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ABSTRACT 

The aim of this thesis is to propose a framework for maintaining a minimum 

cache hit ratio in a dynamic manner. By doing so the service roundtrip time in a 

client/server interaction over the Internet is shortened. This is achieved because the 

dynamic cache size tuner obviates the second leg in the information retrieval process. 

The final framework proposed in this research after considerable verification is the 

MACSC (Model for Adaptive Cache Size Control). This MACSC research has 

achieved all the objectives, namely: 

a. Proposed the framework that leverages the minimum number of network 

parameters for accurate dynamic cache size tuning. 

b. Proposed compensation measures that help the framework work healthily 

under extreme conditions.  

c. Proposed a RTPD mechanism that is suitable for time-critical applications so 

that it can be included as part of the self-reconfigurable framework for 

dynamic cache size tuning on the fly. 

d. Verified the generic framework with simulated and live datasets/traces.  

e. Verified that the proposed framework can indeed support wired and wireless 

client/server interactions with similar efficacy. 

f. Verified that this efficacy applies to mobile and time-critical applications 

such as telemedicine.  

There are four approaches proposed for realizing the MACSC framework, 

which leverages the Zipf-like behavior as the conceptual basis. This behavior 
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represents the relative data object popularity profile from which the popularity ratio 

is derived on the fly. This ratio determines the size of the dynamic cache size 

adjustment. The four approaches dictate how the standard deviation and the 

popularity ratio of the popularity distribution should be computed, and they are as 

follows: 

a. Point estimate (PE): This CLT (Central Limit Theorem) based method is 

sensitive to changes in the ROP profile, but it generates a lot of oscillations 

for having no feedback system. 

b. M3RT: This CLT based technique is transcribed from another problem 

domain, namely, Internet End-to-End Performance Measurement (IEPM) 

[Cottrel99], [Cottrel01]. Previous experience [Ip03] has confirmed that it 

always yields the mean of any waveform accurately in real-time applications 

because it has a feedback loop. The good quality of stability of this technique, 

however, becomes a liability for MACSC application because there is a need 

to strike a balance between stability and sensitivity, and this led to the 

proposal of the “fine-tune point estimate (F-PE) technique. 

c. F-PE: It combines the merits of PE sensitivity and M3RT stability and 

accuracy due to the presence of a feedback loop. 

d. Real-time Traffic Pattern Detection (RTPD): It was observed in the early 

experiments that the Internet traffic patterns have different ill effects on the 

MACSC accuracy. Therefore, a RTPD mechanism is included in the original 

MACSC framework to make it into the newer RTPD/MACSC framework. 

The aim is to let the RTPD mechanism identify the traffic pattern at the time 

so that the MACSC can “reconfigure” itself to neutralize the traffic ill effects. 
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In the MACSC research context, the RTPD/MACSC(PE) solution is a form 

of reconfigurable dynamic cache size tuning. As a result four specialized 

solutions are derived from the general MACSC framework. The 

specialization is the technique whereby the SD is computed on the fly in each 

solution. 

Therefore, the four novel proposed conceptual solutions, which represents an 

evolutionary process, are: MACSC(PE), MACSC(M3RT), MACSC(F-PE), and 

RTPD/MACSC(PE). 
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CHAPTER 1 

BACKGROUND AND SCOPE 

1.1 INTRODUCTION 
The Internet and the World Wide Web (WWW) have provided several new 

opportunities for people to extend their horizon of knowledge, to communicate 

quickly and effectively, and to set up e-business. In fact, in this era Internet based 

distributed systems are a key factor in the achievement of economic gains for many 

companies. Firstly, it is common for company employees to interact with buyers and 

suppliers via the Internet in field operations. Secondly, business transactions such as 

buying a birthday present in Hong Kong and having it sent to the receiver in Canada 

can be conducted quickly and accurately in an electronic manner (i.e. e-business). 

Thirdly, up-to-date background information can be obtained immediately, via an 

electronic small-form-factor (SFF) device (e.g. PDA and PMDA) [Patterson03] to 

back up a time-critical decision such as trading stocks right at the airport minutes 

before boarding a plane. Fourthly, opportunistic data acquisitions can be conducted 

in a pervasive manner to prevent disasters proactively [Hightower01]. For example, 

a pedestrian encounters a terrorist act in progress and videos the scene with her 

mobile phone (a SFF device). Then, the short video is immediately transmitted to the 

police so that the latter can assess the situation quickly to save the hostage. The 

examples above involve nomadic users in a mobile/pervasive computing 

environment, in which the client (a SFF device of a nomadic user) communicates 
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through a wireless cell with the wired part of the Internet based PCI (pervasive 

computing infrastructure).  

In the above situations the service response time, which is the interval between 

sending a request and getting the correct result, is important. The sheer size and 

heterogeneity of the Internet make it difficult to control and guarantee the prescribed 

response deadline unless special techniques are employed. This difficulty is 

aggravated by the fact that the Internet nowadays is basically a “wired and wireless” 

setup, which involves different incompatible protocols that require the technique of 

tunneling to link them [Tanenbaum96]. Information retrieval over the Internet is a 

client/server relationship [Mahanti00], with the "first leg" between the client or 

requestor and the proxy server, and the "second leg" between the proxy server and 

the data source (remote web server). It is generally recognized that caching is a 

technique that can be employed to reduce the service roundtrip time because if the 

object can be found in the proxy’s local cache then the “second leg” delay can be 

obviated (to be explained later in this section). The fringe benefit is that finding the 

data in the cache means less data need to be transferred remotely across the network, 

and in this sense it frees backbone bandwidth for public sharing for higher network 

throughput [Aggarwal99]. Therefore, the overall average service roundtrip time 

(RTT) is made up of the average RTT1 for the first leg and average RTT2 for the 

second; that is RTT=RTT1+RTT2. As shown in Figure 1.1, if the requested data can 

be found in the proxy server’s cache then RTT2=0 holds. Locating the requested data 

object in a remote web server of data source involves the Internet Domain Name 

Server (DNS) and data transfer over the open Internet, and this usually makes RTT2 

much larger than RTT1.   
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strategies work with a static cache size. They aim at yielding a high cache hit ratio 

but do not necessarily maintain it. For this reason the cache hit ratio fluctuates with 

respect to the system dynamics and the current data object popularity profile. 

Maintaining a given cache hit ratio needs dynamic cache size tuning. In this thesis 

the novel MACSC (Model for Adaptive Cache Size Control) framework, which 

leverages the relative data object popularity profile as the sole parameter for this 

purpose, is proposed. It represents an important departure from previous work which 

always postulates static cache size. This new approach leads to significant 

improvements in cache hit ratios or allows one to maintain a prescribed hit ratio. It 

computes the tuning solution in a short time to avoid possible deleterious effects by 

the tuning process. 

 One may ask why we need dynamic cache size tuning such as the MACSC 

framework if a very large cache could be used to yield a high hit ratio. The answer is 

as follows: 

1. A very large cache means a higher chance of stale data and thus data 

incoherence in the hitting process because the data in the cache is not 

refreshed and updated frequently enough [Breslau99]. 

2. The MACSC caters especially to small caching systems, which usually cost 

less than USD1000 [Wessels01]. In these systems memory resources are 

limited. If too much memory is used for caching, other tasks may be 

suspended due to lack of recyclable memory, leading to poor system 

throughput.  
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1.2 MOTIVATION AND SCOPE OF PROBLEM 
The motivation of the thesis is to explore how the cache hit ratio can be 

maintained under all conditions in a dynamic manner, independent of the changes in 

the Internet traffic pattern. The Internet follows the power law and its traffic changes 

anytime, for example from being LRD (long-range dependence) to SRD (short-range 

dependence) or vice versa. In order to maintain a given hit ratio on the fly the 

following questions/issues need to be effectively addressed: 

1. What are the characteristics of a dynamic cache size tuner that can maintain a 

given hit ratio under all conditions?  

2. What is the underlying principle for a successful tuner as such for real-time or 

time-critical applications over the Internet? 

3. Can such a tuner survive in the dynamic Internet environment in which the 

traffic pattern changes all the time? It is generally understood that any system (a 

tuner is no exception) that is designed with a preconceived mathematical model 

in mind fails easily in the Internet [Paxson95]. This implies that by nature the 

dynamic cache size tuner(s) should be statistical and work by direct data 

measurement.   

4. How can a specific traffic pattern be detected correctly on the fly? 

5. How can the accuracy of the real-time traffic detection (RTPD) mechanism be 

made independent of traffic patterns? 

6. How can the execution time of the RTPD mechanism be shortened enough to 

avoid any deleterious effects? These effects are undesirable consequences of a 

long detection time because by the time the computed remedy is available the 

real problem has already passed, and the remedy ends up correcting a problem 
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that no longer exists, which itself could be detrimental.   

7. Can the proposed dynamic cache size tuning framework operate together with 

the RTPD mechanism in the sense that it would reconfigure to neutralize the ill 

effects caused by traffic on its hit ratio while still maintaining efficacy? 

8. Can the final “RTPD plus tuner” combination indeed support efficient mobile 

and time-critical applications such as telemedicine by shortening the service 

roundtrip time (RTT) through consistent hit ratio maintenance? This should be 

verified by simulation with live RTT traces collected from different web sites. 

 

The research activities that strive to provide satisfactory solutions to the above 

issues form the scope of my PhD problem. In this scope the following will be 

investigated in an orderly manner with the help of an appropriate methodology 

which, since the problem of dynamic cache size tuning is relatively pristine, must be 

newly defined. The existing research methodologies may not suffice and new 

elements that pertain to this line of work have to be identified. The order of the main 

work items are as follows: 

1. Define the principle for dynamic cache size tuning over the Internet, for 

example, by exploring whether the Zipf-like behavior can provide the necessary 

basis [Breslau99], [Zipf]. 

2. Define the compensation measures, if necessary, to neutralize the behavioral 

deviations by the tuner(s) under extreme operational conditions. 

3. Identify different useful statistical methods that help the proposed tuner 

compute quickly and accurately on the fly. The most important of all these 

methods should be independent of traffic patterns that embed in a stretch of 
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inter-arrival times (IAT) among the service requests from the clients to the 

server. 

4. Explore how real-time traffic pattern detection (RTPD) can be achieved. 

5. Explore how RTPD can be included in the proposed tuner framework so that the 

latter can use the detected results to reconfigure itself and ward off any ill 

effects on its tuning accuracy caused by traffic. 

6. Explore the client/server interaction requirements for mobile and time-critical 

applications using TCM (Traditional Chinese Medicine) based telemedicine as 

an example. This example is chosen because of my previous related research 

experience.   

7. Verify, at least by simulation, that the final reconfigurable dynamic cache size 

tuning mechanism(s) can indeed support mobile and time-critical applications.  

 

1.3 THE DRIVING FORCES 
 

The driving forces behind the motivation of this PhD research are as follows: 

1. The desire to maintain the given cache hit ratio for information retrieval: 

There is no such technique in my literature search so far. The importance 

of this technique is that it shortens the service roundtrip time (RTT) 

between the client and the server. This makes the client happy and is 

therefore fundamental to the success of any electronic transactions over the 

Internet.  

2. The advantage of having a shorter service RTT in telemedicine: This saves 

more lives in contingent cases [Lacroix99], as I had observed in my 

previous research experience. Some of the telemedicine issues will be 
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discussed in Chapter 11. 

3. The desire to propose a friendly dynamic cache size tuning framework: 

The aim is to have a “promiscuous” framework, which can be combined 

with other extant caching techniques for synergistic effects in a friendly 

manner. The combined framework would consistently yield and maintain a 

high hit ratio. 

4. The desire to leverage the intrinsic Zipf-like behaviour as the sole metric: 

This behaviour is a formal representation of the relative popularity among 

different objects in a set. Leveraging this behaviour provides a sound 

technical basis for dynamic cache size control.  

To appreciate the importance of the diving forces above it is useful to 

understand the relevant issues in Internet caching [Podlipnig03, Wang99, Wu00]. 

Caching can alleviate network congestion and quickens WWW information retrieval. 

Its usefulness grows with the size of the WWW page. The danger of congestion is 

aggravated by the fact that the WWW page size has a monthly growth rate of around 

15% but the Internet backbone capacity only increases by 60% yearly [Bharat98]. 

The massive quantity of information requiring transfer across the network can 

quickly deplete the amount of sharable bandwidth. Since caching reduces the amount 

of data to be transmitted across the network, it frees backbone bandwidth for public 

sharing and thus reduces the chance of network congestion. 

The most important performance indicator of a caching system is its ability to 

yield a high cache hit ratio, even though Internet caching has been used for different 

purposes such as follows [Podlipnig03]: 

1. To reduce network bandwidth usage – Use caching as a means to free 



 

 - 9 - 

backbone bandwidth for public sharing, and this leads to better system 

throughput due to less chance of network congestion. 

2. To reduce response delays (the focus of this thesis) – Facilitate fast 

information retrieval to enhance the success of real-time applications over 

the Internet; for example, a shorter service RTT betters the chance of 

saving a patient in a emergent case. 

3. To reduce loading on the original web server – Split and shift part of the 

loading of a web server up front to the proxies. 

Yet, yielding a high hit ratio (but not necessary maintaining) is the primary aim 

of all the extant caching strategies. At the moment these strategies, however, cannot 

produce a high hit ratio and maintain it at the same time because they exclusively use 

a static cache size [Wu03]. Maintaining a given hit ratio has a very different 

requirement from yielding a high one because the former need to eliminate the 

negative impacts on the fly. In fact, one simple way to yield a high hit ratio is to use 

a very large static cache size conceptually [Breslau99], but this approach can lead to 

serious data coherence problems.  

Although there is no extant caching strategy that can maintain a given hit ratio, 

from the literature, however, there are some rudimentary adaptive caching 

(adaptivity) systems. Theoretically these systems could produce a high hit ratio in a 

relatively continuous manner even though they use a static cache size. They are 

mainly in the area of adaptive replacement [Podlipnig03], [Wang99] and can be 

divided into the following categories: 

a) The first category invokes different placement strategies that work with a 

static cache size under different operation conditions. The philosophy is to 
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use the best strategy to harness the current situation. This category has two 

problems: a) it is difficult to decide when to invoke a new strategy, and b) it 

is hard to define which strategy is the best for the time.  

b) The second category tunes the parameters of the replacement strategy 

adaptively to yield a high hit ratio. The category, however, involves many 

parameters and heavy parameterization means substantial computation delay. 

By the time the caching remedy is computed the actual problem may have 

passed. The solution would end up correcting a spurious condition, causing 

deleterious/undesirable effects. 

To fill the void the MACSC (Model for Adaptive Cache Size Control) 

framework for dynamic cache size tuning is proposed in this PhD thesis. This 

framework differs from the all the other extant caching systems in two aspects: a) it 

uses a variable cache size, and b) it maintains the given hit ratio on the fly. Its formal 

basis is the Zipf-like behaviour [Breslau99]. The MACSC can be combined with 

other caching strategies, which can neither yield a high cache hit ratio consistently 

nor maintain it when working alone. The factors that usually contribute to the hit 

ratio variations include the following [Abrams95], [Yu99]: 

a. Seasonal user preference for specific data items – The preference in a rage 

creates seasonal relative object popularity. Hot data items can have much 

higher access frequencies than the cold ones. 

b. The replacement strategy adopted – There are two basic types of strategies, 

LRU (least recently used) and LFU (least frequently used). These strategies 

leverage different parameters and produce very different hit ratios for 

different conditions [Aggarwal99].  
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c. The number of parameters being leveraged – Different replacement strategies 

leverage different number of metrics (e.g. object size, access/reference 

frequency, and update frequency, object popularity [Jin00a]). Leveraging a 

metrics involves two delay elements, sampling and computation. Therefore, 

leveraging many parameters means heavy parameterization that could lead to 

long computation delay. Besides, the parameters may counteract among 

themselves in an unpredictable manner. 

d. The placement/location of the proxy cache – The cache location in the 

network can affect the hit ratio. Yet, there is little published experience for 

this problem. 

e. The efficacy of the admission control – Admission control determines which 

data objects to be cached so that the “one-timers” can be eliminated. It makes 

the hot data in the cache more concentrate to improve the hit ratio. 

The above factors reflect the fact that a successful caching scheme is not easy to 

build because a success for one operating environment may not apply to another 

[Wang99]. Deeper analyses in my preliminary PhD investigations indicate that the 

cache hit ratio is usually affected by different metrics such as follows: 

a. Cache size – Although a larger cache size would yield a high hit ratio, risk of 

data incoherence or inconsistency also increases because stale data is not 

replaced fast enough [Breslau99]. Therefore, attaining a meaningful high hit 

ratio is a complex problem. The solution involves a reasonable cache size 

[Aggarwal99] to be controlled by a powerful replacement strategy, which 

should also be supported by a sophisticated strategy that ensures data 

coherence [Shim99].  



b. Object popularity – A fixed length cache size yields different hit ratios at 

different times because of the continuous change in the relative object 

popularity distribution. An efficacious cache replacement policy should be 

able to predict the relative popularity of a document and decide proactively 

whether it is worthwhile to cache it [Jin00a], [Dilley99]. 
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Figure 1.2 Impact of user behavriour on the hit ratio of a wireline fixed cache size system 

 

 

My preliminary PhD investigations had also revealed a clear correlation 

between relative data object popularity distribution and cache hit ratio. For example, 

Figure 1.2 is the investigation for a fixed cache size (FCS) system. It shows how the 

changes in the standard deviation of the relative data object popularity distribution 

can affect the cache hit ratio in a wireline environment. Similarly Figure 1.3 is 

another FCS based result for the wireless environment. 
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Figure 1.3 Impact of user behavriour on the hit ratio of a wireless fixed cache size system  

 

 
1.4 POTENTIAL CONTRIBUTIONS TO MOBILE AND 

TELEMEDICINE APPLICATIONS 
Dynamic cache size tuning, as exemplified by the proposed MACSC (Model for 

Adaptive Cache Size Control) conceptual framework, enhances the quality of service 

(QoS) for mobile and telemedicine applications. In perspective, it reduces the chance 

of involving the second leg in information retrieval over the mobile Internet as 

shown in Figure 1.1. As a result it shortens the service roundtrip time (RTT) (also 

known as response time) to provide the following advantages: 

1. Happy customers (clients): Happy customers are return customers that 

make the e-business a success. Since the Internet today is mobile or 

pervasive in nature (i.e. “wireless + wireline”) [Garlan02], the intrinsic 

complexity in the network structure easily lengthens the response time. 

2. Conducive to successful time-critical applications: Some applications over 

the mobile Internet are time-critical or real-time as exemplified by the 
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telemedicine field. One of the inspirations of this research is my previous 

experience in telemedicine (Chapter 11 provides more details). From my 

observation, it is absolutely important for the remote paramedic to get the 

diagnostic and treatment advice from the “virtual doctor” quickly to save 

the patients in contingent cases. The MACSC approach can shorten the 

response time in between and therefore enhances the chance of saving 

remote patients. 

3. Less Internet congestion: If the information to be retrieval is found more 

often in the proxy cache, then there is less data to be transferred across the 

network in the second leg of information retrieval (Figure 1.1). This frees 

the backbone bandwidth and virtually increases the Internet capacity 

[Bharat98]. 

 

Since the Internet nowadays is mobile in nature (i.e. mobile Internet with a 

“wireless + wireline” infrastructure), the MACSC potentially contributes to make 

time-critical applications over the Internet a success. From my own pervious 

experience its contribution to the success of telemedicine is substantial. Figure 1.4 

presents a concise telemedicine view about what happens between the client (patient) 

and the remote sever (virtual doctor). The communication in between is wireless, 

and the requests by the clients could risk the following: 

1. Random discard by the router at the system level: If the channel is 

congested, the router at the system level discards requests to prevent 

congestion and this increases the chance of widespread retransmission. If 

the retransmission error probability is part of the overall channel error 



probability error δ , then the average number of trials (ANT) to get a 

successful transmission is  
)1(
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jjANT . Therefore 

any decrease in δ  reduces ANT and shortens the client/server service 

roundtrip time (RTT) or response time. Dynamic buffer tuning is a 

powerful way to reduceδ [Wong02a]. 

2. Uncontrolled buffer overflow at the user level (user buffer level): Any 

overflow at the server request queue would aggravate the errorδ , and 

therefore different methods were proposed to eliminate this possibility 

[Ip01], [Wong02a]. 

3. Delayed response due to a low hit ratio (i.e. high miss ratio): A low hit 

ratio means more chance for involving the second leg of the information 

retrieval process. A consistently low hit ratio is translated into a 

permanently high ANT. Therefore it is important to maintain a given ratio, 

which represents the user defined acceptable performance, consistently.  

 

It is very difficult if not totally impossible for one to harness the service RTT 

for the different client/server interactions within the mobile Internet at anytime. The 

sheer size of the Internet and the high number of different communication protocols, 

both wireline and wireless, make it impractical to harness the network dynamics at 

all. The novel MACSC framework contributes to reduce the involvement of the 

second leg in the information retrieval process. As a result it contributes to shorten 

the service RTT. In telemedicine, which is intrinsically mobile, this heightens the 

chance of saving patients in the contingent situations. 
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framework and some validation results; Chapter 11 describes how the proposed 

MACSC conceptual framework can support fast response in mobile and 

telemedicine applications; and Chapter 12 concludes the thesis. 
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CHAPTER 2  

EVALUATION OF PREVIOUS RESEARCH 

2.1 INTRODUCTION 
The World Wide Web (WWW) is growing in an exponential rate in size 

everyday. The volume of pages has a monthly growth rate of around 15% but the 

Internet backbone capacity increases only by 60% yearly [Bharat98]. The massive 

amount of information needed to be transferred across the network in browsing and 

information retrieval can quickly deplete the amount of sharable bandwidth. This 

situation worsens if retransmissions are involved as a means to recover the 

information lost owing to different kinds of network faults, which are inevitable due 

to the sheer size and heterogeneous nature of the Internet. Caching is one good 

method to alleviate network congestion and speeds up WWW information retrieval. 

In this chapter, different caching techniques are discussed. 

 

2.2 CLASSIFICATION OF CACHING TECHNIQUES 
The importance of caching has motivated different areas of caching research. 

The aims of these areas include [Wang99]: a) fast information retrieval by a proxy 

server [Luotonen94], b) system robustness for fail-soft operations, c) caching 

operation transparency, d) system scalability, e) caching adaptivity in response to 

changing user demands and network environment, and f) stable collaborative 

caching by avoiding naive cache routing that introduces Internet perturbations. The 

existing caching techniques work exclusively with a static cache size.  
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According to the nature of the current caching techniques, they can be classified 

into three groups as follows: 

Group 1: Infrastructure related 

a. Caching architectures 

b. Cache routing 

c. Load balancing 

d. Proxy placement 

Group 2: Content related 

a. Prefetching 

b. Replacement strategies 

c. Cache coherency 

d. Caching contents 

Group 3: Others 

a. User access pattern prediction 

b. Adaptive caching 

c. Web traffic characteristics 

The infrastructure related class includes the issues that relate to the overall 

structure or setup of the proxy servers. The content related class includes the issues 

that relate to the cache management of the proxy servers. The other issues are 

included in the group others. Figure 2.1 shows a summary classification of the 

current caching techniques classification. 
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“leaf” caches at the proxy level (i.e. the lowest level) which contains the hot data. If 

the proxy cannot find the data locally, it will go up one level and this repeats until 

the master database is reached. The problems of hierarchical caching include: i) 

possible massive bottlenecks at different levels, ii) data incoherence, and iii) long 

information retrieval roundtrip (RTT) time. A massive bottleneck is created when all 

the lower-level proxies try to access a popular high-level proxy. If a proxy is very 

popular and has very large cache memory, it does not need to update its cache that 

often. This could lead to incoherence of data between the master level and itself 

because the cache is not refreshed frequently. Any massive bottleneck would mean 

long queuing time and thus long RTT. 

