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ABSTRACT

This thesis presents an experimental study of fluid-structure interactions of
bluff bodies subjected to a uniform éross-ﬂow. The investigation concentrates mainly
on the fluid-structure interactions of two side-by-side circular cylinders in a cross-
flow. However, the flow separation effects on the structural dynamic response are
also investigated. Four topics are covered.

First, the flow behind two side-by-side circular cylinders in a cross-flow was
studied using laser-illuminated flow-visualization, laser Doppler anemometer and
hot-wire techniques. Three typical 7/d values, i.e. 3.00, 1.70 and 1.13, were
investigated, where T is the centre-to-centre cylinder spacing and d is the cylinder
diameter. The vortex formation, interaction and downstream evolution are examined
in detail in the three different flow regimes. With the WAG (window average
gradient) detection method, the relative probability of the two typical flow pattern,
symmetrical and anti-symmetrical vortex arrangement, at large cylinder spacing, 7/d
= 3.00, is estimated. Specific attention was given to the asymmetrical flow regime,
T/d = 1.70, including the dominant frequencies, the stability of the deflected gap flow

and its random changeover from one side to another. Based on the observation, a

mechanism is proposed for the stability of the deflected gap flow. An explanation' is

put forward for the existence of two different dominant frequencies associated with
the narrow and the wide wake, respectively. The role gap bleeding plays in the
vortex formation and downstream development for very small spacing between the
cylinders, T/d = 1.13, was also investigated in detail.

Second, free vibrations and the associated non-linear fluid-structure
interactions of two side-by-side elastic cylinders with fixed support at both ends

placed in a cross-flow were experimentally investigated using FBG sensors, hot wire



technique and flow visualization. Three 7/d ratios, identical with those mentioned
above, were investigated. The structural vibration behaviour at each typical flow
regime, i.e. 7/d = 3.00, 1.70 and 1.13, was examined in detail. The characteristics of
the system modal damping ratios, including both structural and fluid damping, and
natural frequencies were also addressed using an auto-regressive moving average
(ARMA) technique. For example, the dependence on 7/d and U, of the system
natural frequency and the effective and fluid damping ratios were investigated
thorbughly, in particular, at and near resonance, thus throw a new» light on the fluid-
structure interaction behaviour.

Third, the nonlinear interplay between the simultaneous vibrations of two
side-by-side elastic cyiinders in a cross-flow, at three identical transverse spacing
ratios as mentioned above, were experimentally investigated using FBG sensor, laser
vibrometer and hot wire technique. The emphasis was on the structural dynamics and
the vibration characteristics. The strain-displacement relationship associated with the
two interfering cylinders at each 7/d values were established and was compared with
that of an isolated cylinder. Interference effects on behaviours of the system natural
frequencies, the vibration amplitude and the correlation coefficient between the two
interfering cylinders at each 7/d value were also investigated in detail. It was found
that, in general, the correlation coefficient p,, between fluctuating strains measured
from the two cylinder increases as 7/d decreases, suggesting an increasing
interference.

Finally, the effect of the nature (fixed or oscillating point) of flow separation
on fluid-structure interactions was experimentally investigated. Flow field and
structural vibrations of both square and circular cylinders, associated with fixed and
moving flow separation points, respectively, were investigated using hot wire and

FBG sensors. The vibration characteristics, resonance behaviour, system modal
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damping ratios and natural frequencies associated both square and circular cylinder
cases were investigated in an effort to understand the effect of flow separation on
fluid-structure interactions. Furthermore, the incidence angle effects on the fluid-
structure interaction behaviour associated with the square cylinder were also studied
in detail.

Nine publications, including 5 refereed journal papers and 4 refereed

conference proceedings, have been produced out of this work.
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NOMENCLATURE

cross section area of a cylinder.

drag coefficient = 2D/pU? ).

lift coefficient = 2LApU? ).

added mass coefficient.

pressure coefficient = 24p/pU?2 ).

base pressure coefficient.

diameter of circular cylinder. d also denote the height of the square
cylinder (mm).

cross flow cylinder dimension, d =(sina+cosa)d for square
cylinder (mm).

hydraulic diameter of cylinders (mm).

mean drag.

Young’s modulus of the cylinders.

structural stiffness.

spectrum of fluctuation & (represents either € _, €, X, Y or u),

normalised so that an (f)df =1.
0

frequency in spectrum analysis (Hz).

nth mode structural natural frequency (Hz),n=1, 2, 3, ...

nth mode inline and cross-flow natural frequencies, respectively, of

the fluid-cylinder system (Hz),n =1, 2, 3,...

vortex shedding frequency of a stationary cylinder (Hz).
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Re

X,y

XY

‘ X rms» YI’ ms

xi

frequency of the shear layer instability (Hz).
area moment of inertia.

mean lift.

cylinder mass per unit length= p A.

sum of added mass and the cylinder unit length mass = (¢, + 1)p,A.
mass ratio = M/pa'z .

relative probability.

Reynolds number= U _d/v.

cylinder span (mm)

Strouhal number = f.d, /U_

time (sec).

Centre-to-centre cylinder spacing.

streamwise and cross-flow fluctuation velopity, respectively (m/sec).
free stream velocty (m/sec).

reduced velocity = U./ f d.

co-ordinates in streamwise and lateral directions, respectively.
displacements of the cylinder in the x and y directions, respectively,
measured at midspan of the cylinder by laser vibrometer. X and Y
also denote the displacements derived from the dynamic strain signals
measured at midspan of the cylinder using fibre-optic Bragg grating
(FBG) sensors ( um).

bending displacements of the square cylinder estimated from the
strain signals €, and €, , respectively (um ).

root mean square values of X and Y, respectively (um ).
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Greek Symbols
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£,y

Ex.rms> Ey,rms
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0
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incidence angle of free stream velocity, zero when the flow is normal
to one face of the square cylinder.

fluid density.

correlation coefficient between dynamic strains measured from the
two cylinders, simultaneously.

structural density.

dynamic strains of the square cylinder measured by FBG sensor 1 and
sensor 2, respectively (L€).

root mean square values of €, and &, , respectively (ue).

dynamic strains due to drag and lift, respectively, measured by fibre-
optic Bragg grating (FBG) sensors (U€).

root mean square values of €, and €, respectively (LL€).

the first-mode structural damping ratio.

effective damping ratio of a fluid-cylinder system.

nth mode structural damping ratio,n =1, 2, 3,...

fluid damping ratio.

nth mode inline and cross-flow fluid damping ratios, respectively, n =
1,2,3,..

nth mode inline and cross-flow effective (or system) damping ratios,

respectively,n=1,2, 3, ...
azimuthal angle around a cylinder with the origin at the forward

stagnation point.



Xill

0 angle of resultant force.

Ap mean pressure difference between the wall pressure and a reference
pressure.
I vortex shed circulation.
\Y fluid kinematic viscosity.
¢ phase.
O2P) spectrél phase shift at f; between the €, (or €, ) signals obtained from

the two cylinders.

spectral phase angle at f; between simultaneously measured hot wire

gy

signals.

Superscript

* denote dimensionless parameter normalised by d/d, and U, unless
otherwise stated.

Subscript

1,2 . represent the hot wire number in Chapter 2. Subscript 1, 2 also denote

the cylinder number (Chapters 3 and 4) or the fibre-optic Bragg

grating (FBG) sensor number (Chapter 5).



CHAPTER 1

INTRODUCTION

1.1 Background

Fluid-structure interactions are of common occurrence in many branches of
engineering, i.e. turbo-machines, off shore pilings, large buildings, tube bundle heat
exchangers, etc. In general, when bluff bodies are exposed to a uniform or unsteady
stream, fluid excitation forces acting on the structure are created by vortex shedding
(Chen 1972a, b and c; Blevins and Burton 1976; Achenbach and Heinecke 1981;
Perry et al. 1982; Chen 1987; Hara 1989; Blackburn and Melbouren 1996). These
unsteady forces cause the structures to vibrate (Sarpkaya 1979; Chen 1986; Price et
al. 1987; Weaver and Fitzpatrick 1988; Brika and Laneville 1993). The resultant
structural motions may, in turn, change the flow field through the moving boundary
conditions, thus giving rise to a change in the flow-induced forces, which will affect
the vibration characteristics of the structure. Consequently, fluid and structure are
coupled, modifying both the frequency and the magnitude of the forces on the
structure. The coupling is in general a highly non-linear function of both structural
motion and flow velocity. Earlier investigations of fluid-structure interaction
problems have been concentrated mainly on the measurement of the fluctuating
forces, the dynamic strain and the bending displacements (e. g. Griffin 1980,
Paidoussis 1982; Schewe 1983; Parkinson 1989; Luo and Teng 1990). There were
few measurements carried out simultaneously with the flow field to study the fluid-
structure interactions. Exceptions are the work of Williamson and Roshko (1988),
Ongoren and Rockwell (1988a and b), Baban et al. (1989) and Baban and So (1991).

Williamson and Roshko (1988) and Ongoren and Rockwell (1988a and b) focused



mainly on the forced vibration problem rather than the free vibration case, while the
latter two investigations (Baban er al. 1989; Baban and So 1991) concentrated
mainly on rigid structures. Therefore, knowledge of the tightly coupled fluid-
structure interaction effects in a free vibration problem is very limited. In this thesis,
the fluid-structure interactions, where only vortex shedding generates the excitation
forces on the structure, referred to here as free vibration problems. While the
problems in which the structure vibration is excited by external excitation forces,
which are independent of vortex shedding and structural motions, are considered as
forced vibration.

A common fluid-structure interaction problem is the flow-induced vibrations
caused by vortex shedding from structures. The flow-induced vibrations could cause
structural fatigue and even lead to drastic failure of the structures. For example, in
the design of bridges, if the flow-induced vibration and its structural effect are not
taken into account in their design, the result could be quite drastic. A good example
is the collapse of the Tacoma Bridge during a violent windstorm. Accordingly,
interest in understanding the associated physics and predicting the structural motionsv
is rapidly growing (Blevins 1994; Ziada and Staubli 2000). The flow-induced
vibration of a two-dimensional bluff body in a cross-flow is a simple and classical
version of this class of fluid-structure interaction problems which have been
extensively investigated in the past (Chen 1972a and b; Griffin and Ramberg 1974;
Sarpkaya 1979; Griffin 1980; Schewe 1983; Chen 1987; Brika and Laneville 1993;
Blackburn and Melbouren 1996; Zhou er al. 1999a; Zhou et al. 2000a). Even then, it
is governed by a number of major parameters, such as the reduced velocity, the
reduced damping and mass ratio (Chen 1987). Each of these parameters plays a
different role in the dynamic response of the cylinder. For example, damping is

responsible for the limit cycle oscillation behaviour of the cylinder at resonance



(Zhou et al. 1999a) because effective damping does not decrease to zero as
resonance is approached. The fluid-structure interaction problem is further
complicated by the presence of an identical neighbouring cylinder, such as in the
case of two side-by-side cylinders. Here, besides the parameters mentioned above,
the problem is also governed by the ratio of the centre-to-centre cylinder spacing T to
diameter d. Varying this ratio could lead to the formation of a single or multiple
wakes (Landweber 1942; Spivac 1946; Ishigai et al. 1972; Bearman and Wadcock
1973; Zdravkovich 1985; Zhou et al. 2000b) and this, in turn, could affect the
dynamic response and the resonance behaviour of the cylinders. Furthermore, the
nonlinear interplay between the simultaneous vibrations of the two cylinders and the
fluid as a result of flow-induced forces is a far more complicated process than the
fluid-cylinder interaction in the single cylinder case. The present experimental
investigations concentrated mainly on the fluid-structure interactions of two side-by-
side circular cylinders in a cross-flow. In addition, the effects of the flow separation

characteristics from bluff bodies on the structural dynamic response are also

investigated in detail.

1.2 A Brief Literature Review

1.2.1 Flow dynamics around two side-by-side cylinder/bluff bodies

Flow dynamics around two side-by-side cylinders subjected to a uniform
cross-flow has received considerable attention in the past (e.g. Biermann and
Herrnstein  1933; Landweber 1942; Ishigai et al. 1972; Zdravkovich 1977;
.Williamson 1985; Chang and Song 1990; Kolét et al. 1997; Sumner et al. 1999)
because of its inherent importance and practical significance in many branches of

engineering. In this configuration, the ratio 7/d is known to be a very important



parameter. The wake pattern, Strouhal number, lift and drag coefficients experience
series changes in this case (Chang and Song 1990). When 7/d is larger than about
6.0, virtually no interactions are generated between the two Karman vortex streets
(Biermann and Herrnstein 1933; Landweber 1942; Spivac 1946; Hori 1959). When
T/d less than about 6.0, vortices shed from the two cylinders interact dynamically
-(Chang and Song 1990). The lift and drag coefficients measurements carried out by
Zdravkovich and Pridden (1977) indicates that the sum of the low and high drag
generated by the two cylinders was always less than twice the drag of a single
cylinder.

When 77/d is in the range 2.0 - 6.0, for each cylinder, vortices shed alternately
at gap side and free-stream side with a frequency same as that of a single cylinder,
indicating a relatively small interaction between the two cylinders (Landweber 1942;
Spivac 1946; Ishigai et al. 1972). The vortex formation and shedding from the two
cylinders exists either in symmetrical (anti-phase) or anti-symmetrical (in-phase)
form (Chang and Song 1990). It has been observed that the symmetrical vortex
shedding is predominant over the anti-symmetrical vortex shedding (Ishigai et al.
1972; Williamson 1985). When 1.2 < 7/d < 2.0, flow dynamics around two side-by-
side cylinders subjected to a cross-flow is characterized as ‘asymmetrical’. The gap
flow is mostly deﬂécted toward one cylinder and may changeover to the other side
from time to time (Spivack 1946; Ishigai et al. 1972; Bearman and Wadcock 1973;
Kamemoto 1976, Kiya et al. 1980; Kim and Durbin 1988; Sumner et al. 1999).
Bearman and Wadcock (1973) measured the base pressure simultaneously on both
cylinders, and found that the cylinders always experienced different based pressure
in the range of spacing 7/d between 1.2 and 2.0. He also found that the cylinder,
toward which the gap flow is deflected, has a lower base pressure and a higher Cp,

whereas the other cylinder has a higher base pressure and a lower Cp. Similar



phenomena were also observed by Quadflieg (1977). For very small cylinder
spacing, i.e. T/d < 1.2, no vortex is generated in the gap between the two cylinders;
vortices are mostly alternately formed from the free-stream sides of the two cylinders
with a frequency half of that of a single cylinder (Ishigai er al. 1972; Williamson

1985; Sumner et al. 1999).

1.2.2 Vibration characteristics of two cylinders subjected to a cross-flow

The vortex-indﬁced vibration characteristics of two side-by-side cylinders in
a cross-flow are generally related to the flow dynamics around the cylinders, which
has also been investigated extensively in the past (Chen 1975; Bokaian and Geoola
1984b and c; Zdravkovich 1984; Chang and Song 1990; Meneghini ez al. 2001). For
large cylinder spacing, i.e. 7/d > 2.0, the coupling due to fluid flow is small,
therefore, each cylinder responds similarly to that of an isolated cylinder (Chen
1986). At 7/d < 2, flow dynamics around the two cylinders are asymmetrical and
there are multiple vortex frequencies (Bearman and Wadcock 1973; Williamson
1985; Kim and Durbin 1988), therefore, the cylinder vibration characteristics become
extremely complicated. For example, Livesey and Dye’s (1962) investigation
indicates that the two cylinders may vibrate in either out-of-phase or in-phase at
intermediate cylinder spacing (7/d < 2.0). They further conjectured that the out-of-
phase and in-phase modes maybe related to the resonance of the corresponding
vortex frequencies. A detailed study, including natural frequencies, damping,
displacements and vibration orbit, of flow-induced vibration of two side-by-side
circular cylinders in a cross-flow at the bi-stable flow regime, i.e. 7/d = 1.5 and 1.75,
has been carried out by Jendrzejczyk et al. (1979). They found that the tube response
frequencies in the drag and lift direction are the same at low flow velocities. As the
flow velocity increases, tube response frequencies in the lift direction decrease while

those in the drag direction increase. They ascribed this observation to two reasons.



First, the drag force induced displacement may tend to change the end conditions of
the tube. Second, the added mass is not constant but varies with flow velocity.
Later, Chen (1986) further pointed out that the effect of fluid damping and fluid
stiffness forces may be also partially responsible to the tube response frequencies or
natural frequency variations observed by Jendrzejczyk et al. (1979). When the two
cylinders are fairly close, i.e. 7/d < 1.2, the two cylinders are strongly coupled by

flow field, acting like a single structure (Chen 1986).

1.2.3 Flow field behind two side-by-side cylinders

The characteristics of flow field behind two side-by-side cylinders subjected
to a uniform cross-flow depend to a great extent on the ratio 7/d among many other
parameters, e.g. initial conditions, pressure gradient and Reynolds number (e.g.
Zdravkovich 1977; Williamson 1985; Kolaf et al. 1997; Sumner et al. 1999). For
relatively large cylinder spacing, i.e. T/d > 2.0, two distinct vortex streets are
generated behind each cylinder (Landweber 1942) with the same vortex frequency as
that behind a single cylinder (Spivac 1946). The two streets are coupled and
dominated by antiphase or symmetrical behaviour (Ishigai ef al. 1972), though the
inphase or anti-symmetrical arrangement between the two streets was also observed
(Williamson 1985). As the two cylinders approach each other to an intermediate
cylinder spacing, i.e. 1.2 < T/d < 2.0, the gap flow between the cylinders is deflected
towards one cylinder and may change over intermittently from one side to another.
The deflection leads to the formation of one narrow and one wide wake, which are
associated with high and low vortex frequency, respectively (Spivack 1946; Ishigai
et al. 1972; Bearman and Wadcock 1973; Kamemoto 1976; Kiya et al. 1980; Kim
and Durbin 1988; Sumner et al. 1999). For very small cylinder spacing, i.e. 7/d <

1.2, the two cylinders behave like a single structure, that is, vortices are mostly



alternately shed from the outer side only, nearer to the free stream, of the two

cylinders, foi'ming a single vortex street (Sumner et al. 1999).

1.2.4 Fluid damping of fluid-structure system

Damping is an important issue in fluid-structure interaction problems, which
is in general a highly non-linear function of both structural motion and flow
characteristics. Damping may arise from fluid surrounding the structure as well as
from the structure. While structural damping is related to the properties of the
structure itself, fluid damping originates from viscous dissipation and fluid drag, i.e.
the result of viscous shearing of the fluid at the surface of the structure and flow
separation. As a result, fluid damping is motion dependent and is difficult to
estimate, especially for multi-degree-of-freedom dynamic systems (Weaver and
Fitzpatrick 1988; Granger et al. 1993).

Previous experimental work on fluid damping mostly focused on liquid-
structure systems where the induced force is large and the vibration amplitude is of
the order of the hydraulic diameter of the structure (Chen and Jendrzejczyk 1979 and
1981; Chen et al. 1995). From the measurements of a circular cylinder in a liquid
‘cross flow, Chen and Jendrzejczyk (1979) inferred modal damping ratios along the
lift and drag directions. Similar measurements of the damping ratios of a tube in an
array have also been carried out (Chen and Jendrzejczyk 1981). On the theoretical
side, Chen er al. (1995) presented an unsteady flow theory for vortex-induced
vibration of a structure in a cross flow. According to this theory, resonance (or lock-
in resonance), where the natural frequency of the combined fluid-structure system
coincides with the frequency of fluid excitation forces, is a coupled instability and
forced vibration problem. As the flow passes through the lock-in region, the modal

damping might become negative, resulting in an unstable system. Once the



amplitude becomes large, the modal damping also increases and the system will be
stabilized.

Recently, Mittal and Kumar (1999), Mendes and Branco (1999) and Zhou et
al. (2000a) studied the flow-induced vibration of a single cylinder in a cross-flow
numerically assuming a two-dimensional flow and a two-degree-of-freedom (2-dof)
dynamics approach over a range of Reynolds number, 200 < Re < 500. Zhou et al.
(2000a) extracted fluid damping ratios from the calculated signals of the lift and drag
and their respective vibration amplitudes. The damping ratios thus deduced showed
a trend quite similar to the experimental measurements of Griffin and Koopmann
(1977). These measurements, which were obtained from an elastically mouﬁted rigid
cylinder in a wind tunnel, showed that there is a marked decrease in fluid damping
ratio in the lock-in region. An attempt to compare the calculated and measured
damping ratio for the first vibration mode has been made by So et al. (2000a). The
comparison was made with the measurements of So et al. (2000a) at an Re of about
3340. Agreement between calculations and measurements was fair. There are many
reasons for the less than good comparison, major among them are errors in the
measured lift signal, the 2-dof dynamics model and the two-dimensional laminar
flow assumption for the upstream flow and wake. An attempt to relax the 2-dof
assumption has been made by Wang et al. (2001), but the modal damping ratio
comparison with measurements was not so good as the 2-dof result. These studies,
therefore, suggest that there is a real need to verify the experimental data and
improve on their measurements.

On the other hand, Newman and Karniadakis (1997), Evangelinos and
Karniadakis (1999) and Evangelinos et al. (2000) carried out direct numerical
simulation of this simple fluid-structure interaction problem at Re ranging from 200

to 1000. Their icalculations took into account the effect of turbulence in the wake



flow and the three-dimensional nature of the shed vortices and the wake. In
principle, therefore, the lift and transverse displacement signals were more
reasonable than those obtained under the two-dimensional laminar approach of So et
al. (2000a) and Wang et al. (2001). However, their studies were mainly concentrated
on the wake flow and the structural motions. Little attempt has been made to deduce

damping information and the associated change in damping ratios over the range of

reduced velocity, U, , investigated.

1.2.5 Flow separation characteristics from bluff bodies

The excitation force originates from vortex shedding in the free vibration
case. Naturally, the nature (fixed or oscillating) of flow separation could affect the
dynamics of the freely vibrating elastic cylinder. In the case of a circular cylinder,
the separation point is not fixed, but keeps moving on the cylinder surface. The
excursion of the separation point is usually within 10° and varies from 75° to 85°
(the angle measures from the forward stagnation point) for the Reynolds number Re
= 1.06 x 10° (Dwyer et al. 1973). The mean location of flow separation varies with
Re (Chen 1987). Higuchi et al. (1989) found that the separation point moved
" between 87° and 95° at Re = 1.96 x 10°, while Achenbach (1968)’s measurements
indicated that boundary layer separation occurred at 78° for Re = 10° and shifted to
94° for Re = 3 x 10°. Flow separation and structural vibration are also related. Mei
and Currie (1969) examined the boundary layer separation from a stationary and a
vibrating cylinder. Their results showed that the separation point oscillated over an
arc of the cylinder surface. The arc length varied with the frequency and the
amplitude of the cylinder vibration; it reached a peak when the cylinder frequency
was about 0.9 times the wake frequency and then decreased with further increase of

the wake frequency. On the other hand, vortex shedding from a square cylinder is
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characterized by a fixed separation point. The way the flow separates is linked to the
rotation angle of the cylinder. When the square cylinder is normal to the free stream
velocity, i.e. the angle of incidence o = 0°, the flow separates from the upstream
corners of the cylinder and will not reattach on the side surfaces (Nguyen and
Naudascher 1991; Naudascher and Wang 1993). When « increases to 13° ~ 45°, the
flow might separate from one upstream corner and one trailing corner for Re = 3000
~ 21000 (Chen and Liu 1999). Evidently, separation behaviour of the square

cylinder differs from that of the circular cylinder.

1.2.6 Issues identified

As reviewed above, the fluid-structure interactions of two side-by-side
cylinder/bluff bodies has been investigated extensively in the past (Landweber 1942;
Spivac 1946; Ishigai et al. 1972; Bearman and Wadcock 1973; Chen 1975; Bokaian
and Geoola 1984b andc; Zdravkovich 1984; Chang and Song 1990; Kolaf et al.
1997; Sumner et al. 1999; Meneghini et al. 2001). These studies have greatly
improved our understanding of the fluid-structure characteristics of two side-by-side
cylinder/bluff bodies subjected a uniform cross-flow. Nevertheless, as a fully
- coupled problem, investigation of the fluid-structure interactions of this fluid-
structure configuration is far from complete. There are still a number of important
issues have yet to be addressed. For example, at relatively large 7/d (>2.0), why is
the symmetric vortex shedding predominant over the anti-symmetric shedding? What
is the ratio between the two spatial arrangements? What triggers the transition of the
two vortex streets from the in-antiphase to the in-phase mode? At asymmetric flow
regime (1.2<7/d<2.0), physics behind the formation and stability of a narrow and a
wide wake is unclear. Furthermore, what triggers the changeover of the gap flow
deflection from one side to another? Why does the dominant frequency in the narrow

wake triple that in the wide wake? How do the vortices in both wakes evolve
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downstream? For very small cylinder spacing (7/d <1.2), the possible role the gap
bleeding plays in vortex formation and downstream evolution has yet to be clarified.

On the other hand, previous studies were mostly concerned with the
behaviour of the wake flow and the flow-induced vibrations on rigid cylinders. Even
in the free vibration case, the cylinders, flexibly mounted at both ends, were
relatively rigid. Here, a rigid cylinder is defined as one having infinite structural
stiffness. The dynamic characteristics of an elastic cylinder, defined as one with
finite structural stiffness, can be quite different from a rigid one (Zhou et al. 1999a,
So et al. 2000a). There have been relatively few studies on two side-by-side elastic
cylinders in a cross-flow. Consequently, the fluid-structure interaction characteristics
of two side-by-side elastic cylinders subjected to a uniform cross-flow have yet to be
well documented.

In previous studies of fluid damping (Chen and Jendrzejclyk 1979 and 1981;
Chen et al. 1995; Jendrzejclyk et al. 1979; Granger and Paidoussis 1995; Newman
and Karniadakis 1997; Evangelinos and Karniadakis 1999), the mean flow velocity

was relatively small. As a result, the range of U, covered was quite limited and the

observation revealed resonance with the first vibration mode. In other word, only the
first modal damping was deduced or considered in the data analysis. Damping ratios
of other modes of vibration of én elastic cylinder in a cross-flow are scarce.
Consequently, many aspects of resonance associated with these modes have yet to be
clarified, for example, how the damping ratios would behave at higher mode
resonance, and how interference between two side-by-side cylinders affects the

damping ratio. Furthermore, the issue of the effect of flow separation on fluid-

structure interactions has yet to be addressed.
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1.3 Objectives

The present work aims to investigate experimentally the fluid-structure

interactions of bluff bodies subjected to a uniform cross-flow. The study is

concentrated mainly on the configuration of two side-by-side circular cylinders in a

cross-flow. The reason for choosing this configuration is that, in spite of the

extensive investigations in the past, there are still a number of important issues have

yet to be addressed. Specific objectives are stated as follows:

1.4

@)

(ii)

(1i1)

(iv)

To study the flow around two side-by-side cylinders subjected to a
uniform cross-flow so as to gain a better understanding of the vortex
generation, interaction, topology (vortex pattern) and downstream
evolution at different flow regimes.

To investigate the free vibration of two side-by-side elastic cylinders
placed in a cross-flow and the associated non-liﬁear fluid-structure
interactions.

To study the interference effect on the structural dynamics and vortex-
induced vibration characteristics of two side-by-side fix-supported
elastic cylinders.

To investigate the effect of flow separation characteristics on the free

vibration of an elastic cylinder, with fixed-fixed end conditions,

subjected to a uniform cross-flow.

Experimental Instruments

In these experimental investigations, the fluid dynamics was investigated

using constant temperature hot-wire anemometers and laser-illuminated flow

visualization technique, while the mean drag and lift acting on the structures were
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obtained by applying a wall pressure tap and a pressure transducer. A number of
techniques are available for the measurement of dynamic strain and displacement of
a vibrating structure. However, most of them are intrusive and would alter the
structural dynamic characteristics, i.e. the strain gauges (Weaver and Yeung 1984;
Andjelic and Popp 1089) and capacitive type displacement transducer (Laneville and
Mazouzi 1995). In this study, a Polytec Series 3000 Dual Laser Beam Vibrometer
(Trethewey et al. 1993) was employed to measure the fluctuating displacement of the
structures. . The laser vibrometer is a non-intrusive technique, Which has been
successfully employed by So et al. (2000b) to study the dynamic behaviour of an
elastic cylinder in a cross-flow and the fluid-structure interactions at synchronization.
However, it is very difficult to measure the dynamic displacement of the structure in
the streamwise direction applying laser vibrometer (So et al. 2000b; Zhou et al.
1999b). Therefore, a new technique, Fibre-optic Bragg Grating (FBG) sensor, was
also applied to measure the dynamic strains of the structures.

