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Abstract

As electric utility industry shifts from regulated monopolies to competitive market, it
will place an increased reliance on the existing transmission systems. Flexible AC
Transmission Systems (FACTS) become meore important since they can enhance
system ﬂe’xibility' and increase loadability. To address this need, the aim of this
research is to develop the use of genetic algorithm for capacitor selection and to

develop control strategies for FACTS devices in power systems.

The main contributions of this research work are thus to develop computer algorithms
using Genetic Algorithms (GA) to solve the optimal capacitor allocation problem with
harmonic distortion considerations and the optimal control setting problem of FACTS

devices in optimal power flow (OPF).

The first part of this thesis reports the research findings of a genetic algorithm
approach for optimizing shunt capacitor sizes and their placement in radial
distribution systems with the consideration of harmonic distortion limit due to the
presence of nonlinear power electronic devices. The algorithm is based on a genetic
algorithm (GA) solution technique to minimize cost under the additional constraints
of maximum limit in Harmonic Distortion Factor (HDF) and voltage. A harmonic
distortion calculation is embedded in the genetic algorithm solution routine to enhance
the optimal capacitor allocation solution. Results of simulation show that the approach
is effective for such discrete value optimization problem. The improvement of the

harmonic distortion is effective and the best allocation of capacitors is selected.

Secondly, the thesis would present the development of the equivalent modeling by
Power Injected Method (PIM) of various types of FACTS devices including Thyristor
Controlied Series Compensator (TCSC), Thyristor Controlled Phase Shifter (TCPS)
and Unified Power Flow Controller (UPFC). A real-coded genetic algorithm method
is presented to solve the optimal power flow problem of power system with flexible
AC transmission systems (FACTS). The proposed method introduces the injected
~power model of FACTS dcviceé into Newton-Raphson (NR) power flow probicm to
exploit the characteristic of FACTS devices. The advantage of this method is that it is

easily incorporated into existing OPF of Energy Management Systems (EMS) since it



would reduce maintenance cost and software development. Moreover, the admittance
matrix can be kept constant during the load flow calculation. Case studies on IEEE
test systems demonstrate the potential for application of GA to determine the control
parameter of the power flow controls with FACTS. It is shown that the FACTS device
would not provide significant cost saving since cost depends mainly on the active
power flow. However, it can increase the controlfability and flexibility of the system;
it can provide wider operating margin and improved voltage stability with higher
reserve capacity. As deregulation and contract path are becoming more important,

FACTS devices play an increasingly important role in such power system operation.

[t is shown in the thesis that TCSC and TCPS can be employed to control the active
power flow while UPFC can be used to control the real and reactive power. They can
redistribute the powér flow to the available trahsmission lines within the transmission
capacity to achieve more efficient utilization of their capacity. As cost 1s the main

objective of OPF, more constraints will increase the generation cost.

In the developed methodology, GA effectively finds the optimal setting of the control
parameters using the conventional OPF method as an embedded calculation tool.
Overall, the results show that GA is suitable in dealing__With non-continuous, non-
differentiable and non-convex optimization problems, such as the capacitor selection

and optimal power flow problems with FACTS devices.
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Chapter 1

Introduction

1.1 Introduction

Deregulation of electricity supply systems becomes an important issue in many
countries. Flexible AC Transmission System (FACTS) [1] devices become more
commonly used as the power market becomes more competitive. They may be used to
imiprove the transient responses of power system and can also control the power flows
(both active and reactive powers). The main advantages of FACTS are the ability in
enhancing system flexibility and increasing the loadability. However, FACTS devices

are also handicapped by the high cost of the components.

In steady state operation of power system, unwanted loop flow and parailel
power flow between utilities are problems in heavily loaded interconnected power
systems. These two power flow problems are sometimes beyond the control of
generators or it may cost too much with generator regulations. However, with FACTS
devices based on power electronics components in network, the unwanted power flow
can be easily regulated. Several recent papers have been published dealing with power

flow controls {2,3]
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Flexible AC Transmission System (FACTS) is a concept promoting the use of
high-speed power electronic controllers to enhance the controllability and usable
capacity of AC transmission. These opportunities arise through the ability of FACTS to
control the inter-related parameters that constrain today's transmussion systems
including series impedance, shunt impedance, phase angle and the occurrence of
oscillations at various frequency below the rated frequency. The main contribution of
the FACTS devices is to enable the transmission systems playing an active role in
increasing the ﬂexibi]ity of power transfer requirement and in secuning stability of

dynamics of integrated power systems.

In general, transmission lines are under-utilized and uncontrolled. FACTS can
contribute to control loop flow, power flow, reactive support and voltage stability.
Moreover, as the electricity industry is moving towards a deregulation environment, the
need to transport power between partners through defined line corridors would play an

increasingly-important role.

Rising energy costs, increased transmission distances and use of large
generating machines are resulting in increased demands for reliable and more economic
operation of transmission and distribution systems. FACTS devices are the most
attractive devices and are being developed for meeting these needs. Optimal power
flow with FACTS devices embedded in the transmission line would constitute a

valuable tool in such operation.

1.2 Background of FACTS
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Flexible AC Transmission Systems (FACTS) represent the application of power
electronics in ac power systems in order to provide voltage and power flow control and
thus better utilize the capability of existing transmission systems. The Electric Power
System Research Institute (EPRI) in USA has been a strong proponent of the concept
and Dr. Narain Hingorani is often credited with the idea [4]. Others have suggested the
use of high power semiconductors in power systems and Dr. Hingorani focused on
applications in high voltage systems. One of the earliest reference to FACTS was
Hingorani’s presentation at the American Power Conference in 1998. At that
presentation, Hingorani, then Vice President of ERPI, advocated transmission controls
that were virtually entirely based on silicon switches. Other overviews of the. FACTS
concept are found, with the focus of work being the modeling and control of the

devices in dynamic situations.

The first generation of FACTS controllers employed thyristors as the power
electronic switching eleﬁents, in combination with reactive components. Static VAR
compensators are widely employed for shunt compensétion of transmission systems,
large industrial loads, and even remotely-located loads of moderate size. Series
compensation by means of thyristor-controlled series capacitors (TSCS}) and thyristor-
controlled phase shifting transformers (TCPS) can provide power flow control to

minimize system congestion problems.

The second generation of FACTS controllers uses Gate Tum-Off (GTO) or

similar power semiconductors in voltage-source inverted configurations. Shunt
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compensation is provided by the static synchronous compensator (STATCOM), series
compensation by static series synchronous compensator (SSSC) and combined senes-

shunt compensation by the unified power flow controller (UPFC) [5]

The main types of present FACTS devices include the following:
o Static Var Compensator (SVC)
o Static Synhronous Series Compensator (SSSC)
e Static Condensor (STATCON)
¢ Thyristor Controlled Series Compensator (TCSC)
+ Thynstor Controlled Phase Shifter (TCPS)
¢ Thyristor Controlled Break Capacitor (TCBR)
¢ Thyristor Controlled Break Resistor (TCBR)
¢ Thyristor Controiled Series Reactor (TCSR)
e Phase Angle Regulator (PAR)
e Interface Power Controller (IPC)
e Unified Power Flow Controller (UPFC)
e Sernes Power Flow Controller {SPFC)
¢ Load Tap Changing Transformer (LTCT)
¢ Dynamic Voltage Limiter (DVL)
¢ Super-conducting Energy Storage System (SEMS)
¢ Solid State Circuit Breaker (SSCB)

e Solid State Current Limiter (SSCL)
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1.3  The needs of FACTS

Large interconnected systems are developed for increasingly heavier loads
especially if new lines cannot be built because of the lack of right-of-ways.
Furthermore, the location for new generation is often far away from the load and the
system takes over also the task of transmitting power over longer distances. The need
for increase of the network transmission capacity has therefore increased in recent years.
Due to deregulation in electric power industry, there are new requirements to transmit
power through specified Corﬁdors. [n some countries with remote power sources, it is
necessary to fulfill the requirement to transmit power over long distance through weak
transmission systems. Problems resulting from above mentioned developments may be

improved by the use of Flexible AC Transmission (FACTS) system and controllers.

1.4  Power Flow Control with FACTS

FACTS controllers can increase the maximum power carrying capacity of
existing transmission systems. It can control the power transfer between the power
utility companies and to avoid unwanted power loop flows, parailel power flow and

power fencing. [t can also improve the power system damping stability and voltage

profile.
Type of FACTS Devices | Controlled Parameter
UPFC Series P and Q
TCSC, PAR Series P
SVC, STATCON Shunt Q

One of the current main researches on FACTS devices is on the power flow
control and economic operation such as optimal power flow (OPF) [6]. OPF is part of

the standard tools of the supervisory, control and data acquisition (SCADA) and energy

W
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management system (EMS). It schedules power system controls to optimize an
objective function while satisfying non-linear equality and linear equality constraints.

The steady state of the power flow control [7] in the transmission line is based
on three parameters: the impedance of transmission lines, the magnitude and the angle
different of the voitage of sending end and receiving end.

vy,
Po= sind; (L.

i

i

The main function of FACTS is to use the power electronic controlled device [8] to
control the power flows in a transmission network. The reasons of using FACTS are as
follow:

I. To provide better control than conventional control.

-2

To achieve fast control response time.

3. To develop reliable and flexible control.

4. To reduce the overall system losses (e.g. SVC reduces the reactive power flow).

5. To achieve more economic operation than the buiiding of a power plant or

transmission line.

The line impedance and the thermal capacity of the transmission line mainly dominate
the power flow control in the transmission line. The line impedance of the transmission
line totally governs the load sharing. The thermal capacity or series impedance of the
transmission line limits the maximum power carrying capacity. For relatively short
lines, the thermal limit is usually reached before the line impedance becomes a factor.
However, with longer lines, line impedance often determines the upper limits.

Moreover, new transmission lines cannot be built due to legal requirement or
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contractual restrictions. FACTS device can provide a more economic way than building

up a new transmission line.

1.5  Recent work on power flow and OPF

The optimal power flow problem has been researched widely since its
introduction by Carpentier in 1962 [9]. Because OPF is a very large, non-linear
mathematical programming problem, it has taken decades to develop efficient
algonthms for its solution. Many different mathematical techniques have been
employed for its solution. The following are classifications of the types of solution

methods reported in the literature:

1. Lambda iteration method - Also called the equal incremental cost criterion (EICC)
method. This method has its roots in the common method of economic dispatch used
since the 1930s. [10]

2. Gradient method - by Dommel and Tinney [11]

3. Newton’s method - by Sun et al. {12]

4. Linear programming method - by Alsac et al. [13]

5. Interior point method - by Wu, Debs, and Marsten [14]

6. Evolutionary programming [15,16] , evolutionary strategy and simulated

annealing [17]

An excellent literature survey of the different techniques can be found in a paper

by Huneault and Galieana published in 1991 [18]. Though it does not discuss the
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interior poiﬁt method [19], it does make reference to over 150 papers on the optimal

power flow problem covering all the other methods for solving the OPF.

Solving the optimal active power flow dispatch problem incorporating with
FACTS devices has been proposed by Taranto et al. using Bender decomposition
method {20]. This method decomposes the active power OPF problem into two stages.
In the first stage, the method decides a set of trial values of FACTS variable s based on
the Benders theory. In the second stage, given the values of FACTS variables obtained
from the first stage, it solves the linear OPF problem using LP based OPF method.
However, this method can only deal with the DC representa.tion of TCSC and TCPS.
Moreover, this method can only deal with one type of FACTS devices (TCSC or TCPS)
in each calculation, and the convergence property of this method was not reported. This
method also does not consider the specified needs for power flow controls. Moreover,

the static representation of UPFC is not included.

A method for solving the power flow control problem incorporating FACTS
devices based on decomposition has been proposed by Noroozian [21,22]. The
proposed optimal power flow control problem was to find the FACTS control values so
that the predetermined line flow values and the power flow equation are all satisfied.
This problem was decomposed into two sub-problems. The two sub-problems are
solved successively by Newton’s method in one iteration to yield the updated values of
FACTS controls and state variables. Besides, the author also proposed the concept of

feasible line flow region in this paper. However, this method does not combine the OPF
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problem with the power flow control problem. Hence the solution may not be the most
economic solution. The FACTS devices considered are TCSC and TCPS while UPFC

has not been considered.

A methodology using the existing Newton-type load flow algorithm to
incorporate the UPFC model has been presented [23,24]. This paper proposed a new
method based on a genetic algorithm technique to incorporate the power flow control

needs with active power OPF using AC power flow model.

The main purpose of OPF is to determine the optimal operation state of a power
system while meeting some specified constraints. Constderable amount of research on
different optimization algorithms and solution methods have been done, especially in
the recent three decades. The main existing techniques for solving the OPF problems
include gradient method, Newton method, linear programming, quadratic method,
decomposition method, interior point method (IPM) and Evolutionary Programming
(EP). However, difficulties arise with the considerations of FACTS devices in OPF [25].
As an example, the controllable parameters of UPFC cannot be added directiy to those

existing OPF techniques because these parameters will change the admittance matrix.

1.6 GA-OPF Methodology
The conventional method used a succession of linear approximations with
piecewise-linear relaxation linear programming such as gradient methods, quadratic

programming, dynamic programming etc. and suffered from the drawback that it would
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usually be trapped in local minimun. In OPF, the objective function is highly non-
linear and the solutions will have several local minima. Moreover, the control
parameters of FACTS devices are discrete. By comparison, GA is a heuristics search
algorithm and it possésses the advantage that it does not need to differentiate between
the objective function and the constraint equations. Moreover, it tmproves the
convergence rate.

In this thesis, a GA-OPF with FACTS approach is proposed to solve optimal
power flbw problem. An optimal power flow with FACTS devices belongs to the class
of nonlinear constrained optimization problems where the objective functions are
generation cost and system transmission loss. More than one FACTS devices are
allocated within the system. FACTS devices can enhance the system flexibility and
reduce the transmission losses within the security limits. Static power flow models are
developed for TCSC (Thyristor Controlled Series Capacitor), TCPSR (Thyristor
Controiled Phase Shifter Regulator) and UPFC (Unified Power Flow Controtler). Real
power losses and shunt capacitive admittances are included. These equations are
embedded into the normal Newton-Raphson load flow equations to form an extended

Newton-Raphson power flow with FACTS.

1.7 Project Objective

This thesis is comprised of two main sections. The first section (chapter 3} reports the
research findings of a genetic algorithm approach for optimizing shunt capacitor sizes
and their placement in radial distribution systems with the consideration of harmonic
distortion limit due to the presence of nonlincar power electronic devices. The

atgorithm is based on a genetic algorithm (GA) solution technique to minimize cost
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under the additional constraints of maximum limit in Harmonic Distortion Factor (HDF)
“and voltage. A harmonic distortion calculation is embedded in the genetic algorithm
solution rtoutine to enhance the optimal capacitor allocation solution. Results of
simulation show that the approach is effective for such discrete value optimization
problem. The improvement of the harmonic distortion is effective and the best

allocation of capacitors is selected.

The second section presents a new genetic‘ algorithm method to achieve optimal power
flow in power system incorporating flexible AC transmission systems. As powerful and
versatile FACTS devices, TSCS, TCPS and UPFC are considered in the thesis. Unlike
other FACTS devices, UPFC has a great flexibility that can control the active power,
reactive power and voltage simultaneously. In the solution process, GA, coupled with
full AC power flow, selects the best regulation to minimize the total generation fuel
cost ;nd keep the power flows within their security limits. The optimization process
with GA is presented with case study examples using [EEE test system to demonstrate
its applicability. The results are presented to show the feasibility and potential of this

new approach.