 Another idea within the domain of caching architecture is distributed caching 

[Povey97], [Tewari98]. This proposes having two levels of cache servers, the bottom 

level cache server and institutional level. By having two levels only it differs from a 

formal hierarchical concept, which would have multiple levels. In the distributed 

case, when a client cannot locate the document in the bottom cache server, it will 

access the institutional level cache server. Each institutional level cache server 

contains meta-data information (i.e. a summary directory) of the data objects that 

other institutional level cache servers store. Then, the directory information of the 

data objects that help the client locate the data objects can be distributed quickly. 

Examples include Internet cache protocol (ICP) [Wessels97], Cache Array Routing 

Protocol (CARP) [Valloppillil98], distributed Internet cache [Povey97], central 

directory approach (CRISP) [Gadde97], Cachemesh system [Wang97], Summary 

Cache [Fan98], Cache Digest [Rousskov98], and Relais project [Relais98]. 

 The hybrid architecture combines the hierarchy and distributed caching 
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techniques to optimize the advantages of both and reduce the possible disadvantages. 

It, however, may need to be moderated for smoother performance. For example, the 

hybrid model proposed by Rabinovich tries to limit excessive cooperation among 

neighbor caches that may lead to unnecessary delay in the information retrieval 

process [Rabinovich98] 

 

b.) Cache routing 

Cache routing investigates how to locate the cache that contains the data objects 

quickly. The routing table, which indicates what objects are located in particular 

remote proxy caches, is large. It needs to be updated frequently to avoid data 

incoherence. There are two main research topics in this area from the literature: i.) 

cache routing table and ii.) hashing function. The issue of cache routing table 

[Malpani95], [Wang97] addresses how to improve the speed of finding the needed 

data object from the routing table, and the examples include: harvest cache system 

[Chankhunthod96], Adaptive Web caching [Michel98], and manually configured 

hierarchy [Povey97]. The hashing function helps find the locations of data objects 

quickly. It involves the following: i.) how to build the summary table, ii.) how to 

minimize the change in a routing table, and iii.) how to minimize the search time. 

Hashing function examples include: summary cache [Fan98], and consistent hashing 

[Karger97]. 

 

c.) Load balancing 

This intends to resolve the hot spot problem in a collection of collaborating 

proxy servers. Hot spot means that too many clients are trying to request service 
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from the same server. The existing systems use mainly the replication strategy to 

resolve this problem [Chankhunthod96], [Heddaya97], [Malpani95]. 

 

d.) Proxy placement 

It investigates how to optimize the location of the proxy server so that the 

objectives of self-organizing, efficient routing, load balancing, and stable operations 

can be achieved. However, this research topic so far has yielded minimal results 

because very few researchers have put much effort into this topic [Li99]. 

 

GROUP 2: CONTENT RELATED: 

a.) Prefetching 

The aim is to heighten the hit ratio by predicting what data objects will be 

requested next by clients. It can be performed for the following purposes: i) between 

clients and web servers (C&W), ii) between proxy servers and web servers (P&W), 

and iii) between clients and proxy servers (C&P). The C&W is the earliest approach 

and its aim is to predict the objects that clients would imminently fetch by using 

pre-collected traces. The examples include: Prediction-by-Partial-Matching (PPM) 

[Padmanabhan96], model for speculative dissemination of WWW documents 

[Bestavros96], and rate-controlled prefetching scheme [Crovella98].  

The P&W scheme is exemplified by approaches such as the following:  

i. Kroeger et al. [Kroeger97]: They discovered that by combining perfect 

caching and perfect prefetching at the proxy server level the RTT latency can 

be reduced up to 60%. 

ii. Markatos and Chronaki [Markatos98]: The proposal is to let web servers 



regularly push the most popular data objects to the proxy servers. Techniques 

include those proposed by Cohen et al. [Cohen98], Wcol [Chinen97] and 

Geographical Push-Caching [Gwetzman94].  

The C&P approach is exemplified by the model proposed by Fan et al [Fan99]. 

Fan relies on the proxy to predict what the clients want next and pushes or pulls the 

data objects in the idle time between user requests. This can reduce the RTT latency 

up to 23.4%. Another C&P example is the one by Loon and Bharghavan [Loon97]. 

 

b.) Replacement strategies 

The aim is to enhance a proxy server’s caching efficacy by pushing out the aged 

data in a fixed-size cache to make room for the new “hot” ones [Arlitt99], 

[Abrams96]. Data object replacement in a cache is the most researched topic in the 

area of caching. There are basically two replacement approaches: LRU (least 

recently used – recency based) and LFU (least frequently used – frequency based). 

The recency concept associates with temporal locality, which states that the chance η 

of getting a data object is inversely proportional to the elapsed time t since its last 

access (i.e. t
1∝η ) [Jin00b]. The frequency of access of a data object indicates its 

relative popularity. The log-log plot of access frequencies versus the corresponding 

ranked data objects is the Zipf-like behavior [Bjarat98], [Nielsen97]. For the same 

set of data objects the Zipf-like behavior from the proxy point of view is different 

from that of the Web server (data source). The difference is due to the fact that more 

hot data in the cache means less remote access to these objects in the data source (i.e. 

they are relatively cold).  A replacement strategy leverages some chosen parameters 

to compute the cost/index that determines which cold data objects should be evicted 
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first from the cache. To improve cache hit ratio the technique of “filtration of 

one-timers” can also be used. One-timers are those objects that are rarely accessed 

[Belloum98], and their removal is necessary to make the hot data objects in the 

proxy cache more concentrated for a higher hit ratio [Aggarwal99]. 

 

c.) Cache coherency 

The cause of the data coherence problem (i.e. data incoherence) is that the 

cached data is not updated frequently enough. In fact, this is a side effect for a very 

large proxy cache. On one hand this kind of cache would produce a high hit ratio, 

but on the other hand the stale data causes problems [Breslau99]. This serious open 

performance problem is still being actively researched. 

 

d.) Caching contents 

The main purposes of a proxy are as follows: a) it provides the 

window/gateway for the protective firewall so that through this window clients 

within can communicate with the outside world safely [Wu05b] and b) it shortens 

the service RTT in information retrieval because of its cache hit ratio. The second 

purpose has inspired tremendous effort in replacement strategies [Aggarawal99].  

The aim of obtaining a high hit ratio is to keep as much hot data content in the cache 

as possible. In light of contents manipulation there are two strategies/techniques that 

can further reduce the data object access latency. Since these strategies are 

value-added in nature, they are considered as performing the secondary roles for 

caching contents. The first strategy is called connection caching [Cáceres98], 

[Feldmann99], which from previous experience might reduce access latency by up to 
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40%, and it emphasizes two persistent connections: “between the client and the 

proxy” and “between the proxy and web server”. The second is called computation 

caching [Wang99], which aims at making normally non-cacheable dynamic data 

cacheable. The reason why dynamic data, which are dynamically generated and exist 

for only a short period, are non-cacheable is that by the time the client wants to 

access this piece of data, it has already disappeared. The technique is to let the web 

server pass some of its dynamic data related computation capability to the proxies. 

Then, the proxies can have a better chance to generate, cache, and maintain the 

dynamic data concerned. For example, the techniques such as active cache [Cao98] 

and server accelerator [Levy-Abegnoli99] can achieve such a purpose. Other 

examples include [Chinen97] and [Challenger99].  

 

GROUP 3: OTHERS: 

a.) User Access Pattern Prediction 

The objective of the user access pattern prediction is to improve the efficiency 

of the proxy servers by predicting what users would need imminently. Examples 

include [Cohen99], and [Yang] that proposed to put the data objects that may be 

accessed by clients together in the file system based on the access patterns. Other 

examples, which include [Fan99], [Palpanas99], and [Padmanabhan96], proposed to 

use the Partial Match model to do the predictions. 

 

b.) Adaptive Caching 

The focus of the current research reported in the literature in adaptive caching is 

to run the replacement dynamically [Podlipnig03]. The researchers proposed to 
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weigh the parameters in different situations to guide the replacement process 

[Podlipnig03], and to selectively apply different predefined replacement strategies. 

 

c.) Web traffic characteristics 

There are two related issues. The first is the nature of the workload. One of the 

metrics [Douglis97] in this case is temporal locality, which is related to the LRU 

approach [Wang99], [Podlipnig03]. The second is the inter-arrival times (IAT), 

which can affect the stability of the caching system [Paxson95], [Taqqu03], 

[Willinger03]. 

 

2.3 WEAKNESS OF PREVIOUS TECHNIQUES 
Caching is generally recognized as a technique to shorten the service RTT in 

information retrieval over the Internet. This is achieved by improving the proxy 

cache hit ratio through the use of different methods as summarized in Figure 2.1. 

However, there are several weaknesses of the existing techniques: 

1. Static cache size – the problem of the previous methods is that they can 

produce a high hit ratio but do not necessarily maintain it. The reason is that 

they exclusively work with a cache of fixed/static size. 

2. Heavy parameterization – the most researched topic in caching is the issue of 

replacement strategy. The previous strategies can get very complicated by 

leveraging many parameters such as workload, recency, and relative object 

popularity [Jin00a]. Heavy parameterization can be counterproductive 

because of its long computing time. By the time the remedy is computed the 

real problem has already gone. Using the remedy to correct a spurious 
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problem can produce deleterious/undesirable effects.  

3. Internet traffic – the existing hit-ratio enhancing strategies do not take 

Internet traffic into account. This can be dangerous because the Internet 

traffic is changing continuously [Paxson95]. 

In this thesis, we propose a framework that can solve these problems. It can 

maintain the given hit ratio by dynamic cache size tuning. It also supports the 

time-critical applications with short computation time to avoid deleterious effect. 

Furthermore, it has the ability to ward off the ill effects by different Internet traffic 

patterns. 

 

2.4 CONNECTIVE SUMMARY 
In this chapter different previous caching techniques from the literature are 

evaluated. These techniques have different strengths and weaknesses. Even though 

they may generate a high hit ratio, they cannot necessarily maintain it because they 

work with a static cache size. In addition, these techniques do not compensate for the 

ill effects caused by the changing Internet traffic pattern, which can be SRD or LRD. 

Hit ratio maintenance needs the support of dynamic cache size tuning, which 

naturally works with a variable cache size. This is the basis of my PhD research and 

the problem statement and methodology will be presented in the next chapter. 
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CHAPTER 3 

PROBLEM STATEMENT AND MEHODOLOGY 

3.1 INTRODUCTION 
Without caching support the Internet can easily become terribly congested, slow 

and lose its appeal. The danger of congestion is aggravated by the fact that the World 

Wide Web (WWW) volume of pages has a monthly growth rate of around 15% but 

the Internet backbone capacity increases only by 60% yearly [Bharat98]. The 

massive amount of information needed to be transferred across the network in 

browsing and information retrieval can quickly deplete the amount of sharable 

bandwidth. This situation worsens if retransmissions are involved as a means to 

recover the information lost owing to different kinds of network faults, which are 

inevitable due to the sheer size and heterogeneous nature of the Internet. As 

explained earlier, caching alleviates network congestion and speeds up WWW 

information retrieval by providing two advantages. The explicit advantage is the 

shortening of the service roundtrip time (RTT) for WWW information retrieval. The 

service RTT is the time interval between sending a request by the client and getting 

the corresponding result from the server correctly. The service RTT in this 

client/server relationship conceptually consists of two legs. The first leg is for the 

roundtrip between the client and the proxy server, and the second leg is between the 

proxy server and the remote data source or web server. If the proxy server finds the 

data object in its cache, then the second leg is automatically obviated. The hit ratio is 
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the probability of finding the required data locally in the proxy’s cache. 

The importance of caching for the Internet can be separated into two main 

aspects, namely, from the view of a wired network, and from that of a “wired and 

wireless” infrastructure: 

1. Wired network: The main concern here is how to use caching to alleviate 

network congestion, which can be caused by many factors, including 

unpredictable router bottlenecks [Braden98] that can cause sizeable fluctuations 

in traffic throughput in the network, resulting in system-level and user-level 

buffer overflows [Wong02a]. This is compounded by the ever growing data 

object size [Bjarat98], [Duska97]. Caching as a technique can resolve the 

problem of ever growing data object sizes. Nowadays data objects which were 

mostly textual in the past, are more complex and frequently tend to be 

multi-media. As mentioned above, the different empirical studies (e.g. 

[Bjarat98], [Duska97]) have found that web page size increases by 15% 

monthly but the Internet backbone capacity improves by only 60% yearly. If 

this continues, the Internet backbone bandwidth will be unable to sustain the 

huge number of large web objects to be transferred across the Internet. The 

result would inevitably be massive network congestion that would make the 

Internet impractical. The congestion problem is real because of the following 

reasons: a) WWW is relatively inexpensive and faster than other means, and b) 

WWW provides a wide range of popular information such as daily news, 

entertainment programs, weather reports, transportation schedules, financial 

news, and e-shopping. 

2. Wireless network: Wireless communication is basically unreliable and has a 
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high loss rate. In contrast to the wired network, in which it is possible to ask the 

sender to reduce transmission to alleviate congestion (i.e. throttling), the 

wireless network improves reliability by fast retransmissions. Therefore, wired 

and wireless networks have contradictory requirements to deal with data losses 

due to network congestion or other faults that include traffic ill effects 

[Paxson95]. If the proxy server does not need to search for the required data 

objects from remote data sources again for retransmission, then it supports fast 

retransmission for the data object that is immediately available in its cache. It 

implies that the cache always keeps the hot/popular data objects 

[Tanenbaum96].  

3. “Wired and wireless (W&W)” situations: In the context of this research these 

situations are called the mobile distributed systems (MDS), which will be 

discussed in the next section. The presence of caching with a “surrogate” server 

balances the needs of both the wired and wireless sides and resolves the 

contradiction. On the one hand the surrogate cache keeps as much hot data as 

possible so that fast retransmissions on the wireless side can be supported. 

However, the same cache of hot data can prevent the surrogate from conducting 

excessive remote searches for the required data sources by cyber foraging 

[Garland02]. 

 

3.1.1 MOBILE DISTRIBUTED SYSTEMS (MDS) 

These systems are all of the “W&W” nature, and the wireless side can be 

mobile or pervasive. Examples such as those mentioned above, involve many 

different cutting edge technologies for support, including location-aware means to 
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Figure 3.1 illustrates the information retrieval actions in a MDS, which has a 

wireless smart space [Garlan02], [Weiser91] and a supporting wired PCI (Pervasive 

Computer Infrastructure). The nomadic users follow the transient mass transit and 

pass through the wireless smart space of the W&W system. In the light of 

information retrieval “on the run”, they use their SFF devices to make requests. 

Therefore, the number of retrieval requests is tied to the mass transit traffic pattern 

[Malla03]. The SFF device interacts with the assigned surrogate node in the PCI. 

The surrogate, which is temporarily assigned to provide assistance, is a gateway to 

other PCI nodes. It houses different logical servers or agents. If a surrogate can enlist 

help from the other PCI nodes, the result is cyber foraging [Garlan02]. For example, 

if an agent, which is a proxy server, cannot find a data object requested by a SFF 

client locally, it may ask for help from other PCI nodes through its surrogate. This is 

easily achieved if the PCI operates with the peer-to-peer content distribution concept 

[Androutsellis-Theotokis04], [Wang99], as demonstrated by the Gnutella framework 

[Gnutella]. This framework allows direct sharing of computer resources without a 

central server. The peer-to-peer architecture scales and self-organizes freely in 

response to sudden increases in the number of network nodes and partial failures. 

If the data object to be retrieved is not in the PCI domain, then the latter enlists 

the DNS (Domain Name Server) to help locate it in one of the remote data sources 

(web servers). Therefore, data retrieval in the W&W architecture is similar to the 

wired network by having two “legs” in the information retrieval process. The first 

leg is the average RTT delay between the SFF client and the agent server, which 

finds the information locally. The second is the average RTT required to find the 

information object involving other PCI nodes and possibly the DNS. The importance 



for the agent server to have a local cache is shown by the speedup calculation as 

given in equation (3.1). 
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In this equation, the average RTT for the first leg is RTTleg1 and that for the 

second leg is RTTleg2. If the average hit ratio ψ of the agent’s cache is 60% or 0.6 (i.e. 

miss ratio is (1- ψ or 40%), for RTTleg1=1, and RTTleg2=10 then the speedup for the 

retrieval operation is 2.2 fold. The agent’s 60% cache hit ratio is the chance of 

obviating RTTleg2 to produce this speedup. The calculation of Scache in this case is as 

follows: 
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The Scache speedup benefit provided by caching is essential for sharing WWW 

information and data efficiently. This benefit has inspired different areas of research 

in caching as discussed in chapter 2. All the strategies and algorithms from the 

literature are aimed at producing a high Scache value but not necessarily maintaining it. 

These approaches use a fixed/static cache size and leverage different parameters. In 

fact, too many parameters could be counterproductive because heavy 

parameterization leads to long execution time and deleterious effects. A long 

execution implies that by the time the caching solution is computed the actual 

problem may have already passed. The solution ends up correcting a spurious 

problem and leads to undesirable or deleterious consequences. Maintaining a given 

hit ratio requires dynamic cache size tuning. It is also important any solutions 

developed in this thesis should utilize light parameterization.  

In fact, the loop of “information retrieval request and information return” in the 
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Figure 3.1 is a high-level view. If this view is put into the e-diagnostic process such 

as in telemedicine applications, then it is the sending of vital signs to the IMS 

(Intelligent Medical Server) or virtual doctor, which will return the diagnostic results 

in the fastest possible time to save lives. This will be explained in more detail later in 

chapter 11. With respect to Figure 3.1 the sender is simply a SFF device and the IMS 

is a specialized logical server in one of the surrogate.  

 In chapter 1, we noted the importance of web caching in reducing RTT time. 

Figure 1.1 has illustrated this, and Figure 3.1 has further illustrated this by the 

“information retrieval request and information return” cycle. In all the networks the 

average RTT is a factor for measuring performance. In time-critical applications a 

shorter RTT is always essential in order to meet the scheduled deadline. For example, 

in Figure 3.1 the performance in term of speedup can be represented by equation 

(3.1). The second leg for the RTT in this case involves the DNS and therefore can be 

excessively long. In fact, it generalizes the similar impact by RTT on the 

performance of wired, wireless and W&W situations. An important feature is to 

provide not only reduced RTT but also same predictability in RTT. It is important to 

develop a solution that gives a minimum hit ratio. In this chapter, we will give a 

description that is necessary to more precisely formulate the problem definition. In 

chapter 2, the review of the literature describes the need to produce a framework that 

maintains a given minimum hit ratio as the best approach to caching. 

 

3.2 PROBLEM DEFINITION 
The aim of the thesis is to develop an efficacious dynamic cache size tuner that 

can shorten the client/server service RTT by maintaining the given cache hit ratio 
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under all operation conditions. This is achieved by obviating the second-leg delay in 

information retrieval to produce the Scache speedup shown in equation (3.1). Dynamic 

cache size tuning is a relatively pristine area with little experience published in 

literature. It is important to understand what kind of characteristics are there so that 

the proposed conceptual framework for dynamic cache size tuning is suitable for 

real-time applications. It has become known that the Internet traffic, which follows 

the power law [Medina00], can assume different patterns at different times. These 

patterns can cause system failure if the system is designed with a preconceived 

mathematic model such as Poisson [Paxson95], [Lewis96]. In order to prevent the 

final proposed conceptual framework from falling into similar pitfalls, they should 

be statistical and work by direct data measurement. The dynamic cache size tuning 

models are different realizations of a generic framework, which is based on a well 

defined principle, for example, the “Zipf Law” [Breslau99], [Glassman94]. Yet, this 

generic model should be evaluated with respect to some applications, for example 

mobile and telemedicine applications. Since I have done some research in TCM 

(Traditional Chinese Medicine) data mining in my previous MPhil thesis [Wu02], 

the dynamic cache size tuning model(s) proposed in this research will be evaluated 

in this direction. The aim is to ensure that these model(s) would yield the same 

efficacy in wired and “W&W” situations. 

 

3.3 DEFINITION OF TERMS 
In order to make the problem statement for my PhD research more 

understandable and precise the following terms are defined: 

a. Asymmetric rendezvous: It is the client/server interaction relationship, in 
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which the server is simultaneously serving different clients.    

b. Cache: It is a local memory where the proxy server keeps all the popular/hot 

data. 

c. Caching parameters: Every placement algorithm leverages different metrics 

to ensure enough hot data is in a cache of static size. These metrics include 

“least frequently used objects”, least recently used objects” and others.     

d. Client: It is the service user. 

e. Compensation measure: A compensation measure is to bring any deviation 

back from the norm of system operation.  

f. Deleterious effect: It is caused by the fact that the time needed for computing 

the remedy is longer than the problem duration. The computed remedy ends 

up correcting a spurious problem can cause undesirable side effects. 

g. Dynamic cache size tuning: It is a technique to maintain a given hit ratio 

under all operation conditions by leveraging the chosen network parameter(s). 

It differs from yielding a high hit ratio because it involves a variable cache 

size, which is adjusted on the fly. Existing placement techniques [Bresalu99], 

[Aggarwal99] leverage different parameters to yield a high hit ratio but do 

not maintain it because they all work with a static cache size. 

h. Hit ratio: It is the chance of finding a requested data in the proxy cache, and 

the chance of not finding it is the miss ratio. If the data is not found, then the 

proxy has to search the data object via the DNS (Domain Name Server) of 

the Internet form the remote data source(s) or web server(s). 

i. Inter-arrival time (IAT): The time between the arrival of the objecti and 

objecti-1. 
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j. Internet traffic and traffic pattern: The Internet follows the power/hyperbolic 

law and its traffic pattern changes over time, for example, from SRD 

(short-range dependence) to LRD (long-range dependence) or vice versa. 

This kind of change can lower system stability or cause failure. 

k. Long range dependence (LRD): It is the characteristic of the stationary 

stochastic processes with slow decay of correlations such as self-similar and 

heavy-tailed. 

l. Minimum given hit ratio: A dynamic cache size tuner can yield two effects. 

