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Abstract 

 

This thesis studies the application of the Sharpe rule and Value-at-Risk in 

dealing with the portfolio improvement problem. It proposes that a portion of the 

portfolio value should be invested in some other assets for portfolio 

improvement. The generalized Sharpe rule is first used to assess the 

performances of assets or portfolios. Analytic results are derived to show that 

some assets with better performance are selected for portfolio improvement. By 

applying the Sharpe rule, it can be determined that new stocks are worthy of 

adding to the old portfolio if the average return rate of these stocks is greater than 

the return rate of the old portfolio multiplied by the sum of the elasticity of the 

Value-at-Risk (VaR) and 1. One attraction of our approach is diversification. 

Consideration is also given to the ‘optimal’ number of new assets to be added in 

two specific cases (i.e., arithmetic series and geometric series regarding the 

sequences of expected returns and standard deviations). Some interesting 

simulation results show that a new portfolio with the ‘highest’ Sharpe ratio can 

be obtained by adding only a few new assets. 

Motivated from the simulations that a few new assets need to be added for 

portfolio improvement, we also formulate the portfolio improvement problem 

using the mean-variance approach with equality cardinality constraint. In the 

formulation, variance is regarded as the risk. The equality cardinality constraint 

restricts that a given number of new stocks are selected for portfolio 

improvement. Under the assumptions that all the stocks are uncorrelated, 

analytical solutions to the formulated problem are derived for two specific cases: 

the expected returns of stocks are all equal to the desired return, and the expected 
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returns of stocks are not all equal. The problem is also formulated with inequality 

cardinality constraint. Comparison is conducted to the problems formulated with 

equality cardinality constraint and with inequality cardinality constraint. Though 

the inequality cardinality constraint is set, numerical results show that in most of 

our simulated cases, the inequality cardinality constraint becomes equality at the 

optimal solution.  

The need of innovation and progress in risk management leads to the 

popularity of VaR. In another formulation of the portfolio improvement problem, 

we propose to use VaR instead of variance as a risk measure. Due to some 

desirable properties of Conditional VaR (CVaR), it makes CVaR much easier to 

be handled than VaR. The portfolio improvement problem is formulated into a 

mean-CVaR problem. The problem is then solved under the normality and non-

normality assumptions about the portfolio returns. Experimental results show 

that as the number of scenarios increases, the loss random variable approaches 

normality under the former assumption; however, such convergence is not 

observed under the latter assumption.  
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Chapter 1 

Introduction 

 

1.1 Motivation and Objectives 

Portfolio selection is a complex and challenging problem in financial 

management. The earliest approach to solving the portfolio selection problem is 

the mean-variance approach which is proposed by Markowitz (1952). In general, 

the portfolio selection problem treats the construction of efficient portfolios. The 

idea of Markowitz’s model is that investor should hold mean-variance efficient 

portfolios.  

The resulting efficient portfolios from solving the portfolio optimization 

problem may satisfy some investors with a specific risk tolerant at the moment. 

However, after some time, due to the uncertainty in the stock market, the 

selected portfolio may not best fit some of the investors. An investor may make a 

request for an improvement in the return on the portfolio. Of course, it is possible 

to sell the existing portfolio and buy another one with different combination of 

stocks that satisfies the investor. This will totally change the investment strategy 

and transaction cost is involved. On the other hand, the existing portfolio may 

still gain profit but it is under the expectation of the investor as s/he found some 

other stocks with better performance in the market. In practice, the investor 

would rather enhance the existing portfolio than trade it altogether. The 

motivation of this project is basically driven by the need of improving an existing 

portfolio in portfolio management.  
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Enhancing an existing portfolio is the objective of this thesis. One approach 

is to improve an existing portfolio by investing in some new assets. In this 

process, we need to select a few attractive assets from those in the market. As 

return and risk are two important quantities in measuring the performance of an 

investment, it is crucial to consider both return and risk in the selection of assets. 

Sharpe ratio is one of the most popular performance measures. It is defined as the 

ratio of the expected return to the standard deviation of the returns. It captures 

both return and risk (Sharpe (1966, 1975, 1994), Dowd (1998, 1999, 2000), 

Hodges (1998) and Amin and Kat (2002)). By the generalized Sharpe rule, a new 

asset with higher Sharpe ratio has higher priority to be selected.  

Theoretically, a portfolio can consist of a large number of assets. However, 

some empirical results show that an efficient portfolio may constitute a small 

number of assets. Motivating from observations, we investigate into the 

determination of the ‘optimal’ number of new assets to be invested in a portfolio. 

Here, ‘optimal’ means that the minimum number of new stocks is selected to 

form a new portfolio with the highest Sharpe ratio. 

In a general view, the portfolio improvement problem can be formulated into 

a mean-variance problem for analysis. Here, variance is referred to as the risk of 

the portfolio. In a standard mean-variance model, the number of assets in a 

portfolio is not restricted. However, it is not practical to involve too many assets 

in a portfolio. For controlling the number of assets to be invested in a portfolio, a 

cardinality constraint is introduced. With an inequality cardinality constraint, the 

number of selected assets is set in a range; comparatively, with an equality 

cardinality constraint, the number of selected assets is fixed. Our goal is to solve 

the mean-variance problem with an equality cardinality constraint for portfolio 
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improvement and compare it with the formulation with an inequality cardinality 

constraint correspondingly. Taking cardinality constraint into consideration 

makes the problem more difficult to be solved than the standard mean-variance 

problem. Our approach is to solve the problem by the Xpress Solver in which the 

Interior Point method and cutting-plane strategies are applied. Discussions on 

heuristics or exact solution methodologies for the cardinality constrained mean-

variance model can also be found in Chang et al. (2000), Crama and Schyns 

(2003), Jobst et al. (2001), Bienstock (1996) and Li et al. (2006).  

By definition, variance is a measure of the dispersion or spread of a 

distribution. Unfortunately it cannot tell how much market risk the portfolio is 

carrying. In contrast with variance, Value-at-Risk (VaR), a single statistical 

measure of possible portfolio losses, is gaining its popularity as it can quantify 

market risk. Due to some desirable properties, e.g. sub-additivity, conditional 

Value-at-Risk (CVaR), which is the expected loss exceeding VaR, is more 

attractive than VaR (Uryasev and Rockafellar (2000)). Hence, a new approach is 

to formulate the portfolio improvement problem into a mean-CVaR problem 

with a cardinality constraint.  

To solve the mean-CVaR problem, it is crucial to make an assumption about 

the expected returns of assets. It is usually assumed that the returns have a 

multivariate normal distribution. This assumption is popular and in widespread 

use. For example, as stated in the Technical Document provided by JPMorgan 

(1996, p. 13), when computing a portfolio’s VaR using RiskMetrics, it is 

assumed that the portfolio return is normally distributed. RiskMetrics provided 

by JPMorgan is a set of techniques and data to measure market risks in portfolios 

of fixed income instruments, equities, foreign exchange, commodities, and their 
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derivatives issued in over 30 countries. When the expected returns of assets have 

a multivariate normal distribution, the portfolio VaR and CVaR can be expressed 

in terms of expected return and variance of the portfolio returns. As pointed out 

in Dowd (1998), normality gives us a simple and tractable expression for VaR. 

However, it is observable that the true underlying distribution may not be 

normal (fat tails, etc.). The VaR computed under the assumption of normality 

may be underestimated. To compare with the results obtained under the 

assumption of normality, it is possible to solve the mean-CVaR problem under 

non-normality assumption. It is convenient to assume that the expected returns of 

stocks have a multivariate T distribution. A T distribution has a fatter tail than a 

normal one. Moreover, it provides an easy and intuitively plausible way to 

estimate VaR. Hence, we intend to solve the mean-CVaR problem under this 

assumption and compare the result with that under the normality assumption. 

 

1.2 Literature Review 

1.2.1 Modern Portfolio Theory (MPT)   

The work done by Markowitz (1952) is contributed to the basis of the 

Modern Portfolio Theory (MPT). In principle, MPT is about the optimization of 

portfolios for rational investors and the pricing of risky assets. It is to deliver 

solution methods to the portfolio selection problem. See Ingersoll (1987) for a 

rigorous and comprehensive representation of MPT. Also, an intuitive 

introduction and insights of MPT can be found in Harrington (1987), Copeland, 

Weston and Shastri (2005), Rasmussen (2003), Elton et al. (2003) and Litterman 

(2003).  
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Starting from the pioneering work of portfolio selection by Markowitz (1952), 

the portfolio optimization problem has long been investigated by practitioners 

and researchers. In the 50’s and 60’s of the twentieth century, the mean-variance 

analysis was developed by Tobin (1958), Sharpe (1963, 1964), and Lintner 

(1965), among others. With a heuristic introduction to the basic portfolio 

selection problem, Martin (1955) analyzed and explained, by reference to 

empirical data, some of the work done by Markowitz (1952). More discussions 

on investment balance and portfolio decision is carried out in Tobin (1958). He 

considered the liquidity preference theory which takes as given the choices 

determining how much wealth is to be invested in monetary assets and concerns 

itself with the allocation of these amounts among cash and alternative monetary 

assets. The concerns in the theory are also treated in the portfolio optimization 

problem. 

The mean-variance approach has a great regard to the tradeoff between return 

and risk. A general belief is that a higher risk needs to be borne in order to 

acquire a higher return in an investment. In the portfolio theory, it is assumed 

that investors always prefer higher returns to lower returns for a given level of 

risk; likewise for a given level of return, one prefers lower risk to higher risk. 

Risk can be measured in terms of variance or standard deviation of the return 

(Markowitz (1952, 1959)). Hence, when analyzing and solving the portfolio 

selection problem, one popular approach is so-called mean-variance analysis. In 

this approach, the portfolio selection problem can be formulated to minimize the 

variance of the portfolio subject to a prospective level of return; or equivalently, 

maximize the return on the portfolio subject to a tolerant level of risk. 

Consequently, mean-variance efficient portfolios result from the optimization 
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problem. Luenberger (1997, p. 157) illustrates that the efficient portfolios 

provide the best mean-variance combinations for most investors. 

The original Markowitz mean-variance portfolio selection problem is treated 

a single period investment. See, for example, Levy and Markowitz (1979), Pulley 

(1981, 1985) and Kroll et al. (1984). They all favour the mean-variance model. 

By applying Lagrange multipliers, Merton (1972) derived an analytical solution 

to the Markowitz problem under the assumption that short selling is allowed. It 

leads to some insightful implications about the characteristics of the efficient 

portfolio frontiers. See also Markowitz (2000) for a detailed discussion on the 

solution to the general portfolio selection model.  

Later, the mean-variance approach is in widespread application. It is applied 

for portfolio optimization and developed to analyze problems from conventional 

single period to multi-period. The Markowitz mean-variance portfolio 

optimization problem is extendable to be considered in multiperiod and for the 

continuous-time case, which can be derived by different approaches. Recently, Li 

and Ng (2000) derived explicit solutions to the discrete-time, multiperiod mean-

variance problem. For more discussions on the mean-variance problem in the 

multiperiod case, see also Mossin (1968), Samuelson (1969), Hakansson (1971), 

Francis (1976), Campbell et al. (1997), and Çelikyurt and Özekici (2007).  

For the continuous-time, dynamic mean-variance problem in a complete 

market, Zhou and Li (2000) solved it by diffusion process with deterministic 

coefficients. Li, Zhou and Lim (2002) considered the mean-variance portfolio 

selection problem in continuous-time under the constraint that short-selling of 

stocks is prohibited. More about the mean-variance portfolio selection problem 

in the continuous-time case can be found in Merton (1969, 1971), Karatzas et al. 
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(1987), Cox and Huang (1989), Duffie and Richardson (1991), Dumas and 

Luciano (1991), Grossman and Zhou (1996), Zhou and Yin (2003), and Bielecki 

et al. (2005). 

Except portfolio optimization, the basic concepts of MPT include the two-

fund theorem, the Capital Asset Pricing Model (CAPM), the capital market line 

and the security market line (Luenberger (1997), Panjer et al. (1998)). Müller 

(1989) summarized some main results in MPT. Specifically, he presented the 

Markowitz approach and discussed CAPM.  

Luenberger (1997) illustrated the two-fund theorem. He stated that according 

to the two-fund theorem, two mutual funds could provide a complete investment 

service for everyone. However, this conclusion is based on some assumptions, 

e.g. investors are only concerned about mean and variance. 

An equilibrium model for asset pricing, CAPM, was developed by Sharpe 

(1964) and Lintner (1965). Harrington (1983, p. 29) discussed some assumptions 

behind CAPM. For example, it is assumed that there is a risk-free asset, and 

investors can borrow and lend at the risk-free rate. This assumption is crucial. 

The risk-free asset simplifies that curved efficient frontier of MPT to the linear 

efficient frontier of the CAPM.  

Sharpe (2000, p. 84) stated that the slope of the capital market line indicates 

the trade-off between expected return and risk (uncertainty). Sharpe (2000, p. 95) 

summarized that the security market line indicates the relationship between 

expected return and volatility and thus indicates the manner in which 

characteristic lines are related. 
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1.2.2 Portfolio Improvement   

One of the financial planning services provided by financial institutions is 

portfolio management. It helps clients to construct strategies in balancing return 

and risk. Of course, the task is to maximize the return and minimize the risk. Due 

to the uncertainty of the equity market, an existing/old portfolio may perform 

worse as time went by. There is a need to improve the existing portfolio. 

Portfolio improvement is an important task in portfolio management. However, 

there are limited literatures on this issue (Hodges and Schaefer (1977), Sharpe 

(1987), Dowd (1998, 1999), Fabozzi (1999), Larsen and Resnick (2001), Spice 

and Hogan (2002), Bowden (2003), and Liu and Pan (2003)). 

In an early literature, Hodges and Schaefer (1977) described a simple linear 

programming model for improving an initial bond portfolio. Their goal is to 

minimize the cost of achieving a given maturity profile of portfolio cash flows at 

a given tax rate. In the improvement, the yield on bond portfolio is increased 

without reducing any future after-tax cash flows.  

In a close view with the problems faced by portfolio managers, Sharpe (1987) 

presented an algorithm for portfolio improvement. In the implementation of his 

approach, each iteration selects the ‘best’ security for purchase and the ‘worst’ 

for sale. Hence, an initial feasible portfolio is improved. Finally, the maximum 

improvement will be obtained.  

Dowd (1998, 1999) applied the generalized Sharpe rule on the derivation of 

criteria to check the worthiness of adding a specific new stock into the old 

portfolio. In this process, a necessary condition is that the Sharpe ratio of the new 

portfolio must be greater than that of the old portfolio. In other words, the new 

portfolio performs better than the old portfolio which has been improved.  
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Fabozzi (1999, p. 261) illustrated two methods to improve risk-adjusted 

portfolio return: creating a ‘tiled’ portfolio and utilizing the future markets. The 

former constructed portfolio can be designed to maintain a strong relationship 

with a benchmark by minimizing the variance of the tracking error. The latter 

method involves the use of stock index futures. The strategy can be referred to as 

indexing enhancement and its focus is on risk control.  

By applying modern portfolio theory (MPT), Larsen and Resnick (2001) 

demonstrated the potential for various ex ante portfolio parameter estimation 

techniques and optimization/holding-period frequency intervals to enhance 

managed portfolio returns relative to a benchmark.  

With empirical evidence, Spice and Hogan (2002) showed the wise use of 

venture investing for improving overall portfolio performance. Moreover, they 

suggested several points that financial advisors new to venture investing can help 

clients who wish to participate in venture investing.  

More recently, several approaches for portfolio improvement are proposed. 

Bowden (2003) suggested two approaches to portfolio enhancement. The first is 

based on traditional beta analysis. The second is non-parametric in nature and 

plots ordered mean difference schedules for the enhancement against the base 

portfolio. Liu and Pan (2003) proposed dynamic derivative strategies for asset 

allocation, and found that improving the portfolio efficiency is done from 

derivative investing. Winkelmann (2004) concluded that the portfolio efficiency 

can be improved by introducing a portable alpha program, introducing an active 

overlay program, diversifying the private equity portfolio more and increasing 

active risk. 
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1.2.3 Risk Measures  

Li et al. (2006) pointed out that construction of a suitable risk measure plays 

an essential role in portfolio selection. Szegö (2002) presented the definition of 

risk measure and the main recently proposed risk measures. Variance is one of 

the most popular risk measures. Unfortunately, there are several conceptual 

difficulties with using variance/standard deviation as a measure of risk. As stated 

in Bertsimas et al. (2004), quadratic utility displays the undesirable properties of 

satiation and of increasing absolute risk aversion; see also Huang and Litzenerger 

(1988); moreover, the assumption of elliptically symmetric return distributions 

rules out possible asymmetry in the return distribution of assets, which 

commonly occurs in practice. Furthermore, asymmetric return distributions make 

standard deviation an intuitively inadequate risk measure. It is demanding to 

devise an alternative risk measure.  

VaR is one of the alternative risk measures. A formal definition of VaR in 

Dowd (1998) expresses it as the maximum expected loss over a given horizon 

period at a given level of confidence. See also Linsmeier and Pearson (2000) and 

Jorion (2001) for an introduction to the concept and methodology of VaR. 

Recently, VaR is one of the most popular tools in risk management. It is widely 

used by practitioners, such as fund managers, dealers, corporate treasurers, and 

regulators. VaR is also in widespread use in banks, since the Basel Committee on 

Banking Supervision (1996, 2003) allows banks to use VaR when determining 

their capital-adequacy requirements arising from their exposure to market risk. 

Hence, VaR is proposed to be used instead of variance in the mean-variance 

analysis for portfolio selection by some researchers. Alexander and Baptista 

(2001) examined the economic and equilibrium implications arising from a 
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mean-VaR model for portfolio selection. They also compared the model with a 

mean-variance model and observed that the mean-VaR efficient set converges to 

the mean-variance set as the confidence level at which VaR is computed 

increases.  

However, Artzner et al. (1999) shows that VaR is not a coherent risk measure 

since it lacks of sub-additivity property which makes it difficult to be handled. 

See also Acerbi and Tasche (2002). Another risk measure, Conditional Value-at-

Risk (CVaR), is introduced. CVaR is defined as the expected loss exceeding 

VaR. So, CVaR is closely related to VaR, but has more attractive properties such 

as sub-additivity, convexity and coherence. The proof of convexity and 

coherence of CVaR can be found in Rockafellar and Uryasev (2002). Due to 

these desirable properties, CVaR is more attractive than VaR.  

By proposing CVaR as a risk measure, Uryasev and Rockafellar (2000) 

solved a mean-CVaR portfolio optimization problem under the normality 

assumption. Uryasev (2000) outlined the approach for simultaneous 

minimization of CVaR and calculation of VaR. Alternatively, Palmquist et al. 

(1999) investigated the model of constraining CVaR in order to find a portfolio 

with maximal return. With regards to the VaR and CVaR constraints, Alexander 

and Baptista (2001) made a comparison between the mean-CVaR with the mean-

VaR models and hence showed some implications. They concluded that a CVaR 

constraint dominates a VaR constraint as a risk management tool when the CVaR 

bound is set between two specific levels. Regarding a portfolio of derivatives, 

Alexander et al. (2004) proposed to include cost as an additional preference 

criterion for the CVaR optimization problem. They demonstrated that it is 
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possible to compute an optimal CVaR derivative portfolio with significantly 

fewer instruments.  

 

1.3 Outline of the Thesis 

The rest of the thesis is organized as follows. Chapter 2 presents the basic 

concepts on asset allocation, portfolio optimization and probability theory. 

Chapter 3 discusses in details on how to improve an existing portfolio by 

applying the Sharpe rule and Value-at-Risk. Some criteria are derived to check 

whether it is worthwhile investing in some new assets for constructing a new 

portfolio with better performance (Yu et al. (2007)). It can be observed from the 

numerical examples that only a few new assets are selected to be invested for a 

‘best’ performed new portfolio. The ‘best’ performed new portfolio is the one 

with the ‘highest’ Sharpe ratio among the others by applying the Sharpe rule. 

The generalized Sharpe rule states that the higher the Sharpe ratio, the better the 

performance of the portfolio. Sharpe ratio is defined as the ratio of the expected 

return to the standard deviation of the portfolio returns. It captures both return 

and risk. Motivating from observations, we try to determine the ‘optimal’ 

number of new stocks to be invested in Section 3.2. Here, ‘optimal’ means that 

the minimum number of new stocks is selected to form a new portfolio with the 

highest Sharpe ratio. In the derivation, it is assumed that both the expected 

returns of stocks and the standard deviations are in arithmetic sequences or in 

geometric sequences, respectively.  

More generally, our portfolio improvement problem can be formulated into a 

mean-variance problem. Chapter 4 investigates into the formulation with an 

equality cardinality constraint. Under the assumptions that all the assets are 
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uncorrelated, the expected returns on assets are all equal to the desired return, but 

the variances are different, we derive some analytical solutions to the problem in 

Section 4.2. Moreover, we also derive analytical solutions to the problem without 

the assumption of equal expected return for each asset. As the cardinality 

constraint restricts the number of new stocks to be invested, it is required to 

select a specific number of new stocks from those given ones in solving our 

problem. Section 4.3 demonstrates our proposed stock picking strategy for 

solving our problem in the cases of picking 2 and 3 stocks respectively. It can be 

shown that, under some assumptions, the variance of the portfolio returns in the 

list of possible combinations constructed by our stock picking strategy is 

monotonically increasing. Actually, our formulated mean-variance problem is a 

Mixed Binary Quadratic Programming (MBQP) problem. Section 4.4 presents 

some procedures to solve the (MBQP) problem by using the Xpress Solver. 

Furthermore, Subsection 4.4.1 illustrates the application of the Xpress Solver in 

solving our (MBQP) problem with numerical examples. On the other hand, we 

also formulate our problem with inequality cardinality constraint. In contrast 

with equality cardinality constraint, inequality cardinality constraint does not 

restrict the number of selected new stocks to be fixed, but within a specific 

number. Comparison is carried out for the two formulated problems with some 

numerical examples in Section 4.5. 

As a more comprehensive risk measure, CVaR is used instead of variance in 

the formulation of the portfolio improvement problem in Chapter 5. For the ease 

of implementation, the mean-CVaR problem is first solved by assuming that the 

expected returns of stocks have a multivariate normal distribution in Section 5.2. 

It is observed from the numerical results that as the number of scenarios 
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increases, the values of VaR and CVaR are closer to their ‘true’ values. In 

contrast, the mean-CVaR problem is also solved under the non-normality 

assumption. Due to the fact that it is plausible to estimate VaR with a T 

distribution, it is assumed that the expected returns of stocks have a multivariate 

Student’s T distribution. Section 5.3 discusses on the solving of the mean-CVaR 

problem under the non-normality assumption and concludes with experimental 

results.  

Finally, Chapter 6 contains discussions and conclusions.  
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Chapter 2 

Fundamentals of Asset Allocation and Portfolio 

Management 

  

2.1 Asset Allocation 

In the role of financial planning, portfolio managers always seek a suitable 

investment opportunity to fulfill the financial needs of a particular investor. 

Many investment opportunities compose of different kinds of assets. Assets can 

be categorized into several classes according to return and risk. Some examples 

of major asset classes are cash, bonds, stocks and real estate. Among these asset 

classes, stocks have the highest returns and investing in cash offers the lowest 

return. Due to the tradeoff between return and risk, an asset class with higher 

return will bear higher risk. Though stocks have the highest return, they are most 

volatile and thus have the highest risk; in contrast with stocks, investing in cash 

is much safer and its concern is inflation risk. 

The idea behind asset allocation is to divide your investment amount or 

portfolio into different asset classes. In this process, it will provide you with an 

investment strategy to achieve the highest expected return in a tolerant level of 

portfolio risk for a specific time horizon. This is a goal of many investment 

managers and investors, and hence gains the popularity of asset allocation in 

financial planning. Since different investors possess different levels of risk 

tolerance, determination of one’s asset allocation is personal. In other words, it is 

different for person with different financial needs.  
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There are several factors affecting the determination of asset allocation. One 

of the most important factors is risk tolerance. Risk tolerance expresses one’s 

ability and willingness to expose to loss in an investment for higher portfolio 

returns. It is hard to quantify one’s risk tolerance as it is subjective. Many 

financial service companies provide investors with a risk tolerance questionnaire. 

The questionnaire is designed with several questions which provide some 

indication of the general attribute toward risk of a typical investor. Risk tolerance 

of an investor is then determined after s/he completed the questionnaire. Though 

it may not match his/her actual attitude toward investment risk, it indicates the 

profile of risk that fits him/her. Another important factor is investment time 

horizon. Asset price varying from time to time leads to an uncertainty in gain and 

loss of an investment. As pointed out in Frush (2007), time horizon greatly 

impacts expectations for asset class returns, asset class volatility, and correlations 

among assets classes. Long-term and short-term investments should have 

different strategies. It is general to invest in more equities, e.g. stocks, and fewer 

fixed-income assets, e.g. bonds and cash, for a longer time horizon. Thus, time 

horizon plays an important role in asset allocation. It is helpful to determine 

portfolio balance between equities and fixed-income assets.  

Frush (2007) summarized some key benefits of asset allocation and gave 

detailed commentaries on each benefit. The key benefits are listed in the 

following. Some more detailed discussions on asset allocation can be found in 

this book. 

• Minimizes retirement plan losses 

• Promotes an optimal portfolio 

• Eliminates what does not work 
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• Supports quick and easy reoptimization 

• Maximizes portfolio risk-adjusted return 

• Promotes simple portfolio design and construction 

• Allows for easy contribution decisions 

• Minimizes portfolio volatility 

• Minimizes investor time and effort 

• Promotes a more diversified portfolio 

• Provides maximum avoidance of market weakness 

• Delivers the highest impact value 

• Reduces trading costs 

 

2.2 Portfolio Management  

From the financial point of view, a portfolio is a collection of investments in 

certain assets such as cash, stocks, bonds, real estate, options and future contracts. 

Different asset is possessing different level of risk. Different investor has his/her 

own attitude toward the risk. There is a need for every investor to make a choice 

from among an enormous number of assets. Selection of several assets for a 

desired portfolio is not an easy job for many investors. Some of them may ask 

for help from portfolio managers in various financial service companies. The 

most important issue for portfolio managers is to determine the risk tolerance of 

their clients. Investors always prefer higher return and lower risk. However, a 

general belief is that an investment with a higher return bears higher risk. 

Portfolio management plays an important role in balancing return and risk of 

investments. 
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Besides determining clients’ risk tolerance to manage clients’ portfolio, 

portfolio manager must take into account other considerations, such as the 

amount of resources available for investing, tax status of the investor, liquidity 

needs and time horizon of investment. More details of individual discussion on 

these considerations can be found in Brentani (2004). 

