional therapies have positive effect to restore the motion function, 

many new rehabilitation approaches and devices are developed for optimal outcome. 

Conventional approaches are conducted in clinical setting in a one-to-one mode by 

therapists, which makes the treatment cost expensive, labour intensive and 

inconvenient for out-patients. For these reasons, patients often received little or no 

physiotherapy treatment after hospitalization. Although it is important to enhance 

motor function in the early rehabilitation period, the initial type of physiotherapy does 

not seem to have any long-term effect on patients’ motor function after stroke 

(Langhammer et al., 2003). On the other hand, long term regular physical training is 

also needed in order to maintain the function improvement after hospitalization. 

Therefore, the two important issues that we should focus are how to help the patients 

after stroke to perform rehabilitation training after discharge from hospital and how to 

find a better way for them to restore lost functions. With the development of new 

techniques nowadays, it seems that we can use alternative approaches; patients can 

perform self-care motor relearning training automatically or the therapist can manage 
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more patients at a time and even remotely (Lai et al., 2004). It can be a more 

economical, convenient and efficient way. Several recent rehabilitation approaches or 

techniques that have been applied in stroke rehabilitation are introduced in the 

following parts. 

1.2.1 Constraint-induced movement therapy (CIMT) 

CIMT which is based on limiting the motion of unaffected limbs and trying to push 

subjects to reuse their affected limbs seems a promising way in the stroke 

rehabilitation (Sabari et al., 2001; Liepert et al., 1998; Mark et al., 2004). CIMT uses 

the theory of ‘learned non-use’. Subjects after stroke show increased reliance on the 

unaffected arm since it is difficult for them to use their affected arm. This over-

reliance on the unaffected arm interferes with the restoration of their affected arm. A 

2-week program of CIMT had shown obvious function improvement in patients with 

chronic stroke (Stein, 2004). Functional MRI and transcranial magnetic stimulation 

studies have confirmed the changes in cortical function in association with CIMT 

training (Liepert et al., 2000, Levy et al., 2001).  

1.2.2 Virtual reality (VR)  

VR is a kind of visual feedback to guide the patients in the exercise. A virtual-reality 

system may include three components: (1) a computer or television screen that shows 

the virtual environment; (2) a device to record kinematics information or other 

feedback; (3) motivational games that guide the manipulation. The computer 

technology creates an environment in which the intensity of feedback and training can 

be well integrated, and the environment will make patients more immersed and active. 

The VR technique has some applications in stroke rehabilitation (Jack et al., 2001; 

Deutsch et al., 2004; Broeren et al., 2004). Jack et al. (2001) used a computer-based 

VR system together with a Cyber glove and a Rutgers force feedback glove to help 

patients after stroke to restore the functions of hand. The control system can capture 

the force sensor data from the gloves. After processing and evaluating the data, the 

system produces the simulation results on the screen. This kind of simulation can 

guide patients to do different kinds of tasks and the data can be saved into a database 

for later analysis and application. Fig. 1.2 shows the architecture of their system. 

Their VR rehabilitation system was evaluated on three patients after stroke in the 

rehabilitation program and produced positive results in increasing hand-grasp force. 
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Further investigation is needed to confirm its effect in stroke rehabilitation. VR 

technique is often not applied alone in stroke rehabilitation; robot training in a VR 

environment is often combined to motivate patients and facilitate rehabilitation 

training (Hogan et al., 1992, Krebs et al., 1998). 

    

Fig. 1.2 Architecture of the virtual reality (VR) system (Jack et al., 2001). 

1.2.3 Electromyographic (EMG) biofeedback 

Biofeedback involves translating the physiologic activity of a patient's muscular 

response into a visual or auditory signal which allows him/her to be aware of the 

volitional changes in motor unit activity. The subject can facilitate or inhibit the 

muscular activity depending on the guide. The mechanism by which biofeedback can 

help to improve the outcome in the rehabilitation may be the reasons that the subjects 

can  gain conscious control over undamaged upper neuron pathways which are in turn 

able to promote the restoration of missing functions (Morton et al., 1997). In practice, 

biofeedback is often combined with traditional physiotherapy as a useful 

complementary unit. EMG biofeedback has been applied on the recovery of upper 

limb (Basmajian et al., 1982; Inglis et al., 1984) and lower limb (Bradley et al., 1998; 

Wolf et al., 1983). Stein (2004) expected that robotic and sophisticated biofeedback 

technologies for motor relearning after stroke might converge into combined training 

systems.  
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1.2.4 Functional electrical stimulation (FES)  

FES is a type of neural prosthesis used for restoring the neural function that has been 

damaged (Rushton et al., 1997). FES uses an electrical pulse to activate muscles 

directly, and it can bypass the brain injury and initiate movement in muscles that are 

partial or complete paralyzed. In consequence, FES has been used to help subjects 

with injured nervous system to perform movement and to restore the lost functions 

through rehabilitation training. Graupe et al. (1989 a, b) used EMG signals to trigger 

two kinds of FES mode in the rehabilitation of patients with spinal cord injury, and 

they also used EMG signals to identify muscle fatigue. Cauraugh et al. (2000) 

conducted a study to determine the effect of EMG-triggered neuromuscular electrical 

stimulation on the wrist and finger extension muscles in patients after stroke. Chae et 

al. (1998) designed an EMG-controlled FES system which not only could trigger the 

wrist training, but also could maintain and terminate the stimulation pulse. Fig. 1.3 

showed its control flow. The subject’s voluntarily activated EMG signal was captured 

by the intramuscular EMG electrodes. The amplitude of rectified and integrated EMG 

signal was used as a command signal. If the command signal exceeded a preset 

threshold, the stimulator delivered a neuromuscular electrical stimulation to activate 

the extensor digitorum communis. The stimulation was provided when the EMG 

signal was above the threshold during the movement of wrist extension. It was a close 

loop system with human cognitive investment. A sensorimotor integration theory was 

given to explain the advantage of cognitive investment in rehabilitation (Cauraugh et 

al., 2000). The EMG signal, which reflected subject’s intention, was used to control 

the electrical stimulation and the movement. When subjects wanted to perform the 

training, they expressed their intention by increasing their EMG activities of agonists; 

the electrical stimulation would be triggered if the amplitude of the EMG signals 

exceeded the preset threshold. Subject not only could control the movements but also 

could sense the movements by proprioceptive feedback, an afferent signal that 

returned to the somatosensory cortex. The efferent control signal and the afferent 

sensory signal formed the sensorimotor cycle. If the control was not only triggered but 

also held by EMG signals (Chae et al., 1998), then it would give continuous 

stimulation to brain. This voluntary sensorimotor cycle might enhance the 

rehabilitation of subjects after stoke, especially help subjects who could not conduct 

the joint movement by themselves to perform voluntary the rehabilitation training. 
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Subjects would be more active in the training, if they could control the training by 

themselves, and they would feel more positively involved when compared to simple 

passive training.  

 

Fig. 1.3 Architecture of the EMG-controlled FES system (Chae et al., 1998). 

 

1.3 Robotic systems in stroke rehabilitation 

Motor relearning for upper limb can also be achieved by robotics and automation 

technology, which has emerged since the 1990s, since exercising the patients’ 

paralyzed limbs may have a positive effect on neurological restoration of the limb 

function (Hogan et al., 1992). Thus mechanical, repetitive, passive exercises with the 

assistance of robotic devices are also useful for recovery. Moreover, robotic 

techniques can quantitatively measure motor recovery during rehabilitation training 

(Colombo et al. 2005). Van der Helm (1994) reported that a model structure of a 

robotic system could be divided into four blocks: 

1. The linkage system is the mechanical structure of the robot like the human 

bones, intermediate joints and ligaments. 

2. The actuator system by the electrical motor is used to generate forces and 

power the same as the function of muscles. 

3. The sensory system adopts the transducer such as potentiometer and force 

sensor to measure the position, velocity and force. It is similar to the 

function of muscle spindles and Golgi tendon organ. 
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4. The control system is applied to the motor controller such as PID control 

and Fuzzy logic to control the movement of the robot like the function of 

central nervous system. 

In the studies by Reinkensmeyer et al. (1992), they proposed that the tasks for patients 

to perform and design choices of a rehabilitation robot were: 

1. Manipulations to apply to patient 

2. Movement parameters to measure 

3. Linkage geometry and strength 

4. Number/type/size/location of actuators 

5. Number/type/size/location of sensors 

6. Means to physically couple to patient 

7. Control scheme to implement desired manipulations 

8. Sensor processing/fusion to derive key parameters 

9. Feedback to give patient 

Recently, many robotic devices have been designed for the motor relearning training 

of stroke rehabilitation. In this section, a review of the recent systems in robot assisted 

upper limb rehabilitation is given, including the robotic systems which have potential 

advantage for future applications in stroke rehabilitation.  

1.3.1 Mirror-image movement enabler (MIME)  

A research group in Stanford developed a robot system named mirror-image 

movement enabler (MIME) system that could assist or resist elbow and shoulder 

movements in three-dimensional space (Burgar et al., 2000; Lum et al., 1999) (Fig 

1.4). They used a commercial mobile arm to apply forces and torques to the paretic 

forearm through one of the arm supports. A six-axis force/torque sensor measured the 

external forces applied to the limb, and the trajectories could be measured by the 

position encoders mounted at the pivot points of the mobile arm supports. Position 

and force data were sampled at 105 Hz. It had four kinds of motion mode: passive, 

active-assisted, active-resisted, and bimanual. The patient could use his/her unaffected 

arm to control the affected arm by a bimanual position feedback strategy. Motions of 
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the unaffected forearm commanded the mirror-image movement of the robot, thus 

moving the affected arm with the intended kinematics. Daily therapy with the MIME 

in 21 chronic, moderately affected, hemiparetic subjects showed a significant 

improvement in muscle strength when compared with traditional therapy. The Fugl-

Meyer scale of elbow and shoulder of the robot group was higher than that of the 

control group (Burgar et al., 2000). Lum et al. (2004) also investigated the 

biomechanical change after rehabilitation training with MIME. Thirteen chronic 

stroke subjects were trained with MIME for 24 sessions in eight weeks. Improvement 

of the muscle activation mode was also observed, which was associated with the 

improvement of the kinematics after training. 

 

 

Fig. 1.4 Top view diagram of the MIME system (Burgar et al., 2000). 

1.3.2 Assisted rehabilitation and measurement guide (ARM Guide) 

The ARM Guide was a rehabilitation system developed at the Rehabilitation Institute 

of Chicago and the University of California Irvine (Reinkensmeyer et al., 1999; 2000; 

Kahn et al., 2001). It was designed for reaching training and evaluation of upper limb 

reaching function (Fig 1.5). The subject’s forearm/hand was attached to a specially 

designed splint which could slide along the linear constraint. A DC servo-motor was 

connected to the linear constraint and could assist or resist the reaching movement 

depending on the control strategy. The orientation of the linear bearing could be 
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changed in two degrees: yaw(Y) and elevation (E). In these two DOFs, resistant 

torque could be applied by magnetic particle brakes. The position of hand could be 

measured by an optical encoder and the forces generated by the arm could be 

measured by a six-axis load cell mounted between the splint and the linear constraint. 

The subject could receive feedback about movement and force generation of the arm 

on a video monitor. The ARM Guide could provide a qualitative evaluation of several 

motor impairments including abnormal tone, incoordination and weakness. In 

addition, the system had been used as a therapeutic tool for rehabilitation training. 

Active assist exercises (three times a week for 2 months) on three chronic patients 

with ARM Guide resulted in a reduction of muscle tone in two patients. Active range 

of motion, peak velocity and the ability to initiate movement also improved 

(Reinkensmeyer et al., 2000). 

 

Fig. 1.5 Diagram of the ARM guide (Reinkensmeyer et al., 2000). 

1.3.3 MIT-MANUS 

MIT-MANUS was developed in the Massachusetts Institute of Technology for the 

neuro-rehabilitation of upper limb for patients after stroke (Fig. 1.6) (Hogan et al., 

1992, Krebs et al., 1998). The key feature of MIT-MANUS was that the control 

system could react to mechanical perturbation from the manipulator to ensure a gentle 

compliant trajectory using impedance control shown as follows (Hogan et al., 1985; 

Krebs et al., 1998): 
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where τ  is the output torque, J(q) is the manipulator Jacobian, q is a vector of joint 

angles, desirexxx −=~  is a vector of displacement from a nominally desired position, 

Kp is the stiffness matrix, and KD is the damping matrix. 

Virtual reality techniques were applied to guide the person to perform an arm exercise 

shown on the screen. Another important characteristic of the MIT-MANUS was its 

low inertia, which could enable a patient to move it and perform motor relearning 

training easily. If movement was not finished by the patient, MIT-Manus could move 

the patient's arm. If the patient could move on his own, the robot provided adjustable 

levels of impedance (very soft, soft, medium, hard and very hard) depending on the 

need of the training. The MIT-MANUS could not only guide the arm but also give a 

resistive force to the movement of a subject’s upper limb. The system recorded 

motions and mechanical quantities such as the position, velocity, and forces applied 

which were important for the analysis of the motion of the patients. This system had 

been tested on patients after stroke and the results showed a positive effect on 

reduction of impairment and improvement of motor performance of the exercised 

shoulder and elbow (Krebs et al., 1998; 1999; 2000; Volpe et al., 2000; Aisen et al., 

1997).  

 

Fig. 1.6 MIT-MANUS: Assembly sketch (Krebs et al., 1998).   
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1.3.4 Bi-manu-tracking trainer 

The bi-manu-tracking trainer was developed by Hesse et al. (2003), which followed 

the bilateral approach and enabled the bilateral passive and active practice of two 

movements: forearm pronation/ supination and wrist dorsiflexion and volarextension 

in a mirror-like or parallel fashion (Fig. 1.7). The amplitude, speed and resistance of 

both handles could be set at different levels. Daily therapy of 15 minutes with the arm 

trainer and 45 minutes with comprehensive rehabilitation program that included 

individual physiotherapy and occupational therapy on 12 chronic patients after stroke 

for 3 weeks resulted in a reduction on the modified Ashworth scale and there was no 

improvement in functional tasks.  

 

 

 

Fig. 1.7 Diagram of the bi-manu-tracking trainer. Patient with left hemiparesis 

practices a repetitive bilateral pronation and supination movement of the 

forearm (Hesse et al., 2003). 

1.3.5 Colombo’s robot  

Colombo et al. (2005) also designed a one-DOF wrist manipulator and a two-DOF 

elbow-shoulder manipulator for rehabilitation of upper limb movements. They used 

admittance control to reduce the inertia and facilitate the movement. Fig. 1.8 shows 
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the block diagram of their functional principle. The control system included two 

control loops. The first is the position, velocity, and acceleration (P, V, A) control of 

the dc motor and the second is the admittance control. Two groups of chronic patients 

after stroke were involved in a three-week rehabilitation program including standard 

physical therapy (45 min daily) as well as treatment by means of robot devices for 

wrist and elbow-shoulder movements (40 min twice daily). Besides standard clinical 

assessment scales, they also designed a special task to quantify the patient’s ability 

with the robot-measured parameters but without the robot assistance. After treatment, 

their motor deficit and disability were improved according to the clinical assessment 

scales and the robot measured parameters in both groups.  

 

Fig. 1.8 Block diagram of the control system of the Colombo’s rehabilitation devices.  

 

Fig. 1.9 Motorized upper-limb orthotic system. (Johnson et al. 2001) 
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1.3.6 Other robotic systems  

Apart from the above robotic systems, there are also many robotic devices which can 

be used for rehabilitation treatment for different kinds of motion on the shoulder, 

elbow and wrist. However, their therapeutic effect has not been evaluated in the 

rehabilitation training on subjects after stroke.  

The University of Newcastle developed a new motorized upper-limb orthotic system 

(MULOS) (Johnson et al., 2001). The system consisted of a five-DOF electrically 

powered upper-limb orthosis (three degrees in the shoulder and two degrees in the 

elbow) and was designed to assist people with disability to perform normal activities 

of daily life like normal people (Fig. 1.9). It could also work in continuous passive 

motion (CPM) designed for the therapy of the upper limb to enhance the range of 

motion. The advantage of this system was that it had multiple-DOF movements that 

could facilitate rehabilitation of multiple movements, including wrist, elbow and 

shoulder. The trajectory of the joints could be preprogrammed for a given number of 

cycles at a chosen speed.   

Cozens (1999) developed a robot arm which had an axis aligned with the elbow and 

could help patients after stroke to perform elbow flexion and elbow extension in the 

horizontal plane (Fig. 1.10). They proposed an assist feedback control scheme which 

could detect spasticity from acceleration and provide a ramp torque in the movement 

if the acceleration was beyond the preset value. The assistive torque would be 

withdrawn once it reached 2 Nm or elbow movement exceeded a maximum speed (60 

deg/s) in order not to transform the exercise into a passive mode. Although the 

assistive effect had been demonstrated in ten patients with weakness and spasticity, 

the therapeutic effect had not been reported.  
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Fig. 1.10 Diagram of Cozens’s robotic system (Cozens, 1999) 

 

Fig. 1.11 Diagram of Ju’s robotic system (Ju et al. 2005). 

Ju et al. (2005) developed a rehabilitation robot with a force-position hybrid fuzzy 

controller, which could guide the patient’s wrist to move along planned linear, 

circular and figure eight trajectories and maintain a constant force along the tangential 

direction of the movement (Fig. 1.11). The controller was stable in normal subject and 

further investigation was needed to explore the effect of the robot on the patient with 

spasticity.  
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ARMin was another rehabilitation robot developed at the Swiss Federal University of 

Technology (Riener et al., 2005; Nef et al., 2005). It had a semi-exoskeleton structure 

with six degrees of freedom which enabled the arm therapy related to activities of 

daily life. There were several torque sensors and four position sensors which enabled 

the robot to work in different kinds of control modes (position control, impedance 

control, admittance control). Fig. 1.12 showed its mechanical structure. 

 

Fig. 1.12 Mechanical structure of the ARMin system (Nef et al., 2005). 

 

Table 1.1 summarized the features of the above rehabilitation robotic systems.  

Robot name 
 

Active DOFs +
（passive 

DOFs） 

Number of 
patients that had 
used  the system 

Features/description 
 

Advantages and 
disadvantages 

Assisted 
Rehabilitation and 
Measurement 
(ARM) Guide 
(Reinkensmeyer et 
al., 1999; 2000; Kahn 
et al., 2001) 

1+（2） 

Evaluation 
experiment: 4 
Rehabilitation 
training: 3+7 

Assistance in linear 
movements in horizontal 
plane and at varied 
degrees of elevation in 
vertical plane. Statically 
counterbalanced to 
eliminate gravitational 
load on arm. 
 

Robot training is 
restricted to a linear 
path and, therefore, 
does not provide 
feedback assist to 
correct errors 
perpendicular to the 
movement trajectory. 
Can provide low 
impedance assistive 
therapy or resistive 
training. 
 

Mirror Image Motion 
Enabler – MIME 
(Burgar et al., 2000; 
Lum et al., 1999；
Lum et al., 2004) 

6 
Rehabilitation 

training:  
13+21 

Position controlled 
PUMA robot that 
provides passive, active-
assisted, active-resisted 
and bimanual training in 
three-dimension space. 
 

Less compliant to 
weak movement 
attempts during 
evaluation and 
treatment, thereby 
reducing its 
sensitivity as a 
measurement tool.  
 

(Continiued)
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Robot name 
 

Active DOFs +
（passive 

DOFs） 

Number of 
patients that had 
used  the system 

Features/description 
 

Advantages and 
disadvantages 

MIT-Manus 
(Krebs et al., 1998; 
1999; 2000 Volpe et 
al., 2000; Aisen et al., 
1997) 

2 
Rehabilitation 

training: 
>100 

Low endpoint impedance 
Provides passive, active-
assistive, active, and 
resistive training in 
horizontal plane. 
 

Low intrinsic 
impedance enables 
precise measure of 
motor control and 
performance. 
Adaptive therapy 
algorithm 
automatically 
modifies assist 
provided by robot 
based on patient’s 
motor abilities. 
 

Bi-manu-tracking 
trainer (Hesse et al., 
2003) 

1 Rehabilitation 
training: 12 

Position controlled robot 
that provides bilateral 
passive, active-assistance 
in two DOF 

 
Bimanual mirror 
image training for 
wrist and elbow 
 

Colombo’s robotic 
systems (Colombo et 
al., 2005) 

Wrist: 1  
Shoulder and 

elbow: 2 

Rehabilitation 
training: 
Wrist: 7 

shoulder and 
elbow: 9 

Admittance control 
which facilitates the 
patients to move it 

Admittance control 
can reduce the inertia 
and the system can be 
used as measurement 
tool to evaluate the 
upper limb function 
with robot measured 
parameters. 
 

MULOS (Johnson et 
al., 2001) 5 Unknown Position controlled robot 

with five DOFs  

Only continuous 
passive motion could 
be performed 

Cozens’s robot 
(Cozens 1999) 1 

Assistive 
experiment: 10; 
Rehabilitation 

training: 
unknown 

Assist feedback control 
scheme.  

spasticity could be 
detected from 
acceleration and a 
ramp torque could be 
provided to help the 
elbow movement 

Ju’s robot (Ju et al. 
2005) 2 Unknown Force/position Hybrid 

fuzzy control                    

Linear and circular 
movements under 
predefined external 
force levels. A 
desired force could 
be applied a long the 
tangential direction 
of the movement. 
The trajectory is  
rigid. 

ARMin (Riener et al., 
2005; Nef et al., 
2005) 

4+(2) Unknown Semi-exoskeleton 
structure  with six DOFs 

A high number of 
DOFs allows a broad 
variety of movements 
related to activity of 
daily life. Impedance 
control and 
admittance control is 
under-developing 

 

Table 1.1  Comparisons among rehabilitation robots for the upper limb. Active DOF: 
there is a motor to move the subject’s arm actively in this DOF; passive 
DOF: no actuation is implemented in this DOF to move the subject’s arm 
(Modified from Fasoli et al., 2004; Riener et al., 2005).  
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Fig. 1.13 Exoskeleton experimental systems-components and signal flow diagram 

(command signal gain-muscle model gain KM, load moment gain-KEL, and 

human-arm moment gain-KEH) (Rosen et al., 2001). 

1.3.7 Myoelectrically controlled exoskeleton 

However, most of the rehabilitation robots only provided passive training on the 

affected arms of patients after stroke, or focused on a gentle compliant trajectory, 

following a specified task without any association with human intention. The robotic 

system which provided a highly accurate position control might generate excessive 

interaction forces when the subjects contradicted its pre-programmed trajectory.  

In section 1.2.4, the rehabilitation devices with cognitive investment have been 
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applied in the FES systems. There are also many robotic devices that can assist the 

subjects to perform arm or leg movement with cognitive investment, although they 

are not directly used for rehabilitation treatment.   

The exoskeleton system is a special robot system. The major difference between the 

exoskeleton system and other robot systems is that the exoskeleton robot is worn by 

the human operator as an orthotic device. Its joints and links correspond to those of 

the human joint. Many researchers have tried to integrate robots with human body in a 

more voluntary way which can be adopted in the rehabilitation process. An innovative 

exoskeleton system developed by Rosen et al. (2001), which had a human machine 

interface at the neuromuscular level, used EMG signals as the primary command 

signal to control the system. A Hill-type muscle model was built to estimate the 

muscle moment at the elbow joint. The moment estimated from the Hill-type model 

together with feedback moment measured at the human arm/exoskeleton and external 

load/exoskeleton interfaces made up of the control moment of the system (Fig. 1.13). 

Then the operator would feel a scaled-down version of the load and the remaining 

external load on the joint was carried by the exoskeleton. The system can be applied 

as a rehabilitation tool for automatic physiotherapy, which can help patients after 

stroke to move their affected arms with less effort with the assistance of the 

exoskeleton. 

 

Fig. 1.14 Block diagram of the robotic system and the experimental setup (Cheng et 

al., 2003).  