Figure 1-1 shows the ggneric sensing concept using FBG sensor (Kersey et dl.
1997). An FBG is formed inside the core of an optical fibre by introducing periodic
changes in refractive inde); along the fibre. Assuming input signal is broadband light
incident on the grating, a narrow band signal is reflected back at thé Bragg resonance

wavelength 1z = 2nA , where A is the grating pitch and n the averaged fibre refractive
index. Any perturbation, say due to applied strain variation &, of the grating results in a
variation in A and n, and therefore a shift A4, in A,. The value of AA, is related to

€ by Ajz= Ke, where K is a scale factor and can be determined by a calibration

process. Using a wavelength detection device, the AA, can be converted into the
variation of light intensity. The intensity variation is subsequently converted into an
electric current or voltage through a photo-detector. The variation of strain is therefore

related to that of the electric signal. The FBG sensor has many unique features. For
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example, its diameter could be as small as 80 pm. Therefore, its attachment to the
structure would not seriously alter the flow around the structure and, in addition, it has
a negligible effect on the structural dynamic characteristics. Zhou et al. (1999b) and
Jin et al. (2000) have successfully used the FBG sensor to measure the dynamic
strain on one or two circular cylinders in a cross flow. They have established that the
measured root mean square (rms) strain is linearly correlated to the rms bending
displacement provided that the displacement is small. This empirical relationship

allows the dynamic strain measurements to be interpreted in terms of the

displacement.
|
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Figure 1-1 A schematic of the Fibre-optic Bragg Grating (FBG) sensing concept,

from Kersey et al. (1997).
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For easier reference, the estimated experimental uncertainties are provided in

Table 1-1.
Table 1-1 Summary of the estimated experimental uncertainties.
. . Laser .
Hot-wire | Pressure | Pressure | Pitot Laser | FBG sensing
Doppler .
Anemometry; tap |[transducer] tube [Vibrometer]  system
[Anemometry

+4.8% +35% [ £001% [£3.0% | *1.5%* +7.5% t 8.0%

* The measuring volume has a minor axis of 1.18mm and a major axis of 2.48mm.

1.5 Synopsis of the thesis

The experimental work presented here is mainly concentrated on the fluid-
structure interaction characteristics of two side-by-side circular cylinders subjected to
a uniform cross-flow. In addition, the flow separation effects on fluid-structure
interaction behaviours of a single elastic cylinder in a cross-flow were also included.
There are six chapters in the thesis. Chapter 1 is an introduction to this work.

The flow dynamics behind two side-by-side circular cylinders subjected to a
uniform cross-flow, which is essential to study the fluid-structure interaction effects,

“are examined in Chapter 2 using laser-illuminated flow-visualization, laser Doppler
anemometer and hot wire technique. Details include the vortex formation, topology
(flow pattern) and downstream evolution at each typical cylinder spacing, i.e. 7/d =
3.00, 1.70 and 1.13, respectively. The relative probability of the two typical flow
patterns, symmetrical and anti-symmetrical vortex arrangement, at large cylinder
spacing, T/d = 3.00, is estimated by simultaneously measuring wake velocities at
symmetrical spatial positions about the flow centerline using hot wire anemometers.
The vortex shedding behaviour, formation of a narrow wake and a wide wake,
changeover process of the deflected gap flow and downstream evolution of the

vortices behind the two cylinders at intermediate cylinder spacing, 7/d = 1.70, were
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examined in detail in this chapter. Based on the flow visualization and hot wire
measurements, a mechanism is proposed for the stability of the deflected gap flow.
An explanation is put forward for the existence of two different dominant
frequencies associated with the narrow and the wide wake, respectively. In addition,
the role the gap bleeding plays in determining the flow characteristics at small
cylinder spacing, 7/d = 1.13, are also investigated.

Chapter 3 studies the free vibrations of two side-by-side elastic cylinders with
fixed support at both ends placed in a cross-flow. Two FBG sensors were used to
measure the dynamic strains associated with each cylinder, simultaneously, in both
transverse and streamwise directions. A hot wire and ﬂow visualization were
employed to examine the flow field around the cylinders. Three typical 7/d ratios,
identical with that in the studies presented in Chapter 2, were investigated. The
measured structural vibration behaviour is closely linked to the flow characteristics
obtained in Chapter 2. For example, At 7/d = 3.00, the cross-flow root mean square
strain distribution shows a very prominent peak at the reduced velocity U, = 26
when the vortex shedding frequency f; coincides with the third-mode natural
frequency of the combined fluid-cylinder system. When 7/d < 3.00, the vibration is
| suppressed because of the weakening strength of the vortices. The characteristics of
the system modal damping ratios, including both structural and fluid damping, and
natural frequencies are also addressed using an auto-regressive moving average
(ARMA) technique. It is found that both parameters depend on 7/d. Furthermore,
they vary slowly with U,, except near resonance where a sharp variation occurs. The
sharp variation in the natural frequencies of the combined system is dictated by the
vortex shedding frequency, in contrast with the lock-in phenomenon, where the
forced vibration of a structure modifies the vortex shedding frequency, thus throw a

new light on the fluid-structure interaction behaviours.
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The nonlinear interplay between the simultaneous vibrations of the two side-
by-side elastic cylinders, fixed at both ends in a cross-flow, is investigated in Chapter
4. Two FBG sensors and a laser vibrometer were employed to measure the dynamic
response of the cylinders. Simultaneously, a single hot wire was used to measure the
velocity in the wake. Three identical transverse spacing ratios with that mentioned in
Chapters 2 and 3 were investigated. The strain-displacement relationship associated
with the two interfering cylinders at each 7/d values were established and was
compared with that of an isolated cylinder. Interference effects on behaviours of the
natural frequencies of the fluid-cylinder system, the vibration amplitude and the
correlation coefficient between the two interfering cylinders at each 7/d value were
also investigated in this chapter.

Chapter 5 addresses the effect of the nature (fixed or oscillating point) of flow
separation on fluid-structure interactions. Flow field and structural vibrations of both
square and circular cylinders, associated with fixed and nfoving flow separation
points, respectively, are investigated using Hot wire and FBG sensors. The vibration
characteristics, resonance behaviour, system modal damping ratios and natural
frequencies associated both square and circular cylinder cases are investigated in an
effort to understand the effect of flow separation on fluid-structure interactions.
Furthermore, the incidence angle effects on the fluid-structure interaction behaviour
associated with the square cylindér were also studied in this Chapter.

Summary and conclusions are given in Chapter 6.
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CHAPTER 2

VORTEX STREETS BEHIND TWO SIDE-BY-SIDE
CYLINDERS

2.1 Introduction

Flow around tV\-IO side-by-side cylinders has received considerable attention in
the past (e.g. Zdravkovich 1977; Williamson 1985; Kolaf et al. 1997; Sumner et al.
1999) because of its inherent importance and practical significance in many branches
of engineering. This flow depends to a great extent on the ratio 7/d (T is the centre-
to-centre cylinder spacing and d is the cylinder diameter) among many other
parameters, €.g. initial conditions, pressure gradient and Reynolds number.

For a relatively large spacing, i.e. 7/d > 2, two distinct vortex streets occur
(Landweber 1942). The two streets are coupled, with a definite phase relationship
(e.g. Kim and Durbin 1988); they are characterised by a single frequency (Spivac
1946). This frequency was further found to be the same as the frequency measured
in the single cylinder wake. A Schlieren optical method was used by Ishigai et al.
(1972) to visualize the flow behind two side-by-side cylinders. They observed a
remarkably symmetric vortex formation and shedding for 7/d = 2.5 and 3.0. Based

on flow-visualization data at the Reynolds number Re (= U_d /v, where v is the

kinematic viscosity) = 100 ~ 200, Williamson (1985) demonstrated that the two
streets may occur in phase (anti-symmetric vortex formation) or in antiphase
(symmetric vortex formation). The in-phase streets eventually merged downstream
to form a single street, while the antiphase streets remained distinct farther
downstream. He observed a predominant antiphase vortex shedding for 2 < 7/d < 6.

These studies have greatly improved our understanding of the flow behind two side-
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by-side cylinders for relatively large 7/d (2 2). However, some aspects of the flow
remain unclear. For example, why is the symmetric vortex shedding predominant
over the anti-symmetric shedding? What is the ratio between the two spatial
arrangements? What triggers the transition of the two vortex streets from the in-
antiphase to the in-phase mode?

At an intermediate cylinder spacing, i.e. 1.2 < T/d < 2.0, the interaction
between the wakes associated with the two cylinders is expected to intensify; the gap
fléw between the cylinders is deflected, forming one narrow and one wide wake.
Ishigai et al. (1972) ascribed the gap flow deflection to Coanda effects. However,
Bearman and Wadcock (1973) measﬁred different base pressures behind two side-
by-side flat plates and inferred that the gap flow was deflected. Therefore, they
argued that the gap flow deflection was not caused by the boundary layer separation;
instead, it was a near-wake phenomenon. Their argument was further supported by
Williamson (1985)’s flow visualisation data, which showééi a deflected gap flow
behind two side-by-side flat plates. It haé been found that the vortex frequency
associated wiih the narrow wake approximately triples that for the wide wake (e.g.
Bearman and Wadcock 1973; Sumner et al. 1999). The deflected gap flow may
change over intermittently from one side to another and is bi-stable. The bi-stability
is nominally independent of the Reynolds number (Kim and Durbin 1988).
Nevertheless, a number of imporfant issues have yet to be clarified of the asymmetric
flow regime. Typically, physics behind the formation and stability of a narrow and a
wide wake is unclear. Furthermore, what triggers the changeover of the gap flow
deﬂeqtion from one side to another? Why does the dominant frequency in the narrow

wake triple that in the wide wake? How do the vortices in both wakes evolve

downstream?
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For very small spacing, i.e. 7/d < 1.2, no vortex is generated in the gap
between the cylinders; vortices are alternately shed from the free-stream side only of
the two cylinders, generating a single vortex street. Sumner et al. (1999) observed
that the alternate vortex shedding was supplanted from time to time by the symmetric
shedding. They further pointed out that the gap bleeding was usually associated with
higher momentum, acting to increase the streamwise extent of the vortex formation
region. However, the possible role the gap bleeding plays in vortex formation and
downstream evolution has not been thoroughly investigated.

This Chapter aims to study the flow around two side-by-side cylinders based
on flow visualization, laser Doppler anemometer (LDA) and hot wire measurements,
specifically, to gain a better understanding of the vortex generation, interaction and
downstream evolution in the three different flow regimes. Specific attention is given
to the asymmetrical flow regime (T/d = 1.5 ~ 2.0), including the stability of the
deflected gap flow and its random changeover from one side to another. The role
gap bleeding plays in the vortex formation and downstream development for very

small spacing between the cylinders is examined in detail.

2.2 Experimental Details

2.2.1 Laser-illuminated flow visualisation

Experiments were carried out in a water tunnel with a square working section
(0.15m X 0.15m) of 0.5m long. The water tunnel is a recirculating single reservoir
system (Fig. 2-1a). A centrifugal pump delivers water from the reservoir to the
tunnel contraction. The area ratio of the contraction is 10:1 over a length of 0.6m. A
honeycomb is used to remove any large-scale irregularities prior to the contraction.

The flow variation is controlled by a regulator valve, up to a maximum velocity of
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about 0.32m/s in the working section, which is made up of four 20mm thick Perspex

panels.
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(a) Schematic diagram of the water tunnel. (b) Experimental set-up.
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Two side-by-side acrylic circular tubes of an identical diameter of 10 mm
were horizontally mounted 0.20m downstream of the exit plane of the tunnel
contraction and placed symmetrically about the mid-plane of the working section
(Fig. 2-1b). They spanned the full width of the tunnel, resulting in a blockage of
13.3%. Three transverse spacing ratios were used, i.e. 7/d = 3.00, 1.70 and 1.13,
respectively. These ratios were chosen because the flow regimes thus resulted were
representative of the different proximity effects for two side-by-side circular
cylinders (Zdravkovich 1985).

Dye (Rhodamine 6G 99%) was chosen to be the flow marker, which had a
faint red colour and became metallic green when excited by laser. For each cylinder,
dye was introduced through 2 injection pinholes of 0.5mm in diameter at the mid-
span of the cylinder. The two pinholes were located at 90°, clockwise and anti-
clockwise, respectively, from the forward stagnation point.

A thin laser sheet, which was generated by laser beam sweeping, provided
illumination vertically at the mid-plane of the working section. A Spectra-Physics
Stabilite 2017 Argon Ion laser with a maximum power output of 4 watts was used to
generate the laser beam. A digital video camera recorder (Sony DCR-PC100E) was
used to record the dye-marked vortex streets at a framing rate of 25 frames per
second. The recording duration was typically 10 min. Flow-visualisation was

carried out in the Re range of 120 to 2000 over 0 < x/d < 8. At larger Re and x/d, the

dye diffused too rapidly to be an effective marker of vortices.

2.2.2 Hot-wire measurements -

Experiments were carried out in a closed circuit wind tunnel with a 2.0 m
long square cross section of 0.6 m X 0.6 m. Two brass circular cylinders of 12.7 mm
diameter were installed side-by-side in the mid-plane and spanned the full width of

the working section (Fig. 2-2). The cylinders were located at 0.20 m downstream of
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the exit plane of the contraction, resulting in a maximum blockage of about 4.2% and
an aspect ratio of 47. Three transverse spacing ratios, identical to those in flow
visualization investigations, were used. The longitudinal turbulence intensity in the
free-stream was measured to be approximately 0.4%. Measurements were carried out

over 0 < x/d < 10 and -5.0 < y/d < 5.0. The Reynolds number Re was 5900.

Hot wire 1 )
Flow : X
ﬁ T _._0.'—_> ......................... }._._
, A
i Hot wire 2
/ -y
Y. _
4 v

Figure 2-2 Experimental arrangement of hot-wire measurements.

Two single hot-wires were placed symmetrically about the midway of the gap
between the cylinders, which was chosen to be the origin for the x and y coordinates
(Fig. 2-2). In this Chapter, we define y/d = 0 as the flow centreline. Hot wires 1 and
2. moveable along both x and y directions, measured simultaneously the velocity
fluctuations on both sides of the flow centreline. The wires were operated at an
overheat ratio of 1.8 with two constant temperature anemometers. Signals from the

two anemometers were simultaneously offset, amplified and then digitised using a
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12bit A/D board and a personal computer at a sampling frequency of 6.0 kHz per

channel. Unless otherwise stated, the duration of each record was about 20s.

2.2.3 LDA measurements

The wind tunnel and other experimental conditions were the same as those
used for the hot-wire measurements. In order to obtain the quantitative information
on the flow field at a close vicinity downstream of the cylinders, a two-component
LDA (Dantec Model 58N40 two component LDA with enhanced FVA signal
processor) Was used to measure velocities at x/d = 1.5, 5 and 10 in the plane of mean
shear. The measuring volume has a minor axis of 1.18mm and a major axis of
2.48mm. Thus, the measured mean velocity was estimated to have an error of less
than 3% and the corresponding error for the measured root mean square value was
less than 10%. The seeding of the flow was provided by smoke generated by a
Dantec SAFEX 2010 fog generator from Dantec fog fluid (standard). The LDA
system comes with the necessary software for data processing and analysis.
Therefore, besides the mean field, the data could also be processed to yield

information on the Reynolds stresses.

2.3 Flow Characteristics for Large Cylinder Spacing

2.3.1 Mean velocity and Reynolds stresses

Figure 2-3 shows the cross-stream distributions of the mean velocity U,

—k —_—k e X

Reynolds stresses u* , v* and Reynolds shear stress uv measured at x/d = 1.5. In

this Chapter, an overbar denotes time averaging. An asterisk indicates normalization
by U. and/or d. This normalisation is used for convenience only because the

velocity fields of the present flow are not self-preserving. The distributions on each
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side of the flow centreline, i.e. y/d = 0, are similar to those behind a single cylinder

(Zhou and Antonia 1993), indicating the occurrence of two vortex streets.

Figure 2-3
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The peaks in ;‘, close to y/d = 0, are relatively small in magnitude,
compared with those towards the free-stream. This suggests that the inner vortices,
shed from the side of cylinders near the centreline, could be weaker than the outer
vortices generated from the free-stream side of a cylinder. Kolaf et al. (1997)
conducted ensemble-averaging of LDA data measured intthe near-wake of two side-
by-side square cylinders (x/d < 10, 7/d = 3.0, where d is the height of square
cylinders) and noted a weak strength and fast decay in inner vortices. Based on the
examination of effective turbulent vorticity flux density vector (Hussain 1986), they
proposed that the interaction between the inner vortices shed from the different
cylinders was mainly responsible for the fast decay in inner vortices. The present
measurement, at such a close proximity to the cylinder, further suggests that the inner
vortices could be shed with smaller circulation.

Assuming a steady and symmetric flow, the shed circulation I, from an

isolated circular cylinder can be estimated (Roshko 1954) by

r, 1(4)
Ud 25\ U_ )’

where u, is the velocity just outside the boundary layer at the separation point.

Because of a relatively large 7/d, the outer boundary layer nearer to the free stream
may behave quite similarly to the counterpart of an isolated cylinder, the
corresponding u; being approximated by 1.45U.. (Cantwell and Coles 1983). Noting
an identical Strouhal number St for both inner and outer row vortices, a smaller I’
associated with the inner boundary layer may then imply a smaller u; but higher

pressure than in the outer boundary layer.
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Re = 150

Re = 730

Figure 2-4 Typical flow patterns at 7/d = 3.00. (a ~ b) Symmetric vortex
shedding; (¢ ~ d) anti-symmetric vortex shedding. Flow is from left

to right.

2.3.2 Flow patterns

The flow behind two cylinders at 7/d = 3.00 display two distinct vortex
streets, consistent with the LDA measurements. The vortices are mostly shed in
symmetric pairs or the antiphase mode (Figs. 2-4a, b), irrespective of the laminar or
turbulent flow regime. The spectrum (not shown) of the hot-wire signal exhibits a
pronounced peak at an identical frequency, f. =f.d/U_ =02 for both streets,
which is identified with the vortex shedding frequency. The above observation is
consistent with previous reports (e.g. Ishigai et al. 1972; Bearman and Wadcock
1973; Williamson 1985). Figure 2-5 presents the streamwise variation of the spectral

phase angle @, at f. between simultaneously measured hot-wire signals. The two

hot wires were located symmetrically about the flow centreline. The values of @,
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are close to zero for 0 < x/d < 10 irrespective of the lateral location of the hot wires.

This observation suggests a predominantly symmetric arrangement of vortices, or in-

antiphase mode vortex streets, persists at least up to x/d = 10.
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Figure 2-5 Streamwise variation of the spectral phase angle @, at the vortex

shedding frequency f, between simultaneously measured hot-wire
signals. The two hot wires were located symmetrically about the flow

centreline, i.e. at y/d = £ 0.8 and *2.4. 7/d = 3.00, Re = 5900.

Weaver and Abd-Rabbo (1984) and Granger et al. (1993) observed a
symmetric vortex shedding in a square array of tubes in a cross flow. Weaver and
Abd-Rabbo (1984) proposed that a symmetric-mode jet instability mechanism might
have caused or at least triggered this phenomenon. Granger et al. (1993) suggested
that the inline cylinder motion caused a symmetric oscillation of separation points at
the surface of the moving cylinder and could be responsible for the symmetric vortex
shedding. In the present investigation, the inline cylinder motion is unlikely to be
responsible for the symmetric vortex shedding since vortex-induced vibration of the
cylinders is negligibly small. The pressure measurement around the two cylinders,
which will be presented later in Chapter 3, indicates that the pressure upstream of the
gap between the cylinders was higher than that close to the free stream because of

flow retardation. As a result, it can be inferred that there was a pressure difference on
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the two sides of each cylinder in the cross-flow direction, in consistent with our
earlier suggestion (Section 2.3.1) that the pressure of the inner boundary layer may
be higher than that of the outer boundary layer. The difference may be symmetrical
with respect to y/d = 0, as supported by the numerical calculation of the pressure
field around two side-by-side cylinders at 7/d = 3 and 4 (Meneghini et al. 2001).
Such a pressure distribution is likely to suppress the anti-symmetrical or in-phase
vortex shedding and induce the symmetric behaviour.

The anti-symmetric or inphase vortex shedding (Figs. 2-4c,d) occurs from
time to time in the Re range investigated. The mode change from antiphase to
inphase or vice versa is not well understand. Figure 2-6 shows the sequential
photographs (Re = 450). The real time index is given by the first three numbers on
the upper left-hand corner in the photographs and the sequential order is indicated by
the fourth number. Initially, vortices were shed in symmetrical pairs (Plate 1).
However, the two gap vortices, as marked by arrows in Plate 2, were formed with a
small phase deviation from the antiphase vortex shedding. This is not unexpected
especially in the context of a turbulent flow since a constant phase shift between the
two gap vortices is highly unlikely. The gap vortices are fairly close to each other
and therefore interaction between them may occur. Such interaction could encourage
the formation of the staggered vortices. Furthermore, as the vortices grow
downstream, the interaction is expected to intensify, resulting in an increased phase
deviation from the antiphase mode (Plates 3 ~ 5). As a result, the following vortices
were shed in phase from the two cylinders (Plates 5 and 6). Eventually, we see the
two vortex streets arranged spatially in the in-phase mode (Plate 6). The two vortex

streets in the inphase mode are however less stable and soon become somewhat

disorganized; the formation of the upper gap vortex appears suppressed (Plates 7 ~

11). The vortex streets restore to the in-antiphase mode within two shedding periods
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(Plates 12-15). It may be concluded that, while the symmetric vortex shedding is
relatively stable, the anti-symmetric vortex shedding, which may be initiated by a
small phase deviation between the gap vortices, is unstable. The observation is likely
attributed to a possibly symmetrical pressure differentiation about the flow

centreline.

0.21-34:14 0.20:33-15

13:24:34:20 0.21:37:03

(1:24:35:00 (:2142:03

0213506 0:20:48.13

Figure 2-6 Sequential photographs from laser-illuminated flow-visualization:
transition from the antiphase to inphase mode vortex shedding. 7/d =
3.00, Re = 450.
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Figure 2-7  Detections using WAG technique (D, D,_,, D,,, D, ,, D, , and
D,_, denote detections). Hot-wire signals were obtained at x/d = 10
and y/d = £2.4 (T7d = 3.00).

It is useful to quantify the contribution to the flow from the iﬁ-antiphase and
in-phase mode streets. A window average gradient (WAG) method was used for
detecting vortical structures. This method was described in Antonia and Fulachier
(1989) and interested readers may refer to their paper for details. Brieﬂy, this scheme
examines the u- or v-signal and identifies an increase (or decrease) in average signal
level over a specified time interval. The increase is associated with the occurrence of
vortices. This technique proves to be quite adequate for the detection of vortical
structures (e.g. Bisset et al. 1990; Zhou and Antonia 1992; Zhang et al. 2000). The
lower and upper outer row vortices, shed from the free-stream side of a cylinder,
were detected based on the signals obtained at y/d = *+2.4, respectively. A total of
about 1100 events, which represent about one half of total vortices, were detected.

Figure 2-7 illustrates the detections at x/d = 10 using the WAG method. The relative
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— T/d=3.00
- y/d=12.4

Figure 2-8 Relative probability P(¢) of the phase shift between detections from
the simultaneously measured hot-wire signals at y/d = £ 2.4. T/d =

2 - /2 T . .
3.00. R= j_mP(¢)d¢/(j_ " P@9)dp + jm P(¢)d¢) indicates the

ratio of the in-antiphase to in-phase mode streets.

probability P(¢) of the phase shift ¢ between the two sets of detections is presented
in Figure 2-8. The probability has been normalised so that the maximum is 1. One
prominent peak occurs at ¢ =0, indicating a predominantly symmetrical arrangement
of the two outer row vortices, or vortex streets predominantly in antiphase mode. The
probability is minimum but non-zero at ¢ = + 7, apparently due to the occurrence of

staggered vortices or the in-phase vortex streets. If we refer to the events occurring
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over Y <p< 2 as the in-antiphase mode streets and those over -7 < ¢ < Y or

T :
) < ¢ <m as the in-phase mode streets, then the ratio between the two modes may

12
[ P@)ds
U . The R value (Fig. 2-8) is well

[ P@yag+ [, P@)d9

be estimated as R =

above' unity, indicating a predominance of the in-antiphase mode streets.
Furthermore, R slowly decreases as x/d increases, especially, at x/d > 5.0, i.e. R
decreases from 15.2 at x/d = 1.5 to 8.9 at x/d = 10.0, suggesting an increase in in-
phase streets. The inner vortices, shed from the side of cylinders close to the flow
centreline were also detected based on the signals obtained at y/d = 0.8 using the
WAG technique. The result (not shown) is essentially the same as those obtai-ned

from the outer vortices and internally consistent with both the flow visualisation and

the spectral phase shift (Fig. 2-5) at f,” between the hot-wire signals.

2.4 Asymmetrical Flow for Intermediate Cylinder Spacing

Previous research (Spivack 1946; Ishigai et al. 1972; Bearman and Wadcock
1973; Kamemoto 1976; Kiya et al. 1980; Kim and Durbin 1988; Sumner et al. 1999)
on the flow behind two cylinders at intermediate cylinder spacing, i.e. at 7/d = 1.2 ~
2.0, has revealed that the gap flow between the two cylinders is deflected, thus
forming one narrow and one wide wake. The narrow and wide wakes are associated
with the high and the low vortex frequencies, respectively. The ratio of the two
frequencies is close to but less than 3. The gap flow deflection may switch, in a
random manner, from one side to the other and is stable in either side. This is
reconfirmed in the present investigation. This section will focus on the following

issues, that is, why the gap flow is stably deflected, what causes the changeover of
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the gap flow from one side to the other and why the dominant frequency in the

narrow wake triples that in the wide wake.

10:23:47-22 ) 1-23:15 15

2300820

0:23:19:02

Figure 2-9  Sequential photographs from laser-illuminated flow-visualization: the
pairing opposite-signed vortices in the narrow wake draw in the gap

vortex in the wide wake. 7/d = 1.70, Re = 450.
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2.4.1 Stably deflected gap flow

Since the two cylinders are relatively close, interactions between the wakes
generated by individual cylinders are expected to be strong. The interactions may
naturally influence the behaviours of the gap flow and contribute to its stable
deflection. Figure 2-9 presents typical sequential photographs from laser-illuminated
flow-visualization at 7/d = 1.70 (Re = 450). Two rows of vortices in the narrow wake
appear pushed by the wide wake so that their lateral spacing is very small. Initially
(Plates 1 ~ 3), the longitudinal spacing between two opposite-signed vortices in the
narrow wake, as marked by arrows, is large. However, Plates 4 and 5 show a
reduced spacing, both longitudinally and laterally, between the vortices. It is likely
that the gap vortex travels faster than the outer vortex, possibly carried by the gap
flow jet of a higher mean velocity. The two approaching counter-rotating vortices
could create a region between them, where the lateral velocity (upwards) is relatively
high and pressure being low. The low-pressure region induces the two vortices to
further approach each other and subsequently pair with each other (Plates 5 and 6).
In the meantime, the low-pressure region probably also draws in fluid in the wide
wake. This is evident from the movement of the gap vortex generated in the wide
wake, also marked by an arrow. This gap vortex appears approaching the region
between the pairing vortices (Plates 3 ~ 6). As a matter of fact, the gap vortex
amalgamated with the two pairing vortices and eventually formed a single structure
(Plates 7 ~ 8). This observation was found to be quite typical in the Re range
presently investigated.

The gap flow deflection and the formation of wide and narrow wakes behind
a row of bluff bodies for 7/d = 1.5 ~ 2.0 have been reported by a number of previous
studies (e.g. Ishigai et al. 1972; Moretti 1993; Williamson 1985). Ishigai et al. and

Moretti attributed the phenomenon to the Coanda effect (Englar 1975). However,
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Bearman and Wadcock (1973) and also Williamson (1985) observed the deflected
gap flow between two parallel flat plates as well as circular cylinders. The
observation did not support the proposition that the Coanda effect was responsible
for the deflected gap flow. One may surmise that, since a straight flow between
abrupt two-dimensional bluff bodies tends to be unstable, the initial deflection of the
gap flow may occur due to perturbations such as non-symmetric vortex shedding
from the two cylin-ders. A number of factors may contribute to the stably deflected
gap flow. Firstly, the gap flow is associated with a relatively high momentum.
Therefore, the base pressure behind the cylinder, towards which the gap flow is
deflected, should be low, and that behind the other cylinder, where fluid has a
relatively low momentum, would be high. Secondly, the voﬁices shed from the
cylinder in the narrow wake are generally characterized by a high frequency and
perhaps relatively weak strength. Those generated in the wide wake could be even
weaker (Fig. 2-9). Therefore, the fluctuation of the velocity or pressure field could
have a limited strength, generally not strong enough to force the gap flow to change
over from one side to another. Thirdly, carried by the gap flow jet of relatively high
mean velocity, the gap vortex in the narrow wake possibly travels downstream faster
than the outer vortex. The approaching two counter-rotating vortices could result in a
low-pressure region between them. Meneghini et al. (2001) conducted a numerical
study of the flow behind two side-by-side cylinders. At 7/d = 1.5 (Re = 200), the two
counter-rotating vortices (their Figure 15a) in the relatively narrow (lower) wake
appeared fairly close. The pressure corresponding to the region between the two
vortices (their Figure 14a) was low and hence drew in the fluid from the other wake
(their Figure 15a). The present data further indicates that the low-pressure region

draws in the gap vortex as well as fluid in the wide wake, thus acting to stabilise the

formed narrow and wide wake.
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Power spectrum E, of the hot-wire signals simultaneously measured
in the two outer shear layers associated with the two cylinders. Here

;/ d is the distance from the cylinder surface at x/d = 0, given by y/d

— 1.35 for the upper cylinder and y/d + 1.35 for the lower cylinder.
T/d =1.70.
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Figure 2-11  Sequential photographs from laser-illuminated flow-visualization: the
coalescence of the small-scale secondary vortices. 7/d = 1.70, Re =

600.
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2.4.2 Dominant frequencies in each wake

It has been previously reported that the narrow and wide wakes observed in
flow visualisation were associated with the high and low vortex frequencies,
respectively (Spivack 1946; Ishigai et al. 1972; Bearman and Wadcock 1973;
Kamemoto 1976; Kiya et al. 1980; Kim and Durbin 1988; Sumner et al. 1999). The
ratio of the two frequencies was close to but less than 3 (Kim and Durbin 1988). The
physics behind the occurrence of two different frequencies is not clear; some
researchers (Kim and Durbin 1988; Sumner ez al. 1999) referred to the frequencies as
vortex-shedding frequencies. Based on flow visualisation at a low Re (< 200),
Williamson (1985) proposed that the two frequencies resulted from the existence of
harmonic vortex-shedding modes. But Kim and Durbin (1988)’s data at Re = 3300
did not support this conjecture.

