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Abstract

Molecular imprinting_, in which specific bin(l;n'g'_ sites afe created by
~polymer.izati01-1 of ﬁlndidnal mo;lomers' in the .presence of template molecules
followed Qy their subsequent relﬁéval, has been recognized as a power.fui tool for the
preparation of artificial receptors for specific bi_nding with targét molecules. Though
molecﬁiar imprinting can be efﬁ'pioyed for the preparationlof-t'he recog-niéion sites 1n
cﬁeﬁlical, sensors, the d'e\}clopr'nent ‘of sensors based on -molecu'larly impﬁnted '
polyfnér (MIPs) is relatively slow mainly due to the difﬁcu'ltiesl‘in integrating‘ the
fmprinted -polymers to the sensor transducer. The ob jective of this thesis is to develop

sensors for biomolecules based on electrosynthesized imprinted polymer films.

In lthe first part of this study, molecularly imprinted polymer ﬁlmé of
_-polypyrrdle and éoly(o—phenyleneclamine) ~ have been prepared by
, electropolymefiz'atid_n on EQ_CM electrodes’ in the presence of adenosine-5’-
—tﬁphoshatle- disodium éalt (ATP). These ATP sensors exhibit high selecti\?ity against
ADP and AMP. A pyrrole: ATP mole ratio qf 2:1 was found to be the best for the
preparation of the MIP polypytrole films by elcctrobolymerization: On the otrh_er
hand, the po!y(o«phenylenedi:{mine) film has low conductivity and therefore only
very thin p(l)lym'er film could be 'obtainéd. Nevertheless, this allows the poly(o-
phenylenediamine) MIP films to have short response time towards the aﬁa]ytes. The
poly(o-phenylenediamine) MIP film was found to exhibit better selectivity but lower

sensitivity tbwards ATP.

In the second part of this project, a functionalized monomer, glucose-boronate-

substituted aniline, was synthesized by cyclic esterification of glucose ‘with

%



aminophenylboronic a_cid Glut.:os-e' i‘mpri_nled c‘o-boiymer fitms of boronate-
substituted monomer and an?line were brépared by eleCtropOlwuprization In non-
aqueous .h-le.dia and éfadual!y transferréd_ nto aqueous m.edia. At physiological pH,
the EQCM sensor -based. on this;glouc,ose imprinted polymer film -showed linar
Frequéncy response toward gl.uc.ose solution in tl.le éo_ncentratio_n range of 2.0 x 107
to 7.5 x 10* mol dlﬁi. Substantial _-uptake of fructose by the glucose imprinted
polymer film was also observed. This.was due to the high association constant (K,)
-‘bet-w‘een fructose dhd-bronic acid. The effect of various parameters such as electrode
pdteﬁtial, éolution ﬁH and functionalized rﬁonomer to aniliﬁe ratio on the analytical

performance of glucose imprinted polymer film were examined.

In the third paﬁ of this stﬁdy, molecularly imbrinted polymer films of
acrylamidophenylboronic acid were. prepared by eléctropolymerizal’ion on EQCM
Au electrodes and Aﬁ wire electrodes in the presence of dopamine. Afier removal of
the template mol_ecules, a MIP film with both high affinity towards dopamine and
pemiselectivit‘y againsﬁ ascorbic a;:id (AA) was prepared. The electrochemical sensor
based on the MIP film was used to detect dopamine at different'concenl_rﬁtions at
physiological pH by means of'preconcentration—stripping. Usin.gr this dopami_ne
sénscgr, a klinear relationship was orbserved between the electrochernical redox pea;k
-current intensity and ()fopamine concentration from 5 x 100 1 x 10 mol dm™. This
.sensor shows negligible interferer‘lcc-from ascorbic acid, even when ﬁscorbic acid’s
concentration is as high as 1 x 107 mol dm™. The ﬁm’chanism of the sensor’s
selectivity. was discussed.. rThe effect of various parame-ters such as electrode

- potential and solution pH on the perfonmance of the sensor were also investigated.
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Chapter 1

Introduction



1.1 Molecularly imprinted. polymers
1.1.1. Naturally occurring molecular recognition

_ Iﬁ nature, moleculiar recogni.tion plays a decisive role in btological actiﬁity[l].
For éxample,. thf; reéeptors on the surface of cell membranes bind hornmones and are‘ .
responsible for celi to cell communication. When the receptor binds a hormone, -its
conformation is .changed and the me'ssa‘ge of the hbﬁnbne binding 1s passed to the
cell in terms bo_f thi; conformational change. In response to trhis_' change, the |
c_orresponding bioldgical reaction is triggered in the cell. The ﬁost tmportant |
property in these systems is that one receptor accepts only one -speciﬁc hoﬁnone and
it does not interact sigﬁiﬁcantly with other hormonegj Furthermore, this
recgptor/homlone Iinteraction is very strong. Thus, even very small amount of

‘hormone can correctly deliver its information to the target cellf2].

It is rweu known that enzymes show high specificity towards their substrates.
-Each enzyme exclusive.)y‘binds a certain class of substrates and transforms the
subétrate il‘lto a predetermined product. All other compounds in the sfstem_, even if
they resgmble the specific substréte, remain intact. Onlylthe specific subétrate is

efficiently transformed into the desired product.

This substrate specificity primarily comes from the selective binding by the
active sites of enzjmes. Results of X-ray crystallography and NMR spectroscopy [3]
indicate that the substrate-binding sites ;)f enzymes arc apolar pockets or clefts,
which are formed from a 'pumber of amino acid residues. [n the pockets or clefls,

2



several functional groups such as OH, NH,, COOH and umidazole are precisely .
placed to interact with the functional groups of a specific substrate. For the specified
substrate, it interacts with all the functional groups in the binding. site satisfactorily,

whichi tesults in a stable enzyme-substfafe complex.
1.1.2, ‘Mimics of natural receptor

The'elegance of molecular fecognition in nature has r'spurred many scientists to

‘ rdesign and develop ar[_iﬁcigi receptors to miimic the-natural receptor. One of trhe
grelatest advantages of artificial receptors over naturally occurring ones is the
freedom 'of molecular design. ‘The framework of arti ﬁcia_l. receptors can be extended
from prbt-eir'l o a ‘variety of skeletons such as carbon chains and fused aromatic rings.

. Thus, .the stabulity, flexibility and other properties of artificial receptors can be freely

Vmodl.llated éccording to the purpose of application. -F urthermore, various functional -
groups that are not found in naturai receptor can be employed in these man-made ‘.

receptors.

Based on their pioneening works[4], Cram, Lehn, and Pedersen (Nobel Prize -
winners in 1987) had pointed out that the following factors are crucial for successful

molecular recognition: -

l. = Functional residues of guest and receptor must be complementary to
each other.
2. Conformation freedom of both components should be minimized.



3 Chemical circumstance should be appropriately regulated.

'ln fhé eaﬂy research on é]Tiﬁcial_recéptors, low molecular weight ring or cage
systems such as crown ethérs-[S], cryplates[6], cyclodextrins[ 7], cyg[ophanes[S} and
concave molecﬁles[9] aré_ usuz;lly use_d'. Figure 1.1 shows éome typical .cyclic host
molecules used as receptors fOr' spéciﬁc guests. In many cases, various functional
residues are prf;s'ent on_the. host molecules. Although eéch of the interactions (é.g.,
hydrogen-bonding, electrostglti_c, énd Van de Waals force) is rather weak, remarkably
high selectivity and'b.inding strengths rare accomplish@d when all of them work in a

cooperative manner.

Figure 1.1 Typical cyclic host molecules used for recognition of specific target

guests[2].



1.1.3. General principle of molecular imprinting

As mentioned 1n the foregoing sectio'n, some elegant receptors, ﬁ1ainl'y_ with
cyclic structurés, 'hdve already been ‘sy"nthesized by aligning functional groups on
appropriate carbonr béckﬁone. “These man#nade récepi‘ors have se[f—déﬁned
molecular -s_t'ructurers and show Bot_h high selectivity and high b,indi;lg activity toward
the targe_t-guést coml;ounds. Howe\;er., these synthesized Single molecule receptors
also_have several dra\;/b"‘acksl. 'Fir-stly, the synthesis of the receptor often requires
many. reaction sfeps Wthh results in high preparatip;ncost. Secondlry,- it 1s difficult to
prepare -rieceptors for large and complicated guest molecules due to the lack of Iarge.

molecular framework which can accommodate two or more functional groups.

1 TN
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Figure 1.2 Schematic representation of the molecular imprinting and recognition of a .

template (T) with mornqmers containing three binding groups{10].



The molecular imprinting 'met_hpd, which ié shown by the schematic
presentation in Figure 1.2,-is: the most promising solution to these problems,
Generally, this method involves a process wlﬂerre functional and cross—lin'king
Monomers - are _copo]ymerized tn thg presence of a-target moie;cﬁle (t‘hf-: imprint
molecule}), which acts as a molecular tgmpl‘ate. Tlﬁc functional monomers initially
form a complex with. thé imprint molreclule, and folloulfing poiymer-izaiion,- thetr
functional groups are held in position by the hig_hly cross-linked polymeric structure,
Subséquent reﬁoval, of the tmprint molecule results in bi_ﬁding sites that are
, complementary in funcl_‘ionality, size and shape to the template molecule. By this
\‘Qay, a molecular mél.nory is produced in the polymer, which is éﬁpable of selectively

rebiﬁding the template.
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Figure 1.3 Graphical representation iflustrating the number of original papers

published within the field of molecular imprinting between 1984 -and 2004.



The concept of molécular imprint'i-hg was claimed to date back to the early
1930s. Héwever, it 1s widely'acceplt‘:.d t'hét 1972 1s the start oﬁnb]ecular imprintihg
- techpolo‘gy, when Wulff[[1] and Klotz[ 'l.'2] independently reported the prepara.tion of
organié polymers with predetéfmfne-cl tigand selectivities. The:éxpohential expansion
in research on molecular imp.rintihg during the last two decades is clearly shown by
the increasing number of original papers published between 1984 and 2004 (Fi'gﬁre :
1.3}). Iﬁ addition, the progress of this filed is reviewed by a large‘number of review-'

articles{ 10, 13-39] and monographs(1, 2, 40-42].
1.1.4. Interactions between monomer and imprint molecules

A-complex betwegn'mbnomers and 1mprint molecule can be formed via
r_évérsible covalent boﬁ&s d.r non-covélent interactions such as h.ydrogen. bonds,
'elect‘rostaiticT attAraction, hydrophobic interactions, van der. Waals forces, étc. A
combination of two or more: typés of interaction can also occur. Accordingly,
molecular irﬁprinting can be classified as either épvalent imprinting or non-covalent
imprinting, depénding on the nature of interaction between functional -monomer and

imprint molecule (template).

The covalent molecular imprinting was develqped prirﬁarily by Wullf and co-
workers[11]. In t‘his approach, 2 polymeﬁzable:de;rivmive of the imprint molecule has
to be-synthesi'zed.lln %;he poklymerization step, the covalent conjugate is pqumerized

| undér the conditions where the covalent linkage is well protected. Then, the covalent
' linkage is cleaved and the template is remoyed from the pol.ymé_r matrix. Owing to

‘the greater stability of covalent bonds, covalent imprinting should yield a more



homogeneous pépulation of biﬁ_ding sites. Moreo_ver, the yield rof bin(ling sites
' relative to the amount of imprint--molécule used (imprinting c—:fﬁciency) should be
| highet; than th-at with non~covalenfiﬁiprinting. On -thc othell' hand-,' this approach also
suffers from s_e&{eral drawbacks. First, the synthesis of the poiymérizéble derivative”
of template is often troublesbme and less -economical. Secondly, the number of
_ reversible c_bvalent linkages air‘aila‘k-)le is limited. Finally,l due to the natu;f: of

covalent bonding, binding and release of anfilyte are relatively slow.

Oﬁe of the keys to successful covalent i‘mpﬁnting is a good choicé_ of- the
functional monomer and fhe template moiety. The covalent bonds formed bétween
the functional monomer and ‘the témplale molecules must be both stable and
reversible, which are contradictory to certain extent. Thérefore,—the number of
examples which furlrﬁ-ll both of these requirements is relatively é]lla[l. In the published
works, samples of éovalent imprinting include acetals/ket;’«:lls[43-46], Schiff bas¢5[47-
51], disfutfide bonds{52, 53], poordination bonds[54-61] and boroﬁic acid esteps[62§

68].

* The boronic acid group 1s very suitable for C(i)'valent“binding. Ester formation
between boronic acid and diol oécurs with complete stoichiometric COllVEFSVIIOI"Vl-. The
'bd;dnic ester moietics can be readily cieaved in water/alcohol by a combletc and fast
reaction, so that the tempiate molecules can bé released from én imprinted polymer
matrix in 85-95% yield[1]. -The' ré—uptake of template in the imprinted polymer is
relatively slow, but more than 90% of the free cavities can be reoccupied.
Fortunately, in aqu-eo'l-ls alkaline solution or in the presence of cert.ain nit'r.ogeh bases,

tetragonal boronic esters are formed[69], which equilibrate extremely rapidly with



tetragonal boronic acid add diol (Equation 1.1). Under such conditions, the rate of

equilibration is comparable to typical values for non-covalent interactions.

OH - ' 0 H
E N E\/O

B
_ / ; , / \R
OH HO R 0

+ 2 HO (1.1)

Figure 1.4 shows the preparation of an imprinted polymer employjrig boronic -
acid-diol -interaction and its successful application as stationary phase for
chromatographic separation of racemates of the templaté molecules[70]. By using
such a stationary phase in HPLC with gradient elution technique, complete racemate

resolution of phenyl-o-mannopyranoside was performed with R , equal to 4.3.

Figure 1.4 Schematic representation of a specific cavity prepared by molecular

imprinting via covalent linkage between boronic acid and diol[r‘FO].

Boronic acids are capable of forming reversible and strong covalent bonds with

the diol functionalities in the form of cyclic esters. it is more desirable that the rate of



this reversible reaction is much faster than other covalent boding reactions. Die to its
advantageous characters, covalent formation of boronic acid esters is widely used in
molecular imprinting of various template molecules such as saccharides{67, 71],

nucleotides(72-74] and sialic acid[62, 64, 75, 76}.

In 1984, Mosbach and co-wbrrl‘(érs repqrted the first application of n'on—bovalent
interaction  in molecular imprintiﬁg[??]. 'fhereafter, the scopel of  molecular
irﬁprinting was rem.arkabrlyrextended and the research of imprinted méterials was
‘ adceleratt—;d[40]. ‘In this pibnem‘ing work, electrbstati_c interaction between the
carboxylic acid on monomer (p—vinylbgnzo‘ic acid) and the amine group on ltemplate
molecule ‘(ph‘enylalanine ethyl _ester) was employed in molecular imprinting. By
measurement of radioacti_‘;/ity, the polymer prepared by non-covalent imprinting was

- found to favor the ,uptake' of the enantiomer used as template.

Due to its simplicity and versatility, non—covalént molecular imprinting has
been wideiy attempt.ed. In principles, aﬁy kind of -non-_cova]ent interactions such as
hydrogen bonding, electrostatic interaction, and hydropl10bic interactions can be
émpldyed for the impriﬁting pr()c_ess. Among these, hydrogen_bonding Is most
suitable for precise n_mlecu.lar iinprinting, since it is highly dependent on both
distance and _dir_ection‘ between monomers and ;émplates. Various monomers ;vhich
bear the required functional groups (e.g., carboxyl, amino, pyridine, hydroxyl and
amide groups) complementary to the template can be used. As an example, thé
pesticide atrazine has been imprinted in methacrylic acid polymer[78, 79]. The
hydrogen boding between the nitrogen atoms (amino groups and lriaziné) of atrazine

and the carboxylic group of methacrylic acid serves as non-covalent interaction in

10



the formation of monomer-template complex. The resultant molecular imprinting
polymer has been used as HPLC station phase for separation of atrazine from its

analogues. -

In addition to hydrogen bon’ding,' electrostatic att'ractiou is another 1nteraction
applicablé i molecular imérinting. The degree of electrostatic interaction is simply
rdeterminf-:-d_ by the distance between the opposite charges and is independent of
direction, thus this interaction is unfavorable for precise molecular recognitidn
‘compared to _h)lzdrogen bbnding._ On the other hand, r.unl'ike hydrogcn bdnding,
electrostatic interaction caﬁ be uééd for imprinting in polar solvent. The selectivity
can be improved by corr'lb'iningii with other intera;tions. An amino acid imprinted
polymer film of overoxidized polypyrrole has been prepared by Nagaoka and co-
workers[80-82']‘ The i.mpriﬁting of polymer and 'enzmtiosel.ective uptake of terﬁplate
amino acid s mﬁinly dependent- on eleétrostatic interaction. The ability of the
imprinted polymer ﬁlm to discriminate enantiomers of the -templat'e amino acid was

evaluated by a quartz crystal microbalance.

In general, compared to covalent im_printihg, the non-covalent iniprinfing
approach'is more flexible in the choice of functional monomers, posSibie target
molecules aéd the u:se of'limprinted materials. After polymerization, the impriﬁted
molecules can l;)e 1'eﬁ10ved from the; polymer by simplg: solvent extraction. However,
" the prepolymerizétion complex is an equilibrium system, the stability of which
depends on the affinity constant between the imprint molecu__les and the fiuuﬁiona]

monomers. This may yield certain heterogeneity in the binding sites. The advantages

11



- and disadvantages associated with covalent and non-covalent imprinting are

) summarized in Table 1.1,

Table 1.1 Comparisons of Covalent and Non-covalent Imprinting Methods

, _ _ Covalent ~Non-covalent
Synthesis of polymerizable template denivative | Required Not necessary
. Polymerization conditions More choices Restricted
' B . choices
Reroval of template : Difficult ‘ Easy
Guest-binding and release - Slow | Fast
Structure of binding site Well defined Less well
3 : defined

1.2 Analytical applications of molecularly imprinted polymer

1.2.1 Separation 7

" One of the most desirable features of molecularly irﬁprinted pp[me':rs liesrin ,
t'ht_airl spéci'ﬁc binding towards the template molcéules. A direct application of this
speciﬂcrbinc'iing is In separation or préboncentraﬁon of the teﬁpial_e mélecules froma
mixture. Molecul-arly imprinted - polymers have been used in ﬁr_ioﬂs separation
techniques such as phromatography, cap_illary electfochromatography (CEC), and -~

solid phase extraction, which will be briefly reviewed in the following sections.

Chromatography



The first applicaition ﬁ).f molecularly imprinted polymers was as stationary
phases in affinity chromatography, in particular fbr the resolution of racemic
mixtures of chiral éorﬁpounds’. Much of the early work on [;mlecularly imprinted _
polmers wa‘s' devoted to this field. Pure enantiomers were used to create cavities
with special affinity to the imprinied e_nantiome‘r.. The pa.rtigularily of molecularly
imprinted poiymers compéred Awith conventional chiral stationary phases is that fhéy |
are tailor-made for a specific target molecule,_hencé their selectivity is. predetermined.
For examble, if a polym;a‘r 1s imprinted with fhe L-enantiomer of an amino acid, an
lH'PLC colum;i packed with the M_[P will retain the L-enantiomer more than the D-
enantiomer and vice ve'rsd, whereas a column containing an identical but non-

imprinted polymer will not be able to separate the enantiomers.