Cheng et al (2003) also reported an EMG-controlled robotic device which gave 

assisted torque for subjects after stroke to perform elbow tracking and reaching at 

vertical plane (Fig. 1.14). Processed EMG signals from biceps and triceps determined 
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the amplitude of the torque of the motor to apply through an adaptive filter. The 

system could assist the subjects to perform many tasks with less effort and no obvious 

deterioration of the movement performance was observed.  

Lee et al developed a Hybrid assistive leg (HAL) to assist the motion of lower body 

by predicting the moment around joints with EMG signals.  Fig. 1.10 showed the 

structure of how the system helped the subject to perform walking. Operator’s 

intention can be detected from the EMG signals and the estimated torque around joint 

of the operator can be described as follows: 

 )()()( tEKtEKt exteflefvirtual −=τ                                           (1.2) 

where )(tvirtualτ is the estimated torque generated by the motor, Kf and Ke are the 

conversion factors from EMG to torque, and Efle(t) and Eext(t) are filtered EMG signal 

at flexor and extensor. In order to perform more effective assisting control of joint 

movement, the actuator can regulate the characteristics around its joints according to 

the motion. The lower thigh of the operator together with HAL system can be 

represented by an integrated pendulum model. The compensation torque generated by 

the actuator is determined as: 

),()()()()( 02
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dt
dCK

dt
dBD

dt
dMItcom

θθθθθθτ +−+−+−=                 (1.3) 

where I and D are the inertia and viscous coefficient around knee joint respectively, 

),(
dt
dC θθ  is a non-linear term including gravity and friction. M, B, K are the target 

values of inertia, viscous coefficient, elastic coefficient; 0θ   is the angle of joint in 

target posture. 

Hence, virtual torque with impedance adjustment around knee joint was calculated as 

follows: 

comvirtualsum τττ +=                                                     (1.4) 
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Fig. 1.15 Block diagram of virtual torque estimation and impedance adjustment 

around knee joint of HAL (Lee et al., 2002). 

The systems in this part use the EMG signals as inputs to the control model. The 

design can help the subjects to perform the movement more easily or with a scale-

down loading which is shared by the robot and without losing the natural control of 

the movement. The devices have potential applications for rehabilitation training and 

also give us some hints about the design of the rehabilitation robot system. 

1.4 Musculoskeletal model 

In order to treat the motion disorder of the subject after stroke, it is also important to 

know how the central nervous system (CNS) controls the muscle and conducts the 

movement. The control strategies employed by the CNS when controlling the limbs 

can be reflected from the responding EMG signals.  

 Fig. 1.16 shows the nervous system for the neuromusculoskeletal system and 

illustrates the control flow of voluntary movement.  The control system for voluntary 

movement includes (Gonzalez et al., 2001): 

1. Continuous flow of sensory information about the environment, position, 

and orientation of the body and limbs as well as the degree of contraction 

of the muscles. 

2. Spinal cord  

3. Descending systems of the brain stem 
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4. Pathways of the motor areas of the cerebral cortex  

 

Fig. 1.16 Functional overview of the nervous system for the neuromusculoskeletal 

system (Martini, 1995)  

Many researchers have investigated the relationship between the muscle activity and 

the EMG in neurophysiology and biomechanics. They used EMG signal to estimate 

force in a dynamic process. Misener et al. (1995) built a model to predict force 

production about the elbow using surface EMG signals. The model was for both static 

(isometric) and dynamic (constant velocity) concentric contractions about the elbow. 

Zhang used an adaptive filtering method to estimate the force on a cat’s muscle 

(Zhang et al., 1997). Feng et al. (1999) built an EMG-driven musculoskeletal model 

to investigate the elbow flexion and extension. They also compared the results of the 

subjects without impairment and the subjects with spasticity. Among these models, 

the Hill-type model received wide acceptance to describe the muscle function during 

the movement.  

1.4.1 Hill-type musculoskeletal model 

Since Hill put forward the classical model about the muscle in 1938, the 

neurophysiology and biomechanics of neuromusculoskeletal systems have been 

investigated extensively to find the principles of human body movement generation 
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(Hill, 1938). Musculoskeletal models include how the CNS excites muscles, then 

subsequently develops forces and generates various movements. The muscle tendon 

model generates muscle force not only based on the muscle activation state but also 

based on musculotendon length and velocity, which are related to joint angle and 

angular velocity (Winters et al., 1988; Feng et al., 1999). Muscle force of previous 

state, which determines the tendon compliance, is also responsible for the muscle 

force at next stage (Zajac, 1989). Once all the muscle forces responsible for the joint 

movement are found, multiplying the muscle forces with respective muscle moment 

arms and summing the results can acquire joint torque. The mathematical integration 

of all the submodels can be used for describing how joint movements are generated 

from CNS command and what kinds of parameters are responsible for joint torque. 

EMG signals reflect the muscle activity, and EMG-force/torque relations have been 

studied in static and dynamic situations (Zhang et al., 1997; Misener et al., 1995). The 

EMG signals of the muscles are also often considered as the command signals of the 

CNS to drive the musculoskeletal system (Feng et al., 1999; Lloyd et al., 2003). Many 

models have been developed to explicitly and qualitatively describe the properties of 

the musculoskeletal system at different levels (Winters, 1990; Zajac et al., 1990). A 

generally accepted Hill-type neuromusculoskeletal system is composed of the 

following submodels step by step: muscle excitation contraction model, muscle 

tendon model, skeletal dynamic model (Zajac, 1989). Fig. 1.17 shows how the CNS 

system conducts a multi-joint lower limb movement based on the Hill-type model and 

how the movement affects the parameters of a muscle-tendon model.  
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Fig 1.17 Diagram showing the components most commonly included in a multijoint 

model of movement. The insets show specific models of muscle excitation-

contraction coupling, musculotendon actuation, muscle-path geometry, and 

the skeletons that were used to simulate jumping and walking (Pandy et al., 

2001). 
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1.4.1.1 Muscle excitation contraction model  

 

Fig. 1.18 Nonlinearization of neural activation, u(t), to muscle activation, a(t). The 

open circles represent data for the biceps reported by Woods and Bigland-

Ritchie (1983). The path length from O to P (i.e., A) defines the degree of 

curvature. The piecewise curve for A=0.0001 approximates the line a =u: 

For A= 0.114; the resulting curve is very similar to the relationship reported 

by Woods and Bigland-Ritchie. (Manal et al., 2003) 

From Fig. 1.18, a muscle excitation contraction model is used to estimate muscle 

active state based on CNS command. Since the EMG reflects the activity of muscle, 

the EMG signals that reflect the muscle activations, are often used as inputs to a 

musculoskeletal model. Conventionally, the band-pass filtered, rectified, and low-pass 

filtered EMG signals are directly used as muscle activations and inputted into the 

musculoskeletal model (Rosen et al. 1999). Hof and Berg (1981 a; b; c) developed an 

EMG-active state converter to process the normalized EMG signals to muscle 

activations. A nonlinear muscle excitation contraction model in some studies was also 
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used to estimate muscle activations (Lloyd et al., 2003; Manal et al., 2003): first, 

rectified, filtered and normalized EMG signal is transformed to neural activation )(tu  

through a second-order recursive filter (Equation 1.5); then neural activation can be 

adjusted by a nonlinear relationship to muscle activation )(ta  (Equation 1.6). 

),2()1()()( 321 −−−−−= tutudtetu jjj βββ                         (1.5) 
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eta                                                 (1.6) 

where d  is electromechanical delay,  A,,, 321 βββ  are activation parameters to change 

the EMG signal to the muscle activation. Fig. 1.18 shows the relationship between 

neural activation and muscle activation. 

 

Fig. 1.19  (a) The force-length relationship of tendon (the left); (b) the active and 

passive force-length relationships of muscle (the middle); (c) the force-

velocity relationship of muscle (the right). Tendon slack length is the 

length below which the tendon cannot exert any force. Optimal fibre 

length is the length where passive muscle force comes into play and active 

force component maximizes. Max shortening velocity is the velocity above 

which no active muscle force can exert (Delp et al., 1995). 
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1.4.1.2 Muscle tendon model  

The Hill-type model describes muscle forces-generating properties, which can be 

represented by an active contractile element (CE) in parallel with a passive elastic 

element (PE) and then in series with tendon, a non-linear elastic element (Zajac, 1989; 

Komura et al., 2000). The force in the musculotenden unit is a function of these 

components. 

αcos)]()()()([)( max
mpmm

tmt lftavflfFFtF +==                    (1.7) 

where tF  is the tendon force, α  is pennation angle, which is assumed to be constant 

during isometric contraction and is obtained from literature. maxF  is the maximum 

isometric muscle force. )(),( vflf  and )(lf p reflect the functions of the CE and PE 

element described in Fig. 1.19 (Delp et al., 1995). 

1.4.1.3 Skeletal dynamic model   

In the musculoskeletal modeling, accurate data on anatomical parameters such as 

muscle lengths (ML), moment arms (MA) are required to calculate muscle force and 

moment.  The development of musculotendon force depends on both its length and its 

velocity and MA are needed when converting musculotendon force to moment about 

a joint. In order to decide the muscle lengths and movement arms, musculotendon 

path is needed, which defines the variations of muscle moment arms and 

musculotendon lengths across the joint range of motion (Winters and Stack, 1988). 

Murray et al. (2002) investigated how to scale the moment arm of elbow with upper 

extremity bone dimension. Pigeon et al. (1996) approximated MA/angle curves and 

ML/angle curves with polynomials from cadaver data. Moment arms were estimated 

using the tendon displacement method which involves computing the partial 

derivative of measured tendon displacement with respect to joint angle by An et al 

(An et al., 1984; Muarry et al., 1995; Heine et al 2003). The relationship can be 

shown in the following equation (1.8): 
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where θ  is joint angle, )(θr  is the moment arm, and )(θmtl  is musculotendon length. 

Delp et al. (1995) created a commercially available software package called SIMM 
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which could provide a generate framework that enabled users to develop, alter, and 

evaluate models of musculoskeletal structures.  

1.4.2 Artificial neural network 

 

Fig. 1.20 The 3-layer ANN model to represent EMG-torque relations. 

ωθ ,,, ef EMGEMG  are the processed EMG from flexor and extensor, 

joint angle, and joint angular velocity, respectively (Luh et al., 1999). 

 

Conventional methods (e.g. the Hill-type model) help to understand the inside 

physiological characteristics. However, these models made many assumptions on 

unknown nonlinear properties of the musculoskeletal and nervous system. Some 

subject-specific parameters of these models also cannot be measured directly. 

Optimization methods were often needed to estimate these parameters (Lloyd et al., 

2003; Manal et al., 2002; Koo et al., 2005). The accuracy of the parameters and 

submodels limited the prediction accuracy. In recent years, artificial neural network 

(ANN) was often used to integrate the muscle activation dynamics model, muscle 

contraction dynamics model and muscle geometry model to estimate the kinematic 

EMG-force or EMG-torque relationship (Fig. 1.20) (Luh et al., 1999; Koike et al., 

1995; Wang et al., 2000; Liu et al., 1999; Cheron et al., 1996). The ANN model could 

optimise its internal network to build the relationship between inputs and outputs 

parameters using a back propagation algorithm to learn all the training data. A back-
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propagation through time ANN was proposed by Dipietro et al. (2003) to map the 

EMG signals of five selected muscles on arm kinematics of subjects performing three-

dimensional unrestrained grasping movements. Rosen et al., compared the 

performance of Hill-type and neural network muscle models in terms of predicting the 

torque of elbow joint complex based on joint kinematics and neuromuscular activity 

during single-joint movements (Rosen et al., 1999). A time-delayed ANN was used 

by Au and Kirsch to predict the shoulder and elbow motions from the EMG signals in 

able-bodied and spinal cord injured subjects (Au et al., 2000). Wang et al. (2002) 

developed a three-layer feed-forward Neural Network model of muscle activations 

from EMG signals to predict joint torques. The success of these models indicates that 

ANN model is a promising technique to simulate the musculoskeletal model. 

1.5 Evaluation of deficits after stroke 

The damage in brain caused by stroke (motor cortex and neural pathways) often 

affects voluntary control. Impairments such as spasticity (Katz and Rymer, 1989; Ju et 

al., 2000), muscle weakness (Canning et al., 1999; Lum et al., 2004), increased 

reaction time (Chae et al., 2002b), cocontraction (Chae et al., 2002a; Kamper et al., 

2001; Dewald et al., 1995; Hammond et al., 1988), contracture (Pandyan et al., 2003, 

O’ Dwyer et al., 1996) and disordered movement organization (Takahashi et al., 2003) 

create deficits in motor control for patients after stroke.  

In order to find better treatment strategies, it is necessary to evaluate the functional 

improvement in the upper limb during the rehabilitation training for subjects after 

stroke. The effectiveness of the device or the treatment strategy could be judged by 

the evaluations before and after the treatment. In this section, the impairment after 

stroke will be evaluated in the following four aspects: clinical scales, mechanical 

properties, kinematics and muscle activities.  

1.5.1 Clinical scales 

Clinical scales can be used as tools to evaluate patients after stroke, which are 

efficient, easy-to-use and economical. Based on the assessment goals, there are 

different kinds of clinical scales that focus on the stroke disabilities.  

The two widely used scales for the measurements of disability/activities of daily 

living are the Barthel Index (Wade et al., 1988) and functional Independence Measure 
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(Keith et al., 1987). They are proposed as the standard index for clinical and research 

purposes.  

In order to evaluate the mobility, the Rivermead Motor Assessment Gross Function 

scale was given by Lincoln et al. (1979). The Rivermead Mobility Index (RMI) was 

developed to document change in 15 items of functional ability by Collen et al. (1991). 

Lennon and Johnson (2000) proposed the modified RMI with eight items by using a 

six-point scoring system, which enhanced its sensitivity. 

The Ashworth scale is a widely applied clinical tool for muscle tone assessment. The 

original Ashworth scale was a five-point ordinal scale for grading the resistance 

encountered during a passive movement of a limb through the range of motion to 

passively stretch specific muscle groups (Ashworth, 1964),  and  the modified 

Ashworth  scale was extended with an additional grade to the original one to improve 

the sensitivity (Bohannon et al., 1986).  

Another three clinical scales are often used for assessing motor function in patients 

with stroke: the Fugl-Meyer scale, the motor status scale (MSS) and the motor 

assessment scale (MAS). A full evaluation of Fugl-Meyer scale includes five different 

parts: (1) motor function of the upper extremity, (2) motor function of the lower 

extremity, (3) balance, (4) sensation, and (5) joint motion and joint pain. Each part 

can be used independently (Fugl-Meyer, et al., 1975; Trombly et al., 2002). The 

motor status scale (MSS) measures shoulder, elbow (maximum score = 40), wrist, 

hand and finger movements (maximum score = 42), and expands the measurement of 

upper extremity impairment and disability provided by the Fugl-Meyer score. The 

MSS is closely related to the FM and evaluates the complete range of motor functions 

of upper limb (Ferraro et al., 2002). The motor assessment scale (MAS) is another 

scale for measuring motor function (Poole et al., 1988). The MAS registers eight 

functional activities: turning in bed, sitting, standing up, walking, balance in sitting, 

activities of the upper arm, the wrist and the hand. Each item is scaled from 0 to 6 and 

the overall scores range between 0 and 48 (normal function).  

The clinical scales provide semi-quantitative information, which lack temporal and 

inter-examiner reproducibility and suffer from a clustering effect in which patient 

scores tend to be graded in the middle range (Rymer et al., 1994). More quantitative 

methods might help to increase the scope and resolution of the functional impairment 
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after stroke, which is important to identify the characteristics related to stroke and to 

evaluate the effect of the treatment and to comprehend the mechanism that causes the 

change.  

1.5.2 Evaluation of spasticity and joint mechanical properties 

Spasticity is a motor disorder commonly observed in patients after cerebral palsy, 

brain injuries, spinal cord injuries, multiple sclerosis, and stroke. It is characterized by 

a velocity-dependent increase in tonic stretch reflexes with exaggerated tendon jerks 

(Lance, 1980). Spasticity can be caused by some types of damage to the nerve 

pathways that regulate muscles. Subjects with spasticity are often observed to have an 

increase in resistance to passive movement which interferes with the motor functions 

(Katz and Rymer, 1989). According to the concept of mechanical impedance, the 

internal characteristics of a musculo-articular system are expressed by inertial, elastic 

and viscous parameters (Winters et al., 1988), and it can therefore be hypothesized 

that inherent muscle and joint properties are modified by alterations induced by stroke 

or by immobilization after stroke. Quantitative measurements of these parameters are 

necessary and a great contribution to clinical rehabilitation evaluation and 

management.  

Numerous biomechanical methods have been applied to obtain quantitative 

mechanical information about a muscle’s stretch reflex. Three types of stretching 

methods are frequently used to measure the stretch reflex: the constant velocity stretch 

(Ju et al., 2000; Given et al., 1995; Mccrea et al., 2003; Schmit et al., 1999), the 

sinusoidal excitation (Cornu et al., 2001; Yeh et al., 2004) and the pendulum test 

(Feng et al., 1998; He et al., 1997; Lin et al., 1991; Lin et al., 2003). 

Normally, constant velocity stretch is conducted when a relaxed joint is stretched at a 

constant angular velocity over a predetermined angular displacement and spastic 

hypertonia is quantified by the resistive torque generated by the stretched muscle. An 

on-line spasticity measurement system was designed by Ju et al. (2000), to measure 

the spasticity index and an appropriate verification process was applied to ensure the 

data validity. Pisano investigated a quantitative evaluation of muscle tone in patients 

after stroke with constant velocity stretch; they built a model and found the correlation 

of the biomechanical indices with conventional clinical scales and the 

neurophysiological measures (Pisano et al., 2000). Schmit et al. (1999) modeled the 
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reflex torque response of the spastic elbow flexors during constant velocity stretch 

with a simple musculoskeletal model, which was composed of the physiological 

cross-section areas, the moment arms, and the activation functions of biceps and 

brachioradialis. 

Pendulum tests are often applied to investigate the characteristics of lower limb.  He 

et al. (1997) combined a neuromuscular dynamic model with stretch reflex loop, 

based on the pendulum test of spasticity, to study the effect of specific parameters 

(stretch reflex gains, stretch reflex threshold, and muscle mechanical properties) to the 

knee trajectory. Lin et al. (2003) developed a comfortable device to facilitate the 

pendulum test on the upper limb; and a linear stiffness-damping model was also 

applied to quantify the parameters using optimization techniques. They found a 

significant larger damping coefficient and damping ratio of affected arms in 

comparison with those of unaffected arms and normal subjects.    

Another widely used approach to measure the characteristics of limb is sinusoidal 

stretch, which is the response of a motor-driven sinusoidal displacement over a range 

of frequencies. Yeh et al. (2004) added the Sinusoidal perturbations (1–15 Hz, ± 3 deg, 

peak-to-peak harmonic angular displacement) to quantify the immediate effect of 

prolonged muscle stretch on the inhibition of ankle hypertonia in patients after stroke. 

After 30 minutes prolonged muscle stretch treatment, there was a significant decrease 

in elasticity and viscosity of the hypertonic muscles in subjects after stroke. 

Investigations of intrinsic and reflex contribution of the mechanical properties of joint 

have also been conducted. Mechanical changes underlying spastic hypertonia were 

explored using a parallel cascade system identification technique to evaluate the 

relative contributions of intrinsic and reflex mechanisms to dynamic ankle stiffness in 

healthy subjects (controls) and spastic, spinal cord injured patients (Mirbagheri et al., 

2000; 2001). Zhang et al. (1997) developed a nonlinear, time-delay, continuous-time, 

and dynamic model to identify intrinsic and reflex mechanical properties of the 

human elbow joint.  

1.5.3 Kinematic analysis 

Kinematic analysis of subjects after stroke was also an important tool to evaluate the 

motor disorder during voluntary movement. A number of invariant features of single-

joint movements have been observed from the trajectories. The plan of movements 
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appears to be independent of the subjects, in which limb has symmetric, bell-shaped 

velocity profiles in single-joint movements. 

Hogan (1984) proposed a principle underlying the selection of a movement trajectory 

by the CNS. The movement with maximum smoothness is most likely to be selected 

among all possible trajectories. Mathematically, minimization of the integral of mean 

squared jerk (the third time derivative of displacement) was used to describe the 

characteristic. Wiegner et al. (1985) investigated a seventh-order polynomial 

minimum-snap model which was an extension of the five order minimum-jerk model 

and was consistent with the physiological range of the rate of change of the torque. 

Mescheriakov et al. (1995) also proposed that the acceleration-time profile of the 

movement can be described by a linear combination of two Gaussian functions 

(positive for acceleration and negative for deceleration). Feng et al. (1997) 

investigated the spastic elbow movement in three-dimensional (3D) space. A 

significant increase in average jerk cost of spastic elbow was found in their research. 

Ju et al. (2002) also compared the integration of square jerk (ISJ) between normal 

subjects and subjects after stroke and they found that the ISJ of the affected arm was 

larger than that of unaffected arm and also larger than that of normal subjects. The 

above results showed the change of trajectory planning for subjects after stroke. 

In 1954, the Information theory was employed to explain the human motor system by 

Fitts et al. (1954), who mathematically integrated speed, accuracy, amplitude of the 

movements and target size into a one-dimensional parameter to evaluate upper 

extremity tasks (equation 1.9 and 1.10): 

                      )2/(log 2 AWI d −=                                                                      (1.9) 
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where A is the movement amplitude, W is the target width, and tm is the target-to-

target movement time. In addition, Yang et al. also applied Fitts’ law to evaluate the 

upper limb target-reaching movements in 3-D dimension (Yang et al., 2002).  

Haaland et al. (1988) used Fitts’ law to investigate the effect of task complexity on 

movement ipsilateral to lesion in twenty controls and ten left hemisphere and nine 

right hemisphere patients after stroke; the left hemisphere group showed significant 

deficits found in wide target condition based on the Fitts’ law indices.  
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McCrea et al. (2005) studied the stroke-induced changes to motor control of the 

affected arms of subjects after stroke. The study quantified the capacity of CNS 

transmitting motor commands by a linear relationship between movement time and 

task difficulty (Fitts’ law) during a reaching task. They compared the affected arm of 

20 persons after stroke with the non-dominant arm of ten healthy persons and found 

that there were significantly increases of Fitt’s slope and intercept in the more affected 

arms of the group with strokes. Indirect, segmented, and positively skewed movement 

was found in the group with stroke, which could result in greater neuromotor noise.  

A 3-D biomechanical model of the upper extremity was developed by Van Bogart et 

al. (2001) to provide a comprehensive method of assessing upper limb motion during 

performing tasks including exercises in reaching, grasping and releasing in patient 

after stroke.  

However, these studies focused on motor execution and ignored sensory function, 

which was also an important source for the central nervous system to correct the 

movement. Trajectory-tracking was a useful tool to evaluate sensorimotor control 

function of upper limbs which couples both perception-action and motor execution. 

Furthermore, the trajectory-tracking provided a standard reference for the 

neuromusculoskeletal system to follow and to be corrected by the feedback across 

different subjects. Patten et al. (2001) evaluated the perceptual motor control in 

hemiparetic adults with an upper limb trajectory tracking task. In their study, subjects 

performed an elbow flexion-extension task against a low-resistance isotonic load at 

three speeds: 25, 45 and 65 deg/s from 10 deg extension to 75 deg flexion. They found 

a larger root mean square error (RMSE) between elbow trajectory and target from 

affected arms than that of unaffected arms and normal subjects. Ju et al 2001 also 

investigated the effect of external torque on the performance of tracking in normal 

people and patients after stroke; only elbow extension was studied and the 

characteristics of elbow flexion were not considered in their study. 

