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ABSTRACT

This thesis presents two classes of novel TCP exploits and the countermeasures.

In the first exploit, we have proposed a new breed of low-rate Denial-of-Service (DoS)

attacks, referred to as pulsing DoS (PDoS) attacks, which abuse TCP congestion

control mechanisms to throttle a victim’s throughput. Comparing with traditional

flooding-based DoS attacks, PDoS attacks use much less attack traffic to cause similar

damage to TCP flows. Besides TCP, the dominant transport protocol today, the

emerging SCTP and DCCP will also be vulnerable to PDoS attacks. On the defense

side, we have proposed two new effective schemes to detect PDoS attacks. In the

second exploit, we have proposed two novel network timing channels, TCPScript and

Cloak, which facilitate stealthy communications in the Internet. By exploiting TCP’s

flow concept, sliding window, and acknowledgement mechanisms, TCPScript and

Cloak provide much higher channel capacity, camouflage flexibility, and reliability

than existing covert channels. Since the protocol features exploited by TCPScript

and Cloak are widely adopted by modern transport protocols, similar covert channels

could be imbedded in other protocols. We have also proposed new detection schemes

to uncover TCPScript and Cloak channels.

In the PDoS attacks, we have fully exploited TCP congestion control mechanisms

to effectively deny TCP flows from using the available bandwidth. Unlike traditional

flooding-based attacks, the PDoS attack sends out a train of attack pulses, each

of which will cause packet drops at the affected routers. Due to TCP’s additive-

increase/multiplicative-decrease and timeout mechanisms, the periodic packet losses

will cause the TCP victim’s throughput to stay at a very low value. We have eval-

uated the effectiveness of the PDoS attack on popular TCP variants, TCP-friendly

protocols, and active queue management schemes based on analytical modeling and
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test-bed experimentations. Since PDoS attacks could be configured in their intensity

and periodicity of the attack pulses, we have also studied the tradeoff between at-

tack damage and attack cost. Subsequently, we have optimized the PDoS attack to

achieve the best tradeoff. Finally, we have generalized the PDoS attacks, other low-

rate DoS attacks, and flooding-based attacks under a single framework: polymorphic

DoS attacks.

On the countermeasures, we have designed a two-stage detection mechanism for

PDoS attacks and Vanguard for PMDoS attacks. The two-stage detection mechanism

is designed to detect PDoS attacks at the network under protection. It employs a

wavelet analysis to monitor the variability in the incoming TCP data traffic and out-

going TCP acknowledgment traffic. The second stage is to detect the attack based

on change-point detection of the monitored statistics in the first stage. Vanguard, on

the other hand, is designed to detect different forms of DoS attacks, i.e., the PMDoS

attacks. As a result, Vanguard uses three anomalies for an accurate detection and

for reducing false positives and false negatives. We have conducted extensive experi-

ments on a test bed to evaluate their performance in terms of detection accuracy and

computational requirement, and have compared them with several detection systems

proposed by others.

In the second class of TCP exploits, we have fully utilized TCP’s protocol fea-

tures to design more effective network timing channels. The first idea is to exploit

TCP’s bursty traffic for imbedding covert messages. In particular, we have designed

TCPScript to imbed messages in the TCP data burst size. Moreover, we have built

into TCPScript additional mechanisms based on TCP acknowledgements to increase

its channel reliability. The second idea is to imbed covert messages in the packet-flow

combinations which are used in the design of Cloak. Cloak possesses many out-

standing properties which cannot be achieved by existing network timing channels,

including high channel throughput, full reliability, and very high flexibility. For the

proof of concept, we have prototyped TCPScript and Cloak, and have evaluated them

in a test bed and PlanetLab. Experiment results have showed that TCPScript and
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Cloak enjoy better performance as compared with two other network timing channels.

On the countermeasures, we have proposed new detection schemes for detecting TCP-

Script and Cloak channels which are based on identifying anomalies in the TCP data

and acknowledgment traffic. We have evaluated the detection rates of the schemes

based on public traces.
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1. INTRODUCTION

Old and new security problems continue to plague the Internet and its communities.

More security measures are constantly introduced to network devices, systems, and

software; however, attacks are also becoming more sophisticated at the same time.

Addressing network security problems is therefore the main driving force behind the

recent initiative for a “clean-slate” design of the Internet [1]. This initiative implicitly

admits that it is not possible to address the security problems confronting the current

Internet which was not designed for security. However, it is too early to tell whether a

new Internet design, if any, could completely eliminate these problems. For instance,

many security problems in network protocols are inherent in nature; according to our

experience, network protocols could always be exploited for purposes other than the

originally intended.

In particular, this thesis argues that transport-layer protocols, if cleverly exploited,

could be used for devising powerful network attacks. We substantiate this argument

by demonstrating that TCP’s rich protocol features and behavior can be misused

for two kinds of Internet-wide security problems: denial-of-service (DoS) attacks and

network covert communications. Although the actual number of reported DoS or

distributed DoS (DDoS) has dropped in 2006, this threat remains as one of the most

serious threats to the Internet, according to the CSI/FBI Computer Crime and Se-

curity Survey in 2004 and 2006 report [2] and the Symantec Internet security threat

report [3]. We propose in this thesis a new and more effective DoS attack, coined

as pulsing denial-of-service (PDoS) attack, because its ON/OFF attack pattern re-

sembles pulses in the field of signal processing [4]. Unlike the classic flooding-based

attacks, the PDoS attacks TCP congestion control algorithm by introducing inter-

mittent false feedback signals. Therefore, it could achieve similar damage achieved by

the classic DoS attacks but with much less attack traffic. We have also designed two
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online algorithms to detect an ensuing PDoS attack and evaluated its performance

on a test bed.

Although receiving relatively fewer reports as compared with DoS attacks, net-

work covert communications could pose a serious threat to the Internet security.

Covert channels have been used to steal information, for example, password [5] and

data [6]. Covert channels have also been used to communicate attack commands in

the previous large-scale DDoS attacks [7,8], to transfer infection information in a new

class of worms [9], and to control botnets [10, 11]. A recent report also points out

that the use of network covert channels for concealing malicious activities is on the

rise [12]. On the other hand, covert channels could be instrumental in permitting

different communities to bypass censorship or any privacy intrusion devices [13, 14].

In this thesis, we present two new channels—TCPScript and Cloak—which exploit

TCP’s traffic burstiness, acknowledgments, and packet-flow combinations for embed-

ding covert messages. Both possess many attractive properties unmatched by others,

such as a high channel capacity, resilience to varying network conditions, and a high

detection cost. On the countermeasures, we have designed new algorithms to detect

the two network covert channels. We have thoroughly evaluated the covert channels

and detection algorithms on a test bed and in the PlanetLab.

1.1 TCP insecurity

Transmission Control Protocol (TCP), being the dominant transport protocol for

numerous application protocols, such as HTTP, FTP, Telnet, SSH, and SSL, is per-

haps one of the most complex Internet protocols. TCP provides a wide range of

services to a TCP connection, such as full-duplex communication, reliability, mes-

sage orderliness, and flow control. Moreover, the TCP congestion control prevents

congestion collapse in the Internet, provides fairness for best-effort traffic, and opti-

mizes performance on throughput, delay, and loss [15]. TCP provides all of the above
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through a sliding window algorithm, packet sequencing, positive acknowledgment,

retransmission algorithms, and congestion control algorithms.

Like other TCP/IP protocols, TCP was designed at the time when network secu-

rity was not a concern and trust was assumed. Indeed, the original TCP design [16]

suffers from a number of inherent limitations and vulnerabilities that have been ex-

ploited by various attacks [17–21]. Some attacks aim at TCP connections. For exam-

ple, RST and FIN attacks attempt to tear down normal TCP connections [17]), and

the Land attack employs malformed packets to crash some earlier TCP/IP stacks [20].

Moreover, other TCP attacks abuse TCP features for the purpose of bypassing fire-

walls and censorship, and fingerprinting remote systems. We will present a detailed

survey on different kinds of TCP exploits in Chapter 2.1.3.

1.2 Denial-of-service attacks

Unlike system-specific attacks, DoS attacks are more generic in nature. Different

network protocol packets can be used in an attack, and the attacks are generally

system independent. Therefore, their impact can be very significant in scope and

damage, as evidenced by the large-scale attacks in 2000 that caught Yahoo, eBay,

and many other major web sites off guard [22]. The conventional (D)DoS attacks

are flooding-based [22]. That is, an attacker sends out an unusually large number

of packets to overwhelm a victim from a single or multiple infected hosts. These

attack packets exhaust the victim’s bandwidth or system resources, preventing them

from serving legitimate requests. Detecting them, however, is generally not difficult

(except for the SYN flooding attack) on the victim’s side based on an anomalous rise

in the traffic rate and slow network responses.

We classify the existing TCP vulnerabilities that can be exploited by DoS attackers

into three categories. The first category covers the protocol design weaknesses. For

example, a SYN flooding attack could deplete a system’s memory for accepting new

connections by not completing the TCP three-way handshake [23, 24]. The second
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category concerns TCP/IP stack implementations [25]. For example, the Bubonic

attack could induce a high CPU/memory utilization and then a DoS attack against

some TCP/IP stacks by crafting a sequence of TCP packets with random settings [20].

The third category concerns injections of false congestion signals into a TCP flow.

For example, an attacker could send forged ICMP Source Quench messages to a TCP

sender to reduce its transmission rate [26]. The PDoS attack proposed in this thesis

belongs to the third category. Note that this vulnerability is also closely related to

the design of TCP congestion control algorithms [27].

1.3 Low-rate TCP-targeted DoS attacks

The main principle for the PDoS attack is to inject false congestion signals each

of which will cause the sender’s congestion window to drop. If the congestion signals

are spaced appropriately, the congestion window will be suppressed to a low value,

thus reducing the TCP throughput. To induce those false congestion signals, a PDoS

attacker dispatchs a sequence of packet bursts, or pulses, to temporarily congest the

bottleneck that will cause packet drops in legitimate TCP flows. As a result, the

main advantage of the PDoS attack is that its average traffic rate is usually much

lower than the bottleneck capacity, which also makes it hard to detect the attack.

Moreover, this type of low-rate DoS attacks has been studied under two other names:

shrew attack [28] and reduction-of-quality (RoQ) attack [29]. As we shall explain

later, the PDoS attack includes the shrew attack as a special case. Moreover, we have

analyzed general PDoS attacks which admit nonconstant inter-pulse period, whereas

only constant periods are considered in [29].

The seminal work on low-rate DoS attacks began with the shrew attack that

attempts to confine a TCP sender to the timeout state by dispatching attack pulses

whenever the sender retransmits lost packets after a timeout period [28]. By exploiting

the pre-defined minimal retransmission timeout value (RTO) (i.e., 1 second) suggested

in [30], an attacker could predict a TCP sender’s behavior and launch a shrew attack
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with a fixed period. The RoQ attack, on the other hand, sends periodic attack pulses

to force a router’s active queue management (AQM) mechanism to enter the transient

state, thus increasing its packet loss probability. Consequently, the throughput of

TCP flows passing through the router will be degraded due to the attack-inflated

loss probability [29]. The analysis in [29] addresses mainly RED-like AQMs and the

effects of transient state on the TCP throughput. Note that our work on the PDoS

attacks was done in parallel with the work on RoQ attacks; we were not aware of the

RoQ attacks [29] when publishing our first paper on the PDoS attacks [4].

1.4 Network covert channels

Encryption prevents unauthorized access to protected communications, whereas

a covert channel conceals the existence of communication [31]. Since its debut as a

confinement problem in operating systems in 1973 [32], covert channels have attracted

considerable interest from both academic and hackers. The trusted computer system

evaluation criteria (TCSEC) defines a covert channel as “any communication channel

that can be exploited by a process to transfer information in a manner that violates

the system’s security policy” [33, 34].

Traditionally, covert channels are classified into two groups: storage channel and

timing channel. The former involves “the direct or indirect writing of a storage

location by one process and the direct or indirect reading of the storage location

by another process.” The latter allows “one process signals information to another

process by modulating its own use of system resources in such a way that this manip-

ulation affects the real response time observed by the second process” [33]. However,

there is no fundamental distinction between the two in theory [34]. A mixed or hybrid

channel is a combination of the two [35]. Venkatraman and Newman-Wolfe gave a

specific definition for network covert channels: “they implement a valid interpretation

of a consistent security policy and are based on the observation of the extrinsic char-

acteristics of the communication without necessarily having access to the information
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contained within messages (due to encryption) or the necessity to modulate internal

states or variables” [36].

Network covert channels operate in a similar manner as the classic covert channels

in trusted computer systems. However, there are marked differences between the two.

First, the “high” or “low” level processes used in the the classic covert channels are

not well defined in network covert channels. For example, when a compromised host

tries to leak information to a remote attacker, the host may be considered as a “high”

process. However, if a compromised host is receiving malicious commands from a re-

mote attacker, then the host may be regarded as a “low” process. Second, there are

potentially uncountable entities that could engage in network covert communications,

but the number is quite limited in the classic covert channels. Third, implementing

the Bell LaPadula model for network covert channels is practically very difficult.

Most enterprise networks do not implement the Bell LaPadula and permit two-way

communications to support various TCP-based applications. For example, most net-

work administrators may allow users to browse Web sites but they will inspect the

outgoing and incoming traffic.

1.5 TCP-based covert timing channels

Most network storage channels hide information in the header fields of different

protocols (e.g., MAC, IP, TCP, ICMP, DNS, and HTTP [37, 38]). However, these

channels could be thwarted by active warden [39], protocol scrubber [40] and mid-

dlebox (e.g., NAT) which may modify the values in those fields. On the other hand,

some recently proposed channels convey information in the packets’ timing informa-

tion. For example, Cabuk et al. [41] have proposed an IP timing channel, in which

an IP packet arrival during a timing interval is decoded as 1 and its absence decoded

as 0. Berk et al. [42] have considered using inter-packet delay of ICMP packets to

encode one or multiple bits: bit 1 is encoded by a longer inter-packet delay and bit

0 encoded by a smaller inter-packet delay. Shah et al. [43] have recently proposed
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JitterBug, another timing channel modulating binary bits into the inter-packet delay.

Although these timing channels are more robust to the network intermediaries, they

suffer from three serious problems: low bit rate, deviation of the modulated packets’

behavior from the normal profile, and being vulnerable to adverse network conditions,

such as packet loss and large jitter.

In this thesis we have explored other parts of the design space for designing net-

work covert channels. As a result of the exploration, we have designed two new

network covert channels: TCPScript and Cloak. TCPScript imbeds covert messages

in the burstiness of TCP data traffic. In particular, TCPScript uses a packet-counting

approach to encode multibit messages and takes the advantages of TCP’s sequence

number and acknowledgement mechanism to increase its robustness to adverse net-

work conditions. Moreover, we have proposed an information-theoretic model to

estimate TCPScript’s capacity and have compared it with IP timing channel’s and

Jitterbug’s. We have conducted extensive experiments in a test bed and the Plan-

etLab platform [44]. The experiment results confirm that TCPScript offers not only

much higher throughput but also more reliable service than the other two timing chan-

nels. On the countermeasures, we have proposed a new online detection approach to

discover ongoing TCPScript instances which has also been evaluated experimentally.

Cloak, another new timing channel, takes an entirely different approach to convey

covert messages. Each message in Cloak is encoded into a unique combination of TCP

flows and packets. In other words, a partition of packets into TCP flows represents a

hidden message. Cloak has many attractive properties that cannot be found in other

network covert channels. First of all, Cloak provides reliable service in the same

manner as TCP: each covert message transmission is guaranteed reliable. Second,

Cloak offers ten different encoding and decoding methods each of which has a unique

tradeoff among several important considerations, such as the channel capacity and

the need for packet marking. Third, the packet transmissions modulated by Cloak

could be carefully crafted to mimic the normal TCP flows in a typical TCP-based

application session. Extensive experiments conducted in a test bed and PlanetLab
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platform show that Cloak outperforms other timing channels in terms of throughput

under various network conditions. Moreover, we have designed and evaluated a two-

step detection algorithm for Cloak.

1.6 Contributions of this work

1.6.1 Pulsing DoS attacks and the countermeasures

1. We have proposed and analyzed a new class of DoS attacks: pulsing DoS (PDoS)

attacks. Unlike traditional attacks, a PDoS attack effectively throttles TCP

throughout by sending false feedback signals. We have also designed a practical

two-stage mechanism to detect them [4, 45].

The PDoS attacks exploit TCP congestion control mechanisms, including time-

out and additive-increase/multiplicative-decrease (AIMD) algorithm. The widely

analyzed shrew attack is a special case of the PDoS attacks. We have derived

analytical models for the damage caused by different PDoS attack variants.

Moreover, PDoS attacks will affect other TCP-friendly protocols, such as SCTP

and DCCP which adopt similar congestion control mechanisms.

The two-stage detection mechanism is based on two traffic anomalies caused by

a PDoS attack: periodic fluctuations in the incoming TCP data traffic and a

decline in the trend of the outgoing ACK traffic. The computation complexity

of this two-stage detection mechanism is lower than other existing detection

schemes. The test-bed experiment results also show that it can promptly detect

PDoS attacks.

2. We have generalized the PDoS, other low-rate attacks, and the flooding DoS

attacks under a single framework: polymorphic DoS (PMDoS) attacks. We have

proposed Vanguard, a new detection method to detect PMDoS attacks [46].

The PMDoS attack is a general framework for the low-rate attacks and flooding-

based attacks. In particular, we have modeled the AIMD-based attack as an
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alternating renewal process and analyzed its impact under different parameter

settings. This unified framework is very useful for comparing different low-rate

attacks and for understanding various tradeoff involved. It is also possible to

identify new design points which could yield more powerful attacks.

We have proposed Vanguard to detect various forms of low-rate attacks and

flooding-based attacks (i.e., PMDoS attacks). Vanguard employs three anoma-

lies to discover PMDoS attacks: decline in the outgoing TCP ACK traffic,

increase in the ratio of the incoming TCP traffic to the outgoing TCP ACK

traffic, and change in the distribution of the incoming TCP traffic. Vanguard

enjoys a low computational complexity as the two-stage detection scheme. The

experiment results support that Vanguard can promptly detect many PMDoS

attacks.

3. We have investigated the problem of optimizing PDoS attacks and have obtained

insightful understanding on the tradeoff between attack power and attack cost

[47]. As a result, we could distinguish between three types of PDoS attacks

based on this tradeoff.

An optimal PDoS attack balances the attack power (measured by TCP through-

put degradation) and the attack cost quantified (measured by attack traffic

rate). By varying the attack parameters, we could study the three types of at-

tacks launched by risk-loving, risk-neutral, and risk-averse attacks. Moreover,

we have obtained the optimized attack parameters for the three classes of at-

tacks. We have validated the analytical results using both ns-2 simulation and

test-bed experiments.

Although we have primarily considered attacking standard TCP protocols, our

models and analysis could be extended to new TCP flavors and even nonTCP proto-

cols, such as SCTP [48] and DCCP [49]. In fact, several works have already investi-

gated the impact of PDoS attacks on FAST TCP flows [50,51] and UDP-based VoIP

flows [52]. Chertov et al. have evaluated the impact of PDoS attacks experimentally
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on the DETER and Emulab test beds [53]. Moreover, recent studies have assessed

the effects of PDoS attacks on TCP-based applications. For example, Zhang et al.

report that PDoS attacks could cause session resets and delayed routing convergence

in Border Gateway Protocol (BGP) [54]. Mirkovic et al. show that the PDoS attacks

could induce a high failure ratio, a metric for measuring DoS attack’s effect [55]. We

will further discuss these related works in Chapter 2.

1.6.2 Network covert channels and the countermeasures

1. We have proposed TCPScript, a new approach to designing timing channels

that exploit traffic burstiness in reliable, end-to-end protocols. We have also

identified two anomalies for detecting TCPScript channels.

A TCPScript channel camouflages itself in bursty TCP traffic and embeds infor-

mation into the number of packets in each data burst. TCPScript increases its

reliability by further exploiting TCP’s acknowledgement mechanism. Moreover,

we have proposed an information-theoretic model for estimating TCPScript’s

capacity and comparing it with an IP timing channel and Jitterbug. Exten-

sive experiments conducted in both a test bed and PlanetLab support that

TCPScript attains a higher throughput and is more robust to adverse network

conditions, as compared with the IP timing channel and JitterBug. Moreover,

we have proposed a new detection scheme for TCPScript based on two features:

burst size and inter-ACK-data delay.

2. We have proposed Cloak, a class of novel timing channels which embed covert

messages into a combination of TCP flows and packets [56]. We have also

proposed an anomaly detection algorithm to uncover Cloak channels.

Cloak is fundamentally different from other timing channels in several aspects.

First, Cloak encodes a message by a unique distribution of N packets over X

TCP flows. The combinatorial nature of the encoding methods increases the

channel capacity exponentially with (N,X). Second, Cloak offers ten different
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encoding and decoding methods, each of which has a unique tradeoff among

several important considerations, such as channel capacity and the need for

packet marking. Third, the packet transmissions modulated by Cloak could be

carefully crafted to mimic the normal TCP flows in a typical TCP-based appli-

cation session. Although Cloak’s basic idea is simple, we will show how we have

tackled a number of challenging issues systematically. Our experiment results

collected from PlanetLab nodes and a test bed suggest that Cloak is feasible un-

der various network conditions and different round-trip. We have proposed and

implemented an anomaly detection algorithm for uncovering Cloak channels.

Since sequence number, acknowledgement, packet-flow are general concepts in

communication protocol design [57] and have been adopted by many new protocols

(e.g., DCCP and SCTP), we believe that the basic ideas of TCPScript and Cloak

could be applied to other protocols. Moreover, Cloak’s combination-based framework

can be used to design new storage channels.

1.7 Organization

The rest of this thesis consists of four main sections: Chapter 2 on background

and related works, Chapters 3-4 on PDoS and the countermeasures, Chapters 5-6

on two new network covert channels and countermeasures, and finally Chapter 7 on

conclusions and future works.

In Chapter 2, we first provide relevant background on TCP congestion control

mechanism, flow control, and existing TCP exploits. After that, we survey previous

works on low-rate DoS attacks and the countermeasures. We will explain why the

PDoS attacks proposed in this thesis are more powerful and difficult to detect. We

will then present the covert communication problem and the model assumed in this

thesis. Besides pointing out some classic works done for this problem, we propose

a new taxonomy for network storage channels which could also help identify new
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ones. Lastly, we introduce the state-of-the-arts on network timing channels and the

countermeasures.

Chapters 3-4 are devoted to the PDoS attacks and the two new detection systems.

In Chapter 3, we first present and analyze a suite of PDoS attacks that exploit TCP’s

timeout and AIMD mechanisms in a synchronous or asynchronous manner. To go

further, we generalize the PDoS attacks, other low-rate attacks, and the traditional

flooding-based by a general framework referred to as polymorphic DoS (PMDoS)

attack—a DoS attack existing in different forms. Finally, we have obtained optimal

attack parameters for three different attack profiles. In Chapter 4, we present a

two-stage mechanism for detecting PDoS attack and Vanguard for detecting PMDoS

attacks.

Chapters 5-6 are devoted to TCPScript and Cloak and the anomaly detection

algorithms. In Chapter 5, we will first discuss the basic design of TCPScript which

embeds covert messages into the burst size. We will then further improve TCPScript’s

decoding accuracy using TCP’s acknowledgment channel and a clustering algorithm.

We finally end the chapter with experiment results and the anomaly detection algo-

rithm. In Chapter 6, we detail the design of Cloak and its ten different encoding and

decoding methods. After that, we address a practical head-of-line blocking problem

by introducing a D-limited codeword scheme. We then present extensive test-bed and

PlanetLab experiment results and conclude the chapter with the anomaly detection

algorithms.
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2. BACKGROUND AND RELATED WORKS

In this chapter, we will first present a short primer on TCP protocol that is relevant to

this work, traditional TCP exploits, and a few recently proposed TCP-based attacks.

After that, we will explain the covert communication problem in the Internet and

present a brief survey on the common approaches to designing two main types of

network covert channels: storage channels and timing channels.

2.1 A TCP primer

In this section, we briefly introduce some of TCP’s salient features (i.e., reliability,

flow control, and congestion control), which will be exploited for designing PDoS

attacks and new network covert channels. Interested readers may refer to [16, 27,

58] for detailed information about TCP specifications in the standard documents.

Moreover, we will summarize in section 2.1.3 existing TCP exploits, including those

discovered in this thesis.

2.1.1 Reliability and flow control

TCP uses a quadruple—source and destination addresses, and source and des-

tination port numbers—to uniquely distinguish a connection. Each connection is

established after a successful three-way handshaking and is closed by a successful

four-way handshaking or an RST signal.

In order to provide reliable transmission service, a TCP sender assigns a sequence

number to each byte sent and requires acknowledgement (ACK) from the TCP re-

ceiver. If a TCP sender cannot receive the ACK within a timeout interval or receive

three duplicate ACKs, it will retransmit the data [16, 27]. A TCP receiver uses the
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sequence number to remove duplicates and to order data before passing them to the

upper-layer applications.

TCP adopts a window-based flow control mechanism. The receiving TCP an-

nounces a receiver window, denoted as rwnd, to the sending TCP [16]. The sending

TCP maintains a congestion window, denoted as cwnd, which is governed by its con-

gestion control algorithms [27]. The window-based flow control mechanism allows a

TCP sender to transmit at most min{rwnd, cwnd} data without receiving ACKs for

the data sent [27].

2.1.2 Congestion control

Four congestion control algorithms are employed in the standard TCP: slow start,

congestion avoidance, fast retransmit, and fast recovery. These algorithms control the

value of cwnd, whereas the minimum of cwnd and rwnd controls the data transmission

rate. Here, we briefly introduce these algorithms based on RFC 2581 [27]. The new

recommendations and changes are described in detail in section 7 of a new IETF

draft [59].

TCP uses a slow start threshold (ssthresh) to determine whether the slow start

or congestion avoidance algorithm should be used to control the value of cwnd. The

slow start algorithm is used at the beginning of a transfer and after the retransmission

timer expires. The initial value of cwnd is no larger than two segments. The initial

value of ssthresh is usually a very large value (e.g., the value of rwnd) and will

decrease in response to congestion. A TCP sender uses the slow start algorithm when

cwnd < ssthresh and invokes the congestion avoidance algorithm when cwnd >

ssthresh. Either algorithm may be used when cwnd == ssthresh. The slow start

algorithm will increase cwnd by at most one receiver Maximum Segment Size (MSS)

bytes for each received ACK that acknowledges new data. The congestion avoidance

algorithm will increase cwnd by roughly one full-sized segment per round-trip time

(RTT). When a TCP sender detects loss using the retransmission timer, cwnd is set
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to one full-sized segment. At the same time, ssthresh is set to no more than the value

given in Eq. (2.1):

ssthresh = max(F lightSize/2, 2× SMSS), (2.1)

where SMSS denotes the sender MSS in bytes and FlightSize is the amount of unac-

knowledged data [27].

Without receiving (or a sufficient number of) ACKs, the sender eventually time-

outs. The retransmission timeout value (RTO) is computed according to [30]:

RTO = max{minRTO, SRTT +max(G, 4× V RTT )}, (2.2)

where minRTO, the lower bound on RTO, is recommended to be one second for the

purpose of avoiding spurious retransmissions [60], and G is the clock granularity.

SRTT is the smoothed RTT and VRTT is the RTT variation, which are updated

according to Eq. (2.3) and Eq. (2.4) upon receiving a new RTT measurement rtt,

respectively:

SRTT = 7/8× SRTT + 1/8× rtt. (2.3)

V RTT = 3/4× V RTT + 1/4× |SRTT − rtt|. (2.4)

Since a TCP receiver will immediately send a duplicate ACK when receiving

an out-of-ordered segment, the TCP sender uses the fast retransmit algorithm to

detect and recover loss. The fast retransmit algorithm regards the recipient of three

duplicate ACKs as a signal of packet loss and therefore performs a retransmission

of what appears to be the lost segment. At the same time, ssthresh is set to no

more than the value given in Eq. (2.1), and cwnd is set to ssthresh+3 × SMSS.

After that, the fast recovery algorithm controls the transmission of new data until

a nonduplicate ACK arrives. For each additional duplicate ACK received, the cwnd

value is incremented by one SMSS. The TCP sender will transmit a segment if it is

allowed by both cwnd and rwnd. Upon the arrival of a nonduplicate ACK, cwnd is

set to ssthresh.
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2.1.3 Existing TCP exploits

The original TCP design [16] has inherent limitations and vulnerabilities that have

been exploited by many attacks [17–21]. Some attacks try to tear down TCP con-

nections or to smash TCP/IP stacks. Other attacks try to abuse TCP for bypassing

firewalls/censorship or fingerprinting remote systems.

We further classify those attacks that aim at TCP connections into three cate-

gories. The attacks in the first category exploit the protocol’s inherent limitations.

Without completing the TCP three-way handshake, the SYN flooding attack de-

pletes a victim system’s memory for new connections and prevents it from serving

legitimate connections [23, 24]. A malicious client can also launch DoS attacks by

intentionally prolonging the duration of its connection with a server through delaying

the transmission of acknowledgement packets [61]. Moreover, if an attacker knows a

TCP connection’s 4-tuple (the source and destination IP addresses and ports) and

the 32-bit sequence numbers, he could mount injection attacks [62,63] (e.g., injecting

RST or SYN packets to tear down the connection [17]). Exploiting the fact that a

TCP receiver will reject an incoming packet if its sequence number is unacceptable,

the desynchronization attack intentionally makes an offset between a TCP receiver’s

ACK number and the TCP sender’s sequence number [64]. Furthermore, an at-

tacker could employ ICMP protocol to attack TCP connections; for example, forged

Destination Unreachable and Time to Live Exceeded messages could reset existing

connections [18,19,26]. On the other hand, various detection and defense approaches

have been proposed. For example, the TLS protocol has been proposed to provide

privacy and data integrity [65]. SYN cookies and cache are devised to mitigate the

effect of SYN-flooding attacks [24].

The attacks in the second category exploit the protocol’s implementation problems

in many TCP/IP stacks [25]. For example, attackers construct malformed packets to

launch DoS attacks. One of such notorious threats is the Land attack which sends

TCP packets having the same source and destination address and identical source
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and destination port numbers [20]. Some earlier TCP/IP stacks could crash when

processing this type of packet. Another example is setting both SYN and FIN flags

in the TCP header [21]. Since the TCP specification [16] does not clarify how to

handle such malformed packet, some TCP/IP stacks process the SYN flag first by

generating an ACK packet and performing a state-transition to the state SYN-RCVD.

And then the stack handles the FIN flag by transiting to the state CLOSE-WAIT and

sending an ACK. Since the attacker will not send any other packets to the victim, the

victim’s TCP connection gets stuck in the CLOSE-WAIT state until the expiry of

the keepalive timer [21]. Hping [66], Scapy [67] and Nemesis [68] are popular packet

crafting tools that could initiate such attacks. To carry out TCP spoofing and session

hijacking attacks, an attacker has to predict TCP’s sequence number if he could not

capture packets exchanged by the victims. Although the sequence number should be

generated randomly, some TCP/IP stacks leave many hints for predicting their values.

For example, some TCP/IP stacks increase the Initial Sequence Number (ISN) by a

finite amount each time period or adopt constant increments. More implementation

problems can be found in [69].

The TCP exploits discussed above have also been widely used for system finger-

printing [20, 21, 70]. When conducting an active fingerprinting, an attacker sends

TCP probes to the target system and then waits for the response. Based on a cou-

ple of probing packets and responses, an attacker could distinguish among different

TCP/IP stack implementations. Popular techniques include FIN probes, ACK value

sampling, bogus flag probes, TCP option handling, and ISN sampling [20]. An excel-

lent introduction can be found in [71]. Moreover, Nmap [72], xprobe [73], and p0f [74]

are popular TCP/IP fingerprinting tools.

The attacks in the third category exploit an increasingly invalid assumption that

all TCP senders and receivers behave correctly, and congestion signal generated by

the network is trustful. While most of existing TCP-targeted attacks belong to the

first and the second categories, the attacks in this category receive much less atten-
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tion. Savage et al. have examined misbehaving TCP receivers that can increase its

download throughput through several approaches:

• ACK division: The receiver replies many ACKs for portions of each received

segment, and each ACK increases the congestion window by one MSS;

• DupACK spoofing: The receiver replies a lot of duplicate ACKs no matter

whether a segment is lost or not. Each duplicate ACK increases the congestion

window; and

• Optimistic ACKing: The receiver acknowledges segments to be received. It will

quickly increase the sender’s congestion window at a cost of possible segment

lost [75].

Moreover, these techniques have been abused to launch DDoS attacks [76].

2.2 Low-rate DoS attacks against TCP

The seminal research on PDoS attacks began with the shrew attack that attempts

to constrain a TCP sender to the timeout state by dispatching attack pulses whenever

the sender retransmits lost packets after a timeout period [28]. We have proposed

a general framework for the PDoS attacks in [4], which consists of four kinds of

attacks: synchronous timeout-based attacks, asynchronous timeout-based attacks,

synchronous AIMD-based attacks, and asynchronous AIMD-based attacks.

Both timeout-based attacks drive a victim TCP sender to continuously enter the

timeout state. Consequently, the victim TCP sender has very low throughput. The

difference between these two timeout-based attacks lies in whether an attacker uses

fixed inter-pulse period or adapts the period according to the behavior of TCP’s slow

start algorithm. We have further investigated the impact of asynchronous timeout-

based attacks on a victim TCP’s throughput by considering three difference cases

in [45]. These three cases differ in how a PDoS attack constrains the value of ssthresh:

(1) no constraint, (2) constraining it to the lowest value of two, and (3) constraining
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it to a constant value larger than two. We will show that the shrew attack can be

considered as one of three asynchronous timeout-based attacks. Kanhere et al. [77]

have considered the third case and proposed a variant that will constrain the ssthresh

within a range. This variant allows an attacker to vary the attack period and the

burst for the purpose of evading detection at the cost of a lesser damage [77]. An

interesting work from Taghizadeh et al. has demonstrated how to employ short-lived

TCP flows to launch a shrew attack on long-lived TCP flows [78].

Both AIMD-based attacks cause a victim TCP sender to repeatedly enter the fast

retransmit and fast recovery state. The result is the same as before: the victim TCP

connection suffers from a very low throughput. The difference between these two

AIMD-based attacks again lies in whether an attacker uses fixed inter-pulse period

or adapts the period according to the behavior of TCP’s congestion avoidance algo-

rithm. Furthermore, we have generalized the AIMD attacks into the polymorphic

DoS (PMDoS) attacks that randomize the attack period in order to evade detection

and, at the same time, inflicts significant damage to TCP flows.

Another closely related work is the reduction-of-quality attack (RoQ), which also

targets at TCP flows going through a router [29]. The RoQ attack forces the active

queue management (AQM) scheme deployed in a router to go into the transient state,

and then to increase packet loss rate by sending periodic attack pulses. The analysis

in [29] mainly considers the RED-like AQM and the effect of the transient state on

the TCP throughput. Guiruis et al. recently proposed two variants of shrew attacks

and two variants of RoQ attacks (i.e., shrew attack at saturation, shrew attack at full

buffer, RoQ attack at saturation, and RoQ attack at full buffer). The basic idea is

that an attack can have high potency, defined as the ratio of the damage caused by

the attack to the cost for launching the attack, if the attacks are launched right after

the victim TCP flows already saturate the bottleneck or even use up the buffer [79].

However, the authors have also acknowledged that their assumptions may not hold

in practice [79].
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Chertov et al. have carefully examined the effect of PDoS attacks through ns-2

simulation and emulation experiments in the DETER and Emulab test beds [53].

They compare the result from a simple analytical model of TCP performance degra-

dation, which is a special case of our analytical model proposed in [4], with the

simulation result and emulation result. They found that the analytical and simula-

tion results match well for a set of attack pulse lengths and router buffer sizes. The

test-bed results match the results from analytical model and simulations when rout-

ing nodes are overloaded. Their extensive experiments confirm that our AIMD-based

PDoS attacks are still effective when the period is not the same as the minimal RTO

value used in the attack [53]. Moreover, Dong et al. reported that the PDoS attacks

can significantly degrade the throughput of FAST TCP [51]. The FAST TCP is a

new variant of TCP designed for high-speed networks that uses queueing delay in

addition to loss probability as a congestion signal [50]. But FAST TCP maintains

higher throughput than TCP Reno does under the PDoS attacks, because the former

re-increases cwnd faster and therefore results in a larger cwnd than the latter does.

Since many existing Internet applications rely on TCP, the impact of PDoS attacks

will be amplified through these applications. For example, Zhang et al. demonstrated

that the PDoS attacks have severe impact on the Border Gateway Protocol (BGP)

by causing session resets and delaying routing convergence [54]. Moreover, they in-

vestigated how to carry out coordinated PDoS attacks through careful time synchro-

nization and selection of attack hosts and destinations. A new study from Mirkovic

et al. also illustrates the effectiveness of the PDoS attacks through the changes of

failure ratio, a new user centric metric for measuring DoS attacks [55]. The failure

ratio indicates the percentage of transactions that are still alive just before the at-

tack, but fail during the attack. They found that the failure ratio oscillates with the

PDoS attack and does not vanish even in the absence of PDoS attacks. The major

reason is that applications suffer significant periodic loss when attack pulses arrive

and cannot recover to their QoS criteria quickly enough when there are no attack

pulses [55]. Based on extensive ns-2 simulations under realistic scenarios, Shevtekar
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et al. showed that the PDoS attacks could also seriously degrade VoIP quality by

inducing considerable packet losses [52].

2.2.1 Countermeasures

Comparing with traditional flooding-based attacks, the PDoS attacks are harder

to detect because they usually have a relatively low average traffic rate. Existing

detection schemes could be grouped into two classes. The methods in the first class

employ flow-level detection schemes. These methods try to identify malicious flows

that will periodically occupy a large portion of the bandwidth and cause packet loss in

well-behaved flows. For example, the system in [80] will consider a flow as a potential

shrew attack if it exhibits a periodic pattern and its burst length is greater than or

equal to RTTs of other connections with the same server and its time period is equal to

the fixed minimum RTO. The HAWK system will pick up suspicious flows if they are

too bursty over an extended period of time (e.g., 5 seconds) with very high-rate bursts

appearing in short time-spans (e.g., 100ms) [81]. Based on the observation that the

PDoS attacks may evade the RED-PD’s detection because of its slow response [82,83],

Xu et al. proposed a double horizon system that uses cut-tail dropping with instant

response to recognize aggressive flows which send more packets in a short period than

the threshold [84].