The first is to try to maintain the given hit ratio but with oscillations that 

sometimes bring the final hit ratio below the given value. The second is to 

upkeep the hit ratio so that it is consistently above the given value. A tuner 

that yields the given hit ratio as the minimum is definitely more efficacious 

than the one that produces the first effect and provides more performance 

advantage.  

m. Parameter tuning: Some placement algorithms would tune the parametric 

values to produce a high hit ratio, but they cannot maintain it because it 

works with a static cache size. Besides, work with too many parameters 

would lead to heavy parameterization, which needs long execution time to 

compute the hit ratio and causes deleterious effects. 

n. Real-time traffic pattern detection (RTPD): This is the technique to determine 

the traffic pattern anytime on the fly. This technique is novel because the 

existing techniques are exclusively for off-line or postmortem analysis with 

pre-collected traces. 

o. Relative object popularity (ROP): This is a distribution of access frequencies 



versus the specific objects over the period of interest. The standard deviation 

of the distribution changes if the users shift their preference for some objects 

in the period. 

p. Roundtrip time (RTT): It is the interval between the sending of a request by a 

client and the correct reception of the corresponding answer. This interval is 

affected by the delays caused by retransmission; the more transmissions the 

longer the RTT.  

q. Proxy server: It is the gateway for the clients within a protecting firewall to 

communicate with the outside world. 

r. Server: It is the service provider. 

s. Service response time: It is the duration between sending a request and 

receiving the correct service result from the server by a client. 

t. Short range dependence (SRD): It includes Markovian traffic patterns such as 

Poisson. 

u. Stochastic process - A process that works with operation paths and any path 

is traced from one end to the other by events at the intermediate hops. It is 

discrete over the Internet. 

v. Zipf-like behavior: Every sizeable caching system has a specific Zipf-like 

behavior defined as β−∝ )1()( rry , where r is the ranked position of the 

object with respect to its access frequency relative to others. The β parameter, 

which is within the 0 < β ≤ 1 range denotes this relativity, and for β =1 it is 

called the Zipf Law. 
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3.3.1 PROBLEM STATEMENT 

The aim of the research is to develop a technique for a dynamic cache size 

tuning framework that can maintain the give cache hit ratio consistently under all 

Internet conditions. This conceptual framework should support the following salient 

features: 

a. The framework should leverage as few network parameters as possible so 

that its computation time is short enough for real-time applications and it 

does not cause serious deleterious effects at the same time. 

b. The cache size adjustment computation on the fly should be accurate and 

quick, and independent of Internet traffic patterns. This requires efficient 

statistical sampling techniques, which are likely to be based on the Central 

Limit Theorem (CLT) [Chis92], [Jain91]. 

c. The final framework should accommodate a real-time traffic detection 

(RTPD) system/mechanism and use the detected result to self-reconfigure to 

compensate for the traffic ill effects on the tuning accuracy. 

d. The RTPD mechanism should be able to work accurately with sample 

aggregates of a discrete stochastic process [Leland94], [Taqqu03] and 

[Willinger03]. 

Therefore the objectives of the project include the following: 

a. Propose the conceptual framework that leverages the minimum number of 

network parameters for accurate dynamic cache size tuning. 

b. Propose compensation measures that help the framework work healthily 

under extreme conditions.  

c. Propose a RTPD mechanism that is suitable for time-critical applications so 
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that it can be included as part of the framework, which with RTPD support 

can reconfigure itself for more efficacious dynamic cache size tuning on the 

fly. 

d. Verify the generic framework with simulated and live datasets/traces.  

e. Verify that the proposed framework can indeed support wired and wireless 

client/server interactions with similar efficacy. 

f. Verify that this efficacy applies to mobile and time-critical applications such 

as telemedicine. 

 

3.4 METHODOLOGY 
In order to make research a success methodology in strategy and management is 

very important [Ketchen04]. Usually a research process can be divided into many 

phases, for example, the eight-step model by Kumar [Kumar96]. The steps are: a) 

formulating the problem, b) conceptualizing the design, c) constructing an 

instrument for data collection, d) selecting the sample type for testing, e) writing the 

research proposal, f) collecting the selected data type, and g) analyzing and 

processing the sampled data.  The research strategy and methodologies must suit 

the problem domain for good results. In fact, there are many existing strategies and 

methods in general to cover different problem domains. In the area of computing 

research three basic types of research can be identified, namely [Philips87]: 

1. Exploratory research: This type tackles a little known problem for which the 

research details cannot be formulated very well at the beginning. The result 

of this kind of research usually pushes out the knowledge frontiers and leads 

to discovery of new knowledge. 
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2. Testing-out research: This type is to find the limits of previous 

generalizations. 

3. Problem-solving research: This type usually starts with a specific real-world 

problem of well-defined characteristics and then brings all the available 

intellectual resources together for a reasonable solution. 

Once a suitable research methodology is decided, then one can adopt one of the 

following basic strategies: 

1. Top Down: The objectives are defined and realized step by step. The typical 

examples include: 1) Waterfall Model for software engineering that does not 

encourage user intervention, and 2) the Fast Prototyping that encourages 

repetitive user input until the system is finally accepted. 

2. Bottom Up: The coordination framework as a connective is first proposed so 

that what is available (commodities and/or intellectual resources) are 

interconnected into a single system. The complexity of the system increases 

with time.  

The Top Down approach is suitable for testing-out research, and the Bottom Up 

approach is natural for the problem-solving type.  

By nature this PhD research is exploratory because the topic of dynamic cache 

size tuning has little published experience. Even though this would produce a 

prototype for testing, which will support further research at the end, the process is 

naturally top-down because the course of research includes literature search, problem 

statement, proposed solutions, and data collection. It is, however, difficult to apply 

the Top Down approach in a strict sense because early exploratory investigations that 

produce unpredictable results are necessary. That is, the whole investigation would 
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Dynamic cache size tuning → Propose suitable model(s) → Statistical computation 

method(s)→ Real-time traffic pattern detection(RTPD)→ Combine RTPD and the 

proposed tuner model(s) to ward off the ill effects of traffic patterns on tuning 

accuracy→ Implementation issues→ Verify the effectiveness of the proposed tuner(s) 

to mobile and telemedicine applications. This path, however, represents one of the 

many possible “operation” paths in the course of the project because traversals back 

and forth are necessary for cross-reference, data refinement and/or comparison. 

Those items that should be investigated in the beginning of the research are in 

“solid-line boxes” and those “dotted-line boxes” should be investigated later (e.g. the 

second phase). The research is separated into two different phases because the results 

from the first phase would orient (or re-orient) the direction of the second.  

The traversals may involve the following sequences with backtracking: 

1. Understanding the rationale of caching in general,  

2. Studying some general caching approaches and statistical approaches,  

3. To propose a conceptual dynamic caching framework, MACSC (Model for 

Adaptive Cache Size Control), 

4. Implement the MACSC with different statistical approaches,  

5. Looking for a stable mobile-agent platform for testing purposes,  

6. Refining the MACSC frameworks for better data collection and analysis, and  

7. Demonstrating how the MACSC framework can be implemented in the real 

environment. 

 

3.5 CONNECTIVE SUMMARY 
 In this chapter the importance of effective web caching over the Internet to the 
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wired and wireless networks is discussed. A good caching system improves the 

performance of the network by reducing the RTT in a client/server interaction. This 

is achieved because if the required data is found in the local cache then the delay that 

involves the DNS is obviated. Caching can make use of a static cache size or a 

variable one. The latter case, which emphasizes maintenance of a given cache hit 

ratio on the fly, is called dynamic cache size tuning. Developing a novel conceptual 

framework for such a purpose is the problem to be achieved in this PhD thesis and 

the overview of the proposed solutions is provided in the next chapter. The roadmap 

for the research and project management is depicted in Figure 3.2. 

 

 



CHAPTER 4 

OVERVIEW OF SOLUTIONS 

4.1 INTRODUCTION 
In chapter 3, we defined the problem tackled in this thesis, namely the 

development of a dynamic cache size tuner to maintain a given hit ratio on the fly. In 

this chapter, the conceptual framework for dynamic cache size tuning, which is 

known as the MACSC (Model for Adaptive Cache Size Control), is proposed. This 

framework is based on the concept of the Zipf-like behavior, which is apparent in 

large caching systems [Glassman94], [Breslau99]. The MACSC would maintain a 

given hit ratio on the fly by leveraging a single parameter, namely, the relative object 

popularity (ROP) profile. In reality this profile changes with time due to the change 

of user preference for particular data objects for the period. The meaning of the ROP 

profile depends on the following views:  

1. General view: This is the distribution of access frequencies versus the 

“unsorted objects”. 

2. Zipf-like behavior: This is the log-log plot of β−= )1()( rry , where y(r) is 

the “logged” access frequency and r is the log value of the ranked position 

of the object. 

3. Popularity distribution (PD): This is formed by mapping y(r) into a 

bell-shaped curve. The mapping mechanism is bell(r)=map(y(r))+e (i.e. 

equation (5.1) in chapter 5), where e denotes the possible mapping error. 
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The MACSC framework is based on y(r) and bell(r) above. The argument is 

that if the PD profile changes, then this change is reflected immediately by the 

current standard deviation SD. The key issue is then how to measure the SD value 

quickly and accurately on the fly in a statistical manner because the popularity ratio 

(PR), namely, (SDi/SDi-1) or (SDi/SDi-1)2 can be calculated from two successive SD 

values, where i denotes the computation cycle. With the popularity ratio the cache 

size adjustment for maintaining the given hit ratio can be computed. The 

computation time must be short so as not to produce any deleterious effect, and this 

is the reason why the MACSC leverages only a single metric, namely, the ROP 

profile. In this way the MACSC is suitable for time-critical application because of its 

short execution time. 

Computing the SD value of the PD profile on the fly accurately and quickly is 

no trivial matter because of the following requirements: 

1. Waveform dependence: The accuracy should be independent of the 

waveform type because any method based on a preconceived mathematical 

model would lead to failure [Paxson95]. The SD value computation 

involves two waveforms or distributions, namely, the PD profile and the 

inter-arrival times (IAT) among the data object access. The negative 

impact of IAT may be serious. If the average IAT is much shorter than the 

MACSC execution time, then many data items could be missed in the 

sampling process, making the PR value inaccurate and the given hit ratio 

ineffectively maintained. Therefore the criterion for choosing a technique 

to compute the SD value of the PD quickly and accurately is the Central 

Limit Theorem (CLT); that is, the computation is statistical and by direct 
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data measurement. The MACSC computation time is its limit for 

time-critical or real-time applications. The execution time is, however, not 

fixed in terms of physical time but fixed by the number of clock cycles 

required as indicated by the Intel® VTune™ Performance Analyzer 

[VTune] (more details in the later sections). 

2. Sensitivity: The power of the MACSC relies on the sensitivity of the SD 

leveraging/computation mechanism. The SD value is crucial for remedying 

the cache maintenance process correctly in a short interval. The sampling 

process involved must have enough sensitivity to dynamically follow the 

contour of changes in the ROP profile. 

In this research four different methods, which represent an evolutionary process, 

were proposed as follows: 

1. Point estimate (PE): This CLT based method is sensitive to changes in the 

ROP profile, but it generates a lot of oscillations due to the lack of a 

feedback system. 

2. M3RT: This CLT based technique is transcribed from another problem 

domain, namely, Internet End-to-End Performance Measurement (IEPM) 

[Cottrel99], [Cottrel01]. Previous experience [Ip03] has confirmed that it 

always yields the mean of any waveform accurately in real-time 

applications because it has a feedback loop. The good quality of stability of 

this technique, however, becomes a liability for MACSC application 

because there is a need to strike a balance between stability and sensitivity, 

and this led to the proposal of the “fine-tune point estimate (F-PE) 

technique. 



3. F-PE: It combines the merits of PE sensitivity and M3RT stability and 

accuracy due to the presence of a feedback loop. The goal is to decide how 

much feedback should be allowed and incorporated into the PE process. 

4. RTPD: It was observed in the early experiments that the Internet traffic 

patterns have different ill effects on the MACSC accuracy. Therefore, a 

RTPD (real-time traffic pattern detection) mechanism is included in the 

original MACSC framework to make the newer RTPD/MACSC approach. 

The aim is to let the RTPD mechanism identify the traffic pattern at the time 

so that the MACSC can “reconfigure” itself to neutralize the traffic ill 

effects on the fly. In the MACSC research context, the RTPD/MACSC 

approach is a form of reconfigurable dynamic cache size tuning.  

As a result there are in total four specialized solutions derived from the general 

MACSC framework. The specialization is determined by the technique whereby the 

PD's SD is computed on the fly in each solution. The four solutions are: 

MACSC(PE), MACSC(M3RT), MACSC(F-PE), and RTPD/MACSC(PE) and they 

will be introduced in the next section. 

DYNAMIC CACHING

MACSC

MACSC(PE)

STATISTIC APPROACH

MACSC(M3RT)

MACSC(F-PE)

RTPD/MACSC(PE)

RE-CONFIGURATION APPROACH

REAL TIME TRAFFIC DETECTION

 
Figure 4.1 A summary of the research roadmap 
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The concise representation of the roadmap for project management is shown in 

the Figure 4.1. In this hierarchy my research effort is represented by the right branch, 

namely, dynamic caching, which leads to the proposal of the MACSC dynamic 

cache size tuning framework. The two major factors that affect the stability and 

efficacy of the framework are: a) using the correct statistical approach and b) 

real-time traffic pattern detection, which addresses the issue of MACSC 

reconfiguration.  

 

4.2 OVERVIEW OF SOLUTIONS 

4.2.1 MACSC FRAMEWORK 

The MACSC (Model for Adaptive Cache Size Control) conceptual framework is 

novel and original because it is the only known approach that addresses the issue of 

dynamic cache size tuning [Wong03]. It maintains the given cache hit ratio 

adaptively and consistently by tuning the cache size according to the current 

popularity ratio currently computed on the fly. The hit ratio maintenance not only 

shortens the client/server roundtrip time (RTT) consistently but also reduces the need 

for long-haul data transfer. As a result more backbone network bandwidth is freed 

for public sharing leading to better network throughput. The MACSC rationale is 

“reasonable memory usage to maintain the given cache hit ratio”. The cache size has 

to be timely increased/decreased to accommodate enough hot data objects to satisfy 

the given hit ratio, without excessively consuming the system memory resources.  

 The MACSC tunes the cache size by leveraging the relative object popularity 

(ROP) of data objects as the sole parameter. The framework is based on the Zipf-like 

behavior that is intrinsic to large traces of cached data objects [Breslau99], [Zipf]. 
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MACSC transforms the Zipf-like curve of the data objects into the bell curve 

conceptually. This bell curve is called the popularity distribution, which provides the 

basis for the popularity ratio computation to determine the size of the cache 

adjustment. In the research it was found that some data traces did deviate from the 

Zipf-like behavior. To compensate a deviation behavior compensation measure is 

proposed for the MACSC. The detailed discussion of MACSC framework will be 

presented in chapter 5. 

 

4.2.2 MACSC(PE) 

 In the MACSC framework the cache size is adjusted according to the popularity 

ratio computed for the data object access pattern. The popularity ratio computation 

accuracy is affected by two factors. The first factor is the speed at which the 

popularity profile changes its shape. Any change as such, in effect, is a reflection of 

the change of user preference for particular data objects and this requires the 

computation method to be distribution/waveform independent. The second factor is 

the inter-arrival times (IAT) among the data object retrieval requests. 

 The statistical point-estimate (PE) method was selected for use in the first 

MACSC implementation. The PE computation accuracy is inherently independent of 

the shape of the waveform because it is based on the Central Limit Theorem. The PE 

based MACSC framework is called the MACSC(PE). The detail of the MACSC(PE) 

is discussed in the chapter 6. 

 

4.2.3 MACSC(M3RT) 

Although the PE method can estimate the standard deviation of the data objects 
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accurately in most of the cases, it has two shortcomings: unpredictable computation 

time and serious hit ratio oscillations. The unpredictable computation time problem 

is due to the impact of the inter-arrival times (IAT) lengths. For example, in a burst 

mode the IAT may be shorter than the sampling ability of the controller per sampling 

cycle time. As a result the controller misses data items repeatedly and inadvertently 

makes wrong calculations that lead to undesirable or deleterious effects. For these 

reasons, an alternative to the PE approach has to be explored, and this leads to the 

adoption of the Convergence Algorithm (CA), M3RT (Micro Mean Message 

Response Time) technique, which is also based on the Central Limit Theorem and 

therefore its accuracy is waveform/distribution independent. This technique was 

originally proposed for IEPM (Internet End-to-End Performance 

Measurement[Cotrell99]) applications and the aim is to estimate the mean message 

response time accurately and quickly. The M3RT can eliminate the problem of 

unpredictable computation time because it works with a chosen number of data items 

in every prediction cycle. This number is called the flush limit f and the range of 9 ≤ f 

≤ 16 always yields the quickest convergence in IEPM applications The M3RT based 

MACSC framework is called the MACSC(M3RT). The MACSC(M3RT) approach 

provides several benefits that make its computation time more predictable, and those 

are as follows: a) it maintains the prescribed hit ratio efficaciously, b) it lessens 

cache size oscillation, and c) it uses a fixed number of data samples. The solution is 

unique because: a) it utilizes the relative popularity of the data objects as the sole 

control parameter and b) it tunes the cache size adaptively by direct data 

measurement with the CA support. The details of the MACSC(M3RT) approach will 

be discussed in chapter 7. 
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4.2.4 MACSC(F-PE) 

Although the MACSC(M3RT) approach can resolve the computation time and 

oscillation problems of the MACSC(PE), it uses more memory. Therefore, the third 

approach, namely, MACSC(F-PE) is proposed, where “F-PE” stands for fine-tuned 

point estimate. This approach combines the advantages of the PE sensitivity and the 

M3RT feedback stability. It uses the PE technique to estimate the standard deviation 

of the data objects, but with the support of a feedback system that uses history to 

moderate the PE process. The details of the MACSC(F-PE) approach will be 

discussed in chapter 8. 

 

4.2.5 RTPD/MACSC(PE) 

 The Internet follows the power law [Medina00] and its traffic assumes different 

patterns over time, for example, long-range dependence (LRD) and short-range 

dependence (SRD) [Molnár99]. Continued studies of different traffic patterns led to 

the conclusion by Paxson [Paxson95] that any system, which is designed with a 

preconceived mathematical model in mind (e.g. Poisson), would fail over the 

Internet. In the different experiments with the MACSC(PE) prototype, it was 

observed that different IAT traffic patterns can affect the dynamic cache size tuner’s 

accuracy. The new framework, namely, RTPD/MACSC(PE) is proposed to resolve 

this problem. The real-time traffic detection/detector (RTPD) capability is 

incorporated into the MACSC framework. In the RTPD/MACSC(PE) approach the 

MACSC mechanism uses the RTPD capability to detect and identify the specific 

traffic pattern embedded in the IAT traffic so that it can reconfigure itself to deal 

with traffic ill effects. 



4.2.6 RTPD/MACSC(F-PE) 

 Logically this solution should be useful because the RTPD capability could 

neutralize the traffic ill effects as for MACSC(PE). The experimental results for the 

MACSC(F-PE) solution by itself, however, has revealed that its performance is 

traffic independent. This means that adding the RTPD capability to the 

MACSC(F-PE) solution provides no advantage. For this reason the possibility of 

having a RTPD/MACSC(F-PE) solution was not investigated further. The details of 

the RTPD/MACSC(PE) and other issues will be discussed in chapter 9. 

 

4.3 CONNECTIVE SUMMARY 

MACSC
FRAMEWORK

MACSC(PE) MACSC(M3RT)

RTPD/MACSC(PE)

MACSC(F-PE)

By Point-Estimate
(PE) technique to
estimate the standard
deviation

By Convergence
Algorithm, M3RT to
estimate the standard
deviation

Combine the PE technique and
M3RT feedback to estimate the
standard deviation

Uses the real-time traffic
detection/detector (RTPD) to
detect the traffic pattern and
uses different reconfiguration
scheme on different traffic
pattern

RTPD/MACSC

 
Figure 4.2 Overview of the solutions 

This chapter provides the overview of four MACSC solutions: MACSC(PE), 

MACSC(M3RT), MACSC(F-PE), and RTPD/MACSC(PE). Figure 4.2 summarizes 

the relationship among these four solutions, and the details of which will be 

elaborated in subsequent chapters. The MACSC(F-PE) result indicates that the 

RTPD/MACSC(F-PE) solution is redundant because the former is already traffic 

independent. 
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CHAPTER 5 

THE MACSC CONCEPTUAL FRAMEWORK 

5.1 INTRODUCTION 
In chapter 4, we gave an overview of the MACSC (Model for Adaptive Cache 

Size Control) conceptual framework, which is based on the Zipf-like behavior that 

reflects the relative popularity data objects in a set. In this framework the dynamic 

cache size tuning mechanism leverages this relative popularity profile as the sole 

parameter. The key of leveraging is to compute the current standard deviation of the 

popularity distribution (PD), which a bell curve obtained by transforming the 

Zipf-like behavior (as shown by equation (5.1)). The focal issue that follows is how 

to compute the PD standard deviation correctly and quickly on the fly and per 

dynamic cache size tuning cycle. Addressing this issue led to the proposals of 

different solution strategies in this thesis. In this chapter, the discussion is focused on 

the MACSC conceptual framework. As introduced in chapter 4, the aim of the 

MACSC framework is dynamic cache size tuning, which maintains the given cache 

hit ratio adaptively and consistently by adjusting the cache size according to the 

popularity ratio computed from two successive PD standard deviations. It 

contributes to shortening the server roundtrip time (RTT) in a client/server 

interaction. For e-business this is good news because a short RTT keeps customers 

happy. The ability of a proxy server to maintain the prescribed hit ratio for the local 

cache reduces its need to access remote data sources (e.g. web servers) for those data 
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objects requested by clients. This kind of long-haul information retrieval operation 

can congest the network because of the vast amount of data often needed to be 

transferred. This inevitably consumes the network bandwidth excessively and leads 

to sluggish performance. In contrast, dynamic cache size tuning, which keeps more 

hot data objects in the server’s local cache, reduces the need for long-haul data 

transfer. As a result more backbone network bandwidth is freed for public sharing 

leading to better network throughput. 

The MACSC framework belongs to the area of caching adaptivity, which also 

addresses other issues such as: a) re-configurable caching hierarchies/architectures 

[Michel98], and b) adaptive models for optimizing cache performance with 

operation history [Reddy98], [Bolot96]. It focuses on supporting small caching 

systems of limited memory resources. It is especially suitable for small caching 

systems of limited memory resources because it strives to maintain the given cache 

hit ratio as a minimum, without excessive cache memory consumption. These 

inexpensive systems, which usually cost less than US$1,000, are popular in the field 

[Wessels01]. For these small systems poor caching would lead to excessive cache 

memory consumption and poor system performance. This results in frequent task 

suspensions due to lack of recyclable memory. The MACSC rationale is “reasonable 

memory usage to maintain the given cache hit ratio”. 