1.5.4 EMG analysis  

1.5.4.1 Introduction of electromyography  

EMG is an electrical signal from a contracting muscle which reflects the 

neuromuscular activation (Basmajian et al., 1985). It is a very complicated signal, 
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which is comprised of many kinds of information: the activity of muscle, the activity 

of the descending upper motoneurons and the afferent activity emanating from a 

number of peripheral sensors. It can be affected by the anatomical and physiological 

properties of muscles, as well as the characteristics of the instrumentation and 

electrodes that are used to detect the signals. During voluntary contraction, a neural 

action potential propagating down a motoneuron activates all the muscle fibers that 

belong to the same motor unit. Each firing of the motoneuron triggers a depolarization 

of the muscle membrane at the neuromuscular junction, which causes a muscle fiber 

action potential that travels in both directions along the muscle fiber. These muscle 

fiber action potentials are referred as a motor unit action potential (MUAP), and EMG 

can be regarded as accumulation of a series of active MUAP trains detected by the 

electrode pair during muscle contraction. Since human motion is comprised of series 

of muscle contractions and EMG signals are the byproducts of the corresponding 

muscle contractions, EMG signals can reflect human’s intention about the movement. 

Many models have been developed to find the relation between muscle contraction 

and force. 

1.5.4.2 Relationship between EMG and force 

EMG provides easy access to the physiological processes that cause the muscle to 

generate force and corresponding movement. However, the relationship between 

EMG and force / movement trajectory is complicated and affected by many features.  

Carlo analyzed the quantitative relationship between EMG amplitude and the muscle 

force of some muscles in isometric contraction (Fig. 1.21) (Carlo et al., 1995). It is 

generally agreed that when the EMG signal is sufficiently smoothed, the relationship 

is linear, but the linearity is different among different muscles. 
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Fig. 1.21 Normalized EMG/Force signal relationship for biceps, deltoid and First 

Dorsal Interosseus (FDI). The data have been greatly smoothed, with a 

window width of 2 s (Carlo et al., 1995). 

1.5.4.3 EMG analysis on patients after stroke  

EMG and kinetic measures have been used as the primary tools in the study of 

movement, which provide an electrophysiological view of movement. The methods 

are also used to analyze the motion disorder after stroke. 

Canning et al. (2000) investigated the abnormalities of muscle activation with low 

dexterity after stroke. They found excessive biceps muscle activation and decreased 

coupling of muscle activation to target motion. Weakness, slowness of muscle 

activation, excessive co-contraction, and spasticity can cause the abnormalities after 

stroke.  

Chae et al. (2002a) recorded EMG activity of the paretic and nonparetic wrist flexors 

and extensors from 26 chronic stroke survivors during isometric wrist flexion and 

extension in order to find the relationship between poststroke upper limb muscle 

weakness, cocontraction, and clinical measures of upper limb motor impairment and 
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physical disability. In their research, they found that the strength of muscle 

contraction was significantly greater in the nonparetic limb; the degree of 

cocontraction was significantly greater in the paretic limb; muscle weakness and 

degree of cocontraction correlate significantly with motor impairment and physical 

disability in upper limb hemiplegia. They also found that delay in initiation and 

termination of muscle contraction was significantly prolonged in the paretic arm and 

the delay did not have significant correlation with motor impairment and physical 

disability (Chae et al., 2002b). Dickstein et al. (2004) found that EMG activity of 

rectus abdominis was significantly delayed in comparison to that of external oblique 

relative to the unaffected side in the patients and relative to the control subjects during 

voluntary trunk flexion. 

Since functional connection between the motor cortex and muscle can be measured by 

electroencephalogram-electromyogram (EEG-EMG) coherence, Mima et al. (2001) 

used EEG and EMG of the hand, forearm, and biceps muscles to conduct three 

contraction tasks: (1) elbow flexion, (2) wrist extension, and (3) power grip on 6 

patients with chronic subcortical stroke to evaluate the cortical control of EMG. They 

found that EEG-EMG coherence was localized over the contralateral sensorimotor 

area in all circumstances, and there was no significant coherence at the ipsilateral side. 

EEG-EMG coherence was significantly smaller on the affected side for the hand and 

forearm muscles but not for the biceps muscle.  

1.6 Objectives of this study  

We have reviewed the literatures about the mechanism underlying the neuro-

rehabilitation, the current rehabilitation devices and approaches for stroke 

rehabilitation and function evaluations. From the previous studies, robotic systems 

have been widely applied for the neuro-rehabilitation to restore upper limb functions 

for subjects after stroke in this decade. The myoelectrically controlled robotic system 

has been developed since 2001 (Rosen et al., 2001; Cheng et al., 2003). However, 

Rosen et al. (2001) only applied the robotic system on normal subject to share the 

loading rather than on subjects after stroke. Cheng et al. (2003) had applied his system 

to provide the assistive torque for subjects after stroke. Although their system could 

improve the elbow torque capability of normal and stroke subject. It has not been 

reported that if such kind of device could help subject after stroke to improve range of 
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motion, and if such kind of device could be applied into robot-aided therapy in their 

studies. In order to find an effective way of robot-aided neuro-rehabilitation, 

myoelectrically controlled robotic system was investigated in this study, which might 

have the following advantages:  

1. Continuous intention involvement into the physical exercise might assist to 

restore the damaged efferent motor output induced by stroke.  

2. Using EMG signal to control the output torque might allow a natural control 

of the movement since EMG signal can be correlated to the torque developed 

by the muscles with respect to a joint.  

3. It might allow seriously-affected subjects to perform voluntary movement 

with the robot’s assistance; such patients might not generate movement to 

some directions but still retain measurable residue surface EMG signals from 

the affected muscles.   

We hypothesized that this kind of robotic system might be beneficial to restore the 

upper limb function for subjects after stroke in a training program. The specific 

objectives of this study are described as follows: 

1. To develop a robotic system including hardware and software for persons after 

stroke to perform rehabilitation training at the elbow joint 

2. To develop a control strategy for the robotic system based on the EMG signals 

of the affected arm  

3. To evaluate the feasibility and effectiveness of the robotic system in the 

rehabilitation training  

4. To quantitatively evaluate the elbow control function in dynamic situations for 

subjects after stroke 
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CHAPTER 2 METHODS                                                       

2.1 Introduction 

Robotic systems can be applied to restore the upper limb function for subjects after 

stroke, which has been supported by many researches (Colombo et al., 2005; Hesse et 

al., 2003; Hogan, et al., 1992; Reinkensmeyer et al., 1999; Lum et al., 1999). This 

study focused on designing an innovative rehabilitation robot which would be 

controlled by electromyographic (EMG) signals from the affected muscles to perform 

active rehabilitation training at the elbow joint. In order to realize this, several tasks 

were done. Firstly, the robotic system was designed and fabricated; its structure was 

introduced in section 2.2. Secondly, in order to use EMG signals to control the robotic 

system and to find a suitable control strategy for subjects after stroke, two control 

strategies were investigated for the robotic system: the recurrent artificial neural 

network (RANN) model and proportional control. A recurrent artificial neural 

network (RANN) model was developed and compared with the proportional control 

strategy. The recurrent artificial neural network was built and evaluated using the data 

from six subjects without impairment and three subjects after stroke, and the 

experimental setup was introduced in section 2.3. The proportional control with 

different combinations of the resistive load and EMG-torque gain was also 

investigated in an arm tracking experiment (elbow extension) on the affected arms of 

nine subjects after stroke in section 2.3. Thirdly, a quantitative method to monitor the 

elbow control function was developed. A sinusoidal arm tracking experiment and the 

evaluation parameters were described in section 2.4 to investigate the elbow control 

function of the affected and the unaffected arm in dynamic situations. Finally, a four-

week rehabilitation training program was designed in section 2.5 to investigate the 

long-term training effect of the myoelectrically controlled robotic system in restoring 

the upper limb function of the subjects after stroke. Different kinds of evaluation 

methods to monitor the functional improvement in the affected arm of the subjects 

after stroke after the four-week rehabilitation training were also introduced in section 

2.5. Fig. 2.1 shows the structure of the whole study. 
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Fig. 2.1 Structure of this study 

2.2 Robotic system  

Different types of robotic devices had been introduced in section 1.3. The main 

objective of this part was to develop a robotic system controlled by EMG signals, 

which could be applied in the rehabilitation training for subjects after stroke. EMG 

signal was selected as the control signal because its advantages had been described in 

EMG controlled FES systems (Cauraugh et al., 2000; Chae et al., 1998) and 

exoskeletons (Rosen et al., 2001; Cheng et al., 2003), which could detect the subject’s 

own intention and give corresponding assistance. The robotic system was also 

designed for functional evaluation since it could capture torque, kinematics and the 

EMG signals for on-line or off-line analysis. In this section, the hardware and 

software parts of the robotic system were introduced.  

2.2.1 Hardware 

According to the objective of the study, the mechanical part of a robotic manipulator 

with one-degree of freedom (DOF) was designed and fabricated for assisting the 

performance of elbow flexion and extension, and the mechanical structure was shown 

in Fig. 2.2 and Fig 2.3. The two layers of aluminum plates were connected by four 

aluminum pillars. The lower plate was fixed to a table. The direct drive (DDR) 

brushless AC servo motor (DM 1045B, YOKOGAWA, Japan) was fixed to the lower 
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plate by six small aluminum pillars. There were two custom-made connectors 

(Connector 1 and Connector 2) in this system. Connector 2 connected the motor and 

one end of a torque sensor (AKC-205, the 701th Institute of China Aerospace Science 

and Technology Corporation, China). The other end of the torque sensor was 

connected to a manipulandum by connector 1. The mechanical integration between 

the forearm and the manipulandum was obtained by an orthosis with semicircular 

cross section and straps were used to fix the forearm to the orthosis. There was a 

handle in the manipulandum that could be grasped by the subject during the 

movement. The upper arm was also fixed by a strap to a supporter mounted on the 

upper aluminum plate (Fig. 2.3). The orthosis and manipulandum could guide the 

forearm to rotate with an axis of rotation in line with the motor and the torque sensor. 

The torque sensor can measure the interaction torque between the manipulandum and 

the servo motor. Fig. 2.4 showed the system with a subject from different viewing 

directions. 
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Fig. 2.2 Side view of the robotic system  

 

Fig. 2.3 Top view of the robotic system with a subject 
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Fig. 2.4 Diagram of the robotic system 
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The DDR motor was driven by a servo driver (SD1045B, YOKOGAWA, Japan); it 

could rotate smoothly at a very low velocity (less than 2 rev /s) and had a flat 

velocity/torque curve with a high torque output (up to 48 Nm), which was suitable for 

the biomechanical application of a human’s joint. An optical incremental shaft 

encoder was attached to the motor shaft and the practical encoder’s resolution for 

measuring the joint angle could reach 655,360 lines/revolution, which provided the 

maximum accuracy of the measured joint angle up to 0.00055 deg. The servo motor 

could work in the following three different control modes: 

1. In position control mode, motor positioning control was performed according to 

the command position sent from the higher-level motion controller card (PCI 

7344, National instrument, USA). A proportional-integral-differential (PID) 

control algorithm was applied to make the output position equal to the target 

position based on the feedback of the digital encoder. 

2. In velocity control mode, the rotating velocity of the motor was controlled by 

the command voltage (-10 v to +10 v) from the higher-level controller.  

3. In torque control mode, the current which flowed through the motor was 

controlled by the input command analog voltage (-8.5 v to +8.5 v). There was no 

torque when the command voltage equaled zero and the maximum torque was 

produced when the command voltage equaled ± 8.5 v. The torque generated by 

the motor was almost linear with input analog voltage, which was calibrated in 

section 2.2.3.2.  

In velocity control and torque control mode, the higher-level command signal was 

generated using Labview software through a DAQ card (PCI 6036E, National 

instrument, USA). The DAQ card has sixteen 16-bit analog inputs, two 16-bit analog 

outputs and two 24-bit counters.  

For safety issues, three steps were taken to protect the subject during the experiments. 

Firstly, two mechanical stops were used to limit the rotation range of the motor, and 

they were shown in Fig. 2.3 and Fig. 2.4. Secondly, the software program would limit 

the torque to the preset range, and the operation would be stopped if the motor 

exceeded the range. The torque that the motor could generate ranged from -5 Nm to 5 

Nm. Thirdly, an emergency stop could be used by the person who was in charge of 

the experiment to break the power supply to the servo motor.  
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2.2.3 System calibration  

2.2.3.1 Calibration of the torque sensor  

The accuracy of the torque sensor should be validated before the experiments. In 

order to calibrate the torque sensor, the robotic system was set to the vertical plane, 

and the system was changed to the position control mode. The command signal was to 

keep the manipulandum horizontally based on the PID control, and the torque was 

measured by the torque sensor. Fig. 2.6 showed the relationship between the 

measured torque by the torque sensor and the calculated torque that was based on the 

mass of the load and the moment arm in equation (2.1): 

                                          T=T0+D*M                                                      (2.1) 

where T0 was the torque of the manipulandum, D was the moment arm of the load 

from the rotation axis and M was the mass of the load. Twelve points were calculated   

with the combinations of four different loads (1, 2, 3 and 4 kg) and three different 

moment arms (0.265m, 0.305m, and 0.345m). Fig. 2.6 showed that there was a good 

linearity between the measured torque and the calculated torque (R=0.9974).  

  

Fig. 2.6 Calibration of the torque sensor and motor 
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2.2.3.2 Calibration of the motor in the torque mode  

After calibrating the torque sensor, the relationship between the analog input and the 

output torque of the motor was also calibrated. This calibration test was performed 

with the manipulandum in the horizontal plane. The system was in the torque control 

mode, and the manipulandum was fixed by the two mechanical stops. The torque that 

was applied from the motor to the manipulandum could be measured by the torque 

sensor. Different analog inputs (from 0 to 2v with an increment of 0.1v) to the motor 

were generated with a Labview program through the DAQ card. The results were 

shown in Fig. 2.7. There was a good linear relationship between input voltage and the 

measured torque by the torque sensor (R=0.9987). The line did not pass through the 

origin which was due to the initial friction torque of the motor. The maximum static 

friction torque (Tf) of the motor could be calculated based on the linear equation when 

the analog input equaled to zero (Tf =-1.687 Nm). 

 

 

Fig. 2.7 Calibration of the motor in the torque mode.  
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2.3 Control strategy  

In order to find a control strategy for the robotic system in the rehabilitation training, 

two control strategies were investigated in this study: the recurrent artificial neural 

network (RANN) and proportional control.  

2.3.1 Recurrent artificial neural network model (RANN) 

2.3.1.1 RANN model for subjects without impairment 

Section 1.4.2 shows that ANN models are promising techniques to simulate the 

musculoskeletal model, but few of these models have been used to investigate the 

EMG-torque relationship under a dynamic situation. In this study, a three-layer 

RANN model (Fig. 2.9) was built. The inputs and output were similar to the Hill-type 

model in Fig. 2.8 to describe the musculoskeletal function in voluntary dynamic 

situations. The special feature of the RANN model was that the feedback from a 

previous stage was used as the input for the next stage. The EMG signals from 

selected muscles were used as inputs to reflect the central nervous system (CNS) 

command signal; the angle and angular velocity of the elbow joint were used as inputs 

to reflect elbow geometry parameters, and the feedback from the output torque was 

used as input to reflect the previous state of the muscles around the elbow joint. This 

feedback was applied to simulate the muscle characteristic. The muscle force of the 

previous stage determined the tendon compliance and it would affect the force at the 

next stage (Zajac, 1989). The specific goal of this part of the study was to evaluate the 

performance of the RANN model using the EMG signals recorded from three selected 

muscles together with the kinematics information to predict the joint torque of the 

elbow when performing voluntary arm movement in the horizontal plane. Moreover, 

the effect of using kinematics information on the RANN model was studied by 

comparing the model with and without kinematics inputs.  
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Fig. 2.8  Block diagram of the musculoskeletal model. A classical Hill-type model 

was divided into three parts to describe the relationship from CNS input to 

the body movement: the activation dynamics model, the contractile 

dynamics model and joint geometry model.   

 

 

Fig. 2.9 Structure of the recurrent artificial neural network (RANN) model. The six 

input nodes consisted of normalized EMG signals from biceps brachii (BIC), 

triceps brachii (TRI), brachioradialis (BRD), angle, and angular velocity and 

a recurrent torque feedback. The output node was the normalized joint torque 

about the elbow complex. 
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(1) Experimental procedures 

Six healthy subjects (male, 24-30 years of age) without any history of neuromuscular 

disorder were recruited in this study. Before the test, all subjects were introduced to 

the experimental protocol and gave their informed consents (Appendix III). Fig. 2.10 

showed the experimental setup. In the experiment, the subject was asked to sit beside 

the table. The height of the table was adjusted to rest the arm in the horizontal plane 

with the same height of the shoulder, and the shoulder was in 90 deg abduction and 45 

deg horizontal flexion. A strap was used to fix the upper arm to a supporter on the 

table. The forearm was attached to a custom-made manipulandum by an orthosis fixed 

on the manipulandum with an axis of rotation in line with the elbow joint. The 

manipulandum was used to support the forearm and the subject could flex and extend 

frictionlessly along the elbow joint. The aluminum manipulandum was light in weight 

in order not to affect the voluntary arm movement. There was a handle in the 

manipulandum that could be grasped by the subject during the movement. Then the 

subjects were instructed to perform reciprocal elbow flexion/extension between full 

extension (0 deg) and 90 deg flexion at different speeds which were guided by the 

sound of a metronome. The metronome was used to guide the kinematics trajectory of 

the movement. The subjects were asked to finish an elbow flexion or elbow extension 

within the time interval of two metronome beeps. The elbow should be either in the 

full extension position or in the 90 deg flexion position when the beep sound was 

heard. The subjects were instructed to move smoothly across the range and not to 

pause at the two ends. The frequencies of the metronome were set at 0.67 Hz and 1 Hz 

and the corresponding average angular velocities of the elbow were 60 deg/s and 90 

deg/s respectively. Three different loads mounted on the top of the handle (0, 1 kg and 

2 kg) were tested at these two frequencies. Each subject accomplished these 3×2 

experimental trials twice which were structured in two blocks; each trial lasted for 30 

seconds. The first block of trials was used as the training set and the second block of 

trials was used as the test set. There was at least a one-minute rest time between trials 

in order to minimize the effect of fatigue. An additional experiment was conducted on 

one subject (subject C) after these two blocks of trials. The subject was asked to 

perform reciprocal elbow flexion/extension between 0 deg and 90 deg freely without 

any guidance of the metronome. The trial was also used to validate the RANN model 

trained with the first block of data. The angular displacement of the elbow joint was 
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captured by a flexible electrogoniometer (Penny & Giles, UK). A tele-EMG system 

(Noraxon, USA) with a bandwidth of 10-500 Hz per channel was used to capture and 

amplify the surface EMG signals from three selected muscles: biceps brachii, medial 

triceps brachii and brachioradialis, which were the muscle groups that mainly 

contributed to the movements of elbow flexion and elbow extension. The surface 

EMG signals were captured with Ag/AgCl surface electrodes (Blue Sensor, 

Medicotest, Denmark). All Ag/AgCl electrodes were placed in bipolar configuration 

with a 2 cm space between the centers of the electrodes. The positions of the surface 

EMG electrodes were chosen as suggested by Cram et al. (1998). The surface EMG 

signals and angular signal were recorded simultaneously at a sampling frequency of 

1000 Hz and were stored via a 16-channel A-D converter for off-line analysis 

(DT2821, Data Translation, USA).  

 

Fig. 2.10 Experimental setup. The experimental setup showed the EMG electrodes on 

the biceps, triceps, and brachioradialis, the placement of the 

electrogoniometer and the definition of elbow angle. 

(2) Data processing 

The angular signals were low-pass filtered using a 4th order Butterworth digital filter 

with a cut-off frequency of 3 Hz. The surface EMG signals were band-pass filtered 

using the same digital filter with bandwidths of 10-500 Hz; then they were full-wave 
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rectified and low-pass filtered with a cut-off frequency of 3 Hz. The angular velocity 

was calculated from the first derivatives of the angle and the angular acceleration was 

the second-order derivatives of the angle. The angular acceleration was used to 

calculate the expected torque. The Matlab signal processing toolbox was used to 

process the data. All the data were digitally resampled at 100 Hz before they were 

inputted into the ANN model.  In order to avoid zero or extremely large values, all the 

inputs and output were scaled to 0.1-0.9 using a linear scale method. Table 2.1 

showed the references of the normalization criteria (Luh et al., 1999).  

 

 Normalized to 0.1 Normalized to 0.9 

EMG of Biceps brachii 

EMG of Triceps brachii 

Brachioradialis 

Joint angle  

Joint angular velocity 

Joint torque 

At rest 

At rest 

At rest 

0 deg 

Max. extension velocity 

Max. extension torque 

Biceps EMG amplitude  of MIVF  

Triceps EMG amplitude of MIVE   

Brachioradialis EMG amplitude of MIVF 

90 deg 

Max. flexion velocity 

Max. flexion torque 

 

Table 2.1 Normalization criteria for input and output of normal subjects before 

training. The movement of flexion was assigned to be positive and the 

movement of extension was assigned to be negative. MIVF=maximum 

isometric voluntary flexion; MIVE=maximum isometric voluntary 

extension. The MIVF and MIVE were performed when the elbow joint 

was at 90 deg. 

(3) Inverse dynamic model 

The following nonlinear differential equation describes the joint movement with 

manipulandum and loads:  

dt
dB

dt
dIT θθ

⋅+⋅=
2

2

1                                                 (2.2) 

where θ  was the joint angle, B was the viscosity coefficient of the tissue, which was 

assumed to be zero in this study, and I was the moment of inertia of  subject’s forearm, 
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hand, the manipulandum and the loads. For one DOF of movement of the forearm, I 

could be assumed to be constant, and Table 2.2 summarized the moment of inertia of 

each subject based on the subject-specific anthropometric parameters (Winter et al., 

1990). Then the expected torque of the elbow joint during voluntary horizontal 

movement could be calculated from this inverse dynamic model by multiplying 

angular acceleration with moment of inertia (Gregor et al., 1991; Riener et al., 1997). 

No external forces were expected from the system, and the elbow movement could be 

performed freely along the axis.  

Subject A B C D E F 

Body weight (kg) 61 69 66 70 64 67 

Forearm length (cm) 24 25.5 24.5 24.5 22.5 23 

MOI when with a 0-kg load (kg.m2)  0.079 0.094 0.086 0.090 0.075 0.079 

MOI when with a 1-kg load (kg.m2)   0.198 0.213 0.205 0.209 0.194 0.198 

MOI when with a 2-kg load (kg.m2) 0.317 0.332 0.324 0.328 0.313 0.317 

 

Table 2.2 Anthropometric parameters and the summed moment of inertia (MOI) of 

subject’s forearm, hand, the manipulandum and different loads.  

(4) RANN model with EMG and kinematics inputs 

A three-layer RANN model was chosen to map the input EMG signals and the 

expected torque (Fig. 2.9). The normalized EMG magnitudes of biceps brachii, triceps 

brachii, brachioradialis, angle, angular velocity, together with a recurrent feedback 

torque, formed six input nodes. The output node was the normalized joint torque at 

the elbow joint. The criterion to choose the number of hidden units was described in 

section 2.3.1.1-(6). The activation functions of the input and output nodes were linear, 

and the activation function of the hidden nodes was tangential-sigmoid defined by 

equation (2.3) and equation (2.4).  

