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Abstract

This thesis studies the application of the Sharpe rule and Value-at-Risk in
dealing with the portfolio improvement problem. It proposes that a portion of the
portfolio value should be invested in some other assets for portfolio
improvement. The generalized Sharpe rule is first used to assess the
performances of assets or portfolios. Analytic results are derived to show that
some assets with better performance are selected for portfolio improvement. By
applying the Sharpe rule, it can be determined that new stocks are worthy of
adding to the old portfolio if the average return rate of these stocks is greater than
the return rate of the old portfolio multiplied by the sum of the elasticity of the
Value-at-Risk (VaR) and 1. One attraction of our approach is diversification.
Consideration is also given to the ‘optimal’ number of new assets to be added in
two specific cases (i.e., arithmetic series and geometric series regarding the
sequences of expected returns and standard deviations). Some interesting
simulation results show that a new portfolio with the ‘highest” Sharpe ratio can
be obtained by adding only a few new assets.

Motivated from the simulations that a few new assets need to be added for
portfolio improvement, we also formulate the portfolio improvement problem
using the mean-variance approach with equality cardinality constraint. In the
formulation, variance is regarded as the risk. The equality cardinality constraint
restricts that a given number of new stocks are selected for portfolio
improvement. Under the assumptions that all the stocks are uncorrelated,
analytical solutions to the formulated problem are derived for two specific cases:

the expected returns of stocks are all equal to the desired return, and the expected
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returns of stocks are not all equal. The problem is also formulated with inequality
cardinality constraint. Comparison is conducted to the problems formulated with
equality cardinality constraint and with inequality cardinality constraint. Though
the inequality cardinality constraint is set, numerical results show that in most of
our simulated cases, the inequality cardinality constraint becomes equality at the
optimal solution.

The need of innovation and progress in risk management leads to the
popularity of VaR. In another formulation of the portfolio improvement problem,
we propose to use VaR instead of variance as a risk measure. Due to some
desirable properties of Conditional VaR (CVaR), it makes CVaR much easier to
be handled than VaR. The portfolio improvement problem is formulated into a
mean-CVaR problem. The problem is then solved under the normality and non-
normality assumptions about the portfolio returns. Experimental results show
that as the number of scenarios increases, the loss random variable approaches
normality under the former assumption; however, such convergence is not

observed under the latter assumption.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Portfolio selection is a complex and challenging problem in financial
management. The earliest approach to solving the portfolio selection problem is
the mean-variance approach which is proposed by Markowitz (1952). In general,
the portfolio selection problem treats the construction of efficient portfolios. The
idea of Markowitz’s model is that investor should hold mean-variance efficient
portfolios.

The resulting efficient portfolios from solving the portfolio optimization
problem may satisfy some investors with a specific risk tolerant at the moment.
However, after some time, due to the uncertainty in the stock market, the
selected portfolio may not best fit some of the investors. An investor may make a
request for an improvement in the return on the portfolio. Of course, it is possible
to sell the existing portfolio and buy another one with different combination of
stocks that satisfies the investor. This will totally change the investment strategy
and transaction cost is involved. On the other hand, the existing portfolio may
still gain profit but it is under the expectation of the investor as s/he found some
other stocks with better performance in the market. In practice, the investor
would rather enhance the existing portfolio than trade it altogether. The
motivation of this project is basically driven by the need of improving an existing

portfolio in portfolio management.



Enhancing an existing portfolio is the objective of this thesis. One approach
is to improve an existing portfolio by investing in some new assets. In this
process, we need to select a few attractive assets from those in the market. As
return and risk are two important quantities in measuring the performance of an
investment, it is crucial to consider both return and risk in the selection of assets.
Sharpe ratio is one of the most popular performance measures. It is defined as the
ratio of the expected return to the standard deviation of the returns. It captures
both return and risk (Sharpe (1966, 1975, 1994), Dowd (1998, 1999, 2000),
Hodges (1998) and Amin and Kat (2002)). By the generalized Sharpe rule, a new
asset with higher Sharpe ratio has higher priority to be selected.

Theoretically, a portfolio can consist of a large number of assets. However,
some empirical results show that an efficient portfolio may constitute a small
number of assets. Motivating from observations, we investigate into the
determination of the ‘optimal’ number of new assets to be invested in a portfolio.
Here, ‘optimal’ means that the minimum number of new stocks is selected to
form a new portfolio with the highest Sharpe ratio.

In a general view, the portfolio improvement problem can be formulated into
a mean-variance problem for analysis. Here, variance is referred to as the risk of
the portfolio. In a standard mean-variance model, the number of assets in a
portfolio is not restricted. However, it is not practical to involve too many assets
in a portfolio. For controlling the number of assets to be invested in a portfolio, a
cardinality constraint is introduced. With an inequality cardinality constraint, the
number of selected assets is set in a range; comparatively, with an equality
cardinality constraint, the number of selected assets is fixed. Our goal is to solve

the mean-variance problem with an equality cardinality constraint for portfolio



improvement and compare it with the formulation with an inequality cardinality
constraint correspondingly. Taking cardinality constraint into consideration
makes the problem more difficult to be solved than the standard mean-variance
problem. Our approach is to solve the problem by the Xpress Solver in which the
Interior Point method and cutting-plane strategies are applied. Discussions on
heuristics or exact solution methodologies for the cardinality constrained mean-
variance model can also be found in Chang et al. (2000), Crama and Schyns
(2003), Jobst et al. (2001), Bienstock (1996) and Li et al. (2006).

By definition, variance is a measure of the dispersion or spread of a
distribution. Unfortunately it cannot tell how much market risk the portfolio is
carrying. In contrast with variance, Value-at-Risk (VaR), a single statistical
measure of possible portfolio losses, is gaining its popularity as it can quantify
market risk. Due to some desirable properties, e.g. sub-additivity, conditional
Value-at-Risk (CVaR), which is the expected loss exceeding VaR, is more
attractive than VaR (Uryasev and Rockafellar (2000)). Hence, a new approach is
to formulate the portfolio improvement problem into a mean-CVaR problem
with a cardinality constraint.

To solve the mean-CVaR problem, it is crucial to make an assumption about
the expected returns of assets. It is usually assumed that the returns have a
multivariate normal distribution. This assumption is popular and in widespread
use. For example, as stated in the Technical Document provided by JPMorgan
(1996, p. 13), when computing a portfolio’s VaR using RiskMetrics, it is
assumed that the portfolio return is normally distributed. RiskMetrics provided
by JPMorgan is a set of techniques and data to measure market risks in portfolios

of fixed income instruments, equities, foreign exchange, commodities, and their



derivatives issued in over 30 countries. When the expected returns of assets have
a multivariate normal distribution, the portfolio VaR and CVaR can be expressed
in terms of expected return and variance of the portfolio returns. As pointed out
in Dowd (1998), normality gives us a simple and tractable expression for VaR.
However, it is observable that the true underlying distribution may not be
normal (fat tails, etc.). The VaR computed under the assumption of normality
may be underestimated. To compare with the results obtained under the
assumption of normality, it is possible to solve the mean-CVaR problem under
non-normality assumption. It is convenient to assume that the expected returns of
stocks have a multivariate T distribution. A T distribution has a fatter tail than a
normal one. Moreover, it provides an easy and intuitively plausible way to
estimate VaR. Hence, we intend to solve the mean-CVaR problem under this

assumption and compare the result with that under the normality assumption.

1.2 Literature Review

1.2.1 Modern Portfolio Theory (MPT)

The work done by Markowitz (1952) is contributed to the basis of the
Modern Portfolio Theory (MPT). In principle, MPT is about the optimization of
portfolios for rational investors and the pricing of risky assets. It is to deliver
solution methods to the portfolio selection problem. See Ingersoll (1987) for a
rigorous and comprehensive representation of MPT. Also, an intuitive
introduction and insights of MPT can be found in Harrington (1987), Copeland,
Weston and Shastri (2005), Rasmussen (2003), Elton et al. (2003) and Litterman

(2003).



Starting from the pioneering work of portfolio selection by Markowitz (1952),
the portfolio optimization problem has long been investigated by practitioners
and researchers. In the 50’s and 60’s of the twentieth century, the mean-variance
analysis was developed by Tobin (1958), Sharpe (1963, 1964), and Lintner
(1965), among others. With a heuristic introduction to the basic portfolio
selection problem, Martin (1955) analyzed and explained, by reference to
empirical data, some of the work done by Markowitz (1952). More discussions
on investment balance and portfolio decision is carried out in Tobin (1958). He
considered the liquidity preference theory which takes as given the choices
determining how much wealth is to be invested in monetary assets and concerns
itself with the allocation of these amounts among cash and alternative monetary
assets. The concerns in the theory are also treated in the portfolio optimization
problem.

The mean-variance approach has a great regard to the tradeoff between return
and risk. A general belief is that a higher risk needs to be borne in order to
acquire a higher return in an investment. In the portfolio theory, it is assumed
that investors always prefer higher returns to lower returns for a given level of
risk; likewise for a given level of return, one prefers lower risk to higher risk.
Risk can be measured in terms of variance or standard deviation of the return
(Markowitz (1952, 1959)). Hence, when analyzing and solving the portfolio
selection problem, one popular approach is so-called mean-variance analysis. In
this approach, the portfolio selection problem can be formulated to minimize the
variance of the portfolio subject to a prospective level of return; or equivalently,
maximize the return on the portfolio subject to a tolerant level of risk.

Consequently, mean-variance efficient portfolios result from the optimization



problem. Luenberger (1997, p. 157) illustrates that the efficient portfolios
provide the best mean-variance combinations for most investors.

The original Markowitz mean-variance portfolio selection problem is treated
a single period investment. See, for example, Levy and Markowitz (1979), Pulley
(1981, 1985) and Kroll et al. (1984). They all favour the mean-variance model.
By applying Lagrange multipliers, Merton (1972) derived an analytical solution
to the Markowitz problem under the assumption that short selling is allowed. It
leads to some insightful implications about the characteristics of the efficient
portfolio frontiers. See also Markowitz (2000) for a detailed discussion on the
solution to the general portfolio selection model.

Later, the mean-variance approach is in widespread application. It is applied
for portfolio optimization and developed to analyze problems from conventional
single period to multi-period. The Markowitz mean-variance portfolio
optimization problem is extendable to be considered in multiperiod and for the
continuous-time case, which can be derived by different approaches. Recently, Li
and Ng (2000) derived explicit solutions to the discrete-time, multiperiod mean-
variance problem. For more discussions on the mean-variance problem in the
multiperiod case, see also Mossin (1968), Samuelson (1969), Hakansson (1971),
Francis (1976), Campbell et al. (1997), and Celikyurt and Ozekici (2007).

For the continuous-time, dynamic mean-variance problem in a complete
market, Zhou and Li (2000) solved it by diffusion process with deterministic
coefficients. Li, Zhou and Lim (2002) considered the mean-variance portfolio
selection problem in continuous-time under the constraint that short-selling of
stocks is prohibited. More about the mean-variance portfolio selection problem

in the continuous-time case can be found in Merton (1969, 1971), Karatzas et al.



(1987), Cox and Huang (1989), Duffie and Richardson (1991), Dumas and
Luciano (1991), Grossman and Zhou (1996), Zhou and Yin (2003), and Bielecki
et al. (2005).

Except portfolio optimization, the basic concepts of MPT include the two-
fund theorem, the Capital Asset Pricing Model (CAPM), the capital market line
and the security market line (Luenberger (1997), Panjer et al. (1998)). Miiller
(1989) summarized some main results in MPT. Specifically, he presented the
Markowitz approach and discussed CAPM.

Luenberger (1997) illustrated the two-fund theorem. He stated that according
to the two-fund theorem, two mutual funds could provide a complete investment
service for everyone. However, this conclusion is based on some assumptions,
e.g. investors are only concerned about mean and variance.

An equilibrium model for asset pricing, CAPM, was developed by Sharpe
(1964) and Lintner (1965). Harrington (1983, p. 29) discussed some assumptions
behind CAPM. For example, it is assumed that there is a risk-free asset, and
investors can borrow and lend at the risk-free rate. This assumption is crucial.
The risk-free asset simplifies that curved efficient frontier of MPT to the linear
efficient frontier of the CAPM.

Sharpe (2000, p. 84) stated that the slope of the capital market line indicates
the trade-off between expected return and risk (uncertainty). Sharpe (2000, p. 95)
summarized that the security market line indicates the relationship between
expected return and volatility and thus indicates the manner in which

characteristic lines are related.



1.2.2 Portfolio Improvement

One of the financial planning services provided by financial institutions is
portfolio management. It helps clients to construct strategies in balancing return
and risk. Of course, the task is to maximize the return and minimize the risk. Due
to the uncertainty of the equity market, an existing/old portfolio may perform
worse as time went by. There is a need to improve the existing portfolio.
Portfolio improvement is an important task in portfolio management. However,
there are limited literatures on this issue (Hodges and Schaefer (1977), Sharpe
(1987), Dowd (1998, 1999), Fabozzi (1999), Larsen and Resnick (2001), Spice
and Hogan (2002), Bowden (2003), and Liu and Pan (2003)).

