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Abstract

The purpose of this thesis is to study a general augmented Lagrangian scheme

for optimization and optimal control problems. We establish zero duality gap and

exact penalty properties between a primal optimization problem and its augmented

Lagrangian dual problem, and characterize local and global solutions for a class of

non-Lipschitz penalty problems. We also obtain the existence of an optimal control

for an optimal control problem governed by a variational inequality with monotone

type mappings, and establish zero duality gap between this optimal control problem

and its nonlinear Lagrangian dual problem.

Under the assumptions that the augmenting function satisfies the level-coercive

condition and the perturbation function satisfies a growth condition, a necessary

and sufficient condition for a vector to support an exact penalty representation of

the problem of minimizing an extended real function is established. Moreover, in

general Banach spaces, under the assumption that the augmenting function satisfies

a valley at zero condition and the perturbation function satisfies a growth condition,

a necessary and sufficient condition for a zero duality gap property between the

primal problem and its augmented Lagrangian dual problem is established.

We show that under some conditions the inequality and equality constrained

optimization problem and its augmented Lagrangian problem both have optimal

solutions. On the other hand it is shown that every weak limit point of a sequence

of optimal solutions generated by its augmented Lagrangian problem is a solution of

the original constrained optimization problem. Sufficient conditions for the existence

of an exact penalization representation and an asymptotically minimizing sequence

for a constrained optimization problem are established.

It is shown that the second order sufficient condition implies a strict local min-

imum of a class of non-Lipschitz penalty problems with any positive penalty pa-

rameter. The generalized representation condition and the second order sufficient
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condition imply a global minimum of these penalty problems. We apply our results

to quadratic programming and linear fractional programming problems.

We study an optimal control problem where the state system is defined by a

variational inequality problem with monotone type mappings. We first study a vari-

ational inequality problem for monotone type mappings. Under some general coer-

cive assumption, we establish existence results of a solution of variational inequality

problems with generalized pseudomonotone mappings, generalized pseudo-monotone

perturbation and T-pseudomonotone perturbation of maximal monotone mappings

respectively. We obtain several existence results of an optimal control of the optimal

control problem governed by a variational inequality with monotone type mappings.

Moreover, as an application, we get several existence results of an optimal control

for the optimal control problem where the system is defined by a quasilinear ellip-

tic variational inequality problem with an obstacle. By using nonlinear Lagrangian

methods, we obtain one necessary condition and several sufficient conditions for the

zero duality gap property between the optimal control problem where the state of

the system is defined by a variational inequality problem for monotone type map-

pings and its nonlinear Lagrangian dual problem. We also apply our results to an

example where the variational inequality problem leads to a linear elliptic obstacle

problem.

The study of this thesis has used tools from nonlinear functional analysis, non-

linear programming, nonsmooth analysis and numerical linear algebra.
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Chapter 1

Introduction

1.1 Augmented Lagrangian methods

The theory of augmented Lagrangian has many applications in the study of opti-

mization problems. It is so attractive and powerful that a wealth of papers has

been published, e.g., [10], [22], [29], [56], [62], [63], [64], [90], [95], [97], [100], [105]

and [117]. Constrained optimization problems can be studied by using augmented

Lagrangian functions, as such a constrained optimization problem can be solved by

solving one or a sequence of unconstrained optimization problems. The augmented

Lagrangian method can be viewed as a combination of penalty function method and

Lagrangian multiplier method, which is able to eliminate many of the disadvantages

associated with either method alone.

Actually, a constrained optimization problem is determined by the interaction of

two distinct subproblems: the feasibility subproblem and the subproblem of mini-

mizing the objective function. Therefore a constrained optimization problem can be

solved by the unconstrained minimization of a merit function only if this function is

able to represent well the combination of the two preceding subproblems. The initial

idea in defining merit functions was to add the original objective function penalty

terms which weigh the violation of the constraints. Since the penalty approach

attempts to solve a constrained optimization problem by the minimization of an

unconstrained function, the main motivation for the use of penalty methods is that

of solving the constrained optimization problem by employing some unconstrained

minimization algorithm. Penalty methods include interior point (barrier) and exte-
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rior point methods. The approximation is accomplished in the case of exterior point

penalty methods by adding to the objective function a term that prescribes a high

cost for violation of the constraints, and in the case of interior point methods by

adding a term that favors points interior to the feasible region over those near the

boundary.

Using Hahn-Banach separation theorem for convex sets or Ky Fan and Sion

minimax theorem, the duality theory for convex programming via an ordinary La-

grangian has been well established (see [20] and [80]). However, for nonconvex opti-

mization problems, a nonzero duality gap may exist when an ordinary Lagrangian is

used. In order to overcome this drawback, quadratic augmented Lagrangians were

introduced for constrained optimization problems. This method was first proposed

by Hestenes [54] and Powell [94] to solve a mathematical program with only equal-

ity constraints. It was later extended by Rockafellar to solve optimization problems

with both equality and inequality constraints (see [95, 96]). As noted in Bertsekas

[15], in comparison with the traditional (quadratic) penalty method for constrained

optimization problems, convergence of augmented Lagrangian method usually does

not require that the penalty parameter tends to infinity. This important advan-

tage results in elimination or at least moderation of the ill conditioning problem in

the traditional penalty method. Another important advantage of augmented La-

grangian method is that its convergence rate is considerably better than that of the

traditional penalty method.

In recent years, the theory of augmented Lagrangian has been widely studied

by many authors in different aspects. In [97], a corner-stone book in optimization,

an augmented Lagrangian with a convex augmenting function was introduced and

the corresponding zero duality property was obtained. A level-bounded augmenting

function was given by Huang and Yang in [56] where the convexity of augmenting

functions in [97] was replaced by a level-boundedness condition. The level-bounded

augmented Lagrangian scheme includes nonconvex and nonsmooth penalty func-

tions in [81] and Lagrangian-type functions in [101] as special cases. Furthermore,

a peak at 0 augmenting function was introduced in [100, 101] and applied to estab-

lish an equivalence of the zero duality gap properties of a corresponding augmented

Lagrangian dual problem and a Lagrangian-type dual problem. Under a growth

condition, one can relate the value of the dual problem to the behavior of the per-

turbation function. In [95], Rockafellar has given the definition of a quadratic growth

condition in a finite-dimensional space and obtained a necessary and sufficient con-

dition for a zero duality gap between a constrained problem and its augmented
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Lagrangian dual problem. In [90], Penot has introduced the definition of a general

growth condition in an infinite-dimensional space. In [103], Rubinov et al. gave a

detailed and excellent survey on various Lagrange-type functions for nonconvex con-

strained scalar optimization problems. Necessary and sufficient conditions are given

for the zero duality gap property and exact penalization. In [117], Yang and Huang

established an equivalence between two types of zero duality gap properties, which

are described using augmented Lagrangian dual functions and nonlinear Lagrangian

dual functions, respectively. Furthermore, they introduced the concept of partially

strictly monotone functions and applied it to construct a class of nonlinear penalty

functions for a constrained optimization problem in [118]. This class of nonlinear

penalty functions includes some (nonlinear) penalty functions currently used in the

literature as special cases. They proved that each limit point of the second-order

stationary points of the nonlinear penalty problems is a second-order stationary

point of the original constrained optimization problem. In [43], Gasimov and Ru-

binov examined augmented Lagrangians for optimization problems with a single

(either inequality or equality) constraint. In [42], Gasimov presented augmented

Lagrangians for nonconvex minimization problems with equality constraints. He

obtained the saddle point optimality conditions and some strong duality results. In

[105], Shapiro and Sun considered a minimization problem where the constraints

are given in a form of set inclusion in Hilbert spaces and introduced the augmented

Lagrangian dual of this problem by applying methods developed by Rockafellar

and Wets [97]. The existence of augmented Lagrange multipliers is studied, and

especially second-order necessary and sufficient conditions for the existence of an

augmented Lagrange multiplier are established. Augmented Lagrangian methods

can also be used in solving variational inequality problems, see [6] and [107]. In [6],

Auslender and Teboulle considered a new class of multiplier interior point methods

for solving variational inequality problems.

The existence of an exact penalty function is important as such the optimal

solution of the original constrained optimization problem can be found by solving

only one unconstrained optimization problem [15, 19, 24]. Necessary and sufficient

conditions for the existence of exact penalty parameters have been established for

different situations (see [19, 97, 99]). It was established by Burke [19] that the

existence of an exact penalty function is equivalent to the calmness condition first

introduced by Clarke [23]. Lower-order penalty functions have been investigated in

[81], [99] and [119]. In [119], Yang and Huang considered a smooth mathematical

program with complementarity constraints (MPCC), and they applied a lower-order

penalty method to transform MPCC into a unconstrained optimization problem.
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They also derived optimality conditions for the penalty problems using a smooth

approximate variational principle, and established that the limit point of a sequence

of points that satisfy the second-order necessary optimality conditions of penalty

problems is a strongly stationary point of the original MPCC if the limit point is

feasible to MPCC. Numerical examples were presented to demonstrate and compare

the effectiveness of the proposed method over existing methods in the literature. In

[101], some numerical examples were presented to demonstrate that a non-Lipschitz

penalty function can be successfully applied to solve a class of concave programming

problems, where the classical penalty method has failed. It is worth noting that

these penalty functions have some theoretical advantages. Firstly the nonconvex

and nonsmooth penalty functions in [81] require weaker conditions to guarantee the

existence of exact penalty functions than the classical l1 penalty functions. Secondly

nonlinear penalty functions in [99] and [101] admit a smaller least exact penalty

parameter than that of the l1 penalty function.

Exact penalty functions can be subdivided into two main classes: nondifferen-

tiable exact penalty functions and continuously differentiable exact penalty func-

tions. Nondifferentiable exact penalty functions were introduced for the first time

by Zangwill in [125], and have been widely investigated in recent years ([8, 25,

26, 34, 52]). Continuously differentiable exact penalty functions were introduced

by Fletcher [36] for equality constrained problems and by Glad and Polak [45] for

inequality constrained problems, and were further investigated by [27, 30]. In par-

ticular, in [27], Di Pillo and Facchinei introduced a new continuously differentiable

exact penalty function for the solution of nonlinear programming problems with a

compact feasible set. The approach proposed in [27] has been further investigated by

Lucidi in [79] and [30]. In [28], Di Pillo and Facchinei introduced formal definitions

of exactness for penalty functions and state sufficient conditions for a penalty func-

tion to be exact according to these definitions. They dealt with a unified framework

which applied to both the nondifferentiable and the continuously differentiable case.

It is worth noting that existence and convergence of an optimal path generated

by penalty/dual problems toward the optimal set is important for numerical solution

methods as shown in [5, 56, 117, 134]. Therefore, in this thesis, we are interested

in exploring the convergence of optimal solutions for the augmented Lagrangian

problem, discuss some necessary and sufficient conditions for the zero duality gap

property between the primal problem and its augmented Lagrangian dual problem,

and apply these results to solve some variational inequality problems in Sobolev

spaces.
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We note that augmented Lagrangian methods have been applied to optimization

problems in infinite-dimensional Banach spaces. For example, quadratic augmented

Lagrangian methods have been used in optimal control problems for nonlinear differ-

ential equation in Sobolev space, e.g., [22, 63, 64, 109]. Actually, the optimal control

problem governed by a quasilinear elliptic variational inequality with an obstacle (see

[77, 124]) is a nonconvex optimization problem in Sobolev spaces. It needs to use the

theory of augmented Lagrangian in infinite-dimensional Banach spaces. Therefore,

one of my interests is to obtain some new results about augmented Lagrangian in

infinite-dimensional Banach spaces in this thesis.

In Chapter 2, we introduce the concept of a valley at 0 augmenting function

and apply it to construct a class of valley at 0 augmented Lagrangian functions. In

this chapter, we explore a general augmented Lagrangian scheme with a valley at

0 augmenting function in reflexive Banach spaces. Under the assumption that the

perturbation function satisfies the growth condition and the augmenting function

satisfies a valley at 0 condition, we establish a necessary and sufficient condition

for a zero duality gap property between the primal problem and its augmented

Lagrangian dual problem in general Banach spaces, which includes Theorem 2.9

and Corollary 2.10 in [90] as special cases. We apply it to variational problems in

Sobolev spaces.

In Chapter 3, we obtain some exact augmented Lagrangian representation results

in the framework of new augmented Lagrangian under weaker conditions than the

ones in [56, 97]. In infinite dimensional Banach spaces, we obtain that the inequal-

ity and equality constrained optimization problem and its augmented Lagrangian

problem both have optimal solutions under some conditions. We establish sufficient

conditions of an exact penalization representation for the constrained problems. Fur-

thermore, we obtain a sufficient condition of an asymptotically minimizing sequence

for a constrained problem, which generalizes Theorem 3 in [95] to the non-quadratic

case. Without any coercive assumption on the objective function and constraint

functions, we obtain a sufficient condition of an exact penalization representation

for the constrained problem in finite dimensional spaces.

In Chapter 4, we introduce a class of penalty functions which is more general than

the ones in [52], [81], [88] and [113]. We prove that any strict local minimum satis-

fying a second-order sufficient condition for an inequality and equality constrained

optimization problem is a strict local minimum of this penalty function with any

positive penalty parameter, and that any global minimum satisfying a second-order
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global sufficient condition and a generalized representation condition for the original

problem is a global minimum of this penalty function with some positive penalty

parameter. We apply our results to quadratic and linear fractional programming

problems.

1.2 Optimal control problems governed by a vari-

ational inequality

The optimal control problem for an elliptic variational inequality proposed by Lions

([73, 74, 75]) is the following minimization problem:

min G(u) + L(w)

subject to (w, u) ∈ Uad ×K, and u ∈ S(w),
(1.1)

where, for each w ∈ Uad, S(w) is the set of solutions of the following variational

inequality problem:

〈A(u), v − u〉 ≥ 〈f −B(w), v − u〉, ∀v ∈ K, (1.2)

and K is a closed and convex cone of a Hilbert space V, Uad is a nonempty closed set

of a Hilbert space U, G : K → R+, L : Uad → R+, A ∈ L(V,V∗), B ∈ L(Uad,V
∗)

and f ∈ V∗. If there exist (w0, u0) ∈ Uad ×K, and u0 ∈ S(w0), such that

G(u0) + L(w0) = min
(w,u)∈Uad×K,u∈S(w)

G(u) + L(w),

then w0 is called an optimal control for minimization problem (1.1).

As Lions [74] pointed out, finding necessary and sufficient conditions for the

optimal control and constructing algorithms amenable to numerical computation for

the approximation of the optimal control are two important objectives of the optimal

control theory. Necessary and sufficient conditions for optimal control problems

governed by variational inequalities have been investigated by a number of authors

(see Lions [73, 74, 75], Adams and Lenhart [2], Barbu [7], Mignot and Puel [87], He

[53], Bergounioux [10] and Ye [122, 123]).

The theory of the optimal control problem (1.1) has been widely studied by

many authors using different methods. One of the methods is the approximation of

the variational inequality by an equation where the maximal monotone operator is
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approached by a differentiable single-value mapping with Moreau-Yosida approxi-

mation techniques. This method, mainly due to Barbu [7], leads to several existence

results and to first-order optimality systems. It is worth noting that most results in

these papers are obtained in Hilbert spaces, variational inequalities are of linear or

semilinear elliptic type and the objectives (cost) are quadratic ones of the state and

control.

Recently, Lou [77], Ye and Chen [124] considered the existence, regularity and

necessary condition of the optimal control problem governed by a quasilinear elliptic

variational inequality respectively. In [77], Lou introduced an approximate problem

and gave estimates of optimal pairs for the approximate problem. By using the

obtained results, he got the existence and regularity of the solution to the original

problem. In [124], Ye and Chen approximated the variational inequality by a family

of quasilinear elliptic equations, and proved that the optimal pairs for the approx-

imate problem converges to the solution of the original problem. Using the weak

convergence methods, they established some optimality conditions.

In order to study the optimal control problem governed by an obstacle problem,

we investigate the obstacle problem first. Obstacle problems are actually special

variational inequalities. These problems, especially monotone variational inequality

problems, have attracted much attention in recent years. There are many interesting

theoretical questions arising from these problems and many applications in mechan-

ics, applied mathematics, social science, industry, and differential equations which

can be cast as such problems. For example, see [7, 53, 55, 67, 71, 104, 108, 126, 131,

133] and the references cited therein. Recent results involving maximal monotone

mappings and their perturbations can be found in [49, 55, 65, 66]. By using existence

results of variational inequalities for monotone type mappings, we can establish sur-

jective results for the corresponding monotone type mappings. For example, Huang

and Zhou [60] studied the variational inequalities with a sum of a maximal monotone

mapping T and a T -pseudomonotone mapping T0, and, under some coercive con-

ditions, obtained the surjective results of perturbed maximal monotone mappings,

which extend and improve the corresponding results of [106, 127, 128]. Recently,

by using some coercive condition which is weaker than the one in Browder’s result

(see [17]), Guan et al [48, 49] obtained some results about ranges of generalized

pseudo-monotone perturbations of maximal monotone operators.

Penalty function methods have often been used in the study of optimization

theory and methodology for constrained mathematical programs and optimal control
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problems (see [10], [11], [84], [85] and [97]). Bergounioux used these methods to

approximate the optimal control problem of obstacle problems in [10] and [11].

In [11], he interpreted the variational inequality as a state equation, introducing

another control function as in [87], and obtained first order necessary optimality

conditions by using classical penalty methods. In [10], he introduced an associated

relaxed problem, and devoted to a saddle-point formulation of the optimality system.

Quadratic augmented Lagrangian methods have been used in optimal control

problems for nonlinear differential equation or elliptic variational inequality in Sobolev

space, e.g., [22, 63, 64, 109]. In this method, differential equation or elliptic vari-

ational inequality was treated as an equality constraint or inequality constraint

which is realized by a Lagrangian term together with a penalty functional. Chen

and Zou [22], and Guo and Zou [50] investigated elliptic and parabolic systems by

using augmented Lagrangian methods. The identification of parameters in elliptic

and parabolic systems was formulated as a constrained minimization problem com-

bining the output least squares and the equation error method. The minimization

problem is then proved to be equivalent to the saddle-point problem of an augmented

Lagrangian.

In Chapter 5, enlightened by [48, 49, 60], we consider variational inequality prob-

lems for generalized pseudo-monotone mappings and perturbed maximal monotone

mappings. Under a more general coercive condition than the one used by [48, 49],

we establish some existence results for a solution of variational inequality problems

for generalized pseudo-monotone mappings and generalized pseudo-monotone per-

turbations of maximal monotone mappings respectively. Moreover, we obtain an ex-

istence result of a solution of a variational inequality problem for T -pseudomonotone

perturbations of maximal monotone mapping T . The optimal control problem con-

sidered in this chapter is one with a monotone type variational inequality constraint

in Banach spaces. This is actually a nonsmooth and nonconvex infinite-dimensional

optimization problem. We obtain several existence results of an optimal control of

the optimal control problem governed by a quasilinear elliptic variational inequality.

In Chapter 6, motivated by the idea presented in [100], we introduce the concept

of a modified nonlinear Lagrangian function and obtain a necessary condition and

sufficient condition for the zero duality gap property between the optimal control

problem and its nonlinear Lagrangian dual problem. We apply a power penalty

method to the optimal control problem, and obtain approximate optimal solutions

of the penalty function that converges weakly to the optimal solution of the original
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optimal control problem.
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Chapter 2

Duality via an Augmented

Lagrangian Function with

Applications

2.1 Introduction

If a nonlinear programming problem is analyzed in terms of its ordinary Lagrangian

function, there is usually a duality gap, unless the objective and constraint functions

are convex. It is shown by Rockafellar [95] that the gap can be removed by using

a quadratic augmented Lagrangian function. In [97], an augmented Lagrangian

with a convex augmenting function was introduced and the corresponding zero du-

ality property was obtained. In [56], Huang and Yang considered a augmented

Lagrangian with a level-bounded augmenting function for the problem of minimiz-

ing a nonconvex extended-real-valued function defined over Rn. Furthermore, a

valley at 0 augmenting function was given in [134] where the level-boundedness con-

dition of augmenting functions in [56] is replaced by the valley at 0 property. Such a

formalism allows one to introduce a suitable dual problem having the same optimal

value as the original one. It is worth noting that all these studies are carried out in

finite dimension spaces.

In summary, there are four types of augmenting functions in the literature: (i)

a quadratic augmenting function; (ii) a convex augmenting function; (iii) a level-

bounded augmenting function; (iv) a valley at 0 augmenting function. Under some
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conditions, their implication relations are (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

In this chapter, we explore an augmented Lagrangian scheme with a valley at

0 augmenting function. It is shown that every weak limit point of a sequence of

optimal solutions generated by augmented Lagrangian problems is a solution of the

original problem. A zero duality gap property between the primal problem and

the augmented Lagrangian dual problem is obtained. Under the assumption that

the augmenting function satisfies a valley at zero condition and the perturbation

function satisfies a growth condition, a necessary and sufficient condition for a zero

duality gap property between the primal problem and its augmented Lagrangian

dual problem is established. We apply it to variational problems in Sobolev spaces.

The outline of this chapter is as follows:

In Section 2.2, we present basic definitions, notations and some preliminary re-

sults. In Section 2.3, in general Banach spaces, we obtain a zero duality gap property

between the primal problem and its augmented Lagrangian dual problem by assum-

ing that the perturbation function satisfies a growth condition and by replacing the

level coercivity of the augmenting function in [90] by a valley at 0 property. In

Section 2.4, we establish the existence result of the solutions of a primal problem

(a minimization problem) and its augmented Lagrangian problem in reflexive Ba-

nach spaces. We obtain that every weak limit point of a path of optimal solutions

generated by the augmented Lagrangian problems is the solution of its primal prob-

lem. We obtain the zero duality gap property between the primal problem and the

augmented Lagrangian dual problem. In Section 2.5, as an application, we discuss

the relationship between the primal problem and its augmented Lagrangian problem

about two kinds of variational inequality problems in Sobolev spaces and get several

results.

2.2 Augmented Lagrangians

In the following, let U, V and E be three Banach spaces, BV be the closed unit

ball of V and R = R
⋃{−∞, +∞}. Let U∗ denote the dual space of U, 〈f, u〉 be

the value of f ∈ U∗ at u ∈ U. We use the standard notation “un → u0” to denote

strong convergence of a sequence un in U to u, i.e., ‖un − u‖ → 0 as n → +∞,

where ‖ ·‖ is a norm in U, and “un ⇀ u0” to denote weak convergence of a sequence

in U, i.e., for any f ∈ U∗, we have 〈f, un〉 → 〈f, u〉, as n → +∞.
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Definition 2.2.1 A subset C ⊂ V is said to be convex, if for every choice of x1, x2 ∈
C one has

(1− t)x1 + tx2 ∈ C, for all t ∈ (0, 1).

A function f on a convex set C is said to be convex if for every choice of x1, x2 ∈ C

one has

f((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2), for all t ∈ (0, 1).

Definition 2.2.2 Let X ⊂ V be a closed subset and f : X → R be an extended

real-valued function. The function f is said to be level-bounded on X if, for any

α ∈ R, the level set {v ∈ X : f(v) ≤ α} is bounded.

Definition 2.2.3 Let X ⊂ V be a closed subset and f : X → R be an extended

real-valued function. The function f is said to have a valley at 0 in X if, f(0) = 0,

f(v) > 0, for all v 6= 0, and cδ = inf‖v‖≥δ f(v) > 0, for each δ > 0.

Definition 2.2.4 A continuous function f : V → R is called a peak at zero if

f(v) < 0 = f(0) for all v 6= 0 and sup‖z‖≥δ f(v) < 0 for all δ > 0.

Definition 2.2.5 Let X ⊂ V be a closed subset and f : X → R be an extended

real-valued function. f is said to satisfy the 0−coercive condition if

lim
‖v‖→+∞

f(v) = +∞,

it is said to satisfy the level-coercive condition if it is bounded below on bounded sets

and satisfies

lim inf
‖v‖→+∞

f(v)

‖v‖ > 0,

whereas it is coercive if it is bounded below on bounded sets and

lim inf
‖v‖→+∞

f(v)

‖v‖ = +∞.

Let us compare the definitions above by the following example.

Example 2.2.1 (a) Let v ∈ V, f(v) = ‖v‖γ for an exponent γ ∈ (1,∞), then f is

coercive, but for γ = 1, it is merely level-coercive. For γ ∈ (0, 1), f is level-bounded,

but is not level-coercive. It is clear that when γ ∈ (0, 1), f is a level-bounded

function, but is not a convex one.
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(b) Let v ∈ V,

f1(v) =




‖v‖γ + ‖v‖p, if ‖v‖ < 1

| sin π‖v‖γ

2
|+ 1, if 1 ≤ ‖v‖ < +∞,

f2(v) =




‖v‖γ, if ‖v‖ ≤ 1

1, if ‖v‖ > 1,

where 0 < γ < 1, p > 0. Then, they merely have a valley at 0, none of them is

level-bounded or convex.

Definition 2.2.6 A function f̄ : U × V → R with value f̄(u, v) is said to be

level-bounded in u locally uniform in v if, for each v̄ ∈ V and α ∈ R, there exists

a neighborhood U(v̄) of v̄ along with a bounded set D ⊂ U, such that {u ∈ U :

f̄(u, v) ≤ α} ⊂ D for any v ∈ U(v̄).

Let X ⊂ V be a closed subset and σ : X → R. Let

argminvσ = {v′ ∈ X : σ(v′) = min
v∈X

σ(v)}.

By Proposition 3.23 and Corollary 3.27 in [97], we have

Proposition 2.2.1 For any proper, lsc function σ on Rm, level coercivity implies

level boundedness. When σ is convex the two properties are equivalent.

Proposition 2.2.2 For any proper, lsc convex function σ on Rm, if, some set

{v ∈ X : σ(v) ≤ α} (α is a constant) is both nonempty and bounded, for instance

the level set argminvσ, then σ must be level bounded.

Definition 2.2.7 Let σ : V → R be an extended real-valued function. The function

σ is said to a convex augmenting function if it is proper, weakly lower semicontinuous

and convex in V, argminvσ = {0} and σ(0) = 0.

Definition 2.2.8 Let σ : V → R be an extended real-valued function. The func-

tion σ is said to a level-bounded augmenting function if it is proper, weakly lower

semicontinuous and level bounded in V, argminvσ = {0} and σ(0) = 0.

Definition 2.2.9 A function σ : V → R is said to be a valley at 0 augmenting

function if it is proper, weakly lower semicontinuous and has a valley at 0 in V.
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When U and V are finite dimensional spaces, these definitions on augmenting

functions can be found in [56], [97], [100] and [134] respectively. Now we give an

example of a valley at 0 augmenting function σ(v). Let v ∈ V, define

σ(v) :=




‖v‖γ, if ‖v‖ < 1,

1, if ‖v‖ ≥ 1,
(2.1)

where γ > 0. We have the following result.

Lemma 2.2.1 Let σ(v) be defined by (2.1). Then σ(v) is a valley at 0 augmenting

function.

Proof : It is clear that σ(v) has a valley at 0. We only need to prove that σ(v) is

weakly lower semicontinuous for each v ∈ V. Arguing by contradiction that if σ(v)

is not weakly lower semicontinuous at some v0 ∈ V, then there exists a sequence

{vn} ⊂ V with vn ⇀ v0 as n → ∞, but lim inf
n→∞

σ(vn) < σ(v0). Then there exists a

subsequence {vnk
} of {vn} such that

lim
k→∞

σ(vnk
) = lim inf

n→∞
σ(vn) < σ(v0). (2.2)

We consider the following two cases:

(i) if ‖v0‖ ≥ 1, it implies that σ(v0) = 1. Hence from (2.2), there exists a

sufficiently large K such that σ(vnk
) < 1 for k > K. Thus ‖vnk

‖ < 1 for k > K. It

follows from the weak lower semi-continuity of the norm that

lim inf
k→∞

‖vnk
‖ ≥ ‖v0‖. (2.3)

Noticing that ‖vnk
‖ < 1 for k > K and ‖v0‖ ≥ 1, it implies from (2.3) that

limk→∞ ‖vnk
‖ = ‖v0‖ = 1. Therefore limk→∞ σ(vnk

) = limk→∞ ‖vnk
‖γ = 1, which

contradicts (2.2).

(ii) if ‖v0‖ < 1, then σ(v0) = ‖v0‖γ. By (2.2), ‖vnk
‖ < 1, σ(vnk

) = ‖vnk
‖γ and

lim inf
k→∞

‖vnk
‖γ < ‖v0‖γ. (2.4)

Since vnk
⇀ v0, it follows from the same reason as in (2.3) that lim infk→∞ ‖vnk

‖ ≥
‖v0‖. Without loss of generality, we can assume that lim

k→∞
‖vnk

‖ ≥ ‖v0‖. Conse-

quently, ∀ ε > 0, there exists K large enough such that ‖vnk
‖ ≥ ‖v0‖ − ε for all

k > K, and

‖vnk
‖γ ≥ (‖v0‖ − ε)γ ∀ k > K,
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thus

lim inf
k→∞

‖vnk
‖γ ≥ (‖v0‖ − ε)γ,

and then, by the arbitrariness of ε,

lim inf
k→∞

‖vnk
‖γ ≥ ‖v0‖γ,

which contradicts (2.4). Thus, by (i) and (ii), we have shown that σ(v) is weakly

lower semicontinuous at each v ∈ V.

Therefore, σ(v) is a valley at 0 augmenting function.

Proposition 2.2.3 Let V be a Banach space. (i) If σ : V → R is a level-coercive

function, then it is a level-bounded function. (ii) If the space V is reflexive, σ :

V → R+ is a level-bounded augmenting function, then it is a valley at 0 augmenting

function.

Proof : (i) If σ is not a level-bounded function, then there exists a constant a,

such that {v ∈ V : σ(v) ≤ a} is unbounded. There exist vk ∈ {v ∈ X : σ(v) ≤ a},
such that ‖vk‖ → ∞ as k → ∞. Thus, lim infk→+∞

σ(vk)
‖vk‖ = 0, which is impossible

since σ is level-coercive.

(ii) If σ does not have a valley at 0 in V, then there exists δ > 0 such that

cδ = inf‖v‖≥δσ(v) = 0, hence there exists {vj} ⊆ V,‖vj‖ ≥ δ such that σ(vj) → cδ.

If {vj} is unbounded, by the definition of level-bounded function, we get {σ(vj)}
is unbounded. Thus there exists a subsequence of {σ(vj)} converging to infinity.

This contradicts to cδ = 0. Hence {vj} is bounded. Since V is reflexive, there

exists v0, such that vj ⇀ v0 as j → ∞. The weak lower semi-continuity of σ and

argminvσ(v) = {0} imply σ(v0) = 0, hence v0 = 0, but ‖v0‖ ≥ δ, which implies a

contradiction.

Remark 2.2.2 (i) It is clear that if σ : V → R is a continuous function, then σ

has a valley at 0 if and only if −σ has a peak at 0, see [100]. If σ is continuous at

0, then the concepts of σ having a valley at 0 and σ being a potential are the same,

see [90].

(ii) If σ is a convex augmenting function in space Rm introduced by [97], that is,

σ is a convex, proper, lower semicontinuous function, argminvσ = {0} and σ(0) =

0, then by Proposition 2.2.1, σ satisfies the level bounded condition. Thus, by

Proposition 2.2.2, σ satisfies the level-coercive condition.
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(iii) If the space V is reflexive, σ : V → R+ is a level-bounded augmenting

function, then, by Proposition 2.2.3, it is a valley at 0 augmenting function. On

the other hand, if σ is a valley at 0 augmenting function, then it may not be a

level-bounded function. For example, let us consider function σ(v), where σ(v) is

defined by (2.1). By Lemma 2.2.1, σ(v) is a valley at 0 augmenting function. But

{v ∈ V : σ(v) ≤ 2} = V is unbounded. Thus σ(v) is not a level-bounded function.

Hence the concept of a valley at 0 augmenting function is weaker than that of a

level-bounded augmenting function which was introduced by [56].

Let ϕ : U → R be an extended real-valued function and f̄ : U × V → R be

a dualizing parametrization function for ϕ, i.e., f̄(u, 0) = ϕ(u), ∀u ∈ U. Let

σ : V → R+

⋃{+∞} and g : E × V → R. Let (y, r) ∈ E × (0, +∞). We will

consider the primal problem

(P ) inf
u∈U

ϕ(u). (2.5)

Definition 2.2.10 Consider the primal problem (P ). Let f̄ : U × V → R be a

dualizing parametrization function for ϕ, σ : V → R+

⋃{+∞} and g : E×V → R.

(i) The augmented Lagrangian (with parameter r > 0) l̄ : U× E× (0, +∞) → R

is defined by

l̄(u, y, r) = inf{f̄(u, v)− g(y, v) + rσ(v) : v ∈ V}, u ∈ U, y ∈ E, r > 0.

(ii) The augmented Lagrangian dual function is defined by

ψ̄(y, r) = inf{l̄(u, y, r) : u ∈ U}, y ∈ E, r > 0. (2.6)

(iii) The augmented Lagrangian dual problem is defined as

(D) sup
(y,r)∈E×(0,+∞)

ψ̄(y, r). (2.7)

Remark 2.2.3 If U and V are finite dimension spaces, g(y, v) = 〈y, v〉, y, v ∈ V,

where 〈y, v〉 is the inner product in V, then Definition 2.2.10 reduces to the one in

[97]. If we only consider a constrained optimization problem in finite dimensional

spaces, it is unnecessary to extend the inner product 〈y, u〉 to a general function

g(y, u). But in some infinite dimensional spaces, for example, in Sobolev space

W k,p
0 (Ω) (p 6= 2), there is no inner product (see p.147 in [44]). If we consider a
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constrained optimization problem in such spaces by using the augmented Lagrangian

method, it is necessary to introduce a general bifunction to replace the inner product.

In the following, denote inf(P ) = inf
u∈U

ϕ(u) and sup(D) = sup
(y,r)∈E×(0,+∞)

ψ̄(y, r).

We will consider the problem (P ) and its augmented Lagrangian problem:

P (y, r) inf
(u,v)∈U×V

{f̄(u, v)− g(y, v) + rσ(v)}.

Let us look at an example to see how the simple primal problem relates with its

augmented Lagrangian problem P (y, r):

Example 2.2.2 Consider the following constrained program

(P1)

inf f(x)

s.t. x ∈ X,

gj(x) ≤ 0, j = 1, · · ·,m1

gj(x) = 0, j = m1 + 1, · · ·,m,

where X ⊂ Rn is a nonempty and closed set, f, gj : X → R, j = 1, · · ·,m. Denote

by X0 the set of feasible solutions of (P1), i.e.,

X0 = {x ∈ X : gj(x) ≤ 0, j = 1, · · ·,m1; gj(x) = 0, j = m1 + 1, · · ·,m}.

Let

ϕ(x) =





f(x), if x ∈ X0,

+∞, if x ∈ Rn\X0.