The goal of portfolio management is to construct portfolios comprising 

various assets and securities that satisfy investors financial needs, and hence to 

manage the portfolios in order to achieve investment objectives. Portfolio 

construction can be done by return-risk analysis in two ways:  

• Minimize the risk for a given expected return 

• Maximize the expected return for a given level of risk  

In the modern portfolio theory model, it interprets risk in terms of the standard 

deviation of the portfolio returns.  

Apart from construction of an efficient portfolio, portfolio management 

involves the evaluation of portfolio performance. Return and risk of an 

investment are two main considerations that investors take into account to 

evaluate the performance of a portfolio. Every investor prefers a portfolio with 

the highest return and the lowest risk. However, there is a general belief that ‘No 

Pain No Gain’. This belief is also true in investments, that is, higher risk needs to 

be bore in order to achieve higher return. In other words, there is a tradeoff 

between return and risk.  

To fairly compare the performances among portfolios, the easiest way is to 

compare the rates of returns amongst portfolios with similar risk level. However, 

this process may be misleading, in which some portfolio managers may 

concentrate on particular subgroups and the portfolio profile may not be actually 
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comparable. There is a need to devise a single measure for comparing portfolio 

performance. The measure must take both return and risk into account. Risk-

adjusted returns are introduced as portfolio performance measures, in which 

portfolio returns must be adjusted for risk to compare portfolio performance 

meaningfully. They may not be perfect measurements, but they do provide useful 

information about portfolios. Some popular risk-adjusted measures calculate 

risk-adjusted returns using mean-variance criteria and measure both return and 

risk. Sharpe ratio is one of the most popular risk-adjusted measures.  

Under the generalized Sharpe rule, Sharpe ratio can be expressed as the ratio 

of the expected rate of return to the standard deviation of the portfolio returns, i.e. 

     Sharpe ratio P

P

R
=

σ
,        (2.1) 

where PR  is the expected rate of return to a portfolio and Pσ  is the standard 

deviation of the portfolio returns. Note that Pσ  is referred to as the risk of the 

portfolio. Obviously, a rising of the return or a falling of the standard deviation 

leads to an increase in the Sharpe ratio. It implies that a portfolio with a higher 

Sharpe ratio is preferable.  

As shown in expression (2.1), the expected rate of return PR  and the 

standard deviation Pσ  must be known in advance for obtaining the value of the 

Sharpe ratio. Note that we would like to shorten the name ‘expected rate of 

return’ to ‘expected return’ for simplicity in the rest of this thesis.  

Suppose that a portfolio consists of n  assets with weights ix , i  = 1, 2, …, n. 

The expected returns of the individual assets are 1 2, , , nR R R�  respectively. It 
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can be shown that the expected return on the portfolio in terms of the expected 

returns of the individual assets is 

    1 1 2 2P n nR x R x R x R= + + +� .        (2.2) 

This expression can be interpreted as the weighted average of the expected 

returns of n  assets.  

Suppose that the standard deviation of the return on asset i  is iσ , and the 

covariance of the returns on asset i  with asset j  is ijσ , ,i j  = 1, 2, …, n. The 

variance, i.e. square of the standard deviation, of the portfolio return can be 

expressed as  

  2

, 1

n

P i j ij
i j

x x
=

σ = σ� ,          (2.3) 

which is equivalent to 

  2 2 2
,

1 , 1

2
n n

P i i i j i j i j
i i j

i j

x x x
= =

≠

σ = σ + ρ σ σ� � ,        (2.4) 

by recalling 2
ii iσ = σ , ,ij ji i j i jσ = σ = ρ σ σ  for i j≠ , and ,i jρ  is the correlation 

coefficient of the returns on asset i  with asset j .  

In order to obtain the expected return, the standard deviation and covariance 

of an asset, say stock, it is required to specify the length of the investment period, 

such as a day, a week, a month, a quarter or a year. For example, the daily 

expected return on stock i  can be estimated roughly as  

   
1

1

1 t tT
i i

i t
t i

p p
R

T p

+

=

−= � ,          (2.5) 

where t
ip  is the closing price of stock i  on day t  and 1t

ip +  is the closing price 

of stock i  on day 1t + . For the closing prices, one obvious source is historical 
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data. Note that T  is the number of days over a long period of time, e.g. 250T =  

if we calculated the daily expected return over a year and assume 250 trading 

days per year.  

Likewise, the variance of stock i  can be estimated by averaging the square of 

the day’s deviations from the expected value. That is, the variance of stock i , 2
iσ , 

can be estimated by 

  
21

2

1

1
1

t tT
i i

i it
t i

p p
R

T p

+

=

� �−σ = −� �− � �
� .        (2.6) 

In a similar manner, the covariance between stocks i  and j , for i j≠ , can be 

estimated as follows 

  
11

1

1
1

t tt tT
j ji i

ij i jt t
t i j

p pp p
R R

T p p

++

=

� �−� �−
σ = − −� �� �� �− � �� �

� ,      (2.7) 

where iR  and jR  are the daily expected returns on stocks i  and j  respectively. 

Notice that the correlation coefficient of the returns on stocks i  and j  is defined 

as 

  ,
ij

i j
i j

σ
ρ =

σ σ
.           (2.8) 

It can be shown that ,1 1i j− ≤ ρ ≤ . If , 0i jρ = , then the returns on stocks i  and j  

are said to be uncorrelated. In this case, the returns on stocks i  and j  are 

independent. If , 0i jρ > , then the returns on stocks i  and j  are said to be 

positively correlated. This is the case that they have an increasing linear 

relationship. On the other hand, if , 0i jρ < , then the returns on stocks i  and j  

are said to be negatively correlated and they have a decreasing linear relationship.  
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As mentioned before, modern portfolio theory interprets risk in terms of the 

standard deviation of returns. However, one key insight of the portfolio theory is 

that the risk of any individual asset is not the standard deviation, but rather the 

extent to the contributions of that asset to the overall portfolio risk. It is also 

observable that the standard deviation only measures the spread of the portfolio 

values but does not quantify the losses involved in the portfolio. Value-at-Risk 

(VaR) is one of the most popular quantitative measures of losses due to market 

movements. Comparatively, VaR is a single and comprehensive risk measure.  

The history of VaR started in the late 1980s. With the introduction of 

derivative instruments to offset the risks in existing instruments, positions and 

portfolios, the inclusion of large numbers of cash and derivative instruments in 

many portfolios made the magnitudes of the risks in portfolios not obvious. This 

led to a demand for quantitative measures of market risk in portfolios. VaR was 

one of such measures and was first used to measure the risks of trading portfolios 

by major financial firms. It was then developed accompanying the development 

of risk management guidelines in the early 1990s. Currently, VaR is used by 

most major derivatives dealers to measure and manage market risk. It also gains 

popularity in use by banks to calculate their capital requirements for market risk. 

With the allowance of VaR models to be used to calculate capital requirements 

for foreign exchange positions by the European Union’s Capital Adequacy 

Directive in 1996, it is made to move toward allowing VaR to calculate capital 

requirements for other market risks. The developments of VaR and risk 

management are elaborated in Linsmeier and Pearson (1996), Dowd (1998) and 

Holton (2003). 



 23 

In the definition, VaR is the maximum amount likely to be lost over some 

period at some specific confidence level. It usually refers to a particular amount 

of money. In estimating the value of VaR, two parameters, i.e. holding period 

and confidence level, need to be specified. The holding period is usually set to be 

one day or one month. The possible confidence levels for VaR are 99%, 95% and 

90%. The choice of these two parameters was discussed in Dowd (1998). He 

pointed out that there are four factors that affect the choice of holding period. 

Except the first factor, i.e. the liquidity of the markets in which the institution 

operates, the other three factors all suggests a very short holding period. One 

reason is to justify a normal approximation. A shorter holding period helps make 

the normal approximation more defensible. A second reason is to accommodate 

changes in the portfolio itself. The longer the holding period, the more likely 

portfolio managers are to change the portfolio, particularly if it is making losses. 

For the choice of confidence level, Dowd (1998, p. 53) concluded as follows: 

Different VaR confidence levels are appropriate for different purposes: a low one 

for validation, a high one for risk management and capital requirements, and 

perhaps a medium or high one for accounting/comparison purposes. However, 

there is no compelling reason for an institution to work with on confidence level 

alone: there is no need for an institution to choose a low confidence level when 

assessing its capital requirements, say, just because model validation requires a 

VaR based on a low confidence level. Within reason, the institution could use a 

high confidence level when determining capital requirements and a low one 

when conducting validation exercises. In short, an institution should generally 

use whatever confidence level is appropriate to the task at hand.  
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2.3 Some Common Assumptions about the Probability Density 

Function of the Portfolio Return  

Let us discuss the definition of the probability density function (p.d.f.). Hogg 

and Tanis (1993, p.192) depicted that the p.d.f. of a random variable X  of the 

continuous type, with space S  that is an interval or union of intervals, is an 

integrable function ( )f x  satisfying the following conditions: 

(a)    ( ) 0,f x x S> ∈ . 

(b)    ( ) 1
S

f x dx =� . 

(c)    The probability of the event X A∈  is 

    ( ) ( )
A

P X A f x dx∈ = � . 

As pointed out in Jorion (2001), VaR describes the probability boundary of 

potential loss. The value of VaR is closely related to the probability of a return 

less than the cut-off returns. In general, VaR can be derived from the probability 

distribution of the portfolio return. Suppose the daily return of a portfolio is a 

continuous-type random variable, R , and the p.d.f. of the portfolio return is 

( )f R . At a level of confidence of  1 c− , the probability of a return less than the 

cut-off return is 

   [ ]
*

*Pr ( )
R

f R d R cR R
− ∞

= =< � ,        (2.9) 

where *R  is called the quantile of the distribution, which is the cut-off return 

with a fixed probability of being exceeded.  

Dowd (1998) showed that VaR can be represented in terms of absolute dollar 

loss, or in terms of loss relative to the mean. See also Jorion (2001). The former 

is simply the maximum expected loss amount with a given level of confidence, 
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measured from the current level of wealth. With this definition, the VaR in 

absolute dollar terms can be expressed in terms of the cut-off return *R  as 

  *VaR(absolute) ,R W= −        (2.10) 

in which W  is the initial portfolio value. The latter VaR is defined in terms of 

the maximum expected loss amount with a given level of confidence, measured 

relative to the mean expected return over the period. With a given mean return 

,µ  the VaR relative to the mean is 

  *VaR(relative) .R W W= − + µ        (2.11) 

Note that by using a parametric approach to VaR, we can work with either 

absolute VaR or relative VaR. Dowd (1998, p. 43) states: In any case, if we are 

dealing with a short time period, the difference between absolute and relative 

VaRs will be fairly small anyway, so we may as well use whichever VaR is more 

convenient.  

To compute VaR, assume that daily returns are identically and independently 

distributed. When estimating VaR, it is critical to make some assumptions about 

the p.d.f. of the portfolio return. The specification in the previous paragraph is 

valid for any distribution, discrete or continuous, fat- or thin-tailed. 

One of the most common assumptions about the portfolio return is the 

normality assumption. That is, the portfolio return is normally distributed. Under 

the normality assumption, the random variable R  has a normal distribution and 

its p.d.f. is defined by 

  
2

2

1 ( )
( ) exp

22
R

f R
	 
− µ= −� �σσ π  �

, R−∞ < < ∞ ,    (2.12) 
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where µ  and σ  are parameters satisfying −∞ < µ < ∞  and 0 .< σ < ∞  Briefly 

speaking, R  is 2( , )N µ σ  in which µ  and σ  are the mean and standard deviation 

of R.  

If a random variable Z  is (0,1)N  with mean 0 and standard deviation 1, then 

Z  has a standard normal distribution. The p.d.f of Z  is 

  
21

( ) exp ,
22
z

f z
	 


= −� �π  �
  .z−∞ < < ∞      (2.13) 

Moreover, the cumulative distribution function (CDF) of Z  is 

  [ ]
21

( ) Pr exp .
22

z
u

z Z z du
−∞

	 

Φ = ≤ = −� �π  ��      (2.14) 

Notice that values of ( )zΦ  for 0z ≥  are given in the normal probability table. 

Since the standard normal p.d.f. is symmetric about its mean, it is true that 

( ) 1 ( )z zΦ − = − Φ  for all real z.  

Under the normality assumption, deriving from (2.9) shows that  

  * 1( )R c−= µ + Φ σ ,        (2.15) 

where 1( )c−Φ  is the inverse standard normal cumulative distribution function 

and can be expressed as 

1 1( ) 2 erf (2 1),c c− −Φ = −  (0 ,1)c ∈ .     (2.16) 

Here, 1erf ( )s−  denotes the inverse function of the error function 

   
2

0

2
erf ( ) .

s
ts e dt−=

π �
 

It follows from (2.10) and (2.15) that  

  1VaR(absolute) ( ) .W c W−= −µ − Φ σ      (2.17) 

Similarly, substituting (2.15) into (2.11) yields 



 27 

  1VaR(relative) ( ) .c W−= − Φ σ       (2.18) 

As observing from some evidence that not all underlying returns are normally 

distributed, it is plausible to make a non-normality assumption about the 

portfolio return. It is observable that some distributions of the portfolio return 

have fatter tails than a normal one. One of the most popular distributions that 

have fatter tails than a normal one is the Student’s T distribution.  

Theorem 5.7-1 of Hogg and Tanis (1993, p. 299) states that: 

If Z  is a random variable that is (0,1)N , if U  is a random variable that is 2 ( )vχ , 

and if Z  and U  are independent, then  

  
Z

T
U v

=  

has a T distribution with v  degrees of freedom. Its p.d.f. is 

  
[ ]

( )( )( 1) 22

( 1) 2
( )

2 1
v

v
g t

v v t v
+

Γ +
=

π Γ +
,  t−∞ < < ∞ .    (2.19) 

 

Note that the distribution of T is completely determined by the number v . 

The graph of the p.d.f. of T is symmetric about the vertical axis 0t = . Moreover, 

the graph of the p.d.f. of T is similar to the graph of the p.d.f. of a standard 

normal distribution but has heavier tails. It implies that there is more extreme 

probability in the T distribution than in the standard normal one. Because of the 

symmetry of the T distribution, it can be shown that the mean of T is 

  ( ) 0E Tµ = = ,   for  2v ≥ , 

and the variance of T is  

  2 2Var( ) ( )
2

v
T E T

v
σ = = = − ,  for  3v ≥ . 
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Some values of Pr ( )T t≤  can be found in the Student’s T distribution table 

for 1, 2, , 30.v = �  Under the assumptions that the portfolio return has a T 

distribution, the VaR in absolute dollar terms can be expressed as 

  1VaR(absolute) ( ; ) ,W F c v W−= −µ − σ      (2.20) 

where 1( ; )F c v−  is the inverse of standard Student’s T cumulative distribution 

function with v  degrees of freedom. In a similar manner, we can show that the 

relative VaR is  

  1VaR(relative) ( ; ) ,F c v W−= − σ       (2.21) 

which does not depend on the mean return µ .  
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Chapter 3 

Incorporating Sharpe Ratio and Value-at-Risk            

into Asset Allocation  

 

The Sharpe ratio was introduced and proposed to be used as a measure for 

the performance of mutual funds in Sharpe (1966). The Sharpe rule states that 

the higher the Sharpe ratio, the better the performance of a mutual fund. It has 

become more and more popular and is extended for use by investors in decision 

making. For example, to compare the performances of two portfolios, the Sharpe 

ratio can be defined as the ratio of the expected return on the corresponding 

portfolio to the standard deviation of the portfolio returns. In the definition of the 

Sharpe ratio, standard deviation can be referred to as the risk of the portfolio. 

Thus the Sharpe ratio captures both risk and return in a single measure for 

comparison between two portfolios. According to the Sharpe rule, one portfolio 

is preferred to another if it has a higher Sharpe ratio. A falling of the risk or a 

rising of the return leads to a rise in the Sharpe ratio. 

The generalized Sharpe rule has been discussed thoroughly in Dowd (1998, 

1999). Under some assumptions, the Sharpe ratio can be expressed in terms of 

Value-at-risk (VaR). A formal definition of VaR presented in Dowd (1998) 

expresses it as the maximum expected loss over a given horizon period at a given 

level of confidence. VaR is accepted as one of the most popular and useful tools 

in risk measurement and management. Most risk managers and derivative dealers 

use VaR to measure risks in both local and global markets. In the field of 

financial planning, VaR is used to measure risk exposures to clients so as to 
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assist in devising suitable investments and hedging strategies. VaR is also shown 

in the financial reports of most corporations. So, the expression of the Sharpe 

ratio in terms of VaR gives us an insight into the problems of risk measurement 

and management. Dowd (1999) also discussed the uses of the Sharpe rule in 

making investment decisions, hedging and managing portfolios. 

As shown in Dowd (1998, 1999), the generalized Sharpe rule can be used to 

determine a bound for the expected return on a new asset for assessing whether it 

is worthwhile purchasing it and putting it into an existing portfolio. The case 

considers an old portfolio first, then a new asset, called asset A, which is added 

in to form a new portfolio. The desired new portfolio consists of an amount, 

denoted by a , invested in asset A and an amount (1 )− a  invested in the old 

portfolio. It is assumed that the overall portfolio value does not change. By 

applying the Sharpe rule, the new portfolio is preferable if the expected return on 

asset A satisfies the following inequality presented in Dowd (1999), 

  ( 1)A old new old oldR R R a≥ + σ σ −         (3.1) 

where AR  and oldR  are the expected returns on asset A and the old portfolio, and 

σnew  and σold  are the standard deviations of returns on the new and old portfolios. 

The observation is that it is not worthwhile purchasing the new asset unless its 

expected return is not less than the value on the right-hand side of (3.1). By 

assuming normality of the distribution of returns on portfolios, Dowd (1999) 

showed that (3.1) could be written in an equivalent VaR form as 

  
VAR

1
VAR

new
A old old

old

R R R a� �≥ + −� �
� �

 

or 
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VAR

1 1
VAR

new
A old

old

R R a
	 
� �≥ − +� �� �
� � �

.        (3.2) 

Criterion (3.2) is used to justify the worthiness of adding the new asset into the 

old portfolio. It implies that the new asset is worthwhile adding to an old 

portfolio if its expected return is greater than the expected return on the old 

portfolio multiplied by the sum of the elasticity of the VaR and 1. Notice that 

Dowd (1998, 1999) considered the case of adding only one new asset into the old 

portfolio to obtain a new portfolio. From another point of view, adding a 

favorable new asset would improve the performance of an existing portfolio. In 

other words, portfolio improvement could be done by adding a new asset to an 

existing portfolio. 

In a broader view, Dowd’s approach is extendable to consider adding more 

than one new asset. In this chapter, we propose to add a number of new assets to 

an existing portfolio in order to form a new portfolio with better performance. 

Sharpe ratio also acts as a performance measure in our approach. One objective 

of this chapter is to derive some criteria to judge the worthiness of adding a 

number of new assets to an old portfolio for portfolio improvement. We assume 

that the overall portfolio value remains the same before and after adding some 

new assets. Hence, in the resulting new portfolio, a certain amount of portfolio 

value is invested in some new assets and the remaining amount is invested in the 

old portfolio. To avoid solving another portfolio selection problem, it is 

suggested to add new assets with higher Sharpe ratios first. 

Before adding a specific asset to a portfolio, one should be aware of a certain 

amount of accompanying risk. Due to the fact that prices of some kinds of assets 

(e.g., stocks) are uncertain, one may bear a certain amount of risk when 
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purchasing a stock. Though the stock may gain a profit, there is always a concern 

about the risk carried by the stock. Risk reduction is one of the goals for all 

investment managers. They usually prefer to manage the risks by diversification. 

Diversification is one of the risk reduction methods. The exposure to risk is 

reduced by investing in a number of stocks that are fundamentally different from 

one another. With this concern, our approach to adding a number of new assets 

to an existing portfolio should benefit from the effect on diversification. 

Nevertheless, it will be shown in the following section that diversification is 

carried out in our approach.  

As some criteria have been established to check whether it is worthwhile 

using a portion of the portfolio amount to invest in some new assets, it is possible 

that different numbers of assets are worthwhile adding to an old portfolio. Of 

course, if the number of assets to be invested is not specified, then one can add as 

many new assets as possible in order to reduce portfolio risk. However, adding 

too many assets to a portfolio is not practical. Moreover, transaction cost is 

another concern. As more assets are added to the portfolio, the transaction cost 

will increase as well. We intend to show that achieving the goal of portfolio 

improvement can be done by adding a small number of new assets. 

Regarding the Sharpe ratio as a performance measure of portfolios, investors 

always prefer a portfolio with the highest Sharpe ratio. The other objective of 

this chapter is to determine the ‘optimal’ number of new assets to be added that 

maximizes the Sharpe ratio of the new portfolio. It is shown that the Sharpe ratio 

can be expressed in terms of the number of new assets. By applying the 

mathematical software, Mathematica, we simplify the expression of the Sharpe 

ratio and hence determine the ‘optimal’ number of new assets. 
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This chapter is organized as follows. The next section looks at applying the 

Sharpe rule to derive some criteria, which can be used to judge whether it is 

worthwhile investing in some new assets. It then discusses the justification for 

considering the general case (i.e., investing in n  new assets), and compares it 

with the specific case proposed by Dowd (1998, 1999). The main advantage of 

our case is that diversification is carried out in our approach. Subsection 3.1.1 

presents a numerical example in the Hong Kong stock market to illustrate the 

applications of the Sharpe rule. It discusses the numerical results and draws some 

conclusions. Section 3.2 concentrates on the derivation of the ‘optimal’ number 

of new assets to be added in the old portfolio with regard to two specific cases: 

the sequences of the means and the standard derivations of the portfolios are in 

arithmetic progression or geometric progression. Some experimental results 

show that only a few new assets are selected to be added in the old portfolio to 

obtain the ‘optimal’ new portfolio. 

 

3.1 Methodology and Derivation 

Consider an old portfolio whose expected return and standard deviation are 

denoted by oldR  and σold . Let n  be the number of new assets added to the old 

portfolio, and ia  be the weight of asset i  in the new portfolio for 1, 2, ,= �i n . 

Assume that the overall portfolio value, W , does not change after adding n  new 

assets to the old portfolio. This implies that a portion of the investable amount in 

the old portfolio is transferred and invested in the additional assets. Thus, the 

weight of the old portfolio in the new portfolio is ( )1 21− + + +	 
 �� na a a , or 

11 =
	 
− ��

n
ii a . The expected return on the new portfolio, newR , can be expressed as  
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1 1

1
= =

� �= − +� �
� �

� �
n n

new i old i i
i i

R a R a R ,       (3.3) 

where iR  is the expected return on asset i  for 1, 2, ,= �i n . Also, an expression 

for the standard deviation of the new portfolio can be obtained as 

1/ 2
2

2 2 2
, ,

1 1 1 1 , 1
1 2 1 2

= = = = =
≠

	 

� � � �� �σ = − σ + σ + − ρ σ σ + ρ σ σ� � � �� �
� � � �� � �

� � � � �
n n n n n

new i old i i i i i old i old i j i j i j
i i i i i j

i j

a a a a a a

 

              (3.4) 

where σi  is the standard deviation of new asset i, ,ρi old  is the correlation 

coefficient between the returns on new asset i  and the old portfolio, and ,ρi j  is 

the correlation coefficient between the returns on new assets i and j, for  

, 1, 2, ;i j n= �  .i j≠  

According to the Sharpe rule, if a new portfolio is preferred to the old one, 

then the Sharpe ratio of the new portfolio should be greater than or equal to the 

Sharpe ratio of the old portfolio. That is, the new portfolio is preferred if it 

satisfies 

   ≥
σ σ

new old

new old

R R
 

or 

   
� �σ≥ � �σ� �

new
new old

old

R R . 

Replace newR  by the expression on the right-hand side of (3.3) to obtain 

   
1 1

1
= =

� � � �σ− + ≥� � � �σ� �� �
� �
n n

new
i old i i old

i i old

a R a R R ,      (3.5) 

which can be rearranged to 
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1
= =
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� �
n n

new
i i old i

i iold

a R R a        (3.6) 

or 

   
1 1= =

	 
� �σ − σ≥ +� �� �σ� �� � �
� �
n n

new old
i i old i

i iold

a R R a .       (3.7) 

Under the assumption of 10 1=< <�
n

ii a , dividing both sides of (3.7) by 1=�
n

ii a  

yields 

   
1 1

1

1
1

= =

=

	 
� �σ − σ≥ +� �� �� �σ� � ��

n n
new old

i i old in
i iold

i
i

a R R a
a

.      (3.8) 

The expression on the left-hand side of (3.8) is the weighted average of the 

returns on n  new assets. Notice that the term, 
1

n
new old

i
iold

a
=

� �σ − σ
�� �σ� �

, on the right-

hand side of (3.8) is the elasticity of the standard deviation with respect to 

1=�
n

ii a . Inequality (3.8) indicates that it is worthwhile acquiring n  new assets if 

their weighted average of returns is not less than the value of the expression on 

the right-hand side of (3.8). It can also be observed from (3.8) that the greater the 

standard deviation of the new portfolio, the greater the required weighted 

average of the returns on n  assets, and so the greater the expected return on the 

new portfolio. This bears out the general belief in investment science. A higher 

risk needs to be borne in order to acquire a higher return in an investment. 

Recalling from Section 2.3, under the normality assumption about the 

probability density function of a portfolio return, the VaR relative to the mean in 

(2.18) is given as 

   VaR ,W= −α σ  
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where 1( )c−α = Φ  is the value reflecting the specific confidence level c (e.g. 

1.645α = −  for a confidence level 95%c = ), σ  is the standard deviation of the 

portfolio return, and W  is the portfolio value. The above definition of VaR can 

be used to derive expressions of VaRs for the old and new portfolios, denoted by 

VaRold  and VaR ,new  respectively. As the overall portfolio value is supposed to 

be fixed during the acquisition of a new portfolio, as a combination of the old 

portfolio and n  new assets, the ratio of VaRnew  to VaRold  in the same 

confidence interval is equivalent to the ratio of σnew  to σold : 

   
VaR
VaR

σ=
σ

new new

old old

. 

The incremental VaR, denoted by IVaR, is defined as the difference between 

VaRold  and VaRnew  (i.e., IVaR VaR VaRnew old= − ). Thus, the expression on 

the right-hand side of (3.8) can be presented in terms of VaR as 

  
1 11

1 VaR VaR
1

VaR= ==

	 
� �−≥ +� �� �� �
� � � �

n n
new old

i i old in
i ii oldi

a R R a
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or 

  
1 11

1 IVaR
1

VaR= ==

	 
� �
≥ +� �� �� �

� � � �

n n

i i old in
i ii oldi

a R R a
a

.       (3.9) 

The criterion depicted in (3.9) shows that as IVaR  increases, a greater weighted 

average of the returns on n  new assets is required. The term 

( ) 1IVaR VaR =�n
iold ia   on the right-hand side of (3.9) can be considered the 

elasticity of the VaR with respect to 1 .n
i ia=�  The implication that can be made 

from (3.9) is: the greater the elasticity, the greater the risk in the new portfolio, 

the greater the required weighted average of returns on n  new assets, and the 
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greater the returns on the new portfolio. Details of the VaR elasticity can be 

found in Dowd (2000), where examples were used to illustrate the relationship 

between the required returns and VaR elasticities. 