To gain a better understanding of the multiple dominant frequencies, two hot
wires were placed, symmetrically with respect to y/d = 0, at x/d = 0 in the two outer

shear layers (close to the free-stream), which were associated with the two cylinders,

respectively. Figure 2-10 presents the power spectrum E, of two simultaneously

obtained hot-wire signals, where y/d is the distance for the cylinder surface, given
by y/d — 1.35 for the upper cylinder and y/d + 1.35 for the lower cylinder. Two peaks
are identifiable at f* = 0.1 and 0.3, respectively, in each shear layer, though the
strengths of the peaks are different from one shear layer to the other. For example,
the peak at f~ = 0.3 is more pronounced in the shear layer associated with the lower
cylinder, but weaker in the shear layer associated with the upper cylinder.

The question is naturally raised: which is the vortex shedding frequency? It is
well known that the separating shear layer from a cylinder becomes unstable for Re >

1000 and small-scale structures or secondary vortices emerge (Wei and Smith 1986;
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Prasad and Williamson 1997). The coalescence of the small-scale secondary vortices
will increase the scale and decrease the frequency of shear layer instability to the
Strouhal frequency (Winant and Browand 1974; Brown and Roshko 1974; Roshko
1976; Ongoren and Rockwell 1988a and b). The secondary vortices are discernible at
Re = 450 and become evident in the present flow visualisation for Re > 600. These
vortices are seen coalescing to form a larger vortex. Figure 2-11 show sequential
photographs from flow visualisation. Two small-scale vortices, marked by arrows,
are discernible in the narrow wake (Plate 1). They approach each other and form a
larger structure (Plates 2 ~ 4). In the meantime, another small-scale vortex occurs
(Plates 2 ~ 4) and catches up with the larger structure (Plates 5 ~ 6). They eventually
coalesce and roll up into a single vortex in the narrow wake (Plates 7 ~ 8). The
frequencies of the secondary vortices and the vortices shed from the cylinder in the
narrow wake were estimated by means of counting consecutive vortices (about 20
pair) for a certain period. It is rather difficult to count accurately the secondary
vortices and thus determined frequency (normalised) scattered over the range of 0.2

to 0.5. But for the relatively large-scale vortices shed from the cylinder, the

frequency estimate was less scattered, ranging between f " =0.10 and 0.13 for Re =

600. Similar results were obtained for other Re. The observation suggests that, while

the vortex shedding may be responsible for the peak at f " = 0.1 in the narrow wake,

the secondary vortices could account for the peak at f " =0.3.

The most dominant frequency in the wide wake is f " = 0.1 (Fig. 2-12b). The

vortex rolling-up frequency was also estimated by counting consecutive vortices

(about 20 pair) for a certain period on flow visualisation data. The result is consistent

with that from the spectrum E, . For example, f " was about 0.11 at Re = 450. Note

that the vortex rolling-up in the wide wake occurs quite far away from the cylinder
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(Figs. 2-9 and 2-11), apparently different from the vortex shedding from a cylinder.
Furthermore, the peak at f~ =0.1 grows downstream (Fig. 2-12b). The observations

suggest that the vortical structures in the wide wake may be formed under the effect

of shear layer instability.

(b)
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Figure 2-12  Downstream evolution of the power spectrum E, of hot-wire signals
simultaneously measured at y/d =%2.0: (a) the narrow wake; (b) the

wide wake. T/d = 1.70, Re = 5900.

Figure 2-12a shows the downstream evolution of the power spectrum E, in
the narrow wake. The peak at f = 0.3 reaches maximum at x/d = 1.5 and then is

considerably reduced at x/d = 5. By x/d = 10, there is no presence of the peak at

f" =0.3. Flow visualisation data (e.g. Fig. 2-11) indicates that the vortex rolling-up

appears complete near x/d = 3 for the Reynolds number of 600. However, the peak at

f" =03 in E, is still identifiable at x/d = 5. As discussed in Section 2.4.1.1, the two

rows of vortices in the narrow wake appear squeezed by the wide wake so that their
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lateral spacing is very small. Furthermore, the two opposite-sign vortices draw in the
approaching gap vortex in the wide wake. Note that the vortex shedding frequency
in the narrow wake might be the same as the vortex rolling-up frequency in the wide
wake. Because of the small lateral spacing between the three vortices, the hot wire
could measure a frequency tripling that in the wide wake.

It is interesting to note that the frequencies of the shear layer instability at x/d
= 0 are the same as those predominant in the vortex streets downstream. This may
not be coincidental. Based on the published data (Norberg 1987; Bloor 1964;
Okamoto et al. 1981; Kourta et al. 1987; Wei and Smith 1986; Maekawa and
Mizuno 1967) and their own measurement, Prasad and Williamson (1997) obtained
an empirical correlation between Re and the frequency, fs;, of the shear layer

instability for a single cylinder in a cross flow, that is, fs;/ fs = 0.0235 x Re%%. This
correlation would predict f,, = 0.789 for the present Reynolds number, significantly

higher than the measurement. Although strong interactions between shear layers
associated with different cylinders may contribute to the deviation, the upstream
influence from the downstream vorticity dynamics should not be overlooked. This
influence may have an impact upon the initial evolution of the shear layer instability
(Rockwell 1983; Ho and Huerre 1984). Michalke (1984) further suggested that the

initial shear layer instability was controlled by downstream vorticity dynamics.

d .
Roshko (1954) proposed a universal Strouhal number Sz, = f[‘] >, where d,, is the

w

wake width and U, =U_(1-C,,)"?, where Gy, is the pressure in the wake. St, is a
- constant, about 0.16 in a single cylinder wake. The Strouhal number St was then

written as St = Stu—d—(l—pr)” 2, Evidently, d,, or the shear layer thickness and St

w

are inversely related. Presumably, this relationship is also valid in the wide wake,

where the vortical structures are probably generated by the shear layer instability.
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This implies that the vortical structure frequency f =01 might be dictated by the
shear layer thickness. This frequency may feed back upstream and excites the
instability of shear layers around the cylinders, thus inducing the vortex shedding at
f = (.1 from the cylinder, behind which the narrow wake is formed.

The interaction between vortices in the streets may be responsible for peak at
f* = 0.3 in the hot-wire spectrum. As proposed earlier, the two cross-stream vortices
in the narrow wake and the gap vortex in the wide wake approach laterally as well as
longitudinally in the process of amalgamation, acting to produce a dominant
frequency f = 0.3. This frequency could also feed back upstream and excite the shear
layer instability. Because of vorticity cancellation between oppositely signed
structures, the vortical structure formed from the amalgamation of the three vortical
structures is probably weak in strength, compared with that in the wide wake.

Consequently, the peak in the spectrum E, (Fig 2-10) at f =0.1 is significant in the

shear layers associated with both cylinders, whereas the peak at f = 0.3 is not so
evident in the shear layer associated with the cylinder, which is relatively far away
and responsible for the generation of the wide wake.

It is worthwhile commenting én the dependence of the vortex formation
length on the Reynolds number. It is well known that the vortex fbrmation length
behind an isolated cylinder reduces‘as Re increases (Gerrard 1966). This is also
evident in the flow behind two cylinders. For instance, Figure 2-13 indicates that the
vortex formation length at 7/d = 1.70 is greatly reduced at Re = 1100, compared with
Re = 150 or 450. The observation implies that the gap vortex in the wide wake may
amalgamate with the pairing opposite-sign vortices in the narrow wake at a location
closer to the cylinders for a large Reynolds number. Noting that the amalgamation
occurs near x/d = 5 for Re = 450 (Fig. 2-9), it would not be surprised to see the

amalgamation appreciably before x/d = 5 for Re = 5900. This may explain why the
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peak at f* = 0.3 in the hot-wire spectrum (Fig. 2-12) is more pronounced at x/d =

1.5 than that at x/d = 5. A reduced vortex formation length is also consistent with a

larger gap deflection angle (Fig. 2-13) as Re increases.

Figure 2-13  Dependence of the vortex formation length on Re: (a) Re = 150, (b)
450, (c) 750, (d) 1100. 7/d = 1.70.

2.4.3 Changeover of the gap flow

It is well known that for 1.2 < T/d < 2.0 the biased gap flow is bi-stable and
intermittently changes over from one side to another, forming two asymmelric vortex
streets of different frequencies (e.g. Ishigai ef al. 1972; Bearman and Wadcock 1973,
Kim and Durbin 1988). However, physics behind the changeover is so far not well
understood. A close examination of the present flow-visualization data unvcils that

the changeover of the deflected gap flow from one side to another is often associated



45

with the occurrence of unusually large gap vortices, as marked by an arrow in Figure

2-14 for Re = 150, 230 and 300.

Re = 130

Re = 300

Figure 2-14  The changeover of the gap flow deflection from one side to another at
T/d = 1.70 is associated with an exceptionally large gap vortex. (a) Re

= 150; (b) Re = 230; (c) Re = 300.
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Figure 2-15  Sequential photographs from laser-illuminated flow-visualization: the
changeover of the gap deflection from one side to another. 7/d = 1.70,
Re =230.
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Figure 2-16  Spectral phase angles @, between simultaneously measured hot-
wire signals. The hot wires were placed at y/d =+ 0.4. T/d = 1.70, x/d
=1.5.

In order to gain insight into this phenomenon, Figure 2-15 presents sequential
photographs at Re = 230 of the changeover process. [Initially, the gap flow was

deflected upwards (Plate 1). The gap vortices in the two wakes appear in-antiphase.
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See Figure 2-9 for example. This is supported by the spectral phase angle o, . (Fig.

2-16) of near zero at f = 0.1 between simultaneously measured hot wire signals «; at
yd =+ 0.4 and u; at y/d = - 0.4 (T/d = 1.70, x/d = 1.5). Here, u; and u, have been
identified to be associated with wide and narrow wakes, respectively, based on the

prominent frequencies in the power spectra, E, and E, (not shown). The spectral

phase angle is calculated from the Fourier transform of the correlation u, (¢ +7)u,(t).

A positive phase angle indicates that u,; leads u;, and a negative phase angle means

that u, leads u;. @, atf =0.1is greater than zero (Fig. 2-16), indicating that u;

leads u, at this frequency, that is, the gap vortex in the wide wake generally leads
that in the narrow wake. The gap vortex in the wide wake, as marked by arrows in
Plate 2 (Fig. 2-15), failed to amalgamate with the vortices pairing in the narrow wake
(Plates 3 ~ 4), perhaps because of an unfavourable phase shift between the two gap
vortices. As a matter of fact, the gap vortex in the wide wake appéars lagging behind
that in the narrow wake (Plate 4). Subsequently, this vortex (Plate 4) grew unusually
large (c.f. Figure 2-9), but quickly ‘collapsed’ (Plates 5), probably due to the
increased interaction with the narrow wake. The collapse of this gap vortex could
momentarily alleviate the interaction between the narrow and the wide wake,
allowing the narrow wake to swing towards the wide wake (Plates 6 ~ 7). Meanwhile,
the weak interaction also encouraged the fast growth of the following gap vortex in
the wide wake (Plates 6 ~ 8), which subsequently collapsed again (Plates 9 ~ 10).
Similar cycles were repeated (Plates 11 ~ 19 and Plates 20 ~ 24). In each cycle, the
gap vortex in the wide wake lagged behind that in the narrow wake and experienced
a rapid growth and then collapse. On the other hand, the gap vortex in the narrow
wake became larger‘ after these cycles, as Plates 20 énd 23~24 indicated, and

eventually pushing over the gap flow to the other side (Plates 24), and then we see an
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upper wide wake and a lower narrow wake. Note that in the whole changeover
process, the gap vortex in the wide wake had no chance to amalgamate with the
pairing vortices in the narrow wake, possibly because of a phase lag behind that in
the narrow wake. The observation is consistent with the suggestion that the
amalgamation of the three vortices could be important for maintaining the existing
narrow and wide wakes.

In conclusion, the gap vortices in the two wakes tend to be in antiphase, but
the one in the wide wake mostly leads slightly that in the narrow wake and
amalgamates with the pairing vortices in the narrow wake. The changeover of the
gap flow deflection starts with a phase lag of the gap vortex in the wide wake behind
that in the narrow wake. Once lagging behind (compared with antiphase), the gap
vortex in the wide wake could be prevented from amalgamation with the pairing
vortices in the narrow wake. The gap vortex in the wide wake is subsequently likely
to grow fast but quickly collapses. The collapse alleviates the interaction between the
two wakes, thus allowing the narrow wake to be widened and eventually causing the
changeover of the gap flow deflection. The whole process typically needs three to
four vortex shedding cycles in the narrow wake. Speculatively, the ‘phase lag’ results
from interactions between the two wakes. It is therefore not surprising to see the

random changeover of gap flow deflection.

2.5 Role of Gap Bleeding for Small Cylinder Spacing

2.5.1 Mean velocity and Reynolds stresses

Figure 2-17 presents the cross-flow distributions of the mean velocity,

Reynolds stresses. ﬁ at x/d = 1.5 displays two troughs, as the case of 7/d = 1.70.

The peak between the troughs occurs significantly away from y/d = 0, indicating a
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Figure 2-17  Cross-flow distributions of mean velocity, Reynolds normal stresses

and shear stress at various stations: (a) U :(b) u® ;(c) v (d) w .

T/d = 1.13.

* p—1

deflected gap bleeding. The distributions of u’ , v’ and w corresponding to the

narrow trough are different from those at T/d = 3.00, suggesting the absence of
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* —

vortex shedding. For x/d 2 5, U shows one trough only; > , v> and wv all point

to the existence of one single vortex street. However, these distributions are
asymmetrical about y/d = 0, evident at x/d = 10. The asymmetry probably results
from the biased gap bleeding. The effect of the bleeding persists beyond x/d = 10,
contrary to the perception that two side-by-side cylinders of a small spacing may

behave like a single structure, generating a Karman-type vortex street (e.g. Sumner et

al. 1999).

Figure 2-18  Typical flow patterns at 7/d = 1.13. (a) Re = 150; (b) Re =750.

Re = 230 S Re = 300

Figure 2-19  Symmetric vortex shedding at 7/d = 1.13. (a) Re = 250; (b Re = 300.



52

2.5.2 Flow pattern

There is no vortex generated between the two cylinders and the vortices are
generally shed alternately from the free-stream sides of the cylinders, thus generating
a single vortex street (Fig. 2-18). The gap flow or bleeding is deflected or biased
towards the lower cylinder in Figure 2-18a and towards the upper cylinder in Figure
2-18b. The behaviour of the gap bleeding is quite different between the laminar and
turbulent flows. .In the laminar case (Fig. 2-18a), the gap bleeding appeared
swerving almost around the cylinder. The bleeding is biased to a smaller degree in
the turbulent case (Fig 2-18b), possibly due to higher momentum or inertia. The
higher momentum of the gap bleeding is also likely responsible for the increased
streamwise extent of the vortex formation region (Sumner et al. 1999).

The symmetric vortex shedding occurs occasionally, as illustrated in Figure
2-19 (Re = 250 and 300). In this case, it is found that the gap bleeding is not biased.
The observation is reasonable. As earlier discussed, the pressure upstream of the gap
between the cylinders is higher than that close to the free stream, forming a pressure
differentiation on the two sides of each cylinder in the cross-flow direction. The
- pressure differentiation is symmetrical about the flow centreline. This symmetry is
likely to be sustained when the gap flow is not significantly biased, thus resulting in
the symmetric vortex shedding (Fig. 2-19). The symmetric vortex shedding appears
unstable for 7/d = 1.13 and, in general, quickly reverts to the alternate vortex
shedding mode.

It is worthwhile comparing the wake of two side-by-side cylinders of small
spacing with that of an isolated cylinder in terms of the spatial arrangement of
vortices. Both hot-wire and flow visualisation measurements were conducted behind
a single cylinder. Both flows are characterised by a single vortex street. As noted

earlier, the flow behind the two cylinder case is asymmetrical about y/d = 0, while
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the other is anti-symmetrical. Using the WAG technique on two simultaneously
measured hot-wire signals, the vortical structures were detected for both vortex rows.
For T/d = 1.13, the relative probability (not shown) of the phase shift between the
two sets of detections shows a prominent peak at ¢ = + &, but non-zero at ¢ =0,
corroborating the occurrence of the symmetrical spatial arrangement of vortices.
Following the definitions of symmetrical and anti-symmetrical arrangements of
vortices in Section 2.3.2, the symmetrical arrangement of vortices was estimated to
be about 1.6% of the total detections at x/d = 1.5. In contrast, the symmetrical
arrangement of vortices is practically zero for the single cylinder case. Evidently, the
gap bleeding plays a significant part in the vortex formation, which is probably the
essence of the difference between a single bluff body and the two cylinders of small
spacing.

Within the same vortex street, due to the interaction between vortices, the
symmetric arrangement of vortices-is likely to be less stable than the anti-symmetric
arrangement; even in the symmetric vortexushedding case, the vortices downstream
still exhibit an anti-symmetrical spétial arrangement (Fig. 2-19a). Figure 2-20
presents sequential photographs at Re = 250 in order to gain a better understanding of
the relationship between the gap bleeding and the near-wake vortex pattern. Initially,
the gap flow was not deflected and two vortices, as marked by arrows in Plate I,
started to form on the free-stream sides of the two cylinders, respective}y, in a
symmetrical manner. As they move downstream, the vortex rolling up from the
lowér cylinder appears travelling faster than not only its counterpart from the upper
cylinder but also the one shed earlier from the same cylinder (Plates 2 ~ 3). As a
result, the two consecutive vortices of the same sign merged, forming a larger
structure (see Plates 4 ~ 5). On the other hand, the symmetrically formed upper

vortex fell behind. Meanwhile, two more vortices following started to roll up
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symmetrically (Plates 4 and 5). The upper one appears moving fast and merging with
the one of the same sign, shed earlier (Plates 6 and 7). Eventually, an anti-
symmetrical spatial arrangement is displayed (Plates 7 ~ 9). Note that the gap

bleeding starts to deflect and the anti-symmetric vortex shedding resumes.

0:34:47:19 . - - 0:51:19:002 . . . :31:20:09

1:31:19:09 . . 0:51:22:10

0:50:19:24 . .. 0:50:23:17

Figure 2-20  Sequential photographs from laser-illuminated flow-visualization:

transition from the symmetric to anti-symmetric vortex shedding at

T/d = 1.13 (Re = 250).

2.6 Discussions

The vortex formation and downstream evolution behind two side-by-side
circular cylinders of representative spacing is summarised in Figure 2-21, based on

the present measurements.
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(b)

(c)

Figure 2-21  Summary sketch for the vortex formation and evolution in the near
wake of two side-by-side circular cylinders. (a) 7/d = 3.00; (b) I/d =
1.70; (c) T/d = 1.13.
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At large cylinder spacing, i.e. 7/d = 3.00, the vortex shedding from the two

cylinders is predominantly symmetrical about the flow centreline, resulting in two
distinct streets in antiphase mode (Fig. 2-21a). The vortex shedding frequency f. is

about 0.2, identical to a single cylinder case. The in-antiphase mode streets persist
downstream, at least up to x/d = 10. The anti-symmetrical vortex shedding from the
two cylinders occurs from time to time, leading to two in-phase streets. This mode of
streets starts with a slight phase deviation from the symmetric vortex shedding from
the two cylinders. The subsequent interactions between the two streets may lead to
the formation of anti-symmetrical vortex shedding from the two cylinders and hence
the inphase mode streets. However, the anti-symmetrical vortex shedding is unstable
and soon returns to the symmetric manner (Fig. 2-6).

As the two cylinders approach each other, say at 7/d = 1.70, interactions
between the two vortex streets are intensified, resulting in a totally different flow
topology (Fig. 2-21b). The gap jet is deflected, resulting in the formation of a
narrow and a wide wake. In the wide wake, vortical structures do not appear shed
from the cylinder. They originate from rolling up far away, e.g. about 5d away at Re
= 450 (Fig. 2-9), from the cylinder probably due to the effect of the shear layer
instability. The two cross-stream vortices in the narrow wake are engaged in pairing,
and may generate a relatively low-pressure region between them, thus drawing in
fluid as well as the gap vortex in the wide wake. The amalgamation of the two cross-
stream vortices in the narrow wake with the gap vortex in the wide wake is not an
isolated observation. A combination of wide and narrow wakes has been observed
behind multiple cylinders of various geometrical configurations, for example, a row
of cylinders (e.g. Moretti 1993), three side-by-side cylinders of equal (Kumada et al.
1984) and unequal cylinder spacing (Zhang and Zhou 2001), two staggered cylinders

(Sumner et al. 2000). Zhang and Zhou (2001)’s flow visualisation clearly showed the
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amalgamation of the two cross-stream vortices in the narrow wake with the gap
vortex in the wide wake. Sumner et al. (2000)’s data (their Figure 9) also indicated a
similar interaction between vortices, though they interpreted that the two gap vortices
were pairing, and then enveloped by a vortex in the narrow wake. It is speculated that
the amalgamation of the three vortices could occur in all the flows composed of a
number of narrow and wide wakes. It is further inferred that the amalgamation of the
three vortices could be, at least partly, responsible for the stability of the narrow and
wide wakes.

Based on the streamwise evolution of the hot-wire signal spectrum (Fig. 2-
12), the amalgamation completes probably before x/d = 10, which implies the
merging of the two wakes or a single vortex street further downstream. The two
rows of vortices in the new street are likely to be different in many aspects such as in
size and vorticity strength because of different formation processes involved. The
assertion conforms to the report by Yiu et al. (2001), who observed a single
asymmetrical vortex street (T/d = 1.5, Re = 5800) at x/d = 10 ~ 40 based on phase-
averaged velocity and temperature fields.

As the cylinder spacing is further reduced to 7/d = 1.13, no gap vortices were
seen; a single vortex street is generated behind the two cylinders. The gap bleeding
(Fig. 2-18) between the cylinders imposes a significant influence on the vortex
formation and downstream evolution. Sumner et al. (1999) suggested that for 7/d <
1.2 the gap bleeding was usually associated with higher momentum, acting to
increase the streamwise extent of the vortex formation region. They noted that the
alternate vortex shedding was supplanted from time to time by the symmetric
shedding. The present flow visualisation data unveiled that the alternate vortex
shedding is associated with the biased gap bleeding, while the symmetric shedding

corresponds to the unbiased gap bleeding. The gap bleeding is characterised by a
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substantially reduced mean velocity and is quickly invisible. The bleeding effect is
however persistent; the vortex street is asymmetrical about the flow centreline, at
least up to x/d = 10, as indicated by the cross-stream distributions of mean velocity
and Reynolds stresses (Fig. 2-17). This is in distinct contrast with the wake generated
by a single circular cylinder, where mean velocity and Reynolds stresses are

symmetrical or anti-symmetrical about the flow centreline (e.g. Zhou and Antonia

1993).

2.7 Conclusions

The vortex formation, topology (patterns) and downstream evolution behind
two side-by-side circular cylinders have been investigated for three representative
T/d values, i.e. 3.00, 1.70 and 1.13, based on flow-visualization, LDA and hot wire
measurements. Other than reconfirming the predominance of two distinct vortex
streets in antiphase for large cylinder spacing, the present investigation leads to the
following conclusions.

1.  In the asymmetrical flow regime (7/d = 1.70), the two cross-stream vortices in
the narrow wake tend to pair, creating a relatively low-pressure region between
them and drawing in the gap vortex in the wide wake. The amalgamation of the

three vortices could be at least partially responsible for the stably deflected gap

flow.

2. Two dominant frequencies, i.e. f " =0.1 and 0.3, were detected in the outer

shear layer associated with each cylinder. The two frequencies were also
identifiable in the narrow wake, but the lower frequency 0.1 only was detected
in the wide wake. The flow visualisation data suggests that secondary vortices

in the shear layer coalesced to form large-scale vortices, which were shed in
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the narrow wake at f, =0.1. The shedding frequency coincides with the

rolling-up frequency of the vortical structures in the wide wake. Presumably,
the vortex frequency in the wide wake is dictated by the shear layer thickness.
This frequency could feed back upstream to excite the shear layer instability
and further induce the vortex shedding in the narrow wake. On the other hand,
the amalgamation of the three vortices in the narrow wake involves a reduced
lateral spacing between the structures, producing the frequency 0.3 in the hot-

wire spectrum. The upstream influence of this frequency could excite the shear
layer instability, thus resulting in a dominant frequency at f "= 0.3.

The gap vortices in the narrow and wide wakes are generally in antiphase, but
the one in the wide wake leads slightly that in the narrow wake and
amalgamates with the pairing vortices in the narrow wake. The changeover of
the gap flow deflection starts with a phase lag of the gap vortex in the wide
wake behind that in the narrow wake. The phase lag may make it difficg]t to
proceed for the gap vortex in the wide wake to amalgamate with the pairing
vortices in the narrow wake. This could affect the stability of the gap flow
deflection. Indeed, the gap vortex grows unusually large but quickly collapses
because of the increased interaction with the narrow wake. The collapse may
give rise to a momentarily weak interaction between the two wakes, thus
allowing the narrow wake to expand laterally. The process was repeated for a
few vortex-shedding cycles and eventually the narrow wake pushes the gap
flow to the other side and completes the changeover.

At T/d = 1.13, there are no gap vortices generated and the vortices are shed
only from the free-stream side of the two cylinders, resulting in a single vortex
street. This flow is however different from that behind a single bluff body. The

gap bleeding between the cylinders plays a significant role in determining the



60

flow pattern behind the cylinders. The gap bleeding is mostly biased toward
one cylinder. Correspondingly, the vortices are shed alternately from the free-
stream side of the two cylinders. When the gap bleeding is unbiased, the
symmetric vortex shedding occurs. The bleeding is invisible at about x/d = 5.
Its effect however persists, giving rise to the asymmetrical distributions of the

mean velocity and Reynolds stresses at least up to x/d = 10.
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CHAPTER 3

FREE VIBRATIONS OF TWO SIDE-BY-SIDE
CYLINDERS IN A CROSS FLOW

3.1 Introduction

Flow-induced Qibration is governed by a number of major parameters.
Among these are the reduced velocity, U,, the damping ratio and the mass ratio
(Chen 1987). Each of these parameters plays a different role in the dynamic
response of the cylinder. The damping ratio is the ratio of the energy dissipated by
the system to the total system energy. The mass ratio, which is the ratio of the
cylinder mass to the displaced fluid mass, provides a measure of the relative

importance of the different fluid force components. The reduced velocity U,,
defined by U_/f"d, where U_ is the free-stream velocity, d is the cylinder

diameter and f,” is the first-mode natural frequency of a stationary cylinder, is

linked to the ratio of the vortex shedding frequency f, to the structural natural
frequency. Here, the term structural natural frequency is used loosely to mean the
structural natural frequency of any one of the vibration modes, but is usually taken to

imply the first mode. The natural frequency is the vibration frequency, with which a

structure or system, after an initial disturbance, oscillates without external forces. In
a vortex-induced free vibration problem, f, is responsible for the creation of the
unsteady forces. Therefore, the interplay between the two frequencies determines the
resultant behaviour of the cylinder dynamics and the wake structure. This is
especially true when resonance (or synchronisation) occurs, which can be loosely

defined as the situation where f, is approximately equal to the structural natural
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frequency. Strictly speaking, resonance occurs when the natural frequency of the

combined fluid-structure system is equal to f,. However, the natural frequency of
the system and, to a certain extent, f, are not known a priori. Therefore, the fluid-

structure interaction problem is very complicated and its behaviour at or near
resonance is of great interest to engineers.

The free vibration problem is further complicated in the case of two side-by-
side cylinders. It has been discussed in Chapter 1 that, besides the parameters
mentioned above, the problem is also governed by the ratio of the centre-to-centre
cylinder spacing T to diameter d. Varying this ratio could lead to the formation of a
single or multiple wakes (Landweber 1942; Spivac 1946; Ishigai et al. 1972;
Bearman and Wadcock 1973; Zdravkovich 1985; Zhou ez al. 2000b) and this, in turn,
could affect the dynamic response and the resonance behaviour of the cylinders.
Furthermore, the nonlinear interplay between the simultaneous vibrations of the two
cylinders and the fluid as a result of flow-induced forces is a %ar more complicated
process than the fluid-cylinder interaction in tﬁe single cylinder case.