Then (P1) is equivalent to the following problem (P ′
1) in the sense that the two

problems have the same set of (locally) optimal solutions and the same optimal

value

(P′1) inf
x∈Rn

ϕ(x).

Define the dualizing parametrization function:

f̄P (x, u) = f(x) + δR
m1
− ×{0m−m1}(G(x) + u) + δX(x), x ∈ Rn, u ∈ Rm,

where 0m−m1 is the origin of Rm−m1 , G(x) = (g1(x), ···, gm(x)) and δD is the indicator

function of the set D, i.e.,

δD(x) =





0, if x ∈ D

+∞, otherwise.
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The augmented Lagrangian for (P ′
1) is

l̄P (x, y, r) = inf{f̄P (x, u)− 〈y, u〉+ rσ(u) : u ∈ Rm},

where y ∈ Rm, σ is an augmenting function. The above Lagrangian can be expressed

as

l̄P (x, y, r) =





f(x) +
m∑

j=1

yjgj(x) + inf
v≥0
{

m1∑
j=1

yjvj + rσ(−g1(x)− v1,

· ··,−gm1(x)− vm1 ,−gm1+1(x), · · · ,−gm(x))}, if x ∈ X,

+∞, otherwise

where v = (v1, · · · , vm1).

Define the perturbation function p : V → R by

p(v) = inf{f̄(u, v) : u ∈ U}. (2.8)

Note that the augmented Lagrangian problem P (y, r) is the same as the problem

of evaluating the augmented Lagrangian dual function ψ̄(y, r). Then, from the

definition, p(0) and ψ̄(y, r) are the optimal values of the problems (P ) and P (y, r),

respectively.

Definition 2.2.11 Let the function p be defined by (2.8), and σ : V → R be an

extended real-valued function. The function p is said to satisfy the growth condition

if, for any ρ > 0, there exist a, b ∈ R such that

p(v) ≥ b− aσ(v), ∀v ∈ V \ ρBV , (2.9)

where ρBV = {v : v ∈ V, ‖v‖ ≤ ρ}.

Let us give an example to see how the definitions above are related to a nonlinear

programming problem.

Example 2.2.3 Let f0, f1, · · · fm be real-valued functions defined on a set X ⊂
Rn. Consider the nonlinear programming problem:

(P2)

inf f0(u)

s.t. u ∈ X,

fj(u) ≤ 0, j = 1, · · ·,m.
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In [95], the augmented Lagrangian function associated with problem (P2) is

L(u, y, r) = f0(u) +
m∑

j=1

[yjmax{fj(u),
−yj

2r
}+ rmax2{fj(u),

−yj

2r
}],

for u ∈ X, (y, r) ∈ T , where T = Rm × (0, +∞). The augmented Lagrangian dual

problem for (P2) is:

(D2) sup
(y,r)∈T

ψ̄(y, r),

where ψ̄(y, r) = inf
u∈X

L(u, y, r) < +∞. The optimal value in (D2) is by definition

sup(D2) = sup
(y,r)∈T

inf
u∈X

L(u, y, r).

For each (u, v) ∈ Rn ×Rm, define

f̄(u, v) =





f0(u), if u ∈ X, fj(u) ≤ vj for j = 1, · · · ,m;

+∞, otherwise,

and

ϕ(u) =

{
f0(u), if u ∈ X, fj(u) ≤ 0 for j = 1, · · · ,m;

+∞, otherwise.

Then, f̄(u, 0) = ϕ(u) and infu∈Rnϕ(u) = inf(P2). Let g(y, v) = 〈y, v〉, σ(v) = ‖v‖2.

It is elementary to calculate that

L(u, y, r) = inf
v∈Rm

{f̄(u, v) + 〈y, v〉+ r‖v‖2} = inf
v∈Rm

{f̄(u, v)− g(y, v) + rσ(v)}.

Therefore, the optimal value in (D2) is the same as the one in Definition 2.2.10.

Besides, Rockafellar has given the definition of quadratic growth condition in a

finite-dimensional space in [95] and obtained the following result.

Proposition 2.2.4 Consider problems (P2) and (D2). If σ(v) = ‖u‖2 and p satisfies

the quadratic growth condition, i.e., there exist real numbers r ≥ 0 and q such that

p(u) ≥ q − r‖u‖2 ∀u ∈ Rm,

then sup(D2) = inf(P2) > −∞ iff p(0) is finite and p is lsc at 0.

In the next section, we will generalize this result to the non-quadratic case in

general infinite dimensional Banach spaces.

Remark 2.2.4 If, for y′ = θ (the origin of E), there exists r′ > 0, such that ψ̄(θ, r′)

is finite, then, for α = ψ̄(θ, r′), we have

p(v) ≥ α− r′σ(v), ∀v ∈ V.
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That is, p satisfies the growth condition.

We discuss the property of the augmented Lagrangian for the primal problem

(P ) in the follows.

The usual duality theory involves the generalized Fenchel conjugate p∗ of p, which

is given by

p∗(y) = sup
v∈V

(g(y, v)− p(v)).

Using the coupling function c : V × E× (0, +∞) → R given by

c(v, y, r) = g(y, v)− rσ(v),

we define the conjugate of p as

pc(y, r) := sup
v∈V

(c(v, y, r)− p(v)).

Thus the conjugate pc of p can be computed with the help of the generalized Fenchel

conjugacy,

pc(y, r) = (p + rσ)∗(y).

It is easy to see that the augmented Lagrangian l̄(u, y, r) is concave and upper

semicontinuous in (y, r) and nondecreasing in r. It can be expressed as

l̄(u, y, r) = − sup
v∈V

(g(y, v)− rσ(v)− f̄(u, v))

= − sup
v∈V

(c(v, y, r)− f̄(u, v))

= −(f̄u)
c(y, r)

= −(f̄u + rσ)∗(y),

where f̄u(v) = f̄(u, v). We define the conjugate of function q : E × (0, +∞) →
R

⋃{−∞, +∞} as

qc(v) := sup
(y,r)∈E×(0,+∞)

(c(v, y, r)− q(y, r)).

The biconjugate of p is pcc := (pc)c. Then

pcc(0) = sup
(y,r)∈E×(0,+∞)

(−(p + rσ)∗(y))

= sup
(y,r)∈E×(0,+∞)

(− sup
v∈V

(c(v, y, r)− p(v)))

= sup
(y,r)∈E×(0,+∞)

( inf
v∈V

(p(v)− g(y, v) + rσ(v)))

= sup
(y,r)∈E×(0,+∞)

ψ̄(y, r).

(2.10)
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For each (y, r) ∈ E× (0, +∞), using Definition 3.2.1, we have

l̄(u, y, r) ≤ f̄(u, 0) = ϕ(u).

Thus

inf
u∈U

l̄(u, y, r) ≤ inf
u∈U

ϕ(u).

That is

ψ̄(y, r) ≤ p(0), ∀(y, r) ∈ E× (0, +∞). (2.11)

Hence, (2.10) and (2.11) imply that the following weak duality holds:

pcc(0) ≤ p(0). (2.12)

2.3 Non-quadratic growth condition and zero du-

ality gap

Suppose that the perturbation function p : V → R is defined by (2.8). As shown

in the last section, under a growth condition, one can relate the value of the dual

problem to the behavior of the perturbation function. In this section, under the

assumption that the perturbation function satisfies the growth condition (2.9) and

the augmenting function satisfies a valley at 0 condition, we establish that the lower

semi-continuity of the perturbation function at 0 is a necessary and sufficient condi-

tion for a zero duality gap property between the primal problem and its augmented

Lagrangian dual problem in general Banach spaces.

Lemma 2.3.1 Let U, V and E be three Banach spaces. Suppose the function p :

V → R satisfies the growth condition (2.9), the function σ : V → R has a valley

at 0 and g : E × V → R satisfies |g(y, v)| ≤ d(y)‖v‖µ,∀(y, v) ∈ E × V, where

d(y) ≥ 0, d(0) = 0 and 0 < µ ≤ 1. Then,

sup(D) = sup
r>0

ψ̄(0, r) = lim inf
v→0

p(v) ≤ inf(P ). (2.13)

Furthermore, if there exists a neighborhood O of 0, such that p is bounded below on

O, then

−∞ < sup(D) ≤ inf(P ). (2.14)
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Proof : By Definition 2.2.10, for each ρ > 0, and each (y, r) ∈ E×R+, we have

ψ̄(y, r) ≤ inf{p(v), v ∈ ρBV }+ ρµd(y) + r sup σ(ρBV ), (2.15)

where ρBV = {v : v ∈ V, ‖v‖ ≤ ρ}. Note that σ has a valley at 0 in X, sup σ(ρBV ) →
0 as ρ → 0. Thus, by (2.15),

ψ̄(y, r) ≤ lim inf
v→0

p(v).

This implies

sup
(y,r)∈E×R+

ψ̄(y, r) ≤ lim inf
v→0

p(v). (2.16)

On the other hand, let s < lim infv→0 p(v). There exists a ρ > 0, such that

p(v) + rσ(v) ≥ s, ∀v ∈ ρBV . (2.17)

Again since σ have a valley at 0 in X, infv∈V\ρBV
σ(v) > 0. There exists a t0 > 0,

such that

(t0 − a)σ(v) > s− b, ∀v ∈ V\ρBV . (2.18)

It follows from the growth condition of p and (2.18) that, for each r > t0,

p(v) + rσ(v) ≥ b + (r − a)σ(v) ≥ s, ∀v ∈ V\ρBV . (2.19)

Hence, combining (2.17) and (2.19), we get

sup
r>0

ψ̄(0, r) ≥ lim inf
v→0

p(v). (2.20)

Therefore, it follows from (2.16) and (2.20) that (2.13) holds. If there exists a

neighborhood O of 0, such that p is bounded below on O, lim infv→0 p(v) > −∞.

Thus (2.14) holds.

Remark 2.3.1 It is noted that if E = V is a finite dimensional space, then g(y, v) =

〈y, v〉 satisfies |g(y, v)| ≤ d(y)‖v‖µ,∀(y, v) ∈ E ×V, where d(y) ≥ 0, d(0) = 0 and

0 < µ ≤ 1.

Theorem 2.3.1 Let U, V and E be three Banach spaces. Suppose that the function

p : V → R satisfies the growth condition (2.9), the function σ : V → R has a valley

at 0 and g : E × V → R satisfies |g(y, v)| ≤ d(y)‖v‖µ,∀(y, v) ∈ E × V, where

d(y) ≥ 0, d(0) = 0 and 0 < µ ≤ 1. Then, sup(D) = inf(P ) > −∞ if and only if

p(0) is finite and p is lsc at 0.
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Proof : If sup(D) = inf(P ) > −∞, then, using Lemma 2.3.1, we have

lim inf
v→0

p(v) = inf(P ).

Note that inf(P ) = p(0). Hence, p is lsc at 0 and p(0) is finite.

If p is lsc at 0 and p(0) is finite, then

lim inf
v→0

p(v) ≥ p(0) = inf(P ).

Again using Lemma 2.3.1,

sup(D) = lim inf
v→0

p(v) = inf(P ) > −∞.

2.4 Optimal path and zero duality gap

In this section, in the framework of augmented Lagrangians with a valley at zero

augmenting function, we establish the existence result of a solution of the primal

problem (P ) and its augmented Lagrangian problem P (y, r) in a reflexive Banach

space, obtain that every weak limit point of a path of optimal solutions generated by

the problem P (y, r) is a solution of problem (P ), and get a zero duality gap property

between the primal problem (P ) and its augmented Lagrangian dual problem (2.7).

We have the following Lemma.

Lemma 2.4.1 Suppose that {(un, vn)} is a sequence of U × V with (un, vn) ⇀

(u0, v0) as n → ∞, then there exist {unk
} ⊂ {un} and {vnk

} ⊂ {vn} such that

unk
⇀ u0 and vnk

⇀ v0 as k →∞.

Proof : The proof is elementary and is omitted.

Then we have

Theorem 2.4.1 Let U and V be reflexive Banach spaces, E be a Banach space, f̄ :

U×V → R be a dualizing parametrization function for ϕ, σ : V → R+

⋃{+∞} be a
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valley at 0 augmenting function and g : E×V → R be a weakly continuous function

with g(0, 0) = 0. Assume that f̄(u, v) is proper, weakly lower semicontinuous, and

level-bounded in u locally uniform in v. Then the primal problem (P ) has at least

one solution. Furthermore suppose that there exists (ȳ, r̄) ∈ E× (0, +∞) such that

inf{l̄(u, ȳ, r̄) : u ∈ U} > −∞. (2.21)

Then

(i) There exists r0 > r̄, such that, for any r ≥ r0, the augmented Lagrangian

problem P (ȳ, r) has at least one solution.

(ii) Every weak limit point of the sequence {ur} is the solution of the primal problem

(P ), where (ur, vr) with r ≥ r0 is a solution of the augmented Lagrangian

problem P (ȳ, r).

Proof : Since the function f̄(u, v) is the dualizing parametrization function for

ϕ, f̄(u, v) is proper, weakly lower semicontinuous, and level-bounded in u locally

uniform in v, ϕ is proper, weakly lower semicontinuous and level-bounded. It is easy

to prove that there exists u0 ∈ U, such that ϕ(u0) = inf
u∈U

ϕ(u). So we only need to

prove (i) and (ii).

(i) Since σ(v) ≥ 0, we have

inf{l̄(u, ȳ, r) : u ∈ U} ≥ inf{l̄(u, ȳ, r̄) : u ∈ U} ∀r ≥ r̄.

Let mr
∗ = inf{l̄(u, ȳ, r) : u ∈ U}, m∗ = inf{l̄(u, ȳ, r̄) : u ∈ U}. It is obvious that

mr
∗ ≤ p(0).

By the definition of mr
∗, there exists a minimizing sequence (uj, vj) ∈ U ×V,

satisfying

f̄(uj, vj) + rσ(vj)− g(ȳ, vj) → mr
∗. (2.22)

From (2.21), we have

f̄(uj, vj) + rσ(vj)− g(ȳ, vj) ≥ m∗ + (r − r̄)σ(vj). (2.23)

It follows from (2.22) and (2.23) that, for some ε0 ≥ 0, there exists an integer N > 0,

such that

m∗ + (r − r̄)σ(vj) ≤ mr
∗ + ε0 ≤ p(0) + ε0,∀j > N.
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That is

σ(vj) ≤ p(0) + ε0 −m∗

r − r̄
,∀j > N. (2.24)

Since σ has a valley at 0, cδ = inf‖v‖≥δ σ(v) > 0, for each δ > 0. Denote r0 =
p(0)+ε0−m∗

cδ
+ r̄ and let r > r0. From (2.24), we have σ(vj) < cδ,∀j > N . This

implies that vj ∈ {v ∈ V : ‖v‖ ≤ δ},∀j > N . Because f̄(u, v) is level-bounded in

u locally uniform in v, it follows from (2.22) that {uj} is bounded, so {(uj, vj)} is

bounded. Because U and V are reflexive Banach spaces, the product space U×V

is a reflexive Banach space. Thus there exists a weakly convergent subsequence of

{(uj, vj)}. Without loss of generality, we may assume that (uj, vj) ⇀ (u0, v0). By

Lemma 2.4.1, ujk
⇀ u0 and vjk

⇀ v0 as k →∞. The weak lower semicontinuity of

f and σ, together with (2.22), implies

f̄(u0, v0) + rσ(v0)− g(ȳ, v0) ≤ lim inf
k→+∞

f̄(ujk
, vjk

) + r lim inf
k→+∞

σ(vjk
)− lim

k→+∞
g(ȳ, vjk

)

≤mr
∗. (2.25)

Hence

f̄(u0, v0) + rσ(v0)− g(ȳ, v0) = inf
(u,v)∈U×V

{f̄(u, v) + rσ(v)− g(ȳ, v)}.

(ii) Let (ur, vr) with r ≥ r0 be the solution of the problem P (ȳ, r). Arbitrarily

fix u′ ∈ U such that −∞ < ϕ(u′) < +∞. We have

ϕ(u′) ≥ f̄(ur, vr) + rσ(vr)− g(ȳ, vr). (2.26)

It follows from (2.21) that

ϕ(u′) ≥ m∗ + (r − r̄)σ(vr).

Thus,

σ(vr) ≤ ϕ(u′)−m∗

r − r̄
. (2.27)

Let r1 = ϕ(u′)−m∗
cδ

+ r̄. Then σ(vr) ≤ cδ, so {vr} is bounded. Because f̄(u, v) is

level-bounded in u locally uniform in v, it follows from (2.26) that {ur} is bounded,

so {(ur, vr)} is bounded. Then, the reflexivity of U × V implies that there exist

r0 < rj → +∞ and (u∗, v∗) ∈ U×V such that (urj
, vrj

) ⇀ (u∗, v∗). The inequality

(2.27), together with weak lower semicontinuity of σ, gives

σ(v∗) ≤ lim inf
j→+∞

σ(vrj
) = 0.

Therefore, v∗ = 0.
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Since (ur, vr) with r ≥ r0 is the solution of the problem P (ȳ, r),

f̄(ur, vr)− g(ȳ, vr) ≤ f̄(u, 0) = ϕ(u), ∀u ∈ U.

Using the weak lower semicontinuity of f̄(u, v), we get

ϕ(u∗) ≤ ϕ(u), ∀u ∈ U.

So u∗ is the solution of primal problem (P ).

Theorem 2.4.2 Let U and V be reflexive Banach spaces, E be a Banach space.

Suppose that f̄(u, v) and σ(v) satisfy the same conditions as in Theorem 2.4.1.

Then the zero duality gap holds:

pcc(0) = p(0). (2.28)

Proof : Since the weak duality (2.12) holds, we only need to prove

pcc(0) ≥ p(0).

From (i) of Theorem 2.4.1, there exists r0 > r̄, such that for any r ≥ r0, the

augmented Lagrangian problem P (ȳ, r) has at least one solution. Then, for any

r ≥ r0, there exists (ur, vr), such that

f̄(ur, vr)− g(ȳ, vr) + rσ(vr) = ψ̄(ȳ, r). (2.29)

It follows from the proof of (ii) in Theorem 2.4.1 that there exist r0 < rj → +∞
and (u∗, 0) ∈ U×V such that (urj

, vrj
) ⇀ (u∗, 0), where ϕ(u∗) = p(0). Since f̄(u, v)

is weakly lower semicontinuous, we have

lim inf
j→+∞

f̄(urj
, vrj

) ≥ f̄(u∗, 0).

This, combined with (2.29), yields

lim inf
j→+∞

ψ̄(ȳ, rj) ≥ p(0).

It is obvious that ψ̄(ȳ, r) is increasing in r, thus, for ∀ε > 0, there exists a K > 0,

such that

ψ̄(ȳ, rj) ≥ p(0)− ε, ∀j > K.
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Therefore

sup
(y,r)∈E×(0,+∞)

ψ̄(y, r) ≥ p(0)− ε.

By the arbitrariness of ε, we conclude that

sup
(y,r)∈E×(0,+∞)

ψ̄(y, r) ≥ p(0).

From (2.10), we have

pcc(0) ≥ p(0).

So zero duality gap (2.28) holds.

2.5 Application to a variational inequality prob-

lem

Let Ω be a bounded domain of RN with the smooth boundary and H1
0 (Ω) = W 1,2

0 (Ω)

be the completion of C∞
0 (Ω) in the norm ‖u‖ = {∫

Ω
|∇v|2 dx}1/2. Let K = {u ∈

H1
0 (Ω) : u ≤ d∗ a.e.in Ω}, where d∗ ∈ H1

0 (Ω).

Assumption 1. ai,j, a0,
∂bi

∂xi
∈ L∞(Ω) (the Banach space of essential bounded

measurable functions on Ω), and, for some constant c1 > 0,

a0 − 1

2

N∑
i=1

∂bi

∂xi

≥ c1. (2.30)

Assumption 2. For some constant c2 > 0,

N∑
i,j=1

ai,jξiξj ≥ c2‖ξ‖2, a.e. in Ω, ∀ξ = (ξ1, ..., ξN) ∈ RN . (2.31)

Define

a(u, v) =
N∑

i,j=1

∫

Ω

ai,j
∂u

∂xi

∂u

∂xj

dx +

∫

Ω

(
a0 − 1

2

N∑
i=1

∂bi

∂xi

)
uv dx, u, v ∈ K. (2.32)

Let f ∈ H−1(Ω) (the dual space of H1
0 (Ω) ). The following three problems are

equivalent (see, Theorem 3.1 in [20]):
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Problem 1: Find u0 ∈ K, such that

a(u0, u− u0) ≥ 〈f, u− u0〉 ∀u ∈ K.

Problem 2: Find u0 ∈ K, such that

1

2
a(u0, u0)− 〈f, u0〉 = inf

u∈K
[
1

2
a(u, u)− 〈f, u〉].

Problem 3: Find u0 ∈ H1
0 (Ω), such that

1

2
a(u0, u0)− 〈f, u0〉+ δR−(u0 − d∗) = inf

u∈H1
0 (Ω)

(
1

2
a(u, u)− 〈f, u〉+ δR−(u− d∗)),

where

δR−(u− d∗) =





0, if u ≤ d∗, a.e. in Ω;

+∞, otherwise.

Define

J(u) :=
1

2
a(u, u)− 〈f, u〉,

ψ1(u) := J(u) + δR−(u− d∗), (2.33)

f̄1(u, v) := J(u) + δR−(u− d∗ + v),

and

σ(v) :=





(∫
Ω
|∇v|2 dx

)γ/2
, if ‖v‖ < 1,

1, if ‖v‖ ≥ 1,
(2.34)

where 0 < γ < 1. It follows from Lemma 2.2.1 that σ(v) has a valley at 0. Moreover,

f̄1(u, v) is a dualizing parametrization function for ψ1(u). In the following, we are

concerned with the primal problem

(P3) inf
u∈H1

0 (Ω)
ψ1(u)

and the augmented Lagrangian problem

Q1(y, r) inf
(u,v)∈H1

0 (Ω)×H1
0 (Ω)

{f̄1(u, v) + rσ(v)− 〈y, v〉},

where (y, r) ∈ H−1(Ω)× (0, +∞). Actually the primal problem (P3) is the Problem

3. Now we have the expression of the augmented Lagrangian l̄(u, y, r) for the primal

problem (P3) as follows,

l̄(u, y, r) = inf{f̄1(u, v)− 〈y, v〉+ rσ(v) : v ∈ H1
0 (Ω)}

= J(u) + inf{(rσ(d∗ − u + v)− 〈y, d∗ − u + v〉) : v ∈ E0},
(2.35)
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where E0 = {u ∈ H1
0 (Ω) : u ≤ 0, a.e.in Ω}. Let y = θ ( the zero element of H−1(Ω)).

Then the augmented Lagrangian problem Q1(y, r) is turned into the problem

Q1(r) inf
(u,v)∈H1

0 (Ω)×E0

{J(u) + rσ(d∗ − u + v)}.

Lemma 2.5.1 Let Assumptions 1 and 2 hold and a(u, v) be defined by (2.32). Then

Problem 2 has a unique solution.

Proof : Since

J(u) =
1

2
a(u, u)− 〈f, u〉,

J is twice Gâteaux differentiable in H1
0 (Ω). We have

J ′(u, ω) = a(u, ω)− 〈f, ω〉,

and

J ′′(u, ω, $) = a(ω, $) = a($,ω) ∀u, ω, $ ∈ H1
0 (Ω).

It follows from (2.30) and (2.31) that there exist some positive constants c3 , c4 and

c5, such that

a(u, u) ≥ c2

∫

Ω

N∑
i=1

( ∂u

∂xi

)2
dx + c1

∫

Ω

u2 dx ≥ c3‖u‖2,

and

a(u, v) ≤ c4

( ∫

Ω

N∑
i=1

( ∂u

∂xi

)2
dx

) 1
2

( ∫

Ω

N∑
i=1

( ∂v

∂xi

)2
dx

) 1
2 + c5(

∫

Ω

u2 dx)
1
2 (

∫

Ω

v2 dx)
1
2

≤ c6‖u‖‖v‖.

Hence

J(u) ≥ 1

2
c6‖u‖2 − ‖f‖‖u‖, (2.36)

and

J ′′(u, ω, ω) = a(ω, ω) ≥ c3‖ω‖2.

Thus, J(u) is strictly convex, J ′(u, ω) is linear and continuous for ω. Therefore

J(u) is weakly lower semicontinuous. There exists a minimizing sequence uj ∈ K,

satisfying

lim
j→∞

J(uj) = inf
u∈K

J(u).
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From (2.36), the sequence {uj} is bounded. By the reflexivity of H1
0 (Ω), there exists

{ujk
} ⊆ {uj}, such that ujk

⇀ u0. Thus, from the weak lower semicontinuity of

J(u), we have

J(u0) ≤ lim inf
k→∞

J(ujk
) = inf

u∈K
J(u).

Because uj ∈ K and K is a closed and convex set, K is a weakly closed set. Thus

u0 ∈ K. So J(u0) = infu∈K J(u). Noticing that J(u) is strictly convex, u0 is the

unique solution of Problem 2.

Theorem 2.5.1 Let Assumptions 1 and 2 hold. For the primal problem (P3) and

the augmented Lagrangian problem Q1(r), we have the following results:

(i) The primal problem (P3) has a unique solution u0.

(ii)There exists r0 > 0, such that for any r ≥ r0, the augmented Lagrangian problem

Q1(r) has a solution (ur, vr).

(iii)Every weak limit point of the sequence {ur} is the solution of primal problem

(P3).

Proof : Since Problem 2 and Problem 3 are equivalent, the conclusion of (i)

follows from Lemma 2.5.1.

Let y = θ ∈ H−1(Ω). Then (2.35) and (2.36) imply that

l̄(u, θ, r) = J(u) + rinfv∈E0{σ(d∗ − u + v)} ≥ 1

2
c6‖u‖2 − ‖f‖‖u‖,

and that there exists M > 0 large enough such that

l̄(u, θ, r) ≥ J(0), ∀ u ∈ H1
0 (Ω)\BM , (2.37)

where BM = {u ∈ H1
0 (Ω) : ‖u‖ ≤ M}. It is obvious that

inf
u∈BM

l̄(u, θ, r) ≤ J(0).

It follows from the proof of Lemma 2.5.1 that J(u) is weakly lower semicontinuous.

Then there exists u0 ∈ H1
0 (Ω), such that J(u0) = infu∈BM

J(u). Hence

J(u0) ≤ inf
u∈BM

l̄(u, θ, r) ≤ J(0).
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This and (2.37) imply that

inf
u∈H1

0 (Ω)
l̄(u, θ, r) ≥ J(u0) > −∞.

Thus, according to Lemma 2.2.1 and using the same argument as in Theorem 2.4.1,

there exists r0 > 0, such that for any r ≥ r0, the augmented Lagrangian problem

Q1(r) has a solution. This proves (ii).

Let (ur, vr) be the solution of the augmented Lagrangian problem Q1(r). Then

J(ur) + rσ(d∗ − ur + vr) ≤ J(u) + rσ(d∗ − u + v), ∀(u, v) ∈ H1
0 (Ω)× E0.

Let u = u0, v = u− d∗, where u0 is the unique solution of the primal problem (P3).

Then

J(ur) + rσ(d∗ − ur + vr) ≤ J(u0).

Hence

J(ur) ≤ J(u0), (2.38)

and

σ(d∗ − ur + vr) ≤ 1

r
(J(u0)− J(ur)). (2.39)

Again from (2.36), J(ur) ≥ 1
2
c6‖ur‖2 − ‖f‖‖ur‖. From this and (2.38), we get that

{ur} is bounded, i.e., there exists C such that ‖ur‖ ≤ C. From (2.39), we have

σ(d∗ − ur + vr) ≤ 1

r
(J(u0)− 1

2
c6‖ur‖2 + ‖f‖‖ur‖) ≤ 1

r
(J(u0) + C‖f‖). (2.40)

Hence {vr} is bounded. There exists a subsequence {(urj
, vrj

)} such that urj
⇀

u′, vrj
⇀ v′. By the weak lower semicontinuity of J(u) and (2.38), we have

J(u′) ≤ lim inf
j→∞

J(urj
) ≤ J(u0).

It follows from (2.40) that d∗−urj
+vrj

→ 0. Let ∀q ∈ H−1(Ω), 〈q, d∗−urj
+vrj

〉 →
〈q, d∗−u′+v′〉 = 0, hence d∗−u′+v′ = 0. Since E0 is a weakly closed set, {vrj

} ∈ E0

and vrj
⇀ v′, it follows that v′ ∈ E0 and u′ − d∗ ∈ E0, that is, u′ ≤ d∗, a.e.in Ω. So

u′ is the solution of the primal problem (P3) and u′ = u0.

Theorem 2.5.2 Let Assumptions 1 and 2 hold. For the primal problem (P3) and

the augmented Lagrangian problem Q1(y, r), the zero duality gap holds:

inf
u∈H1

0 (Ω)
ψ1(u) = sup

(y,r)∈H−1(Ω)×(0,+∞)

inf
(u,v)∈H1

0 (Ω)×H1
0 (Ω)

{f̄1(u, v) + rσ(v)− 〈y, v〉}.
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Proof : According to Theorem 2.5.1, there exists r0 > 0, such that for any r ≥ r0,

the augmented Lagrangian problem Q1(r) has a solution. Let (ur, vr) be the solution

of the problem Q1(r). Then

J(ur) + rσ(d∗ − ur + vr) = inf
(u,v)∈H1

0 (Ω)×E0

{J(u) + rσ(d∗ − u + v)}

= inf
u∈H1

0 (Ω)
l̄(u, θ, r).

(2.41)

Let l be the limit point of the sequence {J(ur)}. Then there exists a subsequence

{urj
}, such that

lim
j→∞

J(urj
) = l. (2.42)

Let u = u0 and v = u0 − d∗ in (2.41), where u0 is the unique solution of the primal

problem (P3). Then

J(urj
) ≤ J(u0) = inf

u∈K
J(u), (2.43)

and

σ(d∗ − urj
+ vrj

) ≤ 1

rj

(J(u0)− J(urj
)). (2.44)

Using (2.43), (2.44) and the same arguments as in the proof of Theorem 2.5.1, we

have that {urj
} and {vrj

} are bounded and urj
⇀ u′ ∈ K, vrj

⇀ v′ ∈ E0. By (2.42),

(2.43) and the weak lower semicontinuity of J(u), we get

J(u0) ≤ J(u′) ≤ lim inf
j→∞

J(urj
) = l ≤ J(u0),

that is, lim
j→∞

J(urj
) = J(u0). Thus it follows from (2.41) that

J(u0) = lim
j→∞

J(urj
) ≤ lim inf

j→∞
inf

u∈H1
0 (Ω)

l̄(u, θ, rj).

So

J(u0) ≤ sup
(y,r)∈H−1(Ω)×(0,+∞)

inf
u∈H1

0 (Ω)
l̄(u, y, r).

Since J(u0) = inf
u∈H1

0 (Ω)
ψ1(u), it follows from (2.35) that

inf
u∈H1

0 (Ω)
ψ1(u) ≤ sup

(y,r)∈H−1(Ω)×(0,+∞)

inf
(u,v)∈H1

0 (Ω)×H1
0 (Ω)

{f̄1(u, v)+rσ(v)−〈y, v〉}. (2.45)

On the other hand, for each (y, r) ∈ E× (0, +∞), we have

l̄(u, y, r) ≤ f̄1(u, 0) = ψ1(u),

thus

sup
(y,r)∈H−1(Ω)×(0,+∞)

inf
u∈H1

0 (Ω)
l̄(u, y, r) ≤ inf

u∈H1
0 (Ω)

ψ1(u).
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Therefore, this and (2.45) imply that the zero duality gap holds.

Function ψ1(u) defined by (2.33) involves a bilinear function a(u, v). Now we

consider another function ψ2(u), which involves a nonlinear bi-function.

Define

ψ2(u) =

(∫

Ω

|∇u|2 dx

)α1/2

+

∫

Ω

(
a0 − 1

2

N∑
i=1

∂bi

∂xi

)
uα2 dx (2.46)

and

f̄2(u, v) =

(∫

Ω

|∇u|2 dx

)α1/2

+

(∫

Ω

|∇v|2 dx

)β1/2

+

∫

Ω

(
a0 − 1

2

N∑
i=1

∂bi

∂xi

)
uα2 dx

+

∫

Ω

(
a0 − 1

2

N∑
i=1

∂bi

∂xi

)
vβ2 dx,

(2.47)

where a0,
∂bi

∂xi
∈ L∞(Ω) and satisfy (2.30), α1, α2, β1 and βa are some constants

satisfying

1 ≤ α2 < α1 < 2∗ :=
2N

N − 2
, 1 ≤ β2 < β1 < 2∗.

It is clear that ψ2(u) = f̄2(u, 0).

The following Sobolev imbedding theorem is useful in this part.

Theorem 2.5.3 ([44] Sobolev imbedding theorem) The spaces W 1,p
0 (Ω) are com-

pactly imbedded in the spaces Lq(Ω) (i.e., the imbedding W 1,p
0 (Ω) ↪→ Lq(Ω) is com-

pact) for any q < np/(n− p) = p∗, if p < n. That is, W 1,p
0 (Ω) ⊂ Lq(Ω), a bounded

set in W 1,p
0 (Ω) must be precompact in Lq(Ω), and there exists a constant C = c(n, p)

such that, for any u ∈ W 1,p
0 (Ω),

‖u‖q ≤ C‖Du‖p.

We have the following results.

Lemma 2.5.2 f̄2(u, v) is weakly lower semicontinuous.

Proof : Let (un, vn) ⇀ (u0, v0) ∈ H1
0 (Ω) × H1

0 (Ω) as n → ∞. By Lemma 2.4.1,

there exist subsequences of {un} and {vn} (without loss of generality, we still denote
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as {un} and {vn}), such that un ⇀ u0 and vn ⇀ v0 as n →∞. Then

lim inf
n→∞

f̄2(un, vn) ≥ lim inf
n→∞

(∫

Ω

|∇un|2 dx

)α1/2

+ lim inf
n→∞

(∫

Ω

|∇vn|2
)β1/2

+ lim inf
n→∞

∫

Ω

(
a0 − 1

2

N∑
i=1

∂bi

∂xi

)
uα2

n dx

+ lim inf
n→∞

∫

Ω

(
a0 − 1

2

N∑
i=1

∂bi

∂xi

)
vβ2

n dx.

(2.48)

Since Ω is bounded, it follows from Theorem 2.5.3 that the embedding H1
0 (Ω) ↪→

Lt(Ω) is compact for 1 < t < 2∗. Going if necessary, we may assume that un → u0 in

Lα2(Ω) and vn → v0 in Lβ2(Ω) as n →∞. (2.48) and the weak lower semicontinuity

of the norm imply that

lim inf
n→∞

f̄2(un, vn) ≥ f̄2(u0, v0),

that is, f̄2(u, v) is weakly lower semicontinuous for each (u, v) ∈ H1
0 (Ω)×H1

0 (Ω).