The advantage of inequality (3.9) will emerge when comparing it with (3.2) 

derived in Dowd (1999). Some assumptions are made to compare these two 

inequalities. The old portfolios in this chapter and in Dowd (1999) are assumed 

to be the same (i.e., they have the same portfolio value W, expected return oldR , 

and standard deviation σold ). The amount invested in a single new asset in 

Dowd's case is the same as the total amount invested in n  new assets (i.e., 

1== �n
i ia a ). For the ease of comparison, identical symbols are used for common 

terms. Inequality (3.2) can be rewritten as 

   
IVaR

1
VaR

	 
� �
≥ +� �� �

� � �

D
A old

old

R R a ,      (3.10) 

where IVaR D  is the incremental VaR in Dowd's case. Expressions on the right-

hand side of (3.9) and (3.10) are lower bounds of the returns on new assets. The 

comparison between these two lower bounds can be replaced by comparing the 

values of IVaR  with IVaR .D  Recalling the definition of VaR, the IVaR in (3.9) 

can be expressed as 

   IVaR VaR VaR= −new old  

             ( )= −α σ − σnew oldW .      (3.11) 

To distinguish the standard deviation of the new portfolio in Dowd's case from 

σnew  in this chapter, σD
new  is used to denote the standard deviation in Dowd's 

case. Thus, an expression for IVaR D  is 
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   ( )IVaR = −α σ − σD
D new oldW .      (3.12) 

Following from (3.11) and (3.12), comparing σnew  with σD
new  becomes more 

straightforward than comparing IVaR  with IVaR .D  According to Dowd (1999), 

σD
new  has the expression 

  ( ) ( )
1/ 22 2 2 2

,1 2 1	 
σ = − σ + σ + − ρ σ σ
 �

D
new old A A old A olda a a a ,   (3.13) 

where σA  is the standard deviation of the returns on asset A, and ,ρA old  is the 

correlation coefficient between the returns on asset A and the old portfolio. The 

expression for σnew  in (3.4) can be rewritten as 

( ) ( )
1/ 2

2 2 2 2
, ,

1 1 , 1
1 2 1 2

= = =
≠

	 

� �σ = − σ + σ + − ρ σ σ + ρ σ σ
� �
� � �

� � �
n n n

new old i i i i old i old i j i j i j
i i i j

i j

a a a a a a . 

            (3.14) 

Common term  ( )2 21− σolda   is observed in (3.13) and (3.14). Comparison 

between (3.13) and (3.14) cannot be conducted. The first terms on the right-hand 

side are the same, but the remaining terms are different. It is helpful to consider a 

special case where all the correlation coefficients are equal to zero (i.e., 

, 0ρ =A old , , 0ρ =i old , and ,i jρ , for , 1, 2, ,= �i j n , ≠i j ). In other words, the 

new assets are uncorrelated with each other as well as uncorrelated with the old 

portfolio. Hence, (3.13) and (3.14) become 

  ( )
1/ 22 2 2 21	 
σ = − σ + σ

 �
D
new old Aa a       (3.15) 

and 

  ( )
1/ 2

2 2 2 2

1
1 .

n

new old i i
i

a a
=

	 

σ = − σ + σ� �

 �
�       (3.16) 
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The only difference between the expressions on the right-hand sides of (3.15) 

and (3.16) is the second term. 

For simplicity, the standard deviations are assumed to be the same for all new 

assets, say 2 2.iσ = σ  Suppose n  new assets are equally weighted in the new 

portfolio, that is, ia  is the same for all i. Since 1
n

iia a==�   then  =ia a n  for all 

i, and therefore 

  
2

2 2 2 2 2

1 1

1
.

n n

i i
i i

a
a a

n n= =

� �σ = σ = σ� �
� �

� �       (3.17) 

Hence as → ∞n  then 2 2
1 0.n

i ii a= σ →�  This shows the effect of diversification. 

In the well-diversified case, σnew  is less than σD
new  in Dowd's case. This 

implies that IVaR  in (3.11) is less than IVaR D  in (3.12), and so the value on the 

right-hand side of (3.9) is less than that on the right-hand side of (3.10). In the 

general case considered in this chapter, a smaller lower bound for the acquiring 

expected return on the new assets can be obtained by diversification. 

In the case of  2 2
1 0,n

i ii a= σ →�  it can be shown further that 

  ( )1new oldaσ → − σ  

and 

  ( )IVaR oldW a→ α σ .       (3.18) 

Thus, IVaR 0<  is observed as 0α < , which implies that the overall risk of the 

portfolio is reduced. This objective is similar to that of the hedging decision. The 

hedging decision is a popular but complicated problem in the field of risk 

management. Risk managers always try to identify risk exposure and seek a way 

to reduce risk in investments. One of their goals is to make a suitable hedging 

decision. Diversification and hedging have the same intention; that is, to reduce 
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risk of a portfolio. However, they are different approaches. Diversification 

assumes that the new assets are uncorrelated with each other and the portfolio. 

When addressing the hedging decision, some assets which are negative 

correlated with the portfolio are sought. Litterman (1996) explored identifying 

and reducing risk further. 

 

3.1.1 Numerical Examples  

In this subsection, a numerical example is presented for illustration. 

Concentration is given to the stock market of Hong Kong. Since the Hang Seng 

Index (HSI) is the main index in the Hong Kong stock market, the 33 constituent 

stocks1 in the HSI are considered. The constituent stocks can be classified into 

four market sectors: Commerce and Industry, Financials, Properties, and Utilities. 

Here, the daily closing prices of stocks from August 1996 to July 1997 are used 

for analysis. Based on the collected data, the daily expected return and standard 

deviation can be calculated for each stock. Hence, the Sharpe ratios of the stocks 

are obtained. 

Consider an existing portfolio consisting of 10 stocks in the Properties sector. 

The stocks are selected by the Principal Component Analysis (PCA) which is a 

useful technique for data analysis and helps to discover the patterns in data of 

high dimension in order to reduce the number of dimensions of the data set. 

Components are extracted for the data set by PCA. The data set's variation can 

largely be explained by several principal components. The underlying 

                                                 
1 Starting from July 1964 (the Hang Seng Index was first published) till June 2007, the number of 
constituent stocks in HSI varies from 30 to 39. The list of constituent stocks is changed from time 
to time. The 33 constituent stocks considered in this thesis are from the constituent list after 
change in August 1996.  
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dominator(s) can be identified in the principal components. Some introductory 

information of PCA can be found in Johnson and Wichern (1992) and Smith 

(2002). PCA can be carried out by using the statistical software SPSS. Here, 

ignoring the presentation of analytical steps, observations on the analysis are 

discussed. The result shows that the data set of the returns on 33 stocks can be 

represented by seven principal components. The first principal component is 

dominated by 10 stocks in the properties sector. This conforms to a great event of 

the downturn of the property market during the period 1996/97. 

For the ease of manipulation, the 10 stocks are assumed to be equally 

weighted in the existing (old) portfolio. Let the portfolio value 1.W =  The 

confidence interval is set to be 95% and the value reflected the confidence 

interval is 1.645.α = −  The daily expected return, standard deviation, and VaR of 

the old portfolio are calculated as follows: 

Daily Expected Return Standard Deviation VaR 
0.0009772 0.0056477 0.0092904 

 

Now, the remaining 23 constituent stocks in the HSI are considered being 

added to the old portfolio. The selection criterion is the Sharpe ratio. In Table 3.1, 

the 23 stocks are ranked by the Sharpe ratio in descending order. PCCW is 

observed to have the greatest expected return but with the highest standard 

deviation (risk). So, it is not the one with the highest Sharpe ratio. HSBC 

Holdings has the highest Sharpe ratio, as shown in Table 3.1. According to the 

Sharpe rule, the first stock to be added to the old portfolio is HSBC Holdings. 
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Table 3.1 The 23 Stocks Sorted by Sharpe Ratio in a 

Descending Order 

No. Stock Name 
Daily Expected 

Return 
Standard 
Deviation 

Sharpe 
Ratio (%) 

1  HSBC HOLDINGS 0.003250 0.013593 23.912 
2  HONG KONG AND CHINA GAS 0.002087 0.012395 16.834 

3  HUTCHISON WHAMPOA 0.002113 0.016216 13.031 
4  GUANGDONG INVESTMENT 0.003849 0.029640 12.987 
5  PCCW 0.005095 0.042908 11.875 
6  CITIC PACIFIC 0.001871 0.016139 11.590 
7  BANK OF EAST ASIA 0.001434 0.013001 11.030 
8  NEW WORLD DEV. 0.002042 0.019360 10.545 
9  CLP HOLDINGS 0.001414 0.013636 10.366 

10  HONG KONG ELECTRIC 0.001437 0.015007 9.574 
11  HANG SENG BANK 0.001720 0.018019 9.544 
12  SCMP GROUP 0.002117 0.024608 8.604 
13  JOHNSON ELECTRIC HDG. 0.001521 0.019491 7.803 
14  CATHAY PACIFIC AIRWAYS 0.000847 0.016554 5.119 
15  WHARF HOLDINGS 0.000994 0.019536 5.090 
16  SWIRE PACIFIC 'A' 0.000548 0.016159 3.393 
17  HOPEWELL HOLDINGS 0.000712 0.023106 3.082 
18  TELEVISION BROADCASTS 0.000414 0.015956 2.595 
19  SHUN TAK HOLDINGS 0.000298 0.018373 1.619 
20  ORIENTAL PRESS GROUP -0.000700 0.028379 -2.466 
21  SHANGRI - LA ASIA -0.000447 0.015355 -2.913 
22  FIRST PACIFIC -0.000767 0.019908 -3.851 
23  HONGKONG & SHAI.HTLS. -0.000689 0.016019 -4.302 

 

 

Here, the effect of the number of stocks on the standard deviation of the 

portfolio is studied. The cases to be considered are n  = 1, 2, …, 15. In these 

cases, the corresponding number of stocks in the new portfolios are 11, 12, … , 

25. Assume that ,i oldρ  = 0 and ,i jρ  = 0, for ,i j  = 1, 2, …, n, ≠i j . Suppose n  

new stocks are equally weighted and 1
n
i ia=�  = 10%. Under these assumptions, 
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the values of the standard deviation of the new portfolios can be calculated by 

(3.16). 

Figure 3.1 shows the standard deviations of new portfolios vary against the 

number of stocks in the portfolios. The standard deviation of the portfolio drops 

dramatically first, then increases a bit before finally leveling out. Even though 

the standard deviation increases when adding four or five stocks to the old 

portfolio, the effect of the diversification can be seen when the standard 

deviation decreases eventually. All the values of the standard deviation of the 

new portfolios are less than that of the old portfolio.  

 

Figure 3.1  Standard Deviations of New Portfolios    

against Number of Stocks                   
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After calculating the values of standard deviations for the new portfolios, the 

values of IVaR can also be calculated by applying (3.11). Table 3.2 presents the 
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values of standard deviation and IVaR for some portfolios. The standard 

deviation of the portfolio is getting increasingly smaller as many more stocks are 

added to the old portfolio. For the four specific new portfolios in Table 3.2, the 

values of IVaR are less than zero which implies that the overall risk of the 

portfolio is reduced. 

 

Table 3.2 Standard Deviation and IVaR 

Portfolios Standard Deviation IVaR 

Old (10 stocks) 0.0056477  

New (11 stocks) 0.0052615 -0.0006352 

New (15 stocks) 0.0052119 -0.0007168 

New (20 stocks) 0.0051273 -0.0008560 

New (25 stocks) 0.0051112 -0.0008824 
 

 

Representatively, the worthiness of adding new stocks to the old portfolio is 

discussed for the cases of n  = 1, 5, 10 and 15. The second column of Table 3.3 

presents the values of the weighted average of returns on n  new stocks, which 

are the values on the left-hand side of (3.9). The third column of Table 3.3 shows 

the values on the right-hand side of (3.9). Inequality (3.9) expresses that if the 

value on the left-hand side is not less than that on the right, then it is worthwhile 

adding n  new assets to the old portfolio. As shown in Table 3.3, for the four 

specific cases, the values in Column 2 are greater than those in Column 3. Thus, 

it is worthwhile adding new stocks to the old portfolio in these four cases. 
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Table 3.3 Comparison of Values on both Sides of (3.9) 

New Stocks 
Added 

Value on the Left-hand 
Side of (3.9) 

Value on the Right-
hand Side of (3.9) 

1 stock 0.0032504 0.0003091 
5 stocks 0.0032790 0.0002233 

10 stocks 0.0024591 0.0000769 
15 stocks 0.0002119 0.0000491 

 

 

Similarly, by comparing the values on the left- and right-hand sides of (3.9), 

it can be shown that new assets are worthwhile adding to the old portfolio for 

1, 2, ,15.n = �  However, some questions must be addressed here. Due to 

diversification, the standard deviation (risk) gets lower when more stocks are 

added. It is reasonable to consider whether investing in as many stocks as 

possible is justified. Of course it is possible to invest in many stocks if it satisfies 

inequality (3.9) in theory. Therefore, one can consider whether the portfolio with 

more stocks is better. Though the risk is reduced by adding noticeably more 

stocks, the return may be reduced as well. Thus, consideration must also be given 

to the return on the portfolio and using the Sharpe ratio to determine a better 

portfolio.  A reduction in return may be due to an increase in transaction cost 

which is another important factor, but it is not considered here for simplicity. It is 

shown in our example that though the transaction cost is neglected, the daily 

expected return of the new portfolio is reduced as more stocks are added, see 

Table 3.4. Moreover, it can be observed that the Sharpe ratio of the new portfolio 

is reduced as more than 5 stocks are added. As both the daily expected return and 

standard deviation are reduced, the reduction in Sharpe ratio is consequent on 
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that the rate of change of the expected return is much faster than that of standard 

deviation.    

 

Table 3.4 Return, Standard Deviation and Sharpe Ratio 

Portfolios Daily Expected 
Return Standard Deviation Sharpe Ratio 

(%) 
Old (10 stocks) 0.0009772 0.0056477 17.3029 

New (11 stocks) 0.0012045 0.0052615 22.8932 

New (12 stocks) 0.0011463 0.0051655 22.1924 

New (13 stocks) 0.0011278 0.0051482 21.9072 

New (14 stocks) 0.0011620 0.0051731 22.4620 

New (15 stocks) 0.0012074 0.0052119 23.1658 

New (16 stocks) 0.0011839 0.0051798 22.8562 

New (17 stocks) 0.0011609 0.0051576 22.5085 

New (18 stocks) 0.0011513 0.0051459 22.3721 

New (19 stocks) 0.0011368 0.0051350 22.1376 

New (20 stocks) 0.0011254 0.0051273 21.9491 

New (21 stocks) 0.0011187 0.0051223 21.8396 

New (22 stocks) 0.0011164 0.0051201 21.8041 

New (23 stocks) 0.0011099 0.0051168 21.6906 

New (24 stocks) 0.0010995 0.0051135 21.5011 

New (25 stocks) 0.0010914 0.0051112 21.3535 
 

 

Table 3.4 presents the values of daily expected return, standard d eviation, 

and Sharpe ratio of the old and new portfolios. Investors generally prefer the 

portfolio with higher return and lower risk. As shown in Table 3.4, the highest 

daily expected return, Sharpe ratio and the lowest standard deviation are bold for 

reference. Among these portfolios, the portfolio with 25 stocks is the one with 

the largest number of stocks and the lowest standard deviation. However, its 
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daily expected return is comparatively low. The most efficient portfolio is not the 

one with the largest number of stocks. 

In Table 3.4, the most efficient portfolio is the one with 15 stocks since it has 

the highest Sharpe ratio and highest daily expected return. This can also be 

observed from Figure 3.2. By the Sharpe rule, the portfolio with the highest 

Sharpe ratio is the best one. This implies that one can earn more from the best 

portfolio than from the others for the same level of risk. Thus, one can earn more 

from the portfolio with 15 stocks than from the others. Though it has a high risk, 

it is still the best one if its risk is in the range of our risk tolerance. 

 

Figure 3.2 Sharpe Ratios of New Portfolios   

against Number of Stocks                   
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3.2 Determination of the ‘Optimal’ Number of New Assets 

When the formulae derived in the previous section are used for decision 

making, investors may face the following problem. Suppose many new assets are 

available and only a small number of assets are demanded to be added to an old 

portfolio. Investors may encounter difficulties in choosing among these new 

assets. Under the assumptions that all the new assets are uncorrelated with each 

other and with the old portfolio, it is possible to make comparison among assets 

by applying some rules. As the Sharpe rule is fair to compare the performances 

of portfolios or assets, the rule can be applied to choose the assets with better 

performances. Accordingly, it is reasonable to sort the new assets by the Sharpe 

ratio in descending order. The assets with higher Sharpe ratios are chosen first. 

If the number of assets to be added is not specified, another problem 

regarding the optimal number of assets added to the old portfolio arises. Before 

answering this question, some assumptions are made for the expected returns and 

standard deviations of the assets. There are n  available new assets which are 

already sorted by the Sharpe ratio in descending order: 

  11 2

1 2 1

n n

n n

R RR R −

−
≥ ≥ ≥ ≥

σ σ σ σ
� .       (3.19) 

The first m  new assets are chosen to be added to the old portfolio, for m  = 1, 

2, …, n. Thus, it is possible to obtain n  new portfolios. The m  new assets are 

assumed to be uncorrelated with each other and with the old portfolio, and 

equally weighted in the new portfolio. Under these assumptions, the expressions 

of expected return and standard deviation for a new portfolio in (3.3) and (3.4) 

can be simplified to 
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and 
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The following two subsections will consider two specific cases for the ease 

of analysis. The two specific cases are: arithmetic series and geometric series. 

These deal with the sequences of the expected returns and standard deviations. 

Though some closed-form formulae cannot be obtained to determine the optimal 

value of m, some interesting results can be observed from the simulated 

examples. The simulation results show that a new portfolio with the highest 

Sharpe ratio can be obtained by adding a few new assets under some assumptions. 

 

3.2.1 Arithmetic Series Case  

The first case to be considered is that both the expected returns and the 

standard deviations of the assets are arithmetic series, respectively. That is, 

1 2{ , , , }nR R R�  and 1 2{ , , , }nσ σ σ�  are assumed to be arithmetic sequences. Thus, 

the expected return and standard deviation of asset i  can be expressed as 

  1 ( 1)iR R i= + − γ         (3.22) 

and 

  1 ( 1)i iσ = σ + − β         (3.23) 

for 1, 2, ,i n= �  and 1,n ≥  where γ  and β  are constants. Since standard 

deviations must be positive, 0β >  is assumed to avoid the existence of negative 

standard deviation. Following from (3.19), (3.22) and (3.23), 
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  1

1

n n n

n n n

R R R−

−

− γ
= ≥

σ σ − β σ
        (3.24) 

which can be simplified to  

  n

n

Rγ ≤
β σ

.         (3.25) 

This shows that the ratio of  γ  to β   is bounded above by the Sharpe ratios for 

all assets. 

It follows from (3.22) and (3.23) that the sums on the right-hand side of (3.20) 

and (3.21) can be simplified by applying the formula for an arithmetic series. 

Consequently, (3.20) and (3.21) can be reduced to 

  ( ) 11
2 2new old

a a
R a R a R m

γ γ= − + − +      (3.26) 

and 

( )
1/ 2

2 2 2 2
2 2 2 2 2

1 1 1
1

1 ,
6 2 3new old

a
a a a m

m

	 
� � � �β β βσ = − σ + σ − βσ + + βσ − +� �� � � �
� �� �� � �

  (3.27) 

where 1 .m n≤ ≤   

If the values of all the variables are assumed to be given except m, it is 

observed from (3.26) and (3.27) that newR  and newσ  can be considered functions 

of m. Hence, the Sharpe ratio for the new portfolio 

    SR new
new

new

R
=

σ
 

can be expressed by (3.25) and (3.26) in terms of the variable m. The goal is to 

find the optimal value of m  that maximizes SRnew . 

Since the Sharpe ratio can be considered a function of m, the optimal value of 

m can be obtained by differentiating SRnew  with respect to m  and setting the 
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derivative equal to zero. The first derivative of SRnew  can be derived by 

applying the quotient rule for derivatives. Setting 
d

SR 0
d newm

=  implies that  

  
( ) ( )

2

d d
d d

0
new new new new

new

R R
m m

σ − σ
=

σ
.      (3.28) 

The derivatives of newR  and newσ  with respect to m  can be derived from (3.26) 

and (3.27) to give 

  ( )d
d 2new

a
R

m
γ=  

and  

  ( )
2 2 2

1 2 2
1 1 2

d 1 1
d 2 6 3new new

a
a

m m
− 	 
� �β βσ = σ − σ −βσ + +� �� �

� � �
. 

After substituting the expressions of ,newR  ,newσ  ( )d
,

d newR
m

 and ( )d
d newm

σ  

into the left-hand side of (3.28), a complicated equation is obtained. Nowadays, 

some mathematical software can assist in simplifying complicated equations. 

One of the powerful software is Mathematica. 

By using Mathematica, we can obtain the expression for the first term in 

equation (3.28) as 

( ) ( )
1/ 2

2 2 2 2
2 2 2 2 2

1 1 1

d 1
1 .

d 2 6 2 3new new old

a a
R a a a m

m m
	 
� � � �γ β β βσ = − σ + σ − βσ + + βσ − +� �� �� �� � � � �

            (3.29) 

Similarly, the second term on the left-hand side of equation (3.28) can be 

expressed as 

( ) ( ) ( ) ( )
2

1 2 2 2
1 1 12

d
1 2 2 1 2 1 6 6 .

d 24new new new old

a
R a m aR a R m

m m
− 	 
	 
σ = σ − γ + + − − β + βσ − σ � �

            (3.30) 
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Hence, the expression on the left-hand side of (3.28) is simplified to 

( ) ( )
2

d d
d dnew new new new

new

R R
m m

σ − σ

σ
 

( )( ) ( ) ( )( )
( ) ( ) ( )

( )

( ) ( ) ( )

2 2 2 2 2 2 2
1 1 1 1

2 2 3 2 2 2 2 2
1 1

2 2 2

3 222 2 2 2 2
12

3
2 2 1 6 2 1 2 1 6 6

2

1 3 4 2 6 1 3 2 6 3 1

12 1

1 3 2 6 1 6 1
2

(
)

(

)

[

]/

old

old

old

a a R m a a R m

a m m m a m m a m

a m

a m m a m a m
m

m

= − − β + βσ + − − β + βσ − σ +

γ − − − + β + − + βσ + − σ +

− σ

	 
� �− + β + − βσ + − σ� �� �
� �� �

� �� � �
            (3.31) 

Let 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )

( )

2 2 2 2 2 2 2
1 1 1 1

2 2 3 2 2 2 2 2
1 1

2 2 2

3
2 2 1 6 2 1 2 1 6 6

2

1 3 4 2 6 1 3 2 6 3 1

12 1 .

(
)

(

)

old

old

f m a a R m a a R m

a m m m a m m a m

a m

= − − β + βσ + − − β + βσ − σ +

γ − − − + β + − + βσ + − σ +

− σ

            (3.32) 

Note that ( )f m  is the numerator of the expression on the right-hand side of 

(3.31). Obviously, with given values of a , 1R , oldR , 1σ , oldσ , β  and γ , it is a 

function of m. It follows that equation (3.28) is equivalent to 

  ( ) 0f m = .         (3.33) 

For the ease of observation, (3.32) can be rewritten as 

( ) ( ) ( ) ( )

( ) ( )
( )( ) ( )( )

2 2 2 2 2
1 1 1 1

2 2 2 2 2 3 2 2
1 1 1 1

22 2 2 2 2 2 2 2
1 1

3 2 3

3
2 6 2 1 6 6

2

3
6 6 3 18 18

2

2 6 1 3 3 1

6 .

[

]

old

old old

f m a a R a a R

a a a a m

a a a R a R m a a a m

a m

= − βσ −β + − −β + βσ − σ +

γ − β + βσ − σ + γ − β − βσ + σ +

	 
β − − + γ − β + βσ + − σ +� � �

β γ
            (3.34) 
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It is obvious that the largest power of m  in function ( )f m  is three. There are at 

most three roots for the polynomial cubic equation (3.33). Mathematica can help 

determine the roots, i.e. the values of m, for this polynomial cubic equation. 

Since the expressions of the roots are rather lengthy, they are not presented here, 

but in the Appendix to this chapter.  

After obtaining the values of the three roots, we can apply the second 

derivative test to determine whether the function SR new  is a maximum or 

minimum at the point of these three roots. A necessary condition for applying the 

test is that the given function is twice differentiable. Obviously, the second 

derivative of the function SR new  with respect to m can be obtained by 

differentiating (3.31) one more time. After some simplification, we get the 

following expression for the second derivative: 

( )
2

2

d
SR

d newm
 

( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

2 2 2
1 1

2
2 2 2 2

1 1 12 2
1 1 22 2 2 2 2

1

3 222 2 2 2 2
12

3
4 2 1 6 4 1 2 2 1

2

3 1 2 2 1 2 1 6 6
6 6

1 3 2 6 1 6 1

1 3 2 6 1 6 1
4

(
)

[
]/

old

old

old

old

a a m m a m aR a R

a a m aR a R m

a m m a m a m

a m m a m a m
m

m

= − γ − β + βσ − − γ + + −

− γ + + − − β + βσ − σ
β − βσ + σ +

− + β + − βσ + − σ

	 
� �− + β + − βσ + − σ� �� �
� �� �

� �� � �

�

            (3.35) 

By substituting the values of three roots into (3.35), we can determine the 

optimal value of m  that maximizes SR .new  In the following, some numerical 

examples are implemented to show some interesting results. 
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The expected returns and standard deviations of new assets are assumed in 

arithmetic sequences which can be constructed for some given values of 1R , 1σ ,  

,γ  and β . Here are the given values of some parameters: 

a  oldR  oldσ  1R  1σ  
10% 0.002177 0.004598 0.00264 0.00466 

 

Hence, the values of Sharpe ratios can be calculated for the old portfolio and the 

first new asset (i.e., SRold = 0.473467 and 1SR = 0.566524). Under the 

assumptions stated in this section, all the given new assets are sorted by the 

Sharpe ratio in descending order. This indicates that the first new asset is the one 

with the highest Sharpe ratio. 