Interference between circular cylinders placed side-by-side in a cross-flow
has been investigated extensively in the past (Zdravkovich 1977) because of its
inherent importance and practical significance in many branches of engineering. The
interference drag measurements of two side-by-side cylinders facing a uniform flow
can be traced back to Biermann énd Herrnstein (1933). Zdravkovich and Pridden
(1977) measured the lift and drag coefficients and noted that the sum of the low and
high drag generated by the two cylinders was always less than twice the drag of a
~ single cylinder. Using a photographic method, Landweber (1942) observed a single
vortex street for T/d < 1.2 and two distinct vortex streets for 7/d > 2. Spivac (1946)

measured two different frequencies in the two-cylinder wake for 7/d < 2 but a single

frequency for T7d > 2. In the latter case, the frequency was further found to be the
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same as that measured in the single cylinder wake. A Schlieren optical method was
used by Ishigai et al. (1972) to visualise the flow behind two side-by-side cylinders.
They observed a remarkably symmetric vortex formation and shedding for 7/d = 2.5
and 3.0, but a biased gap flow for 1.2 < 7/d < 2.0. The biased flow was bi-stable and
intermittently changed over from one side to another, forming two asymmetric
vortex streets of different frequencies. Bearman and Wadcock (1973) have made a
similar observation in their experiments. Based on flow visualisation at a low Re (<
200), Williamson (1985) suggested that the two different frequencies, observed in the
asymmetric flow regime (1.5 < 7/d < 2.0), were due to the existence of harmonic
vortex-shedding modes. On the other hand, the measurements of Kim and Durbin
(1988) at Re = 3300 did not support this conjecture. Therefore, the mechanism for
the two distinct frequencies in the asymmetric flow regime has yet to be better
understood.

Previous studies were mostly concerned with the behaviour of the wake flow
and the flow-induced vibrations on rigid cylinders. Even in the free vibration case,
the cylinders, flexibly mounted at both ends, were relatively rigid. The dynamic
chéracteristics of an elastic cylinder can be quite different from a rigid one. For
example, there is only one natural frequency for a rigidAcylinder system but more
than one associated with an elastic cylinder system (Zhou et al. 1999b, So et al.
2000b). There have been relatively few studies on two side-by-side elastic cylinders
in a cross-flow. Consequently, many issues remain to be resolved. For example,
how is the free vibration of an elastic cylinder in a cross-flow affected by the
presence of a neighbouring cylinder? In a forced Qibration situation, the imposed
vibration modifies the vortex shedding frequency. However, in the free vibration

case, the vortex shedding generates the excitation forces. Could vortex shedding
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modify the natural frequencies of the fluid-cylinder system? Are these frequencies
dependent on 7/d and U, ?

Damping is another important issue. It models the energy dissipation of the
system during vibrations and plays an important role in the stability of a structure
and its vibration amplitude. Knowledge of damping is essential if the dynamic
behaviour of the structures in a cross flow is to be understood thoroughly. Damping
arises from the fluid surrounding the structure as well as from the structure itself.
While structural damping is related to the properties of the structure alone, fluid
damping originates from viscous dissipation and fluid drag. In other words, fluid
damping is the result of viscous shearing of the fluid at the surface of the structure
and the behaviour of flow separation. Therefore, it is motion dependent and is much
more difficult to estimate, especially for multi-degree-of-freedom dynamic systems
(Weaver and Fitzpatrick 1988; Granger et al. 1993). Using an auto-regressive
moving average (ARMA) analysis technique, Zhou et al. (2000a) and So et al.
(2000a) deduced the effective and fluid damping ratios from the calculated lift and
displacement signals of a single cylinder in a cross flow over a range of Re. In these
studies, the cylinder motion was modelled by a two-degree-of-freedom system.
Later, Wang et al. (2001) used the same technique to analyse similar signals derived
by employing the Euler-Bernoulli beam theory to model the free vibration of a single
cylinder. All these studies yield reasonable results compared to measured fluid
damping ratios. .In particular, the work of Wang et al. (2001) was able to deduce the
fluid damping ratios for the first and third mode of vibration. However, the issue of
how interference between cy]indérs affects the damping ratios has yet to be

addressed. It is not clear whether damping behaviour is_, if at all, related to the

system natural frequencies.
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This chapter aims to investigate experimentally the free vibration of two side-
by-side elastic cylinders placed in a cross-flow and the associated non-linear fluid-
cylinder interactions. The first objective is to further improve the understanding of
the flow structure around the cylinders obtained in Chapter 1, including the mean
pressure distribution, the induced lift and drag, and the vortex formation and its
evolution at different 7/d ratios. In particular, the two distinct frequencies in the
asymmetric flow regime are examined again based on flow visualisation and hot wire
signals. The second objective is to study fluid-structure interactions. The free
vibration of the two cylinders due to flow excitation is characterised in détail. The

dependence on 7/d and U, of the natural frequency of the combined fluid-structure

system is investigated thoroughly, in particular, at and near resonance. The effective
and fluid damping ratios are evaluated from the measured strain signals using an

ARMA technique (Mignolet and Red-Horse 1994).

3.2 A Briefly Description of ARMA Technique

A detailed discussion of the ARMA technique can be found in Mignolet and
Red-Horse (1994) and Zhou et al. (2000a). Here, a brief discussion of ARMA and
some different techniques used by other researchers is given. The ARMA modelling
technique is based on the observation that the sampled response of a multi-degree-of-
freedom system satisfies a linear recurrence relation. The response can be
represented as the output of an ARMA discrete system, the input of which is the
sampled excitation. In addition, the characteristics of the continuous system, i.e.
natural frequencies, damping ratios and mode shapes, can easily be computed from
the auto-regressive part of the ARMA model. Finally, reliable techniques for the
estimation of the ARMA model parameters from measurements of the excitation and

response of the system considered have been developed so that the entire
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methodology is available for structural identification, including damping ratio
estimation as needed here.

ARMA modelling is not limited to single-mode behaviour; it identifies all
modal characteristics present in the responses including possible outside dynamics,
such as turbulence in the incoming flow. Furthermore, the estimation of the ARMA
parameters accounts for the presence of modelliﬁg noise so that its effect on the
computed damping ratios is significantly reduced. Finally, ARMA models have been
shown (Jadic et al. 1998) to capture some non-linear effects through the modelling of
the higher harmonics content present in the response. These advantages of ARMA
modelling far outweigh the increase in computational effort required to obtain
reliable estimates of the damping ratios. Using the ARMA technique, Zhou et al.
(2000a) deduced the fluid damping ratios from the structural displacement time
series obtained from a numerical simulation of an elastic cylinder in a cross-flow.

Granger (1990) developed a digital signal processing method for modal
analysis of fluid-structure systems. Their method is a multi-degree-of-freedom time
domain method based on the development in the field of time series analysis. The
method was used to deduce fluid damping from the strain data of a cylinder placed in
a square in-line tube bundle (Granger et al. 1993). Since their test cylinder, which
was moﬁnted on flexible support, was rigid, their system is different from that of a
flexible cylinder on fixed supports as considered in present investigations. The
formulation of Granger (1990) is in fact a specific ARMA model. However, there
are some differences between his and the present formulation. For example, Granger
(1990) used the same operator for auto-regressive (AR) and moving average (MA),
as evident in his Eq. (4), while the present technique has unequal operators for AR
and MA and seeks the non-linear maximum likelihood solution. Granger further

computed the ARMA coefficients A;, B and Ci (in his Eq. 2) based on the auto-
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correlation of the measured signal, i.e. the ARMA model is applied on the correlation
and then the noise term w is truly a noise. On the other hand, the present approach
works directly with the measured signal. One benefit of this approach is that w
denotes any measurement noise plus a fictitious random source that creates the
randomness in the response and can physically be associated with the origin of the
turbulence in the signal. |

In the use of the ARMA technique, a model of a higher order provides in
general a better fit to the original time series. However, a higher order model
demands more computing time. In the process of analyzing numerical simulation
data, Zhou et al. (2000a) found that an order of 70 was sufficient. Experimental data
is ‘noisier’ than numerical simulation data. It was further found that the measured
strain data requires a higher order model than the displacement data. In the present
investigation, consistent results were achieved when an order of 80 was chosen for
the displacement data and 190 for the strain data. Note that the large value of the
auto-regressive order is partly necessitated by the non-linearity of the fluid-structure
system, which implies the presence in the response of a large number of harmonics
of the shedding frequency. These frequencies are genuine characteristics of the

response and are automatically included in the ARMA model.

3.3 Experimental Details

3.3.1 Experimental setup

Experiments were carried out in a suction-type wind tunnel with a 0.35m X
0.35m square cross-section that is 0.5m long (Fig. 3-1). The wind speed of the
working section can be adjusted from 1.5 m/s to 28 m/s. The streamwise velocity is

uniform to within 0.05% and the free stream turbulence intensity is 0.2%. In order to



68

minimise tunnel vibrations, the working section is isolated from the motor and fan

through vibration absorbers.

Electric Motor Working section Contracti S
& Centrifugal fan (350mm x 350mm x 500mm) raction creens
/ Vibration absorber ested cylinders

7 / [

. i/l =

| e

3 \P i | &

J—. [ . —_ e — . —. ._.I L — = —. Hl..._%

| 1 &

1 =8

| 8
1

VA / v /
Test rig Vibration Vibration Vibration Vibration
fixed on ground absorber absorber absorber absorber
Figure 3-1 Schematic diagram of the test wind tunnel.
Table 3-1. Structural characteristic properties of the cylinders.
fo (Hz)

Cylinder| EI M én) Cross-flow direction Inline direction

T/7d 1/d

(Nm’)

1.13 1.70 3.00 1.13 1.70 3.00

1 0.224| 565 |0.026] 104.00 [ 104.00 | 104.00 | 98.60 | 98.60 | 98.60

2 0.224| 565 |0.026| 94.00 | 95.00 | 101.00 | 95.83 | 101.50 { 101.53

Two identical acrylic tubes with a diameter of d = 0.006m were vertically
mounted in a side-by-side arrangement and placed symmetrically to the mid-plane of

the working section at 0.20m downstream of the exit plane of the tunnel contraction

(Figs. 3-1 and 3-2). The co-ordinate system is attached to Cylinder 1 with y

measuring zero at the centre of this cylinder (Fig. 3-2) and the other is labelled

Cylinder 2. The two cylinders were built into the walls of the working section, with
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Figure 3-2 Experimental arrangement.

fix-supported boundary conditions at both ends (no rotation and displacement). The

structural characteristic properties of the cylinders are summarised in Tabdle 3-1.
Here, E is the Young's modulus of the cylinder, / is the area moment of inertia, {;"
is the first-mode structural damping ratio and M~ is the mass ratio defined by
M /pd?®, pis the fluid density and M is the cylinder mass, and f" is the first-
mode structural natural frequency. The blockage due to the installation of the

cylinders was about 3.4%. The Reynolds number, Re = U_d /v , where v is the fluid

kinematic viscosity, investigated varied from 800 to 10,000. This gives rise toa U,
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range of 3 - 43. In the present Re range, the blockage effect on the mean drag is
insignificant. Three transverse spacing ratios were investigated, i.e. 7/d = 1.13, 1.70,
and 3.00. Great care was taken to maintain these ratios along the cylinder span.
Furthermore, they were chosen because the flow regimes thus resulted were

representative of the different proximity effects for two side-by-side cylinders

(Zdravkovich 1985).

3.3.2 Mean drag and lift measurements

The experimental arrangement is shown schematically in Figures. 3-1 and 3-
2. Each of the cylinders was instrumented with a single wall pressure tap at the mid-
span position. A pressure transducer was connected to the tab to measure the wall
static pressure. The cylinder was rotated at an interval of 5° to give the angular
distribution of wall static pressure-around the cylinder surface and the mean lift and
drag on the cylinder were evaluated by integrating the wall static pressure around the
cylinder. Measurements of the mean lift and drag were carried out on a single
cylinder and on the two side-by-side cylinders at the same Ré, thus providing a

baseline for the evaluation of the interference effects.

3.3.3 Fluctuating velocity measurements

The streamwise fluctuating velocity u was measured by positioning a single
hot wire at x/d = 2 and y/d = 1.5, where, x is the streamwise distance measured from
the centre of Cylinder 1 (Fig. 3-2). The hot wire was operated at an overheat ratio of

1.8 with a constant temperature anemometer (DISA Type 55M10).

3.3.4 Dynamic strain measurements

Zhou et al. (1999b) and Jin et al. (2000) used a fibre-optic Bragg grating

(FBG) sensor, built in-house, to measure the dynamic strain due to lift on a cylinder
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in a cross-flow. The strain thus measured was compared with the transverse
displacements obtained from a laser vibrometer. They found that the spectra
deduced from the two signals were in excellent agreement with each other in terms
of their salient features, such as the vortex shedding frequency and the natural
frequency of the fluid-cylinder system, and the two signals showed a complete
coherence at these frequencies. They further found that, for small displacements, the
root mean square (rms) values of the strain and displacement signals were linearly
correlated. A linear correlation is also expected between strain and displacement due
to the fluctuating drag and in the presence of another cylinder.

Two FBG sensors were used to simultaneously measure the dynamic strains
of the two cylinders along the x or y direction. For measurement along the y-
direction, an optical silica fibre of diameter 125 um built with an FBG sensor was
buried in a groove along the span of each cylinder at 90° from the leading stagnation
line and flushed with the surface using nail polish. The FBG sensor was located at
mid span of the cylinder. Since the sensor grating has a finite length of about 10mm,
the measurement represents the average strain over this length. The strain thus

measured is designated as €. In principle, €, is independent of the streamwise

vibration of the structure. If the cylinder is rotated clockwise (or anti-clockwise) by
90°, the FBG sensor will be located at the rear stagnation line (or the leading
stagnation line whichever the case may be). In this location, it measures the strain

g, due to the drag, which should not depend on the cross-flow vibration of the

cylinder. A major source of error comes from the non-linearity effect when
calibrating the relation between the output voltage and strain (Zhou et al. 1999b, Jin

et al. 2000). The experimental uncertainty in strain measurements is estimated to be

+8%.
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In view of the fact that mounting and remounting a cylinder might change the
natural frequency of the structure, the mounting of Cylinder 1 was not changed
during the entire experiment where the dynamic strain for either the cross-flow or

inline direction was measured. Therefore, f,” of Cylinder 1 was constant. Its value

is 104 Hz for the cross-flow direction and 98.60 Hz for the inline direction (Table 3-
1). This arrangement is important if the interference effect on the natural frequencies
of the fluid-cylinder system is to be investigated with confidence. The adjustment of

T/d was achieved by remounting Cylinder 2 only. Great care was taken to minimise

the variation of f" associated with remounting. The f," values of Cylinder 2 in

both cross-flow and inline directions were given in Table 3-1. Measurements of the
bending displacement Y and  in the wake of a single cylinder carried out by Zhou et
al. (1999b) indicated a negligible effect on flow separation around the cylinder and
on Y due to the attachment éf the optical fibre.

The signals u, €, and €, or u, €, and €, where the subscripts 1 and 2

represent the cylinder number, were simultaneously measured. They were offset,
"amplified and digitised using a 12bit A/D board and a personal computer at a

sampling frequency of 6.0 kHz per channel. The record length was about 20s. This

record length was sufficiently long for the rms values €, of €, and €, of £, to

reach their stationary state, with a.variation smaller than 1.0%.

3.3.5 Effect of tunnel vibrations

It is important to minimise tunnel vibrations in the present investigation. As
pointed out earlier, tunnel vibrations were mainly derived from the fan and motor.
Great care has been taken to isolate the working section from the vibration sources
through the use of vibration absorber (Fig. 3-1). This vibration isolation is not a

sufficient remedy for the laser vibrometer measurement of displacement because the
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Figure 3-3 Power spectra E,, of € (a) calculated from the measured signal; (b)

from the signal filtered with a high pass of 60 Hz. Cylinder 1. U, =
11.0.

motion of the working section, which can be transmitted through the floor, also
affects the measurements (Zhou et al. 1999b). The FBG sensor, on the other hand,
measures the cylinder deformation. Therefore, it is insensitive to any translational

motion of the cylinder, which is associated with the working section vibration.
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Tunnel vibrations only indirectly affects the FBG sensor measurements through the
inertia force. However, this is a secondary effect and is unlikely to have a significant

impact on the measurements as demonstrated below.

The effect of tunnel vibrations could be estimated by calculating the variation

in energy corresponding to the first-mode natural frequency, with and without tunnel
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vibrations. The power spectra Ee’, of £, from Cylinder 1 for 7/d = 1.13, 1.70 and

3.00 at U, = 11.0 is shown in Fig. 3-3. Here, EQ, is normalised so that

J:Eey (f)df =1. In Fig. 3-3a, E_ calculated from the original strain signal is shown.

The half-power-bandwidth (HPB) integral at the first-mode natural frequency of the
fluid-structure system is 40.77%, 4.17% and 10.07% for T/d = 1.13, 1.70 and 3.00,

respectively. The natural frequency of the working section was measured in the

range of 20~30 Hz (Zhou et al. 1999b). Therefore, the measured €, was high-pass
filtered at 60 Hz to eliminate the noise associated with tunnel vibrations. The E_
calculated from the filtered signal is plotted in Fig. 3-3b and the HPB integral at the

first-mode natural frequency is 41.68%, 5.06% and 11.19% for T/d = 1.13, 1.70 and

3.00, respectively. The maximum difference between the E, calculated with and

without filtering is about 1.1%, indicating a negligible tunnel vibration effect on the

FBG sensor measurements.

3.3.6 Flow visualisation

The experimental setup of flow visualisation was identical to those presented
| in Chapter 2. In view of this, only a brief description of the experimental details is
repeated here. Flow visualization was carried out in a water tunnel with a 0.15m X
0.15m square working section of 0.5m long (Fig. 2-1a). The water tunnel is a
recirculating single reservoir system. From the reservoir, a centrifugal pump delivers
water to the tunnel contraction. A honeycomb is used to remove any large-scale
irregularities prior to the contraction. The flow speed is controlled by a regulator
valve up to a maximum velocity in the working section of about 0.32 m/s. The
working section is made up of four 20mm thick persplex panels. Two side-by-side

acrylic circular tubes with an identical diameter of 10 mm were horizontally mounted
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0.20m downstream of the exit plane of the tunnel contraction and placed
symmetrically to the mid-plane of the working section (Fig. 2-1b). They spanned the
full width of the tunnel. The resulting blockage was 13.3%. For the purpose of
comparison with the FBG sensor measurements, the same transverse spacing ratios
as those used in the wind tunnel were investigated, i.e. 7/d = 1.13, 1.70 and 3.00. For
each cylinder, dye (Rhodamine 6G 99% which has a faint red colour and will
become metallic green when excited by laser) was introduced through injection
pinholes located at the mid-span of the cylinder at 90°, by clockwise aﬂd anti-
clockwise, respectively, from the forward stagnation point. A thin laser sheet, which
was generated by laser beam sweeping, provided illumination vertically at the mid-
plane of the working section. A Spectra-Physics Stabilite 2017 Argon Ion laser with
a maximum power output of 4 watts was used to generate the laser beam and a
digital video camera recorder (Sony DCR-PC100E), set perpendicular to the laser
sheet, was used to record the dye-marked vortex streets. Investigations of flow
visualisation were carried out in the Re range of 120 to 1650 over 0 < x/d < 10. At

large Re and x/d, the dye diffused too rapidly to be an effective marker of vortices.

3.4 Fluid Dynamics Around Cylinders

3.4.1 Mean pressure, lift and drag

The polar plots of pressure coefficient, C, = 24p/(pU 2 ), around the cylinder
for a single as well as two side-by-side arrangements at Re = 6000 are shown in Fig.
3-4. Here, Ap is the mean pressure difference between the cylinder wall and a

reference point, i.e. x/d = 10 and y/d = 15, upstream. The resultant force R is

calculated from v D? + L* and its direction is given by the angle 8, =tan"' (L/D),
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where L and D are the mean lift and drag, respectively. Mean lift and drag of the two

cylinders are calculated by integrating the pressure around the cylinders. The
respective force coefficients are defined by Cp = 2LApU 2d) and Cp = 2DApU2d).
Their values thus deduced for Re = 3500, 6000 and 10400 are shown in Figs. 3-5a

and 3-5b.

Negative

Positive

(a)

Figure 3-4  Polar plot of the circumferential distribution of the pressure

coefficient at Re = 6000: (a) single cylinder, (b) two cylinders.

The pressure distributions of the two cylinders at 7/d = 3.00 exhibit similarity
to that for a single cylinder. But the resultant force on each cylinder deviates from
the flow direction, probably as a result of flow retardation upstream of the gap
between the cylinders, which could give rise to a higher pressure between the

cylinders. The 8, is 3° for Cylinder 1 and — 4° for cylinder 2. The difference in
magnitude is probably caused by experimental uncertainty, which is estimated to be
about 2.5°. Therefore, the pressure distribution around one cylinder is essentially a

mirror reflection of the other. For 7/d < 3.00, the pressure distribution around the

two cylinders is no longer a mirror reflection of each other, as evidenced by the
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difference in 6, and the base pressure coefficient C,, (6 = 180°) between the

cylinders. However, in each case, R is directed approximately through the forward
stagnation point, where the pressure is the maximum, and the cylinder centre. The
observation is essentially the same as that reported in Bearman and Wadcock (1973).
It should be pointed out that the pressure coefficient does not very smoothly behind
cylinder 1 at 7/d = 1.70 and cylinder 2 at 7/d = 1.13 (Fig. 3-4b). This observation

could be attributed to the experimental uncertainties, as presented in Table 1-1.

(b)
Figure 3-4b

The C;, value is positive for Cylinder 1 and negative for Cylinder 2 (Fig. 3-
Sa), showing a repulsive force between the cylinders. Since flow upstream of the
gap between the cylinders is further retarded as T/d reduces, the pressure rises
between 8 = 0° and 90° for Cylinder 1 and between 6 =270° and 360° for Cylinder

1 (Fig. 3-4b). As a result, the repulsive force between the cylinders increases with

decreasing 77/d.
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17d.

At T/d = 3.00, Cp is approximately the same for the two cylinders (Fig. 3-5b),
ranging from 1.08 to 1.27 when Re varies from 3500 to 10400, comparable to that of
a single cylinder, 0.93. At T/d = 1.70, the drag coefficients of the two cylinders
differentiate. This can be inferred from the base pressure coefficient C,p, at 6= 180°.
The value is about ~1.01 for Cylinder 1 (Fig. 3-4b). The lower value of Cp, gives
rise to a higher Cp. On the other hand, Cpp of Cylinder 2 is about ~0.68 (Fig. 3-4b),

resulting in a lower Cp. It is well known that, for this 7/d, narrow and wide wakes
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are formed behind two identical cylinders, respectively, and the gap flow deflects
towards the narrow wake (Zdravkovich 1987). Bearman and Wadcock (1973) and
Quadflieg (1977) observed that the narrow wake has a lower base pressure and a
higher Cp, whereas the wide Wake has a higher base pressure and a lower Cp. Thus,
it may be inferred that Cylinders 1 and 2 are mostly associated with a narrow and a
wide wake, respectively. At 7/d = 1.13, Cpp shov;/s an increase for both cylinders.
However, C, between 0° ~ 90° for Cylinder 1 anci 270° ~ 360° for Cylinder 2 also
increases significantly, due to more severe flow retardation upstream of the gap
between the cylinders. Consequently, Cp is higher for both cylinders. There is still a
difference in the measured Cp between the two cylinders, though less pronounced
than that obtained at 7/d = 1.70. At such a small 7/d, a single vortex street is
expected behind the cylinders (Landweber 1942).  Photographs from laser-
illuminated flow visualisation shown in Section 3-4-2 indicate a biased bleeding
between the cylinders. The biased bleeding is probably accountable for the
differgnce in the C, distribution between the cylinders (Fig. 3-4b), and hence unequal
C,, for the two cylinders, as well as the asymmetry of C, (Fig. 3-5a).

The mean of the low and high Cp values at 7/d = 3.00 is 1.2, appreciably
higher than that (0.93) of a single cylinder at Re = 6000. The difference cannot be
attributed to the experimental uncertainty, which is estimated to be 2%. Further
investigation is needed to understand this observation. For 7/d < 3.00, this mean is
generally less than that determined at 7/d = 3.00, in consistence with that reported in
Zdravkovich and Pridden (1977). In the near-wake of an isolated cylinder, about
50% of the shed circulation was cancelled as fluid bearing vorticity was drawn across
the wake centreline into the growing vortex with an opposite vorticity (Gerrard 1966;
Cantwell and Coles 1983). One would expect that the interference between the

narrow and wide wakes might cause additional cancellation of vorticity as well as
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absorb some flow energy, thus resulting in reduced vortex strength. This, in turn,

causes a higher base pressure as exhibited in Fig. 3-4, hence a reduced total drag.

T/d =3.00

/d = 1.70 - 7d = 1.70

T/d=1.13

Re = 150 Re =450

Figure 3-6 Laser-illuminated flow visualisation in the water tunnel behind two

side-by-side cylinders. Flow is from left to right.

3.4.2 Flow patterns

The above interpretation is further verified by'the observation deduced from

the flow visualisation experiment. In this section, flow visualisation results for the
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three cases, 7/d = 1.13, 1.70 and 3.00, are examined with the aim to gain an
understanding of flow physics. The characteristics of the spectral characteristics are
discussed later.

T/d =3.00 The top two plates in Fig. 3-6 present typical photos in the laminar
(Re = 150) and turbulent (Re = 450) flow regime, respectively, both exhibiting two
anti-phase vortex streets. The pattern is consistent with that obtained in Chapter 2 or
reported in the literature. Flow visualisation conducted at Re = 500 by Bearman and
Wadcock -(1973) showed that two pairs of vortices, when shed from the two
cylinders at 7/d = 3.00, were in an anti-phase mode. In their experiments, Ishigai et
al. (1972) observed a remarkably symmetric vortex formation and shedding for 7/d =
2.5 and 3.0, but a biased gap flow when 7/d was in the range, 1.2 < 7/d < 2.0. The
present data suggests that the phenomenon is independent of Re in the range
investigated.

The mechanism behind the symmetric vortex shedding behaviour is not clear.
Weaver and Abd-Rabbo (1984) and Granger et al. (1993) observed a symmetfic
vortex shedding resonance in a square array of tubes in a cross flow. Weaver and
Abd-Rabbo proposed that a symmetric-mode jet instability mechanism might have
caused or at least triggered this phenomenon. Noting that during resonance the
vibration amplitude was predominant in the streamwise direction, Granger et al.
(1993) suggested that the inline cylinder motion caused a symmetric oscillation of
separation points at the surface of the moving cylinder and could be responsible for
the symmetric vortex shedding. This cannot explain the present symmetric vortex
shedding at T/d = 3.00. It will be seen in the next section that the cross-flow
vibration of the cylinders overwhelms the streamwise vibration when resonance
occurs. The in]ine'cylinder motion is unlikely to be, at least not solely, responsible

for the present symmetric vortex shedding. When flow separation occurs, the flow
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outside the boundary layer is retarded (Prandtl 1976), implying a higher pressure.
The pressure upstream of the gap between the cylinders is probably even higher than
that close to the free stream, as suggested in Fig. 3-4, thus forming a pressure
differential on the two sides of each cylinder in the cross-flow direction. This
pressure differential could be symmetrical with respect to the midway of the gap and
could tend to suppress the anti-symmetrical vortex shedding and induce the
symmetric behaviour.

7/d = 1.70  Typical photographs of the near-wake flow (middle two plates in Fig.
3-6) from flow visualisation in the laminar and turbulent flow regimes indicate a
deflected gap flow between the two cylinders, thus forming one narrow and one wide
wake. The results are consistent with those for 7/d = 1.5 ~ 2.0 previously reported
(Spivack 1946; Ishigai ef al. 1972; Bearman and Wadcock 1973; Kamemoto 1976,
Kiya et al. 1980; Kim and Durbin 1988; Sumner et al. 1999).

T/d =113  The gap vortices were not observed and most vortices were shed
alternately from the freestream side of the two cylinders, as evidenced in the
photographs (bottom two plates in Fig. 3-6). The photograph at Re = 450 further
displays a gap flow or bleeding deflected towards the upper cylinder. The deflected
bleeding is likely to cause a difference in p;, between cylinders, thus responsible for
the different Cp (Fig. 3-5b). It is worth mentioning that flow visualisation data did
show the symmetric vortex shedding from time to time when the gap flow was not

deflected, which is consistent with the observation in Chapter 2.

