

Abstract

Research on motion retargeting and synthesis for character animation has been

mostly focused on the character scale variations. In our recent work we have ad-

dressed the motion retargeting problem for characters with different topologies. The

purpose of this research project has been to devise a new method for retargeting

captured motion data to an enhanced character skeleton having a topology that is

different from that of the original captured motion. The new topology could include

altered hierarchical structures, altered number of segments and scaled segments.

In this thesis, we propose a framework based on the concept of a motion control

net (MCN), an external structure analogous to the convex hull of a set of control

points defining a parametric curve or a surface patch. Retargeting is achieved as a

generalized inverse kinematics problem using an external MCN that encapsulates

the motion characteristics of the character embedded in the original motion data

and decouples the strong dependency of the motion on the topology of the original

motion skeleton. Convergence of the retargeting results requires dynamic modifi-

cation of the MCN structure. This also allows to interactively edit the MCN and

modify the conditions for the motion analysis. The new method can automatically

synthesize new segment information and, by combining the segment motion in the

MCN domain with a suitable displacement of control points embedded in the origi-

nal motion capture sensor data, the method can also generate realistic new motions

that resemble the motion patterns in the original data.

Acknowledgements

I would like to thank my supervisor Dr. George BACIU for providing valuable ad-

vice, kindly encouragement as well as technical support.

I would also like to thank all my friends from The Hong Kong Polytechnic Uni-

versity for their moral support.

Finally, I would like to thank my parents, brother, sister and all relatives for their

support, patience and encouragement when I was in depression.

Contents

1 Introduction 1

1.1 Problem . 3

1.2 Motivation . 3

1.3 Contribution . 5

1.4 Organization . 5

2 Background and Related Work 6

2.1 Overview . 6

2.2 Character Skeleton Definition . 8

2.3 Inverse Kinematics . 9

2.4 Inverse Rate Control . 11

2.5 Jacobian Transpose Method . 13

2.6 Cyclic-Coordinate Descent Method 15

2.7 Spacetime Method . 17

2.8 Pragmatic Spacetime Method . 19

2.9 Intermediate Skeleton . 20

3 Motion Control Net Theory and Implementation 23

3.1 Motion Control Net Construction 24

3.1.1 Motion Control Net Connection 25

3.1.2 Control Net Angles . 27

3.1.2.1 Hierarchical Data 27

3.1.2.2 Segment-to-Segment Movement 30

i

3.1.2.3 Orientation Data 31

3.2 Motion Control Net Manipulation 32

3.3 Inverse Control Net Overview . 33

3.4 The Inverse Control Net - Method 1 34

3.4.1 Segment-to-Segment Movement Recovering 36

3.4.2 Hierarchical Data Recovering 37

3.4.3 Orientation Data Recovering 39

3.4.4 A Topological Retargeting Example 40

3.5 The Inverse Control Net - Method 2 40

3.5.1 End Vector Prediction . 45

3.5.2 Restoration of Segment-to-Segment Movement 47

3.5.3 Restoration of Hierarchy Data 48

3.5.4 Restoration of the End Node Position 52

3.5.5 Restoration of the Orientation Data 52

3.5.6 End Node Adjustment . 53

3.5.7 A Topological Retargeting Example 53

3.5.8 Sensitivity Problem on the Hierarchical Data 54

3.5.9 Segment-to-Segment Movement Sign Changing Problem . . 57

3.6 The Inverse Control Net - Method 3 58

3.6.1 Node Position Restoration 59

3.6.1.1 Step 1 . 60

3.6.1.2 Step 2 . 63

3.6.1.3 Step 3 . 63

3.7 Singularity issue . 64

3.8 Data Format . 64

3.8.1 Internal Data Format. 65

3.8.2 Script File Format. 66

3.9 Data Flow . 67

3.10 Interface Design . 68

ii

4 Results 71

4.1 Retargeting of a Sword-Swinging Sequence 72

4.2 Retargeting of Dancing Sequence A 75

4.3 Retargeting of Dancing Sequence B 75

4.4 Retargeting Human Motion to a Spider Skeleton 76

4.5 Manipulation details . 77

4.6 Performance Comparison . 79

5 Discussion 80

5.1 Comparison . 80

5.2 Future Extension . 82

6 Conclusion 83

Bibliography 85

iii

List of Figures

2.1 (a) The source skeleton. (b) The destination skeleton. (c) The dotted

line is the new direction of the elbow. (d) The intermediate skeleton

has the same number of nodes and using the same local coordinate

frame as the source skeleton, while having the same orientation as

the destination skeleton. 21

3.1 A MCN configuration. The nodes of the left skeleton are the source

nodes and the nodes of the right one are the destination nodes. The

CNA of the node Dd
3 are generated by blending the CNA of nodes

Ds
2 and Ds

3. 25

3.2 The hierarchical data and segment-to-segment movement of the node

Ds
2 are named α2 and β2 respectively. Only the principle axes x and

y are shown in the figure. 27

3.3 (a) The arrows represent the coordinate frame M1. (b) The arrows

represent the auxiliary frame B. (c) Reference frames of different

nodes. (d) The hierarchical data. 28

3.4 The segment-to-segment movement. 30

3.5 (a) Ti is the translated coordinate frame of Ds
i−1. (b) The auxiliary

frame Gi. (c) The coordinate frame Mi of Ds
i . (d) γi is the angle

between the x axis of Gi and the x axis of Mi. Only the principle x

axis and y axis are shown in the figure. 31

iv

3.6 (a): Before applying the ICN method 1. The upper skeleton is the

original arm. (b): After the segment-to-segment movement recov-

ery. (c): After six iterations of applying algorithm 1. (d): After the

orientation data recovery, and the whole method 1 finishes. 41

3.7 First iteration of algorithm 1. 41

3.8 Second iteration of algorithm 1. 41

3.9 Third iteration of algorithm 1. 42

3.10 Fourth iteration of algorithm 1. 42

3.11 Fifth iteration of algorithm 1. 43

3.12 Sixth iteration of algorithm 1. 43

3.13 The steps for predicting the eighth end vector in the first prediction

iteration. Arrows show the principle axes of: (a) the coordinate

frame M1, (b) the auxiliary frame A1, (c) the auxiliary frame A1

post-multiplied by a rotational transformation which is formed by

an x-unit vector and φ. Other lines are the first seven predicted end

vectors. 46

3.14 The position of Dd
3 lies on the dotted ellipse if the magnitude of βg

2

is kept constant. a2 is the rotation axis for restoring the hierarchical

data of the node Dd
3. 48

3.15 Two possible motions restored by the ICN method 2. The position

of the end node of limb 1 and limb 2 lies along the direction of the

target line. 53

v

3.16 The steps of a topological retargeting example. The six lines, which

are shown from (a) to (d), represent the end vectors predicted in the

first iteration of the prediction algorithm. The lines are counted

clock-wise. The lines between p and q in (f) are the end vectors

predicted in the second iteration of the prediction algorithm. The

lines around r in (g) are the end vectors in the third iteration, al-

though the separation of the lines is so small such that the lines are

packed together. The line s in (k) is the final end vector. The source

arm is only shown in (a) for reference. 55

3.17 Another view of nodes Dd
1 and Dd

2 in figure 3.14(without showing

Dd
3 and Dd

4). The viewpoint is at the right hand side of figure 3.14

and is point at the target line (viewing the target line as a point, and

the point is in the same position as Dd
1.). The dotted ellipse is the

possible position of Dd
3, and the restored αr

3 is bounded to the range

[θi, θj]. 55

3.18 Left: The sign of βg
3 is negative. Middle: The sign of βr

3 is positive

after scaling some segments. Right: The sign of βr
3 is positive after

modifying βg
2 and βg

4 . 56

3.19 The geometric property of α3 and β2. X , Y , Z are the principle

axes of the coordinate frame M1. 60

3.20 The two solution pairs {r1, s1} and {r2, s2}. X , Y , Z are the prin-

ciple axes of the coordinate frame M1. 62

3.21 An example of two valid solutions. The right skeleton is selected as

final solution. 62

3.22 Data flow of the topological retargeting system. 68

3.23 Interface of the topological retargeting system 69

4.1 α and β of the additional segment. α and β of the skeleton III to V

are generated by displacing a curve on the original data. 73

vi

4.2 Retargeting of a sword-swinging motion. The leftmost skeleton I

is the source motion. The second skeleton II from left is a simple

retargeted motion. The arm movement of the third and fourth mo-

tion is created by shifting the CNA by a curve. The arms of the

rightmost skeleton V are synthesized by using two MCNs for each

arm. 74

4.3 Source dancing motion. 75

4.4 Retargeted dancing motion having an additional segment in the lower

leg. 75

4.5 Source motion of dancing sequence B. The stick figure is a pair of

crab legs which is produced by keyframing. 76

4.6 The arms are synthesized by blending different limbs of the source

motion. The movement of legs is created by combining the α of the

original leg and the β of the crab leg. 76

4.7 The source motion, a human walking sequence. 77

4.8 The retargeted spider motion. Each leg motion is created by blend-

ing the motion of human arm and leg in the MCN domain. 77

vii

List of Algorithms

1 The phase two of the ICN method 1 36

2 The algorithm used to find a solution in an interval. 38

3 ICN method 2 with a given end vector. 45

4 ICN method 2 without a given end vector. 45

5 ICN method 3 with a given end vector. 59

6 ICN method 3 without an end vector. 59

viii

List of Tables

3.1 Three phases of the ICN method 1 35

3.2 An example of boundary values. 39

3.3 The given αg
i , the given βg

i and the selected intervals. 39

3.7 A simple script controls the construction of the MCN and the run-

ning of the ICN. 70

ix

Chapter 1

Introduction

Motion capture is a practical and reliable technique for generating realistic mo-

tion for animated characters and has a broad range of usage in medical and biome-

chanical application, 3D simulation, feature films and entertainment. In contrast to

the traditional animation technique known as keyframing, which involves manually

creating a set of keyframes along the motion and then interpolating with interme-

diate frames, motion capture for computer character animation commonly involves

recording human motion and then mapping it onto the motion of computer charac-

ters.

Among different motion capture technologies, the most popular and accurate

motion capture system is an optical system. An optical system captures motion

by using at least three cameras to record the trajectory of the markers which are

attached to the performer’s body. The motion data is then calculated from the tra-

jectory by a motion capture software and recorded for immediate or delayed use.

Motion being captured in this way is usually represented and stored in skeleton-

based format.

The second part of motion capture for computer animation, which is the research

focus of this thesis, is mapping the captured data onto the motion of virtual char-

acters. The mapping is direct and straightforward if only playback of the motion

of the original performer’s skeleton is involved. In practical animation production,

1

however, the captured motion needs to be adapted to new character skeletons with

different type of variations. Such process is also known as motion retargeting. Var-

ious retargeting methods [36, 12, 35, 21, 38] have been developed for retargeting

motion to a destination skeleton having dimension variations, for example, scaled

segments. The proposed methods above, however, so far did not address the prob-

lem for retargeting to a skeleton with topological variations having altered number

of segments and altered hierarchical structures. An intuitive way to accomplish

topological retargeting might be to generate the movement of the additional seg-

ments by directly cloning the information from its neighbor segments [28], but the

additional segments and its neighbor segments would then move in a similar way,

resulting in an unnatural motion.

In order to create realistic motion, topological retargeting requires a data rep-

resentation which abstracts animation data from the skeleton hierarchy and de-

scribes limb motion regardless of the character skeleton topology. Motion control

net (MCN), the new data representation we proposed to actualize the decoupling of

the strong dependency of the motion characteristics from the topology of the origi-

nal captured skeleton data, is an external structure analogous to the convex hull of

a set of control points defining a parametric curve or a surface patch. MCN uses

three sets of data to represent animation data. The first data set stores the hierar-

chical data, the second data set stores the segment-to-segment movement and the

third data set stores the orientation data. These three sets of data together are named

control net angles (CNA). In order to effectively represent motion of the whole

body, different parts of the body are usually represented by different MCNs and a

particular segment in the skeleton can belong to more than one MCN.

The concept of retargeting through MCN is a process of specifying the mapping

between the segments in the captured character skeleton and the destination charac-

ter skeleton, and then creating the corresponding MCN(s). In case the destination

contains additional segments that are not found in the source character skeleton, the

movement of the additional segments can be produced by duplicating or interpo-

2

lating the CNA from its neighbors or other sources in the MCN domain. Existing

segments might need to be adjusted for matching its movement with the movement

of the additional segments, and the adjustment can be done by displacing a curve

on the CNA of the segments.

1.1 Problem

Problem in motion capture is that the recorded motion adheres to the particular

skeleton of the performer employed in the motion capture sessions. When the

recorded motion is applied to other different character skeletons directly, the main

characteristics of the motion may be lost and artifacts may be introduced. Vari-

ous retargeting methods [36, 12, 35, 21, 38] have already addressed the problem

of retargeting with dimension variations; however, these methods did not address

the problem for retargeting to skeleton with topological variations. The objective of

this thesis is to tackle the retargeting in the presence of the topological variations.

1.2 Motivation

Motion capture system for computer character animation, having begun develop-

ment since the late 1970’s and being improved over time, is now a proven way to

create realistic character motion. While motion capture system can virtually record

the motion of any moving object, the focus of many researches that have been done

before was on the precision of capturing human motion and how to reproduce the

captured motion to a virtual humanoid character. Driven by the widespread adop-

tion of motion capture system and the high demand of synthesizing non-humanoid

characters commonly seen in feature films and 3D games, the needs for using mo-

tion capture techniques to create various types of virtual animal and non-humanoid

characters are increasing. In most cases, however, since the costs of performing

motion capture is still relatively high and usually the characters being animated are

3

imaginary creatures that simply do not exist in the real world, capturing the mo-

tion from an object with similar size, shape and features is impractical. As a result,

captured human motion is being used to provide baseline reference in creating the

character motion, and high level of manual participation in the creation process is

still required.

In order to solve the above problem, various retargeting methods were devised

to map the captured motion to animated character having certain level of variations.

The most significant differences between a captured object and the animated charac-

ter can be classified into two categories: dimensional and topological variations. We

found that existing retargeting methods mostly address the problem of dimensional

retargeting only. The lack of a general topological retargeting method motivated us

to attempt devising such a method.

Our topological retargeting method differentiates from the traditional retarget-

ing by considering the modification of the skeleton topology. The idea of our topo-

logical retargeting comes from the physical operation of a marionette. A marionette

can be very easily controlled by a cross-bar from which strings are extended to the

main limbs of the marionette. The same cross-bar not only can control a human-like

figure, but can also control other non-humanoid puppets with high precision. Being

so simple but highly adaptive, the cross-bar mechanism gives us an intuition of how

to achieve general topological retargeting in our research. The controlling opera-

tions of a cross-bar can be roughly classified into three categories: one category

adjusts the body shape and the limbs of the marionette, another category adjusts

the reachable range of the limbs, and the last category adjusts the orientation of the

limbs. These categorized controls act as the major starting points for formulating

our retargeting method.

4

1.3 Contribution

Our research contributes to the field of motion retargeting by proposing a new topo-

logical retargeting method that performs motion retargeting in the presence of topo-

logical variations on character design. Four major contributions that have been

made by our research are:

1. motion control net (MCN), the structure that encapsulates the skeleton topol-

ogy,

2. control net angles (CNA), the data set that represents the animation details,

3. inverse control net (ICN), the method that converts the MCN and CNA back

to the motion data, and

4. a generalized retargeting method using the MCN framework that covers both

dimensional and topological retargeting.

