






Abstract

Over last several decades, a lot of work has been done to incorporate various features of asset

price movements into stochastic models, including (but not limited to) stochastic volatility

of stock price, randomness of interest rate and the correlation between stock return and

return volatility (i.e. the leverage effect). This thesis presents an empirical study in the

pricing errors for equity indexed annuities (EIAs) arising from the use of different interest

rate models and volatility models.

For the interest rate risk, I will inspect the pricing differences between the use of the

stochastic volatility model of Heston (1993) and the use a combination of the Heston model

with the stochastic interest rate model of Cox, Ingersoll and Ross (1985). The classical

Black-Scholes (1973) model will also be compared against its combination with the extended

Vasicek model due to Hull and White (1990). Unlike most equity options in the literature,

EIAs typically have moderate to long maturities. While in the valuing the former one may

consider the interest rate as deterministic, this may not be the case for pricing EIAs. This

part of the thesis is a partial attempt to answer this question.

For volatility risks, although the number of existing volatility models is vast, most of

them are impractical for EIA valuation. This is because the EIAs are Bermudan options

(owing to the presence of surrender terms) but most popular volatility models simply do not

admit closed form or semi-closed form formulas for the densities or characteristic functions

of the stock return conditional on the initial and final volatilities. To solve this problem, I

adopt the finite-state, continuous-time regime switching Levy stock return model proposed

by Chourdakis (2004). This model also has the merit that the leverage effect can be built in

easily. However, the model was initially intended to be used as an approximation to Heston’s

(1993) model. As such, it is not risk-neutral. In addition, for general time-changed Levy

processes, that how to find an equivalent martingale measure is currently a very confusing

issue in the literature. In this thesis I modify Chourdakis’ model so that it is used directly
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as the model of, but not an approximation to, a physical process. A way to obtain a

structure-preserving equivalent martingale measure is also proposed.

Given the conditional density or characteristic function for a regime switching model, one

can compute Bermudan option prices by using the sequential quadrature method developed

by Sullivan (2000a,b). We will explain the idea of this method and give a convergence proof

to it in this thesis.
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Model risks for equity-indexed

annuities
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Chapter 1

Introduction

Over last few decades, a lot of work has been done to extend the Black-Scholes (1973) model

so that various features of the financial market can be incorporated. Nowadays, different

people may evaluate the price of the same financial derivative using vastly different financial

models. Naturally, the prices of financial derivatives has become dependent on numerous

model assumptions.

In finance, it is now widely accepted that stock price volatilities should be considered

stochastic. In contrast, in pricing stock options, interest rates are often considered deter-

ministic. While the reasons are seldom discussed, this is probably due to the fact that

most traded stock options have short lifetimes. Since interest rates are empirically much

less volatile than stock prices, when an option will expire shortly, incorporating stochastic

interest rate into a stock price model may induce only technical or programming difficulties

but not any noticeable improvement in pricing performance. In fact, it is reported (in, e.g.

Bakshi et al. 1997 or Jiang 2002) that the randomness of interest rates has only minimal

impact on the pricing of plain vanilla European options. In practice, interest rates are con-

sidered stochastic usually only when interest rate derivatives (such as interest rate swaps

or guaranteed annuity options) are considered.

Interestingly, although equity-indexed annuities (EIAs) are clearly stock options with

long maturities, they are predominantly priced with deterministic interest rate term struc-
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tures in the literature. For example, among Buetow Jr. (1999), Tiong (2000), Wilmott

(2002), Hardy (2003 and 2004), Lin and Tan (2003), Eales and Tunaru (2004), Jaimungal

(2004), Schoutens et al. (2003, 2005) and Windcliff et al. (2004), stochastic interest rate is

considered only in Lin and Tan (2003). Again, the reasons behind this are seldom stated

explicitly, but the comment of Jaimungal (2004) probably explains what most researchers

and practitioners have in their mind:

“... when the short rate and asset price process are uncorrelated, the interest

rate dynamics can be factored from the equity dynamics, and the pricing for-

mulae which arise are those of Tiong (2000) with r replaced by the average rate

over the term of the option, ravg = 1
T−t lnEQ

[
exp{−

∫ T
t rsds}

]
. In a market

calibrated model, this average corresponds to the prevailing spot interest rate of

the appropriate maturity. Furthermore, although EIA products typically have

long terms (around 10 years), the embedded reset features are typically applied

over 1
2 ∼ 1 year periods. This implies that forward prices spanning a single year

or less are the most relevant, and such interest rates have significantly lower

volatility than, for example, a 10-year spot rate.”

In contrast, not only are discounted stock prices much more volatile than spot interest

rates, the former also exhibit a number of features that have greatly influenced the devel-

opment of equity price models. These features include the fat-tailed distributions of stock

returns, volatility clustering and the leverage effect, among others. As more and more mod-

els have been developed to incorporate these features, researchers and practitioners have

become aware of the fact that even if the distributions of stock return over a fixed period

under different models are almost identical, these models can still have very different finite-

dimensional distributions. Consequently, there is a widespread belief that in pricing most

path-dependent exotic options (including EIAs), information about the micro-structure of

the stock price process is very important. Borrowing the words of Heyer (2004, p.15),
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“... you absolutely must be very careful about the instrument you choose to

calibrate to. For example, if I calibrate to vanilla puts and then try to price

ratchet structures, I absolutely guarantee you you’ll wind up with a nonsense

set of prices. The reason being that the put only cares about the distribution

of returns at a specific time, but the ratchet actually cares about how you got

there as it meandered through different periods.”

The first half of Heyer’s argument (that calibrating a model to plain-vanilla option prices

alone does not guarantee small pricing errors in exotic options) is in fact supported by some

striking research results. In a well-known paper by Schoutens et al. (2003, the paper is

also slightly modified and published as Schoutens et al. 2005), seven stochastic volatility

models are calibrated to fit the prices of 144 European call options with maturities ranging

from two weeks to five years. Upon calibration, the model prices almost fit the market

prices very well — the largest relative pricing error is only about 2.2%. However, when

these calibrated models are applied to evaluate the prices of some exotic options (including

barrier options, barrier digital options, lookback options and cliquets), the relative price

differences between them can be as high as1 2333%! The price differences they find for

cliquets are also up to about2 56%. Schoutens et al. conclude that, although different

price dynamics may give almost identical marginal distributions, their path structures can

be radically different. Since many exotic options have path-dependent payoffs, their option

prices can be susceptible to these structural differences, no matter how well the models are

calibrated to vanilla option prices.

To sum up, there are a few common beliefs about pricing a path-dependent option:

(a) Calibrating a model only to market prices of plain-vanilla options can result in large

pricing errors.

(b) Therefore, one should calibrate the pricing model to the market prices of some path-
1The highest price they obtain for a down-and-in barrier option is 2.19, while the lowest price is 0.09. So

the relative error is (2.19/0.09− 1)× 100% = 2333%.
2Computed as (0.1131/0.0724− 1)× 100%.
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dependent options.

(c) For EIAs, the interest rate risk is small, as EIAs typically have payoffs that depend on

stock returns over a number of consecutive, non-overlapping but short time periods,

and spot short-term interest rates are empirically quite non-volatile.

Note that, while assumption (a) in the above is supported by the results of Schoutens et

al. (and other results that we have not reported here) for a few types of options, in general

no evidence has been given to support or disprove it for other financial derivatives. Likewise,

although assumptions (b) and (c) seem to be commonplace, they are, to this date and to our

knowledge, only folklore assumptions that have not been backed by any empirical evidence.

It is, however, very difficult for academics to verify assumption (b) because path-dependent

options are typically traded over the counter and their price history is hard to obtain. In

this thesis, we will focus on (a) and (c) in the above in the context of EIAs.

Ideally, if we want to study the effects of interest rate risk and volatility risk on the

valuation of EIAs, we should consider a number of stock price models that feature both

stochastic interest rate and stochastic (stock price) volatility. However, the number of such

models are scarce in the literature. Since many stock options have very short maturities (in-

surance products such as EIAs are notable exceptions in this regard), in financial literature

most researchers simply do not feel the need to make interest rates stochastic in building

a stock price model. Actually, incorporating both stochastic interest rate and stochastic

volatility in a single model can be technically challenging, especially when the number of

stochastic factors in any modern interest rate model is overwhelmingly large. Even when

the amalgam of interest rate and stock price volatility can be made realistic and meaningful,

reliable ways to estimate and calibrate the combined economic model and efficient methods

to calculate option prices are still needed for a pricing model to become practical.

A few models that incorporate both stochastic volatility and stochastic interest rate

are better known to practitioners. The first one is an extension of the stochastic volatility
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model of Heston (1993) by Bakshi et al. (1997). The second one, developed by Duffie et al.

(2000), extends the Heston model in a way that the log equity price and the interest rate

must be affine functions of a common (but perhaps multidimensional) source of randomness.

The third model, or strictly speaking a third approach, is the uncertain parameter model

developed independently by Avellaneda et al. (1995) and Lyons (1995). This approach is

interesting in that it requires only the upper and lower bounds of the volatility and the spot

interest rate but not their exact dynamics to be specified. The model gives rise to an upper

bound and a lower bound of the option price.

Unfortunately, it is difficult for us to apply these models in our study. With the models

of Bakshi et al. (1997) and Duffie et al. (2000), the problems are mainly computational. For

instance, some EIAs have structures similar to Bermudan style Asian or lookback options,

which we find difficult to price under the Heston model or its extensions. For the uncertain

parameter model, it is not known how conservative the bounds of the option prices are.

Also, the stock price process is assumed to be a diffusion. Whether the model can be

extended to include jumps in the stock price remains unclear.

In view of the difficulty in building or applying an equity price model with stochastic

volatility and stochastic interest rate, we consider the two sources of randomness separately.

In next chapter, we will first introduce the EIAs that are of interest in our study and explain

our basic research methodology. Then we will investigate the interest rate risk for EIAs

in chapter 3 using a few relatively simple models. For ease of computation, we assume

that surrender is not allowed, so that every EIA becomes a European option which we

can price using Monte Carlo simulation. We will change our focus to volatility risk in

chapter 4, in which interest rates are assumed to be deterministic. Inspired by Schoutens

et al. (2003), we will consider a number of Levy models and time-changed Levy models

and also in the no-surrender case the model of Bakshi et al. (1997). However, owing to a

technical flaw in Schoutens et al. (2003), the time-changed Levy models we use here are not

those they consider but the continuous-time regime switching (CTRS) models developed

7



by Chourdakis (2002). Under these CTRS models, the finite dimensional distributions of

stock price processes are available in semi-closed forms. Hence in theory we can evaluate

the price of a Bermudan option by numerical integration. The computational complexity

involved, however, can be prohibitive if the numerical procedure is not carefully devised.

In our study, we will apply the sequential quadrature method developed independently by

Hunt and Kennedy (2000), Sullivan (2000a,b) and Tse et al. (2001) to compute the prices

of Bermudan options. In part II of this thesis, we will introduce the idea of sequential

quadrature in chapter 5 and present an example application of this numerical procedure in

the subsequent chapter. Technical proofs for chapters 3 and 4 are deferred to the appendices.

Throughout this thesis, we will denote by $ the imaginary number
√
−1. The commonly

used notations i and j for
√
−1 are reserved for array indices.
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Chapter 2

Preliminaries

2.1 Equity-indexed annuities and other exotic options

In this section we will briefly describe the payoff structures of the EIAs and exotic options

concerned in our study. Most of the EIAs below have been considered by Lin and Tan

(2003), which to our knowledge is the first paper to address the issue of interest rate risk in

EIA valuation. For a comprehensive and broader discussion of other EIAs (and investment

guarantees in general), the monograph by Hardy (2003) is highly recommended.

2.1.1 Equity-indexed annuities

In our study, we restrict our attention to two most common forms of equity-indexed annu-

ities, namely point-to-point contracts and ratchets.

Point-to-point contract (PTP)

Suppose the contract is sold at time 0 and it will expire at the end of year T . Let τ ∈

{1, 2, . . . , T} be the year when one or more of the following events occur: the contract

expires, the policy holder dies or surrenders. Then the insurance company is liable to pay

at the end of year τ the following amount of money:

H(τ) = P mid [1 + Fτ , 1 + α(R(τ)− 1), 1 + Cτ ] ,
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where P is the contract’s premium, α > 0 is the participation rate (which is typically

smaller than one), R(τ) is some formula for calculating the equity return, Fτ and Cτ are

respectively the floor and cap rates to the contract’s gain, and mid(x, y, z) denotes the

middle value or the median of three numbers x, y, z. The formula for R(τ) is responsible

for different contract designs. Three popular designs are

(Term-end) R(τ) =
S(τ)
S(0)

,

(Asian-end) R(τ) =
1
12

12∑
m=1

S
(
τ − 1 + m

12

)
S(0)

,

(High-watermark) R(τ) = max
1≤m≤12τ

S(m/12)
S(0)

,

were S(t) represents the level of a certain stock index1 at time t. In the term-end design,

R(τ) represents the usual equity return S(τ)/S(0) over the period [0, τ ], while in the Asian-

end design, R(τ) is the simple average of the equity returns evaluated at the end of each

of the twelve months in year τ with respect to the index level at the beginning of the year.

In the high-watermark (HWM) design, R(τ) is the highest value of S(t)/S(0) observed at

the month ends throughout the lifetime of the contract. As pointed out by Lin and Tan

(2003), when there is no cap (Cτ = ∞), the Asian-end contract and the high-watermark

PTP essentially reduce to an Asian option and a lookback option respectively.

When surrender is allowed, computing the prices of Asian-end and HWM PTPs is a

difficult task. Yet in next chapter this poses no problem because we will assume for simplicity

that surrender is not allowed, and hence we can evaluate the price of these PTPs by Monte

Carlo simulation. In chapter 4, however, we will consider the possibility of surrender. In

this case, owing to computational difficulties, we exclude Asian-end and HWM PTPs from

our experiments. Instead, we will consider the following variant of HWM PTP:

(Reverse high-watermark) R(τ) = max
0≤m≤(12τ−1)

S(τ)
S(m/12)

.

1For ease of presentation, in the rest of this thesis, we will simply call a stock index a ‘stock’. Thus ‘stock

price’ means the level of a stock index, such as the S&P 500 index, and ‘stock return’ or ‘equity return’

mean the return of an index.
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Despite the apparent similarity in their payoff structures, it is easier to price a reverse

high-watermark (RHWM) PTP than to price an ordinary HWM PTP. Roughly speaking,

since

R(t) = max

{
R

(
t− 1

12

)
,
S
(
t− 1

12

)
S(0)

S(t)
S
(
t− 1

12

)}
in a HWM design and

R(t) = R

(
t− 1

12

)
max

{
1,

S(t)
S
(
t− 1

12

)} .
in a RHWM design, more information is needed to compute the time-t price of an ordinary

HWM PTP.

Compound annual ratchet (CAR)

The term ‘ratchet’ is borrowed from the mechanical tool that bears the same name. In

essence, it refers to a discretely monitored option written on a certain underlying asset such

that over each monitoring period, the value of an investment before possible deduction of a

management fee is guaranteed to increase (i.e. ratcheted up) if the price of the underlying

asset rise, and never fall below a prespecified level if the market falls. In our experiments,

we will consider a popular type of ratchet, which is called compound annual ratchet (CAR).

The payoff of a CAR can be viewed as the product of the payoffs of a number of PTPs. It

is given by

H(τ) = P mid

{
1 + Fτ ,

τ∏
t=1

mid [1 + f, 1 + α(R(t)− 1)− γ, 1 + c] , 1 + Cτ

}
,

where P, Fτ , Cτ have the same meanings as they have before, γ ≥ 0 represents a yield spread

(which is a form of management fee) and f, c represent the local floor rate and local cap

rate respectively. The symbol R(t) still represents some kind of equity return, but with

different formulas:

(Term-end) R(t) =
S(t)

S(t− 1)
,

(Asian-end) R(t) =
1
12

12∑
m=1

S
(
t− 1 + m

12

)
S(t− 1)

.
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For both PTPs and CARs, when the parameters are chosen such that the fair prices of an

EIA is equal to its premium P , we call α the critical participation rate.

2.1.2 Other exotic options

We are interested to know whether the severity of model risk is affected by the structure of

the option contract, so we will also compute the prices of several European path-dependent

options. These exotic options are essentially part of those considered in Schoutens et al.

(2003), except that the contract parameters may be different.

Cliquet

Although the term ‘ratchet’ can be used interchangeably with ‘cliquet’ (the French word

for the same mechanical tool) to mean the same kind of investment guarantee, a more

commonplace use of the latter is to describe a European option whose payoff is of the form

H(T ) = P mid

[
N∑
i=1

mid
(
Sti
Sti−1

− 1, f, c
)
, F, C

]

where 0 < t1 < t2 < . . . < tN = T are a series of time epochs and f, c, F, C represent the

local floor rate, local cap rate, global floor rate and global cap rate respectively. For instance,

this is the cliquet option that is found to be susceptible to volatility risk in Schoutens et

al. (2003). Throughout this thesis we will maintain the difference in usage between ‘ratchet’

and ‘cliquet’.

From the pricing aspect, there are two important differences between a cliquet and a

ratchet. First, the P in a cliquet is only notional, but it is paid upfront if one buys a ratchet.

Consequently the premium for a cliquet includes only the price of protection but not the

(notional) amount of investment P , while the premium for a ratchet includes only P but

not the price of the protection embedded in the contract (the latter is charged by the use of

the yield spread γ and by giving only α of the excess equity return R(t) without dividends).

Second, the payoff of a ratchet is contingent on the time when the policyholder dies or

surrenders, but a cliquet is strictly a European option without any exposure to mortality
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risks. Actually, the term ‘ratchet’ is more popular in the insurance literature but not in the

general financial literature. In contrast, the term ‘cliquet’ is often used outside insurance

context and in many cases the underlyings are not equities.

Barrier option

The payoffs of the barrier options we concern are given by

(Down-and-out) DOB = (S(T )−K)+ 1

(
min

0≤t≤T
S(t) > H

)
,

(Down-and-in) DIB = (S(T )−K)+ 1

(
min

0≤t≤T
S(t) ≤ H

)
,

(Up-and-out) UOB = (S(T )−K)+ 1

(
max

0≤t≤T
S(t) < H

)
,

(Up-and-in) UIB = (S(T )−K)+ 1

(
max

0≤t≤T
S(t) ≥ H

)
.

For convenience of computation, instead of monitoring the barrier condition continuously,

we will consider instead the daily monitored versions of these options. So, assuming that

there are 252 trading days in each year, the payoff of a DOB is given by

(S(T )−K)+ 1

(
min

0≤i≤252T
S

(
i

252

)
> H

)

and vice versa.

2.2 Research methodology

2.2.1 Different sides of model risk

Traders nowadays rely heavily on mathematical models to price and construct hedges for

financial derivatives. Consequently, they are exposed to the risk of using a deficient model,

which is usually called ‘model risk’. There are many causes for model risk, including model

misspecification, incorrect estimation and/or improper calibration of model parameters and

difficulties in implementing numerical procedures for estimation, calibration, pricing, hedg-

ing or risk management purposes. In this thesis, we focus on the misspecification of models.
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Misspecifying a model may lead to a number of problems. Most notably, it may result

in unreasonable prices of contracts, poor hedging performance or severe errors in some risk

measures such as value-at-risk (VaR) or conditional tail expectation (CTE). To study the

severity of different problems, different data or different amount of data are required. For

instance, owing to the existing practice to recalibrate models regularly, if we want to study

the effect of model risk on hedging, historical time-series data for plain-vanilla option prices

are required. In our study, due to severe limitation in obtaining historical data, we will only

focus on the pricing errors arising from model risk.

Pricing errors are usually measured in terms of relative errors. If the price of an EIA is

p according to some ‘true’ model but we sell this EIA at price p′, the relative pricing error is

given by p′

p −1. Although one can measure the pricing error using the plain difference p′−p

between the two prices, this error measure is less reasonable as losing one cent in every ten

dollars is clearly less disastrous than losing one cent in every dollar. We remark, however,

that large pricing errors do not necessarily entail large hedging errors, because the error in

the value of a hedging portfolio depends not only on the relative pricing errors in the EIA

and the hedging instruments, but also on the sensitivities of them to various quantities.

Nevertheless, in the rest of this thesis, unless otherwise specified, the term ‘model risk’ and

‘pricing errors’ always refer to the relative pricing errors between competing pricing models.

2.2.2 Basic testing procedure

Since pricing error is only about whether an EIA is sold at a wrong price at the inception of

the EIA contract, its computation involves much fewer technical details than the computa-

tion of, say, hedging errors. Still, if we want to obtain a complete picture of the severity of

pricing errors, we should determine them not only using many different competing models

but also by considering a large number of economic scenarios. Therefore, in an ideal pro-

cedure of testing the size of model risk, one may first estimate the parameters for a set of

competing models using a time series data sample. Then for each day in a subsequent time
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series, the models are recalibrated to the market prices of vanilla options and the pricing

errors for the EIA are calculated.

In practice, however, there may be difficulties in carrying out such a testing procedure.

In particular, we have not enough option price data for model calibration2. There are a

number of approaches to get around this problem.

The first approach is to simply use the estimation and calibration results reported by

the researchers who possess enough data, but in this case we can only use the models they

use to perform our experiments. We will take this approach in some of our experiments

when we study interest rate risk.

In the second approach, we may use synthetic data instead of historical data, i.e. we

assume that one of our competing models is the ‘true’ one and then we consider a range

of parameters for this model. We will also take this approach when we study interest

rate risk. This completely removes our data availability problem, but two new issues arise.

First, we must decide what ranges of parameters are reasonable. If the parameter domain is

unbounded, any conclusion drawn from our experimental results may be based on unrealistic

economic scenarios. Second, we want to calibrate our models to true option prices but our

data are only synthetic. While we can assign the most complicated model as the true one

when we have a nested chain of competing models, how to pick a true model when our

models are not nested? In chapter 3, we will discuss these issues in more details.

A third approach to solve our problem is to use only the cross-sectional option price data

on a single day, instead of a series of cross-sectional data. This is essentially the approach

adopted by Hirsa et al. (2003) and Schoutenset al. (2003, 2005) and we will take this

approach in chapter 4, where we study the volatility risk for EIAs. It has the advantages

that the option data we need are readily available from published research papers and

there will be no need to assign any one of the models as ‘true’, but the downside is that

2I have access to the Datastream financial database at this university. However, owing to perhaps licensing
issues or a recent change in the software interface, S&P 500 option data, for instance, are no longer available
from the option catalogue or the query interface.
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any conclusion we draw from our experimental results may be applicable only to some

particular economic states. Nonetheless, we will discuss later in this thesis why some of our

experimental results should still hold in general economic scenarios.
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Chapter 3

Interest rate risk for

equity-indexed annuities

3.1 Overview

In this chapter, we will inspect the interest rate risk for EIAs. We will first introduce our

equity price models in next section. Then we shall discuss various aspects on the pricing

of EIAs (sec. 3.3) and explain why it is difficult to make any prediction about the size of

model risk when the model parameters or contract parameters change (sec. 3.4). After that

we will explain our experimental procedure and present our results (sec. 3.5) and conclude

this chapter in sec. 3.6. Most mathematical details for this chapter are deferred to appendix

A.

3.2 The SVSI model and the BSHW model

3.2.1 The SVSI model

The first model we consider is commonly referred to as the SVSI model. Let S(t) denotes

the price of the underlying asset (a portfolio of stocks or a stock index in our case) and

r(t) denotes the force of interest at time t. The SVSI model assumes that under the risk-
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neutral measure (i.e. the so-called Q-measure), S(t) and r(t) are governed by the following

stochastic differential equations (SDEs):

dS(t)
S(t)

= (r(t)− q(t)) dt+
√
v(t) dW ∗S(t), (3.1)

dv(t) = (θ∗v − κ∗vv(t))dt+ σv
√
v(t) dW ∗v (t), (3.2)

dr(t) = (θ∗r − κ∗rr(t))dt+ σr
√
r(t) dW ∗r (t), (3.3)

where q(t) represents the (deterministic) continuous dividend yield, θ∗v , θ
∗
r , κ
∗
v, κ
∗
r , σv, σr are

some nonnegative constants and W ∗S(t),W ∗v (t) and W ∗r (t) are standard Brownian motions

such that the latter is uncorrelated with the former two but dW ∗S(t) dW ∗v (t) = ρdt for some

constant ρ ∈ [−1, 1]. Typically, due to the stylised leverage effect for asset returns, we

have ρ < 0. Equations (3.1) and (3.2) are actually the defining equations of the stochastic

volatility (SV) model of Heston (1993) and eq. (3.3) is the stochastic interest rate model

by Cox, Ingersoll and Ross (1985, CIR hereafter). Under the Q-measure, r(t) is a scalar

multiple of a noncentral chi-square random variable (see Cox et al. 1985 for details). Its

variance under the Q-measure is given by:

varQ(r(t)) =
r(0)σ2

r

κ∗r
(e−κ

∗
rt − e−2κ∗rt) +

θ∗rσ
2
r

2κ∗r
(1− e−κ∗rt)2. (3.4)

Let D(t, T ) denote the time-t price of a zero coupon bond with maturity T ≥ t. Under

the SVSI model (actually under the CIR model), we have

D(t, T ) = D (t, T ; r(t)) = exp {A(t, T )−B(t, T )r(t)} , (3.5)

where (see appendix A for proof)

B(t, T ) =
2(1− e−h(T−t))

2h− (h− κ∗r)(1− e−h(T−t))
, h =

√
κ∗r

2 + 2σ2
r , (3.6)

A(t, T ) = − θ
∗
r

σ2
r

{
(h− κ∗r)(T − t) + 2 ln

[
1− (h− κ∗r)(1− e−h(T−t))

2h

]}
. (3.7)

There is a semi-analytic formula for the time-t price C of a European call with strike K
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and maturity T . It is of the form

C = S(t)Π1(t, T, S(t), r(t), v(t))−KD(t, T )Π2(t, T, S(t), r(t), v(t)), (3.8)

Πj(t, T, S(t), r(t), v(t)) =
1
2

+
1
π

∫ ∞
0

Re
[
e−$u lnKfj(t, T, S(t), r(t), v(t), u)

iu

]
du (3.9)

where fj (j = 1, 2) is the characteristic functions for Πj (hence the second formula is just

a Fourier inversion formula) and $ =
√
−1, as we have mentioned at the end of Chapter

1. The reader may refer to formulas (A10) and (A11) of Bakshi et al. (1997) for details

(but replace the term −λiφµJτ by −λiφ(µJ + q)τ in both formulae). The idea of using

characteristic functions and Fourier transforms to find European option prices is due to

Heston (1993) and it has become a standard technique today. The derivations of fj are

very similar in different extensions of the Heston model. For instances, see Heston (1993),

Scott (1997), Bates (1996) and Bakshi et al. (1997).

3.2.2 The BSHW model

The BSHW model specifies that in the risk-neutral world, S(t) and r(t) are governed by

the following SDEs:

dS(t)
S(t)

= (r(t)− q(t)) dt+ σS(t) dW ∗S(t), (3.10)

dr(t) = (θ∗r(t)− κ∗r r(t))dt+ σr dW
∗
r (t) (3.11)

Here q(t), σS(t) and θ∗r(t) are functions of time, σr is a constant and W ∗S(t),W ∗r (t) are two

standard Brownian motions that have constant correlation: dW ∗S(t) dW ∗r (t) = ρdt. This

model has been considered by Lin and Tan (2003) with constant θ∗r . One can see that when

r(t) is deterministic, the stock price dynamics (3.10) is just the classical Black-Scholes (BS)

model. The interest rate dynamics (3.11), which was proposed by Hull and White (1990),

is commonly referred to as the Hull-White model or the extended Vasicek model (it reduces

to the model of Vasicek 1977 when θ∗r is constant, hence the latter name).

Let f(t, T ) denotes the forward rate that one can contract for at time t to invest in the
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money market at time T , i.e.

f(t, T ) = − ∂

∂T
logD(t, T ).

Under the BSHW model, the price of a bond is still given by the formula (3.5), but with

A(t, T ) and B(t, T ) given by (again, see appendix A for proof)

B(t, T ) =
1
κ∗r

(1− e−κ∗r(T−t)), (3.12)

A(t, T ) = B(t, T )m(t)−
∫ T

t
f(0, u)du− σ2

r

2

∫ T

t
B(0, u)2du

+
σ2
r

2

∫ T

t
B(u, T )2du, (3.13)

m(t) = f(0, t) +
σ2
r

2
B(0, t)2. (3.14)

Furthermore, if f(0, t) is differentiable w.r.t. t, the function θ∗r(t) is related to m(t) by

θ∗r(t) = m′(t) + κ∗rm(t). (3.15)

The significance of equations (3.14) and (3.15) is that the Hull-White model is a market

model (it predates modern market models like the LIBOR market model and the swap

market model). That is, we can always choose θ∗r(t) such that the theoretical forward

curve f(0, t) matches the one observed in the market, provided the latter satisfies a certain

regularity conditions (continuously differentiable in our case). Conversely, specifying θ∗r(t)

is equivalent to specifying the theoretical initial forward curve. For example, in the original

Vasicek model, θ∗r is taken to be κ∗rθ for some constant θ. By equations (3.14) and (3.15),

this means we model the theoretical forward curve as

f(0, t) = r(0)e−κ
∗
rt + θB(0, t)− σ2

r

2κ∗r2B(0, t)2.

In our numerical experiments, we will consider the Hull-White model instead of the Vasicek

model and we shall fit f(0, t) to the market’s forward curves.

Under the BSHW model, the variance of r(t) is identical under the physical measure

and the Q-measure. It is given by

varQ(r(t)) =
σ2
r

2κ∗r
(1− e−2κ∗rt). (3.16)
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In this chapter, however, we will mostly work under another pricing measure, namely the

T -forward measure QT , in order to ease computations. A T -forward measure is the measure

under which the price process of every tradable financial instrument, when denominated

by the price D(0, T ) of the discount bond with maturity T (T is fixed), is a martingale.

It will be shown in the appendix that for any s ≤ t ≤ T , the conditional distribution of

(r(t), lnS(t)) given (r(s), lnS(s)) is bivariate normal under QT :

r(t)−m(t) = e−κ
∗
r(t−s)(r(s)−m(s))− σ2

r

κ∗r
B(s, t) +

σ2
r

2κ∗r
B(2s, 2t)e−κ

∗
r(T−t)

+Y (s, t), (3.17)

S(t)
S(s)

=
D(t, T ; r(t))
D(s, T, r(s))

exp
[
−
∫ t

s
q(u)du− 1

2
var(X(s, t)) +X(s, t)

]
(3.18)

where (X(s, t), Y (s, t)) is a bivariate normal random variable such that EQT (X(s, t)) =

EQT (Y (s, t)) = 0,

var(X(s, t)) =
∫ t

s

∣∣∣σS(u)(ρ,
√

1− ρ2) + (σrB(u, T ), 0)
∣∣∣2 du, (3.19)

var(Y (s, t)) =
σ2
r

2
B(s, t), (3.20)

cov(X(s, t), Y (s, t)) = ρσrσSB(s, t) +
σ2
r

κ∗r
B(s, t)− σ2

r

2κ∗r
B(2s, 2t)e−κ

∗
r(T−t) (3.21)

and (X(s1, t1), Y (s1, t1)) and (X(s2, t2), Y (s2, t2)) are independent for any two nonoverlap-

ping intervals (s1, t1), (s2, t2) ⊂ [0, T ].

Let C(S(t),K, t, T,D(t, T ), σ2) denotes the time-t price of a European call option with

maturity T and strike price K according to the Black-Scholes formula, i.e.

C(S(t),K, t, T,D(t, T ), σ2) = S(t)e−
∫ T
t q(u)duN(d1)−KD(t, T )N(d2), (3.22)

d1 =
ln
(
S(t)e−

∫ T
t q(u)du

)
− ln (KD(t, T )) + 1

2 σ
2(T − t)√

σ2(T − t)
,

d2 = d1 −
√
σ2(T − t)

where N(z) is the standard normal distribution function. Under the BSHW model we can
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calculate the call option price as1

C

(
S(t),K, t, T,D(t, T ),

1
T

var(X(t, T ))
)
.

3.3 Pricing ratchets and cliquets

The price of a European option that pays off H(τ) at time τ is given by

EQ
[
e−

∫ τ
0 r(u)duH(τ)

]
if the Q-measure is used, or

D(0, T )EQT
[
H(τ)
D(τ, T )

]
when the T -forward measure (T ≥ τ) is used. Since a cliquet is a European option, its price

can be evaluated using these two formulas. When we ignore surrenders and mortality risk,

a ratchet is a European option that pays off H(T ) at time T . So the above pricing formulas

also apply.

We can account for mortality risks in these formulas easily when the survival prob-

abilities are deterministic. Roughly speaking, the standard approach is to assume that

mortality risks and financial risks are independent under both the physical measure and the

pricing measure (which is the Q-measure or T -forward measure in our case). So the phys-

ical mortality law remains unchanged under the pricing measure and mortality risks can

be diversified by selling enough policies. (See Lin and Tan (2003) for using the percentile

premium principle to deal with the case where only a small number of policies are sold.) Let

tpx be the probability that a person at age x can survive more than t years, tqx = 1 − tpx

and qx = 1qx. Let also wt = t−1px qx+t−1 for t = 1, 2, . . . , T − 1 (i.e. wt is the probability

that the person at age x at time 0 will die in year t), and wT = 1 −
∑T−1

t=1 wt. Then the

pricing formula becomes
T∑
t=1

wt E
Q
[
e−

∫ t
0 r(u)duH(t)

]
.

1When the BS model is mixed with other interest rate models than the Hull-White model, similar closed-
form solutions exist. See, e.g. Merton (1973), Rabinovitch (1989), Hull (1993) or Musiela and Rutkowski
(2005, p.399).
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When the T -forward measure QT is used instead of the risk-neutral measure Q, the formula

becomes
T∑
t=0

wt D(0, T )EQT
[
H(t)
D(t, T )

]
.

In either case, the value of a ratchet is the weighted sum of the values of a number of

European options of different maturities.

Incorporating a stochastic mortality law into our pricing formulas, however, is a difficult

issue. When the survival probabilities themselves are also stochastic, it is unclear how

to hedge against the longevity risk. Therefore, in the sequel, we assume a deterministic

mortality law. In addition, although it is easy to include surrender behaviour into our pricing

formulas by replacing each European option component by its Bermudan (i.e. discretely

monitored American) counterpart, in order to ease our programming and computational

burden, we also assume that there are no surrenders.

In some simple cases, we can calculate the price of a ratchet efficiently. For instance,

given the lifetime τ , the payoff of a PTP with term-end design is a constant plus the

difference of the payoffs of two European calls:

P ×mid
[
1 + α

(
S(τ)
S(0)

− 1
)
, 1 + Fτ , 1 + Cτ

]
= P

{
(1 + Fτ ) + max

[
α
S(τ)
S(0)

− (α+ Fτ ), 0
]
−max

[
α
S(τ)
S(0)

− (α+ Cτ ), 0
]}

.

Consequently the price of a term-end point-to-point contract is just a linear combination

of the prices of discount bonds and call spreads:

PTP price = P
T∑
t=1

wt [(1 + Ft)D(0, t) + C(α, α+ Ft, 0, t)− C(α, α+ Ct, 0, t)] .

Since a European call admits the semi-analytic formula (3.8) under the SVSI model and a

Black-Scholes formula (but with total variance of the form (3.19)) under the BSHW model,

we can calculate the PTP price easily. It is also possible to compute the price of a ratchet

efficiently when no simple pricing formula exists. For example, we can use the sequential

quadrature method described in part II of this thesis to evaluate efficiently the price of a

term-end CAR that has global floor and cap.
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For more complicated ratchets, we rely on Monte Carlo simulation to obtain their prices.

In our study, we follow Schoutens et al. (2003) and simulate the SVSI model dynamics (3.1)–

(3.3) using Euler discretisation2, except that we discretise each year into 252 instead of 250

days (the former is divisible by 12). For example, given S(t) and v(t), we can simulate

S(t+ ∆t) and v(t+ ∆t) (∆t = 1/252) by putting

ln
S(t+ ∆t)
S(t)

=
(
r(t)− q(t)− 1

2
v(t)

)
∆t+

√
v(t)∆t

(
ρZ1 +

√
1− ρ2Z2

)
,

v(t+ ∆t) = max
[
v(t) + (θ∗v − κ∗vv(t))∆t+ σv

√
v(t)∆t Z1, 0

]

where Z1, Z2 are two independent standard normal random numbers. For the BSHW model,

one can again simulate (3.10)–(3.11) using Euler discretisation, as Lin and Tan (2003)

did. Alternatively one can simulate the price dynamics under the T -forward measure,

where the formulas for exact simulation are given by (3.17)–(3.21). As I have very limited

computational resources, I have chosen the exact simulation method3.

3.4 Some qualitative analysis

Later on, we will carry out some numerical experiments to examine how large can the

pricing errors due to interest rate risk be. In this section, we will justify the necessity of

this kind of empirical research by illustrating the limitations in qualitative analysis.

Suppose the equity price S(t) and short rate r(t) are governed by the BSHW model,

but we price a ratchet according to the following risk-neutral dynamics:

dS(t)
S(t)

= (r(t)− q(t))dt+ σS(t) dW ∗S(t),

r(t) = f(0, t),

2Broadie and Kaya (2004) have devised an exact simulation method for the SVSI model, but we find it
too difficult to implement correctly.

3Note that the stock price and the interest rate are simulated on a daily basis in Euler discretisation,
as opposed to a monthly/yearly basis in exact simulation. So the exact simulation method is clearly more
efficient. In theory, exact simulation is also more accurate, but our experience shows that when the BSHW
model is discretised on a daily basis, there is no noticeable discretisation error. So the use of exact simulation
here only gives us an advantage in speed but not in accuracy. If computation time is not a great concern,
we advise the reader to follow Lin and Tan (2003) and use Euler discretisation because its implementation
is less error prone.
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i.e. we price the EIA as if the stock price follow the BS model with the deterministic interest

rate term given by the initial forward curve. How will this mistake affect the ratchet’s price?

If the option in question is a vanilla European call, its price under the BSHW model

is given by Black-Scholes formula (3.22), with σ2T = var(X(0, T )). Under the BS model,

the same formula applies, but σ2T =
∫ T

0 σ2
S(u)du. So, if one mistakes the BS model as

the true economic model, then the option will be underpriced if and only if var(X(0, T )) is

smaller than σ2
ST . It is quite easy to analyse the behaviour of var(X(0, T )). In fact, from

(3.19) we see that var(X(0, T )) is monotonic increasing in κ∗r and ρ and also quadratic in

σr. This is well documented in the literature (see, e.g. Hull 1993 or Rabinovitch 1989), but

even so, the behaviour of the pricing error is complicated enough to render some analysis

impractical.

For example, if we believe that the option is currently underpriced and we anticipate

a decrease in, say, σr, then we can be assured that the option will remain underpriced

(because var(X(0, T ))− σ2
ST is convex and σr = 0 is a root), but unless we know the true

model and the exact values of the model parameters, we could never know how the size of

the pricing error will change. Similarly, consider a term-end PTP. Recall that this contract

can be replicated as a portfolio of discount bonds and call spreads. Unless the annuitant is

very old at inception of the contract, the probability that he/she can survive at least up to

the PTP’s expiration day is very high. So pricing error in the PTP is mainly contributed

by the pricing error in the T -year call spread. Now, the price of this call spread is given by

CS(α, FT , CT , T, σ2) := C(α, α+ FT , 0, T, σ2)− C(α, α+ CT , 0, T, σ2),

where σ2T = var(X(0, T )) under the BSHW model and σ2T =
∫ T

0 σ2
S(u)du under the BS

model. When FT = CT , this call spread has zero pricing error, regardless of the model

parameters. When CT increases slightly, pricing error due to model risk arises. So the size

of the pricing error should initially increase with CT , but it may not remain monotonic

when CT continues to grow (see fig. 3.1 for example). This causes difficulties in product
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design, because there is no safe way to choose a floor rate or a cap rate so that the model

risk is guaranteed to be small.
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Figure 3.1. Plain pricing error in a call spread. Here the BSHW model is the true model and the BS model is

the wrong one. The contract parameters are T = 7, α = 0.2, FT = 0, CT = (1+c)T −1, where c ranges from

0 to 20%. The model parameters are q(t) ≡ 0, σS(t) ≡ 0.3, ρ = 0, σr = 0.02, κ∗r = 0.2, D(0, T ) = 1.05−T .

Analysing the effects of σr, ρ and κ∗r is even harder. The problem is that the price of

the call spread is not necessarily a monotonic function of σ2. This can be seen from the

fact that the vega of the call spread,

d CS(α, FT , CT , T ;σ2)
dσ

= φ


log

αe−
∫ T
0 q(u)du

(α+ FT )D(0, T )
+

1
2
σ2T

σ
√
T

−φ


log
αe−

∫ T
0 q(u)du

(α+ CT )D(0, T )
+

1
2
σ2T

σ
√
T

 ,

(φ is the standard normal density function), can be zero for some positive σ. Consequently,

when σ increases, the value of CS (as a function of σ2) may first increases and then decreases,

or equivalently, the pricing difference in the call spread may first be negative, then becomes

positive and then becomes negative again. Since var(X(0, T )) is monotonic in ρ, κ∗r and

quadratic in σr, this in turn means the pricing error can change sign more than once when

ρ or κ∗r increases or even change sign up to four times when σr increases. For PTPs of other

designs or for CARs, the situation may be even more complex.

Despite it is difficult to analyse the behaviours of pricing errors, in view of equations

(3.17)–(3.21), it is still reasonable to say that in these examples, the pricing errors in ratchets

are related to var(Y (s, t)) and the discrepancy between var(X(s, t)) and
∫ t
s σ

2
S(u)du (where

the length of the period [s, t] may span from a month to several years, depending on the

ratchet type). When these terms are small, we can still hope that the pricing errors are
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small. However, as qualitative analysis is impossible, we must rely on numerical experiments

to study the impacts of stochastic interest rates.

3.5 Numerical experiments

Choices of parameters

Owing to the problems in data solicitation we mentioned in chapter 2, we will use parameters

from Bakshi et al. (1997) for the SV and SVSI models. Although Bakshi et al. . (1997) have

not estimated these parameters first under the statistical measure, they have calibrated the

two models using a large set of time series option price data. For the BS and BSHW models,

we will use synthetic parameters. Since the parameters for our four models come from two

different sources, we will consider the two pairs of models separately. So, we will compute

the pricing errors for EIAs between the SV model and the SVSI model and between the BS

model and the BSHW model, but not pricing errors between, e.g., the BS model and the

SVSI model.

The followings are the model parameters for the SV and SVSI models. The parameters

in (a) and (b) below are taken from Bakshi et al. (1997), in which the SV and SVSI models

are calibrated using U.S. Treasury bills and S&P 500 option prices sampled from mid-1988

to mid-1991:

(a) SV: κ∗v = 1.15, θ∗v = 0.04, σ∗v = 0.39, ρ = −0.64,
√
v(0) = 0.1866.

(b) SVSI: κ∗v = 0.98, θ∗v = 0.04, σ∗v = 0.42, ρ = −0.76,
√
v(0) = 0.1865, κ∗r = 0.58, θ∗r =

0.02, σ∗r = 0.03.

(c) r(0) ∈ {0.01, 0.02, . . . , 0.08}. In the SV model, the interest rate term structure is fixed

and is determined by the forward curve observed at time 0, i.e. we set r(t) = f(0, t) =

− ∂

∂t
D(0, t) (or equivalently exp(−

∫ t
0 r(u)du) = D(0, t)), where D(0, t) is calculated

under the SVSI model.
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(d) The dividend yield q(t) is taken to be 3.5%, which is about the average dividend yield

of the S&P 500 index over the sample period.

Note that by the formula (3.4), the long-term risk-neutral standard deviation of the short

rate is given by

σ∞ :=
√

lim
t→∞

varQ(r(t)) =

√
θ∗rσ

2
r

2κ∗r
≈ 5.1× 10−3.

So in the long run, the short rate is very involatile — its standard deviation is only about

51 basis points.

For the BSHW model, we consider the following combinations of parameters:

(e) σS = 0.3,

(f) σD =
σr
κ∗r

(1− e−κ∗r ) = 0.01, 0.02, 0.03, 0.04,

(g) κ∗r = 0.9376, 0.6936, 0.3747, 0.1140,

(h) ρ ∈ {−0.3,−0.15, 0, 0.15, 0.3},

(i) Initial interest rate term structure (required in the computations of (3.13) and hence

(3.18)): inferred from the 60 U.S. Treasury yield curves sampled on every first non-

holiday of every January, April, July and December, from 1991-2005.

(j) q(t) = 3.5% per annum.

Note that we do not control σr directly, because it does not make any sense to say that

a certain value of σr is reasonable without taking the value of κ∗r into account. What we

actually control are σD and σ∞, where the formula for σD is given in (f) above and

σ∞ :=
√

lim
t→∞

var(r(t)) =
√

lim
t→∞

varQ(r(t)) =
σr√
2κ∗r

according to formula (3.16). Actually σD is the volatility coefficient of the one-year discount

bond price (see appendix for proof). According to Hull (1993, p.436), a high estimate for

σD is about 0.02. So the highest value 0.04 of σD we specify in the above should be

high enough. Now, if we interpret σ∞ as an unconditional standard deviation, an 8%
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annualised standard deviation of r(t) should be large enough. So we set the maximum of

σ∞ to be about 0.08. However, given σD, the value of σ∞ cannot be too low, because

σ∞
σD

=

√
κ∗r
2

1
1− e−κ∗r

is mathematically bounded below by some constant ω0 ≈ 1.108.

Therefore we set σ∞ = ω0σD

{
65
64
,
17
16
,
5
4
, 2
}

. The values of (κ∗r , σr) can now be inferred,

and they are plotted in fig. 3.2. The four ratios
65
64
,
17
16
,
5
4
, 2 of

σ∞
ω0σD

are chosen in a way

that the combinations of (κ∗r , σr) are visually more or less evenly spaced.
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Figure 3.2. Sample values (circled spots) of σr and κ∗r we use in the BSHW model.

We will compute the prices of several CARs, PTPs and cliquets in our experiments. For

the former two types of contracts, we consider the following parameters:

• T = 7, P = 1 and f = 0.03,

• c ∈ {0.15, 0.2, 0.25, 0.3,∞} when SV or SVSI models are concerned, and c ∈ {0.2, 0.25, 0.3,∞}

when we use the BS or BSHW models,

• 1 + Fτ = (1 + f)τ and 1 +Cτ = (1 + c)τ (so that our PTPs and CARs have identical

minimum or maximum possible payoffs).

We also assume that the annuitant is of age 58 and his/her survival probabilities are taken

from the 1980-94 U.S. Life Table.

We take the cliquet parameters from Schoutens et al. (2003): T = 3, N = 6, ti =

iT
N , f = −0.03, c = 0.05, F = −0.05, C =∞. Since both f and F are negative, the cliquet
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price can be negative.

3.5.1 Experimental procedure

We assume that, for all EIAs considered in our experiments, no surrender is allowed. We will

compute, under the SV and SVSI models, the prices of PTPs with term-end, Asian-end and

high-watermark designs and also the prices of CARs with term-end and Asian-end designs.

For the BS and BSHW models, since the U.S. Treasury website does not provide one-month

yield values before mid-2001, we calculate the prices of PTPs and CARs of the term-end

design only. Note that, since a term-end PTP is just a portfolio of bonds and calls, if the BS

model is calibrated using vanilla option prices, there will be no pricing errors. Therefore,

in calculating PTP prices, the BS model is not calibrated. For CARs, we calculate the BS

prices both with and without model calibration. We remark that when the BS model is

calibrated, the stock price volatility is no longer a constant but a function of time σS(t).