Now, the values of  γ  and β  for constructing the sequences 1 2{ , , , }nR R R�  

and 1 2{ , , , }nσ σ σ�  are required. However, constructing a very long sequence 

(with very large n ) may not be realistic. Here, n  is set as 100. Thus, at most 100 

new assets from the sequence can be invested and the possible values of m  are 1, 

2, …, 100. Since the values of γ  and β  affect the features of the sequences and 

hence the optimal value of m, studying the effect should be significant. The 

assumption of 0β >  implies that the standard deviations in the sequence are 

monotonically increasing. It is possible to consider a suitable value range of γ  

and ,β  respectively, in order to get different combinations of these two variables. 

One acceptable setting is to allow γ   range between –0.001 and 0.001 and β  

range between 0 and 0.002. When the values of these two variables are obtained, 

it must be ensured that they satisfy inequality (3.25). 

Let us consider the case with 0.0004β =  and  0.0001γ = −  first. After 

substituting these given values of the parameters into the expression on the right-
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hand side of (3.34), we can solve equation (3.33) by Mathematica to obtain three 

roots as 1 1.59328,m =  2 1.61059,m = −  and 3 64730.2m = − . With the values of 

three roots, we can apply the second derivative test to determine the whether the 

function has a maximum or minimum at these three point. Since it is assumed 

that 1 ,m n≤ ≤  2m  and 3m  are not practical. They are neglected. Consequently, 

substituting the values of the parameters and the first root, 1 1.59328,m =  into the 

second derivative (3.35) yields 

( )
2

2
1.59328

d
SR 0.00165505 0.

d new

m
m

=

= − <   

Hence, SRnew  has a local maximum at the point. We conclude that 1.59328m =  

is the optimal value that maximizes the Sharpe ratio SR new . Since m  is the 

number of new assets to be invested, it should be an integer number. We suppose 

to set * 2,m =  which is the nearest integer to 1.59328.m =  In case of obtaining an 

optimal m  which is not an integer, no doubt we can check for both two nearest 

integers to get the optimal integer value of m  that maximizes SR .new  For 

example, in our previous case with 1.59328,m =  we shall check for 1m =  and 

2.m =  For 1,m =  we get 
1

SR 0.53389;new m=
=  for 2,m =  the Sharpe ratio of the 

new portfolio is 
2

SR 0.53421.new m=
=  Thus, we can conclude that * 2m =  is the 

optimal value that maximizes SR new .  

After analyzing different combinations of γ  and ,β  the following 

observations are reached and categorized: 

• For 0γ <  and 0,β >  a new portfolio with the highest Sharpe ratio is 

reached by adding a few new assets. For example, the optimal value 
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2m =  is obtained for 0.0001γ = −  and 0.0004,β =  see Figure 3.3. As 

0,γ <  the expected returns in the sequence are decreasing. And 0β >  

implies that the standard deviations are increasing. Hence, the Sharpe 

ratios are decreasing, which satisfies condition (3.19). 

• For 0 ,< γ < β  but β  is much greater than ,γ  a new portfolio with the 

highest Sharpe ratio can also be obtained by adding only a small number 

of new assets. One example is setting 0.00001γ =  and 0.002,β =  see 

Figure 3.4. The optimal number of new assets added is 5. 

• For 0 ,< γ < β  and β  is close to ,γ  it can be observed that as the number 

of new assets added is increasing, the Sharpe ratio is increasing as well. 

Therefore, a new portfolio with the highest Sharpe ratio cannot be 

reached by adding a small number of new assets. See Figure 3.5. 

 

Though a small optimal value of m  cannot be obtained for all the cases, it can be 

obtained in most of the cases. This interesting result is useful to investors 

because once it is found that γ  and β  satisfy the conditions in the first or second 

cases, a small number of new assets can be added to obtain a new portfolio with 

better performance. 

 

 

 

 

 

 



 57 

Figure 3.3 Sharpe Ratios of New Portfolios against Number of   

    Stocks added in Arithmetic Series Case (� < 0, � > 0)              

 

 

 

 

Figure 3.4 Sharpe Ratios of New Portfolios against Number of   

 Stocks added in Arithmetic Series Case (0 < � << �)              
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Figure 3.5 Sharpe Ratios of New Portfolios against Number of   

 Stocks added in Arithmetic Series Case (0 < � < �)              

 

 

 

3.2.2 Geometric Series Case  

This subsection considers the case that 1 2{ , , , }nR R R�  and 1 2{ , , , }nσ σ σ�  are 

geometric sequences. Accordingly, for 1,2, ,i n= �  and 1,n ≥  the expected 

return and standard deviation of asset i  are given as 

   1
1

i
iR R−= δ         (3.36) 

and 

   1
1

i
i

−σ = θ σ ,        (3.37) 

where δ  and θ  are constants. Since a negative return is unfavorable and 

standard deviations must be positive, both δ  and θ  are assumed to be positive. 

Applying (3.19), (3.36), and (3.37) shows that 
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   1δ ≤θ ,         (3.38) 

in which the ratio of δ  to θ  is bounded above by one. In other words, the ratio 

of the returns for two successive assets, ,δ  is always less than or equal to the 

ratio of the standard deviations, .θ  

The sums on the right-hand sides of (3.20) and (3.21) can be simplified by 

applying the formula for geometric series. Hence, expressions of the expected 

return and the standard deviation for the new portfolio are obtained as 

  ( ) 1
1

1
1

m

new old
a

R a R R
m

� �− δ= − + � �− δ� �
      (3.39) 

and 

  ( )
1/ 22 2

2 2 2
12

1
1

1

m

new old
a

a
m

	 
� �− θ� �σ = − σ + σ� �� �� � − θ� �� �� � �
.    (3.40) 

Notice that 1δ ≠  and 1,θ ≠  otherwise (3.39) and (3.40) become meaningless. For 

the given values of ,a  ,oldR  1,R  ,oldσ  1,σ  ,δ  and ,θ  the Sharpe ratio of the 

new portfolio can be expressed by (3.39) and (3.40) as a function of m, i.e. 

  
( )

( )

1

1/ 22 2
2 2 2

12

1
1

1
SR

1
1

1

m

old

new
m

old

a
a R R

m

a
a

m

� �− δ− + � �− δ� �=
	 
� �− θ� �− σ + σ� �� �� � − θ� �� �� � �

.     (3.41) 

The first derivatives of newR  and newσ  can be derived and substituted into the 

left-hand side of (3.28) to obtain  
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( )( )
( ) ( )

( )

2 2 2
1 1

2 2 2 2 2 2 2
1 1

3/ 22 2
24 2 2 2

12

0 1 ln (1 ) (1 )(1 )

1 ln ( 1) (1 ) ( 1)

1
(1 )(1 ) 1 ,

1

[ (
)]/

m m m
old

m m m
old

m

old

a a m a R a R m

m R a a m

a
m a

m

= − θ + θ θ − δ + − − δ σ +

− δ + δ δ θ − σ + − θ − σ

	 
� �� �− θ� �� �− δ − θ − σ + σ� �� �� �� �� �− θ� �� �� � �

 

            (3.42) 

which is equivalent to 

( )( )
( ) ( )

2 2 2
1 1

2 2 2 2 2 2 2
1 1

0 1 ln (1 ) (1 )(1 )

1 ln ( 1) (1 ) ( 1) .

m m m
old

m m m
old

a m a R a R m

m R a a m

= − θ + θ θ − δ + − − δ σ +

− δ + δ δ θ − σ + − θ − σ
    (3.43) 

Since equation (3.42) is even more complicated than that in the arithmetic series 

case, it cannot be solved directly for the optimal value of m. Here, some 

numerical results are shown for analysis. 

Now, 1 2{ , , , }nR R R�  and 1 2{ , , , }nσ σ σ�  are regarded as geometric 

sequences. For n  = 100, m  can be any integers between 1 and 100. Suppose 

with 30%a =  and the values of ,oldR  ,oldσ  1,R  and 1σ   remain the same as 

stated in the previous subsection. To study how the values of δ  and θ  affect the 

value of the optimal m, both δ  and θ  are set ranging between 0 and 2, but 1δ ≠  

and 1.θ ≠  It should also be ensured that θ  must always be greater than or equal 

to δ  following from (3.38). It can be concluded from some simulation results 

that: 

• Once δ  and θ  satisfy condition (3.38), a small optimal value of m  is 

obtained. That is, a new portfolio with the highest Sharpe ratio is reached 

by adding only a few new assets. For example, when 1.2δ =  and 1.3,θ =  

the  optimal value of m  is 11, see Figure 3.6. 
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• More specifically, for 1,δ =θ  i.e. ,δ = θ  the Sharpe ratios for all the new 

assets are the same.  

� If 0 1,< δ = θ <  we observe that both 1 2{ , , , }nR R R�  and 

1 2{ , , , }nσ σ σ�  are decreasing sequences. As m  increases, both  

newR  and newσ  decrease as well; moreover, the rates of change 

drop and become steady. The rate of change for newσ  may be 

greater than that for newR  at the beginning, but it will be smaller 

eventually. The optimal m  is obtained at this turning point. For 

example, when 0.8,δ = θ =  the optimal value of m  is 2. See 

Table 3.5. It can be observed in this case that the rate of change 

for newσ  is greater than that for newR  when 2;m ≤  but the rate of 

change for newσ  is smaller than that for newR  when 2.m >  Thus, 

the optimal m  is at the turning point.  

� If 1 2,< δ = θ <  then both 1 2{ , , , }nR R R�  and 1 2{ , , , }nσ σ σ�  are 

increasing sequences. We have similar observations as those 

stated above. The rate of change for newσ  is smaller than that for 

newR  at the beginning, but it will be greater eventually. The 

optimal m  is also obtained at the turning point. For example, 

when 1.3,δ = θ =  the rate of change for newσ  is smaller than that 

for newR  when 19;m ≤  but the rate of change for newσ  is greater 

than that for newR  when 19.m >  The optimal value of m  is 19. 

Moreover, as both δ  and θ  increase, the optimal value of m  
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decreases. For instance, when 1.6,δ = θ =  the optimal value of m  

becomes to be 9. See Table 3.5.  

• For 0 1,δ< θ �  i.e. ,δ θ�  it is usually required to add a few new stocks 

to obtain a portfolio with the highest Sharpe ratio. One of the examples is: 

0.1δ =  and 1.2,θ =  i.e. 0.1 0.0833 1,
1.2

δ = =θ �  the optimal value of m  is 

1. In this case, 1 2{ , , , }nR R R�  is a decreasing sequence, but 

1 2{ , , , }nσ σ σ�  is an increasing sequence. As more new stocks are added, 

i.e. m  increases, a falling of newR  and a rising of newσ  leads to a decrease 

in the Sharpe ratio.  

 

Consequently, in the geometric series case, the optimal value of m  is usually 

small if δ  and θ  satisfy the condition (3.38) and both  δ  and θ  are strictly less 

than 1. 
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Figure 3.6    Sharpe Ratios of New Portfolios against Number of Stocks 

added in Geometric Series Case              

 

 

 

 

 

Table 3.5 The Optimal No. of New Stocks Added (m) for 

Different Values of � and � (� and �) 

δ  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
θ  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

No. of 
New Stocks 1 1 1 1 1 1 1 2 2 

          

δ  1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 
θ  1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

No. of 
New Stocks 63 29 19 14 11 9 8 7 6 
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Appendix to Chapter 3: Roots for Equation (3.33) 

 

A3.1 Expression of the First Root for Equation (3.33) 
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A3.2 Expression of the Second Root for Equation (3.33) 
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A3.3 Expression of the Third Root for Equation (3.33) 
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Chapter 4 

The Mean-Variance Approach to Portfolio Improvement 

 

So far, we have developed some criteria to judge the worthiness of adding 

some new assets to an existing portfolio. As a result, a new portfolio with better 

performance is obtained. Portfolio improvement is accomplished by acquiring 

some new assets. In the process of acquiring some new assets, it is necessary to 

compare the performances of a new constructed portfolio with that of a 

benchmark, i.e. the existing portfolio. Because people are usually concerned 

about return and risk when comparing the performances of portfolios and risk 

can be measured by the variance of the portfolio returns, we take both return and 

variance into account in solving the portfolio improvement problem. This chapter 

looks into developing a model to solve the portfolio improvement problem in a 

single period by applying the mean-variance analysis. More specifically, the 

portfolio improvement problem is formulated into an optimization problem, in 

which the variance of the new portfolio is minimized subject to some constraints 

including a return constraint. 

In the settlement of stock trading, transaction fees are charged. Hence, 

transaction cost is a concern when acquiring some new assets. Moreover, adding 

too many assets to a portfolio is not practical in view of manageability. Due to 

the facts, a cardinality constraint is introduced to restrict the number of selected 

new assets not to be too large in our model.  

Before developing models to solve the problem, let us make some 

assumptions and introduce some notations. Assume that the overall portfolio 
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value does not change, i.e. the portfolio values of the old and new portfolios are 

the same. The expected return and standard deviation of stock i  are denoted by 

iR  and ,iσ  for 1,2, , .i n= �  Let oldx  be the weight of the old portfolio and ix  be 

the weight of stock i  in the new portfolio, for 1,2, , .i n= �  For convenience, the 

weights is represented by a ( 1)n + -dimensional vector, denoted ,x  where the 

transpose of x  is 

   1 2[ , , , , ]T
old nx x x x=x � .        (4.1) 

Similarly, a ( 1)n + -dimensional vector of returns is given by 

   1 2[ , , , , ]old nR R R R=R � .        (4.2) 

Thus, the expected return on the new portfolio can be expressed as 

   
1

( )
n

old old i i
i

R x R x
=

µ = + =�x Rx .       (4.3) 

The old portfolio is treated as a whole and consideration is given to the 

correlations of the returns on new stocks and the old portfolio. The variance-

covariance matrix, denoted by ,�  is  

   

2
,1 ,2 ,

2
1, 1 1,2 1,

2
2, 2,1 2 2,

2
, ,1 ,2

old old old old n

old n

old n

n old n n n

	 
σ σ σ σ
� �σ σ σ σ� �
� �= σ σ σ σ
� �
� �
� �σ σ σ σ �

�

�

�

�

� � � � �

�

,      (4.4) 

where , ,i old old iσ = σ  is the covariance of the returns on new stock i  and the old 

portfolio and , ,i j j iσ = σ  is the covariance of the returns on new stocks i  and j, 

for , 1, 2, , ;i j n= �  .i j≠  Hence, the variance of the new portfolio return can be 

expressed as 
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 2 2 2 2
, ,

1 1 , 1

( ) 2 2 ,
n n n

T
old old i i i old i old i j i j

i i i j
i j

v x x x x x x
= = =

≠

= σ + σ + σ + σ =� � �x x �x      (4.5) 

and the standard deviation is 

  ( ) .Tσ =x x �x           (4.6) 

By introducing the cardinality constraint for the restriction on the number of 

selected new stocks, Section 4.1 formulates our problem with an equality 

cardinality constraint. It discusses the formulation and derives analytical 

solutions to the problem under some assumptions in Section 4.2. Though we 

cannot obtain a closed-form solution in the general case, the analytical solutions 

in some special cases provide some insight for solving the problem. In solving 

our problem, it is required to pick some stocks from n  given stocks. A good 

stock picking strategy makes the solution time shorter. With this concern, 

Section 4.3 illustrates a stock picking strategy for picking 2 and 3 stocks. As our 

problem can be categorized as a Mixed Binary Quadratic Programming (MBQP) 

problem, some developed optimization solvers can solve such a problem. Section 

4.4 shows some procedures to solve our problem by using the Xpress Solver. A 

numerical example is presented for illustration. Section 4.5 considers another 

model with an inequality cardinality constraint. Comparison with the model with 

an equality cardinality constraint is carried out by using a numerical example.  

 

4.1 Problem Formulation with Equality Cardinality 

Constraint 

Investors always prefer a portfolio with higher return or lower risk. Risk is 

usually measured by the standard deviation or variance. The classical portfolio 
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optimization problem is to minimize the risk of achieving a given level of return. 

The objective of our formulation is to minimize the variance of the new portfolio 

subject to some constraints, e.g. the return on the new portfolio must be greater 

than a desired return, .R  Here, it is recommended to set oldR R≥  because the 

spirit of our problem is to improve the return on the existing portfolio.  

Under the mean-variance theory, our problem can be formulated as follows: 

 

(MBQP) Minimize 
1 1

( )
2 2

Tv =x x �x       (4.7a) 

  Subject to ( ) ,Rµ = ≥x Rx       (4.7b) 

    
1

1,
n

old i
i

x x
=

+ =�       (4.7c) 

    ,oldx a≥        (4.7d) 

    0 , for 1,2, , ,i ix y i n≤ ≤ = �     (4.7e) 

    
1

,
n

i
i

y m
=

=�        (4.7f) 

  {0,1}, for 1,2, , ,iy i n∈ = �     (4.7g) 

  , for 1,2, , .i i iy x u i n− ≤ = �     (4.7h) 

  

Here, a  is the minimum portion of portfolio value invested in the old 

portfolio and m  is a positive integer number. It is only meaningful to set .m n≤  

We presume that 0 1.a< <  Note that iy  is an indicator variable for ;ix  if new 

stock i  is selected to be invested in the new portfolio, i.e. 0,ix >  then 1;iy =  

else new stock i  is not selected, then 0ix =  and 0.iy =  Thus, for all i, iy  is a 
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binary variable; it is equal to either 0 or 1. The constraint 
1

1
n

old i
i

x x
=

+ =�  restricts 

that a portion of portfolio value is invested in the old portfolio and the remaining 

portions are invested in some new stocks. It follows from (4.7c) and (4.7d) that 

1

1 ,
n

i
i

x a
=

≤ −�  i.e. the total portions invested in the new stocks do not exceed 1 .a−  

By setting 0ix ≥  for all i, short selling is not allowed in the problem (MBQP). 

With the restrictions i ix y≤  for all i, ix  is either equal to 0 or a percentage 

(between 0 and 1). Moreover, we introduce linear constraints (4.7h) to restrict xi 

not to be too small. When xi is too small, we treat it as zero. Notice that ui is a 

constant and 0 1iu< < . For example, when 0.99iu = , xi is set to be not less than  

1% for those selected stocks.  

In problem (MBQP), we introduce an equality cardinality constraint 

1

.
n

i
i

y m
=

=�  It specifies that the total number of new stocks invested in the new 

portfolio must be exactly equal to m. In other words, it is required to choose 

exactly m  stocks from n  given new stocks. There are n mC  combinations for 

selection. For a fixed value of m, as the value of n  increases, the number of 

combinations increases exponentially. Thus, the computational time required to 

solve the problem will increase exponentially. For a fixed value of n, the value of 

m also affects the computational time required to solve the problem. Moreover, 

transaction costs increase as more stocks are traded. Because of the concern in 

computational time and cost, m  is requested to be a small number in practice.  

In the formulation of problem (MBQP), we intend to minimize the variance 

of the portfolio return subject to some equality and inequality constraints 
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including a return constraint, i.e. .R≥Rx  For an optimization problem, it is 

crucial to analyze the characteristics of the objective function and hence identify 

the problem type in order to seek a suitable solution method. Here, the objective 

function ( )v x  is an expression of the variance which is a quadratic function of 

the decision variables .x  Without constraints (4.7d), (4.7e), (4.7f) and (4.7g), our 

problem can be reduced to the classical Markowitz mean-variance problem 

which is a convex quadratic programming (QP) problem. As pointed out in 

Nocedal and Wright (1999), quadratic programs can always be solved (or can be 

shown to be infeasible) in a finite number of iterations, but the effort required to 

find a solution depends strongly on the characteristics of the objective function 

and the number of inequality constraints. It is obvious that the variance-

covariance matrix �  in our objective function is symmetric. It can be shown that 

�  is positive semidefinite. In this case, the Markowitz mean-variance problem is 

a convex QP. Solving such a problem is no much difficult than a linear 

programming (LP) problem.  

However, regarding the constraints (4.7g), the indicator variables ,iy  for all i, 

are restricted to 0-1 values. Moreover, the inclusion of constraints (4.7d), (4.7e) 

and (4.7f) makes the problem (MBQP) more difficult to be solved than the 

standard Markowitz mean-variance problem. Actually, our problem is a Mixed 

Binary Quadratic Programming which can be abbreviated to MBQP, i.e. the 

name of our problem. For an integer nonlinear programming problem, it can be 

solved by a branch-and-bound approach that applies a nonlinear solver to 

successive sub-problems.  
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4.2 Analytical Solutions to the Problem in Some Special Cases 

Before solving our problem (MBQP), it is interesting to discuss the solution 

in some special cases. Obviously, problem (MBQP) can be reduced to a model 

similar to the Markowitz model by ignoring some constraints, say (4.7d), (4.7e), 

(4.7f), (4.7g) and (4.7h), and setting (4.7b) with equality constraint. As stated and 

demonstrated in Luenberger (1997), for n  assets, a system of 2n +  linear 

equations can be obtained for efficient set. These equations can be solved with 

standard methods for 2n +  unknowns including two Lagrange multipliers and n  

portfolio weights.  

Suppose that there are  n  assets which are uncorrelated. You may invest in 

any one, or in any combination of them. The mean rate return R  is the same for 

each asset, but the variances are different. The return on asset i  has a variance of 

2
iσ  for 1,2, , .i n= �  This is the problem stated in Chapter 6 of Luenberger (1997). 

It is required to express the minimum-variance point in terms of 

   
1

2
2

1

1n

i i

−

=

� �
σ = � �σ� �

� .         (4.8) 

It can be shown that the n  portfolio weights ix  for 1,2, ,i n= �  have the 

following expression 

   
2

2i
i

x
σ=
σ

.          (4.9) 

Hence, the minimum variance is equal to 2.σ  

Let us consider the following model reduced from problem (MBQP): 

 

(MBQP_R) Minimize 
, 1

1
2

n

ij i j
i j

x x
=

σ�      (4.10a) 
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  Subject to 
1

,
n

i i
i

R x R
=

=�      (4.10b) 

    
1

1,
n

i
i

x
=

=�      (4.10c) 

    0 , for 1,2, , ,i ix y i n≤ ≤ = �   (4.10d) 

    
1

,
n

i
i

y m
=

=�      (4.10e) 

  ( )1 0, for 1,2, , .i iy y i n− = = �   (4.10f) 

    , for 1,2, , .i i iy x u i n− ≤ = �   (4.10g) 

 

Notice that constraint (4.10f) is used instead of constraint (4.7g) to present an 

algebraic expression of (4.7g) for the ease of derivation. Regarding problem 

(MBQP_R), it is complicated to determine an analytical solution. For simplicity, 

some assumptions are addressed here. Suppose the n  assets are uncorrelated. 

The expected returns iR s are all equal to the desired return ,R  but the variances 

are different. Both m  and n  are fixed. In this case, the number of combinations 

for portfolio selection, i.e. ,n mC  is fixed. With the uncorrelated assumption on 

assets, the variance of the portfolio in the objective function can be simplified 

and expressed as 

   2 2

, 1 1

.
n n

ij i j i i
i j i

x x x
= =

σ = σ� �       (4.11) 

Note that under the assumption of equal expected return for all assets, constraint 

(4.10b) can be simplified and is equivalent to constraint (4.10c). In a manner 

similar to the solution to the problem in Luenberger (1997), we can also show 

that  
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2

2 ,I
i

i

x
σ=
σ

 for i I∈  and ,I N⊆      (4.12) 

where 
1

2
2

1
I

i I i

−

∈

� �
σ = � �σ� �

�  and the set I  is the subset of the set {1,2, , }.N n= �  Note 

that the cardinality of a set, e.g. S, measures the number of elements of the set 

and is denoted by .S  It is obvious that nN =  and I  .n≤  Actually, mI =  

and this specifies that only m  assets are chosen from n  assets. However, the 

elements in the set I  are still not determined. Suppose the variances are ranked 

in an ascending order as 

  1 2 .nσ ≤ σ ≤ ≤ σ�  

Obviously, the optimal solution is 

  

2

2 , , {1,2, , },

0, \ .

I
i

i

i

x i I I m

x i N I

∗

∗

� σ= ∈ =� σ�
� = ∈�

�
      (4.13) 

The corresponding minimum variance is equal to 

  
1

2 2 2 2 4 2
2

1 1 1

1
.

n m m

i i i i I I
i i i i

x x
−

∗ ∗

= = =

� �
σ = σ = σ = σ� �σ� �

� � �      (4.14) 

The result is straightforward in common sense that investors always prefer assets 

with lower risk, say standard deviation, for the same level of return.  

By ignoring the assumption of equal mean rate of return for each asset, we 

consider problem (MBQP_R) without constraints (4.10d) – (4.10g): 

(MV_L) Minimize 
, 1

1
2

n

ij i j
i j

x x
=

σ�      (4.15a) 

  Subject to 
1

n

i i
i

x R R
=

=�      (4.15b) 
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1

1
n

i
i

x
=

=�      (4.15c) 

Under the uncorrelated assumption on assets, the objective function (4.15a) 

can be simplified to the function on the right-hand side of (4.11). By introducing 

two Lagrange multipliers λ  and ,µ  we can obtain 

  2 2

1 1 1

1
1 .

2

n n n

i i i i i
i i i

L x x R R x
= = =

� � � �= σ − λ − − µ −� � � �
� � � �

� � �     (4.16) 

Set the derivatives 0,L∂ =  which yields a system of equations: 

  

2

1

1

0, 1, , ,

0,

1 0.

i i i
i

n

i i
i

n

i
i

L
x R i n

x

L
x R R

L
x

=

=

� ∂ = σ − λ − µ = =�∂�
�∂ = − =�∂λ�
�∂ = − =�

∂µ�

�

�

�

    

Solving the system of equations above yields 

  2 ,i
i

i

R
x

λ + µ
=

σ
         (4.17) 

where 

  
2 2

1 1
22

2 2 2
1 1 1

1

,
1

n n
i

i ii i

n n n
ii

i i ii i i

R
R

RR

= =

= = =

� � � �
−� � � �σ σ� � � �λ =

� �� � � �
−� �� � � �σ σ σ� �� � � �

� �

� � �
      (4.18) 

and 

  

2

2 2
1 1

22

2 2 2
1 1 1

.
1

n n
ii

i ii i

n n n
ii

i i ii i i

RR
R

RR

= =

= = =

� � � �
−� � � �σ σ� � � �µ =

� �� � � �
−� �� � � �σ σ σ� �� � � �

� �

� � �
      (4.19) 

With regard to the expressions of λ  and µ  in (4.18) and (4.19) respectively, we 

can show that they are expressed meaningfully only when the return rates of 
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assets are not all equal. It can be observed explicitly that as all the assets have the 

same return rate, the same denominator in both (4.18) and (4.19) becomes zero. 

