Q THE HONG KONG
Q' db POLYTECHNIC UNIVERSITY
v T T AR

Pao Yue-kong Library
BIERIESE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

Techniques for Task Scheduling in

Practical Parallel and Distributed System

by
Chan Wai Yip, BEng (Hons)

A dissertation submitted in partial fulfillment of the fequirements for the
Degree of Master of Philosophy

The Hong Kong Polytechnic University

Sﬁpervisor: Dr. Li Chi Kwong

Department of Electronic and Information Engineering
The Hong Kong Polytechnic University,
Hong Kong

This work was supported in part by

“The Hong Kong Polytechnic University projects 340/978

A, Pao Yue-Kong Library
N7 PolyU <+ Hong Kong

Table of contents

LIST OF FIGURES

LIST OF TABLES

LIST OF ALGORITHMS

ACKNOWLEDGEMENTS I
PREFECT |

CHAPTER 1: AN INTRODUCTION TO PARALLEL AND DISTRIBUTED

@ ~1 o th & B

COMPUTING 1
CHAPTER 2: THE TASK SCHEDULING PROBLEM
2.1 The Task Scheduling Problem and its Goals
22 Classical Task Scheduling Techniques
2.3 Task Scheduling in Practical Parallel and Distributed System
2.4 Problem Definition
2.5 Assumptions
'CHAPTER 3: TASK SCHEDULING TECHNIQUES FOR HETEROGENEOUS
ENVIRONMENT 1
3.1 Chapter Summary 1
3.2 The List Scheduling Heuristic (LSH) 11
33 Implementation Consideration of the List Scheduling Heuristic 15
34 The List Scheduling Heuristic in Heterogeneous Environment 21
3.5 Proposed Implementation of Heterogeneous Task Scheduling Algorithms 24
CHAPTER 4: TASK SCHEDULING TECHNIQUES FOR RESOURCES NON-
DETERMINISTIC ENVIRONMENT 36
4.1 Chapter Summary 36
4.2 The Contractual Computing Paradigm 36
4.3 Task Scheduling in Resources Non-Deterministic Environment 42
4.4 Issues on Developing Task Schedulers 43

4.5 Proposals of Task Schedule Techniques in Contractual Computing Paradigm 46

CHAPTER 5: THE SCHEDULER ORIENTED (SO) APPROACH 48

5.1 Chapter Summary 48
5.2 The Scheduler Oriented Approach 48
53 [mplementations of Scheduling Using SO Approach 54
5.4 Properties of SO Based Algorithms 56
CHAPTER 6: THE RESOURCES ORIENTED (RO) APPROACH 59
6.1 Chapter Summary 59
6.2 The Resources Oriented Approach 59
6.3 Implementations of Scheduling Using RO Approach ' 65
6.4 Properties of RO Based algorithms ' 68
CHAPTER 7: THE CONTRACTOR ORIENTED (CO) APPROACH 72
7.1 Chapter Summary : 72
7.2 The Contractor Oriented Approach 72
7.3 - Implementations of Scheduling Using CO Approach 77
7.4 Properties of CO Based Algorithms 80
CHAPTER 8: EXPERIMENTAL STUDIES 83
Experiment 1 Performance between MD and RMS Algorithms 83
Experiment 2 Properties of HDSC Algorithm 87
Experiment3 Resources Booking Characteristic for Task of Different Sizes 94
Experiment 4 Properties of SO Approach 100
Experiment 5 Properties of CO Approach 137
CHAPTER 9: CONCLUSIONS 115
REFERENCES 122
APPENDIX A: EXPERIMENT SETUP 126
Al Procedure of Experiment 1 126
A2 Benchmark Applications Applied in Experiment 2 to 5 127
A3 Processor Configuration Used in Experiment 2 to 5 129
Ad Processors Configuration Used in Experiments 4 and Experiment 5 129
APPENDIX B: SCHEDULE DETAILS 131
Bl Schedules of Application K1 131
B2 Schedutes of Application K30 137

APPENDIX C: PUBLICATION LIST 143

List of Figures

Figure 1.1, an example of parallel and distributed system. 2
Figure 2.1: A general scheduling system. : 4
Figure 2.2a-c. An example of a DAG. 10
Figure 3.1a-c. Scheduling consideration due to communication delay. 13
Figure 3.2a-d. Trade-off between parallelism and communication delﬁy. 14
Figure 4.1. The contractual computing paradigm. j 37
Figure 4.2.The contracting procedure, 39
Figure 4.3a-d. An example of information flow for the contracting procedure. 40
Figure 4.4. Application specification. ' 41
Figure 4.5. Advanced scheduling information for processors P1, P2, P3 and P4. 41
Figure 5.1a-e. An-example of scheduling task in the SO approach. 52
Figure 5.2a-d. An exampie of resources booking. 54
Figure 6.1. Characteristic of VDP set C. . 62
Figure 6.2a-c. an example of resources partition by assignment, ‘ 64
Figure 7.1a-c. Au example of tasks scheduling. _ | 75
Figure E1.1. Performance of task schedule into processor set 1(JP|2|N]). 83
Figure E1.2. To Performance of task schedule into processor set 2 ({P] = |Pinl)- 84
Figure EL.3. Performance of task schedule into processor set 3 (|N|>|P[>P;q). 84
Figure E2.1. Parallel time of executing K1 task graph using different scheduling algorithms. 88

Figure E2.2. Parallel time of exccuting K1 task graph using different processors configurations. 88
Figure E2.3. Parallel time improvement ratio of executing K1 task graph using different processors
configurations. 88
Figure E2.4. Parallel time of executing K30 task graph using different scheduling algorithms. 89
Figure £2.5. Parallel time of executing K30 task graph using different processors configurations. 89
Figure E2.6. Parallel time improvement ratio of executing K30 task graph using different processors
configurations. 39
Figure E2.7. Parallel time of executing IRR50 task graph using different scheduling algorithms. 90
Figure E2.8. Parallel time of executing ERR50 task graph using different processors configurations.90
Figure E2.9. Parallel time improvement ratio of executing IRR50 task graph using different
processors éonﬁgurations. %0
Figure E2.10. Parallel time of executing TRR1 task graph using different scheduling algorithms. 91
Figure E2.11. Parallel time of executing IRR1 task graph using different processors configurations.91

Figure E2.12. Parallel time improvement ratio of executing IRR1 task graph using different

processors configurations. . 91
Figure E3:1a-k. 0% to 100% work loaded. 95
Figure E3.2. A graph of booking probability for requesting 10 % from pre-booked workload. 98
Figure Ed.1a. Bar charts of successful resources booking count against workload, ' 101

Figure E4.1b. Bar chart of average parallel time increases concurrent execution with existing

workload. 102

Figure E4.2a. Bar charts of successful resources booking count against workload.

Figure E4.2b. Bar chart of average parallel time increases as concurrent execution with existing

workload.

Figurc E4.3a. Bar charts of successful resources booking count against workload.

Figure E4.3b. Bar chart of average parallel time increases as concurrent execution with existing

workload.
Figure E5.1a. A bar chart of average parallel time against workload.

Figure ES.1bh. A bar chart of average percentage of parallel time increase against workload.

Figure E3.1c. A bar chart of average % of parallel time increases as executing the applications

concurrently against workload.

Figure E5.2a. A bar chart of average parallel time against workload.

Figure E5.2b. A bar chart of average percentage of parallel time increase against workload.

Figure E5.2¢c. A bar chart of average percentage of parallel time increase as execnfing the
applications concurrently against workload.

Figure E5.3a. A bar chart of average parallel time against workload.

Figure E5.3b. A bar chart of average percentage of parallel time increase against workload.

Figure E3.3c. A bar chart of average percentage of parallel time increase as executing the
applications concurrently agains@ workload.

Figure E5.da. A bar chart of average parallel time against workload.

Figure E5.4b. A bar chart of average percentage of parallel time increase against workload.

Figure ES.4c. A bar chart of average percentage of parallel time increase as executing the
applications concurrently against workload.

Figure A2.1. Task graph of K1.

Figure A2.2. Task graph of IRR50.

Figure A4.1. Workload of p, between 0 to 10 second is 30%.

Figure Bl to B24 A schedule of K1 to differenct processor set using the HDSC, HMD and HRMS

algorithm.

102

103
103

104
108
109

109
109

110

11¢

110

111

111
11
112

112
128
128
136

131

List of Tables

Table 3.1. A survey on task scheduling heuristics.

Table E2.1. Parallelism of schedule produced by different scheduling algorithm in K1 graph.
Table E2.2. Parallelism of schedule produced by different scheduling algorithm in K30 graph.
Table E2.3. Parallelism of schedule produced Ey different scheduling algorithm in IRR50 graph.
Table E2.4. Parallelism of schedule produced by different scheduling algorithm in IRR1 graph.
Table 9.1. Summary of the DSC, MD and RMS algorithms.

Table 9.2. Summary of HDSC, HMD and HRMS algorithms.

Table 9.3. Summary of SO, RO and CO approaches.

Table Al.1. Sub-grouping of random generated task graphs.

Table A3.1. Configuration of target processor sets.

Table A4.2. Grouping of worklead.

List of Algorithms

Algorithin 3.4a. The Relative Mobility Scheduling (RMS) algorithm.

Algorithm 3.4b. Condition 1 of the RMS algorithm.

Algorithm 3.5. The Heterogeneous List Scheduling technique (HLS).

Algorithm 3.6. The Heterogeneous Dominant Sequence Cluster algorithm (HDSC).
Algorithm 3.7a. The HMD algorithm. .

Algorithm 3.7b. Condition H of the HMD algorithm.

Algorithm 3.8a: The HRMS algorithm.

Algorithm 3.8b: Condition H of the HRMS algorithm.

Algorithm 3.8a-b. The Heterogeneous Relative Mobility Scheduling algorithm (HRMS)
Algorithm 5.1. The Scheduler OII'iented (S0) approach.

Algorithm 5.2. The Scheduler Oriented HDSC algorithm (SO-HDSC).

Algorithm 5.3, The Scheduler Oriented HMD algorithm (SO-HMD).

Algorithm 5.4. The Scheduler Oriented HRMS algorithm (SO-HRMS).

Algorithm 6.1. The Resources Oriented (RO) approach.

Algorithm 6.2. Resources partitioning by assignment.

Algorithm 6.3. The HDSC algorithm in Resources Oriented Implementation (RO-HDSC).
Algorithm 6.4. The Resources Oriented HMD algorithm (RO-HMD).

Algorithm 6.5. The Resources Oriented HRMS algorithm (RO-HRMS).

Algorithm 7.1. The Contractor Oriented approach,

Algorithm 7.2. The CO-HDSC algorithm.

Algorithm 7.3, THE CO-HMD algorithm.

Algorithm 7.4, The CO-HRMS algorithm.

19
19
22
26
30
30
34
M
34
50
55
56
56 _
60
63

67
68
73
78
79

79

Acknowledgements

Firstly, | would like to express my deep gratitude towards my MPhil. Supervisor, Dr. Chi
Kwong Li, for his endless support,-invaluable advice and excellent guidance. His kindness and
patience have spiritually helped in one way or another to solve the problems. Besides, [am
grateful to Prof. Wan Clii Siu and Dr. Peter Tam for their assistance and patience in applying for

various research funds to support my MPhil. Study.

Then, | would like to thank Mr. Wai Kin Lam who has enlightened me on the subject of the
parallel and distributed systems and the contractual computing paradigm with his frequent and
detailed discussions. In addition, without the continuous encouragement and technical support of
Dr. Kwok Fai Wan and Hing Cheung Hung, it is impossible for me to complete the work on time.
[am also greatly indebted to Dr. Wai Kit Lam, Dr. Hui Wei Guan, Dr. Ying Shan, Wai Kwong

Cheuk and Eric Tze for their friendly advice and help. Thanks are also due to Chi Yuen Fung, Chi
Cheong Law and Kam Tai Yam who contributed in studying part of concept and development of

the programs.

The last but not the least, | would like to thank my friends and my family, for whom I could

not make as much time as I would have liked to.

Prefect

In the last two decades, massively connected parallel computer systems and networked
distributed systems provide the processing power, which is demanded.for solving problems of
extensive computation in nature. Aiming to achieve better performance by using these systems,
scheduling algorithms are used. The objectives of scheduling algorithms are to allocate tasks into
processors and to order their execution so that data dependencies are satisfied and the length of
- the produced schedule (parallel time) are minimized. However, it was proved that such scheduling
problem is NP-complete {Chret89] [Papadimitriou90] {Sarkar89]. It is very difficult to obtain an

optimal scheduling solution in polynomial time complexity.

In order to obtain a scheduling solution in lower time complexity, heuristic approaches of
task scheduling algorithms were proposed to approximate the optimal solution, which can be
completed in polynomial time complexity [ACDi74] [Papadimitriou90]. Hence, heuristic
approach of task scheduling algorithm for homogeneous processors environment is becoming an
active research topic until now and a number of heuristic scheduling algorithms were proposed
[ACDi.74] [Elre90] [Krua87]) [Yang94] [Kruatrachue]. However, most of these algorithms were
bounded by a number of restrictions while implementing in practice, which seriously affected the

performance of such those proposed task schedulers in the real-life situation.

To begin with, a study of evolution of the parallel and distributed systems and classical task
scheduling techniques is performed. It has been identified that the list scheduling heuristic is a
widely accepted approach for task scheduling. Algorithms like the Dominant Sequence Clustering
(DSC) [Yang9l] [Yang94], the Mobility Direct (MD) [Wu90] and the Relative Mobility
Scheduling (RMS) [Chan97a] algorithms, which are all based on heuristic, will produce
reasonably good scheduling solutions in a homogeneous and dedicated processor environment.
Nevertheless, in the realization of these scheduling solutions in practical environment, they are
restricted and solutions cannot be promptly achieved. In this dissertation, two environmental

restrictions in classical scheduling techniques were identified. They are:
1. the heterogeneous requirement of processors configuration and
2. the non-deterministic nature of available resources.

To overcome the first limitation, a heuristic technique called “Heterogencous List
Scheduling” is proposed [Chan97b] in Chapter 2. This generalizes heuristics in the List
Scheduling Heuristic so that the design of task scheduling algorithms can also be applicable in a
heterogeneous environment. In ordér to demonstrate the usefulness and the characteristics of the
technique, three different scheduling heuristics are proposed and used for the demonstration. They

are the Heterogeneous Dominant Sequence Cluster {HDSC) [Chan97c], the Heterogeneous

Mobility Direct (HMD) and ‘the Heterogeneous Relative Mobility Scheduling (HRMS)
[Chan97d]. Through experiments, these algorithims can schedule paralle] tasks into heterogeneous

environment in which data dependencies are satisfied in a short time.

The other challenging problem for task scheduling in prabtical environment is the non-
deterministic processor’s workload (non-deterministic resources). This non-determination comes
from various factors including uncertainties in resources used by operating systems, multiple-
users and multiple-applications [Lewis98] [Lam9%5a]{Lam95b]. Research in the last decade had
made an effort on the study of workload estimation techniques for dynamic scheduling during the
run-time. Although these procedures can adapt to a non-deterministic environment for an
improved scheduling solution, the 110n~det-ef1nination problem still exists. Besides, the huge
amount of overhead requ_ired in the workload estimation and the dynamib scheduling and
rescheduling in the run-time will restrict the use of parallel and distributed computation in real-

life applications.

Focusing on the limitation, a contractual resource management scheme for assisting
sclieduling problem is outlined in Chapter 3. The Contractual Computing paradigm (CC), a
revolution computation and networking resource mallagement scheme, is proposed by Lam and Li
[Lam96][Lam97]. The concept is to modularize the management of computation as well as the
networking resources into two different layers. Applications demanded for resources within the
two layers are engaged themselvés by making a resource contract between the layers. The
contracting mechanism is simitar to likes an advanced resource booking system, Once the
resources are booked, the provider should guarantee the contracted resources to be available in

run-time. Consequently, a deterministic execution becomes possible.

With the study of the paradigm, three approaches for designing the appropriate task
scheduling algorithms have been determined in Chapter 5, 6 and 7 respectively. They are the
“Scheduler Oriented” (SO) approach, the “Resources Oriented” (RO) approach and the
“Contractor Oriented” (CO) approach. The aim of the first two approaches is to merge the
classical scheduling algorithm into the one feasible contractual computing paradigm. The third
approach uses the advanced scheduling information for making task-scheduling decisions. The
implementations based on the HDSC, the HMD and the HRMS algorithm have been developed
for these three approaches. Based on the implementation, the properties including the booking
“probability, the task scheduling performance, the efficiency in resources usage and their inherence
problems have been studied. Consequently, the properties of the proposed scheduling algorithms

were illustrated by extensive simulation studies.

Chapter 1. An Introduction 1

Chapter 1: An Introduction to Parallel and Distributed
Computing

In the last three decades, startling advances in computing technology that were stimulated by
the availability of faster, more reliable and cheaper electronic components have been witnessed.
These resolute developments cultivated a wide range -of solution for computational intensive
problems [Shurkin84] [Wilkes85]. However, better devices albeit essential are not the sole factors
contributing to the high performance. It shows that the performance of uni-processor computers is

limited, because device technology places an upper bound on the speed of a single processor.

The evolutionary transition from sequential to parallel and distributed computing (PDC)
offers the promise of quantum leap in the processing power that can be brought into solving on
many important problems. Although this technology has risen to prominence duri-ng the last 20
years, there remain many unresolved issues. The field is in a state of rapid flux where advances
are still being made on several fronts. PDC systems are recognized today as an important vehicle
for the solution of many proB]ems, especially those known as the “Grant Challenges™ [NSF92]
such as climate modeling, superconductor modeling and pollution dispersion modeling. These and

many other applications generally require heavy processing power.

Theoretically, a parallel algorithm can be executed efficiently on a MIMD model [Albert96].
Thus, this model can be used to build parallel computers for a variety of applications. Such
computers are said to have a general-purpose architecture. In practice, it is quite reasonable in
many applications to assemble several processors in a configuration specifically designed for a
particular problem. The examples of these systems are pipelining architectures in super-scalar
Processors, array processors, vector processors and neural networks processors. Thus, a number of
specifically designed scheduling algorithms were proposed to schedule tasks executing in such
specific architectures [Chan96] [Guan95]. Consequently, a computer that solves a particular
problem efficiently may not be suitable for other purposes. The scalability and the portability of

these systems are limited.

In order to improve the scalability, the portability and the provision of a cost effectively
environment for using computer resources, “Distributed Computing” (or Clustering computing, a
networked workstation cluster) is widely used in the recent PDC system. {t is another popular
classification of PDC systems by the degree of coupling among the different processing
components within the system [Lawson92]. This paradigm enables multiple computers to
cooperate simultaneously to solve a computational intensive problem. The processing elements
can be wired directly together and are communicated via buses or cables, or they can be remotely
located and are communicated by radio or microwave signals. Hence, the type and the mechanism

for coupling can often be distinguished between a distributed processing and a parallel processing.