1.4 Organization

The remainder of the thesis is organized as follows. In chapter 2 we review the

background information and other relevant works of motion retargeting. In Chapter

3 we present our work including how to construct the MCN from a recorded mo-

tion, how to calculate the CNA, how to manipulate the MCN and CNA to perform

topological retargeting, and how to preform the ICN. We also present the singularity

issue, data format, data flow and the interface design of our topological retargeting

system. In Chapter 4 we present some motion samples created by using our topo-

logical retargeting system and compare the performance of the ICN algorithms. In

Chapter 5 we compare our method with other retargeting methods and outline the

future extension. Chapter 6 offers our conclusion.

5

Chapter 2

Background and Related Work

2.1 Overview

Retargeting is a process that adapts a captured motion to a destination character

skeleton with dimension variations having scaled segments. The earliest research

bases on inverse kinematics (IK). Badler [1] used a minimal number of markers to

capture motion, and applied inverse kinematics to adjust the position of the limbs.

Subsequently, several variations of inverse kinematics were developed. Witkin and

Popovic [42] described a motion warping technique for generating smooth transi-

tion between modified frames. Choi and Ko [6] presented an on-line retargeting

system using inverse rate control. Shin et al. [36] demonstrated a real-time system

for retargeting using a dynamic importance measure and a hybrid inverse kinemat-

ics solver. Lee and Shin [21] presented a motion editing system using a hierarchical

curve fitting technique.

In order to generate realistic motion, physical constraints are added to the re-

targeting method, and a method with such constraints is spacetime method. This

method utilizes constraints both in time and space and casts the retargeting prob-

lem as a constrained optimization problem. Being an optimization based method,

spacetime method takes a user specified function as an objective function which

usually measures the total energy consumption of the generated motion. Motion is

6

then synthesized by satisfying the constraints and minimizing the objective func-

tion. Originally, the spacetime constraints approach was introduced by [41]. Cohen

[8] extended this approach into a more comprehensive system by adding a space-

time windows. Liu et al. [25] made a further improvement by adding constraints,

objective manipulations, and a representation for the degrees-of-freedom. Gleicher

[11] used a simplified spacetime technique to implement an interactive motion edit-

ing system. Gleicher [12] presented a pragmatic spacetime method.

In general, the methods mentioned above generate a motion similar to the orig-

inal motion. In animation production, however, an animator may wish to produce

new motion or create exaggerated motion based on existing motion. A number of

methods then have been developed for this purpose. Litwinowicz [23] first demon-

strated an animation system that creates motion using the signal processing tech-

nique. Bruderline and Williams [3] showed that the signal processing technique can

be applied to motion manipulation. Gleicher [14] described a method to modify

existing animation to follow a different path using constraint-based techniques. Liu

and Popović[24] demonstrated a system that transforms simple animation of a com-

plex dynamic character into realistic animation by applying laws of physics and the

bio-mechanical formulations. Kovar et al.[18] proposed a method for synthesizing

motion by using a graph structure.

There were some recent proposed methods focusing on retargeting motion to a

skeleton with altered number of segments. Monzani [28] described a method using

an intermediate skeleton and inverse kinematics for motion retargeting. The inter-

mediate skeleton, is constructed using the same local coordinate frame as the source

skeleton, has the same number of nodes as the source skeleton but has the same ori-

entation as the destination skeleton. The intermediate skeleton is used to convert the

motion from the source skeleton to the destination skeleton. Inverse kinematics is

then applied to the destination skeleton to establish spatial constraints. Dontcheva

[10] described a layered approach for creating and editing motion. The approach

focuses on mapping the motion of a real-time input device, such as reflective props,

7

widgets, or a mouse, to the motion of the skeleton. Spatial mapping between the

motion of the input device and the motion of the destination skeleton is calculated

by the Canonical Correlation Analysis (CCA).

In the following sections, we first give the character skeleton definition and then

present the details of different techniques for motion retargeting.

2.2 Character Skeleton Definition

A character skeleton is a hierarchy of segments. Each segment in the skeleton com-

prises of a pair of nodes, which are linked by a parent-child relationship. An ex-

ception to this relationship is the first node (root node) of the skeleton, which has

no parent. In a typical skeleton configuration, the relationship starts with the lower

torso as the root node, the upper torso as the child of the lower torso, and connected

all the way to the palm being the last child in the skeleton. Similar relationships

are also applied to link the foot and other limbs to the root node. Each node in the

segment chain has an unique number to identify them individually. The numbering

starts from the first node and continues to the end node, and a child node always has

an identity larger than its parent. In a skeleton, some nodes may have multiple child

nodes, creating a fan of segments.

Some retargeting methods focus on a particular segment chain of the skeleton

without regarding other segments in the skeleton. The first node of the segment

chain can be any node of the skeleton. The end node of the segment chain can be any

direct child node or any descendant node of the first node. In motion retargeting, the

end node is commonly named as the end-effector which appears first in the robotics

study. Originally, an end-effector is the description of a device or tool connected

to the end of a robot arm. When the end-effector is used to describe the end node

of a segment chain in a retargeting method, it is the node which the user selects to

working with.

8

2.3 Inverse Kinematics

In motion retargeting, the objective is to use the source motion data to drive the

movement of a target skeleton. The target skeleton usually has segment lengths

different from those of the source. As the segment lengths are changed, geometric

constraints, for instance, the foot must be placed above the ground, may be violated.

Under those cases, the target skeleton needs to be adjusted to re-establish the con-

straints; however, if the position of a node other than the root node is adjusted, the

position of all the descendant nodes will also be affected. Therefore, tools that can

position a node directly without affecting the descendant nodes are necessary for

the skeleton manipulation. One of these tools is inverse kinematics.

Kinematics is the study of the position, velocity and acceleration of the end-

effector without regarding the force driven the skeleton. Kinematics is divided into

two fields: forward kinematics and inverse kinematics. Prior to the discussion of

inverse kinematics, we first give a brief introduction to the basic idea of forward

kinematics.

Forward kinematics is the study of how the changes in the joint-space-parameters

of the segment chain affect on the position, velocity and acceleration of the end-

effector. Each segment in the chain contains joint-space-parameters[9]. The joint-

space-parameters forms a transformation T which is a 4 by 4 homogeneous matrix

comprised of translation and rotation. The transformation T transforms the coordi-

nate frame at the parent end (the node i − 1) of a segment to the coordinate frame

at the child end (the node i). T is written as:

T = TŶ (d) RẐ (θ) TX̂ (a) RẐ (α) (2.1)

where TŶ (d) creates a translational transformation along a y unit vector {0, 1, 0}T

with length d. TX̂ (a) creates a translational transformation along a x unit vector

{1, 0, 0}T with length a. RẐ (θ) creates a rotational transformation about a z unit

vector {0, 0, 1}T with θ degrees. RẐ (α) creates a rotational transformation about

9

a z unit vector {0, 0, 1}T with α degrees. The representation of the segment chain

that is formed by a list of Ti−1
i s is known as the Denavit-Hartenberg representation

[9].

In robotic study, any one of the joint-space-parameters can be a variable because

the segment of a robot has more degree-of-freedom [9] than the segment of a living

creature such as human. When the study of kinematics applies on a human skeleton

which contains only rotational joint, only the θ is a variable; other three parameters

d, a and α are fixed value that are used to describe the segment configuration.

In order to find the position and rotation of the segment n relative to the segment

i, all the transformation in between these segments are concatenated together:

Ti
n = Ti

i+1T
i+1
i+2...T

n−1
n (2.2)

If, for example, we want to find the global position and orientation of the segment

n, we set i to 0. The resulting global position and orientation are the concatenating

of all the transformation from node 0 to n:

T0
n = T0

1T
1
2T

2
3...T

n−1
n (2.3)

The relationship of the joint-space-parameters and the position and the orientation

in the Cartesian space can be written in this form:

x = f (q) (2.4)

where q is a vector of joint-space-parameters, and x is a vector of the position and

the orientation in Cartesian space.

Inverse kinematics is the study of how the position, velocity and acceleration of

the end-effector affect the joint-space-parameters of the segment chain. Given the

position and the orientation of the end-effector in Cartesian space, the joint-space-

parameters are calculated by the inversion of equation 2.4. The form of inverse

10

kinematics is:

q = f−1 (x) (2.5)

which is the basis of inverse kinematics.

The major problem of inverse kinematics, however, is hard to find the inverse of

the function f in equation 2.4 due to the highly non-linear nature of the function f. In

addition, a closed-form solution does exist only for some specific design robot arms

[40]. Therefore, inverse kinematics may only be applicable to part of a general

human skeleton by solving the inverse kinematics equation directly. In order to

apply inverse kinematics on an arbitrary skeleton, the inverse kinematics must be

solved by additional numerical methods or optimization techniques.

2.4 Inverse Rate Control

Inverse rate control is an iterative motion retargeting method. The problem of in-

verse kinematics is hard to find the inverse of the highly non-linear function f in

equation 2.4. Instead of finding the function inverse, inverse rate control takes the

derivative of the function f for performing motion retargeting. The derivative of

the function f is known as the Jacobian [40, 9]. The Jacobian of the function f re-

lates the rate of changes in the end-effector position and orientation ẋ to the rate of

changes in joint-space-parameters q̇:

ẋ = J (q) q̇ (2.6)

where q describes the current status of the segment configuration. J is the Jacobian

of the function f:

J =
δf

δq
(2.7)

J is a m ∗ n matrix, where m is the dimension of x. m is 3 when the equation

calculates only the position, or m is 6 when the equation calculates both the position

and the orientation. n is the number of segments involved in the calculation. The

11

inverse of equation 2.6 provides the basis for the inverse rate control:

q̇ = J−1 (q) ẋ (2.8)

Inverting the Jacobian J is easier than inverting the function f because the non-linear

complexity of the function f is reduced after taking the derivative.

A simplified inverse rate control method [6, 40], which is based on equation

2.8, performs motion retargeting without considering the orientation. The method

adjusts the skeleton by advancing the end-effector toward a given position in each

iteration within a small time step. In each iteration, ẋ is calculated as the differ-

ence between the current end-effector position and the given end-effector position.

The corresponding rate of changes of the joint-space-parameters q̇ is then given by

equation 2.8. q̇ is next integrated to q to find the new status of the skeleton config-

uration. Since q is changed in each iteration, J−1 (q) is valid only for a small time

step, and J−1 (q) must be recomputed at each iteration. The procedure ends when

the difference between the current end-effector position and the given end-effector

position is smaller than a threshold.

Although inverting the Jacobian J is easier than inverting the function f, some

problems exist when inverting the Jacobian. There are two causes of the problem

and the corresponding solutions:

Non-Square Matrix

The Jacobian matrix has a dimension of m ∗ n. m is the number of variables in

Cartesian space, and n is the number of segments involved in the calculation . If

n is larger than m, the segment configuration is redundant in degrees-of-freedom.

It means that the segment chain contains more degrees-of-freedoms than required

to position the end-effector. If n is smaller than m, the segment chain cannot be

moved in some direction in Cartesian space. In any case that m is not equal to n,

the resulting Jacobian matrix is a non-square matrix which has a problem in finding

12

the inverse as standard inverting methods work only for a square matrix. In order to

invert a non-square matrix, the pseudoinverse [5] method can be used.

Singularity

The Jacobian matrix is singular if it is not in full rank, or some rows are linear de-

pendent, or the determinant is zero. A singular matrix is not invertible. In the phys-

ical operation, a segment chain having a singular Jacobian matrix cannot be moved

in some direction in Cartesian space no matter how the joint-space-parameters are

changed. This problem can be solved by first detecting the singular condition using

the Singular Value Decomposition (SVD) [33], then using the damped least-squares

formulation [27] to solve the problem.

2.5 Jacobian Transpose Method

The methods described in the previous sections include a matrix inversion. There

may be problems in finding the inverse of a matrix. In contrast, the Jacobian trans-

pose method [40, 9] requires no matrix inversion. This method suggests a simplified

dynamic model for motion retargeting of which the calculation only needs to find

the transposition of the Jacobian matrix; therefore, this method has no matrix inver-

sion problems.

Dynamic is the study of the relation between external force and internal torque.

A force F is a set of pulling forces f along the principle axes of a coordinate frame:

F = {fx, fy, fz}T (2.9)

where {}T denotes matrix transpose. In the simplified dynamic model, the end-

effector is moved to a given position by a driving force which is calculated as

the difference between the given end-effector position xd (t) and the current end-

13

effector position xc (t):

F = xd (t)− xc (t) (2.10)

The external force F is related to the internal segment torque τ by the Jacobian

matrix that is calculated in equation 2.7:

τ = JTF (2.11)

The simplified dynamic model suggests that the internal joint torque τ can be

simplified to be the joint-space-parameters acceleration q̈, and the acceleration can

be further simplified to the joint-space-parameter velocity q̇. Equation 2.11 is sim-

plified to:

q̇ = JTF (2.12)

Jacobian transpose method performs motion retargeting by advancing the end-

effector toward a given position xd (t) in each iteration within a small time step.

In each iteration, the F is calculated as the difference between the current end-

effector position and the given end-effector position. The corresponding joint-

space-parameters velocity are then given by equation 2.12. q̇ is next integrated

to q to find the new status of the skeleton configuration. The method ends when

the difference between the current end-effector position and the given end-effector

position is smaller than a threshold.

Although this method avoids matrix inversion, there is still a problem. As the

matrix is inherently ill-conditioned, the Jacobian matrix is not completely immune

to singularity. In each iteration of the Jacobian transpose method, when a segment

chain approaches a fully extended configuration, the joint-space-parameters that is

calculated from equation 2.12 oscillate around this fully extended configuration.

Fortunately, this problem can be solved by using a smaller integration step-size,

or by using an integration method with an adaptive step-size, or by clamping the

joint-space-parameters velocity to a bounded value before integrating it into the

14

new status of the skeleton configuration.

2.6 Cyclic-Coordinate Descent Method

The Cyclic-Coordinate Descent (CCD) [39] method is an iterative heuristic search

method, having an approach different from the previous three methods for perform-

ing motion retargeting. The most important advantage of this method is that it is

completely immune to the matrix singularity and scales up to any number of seg-

ments. CCD starts motion retargeting from the end-effector up to the nth parent

segment in the segment chain. In each iteration, CCD focuses on only one segment

and only one of the joint-space-parameters of the segment is allowed to change in

order to minimize the position error and the orientation error of that segment. After

adjusting the nth parent segment of the end-effector, CCD goes back to adjust the

end-effector if the current end-effector is not matched to the given position and ori-

entation. CCD stops when the position error and the orientation error are smaller

than a threshold. Since there is only one changing variable at each CCD iteration, a

simple analytic solution can be formulated, and the execution speed of this solution

is fast enough to be a real time algorithm.

The basic element of CCD is the error measure. The position error is defined as

the square of the difference between the given position Pd and the current position

Pc of the end-effector:

Ep (q) = ‖Pd − Pc‖2 (2.13)

Let the current orientation be Oc = {u1c, u2c, u3c}T, and the given orientation be

Oc = {u1d, u2d, u3d}T . The orientation error is defined by:

Eo (q) =
3∑

j=1

((ujd · ujc)− 1)2 (2.14)

15

In each iteration, CCD minimizes the error function:

E (q) = Ep (q) + Eo (q) (2.15)

A simplified CCD method [20] focuses on the position only. The method takes

equation 2.13 as the error function. The detailed step of the method is the same as

the original CCD method except for the error function. In each iteration, error of

each node is minimized by rotating segment i about an axis ai with a degree φi. ai

is calculated by the cross product of two vectors: one vector −→Pid is the position of

the child end of segment i to the given position d, another vector −→Pie is the position

of the child end of segment i to the current end-effector position e. The equation of

ai is written as:

ai =
−→
Pid ×

−→
Pie (2.16)

The rotation degree φi is found by the dot product of the vectors used in equation

2.16:

φi =
−→
Pid ·

−→
Pie (2.17)

There is a behavioural difference in the interactive dragging operation when

comparing CCD and other methods. The inverse rate control and the Jacobian trans-

pose method adjust all segments in each iteration, and the manipulation of a segment

chain is similar to playing a flexible elastic rod. In contrast, CCD prefers making

changes to the distal segments, and the manipulation of a segment chain is similar

to pulling on a loosely connected chain. The dragging behavior of CCD, however,

can be changed by adding a damping factor d [20]. In each iteration, the rotation

degree φi is clamped to the damping factor by:

φi = max (φi, d) (2.18)

After introducing the damping factor, the dragging behavior of CCD is the same as

other methods.