Lemma 2.5.3 f̄2(u, v) is level-bounded in u locally uniformly in v.

Proof : For all v̄ ∈ H1
0 (Ω), denote U(v̄) = {v ∈ H1

0 (Ω) : ‖v − v̄‖ ≤ 1}. There

exists a constant C1 > 0 such that ‖v‖ ≤ C1 for all v ∈ U(v̄). We have

f̄2(u, v) ≥
(∫

Ω

|∇u|2 dx

)α1/2

+

(∫

Ω

|∇v|2
)β1/2

+

∫

Ω

(
a0 − 1

2

N∑
i=1

∂bi

∂xi

)(
uα2 + vβ2

)
dx

≥‖u‖α1 + ‖v‖β1 − C2‖u‖α2 − C3‖v‖β2

≥‖u‖α1 − C2‖u‖α2 − C4,

for some constants C2, C3, C4 > 0.

If, for all a ∈ R, f̄2(u, v) ≤ a, then, from the preceding inequality, there exists a

constant C5 > 0 such that ‖u‖ ≤ C5. This yields that f̄2(u, v) is level-bounded in u

locally uniformly in v.

Lemma 2.5.4 For each (ȳ, r̄) ∈ H−1(Ω)× (0, +∞), we have

inf
(u,v)∈H1

0 (Ω)×H1
0 (Ω)

{f̄2(u, v) + r̄σ(v)− 〈ȳ, v〉} > −∞. (2.49)
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Proof : It follows from (2.30) that

f̄2(u, v) + r̄σ(v)− 〈ȳ, v〉 ≥ ‖u‖α1 + ‖v‖β1 − C6‖u‖α2 − C7‖v‖β2 + r̄ − ‖ȳ‖‖v‖,

for some constants C6, C7 > 0. Then, there exists M ≥ 0 large enough such that

f̄2(u, v) + r̄σ(v)− 〈ȳ, v〉} ≥ f̄2(0, 0), ∀ u, v ∈ H1
0 (Ω)\BM , (2.50)

where BM = {u ∈ H1
0 (Ω) : ‖u‖ ≤ M}. Noting that

inf
(u,v)∈BM×BM

{f̄2(u, v) + r̄σ(v)− 〈ȳ, v〉} ≤ f̄2(0, 0),

and that BM×BM is weakly compact, it follows from Lemma 2.2.1 and Lemma 2.5.2

that f̄2(u, v) + r̄σ(v) is weakly lower semicontinuous. Thus there exists (u0, v0) ∈
H1

0 (Ω)×H1
0 (Ω) such that

f̄2(u0, v0) + r̄σ(v0)− 〈ȳ, v0〉 = inf
(u,v)∈BM×BM

{f̄2(u, v) + r̄σ(v)− 〈ȳ, v〉} ≤ f̄2(0, 0).

This and (2.50) imply that

f̄2(u0, v0) + r̄σ(v0)− 〈ȳ, v0〉 = inf
(u,v)∈H1

0 (Ω)×H1
0 (Ω)

{f̄2(u, v) + r̄σ(v)− 〈ȳ, v〉}.

Therefore (2.49) holds.

Theorem 2.5.4 For the primal problem

(P4) inf
u∈H1

0 (Ω)
ψ2(u)

and the augmented Lagrangian problem

Q2(y, r) inf
(u,v)∈H1

0 (Ω)×H1
0 (Ω)

{f̄2(u, v) + rσ(v)− 〈y, v〉},

where (y, r) ∈ H−1(Ω)× (0, +∞), we have the following results:

(i) For each (ȳ, r̄) ∈ H−1(Ω)×(0, +∞), there exists r̂ > r̄, such that, for any r ≥ r̂,

the optimal solution set S(ȳ, r) of the augmented Lagrangian problem Q2(ȳ, r)

is nonempty and weakly compact.

(ii) Every weak limit point of the sequence {ur} is the solution of primal problem

(P4), where (ur, vr) with r ≥ r̂ is the solution of the augmented Lagrangian

problem Q2(ȳ, r).
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(iii)

inf
u∈H1

0 (Ω)
ψ2(u) = sup

(y,r)∈H−1(Ω)×(0,+∞)

inf
(u,v)∈H1

0 (Ω)×H1
0 (Ω)

{f̄2(u, v) + rσ(v)− 〈y, v〉}.

Proof : (i) According to Lemma 2.2.1, Lemmas 2.5.2-2.5.4 and Theorem 2.4.1,

there exists r0 > r̄, such that for any r ≥ r0, the optimal solution set S(ȳ, r) is

nonempty.

Let

t̄ = inf
(u,v)∈H1

0 (Ω)×H1
0 (Ω)

{f̄2(u, v) + r̄σ(v)− 〈ȳ, v〉}.

Then t̄ > −∞. Fixing a u0 ∈ H1
0 (Ω), let r̂ > ψ2(u0)− t̄ + r̄. For any r ≥ r̂, we will

verify that S(ȳ, r) is weakly compact.

Let r ≥ r̂, (urj
, vrj

) ∈ S(ȳ, r). Then

f̄2(urj
, vrj

) + rσ(vrj
)− 〈ȳ, vrj

〉 ≤ ψ2(u0). (2.51)

Thus

σ(vrj
) ≤ ψ2(u0)− t̄

r − r̄
< 1.

By the definition of σ(v), we obtain ‖vrj
‖ < 1. Hence it follows from (2.51) that

f̄2(urj
, vrj

) ≤ ψ2(u0) + ‖ȳ‖.

Using Lemma 2.5.3, we get that {urj
} is bounded. Therefore S(ȳ, r) is bounded.

Let (uj, vj) ∈ S(ȳ, r), (uj, vj) ⇀ (u0, v0) as j →∞. Then

f̄2(uj, vj)− 〈y, vj〉+ rσ(vj) ≤ inf
(u,v)∈H1

0 (Ω)×H1
0 (Ω)

{f̄2(u, v) + rσ(v)− 〈ȳ, v〉}.

The weak lower semicontinuities of f̄2(u, v) and σ(v) imply

f̄2(u0, v0) + rσ(v0)− 〈ȳ, v0〉 ≤ lim inf
j→+∞

{f̄2(uj, vj)− 〈y, vj〉+ rσ(vj)}.

So

f̄2(u0, v0) + rσ(v0)− 〈ȳ, v0〉 = inf
(u,v)∈H1

0 (Ω)×H1
0 (Ω)

{f̄2(u, v) + rσ(v)− 〈ȳ, v〉}.

That is, (u0, v0) ∈ S(ȳ, r). Therefore, S(ȳ, r) is a bounded and weakly closed set,

and, so is weakly compact.

(ii) and (iii) follow from Theorems 2.4.1-2.4.2.
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Chapter 3

Penalization via an Augmented

Lagrangian Function

3.1 Introduction

It is possible to construct an exact penalty representation for a prime problem or a

constrained optimization problem, that is, the solution of an augmented Lagrangian

function yields an exact solution to the original problem for a finite value of the

penalty parameter. With these functions it is not necessary to solve an infinite

sequence of augmented Lagrangian problems to obtain the correct solution of the

original problem.

This chapter is organized as follows:

In Section 3.2, suppose that the perturbation function satisfies a growth con-

dition and the augmenting function satisfies the level-coercivity condition or has a

valley at zero, we establish exact penalization results for a minimization problem

of an extended real valued function, which includes Theorem 3.2 in [56] as a spe-

cial case. We also obtain necessary and sufficient conditions for an exact penalty

representation in the framework of augmented Lagrangians with a valley at zero

augmenting function. In Section 3.3, we discuss the relationship between the solu-

tions of a constrained optimization problem and that of its augmented Lagrangian

problem and get some convergence and exact penalty results for a constrained op-

timization problem in infinite dimensional Banach spaces. We get the existence

of an asymptotically minimizing sequence for a constrained optimization problem,
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which generalizes Theorem 3 in [95] to the non-quadratic case. In Section 3.4, the

augmented penalty function method is applied to a reformulated constrained opti-

mization problem. Exact penalty results without any coercive assumption on the

objective function and constraint functions are obtained.

3.2 The exact penalty representation in Banach

spaces

Let us consider the primal problem (2.5) again. Recall that

(P ) inf
u∈U

ϕ(u),

where ϕ : U → R. Let argminuϕ(u) = {u′ : ϕ(u′) = min
u∈U

ϕ(u)}. Suppose that

the perturbation function p : V → R is given by (2.8) again. In this section, we

obtain necessary and sufficient conditions for an exact penalty representation in the

framework of augmented Lagrangians under different conditions.

Definition 3.2.1 (exact penalty representation) Consider the problem (P ). Let the

augmented Lagrangian l̄ be defined as in Definition 2.2.10. A vector ȳ ∈ E is said

to support an exact penalty representation for the problem (P ) if there exists r̄ > 0

such that

p(0) = inf
u∈U

l̄(u, ȳ, r), ∀r ≥ r̄ (3.1)

and

argminuϕ(u) = argminul̄(u, ȳ, r), ∀r ≥ r̄. (3.2)

Lemma 3.2.1 Let U and E be two Banach spaces, V be a reflexive Banach space

and ȳ ∈ E. Assume that the function p : V → R satisfies the growth condition (2.9),

the function σ : V → R satisfies the level-coercive condition and g : E × V → R

satisfies |g(y, v)| ≤ d(y)‖v‖µ,∀(y, v) ∈ E × V, where d(y) ≥ 0, d(0) = 0 and 0 <

µ ≤ 1. Functions p, g(ȳ, ·) and σ are proper and weakly lower semicontinuous in V.

Then, there exists a r0 > 0 such that, for each r ≥ r0, there exists a vr ∈ V, such

that

p(vr)− g(ȳ, vr) + rσ(vr) = inf
v∈V

(
p(v)− g(ȳ, v) + rσ(v)

)
= ψ̄(ȳ, r). (3.3)

38



Proof : Since σ satisfies the level-coercive condition, there exist ε > 0 and τ > 0,

such that

σ(v) ≥ ε‖v‖, ∀v ∈ V\τBV , (3.4)

where τBV = {v : v ∈ V, ‖v‖ ≤ τ}. Since p : V → R satisfies the growth condition

(2.9), there exist a, b ∈ R such that

p(v) ≥ b− aσ(v), ∀v ∈ V \ τBV . (3.5)

Let r0 > d(ȳ)
ετ1−µ + a and r > r0. (3.4) and (3.5) imply that,

p(v)− g(ȳ, v) + rσ(v) ≥ b− aσ(v)− d(ȳ)‖v‖µ + rσ(v)

≥ b− d(ȳ)‖v‖µ + (r − a)ε‖v‖
≥ b + ((r0 − a)ε− d(ȳ)/τ 1−µ)‖v‖, ∀v ∈ V \ τBV .

(3.6)

Let r > r0 and

Cr = inf
v∈V

(
p(v)− g(ȳ, v) + rσ(v)

)
.

Then, there exists a minimizing sequence {vj} ⊂ V, satisfying

p(vj) + rσ(vj)− g(ȳ, vj) ≤ Cr +
1

j
. (3.7)

Hence, from (3.6) and (3.7), {vj} is bounded. Because V is a reflexive Banach space,

there exists a weakly convergent subsequence of {vj}. Without loss of generality, we

may assume that vj ⇀ vr. Therefore,

Cr ≤ p(vr)− g(ȳ, vr) + rσ(vr) ≤ lim inf
j→∞

(p(vj) + rσ(vj)− g(ȳ, vj)) ≤ Cr.

Thus, (3.3) holds.

Lemma 3.2.2 Let U and E be two Banach spaces, V be a reflexive Banach space

and ȳ ∈ E. Suppose that the functions p, g and σ satisfy the conditions given in

Lemma 3.2.1. Moreover, argminyσ(y) = {0}, σ(0) = 0, vr ∈ V(r ≥ r0) satisfy

(3.3). Then, there exists a weakly convergent subsequence {vrj
} such that vrj

⇀ 0,

as rj →∞.

Proof : Denote

C0 = inf
v∈V

(
p(v)− g(ȳ, v) + r0σ(v)

)
.
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By Lemma 3.2.1, C0 > −∞. Since, for each r > r0, vr(r ≥ r0) satisfies (3.3), and

ψ̄(ȳ, r) = p(vr)− g(ȳ, vr) + rσ(vr) ≥ C0 + (r − r0)σ(vr). (3.8)

It is clear that

ψ̄(ȳ, r) = inf{l̄(u, ȳ, r) : u ∈ U} ≤ inf{f̄(u, 0) : u ∈ U} = p(0). (3.9)

(3.8) and (3.9) imply

σ(vr) ≤ p(0)− C0

r − r0

.

Thus, σ(vr) → 0 as r →∞. By using (3.4) given in the proof of Lemma 3.2.1, {vr}
is bounded. Thus there exists a weakly convergent subsequence {vrj

} such that

vrj
⇀ v0, as rj →∞. The weak lower semicontinuity of σ implies σ(v0) = 0. Hence,

v0 = 0.

Theorem 3.2.1 Let U and E be two Banach spaces, V be a reflexive Banach space.

Assume that the function p : V → R satisfies the growth condition (2.9), σ : V → R

satisfies the level-coercive condition, argminyσ(y) = {0}, σ(0) = 0, g : E×V → R

satisfies |g(y, v)| ≤ d(y)‖v‖µ,∀(y, v) ∈ E×V, where d(y) ≥ 0, d(0) = 0 and 0 < µ ≤
1. Functions p, g(ȳ, ·) and σ are proper, weakly lower semicontinuous in V. Then a

vector ȳ supports an exact penalty representation for the primal problem (P ) if and

only if there exist r′ > 0 and a neighborhood U of 0 ∈ V such that

p(0) ≤ p(v)− g(ȳ, v) + r′σ(v), ∀v ∈ U. (3.10)

Proof : The necessity is clear. We only need to prove the sufficiency.

It follows from Lemma 3.2.1 that there exists a r0 > 0 and, for each r ≥ r0,

there exists a vr ∈ V, such that (3.3) holds. By Lemma 3.2.2, there exists a weakly

convergent subsequence {vrj
} such that vrj

⇀ 0, as rj →∞. Since p(v) and g(ȳ, ·)
are weakly lower semicontinuous, we have

lim inf
j→+∞

p(vrj
) ≥ p(0),

and

lim inf
j→+∞

g(ȳ, vrj
) ≥ g(ȳ, 0) = 0.

Hence

lim inf
j→+∞

ψ̄(ȳ, rj) ≥ lim inf
j→+∞

{p(vrj
)− g(ȳ, vrj

) + rjσ(vrj
)} ≥ p(0). (3.11)
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By Definition 2.2.10, we have l̄(u, ȳ, rj) ≤ ϕ(u), and

ψ̄(y, r) = inf{l̄(u, y, r) : u ∈ U} ≤ inf
u∈U

ϕ(u) = p(0).

Thus,

lim
j→+∞

ψ̄(ȳ, rj) = p(0).

Therefore, for ∀ε > 0, there exists j∗ > 0, such that

|ψ̄(ȳ, rj∗)− p(0)| < ε.

Thus

p(0)− ε < p(v)− g(ȳ, v) + rj∗σ(v), ∀v ∈ V. (3.12)

In assuming (3.10), there is no loss of generality in taking U to be a ball τBV =

{u ∈ V, ‖u‖ ≤ τ}, τ > 0.

Since σ has a valley at 0, there exists δ0 > 0, such that

σ(v) ≥ δ0, ∀v ∈ V\τBV . (3.13)

Letting r∗ > max{r̄, ε
δ0

+ rj∗}, we have

(r∗ − rj∗)σ(v) ≥ (r∗ − rj∗)δ0 > ε, ∀v ∈ V\τBV .

This and (3.12) imply

p(0) ≤ p(v)− g(ȳ, v) + r∗σ(v), ∀v ∈ V\τBV .

Thus the above inequality combined with (3.10), yields that

p(0) ≤ p(v)− g(ȳ, v) + r∗σ(v), ∀v ∈ V. (3.14)

By Definition 2.2.10, we have

l̄(u, ȳ, r) = inf{f̄(u, v)− g(ȳ, v) + rσ(v) : v ∈ V}

and

inf{l̄(u, ȳ, r) : u ∈ U} = inf{p(v) + rσ(v)− g(ȳ, v) : v ∈ V}. (3.15)

Hence, by (3.14), we get

p(0) = inf
u∈U

l̄(u, ȳ, r), ∀r > r∗. (3.16)
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Let r > r∗ and ū ∈ argminuϕ(u). ϕ(ū) = inf
u∈U

ϕ(u) = p(0). Hence,

ū ∈ argminu∈U{f(u, 0) + rσ(0)− g(ȳ, 0)}. (3.17)

Since σ(0) = 0, σ(u) > 0,∀u 6= 0, by using (3.14), we have

argminv∈V{p(v) + rσ(v)− g(ȳ, v)} = {0} ∀r > r∗. (3.18)

(3.17) and (3.18) imply

(ū, 0) ∈ argmin(u,v)∈U×V{f(u, v) + rσ(v)− g(ȳ, v)}. (3.19)

Thus, from (3.15) and (3.19), we get

ū ∈ argminul̄(u, ȳ, r), ∀r > r∗,

i.e.

argminuϕ(u) ⊂ argminul̄(u, ȳ, r), ∀r > r∗. (3.20)

Similarly, we have

argminul̄(u, ȳ, r) ⊂ argminuϕ(u), ∀r > r∗. (3.21)

Therefore, from (3.20) and (3.21), we have proved that

argminuϕ(u) = argminul̄(u, ȳ, r), ∀r > r∗. (3.22)

(3.16) and (3.22) imply that ȳ supports an exact penalty representation for the

problem (P ).

Let ȳ = θ (the zero element of E). Similar to Lemmas 3.2.1 and 3.2.2, we have

Lemma 3.2.3 Let U and E be two Banach spaces, V be a reflexive Banach space.

Assume that the function p : V → R satisfies the growth condition (2.9), the func-

tion σ : V → R is a valley at 0 augmenting function. p is proper, weakly lower

semicontinuous in V. Then,

(i) There exists a r0 > 0 and, for each r ≥ r0, there exists a vr ∈ V, such that

p(vr) + rσ(vr) = inf
v∈V

(
p(v) + rσ(v)

)
= ψ̄(θ, r). (3.23)

(ii) There exists a weakly convergent subsequence {vrj
} of the sequence {vr} ob-

tained in (3.23), such that vrj
⇀ 0, as rj →∞.
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Proof : Let τ > 0. Since σ has a valley at 0, there exists ε > 0, such that

σ(v) ≥ ε, ∀v ∈ V\τBV , (3.24)

where τBV = {v : v ∈ V, ‖v‖ ≤ τ}. Since p : V → R satisfies the growth condition,

there exist a, b ∈ R such that

p(v) ≥ b− aσ(v), ∀v ∈ V \ τBV . (3.25)

Let r0 > a and r > r0. (3.24) and (3.25) imply,

p(v) + rσ(v) ≥ b− aσ(v) + rσ(v)

≥ b + (r − a)ε, ∀v ∈ V \ τBV .
(3.26)

It follows from the proof of Lemmas 3.2.1 and 3.2.2 that the conclusions (i) and (ii)

hold.

By using Lemma 3.2.3, similar to the proof of Theorem 3.2.1, we have

Theorem 3.2.2 Let U and E be two Banach spaces, V be a reflexive Banach space.

If the function p : V → R satisfies the growth condition (2.9), the function σ : V →
R is a valley at 0 augmenting function and p is proper, weakly lower semicontinuous

in V, then a vector ȳ = θ supports an exact penalty representation for the primal

problem (P ) if and only if there exist r′ > 0 and a neighborhood U of 0 ∈ V such

that

p(0) ≤ p(v) + r′σ(v), ∀v ∈ U. (3.27)

Remark 3.2.1 In the case where ȳ 6= θ supports an exact penalty representation, it

is need that σ satisfies the level-coercive condition, argminyσ(y) = {0} and σ(0) = 0.

In the case where ȳ = θ supports an exact penalty representation, it is only need

that σ is a valley at 0 augmenting function.

Let U = Rn,V = Rm, ȳ = 0 ∈ Rm. From Theorem 3.2.2, we have

Corollary 3.2.1 (Theorem 3.2 in [56]) Let σ : X → R be a level-bounded augment-

ing function, where X ⊂ Rm be a closed subset. In the framework of the augmented

Lagrangian l̄ defined in Definition 2.2.10. The following statements are true:

(i) If ȳ = 0 supports an exact penalty representation, then there exist r̄ > 0 and

a neighborhood W of 0 ∈ Rm such that

p(v) ≥ p(0)− r̄σ(v), ∀v ∈ W.
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(ii) The converse of (i) is true if p(0) is finite, there exist r̄′ > 0 and m∗ ∈ R such

that f̄(u, v) + r̄′σ(v) ≥ m∗,∀u ∈ Rn, v ∈ Rm.

Proof : Because σ is a level-bounded augmenting function, that is, σ is proper,

lower semicontinuous, level-bounded on Rm, argminyσ(y) = {0}, σ(0) = 0, it is a

valley at 0 augmenting function. From condition (ii), we have

p(v) ≥ m∗ − r̄′σ(u), ∀v ∈ Rm.

That is, p satisfies the growth condition. Hence, by Theorem 3.2.2, the conclusions

of this corollary hold.

Theorem 3.2.3 Let U and V be reflexive Banach spaces, E be a Banach space, f̄ :

U×V → R be a dualizing parameterization function for ϕ, σ : V → R+

⋃{+∞} be

a valley at 0 augmenting function and g : E×V → R be a weakly continuous function

with g(0, 0) = 0. Assume that f̄(u, v) is proper, weakly lower semicontinuous, and

level-bounded in u locally uniformly in v. Furthermore suppose that there exists

(ȳ, r̄) ∈ E× (0, +∞) such that

inf{l̄(u, ȳ, r̄) : u ∈ U} > −∞. (3.28)

Then a vector ȳ supports an exact penalty representation for the primal problem (P )

if and only if there exist r′ > 0 and a neighborhood U of 0 ∈ V such that

p(0) ≤ p(v)− g(ȳ, v) + r′σ(v), ∀v ∈ U. (3.29)

Proof : Necessity. It follows from Theorem 2.4.1 that there exists u0 ∈ U, such

that ϕ(u0) = inf
u∈U

ϕ(u). Thus, p(0) is finite. Since ȳ supports an exact penalty

representation, there exists r̄ > 0 such that (3.1) holds with r = r̄, i.e.,

p(0) = inf{l̄(u, ȳ, r̄) : u ∈ U}.

Hence

p(0) = inf{f̄(u, v)− g(ȳ, v) + r̄σ(v) : (u, v) ∈ U×V}.
Consequently,

p(0) ≤ p(v)− g(ȳ, v) + r̄σ(v), ∀v ∈ V.

This proves the necessity.
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Now we prove the sufficiency. We notice that, if there exists r∗ > r′ > 0, such

that

p(0) ≤ p(v)− g(ȳ, v) + r∗σ(v), ∀v ∈ V. (3.30)

Then

p(0) ≤ f̄(u, v)− g(ȳ, v) + r∗σ(v), ∀u ∈ U, v ∈ V.

Hence p(0) ≤ ψ̄(ȳ, r∗). Since ψ̄(y, r) is increasing in r, p(0) ≤ ψ̄(ȳ, r),∀r ≥ r∗.

Therefore, from (2.11), we have

p(0) = ψ̄(ȳ, r),∀r ≥ r∗.

Thus

p(0) = inf
u∈U

l̄(u, ȳ, r), ∀r ≥ r∗. (3.31)

That is, (3.1) in Definition 3.2.1 holds if (3.30) holds. In assuming (3.29), there is

no loss of generality in taking U to be a ball Bδ0 = {u ∈ V, ‖u‖ ≤ δ0}, δ0 > 0. So

in order to prove (3.1) in Definition 3.2.1 holds, we only need to prove that (3.30)

holds for all v ∈ V\Bδ0 .

It follows from (i) of Theorem 2.4.1 that there exists r0 > r̄, such that for any

r ≥ r0, the augmented Lagrangian problem P (ȳ, r) has at least one solution. Let

(ur, vr) with r ≥ r0 be the solution of the problem P (ȳ, r). It follows from the

proof of (ii) in Theorem 2.4.1 that there exist r0 < rj → +∞ and (u∗, 0) ∈ U×V

such that (urj
, vrj

) ⇀ (u∗, 0), where ϕ(u∗) = p(0). Since f̄(u, v) is weakly lower

semicontinuous,

p(0) = f̄(u∗, 0) ≤ lim inf
j→+∞

f̄(urj
, vrj

).

Hence

lim inf
j→+∞

ψ̄(ȳ, rj) ≥ lim inf
j→+∞

{f̄(urj
, vrj

)− g(y, vrj
) + rσ(vrj

)} ≥ p(0).

By (2.11), we have lim supj→+∞ ψ̄(ȳ, rj) ≤ p(0). So

lim
j→+∞

ψ̄(ȳ, rj) = p(0).

Therefore, for ∀ε > 0, there exists j0 > 0, such that

|ψ̄(ȳ, rj0)− p(0)| < ε.

Thus

p(0)− ε < l̄(u, ȳ, rj0), ∀u ∈ U,
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i.e.,

p(0)− ε < p(v)− g(ȳ, v) + rj0σ(v), ∀v ∈ V. (3.32)

Since σ has a valley at 0 in V, cδ0 = infv∈V\Bδ0
σ(v) > 0. Letting r∗ >

max{r̄, ε
cδ0

+ rj0}, we have

(r∗ − rj0)σ(u) ≥ (r∗ − rj0)cδ0 > ε, ∀v ∈ V\Bδ0 .

This and (3.32) imply

p(0) ≤ p(v)− g(ȳ, v) + r∗σ(v), ∀v ∈ V\Bδ0 .

Thus this, combined with (3.29), yields that (3.30) holds. So we get (3.31).

Fix r > r∗, and define

h(u, v) := f̄(u, v) + rσ(v)− g(ȳ, v).

It is obvious that

inf
u∈U

h(u, v) = p(v) + rσ(v)− g(ȳ, v),

inf
v∈V

h(u, v) = l̄(u, ȳ, r),

and

argminu,vh(u, v) = {(u′, v′)|u′ ∈ argminuh(u, v′),

v′ ∈ argminvp(v) + rσ(v)− g(ȳ, v)}
= {(u′, v′)|u′ ∈ argminul̄(u, ȳ, r), v′ ∈ argminvh(u′, v)}.

(3.33)

For any ū ∈ argminuϕ(u), we have

ū ∈ argminuh(u, 0).

Since σ(0) = 0, using (3.30), we have

argminv∈V{p(v) + rσ(v)− g(ȳ, v)} = {0}. (3.34)

It follow from (3.33) and (3.34) that

(u′, 0) ∈ argminu,vh(u, v).

So

u′ ∈ argminul̄(u, ȳ, r), ∀r ≥ r∗,
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i.e.

argminuϕ(u) ⊂ argminul̄(u, ȳ, r), ∀r ≥ r∗. (3.35)

For any u′ ∈ argminul̄(u, ȳ, r),∀r ≥ r∗, we have

inf
v∈V

h(u′, v) = l̄(u′, ȳ, r) = inf
u∈U

l̄(u, ȳ, r) = inf
u∈U

inf
v∈V

h(u, v) = inf
v∈V

(p(v)+rσ(v)−g(ȳ, v)).

This and (3.34) imply

inf
v∈V

h(u′, v) = p(0) = h(u′, 0).

Thus, 0 ∈ argminvh(u′, v). Again from (3.33) that u′ ∈ argminuh(u, 0), i.e.

u′ ∈ argminuϕ(u).

So

argminul̄(u, ȳ, r) ⊂ argminuϕ(u), ∀r ≥ r∗. (3.36)

Therefore, from (3.35) and (3.36), we have proved that

argminuϕ(u) = argminul̄(u, ȳ, r), ∀r ≥ r∗. (3.37)

(3.31) and (3.37) imply that ȳ supports an exact penalty representation for the

problem (P ).

In the following, we apply the exact penalization representation results of the

augmented Lagrangian scheme in Theorem 3.2.3 to the case of finite dimensional

spaces and show that conditions required are weaker than the ones in [56] and [97].

In Definition 2.2.10, let U = Rn, V = Rm, g(y, v) = 〈y, v〉, where 〈y, v〉 denotes

the inner product in Rm. The primal problem (2.5) turns out to be:

inf
u∈Rn

ϕ(u), (3.38)

where ϕ : Rn → R is an extended real-valued function. Let f̄ be any dualizing

parameterization function for ϕ, and σ be a valley at 0 augmenting function. The

augmented Lagrangian (with parameter r > 0) l̄ : Rn × Rm × (0, +∞) → R is

defined by

l̄(u, y, r) = inf{f̄(u, v)− 〈y, v〉+ rσ(v) : v ∈ Rm}, u ∈ Rn, y ∈ Rm, r > 0.

We have the following result.
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Lemma 3.2.4 Assume that f̄(u, v) is proper, lower semicontinuous, and level-bounded

in u locally uniformly in v. Suppose that one of following conditions is satisfied:

(i) ȳ supports an exact penalty representation for the problem (3.38). That is, there

exists r̄ > 0 such that

p(0) = inf
x∈Rn

l̄(x, ȳ, r), ∀r ≥ r̄ (3.39)

and

argminxϕ(x) = argminxl̄(x, ȳ, r), ∀r ≥ r̄. (3.40)

(ii) p(0) is finite and there exists r̄′ > 0 such that

m̄′ = inf{f̄(u, v)− 〈ȳ, v〉+ r̄′σ(v) : (u, v) ∈ Rn ×Rm} > −∞. (3.41)

Then, we have

p(0) = supr≥r∗infu∈Rn l̄(u, ȳ, r) (3.42)

where r∗ = max{r̄, r̄′}.

Proof : If the condition (i) is satisfied, it is easy to see (3.42) holds.

If the condition (ii) is satisfied, we prove (3.42) by contradiction. It is clearly that

the weak duality holds:

ψ̄(y, r) ≤ p(0), ∀(y, r) ∈ Rm × (0, +∞).

If (3.42) doesn’t hold, then there exists ε0 > 0, such that

p(0) > supr≥r∗ infu∈Rn l̄(u, ȳ, r) + ε0.

Then there exist uk ∈ Rn and vk ∈ Rm such that

p(0) ≥ f̄(uk, vk)− 〈ȳ, vk〉+ rσ(vk) + ε0, ∀r ≥ r∗. (3.43)

Since σ has a valley at 0, cδ = inf‖v‖≥δσ(v) > 0, for each δ > 0. Denote r0 =
p(0)−ε0−m̄′

cδ
+ r∗. From (3.41) and (3.43), we have

σ(vk) ≤ p(0)− ε0 − m̄′

r − r̄′
< cδ, ∀r > r0. (3.44)

This implies vk ∈ {v ∈ Rm : ‖v‖ ≤ δ}. Because f̄(u, v) is level-bounded in u locally

uniform in v, it follows from (3.43) that {uk} is bounded. So {(uk, vk)} is bounded.

Assume, without loss of generality, that (uk, vk) → (ū, v̄). Let r0 < rk → +∞, (3.44)

implies v̄ = 0. The lsc of f and σ combined with (3.43) yields p(0) ≥ p(0)+ ε0. This

is a contradiction. So, (3.42) holds.

By using Lemma 3.2.4, we have
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Theorem 3.2.4 Assume that f̄(u, v) is proper, lower semicontinuous, and level-

bounded in u locally uniformly in v. The following statements are true:

(i) If ȳ supports an exact penalty representation for the problem (3.38), then there

exist r̄ > 0 and a neighborhood W of 0 ∈ Rm such that

p(v) ≥ p(0) + 〈ȳ, v〉 − r̄σ(v), ∀v ∈ W. (3.45)

(ii) The converse of (i) is true if the condition (ii) of Lemma 3.2.4 is satisfied.

Remark 3.2.2 In Theorem 3.2.4, we don’t need to assume either that σ is a convex

augmenting function ([97]) or there exist τ > 0 and N > 0 such that σ(v) ≥ τ‖v‖
when ‖v‖ ≥ N ([56]). Thus Theorem 3.2.4 improves the corresponding results in

[56] and [97].

Example 3.2.1 Consider the following simple problem:

inf u2

s.t. u ∈ R, u ≤ 0.
(3.46)

It is easy to see that u = 0 is the minimum point of (3.46). Define

f̄(u, v) =

{
u2, if u ≤ v ;

+∞, otherwise.

Then,

p(v) =

{
v2, if v ≤ 0 ;

0, if v > 0.

Let ϕ(u) = f̄(u, 0). Then infu≤0 ϕ(u) = infu≤0 u2 = p(0) = 0. Let g(y, v) = yvγ,

σ(v) = |v|γ, γ > 0.

l̄(u, y, r) = inf{f̄(u, v)− g(y, v) + rσ(v) : v ∈ R}
≥ inf{u2 − y|v|γ + r|v|γ : u ≤ v, v ∈ R}.

Thus, there exist ȳ ∈ R and r̄ > 0, such that u2 − y|v|γ + r|v|γ > −∞, i.e.,

l̄(u, ȳ, r̄) > −∞. For ȳ ∈ R, there exists a r′ > 0, such that

p(0) ≤ p(v)− g(ȳ, v) + r′σ(v), ∀v ∈ R.

That is, the conditions (3.28) and (3.29) in Theorem 3.2.3 are satisfied. It is clear

that there exists a r̄ > r′, such that

p(0) = inf
u∈U

l̄(u, ȳ, r) = 0, ∀r ≥ r̄,

and

argminuϕ(u) = argminul̄(u, ȳ, r) = {0}, ∀r ≥ r̄.
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3.3 Inequality and equality constrained optimiza-

tion problem

In this section, we will consider the following constrained optimization problem in

infinite dimensional spaces:

(P1)

inf f(u)

s.t. u ∈ X,

gj(u) ≤ 0, j = 1, · · ·,m1

gj(u) = 0, j = m1 + 1, · · ·,m,

where U and W are two Banach spaces, X ⊂ U is a nonempty and closed set,

f, gj(j = 1, · · ·,m1) : X → R, gj(j = m1 + 1, · · ·,m) : X → W. The optimal value

of (P1) is denoted by MP1 . Denote by X0 the set of feasible solutions of (P1), i.e.,

X0 = {u ∈ X : gj(u) ≤ 0, j = 1, · · ·,m1; gj(u) = 0, j = m1 + 1, · · ·,m}.

For the constrained problem (P1), let

ϕ(u) =





f(u), if u ∈ X0,

+∞, if u ∈ U\X0.

Then (P1) is actually equivalent to the primal problem (P ) in the sense that the

two problems have the same set of (locally) optimal solutions and the same optimal

value.

Define the dualizing parameterization function:

f̄(u, v) = f(u) + δR
m1
− ×{0m−m1}(G(u) + v) + δX(u), u ∈ U, v ∈ Rm, (3.47)

where 0m−m1 is the origin of Rm−m1 , G(u) = (g1(u), · · ·, gm1(u), ‖gm1+1(u)‖, · ·
·, ‖gm(u)‖) and δD is the indicator function of the set D, i.e.,

δD(u) =





0, if u ∈ D,

+∞, otherwise.