—— e =TT

Chapter 1. An Introduction 2

From the viewpoint of hardware, a distributed computing system is simply a collection of
independent systems, typical workstations {called “processor” in latter text) and the connection
via a commodity network. Figure 1.1 shows the configuration of the distributed environment
setup for this study. Workstations communicate via connections oriented or connectionless
transport protocols. General-purpose computers are installed with a multi-user and multi-tasking
Operation System. All the processing units have their local memories, local I/O support and local

schedules of the CPU time so that they can accept and execute tasks from different users

simultaneously. _ 6X Sparc 5
20 X HP workstations
0 DEC Alpha 433
——
= =
| = 15 !
=

more than 30 PC DeskTop

Figure L1, an example of paraliel and distributed system

In order to run parallet applications efficiently in such kind of systems, software platforms
like PVM [Beguelin91], P4 [Ralph92] [Ewing87], CHIMP [EPCC91] [EPCC92], or Express
[Parasoft88] were developed. Among most of the software tools, they create a layer of abstraction
between programmers and the smit of machines. Some providing explicit constructions needed to
express synchronization and communications among the tasks within the application. Lastly, they
reduce the development cycle of parallel applications by using parallel and distributed system
(PDS).

Nevertheless, difficulties in designing and implementing applications in PDS are
encountered. Firstly, the availability of efficient and reliable network is essential for achieving
task-executing performance. Some algorithms can make excellent use of a .certain network
topology, however they might not fit well into another. Secondly, the distributed computing
system by its nature will normally consist of heterogeneous systems. The number of processing
units supporting the system varies greatly from a few to thousands. The capability of these -
processing units can range from a very simple and capable of performing a single floating-point -
operation to a very powerful unit, which can be considered as a computer in its own part. Lastly,

computational resources are non-deterministic where computers composed of the distributed

Chapter I: An Introduction 3

computing system are general-purposed computer workstations installed with a generic multi-
users and multi-tasking operating system (like UNIX). The computational resources (e.g. CPU
time) are competed among uvsers and tasks. This result in the failure of providing resources
-necessary for the running applications. The non-deterministic resources are greatly restricted to

the application of PDS in solving wide ranges of problems.

The prime attraction of the distributed computing is the ability to utilize idle resources
distributed across an enterprise network. Several studies at national laboratories in the United
States have indicated that theridle time of most workstations is more than 75 percent [Albert96].
The usage of these “free” computing resources is a primary issue of the so-called “enterprise
clusters”. The essential requirement to configure an enterprise cluster is the management
software, which includes the implementation of availability policies [Albert96]. The Contractual
Computing Paradigm (CC) [Lam95a]{Lam96}[Lam97], which is based on the availability policies
in enterprise clusters, was proposed by Lam and Li to manage resources in a contractual
discipline. In the proposal, all the resources (e.g. CPU) in the PDS are managed by a contractual
mechanism. Once a contract of resources is made, the resources are guaranteed in any occasion of
system loading. Therefore, information regarding to resources under management can be given
explicitly to applications. Applications as well as task schedulers can know exactly what and
when the resources can be available. Hence, a reliable and high performance parallel application
becomes feasible to be scheduled and to be executed in a dynamic, parallel and distributed

environment without performance degradation.

Chapter 2. Task Scheduling Problems ' 4

Chapter 2: The Task Scheduling Problem

2.1 The Task Scheduling Problem and its Goals

The task Scheduling problem consists of a set of resources (e.g. CPU time) and a set of
consumers (e.g. parallel applications) served by the resources according to certain policies [EL-
Rewini94a). Based on the “consumers and resources” model, the problem becomes how to find an
efficient policy for managing such resources access. The use of the resources by various
consumers in order to optimize some desired performance measures such as parallel time has to
be cbnsidered. Accordingly, a scheduling system can be considered as a set of consumers, a set of
resources and a scheduling policy as shown in-Figure 2.1. In order to make a scheduling decision;
the conéumers have to submit the constraints of an application such as data dependencies between
sub—tasi(s as well as their timing constraints. Besides, the resource provider (such as network O.8.)
has to acknowledge the schedulers explicitly concerning the amount of available resources, such
as the CPU resources. Using this information, the schedulers can exercise its policy to arrange

tasks to execute into the target system to meet the desired scheduling goals.

—N —N
— ‘ —
Consumers Policy Resources
(Parallel Applications) {Task Scheduler) (e.g. CPU time)
/z —
U N

Figure 2.1: A general scheduling system
The scheduling problem was classified as one of the great challenging problems in parallel
and distributed computing. It can be generalized by a MAX-MIN optimization problem
[Kruatrachue88] that optimizes the maximization of parallelism -and the minimization of
communication overhead. There are three preliminary goals to measure task-scheduling

performance [Yang94][CVRamam]; i.e.
Gl: The complexity should be low;
G2: The parallel time should be minimized,;
G3: The efficiency should be maximized.

Conflict may arise in order to meet all the above goals, GI, G2 and G3. For example, when
there is a conflict in the maximization of efficiency with the minimization of parallel time, G1 is
given priority over G2 and G3 and G2 over G3. [t is obvious that finding an optimum solution of
scheduling problem is NP-complete in its general form. In recent years, researchers are interested
in algorithms that attain the minimum parallel time and the maximum efficiency in a low

complexity.

Chapter 2. Task Scheduling Problems 5

2.2 Classical Task Scheduling Techniques

In the classical schoo! of task scheduling techniques, scheduling problems are classified into

static scheduling and dynamic scheduling and they are summarized as below.

Static Scheduling

In static scheduling, the assignment of tasks to the processors is done before the execution of
the program. Information regarding the task’s execution time and the processing resource is
assumed known at the time of compilation. A task is always executed on the processor to which it
is assigned; that is, static scheduling methods are processors non-preemptive. The scheduling

goals of the static scheduling methods [L088] [Sarkar86] [Shirazi90] {stonE57] are:

1. To predict the program execution behavior during compilation (that is to estimate the task,

execution times and the communication delays);

2. To partition tasks into coarse-grain processes, in an attempt to reduce communication costs;

and
3. To aliocate processes to the processors.

The major advantage of static scheduling methods is that all overheads of the scheduling
processes are incurred at the compilation time, resulting in a more efficient execution time
environment compared to dynamic scheduling methods. However, static scheduling suffers from

a wide range of problems. The most notable of which are as follows:

|. They are inefficient and inaccurate in estimation of task-execution time and communication
delays, which can cause unpredictable performance degradations [Lee91] [Wang91]. The
compile-time estimation of the task-execution time is difficult due to unknown prior
conditionals and loop construction.

2. They are also unable to accurately estimate network traffic and computational resources
workload, which again contribute to performance degradations. The compile-time
estimation of the computer workload is often difficult, e.g. PDS, in which multiple-users
are served with multiple-tasks. Estimating communication latency and processors workload
at compile time is not feasible due to the unknown traffic conditions in the network and
unknown processor workloads during the run-time.

However, static scheduling schemes can be augmented with a tool providing a performance
profile of the predicted execution of the schedule on a given architecture. In this situation, the user

cannot utilize this tool to improve the schedule nor to adapt to a difterent architecture.

Dynamic Scheduling

Dynamic scheduling is an attempt to place tasks into the processors and to decide the

task/sub-task’s start time during run-time, such that the parallel program can finish as earliest as

Chapter 2: Task Scheduling Problems 6

possible [El-Rewini94b]. The difference between dynamic load balancing and static scheduling is
that dynamic scheduling needs to collect system parameters and perform rescheduling at run-time.
The flexibility inhereat in dynamic foad balancing allows adaptation to the unforeseen variation in
system loading before run-time. An optimization problem exists that is affected by the following

factors:
1. The execution time and the communication delay for parallel program itself.

2. The uncertain of the avatlability of system resources at run-time: Although the dynamic
scheduler collects the current and the past information of the system loading. It is uncertain
that this information is valid at the run-time. Using the current and the past information to
estimate the system loading during scheduling, the non-deterministic nature of resources

can be reduced but they cannot be totally eliminated.

. Overhead in rescheduling: The overhead on collecting information on the loading of the

(S}

processors and the network traffic, decision-making of rescheduling tasks to the processors

also causes communication delay.

Optimum, Sub-optimal and Heuristic Scheduling

One of the most critical shortcomings of scheduling problems is that generating an optimal
scheduling solution is a NP-complete problem [Chret89] - [Papadimitriou90] [Shakar89}.
Alternatively, the research and development in this area have been focusing on sub-optimal
scheduling techniques, which are based on approximation and_ heuristic approaches. In the
approximation approach, the solution space is searched in either a depth-first or a breadth-first
strategy. However, instead of searching the entire solution space for an optimal solution, the

algorithm will stop when a “good” (or acceptable/predefined) solution is reached.

The heuristic approach, as the name indicates, relies on the rules-of-thumb to guide the
scheduling processes in the right direction to reach a “near” optimal solution. For example, the
DSC algorithm [Yang94] uses the length of a critical path in a task graph as a scheduling
heuristic. It should be noted that there is no universally accepted Figure or standard for defining a
“good” solution or a degree of “nearness’ to an optimal solution. Researchers often use a loose
lower bound on the execution time of a concurrent program (for example, the length of a critical
path as a benchmark). They indicate that their methods can always achieve schedules with the

execution time within a factor of this lower bound.

2.3 Task Scheduling in Practical Parallel and Distributed System

A number of obstacles associated with parallel applications and execution environments
challenge researchers in designing, implementing and analyzing task-scheduling techniques in
practical PDS. They include non-determinism in the application program. The execution
environments are configured heterogeneously and they confirm non-determinism in execution

environments.

Chapter 2. Task Scheduling Problems 7

A) Non-determinism in the application prograin.

The non-determinism comes from uneven grain size of tasks, lack of a priori knowledge of
the number of iterations m loops and in vartable program branching. The uncertainties that rule
out a simple scheduling can be led to the notion of sophisticated scheduling algorithms, which
greatly increase the time complexity and the amount of computational resource to complete the

scheduling.

‘B) The execution environments are configured heterogeneously

As defined in previous sections, distributed systems are loosely coupled general-purpose
computer systems running with multiple-users and operating system. In practice, the processing
units are in different bands and different performances. Their processing powers are
heterogeneous. Théir communications are through a multiple-access and time-variant
interconnected network such as Ethernet. The speed of communications among hosts is also
heterogeneous. These will increase the complexity of the task scheduling algorithms and

complicate their design.

C) Non-determinism in execution environments

Since computational and communicational resources are consumed by multiple users and
multiple applications, the exact loading of the computer and the network is changing dynamically
in a practical environment. The task scheduler has to collect -this information for proper
scheduling. However, this information is not provided in most networks available O.S. and a huge
amount of effort is required to collect in dynamic scheduler. Even with this available information,
it does not guarantee that the required resources are available for the scheduling application. The
non-determinism in the b_omputational’ and communicational environments still cannot be

gvercome.

2.4 Problem Definition

To start the List Scheduling Heuristic, the representative task scheduling technique in
classical séheduling theory, was studied. [t was then implemented in a practical execution
environment and was found that the heterogeneous resources and non-deterministic resources are

the most obvious restrictions to the practical implementation'. Designs and implementations-of

' Although the non-determinism in program execution is a factor that leads to performance degradation, there were several good
techniques proposed by researchers 1o minimize the non-determinism. For examples, high precision prediction algorithms for task
execution time and data communication delay, branch prediction and dynamic scheduling in loops and branches techniques. By using
these techniques, the nmfdctcrnﬂnism in program execution can be improved significantly. In order to simplify the anatysis and isolate
the negative effect of non-determinism in program execution introduced to task scheduling performance, the non-determinism in
ptogram execution is ignored. In other words, the parallel programs to be scheduled by the scheduler under analysis are assume(_!

deterministic in the task execution time and the data communication delay.

Chapter 2: Task Scheduling Problems 3

task scheduling techniques a hetérogeneous in resource configuration with execution environment
was studied and reported in the next Chapter. Simulation studies were carried out to verify and

compare their properties and functionality.

A novel computation paradigm, the “Contractual Computing” paradigm, was studied. With
it, a stable and deterministic execution environment is provided. Three different approaches of
implementing task-scheduling algorithms for the “Contractual Computing” paradigm were
proposed in the latter Chapter. Simulation studies were also carried out to evaluate the properties
of the proposed approaches and to validate the corresponding claims. A remarkable approach for

task scheduling in real-life parallel and distributed systems was concluded.

2.5 Assumptions

[t is assumed that applications to be scheduled can be represented in directed acyclic
weighted task graphs (DAG’s). An example of DAG is shown in Figure 2.2. [Yang94] The
execution time is presented in the right side of the bullets and the corresponding edge weight is
written on the edges. A DAG is defined by a tuple G = (N, E, C, W), where N is the set of task
nodes and n = |N)] is the number of nodes, £ is the set of communication edges, ¢ = |E| is the
nurﬁber of edges, C is the set of edge communication cost and /¥ is the set of node computation
costs. It is assumed that the task and edge weights are deterministic. The value ¢; e C is the
communication cost incurred along the edge ej =(n,-,n_,-)e E , which is zero if both nodes are
mapped onto the same processor. The value w; €W is the execution time of node n; e N . An
PRED(n,) is the degree of precedent level of the task. The scheduling problem consists of two
parts: the task to processor assignment, called clustering and the task execution ordering each
processor. A scheduled DAG is a DAG with a given clustering and task execution ordering. A
clustered graph is a DAG with a given clustering, but without the task execution ordering. The
critical path (CP) of a clustered graph is the longest path in that graph, including non-zero
communication edge cost and task weights in that path. The parallel time in executing cluster
DAG is determined by the critical path of scheduled DAG, is not by the critical path of the
clustered DAG. The critical path of scheduled DAG is called the dominant sequence (DS) as
compared with the critical path of the clustered DAG. For example, Figure 2.2a shows a typical

DSC and Figure 2.2b shows a schedule of the task graph. For Figure 2.2¢, the critical path of the

clustered graph is (n;,n,,n,) and the DS is still that path. If the weight of ns is changed from 2 to

Chapter 2: Task Scheduling Problems - 9

6, then the critical path of the clustered graph remains the same, (n),n,,n,)}, but the DS changes
to <n5 Ry, R R LR, > - Let tlevel(2,) be the length of the longest path from an entry (top) node to
n,, excluding the weight of n, in a DAG. Symmetrically, let blevel(n,) be the length of the
longest path from #, to an exit (bottom) node. For example, iq Figure 2.2¢, tlevel(n,)=0,
blevel(n,)=12, tlevel(n,)=2, blevel(n,)=§.

The task execution model is a macro-dataflow model, A task receives all the input before
starting execution in parallel executes to the completion without any interruption and it
immediately sends the output to all the successors tasks in parallel [Wu90][Sarkar89]. Moreover,
task duplication in task scheduling is not allowed. Unless specified, the target environment of the
scheduling problem is a network of limited/unlimited number of heterogeneous general purpose
computets installed with a platform under the specification of contractual computing paradigm.
Besides, it is assumed without lost of generality that these computers are fully connected by using

a delicate network with unified communication rates among compulters.

The contractual computing is a novel concept in the parallel and distributed computing
technology. A platform designed upon the specification of the paradigm called “IECC” is under
developed by fellow researchers in related projects in our group. During the study, a development
platform called “Local Manager” is served as a blueprint for the design. The Local Manager is
addressed to the processing power management by modifying the processes scheduling inside the
LINUX kernel so that the processing power can be booked in advance. The other resources such

as network traffic and memory usage will be implemented in the second phase.

0 Py Py
1 1
ns
2
3 3
4 . 4
i1z
5 Ng
6
7
8
9
10) - n7
11

(2.2a) (2.2b)

Chapter 2: Task Scheduling Problems 10

(22c)

Figure 2.2a-c. An example of a DAG,
(2.2a) A weighted DAG. (2.2b) A Gantt chart for a schedule, (2.2¢} A scheduled DAG
It is assumed that the target machines have'enough memories and storage spaces and the
commuunication links are of unifdrm and deterministic. In other words, it is free from external

interference.

In summary, it can be concluded that the processing power is the only resource that can be
scheduled and booked, the resources other than processing powers are assumed deterministic and
dedicated and the term. “Resources” is restricted to the processing power only. The task-
scheduling problem was described and the obstacles ahead were studied. It was found that the
scheduling performance of existing scheduling techniques was restricted by two major factors:
heterogeneous nature of system configurations and non-deterministic in the availability of

resources. Therefore, the main objective of this research is to overcome these two problems.

Chapter 3: Task scheduling techniqués for heterogeneous environment 11

Chapter 3: Task Scheduling Techniques for
Heterogeneous Environment

3.1 Chapter Summary

This Chapter studied, the techniques for scheduling tasks in the heterogeneous computing
environments, beginning with the list scheduling heuristic. The Dominant Sequence Clustering
(DSC) and the Mobility Direct (MD) algorithms were inves’tigéted to improve the task scheduling
solution (shorter parallel time). Then, an improved algorithm called Relative Mobility Scheduling
(RMS) algorithm was proposed which is a MD algorithm with a modified task assignment
strategy. Such improvement was demonstrated by extensive studies (to be presented in Chapter 8,
Experiment [) that scheduling solution with shorter parallel time than that of the MD algorithm
was observed. The proposed algorithm can also improve resources utilization rate with an

unbounded number of processors.

The above algoritluﬁs were impleménted in a practical environment using PVM. However,
implementation difficulties were encountered in a heterogeneous environment. Using heuristics,
the Heterogeneous List-Scheduling techniques (HLS) was proposed for the design of task
scheduling algorithms to be implemented in a heterogencous environment. Applying the same
philosophy, any task scheduling heuristics used in the list scheduling can be modified for the

heterogeneous environment.

To study the functionality and the properties of the proposed technique, the DSC, MD and
RMS algorithms were implemented in heterogeneous forms as HDSC, HMD and HRMS
algorithms. The functionality and the properties were studied through extensive simulation

studies, which will be shown in Chapter 8.

3.2 The List Scheduling Heuristic (LSH)

List Scheduling is a class of scheduling heuristics in which tasks are assigned in order of
priorities and placed in a list of descending order. Whenever tasks contend for processors, the one
with the highest priority is being selected for scheduling. In case of more than one task of the
same priority, ties are broken randomly. A generic procedure of list scheduling Algorithm 3.1 is

given as below

Chapter 3. Task scheduling techniques for heterogeneous environment 12

Step 1. Each node in the task graph is assigned a priority. A priority queue is
initialized for the ready tasks. The other tasks that have no immediate
predecessors are inserted. The tasks are sorted in a the descending order
of priorities,

Step 2. As long as there is a priority queue, do the following:
2.1. Obtain a task from the front of the queue.
2.2 Select an idle p‘rocessor to run the task.