The selectivity of the separation process is fairly high,rtypicA:al values for the
separation factor are between 1.5 and 5. In some cases much highép separation factor
and baseline ,resc;lution have been obtained with caréfullylr optimized conditio-ns: A
.successful application of imprir;tefd p’olyl;ner in enantio-separation of cinchonidine °
and cinchonine has been demonstrated by Takeuchi’s group, with chiral separation
factor as high as 31[83].‘ Despite the fairly high resolution fa;;tors usually obtain-ed, in
" most cases cn'antiorhers are not completely resolved dué to the o.ﬁe'r_l large peak
broadeningrancl tailing, especially of the more retained enéntiomer. Obviously, this
- drawback becomes more'sew;e_re when a separation of more than two compounds is
required. The observed peak broadening and tgiiing have been atfributed to the
heterogeneity of binding sites; in terms of bbth afﬁnfty and accessibility, and

different association and dissociation kinetics. Accordingly, research on this field is



mainly focused on the synthesis of. uniformly shaped and. sized particles and the

development of molecularly imprinted po_[yme'rs'with better quality binding sites[37].
~ Capillary elhe'ctrochmmatography

Capillary electrqchrom_atogréﬁhy (CEC) 1s one of the most  successful
applicaﬁons of imprinted polymer iﬁ chroma‘tography[%, 33,737, 84, 85), especially
for chiral separgti_011s[86, 87]. By t.éking acivantage of t_he inherent separation bower_
of imprinted p'olymcr, fligh resolution (> 1x 10° plates m™) and separation factors of
capillary electfo’chmmatoérapﬁy can be obtained. In oné study{88], énantioseparation
of 't-hé f-adrenergic antagonists ‘propranolol and metobrolol \.vas .z-ichieved with
imprinted-polymer-based CEC. The polymer was cast in situ in the capillary in the
form of a mac‘ropordus monolith attached to the inner wall, and the capillary cm_lld be
prepared énd conditioned'wifhiﬁ a few hours. The racemate of propranolol was
,réso_lved within only 120 s. V\;fhen non-racemic samples co;atéininé mainly the R-
-enantiomer ‘were inje'ctgd, -S-enantiomer- of very small amounts (1%) can be
distinguished. Other applications of imprinted polymer in CEC include continuous |
. pdlﬁner -rods[89], particles -inclu'ded in a gel matrix[90] and small particles

suspended tn the carrier e'léctrolyte[9l]. '
Solid phase extraction

" The need for efficient methods for sample preconcentration and clean-up in
medical, food and environmental analyses is constantly increasing. Compared with

traditional liquid-liquid extraction, solid phase extraction is superior in many aspects,
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including speed; reprod@cibil.ity, r’educ'ed solvent consumbtion and smaller amount of
s;amplg réquired. Moreover, solid phase extraction can .bé easily incémoratedI inlo
automaléd a_nalytica_l proqedurés‘. .In_this conte.xt it 1S not surprkiﬁg that much of the
CLrlrrent‘rcs'carcﬁ in molecular imprinting is focused on solid phése extraction. Iﬁn this
separation application the advantages of imprinted pblyﬁwr, especially their low
price -and their stability in different environments, are_highly desired, whereas some
of the limitations afc less imporfapt than other separation techniques. Therefore, solid
'phrase extraction is regafdéd as one of the most possible uses for irﬁp;‘inted polymer
~ and has been intensively s_t;idicd[92—102j. Moleﬁ:qlariy impriritéd polymers are more
selective thém‘ comrﬁon sémplé treatment methods using tréditionai materials, and_ at -
the same time more-rstable than biological matrices used _i_n' immﬁnoextraction.
Anot_her advantage is tha.t impﬁnted polymf;rs are compatible with organic solvents,
so that solid phase extraction can be applied direc'tly after a -solv:cnt pre-extraction
step. On the c_),ther hand, the lo{.v resolution facfors (compares to biological matrices)
are not an issue as solid ph'ase extraction worké in the adsorption—desorption mode,
Thefefore, solid phase e)_(_traction 1s regarded as one 6f the most promising
application ideal for irﬁbr’int@d polymer application and at the same time the
- application that is closes‘t to comﬁlércialization. This is also réf_lected in the relatively
large nﬁmber of reports deali_ng with real sgmplés. Imprinted polymers haw‘e' been -
used in solid phasé _e’xftjacti_on' of the target aﬁalﬁes from blood plasma and
serun':l{l()j, ‘1_04],' _uriné[lO_S], bile[103], liver extract{97], chewing gum[93],
- env_ironfnental water and_ sedimgnt[lOé], plant tissue[107], etc. A successfil
épplicatioh of impnnted pdlymer in solid phase extralction is reported by Stanker and
co-workers{97], in which thé imprinted polymer was used to further concentraté

herbicide atrazine from a chloroform extraction obtained from liquid extraction of
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the herbicide from beef li-ver. The binding capacity of the imbrintecl polymer for
zit_razine in chloroform was found- t6 be 19 pmol g The analyte was cluted from the _
polymer with a suitable‘ solvent arid quantified by revérsé phase H’ELC or ELISA.
: The.- solid phase cxtréction step with the imprinted polymer co;isiderably improved
the accu%ac'y and precision of the HPLC method and lowered the detection limit from
20 to S péb. This was a-ch‘ieyed by the removal of interfering components in the
samplé, resulting in baseliqe resolution of the atrazine peak. Furthcrmore, the analyte

recovery was increased with this technique.

One of the serious obs;ructions for the appiicatioh of 'i:mprir'lted polymer in
'solid phase extraction is templaté teakage. In g'eﬁerél, o.nce an MIP has been
synthesized, it is subjected to ex.haustive sol\-fent extraction to remo‘vé the template
from the poly';ner matrix. However, it is difficult to remove 100% _of th.e template
molecule fyOm'an imprinted pol&mcr. Slow leakagé of a portion of the remaining
template from the templrate-réﬁloyed polymer matrix over a péfiod of time was found
rin sorﬁe cases. As.demonstrated by Arvidsson and co—WQrkersr[IOVQ], 'a possible
resolution for template Ieakagé ﬁfoblem 15 to use an analogl_-Je moiecﬁle instead of the

analyte in molecular imprinting process. |
1.2.2 Binding assays

Mimic of antigen-antibody interaction is one of the- driving forces for the
~research in molecular imprinting. Since molecularly imprinted polymers shared with
antibodies one of their most important features, the ability to specifically bind a

target molecule, they could conceivably be employed in immunoassay-type binding
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. US5ays -in-ip_la'cc of alqtibdaies: This was first demon;trated by Monsbach’s group[19,
t08]: Crom'petitive- radioas-says for theobhylline, diazepam aﬁd human gmwth-
7 l?omlone}xfere prepared with molecular impﬁnting tg:chniqueﬁ The assays not onlgx '
showed .é very good c'qrreiationA with z;n antibody-based 'énzyme immu:rloass.ay
- currently .ﬂlsed in anélyti-cal {aboratories in hospitals but also showed a cross-
reactivity proﬁle very sifnilar to that of the natural anﬁbodies. ,F-rom a selection of
closely related substances, émrly 3-methylxanthine, which has one fncthyi gfoup le;es
than theophylline, was bound to the pofymer to some extent, whereas caffeine, which
has one '_more methyl gro_uﬁ, showeﬁ no noticeable binding.,'l-’he assay for the .,
irgnquilizér diazébam was al'sq highly specific, with cro;s-reactiyities éomparable to
those of antibodies: This molecularly imprinted sorbent assay format has been used
to develop assay systems for se;.feral'other target compounds such as drugs{109, 1 101,
herbicides[111, 112] and cort_iéosteroids[lB]. It has even been shown that imprinied

polymer éssays can be performed directly with diluted blood plasma[l 14].

More 'recentiy,-‘ altémativé assay formats that avoid the use of rédiolabelshave
been .repo'rted. A qompetitivé fluorescence irmhunoassayihas,been proposed'tﬁat uses
a fluorescent probe for det'e-ction of herbicide 2,4—dich10r0phenoxyécetic acid[! 15].
Piletsky developed a methéd in w:hich the polymer is synthesized in Sit-u in the ;V€1]S'_
of a micrrotiter plate[1 1_6]. P.\-m'inophenylboronic' acid was. polymerized in the
presence of epinephrine (the -target analyte) using oxi.datihon of the monome-r by |
ammopium perox-odisulfate‘..This process resulted in the grafting of a thin polmér
layer, on the -polystyrene surface. The ﬁolymer was then used in a competitive
enzyme-linkéd assay with a conjugate of horseradish pe:roxidase and norepinephrine,

and improved affinity towards the target was found.
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-1.2.3  Sensors with imprinted polymer as recognition elements

Generally, in-'a,sensor system, ;cl chehli_ca[ or phyﬁicﬁi signarl IS generat_ed.in.
responée to the binding Q’t"the ana[yteAto' the recognition element. This signal is then
Vtransiated- Into a measurable c;utpu't signal. Since molecularly imprinted polymer is
capable of speciﬁc-bi‘nding towards éccording molecule, it is widely used as
recognitioﬁ elements _for various sensors. Depending on tlﬁe nature of the signal
translation, imprint'ed—pofymer—based sensors can be ;:Iassiﬁed intol electrochemicai

SENSOrs, microgravimetric. sensors, etc.
Electrochemical sensors

Electrochemical sensing could offer sensitive detection of a‘large variety of
analytes with or without electroactivity at low cost[16, 117, 118]. This type of
transduction is parﬁcularly attractive considering the possibility of easy

miniaturization and automation.

The intégration of imprinted polymer on the transducer surface is-an important
aspect of the design of impriﬁted-polymer-based electrochemica['sensors'. However,
despltc stgnificant 1mprovement In mole.cu[al 1mprmtmg the processability of these |
materials remains llmlted Most 1mbrmted polymers are prepdred as a monolith, they
~ have to be ground and sieved as,polymeric particles. Some studies have been focused
on i:ﬁmobilization of polymeric particles on the transducer surfaces with the aid of
agar gel[l,19r, 120],:p01yviuyl chloride (PVC) membrane{121] and carbon paste[122].

An integrated sensor was developed by coating the imprinted polymer particles with
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agar gel 'directly onto the working electrode and used in detection  of 2,4-
“dichlorophenoxyacetic acid[120]. In the applications -of imprinted polymer in the
form of particle, the slow mass diffusion of analyte usually leads to long response

time.

‘The integration strategy most frequently- used For_' imprinted-polymer-based
electrochemical sensor is in-situ preparation of molecularly imprin‘ted 'poiymer film
dn the- transducer surface by electrqpc')lymerizatiton. The big advantage of
ejectropolﬂneriZation in ﬁompz_ll;ison with Vothef integration techniques lies in the
ability to deposit an imprint,ed_ polymer uniform film onrdetector surface. The film

thickness and deposition density can be regulated by polymerization conditions.

The possibility of inducing se_lectivity by the presence of the template during
polymerization bas been te_sted wiihj -several n;m—crosslinked elec‘trogenerated
polymers, such és polypyrrole, polyphénol and"po1y(0-pheﬁylenediamine). These
‘polymer films can be pfep_ared easily by electropolymerization from aquUEOUS
_ solutions of their monomer-s;: _M(_Jlecularl.y imprinted polypyrrole has recently been
studied in cngntioselectivity towards armino acids[80, 81]. The imprinted polymer
Alm was pre'pared‘ in the preseﬁce of optically pure amino acid by
electropolymei;ization. rAfter removal of t-he template amino acid by overoxidati(.m,
the resulting sensor showed good enanotioselectivity towards amino acid ur;der
suitable pH condition. The possibility of imprinting polymerization of poly(o-
p-henylenedian;ine) and the subsequent development of sensor based on this materjai
was 'co_nﬁn11§d .In  experiments by Wang’s group{123]. They performed

electropolymerization of o-phenylenediaming in the presence of glucose In aqueous
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solution. The imprinted polymer film ‘obtained exhibited selective binding towards
glucose in terms of capacitive response. A similar result was demonstrated for
electropolymerized phenol, formed in the presence of phenylalanine, which was able

to retain a “memory” for the template amino acid[124]-.

Despite the success in preparing electrogenérated imprinted polymer film
- demonstrated .on the above works development of imprinted polyme[ film with
electropolymenzatl.on 1s slow. The most cntical problem encountered in this field is
_limitation_ of 'polymerizeble rrrnon'omers available, especially in aqueous media in

which most sensors are used. .

The transduction techmques that have been used for the preparation of
1mprmted polymer based electrochemical sensors include conductometry,
capaéitive_/impedance spectroscopy, potentiometry, chemical/ion-selective field -

effect, amperometry and voltammetry.

Conductometric detection is based on measurmg the conductlwty change of
imprinted po[ymer ﬁlm w1th ton bmdmg Piletsky et al. [125, 126] have prepared
imprinted polymer film containing molecular recognition sites for’ atrazine. The
electroeonddct-iv.ity set-up comprised a eeu with platinum electrodes separated by the
imprinted'membrane imfhersed in a buffer solution. Upon the binding of analyte to
the "ea';fities on the polymer ﬁl.m, the pero1eability of the film is affected and thus
results in change ofthe film electroresistance. By nledsuﬁllg the eondoetivity of the

system, atrazine in solution in the range 4.6-231.8 mmol/dm’ can be detected.



Interfacial phenomenar can be followed by changes in capzlcitaﬁce or
impcdénce of the system. The requirement is to hqve a ‘totally pore-free thin,
dielectnic film. As men_ti.()ned'in foregoiﬁé section, a. capacitive sensor for .glucose
wﬁs developled‘ by Wang;s:. g_TOl.l-p[123].A Pinholés on the mprinted poly(o-
phenylenedia-mine) was ‘blocked 'by lrédodecanethiol. Glucose in sollu_tionl was
measured. by monitéring.qap'acitance de.crease upon injection of glucose. Capacitive
sensors for creatinine and the herbicide desmetryn have been developed by

photografting of acrylate derivatives[127, 128].

Voltammeltry involves monitoring the current generated upon application of a
potential sweep. This is the most selective and widely used electrochemical
'technique, since the oxidation or reduction poteﬁtial of a particular substrate 1s its
- _intrinsic property. Therc: are several types of voltammetric téchﬁiques, depending on
the shajﬁe olf the applied p-ort.erntial function. For linear sweeﬁ voltammetry (LSV) and
cyclié_voltammetry (CV), the potential applied changes linearly with time. Pulse
techniques, in which potential sweep is not a linear function but comprises constant
increments on a linear ramp (differential éu!se voltarﬂmetry, DPV) or a square wave
function (squarer wav.e voltammetry, SWV), can offer -better sensitivity, because fhey
i give better signal—to—nc;i_se kratios. However, SWV has not yet been used with

imprinfed polymer based sensors.

Differential pulse voltammetry was used by Pizzariello and co-worker[129] to
measure clenbuterol solid-phase-extracted by imprinted polymer from bovine liver
samples. In the first step, clenbuterol binds selectively to the imprinted polymer

partictes immobilized. on ¢lectrode surface with graphite. In the second step, an
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elect‘roi-riz‘tcti‘ve competitor (iso,;(suhrine) 1S a_(ldec.l in excess 10 enhance release of the
bound clenbuterol. The released cleﬁbutcrol_is then-ana'lyscd using 'DP\{. Clenbuterol
iln the range'0.004—25 m, witﬁ a detection limit of 20 nM, was ciétenninga using
 this procedure. However, due to the srlow exchange kinetics of clenbuterol to the
polymer,particles,‘ release of the analyte from the polymer. takes more than 35

minutes. -

If the analyte itself does nc-al'exh.ibit any electrochemical properlty_ that c.“an be.
used for detection, a competitivé or displacement sensor formats may b.e used. This
st;ategy Was' sucéessflullly employed in delve.lopmem of tlieophy!line sensor based on
imprinted polymer in which electroactive ferrocyanide was used as a indicator of the
electroinactive analyte[130]. The = anodic ca_n‘rent‘ _.of ferro;yanide in  cyclic
\;oltanimograni recorded on electrode modified with imprinted'polymer was found to
be remarkably enhanced byrthe presence of the template, -\xfhi;;h was explained by the
\‘change on diffusive permeability of the thin layer of the molecularly-imprinted

polymer caused by the presence of its template molecule.

Potentiometric or- ion-selective electrodes (ISEs) arc another approaches to
electrochemical transduction of imprinted polymer based devices[131]." Generally,
this approach involves the incorporation of the imprinted polymer as the active

ingredient in the membrane of an ISE.

A nitrate-sé_!ective electrode based on imprinted polymer film has been
reported by Hutchins et al[132]. By polymerizing pyrrole in the presence of NaNO;,

a tilm was produced with pores that were complementary to the size of the targeted
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analyte ion. Both the size of the pore and the charge distribution within the
polymerized film formed a host‘cavity' for nitrate, which provided a selectivity

proﬁle different from those of conventional nitrate-selective etecirodes.
Optical sensors

Optical transducer can measure changes in absorbance, reflectance, refractive
index, luminescence or scattering. Many optical sensors have been developed based
on . indicators or fluorophores that change their absorbance or fluorescence

characteristics selectively in the présehcé: of different analytes.

'Perh:aps the first demonstration of the use of imprinted polymer in optical
sensor was the work by Andérsson'et alt133], in which ellipsometry was used to
quantify the amount of vitan-l.in_K, bound rto imprinted polymer film. Ellipsometry is
a te‘cﬁnique which measure the change in the pqlarization of light reflected from a -
surface to- indicate the thickness of bound organic layersé. With selectivity again_st
vitamin Kj- aﬁd other interferenté, vitamin Ki could be determiﬁedr in the

concentration range (.75 - 90 M.

Of the many examples m the usé of imprinted polymers iﬁ -optical sensors, by
far the majority relies on fluorescence measurement to achie;ré optimal sensitivity.
Wang'and co-workers[134] héve succeeded 1n developing a fluorescent seﬁsor for L-
tryptophén. U;-Jon inje‘étion of the template molecule L-tryptophad, the bound
quencher, p—nitrobenzaldehyclé is replaced, which results in enhancec_! fluorescence.