16

2.7 Spacetime Method

Spacetime method is fundamentally different from the previously mentioned meth-

ods. Spacetime method focuses on the whole animation rather than an individual

frame; therefore, the generated motion is guaranteed to be smooth. This method

casts the retargeting problem as a constraint optimization problem. When an ani-

mator uses spacetime method to perform motion retargeting, the animator needs to

specify an objective function to measure the pose, and a set of spacetime constraints

to control the motion. The objective function is usually the total power consump-

tion of all segments. The objective function and the spacetime constraints are then

passed to an optimization algorithm which will find a pose that is best fitting the

spacetime constraints and having minimum power consumption.

The moving particle presented in [41] is a simple example of spacetime method.

The motion of the particle is governed by the Newton’s law of motion:

f = mẍ + mg (2.19)

where ẍ is the acceleration. m is the mass and g is the gravity. In order to simplify

the calculation of energy consumption, the function f is taken as energy consump-

tion in a unit time. The objective function R is the total energy of the motion which

is defined by the integration of function f over time:

R =
∫ tn

t0
|f (t)|2 dt (2.20)

In order to position the starting point in the x dimension to the position a and the

ending point in the x dimension to the position b, two boundary spacetime con-

straints are added:

c1 = x0 − a = 0

and

c2 = xn − b = 0

17

Before solving the objective function R with an optimization algorithm, the ẍ in

equation 2.19 has to be changed to a function x (t), depending on x only. A finite

difference formulas is used to approximate the acceleration:

ẍi =
xi+1 − 2xi + xi−1

h2
(2.21)

where h is the time interval between samples.

The above steps are used to generate motion of a single particle. For motion

retargeting, a similar technique is used, but spacetime method does not work on

the joint-space-parameters directly. The method works on the B-spline coefficient

of a motion curve of which the minimization will not cause rapid oscillations. An

example of using spacetime method to perform motion retargeting is given by [35].

In the example, kinematics constraint is enforced on the foot by:

rk (t) = ‖pa (t)− pd (t)‖2 (2.22)

where pa (t) is the actual position of the foot and pd (t) is the given position of the

foot. The objective function R is defined by the integration of all K constrained

frames across the constrained time interval from t1 to t2:

R =
∫ t2

t1

K∑
k=1

rk (t) dt (2.23)

Although spacetime method outputs smooth motion, the method has two prob-

lems. The first problem is the slow execution speed. The optimization algorithm

that is used in the spacetime method is usually a complex and non-linear algorithm

which has a slow execution speed. In addition, spacetime method involves apply-

ing such algorithm to all frames of the motion; therefore, spacetime method may

not able to provide a real time manipulation ability. Another problem is that the

spacetime constraints are highly sensitive to the initial state. If the initial state is far

away from the solution, the optimization algorithm may not be able to converge to

18

the solution.

2.8 Pragmatic Spacetime Method

While the constraints are easily specified for a moving particle, the constraints are

much more difficult to be specified in retargeting a human motion if high level qual-

ities of the motion must be preserved. Gleicher [12] presented in his work a more

pragmatic approach for retargeting using the spacetime method. His approach has

the following characteristics. It avoids encoding the high level qualities mathemat-

ically. It avoids using too many different types of constraint and objective in the

system. His approach also tackles the problem without solving optimization prob-

lems which are costly to solve.

The pragmatic spacetime method adapts the motion from a character to another

character having identical structure but different segment lengths while preserves

desirable qualities of the source motion. The qualities are preserved by maintaining

the identified features of the motion as constraints in the optimization process. The

constraints can be violated if the character segment lengths are changed. The vio-

lated constraints are re-established by a spacetime constraints method, which works

on the entire motion instead of individual frames.

The method consists of five steps:

1. Identify the constraints of the initial motion. Some of the constraints provided

by Gleicher’s system are: a parameter is in a range, a point follows a specific

location, a point is in a region, a point is in the same position at different time,

a point follows a path, two points are a specified distance apart and the vector

between two points has a specified orientation.

2. Calculate an initial estimate motion m1 (t) which is comprised of a scaling

of the skeleton and a translation to recenter the scaled skeleton. The transla-

tion is necessary for establishing the constraints such as a footprint constraint.

This translation is then interpolated to frames that has no any displacements,

19

and the translation is filtered with a low-pass filtering to remove high frequen-

cies.

3. Choose a representation for the displacement curve d (t) in order to constrain

the curve not to have high frequencies. A cubic B-splines is chosen in the

method. The control point of the curve can be placed with different spacing

for representing different frequencies in the motion.

4. Calculate a displacement curve d (t) by solving the constraints. When d (t) is

added to the m1 (t) calculated in step 2, the constraints should be satisfied.

5. (Optional) If the above step cannot satisfy the constraints sufficiently, use

(m1 (t) + d (t)) as the initial estimate motion and a denser set of control

points for the displacement curve to start a new iteration of calculation.

Since this pragmatic approach simplifies the original spacetime method, some ar-

tifacts appear in the resulting motion. In addition, unrealistic motion may appear

because of the choosing of only geometric constraints in the system.

2.9 Intermediate Skeleton

Intermediate Skeleton [28] takes a different approach to perform motion retargeting.

This method differentiates from other works by considering retargeting motion to

a skeleton with different number of segments. The method consists of two steps.

The first step is to construct an intermediate skeleton which has the same number of

nodes and has the same local coordinate frame as the source skeleton, while having

the same orientation as the destination skeleton. The second step is to copy the local

value of the intermediate skeleton node to the destination skeleton node. IK is then

used to adjust the nodes for satisfying the geometric constraints.

Figure 2.1 shows how to construct the intermediate skeleton. Figure 2.1 a shows

the source skeleton, and 2.1 b shows the destination skeleton. Figure 2.1 c shows

the initial intermediate skeleton, which has the same number of nodes and same

20

(a) (b)

(c) (d)

Figure 2.1: (a) The source skeleton. (b) The destination skeleton. (c) The dotted
line is the new direction of the elbow. (d) The intermediate skeleton has the same
number of nodes and using the same local coordinate frame as the source skeleton,
while having the same orientation as the destination skeleton.

local coordinate frame as the source one. The dotted line of the figure is the new

orientation of the elbow in which the orientation is the same as the elbow in the

source skeleton. The elbow after rotating to the new orientation is shown in figure

2.1 d. After rotating the elbow to the dotted line, all the descendant nodes are rotated

in a similar way and the construction of intermediate skeleton is finished.

This method can handle altered number of nodes in the skeleton. For the case

that the source skeleton has additional nodes, the nodes are regarded as one sin-

gle nodes. For the case that the source skeleton has fewer nodes, the value of the

21

existing nodes is distributed to multiple destination nodes. However, if the initial

posture of the source skeleton and the destination skeleton is extremely different,

problems may happen if the value of intermediate skeleton is copied directly to the

destination skeleton.

22

Chapter 3

Motion Control Net Theory and

Implementation

The flow of our topological retargeting method is divided into three steps. The first

step is the conversion from the original motion data into our data representation the

motion control net (MCN) and the control net angles (CNA). The second step is

the manipulation using our data representation, where the topological retargeting is

performed. The final step is the conversion from our data representation back to the

original motion data format through the process inverse control net (ICN).

The first step involves the MCN construction which is divided into two parts.

The MCN is first constructed by connecting the source character skeleton to the

destination character skeleton. After the connection, each parameter of the CNA is

calculated.

The task in the second step is the manipulation of the structure of the MCN and

the parameters of the CNA. Since the manipulation is done by an animator, the im-

plementation of the topological retargeting method only needs to give the animator

the flexibility for adjusting the topology of the character skeleton and controlling

the character motion.

The final step is the conversion from the MCN and the CNA back to the original

motion data format by using the ICN. We have developed three different methods

23

for performing the ICN. Each method has a different characteristics.

3.1 Motion Control Net Construction

A MCN is an interconnection between different segments of character skeletons,

representing by a graph structure. In this graph, a node represents the child end of

a segment. An edge identifies the connection between nodes. A node can either

serve as a source node to provide data or a destination node to receive new data. In

the destination node, additional parameters are used to provide extra information to

perform the ICN.

Each node of a MCN contains CNA which encapsulate animation data. Each

CNA consists of three parameters: the hierarchical data α, the segment-to-segment

movement β and the orientation data γ . The first two parameters, α and β , store

the position information of the node. The third parameter γ stores the orientation

information of the node. All three parameters are rotational angles. The α parame-

ter of all nodes is relative to a common reference point while parameters β and γ of

each node are relative to its parent node.

For the rest of the discussion, we have made two assumptions about the orig-

inal motion data. The first assumption is that the original motion is stored in the

Hierarchical Translation Rotation (HTR) format, a commonly used format for stor-

ing motion captured data, in which the position and the orientation of each node

are relative to its parent. In order to calculate the global position and orientation

of each node from the HTR format, the relative translation and the relative rotation

of each node are post-multiplied on its parent node. The second assumption is that

the translation direction of the relative translation is the y axis of the coordinate

frame of its parent node. We make this assumption because our method takes this

direction as a reference for the formulation. If the translation direction is changed,

certain constants and the choice of the reference axes in the CNA calculation must

also be changed too.

24

Figure 3.1: A MCN configuration. The nodes of the left skeleton are the source
nodes and the nodes of the right one are the destination nodes. The CNA of the
node Dd

3 are generated by blending the CNA of nodes Ds
2 and Ds

3.

3.1.1 Motion Control Net Connection

A basic MCN connection requires two character skeletons. The first skeleton is the

source character skeleton accompany by a motion clip. The second skeleton is a

character skeleton having a topology different (for topological retargeting) from the

source character skeleton. The first step of the connection is to set up a base node

and an end node on the source character. These two nodes are the reference nodes

for the system to calculate the CNA between them. The next step is to set up a

base node and an end node on the destination character. These two nodes notify the

system that the nodes between them are the place holder for receiving retargeting

information. The final step is to link between the nodes of the source character and

the destination character.

The method that we have developed uses the position and the orientation infor-

mation of the first two nodes of the MCN as reference nodes for calculating the

CNA and performing the ICN; therefore, the reference nodes will be kept station-

ary when the ICN is performed. This property of the reference nodes may lead to

some confusions when choosing the base node and end node. The followings are

some guidelines for choosing a suitable base node and end node on the source and

destination character and setting the connections between them.

25

Figure 3.1 shows an example of a MCN configuration which is used for retar-

geting a human arm to another arm having an additional segment in the forearm.

First, the base node and the end node are set on the source character skeleton which

is the left skeleton in the figure. The end node is the palm, Ds
4. The base node is the

node prior to the elbow, the shoulder Ds
1. An identifier number (Ds

i , i = 1 · · · n)

will then be given to each node starting from the base node and continuing to the

end node. In this configuration, n is being equal to 4. Since the first two nodes

of the MCN are the reference nodes, the base node must be one node prior to the

segment chain which is going to perform retargeting.

Second, the base node and the end node are set on the destination character

skeleton which is the right skeleton in the figure. The base node is the shoulder, Dd
1,

of which the setting allows the ICN to perform motion retargeting starting from the

elbow. The end node is the palm, Dd
5. Similarly, the numbering of the destination

nodes
(
Dd

i , i = 1 · · · n
)

starts from the base node Dd
1 and continues to the end

node Dd
5, with n being equal to 5.

The final step of connecting the MCN is to specify the linkage. The linking

criterion is that one destination node should be linked to one or many source nodes,

and different source nodes can be combined to form a new synthetic source node.

More importantly, source nodes from different source skeletons can be linked to

the nodes of a particular destination character. In figure 3.1, the source nodes Ds
1,

Ds
2, Ds

3 and Ds
4 link to the destination nodes Dd

1, Dd
2, Dd

4 and Dd
5 respectively. For

the synthesized node, the connection is the the source nodes Ds
2 and Ds

3 linking to

the destination node Dd
3, and the CNA of Dd

3 is generated by blending the CNA of

the source nodes Ds
2 and Ds

3. The general equations for synthesizing the data of a

new source node Ds
src are the linear combinations of the parameters of the CNA:

αsrc =
∑

i kiαi, βsrc =
∑

i jiβi and γsrc =
∑

i liγi where ki, ji and li are some factor

values, and the subscript i is the identifier of the source nodes. The source nodes

can come from different source skeletons, and the sum of the factor values would

not necessarily be equal to 1.

26

Figure 3.2: The hierarchical data and segment-to-segment movement of the node
Ds

2 are named α2 and β2 respectively. Only the principle axes x and y are shown in
the figure.

3.1.2 Control Net Angles

Each node of a MCN contains CNA, which comprises of three parameters: the

hierarchical data α, the segment-to-segment movement β and the orientation data

γ . The equations which calculate the parameters are described in the following

sections. There are two usages of the equations and two choices of the nodes,

depending on the context: when the equations are used for calculating the CNA of

a MCN, the nodes are the source nodes; when the equations are used for validating

the CNA of a node after performing retargeting through the ICN, the nodes are the

destination nodes. In the calculations of the following sections, the nodes default to

the source nodes.

3.1.2.1 Hierarchical Data

The hierarchical data α (shown in figure 3.2 and 3.3d) stores the hierarchical infor-

mation of the MCN. Each αi of Ds
i in the MCN is relative to a reference frame Ri.

Before calculating the reference frame, we construct an auxiliary frame B which

aligns one of the principle axes of the coordinate frame of the base node to the cen-

ter line. The center line ˆrn/1 is defined as a normalized vector which subtracts the

position of Ds
n from Ds

1. B is the coordinate frame of the base node post-multiplied

by a rotational transformation which aligns ˆr2/1 to ˆrn/1. With the second assump-

tion of the original motion data, ˆr2/1 is the same as the y axis of M1 which is the

27

(a) (b)

(c) (d)

Figure 3.3: (a) The arrows represent the coordinate frame M1. (b) The arrows
represent the auxiliary frame B. (c) Reference frames of different nodes. (d) The
hierarchical data.

coordinate frame of Ds
1. The auxiliary frame B is written as:

B = M1R ˆr2/1× ˆrn/1

(
arccos

(
ˆr2/1 · ˆrn/1

))
(3.1)

where × is the cross product operator. · is the scalar product operator. Rx (θ) is a

rotation function, and its result is a rotational transformation. The parameter x of

the rotation function is the rotation axis, and the parameter θ is the rotation angle.

The auxiliary frame B is then post-multiplied by a translational transformation to

form the reference frame Ri. The transformation is formed by the center line and

the projection of ri/1 on the center line as the distance. The Ri is written as:

Ri = BTŶ

((
ˆri/1 · ˆrn/1

) ∥∥∥ri/1
∥∥∥)

(3.2)

where Tx (d) is a translation function, and its result is a translational transformation.

The parameter x of the translation function is the translation axis, and the parameter

28

d is the length of the translation. Ŷ is a unit vector {0, 1, 0}T. ri/1 is a vector which

subtracts the position of Ds
i from Ds

1. ‖.‖ returns the length of the input vector.

