

 - i -

ACKNOWLEDGEMENT

I sincerely thank my supervisor Dr. Allan Wong and co-supervisor Professor Tharam

Dillon for their guidance, support and patience throughout my PhD study. Their

advice is essential to the qualitative completion of this thesis. I would also like to

thank those in the COMP Team who collaborated to provide useful information for

my successful investigation into real-time Internet traffic pattern detection, which

makes the proposed MACSC framework more accurate under all operation

conditions. Last but not least I would like to thank my parents for their support

throughout the whole research process.

 - ii -

ABSTRACT

The aim of this thesis is to propose a framework for maintaining a minimum

cache hit ratio in a dynamic manner. By doing so the service roundtrip time in a

client/server interaction over the Internet is shortened. This is achieved because the

dynamic cache size tuner obviates the second leg in the information retrieval process.

The final framework proposed in this research after considerable verification is the

MACSC (Model for Adaptive Cache Size Control). This MACSC research has

achieved all the objectives, namely:

a. Proposed the framework that leverages the minimum number of network

parameters for accurate dynamic cache size tuning.

b. Proposed compensation measures that help the framework work healthily

under extreme conditions.

c. Proposed a RTPD mechanism that is suitable for time-critical applications so

that it can be included as part of the self-reconfigurable framework for

dynamic cache size tuning on the fly.

d. Verified the generic framework with simulated and live datasets/traces.

e. Verified that the proposed framework can indeed support wired and wireless

client/server interactions with similar efficacy.

f. Verified that this efficacy applies to mobile and time-critical applications

such as telemedicine.

There are four approaches proposed for realizing the MACSC framework,

which leverages the Zipf-like behavior as the conceptual basis. This behavior

 - iii -

represents the relative data object popularity profile from which the popularity ratio

is derived on the fly. This ratio determines the size of the dynamic cache size

adjustment. The four approaches dictate how the standard deviation and the

popularity ratio of the popularity distribution should be computed, and they are as

follows:

a. Point estimate (PE): This CLT (Central Limit Theorem) based method is

sensitive to changes in the ROP profile, but it generates a lot of oscillations

for having no feedback system.

b. M3RT: This CLT based technique is transcribed from another problem

domain, namely, Internet End-to-End Performance Measurement (IEPM)

[Cottrel99], [Cottrel01]. Previous experience [Ip03] has confirmed that it

always yields the mean of any waveform accurately in real-time applications

because it has a feedback loop. The good quality of stability of this technique,

however, becomes a liability for MACSC application because there is a need

to strike a balance between stability and sensitivity, and this led to the

proposal of the “fine-tune point estimate (F-PE) technique.

c. F-PE: It combines the merits of PE sensitivity and M3RT stability and

accuracy due to the presence of a feedback loop.

d. Real-time Traffic Pattern Detection (RTPD): It was observed in the early

experiments that the Internet traffic patterns have different ill effects on the

MACSC accuracy. Therefore, a RTPD mechanism is included in the original

MACSC framework to make it into the newer RTPD/MACSC framework.

The aim is to let the RTPD mechanism identify the traffic pattern at the time

so that the MACSC can “reconfigure” itself to neutralize the traffic ill effects.

 - iv -

In the MACSC research context, the RTPD/MACSC(PE) solution is a form

of reconfigurable dynamic cache size tuning. As a result four specialized

solutions are derived from the general MACSC framework. The

specialization is the technique whereby the SD is computed on the fly in each

solution.

Therefore, the four novel proposed conceptual solutions, which represents an

evolutionary process, are: MACSC(PE), MACSC(M3RT), MACSC(F-PE), and

RTPD/MACSC(PE).

 - v -

LIST OF REFEREED PUBLICATIONS

The findings of this thesis have contributed to 17 refereed publications so far as

follows:

7 Refereed Journal Papers

[1] Richard S. L. Wu, Allan K. Y. Wong and Tharam S. Dillon, CACHERP: A Novel

Dynamic Cache Size Tuning Model Working with Relative Object Popularity for

Fast Web Information Retrieval, Journal of Supercomputing, 2006 (Accepted and

will appear in the journal).

[2] Richard S. L. Wu, Allan K. Y. Wong and Tharam S. Dillon, E-MACSC: A

Novel Dynamic Cache Tuning Technique to Reduce Information Retrieval Roundtrip

Time over the Internet, Journal of Computer Communications (Accepted and will

appear in the journal).

[3] Wilfred W. K. Lin, Allan K. Y. Wong, Richard S. L. Wu, Applying Fuzzy Logic

and Genetic Algorithms to Enhance the Efficacy of the PID Controller in Buffer

Overflow Elimination for Better Channel Response Timeliness over the Internet,

Journal of Concurrency: Practice & Experience (Accepted and will appear in the

journal).

[4] Richard S. L. Wu, Allan K. Y. Wong and Tharam S. Dillon, RDCT: A Novel

Reconfigurable Dynamic Cache Tuner to Shorten Information Retrieval Time over

the Internet, International Journal of Computer Systems Science & Engineering,

November 2004, 19(6), 363 – 371.

 - vi -

[5] Richard S. L. Wu, Allan K. Y. Wong and Tharam S. Dillon, CACHERP: A Novel

Dynamic Cache Size Tuning Model working with Relative Object Popularity for

Fast Web Information Retrieval, Electronic Journal of Lecture Notes in Computer

Science, Springer-Verlag GmbH, 3358, 2004.

[6] Richard S. L. Wu, Allan Kang Ying Wong and Tharam S. Dillon, E-MACSC: A

Novel Dynamic Cache Tuning Technique to Maintain the Prescribed Minimum Hit

Ratio Consistently for Internet/WWW Applications, World Scientific and

Engineering Academy and Society (WSEAS) Transactions on Computers, April 2004,

3(2), 424 – 429.

[7] Allan K. Y. Wong, May T. W. Ip, Richard S. L. Wu, A Novel Dynamic Cache

Size Adjustment Approach for Better Data Retrieval Performance over the Internet,

Journal of Computer Communications, September 2003, 26(14), 1709-1720.

2 Book Chapters (Invited)

[8] Richard S. L. Wu, Allan K. Y. Wong and Tharam S. Dillon, E-MACSC: A

Novel Dynamic Cache Tuning Technique to Maintain the Hit Ratio Prescribed by the

User in Internet Applications, International Conference on E-Business and

Telecommunication Networks (ICETE 2004) Best Paper Book, Kluwer Academic

Publishers, 2004 (best papers series by ICETE’04)).

[9] Allan K. Y. Wong, Richard S. L. Wu and Tharam S. Dillon, Dynamic

Maintenance of a Given Proxy Cache Hit Ratio by Leveraging the Relative Data

Object Popularity Profile to Yield Shorter Service Roundtrip Time, to appear in an

edited collection by Nova Science Publishers, Inc., New York.

 - vii -

8 Refereed Conference Papers

[10] Richard S.L. Wu, Wilfred W.K. Lin, and Allan K.Y. Wong, Harnessing Wireless

Traffic is an Effective Way to Improve Mobile Internet Performance (Invited Paper),

Proceedings of the First IEEE International Conference on Wireless Broadband and

Ultra Wideband Communications, Sydney, Australia, 459-464, March, 2006

[11] Wilfred W. K. Lin, Allan K. Y. Wong, Richard S. L. Wu, A Novel Real Time

Self Similar Traffic Detector/Filter to Improve the Reliability of a TCP Based End to

End Client/Server Interaction Path for Shorter Roundtrip Time, Proceedings of 2nd

International Conference on E-Business and Telecommunication Networks (ICETE

2005), Reading, U.K., October 2005, Volume 1, 94-102

[12] Richard S. L. Wu, Tharam S. Dillon and Allan K. Y. Wong, RTPD/MACSC: A

Novel Approach for Effective Pervasive Information Retrieval, Proceedings of the

Fourth International Conference on Mobile Business (ICMB 2005), Sydney,

Australia, July 2005., 514 – 520.

[13] Richard S. L. Wu, Allan K. Y. Wong, Tharam S. Dillon, Using Real-Time

Traffic Pattern Detection for Dynamic Cache Size Tuning in Information Retrieval,

Proceedings of the Third Internal Conference on Information Technology and

Applications (iCITA’ 2005), Sydney, Australia, July 2005, Volume 2, 35 – 40.

[14] Richard S. L. Wu, Allan K. Y. Wong, Tharam S. Dillon, CACHERP: A Novel

Dynamic Cache Size Tuning Model working with Relative Object Popularity for

Fast Web Information Retrieval, Proceedings of Second International Symposium on

Parallel and Distributed Processing and Applications (ISPA 2004), Hong Kong,

China, December 2004, 410 – 420.

[15] Wilfred W. K. Lin, Richard S. L. Wu, Tharam S. Dillon and Allan K. Y. Wong,

 - viii -

A Novel Real-Time Traffic Pattern Detector for Internet Applications, Proceedings

of the 2004 Australian Telecommunication Networks and Applications Conference

(ATNAC 2004), December 2004, 224 – 227.

[16] Richard S. L. Wu, Allan K. Y. Wong and Tharam S. Dillon, E-MACSC: A

Novel Dynamic Cache Tuning Technique to Maintain the Hit Ratio Prescribed by the

User in Internet Applications, Proceedings of 1st International Conference on

E-Business and Telecommunication Networks (ICETE 2004), Set al/Portugal, August

2004, 1, 152 – 159.

[17] Richard S. L. Wu, May T. W. Ip and Allan K. Y. Wong, LDC-CM: A Novel

Model for Dynamic Cache Size Adjustment, Proceedings of 2003 International

Conference on Internet Computing, Las Vegas, Nevada, USA, June 2003, 2,

753-758.

LIST OF FIGURES

FIGURE 1.1 THE RELATIONSHIP BETWEEN THE CLIENT AND THE PROXY SERVER...................................... 3

FIGURE 1.2 IMPACT OF USER BEHAVRIOUR ON THE HIT RATIO OF A WIRELINE FIXED CACHE SIZE SYSTEM

.. 12

FIGURE 1.3 IMPACT OF USER BEHAVRIOUR ON THE HIT RATIO OF A WIRELESS FIXED CACHE SIZE SYSTEM

.. 13

FIGURE 1.4 A CONCISE TELEMEDICINE VIEW ... 16

FIGURE 2.1 EXISTING TECHNIQUES RELEVANT TO CACHING.. 20

FIGURE 3.1 INFORMATION RETRIEVAL BY A SFF CLIENT IN THE W&W ARCHITECTURE......................... 32

FIGURE 3.2 THE ROADMAP FOR PROJECT MANAGEMENT ... 43

FIGURE 4.1 A SUMMARY OF THE RESEARCH ROADMAP.. 49

FIGURE 4.2 OVERVIEW OF THE SOLUTIONS.. 54

FIGURE 5.1 ZIPF-LIKE DISTRIBUTION (LOG-LOG PLOT).. 57

FIGURE 5.2 BELL SHAPE DISTRIBUTION... 57

FIGURE 5.3 PD CHANGES OVER TIME AND REFLECTS THE CHANGE IN USER PREFERENCE...................... 58

FIGURE 5.4 THE PLOT OF FREQUENCY AGAINST UNRANKED OBJECT ID OF EPA-HTTP......................... 60

FIGURE 5.5 THE PLOT OF FREQUENCY AGAINST RANKED ID OF EPA-HTTP.. 60

FIGURE 5.6 THE LOG-LOG PLOT OF FREQUENCY AGAINST RANKING OF EPA-HTTP.............................. 60

FIGURE 5.7 PLOT OF FREQUENCY AGAINST RANKED ID IN BELL-SHAPE OF EPA-HTTP 60

FIGURE 5.8 THE LOG-LOG PLOT OF BU-WEB-CLIENT (169 DAYS) ... 63

FIGURE 5.9 THE LOG-LOG PLOT OF NASA-HTTP-CLIENT (31 DAYS).. 63

FIGURE 6.1 CENTRAL LIMIT THEOREM; N1 AND N2 ARE TWO DIFFERENT SAMPLE SIZES (I.E. N)............. 69

FIGURE 6.2 NORMAL DISTRIBUTION OF MEANS (x) FROM ANY DISTRIBUTION (IDEALLY M = Λ) 70

FIGURE 6.3 THE SUMMARY FLOW OF THE MACSC(PE) APPROACH .. 74

FIGURE 6.4 VERIFICATION SET UP FOR THE MACSC(PE) TUNER (FOR THE PROXY) BY SIMULATION 76

FIGURE 6.5 SUMMARY OF THE GENERATION OF THE BELL IDENTIFIER (BI) VALUE................................. 78

 - ix -

 - x -

FIGURE 6.6 A BACKGROUND CONCURRENT “RANKER” MAPS OI WITH RANKED OBJECTS 79

FIGURE 6.7 THE COMPARISON OF THE HIT RATIO BETWEEN MACSC(PE) AND FCS (INTERLEAVED SD

SEQUENCE: 1K→2.5K→1.5K→2K) ... 80

FIGURE 6.8 THE HIT RATIO IMPROVEMENT OVER FCS (INTERLEAVED SD SEQUENCE: 1K→2.5K→1.5K→

2K) .. 81

FIGURE 6.9 THE COMPARISON OF THE HIT RATIO BETWEEN MACSC(PE) AND FCS (INTERLEAVED SD

SEQUENCE: 1K→2K→1.5K→3K) .. 81

FIGURE 6.10 THE HIT RATIO IMPROVEMENT OVER FCS (INTERLEAVED SD SEQUENCE: 1K→2K→1.5K→

3K) .. 81

FIGURE 6.11 CHANGES OF HIT RATIOS BY MACSC(PE) AND FCS (INTERLEAVED SD SEQUENCE: 1K→

2.5K→1.5K→2K).. 82

FIGURE 6.12 CHANGES OF HIT RATIOS BY MACSC(PE) AND FCS (INTERLEAVED SD SEQUENCE: 1K→

2K→1.5K→3K)... 82

FIGURE 6.13 PERFORMANCE COMPARISON OF FCS AND MACSC(PE) FOR DIFFERENT DATA TRACES ... 84

FIGURE 6.14 THE MAGNIFIED VIEW OF THE CHANGE OF HIT RATIOS BY FCS AND MACSC(PE) WITH THE

EPA-HTTP DATA TRACE.. 84

FIGURE 6.15 THE MAGNIFIED VIEW OF THE CHANGE OF HIT RATIOS BY FCS AND MACSC(PE) WITH THE

SDSC-HTTP DATA TRACE... 85

FIGURE 6.16 THE MAGNIFIED VIEW OF CHANGES IN HIT RATIOS BY FCS AND MACSC(PE) WITH THE

CALGARY-HTTP DATA TRACE ... 85

FIGURE 6.17 THE MAGNIFIED VIEW OF CHANGES OF HIT RATIOS BY MACSC(PE) (INTERLEAVED SD

SEQUENCE: 1K→2K→1.5K→3K) .. 87

FIGURE 6.18 THE MAGNIFIED VIEW OF CHANGES IN MEMORY USAGE BY MACSC(PE) (INTERLEAVED

SD SEQUENCE: 1K→2K→1.5K→3K) .. 87

FIGURE 6.19 THE MAGNIFIED VIEW OF CHANGES OF HIT RATIOS BY MACSC(PE) WITH THE EPA-HTTP

DATA TRACE... 87

FIGURE 6.20 THE MAGNIFIED VIEW OF CHANGES IN MEMORY USAGE BY MACSC(PE) WITH THE

 - xi -

EPA-HTTP DATA TRACE.. 88

FIGURE 7.1 MI CALCULATIONS BY M3RT FOR THE IAT SERIES IN THE EPA-HTTP TRACE 93

FIGURE 7.2 THE SUMMARY FLOW OF THE MACSC(M3RT) APPROACH ... 98

FIGURE 7.3 VERIFICATION SET UP FOR THE MACSC(M3RT) TUNER (FOR THE PROXY) BY SIMULATION 99

FIGURE 7.4 THE COMPARISON OF THE HIT RATIO BETWEEN DIFFERENT FRAMEWORKS (INTERLEAVED SD

SEQUENCE: 1K→2.5K→1.5K→2K WITH F=19 AND Α=0.999).. 100

FIGURE 7.5 THE HIT RATIO IMPROVEMENT OVER FCS (INTERLEAVED SD SEQUENCE: 1K→2.5K→1.5K→

2K WITH F=19 AND Α=0.999)... 100

FIGURE 7.6 THE COMPARISON OF THE HIT RATIO BETWEEN DIFFERENT FRAMEWORKS (INTERLEAVED

SD SEQUENCE: 1K→2K→1.5K→3K WITH F=19 AND Α=0.999)... 100

FIGURE 7.7 THE HIT RATIO IMPROVEMENT OVER FCS (INTERLEAVED SD SEQUENCE: 1K→2K→1.5K→

3K) .. 101

FIGURE 7.8 CHANGES OF HIT RATIOS BY DIFFERENT FRAMEWORKS (INTERLEAVED SD SEQUENCE: 1K

→2.5K→1.5K→2K).. 101

FIGURE 7.9 CHANGES OF HIT RATIOS BY DIFFERENT FRAMEWORKS (INTERLEAVED SD SEQUENCE: 1K→

2K→1.5K→3K)... 102

FIGURE 7.10 CORRELATION AMONG HIT RATIO, CACHE SIZE AND Α WITH F=19.................................... 104

FIGURE 7.11 CORRELATION AMONG HIT RATIO, CACHE SIZE AND F VALUES WITH Α= 0.999................. 104

FIGURE 7.12 PERFORMANCE COMPARISON OF DIFFERENT FRAMEWORKS FOR DIFFERENT DATA TRACES

.. 105

FIGURE 7.13 THE MAGNIFIED VIEW OF THE CHANGE OF HIT RATIOS BY DIFFERENT FRAMEWORKS WITH

THE EPA-HTTP DATA TRACE... 105

FIGURE 7.14 THE MAGNIFIED VIEW OF THE CHANGE OF HIT RATIOS BY DIFFERENT FRAMEWORKS WITH

THE SDSC-HTTP DATA TRACE.. 105

FIGURE 7.15 THE MAGNIFIED VIEW OF CHANGES IN HIT RATIOS BY DIFFERENT FRAMEWORKS WITH THE

CALGARY-HTTP DATA TRACE ... 106

FIGURE 7.16 THE MEMORY USAGE BY DIFFERENT FRAMEWORKS WITH DIFFERENT DATA TRACES 106

FIGURE 8.1 THE SUMMARY FLOW OF THE MACSC(F-PE) APPROACH... 110

 - xii -

FIGURE 8.2 VERIFICATION SET UP FOR THE MACSC(F-PE) TUNER (FOR THE PROXY) BY SIMULATION 111

FIGURE 8.3 THE COMPARISON OF THE HIT RATIO BETWEEN DIFFERENT FRAMEWORKS (INTERLEAVED

SD SEQUENCE: 1K→2.5K→1.5K→2K) ... 112

FIGURE 8.4 THE HIT RATIO IMPROVEMENT OVER FCS (INTERLEAVED SD SEQUENCE: 1K→2.5K→1.5K→

2K) .. 112

FIGURE 8.5 THE COMPARISON OF THE HIT RATIO BETWEEN DIFFERENT FRAMEWORKS (INTERLEAVED

SD SEQUENCE: 1K→2K→1.5K→3K) .. 112

FIGURE 8.6 THE HIT RATIO IMPROVEMENT OVER FCS (INTERLEAVED SD SEQUENCE: 1K→2K→1.5K→

3K) .. 113

FIGURE 8.7 CHANGES OF HIT RATIOS BY DIFFERENT FRAMEWORKS (INTERLEAVED SD SEQUENCE: 1K

→2.5K→1.5K→2K).. 113

FIGURE 8.8 CHANGES OF HIT RATIOS BY DIFFERENT FRAMEWORKS (INTERLEAVED SD SEQUENCE: 1K→

2K→1.5K→3K)... 113

FIGURE 8.9 THE MEMORY USAGE BY DIFFERENT FRAMEWORKS WITH DIFFERENT SIMULATED DATA

TRACES.. 114

FIGURE 8.10 PERFORMANCE COMPARISON OF DIFFERENT FRAMEWORKS FOR DIFFERENT DATA TRACES

.. 115

FIGURE 8.11 THE MAGNIFIED VIEW OF THE CHANGE OF HIT RATIOS BY DIFFERENT FRAMEWORKS WITH

THE EPA-HTTP DATA TRACE... 115

FIGURE 8.12 THE MAGNIFIED VIEW OF THE CHANGE OF HIT RATIOS BY DIFFERENT FRAMEWORKS WITH

THE SDSC-HTTP DATA TRACE.. 116

FIGURE 8.13 THE MAGNIFIED VIEW OF CHANGES IN HIT RATIOS BY DIFFERENT FRAMEWORKS WITH THE

CALGARY-HTTP DATA TRACE ... 116

FIGURE 8.14 THE MEMORY USAGE BY DIFFERENT FRAMEWORKS WITH DIFFERENT DATA TRACES 117

FIGURE 9.1 LRD FREQUENCY DISTRIBUTION OF HTTP REQUEST TO THE EPA DATASET, MEAN IAT IS 2120

FIGURE 9.2 SRD FREQUENCY DISTRIBUTION OF THE POISSON IAT, MEAN IAT IS 2 120

FIGURE 9.3 R/S PLOT CONFIRMS LRD NATURE FOR EPA TRACE, H=0.761 WITH 99.3% CONFIDENCE. 121

FIGURE 9.4 R/S PLOT CONFIRMS SRD NATURE FOR POISSON TRACE, H=0.491 WITH 99.87%

 - xiii -

CONFIDENCE.. 121

FIGURE 9.5 DATA LOSS (MISSED DATA) OF MACSC(PE) VERSUS IAT FOR THE LRD AND SRD TRACES

.. 121

FIGURE 9.6 HIT RATIO OF MACSC(PE) VERSUS IAT FOR THE LRD AND SRD TRACES....................... 122

FIGURE 9.7 DATA LOSS (MISSED DATA) OF MACSC(F-PE) VERSUS IAT FOR THE LRD AND SRD TRACES

.. 122

FIGURE 9.8 HIT RATIO OF MACSC(PE) VERSUS IAT FOR THE LRD AND SRD TRACES....................... 123

FIGURE 9.9 LRD IDENTIFICATION BY SELFIS’S R/S ESTIMATOR .. 124

FIGURE 9.10 LRD CONFIRMATION BY THE SELFIS’S PERIODOGRAM ESTIMATOR................................. 125

FIGURE 9.11 FREQUENCY PLOT OF THE REAL-LIFE EPA-HTTP IAT (INTER-ARRIVAL TIME) TRACE..... 129

FIGURE 9.12 R/S PLOT FOR THE TRACE IN [SIGCOMM] (FIGURE 9.11) CONFIRMS ITS LRD BEHAVIOR

.. 130

FIGURE 9.13 RTPD (E-R/S) EXECUTION TIME (891 CLOCK CYCLES) BY INTEL® VTUNE™

PERFORMANCE ANALYZER .. 131

FIGURE 9.14 R/S EXECUTION TIME (950 CLOCK CYCLES) BY INTEL® VTUNE™ PERFORMANCE

ANALYZER (WITHOUT M3RT SUPPORT) ... 132

FIGURE 10.1 PROPOSED APPROACH FOR VALIDATING THE MACSC SOLUTIONS 136

FIGURE 10.2. THE PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS FOR DIFFERENT DATA

TRACES.. 139

FIGURE 10.3 THE CHANGE OF HIT RATIOS BY DIFFERENT ALGORITHMS WITH THE EPA-HTTP DATA

TRACE ... 140

FIGURE 10.4 THE MAGNIFIED VIEW OF THE CHANGE OF HIT RATIOS BY DIFFERENT ALGORITHMS WITH

THE EPA-HTTP DATA TRACE... 140

FIGURE 10.5 THE CHANGE OF THE MEMORY USAGE BY DIFFERENT ALGORITHM WITH THE EPA-HTTP

DATA TRACE... 140

FIGURE 10.6 THE CHANGE OF HIT RATIOS BY DIFFERENT ALGORITHMS WITH THE SDSC-HTTP DATA

TRACE ... 141

FIGURE 10.7 THE MAGNIFIED VIEW OF THE CHANGE OF HIT RATIOS BY DIFFERENT ALGORITHMS WITH

THE SDSC-HTTP DATA TRACE.. 141

 - xiv -

FIGURE 10.8 THE CHANGES IN HIT RATIOS BY DIFFERENT ALGORITHMS WITH THE CALGARY-HTTP DATA

TRACE ... 141

FIGURE 10.9 THE MAGNIFIED VIEW OF CHANGES IN HIT RATIOS BY DIFFERENT ALGORITHMS WITH THE

CALGARY-HTTP DATA TRACE ... 142

FIGURE 10.10 THE MEMORY USAGE BY DIFFERENT ALGORITHMS WITH DIFFERENT DATA TRACES 142

FIGURE 10.11 CALIBRATION OF THE N VALUE IN LRD TRAFFIC PATTERN... 144

FIGURE 10.12 RTPD/MACSC(PE) YIELDS HIGHER HIT RATIO IN GENERAL .. 144

FIGURE 10.13 RTPD/MACSC(PE) DOES NOT CONSUME EXCESSIVE CACHING MEMORY 145

FIGURE 11.1 TCM DOMAINS .. 149

FIGURE 11.2 A GUI EXAMPLE FOR PMDA DEVELOPMENT AND COMMUNICATION EVALUATION.......... 151

FIGURE 11.3 MODEL OF PMDA –IMS COMMUNICATION .. 152

FIGURE 11.4 ARCHITECTURAL SUPPORTS FOR PERVASIVE PMDA-IMS INTERACTION OVERVIEW 156

FIGURE 11.5 INTERACTION BETWEEN A SFF DEVICE (CLIENT) AND A SURROGATE............................... 159

FIGURE 11.6 MACSC(PE) HIT RATIOS FOR THE LRD AND SRD TRAFFIC PATTERNS 160

FIGURE 11.7 REAL MACSC IMPLEMENTATION SCENARIO FOR A PROXY SERVER................................. 160

FIGURE 11.8 USE THE RTPD/MACSC TECHNIQUE FOR DYNAMIC CACHE SIZE TUNING TO SHORTEN THE

INFORMATION RETRIEVAL RTT IN A PERVASIVE COMPUTING ENVIRONMENT.............................. 163

FIGURE 11.9 SETUP TO VERIFY THE RTPD-BASED MACSC (I.E. MACSC/RTPD) FOR MAINTAINING THE

GIVEN HIT RATIO FOR THE SURROGATE’S CACHE IN E-DIAGNOSIS IN MOBILE TELEMEDICINE 164

FIGURE 11.10 HIT RATIOS BY MACSC(PE) AND RTPD/MACSC(PE), SD, AND H VALUE ARE

COMPARED FOR THE WIRELESS ACM SIGCOMM'01 TRACE (58% LRD AND 42% SRD).......... 166

FIGURE 11.11 HIT RATIOS AND CACHE USAGES BY MACSC(PE) (HIT RATIO: 66.7 – 79.7%) AND

RTPD/MACSC(PE) (HIT RATIO: 66.7 – 69.7%) WITH DIFFERENT ARRIVAL RATES..................... 167

 - xv -

LIST OF TABLES

TABLE 6.1 SUMMARY OF THE SIMULATED DATASETS (DIFFERENT INTERLEAVED SD SEQUENCES) 79

TABLE 6.2 SUMMARY OF THE THREE PRE-COLLECTED REAL DATA TRACES .. 83

TABLE 6.3 THE RANGE OF THE SAMPLE SIZE OF THE MACSC(PE) WITH DIFFERENT PRE-COLLECTED

DATA TRACES... 86

TABLE 7.1 COMPARING OF MACSC(PE) AND MACSC(M3RT).. 103

TABLE 9.1 SUMMARY OF DIFFERENT TECHNIQUES FOR POSTMORTEM TRAFFIC ANALYSIS 124

TABLE 11.1 SUMMARY OF THE ACM SIGCOMM’01 TRACE .. 165

TABLE 11.2 EXECUTION TIME COMPARISON FOR MACSC AND RTPD/MACSC OVER THREE DIFFERENT

PLATFORMS ... 167

TABLE 12.1 SUMMARY AND COMPARISON OF FOUR SOLUTIONS (AN EVOLUTIONARY PROCESS) 177

 - xvi -

TABLE OF CONTENTS

ACKNOWLEDGEMENT... I

ABSTRACT... II

LIST OF REFEREED PUBLICATIONS.. V

LIST OF FIGURES ...IX

LIST OF TABLES.. XV

TABLE OF CONTENTS..XVI

CHAPTER 1 BACKGROUND AND SCOPE ... 1

1.1 INTRODUCTION... 1

1.2 MOTIVATION AND SCOPE OF PROBLEM... 5

1.3 THE DRIVING FORCES.. 7

1.4 POTENTIAL CONTRIBUTIONS TO MOBILE AND TELEMEDICINE APPLICATIONS ... 13

1.5 PLAN OF THESIS .. 16

CHAPTER 2 EVALUATION OF PREVIOUS RESEARCH .. 18

2.1 INTRODUCTION... 18

2.2 CLASSIFICATION OF CACHING TECHNIQUES... 18

2.3 WEAKNESS OF PREVIOUS TECHNIQUES.. 27

2.4 CONNECTIVE SUMMARY .. 28

CHAPTER 3 PROBLEM STATEMENT AND MEHODOLOGY .. 29

3.1 INTRODUCTION... 29

3.1.1 MOBILE DISTRIBUTED SYSTEMS (MDS).. 31

3.2 PROBLEM DEFINITION... 35

3.3 DEFINITION OF TERMS... 36

3.3.1 PROBLEM STATEMENT .. 40

 - xvii -

3.4 METHODOLOGY.. 41

3.5 CONNECTIVE SUMMARY .. 44

CHAPTER 4 OVERVIEW OF SOLUTIONS ... 46

4.1 INTRODUCTION... 46

4.2 OVERVIEW OF SOLUTIONS ... 50

4.2.1 MACSC FRAMEWORK... 50

4.2.2 MACSC(PE) .. 51

4.2.3 MACSC(M3RT) .. 51

4.2.4 MACSC(F-PE)... 53

4.2.5 RTPD/MACSC(PE) ... 53

4.2.6 RTPD/MACSC(F-PE).. 54

4.3 CONNECTIVE SUMMARY .. 54

CHAPTER 5 THE MACSC CONCEPTUAL FRAMEWORK ... 55

5.1 INTRODUCTION... 55

5.2 MACSC... 57

5.3 COMPENSATION MEASURES FOR MACSC ... 61

5.3.1 INITIALIZATION COMPENSATION.. 61

5.3.2 DEVIATION BEHAVIOR COMPENSATION.. 62

5.4 CONNECTIVE SUMMARY... 65

CHAPTER 6 THE POINT-ESTEMATE APPROACH .. 66

6.1 INTRODUCTION... 66

6.2 THE MACSC(PE) APPROACH ... 67

6.2.1 CENTRAL LIMIT THEOREM ... 68

6.2.2 POINT-ESTIMATE DETAILS .. 70

6.3 MACSC(PE) VERIFICATION.. 73

6.3.1 SETUP AND ENVIRONMENT.. 75

6.3.2 VERIFICATION WITH SIMULATED DATASETS... 79

 - xviii -

6.3.3 VERIFICATION WITH PRE-COLLECTED DATA TRACES... 83

6.3.4 SHORTCOMINGS OF THE MACSC(PE)... 85

6.3.4.1 UNPREDICTABLE COMPUTATION TIME ...85

6.3.4.2 SERIOUS HIT RATIO OSCILLATIONS..86

6.4 CONNECTIVE SUMMARY... 88

CHAPTER 7 ADAPTION OF CONVERGENCE ALGORITHM .. 90

7.1 INTRODUCTION... 90

7.2 THE MACSC(M3RT) APPROACH .. 91

7.2.1 CONVERGE ALGORITHM – M3RT.. 92

7.2.2 DETAIL EXPLAINATION OF MACSC(M3RT).. 93

7.3 MACSC(M3RT) VERIFICATION... 97

7.3.1 SETUP AND ENVIRONMENT.. 98

7.3.2 VERIFICATION WITH SIMULATED DATASETS... 99

7.3.3 VERIFICATION WITH PRE-COLLECTED DATA TRACES... 104

7.4 CONNCECTIVE SUMMARY.. 106

CHAPTER 8 OPTIMAL DYNAMIC CACHING SIZE TUNING.. 108

8.1 INTRODUCTION... 108

8.2 THE MACSC(F-PE) APPROACH.. 108

8.3 MACSC(F-PE) VERIFICATION .. 110

8.3.1 SETUP AND ENVIRONMENT.. 110

8.3.2 VERIFICATION WITH SIMULATED DATASETS..111

8.3.3 VERIFICATION WITH PRE-COLLECTED DATA TRACES... 114

8.4 CONNECTIVE SUMMARY .. 117

CHAPTER 9 REAL-TIME TRAFFIC PATTERN DETECTION .. 118

9.1 INTRODUCTION... 118

9.2 DIFFERENT TYPES OF TRAFFIC PATTERNS.. 123

9.3 REAL-TIME TRAFFIC ANALYSIS... 126

 - xix -

9.3.1 THE KS TEST .. 127

9.3.2 THE RTPD... 128

9.4 CONNECTIVE SUMMARY .. 133

CHAPTER 10 VALIDATION OF THE MACSC FRAMEWORK ... 134

10.1 INTRODUCTION... 134

10.2 PROPOSED IMPLEMENTATION SOLUTION .. 135

10.3 VALIDATION DETAILS .. 136

10.3.1 SETUP AND ENVIRONMENT.. 137

10.3.2 EXPERIMENTAL RESULTS.. 138

10.4 PERFORMACE OF THE RTPD/MACSC APPROACH... 143

10.5 CONNECTIVE SUMMARY .. 145

CHAPTER 11 CONTRIBUTION TO MOBILE AND TIME-CRITICAL APPLICATIONS147

11.1 COMMUNICATING DIAGNOSTIC INFORMATION OVER THE INTERNET

PERVASIVELY... 150

11.2 CACHING DIAGNOSTIC INFORMATION FOR FASTER RESPONSE 151

11.3 RELATED ISSUES IN COMMUNICATING DIAGNOSTIC INFORMATION

PERVASIVELY... 153

11.3.1 IMPACT OF INTERNET TRAFFIC ... 154

11.3.2 PMDA (PORTABLE/MOBILE MEDICAL DIGITAL ASSISTANT) 155

11.4 APPLYING THE RTPD/MACSC APPROACH TO SHORTEN THE ROUNDTRIP TIME

FOR MOBILE DIAGNOSTIC INFORMATION RETRIEVAL IN TELEMEDICNE 157

11.4.1 SIMULATIONS .. 163

11.4.2 PRELIMINARY CONCLUSION... 168

11.5 CONNECTIVE SUMMARY... 169

CHAPTER 12 CONCLUSION, FUTURE WORK AND ACHIEVEMENTS...................... 170

12.1 OVERALL CONCLUSION .. 170

12.2 RESEARCH METHODOLOGY ADAPTATION ... 178

 - xx -

12.3 AREAS OF FUTURE WORK ... 179

12.4 ACHIEVEMENTS .. 180

REFERENCES... 185

APPENDICES .. 200

A1 SCHOLARSHIP BY RESEARCH MERITS... 200

A2 REVIEWERS’ COMMENTS.. 201

 - 1 -

CHAPTER 1

BACKGROUND AND SCOPE

1.1 INTRODUCTION
The Internet and the World Wide Web (WWW) have provided several new

opportunities for people to extend their horizon of knowledge, to communicate

quickly and effectively, and to set up e-business. In fact, in this era Internet based

distributed systems are a key factor in the achievement of economic gains for many

companies. Firstly, it is common for company employees to interact with buyers and

suppliers via the Internet in field operations. Secondly, business transactions such as

buying a birthday present in Hong Kong and having it sent to the receiver in Canada

can be conducted quickly and accurately in an electronic manner (i.e. e-business).