This sensor is capable of discrimination not only between the side chains of the
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amino acid but also the chirality of the template. However, the incubation time of

this sensor is as long as 4 hours, which'is too long to be used in sensing system.
1.2.4 Determination of biomolecules with MIP based sensors
Nucleotides

The concentration of ATP"c-an be determined by va;ious méthods such as
spectrophotometry, biolumiﬁescence, 'chemiluﬁli'ﬁescénce, chromatography,-
ﬂuoresc.ence, al;a électrochemilcal .méthods [135]. Dﬁe to the intrinsi(.: seleét’ivity and
sensitivify of firefly luciferaser, biolt-lminescence.is one of the ﬁmst sen.sitive methods
for 4ATP determination. However, the bioluminescent reagents are expensive and
unstable. ATP can also Ee detérmined by sensors based on molecularly'imprintred
polymers. A QCM sénsor based on ATP |mpr1nted polylons was. developed by
Shinkai and co-workers [73]. The MIP was prepared by radical copolymenzatlon of
bOlOl‘llC actd monomer and catlomc monomer. The MIP showed swellmg and
deswellmg behaviors upon addltlon of analyte. The hydrogel MIP v\.fas assembled
onto the surface of QCM electrodes and was used to detect AMP. Since the QCM
sensor was simply pfepared by putl-il:l.'lg a layer of hydrogel 6%1 the surface of el(_actrode,
the film forrﬁ was relatively .fhick. This fesﬁited In an excessively long sensor
résponse time of 40 minut-es. fhe _sensitivity of such a*sgnsdr was réported:to be 107

mol dm”, but no data on the selectivity was provided [73].

Glucose



As. oﬁé of the most important biroﬁlolrecules in human body, detection of
glucosa"\;fas extensively studied. Recently, a glucose sensor pl‘eparea by
elf‘:ctrolpolym'é-rization of poly(o—phenylengdiamine) - was ’reported '['123]. The
electropoiylneriiatiﬁn of o—phenylenediaminé was performed in the presence of
glucose 1n aqueous solution. The resulting imﬁrinted polymér film exhibited selecti.ve
binding towards glucoée which can ber measured by thé change in c‘zipacitancé. The
response time of this>‘sensor toward glucose 1s a few minutes whereas the detection
limit is about .-10'6 ﬁloi_dnl'3. This result shows thatl MIP ﬁlms pre[-)ared' by
eleqtropolymeﬁzation can. be "appiied- to fhe construction of sensors with high

selectivity and sensitivity.
Dopamine

_ Dopamine (DA) is oﬁe of the most important catecholamines in the family of
excitatory neurotransmitters‘-[i36]. It plays a-n.imp_ortant role in thé.functioning of the
central nervous, ca'rdioya@ul’ar, renal and hormonal systems. Detection of dof)amine :
by electrochemical anodic éxidétion has beeﬁ widely studied {137]. HoWever, the
' main‘ and foremost problem in the el,e'ctro'chémical determination of dOpémille 1s the
“nterference from other electroactive species, such_asr ascorbic acid (AA) and 3, 4-

hyclfoxypﬁenyl acetic acid (DOPAC), which are'lpresent in ‘bioloéica! mafrices in
relaﬁvely high concentration‘;aﬁd have similar redox potential as dopamine. To the
best '@0\vledge of the author, -there is no published work on the fabrication of

dopamine sensor based on molecular imprinting.
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In the study of the electrocliemicgl detection o‘f dopanﬁné,iﬁteraction between
boronic acid moiciy and-dopamine_has been used to discrim‘inzite dopamine from
ascorbic acid.'[138,139]. By:adding phenylbéronic acid- into the dopamine solution,
the oxidation poteniial of dopamine increases and bgcome’s separated from that .of
asco‘rbic.r acid. With the aid of ‘bo_ronic acid, a selective dopamine sensor. with
operating oxidation potential shifted from that of ascorbic acid can be prepared.
HoWevef, since addition of Boroqic acid to dopamine solutior; IS a necessity, this

method is not suitable for in vivo dopamine detection.
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1.3 Aims and objectives of this project

Studies on the preparation and sensor appiications of molecularly imprinted
polymer films are of fundainental and practical interest. Despite its exponential
increase in the last ten years, exploration on the potential application of molecular

imprinting in sensor fabrication is-far from exhaustive.

In most sensor systems, the aﬁafyte recognition elements are required to be m
(.:l(')se cont‘arrst'. with ‘ther Vt'ransdu‘c':er. Therefore, the p’rep;ﬁirétion of .molecularly
- imprinted polymer films ﬁrmly attached to transduce-r 18 essenttal for the successful
application of. mol'ecularly imprinted polymers in sensors. Among the large number
of molécula_rly imprinted polymers reported, most of them were prepared in bulk
solution and thué resulted in polymers in the state of monolith. Electropolymerization:
is one of the methods suitable ,fqr the prépara?ion of molécularly imprinted polymer
film in sensor application. By relectropolmerization, a uniform thin layer of
molecularly imprinted poiyrﬁer can be ﬁl'epared on the surface of electrode. In this
project, three kinds of molecularly imprinted polymer films baseéd .on polypyrrole,
poly(o-phenylenediamine), polyaniline and poly(acrylamide) were prepared 'by B
electrppolmerization for the purpose of sensor 'applications. The factors _'affectirig

the analytical perf0n11an¢e of these imprinted polymer films will be discussed.

Mést §f the imprinted polymer reported so far were prepared and use in non-
aqueous media. Reports on imprinted po'lmers for aqueous system, in which most of
biological tests are carried o.ut,‘ are still limited. Thé same difficulty is also
encountered in the preparatri_on of imprinted polymer ﬁ[rﬁs by electropolymerization.
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Monomers tﬁat’ are eleciropolymerizablc in aquéous system Ell;ti: limited and the
" addition of functional groups .to these monomers usuatly 1'BSLilt$ n pdor
electroﬁolyme_riéation efﬁcienf;y in'équedus media. In an attempt to overcome this
problem, a molecular.ly imprinted polymer film-has been prepared in non-aqueous

medium and gradually transferred to aqueous system for use as a sensor for glucose.

As méntioned. in the pre\-!ious sections, fabrication of sensors by molecular
imprinting is usually,difﬁcuit'due to the poor proc’:essa.bility of MIPs prepared by
bulk polﬁnerization. In this stud.y, a new abproach involv.ing assembly of MIP on
electrode surface.by z}z-situ eiect?opolynlerization will be employed to tackle this
- problem. Using this approach, a uniform MIP ﬁ-lm firmly adhered to tﬁe tranSducer

SL_lrche can be obtained, res-ullting in more efﬁcient‘transdﬁction of analytical signal
and lower diffusion barrier. However, this approach als;o has its limitations. Firstly,
the c—:t‘loice of electropolymerizable monomers with the appfopriate functional groups
1S limitéd. Sécondly, most of these monomers can only be electropolymerized in non-
aqueous medium, and the resulting polymer films are not compa.tible with the ‘
aqueous environment in biological studies.- In order to overcome thése limitations,
we will prepare some néw electropolymerizable _funct.iona-lized monomers by organic
symthgsié in -this study. | For functionalized rﬁdnomer which cannot be
‘elec'tropolymerized in aqueoﬁs system, a new approach involving preparation of MIP
film ih‘nonaqueoué system' followca by gradual transfer ll‘o an aqueous solution will

be tested.

'Ade_nosine triphosphate (ATP), glucose and dopamine are impbrtant molecules

in biological system. Hence, accurate measurement of these bio-molecules under
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physiological conditions is of much intérest. To take advantage of the specific -
affimity of molecularly imprinted polymers, imprinted polymer films of these bio-
molecules have been prepéred and used as sensors under physiological pH. The

results are reported in chapter 2, 3 and 4 respectively.
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Chapter 2

Preparation of Molecularly Imprinted Polypyrrole and

Poly(o-phenylenediamine) Films for ATP Detection
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2.1 Intreduction |

In the preparation of molecularly imprinted polymer. (M_[__P), complex-es‘ of the
template VmOICCL'llE: and the fu'ﬁ_étionél monomer are obtained by interaction befween
the template molecules and moﬁomers with the spatié[arrangemcﬁt of the functional
: groués retained-after polymerization of the functional monomers. This is followed by
: subsequen_t removal of template molecules to :giverc'omplemér'ltary ca\.fitiés with high
afﬁnit)} to target (template) molecules. Interactions including covalent bonding,
hydrog(;n bonding, and electrostatic attraction are possible in-the i)fearrangement of .
temp;late moleculés and fm;lctional mon.omers [1]. Imprinting approachres i;lvdlving '
noncovalent interaction are usually more flexible and more similar to the natural

~ biological processes.

Since its advent in 'early 1980’s, the electrochemical quartz crystal
microbatance (EQCM) has been widely used in mass measuremenf in
electrochemical studies z‘md chemi-cal sensors[é-S]. The EQCM resonator comprises
a thin quartz cryétal sandwiched. between two metal electrodes, the frequency of
which is sensitive to ma‘ss changes of the crystql and its electrodes. Accordirig to
S;ltlerbrey’s equation[6], the Freciﬁency change of the resonator is proportional to the _
mass change on the surface of the EQCM electrode. For an AT-cut 9 MHz quartz
crystal resoﬁator, the sensitivity is about 0.2 Ing cm™ Hz'. Because df its ﬁigh
sensitivity to mass chénge, EQCM has become increasing popular for the fabrication
of sensors based on lmolecularly imprinted polymers in the past decade. Differen.t

kinds of polymers were assembled on the EQCM electrode s-urface, and the EQCM
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sensor has been used to detect various analytes inciuding volatile organic vapors,

glucose, amino acid and other biomolecules[ 7-13].

Adenine nucleotides play aAcrucial role in the regulation émd integration of
cellular -. metabolism. Adenosin-s’.-.tri_phosphate- (ATE;) 1§ the major carrier of
chemical energy in all 1i'§ing species. During the course orf metabolism, energy is
provided by enzymatic hydroiysis'of ATP to adenosine monophosphété (AMP) o.r
aﬁenosine diphosphate (ADP}). Sipcé' ATP occurs in all living cells land. disappears
rapidly in dead cells, it has been widely used as an indicatorr of living oréanis:ﬁs[M—

" 19]. For example, the ATP cbr,l.tent 1s frequently used as an indicator of microbial -
actjyity in so‘i-ls[15—25], the fréshness of a wide variety of ﬁsh[26—28]; and as a
QUality controi of 'bi.oocl prior to transfusion[29]. ‘Recentty,r because of the increasing
threat of bio-attack, detection of bacteria by ATP measﬁrement has attracted much
attentiori[30-’l327]. In frans’pl_antaﬁbn, the ATP 'conte.r-lt of traﬁéplante_d tissue, which
has been shown to correlate with graft function and survival[33], is uséd to. assess the

viability of the tissue to be transplanted{34, 35].

‘ ATP content can be détermined by spectrophotoﬁletry[B 0], biﬁiumrinescence[SQ, |
32, 34, 37, .38],7 'Acrhemilu.minescence.[3-9], chromatographyf23, 26, 40-44],
' ﬂLIOI’ESC.CIIICG[:’)S,' 37, 45-49], and eiectrochemiczﬂ_ method;{50~52]. Due to the
intrinsic selectivity and sensitivity of firefly luciferase, biolunﬁnes.cence is one 6f the
most senlsitivr.e metl.dods for ATP de__tel"mination. However, 'the biol'umin_escent
rreagents are expensive _a:l1d unstable. ATP can_also be determined by sensors based

on molecularly imprinted polymers. A QCM sensor based on ATP imprinted



polyions was developed by.Shinkai and co-workers, the sensitivity of such a sensor -

is reported to be 107 mol dm™, but no data on the s¢lectivity was provided{53].

Electroactive p_olyhrmers' such as polypyi‘rble and po1y(o;phenyleﬁediahﬁne)
have been used in molecular imprinting ’[10, 54~61]; By e[ect_ropbl‘yme_rization‘, a
uniform polymer film can be easily prepared on the electrode surface éncl the
‘thickness of the film can be controlled be alterihg the amount of charge during
) electrqpol_)qnerization. Pyrrole and o-phenylenédiamind bo.th havg " amine-like -
function groups. In neutral -or slightly acidic media, therse' monomers are p_ositi_vei){
charged.r As ATP is negza_tiv;:ly Charged Vat pH =7, electrostatic atfractio'n betweén tﬁe
monomers and ATP would l-ead' to the formation of compléx between the monomer
- and the templa;e molecule, thus,mole_culajrly impriﬁted polymér can be prepared“by
electrépolymerization of these mixtures. The charge on the surface of these polymérs
can be controlled by apéjlication: of a negative v'ol‘tage to the EQCM electrode,
therefore the negati-vely charged ATP template r‘nolecules can be -'remorvcd -by .
electrostatic repulsion. Here we report our studies on the preparation of the EQCM
sensors based on moleculariy imprnted polypyrrole and poly(o-phenylenedialﬁine)
and their dpplication 4s Sensors fqr ATP. The factors affecting imprinting efficiency

and the mechanism of molecular recognition are discussed.
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-2.2 Experimental

- 2.2.1. Matcrialsr'

Pyrrole, o-phenylenediamine, sodium dihydrogen phosphate and sodium
hydroxidc were pofchased from Aldnch. Pyrrolé was. dist-i!ledim[;nediatoiy before
use and o-ph_eﬁylenediamine w_as. used as recetved. Adenosine-5’-triphosphate
disodium salt (ATP), ad_enoSine—S’-diphospoate disodium salt (ADP-), ‘adenosine-5’-

monophosphate disodium sait (AMP) were purchaséd from Sigma.
2.2.2. Instrumental

Electrochemical measurement and electropolymorlzatlon were performed on a
PAR model 273 potentiostat (EG&G USA) interfaced to a personal computer using
the EG&G M270 software. Piezoelectric measuroment was conducted on a QCA917
quartz crystal analyzer (Seiko EG&G). Frequenoy s-ignal_ was collected by. arp'ers:onal
computer with a home-developed data acquisition: program (Figllro-' -2.1). The
" electrochemical cell used in this work is a home-designed Teflon cell srimi‘lar to that
of QCA 917 (Figure 2.2). Al‘.l- AT-cut 9.0 MHz EQCM Pt electrode (Seiko EG&G, |
area = 0.2 cm’) w_ith only one side exoosed to the electrolyte solution was used as the
working electrode whereaé a Pt wire and a sa-turateci calomel electrode (SCE) were - °

used as counter electrode and reference electrode respectively.

UV-visible absorption spectra were recorded on a Milton Roy Spectronic 3000

diode array spectrophotometer.
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1.2.3. Preparation of molecularly imprinted polymer films

-Mdlecularly imprinted polyﬁﬁrg;[e ‘ﬁlms were prebaredby potentibs-tatié-
electrolysis at 0.8V of a pH %.0 phosphat.e buffér ;»olution con'taining 0.1 mol dm™
pyrrole and 0.2 mo!-dm'J ATP \?ilth an. EQCM Pt electrode for albout | hr. The
polypyrrole films weré then overoxidized by repeatéd!y scanning the potential
‘between -0.2 to 1.1 V at a sc‘an rate’ of 50 mV S—l, until stable i-E’curves were
obtained. Non-imprinted pb-lynler films were prepared with the ._s'ame procedures

- ex’cept in the absence of ATP.

Poly(o-phenylenediémine) films were prepared by continuously scam}ing'the ;
potential between 0.0 V and 0.8 V of an EQCM Pt electrode in a pH 5.0 buffer
solution containing 5.0 x 10° mol dm™ o—phenylenediaminer and 0.01 mol dm"™ AITP :
 for 16 cycles. After extensive washing with water, a négétive voltage of -0.20 V was
applied to the polymer films for 20 minutes, .followed by extensive washing with
water again t6 remove the template moléoﬁles. Non-tmprinted polyﬁier films wer-e
prepared in the same way but no ATP molecules were édded to the elé.c.trolyte

solution for electropolymertzation.
Molecularly imprinted polymer films of overoxidized polypyrrole and poly(o-

phenylenediamine) prepared by the above procedures are abbreviated as OPy/ATP

and PPd/ATP, respectively.

54



2.2.4. Analytical rrieasure_ment with EQ‘CM

. For EQCM sensor based on_o.vé;'oxidized polypyﬁole, frequency ‘chaihlg'c of the
sensor w.as recorded during continuous potential scan of the electrode between —0.2
to 0.9 V at-50 mV s’ Thé supporting elect-rolyte was a pH 7.4 phosphate buffer
' | containing an analyte' (ATP,I ADP or AMP) of knc_iwn concentration. The sensor was
re-generated by the overoxidation procedure .nleﬁtioned above followed by extensive

nnse with detonized water.

For EQCMI sensor based on poly{o-phenylenediamine), measurement was
perlformed by holdiﬁg the sensor electrode :at +0.5 V. Analytes of differént
concentrations were added to the.cell b}'f a micro-syringe. After each measurement
the sensor wz_lé re-generated Iby applying a negative potential of —0.2 V to the
working elect'roclle for 20 minutes in a well-stirred electrolyte.solution. This was

followed by éxtensively washing the electrode with deionized water.
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2.3 Results and discussion
2.3.1. Preparation of MIP film of overoxidized polypyrrole {(OPy/ATP)

Pyrrole can be easily electropolymerized on a Pt electro‘de. Ina pH 7.0 buffer
| ‘solution, pyrrole is oxidized when the potcntlal is hlgher than 0.4 V {Flgure 2.3) and
substantial e!ectropolymenzanon can be obscrved at 0. 5 V. Flgure 2 4 shows a cycllc ‘
A voltammogram of ¢.01 mol dm™ ATP in pH 70 phosphate buffer recorded on a Pt
Working_electrodc in the potential range of —0.3 to i.O V. The'eléctro.chet;nical“
behavior of the ATP containing solution is almost identical to that of the blank
suppérting electrolyte. A rise in anqdic current can be observed when the potential is |
higher than ‘1_1 v, ,x-vhich is the background current due to electrolysis of the
supportil‘lg clectrolyte. Based on the . above data, the potentiai for
relectropo,lymerization of pyrrble in the pfesence of ATP was choséh't6 be 0.8V, a
potential at which ATP is electrochemically stable and eiectropolymerization' of
pyrrole can be conducted. Mol_eculérly. irnprinfed polyp'yrrole films were prepared by
potentiostati; electrolysis of a pH 7.0 phosphate buffer solution containin‘g‘(). 10 mol
dm™ pyrrole and 0.2 ol dm™ ATP at 0.8 V on an EQCM Pt electrode for about 1 hr.

' The frequency change of EQCM during the course of electrolysis was about 10 kHz.