3.4.3 Spectral characteristics

T/d = 3.00  The spectra Egy of €, from Cylinder 1 and 2 at U, = 19 for different

T/d values are presented in Fig. 3-7 along with the spectrum E, of the

simultaneously measured streamwise velocity u. No resonance occurs at this
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(a)
Power spectra fE_ (upper plate: Cylinder 1; middle plate: Cylinder
2) of the strain €, and E, (lower plate) of the stream-wise velocity u

at the off-resonance condition (U, = 19, Re = 4900). The hot wire
was located at x/d = 2 and y/d = 1.5. (a) T/d = 3.00; (b) 1.70; (c) 1.13.

reduced velocity. Here, the focus is on flow-related spectral characteristics, while

vibration-related behaviour, such as the prominent peaks in the & -spectrum, is
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discussed in Section 3-5. At T7/d = 3.00, the u-spectrum (Fig. 3-7a) yields one major

peak at f, = f, d/U. = 0.20 which is the same as the normalised vortex shedding

frequency (or Strouhal number) of a single cylinder. This peak is also evident in the
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strain spectra and it occurs at the same frequency for the two strain spectra presented,

thus indicating that the shedding frequency for the two cylinders is identical. The

spectral phase shift @, at f, between the €, signals is generally near + @ or - ©
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(Fig. 3-8a), implying that the two cylinders move in opposite directions. These
results conform to the observation from flow visualisation that the vortices are

predominantly shed in symmetric pairs or in an anti-phase mode for the two

cylinders.
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Figure 3-8 Dependence on U, of the phase shift ®,, at f, between dynamic

strains € ; and € , measured from the two cylinders.

T/d =170  The u-spectrum exhibits a broad peak, ranging from 0.08 to 0.20 and

centred at f, = 0.105 (Fig. 3-7b). This result seems to indicate a frequency range of
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Figure 3-9  Power spectra E, of u for various Re (7/d = 1.70). The hot wire was

located at x/d = 2 and y/d = 1.5.

vortex shedding. It has been reported previously that the narrow and wide wakes
observed in flow visualisation were associated with the high and low vortex
frequencies, respectively (Spivack 1946; Ishigai et al. 1972; Bearman and Wadcock
1973; Kamemoto 1976; Kiya et al. 1980; Kim and Durbin 1988; Sumner et al. 1999).
The ratio of the two frequencies was close to but less than 3 (Kim and Durbin 1988).

This is also observed in the present case. The u-spectra for different Re are shown in

Fig. 3-9. These spectra show a peak at f " = 0.1 or 0.31, or peaks at both

frequencies. The physics behind the appearance of two different frequencies was not

clear in the past; some researchers (Sumner et al. 1999; Kim and Durbin 1988)
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suggested two vortex shedding processes or frequencies. Based on flow visualisation
at a low Re (< 200), Williamson (1985) proposed that the two frequencies resulted
from the existence of harmonic vortex-shedding modes. On the other hand, the data
of Kim and Durbin (1988) at Re = 3300 did not support this conjecture. The present
flow visualisation in the laminar and turbulent flow regimes in fact suggests another

interpretation, which is in consistent with the results presented in Chapter 2.

0:23:17:22 0:23:18:18

Figure 3-10  Sequential photographs from laser-illuminated flow visualisation (7/d

= 1.70, Re = 450).
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In order to understand the two dominant frequencies observed in the velocity
spectra, the flow visualisation data was examined in detail. It was noted that vortices
were generally shed alternately from both sides of each cylinder, though the gap
vortices appeared to be weaker than the outer vortices, which were shed on the
freestream side. Playing back the tape and counting consecutive vortices (about 15

pairs) at x/d = 2 for a certain period, it was noted that the vortices were formed at
about the same frequency from the two cylinders. For example, at Re = 450, £, was

about 0.11 for the lowef cylinder and 0.126 for the upper. Similar results were
obtained for other Re. This begs the question why the hot wire méasured two
frequencies and the ratio of the two frequencies was about 3. Sequential photographs
at Re = 450 are shown in Fig. 3-10. The two rows of vortices in the narrow wake
appear squeezed by the wide wake so that their lateral spacing is very small. Initially
(Plates 1-3), the longitudinal spacing between two vortices in the narrow wake, as
marked by arrows, is large. However, Piates 3 and 4 shows a reduced spacing
between the vortices, suggesting that the convection velocity of the outer vortex was
smaller than that of the gap vortex, which was possibly carried by the gap flow jet
with a higher mean velocity (Sumner ét al. 1999). As a result, the two opposite-sign
vortices were engaged in a pairing process (Plates 4 ~ 6). On the other hand, the gap
vortex shed fro.m the lower cylinder; also marked by an arrow, appears pushed into
close contact with the pairing vortices by the widening wake. Note that the pairing
vortices rotated in opposite directions, acting to ‘suck’ in the approaching gap vortex
(Plates 4-6). Because of the small lateral spacing between the three vortices, the hot
wire could measure a frequency tripling that in the wide wake. This observation is
consistent with the result obtained in Chapter 2.

The peak in the u-spectrum for‘ T/d = 1.70 is considerably less pronounced

than that at 7/d = 3.00. The vortex shedding component is substantially weakened,
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thus corroborating the earlier suggestion that the vortex strength is reduced at 7/d =
1.70. This reduction is partly attributable to the interference between cylinders,
which could be responsible for a decrease in the drag coefficient (Fig. 3-5b).

However, the €, -spectra, quite similar for the two cylinders, fail to show a strong
presence of the vortex excitation at either f, or 3 f,". The spectral phase shift @,
between the £, signals is near zero at f.=0.105 (Fig. 3-8b) but +7 or —m at3 f.
(not shown). Therefore, it seems that vortices shed from the two cylinders tend to be
in-phase at f, = 0.105 for 7/d < 2.0.

T/d = 1.13  When T/d reduces to 1.13, the u-spectrum (Fig. 3-7¢) indicates that
the vortex shedding frequency is halved, occurring at f. = 0.09. For such a small
transverse spacing, the two cylinders tend to act like a single body and the effective
Strouhal number should be really f, (2.13d)/U. = 0.2, or f,d/U..=0.09. The phase
shift @, at f, (Fig. 3-8c) is generally close to zero, indicating that the two

cylinders are vibrating in phase in the cross flow direction. It can be inferred that
most of the vortices were shed alternately from the free-stream side of the two

cylinders, in conformity to the observation from flow visualisation (bottom two

plates in Fig. 3-6). Note that at U, = 11, ®,, drifts away from zero, displaying a
valley. Since f, =0.09 (Fig. 3-7c), then the first-mode resonance where = f
occurs at U, = 1‘/ f.= 11. The natural frequencies of the two cylinders are slightly

different (Table 3-1). As a result, while the vibration of one cylinder synchronises
with vortex shedding, the other doés not. This implies that the two cylinders could

respond very differently to the vortex excitation force, thus leading to a phase shift

between their vibrations (Fig. 3-8c).
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3.5 Fluid-Structure Interactions

3.5.1 Spectral behaviour and root mean square strain

The spectrum Eg, (Fig. 3-7) of Cylinder 1 exhibits one peak at f " = 0.049,
irrespective of the transverse spacing. The peak can be identified with the first-mode
natural frequency f )fl)* of the combined fluid-cylinder system for a single cylinder
placed in a cross-flow, as verified by the numerical calculation of So et al. (2000a).
Another peak occurs at f° = 0.264. The third-mode natural frequency can be
estimated from f;”' = (121/22.4) f" =0.265 (Chen 1987). Therefore, this peak
corresponds to the third-mode natural frequency f,*" of the combined fluid-cylinder
system. Similarly, the peak at f "=0.1351is idenfified with the second-mode natﬁral
frequency of the systefn. The &, -spectrum from Cylinder 2 exhibits a close

resemblance to that from Cylinder 1.
The dependence of €, and €, on U, from the two cylinders is shown
in Figs. 3-11 and 3-12, respectively. The rms values of the measured strain from the

two cylinders collapse quite well and generally increase with U, . At T/d = 3.00,

£ displays three peaks at U, = 4.2, 12.0 and 26.0, respectively, while €, .

y,rms

shows only one tiny peak at U, = 26.0. Note that when U, > 33, €, ,; increases
faster and becomes larger than €, .
The peaks in €, ,,,; at U, = 4.2, 12.0 and 26.0 (Fig. 3-11a) can be identified

from the spectral analysis with resonance occurring when the vortex shedding

frequency is equal to the system natural frequencies U fP and £,

respectively. While the peak at U, = 12 is barely identifiable, the one at U, = 26 is
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Figure 3-11  Variation of &€ with U, at various spacing ratio: (a) 7/d = 3.00;

y,rms

(b) T/d = 1.70; (c) T/d = 1.13. O, Cylinder 1; A, Cylinder 2.

most prominent. The simultaneously measured E¢, from the two cylinders at U, =

26 along with E, are presented in Fig. 3-13. The most prominent peak in E¢, occurs
at f_‘f”* ~ 0.2, which coincides with f., as evidenced in E, (Fig. 3-13c). The

occurrence of resonance is responsible for this prominent peak in Eg, and hence that
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Figure 3-12  Variation of €, with U, at various spacing ratio: (a) 1/d = 3.00;

(b) T/d = 1.70; (c) T/d = 1.13. O, Cylinder 1; A, Cylinder 2.

at U, =26in €, . Similarly, the peaks at U, =42 and 12in €, ,,; could be

identified with the result of resonance corresponding to the first- and second-mode

natural frequencies of the fluid-cylinder system, respectively.
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Figure 3-13  Power spectra fE_, (upper plate: Cylinder 1; middle plate: Cylinder
2) of the strain €, and E, (lower plate) of the stream-wise velocity u

at U, = 26 where the third-mode resonance occurs (7/d = 3.00). The
hot wire was located at x/d = 2 and y/d = 1.5.

The observation that the peak at U, = 26 is far more pronounced than the

others may not be surprising. Firstly, resonance corresponding to f‘f” occurs at a
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higher U,. Flow excitation energy, which is proportional to U ,2 , is therefore much

higher. Secondly, it will be seen later in Section 3-5-3 that the deduced effective

damping ratio, the sum of the structural and fluid damping ratio, corresponding to

£ is appreciably smaller than that corresponding to f,” or . This implies
.. . _ 3
that the energy dissipation, when resonance occurs at f, = f/*, is smallest.

Thirdly, the fifth harmonic of " (=0.0394) is 0.197 and is very close to f, = 0.2.
This could feed additional energy to the resonance phenomenon. These three effects
combined together could lead to a violent vibration or instability at f.‘_(” (Fig. 3-11a).
This observation suggests that structural flexibility play a significant role in the
dynamic analysis. In practice, all structures are flexible; however, structural
flexibility has so far been ignored in most previous studies. Consequently, resonance

occurring at U, = 5 has been extensively investigated, while instability

corresponding to f* has been largely overlooked.
As T/d reduces to 1.70, the €, ,,; values decrease considerably for both

cylinders; resonance does not appear to occur at all. In this case, vortices shed from
both cylinders are very weak, as seen earlier from the u-spectrum. Accordingly,
structural vibrations are impeded, even at the occurrence of resonance. This
observation is in marked contrast with that at 7/d = 3.00. The difference is consistent
with the observation from the measured spectra, which exhibited a weakenin;g vortex

shedding component at 7/d = 1.70 (Fig. 3-7b), compared with that at 7/d = 3.00 (Fig.

3-7a). At T/d = 1.13, only one peak in €, and € . is observed at U, = 11

because of the first-mode resonance. The third-mode resonance is expected to occur

near U, = (121/22.4) 11 = 59.4, which is beyond the present measurement range,

and therefore cannot be observed in Fig. 3-11c.
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3.5.2 Natural frequencies of the fluid-cylinder system

The natural frequency f,” identified in Fig. 3-7a of the fluid-cylinder system

associated with Cylinder 1 is 101 Hz at 7/d = 3.00. This frequency changes to 103.3

Hz at T/d = 1.70 (Fig. 3-7b) and 104.7 Hz at 7/d = 1.13 (Fig. 3-7c). Note that the

mounting of Cylinder 1 was unchanged throughout the experiments. Therefore, f y(”

should remain fairly constant. Furthermore, the spectra were deduced using a
conventional FFT program, the frequency resolution is fixed by the sampling rate

and the record length used in the FFT calculation. It is estimated to be 0.35 Hz. In

view of these factors, the variation of f,” noted above cannot be attributed to

experimental or calculation errors.

The dependence of f/f;" in the cross-flow direction on 7/d and U, is
shown in Fig. 3-14. Generally, f/f," rises with decreasing 7/d. This is more

appreciable when U, > 14. A pumber of factors could alter the natural frequency of
the system other than the repulsive force between the cylinders. As a first-order
approximation, a spring-damper-mass model can be used to model the fluid-cylinder
system. Both fluid and structure contribute to the system mass, stiffness and the
damping ratio. A rise (Fig. 3-5a) in the repulsive force as the cylinders approach
each other is equivalent to an increase in fluid rigidity. Alternatively, from a
different perspective, an increasing repulsive force between two cylinders sh(;uld be
associated with a tensile axial loading on the cylinder, which was fix-supported at
both ends, and subsequently increased the structural rigidity (Weaver ez al. 1989; Xu
et al. 2001). As a result, the system natural frequency might increase. This has been
qualitatively verified based on the measured lift data. Added mass is another factor
that may change the natural frequency of the system. Chen (1987) calculated the

added mass on two side-by-side cylinders in a cross flow and found that, in the range
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Figure 3-14  Variation of the cross-flow f,” with T/d and U, . Cylinder 1. A, 7/d =

1.13; A, 1.70; O, 3.00; @, single cylinder. The solid line indicates the

trend.

of 1.13 < T/d < 4, the added mass increases as 7/d decreases, thus contributing to a
decrease in the system natural frequency. The system natural frequency may also be
affected by the non-linear fluid damping. This effect is however not well understood

and subsequently make it difficult to estimate quantitatively the contribution from

each factor to the variation in "/ f{. On the other hand, f,"/f," in the inline

direction appears to decrease for U, > 12 (the corresponding Re is 2900) as 1/d
reduces (Fig. 3-15). Again, this could be the combined effect of varying system
mass, stiffness and damping ratios with 77d.

The value of f"/f" and f"/f;" appears to be slowly decreasing as U,
increases. For the purpose of comparison, the fluctuating displacement data of an
isolated‘ elastic cylinder in a cross flow (Zhou et al. 1999b) was also analysed. The

deduced £/ f5" is included in Fig. 3-14, which exhibits a behaviour similar to the

two cylinder case. It is therefore conjectured that the observation is not directly
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related to the interference between cylinders but rather to the fluid-cylinder
interaction. A linear analysis of the combined fluid-cylinder system (Zhou et al.

2001) indicates that a varying fluid damping, as U, increases, could be responsible

for the slowly evolving system natural frequency.
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Figure 3-15  Variation of the inline f" with U,. Cylinder 1. A, 7/d = 1.13; A,

1.70; O, 3.00. The solid line indicates the trend.

It is interesting to note that, when resonance occurs near U, = 4.2 for 7/d =

3.00 and U, = 11.0 for 7/d = 1.13, f"/ £, falls off sharply and then rises rapidly

away from resonance. The variation ranges between 6% and 10% of f;”. For

Cylinder 2, the dependence of f,"/f," on U, (Chapter 4) is quite similar to that

presented for Cylinder 1. Price and Paidoussis (1989) measured the free vibration of
a cylinder located in a tube bundle in a water cross flow. Their test cylinder was

rigid but flexibly mounted at both ends and U, < 10. They observed that near

resonance the system natural frequency (or fluidelastic natural frequency) decreased
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initially and then increased rapidly as U, increases. The mechanism behind the

observation was not discussed.

5.4
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Figure 3-16  Variation of fy‘” with U, near resonance. Cylinder 1, 7/d = 3.00. The

solid line indicates the trend.

There is no drastic change in f,/ 0(1) near U, =26.0 where ¢, is largest.
As postulated previously, resonance near U, = 26.0 occurs as a result of the
coincidence of the vortex shedding frequency with f®. A 10% variation in
fP1 £ between U, =21 ~ 31 is clearly shown in Fig. 3-16. The observation

further corroborates the earlier conjecture that the major mechanism behind the

instability, i.e. the prominent peak at U, = 26.0, is the resonance of the vortex
shedding frequency with f”. The variation of f”/ f," follows a similar fashion
to thatof £/ f," near U, =4.2 for T/d=3.00or U, =11 for T/d = 1.13.

It is known that when a structure is forced to vibrate in a cross flow, a lock-in
phenomenon occurs when the vortex shedding frequency coincides with the

frequency of the imposed excitation force. In free vibration, however, it is the vortex
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Figure 3-17  Power spectra fE,, of the strain €, for varying U,, T/d = 3.00,

Cylinder 1. The solid line highlights the trend.

shedding that excites the structure. Therefore, the vortex-induced force dominates.
This force has a dominant frequency equal to that of vortex shedding. In the 7/d =

3.00 case, the €, -spectra for U, = 17 ~ 35 indicate that the third-mode natural

frequency varies near resonance; the variation appears dictated by the vortex

shedding frequency (Fig. 3-17). To highlight this point, Fig. 3-18 compares the
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shedding frequency (A) with U, around resonance: (a) £ and f,;
(b) £ and f,. Cylinder 1, T77d = 3.00. The solid line indicates the

trend.

variation of £, /£ with that of f®/f" (Fig. 3-18a) and "/ f;" (Fig. 3-18b)
near resonance. At U, =204, f, /f" and f/f," are close enough to interact

with each other and resonance starts to occur. Influenced by the relatively small

Qb Pao Yue-kong Library
Q’v PolyU °* Hong Xong
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value of f, /f" =42, f1f drops from 4.98 to approach f, / . Note that
£, /f® remains linear with respect to U,, implying that f¥ imposes little
influence on f, . Such interplay between f; and f_v(” continues until they are
identical or synchronise at U, = 24.6. The system tends to maintain synchronisation.
As f, /f® increases with increasing U,, f/f, follows f/f" uniil

eventually f, /£ and £/ f{" are de-coupled from each other at U, =26.2. The

0 0
interaction between f, and f" is quite similar near U, = 4.2 (Fig. 3-18b) or U, =

11 at T/d = 1.13 (not shown). Clearly, vortex shedding dominates the nonlinear
interaction between the fluid excitation force and the structural vibration in the free
vibration case, thus tuning the natural frequency of the system to the vbrtex shedding
frequency. This observation contrasts with the lock-in phenomenon where the vortex

shedding frequency is dictated by the forced vibration frequency of a cylinder.

It is worth pointing out that f¥ varies over U, = 20 ~ 28, whereas P
varies over U, = 3.5 ~ 5 only. The difference in the U, range is probably because
the fluid excitation force at U, = 26 is far greater than that near U, = 4.2. Itis

foreseeable that the U, range over which the system natural frequency varies will be

even greater in the context of a water flow where the excitation force is much greater.

3.5.3 Effective damping ratios

The effective damping ratio of a fluid-cylinder system is made up of fluid and
structural damping. The free vibration of an elastic structure has multiple modes
with different natural frequencies and effective damping ratios. This section

discusses the behaviour of these modal damping ratios and their dependence on U,
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and 7/d. The modal damping ratios were calculated from the €, and &, signals using

ARMA technique.
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Figure 3-19 presents the cross-flow modal damping ratios, f':,, )(,_23 and

. . 2 3
™ corresponding to the system natural frequencies f,f® and f,

ve?

respectively. The ratios are calculated from the &, signals of Cylinder 1. The inline
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ratios £, ¢® and ¢ are given in Fig. 3-20. In these figures, the solid line

x.e? x.e x,e
represents the first-mode structural damping ratio.

The values of ¢ and ¢ exhibit relatively large scattering. As shown in

y.€ x.e
Fig. 3-11, the resonance corresponding to the second-mode natural frequency of the

system is the least violent at 7/d = 3.00 and fails to occur when 7/d < 3.00. The €, -
spectrum (not shown) indicates that even when f; coincides approximately with
£ at T/d = 1.13, the peak at f,” does not appear to be more pronounced than that

at f y“’ and f;”. It is evident that the excitation for the second mode of vibration is

weak, as compared with that for the first or third mode of vibration. This is
reasonable. The assumption of two-dimensional flow and a uniform excitation force
along the cylinder span leads to symmetry about mid-span. As a result, the
numerical solution cannot admit a second-mode vibration (Wang et al. 2001). In a
real fluid-cylinder system, however, the vortices shed from the cylinder are not two-
dimensional when Re > 400 (Bloor 1964; Evangelinos and Karniadakis 1999); their
spanwise extent is also limited, typically 1d to 3d (Zhou and Antonia 1994). This
implies a non-uniform excitation force along the cylinder span, thus exciting even
mode vibrations (Figs. 3-7 and 3-13). It is possible that excitation due to the three-
dimensionality of the shed vortices is small compared with the two-dimensional
excitation due to periodic shedding. Therefore, the even-mode resonance could be
much weaker in strength than the odd-mode resonance. Consequently, uncertainty in

the estimation of even mode damping ratios will increase, resulting in much more

scattering in the deduced {2 and 7.

A few observations can be made based on the results presented in Figs. 3-19

and 3-20. Firstly, the effective damping ratio approaches zero when resonance

occurs. Both £ and {{) decrease sharply near U, = 11 for T/d = 1.13 and near
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U, = 4.2 for T/d = 3.00 to a level well below the structural damping ratio. This
suggests that the fluid damping ratio is negative at resonance. Note that near U, =

26, ¢ instead of { ) or {7} dips, in further support of the earlier conjecture that

y.€

the strongest peak in €, ., is mainly due to resonance occurring where f, coincides
with f.

Secondly, for T/d = 3.00, { is generally larger than {) in the range U, <
8, implying larger fluid damping. This observation agrees with the finding of
Granger et al. (1993) for a small flow velocity. Based on a linear assumption that the
structural vibration velocity is small relative to the free stream velocity, Blevins
(1994) showed that, for a fluid-cylinder dynamic system, the inline fluid damping is
twice that in the cross-flow direction. The analysis is expected to be valid for small -

U, only. When 8 < U, < 15, the trend is reversed; { [} becomes smaller than o,

As U, further increases, ) and ) are nearly the same, approximately given by

ye xe
the structural damping ratio. On the other hand, { % and ¢ ;33 are quite comparable
in magnitude with their- counterparts in the lift direction, probably due to the
relatively small contribution from fluid damping. The behaviour of the damping
ratios for T/d = 1.70 is quite similar to that for T/d = 3.00. However, at T/d = 1.13,

the fluid damping ratio £ (=¢{) - {V) increases significantly, accounting for

about one half of the effective damping ratio.

Thirdly, ¢ appears to be the smallest, ranging between 0.01 ~ 0.03.

Blevins (1975) measured the structural damping ratio of a tube and found that the
third-mode structural damping ratio was appreciably smaller than the first and

second-mode damping ratios. This may largely account for the relatively small value

of ¢V since the fluid damping ratio is small in the present situation. The small {7
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may also contribute to the observation that the third-mode resonance where f,

.. . 3) . . X
coincides with £ is far more violent than the first-mode resonance where f,

approach f,”.
Finally, the effective damping ratios rise, though slowly, as U, increases

beyond 15, apparently resulting from increasing fluid damping.

3.6 Conclusions

Fluid-structure interactions of two freely vibrating elastic cylinders in a cross-

flow have been experimentally investigated. The following conclusions can be

drawn.

1.  Vortex formation and its evolution around the cylinders were examined. The
spectral phase shift ®,, between the vibrations of the two cylinders is £7 at
T/d = 3.00. This observation is consistent with previously reported results
(Ishigai et al. 1972, Bearman and Wadcock 1973) that vortex pairs are
symmetrically formed and shed from the two cylinders for a sufficiently large
transverse spacing. Accordingly, the two vortex streets immediately behind the
cylinders are predominantly in the anti-phase mode. Furthermore, this finding
is found to be independent of Re. As T/d reduces to 1.70, one narrow and one
wide wake were observed and the corresponding normalised dominant
frequencies, as seen from velocity spectra, were 0.31 and 0.105, respectively.

Flow visualisation results suggest that vortices might be shed from both sides
of each cylinder at the same frequency, i.e., f. =0.1. The two vortices across

the narrow wake displayed different convection velocity and subsequently
underwent pairing. The two counter-rotating pairing vortices further acted to

‘suck’ in the gap vortex in the wide wake generated by the other cylinder.
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Consequently, the three vortices merged and had a small lateral spacing,
resulting in a prominent peak in the velocity spectra at f = 0.3. This
observation is in further support of the earlier results obtained in Chapter 2. At
7/d = 1.13, @, is generally near zero, indicating a dominance by the alternate
vortex shedding, though symmetric shedding is seen from the flow
visualisation data from time to time.

Vibration characteristics of the elastic cylinders contrast distinctly with those
of rigid ones. The instability of a rigid circular cylinder occurs at the first-
mode resonance only. For the 7/d = 3.00 elastic cylinder case, present
measurements indicate the occurrence of the first-, second- and third-mode
resonance. The third-mode resonance is far more violent due to the combined
effect of higher flow energy, smaller effective damping ratio, and -

synchronisation of vortex shedding with the fifth harmonic of f. This

finding points to the significant role structural flexibility play on structural
instability, which has been overlooked in most previous studies. The inline
vibration appears to be far less violent for the third-mode resonance than the
cross-flow one.

The natural frequencies of the combined ﬂuid-cy]indér system change as a
result of fluid-structure interactions. Firstly, the natural frequencies of the
system experience a rather sudden variation, up to 10%, near resonance. The
variation always displays the pattern of a dip followed by a rise. In the free
vibration case, vortex shedding dominates the non-linear interaction between
the fluid excitation force and the structural vibration. As a result, when the
vortex shedding and system natural frequency components approach each
other, the system natural frequency is modified so as to adapt to the vortex

shedding frequency. The observation contrasts with the lock-in phenomenon
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where the vortex shedding frequency is tuned to the forced vibration frequency
of a cylinder. Secondly, the cross-flow natural frequencies of the system
increase when the transverse spacing ratio is decreased. Presumably, the fluid-
cylinder system may be modelled by a mass-spring-damper system; both fluid
and structures contribute to the stiffness and damping. The observed increase
in the repulsive force between the cylinders as they approach each other could
be seen as an increase in fluid stiffness, thus causing a rise in the cross-flow
natural frequency of the system. Thirdly, the natural frequenéies of the fluid-
cylinder system appear decreasing, albeit slowly, as U, increases. The
observation, which also persists for the single cylinder case, does not seem to
depend on the interference between cylinders.

The effective damping ratios of the cylinders with a relatively large mass ratio
have been characterised. The values of ) approach zero when resonance

occurs near U, = 11 for T/d = 1.13 and near U, = 4.2 for T/d = 3.00, so is { )

near U, = 26, thus indicating negative fluid damping. At off resonance, the
variation of the ratios is consistent with the linear analysis of the fluid-cylinder
system for relatively small U,. When U, > 15, the ratios are quite comparable
in the lift and drag directions, probably the result of a small fluid damping in

the present case. The cross-flow fluid damping becomes significant at 7/d =

1.13, accounting for about one half of the effective damping. The third-mode
effective damping ratio { ) is appreciably smaller than that corresponding to

the first- or second-mode. This could be attributed to a substantial decrease of

the structural damping ratios for higher modes of vibrations.
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CHAPTER 4

VORTEX-INDUCED VIBRATION CHARACTERISTICS
OF TWO FIX-SUPPORTED ELASTIC CYLINDERS

4.1 Introduction

It has been discussed in Chapters 1 and 3 that early studies of fluid-structure
interaction problems were mostly concentrated on the behaviour of the wake and the
induced forces on rigid structures (Richter and Naudascher 1976; So and Savkar
1981; Baban et al. 1989). The dynamic characteristics of an elastic cylinder can be
quite different from the rigid case. Later investigations dealt with elastic structures
because of their importance in many engineering fields (Feireisen ef al. 1994; West
and Apelt 1997; Zhou et al. 1999a; Zhou et al. 2000b). In spite of these studies,
investigations of the interactions between fluid and elastic structures as a fully
coupled problem are far from complete. As discussed in Chapter 1, the flow-induced

vibration problem of two side-by-side elastic cylinders in a cross flow is further

“complicated by the ratio T over d. Varying 7/d could lead to the formation of a

single or multiple wakes (Landweber 1942; Spivac 1946; Ishigai et al. 1972;
Bearman and Wadcock 1973; Zdravkovich 1985). This, in turn, could affect the
dynamic response of the cylinders and their resonance (or synchronisation)
behaviour. There have been relatively few studies on two side-by-side elastic
cylinders in a cross-flow.