The potential benefits from caching such as those described have inspired 

different relevant areas of research. The most researched topic so far, however, is 

how to devise efficacious replacement algorithms. The goal is to push out as many 

data objects from the cache as possible to make room for hotter newcomers so that a 

high cache hit ratio can be attained [Aggarwal99]. Replacement algorithms from the 



literature, however, work exclusively with a fixed-size cache. As a result they may 

produce a high cache hit ratio but not necessarily keep it because maintaining a 

prescribed hit ratio requires dynamic cache size tuning. The cache size has to be 

timely increased/decreased to accommodate enough hot data objects to satisfy the 

given hit ratio, without excessively consuming the system memory resources. The 

only known example that addresses this issue is the MACSC framework [Wong03]. 

 

5.2 MACSC 
The MACSC mechanism carries out dynamic cache size tuning by leveraging 

the relative object popularity (ROP) of data objects as the sole parameter. Using 

ROP to produce a high cache hit ratio is a relatively recent concept. For example, it 

is leveraged as an additional parameter in the “Popularity-Aware Greedy Dual-Size 

Web Proxy Caching Algorithms” [Jin00a], [Cao97], [Young91]. The only framework 

that leverages ROP as the sole parameter is the MACSC. If the ROP is used as an 

additional parameter, its potential benefit is easily offset by the long execution time 

caused by the heavy parameterization of the algorithm. 

 

 
Figure 5.1 Zipf-like distribution (log-log plot) 

 
Figure 5.2 Bell shape distribution 
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exymapxbell += ))(()(  (5.2) 

The bell curve in figure 5.2 produced by equation (5.1) is called the popularity 

distribution (PD) that represents the changing relative popularity profile of the data 

objects. The central region of this curve includes the more popular objects, and fhighest 

is the “mean of the PD distribution” in the MACSC context [Wong03]. The shape of 

the PD changes over time due to changes in the user preference towards specific data 

objects. The changes are immediately reflected by the corresponding PD standard 

deviation (SD) values. For example, the three curves: A, B and C in Figure 5.3 

represent different PD shapes at different time points. The running MACSC 

mechanism continuously monitors the SD changes and uses them to tune the cache 

size adaptively. This tuning process strives to maintain the prescribed hit ratio as a 

minimum, and the adjusted cache size (ACS) is computed using either equation (5.3) 

or equation (5.4). The given cache hit ratio is usually expressed in terms of the 

number of standard deviations σ. For example, σ=1 means 68.3% and σ =2 for 

95.4%.  
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The popularity ratios for equation (5.3) and equation (5.4) are the standard 

deviation ratio (SR) (i.e. current PD standard deviation over the last or 

SDcurrent/SDlast) and the variance ratio (VR) (i.e. (SDcurrent/SDlast)2) respectively. 

 The following plots show the transformation operation of the MACSC. Figure 

5.4 is the pre-collected data trace, EPA-HTTP (From US Environmental Protection 
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Agency) [SIGCOMM], and Figure 5.5 is the plot of access frequencies versus 

corresponding ranked objects. From Figure 5.5, the log-log plot in Figure 5.6 is 

produced, and this plot barely exhibits the Zipf-like behavior for β =1.0014. The 

detail of this will be explained in the section 5.3.2, which discusses deviation 

behavior compensation. Figure 5.7 is the bell curve transformed from Figure 5.6. 

The ACS will be calculated based on the information of the Figure 5.7. 
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Figure 5.6 The log-log plot of frequency 
against ranking of EPA-HTTP 
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5.3 COMPENSATION MEASURES FOR MACSC 

5.3.1 INITIALIZATION COMPENSATION 

The MACSC efficacy hinges upon the accurate measurement of the PD 

standard deviation changes. Equation (5.3) stipulates that the cache size should 

change adaptively with respect to the current (SDj/SDj-1) ratio. It adjusts the cache 

size by using two consecutively measured PD standard deviations (e.g. in the (j-1)th 

and jth cycles). The correct implementation of equation (5.3), however, depends on 

the accurate estimation of the initial cache size before the MACSC starts. Any 

initialization error will propagate throughout the whole dynamic cache size tuning 

process. To eliminate this error propagation problem, equation (5.3) should be 

changed to the form in equation (5.5) for implementation. The symbol is the 

number of standard deviations (i.e.

∇

σ=∇ ) that specify the given hit ratio to be 

maintained (e.g.  for 68.3% and 1=∇ 2=∇  for 95.4%). It is actually part of the 

numerator and the denominator (but they cancel out) in the (SDj/SDj-1) expression. 

The OSaverage value in equation (5.5) is the mean object size that MACSC is dealing 

with. Before MACSC runs (i.e. at time t=0 and j=1) the initial cache size is 

set to . The value is the standard deviation 

computed from the past performance data. Equation (5.5) stipulates that for  

the cache size tuning process should not depend on  but the current SD

1
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measured in the jth cycle. Similarly the implementation of equation (5.4) should take 

the form of equation (5.6).  The MACSC cache size initialization is considered as 

the 0th cycle or j=0. The initial cache size of  

becomes the “seed value” for . In the subsequent dynamic cache tuning cycles 
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this seed value is replaced by averagej OSSD ***2 ∇  and the factor “2” arises from 

considering one ∇ on both sides of the mean.  This scheme eliminates the 

propagation of the initialization error due to inaccurate  estimation. The 

VR based tuning process is, hence, tied to the latest computed SD

0
0

=
=

j
VRt

ACS

j value for . 1≥j

averagej
j

SR OSSDACS ***2 ∇=  (5.5) 

averagej
j

VR OSSDACS *)(**2 2∇=  (5.6) 

 

5.3.2 DEVIATION BEHAVIOR COMPENSATION 

The MACSC core consists of two popularity ratios, namely SR and VR. These 

ratios conceptually come from the popularity distribution shown in Figure 5.2. 

Firstly, it has been empirically found that large caching systems exhibit Zipf-like 

behavior [Breslau99], [Zipf]. This behavior for every system is unique and is 

characterized by a log-log linear regression of the (1/r)-β form of a specific β value in 

the 10 ≤< β  range, where r marks the rth most popular object ranked in descending 

order (Figure 5.8). For a trace of insufficient number of requests the β value may be 

outside the 10 ≤< β  range. In the Figure 5.8, the β value of the BU-Web-client is 

equal to 0.9817. However, the β value of the NASA-HTTP-client in figure 5.9 is 

equal to 1.1. It is because the number of requests contained in the 

NASA-HTTP-client trace is not large enough that the β value is outside the 

10 ≤< β  range. This deviation from the formal Zipf-like expectation is the 

deviation behavior in the MACSC context. The deviation behavior phenomenon is 

compensated in two steps. The first is to assess the quality of the log-log linear 
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regression that produces β (i.e. Crry +−= *)( β ). The quality is reflected by the 

coefficient of determination or R2, a higher R2 value for better quality. The second 

step is to choose an appropriate threshold ThR2 and reject the linear regression for 

ThR2 > β. Rejection means continuing to use the last popularity ratio until the 

R2>ThR2 condition is satisfied. 
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Figure 5.8 The log-log plot of BU-Web-client 

(169 days) 
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Figure 5.9 The log-log plot of 
NASA-HTTP-client (31 days) 

Both the bell(r) and bell(x) curves are called the popularity distributions (PD), 

which quantify the same relative data object popularity profile. bell(r) is the 

conceptual popularity distribution and bell(x) is its “anti-log” version for 

implementation. Figure 5.1, in effect, depicts the changes of the PD shape over time 

due to shift of user preferences for particular data objects. The Y-axis of the PD 

records the access frequencies (or probabilities) for the corresponding objects on the 

X-axis. The PD variability (spread) is characterized by the standard deviation (SD) 

that measures the popularity deviations of different data objects from the “mean 

value”: y(1)=fhighest. The object with the highest access frequency in the Zipf-like 

correlation has virtually become the “mean value” of the PD by mapping. Once the 

SD of the current PD is computed from the live data sampled statistically (e.g. SDA 

for curve A in Figure 5.3), the popularity ratio (PR) (as shown in equation (5.3) or 
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(5.4)) can be estimated for tuning the cache size adaptively on the fly to maintain the 

given cache hit ratio. 

It is necessary to empirically verify that bell(x) indeed produces the same effect 

as bell(r) for PR computation. In the MACSC context, this verification is called the 

“kurtosis and skewness (KS)” test. In the KS test, the skewness is computed by 

equation (5.7) and kurtosis is computed by the equation (5.8), where x  and SD are 

the statistically measured mean and standard deviation respectively for the aggregate 

of m data items sampled. Skewness measures the symmetry of a bell curve. A 

positive value indicates that the bell curve embedded in the aggregate skews right 

(i.e. right tail is heavier than the left). Kurtosis measures whether the bell curve is 

peaked (positive value) or flat (negative value). In the normal distribution, kurtosis is 

equal to 3 and skewness is equal to 0. 

3

3

1

)1(

)(

SDm

xx
m

i i

−

−∑ =  (5.7) 
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4

1

)1(

)(

SDm
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m

i i

−
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The KS tests indicate that all the traces of data object accesses in our 

experiments are basically bell curves with reasonable Kurtosis and Skewness values. 

In the KS tests it also shows that even when the β values of some linear regressions 

were not in the 10 ≤< β  range, the linear regression is still conceptually valid for 

producing bell(x), which forms the basis for calculating the popularity ratios for 

dynamic cache size tuning. The condition for validity is having reasonable kurtosis 

and skewness values as compared to the normal distribution. This KS test will be 

demonstrated by the experiment result with different traces. 
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5.4 Connective Summary 
In this chapter, the MACSC framework is investigated for dynamic cache size 

tuning. It maintains the given hit ratio adaptively and consistently by tuning the 

cache size dynamically according to the popularity ratio of the data object requests. 

The MACSC framework is conceptually based on the transformation of the Zipf-like 

curve into the popularity distribution in order to calculate the popularity ratio. In the 

next chapter, we will discuss the use of the statistical point-estimate (PE) approach to 

estimate the standard deviation of the data object requests in order to calculate the 

popularity ratio to tune the cache size on the fly. 
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CHAPTER 6 

THE POINT-ESTEMATE APPROACH 

6.1 INTRODUCTION 
In the MACSC framework the cache size is adjusted according to the popularity 

ratio computed for the data objects. The basic concept is that the distribution of the 

access frequencies against the corresponding data objects at any time represents the 

real-time relative popularity profile. The popularity-ratio computation accuracy is, 

however, affected by two factors. The first factor is the speed at which the popularity 

profile distribution changes its shape. Any shape change, in effect, is a reflection of 

change of preference for particular data objects by the users. Therefore, any 

computation method, which caters to a particular distribution/waveform shape such 

as Poisson, could lead to failure [Paxson95]. The second factor is the inter-arrival 

times (IAT) among the data object retrieval requests. The IAT distribution affects 

computation accuracy in two ways. In the first way, if the IAT (in a burst mode) is 

shorter than the execution time of the dynamic cache size controller, then 

computation inaccuracy would appear because of incomplete data sampling. In the 

second way the IAT traffic waveform/pattern over the Internet, which follows the 

power law [Medina00], changes over time, may change suddenly, for example, from 

SRD (short-range dependence such as Markovian traffic) to LRD (long- range 

dependence such as heavy-tailed, self-similar, and multi-fractal). This kind of change 

can affect the accuracy of the computation method adopted [Paxson95]. To free the 



MACSC mechanism from the ill effects of the above two factors, the popularity ratio 

calculation should be statistical and based on direct measurement. That is, the 

standard deviation of the relative popularity profile of data objects is freshly and 

directly measured in each cycle.  

The statistical point-estimate (PE) approach is used in the first MACSC 

implementation. The PE computation accuracy is inherently independent of the 

shape of the waveform (i.e. heavy-tailed, Poisson, self-similar, or multi-fractal) 

because it is derived from the Central Limit Theorem. The computation accuracy, 

however, could still be affected by the IAT lengths. For example, in a burst mode the 

IAT may be shorter than the sampling ability of the controller in light of its sampling 

cycle time. As a result the controller misses data items repeatedly and inadvertently 

makes wrong calculations that lead to undesirable or deleterious effects. The PE 

approach provides the minimum capability for the MACSC controller to alleviate the 

deleterious effects. The PE based MACSC framework is called the MACSC(PE). 

 

6.2 THE MACSC(PE) APPROACH 
In the MACSC(PE) approach the cache size is dynamically adjusted according 

to the popularity ratio, which is calculated with the point-estimate (PE) approach. 

The PE approach is derived from the Central Limit Theorem, and the details of 

which will be provided later. The statistics x  and sx, which are the mean and 

standard deviation values of a data sample of size n for n > 10, are called the point 

estimates of the true mean λ and standard deviation δx of the population of x. The 

Central Limit Theorem provides the relationship between point estimates and the 

population/true mean and standard deviation values. 
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6.2.1 CENTRAL LIMIT THEOREM 

This theorem is characterized by the following [Chis92]: 

1. The means (i.e. x ) of a series of x samples of size n from any distribution 

(Figure 6.1(a)) will form a normal distribution of mean m (Figure 6.1(b)). The 

variability (spread) indicated by 2)( xδ , where xδ  is the standard deviation of 

this bell curve or standard error plot [Jain91], is smaller than that of the 

distribution formed by the individual variables themselves; that is, 

22 )()(
xx δδ > . 

2. The larger the sample size n the smaller will be xδ , and this implies that m will 

is closer to the true/population mean λ. 

The essence of the Central Limit Theorem, which is   
2

2

n
x

x

δ
δ = for , is 

captured by Figure 6.1. The figure shows a narrower bell curve for n = N

10>n

2. 

In the estimation of the population mean the concept of a confidence interval is 

needed, and this implies probabilistic bounds of the following form: 

Probability α1}cλ{c 21 −=≤≤  

The (c1, c2) is the confidence interval for the population mean and α is the 

significance level. 100(1-α)% is the confidence level and 1-α is the confidence 

coefficient. The confidence level is always expressed as a percentage and is close to 

100% (e.g. 90% or 95%). Significance level α is set near to zero (e.g. 0.1 or 0.05). In 

the Central Limit theorem applications the 100(1-α)% confidence interval for the 

population mean is the expression, ( )nszxnszx 2/12/1 , αα −− +− . The z1-α/2 value 

is the (1-α/2)-quantile of a unit normal variate. For example, if the mean 8.1=x , 
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(b) Normal distribution of means (x) sampled from (a)

x
λ

68.3%

(a) Any distribution of (x)
λ+2 λ+3λ+ xδ xδλ-2 xδxδλ-3 xδ λ- xδ

68.3%

Nδδ xx =

λ+ λ+2 λ+3λ-λ-2λ-3 xδ xδ xδ xδ xδ xδ

 
Figure 6.2 Normal distribution of means ( x ) from any distribution (ideally m = λ) 

 

6.2.2 POINT-ESTIMATE DETAILS 

The point-estimate (PE) approach is an estimation technique to estimate the 

parameters of the x population from a series of data sample of size n for . 

When the formal expression,

10>n

  
2

2

n
x

x

δ
δ = is combined with the following concepts, 

namely, standard error, significance level, equation (6.1) can be derived. The 

parameters are defined as follows:  
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1. Fractional error tolerance (E): It is the percentage error between the true mean 

λ and m (the mean of the bell curve or standard error (SE) plotted/estimated 

from a series of sample means of sample size n≥10 on the fly). 

2. SD tolerance (k): It is the number of standard deviations (SD) that m is away 

from the true mean λ but is still tolerated (k same tolerance connotation as E). It 

is the confidence level about λ. 

3. Predicted standard deviation (
x
δ ) of the SE plot: Theoretically m can be 

estimated from the same series of samples that yield the different x  values for 

n≥10. By the Central Limit Theorem nxx
δδ =  holds, where δx is the 

population/true SD.  

4. Minimum value N: From equation (6.1) we note that a minimum sample size N 

is needed in practice to estimate the approximate λ and δx values that satisfy the 

given k and E error tolerances, which, in effect, have the same connotation. The 

equation (6.1) can be re-arranged to become equation (6.2), which indicates 

how N can be computed. The N value, however, is innately unpredictable 

because it depends on the data profile in the interval of interest. Therefore, it 

should be found by a process of trial repetitions with progressively larger 

number of samples until convergence. For this reason, λ and δx in equation (6.2) 

should be replaced by x  and sx to become equation (6.3) for implementation 

purposes. sx is the standard deviation for the data sample of mean x . In the 

repetitive process of N estimation, if the first trial has a data sample of size n, 

then every repetition requires more data items. For example, if a fresh sample of 

size n is added in every repetition cycle, then the number of data items used in 
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the current repetition is (1+R)*n, where R is the number of incremental 

repetitions for R = 1,2…etc. The repetition stops when the criterion n ≥ N is 

satisfied. In every repetition the PE computes x  statistically from the n data 

items first and then
( )

1

2

1

−

−
=
∑
=

N

xx
s

N

i
i

x , where xi marks the ith data item in the 

sample.  

)(
N

kkE x
x

δδλ ==  (6.1) 

2)(
λ
δ

E
k

N x=  (6.2) 

2)(
xE

ks
N x=  (6.3) 

Equation (6.3) is known as the equationN −  in the MACSC context. 

The following is an example which shows how the PE process satisfies the n≥N 

criterion of the equationN − : 

1. It is assumed that the initial 60 data samples (i.e. sample size is n=60) have 

yielded 15 and 9 for x  and sx respectively. 

2. The given SD tolerance is 2 (i.e. k=2 or 95.4%), and the fractional tolerance E 

is therefore equal to 4.6% (E=0.046); both E and k connote the same error. 

3. The N value then should be 680)
15*046.0

9*2( 2 ≈=N .  

The value of N≈680 indicates that the initial sample size n=60 is incorrect. To rectify 

the problem one of the following two methods can be used: 

1. The first is to collect (680 – 60) or 620 more data samples and re-calculate x   

and sx. There is no guarantee, however, the new estimation by this approach 
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would converge to n ≥ N. The same process would therefore have to be 

repeated. 

2. The second, which is adopted by the MACSC, is to collect another 60  

samples and re-calculate x  and sx from the total of 120 samples (i.e. n=120 

for the 2nd trial). The PE is actually the (1+R)*n repetitive process, which stops 

when the criterion n ≥ N is satisfied. 

Previous practical experience shows that the second method converges much 

faster to . Usually the Nn ≥ x  and sx values stabilize in the second or third trial 

[Chis92]. The PE operation in MACSC adopts the second method because previous 

practical experience consistently shows that the second method converges much 

faster to . Usually Nn ≥ x  and sx stabilize in the second or third trial [Chis92]. 

In the calculation of the adjusted cache size or ACS, the equation (5.5) becomes 

equation (6.4) for real MACSC(M3RT) applications (sx is the computed standard 

deviation for jth cycle as explained before). 

average
j
x

j
SR OSsACS ***2 ∇=  (6.4) 

 

6.3 MACSC(PE) VERIFICATION 
The MACSC(PE) implementation will be discussed in CHAPTER 10. The aim 

of this section is to show the validity of the PE approach as well as its possible 

shortcomings. The desire to get rid of the shortcomings leads to new MACSC 

approaches that will be discussed in the later chapters. In the MACSC(PE) approach, 

the PE technique is used to estimate the mean and standard deviation of the data 

objects in each cycle. The MACSC(PE) mechanism cycles through the following: 

 
1. The system collects a number of data objects with the size n.  
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6.3.1 SETUP AND ENVIRONMENT 

Many simulation experiments were carried out with the MACSC(PE) prototype 

implemented in Java over the controlled Internet environment. The objectives of the 

experiments are to verify the following: 

a. The MACSC(PE) can indeed determine the popularity ratio of the data 

objects. 

b. It is able to maintain the given hit ratio. 

The experimental setup is illustrated in Figure 6.4. In the experiments, the 

“fixed cache size (FCS)” system (i.e. static cache size) was used for the comparison 

purposes. The simulations were carried out on the Java-based Aglets mobile agent 

platform [Aridor98], which is chosen for its stability, rich user experience, and 

scalability. The Aglets platform is designed for Internet applications, and this makes 

the experimental results scalable and repeatable for the open Internet. The 

replacement strategy used in the simulations is the basic LRU (Least Recently Used) 

approach with the “twin cache system (TCS)” [Aggarawal99]. The TCS has been 

used successfully in previous investigations of replacement strategies and its main 

function is to filter the “one-timers” that are considered as caching “noise”. The 

filtration makes the hot data in the cache more concentrated for more meaningful 

results. One-timers are unpopular data objects that are accessed only once over a 

long period. The driver and the MACSC(PE) tuner for the proxy server are aglets 

(agile applets) that interact in a client/server relationship. The MACSC(PE) 

prototype is SR based (equation (5.5)). The cache size is first initialized to meet the 

prescribed hit ratio in terms of the number (i.e. σ) of standard deviations. For 

example, if the given hit ratio is one PD (popularity distribution) standard deviation 
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interrupt timer. When an interrupt occurs a random number is generated as the access 

probability, which is one of the values on the Y axis of the chosen PD curve. On the 

X-axis of this curve lie the unique integer object identifiers (OI) of the data objects. 

Each position on the x-axis is also identified by a “bell” identifier (BI), which 

initially matches the object identifier (OI) in a one-to-one correspondence 

relationship. The OI position is changed by the ranking process over time as shown 

in Figure 6.5. These bell identifiers are generated in the beginning of an experiment. 

The procedures for the experiment are as follows: 

1. Each data object in a raw dataset is assigned a unique object identifier (OI). 

2. The access frequencies of every data object are counted continuously. 

3. The access frequencies of the data objects are sorted in the Zipf-like curve 

generated by a log-log plot. In this plot, each data object has its own rank 

identifier (RI) for its ranked position. 

4. The Zipf-like curve is transformed into a bell curve called the PD (popularity 

distribution). Then, “bell” identifiers (BI) are assigned. 

5. The calculation of the popularity ratio is based on the BI values. 

Figure 6.5 shows the summary of the generation of the BI values, and their 

relationship with RI and OI over time in the continuous operation of the MACSC 

framework.  