In an early literature, Hodges and Schaefer (1977) described a simple linear
programming model for improving an initial bond portfolio. Their goal is to
minimize the cost of achieving a given maturity profile of portfolio cash flows at
a given tax rate. In the improvement, the yield on bond portfolio is increased
without reducing any future after-tax cash flows.

In a close view with the problems faced by portfolio managers, Sharpe (1987)
presented an algorithm for portfolio improvement. In the implementation of his
approach, each iteration selects the ‘best’ security for purchase and the ‘worst’
for sale. Hence, an initial feasible portfolio is improved. Finally, the maximum
improvement will be obtained.

Dowd (1998, 1999) applied the generalized Sharpe rule on the derivation of
criteria to check the worthiness of adding a specific new stock into the old
portfolio. In this process, a necessary condition is that the Sharpe ratio of the new
portfolio must be greater than that of the old portfolio. In other words, the new

portfolio performs better than the old portfolio which has been improved.



Fabozzi (1999, p. 261) illustrated two methods to improve risk-adjusted
portfolio return: creating a ‘tiled’ portfolio and utilizing the future markets. The
former constructed portfolio can be designed to maintain a strong relationship
with a benchmark by minimizing the variance of the tracking error. The latter
method involves the use of stock index futures. The strategy can be referred to as
indexing enhancement and its focus is on risk control.

By applying modern portfolio theory (MPT), Larsen and Resnick (2001)
demonstrated the potential for various ex ante portfolio parameter estimation
techniques and optimization/holding-period frequency intervals to enhance
managed portfolio returns relative to a benchmark.

With empirical evidence, Spice and Hogan (2002) showed the wise use of
venture investing for improving overall portfolio performance. Moreover, they
suggested several points that financial advisors new to venture investing can help
clients who wish to participate in venture investing.

More recently, several approaches for portfolio improvement are proposed.
Bowden (2003) suggested two approaches to portfolio enhancement. The first is
based on traditional beta analysis. The second is non-parametric in nature and
plots ordered mean difference schedules for the enhancement against the base
portfolio. Liu and Pan (2003) proposed dynamic derivative strategies for asset
allocation, and found that improving the portfolio efficiency is done from
derivative investing. Winkelmann (2004) concluded that the portfolio efficiency
can be improved by introducing a portable alpha program, introducing an active
overlay program, diversifying the private equity portfolio more and increasing

active risk.



1.2.3 Risk Measures

Li et al. (2006) pointed out that construction of a suitable risk measure plays
an essential role in portfolio selection. Szegd (2002) presented the definition of
risk measure and the main recently proposed risk measures. Variance is one of
the most popular risk measures. Unfortunately, there are several conceptual
difficulties with using variance/standard deviation as a measure of risk. As stated
in Bertsimas et al. (2004), quadratic utility displays the undesirable properties of
satiation and of increasing absolute risk aversion; see also Huang and Litzenerger
(1988); moreover, the assumption of elliptically symmetric return distributions
rules out possible asymmetry in the return distribution of assets, which
commonly occurs in practice. Furthermore, asymmetric return distributions make
standard deviation an intuitively inadequate risk measure. It is demanding to
devise an alternative risk measure.

VakR is one of the alternative risk measures. A formal definition of VaR in
Dowd (1998) expresses it as the maximum expected loss over a given horizon
period at a given level of confidence. See also Linsmeier and Pearson (2000) and
Jorion (2001) for an introduction to the concept and methodology of VaR.
Recently, VaR is one of the most popular tools in risk management. It is widely
used by practitioners, such as fund managers, dealers, corporate treasurers, and
regulators. VaR is also in widespread use in banks, since the Basel Committee on
Banking Supervision (1996, 2003) allows banks to use VaR when determining
their capital-adequacy requirements arising from their exposure to market risk.

Hence, VaR is proposed to be used instead of variance in the mean-variance
analysis for portfolio selection by some researchers. Alexander and Baptista

(2001) examined the economic and equilibrium implications arising from a
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mean-VaR model for portfolio selection. They also compared the model with a
mean-variance model and observed that the mean-VaR efficient set converges to
the mean-variance set as the confidence level at which VaR is computed
increases.

However, Artzner et al. (1999) shows that VaR is not a coherent risk measure
since it lacks of sub-additivity property which makes it difficult to be handled.
See also Acerbi and Tasche (2002). Another risk measure, Conditional Value-at-
Risk (CVaR), is introduced. CVaR is defined as the expected loss exceeding
VaR. So, CVaR is closely related to VaR, but has more attractive properties such
as sub-additivity, convexity and coherence. The proof of convexity and
coherence of CVaR can be found in Rockafellar and Uryasev (2002). Due to
these desirable properties, CVaR is more attractive than VaR.

By proposing CVaR as a risk measure, Uryasev and Rockafellar (2000)
solved a mean-CVaR portfolio optimization problem under the normality
assumption. Uryasev (2000) outlined the approach for simultaneous
minimization of CVaR and calculation of VaR. Alternatively, Palmquist et al.
(1999) investigated the model of constraining CVaR in order to find a portfolio
with maximal return. With regards to the VaR and CVaR constraints, Alexander
and Baptista (2001) made a comparison between the mean-CVaR with the mean-
VaR models and hence showed some implications. They concluded that a CVaR
constraint dominates a VaR constraint as a risk management tool when the CVaR
bound is set between two specific levels. Regarding a portfolio of derivatives,
Alexander et al. (2004) proposed to include cost as an additional preference

criterion for the CVaR optimization problem. They demonstrated that it is

11



possible to compute an optimal CVaR derivative portfolio with significantly

fewer instruments.

1.3  Outline of the Thesis

The rest of the thesis is organized as follows. Chapter 2 presents the basic
concepts on asset allocation, portfolio optimization and probability theory.

Chapter 3 discusses in details on how to improve an existing portfolio by
applying the Sharpe rule and Value-at-Risk. Some criteria are derived to check
whether it is worthwhile investing in some new assets for constructing a new
portfolio with better performance (Yu et al. (2007)). It can be observed from the
numerical examples that only a few new assets are selected to be invested for a
‘best’ performed new portfolio. The ‘best’ performed new portfolio is the one
with the ‘highest’ Sharpe ratio among the others by applying the Sharpe rule.
The generalized Sharpe rule states that the higher the Sharpe ratio, the better the
performance of the portfolio. Sharpe ratio is defined as the ratio of the expected
return to the standard deviation of the portfolio returns. It captures both return
and risk. Motivating from observations, we try to determine the ‘optimal’
number of new stocks to be invested in Section 3.2. Here, ‘optimal’ means that
the minimum number of new stocks is selected to form a new portfolio with the
highest Sharpe ratio. In the derivation, it is assumed that both the expected
returns of stocks and the standard deviations are in arithmetic sequences or in
geometric sequences, respectively.

More generally, our portfolio improvement problem can be formulated into a
mean-variance problem. Chapter 4 investigates into the formulation with an

equality cardinality constraint. Under the assumptions that all the assets are

12



uncorrelated, the expected returns on assets are all equal to the desired return, but
the variances are different, we derive some analytical solutions to the problem in
Section 4.2. Moreover, we also derive analytical solutions to the problem without
the assumption of equal expected return for each asset. As the cardinality
constraint restricts the number of new stocks to be invested, it is required to
select a specific number of new stocks from those given ones in solving our
problem. Section 4.3 demonstrates our proposed stock picking strategy for
solving our problem in the cases of picking 2 and 3 stocks respectively. It can be
shown that, under some assumptions, the variance of the portfolio returns in the
list of possible combinations constructed by our stock picking strategy is
monotonically increasing. Actually, our formulated mean-variance problem is a
Mixed Binary Quadratic Programming (MBQP) problem. Section 4.4 presents
some procedures to solve the (MBQP) problem by using the Xpress Solver.
Furthermore, Subsection 4.4.1 illustrates the application of the Xpress Solver in
solving our (MBQP) problem with numerical examples. On the other hand, we
also formulate our problem with inequality cardinality constraint. In contrast
with equality cardinality constraint, inequality cardinality constraint does not
restrict the number of selected new stocks to be fixed, but within a specific
number. Comparison is carried out for the two formulated problems with some
numerical examples in Section 4.5.

As a more comprehensive risk measure, CVaR is used instead of variance in
the formulation of the portfolio improvement problem in Chapter 5. For the ease
of implementation, the mean-CVaR problem is first solved by assuming that the
expected returns of stocks have a multivariate normal distribution in Section 5.2.

It is observed from the numerical results that as the number of scenarios
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increases, the values of VaR and CVaR are closer to their ‘true’ values. In
contrast, the mean-CVaR problem is also solved under the non-normality
assumption. Due to the fact that it is plausible to estimate VaR with a T
distribution, it is assumed that the expected returns of stocks have a multivariate
Student’s T distribution. Section 5.3 discusses on the solving of the mean-CVaR
problem under the non-normality assumption and concludes with experimental
results.

Finally, Chapter 6 contains discussions and conclusions.
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Chapter 2
Fundamentals of Asset Allocation and Portfolio

Management

2.1 Asset Allocation

In the role of financial planning, portfolio managers always seek a suitable
investment opportunity to fulfill the financial needs of a particular investor.
Many investment opportunities compose of different kinds of assets. Assets can
be categorized into several classes according to return and risk. Some examples
of major asset classes are cash, bonds, stocks and real estate. Among these asset
classes, stocks have the highest returns and investing in cash offers the lowest
return. Due to the tradeoff between return and risk, an asset class with higher
return will bear higher risk. Though stocks have the highest return, they are most
volatile and thus have the highest risk; in contrast with stocks, investing in cash
is much safer and its concern is inflation risk.

The idea behind asset allocation is to divide your investment amount or
portfolio into different asset classes. In this process, it will provide you with an
investment strategy to achieve the highest expected return in a tolerant level of
portfolio risk for a specific time horizon. This is a goal of many investment
managers and investors, and hence gains the popularity of asset allocation in
financial planning. Since different investors possess different levels of risk
tolerance, determination of one’s asset allocation is personal. In other words, it is

different for person with different financial needs.
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There are several factors affecting the determination of asset allocation. One
of the most important factors is risk tolerance. Risk tolerance expresses one’s
ability and willingness to expose to loss in an investment for higher portfolio
returns. It is hard to quantify one’s risk tolerance as it is subjective. Many
financial service companies provide investors with a risk tolerance questionnaire.
The questionnaire is designed with several questions which provide some
indication of the general attribute toward risk of a typical investor. Risk tolerance
of an investor is then determined after s/he completed the questionnaire. Though
it may not match his/her actual attitude toward investment risk, it indicates the
profile of risk that fits him/her. Another important factor is investment time
horizon. Asset price varying from time to time leads to an uncertainty in gain and
loss of an investment. As pointed out in Frush (2007), time horizon greatly
impacts expectations for asset class returns, asset class volatility, and correlations
among assets classes. Long-term and short-term investments should have
different strategies. It is general to invest in more equities, e.g. stocks, and fewer
fixed-income assets, e.g. bonds and cash, for a longer time horizon. Thus, time
horizon plays an important role in asset allocation. It is helpful to determine
portfolio balance between equities and fixed-income assets.

Frush (2007) summarized some key benefits of asset allocation and gave
detailed commentaries on each benefit. The key benefits are listed in the
following. Some more detailed discussions on asset allocation can be found in
this book.

e Minimizes retirement plan losses
® Promotes an optimal portfolio

o Eliminates what does not work
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e Supports quick and easy reoptimization

e Maximizes portfolio risk-adjusted return

¢ Promotes simple portfolio design and construction
e Allows for easy contribution decisions

e Minimizes portfolio volatility

® Minimizes investor time and effort

® Promotes a more diversified portfolio

® Provides maximum avoidance of market weakness
e Delivers the highest impact value

® Reduces trading costs

2.2 Portfolio Management

From the financial point of view, a portfolio is a collection of investments in
certain assets such as cash, stocks, bonds, real estate, options and future contracts.
Different asset is possessing different level of risk. Different investor has his/her
own attitude toward the risk. There is a need for every investor to make a choice
from among an enormous number of assets. Selection of several assets for a
desired portfolio is not an easy job for many investors. Some of them may ask
for help from portfolio managers in various financial service companies. The
most important issue for portfolio managers is to determine the risk tolerance of
their clients. Investors always prefer higher return and lower risk. However, a
general belief is that an investment with a higher return bears higher risk.
Portfolio management plays an important role in balancing return and risk of

investments.
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Besides determining clients’ risk tolerance to manage clients’ portfolio,
portfolio manager must take into account other considerations, such as the
amount of resources available for investing, tax status of the investor, liquidity
needs and time horizon of investment. More details of individual discussion on
these considerations can be found in Brentani (2004).

The goal of portfolio management is to construct portfolios comprising
various assets and securities that satisfy investors financial needs, and hence to
manage the portfolios in order to achieve investment objectives. Portfolio
construction can be done by return-risk analysis in two ways:

® Minimize the risk for a given expected return

e Maximize the expected return for a given level of risk
In the modern portfolio theory model, it interprets risk in terms of the standard
deviation of the portfolio returns.