Let V = Rm, y = (y1, y2, · · ·, ym) ∈ Rm, r > 0, the augmented Lagrangian for

(P ) be

l̄(u, y, r) = inf{f̄(u, v)− 〈y, v〉+ rσ(v) : v ∈ Rm}, u ∈ U,
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where v = (v1, v2, · · ·, vm). Let gj(u)+ vj = −wj ∈ R−, j = 1, · · ·,m1, and ‖gj(u)‖+

vj = 0, j = m1 + 1, · · ·,m. By some calculations, the above Lagrangian can be

expressed as

l̄(u, y, r) =





f(u) +

m1∑
j=1

yjgj(u) +
m∑

j=m1+1

yj‖gj(u)‖+ inf
w≥0m1

{
m1∑
j=1

yjwj + rσ(−g1(u)

− w1, · · ·,−gm1(u)− wm1 ,−‖gm1+1(u)‖, · · · ,−‖gm(u)‖)}, if u ∈ X,

+∞, otherwise

(3.48)

where w = (w1, · · · , wm1), 0m1 is the origin of Rm1 .

Consider the augmented Lagrangian problem of the primal problem (P ):

(Qy,r) inf
(u,w)∈X×R

m1
+

{f(u) +
∑m1

j=1 yj(gj(u) + wj) +
∑m

j=m1+1 yj‖gj(u)‖

+rσ(−g1(u)− w1, · · ·,−gm1(u)− wm1 ,

−‖gm1+1(u)‖, · · · ,−‖gm(u)‖)}.

Actually, (Qy,r) is the same as the problem of evaluating the augmented La-

grangian dual function ψ̄(y, r). If u ∈ X0, and wj = −gj(u) ≥ 0(j = 1, · · ·,m1),

then

σ(−g1(u)− w1, · · ·,−gm1(u)− wm1 ,−‖gm1+1(u)‖, · · · ,−‖gm(u)‖) = 0.

Thus, we have

ψ̄(y, r) ≤ MP1 . (3.49)

Theorem 3.3.1 Let U and W be two reflexive Banach spaces, X ⊂ U be a nonempty

and closed set, σ : X → Rm be a valley at 0 augmenting function, and let f : X → R

be a weakly lower semi-continuous function, gj(j = 1, · · ·,m1) : X → R be bounded

below and weakly continuous functions, gj(j = m1 + 1, · · ·,m) : X → W be con-

tinuous operators from the weak topology of U to the topology of W. Suppose f is

level-bounded on X, y ∈ Rm. Then

(i) the problem (P1) has at least one solution u0.

(ii) there exists r0 > 0, such that for any r ≥ r0, the problem (Qy,r) has at least

one solution (ur, wr) ∈ X ×Rm1
+ .

(iii) every weak limit point of the sequence {ur} is a solution of problem (P1).
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(iv)

lim
r→∞

f(ur) = f(u0) = MP1 .

Proof : (i) There exists a minimizing sequence uk ∈ X0, satisfying

lim
k→∞

f(uk) = inf
u∈X0

f(u) = MP1 .

Since f is level-bounded on X, {uk} is bounded. Note that U is a reflexive Ba-

nach space, there exists a weakly convergent subsequence of {uk}. Without loss of

generality, we may assume that uk ⇀ u0. Thus,

f(u0) ≤ lim inf
k→∞

f(uk) = inf
u∈X0

f(u),

gj(u0) = lim
k→∞

gj(uk) ≤ 0 (j = 1, · · ·,m1),

and

gj(u0) = lim
k→∞

gj(uk) = 0 (j = m1 + 1, · · ·,m).

We conclude that u0 is a solution of the problem (P1).

(ii) We claim that f is bounded below on X. If not, there exist uk ∈ X, such

that f(uk) → −∞. Since f is level-bounded on X, for any α ∈ R, the set {u ∈ X :

f(u) ≤ α} is bounded. When k is large enough, uk ∈ {u ∈ X : f(u) ≤ α}, thus {uk}
is bounded. Because U is a reflexive Banach space and f is a weakly lower semi-

continuous function, without loss of generality, we may assume that uk ⇀ u∗ ∈ X

and

lim inf
k→∞

f(uk) ≥ f(u∗).

This is impossible since f(uk) → −∞. Hence f is bounded below on X, that is,

there exists d0 ∈ R, such that

f(u) ≥ d0, ∀u ∈ X. (3.50)

Since σ has a valley at 0, c1 = inf‖v‖≥1 σ(v) > 0. Define r0 =
MP1

−d0

c1
, and let

r > r0. Suppose that (uk, wk) ∈ X ×Rm1
+ is a minimizing sequence such that

limk→∞ (f(uk) +
∑m1

j=1 yj(gj(uk) + wk
j ) +

∑m
j=m1+1 yj‖gj(uk)‖

+rσ(−g1(uk)− wk
1 , · · ·,−gm1(uk)− wk

m1
,

−‖gm1+1(uk)‖, · · · ,−‖gm(uk)‖)) = ψ̄(y, r),

(3.51)
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where wk = (wk
1 , w

k
2 , · · ·, wk

m1
). Since gj(j = 1, · · ·,m1) : X → R is bounded below

and f is level-bounded on X, by (3.49) and (3.51), {uk} is bounded. We may assume

that uk ⇀ ur as k →∞ and

lim inf
k→∞

f(uk) ≥ f(ur) ≥ d0. (3.52)

We will prove that {wk} ⊂ Rm1
+ is bounded. If {wk} is unbounded, by the weak

continuity of gj(j = 1, · · ·,m1), we have

lim
k→∞

(gj(uk) + wk
j ) = +∞, as k →∞.

Let k be large enough such that gj(uk) + wk
j ≥ 1. It follows from (3.49) and

(3.51) that

MP1 + 1
k
≥ ψ̄(y, r) + 1

k

≥ f(uk) + rσ(−g1(uk)− wk
1 , · · ·,−gm1(uk)− wk

m1
,

−‖gm1+1(uk)‖, · · · ,−‖gm(uk)‖)
≥ f(uk) + rc1,

(3.53)

where c1 = inf‖v‖≥1 σ(v) > 0. Thus, by (3.52) and (3.53), we get

MP1 ≥ d0 + rc1,

which is impossible since r > r0 =
MP1

−d0

c1
. Hence, {wk} is bounded. We may

assume that wk → wr as k →∞. Therefore,

ψ̄(y, r) ≤ f(ur) +
∑m1

j=1 yj(gj(ur) + wr
j ) +

∑m
j=m1+1 yj‖gj(ur)‖

+rσ(−g1(ur)− wr
1, · · ·,−gm1(ur)− wr

m1
,−‖gm1+1(ur)‖, · · · ,−‖gm(ur)‖)

≤ lim infk→∞(f(uk) +
∑m1

j=1 yj(gj(uk) + wk
j ) +

∑m
j=m1+1 yj‖gj(uk)‖

+rσ(−g1(uk)− wk
1 , · · ·,−gm1(uk)− wk

m1
,−‖gm1+1(uk)‖, · · · ,−‖gm(uk)‖))

= ψ̄(y, r).

Thus, the problem (Qy,r) has at least one solution (ur, wr) as r > r0.

(iii) Noting that u0 is the solution of the problem (P1) and (ur, wr) is the solution

of the problem (Qy,r), we have

f(ur) +
∑m1

j=1 yj(gj(ur) + wr
j ) +

∑m
j=m1+1 yj‖gj(ur)‖+ rσ(−g1(ur)− wr

1, · · ·,
−gm1(ur)− wr

m1
,−‖gm1+1(ur)‖, · · · ,−‖gm(ur)‖) ≤ f(u0).

(3.54)
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Similar to the proof of (ii), by using (3.54), we can prove that {(ur, wr)} is

bounded in X×Rm1
+ . Thus we may assume that ur ⇀ u∗ and wr → w∗ as r → +∞.

From (3.54), we have

lim
r→∞

σ(−g1(ur)− wr
1, · · ·,−gm1(ur)− wr

m1
,−‖gm1+1(ur)‖, · · · ,−‖gm(ur)‖) = 0.

Noting that σ is a valley at 0 augmenting function, we have

limr→∞(gj(ur) + wr
j ) = 0, j = 1, 2, · · ·,m1,

limr→∞ ‖gj(ur)‖ = 0, j = m1 + 1, · · ·,m.
(3.55)

Since f is a weakly lower semi-continuous function, gj(j = 1, · · ·,m1) are weakly

continuous functions, gj(j = m1 +1, · · ·,m) are continuous operators from the weak

topology of U to the topology of W, by (3.54) and (3.55), we get

f(u∗) ≤ lim inf
r→+∞

f(ur) ≤ f(u0),

gj(u
∗) = lim

r→∞
gj(u

r
j) = −w∗

j ≤ lim
r→+∞

−wr
j ≤ 0 (j = 1, · · ·,m1),

and

gj(u
∗) = lim

r→∞
gj(u

r
j) = 0 (j = m1 + 1, · · ·,m).

Since u0 is a solution of (P1), these inequalities above imply that u∗ is a solution of

(P1).

(iv) Suppose that l ∈ R is a limit point of sequence {f(ur)}. That is, there

exists a subsequence {urk
} of {ur} such that

lim
k→∞

f(urk
) = l.

By using (3.54), {urk
} and {wrk

} are bounded. Without loss of generality, we assume

that urk
⇀ u′. Similar to the proof of (iii), we have

f(u′) ≤ f(u0),

gj(u
′) ≤ 0 (j = 1, · · ·,m1),

and

gj(u
′) = 0 (j = m1 + 1, · · ·,m).

Since u0 is a solution of (P1), u′ is a solution of (P1). Hence, f(u′) = f(u0) = MP1 .

The weak lower semicontinuity of f implies f(u′) ≤ limk→∞ f(urk
) = l. Again by

(3.54), we have lim supk→∞ f(urk
) ≤ f(u0). Thus,

lim
k→∞

f(urk
) = l = f(u0) = f(u′) = MP1 .
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Therefore,

lim
r→+∞

f(ur) = f(u0) = MP1 .

Theorem 3.3.2 Let U and W be two reflexive Banach spaces, X ⊂ U be a nonempty

and closed set, σ : X → Rm be a valley at 0 augmenting function, and let f : X → R

be a level-bounded and weakly lower semi-continuous function, gj(j = 1, · · ·,m1) :

X → R be bounded below and weakly continuous functions, gj(j = m1 + 1, · · ·,m) :

X → W be continuous operators from the weak topology of U to the topology of

W. Suppose that ȳ ∈ Rm, and that there exists a r∗ > 0 and a neighborhood B of

0 ∈ Rm such that

MP1 ≤ inf
v∈B

(p(v)− 〈ȳ, v〉+ r∗σ(v)). (3.56)

Then there exists a r∗ > 0 such that

MP1 = inf{L(u, ȳ, r) : u ∈ X}, ∀r > r∗,

and

argminu∈X0
f(u) = argminu∈XL(u, ȳ, r∗), ∀r > r∗.

Proof : By Theorem 3.3.1, there exists r0 > r̄, such that for any r ≥ r0, the

problem (Qȳ,r) has at least one solution (ur, wr) ∈ X ×Rm1
+ , and

lim
r→∞

f(ur) = MP1 .

Thus

ψ̄(ȳ, r) = f(ur) +
∑m1

j=1 yj(gj(ur) + wr
j ) +

∑m
j=m1+1 yj‖gj(ur)‖

+rσ(−g1(ur)− wr
1, · · ·,−gm1(ur)− wr

m1
,−‖gm1+1(ur)‖, · · · ,−‖gm(ur)‖).

Denote

vr
j = −(gj(ur) + wr

j ), j = 1, · · ·,m1,

and

vr
j = −‖gj(ur)‖, j = m1 + 1, · · ·,m.

Then

G(ur) + vr ∈ Rm1
− × {0m−m1},
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where 0m−m1 is the origin of Rm−m1 , G(ur) = (g1(ur), · · ·, gm1(ur), ‖gm1+1(ur)‖, · ·
·, ‖gm(ur)‖), vr = (vr

1, v
r
2, · · ·, vr

m). By (3.47), we have f̄(ur, vr) = f(ur) and

ψ̄(ȳ, r) = f̄(ur, vr)− 〈ȳ, vr〉+ rσ(vr).

It follows from (3.55) that limr→∞ vr = 0. Hence

lim sup
r→∞

ψ̄(ȳ, r) ≥ lim
r→∞

f(ur) = MP1 .

Therefore, for ∀ε > 0, there exists r0 > 0, such that

MP1 ≤ ψ̄(ȳ, r0) + ε.

That is,

MP1 ≤ p(v) + 〈ȳ, v〉+ r0σ(v) + ε, ∀v ∈ Rm.

In condition (3.56), without loss of generality, we may take B = Bδ = {u ∈
Rm, ‖u‖ ≤ δ}, δ > 0. Since σ has a valley at 0 in Rm, cδ = infv∈Rm\Bδ

σ(v) > 0.

Let r∗ > max{r0, r∗} large enough such that

ε + r0σ(v) ≤ rσ(v), ∀v ∈ Rm\Bδ,∀r > r∗.

Thus, for each r > r∗,

MP1 ≤ p(v) + 〈ȳ, v〉+ rσ(v). ∀v ∈ Rm\Bδ.

This and (3.56) imply

MP1 ≤ p(v) + 〈ȳ, v〉+ rσ(v), ∀v ∈ Rm.

Hence,

MP1 = inf
u∈X

L(u, ȳ, r), ∀r > r∗.

If u∗ ∈ argminu∈X0
f(u), then, for each r > r∗, f(u∗) = MP1 = inf{L(u, ȳ, r) :

u ∈ X}. Since u∗ ∈ X0, G(u∗) ∈ Rm1− × {0m−m1},

f̄(u∗, 0) = f(u∗)

= inf{L(u, ȳ, r) : u ∈ X}
= inf{f̄(u, v)− 〈ȳ, v〉+ rσ(v) : u ∈ U, v ∈ Rm}.

Thus,

(u∗, 0) ∈ argmin(u,v)∈U×Rm(f̄(u, v)− 〈ȳ, v〉+ rσ(v)).
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This implies

f̄(u∗, 0) = inf{f̄(u∗, v)− 〈ȳ, v〉+ rσ(v) : v ∈ Rm} = L(u∗, ȳ, r).

Therefore,

L(u∗, ȳ, r) = inf
u∈X

L(u, ȳ, r).

That is, u∗ ∈ argminu∈XL(u, ȳ, r).

On the other hand, if u∗ ∈ argminu∈XL(u, ȳ, r), r > r∗, then L(u∗, ȳ, r) =

infu∈X L(u, ȳ, r) = MP1 , i.e.,

inf{f̄(u∗, v)− 〈ȳ, v〉+ rσ(v) : v ∈ Rm}
= inf{f̄(u, v)− 〈ȳ, v〉+ rσ(v) : u ∈ U, v ∈ Rm}
= infu∈X0 f(u).

Noting that infu∈X0 f(u) = infu∈X f̄(u, 0), we get

(u∗, 0) ∈ argmin(u,v)∈U×Rm(f̄(u, v)− 〈ȳ, v〉+ rσ(v)).

Hence, u∗ ∈ X0 and f(u∗) = MP1 . That is, u∗ ∈ argminu∈X0
f(u). Therefore,

argminu∈X0
f(u) = argminu∈XL(u, ȳ, r), ∀r > r∗.

Let the function p be defined by (2.8). The quantity

lim inf
v→0

p(v) (3.57)

is called the asymptotic optimal value for the primal problem (P ). It can also be

described as the minimum of

lim sup
k→∞

f(uk) (3.58)

over all asymptotically feasible sequences {uk} for the constrained problem (P1):

that is, sequences in X satisfying

lim sup
k→∞

gj(uk) ≤ 0, for j = 1, · · ·,m1, (3.59)

and

lim
k→∞

gj(uk) = 0, for j = m1 + 1, · · ·,m. (3.60)

Similar to [95], a sequence {uk} is called asymptotically minimizing for the con-

strained problem (P1) if it is asymptotically feasible and yields the minimum possible

value for (3.58).
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Theorem 3.3.3 Let U and W be two Banach spaces, X ⊂ U be a nonempty and

closed set, σ be a valley at 0 augmenting function, {(yk, rk)} be a sequence such that,

for some δ > 0,

lim
k→∞

ψ̄(yk, rk − δ) = sup
(y,r)∈V∗×(0,+∞)

ψ̄(y, r) < +∞. (3.61)

Let uk ∈ X satisfy

l̄(uk, yk, rk) ≤ inf
u∈X

l̄(u, yk, rk) + αk, (3.62)

where αk → 0. Then, {uk} is asymptotically feasible. Moreover, if {yk} is bounded,

then {uk} is an asymptotically minimizing sequence for (P1).

Proof : From (3.61) and (3.62), we have

l̄(uk, yk, rk) ≤ ψ̄(yk, rk) + αk ≤ sup
(y,r)∈V∗×(0,+∞)

ψ̄(y, r) + αk < +∞. (3.63)

This and (3.48) imply uk ∈ X and

l̄(uk, yk, rk) = f(uk) +
∑m1

j=1 yk
j gj(uk) +

∑m
j=m1+1 yk

j ‖gj(uk)‖+ infw≥0{
∑m1

j=1 yk
j wj+

rkσ(−g1(uk)− w1, · · ·,−gm1(uk)− wm1 ,−‖gm1+1(uk)‖, · · · ,−‖gm(uk)‖)}
≥ ψ̄(yk, rk − δ) + δ infw≥0{σ(−g1(uk)− w1, · · ·,
−gm1(uk)− wm1 ,−‖gm1+1(uk)‖, · · · ,−‖gm(uk)‖)}.

(3.64)

(3.64), combined with (3.61) and (3.63), yields that

infw≥0{σ(−g1(uk)− w1, · · ·,−gm1(uk)− wm1 ,−‖gm1+1(uk)‖, · · · ,−‖gm(uk)‖)}
≤ 1

δ
( sup
(y,r)∈V∗×(0,+∞)

ψ̄(y, r)− ψ̄(yk, rk − δ) + αk) → 0, as k →∞,

(3.65)

and

lim
k→0

l̄(uk, yk, rk) = sup
(y,r)∈V∗×(0,+∞)

ψ̄(y, r). (3.66)

Since σ has a valley at 0 in Rm, from (3.65), there exist wk = (wk
1 , · · · , wk

m1
) ≥ 0,

such that

gj(uk) + wk
j → 0, j = 1, · · ·,m1,

and

‖gj(uk)‖ → 0, j = m1 + 1, · · ·,m.

Thus

lim sup
k→0

gj(uk) ≤ − lim inf
k→0

wk
j ≤ 0, j = 1, · · ·,m1,
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and

lim
k→0

gj(uk) = 0, j = m1 + 1, · · ·,m.

That is, {uk} satisfies (3.59) and (3.60). Therefore, {uk} is asymptotically feasible.

(3.63) and (3.64) imply

lim infk→∞ f(uk) ≤ lim infk→∞ l̄(uk, yk, rk)

≤ lim supk→∞( sup
(y,r)∈V∗×(0,+∞)

ψ̄(y, r) + αk)

= sup
(y,r)∈V∗×(0,+∞)

ψ̄(y, r).

On the other hand,

l̄(uk, y, r) = inf{f̄(uk, v)− 〈y, v〉+ rσ(v) : v ∈ Rm}
≤ f̄(uk, 0)− 〈y, 0〉+ rσ(0)

= f(uk).

Thus,

lim sup
k→∞

f(uk) ≥ sup
(y,r)∈V∗×(0,+∞)

ψ̄(y, r).

Therefore, limk→∞ f(uk) = sup
(y,r)∈V∗×(0,+∞)

ψ̄(y, r). Moreover, if {yk} is bounded,

then (3.64) implies

lim
k→0

f(uk) = sup
(y,r)∈V∗×(0,+∞)

ψ̄(y, r).

Hence, {uk} is an asymptotically minimizing sequence for (P1).

Theorem 3.3.3 generalizes Theorem 3 of [95] to the non-quadratic case in infinite

dimensional Banach spaces.

3.4 Exact penalty representation for the constrained

problem in the finite dimensional spaces

In this section, we will consider the following constrained optimization problem in

finite dimensional spaces:

(P1)

inf f(x)

s.t. x ∈ X,

gj(x) ≤ 0, j = 1, · · ·,m1

gj(x) = 0, j = m1 + 1, · · ·,m,
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where X ⊂ Rn is a nonempty and closed set, f, gj(j = 1, · · ·,m1) : X → R

are lsc real valued functions, gj(j = m1 + 1, · · ·,m) : X → R are real valued

continuous functions. In this section, we reformulate the problem (P1) into an

optimization problem with a single constraint and a modified objective function.

We then introduce a linear Lagrangian function for the reformulated optimization

problem and establish a sufficient condition of an exact penalization representation

for the reformulated constrained optimization problem.

The optimal value of (P1) is denoted by MP1 . Denote by X0 the set of feasible

solutions of (P1), i.e.,

X0 = {x ∈ X : gj(x) ≤ 0, j = 1, · · ·,m1; gj(x) = 0, j = m1 + 1, · · ·,m}.

Consider the absolute-value penalty function

g(x) =

m1∑
j=1

g+
j (x) +

m∑
j=m1+1

|gj(x)|, (3.67)

where g+
j (x) = max(0, gj(x)). It is clear that g(x) = 0 if and only if x ∈ X0. Denote

f0(x) = f(x) + ρ(x)g(x), where ρ : X → R+ is a lsc real valued function. Consider

the following reformulated optimization problem with a single constraint:

(P ∗
1 )

inf f0(x)

s.t x ∈ X, g(x) ≤ 0,

We consider the classical linear penalty function for this problem,

L(x, r) = f0(x) + rg(x) = f(x) + (r + ρ(x))g(x),

and the dual function

ψ(r) = inf{L(x, r) : x ∈ X}, r > 0.

Then,

ψ(r) = inf{L(x, r) : x ∈ X}
= inf{f(x) + (r + ρ(x))g(x) : x ∈ X}

= inf{f(x) + (r + ρ(x))
m∑

j=1

|uj| : x ∈ X, u ∈ Rm

g+
j (x) = uj, j = 1, · · ·,m1; gj(x) = uj, j = m1 + 1, · · ·,m}.

(3.68)
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We have ψ(r) ≤ inf{L(x, r) : x ∈ X0} = MP1 . Denote by Sr the set of optimal

solutions of problem inf{L(x, r) : x ∈ X}. Let u = (u1, u2, · · ·, um) ∈ Rm. Consider

also the perturbed problem of the original constrained optimization problem (P1):

(Pu) inf
x∈Z(u)

f(x),

where Z(u) = {x ∈ X : gj(x) ≤ uj, j = 1, · · ·,m1; gj(x) = uj, j = m1 + 1, · · ·,m}.
Denote by β(u) the optimal value of problem (Pu) and β0(u) = infx∈Z(u) f0(x).

Lemma 3.4.1 Suppose that

1). f(x) ≥ c > −∞, ∀x ∈ X.

2). lim
‖x‖→∞

g(x) > 0.

3). lim
‖x‖→∞

ρ(x) = +∞.

4). X0 6= φ and MP1 is finite.

Then, Sr is nonempty and compact whenever r > 0, and

lim
r→+∞

ψ(r) = MP1 .

Proof : By the definition, ψ(r) < +∞. Fix r > 0, there exists a minimizing

sequence {xj} ⊂ X, satisfying

f(xj) + (r + ρ(xj))g(xj) ≤ ψ(r) +
1

j
.

We claim that {xj} is bounded. Otherwise, we may assume ‖xj‖ → ∞ as j → ∞.

By conditions 1), 2) and 3), we have limj→∞ g(xj) > 0, limj→∞ ρ(xj) = +∞. Thus

f(xj) + (r + ρ(xj)g(xj)) → +∞.

This is impossible since ψ(r) < +∞. Therefore {xj} is bounded. Without loss of

generality, we may assume that xj → xr. Therefore,

ψ(r) ≤ f(xr) + (r + ρ(xr))g(xr) ≤ lim inf
j→∞

(f(xj) + (r + ρ(xj))g(xj)) ≤ ψ(r).

Thus,

ψ(r) = f(xr) + (r + ρ(xr))g(xr), (3.69)
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that is, xr ∈ Sr. Let x0 ∈ X0. Denote

Mr = {x ∈ X : L(x, r) ≤ L(x0, r) = f(x0)}.

Clearly, Sr ⊂ Mr. We show that Mr is compact for any r > 0. Suppose to the

contrary that there exist 0 < rk → +∞ and xk ∈ Mr such that ‖xk‖ → +∞. By

conditions 1), 2) and 3), we have

f(x0) ≥ L(xk, r) = f(xk) + (r + ρ(xk)g(xk)) → +∞,

which is impossible. Thus, Sr is nonempty and compact for r > 0.

Ler r0 > 0, r > r0. By (3.69),

ψ(r0) ≤ f(xr) + (r0 + ρ(xr))g(xr) = ψ(r) + (r0 − r)g(xr) ≤ MP1 + (r0 − r)g(xr).

Hence

g(xr) ≤ MP1 − ψ(r0)

r − r0

.

Therefore, g(xr) → 0 as r → +∞. Set

ur
j = g+

j (xr), j = 1, · · ·,m1; u
r
j = gj(xr), j = m1 + 1, · · ·,m.

Let ur = (ur
1, · · ·, ur

m). Then we have

‖ur‖ =
m∑

j=1

|ur
j | = g(xr) → 0, (3.70)

as r → +∞. Clearly, xr ∈ Z(ur). Thus,

β(ur) ≤ f(xr). (3.71)

We claim that

lim inf
r→+∞

β(ur) ≥ MP1 . (3.72)

On the contrary, suppose that there exists an ε0 > 0 such that

lim inf
r→+∞

β(ur) ≤ MP1 − ε0.

Then, there exists a subsequence {x′rk
} ⊂ Z(urk

) such that

f(x′rk
) ≤ MP1 −

ε0

2
.
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It follows from condition 2) and (3.70) that {x′rk
} is bounded. We may assume that

x′rk
→ x0 as k →∞. Then x0 ∈ X0. Hence,

MP1 ≤ f(x0) ≤ lim inf
k→∞

f(x′rk
) ≤ MP1 −

ε0

2
.

It is a contradiction. By (3.69), (3.71) and (3.72), we get

lim inf
r→+∞

ψ(r) ≥ lim inf
r→+∞

f(xr) ≥ MP1 .

Since ψ(r) ≤ MP1 ,

lim
r→+∞

ψ(r) = MP1 .

Theorem 3.4.1 Suppose that all conditions in Lemma 3.4.1 are satisfied. Then the

following two statements are equivalent:

(i) there exists a r̄ > 0 such that

MP1 = inf{L(x, r) : x ∈ X}, ∀r > r̄,

and

argminx∈X0
f(x) = argminx∈XL(x, r), ∀r > r̄,

(ii) there exist a r′ > 0 and a neighborhood U of 0 ∈ Rm such that

MP1 ≤ inf{f(x) + (r + ρ(x))
m∑

j=1

|uj| : x ∈ X, u ∈ U

g+
j (x) = uj, j = 1, · · ·,m1; gj(x) = uj, j = m1 + 1, · · ·,m},

(3.73)

where r > r′.

Proof : Suppose (i) holds. From (3.68), we have,

MP1 = inf{L(x, r̄) : x ∈ X}

≤ inf{f(x) + (r + ρ(x))
m∑

j=1

|uj| : x ∈ X, u ∈ Rm

g+
j (x) = uj, j = 1, · · ·,m1; gj(x) = uj, j = m1 + 1, · · ·,m},

where r > r̄. That is, (ii) holds.
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Suppose (ii) holds. We prove that (i) holds in the following. By Lemma 3.4.1,

for ∀ε > 0, there exists r∗ > 0, such that

|ψ(r∗)−MP1| < ε.

By (3.68), we have

MP1 ≤ f(x) + (r∗ + ρ(x))
m∑

j=1

|uj|+ ε, ∀x ∈ X, ∀u ∈ Rm, (3.74)

where uj = g+
j (x), j = 1, · · ·,m1; uj = gj(x), j = m1 + 1, · · ·,m. In assuming (3.73),

without loss of generality, we may take U = Bs = {u ∈ Rm, ‖u‖ ≤ s}, s > 0.

There exists a r̄ > max(r∗, r′), such that

ε ≤ (r̄ − r∗)‖u‖, ∀u ∈ Rm\Bs.

Hence, from (3.73) and (3.74), we have

MP1 ≤ f(x) + (r̄ + ρ(x))
m∑

j=1

|uj|, ∀x ∈ X, ∀u ∈ Rm, (3.75)

where uj = g+
j (x), j = 1, · · ·,m1; uj = gj(x), j = m1 + 1, · · ·,m. Consequently,

MP1 = inf{L(x, r) : x ∈ X}, ∀r > r̄.

If x∗ ∈ argminx∈X0
f(x), then f(x∗) = MP1 = inf{L(x, r) : x ∈ X}, ∀r > r̄.

Since x∗ ∈ X0, g(x∗) = 0, L(x∗, r) = f(x∗) = inf{L(x, r) : x ∈ X}, ∀r > r̄. Thus,

x∗ ∈ argminx∈XL(x, r), ∀r > r̄. On the other hand, if x∗ ∈ argminx∈XL(x, r), ∀r >

r̄, then L(x∗, r) = inf{L(x, r) : x ∈ X} = MP1 , i.e., f(x∗) + (r + ρ(x∗))g(x∗) =

MP1 , ∀r > r̄. We will show by contradiction that x∗ must be feasible for problem

(P ). If x∗ is infeasible then g(x∗) > 0. Choose a x0 ∈ X0 and let

r > max{f(x0)− f(x∗)
g(x∗)

, r̄}.

We then have

f(x0) = f(x0) + (r + ρ(x0))g(x0) ≥ f(x∗) + (r + ρ(x∗))g(x∗) > f(x0).

This gives a contradiction and hence x∗ ∈ X0. Thus, MP1 ≤ f(x∗) = f(x∗) + (r +

ρ(x∗))g(x∗) = MP1 (∀r > r̄), that is, f(x∗) = MP1 . Therefore, x∗ ∈ argminx∈X0
f(x).

Therefore,

argminx∈X0
f(x) = argminx∈XL(x, r). ∀r > r̄.
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It is noted that β0(u) = infx∈Z(u) f0(x), f0(x) = f(x) + ρ(x)g(x). Then we have

Corollary 3.4.1 Suppose that all conditions in Lemma 3.4.1 are satisfied. If there

exist a r′ > 0 and a neighborhood U of 0 ∈ Rm such that

MP1 ≤ β0(u) + r

m∑
j=1

|uj|, ∀u ∈ U,∀r ≥ r′. (3.76)

Then there exists a r̄ > 0 such that

MP1 = inf{L(x, r) : x ∈ X}, ∀r > r̄,

and

argminx∈X0
f(x) = argminx∈XL(x, r), ∀r > r̄.

Corollary 3.4.2 Suppose that all conditions in Lemma 3.4.1 are satisfied. If there

exist a r′ > 0 and a neighborhood U of 0 ∈ Rm such that

MP1 ≤ β(u) + (r + ρ̄)
m∑

j=1

|uj|, ∀u ∈ U,∀r ≥ r′, (3.77)

where ρ̄ = infx∈X ρ(x). Then there exists a r̄ > 0 such that

MP1 = inf{L(x, r) : x ∈ X}, ∀r > r̄,

and

argminx∈X0
f(x) = argminx∈XL(x, r), ∀r > r̄.

Proof : By (3.77), we know that

MP1 ≤ inf
x∈Z(u)

f(x) + (r + inf
x∈X

ρ(x))
m∑

j=1

|uj|, ∀u ∈ U,∀r ≥ r′,

≤ inf{f(x) + (r + ρ(x))
m∑

j=1

|uj| : x ∈ X}, ∀u ∈ U,∀r ≥ r′,

where uj = g+
j (x), j = 1, · · ·,m1; uj = gj(x), j = m1 + 1, · · ·,m. Hence, (3.73) given

in Theorem 3.4.1 holds. Therefore, the conclusion holds by virtue of Theorem 3.4.1.
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Remark 3.4.1 It is noted that, in our results above, we don’t need any coercive

assumption on the objective function and constraint functions. If we give some

coercive assumption on the objective function or constraint functions, we can obtain

some exact penalty results similar to ones in Theorem 3.4.1 and Corollary 3.4.2. The

proof is similar and thus omitted.

Lemma 3.4.2 Suppose that

1). lim
‖x‖→∞

max{f(x), g(x)} = +∞.

2). X0 6= φ and MP1 is finite.

Then, Sr is nonempty and compact whenever r > 0, and

lim
r→+∞

ψ(r) = MP1 .

Theorem 3.4.2 Suppose that all conditions in Lemma 3.4.2 are satisfied. Then the

following two statements are equivalent:

(i) there exists a r̄ > 0 such that

MP1 = inf{L(x, r̄) : x ∈ X},

and

argminx∈X0
f(x) = argminx∈XL(x, r̄),

(ii) there exist a r′ > 0 and a neighborhood U of 0 ∈ Rm such that

MP1 ≤ inf{f(x) + (r + ρ(x))
m∑

j=1

|uj| : x ∈ X, u ∈ U

g+
j (x) = uj, j = 1, · · ·,m1; gj(x) = uj, j = m1 + 1, · · ·,m},

(3.78)

where r > r′.

Corollary 3.4.3 Suppose that all conditions in Lemma 3.4.2 are satisfied. Then

the following two statements are equivalent:

(i) there exists a r̄ > 0 such that

MP1 = inf{L(x, r̄) : x ∈ X},
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and

argminx∈X0
f(x) = argminx∈XL(x, r̄),

(ii) there exist a r′ > 0 and a neighborhood U of 0 ∈ Rm such that

MP1 ≤ β(u) + r
m∑

j=1

|uj|, ∀u ∈ U,∀r ≥ r′. (3.79)
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Chapter 4

Second-Order Sufficient

Optimality Conditions for Lower

Order Exact Penalty Functions

4.1 Introduction

Consider the following constrained optimization problem:

(P1)

inf f(x)

s.t. x ∈ Rn,

gj(x) ≤ 0, j = 1, · · ·,m1

gj(x) = 0, j = m1 + 1, · · ·,m,

where f, gj(j = 1, · · ·,m) : Rn → R are real valued twice continuously differentiable

functions. Denote by X0 the set of feasible solutions of (P1), i.e.,

X0 = {x ∈ Rn : gj(x) ≤ 0, j = 1, · · ·,m1; gj(x) = 0, j = m1 + 1, · · ·,m}.