                          ∑ +=
j

iijji biasanet ω                                                      (2.3)               

inetinet

inetinet
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−

−

+
−

=TanSig                                                        (2.4) 
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where inet was the net input to neuron, sum of multiplying each input signal ja  by the 

corresponding connection weight ijω and variable bias term ibias . The initial 

connection weights were random values. The error could be improved by means of 

the back-propagation training method. Among many variations of the back-

propagation training methods, the Levenberg-Marquardt algorithm was selected for its 

fastest convergences for medium sized neural networks until a few hundred neurons 

(Gurbuz et al., 2003). The Levenberg-Marquardt algorithm could be described by the 

following equation: 

eJIJJ TT .)( 1−+=Δ μω                                          (2.5) 

where ω  was a vector of weights and biases, J  was the Jacobian matrix that contains 

the first derivatives of the network errors with respect to weights and biases,  e  was a 

vector of network errors, I was the identity matrix and μ  was a scale. The default 

setting of μ  was 0.01 before training. The Matlab neural network toolbox was used to 

train and test all the data. (Mathwork, USA) 

The sum square error (SSE) and the root mean square error (RMSE) were used to 

reflect the performance of the model: 

∑
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where, x(i) was the predicted torque based on the RANN model, y(i) was the expected 

torque deduced from the inverse dynamic model and N was the number of samples.  

The cross-correlation coefficient between the predicted torque and the expected 

torque was also used to reflect the performance of the model which is as follows 

(equation 2.8): 
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All data from different frequencies (0.67 Hz, 1 Hz) and different loads (0 kg, 1 kg and 

2 kg) were trained in a RANN model for each subject, then the RANN model of each 

subject was analyzed with the test data, respectively. 

(5) RANN model with only EMG inputs 

In addition to the RANN model described in section 2.3.1.1-(4), another three-layer 

recurrent network with only three EMG inputs (the normalized EMG of biceps brachii, 

triceps brachii and brachioradialis) and recurrent feedback was built to compare the 

performances of the models with and without the kinematics inputs. The other parts of 

the model were the same with the model in section 2.3.1.1-(4), and the model used the 

same training data and test data. The paired t-test (two-tail test) was used to 

statistically compare the RMSE from these two models. The level of significance was 

set at 0.05 for all statistical tests.  

(6) Network structure and number of iterations  

The number of hidden nodes was investigated to achieve the best performance. Fig. 

2.11 showed the RMSE of the training data and the test data set by varying the 

number of hidden nodes and initial connection weights from the data of subject C. For 

each model with the same number of hidden nodes, it was trained ten times with 

different random initial conditions. The average RMSE from different initial 

conditions was shown in Fig. 2.11. In the training data, the mean RMSE decreased as 

the hidden nodes increased. When the model was evaluated by the test data, there was 

a decrease in the mean RMSE at the initial stage and when the number of hidden 

nodes was further increased, the mean RMSE increased and the fluctuation of RMSE 

also increased. The minimum RMSE of the test data was located where the hidden 

nodes varied from 5 to 10. The number of hidden nodes was chosen to be seven 

across all subjects. The number of training iterations was also a factor that affected the 

results. Fig. 2.12 showed the relationship between the iteration number and the RMSE 

of the training and the test data. Many investigators used a fixed number of iterations 

(Rosen et al., 1999; Liu et al., 1999; Koike et al., 1995) for training and their stopping 

criterion might cause the system to stay in a local minimum and might decrease the 

robustness with too many iterations. As shown in Fig. 2.12, although the RMSE of the 

training set decreased with the increase in the iteration number, the error of the test set 

increased. In order to avoid this situation, the training should be stopped, if there was 
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not much improvement in the error. In this study, the stop criterion for each RANN 

model was trained until the SSE between the expected torque and the predicted torque 

changed by less than 0.5% over 50 consecutive iterations.  

 

 

Fig. 2.11 The relationship between network complexity and the error of the network. 

The solid curve was the average RMSE from test set and the dashed line 

was the average RMSE from training set.  
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Fig. 2.12 The relationship between the RMSE of the network and the number of 

iterations in training. The solid line was calculated from test set and the 

dashed line was calculated from training set.  

2.3.1.2 RANN model for subjects after stroke 

(1) Experimental setup 

After the experiment on normal subjects, three subjects after stroke were also 

recruited to evaluate the RANN model. Table 2.3 showed the clinical data from the 

three subjects and Fig. 2.13 showed the experimental setup. In the experiment, the 

subjects were instructed to sit beside the table with the manipulandum. A strap was 

used to fix the upper arm to a supporter on the table. The height of the table was 

adjusted to rest the arm in the horizontal plane with the same height as that of the 

shoulder, and the shoulder was in 90 deg abduction and 45 deg horizontal flexion. The 

forearm was attached to a manipulandum with the axis of rotation in line with the 

elbow joint. The manipulandum was used to support the forearm. The rotation axis 

was connected with a ball bearing, and the friction torque along the rotation axis could 

be ignored. The manipulandum was made of aluminum and weighed about 400 g. It 

was designed to minimize the inertial effect from the manipulandum during the 
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voluntary arm movement. A computer screen was placed in front of the subjects, 

which displayed both the target and the actual elbow joint angle. The subjects were 

instructed to initially set the elbow at 30 deg flexion, since many subjects after stroke 

often had difficulty moving to the fully extended position. After a random delay 

generated by the Labview software which ranged from 2 to 5 sec, the indicator light in 

the middle of the screen turned green, and the target pointer began to move along the 

horizontal line in a sinusoidal trajectory between 30 deg and 90 deg for 36 seconds. 

The subjects were instructed to try their best to follow the moving target pointer by 

controlling their elbow angle. The actual elbow angle was also displayed in another 

pointer as the real-time feedback. Before the test, three warm-up trials at 30 deg/s 

were arranged for the subjects to get familiar with the experiment. Then each subject 

was administered 18 trials structured in three blocks. Each block consisted of six trials 

with different velocities (10, 20, 30, 40, 50 and 60 deg/s) which were arranged in a 

random sequence. The subjects had a 30-s and five-minute rest time between each 

trial and between each block, respectively. For the three subjects, the task was 

performed on both the affected and the unaffected arms. The angular displacement of 

the elbow joint was captured by a flexible electrogoniometer (Penny & Giles, UK), 

which was attached to the manipulandum. A tele-EMG system (Noraxon, USA) with 

a bandwidth of 10-500 Hz per channel was used to capture and amplify the surface 

EMG signals from three selected muscles: biceps brachii, medial triceps brachii and 

brachioradialis, which were the muscle groups that mainly contributed to the 

movements of elbow flexion and elbow extension. The surface EMG signals were 

captured with Ag/AgCl surface electrodes (Noraxon, USA). All Ag/AgCl electrodes 

were placed in bipolar configuration with a 2 cm space between the centers of the 

electrodes. The angle signal and EMG signals from the biceps brachii, medial triceps 

brachii and brachioradialis were recorded simultaneously at a sampling velocity of 

1000 Hz and were stored in a PC via a 16-channel A-D converter for off-line analysis 

(PCI 6036E, National instrument, Texas, USA). The model structure, training criteria 

and data processing were the same as those for the normal subjects as described in 

section 2.3.1.1-(2). The data from all the six velocities were used for training the 

RANN model. Since no external load was added during the movement and the 

moment of inertia of the forearm and the hand was assumed to be constant, the joint 

torque could be proportional to the acceleration of the movement throughout the 

whole experiment (equation 2.9).  
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T=I*α                                                   (2.9) 

Where T was the torque generated by the muscle group around the elbow joint, I was 

the moment of inertia of the subject’s forearm, hand and the manipulandum and α  

was the angular acceleration. Therefore, the output of the RANN was simply replaced 

by the angular acceleration of the elbow. Table 2.4 showed the modified 

normalization criteria for subjects after stroke.  

Subject Age/ (Sex) Lesion side Years after stroke Modified 

Ashworth scale

A  39 (M) R 11 yrs 2 

B 46(M) R 5 yrs 1+ 

C 46 (F) L 2 yrs 1 

 

Table 2.3 Clinical data from the subjects after stroke for the RANN model. 

 

Fig. 2.13 Block diagram of experimental setup  
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 Normalized to 0.1 Normalized to 0.9 

EMG of Biceps brachii 

EMG of Triceps brachii 

Brachioradialis 

Joint angle  

Joint angular velocity 

Joint angular acceleration 

At rest 

At rest 

At rest 

30 deg 

Max. extension velocity 

Max. extension acceleration 

Max Biceps EMG amplitude 

Max Triceps EMG amplitude  

Max Brachioradialis EMG amplitude  

90 deg 

Max. flexion velocity 

Max. flexion acceleration 

 

Table 2.4 Normalization criteria for input and output before training for subjects after 

stroke (The movement of flexion was assigned to be positive and the 

movement of extension was assigned to be negative).  

(2) Calibration of the electrogoniometer  

In order to ensure that the electrogoniometer could measure the elbow angle 

accurately during the horizontal movement, a calibration test was conducted before 

the experiment. Fig. 2.14 showed the results from the electrogoniometer and the angle 

measured by a protractor. The high cross-correlation (R=0.9997) between the angle 

measured by the protractor and that calculated by the electrogoniometer showed that 

the electrogoniometer could be mounted on the manipulandum to measure the elbow 

angle. The angle was calculated from the following linear equation: 

                    Angle=K*(X-Xoffset)                                                                   (2.10) 

where X was the analog voltage measured from the electrogoniometer, K equaled  

88.26 deg/v, which reflected the characteristic of the electrogoniometer. Xoffset was the 

offset voltage, which was determined each time before the experiment.  
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Fig. 2.14  Calibration of the electrogoniometer. In the figure, the x coordination was 

the angle measured by a protractor from 0 deg to 90 deg with a 10 deg 

increment, and the y coordination was the angle calculated from 

electrogonoimeter. 

2.3.2 Robotic system using proportional myoelectric control 

2.3.2.1 EMG signal processing procedures 

 

 

 

 

 

Fig. 2.15 Procedures for estimating the output torque from the EMG signal.  
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Proportional control is an alternative method for the robotic system. Fig. 2.15 showed 

the control flow which started with the raw EMG signal. Before sampling, the signals 

were amplified with a gain of 1000 and were band-pass filtered in 10-400 Hz. The 

EMG signals were all sampled at 1000 Hz. Then the EMG signals were full-wave 

rectified and calculated with a moving window (100 ms). Electromechanical delay, 

which exited between the EMG signals and the mechanical torque generated by the 

muscle, was assumed to be 50 ms in the literature (Koo et al., 2005). The moving 

window could also cause a delay of 50 ms to the processed EMG signals in real time, 

which would cause the synchronization between the torque generated by the motor 

and the torque generated by the muscle.  

The processed EMG signals jw  were then normalized to the range 0-1 for jNEMG as 

follows:                                                                              

      
rmvc

rj
j ww

ww
NEMG

−

−
=                                                            (2.11) 

where rw was the amplitude of processed EMG signal at rest, and wmvc was maximal 

amplitude of the processed EMG signal during maximum voluntary contraction 

(MVC). The assistive torque Tm was estimated based on the normalized EMG signals: 

jmvcm NEMGTGT **=                                             (2.12) 

where G was the EMG-torque gain and Tmvc was the torque during the MVC. Then the 

summed torque Tsum the motor would generate could be shown in the following 

equation: 

resistmsum TTT −=                                                          (2.13) 

where Tresist was the constant resistive torque applied to the motor based on the 

maximum voluntary contraction  at the elbow joint.   

2.3.2.2 Selection of the control signal 

Proportional control would be evaluated on the subjects after stroke in this part of the 

study. The first objective was to find the suitable muscle as the source of the control 

signal. The muscle groups from the affected elbow could be different from those in 

subjects without impairment, and this characteristic could affect the performance of 

the control system.  
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Elbow contracture could be commonly found in subjects after stroke (O'Dwyer et al., 

1996; Williams, 1988), which required them to exert additional effort to counteract 

the passive torque generated by the stiff and shortened muscles during movement 

within the available range. Koo et al. (2003) reported the position-dependent joint 

weakness of elbow extensors which might be due to the reduced activation of the 

extensors at an extended place. Moreover, it was also found that muscle cocontraction 

occurred in subjects after stroke which reflected impairment in the ability to inhibit 

the flexor during elbow extension (McLellan et al., 1985; Canning et al., 2000). 

Spasticity was also a factor that might affect elbow extension (Mccrea et al., 2003; 

Schmit et al., 1999; Cozens, 1999). These findings showed that subjects after stroke 

had difficulties in performing elbow extension and involuntary torque generated by 

the biceps would affect the movement. Therefore, the elbow flexors were not used as 

control signal during elbow extension to minimize the effect of abnormal firing 

pattern to the movement; the EMG signal from medial triceps brachii of the affected 

arm was used as the control signal for the proportional control of the robotic system.  

In this experiment, effects of the resistive loads and the EMG-torque gains on the 

motion performance of the affected arm with the myoelectrically controlled robotic 

system were evaluated in a tracking experiment. The effects of the resistive loads 

were investigated, as the resistance training was reported to be beneficial for subjects 

after stroke in developing muscle strength (Weiss et al., 2000; Morris et al., 2004; 

Ouellette et al., 2004). 

2.3.2.3 Experiment protocol  

A four-channel EMG system (HTI, polyu, HK) with a bandwidth of 10-400 Hz per 

channel was used to capture and amplify the EMG signals from the selected muscles: 

biceps brachii and medial triceps brachii. These two muscles mainly contributed to the 

movements of elbow flexion and extension. During elbow extension, the robotic 

system would provide an external extension torque to assist the subject’s affected 

elbow joint, which was in proportion to the amplitude of the processed EMG signal of 

the medial triceps brachii. The surface EMG signals were captured by pre-gelled 

Ag/AgCl surface electrodes (Noraxon, USA). All Ag/AgCl electrodes were placed in 

a bipolar configuration with a 3 cm space between the centers of the electrodes. An 

additional reference electrode was placed distant lateral of the elbow on the bony part. 
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The torque between the manipulandum and the motor was measured by the torque 

sensor during the movement and the elbow joint angle could be measured from the 

encoder. 

Nine subjects with stroke were recruited in this part of the study. The mean age of 

subjects was 1046± years ranging from 26 to 59 years. The criteria for recruiting the 

subjects included the following: (1) there should be at least six months after unilateral 

stroke, (2) the subjects should not have visuospatial, cognitive or attention deficits 

which would prevent them from following the instructions or performing the 

experimental procedures, (3) the subjects should have measurable EMG signal from 

medial triceps brachii (the processed EMG signal after the moving window should at 

least be twice larger than that at rest). Eight of them could not fully extend their elbow, 

and only one subject (Subject D) could fully extend her elbow in the horizontal plane. 

All the subjects had sufficient strength to complete the flexion movement back to 90 

deg elbow flexion when their affected elbows were passively positioned at 30 deg 

elbow flexion. Before the experiment, all the subjects were introduced to the 

experiment procedures and were asked to sign the consent forms (Appendix III).   

During the experiment, the subjects were asked to sit beside the system. A strap was 

used to fix the affected upper arm to a supporter in the horizontal plane and the 

shoulder was in 90 deg abduction. The affected forearm was attached to the 

manipulandum, and the subject was asked to grasp the handle of the manipulandum 

with the hand. The orthosis and strap were used to fix the forearm. The subject could 

voluntarily move the manipulandum to perform elbow flexion, and elbow extension in 

the horizontal plane. A screen was placed in front of the subject to provide guidance, 

and all the subjects were instructed to complete the following tasks: 

1) The MIVE and MIVF torques were measured for the affected elbow flexors and 

extensors when the elbow was positioned at 90 deg in the horizontal plane, which 

were used to define the level of resistive torque generated by the motor for each 

subject. The EMG signals during MIVE and MIVF were also captured to 

normalize the EMG signals of the biceps and the triceps. Three trials were 

performed and the maximum values were used for the torque and the EMG signals.  

The motor system was in the position control mode as a dynamometer. The 

program interface that was used for measuring the MIVE and MIVF torques was 

shown in Fig 2.16. When the indicator light in the middle of the screen turned red, 
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the subject was instructed to perform MIVE or MIVF for 5 sec. The real-time 

value of the elbow torque was showed from a pointer. The raw EMG signals from 

the biceps and the medial triceps and the torque signal were recorded at a 

sampling frequency of 1000 Hz by the DAQ card (PCI 6036E, National 

instrument, USA) for off-line analysis.  

 

 

Fig. 2.16 The Labview interface for torque measurement.  

2) After being measured the MIVE and MIVF torques, the subjects were instructed 

to perform the arm tracking test which began with the elbow at 90 deg. The 

Labview program provided visual guidance for the task. After a delay of 3 sec, the 

indicator light in the middle of the screen turned green to instruct the subjects to 

start to follow the target pointer by extending his/her forearm and the target 

pointer would move from 90 deg to 0 deg at a constant speed of 10 deg/s. Both the 

target and the actual elbow joint trajectories were displayed as two pointers on the 

screen as a real-time visual feedback; the subjects could correct the elbow 

movements to match the target pointer. The myoelectrically controlled robotic 

system would generate a torque which was calculated from equations (2.11), (2.12) 

and (2.13) in section 2.3.2.1 to assist or resist the elbow movement. Four gains 

(G=0%, 50%, 100%, 150%) and three resistive loads (Tresist=0% MIVE, 10% 

MIVE, 20% MIVE) were applied when the subject performed the elbow tracking 

task from 90 deg to 0 deg.  Each subject would complete these 3×4 experimental 

trials for three times. The RMSE between the target angle and the subject’s elbow 

angle would be displayed on the panel to provide the subject an index of his/her 

Indicator light 

Torque 



68                                 

performance after each trial. The smaller the RMSE value meant the better the 

performance in tracking the target. Fig. 2.17 showed the interface of this task. The 

red pointer showed the angle of the elbow and the blue pointer showed the target 

trajectory. The raw EMG signals of the biceps, medial triceps and torque were 

recorded at a sampling frequency of 1000 Hz and the elbow angle and target 

signal were recorded at a sampling frequency of 100 Hz by the DAQ card (PCI 

6036E, National instrument, USA) for off-line analysis. 

 

 

Fig. 2.17 The Labview interface for tracking with the myoelectrically controlled 

robotic system.   

2.3.2.4 Off-line data analysis 

The angular signals were low-pass filtered using a 4th order Butterworth digital filter 

with a cut-off frequency of 5 Hz. The surface EMG signals were band-pass filtered 

using the same digital filter with bandwidths of 10-400 Hz; then full wave rectified, 

and low pass filtered with a cut-off frequency of 3 Hz. The normalized EMG (NEMG) 

was used for further analysis after the processed EMG signal was normalized with the 

processed EMG signal measured at the MVC. In order to investigate the performance 

of the subjects with the myoelectrically controlled robotic system, different 

combinations of EMG-torque gain and resistive torque were applied to the subjects. 

Five parameters were used as indices to reflect the performance of the movement: (1) 

RMSE between the actual elbow angle and the target angle, (2) RMSJ of the 

trajectory, (3) extension range, which can be defined as the maximum angular 

Indicator light 

Elbow angle Target 
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displacement of the elbow during elbow extension from 90 deg, (4) the normalized 

EMG (NEMG) signal of biceps and (5) the NEMG signal of triceps. 

Two-way analysis of variance (ANOVA) with repeated measures was used to analyze 

the effects of gain and resisted load on all five parameters. The significant level was 

set at 0.05. All statistical work was performed with SPSS.  

2.4 Functional evaluation using the elbow tracking system  

2.4.1 Experimental setup for the sinusoidal elbow tracking  

The main objective of this part was to systematically evaluate the elbow control 

ability of subjects after stroke during the voluntary elbow tracking task, which 

coupled the sensory and motor functions of the neuromusculoskeletal system in order 

to comprehensively understand the motor disorder caused by stroke. A sinusoidal 

tracking trajectory was designed, because the velocity profile was similar to the bell-

shaped velocity profile, an independent characteristic in single-joint movement of 

human. The differences between the affected and unaffected arms were analyzed at 

six different tracking velocities (10, 20, 30, 40, 50 and 60 deg/s) according to the 

following parameters: the RMSE between the actual elbow angle and the target angle, 

root mean square jerk (RMSJ) and response delay (RD).  

Nine subjects (seven males and two females) after stroke were recruited in this study. 

The mean age of the subjects was 1145±  years and the range was from 21 to 57 years. 

Table 2.5 summarized the basic clinical information and the modified Ashworth scale 

of all the subjects. The subject selection criteria included: (1) hemiparesis resulting 

from a single unilateral lesion of the brain with onset at least six months before data 

collection; (2) sufficient active elbow range of motion (ROM) (30 deg-90 deg) on the 

affected arm; and (3) subjects should not have visuospatial, cognitive or attention 

deficits which would prevent them from following the instructions or performing the 

experimental procedures. This study was reviewed and approved by the human ethical 

committee of the Hong Kong Polytechnic University. Before the test, all the subjects 

were introduced to the experimental protocol and gave their informed consent 

following the ethical procedures (Appendix III). The experimental setup and 

procedures were the same with those of the experiment in section 2.3.1.2. Only the 

angle signal was captured and analyzed by an electrogoniometer attached to the 

manipulandum. 
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Subject Age/ (Sex) Lesion side Years after stroke Modified 

Ashworth scale

A  39 (M) R 11 yrs 2 

B 46(M) R 5 yrs 1+ 

C 46 (F) L 2 yrs 1 

D 51 (F) L 1 yr 1+ 

E 57 (M) R 3 yrs 1 

F  40 (M) R 4 yrs 2 

G 21 (M) R 9 yrs 1+ 

H 49 (M) L 1 yrs 1+ 

I 57 (M) R 13 yrs 3 

 

Table 2.5 Clinical data from the subjects after stroke. Modified Ashworth scale: 0 = 

no increase in tone; 1 = slight increase in muscle tone; 1+ = slight increase 

in muscle tone, manifested by a catch, followed by minimal resistance 

throughout the remainder; 2 = more marked increase in muscle tone 

through most of ROM, but affected part move easily; 3 = considerable 

increase in muscle tone, passive movement difficult; 4 = affected part rigid.  

2.4.2 Data analysis 

2.4.2.1 Performance indices 

The angular signals from the elbow joint were low-pass filtered using a 4th order zero-

phase Butterworth digital filter with a cut-off frequency of 5 Hz, because the majority 

of the power of the angle signal was below 5 Hz from spectral analysis. The angular 

velocity was calculated from the first derivatives of the angle, and the angular 

acceleration was the second-order derivatives of the angle. All the data analysis was 

carried out using the Matlab signal processing toolbox (Mathworks, USA). The three 

indices: the RMSE, RMSJ and response delay were used to evaluate the voluntary 

tracking performance of all subjects. 
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1) The RMSE evaluated the voluntary tracking performance of all subjects. 

 RMSE= ∑ − 2
0 ))()((1 ii

N
θθ                                                  (2.14) 

where )(0 iθ  was the target elbow angle at ith sampling instant and  )(iθ  was the actual 

elbow angle at ith sampling. N was the total number of samples. 

2) The RMSJ measured the smoothness of the movement which could be expressed in 

the following equation: 

RMSJ = ∑ 2)(1 iJ
N

                                                                 (2.15) 

where J(i) was jerk of elbow movement at ith sampling instant which could be  

calculated from the third derivatives of the angle, and N was the total number of 

samples. 

3) Response delay  

The RD was used to describe the time interval between the trajectory of the actual 

elbow and the trajectory of the target, which was quantified by the temporal shift (t) 

that maximized the following normalized cross-correlation function (Vint et al., 2000): 
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where xyR  was the value of the cross-correlation between the target trajectory and the 

actual trajectory at any time shift τ . T was the length of the records, which equaled to 

the length of one cycle for each velocity in this experiment; x and y were the target 

and actual elbow angle in time domain; τd  was the interval between the adjacent time 

shifts and its resolution was 0.001s; xxR  and yyR  were the maximum values of the auto-

correlations of the target and actual angle trajectories respectively, which were 

defined at τ = 0. The cross-correlation technique was adopted to calculate the RD, 

which avoided the subjective criteria for defining the onset of actual trajectory.  