The simulation results shown in Figure 6.7 were run with the simulated dataset 

with interleaved SD sequence 1k→2.5k→1.5k→2k. The SD sequence, 

1k→2.5k→1.5k→2k was generated by interleaving four bell curves with standard 

deviations of the 1k, 2.5k, 1.5k and 2k objects, where k=1000. The MACSC(PE) 

maintains the average hit ratio at 52.2% while the “fixed cache size (FCS)” system 

maintains the hit ratio at 39.4% only. The MACSC(PE) tuner yields the highest hit 

ratio as compared to the FCS. The Figure 6.8 shows that the novel MACSC(PE) 

tuner produces a 32% higher hit ratio than the FCS. In fact, the MACSC(PE) always 

yields the highest hit ratio in all the simulations. Figure 6.9 shows the results from 

another simulation. Similarly, the interleaved SD sequence, 1k→2k→1.5k→3k was 

generated by interleaving three different bell curves with the standard deviations: 1k, 

2k, 1.5k and 3k objects. In this case the MACSC(PE) tuner has 23% higher hit ratio 

than the FCS (Figure 6.10). 
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Figure 6.7 The comparison of the hit ratio between MACSC(PE) and FCS 

(Interleaved SD sequence: 1k→2.5k→1.5k→2k) 
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Figure 6.8 The hit ratio improvement over FCS 
(Interleaved SD sequence: 1k→2.5k→1.5k→2k) 
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Figure 6.9 The comparison of the hit ratio between MACSC(PE) and FCS 

(Interleaved SD sequence: 1k→2k→1.5k→3k) 
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Figure 6.10 The hit ratio improvement over FCS 
(Interleaved SD sequence: 1k→2k→1.5k→3k) 
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The Figure 6.11 and Figure 6.12 show the changes of the hit ratio by 

MACSC(PE) and FCS respectively. In the figures, it can be observed that there is a 

big impact of the popularity ratio on the performance of the proxy system. When the 

standard deviation of the data objects rises, the hit ratio of the FCS will drop. The 

margin of the changes will be in accordance with the change of the standard 

deviation of the data objects. According to these figures, it can be concluded that the 

MACSC framework can maintain the given hit ratio by the dynamic cache size 

tuning. And the PE approach can determine the standard deviation of the data objects 

successfully for the MACSC(PE) solution. 
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Figure 6.11 Changes of hit ratios by MACSC(PE) and FCS 

(Interleaved SD sequence: 1k→2.5k→1.5k→2k) 
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Figure 6.12 Changes of hit ratios by MACSC(PE) and FCS  

(Interleaved SD sequence: 1k→2k→1.5k→3k) 
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6.3.3 VERIFICATION WITH PRE-COLLECTED DATA TRACES 

In order to verify that the MACSC(PE) indeed has the capability to work in real 

environments verification experiments were conducted with pre-collected real data 

traces. The results with the following traces, EPA-HTTP (EPA WWW server located 

at Research Triangle Park, NC, USA), SDSC-HTTP (San Diego Supercomputer 

Center), and Calgary-HTTP (University of Calgary, Alberta Canada) [SIGCOMM] 

are shown here for demonstration. Table 6.2 is the summary of these three data traces. 

The experiment setup is similar to that for the simulated datasets (Figure 6.4) except 

that pre-collected data traces were used in this case. 

EPA-HTTP  SDSC-HTTP 

No. of transactions 42,438  No. of transactions 28,338 

No. of objects 5,584  No. of objects 1,661 

Duration 24 hours  Duration 24 hours 

     

 Calgary-HTTP  

 No. of transactions 722,982  

 No. of objects 11,799  

 Duration 353 days  

Table 6.2 Summary of the three pre-collected real data traces 
 

Figure 6.13 compares the experimental results for the FCS and MACSC(PE) 

with different pre-collected data traces. It shows that the MACSC(PE) can 

consistently maintain the cache hit ratios at the given 68.3% (one standard deviation) 

required. In fact, all the experiments conducted so far indicate that the MACSC(PE) 

performs better than the FCS. Figure 6.14 shows the change of the hit ratio of FCS 

and MACSC(PE) in the simulation with the EPA-HTTP. It shows that the popularity 



ratio of the data objects in real situations indeed varies with time. The MACSC(PE) 

can maintain the hit ratio much better than the FCS. Figure 6.15 and Figure 6.16 also 

shows similar results. 
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Figure 6.13 Performance comparison of FCS and MACSC(PE) for different data traces 
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Figure 6.14 The Magnified view of the change of hit ratios by FCS and MACSC(PE) with the 

EPA-HTTP data trace 
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Figure 6.15 The Magnified view of the change of hit ratios by FCS and MACSC(PE) with the 

SDSC-HTTP data trace 
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Figure 6.16 The magnified view of changes in hit ratios by FCS and MACSC(PE) with the 

Calgary-HTTP data trace 

 

6.3.4 SHORTCOMINGS OF THE MACSC(PE) 

Although the verification results show that the MACSC(PE) mechanism can 

indeed maintain the given hit ratio successfully, they have also revealed two PE 

shortcomings: unpredictable computation time, and serious hit ratio oscillations. 

 

6.3.4.1 UNPREDICTABLE COMPUTATION TIME 

It is observed that the requirement to satisfy n ≥ N criterion in real-life 
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applications is unpredictable. This involves the following problems: a) the 

unpredictable number of data items needed by the statistical PE approach to satisfy 

the N value of the criterion n ≥ N, and b) the unpredictable inter-arrival times (IAT) 

among these items. For example, the Table 6.3 shows the range of the sampling size 

of the MACSC(PE) with different pre-collected data traces. The collecting of 722850 

samples in the aforementioned example may take seconds, hours or even days. The 

unpredictable sampling number and the IAT interval between any two data items in a 

sample may reduce the tuning precision of the MACSC. 

 EPA-HTTP SDSC-HTTP Calgary-HTTP 

Minimum 30  30 30 

Maximum 42300  25410 722850 

Average 69  69 37 

Table 6.3 The range of the sample size of the MACSC(PE) with 
different pre-collected data traces 

 

6.3.4.2 SERIOUS HIT RATIO OSCILLATIONS 

The MACSC(PE) cache hit ratio can seriously oscillate in the steady state 

because of the large oscillation of the standard deviation of the data objects. This 

large oscillation make the MACSC(PE) adjustment of the cache size also very large 

and so reduces the overall performance of the framework. The Figure 6.17 shows a 

magnified view of the changes of hit ratio by MACSC(PE) with the simulated 

dataset. It shows that the hit ratio oscillates heavily even when the large trend of the 

standard deviation doesn’t change too much. This leads to the rapid changes of the 

cache size of the system in Figure 6.18. The result is the decrease in the overall 

performance of the system. The same situation occurs in the pre-collected data traces. 

Figure 6.19 and Figure 6.20 show the magnified view of the change of the cache size 

and memory usage of the MACSC(PE) with the EPA-HTTP dataset respectively. 
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Figure 6.17 The Magnified view of changes of hit ratios by MACSC(PE) 

(Interleaved SD sequence: 1k→2k→1.5k→3k) 
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Figure 6.18 The Magnified view of changes in memory usage by MACSC(PE) 

(Interleaved SD sequence: 1k→2k→1.5k→3k) 
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Figure 6.19 The Magnified view of changes of hit ratios by MACSC(PE) with the EPA-HTTP 

data trace 
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Figure 6.20 The Magnified view of changes in memory usage by MACSC(PE) with the 

EPA-HTTP data trace 

6.4 Connective Summary 
In this chapter the theoretical foundation for the MACSC(PE) solution is 

presented. The core of the statistical computation power for attaining the popularity 

ratio for dynamic cache size tuning is the point-estimate (PE) approach. The 

verification experiments show that the MACSC(PE) solution can indeed maintain 

the given cache hit ratio consistently in a dynamic manner. The PE technique, 

however, has two shortcomings: unpredictable computation time, and serious hit 

ratio oscillations. For these reasons, an alternative to the PE approach was explored, 

and this led to the adoption of the M3RT (Micro Mean Message Response Time) 

technique, which is also based on the Central Limit Theorem and therefore its 

accuracy is waveform/distribution independent. This technique was originally 

proposed for IEPM (Internet End-to-End Performance Measurement [Cottrell99]) 

applications and the aim is to estimate the mean message response time accurately 

and quickly on the fly. Since it treats any profile (e.g. data and/or traffic profiles) as a 

waveform, it has the potential to replace the PE approach. The M3RT can eliminate 

the problem of unpredictable computation time because it works with a chosen 
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number of data items in every prediction cycle. This number is called the flush limit f 

and the optimal range of 169 ≤≤ f  always yields the quickest convergence in 

IEPM applications. This optimal range, however, may change when the M3RT is 

transcribed for dynamic cache size tuning, which is a domain that differs in nature 

from the previous IEPM perspective.  
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CHAPTER 7 

ADAPTION OF CONVERGENCE ALGORITHM  

7.1 INTRODUCTION 
The point-estimate or PE technique, as observed from the experimental results, 

has two shortcomings, namely, unpredictable computation time, and possible serious 

hit ratio oscillations. For these reasons, an alternative to the PE approach has to be 

explored. This led to the adoption of the Convergence Algorithm (CA), which is a 

theoretical algorithm for quick and accurate prediction of the mean roundtrip time 

(RTT) of a communication channel in the interval of interest. The CA was originally 

proposed for the IEPM (Internet End-to-End Performance Measurement [Cottrell99]) 

applications. It is similar to the PE mechanism in two respects: a) it is derived from 

the Central Limit Theorem, and b) it is suitable for real-time application [Wong02a]. 

Therefore, the CA could be adapted for supporting the MACSC mechanism in 

dynamic cache size tuning. The accuracy of prediction/estimation by the CA is 

waveform/distribution independent. The M3RT, which is the CA implementation will 

replace the PE in the MACSC operation. This replacement is used to enhance the 

MACSC(PE) to the MACSC(M3RT) version, which is introduced in this chapter.    

Similar to its MACSC(PE) predecessor, the MACSC(M3RT) mechanism 

consistently maintains the given cache hit ratio. It is, however, difficult to estimate 

the MACSC(PE) convergence time because the following are unpredictable: a) the 

number of data samples needed by the PE process to achieve convergence and b) the 



inter-arrival times among these data samples. In the MACSC(M3RT) approach this 

unpredictability problem is resolved by replacing PE with the M3RT mechanism, 

which works with f (i.e. flush limit) number of data items sampled on the fly. 

Previous IEPM experience shows that the region for fast M3RT convergence is 

. The MACSC(M169 ≤≤ f 3RT) approach provides several benefits including: a) it 

maintains the prescribed hit ratio efficaciously, b) it lessens cache size oscillation, 

and c) it uses a fixed number of data samples and this makes its computation time 

more predictable. It is unique because: a) it utilizes the relative popularity of the data 

objects as the sole control parameter and b) it tunes the cache size adaptively by 

direct data measurement with the CA support. The relative popularity profile of data 

objects is called popularity distribution (PD) in the MACSC(M3RT) context. Any 

change in the PD’s standard deviation indicates a shift of user preference for 

particular data objects. Monitoring and leveraging this change is the basis for 

MACSC(M3RT) to find a meaningful popularity ratio for deciding how the cache 

size should be tuned in a dynamic manner.  

 

7.2 THE MACSC(M3RT) APPROACH 
The problem of the point-estimate (PE) approach in MACSC(PE) is that it 

cannot predict the sampling size in each cycle. In order to resolve this problem, the 

PE mechanism is replaced by the M3RT, creating the new MACSC(M3RT) version. 

The M3RT works with a fixed number of data items, and this fixed number is called 

the flush limit or simply f. 
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7.2.1 CONVERGE ALGORITHM – M3RT 

The Convergence Algorithm (CA) was proposed to predict the mean message 

response time of a communication channel in a sizeable network such as the Internet 

quickly and accurately [Wong01b]. It treats any type of data distribution as a 

waveform. In this sense the CA is generic, and it was confirmed that the CA indeed 

has the capability to predict the mean of any waveform accurately and quickly 

[Wong01a]. The CA was proposed because calculating the mean of a waveform over 

time by addition and division can lead to memory overflow. Equation (7.1) shows 

how the mean, namely, Mi of a distribution of i number of sampled data items can be 

calculated simply by addition and division. This form has a memory overflow 

problem for very large i values. For example, one may run into this problem when 

trying to measure the mean roundtrip time (RTT) of an Internet TCP channel over a 

long period. The source of memory overflow is the summing operation: 

. This problem, however, can be prevented by transforming 

equation (7.1) to equation (7.2), based on the concept of the Central Limit Theorem. 
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The transformation involves the following parameters:  

1. Mi is the mean estimated in the ith prediction cycle from the fixed f (flush limit) 

number of data items (i.e. mj
i) 
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2. P is the damping factor to reduce oscillation in the Mi convergence process 

3. Mi-1 is the last estimated mean as feedback to the current prediction cycle. 

4. M0 is the first sample when CA had started running. 

The choice of f is important for the M3RT convergence, and it was confirmed 

that the best f range is 169 ≤≤ f  [Wong01a], [Wong01b], [Ip03] by previous IEPM 

experience. The M3RT (Micro Mean Message Response Time) tool is a micro CA 

implementation in the form of a Java API. It is micro because it operates as a logical 

entity that provides the Mi prediction service anywhere and anytime by message 

passing. The M3RT always converges to the true mean of any given waveform. 

Figure 7.1 shows how it converges to Mi mean values of the different IAT 

(inter-arrival times) segments of size f=14 extracted from the EPA-HTTP trace 

[SIGCOMM]. Every data item sampled in this trace is made up of two components, 

the requested/named data object and the relevant IAT. 
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Figure 7.1 Mi calculations by M3RT for the IAT series in the EPA-HTTP trace 

 

7.2.2 DETAIL EXPLAINATION OF MACSC(M3RT) 

The PE approach is now replaced by the M3RT micro IEPM mechanism, which 
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uses f (flush limit) number of data samples to compute sx and x . By doing so the 

following objectives are achieved:  

1. Improved ACS execution time predictability: Only a fixed f number of data 

samples are used to satisfy the  criterion.   Nn ≥

2. Independence of traffic patterns: The M3RT accuracy is independent of the 

traffic waveform because its Convergence Algorithm basis is derived from 

the Central Limit Theorem [Wong01a], [Wong01b]. 

3. High tuning accuracy: The M3RT mechanism helps yield sx and x  to satisfy 

 quickly and accurately. With pre-collected data traces it needs only 

211 clock cycles on average to satisfy  [Wong03]. This execution 

time is arisen from the fact that the data items in the trace are immediately 

usable without any delay. If M

Nn ≥

Nn ≥

3RT has to sample live data on the fly, the 

actual convergence time depends on the average IAT for the f data items in 

the sample [Wong02b], [Ip03].  

The M3RT treats the access frequencies of a collection of data objects as a 

waveform. Although this waveform represents the relative object popularity profile 

in the MACSC(M3RT) context, the M3RT treats it in a similar manner to service RTT 

values [Cottrel99], [Cottrel01], [Wong01a], [Matthews00], [Paxson97], [Ip03]. To 

summarize, the M3RT implementation has the following salient features that are 

beneficial to the MACSC(M3RT) approach: 

1. Waveform independence: This comes from its Central Limit Theorem basis.  

2. Predictable execution time: Timing analysis with Intel® VTune™ 

Performance Analyzer [VTune] confirms that it needs an average of 211 

clock cycles for intrinsic convergence when pre-collected data traces are used. 
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It is intrinsic because the data items in the trace are immediately usable. In 

on-line applications the actual M3RT execution time depends on the average 

IAT (inter-arrival time) delay among the data items to be collected on the fly. 

This makes the actual convergence time much higher than 211 clock cycles. 

The clock cycles are neutral and can be easily converted into physical time 

for any platform of interest. For example, if a platform operates at 850 MHz, 

then the physical time for 211 clock cycles is 

66 10*25.0211*)10*8501( −≈=T  seconds (i.e. 0.25 microseconds).  

3. Ever-increasing accuracy: The CA model is integrative because of the Mi-1 

feedback. As a result, the longer M3RT runs the more accurate its prediction 

becomes [Wong02b]. 

The MACSC(M3RT) approach has two parallel components: “MACSC model 

without PE support + M3RT”. The total execution latency, TMACSC for the previous 

MACSC framework is determined by three elements: a) the unpredictable sampling 

delay TSample for collecting enough data to satisfy the  criterion of the Nn ≥

equationN − , b) the point-estimate computation time, TPE that includes all the 

iterations until  is satisfied, and c) the time TNn ≥ PR&Adjustment for computing PR 

and carrying out the actual cache size adjustment; that is, 

TMACSC=TSample+TPE+TPR&Adjustment. The TSample delay is unpredictable because it 

depends on the average IAT of the live samples. The TPE latency is equal to R*LPE, 

where R is the number of iterations, and LPE is the average time for an iteration 

pass/cycle to compute 2)(
xE

ksx . Previous observations show that the R range is 

 most of the time. The  latency is fixed because the PR 51 ≤≤ R AdjustmentPRT &
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computation and the physical cache size adjustment involve no unpredictable 

elements. Working with different pre-collected traces (no actual IAT delays) where 

samples are immediately usable, the average TPE and TPR&Adjustment latencies for the 

MACSC Java prototype were approximated as 712,000 and 43,000 clock cycles 

respectively. The average TSample latency is equal to the M3RT execution time of 211 

clock cycles. The maximum intrinsic speedup (S) by MACSC(M3RT) compared to 

MACSC for pre-collected traces is S=(TPE+TPR&Adjustment)/(211+TPR&Adjustment), which 

is approximately, 712,000/43,211≈16.5 or 1,650%. In real-time operations, however, 

the M3RT component in the MACSC(M3RT) must sample live items one by one on 

the fly. The actual unpredictable IAT delays among data samples would make the 

1,650% intrinsic speedup difficult to achieve.  

Although the M3RT mechanism, which is derived from the Central Limit 

Theorem, is a potential candidate to replace the PE mechanism, it lacks the necessary 

sensitivity to follow the PD changes closely. On the one hand the M3RT always 

predicts the mean of a waveform accurately with data collected on the fly, whilst on 

the other hand the last Mi-1 feedback to the current Mi prediction (equation (7.2) to 

yield stability for the convergence process becomes a liability for applying M3RT 

directly to the MACSC(M3RT) approach. The liability is that the M3RT may not be 

responsive enough for accurate popularity ratio calculation to reflect the actual 

current situation. To resolve this liability problem equation (7.2) is transformed 

through equation (7.3) to become equation (7.4). By arranging 
fp

p
+

= α  and 

fp
f
+

=−  )1( α  the new equation (7.5) is obtained for the actual M3RT based 

operation. 
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By adopting the same integrative principle of the Mi prediction, the xδ  

computation has changed to φi estimation by equation (7.6). Then, equation (5.5) 

becomes equation (7.7) for real MACSC(M3RT) applications, where α and β weight 

the feedback value (i.e. history) in the Mi and φi computation respectively. 
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average
i
SR OSACS ***2 iϕ∇=  (7.7) 

 

7.3 MACSC(M3RT) VERIFICATION 
In the MACSC(M3RT), the framework use the converge algorithm (equation 

(7.5) and (7.6)) to calculate the mean Mi and standard deviation φi in i cycle. The 

values will then feedback as Mi-1 and φi-1 for the next cycle computation. The α and β 

are the weight values for the ratio of the history and current value. The 

MACSC(M3RT) mechanism cycles through the following steps: 
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Figure 7.4 The comparison of the hit ratio between different frameworks 
(Interleaved SD sequence: 1k→2.5k→1.5k→2k with f=19 and α=0.999) 
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Figure 7.5 The hit ratio improvement over FCS 

(Interleaved SD sequence: 1k→2.5k→1.5k→2k with f=19 and α=0.999) 

 

37.6%

46.1%
52.1%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

FCS MACSC(PE) MACSC(M3RT)

A
ve

ra
ge

 H
it 

R
at

io

 
Figure 7.6 The comparison of the hit ratio between different frameworks  

(Interleaved SD sequence: 1k→2k→1.5k→3k with f=19 and α=0.999) 
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Figure 7.7 The hit ratio improvement over FCS 
(Interleaved SD sequence: 1k→2k→1.5k→3k) 

 

The Figure 7.8 and Figure 7.9 show the changes of the hit ratio by FCS, 

MACSC(PE) and MACSC(M3RT) respectively. In the figures, it can be observed 

that the M3RT approach is better than the PE approach because the hit ratio of the 

MACSC(M3RT) oscillates less than the MACSC(PE). The MACSC(M3RT) can 

maintain the hit ratio more stable throughout the experiments while the MACSC(PE) 

drops a little bit sometime. The feedback system of the M3RT reduces the impact of 

the small oscillations of the data objects and so it makes the MACSC(M3RT) more 

stable compared with the MACSC(PE). 
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Figure 7.8 Changes of hit ratios by different frameworks  

(Interleaved SD sequence: 1k→2.5k→1.5k→2k) 
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Figure 7.9 Changes of hit ratios by different frameworks 

(Interleaved SD sequence: 1k→2k→1.5k→3k) 

 

To confirm that the PE approach indeed needs more data samples to be 

collected on the fly to satisfy the xkE δλ =  criterion than the M3RT mechanism, 

some of the above MACSC(M3RT) and MACSC(PE) simulations were repeated 

under the same conditions. The average number of data samples needed by each 

tuner from accumulated experience is listed in Table 7.1. Consistently, the 

MACSC(PE) tuner needs an average of 155 data samples to attain  

convergence, but the MACSC(M

Nn ≥

3RT) tuner needs only 19 on average. That is, the 

MACSC(PE) uses (155/19) ≈ 8.15 times more samples on average. But, the intrinsic 

computation overhead of MACSC(PE) is 16 times higher than the MACSC(M3RT), 

(0.96ms/0.06ms) = 16. The timing analysis was carried out with the Intel® VTune™ 

Performance Analyzer [VTune] on the platform operating at the speed of 1.5 GHz (G 

for Giga). The result indicates that if the average IAT is getting shorter (e.g. IAT→0), 

the speedup can get up to 16 times (shown previously). Yet, this is difficult to 

achieve in real-life MACSC(M3RT) applications because the data items have to be 
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sampled one by one on the fly. Sometimes the IAT delay between two samples can 

be significant. 