The expressions of λ  and µ  can be simplified by introducing some new 

notation. Let 2
1

1
,

n

i i

A
=

=
σ�  2

1

n
i

i i

R
B

=

=
σ�  and 

2

2
1

.
n

i

i i

R
C

=

=
σ�  It follows from (4.18) and 

(4.19) that λ  and µ  can be expressed in terms of A, B and C  as 

  2

R A B
AC B

−λ =
−

         (4.20) 

and 

  2 .
C RB
AC B

−µ =
−

         (4.21) 

Recall that the variance of the portfolio returns can be expressed as 

  
( )2

2 2
2

1 1

n n
i

i i
i i i

R
x

= =

λ + µ
σ =

σ� �  

           
2

2 2
2 2 2

1 1 1

1
2 ,

n n n
ii

i i ii i i

RR

= = =

� � � � � �
= λ + λµ + µ� � � � � �σ σ σ� � � � � �

� � �     (4.22) 

which is equivalent to 

  2 2 2 2

1

2 .
n

i i
i

x C B A
=

σ = λ + λµ + µ�       (4.23) 

The constraint (4.15b) can be rewritten as 

  
2

2 2
1 1 1

,
n n n

ii
i i

i i ii i

RR
x R R

= = =

� � � �
= λ + µ =� � � �σ σ� � � �

� � �  

or 

  .C B Rλ + µ =          (4.24) 

Similarly, constraint (4.15c) can be simplified to 

  1B Aλ + µ = .         (4.25) 
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It follows from (4.23), (4.24) and (4.25) that  

  2 2

1

n

i i
i

x R
=

σ = λ + µ� .       (4.26) 

By substituting (4.20) and (4.21) into (4.26), we can obtain 

  
2

2 2
2

1

2n

i i
i

AR BR C
x

AC B=

− +σ =
−� ,        (4.27) 

which can be considered as a function of R  as A, B  and C  are all constant with 

given values of iR s and 2
iσ s. For different values of ,R  formula (4.27) gives 

different values for minimum variance of the portfolio returns. It can also be 

shown that without the assumption of no correlation between assets, problem 

(MV_L) can be solved and the variance of the portfolio returns can be expressed 

as a function of the desired return R . See Merton (1972) for a more detailed 

derivation of the variance of a frontier portfolio in the general case.  

 

4.3 Stock Picking Strategy 

The previous subsection has derived some analytical solutions to the problem 

in some special cases. Intuitively, to solve our problem (MBQP_R) under the 

uncorrelated assumption on assets, we can construct n mC  combinations of assets, 

i.e. set I, and then calculate the variance for each portfolio for comparison. 

Finally, the optimal portfolio is the one with the smallest variance. However, as 

m  and n  become large, the number of combinations increases and the 

computation time for the problem becomes longer. Moreover, one may encounter 

difficulties in the construction of a well-structured sequence of combinations of 

assets, e.g. stocks, which can increase the search efficiency for a solution. Since 

solving our problem gives a portfolio with minimum variance, this section will 
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try to construct a sequence of combinations of stocks in portfolios for efficient 

search. In general, it is not easy to construct a structured sequence of 

combinations, in which the variances of the portfolios are in an ascending order. 

Some assumptions are made in this section to simplify the expression of variance 

in order to construct an approximately increasing sequence of combinations. Our 

approach is to consider the unconstrained problem, i.e. the problem (MBQP_R), 

without the return constraint for a simpler solution first. Then we will check 

whether the possible portfolios in the sequence of combinations satisfy the return 

constraint. For those feasible portfolios, the portfolio with the smallest variance 

is the optimal one. 

Let us consider problem (MV_L) again. Suppose all the stocks are 

uncorrelated. We assume that the return constraint (4.15b) is released and the 

problem becomes an unconstrained problem. Solving the problem by introducing 

a Lagrange multiplier µ  yields 

  2 ,i
i

x
µ=
σ

         (4.28) 

for 1,2, , ,i n= �  where 

  
1

2
1

1
.

n

i i

−

=

� �
µ = � �σ� �

�         (4.29) 

Hence, the variance of the portfolio is 

  
1

2 2
2

1 1

1
.

n n

i i
i i i

x
−

= =

� �
σ = � �σ� �

� �        (4.30) 

Under the same assumptions, we can show that for problem (MBQP_R) without 

constraint (4.10b), the portfolio weights ix  is equivalent to (4.12) and zero 

otherwise. Hence, the variance of the portfolio can be expressed as 2
Iσ . It has 
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been shown in Section 4.2 that in the solution, the first m  stocks with smaller 

standard deviations are selected if all the stocks have the same expected return. 

However, the solution is not determined without the assumption of equal 

expected return of stocks.  

The following paragraphs concentrate on constructing a structured sequence 

of combinations. One more assumption is addressed here. Assume that 2 ,i iRσ ∝   

i.e. 2 ,i icRσ =  for all i, where c  is a constant. The idea behind this assumption is 

the tradeoff between return and risk, i.e. iR  and 2 ,iσ  in which a higher risk must 

be borne for a higher return. Replacing 2
iσ  by icR  in the expression of the 

variance of the portfolio, 2 ,Iσ  gives 

  

1 1

2 2 2 1 1
,i i I

i I i I i Ii i

x c
cR R

− −

∈ ∈ ∈

� � � �
σ = σ = =� � � �� � � �

� � � �
� � �      (4.31) 

where I N⊆  and {1,2, , }.N n= �  Since c  is a constant, to minimize 2 2
i i

i I

x
∈

σ�  is 

equivalent to minimize 

1

1
.

i I iR

−

∈

� �
� �� �
� �
�   

For specific values of m  and n, there are n mC  possible portfolios for 

comparison. Intuitively, for an efficient portfolio that satisfies the return 

constraint, at least one of the expected returns of the selected stocks should be 

greater than the desired return R . For n  given stocks, their expected returns can 

be calculated and ranked in an ascending order. Suppose R  is ranked between 

kR  and 1.kR +  Now, we have 

  1 2 1 .k k nR R R R R R+< < < < < < <� �      (4.32) 
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Since smaller values of iR s give a smaller value of 

1

1
,

i I iR

−

∈

� �
� �� �
� �
�  we propose 

to pick 1m −  stocks from the first k  ranked stocks and 1 stock from the last 

n k−  stocks in (4.32), with 1 1.m k n− ≤ ≤ −  In this stock picking strategy, the 

number of combinations becomes 1 1 1( )k m n k k mC C n k C− − −= −� �  which should be 

less than .n mC  For the ease of tracking and comparison, we suppose that the 

expected returns of stocks, 1 2{ , , , },nR R R�  is an arithmetic sequence. Thus, the 

expected return of stock i  can be expressed in terms of 1R  as in (3.22) for 

1,2, , ,i n= �  and 1.n ≥   

Let us consider the simplest case 2m =  first. With given values of n  and k, 

we should pick 1 stock from the first k  given stocks and another from the last 

n k−  stocks. It turns out that the number of combinations, i.e. portfolios, is 

( ).k n k−�   

The following algorithm demonstrates our stock picking strategy for the case 

of 2.m =  

 

Algorithm 4.1 (Stock Picking Strategy for 2m = ) 

Step 1. (Initialization) k  value (must be 1 1m k n− ≤ ≤ − ); 1,i =  1;j k= +   

exit_value 1;k n= + +  sum_value .i j= +   

Step 2. (Selection) If i k≤  and ,j n≤  then enter the list and go to Step 3; 

otherwise, go to Step 3. 

Step 3. (Partition) If 1,j k= +  then go to Step 4; else, go to Step 5. 

Step 4. (Update_1) 1,i i= +  sum_value sum_value 1,= +  sum_value .j i= −  

If  sum_value exit_value= , then stop; else, go to Step 2. 
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Step 5. (Update_2) 1,j j= −  sum_value ;i j= −  go to Step 2. 

 

The goal of Algorithm 4.1 is to construct a sequential list of possible sets of 

stock indexes in a two-stock portfolio. In Algorithm 4.1, the sum_value  is 

corresponding to the sum of the indexes of the two constituent stocks, i.e. i  and 

j , in the portfolio. The list is started from the set with the smallest sum_value  

and ended at the set with the largest sum_value.  Since we want to pick 1 stock 

from the first k  given stocks and another from the last n k−  stocks, we have 

1 i k≤ ≤  and 1 .k j n+ ≤ ≤  Hence, 2 sum_value .k k n+ ≤ ≤ +   

As an illustration, suppose 19,n =  2m =  and 7.k =  The first set to be 

considered in the list is (9;1,8)  where sum_value 9,=  1i =  and 8.j =  We also 

have 1 7,i≤ ≤  8 19j≤ ≤  and 9 sum_value 26.≤ ≤  Table 4.1 displays a 

sequential list of possible sets of stock indexes for the case of 2.m =  The total 

number of possible sets is ( ) 7 12 84.k n k− = × =�  We observe that the 

sum_value  is in a non-descending order. Each set refers to a possible portfolio, 

e.g. (9;1,8)  refers to a portfolio consisting of two stocks with expected returns 

1R  and 8.R  For the portfolios with the same sum_value  in Table 4.1, we suppose 

that the portfolio in a more ‘extreme’ set has a smaller variance, so the more 

‘extreme’ set is selected first. Here, ‘extreme’ means that one of the two 

constituent stocks in the ‘extreme’ set has the smallest expected return and the 

other has the largest expected return among the stocks in the sets with equal sum 

of expected returns of stocks. For example, for sum_value 12,=  the set (12;1,11)  

is more ‘extreme’ than the set (12;2,10),  (12;2,10)  is more ‘extreme’ than 

(12;3,9),  and so on. It is presumed that the portfolios in Table 4.1 with the same 
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sum_value  are sorted by variance in an ascending order. This will be proved in 

Proposition 4.1.   

 

Table 4.1 List of Possible Sets of Stock Indexes for m = 2 

sum_value i j   sum_value i j   sum_value i j 
9 1 8   16 1 15   20 1 19 
10 1 9  16 2 14  20 2 18 
10 2 8  16 3 13  20 3 17 
11 1 10  16 4 12  20 4 16 
11 2 9  16 5 11  20 5 15 
11 3 8  16 6 10  20 6 14 
12 1 11  16 7 9  20 7 13 
12 2 10  17 1 16  21 2 19 
12 3 9  17 2 15  21 3 18 
12 4 8  17 3 14  21 4 17 
13 1 12  17 4 13  21 5 16 
13 2 11  17 5 12  21 6 15 
13 3 10  17 6 11  21 7 14 
13 4 9  17 7 10  22 3 19 
13 5 8  18 1 17  22 4 18 
14 1 13  18 2 16  22 5 17 
14 2 12  18 3 15  22 6 16 
14 3 11  18 4 14  22 7 15 
14 4 10  18 5 13  23 4 19 
14 5 9  18 6 12  23 5 18 
14 6 8  18 7 11  23 6 17 
15 1 14  19 1 18  23 7 16 
15 2 13  19 2 17  24 5 19 
15 3 12  19 3 16  24 6 18 
15 4 11  19 4 15  24 7 17 
15 5 10  19 5 14  25 6 19 
15 6 9  19 6 13  25 7 18 
15 7 8   19 7 12   26 7 19 
 

 

Obviously, if only one of the stock indexes in two sets are different, then the 

portfolio with smaller sum_value  has smaller variance; For instance, the 

variance of the portfolio in set (9;1,8)  is smaller than that in set (10;1,9) , and the 

variance of the portfolio in set (10;1,9)  is smaller than that in set (11;1,10).  

However, for two portfolios with different stock indexes and sum_value s, it is 
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still uncertain which one has smaller variance. In Table 4.1, it is required to 

check for some pairs of sets, e.g. (10;2,8)  and (11;1,10),  (11;3,8)  and (12;1,11),  

and so on. 

 

Proposition 4.1 Suppose ( , )i jR R  and ( , )i jR R′ ′  are two portfolios with two 

different stocks respectively. Here, , , ,i j i jR R R R′ ′  are the expected returns of 

stocks , , , .i j i j′ ′  It is given that 1 10 i i k k j j nR R R R R R R R′ ′+< ≤ < ≤ < ≤ < ≤ .  

(i) If ,i j i jR R R R′ ′+ = +  then  

  
1 1

1 1 1 1 .
i j i jR R R R

− −

′ ′

� � � �
+ > +� � � �

� � � �
       (4.33) 

(ii) It is given that , , ,i j i jR R R R′ ′  are in an arithmetic sequence, i.e. 

1 1( 1) ,i iR R i R a= + − γ = + γ  where 1ia i= −  and 0γ >  is the common 

difference between two terms. If i j i jR R R R′ ′+ < +  and γ  satisfies  

  2 10γ < < γ < γ  

or 

 2 10 < γ < γ < γ , 

where 

 
( ) ( )( ) ( )( )

( ) ( )1 1

i j i j i i j i i j j j

i j i j i j i j

a a a a a a a a a a a a
R

a a a a a a a a

′ ′ ′ ′ ′ ′

′ ′ ′ ′

	 
− + − − − −
� �γ =
� �+ − +
 �

   (4.34) 

and 

 
( ) ( )( )( ) ( )

( ) ( )2 1

i j i j i i j i i j j j

i j i j i j i j

a a a a a a a a a a a a
R

a a a a a a a a

′ ′ ′ ′ ′ ′

′ ′ ′ ′

	 
− − − − − −
� �γ =
� �+ − +
 �

,  (4.35) 

  then  
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1 1

1 1 1 1
i j i jR R R R

− −

′ ′

� � � �
+ < +� � � �

� � � �
.       (4.36) 

 

Proof:  

(i) Let i iR R d′ = +  and 0.d >  Since ,i j i jR R R R′ ′+ = +  it follows that 

.j jR R d′ = −  As 0 ,i i j jR R R R′ ′< < < <  to show (4.33) is equivalent to 

show 

  1 1 1 1
i j i jR R R R′ ′

+ < +         (4.37) 

  1 1
i j i jR R R R′ ′

� <         (4.38) 

  ( )( )i j i jR R R d R d� < + −        (4.39) 

  20 i jR d R d d� < − + −        (4.40) 

  i jR R d� < −          (4.41) 

It is given from the assumption that j jR d R ′− =  and i jR R ′<  is true. So 

Proposition 4.1(i) is proved.  

 

(ii) As given, we can express , , ,i j i jR R R R′ ′  in terms of 1R  and �: 

1 ,i iR R a= + γ  1 ,j jR R a= + γ  1i iR R a′ ′= + γ  and 1 ,j jR R a′ ′= + γ  where 

1,ia i= −  1,ja j= −  1ia i′ ′= −  and 1.ja j′ ′= −  From the given 

information, we have 0 i i j ja a a a′ ′< < < <  and .i j i ja a a a′ ′+ < +  To show 

inequality (4.36) is equivalent to show 

 i j i j

i j i j

R R R R
R R R R

′ ′

′ ′
<+ +          (4.42) 
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 ( ) ( )i j i j i j i jR R R R R R R R′ ′ ′ ′� + > +        (4.43) 

( )( ) ( )( ) ( )( ) ( )( )1 1 1 1 1 12 2i j i j i j i jR a R a R a a R a R a R a a′ ′ ′ ′� + γ + γ + + γ > + γ + γ + + γ

            (4.44) 

( ) ( ) ( ) ( ) ( )2 2 3
1 12 0i j i j i j i j i j i j i j i ja a a a R a a a a R a a a a a a a a′ ′ ′ ′ ′ ′ ′ ′	 
 	 
� + − + γ + − γ + + − + γ > �  �

            (4.45) 

For 0,γ >  dividing inequality (4.45) by ( )−γ  yields 

( ) ( ) ( ) ( ) ( )2 2
1 12 0i j i j i j i j i j i j i j i ja a a a R a a a a R a a a a a a a a′ ′ ′ ′ ′ ′ ′ ′	 
 	 
+ − + + − γ + + − + γ < �  �

 

or 

 ( )( )1 2 0,γ − γ γ − γ <          (4.46) 

where 1γ  and 2γ  are expressed as in (4.34) and (4.35). It is obvious that 2 1.γ < γ  

To satisfy inequality (4.46), we must have 

 2 1γ < γ < γ  

and 

 0.γ >  

We have the following outcomes: 

• If 2 1 0,γ < γ <  then it is impossible to get a value of γ  that leads to 

inequality (4.36).  

• If 2 10 ,γ < < γ  it follows that inequality (4.36) is true when 10 .< γ < γ  

• If 2 10 ,< γ < γ  then 2 10 < γ < γ < γ  and inequality (4.36) is obtained.  

Thus, the previous results show that Proposition 4.1(ii) is proved.� 

 

Note that the expressions on the left- and right-hand sides of inequality (4.33) 

are main factors in the variances of the two corresponding portfolios as in (4.31). 

Proposition 4.1(i) implies that for two given portfolios, if each consists of two 
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stocks and the sums of the expected returns of their constituent stocks are equal, 

then the portfolio with the more ‘extreme’ set of stocks has smaller variance. By 

assuming that 1 2{ , , , }nR R R�  is an arithmetic sequence, we can observe from 

(3.22) that the expected return is closely related to the index of the stock, i.e. i  in 

(3.22). A stock with larger index has larger expected return. The sets with equal 

sum of expected returns of stocks also have equal sum of indexes of stocks. So in 

the ‘extreme’ set, the indexes of the constituent stocks are ‘extreme’. In our list 

of possible sets of stock indexes, we presume that the portfolio with smaller 

sum_value  has smaller variance. This may not be true for all the cases. But it has 

been proved in Proposition 4.1(ii) that it is true when γ  satisfies some 

conditions.  

The following numerical example illustrates our stock picking strategy for 

2m = . In the numerical example, 1 0.2R =  and γ  is ranged from 0 to 0.1. By 

(3.22), the expected return of stock i  can be obtained, for 2, ,19.i = �  Hence, 

the variances of portfolios can be calculated for all the sets in Table 4.1.  The 

trend of the variances of portfolios is affected by the values of �. Figure 4.1 

shows the trends of the variance for four cases, i.e. γ  = 0.1, 0.01, 0.002 and 

0.0014 respectively.  
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Figure 4.1 The Trend of Variances of Portfolios  (n = 19, m = 2)              
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The ‘unsorted’ curve refers to the graph of the variances of portfolios 

according to the sequencing list of sets in Table 4.1; and the ‘sorted’ curve is a 

graph of variances of portfolios which is ranked in an ascending order. Notice 

that our goal is to apply our stock picking strategy to construct a list of possible 

sets, in which each set is corresponding to a portfolio and the variances of 

portfolios are in a non-decreasing order. Here, the ‘sorted’ curve is used as a 

reference. Once the ‘unsorted’ and ‘sorted’ curves are the same, it implies that 

the variances of portfolios in our list of sets are in an ascending order. We can 

observe from Figure 4.1 that as γ  is getting smaller, the ‘unsorted’ curve is 

getting closer to the ‘sorted’ one. In the case of γ  = 0.0014, the ‘unsorted’ one is 

the same as the ‘sorted’ one. 
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More specifically, it has been shown in Proposition 4.1(ii) that the portfolio 

with smaller sum_value  has smaller variance if γ  satisfies some conditions 

depending on 1γ  and 2γ . In the following the range of γ  is determined for our 

example. Some pairs of sets obtained from Table 4.1 with different sum_values  

are required to be compared, see Table 4.2. By applying the formulas (4.34) and 

(4.35) in Proposition 4.1(ii), we can determine the values of 1γ  and 2γ  for 

different pairs of sets with different sum_values . It can be observed from Table 

4.2 that for all the pairs of sets, 1 0γ >  and 2 0.γ <  Hence, in order to obtain 

inequality (4.36), γ  must satisfy 10 < γ < γ  for a corresponding pair of sets. For 

instance, γ  must satisfy 0 0.002632< γ <  for the pair of sets, i.e. (14;6,8)  and 

(15;1,14).  It is observable from Table 4.2 that the smallest value of 1γ  is 

0.001424 for the pair of sets, (19;7,12)  and (20;1,19).  If � satisfies 

0 0.001424,< γ <  inequality (4.36) is obtained for all the pairs of sets listed in 

Table 4.2. Notice that this range of γ  is for a particular value of 1,R  i.e. 1R  = 0.2. 

As shown in expressions (4.34) and (4.35), 1γ   and 2γ  depend on 1.R  We can 

determine a range of the ratio, 1 ,Rγ  that leads to inequality (4.36). The smallest 

value of 1 1Rγ  is 0.007120. It implies that once 1Rγ  is in the range 

(0, 0.007120),  the variances of portfolio returns with the sets in Table 4.1 are in 

an ascending order.  
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Table 4.2 Values of �1 and �2 for Pairs of Sets with Different 

Sum_Values 

sum_value   i j i' j' �1 �2 �1 / R1 �2 / R1 
10 2 8 1 10 2 8 0.011375 -0.055819 0.056873 -0.279095 
11 1 10         
11 3 8 1 11 3 8 0.006186 -0.046186 0.030931 -0.230931 
12 1 11         
12 4 8 1 12 4 8 0.004262 -0.040626 0.021312 -0.203130 
13 1 12         
13 5 8 1 13 5 8 0.003254 -0.036587 0.016269 -0.182936 
14 1 13         
14 6 8 1 14 6 8 0.002632 -0.033401 0.013160 -0.167006 
15 1 14         
15 7 8 1 15 7 8 0.002210 -0.030781 0.011050 -0.153907 
16 1 15         
16 7 9 1 16 7 9 0.001942 -0.028609 0.009710 -0.143043 
17 1 16         
17 7 10 1 17 7 10 0.001732 -0.026732 0.008659 -0.133659 
18 1 17         
18 7 11 1 18 7 11 0.001563 -0.025092 0.007814 -0.125461 
19 1 18         
19 7 12 1 19 7 12 0.001424 -0.023646 0.007120 -0.118231 
20 1 19         
20 7 13 2 19 7 13 0.001710 -0.022400 0.008552 -0.112001 
21 2 19         
21 7 14 3 19 7 14 0.002142 -0.021320 0.010709 -0.106599 
22 3 19         
22 7 15 4 19 7 15 0.002865 -0.020409 0.014327 -0.102046 
23 4 19         
23 7 16 5 19 7 16 0.004334 -0.019719 0.021672 -0.098595 
24 5 19         
24 7 17 6 19 7 17 0.008990 -0.019516 0.044948 -0.097579 
25 6 19         

 

 

 Now, let us consider a more complicated case, i.e. m  = 3. In this case, 3 

stocks are required to pick from n  given stocks. Suppose all the expected 

returns of stocks are ranked in an ascending order and the desired return R  is 
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lined between kR  and 1kR + . In a similar manner to the case of m  = 2, we 

propose to pick 2 stocks from the first k  and one stock from the last n k−  

stocks. Algorithm 4.2 demonstrates the stock picking strategy for the case of 

3.m =  In this case, the sum_value  is ranged from 4k +  to 2 1.k n+ −  The 

strategy is to pick stocks forming a smaller sum_value  first.  

 

Algorithm 4.2 (Stock Picking Strategy for 3m = ) 

Step 1. (Initialization) k  value (must be 1 1m k n− ≤ ≤ − ); 1,i =  2h =  and 

1,j k= +   ( )exit_value 1 1 2 ;k k n k n= − + + + = +  

sum_value .i h j= + +   

Step 2. (Selection) If 1,i k≤ −  h k≤  and ,j n≤  then enter the list and go to 

Step 3; otherwise, go to Step 3. 

Step 3. (Partition) If 1,j k= +  then go to Step 4; else, go to Step 5. 

Step 4. (Update_1) 1,i i= +  1,h i= +  sum_value .j i h= − −   

 If 1,j k< +  then go to Step 6; else, go to Step 2.  

Step 5. (Update_2) 1,j j= −  sum_valuei j= − ; go to Step 2. 

Step 6. (Exit) 1,i =  2,h =  sum_value sum_value 1,= +  

sum_value .j i h= − −  If  sum_value exit_value,=  then stop; else, 

go to Step 2. 

 

A numerical example is presented here to illustrate our stock picking strategy 

for the case of 3m = . Suppose 19n =  and k  = 7. As from the initialization step, 

the first set to be consider is (11;1, 2, 8)  where sum_value 11,=  1,i =  2h =  and 

8.j =  The search will be ended at the set (32; 6, 7,19)  with sum_value 32.=  
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The total number of possible sets is 1 7 2( ) (19 7) 252.k mn k C C−− = − =� �  As the 

size of the list of all possible sets is large, Table 4.3 displays the first 50  sets for 

discussion.  

 

Table 4.3 List of Some Possible Sets of Stock Indexes for m = 3 

sum_value i h j  sum_value i h j 
11 1 2 8  16 1 5 10 
12 1 2 9  16 1 6 9 
12 1 3 8  16 1 7 8 
13 1 2 10  16 2 3 11 
13 1 3 9  16 2 4 10 
13 1 4 8  16 2 5 9 
13 2 3 8  16 2 6 8 
14 1 2 11  16 3 4 9 
14 1 3 10  16 3 5 8 
14 1 4 9  17 1 2 14 
14 1 5 8  17 1 3 13 
14 2 3 9  17 1 4 12 
14 2 4 8  17 1 5 11 
15 1 2 12  17 1 6 10 
15 1 3 11  17 1 7 9 
15 1 4 10  17 2 3 12 
15 1 5 9  17 2 4 11 
15 1 6 8  17 2 5 10 
15 2 3 10  17 2 6 9 
15 2 4 9  17 2 7 8 
15 2 5 8  17 3 4 10 
15 3 4 8  17 3 5 9 
16 1 2 13  17 3 6 8 
16 1 3 12  17 4 5 8 
16 1 4 11  18 1 2 15 

 

 

It is obvious that if two of the stocks indexes in two sets are the same, the 

portfolio formed by the set with smaller sum_value  has smaller variance. One 

example in Table 4.3 is the variance of the portfolio in set (11;1, 2, 8)  is smaller 

than that in the set (12;1, 2, 9).  If only one of the stock indexes in two sets is the 

same and the sum_value  is the same, then we can easily show that the portfolio 
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in a more ‘extreme’ set has smaller variance. Actually, this result is extended 

from Proposition 4.1. Considering two sets (12;1, 2, 9)  and (12;1, 3, 8),  the 

portfolio in set (12;1, 2, 9)  has smaller variance since the set (12;1, 2, 9)  is more 

‘extreme’ than (12;1, 3, 8). Moreover, as an extension from Proposition 4.2, we 

can compare two sets with one stock index being the same and different 

sum_value,  e.g. (12;1, 3, 8)  and (13;1, 2,10).  In such a case, we can show that 

the portfolio in the set with smaller sum_value  has smaller variance as γ  is 

small enough. Here, we assume that 1 2{ , , , }nR R R�  is an arithmetic sequence 

and 0γ >  is the common difference of successive terms.  

However, if all the stocks indexes in two sets are different, it is hard to 

determine the one has smaller variance in general even though these two sets has 

the same sum_value.  We can consider a graphical approach and observe the 

trend of variances of portfolio returns in the list of possible sets.  