2.3. When all the immediate predecessors of a particular task are
executed, that task is called free task {or ready task) so that it can be
inserted into the priority queue.

Step 3. Repeat Steps 1 and 2 until all tasks are scheduled.
Algorithm 3.1. The List Scheduling heuristic.

With no considering any communication overhead, this type of heuristic is appropriate for
a shared-memory paraltel processor environment with messages passing at memory-cycle speeds.
A number of investigation using different heuristics were reported and they are the HLEFT
(Highest Levels First with Estimated Times), the HLFNET (Highest Levels First with No
Estimated Times), the RANDOM, the SCFET (Smallest Co-levels First with Estimated Times)
and the SCENET (Smallest Co-levels Fist with No Estimated times heuristic) [El-Rewini94a].
Adam Chandy and Dickon [ACDIi74] C(-)nducted an extensive empirical performance study of the
above heuristics, which perform schedules without consideration any communication overhead.
The results of the study showed that among all the priority schedulers, level priority is the best at
getting closer to the optimal solution. Highest Leve! First (HLF), which is also known as Critical
Path (CP), is superior than the others for it provided schedulers within 5 percent of the optimum

in a 90 percent of random cases (The random case means random generated task graph).

However, in MIMD distributed-memory paraliel computers such as the network and
workstations, the communication overhead cannot be ignored when compared with shared
memory systems. There are two problems associated with the inherent of communication

overhead. They are the (A) Parallelism versus communication delay and (B) level alteration.

A) Parallelism versus communication delay

When there is no communication delay among the tasks, all the ready tasks can be allocated
to all the available processors so that the overall execution time of the task graph can be deduced
easily. In a possible situation, a shared memory parallel processor system with messages passing
at a memory-cycle speed. No communication overhead is being considered. However, in real-life
situation, communication delay must be taken into account before each processor is ready for
execution. The possibility of the ready tasks with long communication delay being assigned to the

same processor as thelr immediate predecessors may occur.

This situation was described by El-Rewini and Lewis [El-Rewini%4a} and shown in Flgure

3.1a-c. Figure 3.1a shows a task graph being scheduled. Figure 3.1b indicates that the start time of

Chapter 3. Task scheduling techniques for heterogencous environment 13

task 3 on F, is later than its start time on £ due to the communication delay, D, of task 3,
which is greater than the execution time of task 2. So task 3 should be assigned to £, that has its

immediate predecessor. Conversely, as shown in Figure 3.1c, if the communication delay D, is

less than the execution time of task 2, task 3 should be assigned to P, instead.

Time p, Pz Time p, Dz
0 0
m m
0 I 1
n; n;
J I 2 2
.1a)
ny
3
ny
(3.1b) (3.1¢)

Figure 3.1a-c. Scheduling consideration due to communication delay.

{3.1a) A simple Task Graph, (3.1b) Gantt chart with larger Dx > execution time of 11, ,
(3.1c) Gantt Chart with smaller [J_ <execution time of 17, .

[t 1s found that with addition communication delay constraint, the difficulty of arriving an
optimal schedule in which the scheduler must examine the starting time of each node on each
available processor in orde;' to obtain the best one, will increase. [t would be a mistake to start
each task as soon as possible in order to improve the parallelism. Distributing parallel tasks to as
many processors as possible tends to increase the communication delay, but it improves the
overall execution time. In short, there is a trade off between the maximizing parallelism and
minimizing communication delay. This problem is called the MAX-MN problem [Kruatrachue88)

in parallel processing.
The dramatic effect of the MAX-MIN problem is further demonstrated in Figure 3.2a-d. If

the communication delay [J; between task 1 and task 3 is less than the execution time of task 2,

task 3 is then assigned to P, to start its -execution sooner. Because task 2 and task 3 are the
immediate predecessors of task 4 .and they are assigned to different processors, task 4 cannot
avoid the communication delay from one of its immediate predecessors. Thus, the execution time

of this task graph is equal to the summation of the execution time of tasks 1, 2, 4, plus

Chapter 3: Task scheduling teéhniques for heterogeneous environment 14

communication delay D, or D, depending on the assignment of the task 4.

P

ny

3]

ns

(3.2b) (3.20) (3.2d)

‘Figure 3.2a-d. Trade-off between parallelism and communication delay.
(3.22) A simple task graph. (3.2b) A schedule A. (3.2¢) A schedule b. (3.2d) A schedule c.

tHowever, if the communication delay of task 4 is longer than the execution time of task 3,

task 3 is assigned to £/, resulting in a shorter task-graph execution time. This happens even if task
3 finishes its execution later than the previous assignment as shown in Gantt chart shown in
Figure 3.2¢. Current communication delays scheduling heuristics try to take the advantage of
parallelism and reduce the communication delay. One solution is to start the tasks earlier. A
method for solving the MAX-MIN problem is by duplicating tasks [Kruatrachue87] where
necessary to reduce the overall communication delay and maximize parallelism at the same time.
To avoid over complexity of the analyze of the scheduling algorithms, the duplication of tasks

will not be considered.

B) Level Alteration

Another important problem due to non-zero communication delays is the alteration in task
levels and their impact on critical path -calculation. Any heuristic that uses the level numbers or
the critical path length faces this same problem. The level of a node is defined as the length of the
longest path from that node to the exit node. This length includes all the node execution times and
all the communication-delay times along the path. Unfortunately, the level numbers do not remain
constant when the communication delays are considered Because the level of each node changes

as the length (measured in the unit of normalized time) of the path leading to the exit node

Chapter 3. Task scheduling techniques for heterogeneous environment 15

changes. The length varies depending on the communication delay while the changes of the
communication delay depend on the task allocation. The communication delay is zero if tasks are
allocated to the same processor and is nonzero if tasks are allocated to different processors. In
addition, -the number of hops between the processors makes in computing the communication

delay in portion of the level, the level number problem arises.

3.3 Implementation Consideration of the List Scheduling
Heuristic

The characteristic of the list scheduling heuristic is flexible in heuristic design and simple in
implementation, so that it was widely adopted in modern PDS. In this research, it has been used as
a foundation for all the studies. There are many research studies on different heuristics in priority
values assignment and heuristic in task to processor assignment for designing scheduling
algorithms under the list scheduling heuristic. {McCreary94], (Yang94] and [El-Rewini94a-c]
conducted various research studies on different heuristics used in priority values generation. It
was included the largest edges cost first [Sark89), Critical Path [Yang94], Modified Critical Path
[WuGa88] and Relative Mobility {WuGa88]. They conclude that different heuristics perform
differently depending on the granularity and the structure of scheduling task graph. The heuristic
of Critical Path provides better scheduling solution among the others while scheduling task in
Direct Acyclic Graph (DAG). The solution comes from Relative Mobility, Modified Critical Path
and the largest edges cost first heuristics degrade gradually. The reasons of the Critical Path are

always used as the reference for accessing scheduling algorithms.

Different strategies for task to processor assignment were conducted by Kruatrache
[Krua87). A comparison of NISH ' ISHO?, ISH! and ISH2 and DSH’. The simulation results
showed that on average, the descending order of speed up is DSH, ISH2, [SH1, NISH and ISHO.
However, the DSH should pay extra cost and resources for duplicating a task execution and high
effort in determining the task to be duplicated. Owing to this reason, the ISH2 has the best overall

performance in terms of complexity and resources utilization.

The performance of task scheduling solution of List Scheduling heuristic is highly dependent
on the heuristic used in priority values generation and task to processor assignment. The
combination of heuristic used in the two portions of the list scheduling heuristic would result in

different designs of task scheduling algorithm in which they have different perfomﬁances. In the

' Non-Insertion Scheduling Heuristic

! [nsertion Scheduling Henristic generation 0 to 3; 1SHO (a task was assigned to the first contact processor that executed among the idle

. time slots and it executed in other processors easily), 1ISHIL (A task was assigned within the idle slot of a processors that a message
ready time was no sooner than the idle-time start time 5o that no other processor could process earlier), ISH2 (the same criterion
1SH1 expected the absolute idle time stot) '

! Duplication-Scheduling Heuristic.

Chapter 3. Tusk scheduling techniques for heterogeneous environment 16

following study, the Dominant sequent Clustering algorithm (DSC) [Yang94], the Mobulity Direct
algorithm (MD) [WuGa88] and the Relative Mobility Scheduling (RMS) [Chan97a]{Chan97b]
algorithm are studied in details. These algorithms use two distinct sets of heuristic priority value
generation and task to processor assignment that are summarized in Table 3.1. Owing to the
differences, the effect of different heuristic used for scheduling task in practical environment can

be observed. A brief description of the algorithms is presented in Sections 3.3.1 to 3.3.3.

DSC RMS MD
Heuristic of Priority Critical Path Relative Mobility Relative Mobility
Earliest finish time Processor satisfies First processor that
Heuristic of task to through minimization FACT | with earliest : S. processor tha
: L satisfies FACT 1
processors asstgnment procedure finish time C FISAL
(Consequent of [SA2) { (Consequent of ISA2) (Consequent o)
DS task first Yes Yes Yes
Join/Fork Optimal ' Optimal ' Optimal

Table 3.1. A survey on task scheduling heuristics

3.3.1 The Dominant sequence Clustering algorithm (DSC)
The DSC algorithm was originally proposed by Tao Yang [Yang94]. The main idea is to

perform a sequence of edge zeroing steps with the goal of reducing the length of the dominant

sequence (DS) in each step. An algorithmic description of the initial design of DSC was given as

1. Let EG = NULLUEG =V where EG = Examined Graph,UEG= Un-
Examined Graph and V is the set of tasks in the scheduling task graph.

2. Compute blevel(n) for each node n, and set tlevel(n,)=0for each entry
node. ‘

3. Every task is marked unexamined and assumed to constitute one unit
cluster.

4. While UEG # NULL
4.1 Find a free node #n, with the highest priority (ie.
max {blevel(n) +tevel(n,)}) from UEG .

4.2 Merge n, with the cluster of one of its predecessors so that level(n,)
decreases in a .maximum degree. If all zeroing increase tlevel(n,),

N, remains in a unit cluster.
4.3 Update the priority values of M, ’s successors.
4.4 UEG =UEG —{(n,};EG = EG +{n,}

End While

Algorithm 3.2. The initial design of DSC algorithm.

Chapter 3: Task scheduling techniques for heterogencous environment 17

Although the algorithm adopts clustering idea in task scheduling, it can be classified as

subset of list scheduling heuristic. It is observed that the algorithm uses the sum of top and bottom

level to generate the priority list, where top level of a task #, (tlevel(#,)) is the length ofr the
longest path from an entry (top) node to n, excluding the weight of #, ‘in a DAG and the bottom
level of a task #, (blevel(n,)) is the length of the longest path from #, to an exit (bottom) node.

The list is formed with the highest priority free task is sefected to a processor with tlevel(n,)
decreasing in a maximum degree. In other words, this is to find a processor that can execute the
task in the earliest time.

The DSC algorithm was proved to be optimal for scheduling the fork and joining DAG graph
[Yang94]. It was further proved that the algorithm can produces a scheduling solution with a
minimum paralle]l time afier consecutive scheduling iterations and can produce near optimum

scheduling solution. However, it was pointed out that the algorithm suffers from zeroing non-DS

edges because of the topological ordering of the traversal. That is, when a DS node »n,is partially

free, DSC suspends the schedule of 72, and examines the current non-DS free nodes according to a

priority-base topological order. Hence, scheduling task in non-DS result does not guarantee to
produce paraliel time that is a minimum. To overcome the difficulty, an improved form of DSC
algorithm is proposed. In the proposal, a partial free list (PFL) is maintained to support the
priority list and to impose Dominant Sequence Length Reduction Warranty (DSRW) constrain to
eli1ﬁinate the situation. The algorithmic description of the improved algorithm is shown in Figure
7 and 8 of [Yang94]. However, such change complicated the algorithm in comparing with other

heuristic scheduling design. We do not take into consideration in this discussion.

3.3.2 The Mobility Direct algorithim {(MD)

The MD algorithm [WuGa88] uses relative mobility as heuristic of priority list generation.
The “relative mobility” (M) of a node is defined as M (n,) =[T,(n,) —T,(n,)}/w(n;), where
w(n,) is the task weight, 7,(n;) is the as-soon-as-possible tASAP) starting time of a task #,,
T, (n;) is the as-late-as-possible (ALAP) time of a task », and T (n,) s the latest finishing time.
The relative mobility reflects the relative moving range of a scheduling task in the priority list.

Hence, it is to identify the importance of a task inside the list. For instance, a task with zero M,

implies that the task should start its execution without suftering any form of delay. Hence, it is

referred as critical tasks in critical path of the scheduling task graph. On the other hand, tasks with

M, greater than zero is the non-critical tasks. They suffer delay in starting execution. In which a

Chapter 3. Task scheduling techniques for heterogeneous environment 18

priority list generated by sorting the M, in descending order for prioritizing those tasks to be

scheduled in each scheduling step is considered.

The DSC algorithm is similar to that of the MD algorithm in the sense that the smallest M,
identifies a task that have maximum sum of top and bottom level, but, the way to identify DS task
is different. The DSC uses a priority function with O(logv) computing scheme, whereas MD

uses the relative mobility function with a computing cost of O(v + e). Another difference is that

when DSC picks a task 7, to be scheduled, it reduces the top level of this task and thus decreases

the length of DS going through this task. On the other hand, the MD scans the processors from
left to right searching the first processor satisfying Fact 1 [WuGagsj.

The strategy of assigning the selected task to processors was studied and pubhished in
(Chan97b] that the. argument of finding the first processor from the given processors set in which
satisfies the Fact | in MD algorithm indeed can be able to suggest the minimum number of
processors to execute the parallel application with non-increase of current critical path guarantee.
But it does not imply shortening of the ?path length. Unnecessary delays of parailel time may be
accumulated in each scheduling step. This lowers the efficiency of processors’ utilization so that
parallelism of the task graph cannot be maximized. Hence, the Relative Mobility Scheduling
algorithm is proposed to improve the MD algorithm [Chan 97a][Chan97b] and is described in the

following section.

3.3.3 The Relative Mobitity Scheduling algorithm {RMS)
The proposed Relative Mobility Scheduling algorithm (RMS) [Chan97d] is a more

aggressive version of the MD algorithm. In which the heuristic used in the MD algorithm is
modified where the task is scheduled not only satisfy Fact I, but also can complete in the earliest
time. In this way, the path length in each scheduling step can be further minimized. Thus, the
capacity of the target processors can be fully utilized and the parallel time of the scheduling task

graph is maximized realistically.

An algorithmic description of the RMS algorithm is described in algorithms 3.4a and 3.4b.

1. Calculate the relative mobility of all tasks.

2. Let L include all tasks initially. Let L' be the group of tasks in L with minimum
relative mobility. Let #, be a task in L' that does not have any predecessors in L',

Find a processors P, in the processors set Pin which n,would satisfy Condition 1

mn

and complete in minimum time (or the earliest finish time is reached). When n,is

scheduled on P, all the edges connecting »,and other tasks already scheduled

4

to P, are changed to zero. If n,is scheduled before task n;on P,

1 m?

add an edge

Chapter 3: Task scheduling techniques for heterogeneous environment 19

with zero cost from 7, to #;in the graph. If #;is scheduled after node n,on P

m?

add an edge with zero cost from #n ;to #;in the graph.

3. Recalculate the relative mobility of the modified graph. Delete n, from L and
Repeat Step 2 until L is empty.
Algorithm 3.4a. The Relative Mobility Scheduling (RMS) algorithm

Assuming a task #, is considering to be scheduled to P

e ?

in which [tasks,

anon n,, , have been scheduled into P, . If the moving intervals of these tasks do

nl 3" "

not intersect with the moving interval of n,, then n,can be scheduled to P

"

n n, (1<i<j<])

[0 a7

Otherwise, assume the moving intervals of tasks #»

i

intersect the moving interval of #,. n,can be scheduled to £,, if there

k(i <k < j+1) exists, .
W(ni) < mln{j’l (ni)5 T.’. (nmk)} —max {Tﬁ (ni)’ T:\' (nmk—l) + W(nmkwl)}

where W(#,) is the cost of #,; and the T.(n,) and 7 (#,) are the latest finishing

time and the latest starting time of a task #,respectively; if n does not exist,

Te(ny.) =0, W(n,,,)=0;if n

-1

mi— Hii—

wi does not exist, 7, (1,5) =©.

Otherwise, the task cannot be scheduled to P

o’

Algorithm 3.4b. Condition 1 of the RMS algorithm

The most significant improvement of the RMS algorithm over the MD algorithm is the task
to processor assignment strategy. The _RMS algorithm schedules a task into a processor that can
be finished earliest. That is similar to heuristic suggested in ISH2. Experiment 1 in Chapter 8
shows that the scheduling performance between the MD and the RMS algorithm. It is found that
the scheduling performance of the RMS algorithm is better than the MD algorithm in most

circumstances. [t is found that the RMS algorithm produces schedule with48% shorter in parallel
time than the MD algorithm in different granularity of task. Not less than 90% (P, =20.9) cases of
schedule produced by RMS algorithm is shorter than that of the MD algorithm.

As compare with the MD algorithm, the RMS tries to explore the given set of bounded-(or
unbounded) processors for executing a scheduling task in the earliest time. In this occasion, the
number of processor required by the schedule of the RMS algorithm may not less than the
minimum number of processors required by the MD algorithm. The scheduling performance as
measured by the sum of total processing power may not as good as the MD algorithm. However,
if the same number of processors is used to scheduling task by RMS and MD algorithms, the
parallel time of schedule produced by the RMS algorithm could better than that of the MD
algorithm (Experiment 1) in most situation (over 90%). It is concluded that that the change in

RMS algorithm can produce scheduling solution better than the MD algorithm does.