1.8  Layout of the thesis

Chapter 1 provides an introduction to the Optimal Power Flow and Flexible AC

Transmission
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Chapter 2 gives an overview of genetic algorithm. Its strengths and weaknesses are
compared to those of traditional search methods. Elements of genetic algorithms are

presented.

Chapter 3 proposes genetic algorithm approach for optimizing shunt capacitor sizes
and their placement in radical distribution systems. The consideration of harmonic

distortion limit due to the presence of nonlinear power electronic devices is presented.

Chapter 4 develops static AC power flow models of FACTS devices. For TCPS and
UPFC, the power injec;ion method is developed to accommodate different applications.
The static representation is shown to work well with the extended Newton-Raphson
power flow method. Power mismatcﬁ equations are deduced based on power injection
models of FACTS devices. The design is presented in this thesis together with test

results.

Chapter 5 commences with a formulation of optimal power flow with FACTS devices
using genetic algorithm. An application study of the proposed GA-based QOPF 1s
developed. The study result is examined and the performance of the algorithm s

discussed.

Chapter 6 presents overall conclusion of the work reported in this thesis and further

possible work directions.
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1.9 Publications

Arising from this research project, three journal papers have already been
published in leading international journals. In addition, six conference papers have been
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Referred Journal Paper Published:
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&S]

H.C. Leung and T.S. Chung: “A Hybrid GA Approach for Optimal Control

Setting Determination of UPFC", IEEE Power Engineering Review, December

2001, pp. 62-65

2

T.S. Chung and H.C. Leung: “A New GA Approach for Optimal Control Setting

Determination of UPFC in Power System Operation”, Automation of Electnic

Power Systems, October 2002, vol.26, pp. 58-601

International Conference Papers:
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1997, Volume 2, pp. 283-288
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6)
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Advances in Power System Control. Operation and Management, ASPCOM 2000,
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Chapter 2

BACKGROUND
OF GENETIC ALGORITHMS

2.1 Introduction

Genetic algorithm [26] was first proposed by Holland in the early 1970s {27} and
put into practical applications in the late 19805. It is an adaptive method simulating
the evolutionary process in nature and is based on the principle of natural selection
and best survival.

In nature, individuals in a population have to compete with each other for scarce
resources. The competition results in fitter individuals dominating the weaker one; a
phenomenon called “survival of the ﬁtness”. The essential factor for the survival of
an individual in a competition is the ability to adapt to a constantly changing
environment. This survival capacity is determined by the unique set of genes that
form the chromosomes individual. The fitness individuals therefore inheri.t a
combination of genes from their parents thaf may further strengthen their survival

capacity. The weaker ones will evéntually die out together with the genes. Through
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Chaprer 2 Background of Genetic Algorithms

the succession of natural selection and recombination of genes that occurs during
reproduction, the evolution continues as the population becomes more adapted to the

environment.

GA simulates an artificial environment of such genetic processes. A pbpﬁlatioﬁ
of individuals, each representing a potential solution to a given problem, is
maintained. Each individual is assigned a fitness value to indicate how good a
solution is to the problem. The individuals then have to compete with others in the
population to produce offspring. The highly fit indi.viduals are those with h.igher'
fitness value and they have more chance to reproduce through crossover operations.
The offspring inherits genes of their highly fit parents and will become even fitter
and they represent a better solution to the problem concerned: The .1east fit
individuals have less chance to reproduce and the trace of their genes will eventually
disappear in the population. Between the newly produced offspring and their parents,
the best individuals are chosen to form the population of the next generation. By
repeating the process, the population will evolve into an optimal solution to the

problem.

In power systems, GAs have recently been applied in solving various problems,
such as distribution system configuration {28] optimization of generation expansion
planning [29], economic dispatch [30], unit commitment [31], reactive power

planning [32,33], voltage optimization [34] and load flow calculation [35,36]. GA is
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Chapter 2 Background of Genetic Algorithms

a powerful search algorithm based on the mechanics of natural selection and natural
genetics. Its characteristics make GA a robust algorithm to adaptively search the

globai optimal point of certain class of engineering problems.

2.2.1 GA Vs Traditional methods

Optimization techniques have been widely used for solving power system
operation and control problems, for example, such as generator scheduling and
economic dispatch, etc. Traditional methods used include gradient search methods,
integer and mixed-integer programming, linear programming [37]; non-linear
programming [38], quadratic programming {39], dynamic programming. However,
traditional methods of search and optimization are slow in finding a solu*ion in a
complex search space, even when they are implemented in supercomputers to
determine global optimum solution. Unlike these traditional optimization methods,
Genetic Algorithm is a robust search method requiring little information to search
effectively in a large or poorly understood search space. Moreover, it has no
prerequisite on the type of functions that it can handle, whether the function 1s
discrete ot multi-nodal in nature. In particular a genetic search progress through a
population of points in contrast to the single point of focus of most search algorithms.
Moreover, it is useful in the very tncky area of nonlinear problems. Its intrinsic
parallelism (in evaluation functions, selections and so on) allows the uses of

distributed processing machines.

18



Chapter ? Background of Genetic Algorithms

2.2 Feature of GA and the best time to use GA

The advantages of GA over other traditional optimization techniques can be
summarized as follows:
® It searches from a population of points, not a single point. The population
can move over hills and across valleys. GA can therefore discover a globally optimal
point, because the computation for each individual in the population is independeﬁt of
others. .G'A has inherent parallel computation ability.

® [t uses payoff (fitness or objective functions) information directly for the

search diréction, not derivatives or other auxiliary knowledge. GA therefore can deal
with non-smooth, non-continuous and non-differentiable functions that are the real-life
optimization problems. OPF in FACTS is one of such problems. This property also
relieves GA of the approximate assumptions for a lot of practical optimization broblems,
which are quite often required in traditional optimization methods.

® [t uses probabilistic transition rules to select generations, not deterministic

rules. They can search a complicated and uncertain area to find the global optimum.

Although GA has been applied for many applications, not all the reported
performances are successful. Moreover, there are no rules on how to determine
whether GA should be used on a particﬁlar application. The disadvantages of GA are

as follow:
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® GA does not always produce an exact global optimum (premature
convergence)

® GA requires long computation time since a farge number of complicated
fitness evaluations |

@ Population size, crossover rate and .mutation rate are highly nonlinear.
Therefore, some enhanced methods {40, 41] are recommended for the

parameter settings to improve performance.

‘2.3 Basic Genetic Algorithm

Geoetic algorithms belong to the class of population-based search sirategies.
They operate on a population of strings (chromosomes) that encode the parameter
set of problém to be sotved over some finite alphabets. Each encoding represents an
individual in the GA population. The population is initialized to random individuals
(random chromosomes) at the start of the GA run. The GA searches the space of
possible chromosomes for better individuals. The search is guided by the fitness
value return by the environment. This gives a measure of how well adapted each
individual is in term of solving the problem and hence determines its probability of
appearing in future generations. A binary encoding of the parameters of the problem
is normally used. It has been mathematically proven that the cardinality of the binary
alphabet maximizes the number of similarity template (schemata) on which the GA

operates and hence improves the search mechanism.
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A simple genetic algorithm involves the following steps:

{

Encoding — code parameters of the search space as binary strings of fixed

length.

Initialization — randomly generate imtial populatibn strings which evoive to the
next generation by genetic operators |

Fitness — evaluates the quality of solutions coded by strings.

Selection ~ allows strings with higher fitness to appear with higher probability
ir the next generaﬁon.

Crossover and mutation — Crossover combines two parents by exchanging parts
of their strings, starting from a randomly chosen crossover polint. This leads to
new solutions inheriting desirable qualities from both parents. Mutation flips
single bits in a string, which prevents the GA from premature convergence, by -
exploiting new regions in the search Spéce.

Termination — the new strings replace the existing string. The sequence

continues until the termination criterion is reached.
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A pseudo code of GA is as follows:

GA(.)
[nitialize and evaluate population;
if (terminatibn criteria is not reached) then
Select chromosomes for next generation,
Perform crossover and mutation;
Evaluate population;

End if

GA tends to take advantage of the fittest solutions by giving them greater weight, and

concentrating the search in the regions which lead to fitter structures leading to better

solutions of the problem.

2.3.1 Schema

A schema is a similarity template describing a subset of strings with similarities at
certain string position. in a binary coding scheme, a string is made up of ones, zeros and
asterisks, where asterisks represent all possible bits. A string that can be represented by
a schema is called an instance of that schema. For example, the schema 00**01 in this
example has four possible instances: 000001, 000101, 001001 and 001101. In this
schema, the string positions that have non-asterisk bit, i.e. either 0 or 1 are described as

the defined positions. The number of defined positions of a schema is its order. A
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schema’s defining length is the distance between the two outer-most defined positions.

Hence, the above example schema 00**01 has an order of 4 and a defining length of 5.

2.4 The operation of GA
2.4.1 Encoding / Solution Representation

Choosing a suitable coding method is the first step of designing a GA application.
Since binary coding has been the most common encoding for the past, the existing GA
theory is based on the assumption of fixed-length binary encoding. The first decision in
applying an GA to seek optimal values for continuous vanables is how to represent
design parameters of an individual. Roughly speaking, there are two classes of

representations: binary representations and floating-point representations.

The use of the binary representation originates in GAs that use a bit-string to
model an individual. When a bit-stnng is used to represent an individual, howevel;, it is
required to transform real design parameters into binary numbers. Since binary
substrings representing each parameter with the desired precision are concentrated to
form a chromosome for GAs, the resulting chromosome encoding a large number of
design variables would result in a huge string length. For example, for 100 vanables
with a precision of six digits, the string length is about 2000. GAs would perform poorly.
for such design problems. Previous applications have been kept away from this problem
by sacrificing precision or narrowing down the search regions prior to the optimization.

However, such approaches might exclude the region that actually has the global
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optimum. In addition, the binary representation of real design parameters presents the
difficulty of so-called hamming cliffs, which comes from discrepaﬁcy between the
representation space and the problem space. For instance, two points close to each other
in the representation space might be far in the binary represented problem space. As a
consequence, GAs using the binary representation is unable to focus the search effort in
a close vicinity of the current population. It is still an open question to construct efficient

genetic operators that suit to such a modified problem space.

Another drawback of the binary-coded GAs applied to parameter optimization
problems in continuous domains comes from discrepancy between the binary
representation space and the actual problem space. For example, two points close to
each other in the representation space might be far in the binary represented problem
space. It is still an open question to construct an efficient crossover operator that is

suitable for such a modified problem space.

A simple solution to these problems is the use of the floating-point
repreSenta.tion (42, 43] of parameters. In this real-(.:oded GAs, an individual is coded as a
vector of real numbers corresponding to the variables. The real-coded GAs is robust,
accurate, and efficient because the floating point representation is conceptually closest
to the real design space, and the string length reduces to the number of design variables.
However, even the real-coded GAs would lead tc premature convergence when it

applied with a large number of variables.

24



Chapter  Background of Genetic Algorithms

Binary Coding
{t001,0110,110001,0010,10,0101}

Gt

Floating Peint Vector
{25,1.34,900 -234,452,1.23,0.002}

The use of the floating-point representation originates in EP and ESs. In the
floating-point representation, an individual is characterized by a vector of real numbers.
[t is more natural to use the floating-point representation for real parameter optimization
problems because it is conceptually closest to the real design Spa(;e and the string length
is reduced to the number of design variables. It has been reported that real-coded GAs
ourperformed.binary-coded GAs .in many désign problems. Therefore, GAs using the
floating-point representation is used in OPF. An example of binary and floating-point

representations is illustrated in Figure 2.1.

design parameter values mapping

= 000 ... 0.0

(0.6 , 0.1, 0.3] 01 .. 0L
= 010 ... 0.2
realcodingy binary—coding |11 0
, 100 ... 0.4

: 01 ... 0.3

110 ... 0.6

.. 0.7

0.6 L{Lj01Oj0L]O0} L}t

Figure 2.1 An example of binary and floating-point representations
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2.4.2 Fitness

Each candidate solution must be assigned a fitness function to measure its optimality
with respect to the objective being optimized. In _the case of OPF, the fitness of an
individual is adopted as follows: |

Fitness = ——HA{-—-—? 2.1
1+ H+AC

In the above ‘equaticlm, M is the constant for amplifying the fitness value. A is the
objective function (the generation cost) and A is the penalty factor. The value of A is'set
to an arbitrary number. Penalty cost has been added to discourage solutions, which
violate the binding constraints. Firnally, the penalty factor is tended to zero. C is the state
variable / inequality constraint which add them as the quadratic penaity terms to the

objective function to form a penalty function.

2.4.3 Selection

The selection rule is used to determine the individuals that will be represented in
the next generaﬁon of GA. The selection mechanism is based on a fitness measure or
objective function value, defined on each individual (chromosome) in the population. A
widely used method is the fitness-proportional selection. In this method, the sélection
probability of each individual is calculated by dividing its fitness by the sum of the
fitness of all individuals. Three major selection mechanisms are commonly adopted in

the GA search: roulette selection, tournament selection and ranking selection.
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2.4.3.1.Roulette selection

The parents are selected by roulette-wheel selection. Figure 2.2 shows the
operation of the roulette-wheel selection that assigns a portion of the wheel proportional
to the selection probability and starts spinning the roulette wheel: each time, a single

individual is selected

_ _Rparen)
p salection E A parent)

aChramoesame |
®;Chromosome 2

QChrmnsama 3

QOChromosoma 4

Figure 2.2: Roulette wheel selection
In roulette wheel selection the probability of being selected is proportional to an
individual’s fitness value. Therefore, highly fit individuals have a higher probability of

being selected and hence of being represented in the next generation.

2.4.3.2. Tournament selection

Tournament selection [44] operates by choosing some individuals randomly from a
population and selecting the best (highest fitness) from this group to survive into the
next generation whereas discard all others. Binary tournaments where tournaments are

held between pairs of individuals are the most common. A fraction of the individuals in
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the population are randomly selected into a subpopulation and competition is carried out

to select the fittest individuals in each subpopulation.

Figure 2.3 Tournament Selection

Figure 2.4 and 2.5 shows a comparison between roulette wheel and tournament selection
for a population of 10 individuals with randomly initialized fitness between 0 and 100.
The population is sampled 1000 times in each generation and the number of wins per.
individuals is averaged over 10 generations and tabulated. For tournament selection, the
subpopulation size is set to half of the population size and it can be viewed as a noisy

version of rank selection.

Total

Fitness| 10 | 34 | 42 | 43 49 | 62 | 63 75 80 | 100 | 558

Table 2.1 Fitness Function
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Figure 2.5 Toumament Selection
From Figure 2.4, it shows that roulette wheel selection given even the least fit members
of the population a chance of being represented in the next generation. However,
tournament selection is strongly in favour of the highest fitness individuals with a subset
of the least fitness individuals guaraﬁteed to disappear from the population in each

generation.

2.4.3.3 Ranking selection
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Ranking selection assigns selection probabiliies on an individual’s rank,
ignoring absolute fitness value. In this method, the individuals in the mating pool are
sorted according to their fitness values and then assigned a count that is solely a function
of their rank. The selection probability is reassigned according to rank, for example, as
an inverse of their rank values. In [45], Michalewicz proposed a nonlinear function tﬁ)-
assign the selection probability as,

probability = ¢ -(1 - ¢ )" (2.2)
where c is a user-defined parameter. Then, the parents are selected by either roulette-

wheel selection or Stochastic Universal Sampling.

2.4.3.4 Elitism Strategy

GA adopting elitism can be viewed as steady-state GA with a large generation
gap. During the generation of the next population, the best individuals of the previous
generation are not always selected for reproduction, or they can.b(;:_ciestro-yed by
crossover and mutation. Elitism is used in addition to selection method to retain a

number of the best individuals from the previous population at each generation. Many.

researchers have found that elitism improves the performance of GA.