We suppose that 1 0.2R =  and γ  is ranged from 0.0014 to 0.1. We have 

similar observations as for the case of m  = 2. As the value of γ  is getting 

smaller, the graph of the ‘unsorted’ one is getting closer to that of the ‘sorted’ 

one. See Figure 4.2. The variances of the portfolio returns are approximately in 

an ascending order in the list of sets constructed by our stock picking strategy. 
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Figure 4.2 The Trend of Variances of Portfolios  (n = 19, m = 3)              
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So far, we have discussed our stock picking strategy for 2m =  and 3.m =  

We have shown that the variances of portfolio returns in our constructed stock 

picking list are in an ascending order under some assumptions for 2.m =  

Though we cannot proved that the variances are in an ascending order in all the 

cases for 3,m =  we show by graph that the variance are approximately in an 

ascending order. It is even more complicated to show the trend of variances for 

larger values of m. Our discussion about the cases of 2m =  and 3m =  gives an 

insight into the stock picking strategy. It may not be perfect, but may be 

extendable to cases with larger values of m.  
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4.4 Problem Solving by the Xpress Solver 

Though we cannot derive an analytical solution to our problem without any 

assumptions, our problem can be solved by using an optimization solver. This 

section presents some procedures for solving our problems by the Xpress Solver.  

Nowadays, various optimization solvers are developed to help people solve 

different kinds of optimization problems efficiently. To deal with the Mixed 

Integer Programming (MIP) or QP problems, one possible solution is to use the 

Xpress Solver developed by Dash Optimization Limited. The Xpress Solver 

engineer uses the natural extension of the Interior Point or Newton-Barrier 

method to solve QP problems. Provided that sufficient memory is available, this 

solver is able to solve extremely large QP problems. However, it is appropriate 

only for positive definite quadratic objectives (when minimizing; negative 

definite when maximizing). More examples of applications are discussed in 

Guéret et al. (2002).   

As discussed above, our problem (MBQP) is formulated into a minimization 

problem. The model is built with a collection of defined variables, constraints 

and objective function. By using the Xpress Solver to solve our problem, the first 

stage is to get the model and develop it into the syntax of the Mosel language. 

Mosel is an advanced programming language and environment. It has some 

favorable features, such as easy to use, easily extended and supporting dynamic 

objects. More features of Mosel can be found in Xpress-Mosel User Guide 

provided by Dash Optimization. In developing the model into a Mosel file, every 

decision variable must be declared. In our problem, we have two sets of decision 

variables, i.e. xi’s and yi’s. Notice that MIP and QP variables are of type ‘mpvar’. 

By default, Mosel assumes that all ‘mpvar’ variables are constrained to be non-
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negative unless it is informed otherwise. So our decision variables xi’s and yi’s 

are of type ‘mpvar’ and non-negative by default.  

Then, the next stage is to solve the model developed in Mosel. It can be 

specified to Mosel that the problem is to be solved by using the Xpress-

Optimizer. The Xpress-Optimizer algorithms enable us to solve LP, MIP, QP and 

MIQP (Mixed Integer Quadratic Programming) problems. It uses a sophisticated 

branch and bound algorithm to solve MIP and MIQP problems. To reduce 

problem size and solution time, MIP pre-solve algorithm pre-processes the 

problem. In order to improve the quality of bounds and reduce the size of the 

global search, it also use some advanced cutting-plane strategies, such as Flow 

covers, GUB covers, Lift and Project, Clique cuts, Flow paths, Mixed integer 

rounding and Gomory fractional cuts. More information on the Xpress-Optimizer 

and related topic can be found in URL http://www.dashoptimization.com/ 

home/products/products_optimizer.html.  

So far, we have developed a model and specified the optimizer to solve it. 

The final stage is to obtain a solution to our problem. Under Microsoft Windows, 

Xpress-IVE, the Xpress Interactive Visual Environment, is used to work with 

Mosel models. When a model is run, the program output is displayed in the 

output window pane. In the following subsection, a numerical example of our 

problem solved by the Xpress-Optimizer is illustrated. 
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4.4.1 Numerical Examples  

In this subsection, consideration is given to the stock market in Hong Kong. 

More specifically, some constituent stocks in the Hang Seng Index (HSI) are 

considered. Here, we used historical daily closing prices of stocks from August 

1996 to July 1997. Suppose that an investor is holding an existing portfolio, 

called old portfolio. The historical daily expected return and the standard 

deviation of the return are given as follows: 

Daily Expected Return, oldR  Standard Deviation, oldσ  

0.0009772 0.013279  
  

S/he requests to improve the performance of the existing portfolio. There are 

19 new stocks that are attractive to him/her in the stock market. In this situation, 

19.n =  The historical daily expected returns of the stocks, standard deviations of 

the returns and Sharpe ratios are given in Table 4.4. The Sharpe ratio is defined 

as the ratio of the daily expected return to the standard deviation of the returns. A 

falling of the standard deviation or a rising of the return leads to a rise in the 

Sharpe ratio. It can be used to measure the performance of a portfolio or a stock. 

The higher the Sharpe ratio, the better the performance of the stock. Among 19 

new stocks in Table 4.4, stock 4 has the highest Sharpe ratio.  
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Table 4.4 List of 19 New Stocks with Daily Expected Return, 

Standard Deviation and Sharpe Ratio 

No. Stock Name Daily Expected 
Return 

Standard  
Deviation 

Sharpe Ratio 
(%) 

1 CLP HOLDINGS 0.001414 0.013636 10.3658 
2 HONG KONG AND CHINA GAS 0.002087 0.012395 16.8335 
3 WHARF HOLDINGS 0.000994 0.019536   5.0905 
4 HSBC HOLDINGS 0.003250 0.013593 23.9118 
5 HONG KONG ELECTRIC 0.001437 0.015007   9.5743 
6 PCCW 0.005095 0.042908 11.8752 
7 HANG SENG BANK 0.001720 0.018019   9.5442 
8 HUTCHISON WHAMPOA 0.002113 0.016216 13.0310 
9 NEW WORLD DEV. 0.002042 0.019360 10.5453 

10 SWIRE PACIFIC 'A' 0.000548 0.016159   3.3925 
11 BANK OF EAST ASIA 0.001434 0.013001 11.0296 
12 HOPEWELL HOLDINGS 0.000712 0.023106   3.0817 
13 JOHNSON ELECTRIC HDG. 0.001521 0.019491   7.8029 
14 SHUN TAK HOLDINGS 0.000298 0.018373   1.6192 
15 CITIC PACIFIC 0.001871 0.016139 11.5901 
16 GUANGDONG INVESTMENT 0.003849 0.029640 12.9869 
17 CATHAY PACIFIC AIRWAYS 0.000847 0.016554   5.1195 
18 TELEVISION BROADCASTS 0.000414 0.015956   2.5953 
19 SCMP GROUP 0.002117 0.024608   8.6037 

 

 

By analyzing the historical data, the variance-covariance matrix, � , can be 

also obtained. Suppose 3 new stocks are requested to be chosen from 19 stocks 

for investing in the new portfolio, i.e. m  = 3. We set a  = 70%, i.e. only at most 

30% of the portfolio value is used to invest in those 3 selected new stocks. The 

desired return is 0.0016R =  which is greater than the expected return on the old 

portfolio. Under the return constraint, the return on the new portfolio is restricted 

to be greater than or equal to the desired return. To restrict the weight of selected 
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stock i, xi, not to be too small, we set ui = 0.999. Hence, we have 0.1%ix ≥  for 

m selected stocks.  

With given values of some parameters, the problem (MBQP) can be 

translated to the Xpress-Mosel language and saved as a model file. Hence, the 

decision variables ix s and iy s are determined from solving the problem by the 

Xpress Optimizer.  

The output displays the new portfolio with minimum variance that satisfied 

all the constraints in problem (MBQP). The selected stocks are the ones labeling 

No. 2, 4 and 6. The corresponding portions invested in these 3 stocks are 

11.8635%, 13.8565% and 4.2797% respectively. These percentages are summed 

up to 29.9997%. Thus, 70.0003% of the portfolio value is still invested in the old 

portfolio. Note that Stocks 2, 4 and 6 have higher Sharpe ratios among the other 

stocks. Stock 4 with the highest Sharpe ratio is selected to be invested with the 

greatest weights among the other two selected stocks. It shows that the new 

stocks with higher Sharpe ratios will be selected to form a new portfolio with 

better performance. The following table displays the return and the standard 

deviation of the return for the new portfolio. 

 
Daily Expected Return, newR  Standard Deviation, newσ  

0.0016 0.0112453 
 

It is obvious that the daily expected return on the new portfolio is greater 

than that on the old portfolio. And the standard deviation (referring to risk) of the 

return on the new portfolio is lower than that of the old portfolio. Hence, the 

overall performance of the new portfolio is better than the old portfolio. It 

achieves the goal of the problem. Figure 4.3 illustrates the efficient frontier of 
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problem (MBQP) with n  = 19 and m  = 3. An observation from analyzing the 

efficient frontier is that Stock 4 is always selected for the new portfolios lying on 

the efficient frontier in Figure 4.3. This may be due to the fact that Stock 4 has 

the highest Sharpe ratio among the new stocks.  

 

Figure 4.3 The Efficient Frontier (n = 19, m = 3)              
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constraint, the number of new stocks selected for the new portfolio is fixed to a 
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we can formulate our problem in another way with an inequality cardinality 

constraint 
1

.
n

i
i

y m
=

≤�  In this consideration, the number of selected new stocks is 

not fixed to a specific number; however, it is set to range from 1 to m.   

Regarding a portfolio selection problem, an inequality cardinality constrained 

problem formulation was discussed in Li, Sun and Wang (2006). They 

considered the optimal lot solution to the cardinality constrained mean-variance 

formulation for portfolio selection under concave transaction costs. They 

incorporated two important discrete features — round lots and cardinality 

constraint — into their model. It only allows trade of integer lots of stocks and 

restrains the portfolio from too widely spread. Since the main purpose of this 

section is to make a comparison between the models with equality and inequality 

cardinality constraints, we consider only one discrete feature, i.e. cardinality 

constraint, in our models.  

Having solved a portfolio improvement problem formulated with an equality 

cardinality constraint in the previous section, we investigate the following 

problem formulation with an inequality cardinality constraint in this section.   

 

(MBQP_IN) Minimize ( ) Tv =x x �x      (4.47a) 

  Subject to ( ) ,Rµ = ≥x Rx     (4.47b) 

    
1

1,
n

old i
i

x x
=

+ =�     (4.47c) 

    ,oldx a≥      (4.47d) 

    0 , for 1,2, , ,i ix y i n≤ ≤ = �   (4.47e) 
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1

,
n

i
i

y m
=

≤�      (4.47f) 

  {0,1}, for 1,2, , .iy i n∈ = �   (4.47g) 

  , for 1,2, , .i i iy x u i n− ≤ = �   (4.47h) 

  

By comparing problems (MBQP) with (MBQP_IN), we observe that the only 

difference is the setting on cardinality constraint. It is obvious that the equality 

constraint (4.7f) is a special case of constraint (4.47f). The set 

1
1

, , :
n

n i
i

y y y m
=

� �=� �
� �

��  is a subset of 1
1

, , : .
n

n i
i

y y y m
=

� �≤� �
� �

��  The number of 

combinations regarding the inequality constraint becomes much greater than that 

regarding the equality constraint if m  and n  are large integers. Hence, the 

computational time required to solve problem (MBQP_IN) is longer than that to 

solve problem (MBQP). Though these two problem formulations have the same 

intention to improve the existing portfolio by investing in a few new assets, it is 

interesting to compare the results obtained from these two models. The next 

subsection illustrates the comparison between the problems formulated with an 

equality cardinality constraint and with an inequality cardinality constraint.   

 

4.5.1 Numerical Example  

The numerical example in the previous subsection is considered again. Now, 

two formulations are implemented. The first one is our problem (MBQP). The 

other one is constructed by replacing the constraint  
1

n

i
i

y m
=

=�  by 
1

n

i
i

y m
=

≤�  and 

denoted by (MBQP_IN). Table 4.4 presents 19 available new stocks for selection.  
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With n  = 19, we consider the cases of m  = 1, 2, …, 7. For problem (MBQP), 

exact m  stocks need to be identified from n  available stocks for investment. In 

contrast with problem (MBQP), the possible number of selected stocks for 

problem (MBQP_IN) can be 1, 2, 3, 4, 5, 6 or 7, if m  = 7. Both problems 

(MBQP) and (MBQP_IN) are solved by the Xpress Solver following the 

procedures shown in Section 4.4.  

Table 4.5 and Table 4.6 display the weights of old portfolio and new stocks 

in the new portfolios, minimum variances, expected returns and Sharpe ratios 

(SR) in each case for two problems (MBQP) and (MBQP_IN). Sharpe ratio can 

be used to measure the performance of portfolios. It suggests that the higher the 

Sharpe ratio, the better the performance of the portfolio. The highest Sharpe ratio 

is bold in both Table 4.5 and Table 4.6. In Table 4.5, the new portfolio in the 

case of 4m =  has the highest Sharpe ratio among the others for problem 

(MBQP). However, in Table 4.6, the new portfolio in the case of 7m =  has the 

highest Sharpe ratio for problem (MBQP_IN). Thus, setting the equality 

constraint in the problem will require adding a small number of new stocks to 

construct a new portfolio with higher Sharpe ratio.  

One argument is that the highest Sharpe ratio in Table 4.6 is greater than that 

in Table 4.5. However, by comparing these two highest Sharpe ratios, we notice 

that their difference is small. Moreover, the transaction cost is not encountered in 

these two problems. Transaction cost will increase as more stocks are purchased. 

So from the point of view of cost, it is desirable to purchase a small number of 

new stocks to construct a new portfolio with better performance. It can also be 

observed that though the inequality constraint is set to allow investors investing 

into less than m  stocks in problem (MBQP_IN), some of the cases in Table 4.6 
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require investing in exact m  stocks to obtain a new portfolio with minimum 

variance, e.g. when m = 1, 2, 3 or 6.   

 

Table 4.5 Output for Problem (MBQP) 

Cases m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 
Weight of 
old portfolio 70.0009% 70% 70% 70% 70.0001% 70.0002% 70%

 Stock 1 0 0 0 0 0 0 0

 Stock 2 0 5.0588% 11.8635% 12.7198% 8.2292% 8.2542% 11.5966%

 Stock 3 0 0 0 0 0 0 0

 Stock 4 29.9991% 24.9411% 13.8565% 10.5573% 11.0203% 12.0081% 10.8647%

 Stock 5 0 0 0 0 0 0 0.4755%

 Stock 6 0 0 4.2797% 5.7396% 3.8684% 4.1154% 5.8960%

 Stock 7 0 0 0 0 0 0 0

 Stock 8 0 0 0 0 0 0 0

 Stock 9 0 0 0 0 0 0 0

 Stock 10 0 0 0 0 0 0 0

 Stock 11 0 0 0 0 0 0 0

 Stock 12 0 0 0 0 0 0 0

 Stock 13 0 0 0 0 0 1.2376% 0.4815%

 Stock 14 0 0 0 0 0 0 0

 Stock 15 0 0 0 0 0 0 0

 Stock 16 0 0 0 0.9833% 4.6719% 3.1089% 0.1006%

 Stock 17 0 0 0 0 0 0 0

 Stock 18 0 0 0 0 2.2101% 1.2756% 0.5850%

 Stock 19 0 0 0 0 0 0 0

Sum 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

        
Minimum 
Variance 
(× 104) 

1.4215 1.3591 1.2646 1.2585 1.3141 1.2933 1.2591 

Expected 
Return 
(× 104) 

16.5915 16.0029 16.0004 16.0001 16.0005 16.0006 16.0003 

Sharpe ratio 
(%) 13.9157 13.7271 14.2286 14.2625 13.9577 14.0697 14.2593 
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Table 4.6 Output for Problem (MBQP_IN) 

Cases m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 
Weight of 
old portfolio 72.5977% 70.0001% 70.0003% 70.0003% 70.0001% 70.0002% 70.0003%

 Stock 1 0 0 0 0 0 0 0

 Stock 2 0 5.0589% 11.8634% 11.8630% 10.0958% 6.2088% 11.6554%

 Stock 3 0 0 0 0 0 0 0

 Stock 4 27.4023% 24.9411% 13.8566% 13.8572% 14.0490% 10.3679% 10.9461%

 Stock 5 0 0 0 0 0 3.4200% 0.4241%

 Stock 6 0 0 4.2796% 4.2794% 4.4661% 3.7830% 5.9132%

 Stock 7 0 0 0 0 0 0 0

 Stock 8 0 0 0 0 0 0 0

 Stock 9 0 0 0 0 0 0 0

 Stock 10 0 0 0 0 0 0 0

 Stock 11 0 0 0 0 0 0 0

 Stock 12 0 0 0 0 0 0 0

 Stock 13 0 0 0 0 1.3890% 1.3688% 0.4714%

 Stock 14 0 0 0 0 0 0 0

 Stock 15 0 0 0 0 0 0 0

 Stock 16 0 0 0 0 0 4.8513% 0

 Stock 17 0 0 0 0 0 0 0

 Stock 18 0 0 0 0 0 0 0.5895%

 Stock 19 0 0 0 0 0 0 0

Sum 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

        
Minimum 
Variance 
(× 104) 

1.4387 1.3591 1.2646 1.2646 1.2643 1.3171 1.2584 

Expected 
Return 
(× 104) 

16.0012 16.0029 16.0004 16.0004 16.0004 16.0005 16.0004 

Sharpe ratio 
(%) 13.3404 13.7271 14.2286 14.2286 14.2301 13.9419 14.2633 
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Chapter 5 

Portfolio Optimization by Solving the Mean-CVaR 

Problem  

 

The previous chapter has investigated a portfolio improvement problem by 

formulating it into a mean-risk optimization problem where the risk is measured 

by the standard deviation or variance. By using such a risk measure, one can only 

tell how the portfolio value/return varies but does not know how much market 

risk the portfolio is taking. Currently, in the risk measurement and management 

framework, Value-at-Risk (VaR) is one of the most popular tools to measure 

market risk. It is a more comprehensive risk measure than standard deviation or 

variance. VaR is preferable to measure risk in portfolio optimization problem 

because it is a single statistical measure to quantify market risk encountered in a 

portfolio. However, VaR is not easy to handle because of its undesirable 

properties such as non-subadditivity and non-convexity. Uryasev and Rockafellar 

(2000) proposed to use Conditional VaR (CVaR) instead of VaR for optimizing a 

portfolio of financial instruments. CVaR is defined as the expected loss 

exceeding VaR. It is similar to VaR but has more attractive properties than VaR 

such as sub-additivity, convexity and coherency; see Pflug (2000), Rockafellar 

and Uryasev (2000, 2001).  

Due to the favorable properties of CVaR, it gains popularity to be a risk 

measure in practical applications to risk management and portfolio optimization. 

This chapter regards CVaR as a risk measure instead of variance and develops a 

mean-risk model to solve the portfolio improvement problem. It first considers 
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the problem and discusses on its formulation with CVaR as the objective 

function. Then, further consideration is given to the problem solving under the 

normality and non-normality assumptions about the loss function. Numerical 

examples are presented for both assumptions.  

 

5.1 A General Problem and Its Formulation 

Consider again the problem described in Chapter 4 that an investor wants to 

improve an existing portfolio by investing a portion of portfolio value in some 

new stocks in the stock market. The assumptions made in Chapter 4 are still valid 

in this chapter. Because of the consideration of CVaR as a risk measure, some 

more notations need to be introduced. Referring to a definition in Dowd (1998), 

VaR is the maximum expected loss over a given horizon period at a given level 

of confidence. Hence, to calculate VaR, a horizon period such as a day, a week, a 

month or a year, and a level of confidence such as 90%, 95% or 99% confidence 

need to be presumed.  

Furthermore, the expressions of VaR and CVaR are closely related to the loss 

function. It is necessary to define the loss function in order to establish functions 

for VaR and CVaR. Let ( , )f x z  be the loss function which depends on the 

( 1)n + -dimensional decision vector x  defined in (4.1) and the random vector 

.k∈�z  The vector z  represents the uncertainties that can affect the loss. Note 

that 1: .n kf + × →� � �  The value of the loss function can be positive or negative. 

If it is negative, it turns out to be a gain. Consider a probability function  

   
( , )

( , ) ( , ) ,
f

p d
≤ ζ

Ψ ζ = �
x z

x x z z         (5.1) 
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which is the probability that the loss function does not exceed some threshold 

value ζ . Here, ( , )p x z  is the probability density function of the random vector 

,z  which also depends on the parameter vector .x  Suppose c  is a constant that 

defines a level of confidence and 0 1.c< <  The quantile function  

   ( ){ }( , ) min : ,c cζ = ζ ∈ Ψ ≥ζ�x x        (5.2) 

is called Value-at-Risk (VaR). For the definition of CVaR, it is the conditional 

expected value of the loss ( , )f x z  given that the loss exceed the quantile ( , ),cζ x  

and can be expressed as 

   
( , )

,
1 c

Κ ζ
−
x

 

where  

   ( )
( )( , ) ,

( , ) ( , ) .,
f c

f p d
≥ ζ

Κ ζ = �
x z x

x x z zx z       (5.3) 

Hence, if CVaR is regarded as a risk measure, the objective function in 

problem (MBQP) can be replaced by 
( , )

1 c
Κ ζ

−
x

 or equivalently the function 

( , )Κ ζx  because 1 c−  is a positive constant. Now, the following formulation of 

the problem (MCVaR) is considered:  

 

(MCVaR) Minimize ( , )Κ ζx        (5.4a) 

  Subject to ( ) ,Rµ = ≥x Rx       (5.4b) 

    
1

1,
n

old i
i

x x
=

+ =�       (5.4c) 

    ,oldx a≥        (5.4d) 

    0 , for 1, 2, , ,i ix y i n≤ ≤ = �     (5.4e) 
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1

,
n

i
i

y m
=

=�        (5.4f) 

  {0,1}, for 1, 2, , .iy i n∈ = �     (5.4g) 

  , for 1,2, , .i i iy x u i n− ≤ = �     (5.4h) 

 

5.2 Problem Solving under Normality Assumption 

One approach to solve the problem (MCVaR) is to approximate the objective 

function ( , )Κ ζx  by discretization. This process makes the function suitable for 

numerical evaluation. According to Rockafellar and Uryasev (2000), the function 

( , )Κ ζx  can be reduced to 

  ( ) ( )( )
( , )

( , ) ( , ),1
f

f p dc
≥ ζ

Κ ζ = ζ + − ζ− �
x z

x x z zx z  

   ( ) ( )( ) ( , ),1
k

f p dc
+

∈

= ζ + − ζ− �
�z

x z zx z       (5.5) 

where ( )( ) ( ){ }max 0, ., ,f f
+− ζ = − ζx z x z  Consider a simple case that the 

density function ( , )p x z  does not depend on the decision vector x  and hence it 

reduces to ( ).p z  If the function ( , )f x z  is convex with respect to ,x  then the 

function ( , )Κ ζx  is also convex with respect to .x  By discretization, the integral 

in the second term of ( , )Κ ζx  in (5.3) can be approximated using scenarios ,jz  

1,2, , ,j J= �  which are sampled with the density function ( , ) ( ).p p=x z z  That 

is 

  ( )( ) ( )( )1

1

,( ) .,
k

J

j
j

f p d J f
++ −

=∈

− ζ ≈ − ζ��
�z

x zz zx z  
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Hence, the objective function of the problem can be reduced and approximated 

by 

  ( ) ( )( )1

1

,( , ) .1
J

j
j

J fc
+−

=

Κ ζ = ζ + − ζ− �� x zx        (5.6) 

Consider a simple case that the random vector z  is normally distributed. The 

scenarios ,jz  1,2, , ,j J= �  can be generated from a multivariate normal 

distribution with mean R  and variance-covariance �  by MATLAB. In the 

Statistics Toolbox of MATLAB, the function ‘ mvnrnd ( , , )JR � ’ returns a J -by-

( 1)n +  matrix of random vectors chosen from the multivariate normal 

distribution with a common 1-by- ( 1)n +  mean vector ,R  and a common ( 1)n + -

by- ( 1)n +  covariance matrix .�  A detailed illustration of the MATLAB function 

‘mvnrnd’ can be found in the Statistics Toolbox User’s Guild in the MATLAB 

webpage (URL: http://www.mathworks.com/access/helpdesk/help/pdf_doc/stats/ 

stats.pdf). Notice that for each scenario, 1,n
j

+∈�z  to approximate the objective 

function with the scenarios, the loss function ( , )jf x z  needs to be calculated first. 

The sample loss of the portfolio can be defined by 

   ( , ) ,T
j jf = −x z z x          (5.7) 

which is a linear function of the control vector .x  To make the objective function 

more apparent for linear programming, dummy variables jλ s are introduced. 

Hence, the approximated objective function ( , )Κ ζ� x  is reduced to  

   ( ) 1

1

( , ) .1
J

j
j

Jc −

=

Κ ζ = ζ + λ− �� x         (5.8) 

Two more constraints about the dummy variables are added to the problem 

(MCVaR). They are 
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   , 1, , ,T
j j j Jλ ≥ − − ζ = �z x         (5.9) 

and 

   0, 1, , .j j Jλ ≥ = �        (5.10) 

Constraints (5.9) and (5.10) restrict the sum in (5.8) to involve scenarios with 

loss exceeding the threshold only. Thus, the objective function in problem 

(MCVaR) becomes a linear function.  

Since investing a very small portion of portfolio value into a new stock is not 

meaningful and increases the transaction cost, some more constraints are added 

to avoid the weights of new stocks to be too small. Consider constraints (5.4h) 

   for 1, 2, , ,i i iy x u i n− ≤ = �       

where 0 1, for 1,2, , .iu i n< < = �  The constraints assign a tighter lower bound 

to each .ix   

      By solving problem (MCVaR), we can obtain an optimal value of CVaR. At 

the same time, the value of VaR can also be determined. Recalling from Dowd 

(1998), VaR can be calculated parametrically. A critical issue for the calculation 

is the assumptions about the probability density function of the portfolio return, 

i.e. ( , ).p x z  In practice, it is often assumed that ( , )p x z  represents a normal 

distribution. If ( , )f x z  is normally distributed, it can be shown that the absolute 

VaR can be calculated by the following expression derived from (2.17) with 

1W = : 

   1Cal_VaR( ) ( ) ( ) ( )c−= −µ − Φ σx x x      (5.11) 

where 1( )c−Φ  is the inverse standard normal cumulative distribution function 

which can be obtained from (2.13), ( )µ x  and ( )σ x are the mean and standard 

deviation of the portfolio return. 
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Notice that the notation, Cal_VaR, is used to distinguish the VaR calculated by 

formula (5.11) from that obtained by solving problem (MCVaR). It is interesting 

to compare these two VaR values. Let  

  
( , ) Cal_VaR( )

diff_VaR( ) 100%.
Cal_VaR( )

c∗ ∗
∗

∗

ζ −
= ×

x x
x

x
    (5.12) 

Here, ∗x  is the optimal solution to problem (MCVaR) and ( , )c∗ζ x  is the VaR 

value of the optimal portfolio. In (5.12), diff_VaR( )∗x  is equivalent to the 

absolute percentage difference between ( , )c∗ζ x  and Cal_VaR( ).∗x  The loss 

random variable is supposed to approach normality as the value of diff_VaR( )∗x  

approaches zero. 