The magnitude of the hierarchical data is the angle between two vectors about

the center line. The first vector is one of the principle axes of the reference frame

Ri. With the second assumption of the original motion data, we take the x axis

of the reference frame to be the first vector. Another vector ri/E4(Ri) is from the

position of the node Ds
i to the position of the reference frame Ri. The function

Er
c (M) is used to extract a vector or a scalar from the input, where c is the column

number, r is the row number and M is the input. In order to extract the position

vector from the reference frame, the column number c is set to 4 and the row number

r is ignored. The magnitude of αi is written as:

α
′

i = arccos
(
E1 (Ri) · r

i/E4(Ri)
)

(3.3)

where the x axis (first column) of the input reference frame is extracted by setting c

to 1 in the extraction function Er
c (M). α

′
i is in the range [0, 180] degree. The sign

of α
′
i is determined by the cross product of the vectors E1 (Ri) and ri/E4(Ri). If the

result of the cross product is in the opposite direction of the center line, the sign of

αi is negative. αi is written as:

αi = α
′

iυ
(
E1 (Ri)× ri/E4(Ri), ˆrn/1

)
(3.4)

where

υ (., .) =

1 if both inputs are in the same direction

-1 otherwise.

From the above equations, α depends on the center line; therefore, if the MCN is

re-configured with a different base node and end node, the value of α for a particular

node may be different, but the magnitude differences of α with that of its neighbour

nodes will remain the same.

29

Figure 3.4: The segment-to-segment movement.

3.1.2.2 Segment-to-Segment Movement

The segment-to-Segment Movement β (shown in figure 3.2 and 3.4) stores the angle

between two segments. In order to calculate βi for the node Ds
i , it is necessary to

have the position information of the nodes Ds
i−1, Ds

i and Ds
i+1. First we write the

magnitude of βi as:

β
′

i = arccos
(

ˆri/i−1 · ˆri+1/i
)

(3.5)

Similar to the calculation of α, we also need to determine the sign of βi by using a

reference frame which is the Ri from equation 3.2 post-multiplied by a rotational

transformation. The rotational transformation is formed by the center line and αi.

Since the y axis of Ri is in the direction of the center line, the rotation axis of the

rotational transformation is a y unit vector. The reference frame Ri becomes:

Ri = RiRŶ (αi) (3.6)

The sign of βi is determined by the dot product of the z axis of Ri and the result of

the cross product of the vectors used in equation 3.5:

βi = β
′

iσ
(
E3 (Ri) ·

(
ˆri/i−1 × ˆri+1/i

))
(3.7)

30

(a) (b) (c) (d)

Figure 3.5: (a) Ti is the translated coordinate frame of Ds
i−1. (b) The auxiliary

frame Gi. (c) The coordinate frame Mi of Ds
i . (d) γi is the angle between the x

axis of Gi and the x axis of Mi. Only the principle x axis and y axis are shown in
the figure.

where

σ (x) =

1 x ≥ 0

-1 otherwise.

After inspecting the equations, the magnitude of β is a constant, and the sign of

β will be changed if the choice of the base node and end node are changed.

3.1.2.3 Orientation Data

The orientation data γi stores the differences in rotation between the node Ds
i and

its parent node Ds
i−1 about an axis which is in the same direction as the translation

direction of the second assumption of the original motion data. In order to find

the orientation data, we first define the translated coordinate frame Ti (shown in

figure 3.5a). Ti is the coordinate frame Mi−1 post-multiplied by a translational

transformation which is formed by a y unit vector and the translation value of the

HTR data of Ds
i . We then create an auxiliary frame Gi (shown in figure 3.5b) by

post-multiplying Ti with a rotational transformation which is formed by the result

of the cross product of the vectors used in equation 3.5 and β
′
i:

Gi = TiR ˆri/i−1× ˆri+1/i

(
β
′

i

)
(3.8)

From figure 3.5b and 3.5c, the y axis of Gi is the same as the y axis of Mi. The

magnitude of the orientation data is calculated by the dot product of these two axes:

γ
′

i = arccos (E1 (Gi) · E1 (Mi)) (3.9)

31

Similarly, we have to check the sign of this magnitude. The sign of γi is determined

by the dot product of the y axis of Mi and the result of the cross product of the

vectors E1 (Gi) and E1 (Mi). γi is written as:

γi = γ
′

iσ [(E1 (Gi)× E1 (Mi)) · E2 (Mi)] (3.10)

Since the calculation of γ does not depend on the reference frame, this variable

is a constant under different MCN configurations.

3.2 Motion Control Net Manipulation

The MCN manipulation is a user editing process where the topology and animation

details modifications are performed. In our implementation, the MCN manipula-

tion includes four major types of editing: displacing a curve to the CNA, setting

keyframes on the CNA, re-ordering the nodes of the MCN, and making different

combination on the MCN and the CNA. The first two types provide animation de-

tails modifications, and the last two types provide topology modifications. One

should note that the MCN manipulation mentioned above is just one particular im-

plementation of the possible MCN editing features. There is generally no limitation

on how a user performs the MCN manipulation provided that the connection of the

resulting MCN is valid to perform the ICN. More details on the manipulation will

be given in section 4.5.

The manipulation functions are provided by a set of graphical user interface in

our implementation; however, some of the modifications are too complicate to be

controlled with the graphical user interface alone, and so they are controlled by a

script instead. More details on the graphical user interface and the script will be

given in later sections.

32

3.3 Inverse Control Net Overview

The inverse control net (ICN) is a process that converts a given MCN as well as the

related CNA back to a motion format which stores the position and the orientation

of each node with reference to the world coordinate. This format is named global

format, and it can be converted back to the HTR format, which is the original motion

data format, with some existing methods, but they are not mentioned in this thesis.

A major difference between the ICN and other retargeting methods is the end-

effector positioning. Most of the retargeting methods require only the position of

the end-effector which is given by an animator in order to calculate the joint-space-

parameters of the segment chain. In contrast, our method would not necessary

need the end-effector position. Instead, we use the end node position information

which is embedded in the CNA. Although end-effector position is not a necessary

information to perform the ICN, our method can use a given end-effector position

for a direct positioning purpose.

The ICN algorithm is the second important part of the MCN theory because the

MCN itself is a set of linkages and values, providing no visual feedback for an ani-

mator to work with, and the MCN is useful if it can be converted back to the original

motion data format. In addition, the response time of the ICN algorithm should be

short because a user may need to edit the motion interactively. However, the steps

of the ICN which are used to find the embedded end node position information are

complicated because the information cannot be restored by simple matrix multipli-

cation, computation time may be long. In order to develop a fast ICN algorithm, we

have tried different strategies to restore the end node position information.

The ICN method 1 is a preliminary algorithm. The major purpose of this method

is to verify the feasibility of the conversion from the MCN back to the original

motion data format. The disadvantage of method 1 is the slowest execution speed

because the method is a recursive algorithm. Then the ICN method 2 has been

developed as an iterative algorithm with a prediction algorithm which predicts the

end node position. With the predicted end node position, the execution speed of

33

method 2 is faster than method 1. There are two advantages of method 2. The first

advantage is that method 2 can find the closet solution if there is no exact solution.

The second advantage is that method 2 can partially handle the sensitivity problem

which is discussed in section 3.5.8.

To further addressing the sensitivity problem, we have developed the ICN method

3. Method 3 is similar to method 2 as method 3 also utilizes the end node predic-

tion algorithm. The main difference is that method 3 uses a closed-form solution to

restore the motion, and this difference makes method 3 the fastest method among

the 3 methods. However, method 3 itself still cannot solve the sensitivity problem.

A fully automatic sensitivity problem solver is required to solve the problem com-

pletely, while method 3 only implemented a preliminary algorithm of the solver.

Further development is required to extend and complete the solver in the future.

In the following three sections, we are going to present the three ICN methods.

In the discussion, some procedures work on a portion of the segment chain which is

indicated by the term working list. In addition, we use the superscript to distinguish

two types of representation of the CNA. The first one is the CNA of the source

nodes, or the modified CNA, represented by αg, βg and γg. The second one is the

restored/recovered CNA of the destination nodes, represented by αr, βr and γr. In

order to calculate the restored/recovered CNA, equations in section 3.1.2.1 are used,

but the formulation of the vector ˆri/j is different from the equations described in the

section in which the position of the source nodes is used to form the vector. The

vector ˆri/j used to calculate the restored/recovered CNA is formed by the position

of the destination nodes.

3.4 The Inverse Control Net - Method 1

Method 1 takes a brute-force approach for converting the MCN back to the original

motion data format. A major disadvantage of the method is that the solution of the

method may be trapped in a local minimum. In addition to the trapping problem,

34

1 Recover the β of the nodes.
2 Call algorithm 1 with Dd

2 and Dd
n as input parameters to recover the α of

the nodes.
3 Recover the γ of the nodes.

Table 3.1: Three phases of the ICN method 1

the execution speed of the method is slow because of the recursive nature of the

method. Although there are some disadvantages, we still include the method in

this thesis because the method can: verify the feasibility of the conversion from the

MCN to the original motion data format, provide a better understanding of the idea

of the ICN, and provide an introduction to the other two ICN methods.

Method 1 consists of three phases which are listed in table 3.1. The first phase

recovers the segment-to-segment movement β . The second phase recovers the hi-

erarchical data α by calling algorithm 1 with Dd
2 and Dd

n as input parameters. The

position of the nodes are found as β and α are recovered. The final phase recovers

the orientation data γ . The most complicated part of method 1 is the second phase,

which is a recursive algorithm.

Algorithm 1 shows the steps of the hierarchical data recovery. The algorithm

uses an error function to measure the accuracy of the hierarchical data of the seg-

ment chain. The function calculates the total sum of differences of the given hier-

archical data αg
i and the recovered hierarchical data αr

i that is calculated after the

recovery. The error function is defined as:

err
(
Dd

j , Dd
n

)
=

n∑
i=j

(‖αg
i − αr

i‖) (3.11)

In line 2 of the algorithm, a for loop with limited iteration is used to prevent the

algorithm from running into an infinite loop in case the error function always gives

a value larger than a predefined threshold. The case occurs when an iteration adjusts

αi of Dd
i in order to achieve a minimum error value, and this adjustment affects all

αjs of other nodes, making the error value in their next iterations larger than those

of their previous iterations. This case is a local minimum trapping problem that

35

should be avoided. From our experiments, setting the maximum iteration of the for

loop to 10 is enough to successfully recover the hierarchical data while preventing

the algorithm from running into an infinite loop if no solution can be found.

Algorithm 1 The phase two of the ICN method 1
Input parameters: A from destination node Dd

f . A to destination node Dd
t .

1 void hierar recover(Node Dd
f , Node Dd

n){
2 for(i=0; i<10; i++){ / / avoid infinity looping .
3 i f (Dd

f == Dd
t)

4 return;
5 call hierar recover(Dd

f+1 , Dd
t) ;

6 set err val = err (Dd
f , Dd

t) ; / / call the equation 3.11 .
7 i f (err val > threshold){
8 recover the hierarchical data of Dd

f by the method described in
section 3.4.2.

9 set err val = err (Dd
f , Dd

t) ; / / call the equation 3.11 .
10 i f (err val < threshold)
11 break;
12 }
13 else
14 break;
15 }
16 }
17 }

In the following sections, we present the element operations of each phase of the

ICN method 1, then present an example of using method 1 to perform a topological

retargeting.

3.4.1 Segment-to-Segment Movement Recovering

Segment-to-segment movement recovering is the first phase of the ICN method 1.

The working list of this phase is the nodes from Dd
2 to Dd

n−1. Before starting any

calculations, the rotation data of the working list is reset. The next step is to match

the βrs of the working list to the given βgs. In order to do this, we need to find a

rotation axis which is an arbitrary axis, and we use a x-axis {1, 0, 0}T for simplicity.

The rotation axis is then made relative to the coordinate frame of the node by adding

the position of the node and pre-multiplying by the inverse of the coordinate frame

36

of the node. βr
i of the node Dd

i is then recovered by post-multiplying Mi by the

rotational transformation which is formed by the rotation axis and βg
i :

Mi = MiRM−1
i ({1,0,0}T+E4(Mi))

(βg
i) (3.12)

3.4.2 Hierarchical Data Recovering

The hierarchical data recovering is a step of the phase 2 of the ICN method 1. The

idea of recovering hierarchical data is to rotate the node Dd
i about an axis to min-

imize the error of αr
i while preserving βr

i−1. First we find the axis for the rotation.

The rotation axis E2 (Mi−1) is the y axis of the coordinate frame of Dd
i−1, which

is equal to E2 (Ti) (Tiis given in section 3.1.2.3). When Mi is post-multiplied

by the rotational transformation which is formed by this axis to recover αr
i , βr

i−1

remains unchanged; however, the sign of βr
i will be changed. Then the axis is made

relative to the node Dd
i by adding the position of the node and pre-multiplying by

the inverse of Mi. The axis is written as:

ai = M−1
i (E2 (Ti) + E4 (Mi)) (3.13)

In order to rotate the node Dd
i , the coordinate frame Mi of the node is post-multiplied

by the rotational transformation which is formed by the axis ai and θi(given in later

steps) :

Mi = MiRai
(θi) (3.14)

The possible range of θi is [0, 360] degree. We use a method that is similar to

the bisection to find the suitable value of θi. However, there exists a problem that

the method may find two solutions in the range, one is correct and one is fake. If

the method finds θi starting with the interval [0, 360], one of the solutions may be

missed. In order to solve the problem, the possible range is divided into several

sub-intervals. From our experiments, we find that dividing the range into 10 sub-

intervals is enough to find the two solutions. The 10 sub-intervals are then passed

37

to algorithm 2 one by one to find the solution. Since αr
i and the sign of βr

i will be

changed after applying equation 3.14, these two values are used as the criteria to

guide the bisection.

Algorithm 2 lists the steps which find the solution from an interval. The function

same sign that is used in line 9 returns true if the parameter 1 has the same sign as

the parameter 2 or the parameter 1 has the same sign as the parameter 3. The

algorithm returns no solution if the input interval contains a fake solution or has no

solution.

Algorithm 2 The algorithm used to find a solution in an interval.
Input parameters: A given αg

i and a given βg
i . An interval information: the left

boundary θL
i and the right boundary θR

i .
Note: αL

i and βL
i are calculated by using the Mi which is calculated by equation

3.14 using the input θL
i . αR

i and βR
i are calculated similarly.

1 float interval solver(float αg
i , float βg

i , float θL
i , float θR

i){
2 i f (βg

i == βL
i &&

∣∣∣αg
i − αL

i

∣∣∣ < threshold)
3 return θL

i ; / / check i f the le f t boundary is the solution .
4 i f (βg

i == βR
i &&

∣∣∣αg
i − αR

i

∣∣∣ < threshold)
5 return θR

i ; / / check i f the right boundary is the solution .
6 set θM

i =
(
θL

i + θR
i

)
/2 ; / / the θ value in the middle of the interval .

7 set MM
i by using equation 3.14 with θM

i ; / / update the coordinate
frame with θM

i

8 calculate αM
i and βM

i by equation 3.4 and 3.7 using MM
i ;

9 i f (αM
i <= αg

i && αg
i <= αR

i && same sign (αg
i , αL

i , αR
i))

10 return interval solver(αg
i , βg

i , θM
i , θR

i) ;
11 else if (αL

i <= αg
i && αg

i <= αM
i && same sign (αg

i , αL
i , αR

i))
12 return interval solver(αg

i , βg
i , θL

i , θM
i) ;

13 else
14 return no solution ;
15 }

Here is an example of using algorithm 2 to find a solution from a given interval,

and the data of this example is gather from an experiment. Initially, the interval

which is [0, 360] degree is divided into 10 sub-intervals which are listed in table

3.2. The sub-intervals are then passed to algorithm 2 one by one to find the so-

lution. Table 3.3 lists the given αg
i , the given βg

i and the selected intervals which

may contain a solution. From the experiment, the selected interval 1 contains no

38

solution because αr
4 and αr

5 are increasing (according to table 3.2). Without testing

the existence of a turning point in between the interval, we cannot guarantee that

the interval really contains no solution. Although a turning point may exist in the

interval, dividing the initial intervals into 10 sub-intervals can avoid the existence

of the turning point; therefore, we do not have to derive equations for testing the

turning point.

ith boundary θi αr
i βr

i

0 0 259.34 19.17
1 36 281.42 19.17
2 72 303.68 19.17
3 108 326.91 19.17
4 144 354.04 19.17
5 180 41.37 19.17
6 216 141.25 19.17
7 252 187.06 19.17
8 288 213.93 19.17
9 324 237.10 19.17

Table 3.2: An example of boundary values.