Thirdly, up-to-date background information can be obtained immediately, via an

electronic small-form-factor (SFF) device (e.g. PDA and PMDA) [Patterson03] to

back up a time-critical decision such as trading stocks right at the airport minutes

before boarding a plane. Fourthly, opportunistic data acquisitions can be conducted

in a pervasive manner to prevent disasters proactively [Hightower01]. For example,

a pedestrian encounters a terrorist act in progress and videos the scene with her

mobile phone (a SFF device). Then, the short video is immediately transmitted to the

police so that the latter can assess the situation quickly to save the hostage. The

examples above involve nomadic users in a mobile/pervasive computing

environment, in which the client (a SFF device of a nomadic user) communicates

 - 2 -

through a wireless cell with the wired part of the Internet based PCI (pervasive

computing infrastructure).

In the above situations the service response time, which is the interval between

sending a request and getting the correct result, is important. The sheer size and

heterogeneity of the Internet make it difficult to control and guarantee the prescribed

response deadline unless special techniques are employed. This difficulty is

aggravated by the fact that the Internet nowadays is basically a “wired and wireless”

setup, which involves different incompatible protocols that require the technique of

tunneling to link them [Tanenbaum96]. Information retrieval over the Internet is a

client/server relationship [Mahanti00], with the "first leg" between the client or

requestor and the proxy server, and the "second leg" between the proxy server and

the data source (remote web server). It is generally recognized that caching is a

technique that can be employed to reduce the service roundtrip time because if the

object can be found in the proxy’s local cache then the “second leg” delay can be

obviated (to be explained later in this section). The fringe benefit is that finding the

data in the cache means less data need to be transferred remotely across the network,

and in this sense it frees backbone bandwidth for public sharing for higher network

throughput [Aggarwal99]. Therefore, the overall average service roundtrip time

(RTT) is made up of the average RTT1 for the first leg and average RTT2 for the

second; that is RTT=RTT1+RTT2. As shown in Figure 1.1, if the requested data can

be found in the proxy server’s cache then RTT2=0 holds. Locating the requested data

object in a remote web server of data source involves the Internet Domain Name

Server (DNS) and data transfer over the open Internet, and this usually makes RTT2

much larger than RTT1.

 - 4 -

strategies work with a static cache size. They aim at yielding a high cache hit ratio

but do not necessarily maintain it. For this reason the cache hit ratio fluctuates with

respect to the system dynamics and the current data object popularity profile.

Maintaining a given cache hit ratio needs dynamic cache size tuning. In this thesis

the novel MACSC (Model for Adaptive Cache Size Control) framework, which

leverages the relative data object popularity profile as the sole parameter for this

purpose, is proposed. It represents an important departure from previous work which

always postulates static cache size. This new approach leads to significant

improvements in cache hit ratios or allows one to maintain a prescribed hit ratio. It

computes the tuning solution in a short time to avoid possible deleterious effects by

the tuning process.

 One may ask why we need dynamic cache size tuning such as the MACSC

framework if a very large cache could be used to yield a high hit ratio. The answer is

as follows:

1. A very large cache means a higher chance of stale data and thus data

incoherence in the hitting process because the data in the cache is not

refreshed and updated frequently enough [Breslau99].

2. The MACSC caters especially to small caching systems, which usually cost

less than USD1000 [Wessels01]. In these systems memory resources are

limited. If too much memory is used for caching, other tasks may be

suspended due to lack of recyclable memory, leading to poor system

throughput.

 - 5 -

1.2 MOTIVATION AND SCOPE OF PROBLEM
The motivation of the thesis is to explore how the cache hit ratio can be

maintained under all conditions in a dynamic manner, independent of the changes in

the Internet traffic pattern. The Internet follows the power law and its traffic changes

anytime, for example from being LRD (long-range dependence) to SRD (short-range

dependence) or vice versa. In order to maintain a given hit ratio on the fly the

following questions/issues need to be effectively addressed:

1. What are the characteristics of a dynamic cache size tuner that can maintain a

given hit ratio under all conditions?

2. What is the underlying principle for a successful tuner as such for real-time or

time-critical applications over the Internet?

3. Can such a tuner survive in the dynamic Internet environment in which the

traffic pattern changes all the time? It is generally understood that any system (a

tuner is no exception) that is designed with a preconceived mathematical model

in mind fails easily in the Internet [Paxson95]. This implies that by nature the

dynamic cache size tuner(s) should be statistical and work by direct data

measurement.

4. How can a specific traffic pattern be detected correctly on the fly?

5. How can the accuracy of the real-time traffic detection (RTPD) mechanism be

made independent of traffic patterns?

6. How can the execution time of the RTPD mechanism be shortened enough to

avoid any deleterious effects? These effects are undesirable consequences of a

long detection time because by the time the computed remedy is available the

real problem has already passed, and the remedy ends up correcting a problem

 - 6 -

that no longer exists, which itself could be detrimental.

7. Can the proposed dynamic cache size tuning framework operate together with

the RTPD mechanism in the sense that it would reconfigure to neutralize the ill

effects caused by traffic on its hit ratio while still maintaining efficacy?

8. Can the final “RTPD plus tuner” combination indeed support efficient mobile

and time-critical applications such as telemedicine by shortening the service

roundtrip time (RTT) through consistent hit ratio maintenance? This should be

verified by simulation with live RTT traces collected from different web sites.

The research activities that strive to provide satisfactory solutions to the above

issues form the scope of my PhD problem. In this scope the following will be

investigated in an orderly manner with the help of an appropriate methodology

which, since the problem of dynamic cache size tuning is relatively pristine, must be

newly defined. The existing research methodologies may not suffice and new

elements that pertain to this line of work have to be identified. The order of the main

work items are as follows:

1. Define the principle for dynamic cache size tuning over the Internet, for

example, by exploring whether the Zipf-like behavior can provide the necessary

basis [Breslau99], [Zipf].

2. Define the compensation measures, if necessary, to neutralize the behavioral

deviations by the tuner(s) under extreme operational conditions.

3. Identify different useful statistical methods that help the proposed tuner

compute quickly and accurately on the fly. The most important of all these

methods should be independent of traffic patterns that embed in a stretch of

 - 7 -

inter-arrival times (IAT) among the service requests from the clients to the

server.

4. Explore how real-time traffic pattern detection (RTPD) can be achieved.

5. Explore how RTPD can be included in the proposed tuner framework so that the

latter can use the detected results to reconfigure itself and ward off any ill

effects on its tuning accuracy caused by traffic.

6. Explore the client/server interaction requirements for mobile and time-critical

applications using TCM (Traditional Chinese Medicine) based telemedicine as

an example. This example is chosen because of my previous related research

experience.

7. Verify, at least by simulation, that the final reconfigurable dynamic cache size

tuning mechanism(s) can indeed support mobile and time-critical applications.

1.3 THE DRIVING FORCES

The driving forces behind the motivation of this PhD research are as follows:

1. The desire to maintain the given cache hit ratio for information retrieval:

There is no such technique in my literature search so far. The importance

of this technique is that it shortens the service roundtrip time (RTT)

between the client and the server. This makes the client happy and is

therefore fundamental to the success of any electronic transactions over the

Internet.

2. The advantage of having a shorter service RTT in telemedicine: This saves

more lives in contingent cases [Lacroix99], as I had observed in my

previous research experience. Some of the telemedicine issues will be

 - 8 -

discussed in Chapter 11.

3. The desire to propose a friendly dynamic cache size tuning framework:

The aim is to have a “promiscuous” framework, which can be combined

with other extant caching techniques for synergistic effects in a friendly

manner. The combined framework would consistently yield and maintain a

high hit ratio.

4. The desire to leverage the intrinsic Zipf-like behaviour as the sole metric:

This behaviour is a formal representation of the relative popularity among

different objects in a set. Leveraging this behaviour provides a sound

technical basis for dynamic cache size control.

To appreciate the importance of the diving forces above it is useful to

understand the relevant issues in Internet caching [Podlipnig03, Wang99, Wu00].

Caching can alleviate network congestion and quickens WWW information retrieval.

Its usefulness grows with the size of the WWW page. The danger of congestion is

aggravated by the fact that the WWW page size has a monthly growth rate of around

15% but the Internet backbone capacity only increases by 60% yearly [Bharat98].

The massive quantity of information requiring transfer across the network can

quickly deplete the amount of sharable bandwidth. Since caching reduces the amount

of data to be transmitted across the network, it frees backbone bandwidth for public

sharing and thus reduces the chance of network congestion.

The most important performance indicator of a caching system is its ability to

yield a high cache hit ratio, even though Internet caching has been used for different

purposes such as follows [Podlipnig03]:

1. To reduce network bandwidth usage – Use caching as a means to free

 - 9 -

backbone bandwidth for public sharing, and this leads to better system

throughput due to less chance of network congestion.

2. To reduce response delays (the focus of this thesis) – Facilitate fast

information retrieval to enhance the success of real-time applications over

the Internet; for example, a shorter service RTT betters the chance of

saving a patient in a emergent case.

3. To reduce loading on the original web server – Split and shift part of the

loading of a web server up front to the proxies.

Yet, yielding a high hit ratio (but not necessary maintaining) is the primary aim

of all the extant caching strategies. At the moment these strategies, however, cannot

produce a high hit ratio and maintain it at the same time because they exclusively use

a static cache size [Wu03]. Maintaining a given hit ratio has a very different

requirement from yielding a high one because the former need to eliminate the

negative impacts on the fly. In fact, one simple way to yield a high hit ratio is to use

a very large static cache size conceptually [Breslau99], but this approach can lead to

serious data coherence problems.

Although there is no extant caching strategy that can maintain a given hit ratio,

from the literature, however, there are some rudimentary adaptive caching

(adaptivity) systems. Theoretically these systems could produce a high hit ratio in a

relatively continuous manner even though they use a static cache size. They are

mainly in the area of adaptive replacement [Podlipnig03], [Wang99] and can be

divided into the following categories:

a) The first category invokes different placement strategies that work with a

static cache size under different operation conditions. The philosophy is to

 - 10 -

use the best strategy to harness the current situation. This category has two

problems: a) it is difficult to decide when to invoke a new strategy, and b) it

is hard to define which strategy is the best for the time.

b) The second category tunes the parameters of the replacement strategy

adaptively to yield a high hit ratio. The category, however, involves many

parameters and heavy parameterization means substantial computation delay.

By the time the caching remedy is computed the actual problem may have

passed. The solution would end up correcting a spurious condition, causing

deleterious/undesirable effects.

To fill the void the MACSC (Model for Adaptive Cache Size Control)

framework for dynamic cache size tuning is proposed in this PhD thesis. This

framework differs from the all the other extant caching systems in two aspects: a) it

uses a variable cache size, and b) it maintains the given hit ratio on the fly. Its formal

basis is the Zipf-like behaviour [Breslau99]. The MACSC can be combined with

other caching strategies, which can neither yield a high cache hit ratio consistently

nor maintain it when working alone. The factors that usually contribute to the hit

ratio variations include the following [Abrams95], [Yu99]:

a. Seasonal user preference for specific data items – The preference in a rage

creates seasonal relative object popularity. Hot data items can have much

higher access frequencies than the cold ones.

b. The replacement strategy adopted – There are two basic types of strategies,

LRU (least recently used) and LFU (least frequently used). These strategies

leverage different parameters and produce very different hit ratios for

different conditions [Aggarwal99].

 - 11 -

c. The number of parameters being leveraged – Different replacement strategies

leverage different number of metrics (e.g. object size, access/reference

frequency, and update frequency, object popularity [Jin00a]). Leveraging a

metrics involves two delay elements, sampling and computation. Therefore,

leveraging many parameters means heavy parameterization that could lead to

long computation delay. Besides, the parameters may counteract among

themselves in an unpredictable manner.

d. The placement/location of the proxy cache – The cache location in the

network can affect the hit ratio. Yet, there is little published experience for

this problem.

e. The efficacy of the admission control – Admission control determines which

data objects to be cached so that the “one-timers” can be eliminated. It makes

the hot data in the cache more concentrate to improve the hit ratio.

The above factors reflect the fact that a successful caching scheme is not easy to

build because a success for one operating environment may not apply to another

[Wang99]. Deeper analyses in my preliminary PhD investigations indicate that the

cache hit ratio is usually affected by different metrics such as follows:

a. Cache size – Although a larger cache size would yield a high hit ratio, risk of

data incoherence or inconsistency also increases because stale data is not

replaced fast enough [Breslau99]. Therefore, attaining a meaningful high hit

ratio is a complex problem. The solution involves a reasonable cache size

[Aggarwal99] to be controlled by a powerful replacement strategy, which

should also be supported by a sophisticated strategy that ensures data

coherence [Shim99].

b. Object popularity – A fixed length cache size yields different hit ratios at

different times because of the continuous change in the relative object

popularity distribution. An efficacious cache replacement policy should be

able to predict the relative popularity of a document and decide proactively

whether it is worthwhile to cache it [Jin00a], [Dilley99].

25.0%

35.0%

45.0%

55.0%

65.0%

75.0%

85.0%

95.0%

250000 255000 260000 265000 270000 275000 280000 285000 290000 295000 300000
Http request number

H
it

R
at

io

0

2000

4000

6000

8000

10000

12000

14000

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

Fixed Cache Size (FCS) System SD

Figure 1.2 Impact of user behavriour on the hit ratio of a wireline fixed cache size system

My preliminary PhD investigations had also revealed a clear correlation

between relative data object popularity distribution and cache hit ratio. For example,

Figure 1.2 is the investigation for a fixed cache size (FCS) system. It shows how the

changes in the standard deviation of the relative data object popularity distribution

can affect the cache hit ratio in a wireline environment. Similarly Figure 1.3 is

another FCS based result for the wireless environment.

 - 12 -

40.0%

45.0%

50.0%

55.0%

60.0%

65.0%

70.0%

75.0%

450000 452000 454000 456000 458000 460000 462000 464000
Http request number

H
it

R
at

io

0

100

200

300

400

500

600

700

800

900

1000

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

Fixed Cache Size (FCS) System SD

Figure 1.3 Impact of user behavriour on the hit ratio of a wireless fixed cache size system

1.4 POTENTIAL CONTRIBUTIONS TO MOBILE AND

TELEMEDICINE APPLICATIONS
Dynamic cache size tuning, as exemplified by the proposed MACSC (Model for

Adaptive Cache Size Control) conceptual framework, enhances the quality of service

(QoS) for mobile and telemedicine applications. In perspective, it reduces the chance

of involving the second leg in information retrieval over the mobile Internet as

shown in Figure 1.1. As a result it shortens the service roundtrip time (RTT) (also

known as response time) to provide the following advantages:

1. Happy customers (clients): Happy customers are return customers that

make the e-business a success. Since the Internet today is mobile or

pervasive in nature (i.e. “wireless + wireline”) [Garlan02], the intrinsic

complexity in the network structure easily lengthens the response time.

2. Conducive to successful time-critical applications: Some applications over

the mobile Internet are time-critical or real-time as exemplified by the

 - 13 -

 - 14 -

telemedicine field. One of the inspirations of this research is my previous

experience in telemedicine (Chapter 11 provides more details). From my

observation, it is absolutely important for the remote paramedic to get the

diagnostic and treatment advice from the “virtual doctor” quickly to save

the patients in contingent cases. The MACSC approach can shorten the

response time in between and therefore enhances the chance of saving

remote patients.

3. Less Internet congestion: If the information to be retrieval is found more

often in the proxy cache, then there is less data to be transferred across the

network in the second leg of information retrieval (Figure 1.1). This frees

the backbone bandwidth and virtually increases the Internet capacity

[Bharat98].

Since the Internet nowadays is mobile in nature (i.e. mobile Internet with a

“wireless + wireline” infrastructure), the MACSC potentially contributes to make

time-critical applications over the Internet a success. From my own pervious

experience its contribution to the success of telemedicine is substantial. Figure 1.4

presents a concise telemedicine view about what happens between the client (patient)

and the remote sever (virtual doctor). The communication in between is wireless,

and the requests by the clients could risk the following:

1. Random discard by the router at the system level: If the channel is

congested, the router at the system level discards requests to prevent

congestion and this increases the chance of widespread retransmission. If

the retransmission error probability is part of the overall channel error

probability error δ , then the average number of trials (ANT) to get a

successful transmission is
)1(

1)]1([
1

1

δ
δδ

−
≈−= ∑

∞

=

−

j

jjANT . Therefore

any decrease in δ reduces ANT and shortens the client/server service

roundtrip time (RTT) or response time. Dynamic buffer tuning is a

powerful way to reduceδ [Wong02a].

2. Uncontrolled buffer overflow at the user level (user buffer level): Any

overflow at the server request queue would aggravate the errorδ , and

therefore different methods were proposed to eliminate this possibility

[Ip01], [Wong02a].

3. Delayed response due to a low hit ratio (i.e. high miss ratio): A low hit

ratio means more chance for involving the second leg of the information

retrieval process. A consistently low hit ratio is translated into a

permanently high ANT. Therefore it is important to maintain a given ratio,

which represents the user defined acceptable performance, consistently.

It is very difficult if not totally impossible for one to harness the service RTT

for the different client/server interactions within the mobile Internet at anytime. The

sheer size of the Internet and the high number of different communication protocols,

both wireline and wireless, make it impractical to harness the network dynamics at

all. The novel MACSC framework contributes to reduce the involvement of the

second leg in the information retrieval process. As a result it contributes to shorten

the service RTT. In telemedicine, which is intrinsically mobile, this heightens the

chance of saving patients in the contingent situations.

 - 15 -

 - 17 -

framework and some validation results; Chapter 11 describes how the proposed

MACSC conceptual framework can support fast response in mobile and

telemedicine applications; and Chapter 12 concludes the thesis.

 - 18 -

CHAPTER 2

EVALUATION OF PREVIOUS RESEARCH

2.1 INTRODUCTION
The World Wide Web (WWW) is growing in an exponential rate in size

everyday. The volume of pages has a monthly growth rate of around 15% but the

Internet backbone capacity increases only by 60% yearly [Bharat98]. The massive

amount of information needed to be transferred across the network in browsing and

information retrieval can quickly deplete the amount of sharable bandwidth. This

situation worsens if retransmissions are involved as a means to recover the

information lost owing to different kinds of network faults, which are inevitable due

to the sheer size and heterogeneous nature of the Internet. Caching is one good

method to alleviate network congestion and speeds up WWW information retrieval.

In this chapter, different caching techniques are discussed.

2.2 CLASSIFICATION OF CACHING TECHNIQUES
The importance of caching has motivated different areas of caching research.

The aims of these areas include [Wang99]: a) fast information retrieval by a proxy

server [Luotonen94], b) system robustness for fail-soft operations, c) caching

operation transparency, d) system scalability, e) caching adaptivity in response to

changing user demands and network environment, and f) stable collaborative

caching by avoiding naive cache routing that introduces Internet perturbations. The

existing caching techniques work exclusively with a static cache size.

 - 19 -

According to the nature of the current caching techniques, they can be classified

into three groups as follows:

Group 1: Infrastructure related

a. Caching architectures

b. Cache routing

c. Load balancing

d. Proxy placement

Group 2: Content related

a. Prefetching

b. Replacement strategies

c. Cache coherency

d. Caching contents

Group 3: Others

a. User access pattern prediction

b. Adaptive caching

c. Web traffic characteristics

The infrastructure related class includes the issues that relate to the overall

structure or setup of the proxy servers. The content related class includes the issues

that relate to the cache management of the proxy servers. The other issues are

included in the group others. Figure 2.1 shows a summary classification of the

current caching techniques classification.

 - 21 -

“leaf” caches at the proxy level (i.e. the lowest level) which contains the hot data. If

the proxy cannot find the data locally, it will go up one level and this repeats until

the master database is reached. The problems of hierarchical caching include: i)

possible massive bottlenecks at different levels, ii) data incoherence, and iii) long

information retrieval roundtrip (RTT) time. A massive bottleneck is created when all

the lower-level proxies try to access a popular high-level proxy. If a proxy is very

popular and has very large cache memory, it does not need to update its cache that

often. This could lead to incoherence of data between the master level and itself

because the cache is not refreshed frequently. Any massive bottleneck would mean

long queuing time and thus long RTT.

 Another idea within the domain of caching architecture is distributed caching

[Povey97], [Tewari98]. This proposes having two levels of cache servers, the bottom

level cache server and institutional level. By having two levels only it differs from a

formal hierarchical concept, which would have multiple levels. In the distributed

case, when a client cannot locate the document in the bottom cache server, it will

access the institutional level cache server. Each institutional level cache server

contains meta-data information (i.e. a summary directory) of the data objects that

other institutional level cache servers store. Then, the directory information of the

data objects that help the client locate the data objects can be distributed quickly.

Examples include Internet cache protocol (ICP) [Wessels97], Cache Array Routing

Protocol (CARP) [Valloppillil98], distributed Internet cache [Povey97], central

directory approach (CRISP) [Gadde97], Cachemesh system [Wang97], Summary

Cache [Fan98], Cache Digest [Rousskov98], and Relais project [Relais98].

 The hybrid architecture combines the hierarchy and distributed caching

 - 22 -

techniques to optimize the advantages of both and reduce the possible disadvantages.

It, however, may need to be moderated for smoother performance. For example, the

hybrid model proposed by Rabinovich tries to limit excessive cooperation among

neighbor caches that may lead to unnecessary delay in the information retrieval

process [Rabinovich98]

b.) Cache routing

Cache routing investigates how to locate the cache that contains the data objects

quickly. The routing table, which indicates what objects are located in particular

remote proxy caches, is large. It needs to be updated frequently to avoid data

incoherence. There are two main research topics in this area from the literature: i.)

cache routing table and ii.) hashing function. The issue of cache routing table

[Malpani95], [Wang97] addresses how to improve the speed of finding the needed

data object from the routing table, and the examples include: harvest cache system

[Chankhunthod96], Adaptive Web caching [Michel98], and manually configured

hierarchy [Povey97]. The hashing function helps find the locations of data objects

quickly. It involves the following: i.) how to build the summary table, ii.) how to

minimize the change in a routing table, and iii.) how to minimize the search time.

Hashing function examples include: summary cache [Fan98], and consistent hashing

[Karger97].

c.) Load balancing

This intends to resolve the hot spot problem in a collection of collaborating

proxy servers. Hot spot means that too many clients are trying to request service

 - 23 -

from the same server. The existing systems use mainly the replication strategy to

resolve this problem [Chankhunthod96], [Heddaya97], [Malpani95].

d.) Proxy placement

It investigates how to optimize the location of the proxy server so that the

objectives of self-organizing, efficient routing, load balancing, and stable operations

can be achieved. However, this research topic so far has yielded minimal results

because very few researchers have put much effort into this topic [Li99].

GROUP 2: CONTENT RELATED:

a.) Prefetching

The aim is to heighten the hit ratio by predicting what data objects will be

requested next by clients. It can be performed for the following purposes: i) between

clients and web servers (C&W), ii) between proxy servers and web servers (P&W),

and iii) between clients and proxy servers (C&P). The C&W is the earliest approach

and its aim is to predict the objects that clients would imminently fetch by using

pre-collected traces. The examples include: Prediction-by-Partial-Matching (PPM)

[Padmanabhan96], model for speculative dissemination of WWW documents

[Bestavros96], and rate-controlled prefetching scheme [Crovella98].

The P&W scheme is exemplified by approaches such as the following:

i. Kroeger et al. [Kroeger97]: They discovered that by combining perfect

caching and perfect prefetching at the proxy server level the RTT latency can

be reduced up to 60%.

ii. Markatos and Chronaki [Markatos98]: The proposal is to let web servers

regularly push the most popular data objects to the proxy servers. Techniques

include those proposed by Cohen et al. [Cohen98], Wcol [Chinen97] and

Geographical Push-Caching [Gwetzman94].

The C&P approach is exemplified by the model proposed by Fan et al [Fan99].

Fan relies on the proxy to predict what the clients want next and pushes or pulls the

data objects in the idle time between user requests. This can reduce the RTT latency

up to 23.4%. Another C&P example is the one by Loon and Bharghavan [Loon97].

b.) Replacement strategies

The aim is to enhance a proxy server’s caching efficacy by pushing out the aged

data in a fixed-size cache to make room for the new “hot” ones [Arlitt99],

[Abrams96]. Data object replacement in a cache is the most researched topic in the

area of caching. There are basically two replacement approaches: LRU (least

recently used – recency based) and LFU (least frequently used – frequency based).

The recency concept associates with temporal locality, which states that the chance η

of getting a data object is inversely proportional to the elapsed time t since its last

access (i.e. t
1∝η) [Jin00b]. The frequency of access of a data object indicates its

relative popularity. The log-log plot of access frequencies versus the corresponding

ranked data objects is the Zipf-like behavior [Bjarat98], [Nielsen97]. For the same

set of data objects the Zipf-like behavior from the proxy point of view is different

from that of the Web server (data source). The difference is due to the fact that more

hot data in the cache means less remote access to these objects in the data source (i.e.

they are relatively cold). A replacement strategy leverages some chosen parameters

to compute the cost/index that determines which cold data objects should be evicted

 - 24 -

 - 25 -

first from the cache. To improve cache hit ratio the technique of “filtration of

one-timers” can also be used. One-timers are those objects that are rarely accessed

[Belloum98], and their removal is necessary to make the hot data objects in the

proxy cache more concentrated for a higher hit ratio [Aggarwal99].

c.) Cache coherency

The cause of the data coherence problem (i.e. data incoherence) is that the

cached data is not updated frequently enough. In fact, this is a side effect for a very

large proxy cache. On one hand this kind of cache would produce a high hit ratio,

but on the other hand the stale data causes problems [Breslau99]. This serious open

performance problem is still being actively researched.

d.) Caching contents

The main purposes of a proxy are as follows: a) it provides the

window/gateway for the protective firewall so that through this window clients

within can communicate with the outside world safely [Wu05b] and b) it shortens

the service RTT in information retrieval because of its cache hit ratio. The second

purpose has inspired tremendous effort in replacement strategies [Aggarawal99].

The aim of obtaining a high hit ratio is to keep as much hot data content in the cache

as possible. In light of contents manipulation there are two strategies/techniques that

can further reduce the data object access latency. Since these strategies are

value-added in nature, they are considered as performing the secondary roles for

caching contents. The first strategy is called connection caching [Cáceres98],

[Feldmann99], which from previous experience might reduce access latency by up to

 - 26 -

40%, and it emphasizes two persistent connections: “between the client and the

proxy” and “between the proxy and web server”. The second is called computation

caching [Wang99], which aims at making normally non-cacheable dynamic data

cacheable. The reason why dynamic data, which are dynamically generated and exist

for only a short period, are non-cacheable is that by the time the client wants to

access this piece of data, it has already disappeared. The technique is to let the web

server pass some of its dynamic data related computation capability to the proxies.

Then, the proxies can have a better chance to generate, cache, and maintain the

dynamic data concerned. For example, the techniques such as active cache [Cao98]

and server accelerator [Levy-Abegnoli99] can achieve such a purpose. Other

examples include [Chinen97] and [Challenger99].

GROUP 3: OTHERS:

a.) User Access Pattern Prediction

The objective of the user access pattern prediction is to improve the efficiency

of the proxy servers by predicting what users would need imminently. Examples

include [Cohen99], and [Yang] that proposed to put the data objects that may be

accessed by clients together in the file system based on the access patterns. Other

examples, which include [Fan99], [Palpanas99], and [Padmanabhan96], proposed to

use the Partial Match model to do the predictions.

b.) Adaptive Caching

The focus of the current research reported in the literature in adaptive caching is

to run the replacement dynamically [Podlipnig03]. The researchers proposed to

 - 27 -

weigh the parameters in different situations to guide the replacement process

[Podlipnig03], and to selectively apply different predefined replacement strategies.

c.) Web traffic characteristics

There are two related issues. The first is the nature of the workload. One of the

metrics [Douglis97] in this case is temporal locality, which is related to the LRU

approach [Wang99], [Podlipnig03]. The second is the inter-arrival times (IAT),

which can affect the stability of the caching system [Paxson95], [Taqqu03],

[Willinger03].