Similarly, the value of the Conditional VaR, denoted by Cal_CVaR, can be 

calculated by  

   Cal_CVaR( ) ( ) ( ) ( ),c= −µ − α σx x x      (5.13) 

and 

   ( ) ( )( ) 121( ) ,2 exp erf (2 1) 1c c c
−

−α = π − −     (5.14) 

where exp ( )s  denotes the exponential function of .s  Suppose   

  

( , )
Cal_CVaR( )

1
diff_CVaR( ) 100%

Cal_CVaR( )
c

∗
∗

∗
∗

Κ ζ −
−

= ×

� x x
x

x
,   (5.15) 

where 
( , )
1 c

∗Κ ζ
−

� x
 is the CVaR value of the optimal portfolio. Obviously, 

diff_CVaR( )∗x  is equivalent to the absolute percentage difference between 

( , )
1 c

∗Κ ζ
−

� x
 and Cal_CVaR( ).∗x  
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In the following subsection, a numerical example is illustrated for different 

sample sizes. The problem is implemented with Xpress-Mosel and solved with 

the Xpress-Optimizer. The VaR and CVaR obtained by solving problem 

(MCVaR) in different sample sizes are compared with Cal_VaR(x) and 

Cal_CVaR(x) calculated numerically. 

 

5.2.1 Numerical Examples  

Suppose an investor is holding an old portfolio with historical daily expected 

return, 0.0009772, and the standard deviation of the returns, 0.013279. Again the 

19 new stocks listed in Table 4.1 are considered to be selected for the new 

portfolio. Note that 19.n =  The daily expected returns and variance-covariance 

matrix for the old portfolio and 19 new stocks are obtained by analyzing the 

historical data in the period from August 1996 to July 1997.  

Under the assumption that the random vector z  is normally distributed, the 

scenarios ,jz 1,2, , ,j J= �  can be generated from a multivariate normal 

distribution with known daily expected returns and variance-covariance matrix 

by using MATLAB. The number of scenarios is set to be 

1000, 3000, 5000,10000J =  and 20000. For example, if J  = 1000, the 

MATLAB program will output a 20-by-1000 matrix displaying the scenarios. 

Note that 20
j ∈z �  for 1,2, ,1000.j = �  The following table displays some 

possible values of the main parameters.  

Parameters Values 
desired return, R  0.0016 
level of confidence, c  90% 
portion invested in the old portfolio, a  60%, 70% or 80% 
number of selected new stocks, m  1, 2, 3, 4, 5, 6 or 7 
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We suppose 99%iu =  for 1,2, ,19,i = �  which means that 1%ix ≥  for some 

selected stock i. Apparently, with a given value of a, ix  must not exceed the 

weight (1 )a−  in the new portfolio.  

Solving the problem (MCVaR), we can obtain the values of CVaR, VaR and 

the corresponding values of the decision variables, ix s. Hence, the values of 

expected return ( )µ x  and variance ( )v x  of the optimal new portfolio can be 

calculated by formulas (4.3) and (4.5). Moreover, the Sharpe ratio of the optimal 

new portfolio can be also obtained. If several portfolios are compared by the 

Sharpe ratio, the portfolio with the highest Sharpe ratio is preferable to the others. 

Corresponding to the definition, the Sharpe ratio captures two quantities, say 

return and standard deviation. Standard deviation is considered as the measure of 

risk. Comparatively, VaR or CVaR is a more comprehensive and popular risk 

measure. By considering CVaR as a risk measure, we introduce a risk-adjusted 

quantity for measuring portfolio performance, called RC ratio, which is a ratio of 

return to CVaR. The RC ratio is defined as  

  
( )

RC ratio
( , )

1 c

µ= Κ ζ
−

x
x ,        (5.16) 

where ( )µ x  is the expected return on portfolio and 
( , )

1 c
Κ ζ

−
x

 is the CVaR value of 

a portfolio in the confidence level c. As investors always favor portfolio with 

higher return and lower risk, RC ratio is the higher the better.  
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Table 5.1 CVaR Value, Expected Return and RC Ratio 

for c = 90% and a = 60% 

No. of 
Scenarios Cases m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 

1000 CVaR 0.017296 0.015720 0.015397 0.015182 0.015111 0.015107 0.015113 

 Expected 
Return 0.0019 0.0016 0.0017 0.0016 0.0016 0.0016 0.0016 

 RC ratio 
(%) 10.9074 10.1781 10.7518 10.5386 10.5885 10.5911 10.5871 

3000 CVaR 0.019446 0.017327 0.017198 0.017011 0.016969 0.016967 0.016971 

 Expected 
Return 0.0019 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 

 RC ratio 
(%) 9.7014 9.2333 9.3315 9.4055 9.4290 9.4299 9.4279 

5000 CVaR 0.018751 0.017120 0.016912 0.016636 0.016591 0.016576 0.016578 

 Expected 
Return 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 

 RC ratio 
(%) 8.5333 9.3461 9.4611 9.6180 9.6445 9.6528 9.6518 

10000 CVaR 0.018741 0.017109 0.016868 0.016650 0.016611 0.016607 0.016609 

 Expected 
Return 0.0019 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 

 RC ratio 
(%) 10.0663 9.3514 9.6135 9.6096 9.6322 9.6343 9.6330 

20000 CVaR 0.018783 0.017020 0.016802 0.016552 0.016518 0.016512 0.016509 

 Expected 
Return 0.0019 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 

 RC ratio 
(%) 10.0435 9.4000 9.7691 9.6663 9.6863 9.6897 9.6917 

 

 

Tables 5.1, 5.2 and 5.3 show the CVaR value, expected return, and RC ratio 

in the confidence level 90%c =  for a  = 60%, 70% and 80% respectively. In 

these tables, the highest RC ratios for different number of scenarios are put in 

bold font for reference. It can be observed from these tables that among the 

portfolios with the same number of scenarios, the m  values of the portfolios with 

the highest RC ratio do not exceed 6. In other words, the new portfolios in the 

cases of 6m ≤  are preferred to the others if we consider the RC ratio as the 

selection criteria. It implies that in our model, only a few new stocks are required 
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to be invested into the old portfolio to construct a new portfolio with better 

performance.  

 

 

Table 5.2 CVaR Value, Expected Return and RC Ratio 

for c = 90% and a = 70% 

No. of 
Scenarios Cases m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 

1000 CVaR 0.017899 0.017041 0.016544 0.016523 0.016524 0.016559 0.016594 

 Expected 
Return 0.0017 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 

 RC ratio 
(%) 9.2698 9.3889 9.6712 9.6839 9.6830 9.6625 9.6421 

3000 CVaR 0.019894 0.018741 0.018478 0.018476 0.018483 0.018503 0.018536 

 Expected 
Return 0.0017 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 

 RC ratio 
(%) 8.3402 8.5372 8.6588 8.6600 8.6567 8.6471 8.6318 

5000 CVaR 0.019282 0.018651 0.018151 0.018142 0.018143 0.018156 0.018175 

 Expected 
Return 0.0017 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 

 RC ratio 
(%) 8.6048 8.5785 8.8152 8.8193 8.8191 8.8125 8.8035 

10000 CVaR 0.019291 0.018573 0.018133 0.018130 0.018140 0.018164 0.018198 

 Expected 
Return 0.0017 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 

 RC ratio 
(%) 8.6009 8.6145 8.8238 8.8251 8.8202 8.8085 8.7925 

20000 CVaR 0.019324 0.018369 0.018031 0.018028 0.018034 0.018046 0.018065 

 Expected 
Return 0.0017 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 

 RC ratio 
(%) 8.5863 8.7101 8.8738 8.8749 8.8724 8.8663 8.8571 

 

 

 

 

 



 126 

Table 5.3 CVaR Value, Expected Return and RC Ratio 

for c = 90% and a = 80% 

No. of 
Scenarios Cases m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 

1000 CVaR 0.020391 0.018518 0.018549 0.018594 0.018694 0.018832 0.018990 

 Expected 
Return 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 

 RC ratio 
(%) 7.8469 8.6406 8.6261 8.6053 8.5595 8.4966 8.4258 

3000 CVaR 0.021909 0.020378 0.020389 0.020400 0.020482 0.020582 0.020698 

 Expected 
Return 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 

 RC ratio 
(%) 7.3031 7.8522 7.8478 7.8435 7.8122 7.7739 7.7306 

5000 CVaR 0.021933 0.020058 0.020056 0.020107 0.020230 0.020378 0.020551 

 Expected 
Return 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 

 RC ratio 
(%) 7.2952 7.9773 7.9780 7.9578 7.9094 7.8518 7.7857 

10000 CVaR 0.021948 0.020103 0.020121 0.020153 0.020265 0.020410 0.020577 

 Expected 
Return 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 

 RC ratio 
(%) 7.2903 7.9595 7.9523 7.9396 7.8957 7.8395 7.7760 

20000 CVaR 0.021575 0.019911 0.019929 0.019950 0.020033 0.020158 0.020293 

 Expected 
Return 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 

 RC ratio 
(%) 7.4162 8.0361 8.0287 8.0206 7.9871 7.9376 7.8849 

 

 

When scenarios are generated for solving problem (MCVaR), the assumption 

of normal distribution is made. Historical data in the period form August 1996 to 

July 1997 are available for analysis. The data can be examined graphically by 

histograms. Interesting features can be observed from the constructed diagrams 

and hence provide information to identify the type of probability distribution. 

Observation from the histograms for the available stocks shows that the returns 

on stocks are not all perfectly normally distributed. In the following, the problem 

(MCVaR) will be solved by using several sets of generated scenarios.  Hence, by 
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comparing the VaR and CVaR obtained from problem (MCVaR) and the ones 

calculated by (5.12) and (5.15), we may show whether the assumption of 

normality will affect the result.  

The following observations are concluded from the output of problem 

(MCVaR):  

•  As more scenarios are generated for the problem, most of the values of 

diff_VaR( )∗x  and diff_CVaR( )∗x  for VaR and CVaR respectively 

become smaller. It implies that the loss random variable will approach 

normality as more scenarios are generated. When the number of 

scenarios is J  = 10000, all the absolute percentage differences for VaR 

and CVaR are less than or around 1% by comparing with the Cal_VaR 

and Cal_CVaR calculated by (5.12) and (5.15) respectively. See Tables 

5.4, 5.5 and 5.6 for diff_VaR( )∗x  and Tables 5.7, 5.8 and 5.9 for 

diff_CVaR( )∗x  in the confidence levels c  = 90%, 95% and 99% 

correspondingly. 

•  Furthermore, in the cases m  = 1, 2, …, 7, Stock 4 is always selected to 

be invested into the portfolio with the highest weight. Observe from 

Table 4.1 that Stock 4 has the highest Sharpe ratio among 19 new 

stocks. It shows that the stocks with higher Sharpe ratio will be selected 

with higher priority.  

•  Apparently, all other things being equal, the result shows that a rise in 

the confidence level c  leads to a rise in both the VaR and CVaR values. 

This can be shown by expressions (5.11) and (5.13) under the normality 

assumption. Due to the fact that a larger value of c  leads to larger 
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values of 1( )c−−Φ  and 1( )c−α , it also leads to larger values of 

Cal_VaR and Cal_CVaR. Moreover, it can be observed that the CVaR 

value is always greater than the VaR value. 
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Table 5.4 Cal_VaR, VaR and Diff_VaR for c = 90% 

a No. of 
Scenarios Cases m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 

1000 Cal_VaR 0.01315 0.01210 0.01190 0.01178 0.01169 0.01169 0.01173 

 VaR 0.01239 0.01087 0.01089 0.01107 0.01093 0.01089 0.01104 

 Diff_VaR 5.82% 10.19% 8.52% 6.07% 6.53% 6.88% 5.96% 

5000 Cal_VaR 0.01315 0.01210 0.01191 0.01171 0.01168 0.01168 0.01168 

 VaR 0.01330 0.01235 0.01214 0.01198 0.01194 0.01200 0.01193 

 Diff_VaR 1.07% 2.02% 1.89% 2.31% 2.17% 2.81% 2.20% 

10000 Cal_VaR 0.01315 0.01210 0.01191 0.01171 0.01168 0.01168 0.01168 

 VaR 0.01322 0.01217 0.01193 0.01162 0.01170 0.01170 0.01172 

 Diff_VaR 0.48% 0.55% 0.15% 0.77% 0.13% 0.15% 0.35% 

20000 Cal_VaR 0.01315 0.01210 0.01190 0.01171 0.01168 0.01168 0.01168 

 VaR 0.01313 0.01193 0.01174 0.01155 0.01153 0.01153 0.01151 

60% 

 Diff_VaR 0.16% 1.42% 1.41% 1.29% 1.29% 1.33% 1.39% 

1000 Cal_VaR 0.01362 0.01307 0.01278 0.01278 0.01279 0.01281 0.01284 

 VaR 0.01272 0.01201 0.01198 0.01210 0.01209 0.01218 0.01203 

 Diff_VaR 6.58% 8.17% 6.25% 5.36% 5.52% 4.98% 6.31% 

5000 Cal_VaR 0.01362 0.01307 0.01278 0.01278 0.01278 0.01279 0.01280 

 VaR 0.01380 0.01332 0.01303 0.01306 0.01306 0.01307 0.01316 

 Diff_VaR 1.30% 1.86% 1.99% 2.19% 2.19% 2.18% 2.80% 

10000 Cal_VaR 0.01362 0.01307 0.01278 0.01278 0.01278 0.01279 0.01280 

 VaR 0.01367 0.01311 0.01283 0.01281 0.01282 0.01281 0.01285 

 Diff_VaR 0.38% 0.29% 0.41% 0.28% 0.31% 0.22% 0.43% 

20000 Cal_VaR 0.01362 0.01307 0.01278 0.01278 0.01278 0.01279 0.01280 

 VaR 0.01365 0.01279 0.01271 0.01268 0.01269 0.01265 0.01270 

70% 

 Diff_VaR 0.21% 2.14% 0.57% 0.79% 0.73% 1.07% 0.78% 

1000 Cal_VaR 0.01540 0.01413 0.01415 0.01417 0.01425 0.01434 0.01445 

 VaR 0.01442 0.01349 0.01344 0.01344 0.01347 0.01342 0.01345 

 Diff_VaR 6.39% 4.55% 5.04% 5.17% 5.48% 6.44% 6.97% 

5000 Cal_VaR 0.01540 0.01413 0.01415 0.01417 0.01425 0.01435 0.01446 

 VaR 0.01592 0.01448 0.01442 0.01446 0.01458 0.01466 0.01486 

 Diff_VaR 3.37% 2.51% 1.89% 2.01% 2.32% 2.20% 2.76% 

10000 Cal_VaR 0.01540 0.01413 0.01415 0.01417 0.01425 0.01434 0.01445 

 VaR 0.01544 0.01415 0.01421 0.01419 0.01421 0.01429 0.01445 

 Diff_VaR 0.25% 0.18% 0.42% 0.12% 0.28% 0.33% 0.05% 

20000 Cal_VaR 0.01540 0.01413 0.01415 0.01417 0.01425 0.01435 0.01445 

 VaR 0.01520 0.01409 0.01408 0.01409 0.01416 0.01419 0.01430 

80% 

 Diff_VaR 1.34% 0.28% 0.51% 0.60% 0.63% 1.07% 1.08% 
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Table 5.5 Cal_VaR, VaR and Diff_VaR for c = 95% 

a No. of  
Scenarios Cases m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 

1000 Cal_VaR 0.01742 0.01599 0.01574 0.01558 0.01546 0.01546 0.01551 

 VaR 0.01583 0.01473 0.01421 0.01383 0.01371 0.01370 0.01366 

 Diff_VaR 9.12% 7.88% 9.72% 11.23% 11.34% 11.42% 11.95% 

5000 Cal_VaR 0.01742 0.01599 0.01575 0.01548 0.01545 0.01544 0.01544 

 VaR 0.01762 0.01584 0.01557 0.01556 0.01544 0.01557 0.01550 

 Diff_VaR 1.14% 0.92% 1.16% 0.51% 0.03% 0.86% 0.36% 

10000 Cal_VaR 0.01742 0.01599 0.01575 0.01548 0.01545 0.01544 0.01544 

 VaR 0.01740 0.01607 0.01582 0.01562 0.01572 0.01558 0.01556 

 Diff_VaR 0.08% 0.52% 0.43% 0.89% 1.76% 0.87% 0.78% 

20000 Cal_VaR 0.01742 0.01599 0.01574 0.01548 0.01545 0.01545 0.01544 

 VaR 0.01741 0.01573 0.01551 0.01530 0.01529 0.01529 0.01526 

60% 

 Diff_VaR 0.06% 1.59% 1.46% 1.14% 1.02% 1.04% 1.19% 

1000 Cal_VaR 0.01795 0.01723 0.01686 0.01686 0.01687 0.01690 0.01694 

 VaR 0.01646 0.01576 0.01520 0.01535 0.01531 0.01535 0.01554 

 Diff_VaR 8.30% 8.55% 9.84% 8.96% 9.28% 9.19% 8.28% 

5000 Cal_VaR 0.01795 0.01723 0.01686 0.01685 0.01685 0.01687 0.01688 

 VaR 0.01812 0.01744 0.01697 0.01700 0.01693 0.01704 0.01713 

 Diff_VaR 0.96% 1.22% 0.70% 0.89% 0.46% 1.02% 1.50% 

10000 Cal_VaR 0.01795 0.01723 0.01686 0.01685 0.01685 0.01687 0.01688 

 VaR 0.01803 0.01736 0.01700 0.01703 0.01698 0.01702 0.01705 

 Diff_VaR 0.46% 0.72% 0.83% 1.05% 0.78% 0.89% 1.04% 

20000 Cal_VaR 0.01795 0.01723 0.01686 0.01686 0.01686 0.01687 0.01688 

 VaR 0.01797 0.01694 0.01671 0.01669 0.01670 0.01674 0.01673 

70% 

 Diff_VaR 0.10% 1.70% 0.90% 1.01% 0.93% 0.80% 0.90% 

1000 Cal_VaR 0.02022 0.01859 0.01862 0.01864 0.01874 0.01886 0.01901 

 VaR 0.01907 0.01717 0.01735 0.01730 0.01751 0.01772 0.01785 

 Diff_VaR 5.71% 7.63% 6.83% 7.20% 6.55% 6.05% 6.08% 

5000 Cal_VaR 0.02022 0.01859 0.01861 0.01864 0.01874 0.01887 0.01901 

 VaR 0.02101 0.01903 0.01902 0.01902 0.01918 0.01937 0.01972 

 Diff_VaR 3.88% 2.36% 2.19% 2.02% 2.32% 2.67% 3.71% 

10000 Cal_VaR 0.02022 0.01859 0.01861 0.01864 0.01874 0.01886 0.01901 

 VaR 0.02050 0.01883 0.01885 0.01887 0.01889 0.01906 0.01923 

 Diff_VaR 1.41% 1.29% 1.26% 1.20% 0.78% 1.04% 1.20% 

20000 Cal_VaR 0.02022 0.01859 0.01862 0.01864 0.01874 0.01887 0.01901 

 VaR 0.02003 0.01852 0.01854 0.01855 0.01863 0.01880 0.01890 

80% 

 Diff_VaR 0.94% 0.38% 0.45% 0.48% 0.57% 0.38% 0.57% 
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Table 5.6 Cal_VaR, VaR and Diff_VaR for c = 99% 

a No. of 
Scenarios Cases m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 

1000 Cal_VaR 0.02542 0.02327 0.02295 0.02269 0.02253 0.02253 0.02260 

 VaR 0.02479 0.02134 0.02078 0.02079 0.02046 0.02049 0.02039 

 Diff_VaR 2.49% 8.30% 9.45% 8.41% 9.21% 9.08% 9.80% 

5000 Cal_VaR 0.02542 0.02327 0.02295 0.02255 0.02251 0.02250 0.02250 

 VaR 0.02456 0.02300 0.02312 0.02250 0.02260 0.02219 0.02201 

 Diff_VaR 3.38% 1.17% 0.76% 0.23% 0.37% 1.40% 2.17% 

10000 Cal_VaR 0.02542 0.02327 0.02295 0.02256 0.02251 0.02250 0.02251 

 VaR 0.02561 0.02269 0.02252 0.02248 0.02238 0.02243 0.02255 

 Diff_VaR 0.76% 2.50% 1.88% 0.37% 0.58% 0.32% 0.22% 

20000 Cal_VaR 0.02542 0.02328 0.02295 0.02255 0.02251 0.02251 0.02250 

 VaR 0.02557 0.02325 0.02292 0.02280 0.02283 0.02275 0.02276 

60% 

 Diff_VaR 0.60% 0.12% 0.11% 1.08% 1.41% 1.05% 1.14% 

1000 Cal_VaR 0.02608 0.02504 0.02450 0.02451 0.02453 0.02456 0.02462 

 VaR 0.02583 0.02269 0.02194 0.02173 0.02170 0.02183 0.02173 

 Diff_VaR 0.93% 9.38% 10.46% 11.33% 11.50% 11.12% 11.72% 

5000 Cal_VaR 0.02608 0.02504 0.02450 0.02450 0.02450 0.02452 0.02454 

 VaR 0.02526 0.02492 0.02421 0.02412 0.02394 0.02408 0.02411 

 Diff_VaR 3.15% 0.44% 1.18% 1.55% 2.30% 1.78% 1.74% 

10000 Cal_VaR 0.02608 0.02504 0.02450 0.02450 0.02450 0.02452 0.02454 

 VaR 0.02641 0.02491 0.02445 0.02453 0.02449 0.02459 0.02458 

 Diff_VaR 1.29% 0.51% 0.22% 0.15% 0.04% 0.29% 0.16% 

20000 Cal_VaR 0.02608 0.02504 0.02451 0.02450 0.02451 0.02452 0.02454 

 VaR 0.02612 0.02514 0.02473 0.02469 0.02473 0.02467 0.02469 

70% 

 Diff_VaR 0.16% 0.42% 0.89% 0.75% 0.92% 0.60% 0.63% 

1000 Cal_VaR 0.02926 0.02695 0.02700 0.02703 0.02717 0.02734 0.02754 

 VaR 0.02539 0.02471 0.02396 0.02391 0.02384 0.02392 0.02404 

 Diff_VaR 13.24% 8.32% 11.24% 11.56% 12.24% 12.51% 12.72% 

5000 Cal_VaR 0.02926 0.02695 0.02699 0.02703 0.02717 0.02735 0.02755 

 VaR 0.02917 0.02631 0.02625 0.02624 0.02651 0.02680 0.02695 

 Diff_VaR 0.31% 2.39% 2.73% 2.92% 2.45% 2.00% 2.18% 

10000 Cal_VaR 0.02926 0.02695 0.02699 0.02703 0.02717 0.02734 0.02754 

 VaR 0.02913 0.02704 0.02707 0.02721 0.02721 0.02706 0.02728 

 Diff_VaR 0.44% 0.35% 0.31% 0.66% 0.13% 1.02% 0.97% 

20000 Cal_VaR 0.02926 0.02695 0.02700 0.02703 0.02717 0.02735 0.02754 

 VaR 0.02915 0.02711 0.02708 0.02710 0.02732 0.02752 0.02767 

80% 

 Diff_VaR 0.37% 0.57% 0.32% 0.24% 0.57% 0.62% 0.46% 
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Table 5.7 Cal_CVaR, CVaR and Diff_CVaR for c = 90% 

a No. of 
Scenarios Cases m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 

1000 Cal_CVaR 0.01871 0.01716 0.01691 0.01673 0.01660 0.01660 0.01666 

 CVaR 0.01730 0.01572 0.01540 0.01518 0.01511 0.01511 0.01511 

 Diff_CVaR 7.57% 8.41% 8.94% 9.24% 9.00% 9.02% 9.29% 

5000 Cal_CVaR 0.01871 0.01716 0.01691 0.01662 0.01659 0.01658 0.01658 

 CVaR 0.01875 0.01712 0.01691 0.01664 0.01659 0.01658 0.01658 

 Diff_CVaR 0.21% 0.25% 0.00% 0.08% 0.00% 0.03% 0.02% 

10000 Cal_CVaR 0.01871 0.01716 0.01691 0.01663 0.01659 0.01658 0.01659 

 CVaR 0.01874 0.01711 0.01687 0.01665 0.01661 0.01661 0.01661 

 Diff_CVaR 0.16% 0.31% 0.28% 0.13% 0.12% 0.15% 0.14% 

20000 Cal_CVaR 0.01871 0.01717 0.01691 0.01662 0.01659 0.01659 0.01658 

 CVaR 0.01878 0.01702 0.01680 0.01655 0.01652 0.01651 0.01651 

60% 

 Diff_CVaR 0.38% 0.85% 0.62% 0.41% 0.43% 0.46% 0.44% 

1000 Cal_CVaR 0.01927 0.01849 0.01809 0.01810 0.01811 0.01814 0.01818 

 CVaR 0.01790 0.01704 0.01654 0.01652 0.01652 0.01656 0.01659 

 Diff_CVaR 7.09% 7.86% 8.55% 8.71% 8.75% 8.71% 8.73% 

5000 Cal_CVaR 0.01927 0.01849 0.01809 0.01809 0.01809 0.01810 0.01812 

 CVaR 0.01928 0.01865 0.01815 0.01814 0.01814 0.01816 0.01818 

 Diff_CVaR 0.09% 0.85% 0.32% 0.29% 0.29% 0.29% 0.31% 

10000 Cal_CVaR 0.01927 0.01849 0.01809 0.01809 0.01809 0.01810 0.01812 

 CVaR 0.01929 0.01857 0.01813 0.01813 0.01814 0.01816 0.01820 

 Diff_CVaR 0.13% 0.43% 0.23% 0.23% 0.29% 0.34% 0.45% 

20000 Cal_CVaR 0.01927 0.01849 0.01810 0.01809 0.01809 0.01811 0.01812 

 CVaR 0.01932 0.01837 0.01803 0.01803 0.01803 0.01805 0.01806 

70% 

 Diff_CVaR 0.30% 0.68% 0.37% 0.35% 0.33% 0.34% 0.31% 

1000 Cal_CVaR 0.02168 0.01994 0.01997 0.02000 0.02010 0.02023 0.02039 

 CVaR 0.02039 0.01852 0.01855 0.01859 0.01869 0.01883 0.01899 

 Diff_CVaR 5.95% 7.13% 7.13% 7.02% 7.01% 6.92% 6.85% 

5000 Cal_CVaR 0.02168 0.01994 0.01997 0.02000 0.02011 0.02024 0.02039 

 CVaR 0.02193 0.02006 0.02006 0.02011 0.02023 0.02038 0.02055 

 Diff_CVaR 1.16% 0.59% 0.45% 0.54% 0.62% 0.68% 0.78% 

10000 Cal_CVaR 0.02168 0.01994 0.01997 0.02000 0.02011 0.02023 0.02039 

 CVaR 0.02195 0.02010 0.02012 0.02015 0.02027 0.02041 0.02058 

 Diff_CVaR 1.23% 0.82% 0.77% 0.77% 0.79% 0.88% 0.94% 

20000 Cal_CVaR 0.02168 0.01994 0.01997 0.02000 0.02010 0.02024 0.02039 

 CVaR 0.02158 0.01991 0.01993 0.01995 0.02003 0.02016 0.02029 

80% 

 Diff_CVaR 0.49% 0.14% 0.22% 0.25% 0.34% 0.41% 0.46% 
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Table 5.8 Cal_CVaR, CVaR and Diff_CVaR for c = 95% 