 Range of data sampling Average number 

of data sampling 

per cycle 

Physical computation time in 

each cycle on the platform that 

operates at 1.5GHz  

MACSC(PE) 30 ~ 450 

 (To satisfy n ≥ N) 
155 0.96 ms 

MACSC(M3RT) Any choice from the 

range: 16 ~ 20 (f value)  
19 0.06 ms 

Table 7.1 Comparing of MACSC(PE) and MACSC(M3RT) 
 

Figure 7.10 shows the impact of different α values (i.e. equation (4.3) an (4.4)) 

when working with f = 19 to produce fast n ≥ N convergence. The RT cyclical 

sequence and the given hit ratio are: 2k→6k→4k and 68.3% (one standard deviation 

about the “fhighest mean”) respectively. The MACSC(M3RT) always maintains the 

prescribed hit ratio consistently for α ≤ 0.999. For any α value larger than 0.999, the 

hit ratio drops steeply together with memory consumption. The cause is the sudden 

loss of PR sensitivity because the emphasis is now on the past performance 

represented by α rather the current changes, namely, the (1 - α) factor as shown in 

equation (4.4). Figure 7.11 shows the impact of different flush limits on the hit ratio 

with α ≤ 0.999. The flush limit range that yields the highest hit ratio had shifted to 

the new range 17 ≤ f ≤ 22 from the original 9 ≤ f ≤ 16 for Mi prediction by M3RT 

[Wu04]. This shift is caused by the integrative property of the φi component in 

equation (4.4). 
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Figure 7.10 Correlation among hit ratio, cache size and α with f=19 
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Figure 7.11 Correlation among hit ratio, cache size and f values with α= 0.999 

 

7.3.3 VERIFICATION WITH PRE-COLLECTED DATA TRACES 

 

In these simulation experiments, different pre-collected data traces are used to 

verify the MACSC(M3RT) in real environments. The same pre-collected data traces 

in previous experiments are used (Table 6.2). Figure 7.12 compares the experimental 

results for the FCS, MACSC(PE) and MACSC(M3RT) with different pre-collected 

data traces. It shows that the MACSC(M3RT) can consistently maintain a better hit 

ratio compare with the MACSC(PE) and FCS. Figure 7.13 shows the change of the 

hit ratio of different frameworks in the simulation with the EPA-HTTP. It shows that 

the MACSC(M3RT) can maintain a better cache hit ratio than MACSC(PE). Figure 

7.14 and figure 7.15 also show similar results. 
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Figure 7.12 Performance comparison of different frameworks for different data traces 
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Figure 7.13 The Magnified view of the change of hit ratios by different frameworks with the 

EPA-HTTP data trace 
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Figure 7.14 The Magnified view of the change of hit ratios by different frameworks with the 

SDSC-HTTP data trace 
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Figure 7.15 The magnified view of changes in hit ratios by different frameworks with the 

Calgary-HTTP data trace 

 

In Figure 7.16, the memory usage by different frameworks with different data 

traces is shown. It shows that although the MACSC(M3RT) maintains a higher hit 

ratio than the MACSC(PE) approach, it also uses more memory than the 

MACSC(PE). 
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Figure 7.16 The memory usage by different frameworks with different data traces 

 

7.4 CONNCECTIVE SUMMARY 

 

In this chapter the novel MACSC(M3RT) approach is introduced. In this 

framework the M3RT mechanism has replaced the PE approach. The verification 
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experiments show that the M3RT approach has the capability to maintain a high 

cache hit ratio like PE but with a smaller sample size (17 to 22 samples in each 

prediction cycle). The physical computation time of the M3RT is consistently lower 

than the PE. The feedback system of the M3RT approach reduces the hit-ratio 

oscillation problem. More experimental results will be presented in CHAPTER 10.  

Memory usage by the MACSC(M3RT) is, however, higher than that by MACSC(PE). 

To resolve this shortcoming, another approach, namely, MACSC(F-PE) is explored. 

In the MACSC(F-PE) approach: the PE sensitivity and the M3RT feedback stability 

are combined. 
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CHAPTER 8 

OPTIMAL DYNAMIC CACHING SIZE TUNING 

8.1 INTRODUCTION 
 In this chapter, the optimal dynamic cache size tuning framework, 

MACSC(F-PE) will be introduced. The previous MACSC(PE) approach had two 

shortcomings: a) unpredictable computation time, and b) serious hit ratio oscillations. 

The interim MACSC(M3RT) approach was proposed to resolve these problems. The 

MACSC(F-PE) utilizes the stability advantage from the feedback loop of the M3RT 

technique to reduce hit ratio oscillations. The verification experiment shows that the 

MACSC(F-PE) approach indeed achieves the objective successfully. It is also found 

that the MACSC(F-PE) maintains the cache hit ratio more efficiently than both the 

MACSC(PE) and the MACSC(M3RT) tuners.  

 

8.2 THE MACSC(F-PE) APPROACH 
 The MACSC(F-PE) approach alleviates hit ratio oscillations as shown by the 

MACSC(PE) approach. These oscillations are caused by inaccurate calculation of 

the standard deviation of the relative data object profile. This reduces the overall 

performance of the dynamic cache size tuning mechanism. “F-PE” stands for 

fine-tuned point estimate, which is based on the successful MACSC(M3RT) 

experience of using history information of the data objects as feedback for stability. 

The objective of the feedback system is to resolve the problem of heavy oscillation 



in the MACSC(PE). It involves the following steps: 1) compute x  from the N 

samples by using the PE approach, namely, the equationN − , and then the 

standard deviation sx. 2) the value is fine-tuned and changes to sx
z by equations (8.1) 

with feedback sx
z-1 and weight β, where z is the operation cycle. 3) the adjusted cache 

size or ACS is conceptually determined by equation (8.2) and its implementation is 

represented by equation (8.3) to avoid propagation of any cache size initialization 

error. 

z
x

z
x

z
x sss )1(1 ββ −+= −  (8.1) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −− 11 * z

x

z
x

zz s
sCacheSizeCacheSize  (8.2) 

average
z
xz OSsCacheSize ***2 ∇=  (8.3) 

The MACSC(F-PE) mechanism cycles through the following steps: 

1. The system collects a number of data objects with the size n.  

2. It calculates the mean and standard deviation according the sample data 

objects. 

3. It uses the equationN −  to determine the reasonable size N that the system 

should collect in order to have an acceptable mean and standard deviation. 

4. If the sample size n is larger than or equal to N, the system will go to step 5. 

Otherwise, the system goes back to step 1 to collect more data objects for 

further calculation. 

5. The system calculate the sx
z value by equation 8.2 feedback sx

z-1 and weight β 

6. The system adjusts the cache size according to popularity ratio based on 

equation 8.3 and the sx
z value and feedback the value as sx

z-1 for the next 
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simulation (simulated standard deviation (SD) sequence, 1k→2k→1.5k→3k). The 

MACSC(F-PE) consistently outperformed the other tuners in the experiments by 

maintaining the highest cache hit ratio. 
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Figure 8.3 The comparison of the hit ratio between different frameworks  

(Interleaved SD sequence: 1k→2.5k→1.5k→2k) 
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Figure 8.4 The hit ratio improvement over FCS 
(Interleaved SD sequence: 1k→2.5k→1.5k→2k) 

37.6%
46.1%

52.1% 53.9%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE)

A
ve

ra
ge

 H
it 

R
at

io

 
Figure 8.5 The comparison of the hit ratio between different frameworks  

(Interleaved SD sequence: 1k→2k→1.5k→3k) 
 

 - 112 - 



1.00
1.23

1.39 1.43

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE)

R
at

io
 o

f H
it 

R
at

io
 Im

pr
ov

em
en

 
Figure 8.6 The hit ratio improvement over FCS 
(Interleaved SD sequence: 1k→2k→1.5k→3k) 
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Figure 8.7 Changes of hit ratios by different frameworks  

(Interleaved SD sequence: 1k→2.5k→1.5k→2k) 
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Figure 8.8 Changes of hit ratios by different frameworks 

(Interleaved SD sequence: 1k→2k→1.5k→3k) 
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Figure 8.7 and Figure 8.8 show the changes of the hit ratio by FCS, 

MACSC(PE), MACSC(M3RT) and MACSC(F-PE) respectively over time. In these 

figures, it can be observed that the MACSC(F-PE) maintains a higher cache hit ratio 

and is more stable than the M3RT and PE based approaches. The MACSC(F-PE) 

maintains the highest hit ratio of them all, and its feedback system eliminates most 

of the oscillations compared to the PE approach.  

 The Figure 8.9 shows the memory usage by the different approaches with 

different simulated datasets. It can be observed that the memory usage of the 

MACSC(F-PE) approach is nearly equal to that by the MACSC(PE). The 

MACSC(M3RT) use more memory compared with them. However, the performance 

of hit ratio maintenance by the MACSC(F-PE) is the best. 

14.3

26.6

18.5

27.1

14.3

26.5

0.0

5.0

10.0

15.0

20.0

25.0

30.0

SD sequence:1k→2k→1.5k→3k SD sequence:1k→3k→2k→5k
Different simulated data traces

A
ve

ra
ge

 M
em

or
y 

U
sa

ge
 (M

B)

MACSC(PE) MACSC(M3RT) MACSC(F-PE)

 
Figure 8.9 The memory usage by different frameworks with different simulated data traces 

 

8.3.3 VERIFICATION WITH PRE-COLLECTED DATA TRACES 

In these simulation experiments, different pre-collected data traces from 

real-life operations are used to verify the MACSC(F-PE) (Table 6.2). Figure 8.10 

compares the experimental results of the FCS, MACSC(PE), MACSC(M3RT) and 
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MACSC(F-PE) approaches. It indicates that the MACSC(F-PE) indeed consistently 

maintains the highest cache hit ratio. Figure 8.11 shows the changes of the hit ratio 

of the different tuners with the EPA-HTTP trace. The MACSC(F-PE) yields the 

highest hit ratio, and this phenomenon is also observed in Figure 8.12 and Figure 

8.13. 
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Figure 8.10 Performance comparison of different frameworks for different data traces 
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Figure 8.11 The Magnified view of the change of hit ratios by different frameworks with the 

EPA-HTTP data trace 
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Figure 8.12 The Magnified view of the change of hit ratios by different frameworks with the 

SDSC-HTTP data trace 
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Figure 8.13 The magnified view of changes in hit ratios by different frameworks with the 

Calgary-HTTP data trace 

 

Figure 8.14 shows the memory usage by the different tuners. Despite the fact 

that the MACSC(F-PE) is the most efficient tuner in hit ratio maintenance, it uses 

less memory than the MACSC(PE). 
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Figure 8.14 The memory usage by different frameworks with different data traces 

 

8.4 CONNECTIVE SUMMARY 
This chapter introduces the novel MACSC(F-PE) approach, which combines 

the PE technique with a feedback mechanism. This mechanism is inspired by the 

MACSC(M3RT) experience of using history information in the current hit ratio 

maintenance operation. The experiment results confirm that the feedback approach 

has greatly reduced the oscillation problem of the pure PE technique. Furthermore, 

the MACSC(F-PE) is the most efficient compared with the MACSC(PE) and 

MACSC(M3RT) approaches. In the next chapter the impact of different Internet 

traffic patterns to the MACSC operation in general will be discussed. 
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CHAPTER 9 

REAL-TIME TRAFFIC PATTERN DETECTION 

9.1 INTRODUCTION 
The Internet follows the power law [Medina00] and its traffic can assume 

different forms over time, for example, long-range dependence (LRD) and 

short-range dependence (SRD) [Molnár99]. LRD traffic includes heavy-tailed and 

self-similar patterns, and SRD includes Markovian traffic patterns such as Poisson. 

Continued studies of different traffic patterns led to the conclusion by Paxson 

[Paxson95] that any system, which is designed with a preconceived mathematical 

model in mind, for example, Poisson, would fail over the Internet. This implies that 

any systems running over the Internet should be adaptive in nature. These systems 

should adapt their processes with respect to the changes in the operation 

environments anytime. To support dynamic adaptation such the system should be 

able to achieve the following: a) to sample the indicative performance parameters 

(such as average service roundtrip time (RTT)) to gauge changes in the environment, 

b) to compute the necessary adjustment or reconfiguration with the sampled statistics 

quickly and accurately to avoid deleterious effects, and c) to administer the 

computed adjustment on the fly. Deleterious effects are the undesirable effects that 

arise from the correction of a spurious problem with a computed result. This happens 

because the computation time of the corrective solution is longer than the duration of 

the problem. By the time the solution is ready, the problem has long gone. The 
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deleterious problem can be detrimental to time-critical applications, which usually 

have at least one of the following requirements [Stankovic98]: 

a. Hard nature: The result must be obtained within the deadline for safe 

operations. 

b. Soft nature: The result is acceptable even those with occasional slippage of 

the deadline, or some minor slippage of it. 

c. Firm nature: The result after the deadline is meaningless. That is why in 

smart systems they would proceed with an operation only if it is certain that 

the result is produced before that deadline.       

In the different experiments with the MACSC(PE) prototype, it was observed 

that different IAT traffic patterns can affect the dynamic cache size tuner’s accuracy. 

Different timing analyses of the prototype were carried out with different 

pre-collected traces of http requests in a postmortem manner by using the Intel® 

VTune™ Performance Analyzer [VTune]. It was found that the prototype 

intrinsically needs an average of 1,673,100 clock cycles to execute [Wu03]. It is 

intrinsic because the data items are immediately available from the trace without 

actual delays. In real-life cases, the tuner has to collect the data items one by one 

with IAT (inter-arrival time) delays between them. Therefore the actual tuner 

execution time is much longer than the intrinsic one. For a node that operates at the 

speed of 143 mega hertz, for example, the physical time is 1,673,100*(143*10-6) or 

11.7ms. If the IAT among the data items in real-life applications is consistently less 

than 11.7ms, then the MACSC(PE) mechanism would miss sampling many data 

items, and this leads to erroneous cache ratio maintenance. Furthermore, different 

traffic patterns will have different impacts on the loss of the data items. To 



demonstrate this phenomenon, experimental results with the EPA-HTTP 

(Environmental Protection Agency) trace [SIGCOMM] are shown here. Figure 9.1 

shows the IAT trace of 42,438 http requests of the LRD nature. Figure 9.2 shows the 

trace of Poisson IAT for comparison. The R/S plot in Figure 9.3, which is a 

postmortem traffic analysis technique to be described in detail later, confirms the 

Hurst value for this trace is 0.761. Figure 9.4 shows that the R/S plot of Poisson IAT, 

which has a Hurst value of 0.491. Figure 9.5 shows data loss (i.e. missed data items) 

versus IAT with different traffic patterns. (i.e. SRD (EPA-HTTP) and LRD (Poisson)) 

Figure 9.6 shows how the cache hit ratio deteriorates. It shows that different traffic 

pattern will lead to different impact on the MACSC framework. 
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Figure 9.1 LRD frequency distribution of http request to the EPA dataset, mean IAT is 2 
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Figure 9.2 SRD frequency distribution of the Poisson IAT, mean IAT is 2 
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Figure 9.3 R/S plot confirms LRD nature for EPA trace, H=0.761 with 99.3% confidence 

 

 

Figure 9.4 R/S plot confirms SRD nature for Poisson trace, H=0.491 with 99.87% confidence 
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Figure 9.5 Data loss (missed data) of MACSC(PE) versus IAT for the LRD and SRD traces 
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Figure 9.6 Hit ratio of MACSC(PE) versus IAT for the LRD and SRD traces 

 

 The experimental results with the MACSC(F-PE) prototype shows that its 

performance is traffic independent.  Figure 9.7 and 9.8 shows how data loss and 

cache hit ratio correlate with IAT for SRD (EPA-HTTP) and LRD (Poisson) traffic 

patterns. Clearly the traffic patterns have no negative impact on the MACSC(F-PE) 

performance because of the presence of the feedback loop in the solution.. The β 

value of the MACSC(F-PE) for the experiments that produce the effects in Figure 

9.7 and 9.8 is set to 0.9. 
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Figure 9.7 Data loss (missed data) of MACSC(F-PE) versus IAT for the LRD and SRD traces 
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Figure 9.8 Hit ratio of MACSC(PE) versus IAT for the LRD and SRD traces 

 

9.2 DIFFERENT TYPES OF TRAFFIC PATTERNS 
The Internet follows the power law [Resnick97] and its traffic pattern can 

change suddenly from LRD and SRD. This phenomenon was investigated by 

different researchers [Molnár99]. The important findings in Internet traffic research 

include the following: 

1. One could use Guassianity test (Gaussian means normal distribution of kurtosis 

and skewness values equal to 3 and 0 respectively) to indicate that an aggregate 

 in a stochastic process X is stationary. The parameter m is the block size of 

the aggregate and l is the lag, for l=1,2,3…n. A process is stationary if it has 

independent increments [Leland94], [Taqqu03], [Willinger03]. 

m
lX

2. One could use the Hurst value measurement to determine if an aggregate is 

LRD or SRD, where 0<H<0.5 indicates SRD and 0.5<H<1 for LRD traffic. 

3. There are different estimators/filters proposed for identifying specific traffic 

patterns from pre-collected traces/datasets (i.e. postmortem analysis), for 

example, Poisson and heavy-tailed. The details of this filter will be elaborated 

later.  
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SRD/LRD differentiation Heavy-tailed traffic Self-similar traffic 

R/S (Rescaled Statistics) 

plot, Periodogram 

[Molnár99] 

Modified QQ-plot 

[Embrechts97], 

De Haan’s Moment [Resnick97] 

Whittle, Variance-time plot 

[Molnár99] 

Table 9.1 Summary of different techniques for postmortem traffic analysis 
 

Table 9.1 summarizes the different estimators that can be applied for traffic 

pattern detections. In fact, these techniques were implemented and put together in 

the Selfis tool [Karagiannis02], [Karagiannis03]. For example, Figure 9.9 shows 

how the R/S (Rescaled Statistics) plot mechanism of the Selfis identifies the LRD 

character from an IAT trace. In this case, the H value is 0.706 with 97.89% 

confidence for the LRD identification. The Periodogram of the Selfis also confirms 

the LRD character for the same trace as shown in Figure 9.10. 

 

 
Figure 9.9 LRD identification by Selfis’s R/S estimator 
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Figure 9.10 LRD confirmation by the Selfis’s Periodogram estimator 

 

Postmortem traffic analyses with traces are of the “lump nature” at the present 

moment as concluded by the COMP Team because of the following reasons: 

1. Composite results: Techniques or estimators such those shown by Table 9.1 or 

assembled by the Selfis tool produce the results for the given traces. The results 

as such are composite in nature because a trace may embed different traffic 

patterns in different segments. This kind of lump analysis is misleading and 

unsuitable for real-time applications unless there exists a technique/tool that can 

confirm the stationarity of an aggregate before the analysis starts. That is why 

the COMP Team has proposed the CAB (Continuous Aggregate Based) 

approach that can identify the stationarity of an aggregate. 

2. Theoretical discrepancy: In the Internet traffic literature Gaussinaity is equated 

to stationarity. While this may be true for continuous stochastic processes, there 

is room for errors for discrete processes. Gaussianity is based on the concept of 
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a perfect normal distribution of kurtosis and skewness values equal to 3 and 0 

respectively. Yet, the Gaussian distribution can provide a good approximation 

for the binomial and Poisson distributions only under certain conditions 

[Jain91]. The Poisson distribution is a good approximation of the binomial 

distribution only for rare events; Poisson and binomial distributions are 

memoryless. The concepts of Gaussianity, Poisson, and binomial are lumped 

together in most literature [Leland94]. For example, the basic theory for 

postmortem self-similar traffic analysis in the field is the fractional Brownian 

motion, which has stationary increments. The incremental process is known as 

fractional Gaussian noise of the LRD character [Leland94]. This conceptually 

but vaguely links Gaussianity to a stationary process, whether discrete or not.  

 

9.3 REAL-TIME TRAFFIC ANALYSIS 
There is little experience in real-time traffic analysis until the COMP Team (or 

simply the Team) has proposed how it could be done [Lin04]. The argument put 

forth by the Team includes the following: 

1. SRD/LRD differentiation: The Team found that the R/S plot is very effective in 

differentiating SRD from LRD. The existing form, however, should be adapted 

to suit real-time application. The details will be provided later.  

2. Java API: It is logical to convert the different traffic estimators into Java API so 

that the real-time traffic detection/detector (RTPD) mechanism can invoke the 

appropriate filter anytime and anywhere as a logical object to provide the 

necessary service. 

3. CAB mechanism: The basic argument for the CAB mechanism is to have a 



variable block size m for the lth aggregate  of a stochastic discrete process 

X. The aim is to increase m until the property of stationarity has appeared. Only 

then the R/S plot, which is supported by the M

m
lX

3RT [Wong02b], which is a micro 

IEPM (Internet End-to-End Performance Measurement [Cottrel01]) tool, is 

invoked to differentiate SRD from LRD. Once the LRD character is identified 

the filtration process invokes the appropriate filter to identify whether it is 

heavy-tailed or self-similar. The presence of stationarity in  is indicated by 

the “kurtosis-skewness (KS)” test. The indication is obtained by comparing the 

kurtosis and skewness values with that of the normal distribution (kurtosis = 3 

and skewness = 0). If the difference is within a pre-defined limit, then 

stationarity is assumed to have appeared. For example, the workable kurtosis 

and skewness limits found by experimentation by the Team are 9 and 100 

respectively. 

m
lX

The Team’s RTPD concept is basically the combination: “R/S plot + M3RT + 

filtration”. 

 

9.3.1 THE KS TEST 

Skewness is shown by equation (5.7), where x  and SD are the measured mean 

and standard deviation respectively for the aggregate of m data items. For a real-time 

aggregate , where l is the lag. The skewness value measures the symmetry of a 

bell curve embedded in the sample of size m. A positive value means that the bell 

curve skews right (i.e. right tail is heavier). Kurtosis is shown in equation (5.8), 

which decides if the bell curve is peaked (positive value) or flat (negative value) 

m
lX
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compared to the normal distribution (Gaussian) with kurtosis=3 and skewness=0. 

For example, the EPA-HTTP trace from [SIGCOMM] has skewness and kurtosis 

values of 0.00076 and 8.47 respectively. These values indicate a symmetric bell 

curve that is more peaked than the normal distribution. 

 

9.3.2 THE RTPD 

Since the efficacy of the MACSC(PE) in dynamic cache size maintenance is 

affected by the IAT traffic pattern, it is necessary to compensate for any ill effects 

introduced by the traffic. To achieve this the MACSC(PE) should be supported by 

real-time traffic detection/detector (RTPD) capability. Then, the compensation 

mechanism involves the following: 

1. Calibrate the ill effects with respect to different traffic patterns such as Poisson, 

heavy-tailed, and self-similar.   

2. Incorporate RTPD capability so that traffic pattern changes can be monitored 

and detected. 

3. Devise a reconfiguration scheme so that the MACSC(PE) mechanism would 

reconfigure on the fly with respect to the traffic pattern detected. 

With agreement, I would make use of the Team’s accumulated RTPD experience. In 

return I would contribute a novel R/S approach suitable for real-time applications to 

the Team and also as part of my PhD contribution. 

The traditional R/S (rescaled adjusted statistics) computation is represented by 

the expression: 
)var(

},...,2,1:min{},....,2,1:max{
X

kiWkiW
S

R ii =−=
= . The parameter 
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Wi is defined as ∑
=

−=
i

m
mi XXW

1
)( for ki ,...2,1= , where X is the mean computed 

by ∑
=

=
k

i
iXkX

1

1 . The best value for k has to be found by trial and error. This is the 

drawback for the traditional R/S method because the R/S of accuracy and speed 

depends on k. The R/S ratio is the rescaled range of the stochastic process X over a 

time interval k, where X is defined in discrete time (Xi: i =1,2…k). The most useful 

feature of the R/S plot is the relationship for large k: Hk
S

R )2(= . The H (Hurst) 

effect/value is also the slope of the log-log plot of log(R/S) versus log(k) [Molnár99]. 