We can set it to the step function that satisfies

σ2
S(t) = var(X(0, t))− var(X(0, t− 1))

and σ(u) = σ(t) for all u ∈ (t− 1, t] and t = 1, 2, . . . , T .

For each type of ratchet and each combination of contract and model parameters, we

first find the critical participation rate α under the ‘wrong’ model (i.e. the SV or BS model).

This can be evaluated by using the bisection method or the secant method. Given α, the

ratchet price is calculated again under the price model with the ‘true’ model (the SVSI or

BSHW model). The percentage pricing error (i.e. relative pricing error multiplied by 100%)

is then measured by

(
SV price

SVSI price
− 1
)
× 100% or

(
BS price

BSHW price
− 1
)
× 100%,

depending on the asset price models. This error is negative when the ratchet is underpriced

under the wrong model and positive otherwise.
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After computing the pricing errors for our EIAs, we will also compute the prices of our

cliquets for the two pairs of models. We are interested to know if the striking results of

Schoutens (2003) also occur in our experiment, although folklore assumption says that they

should not.

3.5.2 EIA prices: SV model vs SVSI model

The pricing biases of the SV model for all five different types of ratchets are listed in table

3.3 and a few summary statistics are given in table 3.4. Except for term-end PTPs, the

prices of all contracts here as well as the sensitivities of the SVSI prices to the critical α are

calculated using simulation. The maximum standard errors of the simulated prices and the

sensitivities are shown in the first and the sixth rows of table 3.4. They are so small that

the calculated prices and sensitivities should be precise enough. In table 3.3, the pricing

errors in the term-end PTPs (panel A) are nonzero because instead of calibrating the SV

model to the SVSI prices, Bakshi et al. (1997) calibrate both models using market prices

of vanilla options.

Over the range of parameters and yield curves we consider, the smallest pricing error is

about −0.4% (first column in panel D, table 3.3). Even the largest pricing bias is fairly small

(−1.26%, with c = ∞ and r = 8% in panel C). However, all pricing errors are negative,

meaning that in the scenarios we consider, one is expected to lose money on selling all five

kinds of ratchets.

By comparing the results in table 3.3, we see that the pricing errors are the largest in

high-watermark ratchets, smaller in term-end ones and the smallest in ratchets with Asian-

end design. This is consistent with the usual perceived sizes of fluctuation of the payoffs of

these three types of instruments. However, although the paths of (H(1), H(2), . . . ,H(7))

are less fluctuated for CARs than for PTPs (because of the presence of local caps and floors

in CARs), the pricing errors in Asian-end CARs are not necessarily smaller in size than

those in Asian-end PTPs. See, e.g. the results in panels B and E when c = 15% and r = 7%
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or 8%. Similarly, although the paths of (H(1), H(2), . . . ,H(7)) are less fluctuated when the

cap rate is small than when it is large, in panels A, B, D and E we see that the sizes of the

pricing errors are actually smaller when c is larger. The reason was explained in section 4.

c r
1% 2% 3% 4% 5% 6% 7% 8%

(A) Term-end PTPs
15% −0.63% −0.67% −0.71% −0.74% −0.77% −0.80% −0.83% −0.85%
20% −0.63% −0.66% −0.69% −0.72% −0.74% −0.76% −0.77% −0.79%
25% −0.62% −0.66% −0.69% −0.71% −0.74% −0.75% −0.77% −0.78%
30% −0.62% −0.66% −0.69% −0.71% −0.73% −0.75% −0.77% −0.78%
∞ −0.62% −0.66% −0.69% −0.71% −0.73% −0.75% −0.77% −0.78%

(B) Asian-end PTPs
15% −0.62% −0.65% −0.68% −0.71% −0.73% −0.76% −0.77% −0.80%
20% −0.60% −0.63% −0.66% −0.69% −0.71% −0.73% −0.75% −0.76%
25% −0.60% −0.63% −0.65% −0.68% −0.70% −0.71% −0.72% −0.73%
30% −0.59% −0.62% −0.65% −0.68% −0.71% −0.72% −0.74% −0.74%
∞ −0.55% −0.58% −0.61% −0.62% −0.64% −0.65% −0.66% −0.66%

(C) High-watermark PTPs
15% −0.69% −0.72% −0.74% −0.77% −0.79% −0.81% −0.83% −0.84%
20% −0.73% −0.77% −0.81% −0.85% −0.87% −0.90% −0.92% −0.94%
25% −0.76% −0.79% −0.83% −0.86% −0.90% −0.93% −0.95% −0.98%
30% −0.78% −0.83% −0.87% −0.90% −0.93% −0.97% −0.99% −1.01%
∞ −0.90% −0.96% −1.02% −1.07% −1.12% −1.17% −1.22% −1.26%

(D) Term-end CARs
15% −0.43% −0.48% −0.52% −0.58% −0.63% −0.69% −0.75% −0.82%
20% −0.42% −0.45% −0.48% −0.51% −0.54% −0.58% −0.62% −0.66%
25% −0.40% −0.43% −0.45% −0.48% −0.51% −0.55% −0.58% −0.60%
30% −0.40% −0.42% −0.44% −0.46% −0.48% −0.50% −0.53% −0.55%
∞ −0.40% −0.43% −0.45% −0.47% −0.50% −0.52% −0.54% −0.56%

(E) Asian-end CARs
15% −0.50% −0.53% −0.56% −0.60% −0.65% −0.71% −0.78% −0.86%
20% −0.50% −0.53% −0.56% −0.59% −0.62% −0.65% −0.69% −0.71%
25% −0.53% −0.56% −0.58% −0.60% −0.62% −0.65% −0.68% −0.70%
30% −0.54% −0.57% −0.59% −0.62% −0.64% −0.67% −0.69% −0.70%
∞ −0.45% −0.47% −0.48% −0.50% −0.52% −0.53% −0.55% −0.55%

Table 3.3. Percentage pricing errors in the ratchets when the SVSI model is the true model and the SV

model is the wrong one.

In practice, to protect the insurance company from model risks, one can specify in the

contract a lower participation rate than the critical one. For any fixed participation rate α0,

let SV(α0) denotes the SV price of the ratchet (i.e. the price as perceived by the insurance

company) and SVSI(α0) the SVSI price (the true price). Suppose α is the perceived critical

participation rate according to the SV model and (1−∆)α is the participation rate specified

in the contract (∆ ≥ 0). Then the policyholder would pay $1 to the insurance company and

the latter is expected to pay off SVSI ((1−∆)α) to the former when the contract expires

(despite the insurance company thinks that it is liable for an amount of SV ((1−∆)α).
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Therefore the pricing error is given by

1− SVSI ((1−∆)α) ≈ 1− SVSI(α) + α∆× d

dα
SVSI(α).

If we want the pricing error to be nonnegative, then at least we should set

∆ = max

{
0,

SVSI(α)− 1
α× d

dαSVSI(α)

}
.

In table 3.4, the margin of safety is estimated by max{∆}, where the maximum is taken

over all combinations of parameters. In all the scenarios we consider, we can get rid of the

underpricing errors by deducting 0.0567α from the perceived critical participation rate α.

PTP CAR
Term-end Asian-end High-watermark Term-end Asian-end

max. s.e. of prices - 0.00020 0.00025 0.00023 0.00026
min. critical α 70.13% 73.97% 33.32% 35.93% 61.22%
max. critical α 84.72% 90.08% 46.43% 96.91% 131.03%
min. sensit. 0.2567 0.2384 0.4905 0.1502 0.1231
max. sensit. 0.3238 0.3107 0.6440 0.6774 0.3862
safety margin ∆ 0.0354 0.0341 0.0494 0.0567 0.0536

Table 3.4. SV model vs SVSI model: a few summary statistics.

3.5.3 EIA prices: BS model vs BSHW model

The percentile plots of the pricing errors are given in figure 3.5 and some statistics are listed

in table 3.6. Unlike those in last subsection, the pricing errors here are not always negative.

In particular, when the BS model is calibrated, about 60% of the results are positive.

When the BS model is not calibrated, fig. 3.5 reveals that PTPs tend to have larger

underpricing errors but smaller overpricing errors than CARs do. Once again, this shows

that we cannot judge the size of pricing error based on the size of room that the payoffs

H(1), H(2), . . . ,H(7) can vary within. In addition, while we are tempted to think that a

calibrated model should give smaller-sized pricing errors, the opposite is observed in fig. 3.5,

regardless of whether underpricing or overpricing is concerned.

All these observations show how tricky it is to predict the signs and sizes of pricing

biases. Of course, if the pricing errors are always small, our inability of predicting their
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Figure 3.5. Plot of the percentage pricing errors in the ratchets.

(A) non-restricted (B) restricted
min. median max. min. median max.

PTP
pricing error −3.95% −0.10% 0.91% −1.08% −0.05% 0.67%
critical α 12.17% 83.75% 151.29% 25.26% 77.18% 99.90%
sensitivity 0.0861 0.2253 0.3548 0.1605 0.2267 0.3121

CAR
pricing error −0.62% 0.00% 1.26% −0.27% 0.00% 0.27%
critical α 10.13% 32.55% 74.61% 20.03% 35.45% 74.61%
sensitivity 0.1979 0.6642 0.9208 0.2069 0.6757 0.9098

CAR (calib. BS model)
pricing error −1.47% 0.15% 6.27% −1.10% 0.06% 1.70%
critical α 8.30% 32.08% 75.68% 20.00% 35.40% 75.42%
sensitivity 0.2087 0.6637 0.9161 0.2096 0.6763 0.9095

Table 3.6. Statistics for the percentage pricing errors, critical participation rates and price sensitivities to

participation rate evaluated at critical α. The numbers on panel B are calculated based on the restricted

scenarios that satisfy σD ≤ 0.02 and 0.2 ≤ α ≤ 1.

sizes or signs is less of a problem. However, as shown in figure 3.5 and table 3.6, the largest-

sized underpricing errors in PTPs is −3.95%, which is not small. In terms of margin of

safety, table 3.7 shows that the margin needed for a PTP needs is 0.2159α, which is much

larger than the margin for CARs and also those observed in the SV vs SVSI case. However,

if we restrict our attention to some less extreme scenarios where σD ≤ 0.02 and neglect the

cases α /∈ [0.2, 1] (where α is too high or too low), the largest-sized underpricing error and

the margin of safety become −1.08% and 0.0609α respectively, which are quite small.

(A) non-restricted (B) restricted
PTP 0.2159 0.0609
CAR 0.0228 0.0101
CAR (calib. BS model) 0.0414 0.0303

Table 3.7. Estimated safety margins when the BS model is used in a BSHW world. See the description of

table 3.6 for the meaning of a restricted scenario.

For CARs, it is encouraging to see that both the underpricing errors and the margins
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of safety are still very small. However, it should be noted that when the BS model is

calibrated, the maximum overpricing error is quite large (6.27%).

In fig. 3.8–3.11 we show the effects of changing parameter values. In some sense, these

effects are not examined ceteris paribus here, because the pricing error is a function of the

perceived critical participation rate α, which in turn is a nonlinear and implicit function of

all parameters. However, in another experiment (of which the results are not reported here)

we found that if we fix α = 0.25, 0.5 or 0.75 and calculated the plain pricing errors (BS

price minus BSHW price) instead of relative errors, the percentile plots thus produced are

qualitatively no different from those in fig. 3.8–3.11. So, let us pretend that α is constant

and the error measure in question is the plain price difference.
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Figure 3.8. Percentile plot of the percentage pricing errors in the ratchets, according to different values of

the 1-year discount bond volatility σD.
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Figure 3.9. Percentile plot of the percentage pricing errors in the ratchets, according to different values of

κ∗r .

Our discussion at the end of section 4 shows that when the value of a parameter moves

in one direction, the pricing error can change signs a few times. The behaviours of the

pricing errors in fig. 3.8–3.11 are much nicer. In these figures, if we fix a percentile level
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Figure 3.10. Percentile plot of the percentage pricing errors in the ratchets, according to different values of

ρ.
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Figure 3.11. Percentile plot of the percentage pricing errors in the ratchets, according to different values of

the local cap rate c.

and increase a parameter from a low value to a high value, the pricing error would either

change monotonically or first move in one direction and then in another. Yet the patterns

of change are inconsistent across different types of ratchets or different types of models. For

instance, when the BS model is not calibrated, the movement of the pricing errors in CARs

are very different from those in PTPs. Interestingly, when the pricing errors in CARs are

calculated using a calibrated BS model, the effects of the parameters on the pricing errors

in CARs are very similar to those on the negative of the pricing errors of PTPs (i.e. the

percentile plots for PTPs and CARs look alike if the latter are rotated by 180◦). Yet this

is probably incidental.

3.5.4 Cliquet price differences

As we mentioned in the first chapter, Schoutens et al. (2003) show that even when a number

of stock models are almost perfectly calibrated to vanilla call prices, the cliquet prices they
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give can differ by up to 56%. This striking result highlights the significance of volatility

risk in the pricing of path dependent options. Here we repeat their experiment, but our

purpose is to examine the relevance of interest rate risk. The results are given in table 3.12

and fig. 3.13. To much of our surprise, the largest-sized underpricing error is −87% in the

SV vs SVSI case and the maximum overpricing error is 77% in the BS vs BSHW case. The

latter number becomes 76% if we consider only the less extreme scenarios where σD ≤ 2%.

These numbers are higher than the 56% reported by Schoutens et al.. Even though such

direct comparison is not justified, our results clearly show that interest rate risks are hardly

ignorable in cliquet pricing.

r0 SVSI price SV price pricing error
1% 0.00304 0.00040 −87%
2% 0.00524 0.00247 −53%
3% 0.00751 0.00459 −39%
4% 0.00982 0.00676 −31%
5% 0.01217 0.00899 −26%
6% 0.01457 0.01127 −23%
7% 0.01703 0.01360 −20%
8% 0.01954 0.01599 −18%

Table 3.12. Percentage pricing errors in cliquets when the SVSI model is the true model and the SV model

is the wrong one. The standard errors in the prices here range from 8.37× 10−5 to 8.53× 10−5.
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Figure 3.13. Percentile plot of the percentage pricing errors in cliquets (BS model vs BSHW model).

Fig. 3.13 also reveals a mysterious phenomenon. It seems that the pricing errors are
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insensitive to either of σD, κ∗r , ρ or c. In other words, the only ‘parameter’ that is responsible

for different pricing errors here is the initial yield curve. I am not sure if this is just a special

instance or a general phenomenon.

Why are the pricing errors so large for cliquets (the largest-sized error being −87%) but

not for CARs and PTPs (with errors up to 6.27%)? If we look at the plain price differences

(table 3.14) instead of the percentage pricing errors, we find that the pricing errors in our

EIAs and cliquets are actually of the same order of magnitude. So, cliquets apparently

have very large relative pricing errors simply because the nominal principal P they seek to

protect is not included in the premiums. We will go back to this point in next chapter.

SV vs SVSI BS vs BSHW
7-yr term-end CAR $− 0.0082 $0.059
3-yr cliquet $− 0.0035 $0.020

Table 3.14. The largest-sized plain price differences for term-end CARs and cliquets.

3.6 Conclusion

Is it necessary for risk managers of EIAs to model a stochastic interest rate environment?

For term-end PTPs with no surrender, the answer in theory is negative because one can get

rid of all of the interest rate risk by replicating such a PTP by a portfolio of discount bonds

and call options. Certainly this is only theoretical because in practice holding long-term

over-the-counter options to its expiry date may create liquidity and credit risk problems

that are hard to manage, but the replication argument itself shows that the pricing errors in

term-end PTPs should be small when the pricing models are calibrated. This is supported

by the results in our comparison of the SV prices against the SVSI prices, where the ‘wrong’

model (the SV model) is calibrated, albeit non-perfectly. Indirect evidence can also be found

in our comparison of the BS model against the BSHW model, where the BS model is not

calibrated and the pricing errors and safety margins are found to be quite large. So, for

term-end PTPs with no surrender, the key for managing model risk seems to be calibration

38



but not stochastic interest rate modelling.

For the other three types of EIAs, it appears that the underpricing errors are fairly small

and these errors can be easily absorbed by assigning a mild margin of safety. In particular,

the pricing errors between the SV and SVSI models for HWM PTPs are surprisingly small

(they can be underpriced by up to 1.26%), although they are — as expected — the largest

among the pricing errors for all four types of EIAs we have considered. So, solely based on

our results and purely from the pricing aspect, there seems to be no need to worry about the

randomness of interest rates. However, in case the interest rate environment is very volatile

or some less usual participation rates are considered, the overpricing errors for term-end

CARs can be quite large (up to 6.27% in our experiments). While one will not lose money

on selling an overpriced ratchet, such a large extent of overpricing may make the ratchet

looks less competitive. More importantly, large pricing errors (regardless of their signs) can

be detrimental to hedging, because the hedge positions may appear not self-financed.

For cliquets, we find that percentage pricing errors are huge and are much larger than

those for ratchets. However, the plain pricing errors for both instruments are of the same

order of magnitude. So, depending on one’s error measure, the pricing errors in cliquets can

be material or illusory. At any rate, our results suggest that the impact of interest rate risks

on cliquet prices are not only significant, but also comparable to the impact of volatility

risks. This should surprise many people, as the maturity of the cliquet we consider is just

three years long and the stock returns in the payoff function have time spans of merely six

months long.

Apart from the sizes of pricing errors, we also concern about how these errors change

with the interest rate environment. In the second half of sec. 4, we argue that due to the

nonlinear shape of the payoff function, it is very difficult to explain — even after the fact

— the effects of changing different parameters on the pricing errors. Our experimental

results show that pricing errors can behave very differently for different models or different

instruments. In practice, the problem is further complicated by the presence of errors in
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model estimation and calibration. So, the authors believe that one should be very careful

in accepting any presumption about the effects of changing interest rate environment on

pricing errors.

Before ending this chapter, the reader should be cautioned that our results are merely

preliminary, as we have examined only a limited number of asset price models under a

limited number of scenarios. If more competing pricing models and more scenarios are

included, one will likely see larger pricing errors than those we observe here, although the

sizes of these errors may hopefully remain small. We hope we can do a more elaborate

research in the future.
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Chapter 4

Volatility risk for equity-indexed

annuities

4.1 Overview

In this chapter we change our focus to volatility risk for EIAs. Although the term ‘volatility

risk’ originates from the concern about the effect of the randomness of implied volatilities

of plain-vanilla options on the pricing of exotic options, it should not be taken as the risk

about the volatility of the underlying because such volatility is simply not defined under

any model with random jumps in the equity price. It should be understood as the risk

about the misspecification of the path structure of the discounted equity price.

The organisation of this chapter is similar to that in the former one. Essentially, we

will first introduce the economic models we include in our experiments, then explain how

to calibrate our models and how to set up our experiments and finally we will present and

discuss our results. However, unlike the previous chapter, which is basically a piece of

empirical research, there are a few mathematical contributions here. In particular, we will

show that some existing ‘risk-neutral’ pricing models are not really risk-neutral and we will

also explain how to obtain equivalent martingale measures for some Levy processes and

a class of time-changed Levy processes called continuous-time regime switching (CTRS)
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models.

4.2 Economic models

The number of stock price models developed after the seminal work of Black and Scholes

(1973) is so vast that even a casual overview on their development can take pages to com-

plete. In this section we will only introduce a few of them. These selected models will be

included in our experiments. While not all of them are genuine stochastic volatility models,

they do reflect certain important aspects of a realistic stock price process.

Throughout, let us assume that the spot interest rate r is deterministic and our stock

pays a constant and continuous dividend yield q. We shall denote the stock price by S and

the log discounted total return of the stock price by X. By convention we assume that

X0 = 0 (we will use notations like Xt and X(t) interchangeably throughout this chapter).

So, we have

St = S0 exp
[∫ t

0
(rs − q)ds+Xt

]
.

In the sequel we shall focus on our models of X.

4.2.1 Black-Scholes model

In the classical Black-Scholes model, the stock price volatility σ is treated as a constant.

However, owing to the presence of volatility smiles, if we calibrate this classical model to

the market prices of vanilla options, we will get very poor results. This adverse effect can

be somehow mitigated by considering σ as a deterministic function of time. So, in our

experiments, the risk-neutral stochastic differential equation (SDE) for X is postulated as

dXt = −1
2
σ2
t dt+ σtdW

Q
t ,

where WQ is a standard Brownian motion under the risk-neutral measure Q. With such ex-

tension, the increment Xt−Xu for any u < t is distributed under Q as a Normal distribution
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with mean −1
2V (u, t) and variance V (u, t), where

V (u, t) =
∫ t

u
σ2
sds.

Simulation of this extended model is straightforward. For option pricing, to calculate the

time-t price of a vanilla European option with expiry date T , one can simply apply the

Black-Scholes formula, but replace the total variance term (T − t)σ2 by V (t, T ).

In practice, σt is not known in advance, but obtained from model calibration. Given the

market prices of a set of vanilla options with different maturities T1 < T2 < . . . < Tn, we

can find values of V (0, T1), . . . , V (0, Tn) for which the errors between theoretical prices and

market prices are the smallest with respect to some error metric. Any value of V (0, t) for t

between 0 and Tn can practically be obtained by function interpolation. For convenience, I

use cubic spline interpolation in this chapter. For t > Tn, we put σ2
t = σTn = 1

T V (0, T ). So

σ is a piecewise smooth curve and the stochastic integral of σ with respect to WQ always

exists. Note that although σ is nonconstant here, it is still a deterministic quantity. So this

extended model cannot exhibit volatility smile across strikes.

4.2.2 Levy models

Another way to extend the classical Black-Scholes model is to use a non-Gaussian but sta-

tionary distribution for the increments of X. This can be achieved by using Levy processes.

The flourishment of Levy processes (other than Brownian motions and Poisson processes)

in option pricing theory can be attributed to Eberlein and Keller (1995), Barndorff-Nielsen

(1995) and Madan et al. (1998), who independently developed various classes of Levy pro-

cesses with their students and co-workers. Applications of Levy processes in fair valuation

and hedging of insurance contracts have been studied by several researchers, e.g. Aase

(2000), Ballotta (2005), Jaimungal and Young (2005) and Riesner (2006). Readers who are

interested in the general theory of Levy processes can consult the two excellent treatises

written by Bertoin (1996) and Sato (1999). Applebaum (2004) has also surveyed some

important theoretical results and has included in his book a very well written overview on
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the subject as well as a section on mathematical finance. For financial applications, the

monographs written by Schoutens (2003) and Cont and Tankov (2004) are very useful, and

Kyprianou et al. (2005) contains many interesting results from recent research.

A d-dimensional stochastic process X = (Xt, t ≥ 0) defined on a filtered probability

space (Ω,F ,P) is called a Levy process if (a) X0 = 0 almost surely (a.s.), (b) X has

independent and stationary increments and (c) X is stochastically continuous, i.e. for any

ε > 0 and any s ≥ 0,

lim
t→s

P(|X(t)−X(s)| > ε) = 0.

Owing to property (b), if we model the log discounted total return as a non-Brownian Levy

process, the model can produce volatility smiles across strikes (due to non-Gaussian incre-

ments) but cannot exhibit stochastic volatility (because of the stationarity of increments).

Property (b) also makes the distribution of Xt −Xs infinitely divisible for any 0 ≤ s < t.

Recall that a random variable is called infinitely divisible if for any positive integer n, the

distribution of is the sum of n i.i.d. random variables. For a Levy process increment, this

is always satisfied as

Xt−Xs = (Xs+n∆−Xs+(n−1)∆)+(Xs+(n−1)∆−Xs+(n−2)∆)+. . .+(Xs+∆−Xs) (∆ = (t−s)/n).

The famous Levy-Khintchine formula says that any probability measure µ on Rd is infinitely

divisible if and only if there exists a vector b ∈ Rd, a positive semidefinite symmetric

matrix A ∈ Rd×d and a Levy measure Π defined on Rd \ 0 (i.e. a measure such that∫
Rd\0(1 ∧ ||x||2)Π(dx) is finite) such that the characteristic function φµ(u) of µ can be

written as

φµ(u) = exp{ζµ(u)},

ζµ(u) = $b>u− 1
2
u>Au+

∫
Rd\0

(
e$u

>x − 1−$u>x1{||x|| < 1}
)

Π(dx)

In particular, since X1 is infinitely divisible, for any rational number t > 0, the characteristic

function of Xt is given by φXt(u) = etζX1
(u) (we abuse the notations here so that we do not
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need to distinguish between Xt or X1 from the probability measures they induce). Now

condition (c) essentially guarantees that for any real (vector) u, the mapping t 7→ φXt(u)

is continuous in t. So one can prove (see, e.g. Bingham et al. 1987, pp. 4-6) that for any

t ≥ 0,

φXt(u) = φt(u) = etζ(u),

where φ(u) and ζ(u) are shorthands for φX1(u) and ζX1(u) respectively (we shall drop the

subscript hereafter when there is no confusion). The function ζ is called the Levy symbol

or characteristic exponent of X. The triple (b, A,Π) is usually called the Levy triple or

characteristic triple. If X ′ is a Levy process with Levy triple (b′, A′,Π′) defined on the

same filtered probability space as X, then X + X ′ is a Levy process with Levy triple

(b+ b′, A+A′,Π + Π′).

When Π is a discrete distribution, say Π =
∑n

j=1 λjδxj where δx denotes a Dirac mass

at x, we can rewrite the above characteristic function of Xt as

φXt(u) = exp
{
$tu>b− t

2
u>Au

}
×

∏
||xj ||<1

exp
{
tλj

(
e$u

>xj − 1−$u>xj
)}

×
∏
||xj ||≥1

exp
{
tλj

(
e$u

>xj − 1
)}

.

So such a Levy process is the sum of a Brownian motion with drift, a number of compensated

Poisson processes with smaller jump sizes and a number of Poisson processes with larger

jump sizes. Roughly speaking, we can interpret a Levy process similarly in general. Owing

to the presence of jumps, realised paths of Levy processes (except when they are Brownian

motions) are discontinuous. However, just like we can always choose a continuous version

for a Brownian motion, we can always choose a version of Levy process that has a.s. cadlag

(right continuous with left limits) paths.

In our numerical experiments, all the Levy processes we consider are based on the

following three processes.
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Meixner process (Schoutens and Teugels 1998, Schoutens, 2001)

The Meixner(α, β, δ) distribution is defined for parameters where α > 0, −π < β < π and

δ > 0. Its characteristic function is given by

φ(u) =

 cos
(
β
2

)
cosh

(
αu−iβ

2

)
2δ

and its mean is αδ tan(β/2). It has a Levy triple of the form (b, 0,Π), where

b = αδ tan
(
β

2

)
− 2δ

∫ ∞
1

sinh(βx/α)
sinh(πx/α)

dx,

Π(dx) = δ
exp(βx/α)
x sinh(πx/α)

dx.

A Meixner(α, β, δ) process is defined as the Levy process L such that L1 has the

Meixner(α, β, δ) distribution. So, if L is such a process, then the law of the increment

Lt − Ls is identical to the law of Lt−s, which is a Meixner(α, β, (t− s)δ) distribution.

At the time of writing, there is not any exact simulation method for the Meixner process.

There are, however, two simulation methods for approximating a Meixner process. The first

method, developed by Asmussen and Rosinski (2001) and also described in Schoutens (2003,

section 8.2.1), replaces small jumps in the process by a Brownian motion, divides large jump

sizes into intervals and lumps the jumps in each interval into a single Poisson process with a

constant jump size. The method is generic in the sense that it can be used to approximate

many other Levy processes as long as the Levy measure in the Levy-Khintchine formula

satisfies a certain technical condition. However, the performance of this method can be

susceptible to the way that the large jumps are discretised.

The second simulation method was developed by Madan and Yor (2005). It views a

Meixner(α, β, δ) process L as a time-changed Brownian motion

Lt =
β

α
τ∗t +Wτ∗t

.

The stochastic time change τ∗t is then simulated as an infinite sum

τ∗t = αδ

√
2ε
π

+
∞∑
j=1

ε

u2
j

1{g(ε/u2
j ) > wj} (4.1)
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where ε > 0 is a small number such that jump sizes smaller than ε are in principle lumped

into a drift term that corresponds to the first summand in the above equation and {uj},

{wj} are two independent sequences of i.i.d. uniform random variates. The function g is

a certain distribution function that has an infinite series representation. Madan and Yor

(2005) have not explained how to calculate g effectively and how to truncate the infinite

series in (4.1). Due to the difficulties in implementing the above two simulation methods,

we will not perform simulations for the Meixner process in our numerical experiments.

Normal inverse Gaussian (NIG) process (Barndorff-Nielsen 1995).

The NIG(α, β, δ) distribution is defined for α > 0, |β| < α and δ > 0. It is a special case of

the generalised hyperbolic distribution GH(−1
2 , α, β, δ, 0) developed by Eberlein and Prause

(1998). Its characteristic function is given by

φ(u) = exp
{
−δ
[√

α2 − (β +$u)2 −
√
α2 − β2

]}

and its mean is δβ/
√
α2 − β2. The NIG(α, β, δ) process is defined as the Levy process L such

that L1 has a NIG(α, β, δ) distribution. So, for such a process, Lt follows a NIG(α, β, tδ)

distribution. The NIG process can be explicitly written as a time-changed Brownian motion:

Lt = βδ2It + δWIt .

Here I is an Inverse Gaussian (IG) process with parameters a = 1 and b = δ
√
α2 − β2 (so

that It follows the IG(at, b) distribution). As a result, we can simulate the NIG process

exactly. See chapters 5 and 8 of Schoutens (2003) for a description of the IG process and

an exact simulation method for the IG distribution.

Variance gamma (VG) process (Madan and Seneta 1987, Madan et al. 1998).

There are two conventions to specify a VG distribution. The first specifies the distribution

using three parameters ν > 0, σ > 0 and θ ∈ R, where θ is the mean of distribution. The
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functional form of the characteristic function under this convention is given by

φ(u) =
(

1−$uθν +
1
2
σ2νu2

)−1/ν

.

The second convention uses three positive parameters C, G and M , where

C = 1/ν,

G = 1/

(√
1
4
θ2ν2 +

1
2
σ2ν − 1

2
θν

)
,

M = 1/

(√
1
4
θ2ν2 +

1
2
σ2ν +

1
2
θν

)

or equivalently,

ν = 1/C,

σ =

√
2C
GM

,

θ =
(G−M)σ2

2
=
C(G−M)

GM
.

Under this convention, the VG(C,G,M) distribution is a special case of the CGMY(C,G,M, Y )

distribution (Carr et al. 2002) with Y = 0. The characteristic function of the VG distribu-

tion can be written as

φ(u) =
[

GM

GM + (M −G)iu+ u2

]C
and its Levy triple is in the form of (b, 0,Π), where

b = −C
[
e−M − 1
M

− e−G − 1
G

]
,

Π(dx) =
(
−Ce

Gx

x
1{x < 0}+

Ce−Mx

x
1{x > 0}

)
dx.

A VG(ν, σ, θ) (respectively VG(C,G,M)) process is defined as the Levy process L such

that L1 has the VG(ν, σ, θ) (respectively VG(C,G,M)) distribution. For such a process,

Lt follows a VG(ν/t, σ
√
t, θt) (respectively VG(Ct,G,M)) distribution. Exact simulation

method exists for the VG process because we can view a VG process as a time-changed

Brownian motion of the form

Lt = θGt + σWGt ,
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where G is a Gamma process with parameters a = b = 1/ν = C (and hence Gt has

Gamma(at, b) distribution). See chapters 5 and 8 of Schoutens (2003) for a description of

the Gamma process and an exact simulation method for the Gamma distribution.

Superposition of pure jump processes and diffusions. The three Levy processes

above are pure jump processes, i.e. in each of their Levy triples there is no Brownian

component (A = 0). Madan et al. (1998) argue that pure jump processes are adequate for

modelling real world price processes, but for some reasons that we will explain later, we

shall consider one-dimensional Levy processes with both diffusion parts and jump parts.

These processes take the following form:

mt+WAt + Lt, (4.2)

where m ∈ R, A > 0, W is a standard Brownian motion and L is an independent Meixner,

NIG or VG process. (The Levy triple for such a process is hence of the form (m,A,Π).)

4.2.3 Heston (1993) model and its extensions

The stochastic volatility model by Heston (1993, abbreviated as SV model hereafter) and

its extensions (such as Bates 1996, Scott 1997, Bakshi et al. 1997, Duffie et al. 2000 or

Kou 2002, 2004) are perhaps the most influential and widely used models in equity price

modelling. In our experiments, we consider the extension developed by Bakshi et al. (1997)1.

This extension, which we call the SVJ model, postulates that the risk-neutral dynamics of

the stock price process is governed by the following SDEs:

dSt = (rt − qt − λJµJ)St−dt+ σtSt−

(
ρdW

Q(1)
t +

√
1− ρ2dW

Q(2)
t

)
+ JtSt−dNt, (4.3)

dσ2
t = κ(η − σ2

t )dt+ λσtdW
Q(1)
t , (4.4)

where WQ(1), WQ(2) are two standard Brownian motions, µJ is a constant, {Jt} are i.i.d.

jump sizes and N is a Poisson process with intensity parameter λJ . The four processes
1This extended model encompasses jumps and stochastic volatility in the stock price and randomness in

the interest rate and is sometimes referred to as the SVJ-SI model. When there are no jumps, it reduces to
the SVSI model we considered in the previous chapter; when the interest rate is not stochastic, it reduces
to the SVJ model we consider here.)
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WQ(1), WQ(2), J and N are assumed to be independent. The SV model is the special case

where there is no jump (i.e. λJ = 0 and the dNt term is void). In the most popular choice

for Jt, the distribution of log(1 + Jt) is taken to be normal:

log(1 + Jt) ∼ N
(

log(1 + µJ)− 1
2
σ2
J , σ

2
J

)
.

Another choice for log(1+Jt), proposed by Kou and Wang (2004), is the doubly exponential

distribution, but we opt to use the lognormal version in this thesis. The characteristic

function of the discounted total return Xt in this case is given by

φ(u, t) = EQ
[
e$uXt

∣∣S0, σ
2
0

]
= exp

{
ηκ

λ2

[
(κ− ρλ$u− d)t− 2 log

1− ge−dt

1− g

]
+
σ2

0

λ2

[
(κ− ρλ$u− d)(1− ge−dt)

1− g

]
−λJµJ$ut+ λJ t

[
exp

((
log(1 + µJ)−

σ2
J

2

)
$u− u2

)
− 1
]}

,

d =
√

(κ− ρλ$u)2 + λ2($u+ u2),

g =
κ− ρλ$u− d
κ− ρλ$u+ d

.

For the physical process, it is usually assumed there is a risk premium of the form

γ + βσ2
t in the stock price and also a risk premium ξσ2

t in the variance rate, so that under

the physical measure P the dynamics of S and σ2 takes the following form:

dSt = (rt − qt − λJµJ + γ + βσ2
t )St−dt+ σtSt−

(
ρdW

P(1)
t +

√
1− ρ2dW

P(2)
t

)
+ JtSt−dNt,

dσ2
t =

[
κ(η − σ2

t ) + ξσ2
t

]
dt+ λσtdW

P(1)
t .

In this thesis, however, we will only make use of the risk-neutral dynamics.

The SVJ process is usually simulated using Euler discretisation. That is, if we want

to simulate St from time 0 to time T , we first discretise [0, T ] into, say, n subintervals

of length ∆t = T/n and then we simulate Si := Si∆t and vi := σ2
i∆t (we define ri and

qi analogously) as follows (here we simulate the risk-neutral process, the procedure for
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simulating the physical process is similar):

Si+1 = Si + (ri − qi − λJµJ)Si∆t+
√
vi∆t Si

(
ρZ

(1)
i +

√
1− ρ2Z

(2)
i

)
+ Si

∆Ni∑
k=1

J
(k)
i ,

vi+1 = vi + κ(η − vi)∆t+ λ
√
vi∆tZ

(1)
i

where ∆N1,∆N2, . . . are independent Poisson random variates with intensity parameter

λJ∆t, each J
(k)
i is a random variate of the form

J
(k)
i = exp

{[
log(1 + µJ)−

σ2
J

2

]
+ σJZ

(3,k)
i

}
− 1

and Z(1)
i , Z

(2)
i , Z

(3,1)
i , Z

(3,2)
i , . . . are independent standard normal random variates. To ensure

that vi+1 is nonnegative, a further modification of either the form vi+1 ← max(vi+1, 0) or

the form vi+1 ← |vi+1| is usually taken after vi+1 is generated.

The Euler discretisation method is inexact. In fact, until recently, no exact simulation

method for the SVJ process was known to exist. By using some results of Pitman and

Yor (1982) on squared Bessel processes, Broadie and Kaya (2004) obtain a formula for the

conditional characteristic function of
∫ t
u σ

2
sds given σ2

u and σ2
t . In turn, they also obtain

an exact simulation method for (St, σ2
t ). Since the implementation of this method involves

many technical details, in this paper we still use Euler discretisation for simulation purpose.

4.2.4 Γ-OU model

Barndorff-Nielsen and Shephard (2001) have proposed a class of models (called BN-S models

hereafter) in which the variance rate of the diffusion part of X is an Ornstein-Uhlenbeck

(OU) type process driven by a Levy subordinator:

dXt = (µ+ βσ2
t )dt+ σtdWt + ρdZλt,

dσ2
t = −λσ2

t dt+ dZλt.

Here W is a standard Brownian motion and Z is an independent Levy process, called

a background driving Levy process (BDLP), such that its Levy symbol is of the form

ζ(u) =
∫

R+(eiux− 1)w(x)dx (hence Z has no continuous component and no negative jumps
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but its Levy measure Π has a density) and ζ(u) satisfies several technical conditions. Given

the information up to time t, it can be shown that the conditional Laplace transform of the

increment XT −Xt is given by

E
[
eu(XT−Xt)

∣∣∣Ft] = exp

[
1− e−λ(T−t)

2λ
(u2 + 2βu)σ2

t + (T − t)µu+ λ

∫ T

t
k (f(s, u)) ds

]
,

k(u) = logE[euZ1 ] = ζ(−iu),

f(s, u) = ρu+
1− e−λ(T−s)

2λ
(u2 + 2βu).

Barndorff-Nielsen and Shephard (2001) have obtained two concrete BN-S models via the

use of self-decomposable laws2. Let D be a self-decomposable law. Then (see Sato 1999,

sec. 17) there exists a BDLP Z that has D as its invariant distribution (i.e. if Y ∼ D, then

(Y + Zt) ∼ D regardless of t). Moreover, the cumulant function kD(u) of D is related to

the cumulant function k(u) of Z1 through the formula

k(u) = u
dkD(u)
du

.

Processes built from such invariant self-decomposable laws are called D-OU processes.

Barndorff-Nielsen et al. (2002) have considered the cases where D is a Gamma distribution

or an IG distribution. In each of both cases,
∫ T
t k (f(s, u)) ds has a closed-form formula,

so one can obtain the conditional Laplace transform of XT − Xt easily. Nicolato and Ve-

nardos (2003) have intensively studied the structures of equivalent martingale measures in

these models. In particular, there exists an equivalent martingale measure (EMM) Q under

which the BN-S model structure is preserved, and under such Q, we must have β = −1
2 and

µ = −λk(ρ) (note: the functional form of k here under Q may be different from the one

under the physical measure P). Furthermore, if X is a Γ-OU (resp. IG-OU process), then

one can choose an EMM under which X is still a Γ-OU (resp. IG-OU) process.

In our numerical experiments, we will consider Γ-OU processes in the risk-neutral world

2A distribution D is called self-decomposable if there exists a family of characteristic functions {φc : c ∈
(0, 1)} such that φD(u) = φD(cu)φc(u) for all c ∈ (0, 1)
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only. In this case, the integral of k(f(s)) is given as follows3:

k(u) =
au

b− u
,∫

k (f(s, u)) ds =
a

λ(b− f2)
[λf2s− b log (b− f(s, u))] ,

λ

∫ T

t
k (f(s, u)) ds =

a

b− f2

[
λ(T − t)f2 − b log

b− f1

b− ρu

]
,

f1 = ρu+
1− e−λ(T−t)

2λ
(u2 − u),

f2 = ρu+
1

2λ
(u2 − u).

Furthermore, since Zt is a Levy process and k(u) = au/(b− u), we have

E(euZλt) = eλtk(u) = exp
[
λat

(
b

b− u
− 1
)]

.

In other words, Zλt is a compound Poisson process with intensity λa and jump size distribu-

tion Exp(b) L= Gamma(1, b). So the simulation of a Γ-OU process using Euler discretisation

is straightforward.

4.2.5 Continuous-time regime-switching (CTRS) models

In modern option pricing theory, the discounted total return process X is usually modelled

as a positive semimartingale (this is not necessarily the case; the most notable exception

is to model X as a fractional Brownian motion). Loosely speaking, this ensures that small

changes (or errors) in a nonanticipating hedging strategy will only result in small changes

in the value of the hedging portfolio. Since every semimartingale — including all Levy

processes — can be written as a time-changed Brownian motion (Monroe 1978)4, every

semimartinagle can in turn be written as a time-changed Levy process.

Certainly, such a representation may not be easily made explicit, but in many models

we can explicitly write X as the sum of time-changed Levy processes, i.e.

Xt =
n∑
i=1

Y
(i)

T
(i)
t

,

3Note that in the expressions for f1, f2, there is a denominator λ. Many different accounts, such as
Barndorff-Nielsen et al. (2002, table 3.1), Nicolato and Venardos (2003, table 2.1) and Schoutens (2003,
p.87), contain typos such that this denominator is missing.

4The stochastic time change is a positive and increasing semimartingale that may be correlated with the
Brownian motion.
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where each Y (i) is a Levy process and each T (i) is a certain stochastic time change. All

models we consider in this chapter can be reformulated in this manner. For instances, in

the extended Black-Scholes model, we can reformulate the risk-neutral dynamics of Xt as

follows:

Xt = YTt ,

Yt = −1
2
t+Wt,

Tt =
∫ t

0
σ2
sds,

where W is a standard Brownian motion under Q; in the SVJ model, using Ito’s formula,

we can write the SDE for X in the following form:

dXt = (a+ bσ2
t )dt+ σtdWt + log(1 + Jt)dNt,

where a, b are constants and Wt is a standard Brownian motion. So

Xt = at+ W̃Tt + Zt,

where Tt is defined as in the above, W̃t is a Brownian motion with unit volatility and drift

b, and Zt =
∫ t

0 log(1 + Jt)dNt is a compound Poisson process. The quantity Tt is usually

interpreted as the business time, whereas t is interpreted as the calendar time.

Except the Black-Scholes model, each of the models we have mentioned so far has an

infinite number of economic states. Chourdakis (2002, 2004) has proposed a finite-state

Markovian model. More specifically, suppose ι is a time-homogeneous continuous-time

Markov chain with n states (say, ι(t) = 1, 2, . . . , n), µ1, . . . , µn are some real numbers,

{Y (i)}i=1,...,n are n independent Levy processes and {J (i,j)}i,j=1,...,n; i6=j are n2 − n families

of stochastic processes such that each J (i,j) =
(
J

(i,j)
t : t ≥ 0

)
is by itself a family of i.i.d.

random variables. It is assumed that ι and the two families of processes {Y (i)} and {J (i,j)}

are independent of each other. Chourdakis models the log-price X as follows:

Xt =
n∑
i=1

∫ t

0
1(ιs− = i)dY (i)

s +
∑

0≤s≤t
1(ιs− 6= ιs)J (ιs−,ιs)

s . (4.5)
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In other words, if ι remains in state i on some interval [t1, t2) and changes to state j at

time t2, then increments of X over the time period [t1, t2] are given by the increments of

the Levy process Y (i), except that X will experience at time t2 an additional jump whose

size is distributed according to the law of J (i,j)
t2

. Some models, such as those considered in

Edwards (2005), Elliott et al. (2005) and Boyle et al. (2007), are special cases of Chourdakis’

model when state transitions do not induce any jump.

Chourdakis’ model has the merit that given any t > s, the characteristic function of

the increment Xt − Xs given (ιs, ιt) is readily available. Let A = (aij) be the intensity

matrix of the Markov chain ι (do not confuse this A with the A in the Levy triple) and

P (t) = (Pij(t)) = exp(tA), so that Pij(t) is the transition probability

Pij(t) = P(ιt = j|ι0 = i) = P(ιs+t = j|ιs = i).

Let Φ(u; s, t) be the n× n matrix whose (i, j)-th entry is Pij(t− s) times the characteristic

function of Xt −Xs conditional on (ιs, ιt), i.e.,

Φij(u; s, t) = Pij(t− s) E
(
e$u(Xt−Xs)|ιs = i, ιt = j

)
.

Chourdakis (2002) shows that this weighted characteristic function matrix is time-homogeneous

and can be written explicitly as

Φ(u; s, t) = Φ(u; t− s) = (Φij(u; t− s)) := exp [(t− s)B(u)] (4.6)

where B(u) = (bij(u)) is the square matrix such that

bii(u) = aii + ζi(u),

bij(u) = aijφij(u) for i 6= j.

Here ζi denotes the Levy symbol of Y (i) and φij denotes the characteristic function of J (i,j)
t

for any t.
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CTRS process as Markov chain approximation

In principle, to specify a CTRS process, we need to specify n Levy processes, n2−n transition

intensities (aij for all i 6= j) and n2 jump size distributions. Chourdakis has explained how

to use his model as an approximation to existing stochastic volatility models. In this regard

the amount of details to be specified is vastly reduced. To illustrate, consider a diffusion

process:

dyt = µ(yt−)dt+ Σ(yt−)dWt.

Let y′1 < y′2 < . . . < y′n denote a uniformly spaced grid of nodes with spacing y′i − y′i−1 = h,

and ι be a continuous-time Markov chain with n states and the following intensities (where

µ+ and µ− denote the positive and negative parts of µ):

ai,i−1 =
µ−(y′i)
h

+
Σ2(y′i)

2h2
, (4.7)

ai,i+1 =
µ+(y′i)
h

+
Σ2(y′i)

2h2
. (4.8)

Here the diagonal entries ai,i are by definition equal to −
∑

i6=j aij and by convention, all

other unspecified off-diagonal entries are equal to zero. Kushner (1990) proves that, when

the spacing h is small enough and the range that the grid of nodes covers is large enough,

the stochastic process y′ι can approximate y arbitrarily well provided that µ and Σ satisfy

some mild technical conditions.

Now, suppose we want to approximate the SV model by a CTRS process. Using Ito’s

formula, if we put5 yt = log σ2
t , then (4.3) and (4.4) give

dXt = −1
2
eytdt+ eyt/2

(
ρdW

(1)
t +

√
1− ρ2dW

(2)
t

)
, (4.9)

dyt = κ

[(
η − λ2

2κ

)
e−yt − 1

]
dt+ λe−yt/2dW

(1)
t . (4.10)

5We may put yt = σ2
t as well, as we shall do later in specifying the Levy/Γ-OU model. However, in

practice, it seems that a finer spacing is needed for a low variance rate than for a high variance rate. So I

follow Chourdakis (2002, 2004) and try to use the log variance rate wherever possible.
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Substitute the second SDE into the first, we get

dXt = −1
2
eytdt+

ρ

λ

{
eytdyt − κ

[(
η − λ2

2κ

)
− eyt

]
dt

}
+ eyt/2

√
1− ρ2dW

(2)
t

=
[(

ρκ

λ
− 1

2

)
eyt − ρκ

λ

(
η − λ2

2κ

)]
dt+ eyt/2

√
1− ρ2dW

(2)
t +

ρ

λ
eytdyt.

So, if we approximate y by y′ι, then X can be approximated by the CTRS model where

Y
(i)
t =

[(
ρκ

λ
− 1

2

)
ey
′
i − ρκ

λ

(
η − λ2

2κ

)]
t+
∫ t

0
ey
′
i/2
√

1− ρ2W (2)
s ,

J
(i,j)
t =



ρ

λ
ey
′
ih if j = i+ 1,

−ρ
λ
ey
′
ih if j = i− 1,

0 otherwise.