It is generally believed that overoxidation of polypyrrole results in loss of
cationic charge on the pyrrole nitrogen and introduction of oxygen-contaiing groups
to the pyrrole ring [62, 63]. Therefore, release of the negatively charged ATP

molecules from the polymer matnces can be expected. The ATP template molecules



on su-ch plepa-red polypyrrole films were removed by over- -oxidizing thc polypyrlole
- film Lhrouoh repeatcdly scanming the potenhal between —0 210 1.1 V at a rate of 50
mV-s’ uﬁtil the 1-E curve became stable. The electrode was subsgquent‘ly washed
cxtens'ively.with deionized i'water_.' Removal of .ATP molecules from the imprinted
polymer film by over.oxidation was confirmed by meas-uring the UV-Vis absorption
at 258 nm of the electrolyte after the overoxidation proéesé. An absorption band at
258 nm attributable to ATP"absmption- was’ obse_rved in the UV-Vis spectrﬁﬁ of the
clectrolyte after the first overoxidation process which disappeared sloivly n

subsequent overoxidation cycles.
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©2.3.2. Molecular recognition of ATP by OPy/ATP

[n order to test the mq!ecul.ar' recognition ability of the molecularly imprinted -
polypyrrole film towards ATP, the EQCM electrode coated_-with QPy/ATP film was
immersed in 5 ml of ﬁH 7.4 phosphate buffer containiﬁg an analyle (ATP,, ADP or
“'AM-P) of known concentration and the frequency change of the sensor \;vasl' recorded
“during continum-ls‘ potential écan ofthellEQCM electrode between —0.2 to0.9 V E-it 50

mV s'l.,

-figure 2.5A dépicts the time d'ependence of frequericy: change (AF) of the
OPy}’ATP‘ coated EQCM resonator during the course of poferitial éweep in é
phosphate buffer solution containing 5.0 x 10~ mol dm™ ATP_ It can be seen that the
frequency .continuougly‘ decreased during the ‘cours'e of potential sweep unrtil it
reéched a steady state after about S‘minutes. The frequency change of the EQCM‘
sensor indicated a mass gain on the electrode surface which can be ascribed to the
“migration ofsbecies from solution into the OPy/AT.P film during the potentiall scan.
As the first dissociation constant (pKa) of ATP is equal to 3.7, ATP 15 nggatively
charged in neutral media. Thercfore ATP can be adsorbed onto the molrecu]arly
imprinted polymer film by electrbstatic interaction. Figure 2.5A also shows the
'zigzagrnat.ure of the ffeqﬁency l’E‘:SpOI’IISG of the resonator. 'fhe_ fréquené.y change of
the resonator during a potential ;'can cycle versus the change in elecﬁode potential 1s
‘p_l-otted in Figure 2.6. From this figure, oné can see that the resonator freqﬁency shifts
* negatively during the positive scan and vice versa, suggesting migratioil of solution

species into and out of the polymer film during the positive and negative scan
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respectively. This is another indirect evidence for ATP migration towards and away

from the elecirode surface..

In ‘ordcr to conﬁrmrr th§ moiécular imprinfing effect, a nonimprinted
overoxidized polypyrrolé' film ;was prepared with similar procedure except no ATP |
was present in the electrolyte for 'eiectropbl‘ymerization. The response of the EQCM
' resonator coated with nonimprinted po.lymer film is shown in Figure 2.5B. Comﬁared
with Figure 2.5A, the frequency of the resonator also shifted negatively but with a
much smaller slope,' indicgting that uptake of ATP into the nonimprinted polypyrrole
film wa_S mu;;ll- stower. The large fréquenc_y drop of the imprinted polypyrrole fitm
coinparéd to the non-imprinted one confirms the ‘presence of the molecular

imprinting effect.

Thére ié_a chance that .the frequency chénge during the potential sweep -might
arise from the EQCM Pt electrode itself. In order to eliminate this possibility, a bare
EQCM Pt electrode was used in a control experiment. No éubstantial ffequency shift
from the .béseline wa;s observed. Only a horizontal baseline v;fith a regular waveform
~+ of smalt amplitude due to the electrochemical éxidaéion and reduction of Pt metal
‘was observed. Another _confroi' test was also,cgm’ed out by moni tori‘ng the frequency
chaﬁge bf the OPy/ATP coatedjEQCM electrode 1n the ébsence of ATP, in a blank B
"buffer solution. Agéin, no substantial frequency shift can be observed. These control
¢xperimehté indicate that the mass gain (frequency drop) is due to the interaction of

- ATP with the MIP film on EQCM electrode.
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ADP and AMPlaré prodiicts of ‘ATP decom;ﬁosition with similar molecular
structure with ATP, therefore clear (li_scrimihation of ATP from ADP aﬁd AMP- is
| challenguig but essen-ti‘al for ATP detenn‘jnation.' Fi.g-ure 2.7 depicts the Coneiation of
the frequehc‘y. éhangé of the EQCM senso‘r with various concentrations éf ATP, ADP
and AMP. As shpwn in the ﬁgure; tn fhe_ range bf I x 10';4 to 2 x 10 mol dm'3, AF-
increases prbponionally-\vith ‘ATP concentration. This result shoWs.the potential of

this MIP based EQCM SENsor as an n'ATP sensor. It is noteworthy that the frequency -
-response of OPy/ATP to both ADP and AMP is much less than that to ATP. This
~ may partly be due to the fact that ADP and AMP have lower molecular wei ight than
ATP. If calculated with molar- unit, which can normalize the attribution from
molecﬁlar weig'ht-, the response of the sensor towérds 1.0 x 107 mol dm™ ATP is 730

- Hz, which is much larger than that of ADP (337 Hz) and AMP (42 Hz).

The above result shows that the EQCM sensor based on OPy/ATP is both
sensitive and selective towards ATP. On the other hand, as can be seen in Figure 2.4,
the response time of ‘this sensor is as long as 5 minutes, which is faicly long

considering the high tumover rate of ATP in vivo.
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2.3.3. Optimization of parameters in the preparation of the sensor

: ATP.t-o pyrrole mole rﬁtio._ In the Aprepar-aition of rﬁoleéularly imprinted
polymér films, non-covalent adLiucts of ';emplate‘ molecules A;_fP .a-'n_d pyrrole
mono‘mers are formed through Hydrogen'lbonding and electrosta'tic intcfaction. Thus, -
the ATP to pyrrole mole r<;tti0 is one orf the most important parameters that may; affect
the performance of ther MIP film. A series of M[P films were _prepared from
| e]ec;[rolyte solutions contain'ingr .various ATP to pyrrole mole r‘atio_s.
Electrépolymerizﬁtion was perfqrméd.by potentiostatic electrolysis of th_eée solutions
at 0.8 V until the negative‘freéuency shift- of the EQCM resonator reached 10 kHz.
Theée series of MIP films were used to rﬁeasure the frequency shift of 5.0 x 1{)'3. mol

dm™ ATP and AMP.

Table 2.1 summarizeé the analytical performance of these MIP films prepared‘
with different ATP to pyrrole mole r;altios. The sensitivity of the MIP films towards
5.0 x 10 mol dm> ATP (AF) in?:reasés with the moie ratio of ATP-to pyrrole. It is
iikely that a hugher ATP to pyrrole mole ratio can enhaﬁce fhe sensiti.vity of the MIP
films t&vards ATP. Howevég, the stability of the MIP ﬁirﬁ drops at -very high ATP to

-i)yrrole mole rafio._Af an ATP to pyr;‘ole_ mole ratio of 5:1, the polymer ﬁlm- preparéd
1s only stable enough to perforrﬁ one ATP inco'rpqration—-overoxidation'cycle. At high
ATP to pﬁ'ble mole ratio the film prepared hés lowerr selectivity but the response'
time is shorter. When the ATP to pyrrole mole ratiro is incr.eased from 1:3 to 5:1, the -
selectivity of the MIP film decreases more than dne fold. At the séme timé, the“
rcsﬁonse time of the MIP film decreases from 720 s ‘to.240 5. Baéed on the above

data, an optimized ATP to pyrrole mole ratio of 2:1 was selected.
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Table2.1 - Frequeﬁcy change towards 5 x 107 mol clm_'? ATP (AF), ATP/ AMP
~ selectivity ratio and responsc.time-ofé series of MIP films prepared with various

ATP : pyrrole mole ratios.

ATP = Pyrrole (ﬁmole:m(‘)le) AF (kHz) AFap { AF amp | Response time (s)
1.3 [ o1 | w5 | 720
1.2 0.4 T 480
R INCED 96 420
201 A I A R 300
301 TIsz | 73T 300
51 162 - ~ 43 | 240
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2.34. 'Preparation of MIP film of poly(o-phenylenediaminc) (PPy/ATP)

Molecularly imprinted po.ly_me.rj of poEy(o-phen-ylenediamine) was prepared by
coﬁtinuous pot.ehtia.l' scan ﬁf 721-11 EQCM Pi e]ec.trode n a pH 5.0 acétate buffér
solution con1téinin‘g 50 x 107 ‘mol dm™ o-phénylenediam_ine and ATP of
pfedetérmined concentratioﬁ. ATP with concentration from 2.5 x 107 to 1.25 % 107 7
| mol dm'j was used, but little difference was found in sensitivity and selgactirvity of the
senéo;s based on these MLP 'ﬁlms.. Thus molec_ﬁla_rly imprinted polymer films
prepared from 5.0 x 10~ mo{ dm™ o-ph-enylenedi;almine and 1.0 x 10’2 mol dm™ ATP_
was used in further investigations. Figure 2.8 shows a typical cyclic vbltammogram
du_ri‘ng.the electropolymerization proéess. As shown 1n the ﬁgure,-_the peak current
_deéreased drastically after the first cycle and continually-decreased upon repetitive
sban,ﬁing. This indicates that the pdly(o-phenylenediamine) polymér f;)rmed has low
conductivity. As a résﬁlt, the growth of polymer al"mbst stopped after about 15 scan
cycles and the polymer film prepared by this way was 'relatively_thin, as evidenced
by the frequeﬁc‘y change of ca. 800 Hz in the scanning process (Figure 2.9). The
; cyblic \foltammc;gram on’ the polymeri;ation of o—phenylenedidmine 1s- almost
indifferent to the presence or absence of ATP in. the.solution,which- is reasonable as
ATP is electrochemically inactive in the range of scanning po.tential. Th¢ MIP film
was then extensively washed_iﬁth water and a negative po_tcntizil Qf 1—0.2 V was
applied to the workiné_electrode for 20 minufes to facilitate the r_emovall of the .

negatively charged template molecules.
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Figure 2.8.  Cyclic voltammogram‘during electropolymerization of 5 x 10° mol

din™ poly(o—phenylenediahﬁne)‘ in the presence of 0.01 mol dm™ ATP in pH 5.2

acetate buffer.
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electropolymerization with o-phenylenediamine.
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2.3.5. Molecular recognition of ATP by PPd/ATP

: In order to test the molecular recpgnition ability of the PPd/ATP Based Sensor,
EQCM measurement of‘ther sénsor ‘was perf(.)rm_ed by holding‘ the working electrode
at +0.5 V, until a stable frequency readring was obtained. Toravoid disturbance of the
electro[yfe, aliquots of analyt—es of knowrn‘ concentration \x‘/eré added carefully and

“quickly to the cell by a micrd-syﬁﬁge.

| The frequency change of- the PPd/ATP based EQCM sensor at 0.5 V upon
“addition of 1.0 x 107 mol- dm™ of ATP ié shown in Figure 2.7170A. The fréquency of |
the resonator sharplydécreased upon addition of ATP and the steady Statt“; was
reached rapidly in as short’as 10 seconds. The frequency change was measured as
13.0 Hz. In order to eliminate the possibility that the frequency ﬁhange was a result of
the addition of buffer sdlution, a blank buffer solution without ATP was added and
'tt_le frequency change of the resonator was found to be less than 3 Hz, which 15
“negligibly small. The resﬁonsé of an EQCM electrode coated with non-imprinted
PPd as well as that of a bare EQCM electrode under the same experimental
conditions were also shown in Figure 2.10B gmd 2.10C respectively. It can be seen
that both resonators showed fés.ponse to ATP, the frequency cﬁange \'fv.as IS Hz for
'the non-imprinted resonatof and abou-t 6 Hz fof thé bare rrer:sona‘tor. “During |
measurement, a posttive potential was applied to-the working electrode so @hat it
rcould‘be assumed that el’éctrostatic attraction occurred betweén the positively
- charged electrode surface and the negatively charged ATP molecules. DGSpiLe the

frequency change caused by elecirostatic interaction, the resonator coated with
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PPA/ATP shows much higher sensitivity towards ATP, which can be attributed to the

molecular imprinting effect.

| Theﬁeciuericy résponSG of the PPd/ATlP based EQCM r-esonator to 1.0 x 107
mol dm™ of ADP and AMP were recorded and shown in Flgure 2.11. The frequency
: chanoe of the resonator was measured to be |5 Hz for ADP and 9 Hz for AMP
- respectively. It is ev1dent that the sensitivity of the molecu]arly-lmprmted resonator
for ATP 15 higher than those for ADP and AMP. It is also noted that the time
| required for the frec’lucncy response_ to reach a steady state for ATP i_s about 50 s,
\a-rhi(_:h is much shorter than'thzit for ADP (ca. 100 s) and AMP (130 s). The difference
in response time can be attributged to the specific affinity of the MIP ﬁlr.n to ATP as
wéll as tﬁe difference in charges of the nucleotides (ATP carries_é higher negative

charge than ADP and AMP).V

VF-igure 2.12 shows the correlétion of th¢ frequency change with various
concentrations i_)f ATP, ADP, an& AMP. In genéral, the sepsitivity of the resonator
coated with MIP is much higher towards ATP than ADP and AMP. This indicates
that the ATP—imp_rinfed poly(ojl:;henylenedialniné) p@pared in this work has gbod
~ selectivity toward ATP. As can be seen in the ﬁgure, the freque—,ncy chang; of the -
resonator 1s almost proportiqnal_tci 'Fhe concentration of ATP in the range 2 x 107 ~
x 107 mol dm™. The. detection limit of this sensor to ATP is about 5 x 10° M.
o Compar_ed to the result of AMP detection rpublished by Shinkai and coworkers using
hydrogels containing boronic a@iid [53], the response rtime ‘of this 'PPd/A_TP based
.sensor.(ca. 50 s) is mpcﬁ better ti}én'theirs (> 50 minutes), but the detection liﬁﬁt of

Shinkai’s sensor is much lower (107 mol dm™). It should be noted that the PPd/ATP
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film prepared in this work is much thinner than the pdlyion film reported by Shinkat
and co-workers. The thin film leads to fast response of the sensor at the expense of

lower sensitivity:
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Figuré 2.10.  Frequency response of (A) molecularly imprinted PPA/ATP, (B) non-
impririted PPd and (C) bare EQCM resonator upon addition of 1.0 x 10” mol dm™

ATP.
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Figure 2.11.  The time-resolved frequency change of the PPd/ATP coated EQCM
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2.3.6. Comparisoﬁ of molecularly imprinted OPy and PPd polymer films

on cémpéring tl';e analyticﬂ performance of ther OPy/ATP and PPd/ATP bzléed
SENsors, it ié found that the latte‘r lS superior bofh In response time éncl detection limit.
The difference in response time. is partly due to thinner polymer film in the PPd/ATP
sensor. The difference in S.éll-Siti\’ity caﬁ be due to the intrinsic difference in thg
structure of the polymer ﬁlms: The o—pheﬁylenediamine -mmidme_r contains two
anllino groups which are retained in thé MIP film. These amino groups carty positive
charges in pH 7.4 phbsphate buffer. In cOntrést, the positive charge on the n.itrogen
atoms of pyrrole was reported to be partly removed by the overdxidaiion process [63].
The loss -in the p(;sitive charge of the-overoxidizéd pplypyrrole can decrease the
affinity of the MIP film to ATP. Moreover, the amino groups on poly(o-
phenylencdiamine} are more out-reaching than the N-H g'roups inipolypynole. Thus
it is reason—a;ble to assume ‘fhat amino groupg in PRA/ATP films can bind the ATP

" molecules much more readily. -
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2.4 Conclusions

Molecularly imprinted p'o.lymer films of polypyrrole and poly(o-
phenyleﬁcdamine) have been prep_a-red rby. elcctropolyme-rization. on EQCM
electrodes in the presence of aden_osine—S’utriphoshate (ATP}. These ATP SENSOrs are
selective against ADP and AMP. A pyrrole to ATP mole ratio of i:'l was found to be |
the best for the preparation of the MIP polypyrrole films by electropolymerization.
Oﬁ the other _hahd, the poly(o—ﬁhenylemediamine) film has low colnductiv-ity, tﬁus
very thin polymer film would be obtained. This ailows the MIP films to have :shortl
response‘ti.me towards the analytes. Compared to the polyion film reported by .
Shinkai and co-workers, the poly(ol—phenylenediamihe) MIP films were found to.

exhibit better selectivity but lower sensitivity towards ATP.
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Chapter 3 |

Preparation of Molecularly Imprinted Poly(boronate-
substituted aniline) Films and their Application as Glucose

Sensor
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3.1 Introduction

~ As described in_chapter 1, depending on thé nature of interaction between
tunctional monomer and template molecules, théré are two types. of molecular
unprinting methods: c'c_walént imprintingland non-covalent imprinting[1]. In tI;e case
of (':ovalen_I imprinting, functional .mqnomer and template molecule are bound to eac-h
other_by covalent bonds. This aggregation of ﬁonbmér and template tﬁole'cule 1s then
polymerized under the condi.tions where the covalent bond remains intact. The
covalent bond is subsequently éleaved under appropriat.e conditions.and.the template
molecules are removed from the polymer matrix. When the imprinted polymer film
is used for analysis, the guest molecules form the same covalent bond with the

functional groups on the polymer.

Tﬁe covalent imprinting method possesses certain advantages over thé non-
covalent method[2]. The most obvious one is that the imprinting effect is more
p.re;:ise due to the strong .i;iteraption between imprinted polymer backbone and
template nioleculeé. Th'q strong interaction of the covalent bonding also enhances the
stability of the imprinte'd polymer thus enables its utility under a wide variety of
experimental conditions. M-oreover, monomef—template aggreg;.ltions aré stable andr
stoichtometric s‘o that the imprinting processes and the structure of tile bindrin'g site
are relatively well-defined. On the other hand, the synthesis of the m.(momer—
' template- conjugate is 0&311 troublesome and less economical. Compare to non-
‘covalent binding, uptake and release of guiest molecule by covalently imprinted

polymer are usually slower.
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O_n'e of the keys to success In covalentr i[ﬂpﬁﬂ[iﬁg 1s a good ciloicé of the
functi()nai monome.r and the iemplate lrnoiety. -Th_e covalent bondsﬁ fomwdbélween
"the functional monomer and the_ tenjplate mofecules must be both -stable ai;d
'revérsilﬁle, which are contradictory td a certain extent. Therefore, the number bf '
E-?(al';][)lLCS which fulfill both of these reduirements i§ relatively small. In the publis.hed
works, samples of covalent imprinting include acetals{3-6], k_etals[?-ll], Schiff
_ béses[?—ll]; disfuif_ide bonds{12, 13], coordination bonds[14.-2l] and boronic acid

esters[22-28].

. Bofonic acids are capable of forming reversible and strong c;)‘valent bonds. with
the diol functionalities of carbohydrates in the form of cyclic estgrs[Z_Q]. It 15 even
more desirable that the fate 6f this reversible reaction is much faster than the human
‘ rlime—,sgale.- Due to its advaptageous characters, covalent formation of boronic acid
esteré 1s widely used in various sensing systemé[3'0—36]. Neverthéless, most Of these
sensory works were confronted with the problem of low solubility of the boronic acid

derivatives in aqueous media[34].