For a stationary process the H effect 0.5<H<1 indicates LRD traffic behavior. For 

example, the LRD behavior of the trace for Figure 9.11 is indicated by the R/S plot 

shown in Figure 9.12 with H=0.7674. 
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Figure 9.11 Frequency plot of the real-life EPA-HTTP IAT (inter-arrival time) trace 
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Figure 9.12 R/S plot for the trace in [SIGCOMM] (Figure 9.11) confirms its LRD behavior 

 

RTPD is conceptually the “M3RT + R/S” combination. The key point in my 

work is to shorten the R/S execution time by using the M3RT mechanism, which can 

be inhibited or activated by the user. If the M3RT is inhibited, the RTPD runs the 

traditional R/S computation. If it is activated, then it runs in parallel as an 

independent entity and makes the R/S estimator into an enhanced version (i.e. E-R/S) 

that is more suitable for real-time applications. It is “enhanced” because now X  is 

replaced by the more accurate Mi. The E-R/S execution time becomes predictable 

because Mi is computed with a known f (flush limit) number of samples. The M3RT 

predicts the mean of the waveform from the current aggregate  on the fly, 

independent of the E-R/S main body represented by , instead of 

the traditional 

m
lX

∑
=

−=
i

m
imi MXW

1
)(

∑
=

−=
i

m
mi XXW

1
)( . If the E-R/S main body needs the current Mi to 

compute the Hurst value for identifying the LRD or SRD character, it fetches it 

directly from M3RT. That is, the M3RT presence means iMX =  instead of 
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∑
=

=
k

i
iXkX

1

1 . The filtration process identifies the traffic pattern, for example, 

heavy-tailed or self-similar for the LRD type. In action, the filtration process consists 

of a collection of logical objects (i.e. traffic filters/estimators) that specialize in 

identifying particular patterns. For example, the modified QQ-plot filter identifies 

heavy-tailed waveforms. These filters were proposed by the Team, for example, the 

self-similarity (S2) traffic filter.  

In each Mi prediction cycle only f=14 data items are used to obtain the fastest 

convergence. Timing analysis with Intel® VTune™ Performance Analyzer shows 

that by itself the M3RT needs 200 intrinsic clock cycles on average to execute 

[Wong02a], [VTune] provided that the f data items are immediately available (i.e. 

intrinsic) as part of a trace. In real applications the M3RT execution time will be 

much longer because data has to be sampled on-line with unpredictable inter-arrival 

times (IAT) among them. For example, if the mean IAT for 14 samples were also 200 

clock cycles, then the execution time would be =(14*200)+200=3,000 clock cycles. 

For a platform operating at the speed of 100 mega hertz (MHz), the physical time of 

200 clock cycles is 200/(100*10-6) seconds or 2 micro seconds. 

 
Figure 9.13 RTPD (E-R/S) execution time (891 clock cycles) by Intel® VTune™ Performance 

Analyzer 
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Figure 9.14 R/S execution time (950 clock cycles) by Intel® VTune™ Performance Analyzer 

(without M3RT support) 

Timing analyses of the Java-based RTPD prototype by the Intel® VTune™ 

Performance Analyzer in Figure 9.13 and Figure 9.14 show the following: a) the 

RTPD with M3RT support (i.e. E-R/S) needs 891 intrinsic clock cycles to execute, 

and b) the version without M3RT (i.e. traditional R/S) needs 950 intrinsic clock 

cycles for its execution. For 14 immediately usable data samples (i.e. f =14) in 

intrinsic cases the E-R/S is about 7% faster than the traditional R/S approach. In 

real-life applications, the E-R/S should be more efficient because more data and thus 

more delay in calculating ∑
=

=
k

i
iXkX

1

1 will occur. 

Since the traditional R/S estimator has been verified by different researchers 

already in the post-mortem manner [Molnár99], the experiments in this research 

focus on making sure that the E-R/S is faster than and as accurate as the traditional 

R/S approach. In fact, the drawback of the traditional R/S estimator is to 

estimate X by trial and error. The E-R/S does not have this problem because it 

always uses 14 data items to compute Mi. On the contrary, if more than 14 samples 

are used to compute X , then the computation time by the traditional R/S would be 

much longer than the E-R/S’s. In the light of this, the E-R/S execution time is more 
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predictable, and Mi is more accurate than X because it has a feedback loop in its 

computation, namely, Mi-1. In contrast the X computation in the traditional R/S 

estimator uses only the current data items without any feedback and this means more 

perturbations. 

 

9.4 CONNECTIVE SUMMARY 
 In this chapter, the impact of the real-time traffic pattern on the MACSC 

framework is discussed. It shows that different traffic patterns will have different 

impacts on the dynamic cache size tuner’s accuracy. So the real-time traffic pattern 

detection/detector (RTPD) is proposed to determine the traffic pattern of the IAT in 

order to have a different reconfiguration scheme for the MACSC framework to 

reduce the impact. It was found that the MACSC(F-PE) performance in dynamic 

cache size tuning is immune to the ill effects of different traffic patterns. The reason 

is the presence of a feedback loop, which is based on the MACSC(M3RT) approach, 

in the solution. In the next chapter, the implementation of the MACSC framework, 

RTPD/MACSC(PE), in the real environment and the reconfiguration scheme by 

RTPD will be discussed. 
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CHAPTER 10 

VALIDATION OF THE MACSC FRAMEWORK 

10.1 INTRODUCTION 
 In the previous chapters, the three MACSC approaches, MACSC(PE), 

MACSC(M3RT) and MACSC(F-PE) were discussed and verified. This chapter 

discusses the implementation and validation issues of these dynamic cache size 

tuners in light of real-life deployments over the Internet. The purpose of verification 

as shown in the previous chapters is to make sure that a framework is logically 

correct as it was intended set out to do. The design or implemented prototype is 

verified by simulation or pre-collected traces. The verified designed/prototype may 

not be able to meet the constraints imposed by the real environment and this requires 

proper modifications. The MACSC framework is intended for time-critical 

operations over the Internet and real data has to be sampled and used per dynamic 

cache size tuning cycle. To meet the time-critical requirement it becomes impractical 

to collect too many data items in order to compute the necessary cache size 

adjustment for maintaining the given hit ratio. However, there should be enough data 

items so that the Zipf-like behavior can be determined from the sampled data for the 

cycle so that the popularity ratio can be computed. This chapter proposes a solution 

for validating the MACSC solutions. The main difference between verification and 

validation experiments is that the former uses large pre-collected traces or simulated 

data sets and the latter relies on the limited number of real-time data items sampled 
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on the fly. In real-life applications the pre-collected traces used in the MACSC 

verification experiments normally do not exist. That is, the MACSC deployment 

relies on using the data items sampled per dynamic cache size tuning cycle. At the 

end of this chapter, the performance of the RTPD/MACSC(PE) as compared with 

different Internet traffic patterns will be presented. 

 

10.2 PROPOSED IMPLEMENTATION SOLUTION 
 In the real environment, users send the URL requests to the proxy server 

continually. In the previous verification experiments the URLs are represented by 

unique integer object identifiers (OI), which provides the basis for the Zipf-like 

log-log plot. From this log-log plot the corresponding bell curve (i.e. the popularity 

distribution (PD)) is generated for calculating the popularity ratio. In order to 

facilitate the calculation of the PD standard deviation, the “bell” identifiers (BI) are 

assigned in ascending order. In real applications the BI values are generated anew in 

every dynamic cache size tuning cycle, which involves the following steps as 

depicted in Figure 10.1: 

1. The system collects n (MACSC(PE) and MACSC(F-PE)) or f (MACSC(M3RT)) 

data objects and counts the frequencies of the data objects identified in the 

current cycle. 

2. From these data objects the ranker generates the Zip-like log-log plot. 

3. The system transforms the Zip-like curve into bell curve and assigns the BI to 

the data objects. 

4. The system calculates the popularity ratio of the data objects based on the BI. 

5. The system adjusts the cache size on the fly according to the popularity ratio 



derived from the current two standard deviations of the “BI” distribution. 

6. The ranker prepares for the next new cycle (i.e. loop back to step 1). 

Proposed solution for implementing and validating the
MACSC solutions

The system collects n data objects and counts
their frequencies

The ranker ranks the data objects and
generates the Zip-like curve by a log-log plot

MACSC calculates the popularity ratio based
on the BI generated by the ranker

MACSC adjusts the cache size according to
the popularity ratio on the fly

Next cycle

The ranker prepares for the next cycle

OI

log (RI)

The ranker transforms the Zip-like curve into
the corresponding bell curve and assigns the

BI values

BI

 
Figure 10.1 Proposed approach for validating the MACSC solutions 

 

10.3 VALIDATION DETAILS  
Any computer system design and implementation should involve verification 

and validation process. The design should be verified to make sure that it is logically 

correct and complies with the functionality. The verification is usually limited in 
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scope and can be carried out in different ways. For example, one can put the design 

into a Petri net [Tan94] and verify its logical and constraints correctness. One of the 

ways to achieve both objectives is using a “time Petri net” tool such as AlphaSim. 

Another way is to implement the design into a prototype so that it can be verified 

with chosen samples or datasets of its functionality. This empirical approach has its 

advantage because the same prototype can be validated later in controlled 

environments before the production phase. Therefore implementation and validation 

are inseparable. It is appropriate to run a system over a real Internet environment and 

collect the data for analyses and conclusion. Yet, another way is to use real-life data 

traces to drive the prototype and analyze its behavior. This is a flexible approach 

because traces of all kinds can be downloaded from well-known web sites 

[SIGCOMM]. Besides, the experience gained from the verification exercise becomes 

useful because the verification and validation results can be compared and evaluated. 

The validation of the MACSC solutions, namely, MASCS(PE), MACSC(M3RT) and 

MACSC(F-PE) follows the second approach. That is, traces downloaded from 

international web sites are used to drive the MACSC mechanism but the decision of 

dynamic cache size tuning is based on successive small data samples as it happens in 

real-life applications. 

 

10.3.1 SETUP AND ENVIRONMENT 

Many experiments were carried out with different pre-collected data traces. The 

setup and environment of the experiments are similar to that for the verification 

exercise (e.g. Figure 6.4 discussed in chapter 6). Wherever it is possible the same 

pre-collected data traces are used to make sure that the same behavior occurs, for 
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example, EPA-HTTP (EPA WWW server located at Research Triangle Park, NC.), 

SDSC-HTTP (San Diego Supercomputer Center), and Calgary-HTTP (University of 

Calgary, Alberta Canada) [SIGCOMM]. The ranker in each model ranks the 

collected URL in each cycle in order to provide the necessary information for the 

popularity ratio calculations. 

 

10.3.2 EXPERIMENTAL RESULTS 

 The results are shown in the following figures for demonstration purposes. In 

the Figure 10.2, a comparison is given with the results of the FCS, MACSC(PE), 

MACSC(M3RT) and MACSC(F-PE) algorithms. It shows that both the MACSC(PE) 

algorithm and the MACSC(F-PE) algorithm can maintain the given hit ratio. The 

MACSC(F-PE) has slightly better performance than MACSC(PE), but the 

MACSC(M3RT) performance is worse (even worse than the FCS, which is used as a 

control for comparison purposes). The reason is the sampling size problem. The 

M3RT uses f samples to calculate the mean and standard deviation of the data objects. 

The range of f is between 9 and 16. Since the ranker needs to re-calculate the mean 

and standard deviation of data objects popularity profile in each cycle, the small 

range of f does not provide sufficient information to make any impact. As a result it 

cannot return accurate predictions for the MACSC to compute correct cache 

adjustment. 
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Figure 10.2. The Performance comparison of different algorithms for different data traces 

 

Figure 10.3 and 10.4 show the changes of hit ratio and the magnified view of 

the changes of hit ratio with the EPA-HTTP trace respectively. The figures show that 

the MACSC(PE) and MACSC(F-PE) maintain the given hit ratio consistently 

independent of the standard deviation perturbations in the data object popularity 

profile, but the FCS and MACSC(M3RT) tuners cannot. Figure 10.5 provides some 

evidence for this phenomenon by showing the memory usage by the different tuners. 

It shows that the MACSC(PE) and MACSC(F-PE) adjust the cache size dynamically 

according to the standard deviation at the time while the MACSC(M3RT) does not. 

This is due to the fact that the calculation of the standard deviation by the M3RT 

technique cannot satisfy the requirements for the ranker mechanism. For example, 

Figure 10.5 shows how the standard deviation calculated by M3RT is nearly equal 

throughout the whole experiment. Figure 10.6, 10.7, 10.8 and 10.9 are the results for 

the experiment with the SDSC-HTTP and Calgary-HTTP traces respectively. 
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Figure 10.3 The change of hit ratios by different algorithms with the EPA-HTTP data trace 
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Figure 10.4 The magnified view of the change of hit ratios by different algorithms with the 

EPA-HTTP data trace 
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Figure 10.5 The change of the memory usage by different algorithm with the EPA-HTTP data 

trace 
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Figure 10.6 The change of hit ratios by different algorithms with the SDSC-HTTP data trace 
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Figure 10.7 The magnified view of the change of hit ratios by different algorithms with the 

SDSC-HTTP data trace 
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Figure 10.8 The changes in hit ratios by different algorithms with the Calgary-HTTP data trace 

 

 - 141 - 



0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

20000 21000 22000 23000 24000 25000 26000 27000 28000 29000 30000

Ht tp request  number

H
it 

Ra
tio

0

10

20

30

40

50

60

70

80

90

St
an

da
rd

 D
ev

ia
tio

n 
(S

D
)

FCS MACSC(PE) MACSC(M3RT ) MACSC(F-PE) SD

 
Figure 10.9 The magnified view of changes in hit ratios by different algorithms with the 

Calgary-HTTP data trace 
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Figure 10.10 The memory usage by different algorithms with different data traces 

 

Figure 10.10 shows the memory usage by different tuners with different 

pre-collected data traces. Memory usage by MACSC(F-PE) is similar to but lower 

than MACSC(PE). The capability of hit-ratio maintenance of MACSC(F-PE) is 

better than the MACSC(PE) in general. It can be concluded form the validation data 

that MACSC(F-PE) is the best MACSC implementation followed by MACSC(PE). 
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RTPD support) indeed maintain the given hit ratio of 68.3% (one standard deviation) 

equally well under various conditions. The RTPD/MACSC approach, however, 

consistently uses less memory than the MACSC(PE) tuner and has less chance to 

cause deleterious effects. The results presented in this thesis are produced with the 

wireless LAN trace from ACM SIGCOMM'01 [Balachandran02]. This trace, which 

is widely-used used by different researchers, records the wireless traffic in the ACM 

SIGCOMM'01 conference over three days at U.C. San Diego in August 2001. The 

trace captures roughly 300,000 cases of traffic flows from the 195 users that 

consumed 4.6 GB of bandwidth. The wireless LAN was an IEEE 802.11b [IEEE99] 

network installed in a large auditorium for different conference sessions. Table 11.1 

summarizes the trace, and AP means access point. The experiment that yielded the 

result for Figure 11.9 made use of the http data retrieval frequencies. About 57.5% of 

the total bytes (2.645 GB) or 45.8% of the total traffic are related to http data 

requests. The experiment that yielded the results presented in Figure 11.10 and 

Figure 11.11 used the IAT in the trace as the basis. 

Environment parameter Values 
Number of wireless users 195 
Maximum users at an AP 32 
Total hours of trace 52 
Total bytes transmitted 4.6 GB 
Total flow 298995 
Peak throughput at an AP 3.2 Mbps 

Table 11.1 Summary of the ACM SIGCOMM’01 trace 
 

 The experimental results in Figure 11.10 show the changes in the hit ratios by 

MACSC(PE) and RTPD/MACSC(PE) respectively over time. The standard 

deviation (SD) fluctuations indicate the periods in which small clusters of objects 

became more popular than others. A high standard deviation means that most of the 

data objects have similar popularity. The changes in the Hurst value imply that the 



traffic patterns in the trace are mixed. The traffic pattern changes from LRD (for 

H>0.5) to SRD (for H<0.5) and vice versa abruptly. Specifically the MACSC 

intended to yield a higher hit ratio than the given minimum of 68.3% and 

RTPD/MACSC(PE). Our careful analysis, however, reveals that this is the result of 

inaccurate PD estimation by the MACSC’s PE calculation. The inaccuracy produces 

a spuriously higher PR ratio and thus a corresponding cache adjustment size to yield 

a higher hit ratio. There is more PE accuracy for the RTPD/MACSC(PE) because the 

RTPD detects the traffic pattern with which the tuner adaptively adjusts the PE 

calculation accordingly. More PE accuracy makes the RTPD/MACSC(PE) use less 

cache memory and comparatively yields a lower hit ratio than the MACSC working 

alone. Since the MACSC uses more memory than necessary, it may lead to 

suspensions of some tasks in the proxy server and poor system throughput as a 

deleterious effect. 
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Figure 11.10 Hit ratios by MACSC(PE) and RTPD/MACSC(PE), SD, and H value are 

compared for the wireless ACM SIGCOMM'01 trace (58% LRD and 42% SRD) 

 

 The experimental data in Figure 11.11 was obtained by changing the IAT values 

in the ACM SIGCOMM'01 trace. The aim is to empirically show that the PE 
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inaccuracy indeed worsens when the average IAT rate rises. This is natural because a 

high average IAT rate can cause more request loss. The MACSC hit ratio can 

superficially improve with the increased IAT rate and PE inaccuracy. This is shown 

by Figure 11.11 in which both the MACSC hit ratio and the cache memory usage go 

up with the IAT rates. For example, the MACSC produced roughly a 5% better hit 

ratio better than RTPD/MACSC with the IAT rate of 1200k/s. But, the memory 

usage surges by 50% compared with the RTPD/MACSC with the same IAT rate. 

This indicates that the RTPD/MACSC is more efficient than the MACSC working 

alone because it can maintain the given hit ratio with less memory usage in mobile 

diagnostic information retrievals by SFF/PDMA clients.  
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Figure 11.11 Hit ratios and cache usages by MACSC(PE) (hit ratio: 66.7 – 79.7%) 

and RTPD/MACSC(PE) (hit ratio: 66.7 – 69.7%) with different arrival rates 

Pentium III 930MHz CPU 
(933*106 clock cycles per 
second), 256MB Ram 

Celeron® 2.6GHz CPU 
(2.6*109 clock cycles per 
second), 512MB Ram 

Pentium 4 2GHz CPU 
(2*109 clock cycles per 
second), 1 GB Ram Environment 

Total 
Physical 

time 

Total Physical 
time 

Total 
Physical 

time 

Physical time for 
the calculation of 

1 mean & S.D. 

Total 
Physical 

time 

Physical time for 
the calculation of 

1 mean & S.D. 
MACSC (Total 49 
calculations) 1260 ms 1260 ms 1218 ms ≈24.9 ms 815 ms ≈16.6 ms 

RTPD/MACSC 
(Total 42 
calculations) 

1273 ms 1273 ms 1229 ms ≈29.3 ms 873 ms ≈20.8 ms 

Table 11.2 Execution time comparison for MACSC and RTPD/MACSC over three different 
platforms 
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 Different experiments confirm that the execution times for MACSC and 

RTPD/MACSC are comparable. Table 11.2 is a comparison for three different 

computer platforms. For example, with the Intel® VTune™ Performance Analyzer 

the MACSC was found to take an average of 25 ms to execute on the PIII 930MHz 

CPU platform. For the three different platforms (as for others) the RTPD/MACSC 

consistently uses around 20% more execution time on average. Indeed, both the 

MACSC and RTPD/MACSC prototypes programmed in Java need very little 

computation power to calculate the cache size adjustment on the fly. 

 

11.4.2 PRELIMINARY CONCLUSION 

 The novel RTPD/MACSC approach, RTPD/MACSC(PE), for dynamic cache 

size tuning indeed can help mobile/pervasive diagnostic information retrieval in 

telemedicine. It combines the MACSC (Model for Adaptive Cache Size Control) 

framework and the real-time traffic pattern detection (RTPD) capability. The 

experimental results with wireless traces as well as known traffic patterns (LRD and 

SRD types) confirm that it has no problem in achieving its goal of maintaining a 

given hit ratio under all traffic conditions. The RTPD/MACSC(PE) has less cache 

memory usage than the MACSC and thus less potential for deleterious effects. 

Despite the presence of the complex RTPD mechanism, the RTPD/MACSC(PE) 

needs only 20% more execution time than the MACSC(PE) tuner working alone. 

The RTPD/MACSC(PE) solution adapts the initial sample size n for the 

point-estimate computation in every cycle on the fly. The adaptation is done with 

respect to the traffic pattern detected and identified by the RTPD capability. The 

verification experiments confirm: a) there is a correlation between the IAT interval 
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and the request loss rate, which affects the cache hit ratio, and b) tuning the 

parameter n for point estimate neutralizes the ill effects on the cache hit ratio by 

traffic pattern changes that cause higher cache memory usage. The next step of the 

research should aim at validating the RTPD/MACSC(PE) solution by testing it 

vigorously in different real wireless environments. 

 

11.5 CONNECTIVE SUMMARY 
 In this chapter, the contribution of the MACSC framework to the mobile and 

telemedicine applications is discussed. The experiments with the wireless data show 

that the MACSC framework can support e-diagnosis or other mobile medical 

applications. In the next chapter, the conclusion, achievements and future work will 

be discussed. 



 

 - 170 - 

CHAPTER 12  

CONCLUSION, FUTURE WORK  

AND ACHIEVEMENTS 

 In this chapter, the following will be discussed: the overall conclusion, future 

work and achievements. The comparison of the four novel solutions, namely, 

MACSC(PE), MACSC(M3RT), MACSC(F-E) and RTPD/MACSC(PE) is also 

provided as a recap. 

12.1 OVERALL CONCLUSION 
Without caching support the Internet can easily become terribly congested and 

lose its appeal. The danger of congestion is aggravated by the fact that the WWW  

page size has a monthly growth rate of around 15% but the Internet backbone 

capacity only increases by 60% yearly. The massive quantity of information 

requiring transfer across the network in browsing and information retrieval can 

quickly deplete the amount of sharable bandwidth. The retransmissions needed to 

recover lost information due to various network faults are inevitable due to the sheer 

size and heterogeneous nature of the Internet, and this worsens the situation.  

Caching alleviates network congestion and hastens WWW information retrieval 

by providing two advantages. The explicit advantage is the shortening of the service 

roundtrip time (RTT) for retrieval while the implicit advantage from speedup is less 

data being transferred across the network, thus providing more backbone bandwidth 
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for sharing and less chance of network congestion.  

The service RTT is the interval between the client's request and reception of the 

server's correct corresponding result and in this client/server relationship it 

conceptually consists of two legs. The first is the roundtrip between the client and 

the proxy server, and the second, between the proxy server and the remote data 

source or web server. If the proxy server finds the data object in its cache, then the 

second leg is automatically obviated. The hit ratio is the chance of finding the 

required data locally in the proxy’s cache. It fluctuates with the clients’ shift of 

preference for certain data items. For a set of data objects this shift quickly changes 

the relative popularity profile. If σ is the cache hit ratio, and RTT1 and RTT2 are the 

average roundtrip times respectively for the first and second legs, then  

S=(RTT1+RTT2)/(RTT1+[1-σ]*RTT2) is the information retrieval speedup, where [1-σ] 

is the miss ratio of the proxy cache. With σ = 0.5, RTT1=10 and RTT2=40 the 

speedup is S=(10+40)/(10+0.5*40)=50/30 or 1.67. Having a high proxy cache hit 

ratio is advantageous because RTT2, which involves the Domain Name Server (DNS), 

is usually much longer than RTT1. The DNS helps the proxy locate the required data 

objects in the correct remote data source.  