2.4.4 Crossover and mutation

2.4.4.1 Crossover
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After selection is ﬁrocessed, new individuals was introduced into the current population
or to create a new population based on the current population. In the combination
process, crossover and mutation operators are commonly used. The combin‘a't-ic'm rules
act on individuals that have been previously- selected by the selection mechanism. A
reproduction process takes place between the selection individuals in the -curtent
generation to produce offspring that become individuafs in the next generation. This

kind of crossover operators inctudes one-point, two-point and uniform crossovers.

One-point crossover is the traditional crossover operator. Two new ‘off-spring‘
chromosomes are generated from the exchange of the information in the two chosen
‘parent’ chromosomes. Of all the different form in crossover, the simplest and most
original one is a singl¢ point crossover. A point is randomly decided as the crossover
point where the genes of the two parent chromosomes before the point are exchanged to
form two new chromosomes. Not every pair of chromosomes selected from the
population takes part in the crossover process. Crossover probability, P, is used to
determined the frequency at which crossoverl is appliéd. If a number randomly generated.
between 0 and | is less than P, the two “fo-spring" chromosomes will simply be
duplicates of their parent chromosomes. Although simple in nature, it has some
disadvantage that it cannot recombine all possible schemata. It 1s also more likely to
destroy by a crossover depending strongly on the location of the genes in the
chromosome. Furthermore, the genes exchanged between two parents always contain

the endpoints of the strings.
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Parane 1 Paent 2
EEFEREEEREEE  BREEEEEEE R

Tprpaoes
Child 1 Child 2

FEEEEEEREEAE  EEREEEEERRE

Fig 2.6 An illustration of a single point crossover operation

Two-point crossover [46] is used to reduce the effect of positional bias and the endpoint
problem. Two points are chosen at random and the genes between them are exchanged
to create two new offspring. Two-point crossover is likely to destroy schemata with

large defining lengths and the genes exchanged do not necessarily contain endpoints.

Uniform crossover {47 is different from one-point or two-point crossover. Every gene of
an individual in uniform crossover is probabilistically exchanged with somer fixed
probability. The exchange of one gene is independent of the exchange of genes at other
positions. Uniform crossover can be highly disruptive to a schema and is said to ﬁave
distributed bias where it is refated to the number of genes exchanged by crossover

operator .

In the floating-point representation, the vector components of two parents are swapped

in groups at a random space of a vector between the vector components. For example,
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given a five dimensional space, Parent | has a vector (aj, as, a3, a4, as) and Parent 2 has a
vector (b, ba, b, by, bs) and the crossover point was selected to be 3, then the offsprings
will carry vectors (a;, az, a3, bs, bs) and (by, by, by, as, as). An example of one-point

crossover 1s tllustrated in Fig 2.7

Crossover site

Parent 1 [:5:7: |

Parent 2

Parent | -1.0

-l
N
rh
e
[ X¥]
e

Parent 2 " -01 2.6

Figure 2.7 Two point, multi-point, and uniform crossovers for the floating-point

implementation can be defined in the same manner.

2.4.4.2 Mutation

Mutation plays a secondary role to crossover in the genetic algorithm. It adds a
small amount of randorﬁness in the search process to allow the exploration of all regions
in the search space. Genes in a chromosome are occasionally altered in the mutation
process, thus increasing the diversity of the population. In Figure 2.8 the ninth gene is

randomly chosen for mutation. Under the binary encoding scheme, mutation of any
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single bit is done by flipping the bit from 0 to 1, or vice versa. On the other hand, there
is no strict definition on how to perform mutation under a real-valued encoding scheme.
Similar to the crossover operator, mutation probability, P,, govems the rate of
performing mutation. Mutation is applied to the chromosomes when £, is greater then a
randomly generated number between 0 and 1. The value of P, is usually small, for high
mutation probability has a counter-effect of destroying the building blocks of the

chromosomes.

T prpreucEor

Y — FEEEE P EAEE

FEEEREE

@

Figure 2.8 An illustration mutation Being applied to a chromosome

2.5 Parameter setting of GA

Finding good parameter settings [48] that work for a particular problem is not a trivial
task. The critical factors are to determine robust parameter settings for population stze,
encoding, selection cﬁteria, genetic operator pfobabilities and evaluation (fitness)

normalization techniques.

[f the population is small, the genetic algorithm will converge quickly to a local optimal
point and may not find the best solution. On the other hand, too many members in a
population result in long waiting times for significant improvement, called slowing

finishing but increase its diversity and reduces the chance of premature convergences.
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Increasing the crossover rate will increase the recombination of building blocks at
generation. Setting. the crossover rate too high will destroy the good building blocks
already present in the individuals of the current population. Two point crossover is
quicker to get the same results and retain the solutions much longer than one point

CTOSSOVEr.

The fitter member will have a greater chance of reproduction. The members with lower
fitness are replaced by the offspring. Thus in successive generations, the members on

average are fitter as solutions to the problem.

it is also accepted that high mutation introduces diversity and takes longer time to get

the optimal solution. Too low mutation tends to miss some near-optimal points.

2.6 Constraint Satisfacfion in GA

The basic genetic algorithm has been developed on the basis of unconstrained
optimization problem. Despite the fact that GAs are ofteﬁ used in constrained
optimization problems [49], the issue of handling infeasible individuals in the
population has not been formally addressed in genetic algorithms. However, a number
of techniques have bgeh proposed to handle constraints in genetic algorithms. The most

popular method is penalty method.
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Penalty method transforms the constrained problem into an unconstrained problem by
penalizing infeasible solutions. It is the most common technique used in the genetic
algorithms for constrained optimization problems. A penaity function is usually added to

the objective function to form the new fitness evaluation function shown as follows:

eval (x) =f (x)'+ p(x) (2.3)
where x represents an individual in the population. f(x) and p(;?) are the objective
function and the penalty function respectively. For minimization problems, the penalty
function is designed to have the following property

P(x} =1, if x is feasible

P(x) > 0: otherwise

In general, a constrained optimization problem can be transformed usefully into an

unconstrained optimization problem by using a penalty method. There are general rules

for designing penalty functions

2.6.1. Advantages and disadvantages of the penalty method

Advantage: It removes hard constraints on the parameter values.

Disadvantages:

I. Some constraints can be "slightly" violated e.g. by a good solution close to the
border of the space of valid solutions, v-vhich the méthod does not prevent. This

might be allowable for some problems.
2. In many constrained optimizations probléms, the constraints actually enforce the

syntactic correctness of the solutions rather than simply restrict the space of valid
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solutions. i.e. solutions that violate the constraints are non-solutions. In this case,
the penalty method is inadequate. One must resort to using special representations
and genetic operators e.g. use a crossover method that prevents non-solution

offspring from being generated.
2.7 Summary

This chapter gives a comprehensive overview of genetic algorithm. This includes the
conceptual idea of GA and the application areas where GA has been used for
optimization. The merits of GA over traditional search methods and the type of problem
to which GA will be best suited are discussed. Binary encoding and ﬂaating point
representation are also reviewed. Varous constraint satisfaction methods previously

employed in GA are presented.
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Chapter 3

OPTIMAL CAPACITOR SELECTION
WITH HARMONIC DISTORTION
CONSIDERATION

3.1 Introduction

Capacitors have been commonly used to provide reactive power compensation in
distribution systems. The capacitor placement problem is a well-researched topic. Earlier
approaches differ in problem formulation and the solution methods. In some approaches,
the objective function is considered as an unconstrained maximization of savings due to
energy loss reduction and peak power loss reduction against the capacitor cost. Others
formulated the problem with some variations of the above objective function. Some have
also formulated the problem as constrained optimization and included voltage constraints

into constderation.
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In today’s power system, there is a general trend to use more nonlinear loads such
as energy-efficient fluorescent lamps and solid-state devices. The capacitors’ sizing and
allocation- should be prbperly considered, if else they can amplify harmonic currents and
voltages due to possible resonance at one or several harmonic frequencies. This condition
could lead to potentially dangerous magnitudes of harmonic signals, additional stre;ss on
equipment insulation, increased capacitor failure and interference with communication
system.

Capacitor values are often assumed as continuous variables whose costs are
considered as proportional to capacitor size In past researches [50-58]. However,
commercially available capacitors are discrete capacities and tuned in discrete steps.
Moreover, the cost of capacitor is not linearly prop'ortion'alrto the size (kVar). Hence, if the
continuous variable approach is used to choose integral capacitor size, the method may not
result in an optimum solution and may even lead to undesirable harmonic resonance

conditions. [59]

An innovative genetic algorithm approach 1s developed for optimizing. shunt
capacitor sizes and their placement in radical distribution systems with the consideration of
harmonic distortion limit. The approach is bésed on a genetic algorithm (GA) solution
technique to minimize cost under the additional constraints of maximum limit in harmonic
distortion factor (HDF). A harmonic distortion calculation is embedded in the genetic
algorithm solution routine to enhance the optimal capacitor allocation solution. One of the

advantages of using GA is that the computation time is neither proportional nor dependent
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of the scale of radial system. Since the increase in the number of search due to
combinatorial explosions brings an exponential increase in the search time, the
enumneration based methods (Exhausive Search, Branch and Bound) become impossible for
large scale problems [58]. Results of sifnulation show that the approach is. effectivé for .

such discrete value optimization problem.

3.1.1 GA in Capacitor allocation

The following sections describe the method. based on Genetic Algorithm (GA)
{60,61] to solve the optimal capacitor allocétion sUccessquy‘. As GA is a multiple poiﬁt
probabilistic search technique and is characterized by the mechanism of natural selection
and natural genetics, it is able to deal with discrete function in optimization. It is different

from traditional methods in four ways:

. GA can work with coding of the parameter set, not the parameters themselves.

2. GA searches from a-population of points not a single point.

3 GA uses payoff (objective function) information not derivatives or au’xirliary
knowledge.

4 GA uses probabilistic transition rules not deterministic rules.

Simple Genetic Algorithm (SGA) method is a powerful optimization technique
analogous to the natural genetic process in biology. Theoretically, this technique is a
stochastic approach and it converges to the global optimum solution, provided that certain

conditions are satisfied. This paper considers a distribution system with 9 possible
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locations for capacitors and 27 different sizes of capacitors. A cntical discussion using the

example with result is presented here.

3.2 Probiem Formulation

3.2.1 Assumptions

| The optimal capacitor placement problem has many variables including the
capacitor size, capacitor cost, locations and voltage constraints on the system. There are
“switchable capacitors and fixed-type capacitors in practice. Howeve.r, considering all
variables in a nonlinear fashion will make the placement problem very complicated. In
order to simplify the analysis, only fixed-type capacitors are considered with the following
-assumptions: 1) balanced conditions, 2) negligible line capacitance, 3} time-invariant loads

and 4) harmonic generation is solely from the substation voltage supply.

3.2.2 Radial distribution system
Figure 3.1 clearly illustrates an m-bus radial distribution system where a general
bus / contains a load and a shunt capacitor. The harmonic currents introduced by the

nonlinear loads are injected at each bus
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Figure 3.1 One-line diagram of the radial distribution feeder.

At the power frequency, the bus voltages are found by soiving the following

equations:
112 S 1l 1 o<l _ sl
Pf:'VI" Gt P IV{VJ;Y&'COS(HQ"*'(S‘]'_CS!') i=123.m(3.1)
J=1
Jj#i
2 < B IS T | DN S R
Ql.z_‘yfi Bii+ ¥ IVI.ijljsm(gg+5j'—~5!.) i=123.m (3.2)
A i=1
J#i
where
R = R’i +Pru' (33)
Q=0 +0, (3.4)
_ | . £ g
nepleg=t T T (3.5)
Yiag T Viay T Vo if i=j
Y, =G, +8B, (3.6)

3.2.3 Real power losses

At fundamental frequency, the real power losses in the transmission line between buses

[and {+/{ is:
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2
I - p. . 1 _ el :
Ploss(i,i + 1) =Rii+ IUV'-" +1 Viuyf:f + ID 3D

So, the total real losses are:

N (m-1 |
- n
Ploss HE l[i goploss[i,i + l)] (38

3.2.4 Objective Function and Constraints

The objective function of capacitor placement is to reduce the power loss and keep
bus voltages and total harmonic distoﬁion (HDF) within prescribed limits with minimum
cost. The constraints are voltage limits and maximum harmonic distortion factor, with the
harmonics taken into account. Following the above notation, the total annual cost function

due to capacitor placement and power loss is written as :

Minimize f= KK B+ 0K, (3.9)
J=t

where j = 1,2,....m represents the capacitor sizes

Q,=J*K, (3.10)
The objective function (Equation 3.9) is minimized subject to

Vin SIVi| S Vas i=123.m (3.11)

and
HDF, < HDF i=1,23..m (3.12)
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According to [EEE Standard 519 [62] utility distribution buses should provide a
voltage harmonic distortion level of less than 5% provided customers on the distribution

feeder limit their load harmonic current injections to a prescribed level.

3.3  Proposed Algorithm
3.3.1 Harmonic power flow

At the higher frequencies, the entire power system is modelled as the combination of
harmonic current sources and passive elements. Since the admittance of system
components will vary with.the harmonic order, the admittance matnx is. modified for each
harmonic order studied. If the skin effect is ignored, the resulting n-th harmonic frr;equency

load admittance, shunt capacitor admittance and feeder admittance are respectively given

by:

P, : .

Y=t~ j el (3.13)
A4

Yy =n¥, (3.14)

1

i = , (3.15)

RI.I'H + J’nXE,H-I

The linear loads are composed of a resistance in parallel with a reactance [63]. The
nonlinear loads are treated as harmonic current sources, so the injection harmonic current

source introduced by the nonlinear load at bus i is derived as follows:
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['= [%} (3.16)
[T =C(n)i} (3.17)

In this study, C(n) is obtained by field test and Fourier analysis for all the customers
along the distribution feeder. The harmonic voltages are found by solving the load flow
equation (3.18), which.is derived from the node equations.

vt =1r" (3.18)

At any bus i, the r.m.s. value of voltage is defined by

(3.19)

P
where N is an upper limit of the harmonic orders being considered and is required to be
within an acceptable range. After solving the load flow for different harmoﬁic orders, the
harmonic distortion factor (HDF) [64] that is used to describe harmonic pollution is

calculated as follows:

V.n

>
HDF (%) = MTX 100% (3.20)

It is required to be lower than the accepted maximum value,

3.3.2 Selection of optimal capacitor location
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The general case of optimal capacitor locations can be selected for starting the iteration.

GA calculates the optimal capacitor sizes according to the optimal capacitor locations.

After the first iteration, the solution of capacitor locations and sizes will be recorded as an

old solution and more locations are then considered. GA is used to calculate a new solution.

[f the new solution is better than the old solution, the old solution will be replaced by the

new solution. If else, the old selution is the best solution. Therefore, this process will

continue to consider more locations until no more optimal solution is found which is better

-than the previous solution. The selection of optimal capacitor location is based on the
following critena: voltage, real power loss, load reactive power and harmonic distortion

factor with equal weighting.

3.3.3 Solution Algorithm

GA is a search algorithm based on the mechanism of natural selection and genetics.
. Simple GA consists of a population of bit strings transformed by three genetic operations:
1) Selection or reproduction, 2) Crossover, and 3) mutation. Each string is called
chromosome and represents a possible solution. The algonthm starts from an initial
population generated randomly. Using the genetic operations considenng the fitness of a
solution, it generates a new generation. The string’s fitness is usually the reciprocal of the
string’s objective function in minimization problem. The fitness of solutions is improved
through iterations of generations. For each chromosome population in the given generation,
a Newton-Raphson load flow calculation is performed. When the algorithm converges, a

group of solutions with better fitness is generated, and the optimal solution is obtained. The
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scheme of genetic operations, the structure of genetic string, its encode/decode technique
and the fitness function are designed in this process. The implementation of GA

compoﬁents and the neighborhood searching are explained as follow.