An interesting analysis from Sarat et al. [85] shows that while using smaller buffer

will not affect link utilization, it makes the PDoS attacks more effective and harder

to detect [86]. Based on a simple mathematical model, they argued that a relatively

small increase in the buffer size over the value suggested in [85] is sufficient to detect

malicious flows that cause the PDoS attacks [86]. Moreover, these systems will always

punish identified malicious flows by dropping their packets to prevent normal flows

from the shrew attacks [80, 81, 84, 86]. The deficit round robin (DRR) scheduler

has also been used to guarantee fair bandwidth sharing among malicious flows and

legitimate flows [87]. However, these methods may miss PDoS attacks that consist of
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many attack flows each of which sends only a few attack packets but the aggregated

volume is high enough to cause transient congestion.

The approaches in the second class adopt aggregate level detection schemes. Most

of them are tailored for the shew attack. Therefore, other kinds of the PDoS attacks

could bypass such schemes by changing parameters (e.g., period and rate). Sun et

al. used dynamic time wrapping to isolate and discover shrew attack’s rectangular

attack pulses [87]. However, this method could be rendered ineffective when the

duration of attack pulse is shorter than the sampling period. Chen et al. identified

the anomalies in traffic’s power spectrum density (PSD) induced by the shrew attack’s

periodic attack pulses [88, 89]. Nevertheless, an attacker may change the period or

just employ aperiodic PDoS attacks (e.g., PMDoS attacks) to evade the detection.

We have proposed a two-stage detection scheme for the PDoS attacks, which is

based on two kinds of traffic anomalies near the TCP receiver: periodic fluctuations

in the incoming TCP data traffic and a decline in the trend of the outgoing ACK

traffic [4]. This method, however, could not detect all kinds of PMDoS attacks.

Hence, we have proposed Vanguard that synthesizes three anomalies (i.e., decline in

the outgoing TCP ACK traffic, increase in the ratio of the incoming TCP traffic to

the outgoing TCP ACK traffic, and change in the distribution of the incoming TCP

traffic) to discover ongoing PMDoS attacks [46].

The aforementioned detection and accompanying defense systems are usually lo-

cated close to the bottleneck router or the TCP receiver side. On another front,

it is proposed to randomize the timeout value in [90, 91] for defending against the

timeout-based PDoS attack. However, this method cannot defend the AIMD-based

attack, because the attack’s timing does not rely on the TCP timeout values.

2.2.2 Application-level DoS attacks

The low-row nature of shrew attack has motivated several new application-level

DoS attacks. Macia-Fernandez et al. proposed a low-rate DoS attack that tries to
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keep iterative servers busy and their service queue full all the time by sending a

new request as soon as the server finishes processing a request. Consequently, other

users may infer that the server is unavailable [92]. Chan et al. demonstrated that an

attacker can cause temporary overload on a victim server in a relatively small interval

by either herding normal users’ requests or generating requests. Consequently, the

increased delay and loss rate could discourage new users from accessing the server [93].

Guirguis et al. proposed an RoQ attack that tries to prevent Internet end-systems’

proportional-integral (PI) controller from converging to the steady-state [94]. Using

a series of bursts of requests to overload the system, such RoQ attack can force the

admission controller to decrease the admission rate whenever a burst of requests has

been admitted and consequently to drop requests from legitimate users [94]. Recently,

Guirguis et al. further extended the RoQ attack to the dynamic load balancers and

illustrated that a series of attack bursts will bring significant damage in terms of

additional delay to legitimate requests [95].

Moreover, similar attacks have been applied to ad-hoc network and discussed their

potential impacts [96,97]. On the other hand, shrew attacks can be used to watermark

TCP connections going through low-latency anonymous networks [98–100]. In other

words, an attacker can easily carry out traffic analysis by matching TCP flows that

are affected by shrew attacks.

2.3 Network covert channels

In this section, we will first introduce the security model adopted by most network

covert channels. After that, we will review existing storage and timing channels. In

particular, we have proposed a new taxonomy for storage channels according to their

hiding methods which is different from the traditional taxonomy based on network

layers [37, 38]. An important advantage of this new taxonomy is that we can easily

discover potential storage channels in any protocol.
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2.3.1 Model

In the general context of network covert channels, there are three distinguishable

roles: encoder, decoder, and warden. An encoder tries to transmit covert messages

stealthily to a decoder. A warden inspects all traffic coming from and going to its

administrative zone, which consists of legitimate hosts, an encoder or a decoder, or

both, depending on the network model.

We define two kinds of network models: broadcast model in Figure 2.1 and unicast

model in Figure 2.2. In the broadcast model, a decoder could hear all traffic generated

by an encoder regardless of its destination and whether the frame is correct or not.

The traditional Ethernet and widely deployed wireless LAN (WLAN) belong to this

model. Both encoder and decoder are located in compromised hosts, whereas the

warden is placed at the gateway for Ethernet or the AP for WLAN. Many works have

discussed how to embed covert channels into Ethernet frames [38,101,102] and 802.11

frames [103,104], and to build timing channels by exploiting collision and contention

resolution algorithms [105–108] in MAC protocols.

In the unicast model, a decoder may only receive the packets sent to itself or to

a set of receivers, such that the decoder could sniff the traffic on the path between

them. However, packets sent by the encoder cannot be malformed in this case, be-

cause the warden can easily detect them, and network equipment (e.g., switch and

router) and middle-boxes (e.g., NAT) will drop them. There are a lot of works done

in this category, ranging from IPv4/v6 and TCP protocols [37, 109, 110] to various

application-layer protocols (e.g., HTTP and DNS) [13,14,111–113]. Clearly, all meth-

ods used in the unicast model are also suitable for the broadcast model.

There are two types of wardens: passive warden and active warden [31]. The

passive warden could detect covert channels using either signature-based or anomaly-

based algorithms. The active warden, on the other hand, could proactively manipu-

late the traffic to throttle the covert channels without detection. Existing approaches
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(a) Ethernet (b) Wireless LAN

Fig. 2.1. A broadcast model for covert channels.

(a) Internet (b) TCP-based application

Fig. 2.2. A unicast model for covert channels.

include “scrubbing” the fields in various protocols [39, 40, 114] or inserting fuzzy de-

lays [115, 116].

Based on information theory, a covert channel’s capacity is defined as the maximal

information rate in bits per second. In the seminal work, Millen analyzed the capacity

of a class of finite-state noiseless channels with nonuniform transition times [117,118].

Moskowitz and Miller have used a discrete, memoryless and noiseless model to analyze

a simple timing channel [119] and employed a Z-channel to compute the capacity of

timing channels with noise [35,120]. Venkatraman and Newman-Wolfe used a noiseless

model to analyze the capacity of network covert channels that exploit the spatial

and temporal variation in transmission characteristics [36]. Berk et al. used the
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well-known Arimoto-Blahut algorithm [121–123] to estimate the capacity of network

timing channels [42]. However, since the one-way delay or RTT is a time-varying

quantity [124], it is hard to obtain a constant value for the capacity. Hence, in this

thesis we use the original definition of channel capacity in information theory (i.e.,

bits per symbol) to evaluate the capacity of covert channels. For a storage channel,

the symbol denotes a packet or a frame; for a timing channel, the symbol indicates a

timing event.

Both storage channels and timing channels have their own advantages and dis-

advantages. On one hand, by embedding information into the header of packets,

storage channels usually enjoy a higher capacity and are more robust to adverse net-

work conditions, such as packet loss, delay jitter, and packet reordering, than timing

channels. However, most storage channels are vulnerable to specification-based active

wardens, which will eliminate the messages in the packet headers. Moreover, it is not

difficult to discover these storage channels by using either signature-based detection

algorithms or anomaly-based detection algorithms. For example, the former can dis-

cover storage covert channels exploiting unused fields and ambiguities in protocols’

definitions. The latter can identify storage covert channels abusing the flexibilities

provided by protocols, for example, improper parameter settings.

On the other hand, although timing channels have a lower capacity and are vul-

nerable to adverse network conditions, it is difficult to detect them or entirely stop

them for two reasons. First, the timing information exists in network protocols and

there are no rigorous specifications for it. Second, an encoder may use a very slow

covert channel, for example, sending one packet within 24 hours or not to denote 1 or

0. To sum up, the selection of covert channels depends on its usage and the network

model.
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2.3.2 Storage channels

Many studies on storage channels use specification-based approaches to scruti-

nize possible covers [39, 110]. Fisk et al. classify the information carried in network

protocols into structured carriers and unstructured carriers [39]. The former has

well-defined, objective semantics for its content (e.g., TCP header), whereas the lat-

ter lacks objectively defined semantics and is usually interpreted by humans rather

than computers. Here, we also employ the specification-based approach to trace pos-

sible storage channels in structured carriers. But we further propose a methodology

taxonomy as shown in Figure 2.3, where we use Lx.y to denote different method

(x is the level number, and y is the letter next to each rectangle in Figure 2.3).

Based on this taxonomy, we could not only categorize existing storage channels, but

also identify new ones. Existing literature and tools on storage channels have al-

ready covered many popular protocols, for example, 802.3 MAC [38,101,102], 802.11

MAC [103, 104], IPv4 [102, 109, 125–127], ICMPv4 [6, 8, 128, 129], IPv6 [110, 130],

ICMPv6 [130], TCP [37, 109, 126, 127, 131, 132],SSH [133], HTTP [13, 134–138] and

DNS [111–113].

Storage Channels

Unused fields Flexibiliies Ambiguities

Reserved

Fields

Conditional
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Fields

Reserved

Bits
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Values

Data

Length
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Fig. 2.3. A taxonomy for storage channels.

Storage covert channels can exploit unused fields, flexibilities, and ambiguities in

the protocol definitions to embed hidden messages. The unused fields include reserved
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values (L3.A) and conditional unused bits (L3.B). There are two types of reserved

values. One could indicate one or several continuous bits that are not used in a

protocol’s current version. For example, there are three reserved bits between the

data offset field and the ECN field in the TCP header. The other could denote the

values that are not utilized in a used field. For example, in the OPCODE field of

the DNS protocol, value 3 is not used to specify any kind of query. The difference

between these two types of reserved values lies in the fact that the former has at least

two continuous unused values because one bit could be set to 0 or 1, whereas the

latter could represent individual values. The conditional unused bits (L2.B) refer to

fields that are not used if some conditions are satisfied; for example, the fragment

offset field in the IP header if the DF bit is set.

Some covert channels abuse the flexibilities provided by the protocol to embed

messages. Generally, there are three ways to exploit the flexibilities. First, an en-

coder could exploit the packet length or padding data length to transmit information

(L2.C). It could dispatch packets with different lengths to represent different mean-

ings. If both encoder and decoder could manipulate the packets, then the encoder

could insert new data into normal packets passing through and modify the corre-

sponding fields in the protocol header, for example, the total length and checksum

fields in the IP header. The decoder then removes the piggyback data from those

packets and then restores the original value to corresponding fields in the protocol

header.

Second, the encoder could use valid values in different fields to convey messages.

There are at least three common approaches to achieve it:

1. Some fields could accept a range of arbitrary values (L3.C), and the value will

not be changed by routers, for example, the IP’s identification value (IPID),

TCP’s initial sequence number, and so on. Hence, the covert message could

be directly encoded into these fields. Other examples include the address fields

[38, 101], the FCS field, the duration/ID field in 802.11 frames [103, 104], and

IPID field [37, 127].
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2. Some fields will be changed (L3.D) by routers, for example, the TTL field in

IPv4 and hop limit field in IPv6. A simple way to overcoming this problem

is to set a threshold for the final TTL value. If an encoder wants to transmit

1, it could send a packet whose TTL is much larger than the summation of

the threshold and estimated maximal number of hops. Otherwise, intending to

transmit 0, the encoder could set the TTL to be less than the threshold but

larger than the estimated maximal number of hops. Consequently, the decoder

could get the information by comparing the final TTL with the threshold.

3. Some fields have a set of pre-defined valid values (L3.E). Then the messages

could be encoded by selecting different valid values. For example, there are

different types of management frames in 802.11 MAC, and the encoder could

manipulate the subtype values to convey covert messages [38, 101, 102, 104].

Third, encoder could embed information into the combinations (L3.G) or permu-

tations (L3.F ) of fields or values. For example, if there are NTCP available TCP

options that could be attached to a packet, then such a packet could encode at least

log2

∑NTCP

k=0



 NTCP

k



 = NTCP bits of information by utilizing the combination

technique. Another example is to make use of the permutation technique. If a packet

could only carry MTCP TCP options, then it could convey log2(MTCP !) bits of infor-

mation by permutating the locations of these options. Note that all selected options

or bits in various fields are legal according to the protocols specifications. The method

(L3.G) stems from our original combination-based framework, Cloak, which will be

presented in section 6.

Some covert channels exploit obscurity in a protocol’s specification. For example,

since RFC793 does not mention whether a SYN packet with FIN flag is correct or

not when TCP receiver is in the LISTEN state [16], some implementations accept

it [139]. Note that we do not consider those cases that are explicitly forbidden in

protocols’ specifications. For example, according to RFC793, SYN+RST should be

ignored by a TCP receiver when it is in the LISTEN state [16]. Therefore, there are
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many different combinations that could be used “legitimately” to convey messages.

Another kind of ambiguities is the collision in the checksum function [125].

Although various fields in different headers could be used to embedded infor-

mation, they could be detected if their statistical features are not consistent with

those of normal packets. Neural network and support vector machines have been

adopted to detect storage covert channels based on the ISN values of TCP flows [37].

Moreover, statistical approaches have been proposed to detect covert channels over

HTTP [14,140]. Besides detection, another approach is to neutralize covert channels

by performing active operations on the traffic. In addition to protocol scrubbers [40],

traffic normalizers [114], and active wardens [39], NAT can also adversely affect the

quality of some covert channels [141].

The storage media used by the covert channels discussed above are permanent

in the sense that their values will not be changed in the absence of adversary, for

example, active warden. Some newly proposed channels utilize the shared states in

the network to transmit messages, which are ephemeral in the sense that their values

will only be kept for a while and then will be changed. Its advantages include:

1. There are no strict constraints on an decoder’s location as long as it could access

the share states, whereas traditional covert channels require the decoder to sniff

the traffic generated by the encoder.

2. The ephemeral nature of the shared state could help users camouflage their

actions.

On the other hand, such kind of storage covert channels have to handle some

special issues, for example synchronization, noise handling, and so on. Jones sug-

gested employing board posting as the shared state as long as the messages are not

deleted [134]. Danezis proposed using the IPID number in a server’s TCP/IP stack

to convey messages based on the assumption that the IPID value will monotonically

increase for each outgoing packets [142]. Hence, an encoder could transfer a value,

say 3, by inducing the server to transmit three packets and consequently to increase
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its IPID value by 3. As another example, we have designed WebShare that conveys

hidden messages by increasing the values of ubiquitous Web counters [143].

2.3.3 Timing channels

Existing timing channels could be divided into two categories according to their

timing references. The first type of timing channels uses the absolute time interval as

the timing reference. For example, if the encoder and decoder are synchronized, they

could use the number of packets observed in a predefined time interval to represent

covert messages. The second type of covert timing channels employs a single or a

group of packets as the timing reference. For example, an encoder may send out two

packets each time. The decoder regards the first packet as the timing reference and

decodes the message based on the time interval between these two packets.

At the MAC layer, Girling proposed a covert channel based on the delays between

successive transmissions of frames [38]. A similar method is also mentioned in [101].

However, noise will be introduced if the encoder cannot transmit two frames according

to the pre-defined interval. Handel et al. proposed a covert channel where an encoder

first causes a packet collision and then retransmits the frame either leading or lagging

the frame retransmitted by others according to the intended binary value [102].

There are also studies on timing channels in ideal MAC channels that may not

be strictly consistent with practical specifications. Dogu and Ephremides proposed a

covert channel for an ideal slotted ALOHA environment that uses splitting algorithms

for contention resolution [105]. The covert message is transmitted through the number

of collisions caused by the encoder during the contention resolution period. The

decoder uses a maximum likelihood decoder to determine the number of collisions

deliberately caused by the encoder. Bhadra et al. proposed an alternative collision

based covert channel in the slotted ALOHA environment [106]. To transmit bit

1, an encoder will intentionally cause a collision by jamming a transmission during

that time slot. Consequently, the decoder will interpret each collided transmission
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as bit 1 and successful transmission as bit 0. Li and Ephremides proposed another

timing channel based on splitting algorithm [107], which encodes the message into an

encoder’s reactions to collision events (i.e., the encoder will retransmit the frames or

not in the next slot). A recent work for multiple encoders requires each encoder to

adopt an action according to a biased probability and the bit to be conveyed [108].

For example, to convey bit 1, an encoder may choose action A with a very high

probability in next step. Otherwise, the encoder may choose action B. Therefore,

the decoder may infer that the information is bit 1 (or 0) if most other users choose

action A (or B).

At the IP layer, Cabuk et al. proposed a binary IP timing channel [41]. An en-

coder delivers bit 1 by sending one packet during a predefined time interval and bit

0 by keeping silent [41]. Being a simple solution, the IP timing channel is vulnerable

to adverse network conditions, such as packet loss and jitter, and requires synchro-

nization between encoder and decoder, because it employs absolute time interval as

the timing reference.

Ahsan and Kundur utilize the order information between IPSec packets to deliver

messages, because different order sequences could represent different values [127].

With an alias of ordered channel [144], such kind of methods need two order indices.

One index is used to encode messages, and the other index records the original se-

quence. In their paper, the 32-bit sequence number field in the IPSec authentication

header (AH) and encapsulating security payload (ESP) is used to record the original

packet sequence, and the arrival sequence of packets is used to carry covert messages.

Clearly, this encoding method’s accuracy will be affected by packet reordering events

in the Internet.

Berk et al. examined an ICMP-based timing channel that encodes the informa-

tion into the inter-arrival time between two ICMP packets [42]. At the TCP layer,

Chakinala et al. proposed another ordered channel based on TCP. They used TCP

sequence number to maintain the original packet sequence [144]. Shah et al. proposed

Jitterbug, a covert channel based on the inter-arrival time between two consecutive

32



packets [43]. Venkatraman et al. proposed two types of network covert channels:

spatial covert channels and temporal covert channels. The former conveys covert

messages by manipulating the volume of communication between nodes, whereas the

latter embeds messages into the order, frequency or duration of transmissions [36].

It is rather difficult to detect timing channels, because there may not exist de-

tectable signatures in the timing information. As a result, most studies on the defense

side focus on how to decrease the capacity of timing channels by introducing noise.

Hu proposed using fuzzy time to reduce the capacity of timing channel in an multi-

level OS environment [115, 116]. Although it is a feasible solution, it has the cost

of performance degradation. In a network environment, this cost could be more sig-

nificant, because the TCP throughput is inversely proportional to latency. Using

game theory, Giles et al. [145] further investigated the equilibriums between tim-

ing channel and various delay jammers (e.g., pure delay jammers with a maximum

delay constraint, an average delay constraint, or a maximum buffer size constraint)

that will introduce timing noise. Chakinala et al. [144] examined the games between

order channels and several defense schemes, including the k-distance permuter, the

k-buffer permuter, and the k-stack permuter. Based on packet inter-arrival time, two

metrics—regularity and ǫ-similarity—were proposed to locate the anomalies caused

by IP timing channels [41]. In [42], Berk et al. proposed an interesting detection

algorithm based on the optimal statistical distribution of intervals for approximating

the capacity.

2.4 Summary

In this chapter, we have reviewed the basic knowledge of TCP that is relevant

to the two TCP exploits to be discussed in the rest of this thesis. The most im-

portant elements include congestion control algorithms, reliability, and flow control

mechanisms. We have also reviewed existing TCP exploits based on protocol design,

implementations, and assumptions.
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For the DoS attacks, we have concentrated on low-rate DoS attacks and the coun-

termeasures, because the PDoS attack can be classified as a low-rate attack. We have

discussed the recent works on devising more effective low-rate attacks against TCP

and AQMs and their impact on Internet protocols and stability. For the countermea-

sures, we have reviewed several recently proposed detection systems and pointed out

their limitations.

For the covert channels, we have first presented the attack model assumed in this

thesis and surveyed existing storage channels and timing channels. In particular,

we have proposed a new taxonomy for storage channels which could help discover

new storage channels. Moreover, we have pointed out several serious weaknesses of

the available storage and timing channels, including unreliability, low data rate, and

vulnerability to active wardens or similar active intermediaries in the Internet.
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3. PULSING DENIAL-OF-SERVICE ATTACKS

In this chapter, we will introduce the PDoS attacks, including the attack mechanism,

analytical modeling, experiment results and analysis, and attack optimization. We

will also present a general framework, referred to as polymorphic DoS attacks, for

analyzing different low-rate attacks and flooding-based attacks.

Note that PDoS attack is in fact a suite of attacks, as depicted in Figure 3.1.

The specific attacks are labeled by a number (1 to 10). The PDoS attacks are first

classified into timeout-based PDoS attacks and AIMD-based PDoS attacks, depending

on whether the attack exploits TCP’s timeout or AIMD mechanism. On the next

level, the attacks can be periodic or aperiodic, depending on whether the attack

period is fixed or not. Besides, there are additional levels of classifications which we

will explain later in this chapter.

Since different arrangements of attack pulses will result in different kinds of aperi-

odic PDoS attacks, it is impossible to investigate all kinds of aperiodic PDoS attacks.

We have addressed the attacks (1)-(4), (8)-(9), and (11) in this chapter; others will

be reserved for future works. For (5) and (7), we have investigated their special cases,

i.e. synchronous timeout-based PDoS attacks (i.e.(8)) and synchronous AIMD-based

PDoS attacks (i.e. (11)). These attacks will synchronize their attack epochs with cer-

tain values in TCP stack, e.g. RTO and cwnd. For the stochastic AIMD-based PDoS

attack, we have investigated a large class of such attacks (i.e. Renewal process PDoS

(9)). It is relatively easy to obtain the analytical results for such attacks. Moreover,

based on similar idea, we will examine other kinds of stochastic AIMD-based PDoS

attacks (i.e. (10)). Similar to the stochastic AIMD-based PDoS attack, we will study

the stochastic timeout-based PDoS attack (i.e. (6)) in the future work.
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Fig. 3.1. A classification of the PDoS attack suite.

3.1 Modeling the PDoS attacks

One can view the traditional flooding-based attack as a brute-force attack, which

exploits the finiteness of network and system resources. However, the PDoS attack is

more sophisticated in the sense that it exploits TCP congestion control mechanism.

There are two main mechanisms in a typical end-to-end congestion control algorithm.

The first is the generation of a congestion signal that serves to notify the sender

of possible congestion. The second is the sender’s response to the receipt of such a

congestion signal. Table 3.1 summarizes the mechanisms used in TCP.

In essence, a PDoS attacker induces a sequence of congestion signals to a TCP

sender using attack pulses, so that the sender’s cwnd is constrained to a low value.

Therefore, the magnitudes of the attack pulses must be significant enough to cause

packet drops in a router. We illustrate a sequence of attack pulses in Figure 3.2 and

formally model them using the following notations: A(Textent(n), Rattack(n), Tspace(n), N),

where

• N is the total number of pulses sent during an attack.

• Textent(n), n = 0, 1, . . . , N, is the duration of the nth attack pulse.
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Table 3.1
TCP’s network congestion signals and responses

Congestion Signals Sender’s Responses

1 Retransmission timer expired Reduce the congestion window (cwnd) to one

and perform a slow start

(the sender is said to enter the timeout state).

2 Three duplicate ACKs Halve the cwnd and increase the cwnd by one per RTT.

received (the sender is said to enter the fast retransmit/

fast recovery state).

• Rattack(n), n = 0, 1, . . . , N, determines the sending rate of the nth attack pulse.

• Tspace(n), n = 0, 1, . . . , N − 1, measures the time between the end of the nth

attack pulse and the beginning of the (n+1)th attack pulse. If Tspace(n) = 0, ∀n,

the PDoS attack is the same as a flooding-based attack.

To simplify the analysis, we assume that an attacker uses identical pulses. That

is, Textent = Textent(n) and Rattack = Rattack(n).

Back to Table 3.1, a TCP sender’s response to the recipient of three duplicate

ACKs is generally known as an additive-increase, multiplicative-decrease (AIMD)

algorithm. Although TCP is the prime target for such PDoS attacks in the Internet

today, it is useful to examine more general AIMD algorithms in a similar manner as

in [146]. That is, we denote an AIMD algorithm by AIMD(a, b), a > 0, 1 > b > 0.

In this general AIMD algorithm, a sender will decrease its cwnd from W to bW when

it enters the fast retransmit/fast recovery (FR) state, and then it will increase its

cwnd by a per RTT until receiving another congestion signal. Many TCP variants,

such as Tahoe, Reno, and New Reno, employ AIMD(1, 0.5). Moreover, many TCP

implementations do not send an ACK for every received packet. Instead, they send

a delayed ACK after receiving d consecutive full-sized packets, where d is typically

equal to 2 [27]. In this case, the sender’s cwnd is only increased by a
d

per RTT.
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space

extent

Fig. 3.2. Attack pulses of a PDoS attack.

A PDoS attack can force a victim TCP sender to frequently enter the timeout

state (TO) state or to frequently enter the FR state. The result is a persistently

low value of cwnd, which translates into a very low throughput for the victim TCP

connection. Accordingly we classify the PDoS attacks into timeout-based attacks and

AIMD-based attacks.

Consider that there are Nf legitimate TCP flows traversing through a router, and

a DoS attack causes the router to drop packets. When using the subscript i, we

denote the ith TCP sender or its corresponding parameters (e.g., RTTi and RTOi).

Otherwise, we denote parameters belonging to all victim TCP senders. We use Rbottle

to represent the router’s bandwidth and define attack power and attack cost for a

DoS attack in Definitions 3.1.1-3.1.2, respectively. Note that the DoS attacks include

the PDoS attacks. While the attack power measures the impact of a DoS attack

on legitimate TCP flows, the attack cost measures the intensity of a DoS attack, in

terms of the traffic rate normalized by the bottleneck bandwidth. In the rest of this
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thesis, whenever we compare the PDoS attacks with the flooding-based DoS (FDDoS)

attacks based on their power, we assume that they have the same attack cost.

Definition 3.1.1 The power of a DoS attack, denoted by Γ, is defined as

Γ = 1−
∑Nf

i=1 Ψi,attack∑Nf

i=1 Ψi,normal

, (3.1)

where Ψi,attack and Ψi,normal denote the amount of data (bytes) sent by the ith TCP

flow in the presence of and in the absence of a DoS attack within the same period,

respectively. Ψi,attack can be ΨTO
i,attack (or ΨAIMD

i,attack) for the case under the timeout-based

PDoS attacks (or AIMD-based PDoS attacks).

Definition 3.1.2 The cost of a DoS attack, denoted by γ, is defined as

γ =
RDoS

Rbottle

,

where RDoS is the average traffic rate of a DoS attack. For a FDDoS attack, we have

γ = RF DDoS

Rbottle
, whereas the cost of a PDoS attack is given by

γ =
RattackTextent

RbottleTattack

, (3.2)

where Tattack = Textent + Tspace is the period of the PDoS attack.

3.2 Timeout-based PDoS attacks

In a timeout-based PDoS attack, the attack pulses are severe enough to cause a

victim TCP sender to frequently enter the timeout state. An attacker may launch

aperiodic attacks or periodic attacks. We will discuss them respectively in the follow-

ing sections.

3.2.1 Aperiodic attacks

Since aperiodic attacks may have arbitrary patterns, we analyze only one special

case, which is synchronous with the RTO value. That is, if an attacker knows the

RTOi value of the ith victim TCP sender and is able to cause every retransmitted
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packet to drop, then the victim TCP sender’s cwnd stays always at one. We refer it

to as synchronous timeout-based attack. This type of attack is shown in Figure 3.3,

which shows that the attack epoches coincide with the retransmission epoches. These

epoches can be obtained through Proposition 3.2.1.

Proposition 3.2.1 (Attack epoches for synchronous timeout-based attacks)

Let tn, n = 0, . . . , be the nth attack epoch. The first attack starts at t0, and for n > 0,

the nth attack epoch in a synchronous timeout attack is given by

tn =





t0 + (2n − 1)RTOi if 1 ≤ n ≤ Ni,max

t0 + (2Ni,max − 1)RTOi + (n−Ni,max)RTOi,max if Ni,max < n ≤ Ai,max,

(3.3)

where RTOi,max is the maximum value of RTOi, and Ai,max is the maximum number

of retransmission attempts before the TCP sender gives up. Moreover, Ni,max =⌊
log2

RTOi,max

RTOi
+ 1
⌋
.

Proof According to RFC 2988, a TCP sender will double its current RTOi value

when the retransmission timer expires [30]. If the new RTOi is not more than

RTOi,max, then the sender will use the new RTOi. Hence, tn = t0 +
∑n−1

j=0 2jRTOi =

t0 + (2n − 1)RTOi for 1 ≤ n ≤ Ni,max, where Ni,max = max{n : 2n−1RTOi ≤
RTOi,max}. Otherwise, the RTOi value is set to RTOi,max, and the sender continues

to retransmit the lost packet until the total number of attempts reaches Ai,max.

3.2.2 Periodic attacks

The synchronous timeout-based attack is a perfectly timed attack that is obviously

not quite feasible in practice. It is easier for an attacker to send pulses with fixed

periods. Kuzmanovic and Knightly demonstrated that such periodic timeout-based

attack is indeed possible [28]. Their attack scheme, commonly referred to as shrew

attack, works in the following way. After a victim TCP sender enters the timeout state

after the launch of the first attack pulse, the attacker lets the sender send data within

a short period TShift. This period should be small but long enough for the sender
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to transmit some packets successfully. Therefore, TShift may be set to 2 ∼ 3 RTTs.

Thus, the SRTT, VRTT, and RTO values are updated according to Eqs. (2.2-2.4)

during TShift. Assume that the RTO value at the attack epoch is given by minRTO

(i.e., the value of second argument of the max function in Eq. (2.2) is smaller than

minRTO). If the new RTT samples do not deviate too much from SRTT, it is very

likely that the RTO value is still given by minRTO at the end of TShift. Thus,

subsequent attack pulses can be launched with a fixed period of minRTO + TShift,

as depicted in Figure 3.4.

1

cwnd

time

RTO 2*RTO 4*RTO

Attack epoches

t0 t1 t2 t3

Fig. 3.3. An example of a synchronous timeout-based PDoS attack.

The shrew attack requires that a victim TCP sender uses minRTO as its RTO

value and dispatches attack pulses with a fixed period around minRTO. In the fol-

lowing, we analyze a general case where a sending TCP is forced to enter the TO

state by each attack pulse and its RTO value remains constant during a PDoS at-

tack. Although the RTO may change in practice, the analysis helps us to understand

the capability of such periodic timeout-based PDoS attacks. Moreover, we adopt a

widely used assumption that the victim TCP sender always has data to send and the

rwnd is not a constraint. Therefore, we can simplify Eq. (2.1) as:

ssthresh = max(cwnd/2, 2× SMSS). (3.4)
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Fig. 3.4. An example of a timeout-based PDoS attack with fixed periods.

We let WU
i be the maximal value of cwnd achieved by the ith victim TCP

sender before a PDoS attack and use ssthreshmin to denote the minimal ssthreshi

in unit of SMSS (i.e., 2). According to the value of ssthreshi, we classify the pe-

riodic timeout-based PDoS attacks into three groups: SSTHmin-PDoS, SSTHmid-

PDoS, and SSTHmax-PDoS. The attacks in the first group constrain ssthreshi to

ssthreshmin. The attacks in the third group permit ssthreshi to reach
W U

i

2
. The at-

tacks in the second group force ssthreshi to converge to a value within (ssthreshmin,
W U

i

2
).

As depicted in Figure 3.5, we can obtain two values: Ti,mincvg and Ti,maxcvg. The

former indicates the required duration after which the ith victim TCP sender can

increase its cwnd from 1 to 2ssthreshmin following a timeout (its ssthreshi is equal

to ssthreshmin). The latter denotes the necessary period after which the victim TCP

sender can increase its cwnd from 1 to WU
i following a timeout (its ssthreshi is equal

to
W U

i

2
). Let Ti,period = ⌈ RTOi

Textent+Tspace
⌉(Textent + Tspace). Therefore, we can estimate

Ti,mincvg and Ti,maxcvg:

(τd)
x =

1

2
Wi,TO,

a

d
y =

1

2
Wi,TO, x > 0, y > 0, (3.5)
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RTO


Fig. 3.5. Relationship among WU , Tmaxcvg, ssthreshmin, and Tmincvg in a
PDoS attack.

where x is the number of RTTs when the TCP sender is in the slow start state and

y is the number of RTTs when the TCP sender is in the congestion avoidance state.

Wi,TO is the value of cwnd at the end of Ti,mincvg or Ti,maxcvg. τd is a constant value

depending on d. When d = 1, the number of packets sent in the nth RTT is 2n during

the slow start phase [27]. When d = 2, we employ a simple model proposed in [147]

to approximate the number of packets sent in the nth RTT to 1.5n. Hence, we have

τd =





2 if d = 1,

1.5 if d = 2.
(3.6)

The above equations mean that the ith victim TCP sender needs x RTTs to

increase its cwnd from 1 to 1
2
Wi,TO during the slow start state and requires y RTTs to

increment its cwnd by 1
2
Wi,TO in the congestion avoidance phase. Finally, we obtain
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Ti,mincvg and Ti,maxcvg by substituting Wi,TO = 4 and Wi,TO = WU
i into Eq. (3.5)

respectively.

Ti,mincvg =

(
1 +

2d

a

)
RTTi +RTOi,

Ti,maxcvg =

(
ln(WU

i /2)

ln(τd)
+

d

2a
WU

i

)
RTTi +RTOi

Based on the relationship between Tperiod and (Tmincvg, Tmaxcvg), we can define

SSTHmin-PDoS, SSTHmid-PDoS and SSTHmax-PDoS as illustrated in Figure 3.6.

cwnd

Time

cwnd

ssthresh

Attack epoch

cwnd

Time Time

cwnd

(c)  SSTHmid-PDoS

(a) SSTHmax-PDoS (b) SSTHmin-PDoS

Fig. 3.6. The trajectory of cwnd and ssthresh under periodic timeout-
based PDoS attacks.

Lemma 3.2.1 The maximal congestion window of the ith legitimate TCP flow in the

steady state, denoted by WU
i , can be estimated by

WU
i =

2Rbottle

(1 + b)Sp




Nf∑

j=1

1

RTTj




−1

. (3.7)
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Proof According to [148], the Nf TCP flows share the bandwidth Rbottle in an

inverse proportion to their RTTs. That is,
∑Nf

i=1BWi = Rbottle and BWi

BWj
=

RTTj

RTTi
.

Therefore,

BWi =
Rbottle

RTTi




Nf∑

j=1

1

RTTj




−1

, (3.8)

where BWi is the bandwidth obtained by the ith flow in an attack-free scenario.

Let Sp be the packet size which is assumed to be the same for all legitimate flows.

By assuming that all TCP flows stay in the congestion avoidance state, we have

(W U
i +W L

i )

2
T

RTTi
Sp = BWiT and WL

i = bWU
i for a period of T . By solving the equation

for WU
i , we can obtain Eq. (3.7).

Proposition 3.2.2 The amount of data sent by the ith legitimate TCP flow under a

periodic timeout-based PDoS attack, denoted by ΨTO
i,attack, is given by

1. If Ti,maxcvg < Ti,period (i.e., SSTHmax PDoS),

ΨTO
i,attack = (Ti,period −RTOi)BWi

⌊
(N − 1)Tattack

Ti,period

⌋
.

2. If Ti,mincvg ≤ Ti,period ≤ Ti,maxcvg (i.e., SSTHmid-PDoS),

ΨTO
i,attack =

(
3d

8a
W 2

i,TO +
1
2τdWi,TO − 1

τd − 1

)
Sp

⌊
(N − 1)Tattack

Ti,period

⌋
.

3. If RTOi < Ti,period < Ti,mincvg (i.e., SSTHmin-PDoS),

ΨTO
i,attack = [1 +

a

2d

(
Ti,period −RTOi

RTTi
− 1

)2

+ 2

(
Ti,period −RTOi

RTTi
− 1

)
]Sp

⌊
(N − 1)Tattack

Ti,period

⌋
.

where,

Wi,TO = 2e
−LambertW (L)RTTi+ln(τd)(Ti,period−RTOi)

RTTi , L =
a

d
ln(τd)e

ln(τd)(Ti,period−RTOi)

RTTi , and

LambertW () denotes the Lambert’s W function [149].

Proof Since each attack pulse forces all TCP flows to enter the TO state, ΨTO
i,attack

is equal to the amount of data sent during the period starting from the end of a
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timeout to the beginning of the next attack pulse (i.e., Ti,period − RTOi), which we

call a run. Consequently, the amount of data sent by the legitimate TCP flows under

a PDoS attack with N pulses is equal to that sent during
⌊

(N−1)Ti,attack

Ti,period

⌋
runs. Similar

to the previous analysis of TCP [150,151], we assume that each TCP flow’s RTT is a

constant value. Moreover, we assume that the RTO is a constant value, because the

TCP sender recomputes the RTO value only after retransmitting the lost packets.

The scenario for SSTHmax PDoS attacks is depicted in Figure 3.6(a). As shown,

this scenario corresponds to the case where Ti,period is long enough, so that the TCP

sender recovers the lost packets as well as increases its cwnd to the maximal value of

WU
i . As a result, the ssthresh maintains its maximal value of

W U
i

2
. Therefore, we may

use the ratio
Ti,period−RTOi

Ti,period
to estimate the throughput degradation. A similar method

has been applied to analyze the shrew attack in [28].

