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Abstract

The approximation of fractal curves in the form of Brownian functions by two-layer
feed-forward neural networks is studied. The network parameters are restricted within
a finite range. For given realizations of the Brownian target function, all local minima
in the output error measure with appreciable sizes of basins of attraction are located
and found to be about a dozen in number in each case. The error follows a log-
normal distribution which can be explained by a distribution of mean squared normal
deviates. Its mean value exhibits simple scaling relationships with the number of
hidden neurons and the number of training patterns. Our numerical findings are

explained by comparison with a simple piecewise linear fit approach.
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Chapter 1

Introduction

Neural network is an inter-disciplinary field of research. Its study involves knowledge
from neurobiology, cognitive science, computer science, statistical physics, etc. We
will first give a brief overview of this subject. The motivation and the scope of the

current work will then be introduced.

1.1 Biological neural networks

The human nervous system may be the most sophisticated structure in the world. It
contains over 10!! neurons [1]. A neuron consists of a cell body, dendrites and an
axon. The dendrites have branch structures which receive inputs from other cells.
The axon carries the neuron’s output to the dendrites of other neurons. The junction
between an axon and a dendrite is called a synapse.

The connection among neurons is very extensive. Each neuron is connected to
1000 others. There are therefore more that 10" synapses in the human brain. Neu-
rons communicate among themselves through electrical signals. A neuron collects
signals from its dendrites and sums up all influences which can either be excitatory or
inhibitory. If the signal exceeds a certain threshold, the neuron then fires an output
signal through the axon.

The brain is thus a massively parallel computational machine. Although its switch
time is only a few milliseconds compared with nanoseconds for modern computers,

its performance is definitively superior in certain areas such as pattern or speech

recognition.



1.2 Artificial neural networks

An artificial neural network is an abstract simulation of a real nervous system. The
first model was proposed by McCulloch and Pitts in 1943 in which a neuron was
modeled as a binary device with a fixed threshold [2]. Subsequently, Hebb proposed
self-organization in the network connections in a way that the signals themselves
could strengthen the synaptic connections carrying them. This forms the foundation
of the understanding of learning in nervous systems [1].

Further development of artificial neural networks may be classified into two ap-
proaches in general. One is a more biological approach. It aims at understanding
of the functions of real nervous systems. There are numerous interesting and very
active areas including anatomy and functional structure of the nervous system, signal
transmission between neurons, cognition, attention, etc.

Another approach is more computation orientated. Conventional digital comput-
ers follow the Von Neumann paradigm. Computations follow very clear and explicit
logics. This proves to be an extremely successful paradigm. Nevertheless, there are
still certain drawbacks. Von Neumann computers may be difficult to program for
complicated applications. Parallelization is often difficult. Fault tolerance in many
case may not be satisfactory and a simple error in the program may be able to bring
down the system completely.

As a result, neural network can be a useful alternative computational paradigm.
Their construction and operation do not necessarily follow that of real neural networks
but are engineered in order to perform specific applications. Most often, practical ar-
tificial neural networks are simulated on serial or parallel Von Neumann computers.
Special hardware implementation is expensive and can only be found when compu-
tational speed is crucial.

There are many different types of neural network architecture. More important
ones include the Hopfield network, perceptrons, multi-layer feed-forward networks,
recurrent networks, Boltzimann machine, etc 3].

In neural network approximation, too many weights lead a curve fitted to follow
all the small details or noise but is very poor for interpolation and extrapolation.
The output function of the network has often fitted the data by developing some

dramatic oscillations. Such function is said to be over-fitted to the data and gives a



poor representation of target function. The simple way to determine over-fitting is
to divide the data into two parts. The training set consists mostly of data and the
rest is testing set. If over-fitting occurs, the minimum root mean square error with
respect to the training set decreases monotonically with weight increases, while the
error of testing set is not. In our work, the degrees of freedom of networks are very
smaller than the number of training pairs. The curves of target functions and output

functions are also examined such that no over-fitting occurs.