Second-order sufficient optimality conditions play an important role in establish-

ing the existence of exact penalty functions. For example, see [52, 80, 113]. In [52],

in order to solve a nonlinear programming problem with equality and inequality

constraints, Han and Mangasarian introduced a class of exact penalty functions de-

pending on a fixed vector norm related with the constraints. For a sufficiently large

but finite value of the penalty parameter, the penalty function has a local minimum
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point at any strict local minimum point of the constrained nonlinear programming

problem satisfying a second-order sufficient optimality condition. It is shown in [80]

that any strict local minimum satisfying a second-order sufficient condition for the

original problem is a strict local minimum of the classical l1 penalty function with a

large enough penalty parameter. In [113], Wu et al. considered a lower order penalty

function and its ε-smoothing for an inequality constrained nonlinear programming

problem. It is shown that any strict local minimum satisfying a second-order suffi-

cient condition for the original problem is a strict local minimum of the lower order

penalty function with any positive penalty parameter.

In this chapter, we introduce a class of penalty functions which is more general

than the penalty functions used in [52], [81], [88] and [113]. We prove that any

strict local minimum satisfying a second-order sufficient condition for the original

problem is a strict local minimum of this class of penalty functions with any positive

penalty parameter, and that any global minimum satisfying a second-order global

sufficient condition for the original problem is a global minimum of this class of

penalty functions with some positive penalty parameter.

The outline of this chapter is as follows:

In Section 4.2, we present some preliminary results. In Section 4.3, under the

assumption that a second order sufficient condition is satisfied, we obtain a strict

local minimum of the penalty problem. In Section 4.4, under the assumptions that

a second order global sufficient condition is satisfied, we obtain a global minimum

of the penalty problem. We apply our results to quadratic programming and linear

fractional programming problems.

4.2 Preliminaries

Let Q : R+ → R+ be a continuous function. We shall associate nonlinear program-

ming problem (P1) with the following class of penalty functions:

P (x, q) := f(x) + qQ(‖(g+
1 (x), · · · , g+

m1
(x), gm1+1(x), · · · , gm(x))‖), (4.1)
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where q is a nonnegative real number, ‖ · ‖ is a vector norm in Rm. Let 0 < β ≤ 1.

Assume that the following properties hold

Q(0) = 0, Q(t) > 0 for t > 0, (4.2)

∞ > lim
t→0+

Q(t)−Q(0)

tβ
≥ Λ > 0, (4.3)

lim inf
t→+∞

Q(t) > 0. (4.4)

Example 4.2.1 There exist a lots of functions that satisfy (4.2) - (4.4). For ex-

ample:

(i) Q1(t) =
√

t + t2(t ≥ 0),

(ii) let β ∈ (0, 1), Q2(t) = tβ(t ≥ 0).

Corresponding to Q2 and ‖y‖ =
∑m

j=1 |yj|, we have the following penalty function:

f(x) + q

(
m1∑
j=1

g+
j (x) +

m∑
j=m1+1

|gj(x)|
)β

,

which has been investigated in the study of mathematical programs with equilibrium

constraints, see [81]. Corresponding to Q2 and ‖y‖ = max{|y1|, · · · , |ym|}, we have

the following penalty function:

f(x) + q
(
max{g+

1 (x), · · · , g+
m1

(x), |gm1+1(x)|, · · · , |gm(x)|)β
,

which has been investigated in [88].

Consider the following penalty problem:

(PQ) min
x∈Rn

P (x, q).

Let x∗ ∈ X0 and

A(x∗) = {j ∈ {1, · · · ,m1}|gj(x
∗) = 0}. (4.5)

Let

L(x, λ) = f(x) +
m∑

j=1

λjgj(x)

be the Lagrangian of problem (P1).

In this chapter, we assume that f, gj(j = 1, · · ·,m) : Rn → R are real valued

twice continuously differentiable functions.
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4.3 Local exact penalty functions

Proposition 4.3.1 [52] (Second order sufficiency of a strict local minimum). Let

(x∗, λ∗) ∈ Rn+m satisfy the Karush-Kuhn-Tucker necessary optimality condition for

problem (P1):

∇xL(x∗, λ∗) = 0,

gj(x
∗) ≤ 0, j = 1, · · · ,m1

λ∗j ≥ 0, j = 1, · · ·m1

λ∗jgj(x
∗) = 0, j = 1, · · ·m1

gj(x
∗) = 0, j = m1 + 1, · · ·m.

(4.6)

Let

W (x∗) =





y ∈ Rn

∣∣∣∣∣

∇>f(x∗)y ≤ 0,

∇>gj(x
∗)y ≤ 0, j ∈ A(x∗)

∇>gj(x
∗)y = 0, j = m1 + 1, · · ·,m

y 6= 0





.

If

y>∇2L(x∗, λ∗)y > 0, ∀ y ∈ W (x∗), (4.7)

then x∗ is a strict local minimum (of order 2) for (P1).

Define

U(x∗) =





y ∈ Rn

∣∣∣∣∣

∇T gj(x
∗)y = 0, j ∈ J(x∗)

∇T gj(x
∗)y ≤ 0, j ∈ K(x∗)

∇T gj(x
∗)y = 0, j = m1 + 1, · · ·,m

y 6= 0





,

where J(x∗) and K(x∗) are the following subsets of A(x∗):

J(x∗) = {i ∈ {1, · · · ,m} | gi(x
∗) = 0, λ∗i > 0},

K(x∗) = {i ∈ {1, · · · ,m} | gi(x
∗) = 0, λ∗i = 0}.

By [52], we have

Proposition 4.3.2 Under the assumption of Proposition 4.3.1, (4.7) is equivalent

to

yT∇2L(x∗, λ∗)y > 0, ∀ y ∈ U(x∗).
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Definition 4.3.1 (Mangasarian-Fromovitz constraint qualification (MFCQ)) Let

gj(x
∗) ≤ 0, j = 1, · · · ,m1, gj(x

∗) = 0, j = m1 + 1, · · ·m, and A(x∗) be defined

by (4.5). The constraints gj(x), j = 1, · · · ,m are said to satisfy the constraint

qualification condition of [83] at x∗ if, gj(x), j = 1, · · · ,m1, are differentiable at x∗,

gj(x), j = m1 + 1, · · ·m, are continuously differentiable at x∗, and

∇gj(x
∗), j = m1 + 1, · · ·m are linearly independent and,

there exists a y ∈ Rnsuch that

∇>gj(x
∗)y < 0, j ∈ A(x∗)

∇>gj(x
∗)y = 0, j = m1 + 1, · · ·,m.

(4.8)

It is noted that the more stringent constraint qualification condition used by

Pietrzykowski in [91], namely that the gradients ∇gj(x
∗), j ∈ A(x∗)

⋃{m1 + 1, · ·
·,m}, are linearly independent, implies the constraint qualification condition (4.8).

When β = 1, Theorem 4.4 of [52] shows that the combination of a strict lo-

cal minimum and the MFCQ implies a local minimum of exact penalty for a large

penalty parameter while Theorem 4.6 of [52] states that the second order sufficiency

implies a strict local minimum of exact penalty function for a large penalty parame-

ter. Now we prove that the second order sufficiency implies a strict local minimum of

exact penalty for any penalty parameter q > 0 if the nonconvex function Q satisfies

(4.2) and (4.3).

Theorem 4.3.1 Let 0 < β < 1 and Q satisfy (4.2) and (4.3). Suppose that all

assumptions in Proposition 4.3.1 hold. Then x∗ is a strict local minimum of the

penalty problem (PQ) for any q > 0.

Proof : By contradiction, suppose that there exist a q > 0 and a sequence {xk}
converging to x∗, such that xk 6= x∗ for k = 1, 2, · · · , and

P (xk, q) ≤ P (x∗, q).

Clearly, we have

f(xk) ≤ f(x∗), k = 1, 2, · · · ,

and

‖(g+
1 (xk), · · · , g+

m1
(xk), gm1+1(xk), · · · , gm(xk))‖ → 0,

72



as k →∞. Then it follows from (4.3) that

lim
n→∞

Q(‖(g+
1 (xk), · · · , g+

m1
(xk), gm1+1(xk), · · · , gm(xk))‖)

‖(g+
1 (xk), · · · , g+

m1
(xk), gm1+1(xk), · · · , gm(xk))‖β

≥ Λ > 0. (4.9)

Denote

sk =
xk − x∗

‖xk − x∗‖ .

Obviously, there exists a subsequence {skl
} such that {skl

} converging to a vector s

with ‖s‖ = 1. Without loss of generality, suppose that

s = lim
k→+∞

sk.

Since f and gj, j = 1, 2, · · ·,m, are continuously differentiable at x∗, we have

0 ≥ f(xk)− f(x∗)
‖xk − x∗‖ = ∇>f(x∗)sk +

o(‖xk − x∗‖)
‖xk − x∗‖ ,

g+
j (xk)

‖xk − x∗‖ = max

{
0,∇>gj(x

∗)sk +
o(‖xk − x∗‖)
‖xk − x∗‖

}
,

where j ∈ A(x∗), and

|gj(xk)|
‖xk − x∗‖ =

∣∣∣∣∇>gj(x
∗)sk +

o(‖xk − x∗‖)
‖xk − x∗‖

∣∣∣∣ ,

where j = m1 + 1, · · ·,m. Furthermore, we have

lim
k→+∞

(
∇>f(x∗)sk +

o(‖xk − x∗‖)
‖xk − x∗‖

)
= ∇>f(x∗)s, (4.10)

lim
k→+∞

(
max

{
0,∇>gj(x

∗)sk +
o(‖xk − x∗‖)
‖xk − x∗‖

} )β
= (max

{
0,∇>gj(x

∗)s
}
)β,

(4.11)

for each j ∈ A(x∗), and

∣∣∇>gj(x
∗)sk +

o(‖xk − x∗‖)
‖xk − x∗‖

∣∣β = |∇>gj(x
∗)s|β, (4.12)

for each j = m1 + 1, · · ·,m. We have

0 ≥ P (xk, q)− P (x∗, q)
‖xk − x∗‖

=
f(xk) + qQ(‖(g+

1 (xk), · · · , g+
m1

(xk), gm1+1(xk), · · · , gm(xk))‖)− f(x∗)
‖xk − x∗‖

= ∇>f(x∗)sk +
o(‖xk − x∗‖)
‖xk − x∗‖

+ q
Q(‖(g+

1 (xk), · · · , g+
m1

(xk), gm1+1(xk), · · · , gm(xk))‖)
‖(g+

1 (xk), · · · , g+
m1

(xk), gm1+1(xk), · · · , gm(xk))‖β

·‖(g
+
1 (xk), · · · , g+

m1
(xk), gm1+1(xk), · · · , gm(xk))‖β

‖xk − x∗‖β
· ‖xk − x∗‖β−1.
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Since 0 < β < 1, the above inequality, combined with (4.9) - (4.12), yields

∇>f(x∗)s ≤ 0,

∇>gj(x
∗)s ≤ 0, j ∈ A(x∗)

∇>gj(x
∗)s = 0, j = m1 + 1, · · ·,m

s 6= 0.

Thus s ∈ W (x∗). By (4.7), we have

s>∇2L(x∗, λ∗)s > 0. (4.13)

If j 6∈ A(x∗), that is, gj(x
∗) 6= 0, it yields from λ∗jgj(x

∗) = 0 that λ∗j = 0. Making

use of the twice differentiability property, we obtain

f(xk)− f(x∗) +
m∑

j=1

λ∗jgj(xk)

= f(xk)− f(x∗) +
m∑

j=1

(λ∗jgj(xk)− λ∗jgj(x
∗))

=
(
∇>f(x∗) +

m∑
j=1

λ∗j∇>gj(x
∗)

)
sk‖xk − x∗‖

+
1

2
s>k (∇2f(x∗) +

m∑
j=1

λ∗j∇2gj(x
∗))sk‖xk − x∗‖2 + o(‖xk − x∗‖2)

=
(
∇>f(x∗) +

m∑
j=1

λ∗j∇>gj(x
∗)

)
sk‖xk − x∗‖

+ ‖xk − x∗‖2
(1

2
s>k∇2L(x∗, λ∗)sk +

o(‖xk − x∗‖2

‖xk − x∗‖2
)
)
.

This, combined with (4.6) and (4.13), implies that,

f(xk)− f(x∗) +
m∑

j=1

λ∗jgj(xk) > 0, (4.14)

for sufficiently large k. Let Λ0 = max
j=1,··· ,m

λ∗j . Then

≥ P (xk, q)− P (x∗, q)

≥ f(xk)− f(x∗) +
∑m

j=1 λ∗jgj(xk)− Λ0(
∑

j∈A(x∗) g+
j (xk) +

∑m
j=m1+1 |gj(xk)|)

+qQ(‖(g+
1 (xk), · · · , g+

m1
(xk), gm1+1(xk), · · · , gm(xk))‖).

(4.15)

Let 0 < Λ′ < Λ. By (4.9), we have

Q(‖(g+
1 (xk), · · · , g+

m1
(xk), gm1+1(xk), · · · , gm(xk))‖)

‖(g+
1 (xk), · · · , g+

m1
(xk), gm1+1(xk), · · · , gm(xk))‖β

≥ Λ′, (4.16)
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for sufficiently large k. Note that the norms are equivalent to each other in a finite

dimensional normed space, hence

‖(g+
1 (xk), · · · , g+

m1
(xk), gm1+1(xk), · · · , gm(xk))‖ ≥ c0(

m1∑
j=1

g+
j (xk)

2+
m∑

j=m1+1

|gj(xk)|2) 1
2 ,

for some constant c0 > 0. Consequently∑
j∈A(x∗) g+

j (xk) +
∑m

j=m1+1 |gj(xk)|
‖(g+

1 (xk), · · · , g+
m1

(xk), gm1+1(xk), · · · , gm(xk))‖β

≤ 1

cβ
0

(
∑

j∈A(x∗)

g+
j (xk)

1−β +
m∑

j=m1+1

|gj(xk)|1−β) → 0

(4.17)

as k →∞. By using (4.16) and (4.17), we obtain

q
Q(‖(g+

1 (xk), · · · , g+
m1

(xk), gm1+1(xk), · · · , gm(xk))‖)
‖(g+

1 (xk), · · · , g+
m1

(xk), gm1+1(xk), · · · , gm(xk))‖β

− Λ0

∑
j∈A(x∗) g+

j (xk) +
∑m

j=m1+1 |gj(xk)|
‖(g+

1 (xk), · · · , g+
m1

(xk), gm1+1(xk), · · · , gm(xk))‖β
> 0,

for k is sufficiently large. Therefore, this, combined with (4.14) and (4.15), yields

that, when k is sufficiently large, we have

P (xk, q)− P (x∗, q) > 0, (4.18)

which is a contradiction.

4.4 Global exact penalty functions

Definition 4.4.1 Let x∗ ∈ X0 and V (x∗) ⊂ Rn be a closed subset and f : Rn → R

be twice continuously differentiable at x∗. We say that a generalized representation

condition holds for f at x∗ with respect to η(x, x∗) ∈ V (x∗) if, for every x ∈ Rn,

f(x) = f(x∗) +∇f(x∗)>(x− x∗) +
1

2
η(x, x∗)>∇2f(x∗)η(x, x∗). (4.19)

Definition 4.4.2 We say that a pair (x∗, λ∗) satisfies the second order global suffi-

cient condition if,

∇xL(x∗, λ∗) = 0,

gj(x
∗) ≤ 0, j = 1, · · · ,m1

λ∗j ≥ 0, j = 1, · · ·m1

λ∗jgj(x
∗) = 0, j = 1, · · ·m1

gj(x
∗) = 0, j = m1 + 1, · · ·m

(4.20)
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and

y>∇2L(x∗, λ∗)y ≥ 0, ∀y ∈ V (x∗), (4.21)

where V (x∗) ⊂ Rn is a closed subset, and f, gj(j = 1, · · · ,m) satisfy (4.19) with the

same η(x, x∗), η(·, x∗) : Rn → V (x∗) is continuous.

Theorem 4.4.1 If there exists q0 > 0, such that x∗ is a global solution of the penalty

problem (PQ) for any q > q0, where P (x, q) is defined by (4.1) with Q satisfying (4.2),

then x∗ is a global minimum of the constrained optimization problem (P1).

Proof : We first show by contradiction that x∗ ∈ X0. If x∗ is infeasible, then

‖(g+
1 (x∗), · · · , g+

m1
(x∗), gm1+1(x

∗), · · · , gm(x∗))‖ > 0. Since Q satisfy (4.2),

Q(‖(g+
1 (x∗), · · · , g+

m1
(x∗), gm1+1(x

∗), · · · , gm(x∗))‖) > 0.

Choose a x∗ ∈ X0, then

Q(‖(g+
1 (x∗), · · · , g+

m1
(x∗), gm1+1(x∗), · · · , gm(x∗))‖) = 0.

Let

q > max
{ f(x∗)− f(x∗)

Q(‖(g+
1 (x∗), · · · , g+

m1
(x∗), gm1+1(x∗), · · · , gm(x∗))‖) , q0

}
.

We then conclude that

f(x∗) = f(x∗) + qQ(‖(g+
1 (x∗), · · · , g+

m1
(x∗), gm1+1(x∗), · · · , gm(x∗))‖)

≥ f(x∗) + qQ(‖(g+
1 (x∗), · · · , g+

m1
(x∗), gm1+1(x

∗), · · · , gm(x∗))‖)
> f(x∗),

which is impossible. Thus, x∗ ∈ X0 and

Q(‖(g+
1 (x∗), · · · , g+

m1
(x∗), gm1+1(x

∗), · · · , gm(x∗))‖) = 0.

Therefore, for each x ∈ X0,

f(x∗) = p(x∗, q) ≤ P (x, q) = f(x).

Hence, x∗ is a global solution of the constrained optimization problem (P1).

Theorem 4.4.2 Suppose that (x∗, λ∗) satisfies the second order global sufficient con-

dition. Assume that one of the following conditions holds:
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(i) lim sup‖x‖→∞ f(x) = +∞;

(ii) lim inf‖x‖→∞ gj(x) = a > 0, for some j ∈ {1, · · · ,m}.

Then there exists q0 > 0, such that x∗ is a global solution of the penalty problem

(PQ) for any q > q0, where P (x, q) is defined by (4.1) with Q satisfying (4.2)-(4.4),

0 < β ≤ 1.

Proof : Arguing by the contradiction, we may assume that there exist {qk} and

{xk} with qk > 0, xk 6= x∗, qk →∞ such that

P (xk, qk) < P (x∗, qk), (4.22)

that is,

f(xk) + qkQ(‖(g+
1 (xk), · · · , g+

m1
(xk), gm1+1(xk), · · · , gm(xk))‖) < f(x∗). (4.23)

Consequently

f(xk) < f(x∗). (4.24)

We claim that {xk} is bounded. Indeed, if {xk} is unbounded, we may assume that

‖xk‖ → ∞ as k →∞. By assumptions (i) and (ii), either lim supk→∞ f(xk) = +∞,

a contradiction with (4.23), or, for some j0, lim infk→∞ gj0(xk) = a > 0, which

implies that there exist a subsequence {xki
} ⊂ {xk} and 0 < l0 ≤ +∞ such that

‖(g+
1 (xki

), · · · , g+
m1

(xki
), gm1+1(xki

), · · · , gm(xki
))‖ → l0.

Hence, by (4.4), we have

qki
Q(‖(g+

1 (xki
), · · · , g+

m1
(xki

), gm1+1(xki
), · · · , gm(xki

))‖) →∞ as i →∞,

a contradiction with (4.23). Therefore {xk} is bounded. We can assume, going if

necessary to a subsequence, that xk → x0. From (4.23), we have

‖(g+
1 (x0), · · · , g+

m1
(x0), gm1+1(x0), · · · , gm(x0))‖ = 0. (4.25)

That is, x0 ∈ X0.

Since f(x), and gj(x)(j = 1, · · · ,m) satisfy the generalized representation con-

dition at x∗, there exists η(x, x∗) ∈ V (x∗) such that

0 ≥ f(xk)− f(x∗) = ∇f(x∗)>(xk − x∗) +
1

2
η(xn, x

∗)>∇2f(x∗)η(xn, x
∗), (4.26)
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g+
j (xk) = max

{
0, gj(x

∗) +∇gj(x
∗)>(xk − x∗) +

1

2
η(xn, x

∗)>∇2gj(x
∗)η(xn, x

∗)
}
,

where j ∈ A(x∗), and

|gj(xk)| = |gj(x
∗) +∇gj(x

∗)>(xk − x∗) +
1

2
η(xn, x

∗)>∇2gj(x
∗)η(xn, x

∗)|,

where j = m1 + 1, · · ·,m. Note that

lim
k→∞

max
{
0,∇gj(x

∗)>(xk − x∗) +
1

2
η(xn, x

∗)>∇2gj(x
∗)η(xn, x

∗)
}

= max
{
0,∇gj(x

∗)>(x0 − x∗) +
1

2
η(x0, x

∗)>∇2gj(x
∗)η(x0, x

∗)
}
,

(4.27)

for each j ∈ A(x∗), and

lim
k→∞

|∇gj(x
∗)>(xk − x∗) +

1

2
η(xn, x

∗)>∇2gj(x
∗)η(xn, x

∗)|

= |∇gj(x
∗)>(x0 − x∗) +

1

2
η(x0, x

∗)>∇2gj(x
∗)η(x0, x

∗)|.
(4.28)

for each j ∈ {m1 + 1, · · · ,m}. Since qk → ∞ as k → ∞, it follows from (4.23),

(4.26), (4.27) and (4.28) that

∇f(x∗)>(x0 − x∗) +
1

2
η(x0, x

∗)>∇2f(x∗)η(x0, x
∗) ≤ 0, (4.29)

max
{
0,∇gj(x

∗)>(x0 − x∗) +
1

2
η(x0, x

∗)>∇2gj(x
∗)η(x0, x

∗)
}

= 0,

for each j ∈ A(x∗), and

|∇gj(x
∗)>(x0 − x∗) +

1

2
η(x0, x

∗)>∇2gj(x
∗)η(x0, x

∗)| = 0.

for each j ∈ {m1 + 1, · · · ,m}. Hence

∇>gj(x
∗)(x0 − x∗) +

1

2
η(x0, x

∗)>∇2gj(x
∗)η(x0, x

∗) ≤ 0, (4.30)

for each j ∈ A(x∗), and

∇gj(x
∗)>(x0 − x∗) +

1

2
η(x0, x

∗)>∇2gj(x
∗)η(x0, x

∗) = 0, (4.31)

for each j ∈ m1 + 1, · · · ,m. It implies from the second order sufficient condition

that ∇xL(x∗, λ∗) = 0, i.e.,

(∇>f(x∗) +
m∑

j=1

λ∗j∇>gj(x
∗))(xk − x∗) = 0, (4.32)

λ∗jgj(x
∗) = 0, j = 1, · · ·m1, gj(x

∗) = 0, j = m1 + 1, · · · ,m, (4.33)
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and that

η(xk, x
∗)>∇2L(x∗, λ∗)η(xk, x

∗) ≥ 0. (4.34)

Thus, by the generalized representation condition, (4.32), (4.33) and (4.34), we have

f(xk) +
m∑

j=1

λ∗jgj(xk) ≥ f(x∗). (4.35)

By (4.3), there exist t0 > 0, 0 < Λ1 < Λ such that

Q(t) ≥ Λ1t
β. ∀0 < t < t0. (4.36)

It follows from (4.25) and (4.36) that

Q(‖(g+
1 (xk), · · · , g+

m1
(xk), gm1+1(xk), · · · , gm(xk))‖)

≥ Λ1‖(g+
1 (xk), · · · , g+

m1
(xk), gm1+1(xk), · · · , gm(xk))‖β

≥ Λ2(
m∑

j=1

g+
j (xk) +

m∑
j=m1+1

|gj(xk)|)β,

(4.37)

for k large enough, where Λ2 is some positive constant.

Case 1. β = 1. For k large enough, by (4.37) we have

P (xk, qk)− P (x∗, qk)

=f(xk)− f(x∗) + qkQ(‖(g+
1 (xk), · · · , g+

m1
(xk), gm1+1(xk), · · · , gm(xk))‖)

≥f(xk)− f(x∗) +
( m1∑

j=1

λ∗jg
+
j (xk) +

m∑
j=m1+1

λ∗j |gj(xk)|
)

≥f(xk)− f(x∗) +
m∑

j=1

λ∗jgj(xk) ≥ 0,

which contradicts (4.22).

Case 2. 0 < β < 1. (4.24) and (4.35) imply

m∑
j=1

λ∗jgj(xk) > 0, ∀k. (4.38)

That is, by generalized representation condition,

m∑
j=1

λ∗j
(
∇gj(x

∗)>(xk − x∗) +
1

2
η(xn, x

∗)>∇2gj(x
∗)η(xn, x

∗)
)

> 0.
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Let k →∞. Then

m∑
j=1

λ∗j
(
∇gj(x

∗)>(x0 − x∗) +
1

2
η(x, x0)

>∇2gj(x
∗)η(x, x0)

)
≥ 0. (4.39)

If j 6∈ A(x∗), that is, gj(x
∗) 6= 0, it yields from λ∗jgj(x

∗) = 0 that λ∗j = 0. Thus by

(4.30), (4.31) and (4.39) we have

m∑
j=1

λ∗j
(
∇>gj(x

∗)(x0 − x∗) +
1

2
η(x0, x

∗)>∇2gj(x
∗)η(x0, x

∗)
)

= 0, (4.40)

Let Λ3 ≥ sup
j=1,···,m

λ∗j > 0. Since also 0 < β < 1, by (4.37), we have

P (xk, q)− P (x∗, q)

=f(xk)− f(x∗) + qkQ(‖(g+
1 (xk), · · · , g+

m1
(xk), gm1+1(xk), · · · , gm(xk))‖)

≥f(xk)− f(x∗) +
qkΛ2

Λβ
3

(
m∑

j=1

λ∗jgj(xk)

)β

=f(xk)− f(x∗) +
m∑

j=1

λ∗jgj(xk)

+

(
m∑

j=1

λ∗jgj(xk)

)β

qkΛ2

Λβ
3

−
(

m∑
j=1

λ∗jgj(xk)

)1−β



=f(xk)− f(x∗) +
m∑

j=1

λ∗jgj(xk)

+

(
m∑

j=1

λ∗jgj(xk)

)β (qkΛ2

Λβ
3

−
( m∑

j=1

λ∗j
(∇gj(x

∗)>(xk − x∗)

+
1

2
η(xn, x

∗)>∇2gj(x
∗)η(xn, x

∗)
))1−β)

, for sufficiently large k.

It implies by the above inequality, (4.35), (4.38) and (4.40) that, for k large enough,

P (xk, q)− P (x∗, q) > 0,

which contradicts (4.22).

Example 4.4.1 Let β = 1/2. Consider the problem

min 1, s.t. − x2 = 0.
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The penalty function is

φq(x) = 1 + q| − x2|p = 1 + q|x|.

x∗ = 0 is a global minimum of the penalty function. Let

L(x, λ) = 1 + λ(−x2).

Then

∇L(x∗, λ∗) = −2λ∗x∗ = 0, λ∗ = −1,

∇2L(x∗, λ∗) = −2λ∗ = 2 > 0.

Second order global sufficient condition is satisfied. But conditions (i) and (ii) of

Theorem 4.4.2 are not satisfied. Thus condition (i) or (ii) is only a sufficient con-

dition.

Under further assumptions on the objective and constraint functions of the con-

strained optimization problem (P1), we can obtain more specific representation of

the set V (x∗).

Assume that f(x), gj(x), j = 1, · · ·,m satisfy the following conditions at x∗, for

every x ∈ Rn, there exist α(x, x∗) > 0:

f(x) = f(x∗) +∇f(x∗)>(x− x∗) +
1

2
α(x, x∗)(x− x∗)>∇2f(x∗)(x− x∗),(4.41)

gj(x) = gj(x
∗) +∇gj(x

∗)>(x− x∗) +
1

2
α(x, x∗)(x− x∗)>∇2gj(x

∗)(x− x∗),(4.42)

where j = 1, · · · ,m, and limx→x∗ α(x, x∗) = 1.

It is clear that, for a quadratic function f(x) = 1
2
x>Ax + b>x + c, we have

f(x) = f(x∗) +∇f(x∗)>(x− x∗) +
1

2
(x− x∗)>∇2f(x∗)(x− x∗),

and, for a linear fractional function f(x) = a>x+r
b>x+s

, we have

f(x) = f(x∗) +∇f(x∗)>(x− x∗) +
1

2

b>x + s

b>x∗ + s
(x− x∗)>∇2f(x∗)(x− x∗).

Therefore, quadratic functions and linear fractional functions satisfy (4.41) and

(4.42) with α(x, x∗) = 1 and α(x, x∗) = b>x+s
b>x∗+s

respectively.
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Let x∗ ∈ Rn, and A(x∗) = {j ∈ {1, · · · ,m1}|gj(x
∗) = 0}. Define

V1(x
∗) =





0 6= y ∈ Rn

∣∣∣∣∣
∇>f(x∗)y ≤ 0,

∇>gj(x
∗)y ≤ 0, j ∈ A(x∗)

∇>gj(x
∗)y = 0, j = m1 + 1, · · ·,m





, (4.43)

and

V2(x
∗) =





0 6= y ∈ Rn

∣∣∣∣∣
〈∇f(x∗), y〉+ 1

2
α(y, x∗)y>∇2f(x∗)y ≤ 0,

〈∇gj(x
∗), y〉+ 1

2
α(y, x∗)y>∇2gj(x

∗)y ≤ 0, j ∈ A(x∗)

〈∇gj(x
∗), y〉+ 1

2
α(y, x∗)y>∇2gj(x

∗)y = 0, j = m1 + 1, · · ·,m





.

(4.44)

We have

Theorem 4.4.3 Let 0 < β < 1 and Q satisfy (4.2) - (4.4). Suppose that f(x), gj(x),

j = 1, · · ·,m satisfy (4.41) and (4.42), and that (x∗, λ∗) satisfies (4.20), and (4.21)

with a strict inequality, where V (x∗) replaced by V1(x
∗) ∪ V2(x

∗), V1(x
∗) and V2(x

∗)

are defined by (4.43) and (4.44), respectively. Assume that one of the following

conditions holds:

(i) lim sup‖x‖→∞ f(x) = +∞;

(ii) lim inf‖x‖→∞ gj(x) = a > 0, for some j ∈ {1, · · · ,m}.

Then there exists q0 > 0 such that x∗ is a strict global solution of the penalty problem

(PQ) for any q > q0, where P (x, q) is defined by (4.1).

Proof : Arguing by the contradiction, we may assume that there exist {qk} and

{xk} with qk > 0, xk 6= x∗, qk →∞ such that

P (xk, qk) ≤ P (x∗, qk), (4.45)

that is,

f(xk) + qkQ(‖(g+
1 (xk), · · · , g+

m1
(xk), gm1+1(xk), · · · , gm(xk))‖) ≤ f(x∗). (4.46)

Consequently

f(xk) ≤ f(x∗). (4.47)
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Similar to the proof of Theorem 2.5.1, we obtain that {xk} is bounded, and going if

necessary to a subsequence, xk → x0 ∈ X0.

Case 1. x0 = x∗. We have limk→∞ gj(xk) = gj(x
∗). By (4.3), we have

lim
k→∞

Q(‖(g+
1 (xk), · · · , g+

m1
(xk), gm1+1(xk), · · · , gm(xk))‖)

‖(g+
1 (xk), · · · , g+

m1
(xk), gm1+1(xk), · · · , gm(xk))‖β

≥ Λ > 0. (4.48)

Let xk = x∗ + δksk, where sk ∈ Rn, ‖sk‖ = 1 and δk > 0 for each k. Clearly,

δk → 0 and there exists a convergent subsequence of the bounded sequence {sk}
converging to some s∗. Without loss of generality, we assume that the sequence

{sk} itself is convergent to s∗. Now by (4.47), (4.41) and (4.42), we have

0 ≥ f(xk)− f(x∗) = δk〈∇f(x∗), sk〉+
δ2
k

2
α(xk, x

∗)s>k∇2f(x∗)sk, (4.49)

gj(xk)− gj(x
∗) = δk〈∇gj(x

∗), sk〉+
δ2
k

2
α(xk, x

∗)s>k∇2gj(x
∗)sk, (4.50)

for each j ∈ A(x∗), and

gj(xk)− gj(x
∗) = δk〈∇gj(x

∗), sk〉+
δ2
k

2
α(xk, x

∗)s>k∇2gj(x
∗)sk, (4.51)

for each j ∈ {m1 + 1, · · · ,m}. Then

0 ≥ P (xk, qk)− P (x∗, qk)

δk

=
f(xk) + qkQ(‖(g+

1 (xk), · · · , g+
m1

(xk), gm1+1(xk), · · · , gm(xk))‖)− f(x∗)
δk

= 〈∇f(x∗), sk〉+
δk

2
α(xk, x

∗)s>k∇2f(x∗)sk

+ qk

Q(‖(g+
1 (xk), · · · , g+

m1
(xk), gm1+1(xk), · · · , gm(xk))‖)

‖(g+
1 (xk), · · · , g+

m1
(xk), gm1+1(xk), · · · , gm(xk))‖β

·‖(g
+
1 (xk), · · · , g+

m1
(xk), gm1+1(xk), · · · , gm(xk))‖β

δβ
k

· δβ−1
k .

Since 0 < β < 1, the above inequality, combined with (4.48), (4.49), (4.50) and

(4.51), yields

〈∇f(x∗), s∗〉 ≤ 0,

〈∇gj(x
∗), s∗〉 ≤ 0, j ∈ A(x∗),

and

〈∇gj(x
∗), s∗〉 = 0, j = m1 + 1, · · ·,m.
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Thus, s∗ ∈ V1(x
∗). Since (x∗, λ∗) satisfies the second order sufficient condition (4.20),

s∗>∇2L(x∗, λ∗)s∗ > 0. (4.52)

Multiplying (4.50) and (4.51) by λ∗j , add these to (4.49), and use (4.52), we obtain

f(xk)− f(x∗) +
∑m

j=1(λ
∗
jgj(xk)− λ∗jgj(x

∗))

=
δ2
k

2

(
α(xk, x

∗)s>k∇2f(x∗)sk +
∑m

j=1 α(xk, x
∗)λ∗js

>
k∇2gj(x

∗)sk

)
> 0,

for sufficiently large k. Similar to the proof of in (4.16), (4.17) and (4.18) in Theorem

4.3.1, we have

P (xk, qk)− P (x∗, qk) > 0,

which contradicts (4.45).

Case 2. x0 6= x∗. Similar to the proof of (4.29), (4.30) and (4.31) in Theorem

4.4.2, we have

〈∇f(x∗), x0 − x∗〉+
1

2
α(x0, x

∗)(x0 − x∗)>∇2f(x∗)(x0 − x∗) ≤ 0,

〈∇gj(x
∗), x0 − x∗〉+

1

2
α(x0, x

∗)(x0 − x∗)>∇2gj(x
∗)(x0 − x∗) ≤ 0, j ∈ A(x∗),

〈∇gj(x
∗), x0− x∗〉+ 1

2
α(x0, x

∗)(x0− x∗)>∇2gj(x
∗)(x0− x∗) = 0, j = m1 + 1, · · ·,m.