The scenario for SSTHmin-PDoS attacks is depicted in Figure 3.6(b). In this

scenario, Ti,period is short enough that the cwnd cannot reach 4. Thus, the ssthresh

will be constrained to the minimal value of 2 [27]. Accordingly, during the attack-

free period, the TCP sender enters the congestion avoidance phase after sending

a packet, because the cwnd will reach the ssthresh after receiving an ACK. As a

result, the amount of data sent in a run is the summation of data segments sent

in the slow start phase (i.e., 1), and those sent in the congestion avoidance phase

( i.e., 1
2
[2 + 2 + a

d
(

Ti,period−RTOi

RTTi
− 1)](

Ti,period−RTOi

RTTi
− 1)Sp = [ a

2d
(

Ti,period−RTOi

RTTi
− 1)2 +

2(
Ti,period−RTOi

RTTi
− 1)]Sp).

The scenario for SSTHmid-PDoS attacks is depicted in Figure 3.6(c) in which

the PDoS attack will drive the ssthresh to a constant value. Consequently, the cwnd

reaches Wi,TO before the next attack pulse’ arrival, and the ssthresh converges to

1
2
Wi,TO. By adding an additional equation to Eq. (3.5), we can calculate Wi,TO as:

(τd)
x =

1

2
Wi,TO,

a

d
y =

1

2
Wi,TO, (x+ y)RTT +RTO = Ti,period, x > 0, y > 0,

⇒Wi,TO = 2e
−LambertW (L)RTTi+ln(τd)(Ti,period−RTOi)

RTTi , L =
a

d
ln(τd)e

ln(τd)(Ti,period−RTOi)

RTTi ,(3.9)
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Therefore, the total transmitted TCP data in each run consists of those sent during

the slow start phase (i.e., Sp

∑x
i=0(τd)

i = Sp

1
2
τdWi,TO−1

τd−1
) and those sent during the

congestion avoidance phase (i.e., Sp(
Wi,TO

2
+Wi,TO)y

2
= Sp

3d
8a
W 2

i,TO).

3.3 AIMD-based PDoS attacks

In an AIMD-based attack, the attack pulses cause a victim TCP sender to fre-

quently enter the fast retransmit/fast recovery state (FR). Recall that we consider

a general AIMD algorithm denoted by AIMD(a, b), a > 0, 1 > b > 0. If an attack

pulse is able to cause some packet losses in a TCP connection and yet a sufficient

number of duplicate ACKs can still be received by the sender, the cwnd will drop by

(1− b)%. After that, the cwnd will increase by one MSS every RTT.

Since it will take at least (1−b)d
a

W number of RTTs to restore the cwnd to W after

a decrease from W to bW , the cwnd value could drop continuously if the attack pulses

are launched frequently enough. Moreover, when the cwnd is dropped to a certain

level, there may not be enough duplicate ACKs to trigger the fast recovery process.

Thus, the AIMD-based attack can also achieve a similar effect as the timeout-based

attack without causing timeouts at the beginning of the attack. On the other hand,

the AIMD-based attack could also launch a degradation-of-service attack by lowering

the attack frequency. Similar to the timeout-based attacks, there are two types of

AIMD-based attacks: aperiodic and periodic.

3.3.1 Aperiodic attacks

Since aperiodic attacks may have arbitrary patterns, we analyze only one special

case, which is referred to as synchronous in the sense that the attack epoches always

coincide with a fixed set of cwnd values. We therefore refer it to as synchronous

AIMD-based attack. For example, consider a general AIMD algorithm AIMD(a, b),

where a > 0, 1 > b > 0, and the sender’s cwnd is increased by a
d

per RTT. Let

Wi,n, n = 0, 1, 2, . . . , be the cwnd value of the ith victim TCP connection just before
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the nth attack epoch. Therefore, Wi,0 is the cwnd value just before the attack.

Suppose that an attack epoch always occurs at the instant when the cwnd rises from

Wi,n−1 to fWi,n−1, n ≥ 1, 1 ≥ f > b after a multiplicative decrease. Figure 3.7

shows an example of a synchronous AIMD-based attack. The dashed line depicts the

trajectory of cwnd controlled by AIMD(1, 0.5). The solid line, on the other hand,

depicts the trajectory of cwnd when the TCP sender is experiencing a synchronous

AIMD-based attack. The attack epoches for this type of synchronous AIMD-based

attack are given in Proposition 3.3.1.

Proposition 3.3.1 (Attack epoches for a synchronous AIMD-based attack)

For the synchronous AIMD-based attack just described, the number of attack pulses

required to reduce the ith sending TCP’s cwnd to 2 (the minimum value) is given by

log(2/Wi,0)

logf
.

Assume that the RTT value is fixed. Let t0 be the first attack epoch. For n > 0,

the nth attack epoch is then given by

tn = t0 +
1− fn

1− f
(f − b)dWi,0

a
× RTTi, n ≥ 1. (3.10)

Proof Since the cwnd is decreased from Wi to fWi at each attack epoch, cwnd =

fnWi,0 after the nth attack. Hence, the attack will bring down the cwnd to 2 by

launching a sequence of
log(2/Wi,0)

logf
attack pulses.

According to the attack strategy, before the arrival of the nth (n ≥ 1) attack

pulse the cwnd can only be increased to (f − b)Wi,n−1, which takes
(f−b)dWi,n−1

a
RTTi

amount of time, according to the AIMD algorithm. Therefore, the nth attack epoch

should take place at

tn = tn−1 +
(f − b)dWi,n−1

a
RTTi, n ≥ 1. (3.11)

Furthermore, by substituting Wi,n = fWi,n−1 into Eq. (3.11),

tn = tn−1 +
(f − b)df (n−1)Wi,0

a
RTTi, n ≥ 1. (3.12)

We can therefore obtain Eq. (3.10) by a repeated substitution of tn−1.
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Fig. 3.7. An example of a
synchronous AIMD-based at-
tack against AIMD(1, 0.5).
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Fig. 3.8. An example of
an AIMD-based attack with
fixed periods.

3.3.2 Periodic attacks

Similar to the case of synchronous timeout-based attacks, it is difficult to launch

a synchronous AIMD-based attack because of the difficulty in estimating the attack

epoches. Therefore, we remove the synchronization requirement and consider an

AIMD-based attack with a fixed period of Tattack = Tspace + Textent, as shown in

Figure 3.8. Proposition 3.3.2 presents the steady-state value of cwnd in the midst

of such attack. After that, Proposition 3.3.3 gives the minimum number of attack

pulses for reducing the cwnd to the steady-state value.

Proposition 3.3.2 (Convergence of the cwnd) Consider an AIMD-based attack

with a fixed period of Tattack against the ith TCP connection using AIMD(a, b). If the

cwnd of the victim connection will converge during the attack, then the converged

value is given by

Wi,C =
a

(1− b)d
Tattack

RTTi
. (3.13)
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Proof Just before the arrival of the (n+ 1)th attack pulse, the cwnd value is given

by

Wi,n+1 = bWi,n +
a

d

Tattack

RTTi
= bn+1Wi,0 +

a

d

1− bn+1

1− b
Tattack

RTTi
. (3.14)

If the cwnd converges, Wi,n+1 = Wi,n for some n. Therefore, by substituting Wi,n+1 =

Wi,n into Eq. (3.14), we obtain the result.

Proposition 3.3.3 (Minimum number of attack pulses) Consider an AIMD-based

attack with a fixed period of Tattack against AIMD(a, b) adopted by the ith TCP sender.

Let Wi,0 = Wi,C + δ, where δ > 0. Moreover, if Wi,n −Wi,C < ǫ, where ǫ is a small

value, Wi,n is considered the same as Wi,C. Then, the minimum number of attack

pulses required to reduce the cwnd from Wi,0 to Wi,C is given by

Nattack <
logǫ− logδ

logb
. (3.15)

Proof From Eq. (3.13) and Eq. (3.14), we have Wi,n = bn ×Wi,0 + (1 − bn)Wi,C .

By substituting Wi,0 = Wi,C + δ into the equation and solving for n, we obtain n =

log(Wi,n−Wi,C)−log δ

log b
. Since Wi,n is considered to be the same as Wi,C if Wi,n−Wi,C < ǫ,

we obtain Eq. (3.15).

In Figure 3.9 we plot Eq. (3.15) for different values of b. The figure shows that the

flow throughput of a typical TCP (b = 1/2) can be brought to the converged value

using fewer than 10 attack pulses. With a higher value of b, more attack pulses will

be required to achieve the same effect, because the cwnd drops with a slower rate

in these cases. With a higher value of δ, it will also take a longer time for cwnd to

converge.

To drive the point further, in Figure 3.10 we use Eq. (3.13) to show the relationship

between WC and Tattack

RTT
for a TCP flow and a TCP-friendly flow (AIMD(0.31, 0.875))

with d = 2. According to [146], a flow with AIMD(a, b) is considered to be TCP-

friendly if its parameters satisfy a = 4×(1−b2)
3

. Therefore, the converged cwnd value

for a TCP-friendly flow is given by WC = 4×(1+b)
3×d

× Tattack

RTT
. The figure also shows a

lower bound and an upper bound on WC .
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The figure shows that if Tattack

RTT
is small, the flow’s cwnd will be constrained to a

very low value that will severely limit the flow’s throughput. For example, consider

those flows with RTT between 200ms and 500ms. In [28], the simulation results

have shown that these flows will survive a periodic timeout-based attack. However,

Figure 3.10 shows that a periodic AIMD-based attack with a period of one second is

sufficient to degrade their throughput to the extent that the cwnd will be confined

within (4/3, 20/3). Note that the TCP fast recovery algorithm usually requires three

duplicate ACKs. Therefore, even if the cwnd value is given by the upper bound, it

is very likely that the fast recovery procedure cannot be started and that a timeout

will therefore occur.
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Fig. 3.9. Relationship between Nattack and δ.

Proposition 3.3.1 gives the throughput of the ith victim TCP connection under a

periodic AIMD-based PDoS attack.
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Theorem 3.3.1 The throughput of the ith victim TCP connection under an AIMD-

based PDoS attack with a period of Tattack is given by

ΨAIMD
i,attack =

{
Nattack−1∑

n=1

(
bWi,n +

a

2d

Tattack

RTTi

)
Tattack

RTTi
+

a(1 + b)

2d(1− b)

(
Tattack

RTTi

)2

(N −Nattack)

}
Sp,

Proof We divide the whole TCP process into two distinct phases, as shown in

Figure 3.8. The first phase is the transient period, which starts from the beginning of

the attack and ends when the cwnd converges toWi,C . During this period, the attacker

will send Nattack attack pulses; therefore, there are Nattack − 1 free-of-attack intervals

for TCP sender to transmit packets. During the interval between jth and (j + 1)th

attack epoch (1 ≤ j < Nattack), the TCP sender can send (bWi,j + a
2d

Tattack

RTTi
)Tattack

RTTi

packets. Therefore, the first item within the curly brackets in Eq. (3.16) gives the

number of packets sent during the transient state.

The second phase, which is referred to as the steady period, follows immediately

after the transient phase. In this phase, the cwnd exhibits a periodic sawtooth pat-

tern. There are a total of N − Nattack such periods, each of which begins after the

jth attack epoch and ends before the (j + 1)th attack epoch (Nattack ≤ j < N).
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The number of packets transmitted during each period is (bWi,C + Wi,C)Tattack

2RTTi
=

a(1+b)
2d(1−b)

(Tattack

RTTi
)2. Therefore, the second item within the curly brackets in Eq. (3.16)

gives the number of packets sent during the steady period.

3.4 Polymorphic DoS attacks

In this section, we will first model the PMDoS attack which can be turned into

existing PDoS attacks under certain configurations. And then we will analyze the

impact of PMDoS attack on TCP flows.

3.4.1 Modeling the PMDoS attack

We model a PMDoS attack as an alternating renewal process, which controls the

sending rate of attack packets that can be in one of two states: Rattack for a period of

Ton, and 0 bps (bits per second) for a period of Toff . Therefore, based on the results

from Renewal Theory [152], we obtain the average attack rate Raverage of a PMDoS

attack in Eq. (3.16).

Lemma 3.4.1 The average attack rate of a PMDoS attack is given by

Raverage =
E[Ton]Rattack

E[Ton] + E[Toff ]
, (3.16)

where Ton and Toff are i.i.d. random variables. Besides, according to the definition

of low-rate attack, the PMDoS attack should satisfy the following constraint:

Raverage ≤ Rbottle, (3.17)

where Rbottle is the bandwidth of the bottleneck.

Based on Eq. (3.16), we know that the PMDoS attack is equivalent to a PDoS at-

tack when Ton and Toff are degenerate random variables (constant values). Moreover,

if Toff is close to one second and Ton is approximately equal to the RTT of victim

TCP flows, then the PMDoS attack is equivalent to a shrew attack. Furthermore,
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when Toff goes to 0, the PMDoS attack becomes a flooding-based DoS attack with a

constant sending rate, for which Eq. (3.17) becomes

Rattack ≤ Rbottle. (3.18)

3.4.2 Analyzing the PMDoS attack

Based on the relationship between Rattack and Rbottle, we divide the PMDoS attack

into two categories:

1. When Rattack ≤ Rbottle, the PMDoS attack will behave like a constant-bit-rate

(CBR) source. We denote this class of PMDoS attacks by A−,

2. When Rattack > Rbottle, the PMDoS attack will dispatch intermittent attack

pulses because Toff > 0. We denote this class of PMDoS attacks by A+,

Proposition 3.4.1 If the average value of cwnd in the absence of PMDoS attack is

E[W ], then under A− PMDoS attack it becomes

E[W−] =

(
1− Rattack

Rbottle

)
E[W ]. (3.19)

Proof Since the victim TCP senders will increase their packet transmission rates

whenever there is available bandwidth, their flows will make full use of the available

bandwidth (Rbottle − Rattack) after the A− PMDoS attack occupies Rattack portion of

Rbottle [45] (i.e., TCP’s packet transmission rate E[Rtcp] = Rbottle−Rattack). Since Rtcp

can be modeled as E[Rtcp] = 3E[W ]
4RTT

MSS [150], where MSS is the maximum segment

size and RTT is assumed to be a constant value as [150,153], E[W ] will decrease the

same percent (1− Rattack

Rbottle
) as Rtcp does.

For the A+ PMDoS attack, since Rattack > Rbottle, the bottleneck will be blocked

for a period of RattackTon

Rbottle
. We assume that during such period all the victim TCP

flows will suffer from packet loss and then enter the fast retransmit/fast recovery

(FR) state, during which each TCP flow will employ an AIMD algorithm to control
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its cwnd. Therefore, we can model the ith sending TCP’s cwnd in the presence of A+

PMDoS attacks as:

W+
i (n+ 1) = bW+

i (n) +
a

d

Ton(n) + Toff (n)

RTTi
. (3.20)

Eq. (3.20) belongs to the general class of classical stochastic difference equation [154,

155]:

Y (n+ 1) = A(n)Y (n) +B(n), n ≥ 0. (3.21)

Since the attacker can send an arbitrary sequence of attack pulses, we consider a

general attack pattern for which Tperiod(n) = Ton(n) + Toff (n) is a stationary and

ergodic stochastic process. Based on Theorem 1 in [154], we can obtain the solution

to Eq. (3.20) in Proposition 3.4.2.

Proposition 3.4.2 If Tperiod(n) is a stationary and ergodic stochastic process, then

there is a unique stationary solution for Eq. (3.20) as follows:

W+∗
i (n) =

a

dRTT

∞∑

j=0

bj(Tperiod(n− j − 1)). (3.22)

Proof Let A(n) = b and B(n) = a
d

Tperiod(n)

RTT
. It can easily be proved that A(n) and

B(n) fulfill the following requirements in [154, 155]:

−∞ ≤ E[log(|A(0)|)] < 0. (3.23)

E[log(|B(0)|)]+ <∞, x+ = max(0, x), ∀x ∈ R. (3.24)

We use the similar technique in [156] to characterize the cwnd under the A+

PMDoS attack. Since W+
i (n) will converge to W+∗

i (n) absolutely almost surely ac-

cording to Theorem 1 in [154], we can obtain the converged value by calculating the

expectation of W+∗
i (n).

Corollary 3.4.1 The expectation of W+∗
i (n) is given by

E[W+∗
i (n)] =

aE[Tperiod(n)]

RTTi(1− b)d
. (3.25)
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If both Ton and Toff are constant values and let Tattack = Ton + Toff , then we get the

same converged value (i.e., Wi,C = aTattack

dRTTi(1−b)
) in [4].

Proof

∵ E[W+∗
i (n)] =

a

dRTTi

∞∑

j=0

bjE[Tperiod(n− j − 1)].

E[Tperiod(n)] = E[Ton(n) + Toff (n)].

∴ E[W+∗
i (n)] =

a(E[Ton(n)] + E[Toff (n)])

dRTTi(1− b)
.

3.5 Evaluating the impact of PDoS attacks

3.5.1 Simulation experiments

We have conducted extensive ns-2 simulation experiments to validate our analyti-

cal results and to evaluate the impact of DoS attacks on different AQMs. The network

topology used in the simulations is depicted in Figure 3.11. The network consists of M

pairs of TCP senders and receivers. All the links, except for the bottleneck between

routers S and R, are Raccess = 50 Mbps. The two routers are connected through a

link of Rbottle = 10 Mbps. There are ten legitimate TCP flows traversing through the

bottleneck link, all of which are based on TCP New Reno, and their RTTs range from

20ms to 460ms as suggested in [28]. The minRTO of each flow is equal to one second

according to the recommendation in [30]. Based on the scripts provided by [28], all

the simulation experiments were performed in the ns-2 2.28 environment. The queue

size (QS) is 100 packets and the AQMs’ parameters are listed in Table 3.2.

We derive
∑Nf

i=1 Ψi,normal in Proposition 3.5.1 and
∑Nf

i=1 Ψi,attack for FDDoS attacks

in Proposition 3.5.2.
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Fig. 3.11. Network topology for the simulation studies.

Table 3.2
Parameters for the four AQMs used in the simulation studies.

AQMs Customized Parameters

RED maxth = 0.8QS, minth = 0.2QS, maxp = 0.1, wq = 0.002, gentle=ture

REM b∗ = 0.6QS, γ = 0.001, φ = 1.001

PI qref = 0.6QS, a = 0.00001822, b = 0.00001816

AVQ α = 0.15, γ = 0.98

Proposition 3.5.1 Since TCP flows will make a full use of the bottleneck bandwidth

in the absence of attacks [148], we have

Nf∑

i

Ψi,normal = RbottleTtotal/8, (3.26)
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where Ttotal denotes the period that the TCP flows are under a DoS attack. For the

case of PDoS attacks with N pulses, Ttotal = (N − 1)Tattack.

Proposition 3.5.2 In the presence of a FDDoS attack with Rattack = βRbottle, 0 <

β ≤ 1,
∑Nf

i=1 Ψi,attack = (1− β)
∑Nf

i=1 Ψi,normal.

Proof Since we model a FDDoS attack as a traffic source with constant bit rate,

its impact on the normal traffic is approximately the same as reducing the available

bandwidth by the attack rate. According to the TCP congestion control mechanism,

the TCP throughput will increase when there is additional bandwidth to transfer

packets. Thus, the TCP flows will make a full use of the remaining bandwidth.

To simplify the notations, we label the periodic timeout-based PDoS attacks as

PT-PDoS and the periodic AIMD-based PDoS attacks as PA-PDoS. In a PT-PDoS

attack, each legitimate TCP flow is forced to enter the TO state by a PDoS attack

pulse. Therefore, this scenario corresponds to the most severe impact inflicted by the

attack. In a PA-PDoS attack, each legitimate TCP flow is forced to enter the FR

state by an attack pulse. Obviously, there are many other possibilities, depending on

the PDoS attack power.

The experiments

Figures 3.12-3.13 plot the attack power Γ verses the attack cost γ for the FDDoS

and PDoS attacks for two different values of Rattack . Each figure has 4 sub-figures

showing different values of Textent for the PDoS attack scenarios, which obviously do

not affect the FDDoS attack results. For the FDDoS attack, we only present the

analytical results (the solid straight lines), because they match very well with the

simulation results. As for the PDoS attacks, the 2 solid lines are obtained from the

analytical results for the PT-PDoS and PA-PDoS attacks which are derived without

considering specific queue management schemes. On the other hand, the 5 dashed

lines are obtained from the simulation results for the 5 queue management schemes

under the PDoS attack.
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Figures 3.14-3.15 present the simulation results for the packet dropping rates,

denoted as ζ , for the PDoS and FDDoS attacks, respectively. To clearly explain the

results, we have also included the corresponding graphs for the attack power. In

Figure 3.14, the PDoS attacks were launched with Textent = 125ms and Rattack =

{20, 30} Mbps. We have computed ζ separately for the legitimate TCP packets

(denoted by TP ) and for the attack packets (denoted by AP ). For example, RED-

TP refers to the ζ for the legitimate TCP packets and RED is in use. This is similarly

done for the FDDoS attacks in Figure 3.15.

Figure 3.16 gives the packet dropping probabilities used in the 3 RED-like AQM al-

gorithms measured during the PDoS attacks with Textent = 125ms, Rattack = {10, 20, 30}
Mbps, and γ = 0.3. As we shall see, this set of results is useful in explaining why

RED drops more legitimate TCP packets than REM and PI do.

The PDoS attack power

According to Figures 3.12-3.13, the results for the PT-PDoS attack can be re-

garded as the upper bound for the PDoS attack power. Moreover, the figures show

abrupt changes in the attack power for some parameter settings, for example, γ = 0.3

in Figure 3.12(d) and γ = 0.6 in Figure 3.13(c). In these cases, the attack periods

(Tattack = 1125ms, 1021ms) are very close to that of the shrew attack [28]. There-

fore, the PDoS attacks will drive the TCP flows into the TO state as soon as the

TCP senders’ retransmission timers expire, thus causing a very severe throughput

degradation. These special attack parameters are referred to as Shrew points in [47].

For a given Rattack, the simulation results approach to those given by the PA-PDoS

and PT-PDoS attacks as Textent increases. That is, the PDoS attack power increases

with Textent, because more attack packets are sent in each attack pulse, which will

quickly ramp up the packet dropping probability for the queue management schemes.

As a result, more legitimate TCP packets will be dropped.
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Fig. 3.12. DoS attack power with Rattack = 15 Mbps.

Another interesting result is that the trend of the simulation results obtained

for RED coincides very well with that of PA-PDoS attack in some cases, such as

Figure 3.12(c) and Figure 3.13(b). Recall that a PA-PDoS attack forces each TCP

flow to enter the FR state. On the other hand, RED uses an uniform dropping

mechanism to avoid consecutive packet dropping [60], which therefore affects more

TCP flows during a PDoS attack. Hence, the simulation results for RED are in good

match with the analytical results obtained for the PA-PDoS attacks.
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Fig. 3.13. DoS attack power with Rattack = 35 Mbps.

The resilience level of DropTail and AQMs under PDoS attacks

Based on the throughput degradation results in Figures 3.12-3.13, we can compare

the resilience levels of the queue management schemes to the PDoS attacks. The

figures have concluded the following order of resilience level for the five schemes:

{AVQ, DropTail} ≥ {PI, REM } ≥ RED. The ones within {} are considered to have

very similar resilience levels.
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In Figure 3.14(c-d), the curves for the attack packets (AP) are all clustered to-

gether in the range of ζ = 0.35 − 0.6. The curves for the legitimate packets (TP),

on the other hand, lie below the curves for the attack packets. That is, the packet

dropping rates for the attack packets are always higher than that for the legitimate

packets. Besides, DropTail and AVQ drop relatively more attack packets but less

TCP packets, while the RED-like AQMs drop relatively less attack packets but more

TCP packets. In particular, RED drops the least number of attack packets but the

largest number of TCP packets on average. This result is due to its random drop

mechanism which lets the attack packets pass through the router even when the

queue is full. These attack packets also push up the packet dropping probability for

the legitimate TCP packets. On the contrary, DropTail and AVQ will drop all the

subsequent attack packets whenever the queue is full, thus effectively dampening the

power of the attack pulse.

Figure 3.16 reveals 2 factors responsible for the inferior performance of RED as

compared with REM and PI. First, the abrupt arrivals of the attack packets increase

RED’s average queue length drastically, thus resulting in a very high packet dropping

probability for both attack packets and legitimate TCP packets. However, RED’s

uniform dropping cannot drop the attack packets quickly enough, which instead in-

creases the dropping of legitimate TCP packets. Second, RED’s packet dropping

probability decreases more slowly than REM and PI, because both REM and PI use

the instantaneous queue length to compute the packet dropping probability.

Furthermore, as Rattack or Textent increases, the results for AVQ and DropTail are

almost the same, because they essentially have the same packet dropping strategy,

except for the use of a virtual queue in AVQ. Similarly, REM and PI have very

similar results, because both are designed based on the idea of proportional-integral

controller.
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Fig. 3.14. Attack power and packet dropping rates under PDoS attacks
with Textent = 125ms.

The resilience level of DropTail and AQMs under FDDoS attacks

Figure 3.15(a) shows that the simulation results for the FDDoS attack are very

close to the analytical results. Figure 3.15(b) shows that the packet dropping rates

for the attack packets and the TCP packets under DropTail and the 4 AQMs are very

similar when γ is small, but they diverge as γ increases. Moreover, the difference

is smaller for the RED-like AQMs when compared with DropTail and AVQ. This

shows that the RED-like AQMs can achieve a higher resilience level than DropTail
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and AVQ, which is opposite to the results obtained under the PDoS attacks. This can

be explained by the fact that TCP flows always try to make a full use of the available

bandwidth. Therefore, the random drop mechanism employed by the RED-like AQMs

offers a better chance for the TCP flows to use the extra bandwidth by dropping the

attack packets, while the DropTail and AVQ do not have such mechanism.
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Fig. 3.15. Attack power and packet dropping rates under FDDoS attacks.

3.5.2 Test-bed experiments

We have carried out our evaluation using the topology in Figure 3.17, which

consists of n routers shared by a number of legitimate TCP users and an attacker.

All the links, except the bottleneck link, between the routers Rn (the bottleneck

router) and Rn+1 have a one-way propagation delay of tlms and a capacity of rl

Mbps. The link is shared by nt long-lived legitimate TCP flows, an attack flow and

cross traffic generated by nc long-lived TCP flows. The bottleneck link has a one-way

propagation delay of tbms and a capacity of rb Mbps, and carries the traffic excluding

the cross traffic.
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Fig. 3.16. Packet dropping probabilities for RED, REM, and PI under
PDoS attacks.

To demonstrate the impact of different variants of PMDoS attacks (periodic A+,

stochastic A+, and A− PMDoS attacks) on the nt long-lived legitimate TCP flow

aggregates, we have conducted extensive test-bed experiments.

We use the following parameter settings: n = 2, nt = 15 (New Reno), nc = 10

(New Reno), tl = 15ms, tb = 30ms, rl = 100 Mbps, and rb = 10 Mbps. Each of

the legitimate TCP flows experiences a fixed RTT of 150ms and employs a minimum

RTO of 1000ms. The queue at the bottleneck router R1 is a droptail queue of size
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Fig. 3.17. Network topology for evaluating the impacts of PDoS attacks.

Q = RTT × rb. The period of each experiment is 730s. After 250s, the attacker

launches a PMDoS attack until the end of the experiment period. Both the legitimate

flows and the cross traffic are generated using iperf [157]. To simplify the notations,

we use T and R to represent Ton and Rattack in the following figures, respectively.

Figure 3.18 depicts the experiment results of Γ resulted from the periodic A+

PMDoS attacks with Rattack = {25, 50} Mbps and Ton = {75, 150, 300}ms versus

the attack cost γ. Figure 3.19 depicts the experiment results for the stochastic A+

PMDoS attacks. For the purpose of comparison, each sub-figure also includes the

experiment results for the A− PMDoS attacks.

These figures give insight into the performance difference among the three variants

of PMDoS attacks. First, note that the throughput of the TCP flow aggregates is

significantly reduced by both the A+ and A− PMDoS attacks. However, the impact

of the periodic and stochastic A+ PMDoS attacks are generally far more significant

than the A− PMDoS attack: As shown in Figures 3.18(a) and 3.19(a), while both

the periodic and stochastic A+ PMDoS attacks with γ = 0.5 have already induced

throughput degradation of flow aggregates by more than 80%, the A− PMDoS attack

with the same cost can only reduce the aggregates’ throughput by not more than

50%. In order for the A
− PMDoS attack to achieve the similar level of degradation,
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Fig. 3.18. Normalized throughput degradation under periodic A+ and A−

PMDoS attacks versus attack cost.
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Fig. 3.19. Normalized throughput degradation under stochastic A+ and
A

− PMDoS attacks versus attack cost.

the attacker has to increase its γ to 0.9, which also increases the chance of exposure

to the detection mechanisms.

Besides, we notice that the choice of the attack pulse width Ton could affect the

performance of the periodic A+ PMDoS attacks more significantly than the stochastic

ones. Figures 3.18(a) and 3.18(b) show that when the attack pulse width of the peri-

odic A
+ PMDoS attack (Ton = 75ms) is smaller than the RTT of the flow aggregates,

i.e., 150ms, the normalized aggregate TCP throughput degradation may experience
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an unexpected decline even when the attack cost increases, for example, γ = 0.6 in

Figure 3.18(a) and γ = {0.6, 0.8} in Figure 3.18(b). For those attack scenarios, since

Ton does not cover the RTT of the flow aggregates, a portion of the flow aggregates

could possibly be affected by the attack traffic periodically. Those survived TCP

flows can therefore utilize more available bandwidth, resulting in a smaller aggregate

TCP throughput degradation. On the contrary, the randomized attack period of the

stochastic A+ PMDoS attack enables its attack pulses to throttle different legitimate

TCP flows. As a result, we observe from Figures 3.19(a) and 3.19(b) that when the

attack operates with E[Ton] = 75ms, the throughput degradation generally increases

with the attack cost.

3.6 Optimizing the PDoS attacks

Based on the above analysis, we can learn that there are three main differences

between PDoS attacks and the traditional flooding-based DoS. First, by adjusting the

attack parameters, PDoS attack can cause different levels of damage, ranging from

degradation-of-service to absolute denial-of-service. Second, since the average traffic

attack rate of a PDoS attack is much smaller than the flooding-based attacks, it can

evade the detection methods designed for flooding-based attacks [158]. Third, the

number of attack packets required by a PDoS attack is so small that the attacker

can customize them with correct values in order to elude the feature-based detection

methods [159–161].

Since an attacker can tune the parameters to achieve different objectives, he can

choose to inflict a certain level of damage to the victim TCP connections and yet

to evade attack detection mechanisms in place. The smartness of the PDoS attacks

therefore lies on the intelligent choices of the attack parameters which is the primary

focus of this section. Here, we consider only the periodic AIMD-based attack, be-

cause it offers more flexibility to control the attack intensity. We will investigate the

optimization problems for other kinds of PDoS attacks in the future work.
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First of all, since the primary objective of a PDoS attack is to cause throughput

degradation, we use Γ ∈ (0, 1), shown in Eq. (3.27), to measure the throughput

degradation in the midst of an attack, normalized by the throughput without the

attack.

Γ = 1− Ψattack

Ψnormal
, (3.27)

where 0 < Ψattack < Ψnormal. When the attack is severe enough, Γ approaches to 1 as

Ψattack approaches to 0.

Moreover, the PDoS attacker may want to evade those detection schemes that

will raise an alert whenever the measured average traffic rate exceeds a pre-defined

threshold. For the purpose of modeling the attacker’s preference in this aspect, we

use an average attack rate normalized by Rbottle:

γ =
RattackTextent

Rbottle(Textent + Tspace)
. (3.28)

In the analysis, we consider γ ∈ (0, 1), because for γ ≥ 1 the PDoS attack becomes the

traditional flooding-based attack which does not attempt to evade attack detection.

Since DoS attacks can be detected based on the drastic increase in the traffic rate,

we use (1 − γ)κ, κ > 0, to measure an attacker’s risk preference. When κ > 1, the

attacker can be considered risk-averse. That is, the attacker becomes less willing

to take the risk of being exposed as the attack rate increases. When 0 < κ < 1,

the attacker is considered risk-loving, which means that the attacker is more eager to

cause more damage than to the concealment of the attack as the attack rate increases.

To be complete, the attacker is considered risk-neutral when κ = 1.

Figure 3.20 depicts (1 − γ)κ as a function of γ for the three cases. The rate of

the increase in the slopes of the curves differentiates the three types of an attacker’s

behavior in terms of his risk preference. Furthermore, there are two interesting lim-

iting cases. First, limκ→0(1 − γ)κ = 1. In this limiting case, the attacker is entirely

unconcerned about the risk of being detected; the traditional flooding-based attack

is a good example in this category. Second, in the case of limκ→∞(1 − γ)κ = 0, the
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attacker’s decision is totally dominated by the risk of being detected to the extent

that he could not launch an attack.

Fig. 3.20. Three different behaviors of a PDoS attacker modeled by (1 −
γ)κ.

Now we combine the metric for characterizing the damage of a PDoS attack and

that for the attacker’s risk preference into a single metric in Eq. (3.29). Therefore,

for any given finite value of κ, an attacker can optimize the attack by maximizing

Gattack.

Gattack = Γ(1− γ)κ =

(
1− Ψattack

Ψnormal

)(
1− RattackTextent

Rbottle(Textent + Tspace)

)κ

. (3.29)

3.6.1 A PDoS attack optimization problem

In the following we formulate the PDoS attack problem as a nonlinear optimization

problem in which the only constraint is to ensure that 0 < γ < 1 for the reasons

discussed earlier.
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



maximize Gattack

subject to 0 < γ < 1.
(3.30)

Let Tspace = µTextent, µ > 0, which is the reciprocal of PDoS’s duty cycle and

Cattack = Rattack

Rbottle
, which denotes the ratio of each pulse’s sending rate to the bottleneck

bandwidth. Then we can rewrite γ as

γ =
RattackTextent

Rbottle(Textent + Tspace)
=
Cattack

1 + µ
. (3.31)

In the next two lemmas we present the analytical expressions for Ψattack and

Ψnormal, from which we can obtain a computable expression for Γ. Moreover, we can

modify the optimization problem into a new form.

Lemma 3.6.1 Assume that the TCP flows will make full use of the bottleneck band-

width when there is no PDoS attack. Then, Ψnormal is given by

Ψnormal = ηRbottle(N − 1)Tattack/8, η ∈ (0, 1), Rbottle > 0 (3.32)

Proof According to the TCP congestion control mechanism, a TCP sender will

increase its cwnd every RTT until it experiences a packet loss. In other words, the

throughput of the TCP flows will increase whenever there is additional bandwidth to

transfer packets. Finally, their aggregated throughput will be approximately equal to

the capacity of network (η → 1) if the router’s buffer is appropriately configured [85],

because the incoming packets will keep the router busy all the time. Moreover, the

attacker can estimate η by measuring the available bandwidth [162].

Lemma 3.6.2 The aggregated throughput of Nflow TCP connections under a PDoS

attack A(Textent, Rattack, Tspace, N) can be approximated by

Ψattack =
a(1 + b)T 2

attackSpacket

2d(1− b) (N − 1)

Nflow∑

i=1

1

RTT 2
i

(3.33)

Proof We have shown in the last chapter that the cwnd of a typical TCP flow

(AIMD(1, 0.5)) can be brought to the converged value by using fewer than ten attack
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pulses. Therefore, the period of the transient state will be very short. To simplify the

following analysis, we use WC in Eq. (3.13) to approximate the cwnd in the transient

state. By summing up the throughput of all victim TCP flows during the (N − 1)

free-of-attack intervals, we obtain Eq. (3.33).

Proposition 3.6.1 Under a PDoS attack, the normalized throughput degradation Γ

is given by

Γ = 1− Ψattack

Ψnormal
= 1− CΨ

γ
, (3.34)

where

CΨ =
4a(1 + b)TextentSpacketCattack

η(1− b)dRbottle

Nflow∑

i=1

1

RTT 2
i

. (3.35)

Proof By substituting Eq. (3.32) and Eq. (3.33) into Eq. (3.27) and some algebraic

simplification.

Note that since Γ ∈ (0, 1), we have 0 < CΨ

γ
< 1; therefore, CΨ < γ. Moreover,

since γ ∈ (0, 1), we have 0 < CΨ < 1. Thus, the optimization problem in Eq. (3.30)

becomes 



maximize
(
1− CΨ

γ

)
(1− γ)κ

subject to CΨ < γ < 1

0 < CΨ < 1

(3.36)

3.6.2 Optimized PDoS attack parameters

In this section we first solve the optimization problem in Eq. (3.36). From there

we will immediately obtain three corollaries regarding the optimal values of γ for the

three types of PDoS attackers. After that, we present the optimal value of µ, which

enables the attacker to decide the length of the attack period.

Proposition 3.6.2 The solution to the optimization problem stated in Eq. (3.36) is

given by

γ∗− =
CΨ(1− κ)−

√
C2

Ψ(1− κ)2 + 4κCΨ

−2κ
. (3.37)
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Proof We first obtain two roots to ∂Gattack

∂γ
= 0:

γ∗± =
CΨ(1− κ)±

√
C2

Ψ(1− κ)2 + 4κCΨ

−2κ
. (3.38)

It is easy to see that γ∗+ is not a feasible solution, because its value is less than

zero. On the other hand, γ∗− is a feasible solution by proving the following three

results.

• γ∗− > 0: This can be proved by observing that
√
C2

Ψ(1− κ)2 + 4κCΨ > CΨ(1−
κ) and putting this into γ∗−.

• γ∗− < 1: We prove this by contradiction. Assume that γ∗− ≥ 1. Then we

have
√
C2

Ψ(1− κ)2 + 4κCΨ − CΨ(1 − κ) ≥ 2κ. After some simplification, the

inequality is reduced to CΨ ≥ κ + CΨ(1− κ)⇒ CΨ ≥ 1, which contradicts the

first constraint in Eq. (3.36).

• γ∗− > CΨ: We prove this also by contradiction by assuming that γ∗− ≤ CΨ.