2.4.2.2 Statistical analysis  

A two-way ANOVA with repeated measures was applied to statistically analyze the 

above three parameters (RMSE, RMSJ and RD), which comprised of two main 
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factors: side (affected arms or unaffected arms) and tracking velocity (10, 20, 30, 40, 

50 and 60 deg/s). The statistical model was used to analyze the main effects of side 

and tracking velocity, as well as the side-by-velocity interaction on the RMSE, RMSJ 

and RD. The paired t-test (two-tail test) was performed to test the difference between 

the affected and the unaffected arms under the same velocity in terms of the RMSE, 

RMSJ and RD. The significant level was set at 0.05. All statistical work was 

performed with SPSS 12. (SPSS Inc., Chicago, Illinois, USA)    

2.5 Effect of the training using the myoelectrically controlled robot    

The myoelectrically controlled system could facilitate the elbow movement based on 

the results from the experiment in section 2.3.2. The long-term training effect of the 

system on the affected arms of subjects after stroke was investigated. The features of 

this system were as follows: 

1. Robotic system which could provide assistive and resistive torque on the elbow 

joint of the subject during the movement 

2. Myoelectric control which could facilitate cognitive investment  

3. Virtual feedback and tracking program which could provide real-time visual 

feedback to the subject  

2.5.1 Experimental setup  

Subject  Age/ 

(Sex) 

Lesion side  Years after 

stroke 

A 39 (M) R 11 yrs 

B 49 (M) L 1 yrs 

C 57 (M) R 13 yrs 

   Table 2.6 Clinical data from the subjects after stroke for the rehabilitation training. 

 

Three male subjects after chronic stroke were recruited in this four-week training 

program. The training program was conducted five times a week for four weeks. 

Table 2.6 summarized the basic clinical information from these subjects. The criteria 

for recruiting the subjects were the same with those described in section 2.3.2.3. All 
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the subjects could not fully extend their forearm in the horizontal plane before they 

were recruited for the training. Subject A and subject B could walk without a walking 

aid while subject C required a crutch when walking. Before the experiment, all the 

subjects were made to understand the experimental procedures and duration, and they 

signed the consent forms (Appendix III).  

During each training session, the experimental setup used was similar to the 

procedures described in section 2.3.2.3. The subjects were instructed to complete the 

following tasks: 

1. The torque measurements during the MIVE and MIVF were the same as the first 

task in section 2.3.2.3.  

2. After the torque measurements, the subjects were asked to perform a repetitive 

arm tracking test which began with the elbow at 90 deg. The Labview program 

provided visual guidance which was shown in Fig. 2.18. In each trial, after a 3-

sec delay  from the beginning of the program, the indicator light in the middle of 

the screen turned green to instruct the subject to start following the target. First, 

the target would move from 90 deg to 0 deg at a constant speed of 10 deg/s, and 

the subject extended his/her affected elbow with the myoelectrically controlled 

system; then the target pointer would pause at 0 deg for 3 seconds; then the 

target pointer would come back from 0 deg to 90 deg at a constant speed of 10 

deg/s to complete one cycle, and the subject flexed his/her affected elbow with 

the myoelectrically controlled system back to 90 deg. Five cycles were 

conducted in each trial, and it took 2 min to complete one trial. The LCD 

monitor in front of the subjects displayed both the target (blue pointer in Fig. 

2.18) angle and the actual elbow joint angle (red pointer in Fig. 2.18) with the 

two pointers. The subjects could correct the elbow movement to match the target 

pointer with this real-time visual feedback. During the elbow extension, the 

robotic system would generate an assistive torque which was proportional to the 

amplitude of the processed triceps EMG signal (section 2.3.2.1) to assist elbow 

movement together with a constant resistive torque which was a percentage of 

the MIVE torque. During the elbow flexion, there was only a constant resistive 

torque which was a percentage of the MIVF torque and no assistive torque was 

applied. This was because that elbow flexion could be more easily performed 

than elbow extension in the affected arm of subjects after stroke. They could flex 
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back to 90 deg if passively positioned to an extended position. The percentages 

of resistance for extension and flexion were the same. Fig. 2.19 showed the 

relationship among target angle, the gain and resistive load during a cycle. If the 

subject could not extend his forearm to follow the target pointer because of 

cocontraction, contracture, spasticity of the biceps or weakness of the triceps 

muscle, he would be suggested to stop at the largest extended position and wait 

for the target pointer to come back so that he could follow it again. The program 

provided real-time information on the number of completed cycles, and the 

RMSE between the target angle and the actual elbow angle was also displayed on 

the screen after each trial. A lower RMSE value indicated a better tracking 

performance. The subject would try to minimize the RMSE value during the 

training. The raw EMG signals of the biceps and the medial triceps were 

recorded at a sampling frequency of 1000 Hz, and the elbow angle and target 

signal were recorded at a sampling frequency of 100 Hz by the DAQ card (PCI 

6036E, National instrument, USA) for off-line analysis. The angular signals were 

low-pass filtered using a 4th order Butterworth digital filter with a cut-off 

frequency of 5 Hz, and the surface EMG signals were band-pass filtered using 

the same digital filter with bandwidths of 10-400 Hz. Then they were full-wave 

rectified and low-pass filtered with a cut-off frequency of 3 Hz. The normalized 

EMG (NEMG) was the processed EMG signals divided by the amplitude of the 

processed EMG signal measured at MVC. 
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Fig. 2.18 The Labview interface used in the rehabilitation training. 

 

Fig. 2.19 The target angle, gain and resistive load in one cycle. The negative value 

was the resistive load during flexion and the positive value was the resistive 

load during extension.  

Indicator light 

Elbow angle Target 
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In a trial, the resistive load and the EMG-torque gain were constants. There were 18 

trials in the training session with different combinations of the gain and the load (Fig. 

2.20). There was a one-minute resting period after each trial, and the total time for one 

session together with the evaluation trial described in section 2.5.2 was about 120 

minutes.  

 

Fig. 2.20 Experiment protocol for each session of rehabilitation training. The number 

on the top of the figure showed the sequence of the trials. The EMG-torque 

gains were provided at two levels (50% and 100%). The resistive loads 

during elbow extension and elbow flexion were provided at three levels (0%, 

10% and 20%). 

2.5.2 Evaluation procedures  

1)  Clinical scales 

Clinical scales were used to evaluate the upper limb functions before and after the 

four-week training. These scales included the Fugl-Meyer (range 0-66) (Appendix I) 

(Trombly et al., 2002) for the evaluation of motor function and the modified 

Ashworth scale (range 0-4) (Bohannon et al., 1986) for the muscle tone at the elbow 

joint. 

2) Robot-measured parameters 

Before each training session, the robotic system could be used as a dynamometer to 

measure the MIVF and MIVE torques when the elbow joint was at 90 deg. These two 

parameters were used to reflect the muscle strength during the rehabilitation training. 

Moreover, each subject was then asked to perform an evaluation trial without any 
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assistive and resistive torque from the robotic system. The tracking for the target 

pointer was the same as that in other trials in section 2.5.1. Five cycles of extension 

and flexion would be used for evaluation. The RMSE between the elbow angle and 

the target angle was used as a performance indicator for tracking.  

3) The sinusoidal elbow tracking experiment 

The elbow tracking experiment which was described in section 2.4 was also used to 

evaluate the elbow control function of the three subjects. The experiment was 

conducted twice; one day before and after the training. The parameters used to 

evaluate the functional improvement in the affected arm were the RMSE, RMSJ and 

RD, which had been described in section 2.4. 

4) Subjective evaluation questionnaire 

After finishing the last session of the rehabilitation training, all the subjects were 

asked to complete a questionnaire (Appendix II) about the system and the training 

protocol, which would be important for further development and improvement of the 

system and the training protocol in the future.  
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CHAPTER 3 RESULTS 

3.1 Recurrent artificial neural network model  

3.1.1 Recurrent artificial neural network model for normal subjects 

After determining the structure and iteration criteria of the recurrent artificial neural 

network (RANN) model, the model was used in the experimental trials. The 

normalized input data recorded during a typical experimental trial were illustrated in 

Fig. 3.1. The subject moved with a 1-kg load on the top of the handle and was guided 

by a metronome at the frequency of 1 Hz in this trial. The processed normalized EMG 

signal of the biceps seemed to display less modulation in comparison to those of the 

triceps and the brachioradialis. There were two reasons which could explain this 

phenomenon. Firstly, the maximum flexion torque was often larger than the 

maximum extension torque at the elbow joint. Thus after normalization, the amplitude 

of the biceps EMG was less than that of the triceps if they represented the same 

amount of torque. Secondly, several muscles around the elbow joint could generate 

elbow flexion torque. The figure showed that the brachioradialis also contributed to 

part of the flexion torque for this movement.  

 

Fig. 3.1 Experimental data recorded during a single trial in which the subject 
performed elbow flexion and elbow extension with a 1-kg load on the top of 
the handle and guided by a metronome at the frequency of 1 Hz. BIC=the 
normalized EMG magnitudes of biceps brachii; TRI=the normalized EMG 
magnitudes of triceps brachii; BRD=the normalized EMG magnitudes of 
brachioradialis; Torque= expected torque in this trial.  
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Training set Test set 
Subject Range 

(N.m) RMSE 
(N.m) 

Relative 
error 

R RMSE 
(N.m) 

Relative 
error 

R 

A 6.85 0.17 2.48% 0.98 0.31 4.53% 0.92 

B 6.36 0.22 3.46% 0.96 0.45 7.08% 0.95 

C 7.08 0.15 2.12% 0.98 0.36 5.08% 0.92 

D 4.92 0.14 2.85% 0.96 0.29 5.89% 0.94 

E 6.32 0.18 2.85% 0.97 0.30 4.70% 0.90 

F 4.26 0.14 3.29% 0.95 0.36 8.45% 0.87 

Mean 5.96 0.17 2.84% 0.97 0.35 5.96% 0.92 

Standard 
deviation 1.12 0.03 0.50% 0.01 0.06 1.54% 0.03 

Table 3.1 Absolute RMSE, relative error of the RANN predictions and the cross-

correlation coefficient between the expected value and the predicted value 

across all the subjects using the RANN model with EMG and kinematic 

inputs. (Torque range= Max. flexion torque-Max. extension torque, 

average relative error=RMSE/average range; R=cross-correlation 

coefficient) 

3.1.1.1 RANN model with the EMG and kinematic inputs  

The surface EMG signals of the three muscles, together with elbow angle and angular 

velocity, were used to predict the elbow torque when performing voluntary elbow 

flexion and elbow extension. Fig. 3.2 (a, b, and c) showed a typical predicted torque 

with different loads from a subject when the frequency of the guided sound was 0.67 

Hz. Fig. 3.2 (d, e, and f) showed the predicted torque with different loads at a higher 

speed from the subject. The frequency of the guided sound was 1 Hz. Table 3.1 

summarized the results which included the root mean square error (RMSE), the range 

of the predicted torque, the relative error, and the cross-correlation coefficient 

between the expected value and the predicted value. The relative error was computed 

by dividing the RMSE by the range of the torque, and the range was computed by 

evaluating the difference between the maximum and the minimum predicted torque 

from each subject. From Table 3.1, the RMSE between the expected torque and the 

predicted torque of the model with EMG and the joint kinematics inputs in the 

training and test data were 0.17±0.03 Nm and 0.35±0.06 Nm, respectively. The 
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average relative errors were 2.84±0.50% in the training data, and 5.96±1.54% in the 

test data. The average cross-correlation coefficients were 0.97±0.01 in the training 

data, and 0.92±0.03 in the test data. 

 

Fig. 3.2 Comparison of the predicted joint torque and the expected torque from the 

test results of the model with EMG and kinematic inputs. The solid curves 

were the predicted results from RANN model and the dashed lines were the 

expected torque calculated from the inverse dynamic model. The frequency 

of guided sound of a, b, c was 0.67 Hz and the frequency of guided sound of 

d, e, f was 1 Hz; a, d showed the data with no load; the data with a 1-kg load 

were showed in b, e; c, f showed the data with a 2-kg load. 

a 

b 

c 

 1 d

e

f

 1  
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Fig. 3.3 Comparison of the predicted joint torque and the expected torque from the 

test results of the model with only EMG inputs. The solid curves were 

predicted results from RANN model and the dashed lines were the expected 

torque calculated from the inverse dynamic model. The frequency of guided 

sound of a, b, c was 0.67 Hz and the frequency of guided sound of d, e, f was 

1 Hz; a, d showed the data with no load; b, e showed the data with a 1-kg 

load; c, f showed the data with a 2-kg load. 

 

 
 
 
 

a 

b 

c 

d

e

f

 1



82                                 

3.1.1.2 RANN model with only EMG inputs 

Table 3.2 showed the RMSE, the range of the predicted torque, the relative error of 

the elbow torque and the cross-correlation coefficient between the expected value and 

the predicted value of the model with only EMG inputs. From Table 3.2, the RMSE 

value between the expected torque and the predicted torque in the training and test 

data were 0.57±0.07 Nm and 0.73±0.11 Nm, respectively, and the average relative 

errors were 9.72±1.72% in the training data, and 12.42±2.01% in the test data. The 

average cross-correlation coefficients were 0.68±0.16 in the training data, and 

0.60±0.11 in the test data. Fig. 3.3 (a, b, and c) showed a typical predicted torque with 

different loads at a low velocity from a subject (the frequency of the guided sound 

was 0.67 Hz). Fig. 3.3 (d, e, and f) showed the predicted torque with different loads at 

a higher velocity from this subject (the frequency of the guided sound was 1 Hz). For 

all six subjects, the output of the model with EMG and kinematic inputs had higher 

accuracy than that obtained by only using the EMG signals as inputs. For both the 

training data and the test data, the RMSE of the RANN model with only the EMG 

inputs was significantly larger than that of the RANN model with EMG and kinematic 

inputs, and the cross-correlation coefficient of the RANN model with only the EMG 

inputs was significantly less than that of the RANN model with EMG and kinematic 

inputs (p<0.01). 

Training set Test set 
Subject Range 

(N.m) RMSE 
(N.m) 

Relative 
error 

R RMSE 
(N.m) 

Relative 
error 

R 

A 6.85 0.49 7.15% 0.89 0.80 11.68% 0.66 

B 6.36 0.59 9.27% 0.68 0.75 11.79% 0.60 

C 7.08 0.65 9.18% 0.73 0.80 11.30% 0.68 

D 4.92 0.50 10.16% 0.41 0.52 10.56% 0.40 

E 6.32 0.64 10.12% 0.72 0.82 12.97% 0.71 

F 4.26 0.53 12.44% 0.65 0.69 16.20% 0.56 

Mean 5.96 0.57 9.72% 0.68 0.73 12.42% 0.60 

Standard 
deviation 1.12 0.07 1.72% 0.16 0.11 2.01% 0.11 

Table 3.2 Absolute RMSE, relative error of the RANN predictions and cross-
correlation coefficients between the expected value and the predicted value 
across all the subjects using the RANN model with only EMG inputs. 
(Torque range= Max. flexion torque-Max extension torque, average 
relative error=RMSE /average range; R= cross-correlation coefficient) 



83                                 

3.1.1.3 Movement without the guidance of metronome  

Subject C also performed an additional movement in order to validate if the model 

with EMG and kinematic inputs was robust enough to estimate the output torque of 

the movement beyond the guided frequencies. The trials which were used to train the 

RANN model with EMG and kinematic inputs were the same as the former models, 

and then the trained RANN model was applied to estimate the movement without the 

guidance of a metronome. Different kinds of loads were also applied to the forearm 

during the movements. Fig. 3.4 showed the results of the predicted torque of the 

model and the expected torque with 0-kg, 1-kg and 2-kg loads. The trained RANN 

model could also have a good prediction without the guidance of a metronome. The 

RMSE values between the expected torque and the predicted torque of the movement 

with 0-kg, 1-kg and 2-kg loads were 0.4290, 0.4308 and 0.9030 Nm, respectively. The 

torque range was 10.67 Nm, and the relative errors of this test were 4.02%, 4.03%, 

and 8.47%, respectively. The cross-correlation coefficients between the predicted 

torque and the expected torque of the movement with 0-kg, 1-kg and 2-kg loads were 

0.89, 0.93, and 0.96, respectively. The relative errors and the cross-correlation 

coefficients were comparable with the predicted data within the guided frequencies. 
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Fig. 3.4 Comparison of the actual joint torque and the predicted torque from the test 

results of the model with kinematics and EMG inputs. The solid curves were 

the predicted results from the RANN model and the dashed line was the 

expected torque calculated from the inverse dynamic model. The subject was 

asked to perform an arbitrary movement without the guidance of the 

metronome and with different kinds of loads (0 kg 1 kg, and 2 kg).  
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3.1.2 RANN model for subjects after stroke  

The RANN model was also evaluated on subjects after stroke. The structure of the 

RANN model was the same with that used for the normal subjects. Table 3.3 showed 

the RMSE, the range of the predicted acceleration, the relative error of acceleration 

and the cross-correlation coefficient between the expected value and the predicted 

value of the model with EMG and kinematic inputs. Fig. 3.5 plotted the test results of 

the predicted acceleration from the RANN model and the expected acceleration at 

different velocities (a: 10 deg/s, b: 20 deg/s, c: 30 deg/s, d: 40 deg/s, e: 50 deg/s, and f: 

60 deg/s). The relative errors of this test were 12.49%, 11.67%, and 8.29%, which 

were larger than the results from the normal subjects. The average cross-correlation 

coefficients were 0.72±0.10 in the training data, and 0.41±0.07 in the test data. 

 

Training set Test set 
Subject Range(deg/s2) RMSE 

(deg/s2)
Relative 

error 
R RMSE 

(deg/s2) 
Relative 

error 
R 

A 1539.4 112.2 7.29% 0.69 192.3 12.49% 0.37 

B 1471.0 96.9 6.59% 0.83 171.7 11.67% 0.49 

C 1534.4 123.9 8.88% 0.65 127.2 8.29% 0.38 

Mean 1514.9 111.0 7.59% 0.72 163.7 10.82% 0.41 

Standard 
deviation 38.12 13.54 1.17% 0.10 33.27 2.23% 0.07 

 

Table 3.3 Absolute RMSE, relative error of the RANN predictions and cross-

correlation coefficient between the expected value and the predicted value 

across all the subjects after stroke using the RANN model with EMG and 

kinematic inputs. (Range= Max. flexion acceleration- Max extension 

acceleration, average relative error=RMSE /average range; R=cross-

correlation coefficient) 

 

 

 



86                                 

 

Fig. 3.5 Comparison of the actual acceleration and the expected acceleration from the 

test result of the model with kinematics and EMG inputs. The solid curve 

was the predicted result from RANN model and the dashed line was the 

expected acceleration (a: 10 deg/s, b: 20 deg/s, c: 30 deg/s, d: 40 deg/s, e: 50 

deg/s, and f: 60 deg/s). 
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3.2 Myoelectric control of the robotic system 

A myoelectrically controlled robotic system was evaluated on subjects after stroke. 

The control strategy was based on the proportional control, since the EMG was 

related to the muscle torque and could provide reliable control. The effects of the 

system with different combinations of the EMG-torque gain and resistive load on the 

movement performance were investigated. Nine subjects after stroke participated in 

the test which could be divided into two categories depending on their elbow 

extension ranges. The moderate group was composed of six subjects who had an 

extension range larger than 30 deg, while the severe group was composed of three 

subjects who could not extend their elbow to a more extended position that 60 deg 

(the extension range was less than 30 deg) without the assistance of the robotic system. 

Different combinations of load and gain were applied to the moderate group and only 

different gains were applied to the severe group. No load was applied to the severe 

group, since they had difficulty in extending their elbows even without the load. Table 

3.4 summarized the clinical data together with the MIVE and MIVF torques and 

voluntary extension range of all the subjects after stroke. The MIVE and MIVF 

torques of these subjects were measured by the torque sensor in the robotic system 

which worked in the position mode as a dynamometer. The mean MIVE and MIVF 

torques for all the subjects were 7.31±6.66 Nm and 13.63±5.22 Nm, respectively, 

which were measured when the elbow was at 90 deg. If the subject could not generate 

any torque, or the torque was generated in the direction opposite of the intended 

direction, then the MIVE or MIVF torque was assumed to be zero in the calculation. 

Two of the severely affected subjects could not generate any extension torque when 

the elbow was at 90 deg. 
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Fig. 3.6 The elbow trajectories and the NEMG signals of a moderately affected 

subject during the voluntary elbow tracking at a velocity of 10 deg/s when 

the load was equal to 0%. The dotted lines in a, b, e, f  were the target 

trajectories; the solid lines in a, b, e, f were the elbow trajectories; the dotted 

lines in c, d, g, h were the NEMG of biceps; the solid lines in c, d, g, h were 

the NEMG of triceps (a and c: gain=0%, b and d: gain=50%, e and g: 

gain=100%, f and h: gain=150%).  

 

 

a b

c d

e f

g h

 Load =0% 
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Fig. 3.7 The elbow trajectories and the NEMG signals of a moderately affected 

subject during the voluntary elbow tracking at a velocity of 10 deg/s when 

the load was equal to 10%. The dotted lines in a, b, e, f  were target 

trajectories; the solid lines in a, b, e, f were the elbow trajectories; the dotted 

lines in c, d, g, h were NEMG of biceps; the solid lines in c, d, g, h were 

NEMG of triceps (a and c: gain=0%, b and d: gain=50%, e and g: gain=100%, 

f and h: gain=150%). 
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Fig. 3.8 The elbow trajectories and the NEMG singals of a moderately affected 

subject during the voluntary elbow tracking at a velocity of 10 deg/s when 

the load was equal to 20%. The dotted lines in a, b, e, f  were target 

trajectories; the solid lines in a, b, e, f were the elbow trajectories; the dotted 

lines in c, d, g, h were NEMG of biceps; the solid lines in c, d, g, h were 

NEMG of triceps (a and c: gain=0%, b and d: gain=50%, e and g: gain=100%, 

f and h: gain=150%). 
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3.2.1 Results of the moderate group 

Fig. 3.6-3.8 plotted the trajectories and EMG activations of a moderately affected 

subject after stroke at different combinations of resistive loads (0%, 10%, and 20% 

MIVE) and gains (0%, 50%, 100% and 150%). From Fig. 3.6-3.8, results showed that 

the subject after stroke had difficulty in extending his/her elbow without any 

assistance, but with the assistance from the robotic system, a larger extension range 

could be achieved. With the increase in the gain, there was a decrease in the amplitude 

of the normalized triceps signal, and with increase in the load, there was an increase in 

the amplitude of the normalized triceps signal. For the biceps EMG signals, no 

obvious trend was observed with the changes in the gain and load. The results of 

movement performance were analyzed in terms of the extension range, RMSE 

between the actual elbow angle and the target trajectory, root mean square jerk 

(RMSJ), the normalized EMG (NEMG) signals of biceps and triceps.   

3.2.1.1 Extension range  

Fig. 3.9 plotted the group mean extension range of the moderate group against 

different gains and loads. The extension range increased with the increase in the gain. 

All three loading conditions had a similar trend. The maximum mean extension range 

was 63 deg which was generated when the gain equaled 150% and the load equaled 

zero. The two–way analysis of variance (ANOVA) with repeated measures showed 

that there was a significant main effect of the gain on the extension range (P<0.001), 

but no significant main effect of the load was found on the extension range (P=0.948), 

and there was also no significant gain-by-load interaction (P=0.248). The pairwise 

comparisons of extension range among different combinations of the gain showed that 

there were significant differences of extension range in all the pairwise comparisons 

except for the comparison between 100% and 150% of the gain, which showed that 

with the assistance of the robotic system, subjects after stroke could reach a more 

extended position (Table 3.6). 
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 Fig. 3.9 Comparison of the group mean extension range at four different gains among 

three different loads. 