In our experiments, instead of using CTRS models as approximations of existing stochas-

tic volatility models, we use existing models as guidelines to specify our CTRS models.

Whether the CTRS models would converge to these existing models is not our concern. In

the following we will give the concrete classes of CTRS models that we use in our experi-

ments.

Levy/CIR models

We consider the Markov chain described by (4.7), (4.8) together with the square-root process

(4.10):

ai,i−1 =
κ

h

[(
η − λ2

2κ

)
1
ci
− 1
]−

+
λ2

2cih2
, (4.11)

ai,i+1 =
κ

h

[(
η − λ2

2κ

)
1
ci
− 1
]+

+
λ2

2cih2
. (4.12)

where ci = ey
′
i . Let Y be a Levy process of the form (4.2). We define X as in (4.5), where

J
(i,j)
t = hij :=



ρcih if j = i+ 1,

−ρcih if j = i− 1,

0 otherwise.

Y
(i)
t

L= −
∑
j 6=i

aij

(
ehij − 1

)
t+ Ycit,
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where Y is a Levy process of the form (4.2). So the transition-induced jumps (J (i,j)
t ) are

basically those in the previous approximation of the SV process, except that the constant λ

is absorbed into ρ. We call the process X a Meix/CIR process if the L in (4.2) is a Meixner

process, and vice versa.

Levy/Γ-OU models

We can also use a Markov chain to mimic a Gamma-OU(λ, ρ, a, b) process. Conceptually,

we think of yt as a surrogate for σ2
t and let y′1 < y′2 < . . . < y′n be n evenly spaced positive

numbers. When the transition intensities for ι are given by

ai,i−1 = λy′i/h, (4.13)

ai,j = λab(j − i)he−b(j−i)h (j > i), (4.14)

the process y′ι can be used to mimic a Gamma-OU(λ, ρ, a, b) process. Let ci = y′i and Y be

a Levy process of the form (4.2). We define X as in (4.5), where

J
(i,j)
t = hij :=


ρ(j − i)h if j − i ≥ −1,

0 otherwise.

Y
(i)
t

L= −
∑
j 6=i

aij

(
ehij − 1

)
t+ Ycit,

where Y is a Levy process of the form (4.2). We call X a Meix/Γ-OU process if the L in

(4.2) is a Meixner process, and vice versa.

Relationship between CTRS models and RSLN models

A discrete-time regime-switching model, called regime-switching lognormal (RSLN) model,

was introduced by Naik (1993) to the option pricing community and by Hardy (2001) to

actuaries. It has been the focus of numerous research works. See, e.g. Bollen (1998),

Kolkiewicz et al. (2001) and Edwards (2005). In this model, ι = (ι(t0), ι(t1), . . .) is a

discrete-time Markov chain and X = (X(t0), X(t1), . . .) is such that:

X(tk)−X(tk−1) = µι(tk) + σι(tk)Z(tk),
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where µi and σi (i = 1, 2, . . . , n) are constants and (Z(tk) : k = 1, 2 . . .) is a family of i.i.d.

standard normal random variables.

Despite the apparent similarity between the CTRS model and the RSLN model, there

are subtle differences. In a RSLN process, the distribution of the increment X(tk)−X(tk−1)

depends only on ι(tk). For the purpose of our discussion, let us call a process like this vertex-

dependent. For a discretely sampled CTRS process, of which the incremental distribution

depends not only on ι(tk) but also on ι(tk−1), we say it is edge-dependent. Certainly we

can always reformulate an edge-dependent model into a vertex-dependent one by redefining

the state variable as ι̃(tk) = (ι(tk−1), ι(tk)), but then the intensity matrix of ι̃ has a special

sparseness pattern that is not necessarily present in the intensity matrix of a RSLN process.

So in the sequel we refrain from using this trick.

Another difference between a RSLN-like vertex-dependent model and a CTRS model

is that in the former, some time scale is more special than the others. Suppose Xhalf

and Xann are respectively the half-yearly sampled and annually sampled time series of a

certain log-price process X, where Xhalf is a general RSLN-like regime switching process

such that its transition probabilities may be time-dependent and the distributions of its

increments can be non-normal. For ease of discussion, suppose ι has only two states. In

the following proposition, we show that Xhalf and Xann cannot both be vertex-dependent

regime switching processes unless some unusual conditions hold.

Proposition 4.1. Suppose for all u ∈ R, we have(
αϕ1(u) (1− α)ϕ2(u)

(1− β)ϕ1(u) βϕ2(u)

)
=
(

pφ1(u) (1− p)φ2(u)
(1− q)φ1(u) qφ2(u)

)(
p̃φ̃1(u) (1− p̃)φ̃2(u)

(1− q̃)φ̃1(u) q̃φ̃2(u)

)
.

Then either (a) p + q = 1, or p + q 6= 1 but at least one of the followings hold: (b)

(p̃, q̃) = (0, 0) or (1, 1), (c) φ1 = φ2, or (d) both φ̃1 and φ̃2 vanish on some nonempty open

intervals.

Here we allow the Markov chain to be time-inhomogeneous and the distributions of

the increments of Xhalf to be time-dependent. The symbols α, β, p, q, p̃, q̃ are transition
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probabilities and ϕ1, ϕ2, φ1, φ2, φ̃1, φ̃2 are characteristic functions for appropriate time pe-

riods. Note that both conditions (a) and (c) imply that the increment of Xhalf over the

first half of the year has a state-independent distribution and condition (b) implies that

state transitions in the second half of the year are certain. Thus Xhalf is not a genuine

stochastic volatility model if any one of these three conditions hold. For condition (d),

although there do exist some probability distributions whose characteristic functions vanish

on some nonempty open intervals (e.g. as pointed out by Feller 1968, p.503, the character-

istic function corresponding to the probability density function f(x) = 1−cos(ax)
πax2 is given by

φ(u) = 1− |u|a for |u| ≤ a and φ(u) = 0 otherwise), to our knowledge none of them has been

used in option pricing literature.

In short, if an annually sampled log-price process is a RSLN-like regime switching model,

then unless we enlarge the space of state variables or impose some strange conditions, vertex

dependency will be lost if we double or halve the sampling frequency. So, in such a model,

some time scale is more special than the others. Whether this is financially unconvincing

is controversial (see e.g. the interesting discussion between Klein and Hardy 2001). In

contrast, there is no special time scale in CTRS models.

Number of states in CTRS models

How many states of ι are needed in building a useful CTRS model? The work of Hardy

(2001) shows that for fitting the physical process of X with the RSLN model, two states

are enough. So a small number of states are probably also enough for CTRS models.

The situation is very different if we want to calibrate our asset price model to market

option prices. An issue in RLSN or CTRS models that has been overlooked by most

researchers in the literature is that when the Markov chain has n states, RSLN or CTRS

models can exhibit only n different kinds of volatility smiles. However, the number of

volatility smiles we can observe in an option market is virtually infinite. So, even if we can

calibrate a RSLN or CTRS model to the today’s market prices nicely, it is unlikely that the
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calibrated model can fit tomorrow’s prices well. In other words, if the number of states is

small, we would have to recalibrate our model frequently and the model parameters may

change drastically from day to day. While this may not be a real issue in some applications

(e.g. when calibration is done only because we want to create an initial static hedge), in

general such instability of model parameters is undesirable.

In our numerical experiments, since we only calibrate our models once using a cross sec-

tion of option price data, model recalibration is not an issue. Therefore, for computational

efficiency, we consider only a small number of states.

4.3 Risk-neutral evaluation of Levy and CTRS models

In virtually all modern stock price models, equivalent martingale measures (EMMs) are no

longer unique (and hence the market is incomplete). That how to choose an EMM has

become an issue in option pricing theory. There are essentially two lines of approaches. In

the first one, one picks a measure change that has some economic underpinnings or technical

advantages. For instance, one approach that actuaries may find familiar is to use an Esscher

transform (Gerber and Shiu 1994, 1996), i.e. a Radon-Nikodym derivative of the form

dQ
dP

∣∣∣∣
Ft

=
eθXt

EP(eθXt)

to obtain an equivalent pricing measure. This approach has a number of merits. Most

importantly, the characteristic function of the discounted stock price under the pricing

measure,

φQ(u) =
φP(u− iθ)
φP(−iθ)

,

is readily available. In addition, in many cases the use of Esscher transform is theoretically

justified because it can be derived from equilibrium arguments (e.g. Keller 1997) or the

EMM it gives is a minimal martingale measures (e.g. Chan 1999) in the sense of Follmer

and Schweizer (1991) or a minimal entropy martingale measure (see, e.g. Chan 1999 or

Miyahara and Fujiwara 2003). Unfortunately, this kind of measure changes do not always
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exist and option prices obtained from these measure changes may not agree with market

prices.

Another approach is to calibrate the asset price model to market prices of options.

Suppose we have estimated the model parameters under the physical measure and we are

given the prices of a set of liquidly traded options. If we can specify the set of EMMs that

we are interested in, we can use an optimisation routine to find the EMM that gives rise to

the least price discrepancies (w.r.t. some error metric).

Despite the ill-posedness of the calibration itself (the price discrepancies may remain

small for two very different sets of model parameters), this approach is popular among

practitioners and is of particular importance when one wants to create hedges using the

kind of options that the asset price model is calibrated to. Following Hirsa et al. (2003)

and Schoutens et al. (2003, 2005), we also take this approach in our experiments. So, the

main issue here is to specify the EMMs of interest. In the rest of this section, we will discuss

how to obtain an EMM in each of the Levy models or CTRS models we consider in this

paper.

4.3.1 Levy models

The characterisation of EMMs is in general a difficult problem. The usual practice is to

study structure preserving EMMs. For Levy models, this means we opt to obtain an EMM

so that under both the physical measure P and the EMM Q, X remains a Levy process

of the same class. But even so, the current literature on EMMs for Levy models can be

confusing. For instance, Madan et al. (1998, p.87) commented that if P is a VG distribution

with parameters νS , σS , θS and Q is a VG distribution with parameters νRN , σRN , θRN ,

then P and Q are always equivalent and “there is no link between ... [the two sets of] ...

parameters”. While their comment is correct, some people may be misled to think that the

parameters for any two VG processes (as opposed to distributions) are completely unrelated.

Structure preserving locally equivalent measures for Levy processes have actually been
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studied thoroughly. The followings are the main results.

Theorem 4.2. (See, e.g. theorems 33.1-2 of Sato 1999, proposition 9.8 of Cont and Tankov

2004 or proposition 2.19 of Raible 2000; detailed expressions of the Ut below can be found

in the the former two references.) Let X be a Levy process with Levy triple (b, A,Π) under

the probability measure P . Then there is a probability measure Q such that it is locally

equivalent to P and X is a Q-Levy process with Levy triple (b′, A′,Π′) if and only if the

following conditions are satisfied:

(a) A = A′.

(b) Π and Π′ are locally equivalent with

∫
R

(√
dΠ′

dΠ
− 1

)2

Π(dx) <∞.

(c) If X has no Brownian component (i.e. A = 0), then in addition we must have

b′ − b =
∫ 1

−1
x
(
Π′ −Π

)
(dx).

When the above conditions are satisfied, the Radon-Nikodym derivative takes the form of

dQ
dP

∣∣∣∣
Ft

= eUt, where Ut is a P-Levy process.

With this theorem, we can deduce how the parameter values change when we model X

as the superposition of a diffusion and a Meixner, NIG or VG process.

Proposition 4.3. Suppose Xt = µt + WAt + Lt is a P-Levy process, where µ ∈ R, A ≥ 0

and W , L are respectively a standard Brownian motion and a pure jump Levy process under

P. Suppose X is also a Q-Levy process under some Q loc.∼ P (so that A = A′ by theorem

4.2).

(i) If L is a P-Meixner(α, β, δ) process and a Q-Meixner(α′, β′, δ′) process, then αδ = α′δ′.

In addition, if A = A′ = 0, we must have µ = µ′.

(ii) If L is a P-NIG(α, β, δ) process and a Q-NIG(α′, β′, δ′) process, then δ = δ′. In addition,

if A = A′ = 0, we must have µ = µ′.
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(iii) If L is a P-VG(C,G,M) process and a Q-VG(C ′, G′,M ′) process, then C = C ′. In

addition, if A = A′ = 0, then

µ′ − C
∫ 1

0

(
e−M

′x − e−G′x
)
dx = µ− C

∫ 1

0

(
e−Mx − e−Gx

)
dx.

In view of theorem 4.2 or the above proposition, when X has no diffusion component, we

cannot change its mean at will. This is quite different from the situation in the Black-Scholes

world and is a point that the reader should take caution with. For instance, Schoutens

(2003, pp.79-80) wrongly claims that if Xt = Lt for some P-Levy process L, then there

always exists an EMM Q under which Xt = −ζP
L1

(−$)t+L′t, where L′ is a Q-Levy process

with the same parameters as L. However, theorem 4.2 shows that this is impossible unless

L has a Brownian component or P is already a martingale measure (so that ζP
L1

(−$) = 0).

At any rate, by proposition 4.3, if X has Brownian component and we want the jump

component L to be, say, a NIG process under both P and a locally equivalent probability

measure Q, then there are two free parameters α′ and β′ to specify. However, for Q to be

a martingale measure, α′ and β′ must further satisfy the constraint

1 = EQ(eX1) = φQ(−$) = exp
[
µ− δ

(√
(α′)2 − (β′ + 1)2 −

√
(α′)2 − (β′)2

)]
⇔
√

(α′)2 − (β′ + 1)2 −
√

(α′)2 − (β′)2 =
µ

δ
. (4.15)

Therefore, provided that µ and δ have been estimated using statistical data, there is only

one free parameter to choose in Q. Having fewer free parameters can be advantageous

because we can avoid overfitting in model calibration, but the result of calibration can be

poor. In our experiments, we opt to include adopt a nonzero A so that the model can

be calibrated better. So, for each Levy model of X in the form of (4.2) under P, we will

consider local equivalent measures Q under which

Xt = −
(
A

2
+ ζQ

L1
(−$)

)
t+ W̃At + Lt,

where W̃ is a standard Q-Brownian motion and ζQ
L1

is the Levy symbol of L under Q. Since

A 6= 0 in our Levy models, proposition 4.3 guarantees that such Q must exist although it

may not be unique. Obviously X is a Q-martingale in this case, so Q is an EMM.
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4.3.2 CTRS models

Changing measures for time-changed Levy models is even more confusing. Consider a Levy

process Y and a random time change T . Carr and Wu (2004, p.138) suggest that one

can use transformations of the following form, which they also call Esscher transforms6, to

obtain a locally equivalent measure Q:

dQ
dP

∣∣∣∣
Ft

= exp (θYTt − TtφY1(−iθ))

They cite a result of Kushler and Sorensen (1997), which basically says that if Tt satisfies

some technical conditions, then one can state the local characteristics of the semimartingale

YT easily in terms of the Levy triple of Y . However, they did not explain how this result

can be turned into an operational method for deriving the dynamics of YT in the risk-

neutral world7. Moreover, despite the name “characteristics”, local characteristics do not

really characterise stochastic processes. In fact, Kushler and Sorensen (1997, p.293) has

shown that two stochastic processes can have identical local characteristics but different

distribution laws.

Another way to change measures has been adopted by Hirsa et al. (2003), Schoutens

(2003) and Schoutens et al. (2003, 2005), who thought that when Y and T are independent

and Tt =
∫ t

0 σ
2
udu for some Markov process σ, the following process would automatically be

risk-neutral:

St = S0 e
(r−q)t eYTt

E
[
eYTt

∣∣σ0

] .
Unfortunately, this is wrong. Although we do have e−(r−q)tE[St|σ0] = S0, risk-neutrality

requires that Xt = e−(r−q)tSt is a martingale. But this means

E
[
eYTt−YTu

∣∣σu] =
E
[
eYTt

∣∣σ0

]
E
[
eYTu

∣∣σ0

] .
Since the left hand side depends on σu but the right hand side does not, this equality does

6Note that as opposed to what Carr and Wu (2004, pp.122, 138) say, these Esscher transforms are not
Dolean-Dade exponentials of θYTt .

7They did illustrate how to derive the risk-neutral dynamics for the SV model using Esscher transform,
but this was done using Girsanov’s theorem, not Kushler and Sorensen’s result.
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not hold unless (σt : t ≥ 0) is a family of independent random variables. But then St is no

longer a genuine stochastic volatility model.

For CTRS models, Chourdakis (2002) has shown in principle how to use an equilibrium

argument to derive risk-neutral parameters. However, he does not explain how to choose

a utility function such that the derivation of risk-neutral parameters is mathematically

tractable. In our study, we discard the utility maximisation approach and focus on Radon-

Nikodym derivatives directly.

Recall that A = (aij) is the intensity matrix for the Markov chain ι. For any 0 ≤ s ≤ t,

let ι(s, t) := (ιu : s ≤ u ≤ t) denote the path of ι on [s, t] and p (ι(s, t)) denote the likelihood

for this segment of path given ιs. That is, within the time period (s, t], if the state of ι

changes only at some m time points t1, . . . , tm and if we write t0 = s and ιj = ι(tj), then

p (ι(s, t)) =

 m∏
j=1

aιj−1ιj exp
(
(tj − tj−1)aιj−1,ιj−1

) aιmιm exp ((t− tm)aιm,ιm) .

Now, consider a CTRS process X of the form (4.5). The following proposition shows

that any locally equivalent measure change for the Levy processes Y (i) and any change of

positive transition intensities for ι can be separately carried over to the CTRS model8.

Proposition 4.4. Suppose X is a CTRS process of the form (4.5) and U (1), U (2), . . . , U (n)

are n Levy processes that take the role of U in theorem 4.2 for respectively the Levy processes

Y (1), Y (2), . . . , Y (n). Let Ã = (ãij) be an intensity matrix such that aij = 0 if and only if

ãij = 0; let q(s, t) denote the path likelihood of ι(s, t) when the intensity matrix of ι is

replaced by Ã. When ι changes state exactly at times t1 < t2 < . . . < tm within the time

period (0, t], we write tm+1 = t, ιj = ι(tj) and define

ηX(t) = exp


m∑
j=0

[
U (ιj)(tj+1)− U (ιj)(tj)

] q(ι(0, t))
p(ι(0, t))

.

Then ηX defines a Radon-Nikodym derivative that transforms P into a locally equivalent

measure Q, under which the intensity matrix of ι is given by Ã and each Y (i) is still a Levy

8Should the sizes of the transition-induced jumps be stochastic, we could also perform similar changes.
Nevertheless we are content to leave those jumps constant here.
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process. Moreover, Q is a martingale measure if for all i, the Levy symbol of Y (i)
1 under Q

satisfies

ζQ
i (−$) = −

∑
j 6=i

ãij

(
ehij − 1

)
. (4.16)

As this proposition indicates, the measure transform for CTRS models can be quite

arbitrary. For simplicity, we only consider structure preserving measure transforms in our

study. Recall that in our Levy/CIR or Levy/Γ-OU models, the Levy processes Y (i) are of

the form

Y
(i)
t

L= −
∑
j 6=i

aij

(
ehij − 1

)
t+ Ycit,

where

Yt = mt+WAt + Lt.

Therefore,

Y
(i)
t

L=

−∑
j 6=i

aij

(
ehij − 1

)
+mci

 t+WciAt + Lcit. (4.17)

Without loss of generality, suppose the intensity matrix A is constructed using formulae

(4.11)–(4.12). Now, since Y (i) has a nonzero Brownian component, by proposition 4.3, we

can change the drift of Y (i) at will via a change of measure. Consequently, if Ã is another

intensity matrix that is constructed using formulae (4.11)–(4.12), then aij = 0 if and only

if ãij = 0 and hence by proposition 4.4, there exists an EMM Q under which

Y
(i)
t

L=

−∑
j 6=i

ãij

(
ehij − 1

)
− ci

(
A

2
+ ζQ

L1
(−$)

) t+ W̃ciAt + Lcit, (4.18)

where W̃ is a standard Q-Brownian motion, ζQ
L1

is the Levy symbol of L under Q and the

parameters of L under P and Q may be different (see proposition 4.3). Obviously, equality

(4.16) holds in this case. So Q is a martingale measure. Furthermore, if we define

Ỹt = −
(
A

2
+ ζQ

L1
(−$)

)
t+ W̃At + Lt,

then Ỹ is a Q-martingale such that under Q,

Y
(i)
t

L= −
∑
j 6=i

ãij

(
ehij − 1

)
t+ Ỹcit.
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In short, proposition 4.4 says that if we want to perform a martingale transform under the

Levy/CIR (resp. Levy/Γ-OU) model, we may do so as if 9 we can separately transform the

exponential Levy process eY into a martingale and change the CIR (resp. Γ-OU) parameters

arbitrarily.

This outlines an important difference between the SV model and its approximating

CTRS model, namely, in CTRS models we can freely adjust the CIR parameter λ by

equivalent measure transform but in the SV model we cannot (otherwise the quadratic

variation of σ2 will not be preserved). Therefore, although we can use a CTRS model

to approximate a SV model by increasing the number of states of ι, we cannot pass the

associated measure transform to the limit.

4.4 Model estimation and calibration

4.4.1 Estimation

We will estimate Levy models CTRS models by the maximum likelihood method. As the

characteristic functions of the Meixner, NIG and VG distributions are known in closed forms,

we can compute their likelihood functions by Fourier inversion. For CTRS models, since

the transitional likelihood functions are state-dependent, we must filter the state variables

out in order to obtain MLEs. The detailed procedure for doing this for RSLN models (or

vertex-dependent models in general) is described in Hardy (2001, 2003). Extending this

procedure to deal with discretely sampled CTRS processes is straightforward.

Since the observed time series data of X under regime switching models are serially

correlated, it is reasonable to suspect (see, e.g. Hardy 2001, p.52) that asymptotic results

of MLEs no longer hold. A pleasant result of Bickel et al. (1998), however, shows that under

some mild conditions, MLEs of RSLN models and CTRS models are still asymptotically

normal and the observed information matrices are still consistent estimators of the Fisher
9We say “as if” because we do not really perform a measure change to make eY an exponential martingale.

Instead, we perform a measure change so that the dynamics of each Y (i) under P, as described in (4.17),
becomes (4.18) under Q.
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information matrices. Nevertheless, in our experiments, the primary reason for estimating

our models is to see whether imposing an additional constraint (that the risk-neutral model

parameters must keep their logical links with their physical counterparts) on the calibrated

model would reduce price discrepancies between models. Therefore the precision of the

MLEs is not a concern here.

Finding MLEs for SV, SVJ or BN-S models is tricky. These models are usually estimated

by other methods (see, e.g. Barndorff-Nielsen and Shephard 2001 or Jiang 2002). For

simplicity, in our experiments, we will not estimate these three models and we will consider

them only in risk-neutral world.

The data for the estimation of X include historical data for the monthly returns and

total returns of the S&P 500 index (SPX) and also historical data for the U.S. Treasury

yield curves. The former two sets of data are downloaded from Standard & Poor’s web-

site (www.standardandpoors.com) and the latter one is obtained from the U.S. Treasury

(www.ustreas.gov). Using these data, we can construct time series data for the log dis-

counted total return X.

For all Levy models and CTRS Levy models, we set A = 0.01 = 0.12 in (4.2). We also

set n = 7, y′1 = −1, y′n = 1, h = 1/3 with ci = ey
′
i in (4.11) and (4.12) for all Levy/CIR

models and set n = 7, y′1 = 0.4, y′n = 1.6, h = 0.2 with ci = y′i in (4.13), (4.14) for all

Levy/Γ-OU models. Table 4.17 contains our estimation results. For convenience, we will

call the estimated parameters the S&P 500 P parameters.

We have several interesting observations on the estimation results. First, the uncondi-

tional densities of X1 for the estimated models are plotted in fig. 4.6(a). As shown in the

figure, the density function for the VG/CIR model is quite different from the densities for

the others. Although this may indicate that the VG/CIR model does not fit the data well,

it is also possible that different models that fit the time series data well can exhibit different

unconditional densities.

Second, the one-year transition probabilities for ι are listed in table 4.21. We see in the
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NIG/Γ-OU model and the VG/Γ-OU model, ι almost always stay at state 1. This shows

that in order to fit the physical unconditional distribution of equity returns well, the use of

a genuine stochastic volatility model is not really necessary.

Third, although one may not find fig. 4.6(a) visually clear, the figure does show that

that densities for the three Levy models are visually indistinguishable. So are the densities

for the Meix/CIR and NIG/CIR models or the densities for the NIG/Γ-OU and VG/Γ-

OU models. More interestingly, table 4.21 shows that the differences in the transition

probabilities between the Meix/CIR and NIG/CIR models or between the NIG/Γ-OU and

VG/Γ-OU models are almost zero. This suggests that in modelling the equity price, the

choice in the Levy model is perhaps less important than the choice in the business time.

In hindsight, the value 0.12 we assign to A seems to be too large. In fact, for the

Meixner, Meix/CIR, NIG/CIR, VG/Γ-OU models in table 4.17, the Levy jump components

are almost non-existent (i.e., the Levy processes in these four estimated models are almost

identical to a Brownian motion). After finishing all our experiments, we found that if we

set A = 0.0001 = 0.012, then a log-likelihood value of about 270 can be obtained for the

VG/CIR model. However, since it is very time consuming to do all our experiments again10,

we accept our results of estimation here.

4.4.2 Calibration

In equations (3.8) and (3.9), we have described the (Fourier) transform-based method that

Heston (1993) developed for vanilla option pricing. For each evaluation of an option with

maturity T , Heston’s method requires the computation of two Fourier transforms and also

the expectations of logST under two different probability measures. This method was then

improved by Carr and Madan (1998), so that for each option evaluation, only one Fourier

transform is required and the expectations of logST are not needed. In our study, we will

10If we use a smaller value for A, the characteristic functions would decay slower and hence more quadrature
nodes are needed to calculate the density functions. Consequently the time to finish all our experiments
would become longer.
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apply Carr and Madan’s method to calibrate our models.

Let ϕ denotes the risk-neutral characteristic function of logST . For a Levy/CIR model,

for instance, when the initial state is ι0, we have

ϕ(u; ι0) = E(e$uST |ι0) = e$u(logS0+
∫ T
0 rsds−qT )E(e$uXT ; ι0).

Therefore, by formula (4.6), we have

ϕ(u; ι0) = e$u(logS0+
∫ T
0 rsds−qT ) e>ι0 Φ(u;T )

n∑
i=1

ei

where ei denotes the i-th unit vector in the usual orthonormal basis of Rn. Let α be a

positive number such that E(S1+α
T ) exists. Such an α can be obtained by testing whether

ϕ(−$(1+α); ι0) <∞. In our experiments, we follow Carr and Madan’s suggestions to take

α = 0.75 and find no problems. Carr and Madan (1998) show that the price of a European

call option with maturity T and strike price K is given by

C(K,T ) =
exp(−α logK)

π

∫ ∞
0

e−$u logK−
∫ T
0 rsdsϕ(u− (α+ 1)$; ι0)

α2 + α− u2 +$(2α+ 1)u
du. (4.19)

In our numerical experiments, we calibrate our models in three different scenarios. In the

first two scenarios, the option data are taken from Schoutens (2003, fig. 4.5 and appendix

C). They consist of the closing prices of 75 vanilla S&P 500 (SPX) call options observed

on April 18, 2002. The maturities of these options range from 0.088 to 1.708 years. Since

the maturities are fractional, the bond yields are obtained using cubic spline interpolation.

The zero yields observed for that date are given in table 4.1. The interest rate r is related

to the yield rate y as ∫ t

0
rsds = t log(1 + yt).

The SPX closed at 1124.47 on April 18, 2002. Here we ignore the synchronisation problem

in recording the index value and option prices. We follow Schoutens and set the continuous

dividend yield q is set to 1.2% per year. In the first scenario, whenever we have estimated

the model parameters by maximum likelihood estimation, we will retain the links between

statistical parameters and risk-neutral parameters. For example, for the Meixner process,

71



the quantity αδ must be preserved, by proposition 4.3. In the second scenario, we neglect

all statistical parameters and calibrate our models directly using option data. We will call

the set of data in the first scenario the S&P 500 P + Q data and the data set in the second

scenario the S&P 500 Q data. Parameters of our models derived in these two scenarios are

called S&P 500 P + Q parameters and S&P 500 Q parameters respectively.

The data set for the third scenario is taken from Schoutens et al. (2005, table 4.1). We

will call this the Eurostoxx 50 data set and the parameters obtained from this data set the

Eurostoxx 50 parameters. The data set comprises 144 plain vanilla Euro Stoxx 50 index

(SX5E) call options prices inferred from the implied volatility surface observed on October

7, 2003. The index value was 2461.44 when the volatility surface was observed (it is not

a closing price). The maturities of these options range from 0.0361 year to 5.1639 years.

Judging from the longest maturity in this data set, these options are probably traded over

the counter. While such long-dated options may be thinly traded and their market prices

may not reflect their true prices, they are still the most liquid options among all long-dated

equity derivatives. Hence we still include them for calibration purpose here.

We take the Euro Stoxx 50 index data (SX5E) and the total return index (SX5T) data

from the Dow Jones EURO STOXX 50 website (www.stoxx.com). Using linear regression,

the (continuous) dividend yield is found to be around 2.36% over the year prior to Oct 7,

2003 and we set this as the constant dividend yield. The interest rate data for the EU

15 zone are downloaded from Eurostat’s website (epp.eurostat.ec.europa.eu) and are

given in table 4.1. The yield curve for maturities from one and seven year is constructed

using cubic spline interpolation, and zero yields for maturities less than one year are ex-

trapolated11 using the first piece of cubic polynomial in the spline curve. Since we have no

detailed historical data for the zero yields, we cannot compile enough time series data for

11In hindsight, we can use prime rates or LIBOR rates to obtain the zero yields for shorter maturities,

but this does not resolve the problem that the yields for very short maturities are either unobservable or

subject to wild fluctuation. So, for technical convenience, we opt to extrapolate the yield curve here.
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U.S. Treasury yield rates on April 18, 2002
maturity T (years) 1

12
1
4

1
2 1 2 3 5 7 10 20

yield rate yT (%) 1.70 1.72 1.91 2.40 3.38 3.97 4.64 5.02 5.23 5.88
Yield rates for the EU 15 zone on Oct 7, 2003

maturity T (years) 1 2 3 4 5 6 7
yield rate yT (%) 2.144 2.535 2.922 3.245 3.514 3.742 3.937

Table 4.1. Some U.S. and European yield rates.

the discounted total return process. Therefore, in this scenario, we will not estimate our

models but calibrate them directly.

In each of the three scenarios, the calibrated model parameters are obtained by min-

imising the root mean squared error (RMSE) between the model prices and market prices:

RMSE =

√√√√ ∑
all options

(model price−market price)2

number of options
.

This error metric is used in a number of research works as well. See, e.g. the list of

papers cited by Bakshi et al. (1997, p.2017) and also the works of Jiang (2002), Schoutens

(2003) and Schoutens et al. (2003, 2005). Alternatively one can minimise the mean squared

percentage error, but that would put too much emphasis on calculating the cheaper options

accurately, especially for those deeply in-the-money or out-of-money options that are thinly

traded. For purpose of comparison, we follow Schoutens (2003) and calculate also some

other error measures. Here we include the average absolute error (AAE) and the average

relative error (ARE):

AAE =
1

no. of options

∑
options

|model price−market price|,

ARE =
1

no. of options

∑
options

|model price−market price|
market price

.

The optimisation process for the CTRS models is very time consuming. For each data

set, the search of a minimum may involve the computation of 78 or 144 option prices for

tens of thousand times in the first place. In addition, the time taken for computing an

option price under a CTRS model is relatively much longer than that under a Levy model.

Furthermore, since ι has seven states in our setting, finding each minimum of RMSE requires

running the optimisation routine seven times, each for a different initial state of ι. So, in

73



S&P 500 P + Q S&P 500 Q Eurostoxx 50
RMSE AAE ARE RMSE AAE ARE RMSE AAE ARE

Meix 1.4101 1.1266 0.0312 1.2896 1.0335 0.0316 12.5554 10.0951 0.0922
NIG 1.3087 1.0645 0.0332 1.2076 0.9641 0.0294 12.2625 9.8523 0.0905
VG 4.0594 3.3768 0.1020 1.3577 1.0967 0.0324 12.7114 10.2943 0.0950
Meix/CIR 2.4737 1.9249 0.0515 1.6231 1.3417 0.0380 2.2033 1.7397 0.0159
NIG/CIR 2.4736 1.9248 0.0515 0.3588 0.2752 0.0078 2.2113 1.7533 0.0164
VG/CIR 2.5653 1.9320 0.0506 0.5584 0.4607 0.0136 3.1357 2.6038 0.0233
Meix/Γ-OU 1.2008 0.9979 0.0300 0.7239 0.5479 0.0128 5.4327 4.3730 0.0552
NIG/Γ-OU 1.0607 0.8562 0.0252 0.7809 0.5720 0.0123 3.6617 2.8328 0.0177
VG/Γ-OU 2.5066 1.8702 0.0393 0.7250 0.5500 0.0129 4.1229 3.1924 0.0210
BS 4.9258 3.9343 0.1127 29.4545 24.7259 0.1963
SV 0.5572 0.4531 0.0153 2.2308 1.8248 0.0162
SVJ 0.4365 0.3298 0.0095 1.8378 1.4727 0.0096
Γ-OU 0.5224 0.3818 0.0097 2.5928 2.1619 0.0176

Table 4.2. Results of model calibration.

order to save time, we do not really attempt to find the real minimum, but a local minimum

with a fixed initial state. In our experiments, we arbitrarily choose ι0 = 4.
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Figure 4.3. Some calibration results with S&P 500 P + Q parameters. The circles are market prices and

the crosshairs are model prices.

Parameters of the calibrated models are given in tables 4.18–4.20. Table 4.2 contains

the values of the error measures. We see that when the maturities of the options are long

(up to five years for the Eurostoxx 50 data set), Levy models do not calibrate well. This
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is probably due to the fact that volatility smiles do change over time. Moreover, since the

Black-Scholes model cannot even generate a genuine volatility smile, its performance is the

the worst among all models.

900 1000 1100 1200 1300 1400 1500
0

20

40

60

80

100

120

140

160

180

200

strike

op
tio

n 
pr

ic
e

VG

900 1000 1100 1200 1300 1400 1500
0

20

40

60

80

100

120

140

160

180

200

strike

op
tio

n 
pr

ic
e

NIG/CIR

900 1000 1100 1200 1300 1400 1500
0

20

40

60

80

100

120

140

160

180

200

strike

op
tio

n 
pr

ic
e

NIG/Γ−OU

900 1000 1100 1200 1300 1400 1500
0

20

40

60

80

100

120

140

160

180

200

strike

op
tio

n 
pr

ic
e

SVJ

Figure 4.4. Some calibration results with S&P 500 Q parameters.

Overall speaking, when there is no need to maintain the links between statistical pa-

rameters and risk-neutral parameters (i.e. for S&P 500 Q and Eurostoxx 50 parameters),

the calibration results for the three continuous-state models (SV, SVJ and Γ-OU) are al-

ways among the best. In particular, the average relative errors for the SVJ prices are

less than 1%, which are practically almost perfect results. To visualise this, see figures

4.4 and 4.5. Nevertheless, CTRS models perform fairly well and in some cases, they even

outperform the three continuous-state models. For instance, with S&P 500 Q parameters,

the NIG/CIR model gives a nearly perfect calibration result: the average relative error is

merely 0.78%, which is even better than the 0.95% given by the the SVJ model. See fig. 4.4

for a visualisation of some calibration results.
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Figure 4.5. Some calibration results with Eurostoxx 50 parameters.

From table 4.2, we observe that the calibration results for S&P 500 Q parameters are

better than those for those for S&P 500 P + Q parameters. This is within our expectation,

as the optimisation of RMSEs for S&P 500 Q parameters is less constrained. However,

with S&P 500 P+Q parameters, the calibration results are mediocre and the CTRS models

perform worse than the three Levy models. Certainly this may indicate that our Levy

models and CTRS models are not good candidates for describing the true dynamics of the

S&P 500 index, but there may be other reasons behind this as well. First, this mediocrity

may simply reflect the increased difficulties in doing nonlinear optimisation when there are

more constraints. Second, while we view the performances of Levy and CTRS models as

mediocre, it is possible that the SV, SVJ or Γ-OU may also perform not so well if the local

equivalence of measures is maintained. Finally, we should not overlook the possibility that

the risk-neutral dynamics in reality may be disconnected with its physical counterpart. At

any rate, since the results for S&P 500 P + Q parameters are decent enough, we will accept
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the use of these parameters in our experiments.
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Figure 4.6. Unconditional densities of the one-year log discounted total return with (a) S&P 500 P param-

eters, (b) S&P 500 P + Q parameters, (c) S&P 500 Q parameters and (d) Eurostoxx 50 parameters. For

the Black-Scholes model, densities of the one-year log discounted total return for over each of the first seven

years are plotted.

4.5 Option pricing

In our numerical experiments, we will calculate the prices of four kinds of EIAs (two types of

PTPs and two types of CARs) under different models. We will deal with the mortality risk

in the way we did in last chapter, i.e. we will calculate the price of an EIA with maturity

T as a weighted sum of the prices of T Bermudan options with maturities ranging from 1

to T , where the weights are several survival probabilities.

In principle, under the SV, SVJ or BN-S-Gamma model we can evaluate the price of

a Bermudan option by solving a partial (integro-)differential equation, but for simplicity,

these models will be excluded from our experiment when surrenders are allowed. For the

rest of our models, we will apply sequential quadrature to compute the Bermudan option
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prices. We shall discuss the details of this numerical procedure in part II. Here we remark

that in order to use sequential quadrature, we need to know the risk-neutral densities of

equity returns. In case of term-end EIAs or RHWM PTPs, the equity returns are the

annual or monthly increments of X. So their densities can be obtained by applying Fourier

inversion on the characteristic functions of X1 or X1/12. For Asian-end CARs, however, we

need to know the density of the monthly average R(t) = 1
12

∑12
m=1

S(t−1+m
12

)

S(t−1) of stock returns

in each year and so there is a slight complication.

Let f(x; t) = (fij(x; t)) denote the n× n matrix whose (i, j)-th entry, fij(x; t), is Pij(t)

times the conditional density of Xs+t − Xs given that ιs = i and ιs+t = j. It can be

computed using the Fourier inversion formula

f(x; t) =
1

2π

∫ ∞
−∞

e−$uxΦ(u; t)du (4.20)

(where integration is carried out entrywise) provided that the usual technical condition∫∞
−∞ |φY (i)(u)|du < ∞ (which is satisfied in our Levy/CIR and Levy/Γ-OU models) is

satisfied for all i.

Let gijk(x) be the product of the transition probability Pij(1) with the conditional

density of R(k) given ιk−1 = i and ιk = j, and let

X
(11)
k = log

S(k)
S
(
k − 1 + 11

12

) ,
X

(m)
k = log

[
11−m
12−m

(1 +X
(m+1)
k )

S
(
k − 1 + m+1

12

)
S
(
k − 1 + m

12

) ] (0 ≤ m < 11).

Then X(0)
k = logR(k) and the density g(m)

ijk (x) of X(m)
k , given ι(k+ m

12) = i and ι(k+ m+1
12 ) =

j, is given by the recursion formula

g
(11)
ijk (x) = fij

(
x−

∫ k

k− 1
12

(rs − qs)ds,
1
12

)
,

g
(m)
ijk (x) =

n∑
l=1

∫ ∞
−∞

g
(m+1)
ilk (y)flj

(
log
[

(12−m)ex

(11−m)(1 + ey)

]
−
∫ k−1+m+1

12

k−1+m
12

(rs − qs)ds,
1
12

)
dy.

We can evaluate the density function gijk = g
(0)
ijk by sequential quadrature. In actual

computation, gijk is precomputed at a set of nodes. For any x that lies outside the convex

78



hull of these nodes, we set gijk(x) = 0; for x inside the convex hull, we obtain gijk(x) by

function interpolation.

4.6 Numerical experiments

4.6.1 Experimental set-up

We will calculate the prices of those EIAs and options mentioned in sec. 4.2 under the

following models:

Meix, NIG, VG,
Meix/CIR, NIG/CIR, VG/CIR,
Meix/Γ-OU, NIG/Γ-OU, VG/Γ-OU
BS, SV, SVJ,

where the model parameters were obtained in the previous section. Below are the contract

parameters. We always normalise the initial stock index level so that S0 = 1.

• Term-end CARs and Asian-end CARs. We set T = 3, 7, f = 0, c = 0.1, 0.2, 0.3,

Fτ = 0.9(1.03)τ − 1 (τ = 1, 2, . . . , T ) and Cτ =∞ (i.e. no global cap). The premium

P0 is assumed to be 1.

• Term-end and RHWM PTPs. We set T = 3, 7, Fτ = max{0, 0.9(1.03)τ − 1} and

Cτ = (1 + c)τ − 1 for c = 0.1, 0.2, 0.3, so that these PTPs and the above two types

of CARs have identical maximum and minimum payoffs when the contracts expire or

when the policy holder surrenders. The premium P0 is assumed to be 1.

• Cliquets. We set T = 7 and ti = i. All other contract parameters are set to those of

the PTPs.

• Barrier options. We set T = 7 and K = 1. For DIBs and DOBs, we set H =

0.5, 0.55, 0.6, . . . , 0.95; for UIBs and UOBs, we set H = 1.05, 1.1, 1.15, . . . , 1.5.

Both the Bermudan prices and no-surrender (i.e. European) prices of the CARs or

PTPs will be calculated. However, for simplicity, in calculating the Bermudan prices the
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SV and SVJ models will be excluded; the Bermudan EIA prices under the other models are

calculated using sequential quadrature. The no-surrender prices of our EIAs and the prices

of our exotic European options will be reckoned using Monte Carlo simulation. Unless

otherwise specified, each Monte Carlo price is calculated using 200,000 simulation paths.

Due to the difficulty in simulating the Meixner process, the Meixner model and the other

two Meixner-based models CTRS models are removed from all simulation experiments. In

general, regardless of the option type, when the S&P 500 P+Q parameters are used, the BS,

SV and SVJ models are excluded because we have not determined their model parameters.

The reader may note that the Γ-OU model is not included in our experiments, despite the

fact that it is the inspiration of our Levy/Γ-OU models. This is because the discretisation

errors in simulating the Γ-OU process are too high. Table 4.25 lists the exact no-surrender

prices (calculated using the Carr-Madan formula (4.19)) of the term-end PTPs under the

SV, SVJ and Γ-OU models using S&P 500 Q parameters. The participation rates are taken

from panel B of table 4.35 and the simulation errors are listed in panel B of table 4.25. One

can see that while most simulation errors under the SV or SVJ models are less than one

percent of the true prices, the simulation errors for the Γ-OU model can be as large as 10%.

We will report our experimental results immediately. In order to save space and compu-

tation time, we shall will consider all three parameter sets S&P 500 P+Q , S&P 500 Q and

Eurostoxx 50 only when term-end CARs are concerned. For each of the other contingent

claims, only one set of parameters will be used.

4.6.2 Term-end CARs

Table 4.7 lists the critical participation rates for the term-end CARs under different models.

We see that the critical participation rates for T = 3 and T = 7 are almost identical. This

indicates that with the initial states of the economy we consider in our experiment, the

policy holder is likely to surrender the ratchet within three years. We also see that the

critical α remains about the same when the local cap rate c is increased from 0.2 to 0.3.
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This would hardly surprise a practitioner, as many CARs in reality have local cap rates

lower than 0.2.

Now, suppose T = 3 and c = 0.1. According to table 4.7, the critical participation rate

of the CAR under the Meixner model with S&P 500 P + Q parameters is 0.3137. However,

if the true model is the NIG model, the true critical participation rate should be 0.3194.

So, if one specifies α = 0.3137 in the CAR contract, the ratchet would be overpriced. In

general, if α is the participation rate specified in the contract and CAR(α) denotes the

CAR price under the true model when the participation rate is α, the profit or loss of the

issuer of the CAR, or equivalently the pricing error, is given by 1 − CAR(α) (because the

ratchet is sold at one dollar).

c = 0.1 c = 0.2 c = 0.3
T = 3 T = 7 T = 3 T = 7 T = 3 T = 7

S&P 500 P + Q parameters

Meix 0.3137 0.3137 0.3062 0.3062 0.3062 0.3062
NIG 0.3194 0.3194 0.3075 0.3075 0.3066 0.3065
VG 0.3379 0.3379 0.3142 0.3142 0.3140 0.3140
Meix/CIR 0.3207 0.3207 0.3098 0.3097 0.3097 0.3097
NIG/CIR 0.3207 0.3207 0.3097 0.3097 0.3097 0.3097
VG/CIR 0.3250 0.3250 0.3106 0.3106 0.3105 0.3105
Meix/Γ-OU 0.3246 0.3246 0.3111 0.3111 0.3109 0.3109
NIG/Γ-OU 0.3245 0.3245 0.3084 0.3084 0.3062 0.3062
VG/Γ-OU 0.3203 0.3203 0.3111 0.3111 0.3111 0.3111

S&P 500 Q parameters

Meix 0.3177 0.3177 0.3074 0.3074 0.3072 0.3072
NIG 0.3174 0.3174 0.3072 0.3072 0.3068 0.3068
VG 0.3164 0.3164 0.3069 0.3069 0.3068 0.3068
Meix/CIR 0.3151 0.3151 0.3076 0.3076 0.3076 0.3076
NIG/CIR 0.3093 0.3093 0.2995 0.2995 0.2956 0.2956
VG/CIR 0.3157 0.3157 0.3078 0.3078 0.3078 0.3078
Meix/Γ-OU 0.3023 0.3023 0.2883 0.2883 0.2789 0.2789
NIG/Γ-OU 0.3058 0.3058 0.2941 0.2941 0.2874 0.2874
VG/Γ-OU 0.3025 0.3025 0.2886 0.2886 0.2793 0.2793
BS 0.3591 0.3591 0.3237 0.3237 0.3229 0.3229

Eurostoxx 50 parameters

Meix 0.2528 0.2528 0.2479 0.2479 0.2476 0.2476
NIG 0.2517 0.2517 0.2470 0.2470 0.2466 0.2466
VG 0.2494 0.2494 0.2460 0.2459 0.2458 0.2458
Meix/CIR 0.2235 0.2235 0.2145 0.2144 0.2134 0.2131
NIG/CIR 0.2235 0.2235 0.2145 0.2144 0.2134 0.2131
VG/CIR 0.2194 0.2194 0.2118 0.2118 0.2112 0.2109
Meix/Γ-OU 0.2131 0.2131 0.2077 0.2077 0.2041 0.2041
NIG/Γ-OU 0.2274 0.2274 0.2173 0.2173 0.2144 0.2144
VG/Γ-OU 0.2257 0.2257 0.2150 0.2150 0.2097 0.2097
BS 0.2502 0.2502 0.2224 0.2224 0.2214 0.2214

Table 4.7. Critical participation rates of term-end CARs under different models.

In tables 4.26, 4.27, 4.28, we give the pricing errors for the ratchets under each model
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but using the other models’ critical participation rates. For instance, in table 4.26, we see

that among the nine models we consider, the Meixner and NIG models tend to underprice

our CARs, while the three Levy/CIR models and the VG/Γ-OU models are less susceptible

to model risk.