Chapter 3 presents a fairly detailed investigation of the fluid-structure
interaction of this particular problerﬁ. The emphasis was placed on understanding
the fluid dynamicvs of the wakes and the effects of cylinder vibration on the wake

structures. It has been proposed in Chapters 2 and 3 that vortices might shed from
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both sides of each cylinder at the same frequency, i.e. f, = 0.1, at a spacing ratio

range of 1.2 < 7/d < 2.0. The two vortices across the narrow wake displayed
different convection velocity and subsequently undergo pairing. The two counter-
rotating pairing vortices further act to merge with the gap vortex in the wide wake

generated by the other cylinder, thus resulting in a prominent peak in the velocity

spectra at f = 0.3. It is further found that the natural frequencies vary slowly with

U, except near resonance where a sharp variation occurs. The sharp variation in the
natural frequencies of the combined system is dictated by the vortex shedding
frequency, in contrast with the lock-in phenomenon, where the forced vibration of a
structure modifies the vortex shedding frequency. Measurements presented in
Chapter 3 also showed a very prominent peak in the cross-flow root mean square

strain distribution at 7/d = 3.00 when the vortex shedding frequency f, coincides

with the third-mode system natural frequency. These results have greatly improved
the understanding of fluid-structure interaction of two side-by-side cylinders in a
cross-flow. However, many other issues remain to be addressed. For example, for
large 7/d, the cross-flow vibration generally overwhelms the in-line vibration
because the fluctuating lift is one order of magnitude lager than the fluctuating drag.
Does this trend depend on 7/d? If so, what role does the fluid dynamics around the
cylinder play? In the free vibration case, vortex shedding generates the excitation
forces and modifies the natural frequencies of the fluid-cylinder system near
resonance. Is the modification the same on the natural frequencies associated with
the different cylinders? How would the correlation behaviour between the dynamic
response of the two cylinders be affected by different 7/d values?

In order to supplement the understanding of the fluid-structure interaction
gained from Chapters 2 and 3, this chapter aims to investigate experimentally the

interference effects on the free vibration of two side-by-side cylinders. The emphasis
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is on the structural dynamics and the vibration characteristics. This objective is
achieved by simultaneously measuring the wake velocity and the structural dynamics
using a single hot wire and two FBG sensors. Zhou et al. (1999b) and Jin et al.
(2000) developed the FBG sensing technique for flow-induced vibration
measurements. They have found a linear empirical relationship between the root
mean square strain and displacement in the lift direction when the displacemeﬂt is
reasonably small. This linearity greatly facilitates the interpretation of the strain
data. It is however not very clear whether this linear relationship is also valid in the
drag direction. Therefore, the first task is to establish the empirical correlation
between strain and displacement in the drag direction. The free vibration of the two
cylinders, at different 7/d, is then investigated in detail based on the measured
dynamic strains, including the signal themselves, their spectra and their root mean

square (rms) values. Finally, the interference effects on the correlation coefficient

and the system natural frequencies are discussed.

4.2 Experimental Details

The experimental set-up and measurement techniques used were identical to
those presented in Chapter 3. In view of this, only a brief description of the
experimental details is given here.

A schematic mounting of the two acrylic cylinders symmetrically placed
about the mid-plane of the tunnel working section is shown in Fig. 3-2. In this
experiment, the coordinate system is attached to Cylinder 1 with x and y measuring
zero from the centre of this cylinder. The other is labelled Cylinder 2. Both

cylinders were fix-supported at the ends. Furthermore, in order to minimise the

variation of f," associated with remounting, 7/d was changed by moving Cylinder 2
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alone. The values of f)” determined for Cylinder 1 were 104 Hz for the lift (or y)

direction and 98.60 Hz for the drag (or x) direction. Similarly, f;" for Cylinder 2

were found to be 94, 95 and 101 Hz for the lift direction and 95.83, 101.50 and
101.53 Hz for the drag direction for 7/d = 1.13, 1.70 and 3.00, respectively. In the
present investigation, it was important to minimise tunnel vibrations, which were
mainly derived from the fan and motor. Care was taken to isolate the working
section from the vibration sources through the use of vibration absorbers.
Furthermore, Chapter 3 had already established that the maximum effect of the
tunnel vibration on the spectral energy distribution associated with the first-mode

natural frequency was about 1.1%, indicating a negligible tunnel vibration effect on

the measurements.

Thus arranged, the blockage was about 3.4% and the Reynolds number Re
investigated varied from 800 to 10,000 with a corresponding U, range of 3 - 43. In
the free-stream the longitudinal turbulence intensity was measured to be less than
0.2%. The first-mode structural damping ratio {" was estimated to be 0.026, with

EI = 0.224 Nm? and M~ = 565 for both cylinders. In this Re range, the effect of
blockage on the mean drag was insignificant. Three spacing ratios were investigated,
ie. T/d = 3.00, 1.70, and 1.13. These ratios were chosen because the flow regimes
thus resulted were representative of the different proximity effects for two side-by-
side cylinders as observed by Zdravkovich (1985). Great care was taken c;uring
experiments to ensure that 7/d remained the same along the span of the cylinders.

A single hot wire (Tungsten) was located at x/d = 2 and y/d = 1.5. The wire
was operated at an overheat ratio of 1.8 with a constant temperature anemometer
(DISA Type 55M10) to measure the streamwise velocity u in the wake. This
measurement would provide a check on Athe vortex éhedding frequency that was

determined from the strain signals. The bending displacements X and 'Y along the x
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and y direction, respectively, were measured using a Polytec Series 3000 Dual Laser
Beam Vibrometer (Fig. 3-2). One laser beam was used to measure the displacement
at the mid-span of the cylinder; the other was employed to monitor the tunnel
vibration at the same cross-section. The differential signal from the two beams
significantly reduced contamination from tunnel vibrations.

The use of the laser vibrometer to measure Y has been discussed in detail (So
et al. 2000b; Zhou et al. 1999b). These studies showed that X was very difficult to
measure using a laser vibrometer. There were three reasons for this difficulty.
Firstly, the signal-to-noise ratio was relatively weak. Secondly, it was quite difficult
to get an accurate measurement of X due to the small curvature of the cylinder and
tunnel vibration. Thirdly, the method used to position the optical head of the laser
vibrometer was not very reliable and was easily affected by tunnel wall vibration.
They further found that it was extremely difficult to obtain a reasonably good signal-
to-noise ratio for a 6mm diameter cylinder with Re > 8,000. S'ince then, a .great part
of the difficulties had been overcome and it was possible to measure X with fair
accuracy. The optical head of the laser vibrometer was introduced into the tunnel at
a location downstream of the cylinder and the laser beam was directed towards the
cylinder surface along the x-axis. The overall measurement uncertainty was
estimated to be +7.5%. This uncertainty depends on the signal-to-noise ratio, which
in turn was affected by the wind spéed. For example, the signal-to-noise ratio varied
between 1 and 4 in the speed range 5 m/s to 15 m/s for the two side-by-side
cylinders. Even though this measurement accuracy was not as good as that deduced
" forY (So et al. 2000b), the result could be used to establish an approximate strain-
displacement relation in the x-direction.

In order to establish the empirical strain-displacement relation in the drag

direction, the strain of a single cylinder was measured in the x-direction using one
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FBG sensor. The dynamic strains of the two cylinders along the x or y direction were
measured simultaneously using two FBG sensors. At the same time, the
displacement along the x or y direction was also measured so that a strain-
displacement relation could be established. An optical silica fibre of diameter 125
pum built with an FBG sensor was buried in a groove along the span of cylinder. The
FBG sensor was located at mid span of the cylinder and at 90° from the leading
stagnation line. This arrangement was used to measure the y-direction strain. Since

the sensor grating has a finite length of about 10mm, the measurement represents the

average strain over this length. The strain thus measured is designated as €,. In
principle, €, is independent of the vibration of the structure along the x direction.

However, non-linear fluid-structure interaction could create cross talk between the x
and y direction, thus x-direction vibration would affect € and vice versa. If the
cylinder was rotated 90° clockwise (or anti-clockwise), the FBG sensor will be
located at the rear stagnation line (or the leading stagnation line whichever the case
may be). In this arrangement, it measures the x-direction strain €. A major
contribution to error came from non-linearity effects when calibrating the relation
between the output voltage and strain (Zhou et al. 1999b; Jin et al. 2000). The
experimental uncertainty in strain measurement was estimated to be +8%. Thus
measured, the signals X, €, anduor Y, € anduoru, €, and €,, or €,,, £, and u,
where the subscripts 1 and 2 represent the cylinder number, were offset, amplified

and digitised using a 12bit A/D board and a personal computer at a sampling

frequency of 6.0kHz per channel. The record length was about 20s. This record

length was sufficiently long for the rms values X, of X, Y, ofY, € ., of € and

£ of € to reach their stationary state, with a variation smaller than 1.0%.

yorms
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4.3 Strain-Displacement Relations

For the case of a single cylinder, Zhou et al. (1999b) and Jin et al. (2000)

found that the spectra deduced from the € and Y signals were in agreement with

each other in terms of their salient features, such as f, and f”. Besides, the two
signals showed a complete coherence at these frequencies. They further deduced an
empirical relation between Y, ande, .

It is useful to quantify the € -Y relation for two side-by-side cylinders. The
relation could change as the interference from the neighbouring cylinder intensifies.
This variation could shed light on the cylinder vibration characteristics and also

facilitate the interpretation of strain measurements. Plots of €, = versus Y
measured from Cylinder 1 are presented in Fig. 4-1. The Y, -€ yoms Telation is

generally linear for small Y, , but the slope changes as the two cylinders approach
each other, implying a variation in vibration characteristics for different 7/d values.

When U, < 20, Y, < 6 pm, the relation between €, and Y, (Fig. 4-1a) is

approximately linear for the 7/d = 3.00 case, in reasonably good agreement with that

reported by Zhou et al. (1999b) and Jin et al. (2000) for a single cylinder. The result
suggests a small interference effect in this case. When U, >20, Y, >6um, €
increases faster and the ¢, .-Y, relation starts to deviate from linearity. This
deviation is not surprising. As will be discussed in Section 4-4, the third-mode

resonance occurs near U, = 26 where f, coincides with the third-mode natural

frequency of the fluid-cylinder system. At a higher mode of vibration, Y experiences
a faster spanwise variation for given amplitude. Consequently, the strain, a second

derivative of ¥ with respect to the spanwise variation, will increase faster than the
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displacement. As 7/d decreases, g, reduces for the same Y, thus the €,-Y relation

varying. This may be attributed to a different mixture of vibration modes when

interference between the cylinders intensifies.
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Figure 4-1 Relation between Y, and ¢, of the same cylinder for different 7/d

ratios: O, present data; @, single cylinder (Zhou et al. 1999b).
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Figure 4-2  Relation between €, and X, : O, two cylinders at 7/d = 3.00; @,

x,rms

single cylinder. Solid line indicates a best fit to the experimental data.

In view of the fact that single cylinder measurements can be used as a
benchmark to investigate the interference between two cylinders, the measurements

of &€, and X were conducted for a single cylinder as well as for two side-by-side
‘cylinders. The variations of €, with X are shown in Fig. 4-2. Again, the
relation between €,,. and X, .  is linear and can be approximated by €, =

02X Since the displacement in the drag direction is much smaller than that in

rms *

the lift direction, the linear relation between £, and X, is expected to extend

beyond that (U, = 26) in the lift direction. These results, together with those given

by Zhou er al. (1999b) for the lift direction, show that the trend of the dynamic
response of the cylinder along the drag and lift direction is quite similar for the range

of U, investigated. There is one difference between the results for the drag and lift

direction though. While the &, -Y relation is only linear for Y, = < 8, the £ -X
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relation remains linear for the range of X tested, which is greater than 20. The

reason could be attributed to the much smaller fluctuating drag compared to the lift
(So and Savkar 1981). As a result, the strain &, and the vibration amplitude X are
much smaller and non-linear effects have not yet been established.

The measurement of X using the laser vibrometer proved to be difficult for
the two-cylinder case, especially at high free stream velo;ities. Therefore, only a
few data points at fheSe velocities were obtained. Nevertheless, the limited data
indicates an approximately linear € , -X = relation (Fig. 4-2) at T/d = 3.00, in
good agreement with the single cylinder case. For 7/d < 3.00, the drag direction
vibration was weak, therefore, the signal-to-noise ratio was poor and the

measurements were not successful.
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Figure 4-3 Time history of the &  (upper trace - Cylinderl, middle trace -

Cylinder2) and u (lower trace) signals: (a) 7/d = 3.00; (b) 1.70; (c)
1.13. U, = 16. The hot wire was located at x/d =2 and y/d = 1.5.
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4.4 Vibration Characteristics

4.4.1 Time series and their spectra

The time histories of &, from Cylinder 1 (upper trace) and 2 (middle trace),
along with the simqltaneously measured u (lower trace), for U, = 16 at different 7/d
values are shown in Fig. 4-3. Resonance fails to occur at this U,. The

corresponding time series of €, from the two cylinders and the simultaneously

measured  are displayed in Fig. 4-4. The same scales are used in the plots of Fig. 4-

4 for the purpose of comparison. Discussion of their behaviour for the different 7/d

investigated is given below.
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-
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Figure 4-4  Time history of the &, (upper trace - Cylinderl, middle trace -
Cylinder2) and u (lower trace) signals: (a) 7/d = 3.00; (b) 1.70; (¢)
1.13. U, = 16. The hot wire was located at x/d =2 and y/d = 1.5.

At T/d = 3.00, the €, signals (Fig. 4-3a) show a pseudo-periodic fluctuation,

which is also seen in the u signal, apparently due to the excitation of vortex shedding.



122

However, the €, signals (Fig. 4-4a) are quite different from £, . A pseudo-periodic
fluctuation is also evident, but its frequency is much smaller than that of €, and

differs from that of the u signal. This periodic fluctuation component corresponds to
the first-mode natural frequency of the combined fluid-cylinder system, as confirmed
later by the spectral analysis. It should be noted that the £, and €, signals of
Cylinders 1 at 7/d = 3.00 are similar to those of Cylil;der 2 (Figs. 4-3a and 4-4a).

The &, signal exhibits a beating behaviour, which could be the result of interaction

between vortex shedding and one of the natural frequency components of the

cylinder vibration.
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Figure 4-5 Power spectra E,, (upper plate - Cylinderl, middle plate - Cylinder2)
and E, (lower plate): U, = 16; (a) T/d = 3.00; (b) 1.70; (c) 1.13. The

hot wire was located at x/d =2 and y/d = 1.5.

Spectra E,, E, and E_, corresponding to the strain and velocity signals are

shown in Figs. 4-5a and 4-6a. E, determined from the u-velocity measurement
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Figure 4-6 Power spectra E,, (upper plate - Cylinder1, middle plate - Cylinder2)
and E, (lower plate): U, = 16; (a) T/d = 3.00; (b) 1.70; (c) 1.13. The

hot wire was located at x/d =2 and y/d = 1.5.

yields one major peak at f, = f,d/U_ = 0.20, which is the same as the vortex
shedding frequency of a single cylinder. This peak is also evident in E_, (Fig. 4-5a).
Furthermore, the peak occurs at the same frequency for E,, and E_ deduced from
fhe two cylinders, thus suggesting an identical vortex shedding frequency for the
cylinders. The peak at f~ = 0.059 in E,, and E, can be identified with the first-

mode natural frequency f" and f.""of the fluid-cylinder system in the lift and

drag direction, respectively. These frequencies f" and f”" are consistent with

the calculated value for a single cylinder system. According to So et al. (2000a), the

calculated value is given by f," /[l +mpd*/4m . Since m/pd’ (= 450) is quite large

in an airflow, the calculated value is virtually identical to f,"”, based on the

theoretical relation. Another peak occurs at f = 0.32. The third-mode natural
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frequency can be estimated from f” and f" using the formula given in Chen
(1987), ie. (12122.4) £ (or f{"")] = 0.319. Therefore, this peak is probably due
to the third-mode natural frequency f" and f" of the fluid-cylinder system.

Similarly, the peak at f° = 0.163 is identified with the second-mode natural

frequency of the system. E_ (also E, ) from Cylinder 1 exhibits a close resemblance
to that deduced from Cylinder 2. The peaks corresponding to f*" and f, are
partially overlapping, which accounts for the beating character observed in the € y
signals (Fig. 4-3a). Evidently, the most prominent peak occurs at f, = 0.2 for E,,
but at " for E, . This could be attributed to the fact that the vortex excitation
forces are substantially weaker in the drag direction than in the lift direction.
Consequently, the prominent component appears at £ in the drag direction, but at
£, in the lift direction.

As T/d decreases to 1.70, the €, signal (Fig. 4-3b) becomes quite different

from that measured at 7/d = 3.00. The pseudo-periodic fluctuation due to vortex
shedding appears very weak. E, (Fig. 4-5b) exhibits a broad peak at f~ = 0.1 and
its value is about one decade lower than that shown in 7/d = 3.00. The weak vortex
shedding component implies that the vortex strength is impaired at 7/d = 1.70

because of interference between cylinders. On the other hand, the £, signal (Fig. 4-
4b) and the corresponding E_, (Fig. 4-6b) are quite similar to their counterpart at 7/d

= 3.00, that is, interference between cylinders has little effect on the vibration in the

drag direction. It should be pointed out that the u signal measured simultaneously

with €, (Fig. 4-4b) shows a substantial difference from that measured

simultaneously with € (Fig. 4-3b). The former displays a much stronger pseudo-
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periodic fluctuation; the frequency of the fluctuation is higher than that of the latter,

in spite of the fact that the wake velocity was measured at the same U, and the same

spatial location, i. €. xd = 2 and yd = 1.5. E, deduced from the signal

simultaneously measured with £_ displays a more pronounced peak at f~ = 0.3 (Fig.

4-6b). It was reported previously that the gap flow between the two cylinders is not
stable and will deflect for 7/d = 1.5 ~ 2.0. The deflection led to the formation of one
narrow and one wide wake, which are associated with high and low vortex
frequencies', respectively (Spivack 1946; Ishigai et al. 1972; Bearman and Wadcock
1973; Kamemoto 1976; Kiya et al. 1980; Kim and Durbin 1988; Sumner et al. 1999).
The deflected gap flow is bi-stable and changes over from one side to the other from
time to time. The ratio of the two frequencies is close to but less than 3 (Kim and

Durbin 1988). In view of these observations, it can be inferred that, when measuring

€, the hot wire was probably located in the narrow wake, thus giving rise to one
major peak at f~ = 0.3 (Fig. 4-6b). On the other hand, when measuring €, , the gap

flow might have been deflected to the other side and the hot wire would measure the
wide wake. Consequently, E, exhibits a broad peak at f " = 0.1 (Fig. 4-5b). Note

that in either case, the pseudo-periodic fluctuation, evident in the u-signal, is hardly
identifiable, suggesting weak vortex excitation or weak vortex strength. Zhang and
Zhou (2001) measured the wake of three side-by-side cylinders. They observed that
the deflected gap flows between the cylinders at 7/d = 1.5 form one wide and two
narrow wakes, which were associated with a lower and a higher vortex shedding
frequency, respectively. Based on flow visualisation and downstream evolution of
the prominent peaks ’of the hot-wire spectra, they proposed that the vortex generation
mechanisms might be different between the narrow and the wide wakes. While those

in the narrow wake may originate from shedding, those in the wide wake could be
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generated by the shear layer instability. Their speculation is corroborated by the
present observation that the periodicity of vortices is significantly stronger in the

narrow wake (Figs. 4-4b and 4-6b) than that in the wide wake (Figs. 4-3b and 4-5b).

When 7/d is further reduced to 1.13, the behaviour of £, and &, signals

(Figs. 4-3c and 4-4c) are again similar to those at 7/d = 3.00, showing a clear
presence of the vortex shedding component, except with a lower frequency. In such

a small 7/d, the two cylinders behave like a single structure and hence the Strouhal

number is St = [(1+1.13)f,J/U_ = 0.2 or f, =0.09 (Figs. 4-5c and 4-6c).

4.4.2 Root mean square strain
The dependence of €, and €, on U, at different 7/d values are shown

in Fig. 4-7. A few observations can be made. Firstly, €, and ¢, of Cylinder 1

is in general agreement with those of Cylinder 2. Secondly, their values increase

with U,. Thirdly, at 7/d = 3.00, ¢, displays three peaks at U, = 4.2, 12.0 and
26.0, respectively, while €, shows only one tiny peak at U, = 26.0. The peak at
U, = 12 is barely discernible, while the one at U, = 26 is most prominent. Fourthly,
there appears to have no peak for the case 7/d = 1.70 and there is only one peak at
U, =11 for the case T/d = 1.13.

In order to understand the different €, ,,, peaks for the case T7d = 3.00,
Figure 4-8 gives the time histories of € frorﬁ Cylinder 1 (upper trace) and 2 (middle
trace) along with the simultaneously measured u (lower trace) at U, = 4.2 and 26. It
can be seen that at these U, values, the & signals exhibit strong periodic

fluctuations. These fluctuations have the same period as the excitation forces

induced by vortex shedding. The corresponding spectra E_ at U, =4.2 along with
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E, are shown in Fig. 4-9.  All spectra exhibit a prominent peak at

f*=fd/U_=02,1i.e. at the vortex shedding frequency f, (c.f. E, in Fig. 4-9c).
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The occurrence of resonance is responsible for the prominent peak in E_ and also
thatin €, ., at U, =4.2. Similarly, the peaks at U, ~ 12 and 26 in €, ,,; could be
identified with the result of f, coinciding with the second- and third-mode natural

frequencies of the fluid-cylinder system, respectively.
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Figure 4-8 Time historyof & (upper trace - Cylinder 1, middle trace - Cylinder

2) and u (lower trace) at 7/d = 3.00: (a) U, =4.2; (b) U, = 26. The

hot wire was located at x/d =2 and y/d = 1.5.

The peak in €, ,,, at U, = 26 is by far most pronounced compared to the

others. It has been discussed in Chapter 3 that four reasons could be put forward to

explain this behaviour. Firstly, the resonance corresponding to f}f‘” occur at a higher
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U,, which is associated with much higher flow excitation energy. Secondly, the

effective damping ratio, which is the sum of the structural and fluid damping ratio,

corresponding to ¥ is appreciably smaller than that corresponding to £ or f®
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(Chapter 3). Thirdly, the fifth harmonic of fy‘"' (=0.0394) is 0.197 and is very close

to f, = 0.2, thus possibly feeding additional energy to the resonance phenomenon.

Finally, as previously discussed in Section 4-3, the strain, a second derivative of
displacement with respect to the spanwise variation, tends to be amplified at a higher

mode. In contrast, £, is substantially weaker at resonance, including at U, = 26,

resembling the case of an isolated cylinder.

As T/d reduces to 1.70, the £, ., values decrease considerably for both

cylinders. Consequently, resonance does not occur (Fig. 4-7b). It can be observed

from E, and E, (Figs. 4-5b and 4-6b) that a substantially weakened vortex

shedding component at T/d = 1.70 is noticed compared to those shown at 7/d = 3.00
(Figs. 4-5a and 4-6a). Therefore, vortices shed from the cylinders are very weak at
this T/d. On the other hand, the intensified interaction between the narrow wake and
the wide wake may lead to a loss of temporal coherence. In other words, the vortex
spacing is more random and the frequency of shedding is not as well defined.
Consequently, the cylinders would no longer be excited at a well-defined frequency
and resonance would not be observed. It will be seen later that the two cylinders loss
correlation 7/d = 1.70 (Fig. 4-11), thus also suggesting a loss of temporal coherence.
Accordingly, structural vibrations are impaired, even at resonance. This observation
suggests that the structures are mosf stable for the range of 7/d = 1.2 ~ 2.0 when the

interaction between the flow around each cylinder weakens the vortices in the narrow

and wide wakes.

As T/d is further reduced to 1.13, one peak in both €, . and € ., occurs at
U, = 11 (Fig. 4-7c). For T/d < 1.2, the two cylinders act like a single structure, and

vortices are alternately shed only from the outer (or free stream) side of the two

cylinders to form a single vortex street (Sumner ef al. 1999). The spectrum E,
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indicates that the vortex shedding frequency is halved at 7/d = 1.13, leading to

f, =0.09 (Figs 4-5c and 4-6¢). The spectra E , E,  andE, forT/d=113at U, =

11 (not shown) indicate the occurrence of the first-mode resonance, which should be

responsible for the peak inboth € , and €, . .
The peak in €, . at U, = 1l is quite prominent, comparable to that in

€ which is in d.isti_nct contrast with the case of 7/d = 3.00 (Fig. 4-7a) or an

y.rms ?

isolated cylinder, which will be shown later in Chapter 5. Two reasons may be

responsible for this observation. Firstly, when resonance occurs at U, = 11, the
spectral phase shift between €, and €, at the vortex shedding frequency is near
0.57 (Chapter 3), indicating that the two cylinders do not vibrate in phase. This
impairs the vibration in the lift direction, and accounts for the observation that the

€ magnitude at the first-mode resonance (U, = 11) for 7/d = 1.13 is rather

y.rms

comparable with that (U, = 4.2) for 7/d = 3.00, in spite of the fact that the former
occurs at a higher U, . Secondly, for an isolated cylinder or two side-by-side
cylinders at 7/d = 3.00, the drag fluctuates twice as fast as the lift, implying that
resonance does not occur simultaneously in the drag and lift directions. The hump or
mild peak in £, at U = 4.2, 12 and 26, where resonance occurs in the lift
direction, is either due to cross talk between lift and drag or to the non-linear effect
created by the violent vibration in the lift direction. At 7/d = 1.13, however, vortices
are shed from the outer side of the cylinders only, i.e. the drag fluctuates at the same

frequency as the lift. Therefore, resonance occurs simultaneously in both directions.

This explains the pronounced peak in €, at U, = 11.
It is interesting to point out that €, = tends to be larger than £, = at higher

U, , especially for small 7/d. For example, other than the occurrence of resonance,
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the values of € appear larger than €, for U, = 23.0 and 33.0, corresponding

to 7/d = 1.70 and 1.13, respectively. Measurements of mean drag and mean lift on
two side-by-side cylinders (Chapter 3) indicate an increasing repulsive force as the
two cylinders approach each other. The increased repulsive force may lead to an
increase in fluid rigidity between the two cylinders as 7/d decreases, which may be
partially responsible for the suppressed transverse vibrations of the two cylinders.

The increased repulsive forces, however, has little effect on the drag direction

vibration in the present investigation. Consequently, the value of £, tends to be

greater than €, as 7/d reduces.
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Figure 4-10  Variation of ¥, with 7/d at U, = 4.2, 12.0 and 26.0.
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In order to highlight the effect of 7/d on the amplitude of cylinder vibration

near resonance, the dependence of Y _ on T/d at U, = 4.2, 12.0 and 26.0,
corresponding to the first-, second- and third-mode resonance at 7/d = 3.00,

)

respectively, is plotted in Fig. 4-10. Here, Y, were estimated based on the strain-

displacement relations deduced in Section 4-3. Generally, the vibration amplitude at
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T/d = 3.00 is greater than that at 7/d = 1.70 and 1.13, indicating a suppressed
vibration as the two cylinders approach each other. It can be observed that the lift
direction vibration amplitude near the third-mode resonance is by far most
pronounced at 7/d = 3.00. This observation suggests that structural flexibility could

have a significant impact on its instability analysis.
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Figure 4-11  Variation of p,, with 7/d and U, : (a) p,, between ¢, and € ,; (b)

p,, between €, and € ,. OT/d=3.00; A1.70, A1.13.

4.4.3 Correlations between the cylinders

In order to understand further the cylinder dynamics, the correlation

coefficient p,, between the two simultaneously measured €, (or €,) from the

cylinders is calculated and plotted against U, for different 7/d ratios in Fig. 4-11. At
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Figure 4-12  Spectral phase angles ®,, between € , and €, at U, = 16: (a) 7/d =

3.00; (b) 1.70; (c) 1.13.

T/d = 3.00, except in the range of 6 < U, < 12, p,, between €, and €, (Fig. 4-11a)

is generally negative, indicating that the two cylinders move in opposite directions.

The spectral phase angle @, between the signals €, and €, (Fig. 4-3)at U, =16
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are shown in Fig. 4-12. At 7/d = 3.00, ®,, (Fig. 4-12a) is close to 7 at the first-

mode natural frequency f" and the vortex shedding frequency f,. This

observation is consistent with previously reported results (Chapters 2 and 3) showing
that vortices are shed from the two cylinders predominantly in anti-phase mode. In
view of the fact that, in the case of free vibrations, vortex shedding gives rise to the

excitation forces, it might be concluded that the anti-phase vortex shedding from the
two cylinders is respohsible for the negative p,,. The “troughs near U, =4.2,12.0
and 26.0 are apparently linked to resonance; thus it is not surprising to see a more
negative p,, nearer to resonance, where the structural vibration is ‘locked’ together
with the predominantly symmetric vortex shedding from the cylinders. In contrast,
p,, between €, and €, (Fig. 4-11b) is generally close to zero, except near U, =
4.2, 12.0 and 26.0, where resonance occur at the first-, second- and third-mode
vibration frequencies, respectively. This suggests that interference between the two

cylinders at 7/d = 3.00 is small in the drag direction.
As T/d reduces, the interference between the two cylinders is expected to
increase. At T/d = 1.70, the correlation is positive in the lift direction (Fig. 4-11a),

indicating an in-phase movement of the two cylinders. At the two dominant vortex

frequencies f = 0.3 and 0.1, ®,, (Fig. 4-12b) between the signals €, and €, is
about m and O, respectively. However, the component at f "=0.11is unlikely to
make a major contribution to the positive p,,. The E_ spectra (Fig. 4-5b) display

rather pronounced peaks at the natural frequencies of the system but not at f* = 0.1

or 0.3. It may be inferred that the first-mode natural frequency component, at which

®, = 0, in £, contributes largely to the positive p,,. In the drag direction, the

correlation is either positive or negative depending on U, (Fig. 4-11b). The sign is
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again verified to be consistent with the phase shift ®,, (not shown) at £ and is

therefore ascribed to the contribution from the f{” component.
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Figure 4-13  Spectral phase angles @,, at 7/d = 1.13 when resonance occurs at

U,=11: (a) between € ; and € ,; (b) between €, and ¢,,.