1.3 Scope of thesis

Fundamental properties of neural networks of a certain architecture can often be
studied by examining the learning of simple and well quantified tasks. Random un-
correlated patterns, for example, are convenient and widely used choices. In this
work, we conduct a systematic study on approximation of a sophisticated vet well
understood class of functions by the widely used two-layer feed-forward neural net-
works. The functions used are fractals obeying simple scaling properties. It turns out
that the statistical properties of learning also inherit certain scaling behavior which
can be understood easily.

In Chapter 2, we introduce the fractal function to be approximated, details of
the neural network architecture and the training method. Chapter 3 presents all
numerical measurements, focusing on the statistical properties of error measures of the
approximations and in particular scaling behaviors. Chapter 4 examines analytically
a simple curve fitting approach which explains most numerical results in Chapter 3.

We conclude in Chapter 5 with some further discussions.



Chapter 2

Problem definition

2.1 Brownian functions as target functions

The fractal functions we choose to study in this work as the target functions are
Brownian functions. They are self-affine fractals [4]. Denote the target function by
T(z). The input z is limited to —{, < x < {,. The Brownian functions we consider
are displacement-time profiles of Brownian particles in one dimension. The input z
is analogous to time while T'(z) is analogous to displacement. We assume that the
particle starts at the origin and thus T(—{,;) = 0. Consider a set of N equally spaced
discrete points at

Ty = —lz + pAx (2.1}

where Az = 2{,/N and = 1,2, ... N. The function is defined recursively at these
points by

T(@,) = T(@u-1) + 6, (2:2)
The displacement 4, is assumed to be an independent normal deviate with mean 0

and standard deviation

1
% =1\% (2.3)

The standard deviation T'(z,) is thus

O'T(.T“) = % (24)

In particular, or{l;) = 1. The value T'({,) at the other end point [, corresponding
to the total displacement, thus also follows a normal distribution with unit standard

deviation.



In principle, we obtain a Brownian function only when N — co. At finite N,
T(z) is a pre-fractal function defined at discrete points at z,. Figure 2.1 shows an

example of a target function generated using the above approach for N = 125.

2.2 Architecture and bounded weight space

This work focuses on two-layer feed-forward neural networks [3, 5]. They are widely
used since they are relatively simple and can be trained for a large variety of problems.
It has been proved that a two-layer feed-forward network is a universal function
approximator [6, 7). Given sufficient number of neurons, it can approximate any
continuous function up to arbitrary accuracy [8, 9}.

Since we are approximating a one to one function 7T(z), the network we consider
has one input and one output. The architecture is shown in Fig. 2.2. The circles
denote the neurons and the lines represent the synaptic connections. Assume that
there are n neurons in the lower layer, called the hidden layer. The ¢th hidden neuron

receives the input value z and produces the activation
Vi(z) = tanh{w!Vz + 6) (2.5)

for i = 1,2..n. They are then passed to the output neuron which generates the overall

network output
O(z) = Y wPVi(z) + 6@ (2.6)
i=1

The network parameters wfl) and w§2) are the weights of the synaptic connections
and 9,{1) and 8 are biases. Biases can also be regarded as weights of connections to
inputs fixed at unity. The output neuron acts on the activation of the hidden neurons
linearly. In contrast, the transfer function of the hidden neurons is the hyperbolic
tangent function and leads to the overall nonlinearity of the network [10].

The state of the network is determined by the network parameters which can be
expressed conveniently using a weight vector

-

W = (wf", 6", w®,6?) (2.7)
The number of parameters, which equals the degree of freedom of the network, is
ny=3n+1 (2.8)

8



1.2 Y T T T T T T

Figure 2.1: An example of a target function 7'(x) in the form of a Brownian function
with N = 125 sample points (dotted line). Also shown is the output function O(z)
of a trained neural network with n = 5 hidden nodes (solid line).



output node

hidden nodes

input

Figure 2.2: Architecture of a two-layer feed-forward neural network with one input,
n hidden nodes and one cutput node.
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The vector W is thus defined in an n-dimensional weight space.

In general, each network parameter can take any real value. However, as will be
explained later, extreme values lead to problematic truncation errors in the numerical
calculations and prohibit accurate computations. They are in fact also irrelevant
for most practical applications. Therefore, we restrict all parameters to the range

[-Lw, Lw] and we put Ly = 10. The weight vectors we consider are all inside a

bounded region in the weight space defined as
Wa = {W: | W< Lw) (2.9)

where W; denotes the ith component of w.