As the critical participation rates subject to different models in table 4.7 are more diverse

when the S&P 500 Q parameters are used than when the S&P 500 P + Q parameters are

used, the pricing errors become larger when the S&P 500 Q parameters are used. This

is evident if we compare table 4.26 with table 4.27. However, since the pricing errors in

term-end CARs for both parameter sets are very small, the slightly inferior performance of

the S&P 500 Q parameters here is unimportant and coincidental.
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Figure 4.8. (a) Values of 100 × (1 − term-end CAR price) when surrender is allowed. Here T = 7, c = 0.3

and Eurostoxx 50 parameters are used. (b) The corresponding no-surrender prices.

In our experiments, relatively larger pricing errors are observed when T = 7, c = 0.3

and the Eurostoxx 50 parameters are used (see fig. 4.8(a) for a plot of them), but still the

largest one of them represents just a loss of 0.52 cents for each dollar. So, apparently the

pricing errors in term-end CARs are small. However, we have not yet taken into account

any computation error in the CAR price. Unfortunately, since all Bermudan prices here are

evaluated using a single method (sequential quadrature), we cannot verify their accuracies.

Therefore, we also compute the no-surrender prices of our ratchets using both sequential

quadrature and Monte Carlo simulation. These Monte Carlo no-surrender prices are given

in tables 4.29, 4.30, 4.31 and the errors of the sequential quadrature prices by the Monte
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Carlo prices as true prices are given in tables 4.32, 4.33, 4.34. We see that the errors in the

sequential quadrature prices are fairly small — the largest of them is about 1.1 cents (under

the VG/Γ-OU model with S&P 500 Q parameters, T = 7 and c = 0.3; see table 4.33). If we

believe that the inaccuracies in Bermudan CAR prices are also about of this size, then the

largest-sized pricing error for the Bermudan CARs should be at most two to three percent.

So our previous conclusion that the model risk for term-end CARs is small is still justified.

In fig. 4.8(b) we plot the no-surrender prices corresponding to the CARs and parameters

we have considered in fig. 4.8. The SV and SVJ models are also included in our simulation.

As seen from the figure, the discrepancies between no-surrender prices are within about 2.5

cents and the inclusion of the two additional models does not bring any fundamental change

to the size of the model risk.

4.6.3 Term-end PTPs, Asian-end CARs and reverse HWM PTPs

Tables 4.35 reports the critical participation rates for our term-end PTPs under each model

with each set of parameters. The pricing errors obtained with S&P 500 P + Q parameters

are listed in table 4.36. The no-surrender prices are given in table 4.37. When surrender

is not allowed, every European term-end PTP can be replicated by a cash amount plus a

long position in a plain vanilla call option and a short position in another call. Therefore

in table 4.37, the no-surrender prices are obtained by the Carr-Madan formula (4.19) but

not by simulation. The inaccuracies in these no-surrender prices if sequential quadrature is

used are reported in table 4.38. As seen from the table, these inaccuracies are tiny. In fact,

the largest of them is merely 0.11 cent. So, we are convinced that the sequential quadrature

also evaluates the Bermudan prices accurately. In view of the results in table 4.36, we

conclude that the model risk for term-end PTPs are small. This is within our expectation.

As the value of a Bermudan term-end PTP is largely contributed by its no-surrender price

and the latter can be calculated from vanilla option prices, any equity price model that

is well-calibrated to market prices of plain vanilla options should be able to generate the
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no-surrender price and in turn the Bermudan price accurately.
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Figure 4.9. (a) Values of 100 × (1 − term-end PTP price) when surrender is allowed. Here T = 3, c = 0.1

and S&P 500 P + Q parameters are used. (b) The corresponding no-surrender prices.

The critical participation rates for Asian-end CARs and RHWM PTPs and the associ-

ated experimental results for are contained in tables 4.39–4.46. The Asian-end CAR prices

are reckoned using the S&P 500 Q parameters and the reverse HWM PTPs are calculated

using the Eurostoxx 50 parameters. For Asian-end CARs, the largest pricing error is about

0.3 cent and it occurs when c = 0.3 and T = 7. Fig. 4.10 plots the discrepancies between

the prices calculated with different models in this case. Since table 4.42 (with c = 0.3

and T = 7) shows that the sequential quadrature errors for the no-surrender prices are at

most 1.35 cents12, we believe that the largest sequential quadrature errors and in turn the

maximum pricing errors for the Asian-end CARs are about one to two cents.

For RHWM PTPs, we met a computational problem. Although in principle we can

evaluate the price of such an EIA using sequential quadrature, in reality, since the variance

of the equity return R(t) is much higher in the case of reverse HWM PTP than in the case

of a term-end PTP, the quadrature domains for the former EIA are also much larger than

those for the latter one. In effect, the valuation of reverse HWM PTP is computationally

intensive and the results are usually less accurate. Therefore, in our experiment, we do

12One may observe that the quadrature errors here are larger than those in the term-end CAR prices. In
general, although the quadrature domain for an Asian-end CAR is usually smaller than that for a term-end
CAR (because average return have smaller variance than yearly return), the distribution of the average
return is more sharp-peaked than that of the yearly return. Therefore more quadrature nodes are needed to
evaluate the Asian-end CAR price accurately.
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Figure 4.10. (a) Values of 100× (1−Asian-end CAR price) when surrender is allowed. Here T = 7, c = 0.3

and S&P 500 Q parameters are used. (b) The corresponding no-surrender prices.

not calculate the critical participation rate to a high precision. As a consequence, in table

4.44, one can see that the diagonal of the pricing error matrix is nonzero. This fact is also

reflected in fig. 4.11(a), where none of the nodes of the polygonal graphs lie on the horizontal

(α-)axis. In all similar figures that we have presented earlier, for each graph there is exactly

one node lying on the horizontal axis.

0.1 0.12 0.14 0.16 0.18 0.2
0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

participation rate α

C
A

R
 p

ric
e

(a)

 

 
Meix
NIG
VG
Meix/CIR
NIG/CIR
VG/CIR
Meix/Γ−OU
NIG/Γ−OU
VG/Γ−OU
BS

0.1 0.12 0.14 0.16 0.18 0.2
0.85

0.86

0.87

0.88

0.89

0.9

0.91

participation rate α

no
−

su
rr

en
de

r 
C

A
R

 p
ric

e

(b)

 

 
NIG
VG
NIG/CIR
VG/CIR
NIG/Γ−OU
VG/Γ−OU
BS
SV
SVJ

Figure 4.11. (a) Values of 100×(1−reverse HWM PTP price) when surrender is allowed. Here T = 7, c = 0.1

and Eurostoxx 50 parameters are used. (b) The corresponding no-surrender prices.

From table 4.46, we also see that the numerical errors for the no-surrender prices for the

VG/Γ-OU model are quite large (up to about 3.2 cents). In addition, except for the Black-

Scholes model (whose numerical errors are negligible), the numerical errors for all other

models are negative. This suggests that for those models that have the quadrature domains

(not reported here) we used in our computation are perhaps not large enough. Therefore

it is reasonable to expect the numerical errors in the Bermudan prices to be also negative.
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If we believe that the numerical errors in Bermudan prices are of about the same sizes as

the errors in the no-surrender prices, then in fig. 4.11(a), we should move the graph for the

VG/Γ-OU model down by about 3.2 cents and also other graphs by different magnitudes

(as dictated by the errors in table 4.46. After such adjustment, the maximum pricing error

in fig. 4.11(a) would become a bit more than 3 cents. This certainly is not a very precise

approximation, but it seems plausible to claim that the pricing errors for Bermudan RHWM

PTPs are far below 10 cents.

Note that in our previous approximations of pricing errors for Bermudan EIAs, we

have not included the SV and SVJ models (because Bermudan prices for these models

have not been computed). However, since in tables 4.33, 4.34, 4.42, 4.46 and fig. 4.12(a),

4.10(b), 4.11(b) we do not observe any dramatic differences between the no-surrender prices

computed by the SV or SVJ models and the prices computed by other models, we maintain

our claims about the sizes of the pricing errors for each type of EIA.
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Figure 4.12. Linear extrapolation of the no-surrender CAR prices in 4.8.

Roughly speaking, at the same participation rate, the discrepancies no-surrender prices

of our EIAs are larger than or only slightly smaller than those between Bermudan prices.

Compare, e.g., subplots (a) and (b) in fig. 4.8, 4.9, 4.10 or 4.11. Note that the values of α

at which we evaluate the no-surrender prices in these figures are the critical participation

rates of the Bermudan CARs, not of the European CARs. In order to save time, we

have not computed the critical participation rates for the European CARs. However, since
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the no-surrender prices appears to vary linearly with α, we may extrapolate each nearly

straight line in the figure to obtain an approximation of the critical participation rate

for the European CARs. The result of extrapolation for the term-end CAR prices, for

instance, is shown in fig. 4.12(b). One can see that the pricing errors we obtain from

such extrapolation are up to about five cents, which is larger than the discrepancies in the

Bermudan prices. The same holds if we also extrapolate the prices in fig. 4.9(b), 4.10(b)

or 4.11(b). Certainly one shall not put too much trust in such extrapolation, but it seems

reasonable to believe that discrepancies between no-surrender prices of our EIAs are in

general larger than those between Bermudan prices. This is because the possible payoffs in

the presence of the surrender option are less diverse and the exercise prices of Bermudan

CARs are model-independent.

Fig. 4.8–4.11 and tables 4.26–4.45 also show that the discrepancies between prices ob-

tained by the three Levy models (Meixner, NIG and VG) are very small. In fact, since

increments of Levy processes have stationary, independent and infinitely divisible distribu-

tions, if two Levy models have identical T -year equity return distributions at time 0, their

associated Levy processes must have identical finite dimensional distributions and hence

they must give identical (exotic or plain vanilla) option prices. So, if we can calibrate our

Levy models to market prices of options well enough, we should expect these models to

generate similar option prices. This is not necessarily true for stochastic volatility models.

When two stochastic volatility models have identical plain vanilla option prices at time 0,

this at best means they agree on the current distribution of equity returns. There is no

reason to believe that their future equity return distributions should appear similar.

4.6.4 Cliquets and barrier options

We have seen that the pricing errors for our EIAs are small. This leads us to ask why

our results have a sharp contrast with the results of Schoutens et al. (2003, 2005). In last

chapter, we argue that the answer lies in the fact that the nominal asset that an EIA seeks
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to protect is included in the payoff, but this is not true for the options (barrier options,

lookbacks and cliquets) considered in Schoutens et al. (2003, 2005).

To illustrate, consider a term-end CAR with no surrender, no global cap, no global floor

and no yield spread. Again, assume the premium is one dollar. Then the payoff of this

term-end CAR is given by

H(T ) =
T∏
t=1

mid [1 + f, 1 + α (R(t)− 1) , 1 + c]

where α is the (perceived) critical participation rate. Let

h(t) = mid
[
0, R(t)−

(
1 +

f

α

)
,
c− f
α

]
=
[
R(t)−

(
1 +

f

α

)]+

−
[
R(t)−

(
1 +

c

α

)]+
,

i.e. h(t) is the payoff of a forward-start one-year call spread. Then

H(T ) =
T∏
t=1

[(1 + f) + αh(t)]

= (1 + f)T

1 +
(

α

1 + f

) ∑
1≤t≤T

h(t) +
(

α

1 + f

)2 ∑
1≤t1<t2≤T

h(t1)h(t2)

+ . . .+
(

α

1 + f

)T T∏
t=1

h(t)

]
.

(4.21)

Since (1 + f)T is a constant, the pricing error for it must be zero. Hence the presence of

this guaranteed minimum payoff can help lowering the overall relative error in pricing this

ratchet.
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Figure 4.13. Some cliquet and term-end CAR prices calculated with Eurostoxx 50 parameters and T =

7, f = 0, c = 0.3, F = 0, C = +∞. We assume there is no mortality risk.

Fig. 4.13 plots the cliquet prices exp(−
∫ T

0 rsds)EQ
[∑

1≤t≤T h(t)
]

and the CAR prices

over a range of different participation rates and under different models when T = 7, f = 0
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and c = 0.3. For simplicity, we assume there is no mortality risk here and the prices are

calculated using only Eurostoxx 50 50 parameters with 10000 simulation paths. The detailed

prices are given in table 4.14. Despite errors in the CAR prices comprise not only from

errors in cliquet prices but also errors from the second and higher-order terms in (4.21),

table 4.14 shows that in absolute terms, the pricing errors for cliquets (6 to 8 cents) are only

slightly larger than those for CARs (2 to 5 cents). This is because each t-th order term in

(4.21) is weighted by the factor
(

α
1+f

)t
, which is smaller than one. In relative terms, since

the CAR price contains a component exp(−
∫ T

0 rsds)(1+f)T that is invariant across models

and large in size, the relative errors in the CAR prices (2 to 5 percent) are significantly

lower than that in the cliquet prices (13 to 17 percent).

T α NIG VG NIG/CIR VG/CIR NIG/Γ-OU VG/Γ-OU BS SV SVJ

cliquet 0.2 0.5228 0.5305 0.5617 0.5777 0.5055 0.4974 0.5405 0.5792 0.5819
0.3 0.5228 0.5305 0.5595 0.5761 0.5045 0.4953 0.5395 0.5754 0.5796
0.4 0.5228 0.5305 0.5549 0.5718 0.5030 0.4936 0.5350 0.5678 0.5733
0.5 0.5222 0.5300 0.5479 0.5641 0.5006 0.4917 0.5249 0.5563 0.5623
0.6 0.5200 0.5285 0.5385 0.5535 0.4970 0.4892 0.5103 0.5416 0.5473

CAR 0.2 0.8741 0.8758 0.8823 0.8859 0.8701 0.8683 0.8780 0.8863 0.8867
0.3 0.9345 0.9372 0.9466 0.9523 0.9278 0.9245 0.9404 0.9523 0.9534
0.4 0.9985 1.0023 1.0128 1.0210 0.9883 0.9835 1.0045 1.0194 1.0215
0.5 1.0658 1.0709 1.0802 1.0905 1.0510 1.0450 1.0674 1.0858 1.0889
0.6 1.1354 1.1424 1.1474 1.1594 1.1156 1.1088 1.1269 1.1501 1.1537

Table 4.14. Monte Carlo prices of some cliquets and term-end CARs. Here S&P 500 Q parameters are used
and we do not consider mortality risk. Percentagewise, the standard errors of simulation for the cliquet
prices and CAR prices are respectively less than 0.61% and 0.37% (e.g. when T = 1 and α = 0.2, the
standard error for the cliquet under the NIG model is less than 0.0061× 0.5228).

Another example for this ‘principal-not-included-in-premium’ effect is given table 4.47,

in which we replicate the experiment of Schoutens (2005) to determine the prices of several

barrier options under, except that the maturity is seven years here and we use our models

with S&P 500 Q parameters. The ‘principal’ that these options seek to protect is the strike

price (K = S0 = 1 in our experiment), which is not included in the option premium. For

each barrier level, the maximum-to-minimum ratios of the option prices obtained with our

models are given in table 4.48. These ratios and the prices for DIBs are plotted in fig. 4.15.

Although the maximum difference between the DIB prices here is only about 7.6 cents

(which is the difference between the SVJ price and VG price for H = 0.95 in table 4.47), in

relative term (which the pricing error is defined), the highest DIB price obtained with one
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model can be almost 54 times the lowest one (see table 4.48; the ratio of SVJ DIB price

to VG/Γ-OU price is 54.29 when H = 0.5)! This is even more dramatic than the result

of Schoutens et al. (2003, 2005), in which the DIB price obtained with one model is ‘just’

22 times the price obtained with another. Note that such a high ratio occurs when the

barrier level is very low (H = 0.5) and the option prices across all models are cheap. In

this case, the standard errors of simulation are very high — in our experiments they can

be as high as 10% of the option price. But even if both the highest price and the lowest

price are, say, two standard errors from the true prices, the ratio between them is still

54.29× (1− 0.2)/(1 + 0.2) ≈ 36.2, which is by no means a small number. However, should

the ‘principal’ be included in the option premium (so that the option payoff is max(K,S(T ))

instead of (S(T ) −K)+ if the lower barrier H has been reached), the relative errors in all

barrier option prices in table 4.47 would become only a few percent.
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Figure 4.15. (a) DIB prices (with S&P 500 Q parameters). (b) Ratios of DIB prices evaluated using all

models to the minimum prices among all models.

4.7 Conclusion

We have experimentally shown that the pricing errors for EIAs due to model misspecification

are small. We have also explained that such model risk should not be substantial (at least far

lower than that for other exotic options) because the principal of an EIA is included in the

premium of the EIA. The reader, however, should bear in mind that we have adopted only
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one single measure of model risk here, namely, the relative error in the option price. This

risk measure makes sense here because our major concern is the consequence of mispricing.

Yet, in other aspects of risk management or product design, we need to consider other risk

measures and we may arrive at different conclusions.

For instance, in reality it is important to determine the value-at-risk or conditional

tail expectation of the liability distribution, but in our experiments we have not computed

these quantities so as to save time. Also, we have not touched upon hedging errors in our

experiments. Since the stock market is in practice incomplete, the hedging cost for an exotic

option always carries a non-diversifiable component. The variation in such component,

however, can be different for any two equity price models even if they agree on the prices of

EIAs and/or the prices of plain-vanilla options. In reality, this issue is further complicated

by the practice of model recalibration. Since we have not enough option price data, we do

not pursue this issue in our study.

Nonetheless, the reader should be reminded that hedging errors are very different in

nature from (relative) pricing errors. For example, fig. 4.16 plots the prices and maximum-

to-minimum price ratios of our DOBs. As shown in this figure and fig. 4.15, the maximum

pricing error for DOBs is far lower than that in DIBs. But that does not make DIBs riskier

hedging instruments than DOBs are when all models are calibrated perfectly to plain-vanilla

option prices. This is because the sum of a DIB and a DOB with identical maturity, strike

price and barrier level is equal to the price of a plain-vanilla option. So, every hedging

portfolio containing the underlying, a money market account and some DIBs will have the

same pricing errors as the equivalent portfolio containing the underlying, a money market

account, some plain-vanilla options and some DOBs. Roughly speaking, the hedging errors

in general involves both the plain (as opposed to relative) pricing errors in the hedging

instruments and the sensitivities of the EIA prices to the prices of the hedging instruments

over the EIA’s lifetime. They bear little (or no) relationship to the relative pricing errors

in the hedging instruments.
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Figure 4.16. (a) DOB prices (with S&P 500 Q parameters). (b) Ratios of DOB prices evaluated using all

models to the minimum prices among all models.

Finally, in relation to product design, it is also important to consider the discrepancies

in the critical participation rates given by different models. Although the pricing errors in

EIA prices are small, they form a systematic risk that cannot be diversified. Therefore,

to alleviate the pricing error, one can lower the participation rate specified in the EIA

contract. Unfortunately, as shown in tables 4.7, 4.35, 4.39 and 4.43, the differences between

the highest value of α and the lowest one can be very large. With S&P 500 Q parameters,

for instance, they can be up to 0.05 for term-end CARs, 0.25 for term-end PTPs, 0.07 for

Asian-end CARs and 0.16 for reverse high-watermark PTPs. As a result, if we rely on

adjusting the participation rate as a major tactic to reduce the volatility risk, we may have

to sell the EIAs at a very unpopular low participation rate. From this perspective one can

claim that the volatility risk (as measured by discrepancy in critical participation rate) for

EIAs is profound.
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Destination state
1 2 3 4 5 6 7

Meix/CIR
1 0.0956 0.1248 0.1532 0.1728 0.1736 0.1527 0.1274
2 0.0925 0.1209 0.1493 0.1701 0.1740 0.1574 0.1358
3 0.0853 0.1121 0.1403 0.1638 0.1746 0.1682 0.1558
4 0.0735 0.0977 0.1252 0.1529 0.1749 0.1858 0.1900
5 0.0579 0.0783 0.1046 0.1370 0.1736 0.2093 0.2393
6 0.0412 0.0574 0.0816 0.1179 0.1696 0.2343 0.2979
7 0.0291 0.0419 0.0640 0.1021 0.1642 0.2524 0.3462

equ. 0.0569 0.0768 0.1023 0.1338 0.1707 0.2107 0.2488
NIG/CIR

1 0.0958 0.1250 0.1534 0.1729 0.1736 0.1524 0.1269
2 0.0926 0.1211 0.1495 0.1702 0.1739 0.1572 0.1354
3 0.0854 0.1123 0.1404 0.1639 0.1746 0.1680 0.1554
4 0.0736 0.0977 0.1253 0.1530 0.1749 0.1857 0.1897
5 0.0579 0.0782 0.1046 0.1371 0.1737 0.2093 0.2392
6 0.0412 0.0573 0.0815 0.1179 0.1696 0.2344 0.2982
7 0.0290 0.0418 0.0639 0.1020 0.1641 0.2525 0.3467

equ. 0.0569 0.0768 0.1023 0.1338 0.1707 0.2107 0.2488
VG/CIR

1 0.1588 0.2013 0.2221 0.1996 0.1343 0.0623 0.0217
2 0.1444 0.1856 0.2117 0.2021 0.1486 0.0771 0.0305
3 0.1142 0.1518 0.1873 0.2035 0.1777 0.1116 0.0539
4 0.0736 0.1040 0.1460 0.1918 0.2111 0.1695 0.1041
5 0.0355 0.0549 0.0915 0.1515 0.2208 0.2428 0.2030
6 0.0118 0.0204 0.0413 0.0873 0.1744 0.2932 0.3714
7 0.0030 0.0058 0.0143 0.0386 0.1048 0.2670 0.5666

equ. 0.0427 0.0596 0.0831 0.1158 0.1614 0.2247 0.3127
Meix/Γ-OU

1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
7 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

equ. 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
NIG/Γ-OU

1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
7 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

equ. 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
VG/Γ-OU

1 0.4546 0.1289 0.1207 0.1091 0.0909 0.0641 0.0316
2 0.3351 0.2157 0.1301 0.1181 0.0983 0.0690 0.0337
3 0.2093 0.2379 0.1996 0.1312 0.1091 0.0761 0.0368
4 0.1186 0.2003 0.2447 0.1884 0.1225 0.0849 0.0407
5 0.0631 0.1435 0.2373 0.2454 0.1699 0.0956 0.0452
6 0.0322 0.0926 0.1949 0.2641 0.2319 0.1335 0.0508
7 0.0159 0.0553 0.1418 0.2410 0.2715 0.1955 0.0790

equ. 0.2306 0.1708 0.1791 0.1639 0.1301 0.0858 0.0397

Table 4.21. One-year transition probabilities and equilibrium distributions for ι with S&P 500 P
parameters.
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Destination state
1 2 3 4 5 6 7

Meix/CIR
1 0.1014 0.1253 0.1480 0.1649 0.1700 0.1590 0.1315
2 0.1014 0.1252 0.1480 0.1649 0.1700 0.1590 0.1315
3 0.1013 0.1252 0.1479 0.1648 0.1701 0.1590 0.1316
4 0.1012 0.1251 0.1479 0.1648 0.1701 0.1592 0.1318
5 0.1011 0.1249 0.1477 0.1647 0.1701 0.1593 0.1320
6 0.1009 0.1248 0.1476 0.1646 0.1702 0.1596 0.1323
7 0.1008 0.1246 0.1474 0.1646 0.1702 0.1597 0.1326

equ. 0.1011 0.1250 0.1478 0.1647 0.1701 0.1593 0.1319
NIG/CIR

1 0.1014 0.1253 0.1480 0.1649 0.1700 0.1589 0.1315
2 0.1014 0.1252 0.1480 0.1649 0.1700 0.1590 0.1315
3 0.1013 0.1252 0.1479 0.1648 0.1701 0.1590 0.1316
4 0.1012 0.1251 0.1479 0.1648 0.1701 0.1592 0.1318
5 0.1011 0.1249 0.1477 0.1647 0.1701 0.1593 0.1320
6 0.1009 0.1248 0.1476 0.1646 0.1702 0.1596 0.1323
7 0.1008 0.1246 0.1474 0.1646 0.1702 0.1597 0.1326

equ. 0.1012 0.1250 0.1478 0.1647 0.1701 0.1593 0.1319
VG/CIR

1 0.0580 0.0793 0.1057 0.1361 0.1687 0.2030 0.2492
2 0.0569 0.0779 0.1041 0.1347 0.1682 0.2045 0.2537
3 0.0544 0.0747 0.1004 0.1315 0.1671 0.2081 0.2638
4 0.0503 0.0694 0.0944 0.1261 0.1652 0.2140 0.2806
5 0.0448 0.0623 0.0862 0.1187 0.1626 0.2219 0.3035
6 0.0388 0.0545 0.0773 0.1106 0.1596 0.2305 0.3287
7 0.0343 0.0487 0.0706 0.1045 0.1573 0.2369 0.3477

equ. 0.0429 0.0598 0.0834 0.1161 0.1616 0.2246 0.3116
Meix/Γ-OU

1 0.9143 0.0342 0.0213 0.0133 0.0083 0.0053 0.0033
2 0.0002 0.9168 0.0343 0.0214 0.0134 0.0085 0.0054
3 0.0000 0.0002 0.9214 0.0345 0.0216 0.0136 0.0086
4 0.0000 0.0000 0.0003 0.9289 0.0349 0.0220 0.0139
5 0.0000 0.0000 0.0000 0.0003 0.9416 0.0355 0.0225
6 0.0000 0.0000 0.0000 0.0000 0.0004 0.9630 0.0366
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.9995

equ. 0.0000 0.0000 0.0000 0.0000 0.0001 0.0127 0.9873
NIG/Γ-OU

1 0.9613 0.0255 0.0087 0.0030 0.0010 0.0003 0.0001
2 0.0000 0.9614 0.0256 0.0087 0.0030 0.0010 0.0003
3 0.0000 0.0000 0.9617 0.0256 0.0087 0.0030 0.0010
4 0.0000 0.0000 0.0000 0.9626 0.0256 0.0088 0.0030
5 0.0000 0.0000 0.0000 0.0000 0.9653 0.0258 0.0089
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.9737 0.0262
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.9999

equ. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0022 0.9978
VG/Γ-OU

1 0.6702 0.1143 0.0834 0.0590 0.0393 0.0233 0.0104
2 0.6702 0.1143 0.0834 0.0590 0.0393 0.0233 0.0104
3 0.6702 0.1143 0.0834 0.0590 0.0393 0.0233 0.0104
4 0.6702 0.1143 0.0834 0.0590 0.0393 0.0233 0.0104
5 0.6702 0.1143 0.0834 0.0590 0.0393 0.0233 0.0104
6 0.6702 0.1143 0.0834 0.0590 0.0393 0.0233 0.0104
7 0.6702 0.1143 0.0834 0.0590 0.0393 0.0233 0.0104

equ. 0.6702 0.1143 0.0834 0.0590 0.0393 0.0233 0.0104

Table 4.22. One-year transition probabilities and equilibrium distributions for ι with S&P 500 P+Q
parameters.
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Destination state
1 2 3 4 5 6 7

Meix/CIR
1 0.0999 0.1320 0.1619 0.1794 0.1740 0.1445 0.1082
2 0.0971 0.1285 0.1585 0.1774 0.1749 0.1489 0.1149
3 0.0905 0.1205 0.1505 0.1724 0.1766 0.1590 0.1303
4 0.0798 0.1073 0.1372 0.1639 0.1791 0.1758 0.1568
5 0.0654 0.0895 0.1188 0.1513 0.1811 0.1986 0.1952
6 0.0497 0.0696 0.0978 0.1358 0.1816 0.2241 0.2415
7 0.0376 0.0543 0.0810 0.1224 0.1802 0.2439 0.2807

equ. 0.0674 0.0916 0.1205 0.1514 0.1791 0.1960 0.1940
NIG/CIR

1 0.0728 0.1263 0.1947 0.2357 0.1964 0.1190 0.0551
2 0.0699 0.1218 0.1895 0.2333 0.1995 0.1254 0.0605
3 0.0638 0.1122 0.1783 0.2278 0.2058 0.1393 0.0728
4 0.0543 0.0971 0.1601 0.2174 0.2144 0.1621 0.0946
5 0.0422 0.0774 0.1349 0.1999 0.2224 0.1940 0.1292
6 0.0297 0.0565 0.1060 0.1755 0.2254 0.2308 0.1761
7 0.0204 0.0404 0.0821 0.1518 0.2224 0.2609 0.2219

equ. 0.0464 0.0838 0.1415 0.2013 0.2159 0.1859 0.1254
VG/CIR

1 0.1332 0.2327 0.2917 0.2299 0.0917 0.0185 0.0023
2 0.1082 0.1988 0.2786 0.2588 0.1227 0.0289 0.0042
3 0.0673 0.1383 0.2413 0.3007 0.1876 0.0551 0.0096
4 0.0291 0.0705 0.1649 0.3100 0.2865 0.1138 0.0253
5 0.0086 0.0247 0.0760 0.2116 0.3691 0.2353 0.0747
6 0.0019 0.0063 0.0244 0.0916 0.2566 0.3973 0.2219
7 0.0003 0.0013 0.0062 0.0298 0.1192 0.3244 0.5187

equ. 0.0235 0.0505 0.1017 0.1855 0.2511 0.2303 0.1575
Meix/Γ-OU

1 0.5175 0.1159 0.1152 0.1013 0.0774 0.0497 0.0230
2 0.4759 0.1561 0.1158 0.1018 0.0777 0.0498 0.0230
3 0.4053 0.2033 0.1378 0.1024 0.0781 0.0500 0.0231
4 0.3249 0.2326 0.1758 0.1146 0.0787 0.0503 0.0232
5 0.2484 0.2370 0.2134 0.1419 0.0854 0.0506 0.0233
6 0.1827 0.2206 0.2374 0.1777 0.1038 0.0543 0.0235
7 0.1299 0.1910 0.2425 0.2113 0.1336 0.0662 0.0254

equ. 0.4253 0.1649 0.1424 0.1127 0.0810 0.0505 0.0231
NIG/Γ-OU

1 0.4727 0.1257 0.1259 0.1109 0.0849 0.0546 0.0253
2 0.4418 0.1553 0.1264 0.1113 0.0851 0.0547 0.0254
3 0.3868 0.1931 0.1424 0.1120 0.0855 0.0549 0.0254
4 0.3209 0.2200 0.1718 0.1206 0.0860 0.0551 0.0255
5 0.2549 0.2283 0.2037 0.1412 0.0907 0.0554 0.0256
6 0.1952 0.2188 0.2275 0.1704 0.1043 0.0580 0.0258
7 0.1448 0.1963 0.2370 0.2005 0.1277 0.0665 0.0271

equ. 0.3936 0.1681 0.1493 0.1206 0.0878 0.0553 0.0255
VG/Γ-OU

1 0.5193 0.1150 0.1146 0.1010 0.0774 0.0497 0.0230
2 0.4762 0.1566 0.1152 0.1015 0.0777 0.0498 0.0231
3 0.4037 0.2048 0.1381 0.1022 0.0781 0.0500 0.0231
4 0.3217 0.2339 0.1772 0.1149 0.0786 0.0503 0.0232
5 0.2444 0.2373 0.2153 0.1433 0.0857 0.0507 0.0234
6 0.1785 0.2195 0.2389 0.1800 0.1050 0.0546 0.0235
7 0.1261 0.1888 0.2428 0.2137 0.1358 0.0671 0.0256

equ. 0.4247 0.1650 0.1425 0.1129 0.0811 0.0506 0.0232

Table 4.23. One-year transition probabilities and equilibrium distributions for ι with S&P 500 Q
parameters.
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Destination state
1 2 3 4 5 6 7

Meix/CIR
1 0.2781 0.2794 0.2269 0.1381 0.0583 0.0161 0.0031
2 0.2569 0.2642 0.2269 0.1516 0.0724 0.0230 0.0050
3 0.2102 0.2286 0.2226 0.1793 0.1063 0.0418 0.0111
4 0.1446 0.1726 0.2026 0.2089 0.1618 0.0821 0.0274
5 0.0795 0.1073 0.1564 0.2106 0.2223 0.1552 0.0688
6 0.0339 0.0525 0.0947 0.1645 0.2390 0.2525 0.1628
7 0.0121 0.0215 0.0473 0.1030 0.1988 0.3052 0.3122

equ. 0.1790 0.1947 0.1932 0.1710 0.1314 0.0853 0.0455
NIG/CIR

1 0.2812 0.2803 0.2260 0.1366 0.0572 0.0157 0.0030
2 0.2598 0.2651 0.2262 0.1502 0.0713 0.0225 0.0049
3 0.2126 0.2295 0.2223 0.1783 0.1053 0.0412 0.0109
4 0.1460 0.1732 0.2027 0.2086 0.1612 0.0814 0.0270
5 0.0800 0.1074 0.1564 0.2107 0.2224 0.1548 0.0684
6 0.0339 0.0524 0.0945 0.1643 0.2392 0.2530 0.1628
7 0.0120 0.0213 0.0469 0.1023 0.1981 0.3055 0.3139

equ. 0.1817 0.1960 0.1932 0.1700 0.1301 0.0842 0.0449
VG/CIR

1 0.2478 0.2683 0.2344 0.1537 0.0702 0.0212 0.0044
2 0.2284 0.2527 0.2323 0.1658 0.0848 0.0291 0.0069
3 0.1868 0.2175 0.2238 0.1893 0.1185 0.0497 0.0143
4 0.1292 0.1637 0.1997 0.2121 0.1707 0.0916 0.0330
5 0.0720 0.1022 0.1524 0.2083 0.2244 0.1633 0.0774
6 0.0315 0.0508 0.0928 0.1621 0.2369 0.2542 0.1718
7 0.0116 0.0215 0.0475 0.1034 0.1990 0.3045 0.3125

equ. 0.1505 0.1768 0.1888 0.1790 0.1467 0.1012 0.0571
Meix/Γ-OU

1 0.7839 0.0620 0.0546 0.0430 0.0301 0.0182 0.0081
2 0.7281 0.1177 0.0546 0.0431 0.0301 0.0182 0.0081
3 0.6300 0.1905 0.0799 0.0431 0.0302 0.0182 0.0081
4 0.5150 0.2463 0.1276 0.0546 0.0302 0.0182 0.0082
5 0.4025 0.2721 0.1808 0.0828 0.0354 0.0183 0.0082
6 0.3035 0.2693 0.2237 0.1235 0.0512 0.0206 0.0082
7 0.2222 0.2462 0.2476 0.1667 0.0789 0.0291 0.0092

equ. 0.7301 0.0967 0.0684 0.0473 0.0311 0.0183 0.0082
NIG/Γ-OU

1 0.7925 0.0572 0.0507 0.0417 0.0306 0.0189 0.0084
2 0.6567 0.1875 0.0527 0.0433 0.0316 0.0195 0.0086
3 0.4767 0.2846 0.1305 0.0457 0.0332 0.0203 0.0089
4 0.3166 0.3025 0.2226 0.0924 0.0352 0.0214 0.0094
5 0.1976 0.2644 0.2748 0.1675 0.0633 0.0226 0.0098
6 0.1177 0.2043 0.2762 0.2320 0.1199 0.0394 0.0104
7 0.0677 0.1449 0.2417 0.2620 0.1834 0.0801 0.0201

equ. 0.6837 0.1153 0.0811 0.0553 0.0355 0.0203 0.0087
VG/Γ-OU

1 0.8158 0.0453 0.0436 0.0382 0.0294 0.0189 0.0087
2 0.6751 0.1857 0.0437 0.0384 0.0295 0.0190 0.0087
3 0.4879 0.2898 0.1263 0.0385 0.0296 0.0190 0.0088
4 0.3220 0.3089 0.2242 0.0872 0.0298 0.0191 0.0088
5 0.1993 0.2689 0.2790 0.1664 0.0584 0.0192 0.0088
6 0.1177 0.2062 0.2798 0.2337 0.1177 0.0361 0.0089
7 0.0669 0.1449 0.2432 0.2641 0.1837 0.0784 0.0188

equ. 0.7111 0.1026 0.0732 0.0509 0.0336 0.0198 0.0088

Table 4.24. One-year transition probabilities and equilibrium distributions for ι with Eurostoxx 50
parameters.
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(A) Exact price

SV 0.9439 0.8446 0.9426 0.8422 0.9426 0.8422
0.9440 0.8448 0.9427 0.8425 0.9427 0.8425
0.9437 0.8442 0.9425 0.8420 0.9425 0.8420
0.9435 0.8440 0.9426 0.8422 0.9426 0.8422
0.9554 0.8647 0.9530 0.8598 0.9530 0.8598
0.9435 0.8440 0.9426 0.8423 0.9426 0.8423
0.9791 0.9091 0.9703 0.8898 0.9702 0.8895
0.9650 0.8822 0.9602 0.8723 0.9602 0.8722
0.9784 0.9076 0.9698 0.8889 0.9697 0.8887
0.9496 0.8541 0.9453 0.8468 0.9452 0.8466

SVJ 0.9439 0.8446 0.9426 0.8422 0.9426 0.8422
0.9440 0.8448 0.9427 0.8425 0.9427 0.8425
0.9437 0.8442 0.9425 0.8420 0.9425 0.8420
0.9435 0.8440 0.9426 0.8422 0.9426 0.8422
0.9554 0.8647 0.9530 0.8598 0.9530 0.8598
0.9435 0.8440 0.9426 0.8423 0.9426 0.8423
0.9791 0.9091 0.9703 0.8898 0.9702 0.8895
0.9650 0.8822 0.9602 0.8723 0.9602 0.8722
0.9784 0.9076 0.9698 0.8889 0.9697 0.8887
0.9496 0.8541 0.9453 0.8468 0.9452 0.8466

Γ-OU 0.9439 0.8446 0.9426 0.8422 0.9426 0.8422
0.9440 0.8448 0.9427 0.8425 0.9427 0.8425
0.9437 0.8442 0.9425 0.8420 0.9425 0.8420
0.9435 0.8440 0.9426 0.8422 0.9426 0.8422
0.9554 0.8647 0.9530 0.8598 0.9530 0.8598
0.9435 0.8440 0.9426 0.8423 0.9426 0.8423
0.9791 0.9091 0.9703 0.8898 0.9702 0.8895
0.9650 0.8822 0.9602 0.8723 0.9602 0.8722
0.9784 0.9076 0.9698 0.8889 0.9697 0.8887
0.9496 0.8541 0.9453 0.8468 0.9452 0.8466

(B) Monte Carlo price minus exact price

SV −0.0080 −0.0056 −0.0079 −0.0055 −0.0079 −0.0055
−0.0080 −0.0056 −0.0079 −0.0055 −0.0079 −0.0055
−0.0080 −0.0055 −0.0079 −0.0055 −0.0079 −0.0055
−0.0080 −0.0055 −0.0079 −0.0055 −0.0079 −0.0055
−0.0094 −0.0065 −0.0095 −0.0066 −0.0095 −0.0066
−0.0080 −0.0055 −0.0079 −0.0055 −0.0079 −0.0055
−0.0107 −0.0074 −0.0121 −0.0084 −0.0120 −0.0084
−0.0103 −0.0071 −0.0106 −0.0074 −0.0105 −0.0074
−0.0107 −0.0074 −0.0120 −0.0084 −0.0120 −0.0083
−0.0088 −0.0061 −0.0083 −0.0058 −0.0083 −0.0058

SVJ −0.0096 −0.0062 −0.0094 −0.0060 −0.0094 −0.0060
−0.0096 −0.0062 −0.0094 −0.0060 −0.0094 −0.0060
−0.0095 −0.0062 −0.0094 −0.0060 −0.0094 −0.0060
−0.0095 −0.0062 −0.0094 −0.0060 −0.0094 −0.0060
−0.0115 −0.0076 −0.0112 −0.0072 −0.0112 −0.0072
−0.0095 −0.0062 −0.0094 −0.0060 −0.0094 −0.0060
−0.0145 −0.0099 −0.0143 −0.0092 −0.0143 −0.0092
−0.0129 −0.0087 −0.0125 −0.0081 −0.0125 −0.0080
−0.0145 −0.0098 −0.0142 −0.0092 −0.0142 −0.0091
−0.0106 −0.0069 −0.0099 −0.0063 −0.0098 −0.0063

Γ-OU 0.0134 0.0144 0.0405 0.0594 0.0508 0.0821
0.0134 0.0143 0.0405 0.0594 0.0509 0.0822
0.0135 0.0146 0.0404 0.0594 0.0507 0.0820
0.0136 0.0147 0.0405 0.0594 0.0508 0.0821
0.0078 0.0031 0.0422 0.0593 0.0572 0.0894
0.0136 0.0147 0.0405 0.0594 0.0509 0.0821
−0.0068 −0.0259 0.0414 0.0549 0.0647 0.0975

0.0023 −0.0078 0.0423 0.0580 0.0608 0.0934
−0.0063 −0.0249 0.0415 0.0551 0.0645 0.0974

0.0108 0.0092 0.0411 0.0596 0.0526 0.0841

Table 4.25. Exact term-end PTP prices (calculated using the Carr-Madan formula (4.19)) and their simu-
lation errors for the SV, SVJ and Γ-OU models using S&P 500 Q parameters.
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α Meix NIG VG Meix
CIR

NIG
CIR

VG
CIR

Meix
Γ-OU

NIG
Γ-OU

VG
Γ-OU

c = 0.1 0.3137 0.00 0.04 0.13 0.04 0.04 0.07 0.07 0.06 0.04
T = 3 0.3194 −0.04 0.00 0.10 0.01 0.01 0.03 0.03 0.03 0.01

0.3379 −0.15 −0.11 0.00 −0.10 −0.10 −0.07 −0.08 −0.08 −0.11
0.3207 −0.05 −0.01 0.09 0.00 0.00 0.02 0.02 0.02 0.00
0.3207 −0.05 −0.01 0.09 0.00 0.00 0.02 0.02 0.02 0.00
0.3250 −0.07 −0.03 0.07 −0.03 −0.03 0.00 0.00 0.00 −0.03
0.3246 −0.07 −0.03 0.07 −0.02 −0.02 0.00 0.00 0.00 −0.03
0.3245 −0.07 −0.03 0.07 −0.02 −0.02 0.00 0.00 0.00 −0.03
0.3203 −0.04 −0.01 0.09 0.00 0.00 0.03 0.03 0.03 0.00

c = 0.1 0.3137 0.00 0.04 0.13 0.04 0.04 0.07 0.07 0.06 0.04
T = 7 0.3194 −0.04 0.00 0.10 0.01 0.01 0.03 0.03 0.03 0.01

0.3379 −0.15 −0.11 0.00 −0.10 −0.10 −0.07 −0.08 −0.08 −0.11
0.3207 −0.05 −0.01 0.09 0.00 0.00 0.02 0.02 0.02 0.00
0.3207 −0.05 −0.01 0.09 0.00 0.00 0.02 0.02 0.02 0.00
0.3250 −0.07 −0.03 0.07 −0.03 −0.03 0.00 0.00 0.00 −0.03
0.3246 −0.07 −0.03 0.07 −0.02 −0.02 0.00 0.00 0.00 −0.03
0.3245 −0.07 −0.03 0.07 −0.02 −0.02 0.00 0.00 0.00 −0.03
0.3203 −0.04 −0.01 0.09 0.00 0.00 0.03 0.03 0.03 0.00

c = 0.2 0.3062 0.00 0.01 0.06 0.03 0.03 0.03 0.04 0.02 0.04
T = 3 0.3075 −0.01 0.00 0.05 0.02 0.02 0.02 0.03 0.01 0.03

0.3142 −0.06 −0.05 0.00 −0.03 −0.03 −0.03 −0.02 −0.04 −0.02
0.3098 −0.03 −0.02 0.03 0.00 0.00 0.01 0.01 −0.01 0.01
0.3097 −0.03 −0.02 0.03 0.00 0.00 0.01 0.01 −0.01 0.01
0.3106 −0.03 −0.02 0.03 −0.01 −0.01 0.00 0.00 −0.02 0.00
0.3111 −0.04 −0.03 0.02 −0.01 −0.01 0.00 0.00 −0.02 0.00
0.3084 −0.02 −0.01 0.04 0.01 0.01 0.02 0.02 0.00 0.02
0.3111 −0.04 −0.03 0.02 −0.01 −0.01 0.00 0.00 −0.02 0.00

c = 0.2 0.3062 0.00 0.01 0.06 0.03 0.03 0.03 0.04 0.02 0.04
T = 7 0.3075 −0.01 0.00 0.05 0.02 0.02 0.02 0.03 0.01 0.03

0.3142 −0.06 −0.05 0.00 −0.03 −0.03 −0.03 −0.02 −0.04 −0.02
0.3097 −0.03 −0.02 0.03 0.00 0.00 0.01 0.01 −0.01 0.01
0.3097 −0.03 −0.02 0.03 0.00 0.00 0.01 0.01 −0.01 0.01
0.3106 −0.03 −0.02 0.03 −0.01 −0.01 0.00 0.00 −0.02 0.00
0.3111 −0.04 −0.03 0.02 −0.01 −0.01 0.00 0.00 −0.02 0.00
0.3084 −0.02 −0.01 0.04 0.01 0.01 0.02 0.02 0.00 0.02
0.3111 −0.04 −0.03 0.02 −0.01 −0.01 0.00 0.00 −0.02 0.00

c = 0.3 0.3062 0.00 0.00 0.06 0.03 0.03 0.03 0.04 0.00 0.04
T = 3 0.3066 0.00 0.00 0.06 0.02 0.02 0.03 0.03 0.00 0.03

0.3140 −0.06 −0.06 0.00 −0.03 −0.03 −0.03 −0.02 −0.06 −0.02
0.3097 −0.03 −0.02 0.03 0.00 0.00 0.01 0.01 −0.03 0.01
0.3097 −0.03 −0.02 0.03 0.00 0.00 0.01 0.01 −0.03 0.01
0.3105 −0.03 −0.03 0.03 −0.01 −0.01 0.00 0.00 −0.03 0.00
0.3109 −0.04 −0.03 0.02 −0.01 −0.01 0.00 0.00 −0.04 0.00
0.3062 0.00 0.00 0.06 0.03 0.03 0.03 0.04 0.00 0.04
0.3111 −0.04 −0.03 0.02 −0.01 −0.01 0.00 0.00 −0.04 0.00

c = 0.3 0.3062 0.00 0.00 0.06 0.03 0.03 0.03 0.04 0.00 0.04
T = 7 0.3065 0.00 0.00 0.06 0.02 0.02 0.03 0.03 0.00 0.03

0.3140 −0.06 −0.06 0.00 −0.03 −0.03 −0.03 −0.02 −0.06 −0.02
0.3097 −0.03 −0.02 0.03 0.00 0.00 0.01 0.01 −0.03 0.01
0.3097 −0.03 −0.02 0.03 0.00 0.00 0.01 0.01 −0.03 0.01
0.3105 −0.03 −0.03 0.03 −0.01 −0.01 0.00 0.00 −0.03 0.00
0.3109 −0.04 −0.03 0.02 −0.01 −0.01 0.00 0.00 −0.04 0.00
0.3062 0.00 0.00 0.06 0.03 0.03 0.03 0.04 0.00 0.04
0.3111 −0.04 −0.03 0.02 −0.01 −0.01 0.00 0.00 −0.04 0.00

Table 4.26. Values of 100× (1− term-end CAR price) using S&P 500 P + Q parameters.
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α Meix NIG VG Meix
CIR

NIG
CIR

VG
CIR

Meix
Γ-OU

NIG
Γ-OU

VG
Γ-OU

BS

c = 0.1 0.3177 0.00 0.00 −0.01 −0.02 −0.06 −0.01 −0.10 −0.08 −0.10 0.20
T = 3 0.3174 0.00 0.00 −0.01 −0.01 −0.05 −0.01 −0.10 −0.08 −0.10 0.20