Thus, we get
√
C2

Ψ(1− κ)2 + 4κCΨ − CΨ(1 − κ) ≤ 2κCΨ ⇒ 1 ≤ CΨ, which also contradicts

the first constraint in Eq. (3.36).

Now we can prove that γ∗− is the only solution to Eq. (3.36) by observing that

∂Gattack

∂γ
is a continuous function and

Sign

(
dGattack

dγ

)
=






> 0 if γ ∈ (CΨ, γ
∗
−)

= 0 if γ = γ∗−

< 0 if γ ∈ (γ∗−, 1).

(3.39)

Corollary 3.6.1 For a risk-averse attacker (κ > 1), the optimal attack parameter is

given by γ∗− = CΨ as κ goes to infinity, i.e., limκ→∞ γ∗− = CΨ.

Proof According to the L’Hospital’s rule, limκ→∞ γ∗− = limκ→∞

∂(CΨ(1−κ)−
√

C2
Ψ(1−κ)2+4κCΨ)/∂κ

∂(−2κ)/∂κ
=

CΨ.
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Corollary 3.6.2 For a risk-loving attacker (κ < 1), the optimal attack parameter is

given by γ∗− = 1 as κ goes to 0, i.e., limκ→0 γ
∗
− = 1.

Proof According to the L’Hospital’s rule, limκ→0 γ
∗
− = limκ→0

∂(CΨ(1−κ)−
√

C2
Ψ(1−κ)2+4κCΨ)/∂κ

∂(−2κ)/∂κ
=

1.

Corollary 3.6.3 For a risk-neutral attacker (κ = 1), the optimal attack parameter

is given by γ∗− =
√
CΨ.

Proof Substituting κ = 1 into Eq. (3.37).

According to modeling of the PDoS attack’s impact, if each attack pulse could

cause packets losses in different TCP flows, then the remaining TCP throughput is

mainly determined by the attack period Tattack = (1+µ)Textent, as shown in Eq. (3.16).

In other words, when Rattack and Textent are given, we can determine the optimal value

of µ that achieves the tradeoff between the damage and the risk preference.

Proposition 3.6.3 The optimal µoptimal is given by

µoptimal =
−2κCattack

CΨ(1− κ)−
√
C2

Ψ(1− κ)2 + 4κCΨ

. (3.40)

Proof By substituting Eq. (3.37) into Eq. (3.31).

Corollary 3.6.4 For a risk-neutral attacker,

µoptimal =

√
Cattack

TextentCvictim

− 1, (3.41)

where

Cvictim =

√√√√4a(1 + b)Spacket

(1− b)dRbottle

Nflow∑

i=1

1

RTT 2
i

. (3.42)
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3.6.3 Performance evaluation

Simulation experiments and results

The network topology, shown in Figure 3.11, consists of M pairs of TCP senders

and receivers. All links, except the bottleneck between router S and R, are 50 Mbps.

The two routers are connected through a link of 15 Mbps with RED. The TCP

connections are based on TCP New Reno [163] and their RTTs range from 20ms to

460ms. We use the simulation scripts provided by [28].

Figures 3.21, 3.22, 3.23 and 3.24 show the results for different number of TCP

flows (15, 25, 35, and 45) under PDoS attacks with Rattack = 25, 30, 35 and 40 Mbps.

The analytical results are presented by lines in the figures, while the simulation results

are represented by symbols.

Normal-gain, under-gain, and over-gain attacks

Figures 3.21-3.24 show that all analytical results correctly predict the trends of the

attack gains. However, the values may not be in exact match, because of the complex

interplay between the attack pulses and the queue management mechanisms. For

example, under certain attacks, the TCP sender may suffer from more throughput

degradation when it enters the TO state instead of the FR state. Therefore, we

classify the attacks into three categories according to the discrepancies between the

experimental and analytical results.

The normal-gain attacks refer to those cases in which the simulation and analytical

results are in close agreement, such as the case of Rattack = 25 Mbps, Textent = 100ms

in Figure 3.21 and the case of Rattack = 35 Mbps, Textent = 75ms in Figure 3.23.

The PDoS attack with such parameter settings can effectively constrain the TCP

throughput to a low value by causing them to frequently enter the FR state.

The under-gain attacks refer to those cases in which the analytical results overes-

timate the actual attack gains, such as the cases when Textent = 50ms in Figures 3.21-

3.23. The cause for the discrepancy is due to the fact the attack rate is not high

enough to affect all TCP flows. Moreover, we can observe that the longer the dura-
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Fig. 3.21. Analytical and experimental results under PDoS attacks with
Rattack = 25 Mbps.

tion of each attack pulse is, the more severe the PDoS attack inflicts on the normal

TCP flows. This is because more legitimate packets will be dropped under such at-

tacks when the attack packets occupy more buffer and/or use more computational

resources from the router.

The over-gain attacks refer to those cases in which the analytical results underes-

timate the actual attack gains, such as the case of Rattack = 40 Mbps, Textent = 100ms

in Figure 3.24. This is because such attacks can force more TCP flows to enter the
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Fig. 3.22. Analytical and experimental results under PDoS attacks with
Rattack = 30 Mbps.

TO state instead of the FR state due to its high attack rate. Therefore, the analytical

results consistently underestimate the extent of the throughput reduction.

Maximization points

Figures 3.21-3.24 show that for the normal-gain and over-gain attacks, most of the

experimental results generally match very well with the analytical results in the max-

imization points. The exceptions are due to the shrew attacks that will be discussed

in the following subsection. However, for the under-gain attacks, they do not match
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Fig. 3.23. Analytical and experimental results under PDoS attacks with
Rattack = 35 Mbps.

as well, because the number of attack packets is too small to block the bottleneck

and therefore not all the legitimate TCP flows are affected by the attack.

The figures also show that the experimental results located on the right-hand

side of the maximization points are closer to the analytical results than those on the

left-hand side of the maximization points. This is because when γ increases, more

attack packets will be sent in each pulse, which will take up more resources in the

bottleneck. Therefore, more legitimate TCP flows will be affected by the attack and

consequently their throughput will be decreased as predicted from the analysis.
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Fig. 3.24. Analytical and experimental results under PDoS attacks with
Rattack = 40 Mbps.

Shrew attacks

According to the analysis in the last chapter, the AIMD-based and timeout-based

attacks share similar attack scheme, but they exploit different aspects of the TCP

congestion control mechanism. There are in fact some attack cases that correspond

to the shrew attacks. That is, if a PDoS attack’s Tattack is approximately equal to

minRTO
n

, n ∈ [1, minRTO], then the attack may constrain the TCP sender to the

TO state, instead of the FR state assumed by the analytical model. As a result, the

actual throughput degradation will be grossly underestimated by the analysis. Even
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if some TCP flows may survive these timeout-based attacks because of their large

RTTs [28], they will still suffer from the AIMD-based attack.
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Fig. 3.25. Relationship between PDoS attacks and the shrew attacks.

We show some of the cases in Figure 3.25 and we use � to mark them. For the

normal-gain attack with Rattack = 30 Mbps and Textent = 100ms, the shrew-attack

points are Tattack = 500ms, 1000ms in which the attack gains are much higher than

what are anticipated by the analysis. For the over-gain attack with Rattack = 40

Mbps and Textent = 75ms, all points except the two shrew-attack points match well

the trend given by the analysis. For the under-gain attack with Rattack = 50 Mbps

and Textent = 50ms, once again the shrew-attack point of Tattack = 1000/3ms gives a

higher attack gain than the analytical result.
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Test-bed experiments and results

We use Dummynet [164] to simulate the network by setting the bottleneck to 10

Mbps and introducing 150ms delay. We use iperf [157] to generate legitimate TCP

flows. In the absence of attacks, the victim TCP flows will occupy all the bandwidth.

The link between Dummynet and the victim is 10 Mbps, whereas the links connecting

the legitimate users and the attacker to the Dummynet are 100 Mbps. In this setting,

the legitimate user is running Linux Fedora with kernel 2 v2.6.5-1.358, whose minRTO

is 200. We have conducted experiments under RED. The buffer size is set according

to the rule-of-thumb B = RTT ×Rbottle [85], and the RED parameters are configured

as: minth = 0.2B, maxth = 0.8B, wq = 0.002, maxp = 0.1, and gentle = true.
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Fig. 3.26. Experiment results obtained in the test bed.

There are a total of ten victim TCP flows under three kinds of PDoS attacks,

which have the same Textent = 150ms but different Rattack values. The results are

shown in Figure 3.26, where all of them match the trends of the analytical results.
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Moreover, the normal-gain attack is observed when Rattack is equal to 20 Mbps. The

analytical results usually underestimate the attack gains when Rattack is increased to

30 Mbps. On the other hand, the analytical results usually overestimate the attack

gains when Rattack is decreased to 15 Mbps.

3.7 Summary

In this chapter, we have proposed a new class of PDoS attacks. Unlike the tra-

ditional DoS attack, the PDoS attack can effectively achieve the same damage with

a much lower attack rate. We have presented two specific attack methods: timeout-

based and AIMD-based, and their variants. We have further proposed polymorphic

DoS (PMDoS) attacks which may result in various traffic patterns according to differ-

ent parameter settings and consequently different impact on victim TCP flows. Our

analysis has confirmed that the PDoS attacks can effectively force the affected TCP

senders to continuously re-enter the FR state or the TO state.

Moreover, we have investigated the impact of the FDDoS and PDoS attacks on

TCP throughput under different queue management schemes, including DropTail and

the four AQM schemes. There are several important results obtained from the ana-

lytical and simulation results. First, under a PDoS attack, the RED-like AQMs suffer

from a higher throughput degradation than the DropTail and AVQ do, because the

latter discards the incoming packets only when the (virtual) queue is full. Second, the

packet dropping rates under the queue management schemes behave quite differently

for the FDDoS and PDoS attacks. During a PDoS attack, the packet dropping rates

for the attack packets are almost the same, whereas they are different for legitimate

TCP packets. In particular, both DropTail and AVQ tend to drop fewer legitimate

TCP packets but more attack packets as compared with the RED-like AQMs. How-

ever, the results are opposite for a FDDoS attack. Third, the PDoS attack is indeed

more effective than the traditional FDDoS attack, because the former has a much

higher attack power and a smaller attack cost.
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When evaluating the power of PDoS attacks in both ns-2 and test bed, we observed

some differences between these two sets of experiment results. Although we observe

significant throughput degradation under PDoS attacks in both ns-2 and test bed, the

damage measured in ns-2 is severer than that observed in the test bed. The possible

reasons include:

1. The TCP implementation in ns-2 is more vulnerable to the PDoS attacks than

those in real Linux kernel because the former was originally based on source

code of old BSD kernel while the latter has added many new features during

the past decade [165]. A recent paper has mentioned the deviations between

the TCP modules in NS-2 and those from the mainstream operating systems

such as FreeBSD and Linux [165]. Moreover, they have done an excellent work

by immigrating the TCP implementations in Linux to ns-2. Hence, we will re-

conduct those ns-2 experiments in our future work to investigate the difference.

2. It is much easier to launch PDoS attacks in ns-2 than in real network because we

can easily control the sending time of each attack packet in ns-2. In real network,

we have tried several approaches to generate high-intensity attack pulses, for

example, WinPcap [166] and Linux’s raw socket [167]. We found that when

using WinPcap and a large packet size an attacker can produce high-intensity

attack pulses.

Furthermore, we have investigated how to optimize PDoS attacks. In particu-

lar, we have formulated the attack objective based on maximizing TCP throughput

degradation and minimizing the risk of being detected. As far as we know, this is the

first time to study such a tradeoff using an analytical framework. By adjusting the

parameters in the attack objective, we can analyze the resulted attacks for different

types of attackers who may be risk-averse, risk-loving, or risk-neutral. As a result,

we have obtained the optimized attack parameters for a given attacker’s behavior.

Moreover, we have validated the analytical results using both ns-2 simulation and a

test bed. The study of optimized pulsing attacks is the first step to adopting game
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theory for analyzing a PDoS attacker’s behavior. In practice, the variation of RTTs

and packet dropping in the routers before the bottleneck router will affect the effect

of optimized pulsing attacks. Therefore, one research issue in the future work is to

explore how to launch more effective PDoS attacks on certain TCP flows, e.g. BGP

connections [54], when considering not only attack power and attack cost but also

the location of bottleneck and the effect of routers on the path.

84



4. DETECTING PULSING DENIAL-OF-SERVICE

ATTACKS

In this chapter, we discuss how to detect various PDoS attacks. We propose a two-

stage detection scheme that is based on two kinds of traffic anomalies caused by the

PDoS attacks. To enhance its capability for detecting PMDoS attacks, we propose

Vanguard, a new detection system. The extensive experiment results obtained in both

ns-2 simulation environment and our test bed demonstrate that these two detection

mechanisms can effectively and efficiently discover PDoS attacks and PMDoS attacks

respectively.

4.1 A two-stage detection algorithm

In this section, we propose a novel two-stage scheme for detecting PDoS attacks.

Although attackers can use UDP packets, arbitrary IP packets or ICMP packets to

launch attacks, they prefer TCP packets as attack packets. The reason is that routers

dispatch different types of packets into separate service queues, so that different types

of flows could not affect one another. Hence, we only consider attack packets of

TCP type. Though an attack or a selfish user may use non-compliant TCP flows to

occupy more bandwidth and consequently affect other TCP flows’ throughput, it is

difficult to launch an effective PDoS attacks because its attack period is fixed to its

RTT value. Moreover, such non-compliant feature can be easily detected by existing

approaches [168]. If an attacker or a selfish user uses non-compliant TCP flows that

send many packets in each burst similar to a PDoS attacker does, our detection

schemes can also identify it. However, in this case, we cannot know whether the

flow is controlled by an attack or a selfish user. In order to evade such meaningless
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discussion, we do not consider the case that the attacker use non-compliant TCP

flows to launch PDoS attacks.

Since a successful PDoS attack does not require a sustained high attack packet

rate, the feasible location for detecting such an attack is at the victim network. The

patterns of both incoming traffic and outgoing traffic are then under surveillance.

Moreover, since the PDoS attack can be effectively launched even by a single source,

our detection system is based on the detection of traffic pattern anomalies. We have

discovered two anomalies incurred by a PDoS attack. The first is that the incoming

data traffic will fluctuate in a more extreme manner during an attack, as depicted

in Figure 4.1. In the absence of any attack, a global synchronization may occur

when multiple TCP flows share the same bottleneck link and experience packet loss

almost simultaneously [85, 169]. Similar synchronization phenomenon can also be

caused by a PDoS attack which induces packet losses in the victim TCP connections

simultaneously. Although this quasi-global synchronization phenomenon resembles

that under the nonattack situation, their periods are different: the former one is

dictated by the attack parameters, whereas the latter one by the bottleneck capacity.

The peaks of the incoming traffic, which consist of attack pulses and legitimate

TCP packets, are usually of high-rate and short-duration [4, 28, 87], whose length

is determined by Textent. The valleys of the traffic rate are due to the congestion

control algorithm of the affected TCP flows. Whenever an attack pulse arrives at

the router, its instantaneous high volume traffic will fill the queue and induce packet

drops. Depending on the volume of attack packets and the duration of congestion

period, some TCP flows may timeout while others may enter the FR state. Of

course, some TCP flows may survive the attack without experiencing any packet loss.

Therefore, there are still some TCP traffic between two consecutive attack pulses.

These fluctuations have a severe impact on the TCP performance (e.g., decrease in

throughput and increase in jitter).

To visualize this quasi-global synchronization phenomenon, we have conducted

both ns-2 simulation [170] and test-bed experiments, and the results are shown in
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Fig. 4.1. Periodic pattern of the incoming data traffic during a PDoS
attack.

Figure 4.2(a) and Figure 4.2(b), respectively. In order to display the results clearly,

the incoming traffic has been first normalized so that the mean value is zero and then

transformed into a piecewise aggregate approximation [171].

Figure 4.2(a) captures a one-minute snapshot of the incoming traffic in the ns-2

simulation, including the packets from 24 victims TCP flows and those belonging

to a PDoS attack with Textent = 50ms, Tspace = 1950ms, Rattack = 100Mbps. We

could observe not only the anticipated fluctuations but also its period. There are

30 pinnacles evenly distributed within a duration of 60 seconds, implying a periodic

signal with a period of 60/30 = 2 seconds which is in fact equal to the period of the

PDoS attack.

Figure 4.2(b) displays a one-minute snapshot of the incoming traffic in the test-

bed experiment, consisting of packets from 15 victims TCP flows and those belonging

to a PDoS attack with Textent = 100ms, Tspace = 2400ms, and Rattack = 50 Mbps.

Figure 4.2(b) exhibits the quasi-global synchronization phenomena in which 24 pin-

nacles are evenly spaced. The period of the incoming traffic is 60/24 = 2.5 seconds

which is also equal to the period of the attack pulses.
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Fig. 4.2. Quasi-global synchronization phenomenon induced by a PDoS
attack.

The second anomaly has to do with the outgoing TCP ACK traffic. As just

mentioned, the incoming legitimate TCP traffic volume will decline because of the

attack. However, the overall incoming TCP traffic volume may or may not decline

during the attack, because the attack packets can also be TCP based. Hence, our

detection system is also required to observe a possible decline in the outgoing TCP

ACK traffic. It is important to note that both anomalies have to be used in order to

avoid a high false-positive rate.

4.1.1 The first stage

Based on the discussion above, the first stage in the detection process is to monitor

the variability in the incoming traffic and the outgoing TCP ACK traffic. Here we

employ a discrete wavelet transform (DWT) for this purpose. The complexity of the

pyramid algorithms that are used to compute the discrete wavelet transform is O(N),

where N is the number of samples [172]. Any other simple scheme that is based on

N samples also needs such computational complexity.

The DWT represents a signal f(t) ∈ L2(R) using scaling functions ϕj,k(t), and

a translated and dilated version of wavelet functions ψj,k(t) [173]. Since the wavelet
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functions operate like high-pass filters that use narrow time windows to compute

differences in signals, they can capture the variability of the incoming traffic volumes.

Similar approaches have been widely employed in the field of signal process to detect

pulse-like signals, e.g. [174]. On the other hand, the scaling functions perform like

low-pass filters; therefore, they can be used to extract the trend of the outgoing TCP

ACK traffic. For the detection we do not argue that DWT is the best approach

for computing the trend. However, since DWT can detect trends under different

resolutions, besides detection a user may adjust the resolution level to obtain a full

picture of the trend of the outgoing TCP ACK traffic for other monitoring purposes.

In other words, DWT can provide more information than other simple approaches.

To realize an on-line detection, we use a moving window to group G contiguous

samples to compute the DWT. Moreover, we define a statistic based on the signal en-

ergy to quantify the variability in the incoming traffic for the nth window of samples:

EH(n) =
1

G

∑

k

|dIn
1,k|2, (4.1)

where dIn
1,k is the wavelet coefficient at the finest scale (j = 1). Similarly, we define

a statistic based on the signal energy to characterize the trend in the outgoing TCP

ACK traffic for the nth window of samples:

EL(n) =
1

G

∑

k

|cOut
L,k |2, (4.2)

where cOut
L,k is the scaling coefficient at the highest decomposed scale (j = L). Further

details about the DWT can be found in Appendix A.

4.1.2 The second stage

The second stage is to detect abrupt changes in EH(n) for the incoming traffic

and in EL(n) for the ACK traffic. We employ a nonparametric CUSUM algorithm for

this purpose. The details about the CUSUM algorithm can be found in Appendix B.

The CUSUM method assumes that the mean value of the variable under surveillance
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will change from negative to positive when a change occurs. Since both EH(n) and

EL(n) are larger than zero, we first transform them into two random sequences:

ZH(n) = EH(n)− βH and ZL(n) = βL −EL(n),

where βH and βL are constants for determining the mean values of ZH(n) and ZL(n).

Typically, we set βH to the upper bound of EH(n) and βL to EL(n) − Ptolerance ×
[△(EL(n))], where EL(n) is the mean of EL(n) and △(EL(n)) is the standard de-

viation of EL(n). Ptolerance controls the limit of the allowable decrease in EL(n).

Therefore, ZH(n) and ZL(n) will have negative mean values under normal conditions.

Let T In be the detection time for ZH(n) when yZH
(n) > CIn

cusum, where yZH
(n)

is the CUSUM value of ZH(n) and CIn
cusum is the corresponding threshold. Similarly,

let TOut be the detection time for ZL(n) when yZL
(n) > COut

cusum, where yZL
(n) is

the CUSUM value of ZL(n) and COut
cusum is the corresponding threshold. The detec-

tion system confirms the onset of a PDoS attack when both yZH
(n) > CIn

cusum and

yZL
(n) > COut

cusum hold. Hence, the final detection time is determined by T F inal =

max{T In, TOut} and the detection delay is T F inal − TAttack, where TAttack is the start

time of the PDoS attack.

4.2 Vanguard: detecting polymorphic DoS attacks

Although the two-stage detection scheme could efficiently detect the PDoS attacks,

it may miss some PMDoS attacks that will induce only a few fluctuations in the traffic.

To overcome this shortcoming, we propose Vanguard, which synthesizes three kinds

of traffic anomalies induced by a PMDoS attack.

4.2.1 Anomalies induced by PMDoS attacks

Since the PMDoS attacks target at TCP flows, they will inevitably induce anoma-

lies in the TCP traffic. In the following, we discuss three types of traffic anomalies

that have been confirmed through analysis and extensive experiments.
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Anomaly I - Decline in the outgoing TCP ACK traffic

Same as the two-stage detection system, the first anomaly used here is the drop

in the number of TCP ACKs. However, this anomaly alone is not sufficient for the

detection. On one hand, it may cause false alarms if the decline in the ACKs is a

result of the decrease in the TCP data traffic. On the other hand, it may not be able

to detect advanced attacks that manipulate normal TCP flows to trigger more ACK

packets, for example, those using reordered TCP data packets to induce more ACK

packets.

Anomaly II - Increase in the ratio of the incoming TCP traffic to the

outgoing TCP ACK traffic

In order to eliminate the potential false alarms caused by anomaly I, we can

monitor the ratio of the incoming TCP data traffic to the outgoing TCP ACK traffic,

denoted by IRatio. When there is no packet loss, IRatio is typically equal to 2 [27], i.e.,

the ACK-every-other-segment mechanism. However, when an out-of-ordered packet

(due to packet losses or packet reordering) arrives, IRatio is equal to 1, because a

duplicate ACK is sent immediately. A similar technique has been used in D-WARD

[175] to detect DDoS attack. However, D-WARD is installed in attackers’ source

networks, whereas Vanguard is located at the victim’s network. Moreover, D-WARD

cannot handle the attacks that make use of reordered TCP packets to trigger more

ACK packets.

Anomaly III - Change in the incoming TCP data traffic distribution

Anomalies I and II can be utilized to discover most PMDoS attacks, except for

more sophisticated ones that cleverly trigger more outgoing TCP ACK traffic to

conceal the attack packets. To detect this advanced attack, we can exploit the third

traffic anomaly: the change in incoming TCP traffic distribution. The basis of this
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anomaly is that a PMDoS attack will perturb the distribution of the victim TCP data

traffic. For example, as shown in Figure 4.3(a), the sender’s cwnd will converge to a

low value due to the periodic packet loss. Moreover, the cwnd could be constrained

by a A− PMDoS attack which behaves like a CBR flow. However in this case, the

fluctuation of cwnd is modulated by the limited bandwidth instead of the attack.

(a) The decline of cwnd under an A+ at-

tack.

(b) The decline of cwnd under an A− at-

tack.

Fig. 4.3. Evolution of cwnd during PMDoS attacks.

4.2.2 Vanguard: a new detection scheme

In this subsection, we introduce Vanguard, a new scheme to detect PMDoS attacks

by monitoring the three aforementioned anomalies. Vanguard first locates change

points in statistics collected for detecting the three anomalies and then detect attacks

based on a simple rule to be presented shortly.

In order to detect anomaly in the outgoing ACK traffic indicated in its trend,

we apply the moving average algorithm in time series [176]. We use the following

notations:

1. Ddata(i), i = 1, 2, . . ., is the ith sample of the incoming TCP data rate;
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2. DACK(i), i = 1, 2, . . ., is the ith sample of the outgoing ACK rate;

3. Tsample is the length of each sampling interval in seconds;

4. WD is the length of detection window in seconds;

5. Nsample = WD/Tsample is the number of samples in a detection window.

We define the ratio of the incoming TCP data rate to the outgoing ACK rate as

IRatio(n) =
IData(n)

IACK(n)
, (4.3)

where IData(n) and IACK(n) are given by

IData(n) =
1

WD

nNsample∑

i=(n−1)Nsample+1

DData(i). (4.4)

IACK(n) =
1

WD

nNsample∑

i=(n−1)Nsample+1

DACK(i). (4.5)

According to the analysis in section 4.2.1, IACK will decrease in the presence of

unsophisticated PMDoS attack due to the decline of the victim incoming TCP traffic,

whereas IData may or may not reduce depending on whether or not the attack packets

can compensate for the dropped TCP data packets. IRatio will be larger than d if the

attack packets cannot trigger more outgoing ACKs.

We employ the color histogram indexing method [177] to capture the change in

the distribution of the incoming TCP data traffic. In the field of image retrieval, this

method is a robust approach to computing similarity of two images [178]. Our basic

idea is to measure the similarity index (SI) of the distribution of the incoming TCP

traffic and that of the normal TCP traffic. Since the PMDoS attack will change the

incoming TCP traffic distribution, there will be an abrupt change in the series of SI.

The algorithm consists of three steps.

In the first step, we compute a traffic histogram for each detection window of

samples. Given minimum (Dmin
data) and maximum (Dmax

data) values of the incoming TCP

traffic samples, we divide the range [Dmin
data, D

max
data ] into B disjoint subregions of equal
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size, named as histogram bins. The traffic histogram h(n) of the nth detection window

is then obtained by counting the number of samples hn,i that fall in the histogram

bin i, 1 ≤ i ≤ B (i.e., h(n) = [hn,1, . . . , hn,B]). Second, a cumulative histogram

H(n) = [Hn,1, . . . , Hn,B] is obtained by computing Hn,i =
∑

j≤i hn,j. Third, with

the cumulative histogram of the normal TCP traffic Ĥ = [Ĥ1, . . . , ĤB] and H(n) =

[Hn,1, . . . , Hn,B], define the SI of nth detection window as

IDis(n) =

√√√√
B∑

j=1

(Hn,j − Ĥj)2. (4.6)

We obtain IACK , IRatio, and IDis at the end of each detection window, and the

system raises an alarm if the following statement is true:

IRatio ↑ ∨ {IACK ↓ ∧ IDis ↑}, (4.7)

where ↑ and ↓ represent abrupt increase and decrease, respectively. Accordingly,

Vanguard first locates any abrupt change in the statistics collected for detecting the

anomalies, and raises the alarm if IRatio, or both IACK and IDis are found to be

anomalous.

The CUSUM, a nonparametric change-point detection algorithm [179], is used to

capture abrupt changes in the sequences {IACK(n)}, {IRatio(n)}, and {IDis(n)}. This

algorithm assumes that the mean of the variables being monitored will change from

negative to positive. Since IACK(n), IRatio(n) and IDis(n) are always nonnegative, we

first transform them into three random sequences, PACK(n), PRatio(n) and PDis(n),

which have negative means under the normal period, as follows:

PACK(n) = βACK − IACK(n), (4.8)

PRatio(n) = IRatio(n)− βRatio, (4.9)

PDis(n) = IDis(n)− βDis, (4.10)

where βACK , βRatio, and βDis are constants for determining the mean values of

{IACK(n)}, {IRatio(n)} and {IDis(n)}, respectively. Normally, we can set βACK to
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IACK(n) − Ptolerance[△(IACK(n))], where △(IACK(n)) is the standard deviation of

IACK(n) and Ptolerance defines the sensitivity to the decline in the outgoing ACK traf-

fic by controlling the allowable decrease during the transformation of {IACK(n)}. We

set βRatio and βDis to the upper bound of {IRatio(n)} and {IDis(n)}, respectively.

With yPACK
(n− 1), the CUSUM values of PACK(n− 1), and PACK(n), Vanguard

computes the CUSUM value yPACK
(n) as:

yPACK
(n) = max{0, yPACK

(n− 1) + PACK(n)}. (4.11)

Thus, the presence of abnormal decline in the outgoing ACK traffic is confirmed

if yPACK
(n) > CCUSUM

ACK , where CCUSUM
ACK is the corresponding CUSUM threshold.

Similarly, by computing the CUSUM values yPRatio
(n) and yPDis

(n) and by comparing

with the corresponding CUSUM thresholds CCUSUM
Ratio and CCUSUM

Dis , we can confirm

the presence of the increase in IRatio(n) and the change in the distribution of incoming

TCP traffic.

Figure 4.4, Figure 4.5 and Figure 4.6 demonstrate Vanguard’s detection process

for a periodic A+ PMDoS attack, a stochastic A+ PMDoS attack, and a A− PMDoS

attack respectively. The data is obtained from test-bed experiments with the presence

of cross traffic and a bottleneck capacity of 10 Mbps. Both A+ PMDoS attacks

operate with Rattack = 25 Mbps and Raverage = 6 Mbps, whereas the A− PMDoS

attack operates with Rattack = Raverage = 6 Mbps. All attacks have the same attack

cost of γ = 0.6. The attack is started at the 131th second from the beginning of the

experiment. For each row of subfigures, the first subfigure shows the raw incoming

TCP traffic in the upper panel and raw outgoing ACK traffic in the lower panel. The

second, third and forth subfigures plot the values of IACK(n), IRatio(n) and IDis(n),

respectively. For each set of those subfigures, the upper panel shows the raw data

of the statistics, and the lower panel shows the CUSUM detection results of these

statistics. We observe that the PMDoS attack induces different kinds of incoming

TCP traffic and outgoing ACK traffic patterns. However, the abnormal change in

the traffic can be instantly revealed from the three statistics, and thus effectively

captured by Vanguard.
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Fig. 4.4. Demonstration of Vanguard’s detection process for periodic A+

PMDoS attacks.

4.2.3 Other detection schemes

Since the defense system may need to process a huge volume of incoming packets,

having a low computational complexity is a very important consideration in design-

ing a practical defense system. In this subsection, we compare the computational

complexity of Vanguard with other proposed detection schemes. We consider the

two-stage detection scheme (named as DWTM-based detection scheme) proposed in

the section 4.1, spectrum-based scheme [89, 180], and DTWP-based algorithm [87].

Since all the detection schemes under comparison make decision after collecting

and manipulating N data samples in a detection window, their lowest complexity is

Θ(N). For Vanguard, the values of statistics for anomaly I and II can be updated
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Fig. 4.5. Demonstration of Vanguard’s detection process for stochastic
A+ PMDoS attacks.

upon receiving each data sample. By using bins with the same size, the data sample

can quickly locate the bin it belongs to. After that, the burden of computing statistic

for anomaly III is determined by B, which is the number of bins and is usually less

than the number of samples (N) in each detection window. The CUSUM algorithm’s

complexity is Θ(1) [179]. Therefore, the complexity of Vanguard is Θ(N).

The spectrum-based detection has been used to differentiate between single-source

and multi-source DoS attacks [180], which is employed to detect shrew attack by

observing the change in the power spectral density (PSD) of the incoming TCP traffic

[89]. Hence, its computational complexity is mainly determined by that of computing

the PSD, which is Θ(NlogN) [181]. However, the spectral analysis cannot handle the
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Fig. 4.6. Demonstration of Vanguard’s detection process for A− PMDoS
attacks.

PMDoS attacks which could exhibit various frequencies under different settings of

attacks. Just like the hop-frequency techniques, the frequency of the PMDoS attack

(except for the shrew attack) can be changed easily.

A dynamic time warping (DTWP)-based algorithm is proposed in [87] to identify

the shrew attack by matching the pattern of the incoming TCP data traffic with that

of shrew attack traffic. It first employs auto-correlation to extract the signatures of

the incoming traffic periodically and then compares the extracted signatures of the

incoming traffic with the signatures of shrew attack traffic through a slightly mod-

ified DTWP algorithm. Since the computational complexity of the auto-correlation

processing is Θ(N2) and that of DTWP is Θ(NM), (M is the length of selected
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signatures of shrew attack), the DTWP-based algorithm’s computational complexity

is Θ(N2). However, the DTWP method may fail if the attack pulses are not sepa-

rated by a constant interval. Moreover, the DTWP method will not be able to detect

the A− attacks as there will not be significant square-wave patterns in the incoming

traffic.

Table 4.1 summarizes the computational complexities of the detection schemes.

Together with the DWTM-based scheme, Vanguard achieves the lowest computational

complexity. Moreover, as will be shown in section 4.3, Vanguard can achieve the

highest detection rate for the class of PMDoS attacks.

Table 4.1
Computational complexity of four detection schemes.

Scheme Computational complexity

Vanguard Θ(N)

DWTM-based scheme Θ(N)

Spectrum-based scheme Θ(N log N)

DTWP-based scheme Θ(N2)

4.3 Evaluation and comparison with other detection schemes

In this section, we present the experiment results of the two-stage detection scheme

and Vanguard through a number of test-bed experiments. Our evaluation is based on

detection delays required to identify different PMDoS attack variants versus attack

costs. We use the same procedures and settings for the test-bed experiments discussed

in the previous section, except that we have installed a Snort IDS with the Vanguard

preprocessor at Rn+1 to sniff incoming TCP data traffic and outgoing ACK traffic.

For the preprocessor configuration, we use TSample = 0.005s and WD = 5s to achieve
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a small detection delay, and NWD
= 40 to obtain a training period of 200s. Moreover,

we set B = 25 and Ptolerance = 2.

Figure 4.7 plots the detection time of PMDoS attacks against attack costs. Fig-

ure 4.7(a) plots the results for the periodic A+ PMDoS attacks with Ton = {75, 150, 300}ms

and Rattack = {25, 50}Mbps, and Figure 4.7(b) plots the results for the stochastic A+

PMDoS attacks. Each subfigure also includes the detection times for the A− PMDoS

attacks. Note that Vanguard can identify all PMDoS attacks with various attack

costs within three detection windows (i.e., 15s). Specifically, it identifies all periodic

A+ and the A− PMDoS attacks immediately after a detection window. However, it

requires slightly more time to identify the stochastic A
+ PMDoS attacks with γ = 0.1,

Ton = 75ms, and Rattack = 50 Mbps. Based on the packet traces, we found two reasons

for it. Firstly, comparing with other attacks with Ton > 75ms, such attack’s pulse is

less significant. Secondly, comparing with attacks with Ton = 75ms, its high Rattack

results in a larger E[Toff ] under the constraint of γ = 0.1. We observed long Toff s

(i.e. > E[Toff ]) between consecutive attack pulses at the beginning of the attacks

because of the stochastic nature of attack period. As a result, Vanguard also needs

a longer period to identify the attacks. Moreover, when γ varying from 0.01 to 0.09,

Vanguard can detect 93.5% PDoS attacks and 88.9% flooding attacks. Most of them

are detected within 10 detection windows (i.e. 50s).

Furthermore, we use two sets of real data traces to examine Vanguard’s false

alarm rate. One includes the traces obtained from WIDE backbone (samplepoint-B)

during September 2005 and March 2006. The other is the LBNLs internal enterprise

traffic [182]. We assume that these data sets do not contain PDoS or PMDoS attack

traffic. By feeding these two sets of real data to the Vanguard system, we observed

low false alarm rate: 8.2% for the first data set and 9.7% for the second data set.
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Fig. 4.7. Detection time for A+ PMDoS and A− PMDoS attacks using
Vanguard.

4.3.1 Comparison with other detection schemes

In this section, we further evaluate and compare the performance of Vanguard, the

DWTM-based, the DTWP-based, and the spectrum-based detection schemes using

test-bed experiments.

DWTM-based detection scheme

Figure 4.8 shows the detection times required for the DWTM-based detection

scheme to discover the A+ and A− PMDoS attacks with various attack costs. We

have performed the experiments using the same network parameter settings. Each

experiment lasts for 370 seconds and a PMDoS attack begins at 130 second. For

the configuration of the DWTM-based detection system, each window of continuous

samples lasts for 12.8 seconds to achieve a small detection delay, NWD
= 6 to obtain a

training period of 76.8 seconds, and Ptolerance = 1. The detection scheme employs the

Haar wavelet [183] to capture the fluctuation in the incoming TCP data traffic, and

the Daubechies wavelet with four vanishing moments (DB(4)) to extract the trend

in the outgoing TCP ACK traffic. In each subfigure, any marker coinciding with the
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dashed line represents that the corresponding PMDoS attack is undetected by the

detection scheme.

From the figures, it is clear that the DWTM-based detection scheme shows a

poorer performance than Vanguard, with an average detection rate of 89.18%. Specif-

ically, while this mechanism can discover all the ongoing periodic and stochastic A+

PMDoS attacks within three detection windows (38.4s), it is unable to discover any

A− PMDoS attacks. Since the A− PMDoS attack traffic constantly occupies a fixed

portion of the bottleneck link capacity, the incoming TCP data traffic adapts to the

remaining bandwidth without significant fluctuations. As a result, the attack traffic

can elude the detection for the incoming traffic. We also evaluate its false alarm rate,

which is 2.1% for WIDE traces and 5% for LBNL traces.
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Fig. 4.8. Detection time for A+ PMDoS and A− PMDoS attacks using
the DWTM-based scheme.

DTWP-based detection scheme

In Figure 4.9, we report the experiment results of the DTWP-based detection

scheme under the A+ and A− PMDoS attacks with different attack costs. Each sub-

figure reports results for Rattack = {10, 25, 50}Mbps. The dashed line with downward-
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pointing triangles (-H-) is the DTWP threshold (DTWP=60) recommended in [87].

If the DTWP value is less than the threshold, the algorithm will confirm the presence

of a PMDoS attack. We present the experiment results only for Ton = 150ms, because

they are similar to those with Ton = {75, 300}ms. From the figures, we can observe

that the DTWP-based scheme can identify many periodic and stochastic A+ PMDoS

attacks, but it cannot detect any A− PMDoS attacks. It is because that this detection

algorithm is designed specifically for the shrew attack by matching the pattern of the

incoming TCP data traffic with that of shrew attack traffic. Thus, this scheme is

not able to detect the A− PMDoS attacks operated with CBR. Moreover, its average

detection rate is only 76.9%, which is relatively less than that obtained by Vanguard

and DWTM-based detection schemes.
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Fig. 4.9. Detection time for A
+ PMDoS and A

− PMDoS attacks using
the DTWP-based scheme.