2.3 Training using conjugate gradient method

An error measure for the approximation of the target function by a neural network

is defined as N
B=5 3 [06) - T@)" (2.10)

A network is trained by minimizing E with respect to W. The most popular method
for training a multi-layer feed-forward network is back-propagation, which is essen-
tially a steepest decent method. It is well-known that landscape of F is complicated.
We have found that training with back-propagation practically always ends up at
nearly flat plateau instead of local minima. A more accurate conjugate gradient
method for training is therefore used. We adopt basically the Polak and Ribiere ap-
proach of conjugate gradient method [11]. There are however slight modifications to
be explained below since we consider network parameters constrained in a bounded
region.

The network is first initialized with random weights and biases before training
commences. It is conventional to choose parameters in the range [-1,1] with uniform
probability. The initial parameters are thus described by a random vector in a region
W; defined by

Wr={W: |Wi|<1} (2.11)
The conjugate gradient method involves successive line minimizations along conjugate

directions. Assume that the jth line minimization session starts from W‘j and is

11
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carried out along direction h_; in the weight space. An initial interval (&,b) is chosen

as

a=W; (2.12)
and -
T ¥
b=ad+ —= (2.13)
[ Ay |

The golden section search is applied along the downhill direction of h_; until a new
triplet interval (&',5,6') is found where the error measure at & is the least of three points.
The minimium point is obtained along h:;, by using Brent's method which applied

parabolic interpolation. The formula below is used to find the minimum of a parabola

through three points E(&), E(b) and F(¢).

- -,

(5 &)2E®) — E@) - (b- éﬂE(;J) - E(ﬁ‘])l (2.14)

-

5

— —

1 —_
2 (b-a)(E®) - E@) - (6-0)[E®) - E@)

If d is between & and 5, the point b replaces ¢ and d replaces 5, otherwise; the point
b replaces @ and d replaces b. Convergence in the line search is assumed when the
fractional change in E from successive steps in Brent’s method is less than 10710,
However, there are further constraints in the line search. First, the parameter vector
has to be kept inside the bounded weight space Wpg. Furthermore, we restrict the

size of the displacement by enforcing
| Wi — W, |<d (2.15)

and we put d = 0.01. This is because we want to have a well-defined flow pattern in
the minimization process to study quantities such as sizes of basins of attraction. We

have found that further reducing d does not alter our results within our numerical

errors.
Following Ref. [11], the conjugate direction k; along which the line search is

carried out follows

s = Gy + T ) i (2.16)
95 9
where
§; = —VE(W;) (2.17)

12



If Wj+1 is at the boundary of Wg and the downhill direction of EjH points outside
Ws, HJ-+1 is replaced by an appropriate projection on the boundary so that mini-
mization can be constrained to Wg. A candidate for a minimum is found when the
fractional change in E between successive line search sessions is less than 10718,

The resulting candidate is not always a minimum but can often be a saddle point.
This is at first sight surprising. The slightest perturbation inherited from the random
initial conditions should have allowed the network to flow pass an unstable point.
The problem lies with the existence of valleys in the error landscape aligned along a
high symmetry axis, such as one in which two weights are equal. During flow along
the valley, Wj attains the symmetry exactly within our machine precision. It thus
loses the tiny perturbation needed to escape from a saddle point at the bottom of the
valley.

To overcome the problem, we perturb the candidate for the minimum. Specifically,
we reposition Wj randomly in a small hypercube with side 0.001 centered at ﬁ:’j. That
means every weight and bias is perturbed by an independent random number with
absolute value smaller than 0.0005. Care is taken to bring W; back to the bounded
region Wag if it crosses the boundary. The same approach of conjugate gradient search
is then conducted again. Upon the next convergence at the same tolerance of 10718,
we declare location of a minimum if the network configuration comes back to the
same candidate. Otherwise, search continues. The minimum can either be a local or
the global one.

We have found that there are abundances of valleys with near flat bottoms which
render location of minima very challenging. As a result, the exceptionally small
tolerance 10~'® is essential. Machine precision thus becomes a concern. e have
checked that our numerical results do not suffer from false minima or machine error
by detecting no significant change when the tolerance is shifted for example by two
orders of magnitude. We have set the boundary of the region Wg at Ly = 10. For
larger values, valleys with even more levelled bottoms arise and machine with higher
precision is needed to allow for a sufficiently small tolerance.