Apart from construction of an efficient portfolio, portfolio management
involves the evaluation of portfolio performance. Return and risk of an
investment are two main considerations that investors take into account to
evaluate the performance of a portfolio. Every investor prefers a portfolio with
the highest return and the lowest risk. However, there is a general belief that ‘No
Pain No Gain’. This belief is also true in investments, that is, higher risk needs to
be bore in order to achieve higher return. In other words, there is a tradeoff
between return and risk.

To fairly compare the performances among portfolios, the easiest way is to
compare the rates of returns amongst portfolios with similar risk level. However,
this process may be misleading, in which some portfolio managers may

concentrate on particular subgroups and the portfolio profile may not be actually
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comparable. There is a need to devise a single measure for comparing portfolio
performance. The measure must take both return and risk into account. Risk-
adjusted returns are introduced as portfolio performance measures, in which
portfolio returns must be adjusted for risk to compare portfolio performance
meaningfully. They may not be perfect measurements, but they do provide useful
information about portfolios. Some popular risk-adjusted measures calculate
risk-adjusted returns using mean-variance criteria and measure both return and
risk. Sharpe ratio is one of the most popular risk-adjusted measures.

Under the generalized Sharpe rule, Sharpe ratio can be expressed as the ratio

of the expected rate of return to the standard deviation of the portfolio returns, i.e.

. Ry
Sharpe ratio =—, 2.1)
Gp

where R, is the expected rate of return to a portfolio and 6, is the standard

deviation of the portfolio returns. Note that G, is referred to as the risk of the

portfolio. Obviously, a rising of the return or a falling of the standard deviation
leads to an increase in the Sharpe ratio. It implies that a portfolio with a higher
Sharpe ratio is preferable.

As shown in expression (2.1), the expected rate of return R, and the

standard deviation ¢, must be known in advance for obtaining the value of the

Sharpe ratio. Note that we would like to shorten the name ‘expected rate of
return’ to ‘expected return’ for simplicity in the rest of this thesis.

Suppose that a portfolio consists of n assets with weights x;,, i =1, 2, ..., n.

The expected returns of the individual assets are R|,R,,..., R, respectively. It
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can be shown that the expected return on the portfolio in terms of the expected

returns of the individual assets is

Rp=xR,+ xR, +--+x,R,. (2.2)
This expression can be interpreted as the weighted average of the expected
returns of n assets.

Suppose that the standard deviation of the return on asset i is ©;, and the
covariance of the returns on asset i with asset j is 6, i,/ = 1, 2, ..., n. The

variance, i.e. square of the standard deviation, of the portfolio return can be

expressed as

oﬁ = z X;X;0; (2.3)

i, j=1

which is equivalent to

n n
2 2.2
Cp = E X o, +2 E X;X;Pp; j0,0; . (2.4)
i=1 i,j=1

i#]

. 2 _ _ . . . .
by recalling 6, =0;, 6; =06, =p, ;06,6, for i# j, and p, ; is the correlation
coefficient of the returns on asset i with asset j.

In order to obtain the expected return, the standard deviation and covariance
of an asset, say stock, it is required to specify the length of the investment period,
such as a day, a week, a month, a quarter or a year. For example, the daily

expected return on stock i can be estimated roughly as

T +l_ ot
R, :%zpip—tpl’ (2.5)
t=1 i

1

where p/ is the closing price of stock i on day 7 and p/* is the closing price

of stock i on day ¢+1. For the closing prices, one obvious source is historical
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data. Note that T is the number of days over a long period of time, e.g. T =250
if we calculated the daily expected return over a year and assume 250 trading
days per year.

Likewise, the variance of stock i can be estimated by averaging the square of

the day’s deviations from the expected value. That is, the variance of stock i, (Sl-2 ,

can be estimated by

2
1 Z p.t+1_p't
2 _ i i
o= ( P R, (2.6)

=1 p;
In a similar manner, the covariance between stocks i and j, for i # j, can be

estimated as follows

1 & ot p{+1_p{
Gljo—lz(pl tPl -R, j—,]_Rj , (2.7)

t=1 pi

where R; and R; are the daily expected returns on stocks i and j respectively.

Notice that the correlation coefficient of the returns on stocks i and j is defined

as

P = L (2.8)

It can be shown that —1<p, ; <1.If p, . =0, then the returns on stocks i/ and j
are said to be uncorrelated. In this case, the returns on stocks i and j are
independent. If p, ; >0, then the returns on stocks i and j are said to be

positively correlated. This is the case that they have an increasing linear

relationship. On the other hand, if p, ; <0, then the returns on stocks i and j

are said to be negatively correlated and they have a decreasing linear relationship.
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As mentioned before, modern portfolio theory interprets risk in terms of the
standard deviation of returns. However, one key insight of the portfolio theory is
that the risk of any individual asset is not the standard deviation, but rather the
extent to the contributions of that asset to the overall portfolio risk. It is also
observable that the standard deviation only measures the spread of the portfolio
values but does not quantify the losses involved in the portfolio. Value-at-Risk
(VaR) is one of the most popular quantitative measures of losses due to market
movements. Comparatively, VaR is a single and comprehensive risk measure.

The history of VaR started in the late 1980s. With the introduction of
derivative instruments to offset the risks in existing instruments, positions and
portfolios, the inclusion of large numbers of cash and derivative instruments in
many portfolios made the magnitudes of the risks in portfolios not obvious. This
led to a demand for quantitative measures of market risk in portfolios. VaR was
one of such measures and was first used to measure the risks of trading portfolios
by major financial firms. It was then developed accompanying the development
of risk management guidelines in the early 1990s. Currently, VaR is used by
most major derivatives dealers to measure and manage market risk. It also gains
popularity in use by banks to calculate their capital requirements for market risk.
With the allowance of VaR models to be used to calculate capital requirements
for foreign exchange positions by the European Union’s Capital Adequacy
Directive in 1996, it is made to move toward allowing VaR to calculate capital
requirements for other market risks. The developments of VaR and risk
management are elaborated in Linsmeier and Pearson (1996), Dowd (1998) and

Holton (2003).
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In the definition, VaR is the maximum amount likely to be lost over some
period at some specific confidence level. It usually refers to a particular amount
of money. In estimating the value of VaR, two parameters, i.e. holding period
and confidence level, need to be specified. The holding period is usually set to be
one day or one month. The possible confidence levels for VaR are 99%, 95% and
90%. The choice of these two parameters was discussed in Dowd (1998). He
pointed out that there are four factors that affect the choice of holding period.
Except the first factor, i.e. the liquidity of the markets in which the institution
operates, the other three factors all suggests a very short holding period. One
reason is to justify a normal approximation. A shorter holding period helps make
the normal approximation more defensible. A second reason is to accommodate
changes in the portfolio itself. The longer the holding period, the more likely
portfolio managers are to change the portfolio, particularly if it is making losses.

For the choice of confidence level, Dowd (1998, p. 53) concluded as follows:
Different VaR confidence levels are appropriate for different purposes: a low one
for validation, a high one for risk management and capital requirements, and
perhaps a medium or high one for accounting/comparison purposes. However,
there is no compelling reason for an institution to work with on confidence level
alone: there is no need for an institution to choose a low confidence level when
assessing its capital requirements, say, just because model validation requires a
VaR based on a low confidence level. Within reason, the institution could use a
high confidence level when determining capital requirements and a low one
when conducting validation exercises. In short, an institution should generally

use whatever confidence level is appropriate to the task at hand.

23



2.3 Some Common Assumptions about the Probability Density
Function of the Portfolio Return

Let us discuss the definition of the probability density function (p.d.f.). Hogg
and Tanis (1993, p.192) depicted that the p.d.f. of a random variable X of the
continuous type, with space S that is an interval or union of intervals, is an

integrable function f(x) satisfying the following conditions:

(@ f(x)>0, xes.
®) [ fOode=1.
(c) The probability of the event X € A is

P(Xe A):jAf(x) dx.

As pointed out in Jorion (2001), VaR describes the probability boundary of
potential loss. The value of VaR is closely related to the probability of a return
less than the cut-off returns. In general, VaR can be derived from the probability
distribution of the portfolio return. Suppose the daily return of a portfolio is a
continuous-type random variable, R, and the p.d.f. of the portfolio return is

f(R). At a level of confidence of 1—c, the probability of a return less than the

cut-off return is
&
PrlR<Rr']= [ F(R)dR=c, (2.9)

where R’ is called the quantile of the distribution, which is the cut-off return
with a fixed probability of being exceeded.

Dowd (1998) showed that VaR can be represented in terms of absolute dollar
loss, or in terms of loss relative to the mean. See also Jorion (2001). The former

is simply the maximum expected loss amount with a given level of confidence,
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measured from the current level of wealth. With this definition, the VaR in
absolute dollar terms can be expressed in terms of the cut-off return R* as
VaR(absolute) =—R'W, (2.10)

in which W is the initial portfolio value. The latter VaR is defined in terms of
the maximum expected loss amount with a given level of confidence, measured
relative to the mean expected return over the period. With a given mean return
I, the VaR relative to the mean is

VaR(relative) = —R'W + uw. 2.11)
Note that by using a parametric approach to VaR, we can work with either
absolute VaR or relative VaR. Dowd (1998, p. 43) states: In any case, if we are
dealing with a short time period, the difference between absolute and relative
VaRs will be fairly small anyway, so we may as well use whichever VaR is more
convenient.

To compute VaR, assume that daily returns are identically and independently
distributed. When estimating VaR, it is critical to make some assumptions about
the p.d.f. of the portfolio return. The specification in the previous paragraph is
valid for any distribution, discrete or continuous, fat- or thin-tailed.

One of the most common assumptions about the portfolio return is the
normality assumption. That is, the portfolio return is normally distributed. Under
the normality assumption, the random variable R has a normal distribution and

its p.d.f. is defined by

2
FR)=—1 exp[—(R_p')] o< R < oo, (2.12)

o2n 26°
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where L and ¢ are parameters satisfying —eo <[l <oo and 0< G <oco. Briefly

speaking, R is N(i,6°) in which p and ¢ are the mean and standard deviation
of R.
If a random variable Z is N(0,1) with mean 0 and standard deviation 1, then

Z has a standard normal distribution. The p.d.f of Z is

2

f(Z):ﬁeXP{—%} —00 < 7 < oo, (2.13)

Moreover, the cumulative distribution function (CDF) of Z is

p 2
®(z)=Pr[Z<z]= jﬁ exp{—%} du. (2.14)

Notice that values of ®(z) for z=0 are given in the normal probability table.
Since the standard normal p.d.f. is symmetric about its mean, it is true that
D(—z) =1-P(z) for all real z.
Under the normality assumption, deriving from (2.9) shows that

R =u+d'(c)o, (2.15)
where ®7'(c) is the inverse standard normal cumulative distribution function
and can be expressed as

d'(c)=2erf'(2c-1), ce(0,1). (2.16)

Here, erf '(s) denotes the inverse function of the error function

erf(s)= j e dt.
0

2
Jn
It follows from (2.10) and (2.15) that

VaR(absolute) = —puW — @' (c) cW. (2.17)

Similarly, substituting (2.15) into (2.11) yields
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VaR(relative) =— D' (c) cW. (2.18)

As observing from some evidence that not all underlying returns are normally

distributed, it is plausible to make a non-normality assumption about the

portfolio return. It is observable that some distributions of the portfolio return

have fatter tails than a normal one. One of the most popular distributions that
have fatter tails than a normal one is the Student’s T distribution.

Theorem 5.7-1 of Hogg and Tanis (1993, p. 299) states that:
If Z is a random variable that is N(0,1), if U is a random variable that is x2 ),

and if Z and U are independent, then

has a T distribution with v degrees of freedom. Its p.d.f. is

r[v+1)/ 2]

JoT (v 2)(142/v)" ™

g(t) = —oo <t <o, (2.19)

Note that the distribution of T is completely determined by the number v.
The graph of the p.d.f. of T is symmetric about the vertical axis ¢ =0. Moreover,
the graph of the p.d.f. of T is similar to the graph of the p.d.f. of a standard
normal distribution but has heavier tails. It implies that there is more extreme
probability in the T distribution than in the standard normal one. Because of the
symmetry of the T distribution, it can be shown that the mean of T is

uw=ET)=0, for v22,

and the variance of T is

6% =Var(T) = E(T?) =—~—, for v>3.