Spectrum-based detection scheme

Figure 4.10 shows the experiment results of the spectrum-based detection scheme

under the A
+ and A

− PMDoS attacks. In each subfigure, the area between the solid
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line with downward-pointing triangles (-H-) and the dashed line contains the range

of frequencies for single-source DoS attacks. On the other hand, the area between

the solid line and the dashed line with upward-pointing triangles (-N-) contains the

range of frequencies for multi-source DoS attacks. The experiment results show that

the values (F (60%)) of the A+ PMDoS attacks do not concentrate on a small range.

Instead, they spread from low frequencies to high frequencies. Please note that all

the experiments are actually conducted in a single-source manner. Therefore, the

spectrum-based detection scheme will regard some single-source A+ PMDoS attacks

as the multi-source ones by mistake. Moreover, such kind of detection schemes will

miss those PMDoS attacks whose frequencies are similar to the frequency of normal

traffic.
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Fig. 4.10. Detection time for A+ PMDoS and A− PMDoS attacks under
the spectrum-based scheme.

4.4 Summary

In this chapter, we have proposed a two-stage detection scheme for the PDoS at-

tacks. The detection is based on an unusually high variability in the incoming data
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traffic and a drastic decline in the outgoing ACK traffic observed in the midst of a

PDoS attack. As a result, we have employed wavelet transform to observe the incom-

ing data traffic and outgoing ACK traffic, and a nonparametric CUSUM algorithm to

detect change points. Moreover, our scheme is feasible for on-line detection because

of the low time complexity for both the computation of the discrete wavelet transform

and the CUSUM method.

To enhance the two-stage detection scheme with the capability of detecting some

PMDoS attacks, we have proposed Vanguard, a new detection mechanism. Vanguard

is based on three anomalies—a drastic decline in the outgoing ACK traffic, an unusu-

ally high variability in the ratio of the incoming TCP traffic and the outgoing TCP

ACK traffic, and a significant change in the incoming TCP traffic distribution. We

have implemented it as a Snort plug-in and experimented with it on a test bed. The

experiment results show that Vanguard is very effective at detecting the PMDoS at-

tack. Moreover, we have compared Vanguard with other proposed detection systems.

Vanguard incurs the lowest computational complexity, while achieving the highest

detection rate.

Although the experiment results obtained in our test bed demonstrates Vanguard’s

good performance, we cannot assure its performance in a real network environment,

because our experiments are limited by the test bed’s scale and the lack of real

background traffic. Therefore, we conjecture that the third indicator (i.e. change in

the incoming TCP data traffic distribution) might be sensitive to traffic variation in

real network environment. We will investigate this issue in a real operational network

and study how to select suitable parameters. Moreover, currently we only employ a

heuristic decision rule. It is still possible for a smart attacker to evade it or cause

false alarm. We will carry out formal analysis on the decision rule in the future work.
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5. TCPSCRIPT: COVERT COMMUNICATIONS IN TCP

BURSTINESS

In this chapter, we propose hiding covert messages into TCP’s traffic bursts and intro-

duce our design, TCPScript. By exploiting TCP’s rich protocol features, TCPScript

provides higher throughput and more robust service than other recently proposed

timing channels. We evaluate its performance by carrying out experiments in both

our test bed and the PlanetLab platform. Moreover, we have designed new detection

metrics and a detection scheme to uncover TCPScript channels.

5.1 The basic design

5.1.1 Network model

There are four parties in the model: an encoder, a decoder, a TCP server, and

a passive warden. The encoder and the warden are in a close proximity in terms

of the communication delay. We assume that the passive warden is equipped with

unlimited resources to detect network covert channels established between its network

and the outside. Therefore, he can monitor and analyze all the incoming and outgoing

network traffic, including those from the encoder’s machine. Being a passive warden,

however, he will not delay packets or control the transmission rate of hosts in his

network.

The goal of the encoder is to leak out information to the decoder outside without

being detected by the warden. In so doing, she establishes a “normal” TCP-based

application session with the TCP server outside her network and embeds messages

in the TCP data segments. Here we do not further differentiate between the encoder

and the TCP sender; thus, we use encoder and TCP sender interchangeably. The

106



decoder is located such that he can eavesdrop packets sent from the encoder to the

server. However, the decoder does not have to eavesdrop packets sent from the server

to the encoder.

5.1.2 Encoding and decoding

TCPScript encoding In the following we assume that each covert message mi is

represented by a positive integer: mi ∈ [1,M ], where M is a constant. Figure 5.1(a)

depicts the encoding process for messages mi and mi+1. To transmit mi, the encoder

sends mi back-to-back TCP data segments to the server. To simplify the explanation,

we set the size of all data segments to the TCP sender’s maximum segment size (MSS)

in bytes. Moreover, we denote the TCP sequence number (SN) of the jth data segment

by SNj , j = 1, . . . , mi. From the beginning of the transmission, the encoder awaits

for the ACKs for a period of TE, an encoding period for a covert message. Let the

maximum value of the arrived ACKs at the end of TE be ACKmax. In the new packet

burst for mi+1, the first packet’s SN is set to ACKmax.

There are a couple of points to note for this simple encoding scheme:

1. If the ACKs for all mi segments arrive before the end of TE, the encoder con-

siders the transmission of mi successful (it does not imply a correct decoding

though). In the next burst, the first packet’s SN is therefore set to SNmi
+MSS

(because ACKmax = SNmi
+ MSS). Due to the TCP cumulative ACK, it is

sufficient to receive an ACK with a value of SNmi
+MSS.

2. If not all the ACKs arrive on time (due to packet losses, delay jitter, or packet

reordering), then ACKmax < SNmi
+MSS. Therefore, the encoder retransmits

the unacknowledged data segments with SN = ACKmax, . . . , SNmi
+ MSS.

As we shall see next, the decoder does not care whether a TCP data segment

is a retransmission or not.

TCPScript decoding Prior to the communication, the encoder and decoder will

agree on two parameters: the number of bursts (denoted by N) and the maximal
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(b) The segment with SN2 is lost which, however, does not affect the

decoding, and all ACKs arrive within TE.

Fig. 5.1. Two scenarios for encoding messages mi and mi+1 in TCPscript.

number of packets in a burst (denoted by M). The start of the communication can

be signaled by the arrival of the first TCP data packet. There are several ways to

decoding the messages. Here we present an off-line decoding algorithm based on

packet clustering. There are two stages to this off-line algorithm:

1. The decoder first uses a clustering algorithm to partition all the captured TCP

data segments into N clusters, each of which corresponds to a transmission

burst. We use the hierarchical clustering algorithm, whose hierarchical cluster

tree is constructed based on the centroid linkage [184]. Based on our extensive
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decoding results, this method achieves better performance than other popular

algorithms.

2. Consider the mi-burst identified in the first phase. The decoder first obtains

the maximum and minimum SNs from the packets received during TE , denoted

by SNi,max and SNi,min, respectively. Then the message is decoded by counting

the number of data segments based on SNi,max, SNi,min, and MSS:

m̃i ←−
SNi,max − SNi,min

MSS
+ 1. (5.1)

Although the decoding algorithm in Eq. (5.1) is very simple, it has the following

important properties:

(a) Even when some data segments are missing in the mi-burst (due to packet

losses or reordering), the decoding is still correct as long as the first and

last segments are classified into the mi-burst. Figure 5.1(b) illustrates

such a case where the segment with SN2 is lost; however, the arrival of the

segment with SN3 helps decode correctly.

(b) To recover missing packets at the head of a burst, we modify the algorithm

above by setting SNi,min to:

SNi,min = min{SNi,min, SNi−1,max + MSS}. (5.2)

Assume that the decoder captures the entire mi−1-burst. If the first packet

in the mi-burst is not missing, then SNi,min = SNi−1,max + MSS; other-

wise, SNi,min > SNi−1,max + MSS. Thus, selecting SNi,min according

to Eq. (5.2) can still decode correctly in the presence of missing data

segments at the head of the mi-burst. For the m1-burst, we can set

SN1,min = min{SN1,min, SN0,max + 1}, where SN0,max is the SN of the

TCP SYN segment sent by the encoder.

(c) However, there remains a scenario where packet losses at the head of a

burst still give an incorrect decoding, which is illustrated in Figure 5.2(a).
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As shown, the ACK for the segment with SN3 is lost; therefore, SNi,max =

SN3. Moreover, according to the encoding algorithm, SN1 of the mi+1-

burst is given by SN3. Based on Eq. (5.2), SNi+1,min = SN3 + MSS

which causes a decoding error: m̃i+1 = mi+1 − 1.

(d) When data segments are missing at the tail of a burst, there is no way

to decode the message correctly under this simple scheme; Figure 5.2(b)

shows one such scenario.

Note that TCPScript does not necessarily require all packets to have the same

size and use the explicit number of packets to convey messages. Instead, the encoder

and decoder could agree on a size unit, denoted as Usize, and then the covert message

m̃i is equal to ⌈SNi,max−SNi,min

Usize
⌉+1. By doing so, TCPScript could further imitate the

behavior of some TCP applications whose packets are not always of the same size.

Selecting the value of TE The choice of TE obviously represents a trade-off between

the decoding accuracy and channel’s throughput. Assuming that the TCP server does

not use delayed ACK, the encoder can set the value of TE to at least RTT+(mi−1)Tp

for mi, where RTT is the estimated round-trip time between the encoder and the

server, and Tp is the time dispersion of adjacent data segments. A TCP sender is

already equipped with an RTT estimate. To estimate the value of Tp, a simplest

approach is to use the time interval between adjacent ACKs as an approximation for

Tp, because the ACKs unlikely experience a large time dispersion because of their

small sizes [185].

Selecting the value of M The range of M is determined jointly by the server’s

maximum receive window size, denoted by RCV.WNDmax, and MSS: 1 ≤ M ≤
⌊RCV.WNDmax

MSS
⌋. If the window scale option is not used, then RCV.WNDmax ≤ 64 KB.

Take a common setting of MSS = 1460 bytes; then M =
⌊

64KB
1460

⌋
= 44. Moreover,

depending on the desired behavior of the cover traffic, the encoder may select the

value of M from [10, 20] to mimic the behavior of a long-lived TCP flow or from [3, 8]

to mimic the behavior of a short-lived TCP flow [186].
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(b) Packet losses at the tail of a burst will cause a decoding error, such

as the lost segment in the mi-burst.

Fig. 5.2. Two packet loss scenarios that cause decoding errors in TCP-
Script.

5.1.3 Impacts of adverse network conditions

In this section, we analyze the impact of three adverse network conditions on

TCPScript.

Packet losses There are three data segment loss scenarios that will lead to incorrect

decoding for the basic TCPScript, assuming no packet reordering and inconsequential

delay jitter:
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1. As discussed earlier, one or more packet losses occurred at the tail of the mi-

burst will cause a decoding error for mi.

2. Packet losses at the head of the mi-burst will cause a decoding error for mi only

for the scenario described in item 2(c) under TCPScript decoding.

3. When all the data segments in the mi-burst are lost, the decoder will clearly

miss mi.

In other cases, say packet losses in the middle of a burst, TCPScript could still

correctly obtain the message. Moreover, to further improve the decoding accuracy,

we will describe in §5.3 a more robust scheme to recover mi under any packet loss

scenarios.

Delay jitter TCPScript can tolerate a small (relative to TE) delay jitter. However, a

large (relative to TE) delay jitter could lead to an incorrect clustering of the packets.

That is, the N bursts could be clustered into more than or less than N bursts, or into

a different set of N bursts. Thus, a large delay jitter is considerably more damaging,

because it could affect more than a couple of messages. The robust scheme to be

presented in §5.3 can alleviate the problem, but it still cannot handle arbitrarily large

delay jitter. An effective solution is of course to choose TE conservatively at the

expense of a lower capacity.

Packet reordering Packet reordering events are prevalent on some Internet paths

[187]. Consider that a data segment belonging to mi is reordered for the following

three scenarios, assuming no packet losses and inconsequential delay jitter:

1. The reordered packet is still classified into the mi-burst; this case clearly has

no impact on the decoding.

2. The reordered packet is classified into the mi+1-burst. The message mi will be

decoded incorrectly only if this reordered packet is originally the last packet

in the burst (see item 2(d) under TCPScript decoding). Moreover, since the

encoder retransmits this reordered packet in the next burst, the decoder receives
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duplicate data segments in the mi+1-burst which, however, does not affect its

decoding.

3. The reordered packet is classified into the mj-burst, where j > i+1. Its impact

on mi is the same as the second case. However, by appearing in the mj-burst,

the reordered packet will cause an incorrect decoding of mj , because SNj,min is

set to this packet’s SN (see Eq. (5.2)).

On the other hand, a reordered ACK has no impact on the decoding accuracy

because of the accumulative ACK and the encoding algorithm.

5.2 An information-theoretic analysis of TCPScript

Determining a covert channel’s capacity is very useful for assessing its impact

and for designing the defense systems [33,34,188]. Moreover, according to Shannon’s

channel coding theorem, the encoder and decoder could select a coding approach to

reliably transmit information over covert channels at all rates up to its channel capac-

ity guarantees [189]. However, very few works investigated the capacity of network

timing channels [36, 42]. Venkatraman et al. used a noiseless model to analyze the

capacity of network covert channels that exploit the spatial and temporal variation in

transmission characteristics [36]. Berk et al. used the Arimoto-Blahut algorithm [123]

to estimate the capacity of network timing channels. Its transition matrix is obtained

by conducting a large volume of experiments and then measuring the probability

that one time interval becomes another time interval. However, none of them con-

sider the effect of packet loss on channel’s capacity. In this section we conduct an

information-theoretic analysis for TCPScript. For the purpose of comparison, we

have also performed the analysis for IPTime and JitterBug.

Being network timing channels, TCPScript, IP timing channel and JitterBug are

all vulnerable to packet losses and delay jitter. The former can cause substitution

errors—the symbol sent by encoder is misinterpreted as another symbol or an error

indicator—whereas the latter can cause synchronization errors (e.g., deletion errors
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and insertion errors). Note that finding the capacity of insertion/deletion channels

is still an active research problem. As a result, we consider only the impact of packet

losses on the three network timing channels in the following analyses.

We model all three channels as discrete memoryless channels (DMCs) with the

input symbols and output symbols modeled by discrete-valued random variables X

and Y , respectively. Moreover, p(x) and q(y) are the probability mass functions for

X and Y . We also denote P (X = xi) by p(xi). A DMC’s capacity is defined as [123]:

C = max
p(x)

I(X;Y ) = max
p(x)
{H(X) −H(X|Y )} = max

p(x)
{H(Y )−H(Y |X)}, (5.3)

where H(X) (or H(Y )) is the entropy of X (or Y ), and H(X|Y ) and H(Y |X) are

the conditional entropies defined as:

H(X|Y ) = −
∑

i

∑

j

q(yj)p(xi|yj)log2p(xi|yj) and H(Y |X) = −
∑

i

∑

j

p(xi)q(yj|xi)log2q(yj|xi).

(5.4)
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Fig. 5.3. Modeling TCPScript, IP timing channel, and JitterBug as dis-
crete memoryless channels.

According to each channel’s characteristics, we model IPTime, JitterBug, and

TCPScript using Z-Channel, Binary Erasure Channel (BEC), and Error and Erasure

Channel (EEC), respectively, as shown in Figure 5.4.
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1. IPTime There are two input symbols to the channel: nonarrival of a packet

(0) and arrival of a packet (1). Therefore, symbol 1 could be decoded as 0 due

to a packet loss (with probability PI10), but symbol 0 is always decoded as 0.

2. JitterBug Each symbol is represented by the time interval between two con-

secutive packets. Therefore, it will become a deletion channel if at least one

packet is lost. To simplify the analysis, we consider the case of transmitting

two packets and model it as an erasure channel. The erasure state E is entered

when either packet is lost with probabilities PJ0E and PJ1E for an input symbol

of 0 and 1, respectively.

3. TCPScript Recall from section 5.1 that packet losses at a burst’s tail will

result in decoding error, but packet losses at a burst’s head may or may not

incur an error. Moreover, there are two kinds of errors: m̃i < mi or mi is

missing entirely. The first type of error enforces that xi > yi. The second type

of error is the result of losing the entire burst of packets; the corresponding

output symbol is an erasure state. To simplify the analysis, we derive the upper

bound (burst-tail errors or burst-head errors) and lower bound (only burst-tail

errors) on the probability of correct decoding which will in turn give the lower

bound and upper bound on the capacity, respectively.

IPTime From the channel model in Figure 5.3(a), we can obtain the probability tran-

sition matrix as Q(Y |X) =


 1 0

PI10 1− PI10


, where PI10 = Ploss. By applying

the known capacity result for a Z-Channel [190],

C = F[p(x)(1− PI10), 1− p(x)(1− PI10)]− p(x)F[(1− PI10), P I10], where (5.5)

F[α, β] = − log2(α
αββ), and p(x) =

PI
PI10

1−PI10
10

1 + (1− PI10)PI
PI10

1−PI10
10

.

JitterBug From the channel model in Figure 5.3(b), we obtain the probability tran-

sition matrix of JitterBug as Q(Y |X) =


 1− PJ0E PJ0E 0

0 PJ1E 1− PJ1E


, where
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PJ0E = PJ1E = 1− (1− Ploss)
2. By applying the known capacity result for a BEC

channel [189], we obtain C = (1− Ploss)
2.

TCPScript We derive the upper bound on p(xi|xj) (denoted by p̄(xi|xj)) by obtain-

ing the probability that packet losses occur only to the bursts’ tails. Therefore, its

probability transition matrix is given by:

p̄(xi|xj), i = 1, . . . , N ; j = 0, . . . , N, =






(1− Ploss)
jP i−j

loss if i > j

1−
∑i−1

k=0 p(xi|xk) if i = j

0 if i < j.

(5.6)

The case of j = 0 corresponds to the erasure state.

To derive the lower bound on p(xi|xj) (denoted by p(xi|xj)), we consider packet

losses incurred in either the head or tail of a burst. For example, if an input symbol

of 5 is decoded incorrectly to 2, there are 4 (computed by 5 − 2 + 1) possible error

combinations—{3, 0},{2, 1},{1, 2},{0, 3}—where the first (or second) number is the

number of packet losses at the head (or tail) of a burst. Therefore, we can obtain the

probability transition matrix as:

p(xi|xj), i = 1, . . . , N ; j = 0, . . . , N, =





P i
loss if j = 0

(i− j + 1)(1− Ploss)
jP i−j

loss if i > j, j 6= 0

1−
∑i−1

k=0 p(xi|xk) if i = j

0 if i < j.

(5.7)

Based on Eq. (5.6) and Eq. (5.7), we can estimate the lower bound and up-

per bound for the TCPScript capacity, respectively, by applying the Blahut-Arimoto

algorithm [121–123].

We compare the information capacity derived from the channel models for TCP-

Script, IPTime, and JitterBug under different packet loss probability denoted by Ploss.

Furthermore, we consider M = 2, 4, 6, 8 for TCPScript. To give a fairer comparison,

we multiply the capacities of IPTime and TCPScript by log2M (i.e., equivalent to

log2M parallel channels). In terms of notations, we use IP Timing-log2M to refer to

the IPTime capacity for M symbols and similarly for JitterBug and TCPScript.
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Fig. 5.4. A capacity comparison for TCPScript, IP timing channel, and
JitterBug.

We first discuss the results for M = 2 (i.e., single-bit encoding) which are shown in

Figure 5.4(a). The TCPScript upper bound is actually overlapped with IPtime (that

is why you cannot see the IPTime graph from the figure). To explain this result, we

go back to TCPScript’s channel model in Figure 5.3(c) and set M = 2. Moreover, if
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we group the erasure state with the state 1 on the decoder side, the resulting channel

model is then the same as a Z-Channel. Besides, we have observed that JitterBug

slightly outperforms the other two at a low Ploss; however, the trend is reversed at a

higher loss probability. These results are consistent with our understanding that any

packet loss could reduce JitterBug into a deletion channel.

Figure 5.4(a) and Figure 5.4(b) show the results for M = 4, 6, 8 (i.e., multibit

encoding). When M = 4, the TCPScript upper bound is already larger than the other

two channels’ capacities; however, the lower bound is still below the other two at low

Plosss. When M is increased to 6 and 8, Figure 5.4(b) clearly illustrates the advantage

of TCPScript, because both upper and lower bounds are larger than the other two

for almost all Plosss. Moreover, the advantage becomes even more outstanding as

Ploss increases. The major reason responsible for its resilience to packet losses is that

not all packet losses will incur decoding errors—only those occurred to a burst’s tail

and some occurred to a burst’s head. In contrast, every packet error will result in

decoding errors for IPTime and JitterBug.

5.3 Loss-resilient TCPScript

In this section we present a loss-resilient TCPScript (LR-TCPScript) that pro-

vides better reliability against packet losses by exploiting TCP’s feedback channel

(i.e., ACK packets). The main idea of the LR-TCPScript is to recover the packet

burst (message) for which the encoder fails to receive all the ACKs within TE before

sending the next message.

LR-TCPScript encoding Recall that a TCPScript encoder considers the trans-

mission of message mi successful if it receives all the ACKs within TE . For the suc-

cessful case, the LR-TCPScript operates the same way as the basic TCPScript. To

handle the unsuccessful case, the LR-TCPScript encoder uses the following timeout-

retransmission scheme to recover the message:
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1. At the time of sending the first data segment in the mi-burst, the encoder

starts a retransmit timer whose period TO should be much larger than TE . For

example, similar to the RTO computation in TCP, we might set TO = 2 ∼
3× Tmax,E , where Tmax,E is an upper bound on the encoding period.

2. At the end of TO, the encoder retransmits the data segments unacknowledged by

the end of TE ; this retransmission behavior resembles the TCP timeout-based

retransmissions. For example, Figure 5.5(a) shows that the third packet in the

mi-burst is lost; therefore, the ACKs do not cover the last two packets which are

retransmitted after timeout. Moreover, the encoder could possibly receive new

ACKs between the end of TE and the end of TO. To be prudent, the encoder

should also retransmit the corresponding data packets, because they may have

experienced a large delay jitter which could cause incorrect decoding.

3. After the retransmissions, similar as before, the encoder awaits for the ACKs

during a period of TE . If all the missing ACKs arrive during TE , the encoder

proceeds with the next packet burst. Otherwise, the retransmission procedure

repeats until receiving all the ACKs or reaching a maximum number of retrans-

missions.

The timeout-retransmission mechanism above also works for ACK losses, but we

do not have the space to describe it here.

LR-TCPScript decoding The off-line decoding algorithm for LR-TCPScript is the

same as that for the basic TCPScript, except that there is a preprocessing step for

the LR-TCPScript decoding which is described below.

1. Based on TO, the decoder first identifies from the packet traces the possible

timeout-and-retransmission events. Since we have set the value of TO much

larger than TE , it is straightforward to identify these events.

2. For each such timeout-and-retransmission event, the decoder performs a two-

step preprocessing on the traces:
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(a) The decoder first removes the possible duplicate data segments which are

due to ACK losses.

(b) The decoder then merges the set of partially received data segments before

retransmissions and the retransmitted segments such that they will be

likely classified into the same burst by a clustering algorithm.

The remaining procedures for the preprocessed traces are the same as before:

clustering the preprocessed traces into packet bursts, and decoding the message in

each burst.

A ROLLBACK scheme The LR-TCPScript encoding and decoding work correctly

for all data segment/ACK loss scenarios except for two special cases: the lost of

all data segments in a burst, and the lost of all ACKs in a burst. As an example,

consider that all the data segments in the mi+1-burst are lost. Since the decoder has

no knowledge about the mi+1-burst, she will count the retransmitted segments into

the mi-burst.

We propose ROLLBACK to address this problem which is illustrated in Figure

5.5(b). ROLLBACK works as follows. If the encoder does not receive any ACK at

the end of TO after sending the mi+1-burst for the first time, it will retransmit the last

data segment in the mi-burst. This retransmitted packet (SNL), while not affecting

the message decoding, triggers a duplicate ACK. Upon receiving the duplicate ACK

within TE , the encoder retransmits all the lost data segments at the end of TE. Since

the time between receiving the segment SNL and receiving the first retransmitted

segment is considered as an inter-burst gap by the decoder, the retransmitted data

segments will be correctly classified into a new burst. Note that if either SNL or the

duplicate ACK is lost, the encoder will send SNL again at the end of another TO.

5.4 Evaluation and comparison with other network timing channels

In this section, we report the evaluation results of the basic TCPScript (B-

TCPScript) and the loss-resilient TCPScript (LR-TCPScript). We have also con-
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Fig. 5.5. LR-TCPScript’s timeout-retransmission and ROLLBACK mech-
anisms for achieving better reliability against packet losses.

ducted experiments for JitterBug and the IPTime. The evaluation is conducted in

both a controlled test bed and the PlanetLab infrastructure [44]. The test bed allows

us to configure different network conditions such as delay, loss, and packet reorder-

ing, while the PlanetLab enables us to evaluate the network timing channels in a real

network environment. We adopt the empirical channel accuracy α and the empirical

channel goodput ζ :

α = 1− pe , ζ =
αN log2 M

Td
, (5.8)

where pe is the channel’s bit error rate (BER) and Td is the total time required for

delivering the N covert messages. We employ the Levenshtein (Edit) Distance to com-
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pute pe, which is given by the total number of insertions, deletions, and substitutions

required to convert a source message into a decoded message.

The evaluation platforms The test bed, in a dumbbell topology, consists of two

routers (i.e., R1 and R2), a Web server, an encoder, and a decoder. All the network

links are full duplex with capacity of 100Mbit/s. We employ Dummynet [164] in

both routers to emulate different network conditions. The RTT between the encoder

and R1 is 5ms, whereas that between the decoder/Web server and R2 is 25ms, unless

specified otherwise. The encoder embeds covert data into the TCP packets destined

to the Web server; the decoder receives the data by eavesdropping encoder’s packets

between R2 and the Web server.

In the PlanetLab experiments, we have selected eight geographically diversed

nodes, denoted as TW, CN, JP, CA, KS, RI, KR, and BE. These nodes serve as

a TCPScript encoder and communicate with a Web server outside PlanetLab. Being

located beside the Web server, the decoder extracts covert messages from the flows

between the encoder and the Web server. We have measured RTTs and hop distance

between the decoder and the PlanetLab nodes during the experiment period.

Table 5.1
Measured path characteristics between each PlanetLab site and the de-
coder machine.

RTT
Locations Hops

Means Std. Dev. Conf. Intervals

Taipei, Taiwan (TW) 10 .0525 .0642 .0504/.0545

Shenyang, China (CN) 13 .0812 .0797 .0786/.0837

Tokyo, Japan (JP) 16 .1165 .0726 .1142/.1188

California, U.S. (CA) 14 .2007 .0682 .1985/.2029

Kansas, U.S. (KS) 16 .2263 .0077 .2260/.2265

Rhode Island, U.S. (RI) 13 .2335 .0079 .2332/.2337

Gwangju, Korea (KR) 18 .2381 .0565 .2363/.2399

Flanders, Belgium (BE) 16 .3158 .0079 .3156/.3161
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TCPScript implementation We have implemented the encoder as an HTTP client

that, after TCP’s three-way handshaking, uses the HTTP POST method to transmit

a large document to the server and conveys covert messages at the same time. In

order to manipulate each packet, we employ Linux raw sockets to bypass the nor-

mal TCP/IP stack. The TCPScript decoder, on the other hand, utilizes libpcap to

capture the traffic sent from the encoder to the TCP server. Based on UDP socket,

we have also implemented the IPTime’s and JitterBug’s encoding and decoding al-

gorithms that use a fixed timing interval (or timing window) of w. We adopt the

default tolerance parameter ε = w/4 in the JitterBug encoder.

5.4.1 Test-bed experiments

We study the effects of packet losses and packet reordering on the channel’s perfor-

mance in the test bed. The B-TCPScript encoder used TE = {40, 60}ms to transmit

two sets of codewords with M = {4, 16}. Each set consisted of 100 codewords. When

examining LR-TCPScript, we also fixed TO = {90, 120}ms. For both JitterBug and

IPTime, we assigned their encoders to transmit the corresponding binary codewords

with a single flow of modulated UDP packets with w = {40, 60}ms. We have fixed the

size of each IP packet injected by the encoder to 1,500 bytes for all experiments. We

repeated each experiment for 30 times and report the average goodput ζ and average

accuracy α. Generally, a larger w and TE will result in higher accuracy at the cost of

lower good put.

Effect of packet losses

Table 5.3 lists the experiments results of the B-TCPScript, LR-TCPScript, Jit-

terBug, and IPTime under random packet loss rates (PLR) ranging between 0% and

5%. In each cell, the two leftmost values correspond to the lower limit of and the

upper limit of the 95% confidence intervals of ζ, and the right most values inside the

parentheses correspond to the 95% confidence intervals of α. We observe that both
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B-TCPScript and JitterBug obtained 100% accuracy during a lossless environment,

while that of IPTime could only be up to 97% due to the jitter of queueing delay.

Moreover, B-TCPScript’s goodput was at least 1.561 times larger than that of Jit-

terBug when M = 4, and was at least 3.159 times greater when M = 6. As PLR

increased, as expected, decoder started producing errors from the decoded codewords

for all the timing channels. However, even when PLR reaches 5% of the total traffic,

the B-TCPScript could still maintain a relatively low pe of at most 4%, while Jit-

terBug’s and IPTime’s pe could be at most 7% and 8%, respectively. Furthermore,

we can observe that with a larger TE or w, all the covert channels attained a lower

goodput, but that may not increase their attained accuracy. It is because while in-

creasing TE or w can reduce the packet rate and thus the chance of packet loss due

to the buffer overflow from the network router, it does not prevent packet losses due

to random dropping by the router according to the assigned PLR.

On the other hand, we did not observe any error from the LR-TCPScript’s decoder

for all the PLR settings. However, its channel goodput decreases as PLR increases; it

declines further as TE or TO increases. In particular, when the PLR reaches 5%, the

channel goodput decreases up to 26% and 38% for M = 4 and M = 16, respectively.

The reason of the decline is that the LR-TCPScript’s encoder required extra time to

perform retransmission to recover the loss. Moreover, comparing with B-TCPScript,

LR-TCPScript generally produces relatively lower channel goodput. With PLR =

0%, we attain a similar channel goodput for both types of TCPScript for M = 4,

but we record almost 9% of decline for M = 16. The reason is that LR-TCPScript

needs more time to recover lost packets due to full queue caused by large burstiness.

With PLR = 5%, we record even further declines of up to 26% and 42% for M = 4

and M = 16, respectively. This represents the tradeoff between the accuracy and the

speed for the covert message delivery.
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Table 5.2
Average goodput and average accuracy in terms of Hamming distance
for the B-TCPScript, IPTime, and JitterBug obtained from the test bed
under different PLRs.

PLR TCPScript(40ms) TCPScript(60ms) JitterBug(40ms)

95% confidence intervals of ζ (α) for 100 codewords with M = 4

0% 48.89,48.90(1.00,1.00) 32.93,32.94(1.00,1.00) 30.98,30.98(1.00,1.00)

1% 46.64,49.32(0.99,1.00) 32.76,32.89(0.99,1.00) 19.60,19.60(0.63,0.73)

3% 45.09,48.82(0.98,0.99) 29.25,32.78(0.92,1.00) 16.77,16.77(0.54,0.59)

5% 45.46,48.45(0.96,0.99) 32.17,32.50(0.98,0.99) 16.20,16.20(0.52,0.56)

95% confidence intervals of ζ (α) for 100 codewords with M = 16

0% 97.67,97.77(1.00,1.00) 65.62,65.73(1.00,1.00) 30.52,30.52(1.00,1.00)

1% 97.05,97.52(0.99,1.00) 63.47,65.60(0.97,1.00) 17.83,17.83(0.58,0.66)

3% 94.47,96.19(0.97,0.98) 63.38,65.11(0.97,0.99) 16.49,16.49(0.54,0.58)

5% 89.12,96.98(0.91,0.99) 58.30,64.31(0.89,0.98) 15.97,15.97(0.52,0.55)

PLR JitterBug(60ms) IPTime(40ms) IPTime(60ms)

95% confidence intervals of ζ (α) for 100 codewords with M = 4

0% 21.09,21.09(1.00,1.00) 13.26,13.26(0.55,0.57) 9.27,9.27(0.57,0.59)

1% 13.25,13.25(0.62,0.74) 13.17,13.17(0.55,0.57) 9.25,9.25(0.57,0.59)

3% 11.94,11.94(0.56,0.62) 13.20,13.20(0.55,0.57) 9.24,9.24(0.56,0.59)

5% 11.16,11.16(0.53,0.57) 13.11,13.11(0.54,0.57) 9.22,9.22(0.56,0.59)

95% confidence intervals of ζ (α) for 100 codewords with M = 16

0% 20.77,20.77(1.00,1.00) 12.45,12.45(0.52,0.54) 8.57,8.57(0.53,0.54)

1% 12.62,12.62(0.60,0.70) 12.51,12.51(0.52,0.54) 8.58,8.58(0.53,0.54)

3% 11.05,11.05(0.53,0.56) 12.47,12.47(0.52,0.54) 8.57,8.57(0.53,0.54)

5% 10.74,10.74(0.51,0.54) 12.50,12.50(0.52,0.54) 8.63,8.63(0.53,0.55)
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Table 5.3
Average goodput and average accuracy in terms of edit distance for the
B-TCPScript, IPTime, and JitterBug obtained from the test bed under
different PLRs.

PLR B-TCPScript(40ms) JitterBug(40ms) IPTime(40ms)

95% confidence intervals of ζ (α) for 100 codewords with M = 4

0% 48.89,48.90(1.00,1.00) 30.98,30.98(1.00,1.00) 22.89,22.89(0.95,0.95)

1% 46.64,49.32(0.99,1.00) 30.49,30.49(0.98,0.99) 22.77,22.77(0.94,0.95)

3% 45.09,48.82(0.98,0.99) 29.76,29.76(0.96,0.97) 22.45,22.45(0.93,0.94)

5% 45.82,48.58(0.97,0.99) 29.16,29.16(0.94,0.95) 22.19,22.19(0.92,0.93)

95% confidence intervals of ζ (α) for 100 codewords with M = 16

0% 97.67,97.77(1.00,1.00) 30.52,30.52(1.00,1.00) 22.78,22.78(0.95,0.95)

1% 97.05,97.52(0.99,1.00) 30.21,30.21(0.99,0.99) 22.64,22.64(0.94,0.95)

3% 94.94,96.11(0.97,0.98) 29.33,29.33(0.96,0.97) 22.40,22.40(0.93,0.94)

5% 94.19,95.65(0.96,0.98) 28.66,28.66(0.94,0.95) 22.20,22.20(0.93,0.93)

PLR B-TCPScript(60ms) JitterBug(60ms) IPTime(60ms)

95% confidence intervals of ζ (α) for 100 codewords with M = 4

0% 32.93,32.94(1.00,1.00) 21.09,21.09(1.00,1.00) 15.73,15.73(0.96,0.97)

1% 32.76,32.89(0.99,1.00) 20.81,20.81(0.98,0.99) 15.63,15.63(0.96,0.96)

3% 30.68,32.74(0.98,0.99) 20.38,20.38(0.96,0.97) 15.49,15.49(0.95,0.95)

5% 32.17,32.50(0.98,0.99) 19.70,19.70(0.93,0.94) 15.25,15.25(0.93,0.94)

95% confidence intervals of ζ (α) for 100 codewords with M = 16

0% 65.62,65.73(1.00,1.00) 20.77,20.77(1.00,1.00) 15.66,15.66(0.96,0.97)

1% 64.79,65.46(0.99,1.00) 20.51,20.51(0.99,0.99) 15.58,15.58(0.96,0.96)

3% 64.39,64.98(0.98,0.99) 19.96,19.96(0.96,0.97) 15.43,15.43(0.95,0.95)

5% 63.44,64.33(0.97,0.98) 19.51,19.51(0.94,0.94) 15.25,15.25(0.94,0.94)
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Table 5.4

95% confidence intervals of ζ (α) in terms of edit distance for 100 code-
words with the LR-TCPScript obtained from the test bed under different
PLRs.

TE = 40ms TE = 60ms

PLR TO = 90ms TO = 120ms TO = 90ms TO = 120ms

M = 4

0% 48.37,48.73(1.00,1.00) 48.05,48.76(1.00,1.00) 32.41,32.74(1.00,1.00) 32.45,32.72(1.00,1.00)

1% 46.40,47.48(1.00,1.00) 44.66,46.57(1.00,1.00) 31.10,31.74(1.00,1.00) 30.82,31.65(1.00,1.00)

3% 41.94,43.52(1.00,1.00) 39.73,41.53(1.00,1.00) 29.67,30.43(1.00,1.00) 28.21,29.11(1.00,1.00)

5% 38.63,40.04(1.00,1.00) 35.76,37.76(1.00,1.00) 27.60,28.68(1.00,1.00) 26.14,27.67(1.00,1.00)

M = 16

0% 91.56,94.00(1.00,1.00) 89.28,92.56(1.00,1.00) 62.47,63.59(1.00,1.00) 61.97,63.20(1.00,1.00)

1% 83.71,86.31(1.00,1.00) 79.43,83.05(1.00,1.00) 58.70,60.09(1.00,1.00) 55.99,57.71(1.00,1.00)

3% 71.60,74.73(1.00,1.00) 65.68,70.27(1.00,1.00) 52.08,54.35(1.00,1.00) 49.17,51.41(1.00,1.00)

5% 62.63,66.54(1.00,1.00) 55.53,58.83(1.00,1.00) 47.30,48.88(1.00,1.00) 42.76,44.86(1.00,1.00)

Effect of packet reordering

We have evaluated channels’ performance under two different packet reordering

scenarios A,B. In each scenario, we configured the router R1 with different numbers

of pipes and entrance probabilities, such that the mean RTT between the encoder

and the decoder was equal to 30ms. In other words, each packet entering into R1

was randomly queued to a pipe that delays the packet for a while before passing the

packet to the next hop. Therefore, if a group of packets being forwarded via pipes

with different delay, it is very likely that these packets will be reordered. The encoder

transmitted the same sets of packet-flow codewords for 30 times, and recorded the

average goodput and the average accuracy.
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The experiment results are shown in Table 5.5; we adopt the same representation

as previous tables. We did not observe any loss from the B-TCPScript experiments

under different packet reordering scenarios. Moreover, it has a higher goodput than

the other 3 timing channels. As compared with the experiments result of PLR =

0% from the Table 5.3, we observe that B-TCPScript could still maintain similar

goodput even during the two reordering scenarios. However, both JitterBug and

IPTime had suffered from significant throughput degradation and decoding error

rates during the two scenarios. Accordingly, their measured pe can be up to 21%

and 14%, respectively. Compared with previous experiment results, we have recorded

maximum measured throughput drops by 21% and 9% for the JitterBug and IPTime,

respectively. Since both JitterBug and IPTime rely on packet inter-arrival times for

the message encoding/decoding, it is expected that network delay jitter, which alters

packet inter-arrival times and probably disrupt the packet orderings, will significantly

affect the accuracy of the two channels. On the other hand, B-TCPScript does not

directly rely on the packet inter-arrival times, and produces errors only if the network

delay jitter could induce packet reordering such that the packet arrived at the decoder

will be misclassified as the other bursts. Furthermore, we could not attain any error

with the LR-TCPScript from the two scenarios, while the goodput reduction due to

packet reordering was only marginal.