Natural gradient descent also leads to outperforms gradient descent in the tran-
sient, significnatly shortening or even removing plateaus in the transient generaliza-
tion that typically hamper gradient descent training [12, 13].It was recently proposed

by Amari as an alternative method for adapting the parameters of a statistical model

13



on-line using an underlying Riemannian parameter space to redefine the direction of
steepest descent. The training error is defined as the negative log likelihood of the
data under probabilistic model, then the direction of steepest descent in Riemannian
space is found by premulitplying the error gradient with the inverse of the Fisher
information matrix.

In our work, the geometry of error surfaces near mimima is a bottom of very
shallow steep-sided valley. Standard gradient descent will perform many small steps
in going down a long, narrow valley. Conjugate gradient method is more efficient to
pass through this region to reach a minimum. The performance of natural gradient
descent bases on gradient descent. We believe that its efficiency is between conjuage

gradient method and standard gradient descent for the problem like this.

14



Chapter 3

Numerical results

3.1 Geometry of error surfaces

The error measure E defined in Eq. (2.10) is a n;-dimensional function of all the
network parameters. In general, it has a rugged landscape. For a network with
n = 5 hidden neurons, the dimension is n; = 16 according to Eq. (2.8). We have
trained such a network using a Brownian target function with V = 125 sample points
and obtained an optimized set of parameters denoted by W,,. The vector Wm thus
corresponds to a minimum of E subject to the constrain of the bounded weight space
Ws.

The geometry of the error function at the neighborhood of a minimum is most
relevant to the efficiency of training. To visualize the geometry of such a high di-
mensional function, we can only resort to examination of cross-sections. We consider
one-dimensional cross-sections created by fixing all but one component in Wi Figure
3.1(a) shows five cross-sections produced by varying only the weights w,m connecting
the input and the hidden nodes for z = 1 to 5. Specifically, we plot the function
E(W,, + su}fl)) parametrized by s, where “"” denotes a unit vector. Similarly, Fig.
3.1(b) plots E{W,, + 59",(1)) which are cross-sections along the biases of the hidden
neurons. Finally, Fig. 3.1(c) plots E(W, +st{?)) and E(W,, +s6®) associated with
the weights and bias of the output node. Similar two-dimensional cross-sections have
been presented in Ref. [14] for different problems.

In Fig. 3.1, we observe that tuning some parameters create big changes in E

while some others lead to practically no variation. This actually corresponds to a
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local minimum W,, along axes of the network parameters wlm (a), 9,“) (b), 'w,(z) and

82 (c) respectively.
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valley with very levelled bottom discussed in Sec. 2.3. The popular back-propagation
method will crawl very slowly along such a valley in zig-zag manner [11). Conjugate

gradient method is much more efficient for problems like this.

3.2 Almost exhaustive search of minima

We consider again a fixed target function with N = 125 sample points. Totally
3000 independent conjugate training sessions are then carried out. Most minima are
reached far more than once and we have found only 18 distinguished local minima.
Mirror reflections in symmetrical parts of the weight space have been regarded as the
same minimum. We have repeated the calculation using two other target functions. 11
and 20 minima are found in these two cases respectively. We also count the frequency
f that each minimum is reached and is tabulated in Table 3.2 together with the
associated error measure E. The relative frequency, or probability of occurence, p is
obtained from p = f/3000 and the results are plotted in the form of bar charts in
Figs. 3.2(a), (b) and (c) for the three target functions respectively. Recall that in each
training session, we initialize the network parameter vector randomly in the region
W;. We are therefore only investigating minima with basins of attraction intersecting
W;. The volume of the basin of attraction of a minimum inside Wy is proportional
to p. We observe from Table 3.2 or Fig. 3.2 that one single minimum dominates
respectively in all three cases. These minima in general have small values of E, but
are not necessarily the global minimum such as in cases (a) and (c).