V—
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Some values of Pr(T <t) can be found in the Student’s T distribution table
for v=1,2,...,30. Under the assumptions that the portfolio return has a T
distribution, the VaR in absolute dollar terms can be expressed as

VaR(absolute) = —uW — F'(c;v) oW, (2.20)
where F'(c;v) is the inverse of standard Student’s T cumulative distribution

function with v degrees of freedom. In a similar manner, we can show that the

relative VaR is
VaR(relative) =— F ' (¢c;v) oW, (2.21)

which does not depend on the mean return L.
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Chapter 3
Incorporating Sharpe Ratio and Value-at-Risk

into Asset Allocation

The Sharpe ratio was introduced and proposed to be used as a measure for
the performance of mutual funds in Sharpe (1966). The Sharpe rule states that
the higher the Sharpe ratio, the better the performance of a mutual fund. It has
become more and more popular and is extended for use by investors in decision
making. For example, to compare the performances of two portfolios, the Sharpe
ratio can be defined as the ratio of the expected return on the corresponding
portfolio to the standard deviation of the portfolio returns. In the definition of the
Sharpe ratio, standard deviation can be referred to as the risk of the portfolio.
Thus the Sharpe ratio captures both risk and return in a single measure for
comparison between two portfolios. According to the Sharpe rule, one portfolio
is preferred to another if it has a higher Sharpe ratio. A falling of the risk or a
rising of the return leads to a rise in the Sharpe ratio.

The generalized Sharpe rule has been discussed thoroughly in Dowd (1998,
1999). Under some assumptions, the Sharpe ratio can be expressed in terms of
Value-at-risk (VaR). A formal definition of VaR presented in Dowd (1998)
expresses it as the maximum expected loss over a given horizon period at a given
level of confidence. VaR is accepted as one of the most popular and useful tools
in risk measurement and management. Most risk managers and derivative dealers
use VaR to measure risks in both local and global markets. In the field of

financial planning, VaR is used to measure risk exposures to clients so as to
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assist in devising suitable investments and hedging strategies. VaR is also shown
in the financial reports of most corporations. So, the expression of the Sharpe
ratio in terms of VaR gives us an insight into the problems of risk measurement
and management. Dowd (1999) also discussed the uses of the Sharpe rule in
making investment decisions, hedging and managing portfolios.

As shown in Dowd (1998, 1999), the generalized Sharpe rule can be used to
determine a bound for the expected return on a new asset for assessing whether it
is worthwhile purchasing it and putting it into an existing portfolio. The case
considers an old portfolio first, then a new asset, called asset A, which is added
in to form a new portfolio. The desired new portfolio consists of an amount,
denoted by a, invested in asset A and an amount (1—a) invested in the old
portfolio. It is assumed that the overall portfolio value does not change. By
applying the Sharpe rule, the new portfolio is preferable if the expected return on
asset A satisfies the following inequality presented in Dowd (1999),

RA 2 Ruld + (Gnew/co[d _I)Ro[d /a (31)
where R, and R, are the expected returns on asset A and the old portfolio, and

o, and ¢, are the standard deviations of returns on the new and old portfolios.

The observation is that it is not worthwhile purchasing the new asset unless its
expected return is not less than the value on the right-hand side of (3.1). By
assuming normality of the distribution of returns on portfolios, Dowd (1999)

showed that (3.1) could be written in an equivalent VaR form as

VAR
RA ZRold +(\,IA1{,:M_1)R0M/G

or
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R,>R, Km— 1) /a + 1} . 3.2)
old

Criterion (3.2) is used to justify the worthiness of adding the new asset into the
old portfolio. It implies that the new asset is worthwhile adding to an old
portfolio if its expected return is greater than the expected return on the old
portfolio multiplied by the sum of the elasticity of the VaR and 1. Notice that
Dowd (1998, 1999) considered the case of adding only one new asset into the old
portfolio to obtain a new portfolio. From another point of view, adding a
favorable new asset would improve the performance of an existing portfolio. In
other words, portfolio improvement could be done by adding a new asset to an
existing portfolio.

In a broader view, Dowd’s approach is extendable to consider adding more
than one new asset. In this chapter, we propose to add a number of new assets to
an existing portfolio in order to form a new portfolio with better performance.
Sharpe ratio also acts as a performance measure in our approach. One objective
of this chapter is to derive some criteria to judge the worthiness of adding a
number of new assets to an old portfolio for portfolio improvement. We assume
that the overall portfolio value remains the same before and after adding some
new assets. Hence, in the resulting new portfolio, a certain amount of portfolio
value is invested in some new assets and the remaining amount is invested in the
old portfolio. To avoid solving another portfolio selection problem, it is
suggested to add new assets with higher Sharpe ratios first.

Before adding a specific asset to a portfolio, one should be aware of a certain
amount of accompanying risk. Due to the fact that prices of some kinds of assets

(e.g., stocks) are uncertain, one may bear a certain amount of risk when
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purchasing a stock. Though the stock may gain a profit, there is always a concern
about the risk carried by the stock. Risk reduction is one of the goals for all
investment managers. They usually prefer to manage the risks by diversification.
Diversification is one of the risk reduction methods. The exposure to risk is
reduced by investing in a number of stocks that are fundamentally different from
one another. With this concern, our approach to adding a number of new assets
to an existing portfolio should benefit from the effect on diversification.
Nevertheless, it will be shown in the following section that diversification is
carried out in our approach.

As some criteria have been established to check whether it is worthwhile
using a portion of the portfolio amount to invest in some new assets, it is possible
that different numbers of assets are worthwhile adding to an old portfolio. Of
course, if the number of assets to be invested is not specified, then one can add as
many new assets as possible in order to reduce portfolio risk. However, adding
too many assets to a portfolio is not practical. Moreover, transaction cost is
another concern. As more assets are added to the portfolio, the transaction cost
will increase as well. We intend to show that achieving the goal of portfolio
improvement can be done by adding a small number of new assets.

Regarding the Sharpe ratio as a performance measure of portfolios, investors
always prefer a portfolio with the highest Sharpe ratio. The other objective of
this chapter is to determine the ‘optimal’ number of new assets to be added that
maximizes the Sharpe ratio of the new portfolio. It is shown that the Sharpe ratio
can be expressed in terms of the number of new assets. By applying the
mathematical software, Mathematica, we simplify the expression of the Sharpe

ratio and hence determine the ‘optimal’ number of new assets.
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This chapter is organized as follows. The next section looks at applying the
Sharpe rule to derive some criteria, which can be used to judge whether it is
worthwhile investing in some new assets. It then discusses the justification for
considering the general case (i.e., investing in n new assets), and compares it
with the specific case proposed by Dowd (1998, 1999). The main advantage of
our case is that diversification is carried out in our approach. Subsection 3.1.1
presents a numerical example in the Hong Kong stock market to illustrate the
applications of the Sharpe rule. It discusses the numerical results and draws some
conclusions. Section 3.2 concentrates on the derivation of the ‘optimal’ number
of new assets to be added in the old portfolio with regard to two specific cases:
the sequences of the means and the standard derivations of the portfolios are in
arithmetic progression or geometric progression. Some experimental results
show that only a few new assets are selected to be added in the old portfolio to

obtain the ‘optimal’ new portfolio.

3.1 Methodology and Derivation

Consider an old portfolio whose expected return and standard deviation are

denoted by R

O

« and o, . Let n be the number of new assets added to the old
portfolio, and a, be the weight of asset i in the new portfolio for i =1,2,...,n.

Assume that the overall portfolio value, W, does not change after adding n new
assets to the old portfolio. This implies that a portion of the investable amount in

the old portfolio is transferred and invested in the additional assets. Thus, the

weight of the old portfolio in the new portfolio is [1-(a, +a,+-+-+a,)], or

can be expressed as

new >

[1— > ai] . The expected return on the new portfolio, R
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Rnew =(1_lzlainold +iaiRi ’ (3'3)
i=1 i=1

where R, is the expected return on asset i for i=1,2,...,n. Also, an expression

for the standard deviation of the new portfolio can be obtained as

1/2

2
n n n n n
_ 2 2 2
Cpow =|| 1= 226 | Opq + 226,67 +23.a;| 1= 2.0, |P; 0140iC o +2 2. @;4,p; ;6,0
i=l =l i=l =l ij=1
i)

(3.4)
where o, is the standard deviation of new asset i, p;,, is the correlation
coefficient between the returns on new asset i and the old portfolio, and p, ; is
the correlation coefficient between the returns on new assets i and j, for
i,j=12,...n; i #j.

According to the Sharpe rule, if a new portfolio is preferred to the old one,

then the Sharpe ratio of the new portfolio should be greater than or equal to the

Sharpe ratio of the old portfolio. That is, the new portfolio is preferred if it

satisfies
Rnew > Rold
Gnew Gold
or

G ew
Rnew 2 Rola' [ .
Sola

Replace R, by the expression on the right-hand side of (3.3) to obtain

[1_ Zainuld +2.aR 2R, (MJ ) (3.5)
inl

i=I Sola

which can be rearranged to
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S aR >R, KG—J 14y al} (3.6)
' i=1

Goia

or

SaR >R, Kw}r Za,}. (3.7)
i=1

Goua i=I

Under the assumption of 0< " a, <1, dividing both sides of (3.7) by > | q,

yields

nl SR >R, Gipew = Oola. Ya+1]. (3.8)
Zai i=1 Gald i=1
i=1

The expression on the left-hand side of (3.8) is the weighted average of the

. (o) n .
returns on n new assets. Notice that the term, [MJ / >.a, , on the right-
O, i=1

hand side of (3.8) is the elasticity of the standard deviation with respect to
> a, . Inequality (3.8) indicates that it is worthwhile acquiring n new assets if

their weighted average of returns is not less than the value of the expression on
the right-hand side of (3.8). It can also be observed from (3.8) that the greater the
standard deviation of the new portfolio, the greater the required weighted
average of the returns on n assets, and so the greater the expected return on the
new portfolio. This bears out the general belief in investment science. A higher
risk needs to be borne in order to acquire a higher return in an investment.

Recalling from Section 2.3, under the normality assumption about the
probability density function of a portfolio return, the VaR relative to the mean in
(2.18) is given as

VaR =—oacW,
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where a=®'(¢) is the value reflecting the specific confidence level ¢ (e.g.

o =-1.645 for a confidence level ¢ =95% ), ¢ is the standard deviation of the

portfolio return, and W is the portfolio value. The above definition of VaR can
be used to derive expressions of VaRs for the old and new portfolios, denoted by

VaR_, and VaR respectively. As the overall portfolio value is supposed to

new?
be fixed during the acquisition of a new portfolio, as a combination of the old

portfolio and n new assets, the ratio of VaR,,  to VaR , in the same
confidence interval is equivalent to the ratio of 6,,, to G, :

VaR new __ Gnew

VaR,; Gy
The incremental VaR, denoted by IVaR, is defined as the difference between

VaR_, and VaR, (e, IVaR=VaR, —VaR , ). Thus, the expression on

new new

the right-hand side of (3.8) can be presented in terms of VaR as

1 = VaR,,, —VaR n
—_ S aR >R, H e = T8 old j/ZaiH}
24, i=l VaR i=1

or

L S$ur>R, [WaR j/iaiﬂ . (3.9)
2in1 Gy i=1 VaR ;) =

The criterion depicted in (3.9) shows that as IVaR increases, a greater weighted

average of the returns on n new assets is required. The term

(IVaR/VaR ;) / 2.i-1a; on the right-hand side of (3.9) can be considered the

elasticity of the VaR with respect to >;_;a;,. The implication that can be made

from (3.9) is: the greater the elasticity, the greater the risk in the new portfolio,

the greater the required weighted average of returns on n new assets, and the
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greater the returns on the new portfolio. Details of the VaR elasticity can be
found in Dowd (2000), where examples were used to illustrate the relationship
between the required returns and VaR elasticities.

The advantage of inequality (3.9) will emerge when comparing it with (3.2)
derived in Dowd (1999). Some assumptions are made to compare these two
inequalities. The old portfolios in this chapter and in Dowd (1999) are assumed

to be the same (i.e., they have the same portfolio value W, expected return R, ,
and standard deviation ¢, ). The amount invested in a single new asset in

Dowd's case is the same as the total amount invested in n new assets (i.e.,

a=72,a; ). For the ease of comparison, identical symbols are used for common

terms. Inequality (3.2) can be rewritten as

R,>R,, Hi{va‘i‘{RD j/a+l}, (3.10)
old

where IVaR ,, is the incremental VaR in Dowd's case. Expressions on the right-

hand side of (3.9) and (3.10) are lower bounds of the returns on new assets. The
comparison between these two lower bounds can be replaced by comparing the

values of IVaR with IVaR ;). Recalling the definition of VaR, the IVaR in (3.9)
can be expressed as
IVaR =VaR,, —VaR ,
=W (G0, O )- @G.11)
To distinguish the standard deviation of the new portfolio in Dowd's case from
G,,, in this chapter, 6~ is used to denote the standard deviation in Dowd's

w

case. Thus, an expression for IVaR , is
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IVaR ), = =W (om,, ~ G, ) (3.12)

Following from (3.11) and (3.12), comparing G,,,, with 6°, becomes more

new

straightforward than comparing IVaR with IVaR . According to Dowd (1999),

o> has the expression

new

1/2
oP :[(l—a)zcild+azci+2a(1—a)pA,0,d6AcoldJ . (3.13)

new

where G, is the standard deviation of the returns on asset A, and p, ,,, is the

correlation coefficient between the returns on asset A and the old portfolio. The
expression for ¢,,, in (3.4) can be rewritten as

1/2

3 2 5 L n n
o =| (1=a) 0y + 2 a;0; +2(1=a) X ap; 11g0iCuy +2 2 a;,a;p; ;0,0
pu = ioj1
iz

(3.14)
Common term (l—a)2 o, is observed in (3.13) and (3.14). Comparison

between (3.13) and (3.14) cannot be conducted. The first terms on the right-hand
side are the same, but the remaining terms are different. It is helpful to consider a
special case where all the correlation coefficients are equal to zero (i.e.,

Proad =0, Piou =0, and Pi > for i, j=1,2,...,n, i # j). In other words, the

new assets are uncorrelated with each other as well as uncorrelated with the old

portfolio. Hence, (3.13) and (3.14) become

new

1/2
P2 :[(1—54)2 o2, +azcﬂ (3.15)

and

1/2
G e =[(1—a)2 O +Za?c?} : (3.16)
i=1
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The only difference between the expressions on the right-hand sides of (3.15)
and (3.16) is the second term.