5.4.2 PlanetLab experiments

Figure 5.6 reports the measured BERs for the four channels with TE = w =

{2RTT, 2.5RTT, 3RTT}, where the RTT is the roundtrip time between the Planet-

Lab node and the decoder. For the LR-TCPScript, we used TO = 5RTT. We can

observe that both B-TCPScript and LR-TCPScript in general attain higher accuracy

from all the locations. The corresponding average channel accuracy is 1.040 (or 1.042)

times of that of Jitterbug (or IPTime) for the LR-TCPScript, and is 1.032 (or 1.035)

times for the B-TCPScript.
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Table 5.5

Different channels’ ζ and α under different reordering scenarios R (TE =
w = 40ms).

R B-TCPScript JitterBug IPTime

95% confidence intervals of ζ (α) for 100 codewords with M = 4

A 48.85,48.88(1.00,1.00) 25.05,25.05(0.80,0.82) 21.94,21.94(0.91,0.92)

B 48.87,48.88(1.00,1.00) 24.66,24.66(0.79,0.81) 20.68,20.68(0.86,0.87)

95% confidence intervals of ζ (α) for 100 codewords with M = 16

A 97.67,97.74(1.00,1.00) 24.71,24.71(0.81,0.82) 21.92,21.92(0.91,0.92)

B 97.54,97.71(1.00,1.00) 24.14,24.14(0.79,0.80) 20.69,20.69(0.86,0.87)

R LR-TCPScript (TO = 90ms) LR-TCPScript (TO = 120ms)

95% confidence intervals of ζ (α) for 100 codewords with M = 4

A 47.79,48.45(1.00,1.00) 47.57,48.40(1.00,1.00)

B 47.70,48.40(1.00,1.00) 47.58,48.38(1.00,1.00)

95% confidence intervals of ζ (α) for 100 codewords with M = 16

A 93.65,95.41(1.00,1.00) 92.12,93.89(1.00,1.00)

B 94.84,96.04(1.00,1.00) 92.95,94.76(1.00,1.00)

Besides, LR-TCPScript achieves 100% accuracy for the sites KS, RI, KR, and

BE for all the three TE settings, and no less than 98.8% for the others. We found

that the errors observed were induced by the large network delay from the network

paths, causing retransmission ambiguity from the encoder side. One scenario is that

after retransmitting data packets and receiving the corresponding ACKs from the

decoder, the encoder injects the next messages without knowing whether the received

ACKs are actually induced by the retransmitted data packets, or by the original

ones with delayed arrival at the decoder. If they are due to the latter reason and

all retransmitted packets are actually lost, the decoder could misinterpret that the

(i+ 1)th burst as the retransmitted part of the ith burst.

For IPTime, Figure 5.6(e) illustrates that in each PlanetLab node a larger w will

generally result in a smaller pe. It is because IPTime depends on strict synchronization
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and a larger time interval will mitigate the impact of desynchronization induced by

delay jitter. However, we did not observe this relationship in Figure 5.6(a) and

Figure 5.6(d) for B-TCPScript and Jitterbug, respectively. Based on network traces,

we learnt that the packet loss instead of large delay jitter dominates B-TCPScript’s

and Jitterbug’s errors. Moreover, we found that RTT has no obvious effect on channel

accuracy. It is due to the fact that only network delay jitter and network loss, instead

of end-to-end network delay, will alter the inter-arrival time and the order of packets

arriving at the decoder side.

Furthermore, for a fixed TE (or w), the results do not exhibit a clear trend between

the RTT and the channel performance either. For instance, Figure 5.6(a) shows that

B-TCPScript for the site CA yields a relatively lower channel accuracy than other

cases, although its RTT is in the mid-range. The reason is due to the fact that

accuracy of the 3 channels is mainly based on the network delay jitter and network

loss that will alter the time and sequence of packet arrival at the decoder side, but

not the end-to-end network delay.

Figure 5.7 shows the performance characterization using the goodput metric.

Since both B-TCPScript and LR-TCPScript can transmit multiple bits per RTT,

we will expect a higher goodput than the other channels. Besides, we note that for

all the sites B-TCPScript attained higher goodput than LR-TCPScript, especially

for the sites TW, CN, JP and CA. It is because LR-TCPScript required extra trans-

mission time to perform retransmission during the experiments in those sites due to

worse network conditions. This also conforms with our observation from Figure 5.6

that all the channels tended to attain lower average channel accuracy from those sites.

5.5 Detecting TCPScript

In this section, we have proposed two new anomaly indicators and an anomaly-

based detection scheme to identify TCPScript channels.
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Fig. 5.6. Measured average channel accuracy from PlanetLab nodes.

The burst size The first anomaly indicator is the burst size: the number of TCP

data packets in a burst. It is intuitive because the covert messages are encoded into

the burst size. A potential approach to detecting TCPScript channels is based on

abnormal changes from mi to mi+1. In the normal TCP traffic, the evolution of

the congestion window (cwnd), for example, can be modeled as Markov chains [191].

Thus, the neighboring burst sizes in a normal TCP flow are expected to exhibit a

certain pattern; however, we do not expect the same for the burst sizes modulated

by TCPScript, because the burst sizes depend directly on the message values.

To apply this burst-size detection method, the warden has to first delimit the

data packet traces captured for a TCP flow into clusters, each of which corresponds

to a packet burst. There are a number of algorithms for the delimiting task, such

as using a normalized distance and a threshold, but we will not further elaborate in

this thesis. After obtaining a sequence of bursts estimated from a TCP data flow,
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Fig. 5.7. Measured goodput from PlanetLab nodes.

we use a detection score to quantify the possibility that the flow is embedded with

a TCPScript channel. Let m̂i be the size of the ith burst estimated by the warden.

Below we propose a set of rules to update the detection score (S):

1. If 2m̂i < m̂i+1, it signals a possible violation on the aggressive transmission

pattern in the slow-start phase. Therefore, S+ = Css × (m̂i+1 − m̂i).

2. If m̂i + 1 < m̂i+1 < 2m̂i, it signals a possible violation on the transmission

behavior in the congestion avoidance phase. Therefore, S+ = Ccc(m̂i+1 − m̂i).

3. If m̂i

2
< m̂i+1 < m̂i, it signals a possible violation on the transmission behavior

in the loss recovery phrase, because if the first packet in the m̂i-burst is lost, it

will trigger m̂i − 1 duplicate packets. These duplicates will increase the cwnd
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to m̂i

2
+ m̂i− 1. If the send window is determined by cwnd, the TCP sender can

send out at most m̂i

2
packets, including the retransmitted packet. Therefore,

S+ = Clr × |(m̂i+1 − m̂i)|.

These rules are based on the fact that normal TCP congestion control algorithms,

who control the burst size, will obey the general regulations in RFC2581 whereas

TCPScript may not follow them. Css, Ccc and Clr are constant weights and are set

to 2, 1 and 0.5 respectively to capture more aggressive TCPScript channels, such as

using a large M .

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Average score

E
xp

er
im

en
ta

l C
D

F

 

 

WIDE−20060828
WIDE−20060829
WIDE−20060830
WIDE−20060831
WIDE−20060901
WIDE−20060902
WIDE−20060903

(a) Traces from the WIDE project.

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Average score

E
xp

er
im

en
ta

l C
D

F

 

 

LBNL−20041004
LBNL−20041215
LBNL−20041216
LBNL−20050106
LBNL−20050107

(b) Traces from the LBNL institute.
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(c) Simulated TCPScript (each one sends 100

messages).
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(d) Simulated TCPScript (each one sends 20

messages

Fig. 5.8. The values S̄ computed from three different sets of TCP traces.

Finally, we calculate an average score for this flow: S̄ = S
N̂

, where N̂ is the number

of bursts detected in the TCP data flow. To evaluate the discriminating power of this
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indicator, we have analyzed three sets of packet traces—two sets of Internet traces

from the WIDE backbone [192] (around 7.23GB of header traces) and the LBNL’s

internal enterprise traffic [182] (around 11GB of header traces)—and the third set

comprises 10,000 simulated TCPScript traces. The burst sizes for the TCPScript

traces are uniformly distributed from [1,M ]. Figure 5.8 shows the CDFs of S̄ for

the three sets of traces. Figures 5.8(a) and 5.8(b) show that more than 90% flows

captured in WIDE backbone have their S̄s less than four, whereas more than 90%

flows captured in the LBNL have their S̄s less than six. Moreover, the daily traces

for both WIDE and LBNL exhibit similar distributions of S̄. On the other hand,

Figure 5.8(c) (and Figure 5.8(d)) plots S̄’s histograms for simulated TCPScript, each

of which sends 100 messages (and 20 messages). They show a clear relation between

M and S̄: a larger M results in an increase in the detection score. On the other

hand, they demonstrate that if each TCPScript instance only sends a few messages,

then the detection score will decrease. As a result, we expect that the burst-size

detection method will be able to uncover aggressive TCPScript channels (e.g., with

M = 16, 32); however, more cautious channels (e.g., with M = 4, 8 or sending a few

messages) may escape the detection.

An inter-ACK-data delay The second indicator, denoted as TAD, is the inter-

arrival time between an ACK (PktACK) and the first data packet (PktData) following

PktACK and having a SN larger than PktACK ’s value. That is, the transmission of

PktData is very likely triggered by the arrival of PktACK . An example is illustrated

in Figure 6.10(a) where TAD = TWd− TWA. Moreover, if there are other ACKs that

arrive within the period between TWA and TWd, the warden just ignores them.

The motivation for using TAD is that if the TCP sender has data to send and the

receive window is larger than one MSS, then the sender will dispatch new data packets

after receiving a new ACK. On the other hand, since the TCPScript encoder transmits

another burst of packets only at end of TE , the resulted TAD will be larger than the

normal values. Therefore, we could base on the TAD statistics to detect TCPScript
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channels. In order to make the difference in the TAD values more outstanding, we use

geometric means to measure the TAD samples [193]:

GeoM(x1, x2, . . . , xm) = (

m∏

j=1

xj)
1
m , (5.9)

where xis are the TAD samples. Thus, a TCPScript encoder is forced to use a small

TE to evade the detection.

To evaluate the discriminating power of this indicator, we again use the two sets

of Internet packet traces; we show the computed CDFs of the geometric means in

Figure 5.9. Figure 5.9(d) shows that most TADs in the LBNL traces are very small:

more than 90% of the flows have their TADs less than 0.06 seconds. However, the TADs

computed from the WIDE backbone are much larger: more than 50% of the flows

have their TADs larger than 0.06s. Moreover, the distribution of TAD in the LBNL

traces captured on different dates are almost the same; however, there are significant

variations in the range of [0.1 1] for different traces. The main reason is most likely

due to the warden’s location. As shown in Figure 6.10(a), since TAD observed by

the warden is part of the RTT between the encoder and the server (it is similar to

the RTT between the encoder and the warden.), TAD’s value becomes large when the

warden is located far away from the encoder [194]. Since the LBNL traces are mostly

internal enterprise traffic, the warden is very close to the encoder.

Figure 5.9(b) shows the CDF for TCPScript’s TAD samples obtained from the

Internet experiments conducted in the PlanetLab. The figure shows that TAD is

usually quite large, since TCPScript has to wait for a period TE to receive all the

ACKs. Thus, if we build a normal profile of TAD based on the LBNL traces, we

could easily detect most of the TCPScript channels; however, the same cannot be

said for the WIDE traces. This difference between the two sets of traces suggests

that this indicator can help detect TCPScript effectively if the warden is closer to the

encoder; otherwise, the additional delay induced by the TCPScript encoding cannot

be detected from the TAD samples.
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(a) The passive warden’s surveillance model.
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(b) Traces from TCPScript’s PlanetLab experi-

ments.
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(c) Traces from the WIDE project.
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(d) Traces from the LBNL institute.

Fig. 5.9. The experimental CDF of TAD’s geometric mean.

An evaluation of the two indicators We use a simple threshold-based approach

[41] to evaluate the performance of the two indicators. To build a normal profile

for TAD (or S̄), we use the TAD (or S̄) samples collected from the LBNL traces that

are less than the PTAD
(or PS̄) quantile, where PTAD

(or PS̄) is a given parameter.

Based on these two sets of data, we compute the mean θTAD
(or θS̄) and the standard

deviation δTAD
(or δS̄) for TAD (or S̄). Moreover, we define thresholds for these two

indicators as ΓTAD
= θTAD

+ d× δTAD
and ΓS̄ = θS̄ + d× δS̄, respectively, where d is a

parameter for controlling the thresholds. A large d may decrease both the detection

rate and the number of false negatives. We have tested different combinations based

on PTAD
, PS̄ ∈ [0.8 0.85 0.9 0.95], and d ∈ [0.5 1 1.5 2], and we use these thresholds
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to detect TCPScript from the Internet packet traces. The encoders located in the

eight PlanetLab nodes send messages to our decoder using M = {4, 16} and TE =

{1, 1.25, 1.5, 2, 2.5, 3}RTT . Here we only tabulate the experiment results from four

PlanetLab nodes in Table 5.6, where PTAD
= PS̄ = 0.9 and d = 1, 1.5, 2. We show the

detection rates for using only S̄, using only TAD and using both (denoted by “Both”).

Table 5.6
Detection rates under different parameter settings for the PlanetLab
packet traces.

BE(M=4) BE(M=16) KR(M=4) KR(M=16)

PTAD
= S̄ 0 0.9665 0 0.9551

PS̄ = 0.9, TAD 0.9222 0.9551 0.8889 0.9157

d = 1 Both 0.9222 0.9944 0.8889 0.9888

PTAD
= S̄ 0 0.6034 0 0.6011

PS̄ = 0.9, TAD 0.9167 0.9106 0.8722 0.8427

d = 1.5 Both 0.9167 0.9497 0.8722 0.9270

PTAD
= S̄ 0 0.1006 0 0.1067

PS̄ = 0.9, TAD 0.8778 0.838 0.8167 0.7753

d = 2 Both 0.8778 0.8492 0.8167 0.8034

CA(M=4) CA(M=16) CN(M=4) CN(M=16)

PTAD
= S̄ 0 0.9415 0 0.9663

PS̄ = 0.9, TAD 0.838 0.8830 0.8333 0.8258

d = 1 Both 0.838 0.9825 0.8333 0.9944

PTAD
= S̄ 0 0.5731 0 0.5955

PS̄ = 0.9, TAD 0.8324 0.8304 0.6667 0.6573

d = 1.5 Both 0.8324 0.9415 0.6667 0.8596

PTAD
= S̄ 0 0.117 0 0.1067

PS̄ = 0.9, TAD 0.7989 0.8187 0.65 0.6461

d = 2 Both 0.7989 0.8363 0.65 0.6854

We have found that when PS̄, PTAD
and d increase, the average detection rate based

on a single indicator will decrease, because such settings will relax the limitation on
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the TCPScript’s behavior. However, the overall detection rate may not decrease,

because a union of these two orthogonal indicators’ detection ranges does not shrink.

Moreover, the TAD indicator is more effective than the S̄ indicator for detecting

TCPScript in terms of the individual detection rate. For example, S̄ could not detect

TCPScript when M = 4. It corresponds to the conclusions drawn from Figure 5.8.

However, neither indicator performs the best in all cases. In fact, the TAD indicator

fails to discover TCPScript with TE close to RTT. Furthermore, we have found that

combining them could result in a better detection performance.

5.6 Summary

In this chapter, we have proposed a new approach to designing timing channels

that exploit traffic burstiness in reliable, end-to-end protocols. We have detailed the

design of TCPScript in particular. By encoding into the bursts of packets, the en-

coded traffic retains the TCP burstiness patterns. By further exploiting TCP’s rich

features, TCPScript could increase its reliability and simplify the decoding proce-

dure. We have also derived the information capacity for TCPscript. Furthermore,

we have proposed two advanced TCPscript variants for improving the channel re-

liability. TCPScript does not suffer from traffic normalization, because it does not

need to embed information into a TCP packet. Traffic shaping may cause packet

losses if TCPScript selects a big M . Consequently, packet losses may decrease TCP-

Script’s goodput. In this case, an encoder may infer the available bandwidth by using

techniques like SProbe [185], abget [195], and then select a proper M .

On the defense side, we propose two new anomaly indicators and an anomaly-

based detection mechanism to uncover TCPScript channels. We believe that based

on these new indicators many existing detection algorithms can be adopted to identify

these new covert channels. In the future work, we will evaluate various algorithms,

propose new detection algorithms and design new defending mechanisms. A possible

approach to defeating TCPScript is to let existing transparent proxy send back ACK
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packets when it receives a packet burst and then delay the transmission of this packet

burst until the arrival of next packet burst. However, the cost of this approach

is high, because the proxy needs a larger buffer for storing two packet bursts for all

suspicious flows. Moreover if the proxy uses such approach to handle legitimate flows,

the legitimate sender may have a wrong estimation of available bandwidth and send

more packets to the proxy that will not remove these packets until it receives ACKs

from the remote site. Consequently, the proxy may be overwhelmed.
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6. CLOAK: A TEN-FOLD WAY FOR RELIABLE COVERT

COMMUNICATIONS

In this chapter, we propose Cloak, a new class of network covert channels that embed

information into the combinations of TCP flows and packets. Moreover, we elaborate

many design issues, such as the ten pairs of ranking and unranking algorithms and

an approach of tackling the head-of-line blocking problem. Similar to TCPScript, we

have conducted extensive experiments on our test bed and the PlanetLab platform

to evaluate Cloak’s performance. To detect Cloak channels, we propose a passive

detection scheme and an active detection scheme. The former can easily capture

Cloak using unbalanced codewords or aggressive flows, whereas the latter can identify

more stealthy channels.

6.1 The basic idea

Network covert channels proposed in the literature so far suffer from low data

rates in the presence of noises introduced from two main sources: dynamic network

conditions and active network intermediaries (ANI) (i.e., the protocol scrubbers [40],

traffic normalizer [114], and active wardens [39]). For example, the message encoding

based on the inter-packet delay is very sensitive to the delay jitter; a slight change

in the network delay could cause decoding errors. Furthermore, packet losses affect

the integrity of both timing and storage channels. Packet losses not only affect the

decoding accuracy of individual messages, they could also destroy the framing struc-

tures, if any. On the other hand, the storage channels do not suffer from this problem.

However, the messages encoded in the header fields could be altered by an ANI.

In this chapter, we propose Cloak—a new class of timing channels which is de-

signed to be reliable under all network conditions. That is, Cloak’s decoding accuracy
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is 100% even in the presence of packet losses, delay jitters, packet reordering, and

packet duplications. The key elements responsible for this reliability property are

using TCP data traffic as a cover (i.e., exploiting TCP’s reliable transmission mech-

anism) and a fixed number of TCP packets (N) for encoding/decoding a message in

order to avoid synchronization errors.

Another important deviation from other timing channels is that Cloak encodes a

message with a unique distribution of N packets over X TCP flows, where N,X > 1.

To our best knowledge, Cloak is the first network covert channel that exploits the

enumerative combinatorics [196] to convey hidden messages. Moreover, the idea is

general enough to be used for designing new covert channels and other steganography

fields. Due to the combinatorial nature of the encoding method, Cloak’s channel

capacity increases quickly with (N,X). Besides, Cloak offers ten different encoding

and decoding methods. Each method tradeoffs among several conflicting design goals.

Although Cloak uses multiple flows for message encoding, the packet distribution

over the flows can be carefully crafted to match with normal TCP behavior in an

application session.

6.1.1 Encoding based on packet-flow distributions

The covert messages in Cloak are encoded by a class of combinatorial objects—

each covert message is encoded with a unique distribution of N TCP packets over

X TCP flows. The encoder and decoder agree on the values of N and X before-

hand. Consider a simple example of N = 5 and X = 3. If the encoder and decoder

could distinguish the three TCP flows, then there are a total of 21 possible ways

of distributing the five packets over the three flows. Table 6.1 shows an example of

encoding four-bit messages using 16 of the 21 combinations, where ni is the number

of packets sent on ith flow. Furthermore, the encoder will transmit the next message

only after receiving the ACKs for the N TCP packets. On the other side of the

channel, the decoder starts decoding as soon as collecting N TCP packets from the
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encoder. Moreover, the encoder and decoder do not have to explicitly exchange the

“codebook”; instead, the encoding and decoding can be performed using unranking

and ranking functions.

Cloak is reliable in the same sense of reliability in TCP even when the messages

experience packet losses, delay jitter, and other adverse conditions. First of all,

Cloak’s decoding accuracy is not affected by delay jitters, because the encoding is

not based on the actual time. Second, since the encoder sends a covert message

one at a time, it can detect whether the decoder has successfully received the last

message based on the ACKs for the N TCP packets. Upon detecting an unsuccessful

reception, the encoder could “partially” resend the message by retransmitting the

unacknowledged TCP packets. The decoder, on the other hand, will decode only

after receiving N in-sequenced TCP packets from the encoder. Therefore, if Cloak

is implemented using the normal TCP stack, no additional reliability mechanism is

needed to guarantee Cloak’s reliability.

Table 6.1
An example of encoding a hexadecimal number using N = 5 and X = 3
in Cloak.

Message n1 n2 n3 Message n1 n2 n3 Message n1 n2 n3 Message n1 n2 n3

0 5 0 0 4 3 1 1 8 2 1 2 12 1 2 2

1 4 1 0 5 3 0 2 9 2 0 3 13 1 1 3

2 4 0 1 6 2 3 0 10 1 4 0 14 1 0 4

3 3 2 0 7 2 2 1 11 1 3 1 15 0 5 0

In Figure 6.1, we depict two different scenarios for the Cloak encoder and decoder

to communicate. In both cases, we assume a warden on the encoder’s network who

guards against any network covert channels initiated from inside. The warden could

be active or passive. A passive warden attempts to detect network covert channels by
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analyzing all the traffic sent between the encoder and any hosts outside the network.

The passive detection does not alter the traffic flows and characteristics. An active

warden, on the other, attempts to interfere with any network covert channels passing

through it. The strategies usually involve altering the packet contents or the traffic

characteristics, such as delaying and dropping packets.

In the first scenario (Figure 6.1(a)), the encoder could establish a “normal” HTTP

session with a remote server which consists of five TCP flows. The encoder encodes

the messages into the TCP flows, and the decoder eavesdrops at any point of the

path and decodes the messages. In order to evade a passive warden, the encoder may

distribute the TCP packets over the flows such that they match with the normal TCP

behavior. Moreover, the warden could not detect Cloak simply based on the presence

of multiple TCP flows to the same server, because it is not uncommon to have multiple

TCP flows in an HTTP session. In the second scenario (Figure 6.1(b)), the encoder

could establish normal HTTP sessions with multiple servers which are dispersed in

different locations. Therefore, the decoder should be located on the common routing

path for all the servers. Although this approach restricts the decoder location, it can

diffuse the relationship among the TCP flows.

(a) The five TCP flows connect to the

same Web server.

(b) The five TCP flows connect to differ-

ent Web servers.

Fig. 6.1. Two covert communication scenarios between Cloak encoder and
decoder.
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6.1.2 The Twelvefold Way

Besides the encoding algorithm just described, Cloak could also admit other en-

coding methods. In fact, Cloak offers ten different encoding methods which are based

on the well-known Twelvefold Way [196] in the field of Enumerative Combinatorics.

The Twelvefold Way refers to twelve basic counting problems that count all the pos-

sible ways of putting N balls into X urns, and their results. Let the set of balls be

N (|N| = N) and the set of urns be X (|X| = X). Each problem can be based on

whether the balls and urns are distinguishable or not (e.g., by their colors), and three

possible kinds of ball distributions over the urns: (1) no restriction, (2) at most one

ball per urn, and (3) at least one ball per urn. These three cases can be equivalently

represented by an arbitrary function fA : N → X, an injective function fI : N → X,

and a surjective function fS : N→ X, respectively.

The correspondence between balls and urns, and packets and flows is obvious.

Table 6.2 summarizes the Twelvefold Way using flows (urns) and packets (balls) [196].

Each of the twelve results answers the corresponding counting problem (i.e., the total

number of unique packet-flow distributions). Moreover, cases (11) and (12) obviously

cannot be used in Cloak, therefore the ten encoding methods. We refer the ten cases

to as Cloakc(N,X), c = [1, 10].

According to Table 6.2, some encoding methods require distinguishable packets

and/or distinguishable flows. The correspondence between the ball and urn distin-

guishability, and the flow and packet distinguishability is somewhat tricky. First of

all, all TCP flows and packets are of course distinguishable. However, the original

counting problems assume that the colors of the urns and balls do not change, but

this is not the case for Cloak. For instance, the “marking information” in the flows

and packets could be altered by an ANI. Therefore, the TCP flows (or packets) are

considered distinguishable only if both encoder and decoder are able to identify the

same flow (or packet).
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Table 6.2
The Twelvefold Way and their relation to the ten (items 1-10) encoding
methods in Cloak.

Elements of N Elements of X fA fI (at most fS (at least

(TCP packets) (TCP flows) (no restriction) 1 packet in a flow) 1 packet in a flow)

Distinguishable Distinguishable XN (1) N !CN
X (2) X !S(N, X) (3)

Indistinguishable Distinguishable CX−1
N+X−1 (4) CN

X (5) CX−1
N−1 (6)

Distinguishable Indistinguishable
∑X

i=1 S(N, i) (7)





1 if N ≤ X

0 if N > X

(11∗) S(N, X) (8)

Indistinguishable Indistinguishable
∑X

i=1 P (N, i) (9)





1 if N ≤ X

0 if N > X

(12∗) P (N, X) (10)

where

– CN
X = X!

N !(X−N)! and S(N, X) = 1
X!

∑X

j=1(−1)X−jC
j
XjN .

– P (N, X) is the number of partitions of N into X parts, which can be solved using recursion.

6.1.3 Concise proofs for the Twelvefold Way

In this section, we briefly explanation the derivation of the results in Table 6.2.

Detail information can be found in [196]. To simplify the explanation, we use balls

and urns to represent TCP packets and TCP flows, respectively.

(1) Since each ball could be put into any urn and therefore has X choices, the total

number of combinations is XN .

(2) If N > X, the number is 0. Otherwise, the encoder could first select N balls

from X balls and then permutate them because the balls are distinguishable.

Hence, the result is N !CN
X , N ≤ X.
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(3) Partitioning a set of N distinguishable balls into X parts has S(N,X) different

combinations. Since urns are also distinguishable, the encoder could further

permutate them and get the final result as X!S(N,X). We will explain S(N,X)

in (8).

(4) The difference between this problem and the 6th problem is whether an urn

could be empty. Let ni ≥ 0 (
∑X

i=1 ni = N) denote the number of balls in ith

urn. If we let mi = ni + 1,i = 1, . . . , X, then the number of mi’ combinations is

equal to CX−1
N+X−1. Since mi and ni are bijective, CX−1

N+X−1 is the solution to this

problem.

(5) If N > X, the number is 0; otherwise, the encoder selects N urns from X

potential ones to accommodate a ball. Hence, the result is CN
X .

(6) Laying out N balls in a row, the encoder could select X − 1 spaces from N − 1

spaces between two balls and then put delimiters to divide the balls into X

urns. Therefore, the result is CX−1
N−1 .

(7) Since the encoder could partition a set of N distinguishable balls into i, i =

1, . . . , X parts, the result is
∑X

i=1 S(N, i).

(8) The encoder has two methods to partition the balls. First, it could put one ball

in an urn and partition left N − 1 balls into the remaining X − 1 urns. Second,

it could put N − 1 balls into X urns and then put the remaining ball to one of

X urns. Therefore, we obtain S(N,X) = S(N−1, X−1)+XS(N −1, X) with

initial conditions: S(N, 0) = 0, S(N, 1) = 1, S(N, 2) = 2N−1 − 1, and other

features (i.e., S(N,N) = 1, S(N,N − 1) = C2
N , and S(N,X) = 0 if X > N).

(9) Since the encoder could partition N into i parts, where i = 1, . . . , X, the result

is
∑X

i=1 P (N, i). Note that P (N,X) 6= S(N,X). We will explain P (N,X) in

(10).
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(10) This is a classic integer partition problem. The encoder could partition the

balls using two methods. First, it could let one urn contain only one ball and

partition the remaining N − 1 balls into the remaining X − 1 urns. Second, it

could let each urn have one ball and then partition the remaining N −X balls

into X urns. Therefore, we have P (N,X) = P (N − 1, X − 1) + P (N −X,X)

with initial conditions: P (N, 1) = 1 and condition P (N,N) = 1.

(11) If N > X, the solution is 0. Otherwise, the result is 1, because each urn could

hold at most one ball, and these urns are indistinguishable (i.e., exchanging

balls between urns does not increase the number of possible combinations).

(12) If N > X, the solution is 0. Otherwise, the solution is 1, because each urn

could hold at most one ball, and both urns and balls are indistinguishable.

6.1.4 The ten-fold way in Cloak

In this section, we discuss the differences among the ten encoding methods and

explain why we need all of them. The first important difference among them is their

channel capacity. By modeling a Cloak channel as a classical information channel, we

can obtain the capacity of a Cloakc(N,X) channel in bits/symbol based on mutual

information [123]. Since Cloak is reliable and there is only one set of covert messages,

the channel capacity can be increased only by increasing the size of the covert message

set. By denoting the Twelvefold Way result for Cloakc(N,X) by T c(N,X), a higher

value of T c(N,X) therefore gives a higher channel capacity. Furthermore, each unique

packet-flow distribution can encode an L-bit word, where 1 ≤ L ≤ ⌊log2 T
c(N,X)⌋.

In the following, we explain the relationship between channel capacity and flow

and packet distinguishability. First, making the flows distinguishable increases the

channel capacity (e.g., T 1(N,X) > T 7(N,X) and T 4(N,X) > T 9(N,X)). Simi-

larly, making the packets distinguishable also increases the channel capacity (e.g.,

T 1(N,X) > T 4(N,X) and T 7(N,X) > T 9(N,X)). Based on the last two items, it

is easy to obtain that T 1(N,X) > T 7(N,X) > T 4(N,X) > T 9(N,X). Therefore,
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packet distinguishability increases the channel capacity faster than the channel dis-

tinguishability does (e.g., T 7(N,X) > T 4(N,X)). We have charted the values of

Ls in Figure 6.2. Note their differences on how their Ls increase with N and X.

Finally, for each row in Table 6.2, the channel capacity for fA is the largest (e.g.,

T 1(N,X) > T 3(N,X) and T 7(N,X) > T 8(N,X)). Based on the channel capacity,

we define data rate in bits per second as C
Ts

, where Ts is the time for transmitting

a message. The minimal time for transmitting a message in Cloak (i.e., N packets

in X flows) is one RTT between the encoder and decoder. To achieve a reasonable

channel capacity, we consider X > 1 and N > 1 in the rest of this thesis.
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Fig. 6.2. Maximum values of L for Cloakc(N,X), c = 1, 7, 4, 9.

148



Besides the channel capacity, the ten encoding methods differ also in three other

important aspects. The first one concerns the channels that require distinguishable

packets (i.e., c = 1, 3, 7, 8). For these channels, the encoder usually adds “markers”

to the TCP packets in order to make them distinguishable. The additional markers,

however, could be “modified” when the packets traverse an active warden, which

could result in decoding errors. In other words, there is a tradeoff between achieving

a higher channel capacity by making the packets distinguishable and the decoding

accuracy. Similar problems occur also to the channels with flow distinguishability.

The second one is connected to a head-of-line blocking (HoLB) problem. To

explain the issue, consider c = 1, 2; the difference between them is that the second

method caps the number of packets distributed to a flow to one. Therefore, in terms

of the packet distribution, the flows for c = 2 differ at most by one packet, but that

for c = 1 is N (i.e., all the packets could be distributed to a single flow). The latter

case may require several RTTs to complete a message’s transmission; thus, this HoLB

problem, as we shall see later, could reduce the actual data rate very significantly.

The last issue is that some flows for the methods under fA and fI may become

idle for a prolonged period of time, which may cause the remote servers to close the

connection. However, those methods under fS mitigate this problem by insisting each

flow to carry at least one packet for each message. We will discuss how to tackle these

issues in section 6.3.

6.2 Ranking and unranking algorithms

Both Rank() and Unrank() have to be computationally efficient. Therefore, a

table-lookup approach will not work because of the potentially huge packet-flow en-

coding space. Instead, we have designed efficient ranking and unranking algorithms

for the ten encoding methods. Our strategy is to first design the algorithms for

five primitive components in T c(N,X): XN , CN
X , S(N,X), P (N,X), and λ!, where

λ = N,X. We employ the existing ranking and unranking functions for the last four
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components: CN
X [197], S(N,X) [198], P (N,X) [197], and λ! [199]. Therefore, we

can directly apply these algorithms to c = 5, 8, 10.

6.2.1 Algorithms for c = 1

We start by observing that an integer R, where 0 ≤ R ≤ 2L − 1 and L =

⌊log2(X
N)⌋, has a unique representation of [200]:

R = a0X
0 + a1X

1 + · · ·+ aN−1X
N−1, ai ∈ {0, . . . , X − 1}. (6.1)

Consider that R is the rank, N is the total number of TCP packets, and X is the

number of TCP flows. To unrank R, the idea is to covert R into the form in Eq. (6.1)

and then to place a packet pktj , 0 ≤ j < N , into flow k, 0 ≤ k < X, if and only

if aj = k. To rank a given packet-flow distribution specified in Λ[i], 0 ≤ i < X,

we compute the right hand side of Eq. (6.1). The detailed algorithm is given in

Function 2 in which Idxpkt is the index of packet pkt, and Λ[i] contains the indices

of the packets sent on flow i. To rank a given packet-flow distribution specified in

Λ, we compute the right hand side of Eq. (6.1). That is, the ranking algorithm, as

shown in Function 1, basically converts a base X number into a nonnegative decimal

number.

Function 1 Rank1(Λ, X) : integer

R← 0;

for i = 0 to X − 1 do

for j = 0 to Size(Λ[i])− 1 do

R← XΛ[i].get(j) × i+R;

end for

end for

return R;

Function 2 Unrank1(R,X) : integer[]

Idxpkt ← 0;

while R 6= 0 do

i← R mod X;

Λ[i].add(Idxpkt);

R← R−i
X

;

Idxpkt ← Idxpkt + 1;

end while

return Λ;
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6.2.2 A general framework

As for the remaining methods (c = 2, 3, 4, 6, 7, 9), we are not aware of any ranking

and unranking functions designed for them. Therefore, we propose a general frame-

work that employs the divide-and-conquer strategy to design new ranking/unranking

algorithms.

Based on Table 6.2, we divide T c(N,X), c = 2, 3, 4, 6, 7, 9, into three groups. The

first group consists of T 4(N,X), T 5(N,X) and T 6(N,X) which are very similar to Cµ
λ .

The second group consists of T 7(N,X) and T 9(N,X) which are a sum of S(λ, i) or

P (λ, i), i = 1, . . . , µ. The third group consists of T 2(N,X) and T 3(N,X). T 2(N,X)

is the product of λ! and Cµ
λ , and T 3(N,X) is the product of λ! and S(λ, µ).

We could construct ranking/unranking algorithms for the first group of Cloak

channels by substituting λ and µ with corresponding parameters. Then we get

Cloak5’s ranking/unranking algorithms by substituting λ in Cµ
λ with X and its µ

with N . Cloak6’s ranking/unranking algorithms are obtained by replacing λ in Cµ
λ

with N − 1 and its µ with X − 1. Cloak4’s ranking/unranking algorithms could be

derived from Cloak6’s algorithms by replacing its N − 1 with N +X − 1.

(a) Cloak7. (b) Cloak3.

Fig. 6.3. Examples of the general framework for the design of new rank-
ing/unranking algorithms.

For the second group of Cloak channels, we use Cloak7 as an example to demon-

strate how to design new ranking/unranking algorithms based on the basic model’s

algorithms. Figure 6.3(a) illustrates the result for Cloak7 (i.e.,
∑X

i=1 S(N, i)). To

encode a value R, Cloak7’s unranking algorithm will first determine the number of
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connections (say i) to be used by subtracting
∑i−1

j=1 S(N, j) from R until the left

value, say r, is not larger than S(N, i). It then determines how to allocate the N

distinguishable packets into i flows through S(N, i)’s unranking algorithm with input

r. After observing N packets, the decoder will first restore r through S(N, i)’s rank-

ing algorithm and then obtain the original message R =
∑i−1

j=1 S(N, j) + r. Using a

similar approach, we could construct ranking/unranking algorithms for Cloak9.