We observe that there are only about a dozen of minima with appreciable basins
of attraction. There are however 7 and 2 minima visited only once in case (a) and (c)
respectively according to Table 3.2. Minima with very small basins of attraction are
thus common. This also implies that we have not located all minima exhaustively in
the current scale of search.

All minima we have found lie on the boundary of the region Wg. That means
they would not be minima if we have not constrained the search in Wg. We check
that this is not an artifact of our algorithm as follow. We choose a random vector
inside Wg away from its boundary. The output function of this network is taken as
the target function. In subsequent training sessions, we can indeed reach this global

minima with error £ = ( inside Wpg without problem.

17



Table 3.1: The error measure E and the frequency of occurence f of all minima found.
Each of the columns (a), (b) and (c) lists data for a different target function. In each

case, 3000 training sessions have been conducted.

(2) (b) (c)
E/107°  f E/107%  f E/107° f
771 201 876 1874 460 83
779 1 959 2 472 134
786 2473 959 194 513 1677
796 1 1013 38 516 7
801 2 1023 659 520 3
817 1 1026 24 538 46
821 27 1028 25 547 319
839 115 1039 13 555 34
840 20 1042 7 565 1
857 1 1167 155 573
869 1 1168 9 634 4
899 1 787 60
903 68 . 793 12
936 2 797 37
949 2 888 2
950 76 894 29
987 7 1004 489
1000 1 1084 17
1100 1
1114 36

18
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Figure 3.2: Bar charts of the occurence probability p against error measure £ of all
local minima found. Three different target functions are considered for (a), (b) and

(c) respectively.
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3.3 Scalings of error measure £

We have just observed in the last section that every target function has a characteristic
distribution of minima. In the rest of this work, we will focus on statistical properties
averaged over an ensemble of target functions. Specifically, a different realization of
target function is used every time a minimum is obtained in a training session. We
also broaden the scope to study the effects of changing the number of hidden neurons
n in the network and the number of sample points N in the target function.

For arange of n and NV, we have obtained in each case 3000 minima using different
target functions as described above. The ensemble averaged error £ can hence be
calculated. Figure 3.3 plot £ as a function of IV for n = 2,3 and 5. We observe that
F rises from some small values at small V. In fact, if ¥ < ny, where n; is the number
of parameters in the network given in Eq. (2.8), the task is learnable and in general
we can have E = 0. The results presented focus on the N > n; case corresponding to
unlearnable tasks. As NV increases, the larger number of sample points lead to a more
complicated target function. The approximation thus becomes more difficult and E
increases. However, fdr even larger IV, E saturates. This occurs when the additional
sample points in the target function begin to add only fine details irrelevant for the
fitting with finite precision.

We now compare the three curves in Fig. 3.3 for different numbers of hidden
nodes n. For increasing values of n, £ becomes smaller since a larger network can
approximate finer details of the target function. Furthermore, £ saturates at a larger
value of V. This is because a larger network can fit through more sample points and
thus NV has to be larger until certain points will be irrelevant for the fitting. The
shape of the three curves are quite similar. They can be approximately collapsed
into a single curve by rescaling both £ and IV appropriately. Figure 3.4 plots E/n3

against N/n with 8 = 0.9, which gives the best collapse. This implies a scaling form
E =n"Pg(N/n) (3.1)

The scaling function g(z) is an increasing function which has practically converged to
a constant at z ~ 25. We have chosen to perform most of our computations for the
case n = 5 and N = 125, which is in the saturated regime.

We now examine E at saturation for n = 1 to 3 by setting NV = 25n. Each value

20
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of E has been averaged over 3000 realizations of target functions. The result is shown

in Fig. 3.5 in a log-log plot. The linear relation implies
E~n? (3.2}

which is a particular case of Eq. (3.1) for N/n > 25. We obtain a more objective
estimate of 8 = 0.942 from the slope of the fitted line in Fig. 3.5. At n = 5 and hence
N =125, £ = 8.18 x 1073 This value will be compared with other results later.