In this chapter, I wiAli‘ ;eport the preparétion of molecularly imprinted co-
polyrﬁer.ﬁlm of boronate-substituted aniline (BSA) and its application as sensor for
glucose, which is one of the most important analytes in human blood. By
immobilization of the boronic acid moieties into a polymer ﬁlm;.the problem éf-low

solubility of bororic acid derivatives can be overcome.
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3.2 'Experimental :
3;2.1. Materials

3-Amh10phen§lboronie acid (APBA) hydrochloride salt, sodium dihydrogen
phosphate, sodium hydroxide, sodium ch[oride and tetrabutylammonium
'hydrogensulfate (BuyNHSO,) .were purehased from Aldrich and used.'as received. D- -
glucose, D-fructose, D-sucrose and ribose wefe pufchased from Sigma. Deiohized

water was prepared by a Milli-Q system (Millipore, MA, USA).
3.2.2. Instrumental

- Electrochemical measurement.s and electropolymeriz'ation Were perfofmedl on e
._BAS lOOB/.W electrochemical workstation (Bioanalytical Systems, West‘Lafayette, :
USA) controlled by BAS ‘l 00B/W software running on a personal competer.
Piezoelectric measurement -was coeducted on ‘a -QCA917 quartz crystal analyzer .
(Seiko EG&G). Frequency signal was col_lected by a PC computer with a heme-
developed data acquisition program. The electroehemieal cell used in this work is a
home-made Teflon cell similar to that ef QCA 917 Teflon cell. A 9.0 MHz EQCM Pt
electrode (Seiko EG&G; area = 0.2 cm?) with only one side exposed to solutiovlnr was
;used as the werking' electrode whereas a Pt w.fire and an Ag/AgCl electrode _wefe 'ueed

as the counter electrode and reference electrode respectively.

UV-visible absorption spectra were recorded on a Milton Roy Spectronic 3000

diode array spectrophotometer. FT-IR spectra were obtained as pellets in the 500-
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4000 cm™ region by a Nicolet Magna-tR 750 FTIR spectrometer. 'H NMR spectra

were recorded on a Bfuker 400 MHz DPX 400 spectrometer.
3.2.3. Synthesis of monosaccharide-boronate-substituted aniine

GIuCose—.boronate-substituted 'anili_ne was syntﬁesized according ’to published
w;)rk[?)?] with slight modiﬁca;ion (S;heme 1). j-Aminophenylbérqnip acid (3.47 g,
20 mrﬁol)- and activaged molecular sieves (BDH 4A, 50 g) were added to a 100 fnl
dichloromethane soluﬁon of glucose (2.74 mg, 20 mmol). A.&er.48 hours, the sieves
- were r_éméved by ﬁltrgtion and m_ethylene chlonde waé remﬁved.uhder vacuurﬁ to
give' a '{iight yellow soiid. Th'e raw product obf;zlined was recrys;al'lize'd from

“dichloromethane / hexane. Yield: 64%.

- Scheme 3.1

HO,
Q0 .
Ot o _ CH,Cl5, 48 h
~on * ' -
S\ ou molecular sieves )
H,N OH B ' HoN



3.2.4. Preparation of moleculaﬂy imprinted poly(boronate-subsituted a‘niline)

films

'Co_ﬁolymer films of boronate—suﬁstituted aniline (BSA) and aniline were
prepared by continuous potential scan of tllle_ EQCM Pt or Pt wire électroderbetw-een'
-0.20 and 1.15 V in an acetonitrile solution containing BS-A and aniline..‘-The
concentration of BSA is fixed at S.O x 10~ mol dm™ while that of a_niline was ;fa-ried
for different purposes. Polymer films with various thicknesses can berprepared by
~ altering the number of potential scan cycles. The molécularly imprinted polymer film
thus pre;l)ared was then ir‘n.me';sed in well-stirred mixtures of .acetonitrilé-acetone,,
acetone-water and water in sequeﬁce for 2 hours eacfn. After that, the M]Plﬁlm was
immersed in well-éti_rr’ed 0.1 mol dm™ acetic acid solu-tion for 4 hours, during-this

course, the acetic acid solution was changed every hour.

For non-imprinted polymer film, stmilar conditions were applied.except that
BSA was replaced by 3-aminophenylboronic acid. After electropolymerization, the
non-imprinted polymer film was treated with the same series of mixtures and water.

The step of acetic acid treatment was omitted.
Molecularly imprinted and. non-imprinted pblymers of BSA and aniline

prepared with the above procedures are referred to as poly(BSA) and

poly(aminophenylboronic acid) respectively.
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3.2.5. Analytical measurement with EQCM

: Generaliy; EVQCM me-a_sur'emgntpf tﬁeA sensor was performed by holding the
working electrode at a positlive potential of 0.5 V., .Anaiytes of certain cn;lléellt.ration
were added to- the cell by a ﬁlicro-syrin_ge. A.fter ,eat‘;h_measurément the sensor was
re-generated by dipp;ing in a well—sti;red acetic acif_i solution {(0.1M) for 30 minutes. |
During tﬁis stép, the acetic acid solution was changed every 10 minutes. The working

electrode was subSequently washed extensively with deionized water.
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3.3 Results and discussion -

3.3.1. Electrochemical characte'riz'a't_ion of boronate substituted aniline (BSA)

in-agqueous and non-aqueous media

Glucose-boronate substituted éniiine synthesized by fhe procedure described in
the- experimental section was investigated by electr.ochemi(.:al methods. [n_ pH 7.4
phosphate buffer, BSA shows a substantial anodic current at about 0.6 V in the first
cycle on. a fres.h Pt electrode (‘éigure 3.1). Thlisr anodic peai{ disappeéreci n
subsgquent cycles. Presuinably, the disappearanc.:é of the peak is due to thé formation
of an insulated polymér film on the electrode surface. After the potential scan, no
polymer onrthe Pt electrode could be observed. The above phenomenon indicated

that'BSA cannot be electropolymerized in neutral aqueous media.

‘ It has begn reported that 3-aminophenylboronic acid can be eleétropolymeriZed
in acidic media[38], but électropolymeﬁzatidn in acidic media is not suitable for
ﬁreparatibn of molectilarly imprinted poiymé;r of glucose boronate subétituted aniline.
This 1s d;le to the pH dependence of covalent bond befWeen boronic acid moieties
and glucose. At low‘ pH.vaiue, the ester bond between boronic ac_id- and glucose
'would-djislsociate and ghicomf: w.ould be released, which makes the glucrose molecules

unable to be imprinted onto the polymer film.
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Figure 3.1. i-E curve of the first cycle of cyclic voltammogram recorded

on a Pt electrode in pH 7.4 phosphate buffer solution containing 5.0 x 10~ mol

dm™ BSA. Scan rate: 50mVs™'.
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3.3.2. Preparation of molecularly imprinted polymer film of BSA

An acetonitrile solution with 0.1 mol dm'.3 BusNHSO, as sﬁpporting electrolyte
was then employéd for electrochemical inves_tigation. Figure 32 presents the cyclic
v_o!tammo.gﬁm of BSA recpfded on a Pt electrode‘ in such solution. A redox couple
can be observed at about 0.6 V. At poténtial higher than 1.0 V, a significant
oxiaatiOn wave due to the electroxidative polymerization of BSA can be observed. In
subsequentlcyt-;le's, the peak current increases with the nurﬁber of cycies. The above.

result indicates that an ele(;tlroactivé polymer ﬁlnﬁ_has been formed.

Despite the great deveiopment achieved in'the field of molecular imprinting
over the past yeafs, one of 'the major problems remain unsolved is the availability of
‘suitable sol_veﬁt. To dﬁte, mogt of the imprinted pollymers‘reported were prepare;i and
functi0n¢d only in organic solvents. In the case of BSA, the polymer rcannot be
prepared in aqueous syst'.em.-' One of the solutions to this problem is to prepare
Poly(BSA) film in nonféquedt.lé media before ,using it in aqueous system.
Nevertheless, most of the literéture-'reporte_d polymer ﬁlms prepared in nof-aqueous
media losé their electrochémical actiQity and / or conductivity in aqueous media.
Nevertheless, Miras and co-worker[39] have reported the success in transférring a
" poly(aniline) film frc;m non-agqueous -system tolaqueou_s system without losing its

conductivity.

The procedure to prepare a molecularly imprinted polymer film of BSA is
shown in scheme 3.2. 1t includes the following steps: (1) continuous potential scan of

EQCM Pt or Pt wire wbrking electrode between -0.20 and 1.15 V in acetonitrile
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containing 5.0 x 16’3, mol dm™ of BSA and 0.013 mol dm™ _aniline to prepare
-po.ly_(BSA), (2) immerse the polﬁrief lﬁ‘hﬁ thus prépared into a mixture of (1)
-acetoﬁitrile-acétene_(‘t:l -v/v), (i) acétonéa—HzO (t: l‘ v/v) and (1) deionized H,O in
sequence, and (3) dissociation of the erster Bond and rémoval {Sf gllu'cose from the

polymer matrix by washing with 0.1 M acetic acid.

NH,

. (1) Electropolymerization

(2) Transfer to aqueous media

washing / regeneration

o
F ot

A

guest combination’

Scheme 3.2. Schematic presentation of preparation, recognition and regeneration of

glucose-imprinted poly(BSA} film.
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Figure 3.2. Cyclic voltammogram of 5.0 x 10> mol dm™ BSA recorded
on a Pf electrode in acetonitrile solution. Suppc_ming.electro]yte: 0.1 mo! dm™

| Buy,NHSO,. Scan rate: 50 mVs'. -
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© A typical cyelic \r’ﬁltam@Ograin recorded during the e!ectropolymerization
process is shown in Figure. 3.3. A coup[é w.ith 1'n¢reasing cpfrent iﬁdicating growth
of thé p-o'lymelr film.can be obserQed at s;bou't 0.5 ~ 0.7 V. During the course of
poferjlial scanning, maés change on the \vdrking' electrode was monitoreci.by EQCM_
Figuré 3.4 depicts a typical curve of the frequenc‘;y change of the  EQCM resonator.
The négative shift of 'the frequency serves as another evidence for_ polymér film
~ growth on the electrode sﬁrface. During the course of electropolymerization, the
frequency displacem'ént increases almost in a constant rate; which can be regarded as
an indicatim‘l. of constant rate of ‘electropolymerization. This finding 'indirectly
sugge.sts that the _ polymef film - formed is fairly conductive. Under this
electropolymerizétiou conditions, the net frequency shiftla-fter 40 cycles of potential

scan is about 2.8 kHz.

In_ order to transfer the polymer film prepared in non-agueous solytion to
aquebus media, the polymer film was immersed in a mixture of (1) acetdnitrile—
acétone (1:1 v/v), (ii) acetone;water (1:1 v/v) and (111) deionized. watef in seéuence.” '
Removal of template. mofeculc from polymer film was perfo-rmed by w'ashirig the
polymer ﬁlrﬁ with 0.1 mol dm> well-stirred acetic acid _solutioﬁ__. The reﬁoval of
glucose template molecules was monitored by measurin;g the fréquen(;y change of the
resonator. Thé- frequency iln.crreased quite rapicl:ily‘ dunng the ﬁrst‘ éiO mihgfes, aft_er
that it increased SlIO\';’l);f' (less than.'IO Hz) for the néxt 2.5 hours. After transferring
from nonaqueous média to aqueous media and removal of glucose-, the imprinted
polymer Aﬁh'n was subject to electrochemical nvestigation. A typical cyciic

voltammogram of Au electrode coated with glucose imprinted poly(BSA) film
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recorded in pH 7.4 phosphate buffer solution 1s shown in Figure 3.5. As can be seen
from the i-E curve, the conductivity of the imprinted polymer film is maintained after -
transfer from nonaqueous to -agueous system and removal of glucose template

“molecules.
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Figure 3.3. ~ Cyclic voltammogram of 5.0 x 10~ mol dm™ BSA recorded
on Pt electrode in acetonitrile solution. Supporting elecﬁrolyté':‘ 0.1 mol dm

BuyNHSO,. Scan rate: 50 mVs™'.

102



AF / Hz

-2000 4

-2500 ~

-3000 -

T T T T T T T

I ;
0 500 1000 1500 2000 2500
Time /s

Figure 3.4.  Frequency response of the EQCM resonator recorded during the

course of electropolymerization of BSA.
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Figure 3.5. CYCHC voltammogram of Poly(BSA) filmin pH 7.4 phosphate
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3.3.3. Molecular recognition of glucoese by poly(BSA)
Sensitivit}'f towards glucose

The EQCM resonator modified with poly(BSA) showed a steady frequency for _
over 12 hours, indicating that the MIP polymer is stable and, firmly adhered to the

electrode surface. This is crucial for the long-term performance of a chemical sensor.

“In generél, measurement of glucose concentration with the EQCM sensor was
pcrforméd by holding the sensor electrodé at a positive'pot’enﬁél of 0.5 Vina .pH 7.4
buffer solution. After a éteady frequency of the QCM had been reﬁchcd for more than
15 min, glucose soigtion of known concentration was added to the celll 5y amicré—
syringe. To fac-ilitate diffusion of anélyté, the solution was ‘stirr‘erd for about 5 s by
bubbling v;/ith nitrogen. Figure 3.6 presents the freque'ncy'change (AF) upon-addition -
cof LO x 107 mol dm™ glucos'e. As- car—l be seen inz the.' figure, the frequency of the
resongtor' $hifted .sharply upon addition of glucose. The speed  of freqﬁency
displacement slowed down after about 150s and reached a stable state after about 350
s. The final frequeﬁcy change is 324 Hz. The result suggests .that, glucose can bé

taken up by the poly(BSA) MIP film.

In drder lo eliminate the ‘possibility that the buffer solution causes the
frequency change, control experiments were performed ‘by adc[ing 10 uL of buffer
solution and pure deionizled water instead of glucose solutioni. In both expertments,
the Frequenpy shift on the MIP film coated resonator is negligible. In.ofder to

evaluate the contribution of the molecular imprinting process to the frequency shift
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upon' ad.clition of glucose,. non'—impr.ihted polymer films, poly(aminophenylboronic
. acid) al-lfl poly(a.niline) were prépéred with similar procedures.” A seriesl of .control
tests were cérried out with thé no-n—"imp'rinted polymer films and bare 'EQCM Pt
eiectl;ode under -idﬁl]tic;ll experimental conditions. As expected, no robservab‘le
frequency shift was observed upon addition of glucose. VFor the two n.on-imprinted
polymér films, ﬁpbn addition of 1 x 16’3 mal dm™ glucose, a small 'freq;lency shift of
12 Hz for resonators coated with poiy(arhinophenylboronic acid) and 4 Hz-for

poly(ahiline) can be observed. Tfle frequency response of the don—iﬁprintéd polymer
films 1s 1l11uch lower th(;tn that of imprinted one flor‘ th.e same'gl‘ucosle concentration.
Moreqver, the response time of the sensors based on non-imprinted polymer ﬁ‘lms .
(560 s and 830 s for Poly(aminophenylboronic acid) and pbly(anilin.e), respectively)
are longer than poly(BSA). Combining the results of the tests mentioned above,-one
could be gssured that the frequen_c;y change is caused by the uptake of glucose into

the moiecuiarly imprinted polymer film.

The poly(BSA) based EQCM sensor was then used to determine ‘a sgries of
glucose solutions with different_ coﬁcentrations. ;l"he frequency shiﬂ:‘upon‘ad’dition of
various amﬁunt of glucose is shown irn Figure 3.8. One can see a proportionél
increase of frequency shi_ft with glucose concentration.in t'h;-: range of 2 x 107 to.T{'.S
b 107 mol dr'n'J-.'Howe\-'er, the increase in frequency shift levels off for giucose
concentration higher than 7.5 x 10 mol dm™. The linear response of the sensor
tqwardrgluc':ose. indicates thaf this MIP film can be used for glﬁcose detection. The
constant EQCM response to glucose solutions of concentration higher than 7.5 x 10°*

mol dm™ can be rationalized by the fact that all receptor sites are saturated (see next
section). The association constant (Ki) between glucose and the MIP film is
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calculated to be 6250 M based -on non-linear regression analysis of the following

equation:
AF O [A]
AFumx L +[A]
K

B wﬁere AF 15 the change in ffequéncy Ofth(; MIP film upon analyte _bihding; Alj“max 1s
the change iﬁ frequency of the MIP film af analyte saturation;_ and [A] fs the ‘analyte
(glucose) Cohce.ntration. | | | |

Under'-certain conditions, the frequency change of the QCM resonator is
: proportional -to the mass change on the surface of QCM electrode) Flor the 9.0 MHz
QCM (surface area, A = 0.20 cm %) resonator used in thls study, the mass change can
be calculated from the frequency change by a ratio R of 0.2 ng/Hz. With the
assumption that the mass change during the course of glucose detectlon is equal to
the mass of glucose bound to the MIP film, the surface den31ty (dy) of accessible
binding sites can be calculated’ from the maximum frequency change (AF . = 341
Hz) from equation 1 below:

dy = R-AFmax/A-M ' . (i)

where A irs the eléct.rode sutface area and M i§ the molecular weight of glucosé‘
Frbm the above equation, the surface 'densiAty of binding sites in the

. electropolyimerized MIP film was calculated to be 1.9 x 16 mol em™.

Optimization of analytical conditions

In the evaluation of the sensitivity of poly(BSA) based sensor towards glucose,

“uptake of glucose by poly(BSA) film was firstly carried out in an open circuit mode,
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i.e., the EQCM electi‘ode pote‘nt-ia-l‘ was not‘controll'ed. It 1s interestinﬂ to note thlat the
sensﬂmty of the sensor can be 1mpr0\cd by applymg a positwe potential to lhe :
EQCM electrode on which the poly(BSA) ﬁlm was attached To fur[hc:r investigate
- -this finding, measurements of glucose with the sensor were carried out. under
different electrode potentiéls. The dependence of the frequency sh.iﬂ on the appliéd
potential is sh'owri in ﬁguré 3.8. As can be seen in the-figure, the frequency change
upon addition of 5 x 10™ mol dm™ giu-cose increases quite sharply with the applied
electrode potential from ().2‘5 V-to 0.50 V. The ffequency -éhange continues to
_.increas.e but slows doﬂvn.in the potential range of 0.50-0.8 V. Thus a higher elecfréde ,

potential results in highér sehsing sensttivity. However,-w.hen the elec.trode potential
ig highef then 0.7 V, the MIP polymer film is not stable enough fbr_ 10 analytical tests.
Under such conditi_o'ns, a continuous shift of baseline frequency towards the po'si.tive
direction followed by detachment of the polymer film from the EQCM electrode
could be observed Takmg into account both sensitivity and stablllty of the film, 0.5
.V is selected as the working potential for the gluCose detection with the poly(BSA)

based sensor.