For simplicity, the standard deviations are assumed to be the same for all new

assets, say 61-2 =7, Suppose n new assets are equally weighted in the new

portfolio, that is, a; is the same for all i. Since a =" a;, then a; =a/n for all

i, and therefore

n n 2
S 4’6 z(ﬁj o*=1a2e2. (3.17)
i=1

i=1\ 1 n
Hence as n —> o then )| a’c; — 0. This shows the effect of diversification.

In the well-diversified case, G,,, is less than 6~  in Dowd's case. This

w new

implies that IVaR in (3.11) is less than IVaR ,, in (3.12), and so the value on the

right-hand side of (3.9) is less than that on the right-hand side of (3.10). In the
general case considered in this chapter, a smaller lower bound for the acquiring

expected return on the new assets can be obtained by diversification.

In the case of Y. a-261-2 — 0, it can be shown further that

i=1""
G, —(1—a)o,,

new

and

IVaR - aW(ac,,). (3.18)

Thus, IVaR <0 is observed as o <0, which implies that the overall risk of the
portfolio is reduced. This objective is similar to that of the hedging decision. The
hedging decision is a popular but complicated problem in the field of risk
management. Risk managers always try to identify risk exposure and seek a way
to reduce risk in investments. One of their goals is to make a suitable hedging

decision. Diversification and hedging have the same intention; that is, to reduce
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risk of a portfolio. However, they are different approaches. Diversification
assumes that the new assets are uncorrelated with each other and the portfolio.
When addressing the hedging decision, some assets which are negative
correlated with the portfolio are sought. Litterman (1996) explored identifying

and reducing risk further.

3.1.1 Numerical Examples

In this subsection, a numerical example is presented for illustration.
Concentration is given to the stock market of Hong Kong. Since the Hang Seng
Index (HSI) is the main index in the Hong Kong stock market, the 33 constituent
stocks' in the HSI are considered. The constituent stocks can be classified into
four market sectors: Commerce and Industry, Financials, Properties, and Utilities.
Here, the daily closing prices of stocks from August 1996 to July 1997 are used
for analysis. Based on the collected data, the daily expected return and standard
deviation can be calculated for each stock. Hence, the Sharpe ratios of the stocks
are obtained.

Consider an existing portfolio consisting of 10 stocks in the Properties sector.
The stocks are selected by the Principal Component Analysis (PCA) which is a
useful technique for data analysis and helps to discover the patterns in data of
high dimension in order to reduce the number of dimensions of the data set.
Components are extracted for the data set by PCA. The data set's variation can

largely be explained by several principal components. The underlying

! Starting from July 1964 (the Hang Seng Index was first published) till June 2007, the number of
constituent stocks in HSI varies from 30 to 39. The list of constituent stocks is changed from time
to time. The 33 constituent stocks considered in this thesis are from the constituent list after
change in August 1996.
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dominator(s) can be identified in the principal components. Some introductory
information of PCA can be found in Johnson and Wichern (1992) and Smith
(2002). PCA can be carried out by using the statistical software SPSS. Here,
ignoring the presentation of analytical steps, observations on the analysis are
discussed. The result shows that the data set of the returns on 33 stocks can be
represented by seven principal components. The first principal component is
dominated by 10 stocks in the properties sector. This conforms to a great event of
the downturn of the property market during the period 1996/97.

For the ease of manipulation, the 10 stocks are assumed to be equally
weighted in the existing (old) portfolio. Let the portfolio value W =1. The
confidence interval is set to be 95% and the value reflected the confidence
interval is o0 = —1.645. The daily expected return, standard deviation, and VaR of

the old portfolio are calculated as follows:

Daily Expected Return| Standard Deviation VaR
0.0009772 0.0056477 0.0092904

Now, the remaining 23 constituent stocks in the HSI are considered being
added to the old portfolio. The selection criterion is the Sharpe ratio. In Table 3.1,
the 23 stocks are ranked by the Sharpe ratio in descending order. PCCW is
observed to have the greatest expected return but with the highest standard
deviation (risk). So, it is not the one with the highest Sharpe ratio. HSBC
Holdings has the highest Sharpe ratio, as shown in Table 3.1. According to the

Sharpe rule, the first stock to be added to the old portfolio is HSBC Holdings.
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Table 3.1 The 23 Stocks Sorted by Sharpe Ratio in a

Descending Order
Daily Expected| Standard | Sharpe
No. Stock Name Return Deviation | Ratio (%)
1 |HSBC HOLDINGS 0.003250 0.013593 23912
2 |HONG KONG AND CHINA GAS 0.002087 0.012395 16.834
3 |HUTCHISON WHAMPOA 0.002113 0.016216 13.031
4 |GUANGDONG INVESTMENT 0.003849 0.029640 12.987
5 |PCCW 0.005095 0.042908 11.875
6 |CITIC PACIFIC 0.001871 0.016139 11.590
7 |BANK OF EAST ASIA 0.001434 0.013001 11.030
8 |NEW WORLD DEV. 0.002042 0.019360 10.545
9 |CLP HOLDINGS 0.001414 0.013636 10.366
10 |HONG KONG ELECTRIC 0.001437 0.015007 9.574
11 |HANG SENG BANK 0.001720 0.018019 9.544
12 |SCMP GROUP 0.002117 0.024608 8.604
13 |JOHNSON ELECTRIC HDG. 0.001521 0.019491 7.803
14 |CATHAY PACIFIC AIRWAYS 0.000847 0.016554 5.119
15 | WHARF HOLDINGS 0.000994 0.019536 5.090
16 | SWIRE PACIFIC 'A' 0.000548 0.016159 3.393
17 |HOPEWELL HOLDINGS 0.000712 0.023106 3.082
18 | TELEVISION BROADCASTS 0.000414 0.015956 2.595
19 |SHUN TAK HOLDINGS 0.000298 0.018373 1.619
20 |ORIENTAL PRESS GROUP -0.000700 0.028379 -2.466
21 |SHANGRI - LA ASIA -0.000447 0.015355 -2.913
22 |FIRST PACIFIC -0.000767 0.019908 -3.851
23 |HONGKONG & SHALHTLS. -0.000689 0.016019 -4.302

Here, the effect of the number of stocks on the standard deviation of the
portfolio is studied. The cases to be considered are n = 1, 2, ..., 15. In these
cases, the corresponding number of stocks in the new portfolios are 11, 12, ...,
25. Assume that p; ,, =0 and p, ; =0, fori,j =1,2,...,n, i# j. Suppose n

n

new stocks are equally weighted and > ;_;a; = 10%. Under these assumptions,
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the values of the standard deviation of the new portfolios can be calculated by
(3.16).

Figure 3.1 shows the standard deviations of new portfolios vary against the
number of stocks in the portfolios. The standard deviation of the portfolio drops
dramatically first, then increases a bit before finally leveling out. Even though
the standard deviation increases when adding four or five stocks to the old
portfolio, the effect of the diversification can be seen when the standard
deviation decreases eventually. All the values of the standard deviation of the

new portfolios are less than that of the old portfolio.

Figure 3.1 Standard Deviations of New Portfolios

against Number of Stocks
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Standard Deviation

5.1 :
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After calculating the values of standard deviations for the new portfolios, the

values of IVaR can also be calculated by applying (3.11). Table 3.2 presents the
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values of standard deviation and IVaR for some portfolios. The standard
deviation of the portfolio is getting increasingly smaller as many more stocks are
added to the old portfolio. For the four specific new portfolios in Table 3.2, the
values of IVaR are less than zero which implies that the overall risk of the

portfolio is reduced.

Table 3.2 Standard Deviation and IVaR

Portfolios Standard Deviation IVaR
Old (10 stocks) 0.0056477
New (11 stocks) 0.0052615 -0.0006352
New (15 stocks) 0.0052119 -0.0007168
New (20 stocks) 0.0051273 -0.0008560
New (25 stocks) 0.0051112 -0.0008824

Representatively, the worthiness of adding new stocks to the old portfolio is
discussed for the cases of n =1, 5, 10 and 15. The second column of Table 3.3
presents the values of the weighted average of returns on n new stocks, which
are the values on the left-hand side of (3.9). The third column of Table 3.3 shows
the values on the right-hand side of (3.9). Inequality (3.9) expresses that if the
value on the left-hand side is not less than that on the right, then it is worthwhile
adding n new assets to the old portfolio. As shown in Table 3.3, for the four
specific cases, the values in Column 2 are greater than those in Column 3. Thus,

it is worthwhile adding new stocks to the old portfolio in these four cases.
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Table 3.3 Comparison of Values on both Sides of (3.9)

New Stocks |Value on the Left-hand| Value on the Right-
Added Side of (3.9) hand Side of (3.9)
1 stock 0.0032504 0.0003091
5 stocks 0.0032790 0.0002233
10 stocks 0.0024591 0.0000769
15 stocks 0.0002119 0.0000491

Similarly, by comparing the values on the left- and right-hand sides of (3.9),
it can be shown that new assets are worthwhile adding to the old portfolio for

n=12,...,15. However, some questions must be addressed here. Due to

diversification, the standard deviation (risk) gets lower when more stocks are
added. It is reasonable to consider whether investing in as many stocks as
possible is justified. Of course it is possible to invest in many stocks if it satisfies
inequality (3.9) in theory. Therefore, one can consider whether the portfolio with
more stocks is better. Though the risk is reduced by adding noticeably more
stocks, the return may be reduced as well. Thus, consideration must also be given
to the return on the portfolio and using the Sharpe ratio to determine a better
portfolio. A reduction in return may be due to an increase in transaction cost
which is another important factor, but it is not considered here for simplicity. It is
shown in our example that though the transaction cost is neglected, the daily
expected return of the new portfolio is reduced as more stocks are added, see
Table 3.4. Moreover, it can be observed that the Sharpe ratio of the new portfolio
is reduced as more than 5 stocks are added. As both the daily expected return and

standard deviation are reduced, the reduction in Sharpe ratio is consequent on
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that the rate of change of the expected return is much faster than that of standard

deviation.

Table 3.4 Return, Standard Deviation and Sharpe Ratio

Portfolios Daill);fltfllszcted Standard Deviation Sharz)‘;o ;{atio
Old (10 stocks) 0.0009772 0.0056477 17.3029
New (11 stocks) 0.0012045 0.0052615 22.8932
New (12 stocks) 0.0011463 0.0051655 22.1924
New (13 stocks) 0.0011278 0.0051482 21.9072
New (14 stocks) 0.0011620 0.0051731 22.4620
New (15 stocks) 0.0012074 0.0052119 23.1658
New (16 stocks) 0.0011839 0.0051798 22.8562
New (17 stocks) 0.0011609 0.0051576 22.5085
New (18 stocks) 0.0011513 0.0051459 223721
New (19 stocks) 0.0011368 0.0051350 22.1376
New (20 stocks) 0.0011254 0.0051273 21.9491
New (21 stocks) 0.0011187 0.0051223 21.8396
New (22 stocks) 0.0011164 0.0051201 21.8041
New (23 stocks) 0.0011099 0.0051168 21.6906
New (24 stocks) 0.0010995 0.0051135 21.5011
New (25 stocks) 0.0010914 0.0051112 21.3535

Table 3.4 presents the values of daily expected return, standard d eviation,
and Sharpe ratio of the old and new portfolios. Investors generally prefer the
portfolio with higher return and lower risk. As shown in Table 3.4, the highest
daily expected return, Sharpe ratio and the lowest standard deviation are bold for
reference. Among these portfolios, the portfolio with 25 stocks is the one with

the largest number of stocks and the lowest standard deviation. However, its
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daily expected return is comparatively low. The most efficient portfolio is not the
one with the largest number of stocks.

In Table 3.4, the most efficient portfolio is the one with 15 stocks since it has
the highest Sharpe ratio and highest daily expected return. This can also be
observed from Figure 3.2. By the Sharpe rule, the portfolio with the highest
Sharpe ratio is the best one. This implies that one can earn more from the best
portfolio than from the others for the same level of risk. Thus, one can earn more
from the portfolio with 15 stocks than from the others. Though it has a high risk,

it is still the best one if its risk is in the range of our risk tolerance.