3.4 Statistical properties of output error

We investigate again the n = 5 and N = 125 case. The error measure E defined in
Eq. (2.10) is a squared error averaged over N sample points z,. For any given input

value z, define the output error € by
¢(z) = O(z) — T(x) (33)

We have obtained 30000 values of ¢ taken randomly at various input values from
3000 target and output function pairs. They are histogrammed and the probability
distribution P(¢) is hence calculated. Figure 3.6 shows the result. The distribution

P(e) is well fitted by the normal distribution

1 €2
Ple}) = — - 3.4
0= op {7 | 3.4
with a standard deviation o, = 0.0855. From Eqgs. (2.10) and (3.3), we should have
E =277 (3.5)

and hence ¢, = 0.0904 using the value of E found in Sec 3.5. The discrepancy is due
to slight deviations from the normal distribution especially for large magnitudes of e.

We also studied the auto-correlation function of e(z)} defined as
C(r) =< e(z)e(z + 1) > (3.6)

The brackets denote averaging over both realizations of target functions and input
values r satisfying £ > —I, and £+ < [,. We have computed C(r) for 0 <r < 2/,
from 3000 target and output function pairs. Figure 3.7 shows the correlation function
for r < 0.65. At r = 0, C(r) reduces to o2. It decreases quickly as r increases and
then oscillates between positive and anti-correlation. It can be regarded as a short

range correlation since it practically vanishes for 0.4 < r < 2.
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Figure 3.5: Log-log plot of the average error measure £ against the number of hidden
nodes n at saturation. The slope of the fitted line is —0.942.
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P(e)

Figure 3.6: Probability distribution P(¢) of the output error €. The fitted line follows
the normal distribution with standard deviation o, = 0.0855.
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Figure 3.7: Auto-correlation function C(r) of the output error e.
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3.5 Statistical properties of error measure F

We now examine the distribution of the 3000 values of the error measure £ obtained
in 3000 independent training sessions using different target functions. From the his-
togram of the values, the probability distribution P(E) is calculated. Figure 3.8

shows the result. We have found that the data can be nicely fitted by a log-normal

distribution given by

_ 1 (InE —w)®
P(E) = NG exp {———20‘2 In E} (3.7)

It means that In £ follows a normal distribution with mean g; and standard de-
viation Ing;. Note that the distributions of £ and In E are related by P(E) =
P{In E)d(ln E)/dE and the last In E term in the exponent in Eq. (3.7) comes from
the d(In E)/dE factor. The fitted curve is shown in Fig. 3.8 as a solid line. We obtain
th = —4.86 and oy = 0.251. The value exp(< In E >) = exp{u) = 7.75 x 1072 is close
to E = 8.18 x 10~3 obtained in Sec. 3.5. For this rather narrow distribution of E,
similarity between the two values are expected.

The origin of the log-normal form of P(E) is purely empirical. It is known that
log-normal distributions often result from multiplicative processes. We have suspected
that F can be expressed as a product of random numbers each of which may quantify
the progress in a certain stage of the minimization process. However, we have not
observed any indication of multiplicative nature when examining the change in the
intermediate values of £ during training.

We therefore suggest an alternative fit for the distribution P(E) based on the
distribution P(¢) of the network output error e. First note that the error measure £

defined in Eq. (2.10) can be expressed in terms of € as
2= L5 e, 59)
- — e(g_; ) 3.8
N 2 <

If N — oo and the correlation of ¢ is of sufficiently short range, central limit theorem
implies that P(E) follows a normal distribution. However, for the moderate value of
N in our consideration, P(F) deviates significantly from a normal one.

In Sec. 3.4, it has been shown numerically that ¢ follows a normal distribution
given in Eq. (3.4). Let

y=¢ (3.9)
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Figure 3.8: Probability distribution P{£) of the error measure E. The solid and the
dotted lines are fits using Eqs. (3.7) and (3.17) respectively.
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The distribution of y is given by
de
P(y) = P(e) (2@) (3.10)
The factor 2 comes from consideration of both +e. Using Eq. (3.4), we get

1
P(y) = N exp{—z—ig} (3.11)

It has also be reported in Sec. 3.4 that the values of ¢ at neighboring sample input

points are correlated. The values of y are therefore also correlated. Since the corre-
lation is of short range, we assume that it effectively extends across A sample input

values. The effective number of independent terms m is given by
m = N/A (3.12)

According to Eqs. (3.8) and (3.9), E is the average of y over all sample points.

It should be approximately equal to the average over only the independent values.