Chapter 3: Task scheduling technigues for heterogeneous environment 20

3.3.4 Implementation experiences

The List Scheduling Heuristic, the studied algorithms (the DSC and the MD algorithm) and
the proposed algorithm (the RMS algorithm) were unplemented in an ideal execution
environment through simulation and a practical environment under PVM [Beguelin91]. Tt is found
that the list scheduling heuristic and those designed based on the list scheduling heuristic
blueprint unable to work i practical distributed systems. The two major obstacles in obtaining the
prompted scheduling performance of the algorithms are (1) heterogeneous configurations in
execution environment and (i) non-deterministic resources. The proposed algorithms cannot be
applied in a heterogeneous environment because the assumptions made in the design are based on
homogeneous situations and cannot be directly plotted into tts heterogeneous counterpart. The

different is highlighted as the following,

A) To implement in the homogeneous environment

The design of the list scheduling heuristic is based on the homogeneous environment, the
computation speeds among the processors and the communication rate are assumed uniform. In
this, the priority values such as level priority, co-level priority, critical path and relative mobility
are directly obtained from data dependence constrains. As uniform computation speed and
communication rate, the priority values measure their determination is obtained by a common
value of reference. Consequently, the priority values can be calculated in the same cost model
(“cost model” is defined as the method for describing and determining the task cost or edge cost
in a scheduling task graph). Therefore, they can be computed directly for priority list generation
and task selection. The priority list is meaningful and objective enough to identify an important
task to be scheduled. Moreover, homogeneous environments also simplify the processes of
determining the best processors to run the selected task in Step 2.2 of Algorithm 3.1. This is
because the selected task executed in any processors or the data communicated in any
communication channel are in same speed and rate, data dependence constrains are preserved in
any assignment. The data dependence constrains can be determined and the task assignment

decisions can be made directly from the scheduling task graph.

B} To implement in the heterogeneous environment

There encounters difficulties in implementation those scheduling solutions or scheduling
algorithms in the heterogeneous environment. In general, a heterogeneous environment is a
system containing processors configured in different computation speeds and communication
links configured in different communication rates. In real-life, the configuration of a
heterogeneous environment could be of bound number of processors. However, most existing

scheduling algorithms like the DSC and MD are only applicable with unbound number of

Chapter 3: Task scheduling techniques for heterogeneous environment 21

processors. These algorithms cannot be directly applied to heterogeneous environment. Even for a
designed, with which the number of clusters less than that of the configured processors, it is still
different perform to cluster processor are assigned. This is because in a heterogeneous
environment there contains different grades of processors with resent to processing speed and

communication rate. Dependence constrains maintained by the homogeneous environment is no

longer valid in the heterogeneous counterpart. Furthermore, the set of parameter for obtaining the ™

optimum MAX-MIN and level alteration cannot be maintained. This is because different grades
of processors will validate the assumption made in the MAX-MIN assumptions. Owing to the
heterogeneity, the scheduling solution produced by existing algorithms cannot be directly used in
the heterogeneous counterpart. The prompted scheduling performance cannot be maintained in the

practical execution.

It is also not possible to apply to the List Scheduling Heuristic directly to task scheduling in

the heterogeneous environment. This is because data dependence among the tasks not only rely on _

the entry task graph, but aiso depend upon the task allocation to be scheduied. The dependénce .

constrains cannot be directly determined from the task graph and it is difficult to decide priority
values to Steps 1, 2.1 and 2.3 in Algorithm 3.1. The heterogeneous environment makes the
decision on finding the best processor assignment in Step 2.2 of Algorithm 3.1 very complicated.

The reason is that the dependence constrain would directly be affected by task assignment. The

dependence constrain cannot be directly extracted from the task graph. Large amount of

computation cost is required to re-calculation the dependence constraint in Step 2.2. Hence, the

list scheduling heuristic is not suitable to be used directly in the heterogeneous environment. The
Heterogeneous List Scheduling technique (HLS) is proposed to solve the problem and is prepared

in the next section.

3.4 The List Scheduling Heuristic in Heterogeneous Environment

3.4.1 The Heterogeneous List Scheduling Heuristic

The List Scheduling heuristic is modified to be applicable in the heterogeneous environment.
This novel technique “Heterogencous List Scheduling (HLS)”, is developed and presented in this
section. An algorithmic description of the technique is given as Algorithm 3.5, which can be
classified as a subset of a generalized List Scheduling Heuristic design procedure using two

different phases, which is summarized as:

I. Set up a priority list without candidates initially

II. As long as the tasks in the scheduling task graph are not scheduled, do the
following:)

Phase 1: Task selection for scheduling (Priority list generation)

S
A S

-

-Chapter 3: Task scheduling techniques for heterogeneous environment 22

1.1 Each node in the task graph is assigned a priority. The priority list
is updated for unscheduled free tasks by inserting every task that
has no immediate predecessors. They are sorted in the descending
order of priorities. {To determine priority for those tasks, which
have been scheduled, they are determined by the actual scheduled
processor speed and communication rate. On the other hand, for
those unscheduled tasks, -they are determined by assuming the
target processors speed and target communication links rate are in
normalized uniform speed and rate as a reference of measurement
respectively)

1.2 A task is selected from the front of the qucue.

Phase 2: Task assignment to processors (To make decision on task to
processors assignment).

2.1 Select “the best” idle processor to run the task. (The decision is
made by considering the actual speed of assigning processor and
the rate of communication link]

2.2 When all the immediate predecessors of a particular task are
executed, that successor is called “free task” and can be inserted
into the priority queue.

Algorithm 3.5. The Heterogeneous List Scheduling technique (HLS).

3.4.2 Phase 1: Task selection for scheduling (Priority List generation)

This phase subjects to Steps 1, 2.1 and 2.3 of the Algorithm 3.1. A priority list of free tasks is
generated by using heuristic of priority values based on primitives, such as relative mobility
[WuGa88] or critical path [Yang94)]. Then, the highest priority task is selected for assigning to a
processor. As mentioned in sections 3.3.4, these steps are naturally be implemented in
homogeneous environments. However, it encounters with the problem of non-deterministic speed
in processors and communication rate in determining task priority in a heterogeneous
environment. Therefore, a priority list cannot be generated. According to the HLS shown in

Algorithm 3.5, this problem is overcome by using heuristic approaches.

The reason behind the difficulty is that the essential information on determining priorities is
the method for describing the cost of task (“Cost model”) in é scheduling task graph. In the
homogeneous environment, a “cost model” is compiled with the properties that the processing
speed and the commuaication rate are uniform. Therefore, the priority value can be directly
obtained from the organization of the scheduling task graph and it is not affected by the execution
environment before and after the tasks is scheduled. This can subjectively compare with the
urgency of selecting those ready tasks to be scheduled. Unfortunately, the above properties are not
valid in a heterogeneous counterpart. This is because the “cost model” is not only dependent on
the organization of the scheduling task graph, but also dependent on the actual placement of tasks
in the execution environment. The cost for those unscheduled tasks cannot be found without

knowing their actual schedule.

Chapter 3: Task scheduling techniques for heterogeneous environment 23

In the HLS, a referenced uniform value of processing speed and communication rate is used
to measure the cost of those unscheduled tasks. Since the references are scalable, any values of
processing speed and communication rate from the set of target processors and communication
link can be selected. It is found that using the slowest processing speed and the slowest
communication link rate as the reference values can facilitate the determination of dependence
constrains. Thus, the slowest processing speed and the slowest communication rate are always
chosen as the reference. On the other hand, since the processing speed and the communication
rate of those scheduled tasks are known, their costs are determined by the actual scheduled

processing speed and communication rate.

In other words, it suggests to determine the priority values and the construct priority list by
using the mixture of “pretend cost” and ‘actual cost” as the cost of tasks. The scheduling task
graph is separated into two portions: Examined part of task Graph (EG) and Un-Examined part of
task Graph (UEG). In determining the cost model, the actual schedule of tasks and edges in the
EG are known and their cost can be determined directly from their.actual schedule. However, for '
those tasks in the UEG, their costs are determined by the assumption that they are executed in a
reference speed of a processor (the obtained cost is called pretended cost). Similar argument is
also applied to the communication cost. Therefore; the cost model of the scheduling iterations

(steps) would be the mixture of the actual cost and the pretended cost.

In the fact that 'rescheduling is not considered, those scheduled tasks should not be
rescheduled agajn. From the viewpoint of the unscheduled tasks, the cost for those scheduled
tasks becomes static constant. The cost mode! formed in each scheduling instance with the pre-
assumed reference values of processing speed and communication rate are reducible to a task
graph like the homogeneous environment. Besides, the tasks in the EG will not be constituted in
the task priority list again. The dependence constrains and the determination of heuristic in the EG
and UEG of a scheduling task graph consistent in each scheduling iteration. Therefore, the
generated priority value and the priority list can be used to identify which is a more important task

to be scheduled.

Using this technique, the priority values can be determined and compared objectively in a
common base of references. Consequently, a priority list can be generated for the selection of
tasks to be scheduled in the heterogeneous environment. This will be further shown by some
proposed implementations and their simulation studies that the heuristic can produce a better

scheduling solution than selecting a task at random.

3.4.3 Phase 2: Task assignment to processors (To make decision on task to

processor assignment}

This phase subjects to Step 2.2 and Step 2.3 of the List Scheduling heuristic. This is used to

Chapter 3: Task scheduling techniques for heterogeneous environment 24

determine a suitable processor and a suitable location for executing the selected task in phase 1.
There are many native heuristics such as the Insertion Scheduling-Heuristic (ISH0-2) or the Non-
insertion Scheduling Heuristic (NISH) {chapter92] were widely used in the homogeneous version
of List Scheduling in designing and implementing to heterogeneous environment, the

environmentzal characteristic should be further considered.

Generally, the task to processors assignment raises a heuristic search problem which is to
find a suitable processor and a suitable timing location from a set of bounded number processors
to execute the scheduled task. In order to maintain the realistic-data-dependence constrain of the
scheduled tasks, the searching should consider the dependence constrains and the cost function in
the actual speed of assigned processor and the actual rate of assigning communication {ink.

Therefore, a scheduling decision comes out which is based on the actual execution parameters.

3.5 Proposed Implementation of Heterogeneous Task Scheduling

Algorithms

3.5.1 Implementation Issues

To design the scheduling algorithms under the HLS technique, designers have to identify the
set of heuristic used in two phases. Then choose a reference values of processing speed and
communication link rate through an analysis of the target environment. After that, apply phase 1
of the technique to determine the priority value of ail unscheduled free tasks. Based on the
priority, a priority list of free task is generated for the selection of free task to be scheduled.

Finally, the selected task is scheduled into a processor according to the phase 2 of the HLS.

[t is obvious that the scheduling performances of those designed algorithms would be
directly affected by different sets of heuristics used in two phases. To study this, the application of
the HLS technique in different scheduling heuristic will be analyzed in the coming sections. Three
scheduling algorithms catled Heterogeneous Dominant Sequent Cluster algorithm (HDSC),
Heterogeneous Mobility Direct algorithm (HMD} and Heterogeneous Relative Mobility
Scheduling algorithm (HRMS) are proposed to demonstrate the applicability of the technique in

different sets of heuristics in two phases.

3.5.2 Assumptions

Before going on to the proposals, several assumptions are made for the proposed algorithms

in following sub-sections:

Chapter 3. Task scheduling techniques for heterogeneous environment 25

e e

I. The term “heterogeneous environment” is applicable to heterogeneous in processor’s power
(or called processing speed). Resources other than processing powers are keeping

I'IOIHOgBl'lGOUS.

2. Processors and other resources are dedicated and deterministic for the scheduling

application.
3. The task cost and the communication cost of the application are deterministic.
4. Rescheduling of scheduled tasks and task duplications is not allowed.
5. The term “bounded number of processors™ describes the case that total number of

Processors |P| is less than total number of tasks to be scheduled |N |(|PI < lN |) :

6. The term “bounded number of processors” describes the case that total number of

processors 1P| is greater than or equal to the total number of tasks to be scheduled

WEEY

3.5.3 The Heterogeneous Dominant Sequence Cluster algorithm (HDSC)

A) The HDSC algorithm

An algorithmic description of HDSC algorithm is shown in Algorithm 3.6. Firstly, the set of

heterogeneous processors is sorted in the descending order of speed. Then, a priority list is

generated by sorting the sum of top level and bottom level (tlevel(n,)+blevel(n,) of free tasks

in decreasing order (Step 3-5.1). It is difficult to determine the tlevel(n,) and blevel(n,) for

those tasks, which have not been scheduled into the processors in heterogeneous environments.
Therefore, the solution proposed by the HLS technique is used so that all the unscheduled tasks
are assumed constituted in a unit cluster with the reference speed € (where ¢ is defined in
Definition 3.1 and Criterion 3.1). However, this criterion validates the definition of those paths
(CP and DS) obtained by the sum of the top level and the bottom level. These paths can no longer
satisfy the definition of critical paths and dominant sequences that are defined originally in the
DSC algorithm -[Yang94]. Therefore, the concept of these paths is extended to heterogeneous
environments in which will be described in Section 3.5.3B. Based on the assumption, the priority
value of tasks can be determined even they are unscheduled. Therefore, a priority list of free task

can be generated by sorting those unscheduled free tasks in descending order. The highest priority

free task n2, can be selected from the list of scheduling to a processor in the second phase.

In the second phase, the selected task n_ is scheduled into a processor under two conditions

that the task can be completed in the earliest time and the value of the tlevel(n,) does not

Chapter 3. Task scheduling techniques for heterogeneous environment 26

increase. If there is no processors that can satisfy these two conditions, the task will be scheduled
to a processor that can satisfy the first condition. As specified in the HLS technique, the decision
“made in the searching procedure and the scheduling procedure. should base on the actual
computation speed and communication rate. Therefore, data dependence among the tasks can be

matntained.

1. Sort the available processors set P in the descending order of speed.
2. Let EG=NULLUEG=V whereEG = Examined Graph, UEG= Un-
Examined Graph and Vis the set of tasks in the scheduling task graph.

3. Every task is marked unexamined and assumed to virtually constitute to one
unit of processors with the reference speed «.

4. Set the top level is equal to zero for each free task and compute the top level as
well as bottom level of each task.

5. While UEG = NULL does

5.1. Using the sum of the top level and the bottom-level of a task as
priority value, generate a priority list of free tasks L in which the tasks
are sorted in the descending order of priority values. Select the first

priority task n, from L.

5.2. Find a processors p, to execute the task n, so that it can be finished

in the earliest time and tlevel(n,) does not increase. If there is no

processors satisfy the condition, the task will be scheduled to a
processor that the task can be completed in the earliest time.

5.3. Add pseudo edges between two independent tasks, which are
scheduled into the same cluster.

5.4 Mark the task examined. Remove n, from UEG and put n_ onto

EG.
5.5 Re-compute the priorities of the 1, 's successors tasks.
End While |

Algorithm 3.6. The Heterogeneous Dominant Sequence Cluster algorithin (HDSC).

Definition 3.1: ¢ is defined as the least speed of computation among processors
inside a given processor set P. -

g =min(S,), where S, = speed of processor i, i=p,...p, and p, e P.

Criterion 3.1: If a task in a task graph has not been scheduled into any
processors, it is assumed to be virtually scheduled to a
processor with computation speed & Otherwise, the task is
running on the scheduled processor.

B) The Extend Critical Path (ECP) and Extend Dominant Sequence (EDS)

As mentioned, the DSC algorithm uses critical path (CP) and dominant sequent {DS) (the

maximum sum of top level and bottom level of tasks) as the task scheduling heuristic. In order to

Chapter 3: Task scheduling techniques for heterogeneous environment 27

determine the important task to be scheduled, the DSC algorithm initially schedules all tasks in
the scheduling task graph onto a unit cluster. After that, the top and the bottom level of all tasks
are computed to find the critical path and dominated sequence. This method is feasible in
homogeneous environment because processors are at the same speed. The critical path and the
dominant sequence arc not affected by scheduling tasks to any processors in each scheduling step.
They are clearly identified in each scheduling step. However, the same technique cannot be used
to determine critical path and dominated sequence in heterogeneous environment. This is because
computation speeds are different among different processors. The critical path as well as
dominant sequence will be directly affected by where the tasks are actually scheduled. So that the
top level and bottom level of those unscheduled tasks cannot be calculated. In other words, the

DSC algorithm cannot be plotted into heterogeneous environment directly.

To silnplify the problem, the HLS technique is applied. The HLS technique suggests to
determine the cost for thosé unscheduled task by if they are scheduled into a dedicated processor
with a common reference speed. That is subjected to the Definition 3.1 and Criterion 3.1. Based
on the criterion, the top level and bottom level of those tasks in the scheduling task graph can be
determined. Since the task graph is constituted by mixture of tasks that some are scheduled to
their target processors (actual cost) and the rest are scheduled to processors by Criterion 3.1
(pretend cost). The found CP and DS are not the CP and DS defined originally. Therefore, two
heuristics called “Extended Critical Path” (ECP) and “Extended Dominant Sequence”(EDS) are
defined to describe these found paths: ‘

Definition 3.2: The Extended Clustered Graph (ECG) is defined as a DAG with

a task to processor assignment applying Criterion 3.1, but
without task execution ordering.

Defirution 3.3: The Extended Scheduled Graph (ESG) is defined as a DAG with
a task to processor assignment applying Criterion 3.1, wzth task
execution ordering.

Definition 3.4: The Extended Critical Path (ECP) is defined as the longest path
in an extended clustered graph, including both non-zero
communication edges cost and task weights in that path.

Definition 3.5: The Extended Dominant Sequence (EDS] is defined as the
longest path in an extended scheduled graph, including both
non-zero communication edges cost and task weights in that
path.

Lemma 3.1: Ina homogeneous environment, the Extended Clustered Graph
(ECG) is the same as the Clustered Graph (CG).

Accordmo to Definition 3.1 and the Criterion 3.1, it is observed that the ECG is reduced to

CGina hOlTlOgCI"ICOUS environment.

Chapter 3: Task scheduling techniques for heterogeneous environment 28

Corollary 3.1: In a homogeneous environment, the Extended Scheduled Graph
(ESG) is the same as the Scheduled Graph{SG)

[t is after Lemuma 3.1.

Lemma 3.2: In a homogeneous environment, the Extended Critical Path (ECP}
is the same as the Critical Path{CP).

According to Definttion 3.1, Criterion 3.1 and Lemma 3.1, it is observed that the ECP is

reduced to CP in homogeneous environinent.

Corollary 3.2: In a homogeneous environment, the Extended Dominant
Sequence (EDS) is the same as the Dominant Sequence(DS).

It is after Lemma 3.2.

C) Experimental study

The proposed HDSC algorithm was implemented and an experimental study was conducted
in Experiment 2 as shown in Chapter 8 to evaluate the functionality and properties of the

proposed HDSC algorithm. The conclusion and properties are summarized in section D.

D} Properties
Property 3.1: In homogeneous environment, the Criterion 3.1 is reduced to
scheduling tasks to any processors with the same speed.

In a homogeneous environment, all processors are in the same speed. Those tasks are
assigned to processors with the same speed. That is reduced to the case in a heterogeneous

environment.

Property 3.2: The task assignment strategy of HDSC algorithm is to schedule
task to a processor that can finish it as soon as possible

This is supported by Conclusion 3 of the Experiment 2 as shown in Chapter 8.

Property 3.3: The HDSC algorithm produces a shorter parallel time schedule
as the processor set is configured more deviated from

homogeneous. In other words, the HDSC algorithm favor in
scheduling jobs onto a single high-performance processor.