 

 Load 0 % 10% 20% 

0 ----- NS ** 

10 %  ----- ** RMSE 

20%   ----- 

0 ----- * * 

10 %  ----- NS RMSJ 

20%   ----- 

0 ----- * * 

10 %  ----- * TRI 

20%   ----- 

 

Table 3.5  Pairwise comparisons of the RMSJ, RMSE and the NEMG of triceps (TRI) 

among different loads for moderate group. Two-way ANOVA with 

repeated measures was used for the pairwise comparisons. (*: P<0.05; **: 

P<0.01; NS: P>0.05) 
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 Gain  0 50 % 100% 150% 

0 ------ * * * 

50 %  ----- * * 

100%   ----- NS 
extension 

range 

150 %    ----- 

0 ------ NS * NS 

50 %  ----- NS NS 

100%   ----- NS 
RMSE 

150 %    ----- 

0 ------ * ** ** 

50 %  ----- ** ** 

100%   ----- * 
RMSJ 

150 %    ----- 

0 ------ * * * 

50 %  ----- * ** 

100%   ----- * 
TRI 

150 %    ----- 

 

Table 3.6  Pairwise comparisons of the extension range, RMSJ, RMSE and the 

NEMG of triceps (TRI) among different gains for moderate group. Two–

way ANOVA with repeated measures was used for the pairwise 

comparisons. (*: P<0.05; **: P<0.01; NS: P>0.05) 

3.2.1.2 Performance indices 

In order to evaluate the movement performance, the RMSE between the target and the 

elbow angle, the RMSJ of the elbow trajectory and the NEMG of the biceps and the 

triceps were analyzed on the moderately affected subjects after stroke when the elbow 

angle was within 90-60 deg, since most of these subjects could reach a more extended 

position than 60 deg under all the combinations of gains and loads. The data for one 

subject were excluded from the analysis since he could not reach 60 deg under some 

combinations.   

Fig. 3.10 plotted the group mean RMSE of the subjects against the different gains and 

loads. The two–way repeated ANOVA showed that there was a significant main effect 
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of the gain and load on the RMSE (P<0.05), but no significant gain-by-load 

interaction on the RMSE was found (P=0.073). The pairwise comparisons of the 

RMSE among different gains showed that there was a significant difference in the 

RMSE between 0% and 100% of the gain (P<0.05), while no significant differences 

in the other pairwise comparisons could be observed (Table 3.6). The pairwise 

comparisons of the RMSE among different loads showed that there was no significant 

difference in the RMSE between  0% and 10% of the load and there were significant 

differences in the other pairwise comparisons (P<0.01, Table 3.5). The results showed 

that it seemed more difficult for subjects to control their elbows with the increase in 

the load, while the increase in the gain did not cause the deterioration in the control of 

elbow.  

Fig. 3.11 plotted the group mean RMSJ of the subjects at the different gains and loads. 

The RMSJ increased with the increase in the gain. The RMSJ also increased with the 

increase in the load. The two-way repeated ANOVA showed that there was a 

significant main effect of the gain and load on the RMSJ (P<0.01 and P<0.001, 

respectively), but there was no significant effect of gain by load interaction on the 

RMSJ (P=0.148). The pairwise comparisons of the RMSJ among different gains 

showed that there was a significant difference in all the pairwise comparisons (Table 

3.6). The pairwise comparisons of the RMSJ among different loads showed that there 

was no significant difference of the RMSJ between  10% and 20% of the load and 

there was a significant difference in other pairwise comparisons (P<0.05, Table 3.5). 

The significant increase in the RMSJ reflected that the trajectory was less smooth 

with the increase in the gain and the load. 

Fig. 3.12 plotted the group mean NEMG of biceps with the different gains and loads. 

The two-way repeated ANOVA showed that there was no significant main effect of 

the gain and load on the NEMG of biceps (P>0.05), and there was also no significant 

effect of gain-by-load interaction on the NEMG of biceps (P＝0.261). 

Fig. 3.13 plotted the group mean NEMG of triceps with different gains and loads. 

With the increase in the gain, the NEMG of triceps decreased, and the NEMG of 

triceps also increased with the increase in the load. The two-way repeated ANOVA 

showed that there was a significant main effect of the gain and load on the NEMG of 

triceps (P<0.001), and that there was no significant gain-by-load interaction on the 

NEMG of triceps (P>0.05). From Tables 3.5 and 3.6, there was a significant 
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difference in all the pairwise comparisons of the NEMG of triceps among different 

gains and loads. The significant decrease of the NEMG of triceps with the increase in 

the gain reflected that less effort is needed for subjects after stroke to perform elbow 

extension with a larger gain, and the significant increase in the NEMG of triceps with 

the increase in the load reflected that more effort was needed for subjects after stroke 

to perform elbow extension with a larger load. 
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Fig. 3.10 Comparison of the group mean RMSE at four different gains among three 

different loads.  
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Fig. 3.11 Comparison of the group mean RMSJ at four different gains among three 

different loads.  
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Fig. 3.12 Comparison of the group mean NEMG of biceps at four different gains 

among three different loads. 
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Fig. 3.13 Comparison of the group mean NEMG of triceps at four different gains 

among three different loads.  

3.2.2 Results of severely affected subjects  

The arm tracking test with the assistance of the myoelectrically controlled robotic 

system was also conducted on three severely affected subjects after stroke. No load 

was added to the elbow during the movement of the three severely affected subjects. 

Fig. 3.14 plotted the tracking trajectories of subject C when the gain was equaled to 

0% and 150%. There was an increase of 7 deg in the extension range when the gain 

was 150% in comparison to that without the help of the system (gain=0%). The other 

two subjects could not extend their elbow by themselves without the help of the 

robotic system; with the assistance of the robotic system, the two subjects could 

manipulate their elbows to track the target with an extension range of 7 deg and 44 

deg, respectively.   

In section 3.2, the performance of the myoelectrically controlled robotic system was 

investigated when helping different levels of subjects after stroke to perform the arm 

tracking test during the elbow extension. Another objective of this experiment was to 

find suitable setting parameters for the rehabilitation training at the next stage. From 
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the results, when the gain was equaled to 150%, there was no further improvement in 

the RMSE and the extension range (Fig. 3.9 and Fig. 3.10). Therefore, 150％ of the 

gain was not selected for the rehabilitation training at next stage. 

 

 

 

Fig. 3.14 The elbow trajectory and the NEMG signals of biceps and triceps from a 

severely affected subject during the voluntary elbow tracking at a velocity 

of 10 deg/s. The left column was the movement when load was equal to 

0% and gain was equal to 0%, the right column was the movement when 

the load was equal to 0% and the gain was equal to 150%; the dotted lines 

in a and b were the target trajectories; the dotted lines in c and d were the 

NEMG of biceps; the solid lines in c and d were the NEMG of triceps. 

3.3 Functional evaluation using the elbow tracking system  

In this section, the tracking experiment was designed to quantitatively compare the 

difference between the affected and the unaffected arms of subjects after stroke in 

dynamic situations. Fig. 3.15 showed the actual elbow trajectories of the unaffected 

and the affected arm of a subject after stroke in the three trials at the six tracking 

velocities. The target trajectories at the six tracking velocities were also shown in this 

a b

c d
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figure as references. Results showed that the trajectories of the unaffected arm seemed 

smoother than that of the affected arm. In addition, a longer delay was observed in 

initiation of the movement of the affected arm than that of the unaffected arm at the 

velocities of 30, 40, 50 and 60 deg/s. Fig. 3.16 showed the elbow angular trajectory, 

velocity, acceleration and jerk of the affected and the unaffected arm of a subject after 

stroke at the velocity of 40 deg/s. The results showed that the trajectory from the 

unaffected arm was smoother than that from the affected arm, which could be shown 

from the angular velocity, angular acceleration and jerk.  

3.3.1 Root mean square error  

Fig. 3.17 showed the comparisons of the group mean RMSE between the affected and 

the unaffected arms against the angular velocity. The mean RMSE values of the 

unaffected arms were 2.56±0.74, 3.89±1.21, 5.27±2.01, 6.65±2.77, 8.48±4.15, and 

11.05±5.03 deg from 10 deg/s to 60 deg/s, respectively; while the RMSE values of the 

affected arms were 3.75±1.09, 6.17±1.86, 8.54±2.95, 10.43±3.53, 12.23±4.12, and 

15.53±5.81 deg from 10 deg/s to 60 deg/s, respectively. There was a monotonic 

increase in the RMSE for both the affected and the unaffected arms when the tracking 

velocity increased. The standard deviation also increased with the tracking velocity. 

The two-way ANOVA with repeated measures showed significant effects of both the 

side and angular velocity on the RMSE (P<0.001). The average RMSE from the 

affected arms was significantly larger than that from the unaffected arms and there 

was a significant side-by-velocity interaction (P<0.01). The paired t-test comparisons 

showed that there was a significant increase in the RMSE of the affected arms as 

compared to those of the unaffected arms at all the velocities (P<0.05).  
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Fig. 3.15   The target (dotted line) and three actual elbow trajectories (solid line) of 

the affected arm (a, b, c, d, e, and f), and the unaffected arm (g, h, i, j, k, 

and l) of a stroke subject during the voluntary elbow tracking at different 

velocities (a, g: 10 deg/s, b, h: 20 deg/s, c, i: 30 deg/s, d, j: 40 deg/s, e, k: 

50 deg/s, and f, l: 60 deg/s). 

 

Affected side  Unaffected side  

a

b

c

d

e

f

g

h

i

j

k

l



102                               

 
Fig. 3.16 The elbow angle (solid line), angular velocity, angular acceleration and jerk 

(the third derivatives of the angle) between the unaffected arm (left column), 

and the affected arm (right column) of a subject after stroke during the 

voluntary elbow tracking at the velocity of 40 deg/s. The dotted line is the 

target angle. 
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Fig. 3.17 Comparison between the RMSE of the affected (∇ ) and unaffected (Δ ) arm 

and at six velocities (10, 20, 30, 40, 50 and 60 deg/s) during the elbow 

tracking movement. Vertical bars indicate standard deviation.  

3.3.2 Root mean square jerk  

Fig. 3.18 summarized the results of the group mean RMSJ at different velocities. The 

group mean RMSJ of the unaffected arms were 542±243, 786±286, 1090±429, 

1349±469, 1665±637, and 2066±789 deg/s3 from 10 deg/s to 60 deg/s, respectively, 

while the group mean RMSJ of the affected arms were 1211±406, 2074±880, 

2630±1121, 3101±1293, 3826±1491, and 4223± 1879 deg/s3 from 10 deg/s to 60 

deg/s, respectively. Fig. 3.18 showed that there was a monotonic increase in the 

RMSJ for both the affected and the unaffected arms with the increase in tracking 

velocity. The standard deviation also increased with the tracking velocity. The RMSJ 

from the affected arms was significantly larger than that from the unaffected arms 

(P<0.01). The ANOVA also showed a significant effect of the tracking velocity on the 

RMSJ (P<0.001), and a significant side-by-velocity interaction (P<0.01). There was a 

significant increase in the RMSJ of the affected arms as compared to that of the 

unaffected arms at all six velocities based on the paired t-test (P<0.05), which 
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reflected the trajectory of the affected arms was less smooth than that of the 

unaffected arms. 

 

Fig. 3.18 Comparison between the RMSJ of the affected (∇ ) and unaffected (Δ ) arm 

and at six velocities (10, 20, 30, 40, 50 and 60 deg/s) during the elbow 

tracking movement. Vertical bars indicate standard deviation.  
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Fig. 3.19 Comparison between the response delay of the affected (∇ ) and unaffected 

(Δ ) arm and at six velocities (10, 20, 30, 40, 50 and 60 deg/s) during the 

elbow tracking movement. Vertical bars indicate standard deviation (* 

p<0.05, ** p<0.01). 

3.3.3 Response delay (RD) 

The RD from all trials for both the affected arms and the unaffected arms were ranged 

from -195 to +495 ms and from 23 to 412 ms, respectively. The negative value 

implied that the phase of the actual elbow angle leaded the phase of the target angle. 

The average RD of unaffected arm were 114 ±65, 124±73, 161±85, 186±102, 218±98, 

and 260±78 ms from 10 degree/s to 60 degree/s respectively, while the RD of the 

affected arm were 118±148, 236±81, 288±128, 300±95, 276±86, and 328±83 ms from 

10 degree/s to 60 degree/s, respectively. Fig. 3.19 showed the comparison between the 

affected and the unaffected arms at different tracking velocities. There was an 

increase in the RD for unaffected arms with the increase in the tracking velocity. In 

the affected arm at low velocity (10-30 deg/s), the RD had a larger variation among 

subjects, which could be reflected by the standard deviation. The actual elbow 

trajectory lagged behind the target trajectory in most of the trials, but there were three 

trials from two subjects in which the elbow trajectory led the target trajectory at the 

velocity of 10 deg/s. The two-way ANOVA with repeated measures showed that there 

**

*

***
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was a significant difference between the affected arms and the unaffected arms 

(P<0.01). The average RD of the affected arms was significantly longer than that of 

the unaffected arms. A significant side-by-velocity interaction was found on the RD 

(P<0.05). There were significant increases in RD of the affected arm in comparison to 

the unaffected arm at the velocities of 20, 30, 40 and 60 deg/s (P<0.05 for 20 and 30 

deg/s; P<0.01 for 40 and 60 deg/s) based on the paired t-test. For other velocities at 10 

and 50 deg/s, there were no significant differences between the affected and the 

unaffected arms (P=0.72 and P=0.06, respectively). 

3.3.4 Relationships between the modified Ashworth scale and kinematic 
parameters  

After analyzing the difference between the affected and unaffected arms in terms of 

the three parameters, RMSE, RMSJ, and RD, the relationships between these 

parameters and the modified Ashworth scale were also investigated. For purposes of 

numerical calculation, 1.5 was assigned to ‘1+’ on the modified Ashworth scale. The 

Modified Ashworth scale was not significantly correlated, with the RMSE and the 

response delay at six velocities (R=-0.04-0.07, and -0.35-0.24, respectively, P>0.05, 

Fig. 3.20-3.21). The modified Ashworth scale was significantly correlated with the 

RMSJ when the velocities were at 10, 20, 30, 40, and 60 deg/s (P<0.05, R=0.67-0.83), 

and there was no significant correlation when the velocity was at 50 deg/s (R=0.63, 

P=0.07) (Fig. 3.22). The angular velocities at 20 and 30 deg/s had the highest 

correlation coefficients, which were 0.83 and 0.80 respectively. When the tracking 

velocity increased, this relationship was not as obvious as that at lower velocity. The 

results suggested that the muscle tone affected the smoothness of the trajectory during 

voluntary movement. 
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Fig. 3.20 Scatterplots of the modified Ashworth scale and the RMSE of the affected 

arm during the elbow tracking movement at different velocities (a: 10 deg/s, 

b: 20 deg/s, c: 30 deg/s, d: 40 deg/s, e: 50 deg/s, and f: 60 deg/s). Solid lines 

were the linear regressions noted with the correlation coefficients, R, and 

the probability for confidence. 
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Fig. 3.21 Scatterplots of the modified Ashworth scale and the RD of the affected arm 

during the elbow tracking movement at different velocities (a: 10 deg/s, b: 

20 deg/s, c: 30 deg/s, d: 40 deg/s, e: 50 deg/s, and f: 60 deg/s). Solid lines 

were the linear regressions noted with the correlation coefficients, R, and 

the probability for confidence. 
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Fig. 3.22 Scatterplots of the modified Ashworth scale and the RMSJ of the affected 

arm during the elbow tracking movement at different velocities (a: 10 deg/s, 

b: 20 deg/s, c: 30 deg/s, d: 40 deg/s, e: 50 deg/s, and f: 60 deg/s). Solid lines 

were the linear regressions noted with the correlation coefficients, R, and 

the probability for confidence. 
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3.3.5 Range of motion   

In the experiment, we also found that there were often overshoots in the unaffected 

arm at two end points (30 deg and 90 deg). However, the subjects sometimes could 

not reach the two end points especially at higher velocities in the affected arm. The 

range of motion of each cycle was its maximum tracking angle subtracted by its 

minimum tracking angle, and the range of motion of the whole trial was the mean 

range of motion of all the cycles. Fig. 3.23 plotted the comparison between the group 

mean range of motion of the unaffected arms and that of the affected arms at six 

velocities (10, 20, 30, 40, 50 and 60 deg/s). There was no significant effect of  the 

velocity on the range of motion for the unaffected arm but there was significant effect 

for the affected arm based on the one-way ANOVA with repeated measures (P<0.01). 

The two-way ANOVA with repeated measures showed that the range of motion of 

unaffected arms was significantly larger than that of affected arms (P<0.01). The 

range of motion decreased with the increase in the tracking velocity.  

 

Fig. 3.23 Comparison between the average range of motion of the affected (Δ ) and 

unaffected arm ( ∇ ) at six velocities (10, 20, 30, 40, 50, and 60 deg/s) 

during thee elbow tracking movement. Vertical bars indicate standard 

deviation.  
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3.4 Effect of the training using the myoelectrically controlled robot 

After evaluating the assistive effect of the myoelectrically controlled robotic system, 

the effect of this system on restoring the upper limb functions of three subjects after 

stroke was investigated in a four-week training program. The results showed an 

obvious improvement in the extension range for all the subjects (Table 3.7). The 

extension range of Subject A and subject C increased from 66.8 deg to 90 deg and 

from 62.5 to 90 deg, respectively, after the four-week rehabilitation training, while the 

extension range of subject B also had a improvement from 51.3 deg to 82.7 deg. 

Based on the definition of the extension range in section 2.3.2.4, 90 deg of the 

extension range meant that the subject could reach the fully extended position. 

3.4.1 Clinical scales 

There were increases of 3, 7, and 2 in the Fugl-Meyer scores for the subjects A, B, 

and C, respectively, which reflected an improvement of the upper limb function 

(Table 3.7). The modified Ashworth scale decreased for the three subjects after the 

four-week training which reflected the improvement of muscle tone in the affected 

elbows.  

 

Ashworth scale 

(Maximum score=4) 

Fugl-Meyer   

(Maximum score=66)

Extension range  

(Maximum= 90 deg) 
Subject 

Pre-

training 

Post-

training 

Pre-

training 

Post-

training 

Pre-

training 

Post-

training 

A 1+ 1 20 23 66.8 90 

B 1+ 1 15 22 51.3 82.7 

C 3 1+ 19 21 62.5 90 

 

Table 3.7 Clinical assessment scores and the extension range of the three subjects 

before and after the four-week rehabilitation training. 
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3.4.2 Muscle strength 

The torque signals measured by the robotic system were also used to evaluate the 

improvement in muscle strength during the rehabilitation training. The MIVE and 

MIVF torques were shown in Fig. 3.24 and Table 3.8 when the affected elbow was at 

90 deg. Increases in the MIVE and MIVF torques for all three subjects were found 

during the rehabilitation training. The increases in the MIVE torque were 152%, 

297% and 70%; and 23%, 193% and 74% in the MIVF torque for subject A, B, and C, 

respectively, which showed that the myoelectrically controlled robotic system had a 

positive effect in developing muscle strength. From Fig. 3.24, it could be seen that 

there was a large variation in the MIVE and MIVF torques especially at the beginning 

of the rehabilitation training, which reflected the poor control of the affected arm. 

After about 10 days’ training, increases in both the MIVE and MIVF torques in all 

three subjects were observed and the variations in the measurement were improved. 

The MIVE and MIVF torques continued to increase until the end of the training. 

 

MIVE torque (N.m) MIVF torque (N.m) 
Subject 

First session Last session First session Last session 

A 14.5 36.6 21.0 25.8 

B 6.2 24.6 8.6 25.2 

C 17.6 30.0 14.4 25.1 

 

Table 3.8 The MIVE and MIVF torques of the three subjects before and after the four-

week rehabilitation training. 

3.4.3 Robot measured parameters 

The robotic system could be used to evaluate the upper limb function in an evaluation 

trial which was conducted in each session. In the evaluation trial, the robotic system 

was used to capture the EMG and kinematic data, which did not provide any assistive 

or resistive torque to the subject. Fig. 3.25 showed the trajectory and the NEMG of 

biceps and triceps from an evaluation trial. Fig. 3.26-3.28 plotted the elbow trajectory 

and the NEMG of the biceps and the triceps at different gains and loads. There was an 
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increase in the NEMG of the biceps with the increase in the load which could be 

shown in Fig. 3.26-3.28.    

Fig. 3.29 compared the trajectories of the elbow at different gains and resistive 

torques with the trajectory without the assistance of the robotic system. It was shown 

that there was a larger extension range with the assistance of the robotic system in the 

earlier sessions. Fig 3.30 plotted the elbow trajectories of the evaluation trial of 

subject C in different weeks during the voluntary elbow tracking test. With the 

processing of the rehabilitation training, we could found a continuously increase in 

the active range of elbow extension in the evaluation trial (Fig. 3.30). The RMSE 

between the target angle and the actual elbow angle in the evaluation trial of 20 

consecutive sessions were presented in Fig. 3.31. From this figure, the RMSE dropped 

abruptly during the first half of the training sessions, and the changes were not that 

much during the last several sessions.  

 

Fig. 3.24 The MIVE torque (dashed line) and MIVF torque (solid line) of three 

subjects in the 20 consecutive sessions.  

Sessions 
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Fig. 3.25 The elbow trajectory (solid line) and the NEMG signals of biceps and 

triceps of subject C during the voluntary elbow tracking at a velocity of 10 

deg/s when the load was equaled to 0% and the gain was equaled to 0%. 

The dashed line was the target trajectory (BIC: NEMG of biceps; TRI: 

NEMG of triceps). 

 

 

 

 

Gain=0%; Load=0% 
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Fig. 3.26 The elbow trajectories (solid line) and the NEMG signals of biceps and 

triceps of subject C during the voluntary elbow tracking at a velocity of 10 

deg/s when the load was equaled to 0%. The dashed line was the target 

trajectory (left column: gain=50%; right column: gain=100%; BIC: NEMG 

of biceps; TRI: NEMG of triceps). 

 

; Load =0% ; Load =0% 
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Fig. 3.27  The elbow trajectories (solid line) and the NEMG signals of biceps and 

triceps of subject C during the voluntary elbow tracking at a velocity of 10 

deg/s when the load was equaled to 10%. The dashed line was the target 

trajectory (left column: gain=50%; right column: gain=100%; BIC: NEMG 

of biceps; TRI: NEMG of triceps). 

 

 

; Load =10% ; Load =10%
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Fig. 3.28   The elbow trajectories (solid line) and the NEMG signals of biceps and 

triceps of subject C during the voluntary elbow tracking at a velocity of 

10 deg/s when the load was equaled to 20%. The dashed line was the 

target trajectory (left column: gain=50%; right column: gain=100%; BIC: 

NEMG of biceps; TRI: NEMG of triceps). 

; Load =20% ; Load =20%
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Fig. 3.29 The trajectories of subject C with and without the assistance from the 

robotic system during the voluntary elbow tracking at a velocity of 10 

deg/s (bold solid line: the target trajectory; bold dotted line: gain=0%, load 

=0%; blue line: gain=50%, load=0%; magenta line: gain=100%, load=0%; 

yellow line: gain=50%, load=10%; black line: gain=100%, load=10%; red 

line: gain=50%, load=20%; green line: gain=100%, load=20%).  
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Fig. 3.30 The elbow trajectories (solid line) of the evaluation trial of subject C in 

different weeks during the voluntary elbow tracking at a velocity of 10 

deg/s. The dashed line was the target trajectory. 
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Fig. 3.31 The RMSE between the target trajectory and the actual elbow trajectory of 

the evaluation trial in the 20 consecutive sessions.  

 

Sessions 
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3.4.4 Sinusoidal elbow tracking test 

Besides the daily evaluation trial before the rehabilitation training in each session, the 

sinusoidal elbow tracking experiment which was described in section 2.4 was also 

conducted on the three subjects before and after the four-week rehabilitation training 

in order to evaluate the functional improvement in the affected and the unaffected arm. 