The given values:
αg

i βg
i

138.84 19.17

Selected interval 1:
i θi αr

i βr
i

4 144 354.04 19.17
5 180 41.37 19.17

Selected interval 2:
i θi αr

i βr
i

5 180 41.37 19.17
6 216 141.25 19.17

Table 3.3: The given αg
i , the given βg

i and the selected intervals.

3.4.3 Orientation Data Recovering

The orientation data recovering is the last phase of the ICN method 1. The working

list of this phase is the nodes from Dd
2 to Dd

n−1. In order to recover the orientation

data, the first step is to calculate the global position of each node and store it in a

39

variable gi. The next step is to reset the rotation data of the working list. Instead

of actually resetting the rotation data of the list, the same effect can be achieved by

using Ti in the calculation instead of using Mi. Each node Dd
i is then rotated such

that the node Dd
i+1 is collided with the position gi+1. The coordinate frame of the

node Dd
i becomes:

Mi = TiR ˆri+1/i× ˆ
rgi+1/i

(
arccos

(
ˆri+1/i · ˆrgi+1/i

))
(3.15)

Now, the orientation data of each node Dd
i is zero. The orientation data of the node

Dd
i is then recovered by post-multiplying Mi with a rotational transformation which

is formed by a y unit vector and the givenγg
i :

Mi = MiRŶ (γg
i) (3.16)

3.4.4 A Topological Retargeting Example

Here is an example of using ICN method 1 to perform topological retargeting on the

left arm which is shown in figure 3.1. Figure 3.6a shows the arm before applying

method 1. Figure 3.6b shows the resulting arm after the segment-to-segment move-

ment recovery. Figure 3.6c shows the resulting arm after calling to algorithm 1, and

the algorithm returns at the sixth loop. The iterations of each calling to algorithm 1

are shown in figure 3.7 to figure 3.12. After the position of all nodes is recovered,

the last phase to apply is the orientation data recovery. Figure 3.6d shows the final

arm after running the whole method 1.

3.5 The Inverse Control Net - Method 2

The ICN method 1 requires a MCN as well as the related CNA to perform the

ICN while the ICN method 2 requires one more piece of information, the target

direction of the end node, to perform the ICN. The target direction is stored in the

40

(a) (b) (c) (d)

Figure 3.6: (a): Before applying the ICN method 1. The upper skeleton is the
original arm. (b): After the segment-to-segment movement recovery. (c): After six
iterations of applying algorithm 1. (d): After the orientation data recovery, and the
whole method 1 finishes.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7: First iteration of algorithm 1.

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.8: Second iteration of algorithm 1.

41

(a) (b) (c) (d)

(e) (f) (g) (g)

(i)

Figure 3.9: Third iteration of algorithm 1.

(a) (b) (c) (d)

(e) (f) (g) (g)

Figure 3.10: Fourth iteration of algorithm 1.

42

(a) (b) (c) (d)

(e) (f) (g) (g)

(h) (i)

Figure 3.11: Fifth iteration of algorithm 1.

(a) (b) (c)

Figure 3.12: Sixth iteration of algorithm 1.

43

end vector e. The end vector is necessary for method 2 because the hierarchical

data depends on the end vector. In fact, method 1 also needs the end vector for

calculating the hierarchical data, but method 1 implicitly finds the end vector by

the recursive algorithm. In method 2, however, the end vector comes either from a

user input or from a prediction algorithm which is similar to the bisection method.

With the using of the end vector in the algorithm, the execution speed of method 2

is faster than method 1.

With a given end vector e, method 2 starts performing the ICN. The whole

method 2 can be divided into five phases. The first three phases recover the posi-

tion of the nodes. Position recovery begins with restoring the segment-to-segment

movement β , then restoring the hierarchical data α, and followed by restoring the

position of the end node. After restoring the position of all nodes, method 2 tests the

error of the restored hierarchical data of the restored motion. However, the second

phase may not have succeeded in restoring the hierarchical data in certain cases,

and these cases will give a large error. If the error is larger than a threshold value,

the user may need to adjust the CNA and perform method 2 again. The adjustment

is further discussed in section 3.5.8. If the restored nodes have a error smaller than

a threshold value, the phase four is processed. In the phase four, method 2 restores

the orientation data γ of the nodes. After restoring all parameters of the CNA, an

optional phase, phase five, is applied to adjust the position of the end node. The

steps of method 2 with a given end vector are listed in algorithm 3. The steps of

method 2 without a given end vector are listed in algorithm 4.

In the following sections, we first present each phase of method 2, next present

an example of using method 2 to perform topological retargeting, then discuss some

problems of method 2. In the sections, we use the word “restore” to describe each

phase rather than using the work “recover”. This naming distinction is to avoid the

confusion making with the name of the phases of method 1.

44

Algorithm 3 ICN method 2 with a given end vector.
Input parameter: An end vector e.

1 restore the segment−to−segment movement of the nodes;
2 restore the hierarchical data of the nodes;
3 restore the end node position ;
4 set error = result of the error function 3.19;
5 i f (error < threshold){
6 restores the orientation data of the nodes;
7 optional phase: end node adjustment;
8 return true ;
9 }

10 else
11 return false ;

Algorithm 4 ICN method 2 without a given end vector.
Note: No end vector e is given.

1 while(true){
2 predict a new end vector by the method described in section 3.5.1;
3 i f (no more predicted end vector)
4 break;
5 set success = call algorithm 3 with the newly predicted end vector as

the input parameter;
6 i f (success == true)
7 break;
8 else
9 calculate an error value by the error function 3.19 for the next

prediction ;
10 }

3.5.1 End Vector Prediction

There are two modes for specifying the end vector. The first mode is the user-

specifying mode in which the user configures the end node to follow the trajectory

of another object or the locus of other nodes of the character. The second mode is the

prediction mode which uses the end vector embedded in the MCN. The end vector

in the user-specifying mode is formed by normalizing the vector which is formed

by subtracting the position of the user positioned end node from the position of the

base node.

The end vector in the prediction mode is not found by simple matrix multiplica-

45

function is defined as:

err =
n−1∑
i=2

(
exp (n− i) .

∥∥∥ri/i−1
∥∥∥ . |αg

i − αr
i |

)
(3.19)

where exp (.) is an exponential function, and
∥∥∥ri/i−1

∥∥∥ is the length of the segment

between the nodes Dd
i and Dd

i−1. The purpose of the exponential term is to increase

the importance of the error at the nodes closer to the base node because these nodes

have a larger impact on the position of the end node. The multiplication of the

segment length also magnifies the importance. Although this error function is an

approximate measure for the segment chain, it works well in our bisection process

as it is our goal to find either a minimal error posture or a correct posture. Should the

case arise in which no predicted end vector is able to generate an error-free motion,

the motion with the smallest error will be chosen as the final solution.

There is an important modification to the bisection iterations. In each iteration,

the bisection interval is divided into several fixed-size sub-intervals, and the sub-

interval having the smallest error value is selected for the next bisection iteration.

The error value of the sub-intervals is calculated by summing the left and the right

boundary error, which are calculated by equation 3.19, of the sub-intervals. We

make this modification because there may be more than one local minimum in each

iteration, especially in the first iteration. This modification can avoid selecting a

local minimum which contains no solution. Typically, dividing the division into

twenty intervals suffices to find the solution. Therefore, a single iteration of the

modified bisection gives twenty predicted end vectors.

3.5.2 Restoration of Segment-to-Segment Movement

This is the first phase of the ICN method 2. This phase restores the segment-to-

segment movement. The working list of this phase is the nodes from Dd
2 to Dd

n−2.

Before starting any calculations, the rotation data of the working list is reset. This

step is equal to the step which is presented in section 3.4.1. The next step is to

47

Figure 3.14: The position of Dd
3 lies on the dotted ellipse if the magnitude of βg

2 is
kept constant. a2 is the rotation axis for restoring the hierarchical data of the node
Dd

3.

adjust the angle between the nodes until βr is matched to βg. Equation 3.12 is then

applied to the working list to restore the segment-to-segment movement.

3.5.3 Restoration of Hierarchy Data

This is the second phase of the ICN method 2. The idea of restoring the hierarchical

data is to rotate the nodes about an axis ai to minimize the error of the hierarchical

data while preserving the segment-to-segment movement of their parent nodes. We

do not use an analytical solution for this phase because an exact solution does not

always exist. For example, consider restoring the hierarchical data for the node

Dd
3 in figure 3.14. The segment between Dd

2 and Dd
3 is short with compared to its

neighbors. If the magnitude of βg
2 is kept constant, the possible location of Dd

3 lies

on the dotted ellipse which is shown in the figure and the restored αr
3 is limited

inside a range. Even if βg
2 is a variable, αr

3 still lies on an ellipse which has a larger

diameter. In order to find a closest solution, a numerical method is used instead.

Before restoring the hierarchical data, we first define a target line which is the

end vector e multiplied by the distance between the node Dd
1 and the node Dd

n.

This target line replaces the center line when the equations which are described

in section 3.1.2.2 are used to validate the restored βr. We next compute the axis

ai−1 which is used to rotate the node Dd
i . When Mi−1 is post-multiplied by the

rotational transformation which is formed by ai−1 and an arbitrary rotation degree,

48

the magnitude of βr
i−1 remains unchanged. The axis ai−1 is the extension of the y

axis of Ti−1. ai−1 is equal to the vector ri−1/i−2 added the position of Dd
i−1 and

then made relative to the coordinate frame of Dd
i−1.

ai−1 = M−1
i−1

(
ri−1/i−2 + ri−1/1

)
(3.20)

However, ai−1 is not a good choice for the subsequent calculations because the

rotational transformation which is formed by this axis involves several sine and

cosine functions, the numerical errors in the calculation can be large and the for-

mulation of derivatives is more complicated. A better formulation of the axis is

formed by shifting the origin of the axis from Mi−1 to Ti−1. After the shifting, the

axis becomes the y axis of coordinate frame Ti−1. The new position of Dd
i is then

calculated by rotating ri/i−1 about a y unit vector with θi (given in later steps):

pi = RŶ (θi) ri (3.21)

where

ri = T−1
i−1r

i/i−1

The next step is to determine αr
i after the rotation. The calculations are similar to

the equations described in section 3.1.2.1 but having the origin shifted. First we

calculate the reference frame of which the formulation is similar to equation 3.2.

The reference frame is written as:

Ri = BTŶ ((pi − q1) · E2 (B)) (3.22)

where

B = T−1
i−1M1R ˆr2/1× ˆre/1

(
ˆr2/1 · ˆre/1

)
(3.23)

q1 = T−1
i−1E4 (M1) (3.24)

49

Then, the magnitude of αr
i with arbitrary rotation angle is written as:

αr′

i = arccos (ti) (3.25)

where

ti = si · E1 (Ri) / ‖si‖ (3.26)

si = pi − E4 (Ri) (3.27)

Since the rotation part of Ri is the same as B, equation 3.26 can be written as:

ti = si · E1 (B) / ‖si‖ (3.28)

The sign determination is similar to equation 3.4:

αr
i = αr′

i υ (si × E1 (B) , E2 (B)) (3.29)

Since we do not know the rotation angle θi in advance, hierarchical data of the

node Dd
i is restored by bisecting θi from 0 to 2π. In each bisection, αr

i of Dd
i is

checked with equation 3.29. In some cases, such as the configuration shown in

figure 3.14, there will be two solutions, and one solution is a fake solution. The

fake solution can be eliminated by checking the sign of βr
i−1 using the equations

described in section 3.1.2.2 in which the center line is replaced by the target line.

If we plot θi against αr
i , the graph will show that there are two turning points

for certain configurations, such as the one shown in figure 3.14. If we consider only

the value of αr
i and βr

i−1, these turning points will cause problems in the bisection

because if the solution is closer to the turning point and the solution lies in the

bisection interval, the system will determine that this interval contains no solution.

This problem can be solved by checking the derivative of equation 3.29. Since

we need only the sign of the derivative, we take the derivative of equation 3.28

50

instead, and there is no possibility of division by zero when calculates the arc cosine

derivative. The derivative of equation 3.28 is written as:

d ti
d θi

=

d E1(si)
d θ

i
·E1

1(B)+
d E2(si)

d θ
i

E2
1(B)+

d E3(si)
d θ

i
E3

1(B)

‖si‖ −
[E1(si)E

1
1(B)+E2(si)E

2
1(B)+E3(si)E

3
1(B)]

d ‖si‖
d θ

i

si·si

(3.30)

where
d E1 (si)

d θi

= −sE1 (ri) + c (θi) E3 (ri)− E1
2 (B)

d gi

d θi

(3.31)

d E2 (si)

d θi

= −E2
2 (B)

d gi

d θi

(3.32)

d E3 (si)

d θi

= −cE1 (ri)− sE3 (ri)− E3
2 (B)

d gi

d θi

(3.33)

d gi

d θi

=
(
−sE1 (ri) + cE3 (ri)

)
E1

2 (B) +
(
−cE1 (ri)− sE3 (ri)

)
E3

2 (B) (3.34)

d ‖si‖
d θi

=

d E1(si)
d θi

E1 (si) + d E2(si)
d θi

E2 (si) + d E3(si)
d θi

E3 (si)

‖si‖
(3.35)

s = sin (θi) (3.36)

c = cos (θi) (3.37)

When the extraction function Er
c (V) is applied to a vector V without using the

parameter c, the function returns a scalar value from the row r of the input vector

V.

Bisection is applied on the nodes from Dd
3 to Dd

n−1. The node Dd
2 is not included

in the calculation because the node is a part of the reference. Although there may

be some errors introduced in each node in the bisection iteration, these errors will

not propagate to their child node because the calculation of all hierarchical data

depends on the same reference.

51

3.5.4 Restoration of the End Node Position

Restoration of the end node position is the third phase of the ICN method 2. This

phase restores the position of the end node Dd
n, at the same time preserving βr

n−1 and

αr
n−1. In order to achieve this, the y axis of the coordinate frame Mn−1 is aligned to

the plane p which is formed by the vector rn−1/1 and e. This step ensures that αr
n−1

is equal to αg
n−1. The y axis of the coordinate frame Mn−1 is aligned to the plane p

by:

Mn−1 = Mn−1Rn̂×
(
M−1

n−1
ˆrn/1

) (
π/2− arccos

(
n̂ ·

(
M−1

n−1
ˆrn/1

)))
(3.38)

where

n̂ = M−1
n−1

(
ˆrn−1/1 × e + rn−1/1

)
(3.39)

Now, the y axis of the coordinate frame Mn−1 is in the plane p. We then apply

a rotation on coordinate frame Mn−1 about the vector n̂ which is perpendicular to

plane p in order to match βr
n−1 to βg

n−1:

Mn−1 = Mn−1Rn̂ (βg
n−1) (3.40)

One should note that Mn−1 on the right hand side of equation 3.40 is the resulting

frame given by equation 3.38, and equation 3.39 must be applied again for calculat-

ing n̂ in equation 3.40.

3.5.5 Restoration of the Orientation Data

This is the last phase of the ICN method 2. The procedures for restoring the orien-

tation data is the same as the procedures described in section 3.4.3.

52

Figure 3.15: Two possible motions restored by the ICN method 2. The position of
the end node of limb 1 and limb 2 lies along the direction of the target line.