This is supported by Conclusion 4 of the Experiment 2 as shown in Chapter 8.

Property 3.4: In a homogeneous environment with bounded number of
' processors, the HDSC algorithm cannot reduce to DSC algorithm.

This is because the HDSC algorithm is designed for scheduling task to bounded number of
leterogeneous processors environment. Owing to the processors bound, the reduction of top level
of a scheduling task is not guarantee. Therefore, the HDSC cannot reducible to DSC algorithm

even in homogeneous environment.

Property 3.5: In homogeneous environment with unbounded number of
processors, the HDSC algorithm is reducible to DSC algorithm.

Chapter 3: Task scheduling technigues for heterogeneous environment 29

According to Lemma 3.1, Corollary 3.1 and Lemma 3.2, the task scheduling heuristic of ECP
and EDS is reducible to CP and DS using in the DSC algorithm in a homogeneous environment.
In case of unbounded number of homogeneous processors (where total number of processors is
much more than total number of scheduling tasks), there should exist at least one processors
which can satisty the constrain of top level reduction. Therefore, the HDSC algorithm is reducible

to the DSC algorithm.

3.5.4 The Heterogeneous Mobility Direct algorithm (HMD)

The HMD algorithm is modified from the scheduling heuristic from the MD algorithm
proposed by Wu and Gajski [WuGa88].

A) The algorithm

An algorithmic description of HMD algorithm is shown in Algorithm 3.7a. The Fact 1 of
MD algorithm [WuGa88] is modified to Condition H as shown in Algorithm 3.7b for making
schedule decision in a heterogeneous processors environment. Firstly, the set of heterogeneous

processor P is sorted in the descending order of speed in Step 1. Then, the Extended Relative

Mobility EM, of each unscheduled task is determined by using Criterion 3.1 (This will be

defined in sections 4.5.4b). And generate a priority list L' of free tasks with minimum EM, . In
the list, all tasks have the same priority, which are the minimum among other tasks excluded from
the list. In this case. a task is randomly selected from the list L' and using the Condition 1 to
schedule that a free task to a processor in the earliest finish time. After that, the scheduled task is
removed from the list and the Steps 2 to 4 are repeated until all tasks in the task graph are

scheduled.

Let L compose of all tasks in the scheduling task graph initially,

1. Sort the speed of target processors in the descending order of speed and
ordered from left to right. Hence, obtain € from the slowest speed processor.

2. Calculate Extended relative mobility for all tasks (£M |} for all tasks.

Let L include all tasks initially. Let L' be the group of tasks in L with
minimum relative mobility. Let n;, be a task in L' that does not have any

predecessars in L' Using Condition 1, schedule »; on the first processor. If »,
cannot be scheduled on the first processor, schedule it on the second processor
and so on. If no processor can satisfy the condition, the task will be scheduled
to the first processor that the task can be completed in the earliest time.

13. When #, is scheduled on P

m?

all the edges connecting #;, and other tasks

already scheduled to P, are changed to zero. If n; is scheduled before task n;

m
on P

It

add an edge with zero cost from #n; to »; in the graph. If #, is

scheduled after node n,; on P

m?

add an edge with zero cost from n ; to n;in

Chapter 3. Task scheduling techniques for heterogeneous environment 30

the graph.
4. Recalculate EM of the modified graph. Delete n, from L and Repeat Step 2
until L is emnpty.
Algorithm 3.7a. The HMD algorithm

Assuming a task n, is considering to be scheduled to £

LT

in which [tasks,

Ry :Pyse-, 1, , have been scheduled into P

m

. If the moving intervals of these tasks

do not intersect with the moving interval of n,, then n, can be scheduled to P

L

Otherwise, assume the moving intervals of tasks
Mois it s, (LSI< j<[)intersect the moving interval of n;. n,can be

scheduled to P, if there k(i <k < j+1) exists,

i

W(”p)y < min{7; (n,).7,(m,,)} —max{T (n,), T (n,)+ W(n,,_,)pm i

» Where W(n,), is the cost function of #, running in £, and the computation

"

of T, (n,), T (n,), T¢(n,) should assume that task n, is scheduled to processor P

"’

if n,, does not exist, Ty (n, })=0,W(n,)=0, if n does not exist,

mf+1

T:’_ (nn_r,l'+i) =,

Otherwise, the task cannot be scheduled to P, .

Algorithm 3.7b. Condition H of the HMD algorithm

B) Heuristics used

There are two types of heuristics used in the HMD algorithm: the Extended Relative
Mobility for priority list generation and schedule task to the first processor that can satisfy the
condition H (similar to the ISHI). To generate a priority list of free task, Step 2 of the HMD

algorithm subjecting to the Step 1 of the List scheduling heuristic wherein the Extend Relative

Mobility (EM) is used. The Extend Relative Mobility is an extended concept of Relative

Mobility using in the HMD algorithm for determining tasks priority. Details explanation of £M
will be given in part C. Based on.the generated priority list, the free task with the highest priority

(the EM, is the lowest) can be selected to be scheduled.

The task to processors assignment strategy is perform in Step 2-3 (Algorithm 3.7b) and the
condition H (Algorithm 3.7b). Firstly, the highest priority task is selected from the priority list.
Then Step 2-3 try to find the first processor from the high speed processor to low speed processor
in the sorted processors queue that can satisfy execute the task with Condition H satisfaction. It is
found that the éssignment strategy is similar to MD algorithm in homogeneous environment.
However, the major difference of HMD is that the calcufation of moving intervals and the
finishing time of a task are normalized to the speed of the running processor in heterogeneous

processors environment. The HMD is designed for scheduling tasks in the bounded number of

Chapter 3. Task scheduling techniques for heterogeneous environment 31

heterogeneous processors environment. Tasks that are unable to satisfy the Condition H will be

scheduled to the first processor that the task can be finished in the earliest time.

C) EMr: an extended concept on Relative Mobility

Since the Criterion 3.1 is used for calculating the Relative Mobility-(M,). The concept of
the Relative Mobility cannot be retained in the HRMS algorithm. Recalled that relative mobility
(M,) used in homogeneous version of the MD and the RMS algorithm as scheduling heuristic for
identifying an important free task to be scheduled. The M, is defined in homogeneous prqccss.brs
systems as M (n,)=M(n,)/W(n,), where M(n,) is the mobility of a task n; and W(n,) is the
computation time of a task #,. Since the computation speed of processors in homogeneous
processors sys.tems are equal, the M(n,), the W(n;} and the M (n,) can be clearly found.
However, the processor speed in heterogeneous processors systems is different. The cost (in term
of time unit) of task #,; running in different processors are not the same. The M(n,), the W{n,)
and the M, (n,) cannot be identified before a task is not scheduled.

Owing to the above reasons, the HRMS algorithm applies the Criterion 3.1 proposed in HLS
technique to determine the scheduling heuristic. A normalized factor €, which was defined in
Definition 3.1 and Criterion 3.1, is used as a reference speed of priority values calculation. In fact
this is subjected to Step | of the HLS technique that for those tasks, which have not been
scheduled, into any processors. This assumes the unscheduled tasks are running on a processor
speed €. On the other hand, the cost for scheduled tasks are calculated by the actual processor
speed. Since, the definition of task cost in the scheduling task graph is deviated from the original

definition. Thus, the definition of relative mobility using in HRMS is no longer satisfies.
Therefore, Extended Relative Mobility £M, is introduced in the HRMS algorithm to describe
the heuristic used. According to Definition 3.5 to 3.7, the EM . heuristic extends the concept of
M using as scheduling heuristic in heterogeneous processors systems. The Extended Mobility

EM (n,;), the cost of a task running in processor D, (W(”,-),,,,) as well as the Extended

Relative Mobility £Af, (.) is defined as follows.
Definition 3.5: The cost of a task running in a processor P, is defined as:
W(ni)f’u- = i(ni)/S(pm)

where i(n;) =total number of instruction of task n, s(p,) is the

speed of processor p,_ .

Chapter 3: Task scheduling techniques for heterogeneous environment , 32

Definition 3.6: The Extended Mobility (EM) is defined as:
EM(n)=T,(n;)-Ty(n;)

where T, (n;) = earliest start time of n, and T, (n,) =latest start

time of n, that they are calculated under Criterion 3.1 and
Definition 3.2. |

Definition 3.7 The Extended Relative Mobility EMr is defined as:
EMr(n,) = EM(n)/W(n,), . where p, is a processor under Criterion 3.1.

C) Experimental study

The proposed HMD algorithm was implemented and an experimental study was conducted in
Experiment 2 as shown in Chapter 8 to evaluate the functionality and properties of the proposed

HMD algorithm. They are summarized in the following section.

D) Properties
Property 3.6: In homogeneous processors systems, the Extended Relative
Mobility (EMr) is the Relative Mobility.

In homogeneous processors systemns, all processors are the same in computation speed

=s, =5, =...=5, =& (m=p-1). Therefore, EM, (n,)= M, (n;).

S!’u Ll 5]

Property 3.7: The task assignment strategy of HMD algorithm is to schedule
‘ tasks onto the first available processor ranked from fast
processors to slow processors with the goal of satisfying the
condition H.

It is supported by Conclusion 3 of the Experiment 2 as shown in Chapter 8.

Property 3.8: The HMD algorithm produces a shorter parallel time schedule as the
processor set is configured more deviated from homogeneous. In
other words, the HDD algorithm favor in scheduling jobs onto single
high-performarce processor.

It is supported by Conclusion 4 of the Experiment 2 as shown in Chapter 8.

Property 3.9: In homogeneous environment with bounded number of
processors, the HMD algorithm cannot reduce to MD algorithm.

This is because the HMD algorithm is designed for scheduling task to bounded number of
heterogeneous processors environment. Owing to the processors bound, there would schedule
some task that cannot satisfy condition H. Therefore, the HMD cannot be reducible to MD

algorithm even in a homogeneous environment.

Property 3.10: In homogeneous environment with unbounded number of
processors, the HMD algorithm is reducible to MD algorithm.,

Chapter 3. Task scheduling techniques for heterogeneous environment 33

According to Property 3.5, the task scheduling heuristic of EM , is reducible to M_” using
in the MD algorithm in homogeneous environment. Beside, in case of unbounded number of
homogeneous processors (where total number of processors is much more than total number of
scheduling tasks), there should exist at least one processor that can satisfy the condition.

Therefore, the HMD algorithm is reducible to the MD algorithm.

3.5.5 The Heterogeneous Relative Mobility algorithm (HRMS)

This section proposes the third algorithm called Heterogeneous Relative Mobility Scheduling
(HRMS) algorithm.

A) The algorithm
An algorithimic description of the algorithm is shown in Algorithm 3.8a-b. The first step of

the algorithm shown in 3.8a is to sort the set of given processors in decreasing order of speed.

Therefor the proceséor with the slowest speed can be identified for obtaining the normalized
factor €. Then, the Extended Relative Mobility EM, (for which was defined in the Section
3.5.4b) of each unscheduled task in the task graph is determined in Step 2. After that, a priority
list of free task L' is generated in ascending order of EM, . Hence, the highest priority free task

can be selected from the list for scheduling. To determine a task into the suitable processor, the
condition H shown in Aigorithm 3 8b is used. It finds a processor that can satisfy the condition H
and finish in the earliest time. If there is no processors satisfy the cbndition, the task will be
scheduled to the first processor that the task can be completed in the earliest time. The Steps 2 to

4 of the Algorithm 3.8a are repeated until all tasks in the task graph are scheduled.

Let L compose all tasks in the scheduling task graph initially.

1. Sort the speed of target processors in the descending order of speed and order
from left to right. Hence, obtain ¢ from the slowest speed Pprocessor.

2. Calculate the Extended relative mobility of all tasks (EM R
Let L include all tasks initially. Let L be the group of tasks in L with the
minimum relative mobility. Let », be a task in L' that does not have any

predecessors in L' Find a processor p, in the processors set P in which n;

would satisfy Condition H and is completed in the earliest time. If no processor
can satisty the condition, the task will be scheduled to the first processor that
the task can be completed in the earliest time.,

3. When n; i1s scheduled on p, , all the edges connecting n; and other tasks

scheduled to p, are changed to zero. If n; is scheduled before task n.on p,,

add an edge with zero cost from n; to n, in the graph. If n, is scheduled after

Chapter 3: Task scheduling techniques for heterogeneous environment 34

node n; on p , add an edge with zero cost from n; to n, in the graph.

4. Recalculate £M, of the modified graph. Delete n, from L and Repeat Step 2
until L is empty.
Algorithm 3.8a: The HRMS algorithm

Assuming a task #; is scheduled to p,,, in which [tasks, n, #,,,...,1,,, have
been scheduled into p,, . If the moving intervals of these tasks do not intersect with
the moving interval of #,, then 1, can be scheduled to p, Otherwise, assume the

moving intervals of tasks n,, ,n, ,...,n, (L<i<j</) intersect the moving interval
i ik J

of n,. n,can be scheduled to p,,, if k(i <k <j+1) exists,
W(l’lﬂ)pm < mln{r’ (”;1)> TL (nm‘,)} —max {T\ (n'p)3 T:ﬂ' (nm‘._l) + w(nmk_l)Pm }

Where w(#,) p, 18 the cost function of »; running in p, and the computation
of T;(n,), T:(n,) and T, (n,)should assume that task n, is scheduled to
processor p, .if n, = does notexist, T¢(n,)=0,w(n, }=0;if n, does not exist,

i=1 . i= T Al

T,(n, Y=o,

IH’-+|

Otherwise, the task cannot be scheduled to p,, .

Algorithm 3.8b: Conditien H of the HRMS algorithm

Algorithm 3.8a-1. The Heterogeneous Relative Mobility Scheduling algorithm (HRMS)

B) Heuristics used

There are two types of heuristics used in the HRMS algorithm:

a) The Extended Relative Mobility for priority list generation and the schedule of a selected

task to a processor that it can be completed in the earliest time

b) The satisfaction of condition H (similar to the insertion schedule with the earliest time) for

task to processors assignment.
To generate a priority list of free tasks, Step 2 of the HRMS algorithm subjecting to Step | of

the List scheduling heuristic wherein the Extend Relative Mobility (£M) is used. Since EM is
the same as the one used in the HMD algorithm, it will not be described again in this section.

For the heuristic of task to processor assignment, the idea of insertion schedule with the
earliest finishing time is used. This is formulated in Step 2-3 of Algorithm 3.8a and condition H in
Algorithm 3.8b. If more than one processor satisfy the condition, the task will be scheduled to a
processor that the tasks can be completed as soon as possible. However, the design of the HRMS
algorithm is for scheduling tasks in a bounded number of heterogeneous processor environments.
Some tasks would not be scheduled to any processors under the Condition H. In this case, the task

will be scheduled to the first processor that the task can be completed in the earliest time. It is

Chapter 3: Task scheduling technigues for heterogeneous environment 35

found that the assignment mechanism is similar to that of the RMS algorithm. However, the
HRMS algorithm applies the HLS technique in accessing the moving interval determination,
Thus, the scheduling decision is made based on the actual speed of assignment processors and the

rate of communication links.

C) Experimental study

The proposed HRMS algorithm is implemented and an experimental study has been
conducted in Experiment 2 as shown in Chapter 8 to study the functionality and properties of the
proposed HRMS algorithm. A summary of the experimental results and properties is presented in

the following section.

D) Properties

Property 3.11: The task assignment strategy of HRMS algorithm is to schedule
tasks to the first available processor ranked from fast
processors to slow processors with the goal of satisfying
condition H.

Property 3.12: The HRMS algorithm produces a shorter parallel time schedule
as. the processor set is configured more deviated from
homogeneous. In other words, the HRMS algorithm favors in
scheduling tasks to a single high-performance processor.

It is supported by conclusion 4 of the Experiment 2 as shown in Chapter 8.

Property 3.13: In homogeneous environments with a bounded number of
: processors, the HRMS algorithm cannot be reduced to the RMS
algorithm.

The HRMS algorithm is designed for scheduling tasks to a bounded number of
heterogeneous processor environments. Qwing to the processors bound, the tasks that cannot
satisfy condition H would not be scheduled. Therefore, the HRMS algorithm cannot be reducible

to the RMS algorithm even in homogeneous environmeants.

Property 3.14: In homogeneous environments with a unbounded number of
processors, the HRMS algorithm is reducible to the RMS

algorithm.
According to the Property 3.5, the task scheduling heuristic of EM | is reducible to M, in

homogeneous environments. Therefore, the HRMS algorithm is reducible to the RMS algorithm.

Chapter 4: Task scheduling techniques for resources non-deterministic environment 36

Chapter 4: Task Scheduling Techniques for
Resources Non-Deterministic
Environment

4.1 Chapter Summary

The scheduling algorithms for scheduling tasks into classical computation model face the
problem of non-determination in resources utilization in either homogeneous or heterogeneous
execution environment. This makes their scheduling performances unpredictable and unreliable
and the produced schedule meaningless in practical environment. The vse of Contractual

Computing Paradigm for task scheduling is proposed to overcome the situation.

A brief introduction of the contractual computing paradigm is presented. The paradigm
proposed the use of booking mechanism (contracting) in resources management and the advanced
scheduling information for scheduling decisions making. The problem of resources non-
deterministic can be optimized. Having the characteristics, the paradigm is selected for the study

of task-scheduling techniques in environment with non-deterministic resources.

Three task scheduling approaches namely the Scheduler, Resources Oriented and Contractor
Oriented approaches were proposed for resources management in scheduling tasks to a practical
environment based on the contractual computing paradigm. The detail design and the
implementation of these approaches will be formally presented and described in Chapter 5, 6 and

7 respectively.

4.2 The Contractual Computing Paradigm

The Contractor paradigm is a generalization of the existing computing model from stand-
alone machines to a network computer environment [Lam97]. The relationship among various
components in the paradigm can be described as in Figure 4.1. This manages resources in an
upper layer and a lower layer. The O.S. layer (lower layer) manages the local computation
resources within individual computer system. The contractor layer (upper layer) manages the
parallel computation resources interconnected by a common communication network. Since the
contractor locates in between the applications {resources consumier) and the operating systems,
(managing resources provider such as CPU time) to cooperate resources usage among
applications. Applications do not need to coordmate and competition resource usage themselves.
Thus, the target environment (the networked, multi-user system with parallel accessible

computation resources) are transparence from applications and task schedulers.

Chapter 4. Task scheduling techniques for resources non-deterministic environment 37

Application \ Application Application Application

Exchange Exchange
Contractor |- Contractor [----------"-1 Contractor

4

\

O
2

Figure 4.1. The contractual computing paradigm.