Therefore, x0 − x∗ ∈ V2(x
∗). By the assumption, we get

(x0 − x∗)>∇2L(x∗, λ∗)(x0 − x∗) > 0.

Similarly, we can obtain (4.35)-(4.40) given in Theorem 4.4.2, and then

P (xk, qk)− P (x∗, qk) > 0,

for k large enough, which contradicts (4.45).

Thus, there exists q0 > 0 such that x∗ is a strict global solution of the penalty

problem (PQ) for any q > q0.

If we only consider the following inequality constrained optimization problem

(P0)

inf f(x)

s.t. x ∈ Rn,

gj(x) ≤ 0, j = 1, · · ·,m,
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where f(x), gj(x), j = 1, · · ·,m are convex quadratic functions. That is,

f(x) = 1
2
x>A0x + 〈b0, x〉+ c0,

gj(x) = 1
2
x>Ajx + 〈bj, x〉+ cj, j = 1, · · ·,m,

(4.53)

where Aj is an l× l positive semi-definite symmetric matrix, bj, xj ∈ Rn and cj is a

constant, j = 0, 1, · · ·,m. Let x∗ ∈ Rn, and I(x∗) = {j ∈ {1, · · · ,m}|gj(x
∗) = 0}.

Define

V ′
1(x

∗) =





y ∈ Rn

∣∣∣∣∣
〈A0x

∗ + b0, y〉 ≤ 0,

〈Ajx
∗ + bj, y〉 ≤ 0, j ∈ I(x∗)

y 6= 0,





, (4.54)

and

V ′
2(x

∗) =





y ∈ Rn

∣∣∣∣∣
〈A0x

∗ + b0, y〉+ 1
2
y>A0y ≤ 0,

〈Ajx
∗ + bj, y〉+ 1

2
y>Ajy ≤ 0, j ∈ I(x∗)

y 6= 0,





. (4.55)

Then, by Theorem 4.4.3, we have

Corollary 4.4.1 Let Q satisfy (4.2) - (4.4) and 0 < β < 1. Suppose that f(x), gj(x),

j = 1, · · ·,m, are convex quadratic functions defined above, (x∗, λ∗) satisfies (4.20),

and (4.21) with a strict inequality, where V (x∗) is replaced by V ′
1(x

∗). Assume that

one of the following conditions holds:

(i) lim sup‖x‖→∞ f(x) = +∞;

(ii) lim inf‖x‖→∞ gj(x) = a > 0, for some j ∈ {1, · · · ,m}.

Then there exists q0 > 0 such that x∗ is a strict global solution of the penalty problem

(PQ) for any q > q0.

Proof : Since f(x), gj(x), j = 1, · · ·,m, are convex quadratic functions, V ′
2(x

∗) ⊂
V ′

1(x
∗). Therefore, the conclusion of this corollary follows from Theorem 4.4.3.

Corollary 4.4.2 Let β = 1 and Ajx
∗ + bj, j ∈ I(x∗), are linearly independent.

Suppose that the other conditions in Corollary 4.4.1 are satisfied. Then there exists

q0 > 0 such that x∗ is a strict global solution of the penalty problem (PQ) for any

q > q0.
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Proof : It is easy to check, all conditions in Proposition 4.3.1 are satisfied. Thus,

x∗ is a strict local minimum for (P0). Note that f(x), gj(x), j = 1, · · ·,m, are convex,

x∗ is a strict global minimum for (P0). Since Ajx
∗ + bj, j ∈ I(x∗), are linearly

independent, the constraint qualification condition (4.8) hold at x∗. By Theorem

4.4 in [52], there exists q∗ > 0 such that x∗ is a local solution of the penalty problem

(PQ) for any q > q∗.

Now we claim that, there exists q0 > q∗, such that x∗ is a global solution of the

penalty problem (PQ) for any q > q0. By contradiction, suppose that there exist

{qk} and {x∗k} with qk > 0, x∗k 6= x∗, qk →∞ such that

P (x∗k, qk) ≤ P (x∗, qk). (4.56)

Similar to the proof of Theorem 4.4.2, we obtain that {x∗k} is bounded.

Let q > q∗, and let O be a compact set such that x∗, x∗k ∈ int(O), where k =

1, 2, · · · , and int(O) denotes the interior of O. Let

X = {x ∈ O : gj(x) ≤ 0, j = 1, 2, · · · ,m}.

Then X is a compact set. There exists a neighborhood N(x∗, δx∗) of x∗, such that

P (x, q) > P (x∗, q), ∀x ∈ N(x∗, δx∗) \ {x∗}. (4.57)

Furthermore, since f(x) > f(x∗) for any x ∈ X \ {x∗}, there exists a neighborhood

N(x, δx) of x, such that

f(y) > f(x∗), ∀y ∈ N(x, δx).

Consequently,

P (y, q) = f(y) + qQ(‖(g+
1 (x), · · · , g+

m(x))‖)
≥ f(y) > f(x∗) = P (x∗, q),

(4.58)

for any

y ∈
⋃

x∈X\{x∗}
N(x, δx).

By the compactness of X, there exist xi ∈ X, i = 1, 2, · · · , K, such that

X ⊂
⋃

i=1,2,··· ,K
N(xi, δxi

).

Therefore, it follows from (4.57) and (4.58) that

P (y, q) > P (x∗, q), ∀y ∈
⋃

i=1,2,··· ,K
N(xi, δxi

) \ {x∗}. (4.59)
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Since Q : R+ → R+ is a continuous function and satisfies (4.2), O\ ⋃
i=1,2,··· ,K

N(xi, δxi
)

is a compact set and

‖(g+
1 (y), · · · , g+

m(y))‖ > 0,∀y ∈ O \
⋃

i=1,2,··· ,K
N(xi, δxi

),

there exists a ρ0, such that

Q(‖(g+
1 (y), · · · , g+

m(y))‖) > ρ0,∀y ∈ O \
⋃

i=1,2,··· ,K
N(xi, δxi

).

Let

q∗ = max{q∗, a− b

ρ0

},

where a ≥ maxy∈O f(y), b ≤ miny∈O f(y). Then when q > q∗,

P (y, q) = f(y) + qQ(‖(g+
1 (x), · · · , g+

m(x))‖)
> b + a−b

ρ0
ρ0 + P (x∗, q)− f(x∗)

≥ P (x∗, q).

for any O \ ⋃
i=1,2,··· ,K

N(xi, δxi
). This, combined with (4.59), yields that

P (y, q) > P (x∗, q), (4.60)

for any y ∈ O \ {x∗}, when q > q∗. Note that x∗k ∈ int(O), k = 1, 2, · · · , (4.56)

contradicts (4.60). Therefore, the conclusion holds.
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Chapter 5

The Existence of a Solution for an

Optimal Control Problem

Governed by a Variational

Inequality

5.1 Introduction

In this chapter, we study an optimal control problem where the state of the system

is defined by a variational inequality problem. As an useful practical problem, the

optimal control problem has attracted a lot of people to deal with it. In the liter-

ature, many authors have discussed similar problems concerning different aspects.

See, [3, 7, 10, 11, 37, 38, 39, 76, 77, 124]. In [3], Adams et al. considered an optimal

obstacle problem for an elliptic variational inequality for the homogeneous case, and

established the existence and uniqueness of the optimal control problem. Chen stud-

ied an optimal control problem for a coupling system of a semilinear elliptic equation

and an obstacle variational inequality in [21]. Lou considered the regularity of the

obstacle control problem in [76, 77] for the homogeneous case with the major term

being p−Laplacian. Bergounioux and Lenhart [12, 13] studied an obstacle optimal

control problem for semilinear and bilateral obstacle problems. Recently, Ye and

Chen [124] obtained the existence of an optimal control of the obstacle in a quasi-

linear elliptic variational inequality. Approximating the variational inequality by a

family of quasilinear elliptic equations, and using the weak convergence methods,
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they establish some optimality conditions. In this chapter, we consider an optimal

control problem governed by variational inequality with monotone type mappings

in reflexive Banach spaces and apply our results to an optimal control problem

governed by a quasilinear elliptic variational inequality.

The outline of this chapter is as follows. In Section 5.2, we present basic defini-

tions, notations and some preliminary results. In Section 5.3, we establish some exis-

tence results of a solution of variational inequality problems for generalized pseudo-

monotone mappings and perturbed maximal monotone mappings respectively. In

Section 5.4, we consider an optimal control problem governed by variational inequal-

ity with monotone type mappings in reflexive Banach spaces, which is more general

than the problem (1.1) in Chapter 1. We obtain some existence results for this

optimal control problem. In Section 5.5, as an application, we consider the opti-

mal control problem governed by quasilinear elliptic variational inequality with an

obstacle. By using the results obtained in Section 5.4, we obtain several existence

results of optimal controls of this optimal control problem.

5.2 Preliminaries

In the following, let X be a real reflexive Banach space, X∗ its dual space. We

assume that the space X has been renormed so that X and its dual space are locally

uniformly convex. Without confusion, the norms of X and X∗ are denoted by the

same notion ‖ · ‖. For x ∈ X and x∗ ∈ X∗, the symbol 〈x∗, x〉 stands for the

value of x∗ at x. Let Y be another real Banach space. For a multi-valued mapping

T : X → 2Y, we set

D(T ) = {x ∈ X : Tx 6= ∅},
R(T ) =

⋃
{Tx : x ∈ D(T )},

and

G(T ) = {[x, u] : x ∈ D(T ), u ∈ R(T )}.
T : X → 2Y is said to be finitely continuous if T is upper semicontinuous from the

topology of each finite-dimensional subspace F of X to the weak topology of Y.

Definition 5.2.1 Let T : X → 2X∗
be a multivalued mapping.

(i) T is said to be monotone if, for any x, y ∈ D(T ), the inequality

〈w − v, x− y〉 ≥ 0
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holds for all w ∈ T (x), v ∈ T (y); A monotone mapping T is said to be maximal

monotone, if ∀[y, v] ∈ G(T ), the inequality 〈w−v, x−y〉 ≥ 0 implies x ∈ D(T )

and w ∈ T (x).

(ii) T is said to be pseudo-monotone if, T satisfies

(m1) T (x) is a nonempty, bounded, closed and convex subset of X∗ for each

x ∈ D(T );

(m2) T is finitely continuous;

(m3) for each {yj} ⊂ D(T ), wj ∈ T (yj) satisfying yj ⇀ y0 ∈ X and

lim sup
j→∞

〈wj, yj − y0〉 ≤ 0,

then, for every x ∈ X, there exists w(x) ∈ T (y0) such that

〈w(x), y0 − x〉 ≤ lim inf
j→∞

〈wj, yj − x〉.

(iii) T is said to be generalized pseudo-monotone if, (m1) given above is satisfied

and, for every pair of sequences {yj} and {wj} such that wj ∈ T (yj), yj ⇀ y0,

wj ⇀ w0 and

lim sup
j→∞

〈wj, yj − y0〉 ≤ 0,

then, we have w0 ∈ T (y0) and 〈wj, yj〉 → 〈w0, y0〉.

(iv) T is said to be of class (S)+ if, (m1) given above is satisfied and, for {yj} ⊂
D(T ), yj ⇀ y0 ∈ X, wj ∈ T (yj) satisfying lim sup

j→∞
〈wj, yj − y0〉 ≤ 0 implies

that yj → y0.

(v) T is said to be quasi-bouneded if, for each M > 0, there exists a constant

K(M) > 0 such that whenever [u,w] lies in the G(T ) and 〈w, u〉 ≤ M‖u‖, ‖u‖ ≤
M , then ‖w‖ ≤ K(M).

(vi) T is said to be demicontinuous if each yn → y0, wn ∈ T (yn), there exists a

subsequence {wnk
} ⊂ {wn} such that wnk

⇀ w0 ∈ T (y0).

(vii) T is said to be quasi-monotone if, (m1) given above is satisfied and, for {yj} ⊂
D(T ), yj ⇀ y0 ∈ X, wj ∈ T (yj), we have

lim sup
j→∞

〈wj, yj − y0〉 ≥ 0.
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Definition 5.2.2 A mapping T0 : X → X∗ is said to be T -pseudo-monotone in

Browder’s sense ([16]), if for ∀{yj} ⊂ X, yj ⇀ y ∈ X and a bounded sequence {wj}
with wj in T (yj), suppose that lim sup

j→∞
〈T0(yj), yj−y〉 ≤ 0. Then T0(yj) ⇀ T0(y) and

〈T0(yj), yj − y〉 → 0.

By Pascali and Sburlan ([89] Proposition 1.3 on p.98 and Theorem 2.4 on p.106),

we have

Proposition 5.2.1 A pseudo-monotone mapping is generalized pseudo-monotone.

Moreover, a bounded generalized pseudo-monotone mapping which satisfies (m1) is

pseudo-monotone.

Proposition 5.2.2 Any maximal monotone mapping A : X → 2X∗
with D(A) = X

is a pseudo-monotone,

For basic properties of monotone type mappings, we refer to [17, 18, 89, 126].

Let Φ be the set of all continuous and strictly increasing functions φ : R+ → R+

with φ(0) = 0 and limr→∞ φ(r) = ∞. Let φ ∈ Φ and define Jφ : X → 2X∗
as follows:

Jφ(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x∗‖ ‖x‖, ‖x∗‖ = φ(‖x‖)}. (5.1)

By the Hahn-Banach Theorem, Jφ(x) 6= ∅ for any x ∈ X. Since the space X

and its dual are assumed to be locally uniformly convex, the duality mapping Jφ is

single-valued and continuous. From [108], Jφ is monotone, and is a mapping of class

(S)+.

The following lemma can be found in Browder ([17] Lemma 1).

Lemma 5.2.1 Let E be a Banach space, {xn} a sequence in E, and {αn} a sequence

of positive constants with αn → 0 as n → ∞. Fix r > 0 and assume that for every

h ∈ E∗ with ‖h‖ ≤ r there exists a constant Ch such that 〈h, xn〉 ≤ αn‖xn‖ + Ch,

for all n. Then the sequence {xn} is bounded.

Let 0 ∈ K, and K be a closed subset of X, T : X → 2X∗
with D(T ) = K which

satisfies the following condition:

(a) there exists x∗ ∈ K such that

lim
y∈K,‖y‖→∞

inf
w∈T (y)

〈w, y − x∗〉 > 0. (5.2)
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If there exist y0 ∈ K, and w0 ∈ T (y0) such that

〈w0, x− y0〉 ≥ 0, ∀x ∈ K,

we call that the variational inequality problem (denote as VIP(T, K)) has a solution.

We denote by Λ the family of all finite-dimensional subspaces F of X, with F

containing x∗ of condition (a), ordered by inclusion. Let KF = K
⋂

F . For each

F ∈ Λ, we set

VF = {y ∈ K : there exists w ∈ T (y) such that ∀x ∈ KF , 〈w, x− y〉 ≥ 0}.

Let VF
w

be the weak closure of VF .

Lemma 5.2.2 ([60] Lemma 2) Let K be a nonempty, closed and convex subset of

X and let T : X → 2X∗
be a multivalued mapping with D(T ) = K and T (x) a

nonempty, bounded, closed and convex subset of X∗ for each x ∈ K. Suppose that T

satisfies condition (a) and, for each F ∈ Λ, T : KF → 2X∗
is upper semicontinuous

from the topology of F to the weak topology of E∗. Then
⋂

F∈Λ VF
w 6= ∅.

Lemma 5.2.3 Let K be a nonempty, closed and convex subset of X and let T :

X → 2X∗
be a demicontinous mapping of (S)+ with D(T ) = K. Assume that T

satisfies condition (a). Then the variational inequality problem VIP(T, K) has a

solution.

Proof : By Lemma 5.2.2, there exists a y0 ∈
⋂

F∈Λ VF
w
. For each x ∈ K, we can

find a F ∈ Λ such that x ∈ F , y0 ∈ F . Since y0 ∈ VF
w
, there exists {yn} ⊂ VF such

that yn ⇀ y0. By the definition of VF , there exists wn ∈ T (yn) such that

〈wn, x− yn〉 ≥ 0, (5.3)

and

〈wn, y0 − yn〉 ≥ 0.

Consequently,

lim sup
n→∞

〈wn, yn − y0〉 ≤ 0. (5.4)

Since T is a demicontinous mapping of (S)+, it follows from (5.4) that we have

limn→∞ yn = y0, and there exists a subsequence {wnk
} ⊂ {wn} such that wnk

⇀

w0 ∈ T (y0). Hence, by (5.3), we have (w0, x− y0) ≥ 0,∀x ∈ K.
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Lemma 5.2.4 Let K be a nonempty, closed and convex subset of a reflexive Banach

space X and let T : K → 2X∗
be a bounded generalized pseudo-monotone mapping

with conditions (m1), (m2) and D(T ) = K. Assume that T satisfies condition (a).

Then the variational inequality problem VIP(T, K) has a solution.

Proof : Similar to the proof of Lemma 5.2.3, again by Lemma 5.2.2, there exists

a y0 ∈
⋂

F∈Λ VF
w
. For each x ∈ K, we can find a F ∈ Λ such that x ∈ F , y0 ∈ F .

Since y0 ∈ VF
w
, there exists a sequence {yn} ⊂ VF such that yn → y0. By the

definition of VF , there exists wn ∈ T (yn) such that (5.3) and (5.4) hold. Since

{yn} is bounded and T is a bounded generalized pseudo-monotone mapping, {wn}
is bounded. Thus, there exists a subsequence {wnk

} ⊂ {wn} such that wnk
⇀ w0.

From (5.4), we have w0 ∈ T (y0) and

〈wnk
, ynk

〉 → 〈w0, y0〉.

Hence by (5.3), we have

(w0, x− y0) ≥ 0, ∀x ∈ K.

Lemma 5.2.5 ([60]) Let K be a nonempty, closed and convex subset of X. Let

T : X → 2X∗
is a bounded maximal monotone mapping such that D(T ) = X and

T0 : K → X∗ is a finitely continuous T -pseudo-monotone mapping. Assume there

exists x∗ ∈ K such that the following condition is satisfied,

(d) lim
y∈K,‖y‖→∞

inf
w∈T (y)

〈w + T0(y), y − x∗〉 > 0.

Then VIP(T + T0, K) has a solution.

5.3 Existence of variational inequalities for per-

turbed maximal monotone mappings

We denote by Γ the set of all functions β : R+ → R+ such that β(r) → 0 as r →∞.

Theorem 5.3.1 Let K be a nonempty, closed and convex subset of X, 0 ∈ K and

let T : X → 2X∗
be a bounded finitely continuous generalized pseudo-monotone

mapping with D(T ) = K. Assume that T satisfies the following condition:
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(b) For every s ∈ X∗ with ‖s‖ ≤ r there exist xs ∈ K and β = βs ∈ Γ such that

inf
w∈T (y)

〈w − s, y − xs〉 ≥ −β(‖y‖)‖y‖.

Then there exist y0 ∈ K, and w0 ∈ T (y0) such that

〈w0, x− y0〉 ≥ 0, ∀x ∈ K.

Proof : First, we claim that, for any [yj, wj] ∈ G(T ) satisfying yj ⇀ y0 ∈ K,

lim sup
j→∞

〈wj, yj − y0〉 ≥ 0. (5.5)

In fact, if it is not so, there exist yj ∈ K, wj ∈ T (yj), yj ⇀ y0 ∈ K, such that

lim sup
j→∞

〈wj, yj − y0〉 < 0. (5.6)

From the boundedness and the generalized pseudo-monotonicity of T , we obtain

that, there exists a subsequence {wjk
} ∈ {wj} such that wjk

⇀ w0 ∈ T (y0), and

lim
k→∞

〈wjk
, yjk

〉 = 〈w0, y0〉.

Therefore,

lim
k→∞

〈wjk
, yjk

− y0〉 = 0,

which contradicts (5.6).

Next, we claim that T + 1
n
Jφ is a mappings of (S)+ for a fixed positive integer n

and φ ∈ Φ. In fact, for any [yj, wj] ∈ G(T ) and vJ
j ∈ Jφ(yj) satisfying yj ⇀ y0 ∈ K,

lim sup
j→∞

〈wj +
1

n
vJ

j , yj − y0〉 ≤ 0.

By (5.5), we may assume without loss of generality that

lim
j→∞

〈wj, yj − y0〉 ≥ 0.

Thus,

lim sup
j→∞

〈vJ
j , yj − y0〉 ≤ n(lim sup

j→∞
〈wj +

1

n
vJ

j , yj − y0〉 − lim
j→∞

〈wj, yj − y0〉) ≤ 0.

Since Jφ is a mapping of class (S)+, yj → y0. Therefore, T + 1
n
Jφ is a mappings of

(S)+ .
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Then, we claim that, for each positive integer n, T + 1
n
Jφ satisfies (5.2) in condi-

tion (a). Let y ∈ K, y 6= 0, vJ ∈ Jφ(y) and w ∈ T (y). Since T is bounded, T is qua-

sibounded. By Lemma 2.1 in [49], there exists a φ ∈ Φ such that 〈w, y〉 ≥ −φ(‖y‖).
We may choose the same φ ∈ Φ such that

〈w +
1

n
vJ , y〉 ≥ −φ(‖y‖) +

1

n
φ(‖y‖)‖y‖ = (

1

n
− 1

‖y‖)φ(‖y‖)‖y‖.

Thus, T + 1
n
Jφ satisfies (5.2) in condition (a).

Therefore, all conditions in Lemma 5.2.3 are satisfied. By Lemma 5.2.3, for each

positive integer n, there exist yn ∈ K, wn ∈ T (yn) such that

〈wn +
1

n
Jyn, x− yn〉 ≥ 0, ∀x ∈ K.

Consequently,

〈wn, yn − x〉 ≤ − 1

n
φ(‖yn‖)(‖yn‖ − ‖x‖), ∀x ∈ K. (5.7)

We claim that {yn} is bounded. If not so, then without loss of generality, we

may assume that ‖yn‖ → ∞ as n → ∞. Since T satisfies the condition (b), from

(5.7) we have

−β(‖yn‖)‖yn‖ ≤ 〈wn − s, yn − xs〉
≤ −〈s, yn − xs〉 − 1

n
φ(‖yn‖)(‖yn‖ − ‖xs‖)

≤ −〈s, yn − xs〉,
for all large n, since ‖yn‖ → ∞ as n →∞. Therefore

〈s, yn〉 ≤ 〈s, xs〉+ β(‖yn‖)‖yn‖.
By Lemma 5.2.1, {yn} is bounded. This contradicts ‖yn‖ → ∞ as n →∞. It follows

from the boundedness of T that {wn} is bounded. Without loss of generality, we

may assume that yn ⇀ y0 and wn ⇀ w0. Again by (5.7), we get

lim sup
n→∞

〈wn, yn − x〉 ≤ 0, ∀x ∈ K. (5.8)

Thus, lim supn→∞〈wn, yn − y0〉 ≤ 0. Since T is a generalized pseudo-monotone

mapping, w0 ∈ T (y0) and limn→∞〈wn, yn〉 = 〈w0, y0〉. Therefore, by (5.8), we have

〈w0, x− y0〉 ≥ 0, ∀x ∈ K.

It is noted that the coercive condition (b) has been used in [48, 49], which is

weaker than the one in Browder’s result (see [17]).
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Theorem 5.3.2 Let K be a nonempty, closed and convex subset of X, 0 ∈ K, and

let A : X → 2X∗
be a maximal monotone mapping (not necessarily bounded) with

D(A) = X and [0, 0] ∈ G(A), T : X → 2X∗
be a quasi-bounded finitely continuous

generalized pseudo-monotone mapping with D(T ) = K. Assume that A+T satisfies

the condition (b) given in Theorem 5.3.1. Then VIP(A + T, K) has a solution.

Proof : By Pascali and Sburlan ([89] Lemma on p.142), monotone mapping A :

X → 2X∗
with 0 ∈ IntD(A) is quasi-bounded. It is clear that, for any [yj, aj] ∈ G(A)

satisfying yj ⇀ y0 ∈ K, we have

lim sup
j→∞

〈aj, yj − y0〉 ≥ 0. (5.9)

Since T is a bounded generalized pseudo-monotone mapping, (5.5) given in the proof

of Theorem 5.3.1 also holds. Since Jφ is a mapping of class (S)+, by (5.5) and (5.9),

we conclude that A + T + 1
n
Jφ is a mappings of (S)+ for a positive integer n.

Let y ∈ K, y 6= 0, vJ ∈ Jφ(y) and w ∈ T (y). The monotonicity of A and

[0, 0] ∈ G(A) imply that ∀a ∈ A(y), 〈a, y〉 ≥ 0. By the boundedness of T and

Lemma 2.1 in [49], there exists a φ ∈ Φ such that 〈w, y〉 ≥ −φ(‖y‖). Since

〈a + w + 1
n
vJ , y〉 ≥ 〈w + 1

n
vJ , y〉

≥ −φ(‖y‖) + 1
n
φ(‖y‖)‖y‖

= ( 1
n
− 1

‖y‖)φ(‖y‖)‖y‖,
(5.10)

A + T + 1
n
Jφ satisfies the condition (a). By Lemma 5.2.3, there exist yn ∈ K, an ∈

A(yn), wn ∈ T (yn) and vn ∈ Jφ(yn) such that

〈an + wn +
1

n
vn, x− yn〉 ≥ 0, ∀x ∈ K. (5.11)

Thus,

〈an + wn, yn − x〉 ≤ − 1

n
φ(‖yn‖)(‖yn‖ − ‖x‖), ∀x ∈ K. (5.12)

We claim that {yn} is bounded. If it is not so, then without loss of generality, we

may assume that ‖yn‖ → ∞ as n →∞. Thus, ‖yn‖− ‖x‖ > 0 for all large n. Since

T satisfies the condition (b), For every s ∈ X∗ with ‖s‖ ≤ r there exist xs ∈ K and

β = βs ∈ Γ such that

inf
w∈T (y)

〈w − s, y − xs〉 ≥ −β(‖y‖)‖y‖.

96



Hence, from (5.12), we have

−β(‖yn‖)‖yn‖ ≤ 〈xn + wn − s, yn − xs〉
≤ 〈an + wn, yn − xs〉 − 〈s, yn − xs〉
≤ −〈s, yn − xs〉,

for all large n. Therefore

〈s, yn〉 ≤ 〈s, xs〉+ β(‖yn‖)‖yn‖.
By Lemma 5.2.1, {yn} is bounded. This contradicts ‖yn‖ → ∞ as n → ∞. Thus,

{yn} is bounded. Then 1
n
φ(‖yn‖) → 0 as n → ∞. It follows from the boundedness

of T that {wn} is bounded. By (5.12), we have ‖yn‖ ≤ M and

〈an, yn〉 ≤ −〈wn, yn〉 − 1

n
φ(‖yn‖)‖yn‖ ≤ K(M)‖yn‖,

where M and K(M) are some positive constants. Recall that A is quasi-bounded.

Then ‖an‖ ≤ K(M). Without loss of generality, we may assume that yn ⇀ y0,

an ⇀ a0 and wn ⇀ w0. Again by (5.11), we get

lim sup
n→∞

〈an + wn, yn − y0〉 ≤ 0. (5.13)

Let ā ∈ A(y0), 〈an − ā, yn − y0〉 ≥ 0. Therefore,

lim sup
n→∞

〈wn, yn − y0〉 ≤ − lim inf
n→∞

〈an − ā, yn − y0〉+ lim
n→∞

〈ā, yn − y0〉 ≤ 0.

Since T is a generalized pseudo-monotone mapping, w0 ∈ T (y0) and limn→∞〈wn, yn〉 =

〈w0, y0〉. This and (5.13) imply lim supn→∞〈an, yn−y0〉 ≤ 0. By Pascali and Sburlan

([89] Proposition 1.3 on p.98 and Theorem 2.4 on p.106), the maximal monotone

mapping A : X → 2X∗
with D(A) = X is pseudo-monotone, and hence is generalized

pseudo-monotone. So, a0 ∈ T (y0) and limn→∞〈an, yn〉 = 〈a0, y0〉.

Therefore, by (5.11), we have 〈a0 + w0, x− y0〉 ≥ 0,∀x ∈ K.

Theorem 5.3.3 Let K be a nonempty, closed and convex subset of a reflexive Ba-

nach space X, 0 ∈ K, and let T : X → 2X∗
be a maximal monotone mapping (not

necessarily bounded) with D(T ) = X and [0, 0] ∈ G(T ), T0 : X → 2X∗
be a bounded

finitely continuous generalized pseudo-monotone mapping with D(T0) = K. Assume

T0 satisfies the following condition:

(c) there exists x∗ ∈ K such that

lim
y∈K,‖y‖→∞

inf
v∈T0(y)

〈v, y − x∗〉
‖y‖ = +∞.

Then VIP(T + T0, K) has a solution.
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Proof : For ∀ε > 0, we consider the generalized Yosida approximations of T :

Tε = (T−1 + εJ−1)−1, where J is the duality mapping, that is J = Jφ, for φ(x) = x,

Jφ is defined by (5.1). By Proposition 12 in [18], Tε : X → 2X∗
is a bounded

maximal monotone mapping with D(Tε) = X and 0 = Tε(0), thus Tε is a generalized

pseudo-monotone mapping. Let ŵ ∈ Tε(x∗). The monotonicity of Tε implies that

∀wε ∈ Tε(y), 〈wε − ŵ, y − x∗〉 ≥ 0. Hence, from the condition (c), we have

lim
y∈X,‖y‖→∞

inf
wε∈Tε(y),v∈T0(y)

〈wε + v, y − x∗〉
‖y‖

≥ lim
y∈E,‖y‖→∞

inf
v∈T0(y)

{〈v, y − x∗〉+ 〈ŵ, y − x∗〉}
‖y‖

= +∞.

(5.14)

That is, Tε+T0 satisfies the condition (a). By Lemma 5.2.4, there exist yε ∈ K, wε ∈
Tε(yε) and vε ∈ T0(yε) such that

〈wε + vε, x− yε〉 ≥ 0,∀x ∈ K. (5.15)

We claim that there exists 0 < ε < ε0, such that {yε} (ε > 0) is bounded. If it is

not so, then without loss of generality, we may assume that ‖yεj
‖ → ∞ as j →∞,

where εj → 0 as j →∞. It follows from (5.14) and (5.15) that

0 ≥ lim
j→∞

inf
wεj∈Tεj (yεj ),vεj∈T0(yεj )

〈wεj
+ vεj

, yεj
− x∗〉

‖yεj
‖ = +∞,

which is impossible. Thus, {yε} (ε > 0) is bounded. Consequently, {wε} and {vε}
are bounded as well. There exists a M > 0 such that ‖yε‖ ≤ M, ‖wε‖ ≤ M, ‖vε‖ ≤
M(0 < ε < ε0). It implies from the definition of Tε that yε ∈ (T−1 +εJ−1)wε. Hence

there exists xε ∈ D(T ) such that wε ∈ T (xε) and εwε ∈ J(yε − xε), that is

‖yε − xε‖ = ε‖wε‖ ≤ εM ≤ ε0M. (5.16)

We have ‖xε‖ ≤ (ε0 + 1)M . We may assume that yεj
⇀ y0, wεj

⇀ w0, vεj
⇀ v0 and

xεj
⇀ x0, where εj → 0 as j →∞. By (5.16), we get x0 = y0 and

lim
j→∞

〈wεj
, xεj

− yεj
〉 = 0. (5.17)

Let w̄ ∈ T (y0). Since wεj
∈ T (xεj

) and T is a monotone mapping,

〈wεj
, xεj

− y0〉 = 〈wεj
− w̄, xεj

− y0〉+ 〈w̄, xεj
− y0〉 ≥ 〈w̄, xεj

− y0〉.

Thus,

lim inf
j→∞

〈wεj
, xεj

− y0〉 ≥ 0. (5.18)
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It implies from (5.15), (5.17) and (5.18) that

lim supj→∞〈vεj
, yεj

− y0〉 ≤ lim supj→∞(〈wεj
+ vεj

, yεj
− y0〉 − 〈wεj

, yεj
− y0〉)

≤ − lim infj→∞〈wεj
, xεj

− y0〉+ limj→∞〈wεj
, xεj

− yεj
〉

≤ 0.

It implies from the generalized pseudo-monotonicity of T0 that v0 ∈ T0(y0) and

lim
j→∞

〈vεj
, yεj

〉 = 〈v0, y0〉. (5.19)

This, combined with (5.15) and wεj
∈ T (xεj

), yields

lim sup
j→∞

〈wεj
, xεj

− y0〉 ≤ lim sup
j→∞

〈wεj
, xεj

− yεj
〉+ lim sup

j→∞
〈wεj

, yεj
− y0〉 ≤ 0.

Thus, by the generalized pseudo-monotonicity of T , we have w0 ∈ T (w0) and

lim
j→∞

〈wεj
, yεj

〉 = lim
j→∞

〈wεj
, xεj

〉+ lim
j→∞

〈wεj
, yεj

− xεj
〉 = 〈w0, y0〉. (5.20)

Again using (5.15), (5.19) and (5.20), we obtain w0 ∈ T (w0), v0 ∈ T0(y0) and

(w0 + v0, x− y0) ≥ 0,∀x ∈ K.

Theorem 5.3.4 Let T : X → 2X∗
be a maximal monotone mapping (not necessarily

bounded) with D(T ) = X and T0 : K → X∗ be a quasi-bounded finitely continuous

T -pseudo-monotone mapping. Assume 0 ∈ K and there exists x∗ ∈ K such that

the condition (c) given in Theorem 5.3.3 is satisfied. Then VIP(T + T0, K) has a

solution.

Proof : We still consider the generalized Yosida approximations of T : Tε = (T−1+

εJ−1)−1. Then Tε : E → 2E∗ is a bounded maximal monotone mapping with

D(Tε) = E and 0 = Tε(0). Similar to the proof of Theorem 5.3.3, we can prove that

Tε + T0 satisfies the condition (a). Thus, by Lemma 5.2.5, there exist yε ∈ K, wε ∈
Tε(yε) such that

〈wε + T0(yε), x− yε〉 ≥ 0,∀x ∈ K. (5.21)

Similarly, {yε}, {T0(yε)} and {wε} (ε > 0) are bounded. Since wε ∈ Tε(yε),

yε ∈ (T−1 + εJ−1)wε.
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Hence there exists xε ∈ D(T ) such that wε ∈ T (xε) and εwε ∈ J(yε − xε), that is

‖xε‖ ≤ ‖yε − xε‖+ ‖yε‖ = ε‖wε‖+ ‖yε‖.

Thus {xε} (ε > 0) is bounded. Passing if necessary to a subsequence, we may assume

that yεj
⇀ y0, wεj

⇀ w0, T0(yεj
) ⇀ v0 and xεj

⇀ x0, where εj → 0 as j → ∞. The

generalized pseudo-monotonicity of Tε and Proposition 2 of [18] that

lim inf
j→∞

〈wεj
, xεj

− y0〉 ≥ 0.