Fig 3.32-3.34 presented the tracking trajectories of the affected arm of the subjects 

before and after the four-week rehabilitation training at six tracking velocities. The 

results showed that the trajectories were close to the target trajectory at lower 

velocities both before and after the training (10 deg/s and 20 deg/s). When the 

tracking velocities increased, it became harder for the subjects to follow the target, 

and they could not reach the two end points (30 deg and 90 deg) before the four-week 

training. After the four-week training, the trajectories were closer to the target 

trajectory than before. Fig. 3.35-3.37 plotted the RMSE of the affected and unaffected 

arms before and after the four-week rehabilitation training at six velocities. The 

results showed that there was an improvement in all three subjects in both their 

affected and unaffected arm at all the velocities. However, the performance of the 

affected arms was still not as good as that of the unaffected arms after the four-week 

training. Fig. 3.38-3.40 plotted the RMSJ of the affected arms and the unaffected arms 

for the three subjects before and after the four-week rehabilitation training at six 

velocities. From the figures, we found that there was a decrease in the RMSJ of the 

affected arms after the four-week rehabilitation training for subject A and subject B 

when the velocities were at 10 and 20 deg/s and for subject C when the velocities 

were at 10, 20 and 30 deg/s. The RMSJ was larger after training when the velocities 

increased to higher values for all the three subjects. For the unaffected arm, there was 

a slight decrease in RMSJ at almost all the velocities. The reason for the better 

performance at lower velocities was that the subjects could reach the two ends before 

and after the rehabilitation training. After the four-week training, the performance 

improved and resulted in a lower RMSJ value. However, when the tracking velocities 

increased, these subjects could not reach the two ends before the training and the 

range of motion improved after the training. Therefore, the trajectory after the training 

had larger amplitudes than those before the training at these higher velocities which 

caused an increase in the RMSJ at these velocities after rehabilitation training.     
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Fig. 3.32 The trajectories for the affected arm of subject A before (dotted line) and 

after (solid line) the four-week training during the voluntary elbow tracking 

at six velocities (a: 10 deg/s, b: 20 deg/s, c: 30 deg/s, d: 40 deg/s, e: 50 deg/s, 

and f: 60 deg/s). The dashed line was the target trajectory.  
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Fig. 3.33 The trajectories for the affected arm of subject B before (dotted line) and 

after (solid line) the four-week training during the voluntary elbow tracking 

at six velocities (a: 10 deg/s, b: 20 deg/s, c: 30 deg/s, d: 40 deg/s, e: 50 deg/s, 

and f: 60 deg/s). The dashed line was the target trajectory. 
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Fig. 3.34 The trajectories for the affected arm of subject C before (dotted line) and 

after (solid line) the four-week training during the voluntary elbow tracking 

at six velocities (a: 10 deg/s, b: 20 deg/s, c: 30 deg/s, d: 40 deg/s, e: 50 deg/s, 

and f: 60 deg/s). The dashed line was the target trajectory. 
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Fig. 3.35 Comparison between the RMSE of the unaffected arm (O) and the affected 

arm ( Δ ) before the four-week training, and the RMSE of the unaffected arm 

(*) and the affected arm (∇ ) after the four-week training at six velocities 

(10, 20, 30, 40, 50 and 60 deg/s) during the elbow tracking movement of 

subject A.  

 

Fig. 3.36 Comparison between the RMSE of the unaffected arm (O) and the affected 

arm ( Δ ) before the four-week training, and the RMSE of the unaffected arm 

(*) and the affected arm (∇ ) after the four-week training at six velocities 

(10, 20, 30, 40, 50 and 60 deg/s) during the elbow tracking movement of 

subject B. 
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Fig. 3.37 Comparison between the RMSE of the unaffected arm (O) and the affected 

arm ( Δ ) before the four-week training, and the RMSE of the unaffected arm 

(*) and the affected arm (∇ ) after the four-week training at six velocities 

(10, 20, 30, 40, 50 and 60 deg/s) during the elbow tracking movement of 

subject C. 

 

Fig. 3.38 Comparison between the RMSJ of the unaffected arm (O) and the affected 

arm ( Δ ) before the four-week training, and the RMSE of the unaffected arm 

(*) and the affected arm (∇ ) after the four-week training at six velocities 

(10, 20, 30, 40, 50 and 60 deg/s) during the elbow tracking movement of 

subject A. 
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Fig. 3.39 Comparison between the RMSJ of the unaffected arm (O) and the affected 

arm ( Δ ) before the four-week training, and the RMSE of the unaffected arm 

(*) and the affected arm (∇ ) after the four-week training at six velocities 

(10, 20, 30, 40, 50 and 60 deg/s) during the elbow tracking movement of 

subject B. 

 

Fig. 3.40 Comparison between the RMSJ of the unaffected arm (O) and the affected 

arm ( Δ ) before the four-week training, and the RMSE of the unaffected arm 

(*) and the affected arm (∇ ) after the four-week training at six velocities 

(10, 20, 30, 40, 50 and 60 deg/s) during the elbow tracking movement of 

subject C. 
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Tables 3.9 and 3.10 showed the mean RD of the three trials for the affected and 

unaffected arm of each subject. Subjects A, B, and C showed a decrease in the RD at 

almost all the velocities after training both for the affected and unaffected arms. The 

results from subject A, B, and C also showed that the RD of the affected arm were 

larger than those of the unaffected arm at most of the situations both before and after 

the four-week training. 

Velocity (deg/s) 10 20 30  40 50 60 

Pre-training 115 271 442 290 297 389 Subject A 

Post-training -27 124 175 132 240 282 

Pre-training 289 378 288 374 235 286 Subject B 

Post-training -22 61 149 196 193 300 

Pre-training 151 297 205 215 230 251 

Response 

Delay 

(ms) 

Subject C 

Post-training -2 62 51 128 168 171 

Table 3.9 Response delay of the affected arm during the arm tracking experiment 

before and after the four-week rehabilitation training.   

Velocity (deg/s) 10 20 30  40 50 60 

Pre-training 150 119 103 124 171 243 
Subject A 

Post-training -34 38 44 87 116 138 

Pre-training 141 148 298 281 253 290 
Subject B 

Post-training 52 81 124 153 276 268 

Pre-training 57 64 38 83 79 121 

Response 

Delay 

(ms) 

Subject C 
Post-training -27 31 52 19 61 33 

Table 3.10 Response delay of the unaffected arm during the arm tracking experiment 

before and after the four-week rehabilitation training.   

3.4.5 Questionnaire 

Table 3.11 showed the results from the subjective questionnaire on the four-week 

training with the myoelectrically controlled system (range 0-36) (Appendix II). 

Results showed that there was no adverse subjective opinion from the three subjects 

on the four-week rehabilitation training in terms of the nine questions. 
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Questions 
Subject 

A 

Subject 

B 

Subject 

C 
Mean 

1 You are given a clear instruction before using the 

myoelectrically controlled system for training. 
4 4 4 4 

2 It is easy to put on the myoelectrically controlled 

system. 
3 3 3 3 

3 It is comfortable when you use the myoelectrically 

controlled system. 
4 3 4 3.7 

4 The appearance of the myoelectrically controlled 

robotic system looks acceptable. 
3 3 4 3.3 

5 The steps using the myoelectrically controlled 

system to carry out the training are simple to follow.
3 3 3 3 

6 The range of motion of elbow is improved after 

using the myoelectrically controlled system. 
4 3 3 3.3 

7 The elbow becomes less stiff after using the 

myoelectrically controlled system. 
3 3 3 3 

8 The myoelectrically controlled system improves 

your ability to carry out activities of daily living. 
3 3 3 3 

9 Overall you are satisfied with the function of the 

myoelectrically controlled robotic system. 
3 3 3 3 

Overall 30 28 30  

Mean 3.3 3.1 3.3  

Table 3.11 Questionnaire on the effect of the robotic system in the four-week training. 

Subjective scoring system: 0 =strongly disagree; 1 =disagree; 2 = 

indifferent; 3 =agree; 4 =strongly agree. 
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CHAPTER 4 DISCUSSIONS 

4.1 Recurrent neural network model 

4.1.1 Recurrent neural network model for normal subjects  

In order to find out how to control the robotic system with the electromyographic 

(EMG) signals of muscles at the elbow joint, a suitable control strategy should be 

proposed for the robotic system. The primary motivation to develop this recurrent 

neural network (RANN) model was to control the robotic system based on the EMG 

signals to assist subjects after stroke in daily activities or in rehabilitation training.  

4.1.1.1 Structure of the RANN model  

In this part, a recurrent artificial neural network together with an inverse dynamic 

model was constructed to predict the elbow torque during voluntary elbow movement 

in the horizontal plane. The voluntary movements with different loads and different 

speeds were analyzed based on the RANN model.  

At the modeling stage, the neural network structure was a very important issue that 

affected the prediction accuracy and the model’s robustness (Brown et al., 1994; Tong, 

1997). The complexity of the neural network depended on the number of hidden 

nodes. The optimum number of hidden nodes not only depended on the structure of 

the neural network model but also on the inputs and outputs. The results shown in Fig. 

2.11 were consistent with the argument that a sufficient number of hidden nodes 

achieved superior generalization when the network complexity was enough for the 

question (Tong, 1997; Hirose et al., 1991). If the model complexity was not enough 

for the problem, underfitting would occur (hidden nodes less than five in Fig. 2.11).  

Thus, increasing the hidden node could improve the performance of the model. If the 

model was too complex for the mapping, the training error still decreased but the test 

error increased. The network might fit together with noise. Larger test error would be 

generated in the test data because of overfitting. In order to make the network more 

generalized, it was very important to choose the suitable number of hidden nodes in 

the experiment in order to avoid underfitting and overfitting. At the same time, the 

number of iterations was another issue that should be considered in order to achieve 

the optimum results. The training process should be stopped, if the training error did 
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not have any significant improvement. The stop criterion was consistent with that 

found in the literatures (Au et al., 2000; Uchiyama et al., 1998).  

4.1.1.2 Comparison with previous studies 

There is a similarity between our results and those in Luh ’s  study in which a three-

layer fully connected feed-forward ANN model was built to predict the isokinetic 

elbow joint torques from EMG signals during the performance of single-joint 

movements (Luh et al., 1999). The mean root mean square error (RMSE) from all 

subjects was 1.67 Nm in learning and 8.27 Nm in tests. Luh et al. investigated EMG 

torque relationship at constant angular velocity. In their experimental setup, the 

subjects did not have fully voluntary control and needed external torque to keep the 

elbow moving at a constant velocity. Their model investigated only the biceps and the 

triceps, but the contribution of brachioradialis to the elbow torque was neglected, 

which could be one source of the errors. Au et al. (2000) used a time delayed artificial 

neural network to predict the shoulder and elbow kinematics among subject without 

impairment and subjects after spinal cord injury with EMG signals. The average 

relative error was 9.2% to 20.2% among normal subjects and was 10.7% to 23.4% 

among subjects after spinal cord injure. In our study, the average relative error for 

normal subjects were 2.84%±0.50% in the training data and 5.96%±1.54% in the test 

data if the joint angle and angular velocity of the elbow were added as inputs.  

Under the voluntary dynamic movement, which consisted of the acceleration and the 

deceleration phases, the joint torque could not be directly measured by a torque sensor.  

Only under an isometric contraction or under a constant velocity, would the joint 

torque be directly measured by the torque sensor. Therefore the inverse dynamic 

model was applied to calculate the output torque in this study. In the inverse dynamic 

model, there were two parameters that would affect the output torque: (1) angular 

acceleration and (2) moment of inertia. The moment of inertia would be changed with 

different loads. In our study, trials with different loads and different frequencies were 

trained in one RANN model. Then the trained RANN model could be adapted to 

different loads. In the inputs of the RANN, this load information was not included; 

only EMG and kinematics were used. The results demonstrated the ability of RANN 

in responding to different loads and frequencies.  
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4.1.2 Model limitations for subjects after stroke  

Although the RANN model seemed feasible with the data obtained from the subjects 

without impairment, the model did not have a similar performance when used with the 

data from subjects after stroke upon a review of the model’s relative error and the 

cross correlation coefficient. Many factors could explain the results. First, the 

trajectory of a subject after stroke was less smooth than that of a normal subject, 

which increased the difficulty on the prediction ability with the RANN model. The 

increase in the root mean square jerk (RMSJ) could reflect the decrease of smoothness 

in the affected arm (Fig. 3.18). The increase in the RMSE also reflected the increase 

of abnormality in the trajectory. Many studies reported the abnormal EMG 

cocontraction (Chae et al., 2002a; McLellan et al., 1985) which might disturb the 

training and predicting. The RANN model was expected to predict the elbow torque 

during voluntary movement for subjects after stroke. However, the model suffered 

from over complex situation and was difficult to be applied as a robust control 

strategy at this stage. Therefore proportional control algorithm based on the EMG 

signal from the triceps was an alternative. It was a reliable control method which 

eliminated the effect of excessive muscle activation occurring in biceps of the affected 

arm (Canning et al., 2000). The EMG signal of the triceps was relatively clean during 

elbow extension, and the control based on the EMG signal could reflect the subject’s 

intention. 

4.2 Myoelectric control of the robotic system   

4.2.1 Mechanisms that affected the movement of subjects after stroke 

The interruption of the descending pathway and the immobilization after stroke would 

cause contracture which consisted of a shortening of muscle and loss of muscle 

compliance (O'Dwyer et al., 1996; Williams, 1988). This change in passive 

mechanical properties made patients after stroke exert additional effort to counteract 

the passive torque generated by the stiff and shortened muscle during the movement 

within the available range.  

Apart from the changes in the biomechanical properties of the muscles, Koo et al. 

(2003) reported a position-dependent joint weakness of the elbow extensors which 

might be caused by the reduced activation of the agonists in an extended position. 
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Ada et al. (2000) found that the flexor strength of subjects after stroke was less 

affected by the joint angle whereas their extensor strength was more affected 

compared with the subjects without impairment. Ada et al. (2003) found that patients 

after stroke had selective muscle weakness at a shortened position. These facts imply 

that it is harder for subjects after stroke to extend their forearm at the extended 

positions across the range of motion of the elbow joint.  

Muscle cocontraction was also found in subjects after stroke which reflected the 

impairment of the ability to selectively activate flexor and extensors (McLellan et al., 

1985). This often occurred in biceps activation during elbow extension, while the 

triceps muscle was less affected. This was confirmed by the facts found in the 

sinusoidal arm tracking experiment (Fig. 4.1). Fig. 4.1 shows the EMG activation of 

the biceps and triceps from both the affected and the unaffected arms during 

sinusoidal arm tracking experiment. During the elbow flexion, there was less triceps 

activation both in the affected and the unaffected arms. However, during the elbow 

extension, there was excessive biceps activation in the affected arm but not in the 

unaffected arm. The biceps of the affected arm at this time generated involuntary 

torque which would interfere with the extension movement.   

Some subjects after stroke could not extend their forearm to the fully extended 

position, and the movement was also disturbed by the involuntary torque generated by 

the biceps. The objective of designing the robotic system was to assist the subjects 

after stroke to perform elbow movement. In order to help them to perform elbow 

extension more easily, the current study used the static EMG from the triceps and the 

MIVE torque to construct the gain value and control the robotic system to provide an 

additional assistive torque in proportion to the amplitude of the triceps during the arm 

tracking movement. Additional external resistive loads which were based on the 

MIVE torque were also applied to the robotic system in order to investigate the 

movement performance under different loads and prepare the suitable parameter 

settings for the experiment at the next stage. 
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Fig. 4.1  The band-pass filtered (10-500 Hz), rectified and low-pass filtered (3 Hz) 

EMG signals of biceps (dotted line) and triceps (solid line) from the 

unaffected arm (a) and the affected arm (b) from a subject after stroke during 

the sinusoidal arm tracking experiment (the tracking velocity was at 20 

deg/s). 

4.2.2 Performance indices 

The results of the tracking experiments revealed that with the increase in the gain, the 

NEMG of the triceps decreased. This meant that less effort was needed by subjects 

with the assistive torque from the robotic system. On the other aspect, the results 

showed that the ability of subjects after stroke to perform arm movement had been 

improved with the assistance of the robotic system. Subjects had more capacities to 

contradict the effect from stiff muscle and tissue, excessive muscle activation, and 

weak triceps during elbow extension. The increase in the extension range confirmed 
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the effect of the myoelectrically controlled system. The group mean RMSE even 

decreased with the assistance of the myoelectrically controlled robotic system in 

comparison with that without the assistance, while there was no significant difference 

in the most of the pairwise comparisons. There was a significant decrease in the 

RMSE at 100% of the gain as compared to that at 0 % of gain. The results showed 

that the assistance from the system did not bring the deterioration in the control of 

elbow. The experiment presented an increase in the RMSJ with the increase in the 

gain. The RMSJ reflected the smoothness of the trajectory and the results showed a 

deterioration in the smoothness when the gain increased. It was recommended that 

100% and 50% assistive torques be used for the training, because the 150% assistive 

torque could not bring further improvement in the extension range and the RMSE. 

The system did not consider damping effect which might be a reason to cause an 

increase in jerk with the increase in the gain and the load. In our training protocol, the 

velocity was at a relatively low velocity. As subjects could easily control their 

affected forearm together with the manipulandum to follow the target at this velocity, 

the limitation could be relieved. For further investigation at a higher velocity or a 

more complex velocity profile, a damping component should be considered into the 

control strategy design in order to get a smoother trajectory. 

4.2.3 Comparison of current system with other assistive devices  

The exoskeleton system developed by Rosen’s group (Rosen et al., 2001; Cavallaro et 

al., 2005) used EMG signals as the primary command signal to provide torque control 

in performing elbow movement with a scaled-down loading on the subject without 

impairment. A Hill-type muscle model was used to map between the EMG signals 

and the output torque and the system had not been applied among subjects after stroke. 

Cheng et al. (2003) also reported an EMG-controlled robot device to give assistive 

torque to subjects after stroke to perform elbow tracking and reaching in the vertical 

plane. Processed EMG signals from the biceps and triceps determined the amplitude 

of the torque which was applied by the motor through an adaptive filter. Both systems 

used EMG signals from the biceps and triceps to estimate a summed torque at the 

elbow joint. However, interference would occur due to the muscle co-contraction or 

spasticity if these systems were applied among subjects after stroke. Involuntary 

torque might originate from the excessive biceps activation. Cheng et al. (2003) used 

their system on subjects after stroke and reported that excessive co-contraction could 
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lead to instability of the robotic system. Their study merely investigated the 

performance within the range of 30 deg and did not provide any improvement in the 

extension range with the assistance of the robotic system. Moreover, there was a lack 

of long-term evaluation of the effect of their system on the upper limb functions.  

In order to help subjects after stroke to perform elbow extension, some modifications 

were made to the two systems mentioned above. Only the EMG signal from the 

affected triceps was considered in this study, since the biceps was antagonist and did 

not have direct assistance to the movement. Moreover, our system did not want to 

amplify the involuntary effect on the biceps. The effectiveness of the system may be 

seen in the increase of the extension range for these subjects. Moreover, it took less 

effort for subjects after stroke to perform the same movement from 90 deg to 60 deg 

with a larger gain. Therefore, this design was also used in the next experiment which 

investigated the training effect of the myoelectrically controlled robotic system in a 

four-week rehabilitation training program for subjects after stroke.   

4.3 Functional evaluation using the sinusoidal arm tracking system  

4.3.1 Root mean square error  

The damage in the motor cortex and immobilization after stroke would interfere with 

the sensorimotor control function of the upper limb, which might affect both the 

efferent and afferent motor control of the affected arm. The arm tracking experiments 

in this study used the RMSE as a performance indicator to reflect the elbow control 

function. The larger RMSE values from the affected arms when compared with the 

unaffected arms showed that it was more difficult for subjects to control their affected 

arms to follow the target. When the target velocity was increased, the difficulty of the 

task also increased, and a monotonic increase in RMSE also occurred in both the 

affected and the unaffected arms. The results showed that the RMSE was an effective 

parameter to be integrated with the arm tracking task in the functional evaluation of 

the elbow. A study done by Patten et al. (2003) also evaluated the perceptual motor 

control among hemiparetic adults with an upper limb trajectory tracking task. In their 

study, subjects performed an elbow flexion-extension task against a low-resistance 

isotonic load at three speeds: 25, 45 and 65 deg/s from 10 deg extension to 75 deg 

flexion. However, their results were contrary to what we found. In their experiment, 

the best performance occurred at the velocity of 45 deg/s for the affected arms, while 
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the RMSE in our experiment showed a monotonic increase with the increased 

tracking velocity. Several possible reasons might explain such difference. First, a one 

ft-lb additional torque in their experiment was applied to the elbow, which might have 

affected the tracking results. Second, it took time for subjects to adapt to the trajectory. 

Each of their subjects only performed two cycles of reciprocal extension and flexion 

which might have caused the large variation. In our results, the RMSE of the first few 

cycles was often larger than the succeeding cycles, which could be seen in Fig. 3.15. 

Furthermore, the different ranges of motion and starting points in these two 

experiments were also the factors that affected the results.  

4.3.2 Root mean square jerk  

From Flash and Hogan’s minimum-jerk model (Flash et al., 1985; Wiegner et al., 

1992), the natural voluntary movements are smooth, which can be reflected from 

minimized jerk cost. Therefore, the jerk cost could be used to evaluate the smoothness 

of the voluntary movements. In this study, the RMSJ of the affected arms exhibited a 

higher value at the elbow joint when compared to the unaffected arms, which was 

caused by the impaired control function after stroke. These results were consistent 

with Ju et al’s work (Ju et al., 2002), who also found a significant increase in the 

integration of squared jerks (ISJ) for the affected arms of patients after stroke as 

compared with the unaffected arms during elbow tracking at 10 deg/s. The RMSJ 

could be used to describe the different smoothness between the affected and 

unaffected side in Fig. 3.16. Fig. 3.16 shows that there are more fluctuations in 

velocity, acceleration and jerk from the affected arm during the tracking test 

compared to those from the unaffected arm. The fluctuations could be explained by 

the changes in the mechanical properties of the elbow joint after stroke. The 

mechanical properties of the joint were time varying during cyclic voluntary 

movement (Bennet et al., 1992; Winter et al., 1988). In order to complete a task, the 

subjects rely on adjusting the mechanical properties of their arm, which reflects the 

combined influence of the muscle, the tendon and the proprioceptive feedback. The 

biceps and triceps would be expected to provide some damping effect to the elbow 

joint during the movement. For subjects after stroke, hypertonia often occurred in the 

affected muscles of the elbow, and the Ashworth scale was used to reflect the 

hypertonicity (Yeh et al., 2004). Significant correlations between the Ashworth scale 

and biomechanical model indices had been found during a constant velocity stretch 
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which suggested that the mechanical properties of affected muscles had changed on 

persons after stroke (McCrea et al., 2003; Pisano et al., 2000; Damiano et al., 2002). 

The higher RMSJ from the affected arms and the significant correlation between the 

RMSJ and the modified Ashworth scale in this study reflected that the change of the 

mechanical properties of the affected muscles interfered with the voluntary movement 

and resulted in a less smooth trajectory.   

4.3.3 Response delay (RD) 

The RD in this study showed the overall delay throughout the full cycle.  The RD was 

significantly longer in the affected arms than in the unaffected arms and this could be 

related to lesions which caused specific impairments in the processing and efferent 

mechanisms of the central nervous system. The longer delay in initiation of the 

movement of the affected arm could be quantitatively reflected from the parameter.   

This finding was consistent with the report of other studies which concluded that there 

was a significantly longer initial and termination of the muscle force in the affected 

wrists than the unaffected wrists (Chae et al., 2002b). In our study, during the low 

velocity tracking (10 deg/s), a large deviation in the delay was found among subjects 

(Fig. 3.19); some had lags and some had advances between the target and the actual 

trajectory. When the velocity increased, it was harder for the subjects to follow the 

trajectory which resulted in an increase in the RD, thus the actual angle was mostly 

behind the target. The deficiency of the control ability on the affected arms resulted in 

a larger RD when the tracking velocity was from 20 deg/s to 60 deg/s.  

The RMSE reflected the overall control ability. The RMSJ was related to the 

mechanical properties of the agonist and antagonist muscle pairs during a voluntary 

movement. The RD reflected the response action in the central nervous system to 

receive feedback signals and to control the movement. Although the three parameters 

reflected the motion quality from different aspects, they were inter-correlated; the 

longer RD and the larger RMSJ would also affect the RMSE value.  