Therefore, we have

] m
E=— ; Y (3.13)
where the m values of y denoted by y, are now independent.
Let .
S = Zl Ya (3.14)

so that £ = S/m. The distribution of S is given by the m-fold convolution of P(y)
defined in Eq. (3.11). Using induction, it is straight-forward to prove that

1 S e S
P65 (a) == (22) (319

The distribution of £ is given by

P(E) = P(S)(d_E (3.16)
and we get -

We fit the numerical data with this expression of P(E) and the resulting curve is

also shown in Fig. 3.8 as a dotted line. The fitted parameters are o, = 0.0889 and
m = 32.9.
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This value of o, is in good agreement with 0.0855 obtained directly from P(e) in
Section 3.4. From the result, there are effectively 33 independent values of € out of
N = 125 samples. The correlation extends across A = N/m = 3.80 consecutive input
values. This corresponds to input values differing by up to » = 2L;/m ~ 0.0608.
Comparing with the auto-correlation function of ¢ in Fig. 3.7, this value seems to
underestimate the range of the correlation. This may be because of the presence
of anti-correlation which cancels partly the effects of correlation and gives a short
effective range.

From Fig. 3.8, the numerical data are fitted quite well by both the log-normal
distribution in Eq. (3.7) and the distribution of the mean squared normal deviates
in Eq. (3.17). Since we have not identified a reason for the log-normal form, it is
tempting to conclude that it arises simply from its apparently accidental similarity
to Eq. (3.17). However, closer examination of Fig. 3.8 reveals that the log-normal
distribution in fact gives a slightly better fit. This is also true for other networks
with more hidden neurons investigated in smaller scale simulations. Discrepancy
in the description using Eq. (3.17) is not surprising in view of the over-simplified
correlation assumed. However, we do not know if there is any physical reason behind

the log-normal distribution which better describes the numerical data.
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Chapter 4

Piecewise linear fit

The approximation of functions using neural networks can be regarded as a curve
fitting approach. There are numerous other fitting techniques available. Many prop-
erties we have observed here for the neural network approximation are also shared
by other fitting methods. In this chapter, we consider a particularly simple although
not very accurate approach of piecewise linear fit. It gives simple qualitative and
sometimes quantitative explanations of most numerical results in this work.

For the two-layer network we consider in this work with n hidden neurons, the
total number of weights and biases is n; given in Eq. (2.8). It is only fair to make
comparisons with an alternative fitting method involving also n,; degrees of freedom.
We consider a continuous function s(z) consisting of n; — 1 linear segments of equal

width. Assume that every segment contains M sample input values so that
N=(n;—-1)M =3nM - (4.1)

where Eq. (2.8) is used. A sample input point z, is on the boundary of a segment if
 is a multiple of M, i.e. 4 = aM for some integer «.

The piecewise linear function s$(z) can be completely specified by its values at all
boundary points and thus has n; free parameters s(zqn) where a =0 tony — 1. It
is intuitively clear that s(z) is also a universal approximator. The precision can be
made arbitrarily high provided that ny is sufficiently large. To construct a piecewise
linear function s(z) which approximates a target function T(z), we could apply a
least square fit. However, for simplicity in further analysis, we adopt a trivial fitting

procedure by setting the free parameters as

$(Zam) = T(Tam) (4.2)
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We now examine the accuracy of this simple fitting approach. Following our

previous notations, we denote the error of the fit at input value z again by ¢(z), i.e.
e(z) = s(z) - T(z) (4.3)

Since both s and T follows normal distributions, ¢ also follows a normal distribution
as observed numerically in Sec. 3.4 for neural network approximation.

According to Eqgs. (4.2) and (4.3), €(zon) = 0, which means that the error
vanishes at the end points of all segments. Every segment of ¢ is thus isclated and
has identical statistical properties. From the scaling property of Brownian functions

in Eq. (2.4), the standard deviation g, of € scales with the number of sample points

M in a segment as
M

Te ﬁ (44)
The pre-factor will also be calculated later. Using Egs. (4.1), we get
1
Te ™~ ﬁ (45)
From Eq. (3.5),
Bl (4.6)
- :

Comparison with Eq. (3.2) implies that the scaling exponent § is 1. This value is
consistent with the numerical estimate 0.942 for the neural network case. This is of
no accident. In this simple consideration, linear segments are used to fit features in
the target function at various positions. For neural networks, the hyperbolic tangent
outputs of the hidden neurons behave similarly and are responsible for approxima-
tions at different regions, although there are complications due to variation in scales.
Furthermore, we expect that the value 8 = 1 is exact for neural networks in the limit
n — co and Ly — oo. Taking n — oo dilutes the boundary effects at input values
z = *l;. Large Ly is necessary for the network to be a universal approximator
generating features at arbitrarily small wavelength.