2.3 WEAKNESS OF PREVIOUS TECHNIQUES
Caching is generally recognized as a technique to shorten the service RTT in

information retrieval over the Internet. This is achieved by improving the proxy

cache hit ratio through the use of different methods as summarized in Figure 2.1.

However, there are several weaknesses of the existing techniques:

1. Static cache size – the problem of the previous methods is that they can

produce a high hit ratio but do not necessarily maintain it. The reason is that

they exclusively work with a cache of fixed/static size.

2. Heavy parameterization – the most researched topic in caching is the issue of

replacement strategy. The previous strategies can get very complicated by

leveraging many parameters such as workload, recency, and relative object

popularity [Jin00a]. Heavy parameterization can be counterproductive

because of its long computing time. By the time the remedy is computed the

real problem has already gone. Using the remedy to correct a spurious

 - 28 -

problem can produce deleterious/undesirable effects.

3. Internet traffic – the existing hit-ratio enhancing strategies do not take

Internet traffic into account. This can be dangerous because the Internet

traffic is changing continuously [Paxson95].

In this thesis, we propose a framework that can solve these problems. It can

maintain the given hit ratio by dynamic cache size tuning. It also supports the

time-critical applications with short computation time to avoid deleterious effect.

Furthermore, it has the ability to ward off the ill effects by different Internet traffic

patterns.

2.4 CONNECTIVE SUMMARY
In this chapter different previous caching techniques from the literature are

evaluated. These techniques have different strengths and weaknesses. Even though

they may generate a high hit ratio, they cannot necessarily maintain it because they

work with a static cache size. In addition, these techniques do not compensate for the

ill effects caused by the changing Internet traffic pattern, which can be SRD or LRD.

Hit ratio maintenance needs the support of dynamic cache size tuning, which

naturally works with a variable cache size. This is the basis of my PhD research and

the problem statement and methodology will be presented in the next chapter.

 - 29 -

CHAPTER 3

PROBLEM STATEMENT AND MEHODOLOGY

3.1 INTRODUCTION
Without caching support the Internet can easily become terribly congested, slow

and lose its appeal. The danger of congestion is aggravated by the fact that the World

Wide Web (WWW) volume of pages has a monthly growth rate of around 15% but

the Internet backbone capacity increases only by 60% yearly [Bharat98]. The

massive amount of information needed to be transferred across the network in

browsing and information retrieval can quickly deplete the amount of sharable

bandwidth. This situation worsens if retransmissions are involved as a means to

recover the information lost owing to different kinds of network faults, which are

inevitable due to the sheer size and heterogeneous nature of the Internet. As

explained earlier, caching alleviates network congestion and speeds up WWW

information retrieval by providing two advantages. The explicit advantage is the

shortening of the service roundtrip time (RTT) for WWW information retrieval. The

service RTT is the time interval between sending a request by the client and getting

the corresponding result from the server correctly. The service RTT in this

client/server relationship conceptually consists of two legs. The first leg is for the

roundtrip between the client and the proxy server, and the second leg is between the

proxy server and the remote data source or web server. If the proxy server finds the

data object in its cache, then the second leg is automatically obviated. The hit ratio is

 - 30 -

the probability of finding the required data locally in the proxy’s cache.

The importance of caching for the Internet can be separated into two main

aspects, namely, from the view of a wired network, and from that of a “wired and

wireless” infrastructure:

1. Wired network: The main concern here is how to use caching to alleviate

network congestion, which can be caused by many factors, including

unpredictable router bottlenecks [Braden98] that can cause sizeable fluctuations

in traffic throughput in the network, resulting in system-level and user-level

buffer overflows [Wong02a]. This is compounded by the ever growing data

object size [Bjarat98], [Duska97]. Caching as a technique can resolve the

problem of ever growing data object sizes. Nowadays data objects which were

mostly textual in the past, are more complex and frequently tend to be

multi-media. As mentioned above, the different empirical studies (e.g.

[Bjarat98], [Duska97]) have found that web page size increases by 15%

monthly but the Internet backbone capacity improves by only 60% yearly. If

this continues, the Internet backbone bandwidth will be unable to sustain the

huge number of large web objects to be transferred across the Internet. The

result would inevitably be massive network congestion that would make the

Internet impractical. The congestion problem is real because of the following

reasons: a) WWW is relatively inexpensive and faster than other means, and b)

WWW provides a wide range of popular information such as daily news,

entertainment programs, weather reports, transportation schedules, financial

news, and e-shopping.

2. Wireless network: Wireless communication is basically unreliable and has a

 - 31 -

high loss rate. In contrast to the wired network, in which it is possible to ask the

sender to reduce transmission to alleviate congestion (i.e. throttling), the

wireless network improves reliability by fast retransmissions. Therefore, wired

and wireless networks have contradictory requirements to deal with data losses

due to network congestion or other faults that include traffic ill effects

[Paxson95]. If the proxy server does not need to search for the required data

objects from remote data sources again for retransmission, then it supports fast

retransmission for the data object that is immediately available in its cache. It

implies that the cache always keeps the hot/popular data objects

[Tanenbaum96].

3. “Wired and wireless (W&W)” situations: In the context of this research these

situations are called the mobile distributed systems (MDS), which will be

discussed in the next section. The presence of caching with a “surrogate” server

balances the needs of both the wired and wireless sides and resolves the

contradiction. On the one hand the surrogate cache keeps as much hot data as

possible so that fast retransmissions on the wireless side can be supported.

However, the same cache of hot data can prevent the surrogate from conducting

excessive remote searches for the required data sources by cyber foraging

[Garland02].

3.1.1 MOBILE DISTRIBUTED SYSTEMS (MDS)

These systems are all of the “W&W” nature, and the wireless side can be

mobile or pervasive. Examples such as those mentioned above, involve many

different cutting edge technologies for support, including location-aware means to

 - 33 -

Figure 3.1 illustrates the information retrieval actions in a MDS, which has a

wireless smart space [Garlan02], [Weiser91] and a supporting wired PCI (Pervasive

Computer Infrastructure). The nomadic users follow the transient mass transit and

pass through the wireless smart space of the W&W system. In the light of

information retrieval “on the run”, they use their SFF devices to make requests.

Therefore, the number of retrieval requests is tied to the mass transit traffic pattern

[Malla03]. The SFF device interacts with the assigned surrogate node in the PCI.

The surrogate, which is temporarily assigned to provide assistance, is a gateway to

other PCI nodes. It houses different logical servers or agents. If a surrogate can enlist

help from the other PCI nodes, the result is cyber foraging [Garlan02]. For example,

if an agent, which is a proxy server, cannot find a data object requested by a SFF

client locally, it may ask for help from other PCI nodes through its surrogate. This is

easily achieved if the PCI operates with the peer-to-peer content distribution concept

[Androutsellis-Theotokis04], [Wang99], as demonstrated by the Gnutella framework

[Gnutella]. This framework allows direct sharing of computer resources without a

central server. The peer-to-peer architecture scales and self-organizes freely in

response to sudden increases in the number of network nodes and partial failures.

If the data object to be retrieved is not in the PCI domain, then the latter enlists

the DNS (Domain Name Server) to help locate it in one of the remote data sources

(web servers). Therefore, data retrieval in the W&W architecture is similar to the

wired network by having two “legs” in the information retrieval process. The first

leg is the average RTT delay between the SFF client and the agent server, which

finds the information locally. The second is the average RTT required to find the

information object involving other PCI nodes and possibly the DNS. The importance

for the agent server to have a local cache is shown by the speedup calculation as

given in equation (3.1).

)*]1[(
)(

21

211

legleg

legeg
cache RTTRTT

RTTRTTS ψ−+
+

= (3.1)

In this equation, the average RTT for the first leg is RTTleg1 and that for the

second leg is RTTleg2. If the average hit ratio ψ of the agent’s cache is 60% or 0.6 (i.e.

miss ratio is (1- ψ or 40%), for RTTleg1=1, and RTTleg2=10 then the speedup for the

retrieval operation is 2.2 fold. The agent’s 60% cache hit ratio is the chance of

obviating RTTleg2 to produce this speedup. The calculation of Scache in this case is as

follows:

2.25
11

)10*]6.01[1(
)101(==−+

+=cacheS (3.2)

The Scache speedup benefit provided by caching is essential for sharing WWW

information and data efficiently. This benefit has inspired different areas of research

in caching as discussed in chapter 2. All the strategies and algorithms from the

literature are aimed at producing a high Scache value but not necessarily maintaining it.

These approaches use a fixed/static cache size and leverage different parameters. In

fact, too many parameters could be counterproductive because heavy

parameterization leads to long execution time and deleterious effects. A long

execution implies that by the time the caching solution is computed the actual

problem may have already passed. The solution ends up correcting a spurious

problem and leads to undesirable or deleterious consequences. Maintaining a given

hit ratio requires dynamic cache size tuning. It is also important any solutions

developed in this thesis should utilize light parameterization.

In fact, the loop of “information retrieval request and information return” in the

 - 34 -

 - 35 -

Figure 3.1 is a high-level view. If this view is put into the e-diagnostic process such

as in telemedicine applications, then it is the sending of vital signs to the IMS

(Intelligent Medical Server) or virtual doctor, which will return the diagnostic results

in the fastest possible time to save lives. This will be explained in more detail later in

chapter 11. With respect to Figure 3.1 the sender is simply a SFF device and the IMS

is a specialized logical server in one of the surrogate.

 In chapter 1, we noted the importance of web caching in reducing RTT time.

Figure 1.1 has illustrated this, and Figure 3.1 has further illustrated this by the

“information retrieval request and information return” cycle. In all the networks the

average RTT is a factor for measuring performance. In time-critical applications a

shorter RTT is always essential in order to meet the scheduled deadline. For example,

in Figure 3.1 the performance in term of speedup can be represented by equation

(3.1). The second leg for the RTT in this case involves the DNS and therefore can be

excessively long. In fact, it generalizes the similar impact by RTT on the

performance of wired, wireless and W&W situations. An important feature is to

provide not only reduced RTT but also same predictability in RTT. It is important to

develop a solution that gives a minimum hit ratio. In this chapter, we will give a

description that is necessary to more precisely formulate the problem definition. In

chapter 2, the review of the literature describes the need to produce a framework that

maintains a given minimum hit ratio as the best approach to caching.

3.2 PROBLEM DEFINITION
The aim of the thesis is to develop an efficacious dynamic cache size tuner that

can shorten the client/server service RTT by maintaining the given cache hit ratio

 - 36 -

under all operation conditions. This is achieved by obviating the second-leg delay in

information retrieval to produce the Scache speedup shown in equation (3.1). Dynamic

cache size tuning is a relatively pristine area with little experience published in

literature. It is important to understand what kind of characteristics are there so that

the proposed conceptual framework for dynamic cache size tuning is suitable for

real-time applications. It has become known that the Internet traffic, which follows

the power law [Medina00], can assume different patterns at different times. These

patterns can cause system failure if the system is designed with a preconceived

mathematic model such as Poisson [Paxson95], [Lewis96]. In order to prevent the

final proposed conceptual framework from falling into similar pitfalls, they should

be statistical and work by direct data measurement. The dynamic cache size tuning

models are different realizations of a generic framework, which is based on a well

defined principle, for example, the “Zipf Law” [Breslau99], [Glassman94]. Yet, this

generic model should be evaluated with respect to some applications, for example

mobile and telemedicine applications. Since I have done some research in TCM

(Traditional Chinese Medicine) data mining in my previous MPhil thesis [Wu02],

the dynamic cache size tuning model(s) proposed in this research will be evaluated

in this direction. The aim is to ensure that these model(s) would yield the same

efficacy in wired and “W&W” situations.

3.3 DEFINITION OF TERMS
In order to make the problem statement for my PhD research more

understandable and precise the following terms are defined:

a. Asymmetric rendezvous: It is the client/server interaction relationship, in

 - 37 -

which the server is simultaneously serving different clients.

b. Cache: It is a local memory where the proxy server keeps all the popular/hot

data.

c. Caching parameters: Every placement algorithm leverages different metrics

to ensure enough hot data is in a cache of static size. These metrics include

“least frequently used objects”, least recently used objects” and others.

d. Client: It is the service user.

e. Compensation measure: A compensation measure is to bring any deviation

back from the norm of system operation.

f. Deleterious effect: It is caused by the fact that the time needed for computing

the remedy is longer than the problem duration. The computed remedy ends

up correcting a spurious problem can cause undesirable side effects.

g. Dynamic cache size tuning: It is a technique to maintain a given hit ratio

under all operation conditions by leveraging the chosen network parameter(s).

It differs from yielding a high hit ratio because it involves a variable cache

size, which is adjusted on the fly. Existing placement techniques [Bresalu99],

[Aggarwal99] leverage different parameters to yield a high hit ratio but do

not maintain it because they all work with a static cache size.

h. Hit ratio: It is the chance of finding a requested data in the proxy cache, and

the chance of not finding it is the miss ratio. If the data is not found, then the

proxy has to search the data object via the DNS (Domain Name Server) of

the Internet form the remote data source(s) or web server(s).

i. Inter-arrival time (IAT): The time between the arrival of the objecti and

objecti-1.

 - 38 -

j. Internet traffic and traffic pattern: The Internet follows the power/hyperbolic

law and its traffic pattern changes over time, for example, from SRD

(short-range dependence) to LRD (long-range dependence) or vice versa.

This kind of change can lower system stability or cause failure.

k. Long range dependence (LRD): It is the characteristic of the stationary

stochastic processes with slow decay of correlations such as self-similar and

heavy-tailed.

l. Minimum given hit ratio: A dynamic cache size tuner can yield two effects.

The first is to try to maintain the given hit ratio but with oscillations that

sometimes bring the final hit ratio below the given value. The second is to

upkeep the hit ratio so that it is consistently above the given value. A tuner

that yields the given hit ratio as the minimum is definitely more efficacious

than the one that produces the first effect and provides more performance

advantage.

m. Parameter tuning: Some placement algorithms would tune the parametric

values to produce a high hit ratio, but they cannot maintain it because it

works with a static cache size. Besides, work with too many parameters

would lead to heavy parameterization, which needs long execution time to

compute the hit ratio and causes deleterious effects.

n. Real-time traffic pattern detection (RTPD): This is the technique to determine

the traffic pattern anytime on the fly. This technique is novel because the

existing techniques are exclusively for off-line or postmortem analysis with

pre-collected traces.

o. Relative object popularity (ROP): This is a distribution of access frequencies

versus the specific objects over the period of interest. The standard deviation

of the distribution changes if the users shift their preference for some objects

in the period.

p. Roundtrip time (RTT): It is the interval between the sending of a request by a

client and the correct reception of the corresponding answer. This interval is

affected by the delays caused by retransmission; the more transmissions the

longer the RTT.

q. Proxy server: It is the gateway for the clients within a protecting firewall to

communicate with the outside world.

r. Server: It is the service provider.

s. Service response time: It is the duration between sending a request and

receiving the correct service result from the server by a client.

t. Short range dependence (SRD): It includes Markovian traffic patterns such as

Poisson.

u. Stochastic process - A process that works with operation paths and any path

is traced from one end to the other by events at the intermediate hops. It is

discrete over the Internet.

v. Zipf-like behavior: Every sizeable caching system has a specific Zipf-like

behavior defined as β−∝)1()(rry , where r is the ranked position of the

object with respect to its access frequency relative to others. The β parameter,

which is within the 0 < β ≤ 1 range denotes this relativity, and for β =1 it is

called the Zipf Law.

 - 39 -

 - 40 -

3.3.1 PROBLEM STATEMENT

The aim of the research is to develop a technique for a dynamic cache size

tuning framework that can maintain the give cache hit ratio consistently under all

Internet conditions. This conceptual framework should support the following salient

features:

a. The framework should leverage as few network parameters as possible so

that its computation time is short enough for real-time applications and it

does not cause serious deleterious effects at the same time.

b. The cache size adjustment computation on the fly should be accurate and

quick, and independent of Internet traffic patterns. This requires efficient

statistical sampling techniques, which are likely to be based on the Central

Limit Theorem (CLT) [Chis92], [Jain91].

c. The final framework should accommodate a real-time traffic detection

(RTPD) system/mechanism and use the detected result to self-reconfigure to

compensate for the traffic ill effects on the tuning accuracy.

d. The RTPD mechanism should be able to work accurately with sample

aggregates of a discrete stochastic process [Leland94], [Taqqu03] and

[Willinger03].

Therefore the objectives of the project include the following:

a. Propose the conceptual framework that leverages the minimum number of

network parameters for accurate dynamic cache size tuning.

b. Propose compensation measures that help the framework work healthily

under extreme conditions.

c. Propose a RTPD mechanism that is suitable for time-critical applications so

 - 41 -

that it can be included as part of the framework, which with RTPD support

can reconfigure itself for more efficacious dynamic cache size tuning on the

fly.

d. Verify the generic framework with simulated and live datasets/traces.

e. Verify that the proposed framework can indeed support wired and wireless

client/server interactions with similar efficacy.

f. Verify that this efficacy applies to mobile and time-critical applications such

as telemedicine.

3.4 METHODOLOGY
In order to make research a success methodology in strategy and management is

very important [Ketchen04]. Usually a research process can be divided into many

phases, for example, the eight-step model by Kumar [Kumar96]. The steps are: a)

formulating the problem, b) conceptualizing the design, c) constructing an

instrument for data collection, d) selecting the sample type for testing, e) writing the

research proposal, f) collecting the selected data type, and g) analyzing and

processing the sampled data. The research strategy and methodologies must suit

the problem domain for good results. In fact, there are many existing strategies and

methods in general to cover different problem domains. In the area of computing

research three basic types of research can be identified, namely [Philips87]:

1. Exploratory research: This type tackles a little known problem for which the

research details cannot be formulated very well at the beginning. The result

of this kind of research usually pushes out the knowledge frontiers and leads

to discovery of new knowledge.

 - 42 -

2. Testing-out research: This type is to find the limits of previous

generalizations.

3. Problem-solving research: This type usually starts with a specific real-world

problem of well-defined characteristics and then brings all the available

intellectual resources together for a reasonable solution.

Once a suitable research methodology is decided, then one can adopt one of the

following basic strategies:

1. Top Down: The objectives are defined and realized step by step. The typical

examples include: 1) Waterfall Model for software engineering that does not

encourage user intervention, and 2) the Fast Prototyping that encourages

repetitive user input until the system is finally accepted.

2. Bottom Up: The coordination framework as a connective is first proposed so

that what is available (commodities and/or intellectual resources) are

interconnected into a single system. The complexity of the system increases

with time.

The Top Down approach is suitable for testing-out research, and the Bottom Up

approach is natural for the problem-solving type.

By nature this PhD research is exploratory because the topic of dynamic cache

size tuning has little published experience. Even though this would produce a

prototype for testing, which will support further research at the end, the process is

naturally top-down because the course of research includes literature search, problem

statement, proposed solutions, and data collection. It is, however, difficult to apply

the Top Down approach in a strict sense because early exploratory investigations that

produce unpredictable results are necessary. That is, the whole investigation would

 - 44 -

Dynamic cache size tuning → Propose suitable model(s) → Statistical computation

method(s)→ Real-time traffic pattern detection(RTPD)→ Combine RTPD and the

proposed tuner model(s) to ward off the ill effects of traffic patterns on tuning

accuracy→ Implementation issues→ Verify the effectiveness of the proposed tuner(s)

to mobile and telemedicine applications. This path, however, represents one of the

many possible “operation” paths in the course of the project because traversals back

and forth are necessary for cross-reference, data refinement and/or comparison.

Those items that should be investigated in the beginning of the research are in

“solid-line boxes” and those “dotted-line boxes” should be investigated later (e.g. the

second phase). The research is separated into two different phases because the results

from the first phase would orient (or re-orient) the direction of the second.

The traversals may involve the following sequences with backtracking:

1. Understanding the rationale of caching in general,

2. Studying some general caching approaches and statistical approaches,

3. To propose a conceptual dynamic caching framework, MACSC (Model for

Adaptive Cache Size Control),

4. Implement the MACSC with different statistical approaches,

5. Looking for a stable mobile-agent platform for testing purposes,

6. Refining the MACSC frameworks for better data collection and analysis, and

7. Demonstrating how the MACSC framework can be implemented in the real

environment.

3.5 CONNECTIVE SUMMARY
 In this chapter the importance of effective web caching over the Internet to the

 - 45 -

wired and wireless networks is discussed. A good caching system improves the

performance of the network by reducing the RTT in a client/server interaction. This

is achieved because if the required data is found in the local cache then the delay that

involves the DNS is obviated. Caching can make use of a static cache size or a

variable one. The latter case, which emphasizes maintenance of a given cache hit

ratio on the fly, is called dynamic cache size tuning. Developing a novel conceptual

framework for such a purpose is the problem to be achieved in this PhD thesis and

the overview of the proposed solutions is provided in the next chapter. The roadmap

for the research and project management is depicted in Figure 3.2.

CHAPTER 4

OVERVIEW OF SOLUTIONS

4.1 INTRODUCTION
In chapter 3, we defined the problem tackled in this thesis, namely the

development of a dynamic cache size tuner to maintain a given hit ratio on the fly. In

this chapter, the conceptual framework for dynamic cache size tuning, which is

known as the MACSC (Model for Adaptive Cache Size Control), is proposed. This

framework is based on the concept of the Zipf-like behavior, which is apparent in

large caching systems [Glassman94], [Breslau99]. The MACSC would maintain a

given hit ratio on the fly by leveraging a single parameter, namely, the relative object

popularity (ROP) profile. In reality this profile changes with time due to the change

of user preference for particular data objects for the period. The meaning of the ROP

profile depends on the following views:

1. General view: This is the distribution of access frequencies versus the

“unsorted objects”.

2. Zipf-like behavior: This is the log-log plot of β−=)1()(rry , where y(r) is

the “logged” access frequency and r is the log value of the ranked position

of the object.

3. Popularity distribution (PD): This is formed by mapping y(r) into a

bell-shaped curve. The mapping mechanism is bell(r)=map(y(r))+e (i.e.

equation (5.1) in chapter 5), where e denotes the possible mapping error.

 - 46 -

 - 47 -

The MACSC framework is based on y(r) and bell(r) above. The argument is

that if the PD profile changes, then this change is reflected immediately by the

current standard deviation SD. The key issue is then how to measure the SD value

quickly and accurately on the fly in a statistical manner because the popularity ratio

(PR), namely, (SDi/SDi-1) or (SDi/SDi-1)2 can be calculated from two successive SD

values, where i denotes the computation cycle. With the popularity ratio the cache

size adjustment for maintaining the given hit ratio can be computed. The

computation time must be short so as not to produce any deleterious effect, and this

is the reason why the MACSC leverages only a single metric, namely, the ROP

profile. In this way the MACSC is suitable for time-critical application because of its

short execution time.

Computing the SD value of the PD profile on the fly accurately and quickly is

no trivial matter because of the following requirements:

1. Waveform dependence: The accuracy should be independent of the

waveform type because any method based on a preconceived mathematical

model would lead to failure [Paxson95]. The SD value computation

involves two waveforms or distributions, namely, the PD profile and the

inter-arrival times (IAT) among the data object access. The negative

impact of IAT may be serious. If the average IAT is much shorter than the

MACSC execution time, then many data items could be missed in the

sampling process, making the PR value inaccurate and the given hit ratio

ineffectively maintained. Therefore the criterion for choosing a technique

to compute the SD value of the PD quickly and accurately is the Central

Limit Theorem (CLT); that is, the computation is statistical and by direct

 - 48 -

data measurement. The MACSC computation time is its limit for

time-critical or real-time applications. The execution time is, however, not

fixed in terms of physical time but fixed by the number of clock cycles

required as indicated by the Intel® VTune™ Performance Analyzer

[VTune] (more details in the later sections).

2. Sensitivity: The power of the MACSC relies on the sensitivity of the SD

leveraging/computation mechanism. The SD value is crucial for remedying

the cache maintenance process correctly in a short interval. The sampling

process involved must have enough sensitivity to dynamically follow the

contour of changes in the ROP profile.

In this research four different methods, which represent an evolutionary process,

were proposed as follows:

1. Point estimate (PE): This CLT based method is sensitive to changes in the

ROP profile, but it generates a lot of oscillations due to the lack of a

feedback system.

2. M3RT: This CLT based technique is transcribed from another problem

domain, namely, Internet End-to-End Performance Measurement (IEPM)

[Cottrel99], [Cottrel01]. Previous experience [Ip03] has confirmed that it

always yields the mean of any waveform accurately in real-time

applications because it has a feedback loop. The good quality of stability of

this technique, however, becomes a liability for MACSC application

because there is a need to strike a balance between stability and sensitivity,

and this led to the proposal of the “fine-tune point estimate (F-PE)

technique.

3. F-PE: It combines the merits of PE sensitivity and M3RT stability and

accuracy due to the presence of a feedback loop. The goal is to decide how

much feedback should be allowed and incorporated into the PE process.

4. RTPD: It was observed in the early experiments that the Internet traffic

patterns have different ill effects on the MACSC accuracy. Therefore, a

RTPD (real-time traffic pattern detection) mechanism is included in the

original MACSC framework to make the newer RTPD/MACSC approach.

The aim is to let the RTPD mechanism identify the traffic pattern at the time

so that the MACSC can “reconfigure” itself to neutralize the traffic ill

effects on the fly. In the MACSC research context, the RTPD/MACSC

approach is a form of reconfigurable dynamic cache size tuning.

As a result there are in total four specialized solutions derived from the general

MACSC framework. The specialization is determined by the technique whereby the

PD's SD is computed on the fly in each solution. The four solutions are:

MACSC(PE), MACSC(M3RT), MACSC(F-PE), and RTPD/MACSC(PE) and they

will be introduced in the next section.

DYNAMIC CACHING

MACSC

MACSC(PE)

STATISTIC APPROACH

MACSC(M3RT)

MACSC(F-PE)

RTPD/MACSC(PE)

RE-CONFIGURATION APPROACH

REAL TIME TRAFFIC DETECTION

Figure 4.1 A summary of the research roadmap

 - 49 -

 - 50 -

The concise representation of the roadmap for project management is shown in

the Figure 4.1. In this hierarchy my research effort is represented by the right branch,

namely, dynamic caching, which leads to the proposal of the MACSC dynamic

cache size tuning framework. The two major factors that affect the stability and

efficacy of the framework are: a) using the correct statistical approach and b)

real-time traffic pattern detection, which addresses the issue of MACSC

reconfiguration.

4.2 OVERVIEW OF SOLUTIONS

4.2.1 MACSC FRAMEWORK

The MACSC (Model for Adaptive Cache Size Control) conceptual framework is

novel and original because it is the only known approach that addresses the issue of

dynamic cache size tuning [Wong03]. It maintains the given cache hit ratio

adaptively and consistently by tuning the cache size according to the current

popularity ratio currently computed on the fly. The hit ratio maintenance not only

shortens the client/server roundtrip time (RTT) consistently but also reduces the need

for long-haul data transfer. As a result more backbone network bandwidth is freed

for public sharing leading to better network throughput. The MACSC rationale is

“reasonable memory usage to maintain the given cache hit ratio”. The cache size has

to be timely increased/decreased to accommodate enough hot data objects to satisfy

the given hit ratio, without excessively consuming the system memory resources.

 The MACSC tunes the cache size by leveraging the relative object popularity

(ROP) of data objects as the sole parameter. The framework is based on the Zipf-like

behavior that is intrinsic to large traces of cached data objects [Breslau99], [Zipf].

 - 51 -

MACSC transforms the Zipf-like curve of the data objects into the bell curve

conceptually. This bell curve is called the popularity distribution, which provides the

basis for the popularity ratio computation to determine the size of the cache

adjustment. In the research it was found that some data traces did deviate from the

Zipf-like behavior. To compensate a deviation behavior compensation measure is

proposed for the MACSC. The detailed discussion of MACSC framework will be

presented in chapter 5.

4.2.2 MACSC(PE)

 In the MACSC framework the cache size is adjusted according to the popularity

ratio computed for the data object access pattern. The popularity ratio computation

accuracy is affected by two factors. The first factor is the speed at which the

popularity profile changes its shape. Any change as such, in effect, is a reflection of

the change of user preference for particular data objects and this requires the

computation method to be distribution/waveform independent. The second factor is

the inter-arrival times (IAT) among the data object retrieval requests.

 The statistical point-estimate (PE) method was selected for use in the first

MACSC implementation. The PE computation accuracy is inherently independent of

the shape of the waveform because it is based on the Central Limit Theorem. The PE

based MACSC framework is called the MACSC(PE). The detail of the MACSC(PE)

is discussed in the chapter 6.

4.2.3 MACSC(M3RT)

Although the PE method can estimate the standard deviation of the data objects

 - 52 -

accurately in most of the cases, it has two shortcomings: unpredictable computation

time and serious hit ratio oscillations. The unpredictable computation time problem

is due to the impact of the inter-arrival times (IAT) lengths. For example, in a burst

mode the IAT may be shorter than the sampling ability of the controller per sampling

cycle time. As a result the controller misses data items repeatedly and inadvertently

makes wrong calculations that lead to undesirable or deleterious effects. For these

reasons, an alternative to the PE approach has to be explored, and this leads to the

adoption of the Convergence Algorithm (CA), M3RT (Micro Mean Message

Response Time) technique, which is also based on the Central Limit Theorem and

therefore its accuracy is waveform/distribution independent. This technique was

originally proposed for IEPM (Internet End-to-End Performance

Measurement[Cotrell99]) applications and the aim is to estimate the mean message

response time accurately and quickly. The M3RT can eliminate the problem of

unpredictable computation time because it works with a chosen number of data items

in every prediction cycle. This number is called the flush limit f and the range of 9 ≤ f

≤ 16 always yields the quickest convergence in IEPM applications The M3RT based

MACSC framework is called the MACSC(M3RT). The MACSC(M3RT) approach

provides several benefits that make its computation time more predictable, and those

are as follows: a) it maintains the prescribed hit ratio efficaciously, b) it lessens

cache size oscillation, and c) it uses a fixed number of data samples. The solution is

unique because: a) it utilizes the relative popularity of the data objects as the sole

control parameter and b) it tunes the cache size adaptively by direct data

measurement with the CA support. The details of the MACSC(M3RT) approach will

be discussed in chapter 7.

 - 53 -

4.2.4 MACSC(F-PE)

Although the MACSC(M3RT) approach can resolve the computation time and

oscillation problems of the MACSC(PE), it uses more memory. Therefore, the third

approach, namely, MACSC(F-PE) is proposed, where “F-PE” stands for fine-tuned

point estimate. This approach combines the advantages of the PE sensitivity and the

M3RT feedback stability. It uses the PE technique to estimate the standard deviation

of the data objects, but with the support of a feedback system that uses history to

moderate the PE process. The details of the MACSC(F-PE) approach will be

discussed in chapter 8.

4.2.5 RTPD/MACSC(PE)

 The Internet follows the power law [Medina00] and its traffic assumes different

patterns over time, for example, long-range dependence (LRD) and short-range

dependence (SRD) [Molnár99]. Continued studies of different traffic patterns led to

the conclusion by Paxson [Paxson95] that any system, which is designed with a

preconceived mathematical model in mind (e.g. Poisson), would fail over the

Internet. In the different experiments with the MACSC(PE) prototype, it was

observed that different IAT traffic patterns can affect the dynamic cache size tuner’s

accuracy. The new framework, namely, RTPD/MACSC(PE) is proposed to resolve

this problem. The real-time traffic detection/detector (RTPD) capability is

incorporated into the MACSC framework. In the RTPD/MACSC(PE) approach the

MACSC mechanism uses the RTPD capability to detect and identify the specific

traffic pattern embedded in the IAT traffic so that it can reconfigure itself to deal

with traffic ill effects.