At T/d = 1.13, the correlation is positive in both lift and drag directions.
Their values are essentially the same, about 0.6 for U, > 10. As discussed earlier,
the repulsive force between the cylinders increases as 7/d decreases. Assuming a
spring-damper-mass model for the fluid-cylinder system, a rise in the repulsive force
as the cylinders approach each other could be interpreted as equivalent to an increase

in fluid rigidity. Consequently, an increase in correlation between the two cylinders



137

is expected. These results indicate that the two cylinders act like a single structure.
As previously discussed, at 7/d = 1.13, one oscillating vortex street with f,” = 0.09
is formed behind the cylinders (Figs. 4-5c and 4-6¢). The spectral phase angles @,

(Fig. 4-12c) between €, and €, at 7/d = 1.13 and U, =16 is near zero at the

vortex shedding frequency f, =0.09, i.e. the two cylinders move in unison. This
suggests that the vortices be shed alternately from the free-stream sides of the two
cylinders. Note that there is a trough, near U, = 11, in p,, for either direction.

Since the natural frequency associated with Cylinder 1 is slightly different from that
associated with Cylinder 2 (Section 4-2), the two cylinders do not reach resonance at

exactly the same U,. This causes a phase shift of about 0.47 (Fig. 4-13) at the

vortex shedding frequency and subsequently a reduced p,, near U, = 11.

4.5 Fluid Dynamics Effects on System Natural

Frequencies

Chapter 3 studied the effect of the flow on the natural frequencies of the
combined fluid-cylinder system and found that £”, £, £ and f* may depend
on U, and 7/d. Primarily, Chapter 3 focused on the natural frequencies of the fluid-

cylinder system associated with Cylinder 1. In this chapter, an examination is carried

out on whether the flow has the same effect on the system natural frequencies
associated with each of the two cylinders.
)

Comparisons between the first-mode natural frequencies, fy(” and f 7,

associated with Cylinder 1 and 2 are shown in Figs. 4-14 and 4-15. At T/d = 3.00

and 1.13, the behaviour of f" or f" is rather similar for the two cylinders. The

frequencies decrease slowly with U, but experience an abrupt change when
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Figure 4-14  Variation of the cross-flow f with 7/d and U, : O, Cylinder 1; A,

Cylinder 2. (a) 7/d = 3.00; (b) 1.70; (c) 1.13.

resonance occurs. This behaviour has been observed and discussed in detail in

Chapter 3. At T/d = 1.70, however, there is an appreciable difference, up to 5%, in
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FOIRD or f01£" between the two fluid-cylinder systems. The natural

frequencies are determined from the fluctuating strain spectra, which were calculated
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using a conventional FFT algorithm. The frequency resolution Af, fixed by the

sampling rate and the record length used in the FFT calculation, is estimated to be

0.35 Hz. The corresponding uncertainty in £/ f" or f/ f{" is less than 0.4%.

Therefore, the difference in £/ £ or f{/f" between the two fluid-cylinder

systems cannot be attributed to experimental errors.

Considering the fluid-cylinder system as a spring-damper-mass model, both
fluid and structure contﬁbute to the system mass, stiffness and the effective damping
ratio. A number of factors could alter the natural frequency of the system. One is
the fluid force on the cylinder. For example, as the two cylinders approach each
other, the repulsive force increases. This is equivalent to an increase in fluid rigidity.
Furthermore, the increasing repulsive force between the cylinders gives rise to an
increase in the tensile axial loading on the cylinder, which is fix-supported at both
ends, and subsequently increases the structural rigidity (Weaver et al, 1989; Xu et al.
2001). As a result, the system natural frequency might increase. Added mass is
another factor that may change the natural frequency of the system. Chen (1987)
calculated the added mass on two side-by-side cylinders in a cross flow and found
that, in the range of 1.13 < 7/d < 4, the added mass increases as 7/d decreases, thus
contributing to a decrease in the system natural frequency. Non-linear fluid damping
may also affect the system natural frequency, which has yet to be better understood.
The behaviour of the system natural frequency is the combined effect of varying
system mass, stiffness and damping ratios with 7/d. All of these factors are related to
fluid dynamics, which is quite different around each cylinder for the range of 7/d =
1.5 ~ 2.0 (e.g. Chapters 2 & 3). For example, at 7/d = 1.70, the base pressure on one
cylinder is smaller than that measured on its neighbour. The gap flow is deflected
towards the cylinder with the lower base pressure, resulting in a narrow wake.

Meanwhile a wide wake develops behind the neighbouring cylinder.
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Correspondingly, the mean drags and lifts on the two cylinders also differ

considerably. Naturally, it is not surprising to see an appreciable deviation in

FLR1FP or f21f4” between the two fluid-cylinder systems.
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Figure 4-16  Variation of the cross-flow f” and inline f¥ with U, at T/d =

3.00: O, Cylinder 1; A, Cylinder 2. (a), ¥, (b) £

It is interesting to note that at T/d = 3.00 the third-mode natural frequency

FP7£0 (Fig. 4-16) of the fluid-cylinder system exhibits a sudden variation near
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U, = 26, where the third-mode resonance occurs in the lift direction but not in the
drag direction. Furthermore, the variation in f”/f" is rather comparable in
magnitude with that of £/ f{". Since the fluctuating drag has a frequency of 2 £,
the third-mode resonance in the drag direction should occur at U, = 13.0. Indeed, a

sharp variation in f&/f" at U, = 13.0 is observed in Fig. 4-16b for both

0

cylinders. Two reasons could be responsible for the sudden change in f,”/ ;" near

U, =26. One is a possible cross talk between lift and drag. The other is the effect
of non-linearity at the occurrence of the third-mode resonance in the lift direction,
which is very violent (Fig. 4-7a). The latter is most likely to be a more plausible

explanation.

4.6 Conclusions

The free vibration of two side-by-side cylinders, fixed at both ends, in a
cross-flow has been experimentally investigated using fibre-optic Bragg grating
sensors. In the present investigation, the sensor was successfully extended to
measure the dynamic strain due to the drag for a single cylinder. The strain-

displacement relation is linear in the U, range investigated. This linear relation is

expected to extend well beyond the linear range (U, < 22), as reported for the lift

direction, in view of the substantially weaker vibration in the drag direction. The
linear relation remains valid in the case of two side-by-side cylinders, but the slope
changes with T7d. The establishment of the linear relation between strain and

bending displacement facilitates the interpretation of the measured strain data. The

following conclusions can then be drawn.
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At T/d = 3.00, the structural vibration in the lift direction appears to overwhelm
that in the drag direction, particularly when the first-, second- and third-mode

resonance occurs at U, = 4.2, 12 and 26, respectively. The vibration is

especially violent at the third-mode resonance, suggesting the importance of
structural elasticity in instability analysis, which has been largely overlooked in
the past. The characteristics of the structural vibration resemble the case of an

isolated cylinder, implying little interference at this 7/d. The correlation

coefficient p,, between €, and € , generally approaches zero, except near

resonance where the vortex shedding frequency coincides with the system

natural frequencies. The value of p,, between £, and €, is mostly negative

and can go beyond - 0.5 near resonance, fmplying opposite movement of the
two cylinders. This observation is consistent with previously reported in
Chapter 3 that vortices shed from the two cylinders are predominantly in an
anti-phase mode.

As T/d reduces to 1.70, the strength of the vortices is drastically weakened due
to interactions between the flow around individual cylinders. Consequently,
resonance is suppressed, and this suggests an enhanced stability. The fluid
dynamics, such as fluid forces, base pressure and vortex formation, around one
cylinder is very different from that around its neighbour. Consequently, the
natural frequencies of the combined fluid-cylinder systems, associated with
‘each individual cylinder, may exhibit appreciable differences, up to 5%.

When 77/d is further reduced to 1.13, the structural vibration in the lift direction
is significantly suppressed due to the repulsive force between the two
cylinders, whereas the drag direction vibration is virtually unaffected by the

neighbouring cylinder. As a result, the drag direction vibration appears

dominating. The correlation coefficient p,, between €, and €, or €, and
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€,, is positive and increases appreciably, compared with its corresponding

value for the 7/d = 1.70 or 3.00. Evidently, the two cylinders tend to move in-
phase, coupled together like a single structure. However, there is one
important difference between one isolated cylinder and the two side-by-side
cylinders at small 7/d. In the former case, the drag force fluctuates twice as
fast as the lift force; in the latter case the fluctuating frequency of the two
forces is identical since vortices are shed from the free-stream side of the two

cylinders only. Consequently, resonance occurs simultaneously in both lift and

drag directions, and the peak at U, = 11 is quite comparable for €, and

E

x,rms *
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CHAPTER 5

FLOW SEPARATION EFFECT ON A FREELY
VIBRATING CYLINDER

5.1 Introduction

Flow-structure interaction involves turbulent flow, separation behaviour and
structural vibrations and, most of all, the coupling between the structural motions and
the flow field. Past research has largely been focused on fluid-structure interaction
problems associated with rigid cylinders (Sarpkaya 1979; Bearman and Obasaju
1982; Weaver and Fitzpatrick 1988; Williamson and Roshko 1988; Parkinson 1989;
Brika and Laneville 1993). There have been few studies on the free vibration of
elastic cylinders in a cross-flow. Zhou et al. (1999b) and So et al. (2000b) measured
the free vibration of an elastic circular cylinder in a cross-flow and noted that the
cylinder was excited at the first and third natural frequencies of the fluid-structure
system. However, their studies did not consider the effect of flow separation on the
structural vibration and the damping force was not measured.

It has been reviewed in Chapter 1 that the flow separation point is fixed
during vortex shedding from a square cylinder (Nguyen et al. 1991; Naudascher and
Wang 1993; Chen and Liu 1999). Whereas the point keeps moving when the
boundary layer is separated from a circular cylinder (Achenbach 1968; Mei and
Currie 1969; Dwyer and Mccroskey 1973; Chen 1987; Higuchi et al. 1989).
However, it is not clear how this difference of the separation behaviours would
impact on fluid-structure interaction.

The free vibration of a two-dimensional bluff body in a cross-flow is

governed by several major parameters. Some of the more important ones are the
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Reynolds number Re, the reduced velocity U, , the reduced damping ratio {, the mass

ratio M, the cylinder aspect ratio s/dj, the force coefficient C; (and Cp) and the
separation behaviour (Chen 1987). Each of these parameters plays a different role in
the dynamic response of the cylinder. It is obvious that if the fluid-cylinder
interaction problem is to be understood thoroughly, all of these parameters need to be
investigated systematically. In an experimental investigation, where the cylinder and
boundary conditions are given, M’, s/dy, Cr and Cp are fixed. Furthermore, with the

natural frequency of the structure fixed, varying Re is equivalent to changing U,. As

a result, {, U, and the separation behaviour play a major role in the structural

response. The effect of U, can be investigated by simply varying the incoming flow
velocity, while the separation behaviour can be examined by changing the geometry

of the cylinder.

The behaviour of the effective damping ratios associated with one or two
side-by-side elastic circular cylinders has been discussed in Chapter 3. However, in
the squafe cylinder case, flow separation is quite different from that associated with a
circular cylinder. Thus, one might not expect the effective damping ratios to behave
similarly as the circular cylinder case, because fluid damping originates from viscous
dissipation and fluid drag, i.e. resulting from flow separation and viscous shearing of
the ﬂuid. at the surface of the structure. As the cylinder rotates, separation behaviour

is affected, resulting in, for certain ¢, a flow reattachment on the sidewall of the

cylinder. The issue of the effect of ¢ on the effective damping ratios has yet to be

resolved.

It has been discussed in Chapter 3 that the system natural frequencies
associated with two side-by-side circular cylinders are dependent on U, and can be

modified up to 10% by the vortex shedding frequency. The same could be

anticipated for the system natural frequencies associated with a square cylinder. In



147

the square cylinder case, an additional question is how these frequencies would be
affected by a.

The purpose of this chapter is to investigate the effect of flow separation on
the free vibration of an elastic cylinder, fixed at both ends (zero deflection), in a
cross flow, including the effect on the damping ratios and the system natural
frequencies. Both circular and square cross-section cylinders were used. While a
single hot wire was used to measure the flow field, two FBG sensors were employed
to measure simultaneously the lateral and longitudinal structural responses at the mid
span of the cylinder. This chapter is outlined as follows. Section 5-2 provides the
experimental details. The measured dynamic strains are converted to displacements
in Section 5-3. Section 5-4 presents the vibration characteristics of a square cylinder
compared with those of a circular cylinder. The results on system natural
frequencies and damping ratios are presented in Sections 5-5 and 5-6, while the

conclusions are given in Section 5-7.

5.2 Experimental Details

5.2.1 Experimental setup

The experiments were conducted in a suction-type wind tunnel with a square
cross section (0.35m x 0.35m) that is 0.5 m long. In the free stream, the longitudinal
turbulence intensity was measured to be approximately 0.2%. The details of the
wind tunnel have been discussed in Chapter 3. An acrylic cylinder was vertically
mounted in the mid-plane of the test section and 0.20m downstream of the exit plane
of the contraction section (Fig. 5-1). Both square and circular cylinders were
investigated in order to examine in detail the effect of fixed and moving flow

separation points on the flow-induced vibration of the cylinder. The two cylinders
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Figure 5-1 Experimental arrangement.

have identical hydraulic diameter d, = d = 6.0 mm for the purpose of comparison.
The first-mode structural damping ratio £\ is estimated to be 0.02 and 0.03 for the
Square and circular cylinders, respectively. The structural characteristics of the two
éylinders are given in Table 5-1. The mounting of the cylinders was designed to
provide a fixed support boundary condition at both ends, i.e. cylinder deflection at
the supports was zero. The Re investigated varied from 800 to 10700, corresponding
toa U, range of 4 to 51. With this arrangement, blockage amounted to 2.94% for
the square cylinder and 2.31% for the circular cylinder. Therefore, blockage effect

on the mean drag is relatively small at the Re range investigated. A total of four &

was investigated for the square cylinder, i.e. &= 0° 15° 30° and 45°. Great care was

taken during the experiments to minimise the variation of M associated with
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changing a. Consequently, the f," values of the square cylinder were found to be

90.2, 89.8, 89.2 and 88.7 Hz, corresponding to @ = 0°, 15°, 30° and 45°, respectively.

Table 5-1. Structural characteristics of cylinders.

inder | Materiat| % | ™, | EL M o
Cylinder |Materia (mm)| (kgm™) | (Nm?) (Hz)

Square | Acrylic 6.00 | 0.0421 | 0.4739 | 970

Circular | Acrylic | 6.00 |0.01926| 0.224 | 565 94

5.2.2 Dynamic strain measurements

The experimental arrangement is shown schematically in Fig. 5-1. Two
optical silica fibre of diameter 125 pum built with FBG sensors were used to
simultaneously measure the structural responses in the longitudinal and lateral
directions. In the circular cylinder case, one optical silica fibre built with the FBG
sensor was buried in a groove along the rear stagnation line of the cylinder and the

other fibre along a line 90° from the rear stagnation line. The two fibres, flush with
the cylinder surface using nail polish, measured the dynamic strain €, due to the
drag and €, due to the lift, respectively, at the mid-span of the cylinder. Since the
sensor grating has a finite length of about 10mm, the measured strain represents the
average strain over this length. In the square cylinder case with a = 0°, the two

optical fibres were located along the cylinder midway of the downstream surface and

one side surface of the cylinder, respectively.

The sensors, labelled sensor 1 and sensor 2, simultaneously measured the

strain €, and €, .at the mid-span of the cylinder. This is true for all o tested. In

principle, €, and &, (or €, and ¢,) are independent of each other. Note that the
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optical fibre is extremely light and has a homogenous mass distribution. Therefore, its
attachment to the cylinder will not change the structural stiffness of the cylinder.
Measurements of the stream-wise fluctuating velocity u# and cross-flow fluctuating
displacement Y carried out by Zhou et al. (1999b) indicated a negligible effect of the
attachment of the optical fibre on flow separation and Y. In the present experiment,
the effect has been further minimised by burying the optical fibre in the cylinder. A
major source of error comes from the non-linear relation between the output voltage
and the dynamic strain (Zhou et al. 1999b; Jin et al. 2000). As a result, the

experimental uncertainty is estimated to be +8%.

5.2.3 Fluctuating velocity measurements

The stream-wise fluctuating velocity # was measured by a single Tungsten
wire of 5 um diameter located at x/d = 2 and y/d = 1.5. The hot wire was operated at
an overheat ratio of 1.8 with a constant temperature anemometer (DISA Type
55M10).

The signals €,, €, and u or €, €, and u were simultaneously measured and

offset, amplified and then digitised using a 12 bit A/D board and a personal computer

ata sampling frequency of 6.0 kHz per channel. The duration of each record was

20s. This has been verified to be sufficiently long for the rms values €, of €,
£ of €, €, of € and &,,, of € to reach approximately their stationary

y.rms

state, with a variation smaller than 1.0%.

5.3 Bending Displacements

Zhou et al. (1999b) and Jin et al. (2000) used the FBG sensor to measure the

dynamic strain induced by the unsteady lift acting on a circular cylinder. Their
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cylinder was made of the same material and has the same hydraulic diameter as the
present cylinders. The strain thus obtained was compared with the Y measured using
a laser vibrometer. They found that the spectra deduced from the two signals were in
agreement with each other in terms of the vortex shedding frequency and the natural
frequency of the fluid-cylinder system. Furthermore, the two signals showed a

complete coherence at these frequencies. From their measurements, they deduced an

empirical relation between Y, and €, ,ie. €, =0.59Y_, for the linear portion

over the range of U, investigated. In the present investigation, this &€ -Y

relationship was used to estimate the bending displacements from the measured

dynamic strain signals in the square and circular cylinder case. Details are given

below.

In the circular cylinder case, the dynamic strains £, and £, were measured

using two FBG sensors (Section 5-2); the time series was given by

£,(1), £,(2) .0y £,(), ..., €,(120000) ;
,(1), £,(2),..., €0, ..., £,(120000).

The bending displacements are approximated by
1
X(@)=——¢€, ()=1.6949¢ (i),
(i) 059 < () < (D)
1
Y(i)=——¢€ (i) =1.6949¢ (i), i=1,2,...,120000.
(®) 0.59 y(@® RO

Similarly, the bending displacements X (i) and Y (i) of the square cylinder can be

approximated by

X ()= 0_,15‘58' (i) =1.6949¢, (i),

. 1 ) . .
Y (i) :@82 (i) =1.6949¢, (i) , i=1,2,..., 120000.

When the square cylinder is placed at an incidence angle o # 0° with respect
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to the free stream (Fig. 5-1), X (i) is not a displacement in the longitudinal

direction, nor is Y (i) in the lateral direction. Decomposing X (i) and Y (i), the
bending displacements in the longitudinal and lateral directions can be written as
X(@i)=Y (i)cosGr+a)+ X (i)cosa,
Y(@i) =Y (i)sinGm +a)+ X (i)sina, i=1,2,..., 120000,

where, a = 0°, 15° 30° and 45°.

S0F = a=0° "o ¥
- o a=15° C N
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Figure 5-2  Dependence of the vibration amplitude of the square cylinder on U, :
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Figure 5-3 (a) Y-spectrum E, ; (b) X-spectrum E, ; (c) u-spectrum E, . (Square
cylinder, &= 0°, U, = 7.5. The hot wire was located at x/d = 2 and

y/d = 1.5).

5.4 Vibration Characteristics

Figure 5-2 presents the variation of X, and Y, with U, for the square

cylinder at various o When o = 0°, the variation of ¥, and X, show a similar
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trend. Both increase as U, increases and their local peaks occur at the same U, i.e.
at U, =7.5 and 40.

The Y, peak at U, =7.5 for the case & = 0° results from the resonance
where the vortex shedding frequency f, coincides with the first-mode natural
frequency f” of the fluid-structure system. To substantiate this, the spectra of E, ,
Ey and E, at U, =7.5 are shown in Fig. 5-3. All spectra exhibit a prominent peak

at f'= fd/U_ = 0.1335 (f = 88 Hz), which is consistent with the f, of a square

cylinder reported by Okajima (1982), Knisely (1990) and Zhou and Antonia (1994).

The first-mode system natural frequency can be calculated by
fO=fP1N1+m/4M" (So et al. 2000b). Since the added mass is very small
compared to the cylinder mass in an airflow and the mass ratio M* is quite large (=
970), f is essentially identical to f,” = 90.2 Hz (Table 5-1) or approximately

equalto f, .

In order to understand the Y, peak at U, = 40 for the o = 0° case (see Fig.

5-2a), the spectra E,, E, and E, at U, = 40 are shown in Fig. 5-4. The most
prominent peak in E, occurs at f = 480 Hz or f " = 0.1354. This frequency is
approximately equal to the third-mode natural frequency f of the fluid-cylinder
system, which can be estimated from £, using the formula given by Chen (1987),
ie. fO71F0=(121/22.4) = 5402 or f" = f{¥d/U..=0.1354. Evidently, f,”"

coincides with f;; the peak at U, = 40 is the result of the third-mode resonance.

The spectra at U, = 7.5 and 40 for & = 15°, 30° and 45° (not shown) were

quite similar to those shown in Figs. 5-3 and 5-4 (ax = 0°). They indicate the

occurrence of the first- or third-mode resonance. Furthermore, the magnitude of the
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peak in E, or E, is larger at U, = 40 than at U, = 7.5, suggesting a more violent

vibration corresponding to the third-mode resonance, irrespective of the o value.
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f =fd/U,

Figure 5-4 (a) Y-spectrum E, ; (b) X-spectrum E, ; (c) u-spectrum E, . (Square
cylinder, o= 0°, U, =40. The hot wire was located at x/d = 2 and y/d

=1.5).

The peak in Y, at U, = 40 (Fig. 5-2) is by far more pronounced than that at

ms

U, =7.5. This may not be surprising. Firstly, the resonance corresponding to I

occurs at higher U,. Flow excitation energy, which is proportional to U 2 s
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therefore much higher, as indicated by the more pronounced peak in E, at U, =40

(Fig. 5-4¢) than that at U, = 7.5 (Fig. 5-3c). Secondly, it will be seen in Section 5-6
that the effective damping ratio, which is the sum of the structural and fluid damping

ratio, associated with f" is appreciably smaller than that associated with .

This means that the energy dissipation, when resonance occurs at f, = f7", could
be quite small. Finally, the fifth harmonic of f,"" (5 x f,”" = 0.124) is quite close
to f, . This could feed the resonance with additional energy. The combined effect
of these factors results in a much more violent vibration or instability at U, =40 for

all o cases considered.

When o = 15°, 30° and 45°, the behaviour of Y . exhibits a similar trend as
that at & = 0°, i.e. two peaks are detected, one at a low U, and another at a high U, .
At o= 0°, the peak in Y, corresponding to the third mode resonance occurs at U , =
40. This peak shifts slightly to U, = 36.2, 41.4 and 42.8 for o = 15°, 30° and 45°,
respectively. The peaks at the lower U, exhibits a similar shift, occurring at U, =

7.50, 6.34, 7.54 and 7.94 for o = 0°, 15°, 30° and 45°, respectively. These shifts
could be attributed to the variation of the vortex shedding frequency at different c.
The measurements of Chen and Liu (1999) for a square cylinder showed that the

variation of the Strouhal number St = fd /U_, where d = (sina +cosa)d is the

cross flow dimension of the cylinder of height d, depended on ¢ and Re. For
example, at Re = 8000, St = 0.135 for o = 0°. If the square cylinder is rotated to @ =
15°, St increases to 0.1814, but changes little with any further increase in . In the
present investigation, the variation in the structural natural frequency is negligibly

small for different o (Table S5-1). This frequency is in general very close to the

system natural frequency because of a small contribution from the air stream
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(Section 5-5), implying that the third-mode resonance, where the vortex shedding

frequency coincides with the third-mode natural frequency of the system, will occur
at ) and U, =U_/ fPd=fPd' 18,f"d . Noting that 2 =5402f" (Chen
1987) and d’ = (sina+cosa)d , U, =5.402(sin + cosa)/ St where St = 0.135 for
a = 0° and about 0.1814 for @ = 15° 30° and 45°. The subsequent calculation
indicates that the third-mode resonance occurs at U, =40.01, 36.47, 40.68 and 42.11
for a = 0°, 15° 30° and 45°, respectively. A similar interpretation can be used to
explain the shift of the peaks corresponding to the first-mode resonance.

The root mean square x-displacement, X, , at @ = 15°, 30° and 45° (Fig. 5-
2b) is rather different from that at & = 0°, exhibiting only one tiny peak at U, =7.5.
The small peak, as compared with Y, is consistent with the perception that

fluctuating drag on a bluff body is by far smaller than fluctuating lift. Lee (1975)’s
measurement showed that when the square cylinder was rotated with respect to the
flow, the mean drag coefficient was minimum at @ = 13° and increased with further

increasing . The fluctuating drag is also likely to increase (Vickery 1966). This
may explain the increased X, as ¢ increases (Fig. 5-2b).
For the purpose of comparison, the Y, and X,  measurements of the

circular cylinder were presented in Figs. 5-5 and 5-6. A detailed discussion has been
given in Zhou et al. (1999b) about the vibration characteristics of a circular cylinder
in a cross-flow and there is no need to repeat here. The following comments will
focus on the difference in the vibration behaviour between the circular and square
cylinders.

Firstly, three peaks at U, = 4.2, 11.0 and 26.0 are discernible in Y, of the
circular cylinder. They can be identified with the occurrence of the first-, second-

and third-mode resonance (Zhou et al. 1999b). In contrast, the first- and third-mode
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Figure 5-5 Dependence of Y, and X, of the circular cylinderon U, .

resonances are also excited with the square cylinder, though at different U, because
of the different vortex shedding frequency. But the square cylinder data fails to show
the peak corresponding to the second-mode resonance. The flow separation point
from a square cylinder is fixed, that is, the shedding of vortex rolls is probably
spanwise in-phase, which enhances the two-dimensionality of the vortex shedding.
Presumably, the vortex excitation is spanwise uniform. The second-mode vibration
could then hardly be excited, as shown in Fig. 5-2. In the circular cylinder case,
however, the separation point oscillates over a range of 75°~85° (Dwyer and
Mccroskey 1973). The oscillation is unlikely to be spanwise in phase, responsible at
least partially for the three dimensionality of the vortex shedding. The vortex cell
has a typical spanwise extent of 1~3d (King 1977; Higuchi et al. 1989). Therefore,
the vortices shed from a circular cylinder could be less two dimensional than those
from a square cylinder (Sarpkaya 1979; Zhou and Antonia 1994), thus inducing the

spanwise asymmetrical excitation force and subsequently exciting the second mode

of vibration.
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Figure 5-6 (a) Y-spectrum E, ; (b) X-spectrum E, ; (c) u-spectrum E, . (Circular

cylinder, U, =26. The hot wire was located at x/d = 2 and y/d = 1.5).

Secondly, both cylinders show a pronounced peak in Y, at the third-mode
resonance. But the peak at U, = 40 (Fig. 5-2) for the square cylinder is about twice

thatat U, = 26 (Fig. 5-5) for the circular cylinder even though the flexural rigidity of

the square cylinder is larger (Table 5-1). This could be attributed to two reasons.

First, for a large U, , the galloping instability occurs for non-circular cross-section
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cylinders, thus feeding in additional energy into the resonating system (e.g. Blevins
1994). Since the frequency of the galloping force is coupled with the structural
vibration frequency, the occurrence of galloping and the vortex resonance may be
inseparable (Bokaian and Geoola 1984a). Second, as discussed earlier, the
oscillation of the separation point associated with a circular cylinder is unlikely to be
spanwise in-phase. This is bound to impair the excitation force upon the structure, as
compared with the spanwise in-phase shedding of vortex rolls in the square cylinder
case. The combined effect results in the third-mode resonance, associated with the

square cylinder, by far more violent than that associated with the circular cylinder.

5.5 Natural Frequencies of the Fluid-Cylinder System

The structural natural frequency f," of the square cylinder at & = 0° is 90.2
Hz (Table 5-1). However, the natural frequency f,” of the fluid-cylinder system is
88.7 Hz at U, = 7.5, as determined from the spectra (Fig. 5-3). This frequéncy
further decreases to 86.9 Hz at U, = 40 (Fig. 5-4). Bear in mind that the square

cylinder was not remounted for the same ¢, implying that the natural frequency of
the cylinder should remain unchanged. Since the spectra were deduced using a
conventional FFT program, the frequency resolution Af is fixed by the sampling rate

and the record length used in the FFT calculation. This Af was estimated to be 0.35

Hz. Therefore, the variation in f;') noted above could not be attributed to

experimental or calculation errors; it is more likely a genuine change in the system
natural frequency because of different flow conditions.