3.4. Representation of candidate solutions

3.4.1 The Genetic String

The genetic string, which consists of “n+1"" substrings of binary numbers, whg:re n
is the number of probable capacitor locations. The: first substring is used to indicate the
location of the capacitors, and is named as “location indicator”. The length of the location
indicator substring is equal to the number of probable cépacitor locations and each location
is represented by a bit of the string. A “17in the bit position 1s used to select a location and
a “0”bit indicates that the location is not selected: -Each of the remaining “n” substrings is
used td indicate the kVar value at the probable capécitor location. The kVar subsfring fora
particular location may have a non-zero value when the selection bit for that location in the
location indicator substring is zero. The kVar subs-,trmg m such cases is ignored while
determining the fitness function value of a genetic string; HOW&VE‘:I‘, the genetic operators of
the crossovér and mutation are applied on each substring imrespective of the values of the
location indictor bit for the location. The location indictor acts as a switch. Although

capacitors are installed at each probable location, the capacitors of these locations are

connected to the system, for which the location selector bit is 1.
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An entire genetic algorithm string 1s selected during reproduction. The crossover
operation is performed between the respective substrings. Thus, there are (n+1) crossover
points in each genetic algorithm string. The crossover mechanism used in the present

implementation 1s single-point crossover.

A string of length represents a candidate solution. The initial population of strings s;,
where i = 1, 2 ... m where m is the population size. The population size is 200 and is
randomly selected. The maximum capacitor size is 27 (4050kVar) in this example. A 5-bit
sub-string is used to represent the capacitor sizé (00001 to 11011) at each node and (00000)
means no capacitor is needed. The above sub-string multiplied by the X is equal to the

actual capacitor size at the node.

3.4.2 Reproduction

The function of reproduction is to select good strings in a population and put it into the
mating p00.i based on their fitness. Proportionate selection operator is used and the i-th
striﬂg in the population is selected based on the probability of the string fitness fi The

higher of f;, the higher chance of i-th string is selected. The probability for selecting i-th

string 18 f;/ ¥ /. where m is the population size. Roulette-wheel selection method is used
=1 .

and its circumference is marked proportional to the fitness of the string. The number of f; /
fave string are generated where fu,. is the average fitness of each generation in the

population.
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3.4.3 Crossover

The main purpose of crossover is to search the parameter space and it is the most
important operator in GA. Typically, the probability of crossover is 0.6 for a population
size of 100 [65] and it is arbitrarily set-as 0.8 in this work. The crossover operator takes
two strings from the old population and exchanges the next segment of their structures to
form offspring. There are several different crossover operators such as two-point crossover
operator and the uniformr crossover operator but only single-point crossover is used in
simple GA. In the single-point crossover, the search is not comprehensive and information

may be retained.

3.4.4 Mutation

The function of mutation is to prevent the loss of the information. Mutation can
keep the population more diverse so that it alters a string locally to create a better string.
The mutation probability cannot be set too high or too low. If the mutation rate 15 too high,
the information will be lost. If the mutation rate is too low, premature convergence will
occur. Typically, the probability of mutation is 0.001 for a population size of 100 and it 1s
arbitrarily set as 0.002 in this work. A random number is generated from a uniformly
distributed curve within the range of 0 and 1. If the number is less or equal to the mutation
probability, j-th bit of the string change 1 to 0 or vice versa. The trials will be chosen

randomly by one trial for mutation and is placed to the optimal location and repeat again.
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Once the new proportion is completed, the program will continue to generate new
population. The iteration can be stopped either when no further significant change of the

solution occurs or when the specified number of iteration is reached.

3.4.5 Fitness function

The fitness function is derived as equation (3.9). The objective function is to
minimize /. [t is composed of two parts; 1) the cbst of the power loss in the transmission
branch and 2) the cost of reactive power supply. Since GA is applied to maximization
problem, minimization of the problem take the normalized relative fitness value of the

population and the fitness function is defined as:

ﬁ = f;nax - j:a (3 .2 1)
S -
where f, = KK P+ 0K, (3.22)
i= .

3.5  Software Design

Figure 3.2 depicts the main steps in the process of this experiment. The predefined
processes of optimal capacitor location and genetic algorithm calculation are illustrated in

Figure 3.3 and Figure 3.4
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Figure 3.3 Flow chart of ‘Optimal capacitor location calculation subprogram’ in Figure 3.2
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s converged?
No °

C Exit D)

53



Chapter 3 Optimal Capacitor Selection with Harmonic Distortion Consideration

( Enter )
i
h 4

Set first harmonic order

-
ol
4

Adjust Y-matrix

Is the highes
harmonic order
considered?

Yes

h 4
Calculate' Harmonic current )
source Next harmonic order
l A
h 4
Solve V*Y=I[

No

¥
Calculate the harmonic
distortion factor

I
Y

( Exit )

Figure 3.5 Flow chart of ‘Harmonic distortion calculation subprogram’ in Figure 3.3 and
Figure 3.4
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3.6 Numerical Example and Resuits

In this section, a radial distribution feeder [66] is used as the test system to show
the effectiveness of this atgorithm. This feeder has nine load buses at a rated voltage of
23kV. Table 3.1 and Table 3.2 show the loads and feeder line constants. The harmonic

current sources are shown in Table 3.3, which are generated by each customer.

Bus 1 2 3 4 5 6 7 8 9
- P(kW) 1840 1 980 | 1790 | 1598 { 1610 | 780 | 1150 | 980 | 1640
Q(kvar) 460 | 340 | 446 | 1840 600 | 110 | 60 | 130} 200
Non-linear 0 557|189 1921 | 47 | 1.9 | 382 | 45| 40
(%)

Table 3.1 Load data of the test system

From | From | ri;.(Q) | xim(Q)

Busi | Busj
0 I 0.1233 | 0.4127
l A 0.0140 | 0.6051
2 3 0.7463 1.2030
3 4 0.6984 | 0.6084
4 5 1.9831 1.7276
5 6 0.9053 { 0.7886
6 7 2.0552 | 1.1640
7 8 4.7953 | 2.7160
8 9 53434 | 3.0264

Table 3.2 Feeder data of the test system
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Harmonic current sources(%) in
harmonic order

Bus { 5 7 11 i3 17 19 23 25
1 010100100010
2 191(33]18{1.1]0.7]/0.6{0.4]0.3
3 131]1.8{06§04(02]0.210.1]0.1
4 |62 (3.6(13{08]05}04[03]0.2
5 |17.712.9(4.5(/82]5412.9{29; 0
6 0 | 0196|5801 0136]3.0
710310l 0]0]0]0]0]0
8 {08 (05{02{0] 0000
9 {15.1(8.813.0[1.811.2|1.0[/0.6]0.5

Table 3.3 The harmonic current sources

K, is selected to be US $168/kW in equa.tion (3.9). The minimum and maximum

voltages are 0.9 p.u. and [.0 p.u. respeétiveiy.— All voltage and power quantities are per-unit

values. The base value of voltage and power is 23kV and 100MW respectively.

Commercially available capacitor sizes are analyzed. Table 3.4 shows an example of such

data provided by a supplier for 23kV distribution feeders. For reactive power

compensation, the maximum capacitor size Q¢(max) should not exceed the reactive load,

i.e. 4186 kVar. Capacitor sizes and costs are shown in Table 3.5 by assuming a life

expectancy of ten years (the placement, maintenance, and running costs are assumed to be

grouped as total cost.)

Size of capacitor 150 | 300 450 | 600 { 900 | 1200
(kVar) :
Cost of capacitor (§) | 750 |975]11404 1320 | 1650 | 2040

Table 3.4 Available 3-phase czipacitor sizes and costs
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i 1 2 3 4 5 6 7 8 9
QO (kevar) | 150 | 300 | 450 1 600 | 750 | 900 | 105012001350
K;(8/ {050103510251622/0.27|0.18]0.2210.17]0.20
kvar) 0 0 3 0 6 3 8 0 7
i 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18
Q (kvar) 1 1500] 1650|1800 | 19501210012250)240012550|2700
Ky(3/7 1020(0.1910.18102110.17;0.19]0.17{0.18 | 0.18
kvar) { 3 7 ! 6 7 0 9 7
i 19 | 20 | 21 | 22 {23 | 24 |25 | 26 | 27
O (fevar) |2850300013150(3300]345013600{37503900/4050
K;($/ [0.18]0.18]0.19(0.17]0.18{0.17]0.18{0.18 | 0.17
kvar) 3 0 5 4 8 0 3 2 9

Table 3.5 Possible choice of capacttor sizes and costs

The effectiveness of the method is illustrated by a comparative study of the
following three cases. Case 1 is without capacitor installation and neglect the harmonic.
Both case 2 and case 3 use GA approach for optimizing the size and the placement of the
capacitor in the radial distribution system. However, case 2 does not take harmonic into
consideration and case 3 takes harmonic into consideration. The optimal locations of

capacitors are selected at bus 4, bus 5 and bus 9.

Before optimization (case 1), the voltages of bus 7, 8, 9 are violated. The cost
function and the maximum HDF are $132138 and 6.15% respectively. The harmonic

distortion level on all buses is higher than 5%.
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After optimization (case 2 and 3), the powe:; losses become 0.007065 p.u. in case 2
and 0.007036 p.u. in case 3. Therefore, the power savings will be 0.000747 p.u. in case 2
and 0.000776 p.u. in case 3. It can also be seen that case 3 has more power saving than

case 2.

The voltage profile of case 2 and case 3 are shown in Table 3.6 and Table 3.7
respectively. In both cases, all bus voltages are within the limit, The cost savings of case 2
and case 3 are $2,744 (2.091%) and 51,904 (1.451%) respectively with respect to case {.
Since harmonic distortion is considered in c.ase 3, the sizes of capacitors are larg;r than

case 2 so that the total cost of case 3 is higher than case 2.

The maximum HDF of case 2 of case 3 are 1.35% and 1.2% respectively. The HDF

improvement of case 3 with respects to case 1 is

A5-1.2
HDF improvement % = ElZTQ x 100 = 80.49%

The HDF improvement of case 3 with respects to case 2 is

4012
HDF improvement % = l—Ol-—;O—O =14.29%
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The improvement of the harmonic distortion is quite attractive and it is clearly
shown in Figure 3.6. The reductions in HDF are §0.49% and 14.29% with respect to case 1

and case 2.
The optimal cost and the corresponding capacitor sizes, power loss, minimum /

maximum voltages, the average CPU time and harmonic distortion factor are also shown in

Table 3.8.
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Harmonic Distortion

LN R RO
N —abioune—

Factor of Voltage (%)

Effect of harmonic on each bus
Case 3 (GA
e T T —— with harmonic
consideration)
] R SR Case 2
i {capacitor
i allocation by
I ' ' ' — — — Case | (No
2 4 6 g8 10 capacitor)
Bus Number

Figure 3.6 Harmonic effect on each bus
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Voltages in harmonic order
| 5 7 [ 13 17 19 23 25 Vs | HDF
Bus | xl  xt0? x107 xi10° X107 x10®  «xi0?  x10® x10* | «xl %

] 0.993 | 4.41 2.96 1.57 [.25 9.60 8.12 7.47 4.72 10992 | 578
2 0.987 | 4.43 298 1.58 1.26 | 9.69 819 | 753 | 476 | 0987 | 5.85
3 0.963 | 4.45 2.98 1.58 1.26 | 9.70 8.18 7.54 4.74 | 0.963 | 6.02
4 0948 | 447 | 3.00 .59 1.27 9.76 8.21 759 | 475 | 0947 | 6.15
3 0917 1 423 2.78 1.46 1.18 9.02 749 | 698 | 424 | 0916 | 595
6 0.907 | 4.4 2.71 1.41 i.14 3.61 7.84 | 6.65 | 4.05 | 0.907 | 3.86
7 0.389 | 4.02 2.61 1.34 1.08 8.11 672 | 622 379 | 0.888 | 5.78
3 0.859 1 380 | 243 1.23 0.98 7.31 605 | 557 | 3.40 [ 0.858 | 5.60
9 0.838 | 366 | 232 L5 | 091 6.79 | 5.61 513 315 ] 0.837 ] 549

Table 3.5 The voltage profile of Case i

Voltages in harmonic arder
| 5 7 11 t3 L7 9 23 25 Vms | HDF
Bus [ x1  x10? x10% x10°  x10°  x10® xi0®  x10*  x107 | «xI %

| 0.997 | 1.190 | 5.86 1.93 122 | 745 | 627 | 449 | 333 [ 09991 140
2 0.999 | 1.190 | 5.90 1.94 1.23 7.51 632 | 453 | 336 | 0988} 140
3 0.988 { 1.130 | 5.34 162 | 099 | 5.51 437 | 294 | 2.05 | 0980 | 1.32
4 0.980 [ 1.100 { 5.02 144 | 085 | 436 | 323 | 2.05 1.29 | 0980 | 1.26
5 0.962 { 0.887 { 342 | 0.8 0.52 | 2.29 133 | 096 | 029 | 0.962 | 1.02
6 0954 1 0861 | 3.28 | 0.79 | 0.51 2.12 1.24 | 112 | 049 | 0954 | 0.99
7 0.939 | 0.827 | 3.10 | 0.73 | 0.46 1.90 i.12 | 097 | 044 | 0939 | 0.95
3 0915 {0751 | 272 | 0.60 | 0.36 145 | 089 | 068 | 034 [ 0915 ] 0.89
9 0.900 | 0682 | 237 | 047 | 0.25 1.04 | 669 | 039 | 025 |.0.901 | 0.82

Table 3.6 The voltage profile of Case 2

Voltages in harmonic order
l 5 7 11 13 17 19 23 25 Vs | HDF
Bus x1 107 xt0?  x107  x107  xi0*  x107® x10*  x10* | «xl %
0998 | 1.05 | 508 | 1.64 | 103 | 641 | 545 | 395 | 298 | 0.998 | 1.20
1.000 | 1.06 | 511 | 1.65 | 1.04 | 646 | 550 | 398 | 3.00 | 1.000 | 1.19
09917 | 099 | 454 | 133 | 080 | 442 | 353 | 238 | 169 {0991 [ 1.1
0983 | 095 | 420 | 1.14 | 066 | 325 | 236 | 1.47 | 091 | 0983 | 1.07
0963 ] 081 [ 308 | 075 | 052 | 235 | 136 | 1.05 | 0.28 | 0963 | 0.90
0955 | 079 | 296 | 074 | 050 | 2.18 | 126 | 1.20 | 0.49-1 0955 | 0.89
0944 | 0.76 | 281 | 068 | 045 | 1.95 | (14 | 1.04 | 0.44 | 0940 | 0.86
0917 | 069 [ 248 | 057 | 035 | 1.49 | 090 | 0.73 | 034 | 0917 | 0.80
0902 | 063 [ 218 { 045 | 025 | 105 | 069 | 040 | 025 | 0902 | 0.74

Wwloo|~tfoh|n| B jweira]—

Table 3.7 The voltage profile of Case 3
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Case 1 Case 2 Case 3
Maximum 0.999 0.999 1.060
voltage (p.u.)
Minimum 0.837 0.901 0.902
voltage (p.u.) :
Total power 0.007812 0.007065 0.007036
loss (p.u.)
Q(4) (p.u.) 0.024 0.036
Qc(5) (p.u.) 0.024 0.018
Q9 (p.u.) 0.009 0.009
Cost ($ / year) 131238 128494 129334
Average CPU 0.8 1.20 3.39
Time (sec.)
Maximum-HDF 6.15 1.40 1.20
(%)

Table 3.8 Summary of results using the GA method
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3.7  Summary

This chapter presents a genetic algorithm (GA) approach to search for optimal
shunt capacitor location and size in a distribution system. The cost or fitness function is
constrained by voltage and Harmonic Distortion Factor (HDF). Since GA is a stochastic
approach, performance should be evaluated usiné statistical value. -The perfbrmance wilt
be affected by initial condition but GA can give the optimal solution by incfeasing the
population size. The result shows that GA method is suitable for discrete value
optimization problem such as capacitor allocation and the consideration of ‘harmonic

distortion limit may be included with an integrated approach in the GA.