The voluntary elbow tracking task based on the system could be used to quantitatively 

evaluate the elbow motor control function of subjects after stroke. The results showed 

significant differences in the RMSE, RMSJ and RD when the affected and the 

unaffected arms were compared during the arm tracking experiment. The RMSE and 
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RMSJ increased with the increase in the tracking velocity for both the affected arms 

and the unaffected arms. These three parameters could be used as quantitative 

measurements during the rehabilitation training to evaluate the upper limb control 

function on persons after stroke in order to monitor the effect of different kinds of 

treatments and rehabilitation devices.   

One factor which could interfere with the RMSE and RMSJ was the range of motion 

that subjects could perform. The subjects were instructed to follow the sinusoidal 

trajectory from 30 deg to 90 deg. They could finish this task better at lower velocities 

when using their affected arms. However, the subjects had difficulty in following the 

target at higher velocities which resulted in the decrease in the range of motion (Fig. 

3.23). This phenomenon only occurred on the affected arm and the reasons might be 

as follows. Firstly, this phenomenon reflected the weakness of the affected muscle 

and its slowness to develop torque for subjects after stroke (Canning et al., 1999; Lum 

et al., 2004). Secondly, the cocontraction at the elbow joint could also affect the 

tracking performance (Chae et al, 2002a). Thirdly, a higher velocity might easily 

trigger the spasticity which could interfere with the subjects’ tracking ability.  

4.4 Effects of the training using the myoelectrically controlled robot  

4.4.1 Possible mechanisms underlying this method 

For subject after stroke, it was hard to move their affected arms. Therefore, they 

preferred to use their unaffected arms. This immobilization caused further 

deterioration of their upper limb function. The over-reliance on the unaffected arm 

also had an adverse effect on the function restoration of their affected arm. This was 

the theory of ‘learned no use’ that was applied in the constraint-induced movement 

therapy (CIMT) (Mark et al., 2004). The myoelectrically controlled robotic system 

was applied on the three subjects after stroke to investigate its long-term effect over a 

four-week period. The CIMT focused on the limitation of the unaffected arm in order 

to force the subjects to use their affected arm. In contrast, our design focused on 

amplifying the residual voluntary function of the affected arm in order to promote 

them to use their affected arm. This method was similar to Ward’s hypothesis-driven 

approaches that rehabilitation could be promoted by the reduction of the 

somatosensory input from the intact hand and by the increase in somatosensory input 

from the paretic hand (Ward et al., 2004). 
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The myoelectrically controlled robotic system could assist subjects after stroke to 

extend their arm to a more extended position. In the first few sessions, the subjects 

might not be able to extend their arms to the fully extended position, but they could 

reach the extended position that they could not achieve in the horizontal plane through 

their own voluntary efforts (Fig. 3.29). Ada et al. (2003; 2000) suggested that the 

training at shortened muscle length was more effective in developing muscle strength 

at such muscle length. However, subjects after stroke often had difficulties in training 

the triceps at such position. It was hard or even impossible to reach such range due to 

contracture, muscle cocontraction or muscle weakness. The assistive function of the 

myoelectrically controlled robotic system could enable subjects after stroke to train at 

this range, which might have a potential beneficial effect. After several training 

sessions, the results showed that subjects could reach a more extended position even 

without the assistance from the robotic system. After the four-week training, two of 

the subjects could reach the fully extended position (0 deg) and the extension range of 

one subject also improved. 

Different gains and loads were used in different sessions in order to familiarize the 

subjects with the different training environments and to help them adapt better. The 

gain could assist the subjects to move in a larger range, and the load could act as a 

resistive element to strengthen the muscle group during training. Virtual feedback on 

the elbow angle helped the subjects to correct the movement with their own intention 

through their own muscle under the assistance of the myoelectrically controlled robot 

system.  

4.4.2 Functional improvement after the four-week rehabilitation training 

The results showed that training using the myoelectrically controlled robotic system 

had positive effect to the subjects’ affected arms. Quantitative measurements during 

each session with the robotic system could enable us to characterize their rates of 

improvement on a daily basis. The decrease of RMSE between the measured elbow 

angle and the target angle with the ongoing of the rehabilitation training reflected the 

continuous functional improvement during the training.  

After the four-week training, there were increases of the muscle strength in the elbow 

flexors and elbow extensors of all the subjects after stroke, which seemed to be related 
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to the resistant loading during the training. This result was consistent with other 

studies on the effect of resistance strength training (Weiss et al., 2000; Ouellette et al., 

2004). The evaluation based on the Fugl-Meyer scale and the modified Ashworth 

scale also showed the functional improvement in the affected arms. 

The sinusoidal arm tracking experiment was also conducted to evaluate the upper 

limb function for subjects after stroke before and after the four-week training. In the 

test, six sinusoidal tracking velocities were investigated in order to reflect the 

functional improvement in different dynamic situations. After the four-week training, 

there were improvements in the RMSE and RD across all the velocities from the 

sinusoidal tracking test. The improvement in the RMSJ was also found at lower 

tracking velocities.   

Subjective follow-up questionnaire among the subjects would be useful for future 

developments and adjustments on our robotic system and training protocol. All three 

subjects agreed that it was easy to manipulate the myoelectrically controlled robotic 

system. They also agreed that their elbow function together with their ability to carry 

out daily activities improved after training. Overall, they were satisfied with the 

rehabilitation training.  

4.4.3 Other features of the robotic system  

One advantage of this system was its multifunctionality. The system not only 

provided a training function but also provided an evaluation function. RMSE between 

the target trajectory and the elbow angle of each trial was displayed on the screen to 

provide visual feedback on the performed tracking. The RMSE value reflected the 

subject’s tracking ability which could give useful guidance to these subjects. The 

angle, torque and EMG signals were captured during the training for off-line analysis. 

These data were useful to investigate the relationship among these variables during 

the training. The system gave us an open architectural platform on designing different 

control strategies for different applications through Labview programming for future 

developments.  
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4.4.4 Comparison of the system with other robotic devices for stroke 
rehabilitation 

Passive movements have been showed to have beneficial effects on restoring the 

upper limb functions (Nelles et al., 2001). Cozens (1999) suggested that a robotic 

system should provide sufficient assistance to compensate for patients’ impairments, 

but this should not transform the active exercise into a passive manipulation. It would 

be better if the subjects could perform motor relearning training voluntarily. The 

recent developments on rehabilitation robots also worked towards this interactive 

control, which allowed the robotic systems reacting to subjects efforts. MIT-MANUS 

was an interactive system, whose low inertia and adjustable guidance facilitate some 

patients with hemiplegia to move with their own effort. Admittance control in 

Colombo’s robotic systems could also reduce the inertia and facilitate the subjects to 

use the system based on an interactive way. MIT-MANUS has been validated by large 

samples for its effectiveness including randomized controlled experiments (Krebs, et 

al., 1999; 2000 Volpe et al., 2000). Colombo’s rehabilitation robotic systems were 

applied on 16 subjects in a three-week rehabilitation program. The MIME system and 

Bi-manu-tracking trainer could assist subjects to train their affected upper limb by 

following the trajectory from the unaffected limb. However, the control signal was not 

directly from the affected arm and it was indirectly controlled by the movement from 

the unaffected arm. Less compliant in the MIME system prevented weak subjects to 

move in a voluntary mode if the effort was from the affected arm. Although these 

current robotic devices have their advantages in the interactive control, none of them 

could provide voluntary support to the subjects who could not move the robotic 

system through their own effort using the affected arm. With the design in our system, 

the subject’s effort could be detected from his/her EMG signal. The effort was 

directly linked to the assistance from the robotic system. Different loads and gains 

were added to enable the subject to train in different situations, and there was no 

assistant torque without the subject’s effort. The system can be applied to subjects 

after stroke at different levels, especially for people who have problems in moving 

their arms, to perform an arm movement in a voluntary way if they have the residual 

voluntary triceps EMG signal on the affected arm. Rehabilitation training with 

cognitive investment for these subjects after stroke might promote motor relearning. 
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4.4.5 Comparison of the system with myoelectrically controlled functional 
electrical stimulation (FES) system 

The sensorimotor integration theory suggests that the voluntary efferent output as well 

as the afferent input might assist in reorganizing the damaged brain area (Cauraugh et 

al., 2000). Therefore, it was better if the subject could keep efferent efforts to their 

affected arms rather than merely receiving afferent input in a simple passive training. 

In order to realize an active voluntary training, capturing the human’s intention to 

build a man-machine interface and synchronizing the external stimulation with the 

human’s intention were essential. The myoelectrically controlled FES system which 

was introduced in section 1.2.4 had realized this cognitive investment using the 

residual voluntary EMG signal of the affected muscle to control the FES system. 

However, the EMG-controlled FES system also had disadvantages which limited its 

application. It was known that the stimulation could cause secondary responses of the 

muscle which were added to the recorded EMG signals and caused instability (Fisher 

1992). Robotic devices have demonstrated their advantages, and exoskeletons with 

EMG control strategy have also been reported to realize a natural control as assistive 

devices both for unimpaired subjects (Rosen et al, 2001) and for subjects after stroke 

(Cheng et al., 2003). Less effort is needed with the assistance of the devices than 

without the assistance. To apply such assistive robotic systems in the upper limb 

rehabilitation training for subjects after stroke was the main objective of this study. 

The surface EMG signals of the affected muscles would be captured as input signals 

to the robotic system, which could reflect the human’s intention from the partial 

paralyzed muscle. The robotic system could provide the corresponding assistive and 

resistive torque during training. The cognitive investment and the performance 

improvement would encourage the subject to be actively and confidently involved 

into the voluntary rehabilitation training 

4.4.6 Limitations of the current system 

Since the myoelectrically controlled robotic system has one degree of freedom (DOF), 

only the affected elbow can be trained with this system. The myoelectrically 

controlled robotic system was developed and applied at a relatively low velocity (10 

deg/s) in this study. For higher velocities or more complex velocity profiles, the 

control strategy needs further development in order to be easily controlled by the 

subjects. A damping component may be needed in order to get a smoother trajectory 
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in the future development for higher velocity application. The preliminary results of 

the four-week training showed that the system had the potential to restore the upper 

limb function for persons after stroke. Further studies should be undertaken to 

confirm its clinical efficacy with a large-scale randomized controlled experiment. 
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CHAPTER 5 CONCLUSIONS AND FUTURE STUDIES 

5.1 Summary  

The key objectives of this study were to develop a myoelectrically controlled robotic 

system, and to investigate its feasibility and effectiveness on assisting control of the 

elbow movement and on restoring upper limb function in the four-week training 

program for subjects after stroke.  

The key contributions of this study were as follows. Firstly, a myoelectrically 

controlled robotic system with one degree of freedom (DOF) was developed. With the 

application of the proportional control, the system could provide assistive extension 

torque which was proportional to the subjects’ processed and normalized triceps EMG 

signal during elbow extension. The system could also provide a resistive torque 

during elbow flexion and extension, the levels of which were based on the maximum 

isometric voluntary flexion (MIVF) torque and the maximum isometric voluntary 

extension (MIVE) torque, respectively.  

Secondly, elbow movement with the assistance of the myoelectrically controlled 

robotic system was investigated on subjects after stroke. The effect of the different 

combinations of EMG-torque gain and resistive load to the performance of the elbow 

extension was evaluated on the affected arms of nine subjects after stroke. Results 

showed that the design could enable subjects with weak triceps to extend their 

affected elbows to a more extended position with the assistance of the current system 

and it took less effort for subjects after stroke to perform the same movement when 

the EMG-torque gain increased.  

Thirdly, a four-week training using the myoelectrically controlled robotic system was 

conducted on three subjects after stroke. Results showed that there was a functional 

improvement in the affected arm of all three subjects after the four-week training. 

Outcome measurements on the muscle strength at the elbow joint showed that there 

were increases in the MIVE and MIVF torques for all the subjects after the four-week 

rehabilitation training. There was an increase in the extension range for the three 

subjects without the assistance of the robotic system after the four-week rehabilitation 

training. Moreover, the functional improvements in the affected arm could also be 

reflected from the changes in the modified Ashworth scale and the Fugl-Meyer score 

for the three subjects.  
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Finally, sinusoidal arm tracking experiments was designed in this study to 

quantitatively evaluate the elbow control function for subjects after stroke in dynamic 

situations. The experimental results showed that there were increases in the root mean 

square error (RMSE) and root mean square jerk (RMSJ) in both the affected and the 

unaffected arms with the increase in tracking velocity. The RMSE and RMSJ of 

unaffected arms were significantly lower than those of the affected arms at all the 

velocities. The response delay (RD) of the affected arms was larger than that of the 

unaffected arms at the velocities of 20, 30, 40 and 60 deg/s. There were significant 

correlations between the RMSJ and the modified Ashworth scale at the velocities of 

10, 20, 30, 40 and 60 deg/s. The sinusoidal arm tracking experiment was also used as 

an evaluation tool in the four-week training program, and the functional improvement 

in the affected arms of the three subjects after stroke could be reflected from the 

deceases in the RMSE and RD after the four-week training. 

5.2 Future studies 

Based on the results in this study, further studies could be conducted in the following 

parts: 

In this study, we investigated the long-term training effect of the myoelectrically 

controlled robotic system. Although positive effect had been found in all three 

subjects after the four-week training, the research suffered from limited number of 

subjects. In order to further confirm the efficacy of the myoelectrically controlled 

robotic system in the rehabilitation training, a large-scale randomized control 

experiment should be conducted and compared with conventional methods or other 

robotic devices. 

The myoelectrically controlled robotic system could only be used to train the elbow at 

this time, it would be better if the rehabilitation training with the robotic system could 

be extended to more joints. Therefore, the system can be further developed for other 

joints such as wrist, shoulder and ankle. Moreover, a myoelectrically controlled 

robotic system with multiple degrees of freedom can be developed for more muscle 

groups, and the movements in the rehabilitation training can be related to activities of 

daily living.  

I hope all the efforts in this study could benefit the persons after stroke in the 

rehabilitation and for the future development in the robot-aided rehabilitation.  
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APPEDIX I: FUGL-MEYER SCORE  

UPPER LIMB SUBSET 
 
Shoulder/Elbow/Forearm 
 
Stage Instruction Response Scoring Criteria  
I&II. reflex 
Activity 

Tap the biceps and  
finger Flexor 
tendons 
 
Tap the triceps 
tendons 

__ Stretch reflex at 
Elbow and 
or/fingers 
 
__ Stretch reflex 
 

0= no reflex can be 
   Elicited  
2= reflex can be 

elicited 

 

III. 
Voluntary 
Movement 
within  
synergy  

Flexor synergy 
“Turn your affected 
hand palm up and 
touch your ear” 
 
 
 
 
 
 
 
 
 
 
Extensor Synergy 
“ Turn your hand 
palm 
down and reach to  
touch your 
unaffected” 
 

Flexor Synergy 
__ Shoulder    
retraction 
__ Shoulder   
elevation 
__ Shoulder 
abduction to 90 deg
__ Shoulder   
external rotation 
__ Elbow flexion 
__ Forearm 
Supination 
 
 
Extensor Synergy 
__ Shoulder  
Abduction & 
internal rotation 
__ Elbow extension
__ Forearm 
pronation  
 
 

(For each of 9 
details) 
0= can not perform 
1= can perform 
partly 
2= can perform    
faultlessly 

 

IV. 
Voluntary 
movement 
mixing 
flexor 
and 
extensor 
synergies 
 

“Show me how you 
would put a belt 
around you [or tie 
an apron]” 
 
 
“Reach forward to  
take [object held in 
front of patient]” 
 
 
 
 
 

__ Affected hand 
moves to lumbar 
spine area 
 
 
 
__ Reaches into 90 
of shoulder flexion 
 
 
 
 
 
 

0= can not perform 
1= hand must 
actively 
pass anterior-
superior 
iliac spine 
2= faultless 
 
0= elbow flexes 
 or shoulder abducts
 immediately 
1= if there occur 
later in motion 
2= faultless 
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“Put your arm to 
your side & bend 
your elbow. Turn 
your palm up & 
down.” 
 

 
 
 
 
 
__ Pronates and 
 supinates forearm 
 with elbow at 90 
deg  and shoulder at 
0 deg 
 

 
 
0= if cannot 
position or can not 
pronate or supinate 
1= Shoulder and 
elbow joints 
correctly positioned
and beginning 
pronation & 
supination seen 
2= faultless 

 
 
 

 
V. 
Voluntary 
movement 
out side of 
synergies  

“Turns your palm 
down and reach 
over here to touch 
[object held out to 
side]” 
 
 
 
 
 
Reach as high as 
you can toward the 
ceiling  
 
 
 
 
 
 
“Reach your arm 
Directly forward 
and turn your palm 
up & down” 

__ Abducts 
shoulder to 90 deg 
with elbow extend 
to 0 & forearm 
pronated  
 
 
 
 
 
__ Flexes shoulder 
from 90 deg to 180 
deg with elbow at 0 
deg 
 
 
 
 
 
__ Flexes shoulder 
to 30 deg -90 deg 
extends elbow to 0 
and  supinates and  
pronates 

0= initial elbow 
flexion or loss of 
pronation 
1= partial motion or
elbow flexes and 
forearm supinates  
later in motion 
2= faultless 
 
 
0= elbow flexes or 
shoulder abducts 
immediately 
1= if those occur 
later in motion 
2= motion 
faultless 
 
0=if can not 
position arm or 
cannot rotate 
1= correct position 
and beginning 
rotation 
2= faultless  
 

 

VI. Normal 
reflex 
activity 
(tested if  
patient 
scores 6 in 
stage V  
tests)  

Tap on biceps, 
triceps and finger 
flexor tendons 

__ Normal reflex 
response 

0= >= 2 reflexes are
markedly 

hyperactive 
1= 1 reflex 
hyperactive or 2 
reflexes lively 

2= no more than 
1 reflex lively and 
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 none hyperactive  
Upper Arm Subtotal Score ( 36 points)      
Wrist  
Stage Instruction Response Scoring Criteria  
Wrists  
stability 
with elbow 
flexed 

Put the shoulder in 
0 deg elbow in 90 
deg flexion, and 
forearm pronated 
“life your wrist 
and hold it there.” 

__ Patient 
extends wrist to 
15 deg. Therapist 
can hold upper 
arm in position 

0= cannot extend 
1= can extend, but 
not 
against resistance 
2= can maintain 
against 
 slight resistance  

  

 

Wrists  
stability 
with elbow 
extended  

Put the elbow in 0
“lift your wrist 
and hold it there”  

__ As above As above  

Active  
Motion with 
elbow 
flexed and  
shoulder at 
0 
 

“Move your wrist 
up and down a 
few times” 

__ Patient moves
 Smoothly from 
full Flexion to 
full extension. 
Therapist can 
hold upper arm. 

0= no voluntary 
Movement 

1= moves, but less 
than 

full range 
2= faultless  

 

Active motion 
with elbow 
extended 

“move your wrist 
up and down a 
few times” 

__ As above As above  

Circumductio
n 

“Turn your wrist in 
a circle like this  
[demonstrate].” 

__ Make a full 
circle-ombining 
flexion & 
extension 
with ulnar & 
radial deviation 
 

0= cannot perform 
1= jerky or 
incomplete motion 
2= faultless 

 

Wrist Subtotal Score ( 10 points)____ 
Hand  
Stage Instruction Response Scoring Criteria  
I. Mass 
Flexion 

“Make a fist” __ Patient flexes
fingers. 

0= no flexion 
1= less than full 
flexion 
as compared to other
hand 
2= full active flexion
 

 

II. Hook 
Grasp 

“Hold this hopping
bag by the 
handles”  

__ Grasp 
involves 
MCP extension 
and PIP& DIP 
flexion. 

0= cannot perform 
1= active grasp, no 
 resistance 
2= maintains grasp 
 against great 
resistance  
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III. Finger 
Extension 

“Let go or me 
Shopping bag” 
“Open your Wide”

__ From full 
active or passive 
flexion, patient 
extends all 
fingers. 

0= no extension 
1= partial extension 
or 
 able to release grasp
2= full range of 
motion  

as compared to 
other 

hand  
 

 

IV. Lateral 
Prehension 

“Take hold of this 
sheet of paper [or 
playing card].” 

__ Patient 
grasps between 
thumb & index 
finger. 

0= cannot perform 
1= can hold paper 
but not against tug 
2= holds paper well 
against tug 

 

 

V. Palmar 
Prehension 

“ Take hold of this
Pencil as if you  
Were going to 
write.” 

__ Therapist 
holds Pencil 
upright and 
patient grasps it.
 

Scoring as above  

VI. 
Cylindrical 
Grasp  

“Take hold of  
this paper cup [or 
pill bottle]”  

__ Therapist 
holds 
the object and  
patient grasps 
with  
1st & 2th fingers
together  

Scoring as above  

VII. Spherical 
Grasp  
 
 
 

“Take hold of this 
tennis ball [or 
apple].” 

__ Patient 
grasps 
with fingers 
abducted. 

Scoring above  

Hand subtotal Score ( 14 points) _______ 
Coordination/Speed 
Stage Instruction Response Scoring Criteria 
Normal 
movement 

“Close your eyes. 
now, and touch 
your nose you’re 
your fingertip. Do 
that as fast as you 
can 5 times.” 

Patients does 
Finger-to-nose 
test 
__ Tremor 
__ Dysmetria 
__ Speed 
(Compare to  
unaffected side )
 

Tremor: 
0= marked 
1=slight 
2=none 
 
Dymetria: 
0= pronounced or  

Unsystematic 
1= slight and  
   Systematic 
2= none 
 
Speed: 
0= > 6 sec lower 
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1= 2-5 sec lower 
2=  <2 sec lower 
 

Speed and Coordination Subtotal Score (6 points) _______ 
TOTAL UPPER EXTRMITY SCORE (66 points) ________ 
NT: not test, because recovery is sequential, more advanced movement are not tested if 
the patient fails movements in the earlier stage. 
 
(Trombly A, Radomski MV. Occupational therapy for physical dysfunction. 
Philadelphia, Lippincott Williams & Wilkins 2002) 
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APPENDIX II: QUESTIONNAIRE 
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APPENDIX III: CONSENT FORM 
 
I, __________________ (name of subject), hereby consent to participate in, as a 
subject, “Rehabilitation Robot using Motor-relearning Exercises to Improve Upper 
Limb Impairment for Persons after Stroke”. 

• I have understood the experimental procedures presented to me. 
• I have given an opportunity to ask questions about the experiment, and these have 

been answered to my satisfaction. 
• I realize I can discontinue the experiment with no reasons given and no penalty 

received during the experiment. 
• I realize that the results of this experiment may be published, but that my own 

results will be kept confidential.  
• I realize that the results of this experiment are the properties of The Hong Kong 

Polytechnic University. 
• I agree that the PI and the project research members, who obtained the 

authorization from the PI, can use my experimental data for this project study. 
 
Subject name: __________________  Signature: ___________________ 

 
Witness: _______________________ Signature: ___________________ 
 
Date: __________________________ 
------------------------------------------------------------------------------------------------------- 

同意書 
我﹐____________________(受試者姓名), 在此同意作為受試者參加康复机器手

中風康复測試研究。 
 

• 我已明白到該測試的步驟。 

• 我已給予機會詢問有關該測試的問題, 並已獲得滿意的回答。 

• 我已知道我可以終止測試而無需給予任何理由, 或由此而受到任何懲罰。 

• 我已知道這個測試的結果可被發表, 但有關我個人的結果將獲得保密。 

• 我已知道這個測試的結果屬香港理工大 學 。 

• 我同意本項目負責人及其受權的項目研究人員使用我的實驗記錄以作此項目

的研究。 

受試者姓名__________________   簽署_____________________ 

作證人姓名__________________   簽署____________________  

日期________________________ 
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