4.2.6 RTPD/MACSC(F-PE)

 Logically this solution should be useful because the RTPD capability could

neutralize the traffic ill effects as for MACSC(PE). The experimental results for the

MACSC(F-PE) solution by itself, however, has revealed that its performance is

traffic independent. This means that adding the RTPD capability to the

MACSC(F-PE) solution provides no advantage. For this reason the possibility of

having a RTPD/MACSC(F-PE) solution was not investigated further. The details of

the RTPD/MACSC(PE) and other issues will be discussed in chapter 9.

4.3 CONNECTIVE SUMMARY

MACSC
FRAMEWORK

MACSC(PE) MACSC(M3RT)

RTPD/MACSC(PE)

MACSC(F-PE)

By Point-Estimate
(PE) technique to
estimate the standard
deviation

By Convergence
Algorithm, M3RT to
estimate the standard
deviation

Combine the PE technique and
M3RT feedback to estimate the
standard deviation

Uses the real-time traffic
detection/detector (RTPD) to
detect the traffic pattern and
uses different reconfiguration
scheme on different traffic
pattern

RTPD/MACSC

Figure 4.2 Overview of the solutions

This chapter provides the overview of four MACSC solutions: MACSC(PE),

MACSC(M3RT), MACSC(F-PE), and RTPD/MACSC(PE). Figure 4.2 summarizes

the relationship among these four solutions, and the details of which will be

elaborated in subsequent chapters. The MACSC(F-PE) result indicates that the

RTPD/MACSC(F-PE) solution is redundant because the former is already traffic

independent.

 - 54 -

 - 55 -

CHAPTER 5

THE MACSC CONCEPTUAL FRAMEWORK

5.1 INTRODUCTION
In chapter 4, we gave an overview of the MACSC (Model for Adaptive Cache

Size Control) conceptual framework, which is based on the Zipf-like behavior that

reflects the relative popularity data objects in a set. In this framework the dynamic

cache size tuning mechanism leverages this relative popularity profile as the sole

parameter. The key of leveraging is to compute the current standard deviation of the

popularity distribution (PD), which a bell curve obtained by transforming the

Zipf-like behavior (as shown by equation (5.1)). The focal issue that follows is how

to compute the PD standard deviation correctly and quickly on the fly and per

dynamic cache size tuning cycle. Addressing this issue led to the proposals of

different solution strategies in this thesis. In this chapter, the discussion is focused on

the MACSC conceptual framework. As introduced in chapter 4, the aim of the

MACSC framework is dynamic cache size tuning, which maintains the given cache

hit ratio adaptively and consistently by adjusting the cache size according to the

popularity ratio computed from two successive PD standard deviations. It

contributes to shortening the server roundtrip time (RTT) in a client/server

interaction. For e-business this is good news because a short RTT keeps customers

happy. The ability of a proxy server to maintain the prescribed hit ratio for the local

cache reduces its need to access remote data sources (e.g. web servers) for those data

 - 56 -

objects requested by clients. This kind of long-haul information retrieval operation

can congest the network because of the vast amount of data often needed to be

transferred. This inevitably consumes the network bandwidth excessively and leads

to sluggish performance. In contrast, dynamic cache size tuning, which keeps more

hot data objects in the server’s local cache, reduces the need for long-haul data

transfer. As a result more backbone network bandwidth is freed for public sharing

leading to better network throughput.

The MACSC framework belongs to the area of caching adaptivity, which also

addresses other issues such as: a) re-configurable caching hierarchies/architectures

[Michel98], and b) adaptive models for optimizing cache performance with

operation history [Reddy98], [Bolot96]. It focuses on supporting small caching

systems of limited memory resources. It is especially suitable for small caching

systems of limited memory resources because it strives to maintain the given cache

hit ratio as a minimum, without excessive cache memory consumption. These

inexpensive systems, which usually cost less than US$1,000, are popular in the field

[Wessels01]. For these small systems poor caching would lead to excessive cache

memory consumption and poor system performance. This results in frequent task

suspensions due to lack of recyclable memory. The MACSC rationale is “reasonable

memory usage to maintain the given cache hit ratio”.

The potential benefits from caching such as those described have inspired

different relevant areas of research. The most researched topic so far, however, is

how to devise efficacious replacement algorithms. The goal is to push out as many

data objects from the cache as possible to make room for hotter newcomers so that a

high cache hit ratio can be attained [Aggarwal99]. Replacement algorithms from the

literature, however, work exclusively with a fixed-size cache. As a result they may

produce a high cache hit ratio but not necessarily keep it because maintaining a

prescribed hit ratio requires dynamic cache size tuning. The cache size has to be

timely increased/decreased to accommodate enough hot data objects to satisfy the

given hit ratio, without excessively consuming the system memory resources. The

only known example that addresses this issue is the MACSC framework [Wong03].

5.2 MACSC
The MACSC mechanism carries out dynamic cache size tuning by leveraging

the relative object popularity (ROP) of data objects as the sole parameter. Using

ROP to produce a high cache hit ratio is a relatively recent concept. For example, it

is leveraged as an additional parameter in the “Popularity-Aware Greedy Dual-Size

Web Proxy Caching Algorithms” [Jin00a], [Cao97], [Young91]. The only framework

that leverages ROP as the sole parameter is the MACSC. If the ROP is used as an

additional parameter, its potential benefit is easily offset by the long execution time

caused by the heavy parameterization of the algorithm.

Figure 5.1 Zipf-like distribution (log-log plot)

Figure 5.2 Bell shape distribution

 - 57 -

exymapxbell +=))(()((5.2)

The bell curve in figure 5.2 produced by equation (5.1) is called the popularity

distribution (PD) that represents the changing relative popularity profile of the data

objects. The central region of this curve includes the more popular objects, and fhighest

is the “mean of the PD distribution” in the MACSC context [Wong03]. The shape of

the PD changes over time due to changes in the user preference towards specific data

objects. The changes are immediately reflected by the corresponding PD standard

deviation (SD) values. For example, the three curves: A, B and C in Figure 5.3

represent different PD shapes at different time points. The running MACSC

mechanism continuously monitors the SD changes and uses them to tune the cache

size adaptively. This tuning process strives to maintain the prescribed hit ratio as a

minimum, and the adjusted cache size (ACS) is computed using either equation (5.3)

or equation (5.4). The given cache hit ratio is usually expressed in terms of the

number of standard deviations σ. For example, σ=1 means 68.3% and σ =2 for

95.4%.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

last

current
oldSR SD

SD
CacheSizeACS * (5.3)

2

* ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

last

current
oldVR SD

SD
CacheSizeACS (5.4)

The popularity ratios for equation (5.3) and equation (5.4) are the standard

deviation ratio (SR) (i.e. current PD standard deviation over the last or

SDcurrent/SDlast) and the variance ratio (VR) (i.e. (SDcurrent/SDlast)2) respectively.

 The following plots show the transformation operation of the MACSC. Figure

5.4 is the pre-collected data trace, EPA-HTTP (From US Environmental Protection

 - 59 -

Agency) [SIGCOMM], and Figure 5.5 is the plot of access frequencies versus

corresponding ranked objects. From Figure 5.5, the log-log plot in Figure 5.6 is

produced, and this plot barely exhibits the Zipf-like behavior for β =1.0014. The

detail of this will be explained in the section 5.3.2, which discusses deviation

behavior compensation. Figure 5.7 is the bell curve transformed from Figure 5.6.

The ACS will be calculated based on the information of the Figure 5.7.

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200

Unranked object

Fr
eq

ue
nc

y

Figure 5.4 The plot of frequency against
unranked object ID of EPA-HTTP

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200

Ranked object ID

Fr
eq

ue
nc

y

Figure 5.5 The plot of frequency against
ranked ID of EPA-HTTP

y = -1.0014x + 3.601
R2 = 0.9465

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4

Log (Ranked object ID)

Lo
g

(F
re

qu
en

cy
)

Figure 5.6 The log-log plot of frequency
against ranking of EPA-HTTP

0

500

1000

1500

2000

2500

3000

3500

4000

2650 2700 2750 2800 2850 2900 2950

Object ID

Fr
eq

ue
nc

y

Figure 5.7 Plot of frequency against ranked ID
in bell-shape of EPA-HTTP

 - 60 -

5.3 COMPENSATION MEASURES FOR MACSC

5.3.1 INITIALIZATION COMPENSATION

The MACSC efficacy hinges upon the accurate measurement of the PD

standard deviation changes. Equation (5.3) stipulates that the cache size should

change adaptively with respect to the current (SDj/SDj-1) ratio. It adjusts the cache

size by using two consecutively measured PD standard deviations (e.g. in the (j-1)th

and jth cycles). The correct implementation of equation (5.3), however, depends on

the accurate estimation of the initial cache size before the MACSC starts. Any

initialization error will propagate throughout the whole dynamic cache size tuning

process. To eliminate this error propagation problem, equation (5.3) should be

changed to the form in equation (5.5) for implementation. The symbol is the

number of standard deviations (i.e.

∇

σ=∇) that specify the given hit ratio to be

maintained (e.g. for 68.3% and 1=∇ 2=∇ for 95.4%). It is actually part of the

numerator and the denominator (but they cancel out) in the (SDj/SDj-1) expression.

The OSaverage value in equation (5.5) is the mean object size that MACSC is dealing

with. Before MACSC runs (i.e. at time t=0 and j=1) the initial cache size is

set to . The value is the standard deviation

computed from the past performance data. Equation (5.5) stipulates that for

the cache size tuning process should not depend on but the current SD

1
0

=
=

j
SRt

CAS

average
j

t
j

SR OSSDCAS
t

***2 1
0

1
0

=
=

= ∇=
=

1
0
=
=
j

tSD

1>j

1
0
=
=
j

tSD j value

measured in the jth cycle. Similarly the implementation of equation (5.4) should take

the form of equation (5.6). The MACSC cache size initialization is considered as

the 0th cycle or j=0. The initial cache size of

becomes the “seed value” for . In the subsequent dynamic cache tuning cycles

average
j

t
j

VR OSSDACS
t

***2 0
0

0
0

=
=

= ∇=
=

1≥j

 - 61 -

this seed value is replaced by averagej OSSD ***2 ∇ and the factor “2” arises from

considering one ∇ on both sides of the mean. This scheme eliminates the

propagation of the initialization error due to inaccurate estimation. The

VR based tuning process is, hence, tied to the latest computed SD

0
0

=
=

j
VRt

ACS

j value for . 1≥j

averagej
j

SR OSSDACS ***2 ∇= (5.5)

averagej
j

VR OSSDACS *)(**2 2∇= (5.6)

5.3.2 DEVIATION BEHAVIOR COMPENSATION

The MACSC core consists of two popularity ratios, namely SR and VR. These

ratios conceptually come from the popularity distribution shown in Figure 5.2.

Firstly, it has been empirically found that large caching systems exhibit Zipf-like

behavior [Breslau99], [Zipf]. This behavior for every system is unique and is

characterized by a log-log linear regression of the (1/r)-β form of a specific β value in

the 10 ≤< β range, where r marks the rth most popular object ranked in descending

order (Figure 5.8). For a trace of insufficient number of requests the β value may be

outside the 10 ≤< β range. In the Figure 5.8, the β value of the BU-Web-client is

equal to 0.9817. However, the β value of the NASA-HTTP-client in figure 5.9 is

equal to 1.1. It is because the number of requests contained in the

NASA-HTTP-client trace is not large enough that the β value is outside the

10 ≤< β range. This deviation from the formal Zipf-like expectation is the

deviation behavior in the MACSC context. The deviation behavior phenomenon is

compensated in two steps. The first is to assess the quality of the log-log linear

 - 62 -

regression that produces β (i.e. Crry +−= *)(β). The quality is reflected by the

coefficient of determination or R2, a higher R2 value for better quality. The second

step is to choose an appropriate threshold ThR2 and reject the linear regression for

ThR2 > β. Rejection means continuing to use the last popularity ratio until the

R2>ThR2 condition is satisfied.

y = -0.9817x + 4.9145
R2 = 0.9993

0

1

2

3

4

5

6

0 1 2 3 4
Log (Ranked object ID)

Lo
g

(F
re

qu
en

cy
)

Figure 5.8 The log-log plot of BU-Web-client

(169 days)

y = -1.1094x + 5.5937
R2 = 0.9862

0

1

2

3

4

5

6

0 1 2 3
Log (Ranked object ID)

Lo
g

(F
re

qu
en

cy
)

Figure 5.9 The log-log plot of
NASA-HTTP-client (31 days)

Both the bell(r) and bell(x) curves are called the popularity distributions (PD),

which quantify the same relative data object popularity profile. bell(r) is the

conceptual popularity distribution and bell(x) is its “anti-log” version for

implementation. Figure 5.1, in effect, depicts the changes of the PD shape over time

due to shift of user preferences for particular data objects. The Y-axis of the PD

records the access frequencies (or probabilities) for the corresponding objects on the

X-axis. The PD variability (spread) is characterized by the standard deviation (SD)

that measures the popularity deviations of different data objects from the “mean

value”: y(1)=fhighest. The object with the highest access frequency in the Zipf-like

correlation has virtually become the “mean value” of the PD by mapping. Once the

SD of the current PD is computed from the live data sampled statistically (e.g. SDA

for curve A in Figure 5.3), the popularity ratio (PR) (as shown in equation (5.3) or

 - 63 -

(5.4)) can be estimated for tuning the cache size adaptively on the fly to maintain the

given cache hit ratio.

It is necessary to empirically verify that bell(x) indeed produces the same effect

as bell(r) for PR computation. In the MACSC context, this verification is called the

“kurtosis and skewness (KS)” test. In the KS test, the skewness is computed by

equation (5.7) and kurtosis is computed by the equation (5.8), where x and SD are

the statistically measured mean and standard deviation respectively for the aggregate

of m data items sampled. Skewness measures the symmetry of a bell curve. A

positive value indicates that the bell curve embedded in the aggregate skews right

(i.e. right tail is heavier than the left). Kurtosis measures whether the bell curve is

peaked (positive value) or flat (negative value). In the normal distribution, kurtosis is

equal to 3 and skewness is equal to 0.

3

3

1

)1(

)(

SDm

xx
m

i i

−

−∑ = (5.7)

4

4

1

)1(

)(

SDm

xx
m

i i

−

−∑ = (5.8)

The KS tests indicate that all the traces of data object accesses in our

experiments are basically bell curves with reasonable Kurtosis and Skewness values.

In the KS tests it also shows that even when the β values of some linear regressions

were not in the 10 ≤< β range, the linear regression is still conceptually valid for

producing bell(x), which forms the basis for calculating the popularity ratios for

dynamic cache size tuning. The condition for validity is having reasonable kurtosis

and skewness values as compared to the normal distribution. This KS test will be

demonstrated by the experiment result with different traces.

 - 64 -

 - 65 -

5.4 Connective Summary
In this chapter, the MACSC framework is investigated for dynamic cache size

tuning. It maintains the given hit ratio adaptively and consistently by tuning the

cache size dynamically according to the popularity ratio of the data object requests.

The MACSC framework is conceptually based on the transformation of the Zipf-like

curve into the popularity distribution in order to calculate the popularity ratio. In the

next chapter, we will discuss the use of the statistical point-estimate (PE) approach to

estimate the standard deviation of the data object requests in order to calculate the

popularity ratio to tune the cache size on the fly.

 - 66 -

CHAPTER 6

THE POINT-ESTEMATE APPROACH

6.1 INTRODUCTION
In the MACSC framework the cache size is adjusted according to the popularity

ratio computed for the data objects. The basic concept is that the distribution of the

access frequencies against the corresponding data objects at any time represents the

real-time relative popularity profile. The popularity-ratio computation accuracy is,

however, affected by two factors. The first factor is the speed at which the popularity

profile distribution changes its shape. Any shape change, in effect, is a reflection of

change of preference for particular data objects by the users. Therefore, any

computation method, which caters to a particular distribution/waveform shape such

as Poisson, could lead to failure [Paxson95]. The second factor is the inter-arrival

times (IAT) among the data object retrieval requests. The IAT distribution affects

computation accuracy in two ways. In the first way, if the IAT (in a burst mode) is

shorter than the execution time of the dynamic cache size controller, then

computation inaccuracy would appear because of incomplete data sampling. In the

second way the IAT traffic waveform/pattern over the Internet, which follows the

power law [Medina00], changes over time, may change suddenly, for example, from

SRD (short-range dependence such as Markovian traffic) to LRD (long- range

dependence such as heavy-tailed, self-similar, and multi-fractal). This kind of change

can affect the accuracy of the computation method adopted [Paxson95]. To free the

MACSC mechanism from the ill effects of the above two factors, the popularity ratio

calculation should be statistical and based on direct measurement. That is, the

standard deviation of the relative popularity profile of data objects is freshly and

directly measured in each cycle.

The statistical point-estimate (PE) approach is used in the first MACSC

implementation. The PE computation accuracy is inherently independent of the

shape of the waveform (i.e. heavy-tailed, Poisson, self-similar, or multi-fractal)

because it is derived from the Central Limit Theorem. The computation accuracy,

however, could still be affected by the IAT lengths. For example, in a burst mode the

IAT may be shorter than the sampling ability of the controller in light of its sampling

cycle time. As a result the controller misses data items repeatedly and inadvertently

makes wrong calculations that lead to undesirable or deleterious effects. The PE

approach provides the minimum capability for the MACSC controller to alleviate the

deleterious effects. The PE based MACSC framework is called the MACSC(PE).

6.2 THE MACSC(PE) APPROACH
In the MACSC(PE) approach the cache size is dynamically adjusted according

to the popularity ratio, which is calculated with the point-estimate (PE) approach.

The PE approach is derived from the Central Limit Theorem, and the details of

which will be provided later. The statistics x and sx, which are the mean and

standard deviation values of a data sample of size n for n > 10, are called the point

estimates of the true mean λ and standard deviation δx of the population of x. The

Central Limit Theorem provides the relationship between point estimates and the

population/true mean and standard deviation values.

 - 67 -

6.2.1 CENTRAL LIMIT THEOREM

This theorem is characterized by the following [Chis92]:

1. The means (i.e. x) of a series of x samples of size n from any distribution

(Figure 6.1(a)) will form a normal distribution of mean m (Figure 6.1(b)). The

variability (spread) indicated by 2)(xδ , where xδ is the standard deviation of

this bell curve or standard error plot [Jain91], is smaller than that of the

distribution formed by the individual variables themselves; that is,

22)()(
xx δδ > .

2. The larger the sample size n the smaller will be xδ , and this implies that m will

is closer to the true/population mean λ.

The essence of the Central Limit Theorem, which is
2

2

n
x

x

δ
δ = for , is

captured by Figure 6.1. The figure shows a narrower bell curve for n = N

10>n

2.

In the estimation of the population mean the concept of a confidence interval is

needed, and this implies probabilistic bounds of the following form:

Probability α1}cλ{c 21 −=≤≤

The (c1, c2) is the confidence interval for the population mean and α is the

significance level. 100(1-α)% is the confidence level and 1-α is the confidence

coefficient. The confidence level is always expressed as a percentage and is close to

100% (e.g. 90% or 95%). Significance level α is set near to zero (e.g. 0.1 or 0.05). In

the Central Limit theorem applications the 100(1-α)% confidence interval for the

population mean is the expression, ()nszxnszx 2/12/1 , αα −− +− . The z1-α/2 value

is the (1-α/2)-quantile of a unit normal variate. For example, if the mean 8.1=x ,

 - 68 -

x
λ

(b) Normal distribution of means (x) sampled from (a)

x
λ

68.3%

(a) Any distribution of (x)
λ+2 λ+3λ+ xδ xδλ-2 xδxδλ-3 xδ λ- xδ

68.3%

Nδδ xx =

λ+ λ+2 λ+3λ-λ-2λ-3 xδ xδ xδ xδ xδ xδ

Figure 6.2 Normal distribution of means (x) from any distribution (ideally m = λ)

6.2.2 POINT-ESTIMATE DETAILS

The point-estimate (PE) approach is an estimation technique to estimate the

parameters of the x population from a series of data sample of size n for .

When the formal expression,

10>n

2

2

n
x

x

δ
δ = is combined with the following concepts,

namely, standard error, significance level, equation (6.1) can be derived. The

parameters are defined as follows:

 - 70 -

1. Fractional error tolerance (E): It is the percentage error between the true mean

λ and m (the mean of the bell curve or standard error (SE) plotted/estimated

from a series of sample means of sample size n≥10 on the fly).

2. SD tolerance (k): It is the number of standard deviations (SD) that m is away

from the true mean λ but is still tolerated (k same tolerance connotation as E). It

is the confidence level about λ.

3. Predicted standard deviation (
x
δ) of the SE plot: Theoretically m can be

estimated from the same series of samples that yield the different x values for

n≥10. By the Central Limit Theorem nxx
δδ = holds, where δx is the

population/true SD.

4. Minimum value N: From equation (6.1) we note that a minimum sample size N

is needed in practice to estimate the approximate λ and δx values that satisfy the

given k and E error tolerances, which, in effect, have the same connotation. The

equation (6.1) can be re-arranged to become equation (6.2), which indicates

how N can be computed. The N value, however, is innately unpredictable

because it depends on the data profile in the interval of interest. Therefore, it

should be found by a process of trial repetitions with progressively larger

number of samples until convergence. For this reason, λ and δx in equation (6.2)

should be replaced by x and sx to become equation (6.3) for implementation

purposes. sx is the standard deviation for the data sample of mean x . In the

repetitive process of N estimation, if the first trial has a data sample of size n,

then every repetition requires more data items. For example, if a fresh sample of

size n is added in every repetition cycle, then the number of data items used in

 - 71 -

the current repetition is (1+R)*n, where R is the number of incremental

repetitions for R = 1,2…etc. The repetition stops when the criterion n ≥ N is

satisfied. In every repetition the PE computes x statistically from the n data

items first and then
()

1

2

1

−

−
=
∑
=

N

xx
s

N

i
i

x , where xi marks the ith data item in the

sample.

)(
N

kkE x
x

δδλ == (6.1)

2)(
λ
δ

E
k

N x= (6.2)

2)(
xE

ks
N x= (6.3)

Equation (6.3) is known as the equationN − in the MACSC context.

The following is an example which shows how the PE process satisfies the n≥N

criterion of the equationN − :

1. It is assumed that the initial 60 data samples (i.e. sample size is n=60) have

yielded 15 and 9 for x and sx respectively.

2. The given SD tolerance is 2 (i.e. k=2 or 95.4%), and the fractional tolerance E

is therefore equal to 4.6% (E=0.046); both E and k connote the same error.

3. The N value then should be 680)
15*046.0

9*2(2 ≈=N .

The value of N≈680 indicates that the initial sample size n=60 is incorrect. To rectify

the problem one of the following two methods can be used:

1. The first is to collect (680 – 60) or 620 more data samples and re-calculate x

and sx. There is no guarantee, however, the new estimation by this approach

 - 72 -

would converge to n ≥ N. The same process would therefore have to be

repeated.

2. The second, which is adopted by the MACSC, is to collect another 60

samples and re-calculate x and sx from the total of 120 samples (i.e. n=120

for the 2nd trial). The PE is actually the (1+R)*n repetitive process, which stops

when the criterion n ≥ N is satisfied.

Previous practical experience shows that the second method converges much

faster to . Usually the Nn ≥ x and sx values stabilize in the second or third trial

[Chis92]. The PE operation in MACSC adopts the second method because previous

practical experience consistently shows that the second method converges much

faster to . Usually Nn ≥ x and sx stabilize in the second or third trial [Chis92].

In the calculation of the adjusted cache size or ACS, the equation (5.5) becomes

equation (6.4) for real MACSC(M3RT) applications (sx is the computed standard

deviation for jth cycle as explained before).

average
j
x

j
SR OSsACS ***2 ∇= (6.4)

6.3 MACSC(PE) VERIFICATION
The MACSC(PE) implementation will be discussed in CHAPTER 10. The aim

of this section is to show the validity of the PE approach as well as its possible

shortcomings. The desire to get rid of the shortcomings leads to new MACSC

approaches that will be discussed in the later chapters. In the MACSC(PE) approach,

the PE technique is used to estimate the mean and standard deviation of the data

objects in each cycle. The MACSC(PE) mechanism cycles through the following:

1. The system collects a number of data objects with the size n.

 - 73 -

 - 75 -

6.3.1 SETUP AND ENVIRONMENT

Many simulation experiments were carried out with the MACSC(PE) prototype

implemented in Java over the controlled Internet environment. The objectives of the

experiments are to verify the following:

a. The MACSC(PE) can indeed determine the popularity ratio of the data

objects.

b. It is able to maintain the given hit ratio.

The experimental setup is illustrated in Figure 6.4. In the experiments, the

“fixed cache size (FCS)” system (i.e. static cache size) was used for the comparison

purposes. The simulations were carried out on the Java-based Aglets mobile agent

platform [Aridor98], which is chosen for its stability, rich user experience, and

scalability. The Aglets platform is designed for Internet applications, and this makes

the experimental results scalable and repeatable for the open Internet. The

replacement strategy used in the simulations is the basic LRU (Least Recently Used)

approach with the “twin cache system (TCS)” [Aggarawal99]. The TCS has been

used successfully in previous investigations of replacement strategies and its main

function is to filter the “one-timers” that are considered as caching “noise”. The

filtration makes the hot data in the cache more concentrated for more meaningful

results. One-timers are unpopular data objects that are accessed only once over a

long period. The driver and the MACSC(PE) tuner for the proxy server are aglets

(agile applets) that interact in a client/server relationship. The MACSC(PE)

prototype is SR based (equation (5.5)). The cache size is first initialized to meet the

prescribed hit ratio in terms of the number (i.e. σ) of standard deviations. For

example, if the given hit ratio is one PD (popularity distribution) standard deviation

 - 77 -

interrupt timer. When an interrupt occurs a random number is generated as the access

probability, which is one of the values on the Y axis of the chosen PD curve. On the

X-axis of this curve lie the unique integer object identifiers (OI) of the data objects.

Each position on the x-axis is also identified by a “bell” identifier (BI), which

initially matches the object identifier (OI) in a one-to-one correspondence

relationship. The OI position is changed by the ranking process over time as shown

in Figure 6.5. These bell identifiers are generated in the beginning of an experiment.

The procedures for the experiment are as follows:

1. Each data object in a raw dataset is assigned a unique object identifier (OI).

2. The access frequencies of every data object are counted continuously.

3. The access frequencies of the data objects are sorted in the Zipf-like curve

generated by a log-log plot. In this plot, each data object has its own rank

identifier (RI) for its ranked position.

4. The Zipf-like curve is transformed into a bell curve called the PD (popularity

distribution). Then, “bell” identifiers (BI) are assigned.

5. The calculation of the popularity ratio is based on the BI values.

Figure 6.5 shows the summary of the generation of the BI values, and their

relationship with RI and OI over time in the continuous operation of the MACSC

framework.

The simulation results shown in Figure 6.7 were run with the simulated dataset

with interleaved SD sequence 1k→2.5k→1.5k→2k. The SD sequence,

1k→2.5k→1.5k→2k was generated by interleaving four bell curves with standard

deviations of the 1k, 2.5k, 1.5k and 2k objects, where k=1000. The MACSC(PE)

maintains the average hit ratio at 52.2% while the “fixed cache size (FCS)” system

maintains the hit ratio at 39.4% only. The MACSC(PE) tuner yields the highest hit

ratio as compared to the FCS. The Figure 6.8 shows that the novel MACSC(PE)

tuner produces a 32% higher hit ratio than the FCS. In fact, the MACSC(PE) always

yields the highest hit ratio in all the simulations. Figure 6.9 shows the results from

another simulation. Similarly, the interleaved SD sequence, 1k→2k→1.5k→3k was

generated by interleaving three different bell curves with the standard deviations: 1k,

2k, 1.5k and 3k objects. In this case the MACSC(PE) tuner has 23% higher hit ratio

than the FCS (Figure 6.10).

39.4%

52.2%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

FCS MACSC(PE)

A
ve

ra
ge

 H
it

R
at

io

Figure 6.7 The comparison of the hit ratio between MACSC(PE) and FCS

(Interleaved SD sequence: 1k→2.5k→1.5k→2k)

 - 80 -

1.00

1.32

0.00
0.20

0.40
0.60

0.80
1.00

1.20
1.40

FCS MACSC(PE)

A
ve

ra
ge

 H
it

R
at

io

Figure 6.8 The hit ratio improvement over FCS
(Interleaved SD sequence: 1k→2.5k→1.5k→2k)

37.6%

46.1%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

FCS MACSC(PE)

A
ve

ra
ge

 H
it

R
at

io

Figure 6.9 The comparison of the hit ratio between MACSC(PE) and FCS

(Interleaved SD sequence: 1k→2k→1.5k→3k)

1.00

1.23

0.00

0.20
0.40

0.60
0.80

1.00
1.20

1.40

FCS MACSC(PE)

R
at

io
 o

f H
it

R
at

io
 Im

pr
ov

em
en

Figure 6.10 The hit ratio improvement over FCS
(Interleaved SD sequence: 1k→2k→1.5k→3k)

 - 81 -

The Figure 6.11 and Figure 6.12 show the changes of the hit ratio by

MACSC(PE) and FCS respectively. In the figures, it can be observed that there is a

big impact of the popularity ratio on the performance of the proxy system. When the

standard deviation of the data objects rises, the hit ratio of the FCS will drop. The

margin of the changes will be in accordance with the change of the standard

deviation of the data objects. According to these figures, it can be concluded that the

MACSC framework can maintain the given hit ratio by the dynamic cache size

tuning. And the PE approach can determine the standard deviation of the data objects

successfully for the MACSC(PE) solution.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000
Http request number

H
it

R
at

io

0

1000

2000

3000

4000

5000

6000

7000

8000

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) SD

Figure 6.11 Changes of hit ratios by MACSC(PE) and FCS

(Interleaved SD sequence: 1k→2.5k→1.5k→2k)

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000
Http request number

H
it

R
at

io

0

1000

2000

3000

4000

5000

6000

7000

8000

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) SD

Figure 6.12 Changes of hit ratios by MACSC(PE) and FCS

(Interleaved SD sequence: 1k→2k→1.5k→3k)

 - 82 -

 - 83 -

6.3.3 VERIFICATION WITH PRE-COLLECTED DATA TRACES

In order to verify that the MACSC(PE) indeed has the capability to work in real

environments verification experiments were conducted with pre-collected real data

traces. The results with the following traces, EPA-HTTP (EPA WWW server located

at Research Triangle Park, NC, USA), SDSC-HTTP (San Diego Supercomputer

Center), and Calgary-HTTP (University of Calgary, Alberta Canada) [SIGCOMM]

are shown here for demonstration. Table 6.2 is the summary of these three data traces.

The experiment setup is similar to that for the simulated datasets (Figure 6.4) except

that pre-collected data traces were used in this case.

EPA-HTTP SDSC-HTTP

No. of transactions 42,438 No. of transactions 28,338

No. of objects 5,584 No. of objects 1,661

Duration 24 hours Duration 24 hours

 Calgary-HTTP

 No. of transactions 722,982

 No. of objects 11,799

 Duration 353 days

Table 6.2 Summary of the three pre-collected real data traces

Figure 6.13 compares the experimental results for the FCS and MACSC(PE)

with different pre-collected data traces. It shows that the MACSC(PE) can

consistently maintain the cache hit ratios at the given 68.3% (one standard deviation)

required. In fact, all the experiments conducted so far indicate that the MACSC(PE)

performs better than the FCS. Figure 6.14 shows the change of the hit ratio of FCS

and MACSC(PE) in the simulation with the EPA-HTTP. It shows that the popularity

ratio of the data objects in real situations indeed varies with time. The MACSC(PE)

can maintain the hit ratio much better than the FCS. Figure 6.15 and Figure 6.16 also

shows similar results.