The explicit and implicit advantages from caching have motivated different 

areas of relevant research. The most popular topic is the design of replacement 

strategies that effectively keep as many hot data objects as possible in the cache. 

Continual replacement operations, which update the contents of the cache at the 

same time, are necessary to prevent the cache data from becoming stale (i.e. data 

incoherence). From this point of view it seems practical to have a very large cache 

but, this also increases the chance of data coherence. Therefore it is important to 



produce a high cache hit ratio and keep data incoherence abated at the same time. 

Almost all the known replacement strategies work with a static cache size, and they 

aim to yield a high cache hit ratio but do not necessarily maintain it. For this reason 

the cache hit ratio fluctuates with respect to the system dynamics and the current 

relative data object popularity profile. Maintaining a given cache hit ratio needs 

dynamic cache size tuning which, in contrast, works with a variable cache size.  

The original MACSC (Model for Adaptive Cache Size Control) conceptual 

framework for dynamic cache size tuning over the Internet is proposed in this thesis. 

It strives to maintain the given hit ratio under all conditions by leveraging the 

relative data object popularity profile as the sole parameter. This leveraging strategy 

shortens the MACSC execution time so that it computes and administers the tuning 

solution quickly to avoid possible deleterious effects. The MACSC conceptual 

framework is based on the Zipf-like behavior, which is the log-log plot of the access 

frequencies versus the corresponding ranked positions (r) of the data objects in the 

trace; that is, β−∝ )1()( rry . The β parameter, which is within the 10 ≤< β  range, 

denotes this relativity, and for β =1 it is called the Zipf Law. The MACSC 

framework does not work directly with y(r) but with the popularity distribution (PD). 

The PD is a bell curve produced by the mapping y(r) into a bell-shaped curve. The 

mapping mechanism is bell(r)=map(y(r))+e, where e denotes the possible mapping 

error. The argument is that if the bell curve indeed produces the expected dynamic 

cache size tuning result, then e can be ignored. The dynamic cache size tuning 

objective is achieved by measuring the PD standard deviation (SD) quickly and 

accurately on the fly in a statistical manner. From two successive SD values the 

popularity ratio (PR), namely, (SDi/SDi-1) (i.e. standard deviation ratio (SR)) or 
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(SDi/SDi-1)2 (i.e. variance ratio (VR)) can be calculated, where i denotes the 

computation/tuning cycle. The amount of dynamic cache size tuning to be done in 

each cycle on the fly is determined by the current PR ratio. The MACSC emphasizes 

supporting small, inexpensive caching systems, which usually cost less than 

USD1000 in the field. Therefore, it is important that it works correctly with the SR 

ratio because the VR involves a large amount of memory in the tuning process and 

thus may easily deplete the memory resources of small systems and make them 

perform sluggishly.      

In a live caching system the PD shape changes continuously because it reflects 

the user preference for particular data objects. The MACSC mechanism needs to 

compute the SD value for the PD at anytime in order to achieve the dynamic cache 

size tuning and maintain the given hit ratio successfully. Since the Internet dynamics 

is the result of a discrete stochastic process, the SD value should be computed 

statistically by direct data measurement. Yet, the Internet follows the power law and 

its traffic pattern in light IAT (inter-arrival time) pattern changes over time. 

Therefore, for the MACSC accuracy to be IAT independent, the methods for 

computing the SD should be based on the Central Limit Theorem (CLT). For this 

reason two basic methods, namely, point estimate (PE) and the M3RT, which is a 

micro IEPM (Internet End-to-End Performance Measurement) technique, are 

adopted. The M3RT is micro because it exists as a logical object to be invoked for 

service anytime and anywhere. These two basic methods led to the following 

solutions: MACSC(PE) (i.e. PE based) and MACSC(M3RT) (i.e. M3RT based). The 

MACSC(PE) solution is oscillatory as observed from different verification 

experiments because of high PE sensitivity to the profile changes in the relative data 
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object popularity. In contrast, the MACSC(M3RT) solution lacks the PE's sensitivity 

because the feedback loop in the M3RT mechanism dampens it despite giving the 

system stability. To combine the merits of the PE and M3RT mechanisms the third 

solution, namely, MACSC(F-PE) is proposed. In this solution, which outperforms its 

predecessors in all the verification experiments in a consistent manner, the PE 

mechanism is moderated by a feedback loop. Strikingly this feedback loop makes the 

MACSC(F-PE) dynamic cache size tuning accuracy insensitive to the IAT ill effects. 

The preliminary experimental results in the MACSC(PE) verification exercise 

showed that its accuracy depended on the IAT traffic pattern. This inspired the 

investigation of real-time traffic pattern detection (RTPD) and the possibility of 

allowing the MACSC(PE) framework to have this capability so that it can use the 

detected result to reconfigure itself on the fly to ward off traffic ill effects. This led to 

the proposal of the novel RTPD/MACSC(PE) solutions. This solution is an example 

of how real-time traffic pattern detection can be incorporated to enhance the efficacy 

of a time-critical application. The preliminary verification results show that both 

MACSC(F-E) and RTPD/MACSC(PE) are independent of the IAT traffic. The 

RTPD/MACSC(PE), however, has the advantage of knowing exactly what IAT 

traffic condition that it is working with. It may provide a greater degree of freedom 

for the MACSC framework to immediately deal with unusual situations, which has 

yet to be explored.  

Altogether four solutions are proposed and verified for the MACSC conceptual 

framework, which is formulated based on the Zipf-like behavior. This behavior is 

distinctive for caching systems that deal with a large number of data objects, and the 

four solutions are, namely, MACSC(PE), MACSC((M3RT), MACSC(F-PE), and 
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RTPD/MACSC(PE). Since the MACSC(F-PE) verification shows that this solution 

is independent of IAT patterns, the investigation of having a RTPD/MACSC(F-PE) 

solution becomes redundant and therefore no further effort at this stage is warranted 

in this direction. In the verification exercise the experiments made use of the relative 

popularity profile of all the data objects embedded in reasonably large traces 

(simulated or real). In this way every data object can be uniquely identified to 

facilitate the calculation of the popularity ratio. In real-life applications, however, a 

caching system not only has to deal with a huge amount of different data objects but 

also unpredictable access preferences. This makes the following impractical for 

straight MACSC implementation in real-life deployment: a) to identify every data 

object in the large population, and b) to compute Zipf-like and popularity 

distributions for the whole population in every dynamic cache size tuning cycle since 

the long computation delay would make the MACSC solutions unworkable. 

Therefore, the approach proposed in the thesis for realizing the MACSC framework 

for real-life deployment is to create the Zipf-like behavior and the PD from the data 

items sampled for the current dynamic cache size tuning cycle. If there is deviation 

from the Zipf-like behavior then the "kurtosis and skewness (KS)" test is used to 

confirm the existence of a valid popularity distribution from which the popularity 

ratio would be derived. Since the validity confirmation requires a reasonable number 

of sampled items, the proposed approach for MACSC realization and validation for 

real-life applications applies to only those PE based solutions (i.e. MACSC(PE), 

MACSC(F-PE) and RTPD/MACSC(PE) and not the MACSC(M3RT). The 

MACSC(M3RT) is excluded because it uses a small, fixed flush limit number of data 

items per sample. This small sample size does not give the MACSC(M3RT) 
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approach the necessary sensitivity. 

The thesis has achieved all the stated objectives and demonstrated how the 

MACSC conceptual framework can support mobile and time-critical applications 

such as TCM (Traditional Chinese Medicine) based telemedicine. The novel 

MACSC framework that maintains a given hit ratio by dynamic cache size tuning 

has been successfully verified with respect to the four solutions: MACSC(PE), 

MACSC(M3RT), MACSC(F-PE), and RTPD/MACSC(PE). The proposed approach 

for implementing the MACSC framework for validation and practical deployment 

excludes the MACSC(M3RT) solution. 

Table 12.1 summarizes and compares the four novel solutions proposed in this 

thesis as follows: 

MACSC(PE) is the first implemented solution of the MACSC framework. It 

maintains the hit ratio successfully in spite of its three problems: oscillation in the 

convergence process, unpredictable sampling time, and being sensitive to Internet 

traffic patterns. 

1. MACSC(M3RT) eliminates the MACSC(PE) oscillations by incorporating the 

M3RT IEPM (Internet End-to-End Performance Measurement) technique. The 

sampling time of this technique is predictable because it uses the flush limit f 

number of samples in every computation cycle. Yet, MACSC(M3RT) has two 

problems: a) it uses more memory than the MACSC(PE), and b) it is sometimes 

not responsive enough and this produces a low hit ratio. 

2. MACSC(F-PE) is proposed to reduce the MASCSC(PE) oscillation by the 

using of the feedback concept of MACSC(M3RT). The MACSC(F-PE) 

performance is better than MACSC(PE) and MACSC(M3RT) because it yields 



the highest hit ratio consistently with less memory than the other two solutions. 

3. RTPD/MACSC(PE) is proposed to eliminate the ill effects by Internet traffic 

patterns. It maintains a better hit ratio than MACSC(PE) working alone with the 

presence of real-time traffic pattern detection (RTPD) mechanism. This solution 

works with a reconfiguration scheme, which uses of the results detected by the 

RTPD mechanism to self-tune so that traffic ill effects are nullified. 

These four solutions represent an evolutionary development process in the course of 

my PhD research. 

 

a. MACSC(PE) b. MACSC(M3RT) c. MACSC(F-PE) d. RTPD/MACSC(PE) 

* Oscillation problem 

* Unpredictable 

 on-line sampling time  

* Control accuracy is 

  affected by different 

Internet traffic patterns 

* Eliminates 

MACSC(PE) 

oscillation  

* Predictable 

 sampling time by 

 using the flush limit 

 f number of samples 

* Uses more memory 

 than MACSC(PE) 

* Fail to respond  

 quickly to traffic 

 pattern changes and 

 therefore fail to 

 yield a high hit ratio 

* Reduces 

 MACSC(PE) 

 oscillation by using 

 the feedback concept 

 of MACSC(M3RT) 

* Minimizes memory 

  usage 

* Needs no RTPD 

  because its accuracy 

  is insensitive to  

  Internet  traffic 

  patterns 

* Includes RTPD to  

  eliminate ill effects 

  by Internet traffic 

  patterns 

* Maintains the hit ratio 

  better than the  

  MACSC(PE) 

* Carries out real-time 

  reconfiguration that 

  works with the traffic 

  pattern identified by 

  RTPD currently 

            From a. to d. above is an evolutionary development process 

Table 12.1 Summary and comparison of four solutions (an evolutionary process) 
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12.2 RESEARCH METHODOLOGY ADAPTATION 
By nature this PhD research is exploratory because the topic of dynamic cache 

size tuning has little published experience. Despite this, the research produces a 

prototype for testing and supporting further research as one of its output, the process 

is naturally top-down because the course of research includes literature search, 

problem statement, proposed solutions, and data collection. It is, however, difficult 

to apply the Top Down approach in a strict sense because early exploratory 

investigations that produce unpredictable results are necessary. That is, the whole 

investigation would involve repetitive backtracking and cross-referencing to gain the 

necessary insight for the next step. This means a need to find a research 

methodology that can cater to the repetitive and exploratory nature of the research. 

After a careful consideration, I decided to customize the original methodology 

proposed for my previous exploratory MPhil research [Wu02], namely, “investigate 

& experiment & proceed with possible backtracking, cross referencing and looping 

(IEP)” approach for the PhD investigation. The research process involves different 

traversals in the IEP methodology and backtracking. It is summarized as follows: 

a. Understanding the rationale of caching in general,  

b. Studying some general caching approaches and statistical approaches,  

c. To propose a dynamic caching framework, MACSC (Model for Adaptive 

Cache Size Control), 

d. Implement the MACSC with different statistical approaches,  

e. Looking for a stable mobile-agent platform for testing purposes,  

f. Refining the MACSC frameworks for better data collection and analysis, and  



g. Demonstrating how the MACSC frameworks can be implemented in the real 

environment. 

 

12.3 AREAS OF FUTURE WORK 
The implementation of any of these conceptual solutions, however, has to 

overcome the problem of very large data sets in a caching system. Since the Zipf-like 

behavior is usually apparent only for very large datasets, compensation methods are 

needed to deal with situations that deviate from the formal Zipf-like behavior, which 

is governed by β−∝ )1( ry  for 10 ≤< β . The deviation is usually indicated by the 

condition of β > 1. In such cases the bell nature of the distribution is verified by the 

“kurtosis and skewness” test. The Zipf-like behavior refers to the relative access 

frequencies of data objects in a very large dataset. It becomes impractical for the 

“ranker” to re-establish a new Zipf-like distribution and then compute the standard 

deviation for the popularity ratio (PR) essential for the dynamic cache size 

adjustment operation. The proposed alternative for the implementation of the four 

solutions is to compute PR with respect to the set of data object requests sampled for 

the current tuning cycle. In this way the PR ratio can be computed quickly from the 

Zipf-like distribution based on the set. Simulations with different traces show that 

this is a viable solution for practical MACSC deployments. The only problem is that 

this implementation approach does not work well for the MACSC(M3RT) solution 

because it only needs a small number of samples (i.e. equal to the flush limit) to 

estimate the mean of any distribution accurately. The small flush-limit number of 

samples, however, makes it difficult to construct a meaningful Zipf-like distribution 

with high confidence. How to implement the MACSC(M3RT) effectively is therefore 
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an important item for future exploration. 

The research has uncovered different problems, which should be addressed in 

the future to make the MACSC framework more deployable for time-critical 

applications. The more immediate future work items include: 

a. Conduct more M3RT investigation: The aim is to find out how this technique 

can be efficaciously utilized for accurate estimation of the standard deviation 

of the popularity distribution on the fly in MACSC application. 

b. Perform more precise calibration: The aim is to calibrate traffic patterns 

versus the initial n values for the PE statistical estimation.  

c. Test MACSC with different replacement algorithms: The experiments 

conducted so far worked with the LRU (least recently used) approach. It is 

worthwhile to compare the performance of different “MACSC + replacement 

algorithm” combinations because some useful combination may exist. 

 

 

12.4 ACHIEVEMENTS 
This PhD thesis has contributed a novel conceptual framework, namely, the 

MACSC, for maintaining a given hit ratio by dynamic cache size tuning over the 

Internet. Four solutions for realizing the framework were proposed and verified, 

namely, MACSC(PE), MACSC(M3RT), MACSC(F-PE), and RTPD/MACSC(PE). A 

practical implementation method, which is based on the data samples collected for 

the current tuning cycle, is proposed and tested. This method works well for the 

MACSC(PE), MACSC(F-PE), and RTPD/MACSC(PE) solutions but not the 

MACSC(M3RT). The four conceptual solutions provide a solid basis for future 
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deeper research in the direction of dynamic cache size tuning over the Internet. The 

verification results indicate that the MACSC framework definitely contributes to 

shorten the service roundtrip time in web information retrieval. The findings from 

the research so far have contributed to 17 refereed publications as follows: 

 

8 Refereed Journal Papers 

[1] Richard S.L. Wu, Wilfred W.K. Lin and Allan K.Y. Wong, Harnessing Wireless 

Traffic is an Effective Way to Improve Mobile Internet Performance, Proceedings of 

1st IEEE International Conference on Wireless Broadband and Ultra Wideband 

Communications AuS Wireless 2006, March, 2006 

[2] Richard S. L. Wu, Allan K. Y. Wong and Tharam S. Dillon, CACHERP: A Novel 

Dynamic Cache Size Tuning Model Working with Relative Object Popularity for 

Fast Web Information Retrieval, Journal of Supercomputing, 2006 (Accepted and 

will appear in the journal) 

[3] Richard S. L. Wu, Allan K. Y. Wong and Tharam S. Dillon, E-MACSC: A 

Novel Dynamic Cache Tuning Technique to Reduce Information Retrieval Roundtrip 

Time over the Internet, Journal of Computer Communications (Accepted and will 

appear in the journal) 

[4] Wilfred W. K. Lin, Allan K. Y. Wong, Richard S. L. Wu, Applying Fuzzy Logic 

and Genetic Algorithms to Enhance the Efficacy of the PID Controller in Buffer 

Overflow Elimination for Better Channel Response Timeliness over the Internet, 

Journal of Concurrency: Practice & Experience (Accepted and will appear in the 

journal) 
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[5] Richard S. L. Wu, Allan K. Y. Wong and Tharam S. Dillon, RDCT: A Novel 

Reconfigurable Dynamic Cache Tuner to Shorten Information Retrieval Time over 

the Internet, International Journal of Computer Systems Science & Engineering, 

19(6), 2004, 363 – 371. 

[6] Richard S. L. Wu, Allan K. Y. Wong and Tharam S. Dillon, CACHERP: A Novel 

Dynamic Cache Size Tuning Model working with Relative Object Popularity for 

Fast Web Information Retrieval, Electronic Journal of Lecture Notes in Computer 

Science, Springer-Verlag GmbH, 3358, 2004. 

[7] Richard S. L. Wu, Allan Kang Ying Wong and Tharam S. Dillon, E-MACSC: A 

Novel Dynamic Cache Tuning Technique to Maintain the Prescribed Minimum Hit 

Ratio Consistently for Internet/WWW Applications, World Scientific and 

Engineering Academy and Society (WSEAS) Transactions on Computers, April 2004, 

3(2), 424 – 429. 

[8] Allan K. Y. Wong, May T. W. Ip, Richard S. L. Wu, A Novel Dynamic Cache 

Size Adjustment Approach for Better Data Retrieval Performance over the Internet, 

Journal of Computer Communications, September 2003, 26(14), 1709-1720. 

 

2 Book Chapters (Invited) 

[9] Richard S. L. Wu, Allan K. Y. Wong and Tharam S. Dillon, E-MACSC: A 

Novel Dynamic Cache Tuning Technique to Maintain the Hit Ratio Prescribed by the 

User in Internet Applications, International Conference on E-Business and 

Telecommunication Networks (ICETE 2004) Best Paper Book, Kluwer Academic 

Publishers, 2004 (best papers series by ICETE’04)). 

[10] Allan K. Y. Wong, Richard S. L. Wu and Tharam S. Dillon, Dynamic 



 

 - 183 - 

Maintenance of a Given Proxy Cache Hit Ratio by Leveraging the Relative Data 

Object Popularity Profile to Yield Shorter Service Roundtrip Time, to appear in an 

edited collection by Nova Science Publishers, Inc., New York. 

 

7 Refereed Conference Papers 

[11] Wilfred W. K. Lin, Allan K. Y. Wong, Richard S. L. Wu, A Novel Real Time 

Self Similar Traffic Detector/Filter to Improve the Reliability of a TCP Based End to 

End Client/Server Interaction Path for Shorter Roundtrip Time, Proceedings of 2nd 

International Conference on E-Business and Telecommunication Networks (ICETE 

2005), Reading, U.K., October 2005 

[12] Richard S. L. Wu, Tharam S. Dillon and Allan K. Y. Wong, RTPD/MACSC: A 

Novel Approach for Effective Pervasive Information Retrieval, Proceedings of the 

Fourth International Conference on Mobile Business (ICMB 2005), Sydney, 

Australia, July 2005, 514 – 520. 

[13] Richard S. L. Wu, Allan K. Y. Wong, Tharam S. Dillon, Using Real-Time 

Traffic Pattern Detection for Dynamic Cache Size Tuning in Information Retrieval, 

Proceedings of the Third Internal Conference on Information Technology and 

Applications (iCITA’ 2005), Sydney, Australia, July 2005, Volume 2, 35 – 40, Volume 

2, 35 – 40. 

[14] Richard S. L. Wu, Allan K. Y. Wong, Tharam S. Dillon, CACHERP: A Novel 

Dynamic Cache Size Tuning Model working with Relative Object Popularity for 

Fast Web Information Retrieval, Proceedings of Second International Symposium on 

Parallel and Distributed Processing and Applications (ISPA 2004), Hong Kong, 

China, December 2004, 410 – 420. 
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[15] Wilfred W. K. Lin, Richard S. L. Wu, Tharam S. Dillon and Allan K. Y. Wong, 

A Novel Real-Time Traffic Pattern Detector for Internet Applications, Proceedings 

of the 2004 Australian Telecommunication Networks and Applications Conference 

(ATNAC 2004), December 2004, 224 – 227. 

[16] Richard S. L. Wu, Allan K. Y. Wong and Tharam S. Dillon, E-MACSC: A 

Novel Dynamic Cache Tuning Technique to Maintain the Hit Ratio Prescribed by the 

User in Internet Applications, Proceedings of 1st International Conference on 

E-Business and Telecommunication Networks (ICETE 2004), Set al/Portugal, August 

2004, Volume 1, 152 – 159. 

[17] Richard S. L. Wu, May T. W. Ip and Allan K. Y. Wong, LDC-CM: A Novel 

Model for Dynamic Cache Size Adjustment, Proceedings of 2003 International 

Conference on Internet Computing, Las Vegas, Nevada, USA, June 2003, Volume 2, 

753-758. 
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A2 REVIEWERS’ COMMENTS 
The 2nd International Conference on E-business and Telecommunication 

Networks (ICETE 2004) 

 

This paper describes an interesting piece of work on dynamic cache tuning. 

Though the work described therein is an enhancement of the authors' previous model 

MACSC, the suggested enhancement, which leverages on the relative object 

popularity profile, has led to significant improvement over the original MACSC 

approach. 

The model deserves more detailed studies, particularly how the parameters 

should be optimized for different types of systems and environments. 

 

The Second International Symposium on Parallel and Distributed Processing 

and Applications (ISPA’04) 

 

A novel model for dynamic cache size tuning is proposed. The performance 

evaluation is also provided. It is basically well-written and of interest. 

In this article, the authors have given us a thorough discussion about how to 

keep the hit ratio of web caches at a consistent level. The topic is novel and 

interesting. Intensive theoretical analysis and extensive experiment verification have 

been provided to prove the effectives of authors`s cache size tuning model. 

The discussion about how to keep a specific hit ratio but not to gain a hit ratio 

as high as possible is interesting and novel. 
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The 3rd International Conference on Information Technology and Applications 

(ICITA'2005) 

 

This paper introduces a model to tune the cache size adaptively. The model 

proposed is interesting, and show increased performance in information retrieval.  

 

The Fourth International Conference on Mobile Business (mBusiness 2005) 

 

Original research has been reflected and a novel approach is proposed. 

This paper proposes a novel approach to shorten the information retrieval time 

by a small form factor client in a pervasive computing environment. Relative work, 

its limitations and how this research proposes to address this gap. They are well 

presented. Future propositions to test this approach are also well taken. 

The authors' primary contribution appears to be using their RTPD method in 

conjunction with MACSC.  This could be made clearer in the paper (and even in 

the paper title), i.e. that the real contribution is adding RTPD. 
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