As compared to the traditional computing model, applications running on the paradigm
.cannot directly obtain resources from the O.S. Resource is only granted by contractor through an
a-c contract (this will be described in Section 4.2.2). In the a-c contract, applications should
explicitly specify the logical resources requirements .as well as their constrains. The contractor
assesses the requirements, whether the application can be executed under current and scheduled
resources situation. In the O.S. layer, it is responsible for explicating current and scheduled local
resources, grant of resources to contractors and maintaining resources guaranteed for those
granted resources. Through the interrelation of these consecutive layers, granted resources in
lower layer are also implied guaranteed in higher layer. Consequently, the uppermost layer
applications enjoy a stable execution environment. In order to have a better view of the paradigm,
studies of the contractor, the contracting, the specification of advanced scheduling information

and the strengths and weaknesses of the paradigm are presented in the following sections.

4.21 What is a contractor?

In the networked computer hierarchy, the significant of the paradigm is the contractor layer,
which is responsible for coordination of resources granting local resources management. [t has
different roles in the applications and the operating systems and the other point of view of the

contractor.

The different properties are summarized as:

A) From the viewpoint of an application:

The contractor is just a “virtual network operating system” which manages the networked
computation resources efficiently. Each contractor can be viewed as a “virtual NUMA (non-
uniform memory access) machine” with adaptive architectures. It accepts the jobs submitted by an
application, which contains parameters of executing the jobs. The contractor makes the most

effective use of the computation resources under its control.

Chapter 4: Task scheduling techniques for resources non-deterministic environment 38

B) From the viewpoint of an operating system:

The contractor is a pre-registered application that has a very high level of privilege. The
contractor can know explicitly the local resource and the scheduled resources available from
individual operating systems. Whenever the contractor comes with a schedule (this schedule may
be ahead of time), the O.S. grants its local resource by means of advanced booking/ticketing. The

operating system should support those contractors’ requests whenever possible.

C) From the viewpoint of other contractors:

The contractor is a business middleman. Contractors can exchange resources that are already
in their respective accounts. There is no priority among contractors. Resources are freely
exchanged for the benefits of any participating parties. It should be emphasized that each party
can have its own definition of benefits. This exchanged of resources must be recognized by the

correspondent operating systeni.

4.2.2 The contracts

A contractor has to coordinate computation resources for different applications and negotiate
with the operating system and/or other contractors for granting computation resources. The

procedures of such resources request and resources grant are generalized as a contract making,.

A) Type of contracts

Contracts defining the relationship and the content of information flow between layers in the
hierarchy. Lam’s [Lam97], proposed three kinds of contracts and they are the application-
contractor contract (a-c contract), the contractor-O.S. contract {(o-c contract) and the contractor-

contractor contract {c-c contract).

The function of the “a-c contract” is an explicit procedure of submitting jobs by an
application to a contractor for execution. An application has to submit computation resources
requests to the contractor and state the logical resources requirements and the physical constrains.

The contractor then grants the opposite resources being requested.

The “o-c contract” is an explicit procedure of computational resources acquisition by
contractor from an operating system. The contractor translates requests of the application into
physical computational resources requirements and relays to the operating system. The operating
system grants, immediately, or in advance, computational resources to the requesting contractor.

The “c-c contract” is an explicit procedure for contractors to exchange computationat

resources with those individually acquired through “o-c contract”. It has to negotiate with other

contractors for the exchange of computational resource that aims at greater benefit defined by the

Chapter 4: Task scheduling techniques for resources non-deterministic environment 39

contractor itself. Consequently, those layers can be co-operated themselves in an independent and

systematic manner.

B) The resources contracting procedure

The contracting procedure can be treated as resource booking. As shown in Figure 4.2, the
procedure involves two parties: resources requester and resources provider. When the resources
requester tries to book resources, it initiates a resources request to its lower layer. The lower layer
receives the information and then determines whether the requested resources are granted or not.
In determining the resources grant, the precondition resources is guaranteed. Finally, the status of

contract is acknowledged by a request and the acknowledgement is returned to the requester.

Resources request information Request acknowledgement

Higher Layer
(Resources Requester)

b

Lower Layer

(Resources Provider)

Figure 4.2.The contracting procedure.

Example 4.1:

It is to illustrate the idea of the resources booking mechanism. Consider task | of an
application 1 requests for-CPU time resources with start time in | time unit, end time in 3 time
unit and constitutes 50 percentage of CPU speed from processors P;. In P, some time slots are
occupied by other tasks as shown in Figure 4.3c. The resource request of this request is
represented in the right hand side of Figure 4.3a. Since another job uses 25% of the resources,
there is 75% of CPU time left for other application. Therefore, the resources request is accepted.
A contract is made and an acknowledgement is returned to the requester as shown in the right
hand side of Figure 4.3b. Finally, the workload situation of P1 after the booking is shown in
Figure 4.3d.

LLOW0L TESOULCE:
Applicant 1.D.
Start time of using the resource 1
End time of using the resources 3
Percentage of using the required resources 50% of the CPU speed

4.3a: Resource request information

Chapter 4. Task scheduling techniques for resources non-deterministic environment 40

7 Descript |7 Example of reqiesfing €PU e
A booking 1.D. (token) of the granted resources Task 1 of Application |
Granted start time using the resources 1
Granted end time using the resources 3

4.3b: Description of request acknowledgement

P1 (20M ins/s)

2 3 4 5 & 7]] 10 1 12 13 Time

P1 {20M ins/s)

0 1 2 2 4 9 B 1 B8] 1”0 11 12 13 Tima

4.3d: Advanced scheduling information of Pl after the contract is accepted

Figure 4.3a-d. An example of information flow for the contracting procedure.

4.2.3 The Advanced Scheduling Information

The Contractual Computing Paradigm encourages the use of resources with explicit
planning. An advanced booking or ticketing schemes s suggested. A contractor obtains the status
of current and scheduled resources from operating systems. Then, it matches with the resources
requirements of the scheduling application. If the requirements are satisfied, the resources will be
booked in advanced. Regarding the current and the scheduled resources, the scheduling
instructions from users, the specifications of an application and the information relating to
scheduling and resources allocation are classified as “Advanced Scheduling Information”. There
are two main sources of information including the application specifications and the resources

specifications.

A) Application specifications

This specifies the structural characteristics, the execution constraints and the resources
requirements of an application program. Since the job natures of each application such as
interactive jobs, the computation intensive applications and the complex multiple tasks
applications are different, the specifications are different from each other. For simplicity and
consistency with the task-scheduling technique we have studied so far, the specification focused
on parallel program applications represented in DAG is being studied. It is demonstrated as an

example as shown in Figure 4.4,

B} Resources specifications

It specifies current and scheduled resources of the entire system. Since the concept of

Chapter 4: Task scheduling techniques for resources non-deterministic environment 4]

cortract applies in resources management. Lower layer guarantees those resources granted to
higher layer. Unconsciously, actual and realistic information describing the current and scheduled
resources has already existed. This section studies the idea from the viewpoint of processor
workload. However, ideas can also be extended to other resources in a networked-computing

system. Readers are recommended to study the discussion in [L.am96] for detailed discussions.

1. The 1.1). of an application program : =App.- 1
2. Priority of the application to be scheduled =1
3. Preferred earliest start time of the application {negotiable) = 10 sec. latter
4. Preferred latest end time of the application (negotiable) .= 30 sec. latter
7- [S Lo I I s o)
7. ; Sphtacl. T —aas |
8 | |
7. Cuktacl I OV = T%
9 | ¥ 7. Subtask 1.D. =TI
9 8. | 8. Setof parent task = EMPTY
10y 9 9. Set of child task = T2, T3
10.{ ~" | 10. Duration of the task = 1000 operation of addition _
10 11. Special requirement on execution = processors with 1MB data
memeory

Figure 4.4. Application specification.
Figure 4.5 shows the resources specification of four processors collected from O.S. layer. £,

executes in20 Mips, £, executes in Mips. This is observed that the target execution environments
may compose of computers with different computation performances. It can then be treated as

heterogeneous environments.

P1 (20M ins/s)

P2 (10M ins/s) |22 100% 5

- P3 (8Mins/s}

P4 (5Mins/s}

-~

.

Figure 4.5. Advanced scheduling information for processors P1, P2, P3 and P4.

8 9 - 10 1 12 113 TimﬂJ

The information also shows the details of the current and scheduled workload of each

processor. A graphical representation is shown as a grant chart in Figure 4.5. For example, in

processor £, the interval between | and 4 has already consumed by other consumer with 25% of
the origional CPU power. Based on this information, the scheduler or other resources requester
should not request the resource more than 75% of CPU power within that interval. Otherwise, the
processors will overload. Since the information is automatically captured by contractor and /or
Q.S., application programs and/or the task scehdulers do not need to maintain and manage the

networked resources. That greatly reduce the cost of workload estimation in resources non-

Chapter 4: Task scheduling technigues for resources non-deterministic environment 42

deterministic environment.

4.2.4 The claimed strengths and weaknesses of the model

A)

B)

The proposed model is claimed to have certain strengths and weaknesses [L.am97].

Strengths:

A contractor is a transparent and easy-to-use interface for users in the network and parallel-

computing environment.
A set of rules for the construction of contractors is implemented simply and easily.

A resource booking/ticketing system encourages better planning in the use of computational

resources.

‘The clear divisions of labor (the two-layered resources management architecture) facilitate the

development of future network computing environments.
The special treatiment of uncertainty lets the applications using the resources in a proper order.

The properties of decentralizing control of network computational resources allow each
contractor to have full privilege to manage the control of its own computational resources
from any centralized mechanism. Therefore, the efficiency of resource management is highly

increased.

Weaknesses:

The inaccurate estimation in resources request is the great challenge to the model. It will
result in improper allocation of resources to these applications. A penalty is suggested to
punish an application with inaccurate estimation. However, this mechanism is very difficult to

make in the implementation of a system under contractual paradigm.

Apart from the applications submitted by users, there are also a nwmnber of system functions

such as interrupt handling which the local operating system. These functions would also be

competed for processing time unless they are also contracted. However, this type of

contractor is very difficult to implement.

4.3 Task Scheduling in Resources Non-Deterministic Environment

It 1s found that the paradigm is proceeded with advantage on solving task-scheduling

problem of practically resources non-deterministic environment:

[t encourages the user to plan their applications before submitting application to be scheduled

for execution. This specifies the preferable start time of execution, the preferable stop time,

Chapter 4. Task scheduling techniques for resources non-deterministic environment 43

resource requirement, etc. This information greatly improves the efficiency of resource

allocation and the scheduling performance.

e Using the advanced booking/ticketing mechanism together with the contract binding iton-
deterministic of computational resources, it is significant desensitized. The response time for

both parallel and sequential applications can be easily predictable.

 Based on the above feature, the contractual computing environment supports the scheduling
of multi- applications in a networked computing resources space. There can be more than one
applicatioln to be scheduled at any time into a parallel-distributed computing environment
without causing resources competition. This can cut down the non-deterministic nature of
resources caused by the multiple users and multipie application environments in the practical

‘parallel and distributed systems.

e The static load balancing strategies can be implemented with ease. Due to the amount of time
that a computation node spends on a certain task is affected by instantaneous loading. Load

balancing strategies will only treat the system to be virtually dedicated computer systems.

¢ The construction of automatic load balance becomes much easier because with the available
of the advanced information from the applications and the operating system, schedulers with

contractor binding highly increase the performance of pre-aliocation of task to processors.
* Load balancing can be separated from the applications during design and operation/execution.

e Task scheduling strategies used in the dynamic environment can reduce the need for dynamic
load balancing. The dynamic load balancing stratégies can improve the scheduling
performance of task running in dynamic environment, but it is costly. The contractor model
on the other hand provides a stable computational resources environment. {t is possible to use
static scheduling strategies instead.

All these features provide a stable and reliable execution environment for practical parallel
and distributed systéms. Thus, this motivates the development of static and automatic task
scheduling techniques. They take the advantages much further from dynamic task scheduling.
That is the reason why the contractual computing paradigm is tried as the target blatform in

studying task-scheduling techniques for practical parallei and distributed systems.

4.4 Issues on Developing Task Schedulers

4.4.1 The goals of task scheduling

The function of task scheduling algorithm is to order the task execution so that data

dependencies are satisfied and the goals of task scheduling are achieved. In Chapter 2, three

Chapter 4: Task scheduling techniques for resources non-deterministic environment 44

preliminary goals for classical scheduling problem are that: G1-The complexity should be low,
G2-The parallel time should be minimized and ‘G3-The efficiency should be minimized.
However, the paradigm suggests running applications with advanced resources booking.
Applications may not be executed so that it is sunply caused by failing to commit resources
contract. In this occasion, the goals G1, G2 and G3 for which have mentioned before become
meaningless. For this reason, a task scheduler for the paradigm should not oniy satisfy the goals
of G1, G2 and G3, but also should require the resources grant. The four preliminary goals of the

task-scheduling problem can be generalized as;
Goal 1: Committing resources contract request (This s the essential goal)
Goal 2: The parallel time should be minimized
Goal 3: The efficiency of using resources should be minimized
Goal 4: The complexity of the scheduling a_lgorithm should be low

The first goal is the essential and the necessary resources to run the application must be
guaranteed for execution. Resource that granted in the contractor layer can be enforced. It
proceeds with a suitable schedule in the O.S. layer and allows multiple applications to use the
networked computing resources efficiently. This encourages one application running with others
applications with co-existence with advanced planning. Having satisfied this primary goal, the

evaluation of scheduling performance follows the other goals.

4.4.2 The roles of task scheduling

In traditional scheduling concepts, scheduler is constituted in a part of compiler (for static
scheduling) or in a part of network operating system (for dynamic scheduling). They have to
understand and to manage the entire networked computer resources (such as CPU time) for load
balancing. This is no doubt a high cost on task sc'hedﬁ lers and restriction of resources sharing to

different applications on multiple users and multiple applications systems are imposed.

It is clear that the contractual computing paradigm provide divisions of labors in managing,
resources. This can be realized as a two-layer hierarchy for resources management. Each layer has
to maintain and schedule their resources for supporting its adjacent layers. Thus, scheduling
constitutes in different portions of the hierarchy, which include local resources scheduling in O.S.

layer, task scheduling in contractor layer and task scheduling in an application layer.

A) Local resources scheduling in O.S. layer

The operating system should support the contractor’s request whenever possible. It should
even commit to the future allocation of resources if the contractor can submit schedule ahead of

time. Here, the local schedulers of the operating system may have a certain booking/ticketing

Chapter 4: Task scheduling techniques for resources non-deterministic environment 45

system for scheduling it own resources. There can be more than one contractor registered with an
operating system. Some priorities and quota systems have to be implemented to settle the
resources: contention. A higher priority contractor may be granted more quota, or may be
committed to more relaxed conditions. However, committed resources should not be re-claimed
without the consent of the contractor owner. The local scheduler supports contractor in a different
way compared with that in the conventional operating system, in terms of its commitment of
resources allocation to jobs. ldeally, there should be no queuing, waiting, or other forms of

uncertainty involved in the resources scheduling.

The implementation of O.S. kernel supporting the above specifications is a challenging
' problem. in the distributed computing technology. Researches are being carried out to design and
implement a kernel satisfying the specification [Lafn96b][Siu96][Cheuk97]. According to the
specification, a modified LINUX kernel called “The Local Manager” is being developed
[Cheuk97] for addressing to processing power management. This modifies the method of
scheduling processing inside LINUX kernel so that the processing' power can be booked in
advanced. In the rest of this research, the design, the implementation and the analysis of task

scheduling technique for the paradigm will be studied under the kernel.

B) Task schedulers in contractor layer

Contractor is responsible for managing network resource, which maintains the advanced
scheduling information and carry out resources booking directly to the lower layer. Hence, it
naturally to implement task scheduler function in the contractor layer. As one of the primitive
operations of a contractor is to coordinate and manage the available resources (both current and
scheduled resources) for the usage of various consumers (applications or tasks). The contractor
should have all the current and scheduled resources mformation of individual machine. The task
scheduler in contractor uses this information to organize and to allocate those scheduled sub-tasks
into target machines in a cost-effective manner. The advanced booking/ticketing resources
mechanism for resources aflocation can be developed to avoid contention of the scheduled tasks
with other tasks in execution. Any muitiple-users multiple-application can be executed in a PDS

with a virtual deterministic resources environment.

C) Task schedulers in application layer

For an application, it not only has to state the resources requirement and physical constrains
to contractor explicitly, but also constitutes in a part of task scheduling. In fact, the contractual
model does not restrict to execute applications, which possess with its. own task scheduling
mechanism and it provides a stable and reliable environment for executing these applications.

“ Thus, the existing sequential and paralle] applications can transit to and take the advantage of the

Chapter 4: Task scheduling techniques for resources non-deterministic environment 46

new paradigm.

4.5 Proposals of Task Schedule Techniques in Contractual
Computing Paradigm

The contractual computing paradigm provides a stable, informative and reliable execution .
environment for parallel and distributed applications. This is a suitable paradigm for developing
task-scheduling techniques, which are free from non-deterministic resources. Stated in previous
section, scheduling is contributed in three roles of the paradigm. This dissertation will focus on
how the existing task scheduling techniques and algorithms transit to the new paradigm for
overcome the problem of resources non-deterministic. The major goals of task scheduler in
contractor layer and application layer are to commit resources granted. The granted resources
imply the resources guaranteed so that virtually dedicated resources are provided for solving non-
deterministic resources. This idea motivates the development of “Scheduler Oriented” (SO)

approach.

4.5.1 Scheduler Oriented (SO) approach
The proposal and the analysis of the SO approach will be detailed in Chapter 5. This glued

the existing scheduling algorithms and the contractual computing paradigm together. The
underlining principle is the use of classical scheduling algorithms as the core of task to processor
scheduling. With the produced schedule, the required resources of each scheduled task are booked
in advance. This is a conservative method of transiting task scheduling solution, which is
produced by classical scheduling algorithms, to a contract based resources management paradigm
in order to overcome the problem of resources non-deterministic. Through the advanced resources
booking, the execution of scheduled tasks indeed can get the performance stated by the
scheduling algorithm, but this was found that the tided resources requirement specification from
scheduled tasks restricts the rate of successful resources booking. This leads to the development

of the “Resources Oriented” {(RO) approach as presented in Chapter 6.