This and (5.21) imply,

lim supj→∞〈T0(yεj
), yεj

− y0〉 ≤ lim supj→∞(〈wεj
+ T0(yεj

), yεj
− y0〉 − 〈wεj

, yεj
− y0〉)

≤ − lim infj→∞〈wεj
, xεj

− y0〉+ limj→∞〈wεj
, xεj

− yεj
〉

≤ 0.

Since T0 is T -pseudo-monotone, we have

lim〈T0(yεj
), yεj

〉 = 〈v0, y0〉,

and v0 = T0(y0). Again by (5.21), we obtain that

lim sup
j→∞

〈wεj
, yεj

− y0〉 ≤ 0.

Hence, limj→∞〈wεj
, yεj

〉 = 〈w0, y0〉, and w0 ∈ T (w0). Therefore,

(w0 + v0, x− y0) ≥ 0,∀x ∈ K.

Remark 5.3.1 Since we establish some existence results of a solution of varia-

tional inequality problems for generalized pseudo-monotone or T -pseudo-monotone

perturbations of maximal monotone mappings, by using the same method as the

ones in [60], we can obtain the surjective results for generalized pseudo-monotone

or T -pseudo-monotone perturbations of maximal monotone mappings.

5.4 Existence of an optimal control governed by a

class of monotone type variational inequality

In this section, we assume that W,X are two reflexive Banach spaces, U is a

nonempty, closed set of W and K is a closed and convex cone of X. Let J :
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U ×K → R be a real-valued function and A : K → X∗, F : K → X∗, B : U → X∗

be three given mappings. Consider the following optimal control problem governed

by a variational inequality:

min J(w, u)

subject to (w, u) ∈ U ×K, and u ∈ S(w),
(5.22)

where, for each w ∈ U , S(w) is the solution set of the following abstract variational

inequality problem:

Find u ∈ K : 〈A(u), v − u〉 ≥ 〈F (u)−B(w), v − u〉, ∀v ∈ K. (5.23)

The optimal control problem (5.22) considered here is more general than (1.1)

in the following aspects:

(i) A and B do not need to be linear, F (u) does not need to be a constant

function in X∗ as in (1.1). In the following theorems, we will assume that A or

A− F is a monotone type mapping.

(ii) Hilbert spaces are replaced by reflexive Banach spaces.

In order to obtain the existence of an optimal control for problem (5.22), we

should ensure the existence of a solution of the variational inequality (5.23). That

is, we need to have S(w) 6= φ. In the following we will give a sufficient condition to

ensure that S(w) 6= φ. Recall that the definitions of monotone type mappings have

been introduced in Definition 5.2.1.

Lemma 5.4.1 Assume that W,X are two reflexive Banach spaces, U is a nonempty,

closed set of W and K is a closed and convex cone of X. Suppose that, for each

w ∈ U , the following coercive condition is satisfied:

lim
(w,u)∈U×K,‖(w,u)‖→+∞

〈(A− F )(u) + B(w), u〉 = +∞. (5.24)

Moreover, assume that one of the following conditions is satisfied:

(i) A is a continuous mapping of class (S)+ and F is a continuous and compact

mapping,

(ii) A− F is a continuous, bounded and generalized pseudo-monotone mapping.
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Then, for each w ∈ U , S(w) 6= φ, i.e., the variational inequality problem (5.23) has

a solution.

Proof : Notice that K be unbounded. Taking Br = {v ∈ X : ‖v‖ ≤ r} and

letting Kr = Br ∩K, we get that Kr is a bounded, closed and convex subset of X.

We claim that, for each w ∈ U , there exists ur ∈ Kr such that

〈A(ur), v − ur〉 ≥ 〈F (ur)−B(w), v − ur〉,∀v ∈ Kr. (5.25)

Indeed the arguments used in the proof of [130, Theorem 1] show that

∩M∈Σclw(Vr,M) 6= ∅,

where Σ is the family of all finite-dimensional subspaces M of X with Kr,M :=

Kr ∩M 6= ∅,

Vr,M := {u ∈ Kr : 〈A(u), v − u〉 ≥ 〈F (u)−B(w), v − u〉 ∀v ∈ Kr,M},∀M ∈ Σ,

clw(Vr,M) is the weak closure of Vr,M . Therefore there exists u0 ∈ clw(Vr,M) for all

M ∈ Σ.

For each v ∈ Kr, we may find a finite-dimensional subspace M0 of X such that

u0 ∈ M0 and v ∈ M0. It turns out u0 ∈ clw(Vr,M0) since M0 ∈ Σ. Thus, there exists

{uj} ⊂ VM0 such that uj ⇀ u0, by the definition of Vr,M0 , we have

〈A(uj), u0 − uj〉 ≥ 〈F (uj)−B(w), u0 − uj〉. (5.26)

(i) If A is a continuous mapping of class (S)+ and F is compact, there exists

l0 ∈ X∗ such that F (uj) → l0. Therefore we have that

lim sup
j→∞

〈F (uj)−B(w), uj − u0〉
= lim sup

j→∞
〈F (uj)− l0, uj − u0〉+ lim

j→∞
〈l0, uj − u0〉+ lim

j→∞
〈−B(w), uj − u0〉

≤ 0.

(5.27)

Hence, from (5.26) and (5.27), we have

lim sup
j→∞

〈A(uj), uj − u0〉 ≤ 0.

Since A is a continuous mapping of class (S)+, uj → u0, A(uj) → A(u0). Thus

F (uj) → F (u0). Since v ∈ KM0 , by using the definition of Vr,M0 , we obtain that

〈A(uj), v − uj〉 ≥ 〈F (uj)−B(w), v − uj〉.
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Consequently,

〈A(u0), v − u0〉 ≥ 〈F (u0)−B(w), v − u0〉. (5.28)

(ii) If A−F is a continuous bounded generalized pseudo-monotone mapping, we

may assume that A(uj)− F (uj) ⇀ t0. By (5.26), we get

lim sup
j→∞

〈A(uj)− F (uj), uj − u0〉 ≤ 0.

Therefore, t0 = A(u0)−F (u0) and 〈A(uj)−F (uj), uj〉 → 〈A(u0)−F (u0), u0〉. Hence

(5.28) holds. The variational inequality (5.25) is solvable.

In particular, taking v = 0 in (5.25), we have

〈A(ur), ur〉 ≤ 〈F (ur)−B(w), ur〉. (5.29)

It follows from condition (5.24) that {ur} is bounded (Otherwise if ‖ur‖ → ∞, then

by (5.24) we get that lim‖ur‖→∞〈(A− F )(ur) + B(w), ur〉 = +∞, which contradicts

(5.29)), i.e., ‖ur‖ ≤ M for some real number M > 0. Let r = M +1. Then, for each

v ∈ K, we can choose t ∈ (0, 1) small enough such that z = (1 − t)ur + tv ∈ Kr.

Substituting z into (5.25), we obtain that ur is a solution of the variational inequality

(5.23).

Theorem 5.4.1 Assume that W,X are two reflexive Banach spaces, J(w, u) is a

weakly lower semicontinuous function, B is continuous from the weak topology of

W to the topology of X∗. Assume that the conditions in Lemma 5.4.1 are satisfied.

Then there exists an optimal control w0 ∈ U for problem (5.22).

Proof : From Lemma 5.4.1, it follows that, for each w ∈ U , S(w) 6= φ. Note

that S(w) is the solution set of the variational inequality (5.23) and u ∈ S(w) is

equivalent to u ∈ S(w). Let {(wn, un)}n∈N be a minimizing sequence for problem

(5.22) such that

lim
n→∞

J(wn, un) = inf
w∈U,u∈S(w)

J(w, u). (5.30)

We claim that {(wn, un)}n∈N is bounded. If not so, then there exists a subsequence

{(wnk
, unk

)}k∈N such that ‖(wnk
, unk

)‖ → ∞. It follows from the coercive condition

(5.24) that

lim
k→∞

〈(A− F )(unk
) + B(wnk

), unk
〉 = ∞. (5.31)
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By un ∈ Kwn(0), we have

〈(A− F )un + B(wn), un − v〉 ≤ 0,∀v ∈ K. (5.32)

Let v = 0. Then, we get 〈(A − F )un + B(wn), un〉 ≤ 0, which contradicts (5.31).

Hence, {(wn, un)}n∈N is bounded.

By the reflexivity of W and X, there exists a weakly convergent subsequence

of {(wn, un)}. Without loss of generality, we may assume that (wn, un) ⇀ (w0, u0).

Hence wn ⇀ w0 ∈ W and un ⇀ u0 ∈ X as n → ∞. Since U and K are weakly

closed sets, w0 ∈ U and u0 ∈ K. From (5.32), we have

〈(A− F )un + B(wn), un − u0〉 ≤ 0. (5.33)

Noting that B is continuous from the weak topology of W to the topology of X∗,

we have B(wn) → B(w0).

(i) If A is a continuous mapping of class (S)+ and F is compact, then there exists

an l0 ∈ X∗ such that F (un) → l0. Thus,

lim sup
n→∞

〈F (un)−B(wn), un − u0〉
≤ lim sup

n→∞
〈B(w0)−B(wn), un − u0〉+ lim sup

n→∞
〈F (un)− l0, un − u0〉

+ lim
n→∞

〈−B(w0), un − u0〉+ lim
n→∞

〈l0, un − u0〉
= 0.

(5.34)

(5.33) and (5.34) imply

lim sup
n→∞

〈A(un), un − u0〉 ≤ 0. (5.35)

Noting that un ⇀ u0 and A is a continuous mapping of class (S)+, it implies that

un → u0. Therefore, by (5.32), we have

supv∈K〈(A− F )(u0) + B(w0), u0 − v〉 ≤ 0.

That is u0 ∈ Kw0(0).

(ii) If A − F is a continuous bounded generalized pseudo-monotone mapping,

then we may assume that A(un)− F (un) ⇀ s0. Using (5.33), we have

lim sup
n→∞

〈(A− F )un, un − u0〉 ≤ 0.

Thus s0 = (A−F )u0 and 〈(A−F )un, un〉 → 〈(A−F )u0, u0〉. It follows from (5.32)

that u0 ∈ Kw0(0).
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Since J(w, u) is a weakly lower semicontinuous function, it follows from (5.30)

that

J(w0, u0) ≤ lim inf
n→∞

J(wn, un) = inf
w∈U,u∈S(w)

J(w, u).

So,

J(w0, u0) = inf
w∈U,u∈S(w)

J(w, u).

Then, w0 ∈ U is an optimal control for problem (5.22).

Remark 5.4.1 If Ā : U ×K → X∗ is strongly monotone in u ∈ K and uniformly

in w ∈ U , i.e., there exists a µ > 0 such that

〈Ā(w, u′)− Ā(w, u), u′ − u〉 ≥ µ||u′ − u||2,
∀(u′, w), (u,w) ∈ U ×K,

(5.36)

then A(w̄, ·) is a continuous mapping of class (S)+ for each w̄ ∈ U . In fact, for each

w̄ ∈ U , if un ⇀ u0 ∈ K and

lim sup
n→∞

〈Ā(w̄, un), un − u0〉 ≤ 0,

we have lim
n→∞

〈Ā(w̄, u0), un−u0〉 = 0. Hence, it follows from (5.36) that ‖un−u0‖ → 0,

i.e., un → u0. Therefore, A(w̄, ·) is a continuous mapping of class (S)+ for each

w̄ ∈ U .

We consider the following optimal control problem of strongly monotone varia-

tional inequality (see [122]):

min J(w, u)

subject to (w, u) ∈ U ×K, 〈Ā(w, u), v − u〉 ≥ 0,
(5.37)

where Ā is strongly monotone in u ∈ K and uniformly in w ∈ U .

Now we will derive an existence result for the optimal control problem (5.37). It

is clear that if Ā : U × K → X∗ is strongly monotone in u ∈ K and uniformly in

w ∈ U , then Ā satisfies the coercive condition (5.24). By Lemma 5.4.1 and Theorem

5.4.1, it follows that, for each w ∈ U , S(w) 6= φ and the following result holds.

Corollary 5.4.1 Assume that W,X are two reflexive Banach spaces, J(w, u) is a

weakly lower semicontinuous function, Ā : U × K → X∗ is strongly monotone in

u ∈ K and uniformly in w ∈ U . Then, there exists an optimal control w0 ∈ U for

problem (5.37).

105



5.5 Optimal control problem governed by a quasi-

linear elliptic variational inequality

Let Ω be a bounded domain of RN with smooth boundary, let f : Ω×R → R be a

given function. Recall that W 1,p
0 (Ω) is the completion of C∞

0 (Ω) with respect to the

norm ‖u‖ =
{∫

Ω
|∇u|p}1/p

(1 < p < N). Let U be a nonempty, closed and convex

subset of the space Lq(Ω) (1 < q < p∗ = Np
N−p

), let τ : U → Lq′(Ω)(q′ = p
p−1

) be a

mapping. Denote the Sobolev space W 1,p
0 (Ω) (1 < p < N) and

{u ∈ W 1,p
0 (Ω) : u(x) ≥ 0 a.e. in Ω}

as X and K, respectively. It is clear that K is a closed and convex cone of X. Denote

the space Lq(Ω) (1 < q < p∗ = Np
N−p

) as W. It is well-known that X = W 1,p
0 (Ω) is

reflexive for p > 1.

In this section, we will consider the following optimal control problem. For each

w ∈ U , we define u ∈ K (the state of the system) as the solution of the following

quasilinear elliptic variational inequality
∫

Ω

|∇u|p−2∇u · ∇(v − u) ≥
∫

Ω

(f(x, u)− τ(w))(v − u), ∀v ∈ K, (5.38)

where 1 < p < N . We also denote the solution set of the variational inequality

(5.38) as S(w). We define the cost function J as

J(w, u) =

∫

Ω

g(x, u) +

∫

Ω

l(x,w), (5.39)

where g : Ω × K → R+, l : Ω × U → R+. This section is concerned with the

existence of w0 ∈ U (optimal control), u0 ∈ K and u0 ∈ S(w0), such that

J(w0, u0) = min
(w,u)∈U×K,u∈S(w)

J(w, u). (5.40)

In case p = 2, (5.38) become a semilinear elliptic variational inequality. The

optimal control problem governed by a semilinear elliptic variational inequality was

studied by many authors in different aspects. For example, see [2], [10], [53], [76],

[87] and the references cited therein. The optimal control problem governed by a

quasilinear elliptic variational inequality was investigated by Lou, Ye and Chen in

[77] and [124]. In [77] and [124], they introduced an approximate problem, gave

estimates of optimal pairs for the approximate problem, and proved that the opti-

mal pairs for the approximate problem convergence to the solution of the original
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problem. In this section, by using the results obtained in Sections 5.4, we obtain

several existence results of optimal controls of the optimal control problem governed

by the quasilinear elliptic variational inequality.

Recall that the p-Laplacian defined by

∆pu := div(|∇u|p−2∇u),

λ1 := inf{
∫

Ω

|∇u|p :

∫

Ω

|u|p = 1, u ∈ X} > 0

is simple and isolated, see for example [31] for details.

Define A : K → X∗, F : K × R → X∗ and B : U → X∗ as follows: for all

u, v ∈ K and w ∈ U ,

〈A(u), v〉 : =
∫

Ω
|∇u|p−2∇u∇v,

〈F (u), v〉 : =
∫

Ω
f(x, u)v,

〈B(w), v〉 : =
∫

Ω
τ(w)v,

(5.41)

where 〈·, ·〉 stand for the duality pairing between X and X∗.

Actually, solving (5.38) is equivalent to solving the abstract variational inequality

(5.23).

In order to prove existence results for the quasilinear elliptic variational inequal-

ity and the optimal control problem governed by the quasilinear elliptic variational

inequality, we prove the following lemma first.

Lemma 5.5.1 Let A,F, B be defined by (5.41). Then

(i) A : K → X∗ is a continuous mapping of class (S)+.

(ii) If f : Ω×R → R is a continuous function and satisfies

lim
|t|→∞

f(x, t)

a(x)ts−1
= λ0, (5.42)

uniformly a.e. with respect to x ∈ Ω, where 1 < s < p∗, 0 ≤ a(x) ∈ Lr(Ω), r =

p∗/(p∗ − s). Then, F : K ×R → X∗ is a compact and continuous mapping.

(iii) If τ : U → Lq′(Ω)(q′ = p
p−1

) is a weakly continuous mapping, then B : U → X∗

is continuous from the weak topology of W to the topology of X∗.
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Proof : (i) We prove that the mapping A : K → X∗ is of class (S)+. Indeed, let

un ⇀ u0 in X and lim sup
n→∞

〈A(un), un − u0〉 ≤ 0. Then,

lim
n→∞

∫

Ω

|∇u0|p−2∇u0(∇un −∇u0) = 0, (5.43)

and

lim sup
n→∞

∫

Ω

|∇un|p−2∇un(∇un −∇u0) ≤ 0. (5.44)

Since

〈A(u)− A(v), u− v〉
=

∫
Ω
(|∇u|p−2∇u− |∇v|p−2∇v)(∇u−∇v)

=
∫

Ω
|∇u|p +

∫
Ω
|∇v|p − ∫

Ω
|∇u|p−2∇u · ∇v − ∫

Ω
|∇v|p−2∇v · ∇u

≥ (‖u‖p−1 − ‖v‖p−1)(‖u‖ − ‖v‖),

(5.45)

it follows from (5.43), (5.44) and (5.45) that

lim sup
n→∞

(‖un‖p−1 − ‖u0‖p−1)(‖un‖ − ‖u0‖)
≤ lim sup

n→∞
〈A(un), un − u0〉 − lim

n→∞
〈A(u), un − u0〉

≤ 0.

Hence, lim
n→∞

‖un − u‖ = 0, and consequently un → u in X, i.e., A is a mapping of

class (S)+. Similar to the result presented in Lemma 3.3 of [32], we note that A is

continuous.

(ii) By condition (5.42), for ε0 > 0, there exists an M0 > 0, such that

| f(x, t)

a(x)ts−1
− λ0| < ε0, ∀t(|t| > M0).

That is,

| f(x, t) |< (ε0 + λ0)a(x)|t|s−1, ∀t(|t| > M0).

This and the continuity of f(x, t) imply that there exists a constant c0 > 0 such

that

| f(x, t) |≤ c0 + (ε0 + λ0)a(x)|t|s−1, ∀t(t ∈ R). (5.46)

Thus,

〈F (u), v〉 ≤ c0

∫

Ω

|v|+ (ε0 + λ0)

∫

Ω

a(x)|u|s−1|v|. (5.47)

Since 0 ≤ a(x) ∈ Lr(Ω), and r = p∗/(p∗− s), it follows from Hölder’s inequality and

Sobolev’s inequality that
∫

Ω

|v| ≤ ( ∫

Ω

1
)1/p∗′( ∫

Ω

|v|p∗)1/p∗ ≤ c1‖v‖,
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and ∫
Ω

a(x)|u|s−1|v| ≤ ( ∫
Ω

a(p∗)′|u|(s−1)(p∗)′
)(s−1)/p∗( ∫

Ω
|v|p∗)1/p∗

≤ ( ∫
Ω

ar
)1/r( ∫

Ω
|u|p∗)(s−1)/p∗( ∫

Ω
|v|p∗)1/p∗

≤ c2‖u‖s−1‖v‖,
for some constants c1, c2 > 0. Therefore, by virtue of (5.47), F is well defined. We

will show the compact continuity of F .

Let un be a bounded sequence in X, where X is reflexive. If necessary, through

a subsequence, we can assume that un ⇀ u0 in X. Noting that 1 < s < p∗, we have

ρ = (s − 1)(p∗)′ = s−1
p∗−1

p∗ < p∗. By Theorem 2.5.3, without loss of generality, we

may assume that un → u0 in Lρ(Ω). Noting that s − 1 = ρ/(p∗)′, and using (5.46)

and the continuity of the Nemytskii operator u → f(x, u) from Lρ(Ω) to L(p∗)′(Ω)

([68], Theorem 2.1), we get

∫

Ω

|f(x, un)− f(x, u0)|(p∗)′ → 0,

and hence

sup
‖v‖≤1

∫

Ω

|(f(x, un)− f(x, u0))v| ≤ c3

( ∫

Ω

|f(x, un)− f(x, u0)|(p∗)′
)1/(p∗)′ → 0,

for some constant c3 > 0. Thus F is a compact and continuous mapping.

(iii) Let wn ⇀ w0 in U . Since τ : U → Lq′(Ω) is a weakly continuous mapping,

we have τ(wn) → τ(w0) in Lq′(Ω). Hence,

‖B(wn)−B(w0)‖∗ = sup‖v‖≤1 |〈B(wn)−B(w0), v〉|
≤ sup‖v‖≤1

( ∫
Ω
|τ(wn)− τ(w0)|q′

)1/q′( ∫
Ω
|v|q)1/q

≤ c4

( ∫
Ω
|τ(wn)− τ(w0)|q′

)1/q′

→ 0,

for some constant c4 > 0. Therefore lim
n→∞

B(wn) = B(w0) in X∗.

Remark 5.5.1 Note that the conditions that 1 < q′ < p∗(q′ = p
p−1

) and τ : U → W

is an identity mapping are sufficient to guarantee that B : U → X∗ is continuous

from the weak topology of W to the topology of X∗. In fact, recall that W = Lq(Ω),

U ∈ W and (Lq(Ω))∗ = Lq′(Ω). If 1 < q′ < p∗ and ‖v‖ ≤ 1, then by using Sobolev

embedding theorem, the embedding W 1,p
0 (Ω) ↪→ Lq′(Ω) is compact and

∫

Ω

|v|q′ ≤ C0||v|| ≤ C0,
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for some constant C0 > 0. If wn ⇀ w0 in U , the above inequality implies

‖B(wn)−B(w0)‖∗ = sup‖v‖≤1

∫
Ω
(τ(wn)− τ(w0))v

= sup‖v‖≤1

∫
Ω
(wn − w0)v

→ 0.

Hence, we also have lim
n→∞

B(wn) = B(w0) in X∗.

Theorem 5.5.1 Let 1 < p < N and 1 < q < p∗. Suppose that f : Ω×R → R is a

continuous function and satisfies

lim
|t|→∞

f(x, t)

a(x)tp−1
= λ0, (5.48)

almost uniformly with respect to x ∈ Ω, where 0 ≤ a(x) ∈ L∞(Ω) and 0 ≤ λ0‖a‖∞ <

λ1, λ1 is the first eigenvalue of the p-Laplacian with the zero boundary value. If

τ : U → Lq′(Ω)(q′ = p
p−1

) is a mapping such that τ(U) is a bounded set, then the

variational inequality problem (5.38) has a solution.

Proof : Notice that K = {u ∈ W 1,p
0 (Ω) : u(x) ≤ ψ(x) a.e. in Ω} is a closed and

convex subset of X = W 1,p
0 (Ω) with 0 ∈ K. Since f satisfies (5.48), it satisfies (5.42)

in Lemma 5.5.1 with s = p. By Lemma 5.5.1, we get that A is a continuous mapping

of class (S)+, and F is a compact continuous mapping, B is continuous from the

topology of W to the weak topology of X∗.

By Lemma 5.4.1, we will complete the proof by showing that A,F and B satisfy

the coercive condition (5.24).

Let I1 := 〈A(u), u〉+ 〈B(w), u〉 and I2 := 〈F (u), u〉. Then,

〈(A− F )(u) + B(w), u〉 = I1 − I2.

Since τ(U) is bounded, there exists a constant C̄ > 0 such that ‖τ(w)‖ ≤ C̄, ∀w ∈ U .

Thus,

I1 ≥ ‖u‖p − C̄‖u‖. (5.49)

Let ε1 > 0 satisfying (ε1 + λ0)‖a‖∞ < λ1. Since 0 ≤ λ0‖a‖∞ < λ1, it follows from

(5.48) that, for this ε1 > 0, there exists an M1 > 0, such that

| f(x, t)

a(x)ts−1
− λ0| < ε1, ∀t (|t| > M1).
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That is,

| f(x, t) |< (ε0 + λ0)a(x)|t|p−1, ∀t (|t| > M1).

Denote ΩM1 = {x ∈ Ω : |u(x)| ≤ M1}. Then by the above inequality and the

Sobolev imbedding theorem, we have

|I2| ≤
∫

ΩM1

|f(x, u, λ)||u|+
∫

Ω−ΩM1

|f(x, u, λ)||u| ≤ c5 + (ε1 + λ0)‖a‖∞
∫

Ω

|u|p−1

(5.50)

for some positive constant c5. Notice that λ1 = inf{∫
Ω
|∇u|p :

∫
Ω
|u|p = 1, u ∈ X} >

0, which implies that λ1

∫
Ω
|u|p ≤ ‖u‖p. It follows from (5.49) and (5.50) that

〈(A− F )(u) + B(w), u〉 ≥ |I1|−|I2| ≥
(
1− (ε1 + λ0)‖a‖∞

λ1

)‖u‖p−C̄‖u‖−c5. (5.51)

Since 0 < (ε1 + λ0)‖a‖∞ < λ1 and 1 < p < N , the right-hand side of (5.51) tends to

+∞ as ‖u‖ → ∞. Therefore, the conclusion holds by virtue of Lemma 5.4.1.

Theorem 5.5.2 Suppose that f : Ω×R → R is a continuous function and satisfies

condition (5.42) in Lemma 5.5.1 with 1 < s < p, let τ : U → Lq(Ω) is a weakly

continuous mapping. Then, the variational inequality problem (5.38) has a solution.

Proof : Similar to the proof as that of Theorem 5.5.1, we only need to show A,F

and B satisfy the coercive condition (5.24). By condition (5.42), for each ε > 0,

there exists an M2 > 0, such that

| f(x, t)

a(x)ts−1
− λ0| < ε, ∀t(|t| > M2).

That is,

| f(x, t) |< (ε0 + λ0)a(x)|t|s−1, ∀t(|t| > M2).

Since f(x, t) is bounded in Ω × {t ∈ R : |t| ≤ M2}, there exists a constant c6 > 0

such that

| f(x, t) |≤ c6 + (ε + λ0)a(x)|t|s−1, ∀t ∈ R.

Thus,

〈F (u), u〉 ≤ c6

∫

Ω

|u|+ (ε + λ0)

∫

Ω

a(x)|u|s.

Since 0 ≤ a(x) ∈ Lr(Ω), and r = p∗/(p∗− s), it follows from Hölder’s inequality and

Sobolev’s inequality that

〈F (u), u〉 ≤ c7‖u‖+ (ε + λ0)
( ∫

Ω
ar

)1/r( ∫
Ω
|u|p∗)s/p∗

≤ c8‖u‖+ c9‖u‖s,
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for some positive constants c7, c8 and c9. Thus,

〈(A− F )(u) + B(w), u〉 ≥ (1− c9‖u‖s−p)‖u‖p − ‖τ(w)‖‖u‖ − c8.

Since 1 < s < p and τ(U) is bounded,

lim
‖u‖→∞

〈(A− F )(u) + B(w), u〉 = +∞.

By Lemma 5.4.1, the variational inequality problem (5.38) has a solution.

Lemma 5.5.2 Let η > 1. Suppose that g : R → R is a C1 convex function such

that

(i) |g(t)| ≤ C1|t|η (∀t ∈ R), for some constant C1.

(ii) |g′(t)| ≤ C2|t|η−1 (∀t ∈ R), for some constant C2.

Then, the function Q defined by

Q(u) =

∫

Ω

g(u), u ∈ Lη(Ω),

is weakly lower semicontinuous.

Proof : By Example 1.3 in [20], we know that the function Q is Gâteaux differ-

entiable in the space Lη(Ω) and

Q′(u, ϕ) = Q′(u) · ϕ =

∫

Ω

g′(u)ϕ.

Since g is a convex function, Q : Lη(Ω) → R is convex. It is clear that Q′(u) ∈ Lη′(Ω)

(the dual space of Lη(Ω)). Thus, by Proposition 4.1 in [20], we conclude that Q is

weakly lower semicontinuous.

In the following theorems, we denote

J(w, u) =

∫

Ω

g(u) +

∫

Ω

l(w),

where g, l : R → R are two functions satisfying some conditions to be specified

later.
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Theorem 5.5.3 Suppose that all the conditions given in Theorem 5.5.1 or Theo-

rem 5.5.2 are satisfied. Let p, q defined as before, i.e., 1 < p < N, 1 < q < p∗.

Furthermore, assume that g, l : R → R are two C1 convex functions such that

(i) |l(t)| ≤ C3|t|p and |g(t)| ≤ C3|t|q (∀t ∈ R), for some constant C3;

(ii) |l′(t)| ≤ C4|t|p−1 and |g′(t)| ≤ C4|t|q−1 (∀t ∈ R), for some constant C4.

Then, there exists an optimal control w0 ∈ U for problem (5.40).

Proof : Since

J(w, u) =

∫

Ω

g(u) +

∫

Ω

l(w).

Let (wk, uk) ⇀ (w′, u′) in Lq(Ω) × Lp(Ω). Then, wk ⇀ w′ in Lq(Ω) and uk ⇀ u′ in

Lp(Ω). By Lemma 5.5.2, we have
∫

Ω

g(u′) ≤ lim inf
k→∞

∫

Ω

g(uk)

and ∫

Ω

l(w′) ≤ lim inf
k→∞

∫

Ω

l(wk).

Hence, J : Lq(Ω)× Lp(Ω) → R is weakly lower semicontinuous.

Assume that (wn, un) ⇀ (w0, u0) in U ×K. Then wn ⇀ w0 in U ⊂ Lq(Ω) and

un ⇀ u0 in K. By Theorem 2.5.3, when Ω is bounded, the imbedding W 1,p
0 (Ω) →

Lp(Ω) is a compact one. Hence, un → u0 in Lp(Ω) and (wn, un) ⇀ (w0, u0) in

Lq(Ω)× Lp(Ω). Note that J : Lq(Ω)× Lp(Ω) → R is weakly lower semicontinuous.

Thus,

lim inf
n→∞

J(wn, un) ≥ J(w0, u0).

Therefore, J : U ×K → R is weakly lower semicontinuous.

Let A,B and F be defined as (5.41). Then, by Lemma 5.5.1, A is a continuous

mapping of class (S)+, F is a compact continuous mapping, B is continuous from the

topology of W to the weak topology of X∗. Since all the conditions in Theorem 5.5.1

or Theorem 5.5.2 are satisfied, it follows from Theorem 5.5.1 or Theorem 5.5.2 that

the variational inequality (5.38) has a solution. That is, the variational inequality

(5.23) has a solution. Furthermore, A,B and F satisfy all the conditions in Theorem

5.4.1, so from Theorem 5.4.1, there exists an optimal control w0 ∈ U for problem

(5.40).
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Theorem 5.5.4 Suppose that all the conditions given in Theorem 5.5.1 or Theorem

5.5.2 are satisfied. Let 1 < α, q < p∗, g(u) = C5|u − ud|α and l(w) = C6|w − wd|q,
for some constants C5 and C6, where ud ∈ Lα(Ω), wd ∈ Lq(Ω). Then, there exists

an optimal control w0 ∈ U for problem (5.40).

Proof : Note that

J(w, u) =
∫

Ω
g(u) +

∫
Ω

l(w)

= C5

∫
Ω
|u− ud|α + C6

∫
Ω
|w − wd|q

= C5‖u− ud‖α
Lα + C6‖w − wd‖q

Lq .

By the weakly lower semi-continuity of the norm, J : Lq(Ω)×Lα(Ω) → R is weakly

lower semicontinuous.

Let (wn, un) ⇀ (w0, u0) ∈ U×K. Then, wn ⇀ w0 in U and un ⇀ u0 in K. Since

1 < α < p∗, it follows from Theorem 2.5.3 that the imbedding W 1,p
0 (Ω) → Lα(Ω) is

a compact one. Hence, un → u0 in Lα(Ω) and (wn, un) ⇀ (w0, u0) in Lq(Ω)×Lα(Ω).

Thus, by using the weak lower-semi continuity of J : Lq(Ω) × Lp(Ω) → R, J :

U ×K → R is weakly lower semicontinuous. Similar to the proof of Theorem 5.5.3,

we conclude that there exists an optimal control w0 ∈ U for problem (5.40).
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Chapter 6

Optimal Control Problems

Governed by a Variational

Inequality via Nonlinear

Lagrangian Methods

6.1 Introduction

The study of an optimal control problem where the state of the system is defined by

a variational inequality problem has been widely investigated by many authors in

different aspects. See Adams and Lenhart [2], Barbu [7], Bergounioux [10, 11], He

[53], Lions [74], Mignot and Puel [87], Ye and Chen [124], for example. Lagrangian

and penalty function methods have been used in the study of theory and method-

ology for optimal control problems (see [10], [84], [85] and [97]). These methods

can be used to approximate the optimal control problem governed by a variational

inequality. Recently, a class of nonlinear Lagrangian functions was introduced and

applied to establish a zero duality gap result for a nonconvex optimization problem

in [100] and [117]. The zero duality gap property for a nonconvex optimization

problem is an important property to be utilized in the development of primal-dual

methods, as the solution of the original constrained optimization problem can be

obtained via solving its dual problem.

In this chapter, we consider optimal control problems governed by a variational
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inequality problem for monotone type mappings. We deal here with quite general

variational inequalities, which include the ones studied in [10], [11], [74] and [85]

as special cases. We propose a nonlinear Lagrangian approach for solving these

problems. Similar to the results given in [100], we establish that the lower semicon-

tinuous property of the perturbation function of the optimal control problem at 0 is

an equivalent condition for the existence of the zero duality gap property between

the optimal control problem and its nonlinear Lagrangian dual problem. But this

lower semicontinuous property of the perturbation function at 0 is quite abstract and

cannot be easily verified. To overcome this difficulty, we show that if the variational

inequalities associated with optimal control problems are ones for some monotone

type mappings, then the lower semicontinuous property of the perturbation function

at 0 can be guaranteed. Therefore, the zero duality gap is obtained.

The outline of this chapter is as follows:

In Section 6.2, motivated by the idea presented in [100], we introduce the concept

of a modified nonlinear Lagrangian function and obtain a necessary and sufficient

condition for the zero duality gap property between the optimal control problem and

its nonlinear Lagrangian dual problem. In Section 6.3, we obtain the zero duality

gap property for the optimal control problem governed by variational inequalities

involving monotone type mappings and its dual problem. In Section 6.4, we show

that the optimal solution set of the power penalty problem is a nonempty bounded

set and every weak limit point of a sequence of optimal solutions generated by the

power penalty problem is a solution of the optimal control problem. In Section 6.5,

we apply our results to an example where the variational inequality leads to a linear

elliptic obstacle problem.

6.2 Lower semicontinuous property of the pertur-

bation function

In this section, we assume that W and X are two Banach spaces, U is a nonempty

closed set of W and K is a closed and convex cone of X. Let J : U ×K → R be

a given function and A : K → X∗, F : K → X∗ and B : U → X∗ be three given

mappings. The optimal control problem governed by a variational inequality is the
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following minimization problem:

min J(w, u)

s.t. (w, u) ∈ U ×K, and u ∈ S(w),
(6.1)

where, for each w ∈ U , S(w) is the solution set of the following variational inequality

problem:

Find u ∈ K : 〈A(u), v − u〉 ≥ 〈F (u)−B(w), v − u〉, ∀v ∈ K. (6.2)

The optimal control problem (6.1) includes the ones studied in [10], [11], [74] and

[85] as special cases.