0.3164 0.01 0.01 0.00 −0.01 −0.05 0.00 −0.09 −0.07 −0.09 0.21
0.3151 0.02 0.01 0.01 0.00 −0.04 0.00 −0.09 −0.06 −0.08 0.21
0.3093 0.05 0.05 0.05 0.04 0.00 0.04 −0.05 −0.02 −0.05 0.24
0.3157 0.01 0.01 0.00 0.00 −0.04 0.00 −0.09 −0.07 −0.09 0.21
0.3023 0.10 0.10 0.09 0.08 0.05 0.09 0.00 0.02 0.00 0.28
0.3058 0.08 0.07 0.07 0.06 0.02 0.06 −0.02 0.00 −0.02 0.26
0.3025 0.10 0.10 0.09 0.08 0.05 0.09 0.00 0.02 0.00 0.28
0.3591 −0.25 −0.25 −0.26 −0.27 −0.31 −0.27 −0.36 −0.33 −0.36 0.00

c = 0.1 0.3177 0.00 0.00 −0.01 −0.02 −0.06 −0.01 −0.10 −0.08 −0.10 0.20
T = 7 0.3174 0.00 0.00 −0.01 −0.01 −0.05 −0.01 −0.10 −0.08 −0.10 0.20

0.3164 0.01 0.01 0.00 −0.01 −0.05 0.00 −0.09 −0.07 −0.09 0.21
0.3151 0.02 0.01 0.01 0.00 −0.04 0.00 −0.09 −0.06 −0.08 0.21
0.3093 0.05 0.05 0.05 0.04 0.00 0.04 −0.05 −0.02 −0.05 0.24
0.3157 0.01 0.01 0.00 0.00 −0.04 0.00 −0.09 −0.07 −0.09 0.21
0.3023 0.10 0.10 0.09 0.08 0.05 0.09 0.00 0.02 0.00 0.28
0.3058 0.08 0.07 0.07 0.06 0.02 0.06 −0.02 0.00 −0.02 0.26
0.3025 0.10 0.10 0.09 0.08 0.05 0.09 0.00 0.02 0.00 0.28
0.3591 −0.25 −0.25 −0.26 −0.27 −0.31 −0.27 −0.36 −0.33 −0.36 0.00

c = 0.2 0.3074 0.00 0.00 0.00 0.00 −0.06 0.00 −0.15 −0.10 −0.14 0.12
T = 3 0.3072 0.00 0.00 0.00 0.00 −0.06 0.00 −0.14 −0.10 −0.14 0.12

0.3069 0.00 0.00 0.00 0.01 −0.06 0.01 −0.14 −0.10 −0.14 0.12
0.3076 0.00 0.00 −0.01 0.00 −0.06 0.00 −0.15 −0.10 −0.14 0.11
0.2995 0.06 0.06 0.06 0.06 0.00 0.06 −0.09 −0.04 −0.08 0.17
0.3078 0.00 0.00 −0.01 0.00 −0.06 0.00 −0.15 −0.10 −0.15 0.11
0.2883 0.15 0.14 0.14 0.15 0.09 0.15 0.00 0.04 0.00 0.25
0.2941 0.10 0.10 0.10 0.10 0.04 0.10 −0.04 0.00 −0.04 0.21
0.2886 0.14 0.14 0.14 0.14 0.08 0.15 0.00 0.04 0.00 0.25
0.3237 −0.12 −0.13 −0.13 −0.12 −0.18 −0.12 −0.27 −0.23 −0.27 0.00

c = 0.2 0.3074 0.00 0.00 0.00 0.00 −0.06 0.00 −0.15 −0.10 −0.14 0.12
T = 7 0.3072 0.00 0.00 0.00 0.00 −0.06 0.01 −0.14 −0.10 −0.14 0.12

0.3069 0.00 0.00 0.00 0.01 −0.06 0.01 −0.14 −0.10 −0.14 0.12
0.3076 0.00 0.00 −0.01 0.00 −0.06 0.00 −0.15 −0.10 −0.14 0.11
0.2995 0.06 0.06 0.06 0.06 0.00 0.06 −0.08 −0.04 −0.08 0.17
0.3078 0.00 0.00 −0.01 0.00 −0.06 0.00 −0.15 −0.10 −0.15 0.11
0.2883 0.15 0.14 0.14 0.15 0.09 0.15 0.00 0.04 0.00 0.25
0.2941 0.10 0.10 0.10 0.10 0.04 0.10 −0.04 0.00 −0.04 0.21
0.2886 0.14 0.14 0.14 0.14 0.08 0.15 0.00 0.04 0.00 0.25
0.3237 −0.12 −0.13 −0.13 −0.12 −0.18 −0.12 −0.27 −0.23 −0.27 0.00

c = 0.3 0.3072 0.00 0.00 0.00 0.00 −0.09 0.00 −0.22 −0.15 −0.21 0.11
T = 3 0.3068 0.00 0.00 0.00 0.01 −0.09 0.01 −0.21 −0.15 −0.21 0.12

0.3068 0.00 0.00 0.00 0.01 −0.09 0.01 −0.21 −0.15 −0.21 0.12
0.3076 0.00 −0.01 −0.01 0.00 −0.09 0.00 −0.22 −0.15 −0.22 0.11
0.2956 0.09 0.09 0.09 0.09 0.00 0.09 −0.13 −0.06 −0.12 0.20
0.3078 0.00 −0.01 −0.01 0.00 −0.09 0.00 −0.22 −0.16 −0.22 0.11
0.2789 0.22 0.21 0.21 0.22 0.13 0.22 0.00 0.07 0.00 0.32
0.2874 0.15 0.15 0.15 0.15 0.06 0.15 −0.07 0.00 −0.06 0.26
0.2793 0.21 0.21 0.21 0.22 0.12 0.22 0.00 0.06 0.00 0.32
0.3229 −0.12 −0.12 −0.12 −0.12 −0.21 −0.11 −0.34 −0.27 −0.33 0.00

c = 0.3 0.3072 0.00 0.00 0.00 0.00 −0.09 0.00 −0.22 −0.15 −0.21 0.11
T = 7 0.3068 0.00 0.00 0.00 0.01 −0.09 0.01 −0.21 −0.15 −0.21 0.12

0.3068 0.00 0.00 0.00 0.01 −0.09 0.01 −0.21 −0.15 −0.21 0.12
0.3076 0.00 −0.01 −0.01 0.00 −0.09 0.00 −0.22 −0.15 −0.22 0.11
0.2956 0.09 0.09 0.09 0.09 0.00 0.09 −0.13 −0.06 −0.12 0.20
0.3078 0.00 −0.01 −0.01 0.00 −0.09 0.00 −0.22 −0.16 −0.22 0.11
0.2789 0.22 0.21 0.21 0.22 0.13 0.22 0.00 0.07 0.00 0.32
0.2874 0.15 0.15 0.15 0.15 0.06 0.15 −0.07 0.00 −0.06 0.26
0.2793 0.21 0.21 0.21 0.22 0.12 0.22 0.00 0.06 0.00 0.32
0.3229 −0.12 −0.12 −0.12 −0.12 −0.21 −0.11 −0.34 −0.27 −0.33 0.00

Table 4.27. Values of 100× (1− term-end CAR price) using S&P 500 Q parameters.
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α Meix NIG VG Meix
CIR

NIG
CIR

VG
CIR

Meix
Γ-OU

NIG
Γ-OU

VG
Γ-OU

BS

c = 0.1 0.2528 0.00 −0.01 −0.03 −0.24 −0.24 −0.27 −0.34 −0.19 −0.20 −0.01
T = 3 0.2517 0.01 0.00 −0.02 −0.23 −0.23 −0.26 −0.33 −0.18 −0.20 −0.01

0.2494 0.03 0.02 0.00 −0.21 −0.21 −0.24 −0.31 −0.17 −0.18 0.00
0.2235 0.23 0.22 0.21 0.00 0.00 −0.03 −0.09 0.03 0.02 0.16
0.2235 0.23 0.22 0.21 0.00 0.00 −0.03 −0.09 0.03 0.02 0.16
0.2194 0.26 0.25 0.24 0.03 0.03 0.00 −0.06 0.06 0.05 0.19
0.2131 0.31 0.30 0.29 0.09 0.09 0.05 0.00 0.11 0.10 0.23
0.2274 0.20 0.19 0.17 −0.03 −0.03 −0.07 −0.13 0.00 −0.01 0.14
0.2257 0.21 0.20 0.19 −0.02 −0.02 −0.05 −0.11 0.01 0.00 0.15
0.2502 0.02 0.01 −0.01 −0.22 −0.22 −0.25 −0.32 −0.17 −0.18 0.00

c = 0.1 0.2528 0.00 −0.01 −0.03 −0.24 −0.24 −0.27 −0.34 −0.19 −0.20 −0.01
T = 7 0.2517 0.01 0.00 −0.02 −0.23 −0.23 −0.26 −0.33 −0.18 −0.20 −0.01

0.2494 0.03 0.02 0.00 −0.21 −0.21 −0.24 −0.31 −0.17 −0.18 0.00
0.2235 0.23 0.22 0.21 0.00 0.00 −0.03 −0.09 0.03 0.02 0.16
0.2235 0.23 0.22 0.21 0.00 0.00 −0.03 −0.09 0.03 0.02 0.16
0.2194 0.26 0.25 0.24 0.03 0.03 0.00 −0.06 0.06 0.05 0.19
0.2131 0.31 0.30 0.29 0.09 0.09 0.05 0.00 0.11 0.10 0.23
0.2274 0.20 0.19 0.17 −0.03 −0.03 −0.07 −0.13 0.00 −0.01 0.14
0.2257 0.21 0.20 0.19 −0.02 −0.02 −0.05 −0.11 0.01 0.00 0.15
0.2502 0.02 0.01 −0.01 −0.22 −0.22 −0.25 −0.32 −0.17 −0.18 0.00

c = 0.2 0.2479 0.00 −0.01 −0.02 −0.40 −0.40 −0.45 −0.39 −0.28 −0.30 −0.23
T = 3 0.2470 0.01 0.00 −0.01 −0.38 −0.38 −0.44 −0.38 −0.28 −0.30 −0.22

0.2460 0.02 0.01 0.00 −0.37 −0.37 −0.42 −0.37 −0.27 −0.29 −0.21
0.2145 0.28 0.28 0.27 0.00 0.00 −0.03 −0.07 0.03 0.00 0.07
0.2145 0.28 0.28 0.27 0.00 0.00 −0.03 −0.07 0.03 0.01 0.07
0.2118 0.30 0.30 0.29 0.03 0.03 0.00 −0.04 0.05 0.03 0.10
0.2077 0.34 0.33 0.33 0.08 0.07 0.05 0.00 0.09 0.07 0.14
0.2173 0.26 0.25 0.24 −0.03 −0.03 −0.06 −0.09 0.00 −0.02 0.05
0.2150 0.28 0.27 0.26 −0.01 −0.01 −0.04 −0.07 0.02 0.00 0.07
0.2224 0.22 0.21 0.20 −0.09 −0.09 −0.12 −0.14 −0.05 −0.07 0.00

c = 0.2 0.2479 0.00 −0.01 −0.02 −0.42 −0.42 −0.48 −0.39 −0.28 −0.30 −0.23
T = 7 0.2470 0.01 0.00 −0.01 −0.41 −0.41 −0.47 −0.38 −0.28 −0.30 −0.22

0.2459 0.02 0.01 0.00 −0.39 −0.39 −0.45 −0.37 −0.27 −0.29 −0.21
0.2144 0.28 0.28 0.27 0.00 0.00 −0.03 −0.07 0.03 0.01 0.07
0.2144 0.28 0.28 0.27 0.00 0.00 −0.03 −0.07 0.03 0.01 0.07
0.2118 0.30 0.30 0.29 0.03 0.03 0.00 −0.04 0.05 0.03 0.10
0.2077 0.34 0.33 0.33 0.08 0.07 0.05 0.00 0.09 0.07 0.14
0.2173 0.26 0.25 0.24 −0.03 −0.03 −0.06 −0.09 0.00 −0.02 0.05
0.2150 0.28 0.27 0.26 −0.01 −0.01 −0.04 −0.07 0.02 0.00 0.07
0.2224 0.22 0.21 0.20 −0.09 −0.09 −0.12 −0.14 −0.05 −0.07 0.00

c = 0.3 0.2476 0.00 −0.01 −0.02 −0.43 −0.43 −0.47 −0.43 −0.31 −0.35 −0.25
T = 3 0.2466 0.01 0.00 −0.01 −0.41 −0.41 −0.46 −0.42 −0.30 −0.34 −0.24

0.2458 0.02 0.01 0.00 −0.40 −0.40 −0.45 −0.41 −0.30 −0.34 −0.23
0.2134 0.29 0.28 0.28 0.00 0.00 −0.03 −0.09 0.01 −0.03 0.08
0.2134 0.29 0.28 0.28 0.00 0.00 −0.03 −0.09 0.01 −0.03 0.08
0.2112 0.31 0.30 0.29 0.02 0.02 0.00 −0.07 0.03 −0.01 0.10
0.2041 0.37 0.36 0.36 0.11 0.10 0.08 0.00 0.10 0.05 0.16
0.2144 0.28 0.27 0.27 −0.01 −0.01 −0.04 −0.10 0.00 −0.04 0.07
0.2097 0.32 0.31 0.31 0.04 0.04 0.02 −0.05 0.04 0.00 0.11
0.2214 0.22 0.21 0.21 −0.09 −0.09 −0.12 −0.17 −0.07 −0.11 0.00

c = 0.3 0.2476 0.00 −0.01 −0.02 −0.46 −0.46 −0.52 −0.43 −0.31 −0.35 −0.25
T = 7 0.2466 0.01 0.00 −0.01 −0.44 −0.44 −0.50 −0.42 −0.30 −0.34 −0.24

0.2458 0.02 0.01 0.00 −0.43 −0.43 −0.49 −0.41 −0.30 −0.34 −0.23
0.2131 0.29 0.28 0.28 0.00 0.00 −0.03 −0.09 0.01 −0.03 0.08
0.2131 0.29 0.28 0.28 0.00 0.00 −0.03 −0.09 0.01 −0.03 0.08
0.2109 0.31 0.30 0.30 0.03 0.03 0.00 −0.07 0.03 −0.01 0.10
0.2041 0.37 0.36 0.36 0.10 0.10 0.08 0.00 0.10 0.05 0.16
0.2144 0.28 0.27 0.27 −0.02 −0.02 −0.04 −0.10 0.00 −0.04 0.07
0.2097 0.32 0.31 0.31 0.04 0.04 0.01 −0.05 0.04 0.00 0.11
0.2214 0.22 0.21 0.21 −0.10 −0.10 −0.13 −0.17 −0.07 −0.11 0.00

Table 4.28. Values of 100× (1− term-end CAR price) using Eurostoxx 50 parameters.
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α NIG VG NIG
CIR

VG
CIR

NIG
Γ-OU

VG
Γ-OU

c = 0.1 0.3137 0.9628 0.9589 0.9621 0.9623 0.9613 0.9622
T = 3 0.3194 0.9639 0.9599 0.9632 0.9633 0.9624 0.9633

0.3379 0.9675 0.9629 0.9666 0.9665 0.9658 0.9667
0.3207 0.9642 0.9601 0.9634 0.9636 0.9626 0.9635
0.3207 0.9642 0.9601 0.9634 0.9636 0.9626 0.9635
0.3250 0.9650 0.9608 0.9642 0.9643 0.9634 0.9643
0.3246 0.9649 0.9608 0.9641 0.9642 0.9633 0.9643
0.3245 0.9649 0.9607 0.9641 0.9642 0.9633 0.9642
0.3203 0.9641 0.9600 0.9633 0.9635 0.9625 0.9634

c = 0.1 0.3137 0.8679 0.8600 0.8666 0.8675 0.8653 0.8665
T = 7 0.3194 0.8703 0.8620 0.8688 0.8696 0.8675 0.8688

0.3379 0.8779 0.8682 0.8758 0.8762 0.8747 0.8758
0.3207 0.8708 0.8624 0.8693 0.8701 0.8680 0.8693
0.3207 0.8708 0.8624 0.8693 0.8701 0.8680 0.8693
0.3250 0.8726 0.8639 0.8709 0.8716 0.8697 0.8709
0.3246 0.8724 0.8638 0.8708 0.8715 0.8696 0.8708
0.3245 0.8724 0.8637 0.8708 0.8714 0.8695 0.8708
0.3203 0.8706 0.8623 0.8691 0.8699 0.8679 0.8691

c = 0.2 0.3062 0.9639 0.9618 0.9635 0.9653 0.9629 0.9628
T = 3 0.3075 0.9642 0.9621 0.9638 0.9657 0.9632 0.9631

0.3142 0.9659 0.9638 0.9654 0.9673 0.9649 0.9647
0.3098 0.9648 0.9627 0.9643 0.9662 0.9638 0.9636
0.3097 0.9648 0.9627 0.9643 0.9662 0.9638 0.9636
0.3106 0.9650 0.9629 0.9645 0.9664 0.9640 0.9638
0.3111 0.9651 0.9630 0.9647 0.9666 0.9641 0.9640
0.3084 0.9645 0.9624 0.9640 0.9659 0.9634 0.9633
0.3111 0.9651 0.9630 0.9647 0.9666 0.9641 0.9640

c = 0.2 0.3062 0.8712 0.8676 0.8709 0.8762 0.8701 0.8688
T = 7 0.3075 0.8719 0.8682 0.8715 0.8769 0.8708 0.8695

0.3142 0.8755 0.8716 0.8751 0.8806 0.8743 0.8730
0.3097 0.8731 0.8694 0.8728 0.8782 0.8720 0.8707
0.3097 0.8731 0.8694 0.8728 0.8782 0.8720 0.8707
0.3106 0.8736 0.8698 0.8732 0.8786 0.8724 0.8711
0.3111 0.8739 0.8700 0.8735 0.8789 0.8727 0.8714
0.3084 0.8724 0.8687 0.8720 0.8774 0.8713 0.8700
0.3111 0.8739 0.8701 0.8735 0.8789 0.8727 0.8714

c = 0.3 0.3062 0.9640 0.9619 0.9635 0.9654 0.9629 0.9628
T = 3 0.3066 0.9641 0.9620 0.9635 0.9655 0.9630 0.9628

0.3140 0.9659 0.9638 0.9654 0.9674 0.9649 0.9647
0.3097 0.9649 0.9627 0.9643 0.9663 0.9638 0.9636
0.3097 0.9649 0.9627 0.9643 0.9663 0.9638 0.9636
0.3105 0.9650 0.9629 0.9645 0.9665 0.9640 0.9638
0.3109 0.9651 0.9630 0.9646 0.9666 0.9641 0.9639
0.3062 0.9640 0.9619 0.9635 0.9654 0.9630 0.9628
0.3111 0.9652 0.9631 0.9647 0.9667 0.9641 0.9640

c = 0.3 0.3062 0.8713 0.8677 0.8709 0.8765 0.8702 0.8688
T = 7 0.3065 0.8716 0.8679 0.8711 0.8767 0.8704 0.8690

0.3140 0.8756 0.8717 0.8750 0.8808 0.8744 0.8729
0.3097 0.8733 0.8695 0.8728 0.8784 0.8721 0.8707
0.3097 0.8733 0.8695 0.8728 0.8784 0.8721 0.8707
0.3105 0.8737 0.8699 0.8732 0.8789 0.8725 0.8711
0.3109 0.8739 0.8701 0.8734 0.8791 0.8727 0.8713
0.3062 0.8714 0.8677 0.8709 0.8765 0.8702 0.8688
0.3111 0.8740 0.8702 0.8735 0.8792 0.8728 0.8714

Table 4.29. Monte Carlo no-surrender prices for term-end CARs using S&P 500 P + Q parameters. In
percentage, the maximum standard error here is found to be about 0.02% of the price.
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α NIG VG NIG
CIR

VG
CIR

NIG
Γ-OU

VG
Γ-OU

BS SV SVJ

c = 0.1 0.3177 0.9637 0.9641 0.9659 0.9653 0.9655 0.9659 0.9573 0.9440 0.9420
T = 3 0.3174 0.9637 0.9640 0.9659 0.9652 0.9655 0.9658 0.9573 0.9439 0.9419

0.3164 0.9635 0.9638 0.9657 0.9650 0.9652 0.9656 0.9571 0.9438 0.9418
0.3151 0.9632 0.9636 0.9654 0.9648 0.9650 0.9653 0.9569 0.9436 0.9417
0.3093 0.9620 0.9624 0.9643 0.9636 0.9637 0.9640 0.9560 0.9429 0.9409
0.3157 0.9633 0.9637 0.9655 0.9649 0.9651 0.9654 0.9570 0.9437 0.9417
0.3023 0.9606 0.9610 0.9628 0.9622 0.9622 0.9625 0.9548 0.9419 0.9400
0.3058 0.9613 0.9617 0.9635 0.9629 0.9629 0.9633 0.9554 0.9424 0.9405
0.3025 0.9607 0.9610 0.9629 0.9623 0.9622 0.9625 0.9548 0.9420 0.9401
0.3591 0.9715 0.9719 0.9737 0.9728 0.9738 0.9744 0.9635 0.9490 0.9468

c = 0.1 0.3177 0.8701 0.8708 0.8750 0.8762 0.8743 0.8753 0.8580 0.8591 0.8560
T = 7 0.3174 0.8700 0.8707 0.8749 0.8761 0.8742 0.8752 0.8579 0.8590 0.8560

0.3164 0.8695 0.8702 0.8745 0.8757 0.8737 0.8747 0.8576 0.8587 0.8557
0.3151 0.8690 0.8697 0.8739 0.8752 0.8731 0.8741 0.8571 0.8582 0.8553
0.3093 0.8665 0.8672 0.8715 0.8729 0.8704 0.8713 0.8553 0.8563 0.8535
0.3157 0.8692 0.8699 0.8742 0.8754 0.8734 0.8744 0.8573 0.8584 0.8554
0.3023 0.8635 0.8642 0.8685 0.8700 0.8672 0.8680 0.8530 0.8539 0.8513
0.3058 0.8650 0.8657 0.8700 0.8714 0.8688 0.8697 0.8541 0.8550 0.8524
0.3025 0.8636 0.8643 0.8686 0.8701 0.8673 0.8681 0.8531 0.8539 0.8514
0.3591 0.8866 0.8875 0.8915 0.8918 0.8924 0.8939 0.8704 0.8723 0.8679

c = 0.2 0.3074 0.9641 0.9645 0.9670 0.9675 0.9647 0.9649 0.9612 0.9470 0.9454
T = 3 0.3072 0.9641 0.9644 0.9670 0.9674 0.9647 0.9649 0.9612 0.9470 0.9454

0.3069 0.9640 0.9643 0.9669 0.9673 0.9646 0.9648 0.9611 0.9470 0.9453
0.3076 0.9642 0.9645 0.9671 0.9675 0.9648 0.9650 0.9613 0.9471 0.9455
0.2995 0.9622 0.9625 0.9650 0.9654 0.9628 0.9629 0.9593 0.9456 0.9440
0.3078 0.9642 0.9646 0.9672 0.9676 0.9648 0.9650 0.9613 0.9471 0.9455
0.2883 0.9594 0.9597 0.9621 0.9626 0.9600 0.9601 0.9567 0.9436 0.9421
0.2941 0.9608 0.9611 0.9636 0.9640 0.9614 0.9616 0.9581 0.9446 0.9431
0.2886 0.9595 0.9598 0.9622 0.9626 0.9600 0.9602 0.9568 0.9436 0.9421
0.3237 0.9682 0.9685 0.9712 0.9716 0.9688 0.9690 0.9650 0.9500 0.9483

c = 0.2 0.3074 0.8720 0.8726 0.8795 0.8862 0.8731 0.8736 0.8683 0.8696 0.8741
T = 7 0.3072 0.8719 0.8725 0.8794 0.8860 0.8730 0.8735 0.8682 0.8695 0.8740

0.3069 0.8717 0.8723 0.8792 0.8859 0.8729 0.8734 0.8680 0.8693 0.8739
0.3076 0.8721 0.8727 0.8796 0.8863 0.8732 0.8737 0.8684 0.8697 0.8742
0.2995 0.8677 0.8683 0.8750 0.8816 0.8688 0.8693 0.8643 0.8656 0.8702
0.3078 0.8722 0.8728 0.8797 0.8864 0.8733 0.8738 0.8685 0.8698 0.8743
0.2883 0.8618 0.8623 0.8687 0.8751 0.8628 0.8632 0.8589 0.8601 0.8648
0.2941 0.8649 0.8654 0.8719 0.8784 0.8659 0.8663 0.8617 0.8629 0.8676
0.2886 0.8620 0.8625 0.8689 0.8753 0.8629 0.8634 0.8590 0.8602 0.8650
0.3237 0.8808 0.8815 0.8888 0.8957 0.8821 0.8827 0.8764 0.8777 0.8820

c = 0.3 0.3072 0.9641 0.9644 0.9670 0.9676 0.9647 0.9649 0.9614 0.9474 0.9459
T = 3 0.3068 0.9640 0.9643 0.9669 0.9675 0.9646 0.9648 0.9613 0.9473 0.9458

0.3068 0.9640 0.9643 0.9669 0.9675 0.9646 0.9648 0.9613 0.9473 0.9458
0.3076 0.9642 0.9645 0.9672 0.9677 0.9648 0.9650 0.9615 0.9475 0.9460
0.2956 0.9612 0.9615 0.9640 0.9645 0.9618 0.9619 0.9586 0.9452 0.9437
0.3078 0.9642 0.9646 0.9672 0.9677 0.9648 0.9650 0.9615 0.9475 0.9460
0.2789 0.9571 0.9574 0.9597 0.9602 0.9576 0.9578 0.9546 0.9420 0.9407
0.2874 0.9592 0.9595 0.9619 0.9624 0.9597 0.9599 0.9566 0.9437 0.9423
0.2793 0.9572 0.9575 0.9599 0.9603 0.9577 0.9579 0.9547 0.9421 0.9408
0.3229 0.9680 0.9683 0.9711 0.9716 0.9686 0.9688 0.9651 0.9504 0.9488

c = 0.3 0.3072 0.8719 0.8725 0.8795 0.8868 0.8730 0.8735 0.8687 0.8709 0.8782
T = 7 0.3068 0.8717 0.8723 0.8793 0.8866 0.8728 0.8733 0.8685 0.8706 0.8780

0.3068 0.8717 0.8723 0.8793 0.8866 0.8728 0.8733 0.8685 0.8706 0.8780
0.3076 0.8722 0.8728 0.8798 0.8871 0.8732 0.8737 0.8689 0.8711 0.8784
0.2956 0.8657 0.8662 0.8729 0.8799 0.8667 0.8671 0.8628 0.8648 0.8720
0.3078 0.8723 0.8728 0.8798 0.8872 0.8733 0.8738 0.8690 0.8712 0.8785
0.2789 0.8568 0.8574 0.8635 0.8701 0.8577 0.8581 0.8545 0.8563 0.8632
0.2874 0.8613 0.8619 0.8683 0.8751 0.8623 0.8627 0.8587 0.8606 0.8677
0.2793 0.8571 0.8576 0.8638 0.8703 0.8580 0.8584 0.8547 0.8565 0.8634
0.3229 0.8805 0.8811 0.8886 0.8963 0.8817 0.8822 0.8768 0.8791 0.8866

Table 4.30. Monte Carlo no-surrender prices for term-end CARs using S&P 500 Q parameters. In percentage,
the maximum standard error here is found to be about 0.02% of the price.
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α NIG VG NIG
CIR

VG
CIR

NIG
Γ-OU

VG
Γ-OU

BS SV SVJ

c = 0.1 0.2528 0.9809 0.9819 0.9835 0.9850 0.9805 0.9795 0.9783 0.9607 0.9615
T = 3 0.2517 0.9807 0.9817 0.9833 0.9847 0.9803 0.9792 0.9781 0.9605 0.9614

0.2494 0.9801 0.9811 0.9827 0.9842 0.9798 0.9787 0.9777 0.9602 0.9611
0.2235 0.9740 0.9747 0.9769 0.9784 0.9738 0.9728 0.9729 0.9567 0.9575
0.2235 0.9740 0.9747 0.9769 0.9784 0.9738 0.9728 0.9729 0.9567 0.9575
0.2194 0.9730 0.9737 0.9760 0.9774 0.9728 0.9718 0.9721 0.9561 0.9569
0.2131 0.9714 0.9721 0.9745 0.9759 0.9713 0.9704 0.9709 0.9551 0.9560
0.2274 0.9749 0.9757 0.9778 0.9793 0.9747 0.9737 0.9737 0.9572 0.9581
0.2257 0.9745 0.9753 0.9774 0.9789 0.9743 0.9733 0.9734 0.9570 0.9578
0.2502 0.9803 0.9813 0.9829 0.9844 0.9799 0.9789 0.9779 0.9603 0.9612

c = 0.1 0.2528 0.9084 0.9097 0.9095 0.9133 0.9018 0.8989 0.9039 0.8919 0.8933
T = 7 0.2517 0.9079 0.9092 0.9091 0.9128 0.9013 0.8984 0.9035 0.8915 0.8930

0.2494 0.9067 0.9080 0.9081 0.9118 0.9002 0.8973 0.9027 0.8908 0.8922
0.2235 0.8942 0.8950 0.8966 0.9001 0.8883 0.8854 0.8936 0.8822 0.8836
0.2235 0.8942 0.8950 0.8966 0.9001 0.8883 0.8854 0.8936 0.8822 0.8836
0.2194 0.8923 0.8930 0.8947 0.8982 0.8864 0.8836 0.8922 0.8808 0.8822
0.2131 0.8892 0.8898 0.8918 0.8953 0.8835 0.8807 0.8898 0.8787 0.8800
0.2274 0.8961 0.8970 0.8983 0.9019 0.8901 0.8872 0.8950 0.8835 0.8849
0.2257 0.8953 0.8961 0.8975 0.9011 0.8893 0.8864 0.8944 0.8829 0.8843
0.2502 0.9072 0.9084 0.9084 0.9122 0.9006 0.8977 0.9030 0.8910 0.8925

c = 0.2 0.2479 0.9809 0.9817 0.9865 0.9883 0.9816 0.9802 0.9838 0.9639 0.9649
T = 3 0.2470 0.9807 0.9814 0.9862 0.9880 0.9814 0.9800 0.9835 0.9638 0.9647

0.2460 0.9804 0.9811 0.9859 0.9877 0.9811 0.9797 0.9832 0.9636 0.9645
0.2145 0.9722 0.9728 0.9772 0.9787 0.9729 0.9717 0.9748 0.9578 0.9586
0.2145 0.9721 0.9728 0.9771 0.9787 0.9729 0.9717 0.9748 0.9578 0.9586
0.2118 0.9715 0.9721 0.9764 0.9779 0.9722 0.9710 0.9741 0.9573 0.9581
0.2077 0.9704 0.9710 0.9753 0.9767 0.9711 0.9700 0.9730 0.9565 0.9573
0.2173 0.9729 0.9736 0.9780 0.9795 0.9736 0.9724 0.9756 0.9583 0.9591
0.2150 0.9723 0.9729 0.9773 0.9788 0.9730 0.9718 0.9750 0.9579 0.9587
0.2224 0.9742 0.9749 0.9794 0.9810 0.9750 0.9737 0.9769 0.9593 0.9601

c = 0.2 0.2479 0.9090 0.9097 0.9175 0.9225 0.9035 0.8997 0.9169 0.9025 0.9043
T = 7 0.2470 0.9085 0.9092 0.9170 0.9220 0.9030 0.8992 0.9164 0.9021 0.9039

0.2459 0.9079 0.9086 0.9164 0.9213 0.9025 0.8987 0.9158 0.9016 0.9034
0.2144 0.8909 0.8914 0.8985 0.9026 0.8864 0.8831 0.8988 0.8870 0.8883
0.2144 0.8909 0.8913 0.8985 0.9026 0.8864 0.8831 0.8988 0.8870 0.8882
0.2118 0.8896 0.8900 0.8971 0.9011 0.8851 0.8819 0.8975 0.8858 0.8870
0.2077 0.8874 0.8878 0.8948 0.8987 0.8831 0.8799 0.8953 0.8840 0.8851
0.2173 0.8924 0.8929 0.9001 0.9043 0.8878 0.8845 0.9004 0.8883 0.8896
0.2150 0.8912 0.8917 0.8988 0.9030 0.8867 0.8834 0.8992 0.8873 0.8885
0.2224 0.8951 0.8956 0.9029 0.9073 0.8903 0.8869 0.9031 0.8906 0.8920

c = 0.3 0.2476 0.9808 0.9816 0.9868 0.9886 0.9818 0.9805 0.9841 0.9644 0.9652
T = 3 0.2466 0.9806 0.9813 0.9865 0.9882 0.9816 0.9802 0.9838 0.9642 0.9650

0.2458 0.9803 0.9811 0.9863 0.9880 0.9814 0.9800 0.9836 0.9640 0.9649
0.2134 0.9719 0.9725 0.9771 0.9785 0.9728 0.9717 0.9747 0.9579 0.9586
0.2134 0.9719 0.9725 0.9771 0.9785 0.9728 0.9717 0.9747 0.9579 0.9586
0.2112 0.9713 0.9719 0.9764 0.9779 0.9722 0.9711 0.9741 0.9574 0.9581
0.2041 0.9694 0.9701 0.9744 0.9758 0.9703 0.9693 0.9721 0.9561 0.9568
0.2144 0.9721 0.9728 0.9774 0.9788 0.9731 0.9720 0.9750 0.9581 0.9588
0.2097 0.9709 0.9716 0.9760 0.9775 0.9718 0.9707 0.9737 0.9572 0.9578
0.2214 0.9740 0.9746 0.9793 0.9809 0.9749 0.9737 0.9769 0.9594 0.9601

c = 0.3 0.2476 0.9088 0.9096 0.9186 0.9235 0.9039 0.9002 0.9177 0.9042 0.9056
T = 7 0.2466 0.9082 0.9090 0.9179 0.9229 0.9034 0.8996 0.9171 0.9037 0.9051

0.2458 0.9078 0.9085 0.9174 0.9224 0.9029 0.8992 0.9166 0.9033 0.9047
0.2131 0.8902 0.8907 0.8984 0.9024 0.8861 0.8830 0.8985 0.8874 0.8883
0.2131 0.8902 0.8907 0.8984 0.9024 0.8861 0.8830 0.8985 0.8874 0.8883
0.2109 0.8891 0.8895 0.8971 0.9011 0.8850 0.8820 0.8973 0.8864 0.8872
0.2041 0.8856 0.8860 0.8933 0.8971 0.8817 0.8788 0.8937 0.8832 0.8840
0.2144 0.8909 0.8914 0.8991 0.9032 0.8867 0.8836 0.8992 0.8880 0.8889
0.2097 0.8885 0.8889 0.8965 0.9004 0.8844 0.8814 0.8967 0.8858 0.8867
0.2214 0.8945 0.8951 0.9031 0.9073 0.8902 0.8870 0.9030 0.8913 0.8923

Table 4.31. Monte Carlo no-surrender prices for term-end CARs using Eurostoxx 50 parameters. In per-
centage, the maximum standard error here is found to be about 0.02% of the price.
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α NIG VG NIG
CIR

VG
CIR

NIG
Γ-OU

VG
Γ-OU

c = 0.1 0.3137 −0.0000 −0.0001 0.0001 0.0001 0.0005 0.0000
T = 3 0.3194 −0.0000 −0.0001 0.0001 0.0000 0.0005 0.0000

0.3379 −0.0000 −0.0001 0.0000 0.0000 0.0005 0.0001
0.3207 −0.0000 −0.0001 0.0001 0.0000 0.0005 0.0000
0.3207 −0.0000 −0.0001 0.0001 0.0000 0.0005 0.0000
0.3250 −0.0000 −0.0001 0.0001 0.0000 0.0005 0.0000
0.3246 −0.0000 −0.0001 0.0001 0.0000 0.0005 0.0000
0.3245 −0.0000 −0.0001 0.0001 0.0000 0.0005 0.0000
0.3203 −0.0000 −0.0001 0.0001 0.0000 0.0005 0.0000

c = 0.1 0.3137 0.0001 −0.0002 0.0000 0.0001 0.0007 0.0003
T = 7 0.3194 0.0001 −0.0002 0.0000 0.0001 0.0007 0.0004

0.3379 0.0001 −0.0002 −0.0000 0.0000 0.0007 0.0005
0.3207 0.0001 −0.0002 0.0000 0.0001 0.0007 0.0004
0.3207 0.0001 −0.0002 0.0000 0.0001 0.0007 0.0004
0.3250 0.0001 −0.0002 0.0000 0.0001 0.0007 0.0004
0.3246 0.0001 −0.0002 0.0000 0.0001 0.0007 0.0004
0.3245 0.0001 −0.0002 0.0000 0.0001 0.0007 0.0004
0.3203 0.0001 −0.0002 0.0000 0.0001 0.0007 0.0004

c = 0.2 0.3062 0.0001 −0.0001 0.0001 0.0003 0.0009 −0.0002
T = 3 0.3075 −0.0011 −0.0009 0.0001 −0.0000 −0.0013 −0.0003

0.3142 −0.0012 −0.0011 0.0000 −0.0001 −0.0014 −0.0003
0.3098 0.0001 −0.0001 0.0001 0.0003 0.0009 −0.0002
0.3097 0.0001 −0.0001 0.0001 0.0003 0.0009 −0.0002
0.3106 0.0001 −0.0001 0.0001 0.0003 0.0009 −0.0002
0.3111 0.0001 −0.0001 0.0001 0.0003 0.0009 −0.0002
0.3084 −0.0011 −0.0009 0.0001 −0.0000 −0.0013 −0.0003
0.3111 −0.0011 −0.0010 0.0000 −0.0001 −0.0014 −0.0003

c = 0.2 0.3062 −0.0004 −0.0006 0.0004 0.0009 −0.0002 −0.0002
T = 7 0.3075 −0.0004 −0.0007 0.0004 0.0009 −0.0002 −0.0002

0.3142 0.0007 0.0000 0.0004 0.0012 0.0018 −0.0002
0.3097 0.0007 0.0000 0.0004 0.0012 0.0018 −0.0002
0.3097 −0.0004 −0.0007 0.0004 0.0009 −0.0003 −0.0002
0.3106 0.0007 0.0000 0.0004 0.0012 0.0018 −0.0002
0.3111 −0.0004 −0.0008 0.0004 0.0009 −0.0003 −0.0002
0.3084 −0.0004 −0.0007 0.0004 0.0009 −0.0002 −0.0002
0.3111 −0.0004 −0.0008 0.0004 0.0009 −0.0003 −0.0002

c = 0.3 0.3062 0.0003 −0.0001 0.0001 0.0003 0.0013 −0.0002
T = 3 0.3066 0.0003 −0.0001 0.0001 0.0003 0.0013 −0.0002

0.3140 0.0003 −0.0001 0.0001 0.0004 0.0013 −0.0002
0.3097 0.0003 −0.0001 0.0001 0.0003 0.0013 −0.0002
0.3097 0.0003 −0.0001 0.0001 0.0003 0.0013 −0.0002
0.3105 0.0003 −0.0001 0.0001 0.0004 0.0013 −0.0002
0.3109 0.0003 −0.0001 0.0001 0.0004 0.0013 −0.0002
0.3062 0.0003 −0.0001 0.0001 0.0003 0.0013 −0.0002
0.3111 0.0003 −0.0001 0.0001 0.0004 0.0013 −0.0002

c = 0.3 0.3062 0.0010 −0.0001 0.0004 0.0012 0.0025 −0.0003
T = 7 0.3065 0.0010 −0.0001 0.0004 0.0012 0.0025 −0.0003

0.3140 0.0010 −0.0001 0.0004 0.0012 0.0025 −0.0003
0.3097 0.0010 −0.0001 0.0004 0.0012 0.0025 −0.0003
0.3097 0.0010 −0.0001 0.0004 0.0012 0.0025 −0.0003
0.3105 0.0010 −0.0001 0.0004 0.0012 0.0025 −0.0003
0.3109 0.0010 −0.0001 0.0004 0.0012 0.0025 −0.0003
0.3062 0.0010 −0.0001 0.0004 0.0012 0.0025 −0.0003
0.3111 0.0010 −0.0001 0.0004 0.0012 0.0025 −0.0003

Table 4.32. Sequential quadrature prices minus Monte Carlo prices for the EIAs in table 4.29.
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α NIG VG NIG
CIR

VG
CIR

NIG
Γ-OU

VG
Γ-OU

BS

c = 0.1 0.3177 0.0001 −0.0001 0.0011 0.0001 0.0013 0.0019 0.0002
T = 3 0.3174 0.0001 −0.0001 0.0011 0.0001 0.0013 0.0019 0.0002

0.3164 0.0001 −0.0001 0.0011 0.0001 0.0013 0.0019 0.0002
0.3151 0.0001 −0.0001 0.0011 0.0001 0.0013 0.0019 0.0002
0.3093 0.0001 −0.0001 0.0011 0.0001 0.0013 0.0019 0.0002
0.3157 0.0001 −0.0001 0.0011 0.0001 0.0013 0.0019 0.0002
0.3023 0.0001 −0.0001 0.0011 0.0001 0.0013 0.0019 0.0002
0.3058 0.0001 −0.0001 0.0011 0.0001 0.0013 0.0019 0.0002
0.3025 0.0001 −0.0001 0.0011 0.0001 0.0013 0.0019 0.0002
0.3591 0.0001 −0.0001 0.0011 0.0002 0.0014 0.0020 0.0003

c = 0.1 0.3177 0.0001 −0.0003 0.0027 −0.0004 0.0025 0.0036 −0.0000
T = 7 0.3174 0.0001 −0.0003 0.0027 −0.0004 0.0025 0.0036 −0.0000

0.3164 0.0001 −0.0003 0.0027 −0.0004 0.0025 0.0036 −0.0000
0.3151 0.0001 −0.0003 0.0027 −0.0004 0.0025 0.0036 −0.0000
0.3093 0.0000 −0.0003 0.0027 −0.0004 0.0025 0.0036 −0.0000
0.3157 0.0001 −0.0003 0.0027 −0.0004 0.0025 0.0036 −0.0000
0.3023 0.0000 −0.0003 0.0027 −0.0004 0.0025 0.0035 −0.0000
0.3058 0.0000 −0.0003 0.0027 −0.0004 0.0025 0.0036 −0.0000
0.3025 0.0000 −0.0003 0.0027 −0.0004 0.0025 0.0035 −0.0000
0.3591 0.0001 −0.0003 0.0028 −0.0002 0.0028 0.0039 −0.0000

c = 0.2 0.3074 0.0002 −0.0001 0.0022 −0.0001 0.0026 0.0037 0.0003
T = 3 0.3072 −0.0003 −0.0004 −0.0013 −0.0002 −0.0033 −0.0046 −0.0014

0.3069 −0.0003 −0.0004 −0.0013 −0.0002 −0.0033 −0.0046 −0.0014
0.3076 −0.0003 −0.0004 −0.0013 −0.0002 −0.0033 −0.0046 −0.0014
0.2995 0.0002 −0.0001 0.0022 −0.0001 0.0026 0.0037 0.0003
0.3078 0.0002 −0.0001 0.0022 −0.0001 0.0026 0.0037 0.0003
0.2883 0.0002 −0.0001 0.0022 −0.0001 0.0026 0.0037 0.0003
0.2941 0.0002 −0.0001 0.0022 −0.0001 0.0026 0.0037 0.0003
0.2886 0.0002 −0.0001 0.0022 −0.0001 0.0026 0.0037 0.0003
0.3237 −0.0005 −0.0005 −0.0014 −0.0003 −0.0033 −0.0046 −0.0022

c = 0.2 0.3074 0.0000 −0.0003 0.0025 −0.0010 −0.0001 −0.0001 −0.0013
T = 7 0.3072 0.0000 −0.0003 0.0025 −0.0010 −0.0001 −0.0001 −0.0013

0.3069 0.0005 −0.0001 0.0057 −0.0009 0.0052 0.0074 0.0003
0.3076 0.0005 −0.0001 0.0057 −0.0009 0.0052 0.0074 0.0003
0.2995 0.0005 −0.0001 0.0057 −0.0009 0.0052 0.0073 0.0003
0.3078 0.0000 −0.0004 0.0025 −0.0010 −0.0001 −0.0001 −0.0013
0.2883 0.0005 −0.0000 0.0056 −0.0008 0.0052 0.0073 0.0003
0.2941 0.0005 −0.0001 0.0056 −0.0008 0.0052 0.0073 0.0003
0.2886 0.0001 −0.0002 0.0024 −0.0009 −0.0001 −0.0001 −0.0007
0.3237 −0.0001 −0.0005 0.0026 −0.0011 −0.0001 −0.0001 −0.0020

c = 0.3 0.3072 0.0003 −0.0001 0.0031 −0.0002 0.0039 0.0055 0.0003
T = 3 0.3068 0.0003 −0.0001 0.0031 −0.0002 0.0039 0.0055 0.0003

0.3068 0.0003 −0.0001 0.0031 −0.0002 0.0039 0.0055 0.0003
0.3076 0.0003 −0.0001 0.0031 −0.0002 0.0039 0.0055 0.0003
0.2956 −0.0001 −0.0001 −0.0007 −0.0002 −0.0024 −0.0034 0.0003
0.3078 0.0003 −0.0001 0.0031 −0.0002 0.0039 0.0055 0.0003
0.2789 0.0003 −0.0001 0.0031 −0.0001 0.0039 0.0055 0.0003
0.2874 0.0003 −0.0001 0.0031 −0.0001 0.0039 0.0055 0.0003
0.2793 0.0003 −0.0001 0.0031 −0.0001 0.0039 0.0055 0.0003
0.3229 0.0003 −0.0001 0.0032 −0.0002 0.0039 0.0055 0.0003

c = 0.3 0.3072 0.0006 −0.0001 0.0078 −0.0010 0.0079 0.0111 0.0002
T = 7 0.3068 0.0006 −0.0001 0.0078 −0.0010 0.0079 0.0111 0.0002

0.3068 0.0006 −0.0001 0.0078 −0.0010 0.0079 0.0111 0.0002
0.3076 0.0006 −0.0001 0.0078 −0.0010 0.0079 0.0111 0.0002
0.2956 0.0006 −0.0001 0.0076 −0.0010 0.0078 0.0110 0.0002
0.3078 0.0006 −0.0001 0.0078 −0.0010 0.0079 0.0111 0.0002
0.2789 0.0006 −0.0001 0.0075 −0.0009 0.0078 0.0109 0.0002
0.2874 0.0006 −0.0001 0.0075 −0.0009 0.0078 0.0110 0.0002
0.2793 0.0006 −0.0001 0.0075 −0.0009 0.0078 0.0109 0.0002
0.3229 0.0006 −0.0002 0.0079 −0.0011 0.0080 0.0112 0.0002

Table 4.33. Sequential quadrature prices minus Monte Carlo prices for the EIAs in table 4.30.
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α NIG VG NIG
CIR

VG
CIR

NIG
Γ-OU

VG
Γ-OU

BS

c = 0.1 0.2528 0.0002 −0.0001 0.0002 0.0003 0.0008 0.0015 −0.0000
T = 3 0.2517 0.0002 −0.0001 0.0002 0.0003 0.0008 0.0015 −0.0001

0.2494 0.0002 −0.0001 0.0002 0.0003 0.0008 0.0015 −0.0001
0.2235 0.0002 −0.0001 0.0002 0.0003 0.0008 0.0014 −0.0001
0.2235 0.0002 −0.0001 0.0002 0.0003 0.0008 0.0014 −0.0001
0.2194 0.0002 −0.0001 0.0002 0.0003 0.0008 0.0014 −0.0001
0.2131 0.0002 −0.0001 0.0002 0.0003 0.0007 0.0014 −0.0001
0.2274 0.0002 −0.0001 0.0002 0.0003 0.0008 0.0015 −0.0001
0.2257 0.0002 −0.0001 0.0002 0.0003 0.0008 0.0014 −0.0001
0.2502 0.0002 −0.0001 0.0002 0.0003 0.0008 0.0015 −0.0001

c = 0.1 0.2528 0.0001 −0.0001 0.0003 0.0004 0.0016 0.0027 −0.0001
T = 7 0.2517 0.0001 −0.0001 0.0003 0.0004 0.0016 0.0027 −0.0001