For the third group of Cloak channels, we use Cloak3 as an example. Figure 6.3(b)

illustrates the result for Cloak3 (i.e., X!S(N,X)). To encode a value R, Cloak3’s un-

ranking algorithm will first compute r = R mod S(N,X) and i = R−r
S(N,X)

. The encoder

will then determine how to allocate N distinguishable packets into X flows by using

S(N,X)’s unranking algorithm with input r. Next, the encoder will determine how

to permute these flows according to a permutation of X elements, which is obtained

through λ!’s unranking algorithm with input i. A number of ranking and unrank-

ing functions for permutation are available, and the time complexity of traditional

unranking algorithms is O(n2) [201] (where n is the number of elements in a per-

mutation). Here we employ new ranking (Function 3) and unranking algorithms

(Function 4) with time complexity O(n) [199]. Note that PR is the reverse order of

P . Finally, the encoder will permute Λ’s elements and then transmit these N distin-

guishable packets through X distinguishable flows. On the decoder side, it will first

compute i by using λ!’s ranking algorithm and then calculate r through S(N,X)’s

ranking algorithm. Finally, it will restore the original message R = iS(N,X) + r.

A similar approach could be used to design ranking and unranking algorithms for

Cloak2.
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Function 3 RankPermute(N,P, PR) :

integer

if N == 1 then

return 0 ;

end if

s← P [N − 1] ;

Swap(P [N − 1], P [PR[N − 1]]) ;

Swap(PR[s], PR[N − 1]) ;

return (s + N × RankPermute(N −
1, P, P̄ ));

Function 4 UnrankPermute

(R,N, P ) :

if N > 0 then

tmp← P [N − 1] ;

P [N − 1]← P [r mod N ] ;

P [r mod N ]← tmp ;

UnrankPermute(⌊r/N⌋, N−
1, P ) ;

end if

6.2.3 Algorithms for c = 4, 5, 6

Let Cµ
λ be the number of ways of selecting µ elements, denoted as Λ = [λ1, . . . , λµ],

from a set having λ elements. We design Cloak5’s ranking/unranking algorithms by

substituting Cµ
λ ’s λ with X and its µ with N . The output of the unranking algorithm

with the input R is the set of TCP flows that will be used to transmit packets (i.e.,

λi contains a selected TCP flow’s index, λi ∈ {1, . . . , X}). After observing these

distinguishable flows, the decoder could construct a set of N elements and obtain the

message R through CN
X ’s ranking algorithm. Without loss of generality, we arrange

Λ according to the following order:

λ1 < λ2 < . . . < λµ, let λ0 = 0.

Since µ = N and λ = X for Cloak5, we will use N and X to describe the ranking

and unranking algorithms. To rank an N-element subset, we count the number of

N-element subsets preceding the given one in the lexicographic order, which is shown

in Eq. (6.2) [197].

Rank(Λ) =
N∑

i=1

λi−1∑

j=λi−1+1

CN−i
X−j . (6.2)
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According to Eq. (6.2), we can obtain an Λ by unranking an integer value R as

follows [197]:

λ1 = n⇔
n−1∑

j=1

CN−1
X−j ≤ R <

n∑

j=1

CN−1
X−j

λi = n⇔
n−1∑

j=λi−1+1

CN−i
X−j ≤ R−

λi−1−1∑

j=1

CN−i
X−j <

n∑

j=λi−1+1

CN−i
X−j .

Based on the kSUBSETLEXRANK and kSUBSETLEXUNRANK algorithms in [197], Cloak5’s

ranking and unranking algorithms are shown in Function 5 and Function 6, re-

spectively.

Function 5 Rank5(Λ, N,X) : integer

R← 0;

Λ[0]← 0

for i = 1 to X do

if Λ[i− 1] + 1 ≤ Λ[i]− 1 then

for j = Λ[i− 1] + 1 to Λ[i]− 1

do

R← R + CN−i
X−j;

end for

end if

end for

return R;

Function 6 Unrank5(R,N,X) :

integer[]

j ← 1;

for i = 1 to N do

while CN−i
X−j ≤ R do

R← R− CN−i
X−j;

j ← j + 1;

end while

Λ[i]← j;

j ← j + 1;

end for

return Λ;

Cloak6’s ranking and unranking algorithms are obtained by replacing Cµ
λ ’s λ with

N − 1 and its µ with X − 1. Recall the basic idea of counting Cloak6: laying out N

balls in a row, the encoder could select X − 1 out of the N − 1 spaces between two

balls and then put delimiters to divide the balls into X urns. Each λi contains the

number of packets to be sent by the ith flow (1 ≤ i ≤ X). A sequence of auxiliary

variables, named Λ = [λ1, . . . , λX−1], hold the indices of “space” mentioned in the

basic idea. To encode message R, the encoder will let the ith TCP flow transmit
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λi packets (let λ0 = 0). The decoder will generate a set of X − 1 elements (i.e., Λ)

and restore the message R through CX−1
N−1 ’s ranking algorithm. Cloak6’s ranking and

unranking algorithms are listed in Function 7 and Function 8, respectively.

Function 7 Rank6(Λ, N,X) :

integer

Λ[0]← 0;

Λ[1]← Λ[1];

for i = 2 to X − 1 do

Λ[i]← Λ[i] + Λ[i− 1];

end for

R← Rank5(Λ, X − 1, N − 1);

return R;

Function 8 Unrank6(R,N,X) :

integer[]

Λ← Unrank5(R,X − 1, N − 1);

Λ[0]← 0;

for i = 1 to X − 1 do

Λ[i]← Λ[i]− Λ[i− 1];

end for

Λ[X]← N − Λ[X − 1];

return Λ;

Cloak4’s ranking/unranking algorithms could be derived from Cloak6’s algorithms

by replacing N − 1 with N +X − 1. We use λi ( λi ≥ 0 and
∑X

i=1 λi = N) to denote

the number of packets transmitted by ith flow and let λ̂i = λi + 1 (i.e.
∑X

i=1 λ̂i =

N+X). To design Cloak4’s unranking algorithm, we first obtain the unranking result

of Cloak6(N+X,X), denoted as Λ̂ = [λ̂1, . . . , λ̂X ], and then obtain Cloak4(N,X)’s result

as Λ = [λ̂1−1, . . . , λ̂X−1]. Finally, the encoder will use the ith TCP flow to transmit

λi packets if λi > 0. After observing the packets, the decoder could generate a set of

X − 1 elements and increase each value by 1 before inputting it to CX−1
N+X−1’s ranking

algorithm. Based on Cloak6(N,X)’s ranking and unranking algorithms, we therefore

the algorithms for Cloak4(N,X) in Function 9 and Function 10.
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Function 9 Rank4(Λ, N,X) :

integer

for i = 1 to X do

Λ[i]← Λ[i] + 1;

end for

R← Rank6(Λ, X − 1, N +X − 1);

return R;

Function 10 Unrank4(R,N,X) :

integer[]

Λ← Unrank6(R,X−1, N+X−1);

for i = 1 to X do

Λ[i]← Λ[i]− 1;

end for

return Λ;

6.2.4 Algorithms for c = 7, 8

Recall that S(λ, µ) is the number of different ways of partitioning a set with λ

distinguishable elements into µ parts. Denote an arrangement as Ψ = [ψ1, . . . , ψλ],

ψi ∈ {1, . . . , µ}, which means that the ith element will be put into the ψith set.

Cloak8’s ranking and unranking algorithms are built by superseding S(λ, µ)’s λ with

N and its µ with X. After attaining Ψ through S(N,X)’s unranking algorithm, the

encoder will use the ψith TCP flow to send ith packet. After observing N packets, the

decoder could easily construct Ψ and then input it to S(N,X)’s ranking algorithm

to recover the message. Moreover, S(N,X) can be defined recursively according to

Eq. (6.3) which forms the basis for designing the ranking and unranking algorithms.

S(N,X) = X × S(N − 1, X) + S(N − 1, X − 1) (6.3)

The Ranking and Unranking algorithms shown in Function 11 and Function

12 are based on the RankSetPtns and UnrankSetPtns functions from [198]. Note

that for the ease of programming, the output of Function 12 has the form: Ψ̃ =

[ψ̃0, . . . , ψ̃λ−1], ψ̃j ∈ {1, . . . , µ}, 0 ≤ j < λ− 1 (i.e., the subscript j starts from 0 and

ψ̃j = ψj+1).
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Function 11 Rank8(Ψ, N,X) :

integer

if (N == X)|(X == 0) then

return 0;

else

for i = 0 to X − 2 do

Ψ[i]← Ψ[i];

end for

iloc← 0;

while Ψ[iloc]! = X do

iloc← iloc + 1;

end while

if (Ψ[N − 1] == X) & (iloc ==

N − 1) then

R← Rank8(Ψ, N − 1, X − 1);

return R;

else

tmp← Rank8(Ψ, N − 1, X);

R← tmp + S(N − 1, X − 1) +

(Ψ[N − 1]− 1)S(N − 1, X));

return R;

end if

end if

Function 12 Unrank8(R,N,X) :

integer[]

if (N == 1)&(X == 1) then

Ψ[0]← 1;

return Ψ;

else if R < S(N −1, X−1) then

Ψ← Unrank8(R,N − 1, X − 1);

for i = 0 to X − 2 do

Ψ[i]← Ψ[i];

end for

Ψ[N − 1]← X;

return Ψ;

else

V ← R− S(N − 1, X − 1);

P ← ⌊ V
S(N−1,X)

⌋;
RM ← V mod S(N − 1, X);

Ψ← Unrank8(RM,N − 1, X);

for i = 0 to X − 2 do

Ψ[i]← Ψ[i];

end for

Ψ[N − 1]← P + 1;

return Ψ;

end if

Listed in Function 13, Cloak7(N,X)’s ranking algorithm will first determine

how many connections, say i, have been used to convey the packets, and then use

Cloak8’s ranking algorithm (Function 11) to compute the value r according to the

distribution of packets and flows (i.e., Ψ). Finally, the rank value is obtained as

R =
∑i−1

j=1 S(N, j) + r. Presented in Function 14, Cloak7(N,X)’s unranking algo-
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rithm will first determine how many connections, say i, will be used by subtracting
∑i−1

j=1 S(N, j) from the rank value until the left value (i.e., r = R −
∑i−1

j=1 S(N, j)) is

not larger than S(N, i), and then unrank the left value r by using Cloak8’s unranking

algorithm (Function 12).

Function 13 Rank7(Ψ, N,X) :

integer

X ← max(Ψ);

R← 0;

for j = 1 to X − 1 do

R← R + S(N, j);

end for

r ← Rank8(Ψ, N,X);

R← R + r;

return R;

Function 14 Unrank7(R,N,X) :

integer[]

R← R + 1;

iloc← 1;

while R > (isum = S(N, iloc)) do

iloc← iloc + 1;

R← R− isum;

end while

Ψ← Unrank8(R − 1, N, iloc);

return Ψ;

6.2.5 Algorithms for c = 9, 10

P (λ, µ) is the number of ways of partitioning the number λ into µ parts. Let

Λ = [λ1, . . . , λµ] denote one partition, where each λi contains the number of elements

belong to the ith part. Cloak10’s ranking/unranking algorithms are obtained by re-

placing P (λ, µ)’s λ with N and its µ with X. After attaining Λ through P (N,X)’s

ranking algorithm, the encoder will let the ith TCP flow to send λi packets. After

observing N packets, the decoder will generate Λ according to the number of packets

sent by each flow and then obtain the message through through P (N,X)’s unrank-

ing algorithm. Although there is still no general formula for P (N,X), it obeys the

following rule, based on which we can calculate the P (N,X) recursively, for example

using the CountPartitions function in [198].

p(N,X) = p(N − 1, X − 1) + p(N −X,X), (6.4)

where P (N,X) = 0 if N ≤ 0 or X ≤ 0 or X > N , and p(1, 1) = 1.
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Function 15 Rank10(Λ, N,X) :

integer
R← 0;

while N > 0 do

if Λ[X] == 1 then

N ← N − 1;

X ← X − 1;

else

for i = 1 to X do

Λ[i]← Λ[i]− 1;

end for

R← R + p(N − 1, X − 1);

N ← N −X;

end if

end while

return R;

Function 16 Unrank10(R,N,X) :

integer[]

Λ← 0;

while N > 0 do

if RV < p(N − 1, X − 1) then

Λ[N ]← Λ[N ] + 1;

N ← N − 1; X ← X − 1;

else

for i = 1 to X do

Λ[i]← Λ[i] + 1;

end for

R← R− p(N − 1, X − 1) ;

N ← N −X;

end if

end while

return Λ;

As described in section 6.2.2, the basic idea of Cloak9(N,X)’s ranking algorithm

is to first determine the number connections (say i) that have been used to transmit

packets and then use Cloak10’s ranking algorithm (Function 15) to compute r ac-

cording to the distribution of packets and flows (i.e., Λ). Finally, the rank is obtained

as R =
∑i−1

j=1 p(N, j) + r. Cloak9(N,X)’s ranking algorithm is listed in Function

17. Cloak9(N,X)’s unranking algorithm presented Function 18 will first deter-

mine the number of connections (say i) that will be used by subtracting
∑i−1

j=1 p(N, j)

from the rank until the remaining value (i.e., r = R −∑i−1
j=1 p(N, j)) is not larger

than p(N, i), and then unrank the remaining value r by using Cloak10’s unranking

algorithm (Function 16).
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Function 17 Rank9(Λ, N,X) :

integer
R← 0;

UC ← Size(Λ);

for j = 1 to UC − 1 do

R← R + PNX(N, j);

end for

r ← Rank10(N,UC,Λ);

R← R + r;

return R;

Function 18 Unrank9(R,N,X) :

integer[]

R← R + 1;

iloc← 1;

while R > (isum = p(N, iloc)) do

iloc← iloc + 1;

R← R− isum;

end while

Λ← Unrank10(R − 1, N, iloc);

return Λ;

6.2.6 Algorithms for c = 2, 3

As described in section 6.2.2, the basic idea of Cloak2(N,X)’s ranking algorithm

(Function 19) contains the following steps:

1. Let Φ = [φ1, . . . , φN ], φi ∈ {1, . . . , X} denote a set of N packets and each φi

represent the index of TCP flow that will be used to send the ith packet. Since

in Cloak5 all TCP flows’ indexes are sorted, we use Φ̃ to label the sorted Φ and

employ Υ = [υ0, . . . , υN−1] to label the indexes of Φ (i.e., Φ[Υ[j − 1]] = Φ̃[j],

1 ≤ j ≤ N).

2. Use Cloak5’s ranking algorithm with input Φ̃ to calculate r.

3. Use the ranking algorithm for permutations with input Υ to calculate i.

4. Obtain the rank as R = iCN
X + r.

Similarly, the basic idea of Cloak2(N,X)’s unranking algorithm (Function 20)

contains the following steps:

1. Decompose the rank value R into R = i|CN
X |+ r.
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2. Using Cloak5’s unranking algorithm (Function 6) to unrank r, we can deter-

mine Φ (i.e., the φith the flow will send the ith packet.).

3. Using the unranking algorithm for permutations to unrank i, we get Υ̃, another

set of indexes for Φ, and then obtain a new Φ̃ by re-arrange Φ according to Υ̃

(i.e., Φ̃[j] = Φ[Υ̃[j − 1]], 1 ≤ j ≤ N).

Function 19 Rank2(Φ, N,X) :

integer

Φ̃← Sort(Φ);

Υ← GetflowIdx(Φ̃);

r ← Rank5(Φ̃, N,X);

ΥR ← Reverse(Υ);

i← RankPermute(N,Υ,ΥR);

R← iCN
X + r;

return R;

Function 20 Unrank2(R,N,X) :

integer[]

r ← R mod CN
X ; i← R−r

CN
X

;

Φ← Unrank5(r,N,X);

UnrankPermute(N, i, Υ̃);

for i = 1 to N do

Φ̃[i]← Φ[Υ̃[i− 1]];

end for

return Φ̃;

As described in section 6.2.2, the basic idea of Cloak3(N,X)’s ranking algorithm

(Function 21) consists of the following steps:

1. Let Φ̃ = [φ̃0, . . . , φ̃N−1], φ̃i ∈ {1, . . . , X}, denote a set of N packets and each

φ̃i (0 ≤ i < N) represent the index of TCP flow that will be used to send the

ith packet. Let Υ̃ = [υ̃0, . . . , υ̃X−1] label the indexes of TCP flows according to

their appearance sequence in Φ̃.

2. Use Cloak8’s ranking algorithm with input Φ̃ to calculate r.

3. Use the ranking algorithm for permutations with input Υ̃ to calculate i.

4. Obtain the rank as R = iS(N,X) + r.

Similarly, the basic idea of Cloak3(N,X)’s unranking algorithm (Function 22)

consists of the following steps:

161



1. Decompose the rank value R into R = iS(N,X) + r.

2. Using Cloak8’s unranking algorithm (Function 6) to unrank r, we can deter-

mine Φ̂ (i.e., the φ̂ith the flow will send the ith packet, 0 ≤ i < N).

3. Using the unranking algorithm for permutations to unrank i, we get Υ̃, another

set of indexes for Φ̂, and then obtain a new Φ̃ by re-arrange Φ̂ according to Υ̃

(i.e., Φ̃[j] = Υ̃[Φ̂[j]− 1] + 1, 0 ≤ j ≤ N).

Function 21 Rank3(Φ̃, N,X) :

integer

Υ̃← GetflowIdx(Φ̃)− 1;

r ← Rank8(Φ̃, N,X);

Υ̃R ← Reverse(Υ̃);

i← RankPermute(N,Υ,ΥR);

R← iS(N,X) + r;

return R;

Function 22 Unrank3(R,N,X) : integer[]

r ← R mod S(N,X); i← R−r
S(N,X)

;

Φ̂← Unrank8(r,N,X);

UnrankPermute(N, i, Υ̃);

for j = 1 to N do

Φ̃[j] = Υ̃[Φ̂[j]− 1] + 1;

end for

return Φ̂;

6.3 Design issues

In this section, we discuss a number of design elements that are central to a

practical deployment of Cloak in the Internet and to Cloak’s performance.

6.3.1 Message encoding and decoding

As mentioned in the last section, the encoder and decoder do not need to ex-

change a codebook explicitly. Instead, they use two special functions for encoding

and decoding: Rank() and Unrank(). Each Cloakc(N,X) channel has its own func-

tion pair. The function Rank() takes in a flow-packet distribution and returns its

rank that is the index of the flow-packet distribution in the decreasing lexicographi-
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cally ordered array of all possible distributions, starting from 0. Unrank() does the

opposite—taking in a rank and returning the corresponding flow-packet distribution.

X TCP flows and N TCP PacketsX TCP flows and N TCP Packets
100110011100010100100110011100

Demodulation

Unmarshaling

Encoder Decoder

TCP flow 1

TCP flow 2

TCP flow X
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Fig. 6.4. The encoding and decoding processes in Cloak.

Figure 6.4 depicts the encoding and decoding processes in Cloak. The encoder

and decoder are assumed to have agreed on (c, N,X) beforehand. They could also

dynamically change (c, N,X) by exploiting the random beacons widely available in the

Internet, e.g., stock indices [202]. The messages are encoded based on L-bit words,

where 1 ≤ L ≤ ⌊log2 T
c(N,X)⌋. There are three major steps involved in sending

a covert message. Each L-bit word is first converted to the nonnegative decimal

value (through the Bin2Dec() function) that serves as the rank for the corresponding

packet-flow distribution. Then, Unrank() is invoked to compute the distribution.

Finally, the encoder marshals the packet-flow code into the actual TCP flows and

data packets. After sending the N packets over the X flows, the encoder has to

receive the ACKs for the N packets before sending the next N packets. In the case

of packet losses, Cloak may rely on TCP to recover them.

The three-step process above is exactly reversed for receiving a covert message.

In the first step, the decoder unmarshalls the packet-flow distribution from the flows

and packets received from the encoder. That is, the decoder collects exactly N TCP

packets from the X flows before moving to the next step. Moreover, since the number

of flows can be distinguished based on the order of the TCP three-way handshaking

performed, the decoder can count the number of data packets in each flow. Similar to
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before, any TCP packet loss, duplication, or reordering can be taken care of by TCP.

As soon as N packets are collected, the decoder feeds the distribution into Rank()

which yields the corresponding rank. As a last step, the rank is converted back to

the L-bit word (through the function Dec2Bin()).

6.3.2 Head-of-line blocking problem

In this section, we discuss a head-of-line blocking (HoLB) problem that we have

encountered when conducting Internet experiments. The HoLB problem degrades the

data rates of all encoding methods, except for c = 2, 5. To explain the problem, we

consider an extreme scenario where most of the N packets are distributed to a single

flow, while other flows receive at most one packet. Therefore, the total transmission

time for the message is governed by the time required to transmit the packets in

the most busy flow which prevents the encoder from transmitting the next message.

Furthermore, since the TCP congestion window usually starts with one or two packets,

it will take the busy flow’s sender several RTTs to complete the transmissions, thus

leading to a low data rate. The problem may worsen if there are packet losses in the

most busy flow that will retransmit those packets according to the timeout mechanism

or the fast retransmission/fast recovery mechanism. This problem may also occur to

the flows that are connected to different servers which experience a wide range of

RTTs.

A simple way of mitigating the HoLB problem is to aggressively transmit every

N packets. The basic idea is that the encoder will dispatch all packets belonging

to kth message after receiving ACK packets that acknowledge the data packets for

the (k − 1)th message or when the period TE times out. If the encoder does not

receive all the expected ACKs before TE , it will retransmit unacknowledged packets

and reset the timer. TE is usually set to the estimated RTT that is computed through

the EWMA of RTT samples, an approach similar to the one used in normal TCP.

However, the downside is that the resulting traffic pattern will be different from the
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normal TCP behavior. This has prompted us to design a new codeword scheme to

be discussed next.

A D-limited codeword scheme

The D-limited codeword scheme essentially caps the maximum number of packets

assigned to a flow to D; that is, it enforces max{ni} ≤ D, where D ≥ 1 is a constant.

The choice of D should be chosen such that it is less than the encoder’s TCP send

window size in terms of packets. In this way, all the packets can be sent out in one

RTT; otherwise, multiple RTTs will be needed for transmitting a message.

We use c = 10 (indistinguishable packets and flows) to illustrate how this codeword

scheme works. We first define two quantities:

1. Υ(N) is the total number of ways to distribute N packets into TCP flows, such

that each flow is given at most D packets.

2. Γ(N,D) is the total number of ways to distribute N packets into D TCP flows,

such that each flow is assigned at least one packet. Note that Γ(N,D) =

P (N,D) if both packets and flows are indistinguishable (i.e., c = 10).

Proposition 6.3.1 If both packets and flows are indistinguishable, Υ(N) =
∑D

i=1 P (N, i).

Proof We prove this proposition using the Ferrers diagram representation [196]. It

is not difficult to observe that the Ferrers diagram for partitioning N into d (1 ≤
d ≤ N) parts is a conjugate to the Ferrers diagram for partitioning N into parts

whose maximal sizes are d. For example, Figure 6.5 illustrates a Ferrers diagram

for distributing eight TCP packets into three flows where the maximal flow size is

five. However, the maximal flow size is only three in its conjugate that uses five

flows. Since both packets and flows are indistinguishable, there is a bijection between

these two sets of partitions. By summing up all cases for d = 1, . . . , D, we obtain

Υ(N) =
∑D

i=1 P (N, i).
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Fig. 6.5. A Ferrers diagram for the proof of Proposition 6.3.1.

Corollary 6.3.1 To generate D-limited codewords from P (N,D), we need at most

N + 1−D flows to convey a message.

Proof Among all the possible partitions of P (N,D), there exists an extreme case

in which one flow transmits N +1−D packets and each of the remaining D−1 flows

transmits only one packet. According to the conjugation, we know that the D-limited

codewords need at most N + 1−D flows.

Proposition 6.3.1 computes how much information this D-limited codeword scheme

could transmit. Corollary 6.3.1, on the other hand, shows that if the upper bound of

flows is X, then N ≤ X +D − 1. We now use Proposition 6.3.1 and Corollary 6.3.1

directly to construct D-limited codewords for c = 10:

1. Encoding To transmit a message (a binary string), the encoder first calcu-

lates its decimal value and then uses Cloak10’s unranking algorithm to get the

corresponding packet-flow distribution, denoted by ζ . After that, the encoder

computes ζ ’s conjugate [196], denoted by ζ ′, and transmits packets according

to ζ ′.

2. Decoding Upon receiving a packet-flow distribution ζ ′, the decoder first com-

putes its conjugate ζ and then uses Cloak10(N,X)’s ranking algorithm to decode

the message.
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To construct D-limited codewords for other encoding methods, we can adopt our

general framework for the design of new ranking and unranking algorithms. That is,

when the encoder receives ζ ′ from Cloak9 or Cloak10, it could expand ζ ′ by considering

distinguishable packets or flows. For example, if only flows are distinguishable, we

could permutate the location of flows that have different ni and then increase the

capacity in a way similar to λ! or CN
X . If only packets are distinguishable, we could

consider how to partition them into different flows and therefore to increase the

capacity in a way similar to S(N,X)!. If both flows and packets are distinguishable,

we could permutate the location of packets that belong to different flows. The only

requirement is not to change the value of ni.

6.3.3 Packet and flow distinguishability

There are generally two approaches to make the packets and flows distinguishable.

The first is a timing approach that is particularly useful for distinguishing flows.

Consider that an encoder performs the TCP three-way handshakings for the flows

one at a time; the order of handshakings can therefore serve as implicit markers for

the flows. Moreover, if the inter-handshaking period is large enough so that the TCP

SYN packets are not reordered, the decoder could therefore observe the same order of

the TCP connections established (i.e., the flows are distinguishable). Note that even

when the TCP packet headers are modified by an ANI, the flow distinguishability

is still preserved using this approach. However, the flow distinguishability may be

destroyed if the ANI reorders the TCP SYN packets, or if it collects the SYN packets

and then sends them out at the same time. Note that after the connections have been

established, the encoder is not necessary to re-generate these flows, unless it wants

to change the coding scheme. Then it will avoid generating lots of TCP connections.

The second is a storage approach that can be used to distinguish packets and

flows. However, since the timing approach may not be applicable to packet distin-

guishability, the storage approach is most useful for packets. This method embeds
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a unique marker into a packet in order to make it distinguishable. To make the N

TCP data packets distinguishable, we need a ⌈log2N⌉-bit marker. The key point is

that by using only ⌈log2N⌉ bits to make packet distinguishable, the user may gain

much more capacity for transferring covert messages through the combinations of

flows and packets. Besides well-known methods such as IPID, TCP timestamp and

initial sequence number [37,109,131], other possible ways include partial ACK, receive

window size, and packet length. According to our experience, the partial ACK seems

to be a promising approach. Based on our measurement study performed from more

than 100 popular security Web sites, the partial ACKs can traverse the firewalls in

all cases. On the other hand, using the receive window size and packet length for the

markers runs into a much higher risk of being detected, because their distributions

deviate from the normal ones.

6.4 Experiment results

In this section, we evaluate how Cloak’s data rate is affected by the RTT, router

hop distance, geographical locations, and various adverse network conditions. Besides,

we evaluate the effect of the HoLB problem on Cloak, and its performance with

the D-limited codeword scheme. We also compare Cloak’s performance with other

timing channels: IP timing channel (IPTime) [41] and JitterBug [43], wherever we

find appropriate. We conducted experiments in the real Internet environment with

the PlanetLab platform, and our test bed which allows controlled experiments with

various network conditions.

We measure the data rate of the timing channels in terms of their goodput defined

as:

G = (1− pe)
M × L
Td

, (6.5)

where Td is the total time required for delivering M L-bit covert messages, and pe is

the channel’s bit error rate (BER). The BER is computed based on the Levenshtein

distance which is given by the number of insertions, deletions, and substitutions
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needed to convert a source message into a decoded message. Since Cloak is reliable,

its pe is 0.

6.4.1 Implementation

We have implemented Cloak’s encoder and decoder as a TCP client and a TCP

listener, respectively, including the ten Rank() and Unrank() functions. We have im-

plemented Bin2Dec(), Dec2Bin(), Rank(), and Unrank() as offline functions. That

is, the encoder pre-computes all required packet-flow combinations, and the decoder

starts decoding only after capturing all N packets from X flows.

Cloak

For the Cloak’s encoder, we have implemented two types of transmission functions

based on the TCP socket (Cloak(STREAM)) and the raw socket (Cloak(RAW)). In

Cloak(STREAM), system’s TCP stack guarantees the transmission reliability and let

its traffic pattern resemble normal TCP flows. However, it may take several RTTs to

complete a single codeword transmission; thus limiting its data rate. Cloak(RAW),

on the other hand, applies the aggressive transmission mechanism discussed in sec-

tion 6.3.2 to improve its data rate. We have also implemented a separate capturing

thread in the encoder to monitor the ACK arrivals, in order to determine if the other

side has received all the N packets.

We have implemented the Cloak’s decoder with libpcap v0.9.5 library for sniffing

TCP packets. Moreover, we use a snaplen of 96 bytes to reduce the overhead during

the packet capturing operation; we did not observe any packet drops throughout the

experiments.
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IPTime and JitterBug

We have implemented both IPTime’s and JitterBug’s encoding and decoding

schemes as plug-in modules in the Cloak encoder and decoder, respectively. We

employ the UDP socket (i.e., SOCK DGRAM) since the packet transmission in these two

timing channels does not require reliability. During the encoding process, the plug-

ins invoke the modulation function in the Cloak encoder to let the codeword bypass

Bin2Dec() and Unrank(), and to marshal the binary stream directly into a flow of

modulated UDP packets. Moreover, the encoder generates the modulated sequences

complying with the specifications of IPTime and JitterBug. Both the IPTime’s en-

coder and JitterBug’s encoder use a fixed timing interval (or timing window) of w.

The JitterBug’s encoder, in addition, has a default tolerance parameter of ε = w/4.

The corresponding plug-ins in the decoder perform the reverse procedures for decod-

ing. Moreover, we did not implement any framing and error correction mechanism

for Cloak, IPTime, and JitterBug.

6.4.2 Experiment platforms

PlanetLab setup

As shown in Figure 6.6(a), we locate the encoders in nine geographically diverse

PlanetLab nodes, and the decoder and a Web server in a campus network. The

encoders send packets to the Web server, and the decoder eavesdrops the packets and

decoded them.

We have obtained a total of 17,545 RTT samples between the decoder and each

PlanetLab node during the experiment period. Table 6.3 shows the nine PlanetLab

nodes with the router hop counts from the encoder to them and the RTT statistics

with a 95% confidence interval (i.e., C.I.). Note that the average RTTs range between
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0.0652 seconds and 0.3418 seconds; the RTT measurements for the nodes JP, KR,

and CA have higher variations than the others.

Table 6.3
Measured path characteristics between each PlanetLab site and the de-
coder machine.

RTT
Locations Hops

Means Std. Dev. 95% Conf. Intervals

Shenyang, China (CN) 13 .0652 .0060 .0651/.0653

Tokyo, Japan (JP) 16 .0992 .0244 .0988/.0996

California, U.S. (CA) 14 .1767 .0230 .1763/.1770

Kansas, U.S. (KS) 16 .2176 .0056 .2175/.2177

Rhode Island, U.S. (RI) 13 .2267 .0074 .2266/.2268

Gwangju, Korea (KR) 18 .2343 .0356 .2338/.2348

Ghent, Belgium (BE) 16 .3075 .0048 .3074/.3075

London, UK (UK) 19 .3124 .0061 .3123/.3124

Lisbon, Portugal (PT) 17 .3418 .0171 .3415/.3420

Test-bed setup

As illustrated in Figure 6.6(b), the test bed consists of two soft routers shared by

an encoder, a decoder, and a Web server. All the links have a capacity of 100Mbit/s.

We deploy Dummynet [164] in both routers to emulate various network conditions:

packet losses, network delay, and packet reordering. The RTT between the encoder

and R1 is 5ms, whereas that between the decoder/Web server and R1 is 25ms, unless

specified otherwise. By sniffing all network traffic between R2 and the Web server,

the decoder is able to receive covert messages from the encoder.
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(a) The PlanetLab setup.

1 2

(b) The test-bed setup.

Fig. 6.6. The two experiment platforms: PlanetLab and a controlled test
bed.

6.4.3 PlanetLab experiments

Experiment design

For the Cloak’s experiments, we only report the experiment results of Cloak1(N,X)

due to the page limit. To study the effect of N , we fix X to 20 to give a large enough

number of flows, and N = {5, 9, 10, 11, 15, 20, 30, 40, 50} which covers a reasonable

range of channel capacity. Similarly, to study the effect of X, we fix N to 20 and

consider X = {4, 6, 8, 10, 12, 14}.
To study the adverse effects of the HoLB problem, we have generated two sets of

codewords (datasets 1 and 2) for each N in Cloak1(N, 20). Each dataset consists of

100 L-bit (M = 100 and L = ⌊log2X
N⌋) codewords. Moreover, we assign each packet

in dataset 2 to the 20 flows with equal probability; however, we intentionally assign

more packets in dataset 1 to flow 1. We measure the degree of HoLB of a codeword

by H = max0≤i<X ni. Figure 6.7(a) plots the values of H , the mean values of H

for different values of N . As shown, the rate of increase in H for dataset 1 is about

ten times higher than that for dataset 2 when N is beyond 10. Moreover, we have

generated other sets of codewords (datasets 3 and 4) for each X in Cloak1(20, X).

The codewords for datasets 3 and 4 are generated the same ways as for datasets 1

and 2, respectively. Figure 6.8(a) shows that the values of H for the two datasets

diverge as X increases.
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Experiment results

Figures 6.7(b), 6.7(c), 6.8(b), and 6.8(c) plot the average goodput for the nine

PlanetLab nodes with the four datasets of codewords. We compute the average

goodput for each (N ,X) tuple by performing 30 measurements. For each N or X, the

nine nodes in the figures are sorted in the ascending order of their measured mean

RTTs given in Table 6.3. We first report the results for datasets 2 and 4 (Figure

6.7(c) and Figure 6.8(c)) for which the packets are assigned uniformly to the 20 flows.

Among all the nodes, CN achieves a maximum channel goodput of around 450 bit/s in

Figure 6.7(c). Both figures also show that the average goodput G for the two smallest

RTTs (nodes CN and JP) are the highest. However, the goodput does not necessarily

decrease with the RTTs. That is, although the goodput is inversely proportional

to the RTT, there are other factors, such as packet losses, that could disturb the

goodput. Moreover, the increase seems to be more drastic for the case of increasing

X. For example, the JP node’s goodput is increased by more than four times as X

increases from 4 to 12. On the other hand, the rates of increases for other nodes with

longer RTTs are smaller. That is, when RTT is large, it will reduce the gain obtained

from the increase in the channel capacity.

Next, we evaluate the effects of the biased packet distributions on the average

goodput. We first compare the results for datasets 1 and 2 (Figure 6.7(b) and Fig-

ure 6.7(c)). The comparison reveals that they show opposite trends as N increases:

the goodput decreases with N in Figure 6.7(b). It is important to point out that the

scales of the two figures are actually different, therefore the goodput in Figure 6.7(c)

is all greater than the respective cases in Figure 6.7(b), except for N = 5. Since H

increases with N as shown in Figure 6.7(a), it will take flow 1 a longer time to com-

plete its packet transmission as N increases. For the comparison of datasets 3 and 4

(Figure 6.8(b) and Figure 6.8(c)), the goodput in Figure 6.8(c) is all greater than the

respective cases in Figure 6.8(b). However, unlike the previous cases, the goodput

in Figure 6.8(b) slightly improves as X increases, but the goodput stops growing as
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X reaches 10. An increase in X in fact alleviates the HoLB problem, because flow 1

will become less busy; as a result, it is not surprising to see some improvement in the

goodput as X increases.
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Fig. 6.7. Results for PlanetLab nodes: the average goodput verses N for
Cloak1(N, 20) with datasets 1 and 2.

Evaluation of the D-limited codewords

To measure the performance of the D-limited codewords, we have selected five

(JP, CA, KS, KR, and BE) out of the nine PlanetLab nodes to measure the average
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Fig. 6.8. Results for PlanetLab nodes: the average goodput verses X for
Cloak1(20, X) with datasets 3 and 4.

goodput of Cloak. Similar to the last section, we have generated a set of 100 L-

bit binary codewords for each (N,X) tuple for Cloak1(N,X), where X = 6 and

N = {12, 16, 20}. We use Cloak(STREAM) to encode them into two distinct sets

of codewords: one generated by the D-limited codewords scheme with D = 6 and

the other by the normal codewords. The average goodput is again based on 30

measurements.
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Figure 6.9 compares the average goodput of the two codewords for the five nodes.

The figures show that the D-limited codeword always gives a higher goodput than

the normal scheme for all nodes and for all three (N,X) tuples. Each figure also

gives the average degrees of HoLB for the two codewords. The average degrees for

the D-limited codewords are quite stable in all three cases, whereas the degree for the

normal codewords is the highest in Figure 6.9(c), followed by Figure 6.9(b) and then

by Figure 6.9(a).

As a result, the percent of improvement of using the D-limited codewords also

follows the same decreasing order for nodes JP, CA, and BE in Figures 6.9(a)-6.9(c).

In particular, we have noticed a maximum gain of 77% from the JP node with

Cloak1(20, 6). On the other hand, the nodes KS and KR attain much less gains;

for example, the gain is only 1.6% for the KR node with Cloak1(12, 6). By examining

the traffic traces, we have found that the packet loss rates at these two nodes are

much lower than the others. Therefore, the normal scheme has already achieved a

very high goodput; the additional benefit of adopting the D-limited scheme becomes

marginal. We also evaluate the performance of the aggressive transmission scheme

and find that it could significantly increase the Cloak’s goodput.

Comparing Cloak, JitterBug, and IPTime

We have also conducted experiments on JitterBug and IPTime in the five Plan-

etLab nodes. In this set of experiments, we have generated another 100 packet-

flow codewords using the normal Cloak1(20, 4) encoder with H = 5.86. Each node

uses both Cloak(RAW) and Cloak(STREAM) to transmit the codewords. We set

Cloak(RAW)’s TE to the measured mean RTTs. For the JitterBug and IPTime ex-

periments, the encoder marshals each respective binary codeword directly into a flow

of modulated UDP packets with w = {RTT, 1.5RTT}. Both the average goodput

and average BER are computed based on 30 samples.
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Fig. 6.9. Comparing the average goodput for the normal codewords and
the 6-limited codewords.