63



Chapter 4

Static Modeling of FACTS Devices for
Power Flow Studies

4.1 Classification of FACTS Devices

Load flow control with power system components like UPFC (United Power
Flow Controller has recently become an important issue because of the overload
transmission corridors and bottlenecks. Additionally, existing transmission line reserves
can be utilized more effectively by redistributing the power flows. In this chapter, the
modeling of FACTS devices for power flow studies and the role of that modeling in the
study of FACTS devices for power flow control are discussed. A number of power flow

study programs are developed in order to model various types of FACTS devices.

The research approach employs the use of the FACTS devices at the bus rather
than at the branch since the number of buses are fewer than the number of branches.
Moreover, FACTS can be expressed by injected power to the related buses and most

power flow programs and other analysis programs use bus admittance matrix. When the
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analysis of the power lines with FACTS is carmed out, it will invert the branch-model

to power-injected-bus model for convenience.

4.1.1 Development the mathematical model of FACTS devices

In some pfevious work, it is necessary to modify the nodal admittance matrix
when the FACTS device is incorporated into the loadflow calculation. However, a
power injection method is introduced in thts thesis to represent TCPSR and UPFC. The
concept is to introduce a power injection variable AS;s in bus 1 and AS;; in bus j. The

advantage of this method is that it can retain the symmetry of the admittance matrix.

In order to build the model for the current FACTS devices, it is necessary to
classify them into several types according to their characteristics. In general, there are
three types of FACTS devices, i.e. senies controller, shunt controller and unified

controller respectively.

TCSC ;'1nd thyristor-controlled phase-shifter (TCPS) are categorized as series
controtlers wﬁich control the sernies parameter P and/or Q. Series controller such as
TCSC or vanable series capactive compensat.ion can ‘be effective in power flow
redistribution while TCPS can exchange both real and reactive power with ac system
by changing the ratios and angles via the seriés insertion transformer. These series
devices, especially of TCSC, will certainly play a major role in controlling power flow
such as congestion management in the future. Static var compensator (SVC) and static

synchronous compensator (STATCOM) are categorized as shunt controllers which are
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normally used for the voltage regulation of transmission system at a selected terminal.
UPFC, as a unified controller with series and shunt inverter, regulates the real and
reactive power flow (P and Q) independently on the transmission hine while it also

regulates the bus voltage (V) simultaneously.

4.2 Thyristor-Controlled Series Capacitor (TCSC)

4,2.1 Introduction

The Qbrld's first multi-module Th)f;ristor-Controlied Series Capacitor (TCSC)
system has been installed on Bonneville Po;»ver Administrations' transmission system.
The TCSC is part of EPRI's Flexible AC Transmission System (FACTS) program. The
installation.is located at BPA's C.J. Slatt Substation on the Slatt-Buckley 500 kV line in
Northern Oregon. The TCSC's high speed switching capability provides a mechanism
for controlling line power flow, which permits increased loading of e?cisting
transmission lines-, and allows for rapid readjustment of line power flow in response to
various contingencies. ‘The TCSC also can regulate steady-state power flow within its
rating limits. The fast acting TCSC can provide a means of rapidly increasing power
transfer upon detection of the critical contingencies, resulting in increased transient
stability. The TCSC provides a mechanisﬁl for greatly reducing pote.ntial
subsynchronous resonance problem at thermal generators electrically close to

transmission lines with series compensation.
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4.2.2 The Basic Principles of TCSC

" Transmission lines can be compensated by fixed series capacitors or more
effectively by controllable series capacitors using thyristor switches. Thyristor
Controlled Series Compensator (TCSC) and Thyristor Switched Series Compensator
(TSSC) are two types of controllable series capacitors. The use of series capacitors for
compensating the inductive reactance of long distance lines is the most effective and
economic method of improving power transfer. The configurations of TCSC usé
thynistor-controlled reactor (TCRs) in parallel with segments of a capacitor.bank. Thus
it can be controlled either in capactive or in inductive operating range depending on the
different applications while' TSSC uses thyristor switches in parallel with a segment of

the series capacitor bank to insert / remove portions of the bank in discrete steps.

| | | 1 | i
it |4 | |

Figure 4.1 Thyristor Switched Series Compensator (TSSC)

=

Figure 4.2 Thyristor Controlled Series Compensation (TCSC)

The TCSC's high speed switching capability provides a mechanism for
controlling line power flow, which permits increased loading of existing transmission

lines, and allows for rapid readjustment of line power flow in response to various
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contingencies. The TCSC also can regulate steady-state power flow within its rating

limits.

Three FACTS devices, TCSC, TCPS and UPFC are derived by the Power
Injection Method (PIM) [67]. PIM is a good model for FACTS devices because it will
handle them well in load fiow computation and OPF analysis. Since this method will
nof destroy existing admittance matrix B, it is casy for implementing in load flow
programs. An alternative method that can be used is the load-equivalent method.
However, load-equivalent method is only used when the control objectives of FACTS
devices are known. The inj ect¢d-p0\ver model is convenient and is considered relevant

for our analysis here.

4.2.3 Mathematical Modeling of TCSC
The modet of the network with TCSC is shown in Fig.4.3. The controllable
reactance, x., is directly used as the control variable to be implemented in the bus

susceptance matrnces.

d —Jjx ; J
L COET
—+T {7 I

|
Figure 4.3 equivalent circuit of TCSC

The effect of the TCSC on the power system may be simuiated as a controllable
reactance —x_ inserted in the transmi_ssion line. In general, TCSC is installed in the
substation for operation. For simplicity, the line shunt impedance (B/2) is neglected
since this approximation only has little effect on the accuracy. The above assumption

will also be used in the model of TCPS and UPFC, which are shown in the next section.
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TCSC thus consists of a discrete vanable series capacitive reactance as shown,

P, rese = UGy ~UU (G} cosB, + B} sin6, ) (4.1
0, resc = ~U(By + B12)~UU (G, sin8, - B, cos6, ) (4.2)
Pisesc = U;G} -V, (GU cosd, - B;sin 6’,}.) ' (4.3)
Qirese =-U2(By +B/2)-UU, (-G, sin8, - B; cosd, ) (4.4)

7y

where Gy = ——27——)2— and B; = 2—(—? {4.5)
rg.+x‘.j—xc r,.j+x,.j——xc

If ¥; = jBy, the active and reactive power parts of injection sources are (line resistance

neglected)

(4.6}

(4.8)

—x [U,.U. sina,}
P _ c j i : (4.7)
x .

st.rcsc = (4.9)

Equations (4.6)-(4;9) reveal that the series capacitor redistribute the active power
through the compensated line, Moreover, the reactive power distnibution is alse
affected at the same time since capacitor is a source of reactive power.

(UU,sing,
AP, = -AP, =| —L— |Ax, | (4.10)

is I3 2

X
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This indicates that the capability of a series capacitor to redistribute the active power

flow depends on the level of line loading and it is the lowest when the line is unloaded.

The real power losses of the line k, when TCSC is installed, are as follows:

=G;j(Uf+Uf—2U,Uj cosé?,j) (4.11)

B rese + Pirese = Flossrese

4.3 Th_yristor-ControIled Phase Shifter (TCPS)
4.3.1 Introduction

Phase shifter (PS) is a transformer \_vith turns ratio. Senally connected boosting
transformer in transmission line achieves the phase angle shift of PS. PS does not

produce nor consume the active and reactive power if the power losses are neglected.

4.3.2 The Basic Principle of TCPS
TCPS can provide a rapidly vanable phase angle by the adjustment of thyristor
switches. The real and reactive power flow from bus i to bus j and vice versa are

controlled when TCPSR is installed. The typically value of the a;; is 0.9 p.u.<ay < 1.1

p-u and the value of @is -20° < ¢ < +20°.

_ TCPS _
I

UT -— r.tix.. J
l ) ”Ej” I
I lU I
U, I, u,

Figure 4.4 Equivalent circuit of TCPS
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4.3.3 Mathematical Modeling of TCPS

Pyrersn = a2UZG, —a,UU |G, coslg, +4)+ B, sin6, + ) (4.12)

Oyocrsn = ~a U (B, + B) —a,UU, (G, sinl8, +)- B, cos(0, + )] (4.13)

Pircrin = UG, —a,UU (G, coslf, +¢)- B, sin(6, + ) (4.14)

Orurerss = ~U (B, + Boun) —a,UU |- G, sinl8, +4)- B, cos(@, + ¢ )| (4.15)

where 8= 6- 6 and Y; = Gy +B; (4.16)
:‘ 4%, J

et

<——O S, S O—>

Figure 4.5 Injected model of TCPS

The injection power flow mode! equatidns are as follow:

P, rersn = B;UU Ja, sin(8; +¢)-sin 9,.].]' +G a2 -\ -G 7 |, éos(a,.j +.¢)-cos¢9,.j]

" v
(4.17)

Oy rerse = ~B,la,UU , cosl0, +4)-UU, cos8,]-(B, + B, U {1-a2) (4.18)

y=r

T

P, reose = ~B,UU la; sinlo, +)-sin8,] +G,UU [a, coslp, +¢)+coss,] (419)

Oprersn = —B,UU [a, cos(8, +$)-cos8,| ~G,UU [a, sinlg, +4)+sing,] (420)

7 1

If Yy = jBj; and a;=/, the active and reactive power parts of injection sources are

L

P, rcrsr = ZB.U.U.sing-cos[GU +—§) (4.21)

Py rcese = —2B;UU; sin%cos(t?fj + g] (4.22)

TR
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Qi,‘TCPSR =2B,UU, singsin(% + %) (4.23)
Qi rcese = 28,U.U; singsin[&.j + %ﬁ-) (4.24)

Equations (4.21)-(4.24) reveal that the reactive component of the injection source at
each node is much smaller than the active component, 1.e. Q;s « P and Qs » Py This
means that the main function of an ideal phase shifter is to redistribute the active power
flow through the compensated line. This is because an ideal phase shifter neither
generates nor absorbs reactive power. Moreover, a small change in the phase shifter
angle yields

AP, = -AP, = B.U .U, cosf,0¢ ' (4.25)
which indicates that the capability of a phase shifter to redistnibute the active power
flow depends on the loading level of the compensated line. It is highest when the line is

unloaded.

The real power losses of the line k, when TCPSR is installed, are as follows:

P =G,laU +U —20,0U  cosld, +4)] - (426)

i .TCPSR

+ P =P

JI.TCPSR foss , TCPSR
4.4 Unified Power Flow Controller

4.4.1 Introduction

Gyugyi (1991) defined the concept of UPFC. The UPFC consists of shunt

{exciting) and series (boosting) transformers, which are connected by two GTO

converters (shunt and series) and a DC circuit represented by the capacitor.
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Series converter is used to generate a voltage source at the fundamental
frequency with variable amplitude (0 < U, < U, ) and phase angle (O <@, <27) s

added to the AC transmission line by the series connected boosting transformer.

4.4.2 The Basic Principle of UPFC
The basic UPFC concept is explained herewith. UPFC has three controllable

parameters, namely magnitude of the boosting transformer injected voltage Uy, phase of

this voltage @t and the exciting transformer reactive current L.

Injected-power model is a suitable model for FACTS devices in this application
because it will Vhandle settings well in load ﬂow- computation and OPF analysis. Since
this method will not destroy existing adfnittance' matrix B, it is easy for implementation
in load flow programs. In this respect, load-equivalent method is only used when the

control objectives of FACTS devices are known.

The basic structure of an UPFC consists of shunt (exciting) and series (boosting)
transformers, which are connected by two GTO converters that operate from a common

dc-circuit consisting of a dc-storage capacitor.
One of the inverters is used to generate a voltage source at the fundamental frequency

with variable amplitude and phase angle, which is added to the AC transmission line by

the series connected boosting transformer. It is assumed that the operation of converter
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is loss free so that the UPFC neither absorb nor inject the active power with respect to

the system.

U.2g, }
L~
| 1ir iu v, —» I
U I Iq IJ UJ

Figure 4.6 Basic configuration of UPFC

The effect of UPFC on network can be modelled by a series inserted voltage source Ur

and two tapped currents /7 and [,. The model of the network with UPFC is shown in

Figure.4.7

Series PO U 28

v, 28, o
i Transmission line ij:ﬂzj—-—-——b—'

== Bus
P, rrm
—_—

Shuns ; GTo _l_ GTO
Converter | Converver 2

transformer

Figure 4.7 Equivalent circuit of UPFC

UPFC can control three parameters: the magnitude (U7) and phase angle (@r) of
inserted voltage which is in series with the branch and the terminal voltage of shunt

branch (U;) using reactive current source /, control. The series branch voltage that is
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injected can be in any phase with respect to U; and can have any magnitude from 0 to a
defined maximum value, Ur™. The operating area becomes the region limited by a
circle with radius Ury™™. The phase angle of this voltage (¢r) is independent of the line
current (f}). It has magnitude from -n to m. The reactive current source /, 1s assumed as

either capactive or inductive and the magnitude is between 0 and a defined maximum

value ;" , which is independent of the terminal voltage.