Figure 3.2 Sharpe Ratios of New Portfolios

against Number of Stocks
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3.2 Determination of the ‘Optimal’ Number of New Assets

When the formulae derived in the previous section are used for decision
making, investors may face the following problem. Suppose many new assets are
available and only a small number of assets are demanded to be added to an old
portfolio. Investors may encounter difficulties in choosing among these new
assets. Under the assumptions that all the new assets are uncorrelated with each
other and with the old portfolio, it is possible to make comparison among assets
by applying some rules. As the Sharpe rule is fair to compare the performances
of portfolios or assets, the rule can be applied to choose the assets with better
performances. Accordingly, it is reasonable to sort the new assets by the Sharpe
ratio in descending order. The assets with higher Sharpe ratios are chosen first.

If the number of assets to be added is not specified, another problem
regarding the optimal number of assets added to the old portfolio arises. Before
answering this question, some assumptions are made for the expected returns and
standard deviations of the assets. There are n available new assets which are
already sorted by the Sharpe ratio in descending order:

BBy SRa R (3.19)
o, o©, G,;, O

The first m new assets are chosen to be added to the old portfolio, for m = 1,
2, ..., n. Thus, it is possible to obtain n new portfolios. The m new assets are
assumed to be uncorrelated with each other and with the old portfolio, and
equally weighted in the new portfolio. Under these assumptions, the expressions
of expected return and standard deviation for a new portfolio in (3.3) and (3.4)

can be simplified to
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=(1-a)R,, +%§Ri (3.20)

and

Gnm:{(l—a) 0,d+( ch TZ. (3.21)

The following two subsections will consider two specific cases for the ease
of analysis. The two specific cases are: arithmetic series and geometric series.
These deal with the sequences of the expected returns and standard deviations.
Though some closed-form formulae cannot be obtained to determine the optimal
value of m, some interesting results can be observed from the simulated
examples. The simulation results show that a new portfolio with the highest

Sharpe ratio can be obtained by adding a few new assets under some assumptions.

3.2.1 Arithmetic Series Case

The first case to be considered is that both the expected returns and the
standard deviations of the assets are arithmetic series, respectively. That is,
{R.R,,...,R } and {0,,0,,...,0,} are assumed to be arithmetic sequences. Thus,
the expected return and standard deviation of asset i can be expressed as

R =R +(-1y (3.22)
and

c6,=0,+@{@-1P (3.23)
for i=1,2,...,n and n>1, where y and [ are constants. Since standard
deviations must be positive, B >0 is assumed to avoid the existence of negative

standard deviation. Following from (3.19), (3.22) and (3.23),

49



ot RV Ry (3.24)
(¢

which can be simplified to
R,

o .

n

Yo (3.25)
B

This shows that the ratio of Y to  is bounded above by the Sharpe ratios for
all assets.

It follows from (3.22) and (3.23) that the sums on the right-hand side of (3.20)
and (3.21) can be simplified by applying the formula for an arithmetic series.

Consequently, (3.20) and (3.21) can be reduced to

Rw=(1—a)R0,d+aRl—%7+%Ym (3.26)
and
2 2 2n2 172
G, = (1—a)2<s§,d+a2{cf—[3q+B—Jl+a2 BGI—B— L2 . . (327)
6 /m 2 3

where 1<m<n.
If the values of all the variables are assumed to be given except m, it is

observed from (3.26) and (3.27) that R ,, and ©,,, can be considered functions

of m. Hence, the Sharpe ratio for the new portfolio

new

R
SR — “‘new
()

can be expressed by (3.25) and (3.26) in terms of the variable m. The goal is to
find the optimal value of m that maximizes SR, .
Since the Sharpe ratio can be considered a function of m, the optimal value of

m can be obtained by differentiating SR, with respect to m and setting the

new
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derivative equal to zero. The first derivative of SR, can be derived by

w

applying the quotient rule for derivatives. Setting diSRnew =0 implies that
m

d d
GVIL’W dim (RVIL’W ) - RVIEW’ dim (GVIL’W )

= =0. (3.28)

new

The derivatives of R , and ¢ _, with respect to m can be derived from (3.26)

and (3.27) to give

d _ay
ﬂ(Rnew)— 3

and

m

d ) a2 B2 1 a2B2
ﬂ(cnew)_icnew|: a (Gl BGI-FF —2+ 3 .

After substituting the expressions of R

new?

d d
c and —m(Gnew)

new? E(Rnew)’ d

into the left-hand side of (3.28), a complicated equation is obtained. Nowadays,
some mathematical software can assist in simplifying complicated equations.
One of the powerful software is Mathematica.

By using Mathematica, we can obtain the expression for the first term in

equation (3.28) as

1/2
A )29y z(z_ B_ji P NG
Gnewdm(Rnew)_ 2 |:(1 Cl) Gold+a Gl BGI+ 6 m+a BGI 2 + 3 m .
(3.29)
Similarly, the second term on the left-hand side of equation (3.28) can be

expressed as

d a
Rm’wﬂ(cnew) :mcnjw [a(m_l)y+2aRl +2(1_a)Rnld:||:(2m2 _I)BZ +6BGI _6612i|
(3.30)
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Hence, the expression on the left-hand side of (3.28) is simplified to

d d
Gnew w (Rnew ) - Rnew w (Gnew )

2

new

=[\E a(C20R (2 1) + 6807+ 2(a=1)a Ry (221} + 6B, ~607 ) +
Y(a2 (—1—3m—4m2 +2m3)[’)2 +6a’ (1—3m+2n12)[3<51 +6a’ (3m—1)o; +

12(1-a)’ mzcild))]/

2m2[“2 (1-3m+2m*)B* +6a’ (m—1)Bo, +6(a—1)’ mo?,

32

m

(3.31)

Let

f(m)= \Ea (—MR1 ((2m*-1)p* +6Bo;)+2(a-1)aR,, ((2m* ~1)B* +6Bo, —607 | +

'y(a2 —1-3m—4m’ +2m’ B> +6a’ (1-3m+2m* )Bo, + 6a’ (3m—1)c; +

12(1-a)’ m Go,d))

(3.32)

Note that f(m) is the numerator of the expression on the right-hand side of

(3.31). Obviously, with given values of a, R, R, ©,,0,,,P and v, it is a
function of m. It follows that equation (3.28) is equivalent to

f(m)=0. (3.33)

For the ease of observation, (3.32) can be rewritten as

f(m)= \/ga[—Zale (6[3(512 —Bz)+2(a—1)aR”,d (—B2 +6B0, —6(512)+

y(-a’B’ +6a’po, —6a’c; )] +\/§a3 v(-3B* ~18Po, +1807 Jm+
Z%a[ﬁz ((a—l)aRold —alemz)+y(—azB2 +3a’Bo, +3(1—a)2 (3 )}m2 +
J6 & B>y m’.

(3.34)
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It is obvious that the largest power of m in function f (m) is three. There are at

most three roots for the polynomial cubic equation (3.33). Mathematica can help
determine the roots, i.e. the values of m, for this polynomial cubic equation.
Since the expressions of the roots are rather lengthy, they are not presented here,
but in the Appendix to this chapter.

After obtaining the values of the three roots, we can apply the second

derivative test to determine whether the function SR 1S a maximum or

new
minimum at the point of these three roots. A necessary condition for applying the
test is that the given function is twice differentiable. Obviously, the second

derivative of the function SR, with respect to m can be obtained by

differentiating (3.31) one more time. After some simplification, we get the

following expression for the second derivative:

d2
dm

2 (SRn(’w )

:[\Ecﬂ (—4amy((2m2 ~1)B* +6Bo, ) -4(a(m—1)y+2aR +2(1-a)R,,)-
(

([32 -6Bo, + 60f)+

3a’ (a(m=1)y+2aR, +2(1-a)R,, )((2m* -1)B* +6Bo, —60; )

a’ (1-3m+2m’)B* +6a’ (m—1)Bo, +6(a—1) ma?,

32
i [az (1-3m+2m*)B* +6a> (m—1)Bo, +6(a—1)’ ma?, ]

m
(3.35)

By substituting the values of three roots into (3.35), we can determine the

optimal value of m that maximizes SR, , . In the following, some numerical

examples are implemented to show some interesting results.
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The expected returns and standard deviations of new assets are assumed in

arithmetic sequences which can be constructed for some given values of R,, G,

v, and . Here are the given values of some parameters:

a R, Coia R, S¥
10% 0.002177 0.004598 0.00264 0.00466

Hence, the values of Sharpe ratios can be calculated for the old portfolio and the
first new asset (i.e., SR, , = 0.473467 and SR, = 0.566524). Under the
assumptions stated in this section, all the given new assets are sorted by the
Sharpe ratio in descending order. This indicates that the first new asset is the one
with the highest Sharpe ratio.

Now, the values of v and  for constructing the sequences {R,R,,...,R,}

n
and {0,,0,,...,0,} are required. However, constructing a very long sequence

(with very large n) may not be realistic. Here, n is set as 100. Thus, at most 100
new assets from the sequence can be invested and the possible values of m are 1,

2, ..., 100. Since the values of y and P affect the features of the sequences and

hence the optimal value of m, studying the effect should be significant. The

assumption of B >0 implies that the standard deviations in the sequence are
monotonically increasing. It is possible to consider a suitable value range of y
and P, respectively, in order to get different combinations of these two variables.
One acceptable setting is to allow y range between —0.001 and 0.001 and 3
range between 0 and 0.002. When the values of these two variables are obtained,
it must be ensured that they satisfy inequality (3.25).

Let us consider the case with B=0.0004 and y=-0.0001 first. After

substituting these given values of the parameters into the expression on the right-
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hand side of (3.34), we can solve equation (3.33) by Mathematica to obtain three

roots as m, =1.59328, m, =-1.61059, and m, =-64730.2. With the values of

three roots, we can apply the second derivative test to determine the whether the
function has a maximum or minimum at these three point. Since it is assumed

that ISm<n, m, and m, are not practical. They are neglected. Consequently,
substituting the values of the parameters and the first root, m, =1.59328, into the

second derivative (3.35) yields

dZ
dm?

(SR,,,) =-0.00165505 < 0.

m=1.59328
Hence, SR, ,, has a local maximum at the point. We conclude that m =1.59328
is the optimal value that maximizes the Sharpe ratio SR, . Since m is the
number of new assets to be invested, it should be an integer number. We suppose
to set m" =2, which is the nearest integer to m =1.59328. In case of obtaining an
optimal m which is not an integer, no doubt we can check for both two nearest

integers to get the optimal integer value of m that maximizes SR For

new*

example, in our previous case with m=1.59328, we shall check for m=1 and

m=2. For m=1, we get SR, |  =0.53389; for m=2, the Sharpe ratio of the

new portfolio is SR = 0.53421. Thus, we can conclude that m" =2 is the

optimal value that maximizes SR, .
After analyzing different combinations of y and [, the following
observations are reached and categorized:

e For y<0 and B>0, a new portfolio with the highest Sharpe ratio is

reached by adding a few new assets. For example, the optimal value
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m=2 is obtained for y=-0.0001 and B =0.0004, see Figure 3.3. As
v<0, the expected returns in the sequence are decreasing. And >0
implies that the standard deviations are increasing. Hence, the Sharpe
ratios are decreasing, which satisfies condition (3.19).

e For O0<y<p, but B is much greater than 7y, a new portfolio with the
highest Sharpe ratio can also be obtained by adding only a small number
of new assets. One example is setting y=0.00001 and f=0.002, see
Figure 3.4. The optimal number of new assets added is 5.

e For 0<y<p, and B is close to v, it can be observed that as the number
of new assets added is increasing, the Sharpe ratio is increasing as well.
Therefore, a new portfolio with the highest Sharpe ratio cannot be

reached by adding a small number of new assets. See Figure 3.5.

Though a small optimal value of m cannot be obtained for all the cases, it can be
obtained in most of the cases. This interesting result is useful to investors
because once it is found that y and 3 satisfy the conditions in the first or second
cases, a small number of new assets can be added to obtain a new portfolio with

better performance.
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Figure 3.3 Sharpe Ratios of New Portfolios against Number of

Stocks added in Arithmetic Series Case (y <0, > 0)
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Figure 3.5 Sharpe Ratios of New Portfolios against Number of

Stocks added in Arithmetic Series Case (0 <y < )

Shaipe ratio

0.56

0.54 T——=

0.52

0.5

0.48

046 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIr’!
Lan s o w B [ Via N = R R Yin o R et s R Ry e R B o e et B B ]

L s B B B o Ry o el o P IR P I PSSR Vi B F R Sl ot 0 B oa v s R =R ]

3.2.2 Geometric Series Case

This subsection considers the case that {R,R,,...,R } and {0,,0,,...,0,} are
geometric sequences. Accordingly, for i=1,2,...,n and n=>1, the expected
return and standard deviation of asset i are given as

R, =8"'R, (3.36)
and

c,=0"¢,, (3.37)
where & and © are constants. Since a negative return is unfavorable and

standard deviations must be positive, both & and 6 are assumed to be positive.

Applying (3.19), (3.36), and (3.37) shows that
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<1, (3.38)

Dl

in which the ratio of & to 6 is bounded above by one. In other words, the ratio
of the returns for two successive assets, 0, is always less than or equal to the
ratio of the standard deviations, 6.