Figures 5-7 and 5-8 show the dependence of £ fo? and fO71£" on o

and U, . There is a marked variation in f,"/ f;" and f{"/ " between o = 0° and
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Figure 5-7  Dependence on arand U, of f, associated with the square cylinder:

W, a=0° 1, 15°% A, 30° A, 45°.

oz 0% fO1f" and £/ f tend to be greater at & = 0° than at o # 0°. This

difference grows as U, increases and become particularly evident when U, > 20.

Similar observation has been also made in the case of two side-by-side elastic

circular cylinders (Chapters 3 and 4). From a linear analysis of the fluid-cylinder
system for a circular cylinder (Zhou et al 2001), the system natural frequencies £

and f can be derived as f;" = fin 1-¢2, and " =" 1-¢7, . Tt will be

seen in Section 5-6 that the deduced effective damping ratios ¢ and {7

corresponding to the first-mode natural frequencies £ and £ at a = 0° are

smaller than those at ¢ = 15° 30° and 45°, especially when U, > 20. This could
partially account for the first-mode natural frequency of the fluid-structure system

greater at o= 0° than that at ot = 15°, 30° and 45° in both the x and y direction.

The value of "/ f" or f/f;" (Figs. 5-7 and 5-8) appears decreasing

with the increase of U, irrespective of the o value. The deduced f,"/f;" in the
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Figure 5-8 Dependence on o and U, of f” associated with the square cylinder:

W, a=0°0], 15° A, 30° A, 45°.

circular cylinder case is presented in Fig. 5-9a and shows a behaviour similar to the
square cylinder. This result agrees with those obtained in Chapters 3 and 4 in the
investigations of the interference between two side-by-side circular cylinders. Two
factors may cause a variation in the system natural frequencies. Firstly, a theoretical
analysis carried out by Xu et al. (2001) indicated that an axial force on a cylinder
fixed at both ends in a cross flow could lead to an increase in the natural frequency of
the fluid-cylinder system. As U, increases, the static drag arises and subsequently
causes a rise in the axial force. Therefore, the system natural frequency could rise.
Secondly, it will be shown later in Section 5-6, the first-mode effective damping ratio
rise as U, increases. Zhou et al. (2001) carried out a linear analysis of the fluid-
cylinder system and the deduced effective damping ratio. The analysis indicated that
an increase in fluid damping with increasing U, could lead to a slowly decreasing

natural frequency' of the fluid-cylinder system. It seems that, in present
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investigations, the second factor is predominant. As a result, the system natural

frequency drops, though slightly.
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Figure 59  Dependence of the system natural frequencies on U,. Circular

cylinder: (a) f" and £".(b) £, and f”.

It is interesting to note that, for all a tested, when resonance occurs near U, =

]

7.5, fO1£8 and £ £ fall off sharply and then increase to a value above f;".

The variation is within +0.05 f,” in both x and y directions. A similar observation
is made for the circular cylinder (Fig. 5-9a), that is, there is a rapid variation in

FO1FY and f97 £ when the first-mode resonance occurs near U, = 4.2. The

sharp variation in fO/f" and f/f" also occurs near the third-mode
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resonance. It shows about 11% variation in £/ f (Fig. 5-10) and f/ f" (Fig.
5-11) between U, = 27 ~ 48 for the square cylinder and between U, = 20 ~ 30 for
the circular cylinder (Fig. 5-9b). The sharp variation does not occur at the same U,

for different o, apparently linked to the occurrence of the resonance (Fig. 5-2a), as

discussed in Section 5-4.
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Figure 5-10  Dependence on o and U, of fy(” associated with the square cylinder:

B, x=0° 0], 15° A, 30% A, 45°.
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Figure 5-12  Power spectra for a range of U, (square cylinder, & = 0°). The lines

are drawn to highlight the trend.

When a structure is forced to vibrate in a cross flow, the so-called lock-in
phenomenon occurs as the vortex shedding frequency is coincident with the
frequency of the external excitation force. It has been discussed in Chapters 3 and 4
that, for free vibration, it is the vortex shedding that excites the structure. In other
words, the vortex-induced force dominates. To illustrate this, the Y-spectra of the

square cylinder at o = 0° are presented in Fig. 5-12 for selected U, values.
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Figure 5-13  Variation of the system natural frequency (M) and the vortex

shedding frequency (A) with U, around resonance (square cylinder, o

=0°): (a) £ andf;; (b) f,” andf;.

Evidently, the third-mode system natural frequency appears varying as the vortex
shedding frequency approaches, whereas the vortex shedding frequency does not

seem to be affected by the system natural frequency. This point is further
highlighted in Fig. 5-13a, which compares the variation of f, /f;" with that of
FO1 £ near the third-mode resonance. At U, =350, f, / 22 and £ fy" are

close enough to interact with each other and the resonance starts to occur. Influenced
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by the relatively small value of £, /f> = 4.7, f>/f" drops from 5.3 to 4.96,

approaching f, /f{’. Note that f,/f,  remains linear with respect to U,,

implying that fy‘” imposes little influence on f; . Such interplay between f; and

(3) . . . . . — (])
f,” continues until they are identical or synchronise at U, = 39.5. As f,/f,

further increases with increasing U,, f/f" follows f,/fy" till eventually

fo /f and £/ £ are de-coupled from each other at U, =42.0. The interaction

between f, and fy”) near the first-order resonance (Fig. 5-13b) is quite similar to

that described above for f” and f, . Clearly, vortex shedding dominates the non-

linear interaction between the fluid excitation force and the structural vibration in the
free vibration case, thus tuning the natural frequency of the system to the vortex
shedding frequency. This observatioh contrasts with the lock-in phenomenon where
the vortex shedding frequency is dictated by the forced vibration frequency of the
cylinder. Similar behaviour also exists for the circular cylinder, as well as for the
case of two side-by-side elastic cylinders (Chapter 3 and 4). Note that the third-

mode system natural frequency varies over a larger U, range than the first-mode one
probably because the third-mode resonance occurs at a higher U, than that of the
first-mode resonance. The fluid excitation energy, proportional to U 2, is therefore
by far greater.

In the square cylinder case, f”/f;" also shows a sharp variation at U, in
the range 17.1 ~ 22.1, 15.4 ~ 20.0,17.3 ~ 24.9 and 18.4 ~ 24.8, corresponding to & =
0°, 155, 30° and 45°, respectively (Fig. 5-11). Spectral analysis (not shown)

confirms the occurrence of resonance where the fluctuating drag frequency, i.e.

double vortex shedding frequency, coincides with the third-mode natural frequency
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of the system. Consequently, £/ " is modified. However, f;”/f;" associated

with the circular cylinder fails to exhibit such sharp variation, albeit coincident with

the fluctuating drag frequency near U, = 13. This is probably because the resonance

where f® = 2f; occurs at a smaller U, for the circular cylinder. Flow excitation

energy is therefore much smaller than that associated with the square cylinder.

In summary, the natural frequency of the fluid-cylinder system may vary.
The variation associated with the square cylinder shows resemblance in major
characteristics to that associated with the circular cylinder, suggesting an

independence of the nature (fixed or oscillating) of the flow separation.

5.6 Effective Damping Ratios

Damping models the energy dissipation of a dynamic system during
vibrations; it contains an important piece of information related to motion-dependent
fluid forces. Any measurements of flow-induced vibrations with no estimates of
damping can only provide limited indications about fluid forces (Granger et al.
1993). The effective damping ratio of a fluid-cylinder system is made up of the fluid
damping and the structural damping. The free vibration of an elastic structure
includes multiple modes (So et al. 2000b). The natural frequehcies corresponding to
these modes may be associated with different effective damping ratios. Using the
ARMA modelling technique, the effective modal damping ratios have been deduced
from the measured strain signal.s obtained from two side-by-side elastic circular
cylinders in a cross-flow (Chaptér 3). In this chapter, the same technique is used to

evaluate effective modal damping ratios based on the derived displacement signals

from the square cylinder.
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Figure 5-14 presents the effective modal damping ratios along the y-direction,

ie. £0,6® and ¢

(
ye? D ye y.e

¥ corresponding to f\”, f{* and f\*, respectively. These

ratios were calculated from the ¥ signal of the square cylinder. The ratios {&), ¢ %

and ¢ along the x-direction are given in Fig. 5-15.

X,€e

A few observations can be made based on Figs. 5-14 and 5-15. Firstly, the

m

effective damping ratio approaches zero when resonance occurs. Both ¢ /. and ;ze’

(also £ and {?) decrease sharply near U, = 7.5 and U, = 23.4 for all o tested,

approaching zero. Evidently, the fluid damping ratio is negative at resonance, in

agreement with the measurement in Chapter 3. Note that { ) and {? dip near U,

~ 40 due to the occurrence of the third-mode resonance.

M js generally larger than {{) for U, < 12, implying larger

Secondly, ¢,
fluid damping. This observation agrees with Granger et al. (1993)’s report for a
small gap flow velocity. Based on a linear assumption that the structural vibration
velocity is small relative to the free stream velocity, Blevins (1994)’s analysis
indicated that the inline fluid damping was twice that of the cross-flow direction for a

‘fluid-cylinder dynamic system. The analysis is expected to be valid for small U,

only. When 12 < U, <20, {{) and {{) are nearly the same. As U, further

y.e

. . 1y -
increases, ¢ ™ and ¢ increase. However, ) increases faster and becomes larger

y.e

than ¢ (). On the other hand, @ and ¢ are quite comparable in magnitude with

X,

their counterparts in the lift direction, probably due to the relatively small
contribution from the fluid damping.

Thirdly, the effective damping ratios £, and {) at &= 0° are considerably

smaller than th6se at o = 15°, 30° and 45°, especially when U, > 28. For all o
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H Q 1) 1 n -
tested, as U, increases, {|) and {) increase. But £ and {) increase even

faster at o # 0° than at & = 0°. This may contribute to the observation in Section 5-5

that £/ f;" and f"/f" decrease faster when  is non-zero. The « effect on

O and ¢ could be related to the way the flow separates and whether it

yee xe
reattaches. For a square cylinder placed at an incidence angle o = 0°, flow separates
from the upstream corners and will not reattach on the side surfaces of the cylinder
(Nguyen et al. 1991; Naudascher et al. 1993). When the square cylinder is rotated
such as at o = 15°, 30° and 45°, the flow may impinge on the side surface of the
cylinder. As a result, the boundary layer may be accelerated, separating from one
upstream corner and one trailing corner of the cylinder (Hasan 1989; Chen and Liu
1999). The accelerating boundary layer will result in higher velocity gradient and
hence a higher shear stress near the surface of the structure than that at o= 0°. Since
the fluid damping results from the fluid viscous shearing at the structure surface and
flow separation (Blevins 1994), the higher shear stress may induce a higher fluid
damping. Therefore, the effective damping ratios associated with a square cylinder
at or # 0° may increase with the changes of the flow structure.

Fourthly, the first-mode, second-mode and third-mode effective damping
ratios range from 0.02 ~ 0.06, 0.01 ~ 0.08 and 0.01 ~ 0.03, respectively, in both the y
and x direction. The third-mode ratios are smallest, consistent with the measurement
for a circular cylinder (Figs. 5-14 and 5-15). A similar observation has been made in
the presence of a neighbouring cylinder (Chapter 3), which has been ascribed to the
fact that the third-mode structural damping ratio was appreciably smaller than the

first- or second-mode structural damping ratio (Blevins 1975) since the fluid

damping ratio is small in the context of airflow. The small {'\?) could also partially
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contribute to the observation why the third-mode resonance is by far more violent

than the first-mode resonance.
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Figure 5-16  (a) Y-spectrum E, ; (b) X-spectrum E,; (c) u-spectrum E, . (Square
cylinder, ¢ =0° U, =23.4. The hot wire was located at x/d = 2 and
y/d=1.5).

Fifthly, the second-mode effective damping ratios display two troughs near

U, = 20 and 40, respectively, along both x and y directions. Spectral analysis (not

shown) indicates the occurrence of the second-mode resonance and its harmonic at
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U, =20 and 40, respectively. Fluid damping ratio will drop when resonance occurs.

Away from the resonance, {® and {® exhibit relatively large scatter. As shown

y.e x.e

in Fig. 5-2 for the square cylinder, the second-mode resonance fails to show up for

any a. The Y-spectrum (Fig. 5-16) indicates that even when [, coincides
approximately with f?, the peak at f* does not appear to be more pronounced

than those at f" and f”. Evidently, the excitation for the second-mode vibration

is weak compared to those for the first- or third-mode vibration. Theoretical analysis
by Wang et al. (2001), who assumed a uniform span-wise excitation force on a
cylinder, indicates that the second-mode vibration was not excited. It has been
discussed in Chapter 3 that, in a real fluid-cylinder system, the vortices shed from the
cylinder are not two-dimensional when Re is high; the span-wise extent of two-
dimensionality is limited, typically from 1d to 3d (King 1977; Higuchi et al. 1989;
Zhou and Antonia 1994). This implies a non-uniform excitation force on the
cylinder, resulting in the excitation of even mode vibrations (Fig. 5-5). It seems that
the excitation due to the three-dimensionality of vortices is small compared with that
exciting the odd mode vibrations. Therefore, even mode resonance should be much
weaker in strength than the odd mode resonance. As a result, uncertainty in

estimating the even mode damping ratios is increased, resulting in relatively large

scatter in ¢» and {*. This uncertainty, however, should decrease at resonance, as

indicated by the smaller scattering in the two troughs of {'” and {2 (Figs. 5-14b
and 5-15b).

Finally, the effective damping ratios rise, though slowly, as U, increases
beyond 15, apparently resulting from the increased fluid damping.

For the purpose of comparison, the effective modal damping ratios of the

circular cylinder along the x- and y-direction were included in Figs. 5-14 and 5-15.
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In general, these ratios behave quite similarly to their counterparts of the square

cylinder. For example, { ") approaches zero, below the structural damping ratio {3

(0.03), when the first-mode resonance occurs at the reduced velocity U, = 4.2,

implying a negative fluid damping. The { value is the smallest among ¢, £

and ¢® . The similarity could be expected since, as the resonance occurs, the flow
yie y p

separation from the circular cylinder is likely to be more two-dimensional,

approaching the square cylinder case.

5.7 Conclusions

The effect of fixed and oscillating flow separation points on fluid-structure
interactions was experimentally investigated. Flow field and structural vibration of a
square cylinder, fixed at both ends, in a uniform cross-flow were measured
simultaneously using a hot wire and fibre-optic Bragg grating sensors. The
measurement is compéred with that obtained for a circular cylinder of the same

hydraulic diameter and installation conditions. The following conclusions can be

drawn.

1. The vibration amplitude Y, _ of the square cylinder at ot = 0° increases with U,

and displays two peaks at U, =7.5 and U, = 40, respectively. The peaks were
confirmed arising from the excitation of the first- and third-mode resonance.
When the square cylinder was rotated, the two modes of resonance were again
excited, though at slightly different U, values because of variation in the
vortex shedding frequency at different & On the other hand, three peaks in

Y were discernible at U, = 4.2, 11.0 and 26.0 for the circular cylinder and

were identified with the excitation of the first-, second- and third-mode
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resonance. The occurrence of the second-mode resonance is linked to the
oscillation of the flow separation point associated with the circular cylinder.
The oscillation is unlikely to be spanwise uniform, thus inducing the three
dimensionality of the vortex shedding and generating the excitation force for
the second-mode vibration.

For both cylinders, the peak in Y, due to the third-mode resonance is by far

more pronounced than the pthers. The maximum vibration amplitude at the
third-mode resonance for the square cylinder doubles that for the circular
cylinder even though the square cylinder has a larger flexural rigidity. This
could be attributed to two reasons. Firstly, galloping, which is coupled with
the resonance, could occur for non-circular cross-section cylinders, thus
feeding additional energy into the resonating system. Secondly, the oscillation
of the flow separation point associated with a circular cylinder is unlikely to be
spanwise in-phase. This will weaken the excitation force ':upon the structure, as
compared with the spanwise in-phase Shedding of vortex rolls in the square
cylinder case.

The system natural frequencies slowly decrease as U, increases except near
resonance where a sudden variation occurs, up to about 10% of the structural
natural frequency. The slow variation could be partially due to an increase in
the structural axial ]oading,‘ which is caused by increasing static drag, and
partially due to an increase in fluid damping.. The latter factor is predominant
in present investigation. Therefore, the system natural frequency drops, though
slightly. On the other hand, the sudden variation is dictated by the vortex
shedding frequency. The observation is made for both cylinders, suggesting

the independence of the nature (fixed or oscillating) of the flow separation

point.
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The effective damping ratios approach zero when resonance occurs at U, =

7.5, 21.5 and 40 for all « tested, implying a negative fluid damping. Among
the effective damping ratios corresponding to the first- second- and third-mode
system natural frequencies, the third-mode ratio is the smallest.  Similar
phenomena also exist in the circular cylinder case, indicating that it is also

independent of whether the flow separation point is fixed or moving. The first-
mode effective damping ratio associated with a square cylinder at o = 0° is
smaller than that at o # 0°, especially when U, > 28. This is likely due to the
impingement of the flow on the side walls at non-zero ¢, which is associated
with a higher velocity gradient and hence a higher shear stress near the surface

of the structure than that at & = 0°, thus resulting in higher fluid damping.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

(1) Vortex Streets Behind Two Side-by-Side Cylinders

The flow behind two side-by-side circular cylinders subjected to a uniform
cross-flow has been éxperimentally studied. Experiments were performed in a water
tunnel and a closed circuit wind tunnel. Three typical 7/d values, i.e. 3.00, 1.70 and
1.13, were investigated. At 7/d = 3.00, two vortex streets were observed behind the
cylinders. The two streets were predominantly symmetrical about the flow centreline.
On the other hand, the anti-symmetrical configuration was also observed from time
to time.

At T/d = 1.70, the gap flow between the cylinders was deflected, resulting in
one narrow and one wide wake behind the cylinders. It was found that the two
opposite-signed vortices in the narrow wake were typically engaged in pairing,
creating a relatively low-pressure region between them and drawing in the gap vortex
in the wide wake. The amalgamation of the three vortices could be at least partially

responsible for the stably deflected gap flow. Two dominant frequencies, i.e.
f "=0.1 and 0.3, were detected in the outer shear layer associated with each
cylinder. The two frequencies were also identifiable in the narrow wake, but the

lower frequency 0.1 only was detected in the wide wake. It was found that the

secondary vortices in the shear layer coalesced to form large-scale vortices, which
were shed in the narrow wake at f, = 0.1, coinciding with the rolling-up frequency

of the vortical structures in the wide wake. It has been proposed that vortex

frequency in the wide wake is dictated by the shear layer thickness. This frequency
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could feed back upstream to excite the shear layer instability and further induce the
vortex shedding in the narrow wake. On the other hand, the amalgamation of the
three vortices in the narrow wake involves a reduced lateral spacing between the
structures, producing the frequency 0.3 in the hot-wire spectrum. The upstream

influence of this frequency could excite the shear layer instability, thus resulting in a

dominant frequency at f~ = 0.3. The flow visualization data suggests that the gap

vortices in the narrow -and wide wakes are generally in antiphase, but the one in the
wide wake leads slightly that in the narrow wake and amalgamates with the pairing
vortices in the narrow wake. The changeover of the gap flow deflection starts with a
phase lag of the gap vortex in the wide wake behind that in the narrow wake, thus
making it difficult to proceed for the gap vortex in the wide wake to amalgamate
with the pairing vortices in the narrow wake. Consequently, the stability of the gap
flow deflection was affected; the gap vortex grows unusually large but quickly
collapses because of the increased interaction with the narrow wake. The collapse
give rise to a momentarily weak interaction between the two wakes, thus allowing
the narrow wake to expand laterally. The process was repeated for a few vortex-
shedding cycles and eventually the narrow wake pushes the gap flow to the other
side and completes the changeover.

For small cylinder spacing, 7/d = 1.13, there are no gap vortices generated
and the vortices are shed only from the free-stream side of the two cylinders,
resulting in a single vortex street. This flow was asymmetrical about the centreline in
terms of the mean velocity and Reynolds stresses under the effect of the biased gap
bleeding between the cylinders. When the bleeding was biased towards one cylinder,
vortices were shed alternately from the free-stream side of the two cylinders; when
unbiased, the symmetric vortex shedding occurred, though unstable and quickly

reverting to alternate shedding. The bleeding is invisible at about x/d = 5. Its effect
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however persists, giving rise to the asymmetrical distributions of the mean velocity
and Reynolds stresses at least up to x/d = 10. The observation is in marked contrast

with the single cylinder case, where vortices are always shed alternately from the

cylinder.

(2) Free Vibrations of Two Side-by-Side Cylinders in a

Cross Flow

Fluid-structure interactions of two side-by-side elastic cylinders with fixed
support at both ends placed in a cross-flow were experimentally investigated using
FBG sensor, flow visualization and hot wire technique. Three identical 7/d ratios
with (1) were investigated. It was found that the structural vibration behaviour is
closely linked to the flow characteristics. At 7/d = 3.00, the spectral phase shift ®,,
between the vibrations of the two cylinders is *m, in consistent with previously
reported results that vortex pairs are symmetrically formed and shed from the two
cylinders for a sufficiently large cylinder spacing. Accordingly, the two vortex streets
immediately behind the cylinders are predominantly in the anti-phase mode, in
addition, this finding is found to be independent of Re. As 7/d reduces to 1.70, one
narrow and one wide wake were observed and the corresponding normalized
dominant frequencies, as seen from velocity spectra, were 0.31 and 0.105,

respectively. Flow visualization results suggest that vortices are shed from both
sides of each cylinder at the same frequency, i.. f, =0.1, while the normalized

frequency 0.31 could be ascribed to the amalgamation of the two paring vortices in

the narrow wake and the gap vortex in the wide wake. This result is in consistent

with (1). At 7/d = 1.13, @, is generally near zero, indicating a dominance by the

alternate vortex shedding.
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Vibration characteristics of the elastic cylinders contrast distinctly with those
of rigid ones. At 7/d = 3.00, the occurrence of the first-, second- and third-mode
resonance were identified in present investigations. The third-mode resonance is far
more violent due to the combined effect of higher flow energy, smaller effective

damping ratio, and synchronization of vortex shedding with the fifth harmonic of

f®. The inline vibration appears to be far less violent for the third-mode resonance

than the cross-flow one. When 7/d < 3.00, the vibration is suppressed because of the
weakening strength of the vortices.

It is found that the characteristics of the system modal damping ratios,
including both structural and fluid damping, and natural frequencies depend on 7/d
and vary slowly with U, as a result of fluid-structure interactions. The natural
frequencies of the combined fluid-cylinder system experience a rather sudden
variation, up to 10%, near resonance. The variation always displays the pattern of a
dip followed by a rise, indicates that, in the free vibration case, when the vortex
shedding and system natural frequency components approach each other, the system
natural frequency is modified so as to adapt to the vortex shedding frequency. This
observation contrasts with the lock-in phenomenon where the vortex shedding
frequency is tuned to the forced vibration frequency of a cylinder. Furthermore, the
cross-flow natural frequencies of the system increase when the transverse spacing
ratio is decreased. The observed increase in the repulsive force between the cylinders
as they approach each other could be seen as an increase in fluid stiffness, thus
causing a rise in the cross-flow natural frequency of the system. This behaviour of
the system natural frequencies persists even in the case of the single cylinder and
does not ‘secm to depend on the interference between cylinders. In addition, the
natural frequencies of the fluid-cylinder system appear decreasing, albeit slowly, as

U, increases, which could be partially attributed to the increased fluid damping as U,
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increases. The first-mode effective damping ratios () approach zero when

resonance occurs near U, = 11 for 7/d = 1.13 and near U, = 4.2 for 7/d = 3.00, so is
) near U, = 26, thus indicating negative fluid damping. For relatively large U, (>

15), the ratios are quite comparable in the lift and drag directions, probably the result
of a small fluid damping in the present investigation. The cross-flow fluid damping
becomes significant at T/d = 1.13, accounting for about one half of the effective

damping. The third-mode effective damping ratio £ is appreciably smaller than

that corresponding to the first- or second-mode. This can be attributed to a

substantial decrease of the structural damping ratios for higher modes of vibrations.

(3) Vortex-Induced Vibration Characteristics of Two Fix-

Supported Elastic Cylinders

The interference effects on structural dynamics and vibration characteristics
of two fix-supported side-by-side elastic cylinders were experimentally investigated
using two FBG sensors, a Polytec Series 3000 Dual Laser Beam Vibrometer and a
single hot wire. Three identical transverse spacing ratios as mentioned in (1) and (2),
T/d = 3.00, 1.70 and 1.13, were investigated. The FBG sensor was successfully
extended to measure the dynamic strain due to the drag for a single cylinder. The

strain-displacement relation is linear in the U, range investigated. This linear

relation is expected to extend well beyond the linear range (U, < 22), as reported for

the lift direction, in view of the substantially weaker vibration in the drag direction.
The linear relation remains valid in the case of two side-by-side cylinders, but the
slope changes with 7/d. The establishment of the linear relation between strain and

bending displacement facilitates the interpretation of the measured strain data.
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At T/d = 3.00, the characteristics of the structural vibration resemble the case

of an isolated cylinder, implying little interference. The correlation coefficient p,,
between £, and €,, generally approaches zero, except near resonance where the

vortex shedding frequency coincides with the system natural frequencies. The value

of p,, between €, and €, is mostly negative and can go beyond — 0.5 near

resonance, implying opposite movement of the two cylinders, in consistent with
previous result in (1) and (2) that vortices shed from the two cylinders are
predominantly in an antiphase mode. As the two cylinders approach each other, 7/d =
1.70, the strength of the vortices is drastically weakened due to interactions between
the flow around individual cylinders. Consequently, resonance is suppressed,
suggesting an enhanced stability. The fluid dynamics around one cylinder is very
different from that around its neighbour at this 7/d. As a result, the natural
frequencies of the combined fluid-cylinder systems, associated with each individual
cylinder exhibit an appreciable difference of about 5%. When T7/d is further reduced
to 1.13, the structural vibration in the lift direction is significantly suppressed due to
the repulsive force between the two cylinders, whereas the drag direction vibration is
virtually unaffected by the neighbouring cylinder. Consequently, the drag direction
vibration appears dominating. The correlation coefficient p,, is positive and
increases appreciably, compared with its corresponding value for the T/d = 1.70 or
3.00, in both cross-flow and streamwise directions. Evidently, the two cylinders tend
to couple together like a single structure. However, there is one important difference
between one isolated cylinder and the two side-by-side cylinders at small 7/d. In the
former case, the drag force fluctuates twice as fast as the lift force, while in the latter
case the fluctuating frequency of the two forces is identical since vortices are shed
from the free-stream side of the two cylinders only. Consequently, resonance occurs

simultaneously in both lift and drag directions.
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(4) Flow Separation Effect on a Freely Vibrating Cylinder

Flow field and structural vibration of an elastic square cylinder, associated
with fixed flow separation points, fixed at both ends, in a uniform cross-flow were
simultaneously measured using hot §vire and FBG sensors. The measurement is
compared with that obtained for a circular cylinder, from which the flow separation
points keep moving when the boundary layer is separated, of the same hydraulic
diameter and installation conditions, in an effort to understand the effect of the nature
of flow separation on fluid-structure interactions. In square cylinder case, the

vibration amplitude increases with U, and displays two peaks arising from the
excitation of the first- and third-mode resonance, though at slightly different U,

values for different & because of variation in the vortex shedding frequency. On the

other hand, three peaks in Y, were discernible for the circular cylinder,

corresponding to the occurrence of the first-, second- and third-mode résonance,
respectively. The occurrence of the second-mode resonance is linked to the
oscillation of the flow separation point associated with the circular cylinder. The
oscillation is unlikely to be spanwise uniform, thus inducing the three dimensionality
of the vortex shedding and generating the excitation force for the second-mode
vibration.  Furthermore, the maximum vibration amplitude at the third-mode
resonance for the square cylinder doubles that for the circular cylinder even though
the square cylinder has a larger flexural rigidity. This could be attributed to two
reasons. Firstly, galloping, which is coupled with the resonance, could occur for
non-circular cross-section cylinders. Secondly, the oscillation of the flow separation
point associated with a circular cylinder is unlikely to be spanwise in-phase, which
will weaken the excitation force upon the structure. In addition, the first-mode

effective damping ratio associated with a square cylinder at o = 0° is smaller than
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that at o # 0°, especially when U, > 28. This is due to the impingement of the flow

on the side walls at non-zero «, which is associated with a higher velocity gradient
and hence a higher shear stress near the surface of the structure than that at o = 0°,
thus resulting in higher fluid damping.

It is found that the system natural frequencies slowly decrease as U,

increases except near resonance where a sudden variation occurs, up to about 10% of
the structural naturai frequency. The slow variation could be partially due to an
increase in the structural axial loading and partially due to an increase in fluid
damping. The latter factor is predominant in present investigation. Therefore, the
system natural frequency drops, though slightly. On the other hand, the sudden
variation of the system natural frequency is dictated by the vortex shedding
frequency. In either circular cylinder or square cylinder cases, the effective damping
ratios approach zero when resonance occurs, implying a negative fluid damping.
Among the effective damping ratios corresponding to the first- second- and third-
mode system natural frequencies, the third-mode ratio is the smallest. These
observations are made for both cylinders, suggesting the independence of the nature

(fixed or oscillating) of the flow separation point.
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