Figure 4.8 Vector diagram of the equivalent circuit of UPFC

Unified Power Flow Controller (UPFC) combines both the series and shunt controllers.
This equipment can control both active and reactive power flows independently in a

transmisston line. U/, =U,Z¢, s the injected voltage and /, is the transformer reactive

current. These three parameters can be controlled instantaneously.
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Based on the basic principles of UPFC, the mathematical relations can be derived as

follow:

U, =U,+U, (4.27)

Argll,)= Arg(U,)+ 90° (4.28)

Arg(l;) = 4rg{U) (429)
_Relu, 7] (4.30)

.[T_ v

1

4.4.3 Mathematical Modeling of UPFC
Thus, based on the mathematical relationship, the derivation of the power flow

equations of UPFC from bus / to bus / and from bus / to bus ¢ is as follows:
Syuerc = Ejurec + 7Cj uprc™ U.'[g" =U, ([r +1, +; )‘ 431

Sji.UPFC =P, urrc T fij.uchz U;I;; = U; (_[j ) (4.32)

ra

B vprc = (Uil +U7 )gij +2UUg; COS(Q’r -6y )_

"

U,.Ur(gij cos@; +b, sinqpr)—U‘.Uj (g,.j cosd,; +b; sin 51.1.) (4.33)

Qyuprc =-Ud, -Ulb, -UU, [g,. sin(qu —50.)+ b; cos(@r -5 )——UI.UJ. (g,.j sind; —b; cosd; )]
(4.34)

Pogere =Ulg, —U,U.lg, cospy —b, sing, )-UU (g, coss, —b,sins,) (435

Qivprc = —Ujb,.j -UU; (g,.}. sing; —b; cosgp + U,.Uj.(g,.j sind; +b;c0sd; )) (4.36)

where J; is the angle between U; and U; and @r is the angle of the U, as taking U; as

reference VieNU/
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G +jB. Y
i if
LS|
S:'s =Pis+j Qis Sjs =Pjs+j st

Figure 4.9 Injected Model of UPFC
According to basic principles, the power injection model of network with UPFC is
shown in Figure.4.9

The injected power at bus 1 and bus j is as follows:

*

U
Sy uprc = U{_ I, - [q - T. ] (4.37)
! Ty + %y
U
S jswerc = Uj[ = J (4.38)
Ty T %y

The injected active and reactive power equations at two related buses are derived as

follow:

Py yprc =-Urg, —2U0U g, cos(q)T -4, )+ vu, (gfj cos @ +by, sin qar) (4.39)
Quumc =UL, +UU |g,sinlp, —68,)+b,sing, | (4.40)
Puere =U,Ur (g, cosor b, singy ) 4.41)
Oypurre = ~U,U; g, sing; +b, cos g, ) (4.42)

If Y;; = By, the active and reactive power parts of injection sources are

Py opre =UU ;b sing, (4.43)
Qy upre = U d, +UU b, sing, (4.44)
P upre =-UUrh, sing; (4.45)
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Qjsuwrc = ~UUrb; cos g, (4.46)
The real power loss of the line k, which UPFC is installed, is as follows:

+ P

JLUPFC T PIoss.UPFC

P

if UPFC

=g, (Uf + Uf. ~2UU, cosé, )+ U, g, [Ul. co.s((pr-ﬁfj )—Uj cosgoT]
(4.47)

4.5 Modified Non-linear Power Flow Equations

The effect of TCSC on power system can be modeled by a reactance x, insertgd in
the lines, the related node admittance matrix- sh(')uld change éccordingly. The effect of
TCPS anci UPFC on the power system can be modeled by injected power flows at two
related buses v;fithout change of node admittgnce matrix.

For each PQ and PV node, there is an active power mismatch equation and for each
PQ node, there is a reactive power mismatqh equation. These equations can be

formulated as follow:

Py +P, +P, P, =S UU Ycosld,+6,-5)=0 WieN-1 (4.48)

jeN . .

Qs+ 00 +0, —Qu + S UU Y, sinl, +8,-6,)=0  VieM (4.49)
jeN -

Pg; and Q; are injected bus generator powers. Py, is injected bus power caused by
the installation of UPFC, while P, and (, are injected powers caused by the
installation of TCPS. P, and (g are bus active and reactive loads. N is the network bus
number and M is the network PQ bus number. N bus is supposed to be the slack bus.
Thus, linear relationships are obtained for small van'ationsr in U and 8, by forming the

total differentials as follow:
AP J{A‘i}r L[‘ﬁ} J}[A_fs]: j|:A_5:| (4.50)
AQ Al | AU AU AU
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I=l +1+ 13 (4.51)
where J, is the NR power flow Jacobian and J; and J; are the partial derivative matrices
of injected power with respect to the varables.

For TCPS : If bus / and j are PQ buses, the matrix J, may have 16 non-zero elements.

AP 0. 0. 80 | . -
Ifbus /s a PV bus, then 2o = 0 00 (% 80, 20, 00, _, (4.52)
8U, U, oU, oU, U, 80, a6, _
, _op. 6P, 80, 80, 80, 080, &0,
If bus/is a PV bus, then OF _ % _ Qs = 9 =L = < = Q) =0 (4.53)
oU, 8U, &U, aU, aU, 06, 20,

i J J i i J

When more than one TCPS are installed in the network, their effects are accumulated to
J> and non-zero elements may be more than 16.

For UPFC: If bus { and j are PQ buses, the matrix J; may have 9 non-zero elements.

 OP, 00, . . .
If bus i is a PV bus, then o, =—2 = 00 _ Qs = 9Q, - 90, _ Qs =0 (4.54)
eu, ou, oU, oU, aU, a8, a4,

I

' OP, 00, 00, , . :
If busj is a PV bus, then OF, o 90, 00 %0 0. 20._ 0 (455)
oU, aU, U, aU, U, 6, 28,

7 ! 7

When more than one UPFC’S are installed in the network, their effects are accumulated
to Jy and non-zerol elements may be more than 9.

The powelr flow can be solved by NR method in the normal way except the small
difference in J matrix and the power mismatch equations. This derived extended NR
power flow method can be shown to work well with the proposed OPF methed in this

thesis.
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4.6 Summary

In this chapter, the static modelings of FACTS devices are developed based on
their operating theory. Controlled series compensation (both TCSC and TCPS) is an
effective means for power flow control in AC Transmission Systems. The efficiency of
TCSC is higher in loaded lines than unloaded lines while the efficiency of TCPS is
higher in unloaded lines than loaded lines. TCSC offers voltage support by generating
reactive power. The reactive power exchanged by the TCPS, as a result of the
quadrature voltage injection, can cause considerable voitage drops in the system. One
point must be mentioned is that UPFC has three controtlablé parameters (I, Ut and ¢r)
which have strong relationship between active and reactive power flows. The FACTS
models developed would be used in OPF in the next.chapter to show their applicability

and effectiveness.
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Chapter 5

OPTIMAL POWER FLOW WITH
FACTS DEVICES BY GENETIC
ALGORITHMS

5.1 Introduction
OPF is a constrained nonlinear programming problem to determine the optimal
outputs of controlled generators in power system. In OPE calculations, both bus
voltage and transformer tap setting are optimized with an objective to minimize total
productioﬁ cost within security constraints. Since OPF was introduced in 1968 [68],
numerous methods have been employed to solve this problem. For example, various
versions of Gradient based method, Linear programming methods [69] and

Quadratic programming methods {70] have been employed.
Taranto et al. (1992) presented a Bender decomposition based solution method to

solve active power OPF subproblem incorporating FACTS devices. In this method,

the DC. models of TCSC and TCPS are used in OPF separately. However, this
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method can only consider one type of FACTS device in each calculation. A
comprehensive consideration of several typical FACTS devices still deserves to be
researched. However, it is a DC network model based active power OPF method, an
AC network model based method is also required to fit in different situations of

steady-state operation and control.

Thé conventional optimizatidn.methods are based on successive linearization
and use of first and second derivatives of objective functions and their constraint
equations as the search directions. However, the conventional optimization methods
suffer from three main drawbacks. Firstly, they may not be able to provide optimal
solutions and may get stuck at a local optimal point. Secondly, these methods are
based on the assumption of continuity and differentiability of objective function,
which actuaily may not exist universa!‘ly in a practical system. Thirdly, these
methods may fail to converge well when they are applied to discrete variables. GA is

proposed as a suitable method to overcome the above drawbacks.

GA, first proposed by Holland [71] in the early 1970s, is a stochastic global
search method that mimics the metaphor ;)f natural biological evaluation. GAs
operate on a population of candidate solutions encoded to finite bit string called
chromosomes. In order to obtain optimality, each chromosome exchanges

information by using operators borrowed from natural genetic to produce the better
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solution. GAs differ from other optimization and search procedures in four ways

[72]:

I. GAs work with a coding of the parameter set, not the parameters
themselves. Therefore GAs can easily handle the integer or discrete
variables.

2. GAs search from a population of points, not a single point. 'fhercfore GAs
can provide a globally optimal solution.

3. GAs use only objectivé function information, not derivatives or 6thér
auxiliary knowledge. Therefore GAs can deal with the non-smooth, non-
continuous and non-differentiable functions.

4.  GAs use probabilistic transition rules, not deterministic rules.

In this context, more control facilities may complicate the system operation. As
control facilities influence each other, a good coordination is required in order to
- bring all devices to work together, without interfering with each other. Therefore, it
becomes necessary to extend available system analysis tools, such as Optimai power

flow (OPF), to represent FACTS controls.

Optimal Power Flow (OPF)} [73-74] generally involves a large number of
parameters. The parameters can be either continuous or discrete and often include

constraints in allowable values. The goal of the optimization is to find a solution that
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represents a global maximum or minimum. [t has also been noted that OPF is a non-
linear problem. The optimizations of control parameters of FACTS devices are also
highly-nonlinear and non-convex problems which may lead the conventional

optimization methods stuck into local minima.

This chapter presents a new genetic algorithm (GA) method to solve optimal
power flow (OPF) in power system incorporating flexible AC transmission systems
(FACTS). Several types of FACTS devices are considered in the chapter. Thyristor
controlted phase shifter (TCPS) is used as a phase shifter, thyristor confrolled s;eries
compensation {TCSC) is used to regulate the impedance of transmission lines and
Unified Power Flow Controller (UPFC) is used to control the active power, reactive
power and voltage simuitaneously. The specified needs for power flow controls are
related to use of FACTS devices to be included in the contingency-constrained OPF
problem. A typical example of power flow control is that some predefined
transmission lines should operate at specified power flow values. They are proposed
to be formulated as a set of equality constraints to be implemented in the proposed

OPF.
In the solution process, GA, coupled with full AC power flow, selects the best

regulation to minimize the total generation fuel cost and keep the power flows

within their security limits. The optimization process with GA is presented with case
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study examples using [EEE test systems to demonstrate its applicability. The results

are presented to show the feasibility and potential of this new approach.

5.2 Optimat Power Flow with FACTS device
There are two categones of objective functions in OPF, the generation cost

objective function and the real power losses objective function.

5.2.1 Economic objective (Active OPF)

Generation cost is the objective function of active power flow optimization.

Minimization of the generation cost is formulated as follows:

Ffuc! = ZCi(PGi): ZaiPGzi + BB+, (5.1)

ieNG ieNG

where Ci(Pg;) is the operating cost of producing Pg; units of real power at the generating
plant at bus i. &, f; and y are the cost coefficients of generator i. NG is the total number
of generator. The constraints considered are power flow equations, specified needé for
power flow controls, reactive power flow equations of UPFC branch, active power flow
limits on all branches and limits on all control variables. The variables are defined as

follow:
» Type | control vanable — active optimal power flow dependent (x., ¢, Urand ¢1)

>  Type 2 control variable — reactive optimal power flow dependent (L)
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»  Type 3 control variable — active and reactive optimal power flow dependent (I, Ur
and (1)'[‘)

As defined, the control vanables inciude the type 1| and type 3 of control variables.

During this optimization, the reactive power control variables type 2 is kept constant.

5.2.2 Transmission losses objective (Reactive OPF)

System transmission power loss is the objective function of reactive power flow
optimization. Minimization the transmission active power losses is formulated as

follows:

Z P!o:s.i = Z Pfa:s + Z PIoss.TCSC + Z P.'oss.TCPSR + Z ‘Plosx.UPFC (52)

feNg

.. The objective function of RPOPF is to minimize the total active power
transmission losses. The constraints considered are the power flow equations, reactive
branch power flow limits and limits on all control variables. During this optimization,

the active power control varables are kept constant.

3P, = {201 V2 +v? -2y, cost, (5.3)
i=1

whete P resc o Piossrcrsas Plosswerc aT€ tepresented at (4.11), (4.26) and (4.47)

respectively.
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[n this thesis, active power OPF is considered since it produces higher impact than

reactive power OPF from the cost point of view.

5.3 The Classification of Control Variables

In the steady state operation of power systems, the major functions of TCSC and
TCPS are to qontrol the active power flow sharing among the transmission lines. We can,
therefore, classify the controllable parameters x, (TCSC) and ¢ (TCPS) as active related
control variables. Static VAR compensators are capable of controlling the voltages of
buses to which they are connected. Obviously, their output reactive powers can be
classified as reactive power related vanables. UPFC can control the voltages of related
buses and the active and reactive power flows on a transmission line simultaneously.
UPFC has three controllable parameters. The exciting transformer reactive current /j is
related with the voltage and reactive power flows and can be classified as reactive power
related variable. For the magnitude and phase of the boosting transformer inserted
voltage (Urand @7), it is difficult to classify them as active power related variables or
reactive power related varables. Both of them have strong relations with the active and
reactive power flows. This means that they form the third type of control varables,

which are both active and reactive power related variables.
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Objective Controls Constraints
Active | Minimum the [»> Real Power generations|”» Power flow equation
OPF | generationcost |, pA TS control > MW Branch Flow
X, ¢ Urand gr > Specified MW flow
constraint
»  Reactive power equality
constraint of UPFC
Reactive] Minimum active |»  Reactive Power »  Power flow equation
OPF power generations > MVar Branch Flow
transmission loss |5, FACTS control - _
#  Voltage magnitude
Ur, Iy and o@r.
»  Active power equality
constraint of UPFC

5.4  Equality and Inequality Constraint
5.4.1 Equality Constraints

The equations (4.15)-(4.18) and (4.41)-(4.44) are the general form of the injected power

source. It shows that the derivatives:

P, OF, 00, 00,
0 £ - s QIS - Q.‘s ={ (54)
86, 30, oV, 06

J i i

[t is relatively small for realistic systems and therefore the source of Si; and §j; can be
treated as constant generation or loads in each load flow iteration. Moreover, the
sensitivities of the injected power with respect to the magnitude and angles of voltage at
the nodes / and j are smaller than the corresponding elements in the ordinary Jacobian

matrix of power flow equation. It can be concluded that in power mismatch equations,
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the TSCS and UPFC injected powers can be treated as loads or generations within each
iteration. Therefore, the Power flow equations, used as equality constraints, are as

follows:

P, +P‘s,mcﬁ —PD,. -y} Y6, -V XV, (G,.j cosf; +B; singij)z 0 Vie Ny, (5.5)

I

Qi + i pacrs Qo +V LB, ~V, SV, (B, cos8, -G, sin,)=0 VieNpg  (5.6)

[ )

where N; = set of numbers of buses adjacent- to bus 4, including bus ¢
Ng.; = set of numbers of total buses, excluding slack bus
Npg = set of PQ-bus numbers

Using this method, Pis racts and Qi racrs will be computed after each iteration
but it is not necessary to derive the Jacobian matrix at each iteration. Thus, the
symmetry property of bus admittance matrix, Ygys, is maintained. P-Q coupled flow

can be used without modification.

5.4.2 Inequality Constraint
5.4.2.1 Parameter of FACTS devices Constraints

The angle and magnitude of the voltage and the injected current, [; of UPFC, the

angle and tap setting of TCPS and the reactance of TCSC are the control parameters of

the FACTS devices (i.6. xFirs <X < X poprs )-
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rcsc | xm <x, g x™ (5.7)

TCPS { ¢™ <4 <¢™ (5.8)
Ur <y, U™ (5.9)

UPFC o <@, <™ (5.10)
< < | (5:11)

5.4.2.2 Other Inequality Constraints

Other inequality constraints include active and reactive power generation, power

carrying capacity of transmission {ine and bus voltage.