55.7% 57.5% 55.4%

68.6% 68.3%
73.2%

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%

EPA-HTTP SDSC-HTTP Calgary-HTTP
Different http data sets

A
ve

ra
ge

 h
it

ra
tio

FCS MACSC(PE)

Figure 6.13 Performance comparison of FCS and MACSC(PE) for different data traces

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

1000 3000 5000 7000 9000 11000 13000 15000
Http request number

H
it

R
at

io

200

250

300

350

400

450

500

550

600

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) SD

Figure 6.14 The Magnified view of the change of hit ratios by FCS and MACSC(PE) with the

EPA-HTTP data trace

 - 84 -

10.0%

20.0%
30.0%

40.0%
50.0%

60.0%

70.0%
80.0%

90.0%

1000 3000 5000 7000 9000 11000 13000 15000 17000 19000
Http request number

H
it

R
at

io

0

50

100

150

200

250

300

350

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) SD

Figure 6.15 The Magnified view of the change of hit ratios by FCS and MACSC(PE) with the

SDSC-HTTP data trace

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

300000 305000 310000 315000 320000 325000 330000
Http request number

H
it

R
at

io

150

350

550

750

950

1150

1350

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) SD

Figure 6.16 The magnified view of changes in hit ratios by FCS and MACSC(PE) with the

Calgary-HTTP data trace

6.3.4 SHORTCOMINGS OF THE MACSC(PE)

Although the verification results show that the MACSC(PE) mechanism can

indeed maintain the given hit ratio successfully, they have also revealed two PE

shortcomings: unpredictable computation time, and serious hit ratio oscillations.

6.3.4.1 UNPREDICTABLE COMPUTATION TIME

It is observed that the requirement to satisfy n ≥ N criterion in real-life

 - 85 -

 - 86 -

applications is unpredictable. This involves the following problems: a) the

unpredictable number of data items needed by the statistical PE approach to satisfy

the N value of the criterion n ≥ N, and b) the unpredictable inter-arrival times (IAT)

among these items. For example, the Table 6.3 shows the range of the sampling size

of the MACSC(PE) with different pre-collected data traces. The collecting of 722850

samples in the aforementioned example may take seconds, hours or even days. The

unpredictable sampling number and the IAT interval between any two data items in a

sample may reduce the tuning precision of the MACSC.

 EPA-HTTP SDSC-HTTP Calgary-HTTP

Minimum 30 30 30

Maximum 42300 25410 722850

Average 69 69 37

Table 6.3 The range of the sample size of the MACSC(PE) with
different pre-collected data traces

6.3.4.2 SERIOUS HIT RATIO OSCILLATIONS

The MACSC(PE) cache hit ratio can seriously oscillate in the steady state

because of the large oscillation of the standard deviation of the data objects. This

large oscillation make the MACSC(PE) adjustment of the cache size also very large

and so reduces the overall performance of the framework. The Figure 6.17 shows a

magnified view of the changes of hit ratio by MACSC(PE) with the simulated

dataset. It shows that the hit ratio oscillates heavily even when the large trend of the

standard deviation doesn’t change too much. This leads to the rapid changes of the

cache size of the system in Figure 6.18. The result is the decrease in the overall

performance of the system. The same situation occurs in the pre-collected data traces.

Figure 6.19 and Figure 6.20 show the magnified view of the change of the cache size

and memory usage of the MACSC(PE) with the EPA-HTTP dataset respectively.

42.0%

44.0%

46.0%

48.0%

50.0%

52.0%

104000 106000 108000 110000 112000 114000 116000 118000 120000
Http request number

H
it

R
at

io

0

1000

2000

3000

4000

5000

6000

7000

8000

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

MACSC(PE) SD

Figure 6.17 The Magnified view of changes of hit ratios by MACSC(PE)

(Interleaved SD sequence: 1k→2k→1.5k→3k)

9000

9200

9400

9600

9800

10000

10200

10400

104000 106000 108000 110000 112000 114000 116000 118000 120000
Http request number

C
ac

he
 S

iz
e

(k
b)

0
1000

2000
3000

4000
5000

6000
7000

8000

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

MACSC (PE) SD

Figure 6.18 The Magnified view of changes in memory usage by MACSC(PE)

(Interleaved SD sequence: 1k→2k→1.5k→3k)

65.0%
65.5%
66.0%
66.5%
67.0%
67.5%
68.0%
68.5%
69.0%
69.5%
70.0%

4500 5000 5500 6000 6500 7000
Http request number

H
it

R
at

io

200

250

300

350

400

450

500

550

600

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

MACSC(PE) SD

Figure 6.19 The Magnified view of changes of hit ratios by MACSC(PE) with the EPA-HTTP

data trace

 - 87 -

3200

3300

3400

3500

3600

3700

3800

3900

4500 5000 5500 6000 6500 7000
Http request number

C
ac

he
 S

iz
e

(k
b)

200

250

300

350

400

450

500

550

600

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

MACSC(PE) SD

Figure 6.20 The Magnified view of changes in memory usage by MACSC(PE) with the

EPA-HTTP data trace

6.4 Connective Summary
In this chapter the theoretical foundation for the MACSC(PE) solution is

presented. The core of the statistical computation power for attaining the popularity

ratio for dynamic cache size tuning is the point-estimate (PE) approach. The

verification experiments show that the MACSC(PE) solution can indeed maintain

the given cache hit ratio consistently in a dynamic manner. The PE technique,

however, has two shortcomings: unpredictable computation time, and serious hit

ratio oscillations. For these reasons, an alternative to the PE approach was explored,

and this led to the adoption of the M3RT (Micro Mean Message Response Time)

technique, which is also based on the Central Limit Theorem and therefore its

accuracy is waveform/distribution independent. This technique was originally

proposed for IEPM (Internet End-to-End Performance Measurement [Cottrell99])

applications and the aim is to estimate the mean message response time accurately

and quickly on the fly. Since it treats any profile (e.g. data and/or traffic profiles) as a

waveform, it has the potential to replace the PE approach. The M3RT can eliminate

the problem of unpredictable computation time because it works with a chosen

 - 88 -

number of data items in every prediction cycle. This number is called the flush limit f

and the optimal range of 169 ≤≤ f always yields the quickest convergence in

IEPM applications. This optimal range, however, may change when the M3RT is

transcribed for dynamic cache size tuning, which is a domain that differs in nature

from the previous IEPM perspective.

 - 89 -

 - 90 -

CHAPTER 7

ADAPTION OF CONVERGENCE ALGORITHM

7.1 INTRODUCTION
The point-estimate or PE technique, as observed from the experimental results,

has two shortcomings, namely, unpredictable computation time, and possible serious

hit ratio oscillations. For these reasons, an alternative to the PE approach has to be

explored. This led to the adoption of the Convergence Algorithm (CA), which is a

theoretical algorithm for quick and accurate prediction of the mean roundtrip time

(RTT) of a communication channel in the interval of interest. The CA was originally

proposed for the IEPM (Internet End-to-End Performance Measurement [Cottrell99])

applications. It is similar to the PE mechanism in two respects: a) it is derived from

the Central Limit Theorem, and b) it is suitable for real-time application [Wong02a].

Therefore, the CA could be adapted for supporting the MACSC mechanism in

dynamic cache size tuning. The accuracy of prediction/estimation by the CA is

waveform/distribution independent. The M3RT, which is the CA implementation will

replace the PE in the MACSC operation. This replacement is used to enhance the

MACSC(PE) to the MACSC(M3RT) version, which is introduced in this chapter.

Similar to its MACSC(PE) predecessor, the MACSC(M3RT) mechanism

consistently maintains the given cache hit ratio. It is, however, difficult to estimate

the MACSC(PE) convergence time because the following are unpredictable: a) the

number of data samples needed by the PE process to achieve convergence and b) the

inter-arrival times among these data samples. In the MACSC(M3RT) approach this

unpredictability problem is resolved by replacing PE with the M3RT mechanism,

which works with f (i.e. flush limit) number of data items sampled on the fly.

Previous IEPM experience shows that the region for fast M3RT convergence is

. The MACSC(M169 ≤≤ f 3RT) approach provides several benefits including: a) it

maintains the prescribed hit ratio efficaciously, b) it lessens cache size oscillation,

and c) it uses a fixed number of data samples and this makes its computation time

more predictable. It is unique because: a) it utilizes the relative popularity of the data

objects as the sole control parameter and b) it tunes the cache size adaptively by

direct data measurement with the CA support. The relative popularity profile of data

objects is called popularity distribution (PD) in the MACSC(M3RT) context. Any

change in the PD’s standard deviation indicates a shift of user preference for

particular data objects. Monitoring and leveraging this change is the basis for

MACSC(M3RT) to find a meaningful popularity ratio for deciding how the cache

size should be tuned in a dynamic manner.

7.2 THE MACSC(M3RT) APPROACH
The problem of the point-estimate (PE) approach in MACSC(PE) is that it

cannot predict the sampling size in each cycle. In order to resolve this problem, the

PE mechanism is replaced by the M3RT, creating the new MACSC(M3RT) version.

The M3RT works with a fixed number of data items, and this fixed number is called

the flush limit or simply f.

 - 91 -

7.2.1 CONVERGE ALGORITHM – M3RT

The Convergence Algorithm (CA) was proposed to predict the mean message

response time of a communication channel in a sizeable network such as the Internet

quickly and accurately [Wong01b]. It treats any type of data distribution as a

waveform. In this sense the CA is generic, and it was confirmed that the CA indeed

has the capability to predict the mean of any waveform accurately and quickly

[Wong01a]. The CA was proposed because calculating the mean of a waveform over

time by addition and division can lead to memory overflow. Equation (7.1) shows

how the mean, namely, Mi of a distribution of i number of sampled data items can be

calculated simply by addition and division. This form has a memory overflow

problem for very large i values. For example, one may run into this problem when

trying to measure the mean roundtrip time (RTT) of an Internet TCP channel over a

long period. The source of memory overflow is the summing operation:

. This problem, however, can be prevented by transforming

equation (7.1) to equation (7.2), based on the concept of the Central Limit Theorem.

∑∑
==

=
i

j
j

i

j
j RTTm

11

1, ;1 ≥=
∑
= jiwhere

i

m

M

i

j
j

i
(7.1)

1;
*

1
1

>
+

+

=
∑
=

=
−

i
fP

mMP
M

fj

j

i
ji

i , 1
00

=
== i

jmM
(7.2)

The transformation involves the following parameters:

1. Mi is the mean estimated in the ith prediction cycle from the fixed f (flush limit)

number of data items (i.e. mj
i)

 - 92 -

2. P is the damping factor to reduce oscillation in the Mi convergence process

3. Mi-1 is the last estimated mean as feedback to the current prediction cycle.

4. M0 is the first sample when CA had started running.

The choice of f is important for the M3RT convergence, and it was confirmed

that the best f range is 169 ≤≤ f [Wong01a], [Wong01b], [Ip03] by previous IEPM

experience. The M3RT (Micro Mean Message Response Time) tool is a micro CA

implementation in the form of a Java API. It is micro because it operates as a logical

entity that provides the Mi prediction service anywhere and anytime by message

passing. The M3RT always converges to the true mean of any given waveform.

Figure 7.1 shows how it converges to Mi mean values of the different IAT

(inter-arrival times) segments of size f=14 extracted from the EPA-HTTP trace

[SIGCOMM]. Every data item sampled in this trace is made up of two components,

the requested/named data object and the relevant IAT.

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000

Sample

IA
T

(s
)

Raw IAT Mi

Figure 7.1 Mi calculations by M3RT for the IAT series in the EPA-HTTP trace

7.2.2 DETAIL EXPLAINATION OF MACSC(M3RT)

The PE approach is now replaced by the M3RT micro IEPM mechanism, which

 - 93 -

uses f (flush limit) number of data samples to compute sx and x . By doing so the

following objectives are achieved:

1. Improved ACS execution time predictability: Only a fixed f number of data

samples are used to satisfy the criterion. Nn ≥

2. Independence of traffic patterns: The M3RT accuracy is independent of the

traffic waveform because its Convergence Algorithm basis is derived from

the Central Limit Theorem [Wong01a], [Wong01b].

3. High tuning accuracy: The M3RT mechanism helps yield sx and x to satisfy

 quickly and accurately. With pre-collected data traces it needs only

211 clock cycles on average to satisfy [Wong03]. This execution

time is arisen from the fact that the data items in the trace are immediately

usable without any delay. If M

Nn ≥

Nn ≥

3RT has to sample live data on the fly, the

actual convergence time depends on the average IAT for the f data items in

the sample [Wong02b], [Ip03].

The M3RT treats the access frequencies of a collection of data objects as a

waveform. Although this waveform represents the relative object popularity profile

in the MACSC(M3RT) context, the M3RT treats it in a similar manner to service RTT

values [Cottrel99], [Cottrel01], [Wong01a], [Matthews00], [Paxson97], [Ip03]. To

summarize, the M3RT implementation has the following salient features that are

beneficial to the MACSC(M3RT) approach:

1. Waveform independence: This comes from its Central Limit Theorem basis.

2. Predictable execution time: Timing analysis with Intel® VTune™

Performance Analyzer [VTune] confirms that it needs an average of 211

clock cycles for intrinsic convergence when pre-collected data traces are used.

 - 94 -

It is intrinsic because the data items in the trace are immediately usable. In

on-line applications the actual M3RT execution time depends on the average

IAT (inter-arrival time) delay among the data items to be collected on the fly.

This makes the actual convergence time much higher than 211 clock cycles.

The clock cycles are neutral and can be easily converted into physical time

for any platform of interest. For example, if a platform operates at 850 MHz,

then the physical time for 211 clock cycles is

66 10*25.0211*)10*8501(−≈=T seconds (i.e. 0.25 microseconds).

3. Ever-increasing accuracy: The CA model is integrative because of the Mi-1

feedback. As a result, the longer M3RT runs the more accurate its prediction

becomes [Wong02b].

The MACSC(M3RT) approach has two parallel components: “MACSC model

without PE support + M3RT”. The total execution latency, TMACSC for the previous

MACSC framework is determined by three elements: a) the unpredictable sampling

delay TSample for collecting enough data to satisfy the criterion of the Nn ≥

equationN − , b) the point-estimate computation time, TPE that includes all the

iterations until is satisfied, and c) the time TNn ≥ PR&Adjustment for computing PR

and carrying out the actual cache size adjustment; that is,

TMACSC=TSample+TPE+TPR&Adjustment. The TSample delay is unpredictable because it

depends on the average IAT of the live samples. The TPE latency is equal to R*LPE,

where R is the number of iterations, and LPE is the average time for an iteration

pass/cycle to compute 2)(
xE

ksx . Previous observations show that the R range is

 most of the time. The latency is fixed because the PR 51 ≤≤ R AdjustmentPRT &

 - 95 -

computation and the physical cache size adjustment involve no unpredictable

elements. Working with different pre-collected traces (no actual IAT delays) where

samples are immediately usable, the average TPE and TPR&Adjustment latencies for the

MACSC Java prototype were approximated as 712,000 and 43,000 clock cycles

respectively. The average TSample latency is equal to the M3RT execution time of 211

clock cycles. The maximum intrinsic speedup (S) by MACSC(M3RT) compared to

MACSC for pre-collected traces is S=(TPE+TPR&Adjustment)/(211+TPR&Adjustment), which

is approximately, 712,000/43,211≈16.5 or 1,650%. In real-time operations, however,

the M3RT component in the MACSC(M3RT) must sample live items one by one on

the fly. The actual unpredictable IAT delays among data samples would make the

1,650% intrinsic speedup difficult to achieve.

Although the M3RT mechanism, which is derived from the Central Limit

Theorem, is a potential candidate to replace the PE mechanism, it lacks the necessary

sensitivity to follow the PD changes closely. On the one hand the M3RT always

predicts the mean of a waveform accurately with data collected on the fly, whilst on

the other hand the last Mi-1 feedback to the current Mi prediction (equation (7.2) to

yield stability for the convergence process becomes a liability for applying M3RT

directly to the MACSC(M3RT) approach. The liability is that the M3RT may not be

responsive enough for accurate popularity ratio calculation to reflect the actual

current situation. To resolve this liability problem equation (7.2) is transformed

through equation (7.3) to become equation (7.4). By arranging
fp

p
+

= α and

fp
f
+

=−)1(α the new equation (7.5) is obtained for the actual M3RT based

operation.

 - 96 -

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
+

= ∑
=

=

fj

jfpfp
p

1

j
i1-ii m1 M* M (7.3)

() ;m11 M* M
1

j
i1-ii ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
+

= ∑
=

=

fj

jf
f

fpfp
p

 (7.4)

1 =
+

+
+ fp

f
fp

p
Q

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+=
∑
=

=

f

fj

j 1

j
i

1-ii

m
)-(1 M M αα (7.5)

By adopting the same integrative principle of the Mi prediction, the xδ

computation has changed to φi estimation by equation (7.6). Then, equation (5.5)

becomes equation (7.7) for real MACSC(M3RT) applications, where α and β weight

the feedback value (i.e. history) in the Mi and φi computation respectively.

()
f

fj

j
∑
=

=

−
+= 1

2
i

j
i

1-ii

Mm
*)-(1 * βϕβϕ

(7.6)

average
i
SR OSACS ***2 iϕ∇= (7.7)

7.3 MACSC(M3RT) VERIFICATION
In the MACSC(M3RT), the framework use the converge algorithm (equation

(7.5) and (7.6)) to calculate the mean Mi and standard deviation φi in i cycle. The

values will then feedback as Mi-1 and φi-1 for the next cycle computation. The α and β

are the weight values for the ratio of the history and current value. The

MACSC(M3RT) mechanism cycles through the following steps:

 - 97 -

39.4%

52.2% 52.7%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

FCS MACSC(PE) MACSC(M3RT)

A
ve

ra
ge

 H
it

R
at

io

Figure 7.4 The comparison of the hit ratio between different frameworks
(Interleaved SD sequence: 1k→2.5k→1.5k→2k with f=19 and α=0.999)

1.00

1.32 1.34

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

FCS MACSC(PE) MACSC(M3RT)

R
at

io
 o

f H
it

R
at

io
 Im

pr
ov

em
en

Figure 7.5 The hit ratio improvement over FCS

(Interleaved SD sequence: 1k→2.5k→1.5k→2k with f=19 and α=0.999)

37.6%

46.1%
52.1%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

FCS MACSC(PE) MACSC(M3RT)

A
ve

ra
ge

 H
it

R
at

io

Figure 7.6 The comparison of the hit ratio between different frameworks

(Interleaved SD sequence: 1k→2k→1.5k→3k with f=19 and α=0.999)

 - 100 -

1.00

1.23
1.39

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

FCS MACSC(PE) MACSC(M3RT)

R
at

io
 o

f
H

it
R

at
io

 I
m

pr
ov

em
en

t

Figure 7.7 The hit ratio improvement over FCS
(Interleaved SD sequence: 1k→2k→1.5k→3k)

The Figure 7.8 and Figure 7.9 show the changes of the hit ratio by FCS,

MACSC(PE) and MACSC(M3RT) respectively. In the figures, it can be observed

that the M3RT approach is better than the PE approach because the hit ratio of the

MACSC(M3RT) oscillates less than the MACSC(PE). The MACSC(M3RT) can

maintain the hit ratio more stable throughout the experiments while the MACSC(PE)

drops a little bit sometime. The feedback system of the M3RT reduces the impact of

the small oscillations of the data objects and so it makes the MACSC(M3RT) more

stable compared with the MACSC(PE).

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000
Http request number

H
it

R
at

io

0

1000

2000

3000
4000

5000

6000

7000

8000

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) E-MACSC(M3RT) SD

Figure 7.8 Changes of hit ratios by different frameworks

(Interleaved SD sequence: 1k→2.5k→1.5k→2k)

 - 101 -

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000
Http request number

H
it

R
at

io

0

1000

2000

3000

4000

5000

6000

7000

8000

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) MACSC(M3RT) (E) SD

Figure 7.9 Changes of hit ratios by different frameworks

(Interleaved SD sequence: 1k→2k→1.5k→3k)

To confirm that the PE approach indeed needs more data samples to be

collected on the fly to satisfy the xkE δλ = criterion than the M3RT mechanism,

some of the above MACSC(M3RT) and MACSC(PE) simulations were repeated

under the same conditions. The average number of data samples needed by each

tuner from accumulated experience is listed in Table 7.1. Consistently, the

MACSC(PE) tuner needs an average of 155 data samples to attain

convergence, but the MACSC(M

Nn ≥

3RT) tuner needs only 19 on average. That is, the

MACSC(PE) uses (155/19) ≈ 8.15 times more samples on average. But, the intrinsic

computation overhead of MACSC(PE) is 16 times higher than the MACSC(M3RT),

(0.96ms/0.06ms) = 16. The timing analysis was carried out with the Intel® VTune™

Performance Analyzer [VTune] on the platform operating at the speed of 1.5 GHz (G

for Giga). The result indicates that if the average IAT is getting shorter (e.g. IAT→0),

the speedup can get up to 16 times (shown previously). Yet, this is difficult to

achieve in real-life MACSC(M3RT) applications because the data items have to be

 - 102 -

 - 103 -

sampled one by one on the fly. Sometimes the IAT delay between two samples can

be significant.

 Range of data sampling Average number

of data sampling

per cycle

Physical computation time in

each cycle on the platform that

operates at 1.5GHz

MACSC(PE) 30 ~ 450

 (To satisfy n ≥ N)
155 0.96 ms

MACSC(M3RT) Any choice from the

range: 16 ~ 20 (f value)
19 0.06 ms

Table 7.1 Comparing of MACSC(PE) and MACSC(M3RT)

Figure 7.10 shows the impact of different α values (i.e. equation (4.3) an (4.4))

when working with f = 19 to produce fast n ≥ N convergence. The RT cyclical

sequence and the given hit ratio are: 2k→6k→4k and 68.3% (one standard deviation

about the “fhighest mean”) respectively. The MACSC(M3RT) always maintains the

prescribed hit ratio consistently for α ≤ 0.999. For any α value larger than 0.999, the

hit ratio drops steeply together with memory consumption. The cause is the sudden

loss of PR sensitivity because the emphasis is now on the past performance

represented by α rather the current changes, namely, the (1 - α) factor as shown in

equation (4.4). Figure 7.11 shows the impact of different flush limits on the hit ratio

with α ≤ 0.999. The flush limit range that yields the highest hit ratio had shifted to

the new range 17 ≤ f ≤ 22 from the original 9 ≤ f ≤ 16 for Mi prediction by M3RT

[Wu04]. This shift is caused by the integrative property of the φi component in

equation (4.4).

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

55.0%

60.0%

14 15 16 17 18 19 20 21 22 28 30 50 100 300 500 1000
The value of f used (α = 0.999)

A
ve

ra
ge

 H
it

R
at

io

Figure 7.10 Correlation among hit ratio, cache size and α with f=19

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

0.30
00

0

0.40
00

0

0.50
00

0

0.60
00

0

0.70
00

0

0.80
00

0

0.90
00

0

0.99
00

0

0.99
50

0

0.99
90

0

0.99
95

0

0.99
99

0

0.99
99

5

0.99
99

9

The value of α used (f=19)

A
ve

ra
ge

 H
it

R
at

io

Figure 7.11 Correlation among hit ratio, cache size and f values with α= 0.999

7.3.3 VERIFICATION WITH PRE-COLLECTED DATA TRACES

In these simulation experiments, different pre-collected data traces are used to

verify the MACSC(M3RT) in real environments. The same pre-collected data traces

in previous experiments are used (Table 6.2). Figure 7.12 compares the experimental

results for the FCS, MACSC(PE) and MACSC(M3RT) with different pre-collected

data traces. It shows that the MACSC(M3RT) can consistently maintain a better hit

ratio compare with the MACSC(PE) and FCS. Figure 7.13 shows the change of the

hit ratio of different frameworks in the simulation with the EPA-HTTP. It shows that

the MACSC(M3RT) can maintain a better cache hit ratio than MACSC(PE). Figure

7.14 and figure 7.15 also show similar results.

 - 104 -

55.7% 57.5% 55.4%

68.6% 68.3% 73.2%77.8% 76.5%
88.1%

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

EPA-HTTP SDSC-HTTP Calgary-HTTP
Different http data sets

A
ve

ra
ge

 h
it

ra
tio

FCS MACSC(PE) MACSC(M3RT)

Figure 7.12 Performance comparison of different frameworks for different data traces

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

1000 3000 5000 7000 9000 11000 13000 15000
Http request number

H
it

R
at

io

200

250

300

350

400

450

500

550

600

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC MACSC(M3RT) SD

Figure 7.13 The Magnified view of the change of hit ratios by different frameworks with the

EPA-HTTP data trace

10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

1000 3000 5000 7000 9000 11000 13000 15000
Http request number

H
it

R
at

io

0

50

100

150

200

250

300

350

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) MACSC(M3RT) SD

Figure 7.14 The Magnified view of the change of hit ratios by different frameworks with the

SDSC-HTTP data trace

 - 105 -

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

300000 305000 310000 315000 320000 325000 330000
Http request number

H
it

R
at

io

150

350

550

750

950

1150

1350

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) MACSC(M3RT) SD

Figure 7.15 The magnified view of changes in hit ratios by different frameworks with the

Calgary-HTTP data trace

In Figure 7.16, the memory usage by different frameworks with different data

traces is shown. It shows that although the MACSC(M3RT) maintains a higher hit

ratio than the MACSC(PE) approach, it also uses more memory than the

MACSC(PE).

4.4

1.12

4.6
5.3

1.32

5.2

0.0

1.0

2.0

3.0

4.0

5.0

6.0

EPA-HTTP SDSC-HTTP Calgary-HTTP
Different http data sets

A
ve

ra
ge

 M
em

or
y

U
sa

ge
 (M

B
)

MACSC(PE) MACSC(M3RT)

Figure 7.16 The memory usage by different frameworks with different data traces

7.4 CONNCECTIVE SUMMARY

In this chapter the novel MACSC(M3RT) approach is introduced. In this

framework the M3RT mechanism has replaced the PE approach. The verification

 - 106 -

 - 107 -

experiments show that the M3RT approach has the capability to maintain a high

cache hit ratio like PE but with a smaller sample size (17 to 22 samples in each

prediction cycle). The physical computation time of the M3RT is consistently lower

than the PE. The feedback system of the M3RT approach reduces the hit-ratio

oscillation problem. More experimental results will be presented in CHAPTER 10.

Memory usage by the MACSC(M3RT) is, however, higher than that by MACSC(PE).

To resolve this shortcoming, another approach, namely, MACSC(F-PE) is explored.

In the MACSC(F-PE) approach: the PE sensitivity and the M3RT feedback stability

are combined.

 - 108 -

CHAPTER 8

OPTIMAL DYNAMIC CACHING SIZE TUNING

8.1 INTRODUCTION
 In this chapter, the optimal dynamic cache size tuning framework,

MACSC(F-PE) will be introduced. The previous MACSC(PE) approach had two

shortcomings: a) unpredictable computation time, and b) serious hit ratio oscillations.

The interim MACSC(M3RT) approach was proposed to resolve these problems. The

MACSC(F-PE) utilizes the stability advantage from the feedback loop of the M3RT

technique to reduce hit ratio oscillations. The verification experiment shows that the

MACSC(F-PE) approach indeed achieves the objective successfully. It is also found

that the MACSC(F-PE) maintains the cache hit ratio more efficiently than both the

MACSC(PE) and the MACSC(M3RT) tuners.

8.2 THE MACSC(F-PE) APPROACH
 The MACSC(F-PE) approach alleviates hit ratio oscillations as shown by the

MACSC(PE) approach. These oscillations are caused by inaccurate calculation of

the standard deviation of the relative data object profile. This reduces the overall

performance of the dynamic cache size tuning mechanism. “F-PE” stands for

fine-tuned point estimate, which is based on the successful MACSC(M3RT)

experience of using history information of the data objects as feedback for stability.

The objective of the feedback system is to resolve the problem of heavy oscillation

in the MACSC(PE). It involves the following steps: 1) compute x from the N

samples by using the PE approach, namely, the equationN − , and then the

standard deviation sx. 2) the value is fine-tuned and changes to sx
z by equations (8.1)

with feedback sx
z-1 and weight β, where z is the operation cycle. 3) the adjusted cache

size or ACS is conceptually determined by equation (8.2) and its implementation is

represented by equation (8.3) to avoid propagation of any cache size initialization

error.

z
x

z
x

z
x sss)1(1 ββ −+= − (8.1)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −− 11 * z

x

z
x

zz s
sCacheSizeCacheSize (8.2)

average
z
xz OSsCacheSize ***2 ∇= (8.3)

The MACSC(F-PE) mechanism cycles through the following steps:

1. The system collects a number of data objects with the size n.

2. It calculates the mean and standard deviation according the sample data

objects.

3. It uses the equationN − to determine the reasonable size N that the system

should collect in order to have an acceptable mean and standard deviation.

4. If the sample size n is larger than or equal to N, the system will go to step 5.

Otherwise, the system goes back to step 1 to collect more data objects for

further calculation.

5. The system calculate the sx
z value by equation 8.2 feedback sx

z-1 and weight β

6. The system adjusts the cache size according to popularity ratio based on

equation 8.3 and the sx
z value and feedback the value as sx

z-1 for the next

 - 109 -

simulation (simulated standard deviation (SD) sequence, 1k→2k→1.5k→3k). The

MACSC(F-PE) consistently outperformed the other tuners in the experiments by

maintaining the highest cache hit ratio.

39.4%

52.2% 52.7% 55.7%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE)

A
ve

ra
ge

 H
it

R
at

io

Figure 8.3 The comparison of the hit ratio between different frameworks

(Interleaved SD sequence: 1k→2.5k→1.5k→2k)

1.00

1.32 1.34 1.41

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE)

R
at

io
 o

f H
it

R
at

io
 Im

pr
ov

em
en

Figure 8.4 The hit ratio improvement over FCS
(Interleaved SD sequence: 1k→2.5k→1.5k→2k)

37.6%
46.1%

52.1% 53.9%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE)

A
ve

ra
ge

 H
it

R
at

io

Figure 8.5 The comparison of the hit ratio between different frameworks

(Interleaved SD sequence: 1k→2k→1.5k→3k)

 - 112 -

1.00
1.23

1.39 1.43

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE)

R
at

io
 o

f H
it

R
at

io
 Im

pr
ov

em
en

Figure 8.6 The hit ratio improvement over FCS
(Interleaved SD sequence: 1k→2k→1.5k→3k)

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Http request number

H
it

Ra
tio

0

1000

2000

3000

4000

5000

6000

7000

8000

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE) SD

Figure 8.7 Changes of hit ratios by different frameworks

(Interleaved SD sequence: 1k→2.5k→1.5k→2k)

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000
Http request number

H
it

R
at

io

0

1000

2000

3000

4000

5000

6000

7000

8000

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE) SD

Figure 8.8 Changes of hit ratios by different frameworks

(Interleaved SD sequence: 1k→2k→1.5k→3k)

 - 113 -

Figure 8.7 and Figure 8.8 show the changes of the hit ratio by FCS,

MACSC(PE), MACSC(M3RT) and MACSC(F-PE) respectively over time. In these

figures, it can be observed that the MACSC(F-PE) maintains a higher cache hit ratio

and is more stable than the M3RT and PE based approaches. The MACSC(F-PE)

maintains the highest hit ratio of them all, and its feedback system eliminates most

of the oscillations compared to the PE approach.

 The Figure 8.9 shows the memory usage by the different approaches with

different simulated datasets. It can be observed that the memory usage of the

MACSC(F-PE) approach is nearly equal to that by the MACSC(PE). The

MACSC(M3RT) use more memory compared with them. However, the performance

of hit ratio maintenance by the MACSC(F-PE) is the best.