3.5.6 End Node Adjustment

This phase is an optional phase. The ICN method 2 restores the motion based on

the end vector. Since the ICN method 2 utilizes only the directional information of

the end vector for the restoration, the end node of the restored motion lies along the

direction of the end vector. This situation is shown in figure 3.15. If the skeleton

of the destination character is similar to that of the source character, the end node

of the resulting motion is in the given position. However, most of the topological

retargeting works on an altered skeleton. It is necessary to adjust the position of

the end node if positional constraints are imposed. Therefore, this phase is required

only if there is a need to adjust the end node to satisfy the constraint.

In order to fix the position of the end node, we can adjust the β of each node of

the segment chain, but it is more time-consuming. Instead, we can simply use an

IK algorithm to fix the position of the end node.

3.5.7 A Topological Retargeting Example

Here is a simple example of performing topological retargeting on the left arm

which is shown in figure 3.1. In this example, no end vector is given, and it is

predicted by the prediction algorithm described in section 3.5.1. Figures 3.16a to

3.16d show the resulting arm after performing the first three phases of the ICN

method 2 using the seventh end vector predicted in the first iteration of the predic-

tion algorithm. The first step of the first phase is to reset the rotation data of nodes

from Dd
2 to Dd

4. The resulting arm is the lower arm shown in figure 3.16a, and the

53

upper arm is the source arm. Figure 3.16b shows the result of the second step of the

first phase which restores the segment-to-segment movement for nodes Dd
2 and Dd

3.

Figure 3.16c shows the result of the second phase which restores the hierarchical

data of nodes Dd
2 and Dd

3. Figure 3.16d shows the result of the third phase which

restores the position of the end node Dd
5. After restoring the position of the nodes

from Dd
2 to Dd

4, the system tests the error of the pose and determines that the error

of this pose is larger then a predefined threshold value. A new end vector is then

predicted to perform another iteration of the ICN. Figure 3.16e shows the resulting

arm after performing a single ICN iteration using the last end vector predicted in the

first iteration of the prediction algorithm. Figure 3.16f shows the resulting arm after

performing a single ICN iteration using the last end vector predicted in the second

iteration of the prediction algorithm. Since the error of the restored motion is still

larger than the threshold, the end vector prediction algorithm continues. Figures

3.16g to figure 3.16j show the steps of the last ICN iteration using the end vector

predicted in the third iteration of the prediction algorithm. Since the error of the re-

stored motion is smaller than the threshold, the prediction algorithm ends. Finally,

the fourth phase restores the orientation, and the whole retargeting ends. The final

result is shown in figure 3.16k.

3.5.8 Sensitivity Problem on the Hierarchical Data

The ICN method 2 can find a closet solution with smallest error, and the accuracy of

the solution is highly dependent on the end vector prediction algorithm which is in

turn dependent on the error function 3.19. The sensitivity problem occurs when αg

is set to a value that method 2 can only find a closet solution, and this solution has a

bad continuity with its neighbor frames in the restored motion although the solution

has the smallest error. In the restoration of the hierarchical data, every restored αr
i

is bounded to a range. An example of the range is shown in figure 3.14 in which

the restored αr
3 is bounded to the range [θi, θj] given that the βg

2 is a constant and

the segment between Dd
2 and Dd

3 is short with compared to its neighbors. If βg
2 is a

54

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 3.16: The steps of a topological retargeting example. The six lines, which
are shown from (a) to (d), represent the end vectors predicted in the first iteration
of the prediction algorithm. The lines are counted clock-wise. The lines between
p and q in (f) are the end vectors predicted in the second iteration of the prediction
algorithm. The lines around r in (g) are the end vectors in the third iteration, al-
though the separation of the lines is so small such that the lines are packed together.
The line s in (k) is the final end vector. The source arm is only shown in (a) for
reference.

Figure 3.17: Another view of nodes Dd
1 and Dd

2 in figure 3.14(without showing Dd
3

and Dd
4). The viewpoint is at the right hand side of figure 3.14 and is point at the

target line (viewing the target line as a point, and the point is in the same position
as Dd

1.). The dotted ellipse is the possible position of Dd
3, and the restored αr

3 is
bounded to the range [θi, θj].

55

Figure 3.18: Left: The sign of βg
3 is negative. Middle: The sign of βr

3 is positive
after scaling some segments. Right: The sign of βr

3 is positive after modifying βg
2

and βg
4 .

variable allowing αr
3 to have a wider range, however, the range of αr

3 is still limited.

When the sensitivity problem occurs, a user can solve the problem by adjusting

the hierarchical data and performing the ICN again; however, our implementation

of the topological retargeting system can only provide limited hints for the user to

adjust the parameters of the CNA. Moreover, there may be a side effect on adjusting

the parameters. For example, assuming the user adjusts αi to solve the sensitivity

problem, the sensitivity problem may then shift to the parameter αi+1. In this case,

the user does not know which parameter can be adjusted in order to solve the prob-

lem. In the worst case, the problem may not be solved by any adjustments on the

hierarchical data, or can be solved by adjusting all hierarchical data.

In our implementation of the topological retargeting method, the user can adjust

the alpha parameter with the visual feedback from the system user interface, but

there are no other hints providing to the user for the adjustment. Although the

response time of the ICN method 2 is nearly real time and the user needs no waiting,

editing is still a tedious job. There is another problem occurs after adjusting the

hierarchical data. Since the shape of the pose highly depends on the hierarchical

data. If we make heavy changes to the hierarchical data, the resulting motion will

lose its original shape.

56

3.5.9 Segment-to-Segment Movement Sign Changing Problem

In the MCN manipulation, there are four types of editing can be applied to the

MCN. During the manipulation, when the segment lengths of the destination char-

acter skeleton are changed, or some segment-to-segment movements are changed,

there may exist a sign changing problem of the restored segment-to-segment move-

ment. Figure 3.18 shows an example of the problem. In the figure, there are three

skeletons which have different signs of the restored βr
3 . The sign of βr

3 can be sim-

ply determined by the relative position of the node Dd
3 to the target line. If the node

Dd
3 is on the left hand side of the target line, then the sign of βr

3 is positive. The

differences of the three skeletons in the figure are: the left most skeleton I in the

figure is the source skeleton, and the sign of βg
3 is negative; the middle skeleton II is

the destination skeleton having some segment lengths modified, and the sign of βr
3

is positive; the right most skeleton III is the destination skeleton which has βg
2 and

βg
4 modified, and the sign of βr

3 is positive. However, the restored βr
3 of skeleton

II and skeleton III should have a negative sign because βg
3 of the source skeleton is

negative. In case the sign of the given βg
i is different from the restored βr

i , αg
i should

be changed to αg
i + π in order for the ICN method 2 to restore the motion correctly.

In case the problem occurs when performing the ICN, we can adjust the sign of

βg and shift αg by π to solve the problem; however, making change in one node may

affect other nodes. In the worst case, changing the sign of βg
i will shift the problem

to nodes other than Dd
i . A better solution is to perform matching on the position

of the nodes of the current frame with those of the neighbor frames. However, the

node position matching is not suitable to be applied to the ICN method 2 because

the system needs to generate different combinations of adjusted CNA for matching,

and this will increase the complexity of the ICN method 2 by nC2. In contrast, the

ICN method 3 does not need to generate different combinations of adjusted CNA

for matching because the steps of method 3 give multiple solutions which are equal

to the combinations of adjusted CNA, and the node position matching is an essential

step of the ICN method 3.

57

3.6 The Inverse Control Net - Method 3

The ICN method 3 takes another approach to restore the hierarchical data. Method

3 restores the position of the nodes in a single phase by solving a set of equations

which is based on the geometrical property of α and β . Unlike method 2 which

uses a numerical method to restore the position of the nodes, method 3 uses an

analytical method; therefore, the execution speed of method 3 is much faster than

that of method 2. However, the analytical solution of method 3 cannot find a closet

solution, hence the method cannot solve the sensitivity problem. Actually, method

3 only implemented a preliminary algorithm of the sensitivity solver. Further devel-

opment is required to extend and complete the solver in the future.

The ICN method 3 is similar to the ICN method 2, as method 3 also uses the

end vector prediction algorithm. The only difference is the step for restoring α and

β . Method 3 does not restore α and β in two different phases but in a single phase.

We make this change by considering the geometrical property of α and β . Three

equations are then set for relating the parameters and the geometrical property, and

the position of the nodes is found by solving these three equations. The steps of

method 3 with a given end vector are listed in algorithm 5. The steps of method 3

without a given end vector are listed in algorithm 6.

In the following section, we present the phase that is used to restore the node

position. The rest of the phases which are mentioned in algorithm 5 and algorithm

6 will not be discussed in this section because these phases are already presented in

section 3.5.

58

Algorithm 5 ICN method 3 with a given end vector.
Input parameter: An end vector e.

1 restore the position of the nodes from Dd
3 to Dd

n−1 by the method
described in section 3.6.1;

2 i f (the position of any node cannot be restored by line 1){
3 return false ;
4 }
5 restore the end node position ;
6 set error = result of the error function 3.19;
7 i f (error < threshold){
8 restores the orientation data of the nodes;
9 optional phase: adjusting the end node;

10 return true ;
11 }
12 else
13 return false ;

Algorithm 6 ICN method 3 without an end vector.
Note: No end vector e is given.

1 while(true){
2 predict a new end vector by the method described in section 3.5.1;
3 i f (no more predicted end vector)
4 break;
5 set success = call algorithm 5 with the newly predicted end vector as

the input parameter;
6 i f (success == true)
7 break;
8 else
9 calculate an error value by the error function 3.19 for the next

prediction ;
10 }

3.6.1 Node Position Restoration

There are three steps for restoring the position of the nodes. The first step is to

calculate the variables r and s which are shown in figure 3.19. There are maximum

four pair of solutions of r and s. The second step is to prune the solutions, and

only maximum 2 solutions left after the pruning. The third step is to select the final

solution pair by comparing the position of the nodes of the current frame with that

59

Figure 3.19: The geometric property of α3 and β2. X , Y , Z are the principle axes
of the coordinate frame M1.

of the neighbor frames.

3.6.1.1 Step 1

The step 1 is to find out the four pair of solutions of r and s. Figure 3.19 shows the

geometric property of α3 and β2. The position of the node Dd
3 is found by M1, α3,

r and s:

P3 = E4

(
M1RŶ (α3) TŶ (r) TX̂ (s)

)
(3.41)

where P3 denotes the position of the node Dd
3. The length d is found by the position

of the nodes Dd
2 and Dd

3:

d = [(P3 −P2) · (P3 −P2)]
1
2 (3.42)

β2 is found by the position of the nodes Dd
1, Dd

2 and Dd
3:

cos (β2) = (P2 −P1) · (P3 −P2) / ‖(P2 −P1)‖ · ‖(P3 −P2)‖ (3.43)

Then the above equations are generalized by substituting the node number with i,

the equations become:

60

Pi = E4

(
M1RŶ (αi) TŶ (r) TX̂ (s)

)
(3.44)

d = [(Pi −Pi−1) · (Pi −Pi−1)]
1
2 (3.45)

cos
(
βi−1

)
= (Pi−1 −Pi−2) · (Pi −Pi−1) / ‖(Pi−1 −Pi−2)‖ · ‖(Pi −Pi−1)‖

(3.46)

In order to find r and s, we first substitute equation 3.44 into equation 3.45 and

break down the rotation and translation into sin and cos operation. Then we extract

r from the substituted equation, there will be two solutions for r, r1 and r2:

r1 = E2 (Pi−1) +
√

a + b (3.47)

r2 = E2 (Pi−1)−
√

a + b (3.48)

where

a = 2 cos (αi) sE1 (Pi−1)−
[
E1 (Pi−1)

]2
−

[
E3 (Pi−1)

]2
(3.49)

b = −s2 − 2 sin (αi) sE3 (Pi−1) + d2 (3.50)

We next substitute r1 into equation 3.46 and extract s, and there will be two s, s1

and s2. Similarly, we substitute r2 into equation 3.46 and extract s, and there will be

two s, s3 and s4. The s solutions are very long which include more than hundreds of

arithmetic operation; therefore, the s solutions are not listed here. After simplifying

the s solutions, s1 is equal to s3, and s2 is equal to s4. The final step is to substitute

the s solutions back into the r solutions to find out r1 and r2.

61

Figure 3.20: The two solution pairs {r1, s1} and {r2, s2}. X , Y , Z are the principle
axes of the coordinate frame M1.

Figure 3.21: An example of two valid solutions. The right skeleton is selected as
final solution.

62

3.6.1.2 Step 2

Step 1 gives out four solution pairs: {r1, s1}, {r1, s2}, {r2, s1} and {r2, s2} but

not all solution pairs are valid. Figure 3.20 shows two solution pairs. From the

figure, the valid solution pair should only be {r1, s1}, however, the solution pair

{r2, s2} is also valid because the magnitude of −βr
2 is equal to βr

2 , although the

sign is different. The valid solution pairs are then pruned to eliminate the false valid

solution pair, {r2, s2}. The pruning is performed by substituting each solution pair

into equation 3.46. The valid solution is the one which fulfils the equations. After

the substitution, the final valid solution pair is found. Another illustration of two

valid solutions is shown in figure 3.21.

However, if the problem described in section 3.5.9 occurs when performing the

ICN method 3, we cannot prune the solution pairs because all the solution pairs

will be regarded as invalid in the next step as the sign of βr is changed. Therefore,

pruning the solutions or not is controlled by the user.

3.6.1.3 Step 3

After the pruning, there are maximum 2 solution pairs left. However, if the prun-

ing is disabled, maximum four solution pairs reach this step. The final solution is

found by comparing the position of the nodes of the current frame with those of

the neighbor frames. Here we make an assumption that the nodes in nearby frames

should have a small position difference. This assumption applies if the motion is

relatively smooth and has no sharp changes. The position difference is calculated

as the summation of the absolute value of all the node position Pf
i in the frame f

minus the node position Pf−1
i in the previous frame f−1. We compare the position

in the previous frame only because the ICN is applied on the motion in ascending

frame order. The position difference is written as:

d =
n∑

i=1

(∣∣∣Pf
i −Pf−1

i

∣∣∣)

63

The final solution pair is that which has the smallest position difference.

3.7 Singularity issue

Singularity occurs in solving the inverse rate control equation when the segment

chain involved in the retargeting is fully stretched. A similar problem also arises in

calculating the control net angles and performing the inverse control net when the

involved segment chain is fully stretched. Fortunately, solving the singularity in our

method is simpler than solving the singularity of inverse rate control.

There are two types of singularity occurred in the calculation. The first type is

the calculation of the cross product which is used as a rotation axis to rotate a skele-

ton node or a vector, for example, the calculation of the rotation axis in equation 3.1.

When the angle between two vectors used to calculate the cross product is close to

0 degree of 180 degree, the cross product cannot be determined. The solutions for 0

degree or 180 degree are respectively: the node or the vector needs not to be rotated,

the node or the vector translates in the opposite direction of its direction with the

node’s translation value or the vector’s length. The second singularity type is the

calculation of the cross product which is used as a reference vector to determine the

sign of a scalar, for example, the sign determination in equation 3.4. We can simply

ignore this type of singularity because the error in the sign determination is small

when the scalar value approaching 0 or 180 degree.

3.8 Data Format

This section describes the data format that is used in the topological retargeting

system which is the implementation of the topological retargeting method. First we

present the data members that are used internally in the system, only the important

data members are listed. Then we present the script file format which is used for

controlling the MCN and the ICN.

64

3.8.1 Internal Data Format.

The topological retargeting system uses several classes and structures to encapsulate

the data members and operations. The class MCN is used internally by the system

to store the base nodes and the end nodes of both the source and the destination

skeleton, and the linkages between the nodes of the skeletons. The information and

the numbering of the source nodes are stored in an array. The source base node is

the first element in the array, and the source end node is the last element in the array.