0.2494 0.0001 −0.0001 0.0003 0.0004 0.0016 0.0027 −0.0001
0.2235 0.0000 −0.0001 0.0002 0.0003 0.0014 0.0025 −0.0001
0.2235 0.0000 −0.0001 0.0002 0.0003 0.0014 0.0025 −0.0001
0.2194 0.0000 −0.0001 0.0002 0.0003 0.0014 0.0025 −0.0001
0.2131 0.0000 −0.0002 0.0002 0.0003 0.0014 0.0024 −0.0001
0.2274 0.0000 −0.0001 0.0002 0.0003 0.0015 0.0025 −0.0001
0.2257 0.0000 −0.0001 0.0002 0.0003 0.0015 0.0025 −0.0001
0.2502 0.0001 −0.0001 0.0003 0.0004 0.0016 0.0027 −0.0001

c = 0.2 0.2479 −0.0002 −0.0003 −0.0011 0.0003 −0.0036 −0.0043 −0.0065
T = 3 0.2470 −0.0002 −0.0003 −0.0011 0.0003 −0.0036 −0.0043 −0.0064

0.2460 −0.0001 −0.0003 −0.0011 0.0003 −0.0036 −0.0043 −0.0062
0.2145 0.0003 −0.0001 0.0003 0.0003 0.0012 0.0023 −0.0000
0.2145 0.0003 −0.0001 0.0003 0.0003 0.0012 0.0023 −0.0000
0.2118 0.0003 −0.0001 0.0003 0.0003 0.0012 0.0023 −0.0000
0.2077 −0.0001 −0.0002 −0.0005 0.0003 −0.0026 −0.0039 −0.0024
0.2173 0.0003 −0.0001 0.0003 0.0003 0.0012 0.0023 −0.0000
0.2150 0.0003 −0.0001 0.0003 0.0003 0.0012 0.0023 −0.0000
0.2224 0.0003 −0.0001 0.0003 0.0003 0.0012 0.0023 −0.0001

c = 0.2 0.2479 0.0002 0.0001 −0.0002 0.0012 −0.0015 −0.0012 −0.0057
T = 7 0.2470 0.0007 0.0003 0.0011 0.0012 0.0029 0.0049 0.0003

0.2459 0.0007 0.0003 0.0011 0.0012 0.0029 0.0049 0.0003
0.2144 0.0007 0.0004 0.0010 0.0010 0.0028 0.0047 0.0003
0.2144 0.0007 0.0004 0.0010 0.0010 0.0028 0.0047 0.0003
0.2118 0.0007 0.0004 0.0010 0.0010 0.0027 0.0046 0.0003
0.2077 0.0007 0.0004 0.0009 0.0010 0.0027 0.0046 0.0003
0.2173 0.0007 0.0004 0.0010 0.0010 0.0028 0.0047 0.0003
0.2150 0.0007 0.0004 0.0010 0.0010 0.0028 0.0047 0.0003
0.2224 0.0007 0.0004 0.0010 0.0011 0.0028 0.0047 0.0003

c = 0.3 0.2476 0.0004 −0.0000 0.0004 0.0004 0.0017 0.0033 −0.0001
T = 3 0.2466 0.0004 −0.0000 0.0004 0.0004 0.0017 0.0033 −0.0001

0.2458 0.0004 −0.0000 0.0004 0.0004 0.0017 0.0033 −0.0001
0.2134 0.0004 −0.0000 0.0004 0.0003 0.0016 0.0032 −0.0000
0.2134 0.0004 −0.0000 0.0004 0.0003 0.0016 0.0032 −0.0000
0.2112 0.0004 −0.0000 0.0004 0.0003 0.0016 0.0032 −0.0000
0.2041 0.0004 −0.0000 0.0003 0.0003 0.0016 0.0032 −0.0000
0.2144 0.0004 −0.0000 0.0004 0.0003 0.0016 0.0032 −0.0000
0.2097 0.0004 −0.0000 0.0004 0.0003 0.0016 0.0032 −0.0000
0.2214 0.0004 −0.0000 0.0004 0.0003 0.0017 0.0032 −0.0000

c = 0.3 0.2476 0.0007 0.0003 0.0011 0.0011 0.0037 0.0066 0.0002
T = 7 0.2466 0.0007 0.0003 0.0011 0.0011 0.0037 0.0066 0.0002

0.2458 0.0007 0.0003 0.0011 0.0011 0.0037 0.0066 0.0002
0.2131 0.0007 0.0003 0.0009 0.0009 0.0035 0.0063 0.0002
0.2131 0.0007 0.0003 0.0009 0.0009 0.0035 0.0063 0.0002
0.2109 0.0007 0.0003 0.0009 0.0009 0.0035 0.0063 0.0002
0.2041 0.0007 0.0003 0.0009 0.0008 0.0035 0.0062 0.0002
0.2144 0.0007 0.0003 0.0009 0.0009 0.0035 0.0063 0.0002
0.2097 0.0007 0.0003 0.0009 0.0009 0.0035 0.0062 0.0002
0.2214 0.0007 0.0003 0.0010 0.0009 0.0035 0.0063 0.0002

Table 4.34. Sequential quadrature prices minus Monte Carlo prices for the EIAs in table 4.31.
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c = 0.1 c = 0.2 c = 0.3
T = 3 T = 7 T = 3 T = 7 T = 3 T = 7

(A) S&P 500 P + Q parameters
Meix 0.3133 0.3133 0.3063 0.3063 0.3063 0.3063
NIG 0.3218 0.3216 0.3114 0.3114 0.3113 0.3113
VG 0.3345 0.3340 0.3141 0.3141 0.3139 0.3139
Meix/CIR 0.3199 0.3199 0.3097 0.3097 0.3097 0.3097
NIG/CIR 0.3199 0.3199 0.3097 0.3097 0.3097 0.3097
VG/CIR 0.3235 0.3234 0.3106 0.3106 0.3105 0.3105
Meix/Γ-OU 0.3226 0.3224 0.3110 0.3110 0.3109 0.3109
NIG/Γ-OU 0.3245 0.3242 0.3124 0.3124 0.3122 0.3122
VG/Γ-OU 0.3200 0.3199 0.3111 0.3111 0.3111 0.3111

(B) S&P 500 Q parameters
Meix 0.3169 0.3168 0.3077 0.3077 0.3076 0.3076
NIG 0.3177 0.3176 0.3085 0.3085 0.3085 0.3085
VG 0.3156 0.3155 0.3070 0.3070 0.3070 0.3070
Meix/CIR 0.3146 0.3146 0.3076 0.3076 0.3076 0.3076
NIG/CIR 0.3887 0.3885 0.3683 0.3682 0.3682 0.3681
VG/CIR 0.3149 0.3149 0.3079 0.3079 0.3079 0.3079
Meix/Γ-OU 0.5637 0.5583 0.4693 0.4690 0.4684 0.4680
NIG/Γ-OU 0.4534 0.4524 0.4105 0.4104 0.4103 0.4101
VG/Γ-OU 0.5572 0.5521 0.4663 0.4662 0.4656 0.4654
BS 0.3520 0.3507 0.3235 0.3235 0.3229 0.3229

(C) Eurostoxx 50 parameters
Meix 0.2524 0.2524 0.2485 0.2485 0.2485 0.2485
NIG 0.2525 0.2525 0.2487 0.2487 0.2487 0.2487
VG 0.2492 0.2492 0.2463 0.2463 0.2463 0.2463
Meix/CIR 0.2225 0.2223 0.2181 0.2180 0.2179 0.2178
NIG/CIR 0.2230 0.2228 0.2185 0.2185 0.2184 0.2183
VG/CIR 0.2190 0.2190 0.2157 0.2157 0.2157 0.2157
Meix/Γ-OU 0.2911 0.2910 0.2769 0.2766 0.2767 0.2762
NIG/Γ-OU 0.2510 0.2506 0.2410 0.2409 0.2404 0.2404
VG/Γ-OU 0.2998 0.2983 0.2784 0.2775 0.2769 0.2765
BS 0.2411 0.2402 0.2220 0.2220 0.2213 0.2213

Table 4.35. Critical participation rates of term-end PTPs under different models.
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α Meix NIG VG Meix
CIR

NIG
CIR

VG
CIR

Meix
Γ-OU

NIG
Γ-OU

VG
Γ-OU

c = 0.1 0.3133 0.00 0.05 0.12 0.04 0.04 0.06 0.06 0.07 0.04
T = 3 0.3218 −0.06 0.00 0.07 −0.01 −0.01 0.01 0.00 0.02 −0.01

0.3345 −0.14 −0.08 0.00 −0.09 −0.09 −0.07 −0.07 −0.06 −0.09
0.3199 −0.04 0.01 0.08 0.00 0.00 0.02 0.02 0.03 0.00
0.3199 −0.04 0.01 0.08 0.00 0.00 0.02 0.02 0.03 0.00
0.3235 −0.07 −0.01 0.06 −0.02 −0.02 0.00 −0.01 0.01 −0.02
0.3226 −0.06 −0.01 0.07 −0.02 −0.02 0.01 0.00 0.01 −0.02
0.3245 −0.07 −0.02 0.06 −0.03 −0.03 −0.01 −0.01 0.00 −0.03
0.3200 −0.04 0.01 0.08 0.00 0.00 0.02 0.02 0.03 0.00

c = 0.1 0.3133 0.00 0.05 0.12 0.04 0.04 0.06 0.06 0.07 0.04
T = 7 0.3216 −0.06 0.00 0.07 −0.01 −0.01 0.01 0.00 0.02 −0.01

0.3340 −0.13 −0.08 0.00 −0.09 −0.09 −0.06 −0.07 −0.06 −0.09
0.3199 −0.04 0.01 0.08 0.00 0.00 0.02 0.02 0.03 0.00
0.3199 −0.04 0.01 0.08 0.00 0.00 0.02 0.02 0.03 0.00
0.3234 −0.07 −0.01 0.06 −0.02 −0.02 0.00 −0.01 0.01 −0.02
0.3224 −0.06 0.00 0.07 −0.02 −0.02 0.01 0.00 0.01 −0.02
0.3242 −0.07 −0.02 0.06 −0.03 −0.03 −0.01 −0.01 0.00 −0.03
0.3199 −0.04 0.01 0.08 0.00 0.00 0.02 0.02 0.03 0.00

c = 0.2 0.3063 0.00 0.04 0.06 0.03 0.03 0.03 0.04 0.05 0.04
T = 3 0.3114 −0.04 0.00 0.02 −0.01 −0.01 −0.01 0.00 0.01 0.00

0.3141 −0.06 −0.02 0.00 −0.03 −0.03 −0.03 −0.02 −0.01 −0.02
0.3097 −0.03 0.01 0.03 0.00 0.00 0.01 0.01 0.02 0.01
0.3097 −0.03 0.01 0.03 0.00 0.00 0.01 0.01 0.02 0.01
0.3106 −0.03 0.01 0.03 −0.01 −0.01 0.00 0.00 0.01 0.00
0.3110 −0.04 0.00 0.02 −0.01 −0.01 0.00 0.00 0.01 0.00
0.3124 −0.05 −0.01 0.01 −0.02 −0.02 −0.01 −0.01 0.00 −0.01
0.3111 −0.04 0.00 0.02 −0.01 −0.01 0.00 0.00 0.01 0.00

c = 0.2 0.3063 0.00 0.04 0.06 0.03 0.03 0.03 0.04 0.05 0.04
T = 7 0.3114 −0.04 0.00 0.02 −0.01 −0.01 −0.01 0.00 0.01 0.00

0.3141 −0.06 −0.02 0.00 −0.03 −0.03 −0.03 −0.02 −0.01 −0.02
0.3097 −0.03 0.01 0.03 0.00 0.00 0.01 0.01 0.02 0.01
0.3097 −0.03 0.01 0.03 0.00 0.00 0.01 0.01 0.02 0.01
0.3106 −0.03 0.01 0.03 −0.01 −0.01 0.00 0.00 0.01 0.00
0.3110 −0.04 0.00 0.02 −0.01 −0.01 0.00 0.00 0.01 0.00
0.3124 −0.05 −0.01 0.01 −0.02 −0.02 −0.01 −0.01 0.00 −0.01
0.3111 −0.04 0.00 0.02 −0.01 −0.01 0.00 0.00 0.01 0.00

c = 0.3 0.3063 0.00 0.04 0.06 0.03 0.03 0.03 0.04 0.04 0.04
T = 3 0.3113 −0.04 0.00 0.02 −0.01 −0.01 −0.01 0.00 0.01 0.00

0.3139 −0.06 −0.02 0.00 −0.03 −0.03 −0.03 −0.02 −0.01 −0.02
0.3097 −0.03 0.01 0.03 0.00 0.00 0.01 0.01 0.02 0.01
0.3097 −0.03 0.01 0.03 0.00 0.00 0.01 0.01 0.02 0.01
0.3105 −0.03 0.01 0.03 −0.01 −0.01 0.00 0.00 0.01 0.00
0.3109 −0.04 0.00 0.02 −0.01 −0.01 0.00 0.00 0.01 0.00
0.3122 −0.05 −0.01 0.01 −0.02 −0.02 −0.01 −0.01 0.00 −0.01
0.3111 −0.04 0.00 0.02 −0.01 −0.01 0.00 0.00 0.01 0.00

c = 0.3 0.3063 0.00 0.04 0.06 0.03 0.03 0.03 0.04 0.04 0.04
T = 7 0.3113 −0.04 0.00 0.02 −0.01 −0.01 −0.01 0.00 0.01 0.00

0.3139 −0.06 −0.02 0.00 −0.03 −0.03 −0.03 −0.02 −0.01 −0.02
0.3097 −0.03 0.01 0.03 0.00 0.00 0.01 0.01 0.02 0.01
0.3097 −0.03 0.01 0.03 0.00 0.00 0.01 0.01 0.02 0.01
0.3105 −0.03 0.01 0.03 −0.01 −0.01 0.00 0.00 0.01 0.00
0.3109 −0.04 0.00 0.02 −0.01 −0.01 0.00 0.00 0.01 0.00
0.3122 −0.05 −0.01 0.01 −0.02 −0.02 −0.01 −0.01 0.00 −0.01
0.3111 −0.04 0.00 0.02 −0.01 −0.01 0.00 0.00 0.01 0.00

Table 4.36. Values of 100× (1− term-end PTP price) using S&P 500 P + Q parameters.
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α Meix NIG VG Meix
CIR

NIG
CIR

VG
CIR

Meix
Γ-OU

NIG
Γ-OU

VG
Γ-OU

c = 0.1 0.3133 0.9407 0.9422 0.9375 0.9388 0.9388 0.9400 0.9431 0.9443 0.9379
T = 7 0.3218 0.9420 0.9436 0.9387 0.9401 0.9401 0.9412 0.9445 0.9457 0.9392

0.3345 0.9440 0.9456 0.9405 0.9420 0.9420 0.9431 0.9465 0.9478 0.9410
0.3199 0.9417 0.9433 0.9384 0.9398 0.9398 0.9410 0.9442 0.9454 0.9389
0.3199 0.9417 0.9433 0.9384 0.9398 0.9398 0.9410 0.9442 0.9454 0.9389
0.3235 0.9423 0.9439 0.9389 0.9404 0.9404 0.9415 0.9447 0.9460 0.9394
0.3226 0.9422 0.9437 0.9388 0.9402 0.9402 0.9414 0.9446 0.9459 0.9393
0.3245 0.9425 0.9440 0.9391 0.9405 0.9405 0.9416 0.9449 0.9462 0.9396
0.3200 0.9418 0.9433 0.9384 0.9398 0.9398 0.9410 0.9442 0.9454 0.9389

c = 0.1 0.3133 0.8379 0.8409 0.8340 0.8354 0.8354 0.8380 0.8428 0.8467 0.8338
T = 3 0.3216 0.8401 0.8432 0.8360 0.8375 0.8375 0.8401 0.8452 0.8492 0.8358

0.3340 0.8433 0.8466 0.8390 0.8406 0.8406 0.8433 0.8487 0.8530 0.8389
0.3199 0.8396 0.8427 0.8356 0.8371 0.8370 0.8397 0.8447 0.8487 0.8354
0.3199 0.8396 0.8428 0.8356 0.8371 0.8371 0.8397 0.8447 0.8487 0.8354
0.3234 0.8405 0.8437 0.8365 0.8379 0.8379 0.8406 0.8457 0.8498 0.8362
0.3224 0.8403 0.8434 0.8362 0.8377 0.8377 0.8403 0.8454 0.8495 0.8360
0.3242 0.8407 0.8439 0.8367 0.8381 0.8381 0.8408 0.8459 0.8500 0.8364
0.3199 0.8396 0.8428 0.8356 0.8371 0.8371 0.8397 0.8447 0.8487 0.8354

c = 0.2 0.3063 0.9398 0.9414 0.9369 0.9380 0.9380 0.9393 0.9422 0.9435 0.9370
T = 7 0.3114 0.9406 0.9422 0.9377 0.9388 0.9388 0.9401 0.9431 0.9444 0.9378

0.3141 0.9411 0.9427 0.9382 0.9392 0.9392 0.9406 0.9436 0.9448 0.9382
0.3097 0.9403 0.9419 0.9375 0.9386 0.9386 0.9399 0.9428 0.9441 0.9376
0.3097 0.9403 0.9419 0.9375 0.9386 0.9386 0.9399 0.9428 0.9441 0.9376
0.3106 0.9405 0.9421 0.9376 0.9387 0.9387 0.9400 0.9430 0.9442 0.9377
0.3110 0.9406 0.9422 0.9377 0.9388 0.9388 0.9401 0.9430 0.9443 0.9378
0.3124 0.9408 0.9424 0.9379 0.9390 0.9390 0.9403 0.9433 0.9445 0.9380
0.3111 0.9406 0.9422 0.9377 0.9388 0.9388 0.9401 0.9430 0.9443 0.9378

c = 0.2 0.3063 0.8362 0.8392 0.8327 0.8339 0.8339 0.8366 0.8411 0.8449 0.8322
T = 3 0.3114 0.8376 0.8407 0.8339 0.8352 0.8352 0.8380 0.8426 0.8465 0.8335

0.3141 0.8383 0.8414 0.8346 0.8359 0.8359 0.8387 0.8434 0.8473 0.8342
0.3097 0.8371 0.8402 0.8335 0.8347 0.8347 0.8375 0.8421 0.8460 0.8331
0.3097 0.8371 0.8402 0.8335 0.8347 0.8347 0.8375 0.8421 0.8460 0.8331
0.3106 0.8373 0.8404 0.8337 0.8350 0.8350 0.8377 0.8423 0.8462 0.8333
0.3110 0.8375 0.8406 0.8338 0.8351 0.8351 0.8379 0.8425 0.8464 0.8334
0.3124 0.8378 0.8409 0.8342 0.8354 0.8354 0.8382 0.8429 0.8468 0.8337
0.3111 0.8375 0.8406 0.8339 0.8351 0.8351 0.8379 0.8425 0.8464 0.8334

c = 0.3 0.3063 0.9398 0.9414 0.9369 0.9380 0.9380 0.9393 0.9422 0.9435 0.9370
T = 7 0.3113 0.9406 0.9422 0.9377 0.9388 0.9388 0.9401 0.9431 0.9444 0.9378

0.3139 0.9410 0.9426 0.9381 0.9392 0.9392 0.9405 0.9435 0.9448 0.9382
0.3097 0.9403 0.9419 0.9375 0.9385 0.9385 0.9399 0.9428 0.9441 0.9376
0.3097 0.9403 0.9419 0.9375 0.9385 0.9385 0.9399 0.9428 0.9441 0.9376
0.3105 0.9405 0.9421 0.9376 0.9387 0.9387 0.9400 0.9429 0.9442 0.9377
0.3109 0.9405 0.9421 0.9377 0.9387 0.9387 0.9401 0.9430 0.9443 0.9377
0.3122 0.9408 0.9424 0.9379 0.9389 0.9389 0.9403 0.9432 0.9445 0.9379
0.3111 0.9406 0.9422 0.9377 0.9388 0.9388 0.9401 0.9430 0.9443 0.9378

c = 0.3 0.3063 0.8362 0.8392 0.8327 0.8339 0.8339 0.8366 0.8411 0.8449 0.8322
T = 3 0.3113 0.8375 0.8406 0.8339 0.8351 0.8351 0.8379 0.8426 0.8464 0.8335

0.3139 0.8382 0.8414 0.8346 0.8358 0.8358 0.8386 0.8433 0.8473 0.8341
0.3097 0.8371 0.8402 0.8335 0.8347 0.8347 0.8375 0.8421 0.8460 0.8331
0.3097 0.8371 0.8402 0.8335 0.8347 0.8347 0.8375 0.8421 0.8460 0.8331
0.3105 0.8373 0.8404 0.8337 0.8349 0.8349 0.8377 0.8423 0.8462 0.8333
0.3109 0.8374 0.8405 0.8338 0.8351 0.8351 0.8378 0.8424 0.8463 0.8334
0.3122 0.8378 0.8409 0.8341 0.8354 0.8354 0.8382 0.8428 0.8467 0.8337
0.3111 0.8375 0.8406 0.8339 0.8351 0.8351 0.8379 0.8425 0.8464 0.8334

Table 4.37. True prices of term-end PTPs using S&P 500 P + Q parameters when surrender is not allowed.
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α Meix NIG VG Meix
CIR

NIG
CIR

VG
CIR

Meix
Γ-OU

NIG
Γ-OU

VG
Γ-OU

c = 0.1 0.3133 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 −0.0000
T = 7 0.3218 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000

0.3345 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3199 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 −0.0000
0.3199 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 −0.0000
0.3235 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3226 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3245 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 −0.0000
0.3200 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 −0.0000

c = 0.1 0.3133 −0.0000 −0.0011 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
T = 3 0.3216 −0.0000 −0.0011 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000

0.3340 −0.0000 −0.0011 0.0000 0.0000 −0.0000 −0.0000 −0.0000 −0.0000 0.0000
0.3199 −0.0000 −0.0011 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3199 −0.0000 −0.0011 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3234 −0.0000 −0.0011 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3224 −0.0000 −0.0011 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3242 −0.0000 −0.0011 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3199 −0.0000 −0.0011 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000

c = 0.2 0.3063 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
T = 7 0.3114 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000

0.3141 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3097 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3097 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3106 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3110 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3124 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3111 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000

c = 0.2 0.3063 −0.0000 −0.0011 0.0000 −0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000
T = 3 0.3114 −0.0000 −0.0011 0.0000 0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000

0.3141 −0.0000 −0.0011 −0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 −0.0000
0.3097 −0.0000 −0.0011 0.0000 0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000
0.3097 −0.0000 −0.0011 0.0000 0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000
0.3106 −0.0000 −0.0011 0.0000 0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000
0.3110 −0.0000 −0.0011 0.0000 0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000
0.3124 −0.0000 −0.0011 0.0000 −0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000
0.3111 −0.0000 −0.0011 0.0000 0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000

c = 0.3 0.3063 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
T = 7 0.3113 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000

0.3139 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3097 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3097 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3105 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3109 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3122 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000
0.3111 −0.0000 −0.0005 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000

c = 0.3 0.3063 −0.0000 −0.0011 0.0000 −0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000
T = 3 0.3113 −0.0000 −0.0011 0.0000 0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000

0.3139 −0.0000 −0.0011 −0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 −0.0000
0.3097 −0.0000 −0.0011 0.0000 0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000
0.3097 −0.0000 −0.0011 0.0000 0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000
0.3105 −0.0000 −0.0011 0.0000 0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000
0.3109 −0.0000 −0.0011 0.0000 0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000
0.3122 −0.0000 −0.0011 0.0000 −0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000
0.3111 −0.0000 −0.0011 0.0000 0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000

Table 4.38. Errors in the sequential quadrature prices of the EIAs mentioned in table 4.37.
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c = 0.1 c = 0.2 c = 0.3
T = 3 T = 7 T = 3 T = 7 T = 3 T = 7

S&P 500 P + Q parameters
Meix 0.5394 0.5394 0.5244 0.5244 0.5195 0.5195
NIG 0.5428 0.5428 0.5094 0.5094 0.4938 0.4938
VG 0.5597 0.5597 0.5259 0.5259 0.5238 0.5238
Meix/CIR 0.5463 0.5463 0.5301 0.5301 0.5290 0.5290
NIG/CIR 0.5461 0.5461 0.5298 0.5298 0.5285 0.5285
VG/CIR 0.5684 0.5684 0.5438 0.5438 0.5393 0.5393
Meix/Γ-OU 0.5211 0.5211 0.4672 0.4672 0.4290 0.4290
NIG/Γ-OU 0.5182 0.5182 0.4595 0.4595 0.4170 0.4170
VG/Γ-OU 0.5380 0.5380 0.5227 0.5227 0.5225 0.5225

S&P 500 Q parameters
Meix 0.5399 0.5399 0.5127 0.5127 0.4986 0.4986
NIG 0.5371 0.5371 0.5090 0.5090 0.4936 0.4936
VG 0.5391 0.5391 0.5148 0.5148 0.5028 0.5028
Meix/CIR 0.5458 0.5458 0.5323 0.5323 0.5316 0.5316
NIG/CIR 0.5402 0.5402 0.5185 0.5185 0.5077 0.5076
VG/CIR 0.5518 0.5518 0.5318 0.5317 0.5283 0.5281
Meix/Γ-OU 0.5322 0.5322 0.4987 0.4987 0.4784 0.4784
NIG/Γ-OU 0.5331 0.5331 0.5031 0.5031 0.4856 0.4856
VG/Γ-OU 0.5325 0.5325 0.4990 0.4990 0.4788 0.4788
BS 0.6032 0.6032 0.5485 0.5485 0.5477 0.5477

Eurostoxx 50 parameters
Meix 0.4207 0.4207 0.3991 0.3995 0.3842 0.3840
NIG 0.3705 0.3704 0.3115 0.3113 0.2555 0.2554
VG 0.3301 0.3300 0.2332 0.2330 0.1520 0.1517
Meix/CIR 0.2374 0.2283 0.2269 0.2144 0.2198 0.2055
NIG/CIR 0.3609 0.3608 0.3393 0.3393 0.3345 0.3341
VG/CIR 0.3572 0.3572 0.3395 0.3395 0.3378 0.3372
Meix/Γ-OU 0.3571 0.3571 0.3353 0.3357 0.3286 0.3284
NIG/Γ-OU 0.3765 0.3765 0.3459 0.3464 0.3358 0.3356
VG/Γ-OU 0.3830 0.3830 0.3465 0.3462 0.3346 0.3344
BS 0.3879 0.3879 0.3523 0.3527 0.3518 0.3519

Table 4.39. Critical participation rates of Asian-end CARs under different models.
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α Meix NIG VG Meix
CIR

NIG
CIR

VG
CIR

Meix
Γ-OU

NIG
Γ-OU

VG
Γ-OU

BS

c = 0.1 0.5399 0.00 −0.01 0.00 0.02 0.00 0.04 −0.03 −0.03 −0.03 0.18
T = 3 0.5371 0.01 0.00 0.01 0.03 0.01 0.05 −0.02 −0.02 −0.02 0.19

0.5391 0.00 −0.01 0.00 0.02 0.00 0.04 −0.03 −0.02 −0.03 0.19
0.5458 −0.02 −0.03 −0.03 0.00 −0.02 0.02 −0.05 −0.05 −0.05 0.16
0.5402 0.00 −0.01 −0.01 0.02 0.00 0.04 −0.03 −0.03 −0.03 0.18
0.5518 −0.05 −0.06 −0.05 −0.02 −0.04 0.00 −0.07 −0.07 −0.07 0.15
0.5322 0.03 0.02 0.02 0.05 0.03 0.07 0.00 0.00 0.00 0.21
0.5331 0.02 0.01 0.02 0.05 0.03 0.07 −0.01 0.00 0.00 0.20
0.5325 0.03 0.02 0.02 0.05 0.03 0.07 0.00 0.00 0.00 0.21
0.6032 −0.23 −0.24 −0.23 −0.21 −0.23 −0.18 −0.25 −0.25 −0.25 0.00

c = 0.1 0.5399 0.00 −0.01 0.00 0.02 0.00 0.04 −0.03 −0.03 −0.03 0.18
T = 7 0.5371 0.01 0.00 0.01 0.03 0.01 0.05 −0.02 −0.02 −0.02 0.19

0.5391 0.00 −0.01 0.00 0.02 0.00 0.04 −0.03 −0.02 −0.03 0.19
0.5458 −0.02 −0.03 −0.03 0.00 −0.02 0.02 −0.05 −0.05 −0.05 0.16
0.5402 0.00 −0.01 −0.01 0.02 0.00 0.04 −0.03 −0.03 −0.03 0.18
0.5518 −0.05 −0.06 −0.05 −0.02 −0.04 0.00 −0.07 −0.07 −0.07 0.15
0.5322 0.03 0.02 0.02 0.05 0.03 0.07 0.00 0.00 0.00 0.21
0.5331 0.02 0.01 0.02 0.05 0.03 0.07 −0.01 0.00 0.00 0.20
0.5325 0.03 0.02 0.02 0.05 0.03 0.07 0.00 0.00 0.00 0.21
0.6032 −0.23 −0.24 −0.23 −0.21 −0.23 −0.18 −0.25 −0.25 −0.25 0.00

c = 0.2 0.5127 0.00 −0.02 0.01 0.09 0.03 0.09 −0.06 −0.04 −0.06 0.15
T = 3 0.5090 0.01 0.00 0.02 0.10 0.04 0.10 −0.05 −0.03 −0.05 0.17

0.5148 −0.01 −0.03 0.00 0.08 0.02 0.08 −0.07 −0.05 −0.07 0.14
0.5323 −0.09 −0.10 −0.08 0.00 −0.06 0.00 −0.15 −0.13 −0.15 0.07
0.5185 −0.03 −0.04 −0.02 0.06 0.00 0.06 −0.09 −0.07 −0.09 0.13
0.5318 −0.09 −0.10 −0.08 0.00 −0.06 0.00 −0.15 −0.13 −0.14 0.07
0.4987 0.06 0.04 0.07 0.15 0.09 0.15 0.00 0.02 0.00 0.21
0.5031 0.04 0.02 0.05 0.13 0.07 0.13 −0.02 0.00 −0.02 0.19
0.4990 0.06 0.04 0.07 0.15 0.09 0.15 0.00 0.02 0.00 0.21
0.5485 −0.16 −0.17 −0.15 −0.07 −0.13 −0.07 −0.22 −0.20 −0.22 0.00

c = 0.2 0.5127 0.00 −0.02 0.01 0.09 0.03 0.09 −0.06 −0.04 −0.06 0.15
T = 7 0.5090 0.01 0.00 0.02 0.10 0.04 0.10 −0.05 −0.03 −0.05 0.17

0.5148 −0.01 −0.03 0.00 0.08 0.02 0.08 −0.07 −0.05 −0.07 0.14
0.5323 −0.09 −0.10 −0.08 0.00 −0.06 0.00 −0.15 −0.13 −0.15 0.07
0.5185 −0.03 −0.04 −0.02 0.06 0.00 0.06 −0.09 −0.07 −0.09 0.13
0.5317 −0.09 −0.10 −0.08 0.00 −0.06 0.00 −0.15 −0.13 −0.14 0.07
0.4987 0.06 0.04 0.07 0.15 0.09 0.15 0.00 0.02 0.00 0.21
0.5031 0.04 0.02 0.05 0.13 0.07 0.13 −0.02 0.00 −0.02 0.19
0.4990 0.06 0.04 0.07 0.15 0.09 0.15 0.00 0.02 0.00 0.21
0.5485 −0.16 −0.17 −0.15 −0.07 −0.13 −0.07 −0.22 −0.20 −0.22 0.00

c = 0.3 0.4986 0.00 −0.02 0.02 0.15 0.04 0.13 −0.09 −0.06 −0.09 0.21
T = 3 0.4936 0.02 0.00 0.04 0.17 0.06 0.15 −0.07 −0.03 −0.06 0.23

0.5028 −0.02 −0.04 0.00 0.13 0.02 0.11 −0.11 −0.08 −0.10 0.19
0.5316 −0.14 −0.17 −0.13 0.00 −0.10 −0.01 −0.23 −0.20 −0.23 0.07
0.5077 −0.04 −0.06 −0.02 0.11 0.00 0.09 −0.13 −0.10 −0.13 0.17
0.5283 −0.13 −0.15 −0.11 0.02 −0.09 0.00 −0.22 −0.19 −0.22 0.08
0.4784 0.09 0.07 0.11 0.24 0.13 0.22 0.00 0.03 0.00 0.30
0.4856 0.06 0.03 0.08 0.21 0.10 0.19 −0.03 0.00 −0.03 0.27
0.4788 0.09 0.06 0.10 0.24 0.13 0.22 0.00 0.03 0.00 0.29
0.5477 −0.21 −0.24 −0.20 −0.07 −0.17 −0.08 −0.30 −0.27 −0.30 0.00

c = 0.3 0.4986 0.00 −0.02 0.02 0.15 0.04 0.13 −0.09 −0.06 −0.09 0.21
T = 7 0.4936 0.02 0.00 0.04 0.17 0.06 0.15 −0.07 −0.03 −0.06 0.23

0.5028 −0.02 −0.04 0.00 0.13 0.02 0.11 −0.11 −0.08 −0.10 0.19
0.5316 −0.14 −0.17 −0.13 0.00 −0.10 −0.01 −0.23 −0.20 −0.23 0.07
0.5076 −0.04 −0.06 −0.02 0.11 0.00 0.09 −0.13 −0.10 −0.13 0.17
0.5281 −0.13 −0.15 −0.11 0.02 −0.09 0.00 −0.22 −0.19 −0.21 0.08
0.4784 0.09 0.07 0.11 0.24 0.13 0.22 0.00 0.03 0.00 0.30
0.4856 0.06 0.03 0.08 0.21 0.10 0.19 −0.03 0.00 −0.03 0.27
0.4788 0.09 0.06 0.10 0.24 0.13 0.22 0.00 0.03 0.00 0.29
0.5477 −0.21 −0.24 −0.20 −0.07 −0.17 −0.08 −0.30 −0.27 −0.30 0.00

Table 4.40. Values of 100× (1−Asian-end CAR price) using S&P 500 Q parameters.
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α NIG VG NIG
CIR

VG
CIR

NIG
Γ-OU

VG
Γ-OU

BS SV SVJ

c = 0.1 0.5399 0.9619 0.9624 0.9648 0.9633 0.9636 0.9634 0.9596 0.9623 0.9601
T = 3 0.5371 0.9615 0.9621 0.9644 0.9630 0.9632 0.9631 0.9594 0.9620 0.9598

0.5391 0.9618 0.9623 0.9647 0.9632 0.9635 0.9633 0.9596 0.9622 0.9600
0.5458 0.9625 0.9631 0.9654 0.9640 0.9643 0.9641 0.9602 0.9629 0.9607
0.5402 0.9619 0.9625 0.9648 0.9634 0.9636 0.9635 0.9597 0.9623 0.9601
0.5518 0.9632 0.9638 0.9661 0.9646 0.9650 0.9649 0.9607 0.9635 0.9613
0.5322 0.9610 0.9615 0.9639 0.9625 0.9626 0.9625 0.9589 0.9614 0.9593
0.5331 0.9611 0.9616 0.9640 0.9626 0.9627 0.9626 0.9590 0.9615 0.9594
0.5325 0.9610 0.9615 0.9639 0.9625 0.9626 0.9625 0.9589 0.9615 0.9593
0.6032 0.9689 0.9696 0.9715 0.9700 0.9711 0.9709 0.9652 0.9688 0.9664

c = 0.1 0.5399 0.8665 0.8673 0.8728 0.8723 0.8702 0.8701 0.8604 0.8720 0.8692
T = 7 0.5371 0.8658 0.8666 0.8722 0.8717 0.8694 0.8694 0.8599 0.8714 0.8686

0.5391 0.8663 0.8671 0.8726 0.8721 0.8700 0.8699 0.8602 0.8719 0.8690
0.5458 0.8680 0.8687 0.8742 0.8736 0.8717 0.8717 0.8615 0.8734 0.8704
0.5402 0.8666 0.8673 0.8729 0.8723 0.8702 0.8702 0.8605 0.8721 0.8693
0.5518 0.8694 0.8702 0.8755 0.8750 0.8734 0.8733 0.8626 0.8747 0.8716
0.5322 0.8646 0.8653 0.8710 0.8705 0.8681 0.8680 0.8589 0.8703 0.8676
0.5331 0.8648 0.8656 0.8712 0.8707 0.8684 0.8683 0.8591 0.8705 0.8678
0.5325 0.8647 0.8654 0.8711 0.8706 0.8682 0.8681 0.8590 0.8704 0.8677
0.6032 0.8815 0.8825 0.8867 0.8860 0.8866 0.8868 0.8718 0.8857 0.8818

c = 0.2 0.5127 0.9604 0.9609 0.9655 0.9639 0.9613 0.9612 0.9628 0.9644 0.9619
T = 3 0.5090 0.9599 0.9604 0.9649 0.9634 0.9608 0.9607 0.9623 0.9639 0.9614

0.5148 0.9607 0.9612 0.9658 0.9642 0.9616 0.9615 0.9631 0.9647 0.9622
0.5323 0.9632 0.9637 0.9684 0.9668 0.9641 0.9640 0.9656 0.9672 0.9646
0.5185 0.9612 0.9617 0.9664 0.9648 0.9621 0.9620 0.9636 0.9652 0.9627
0.5318 0.9631 0.9636 0.9684 0.9667 0.9640 0.9639 0.9655 0.9672 0.9645
0.4987 0.9584 0.9589 0.9634 0.9619 0.9593 0.9592 0.9608 0.9624 0.9599
0.5031 0.9591 0.9595 0.9641 0.9625 0.9599 0.9598 0.9614 0.9630 0.9605
0.4990 0.9585 0.9589 0.9634 0.9619 0.9593 0.9592 0.9608 0.9624 0.9600
0.5485 0.9655 0.9660 0.9709 0.9692 0.9664 0.9663 0.9679 0.9696 0.9669

c = 0.2 0.5127 0.8642 0.8647 0.8773 0.8786 0.8655 0.8653 0.8679 0.8816 0.8843
T = 7 0.5090 0.8631 0.8636 0.8760 0.8774 0.8643 0.8642 0.8668 0.8804 0.8831

0.5148 0.8649 0.8654 0.8780 0.8793 0.8661 0.8660 0.8685 0.8823 0.8850
0.5323 0.8702 0.8708 0.8838 0.8851 0.8716 0.8714 0.8737 0.8881 0.8906
0.5185 0.8660 0.8665 0.8792 0.8805 0.8673 0.8671 0.8696 0.8835 0.8862
0.5317 0.8700 0.8706 0.8835 0.8849 0.8714 0.8712 0.8735 0.8879 0.8904
0.4987 0.8600 0.8605 0.8726 0.8740 0.8611 0.8610 0.8637 0.8770 0.8798
0.5031 0.8613 0.8618 0.8741 0.8754 0.8625 0.8624 0.8650 0.8785 0.8812
0.4990 0.8601 0.8605 0.8727 0.8741 0.8612 0.8611 0.8638 0.8771 0.8799
0.5485 0.8752 0.8758 0.8891 0.8904 0.8767 0.8765 0.8786 0.8934 0.8958

c = 0.3 0.4986 0.9584 0.9589 0.9635 0.9620 0.9593 0.9592 0.9609 0.9628 0.9603
T = 3 0.4936 0.9577 0.9582 0.9627 0.9612 0.9586 0.9585 0.9602 0.9621 0.9595

0.5028 0.9590 0.9595 0.9641 0.9626 0.9599 0.9598 0.9616 0.9635 0.9609
0.5316 0.9631 0.9636 0.9685 0.9669 0.9640 0.9639 0.9658 0.9678 0.9650
0.5077 0.9597 0.9602 0.9648 0.9633 0.9606 0.9605 0.9623 0.9642 0.9616
0.5283 0.9626 0.9631 0.9680 0.9664 0.9635 0.9634 0.9653 0.9673 0.9645
0.4784 0.9556 0.9560 0.9604 0.9590 0.9564 0.9563 0.9580 0.9598 0.9574
0.4856 0.9566 0.9570 0.9615 0.9600 0.9574 0.9573 0.9590 0.9609 0.9584
0.4788 0.9556 0.9561 0.9605 0.9590 0.9564 0.9564 0.9581 0.9599 0.9574
0.5477 0.9654 0.9659 0.9709 0.9693 0.9663 0.9662 0.9682 0.9702 0.9673

c = 0.3 0.4986 0.8600 0.8605 0.8729 0.8745 0.8611 0.8610 0.8640 0.8787 0.8831
T = 7 0.4936 0.8585 0.8589 0.8712 0.8729 0.8596 0.8595 0.8625 0.8769 0.8814

0.5028 0.8612 0.8617 0.8743 0.8760 0.8624 0.8623 0.8653 0.8801 0.8846
0.5316 0.8700 0.8706 0.8840 0.8857 0.8713 0.8712 0.8741 0.8901 0.8947
0.5076 0.8627 0.8632 0.8759 0.8776 0.8639 0.8638 0.8667 0.8818 0.8863
0.5281 0.8690 0.8695 0.8828 0.8846 0.8703 0.8701 0.8730 0.8889 0.8935
0.4784 0.8539 0.8544 0.8662 0.8678 0.8550 0.8548 0.8579 0.8717 0.8761
0.4856 0.8561 0.8565 0.8686 0.8702 0.8571 0.8570 0.8601 0.8742 0.8786
0.4788 0.8540 0.8545 0.8663 0.8679 0.8551 0.8550 0.8580 0.8719 0.8763
0.5477 0.8750 0.8756 0.8895 0.8913 0.8764 0.8763 0.8791 0.8958 0.9004

Table 4.41. Monte Carlo no-surrender prices for Asian-end CARs using S&P 500 Q parameters. In percent-
age, the maximum standard error here is found to be about 0.02% of the price.
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α NIG VG NIG
CIR

VG
CIR

NIG
Γ-OU

VG
Γ-OU

BS

c = 0.1 0.5399 0.0020 0.0012 0.0005 0.0007 0.0017 0.0020 −0.0001
T = 3 0.5371 0.0020 0.0012 0.0005 0.0007 0.0017 0.0020 −0.0001

0.5391 0.0020 0.0012 0.0005 0.0007 0.0017 0.0020 −0.0001
0.5458 0.0020 0.0012 0.0005 0.0007 0.0017 0.0020 −0.0001
0.5402 0.0020 0.0012 0.0005 0.0007 0.0017 0.0020 −0.0001
0.5518 0.0020 0.0012 0.0006 0.0007 0.0017 0.0020 −0.0001
0.5322 0.0020 0.0012 0.0005 0.0007 0.0017 0.0020 −0.0001
0.5331 0.0020 0.0012 0.0005 0.0007 0.0017 0.0020 −0.0001
0.5325 0.0020 0.0012 0.0005 0.0007 0.0017 0.0020 −0.0001
0.6032 0.0020 0.0012 0.0006 0.0005 0.0016 0.0020 −0.0001

c = 0.1 0.5399 0.0034 0.0023 0.0015 0.0012 0.0034 0.0039 −0.0002
T = 7 0.5371 0.0034 0.0023 0.0015 0.0013 0.0034 0.0039 −0.0002

0.5391 0.0034 0.0023 0.0015 0.0013 0.0034 0.0039 −0.0002
0.5458 0.0034 0.0023 0.0015 0.0012 0.0034 0.0039 −0.0002
0.5402 0.0034 0.0023 0.0015 0.0012 0.0034 0.0039 −0.0002
0.5518 0.0034 0.0023 0.0016 0.0011 0.0034 0.0039 −0.0002
0.5322 0.0034 0.0023 0.0015 0.0013 0.0034 0.0039 −0.0002
0.5331 0.0034 0.0023 0.0015 0.0013 0.0034 0.0039 −0.0002
0.5325 0.0034 0.0023 0.0015 0.0013 0.0034 0.0039 −0.0002
0.6032 0.0035 0.0024 0.0018 0.0007 0.0034 0.0040 −0.0002

c = 0.2 0.5127 0.0038 0.0027 0.0015 0.0014 0.0037 0.0043 −0.0000
T = 3 0.5090 −0.0037 −0.0032 −0.0038 −0.0006 −0.0049 −0.0057 −0.0010

0.5148 −0.0037 −0.0032 −0.0038 −0.0007 −0.0050 −0.0057 −0.0011
0.5323 −0.0038 −0.0033 −0.0039 −0.0007 −0.0050 −0.0058 −0.0015
0.5185 −0.0037 −0.0032 −0.0038 −0.0007 −0.0050 −0.0057 −0.0012
0.5318 −0.0038 −0.0033 −0.0039 −0.0007 −0.0050 −0.0058 −0.0015
0.4987 0.0038 0.0027 0.0015 0.0014 0.0038 0.0043 −0.0000
0.5031 −0.0037 −0.0031 −0.0038 −0.0006 −0.0049 −0.0057 −0.0009
0.4990 −0.0037 −0.0031 −0.0038 −0.0006 −0.0049 −0.0057 −0.0009
0.5485 −0.0039 −0.0033 −0.0039 −0.0007 −0.0050 −0.0058 −0.0019

c = 0.2 0.5127 0.0075 0.0055 0.0037 0.0031 0.0078 0.0088 0.0001
T = 7 0.5090 0.0007 0.0003 −0.0011 0.0013 −0.0001 −0.0002 −0.0008

0.5148 0.0007 0.0003 −0.0011 0.0013 −0.0001 −0.0002 −0.0009
0.5323 0.0006 0.0002 −0.0012 0.0012 −0.0001 −0.0002 −0.0012
0.5185 0.0075 0.0055 0.0037 0.0031 0.0078 0.0088 0.0001
0.5317 0.0006 0.0002 −0.0012 0.0012 −0.0001 −0.0002 −0.0012
0.4987 0.0074 0.0055 0.0037 0.0031 0.0078 0.0087 0.0001
0.5031 0.0007 0.0003 −0.0010 0.0013 −0.0000 −0.0002 −0.0007
0.4990 0.0007 0.0003 −0.0010 0.0013 −0.0000 −0.0002 −0.0006
0.5485 0.0006 0.0001 −0.0012 0.0012 −0.0001 −0.0003 −0.0016

c = 0.3 0.4986 0.0056 0.0041 0.0029 0.0019 0.0057 0.0065 −0.0001
T = 3 0.4936 0.0056 0.0041 0.0029 0.0019 0.0057 0.0065 −0.0000

0.5028 0.0056 0.0041 0.0029 0.0019 0.0057 0.0065 −0.0001
0.5316 0.0057 0.0041 0.0028 0.0019 0.0057 0.0065 −0.0001
0.5077 0.0056 0.0041 0.0029 0.0019 0.0057 0.0065 −0.0001
0.5283 0.0057 0.0041 0.0028 0.0019 0.0057 0.0065 −0.0001
0.4784 0.0056 0.0041 0.0029 0.0019 0.0057 0.0065 −0.0000
0.4856 0.0056 0.0041 0.0029 0.0019 0.0057 0.0065 −0.0000
0.4788 0.0056 0.0041 0.0029 0.0019 0.0057 0.0065 −0.0000
0.5477 0.0057 0.0041 0.0028 0.0019 0.0058 0.0065 −0.0001

c = 0.3 0.4986 0.0112 0.0083 0.0067 0.0043 0.0117 0.0132 0.0000
T = 7 0.4936 0.0112 0.0083 0.0067 0.0043 0.0117 0.0132 0.0000