14.3

26.6

18.5

27.1

14.3

26.5

0.0

5.0

10.0

15.0

20.0

25.0

30.0

SD sequence:1k→2k→1.5k→3k SD sequence:1k→3k→2k→5k
Different simulated data traces

A
ve

ra
ge

 M
em

or
y

U
sa

ge
 (M

B)

MACSC(PE) MACSC(M3RT) MACSC(F-PE)

Figure 8.9 The memory usage by different frameworks with different simulated data traces

8.3.3 VERIFICATION WITH PRE-COLLECTED DATA TRACES

In these simulation experiments, different pre-collected data traces from

real-life operations are used to verify the MACSC(F-PE) (Table 6.2). Figure 8.10

compares the experimental results of the FCS, MACSC(PE), MACSC(M3RT) and

 - 114 -

MACSC(F-PE) approaches. It indicates that the MACSC(F-PE) indeed consistently

maintains the highest cache hit ratio. Figure 8.11 shows the changes of the hit ratio

of the different tuners with the EPA-HTTP trace. The MACSC(F-PE) yields the

highest hit ratio, and this phenomenon is also observed in Figure 8.12 and Figure

8.13.

55.7% 57.5% 55.4%

68.6% 68.3% 73.2%77.8% 76.5%79.1% 77.1%

90.2%
88.1%

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

EPA-HTTP SDSC-HTTP Calgary-HTTP
Different http data sets

A
ve

ra
ge

 h
it

ra
tio

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE)

Figure 8.10 Performance comparison of different frameworks for different data traces

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

1000 3000 5000 7000 9000 11000 13000 15000
Http request number

H
it

R
at

io

200

250

300

350

400

450

500

550

600
St

an
da

rd
 D

ev
ia

tio
n

(S
D

)

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE) SD

Figure 8.11 The Magnified view of the change of hit ratios by different frameworks with the

EPA-HTTP data trace

 - 115 -

20.0%
30.0%
40.0%
50.0%
60.0%

70.0%
80.0%
90.0%

100.0%

1000 3000 5000 7000 9000 11000 13000 15000
Http request number

H
it

R
at

io

0
50
100
150
200

250
300
350
400

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE) SD

Figure 8.12 The Magnified view of the change of hit ratios by different frameworks with the

SDSC-HTTP data trace

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

300000 310000 320000 330000 340000 350000
Http request number

H
it

Ra
tio

150

350

550

750

950

1150

1350

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE) SD

Figure 8.13 The magnified view of changes in hit ratios by different frameworks with the

Calgary-HTTP data trace

Figure 8.14 shows the memory usage by the different tuners. Despite the fact

that the MACSC(F-PE) is the most efficient tuner in hit ratio maintenance, it uses

less memory than the MACSC(PE).

 - 116 -

4.4

1.12

4.6
5.3

1.32

5.2

4.3

1.13

4.6

0.0

1.0

2.0

3.0

4.0

5.0

6.0

EPA-HTTP SDSC-HTTP Calgary-HTTP
Different http data sets

A
ve

ra
ge

 M
em

or
y

U
sa

ge
 (M

B
)

MACSC(PE) MACSC(M3RT) MACSC(F-PE)

Figure 8.14 The memory usage by different frameworks with different data traces

8.4 CONNECTIVE SUMMARY
This chapter introduces the novel MACSC(F-PE) approach, which combines

the PE technique with a feedback mechanism. This mechanism is inspired by the

MACSC(M3RT) experience of using history information in the current hit ratio

maintenance operation. The experiment results confirm that the feedback approach

has greatly reduced the oscillation problem of the pure PE technique. Furthermore,

the MACSC(F-PE) is the most efficient compared with the MACSC(PE) and

MACSC(M3RT) approaches. In the next chapter the impact of different Internet

traffic patterns to the MACSC operation in general will be discussed.

 - 117 -

 - 118 -

CHAPTER 9

REAL-TIME TRAFFIC PATTERN DETECTION

9.1 INTRODUCTION
The Internet follows the power law [Medina00] and its traffic can assume

different forms over time, for example, long-range dependence (LRD) and

short-range dependence (SRD) [Molnár99]. LRD traffic includes heavy-tailed and

self-similar patterns, and SRD includes Markovian traffic patterns such as Poisson.

Continued studies of different traffic patterns led to the conclusion by Paxson

[Paxson95] that any system, which is designed with a preconceived mathematical

model in mind, for example, Poisson, would fail over the Internet. This implies that

any systems running over the Internet should be adaptive in nature. These systems

should adapt their processes with respect to the changes in the operation

environments anytime. To support dynamic adaptation such the system should be

able to achieve the following: a) to sample the indicative performance parameters

(such as average service roundtrip time (RTT)) to gauge changes in the environment,

b) to compute the necessary adjustment or reconfiguration with the sampled statistics

quickly and accurately to avoid deleterious effects, and c) to administer the

computed adjustment on the fly. Deleterious effects are the undesirable effects that

arise from the correction of a spurious problem with a computed result. This happens

because the computation time of the corrective solution is longer than the duration of

the problem. By the time the solution is ready, the problem has long gone. The

 - 119 -

deleterious problem can be detrimental to time-critical applications, which usually

have at least one of the following requirements [Stankovic98]:

a. Hard nature: The result must be obtained within the deadline for safe

operations.

b. Soft nature: The result is acceptable even those with occasional slippage of

the deadline, or some minor slippage of it.

c. Firm nature: The result after the deadline is meaningless. That is why in

smart systems they would proceed with an operation only if it is certain that

the result is produced before that deadline.

In the different experiments with the MACSC(PE) prototype, it was observed

that different IAT traffic patterns can affect the dynamic cache size tuner’s accuracy.

Different timing analyses of the prototype were carried out with different

pre-collected traces of http requests in a postmortem manner by using the Intel®

VTune™ Performance Analyzer [VTune]. It was found that the prototype

intrinsically needs an average of 1,673,100 clock cycles to execute [Wu03]. It is

intrinsic because the data items are immediately available from the trace without

actual delays. In real-life cases, the tuner has to collect the data items one by one

with IAT (inter-arrival time) delays between them. Therefore the actual tuner

execution time is much longer than the intrinsic one. For a node that operates at the

speed of 143 mega hertz, for example, the physical time is 1,673,100*(143*10-6) or

11.7ms. If the IAT among the data items in real-life applications is consistently less

than 11.7ms, then the MACSC(PE) mechanism would miss sampling many data

items, and this leads to erroneous cache ratio maintenance. Furthermore, different

traffic patterns will have different impacts on the loss of the data items. To

demonstrate this phenomenon, experimental results with the EPA-HTTP

(Environmental Protection Agency) trace [SIGCOMM] are shown here. Figure 9.1

shows the IAT trace of 42,438 http requests of the LRD nature. Figure 9.2 shows the

trace of Poisson IAT for comparison. The R/S plot in Figure 9.3, which is a

postmortem traffic analysis technique to be described in detail later, confirms the

Hurst value for this trace is 0.761. Figure 9.4 shows that the R/S plot of Poisson IAT,

which has a Hurst value of 0.491. Figure 9.5 shows data loss (i.e. missed data items)

versus IAT with different traffic patterns. (i.e. SRD (EPA-HTTP) and LRD (Poisson))

Figure 9.6 shows how the cache hit ratio deteriorates. It shows that different traffic

pattern will lead to different impact on the MACSC framework.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 5 10 16 18 24 30 43 47 40 52 54 78 49 99 61 76 96 68 80 97

Interial Arrival Time (s)

Fr
eq

ue
nc

y

Figure 9.1 LRD frequency distribution of http request to the EPA dataset, mean IAT is 2

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11

Interial Arrival Time (s)

Fr
eq

ue
nc

y

Figure 9.2 SRD frequency distribution of the Poisson IAT, mean IAT is 2

 - 120 -

Figure 9.3 R/S plot confirms LRD nature for EPA trace, H=0.761 with 99.3% confidence

Figure 9.4 R/S plot confirms SRD nature for Poisson trace, H=0.491 with 99.87% confidence

0

10

20

30

40

50

0 5000 10000 15000 20000 25000 30000 35000
Average arrival rate

A
ve

ra
ge

 sa
m

pl
e

m
is

se
s p

er
ca

lc
ul

at
io

n

MACSC(PE) in LRD MACSC(PE) in SRD

Figure 9.5 Data loss (missed data) of MACSC(PE) versus IAT for the LRD and SRD traces

 - 121 -

50.0%

55.0%

60.0%

65.0%

70.0%

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Average arrival rate

A
ve

ra
ge

 h
it

ra
tio

 o
f t

he
 p

ro
xy

sy
st

em

MACSC(PE) in LRD MACSC(PE) in SRD

Figure 9.6 Hit ratio of MACSC(PE) versus IAT for the LRD and SRD traces

 The experimental results with the MACSC(F-PE) prototype shows that its

performance is traffic independent. Figure 9.7 and 9.8 shows how data loss and

cache hit ratio correlate with IAT for SRD (EPA-HTTP) and LRD (Poisson) traffic

patterns. Clearly the traffic patterns have no negative impact on the MACSC(F-PE)

performance because of the presence of the feedback loop in the solution.. The β

value of the MACSC(F-PE) for the experiments that produce the effects in Figure

9.7 and 9.8 is set to 0.9.

0

10

20

30

40

50

60

0 5000 10000 15000 20000 25000 30000 35000
Average arrival rate

A
ve

ra
ge

 sa
m

pl
e

m
is

se
s p

er

ca
lc

ul
at

io
n

MACSC(F-PE) in LRD MACSC(F-PE) in SRD

Figure 9.7 Data loss (missed data) of MACSC(F-PE) versus IAT for the LRD and SRD traces

 - 122 -

75.0%

76.0%

77.0%

78.0%

79.0%

80.0%

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Average arrival rate

A
ve

ra
ge

 h
it

ra
tio

 o
f t

he
 p

ro
xy

sy
st

em

MACSC(F-PE) in LRD MACSC(F-PE) in SRD

Figure 9.8 Hit ratio of MACSC(PE) versus IAT for the LRD and SRD traces

9.2 DIFFERENT TYPES OF TRAFFIC PATTERNS
The Internet follows the power law [Resnick97] and its traffic pattern can

change suddenly from LRD and SRD. This phenomenon was investigated by

different researchers [Molnár99]. The important findings in Internet traffic research

include the following:

1. One could use Guassianity test (Gaussian means normal distribution of kurtosis

and skewness values equal to 3 and 0 respectively) to indicate that an aggregate

 in a stochastic process X is stationary. The parameter m is the block size of

the aggregate and l is the lag, for l=1,2,3…n. A process is stationary if it has

independent increments [Leland94], [Taqqu03], [Willinger03].

m
lX

2. One could use the Hurst value measurement to determine if an aggregate is

LRD or SRD, where 0<H<0.5 indicates SRD and 0.5<H<1 for LRD traffic.

3. There are different estimators/filters proposed for identifying specific traffic

patterns from pre-collected traces/datasets (i.e. postmortem analysis), for

example, Poisson and heavy-tailed. The details of this filter will be elaborated

later.

 - 123 -

SRD/LRD differentiation Heavy-tailed traffic Self-similar traffic

R/S (Rescaled Statistics)

plot, Periodogram

[Molnár99]

Modified QQ-plot

[Embrechts97],

De Haan’s Moment [Resnick97]

Whittle, Variance-time plot

[Molnár99]

Table 9.1 Summary of different techniques for postmortem traffic analysis

Table 9.1 summarizes the different estimators that can be applied for traffic

pattern detections. In fact, these techniques were implemented and put together in

the Selfis tool [Karagiannis02], [Karagiannis03]. For example, Figure 9.9 shows

how the R/S (Rescaled Statistics) plot mechanism of the Selfis identifies the LRD

character from an IAT trace. In this case, the H value is 0.706 with 97.89%

confidence for the LRD identification. The Periodogram of the Selfis also confirms

the LRD character for the same trace as shown in Figure 9.10.

Figure 9.9 LRD identification by Selfis’s R/S estimator

 - 124 -

Figure 9.10 LRD confirmation by the Selfis’s Periodogram estimator

Postmortem traffic analyses with traces are of the “lump nature” at the present

moment as concluded by the COMP Team because of the following reasons:

1. Composite results: Techniques or estimators such those shown by Table 9.1 or

assembled by the Selfis tool produce the results for the given traces. The results

as such are composite in nature because a trace may embed different traffic

patterns in different segments. This kind of lump analysis is misleading and

unsuitable for real-time applications unless there exists a technique/tool that can

confirm the stationarity of an aggregate before the analysis starts. That is why

the COMP Team has proposed the CAB (Continuous Aggregate Based)

approach that can identify the stationarity of an aggregate.

2. Theoretical discrepancy: In the Internet traffic literature Gaussinaity is equated

to stationarity. While this may be true for continuous stochastic processes, there

is room for errors for discrete processes. Gaussianity is based on the concept of

 - 125 -

 - 126 -

a perfect normal distribution of kurtosis and skewness values equal to 3 and 0

respectively. Yet, the Gaussian distribution can provide a good approximation

for the binomial and Poisson distributions only under certain conditions

[Jain91]. The Poisson distribution is a good approximation of the binomial

distribution only for rare events; Poisson and binomial distributions are

memoryless. The concepts of Gaussianity, Poisson, and binomial are lumped

together in most literature [Leland94]. For example, the basic theory for

postmortem self-similar traffic analysis in the field is the fractional Brownian

motion, which has stationary increments. The incremental process is known as

fractional Gaussian noise of the LRD character [Leland94]. This conceptually

but vaguely links Gaussianity to a stationary process, whether discrete or not.

9.3 REAL-TIME TRAFFIC ANALYSIS
There is little experience in real-time traffic analysis until the COMP Team (or

simply the Team) has proposed how it could be done [Lin04]. The argument put

forth by the Team includes the following:

1. SRD/LRD differentiation: The Team found that the R/S plot is very effective in

differentiating SRD from LRD. The existing form, however, should be adapted

to suit real-time application. The details will be provided later.

2. Java API: It is logical to convert the different traffic estimators into Java API so

that the real-time traffic detection/detector (RTPD) mechanism can invoke the

appropriate filter anytime and anywhere as a logical object to provide the

necessary service.

3. CAB mechanism: The basic argument for the CAB mechanism is to have a

variable block size m for the lth aggregate of a stochastic discrete process

X. The aim is to increase m until the property of stationarity has appeared. Only

then the R/S plot, which is supported by the M

m
lX

3RT [Wong02b], which is a micro

IEPM (Internet End-to-End Performance Measurement [Cottrel01]) tool, is

invoked to differentiate SRD from LRD. Once the LRD character is identified

the filtration process invokes the appropriate filter to identify whether it is

heavy-tailed or self-similar. The presence of stationarity in is indicated by

the “kurtosis-skewness (KS)” test. The indication is obtained by comparing the

kurtosis and skewness values with that of the normal distribution (kurtosis = 3

and skewness = 0). If the difference is within a pre-defined limit, then

stationarity is assumed to have appeared. For example, the workable kurtosis

and skewness limits found by experimentation by the Team are 9 and 100

respectively.

m
lX

The Team’s RTPD concept is basically the combination: “R/S plot + M3RT +

filtration”.

9.3.1 THE KS TEST

Skewness is shown by equation (5.7), where x and SD are the measured mean

and standard deviation respectively for the aggregate of m data items. For a real-time

aggregate , where l is the lag. The skewness value measures the symmetry of a

bell curve embedded in the sample of size m. A positive value means that the bell

curve skews right (i.e. right tail is heavier). Kurtosis is shown in equation (5.8),

which decides if the bell curve is peaked (positive value) or flat (negative value)

m
lX

 - 127 -

compared to the normal distribution (Gaussian) with kurtosis=3 and skewness=0.

For example, the EPA-HTTP trace from [SIGCOMM] has skewness and kurtosis

values of 0.00076 and 8.47 respectively. These values indicate a symmetric bell

curve that is more peaked than the normal distribution.

9.3.2 THE RTPD

Since the efficacy of the MACSC(PE) in dynamic cache size maintenance is

affected by the IAT traffic pattern, it is necessary to compensate for any ill effects

introduced by the traffic. To achieve this the MACSC(PE) should be supported by

real-time traffic detection/detector (RTPD) capability. Then, the compensation

mechanism involves the following:

1. Calibrate the ill effects with respect to different traffic patterns such as Poisson,

heavy-tailed, and self-similar.

2. Incorporate RTPD capability so that traffic pattern changes can be monitored

and detected.

3. Devise a reconfiguration scheme so that the MACSC(PE) mechanism would

reconfigure on the fly with respect to the traffic pattern detected.

With agreement, I would make use of the Team’s accumulated RTPD experience. In

return I would contribute a novel R/S approach suitable for real-time applications to

the Team and also as part of my PhD contribution.

The traditional R/S (rescaled adjusted statistics) computation is represented by

the expression:
)var(

},...,2,1:min{},....,2,1:max{
X

kiWkiW
S

R ii =−=
= . The parameter

 - 128 -

Wi is defined as ∑
=

−=
i

m
mi XXW

1
)(for ki ,...2,1= , where X is the mean computed

by ∑
=

=
k

i
iXkX

1

1 . The best value for k has to be found by trial and error. This is the

drawback for the traditional R/S method because the R/S of accuracy and speed

depends on k. The R/S ratio is the rescaled range of the stochastic process X over a

time interval k, where X is defined in discrete time (Xi: i =1,2…k). The most useful

feature of the R/S plot is the relationship for large k: Hk
S

R)2(= . The H (Hurst)

effect/value is also the slope of the log-log plot of log(R/S) versus log(k) [Molnár99].

For a stationary process the H effect 0.5<H<1 indicates LRD traffic behavior. For

example, the LRD behavior of the trace for Figure 9.11 is indicated by the R/S plot

shown in Figure 9.12 with H=0.7674.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 5 10 16 18 24 30 43 47 40 52 54 78 49 99 61 76 96 68 80 97

Interial Arrival Time (s)

Fr
eq

ue
nc

y

Figure 9.11 Frequency plot of the real-life EPA-HTTP IAT (inter-arrival time) trace

 - 129 -

y = 0.7674x - 0.7439
R2 = 0.9862

0
1
2
3
4
5
6
7
8

0 2 4 6 8 10
log (k)

lo
g

(E
-R

/S

12

)

Data Points Linear Regression

Figure 9.12 R/S plot for the trace in [SIGCOMM] (Figure 9.11) confirms its LRD behavior

RTPD is conceptually the “M3RT + R/S” combination. The key point in my

work is to shorten the R/S execution time by using the M3RT mechanism, which can

be inhibited or activated by the user. If the M3RT is inhibited, the RTPD runs the

traditional R/S computation. If it is activated, then it runs in parallel as an

independent entity and makes the R/S estimator into an enhanced version (i.e. E-R/S)

that is more suitable for real-time applications. It is “enhanced” because now X is

replaced by the more accurate Mi. The E-R/S execution time becomes predictable

because Mi is computed with a known f (flush limit) number of samples. The M3RT

predicts the mean of the waveform from the current aggregate on the fly,

independent of the E-R/S main body represented by , instead of

the traditional

m
lX

∑
=

−=
i

m
imi MXW

1
)(

∑
=

−=
i

m
mi XXW

1
)(. If the E-R/S main body needs the current Mi to

compute the Hurst value for identifying the LRD or SRD character, it fetches it

directly from M3RT. That is, the M3RT presence means iMX = instead of

 - 130 -

∑
=

=
k

i
iXkX

1

1 . The filtration process identifies the traffic pattern, for example,

heavy-tailed or self-similar for the LRD type. In action, the filtration process consists

of a collection of logical objects (i.e. traffic filters/estimators) that specialize in

identifying particular patterns. For example, the modified QQ-plot filter identifies

heavy-tailed waveforms. These filters were proposed by the Team, for example, the

self-similarity (S2) traffic filter.

In each Mi prediction cycle only f=14 data items are used to obtain the fastest

convergence. Timing analysis with Intel® VTune™ Performance Analyzer shows

that by itself the M3RT needs 200 intrinsic clock cycles on average to execute

[Wong02a], [VTune] provided that the f data items are immediately available (i.e.

intrinsic) as part of a trace. In real applications the M3RT execution time will be

much longer because data has to be sampled on-line with unpredictable inter-arrival

times (IAT) among them. For example, if the mean IAT for 14 samples were also 200

clock cycles, then the execution time would be =(14*200)+200=3,000 clock cycles.

For a platform operating at the speed of 100 mega hertz (MHz), the physical time of

200 clock cycles is 200/(100*10-6) seconds or 2 micro seconds.

Figure 9.13 RTPD (E-R/S) execution time (891 clock cycles) by Intel® VTune™ Performance

Analyzer

 - 131 -

Figure 9.14 R/S execution time (950 clock cycles) by Intel® VTune™ Performance Analyzer

(without M3RT support)

Timing analyses of the Java-based RTPD prototype by the Intel® VTune™

Performance Analyzer in Figure 9.13 and Figure 9.14 show the following: a) the

RTPD with M3RT support (i.e. E-R/S) needs 891 intrinsic clock cycles to execute,

and b) the version without M3RT (i.e. traditional R/S) needs 950 intrinsic clock

cycles for its execution. For 14 immediately usable data samples (i.e. f =14) in

intrinsic cases the E-R/S is about 7% faster than the traditional R/S approach. In

real-life applications, the E-R/S should be more efficient because more data and thus

more delay in calculating ∑
=

=
k

i
iXkX

1

1 will occur.

Since the traditional R/S estimator has been verified by different researchers

already in the post-mortem manner [Molnár99], the experiments in this research

focus on making sure that the E-R/S is faster than and as accurate as the traditional

R/S approach. In fact, the drawback of the traditional R/S estimator is to

estimate X by trial and error. The E-R/S does not have this problem because it

always uses 14 data items to compute Mi. On the contrary, if more than 14 samples

are used to compute X , then the computation time by the traditional R/S would be

much longer than the E-R/S’s. In the light of this, the E-R/S execution time is more

 - 132 -

predictable, and Mi is more accurate than X because it has a feedback loop in its

computation, namely, Mi-1. In contrast the X computation in the traditional R/S

estimator uses only the current data items without any feedback and this means more

perturbations.

9.4 CONNECTIVE SUMMARY
 In this chapter, the impact of the real-time traffic pattern on the MACSC

framework is discussed. It shows that different traffic patterns will have different

impacts on the dynamic cache size tuner’s accuracy. So the real-time traffic pattern

detection/detector (RTPD) is proposed to determine the traffic pattern of the IAT in

order to have a different reconfiguration scheme for the MACSC framework to

reduce the impact. It was found that the MACSC(F-PE) performance in dynamic

cache size tuning is immune to the ill effects of different traffic patterns. The reason

is the presence of a feedback loop, which is based on the MACSC(M3RT) approach,

in the solution. In the next chapter, the implementation of the MACSC framework,

RTPD/MACSC(PE), in the real environment and the reconfiguration scheme by

RTPD will be discussed.

 - 133 -

 - 134 -

CHAPTER 10

VALIDATION OF THE MACSC FRAMEWORK

10.1 INTRODUCTION
 In the previous chapters, the three MACSC approaches, MACSC(PE),

MACSC(M3RT) and MACSC(F-PE) were discussed and verified. This chapter

discusses the implementation and validation issues of these dynamic cache size

tuners in light of real-life deployments over the Internet. The purpose of verification

as shown in the previous chapters is to make sure that a framework is logically

correct as it was intended set out to do. The design or implemented prototype is

verified by simulation or pre-collected traces. The verified designed/prototype may

not be able to meet the constraints imposed by the real environment and this requires

proper modifications. The MACSC framework is intended for time-critical

operations over the Internet and real data has to be sampled and used per dynamic

cache size tuning cycle. To meet the time-critical requirement it becomes impractical

to collect too many data items in order to compute the necessary cache size

adjustment for maintaining the given hit ratio. However, there should be enough data

items so that the Zipf-like behavior can be determined from the sampled data for the

cycle so that the popularity ratio can be computed. This chapter proposes a solution

for validating the MACSC solutions. The main difference between verification and

validation experiments is that the former uses large pre-collected traces or simulated

data sets and the latter relies on the limited number of real-time data items sampled

 - 135 -

on the fly. In real-life applications the pre-collected traces used in the MACSC

verification experiments normally do not exist. That is, the MACSC deployment

relies on using the data items sampled per dynamic cache size tuning cycle. At the

end of this chapter, the performance of the RTPD/MACSC(PE) as compared with

different Internet traffic patterns will be presented.

10.2 PROPOSED IMPLEMENTATION SOLUTION
 In the real environment, users send the URL requests to the proxy server

continually. In the previous verification experiments the URLs are represented by

unique integer object identifiers (OI), which provides the basis for the Zipf-like

log-log plot. From this log-log plot the corresponding bell curve (i.e. the popularity

distribution (PD)) is generated for calculating the popularity ratio. In order to

facilitate the calculation of the PD standard deviation, the “bell” identifiers (BI) are

assigned in ascending order. In real applications the BI values are generated anew in

every dynamic cache size tuning cycle, which involves the following steps as

depicted in Figure 10.1:

1. The system collects n (MACSC(PE) and MACSC(F-PE)) or f (MACSC(M3RT))

data objects and counts the frequencies of the data objects identified in the

current cycle.

2. From these data objects the ranker generates the Zip-like log-log plot.

3. The system transforms the Zip-like curve into bell curve and assigns the BI to

the data objects.

4. The system calculates the popularity ratio of the data objects based on the BI.

5. The system adjusts the cache size on the fly according to the popularity ratio

derived from the current two standard deviations of the “BI” distribution.

6. The ranker prepares for the next new cycle (i.e. loop back to step 1).

Proposed solution for implementing and validating the
MACSC solutions

The system collects n data objects and counts
their frequencies

The ranker ranks the data objects and
generates the Zip-like curve by a log-log plot

MACSC calculates the popularity ratio based
on the BI generated by the ranker

MACSC adjusts the cache size according to
the popularity ratio on the fly

Next cycle

The ranker prepares for the next cycle

OI

log (RI)

The ranker transforms the Zip-like curve into
the corresponding bell curve and assigns the

BI values

BI

Figure 10.1 Proposed approach for validating the MACSC solutions

10.3 VALIDATION DETAILS
Any computer system design and implementation should involve verification

and validation process. The design should be verified to make sure that it is logically

correct and complies with the functionality. The verification is usually limited in

 - 136 -

 - 137 -

scope and can be carried out in different ways. For example, one can put the design

into a Petri net [Tan94] and verify its logical and constraints correctness. One of the

ways to achieve both objectives is using a “time Petri net” tool such as AlphaSim.

Another way is to implement the design into a prototype so that it can be verified

with chosen samples or datasets of its functionality. This empirical approach has its

advantage because the same prototype can be validated later in controlled

environments before the production phase. Therefore implementation and validation

are inseparable. It is appropriate to run a system over a real Internet environment and

collect the data for analyses and conclusion. Yet, another way is to use real-life data

traces to drive the prototype and analyze its behavior. This is a flexible approach

because traces of all kinds can be downloaded from well-known web sites

[SIGCOMM]. Besides, the experience gained from the verification exercise becomes

useful because the verification and validation results can be compared and evaluated.

The validation of the MACSC solutions, namely, MASCS(PE), MACSC(M3RT) and

MACSC(F-PE) follows the second approach. That is, traces downloaded from

international web sites are used to drive the MACSC mechanism but the decision of

dynamic cache size tuning is based on successive small data samples as it happens in

real-life applications.

10.3.1 SETUP AND ENVIRONMENT

Many experiments were carried out with different pre-collected data traces. The

setup and environment of the experiments are similar to that for the verification

exercise (e.g. Figure 6.4 discussed in chapter 6). Wherever it is possible the same

pre-collected data traces are used to make sure that the same behavior occurs, for

 - 138 -

example, EPA-HTTP (EPA WWW server located at Research Triangle Park, NC.),

SDSC-HTTP (San Diego Supercomputer Center), and Calgary-HTTP (University of

Calgary, Alberta Canada) [SIGCOMM]. The ranker in each model ranks the

collected URL in each cycle in order to provide the necessary information for the

popularity ratio calculations.

10.3.2 EXPERIMENTAL RESULTS

 The results are shown in the following figures for demonstration purposes. In

the Figure 10.2, a comparison is given with the results of the FCS, MACSC(PE),

MACSC(M3RT) and MACSC(F-PE) algorithms. It shows that both the MACSC(PE)

algorithm and the MACSC(F-PE) algorithm can maintain the given hit ratio. The

MACSC(F-PE) has slightly better performance than MACSC(PE), but the

MACSC(M3RT) performance is worse (even worse than the FCS, which is used as a

control for comparison purposes). The reason is the sampling size problem. The

M3RT uses f samples to calculate the mean and standard deviation of the data objects.

The range of f is between 9 and 16. Since the ranker needs to re-calculate the mean

and standard deviation of data objects popularity profile in each cycle, the small

range of f does not provide sufficient information to make any impact. As a result it

cannot return accurate predictions for the MACSC to compute correct cache

adjustment.

55.7% 57.5% 55.4%59.2%
68.6%

63.8%

41.2%

30.1%

60.4%
68.3% 65.6%

40.4%

0.0%
10.0%

20.0%
30.0%

40.0%
50.0%

60.0%
70.0%

80.0%

EPA-HTTP SDSC-HTTP Calgary-HTTP
Different http data sets

A
ve

ra
ge

 h
it

ra
tio

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE)

Figure 10.2. The Performance comparison of different algorithms for different data traces

Figure 10.3 and 10.4 show the changes of hit ratio and the magnified view of

the changes of hit ratio with the EPA-HTTP trace respectively. The figures show that

the MACSC(PE) and MACSC(F-PE) maintain the given hit ratio consistently

independent of the standard deviation perturbations in the data object popularity

profile, but the FCS and MACSC(M3RT) tuners cannot. Figure 10.5 provides some

evidence for this phenomenon by showing the memory usage by the different tuners.

It shows that the MACSC(PE) and MACSC(F-PE) adjust the cache size dynamically

according to the standard deviation at the time while the MACSC(M3RT) does not.

This is due to the fact that the calculation of the standard deviation by the M3RT

technique cannot satisfy the requirements for the ranker mechanism. For example,

Figure 10.5 shows how the standard deviation calculated by M3RT is nearly equal

throughout the whole experiment. Figure 10.6, 10.7, 10.8 and 10.9 are the results for

the experiment with the SDSC-HTTP and Calgary-HTTP traces respectively.

 - 139 -

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Http request number

H
it

R
at

io

0
10
20
30
40
50
60
70
80
90

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE) SD

Figure 10.3 The change of hit ratios by different algorithms with the EPA-HTTP data trace

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

20000 21000 22000 23000 24000 25000 26000 27000 28000 29000 30000
Http request number

H
it

R
at

io

0
10
20
30
40
50
60
70
80
90

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE) SD

Figure 10.4 The magnified view of the change of hit ratios by different algorithms with the

EPA-HTTP data trace

0

200

400

600

800

1000

1200

1400

20000 21000 22000 23000 24000 25000 26000 27000 28000 29000 30000
Http request number

C
ac

he
 S

iz
e

(k
b)

0

10

20

30

40

50

60

70

80

90

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE) SD (SD by M3RT)

Figure 10.5 The change of the memory usage by different algorithm with the EPA-HTTP data

trace

 - 140 -

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

0 5000 10000 15000 20000 25000
Http request number

H
it

R
at

io

0
10
20
30
40
50
60
70
80
90

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE) SD

Figure 10.6 The change of hit ratios by different algorithms with the SDSC-HTTP data trace

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000
Http reques t number

H
it

R
at

io

0
10
20
30
40
50
60
70
80
90

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE) SD

Figure 10.7 The magnified view of the change of hit ratios by different algorithms with the

SDSC-HTTP data trace

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 100000 200000 300000 400000 500000 600000 700000

Http request number

H
it

Ra
tio

0

10

20

30

40

50

60

70

80

90

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE) SD

Figure 10.8 The changes in hit ratios by different algorithms with the Calgary-HTTP data trace

 - 141 -

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

20000 21000 22000 23000 24000 25000 26000 27000 28000 29000 30000

Ht tp request number

H
it

Ra
tio

0

10

20

30

40

50

60

70

80

90

St
an

da
rd

 D
ev

ia
tio

n
(S

D
)

FCS MACSC(PE) MACSC(M3RT) MACSC(F-PE) SD

Figure 10.9 The magnified view of changes in hit ratios by different algorithms with the

Calgary-HTTP data trace

0.3

0.63 0.6

0.1
0.05

0.1

0.3

0.59
0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

EPA-HTTP SDSC-HTTP Calgary-HTTP
Different http data sets

A
ve

ra
ge

 M
em

or
y

U
sa

ge
 (M

B
)

MACSC(PE) MACSC(M3RT) MACSC(F-PE)

Figure 10.10 The memory usage by different algorithms with different data traces

Figure 10.10 shows the memory usage by different tuners with different

pre-collected data traces. Memory usage by MACSC(F-PE) is similar to but lower

than MACSC(PE). The capability of hit-ratio maintenance of MACSC(F-PE) is

better than the MACSC(PE) in general. It can be concluded form the validation data

that MACSC(F-PE) is the best MACSC implementation followed by MACSC(PE).