The sums on the right-hand sides of (3.20) and (3.21) can be simplified by
applying the formula for geometric series. Hence, expressions of the expected

return and the standard deviation for the new portfolio are obtained as

Rnew:(l_a)Rola'_'_i(l_8 JRI (339)
m| 1-9

and

) 1_92m 1/2
Gy =| (1-a)" 6% +(i) [—2 Jc% : (3.40)
m 1-6

Notice that 3 #1 and 0 # 1, otherwise (3.39) and (3.40) become meaningless. For
the given values of a, R, R,, 6,,, ©,, O, and 0, the Sharpe ratio of the

new portfolio can be expressed by (3.39) and (3.40) as a function of m, i.e.

a|1-8"
(1—")Rozd+m[l_8jR1

2 (1_gom 72
2 9 a - 2
{(1_") Gold+(mj (1—62 jcl:l

The first derivatives of R,,

(3.41)

new

and ©,,, can be derived and substituted into the

w w

left-hand side of (3.28) to obtain
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0= [a(a(1—92m +m®”" In6)(a(l-8")R, +(1-a)1-8)R,, m)c; +

(1-8"+md" In8) R, (a* (™" ~1)5} +(1-a)*m’ (6> ~ )0y, ))]/

2 1 92m 3/2
m*(1-8)(1-6%)| (1-a)’ o2, +(£j (—_chlz ,
m 1-6

(3.42)

which is equivalent to

0=a(1-6""+m®6>" In8)(a(1-8")R, +(1-a)1-8)R,, m)c; +
(3.43)
(1-8" +m8" m3) R, (a*(6*" ~ 1)o7 +(1-a)’m* (8> ~1)o, ).

Since equation (3.42) is even more complicated than that in the arithmetic series
case, it cannot be solved directly for the optimal value of m. Here, some
numerical results are shown for analysis.

Now, {R.R,,...,R)} and {0,,0,,...,0,} are regarded as geometric
sequences. For n = 100, m can be any integers between 1 and 100. Suppose

with @ =30% and the values of R ,, 6,,, R,, and 6, remain the same as

stated in the previous subsection. To study how the values of & and 6 affect the
value of the optimal m, both & and 6 are set ranging between 0 and 2, but 0 # 1
and 0 #1. It should also be ensured that 6 must always be greater than or equal
to & following from (3.38). It can be concluded from some simulation results
that:
e Once § and 6 satisfy condition (3.38), a small optimal value of m is
obtained. That is, a new portfolio with the highest Sharpe ratio is reached

by adding only a few new assets. For example, when 6=1.2 and 6=1.3,

the optimal value of m is 11, see Figure 3.6.
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e More specifically, for g: 1, i.e. =0, the Sharpe ratios for all the new

assets are the same.

> If 0<d=6<1, we observe that both {R,R,,....,R} and
{0,,0,,...,0,} are decreasing sequences. As m increases, both

R, and ¢, decrease as well; moreover, the rates of change

new new

drop and become steady. The rate of change for o,,, may be

w

greater than that for R, at the beginning, but it will be smaller

eventually. The optimal m is obtained at this turning point. For
example, when d=0=0.8, the optimal value of m is 2. See
Table 3.5. It can be observed in this case that the rate of change

for ©,,, is greater than that for R,,, when m <2; but the rate of

new
change for 6,,,, is smaller than that for R,,, when m > 2. Thus,
the optimal m is at the turning point.

> If 1<d=0<2, then both {R,R,,....,R } and {G,,0,,...,0,} are
increasing sequences. We have similar observations as those

stated above. The rate of change for G,,,, is smaller than that for

R, at the beginning, but it will be greater eventually. The

new
optimal m is also obtained at the turning point. For example,

when 8 =06=1.3, the rate of change for 6, is smaller than that

new

for R,,,, when m <19; but the rate of change for ¢,,, is greater

than that for R,,, when m >19. The optimal value of m is 19.

w

Moreover, as both & and 0 increase, the optimal value of m
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decreases. For instance, when 8 =0=1.6, the optimal value of m

becomes to be 9. See Table 3.5.
e For 0 <g<< 1, i.e. 8k 6, it is usually required to add a few new stocks

to obtain a portfolio with the highest Sharpe ratio. One of the examples is:

o7}
o

~ .. 8_01
0=0.1 and 6=1.2, 1.e.e L

=0.0833 « 1, the optimal value of m is

[\

1. In this case, {R.R,,...,R} is a decreasing sequence, but
{0,,0,,...,0,} is an increasing sequence. As more new stocks are added,

i.e. m increases, a falling of R, and arising of ¢,,, leads to a decrease

new

in the Sharpe ratio.

Consequently, in the geometric series case, the optimal value of m is usually

small if & and O satisfy the condition (3.38) and both & and 6 are strictly less

than 1.
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Figure 3.6 Sharpe Ratios of New Portfolios against Number of Stocks

added in Geometric Series Case
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Table 3.5 The Optimal No. of New Stocks Added (m) for

Different Values of 6 and 0 (6 and 0)

) 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
No. of
New Stocks 1 1 1 1 1 1 1 2 2
) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
No. of
New Stocks 63 29 19 14 11 9 8 7 6
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Appendix to Chapter 3: Roots for Equation (3.33)

A3.1 Expression of the First Root for Equation (3.33)
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A3.2 Expression of the Second Root for Equation (3.33)
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A3.3 Expression of the Third Root for Equation (3.33)
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Chapter 4

The Mean-Variance Approach to Portfolio Improvement

So far, we have developed some criteria to judge the worthiness of adding
some new assets to an existing portfolio. As a result, a new portfolio with better
performance is obtained. Portfolio improvement is accomplished by acquiring
some new assets. In the process of acquiring some new assets, it is necessary to
compare the performances of a new constructed portfolio with that of a
benchmark, i.e. the existing portfolio. Because people are usually concerned
about return and risk when comparing the performances of portfolios and risk
can be measured by the variance of the portfolio returns, we take both return and
variance into account in solving the portfolio improvement problem. This chapter
looks into developing a model to solve the portfolio improvement problem in a
single period by applying the mean-variance analysis. More specifically, the
portfolio improvement problem is formulated into an optimization problem, in
which the variance of the new portfolio is minimized subject to some constraints
including a return constraint.

In the settlement of stock trading, transaction fees are charged. Hence,
transaction cost is a concern when acquiring some new assets. Moreover, adding
too many assets to a portfolio is not practical in view of manageability. Due to
the facts, a cardinality constraint is introduced to restrict the number of selected
new assets not to be too large in our model.

Before developing models to solve the problem, let us make some

assumptions and introduce some notations. Assume that the overall portfolio
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value does not change, i.e. the portfolio values of the old and new portfolios are
the same. The expected return and standard deviation of stock i are denoted by
R and o,, for i=1,2,...,n. Let x,,, be the weight of the old portfolio and x, be
the weight of stock i in the new portfolio, for i =1,2,...,n. For convenience, the
weights is represented by a (n+1) -dimensional vector, denoted x, where the
transpose of x is

X' =[X,,,%,%,, X, ] 4.1)
Similarly, a (n+1) -dimensional vector of returns is given by

R=[R,.R.R,. R ]. (4.2)

Thus, the expected return on the new portfolio can be expressed as
W(X)=R,,x,, + > Rx =Rx. (4.3)
i=1

The old portfolio is treated as a whole and consideration is given to the
correlations of the returns on new stocks and the old portfolio. The variance-
covariance matrix, denoted by X, is

2

Gald Gold 1 Gald 2 Gold N
2
Gl,nld Gl 61,2 Gl,n
— 2
L= Croa Oay G, Oy, | 4.4)
2
_Gn,old Gn,l Gn,Z Gn N

where G, ,, =0, ; is the covariance of the returns on new stock i and the old
portfolio and o, ; =0, ; is the covariance of the returns on new stocks i and j,

for i, j=1,2,...,n; i# j. Hence, the variance of the new portfolio return can be

expressed as
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n
2 2 2.2
v(X)=x,,0,, + E X, C; +2§ X X040 g +2 E XX,0, ; =X XX, (4.5)
= i=1 i,j=1
i#j

and the standard deviation is

o(x) =Vx' ZIx. (4.6)

By introducing the cardinality constraint for the restriction on the number of
selected new stocks, Section 4.1 formulates our problem with an equality
cardinality constraint. It discusses the formulation and derives analytical
solutions to the problem under some assumptions in Section 4.2. Though we
cannot obtain a closed-form solution in the general case, the analytical solutions
in some special cases provide some insight for solving the problem. In solving
our problem, it is required to pick some stocks from n given stocks. A good
stock picking strategy makes the solution time shorter. With this concern,
Section 4.3 illustrates a stock picking strategy for picking 2 and 3 stocks. As our
problem can be categorized as a Mixed Binary Quadratic Programming (MBQP)
problem, some developed optimization solvers can solve such a problem. Section
4.4 shows some procedures to solve our problem by using the Xpress Solver. A
numerical example is presented for illustration. Section 4.5 considers another
model with an inequality cardinality constraint. Comparison with the model with

an equality cardinality constraint is carried out by using a numerical example.

4.1 Problem Formulation with Equality Cardinality
Constraint

Investors always prefer a portfolio with higher return or lower risk. Risk is

usually measured by the standard deviation or variance. The classical portfolio
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optimization problem is to minimize the risk of achieving a given level of return.

The objective of our formulation is to minimize the variance of the new portfolio

subject to some constraints, e.g. the return on the new portfolio must be greater

than a desired return, R. Here, it is recommended to set R >R, because the

spirit of our problem is to improve the return on the existing portfolio.

Under the mean-variance theory, our problem can be formulated as follows:

(MBQP) Minimize

Subject to

1 1,
—p(X)=—X XX
2 ®) 2
u(x)=Rx>R,

n
Xt Zx,. =1,
i=1

X, 2a,

0<x, <y, for i=12,...

1

i=1

(4.72)

(4.7b)

(4.7¢)

4.7d)

(4.7e)

(4.7f)

4.7g)

(4.7h)

Here, a is the minimum portion of portfolio value invested in the old

portfolio and m is a positive integer number. It is only meaningful to set m < n.

We presume that 0 <a <1. Note that y, is an indicator variable for x,; if new

stock i is selected to be invested in the new portfolio, i.e. x; >0, then y, =1;

else new stock i is not selected, then x, =0 and y, =0. Thus, for all 7, y, is a
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binary variable; it is equal to either O or 1. The constraint x,,, + Zx,. =1 restricts

i=1
that a portion of portfolio value is invested in the old portfolio and the remaining

portions are invested in some new stocks. It follows from (4.7c) and (4.7d) that

in <1-a, i.e. the total portions invested in the new stocks do not exceed 1—a.

i=1
By setting x, 20 for all i, short selling is not allowed in the problem (MBQP).
With the restrictions x, <y, for all i, x, is either equal to 0 or a percentage

(between 0 and 1). Moreover, we introduce linear constraints (4.7h) to restrict x;

not to be too small. When x; is too small, we treat it as zero. Notice that u; is a
constant and 0 <u, <1. For example, when u, =0.99, x; is set to be not less than

1% for those selected stocks.

In problem (MBQP), we introduce an equality cardinality constraint

n

z v, =m. It specifies that the total number of new stocks invested in the new
i=1

portfolio must be exactly equal to m. In other words, it is required to choose

exactly m stocks from n given new stocks. There are ,C, combinations for

selection. For a fixed value of m, as the value of n increases, the number of
combinations increases exponentially. Thus, the computational time required to
solve the problem will increase exponentially. For a fixed value of n, the value of
m also affects the computational time required to solve the problem. Moreover,
transaction costs increase as more stocks are traded. Because of the concern in
computational time and cost, m is requested to be a small number in practice.

In the formulation of problem (MBQP), we intend to minimize the variance

of the portfolio return subject to some equality and inequality constraints
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including a return constraint, i.e. Rx > R. For an optimization problem, it is
crucial to analyze the characteristics of the objective function and hence identify
the problem type in order to seek a suitable solution method. Here, the objective

function v(x) is an expression of the variance which is a quadratic function of

the decision variables x. Without constraints (4.7d), (4.7e), (4.7f) and (4.7g), our
problem can be reduced to the classical Markowitz mean-variance problem
which is a convex quadratic programming (QP) problem. As pointed out in
Nocedal and Wright (1999), quadratic programs can always be solved (or can be
shown to be infeasible) in a finite number of iterations, but the effort required to
find a solution depends strongly on the characteristics of the objective function
and the number of inequality constraints. It is obvious that the variance-
covariance matrix X in our objective function is symmetric. It can be shown that
Y is positive semidefinite. In this case, the Markowitz mean-variance problem is
a convex QP. Solving such a problem is no much difficult than a linear
programming (LP) problem.