We summarize the experiment results in Table 6.4. In each cell, the two leftmost

values correspond to the lower limit of and the upper limit of the 95% confidence

intervals for the same average goodput, and the rightmost value inside the parentheses

corresponds to the measured average BER. We first point out that it is difficult to

conduct a fair comparison among the three channels, because, for example, Cloak

uses multiple flows whereas the other two use only one. Therefore, the comparison

is based on how their goodputs are affected by the RTTs. Recall that the five nodes

are sorted in an ascending order of their mean RTTs. For both Cloak channels, we

do not find any general relationship between their goodputs and the RTTs, except
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that the lowest goodputs for both cases are given by the highest RTT (i.e., BE). On

the other hand, the goodputs for JitterBug and IPTime show downward trends as

the RTT increases. The magnitude of the goodput degradation is rather significant,

which is between three to four times when comparing the goodput for JP and BE.

Their average BERs also show similar downward trends except for a couple of points.

Table 6.4
Average goodput and average BER for Cloak, IPTime, and JitterBug
obtained from five PlanetLab nodes.

95% confidence intervals of average goodput (average BER)

Cloak(RAW) Cloak(STREAM) JitterBug(RTT)

JP 203.86/216.28 (0) 55.17/58.57 (0) 13.01/13.04 (.0155)

CA 85.66/88.49 (0) 68.75/71.75 (0) 7.33/7.35 (.0265)

KS 90.77/91.00 (0) 66.57/69.26 (0) 6.13/6.14 (.0018)

KR 106.52/107.90 (0) 68.68/71.51 (0) 5.67/5.68 (.0012)

BE 63.88/64.20 (0) 44.69/45.61 (0) 4.36/4.36 (.0011)

95% confidence intervals of average goodput (average BER)

JitterBug(1.5RTT) IPTime(RTT) IPTime(1.5RTT)

JP 8.77/8.78 (.0164) 9.48/9.50 (.0363) 6.49/6.51 (.0209)

CA 4.76/4.81 (.0521) 5.43/5.47 (.0282) 3.68/3.69 (.0158)

KS 4.10/4.10 (.0010) 4.50/4.51 (.0112) 3.02/3.02 (.0088)

KR 3.81/3.81 (.0010) 4.17/4.18 (.0126) 2.80/2.81 (.0081)

BE 2.91/2.91 (.0007) 3.21/3.21 (.0076) 2.14/2.15 (.0066)

6.4.4 Test-bed experiments

We have conducted test-bed experiments to study the effects of packet losses and

packet reordering on Cloak’s performance. We found that both packet loss and packet
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reordering will decrease covert channels’ goodput. For Cloak, the degradation is due

to the prolonged delay for packet retransmission. For IPTime and JitterBug, the

adverse network conditions result in high BER. Extensive experiment results suggest

that Cloak is more robust than IPTime and JitterBug because Cloak could still keep

zero BER and relatively high goodput.

We study Cloak(STREAM) and Cloak(RAW) with TE = 60ms by transmitting

two sets of codewords from Cloak1(20, 10) with H = {4.42, 11.39}. Each set consists

of 100 66-bit codewords. For both JitterBug and IPTime, their encoders transmit the

corresponding binary codewords using a single flow of modulated UDP packets, where

w = {30, 60}ms. Each experiment repeats for 30 times and we report the average

goodput and average BER. On the other hand, we configure the Dummynet to drop

packets with a packet loss rate (PLR) ranging between 0% and 5%.

Table 6.5 tabulates the experiment results. Clearly, the packet losses degrade

the goodput for all cases. However, Cloak is reliable; therefore, the results still

show that its average BER is 0%. JitterBug and IPTime, on the other hand, suffer

from relatively high average BERs; their highest average BERs recorded are 6.4%

and 8.7%, respectively. Moreover, the effects of the packet losses are different for

Cloak(STREAM) and Cloak(RAW). Since Cloak(STREAM) follows the TCP con-

gestion control algorithm, packet losses have more profound impact on its goodput;

its goodput degrades by five times when the PLR increases from 0 to 5%. However,

with the same change in the PLR, the goodput for Cloak(RAW) drops only by 33%.

For JitterBug and IPTime, the value of w has similar effects on their goodputs. When

w is doubled, their goodputs are approximately decreased by 50%. Finally, it is clear

that their goodputs are not affected by H.

We have also studied the effect of packet reordering on covert channels’ goodput.

Specifically, we have evaluated the average goodput of each channel with 3 different

packet reordering scenarios A,B,C. In each scenario, R1 was configured with different

numbers of pipes and entrance probabilities while the mean RTT between the encoder

and the decoder was equal to 30ms. In other words, each packet entering into R1 was
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Table 6.5
The average goodput and average BER for Cloak, IPTime, and JitterBug
obtained from the test bed under different PLRs.

PLR Cloak(RAW) Cloak(STREAM) JitterBug(30ms)

95% confidence intervals of average goodput (average BER) for 100 codewords with H = 4.42

0% 992.92/1010.87 (0) 513.54/515.85 (0) 41.72/41.72 (0)

1% 881.20/899.64 (0) 188.32/204.30 (0) 41.15/41.23 (.0128)

3% 748.13/769.16 (0) 92.24/97.94 (0) 40.07/40.18 (.0383)

5% 665.97/679.63 (0) 61.09/66.11 (0) 39.04/39.17 (.0626)

95% confidence intervals of average goodput (average BER) for 100 codewords with H = 11.39

0% 948.51/964.63 (0) 194.87/195.01 (0) 41.09/41.09 (0)

1% 872.19/893.67 (0) 114.38/123.04 (0) 40.54/40.61 (.0125)

3% 748.97/768.56 (0) 53.56/62.15 (0) 39.51/39.65 (.0368)

5% 680.55/693.69 (0) 33.84/40.52 (0) 38.52/38.65 (.0611)

PLR JitterBug(60ms) IPTime(30ms) IPTime(60ms)

95% confidence intervals of average goodput (average BER) for 100 codewords with H = 4.42

0% 21.76/21.77 (0) 29.32/29.32 (.0623) 15.62/15.62 (.0320)

1% 21.48/21.52 (.0123) 29.15/29.18 (.0671) 15.53/15.55 (.0368)

3% 20.91/20.97 (.0381) 28.84/28.88 (.0769) 15.35/15.38 (.0479)

5% 20.34/20.44 (.0635) 28.51/28.58 (.0871) 15.19/15.22 (.0579)

95% confidence intervals of average goodput (average BER) for 100 codewords with H = 11.39

0% 21.43/21.43 (0) 29.32/29.32 (.0625) 15.62/15.62 (.0322)

1% 21.13/21.16 (.0133) 29.17/29.19 (.0670) 15.54/15.55 (.0368)

3% 20.59/20.66 (.0374) 28.85/28.90 (.0767) 15.38/15.40 (.0464)

5% 20.09/20.15 (.0609) 28.57/28.62 (.0858) 15.21/15.25 (.0565)
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randomly queued to a pipe that delays the packet for a while before passing the

packet to the next hop. Therefore, if a group of packets being forwarded via pipes

with different delay, it is very likely that these packets will be reordered. The encoder

transmitted the same sets of packet-flow codewords for 30 times, and recorded the

average goodput and average BERs.

The experiment results are shown in Table 6.6 and we adopt the same representa-

tion as previous tables. The results show that Cloak is resilient to packet reordering

and enjoy a higher goodput than the other 2 timing channels. In particular, both

Cloak versions are resilient to packet reordering without any decoding error. As com-

pared with the experiments result of PLR = 0% from the Table 6.5, we observe that

Cloak(RAW) could still maintain high goodput of at least 967.6 bit/s on average even

during the three reordering scenarios, whereas Cloak(STREAM) had suffered from the

packet reordering events with the throughput penalty of at most 25.7% compared

with the previous results. Nonetheless, its measured goodput is still at least 4.3 times

and 5.3 times greater than the maximum measured goodput of JitterBug and IPTime,

respectively. Furthermore, both JitterBug and IPTime had suffered from significant

throughput degradation and decoding error rates in the three scenarios. Accordingly,

their measured BERs can be up to 29.2% and 18%, respectively. Compared with

previous experiment results, we have recorded maximum measured throughput drops

of 29.2% and 12.6% for the JitterBug and IPTime, respectively.
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Table 6.6
Average goodput of three covert channels under different reordering sce-
narios R.

R Cloak(RAW) Cloak(STREAM) JitterBug(30ms)

95% confidence intervals of average goodput (average BER) for 100 codewords with H = 4.42.

A 1013.31/1027.43 (0) 463.87/468.55 (0) 29.44/29.62 (.2923)

B 1005.78/1022.96 (0) 401.32/405.63 (0) 30.98/31.13 (.2558)

C 1012.77/1028.17 (0) 358.63/363.82 (0) 33.37/33.57(.1977)

95% confidence intervals of average goodput (average BER) for 100 codewords with H = 11.39.

A 960.54/974.64 (0) 166.58/168.98 (0) 29.46/29.62 (.2812)

B 962.00/976.84 (0) 144.04/145.82 (0) 30.89/31.04 (.2468)

C 965.14/981.96 (0) 148.81/151.20 (0) 32.90/33.12 (.1965)

R JitterBug(60ms) IPTime(30ms) IPTime(60ms)

95% confidence intervals of average goodput (average BER) for 100 codewords with H = 4.42.

A 18.48/18.56 (.1496) 27.52/27.62 (.1181) 15.14/15.16 (.0613)

B 15.42/15.51 (.2896) 25.58/25.69 (.1801) 14.45/14.51 (.1026)

C 18.73/18.81 (.1378) 26.54/26.65 (.1493) 14.09/14.15 (.1250)

95% confidence intervals of average goodput (average BER) for 100 codewords with H = 11.39.

A 18.32/18.40 (.1432) 27.55/27.66 (.1175) 15.14/15.18 (.0607)

B 15.39/15.46 (.2802) 25.64/25.74 (.1785) 14.46/14.50 (.1029)

C 18.52/18.59 (.1338) 26.61/26.70 (.1477) 14.14/14.20 (.1221)

6.5 Detecting Cloak

In this section, we explore an effective algorithm for detecting Cloak. In particular,

we propose using a new detection metric that measures the time between an ACK

arrival (PktACK) and a new data packet arrival (PktData) at the warden, which is

denoted as IAD in Figure 6.10(a). Moreover, if there are other ACKs arriving within
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the period between PktACK and PktData, the warden will consider only the last

duplicate ACK and ignore other ACK packets.

(a) Passive warden’s surveillance model.
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(b) The LBNL traces.

Fig. 6.10. The metric IAD for detecting Cloak channels and the LBNL
traces.

In the following we explain the motivation for using IAD in the detection of Cloak.

In a normal TCP connection, if a sender has data to send, it will dispatch new

packets upon receiving a new ACK. However, with Cloak, some TCP flows may not

immediately send new data upon receiving new ACKs, because the encoder cannot

send a new message without receiving the TCP ACKs for the previous message. As a

result, the value of IAD tends to be larger for the TCP flows used by Cloak. Moreover,

the IAD value will even be higher when the N packets are unequally assigned to the

X flows. However, a large IAD may also be the result of normal think time (e.g.,

persistent connections in HTTP/1.1) [203]. Therefore, our detection scheme consists

of two steps. The first step is to identify suspicious flows based on passive detection,

and the second is to perform an active test to determine whether a Cloak channel

exists.

For the purpose of passive detection, we have analyzed the distribution of IAD from

the experiments conducted between three PlanetLab nodes (CN, CA, and KS) and a

host in a campus network. The Cloak parameters are given by X = {2, 4, 6, 8, 10} and

N = {12, 14, 16, 18, 20}. Each experiment setting contains 100 randomly generated
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normal codes with H = 11.97 and another 100 D-limited codes with H = 3.1. All

experiments are repeated 30 times. Figure 6.11(a) and Figure 6.11(b) show results for

normal codes and D-limited codes respectively. We can observe from Figure 6.11(b)

“jumps” which take place approximately at each flow’s RTT. The reason is that the

number of RTTs required for transmitting D-limited codes is mostly one. Similar

jumps also occur in Figure 6.11(a) which take place at one RTT, two RTTs and three

RTTs. The results show that the number of RTTs required for normal codes will

be more than one, because some flows could not transmit its packets within a send

window.
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(a) IADs of Cloak1(N, 6) using normal code-

words.
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(b) IADs of Cloak1(N, 6) using D-limited

codewords (D=6).

Fig. 6.11. Empirical CDF for IAD.

Our passive detection algorithm employs a nonparametric CUSUM algorithm [179]

to identify flows that frequently have large IADs. The CUSUM algorithm assumes that

the mean value of the variable under surveillance will change from negative to positive

when a change occurs. Since measured IADs are larger than zero, we transform them

into a new random sequences, ĨAD = IAD − (ΘAD + ρ∆AD), where ΘAD and ∆AD are

the mean value and standard deviation of normal IAD respectively, and ρ controls

the limit of allowable large IADs. Note that besides constant parameters the CUSUM

algorithm only needs one value, denoted as yĨ , for detection. This value will be
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updated when a new ĨAD is observed. Therefore, the warden will keep one yĨ for each

flow and raises an alarm if any yĨ exceeds the threshold.

The algorithm requires the estimation of ΘAD and ∆AD. We use three training

sets of the LBNL data [182] to estimate the parameters (the data obtained on 2004-

10-04, 2004-12-15, and 2005-01-06). To mitigate the effect of outliers in the training

sets, we consider samples whose values are less than the (1 − η) quantile. We then

use the algorithm to compute the detection rate from the real Cloak traces, and the

false alarm rate from two other sets of LBNL data (those obtained on 2004-12-16 and

2005-01-07). Figure 6.10(b) plots the experimental CDF of IAD for the five sets of

LBNL data. Detailed information about these traces and related analysis could be

found in [204]. We have analyzed the TCP flows that belong to eight application

protocols and have at least ten packets, because different applications may affect

the detection result. The selected application protocols could be classified into five

categories [204]: Web (HTTP, HTTPs), Email (SMTP, IMAP4 w/o SSL, POP3 w/o

SSL), Bulk (FTP), Interactive (SSH, Telnet), Streaming (RTSP).

Figure 6.12(a) plots the false alarm rate that is defined as the number of legitimate

flows that are mistakenly identified as Cloak’s flows to the total number of flows. The

parameters ρ and η affect both the false alarm rate and detection rate. Overall, the

false alarm rates are quite small. On the other hand, we define the detection rate as

the ratio of the number of identified Cloak’s flows to the total number of Cloak’s flows.

Figures 6.12(b)-6.12(c) show the detection rates obtained from different locations with

the normal codewords and D-limited codewords, respectively. The figures show that

the algorithm still could not detect all TCP flows belonging to Cloak; however, the

detection rates are quite high overall.

The purpose of the second step is to further increase the detection rate and de-

crease the number of false alarm. In this step, an active tester will first prepare a time

sequence denoted as Φ = {φ1, φ2, . . .}. At the beginning of the second step, it will

randomly select a flow from a set of suspicious flows that have been identified in the

first step. The active tester then introduces delay to the selected flow by deferring
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(c) Detecting D-limited codewords under dif-

ferent η and ρ.

Fig. 6.12. Experiment results for the passive detection in the first step.

the transmission of the flow’s packets. The delay duration is equal to φi, and the

times of deferring packets are arbitrary, for example, every WP packets or every WT

seconds. Since all flows will not send packets for a new message if at least one flow

has not finished its transmission for the current message, the artificial delay caused

by Φ will inflate all flows’ IADs which consequently increase the detection rate of the

CUSUM algorithm.

On the other hand, in order to decrease the number of false alarm, the active

tester tests whether the newly captured flow is closely related to the flow that has

been inserted delay. If these two flows are not closely related, then at least one

flow does not belong to a Cloak channel, assuming that there is only one Cloak
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channel. To measure whether these two flows are closely related, we will compute

the nonparametric correlation coefficients between Φ and a new sequence, denoted

as Ξ. Ξ is a sequence whose members are selected from the newly captured flow’s

IADs. The selected criteria is that the IAD is the first IAD observed at the end of the

injected delay. Therefore, the tester will finally have two sequences, Φ and Ξ, and it

will form a NULL hypothesis (i.e., there is no correlation between Φ and Ξ). In the

experiments, we employ the existing corr function in MATLAB to compute Kendall’s

τ , because this function will also compute the p-value for hypothesis testing [205]. If

the obtained p-value is less than 0.05, then we could reject the NULL hypothesis and

regard the newly captured flow as a Cloak’s puppet; otherwise, this flow is regarded

as a legitimate flow.

There are various methods to generate Φ. Here, we employ two and illustrate their

results in Figure 6.13. One is to construct an increasing sequence whose initial value

is zero and the increasing step is equal to RTT. Figure 6.13(a) shows an example

of actively testing a Cloak(14,4) channel between CN and the host in the campus.

We can observe that the Ξ sequences belonging to different flows are controlled by

the Φ sequence. Moreover, based on the very small p-values, we could confidently

reject the NULL hypothesis. In other words, we could successfully detect the Cloak’s

flows because of the obvious relationship between Φ and Ξs. The other one is to use

the maximum-length L level shift register sequences, or m-sequences, because of its

best autocorrelation [206]. Figure 6.13(b) illustrates another example for testing a

Cloak(14,4) channel between JP and the host. In this example, Φ is an m-sequence

with 2 levels. We could clearly infer the close relationship between the Ξ sequences

obtained from Cloak’s 4 TCP flows and the Φ sequence from the figure and the related

p-values. Using the active testing algorithm, we have re-conducted the detection

experiments and have found that all flows controlled by Cloak could be identified

with very small p-value (less than 1e−10). On the downside, the active testing might

degrade the legitimate flows’ performance, because their RTTs will be prolonged.
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Fig. 6.13. Examples of the active testing in the detection’s second step.

6.6 Comparing the time cost and packet cost of IPTime, JitterBug, TCP-

Script and Cloak

For the time cost, both TCPScript and Cloak require at least one RTT to deliver

one symbol, depending on the design and implementation. Here, we use symbol to

refer to a message unit. For example, the B-TCPScript requires one RTT to transmit
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one symbol that consists of m packets (1 ≤ m ≤ M). Cloak(RAW) also needs only

one RTT to transmit one symbol consisting of N packets distributed over X flows.

However, the time cost may not affect TCPScript’s and Cloak’s performance in terms

of camouflage capability and goodput because of the following reasons:

1. By imitating TCP’s packet-level behavior (i.e. almost regular bursts in every

RTT as shown in Fig.6.14), both TCPScript and Cloak may evade existing

detection schemes for network timing channels, for example, those based on

inter-packet delay [41, 42].

2. By taking the advantage of TCP’s feedback control mechanism, the TCPScript

can significantly increase its robustness, and Cloak can provide reliable trans-

mission service similar to TCP’s.

3. Note that a symbol in TCPScript or Cloak usually carries more than one-bit

information, whereas a symbol in the IPTime channel and JitterBug deliver

only one-bit information.

Other network timing channels also have time cost. For example, the IPTime

channel needs an interval to delimit consecutive messages [41], and Jitterbug needs a

short (or long) interval to convey messages. If there is no noise in the Internet from

packet loss, delay, jitter, and reordering, their time cost is smaller than TCPScript’s

and Cloak’s as all can transmit covert messages reliably. Unfortunately, since these

noises are prevalent phenomena that will cause decoding errors, their small time

costs will not increase goodput. Moreover, the IPTime channel’s and Jitterbug’s

traffic patterns do not resemble the normal behavior of TCP, the dominant protocol

supporting 90% - 95% Internet traffic [207]. Therefore, it is not difficult to identify

IPTime channel and Jitterbug when they are embedded into TCP flows.

We define the packet cost, denoted by Cpkt, as the number of packets needed to

convey one bit of information by assuming that the covert messages are uniformly

distributed (i.e. all codewords will appear with equal probability.)
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Fig. 6.14. TCP’s packet-level behavior observed from a real traffic trace.

1. For the IPTime channel, its Cpkt = 1
2
, because if the encoder will convey a

T -bit covert message that has T
2

number of 1, then the encoder will send only

T
2

packets.

2. For Jitterbug, its Cpkt ≈ 1, because if the encoder will convey a T -bit covert

message, then it will send T + 1 packets and limT→∞
T+1

T
= 1. Figure 6.15

illustrates some of its Cpkt values.

3. For TCPScript, its Cpkt = 1+M
2log2M

. Any m (1 ≤ m ≤ M) packets can deliver

log2M bits of information, and the corresponding packet cost is therefore m
log2M

.

The probability of transmitting m packets is 1
M

. Hence Cpkt =
∑M

m=1
1
M

m
log2M

=

1+M
2log2M

. As shown in Figure 6.16, TCPScript achieves the minimal Cpkt = 1.25

when M = 4.

4. Among Cloak’s ten variants, some of them have low packet cost, whereas others

have high packet cost. Here, we investigate only the simplest one Cloak1, whose

Cpkt = 1
log2X

, because it uses N packets to transmit Nlog2X bits of information.
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Figure 6.17 illustrates some of its Cpkt values. We can see that its packet cost

decreases quickly with the number of flows (X). Therefore, by carefully choosing

the parameters, Cloak can enjoy the lowest packet cost.
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Fig. 6.15. Jitterbug’s packet cost verses the number of covert messages
sent.

6.7 Summary

In this chapter, we have proposed Cloak, a new class of timing channels. The ma-

jor design choices responsible for Cloak’s attractive properties are the use of TCP as

the cloaking medium, and the exploitation of enumerative combinatorics to encode

a message into multiple TCP flows and a fixed number of TCP packets. The for-

mer provides the needed reliability for free, while the latter facilitates the use of the

Twelvefold Way to increase the channel data rate and avoid general decoding prob-

lems in network timing channels. Cloak does not suffer from traffic normalization

if packets are indistinguishable, because they do not require modification of header

field for making the packets distinguishable. On the other hand, traffic normalization
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Fig. 6.16. TCPScript’s packet cost under different values of M .
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Fig. 6.17. Cloak’s packet cost under different values of X.

could not completely remove the marks of distinguishable flows, e.g., be the order of

connection establishment. Moreover, none of Cloak’s variants will suffer from traffic
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shaping, because the underlying TCP will handle this issue for Cloak. We have imple-

mented the Cloak encoder and decoder, and evaluated its goodput under controlled

environment and in the wild. Moreover, we have designed and evaluated a two-step

detection algorithm for Cloak.
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7. CONCLUSIONS AND FUTURE WORKS

In this thesis, we have exploited TCP’s congestion control algorithms and protocol

features to design more intelligent DoS attacks and effective covert channels. The

basic idea of the PDoS attacks is to send intermittent false feedback signals to the

TCP sender. We have shown analytically and experimentally that a sequence of

properly spaced false signals is sufficient for achieving similar effects as for a tradi-

tional flooding-based attack. Moreover, this type of low-rate attack is much harder

to detect. On the other hand, the TCPScript and Cloak design are fundamentally

different from other network timing channels. TCPScript requires only a single TCP

flow, whereas Cloak generally requires multiple TCP flows. Contrary to the common

belief that unreliability is inherent in network timing channels, we have demonstrated

that timing channels can be made very reliable (TCPScript) or completely reliable

(Cloak). Moreover, both TCPScript and Cloak offer a much higher data rate and

flexibility than other timing channels.

7.1 Pulsing denial-of-service attacks

The PDoS attacks represent a new generation of DoS attacks. Instead of exhaust-

ing the network bandwidth (which requires a lot of packets) and exhausting system

resources (which requires special packets), the PDoS attacks the feedback channel

of an end-to-end protocol. TCP’s feedback channel is unreliable and insecure; TCP

senders are not equipped for detecting false feedback signals. A PDoS attack gener-

ates a sequence of such signals by inducing packet losses at routers. By not receiving

ACKs or enough duplicate ACKs, the victim TCP senders will decrease their conges-

tion windows. Since it takes a much longer time to restore the window than that to

drop it, the attack will still be very effective even if the attack pulses are spaced out.
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Although we have considered only TCP in this thesis, it is not difficult to see that

SCTP and DCCP are also vulnerable to PDoS attacks, because they are designed to

be TCP-friendly.

To provide a unified framework for analyzing different types of DoS attacks, we

have proposed polymorphic DoS (PMDoS) attacks: DoS attacks in different forms.

The PMDoS attack generalizes the PDoS attacks, other low-rate attacks, such as

shrew and RoQ attacks, and flooding-based attacks. We have analyzed an AIMD-

based PMDoS attack for which the attack periods are modeled as an alternating

renewal process. On another front, we have studied the problem of optimizing PDoS

attacks. Unlike the traditional DoS attacks, PDoS attacks could be launched with

different attack objectives. Some attacks may be more aggressive in intensifying

the attack impact, whereas others may attempt to evade detection by reducing the

attack intensity. Based on our analysis, we have characterized three different classes

of attacks and obtained their optimized attack parameters.

Since the attack pulses are short in duration, it is not easy to detect their presence.

In this thesis, we have proposed two new detection mechanisms: a two-stage detection

system for PDoS attacks and Vanguard for PMDoS attacks. The two-stage system

is designed for detecting PDoS attacks at the protected networks. The first stage

processes the TCP data and ACK traffic using wavelet transforms, and the second

stage detects change points which could be induced by a PDoS attack. Vanguard,

on the other hand, is designed to achieve a more ambitious goal of detecting various

PMDoS attacks and flooding-based attacks. It performs detection based on three

traffic anomalies which, we believe, is a minimal set for maintaining low false positive

and false negative rates. We have evaluated them on a test bed under various network

conditions and attack scenarios; both detection systems are computationally efficient

and accurate.
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7.1.1 Future works

To further understand various PDoS attacks, we will focus on aperiodic PDoS

attacks, because their irregular patterns may evade many existing detection schemes

that assume a fixed period. We will explore new models to evaluate the impact of

aperiodic PDoS attacks and design new detection schemes. We conjecture that PDoS

attacks based on other kinds of stochastic process can also produce such damage to the

TCP flows. In particular, we will investigate the impact of PDoS attacks characterized

by long range dependent stochastic processes (e.g., fractional autoregressive moving

average(FARIMA) and fractional Brownian), because they resemble normal network

traffic [208].

Moreover, all the existing detection schemes are located on the receiver side or

near to the bottleneck router. We will design detection mechanisms on the sender side

which will allow the sender to choose another path if the working path is under attack.

Besides attack detection, we will design and evaluate new defense mechanisms for the

PDoS attacks. Existing aggregate-level defense schemes may also punish legitimate

TCP flows, whereas flow-level defense schemes may miss those PDoS attacks that

employ lots of malicious flows [83]. One possible approach is therefore to isolate

and protect legitimate TCP flows and to limit other flows by using aggregate-level

mechanisms. Another promising approach is the packet score mechanism [209].

Moreover, we will explore the possibility of launching PDoS attacks in wireless,

ad hoc, and sensor networks. Some previous works [96, 97, 210] have already demon-

strated this possibility to certain extents. We will investigate new approaches to

mount the PDoS or PDoS-like attacks in those networks and evaluate their impacts

from both theoretical and practical aspects. Moreover, we will consider tradeoffs

between attack power and attack cost, and design countermeasures to protect these

networks from attacks.

Another promising avenue is to understand PDoS attacks from control theory. We

will explore how to design robust feedback control system that will protect or verify
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feedback signals and consider tradeoff between system responsiveness and system’s

total performance. Besides, we will study the impact of PDoS-like attacks on existing

feedback control systems, for example, autonomous systems that adopt different kinds

of feedback controllers.

Last but not least, due to possible law violations, we have not conducted PDoS

attacks in real networks and evaluated the detection schemes. Therefore, we have

launched PDoS attacks only in our test bed with artificial background traffic and

evaluated the detection schemes. Moreover, we used real traces from WIDE [192] and

LBNL [182] to estimate the false alarm rates of the detection schemes. We are aware

of the limitations of using artificial traffic and the small scale of test bed. We are

also aware that some other research groups have carried out similar experiments in

the Emulab and the DETER test bed [53,55]. We would like to cooperate with them

on evaluating both the impact of PDoS attacks and the performance of the detection

schemes.

7.2 Network covert channels

In the second class of TCP exploits, we have shown how to camouflage covert

messages in the “normal” behavior of TCP traffic. By exploiting TCP’s flow concept,

sliding window, and acknowledgement mechanisms, TCPScript and Cloak generally

provide higher capacity, more camouflage approaches, and higher resilience against

adverse network conditions. Since these mechanisms are widely adopted by modern

transport protocols, the basic design approaches can also be applied to other transport

protocols.

TCPScript camouflages covert messages under a TCP flow’s bursty traffic. It

encodes messages into the number of packets in each data burst. Moreover, TCP’s

acknowledgement mechanism helps TCPScript increase its reliability. To analyze its

capacity, we have performed an information-theoretic analysis of TCPScript. The

analytical results show that TCPScript is more robust to packet loss than other re-
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cently proposed timing channels. Moreover, we have conducted extensive experiments

in a test bed and the PlanetLab platform. The experiment results also support that

TCPScript provides higher throughput and is more robust to adverse network con-

ditions. To defend against TCPScript, we propose a new detection scheme based on

two statistics: burst size and inter-ACK-data delay. Empirical results show that this

detection scheme could successfully detect most TCPScript channels, especially the

more aggressive ones.

As another new design point using multiple TCP flows, Cloak encodes covert

messages into the combinations of flows and packets which could be distinguishable

or indistinguishable. Cloak possesses the unique advantage of guaranteeing reliable

covert communications which cannot be attained by any existing timing channel.

Moreover, it offers ten variants which achieve different scales of tradeoff between

capacity and concealment. Therefore, Cloak could be used for different objectives of

the covert communications. We have designed ten pairs of ranking and unranking

algorithms to efficiently perform encoding and decoding. We have also proposed a

passive scheme and an active scheme to detect Cloak channels. The former uses inter-

ACK-data delay to uncover Cloak instances that use unbalanced codes. The latter

detects Cloak by inserting a special sequence of delays into the suspicious TCP flows.

The disadvantage of the active approach is a possible degradation on the performance

of the legitimate flows.

7.2.1 Future works

Since the features exploited by TCPScript are widely used in other protocols,

we will first explore possible covert channels in other protocols. Moreover, we will

propose a unified approach, accompanied by a formal analysis, for the class of newly

identified covert channels. Another avenue is to model the capacity of TCPScript-

like network covert channels under different warden models. On the other hand, we

will derive a general combination-based framework for designing covert channels and
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apply it to other steganography problems. For example, Cloak’s flexibility is based

on two parameters: the number of packets for a codeword (N) and the number of

flows (K). A more general framework requires only N for constructing new covert

channels. Removing the need of fixing the number of flows will further increase

Cloak’s stealthiness.

On the defense side, we will develop new detection algorithms and defense mech-

anisms for TCPScript, Cloak, and their variants. The detection algorithms should

take into consideration both the detection performance in terms of detection rate

and false alarm rate,and the implementation cost when handling a large number of

TCP flows. Moreover, the new defense mechanisms will help wardens throttle the

covert channel capacity while incurring only minimal overheads. We will also develop

a penalty model for the scenario where a legitimate flow is mistakenly labeled as a

covert channel and consequently suffers from very low throughput.
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A. DISCRETE WAVELET TRANSFORM

Wavelet transform is very suitable for analyzing irregular signals, such as network

traffic, because it gives a more accurate local description of signal characteristics in

both time and frequency domains. Indeed, wavelet transform has been applied to

analyze network traffic and identify traffic anomalies. For example, wavelet analysis

has been employed to identify traffic anomalies caused by flooding-based DoS and

flash crowds through a deviation score [211]. Compared with the work in [211], there

are two main differences in our wavelet analysis. First, the wavelet analysis there is

used to perform a postmortem analysis of trace data, whereas ours concentrates on

a real-time analysis of incoming data. Second, the analysis there considers only the

signal variations in the high and medium frequency bands that are not sufficient to

detect the PDoS attack. Our analysis requires both high and low frequency bands.

The discrete wavelet transform (DWT) represents a signal f(t) ∈ L2(R) using

scaling functions ϕj,k(t), and a translated and dilated version of wavelet functions

ψj,k(t):

f(t) =
∑

k

cj0(k)ϕj0,k(t) +
∑

k

∑

j=j0

dj(k)ψj,k(t), (A.1)

where {ϕj,k(t) = 2j/2ϕ(2jt − k), j, k ∈ Z} and {ψj,k(t) = 2j/2ψ(2jt − k), j, k ∈ Z}.
In this expansion, the first summation describes a coarse approximation of f(t), and

the second summation depicts the details of f(t). In practice, the coefficients cj(k)

and dj(k) are calculated via the Mallat’s pyramid algorithm:

cj(k) =
∑

m

h0(m− 2k)cj+1(m), (A.2)

dj(k) =
∑

m

h1(m− 2k)cj+1(m), (A.3)
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where h0 and h1 are the coefficients of low-pass and high-pass filters, respectively.

If the scaling functions and wavelet functions form an orthonormal basis, Parseval’s

theorem states that f(t)’s energy is equal to the energy in its scaling coefficients and

wavelet coefficients [212]. That is,
∫
|f(t)|2dt =

∑

k

|cj0(k)|2 +
∑

k

∑

j=j0

|dj(k)|2. (A.4)

Since the wavelet functions operate like high-pass filters that use narrow time windows

to compute differences in signals [173], they can capture the variability of the incoming

traffic volumes. On the other hand, the scaling functions perform like low-pass filters;

therefore, they can be used to extract the trend of the outgoing TCP ACK traffic.

In order to realize an on-line detection, we use a moving window to group W

continuous samples for the computation of DWT. Let S = s(t), t ≥ 1, be the traffic

samples, and SW (n) = {s(t)}n×W
t=(n−1)W+1, n ≥ 1, be the sequential windows of the

samples. We use SIn and SOut to denote the traffic samples for the incoming data

traffic and outgoing ACK traffic, respectively. We also use SIn
W (n) and SOut

W (n) to

refer to the observation periods for the two respective cases.

Since the fluctuation of the incoming traffic can be captured by its high-frequency

part, we continuously process SIn
W (n) through the DWT and obtain their wavelet

coefficients dIn
j,k. In order to quantify the degree of variability, we define a statistic

based on the signal energy:

EH(n) =
1

W

∑

k

|dIn
1,k|2, (A.5)

where dIn
1,k is the wavelet coefficient at the finest scale (j = 1). A similar approach

was used in [213] to investigate the scaling properties of the network traffic.

On the other hand, we process SOut
W (n) to obtain the trend of the outgoing TCP

ACK traffic. We also define a statistic based on the signal energy to represent the

trend of the outgoing TCP ACK traffic:

EL(n) =
1

W

∑

k

|cOut
L,k |2, (A.6)
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where cOut
L,k is the scaling coefficient at the highest decomposed scale (j = L).
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B. NONPARAMETRIC CUSUM ALGORITHM FOR

CHANGE-POINT DETECTION

In order to automatically locate the change point in the statistics EH and EL as soon

as possible, we apply the nonparametric sequential detection algorithm at the end

of every observation period. Here, we employ the nonparametric CUSUM algorithm

for this purpose. This algorithm has also been used in other detection methods for

(D)DoS attacks [214–216].

The formal definition of the nonparametric CUSUM algorithm is summarized as

follows [179, 217]:

y(n) = (y(n− 1) + x(n))+, y(0) ≡ 0, n = 1, 2, . . . , (B.1)

where (y(n))+ is equal to y(n) if y(n) > 0, and 0, otherwise. Its decision rule is:

dN(·) = dN(y(n)) = I(y(n) > Ccusum), (B.2)

where Ccusum is the threshold. x(n) is defined on the probability space (Ω,F , P ) by

the model

x(n) = a+ h(n)I(n ≥ m) + ξ(n), (B.3)

where ξ = {ξ(n)}∞n=1 is the random sequence such that its mathematical expectation

ξ(n) ≡ 0, and {h(n)} is the deterministic sequence representing the profile of changes

that take place at the moment m [179]. As suggested in [216, 217], we calculate the

threshold Ccusum by

Ccusum = (τ −m)+(h− ‖a‖), if m ≥ 1, (B.4)

where τ is the preferred detection time.

The CUSUM method assumes that a < 0 and h + a > 0, which together imply

that the mean value of x(n) will change from negative to positive when a change
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occurs. Therefore, it is necessary to first transform the statistics under the change-

point detection to new random sequences which have negative mean values under

normal conditions.
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C. THE TEST BED’S TOPOLOGY

The test bed has evolved since the inception of our research on PDoS attacks and

network covert channels. Currently, its topology is shown in Figure C.1. The test

bed has four software Border Gateway Protocol (BGP) routers that are Linux ma-

chines running Quagga v0.99.6 to provide BGP routing service. Therefore, we could

also examine the impact of PDoS attacks on BGP and routing [54]. Both the back-

ground traffic and victim TCP flows are generated by IPerf v2.0.2 between two pairs

of machines. Since the minimal RTO is 200ms in Linux, we have also prepared a con-

figuration that sets the victim TCP sender’s minimal RTO to 1 second. The purpose

is to evaluate the effect of Shrew attack that exploits a fixed minimal RTO value and

other kinds of PDoS attacks.

We have implemented the attack program based on WinPcap [166]. We have de-

ployed Dummynet [164] and NIST [218] in the bottleneck to emulate different network

conditions and evaluate the impact of PDoS attacks on different queue management

schemes. The buffer size is set to RTT * bottleneck’s capacity. We capture both

incoming TCP data traffic and outgoing TCP ACK traffic at router AS65003, based

on which we estimate the throughput degradation caused by PDoS attacks and eval-

uate the detection schemes. For the experiments on network covert channels, the test

bed’s setting is shown in Figure C.2. We locate the decoder close to router AS65003

to sniff TCP connections between the encoder and the legitimate server.

205



Fig. C.1. The test bed’s topology for PDoS attack experiments.

Fig. C.2. The test bed’s topology for network covert channel experiments.
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