 - 142 -

 - 165 -

RTPD support) indeed maintain the given hit ratio of 68.3% (one standard deviation)

equally well under various conditions. The RTPD/MACSC approach, however,

consistently uses less memory than the MACSC(PE) tuner and has less chance to

cause deleterious effects. The results presented in this thesis are produced with the

wireless LAN trace from ACM SIGCOMM'01 [Balachandran02]. This trace, which

is widely-used used by different researchers, records the wireless traffic in the ACM

SIGCOMM'01 conference over three days at U.C. San Diego in August 2001. The

trace captures roughly 300,000 cases of traffic flows from the 195 users that

consumed 4.6 GB of bandwidth. The wireless LAN was an IEEE 802.11b [IEEE99]

network installed in a large auditorium for different conference sessions. Table 11.1

summarizes the trace, and AP means access point. The experiment that yielded the

result for Figure 11.9 made use of the http data retrieval frequencies. About 57.5% of

the total bytes (2.645 GB) or 45.8% of the total traffic are related to http data

requests. The experiment that yielded the results presented in Figure 11.10 and

Figure 11.11 used the IAT in the trace as the basis.

Environment parameter Values
Number of wireless users 195
Maximum users at an AP 32
Total hours of trace 52
Total bytes transmitted 4.6 GB
Total flow 298995
Peak throughput at an AP 3.2 Mbps

Table 11.1 Summary of the ACM SIGCOMM’01 trace

 The experimental results in Figure 11.10 show the changes in the hit ratios by

MACSC(PE) and RTPD/MACSC(PE) respectively over time. The standard

deviation (SD) fluctuations indicate the periods in which small clusters of objects

became more popular than others. A high standard deviation means that most of the

data objects have similar popularity. The changes in the Hurst value imply that the

traffic patterns in the trace are mixed. The traffic pattern changes from LRD (for

H>0.5) to SRD (for H<0.5) and vice versa abruptly. Specifically the MACSC

intended to yield a higher hit ratio than the given minimum of 68.3% and

RTPD/MACSC(PE). Our careful analysis, however, reveals that this is the result of

inaccurate PD estimation by the MACSC’s PE calculation. The inaccuracy produces

a spuriously higher PR ratio and thus a corresponding cache adjustment size to yield

a higher hit ratio. There is more PE accuracy for the RTPD/MACSC(PE) because the

RTPD detects the traffic pattern with which the tuner adaptively adjusts the PE

calculation accordingly. More PE accuracy makes the RTPD/MACSC(PE) use less

cache memory and comparatively yields a lower hit ratio than the MACSC working

alone. Since the MACSC uses more memory than necessary, it may lead to

suspensions of some tasks in the proxy server and poor system throughput as a

deleterious effect.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2
62

4

3
00

8

3
39

2

3
77

6

4
16

0

4
54

4

4
92

8

5
31

2

5
69

6

6
08

0

6
46

4

6
84

8

7
23

2

7
61

6

8
00

0

8
38

4

8
76

8

9
15

2

9
53

6

9
92

0

10
30

4

10
68

8

11
07

2

Request Number

H
it

ra
tio

 /
H

ur
st

 V
al

ue

0

10

20

30

40

50

60

S
ta

n
da

rd
 D

ev
ia

tio
n

S.D. MACSC(PE) RTPD/MACSC(PE) Hurst

Figure 11.10 Hit ratios by MACSC(PE) and RTPD/MACSC(PE), SD, and H value are

compared for the wireless ACM SIGCOMM'01 trace (58% LRD and 42% SRD)

 The experimental data in Figure 11.11 was obtained by changing the IAT values

in the ACM SIGCOMM'01 trace. The aim is to empirically show that the PE

 - 166 -

inaccuracy indeed worsens when the average IAT rate rises. This is natural because a

high average IAT rate can cause more request loss. The MACSC hit ratio can

superficially improve with the increased IAT rate and PE inaccuracy. This is shown

by Figure 11.11 in which both the MACSC hit ratio and the cache memory usage go

up with the IAT rates. For example, the MACSC produced roughly a 5% better hit

ratio better than RTPD/MACSC with the IAT rate of 1200k/s. But, the memory

usage surges by 50% compared with the RTPD/MACSC with the same IAT rate.

This indicates that the RTPD/MACSC is more efficient than the MACSC working

alone because it can maintain the given hit ratio with less memory usage in mobile

diagnostic information retrievals by SFF/PDMA clients.

50%

55%

60%

65%

70%

75%

80%

0 200 400 600 800 1000 1200
Average arrival rate per second (in k)

A
ve

ra
ge

 h
it

ra
tio

 o
f t

he
 p

ro
xy

0

10

20

30

40

50

60

70

C
ac

he
 u

sa
ge

 in
 k

b

MACSC(PE) RTPD/MACSC(PE)

MACSC(PE) cache usage RTPD/MACSC(PE) cache usage

Figure 11.11 Hit ratios and cache usages by MACSC(PE) (hit ratio: 66.7 – 79.7%)

and RTPD/MACSC(PE) (hit ratio: 66.7 – 69.7%) with different arrival rates

Pentium III 930MHz CPU
(933*106 clock cycles per
second), 256MB Ram

Celeron® 2.6GHz CPU
(2.6*109 clock cycles per
second), 512MB Ram

Pentium 4 2GHz CPU
(2*109 clock cycles per
second), 1 GB Ram Environment

Total
Physical

time

Total Physical
time

Total
Physical

time

Physical time for
the calculation of

1 mean & S.D.

Total
Physical

time

Physical time for
the calculation of

1 mean & S.D.
MACSC (Total 49
calculations) 1260 ms 1260 ms 1218 ms ≈24.9 ms 815 ms ≈16.6 ms

RTPD/MACSC
(Total 42
calculations)

1273 ms 1273 ms 1229 ms ≈29.3 ms 873 ms ≈20.8 ms

Table 11.2 Execution time comparison for MACSC and RTPD/MACSC over three different
platforms

 - 167 -

 - 168 -

 Different experiments confirm that the execution times for MACSC and

RTPD/MACSC are comparable. Table 11.2 is a comparison for three different

computer platforms. For example, with the Intel® VTune™ Performance Analyzer

the MACSC was found to take an average of 25 ms to execute on the PIII 930MHz

CPU platform. For the three different platforms (as for others) the RTPD/MACSC

consistently uses around 20% more execution time on average. Indeed, both the

MACSC and RTPD/MACSC prototypes programmed in Java need very little

computation power to calculate the cache size adjustment on the fly.

11.4.2 PRELIMINARY CONCLUSION

 The novel RTPD/MACSC approach, RTPD/MACSC(PE), for dynamic cache

size tuning indeed can help mobile/pervasive diagnostic information retrieval in

telemedicine. It combines the MACSC (Model for Adaptive Cache Size Control)

framework and the real-time traffic pattern detection (RTPD) capability. The

experimental results with wireless traces as well as known traffic patterns (LRD and

SRD types) confirm that it has no problem in achieving its goal of maintaining a

given hit ratio under all traffic conditions. The RTPD/MACSC(PE) has less cache

memory usage than the MACSC and thus less potential for deleterious effects.

Despite the presence of the complex RTPD mechanism, the RTPD/MACSC(PE)

needs only 20% more execution time than the MACSC(PE) tuner working alone.

The RTPD/MACSC(PE) solution adapts the initial sample size n for the

point-estimate computation in every cycle on the fly. The adaptation is done with

respect to the traffic pattern detected and identified by the RTPD capability. The

verification experiments confirm: a) there is a correlation between the IAT interval

 - 169 -

and the request loss rate, which affects the cache hit ratio, and b) tuning the

parameter n for point estimate neutralizes the ill effects on the cache hit ratio by

traffic pattern changes that cause higher cache memory usage. The next step of the

research should aim at validating the RTPD/MACSC(PE) solution by testing it

vigorously in different real wireless environments.

11.5 CONNECTIVE SUMMARY
 In this chapter, the contribution of the MACSC framework to the mobile and

telemedicine applications is discussed. The experiments with the wireless data show

that the MACSC framework can support e-diagnosis or other mobile medical

applications. In the next chapter, the conclusion, achievements and future work will

be discussed.

 - 170 -

CHAPTER 12

CONCLUSION, FUTURE WORK

AND ACHIEVEMENTS

 In this chapter, the following will be discussed: the overall conclusion, future

work and achievements. The comparison of the four novel solutions, namely,

MACSC(PE), MACSC(M3RT), MACSC(F-E) and RTPD/MACSC(PE) is also

provided as a recap.

12.1 OVERALL CONCLUSION
Without caching support the Internet can easily become terribly congested and

lose its appeal. The danger of congestion is aggravated by the fact that the WWW

page size has a monthly growth rate of around 15% but the Internet backbone

capacity only increases by 60% yearly. The massive quantity of information

requiring transfer across the network in browsing and information retrieval can

quickly deplete the amount of sharable bandwidth. The retransmissions needed to

recover lost information due to various network faults are inevitable due to the sheer

size and heterogeneous nature of the Internet, and this worsens the situation.

Caching alleviates network congestion and hastens WWW information retrieval

by providing two advantages. The explicit advantage is the shortening of the service

roundtrip time (RTT) for retrieval while the implicit advantage from speedup is less

data being transferred across the network, thus providing more backbone bandwidth

 - 171 -

for sharing and less chance of network congestion.

The service RTT is the interval between the client's request and reception of the

server's correct corresponding result and in this client/server relationship it

conceptually consists of two legs. The first is the roundtrip between the client and

the proxy server, and the second, between the proxy server and the remote data

source or web server. If the proxy server finds the data object in its cache, then the

second leg is automatically obviated. The hit ratio is the chance of finding the

required data locally in the proxy’s cache. It fluctuates with the clients’ shift of

preference for certain data items. For a set of data objects this shift quickly changes

the relative popularity profile. If σ is the cache hit ratio, and RTT1 and RTT2 are the

average roundtrip times respectively for the first and second legs, then

S=(RTT1+RTT2)/(RTT1+[1-σ]*RTT2) is the information retrieval speedup, where [1-σ]

is the miss ratio of the proxy cache. With σ = 0.5, RTT1=10 and RTT2=40 the

speedup is S=(10+40)/(10+0.5*40)=50/30 or 1.67. Having a high proxy cache hit

ratio is advantageous because RTT2, which involves the Domain Name Server (DNS),

is usually much longer than RTT1. The DNS helps the proxy locate the required data

objects in the correct remote data source.

The explicit and implicit advantages from caching have motivated different

areas of relevant research. The most popular topic is the design of replacement

strategies that effectively keep as many hot data objects as possible in the cache.

Continual replacement operations, which update the contents of the cache at the

same time, are necessary to prevent the cache data from becoming stale (i.e. data

incoherence). From this point of view it seems practical to have a very large cache

but, this also increases the chance of data coherence. Therefore it is important to

produce a high cache hit ratio and keep data incoherence abated at the same time.

Almost all the known replacement strategies work with a static cache size, and they

aim to yield a high cache hit ratio but do not necessarily maintain it. For this reason

the cache hit ratio fluctuates with respect to the system dynamics and the current

relative data object popularity profile. Maintaining a given cache hit ratio needs

dynamic cache size tuning which, in contrast, works with a variable cache size.

The original MACSC (Model for Adaptive Cache Size Control) conceptual

framework for dynamic cache size tuning over the Internet is proposed in this thesis.

It strives to maintain the given hit ratio under all conditions by leveraging the

relative data object popularity profile as the sole parameter. This leveraging strategy

shortens the MACSC execution time so that it computes and administers the tuning

solution quickly to avoid possible deleterious effects. The MACSC conceptual

framework is based on the Zipf-like behavior, which is the log-log plot of the access

frequencies versus the corresponding ranked positions (r) of the data objects in the

trace; that is, β−∝)1()(rry . The β parameter, which is within the 10 ≤< β range,

denotes this relativity, and for β =1 it is called the Zipf Law. The MACSC

framework does not work directly with y(r) but with the popularity distribution (PD).

The PD is a bell curve produced by the mapping y(r) into a bell-shaped curve. The

mapping mechanism is bell(r)=map(y(r))+e, where e denotes the possible mapping

error. The argument is that if the bell curve indeed produces the expected dynamic

cache size tuning result, then e can be ignored. The dynamic cache size tuning

objective is achieved by measuring the PD standard deviation (SD) quickly and

accurately on the fly in a statistical manner. From two successive SD values the

popularity ratio (PR), namely, (SDi/SDi-1) (i.e. standard deviation ratio (SR)) or

 - 172 -

 - 173 -

(SDi/SDi-1)2 (i.e. variance ratio (VR)) can be calculated, where i denotes the

computation/tuning cycle. The amount of dynamic cache size tuning to be done in

each cycle on the fly is determined by the current PR ratio. The MACSC emphasizes

supporting small, inexpensive caching systems, which usually cost less than

USD1000 in the field. Therefore, it is important that it works correctly with the SR

ratio because the VR involves a large amount of memory in the tuning process and

thus may easily deplete the memory resources of small systems and make them

perform sluggishly.

In a live caching system the PD shape changes continuously because it reflects

the user preference for particular data objects. The MACSC mechanism needs to

compute the SD value for the PD at anytime in order to achieve the dynamic cache

size tuning and maintain the given hit ratio successfully. Since the Internet dynamics

is the result of a discrete stochastic process, the SD value should be computed

statistically by direct data measurement. Yet, the Internet follows the power law and

its traffic pattern in light IAT (inter-arrival time) pattern changes over time.

Therefore, for the MACSC accuracy to be IAT independent, the methods for

computing the SD should be based on the Central Limit Theorem (CLT). For this

reason two basic methods, namely, point estimate (PE) and the M3RT, which is a

micro IEPM (Internet End-to-End Performance Measurement) technique, are

adopted. The M3RT is micro because it exists as a logical object to be invoked for

service anytime and anywhere. These two basic methods led to the following

solutions: MACSC(PE) (i.e. PE based) and MACSC(M3RT) (i.e. M3RT based). The

MACSC(PE) solution is oscillatory as observed from different verification

experiments because of high PE sensitivity to the profile changes in the relative data

 - 174 -

object popularity. In contrast, the MACSC(M3RT) solution lacks the PE's sensitivity

because the feedback loop in the M3RT mechanism dampens it despite giving the

system stability. To combine the merits of the PE and M3RT mechanisms the third

solution, namely, MACSC(F-PE) is proposed. In this solution, which outperforms its

predecessors in all the verification experiments in a consistent manner, the PE

mechanism is moderated by a feedback loop. Strikingly this feedback loop makes the

MACSC(F-PE) dynamic cache size tuning accuracy insensitive to the IAT ill effects.

The preliminary experimental results in the MACSC(PE) verification exercise

showed that its accuracy depended on the IAT traffic pattern. This inspired the

investigation of real-time traffic pattern detection (RTPD) and the possibility of

allowing the MACSC(PE) framework to have this capability so that it can use the

detected result to reconfigure itself on the fly to ward off traffic ill effects. This led to

the proposal of the novel RTPD/MACSC(PE) solutions. This solution is an example

of how real-time traffic pattern detection can be incorporated to enhance the efficacy

of a time-critical application. The preliminary verification results show that both

MACSC(F-E) and RTPD/MACSC(PE) are independent of the IAT traffic. The

RTPD/MACSC(PE), however, has the advantage of knowing exactly what IAT

traffic condition that it is working with. It may provide a greater degree of freedom

for the MACSC framework to immediately deal with unusual situations, which has

yet to be explored.

Altogether four solutions are proposed and verified for the MACSC conceptual

framework, which is formulated based on the Zipf-like behavior. This behavior is

distinctive for caching systems that deal with a large number of data objects, and the

four solutions are, namely, MACSC(PE), MACSC((M3RT), MACSC(F-PE), and

 - 175 -

RTPD/MACSC(PE). Since the MACSC(F-PE) verification shows that this solution

is independent of IAT patterns, the investigation of having a RTPD/MACSC(F-PE)

solution becomes redundant and therefore no further effort at this stage is warranted

in this direction. In the verification exercise the experiments made use of the relative

popularity profile of all the data objects embedded in reasonably large traces

(simulated or real). In this way every data object can be uniquely identified to

facilitate the calculation of the popularity ratio. In real-life applications, however, a

caching system not only has to deal with a huge amount of different data objects but

also unpredictable access preferences. This makes the following impractical for

straight MACSC implementation in real-life deployment: a) to identify every data

object in the large population, and b) to compute Zipf-like and popularity

distributions for the whole population in every dynamic cache size tuning cycle since

the long computation delay would make the MACSC solutions unworkable.

Therefore, the approach proposed in the thesis for realizing the MACSC framework

for real-life deployment is to create the Zipf-like behavior and the PD from the data

items sampled for the current dynamic cache size tuning cycle. If there is deviation

from the Zipf-like behavior then the "kurtosis and skewness (KS)" test is used to

confirm the existence of a valid popularity distribution from which the popularity

ratio would be derived. Since the validity confirmation requires a reasonable number

of sampled items, the proposed approach for MACSC realization and validation for

real-life applications applies to only those PE based solutions (i.e. MACSC(PE),

MACSC(F-PE) and RTPD/MACSC(PE) and not the MACSC(M3RT). The

MACSC(M3RT) is excluded because it uses a small, fixed flush limit number of data

items per sample. This small sample size does not give the MACSC(M3RT)

 - 176 -

approach the necessary sensitivity.

The thesis has achieved all the stated objectives and demonstrated how the

MACSC conceptual framework can support mobile and time-critical applications

such as TCM (Traditional Chinese Medicine) based telemedicine. The novel

MACSC framework that maintains a given hit ratio by dynamic cache size tuning

has been successfully verified with respect to the four solutions: MACSC(PE),

MACSC(M3RT), MACSC(F-PE), and RTPD/MACSC(PE). The proposed approach

for implementing the MACSC framework for validation and practical deployment

excludes the MACSC(M3RT) solution.

Table 12.1 summarizes and compares the four novel solutions proposed in this

thesis as follows:

MACSC(PE) is the first implemented solution of the MACSC framework. It

maintains the hit ratio successfully in spite of its three problems: oscillation in the

convergence process, unpredictable sampling time, and being sensitive to Internet

traffic patterns.

1. MACSC(M3RT) eliminates the MACSC(PE) oscillations by incorporating the

M3RT IEPM (Internet End-to-End Performance Measurement) technique. The

sampling time of this technique is predictable because it uses the flush limit f

number of samples in every computation cycle. Yet, MACSC(M3RT) has two

problems: a) it uses more memory than the MACSC(PE), and b) it is sometimes

not responsive enough and this produces a low hit ratio.

2. MACSC(F-PE) is proposed to reduce the MASCSC(PE) oscillation by the

using of the feedback concept of MACSC(M3RT). The MACSC(F-PE)

performance is better than MACSC(PE) and MACSC(M3RT) because it yields

the highest hit ratio consistently with less memory than the other two solutions.

3. RTPD/MACSC(PE) is proposed to eliminate the ill effects by Internet traffic

patterns. It maintains a better hit ratio than MACSC(PE) working alone with the

presence of real-time traffic pattern detection (RTPD) mechanism. This solution

works with a reconfiguration scheme, which uses of the results detected by the

RTPD mechanism to self-tune so that traffic ill effects are nullified.

These four solutions represent an evolutionary development process in the course of

my PhD research.

a. MACSC(PE) b. MACSC(M3RT) c. MACSC(F-PE) d. RTPD/MACSC(PE)

* Oscillation problem

* Unpredictable

 on-line sampling time

* Control accuracy is

 affected by different

Internet traffic patterns

* Eliminates

MACSC(PE)

oscillation

* Predictable

 sampling time by

 using the flush limit

 f number of samples

* Uses more memory

 than MACSC(PE)

* Fail to respond

 quickly to traffic

 pattern changes and

 therefore fail to

 yield a high hit ratio

* Reduces

 MACSC(PE)

 oscillation by using

 the feedback concept

 of MACSC(M3RT)

* Minimizes memory

 usage

* Needs no RTPD

 because its accuracy

 is insensitive to

 Internet traffic

 patterns

* Includes RTPD to

 eliminate ill effects

 by Internet traffic

 patterns

* Maintains the hit ratio

 better than the

 MACSC(PE)

* Carries out real-time

 reconfiguration that

 works with the traffic

 pattern identified by

 RTPD currently

 From a. to d. above is an evolutionary development process

Table 12.1 Summary and comparison of four solutions (an evolutionary process)

 - 177 -

 - 178 -

12.2 RESEARCH METHODOLOGY ADAPTATION
By nature this PhD research is exploratory because the topic of dynamic cache

size tuning has little published experience. Despite this, the research produces a

prototype for testing and supporting further research as one of its output, the process

is naturally top-down because the course of research includes literature search,

problem statement, proposed solutions, and data collection. It is, however, difficult

to apply the Top Down approach in a strict sense because early exploratory

investigations that produce unpredictable results are necessary. That is, the whole

investigation would involve repetitive backtracking and cross-referencing to gain the

necessary insight for the next step. This means a need to find a research

methodology that can cater to the repetitive and exploratory nature of the research.

After a careful consideration, I decided to customize the original methodology

proposed for my previous exploratory MPhil research [Wu02], namely, “investigate

& experiment & proceed with possible backtracking, cross referencing and looping

(IEP)” approach for the PhD investigation. The research process involves different

traversals in the IEP methodology and backtracking. It is summarized as follows:

a. Understanding the rationale of caching in general,

b. Studying some general caching approaches and statistical approaches,

c. To propose a dynamic caching framework, MACSC (Model for Adaptive

Cache Size Control),

d. Implement the MACSC with different statistical approaches,

e. Looking for a stable mobile-agent platform for testing purposes,

f. Refining the MACSC frameworks for better data collection and analysis, and

g. Demonstrating how the MACSC frameworks can be implemented in the real

environment.

12.3 AREAS OF FUTURE WORK
The implementation of any of these conceptual solutions, however, has to

overcome the problem of very large data sets in a caching system. Since the Zipf-like

behavior is usually apparent only for very large datasets, compensation methods are

needed to deal with situations that deviate from the formal Zipf-like behavior, which

is governed by β−∝)1(ry for 10 ≤< β . The deviation is usually indicated by the

condition of β > 1. In such cases the bell nature of the distribution is verified by the

“kurtosis and skewness” test. The Zipf-like behavior refers to the relative access

frequencies of data objects in a very large dataset. It becomes impractical for the

“ranker” to re-establish a new Zipf-like distribution and then compute the standard

deviation for the popularity ratio (PR) essential for the dynamic cache size

adjustment operation. The proposed alternative for the implementation of the four

solutions is to compute PR with respect to the set of data object requests sampled for

the current tuning cycle. In this way the PR ratio can be computed quickly from the

Zipf-like distribution based on the set. Simulations with different traces show that

this is a viable solution for practical MACSC deployments. The only problem is that

this implementation approach does not work well for the MACSC(M3RT) solution

because it only needs a small number of samples (i.e. equal to the flush limit) to

estimate the mean of any distribution accurately. The small flush-limit number of

samples, however, makes it difficult to construct a meaningful Zipf-like distribution

with high confidence. How to implement the MACSC(M3RT) effectively is therefore

 - 179 -

 - 180 -

an important item for future exploration.

The research has uncovered different problems, which should be addressed in

the future to make the MACSC framework more deployable for time-critical

applications. The more immediate future work items include:

a. Conduct more M3RT investigation: The aim is to find out how this technique

can be efficaciously utilized for accurate estimation of the standard deviation

of the popularity distribution on the fly in MACSC application.

b. Perform more precise calibration: The aim is to calibrate traffic patterns

versus the initial n values for the PE statistical estimation.

c. Test MACSC with different replacement algorithms: The experiments

conducted so far worked with the LRU (least recently used) approach. It is

worthwhile to compare the performance of different “MACSC + replacement

algorithm” combinations because some useful combination may exist.

12.4 ACHIEVEMENTS
This PhD thesis has contributed a novel conceptual framework, namely, the

MACSC, for maintaining a given hit ratio by dynamic cache size tuning over the

Internet. Four solutions for realizing the framework were proposed and verified,

namely, MACSC(PE), MACSC(M3RT), MACSC(F-PE), and RTPD/MACSC(PE). A

practical implementation method, which is based on the data samples collected for

the current tuning cycle, is proposed and tested. This method works well for the

MACSC(PE), MACSC(F-PE), and RTPD/MACSC(PE) solutions but not the

MACSC(M3RT). The four conceptual solutions provide a solid basis for future

 - 181 -

deeper research in the direction of dynamic cache size tuning over the Internet. The

verification results indicate that the MACSC framework definitely contributes to

shorten the service roundtrip time in web information retrieval. The findings from

the research so far have contributed to 17 refereed publications as follows:

8 Refereed Journal Papers

[1] Richard S.L. Wu, Wilfred W.K. Lin and Allan K.Y. Wong, Harnessing Wireless

Traffic is an Effective Way to Improve Mobile Internet Performance, Proceedings of

1st IEEE International Conference on Wireless Broadband and Ultra Wideband

Communications AuS Wireless 2006, March, 2006

[2] Richard S. L. Wu, Allan K. Y. Wong and Tharam S. Dillon, CACHERP: A Novel

Dynamic Cache Size Tuning Model Working with Relative Object Popularity for

Fast Web Information Retrieval, Journal of Supercomputing, 2006 (Accepted and

will appear in the journal)

[3] Richard S. L. Wu, Allan K. Y. Wong and Tharam S. Dillon, E-MACSC: A

Novel Dynamic Cache Tuning Technique to Reduce Information Retrieval Roundtrip

Time over the Internet, Journal of Computer Communications (Accepted and will

appear in the journal)

[4] Wilfred W. K. Lin, Allan K. Y. Wong, Richard S. L. Wu, Applying Fuzzy Logic

and Genetic Algorithms to Enhance the Efficacy of the PID Controller in Buffer

Overflow Elimination for Better Channel Response Timeliness over the Internet,

Journal of Concurrency: Practice & Experience (Accepted and will appear in the

journal)

 - 182 -

[5] Richard S. L. Wu, Allan K. Y. Wong and Tharam S. Dillon, RDCT: A Novel

Reconfigurable Dynamic Cache Tuner to Shorten Information Retrieval Time over

the Internet, International Journal of Computer Systems Science & Engineering,

19(6), 2004, 363 – 371.

[6] Richard S. L. Wu, Allan K. Y. Wong and Tharam S. Dillon, CACHERP: A Novel

Dynamic Cache Size Tuning Model working with Relative Object Popularity for

Fast Web Information Retrieval, Electronic Journal of Lecture Notes in Computer

Science, Springer-Verlag GmbH, 3358, 2004.

[7] Richard S. L. Wu, Allan Kang Ying Wong and Tharam S. Dillon, E-MACSC: A

Novel Dynamic Cache Tuning Technique to Maintain the Prescribed Minimum Hit

Ratio Consistently for Internet/WWW Applications, World Scientific and

Engineering Academy and Society (WSEAS) Transactions on Computers, April 2004,

3(2), 424 – 429.

[8] Allan K. Y. Wong, May T. W. Ip, Richard S. L. Wu, A Novel Dynamic Cache

Size Adjustment Approach for Better Data Retrieval Performance over the Internet,

Journal of Computer Communications, September 2003, 26(14), 1709-1720.

2 Book Chapters (Invited)

[9] Richard S. L. Wu, Allan K. Y. Wong and Tharam S. Dillon, E-MACSC: A

Novel Dynamic Cache Tuning Technique to Maintain the Hit Ratio Prescribed by the

User in Internet Applications, International Conference on E-Business and

Telecommunication Networks (ICETE 2004) Best Paper Book, Kluwer Academic

Publishers, 2004 (best papers series by ICETE’04)).

[10] Allan K. Y. Wong, Richard S. L. Wu and Tharam S. Dillon, Dynamic

 - 183 -

Maintenance of a Given Proxy Cache Hit Ratio by Leveraging the Relative Data

Object Popularity Profile to Yield Shorter Service Roundtrip Time, to appear in an

edited collection by Nova Science Publishers, Inc., New York.

7 Refereed Conference Papers

[11] Wilfred W. K. Lin, Allan K. Y. Wong, Richard S. L. Wu, A Novel Real Time

Self Similar Traffic Detector/Filter to Improve the Reliability of a TCP Based End to

End Client/Server Interaction Path for Shorter Roundtrip Time, Proceedings of 2nd

International Conference on E-Business and Telecommunication Networks (ICETE

2005), Reading, U.K., October 2005

[12] Richard S. L. Wu, Tharam S. Dillon and Allan K. Y. Wong, RTPD/MACSC: A

Novel Approach for Effective Pervasive Information Retrieval, Proceedings of the

Fourth International Conference on Mobile Business (ICMB 2005), Sydney,

Australia, July 2005, 514 – 520.

[13] Richard S. L. Wu, Allan K. Y. Wong, Tharam S. Dillon, Using Real-Time

Traffic Pattern Detection for Dynamic Cache Size Tuning in Information Retrieval,

Proceedings of the Third Internal Conference on Information Technology and

Applications (iCITA’ 2005), Sydney, Australia, July 2005, Volume 2, 35 – 40, Volume

2, 35 – 40.

[14] Richard S. L. Wu, Allan K. Y. Wong, Tharam S. Dillon, CACHERP: A Novel

Dynamic Cache Size Tuning Model working with Relative Object Popularity for

Fast Web Information Retrieval, Proceedings of Second International Symposium on

Parallel and Distributed Processing and Applications (ISPA 2004), Hong Kong,

China, December 2004, 410 – 420.

 - 184 -

[15] Wilfred W. K. Lin, Richard S. L. Wu, Tharam S. Dillon and Allan K. Y. Wong,

A Novel Real-Time Traffic Pattern Detector for Internet Applications, Proceedings

of the 2004 Australian Telecommunication Networks and Applications Conference

(ATNAC 2004), December 2004, 224 – 227.

[16] Richard S. L. Wu, Allan K. Y. Wong and Tharam S. Dillon, E-MACSC: A

Novel Dynamic Cache Tuning Technique to Maintain the Hit Ratio Prescribed by the

User in Internet Applications, Proceedings of 1st International Conference on

E-Business and Telecommunication Networks (ICETE 2004), Set al/Portugal, August

2004, Volume 1, 152 – 159.

[17] Richard S. L. Wu, May T. W. Ip and Allan K. Y. Wong, LDC-CM: A Novel

Model for Dynamic Cache Size Adjustment, Proceedings of 2003 International

Conference on Internet Computing, Las Vegas, Nevada, USA, June 2003, Volume 2,

753-758.

 - 185 -

REFERENCES

[Abrams95] M. Abrams, C. Standridge, G. Abdulla, S. Williams and E.A. Fox,

Caching proxies: limitations and potentials, Proceedings of the 4th International

World Wide Web Conference, MA, December 1995.

[Abrams96] M. Abrams, C. R. Standridge, G. Abdulla, E. A. Fox and S. Williams,

Removal Policies in Network Caches for WWW Documents, ACM SIGCOMM

Computer Communication Review, 26(4), 1996.