4.5.2 Resources Oriented (RO) approach

The Resources Oriented approach attempts to overcome the difficulties encountered in the
SO approach. In the “Resources Oriented” approach, the concept of the booking part of
processing bower from each processor to form a virtually dedicated processor (VDP) (this action
is called resource partitioning) is performing before task scheduling. Having the resources
booking in advance, task scheduiers can schedule tasks to the VDP as if in the dedicated resource

environment. Hence, many of the classical task scheduling techniques, -such as the List

Chapter 4. Task scheduling techriques for resources non-deterministic environment 47

Scheduling Heuristic (I.SH) and the Heterogeneous List Scheduling Heuristic (HLST) can be
directly adapted. With the approach, resources.pre-allocation can improve the chance of resources
booking over the SO approacly, but there will be wastage of “overbooking” resources while the
booked resources are not fully utilized by the schedule of the application. The non-realized
resources in scheduling with the RO approach will be analyzed in Chapter 6. Scheduling using

either the SO or RO approach suffer from one kind or the other shortfall.

4.5.3 Contractor Oriented (CO) approach

An intermediate approach “Contractor Oriented” (CO) approach is proposed. The principle
behind this approach is that the workload situation of the execution environment from contractor
is extracted and analysis for task scheduling decision. The extracted information can be used to
identify the available resources during scheduling. Task scheduler can even make séheduling
decision in time of resources contention and the successful rate of resources booking can then be
improved. It is found from the experimental studies that this approach can be adapted to the real .

time workload situation and with a higher probability of successive resources booking.

Cliap[er 5: The Scheduler Oriented (SO} approach 48

Chapter 5: The Scheduler Oriented (SO) Approach

3.1. Chapter Summary

* This Chapter introduces the Scheduler Oriented approach for scheduling tasks into practical
parallel and distributed systems under the contractual computing paradigm. The proposed. SO
“approach is to study the characteristics of classical scheduling algorithms and their scheduling
solutions when resources booking mechanism is applied directly in contractual computing
paradigm. This approach encourages application possessing theirs own task schedule or using
existing scheduling algorithm for scheduling tasks with regardless of the workload situation as the
core of task to processor assignment. Then, resources booking overcome the problem of non-
determinism. All tasks in the application can 0bfain their resources granted. The application can
be completed promptly in a dedicated resources environment. Otherwise, the schedule is not

suitable to be executed in the current workload situation.

Based on this approach, three suggested implementations are presented. Their properties, the
design approach and the significant of improvements were studied. It was found that from
Experiment 3 (Chapter 8) the probability of resources booking rate is decreasing gradually as the
workload of the processors is increasing. Besides, it also decreases as the number of sub-tasks in
an application increases and the sizes of those sub-tasks increase. This concluded that the SO
approach 1s only applicable in narrow range of the specifications. Therefore, intensive
investigation on the task scheduling technique for the contractual computing paradigm will be

conducted and presented in the subsequent chapters.

5.2 The Scheduler Oriented Approach

There are a large number of scheduling algorithms and theories proposed by numerous
researchers [McCreary94] [Yang94] [El-Rewini94a-c] [Sark89] [Yang94} [WuGa88] [WuGa83]
and most of them can produce an optimum or near optimum scheduling solutions. With these
solutions, most of the scheduling cannot achieve good performance while being implemented in a
practical environment. This is because most scheduling theories and scheduling algorithms
assume that resources for scheduling are deterministic and dedicated for the application under
consideration. In practice, resources in parallel and distributed systems neither are dedicate nor
are deterministic to all applications. Many of the assumptions made will no longer be valid.
Therefore, sophisticated task scheduling methods for massively parallel computer system or
dynamic scheduling technique were proposed to minimize the requirement of resources:

dedication and workload estimation {MVDeva89]. Although the use of these solutions can

Chapter 3: The Scheduler Oriented (SO) approach : 49

improve the situation, the desired scheduling performance stilt cannot be achieved in a practical

execution environment [Kunz91].

As the contractual computing paradigm is introduced to solve the problem, the obvious
advantage of the Paradigm over classical computing model is the support of advanced resources
booking. The proposal of advanced scheduling information and resources guaranteed results in
forming a deterministic and dedicated envirornment. Under the paradigm, the assumption being
made in classical scheduling techniques becomes valid and execution of a produced schedule

becomes feasible in practical PDS.

Applying the proposed SO approach to those classical scheduling algorithms scheduling
solutions can be generated directly with the including of the resources booking. This approach
encourages application either possessing their own task schedule or using existing scheduling
algorithm to schedule tasks as the core of “task to processor” assignment. Then, resources
booking can overcome the problem of non-determinism and all tasks in the application can obtain
their resources granted and the application can be completed promptly in a dedicated resources
space. Otherwise, the schedule is rejected, which implies that it is not possible to execute the

schedule in the current workload situation.

5.21 An algorithmic description of the SO approach

. . . = MHy,....H
For an application consists of ? task N=in,ny,....n, with their relationship

represented in certain format such as direct acyclic task graph (DAG). Assume’

=TI i
P=1pipy P be a set of K processors that satisfies the physical resources
requirement to execute the application. Let TPS and TPE be the pre-specified, start
time and end time for executing the application respectively.

Step 1:

1.1 Using classical scheduling algorithms, schedule the tasks into P without
considering the workload situation of £ .

1.2 If the parallel time {PT) of the produced schedule is completed within the
period of preferred start time (7.} and preferred end time (7,;)

(PT £T,, —T,,), then proceed to step two. Otherwise, report the schedule
is rejected and quit.
Step 2: Let R ={r(n).r(m),....,r(ny)}, where r(n,)={I(n,),T;(n),p,,B(p,)}

be a set of resources booking specifications for the scheduled tasks in the
task set IV.

DO

" The R and #(#n,) is defined in definition 5.1

Chapter 5: The Scheduler Oriented (SO) approach 50

2.1 Select a request #{n)from R and book the required resources for the
scheduled task n, through the resources booking mechanism. Then remove
n, from K.

2.2 Collect resources booking acknowledgement information from lower layer

contractor. If the booking is rejected, release the bocked resources. Report
the schedule is rejected and quit.

WHILE K is not empty AND the schedule is not rejected.
Algorithm 5.1, The Scheduler Oriented (SO) approach.

A two-steps-algorithmic description of the Scheduler Oriented approach is generalized in
Algorithm 5.1. The first step is to use the existing or classical scheduling algorithms to produce a
scheduling solution, in which resources are assumed deterministic and dedicated. The second step
(Step 2.1) is to book resources from resources providers. In Step 2.2, whether all tasks in the
application can acquire the required resources for execution is examined. If so, the schedule is
accepted and the application will be executed according to the generated schedule. Otherwise, the

schedule is rejected.

Definition 5.1: An information of booking request is defined as:
r(nx) = {T\ (nx)’TE (nx)’pn 2 B(pn)}

where T,(n.),T.(n,) is the start time and end time of the
scheduled task n_, p, is the scheduled processor and B(p,) is the

percentage of processing power of processors p, required for the
booking .

5.2.2 To obtain a schedule of an application program

The SO approach encourages scheduling task by using the existed schedule of the application
or existing/classical scheduling algorithms. Classical scheduling techniques such as the List
Scheduling Heuristic and the Heterogeneous List scheduling technique can be used as the core in
Step 1.1 of Algorithm 5.1. Since the design of these scheduling algorithms assumes resources
dedicated and deterministic, the execution environment should be treated as dedicated and
deterministic. That is, the inherence workloads occupied by other applications are not considered.
Then perform classical task scheéuling algorithms without algorithmic modification. An exampie
is shown in example 5.1, in which the best scheduling performance can be achieved if all the

scheduled tasks can get their required resources in Step 2.
Example 5.1
Consider a task graph shown in Figure 5.1a to be scheduled into two processors that are

specified in Figure 5.1b. According to the SO approach, the processors set / shouid assumed

dedicated and deterministic (as described in Figure 5.1c, there is no pre-booked task inside the

Chapter 5: The Scheduler Oriented (SO) approach ' 51

processors) during task scheduling. After a schedule is produced (for example a grant chart shown
in Figure 5.1d), a summary of the required resources for all tasks in the scheduling task graph can
be given in Figure 5.1e. This information allows the resources booking routine in Step 2 of the SO

approach to book the required resources.’

After performing task scheduling in Step 1.1, timing constrain of the produc'e‘d schedule will
be examined in Step [.2. The objective of the examination is to assess whether the ﬁroduced
schedule is able to complete within the user’s specified start time and end time. Accordingly,
eliminating unnecessary resources booking in step two can reduce the complexity of the
scheduling algorithm. In which, the start time and end time are parts of advanced scheduling
information specified by users prior launching of any application (refer to Chapter 2 for details
description). Decision is made in accordance with the Lemma 5.1. Satisfying the Lemma implies
that the produced schedule will be completed within the pre-specified period. The scheduled tasks
in the application program will either successfully book the required resources in Step 2. Or else,
the schedule is rejected due to that the user’s specification can be satisfied. In latter steps, it is

impossible to execute the application within the given specifications and such booking is

meaningless.
1
5.1a: Task graph of a simple application
Py
P, _
o I 2 3 4 5 6 7 3 4 10 11
5.1b: The loaded processors conﬁguratidn
Py
P,

0 ! 2 k) 4 5 6 7 3 9 10 1L

S.1c: The processor configuration before scheduling

5.1d: The produced schedule

Chapter 5: The Scheduler Oriented (SO} approach 52

X R(n,)

Ts Te P, B(P,)
n 0 l Py 100%
N2 2 3 P, 100%
n, 3 5 P, 100%
t] 5 7 P, 100%
ns { 6 Py 100%
ng 7 h! Py 100%
n; 8 9 P, 100%

5.1e: A table of scheduled task specifications, where B(Pn) is the amount of processing power being booked in a
given period. :

Figure 5.1a-e. An example of scheduling task in the SO approach.

Lemma 5.1: The necessary condition to execute an application program
within pre-specified start time and pre-specified end time is:

Let the pre-specified start time and the pre-specified end time of
an application program be Tps and Tpg respectively and the
parallel time of the application program to be scheduled is PT .

To execute the application program withinT,. . T, it should
satisfy the following inequality:

PT<T,, =T,

Otherwise, the application program cannot be completed within
the pre-specified period.

5.2.3 Resources booking

The objective of resources booking in Step 2 is to book the required resources from the
lower-level resource manager in order to produce the required schedule. The concept of resource
booking is similar to processor assignment in classical scheduling theory. However, layer’s
approach proposed by the contractual computing paradigm separates the resources management
from the application program/users to the lower-level resource management. Any application
program/users requesting for resources should specify their requirements explicitly and book the
resources through a resource booking mechanism. The lower-lever resource manager in
accordance with its current and scheduled situation can then grant the resources. From the
viewpoint of task scheduling, the role of resources management can be reduced. The design of
task scheduling algorithm can become simple and cost effective. The proposed SO approach takes
this advantage so that it needs not to re-design the core scheduling algorithms being uséd.

Theories and algorithms of classical scheduling can be directly migrated to the new paradigm.

The Step 2 of Algorithm 5.1 described a generic method of resources booking. The method is

to book resources for each scheduled task, according to the specification of each scheduled task

Chapter 5: The Scheduler Oriented (SO) approach 53

R{n,) one by one. The resources manager (say local manager) receives the requests, decision of

resources granted would be examined and decided. An example illustrate the method is shown in
example 5.2. Since the tasks had already been scheduled, dependence constrain among the tasks is
resolved by the task schedulers. In which the order of the booking sequence is not important,
however, any resource requested by all tasks in the application program should be granted by the

resources provider.

The necessary condition for a program being executed properly is that all scheduled tasks
should be granted due to the nature of inter-dependent among the tasks within a scheduled
application. An application would come to a dead lock if a task in the produced schedule cannot
be started or finished properly. In practice, some requested resources may be booked by other
applications or user and this would result in resources conflict. Therefore, successful resource
booking is not usually fulfilled. Unfortunately, most scheduling algorithms do not cater for the
workload situation in scheduling time. It is possible for a generated scheduling to work in a
dedicated environment, but such a good schedule produced not necessary applied under the
contractual environment, Therefore, in Step 2.2 in order to reduce the complexity of the
algorithm, the resources booking procedure for any task in the application, which cannot be
booked will be terminated. The probability of resources booking will be discussed in Experiment
3 in Chapter 8. It is found that the probability of successful resources booking gradually decreases
as the workload and the booking size increase. The SO approach is restricted to applications with

lower number of tasks, small size of task and high resource availability.
Example 5.2

Figure 5.2a show the results of resources booking after Step 2 is applied in Experiment 5.
With the workload of the target processors set changes from Figure 5.1b to Figure 5.2b, the
application program cannot be started and executed, when the same schedule (shown in Figure
5.1c) i1s employed this cases. [t is because there is another scheduled task occupying the processor
po in between 0 and 2 second. - Resources between task n; and ns (Figure 5.2¢). That is, the
resources requested by task n; and n; cannot be granted simultaneously. Since n; cannot start on
time, this results in the failure of starting the remaining tasks in the application. The Figure 5.2d
shows an alternate schedule that can fit the set of processors, but the core scheduling algorithms

used in the SO approach has not provided for the advanced scheduling information.

Pq
Py

5.2za: Results of a successful resources booking in example

Chapter 5: The Scheduler Oriented (SO) approach

54

. —
P, I

0 1 2 3 4 5 6 7] 9 10 11
5.2b: Another configuration of processors

n; and n; cannot book the required resources between 0 and 2 second.

Py

Py

5.2d: An alternative scheduling solution to suit the workload situation

Figure 5.2a-d. An example of resources booking.

3.3 Implementations of Scheduling Using SO Approach

[n this section, the implementations of SO concept are applied to three different task-

scheduling algorithms. They are the Scheduler Oriented Heterogeneous Dominant Sequent

Cluster algorithms (SO-HDSC), the Scheduler Oriented Heterogeneous Mobility Direct algorithm
(SO-HMD) and the Scheduler Oriented Heterogeneous Relative Mobility algorithm (SO-HRMS).

SO approach is being integrated. The core of the scheduling algorithms remains unchanged, but

the concept of detailed algorithmic descriptions of the HDSC, HMD and HRMS are not given

here (refer to Chapter 3 for their details).

5.3.1 The Scheduler Oriented HDSC Algorithm (SO-HDSC)

For an application consists of n task N ={n,,n,,...,n, }with their relationship
represented in certain format such as direct acyclic task.graph {DAG). Assume
P={p,py.....,p,) be a set of k processors that satisfies the physical resources

requirement to execute the application. Let Tps and Tee be the pre-specified start
time and the pre-specified end time for executing the application respectively.

Step 1:

1.1 Using HDSC algorithm, Using classical scheduling algorithms, schedule the
tasks into P without considering the workload situation of P .

1.2 If the parallel time (PT) of the produced schedule is completed within the
period of preferred start time (7,,) and preferred end time (Tp)

(PT =T, —T,,), then proceed to step two. Otherwise, report the schedule

Chapter 5: The Scheduler Oriented (SO) approach

is rejected and quit.

Step 2: Let R :{r(n,),r(nz),...,r(nlNl)}, where r(n,)={T(n),T,(n),p,.B(p)}

be a set of resources booking specifications for the scheduled tasks in the
task set N.

DO

2.1 Select a request r(n,)from R and book the required resources for the
scheduled task #_ through the resources booking mechanism. Then remove

n_ from R.

2.2 Collect resources booking acknowledgement. information from lower layer
contractor. If the booking is rejected, release the booked resources. Report
the schedule is rejected and quit.

WHILE R is not empty AND the schedule is not rejected.
Algorithm 5.2. The Scheduler Oriented HDSC algorithm (SQ-HDSC).

5.3.2 The Scheduler Oriented HMD Algorithm (SO-HMD)

For an application consists of n task N ={n,n,,...,n,}with their relationship
represented in certain format such as direct acyclic task graph (DAG). Assume
P={p,py..... P, tbe a set of k processors that satisfies the physical resources

requirement to execute the application. Let Tps and Tee be the pre-specified start
time and the pre-specified end time for executing the application respectively.

Step 1:

1.1 Using HMD algorithm, schedule the tasks into P without considering the
workload situation of P . '

1.2 If the parallel time (PT) of the produced schedule is completed within the
period of preferred start time (7,,) and preferred end time (7,;)

(PT £T,; —T,), then proceed to step two. Otherwise, report the schedule
is rejected and quit.
Step 2: Let R ={r(n),r(n,),---,”(”M)}, where r(n,)={T;(n,),T:(n), p,.B(p,)}

be a set of resources booking specifications for the scheduled tasks in the
task set N.

DO
2.1 Select a request r(xn)from R and book the required resources for the
scheduled task n, through the resources booking mechanism. Then remove

n. from R.

2.2 Collect resources booking acknowledgement information from lower layer
contractor. If the booking is rejected, release the booked resources. Report
the schedule is rejected and quit.

"The Rand r(n,) is defined in definition 5.1

Chapter 5: The Scheduler Oriented (SO) approach 56

WHILE R is not empty AND the schedule is not rejected.
Algorithm 5.3. The Scheduler Oriented HMD algorithm (SO-HMD).

5.3.3 The Scheduler Oriented HRMS algorithm (SO-HRMS)

For an application consists of n task N ={n,n,,. ...~ }with their relationship
represented in certain format such as direct acyclic task graph (DAG). Assume
P={p.p,,....p.}be a set of k processors that satisfies the physical resources

requirement to execute the application. Let Trs and Tre be the pre-specified start
time and the pre-specified end time for executing the application respectively.

Step 1:

1.1 Using HRMS algorithm, schedule the tasks into P without considering the
worktoad situation of P.

1.2 If the parallel time {PT} of the produced schedule is completed within the
period of preferred start time (7)) and preferred end time (7,;)

(PT <T,; ~T,,), then proceed to step two. Otherwise, report the schedule

is rejected and quit.

Step 2: Let R= {r(nl)ﬂr(nz)J"':r(”],l.'i)}’ Where r(ni) Z{Ts‘(ni)’TE (’1,-), pn!B(pu)}

be a set of resources booking specifications for the scheduled tasks in the
task set N.

DO
2.1 Select a request r(n,)from R and book the required resources for the
scheduled task #n, through the resources booking mechanism. Then remove

n, from K.

2.2 Collect resources booking acknowledgement information from lower layer
contractor. If the booking is rejected, release the booked resources. Report
the schedule is rejected and quit.

WHILE R is not empty AND the schedule is not rejected.
Algorithm 5.4. The Scheduler Oriented HRMS aigorithm (SO-HRMS).

5.4 Properties of SO Based Algorithms

5.4.1 Resources acquisition

This is shown in Experiment 3 of Chapter 8 that the rate of successful booking resources
decreases as the number of task increases and the workload situation of the booking resources is
busy. Besides, A schedule produced by task scheduler does not guarantee their required resources

that can be acquired for the execution. This is because task scheduler does not take into account of

Chapter 5: The Scheduler Oriented (SO) approach 57

the workload situation during scheduling. Since the booking of the required resources cannot be
guaranteed. Even with the best obtainable in Step 1, does not imply applicable can be executed
according to the prescribed schedule. This execution performance can only be guaranteed while

all tasks in the application can obtained their required resources.