Itl 1s. well knov&hfh that glucose occurs in both pﬁanose and furanose fOI’I;lS, with
théfqrmer being'the predorhinant species. The latter form exiéts only as the minor’
species and has not beé:n isplated. Boronic acids are reported{40] to bind glucose
prefcr-entially in the o-furanose form and not in the more abundant pyranose form.”
Moreover, in aqueous mgdia, significant formation of boronate ester onlly occﬁrs
between carbohydrate and the tetrahedral form of boronate[41], whi'ch necessitates
the sélution pH to be lower tﬂan the pK, of.boronic acid. The pK, of aromatic

boronic acid has been found to be regulated by the inductive and resonance effect of
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the neighboring aromatic ring[42]. For example, 4.—’carboxy'—3-nitrophenylboronic '
acid, which. has electfon-wit]idrawing substituent on the aromatic ring, was reported

to have a pKaof 7.0{43].-

Based on the factAs mentioned above, the dépendencé of frequency change on
electrode p-ot_ential can be rétiona[izeci by the electron-withdrawing effect from the
e_lectrode, which is induced by the potential applied. The imly(anilihe) backbone of
poly(BSA) film is coﬁiposed of aromatic rings and with nitrogen atoms whose
‘orbits form a cqnducting pathway (Scheme 3.3). When the e'lec_txjode‘pptentia_l 1s set
to a higher value, the eiectrode surface will become electron deficient an'cl'erlectron— '
withdrawing. This electron-withdrawing effect results in thc*; lowering of the pK; of

boronic acid.

-

‘—qt@ O

OH— B— OH
\ OH 41

~y

Scheme 3.3

tis well known that in aqueous media, the formation of boronate ester from
boronic écid and diols is reversible to a certain extent debendent on thé pH of the
solution{44]. Therefore, the uptake of glucose by the po‘ly(BSA) based sensor can be
affected by the pH value of the solution. To evaluate the effect of solution pH on the

sensor, detection of 5 x 10 mol dm™ glucose with poly(BSA) based sensor under
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vaﬁous pH values v;r'ere carried out. Thé dependence of the frequency chaﬁge (AF) on
the solution p,H. is depicted in Figure 3.9. As can be seen in the ﬁgure, .S.F increases
sharply with increase of pH from‘ 6.5 té S.O,Aindri;:ating the enhancement of glucosé
uptake efficiency at higher pH. lncréase of AF with pH can also be observed in the
pH ranges of -2.5-6.5 and 8.0-9.0, thoiugh with a smaller siope: In the pH range
studied, the highest sensitivity of the sensor toward glucose can be achieved‘iﬁ pH-
90 solution. However, considering the advantage of phy-fsioldgical measurement,‘;cl

pH 7.4 solution was used in most of the uptake experinient.
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Figure 3.6. Frequency éhangé of QCM resonators 'coated ‘with poly(BSA)
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111




350
300 -|
© 250
2004 -

150 +

~AF [Hz

100

50

T ) T T T T T T T
0.0 05 1.0 1.5 . 20 - 25

Concentration of Glucose / 10° mol L™

Figure 3.7. Correlation of frequency change of poly(BSA) based EQCM
sensor and concentration of glucose in the concentration range of 2 x 107 to

25% _10'3 mol dm™.

112



500
450 -
400 - . ' o

350

-AF/ Hz

300 - ]

. 250-

’ 0.2 0.3 0.4 05 0.6 0.7 0.8
Potential / V

Figure 3.8. Frequency change of po]y(BSA) based EQCM sensor upon

addition of 5.0 x 10™ mol dm™ glucose at \}arioﬁs‘ electrode potential.

113



500

400 -

300

~AF Mz

200

100

Figure 3.9.

-

pH

Frequency change of poly(BSA) based EQCM sensor upen

addition of 5. 0 % 107 mol dm glucose uncler various pH values.

114



3.3.4. Selectivity of the poly(BSA) based sensor
Selectivity against fructose

Fructose is commonly fétln_d tdgéthér v-vi.th gluc.ose and sucfose in honey and
fruit juices. Fructose and g;lﬁcose are monosaccharides while  sucrose is a
disaccharide. In contrast tq glucose, fructqsc metabolism_is not‘depe‘ndent. on insulin
levels and as such, it fonﬁs an imp_ortaﬁt‘compionent, of diébetic diets, Therefore,.

ability to discriminate glucose from fructose is essential for a glucose sensor.

Glucose 3 Fructose

To evaluate the selectivity of pbly(BSA) based sensor against fructose, the
~ frequency respo'née of the sensor upon additioﬁ. of" fruqtose of various concentration
was collected and cor.npare-d with that of gluc'osé (figure 3.10). By com?aring Figure
3.10a and 3.10b, one can observe that the response of the sensor to-aiddition of
fructose is similar to that of glucose. Ho;gvever-, i‘f we only cémpare ihe conceﬁtration
below 1.0 x 10~ mol dm?, the difference in sensitivity is significant: the slope
calculated for glucose and fmctose is 485 arid-29i Hz / mM, respectively. Th.e uptake

. _ e : 3
of glucose reaches a maximum at a concentration of 7.5 x 10® mol dm>. In the case
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of fructose, the frequency change reaches a maximum value at a higher concentration -
of 1.5 mM. Nevertheless, although the poly(BSA) film based sensor does exhibit
higher sensitivity towards glucose , ‘the selectivity between glucose and fructose is

- not good enough for sensory application:

In geneyal, for a molecularly imprinted polymer film based on boronate-diol
interaction, the affinity- of the film towa}"ds -guest' molecule 1s dependent-on two
) fact(;rs. The first one is the size'and functional grou-;;d .arrange‘ment of th;a cavities of
the film, which are created in the process of moleculér'impﬁnting. The secbnd one is
the ability of the boronic acid moieties to form boronate esfér with the guest
méle_cule, which is lﬁgely affected by;f the nature of both the boronic acid and guest
molecule. In a recent report[44], the assoaiation constant (K,) between fructose (160
M'l) and boronic acid is found to be much higher than that of gll.icios_e (4.6_ M') at.
physiological pH. This renﬁarkable:differencc in assoc.iation constant fni ght a‘ccount
for the felativelf low selectivity. While the boronic acid moi-eties can bind fructose
more readi,ly, on the other hand, the cavitie; of the film are structurally -
~ complementary to glucose ai}d _heﬁce favor its uptake. These two éqimter—a_cting
effects result inrco‘mparabie af_ﬁnity- of the molecularly imprihtea po-lymer film

towards glucose and fructose.
Selectivity against ribose and sucrose

Ribose is a five-carbon sugar (pentose) found primarily in ribonucleic acid. It
is a natural anti-anxiety and stress relief ingredient used to control stress-related

symptoms and has the added value of being non-sedating with potential anti-
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depressant properties. It is not an ess'ential_r;utrient, since it can l.)e made in the body
from othe; substances, suéh as glLlcose. However, D-n’bosé. isivﬂery essential for life.
~Some of the most important biological molecul-es cqntain VD-rib()se', includihg ATP
(adcn_osine triphospha_tc),. all the nucleotides énd ﬁucieﬁtide coe;nzy'mes.and all forms

of RNA (fibonucleic acid).

HOH,C

HOH,C—_O\_ _op : Q HOHC |
_ \Q/ |  HOw Q) s o CH,OH,
HO© oM L L
' OH On HO OH
Ribose: Sucrose

" Since D-ribose and its derivatives are ﬁbiquitéus in physiological systerﬁs, they 7
are botential interferents for the detection of glucose..In order to further ev’aiua.t'e the
‘selectiyity of the poly(BSA) based sensor, solutions with various concentrations of
ribose or sucrose were measured with the sensor and comp_are& with that of glucose
(Figure 3.11). The frequéncy shifts upon gddition of ribose and sucrose is _ |
prbportioﬁal to the concentration of yibose/sucroée in,ther rangé.;of 2.0 x 10° t0 2.0 x
107 mol dm™ for ribose and 2.0 x 107 -to 2.5 x. 10 mol L™ for sucrose.r Sensiti\{ities
- of the sensof towards ﬁbose and sucrose, represented by the slope of calibration
curves; were calculated to be 120 and 38 Hz/mM, respectively. Tﬁe senéiﬁvitﬂies of
the poly(BSA) based sensor towards ribose and sucrose are in acc-ordanbe with the
Aifference in structuré with the template molecule (glﬁcose): This serves as direct

evidence for the molecular imprinting effect.
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3.3.5. Effects of monomer ratios on the efficiency and selectivity of the

poly{BSA) polyrﬁer film

In the preparétion' of mole—cﬁ-larlry imprinted polyﬁér ﬁlm,' th§: structurally
complementary cavitie§ art‘; formed by co-polymerization of functionalized monomer
and other complementary monomeré. [n the case of poly(BSA), the. ratio of |
functionalized mdﬂomer BSA and aniline may affect the efﬁcierltcybf molecular
imprihting. To investigate | thé effect of BSA to aniline ratio on the anélﬁical
performance of imprinted polymer film, a series of molecularly imprin-tedpoly(BSA)-
films were prepared with various BSA to aniline mole ratios (with BSA
concentrati-on ﬁ)l(ed at 5.0 x 10'3‘11"101 LY. The poly(BSA) films prepared were used
mn the‘detection of glucg)se and fructose. The selectivity of these films 1s represented.
by r‘elative frequency shift (AFGi,/AFr,,) upon addition of 5.0 x 10’4-mol dm™ glucose

‘. and fructose respectively. Figure 3.12 'dep-icts théI correlation between the relative
frequenc.:y shift (AFGmffAF Fro) and BSA to aniline méle ratio:. It can be found from‘the
figure that the relative frequency éhift is gre.;atly affectéd by the BSA to _aniline ratio,
implyiﬁg the importanc;: of aniline in tf;e formation of complementary cavities. From
the asym.metri'c peak sha‘pe of'the.plot, one can see that the poly(BSA) film prepared
@itl1 a BSA to aniline molé fatio of 0.4 gives the maximum AFGIU/AF.FW. It is likel_y
that a cavity can be more specifically defined by neighboring anilihe méiéties. Thé
dependence‘of frequency shift on BSA to aniline mole ratio is shown in Figure 3.13.
The freq‘uency shift was féunc_l to inérease with thé increase in BSA to a_nililne mole

ratios.
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3.4 Conclusions

A ft_mc.tionalized- MONomer, gluéose-boronaie—sﬁbstituted' aniline was
: synthesized rby cyclic esterification of .glucose with aminophenylboroqic' acid.
Gluéose inipﬂnted co-polymer films of boronate-substituted monomer and aniline
were prepéred by electropolymerization in non-aqueous media and gradtially
transferred into aqﬁeous. media. At physiological pH, the EQCM sensor based on this
glucose imprinted polymer ﬁll;n shows proportional frequencyregponse toward
glucc_)se. solution 1n the é(;ncéntration fange of 2.0 .><710'5‘;c0 7.5 .>< 1.0"'1 mol'-c.hﬁd.
Substantia_i uptake of fructose by the glucose imprinted polymer ﬁlrﬁ ‘was also
obscrveci. The high association constant (K,) between fructose and bronic acid
moieties can be used to a_cco-unt for the signiﬁcantly uptake of fructose by the MIP
film. In,-,add‘ition, paramgter_s-' such as electrode -potent_ia_l,_ solution pH and
functionalized mononmier - to aniliﬁé mole ratio would all affect ther analytical

performance of glucose imprinted polymer film.
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Chapter 4

Preparation of Molecularly Imprinted
Poly(acrylamiddphenylboroni_c Acid) Films and Their

- Application as Dopamine Sensor



4.1 '[ntroductioﬁ |

Dopamine (DA) IS one of the most important catécholamines in the family of
excitatory chemical neLlll'otranén1itterS[1]. [t plays an important role in the functioning
of the central nervous, cardiovascular, renal and hdm1bﬁal systérﬁs,‘ as well as in drug
- “addiction, schizophrenia and Phrkiﬁson’s disease[2-4]. Fﬁnhennore,' ‘studies in
heurobiolo-gy reveals that DA system dysfunction plays a critical role in some
clinical manifeétations of HIV ii}fection[i]. Therefore, there is é need _;6 develop
sensitive, selective and ‘r'eliab;le methods for the direct méasurement of ddpamine at

nanomolar concentration both in vitro and in vive.

The faci that dopamine and other catecholamines are easily elebtro—oxidizable
makes th;air detection possible by electrochemical methods rbased on anodic
6xidation[6, 7]. prevef, the main and foremost problem in thé electrophemical
determination of dopamine is the interference from other electroactive species, such
as ascorbic acid (AA) and 3,4-hydroxyphenyl acetic acid .([.)OPAC), which aré |
present in biological matricés in refatively high concentration and have similar rgcfox

_faotentials[S, 9]. .

One of the most common strategies to overcomé these problems is to cover the
electrode with a negatively charged‘ fitm. This strategy has brl:en‘ extensively_
exploited and- various films such as Naﬁon[l(j_, i1], clay[12], overoxidized
po'iypyr.role[lfi, 14], polythiophene[15] and 0thers[16] havé,bee_n used as the
permselective films. These modified electrodes were teported to- attracl or even

preconcentra'te the cationic dopamine while effectively repulse the negatively
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charged ascorbic acid and other anionic interfering species at the physiological pH of
- 7.4. However, the pfeciise preparation- of these films by dip- and 'cast—c'oating 1S
difficult to control which results in low reproducibility and non-unifonﬁity of such

films.

‘BO-T(')T.liC acids are capable of reversible formation of strongr covalent bonds
witfn diol functionalities in t‘he form of cyél_ic est,ers[l?j. It is more desirable that the
rate of this reversible reaction s a relatively fast reaction. Due to its advantageous
c-haracteristics,-co'valent 'bonding with boronic a_ﬁd finds _its wide application in
vanous Sfa-nsory, systejms bésed on holecularly imprintéd polymer films. MIP films of

various target molecules, such as nucleotides[lB,- 19] (AMP, ATP)‘ and

- carbohydrates[20-22], have been prepared with various monomers.

OH . HO | Q OH-
\ R N/ .
+ B—R —— B +  H0
. / / R
OH HO O

The doﬁami'ne molecule contains two neighboring hydréxyl groups, which can
be taken as a diol group on the aromatic ring. It is known that dopamine combines
_.with Bordnic acid moiety under suitabie pH value[23]. Two electrochemical sensors
for dopamine employing the intéractionrof dopamine and boronic dcid were repérted
recently{23, 24]. Dobamine was found to combine with both free phenylboronic acid
in solution and boronic' ac.id‘ fu.nctionality attached to bolylﬁer backbone. It 1s
interesting that ‘the oxidation potential éf the dopamine-boronic acid shifts

substantially to higher potential compared to the free dopamine, thus avoids the



overlapping of redox potential with ascorbic acid. The selective bonding of boronic
acid ‘to dopamine opens another access to electrochemical discrimination of

dopamine against ascorbic acid under phySiologiéal pH value.

In this chapter, we' will report the préparation of dopamine -i'mprinted. co-
polyrﬁer film of 3-acryiamidophenylboronic acid'(AABA) an(i its application as
dopamine Sensor. The MIP ﬁim- was used as anaiyiiéal‘elerheht in electrochemical
dopamine sensor. The sensitivity of this sensor system and its selectivity against
various interferents such as ascorbic acid, 3,4-dihydroxyphenylacetic aéid (DbPAC),
tyramine and glucose wﬁs evaluated. cher féctors- affécting the performancevof the

MIP based sensor was also investigated and optimized.
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4.2 Expérimeﬁtal
4.2.1. Materials

3—Aminophenylborc_mic acid_(APBA) hydr'och.loridé salt, acrylamid;:, N,N’-
méthylengbisacryiaﬁide, sodium hydrogen, ‘carbonate, acryloylrchlori‘de, sodium -
dihydrogén phosph.ate, _sodium hydroxide and zinc chloride were lercllased from
Aldrich and used as rece:ivet.i._. D-glucose, "dopamine (DA), asgo,rbic acid .(AA),.
tyramine, 3,4;dihy;:lroxyi)henylacetic acid (DOPAC) and homo'ranrillic acid (HVA)
were purchased from Sigma. Deionized water purified by Mifli-Q system tMiliipore,

MA, USA) was used to prepare all solutions..
©'4.2.2. Instrumental

Electrochemical measuremeﬁts and electropol ymerization were performed on a
PAR mociel 273A potentiostgt interfaced to a personal' coniputar using the EG&G
mod_el 270 software package. Piezoelectric measurement was conducted on a
QCA917 quartz c;ystal analyzer _(Seiko EG&G). Fréquency signal was collected by a
PC computer with a home-developed data -acquisition‘ program. The electrochémical
cell used in this work is a hbmé—designed Tcﬂbn cell‘_similar to that of QCA 917 _'
(ﬁgure 2.1). A 9.6 MHZ ﬁQCM Au electrode (Sei_i(o EG&G, area = 0.2-0 cm?).with
only one side exposed to solution was used as thre working electrﬁde whereas a Pt
wire and an Ag/AgCl electrode were used as. counter clectrode and rt;,ferenc'e

electrode respectively.



UV-visible absorption spectra were recorded on a Milton Roy Spectronic 3000
diode array spectrophotometer. FT-IR spectra were obtained as pél}ets in 500-4000 |
cm’' region by a Nicolet Magna-IR 750 FTIR spectrometer. "H NMR spectra were

recorded on a Bruker 400 MHz DPX 400 épectrometer;
4.2.3. Synthesis of3-acrylam_idt‘)phenrylb.oronic acid (AABA)

* 3-Acrylamidophenylboronic a.(:id (AABA) was synthesized with a fnodiﬁcd

procedure according to published \:Jvork[18] (Scheme 4.1). 3-Aminophcnylboroﬁic
| aéid (4.65 g; 30 mmol)” an(i-s;)di.um hydrogen éarbonate (5.04 *g,760 mmol) were
- dissolved in a 200 mi of 2:1 vol/vél mixture of water and THF. To this solution was
addéd acryloyl chloride (10 ml, 60 mmol) at 0 °C, and the mixturé was stirred for 1 h.
After tﬁis treatment, the product was extracted with ethyl acetate. Aﬁer evaporation

to dryness, the residue was recrystallized from water. Yield: 3.3 g, 58%. -

Scheme 4.1
S | ‘ ' \ JoR
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OH S _ - i
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4.2.4. Preparation of molecularly imprinted polymers -

Dopanmine i_mprinfed co-polymer fitms of 3-acrylanmidophenylboronic acid with
acrylamide ahcl- N,N’-methylenebisacrylamide were prepared by continuously
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_rscanninrg the po'tential of thC'Al‘l wire andrEQCMV_ Au clectrodes between -1.4 fo 0.1
'V in an .aqueous solg[ion containing aopamillc, lacry.lan'lido'pheny]b‘oroni(_;r acid,
acrylamide, ZnCl, and N,N’—methylenebisacrylamide.- In eacl_l scan, the potential-was
held at —71.4 V | forr '20 s to énhance “the electropolymerization reaction. The
conceﬁtration of AABA is usually fixed at 0.1 mol dm.'3 while that of dopamine,
acrylamidé and N,N’-methylenebisacrylamide were varied- for different purposes.
Polymer films with various thickness can be prepared by altering the number of”
p-otential scan cycle. The-rﬁolcﬁularly imprinted polymer ﬁlm thus p_rlépared was then

extensively washed with 0.1 mol dm” HCl solution, ethanol and deionized water.
4.2.5. Analytical measurement with electrochemical oxidation

In 'genefal', ‘determinat‘ion of dopamine with potentiodynamic scan and
differential pulsé voltamﬁe&y involves th_e f-ollolwi'ng steps: (1) .incorporation ;)f the
target analyte fnolecule- by the MIP film fabricated 6[1 an Au wire electrodé or Au
EQCM_eleétrode in arpH 7.4 phosphate buffer solution; (2). extensive ﬁnsing of the‘
analyte cdntaining ﬁl;ﬁ wirth deionizéd water and then soaking in a 0.1 mol dm™ HCI
solution (pH='2.'O) for 3 'miﬁutéé td allﬁw the release:of target analyté molecules; (3)
. stripping " of anz:niyte’ molecﬁle's by cyclic voltammetr).r- or ﬁifferential pulse
voitamm-etry'(DPV). _After. each measurement the sensor was re-generated by dipping
Cin a: ;velﬂ—stirred 0.1 mol dm™ HCI solution for 4 x 3 minutes, followed b){

extensively washing with de-ionized water.
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4.3 Results and discussion-
4.3.1. Electrochemical properties of AABA and acrylamides in aqueous media

Ac.:rylamide' aﬁd bisécrylémide have been successfully employed fto produce.
polymér films on glassy car_bon and | platinum electrodes by eleCt.rooxidative
[.)olmerization[QS, 26]. However, as pdinted out by; Otero and co—wdrkefs[Z.G], this
élecfropolymerization me‘tho-‘d 1S not .51-1itable to be used _with. active biological
méterials becaﬁse ‘of the low local pH ‘and vigorous g'aé evolution at ektreﬁle positive:

potential. Gas (oxygen) evolution also results in poorly adherent polymer film.