PE® < Py < PO (5.12)
o < Qg SOG" (5.13)
ALEI RS S (5.14)

5.5 Problem Formulation

In this project, a new GA approach to solve the optimal power flow control
problem with FACTS is proposed. UPFC can provide the necessary functional
flexibility for optimal power flow control. This approach allows the combined
application of phase angle control with controlled series and shunt reactive
compensation. The objective is to minimize the total cost of operating the spatially

separated generating units subject to the set of equations that characterize the flow of
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power through the system and all operational and security constraints. The OPF problem
| is sofved in FACTS and the variable parameters of FACTS devices are considered.
Simulation studies are carmied out in [EEE test systems to show the effectiveness of the
method. The optimal power flow problem in flexible AC transmission systems is

therefore expressed as follows:

b

Min (@B +85, +c)+ DAY, -1.0) (5.15)
. e NG iePQ
SLPy+Py + P, —Py =S UU Y, cosl, +5,-8,)=0  VieN (5.16)
. fort _
Qi +0u +0, ~ 0y + YUY, sinl0, +6,-5,)=0  VieN (5.17)
T <
goWror.U,0)=0 | (5.18)
P < Py S PR Vie NG (5.19)
o< Qa SO Vie NG (5.20)
T < T, <To™ Vie NT (5.21)
SRS S VieN (5.22)
[ ]s 1™ Vie NB UNT (5.23)
0sU, SUM™ vie NU (5.24)
-TSQL<w vie NU (5.25)
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min max .
xi" Sx, Sx] VieNU
™" <P < Pp™ VieNU
where

N 1is set of bus indices; |

NG is set of generation bus indices;

NT is set of transformer indices;

NB is set of transmiss.ion line indices;

NU is set of UPFC indices

Y, and 6 are magnitude and phase angle of element in admittance matrix;
Pg: and Qg; are active and reactive power generations at bus i;

Py and Oy are active and reactive power demands at bus i;

P;, and Q,, are injected active and reactive powers at bus i due to UPFC;
Py and Qi» are injected active and reactive powers at bus i due to TCSC,;
V;and &; are voltage magnitude and angle at bus i;

f; 18 current magnitude at transmission line §;

Ut is inserted voltage source magnitude of UPFC ;;

¢ris inserted voltage source angle of UPFC /.

X, is the vector of TCSC controllable parameters

d 1s the vector of TCPS controllable phase angles

(5.26)

(5.27)
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goUr,0r,U,3) is the set of UPFC line reactive power flow equations (equation (4.34

or 4.36)). |

It is difficult to solve this problem formulation directly. However, it ts obvious that if
the variables x¢, U: , ¢ and [, in the above formulation are defined, the optimal power
flow in flexible AC transmission systems is the same as a conventional full AC OPF
problem, which can be solved by a Han-Powell algorithm‘with a variable-reducti;m-
procedure [75].- In other words, we can treat thé OPF problem in FACTS with defined
variables U;, @, x. and as a sub-set, and soive the OPF problem by the Han-Powell
algorithm with a variable-reduction-procedure. The set of parameters of TCSC, TCPS
and UPFC are considered as inputs and the cost of the network as outputs. The output of -
the OPF is the objective function to be minimized. The classical gradient method, that
requires the derivative of the function, cannot be app]ied. Heuristic methods, that require
only the value of the objective function, may be adapted to the current problem. It has
been noted that the OPF problem with FACTS may be a non-convex problem and it is
not possiblé to guarantee that the Two-stage LP approach will converge. With the big

size of the search space, genetic algorithm is proposed.

5.6  Methodology Implementation of Genetic-Based Algorithm
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5.6.1 Genetic algorithm

The general genetic algorithm, as well as the coding specific to this problem is

presented in this section.
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f Enter )
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Read in Data (unit, FACTS
and load demand)

Initialization a population
of chromosome U.., 9., X,

Evaluate each chromosome
by AC OPF method
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Rank chromosome
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»
»

L
Select best parent for
reproduction

Y
Apply crossover and
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i
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Figure.5.1 Flowchart of proposed method of optimization by a GA approach

95



Chapter 5 Optimal Power Flow with FACTS devices by Genetic Algorithm

This section explains the design and implementation of the genetic based algorithm. The

implementation is based on the genetic algorithm reviewed in the previous chapter.

5.6.2 Solution Representation

As the con.trol parameters are continuous, the binary bit string representation will
fail to reflect the continuous nature of the loadings. The use of floating-point numbers to
represent each parameter is being proposed. The lengths of the strings are given by the
number of parameters. By this representation method, the string length is at its minimum
and is much smaller than that based on binary bits. This method also avoids the need to
convert binary numbers into their decimal equivalents.

Candidate solutions to O?F problem are represented by fixed length
chromosomes. Each gene in a chromosome is a real number representing the control
variable of FACTS, Thus, the length of the chromosomes is the totat number of control
variable of FACTS defined in the OPF problem. A real number of a binary bit is used
because of the continuous power loading within the operating limits.

A floating-point number coding method is incorporated for solving the OPF
problem. Floating-point representation of the control setting of the FACTS devices is
adopted. By this method, it would eliminate any discretisation error, which may be

introduced in the decoding process.

5.7 Genetic Algorithm
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A genetic algorithm is governed by three factors: the mutation rate, the crossover rate
and the population size. GAs are search processes, which can be applied to
unconstrained optimization problems. Constraints may be included into the fitness

function as added penalty terms.
5.7.1 Coding Scheme

The control variables of the FACTS devices have been treated as discrete. In most
existing Optimal Power Flow (OPF} algorithms, discrete variable controls are treated as
continuous variables and rounded off to their nearest discrete steps. This procedure
gives acceptable solutions provided the step sizes for the discrete controls are

sufficiently small.

Since the control variables of the FACTS devices are continuous values (especially the
control parameter of UPFC), it is impossibie to encode the parameter in binary coding
where discretation error will occur. The real-coded GAs should have an advantage over
binary coded GAs in exploiting continuities in optimization function. Moreover, the
real-code schema can propagate and grow at a higher rate in successive generations than
the binary-code schema. An additional merit of real coding is the equality constraints

can be incorporated and satisfied directly.
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The first step of GA is the parameter encoding (i. e, the representation of the problem).
The encoding must be carefully designed to utilize the GA’s ability to efﬁcieritly'
transfer infonnation between chromosome strings and objective function of problem.
The. proposed approach uses a conventional OPF problem as a black box, the optimal

value of which is the fitness value of GA. The encoded parameter is the variables xc., #,

1 X min max
U, @, where x™ <x <x™ | ¢™ <g <¢ , 0<U, U™ |, -n<p Sx

respectively. In the present work, the basic GA algorithm is adopted and the FACTS
control settings are coded in chromosomes using floating-point algorithm. The proposed
floating method is suitable for this optimization problem involving parameters with

continuous values. A chromosome is coded by a string of & floating-peint numbers.

5.7.2 Reproduction

Reproduction or selection is a procéss in which individual chromosomes are copied
according to-their fitness. The more fitness chromosomes would mean more changes to
be copied into the next generation" The biased roulette wheel is used to afchive a
Daru;inian survival of the fittest. In roulette wheel selection, each chromosome in the
population has its interval. The size of each interval corresponds to the fitness value of
individual aﬁd can be found from the ratio of £/ ;2. , where £ 2 is a sum of fitness in
population. To select a chromosome, a random number is generated in the interval [0,
2.1 and the chromosome whose segment spans the random number is selected. This

process 1s repeated until the desired number of chromosomes is selected.
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5.7.3 Crossover and Mutation

Crossover is a process that each individual will exchange information to explore new
structure of chromosome. The crossover operator in the algorithm is implemented by
two-point crossover. Although one-point crossover is generally used, more diversity in
the popuiation of chromosomes can be achieved by two-point crossover. The advantage
is that every gene in chromosome produced by means of two-point crossover will
always satisfy the operating limit constraint of active power generlatiOn and FACTS
control variable. The crossover process will be initiated when the random number
generated from {0, 1] is less_ than the defined probébiliry of crossover. A crossover mask,
the same length as the chromosome, is created randomly. If the mask bit is 1, the bit of
parents that corresponds to the bit of the mask string will swap with each other, while

the others stay unchanged.

Crossover Point Crossover Point

a |b |c |d|e |f |g a |b |C|[DE|{f |g
AlB Ci{D |E F G A | B c d e F G
Parent chromosomes children chromosomes

Figure 5.2 Mechanism of two-point crossover

Although reproduction and crossover are applied to chromosome in each generation to

obtain a new set of better solutions, occasionally they may become overzealous and lose
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some useful information (1 or 0 at particular positions). To protect these irrecoverable
losses, mutation is applied. Mutation is random alteration of bit of string with smail
probability called probability of mutation. At each bit position of chromosome, the bit
wiil be changed from 1 to 0 or vice versa if a uniformly random number from [0,1] is

less than probability of mutation..

Under the present real number coding scheme, the value of a selected gene of a

chromosome is replaced by a value generated from a uniform distribution between

Xpiers S x <xfitre. Such a mutation method guarantees the satisfaction of operating

limits in the chromosomes produced. For example, a gene representing x, with an
min

operating limit x.™" and x."* will have a value anywhere between x.™" and x."* after

mutation.

5.7.4 Elitism

To guarantee that the new population is better, elitism is used in this paper. Elitism is a
technique used to save early solutions by ensuring the survival of the best chromosome
in each population. In each generation, the best chromosome will be passed to the next

generation without any change on it.

5.7.5 Fitness Function
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The performance of each string is evaluated according to its fitness. Fitness is used to
provide a measure of how individuals perform in the problem domain. It is closely
related with the objective function value in the optimization. In the case of this

minimization, the fitness function adopted is given as:

Fitness = —-—-—-—A—/{—j (5.28)
I+ H+AC

M 1s the maximum possible cost of generation. / is the total the generation cost and X is
the penalty factor. The value of A is set to an arbitrary number. Penalty cost has been
added to discourage solutions, which violate the binding constraints. Finally, the penalty

factor is tended to zero. C is the bus voltage mégnitude {(0.95pu. <V, <1.05pu.) add

them as the quadratic penalty terms to the objective function to form a penalty function.

5.7.6 Termination criteria
Since GA is a stochastic optimization method, it is difficult to formally specify
convergence criteria [76]. In this thesis, GA procedure will be terminated when the

fitness function is less than 0.01 within 20 generations.

58  Genetic Algorithm for OPF with UPEC
The genetic algorithm to solve the optimal power flow with UPFC can be summarized

as follow:
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Step. 1. Initialize the population by randomly generating i number of chromosome
(x.,Ur,@)), then solve the OPF problem for each chromosome and evaluate its fitness
value

Step 2. For M number of generations, generate a new population from the present

population using the following steps:

2.1.1 Scale the fitness of each chromosome using the fitness function.

2.1.2  Copy the chromosomes with the best fit to the new population.

2.1.3 The remz;ining offsprings can be generatedlby randomly selecting twe parents
with probability proportional to its corresponding scaled fitness. With mutation
probability, apply the mutation process to the offspring until new population is
filled.

2.1.4 Solve the OPF problem for all chromosome and re-evaluate the fitness value

using the fitness function.

5.9  Numerical Results and discussion

The IEEE 30-bus system is used to test the effectiveness of the proposed method.
Six cases have been studied. Case 1-5 is the GA-OPF with FACTS devices, while Case 6
is conventional OPF without FACTS. In the case, line 3, 18 and 28, are installed with
different type of FACTS devices (Table 5.1). Three FACTS line power flows are assumed
to be controlled at specified values. Their predefined power flow control is set on different

cases. The initial values of the controliable FACTS devices parameters are set at zero. The
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main optimization results are listed in Table 5.2. Figure 5.3 show GA — AOPF [EEE 30

buses convergence (Piecewise Quadratic Cost Curve) Case |

From these tables and figures, several points can be observed. First, when the
power flow control constraints and the (N-1) security constraints are considered in OPF,

the total generation cost of the test system is higher than the normal OPF

T_he network generation data, the branch impedance, loads and other necessary
data are shown in Appendix A.’ |
GA parameters

The po;ﬁulation size = 100

Probability of crossover and method = 0.9; 2 point crossover

Probability of mutation = 0.01

Termination criteria for variable = 0.001

Termination criteria for objective function = 0.001

Maxamum iteration = [200.
The GA-OPF was run 100 times on the IEEE 30-bus system. Of the 100 trials conducted,

100 feasible solutions were retumed with an average solution time of 24 seconds required.

The average cost was $804.307, with a minimum of $802 for Case 1.
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Type of FACTS Device Installation / Line flow Constraint (p.u.) |

Line 3 Line 18 Line 28
Case | TCSC TCPS UPFC
(Line 3=030p.u) | (Line 18 =0.25 p.u.) | (Line 28 =0.15 p.u.)
Case 2 TCSC UPFC UPEFC
{Line 3=0.30p.u) | (Line 18=0.25p.u.){(Line 28 =0.15 p.u.)
Case 3 TCPS UPFC UPFC
(Line 3=045p.u) | (Line 18 =0.25 p.u.) i (Line 28 =0.20 p.u.)
Case 4 TCPS ‘UPEC . UPFC
(Line 4 = 0.45 p.0.) {Line 17=0.15p.uw.) | (Line 27 = O.-IO p.u.)
Case 5 UPFC UPFC UPEC
(Line 3 =0.45p.u.) | (Line 18 =0.25 p.u.) | (Line 28 =0.15 p.u.)
Case 6 No FACTS device is installed

Table 5.1 The instailation of FACTS device in [EEE-30 bus system

Pao Yue-kong Library

PolyU o

Hong Kong
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Line 3 Line 18 Line28
Case | | X =-00384 ¢=01470" U, =00194
' ¢, = —45.602°

Case2 | X, =-0.0565 U,=00197 U, =00164
. ¢ ==77.025 ¢, =-15.080"
Case 3 ¢ = 0.9406 ¢ =0.1470° U, =00186
¢, = -33.080°
"Case 4 ¢ =09412 U, =00166 V7, =0.0156

b, = —64.02° ¢ =-22.025
Case5 | U, =00177 U, =00199 U, =00155

$ =7.542°  $, =-76.080° 4 =-10.246"

Case 6 Conventional QPF without FACTS device -

Table 5.2 Results of FACTS devices

880.00
' . —— Minimum Cost
. §70.00 v --—- Average Cost
E“ 860.00 L '''' Maximum Cost
E 85000 | .
= N
= 840.00 | -
2 RPN
O 83000 .
E \__\ B .
© 82000 r T
=
810.00
800.00 ——
0 5 10 15 20 25 30 35 40 45

Number of iteration

Figure 5.3 GA — AQPF IEEE 30 buses convergence (Piecewise Quadratic Cost Curve)
Case 1
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1.06
1.04 -
1.02

p.u.)

~ 0.98
0.96
0.94.
0.92 : : _

0.9 : . :
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Voltage

Bus Number

Figure 5.4 GA-OPF with [EEE 30 bus - Voltage profile of Case |

Case | Case 2 Case 3 Case 4 Case 5 Case 6

Pai 1.775 1.775 1.778 | "1.783 1.778 1.705
Psa 0.488 0.488 0.488 0.438 0.488 0.485
Pgs 0.213 0.213 0.213 0213 0213 0.176
Pos 0.210 0.210 0210 0213 0.209 0.300
Pqyi 0.119 0.118 0.118 0.119 0.118 0.139
Pgi3 0:120 0.120 0.120 - 0.120 0.120 0.120
L Peen 2.925 2.924 2927 . 2.936 2.926 2.924
L P 0.09057 0.09023 0.09351 -| 0.1021 0.09217 | 0.0901
L Cost 200.51 800.37 801.42 804.38 800.94 803.87

Table 5.3 The results of GA-OPF with I[EEE 30 buses

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Shortest 120.02 125.32 130.56 132.53 142.23 50.72

Average 132.69 134.23 138.01 144.47 156.34 54.28

Longest 145.46 146.89 146.53 158.56 165.02 57.89

Table 5.4-Computati0n time (seconds) of the GA-OPF with [EEE 30 buses
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Six cases have been studied. It is observed that the total generation cost of the test system
with FACTS devices is higher than the normal system without FACTS controls. This is

because more constraints are considered in the modified OPF problem.

The final result is shown in Table 5.3. Without FACTS devices, the cost of OPF is
$803.87. With FACTS device, the cost of OPF is $804.38 (Case 4). The results show that
the generation cost is increased with FACTS device application when the parameter

constraint of UPFC 1s included.