5.4.2 Efficiency in resources utilization

The Scheduler Oriented approach achieves zero wastage in booked resources. Resources are
booked in accordance with a produced schedule, the booked resources should be consumed by the
application. The un-booked areas can be freely assigned to other application programs/users.
Therefore, there is no wastage of resources created by task schedulers or applications under

scheduling.

5.4.3 Property of the processors table after scheduling

The booked resources are in small pieces and they are distributed among the set of
processors being booked. The size of each booking is proportional to the cost of task in the
scheduling task graph. Their sizes are small as compared with the application program. They are
distributed among the booking processors set resulted from maintaining dependence constrains

among the tasks.

Besides, each booking area should consume 100% of processing - power of the booked
processors. It'is because classical scheduling algorithm is used for task scheduling, they assume
tasks are executed in 100% of the processor speed (scheduled to a set of dedicated processors).
The processing power consumed by each booking portion is 100%. Furthermore, Concurrent
execution of tasks is suppressed in the SO- approach. According‘to Property 5.5, each of the
booking area should consume 100% of processing power of the booked processors. Therefore, the

scheduled task cannot be executed concurrently with other tasks in the booking region.

5.4.4 Performance in task scheduling

For resources can be granted to all the scheduled tasks, the performance of the produced
schedule can be attended to the claimed performance of the scheduling algorithm using. It is
because the SO approach is to schedule the task graph before reserving resources. The scheduling
procedure makes the assumption of using the resources with maximum availability. Hence, the
p-erforrnance of the produced schedule should be the maximum achievable performance of the
scheduling algorithm in the given resources. Besides, owing to the properties of resources
guaranteed while they are granted, the application runs on a multiple-users multiple-tasks

environment in a dedication environment. Therefore, the scheduling performance is guaranteed.

Chapter 5: The Scheduler Oriented (SO} approach 58

Besides, the resources booking probability is independent of the core task scheduling using.
This is because the task-scheduling algorithm using in the SO approach does not cater for the
workload situation, The. probability of successful resources booking for schedules that are
produced by difference algorithms is the same. Base on the arguments, there is no classical task-

scheduling algorithm (under our considerations) can take advantage from this approach.

5.4.5 Inherence problems

Applications may not be executed due to unsatisfactory scheduling result or insufficient
booked resources. Since the major difference in executing application programs between
contractual computing paradigm and traditional computing paradigm is that resources should be
booked in advance. An application cannot be executed while one of the tasks cannot book its
required resources. As shown in Property 5.1 and Experiment 3 (Chapter 8), the resources
booking rate for an application is very low. The application program cannot be started in mdst
situations. ln order to keep the program executable, application users should release the constraint

on the execution such as a delay of the preferred start time or an extend of the preferred end time.

In a traditional computation paradigm, if an application is being executed, another
application can still be executed concurrently. That would result in suffering delay. The
application is guaranteed to be executable. However, using the SO approach an application cannot
be executed concurrently with other applications when the booked region of the application is

collided with other applications. That is the shortfall of using the SO approach on the paradigm.

5.4.6 Applicability

The proposed SO approach is suitable for scheduling applications with the following
characteristics:
. An application proceeds with its own schedule (the schedule is based on the assumption of

dedicated resources) and looks for a stable and reliable execution environment for execution.

2. An application can be effectively scheduled by classical/traditional task scheduling
algorithms (the schedule is based on the assumption of dedicated resources) and looks for a

stable and reliable execution environment for execution.

3. Small number of sub-tasks can be decomposed by the scheduling application (refer to
Experiment 3 and Experiment 4A in Chapter 8).

4. The size of the scheduling sub-tasks in an application is small (refer to Experiment 3 in
Chapter 8).

5. The workload situation of the target processor set 1s low. Ideally, the best performance of

this approach is to schedule task in an off-loaded processor set.

Chapter 6. The Resources Oriented Approach (RF) 59

Chapter 6: The Resources Oriented (RO) Approach

6.1 Chapter Summary

This Chapter studies the Resources Oriented approach for scheduling tasks in practical
paraltel and distributed systems running with the contractual computing paradigm. The idea of
scheduling tasks into dedicated processors in classical scheduling algorithm is highlighted and it
is possible to work in practical parallel and distributed systems. Conceptually speaking, the
concept of cooperative usage of shared resources by partitioning is widely accepted in classical
computing paradigm. For examples, hard disk spaces partitioning database partitioning in
distributed database management and module concept in multiple-access memory system.
However, owing to the belief that processing power is non-deterministic and uncontrollable, the
concept is seldom extended to processing power partitioning. On the development of contractual
computing paradigm, processing power becomes deterministic and controllable. The idea of
resources partitioning is extended to processing power. The Resources Oriented approach is

proposed for scheduling tasks using a dedicated resource partition.

Based on the concept of resources partitioning, a virtually dedicated processor set (VDP) is
obtained. Classical task scheduling and application with its own schedule can follow the approach
to schedule and exccute tasks in a practical non-deterministic resource environment. Since the
booked resources in a VDP set are dedicated to an application, the application can be executed in
a dedicated environment. This approach is very suitable for those applications with its own
schedule or the classical scheduling algorithm is retained for scheduling tasks in the contractual

computing paradigm.

6.2 The Resources Oriented Approach

The "Resources Oriented" approach is based or using resources booking for schedule design.
The booking of processing resource in advance is to form a “Virtual Dedicated Processor” set
before performing task scheduling. Having secured the resources in advance by this booking
mechanism task can be scheduled to the VDP, which can be regarded as a dedicated environment.
Therefore, classical task scheduling algorithms such as List Scheduling Heuristic (LSH) or
Heterogeneous List Scheduling Heuristic (HLST) can be directly implemented. Scheduling

solutions can then execute in a practical parallel and distributed system.

6.2.1 An algorithmic description of the RO approach

The RO approach is generalized in two-step algorithm shown in Algorithm 6.1. Step 1 is a

Chapter 6: The Resources Oriented Approach (RF) 60

partitioning procedure which partitions part of processing resources from each processor of a
given processor set P to forin a virtually dedicated processor (VDP) set C. A generic method for
resources partition is described in Section 6.2.2. With the VDP, classical scheduling algorithms
such as List Scheduling Heuristic (LSH) or Heterogeneous List Scheduling Heurtstic (HLST) can
be directly applied for task scheduling in Step 2.1. Finally, the produced schedule is undergoing
an inspection procedure in Step 2.2 to ensure that the produced schedule can meet the pre-defined

scheduling specification.

For an application consists of n task N ={n,,n,,...,n,}with their relationship
represented in certain format such as a direct acyclic task graph (DAG). And
P={p,.p,,....p.} be a set of k processors that satisfies the physical resources
requirement to execute the application.
Step 1: Resources partitioning
Using procedure- of resources partitioning such as Algorithm 6.2,
partition the given processor set P to form a set of
homogeneous/heterogeneous VDP set C={c,,C,;,....,C,,}, where

Cp € P)5C)py € Py ete.

Step 2 For a VDP, set ' cannot be obtained in Step 1. Report the schedule is
rejected and quit. Otherwise,

2.1 Perform classical homogeneous/heterogeneous task-scheduling
algorithms for scheduling tasks into the VDP set C.

2.2 The produced schedule can start beyond the pre-specified start
time (7,,). In addition, parallel time (PT) of the produced
schedule is less than or equal to the period pre-specified start
(T,.,) and pre-specified end time (1,;) (PT <7, —T,), then
report the schedule is accepted. Otherwise, report the schedule
is rejected. Release the booked resources and qguit.

Algorithm 6.1. The Resources Oriented (RO) approach.

6.2.2 Resources partitioning

Resource partitioning is the first and the most important step in design based on the RO
approach. The partition part of processing power from the given processor set P forms a virtual
dedicated processor (VDP) set . In multiple-users and multiple-tasks scenario, any
tasks/applications can put forward their request simultaneously in practical parallel and
distributed systems. However, with such a varying situation, the problem is how a dedicated
processor environment can be partitioned. This problem is addressed by advance resources
booking and resources in the proposed contractual computing paradigm. This provides an
advanced scheduling information described in Section 4.2.3. According to the information and the
advanced resource booking mechanism, advanced resources booking can form a VDP set. In this,

part of processing power in a processor set P is partitioned to form VDP set C (where

Chapter 6: The Resources Oriented Approach (RF) 61

C={cpl,cp2,...,Cﬂil.l}) in a given period of time. Before going into details of resources

partitioning method, the characteristics of the VDP set are explored in the following sections.

A) Characteristics of a VDP set

The concept of a VDP sct is-to generate a vital dedicated resource space, which looks as if a
resource deterministic environment for tzisks scheduling. Therefore, the characteristics of a VDP
set should be the design of classical scheduling algorithms being proceeded. The feature of the
List Scheduling Heuristic and Heterogeneous List Scheduling Heuristic must abeit to the VDP set

C possesses with the following characteristics:

e Start time and end time of each partition (¢,) in the partition set C should be the same.

« The amount of resource (such as processing power) within a partition ¢, should be
constant,

¢ The amount of resource (such as processing power) between partitions not necessary be
identical; in such case, a heterogeneous VDP set is formed. Otherwise, a homogeneous

VDP set is formed.

« Total capacity (processing power) of the VDP set C should be greater than or equal to

that required by the application to be executed.
Example 6.1

Consider an application, which costs 110 instructions, should start at t=1s and stop at t=7s. A
possible VDP set C is given in Figure 6.1. The start time and the end time of each partition
should be the same so that the VDP are transpareni to any scheduling algorithms. In real-life,
most designs of classical scheduling algorithms assume that each processor has. constant
processing power. Therefore, the processing power within each partition of the VDP set should
keep constant. However, the amount of processing power between different partitions may not
necessary be the same. It is possible to form a homogeneous VDP by a VDP set that each cluster
has the same processing power. Homogeneous task scheduling techniques such as List Scheduling
Heuristic can be directly applied. However, a heterogeneous VDP set can be formed by a VDP set
that each cluster has difference processing power. Advanced task-scheduling techniques such as
Heterogeneous List Scheduling Heuristic proposed in previous Chapter can be employed. Again
totai processing power of the obtained VDP should be equal to the processing power required by

the application; otherwise, the application program cannot be completed due to lack of resources.

Chapter 6 The Resources Oriented Approach (RF)

62

Pracessor . Partition Obtained . ¢ of the obtained o
_ orm] rtit
set £ specifications | VDP set C at of the oblained partitions
TS=1, TE=7, -
Py=201ns/s C‘.’O 13
75% of the Py ins/s
TS=1, TE=7
P,=10ins/s ' > |C =5 ins/
TS sh0s of the Py TP
TS=1, TE=7, =25
P,=10insls | _ . Cp=2.5 B s) SR s
25% of the P, nsfs o T
Figure 6.1. Characteristic of VDP set C
B) A resources partitioning method: Partition by Assignment

Algorithmic description of a generic resources method “Partition by assignment” is presented
as Algorithm 6.2. This is to partition the available processing power of a given processor set in
accordance with a set of specification(s) called “Partition Specifications” (PS} which is given by
the application users. The PS pre-specifies the start time of the application, the end time of
executing the program and the amount of processing power required in each partition. Column 2
of Figure 6.1 shows an example of partitioning a VDP set C. Based on the specification,
resources bookings are submitted to resources providers, such as Local Manager (LM) for

resources granted and once all the required resources are granted, a VDP set C' can be obtained.

Let Tgand 7, denote the pre-specified start and end time of an application
program respectively, / be the processing power required by the application
program. For processors set F ={p0,p|,...,pll.l} {where IPI be the total number of
in P scheduler. Let

C = {ch’cpl"'"Cpll']}’ where p, € P be the set of partition specification for each

processors can be partitioned and wused by the

processor in P . And let C initially be an empty set,
Step 1:

1.1 Determine partition specification, 7, 7, and the set K, from application

LISEers.
FORi=0 to |P|

1.2 Submit a resource with the partition specification

7.1, R i1 to the lower layer contractors for resources grant.

request

1.3 The resources granter assesses the specification with its current and
scheduled resources. The resources are granted while the
specification is achievable. A positive acknowledgement returns with

Chapter 6: The Resources Oriented Approach (RF) 63

the exact amount of granted resources. Otherwise, return with a
negative acknowledgement.
.4 Upon receiving the acknowlédgement, a partition of processors ¢ pi 18

created. If the required resources can be granted, the amount of
processing power of ¢ is equal to the amount of granted resources

returned from the resources granter. Otherwise, the processing
power of ¢, is equal to zero.
NEXT i
Step 2:

If total processing power of the obtained VDP set C is greater than that of

I, return set C . Otherwise, release the booked resources and report failure
in resources partitioning.

Algorithm 6.2. Resources partitioning by assignment.

The Step 1.1 of the algorithm is to obtain Partition Specification (PS) from user’s

application. The partition specification is a triple composite of the pre-specified start time of the

partition (7), the pre-specified end time of the partition (7,) and the amount of processing
power required (R) to describe the shape of VDP set. When the application starts, 7 is being

specified. The value of 7 can be easily obtained from users, but it is difficult to determine T

and VDP (R) automatically due to their dependence on the application configuration. This
information can only be obtained from a generated schedule. This may be contradicted with the
design concept of the Resources Oriented approach. Therefore, the exact amount of resources

required in each partition cannot be determined directly and users should try their best to estimate
pre-specified end time and pre-specified partition specification C = {Cp(J 3Cplse- "Cﬂfl‘l} of the
desired VDP set in the partition.

In Step 1.2 to Step 1.4, resource booking is requested to the lower layer resources provider

for the VDP set. Figure 6.2a-c illustrates the procedure for granting of requested resources

granted. Consider a partition specification occupied 25% processing power of p, between the first

and the seventh second (R=25%. T, =1, T, =7). The instantaneous workload of processor p; is
summarized in Figure 6.2a. It is found that 50% of processing power had been booked by

application A, B and C during that period and the other 50% re3main free. Then, the lower level

contractor in p, is possible to book 25% of the remaining processing power from the prescribed

duration (i.e. t=1 to 7). Partition ¢, with processing power of 2.5 instructions in one seccond

(ins/s} as it is obtamned as shown in Figure 6.2b. Say, there is another application D (in Figure
6.2¢), which had booked the remaining 50% of processing power fromt=3 to 6. Then the request

for the 25% processing power requested from the first to the seventh second cannot be satisfied.

Chapter 6: The Resources Oriented Approach (RF) 64

Therefore, the processing power of partition ¢,; becomes 0. Hence, no cluster is available for the

schedule.

-, Te=1. Ty=7 R = 25% pracessing power of p'; = Pariition to form Cy

Pi(10ins / s}

P (10 ins/s)

P (10 ins/s)

(6.2¢c)
Figure 6.2a-c. an example of resources partition by assignment.

After obtaining a VDP set the partitioning algorithm (Step 2) is used to probe into the
amount of resources for VDP to complete an application. In real-life, the workload situation can
be varied. It is possible to guarantee the desired partitton through any partitioning procedure. For
the total processing powers of VDP set C less than that of the required by an application, the
application cannot be executed in the VDP set due to the insufficient of resources. Then the
booked resources should be released and the scheduling procedure terminated. On the other hand,
the obtained VDP set possesses the least resources required to execute the application program,
which may be executed in domain C, through proper task ordering. With classical scheduling
algorithm applying to schedule tasks into the VDP set, C, a desired solution can be obtained in

Step 2 of the RO approach.

6.2.3 Invoking scheduling algorithms

After a VDP set is obtained, the second step of the RO approach is to schedule the
application. Since the obtained VDP satisfies the necessary assumptions, with dedicated resources
in applying classical scheduling algorithm. The procedure of LS and HLS algorithm can be
applied directly in homogeneous or heterogeneous VDP set respectively in a real processor

environment. The only difference between the VDP and the real dedicated processor is that the

Chapter 6: The Resources Oriented Approach (RF) 65

VDP is only consistent within the pre-specified interval (7y to T,). The booked resources can

- only be guaranteed for a task scheduled within T, and T, . In Step 2.2 this situation is examined

so that the produced schedule should be executed within that interval.

6.3 Implementations of Scheduling Using RO Approach

Three proposed implementations of task scheduling algorithms applying the Resources
Oriented attempt is presented in this section. They are the Resources Oriented Heterogeneous
Dominant Sequent Cluster algorithm (RO-HDSC), the Resources Oriented Heterogeneous
Mobility Direct algorithm (RO-HMD) and the Resources Oriented Heterogeneous Relative
Mobility algorithm (RO-HRMS)-. Through the designs and implementations of these algorithms,
the properties of the RO approach can be observed. The design procedure is similar to that of

Chapter 5.3.

6.3.1 The Resources Oriented HDSC Algorithm (RO-HDSC)

For an application consists of n task N ={n,n,,...,n,} with their relationship
represented in certain format such as direct acyclic task graph (DAG]).
Moreover £ = {p,,p,,...,p,} be a set of k processors that satisfies the physical

resources requirement to execute the application. Let Tes and Teg denote the pre-
specified start and end time of an application program respectively, I be the
processing power required by the application program. Processors set

P={p,p,.....0,} can be partitioned and used by the scheduler. Let
C={c p0>Cprsee € } where p, &€ Pbe the set of partition specifications for each
processor in £ . And, let C initially be an empty set,

Step I:

1.1 Determine the partition specification 7;, 7, and the set R from

application users.
FOR i =0 to |P|

1.2 Submit a resource request with the partition specification {7,,7,,R s} o
the lower layer contractors for resources granted.

1.3 The resources granter assesses the specification with its current and
scheduled resources. The resources are granted while the specification is
achievabie. A positive acknowledgement returns with the exact amount of
granted resources. Otherwise, return with a negative acknowledgement.

1.4 Upon receiving the acknowledgement, a partition of processors ¢, is

created. If the required resources can be granted, the amount of
processing power of €, 1s equal to the amount of granted resources

returned from the resources granter. Otherwise, the processing power of

¢, 1s equal to zero,

Chapter 6: The Resources Oriented Approach (RF)

66

NEXT i
Step 2:

If total processing power of the obtained VDP set (' is greater than that of

I, return set C. Otherwise, release the booked resources and report failure in
resources partitioning.

Step3 For a VDP set C cannot be obtained in Step 1 report the schedule is
rejected and quit. Otherwise,

3.1 Perform HDSC for scheduling tasks into the VDP set (.

3.2 The produced schedule can start beyond the pre-specified start time (7).

to the period pre-specified start (T,;) and pre-specified end time (T re)

(PT <T,; —T,), then report the schedule is accepted. Otherwise, report
the schedule is rejected. Release the booked resources and quit.
Algorithm 6.3. The HDSC algorithm in Resources Oriented Implementation (RO-HDSC).

Moreover, parallel time {PT) of the produced