[Aggarwal99] C. Aggarwal, J. L. Wolf and P. S. Yu, Caching on the Word Wide Web,

IEEE Transactions on Knowledge and Data Engineering, 11(1), 1999.

[Androutsellis-Theotokis04] Androutsellis-Theotokis and D. Spinnellis, A Survey of

Peer-to-Peer Content Distribution Technologies, ACM Computing Surveys, 36(4),

2004, 335 – 371.

[Aridor98] Y. Aridor and M. Oshima, Infrastructure for Mobile Agents:

Requirements and Design, Proceedings of 2nd International Workshop on Mobile

Agents (MA '98), Springer Verlag, September 1998.

[Arlitt99] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich and T. Jin, Evaluating

Content Management Techniques for Web Proxy Caches, Proceedings of the 2nd

Workshop on Internet Service Performance, 1999.

[Avizienis04] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, Basic

Concepts and Taxonomy of Dependable and Secure Computing, IEEE Transactions

on Dependable and Secure Computing, 1(1), 2004, 11-33.

[Balachandran02] A. Balachandran, G.. M. Voelker, P. Bahl and P. V. Rangan,

 - 186 -

Characterizing User Behavior and Network Performance in a Public Wireless LAN,

Proceedings ACM SIGMETRICS'02, Marina Del Rey, June 2002, 30(1), 195 – 205.

[Belloum98] A. Belloum and L. O. Hertzberger, Dealing with

One-Timer-Documents in Web caching, Proceedings of the 24th Conference on

EUROMICRO, 2, 1998.

[Bestavros96] A. Bestavros and C. Cunha, Server-initiated document dissemination

for the WWW, IEEE Data Engineering Bulletin, September 1996.

[Bharat98] K. Bharat and A. Broder, Estimating the Relative Size and Overlap of

Public Web Search Engines, Proceedings of the 7th International World Wide Web

Conference (WWW7), April 1998.

[Bjarat98] K. Bjarat and A. Broder, Estimating the Relative Size and Overlap of

Public Web Search Engines, Proceedings of the 7th International World Wide Web

Conference (WWW7), 1998.

[Bolot96] J-C Bolot and P. Hoschka, Performance Engineering of the World Wide

Web: Application to Dimensioning and Cache Design, Computer Networks, 28(7),

1996.

[Braden98] B. Braden et. al., Recommendations on Queue Management and

Congestion Avoidance in the Internet, RFC2309, April 1998

[Breslau99] L. Breslau, P. Cao, F. Li, G. Phillips and S. Shenker, Web Caching and

Zipf-like Distributions: Evidence and Implications, Proceedings of the

INFOCOM’99, Vol.1, 1999.

[Burkhardt02] J. Burkhardt, H. Henn, S. Hepper, K. Rintdorff, T. Schack, Pervasive

Computing, Addison-Wesley, 2002

 - 187 -

[Cáceres98] R. Cáceres, F. Douglis, A. Feldmann, G.. Glass and M. Rabinovich, Web

proxy caching: the devil is in the details, ACM Performance Evaluation Review,

26(3): pp. 11-15, December 1998.

[Cao97] P. Cao and S. Irani, Cost-Aware WWW Proxy Caching Algorithms,

Proceedings of the 1997 USENIX Symposium on Internet Technology and Systems,

1997.

[Cao98] P. Cao, J. Zhang and K. Beach, Active cache: caching dynamic contents on

the Web, Proceedings of IFIP International Conference on Distributed Systems

Platforms and Open Distributed Processing (Middleware’98), pp. 373 – 388, 1998.

[Challenger99] J. Challenger, A. Iyengar and P. Dantzig, A scalable system for

consistently caching dynamic Web data, Proceedings of Infocom’99.

[Chankhunthod96] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz

and K. J. Worrel, A hierarchical Internet object cache, Proceedings of Usenix’96,

January 96.

[Chinen97] K. Chinen and S. Yamaguchi, An interactive prefetching proxy server for

improvement of WWW latency, Proceedings of INET’97, June 1997.

[Chis92] J. A. Chis, Introduction to Simulation and Modeling - GPSS/PC, Prentice

Hall, 1992.

[Chris00] M. Christiansen, K. Jeffay, D. Ott and F. D. Smith, Tuning RED for Web

Traffic, ACM SIGCOMM, August 2000.

[Cohen98] E. Cohen, B. Krishnamurthy and J. Rexford, Improving end-to-end

performance of the Web using server volumes and proxy filters, Proceedings of

Sigcomm’98.

[Cohen99] E. Cohen, B. Krishnamurthy and J. Rexford, Efficient algorithms for

 - 188 -

predicting requests to Web servers, Proceedings of Infocom’99.

[Cottrel99] L. Cottrel, M. Zekauskas, H. Uijterwaal and T. McGregor, Comparison

of Some Internet Active End-to-End Performance Measurement Projects,

http://www.slac.stanford.edu/comp/net/wan-mon/iepm-cf.html, July 1999

[Cottrel01] L. Cottrel, Passive vs. Active Monitoring,

http://www.slac.stanford.edu/comp/net/wan-mon/passive-vs-active.html, March

2001.

[Crovella98] M. Crovella and P. Batford, The network effects of prefetching,

Proceedings of Infocom’98.

[Dilley99] J. Dilley and M. Arlitt, Improving Proxy Cache Performance: Analysis of

Three Replacement Policies, IEEE Internet Computing, 1999, 44-50.

[Douglis97] F. Douglis, A. Feldmann, B. Krishnamurthy and J. Mogul, Rate of

change and other metrics: a live study of the World Wide Web, Proceedings of the

1997 Usenix Symposium on Internet Technologies and Systems (USITS-97),

December 1997.

[Downey99] A. B. Downey, Using pathchar to Estimate Internet Link Characteristics,

Proceedings of the ACM SIGCOMM’99, October 1999, 241-250.

[Duska97] B. M. Duska, D. Marwood and M. J. Feeley, The Measured Access

Characteristics of World-Wide-Web Client Proxy Caches, Proceedings of the

USENIX Symposium on Internet Technology and Systems, 1997.

[Embrechts97] P. Embrechts, C. Klüppelberg and T. Mikosh. Modeling Extremal

Events for Insurance and Finance, Springer-Verlag, Berlin Heidelberg, 1997.

[Fan98] L. Fan, P. Cao, J. Almeida and A. Z. Broder, Summary cache: a scalable

wide-area Web cache sharing protocol, Proceedings of Sigcomm’98.

 - 189 -

[Fan99] L. Fan, P. Cao, W. Lin and Q. Jacobson, Web prefetching between

low-bandwidth clients and proxies: potential and performance, Proceedings of the

Sigmetrics’99.

[Feldmann99] A. Feldmann, R. Caceres, F. Douglis, G. Glass and M. Rabinovich,

Performance of Web proxy caching in heterogeneous bandwidth environments,

Proceedings of Infocom’99.

[Firoiu00] V. Firoiu and M. Borden, A study of Active Queue Management for

Congestion Control, Proceedings of the INFOCOM 2000, March 2000.

[Gadde97] S. Gadde, M. Rabinovich and J. Chase, Reduce, reuse, recycle: an

approach to building large Internet caches, Proceedings of the HotOS’97 Workshop,

May 1997.

[Garlan02] D. Garlan, D. P. Siewiorek, A. Smailagic and P. Steenkiste, Project Aura:

Toward Distraction-free Pervasive Computing, IEEE Pervasive Computing, 1(2),

April 2002, 22 – 31.

[Glassman94] S. Glassman, A caching relay for the World Wide Web, Proceedings of

First International Conference on the World Wide Web, CERN, Geneva, Switzerland,

May 1994.

[Gnutella] The Gnutella web site: http://gnutella.wego.com

[Gwetzman94] J. Gwetzman and M. Seltzer, The case for geographical

pushing-caching, HotOS Conference, 1994.

[Heddaya97] A. Heddaya, S. Mirdrad and D. Yates, Diffusion-based Caching Along

Routing Paths, 2nd Intl. Web Caching Workshop, Baltimore, MD, June 1997.

[Hightower01] J. Hightower and G. Borriello, Location Systems for Ubiquitous

Computing, IEEE Computer, 34(8), August 2001, 57-66.

 - 190 -

[IEEE99] IEEE. 802.11b/d3.0 Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specification, August 1999.

[Ip01] M. T. W. Ip, W. W. K. Lin, A. K. Y. Wong, T. S. Dillon and D. H. Wang, An

Adaptive Buffer Management Algorithm for Enhancing Dependability and

Performance in Mobile-Object-Based Real-time Computing, Proceedings of the

IEEE ISORC’2001, Magdenburg, Germany, May 2001, 138-144.

[Ip03] M. T. W. Ip, Development of a Micro IEPM (Internet End-to-End

Performance Measurement) Technique for Internet Based Computing, MPhil Thesis,

Department of Computing, Hong Kong Polytechnic University, Hong Kong SAR,

PRC, 2003.

[Jain91] R. Jain, The Art of Computer Systems Performance Analysis, Wiley, 1991.

[Jin00a] S. Jin and A. Bestavros, Popularity-Aware Greedy Dual-Size Web Proxy

Caching Algorithms, Proceedings of the Int’l Conf. on Distributed Computing

Systems, 2000.

[Jin00b] S. Jin and A. Bestavros, Temporal Locality in Web Request Streams:

Sources, Characteristics and Caching Implications, Proceedings of the International

Conference on Measurement and Modeling of Computer Systems, 2000.

[Karagiannis02] T. Karagiannis, M. Faloutsos. SELFIS: A Tool For Self-Similarity

and Long-Range Dependence Analysis, 1st Workshop on Fractals and Self-Similarity

in Data Mining: Issues and Approaches (in KDD), Edmonton, Canada, July 23, 2002

[Karagiannis03] T. Karagiannis, M. Faloutsos, M. Molle, A User-Friendly

Self-Similarity Analysis Tool, Special Section on Tools and Technologies for

Networking Research and Education, ACM SIGCOMM Computer Communication

Review, 33(3), 2003.

 - 191 -

[Karger97] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin and R.

Panigrahy, Consistent hashing and random trees: distributed caching protocols for

relieving hot spots on the World Wide Web, STOC 1997.

[Ketchen04] D. J. Ketchen Jr., D. D. Bergh Eds., Research Methodology in Strategy

and Management, Elsevier 2004

[Kroeger97] T. M. Kroeger, D. D. E. Long and J. C. Mogul, Exploring the bounds of

Web latency reduction from caching and prefetching, Proceedings of the 1997

Usenix Symposium on Internet Technologies and Systems, Monterey, CA, December

1997.

[Kumar96] R. Kumar, Research Methodology, A Step-by-Step Guide for Beginners,

SAGE Publications 1999.

[Lacroix99] A. Lacroix, L. Lareng, G. Rossignol, D. Padeken, M. Bracale, Y. Ogushi,

R. Wootton, J. Sanders, S. Preost and I. McDonald, G-7 Global Healthcare

Applications Sub-project 4, Telemedicine Journal, March 1999.

[Lakeshman96] T. V. Lakeshman, A. Neidhardt and T. Ott, The Drop from Front

Strategy in TCP over ATM and Its Internetworking with other Control Features,

INFOCOMM 1996.

[Lakeshman97] T. Lakeshman and U. Madlow, The Performance of TCP/IP for

Networks with High Bandwidth –Delay Products and Random Loss, IEEE/ACM

Transactions on Networking, 5(3), June 1997, 336-350

[Laamanen99] H. Laamanen, T. Alanko and K. Raatikainen, Dependability issues in

mobile distributed system, Proceedings of the Pacific Rim International Symposium

on Dependable Computing, 1999, 7 – 14.

[Laprie95] J.-C. Laprie, Dependable Computing: Concepts, Limits, Challenges,

 - 192 -

Proceedings of the IEEE 25th International Symposium on Fault-Tolerant

Computing, 1995.

[Leland94] W. Leland, M. Taqqu, W. Willinger and D. Wilson, On the Self-Similar

Nature of Ethernet Traffic (Extended Version), IEEE/ACM Transactions on

Networking, 2(1), February 1994, 1-15

[Lewis96] T. Lewis, The Next 100002 Years: Part 1, IEEE Computer, April 1996

[Levy-Abegnoli99] E. Levy-Abegnoli, A. Iyengar, J. Song and D. Dias, Design and

performance of Web server accelerator, Proceedings of Infocom’99.

[Lewandowski98] S. M. Lewandowski, Frameworks for Component-Based

Client/Server Computing, ACM Computer Survey, March 1998.

[Li99] B. Li, M. J. Golin, G.. F. Italiano, X. Deng and K. Sohraby, On the optimal

placement of Web proxies in the Internet, Proceedings of Infocom’99.

[Lin04] W. W. K. Lin, R. S. L. Wu, T. S. Dillon and A. K. Y. Wong, A Novel

Real-Time Traffic Pattern Detector for Internet Applications, Proceedings of the

2004 Australian Telecommunication Networks and Applications Conference (ATNAC

2004), December 2004, 224 – 227.

[Loon97] T. S. Loon and V. Bharghavan, Alleviating the latency and bandwidth

problems in WWW browsing, Proceedings of the 1997 Usenix Symposium on

Internet Technologies and Systems (USITS-97), December 1997.

[Luotonen94] A. Luotonen and K. Altis, World Wide Web proxies, Computer

Networks and ISDN Systems, First International Conference on WWW, April 1994.

[M94] 宋天彬, “實用中醫舌診彩色圖譜＂, 合肥市: 安徽科學技術出版社,

1994.

[Maciocia87] G. Maciocia, Tongue Diagnosis in Chinese Medicine, Eastland Press,

 - 193 -

Seattle USA, 1987.

[Mahanti00] A. Mahanti, C. Williamson and D. Eager, Traffic Analysis of Web

Proxy Caching Hierarchy, IEEE Network, 14(3) 2000.

[Malla03] A. Malla, M. El-Kadi, S. Olariu and P. Todorova, A Fair Resource

Allocation Protocol for Multimedia Wireless Networks, IEEE Transactions on

Parallel and Distributed Systems, 14(1), January 2003, 63 – 71.

[Malpani95] R. Malpani, J. Lorch and D. Berger, Making World Wide Web caching

servers cooperate, Proceedings of the 4th International WWW Conference, Boston,

MA, December 1995.

[Markatos98] E. P. Markatos and C. E. Chronaki, A TOP-10 approach to prefetching

on Web, Proceedings of INET’98.

[Matthews00] W. Matthews and L. Cottrel, The PingER Project: Active Internet

Performance Monitoring for the HENP Community, IEEE Communications

Magazine, May 2000.

[Medina00] A. Medina, I. Matta and J. Byers, On the Origin of Power Laws in

Internet Topologies, ACM SIGCOMM, 30(2), 2000.

[Michel98] S. Michel, K. Nguyen, A. Rosentein, L. Zhang, S. Floyd and V. Jacobson,

Adaptive Web Caching: Towards a New Global Caching Architecture, Journal of

Computer Networks and ISDN Systems, 1998.

[Molnár99] S. Molnár, T. D. Dang and A. Vidacs, Heavy-Tailedness, Long-Range

Dependence and Self-Similarity in Data Traffic, Proceedings of 7th International

Conference on Telecommunication Systems, Modelling and Analysis, March 1999,

Nashville, USA,18-21.

[Nielsen97] J. Nielsen, Zipf Curves and Website Popularity,

 - 194 -

http://www.useit.com/alertbox/zipf.html

[Padmanabhan96] V. N. Padmanabhan and J. C. Mogul, Using predictive prefetching

to improve World Wide Web latency, Proceedings of Sigcomm’96.

[Palpanas99] T. Palpanas and A. Mendelzon, Web prefetching using partial match

prediction, Proceedings of WCW’99.

[Patterson03] C. A. Patterson, R. R. Muntz and C. M. Pancake, Challenges in

Location-Aware Computing, IEEE Pervasive Computing, 2(2), 2003, 80 – 89.

[Paxson95] V. Paxson, S. Floyd, Wide area traffic: The Failure of Poisson Modeling,

IEEE/ACM Transactions on Networking, 3(3), 1995.

[Paxson97] V. Paxson, End-to-End Internet Packet Dynamics, ACM SIGCOMM,

Computer Communication Review, 27(4), October 1997, 139-154.

[Philips87] E. M. Philips and D. S. Pugh, How to Get a Ph.D., Open University

Press, 1987.

[Podlipnig03] S. Podlipnig and L. Böszörményi, A Survey of Web Cache

Replacement Strategies, ACM Computing Surveys, 35(4), December 2003, pp. 374 –

398.

[Povey97] D. Povey and J. Harrison, A distributed Internet cache, Proceedings of the

20th Australian Computer Science Conference, Sydney, Australia, February 1997.

[Rabinovich98] M. Rabinovich, J. Chase and S. Gadde, Not all hits are created equal:

cooperative proxy caching over a wide-area network, Computer Networks and ISDN

System, 30(22 – 23), November 1998, 2253 – 2259.

[Ramakrishnan99] K. K. Ramakrishnan and S. Floyd, A proposal to Add Explicit

Congestion Notification (ECN) to IP, RCF 2481, January 1999

[Reddy98] M. Reddy and G.. P. Fletcher, An Adaptive Mechanism for Web Browser

 - 195 -

Cache Management, IEEE Internet Computing, January-February, 1998

[Relais98] Relais: cooperative caches for the World Wide Web, 1998

[Ren02] F. Ren, Y. Ren and X. Shan, Design of a Fuzzy Controller for Active Queue

Management, Computer Communication, 25, 2002, 874-883

[Resnick97] S. I. Resnick, Heavy Tail Modeling and Teletraffic Data, The Annals of

Statistics, 25(5), 1997, 1805-1869

[Rodriguez99] P. Rodriguez, C. Spanner and E. W. Biersack, Web caching

architecture: hierarchical and distributed caching, Proceedings of WCW’99.

[Rousskov98] A. Rousskov and D. Wessels, Cache Digest, Proceedings of 3rd

International WWW Caching Workshop, June 1998.

[Sanghi93] D. Sanghi, A. Agrawala and B. N. Jain, Experimental Assessment of

End-to-End Behavior on the Internet, Proceedings of the IEEE Infocom’93, San

Francisco, USA, March 1993, 867-874.

[Shim99] J. Shim, P. Scheuermann and R. Vingralek, Proxy Cache Algorithms:

Design, Implementation, and Performance, IEEE Transactions on Knowledgement

and Data Engineering, 11(4), January/August 1999, 549-562

[SIGCOMM] The Internet Traffic Archive, ACM SIGCOMM Special Interest Group

on Data Communications, http://ita.ee.lbl.gov/index.html

[Stankovic98] J. A. Stankovic, M. Spuri, K. Ramamritham, G. C. Buttazzo, Deadline

Scheduling for Real-Time Systems, EDF and Related Algorithms, Kluwer Academic

Publishers, 1998

[Tan94] G. Y. Tan, G. S. Hura, A Petri-net-based Modeling Assisted Software

Environment (MASE) tool, Proceedings of Computer Software and Applications

Conference, 439 – 444, 1994.

 - 196 -

[Tanenbaum96] A. S. Tanenbaum, Computer Networks, 3rd Edition, Prentice Hall,

1996

[Taqqu03] M. S. Taqqu, Fractional Brownian Motion and Long-Range Dependence,

in Theory and Applications of Long-Range Dependence, P. Doukhan et al., Eds.,

Birkhuser 2003, 5-38.

[Tewari98] R. Tewari, M. Dahlin, H. Vin and J. Kay, Beyond hierarchies: design

considerations for distributed caching on the Internet, Technical Report TR98-04,

Department of Computer Science, University of Texas at Austin, February 1998.

[Valloppillil98] V. Valloppillil and K. W. Ross, Cache array routing protocol v1.0,

Internet Draft, 1998, http://icp.ircache.net/carp.txt

[VTune] Intel Vtune, http://developer.intel.com/software/products/vtune/

[Wang99] J. Wang, A Survey of Web Caching Schemes for the Internet, ACM

Computer Communication Review, 29(5), 1999, 36 – 46.

[Wang97] Z. Wang, Cachemesh: a distributed cache system for World Wide Web,

Web Cache Workshop, 1997.

[Weiser91] M. Weiser, The Computer for the Twenty-First Century, Scientific

American, September 1991, 94-104.

[Wessels97] D. Wessels and K. Claffy, Internet cache protocol (ICP), version 2, RFC

2186, 1997.

[Wessels01] D. Wessels, Web Caching, O’Reilly & Associates Inc., 2001.

[Willinger98] W. Willinger, V. Paxson and M.S. Taqqu, Self-similarity and

heavy-tails: Structuring Modeling of Network Traffic, A Practical Guide to Heavy

Tails: Statistical Techniques and Applications, Hirkhauser, 1998.

[Willinger03] W. Willinger, V. Paxson, R. H. Hiedi and M. S. Taqqu, Long-Range

http://developer.intel.com/software/products/vtune/

 - 197 -

Dependence and Data Network Traffic, Theory and Applications of Long-Range

Dependence, P. Doukhan et al., Eds., Birkhuser 2003, 373-408.

[Wong01a] A. K. Y. Wong, T. S. Dillon, W. W. K. Lin and M. T. W. Ip, M2RT: A Tool

Developed for Predicting the Mean Message Response Time for Internet Channels,

Computer Networks, vol. 36, 2001.

[Wong01b] A. K. Y. Wong and J. H. C. Wong, A Convergence Algorithm for

Enhancing the Performance of Distributed Applications running on Sizeable

Networks, International Journal of Computer Systems Science & Engineering, 16(4),

2001, 229-236.

[Wong02a] A. K. Y. Wong, W. W. K. Lin, M. T. W. Ip and T. S. Dillon, Genetic

Algorithm and PID Control Together for Dynamic Anticipative Marginal Buffer

Management: An Effective Approach to Enhance Dependability and Performance for

Distributed Mobile Object-Based Real-time Computing over the Internet, Journal of

Parallel and Distributed Computing (JPDC), 62, 2002, 1433-1453.

[Wong02b] A. K. Y. Wong, M. T. W. Ip and T. S. Dillon, M3RT: An Internet

End-to-End Performance Measurement Approach for Real-Time Applications with

Mobile Agents, Proceedings of the ISPAN'’02, 2002.

[Wong03] A. K. Y. Wong, M. T. W. Ip and R. S. L. Wu, A Novel Dynamic Cache

Size Adjustment Approach for better Retrieval Performance over the Internet,

Journal of Computer Communications, 26(14), 2003, 1709-1720.

[Wong97] S. T. C. Wong and H. K. Huang, Networked Multimedia for Medical

Imaging, Journal of Multimedia, April-June 1997.

[Wu00] K. L. Wu and P. S. Yu, Latency-Sensitive Hashing for Collaborative Web

Caching, Computer Networks, 33(1-6), 633 – 644, 2000.

 - 198 -

[Wu02] S. L. Wu, A Framework for Scalable (Mobile Agent Based) Distributed

Mining of Association Rules over the Internet, MPhil Thesis, Department of

Computing, Hong Kong Polytechnic University, Hong Kong SAR, PRC, 2002.

[Wu03] R. S. L. Wu, M. T. W. IP and A. K. Y. Wong, LDC-CM: A Novel Model for

Dynamic Cache Size Adjustment, Proceedings of the PDPTA’03, Las Vegas, USA,

June 2003.

[Wu04] R. S. L. Wu, A. K. Y. Wong and T. S. Dillon, E-MACSC: A Novel Dynamic

Cache Tuning Technique to Maintain the Hit Ratio Prescribed by the User in Internet

Applications, Proceedings of the International Conference on E-business and

Telecommunication Networks (ICETE2004), Portugal, August 2004, 152-159.

[Wu05a] R. S. L. Wu, A. K. Y. Wong and T. S. Dillon, RDCT: A Novel

Reconfigurable Dynamic Cache Tuner to Shorten Information Retrieval Time over

the Internet, International Journal of Computer Systems Science & Engineering,

2005.

[Wu05b] R. S. L. Wu, A. K. Y. Wong and T. S. Dillon, E-MACSC: A Novel Dynamic

Cache Tuning Technique to Reduce Information Retrieval Roundtrip Time over the

Internet, Journal of Computer Communications (Accepted and will appear in the

journal).

[Yang] J. Yang, W. Wang, R. Muntz and J. Wang, Access driven Web caching, UCLA

Technical Report #990007.

[Young91] N. E. Young, On-line Caching as Cache Size Varies, Proceedings of the

Symposium on Discrete Algorithms, 1991.

[Yu99] Philip S. Yu and Edward A. MacNair, Performance Study of a Collaborative

Method for Hierarchical Caching in Proxy Servers, IBM Watson Research Center,

 - 199 -

Research Report.

[Zipf] Zipf Curves and Website Popularity, http://www.useit.com/alertbox/zipf.html

APPENDICES

A1 SCHOLARSHIP BY RESEARCH MERITS

 - 200 -

 - 201 -

A2 REVIEWERS’ COMMENTS
The 2nd International Conference on E-business and Telecommunication

Networks (ICETE 2004)

This paper describes an interesting piece of work on dynamic cache tuning.

Though the work described therein is an enhancement of the authors' previous model

MACSC, the suggested enhancement, which leverages on the relative object

popularity profile, has led to significant improvement over the original MACSC

approach.

The model deserves more detailed studies, particularly how the parameters

should be optimized for different types of systems and environments.

The Second International Symposium on Parallel and Distributed Processing

and Applications (ISPA’04)

A novel model for dynamic cache size tuning is proposed. The performance

evaluation is also provided. It is basically well-written and of interest.

In this article, the authors have given us a thorough discussion about how to

keep the hit ratio of web caches at a consistent level. The topic is novel and

interesting. Intensive theoretical analysis and extensive experiment verification have

been provided to prove the effectives of authors`s cache size tuning model.

The discussion about how to keep a specific hit ratio but not to gain a hit ratio

as high as possible is interesting and novel.

 - 202 -

The 3rd International Conference on Information Technology and Applications

(ICITA'2005)

This paper introduces a model to tune the cache size adaptively. The model

proposed is interesting, and show increased performance in information retrieval.

The Fourth International Conference on Mobile Business (mBusiness 2005)

Original research has been reflected and a novel approach is proposed.

This paper proposes a novel approach to shorten the information retrieval time

by a small form factor client in a pervasive computing environment. Relative work,

its limitations and how this research proposes to address this gap. They are well

presented. Future propositions to test this approach are also well taken.

The authors' primary contribution appears to be using their RTPD method in

conjunction with MACSC. This could be made clearer in the paper (and even in

the paper title), i.e. that the real contribution is adding RTPD.

	theses_copyright_undertaking
	b19579901.pdf
	ACKNOWLEDGEMENT
	 ABSTRACT
	 LIST OF REFEREED PUBLICATIONS
	 LIST OF FIGURES
	 LIST OF TABLES
	 TABLE OF CONTENTS
	CHAPTER 1 BACKGROUND AND SCOPE
	1.1 INTRODUCTION
	1.2 MOTIVATION AND SCOPE OF PROBLEM
	1.3 THE DRIVING FORCES
	1.4 POTENTIAL CONTRIBUTIONS TO MOBILE AND TELEMEDICINE APPLICATIONS

	 CHAPTER 2 EVALUATION OF PREVIOUS RESEARCH
	2.1 INTRODUCTION
	2.2 CLASSIFICATION OF CACHING TECHNIQUES
	2.3 WEAKNESS OF PREVIOUS TECHNIQUES
	2.4 CONNECTIVE SUMMARY

	 CHAPTER 3 PROBLEM STATEMENT AND MEHODOLOGY
	3.1 INTRODUCTION
	3.1.1 MOBILE DISTRIBUTED SYSTEMS (MDS)

	3.2 PROBLEM DEFINITION
	3.3 DEFINITION OF TERMS
	3.3.1 PROBLEM STATEMENT

	3.4 METHODOLOGY
	3.5 CONNECTIVE SUMMARY

	 CHAPTER 4 OVERVIEW OF SOLUTIONS
	4.1 INTRODUCTION
	4.2 OVERVIEW OF SOLUTIONS
	4.2.1 MACSC FRAMEWORK
	4.2.2 MACSC(PE)
	4.2.3 MACSC(M3RT)
	4.2.4 MACSC(F-PE)
	4.2.5 RTPD/MACSC(PE)
	4.2.6 RTPD/MACSC(F-PE)

	4.3 CONNECTIVE SUMMARY

	CHAPTER 5 THE MACSC CONCEPTUAL FRAMEWORK
	5.1 INTRODUCTION
	5.2 MACSC
	5.3 COMPENSATION MEASURES FOR MACSC
	5.3.1 INITIALIZATION COMPENSATION
	5.3.2 DEVIATION BEHAVIOR COMPENSATION

	5.4 Connective Summary

	 CHAPTER 6 THE POINT-ESTEMATE APPROACH
	6.1 INTRODUCTION
	6.2 THE MACSC(PE) APPROACH
	6.2.1 CENTRAL LIMIT THEOREM
	6.2.2 POINT-ESTIMATE DETAILS

	6.3 MACSC(PE) VERIFICATION
	6.3.1 SETUP AND ENVIRONMENT
	6.3.3 VERIFICATION WITH PRE-COLLECTED DATA TRACES
	6.3.4 SHORTCOMINGS OF THE MACSC(PE)
	6.3.4.1 UNPREDICTABLE COMPUTATION TIME
	6.3.4.2 SERIOUS HIT RATIO OSCILLATIONS

	6.4 Connective Summary

	 CHAPTER 7 ADAPTION OF CONVERGENCE ALGORITHM
	7.1 INTRODUCTION
	7.2 THE MACSC(M3RT) APPROACH
	7.2.1 CONVERGE ALGORITHM – M3RT
	7.2.2 DETAIL EXPLAINATION OF MACSC(M3RT)

	7.3 MACSC(M3RT) VERIFICATION
	7.3.3 VERIFICATION WITH PRE-COLLECTED DATA TRACES

	7.4 CONNCECTIVE SUMMARY

	 CHAPTER 8 OPTIMAL DYNAMIC CACHING SIZE TUNING
	8.1 INTRODUCTION
	8.2 THE MACSC(F-PE) APPROACH
	8.3 MACSC(F-PE) VERIFICATION
	8.3.3 VERIFICATION WITH PRE-COLLECTED DATA TRACES

	8.4 CONNECTIVE SUMMARY

	 CHAPTER 9 REAL-TIME TRAFFIC PATTERN DETECTION
	9.1 INTRODUCTION
	9.2 DIFFERENT TYPES OF TRAFFIC PATTERNS
	9.3 REAL-TIME TRAFFIC ANALYSIS
	9.3.1 THE KS TEST
	9.3.2 THE RTPD

	9.4 CONNECTIVE SUMMARY

	 CHAPTER 10 VALIDATION OF THE MACSC FRAMEWORK
	10.1 INTRODUCTION
	10.2 PROPOSED IMPLEMENTATION SOLUTION
	10.3 VALIDATION DETAILS
	10.3.1 SETUP AND ENVIRONMENT
	10.3.2 EXPERIMENTAL RESULTS

	 CHAPTER 11 CONTRIBUTION TO MOBILE AND TIME-CRITICAL APPLICATIONS
	11.4 APPLYING THE RTPD/MACSC APPROACH TO SHORTEN THE ROUNDTRIP TIME FOR MOBILE DIAGNOSTIC INFORMATION RETRIEVAL IN TELEMEDICNE
	11.4.2 PRELIMINARY CONCLUSION

	11.5 CONNECTIVE SUMMARY

	 CHAPTER 12 CONCLUSION, FUTURE WORK AND ACHIEVEMENTS
	12.1 OVERALL CONCLUSION
	12.2 RESEARCH METHODOLOGY ADAPTATION
	12.3 AREAS OF FUTURE WORK
	12.4 ACHIEVEMENTS

	 REFERENCES
	 APPENDICES
	A1 SCHOLARSHIP BY RESEARCH MERITS
	A2 REVIEWERS’ COMMENTS