We now explain the full scaling form in Eq. (3.1). The prefactors in the scaling
relations for o, and £ in Egs. (4.5) and (4.6} respectively depend on the number of
sample points M = N/3n in a segment. For example, if M = 1, s(z) trivially goes
through every sample points and g, = £ = 0. Therefore, Eq. (4.6) becomes

£~ Lo (2) z
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The function go(M) increases with M and approaches a constant when the abun-
dance of sample input points can be approximated by a continuum. Defining g by
reparametrizing go, we arrive at the scaling form in Eq. (3.1) with 8 = 1. Similar to
the argument discussed above, we believe that this scaling form is exact also for the
neural network case in the appropriate limit.

The above calculations highlight the fact that the scaling properties of the error
measures are simple results inherited from related scalings of Brownian functions. We
now calculate the actual value of o, and E which involves slightly more algebra. We
have pointed out that all segments of € have identical statistical properties. Let us

focus on the first segment corresponding to & = 1. For 1 < 4 < M, we have

{1

e(z,) = "MT(:L‘M) ~T(z,) (4.8)

From Eq. (2.2), the Brownian function T can be expressed as a sum of displacements,
i.e.

u
T(,) = 36, (4.9)
=1 -
Substituting the above expression into Eq. (4.8) and some rearrangements, we have
Z“: i i’: p
e(zy) =) (= - 1), + —4 (4.10)
g 7=1 M ! T=8+1 M

Since all §’s are independent variables, the standard deviation o.(z,} of €(z,) can be

computed easily and we obtain

o(z,) = opy P2 (4.11)

where o5 has been given in Eq. (2.3). The standard deviation of ¢ for arbitrary input
values is obtained from the mean of the variance, i.e.

1 M
0’3 = -ﬂ-j E O'E(I#)Q (4.12)

n=1
If M is large corresponding to the saturated case, it can be approximated by an

integral
2_ 1 ™ 2
O = M[O oc(Tu) dp (4.13)

Applying Egs. (4.11), (2.3) and (4.1), we get

1
=1/ — 4.14
“ 18n ( )
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and hence from Eq. (3.5),

o1
E=— (4.15)

For n = 5, we obtain ¢, = 0.105 and E = 0.0111. These values are only 24% and
35% larger than 0.0855 and 8.18 X 103 obtained numerically in Sections 3.4 and 3.5
respectively for function approximations with neural networks. Our simple approach

thus gives a fairly successful estimate of the errors in neural network approximations.
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Chapter 5

Conclusion

We have investigated approximations of Brownian functions by two-layer feed-forward
neural networks. By using a conjugate gradient training method and restricting the
network parameters within a finite range, all local minima with appreciable sizes of
basins of attraction are located and found to be in the order of a dozen in number.
A valley in the error surface with a very levelled bottom which can hinder training
using back-propagation is revealed in one-dimensional cross-sectional plots. The net-
work output error ¢ follows a normal distribution while its mean squared value F
obeys a log-normal distribution. We have no physical explanation of the log-normal
distribution which may simply result from its accidental similarity to the distribution
of mean squared normal deviates. The dependence of the ensemble averaged value
of £ on the number of neurons in the hidden layer and the number of input values
used in training follows simple scaling rules. Our numerical findings are explained by
comparison with a simple piecewise linear fit approach.

Multi-layer neural networks possess complicated error landscape and analytical
treatment is difficult. The current work extracts simple relations for their behaviors
in learning a specific model problem. We hope that the results can serve as useful
hints for other practical problems. Some relations may even be readily applicable
since there are signals in e.g. electrical circuits and financial markets admitting

fractal properties similar to those of Brownian functions.
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