For each w ∈ U and y ∈ R, we define

gw(u) = supv∈K〈(A− F )(u) + B(w), u− v〉, (6.3)

Kw(y) = {u ∈ K, gw(u) ≤ y}. (6.4)

Then, gw(u) ≥ 0 and Kw(0) = {u ∈ K : gw(u) = 0} = S(w).

Define the perturbation function β as

β(y) = inf
w∈U, u∈Kw(y)

J(w, u), y ∈ R. (6.5)

It is clear that β(0) is the optimal value of problem (6.1).

Definition 6.2.1 Let U,K,W and X be defined as before, and let Z be a subset

in R, P : R × Z → R be a function. A nonlinear Lagrangian function LP :

U ×K × (0, +∞) → R for problem (6.1) is defined as

LP (w, u, d) = P (J(w, u), dgw(u)).

For each d ∈ R+, the function

FP (d) = inf
(w,u)∈U×K

LP (w, u, d)

is called its nonlinear Lagrangian dual function. The equality

β(0) = sup
d∈R+

FP (d) (6.6)

is called the zero duality gap property.

Let us make the following assumptions on the function P :
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(Pi) If y1 ≤ y2, then P (y1, z) ≤ P (y2, z),∀z ∈ Z.

(Pii) P (y, 0) = y, ∀y ∈ R+.

(Piii) P (y, z) ≥ y, ∀(y, z) ∈ R+ × Z and lim
z∈Z,|z|→∞

P (y, z) ≥ β(0).

Remark 6.2.1 We notice that if a real-valued function P defined on a subset

R+×V of R1+m satisfies (i) P is increasing, i.e., y1 ≤ y2, z1 ≤ z2 implies P (y1, z1) ≤
P (y2, z2), where (uj, vj) ∈ R+ × V, j = 1, 2; (ii) P (y, 0m) = y for all y ∈ R+,

where 0m is the origin of the space Rm and 0m ∈ V ; (iii) there exist numbers

a1 > 0, ..., am > 0 such that P (y0, y1, ..., ym) ≥ max(y0, a1y1, ..., amym) for all y0 > 0,

(y0, y1, ..., ym) ∈ Rm, then it is not difficult to check that P satisfies assumptions

(Pi), (Pii) and (Piii) with Z = V ∩R+
m. Conditions (i), (ii) and (iii) are the ones

used in [100]. However, the converse is not true. The following example confirms

this assertion.

Example 6.2.1. Let P be a real-valued function defined on R2
+ by

P (y, z) =





y, if z = 0,

y + (yz)1/3| sin 1
z
|, if 0 < z < 2

π
,

y + (yz)(1/3), if z ≥ 2
π
.

It is easy to check that P satisfies assumptions (Pi), (Pii) and (Piii), but P is not

increasing in both y and z, and there is no a > 0 such that p(y, z) ≥ max(y, az).

In the following, we assume, without loss of generality, that, for some m0 ≥ 0,

J(w, u) ≥ m0,∀(w, u) ∈ U ×K.

Motivated by the idea reported in [100], we derive a necessary condition for the zero

duality gap property in the following lemma.

Lemma 6.2.1 Assume that W and X are two Banach spaces, and P is a continuous

function satisfying (Pi) and (Pii). If the zero duality gap property (6.6) holds, then

the perturbation function β is lower semicontinuous at the origin.

Proof : On the contrary, suppose that there exist a δ > 0 and a sequence {yk} ⊂ R

such that yk → 0 as k →∞ and

β(yk) ≤ β(0)− δ, k = 1, .... (6.7)
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Since the zero duality gap property (6.6) holds, there exists a d ∈ R+ such that

β(0) < FP (d) + δ
2

= inf
(w,u)∈U×K

P (J(w, u), dgw(u)) + δ
2

≤ inf
w∈U, u∈Kw(yk)

P (J(w, u), dgw(u)) + δ
2
.

(6.8)

By (6.5), we have

β(yk) = inf
w∈U,u∈Kw(yk)

J(w, u).

Thus, there exist wk ∈ U, uk ∈ Kwk
(yk), such that

J(wk, uk) ≤ β(yk) +
δ

4
.

Since P satisfies (Pi), the above inequality and (6.8) imply

β(0) ≤ P (J(wk, uk), dgwk
(uk)) + δ

2

≤ P (β(yk) + δ
4
, dgwk

(uk)) + δ
2
.

(6.9)

Because wk ∈ U, uk ∈ Kwk
(yk),

gwk
(uk) ≤ yk → 0, as k →∞. (6.10)

Noting that P is continuous and satisfies (Pi) and (Pii). Thus, (6.9), combined with

(6.7) and (6.10), yields

β(0) ≤ lim
k→∞

P (β(0)− 3δ
4
, h(dgwk

(uk))) + δ
2

= P (β(0)− 3δ
4
, 0) + δ

2

= β(0)− δ
4
,

which is a contradiction.

We will give a sufficient condition for the zero duality gap property in the fol-

lowing.

Lemma 6.2.2 Assume that W and X are two Banach spaces, and P satisfies as-

sumptions (Pi), (Pii) and (Piii). Let −∞ < β(0) < +∞. If the perturbation func-

tion β is lower semicontinuous at the origin, then the zero duality gap property (6.6)

holds.
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Proof : Since −∞ < β(0) < +∞,

FP (d) = inf
(w,u)∈U×K

P (J(w, u), dgw(u))

≤ inf
(w,u)∈U×Kw(0)

P (J(w, u), 0)

= inf
w∈U, u∈Kw(0)

J(w, u) (using (Pii))

= β(0).

(6.11)

Assume that the zero duality gap property (6.6) is not valid. By (6.11), there exists

a δ > 0 such that

β(0) > sup
d∈R+

FP (d) + δ,

that is

β(0) ≥ inf
(w,u)∈U×K

P (J(w, u), dgw(u)) + δ, ∀d ∈ R+.

Let (wk, uk) ∈ U ×K satisfy

β(0) ≥ P (J(wk, uk), kgwk
(uk)) +

1

2
δ,∀k. (6.12)

We assert that gwk
(uk) → 0 as k → ∞. Otherwise, without loss of generality, we

assume that

gwk
(uk) ≥ a0,

for some a0 > 0. Then, kgwk
(uk) →∞. Therefore, this and condition (Piii) imply

lim
k→∞

P (J(wk, uk), kgwk
(uk)) ≥ lim

k→∞
P (m0, kgwk

(uk)) ≥ β(0),

which contradicts (6.12). Thus, gwk
(uk) → 0 as k → ∞. Let yk = gwk

(uk). Then,

yk → 0, uk ∈ Kwk
(yk). It follows from (6.5) that

β(yk) ≤ J(wk, uk).

This, (6.12) and condition (Piii) imply

β(0) ≥ J(wk, uk) +
1

2
δ ≥ β(yk) +

1

2
δ. (6.13)

The lower semicontinuous property of β, together with (6.13), gives

β(0) ≥ lim inf
k→∞

β(yk) +
1

2
δ ≥ β(0) +

1

2
δ,

which is a contradiction.
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6.3 Nonlinear Lagrangian duality theorems

In the following, we obtain the zero duality gap property for the optimal control

problem governed by variational inequalities involving monotone type mappings

and its nonlinear Lagrangian dual problem.

Lemma 6.3.1 Assume that W and X are two reflexive Banach spaces, J : U×K →
R is a weakly lower semicontinuous function, A : K → X∗ is a continuous mapping

of class (S)+, −F : K → X∗ is a continuous, bounded and generalized pseudo-

monotone mapping, and B : U → X∗ is continuous from the weak topology of W to

the topology of X∗. Suppose that the following coercive condition is satisfied:

lim
(w,u)∈U×K,‖(w,u)‖→+∞

〈(A− F )(u) + B(w), u〉 = +∞. (6.14)

Then, −∞ < β(0) < +∞.

Proof : First we shall show that −F is a quasimonotone mapping. In fact, if it

fails, then there exist {yj} ⊂ K, yj ⇀ y0, such that

lim sup
j→∞

〈−F (yj), yj − y0〉 < 0. (6.15)

From the boundedness of −F , we may assume −F (yj) ⇀ l0 ∈ X∗. By the general-

ized pseudo-monotonicity of −F , we obtain that −F (y0) = l0 and 〈−F (yj), yj〉 →
〈l0, y0〉. Thus

lim
j→∞

〈−F (yj), yj − y0〉 = 0,

which contradict (6.15). By [14], A − F is a continuous mapping of class (S)+. It

follows from Theorem 2.2 in [51] that the variational inequality problem (6.2) has a

solution for each w ∈ U . That is, S(w) 6= ∅ for each w ∈ U .

Since β(0) = min
(w,u)∈U×K,u∈S(w)

J(w, u), there exists a minimizing sequence {(wn, un)}
satisfying un ∈ S(wn), such that

J(wn, un) ≤ β(0) +
1

n
, n = 1, 2, · · ·. (6.16)

By un ∈ S(wn), we have

〈A(un), v − un〉 ≥ 〈F (un)−B(wn), v − un〉, ∀v ∈ K. (6.17)
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Let v = 0. Then,

〈A(un)− F (un) + B(wn), un〉 ≤ 0.

This and the coercive condition (6.14) imply that {(wn, un)} is bounded. Without

loss of generality, we may assume that wn ⇀ w0, un ⇀ u0. Since B : U → X∗ is

continuous from the weak topology of W to the topology of X∗, B(wn) → B(w0).

By (6.17), we have

lim sup
n→∞

〈A(un)− F (un), un − u0〉 ≤ 0.

Noting that A − F is a continuous mapping of class (S)+, the inequality above

implies that un → u0 and (A− F )(un) → (A− F )(u0). It follows from (6.17) that

〈A(u0), v − u0〉 ≥ 〈F (u0)−B(w0), v − u0〉, ∀v ∈ K.

That is, u0 ∈ S(w0). The weak lower semicontinuous property of J(u, v), together

with (6.16), gives

J(w0, u0) ≤ lim inf
n→∞

J(wn, un) ≤ β(0).

Therefore, J(w0, u0) = β(0).

Lemma 6.3.2 Assume that W and X are two reflexive Banach spaces, J : U×K →
R is a weakly lower semicontinuous function, A − F : K → X∗ is a continuous,

bounded and generalized pseudo-monotone mapping, and B : U → X∗ is continu-

ous from the weak topology of W to the topology of X∗. Suppose that the coercive

condition (6.14) is satisfied. Then, −∞ < β(0) < +∞.

Proof : Define J : X → 2X∗
as follows:

J(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x∗‖ ‖x‖ = ‖x‖2}.

It is easy to prove that J is a continuous mapping of class (S)+. By [14], A−F + 1
n
J

is a continuous mapping of class (S)+ for each n, n = 1, 2, · · · . For each w ∈ U , it

follows from Theorem 2.2 in [51] that there exists yn ∈ K, such that

〈A(yn) +
1

n
J(yn), v − yn〉 ≥ 〈F (yn)−B(w), v − yn〉, ∀v ∈ K. (6.18)

Let v = 0. Then,

〈A(yn), yn〉 ≤ 〈F (yn)−B(w), yn〉 − 1

n
〈J(yn), yn〉 ≤ 〈F (yn)−B(w), yn〉.
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This and the coercive condition (6.14) imply that {yn} is bounded. Without loss of

generality, we may assume that yn ⇀ y0. By (6.18), we obtain

lim sup
n→∞

〈A(yn)− F (yn), yn − y0〉 ≤ 0.

From the boundedness and the generalized pseudo-monotonicity of A− F , we have

A(yn) − F (yn) ⇀ A(y0) − F (y0) and 〈A(yn) − F (yn), yn〉 → 〈A(y0) − F (y0), y0〉.
Hence, by using (6.18), we get

〈A(y0), v − y0〉 ≥ 〈F (y0)−B(w), v − y0〉, ∀v ∈ K.

That is, S(w) 6= ∅. Similar to the proof of Lemma 6.3.1, we can show that −∞ <

β(0) < +∞.

Theorem 6.3.1 Suppose that W and X are two reflexive Banach spaces, U is a

nonempty closed set of W and K is a closed and convex cone of X. Let P satisfy

assumptions (Pi), (Pii) and (Piii), and let U × K be unbounded. Suppose that J :

U×K → R is a weakly lower semicontinuous function, A : K → X∗ is a continuous

mapping of class (S)+, −F : K → X∗ is a continuous, bounded and generalized

pseudo-monotone mapping, and B : U → X∗ is continuous from the weak topology

of W to the topology of X∗. Assume that the coercive condition (6.14) is satisfied.

Then, the zero duality gap property (6.6) holds.

Proof : From Lemma 6.3.1, −∞ < β(0) < +∞. By Lemma 6.2.2, we only need

to prove that the perturbation function β is lower semicontinuous at the origin.

On the contrary, suppose that there exists an ε0 > 0 such that

lim inf
y→0

β(y) ≤ β(0)− ε0.

Then, there exist a sequence {yk} ⊂ R, yk → 0, wk ∈ U and uk ∈ Kwk
(yk) such that

J(wk, uk) ≤ β(0)− ε0

2
, k = 1, · · ·. (6.19)

holds. By uk ∈ Kwk
(yk), we have gwk

(uk) ≤ yk, i.e.,

supv∈K〈(A− F )(uk) + B(wk), uk − v〉 ≤ yk. (6.20)

Thus,

〈(A− F )(uk) + B(wk), uk〉 ≤ yk, k = 1, 2, · · ·.
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This, combined with (6.19), implies that the sequence

{
max

(
J(wk, uk), 〈(A− F )(uk) + B(wk), uk〉

)}

is bounded. It follows from (6.14) that {(wk, uk)} is bounded. Because W and X

are reflexive Banach spaces, the product space W ×X is a reflexive Banach space.

Hence, there exist {wkj
} ⊂ {wk} and {ukj

} ⊂ {uk} such that wkj
⇀ w0 ∈ W and

ukj
⇀ u0 ∈ X. Since U and K are weakly closed sets, it is clear that w0 ∈ U and

u0 ∈ K. Using (6.20), we have

〈(A− F )(ukj
) + B(wkj

), ukj
− u0〉 ≤ 0. (6.21)

Since −F : K → X∗ is a continuous, bounded and generalized pseudo-monotone

mapping, we claim that,

lim sup
j→∞

〈−F (ukj
), ukj

− u0〉 ≥ 0. (6.22)

In fact, if it is not so,

lim sup
j→∞

〈−F (ukj
), ukj

− u0〉 < 0. (6.23)

From the boundedness and the generalized pseudomonotonicity of −F , we obtain

−F (ukj
) ⇀ −F (u0), and limj→∞〈F (ukj

), ukj
〉 = 〈F (u0), u0〉. Therefore,

lim
j→∞

〈F (ukj
), ukj

− u0〉 = 0,

which contradicts (6.23). Since B : U → X∗ is continuous from the weak topology

of W to the topology of X∗, B(wkj
) → B(w0). Without loss of generality, by (6.22),

we may assume that

lim
j→∞

〈F (ukj
), ukj

− u0〉 ≤ 0.

Therefore,

lim sup
j→∞

〈F (ukj
)−B(wkj

), ukj
− u0〉

≤ lim sup
j→∞

〈B(w0)−B(wkj
), ukj

− u0〉+ lim
j→∞

〈F (ukj
), ukj

− u0〉
+ lim

j→∞
〈−B(w0), ukj

− u0〉
≤ 0.

(6.24)

Combining (6.21) and (6.24), we get

lim sup
j→∞

〈A(ukj
), ukj

− u0〉 ≤ 0. (6.25)
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Noting that ukj
⇀ u0 and A is a continuous mapping of class (S)+, it implies that

ukj
→ u0 and A(ukj

) → A(u0). Therefore, by (6.20), we have

supv∈K〈(A− F )(u0) + B(w0), u0 − v〉 ≤ 0.

That is, u0 ∈ Kw0(0).

By (6.19) and the weak lower semicontinuous property of J(w, u), we have

β(0) ≤ J(w0, u0) ≤ lim inf
j→∞

J(wkj
, ukj

) ≤ β(0)− ε0

2
,

which is impossible. Therefore, β is lower semicontinuous at the origin.

Similar to the proof of Theorem 6.3.1, by using Lemma 6.3.2, we have the fol-

lowing theorem:

Theorem 6.3.2 Suppose that W and X are two reflexive Banach spaces, U is a

nonempty closed set of W and K is a closed and convex cone of X. Let P satisfy

assumptions (Pi), (Pii) and (Piii), and let U × K be unbounded. Suppose that J :

U × K → R is a weakly lower semicontinuous function, A − F : K → X∗ is a

continuous, bounded and generalized pseudo-monotone mapping, and B : U → X∗ is

continuous from the weak topology of W to the topology of X∗. If (6.14) is satisfied,

then the zero duality gap property (6.6) holds.

In the following, we first give the concept of the upper semicontinuous set-valued

mapping, and then obtain another sufficient condition for the zero duality gap prop-

erty in Banach spaces.

Definition 6.3.1 ([4]) Let E and F be two topological spaces. Let T : E → 2F be a

set-valued mapping. Suppose that x0 ∈ E. T is said to be upper semicontinuous at

x0 if, for any open set O ⊂ F with T (x0) ⊂ O, there exists an open set Q ⊂ E with

x0 ∈ Q such that T (x) ⊂ O, ∀x ∈ Q.

Theorem 6.3.3 Assume that W and X are two Banach spaces, P satisfies assump-

tions (Pi), (Pii) and (Piii), U is a compact set and K is a bounded set. Suppose that

J(w, u) is a lower semicontinuous function. If, for each w ∈ U , Kw(·) : R+ → 2K

is upper semicontinuous at y = 0, Kw(0) is a nonempty compact set. Then, the zero

duality gap property (6.6) holds.
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Proof : By Lemma 6.2.2, we only need to prove that the perturbation function β

is lower semicontinuous at the origin.

On the contrary, suppose that there exists an ε0 > 0 such that

lim inf
y→0

β(y) ≤ β(0)− ε0.

Then, there exist a sequence {yk} ⊂ R, yk → 0, wk ∈ U and uk ∈ Kwk
(yk) such that

J(wk, uk) ≤ β(0)− ε0

2
, k = 1, · · ·. (6.26)

Since U is a compact set, there exists a convergent subsequence of {wk}. Without

loss of generality, we may assume that wk → w̄. By (6.3), we have

gw̄(uk) = supv∈K〈(A− F )(uk) + B(w̄), uk − v〉
≤ supv∈K〈(A− F )(uk) + B(wk), uk − v〉+ supv∈K〈B(w̄)−B(wk), uk − v〉
= gwk

(uk) + supv∈K〈B(w̄)−B(wk), uk − v〉.
(6.27)

Let zk = supv∈K〈B(w̄)− B(wk), uk − v〉. Since K is bounded and B is continuous,

zk → 0.

It follows from uk ∈ Kwk
(yk), (6.4) and (6.27) that

gw̄(uk) ≤ yk + zk, ∀k.

That is, uk ∈ Kw̄(yk + zk). Because Kw̄(y) is upper semicontinuous at y = 0, for

any open set O ⊂ K with T (0) ⊂ O, there exists an open set Q ⊂ R with 0 ∈ Q

such that Kw̄(y) ⊂ O, ∀y ∈ Q. Since yk → 0 and zk → 0, there exists an integer

N large enough such that yk + zk ∈ Q for all k > N . Thus, Kw̄(yk + zk) ⊂ O. By

uk ∈ Kw̄(yk + zk), we get uk ∈ O (∀k ≥ N). Since Kw̄(0) is compact, and O is

arbitrary, we conclude that uk → ū ∈ Kw̄(0).

By the lower semicontinuous property of J(w, u) and (6.26), we have

J(w̄, ū) ≤ lim inf
k→∞

J(wk, uk) ≤ β(0)− ε0

2
.

Noting that ū ∈ Kw̄(0), β(0) ≤ J(w̄, ū), we get

β(0) ≤ β(0)− ε0

2
,

which is impossible.

126



6.4 A convergence property for the power penalty

problem

Let

L(w, u, d) = J(w, u) + d(gw(u))µ,

where 0 < µ. This is called a µ−power penalty function. It is easy to see that

the power penalty function is a special nonlinear Lagrangian defined above. It is

found that the power penalty method is effective and useful in application, see [111].

In this section, we will discuss existence results of solutions of the power penalty

problem in reflexive Banach spaces. We show that every weak limit point of a

sequence of optimal solutions generated by the power penalty problem is a solution

for the optimal control problem.

Let d > 0. Consider the µ−power penalty problem:

(PPd) inf
(w,u)∈U×K

L(w, u, d).

Let Sd be the set of optimal solutions of problem (PPd).

In order to establish the result on the existence of global solutions for the

µ−power penalty problem (PPd) and their convergence property, we need some

existence results of variational inequality problem (6.2). Similar to the proof of

Lemma 6.3.2, we have the following lemma:

Lemma 6.4.1 Suppose that W and X are two reflexive Banach spaces, U is a

nonempty closed set of W and K is a closed and convex cone of X. Assume that

J(w, u) : U × K → R is a weakly lower semicontinuous function, A : K → X∗

and F : K → X∗ are continuous from the weak topology of X to the topology of

X∗. Suppose that, for each w ∈ U , the coercive condition (6.14) is satisfied. Then,

−∞ < β(0) < +∞.

Theorem 6.4.1 Suppose that W and X are two reflexive Banach spaces, U is a

nonempty closed set of W and K is a closed and convex cone of X. Assume that

J(w, u) : U × K → R is a weakly lower semicontinuous function, A : K → X∗

and F : K → X∗ are continuous from the weak topology of X to the topology of

X∗, B : U → X∗ is continuous from the weak topology of W to the topology of X∗.

Assume that the coercive condition (6.14) is satisfied. Then,
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(i) There exists a d0 > 0, such that, for any d ≥ d0, the optimal solution set Sd of

problem (PPd) is a nonempty bounded set.

(ii) Every weak limit point of the sequence {wd} is an optimal control for the optimal

control problem (6.1), where (wd, ud) is a solution of problem (PPd) with d ≥
d0.

Proof : (i) By Lemma 6.4.1, −∞ < β(0) < +∞. There exists (w∗, u∗) ∈ U ×
K, u∗ ∈ Kw∗(0), such that J(w∗, u∗) = β(0). Then, gw∗(u

∗) = 0 and L(w∗, u∗, d) =

J(w∗, u∗). Define

Od = {(w, u) : L(w, u, d) ≤ L(w∗, u∗, d)}.

We have

Od = {(w, u) : L(w, u, d) ≤ J(w∗, u∗)}.
Clearly,

(w∗, u∗) ∈ Od, Sd ⊂ Od, ∀d > 0,

and

Od′ ⊂ Od, 0 < d < d′.

Now we show that there exists a d0 > 0 such that Od is bounded for any d ≥ d0.

On the contrary, suppose that there exist 0 < dk → +∞ and (wk, uk) ∈ Odk
such

that ‖(wk, uk)‖ → +∞. Then, it follows from the coercive condition (6.14) that

lim
k→+∞

〈(A− F )(uk) + B(wk), uk〉 = +∞. (6.28)

By (wk, uk) ∈ Odk
, we have

L(wk, uk, dk) ≤ J(w∗, u∗).

That is,

J(wk, uk) + dk(gwk
(uk))

µ ≤ J(w∗, u∗). (6.29)

We claim that gwk
(uk) → 0. In fact, if there exists a δ > 0 such that gwk

(uk) ≥ δ,

then

dk(gwk
(uk))

µ → +∞, as k →∞.

By (6.29), this is impossible. Hence, gwk
(uk) → 0. Let gwk

(uk) = yk. Then

supv∈K〈(A− F )(uk) + B(wk), uk − v〉 = yk.
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Thus,

〈(A− F )(uk) + B(wk), uk〉 ≤ yk → 0,

which contradicts (6.28). Thus, there exists a d0 > 0 such that Od is bounded for

any d ≥ d0.

Let d > 0, and define inf
w∈U,u∈K

L(w, u, d) = Cd. Assume that {(wn, un)} is a

minimizing sequence for the µ−power penalty problem (PPd), such that

L(wn, un, d) ≤ Cd +
1

n
, n = 1, 2, · · ·. (6.30)

Thus,

(gwn(un))µ ≤ Cd

d
+

1

nd
.

That is,

〈(A− F )(un) + B(wn), un〉 ≤
(Cd

d
+

1

nd

) 1
µ .

It follows from the inequality above and (6.14) that {(wn, un)} is bounded. Without

loss of generality, we assume that (wn, un) ⇀ (w0, u0).

Since J(w, u) is a weakly lower semicontinuous function, A and F is continuous

from the weak topology of X to the topology of X∗, B is continuous from the weak

topology of W to the topology of X∗, we have

J(w0, u0) ≤ lim inf
n→∞

J(wn, un)

and

lim
n→+∞

〈(A− F )(un) + B(wn), un − v〉 = 〈(A− F )(u0) + B(w0), u0 − v〉,∀v ∈ K.

Hence, from (6.30), we have

J(w0, u0) + d(gw0(u0))
µ ≤ lim inf

n→∞
(J(wn, un) + d(gwn(un))µ) ≤ Cd.

Therefore,

J(w0, u0) + d(gw0(u0))
µ = Cd,

i.e., Sd is a nonempty bounded set for any d ≥ d0.

(ii) Let (wd, ud) ∈ Sd,∀d > d0. Then, by an argument similar to that given for

the proof of (i), we can show that Od0 is bounded and Sd ⊂ Od ⊂ Od0 , ∀d > d0.

Thus, {(wd, ud)} is bounded. Suppose that (wdk
, udk

) ⇀ (w̄, ū) as dk → +∞. We

claim that ū ∈ Kw̄(0).
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On the contrary, suppose that ū 6∈ Kw̄(0). Then, there exists a δ′ > 0 such that

gw̄(ū) ≥ δ′. That is,

supv∈K〈(A− F )(ū) + B(w̄), ū− v〉 ≥ δ′.

Let 0 < ε0 < δ′. For this ε0, there exists an integer N0 > 0, such that

supv∈K〈(A− F )(udk
) + B(wdk

), udk
− v〉 ≥ δ′ − ε0. ∀k ≥ N0,

i.e.,

gwdk
(udk

) ≥ δ′ − ε0, ∀k ≥ N0. (6.31)

By Sdk
⊂ Odk

, we get

L(wdk
, udk

, dk) ≤ J(w∗, u∗).

That is,

J(wdk
, udk

) + dk(gwdk
(udk

))µ ≤ J(w∗, u∗).

Since 0 < dk → +∞ and J(wdk
, udk

) ≤ 0, from (6.31), the left side of the above

inequality tends to +∞, which is impossible. Therefore ū ∈ Kw̄(0), which, in turn,

implies that ū ∈ S(w̄).

By (wdk
, udk

) ∈ Sdk
, for ∀(w, u) ∈ U ×K, u ∈ S(w), we have

J(wdk
, udk

) ≤ L(wdk
, udk

, dk) ≤ L(w, u, dk) = J(w, u), ∀dk ≥ d0.

Since J is a weakly lower semicontinuous function,

J(w̄, ū) ≤ lim inf
k→+∞

J(wdk
, udk

) ≤ J(w, u), ∀(w, u) ∈ U ×K.

Noting that (w, u) is arbitrary, it follows that w̄ is an optimal control for the optimal

control problem (6.1).

Remark 6.4.1 The results of optimal control governed by variational inequality in

this chapter can be extended to the general form as in (5.37) (see p. 105 ).

6.5 Example of the obstacle problem

In this section, we study an example of an optimal control problem where the vari-

ational inequality constraint leads to an obstacle problem.
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Let Ω be a bounded domain of RN with the smooth boundary and H1
0 (Ω) =

W 1,2
0 (Ω) be the completion of C∞

0 (Ω) in the norm ‖u‖ = {∫
Ω
|∇v|2 dx}1/2. Let

K = {u ∈ H1
0 (Ω) : u ≥ 0, a.e. in Ω}. This set is a nonempty closed and convex

cone of H1
0 (Ω). Define

a(u, v) =
N∑

i,j=1

∫

Ω

ai,j
∂u

∂xi

∂v

∂xj

dx +

∫

Ω

a0uv dx, u, v ∈ K.

Assume ai,j, a0 ∈ L∞(Ω) (the Banach space of essential bounded measurable

functions on Ω), a0(x) ≥ c1 > 0, where c1 is a constant. For some constant c2 > 0,

N∑
i,j=1

ai,jξiξj ≥ c2‖ξ‖2, a.e. in Ω, ∀ξ = (ξ1, ..., ξN) ∈ RN . (6.32)

Let f ∈ H−1(Ω) (the dual space of H1
0 (Ω) ) and let U be a nonempty closed and

convex subset of L2(Ω). For each w ∈ U , we define u = u(w) (the state function of

the system) as the solution of the variational inequality:

a(u, v − u) ≥ 〈f + w, v − u〉, v ∈ K. (6.33)

It follows from [107] that (6.33) is an obstacle problem. Now, we consider the optimal

control problem defined as follows:

(P0) inf
{

J(u,w) = 1
2

∫
Ω
(u− zd) + M

2

∫
Ω

w2
}

s.t. a(u, v − u) ≥ 〈f + w, v − u〉, w ∈ U, v ∈ K,

where zd ∈ L2(Ω) and M > 0. The optimal control problem (P0) has been studied

by Bergounioux [11], Mignot and Puel [87].

Theorem 6.5.1 Let P satisfy assumptions (Pi), (Pii) and (Piii), and let the set

U ×K be unbounded. Suppose that condition (6.32) given above is satisfied. Then,

the zero duality gap property

inf
(w,u)∈U×K,u∈S(w)

J(w, u) = sup
d∈R+

inf
(w,u)∈U×K

P (J(w, u), dgw(u)) (6.34)

holds.

Proof : Denote H1
0 (Ω) = W 1,2

0 (Ω) and L2(Ω) as X and W, respectively. Define

〈Au, v〉 = a(u, v), F (u) ≡ f , 〈B(w), v〉 =
∫

Ω
wv. Then, A ∈ L(H1

0 (Ω), H−1(Ω)).

The coercive assumption (6.32) implies that

〈Au, u〉 ≥ c2‖u‖2, ∀u ∈ H1
0 (Ω). (6.35)
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Suppose that uj ⇀ u0 ∈ X satisfies

lim sup
j→∞

〈A(uj), uj − u0〉 ≤ 0.

It is clear that

lim
j→∞

〈A(u0), uj − u0〉 = 0.

By (6.35), we have

〈A(uj), uj − u0〉 = 〈A(uj − u0), uj − u0〉+ 〈A(u0), uj − u0〉
≥ c2‖uj − u0‖2 + 〈A(u0), uj − u0〉.

Thus uj → u0. That is, A is a mapping of class (S)+. It is easy to prove that A,F, B

satisfy all the conditions in Theorem 6.3.2. Therefore, by Theorem 6.3.2, the zero

duality gap property (6.34) holds.
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Chapter 7

Conclusions and Suggestions for

Future Studies

In this thesis, we studied the theory of augmented Lagrangian and nonlinear La-

grangian scheme for constrained optimization problems and optimal control prob-

lems governed by a variational inequality.

In Chapter 2, we introduced the concept of a valley at 0 augmenting function,

which includes a convex augmenting function and a level-bounded augmenting func-

tion as special cases, and applied it to construct a class of valley at 0 augmented

Lagrangian functions. Under the assumption that the perturbation function satisfies

the growth condition and the augmenting function satisfies a valley at 0 condition,

we established a necessary and sufficient condition for a zero duality gap property

between the primal problem and its augmented Lagrangian dual problem in general

Banach spaces.

In Chapter 3, we obtained some exact penalty representation results in the frame-

work of the new augmented Lagrangian. We established sufficient conditions of

an exact penalization representation for constrained optimization problems. We

obtained a sufficient condition of the existence of an asymptotically minimizing

sequence for a constrained problem in infinite dimensional Banach spaces. Further-

more, without any coercive assumption on the objective function and constraint

functions, we obtained a sufficient condition of an exact penalization representation

for a constrained optimization problem in finite dimensional spaces.

In Chapter 4, we introduced a class of penalty functions. We proved that any
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strict local minimum satisfying a second-order sufficient condition for an inequality

and equality constrained optimization problem is a strict local minimum of this

penalty function with any positive penalty parameter, and that any global minimum

satisfying a second-order global sufficient condition for the original problem is a

global minimum of this penalty function with some positive penalty parameter. We

applied our results to quadratic and linear fractional programming problems.

In Chapter 5, we established some existence results for a solution of varia-

tional inequality problems for generalized pseudo-monotone mappings and gener-

alized pseudo-monotone perturbations of maximal monotone mappings respectively.

We obtained several existence results of an optimal control of the optimal control

problem governed by a quasilinear elliptic variational inequality.

In Chapter 6, we introduced a modified nonlinear Lagrangian function and ob-

tained a necessary condition and sufficient condition for the zero duality gap property

between the optimal control problem and its nonlinear Lagrangian dual problem.

We applied a power penalty method to the optimal control problem, and obtained

that a sequence of approximate optimal solutions of the penalty function converges

weakly to the optimal solution of the original optimal control problem.

Overall, we obtained some new results and methods for the theory of augmented

Lagrangian and nonlinear Lagrangian in Banach spaces. Some of our results can

include the corresponding results studied by others as special cases, and some of

our results are original. But some of our results are quite abstract. Thus it is

difficult to apply these results to some practical problems. Moreover, in this thesis,

we have established zero duality gap and exact penalty properties between a primal

optimization problem and its augmented Lagrangian dual problem by using a weaker

augmenting function in Banach spaces. Since this augmenting function is nonconvex

and non-Lipschitz, it maybe difficult to apply it in the design of some effective

and efficient optimization algorithms. Therefore, we should try to overcome these

difficulties in the future research, and carry out some numerical computations for the

approximation of the solution for constrained optimization problems and optimal

control problems governed by a variational inequality.

The following is a list of some interesting problems for future research.

1 We will try to find more applications in practical problems such as American

option price problem, infinite dimensional linear programming and transporta-

tion problems.
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2 We will find more necessary and sufficient optimality conditions for optimal

control problems that are amenable to numerical computation for the approx-

imation of the optimal control for an optimal control problem governed by

monotone type variational inequality.

3 We will establish second-order optimality conditions of augmented Lagrangian

problems and characterize local and global solutions for augmented Lagrangian

problems.

4 We will establish sufficient conditions for exact penalty by using the new results

for the error bounds obtained by Wu and Ye [112].

In studying those problems mentioned above, we will obtain some new results by

using the methods introduced by others, or find and introduce new methods to deal

with these problems. We will be further concerned with these and related problems.

We will try to get more useful results.
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