However, regarding the constraints (4.7g), the indicator variables y,, for all i,

are restricted to 0-1 values. Moreover, the inclusion of constraints (4.7d), (4.7¢)
and (4.7f) makes the problem (MBQP) more difficult to be solved than the
standard Markowitz mean-variance problem. Actually, our problem is a Mixed
Binary Quadratic Programming which can be abbreviated to MBQP, i.e. the
name of our problem. For an integer nonlinear programming problem, it can be
solved by a branch-and-bound approach that applies a nonlinear solver to

successive sub-problems.
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4.2  Analytical Solutions to the Problem in Some Special Cases

Before solving our problem (MBQP), it is interesting to discuss the solution
in some special cases. Obviously, problem (MBQP) can be reduced to a model
similar to the Markowitz model by ignoring some constraints, say (4.7d), (4.7¢),
(4.71), (4.7g) and (4.7h), and setting (4.7b) with equality constraint. As stated and
demonstrated in Luenberger (1997), for n assets, a system of n+2 linear
equations can be obtained for efficient set. These equations can be solved with
standard methods for n+2 unknowns including two Lagrange multipliers and n
portfolio weights.

Suppose that there are n assets which are uncorrelated. You may invest in
any one, or in any combination of them. The mean rate return R is the same for

each asset, but the variances are different. The return on asset i has a variance of
Gf for i =1,2,...,n. This is the problem stated in Chapter 6 of Luenberger (1997).

It is required to express the minimum-variance point in terms of

n

5 :(ZGLJ . 4.8)

1

It can be shown that the n portfolio weights x, for i=1,2,...,n have the

following expression

=2
x == (4.9)
Gi
Hence, the minimum variance is equal to G’
Let us consider the following model reduced from problem (MBQP):
(MBQP_R) Minimize % Y 6,x.x, (4.10a)

i,j=1
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Subjectto D> Rx, =R, (4.10b)

i=1

D x =1, (4.10¢)
i=1

0<x, <y, for i=12,...,n, (4.10d)
iy,. =m, (4.10e)
i=1

y,(1-y)=0, for i=12,...,n (4.10f)
y,—x,<u, for i=L2,...,n (4.10g)

Notice that constraint (4.10f) is used instead of constraint (4.7g) to present an
algebraic expression of (4.7g) for the ease of derivation. Regarding problem
(MBQP_R), it is complicated to determine an analytical solution. For simplicity,

some assumptions are addressed here. Suppose the n assets are uncorrelated.

The expected returns R s are all equal to the desired return R, but the variances

are different. Both m and n are fixed. In this case, the number of combinations

for portfolio selection, i.e. ,C , is fixed. With the uncorrelated assumption on

n~"m?
assets, the variance of the portfolio in the objective function can be simplified

and expressed as

icuxi X; :ixfcf. (4.11)
i=1

i,j=1

Note that under the assumption of equal expected return for all assets, constraint
(4.10b) can be simplified and is equivalent to constraint (4.10c). In a manner
similar to the solution to the problem in Luenberger (1997), we can also show

that
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X, =—+, foriel and Ic N, 4.12)
Gi

2
iel i

-1
where 6? = (zij and the set / is the subset of the set N ={1,2,...,n}. Note
that the cardinality of a set, e.g. S, measures the number of elements of the set
and is denoted by |§|. It is obvious that |N|=n and |7| <n. Actually, || =
and this specifies that only m assets are chosen from n assets. However, the
elements in the set I are still not determined. Suppose the variances are ranked
in an ascending order as
0,£0,<:--<0,.

n

Obviously, the optimal solution is

1

=2
x,:c—é, iel, I={1,2,....,m},

o, (4.13)
=0, ie N\I.
The corresponding minimum variance is equal to
1 -1
Zx*z o Zx 6. =5, (Z j =5, (4.14)
i=1 G

The result is straightforward in common sense that investors always prefer assets
with lower risk, say standard deviation, for the same level of return.
By ignoring the assumption of equal mean rate of return for each asset, we

consider problem (MBQP_R) without constraints (4.10d) — (4.10g):

(MV_L) Minimize — Z G, X, X, (4.15a)

zjl

Subjectto D xR, =R (4.15b)

84



x =1 (4.15¢)

Under the uncorrelated assumption on assets, the objective function (4.15a)
can be simplified to the function on the right-hand side of (4.11). By introducing

two Lagrange multipliers A and W, we can obtain

T )
i=1 i=1 i=l

Set the derivatives dL =0, which yields a system of equations:

a—szin—kRi—LL:O, i=1,...,n,
xi

aL n _

—=>» xR —-R=0,

a;\( ; [

a—L=le.—1=0.

u ‘S

Solving the system of equations above yields

AR +1
x = 4.17)
Gi
where
E n i B n Ri
= o) = o}
A= - (4.18)
n RIZ n 1 n Ri
= o )\F o = o)
and
n 2 (2 R
i=1 9 i=1 Gl
W= (4.19)

With regard to the expressions of A and W in (4.18) and (4.19) respectively, we

can show that they are expressed meaningfully only when the return rates of
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assets are not all equal. It can be observed explicitly that as all the assets have the
same return rate, the same denominator in both (4.18) and (4.19) becomes zero.

The expressions of A and W can be simplified by introducing some new

n n R n 2
notation. Let A = z iz, B= z — and C = z R—; It follows from (4.18) and
c

2
i-1 O; i-1 O; -1 O

(4.19) that A and W can be expressed in terms of A, Band C as

- RA-B

_—AC—32 (4.20)
and
C-RB
M :m. 4.21)

Recall that the variance of the portfolio returns can be expressed as

" (7»R,. +u)2

n
2 2
20

1

i=1

5 n R,2 n Ri 5 1
which is equivalent to

D xlol =CA +2BMu+ Ap’. (4.23)

i=1

The constraint (4.15b) can be rewritten as

or
CA+Bu=R. (4.24)
Similarly, constraint (4.15c) can be simplified to

BL+An=1. (4.25)
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It follows from (4.23), (4.24) and (4.25) that

D xlol=AR+. (4.26)

i=1

By substituting (4.20) and (4.21) into (4.26), we can obtain

n n2_ D
Y ol = AR -2BR+C (4.27)
i=1

f AC - B?
which can be considered as a function of R as A, B and C are all constant with

given values of R;s and o s. For different values of R, formula (4.27) gives

different values for minimum variance of the portfolio returns. It can also be
shown that without the assumption of no correlation between assets, problem
(MV_L) can be solved and the variance of the portfolio returns can be expressed
as a function of the desired return R. See Merton (1972) for a more detailed

derivation of the variance of a frontier portfolio in the general case.

4.3 Stock Picking Strategy

The previous subsection has derived some analytical solutions to the problem
in some special cases. Intuitively, to solve our problem (MBQP_R) under the

uncorrelated assumption on assets, we can construct ,C, combinations of assets,

i.e. set I, and then calculate the variance for each portfolio for comparison.
Finally, the optimal portfolio is the one with the smallest variance. However, as
m and n become large, the number of combinations increases and the
computation time for the problem becomes longer. Moreover, one may encounter
difficulties in the construction of a well-structured sequence of combinations of
assets, e.g. stocks, which can increase the search efficiency for a solution. Since

solving our problem gives a portfolio with minimum variance, this section will
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try to construct a sequence of combinations of stocks in portfolios for efficient
search. In general, it is not easy to construct a structured sequence of
combinations, in which the variances of the portfolios are in an ascending order.
Some assumptions are made in this section to simplify the expression of variance
in order to construct an approximately increasing sequence of combinations. Our
approach is to consider the unconstrained problem, i.e. the problem (MBQP_R),
without the return constraint for a simpler solution first. Then we will check
whether the possible portfolios in the sequence of combinations satisfy the return
constraint. For those feasible portfolios, the portfolio with the smallest variance
is the optimal one.

Let us consider problem (MV_L) again. Suppose all the stocks are
uncorrelated. We assume that the return constraint (4.15b) is released and the
problem becomes an unconstrained problem. Solving the problem by introducing

a Lagrange multiplier p yields

x =t (4.28)
Gi

for i=1,2,...,n, where

= (Z ij . (4.29)

2
-1 O;

Hence, the variance of the portfolio is

-1
2. %o =(Z %j : (4.30)
i-1 O;

Under the same assumptions, we can show that for problem (MBQP_R) without

constraint (4.10b), the portfolio weights x, is equivalent to (4.12) and zero

otherwise. Hence, the variance of the portfolio can be expressed as G, . It has
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been shown in Section 4.2 that in the solution, the first m stocks with smaller
standard deviations are selected if all the stocks have the same expected return.
However, the solution is not determined without the assumption of equal
expected return of stocks.

The following paragraphs concentrate on constructing a structured sequence

of combinations. One more assumption is addressed here. Assume that ©; = R,,
ie. 61.2 =cR,, for all i, where c¢ is a constant. The idea behind this assumption is
the tradeoff between return and risk, i.e. R, and o, in which a higher risk must
be borne for a higher return. Replacing 6; by cR, in the expression of the

variance of the portfolio, 6?, gives

-1 -1
_ 1 1
Y xlo; =G = Z? =c ZF : 4.31)

iel iel i iel i

where I/ c N and N ={1,2,...,n}. Since c is a constant, to minimize fo o, is

iel

. o 1
equlvalent to minimize Z—

iel i
For specific values of m and n, there are ,C, possible portfolios for

comparison. Intuitively, for an efficient portfolio that satisfies the return
constraint, at least one of the expected returns of the selected stocks should be
greater than the desired return R . For n given stocks, their expected returns can
be calculated and ranked in an ascending order. Suppose R is ranked between

R, and R _,,. Now, we have

R <R,<---<R <R<R,, <<R,. (4.32)

k+1 n
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-1
Since smaller values of R.s give a smaller value of (Zij , W& propose

iel i
to pick m—1 stocks from the first k ranked stocks and 1 stock from the last
n—k stocks in (4.32), with m—1<k <n—1. In this stock picking strategy, the

number of combinations becomes ,C, *, ,C, =(n—k)s C,_, which should be

less than C . For the ease of tracking and comparison, we suppose that the

expected returns of stocks, {R,R,,...,R, }, is an arithmetic sequence. Thus, the
expected return of stock i can be expressed in terms of R, as in (3.22) for
i=12,....,n, and n >1.

Let us consider the simplest case m =2 first. With given values of n and k,

we should pick 1 stock from the first & given stocks and another from the last
n—k stocks. It turns out that the number of combinations, i.e. portfolios, is
ke(n—k).

The following algorithm demonstrates our stock picking strategy for the case

of m=2.

Algorithm 4.1 (Stock Picking Strategy for m=2)

Step 1. (Initialization) k& value (must be m—1<k<n—-1);i=1, j=k+1;
exit_value=k+n+1; sum_value=i+ j.

Step 2. (Selection) If i <k and j <n, then enter the list and go to Step 3;
otherwise, go to Step 3.

Step 3. (Partition) If j=k+1, then go to Step 4; else, go to Step 5.

Step4. (Update_1) i =i+1, sum_value =sum_value+1, j=sum_value—i.

If sum_value = exit_value, then stop; else, go to Step 2.
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Step 5. (Update_2) j= j—1, i =sum_value— j; go to Step 2.

The goal of Algorithm 4.1 is to construct a sequential list of possible sets of

stock indexes in a two-stock portfolio. In Algorithm 4.1, the sum_value is

corresponding to the sum of the indexes of the two constituent stocks, i.e. i and

J , in the portfolio. The list is started from the set with the smallest sum_value
and ended at the set with the largest sum_value. Since we want to pick 1 stock

from the first & given stocks and another from the last n—k stocks, we have

1<i<k and k+1< j<n Hence, k+2<sum_value <k +n.

As an illustration, suppose n=19, m=2 and k=7. The first set to be
considered in the list is (9;1,8) where sum_value=9, i=1 and j=8. We also
have 1<i<7, 8<j<19 and 9<sum_value<26. Table 4.1 displays a

sequential list of possible sets of stock indexes for the case of m =2. The total

number of possible sets is ke(n—k)=7x12=84. We observe that the
sum_value is in a non-descending order. Each set refers to a possible portfolio,
e.g. (9;1,8) refers to a portfolio consisting of two stocks with expected returns
R, and R;. For the portfolios with the same sum_value in Table 4.1, we suppose

that the portfolio in a more ‘extreme’ set has a smaller variance, so the more
‘extreme’ set is selected first. Here, ‘extreme’ means that one of the two
constituent stocks in the ‘extreme’ set has the smallest expected return and the
other has the largest expected return among the stocks in the sets with equal sum
of expected returns of stocks. For example, for sum_value =12, the set (12;1,11)

is more ‘extreme’ than the set (12;2,10), (12;2,10) is more ‘extreme’ than

(12;3,9), and so on. It is presumed that the portfolios in Table 4.1 with the same
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sum_value are sorted by variance in an ascending order. This will be proved in

Proposition 4.1.

Table 4.1 List of Possible Sets of Stock Indexes for m =2

sum_value i J sum_value| i J sum_value i J
9 1 8 16 1 15 20 1 19
10 1 9 16 2 14 20 2 18
10 2 8 16 3 13 20 3 17
11 1 10 16 4 12 20 4 16
11 2 9 16 5 11 20 5 15
11 3 8 16 6 10 20 6 14
12 1 11 16 7 9 20 7 13
12 2 10 17 1 16 21 2 19
1