0.5028 0.0112 0.0084 0.0067 0.0043 0.0118 0.0133 0.0000
0.5316 0.0113 0.0084 0.0066 0.0042 0.0119 0.0134 0.0000
0.5076 0.0112 0.0084 0.0067 0.0043 0.0118 0.0133 0.0000
0.5281 0.0113 0.0084 0.0066 0.0042 0.0119 0.0134 0.0000
0.4784 0.0111 0.0083 0.0067 0.0043 0.0117 0.0132 0.0000
0.4856 0.0111 0.0083 0.0067 0.0043 0.0117 0.0132 0.0000
0.4788 0.0111 0.0083 0.0067 0.0043 0.0117 0.0132 0.0000
0.5477 0.0114 0.0085 0.0066 0.0042 0.0119 0.0135 −0.0000

Table 4.42. Sequential quadrature prices minus Monte Carlo prices for the EIAs mentioned in table 4.41.
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c = 0.1 c = 0.2 c = 0.3
T = 3 T = 7 T = 3 T = 7 T = 3 T = 7

S&P 500 P + Q parameters
Meix 0.2048 0.2048 0.2043 0.2042 0.2042 0.2046
NIG 0.2244 0.2244 0.2229 0.2228 0.2232 0.2232
VG 0.1941 0.1940 0.1932 0.1932 0.1932 0.1932
Meix/CIR 0.1804 0.1802 0.1802 0.1802 0.1802 0.1802
NIG/CIR 0.1800 0.1797 0.1798 0.1797 0.1798 0.1797
VG/CIR 0.1856 0.1855 0.1852 0.1851 0.1852 0.1851
Meix/Γ-OU 0.2057 0.2056 0.2047 0.2050 0.2050 0.2050
NIG/Γ-OU 0.3143 0.3143 0.3042 0.3042 0.3040 0.3040
VG/Γ-OU 0.1862 0.1862 0.1861 0.1861 0.1861 0.1861

S&P 500 Q parameters
Meix 0.2101 0.2101 0.2092 0.2092 0.2092 0.2095
NIG 0.2118 0.2118 0.2110 0.2110 0.2110 0.2110
VG 0.2087 0.2083 0.2079 0.2079 0.2079 0.2079
Meix/CIR 0.1790 0.1791 0.1789 0.1788 0.1789 0.1787
NIG/CIR 0.2476 0.2476 0.2459 0.2459 0.2459 0.2459
VG/CIR 0.1966 0.1965 0.1964 0.1964 0.1964 0.1964
Meix/Γ-OU 0.3419 0.3418 0.3319 0.3318 0.3318 0.3318
NIG/Γ-OU 0.3015 0.3015 0.2972 0.2972 0.2972 0.2972
VG/Γ-OU 0.3402 0.3402 0.3305 0.3305 0.3304 0.3304
BS 0.1980 0.1977 0.1963 0.1962 0.1962 0.1961

Eurostoxx 50 parameters
Meix 0.1716 0.1715 0.1712 0.1712 0.1711 0.1712
NIG 0.1738 0.1738 0.1735 0.1735 0.1735 0.1735
VG 0.1755 0.1754 0.1752 0.1752 0.1754 0.1752
Meix/CIR 0.1229 0.1228 0.1225 0.1224 0.1224 0.1224
NIG/CIR 0.1302 0.1301 0.1297 0.1296 0.1296 0.1296
VG/CIR 0.1167 0.1168 0.1167 0.1166 0.1167 0.1166
Meix/Γ-OU 0.1710 0.1708 0.1706 0.1707 0.1705 0.1706
NIG/Γ-OU 0.1720 0.1717 0.1701 0.1701 0.1698 0.1699
VG/Γ-OU 0.1951 0.1945 0.1919 0.1917 0.1912 0.1913
BS 0.1297 0.1296 0.1287 0.1286 0.1286 0.1286

Table 4.43. Critical participation rates of reverse HWM PTPs under different models.
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α Meix NIG VG Meix
CIR

NIG
CIR

VG
CIR

Meix
Γ-OU

NIG
Γ-OU

VG
Γ-OU

BS

c = 0.1 0.1716 −0.04 −0.06 −0.06 −1.06 −0.97 −1.23 −0.05 −0.20 0.16 −0.63
T = 3 0.1738 −0.07 −0.09 −0.09 −1.11 −1.02 −1.28 −0.09 −0.23 0.13 −0.66

0.1755 −0.09 −0.11 −0.11 −1.15 −1.06 −1.32 −0.11 −0.25 0.10 −0.68
0.1229 0.57 0.56 0.55 −0.01 0.05 −0.10 0.75 0.54 0.90 0.11
0.1302 0.48 0.47 0.46 −0.16 −0.09 −0.25 0.63 0.43 0.79 −0.01
0.1167 0.65 0.64 0.63 0.11 0.17 0.03 0.85 0.63 1.00 0.21
0.1710 −0.03 −0.05 −0.06 −1.05 −0.95 −1.21 −0.04 −0.19 0.17 −0.62
0.1720 −0.04 −0.06 −0.07 −1.07 −0.98 −1.24 −0.06 −0.20 0.15 −0.63
0.1951 −0.33 −0.35 −0.36 −1.61 −1.51 −1.81 −0.43 −0.54 −0.18 −0.98
0.1297 0.48 0.47 0.46 −0.15 −0.08 −0.24 0.63 0.43 0.80 0.00

c = 0.1 0.1715 −0.04 −0.06 −0.06 −1.09 −0.99 −1.27 −0.05 −0.20 0.16 −0.63
T = 7 0.1738 −0.07 −0.09 −0.09 −1.15 −1.04 −1.33 −0.09 −0.23 0.12 −0.66

0.1754 −0.09 −0.11 −0.11 −1.19 −1.08 −1.37 −0.11 −0.25 0.10 −0.68
0.1228 0.57 0.56 0.55 −0.01 0.06 −0.10 0.75 0.54 0.90 0.11
0.1301 0.48 0.47 0.46 −0.15 −0.08 −0.25 0.63 0.43 0.79 0.00
0.1168 0.64 0.64 0.63 0.10 0.17 0.03 0.85 0.63 0.99 0.20
0.1708 −0.03 −0.05 −0.05 −1.07 −0.97 −1.25 −0.04 −0.18 0.17 −0.62
0.1717 −0.04 −0.06 −0.06 −1.09 −0.99 −1.27 −0.05 −0.20 0.16 −0.63
0.1945 −0.32 −0.35 −0.35 −1.66 −1.55 −1.88 −0.42 −0.54 −0.18 −0.98
0.1296 0.49 0.48 0.47 −0.15 −0.08 −0.24 0.64 0.44 0.80 0.00

c = 0.2 0.1712 −0.04 −0.05 −0.06 −1.09 −0.99 −1.25 −0.05 −0.22 0.14 −0.69
T = 3 0.1735 −0.06 −0.08 −0.09 −1.15 −1.05 −1.31 −0.09 −0.25 0.10 −0.73

0.1752 −0.09 −0.11 −0.11 −1.19 −1.09 −1.35 −0.11 −0.28 0.08 −0.75
0.1225 0.57 0.57 0.56 −0.01 0.05 −0.09 0.75 0.54 0.90 0.10
0.1297 0.48 0.47 0.46 −0.16 −0.09 −0.24 0.63 0.43 0.78 −0.01
0.1167 0.65 0.64 0.63 0.10 0.16 0.03 0.85 0.63 0.99 0.20
0.1706 −0.03 −0.05 −0.05 −1.08 −0.98 −1.23 −0.04 −0.21 0.15 −0.68
0.1701 −0.02 −0.04 −0.05 −1.06 −0.97 −1.22 −0.03 −0.20 0.16 −0.67
0.1919 −0.30 −0.32 −0.32 −1.61 −1.50 −1.80 −0.39 −0.54 −0.18 −1.04
0.1287 0.50 0.49 0.48 −0.14 −0.07 −0.22 0.65 0.44 0.80 0.00

c = 0.2 0.1712 −0.04 −0.05 −0.06 −1.12 −1.02 −1.29 −0.05 −0.22 0.14 −0.69
T = 7 0.1735 −0.07 −0.08 −0.09 −1.18 −1.08 −1.36 −0.09 −0.25 0.10 −0.73

0.1752 −0.09 −0.11 −0.11 −1.22 −1.12 −1.40 −0.12 −0.28 0.07 −0.75
0.1224 0.57 0.57 0.56 −0.01 0.06 −0.09 0.75 0.54 0.89 0.10
0.1296 0.48 0.48 0.47 −0.16 −0.09 −0.25 0.63 0.43 0.78 −0.01
0.1166 0.65 0.64 0.63 0.10 0.17 0.03 0.85 0.63 0.99 0.20
0.1707 −0.03 −0.05 −0.05 −1.11 −1.00 −1.28 −0.04 −0.21 0.14 −0.68
0.1701 −0.02 −0.04 −0.05 −1.09 −0.99 −1.26 −0.03 −0.20 0.15 −0.67
0.1917 −0.29 −0.32 −0.32 −1.66 −1.54 −1.87 −0.39 −0.54 −0.18 −1.04
0.1286 0.50 0.49 0.48 −0.14 −0.07 −0.22 0.65 0.44 0.80 0.00

c = 0.3 0.1711 −0.04 −0.05 −0.06 −1.09 −0.99 −1.25 −0.05 −0.22 0.13 −0.69
T = 3 0.1735 −0.06 −0.08 −0.09 −1.15 −1.05 −1.31 −0.09 −0.25 0.10 −0.73

0.1754 −0.09 −0.11 −0.11 −1.20 −1.10 −1.36 −0.12 −0.28 0.07 −0.76
0.1224 0.57 0.57 0.56 −0.01 0.06 −0.09 0.75 0.54 0.89 0.10
0.1296 0.48 0.48 0.47 −0.16 −0.08 −0.24 0.64 0.43 0.78 −0.01
0.1167 0.65 0.64 0.63 0.10 0.16 0.03 0.85 0.63 0.98 0.20
0.1705 −0.03 −0.05 −0.05 −1.08 −0.98 −1.23 −0.04 −0.21 0.14 −0.68
0.1698 −0.02 −0.04 −0.04 −1.06 −0.96 −1.21 −0.03 −0.20 0.15 −0.67
0.1912 −0.29 −0.31 −0.31 −1.59 −1.49 −1.78 −0.38 −0.53 −0.18 −1.03
0.1286 0.50 0.49 0.48 −0.14 −0.07 −0.22 0.65 0.44 0.80 0.00

c = 0.3 0.1712 −0.04 −0.05 −0.06 −1.12 −1.02 −1.29 −0.05 −0.22 0.13 −0.69
T = 7 0.1735 −0.07 −0.08 −0.09 −1.18 −1.08 −1.36 −0.09 −0.25 0.09 −0.73

0.1752 −0.09 −0.11 −0.11 −1.22 −1.12 −1.40 −0.12 −0.28 0.07 −0.76
0.1224 0.58 0.57 0.56 −0.01 0.06 −0.09 0.75 0.54 0.89 0.11
0.1296 0.48 0.48 0.47 −0.16 −0.08 −0.24 0.63 0.43 0.78 −0.01
0.1166 0.65 0.64 0.63 0.10 0.17 0.03 0.85 0.63 0.98 0.20
0.1706 −0.03 −0.05 −0.05 −1.11 −1.00 −1.28 −0.04 −0.21 0.14 −0.68
0.1699 −0.02 −0.04 −0.04 −1.09 −0.99 −1.26 −0.03 −0.20 0.15 −0.67
0.1913 −0.29 −0.31 −0.31 −1.65 −1.53 −1.86 −0.38 −0.53 −0.18 −1.03
0.1286 0.50 0.49 0.48 −0.14 −0.06 −0.22 0.65 0.44 0.80 0.00

Table 4.44. Values of 100× (1− reverse HWM PTP price) using Eurostoxx 50 parameters.
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α NIG VG NIG
CIR

VG
CIR

NIG
Γ-OU

VG
Γ-OU

BS SV SVJ

c = 0.1 0.1716 0.9645 0.9643 0.9771 0.9799 0.9697 0.9705 0.9691 0.9792 0.9803
T = 3 0.1738 0.9651 0.9649 0.9779 0.9807 0.9704 0.9712 0.9697 0.9800 0.9811

0.1755 0.9656 0.9654 0.9785 0.9813 0.9709 0.9717 0.9702 0.9806 0.9817
0.1229 0.9511 0.9509 0.9602 0.9622 0.9549 0.9556 0.9545 0.9617 0.9625
0.1302 0.9531 0.9529 0.9627 0.9648 0.9571 0.9578 0.9567 0.9643 0.9651
0.1167 0.9494 0.9492 0.9580 0.9599 0.9530 0.9536 0.9526 0.9594 0.9602
0.1710 0.9643 0.9641 0.9769 0.9797 0.9695 0.9703 0.9689 0.9790 0.9801
0.1720 0.9646 0.9644 0.9773 0.9801 0.9698 0.9707 0.9692 0.9793 0.9805
0.1951 0.9709 0.9707 0.9852 0.9884 0.9768 0.9777 0.9760 0.9875 0.9889
0.1297 0.9530 0.9528 0.9626 0.9647 0.9570 0.9577 0.9565 0.9641 0.9650

c = 0.1 0.1715 0.8743 0.8740 0.8864 0.8906 0.8752 0.8757 0.8792 0.8897 0.8903
T = 7 0.1738 0.8751 0.8748 0.8875 0.8918 0.8761 0.8767 0.8801 0.8909 0.8915

0.1754 0.8757 0.8754 0.8883 0.8926 0.8767 0.8773 0.8807 0.8918 0.8924
0.1228 0.8585 0.8582 0.8647 0.8671 0.8582 0.8582 0.8624 0.8665 0.8666
0.1301 0.8606 0.8603 0.8677 0.8703 0.8604 0.8605 0.8647 0.8697 0.8698
0.1168 0.8568 0.8566 0.8624 0.8645 0.8564 0.8564 0.8606 0.8640 0.8640
0.1708 0.8740 0.8737 0.8860 0.8902 0.8749 0.8754 0.8789 0.8893 0.8899
0.1717 0.8744 0.8740 0.8865 0.8906 0.8752 0.8758 0.8793 0.8898 0.8904
0.1945 0.8828 0.8824 0.8977 0.9027 0.8843 0.8852 0.8879 0.9018 0.9027
0.1296 0.8605 0.8602 0.8675 0.8701 0.8603 0.8604 0.8646 0.8695 0.8696

c = 0.2 0.1712 0.9644 0.9642 0.9771 0.9798 0.9697 0.9708 0.9692 0.9792 0.9802
T = 3 0.1735 0.9650 0.9648 0.9779 0.9807 0.9704 0.9715 0.9699 0.9800 0.9811

0.1752 0.9655 0.9653 0.9785 0.9813 0.9709 0.9720 0.9704 0.9806 0.9817
0.1225 0.9510 0.9508 0.9601 0.9620 0.9548 0.9556 0.9544 0.9615 0.9623
0.1297 0.9529 0.9528 0.9626 0.9646 0.9570 0.9579 0.9566 0.9642 0.9650
0.1167 0.9494 0.9492 0.9580 0.9599 0.9530 0.9538 0.9526 0.9595 0.9602
0.1706 0.9642 0.9640 0.9769 0.9796 0.9695 0.9706 0.9690 0.9790 0.9800
0.1701 0.9641 0.9639 0.9767 0.9794 0.9694 0.9704 0.9688 0.9788 0.9798
0.1919 0.9701 0.9699 0.9843 0.9874 0.9761 0.9772 0.9754 0.9867 0.9879
0.1287 0.9527 0.9525 0.9622 0.9643 0.9567 0.9576 0.9563 0.9638 0.9646

c = 0.2 0.1712 0.8742 0.8739 0.8863 0.8904 0.8751 0.8762 0.8793 0.8896 0.8902
T = 7 0.1735 0.8750 0.8747 0.8875 0.8916 0.8760 0.8772 0.8802 0.8908 0.8914

0.1752 0.8756 0.8753 0.8883 0.8925 0.8767 0.8778 0.8808 0.8917 0.8923
0.1224 0.8584 0.8581 0.8646 0.8669 0.8581 0.8584 0.8623 0.8664 0.8664
0.1296 0.8605 0.8602 0.8676 0.8701 0.8603 0.8607 0.8646 0.8695 0.8696
0.1166 0.8568 0.8565 0.8624 0.8644 0.8564 0.8566 0.8605 0.8639 0.8639
0.1707 0.8740 0.8737 0.8861 0.8901 0.8749 0.8760 0.8791 0.8894 0.8899
0.1701 0.8738 0.8735 0.8858 0.8899 0.8747 0.8758 0.8789 0.8891 0.8896
0.1917 0.8817 0.8814 0.8964 0.9012 0.8833 0.8847 0.8872 0.9004 0.9012
0.1286 0.8602 0.8599 0.8671 0.8697 0.8600 0.8604 0.8643 0.8691 0.8692

c = 0.3 0.1711 0.9644 0.9642 0.9771 0.9798 0.9697 0.9709 0.9691 0.9792 0.9802
T = 3 0.1735 0.9650 0.9648 0.9779 0.9806 0.9704 0.9716 0.9699 0.9800 0.9811

0.1754 0.9655 0.9653 0.9786 0.9814 0.9710 0.9722 0.9705 0.9807 0.9818
0.1224 0.9509 0.9508 0.9600 0.9620 0.9548 0.9557 0.9544 0.9615 0.9623
0.1296 0.9529 0.9528 0.9626 0.9646 0.9570 0.9579 0.9566 0.9641 0.9649
0.1167 0.9494 0.9492 0.9580 0.9599 0.9530 0.9539 0.9526 0.9594 0.9602
0.1705 0.9642 0.9640 0.9769 0.9796 0.9695 0.9707 0.9690 0.9789 0.9800
0.1698 0.9640 0.9638 0.9766 0.9793 0.9693 0.9705 0.9688 0.9787 0.9797
0.1912 0.9699 0.9697 0.9841 0.9872 0.9759 0.9772 0.9753 0.9864 0.9876
0.1286 0.9527 0.9525 0.9622 0.9643 0.9567 0.9576 0.9562 0.9638 0.9646

c = 0.3 0.1712 0.8742 0.8739 0.8863 0.8904 0.8751 0.8765 0.8793 0.8896 0.8902
T = 7 0.1735 0.8750 0.8747 0.8874 0.8916 0.8760 0.8774 0.8802 0.8908 0.8914

0.1752 0.8756 0.8753 0.8883 0.8925 0.8767 0.8781 0.8808 0.8917 0.8923
0.1224 0.8584 0.8581 0.8646 0.8669 0.8581 0.8585 0.8623 0.8663 0.8664
0.1296 0.8605 0.8602 0.8675 0.8701 0.8603 0.8609 0.8646 0.8695 0.8696
0.1166 0.8568 0.8565 0.8623 0.8644 0.8564 0.8567 0.8605 0.8639 0.8639
0.1706 0.8740 0.8737 0.8861 0.8901 0.8749 0.8762 0.8791 0.8893 0.8899
0.1699 0.8738 0.8734 0.8857 0.8898 0.8746 0.8760 0.8788 0.8890 0.8895
0.1913 0.8816 0.8812 0.8962 0.9010 0.8831 0.8848 0.8870 0.9002 0.9010
0.1286 0.8602 0.8599 0.8671 0.8696 0.8600 0.8605 0.8643 0.8690 0.8691

Table 4.45. Monte Carlo no-surrender prices for reverse HWM PTPs using Eurostoxx 50 parameters. In
percentage, the maximum standard error here is found to be about 0.02% of the price.
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α NIG VG NIG
CIR

VG
CIR

NIG
Γ-OU

VG
Γ-OU

BS

c = 0.1 0.1716 −0.0009 −0.0000 −0.0019 −0.0002 −0.0077 −0.0165 0.0003
T = 3 0.1738 −0.0009 −0.0000 −0.0018 −0.0002 −0.0077 −0.0165 0.0003

0.1755 −0.0009 −0.0000 −0.0018 −0.0002 −0.0077 −0.0165 0.0003
0.1229 −0.0008 −0.0001 −0.0019 −0.0001 −0.0078 −0.0164 0.0002
0.1302 −0.0008 −0.0001 −0.0019 −0.0001 −0.0078 −0.0164 0.0002
0.1167 −0.0008 −0.0001 −0.0019 −0.0001 −0.0078 −0.0164 0.0002
0.1710 −0.0009 −0.0000 −0.0019 −0.0002 −0.0077 −0.0165 0.0003
0.1720 −0.0009 −0.0000 −0.0019 −0.0002 −0.0077 −0.0165 0.0003
0.1951 −0.0009 −0.0000 −0.0018 −0.0002 −0.0077 −0.0165 0.0003
0.1297 −0.0008 −0.0001 −0.0019 −0.0001 −0.0078 −0.0164 0.0002

c = 0.1 0.1715 −0.0017 −0.0001 −0.0051 −0.0012 −0.0152 −0.0315 0.0003
T = 7 0.1738 −0.0017 −0.0001 −0.0051 −0.0012 −0.0152 −0.0315 0.0003

0.1754 −0.0017 −0.0001 −0.0051 −0.0012 −0.0152 −0.0316 0.0003
0.1228 −0.0017 −0.0002 −0.0050 −0.0010 −0.0153 −0.0314 0.0001
0.1301 −0.0017 −0.0002 −0.0050 −0.0010 −0.0153 −0.0314 0.0002
0.1168 −0.0017 −0.0002 −0.0050 −0.0010 −0.0153 −0.0314 0.0001
0.1708 −0.0017 −0.0001 −0.0051 −0.0012 −0.0152 −0.0315 0.0003
0.1717 −0.0017 −0.0001 −0.0051 −0.0012 −0.0152 −0.0315 0.0003
0.1945 −0.0018 −0.0001 −0.0051 −0.0012 −0.0151 −0.0317 0.0003
0.1296 −0.0017 −0.0002 −0.0050 −0.0010 −0.0153 −0.0314 0.0002

c = 0.2 0.1712 −0.0009 −0.0000 −0.0019 −0.0002 −0.0077 −0.0165 0.0003
T = 3 0.1735 −0.0009 −0.0000 −0.0019 −0.0002 −0.0077 −0.0165 0.0003

0.1752 −0.0009 −0.0000 −0.0019 −0.0002 −0.0077 −0.0165 0.0003
0.1225 −0.0008 −0.0001 −0.0019 −0.0001 −0.0078 −0.0164 0.0002
0.1297 −0.0008 −0.0001 −0.0019 −0.0001 −0.0078 −0.0164 0.0002
0.1167 −0.0008 −0.0001 −0.0019 −0.0001 −0.0078 −0.0164 0.0002
0.1706 −0.0009 −0.0000 −0.0019 −0.0002 −0.0077 −0.0165 0.0003
0.1701 −0.0009 −0.0000 −0.0019 −0.0002 −0.0077 −0.0165 0.0003
0.1919 −0.0009 −0.0000 −0.0019 −0.0002 −0.0077 −0.0165 0.0003
0.1287 −0.0008 −0.0001 −0.0019 −0.0001 −0.0078 −0.0164 0.0002

c = 0.2 0.1712 −0.0017 −0.0001 −0.0051 −0.0012 −0.0152 −0.0317 0.0003
T = 7 0.1735 −0.0017 −0.0001 −0.0051 −0.0012 −0.0152 −0.0317 0.0003

0.1752 −0.0017 −0.0001 −0.0051 −0.0012 −0.0152 −0.0317 0.0003
0.1224 −0.0017 −0.0002 −0.0050 −0.0010 −0.0153 −0.0315 0.0002
0.1296 −0.0017 −0.0002 −0.0050 −0.0010 −0.0153 −0.0316 0.0002
0.1166 −0.0017 −0.0002 −0.0050 −0.0010 −0.0153 −0.0315 0.0001
0.1707 −0.0017 −0.0001 −0.0051 −0.0012 −0.0152 −0.0317 0.0003
0.1701 −0.0017 −0.0001 −0.0051 −0.0012 −0.0152 −0.0317 0.0003
0.1917 −0.0018 −0.0001 −0.0051 −0.0012 −0.0151 −0.0318 0.0003
0.1286 −0.0017 −0.0002 −0.0050 −0.0010 −0.0153 −0.0315 0.0002

c = 0.3 0.1711 −0.0009 −0.0000 −0.0019 −0.0002 −0.0077 −0.0165 0.0003
T = 3 0.1735 −0.0009 −0.0000 −0.0019 −0.0002 −0.0077 −0.0165 0.0003

0.1754 −0.0009 −0.0000 −0.0019 −0.0002 −0.0077 −0.0165 0.0003
0.1224 −0.0008 −0.0001 −0.0019 −0.0001 −0.0078 −0.0164 0.0002
0.1296 −0.0008 −0.0001 −0.0019 −0.0001 −0.0078 −0.0165 0.0002
0.1167 −0.0008 −0.0001 −0.0019 −0.0001 −0.0078 −0.0164 0.0002
0.1705 −0.0009 −0.0000 −0.0019 −0.0002 −0.0077 −0.0165 0.0003
0.1698 −0.0009 −0.0000 −0.0019 −0.0002 −0.0077 −0.0165 0.0003
0.1912 −0.0009 −0.0000 −0.0019 −0.0002 −0.0077 −0.0165 0.0003
0.1286 −0.0008 −0.0001 −0.0019 −0.0001 −0.0078 −0.0164 0.0002

c = 0.3 0.1712 −0.0017 −0.0001 −0.0051 −0.0012 −0.0152 −0.0319 0.0003
T = 7 0.1735 −0.0017 −0.0001 −0.0051 −0.0012 −0.0152 −0.0319 0.0003

0.1752 −0.0017 −0.0001 −0.0051 −0.0012 −0.0152 −0.0319 0.0003
0.1224 −0.0017 −0.0002 −0.0050 −0.0010 −0.0153 −0.0317 0.0002
0.1296 −0.0017 −0.0002 −0.0050 −0.0010 −0.0153 −0.0317 0.0002
0.1166 −0.0017 −0.0002 −0.0050 −0.0010 −0.0154 −0.0316 0.0001
0.1706 −0.0017 −0.0001 −0.0051 −0.0012 −0.0152 −0.0319 0.0003
0.1699 −0.0017 −0.0001 −0.0051 −0.0012 −0.0152 −0.0319 0.0003
0.1913 −0.0018 −0.0001 −0.0051 −0.0012 −0.0151 −0.0320 0.0003
0.1286 −0.0017 −0.0002 −0.0050 −0.0010 −0.0153 −0.0317 0.0002

Table 4.46. Sequential quadrature prices minus Monte Carlo prices for the EIAs mentioned in table 4.45.
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H NIG VG NIG
CIR

VG
CIR

NIG
Γ-OU

VG
Γ-OU BS SV SVJ order

Down-and-in barrier options (DIB)
0.50 5.59 5.89 7.18 15.05 1.92 1.09 2.93 38.49 59.40 ×10−4

0.55 13.61 16.10 21.92 34.56 5.55 3.79 10.52 79.23 99.83 ×10−4

0.60 3.24 3.59 5.37 7.07 1.55 1.28 3.17 14.42 15.87 ×10−3

0.65 6.75 7.56 11.59 13.29 4.03 3.74 8.33 24.70 25.18 ×10−3

0.70 13.04 14.20 22.42 22.51 9.64 9.83 17.60 39.72 38.52 ×10−3

0.75 2.33 2.53 3.95 3.71 2.07 2.19 3.42 6.06 5.68 ×10−2

0.80 3.93 4.17 6.53 5.83 4.09 4.40 5.93 8.92 8.23 ×10−2

0.85 6.40 6.53 10.11 8.83 7.39 7.66 9.44 12.55 11.84 ×10−2

0.90 1.02 1.01 1.51 1.32 1.20 1.23 1.41 1.71 1.67 ×10−1

0.95 1.63 1.57 2.17 1.95 1.87 1.92 2.01 2.30 2.34 ×10−1

Down-and-out barrier options (DOB)
0.50 2.96 2.93 3.19 3.13 3.14 3.19 2.78 3.08 3.32 ×10−1

0.55 2.95 2.92 3.17 3.11 3.14 3.18 2.77 3.04 3.28 ×10−1

0.60 2.93 2.90 3.14 3.07 3.13 3.17 2.75 2.97 3.22 ×10−1

0.65 2.90 2.86 3.08 3.01 3.10 3.15 2.70 2.87 3.13 ×10−1

0.70 2.83 2.79 2.97 2.92 3.05 3.09 2.60 2.72 2.99 ×10−1

0.75 2.73 2.68 2.80 2.77 2.94 2.97 2.44 2.51 2.81 ×10−1

0.80 2.57 2.52 2.54 2.56 2.73 2.75 2.19 2.23 2.55 ×10−1

0.85 2.32 2.28 2.19 2.26 2.40 2.42 1.84 1.86 2.19 ×10−1

0.90 1.94 1.92 1.69 1.83 1.94 1.95 1.37 1.40 1.71 ×10−1

0.95 13.33 13.61 10.22 11.87 12.72 12.65 7.71 8.17 10.40 ×10−2

Up-and-in barrier options (UIB)
1.05 2.96 2.93 3.20 3.14 3.14 3.19 2.78 3.12 3.38 ×10−1

1.10 2.96 2.93 3.20 3.14 3.14 3.18 2.78 3.12 3.38 ×10−1

1.15 2.96 2.93 3.19 3.14 3.14 3.18 2.78 3.11 3.37 ×10−1

1.20 2.95 2.92 3.18 3.13 3.13 3.17 2.77 3.11 3.37 ×10−1

1.25 2.93 2.90 3.17 3.12 3.11 3.15 2.75 3.09 3.36 ×10−1

1.30 2.91 2.88 3.15 3.10 3.08 3.12 2.73 3.07 3.35 ×10−1

1.35 2.87 2.84 3.12 3.07 3.05 3.09 2.70 3.05 3.33 ×10−1

1.40 2.83 2.80 3.08 3.04 3.00 3.04 2.66 3.01 3.30 ×10−1

1.45 2.78 2.75 3.03 3.00 2.94 2.98 2.62 2.97 3.27 ×10−1

1.50 2.72 2.69 2.98 2.95 2.88 2.91 2.56 2.92 3.22 ×10−1

Up-and-out barrier options (UOB)
1.05 18.55 18.80 13.91 13.75 22.42 25.73 10.13 11.22 5.26 ×10−6

1.10 17.21 17.53 14.60 12.25 19.63 20.65 12.12 13.76 7.04 ×10−5

1.15 6.56 6.87 5.42 4.81 7.18 7.59 4.91 5.14 2.83 ×10−4

1.20 16.50 16.71 13.94 12.06 17.20 18.61 13.23 13.07 7.57 ×10−4

1.25 3.33 3.36 2.79 2.42 3.51 3.69 2.78 2.62 1.62 ×10−3

1.30 5.82 5.79 4.98 4.33 6.11 6.39 5.00 4.60 2.97 ×10−3

1.35 9.05 9.01 7.87 6.86 9.77 10.03 7.97 7.35 4.99 ×10−3

1.40 13.34 13.16 11.70 10.33 14.39 14.83 11.73 10.82 7.62 ×10−3

1.45 1.85 1.83 1.64 1.45 2.00 2.06 1.65 1.51 1.12 ×10−2

1.50 2.46 2.43 2.20 1.95 2.65 2.74 2.19 2.01 1.55 ×10−2

Table 4.47. Monte Carlo prices of several barrier options using S&P 500 Q parameters. The
initial stock price is normalised to S0 = 1. The price of the DIB option with H = 0.5 under
the NIG/CIR model, e.g., is 7.18×10−4. Here the prices of DIB options with 0.5 ≤ H ≤ 0.7
and UOB options with 1.05 ≤ H ≤ 1.25 are so cheap that the standard errors of these prices
range from 1% to 10% of the simulated prices. For all other options, the standard errors
are less than 1% of the simulated prices.
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H NIG VG NIG
CIR

VG
CIR

NIG
Γ-OU

VG
Γ-OU BS SV SVJ

Down-and-in barrier options (DIB)
0.50 5.11 5.39 6.56 13.76 1.76 1.00 2.68 35.18 54.29
0.55 3.59 4.24 5.78 9.11 1.46 1.00 2.77 20.88 26.31
0.60 2.53 2.80 4.20 5.53 1.21 1.00 2.48 11.27 12.41
0.65 1.81 2.02 3.10 3.56 1.08 1.00 2.23 6.61 6.74
0.70 1.35 1.47 2.33 2.34 1.00 1.02 1.83 4.12 4.00
0.75 1.13 1.22 1.91 1.80 1.00 1.06 1.66 2.94 2.75
0.80 1.00 1.06 1.66 1.48 1.04 1.12 1.51 2.27 2.09
0.85 1.00 1.02 1.58 1.38 1.15 1.20 1.48 1.96 1.85
0.90 1.01 1.00 1.49 1.30 1.19 1.22 1.40 1.70 1.65
0.95 1.04 1.00 1.38 1.24 1.19 1.22 1.28 1.46 1.49

Down-and-out barrier options (DOB)
0.50 1.07 1.05 1.15 1.13 1.13 1.15 1.00 1.11 1.19
0.55 1.07 1.05 1.15 1.12 1.13 1.15 1.00 1.10 1.18
0.60 1.07 1.05 1.14 1.12 1.14 1.15 1.00 1.08 1.17
0.65 1.07 1.06 1.14 1.12 1.15 1.17 1.00 1.07 1.16
0.70 1.09 1.07 1.14 1.12 1.17 1.19 1.00 1.05 1.15
0.75 1.12 1.10 1.15 1.14 1.20 1.22 1.00 1.03 1.15
0.80 1.18 1.15 1.16 1.17 1.25 1.26 1.00 1.02 1.17
0.85 1.27 1.24 1.19 1.23 1.31 1.32 1.00 1.02 1.19
0.90 1.42 1.41 1.23 1.33 1.42 1.43 1.00 1.03 1.25
0.95 1.73 1.76 1.32 1.54 1.65 1.64 1.00 1.06 1.35

Up-and-in barrier options (UIB)
1.05 1.07 1.06 1.15 1.13 1.13 1.15 1.00 1.12 1.21
1.10 1.07 1.06 1.15 1.13 1.13 1.15 1.00 1.12 1.21
1.15 1.07 1.05 1.15 1.13 1.13 1.15 1.00 1.12 1.22
1.20 1.07 1.05 1.15 1.13 1.13 1.15 1.00 1.12 1.22
1.25 1.06 1.05 1.15 1.13 1.13 1.14 1.00 1.12 1.22
1.30 1.06 1.05 1.15 1.13 1.13 1.14 1.00 1.13 1.23
1.35 1.06 1.05 1.15 1.14 1.13 1.14 1.00 1.13 1.23
1.40 1.06 1.05 1.16 1.14 1.13 1.14 1.00 1.13 1.24
1.45 1.06 1.05 1.16 1.15 1.13 1.14 1.00 1.13 1.25
1.50 1.06 1.05 1.16 1.15 1.12 1.14 1.00 1.14 1.26

Up-and-out barrier options (UOB)
1.05 3.52 3.57 2.64 2.61 4.26 4.89 1.92 2.13 1.00
1.10 2.45 2.49 2.07 1.74 2.79 2.93 1.72 1.95 1.00
1.15 2.32 2.42 1.91 1.70 2.54 2.68 1.73 1.81 1.00
1.20 2.18 2.21 1.84 1.59 2.27 2.46 1.75 1.73 1.00
1.25 2.06 2.08 1.72 1.49 2.17 2.28 1.72 1.62 1.00
1.30 1.96 1.95 1.68 1.46 2.05 2.15 1.68 1.55 1.00
1.35 1.81 1.81 1.58 1.37 1.96 2.01 1.60 1.47 1.00
1.40 1.75 1.73 1.54 1.36 1.89 1.95 1.54 1.42 1.00
1.45 1.66 1.64 1.47 1.30 1.80 1.85 1.47 1.35 1.00
1.50 1.58 1.56 1.42 1.26 1.71 1.76 1.41 1.30 1.00

Table 4.48. Ratio of the simulation prices in table 4.47 from all models to the minimum
one.
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Part II

Implementation and application of

the sequential quadrature method
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Chapter 5

The sequential quadrature method

5.1 Three variants of the sequential quadrature method

Sequential quadrature refers to a numerical technique that combines the application of

numerical integration in a dynamic programming fashion with approximation of integrands.

The term was coined by Sullivan (2000a) and the method was proposed independently by

Hunt and Kennedy (2000, pp.332-335) to evaluate the prices of Bermudan swaptions under

the extended Vasicek model and by Sullivan (2000a,b) and Tse et al. (2001) to solve

the pricing problems of American put options and barrier options under the Black-Scholes

model. It is also used by Ben-Ameur et al. (2002) to evaluate the prices of some American

style Asian options and by Fung and Li (2003, 2005) to determine the prices of dynamic fund

protections under the CEV model as well as prices of barrier options under the GARCH

model (we will report the results of Fung and Li 2003 in the next chapter). Fung and Li

(2002) recognise that the method can in fact be applied to price any Bermudan option when

the time-t price of the option is a deterministic function of the time-t value of a Markov

process. Lord et al. (2007) recognises not only this fact, but also the fact that the price of

a European option can be written as a convolution of two functions. Consequently he has

found a way to apply fast Fourier transform (FFT) to the quadrature process and greatly

reduces the computation time when a vast number of quadrature nodes are used.
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We now illustrate the idea of sequential quadrature. Consider the valuation problem of

a T -year term-end CAR where surrender is allowed and the log discounted total return X

is a Levy process such that the probability density function of X1 is known. For illustration

purpose, suppose the participation rate α is equal to 1 and there are no yield spread and

no local floor or cap. So the exercise value of the CAR at the end of year k is given by

P mid
{

1 + Fk,
Sk
S0
, 1 + Ck

}
and it can be written as a function of the form V exer

k (Zk), where

Zk = Xk = Zk−1 +Xk −Xk−1.

So Zk is a continuous function of Zk−1 and Xk − Xk−1. Let Vk(Zk) denotes the time-k

price of the ratchet and V cont
k (Zk) denotes the continuation value of the ratchet, i.e. the

value of the ratchet given that the policy holder continues to hold the ratchet at time k. By

mathematical induction, if we set VT (ZT ) = V exer
T (ZT ) and V cont

T (ZT ) = 0, then we have

V cont
k−1 (Zk−1) = e−

∫ k
k−1 rsdsEQ [Vk(Zk)|Zk−1] ,

Vk−1 (Zk−1) = max
{
V cont
k−1 (Zk−1), V exer

k−1 (Zk−1)
}

for k = T, T − 1, . . . , 1. Substitute the second formula (with k − 1 replaced by k) into the

first, we get

V cont
k−1 (Zk−1) = e−

∫ k
k−1 rsds

∫ ∞
−∞

max
{
V cont
k (Zk−1 + x)) , V exer

k (Zk−1 + x)
}
f(x)dx, (5.1)

where Ik = R and f(x) is the probability density function of Xk − Xk−1. Obvious, the

initial price of the CAR, V cont
0 (1) can be written as a T -dimensional integral. In numerical

integration, we will truncate the integration domain, so that in practice the integration

domains in both of the above formulations are closed intervals. For example, in (5.1)

we may set the integration domain to Ik = [µQ − nσQ, µQ + nσQ] where µQ = EQ(X1),

σQ =
√

varQ(X1) and n is a positive integer. We can make the truncation error arbitrarily

small by increasing n. For normal distributions, setting n = 6 is usually enough; for other

distributions, we may need a larger n.
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Anyway, let us assume that Ik is a compact interval. Many valuation problems for

Bermudan options, including all EIA valuation problems in part I, can be formulated in a

way similar to (5.1):

V cont
k−1 (Zk−1) = Uk−1(Zk−1) +

ρk

mk∑
i=1

∫
I

(i)
k (Zk−1)

max
{
V cont
k (Zk(Zk−1, x)) , V exer

k (Zk(Zk−1, x))
}
fk(x)dx,

(5.2)

where Uk−1(Zk−1) is a computable function, ρk is the discount factor for the k-th year,

fk(x) is a certain probability density function, Zk(Zk−1, x) is a continuous function in Zk−1

and x, and each I
(i)
k (Zk−1) is a compact subinterval of Ik (the location of this subinterval

depends on Zk−1 and for each Zk−1 the number of these subintervals, mk, depends on k).

For example, when both the interest rate and dividend yield are zero, the time-(k−1) price

of an annually monitored down-and-out option is given by

V cont
k−1 (Zk−1) = ρk

∫
Ik

max
{
V cont
k (Zk−1 + x), (Zk−1 + x−Hk)+

}
fk(x)dx

= ρk

∫
Ik∩[Hk−Zk−1,∞)

max
{
V cont
k (Zk−1 + x), (Zk−1 + x−Hk)

}
fk(x)dx

where Zk = Xk and Hk is some barrier level. In this case, we can put Uk−1 = 0, mk = 1 and

I
(1)
k (z) = Ik ∩ [Hk − z,∞). In general, Ik may be broken into more than one subdomains

and the purpose of doing so is to ensure that the integrand is continuous and piecewise

differentiable function over each subdomain even when we are pricing some options with

barrier or digital features. This will become important when we prove the convergence of

sequential quadrature method. In practice, for many exercise functions V exer
k , when each

density function fk(x) is differentiable (which is usually the case), it can be shown by

mathematical induction that V cont
k is also continuously differentiable function for each k

and the integrands in (5.2) are continuous and piecewise differentiable on their respective

subdomains.
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This formulation (5.2) can be easily extended to allow the uses of the extended Black-

Scholes model or CTRS models , but for convenience of presentation, we only consider Levy

models here. Also, without loss of generality, let us assume that Uk−1 = 0 and mk = 1 for

all k. In principle, we can compute V cont
T−1 (·), V cont

T−2 (·), . . . down to V cont
0 (·) recursively by

numerical quadrature. So let us assume that we have computed in a previous recursion step

the values of V cont
k (y) for a certain set of nodes y ∈ Nk. In the current recursion step we

want to evaluate V cont
k−1 (z) for all z in some set Nk−1. So we apply Simpson’s rule on (5.2):

V cont
k−1 (z) ≈ ρk

N∑
j=1

wj max
{
V cont
k (Zk(z, xj)) , V exer

k (Zk(z, xj))
}
fk(xj), (5.3)

where {x1, x2, . . . , xN} and {w1, w2, . . . , wN} are respectively the quadrature nodes and

weights when the Simpson’s rule is applied to Ik(z). Yet there is a caveat. In (5.3), we need

to know the value of Vk(z) at each z = Zk(y, xj). However, in the previous recursion step,

we have only computed Vk(z) for all z ∈ Nk. There are three approaches to resolve this

problem.

5.1.1 The pure interpolation approach

The first one, developed by Hunt and Kennedy (2000), makes use of the fact that in many

applications, the function Zk takes the form of Zk(z, x) = z + x as in (5.1). So we can

reformulate (5.2) as

V cont
k−1 (z) = ρk

∫
Ik(z)

Vk(z + x)fk(x)dx.

Now the idea of Hunt and Kennedy (2000) is to completely abandon numerical quadrature.

Instead, they use the set of values Vk(Nk) computed in the preceding recursion step to

interpolate Vk as a polynomial. When fk is a normal density function, there is an efficient

algorithm for computing the exact values of integrals of the form
∫ b
a x

nfk(x)dx. Therefore

the numerical integration of polynomials w.r.t. the normal density is not only fast, but also

immune to quadrature error. However, since Vk is usually not smooth, one usually has to

determine all discontinuities or non-differentiable points of Vk and break Ik into a number of
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subintervals on which Vk is smooth before employing this approach. Also, for other density

functions than the normal density function, this approach may not apply.

5.1.2 The pure quadrature approach

The second approach, developed by Tse et al. (2001), reformulates (5.2) as

V cont
k−1 (Zk−1) = ρk

∫
Ik

max
{
V cont
k (y), V exer

k (y)
}
fk(y − Zk−1)dy

(where the original integration domain R may be truncated into a different Ik). Now for

each k, the set of nodes Nk at which V cont
k is evaluated is simply taken to be the set of

quadrature nodes for the interval Ik. So, in each recursion step, the values of V cont
k needed

in the quadrature process have already been calculated in the preceding step, and values of

fk(y−Zk−1) are computed on the fly. Since this is a pure quadrature approach, when Vk is

piecewise continuous for all k, most popular quadrature rules will guarantee the convergence

of the computed option price to the true price. Furthermore, this approach has a wider field

of applications than the first one has because it is applicable when fk is not normal or when

Zk(z, x) is of other form than z + x (but it needs Zk(z, x) to be an invertible function of x,

given z). However, its efficiency relies heavily on the efficiency in computing fk. When no

closed-form formula is available for fk, performance of this approach may be poor.

Another pure quadrature approach is advocated by Lord et al. (2007), who employ FFT

to do numerical integration. At present, their method is applicable only under Levy models,

but it seems to be extensible to work under stochastic volatility models as well.

5.1.3 The mixed approach

The third approach, proposed by Sullivan (2000a,b), stands in the middle ground. Put it

simply, in (5.3) the values of Vk(Zk(y, xj)) are interpolated from the outputs Vk(Nk) of the

preceding recursion step. Like the pure interpolation approach, the aim of each recursion

step in the mixed approach is to generate the values of Vk−1 on a set of knots Nk−1, where

these outputs will be used for function interpolation in next recursion step. Although this
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approach involves both interpolation errors and quadrature errors, it is the most flexible

one among the three approaches that we introduce in this chapter.

In (5.2), there are many ways to do numerical quadrature. In this thesis, we will

consider only composite Newton-Cotes formulae (such as the composite trapezoidal rule and

the composite Simpson’s rule) and Gauss-Legendre quadrature. Rabinowitz (1987, lemma

1) shows that these quadrature rules are convergent for all Riemann-integrable functions.

Abramowitz and Stegun (1972) has tabulated the nodes and weights for n-point Gauss-

Legendre quadrature over the interval [−1, 1] for some values of n. Computer packages for

generating the Gauss-Legendre nodes and weights for a general n are also freely available

on the internet. For small to moderate n (say, n ≤ 512), the quadrature nodes and weights

can be computed instantly.

Given Vk(Nk), there are also many ways to interpolate the curve Vk(y). Two popu-

lar choices include cubic spline interpolation and Lagrange interpolation. However, in this

chapter, we will only consider piecewise Lagrange interpolation and Chebyshev interpo-

lation. The former refers to the partition of the domain of interpolation into subinter-

vals and the application of Lagrange interpolation on every one of them. For instance,

in (5.2), if Ik = [ak, bk] and piecewise cubic interpolation is used, then for each k, we set

Nk = {yi : yi = ak+i(bk−ak)/(3n), i = 0, 1, . . . , 3n} for some positive integer n. Whenever

y lies inside some [y3i, y3i+3], we approximate Vk(y) by the cubic polynomial that passes

through (y3i, Vk(y3i)), (y3i+1, Vk(y3i+1)), (y3i+2, Vk(y3i+2)) and (y3i+3, Vk(y3i+3)).

Sullivan (2000a,b) advocates the use of Chebyshev polynomials in sequential quadrature

because empirically these polynomials are able to minimize the maximum approximation

errors. In general, given a function h(y) defined on an interval [−1, 1] and a control param-

eter p ∈ {2, 3, . . . , n}, we can approximate h(y) by an order-n Chebyshev polynomial of the

form

P (y) =
n−1∑
k=0

ck cos(k cos−1(y))

132



such that h(y) = P (y) on the set of interpolation nodes

Y =
{

cos
[
(k − 1

2
)
π

p

]
: k = 1, . . . , n

}
.

A computer program for determining the coefficients ck (that are dependent on h(y)) is

given by Press et al. (1992). Approximations of functions over other compact intervals can

be achieved by a change of variables.