The objective in improving the voltage profile is to adjust the voltage at supply or load
-nodes as close to the nominal 1.0 p.u. voltage as possible while minimising the generation
cost. From Figure 5.4, the voltage profile is close to 1.0 p.u. In addition, the power flow
control objectives can be met by different FACTS devices, and the final generation cost

for different cases (case 1, 2, 3 and 5) is similar.

Since the exact reactive power flow equatiop of UPFC lines is introduced into this active
power OPF,. the reactive power flow of UPFC lines can also be controlled at pre-
specified values obtained from reactive power OPF. Many tests have been done for
different initial FACTS values. The results show that the introduction of this reactive
power constraint of FACTS line can provide the uniqueness of the controllable UPFC

parameter solution.

107



Chapter 3 Optimal Power Flow with FACTS devices by Genetic Algorithm

The computation time of GA is summarized in the Table 5.4 The time stated is the
computation time required on a PC 586 1.6GHz machine. The table shows that Case 6 is
the fastest cases because FACTS control parameters are not included. Although it is
known that GA is much time-consuming compare with the traditional method, it has

been found that it converges to the global optimum.

5.10 Summary

A propoéed hybrid GA approach is implemented to solve the optimal power flow
problem with FACTS devices. The proposed method uses the injected power model of
FACTS devices in conjunction with AC optimal power flow to exploit the new
characteristic of FACTS devices. Cése studies on IEEE test system show the potential
and effectiveness for application of GA to determine the FACTS control parameter
controls. .GA-OPF problem is formulated as a non-linear optimization problem. The
reactive power equation of UPFC is introduced in OPF. It is shown that this may
increase the controllability of the system and provide wider operating margin as well as
better voltage security with more reserve capacity. GA effectively finds the optimal
results by using the conventional OPF method as a black box. It shows that such a
hybrid GA approach is able to deal with non-smooth, non-continuous, non-differentiable
and non-convex optimization problems, such as the optimal power flow problem with
FACTS. With deregulation, congestion management problems are becoming more
common. FACTS devices optimal setting calculation may play an increasingly

_ important role in modern power system operation and control.
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The application of GA to various power system engineering problems is certainly useful.
However, the results show that the use of GA in OPF greatly retards the solution si)eed.
[t is truly believed that every method has its advantage and disadvantage. Although GA
is a very time-consuming method, it is still worthwhile to investigate its potential. Since
planning and analysis of power system is an offline action, computation time is ﬁo't a
critical factor to consider. It is concluded that GA is not suitable for real-time operatien,

but it can find the global optimum and may provide high accuracy results.
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Conclusion

The main contribution of this research is to develop using Genetic Algorithm (GA) to
solve the optimal caéacitor allocation with harmonic distortion and the optimal control setting of
FACTS devices in optimal power flow (OPF). Case studies on IEEE test systems demonstrate
the potential for application of GA to determine the control parameter of the power flow coatrols
with FACTS. It is sh(_)wﬁ that the FACTS device would not provide significant cost saving since
cost depends mainly on the active powér flow. However, it can increase the controllability and
flexibility of the system; it can provide wider operating margin and improved voltége stability
with higher reserve capacity. As deregulation and contract path are becoming more important,
FACTS devices play an increasingly important role in such power system operation.

In conclusion, the following are the main findings and recommended future work of this

research work.

6.1 Summary
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The technology of FACTS devices, especially UPFC, provides huge potential opportunities
for improved transmission line power flow. UPFC can be used to control the active and

reactive power flows, whereas TCSC and TCPS can control the active power flow.

In GA, binary representation is replaced by floating point representation since the latter can
represent continuous variable. It uses for real parameter optimization problems with no
discretation error since it does need to encode and decode the variable. As the control

variable in UPFC is continuous, it is more than suitable to use this approach.

It is hard to determine the value of control parameter setting of GA (crossover rate,
mutation rate and population size). Although the effect of change the control parameter is
known, it does not help us in determining the values. This is because they typically interact

with one another nonlinearly..

In the capacitor placement problem, the objective function of capacitor placement is to
reduce the power loss and keep bus voltages and total harmonic distortion (HDF) within
prescribed limits with minimum cost. The constraints are voltage limits and maximum

harmonic distortion factor, with the harmonics taken into account.

GA is a powerful optimization tools which improve the harmonic distortion is quite
attractive. Moreover, it can reduce the active power losses. It can concluded that GA

method is suitable for discrete value optimization problem such as capacitor allocation and
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the consideration of harmonic distortion limit may be included with an integrated approach

in the GA.

The mathematical modeling of FACTS device 1s developed.'TCSC, TCPS and UPFC are
wholly developed. The efficiency of TCSC control 1s higher in loaded lines than in
unloaded lines whereas the efficiency of TCPS control is higher in unloaded lines than

loaded lines.

[n GA-OPF, the objective is to minimize the total préduction cost. The control variables are
the first and third type of control variables, which include the conventional OPF control
variables and FACTS control variables. The constraints include the active power flow
constraint of specified lines and reactive power flow constraint of UPFC line. Genetic
Algorithm solves this new formulated GA-OPF. However, in GA-ROPF, the objective is to
minimize the total system losses and voltage deviation. The control variables are the second
and third type of control vaﬁable, which include the conventional OPF control variable and
FACTS control variable. The constraints include the reactive power flow constraint of

specified lines and active power flow constraint of UPFC line

Power flow calculation is the basis for the steady and dynamic state analysis of the power
system. However, due to the strong coupling relationship between active and reactive power
in the bus line with FACTS devices, the decoupled power flow model is not appropriable to

represent this scenario. Therefore, an extended Newton-Raphson power flow with four
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typical FACTS device is introduced. At present the aim of active and reactive power
optimization of public power systems is solved as a decoupled problem. Decoupled power
flow solutions are extremely popular because of lesser storage and faster solution speed as
compared to coupled power flow solution. However, it is generally believed that decoupling
cannot be used near critical loading condition. Moreover, since the strong P-Q relationship
of UPFC, coupled method has higher accuracy than the decoupted method. The decoupling
of the Optirhization problem is only valid for weakly loaded network and it will probably
fail to converge at the load flow iterations for highly loaded network. Separated solutions
-for economic load dispatch and optimal power flow are based on network specific

characteristics concerning the X/R ratio.

AP _ JPJ JPV Ad
AQ| 1Ty S | AV

where Jps , Jpv, Jos and Jqv are the usual Jacobian submatrices. Under normal loading
condition the effect of Jpy and Js submatrices is insignificant. Hence, decoupled load-
flow formulations neglecting these submatrices are feasible for moderately loaded power
system. However, as system becomes under heavy loaded with the utilization of FACTS
devices, especially the UPFC, these submatrices cannot completely ignored since there is

highly physical P-Q coupling existing in power system network.
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6.2 Future Work
The following work directions are recommended for future research.

1. As mentioned eatlier, it requires much effort to find the best parameter setting in GA.
With higher population size of the chromosomes, more computation time 1§ required. To
reduce the computation time, it is necessary to consider how to reduce the population size
to as small as possible. Since high quality chromosomes are required, virtual population
approach may be considered for introduction to improve performance. To eliminate
premature convergence and to achieve robustness, it is also necessary to consider the

diversity of chromosomes.

2. With open access and deregulation of power systems, FACTS devices are expected to
play increasing roles in the control of active and reactive power flows with OPF schemes.
The FACTS models are developed with hybrid GA-OPF tested on moderate size systems
in this research work. These problems would need to be assessed on large scale networks’
operation. Hence further research in such directions would be of much inter@:st and very

challenging.
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Appendix

Appendix
Generation Load Voltage

Bus No. | Active Reactive | Active Reactive | Magnitude Angle
MW MVAR MW MVAR p.u. Radian

1 - 66.364 -4.656 0.0 0.0 1.067 .00
2 35.403 15.334 21.7 12.7 1.062 -020
3 70.000 19.879 94.2 19.0 1.043 -.069
4 000 000 47.8 -3.9 1.033 -.071
p) .000 000 1.6 1.6 1.040 - 057
6 30.557 10.455 1.2 7.5 1.040 -.082
7 000 000 0.0 0.0 1.040 -.042
8 60.000 -1.204 0.0 0.0 1.033 056
9 000 .000 29.5 16.6 1.037 -.087
10 | -.000 .000 9.0 5.8 1.030 -.092
11 000 .000 3.5 1.8 1.032 -.089
12 000 .000 6.1 1.6 1.028 -092
13 000 .000 13.5 5.8 1.023 -.097
14 000 .000 14.9 5.0 1.012 - 110

Figure A.1 The modified IEEE 14-bus system diagram with FACTS Devices

Table A.l. IEEE 14-bus system network data
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Table A.2 IEEE 14-bus system load data

Bus [oad Load Bus Load Load
No. MW MVAR No. MW MVAR
1 0.00 0.00 8 0.00 0.00
2 21.70 12.70 9 29.50 16.60
3 94.20 19.00 10 9.00 5.80
4 47.80 -3.90 11 3.50 1.80
5 7.60 1.60 12 6.10 1.60
6 11.20 7.50 13 13.50 5.80
7 0.00 0.00 14 14,90 5.00

Table A.3 IEEE 14-bus test system line data
Branch Bus R X B/2 Rating

No. No’s D.U. p.u. p.u. p-u.
1 1-2 0.01938 0.05917 0.0264 3.42
2 2-3 0.04699 0.19797 0.0219 171
3 2-4 0.05811 0.17632 0.0187 1.20
4 1-5 0.05403 0.22304 0.0264 1.71
5 2-5 0.05695 0.17388 0.0170 - 1.71
6 3-4 0.06701 0.17103 0.0173 1.71
7 4-5 0.01335 0.04211 (.0064 1.71

8. 5-6 0.00000 0.25202 0.0000 0.65
9 4 -7 0.00000 (0.20912 0.0000 0.65
10 7-8 0.00000 0.17615 0.0000 .65
11 4-9 0.00000 0.55618 0.0600 0.40
12 7-9 0.00000 0.1100t 0.0000 0.65
13 9-10 0.03181 0.08450 0.0000 0.50
14 6—11 0.09498 0:19890 0.0000 0.50
15 6-—12 0.12291 0.15581 0.0000 0.50
16 6-13 0.06615 0.13027 0.0000- 0.50
17 9-14 0.12711 0.27038 0.0000 0.50
18 10-11 0.08205 0.19207 0.0000 0.50
19 12-13 0.22092 0.19988 0.0000 0.50
20 13-14 0.17093 0.34802 0.0000 0.50
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Table A.4 Regulated bus data

Bus No. Voltage Magnitude ~ Minimum MVAR Maximum MVAR
DU capability capability
2 1.045 -40.0 50.0
3 1.010 0.0 40.0
6 1.070 -6.0 24.0
3 1.090 -6.0 24.0
Table A.5 Transformer data
Transformer destination Tap sefting
§ -6 0.932
4----7 0.978
4----9 0.969-

Table A.6 Static capacitor data

Bus No.

Susceptance (p.u.)

9

0.190
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The [EEE 30-bus system 15 shown in Figure A.2. The generation data, branch data,

load data and other necessary data are listed in Table A.7. ta Table A.12 respectively.

[~
16
- 12
l @ ”
4
3)
) &

Figure A.2 IEEE 30-bus test system

Table A.7 IEEE 30-bus system generation data

Bus No. pg™" pg™* Cost coefficient
MW) (MW) 2 b c
1 50 200 0.0 2.00 0.00375
2 20 80 0.0 1.75 0.01750
5 15 50 0.0 1.00 0.06250
8 10 35 0.0 3.25 0.00834
11 10 30 0.0 3.00 0.02500
13 12 40 0.0 3.00 0.02500

* Generation cost f; =a, +5, P, +c,.P(i. £/hr
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Table A.8 IEEE 30-bus test system line data

Branch No. Bus No’s R {p.u.) X(p.u) B/2 (p.u)  Rating(p.u.)
l -2 0.0192 0.0575 0.0264 1.30
2 1-3 0.0452 0.1852 0.0204 1.30
3 2-4 0.0570 0.1737 - 0.0184 0.65
4 3-4 0.0132 0.0379 0.0042 1.30
3 2-5 0.0472 0.1983 0.0209 1.30
6 2-6 0.0581 0.1763 0.0187 0.65
7 4-6 0.0119 0.0414 0.0045 0.90
8 5-7 0.0460 0.1160 0.0102 0.70
9 6-7 0.0267 0.0820 0.0085 1.30
10 6-8 0.0120 0.0420 0.0045 0.32
11 6-9 0.0000 0.2080 0.0000 0.65
12 6— 10 0.0000 0.5560 0.0000 0.32
13 9-11 0.0000 0.2080 0.0000 0.65
14 9-10 0.0000 0.1100 0.0000 0.65
15 412 0.0000 0.2560 0.0000 0.65
16 12-13 0.0000 0.1400 0.0000 0.65
17 12-14 0.1231 0.2259 0.0000 0.32

18 12-15 0.0662 0.1304 0.0000 0.32
19 12-16 0.0945 0.1987 0.0000 0.32
20 14~15 0.2210 0.1997 0.0000 0.16
21 16 -17 0.0824 0.1932 0.0000 0.16
22 15-18 0.1070 0.2185 0.0000 0.16
23 18-19 0.0639 0.1292 0.0000 0.16
24 19-20 0.0340 0.0680 0.0000 0.32
25 10-20 0.0936 0.2090 0.0000 0.32
26 1017 0.0324 0.0845 0.0000 0.32
27 10-21 0.0348 0.0749 0.0000 0.32
28 10-22 0.0727 0.1499 0.0000 0.32
29 21-22 0.0116 0.0236 0.0000 0.32
30 15-23 0.1000 0.2020 0.0000 0.16
31 22-24 0.1150 0.1790 0.0000 0.16
32 2324 0.1320 0.2700 0.0000 0.16
33 24 — 25 0.1885 0.3292 0.0000 0.16
34 25-26 0.2544 0.3800 0.0000 0.16
35 25-27 0.1093 0.2087 0.0000 0.16
36 28 -27 0.0000 0.3960 0.0000 0.65
37 2729 0.2198 0.4153 0.0000 0.16
38 27 =30 0.3202 0.6027 0.0000 0.16
39 29 - 130 0.2399 0.4533 0.0000 16

40 g8-28 0.0636 0.2000 0.0000 32

41 6~28 0.0169 0.0599 0.0000 32
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Table A.9 IEEE 30-bus system load data

Bus No.

Load Load Bus No. Load Load

MW MVAR MW MVAR
1 0.0 0.0 16 1.8 1.8
2 21.7 21.7 17 5.8 5.8
3 2.40 1.2 18 09 0.9
4 7.60 1.6 19 34 . 34
5 94,2 19.0 20 0.7 0.7
6 0.0 0.0 21 11.2 1.2
7 22.8 10.9 22 0.0 0.0
8 30.0 30.0 23 1.6 1.6
9 0.0 0.0 24 6.7 6.7
10 5.8 2.0 25 0.0 0.0
1 0.0 0.0 26 23 2.3
12 11.2 75 27 0.0 0.0
13 0.0 0.0 28 0.0 0.0
14 6.2 1.6 29 0.9 0.9
15 82 2.5 30 1.9 1.9

Table A.10 Regulated bus data

Minimum MAVR  Maximum MYVAR

Bus No. Yoltage magnitude
p.u. capability capability
2 1.045 -40.0 50.0
5 1.010 -40.0 40.0
1.010 - -10.0 40.0
1.082 -6.0 24.0
13 1.071 -6.0 24.0

Table A.11 Transformer data

Transformer destination

Tap setting

4. 12 0.932

6---9 0.978
6--- 10 0.969
28 --- 27 0.968

Table A.12 Static capacitor data

Bus No. Susceptance (p.u.)
10 0.190
24 0.043
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