Acrylamidophenylboronic acid (AABA) was subject to potential scan in
| alkaline phosphate buffer. No redoi peak ﬁssignatéle to AABA can:be observed in
~the pofential region of -0.2 — 1.3 V Similar elgctroche.mical behaviors oif AABA can
be obs;erved in the presence of acrylamide and_ bi.sz'icrylz;mide. This 1s éonsistent with
the published results‘ that electro-oxidative polymerization of acrylamide based
imonomer requifes more extreme p_oteﬁtials. The extremely high potential réqﬁire’d
for the eléctro-oxidation polymerization of acrylamide prevents its application In the

preparation of imprinted polymer films of oxidizable molecules-such as dopamine.

4.3.2. Preparation of molecularly imprinted polymer film of AABA by

electroreductive polymerization

To prepare electrogenerated polymer film from acrylamide, anothc—:r.approach

involving electro-reductive polymerization of the monomer in the presence of zinc
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chloride was successfully adopted in the 1970°s[27]. Electro-generated acrylamide
polymer film has been used as analytical elements in various sensor systems[21, 28-

30].

Fabrication of —molecularly imprintécl polymer film was . performed by
electropoiymerization of AABA, acrylamide and N,N’-m@thylenebisac&ldmide in .
the presence of -dopamine. A schematic prf;sentation of tﬁe overall approach of
molepule-"imprinti;1g is shown _in scheme 4.2. The optimized procedure involves
potf:r}tiodynamic- elek:troljfsis of an aqueous sof_utib.n- contaiqi’ng AABA (0.27 n;ol
dm™), dopamine (0.2 mol dm™), acryl-amide (1.0 tﬁol dm?), N,N’-
| methylenebisacrylamide (O.Z-mol dm™) and ZnCl, (0.2 mol dm™) in tﬁe potential
range of O‘.'l to-1.4V af a scaﬂ rate of 50 mV s In each cycle of potential sca1.1s, the
potentiél was-held at -1.4 V.for 20 s to improve tﬁe efficiency of polymenization. In
‘the preparation of MIP film, on-e can expect the.complexation of dopamine‘ wifh the
_ monome-rs via hydrogen bonding émd_ formation of cyclic ester. Moreover,‘ the
electro-feduct_ive polymerization avoids cleavzige of the cyclic este_:f bonds caused by
electrochemical oxidation. The expected structure of boly(AABA) film is shown in

scheme 4.3.

A tyﬁit’:ai cyéiic vgltamnwgrm recorded on Au wir_é electrode in.the solution
for elebtrobolymerizatibn ts shown in Figure 4.1 In the n'e.gative sweep o-f potential,
substantial cathodic current, which can Be ascrtbed to the-electrochemical reduction
of acrylamide fnonomer and possibly ZnCls, cénlbe observed. After 30 cycles of
poteqtial scans, a semi-transpareﬂt film can be observed on the surfa;:e of electrode.

In the case of electropolymerization on QCM electrode, mass change on the
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electrode was also monitg)red ﬁnd a t_vpical plcﬁ of frequency versus. electrolysis time.
is sho»_vﬁ in ﬁguré 4.2 ﬁtlriné the course of -electrppolymérizétion, the frequen;;y of
thé EQCM resonator shifted sharply to the negative di;ection at the first stage but -
eventually sloIW(j:d down. The Freduency changqafter 30 potential scans is f%bOth 12
kHz. During the electropolymefiiétiqn proceés, the frequency of the EQCM-
resonator decl%nes in a zig—zagrmanne’r, which can be attributed td the.migration of

lonic species in the solution and the deposition / dissolution of Zn metal.

Schelne4.3
/ T \ T
o= | =0
4 NH2 N -
-7 im
£<OH
| "OH
OH n
. W

To remove the imprinted dopamine and any Zn metal which may have
deposited on the eléctrode s‘ufface.(lﬁring the colurse of polymerization, the polymer
film prepared was extensively washed with 0.1 mol d.m'3 HCI solution,_éthahol and
deionized water. The frequenc.y dmngé of the EQCM resonator a-fte.r washing with

0.1 mol dm™ HCl was measured as +0.8 kHz, indicating a mass loss of about 7%
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wiw iﬁlthe treatr_neﬁt with hydrogen chioride. Although the frequelllcy change cannot
be simply taken as contribution from the mass change- caused by the dissolution of -
Zn'lmetal., rthis result does givé cleér e-\?idencs that the film formed in the elecfrolysis
is mainly 4(:0m|.)osed of polymer. Simirlar' result was obtamned in a mechanistic s.t‘udy

of acrylamide electropolymerization published by Thomas and co-workers[27]. -
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Scheine 4.2. Schematic presentation of preparation, recognition dnd regeneration of -

dopamine-imprinted poly(AABA) film.
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Figure 4.1. Cyclic voltammoéram recorded on a Au electrode in aqueous

solution containing AABA (0.2 mol dm'j), dopamine (0.2 mol dm™),
acrylamide {1.0 mol dﬁ73), N,N’-methylenebisacrylamide (0.2 'mol dm™) and

ZnCl; (0.2 mol dm'3). Scan rate: SO0mV st
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Figure 4.2. Frequency change of an EQCM resonator during fabrication b_f

dopamine imprinted polymér film. -
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4.3.3. Molecular recognition of dopamlne by poly(AABA)
Cyclic voltammetry measurement

In general determination. of dopamine was performed by a preconcentration- .
- Vstnpplng approach The poly(AABA}) molecularly 1mprmted polymer film fabricated
on a Au electrode was dipped into a pH 7 4 buffer solutlon of 1.x 10 mol dm” -
dopamine for 10 minutes to allew interaction of dopa'mine with the’ boronic acid :
moiety in the polymer matrlx. Following ext‘ensive-rinsing-with. pH 7.4 -phosphate
buffer solutlon the electrocle vsl'as transferred-mto an eleetroehemlcal cell containing
0. 05 mol dm™ HCI + 0 05 mol dm” KCl (pH=2.0). The electrode was allowed to
stand in the acidic electrolyte for 3 minutes for dissociation of dopamine from the
boronic acid moieties. Cyclic voltammogram or differential pulse voltammogram

(DPV) was then recorded in the potential ronge of 0.1 to 0.85.V.

A typical cyclic voltamnlo'gfam of tlle dopamine embedded in poly(AABA)
.- MIP film on Au electrode is shown in Figure 4.3a. A redox couple loeated at 0.44 V
(.fSEp = 170 mV) was obéerve‘cl which can be ascribed to the oxidation and reduction
of dopamine species. The peak current of the dopamine conple deereaees. upon
repetitive ‘seanning due to the loes of the dopamine moleeules from the polymer film.
A cyclic voltammogram of the same M[P-. film without precon'eentration of dopamine
was also recorded and depicted in Fig. 4.3b, in which no substantial redox peak could
be observed. These results suggest that preconcentration of dopamine can be

performed with imprinted poly(AABA) film ~under physiological pH. The
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dissociation of dopamine from boronic acid moieties and its electrochemical

oxidation can be represented by the e(juations in Scheme 4.4,

Scheme 4.4
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In order to confirm the imprint.ing effect, a_éontrol experiment was done with a
nonr—imp-rinted polymer film ‘prépared with idénticai procedures except th‘at no
rdopamine‘ was p]ééed in the electrolysis solution. With the same -precbﬁcent‘ration—

- stripping procedures as thg imprinted poly(AABA) film, this non-imprinted polymer
film was used to detect dopamine and the cyclic voltammogram recorded was shown
in Figuré 4.4 Similar-tb Figure 4.3a, one can easily observe a redox couplle at the
same potential. However, the peak current of this redox couple is much less than that
in Figure 4.3a, ‘in‘dicating that less dopamine was' incorporated and traﬁsferrcd to the

electrochemical cell. The preconcentration of dopamine in a non-imprinted polymer
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film cah be c—:xiallaiﬁed ‘bry the e'xist.ence of boronic acid moieties, which can rg:a'dily '
combine with ddpaminé to fofm cfciic._caste_r. The difference on the-preconcéntration
‘abiliiy'(.)f imprinted and non—imprihted poly(AABA) polym;ar film can-be ascribed to
the higher affinity of the cavities formed in the imprinted film (iuripg th‘e, imprinting

process. Therefore, this difference can serve as an evidence for the imprinting effect.

The: dopamine seﬁsor based on MIP film was re-generatgd by dipping in a
| well-él'irréd 0.1 mol dm” HCl.solutio'n for'4x3 minuteé followed by extensive
Washing with water. The éfﬁciency of fhe regeneration proc;e'ss i33conﬁrrnéd by
cyclic »;oitammetry measurement, in which no redox peak assign.'able to dopamine
~can be- observed. Thé ﬁyclic ;‘/oltammdgraﬁls (;f MIP 'ﬁlm,modiﬁec.i electrode

subjected to additional dippidg treatment show no further noticeable change.
QCM measurement

As mentioned in the previous chapters, qu.';lrtz crys_tal microbalance (QCM) 1s
capable of lﬁeasuring trace m#ss_ change occurred on the surf;ace of QCM électrodé.
To investigate the mass change during the course of .dopamine preconcentration on a
Au EQCM electrode, dopamine imprinted pol)fmer' film wa:; prepared with the same -
procedﬁre as the Au w.ire electrode. The EQCM Au electrode was mounted on the
botto‘m of the electrochemi;:al c.eli qontaining pH 7.4 phosphate bL;ffer solution (5.0
mlj. Dopamine solutions were added to the EQCM cell with a mrich-syrinrge arid the.
resonator frequency was recorded and shown in Fig.4.5_; Upon the addil-'ion of 1.0 x
107 mo-l dm™ dopamine, the frequency o-f the resonator shifts 1-1egatively_, for 40 Hz

and levels off after about 10 minulés. After another addition of 5.0 x lO"4 mol dm™
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dopanine, similar but _smalle'r ﬁ'eqﬁency shift (i8 Hz) can be observed. As a control
test, a blank buffer séluﬁon _waslalso added to the cell. Only a very small frequency
- shift could-be detected. The frequency respons'e of ‘the imprinted' polymer ﬁlmn
medified '‘EQCM resonator serves as aﬁother evidence‘ for the -prcconce[;trati_on

ability of the MIP film towards the template molecule.

It should be pointed out -that the frequency change indu.ced by the addition of
dopamine is not as remarkable ‘as the EQCM ser'lsors‘ mentioned in the former
chapters. ’The. low sensitivity may be ascribed to ‘t}-le small molecular mass of
d;panline and the displ‘acemént‘ of '.incorporated épecies duﬁng thé -coufse of
dopamine uptake. It is possible that some incorporated species, such as adsorbed
water and supporting electrollyte moleculqs, were replaced by dopamine. As a result _
of the displacerﬁent, the net mass change'qf the resonator 1s smaller than that of the

.incorporated dopamine molecules.
Differential pulse voltammetrjr measurement

[n the above section, we have derﬁonstrated successful detection of dopamine
by cychic voltarﬁmogram. Howevé_r, as cén be seen in Fig. 4.3, the redox couplé of .
dopamine is. fairly broad, whichi might cause problem in accurate measurement of the .
peak current. For accurate determination of dopamine, differential pulse voltammétry
(DPV) waé employed in the oxidative stripping of dopamine. ‘With DPV,'well—‘
resolved voltammetric peak can be- obtained and the analytical sensitivity can be

improved.
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Differenfiai pulse voltaﬁmlograms were recorded on a MIP fitm modified
cle%:tfqde ‘after\dppamine uptake in a series "of solutions \;vi'th vérious concehtration of
dOpamine:. Figure 4.6 shox.vs the vottamm-ograms obtained. As shown in the figure, a
well-resolved positivej, peak assignabie to'_dobéminé oxidaiion can be observed at
047 V. In the- control experiment in Wi‘liCh a blank buffer solution was uségl, no

- observable redox peak was present in the i-E curve.

The: peak current increases with dopamine concéntrgtion. Figure 4.7-sh_ows the
7 depgndence of peak Vcﬁrrrent. on dopamine conceﬂtration,_ ffofn which proportioﬁal
increase .ol'f the peak current with dopamine concenrt_ration‘in the range of 5x 10%t0 |
X 10;4 moi dm™ can be observed. This result pro;aes t_he_ability'of quaﬁtitative
measu_rémegt of the MIP film based electrode aﬁd ils potential appl.ication as a

dopamine sensor.
Optimization of analytical conditions

As mentioned in the previous chapter, the formation of cyclic ester between
boronic acid and diols is régu[ated by .th'e.inductive- and resonance e.ffect_ of the
neighboring aromatic riﬂg[Bi]. In.c;,hapter 3, clectrode potential is~ shown to affect the
estérification reaction. In o-rder to evaluate.the effect of electrode potential on the
preconcentration of dopamiﬁe bf the MIP ﬁlm, different electrode potentials were
appl_iea to the MIP modified electrode during the courlse of preconcentration.
l4oxve§er,'in contrast to the poly(boronate substituted aniline) system (Chapter 3),
electrode 'potential- was found to exert little effect on the uptake of dopamine: an

increase in the electrode potential from -0.2 to 0.3 V shows no substantial change in
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the -oxidati\(e stripping current. 'Thesé different behaviors can be explained by the
difference in the si['tlclui'e of pol).}(AA.BA) and'poly(boro_nate substituted aniline). “
* The backbone of poly(boron;a.te. substituted aniling) consists of aforr{ati(; rings which
fo.rm a conjugated system. When a'-hi'gher poténtial .is applied tQ"the électrode, the
electrode surface becomes electron deficient and electron-withdrawing. Because of
the conjugatedr' system of poly(bomnate substituted aniling), the electron-
withdrawing effect of the electrode can be passécl all the way down to the bgronic
aCid moieties. On thé other: hand;vth‘e backbone of ébly(AAEA) ié compose& of
aliphatic carbon chains. Without conjugation ori-. the backbone, the electron-

withdrawing effect of the electrode to boronic acid moieties is'much weaker.

It 1s well known that,_'in aqueous media, the formation of boronate ester from
boronic acid and diols 1s revetsible depending on the pH of thersolution (Schem.e 4.5).
Therefore, it is likely that the preconcentration Q:f dopamine into the dopam_irie
iniprinted polymer film can be cdntr_olled by aitering 'thé pH of the buffer solution. A
series of 5 x 10'?_ | mol dm™ .d-opamine solutions with various pH values from 4.0 to
9.0 wefe ‘used in the preconcentration step with MIP film based electrode. The
dependencé of the stripping current of ddpamine t;) _[;H valué of tile rbuffer soiution' 5
depicted in Figure 4.8. The stripping -current (i), which can be regarded as a
representation of the amount of dopamine combi_ned to iAmprintéd'poly‘mer' film,

-‘increases with pﬁ value of the solution in the rangf: -of 55 - 90 At pH < 5.5, no
-substantial plfécont;entration of dopamine can be- observed, indicéting' that tﬁe
rboronate eslerl tends to dissociate at low pH. The pl‘%e'concentration al;flount increases .

sharply in the pH range of 5.5 to 7.0 and slows down in the range of 7.0 to 9.0.
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Scheme 4.5 shows the esterification process. As shown in the scheme, proton is

produced as a result of the e'steriﬁc'ation reaction. Therefore, high pH favors .

esterication (the forward reaction). In our experiments, the physiological pH (7.4)

was chosen because of its potential in vivo application of the dopamine sensor.
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Figure 4.3, Cyclic voltammogram recorded on MIP. film modified -

electrode with (a) and without (b) dopamine preconcentration, electrolﬁé: 0.05

mol dm” HCI + 0.05 mol dm™ KCI (pH = 2.0). Scan rate: 50 mV's™
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nonimprinted polymer after dopamine preconcentration, electrolyte: 0.05 HCI

. +0.05 mol dm” KCI (pH = 2.0). Scan rate: 50 mVs™.
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Figure 4.5.  F rcquency shift of an EQCM resonator modified with
poly(AABA) MIP film upon addition of various amount of dopamine (DA) and

buffer solution in pH 7.4 phosphate buffer solution.
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4.3.4. Selectivity of poly(AABA) MIP fiim based sensor
Selectivity against ascorbic acid

As mentioned in the introduction section, the main problem n the
electrochemical determination of dopamine is the mterference from ascorbic acid,
~which exists in real biological systems in relatively high concentration and has a

similar redox potential as dopamine.

HO | 0 0 HO
HO ,
OH HO
HO -
Ascorbic acid Catechol

In order to test the ability of poly{ AABA) MIP film to discriminét_e dopamine
from ascorbic acid, a series of S.O-x 107 mol dm'}dopai‘nine solutions with ascorbic
acid of various coﬁcentration (5.0 x 10° to 1.0 x iO'J mol dm™) was used in the-
precc-mcentration step with MIP film modified electrode. It is obvious that fhe 'c‘:hahge.
on the peak current induced by the addition of ascorbic acid is negiigible; tlle_pibt
shown in Figure 4.9a shows no substantial correlation betweer; peak cuﬁent -and
rascorbic acid concentration._ For the measurement under ascorsic dcid concentration
of 1.0 x 107 mol dm™, which is two foids of the highest concentration of ascorbic
acid commonly found in physiological system, the peak current is iubreésed bry 5%

only compared to the one without ascorbic acid. Also shown in Figure 4.9b are the
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peak current&obiainéd Withr\farious conc.‘entratirons of dopamine in 1Ee presence of
1.0 < 10”7 mol dm” asqc;rbic_‘a{:i_d. A comparison ;of.Figure 4_.91) with Figure 4.7
(absence of ascofbic acidj shows éin1{lai' correlation between the‘ peak current and
dopamine concentration. The small interference from excess ascorbic acid sugpests
the ability of the poly(AABA) MIP film in the discri.mination of dopaminefrom

-ascorbic acid.