The identifier number of each node can be find by traversing the array or by calling

some array functions. The linkages between the skeletons are store by a map where

the key of the map is the source node and the value is the destination node.

Class: MCN Usage

Array: source node store the information and the

numbering of the source nodes

Map: map the source node to the

destination node

store the linkage information

Each node, either a source node or a destination node, contains an array of node

data. Each element of the array stores the information of a single frame in the

motion.

Structure: Node Usage

Array: node data each array element stores the in-

formation of a single frame in the

motion

The node data each contains three variables, they are the hierarchical data α, the

segment-to-segment movement β and the orientation data γ .

Structure: Node data Usage
float: α store hierarchical data

65

float: β store segment-to-segment move-
ment

float: γ store orientation data

The internal structure representing the ICN is the class ICN. The class ICN

contains a invert function which performs the ICN. The ICN method 1 to the ICN

method 3 are the subclass of the class ICN, and each subclass has their own over-

ridden invert function.

Class: ICN Usage

function: invert perform the ICN

3.8.2 Script File Format.

The operations of the topological retargeting system are quite complex and the func-

tionality of the system keeps changing; therefore, we use a script file to control the

construction of the MCN and the running of the ICN. The modification to the MCN

and the CNA is also stored in the script file. Table 3.7 lists a simple script which

performs a topological retargeting that is similar to the one shown in figure 3.16.

The script file is divided into sections, and the sections must be in order. Here is the

explanation of each section:

• Line 1 begins the script file.

• Line 2 to line 5 open a motion file and give it a name “fighter”.

• Line 6 to line 11 construct the source skeleton of the MCN and give it a name

“fighter left hand” . The source base node is “LUpArm A”, and the source

end node is “L Palm”. The “Create” keyword in line 10 tells the system to

perform the operation that is described in the section, but not all sections need

to have the keyword “Create”. If a section must has the keyword “Create” but

is missed, then the operation in that section will not be performed.

• Line 12 to line 14 create a synthesis node by copying half of the CNA from

Ds
1 and half of the CNA from Ds

2.

66

• Line 15 to line 17 modify the CNA. The first word in line 16 is the name of

the source node. The second word “A” tells the system to modify α. The

other choices of the second word are: “B” tells the system to modify β and

“G” tells the system to modify γ . The third word “1” is the number of the

source node. The fourth word “113” is the frame going to be modified. The

fifth word is the value which is superimposed on the data. The whole line

means that 30 degree is superimposed on α1 of the node Ds
1 in frame 113.

Each line in “BEditNet” section modifies the CNA in a particular frame and

this frame is a keyframe for generating a curve of data for modifying other

frames.

• Line 18 to line 21 open another motion and give it a name “target”.

• Line 22 to line 35 control the ICN. Line 23 specifies the ICN method type,

and the possible value are 1 to 3 which represents the ICN method 1, method

2 or method 3 respectively. Line 24 specifies the destination motion. Line 25

specifies the source motion. Line 26 names this ICN “mappingA”.

– Line 27 to line 33 specify the linkage between the source nodes and

the destination nodes. For example, line 28 specifies the linkage for the

first destination node. The left hand side of the line is the name of the

destination node, and the right hand side of the line is the number of the

source node.

• Line 36 ends the script file.

3.9 Data Flow

Our system can be roughly divided into three different modules. Data flows from

one module to another module to perform different operations. The left hand side

of figure 3.22 is the first module, which is the conversion code that converts the

67

original motion data to the CNA. This module is controlled by the “CreateNet”

section inside the script file that is described in table 3.7. The middle part of figure

3.22 is the second module, which manipulates the MCN and the CNA. The CNA

manipulations include blending, interpolation and various other editing. The second

module is controlled by the “SynNet”, “BEditNet” section inside the script file. The

right hand side of figure 3.22 is the third module, which performs the ICN. This

module is controlled by the “RetargetByNet” section inside the script file.

Figure 3.22: Data flow of the topological retargeting system.

3.10 Interface Design

The core part of the topological retargeting system is implemented by using C and

C++. The interface part is implemented by using the GUI library wxWindows and

OpenGL. We choose the wxWindows library mainly for the cross-platform compat-

ibility. An alternative choice for writing cross-platform OpenGL program is GLUT,

but GLUT does not have a good GUI system. Another reason of using wxWindows

library is the license which is free for commercial and academic usage.

Figure 3.23 shows the main window of the topological retargeting system. The

main window can be divided into six windows from I to VI. Window I is the main

display of the system, contains a four view-port display and a set of tools on the

bottom of the window controlling the view-port. Window II is mainly used for con-

trolling the MCN, the ICN and the modification of the CNA. Window III contains

68

a set of tools to control an inverse kinematic algorithm. Window IV contains a set

of buttons to control the view-port and to manipulate the skeleton and other objects

which are displayed on the screen. Window V contains a set of tools which is used

to modify the skeleton. Window VI displays various messages.

Certain steps of the ICN are not only controlled by the script, but also controlled

by the GUI of the system. We do not use the script for performing all tasks because

the script format and syntax are hard to remember than using the GUI. However,

we cannot use the GUI for performing all tasks because this makes the GUI too

complicated. A balanced implementation is to combine the script and the GUI to

perform the tasks.

Figure 3.23: Interface of the topological retargeting system

69

1 [Script]
2 [OpenMotion]
3 f i le = . . /SynData/both src .gfa
4 name = fighter
5 [/OpenMotion]
6 [CreateNet]
7 base = LUpArmA
8 end = L Palm
9 name = fighter left hand

10 Create
11 [/CreateNet]
12 [SynNet]
13 new = fighter left hand 1 ∗ 0.5 + fighter left hand 2 ∗ 0.5
14 [/SynNet]
15 [BEditNet]
16 fighter left hand A 1 113 30
17 [/BEditNet]
18 [OpenMotion]
19 f i le = . . /SynData/both dst .gfa
20 name = target
21 [/OpenMotion]
22 [RetargetByNet]
23 RetargetType = 3
24 TargetMotionName = target
25 SourceNet = fighter left hand
26 name = mappingA
27 [RetargetNetMapping]
28 LUpArmA = 0
29 LLowArmA = 1
30 LHand A = 4
31 L Palm = 2
32 LFinger = 3
33 [/RetargetNetMapping]
34 Create
35 [/RetargetByNet]
36 [/ Script]

Table 3.7: A simple script controls the construction of the MCN and the running of
the ICN.

70

Chapter 4

Results

This section describes the results of four experiments performed by the topologi-

cal retargeting system. The first experiment shows a topological retargeting of a

sword-swinging sequence. In order to illustrate the features of the MCN, we show

two stages of this experiment. In the first stage, the motion is retargeted to a new

skeleton having an additional segment added in the forearm. The first stage also

demonstrates interactive editing through the modification of a set of key frames in

the MCN. In the second stage, the structure of the forearm is changed and posi-

tional constraints are imposed on the retargeted skeleton. In the second experiment,

we retarget a dancing motion to a skeleton having a modified leg. In the third ex-

periment, we demonstrate another ability of the MCN which generates new motion

based on the motion of an internal node or an external node. In the fourth example,

we retarget a human walking motion to a spider skeleton.

The topological retargeting examples are created by using only the ICN method

2; however, there is no example of retargeting which is performed by method 1 and

method 2 because method 1 is an algorithm which is used to test the feasibility of

the conversion, and method 3 is a preliminary algorithm for an automatic sensitivity

problem solver. In addition, method 1 and method 3 perform the same function as

method 2 does, the differences are the accuracy and the execution speed. Therefore,

only the examples which are created by using method 2 is shown in this section.

71

After presenting the results, we present the performance comparison of the three

ICN algorithms.

4.1 Retargeting of a Sword-Swinging Sequence

Figure 4.2 illustrates an experiment in which five skeleton figures are engaged in

a retargeted sword-swinging motion. The experiment is in two stages. The left-

most skeleton I is the original, skeletons II, III, IV are the stage 1 results, and the

rightmost skeleton V is the stage 2 result.

In the first stage of retargeting, a segment has been added between the elbow

and the wrist on both hands. The movement of the additional segment is generated

by combining the CNA of the elbow and the wrist. At this stage, there is no other

modification made on the CNA. Skeleton II shows the result of this stage. In order to

illustrate the differences between the source and the retargeted skeleton, the source

motion, skeleton I is provided as a reference.

Interactive editing is made possible by the dynamical adjustment of the CNA

through a user interface in the retargeting system. An animator adjusts the CNA and

views the result through the system interface. Since a single frame ICN operation

requires only few milliseconds, an animator receives the result immediately and

can immediately move to the next editing decision. After the editing, the modified

frames act as key frames and the data between them are generated by a cubic curve.

Skeletons III and IV show the result of interactive editing. In these two motion, we

modify the values of the CNA of all nodes. The actual value of the CNA of the

additional segment is shown in figure 4.1.

In the second stage, the motion is retargeted to a skeleton with a different topol-

ogy and under a positional constraint. We modify the number of segments, their

lengths, and trajectories of the skeleton. We reduce the length of hand segments so

that they are slightly shorter than the original hand because the additional segments

lengthen the hand, and change the trajectory of the elbow so that the elbow is al-

72

Figure 4.1: α and β of the additional segment. α and β of the skeleton III to V are
generated by displacing a curve on the original data.

ways higher than the head. Trajectory of the elbow is changed using the first MCN,

modifying the shoulder node. The arm motion is then modified using the second

MCN, altering the upper arm and lower arm. Two MCNs are used for a single limb

because this makes it easier to carry out the desired modification. The positional

constraint is that the end node of the new hand must follow the end node of the

original motion. Since adding a new segment to the forearm changes the reachable

range of the palm, we adjust the end node position by modifying the β parame-

ter. Finer adjustment of the end node is done through an IK algorithm. Skeleton

V shows the result of this stage. The actual values of the CNA of the additional

segment are shown in figure 4.1. The hierarchical data of the additional segment of

skeleton V is the same as in skeleton I, while the segment-to-segment movement of

the additional segment is modified.

73

Figure 4.2: Retargeting of a sword-swinging motion. The leftmost skeleton I is the
source motion. The second skeleton II from left is a simple retargeted motion. The
arm movement of the third and fourth motion is created by shifting the CNA by a
curve. The arms of the rightmost skeleton V are synthesized by using two MCNs
for each arm.

74

Figure 4.3: Source dancing motion.

Figure 4.4: Retargeted dancing motion having an additional segment in the lower
leg.

4.2 Retargeting of Dancing Sequence A

In this experiment, we retarget a dancing motion having a topological change on

the leg. We change the topology of the leg by adding a new segment to the lower

leg, and the movement of the new segment is copied from the original lower leg. In

order to fit the new segment to the skeleton, the CNA of the original segments are

changed slightly and the α parameter of the new segment is shifted by a π degree

in certain frames, while the β parameter of the new segment is always changed to

a negative value. The shifting and the negating of the CNA allow the new segment

to look like an inversion of the original lower leg. Figure 4.3 shows the original

dancing chips. Figure 4.4 shows the retargeted dance.

4.3 Retargeting of Dancing Sequence B

This experiment demonstrates the usage of the MCN to synthesize new motion.

The motion contains a synthesized arm and a synthesized leg. We synthesize the

75

arm motion by blending the CNA of different limbs. The hierarchical data of the

new arm is mainly copied from the original arm, with a portion from the leg. The

segment-to-segment movement of the new arm is mainly copied from leg. Motion

blending is performed on the leg. The hierarchical data of the leg is copied from the

original leg. The segment-to-segment movement of the leg comes from a crab leg

motion which is produced by keyframing. This setting demonstrates that the MCN

can generate new motion that is affected by either an internal or external motion.

This is useful in synthesizing a group of characters with similar motion. Figure 4.5

shows the original dancing clips. Figure 4.6 shows the retargeted dancing clips.

Figure 4.5: Source motion of dancing sequence B. The stick figure is a pair of crab
legs which is produced by keyframing.

Figure 4.6: The arms are synthesized by blending different limbs of the source
motion. The movement of legs is created by combining the α of the original leg and
the β of the crab leg.

4.4 Retargeting Human Motion to a Spider Skeleton

This experiment demonstrates the example of retargeting a human motion to a 6

legs spider skeleton, showing that the MCN can perform retargeting of a skeleton to

76

another skeleton with big difference in the topology. Each spider leg is synthesised

by blending the CNA of the human arm and leg. The hierarchical data of the spider

leg is copied from the human arm, creating the forward crawling part of the spider

leg movement. The segment-to-segment movement of the spider leg is copied from

the human leg, creating the stretching part of the spider leg movement. As the spider

contains 2 more pair of legs than a human, the motion data of the extra legs is copied

from different time frame of the same human motion.

Figure 4.7: The source motion, a human walking sequence.

Figure 4.8: The retargeted spider motion. Each leg motion is created by blending
the motion of human arm and leg in the MCN domain.

4.5 Manipulation details

In this section, we will describe the details of the manipulation of the MCN using

the example of sword-swinging sequence stage 2 and dancing sequence B.

In the sword-swinging sequence stage 2 example, there is an additional node

inserted in the forearm, and the data of the new node comes from its neighbor

nodes, the original elbow Ds
2 and wrist Ds

3. The blending equations of the CNA

of the additional node, Dd
3 are: αd

3 = 0.5 ∗ αs
2 + 0.5 ∗ αs

3, βd
3 = 0.5 ∗ βs

2 + 0.5 ∗ βs
3

and γd
3 = 0.5 ∗ γs

2 + 0.5 ∗ γs
3, where the superscript “s” of the CNA indicates

the CNA from the source node and “d” means the CNA of the destination node.

77

After combining the CNA, some frames of the resulting motion may not satisfy the

requirement and need to be adjusted. There are two modes of editing provided by

our implementation. The first one is modifying a particular frame in the motion, the

second one is displacing a curve on the CNA data. Modifying a particular frame is

achieved by adding a line in the “[EditNet]” section in the script file, for example,

a sample line: “fighter left hand BB 2 101 22.39”. The line has the following

meaning: the first token “fighter left hand” is the name of the MCN, the second

token “BB” means the absolute β parameter (the value of this line replaces the

original value of the node), the third token “2” means the node which is working on

is the destination node Dd
3 (the system is zero based, so 2 means the third node), the

forth token is the frame number, and the fifth token is the new value of the node.

The second mode is displacing a curve on the data, for example, the trajectory of

the elbow can be modified by this mode. The curve is specified by a series of line

which acts as control point of a B-Spline curve in the “[BEditNet]” section in the

script file. A sample line is “fighter left hand B 3 18 8.97”. The line has similar

meaning as the line in the “[EditNet]” section except the second token. The second

token “B” means the β parameter is relative, and the value “8.97” is added to the

original value of the node. The result of adding a curve to the CNA is illustrated by

the figure 4.1.

The advantage of adding a curve to the motion is that the motion characteristic

can be preserved in the high frequency content of the curve and having the motion

modified by the low frequency curve, the B-Spline curve with sparse control point.

This approach is similar to the method proposed by [12].

In the dancing sequence B example, the elbow and wrist motion of the right

arm is synthesised by blending the CNA of different limbs. The blending equations

of the elbow, Dd
2 are: αd

2 = 0.5 ∗ αs
2 (from right hand) + 0.5 ∗ αs

2 (from left hand),

βd
2 = βs

2 (from right foot) and γd
2 = γs

2 (from right hand). The other modification of

the CNA is similar to the sword-swinging sequence stage 2 example and is skipped

here.

78

4.6 Performance Comparison

We compare the performance using the example of sword-swinging sequence stage

1 from section 4.1. In the example, the motion sequence contains 200 frames, and

the number of nodes of each arm involved in the retargeting is 5, hence n is being

equal to 5. ICN method 1 is a recursive algorithm, the complexity closes to O (nn).