When h is a continuous function defined on a compact interval I, the (3n + 1)-point

piecewise Lagrange polynomial that interpolates h will converge uniformly to h as n→∞.

If h is also Dini-Lipschitz on I, then its order-n Chebyshev approximating polynomial will

converge uniformly to h as p→∞ (see, e.g. Mason and Handscomb 2003, corollary 6.14A).

Unlike cubic spline approximation, both Chebyshev and piecewise Lagrange interpolation

are bounded linear operators with respect to the maximum norm.

5.2 Convergence of the mixed approach

In this section, we prove the uniform convergence property of the mixed approach. First,

without loss of generality, let Uk−1 = 0 in (5.2) be the zero function. Also, for ease of

presentation, assume m = 1 in (5.2), so that we can reformulate the equation into a more

abstract form:

C(z) =
∫
Iz
V (z, x)f(x)dx, (z ∈ Ĩ), (5.4)

where f(x) is a differentiable probability density function defined on R, Iz, Ĩ are compact

intervals such that for each z ∈ Ĩ, Iz ⊆ I and the end-points of Iz are continuous functions

in z. The function V (z, x) is assumed to be continuous and piecewise differentiable in x as

well as continuous in z for all z ∈ Ĩ.

Let us introduce some notations. We denote a quadrature rule with n nodes by Qn.

When we say that we evaluate
∫
I h(x)dx by Qn, we mean the integral is approximated by
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a finite sum of the form

Qn(h; I) = µ(I)
n∑
i=1

win h(AI(xin))

where −1 ≤ x1n < x2n < . . . < xnn ≤ 1 and w1n, . . . , wnn ∈ R are called the nodes and

weights of Qn respectively, µ(I) is half of the length of I and AI : [−1, 1]→ I is the affine

function that takes −1 to a and 1 to b. For instance, the composite trapezoidal rule with

m partitions is obtained when n = m + 1, w1n = wnn = 1
m , win = 2

m for i = 2, 3, . . . ,m

and xin = −1 + 2
m for each i. We will also denote the order-n Chebyshev approximation

or the (qn + 1)-point piecewise Lagrange interpolation using degree-q polynomials by Jn.

So the approximate function for h(x) over I is written as Jn(h; I)(x) and the application of

sequential quadrature on the recursion step (5.2) can be expressed in the following form:

Cn(z) ≈ U(z) +Qn (Jn(Vn(z, ·); Iz)f ; Iz) ,

where Cn(z) corresponds to the value of V cont
k (z) obtained by sequential quadrature and

Vn(z, x) here represents the quadrature value of Vk(Zk(z, x)) in (5.2) as if it has been

computed in the preceding recursion step (it may not be computed if Zk(z, x) /∈ Nk). By

mathematical induction, we can prove the convergence of the option price obtained by

sequential quadrature to the true price if we can show that lim
n→∞

‖Vn − V ‖∞ = 0 implies

lim
n→∞

‖Cn − C‖∞ = 0, where the first maximum norm is evaluated over I and the second

one is evaluated over Ĩ. Here is our result:

Proposition 5.1. Consider equation (5.4). Suppose {Vn(z, x) : n = 1, 2, . . .} is a family

of functions defined on I = {(z, x) : z ∈ Ĩ , x ∈ Iz} such that Vn(z, x) is continuous and

piecewise differentiable in x, continuous in z and Vn converges uniformly to V on I. Let

Qn denotes a composite Newton-Cotes quadrature rule with n partitions or a n-point Gauss-

Legendre quadrature rule, and Jn denotes an order-n Chebyshev interpolation operator or

a (qn+ 1)-point piecewise degree-q Lagrange interpolation operator. Then Cn(z) = U(z) +

Qn (Jn(Vn(z, ·); Iz)f ; Iz) converges uniformly to C on Ĩ.
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Proof. We have

C(z) ≡
∫
Iz
V (z, ·)f(x)dx ≈ An(z) = Qn(V (z, ·)f ; Iz)

≈ Bn(z) = Qn(Vn(z, ·)f ; Iz)

≈ Cn(z) = Qn (Jn(Vn(z, ·); Iz)f ; Iz) .

Since f , V , and Vn and the end-points of Iz are continuous functions and Qn, Jn are

bounded linear operators, the functions An, Bn, Cn and C are also continuous. There-

fore, it suffices to prove pointwise convergence of An to C, Bn to An and Cn to Bn be-

cause Ĩ is compact. The convergence of An(z) to C(z) is a result of the aforementioned

lemma of Rabinowitz (1987). Bn converges to An because Vn converges to V uniformly and

‖Qn (Vn(z, ·)f − V (z, ·)f ; Iz)‖∞ ≤ ‖Vn − V ‖∞ × ‖f‖∞ ×Qn(1; Iz). So it remains to show

that Cn converges to Bn. However, since Qn is a bounded linear operator and f is bounded

on I, it suffices to show that Jn(Vn(z, ·); Iz) converges uniformly to Vn(z, ·) on each Iz. Note

that

‖Jn(Vn(z, ·))− Vn(z, ·)‖∞

≤ ‖Jn(Vn(z, ·)− V (z, ·))‖∞ + ‖Jn(V (z, ·))− V (z, ·)‖∞ + ‖V (z, ·)− Vn(z, ·)‖∞ .

Since Jn is a bounded linear operator and Vn converges to V uniformly, the first and the third

summand on the right hand side converges to zero. As V (z, x) is continuous and piecewise

differentiable in x, it is Dini-Lipschitz continuous in x and hence Jn(V (z, ·)) converges

uniformly to V (z, ·) on Iz for each z. Therefore the second summand also converges to zero

as n→∞. �

Although the previous proof is not difficult, its last step relies on the uniform approxi-

mation property of piecewise Lagrange or Chebyshev approximation. So our proof does not

apply if we use some popular spline interpolation scheme such as cubic spline interpolation.

Also, we have only proved the convergence of sequential quadrature but we have said noth-

ing about the method’s rate of convergence or numerical stability. Owing to the interplay
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between quadrature and interpolation, it is hard to perform any analysis on these two top-

ics. However, I have not yet experienced any numerical instability issue in using sequential

quadrature. Nor have I encountered any difficulty by taking cubic spline interpolation as

the approximation scheme.
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Chapter 6

Example: pricing discrete dynamic

fund protections

6.1 Overview

Call and put options allow an investor to profit on upside or downside movements in the

prices of underlying assets, while limiting the losses when the prices move adversely. Yet

the protections these options offer are merely static. For example, if a put option is deeply

out of the money, the buyer of this option can hardly get more than the strike price when

the option expires.

Some path-dependent financial derivatives are designed to address the above issue. A

floating-strike put option, for example, guarantees that the investor can exercise the option

using the highest asset price realized throughout the option’s lifetime. For investment funds,

Gerber and Shiu (1998, 1999) and Gerber and Pafumi (2000) introduced a form of path-

dependent derivative called reset guarantee or dynamic fund protection. The basic idea is to

prevent a fund value from falling below a certain threshold level K over the fund’s lifetime.

Specifically, the basic fund unit is replaced by an upgraded fund unit, which begins with

the same value as the basic one. During the protection’s lifetime, whenever the value of

the upgraded fund unit ever drops to K, just enough money will be endowed to it so that
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its value does not fall any further. On the other hand, if its value is above K in some time

interval, it enjoys the same instantaneous rate of return as the original fund.

The relationship between the value of a basic fund unit, s(t), and the value of an up-

graded fund unit, S(t), can be formulated as follows:

S(t) =


s(t) max

{
1, max

0≤t′≤t
K(t′)

s(t′)

}
if s(t′) > 0 for all t′ ∈ [0, t],

0 otherwise.

Note that at inception S(0) = s(0) and we assume that both the basic fund and the upgraded

fund default is s(t) = 0.

When {s(t)} is modeled as a geometric Brownian motion, one can obtain explicit pricing

formulas for perpetual protections (Gerber and Shiu 1998, 1999) as well as finite time

protections (Gerber and Pafumi, 2000). The case where the basic fund price follows a

constant elasticity of variance (CEV) process was also examined recently (Imai and Boyle,

2001).

In practice, it is difficult to monitor the fund price movement continuously, and discrete

monitoring may be a more appropriate choice. Under discrete monitoring, instead of keeping

S(t) ≥ K all the time, the upgraded fund will only be endowed at discrete time epochs

0 < t1 < t2 < . . . < tm = T . Also, the protection thresholds K1,K2, . . . ,Km > 0 at

different time points may be independent. We can express the total asset value of the

upgraded fund at time ti as follows:

S(ti) =


s(ti) max

{
1, max

1≤j≤i
Kj

s(tj)

}
if s(t′) > 0 for all t′ ∈ [0, ti],

0 otherwise

(6.1)

=


max

{
s(ti)

s(ti−1)S(ti−1),Ki

}
if s(ti) > 0,

0 otherwise.

(6.2)

When the monitoring frequency is not high, the discrepancy between the prices of a

continuous protection and a discrete protection can be substantial, meaning that discrete

protections can be appealing to policy holders because they are cheaper. However, this
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also entails a difficulty in pricing discrete protections, because we cannot approximate their

prices directly by the prices of their continuous counterparts. Although Imai and Boyle

(2001) recently developed a fairly accurate continuity adjustment formula (in the spirit

of Broadie et al. 1999) to approximate the prices of discretely monitored dynamic fund

protections, this formula works only under the lognormal price process. For other price

processes, such as the constant elasticity of variance (CEV) process, they had to resort

to the Monte Carlo method, which is flexible but inefficient. In this chapter, we will use

sequential quadrature to solve the pricing problem.

The layout of rest of this chapter is as follows. In next section, we formulate the valuation

problem of a fund protection under the Black-Scholes model in form of (5.4). Then we will

derive an analogous functional equation for the CEV model section 6.3. Numerical results

obtained by our valuation method under the two price processes are compared to the results

of Imai and Boyle (2001) and to the quasi-Monte Carlo prices in section 6.4. Section 6.5

concludes.

6.2 Risk neutral valuation under the lognormal process

In this section, we assume that we are living in a Black-Scholes world, such that the risk-

neutral stochastic differential equation (SDE) for the price of a basic fund unit is given

by

d log s(t) = µdt+ σdW (t) (t ≥ 0) (6.3)

where r is the risk-free rate, δ is the continuous dividend yield of the investment fund, σ is

the fund price’s volatility, W (t) is a standard Wiener process and

µ = r − δ − 1
2
σ2.

Let ∆ti = ti− ti−1 and ϕi(z) be the probability density function of the normal distribution

N(µ∆ti, σ
√

∆ti) for i = 1, 2, . . . ,m. Denote by gi(S) the risk-neutral price of the dynamic

fund protection given that the asset value of the upgraded fund at time ti is S. By (6.2),
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we have

gm(S) = max(Km − S, 0); (6.4)

gi−1(S) = e−r∆ti
∫ +∞

−∞

{
I(Sez ≥ Ki) gi(Sez) +

I(Sez < Ki) [(Ki − Sez)︸ ︷︷ ︸
put

+ gi(Ki)︸ ︷︷ ︸
constant

]

}
ϕi(z)dz

= e−r∆ti
∫ ∞
κi

gi(Sez)ϕi(z)dz +[
Kie

−r∆tiΦi(d
(i)
2 )− Se−δ∆tiΦi(d

(i)
1 )
]

+ e−r∆tigi(Ki)Φi(d
(i)
2 ) (6.5)

where I(·) is the indicator function, κi = log(Ki/S), d
(i)
2 = (log(Ki/S) − µ∆ti)/(σ

√
∆ti)

and d
(i)
1 = d

(i)
2 − σ

√
∆ti.

6.3 Pricing dynamic fund protections under the CEV process

In this section, we shall briefly describe how to evaluate dynamic fund protections under

the CEV process. We assume that the underlying fund price satisfies the SDE

ds(t) = (r − δ)s(t)dt+ σs(t)α/2dW (t) (6.6)

in a risk-neutral world, where 0 ≤ α ≤ 2. When α = 2, the price process reduces to a

lognormal process.

Unlike under a lognormal process, the quantity s(ti)/s(ti−1) and in turn S(ti) in (6.2)

are dependent on s(ti−1) under a CEV process. Consequently, on each level of our backward

recursion, the approximation space is no longer one-dimensional but two-dimensional. Yet,

the basic idea remains unchanged and so we only derive the functional equation for recursion

here. First, let f(st′ , st; t′, t) denote the continuous part of the density st = s(t) > 0

conditional on st′ = s(t′) (t′ < t) in a risk-neutral world. (The probability of st = 0 is

nonzero when α < 2.) Cox (1975, 1996) showed that

f(st′ , st; t′, t) = (2− α)kν (xz1−2α)
ν
2 Iν(2

√
xz)e−x−z
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where

k =
2(r − δ)

σ2(2− α)[e(r−δ)(2−α)(t−t′) − 1]

x = ks2−α
t′ e(r−δ)(2−α)(t−t′)

z = ks2−α
t

ν =
1

2− α

and Iν(·) is the modified Bessel function of the first kind of order ν. Now, let us define

λ(ti) =


s(ti)
S(ti)

if s(ti) > 0

0 otherwise

Then 0 ≤ λ(ti) ≤ 1 and

S(ti) =


max

{
s(ti)

s(ti−1)S(ti−1),Ki

}
if s(ti) > 0

0 otherwise

=


max{ s(ti)

λ(ti−1) ,Ki} if λ(ti−1) > 0

0 otherwise

Hence the price of the dynamic fund protection gi−1(Si−1, λi−1), given that S(ti−1) = Si−1 >

0 and λ(ti−1) = λi−1 > 0, must satisfy:

er∆tigi−1(Si−1, λi−1)

=
∫ ∞
λi−1Ki

gi(
s

λi−1
, λi−1)f(λi−1Si−1, s; ti−1, ti)ds

+
∫ λi−1Ki

0

[
(Ki −

s
λi−1

) + gi(Ki,
s
Ki

)
]
f(λi−1Si−1, s; ti−1, ti)ds.

Having this functional equation, we can use the sequential quadrature method to evaluate

the dynamic fund protection. However, since we now have to approximate g in both the

S-space and the λ-space, the total computational complexity will become higher.
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6.4 Numerical experiments

In this section, we present results computed with the sequential quadrature method under

daily (364 per year)1, weekly (52 per year) and monthly (12 per year) monitoring, and

compare them with those prices based on continuous monitoring or those obtained by other

methods. Both the lognormal price process and the constant elasticity of variance (CEV)

process were investigated. For convenience of presentation, we assume there is no dividend

(hence δ = 0). Gauss-Legendre quadrature and Chebyshev approximation are used in the

sequential quadrature process. All numerical experiments were conducted with MATLAB

6.5 running on a Intel 1.9GHz processor with 512MB RAM.

Table 6.1 reports the Black-Scholes prices and CPU times obtained with different num-

bers (n) of quadrature/interpolation nodes. As the table shoes, the prices converge fairly

quickly. In most cases, convergent prices are obtained as soon as n = 24. The table 6.1

also shows that the sequential quadrature method is very efficient. With n = 40 and 2184

monitorings (daily over 5 years), the valuation process takes less than a minute to complete.

To confirm that our prices are accurate, we compare our prices with those obtained by

the Monte-Carlo (MC) method, the quasi-Monte Carlo (QMC) method and also Imai and

Boyle’s (2001) continuity adjustment formula. The MC prices are taken from Table 10 of

Imai and Boyle (2001), in which the equation (6.6) with α = 2 was discretised in 1092

steps, and 10922 sample values were averaged to obtain each price. Note that Imai and

Boyle did not discretise (6.3), so that in calculating the MC prices, a uniform treatment

could be given to both the lognormal process and the CEV process. However, in order to

obtain accurate QMC prices, we shall use (6.3) for discretization.

Our simulation trials were generated with a Sobol sequence. The implementation of

the sequence generator is based on the work of Joe and Kuo (2003), which extends the

popular implementation by Bratley and Fox (1988) to 1111 dimensions. The zero vector

1We will compare our computational results with those obtained by Imai and Boyle (2001), who took the
number of days in a year as 364(= 52× 7).
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was not included in the sequence. When we wanted to calculate a price using 2n samples,

the segment containing (2n + 1)-th point to the (2n+1)-th point in the Sobol sequence were

used.

The prices calculated with the four methods are listed in Table 6.2. Our prices clearly

matches the QMC prices, and are quite close to the MC prices. Judging from the conver-

gence patterns of the QMC prices, we are convinced that our prices are truly accurate.

For more elaborate comparisons, we compare all the MC prices listed in Table 10 of

Imai and Boyle (2001) with our prices. See Table 6.3 here. Although each of the MC prices

was calculated with over a million simulation trials, these MC prices are slightly inaccurate.

Also, under daily monitoring, the MC prices are consistently worse than the results given

by the continuity adjustment formula.

Table 6.3 also compares the prices of discrete protections with those of continuous pro-

tections. As expected, when the monitoring frequency increases, the price of a discrete

protection becomes closer to the price of a continuous protection. In general, mispricing

can be substantial when the price of a continuous protection is used as a surrogate price for

its discrete counterpart: when T = 5, K = 100 and the protection is monitored daily, the

price of the discrete protection differs from the price of the continuous protection by about

2.7%; when T = 1, K = 80 and the protection is monitored monthly, the difference is even

as large as 36.8%. Although the table contains only a few experimental results, we believe

the conclusion of the finding here is generally applicable.

Our final experiment investigates the pricing of discrete protections under the CEV

process. We compare the MC prices listed in Table 11 of Imai and Boyle (2001) with our

prices. See Table 6.4. We find that although the two set of prices agree fairly well, the MC

prices are consistently larger than our prices by about one standard error. This may be due

to the errors inherent in Euler discretisation.
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6.5 Concluding remarks

We have derived functional equations for pricing discretely monitored dynamic fund protec-

tions under the Black-Scholes model and the CEV model, and demonstrated how to solve

these equations efficiently using the sequential quadrature technique. Our numerical exper-

iments confirm that the prices of continuous protections are not good approximations for

those of discrete versions, especially when the number of monitorings is small. In general,

we suggest the reader to treat discretely monitored financial derivatives and their contin-

uous counterparts as two different classes of derivative securities. In fact, vast differences

between them lie not only in the prices, but also in the ease of pricing. For example, our

present pricing method for discrete dynamic fund protections allows the protection levels

to be independent. For continuous protections, however, we are not aware of any pricing

formula that allows deterministic but non-exponential protection levels, even under the

lognormal price process.

Most discretely monitored derivative securities can only be evaluated numerically. Al-

though it is possible to evaluate some of them accurately using various continuity adjustment

formulas, no one has yet discovered such formulas for dynamic fund protections, except un-

der the lognormal process. Therefore the pricing of discrete dynamic fund protections in

general must rely on the use of efficient numerical methods.

In this study, we have essentially adopted Sullivan’s (2000a, 2000b) variant of the sequen-

tial quadrature technique. Currently, sequential quadrature is not widely used in solving

computational finance problems. However, it seems that the prices of many discretely mon-

itored or time-discretised versions of financial derivatives can be easily formulated as the

solutions of sets of functional equations. Sequential quadrature may therefore be useful in

these cases.
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No. of pts. Daily Weekly Monthly
K (n) Price Time Price Time Price Time

T = 1

16 14.099 3.64 13.039 0.48 11.361 0.13
100 24 14.107 5.02 13.039 0.69 11.361 0.16

32 14.106 6.52 13.039 0.91 11.361 0.19
40 14.106 9.03 13.039 1.25 11.361 0.25
16 5.675 3.55 5.180 0.50 4.445 0.11

90 24 5.680 4.88 5.180 0.67 4.445 0.16
32 5.679 6.52 5.180 0.91 4.445 0.19
40 5.679 9.00 5.180 1.25 4.445 0.25
16 1.651 3.55 1.481 0.50 1.241 0.09

80 24 1.653 4.84 1.481 0.69 1.241 0.16
32 1.653 6.55 1.481 0.91 1.241 0.19
40 1.653 9.02 1.481 1.27 1.241 0.25

T = 3

16 23.084 11.36 21.942 1.59 20.009 0.38
100 24 23.126 15.38 21.943 2.20 20.009 0.47

32 23.128 20.39 21.943 2.91 20.009 0.66
40 23.128 28.13 21.943 3.95 20.009 0.89
16 12.975 11.33 12.286 1.61 11.143 0.36

90 24 13.005 15.41 12.287 2.20 11.143 0.50
32 13.005 20.45 12.287 2.92 11.143 0.66
40 13.005 28.06 12.287 3.99 11.143 0.88
16 6.377 11.34 6.005 1.63 5.397 0.36

80 24 6.394 15.41 6.005 2.17 5.397 0.48
32 6.394 20.55 6.005 2.91 5.397 0.66
40 6.394 28.06 6.005 3.95 5.397 0.88

T = 5

16 28.312 19.31 27.145 2.77 25.092 0.63
100 24 28.389 26.00 27.146 3.72 25.091 0.84

32 28.391 34.50 27.146 4.92 25.091 1.13
40 28.392 47.45 27.146 6.72 25.091 1.51
16 17.451 19.28 16.705 2.76 15.396 0.64

90 24 17.513 26.01 16.706 3.73 15.396 0.84
32 17.514 34.61 16.706 4.89 15.396 1.11
40 17.514 47.33 16.706 6.81 15.396 1.50
16 9.786 19.25 9.343 2.76 8.565 0.63

80 24 9.829 26.06 9.344 3.70 8.565 0.84
32 9.829 34.51 9.344 4.92 8.565 1.13
40 9.829 47.36 9.344 6.72 8.565 1.51

Table 6.1. Prices of discretely monitored dynamic fund protections under lognormal process. The prices were
computed using n-point Chebyshev approximation and n-point Gauss-Legendre quadrature. The parameters
for the basic contract are: F0 = 100, r = 0.04 and σ = 0.2. CPU times are measured in seconds.

Monthly, T = 1 Weekly, T = 5

K = 100 K = 90 K = 80 K = 80
n Price Time Price Time Price Time n Price Time

15 11.3490 25.70 4.4329 25.80 1.2499 25.63 17 9.3349 233.08
16 11.3735 51.23 4.4511 51.50 1.2469 51.23 18 9.3461 466.91
17 11.3609 102.28 4.4448 102.69 1.2409 102.41 19 9.3586 932.58
18 11.3619 204.66 4.4450 204.95 1.2427 204.78 20 9.3509 1859.67
19 11.3603 409.05 4.4431 410.45 1.2416 409.48 21 9.3461 3716.75
20 11.3611 816.70 4.4444 819.76 1.2410 818.78 22 9.3488 7430.36
21 11.3615 1631.17 4.4442 1640.47 1.2415 1637.06 23 9.3448 14856.80
22 11.3607 3259.38 4.4448 3283.01 1.2410 3276.02 24 9.3431 29752.00
23 11.3607 6521.41 4.4445 6565.06 1.2415 6549.38 25 9.3442 59770.75

(a) 11.3608 0.25 4.4446 0.25 1.2414 0.25 (a) 9.3441 6.72
(b) 11.375 4.461 1.254 (b) 9.340

Table 6.2. Prices of monthly monitored dynamic fund protections obtained by using quasi-Monte Carlo
method with 2n Sobol points. Also listed are (a) the prices obtained with sequential quadrature and (b)
the Monte-Carlo prices given by Imai and Boyle (2001) using 10922 samples. The parameters for the basic
contract are: F0 = 100, r = 0.04 and σ = 0.2. CPU times are measured in seconds.
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T = 1 T = 3 T = 5
K (a) (b) (c) (a) (b) (c) (a) (b) (c)

Monthly 11.361 11.375 11.096 20.009 20.060 19.890 25.091 25.097 25.021
100 Weekly 13.039 13.053 12.977 21.943 21.993 21.915 27.146 27.097 27.130

Daily 14.106 14.119 14.098 23.128 23.177 23.124 28.391 28.395 28.389
∞ 14.793 14.793 14.793 23.874 23.874 23.874 29.172 29.172 29.172

Monthly 4.445 4.461 4.197 11.143 11.194 10.999 15.396 15.395 15.294
90 Weekly 5.180 5.196 5.121 12.287 12.338 12.253 16.706 16.709 16.682

Daily 5.679 5.695 5.671 13.005 13.056 13.000 17.514 17.517 17.511
∞ 6.012 6.012 6.012 13.465 13.465 13.465 18.026 18.026 18.026

Monthly 1.241 1.254 1.119 5.397 5.357 5.295 8.565 8.559 8.487
80 Weekly 1.481 1.494 1.451 6.005 6.054 5.981 9.344 9.340 9.326

Daily 1.653 1.666 1.648 6.394 6.443 6.390 9.829 9.824 9.826
∞ 1.771 1.771 1.771 6.644 6.644 6.644 10.137 10.137 10.137

Table 6.3. Prices of discretely monitored dynamic fund protections under lognormal process. The prices
in (a) are computed using sequential quadrature with 40 Chebyshev nodes and 40 Gauss-Legendre nodes,
while the prices in (b) and (c) respectively refer to the Monte Carlo prices and the continuity adjustment
prices obtained by Imai & Boyle (2001). The parameters for the basic contract are: F0 = 100, r = 0.04 and
σ = 0.2.

α = 2 α = 1 α = 0
K (a) (b) Std. err. (a) (b) Std. err. (a) (b) Std. err.

Monthly 11.361 11.375 (0.015) 11.640 11.653 (0.014) 12.002 12.014 (0.013)
100 Weekly 13.039 13.053 (0.015) 13.439 13.452 (0.014) 13.958 13.971 (0.014)

Daily 14.106 14.119 (0.015) 14.593 14.603 (0.014) 15.192 15.232 (0.014)

Monthly 4.445 4.461 (0.016) 4.809 4.824 (0.016) 5.246 5.260 (0.015)
90 Weekly 5.180 5.196 (0.016) 5.631 5.647 (0.015) 6.188 6.203 (0.014)

Daily 5.679 5.695 (0.016) 6.190 6.208 (0.015) 6.824 6.848 (0.014)

Monthly 1.241 1.254 (0.018) 1.557 1.570 (0.018) 1.951 1.963 (0.017)
80 Weekly 1.481 1.494 (0.018) 1.863 1.876 (0.018) 2.350 2.361 (0.017)

Daily 1.653 1.666 (0.018) 2.068 2.094 (0.017) 2.627 2.647 (0.016)

Table 6.4. Prices of discretely monitored dynamic fund protections under the CEV process. The prices in
(a) are computed using sequential quadrature with 40 Chebyshev nodes and 40 Gauss-Legendre nodes, while
the prices in (b) are the Monte Carlo prices obtained by Imai & Boyle (2001). The standard errors are listed
in brackets. The parameters for the basic contract are: F0 = 100, r = 0.04, σ = 0.2 and T = 1.
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Appendix A

The BSHW model

The mathematical details for combining the extended Vasicek model with the Black-Scholes

model are not difficult, but owing to the fact that interest rates in equity price models are

usually considered deterministic in financial literature, the BSHW model and its derivation

are not contained in many textbooks. For convenience, we summarise the details of the

BSHW model below. These details are not our original work but written based on a concise

discussion of of the Hull-White model in Pelsser (2000) and the material on a more general

and sophisticated model in Musiela and Rutkowski (2005).

The CIR model and the Hull-White model

Despite EIA prices are evaluated under the pricing measure, it is helpful to begin our

discussion with the physical probability measure. Suppose that in the physical world the

force of interest r(t) at time t is governed by the SDE

dr(t) = (θr(t)− κrr(t)) dt+ Σr (r(t), t) dWr(t), (A.1)

where κr ≥ 0 is a constant, θr and Σr are some functions and Wr(t) is a standard Brownian

motion. In a model of this kind, the (interest rate) market is in general incomplete. Intu-

itively this is because the short rate is not a tradable asset and there is no way to hedge

away the interest rate risk. In fact, the market price of interest rate risk cannot be inferred

from a no-arbitrage argument. More specifically, let V (t, r(t)) denote the time-t price of a
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financial instrument whose time-t value is determined by t and r(t). Using Ito’s lemma, we

get

dV =
[
∂V

∂t
+

Σ2
r

2
∂2V

∂r2
+ (θ − κrr)

∂V

∂r

]
dt+ Σr

∂V

∂r
dWr. (A.2)

Now, consider a portfolio of two such financial instruments, Π = V1 − ∆V2. We want

to adjust the weight ∆ dynamically so that the portfolio is both instantaneously riskless

(dΠ = rΠdt) and self-financed (dΠ = dV1−∆dV2). It is not difficult to see that the equation

dV1 −∆dV2 = rΠdt implies that ∆ = ∂V1
∂r

/
∂V2
∂r and

∂V1
∂t + Σ2

r
2
∂2V1
∂r2 + (θr − κrr)∂V1

∂r − rV1

∂V1
∂r

=
∂V2
∂t + Σ2

r
2
∂2V2
∂r2 + (θr − κrr)∂V2

∂r − rV2

∂V2
∂r

(A.3)

Since the left hand side of the equation contains terms of V1 only and the right hand side

contains V2 only, the quotients on both sides must be a function that does not involve V1

and V2, e.g. a function of the form Λr(r, t). Consequently, the price V (t, r(t)) of a discount

bond must satisfy the partial differential equation (PDE)

∂V

∂t
+

Σ2
r

2
∂2V

∂r2
+ (θr − κrr − Λr)

∂V

∂r
− rV = 0. (A.4)

However, the above no-arbitrage argument does not tell us the exact functional form of

Λr, and certainly different specifications of Λr will give rise to different PDEs and in

turn different solutions of V . Therefore the price of an interest rate derivative is not

uniquely determined and the market is incomplete. Nevertheless, since there is only a

single source of randomness in model (A.1), if derivatives with maturities only up to

some T are concerned, the market can be completed (because Λr can be recovered) by

including an interest rate derivative with maturity T (such as a discount bond) as a

tradable asset. Formally, by the Feynman-Kac formula, once Λr is known, we can write

V (t, r) = EQ
[
exp(−

∫ T
t r(s)ds)V (T, r(T ))

]
where Q is a probability measure under which

dr(t) = (θr(t)− κrr(t)− Λr)dt+ Σr (r(t), t) dW ∗r (t) (A.5)

for some Q-standard Brownian motion W ∗r (t). The measure Q is usually called the risk-

neutral measure or the Q-measure, and −Λr/Σr is referred to as the market price of risk.
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Various well-known one-factor short rate models can be obtained by specifying different

θr,Λr and Σr. The Vasicek (1977) model is obtained when θr,Σr and Λr are constants. The

CIR model is obtained when θr is a constant, Σr = σr
√
r and Λr = λrr for some constants

σr and λr. The model of Ho and Lee (1986) is obtained when κr = 0 and θr,Σr,Λr are

functions of t. The Hull-White (1990) model, which includes the Vasicek model as a special

case and the Ho-Lee model as a limiting case, is identical to the Ho-Lee model except that

κr > 0. In this paper we write θ∗r = θ and κ∗r = κr − λr in the CIR model so that (3.3) is

obtained. For the Hull-White model, we write θ∗r(t) = θ(t)−Λr(t) and κ∗r = κr and assume

that Σr(t) is equal to some constant σr, so that the risk-neutral SDEs for r(t) is of the form

(3.11).

From a broader perspective, all of the above-mentioned interest rate models fall into

the class of affine term structure models, whose concept was popularised by Duffie and Kan

(1996). Roughly speaking, an affine term structure model is one in which the time-t price

D(t, T ) of a discount bond with maturity T is an exponential-affine function of some Markov

diffusion process z(t), i.e. D(t, T ) = eA(t,T )−B(t,T )z(t) for some deterministic functions A and

B that satisfy A(T, T ) = B(T, T ) = 0. We will not delve into the details of affine term

structure models here, but note that in both the CIR model and the Hull-White model,

z(t) is just the short rate process r(t) and hence the discount bond price can be expressed

in the form of equation (3.5).

We now briefly explain how to determine A(t, T ) and B(t, T ) in the CIR model. Let

A′ denotes
∂A(t, T )

∂t
and B′ denotes

∂B(t, T )
∂t

. Recall that θr − κrr − Λr = θ∗r − κ∗rr.

Substituting bond price formula (3.5) into the PDE (A.4), we get

(A′ −B′r) +
σ2
r

2
B2r − (θ∗r − κ∗rr)B − r = 0.

Since the equation holds for all r, we must have

B′ =
σ2
r

2
B2 + κ∗rB − 1,

A′ = θ∗rB.
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The first ordinary differential equation (ODE) can be written as
∫ T
t

2dB
σ2
r (B − b1)(B − b2)

=

T − t, where b1 and b2 are the roots of the equation
σ2
r

2
B2 + κ∗rB − 1 = 0. Using partial

fraction to decompose the integrand and apply the terminal condition B(T, T ) = 0, we can

solve for B(t, T ). The function A(t, T ) is obtained easily by integrating the second ODE on

both sides from 0 to t.

If we integrate (3.3) on both sides, take risk-neutral expectation and assume that we

can change the order of integral signs, we obtain

EQ(r(t))− r(0) = θ∗r t− κ∗r
∫ t

0
EQ(r(u))du

Differentiate on both sides and solve the resulting ordinary differential equation (ODE), we

see that

EQ(r(t)) = r(0)e−κ
∗
rt +

θ∗r
κ∗r

(1− e−κ∗rt).

We can apply the same technique to find EQ(r(t)2) (the SDE for r(t)2 can be derived using

Ito’s formula) and obtain the variance formula (3.4).

For the Hull-White model, by substituting (3.5) into (A.4), we see that the volatility

coefficient of D(t, T ) is σrB(t, T ) and hence σD = σrB(0, 1) is the initial volatility of a

one-year discount bond. In addition, the previous substitution gives

(A′ −B′r) +
σ2
r

2
B2 − (θ∗r − κ∗rr)B − r = 0,

⇒


B′ = κ∗rB − 1,

A′ = θ∗rB −
σ2
r

2
B2.

Solving these two ordinary differential equations, we get formula (3.12) and

A(t, T ) = −
∫ T

t
θ∗r(u)B(u, T )du+

σ2
r

2

∫ T

t
B(u, T )2du. (A.6)

Hence equation (3.5) gives

f(0, T ) = − ∂

∂T
lnD(0, T ) = −∂A(0, T )

∂T
+
∂B(0, T )
∂T

r(0)

=
∫ T

0
θ∗r(t) (1− κ∗rB(u, T )) du− σ2

r

2
∂

∂T

∫ T

0
B(u, T )2du+ (1− κ∗rB(0, T )) r(0)

=
∫ T

0
θ∗r(t)du+ κ∗rD(0, T )− κ∗rσ

2
r

2

∫ T

0
B(u, T )2du− σ2

r

2
∂

∂T

∫ T

0
B(u, T )2du+ r(0).
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Differentiate with respect to T once again, we obtain

∂

∂T
f(0, T ) = θ∗r(T )− κ∗rf(0, T )− κ∗rσ

2
r

2
∂

∂T

∫ T

0
B(u, T )2du− σ2

r

2
∂2

∂T 2

∫ T

0
B(u, T )2du

⇒ θ∗r(T ) =
∂

∂T

(
f(0, T ) +

σ2
r

2
∂

∂T

∫ T

0
B(u, T )2du

)
+ κ∗r

(
f(0, T ) +

σ2
r

2
∂

∂T

∫ T

0
B(u, T )2du

)
.

Therefore we obtain equations (3.14) and (3.15). Also, by equation (A.6),

A(t, T ) = −
∫ T

t
(m′(u) + κ∗rm(u))B(u, T )du+

σ2
r

2

∫ T

t
B(u, T )2du

= −
∫ T

t
e−κ

∗
ruB(u, T ) d(eκ

∗
rum(u)) +

σ2
r

2

∫ T

t
B(u, T )2du

= B(t, T )m(t) +
∫ T

t
eκ
∗
rum(u) d(e−κ

∗
ruB(u, T )) +

σ2
r

2

∫ T

t
B(u, T )2du

= B(t, T )m(t) +
∫ T

t
m(u)(B′ − κ∗rB)du+

σ2
r

2

∫ T

t
B(u, T )2du

= B(t, T )m(t)−
∫ T

t
m(u)du+

σ2
r

2

∫ T

t
B(u, T )2du

= B(t, T )m(t)−
∫ T

t
f(0, u)du−

∫ T

t

σ2
r

2κ∗r2 (1− e−κ∗ru)2du+
σ2
r

2

∫ T

t
B(u, T )2du.

Therefore we obtain formula (3.13). Finally, by equations (3.11) and (3.14), we have

dr(t) = (θ∗r(t)− κ∗rr(t))dt+ σr dW
∗
r (t)

⇒ d (r(t)−m(t)) + κ∗r (r(t)−m(t)) dt+ σr dW
∗
r (t)

⇒ d
[
eκ
∗
rt (r(t)−m(t))

]
= σre

κ∗rt dW ∗r (t)

⇒ eκ
∗
rt (r(t)−m(t)) = eκ

∗
rs (r(s)−m(s)) + σr

∫ t

s
eκ
∗
ru dW ∗r (u) (A.7)

for any s ≤ t. Put s = 0 and take risk-neutral variance on both sides, formula (3.16)

follows. The formula also holds under the physical measure because the drift change under

the transformation σrdWr(t) = −Λr(t)dt+ σrdW
∗
r (t) is deterministic.

The BSHW model under the T -forward measure

Recall that W ∗S(t) and W ∗r (t) in the model dynamics (3.10) and (3.11) are two correlated

standard Brownian motions. Without loss of generality, let W ∗r (t) = W1(t) and W ∗S(t) =

ρW ∗1 (t) +
√

1− ρ2W ∗2 (t) and write W ∗(t) = (W ∗1 (t),W ∗2 (t)), where W ∗1 (t), W ∗2 (t) are two

independent standard Brownian motions. Then we can rewrite equations (3.10), (A.2) and
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(A.7) as

dS(t)
S(t)

= (r(t)− q(t)) dt+ σS(t)(ρ,
√

1− ρ2) · dW ∗(t)

dD(t, T ) = r(t)D(t, T )dt+ σr
∂D

∂r
dW ∗r (t)

= r(t)D(t, T )dt− σrB(t, T )D(t, T )dW ∗r (t)

= r(t)D(t, T )dt+D(t, T )(−σrB(t, T ), 0) · dW ∗(t), (A.8)

r(t)−m(t) = e−κ
∗
r(t−s) (r(s)−m(s)) + σre

−κ∗rt
∫ t

s
(eκ
∗
ru, 0) · dW ∗(u) (A.9)

Under a stochastic interest rate environment, it is usually easier to study the price dynamics

under the so-called T -forward measure. This is a measure under which the price of all

tradable assets denominated by the price of a discount bond is a martingale. Let T be a

fixed date and let

Z(t, T ) = exp
{
−
∫ t

0
r(s)ds

}
D(t, T ) = exp

{
−
∫ t

0
r(s)ds+A(t, T )−B(t, T )r(t)

}

denote the discounted price of the discount bond D(t, T ). By Ito’s formula, equation (A.8)

implies that

dZ(t, T ) = Z(t, T )(−σrB(t, T ), 0) · dW ∗(t).

Hence

Z(t, T ) = Z(0, T ) exp
{
−1

2

∫ t

0
σ2
rB

2(u, T )du+
∫ t

0
(−σrB(u, T ), 0) · dW ∗(u)

}
.

Therefore, if we use the discount bond D(t, T ) with maturity T as the numeraire, and define

the T -forward measure QT as a probability measure that has Radon-Nykodym derivative

dQT

dQ
=
D(t, T )/D(0, T )
B(t)/B(0)

=
Z(t, T )
Z(0, T )

= exp
{
−1

2

∫ t

0
σ2
rB

2(u, T )du+
∫ t

0
(−σrB(u, T ), 0) · dW ∗(u)

}
,

then the stock and all discount bonds, when denominated by D(t, T ), are martingales under

QT . Also, by Girsanov Theorem, the process W T (t) defined by

W T (t) = W ∗(t)−
∫ t

0
(−σrB(u, T ), 0)du, ∀t ∈ [0, T ]
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is a two-dimensional standard Brownian motion under QT . Therefore, for all 0 ≤ t ≤ T ,

d(S(t)/D(t, T ))
S(t)/D(t, T )

=
dS(t)
S(t)

− dD(t, T )
D(t, T )

− dS(t)
S(t)

dD(t, T )
D(t, T )

+
(
dD(t, T )
D(t, T )

)2

= −q(t)dt+
[
σS(t)(ρ,

√
1− ρ2) + (σrB(u, T ), 0)

]
· (σrB(t, T )dt+ dW ∗(t))

= −q(t)dt+
[
σS(t)(ρ,

√
1− ρ2)− (−σrB(u, T ), 0)

]
· dW T (t).

Also, by equation (A.7),

r(t)−m(t) = e−κ
∗
r(t−s) (r(s)−m(s)) + σre

−κ∗rt
∫ t

s
(eκ
∗
ru, 0) · (−σrB(u, T ), 0)du

+ σre
−κ∗rt

∫ t

s
(eκ
∗
ru, 0) · dW T (u)

and equations (3.17)–(3.21) immediately follow.
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Appendix B

Proofs for propositions in chapter 4

Proof of proposition 4.1

Suppose conditions (a), (b) and (d) do not hold. Then

(
p 1− p

1− q q

)−1(
α 1− α

1− β β

)(
ϕ1 0
0 ϕ2

)
=
(
φ1 0
0 φ2

)(
p̃ 1− p̃

1− q̃ q̃

)(
φ̃1 0
0 φ̃2

)
.

That is, (
p̃ 1− p̃

1− q̃ q̃

)(
ϕ1 0
0 ϕ2

)
=
(
φ1 0
0 φ2

)(
p̃ 1− p̃

1− q̃ q̃

)(
φ̃1 0
0 φ̃2

)

and in turn (
p̃ϕ1 (1− p̃)ϕ2

(1− q̃)ϕ1 q̃ϕ2

)
=

(
p̃φ1φ̃1 (1− p̃)φ1φ̃2

(1− q̃)φ2φ̃1 q̃φ2φ̃2

)
.

Hence at least one of φ1φ̃1 = φ2φ̃1 or φ1φ̃2 = φ2φ̃2 is true. Now condition (c) follows because

φ̃1, φ̃2 do not vanish on any nonempty open interval and φ1, φ2 are continuous.

Proof of proposition 4.3

For the proofs of (ii) and the first part of (iii), see Raible (2000, section 2.5). The second

part of (iii) is simply a reformulation of condition (b) of theorem 4.2. It remains to prove

statement (i). Recall that the Levy measure of a Meixner(α, β, δ) process is given by

Π(dx) =
δ exp (βx/α)
x sinh (πx/α)

dx.

155



So Π and Π′ have nonzero densities and hence they are locally equivalent. Now, by condition

(b) of theorem 4.2,∫
R

(√
dΠ′

dΠ
− 1

)2

Π(dx) =
∫

R

(√
δ′ exp (β′x/α′) sinh (πx/α)
δ exp (βx/α) sinh (πx/α′)

− 1

)2

δ exp (βx/α)
x sinh (πx/α)

dx <∞.

Since the exponential terms approach 1 as x→ 0, the above is integrable if and only if(√
δ′ sinh (πx/α)
δ sinh (πx/α′)

− 1

)2

δ

x sinh (πx/α)

is integrable near zero, but this means(√
δ′α′

δα
− 1

)2
αδ

πx2

is integrable near zero because sinh(y) can be expanded into y +
y3

3!
+
y5

5!
+ . . .. Therefore

we must have αδ = α′δ′. Finally, if A = A′ = 0, then by condition (b) of theorem 4.2, the

quantity

B := µ−
(
αδ tan

β

2
− 2δ

∫ ∞
1

sinh (βx/α)
sinh (πx/α)

dx

)
−
∫ 1

−1

δ exp (βx/α)
sinh (πx/α)

dx (B.1)

is preserved if we replace (α, β, δ, µ) by (α′, β′, δ′, µ′). Let f(x) =
δ exp (βx/α)
sinh (πx/α)

. Then∫ 1

−1
f(x)dx =

∫ 1

0
f(x)dx+

∫ 1

0
f(−y)dy =

∫ 1

0

2δ sinh (βx/α)
sinh (πx/α)

dx.

Therefore

B = µ− αδ tan
β

2
+ 2δ

∫ ∞
0

sinh (βx/α)
sinh (πx/α)

dx = µ− αδ tan
β

2
+ 2αδ

∫ ∞
0

sinh (βx)
sinh (πx)

dx.

However,

2
∫ ∞

0

sinh (βx)
sinh (πx)

dx = 2
∫ ∞

0

e−πx(eβx − e−βx)
1− 2e−2πx

dx

= 2
∫ ∞

0
(e(β−π)x − e−(β+π)x)

∞∑
n=0

e−2nπxdx = 2
∫ ∞

0

∞∑
n=0

(e[β−(2n+1)π]x − e−[β+(2n+1)π]x)dx

= 2
∞∑
n=0

(
−1

β − (2n+ 1)π
− −1
β + (2n+ 1)π

)
=
∞∑
n=0

−4β
β2 − [(2n+ 1)π]2

=
∞∑
n=0

−2(β/2)

(β/2)2 −
(
n+ 1

2

)2
π2

= tan
β

2
,

where the last equality is due to tan z =
∞∑
n=0

−2z

z2 −
(
n+ 1

2

)2
π2

. Therefore the preservation

of B in (B.1) simply means µ = µ′.
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Proof of proposition 4.4

Obviously, we have ηX(t) > 0 and ηX(0) = 1. Showing that ηX is a P -martingale is

straightforward. First, it is clear that for any 0 ≤ u1 ≤ u2 ≤ u3, we have ηX(u1, u3) =

ηX(u1, u2)ηX(u2, u3). Now, consider a time period [s, t]. Suppose we know that within this

period, ι changes state exactly at times t1, t2, . . . , tm. Write t0 = s and tm+1 = t, then

EP
(
ηX(t)
ηX(s)

∣∣∣∣ ι(s, t)) = EP

exp


m∑
j=0

[
U (ιj)(tj+1)− U (ιj)(tj)

] q(ι(s, t))
p(ι(s, t))

∣∣∣∣∣∣ ι(s, t)


=
q(ι(s, t))
p(ι(s, t))

m∏
j=0

EP
(

exp
{
U (ιj)(tj+1)− U (ιj)(tj)

}∣∣∣ ι(s, t))
=
q(ι(s, t))
p(ι(s, t))

.

Therefore by the tower law,

EP (ηX(t)| Fs) = ηX(s)EP
[
EP
(
ηX(t)
ηX(s)

∣∣∣∣ ι(s, t))∣∣∣∣Fs]
= ηX(s)EP

[
q(ι(s, t))
p(ι(s, t))

∣∣∣∣Fs]
= ηX(s).

Finally, condition (4.16) is trivial because conditional on state i, the increment Xs+t −Xs

has the same law as the sum of a Levy process Y (i)
s and a compound Poisson process∑

j 6=i
∫ t

0 J
(i,j)
s dN

(i,j)
s , where each N (i,j) is a Poisson process with intensity ãij .

Remark. Since the transition-induced jumps we consider in this paper are constant,

if ι(s) = i on some interval [u1, u2), we can determine the path of Y (i)(s) − Y (i)(u1) for

s ∈ [u1, u2] using the paths of X and ι:

Y (i)(s)− Y (i)(u1) = X(s)−X(u1)− 1{s = u2 and ιs 6= i}hiιs . (B.2)

As U (i) is a Levy process, we can in turn back out U (i)(s) − U (i)(u1) using information of

Y (i)(s)−Y (i)(u1) on [u1, u2]. Consequently, ηX is adapted to the information flow generated

by X and ι. However, when the transition-induced have stochastic jump sizes, since there

can be a nonzero probability that Y (i) and ι may jump together, we cannot almost surely
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distinguish jumps due to Y (i) from jumps due to a transition of states. So, the information

about X and ι alone is not enough to make ηX an adapted process.
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