The ability of poly(AABA) ’MIPI film to discr‘iminate aseorbic acia can be
.explaine(_l by the différent affinities and electronic prbperties of 'dopamine and
ascorbic acid. At physiological pH, the boronic acid'containihg poly(AABA)'
polymer film is negartivelyrcharg‘ed due to the deprotonization of-boronic_‘ acid.
Ascorbic acid, which exists as anion at this pH (pK; = 4.1), should. be repﬁlsed by the
'porly(AABA) film. On the other hand, the cationic dopamine (pK; = 8.87) caﬁ
immigrate into the polymer film and cbmbine with boronic acid. The combination of
“boronic acid with dopamine and its structure analogue catechc;l has been proved by
NMR invesﬁgati-on[B]. Moreove;, The association constant of catechol with
phénylboronic acid is found to be 40 fold higher than that. of _71,2—cyclopentane‘

- diol[32).
Selectivity against structurﬁrlly related compounds -
One of thie most desirable properties of molecularly imprinted polymer is its

ability in specific binding towards the template molecules. In order to further

investigate molecular recognition of the dopamine imprinted polymer fiim, tyramine,



homovanillic acid (HVA}) and 3, 4-dihydroxyphenylacetic acid (DOPAC), which are

structurally similar to dopamine, were used as interferents for dopamine detection.

OH

HO. (o HO

NH, OH

Tyramine, Homovanillic acid 3,4-Dihydroxyphenylacetic acid

S.imilar to the detection of dopamine with M[P.modiﬁed electrode,ra solution
containing 1.0 x 10™* mo! dm? tyramine was determined with the preconcentration-
-stripping procedure. It was reported that tyramine can be electro-éxidized on Au
éléctrode[33]. Howéver, no observable oxida\_tion wave exists in the differential pulse
voltammdgpam recorded aftér the preconcentration step. Thié indicates that uptake of
tyramine into the impr’iritcd polymer film is neghigible. The intc;ference by tyraﬁine |
on the detection of derpamiI-le was examiﬁed by measuring dopamine with
co_ncentration'variéd' from 5.0 x 710‘6 — 1.0 x 10 mol dm™ in the presence of .1.0- X
107 mol dm'3 tyramine.‘ The peak cuﬁents dbte;ined are shown together with that
obtained withou_t presence of tyramine il] Figure 4.10A. As can be seen, both set of
data points show .\{ery similar characters with only minor difference wﬁich can be |
ascribed to rarlldom eﬁor. -Interfefence from HVA to dopamine detection was also
A investi.gatédj and similar r;:sults were obtaﬁned (Figure 4.10B). These resiitis prove the 7'
ability of the imprinted ﬁolyﬁner film to discriminate dopamine from stmct‘urally

similar. analogues. The discrimination is mainly due to the structural difference
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between dobémine and {he two an-a-iogues: both tyré.mine and HVA have onl}; one
hydroxyi gfoup, which ig unablé to_cbmb'ine with the boron‘ic moieties to form cyclic
ester. For the anionié HVA spebi-es‘, the negatively charged polyf;ler film _also
functions és a permselective ﬁlm.'Tyr'aminé is positively charged at phy_sﬁiological pH
and can be entfapped in the polymer film. However, unlike: COV.';.ilel’ltly bQuna
dopémine, most of the ﬁhysically entrapped tyramiqe can be easily femovéd by the

extensive rinse following preconcentration.

3,4—Dihydr'6xyphenyléc_etic acid (DOPACj is one of metabolites of dopamine
-and has an elgctroche'mical oxidation poténtial close to that of dopamine{34).
Therefore, selectivity against DOPAC is of much importance for a dépamine Sensor.
The differén'tial. pulse voltammogram ob,taiped in 1.0 x 10™ | mo! dm” DOPAC
solution with a MIP-film-coated electrode is shown in Figure 4.11a, in which a small |
oxidation peak (% =0.52 V) can bé observed. Comp‘ared with the oxidation peak of
dopamine of same concentration (Figure 4.11b), the oxidation potential of DOPAC is
0.05 V higher than that of dopam'ine, which is‘i1-1- accordance with reported result that
DOPAC can be oxidized at potential slightly higher than dopamine[35]. The obvious
‘dif-féfence in the magnitude of peak curfent indicates’ that the a?nount of DOPAC -
éntraﬁped by the MIP ﬁllm is much less than that of dopamine. It also implies that the
negatively chafgecl MIP film can serve as a pemlself:cti\fe barrier against the anionic
DOPAC, £hus only a small amo-unt of DOPAC was bound to the liniprintéd polyﬁler'
and transferred into the electrochemical system. This may be due to the interaction of

DOPAC with boronic acid moieties located on the surface of the polymer film.
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To study the interferencé by DOPAC on dopamine detection, a series of.3.0 X
10'5_mol dlh‘3 dopamine solutions with DOPAC of various c_oncentrations (1.0 x 107
to 2.0 x 10" mol dm™) was used in the pré_:concentmlion step- Qith a MIP film
modified electrode. The peak -‘current in the diffefentiéll pulse \lolfalﬁmogra111
obtair'le.d' in the rp'resence DOPAC-ShOi;/é aiéligi{t increment w?th the coné'entration of
"DOPAC (Figure 4.12a). In the presence of a DOPAC concentration which is 7 times
ofv that of dopamine, the peak current of dlopamine is increased 'by 6% compared to
the one without presence of DOPAC. Unlike ascorbic acid, which coexists with
dopamine in excess amour%t,‘ DOPAC genéra!ly exists in lconcenrtration_whjch IS
comparable to that of | dopamine. The. interference by DOPAC of the’ same
c-o‘ncentration as dopamine is shown in Figure 4: 12b, in whicﬁ the peak cutrents were ’
ol;:tained with various cdncentratiéns of dopamiqe in the presence of .same amount of
DOPAC. A comparison of Figure 4.12b with Figufe 4.7 (absence of DOPAC) ‘shows '

similar correlation between the peak current and dopamine concentration.

The ability of this imprinted polymer film to discriminate stmcturally similar
compounds demonstrates the feasibility of molecular imprinting technigue in

créating specific binding sites for template molecules.
Selectivity against glucose

As a source of energy in animals and plants, glucose is one of the most
important carbohydrates and widely exists in extracellular fluids. As shown in
chapter 3, glucose can readily combine with boronic acid moieties in polymer films.

Due to the coexistence of glucose with dopamine, discrimination between glucose
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and (lopar.nine ‘is important for thé‘ applicatiog of the imprinted polymer film in
dOp-E‘tl.‘n'l.llC detection. Iﬁntf_:rfefence from gluﬁose rto deteétion of dopamine was
examined by deferﬁlinipg dbpan1ine with the preboncentratio-n-stripping approach in
the concentraﬁon range of 5.0 x 10° to 1.0 x 10™* mol dm™ in the presence of 5.0 x -
10 mol dm™ glucdsé,_lwhich is typical of glucose éonéentration in human body.
From 'tl-le results shc;wh in F igure 4._13, one caﬁ see that in the presence of glucose,
the peak current obtained from dqpamine oxidation 15 _generally: srﬁallef than that in
the absence of glucose. This becomes very obvioﬁs at low concentration of dopamine
- for a dopamine concentration of 5-.0 x 1(‘)’6 mol dm”, the decrease in beak current 15 -
as large as 52%, in(;lic'ating severe interference fI':()m glucose which is 1000 times
higher in concentration. ' With the increase in dopamine concentration, the
interference from glucose becomes smaller - for a dopamine concentration of 1.0 x
10™ moi dm™, tﬁe_l peak current is only slightly lowered by 1.5%, thﬁsdemonstrating
the moleqular'recogpition a'bility of the imprinted polymer. The decrease in peak
current of. dopamiﬁe oxidation is due to competition for. binding sites. between
glucose with dopamine in the preconcentration step. Since glucose is a smﬁll neutral
molecule, it can penetrat_g t:hrough the negat_'ively charged imprinted polymer film
‘ar‘ld- competes with dopamineion covalent bonding with the boronic acid moieties.
As parts of the binding sites are 'n‘ow' oqcubied by thé electroinactive glilc_:ose, a lower _

peak current was observed in the differential pulse voltammogram.

The abové results demonstrate that the imprinted polymer film possesses
considerable discrimination ability against glucose. However, due to the high -
concentration of glucose in extraceliular fluids, the interference from glucose to the

detection of low concentration of dopamine cannot be ignored. A possible solution to
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 this problem is t_o'create more specific binding sites for dopamine by introduction of
addi.tional interacting funciional groups intﬁ t.he b_'ind.ing‘sife':s. One possible candidate
is the anio‘nic carboxﬂate, which can intefact with the cationic amine of dopamine.
"In addition, the p;rmselecti\fity of ‘the'il_ﬁprinted polymer film can also be improved

by the negatively charged carboxylate groups.
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Figure 49. - Peak cutrent obtained in the differential pulse voltammogram under
different conceﬁ-tration' of dopamine and “ascorbic acid concentration. (a) Dopamine
~ concentration was- fixed- at 5.0 x 1_()'5 mol dm” while ‘ascorbic acid c‘oncentratiﬁn
(lower X-axis) was varied from 50 X 10” to 1.6 X 1_0'3 mol dl_’[;_3 ;'(b) Ascorbic acid
co‘ncentration was fixed at 1.0 x 10” mol dm™ while dopamine concentration (upijer ‘

X-axis) was v_ariéd from 5.0 x 10 to 1.0 x 10™ mol dm™.
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Figufe 4.10. Peak current in the differential pulse voltammogram with dopamirie,
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A 10 mol Vdm‘3 tyramine (A) or homovanillic acid (B).
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Figure 4.11.  Differential pulse voltammograms recorded on a MIP film modified
electrbde after preconcentratior_l in 1.0 x 10™ mol'drr_lf3 of (a) DOPAC and (b)
dopamine solution. Electrolyte:-0.05 mol dm™ HCI + 0.05 mol dm'B- KCl (pH = 2.0)

solution. Scan rate; 20 mVs'.
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concentra_tion' of dopamine a_nd DQPAC, from 5.0 x IO'G.to 1.0 x 10 mol dm™

(upper X-axis).

168



E?>o"

S {
Q.
‘ JAN
2 , 4
JAN .
0 8 ® Dopamine
: A Dopamine + 5 mM Glucose
| T _‘ T T I ! i ¥ T ¥ I
0.00 0.02 - 0.04 0.06 . 0.08 0.10
C yooamine | 10" mot dm™
lopamine

* Figure 4.13.  Plots of oxidative peak current in thé differential pulse voltammogram

of dopamine bound to MIP film by preconcentration in dopamine solution (5.0 x 10
to 1.0 x 107 mol dm'3; pH 7.74) in the absence (®) and presence (A) of 5.0 x 10° mol
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4.4 Conclusions

Mole'cularly imprinted polymer (MlP) films of acrylamid.ophenylboronic acid’
were prepared by electropolymenzation on EQCM Au and Au wire electrodes in the .
presence of dopamine.. After removal of the tcmplate molecules an 1mpnnted
: polymer ﬁlm w1th both hlgh afﬁmty to dopamme and permselectlwty agamst the
_ interferent aSC()l‘bIC acid (AA) was prepared. An electrochemical sensor based on the
1rnprmted polymer film was used to detect dopamme at physmlogical pH by a
preconcentration stnppmg approach This dopamme sensor exhibits a direct response
n terms of electrochemical redox peak current to dopamine in the range of 5.0 x 107
to 1.0 % 10 mol dm Interference from ascorbic acid with concentration as hi gh as
1.0 x 107 mol dm'3 is successfully eliminated with this sensor. Ideal selectiyity of
this (flopaminesensor against structurally similar compotl-nds of dopaminé was also
demonstrated. Interference from excess emount of glucose was also examined. The
mechanism of selective sensitivity of the sensor was discussed. The. effect of
electrocle potential and -solution pH on the performance of sensor was also

investigated.
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: Molecula-rly imprintinu 'has been recognized as e11e oflhe most prorhising tools
for the development of synthetic receptors. Because of their capablhty of speelﬁc
'bmdmg towards corrcspondmU substrates ‘molecularly 1mpnnted polymers are ideal
as recognitioﬁ elements for sensors. I_—Iowever, due to the difficulties in integrating
the imprinted pelymers to the sensor tran_sducers, development of sensors baseel on
fnolecularly imprinted polymer films are relat.ively slow. In this"study,- we have:
developed a series of electrochemical sensors based on molecularly imprinted

polymers, including some new monomers. All these sensors show good selectivities

and response towards their substrates.

An ATP 1mprmted polymer film was prepared by electropolymerization of
pyrrole in the presence of ATP. Usmg the electrochemlcal quartz crystal
microbalance (EQCM), potentiodynamic uptake of ATP, ADP and AMP into |
overoxidized polypyrrole film was observed. It was found that the amounts of uptake
decrease in fhe order ATP > ADP > m, which indicated that the sensor .is-
.seleétive toward ATP against ADP and AMP. This EQCM sensor based on irﬁprinted
polypyrrole film showed li.near response in frequency shift of- the QCM resonator
towards ATP concentrstion in the rahge of 1.0 x 10™ 'to' .02 mol dm™. An optimal
pyrrole: ATP mole ratio of 2:1 was found to generate electropolymerized ir_npfinted

polypyrrole film with highest seleeﬁvity.

Another ATP imprinted polymer film was pfepafed by electropolymerizstion
ofo phenylenedlamme in the presence of ATP. Slm1iar to the polypyrrole based ﬁlm,
the amount of uptake into the imprinted poly(o- -phenylenediamine) film was found to
decrease in the order ATP > ADP > AMP. The frequency shi.ft'of the EQCM sensor
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based on this imprinted film was found to vary linearly with ATP concentration 1n
the'range of 2.0 x 10” to 2.0 10" mol dm™. The response time of this sensor could
be as short as 10 seconds, which was ascribed to the low diffusion barrier of the thin

polym-er film.

A ne'wly developeci functional monomer, glucose boronate-substituted aniline,
was used for the preparation of glucrose impriﬁted polymer ﬁlm A novel apppoach,
which involved electropolymerization of the functional mbnqmer in Nonagueous
system and gradually. Atraﬁsferring i_n_to the aqueous systerr_i,‘ was found to be suitable
for preparation of this glucose irﬁprinted_ polymer film. At physiological pH, the
EQCM sensor based on this glucose impﬁnted polymer film showed linéar frequency
" response toward glucose concentration in the range of 2.0 x 107 to 7.5 x 10" mol
dm™. The mole ratio bet_weeﬁ the functional monomer and aniling was found to
remarkably affect the sensi-tiv_ity and seiectivity of the sensor and a fun(_:tional'
monomer to anil-ine molé raltio of 6.4 was found to result in imprinted polymet film .
with best. selectivity. It .was found that the potential applied during the céu‘rse of
Aanalysi‘s and pH value of the solution could greatly affect the uptake of ‘glucose into
the imprinted polymer film. This 1s bec'ausc.: the electrode potential and _solutip-n pH

can both affect the association constant of the boronate ester.

A d_opamine’impr‘?nted. polymer film .was prepared f)y eleclropolymer_ization of
acrylamidopllenylbofonic acid in the presence of dopamine. This moleqularly
_imprinte'd polymer film showed specific afﬁnrity towards dopamine and .
pefmseléctivity against ascorbic acid. In order to minimize the interfefencg: from

ascorbic acid, an alternative approach in which dopamine was first selectively
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entrapped intc; “the imp.r-inted pol.ymef and then analyzed by differential pulse
~ voltammetry was used. Using> this s-t};pré_ach, the sensor based oh_dopamine imprinted '
pbll)}mer _ﬁl-m was free Ffofn ascorbic acid interfe.ren'(‘:e,' and showed. .!inear current
response in .the. conceﬁtré.tion range qf 5% 10° to 1 x 10* mol dm'i. These
advantages mai{e the sensor id¢al for dopamine determination, _and‘ hence may find

its application in medicine or industry.

Tﬁis research Work‘successfuli'y demonstrates that assémbly of molecularly
. imprinted po_lymérs_ on the surface of ‘electroch'_eniical and mi_crdgravimetric
transducers can be achieved by in-situ eiectropqlmeﬁzation, which provides a
convenienf means to fabricate_:'MIP films directly. on fhc transducer surfac_é.
Properties of the MIP ﬁlms such as thickness ancl pordsity can be easily controlied
by tunmg the current and voltage as well as by the chmce; of supportmg eiectrolyte in |
electrolys1s These propertles of the MIP film are important for sensors with qulck
response time and high sensitivity. By. properly choosing ‘appropnate functional
grbups on the molnomers, Sensors with_ high sclecﬁvity and sensit{xfity can be
developed. In this study, we - have demo-nstra'ted that MIP ﬁlmé_ prepared in
nonagqueous medium can be tranéferred gradually to‘ and used _éubséquently in
aquéous enviro_nmeht. However, this involves a numl;er of té&ious éteps and the
more convement d1rect preparatlon of MIPs by electropolyrnenzatlon In agueous
system is still much preferred The 1atter approach, however, is limited by the small
number of cﬁoices of monomers that can be electropolymerized in aduebus medium.
Although we have prepared some new electropolymerizablé anI"lQméL’S such as
acrylamidophenytboronic acid ‘in this sEﬁdy,-the choice of elec{ropolyrﬁerizable

monomers with appropriate functional groups is stitl limited compared to the large

179



numbcr‘o'f nonomers ava-ilable' for M{P prep‘aration by coné*enfional chemical means.
To make thf; electrochemical approach reglly practical, more effort to expand Vthe
library .of_ elecfropolymerizable mqnomér_s with various functional groups through
molem.llar. design- aﬁd chemical synthesis.is néeded. As pyrrole, aniline and thiophene
are the,‘best known monomers that can be: electropolymerized in adueous medium, a
logical extension is to modify these mlon(_)iners with appropriate funétional groups.
Monorﬁets with various functional groups such as carquﬂate, hydroxyl and amine
located oﬁ ‘differernt poﬁitions of the monomers can be designed and .plrepare‘d by
organic synthesis. To prepare more s._oph‘isticate_d ‘binding sites, different
functionalized monomers and cross-linkers can be used. This can be achieved by
:lectropdlymerization of -a mixture monomers with similar Si[’ttétlil[’e -but ‘bearing
different functional groups iﬁ the presence of the template molecules. For example, a
dopamine-selective MIP  film éan be prepared by co-polymerization of
acrylamiddphenylboronic acid with acrylamidobenzoic écid. While the boronaté
functional group interacfs with the hydroxyl groups on dopamine ‘in the molecular
. imprinting process, the negativély charged carboxylate group is expected to nteract
with the amn;iné group on dopamine. MIP films with properly orientated boronate
and carboxylate groupé for higher-seleétivity of dopamine can then be prepared.‘AWith
the gxpaﬁsion of éhqicés of eiectropol}qnerizable fu_ncliénalized monomers at{ai.lable
to the chemical community, it is expected that the convenient preparation of
molecularly imprinted films by direct in-situ electropolymerization on transducer
slurface rwili become the method of choice for‘th‘e faBrication MIP sensors tn the

future.
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