The accuracy of retargeting the left hand is 83%, and the accuracy of retargeting

the right hand is 97%. The total running time for both hands is 4.2 seconds. ICN

method 2 is a iterative algorithm, the complexity is to O (nlogn). The accuracy of

retargeting the left hand is 77%, and the accuracy of retargeting the right hand is

83%. The total running time for both hands is 2.2 seconds. ICN method 3 is an

analytical algorithm, the complexity is to O (n). The accuracy of retargeting the

left hand is 79%, and the accuracy of retargeting the right hand is 88%. The total

running time for both hands is 1.8 seconds.

The running time of method 1 is about the twice of method 2. The running time

is faster than expected, because the number of maximum looping in each iteration

is limited as listed in algorithm 1 line 2, although method 1 is a recursive algorithm.

The accuracy of method 1 is higher than other two because the recursive nature lets

the algorithm considers more alternative solutions (nearly all possible solutions) and

finds out the correct solution from nearest solutions. The accuracy of method 2 and

the accuracy of method 3 is closed together because method 2 can partially solve

the sensitivity problem, and method 3 can solve sign changing problem; therefore,

the accuracy of these two methods are closed together.

79

Chapter 5

Discussion

In this chapter, we first compare the functionality of our method with other methods,

then discuss the future extension of our method.

5.1 Comparison

In the sword-swinging retargeting experiment presented in section 4.1, the MCN

facilitates a number of functions beyond simple motion interpolation. Firstly, MCN

allows the displacement of the CNA of the synthesized node with a curve to gener-

ate a new locus having a similar movement pattern but distinct motion. Secondly,

the fact that the MCN can separate the hierarchical data from the motion means that

we can create new motion from different source motion. For example, the hierar-

chical data of motion A and the segment-to-segment movement of motion B can be

combined into new motion which is similar to motion A yet retains certain desired

characteristics of motion B. This functionality is illustrated in the dancing sequence

retargeting presented in section 4.3, which combines the motion of a crab leg and

the motion of a human leg into the motion of the destination skeleton. If this opera-

tion is done using interpolation, the resulting motion may look quite different from

the original motion.

Inverse kinematics, inverse rate control, jacobian transpose method and CCD

80

work directly on the end-effector, and the end-effector position suffices for the pur-

pose of retargeting. The drawback of these methods is that they exercise only lim-

ited or no control over the nodes other than the end-effector. The MCN offers the

advantage of controlling the nodes other than the end-effector. One disadvantage of

inverse kinematics and inverse rate control is that, in the presence of a redundant

degree of freedom, they give multiple solutions, and the final solution is selected

by the user or by some predetermined rules. The MCN answers this by producing

at most one solution in the redundant case. The dancing sequence retargeting in

section 4.2 demonstrates this feature of which the end-effector follows the original

end-effector and the redundant segments are well controlled. In the presence of sin-

gularity, MCN has less problem in handling the singularity, while special measure

must be taken in inverse kinematics.

Spacetime method considers the whole sequence of motion in the retargeting

process; therefore, the execution speed is relatively slow and may not be able to

provide real time performance. In contrast, MCN considers one neighbor frame in

the retargeting process and the ICN can be switched to using an analytical algo-

rithm, execution speed is faster and can be performed in a real time manner. The

advantage of spacetime method is that the generated motion is smooth. The smooth-

ness is also ensured using MCN. Actually, the smoothness of the generated motion

by MCN depends on the CNA data, not the method itself. The major drawback

of spacetime method is that it is sensitive to the skeleton initial configuration. In

contrast, MCN does not has the initial configuration problem.

Intermediate skeleton can solve a part of the topological retargeting problem

as this method can work on altered number of nodes in the skeleton. However,

Intermediate skeleton can only work for similar source and destination skeleton.

If there are large differences in the skeletons, the method produces strange result.

In contrast, MCN works for not just altered number of nodes in the skeleton, and

MCN works for skeletons with big differences in hierarchy. Moreover, MCN can

combine different motions from different skeletons and can re-order the nodes in

81

the skeleton, but the intermediate skeleton cannot.

5.2 Future Extension

A possible future extension to our topological retargeting method is the extension

to the ICN in the presence of the sensitivity problem which is presented in sec-

tion 3.5.8. Since the problem is mainly the bad continuity between the frames of

the retargeted motion, a possible direction to solve this problem is using an opti-

mization algorithm to minimize the discontinuity between the frames. The idea of

solving this problem comes from spacetime method which considers all frames in

the motion rather than an individual frame.

A possible extension is to extend the ICN method 2 to an automatic sensitivity

problem solver. There are, however, some problems exist in converting the equa-

tions of method 2 to be used in the optimization algorithm. The first problem is

the highly non-linear property of the equations. The equations in method 2 are

multi-variable functions, and some variables depend on other variables and depend

on several equations. For example, αi depends on αi−1 and depends on several

equations. The dependency combining with the iterative nature of method 2 is the

second problem which makes the equations not suitable to be used in the optimiza-

tion algorithm.

The ICN method 3 is developed in a direction that the equations of the method

are suitable to be used in the optimization algorithm. The equations in method 3

are analytical formulations, finding a solution in a single iteration. However, the

current formulation of method 3 still contains the variable dependency. A possible

modification to the formulations is to remove the dependency between the variables,

and this modification will turn the exact solution in method 3 into an approximation

solution of which an error function is required to measure the error of the approxi-

mation; however, such formulations have not been developed yet.

82

Chapter 6

Conclusion

This thesis presents a new topological retargeting method that enlarges the domain

of the original retargeting problem aimed at characters with dimension variations to

characters with topological variations. We have developed a new data representa-

tion named motion control net (MCN) in order to achieve a higher level of abstrac-

tion and separation of the motion data from the skeleton hierarchy in captured data.

Hierarchical data and segment movement are stored separately in different datasets

known as control net angles (CNA) inside MCN. In this way, MCN can encapsu-

late the different motion characteristics of the character effectively without a strong

dependency on the original skeleton topology.

The flow of our method is first converting the original motion data to one or

more MCNs, then making modification in the MCN domain, and finally converting

the MCN(s) back to the original motion data format through the inverse control net

(ICN) process. Topological retargeting can be performed by modifying, blending

and/or cloning the CNA in the ICN stage or by adjusting the structure of the MCN

itself.

The method described in the thesis considers only the direction of the end-

effector but not the position. This is usually sufficient to generate the desired motion

if the exact positioning of the end-effector is not a constraint. If more precise po-

sition adjustment is required, an IK algorithm can be applied to the end-effector to

83

perform further adjustment of the position.

One possible enhancement of our method is to develop an automatic sensitivity

problem solver. In our implementation of the MCN, even the value of the hierar-

chical data in CNA is outside certain range, ICN will always give the solution with

smallest error. The solution, however, will have a bad continuity with its neighbor

frames in the restored motion. We have outlined the direction to tackle this prob-

lem in this thesis; however, an automatic sensitivity problem solver have not been

developed yet. This problem solver is suggested as a future extension to the MCN.

84

Bibliography

[1] N. Badler, M. J. Hollick, and J. P. Granieri. Real-time control of a virtual

human using mininal sensors. Presence 2, 1, 1993.

[2] Christoph Bregler, Lorie Loeb, Erika Chuang, and Hrishi Deshpande. Turning

to the masters: motion capturing cartoons. In Proceedings of the 29th annual

conference on Computer graphics and interactive techniques, pages 399–407.

ACM Press, 2002.

[3] Armin Bruderlin and Lance Williams. Motion signal processing. In Proceed-

ings of the 22nd annual conference on Computer graphics and interactive

techniques, pages 97–104. ACM Press, 1995.

[4] Gordon Cameron, Andre Bustanoby, Ken Cope, Steph Greenberg, Craig

Hayes, and Olivier Ozoux. Motion capture and cg character animation (panel).

In Proceedings of the 24th annual conference on Computer graphics and in-

teractive techniques, pages 442–445. ACM Press/Addison-Wesley Publishing

Co., 1997.

[5] Kwan W. Chin. Closed-form and generalized inverse kinematic solutions for

animating the human articulated structure. Master’s thesis, Curtin University

of Technology, 1996.

[6] Kwang-Jin Choi and Hyeong-Seok Ko. On-line motion retargetting. In Pro-

ceedings. Seventh Pacific Conference, pages 32–42, 1999. TY - CONF.

85

[7] Min Gyu Choi, Jehee Lee, and Sung Yong Shin. Planning biped locomotion

using motion capture data and probabilistic roadmaps. ACM Transactions on

Graphics (TOG), 22(2):182–203, 2003.

[8] Michael F. Cohen. Interactive spacetime control for animation. In Proceed-

ings of the 19th annual conference on Computer graphics and interactive tech-

niques, pages 293–302. ACM Press, 1992.

[9] John J. Craig. Introduction to Robotics Mechanics and Control. Addison-

Wesley publishing company, 1986.

[10] Mira Dontcheva, Gary Yngve, and Zoran Popović. Layered acting for charac-

ter animation. ACM Trans. Graph., 22(3):409–416, 2003.

[11] Michael Gleicher. Motion editing with spacetime constraints. In Proceedings

of the 1997 symposium on Interactive 3D graphics, pages 139–ff. ACM Press,

1997.

[12] Michael Gleicher. Retargetting motion to new characters. In Proceedings of

the 25th annual conference on Computer graphics and interactive techniques,

pages 33–42. ACM Press, 1998.

[13] Michael Gleicher. Animation from observation: Motion capture and motion

editing. ACM SIGGRAPH Computer Graphics, 33(4):51–54, 2000.

[14] Michael Gleicher. Motion path editing. In Proceedings of the 2001 symposium

on Interactive 3D graphics, pages 195–202. ACM Press, 2001.

[15] Akanksha Huang, Z. Huang, B. Prabhakaran, and Jr. C. R. Ruiz. Interactive

visual method for motion and model reuse. In Proceedings of the 1st interna-

tional conference on Computer graphics and interactive techniques in Austa-

lasia and South East Asia, pages 29–ff, Melbourne, Australia, 2003. ACM

Press.

86

[16] Akanksha Huang, Z. Huang, B. Prabhakaran, and Jr. C. R. Ruiz. Interac-

tive visual method for motion and model reuse. In Proceedings of the 1st

international conference on Computer graphics and interactive techniques in

Austalasia and South East Asia, pages 29–ff. ACM Press, 2003.

[17] Lucas Kovar and Michael Gleicher. Flexible automatic motion blending with

registration curves. In Proceedings of the 2003 ACM SIGGRAPH/Eurograph-

ics Symposium on Computer Animation, pages 214–224. Eurographics Asso-

ciation, 2003.

[18] Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion graphs. In Pro-

ceedings of the 29th annual conference on Computer graphics and interactive

techniques, pages 473–482. ACM Press, 2002.

[19] Lucas Kovar, John Schreiner, and Michael Gleicher. Footskate cleanup for

motion capture editing. In Proceedings of the ACM SIGGRAPH symposium

on Computer animation, pages 97–104. ACM Press, 2002.

[20] Jeff Lander. Making kine more flexible. Game Developer, pages 15–22, 1998.

[21] Jehee Lee and Sung Yong Shin. A hierarchical approach to interactive motion

editing for human-like figures. In Proceedings of the 26th annual confer-

ence on Computer graphics and interactive techniques, pages 39–48. ACM

Press/Addison-Wesley Publishing Co., 1999.

[22] Yan Li, Tianshu Wang, and Heung-Yeung Shum. Motion texture: a two-level

statistical model for character motion synthesis. In Proceedings of the 29th

annual conference on Computer graphics and interactive techniques, pages

465–472. ACM Press, 2002.

[23] Peter C. Litwinowicz. Inkwell: A 2-d animation system. In Proceedings of

the 18th annual conference on Computer graphics and interactive techniques,

pages 113–122. ACM Press, 1991.

87

[24] C. Karen Liu and Zoran Popović. Synthesis of complex dynamic character

motion from simple animations. In Proceedings of the 29th annual confer-

ence on Computer graphics and interactive techniques, pages 408–416. ACM

Press, 2002.

[25] Zicheng Liu, Steven J. Gortler, and Michael F. Cohen. Hierarchical spacetime

control. In Proceedings of the 21st annual conference on Computer graphics

and interactive techniques, pages 35–42. ACM Press, 1994.

[26] David G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley

Pub Co, June 1984.

[27] Anthony A. Maciejewski. Motion simulation: Dealing with the ill-conditioned

equations of motion for articulated figures. IEEE Comput. Graph. Appl.,

10(3):63–71, 1990.

[28] Jean-Sébastien Monzani, Paolo Baerlocher, Ronan Boulic, and Daniel Thal-

mann. Using an intermediate skeleton and inverse kinematics for motion re-

targeting. Computer Graphics Forum, 19, 2003.

[29] Michael Neff and Eugene Fiume. Aesthetic edits for character animation.

In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, pages 239–244. Eurographics Association, 2003.

[30] Sang Il Park, Hyun Joon Shin, and Sung Yong Shin. On-line locomotion

generation based on motion blending. In Proceedings of the 2002 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pages 105–111.

ACM Press, 2002.

[31] Julien Pettré, Jean-Paul Laumond, and Thierry Siméon. A 2-stages locomotion

planner for digital actors. In Proceedings of the 2003 ACM SIGGRAPH/Euro-

graphics Symposium on Computer Animation, pages 258–264. Eurographics

Association, 2003.

88

[32] Zoran Popović and Andrew Witkin. Physically based motion transformation.

In Proceedings of the 26th annual conference on Computer graphics and inter-

active techniques, pages 11–20. ACM Press/Addison-Wesley Publishing Co.,

1999.

[33] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical

recipes in C : the art of scientific computing. Cambridge University Press,

1992.

[34] Katherine Pullen and Christoph Bregler. Motion capture assisted animation:

texturing and synthesis. In Proceedings of the 29th annual conference on

Computer graphics and interactive techniques, pages 501–508. ACM Press,

2002.

[35] Charles Rose, Brian Guenter, Bobby Bodenheimer, and Michael F. Cohen.

Efficient generation of motion transitions using spacetime constraints. In Pro-

ceedings of the 23rd annual conference on Computer graphics and interactive

techniques, pages 147–154. ACM Press, 1996.

[36] Hyun Joon Shin, Jehee Lee, Sung Yong Shin, and Michael Gleicher. Computer

puppetry: An importance-based approach. ACM Transactions on Graphics

(TOG), 20(2):67–94, 2001.

[37] Maryann Simmons, Jane Wilhelms, and Allen Van Gelder. Model-based re-

construction for creature animation. In Proceedings of the ACM SIGGRAPH

symposium on Computer animation, pages 139–146. ACM Press, 2002.

[38] Seyoon Tak, Oh young Song, and Hyeong-Seok Ko. Spacetime sweeping: an

interactive dynamic constraints solver. Computer Animation, 2002. Proceed-

ings of, 2002.

[39] L.-C.T. Wang and C.C. Chen. A combined optimization method for solv-

ing the inverse kinematics problems of mechanical manipulators. Robotics

89

and Automation, IEEE Transactions on, 7(1042-296X):489–499, 1991. TY -

JOUR.

[40] Chris Welman. Inverse kinematics and geometric constraints for articulated

figure manipulations. Master’s thesis, Simon Fraser University, 1993.

[41] Andrew Witkin and Michael Kass. Spacetime constraints. In Proceedings of

the 15th annual conference on Computer graphics and interactive techniques,

pages 159–168. ACM Press, 1988.

[42] Andrew Witkin and Zoran Popović. Motion warping. Computer Graphics,

29(Annual Conference Series):105–108, 1995.

[43] Victor B. Zordan and Nicholas C. Van Der Horst. Mapping optical motion

capture data to skeletal motion using a physical model. In Proceedings of

the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Anima-

tion, pages 245–250. Eurographics Association, 2003.

90