a No. of 
Scenarios Cases m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 

1000 Cal_CVaR 0.02232 0.02045 0.02016 0.01994 0.01980 0.01980 0.01986 

 CVaR 0.02089 0.01870 0.01830 0.01799 0.01793 0.01793 0.01793 

 Diff_CVaR 6.42% 8.57% 9.24% 9.78% 9.43% 9.43% 9.72% 

5000 Cal_CVaR 0.02232 0.02045 0.02016 0.01982 0.01978 0.01977 0.01977 

 CVaR 0.02234 0.02034 0.02002 0.01962 0.01955 0.01954 0.01953 

 Diff_CVaR 0.09% 0.53% 0.68% 0.99% 1.18% 1.16% 1.19% 

10000 Cal_CVaR 0.02232 0.02045 0.02016 0.01982 0.01978 0.01977 0.01977 

 CVaR 0.02230 0.02033 0.02008 0.01984 0.01981 0.01980 0.01980 

 Diff_CVaR 0.09% 0.62% 0.44% 0.10% 0.14% 0.13% 0.12% 

20000 Cal_CVaR 0.02232 0.02046 0.02016 0.01982 0.01978 0.01978 0.01977 

 CVaR 0.02244 0.02040 0.02015 0.01983 0.01980 0.01979 0.01978 

60% 

 Diff_CVaR 0.54% 0.27% 0.04% 0.06% 0.09% 0.06% 0.05% 

1000 Cal_CVaR 0.02293 0.02202 0.02154 0.02155 0.02156 0.02160 0.02165 

 CVaR 0.02159 0.02023 0.01963 0.01960 0.01962 0.01964 0.01968 

 Diff_CVaR 5.86% 8.13% 8.87% 9.06% 9.03% 9.07% 9.11% 

5000 Cal_CVaR 0.02293 0.02202 0.02155 0.02154 0.02154 0.02156 0.02158 

 CVaR 0.02289 0.02206 0.02140 0.02138 0.02138 0.02139 0.02142 

 Diff_CVaR 0.21% 0.21% 0.65% 0.75% 0.75% 0.77% 0.74% 

10000 Cal_CVaR 0.02293 0.02202 0.02154 0.02154 0.02154 0.02156 0.02157 

 CVaR 0.02292 0.02212 0.02160 0.02160 0.02161 0.02163 0.02168 

 Diff_CVaR 0.08% 0.48% 0.23% 0.27% 0.30% 0.36% 0.51% 

20000 Cal_CVaR 0.02293 0.02202 0.02155 0.02154 0.02155 0.02156 0.02158 

 CVaR 0.02304 0.02200 0.02157 0.02156 0.02157 0.02158 0.02160 

70% 

 Diff_CVaR 0.47% 0.10% 0.07% 0.08% 0.09% 0.07% 0.11% 

1000 Cal_CVaR 0.02576 0.02372 0.02376 0.02379 0.02391 0.02406 0.02424 

 CVaR 0.02425 0.02191 0.02192 0.02195 0.02205 0.02222 0.02243 

 Diff_CVaR 5.88% 7.61% 7.72% 7.70% 7.75% 7.63% 7.49% 

5000 Cal_CVaR 0.02576 0.02372 0.02375 0.02379 0.02391 0.02407 0.02425 

 CVaR 0.02568 0.02365 0.02367 0.02372 0.02384 0.02398 0.02414 

 Diff_CVaR 0.33% 0.30% 0.33% 0.28% 0.31% 0.38% 0.43% 

10000 Cal_CVaR 0.02576 0.02372 0.02375 0.02379 0.02391 0.02406 0.02424 

 CVaR 0.02616 0.02397 0.02400 0.02405 0.02420 0.02436 0.02456 

 Diff_CVaR 1.55% 1.06% 1.06% 1.13% 1.19% 1.26% 1.33% 

20000 Cal_CVaR 0.02576 0.02372 0.02376 0.02379 0.02391 0.02407 0.02424 

 CVaR 0.02578 0.02374 0.02377 0.02380 0.02391 0.02406 0.02424 

80% 

 Diff_CVaR 0.05% 0.11% 0.04% 0.05% 0.02% 0.03% 0.00% 
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Table 5.9 Cal_CVaR, CVaR and Diff_CVaR for c = 99% 

a No. of 
Scenarios Cases m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 

1000 Cal_CVaR 0.02939 0.02689 0.02654 0.02623 0.02605 0.02605 0.02613 

 CVaR 0.02740 0.02474 0.02381 0.02374 0.02371 0.02372 0.02373 

 Diff_CVaR 6.78% 8.01% 10.28% 9.51% 8.95% 8.94% 9.19% 

5000 Cal_CVaR 0.02939 0.02689 0.02653 0.02607 0.02603 0.02601 0.02601 

 CVaR 0.02871 0.02616 0.02578 0.02534 0.02509 0.02502 0.02500 

 Diff_CVaR 2.34% 2.72% 2.82% 2.80% 3.60% 3.82% 3.89% 

10000 Cal_CVaR 0.02939 0.02689 0.02653 0.02608 0.02602 0.02601 0.02602 

 CVaR 0.02915 0.02604 0.02583 0.02553 0.02552 0.02551 0.02552 

 Diff_CVaR 0.84% 3.17% 2.62% 2.12% 1.93% 1.93% 1.91% 

20000 Cal_CVaR 0.02939 0.02690 0.02653 0.02607 0.02602 0.02602 0.02601 

 CVaR 0.02997 0.02695 0.02670 0.02647 0.02644 0.02644 0.02644 

60% 

 Diff_CVaR 1.95% 0.19% 0.63% 1.55% 1.61% 1.60% 1.66% 

1000 Cal_CVaR 0.03012 0.02892 0.02830 0.02831 0.02833 0.02838 0.02844 

 CVaR 0.02875 0.02676 0.02638 0.02632 0.02634 0.02638 0.02642 

 Diff_CVaR 4.55% 7.46% 6.81% 7.06% 7.01% 7.04% 7.11% 

5000 Cal_CVaR 0.03012 0.02892 0.02831 0.02830 0.02830 0.02832 0.02835 

 CVaR 0.02927 0.02800 0.02736 0.02724 0.02720 0.02719 0.02720 

 Diff_CVaR 2.82% 3.17% 3.33% 3.75% 3.90% 4.00% 4.03% 

10000 Cal_CVaR 0.03012 0.02892 0.02831 0.02830 0.02830 0.02832 0.02834 

 CVaR 0.03000 0.02875 0.02801 0.02802 0.02806 0.02811 0.02817 

 Diff_CVaR 0.38% 0.58% 1.04% 1.00% 0.84% 0.76% 0.62% 

20000 Cal_CVaR 0.03012 0.02892 0.02831 0.02831 0.02831 0.02833 0.02835 

 CVaR 0.03077 0.02908 0.02876 0.02878 0.02880 0.02883 0.02887 

70% 

 Diff_CVaR 2.15% 0.56% 1.59% 1.69% 1.72% 1.76% 1.83% 

1000 Cal_CVaR 0.03376 0.03111 0.03116 0.03120 0.03136 0.03156 0.03179 

 CVaR 0.03268 0.02957 0.02948 0.02948 0.02948 0.02953 0.02983 

 Diff_CVaR 3.20% 4.96% 5.41% 5.52% 6.00% 6.41% 6.16% 

5000 Cal_CVaR 0.03376 0.03111 0.03115 0.03120 0.03136 0.03157 0.03180 

 CVaR 0.03224 0.02968 0.02971 0.02977 0.02987 0.03002 0.03025 

 Diff_CVaR 4.49% 4.60% 4.63% 4.60% 4.76% 4.89% 4.86% 

10000 Cal_CVaR 0.03376 0.03111 0.03115 0.03120 0.03136 0.03156 0.03179 

 CVaR 0.03408 0.03124 0.03130 0.03138 0.03155 0.03177 0.03204 

 Diff_CVaR 0.97% 0.43% 0.46% 0.58% 0.60% 0.68% 0.79% 

20000 Cal_CVaR 0.03376 0.03111 0.03116 0.03120 0.03136 0.03157 0.03179 

 CVaR 0.03390 0.03172 0.03171 0.03173 0.03180 0.03192 0.03206 

80% 

 Diff_CVaR 0.43% 1.95% 1.75% 1.70% 1.41% 1.11% 0.87% 
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5.3 Problem Solving under Non-Normality Assumption 

It is well known that there are several approaches to estimate the VaR value. 

The approach to calculate Cal_VaR in (5.11) can be classified into the parametric 

approach to VaR. In this approach, it is crucial to make some assumptions about 

the probability density function of the portfolio return. In practice, it is common 

to assume that the portfolio return is normally distributed. This is due to some 

advantages of normality. One of the most apparent attractions of normality is that 

it gives us a very simple and tractable expression for VaR, such as expression 

(5.11).  

However, some researchers query whether it is reasonable to make the 

normality assumption about the portfolio returns. A large amount of empirical 

literature investigates this issue. See, for example, Butler and Schachter (1996), 

Dowd (1998), Jackson, Maude and Perraudin (1997), Longin (1994) and 

Venkataraman (1997). As portfolios usually consist of different instruments, the 

distribution of portfolio returns depends on the distributions of individual 

instruments. The return distributions vary from case to case. Many evidences 

show that the normality assumption is not too unreasonable and can be used as 

an approximation for the distribution of portfolio returns, but a huge amount of 

evidence shows that many individual return distributions are not normal. It is 

observable that many return distributions have fat tails. Fat tails imply that 

extraordinary losses will occur more frequently and be larger than that expected 

in the normal distribution. It is worried that the normality assumption leads to 

underestimate of the ‘true’ VaR.  

To deal with fat tails in the distribution of portfolio returns, it is usual to treat 

it as a Student’s T distribution. It is well known that the probability density 
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function (p.d.f.) of the T distribution is symmetrical with respect to the vertical 

axis 0t =  and resembles the bell shape of the p.d.f. of the standard normal 

distribution, except that its tails are heavier than those of a normal one. Note that 

the T distribution depends on a single parameter v , i.e. the number of degrees of 

freedom, but not the mean or the standard deviation. It can be shown that as the 

number of degrees of freedom v  increases, the T distribution converges to the 

standard normal distribution. Similar to the normal distribution, a T distribution 

provides an easy and intuitively plausible way to estimate VaR. We can conclude 

from Section 5.2 that under the normality assumption, the VaR and CVaR values 

solved from problem (MCVaR) differ decreasingly from the values of Cal_VaR 

and Cal_CVaR, as the number of scenarios increase. It is interesting to 

investigate the effect under the non-normality assumption, i.e. with a T 

distribution. This section will concentrate on this issue and illustrate with 

numerical examples.  

 As shown in Section 5.2, discretization transfers the objective function from 

a continuous form into its discrete counterpart for simplification. Hence, the 

objective function can be approximated and problem (MCVaR) can be solved by 

generating numbers of scenarios jz  for 1, , .j J= �  In this approach, it is crucial 

to make some reasonable assumptions about the distribution of the random 

vector .z  This section assumes that the distribution of z  is a Student’s T 

distribution. The Statistics Toolbox of MATLAB provides the function 

‘ mvtrnd( , , )v JC ’ to returns a J -by- ( 1)n +  matrix of random numbers chosen 

from the multivariate T distribution. Here, C  is a ( 1)n + -by- ( 1)n +  correlation 

matrix in which its diagonal elements are all 1  and other elements are the 

correlation coefficients, i.e. 
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Since , , ,i j j iρ = ρ  C  is a symmetric matrix. It is also assumed to be a positive 

definite matrix. Note that v  is the number of degrees of freedom. For a T 

distribution, v  is usually suggested ranging from 1 to 30. It is because when 

30v =  or larger, the T distribution is approximately equivalent to a standard 

normal distribution.  

Since the MATLAB function ‘mvtrnd’ does not take the mean and standard 

deviation into account, the J -by- ( 1)n +  matrix of random numbers cannot be 

used to calculate the sample loss and ( , )Κ ζ� x  at once. Let mvtrnd( , , )v J=q C  be 

the J -by- ( 1)n +  matrix. The scenarios jz  can be obtained by adjusting jq  as 

follows: 

  ,j j= + �z R q D   for 1, , ,j J= �       (5.18) 

where R  is the vector of returns given in (4.2), jq  is a 1-by- ( 1)n +  vector in the 

thj  row of the matrix q , and D  is defined by 
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In the adjustment, the expected returns and standard deviations are considered. 

Hence, jz  can be substituted into (5.6), (5.7) for calculation. With the scenarios, 

problem (MCVaR) can be solved in the same manner as in the previous section. 
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In brief, it can be formulated in the Mosel language and implemented in the 

Xpress-IVE environment.  

It has been shown that under normality assumption, the VaR can be estimated 

parametrically in a simple way. Due to the similarity of the normal distribution 

and the T distribution, it can be shown that with the T distribution, the VaR can 

also be estimated parametrically. With 1W = , the VaR in absolute dollar terms 

derived from (2.20) is 

  1
TCal_VaR ( ) ( ) ( ; ) ( )F c v−= −µ − σx x x      (5.20) 

where c  is the confidence level and 1( ; )F c v−  is the inverse of standard 

Student’s T cumulative distribution function with v  degrees of freedom. For 

example, for a T distribution with v  equal to 19 at the 95 percent confidence 

level, 1(95%;19)F −  equals 1.729. Similarly, the values of 1( ; )F c v−  with specific 

values of v  and c  can be obtained from the T distribution table.  

With the assumption of T distributed, the absolute percentage difference 

between the VaR solved from problem (MCVaR), say ( , ),c∗ζ x  and 

TCal_VaR ( )∗x  is 

  T
T

T

( , ) Cal_VaR ( )
diff_VaR ( ) 100%

Cal_VaR ( )

c∗ ∗
∗

∗

ζ −
= ×

x x
x

x
.    (5.21) 

This percentage can be regarded as an indicator of the accuracy of the VaR value 

under T distributed assumption. Explicitly, a smaller percentage signifies higher 

accuracy. 
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5.3.1 Experimental Results  

This subsection is dealing with the same problem as in Subsection 5.2.1 but 

with the assumption of T distribution. Under this assumption, the scenarios are 

generated from a multivariate T distribution and adjusted by formula (5.18). The 

values of the parameters are set as in Subsection 5.2.1.  

Tables 5.10, 5.11 and 5.12 display the TCal_VaR  solved from problem 

(MCVaR), the TVaR  values and the Tdiff_VaR  values for different values of a, 

m  and different numbers of scenarios at 90%, 95% and 99% confidence levels 

respectively. The experimental results show that 

•  In these three tables, there is no evidence shown that as the number of 

scenarios increases, the percentage difference Tdiff_VaR  becomes 

smaller under the assumption of T-distribution. Some percentages may 

become even larger for a greater number of scenarios. This observation 

is a bit different from that under the normality assumption, which 

shows convergence.  

•  If we compare the TVaR  value with the VaR  value and the TCal_VaR  

value with the Cal_VaR  value, we observe that those values under 

normality assumption are always smaller than those under T 

distribution assumption. For example, Tables 5.4 and 5.10 display the 

VaR values in the same confidence level c  = 90% for a  = 70%, J  = 

5000 and 2,m =  VaR 0.01332=  and Cal_VaR 0.01307=  under 

normality assumption are smaller than TVaR 0.01342=  and 

TCal_VaR 0.01360=  under T distributed assumption, respectively. We 
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suppose that this may due to the fatter tail of a T distribution than a 

normal one.  
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Table 5.10 Cal_VaRT, VaRT and Diff_VaRT for c = 90% 

a No. of 
Scenarios Cases m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 

1000 Cal_VaRT 0.01370 0.01259 0.01259 0.01235 0.01226 0.01228 0.01227 

 VaRT 0.01400 0.01284 0.01269 0.01228 0.01229 0.01231 0.01227 

 Diff_VaRT 2.16% 1.92% 0.78% 0.57% 0.26% 0.21% 0.05% 

5000 Cal_VaRT 0.01370 0.01259 0.01239 0.01219 0.01218 0.01217 0.01216 

 VaRT 0.01346 0.01254 0.01237 0.01183 0.01184 0.01182 0.01184 

 Diff_VaRT 1.78% 0.41% 0.18% 2.88% 2.75% 2.87% 2.67% 

10000 Cal_VaRT 0.01370 0.01259 0.01239 0.01219 0.01217 0.01215 0.01215 

 VaRT 0.01420 0.01299 0.01287 0.01267 0.01265 0.01262 0.01261 

 Diff_VaRT 3.67% 3.12% 3.84% 4.00% 3.96% 3.83% 3.77% 

20000 Cal_VaRT 0.01370 0.01336 0.01260 0.01251 0.01260 0.01267 0.01270 

 VaRT 0.01273 0.01174 0.01124 0.01109 0.01095 0.01091 0.01095 

60% 

 Diff_VaRT 7.10% 12.13% 10.78% 11.40% 13.10% 13.92% 13.75% 

1000 Cal_VaRT 0.01417 0.01388 0.01332 0.01332 0.01335 0.01334 0.01339 

 VaRT 0.01407 0.01407 0.01346 0.01342 0.01337 0.01345 0.01337 

 Diff_VaRT 0.76% 1.38% 1.10% 0.73% 0.15% 0.84% 0.17% 

5000 Cal_VaRT 0.01417 0.01360 0.01330 0.01330 0.01330 0.01331 0.01332 

 VaRT 0.01389 0.01342 0.01297 0.01294 0.01293 0.01294 0.01298 

 Diff_VaRT 1.97% 1.36% 2.48% 2.71% 2.78% 2.81% 2.50% 

10000 Cal_VaRT 0.01417 0.01360 0.01330 0.01330 0.01330 0.01330 0.01332 

 VaRT 0.01459 0.01409 0.01370 0.01373 0.01376 0.01380 0.01374 

 Diff_VaRT 2.91% 3.58% 3.06% 3.25% 3.47% 3.75% 3.20% 

20000 Cal_VaRT 0.01417 0.01455 0.01361 0.01364 0.01377 0.01378 0.01374 

 VaRT 0.01302 0.01264 0.01215 0.01203 0.01202 0.01204 0.01202 

70% 

 Diff_VaRT 8.13% 13.16% 10.78% 11.79% 12.71% 12.63% 12.50% 

1000 Cal_VaRT 0.01601 0.01469 0.01472 0.01475 0.01484 0.01496 0.01507 

 VaRT 0.01585 0.01489 0.01470 0.01496 0.01484 0.01486 0.01493 

 Diff_VaRT 1.02% 1.33% 0.14% 1.42% 0.03% 0.66% 0.94% 

5000 Cal_VaRT 0.01601 0.01469 0.01472 0.01474 0.01482 0.01492 0.01503 

 VaRT 0.01588 0.01444 0.01448 0.01449 0.01449 0.01466 0.01481 

 Diff_VaRT 0.82% 1.71% 1.57% 1.69% 2.21% 1.78% 1.46% 

10000 Cal_VaRT 0.01601 0.01469 0.01472 0.01474 0.01482 0.01492 0.01503 

 VaRT 0.01658 0.01522 0.01526 0.01529 0.01528 0.01539 0.01553 

 Diff_VaRT 3.54% 3.56% 3.69% 3.69% 3.15% 3.10% 3.31% 

20000 Cal_VaRT 0.01601 0.01469 0.01489 0.01494 0.01502 0.01512 0.01514 

 VaRT 0.01436 0.01339 0.01337 0.01340 0.01337 0.01345 0.01350 

80% 

 Diff_VaRT 10.35% 8.87% 10.21% 10.28% 10.97% 11.04% 10.84% 
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Table 5.11 Cal_VaRT, VaRT and Diff_VaRT for c = 95% 

a No. of 
Scenarios Cases m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 

1000 Cal_VaRT 0.01841 0.01689 0.01688 0.01657 0.01644 0.01648 0.01647 

 VaRT 0.01794 0.01659 0.01649 0.01645 0.01641 0.01641 0.01657 

 Diff_VaRT 2.58% 1.78% 2.27% 0.74% 0.21% 0.41% 0.62% 

5000 Cal_VaRT 0.01841 0.01689 0.01663 0.01635 0.01634 0.01633 0.01632 

 VaRT 0.01837 0.01660 0.01649 0.01619 0.01622 0.01621 0.01621 

 Diff_VaRT 0.24% 1.71% 0.84% 0.98% 0.79% 0.69% 0.69% 

10000 Cal_VaRT 0.01841 0.01689 0.01663 0.01635 0.01634 0.01631 0.01631 

 VaRT 0.01889 0.01728 0.01703 0.01688 0.01675 0.01658 0.01663 

 Diff_VaRT 2.57% 2.36% 2.36% 3.23% 2.53% 1.64% 1.96% 

20000 Cal_VaRT 0.01841 0.01789 0.01689 0.01678 0.01689 0.01698 0.01702 

 VaRT 0.01776 0.01660 0.01615 0.01585 0.01724 0.01549 0.01545 

60% 

 Diff_VaRT 3.57% 7.19% 4.38% 5.55% 2.03% 8.77% 9.23% 

1000 Cal_VaRT 0.01896 0.01856 0.01782 0.01783 0.01786 0.01786 0.01792 

 VaRT 0.01859 0.01879 0.01807 0.01798 0.01806 0.01799 0.01787 

 Diff_VaRT 1.95% 1.24% 1.37% 0.82% 1.11% 0.74% 0.31% 

5000 Cal_VaRT 0.01896 0.01820 0.01780 0.01780 0.01780 0.01782 0.01782 

 VaRT 0.01861 0.01804 0.01785 0.01791 0.01789 0.01787 0.01787 

 Diff_VaRT 1.85% 0.86% 0.29% 0.64% 0.48% 0.27% 0.27% 

10000 Cal_VaRT 0.01896 0.01820 0.01780 0.01780 0.01780 0.01781 0.01782 

 VaRT 0.01939 0.01850 0.01822 0.01819 0.01821 0.01831 0.01833 

 Diff_VaRT 2.27% 1.64% 2.36% 2.19% 2.29% 2.80% 2.84% 

20000 Cal_VaRT 0.01896 0.01944 0.01821 0.01824 0.01842 0.01843 0.01838 

 VaRT 0.01813 0.01796 0.01749 0.01710 0.01711 0.01710 0.01711 

70% 

 Diff_VaRT 4.38% 7.58% 3.98% 6.26% 7.07% 7.24% 6.92% 

1000 Cal_VaRT 0.02134 0.01962 0.01965 0.01969 0.01981 0.01997 0.02011 

 VaRT 0.02164 0.02000 0.01980 0.01981 0.01953 0.01979 0.01979 

 Diff_VaRT 1.42% 1.93% 0.78% 0.62% 1.39% 0.89% 1.60% 

5000 Cal_VaRT 0.02134 0.01962 0.01965 0.01968 0.01978 0.01992 0.02006 

 VaRT 0.02084 0.01936 0.01947 0.01950 0.01965 0.01971 0.01990 

 Diff_VaRT 2.32% 1.32% 0.91% 0.91% 0.66% 1.07% 0.78% 

10000 Cal_VaRT 0.02134 0.01962 0.01965 0.01968 0.01978 0.01992 0.02006 

 VaRT 0.02197 0.02034 0.02026 0.02036 0.02049 0.02061 0.02081 

 Diff_VaRT 2.97% 3.69% 3.09% 3.44% 3.57% 3.48% 3.74% 

20000 Cal_VaRT 0.02134 0.01962 0.01987 0.01993 0.02005 0.02017 0.02020 

 VaRT 0.02029 0.01887 0.01885 0.01890 0.01890 0.01889 0.01900 

80% 

 Diff_VaRT 4.94% 3.80% 5.15% 5.20% 5.72% 6.35% 5.92% 
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Table 5.12 Cal_VaRT, VaRT and Diff_VaRT for c = 99% 

a No. of 
Scenarios Cases m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 

1000 Cal_VaRT 0.02792 0.02555 0.02554 0.02508 0.02490 0.02495 0.02494 

 VaRT 0.02630 0.02205 0.02229 0.02218 0.02213 0.02240 0.02243 

 Diff_VaRT 5.83% 13.70% 12.73% 11.57% 11.14% 10.20% 10.05% 

5000 Cal_VaRT 0.02792 0.02555 0.02520 0.02477 0.02475 0.02473 0.02472 

 VaRT 0.02850 0.02524 0.02493 0.02447 0.02478 0.02450 0.02471 

 Diff_VaRT 2.06% 1.21% 1.08% 1.20% 0.11% 0.92% 0.01% 

10000 Cal_VaRT 0.02792 0.02555 0.02520 0.02477 0.02474 0.02471 0.02471 

 VaRT 0.02811 0.02568 0.02512 0.02520 0.02525 0.02516 0.02511 

 Diff_VaRT 0.67% 0.49% 0.32% 1.73% 2.04% 1.83% 1.63% 

20000 Cal_VaRT 0.02792 0.02702 0.02556 0.02539 0.02556 0.02569 0.02575 

 VaRT 0.02899 0.02608 0.02573 0.02511 0.02467 0.02520 0.02487 

60% 

 Diff_VaRT 3.81% 3.47% 0.67% 1.12% 3.51% 1.90% 3.43% 

1000 Cal_VaRT 0.02862 0.02800 0.02693 0.02694 0.02698 0.02697 0.02707 

 VaRT 0.02630 0.02474 0.02469 0.02480 0.02484 0.02474 0.02494 

 Diff_VaRT 8.14% 11.67% 8.30% 7.92% 7.96% 8.28% 7.90% 

5000 Cal_VaRT 0.02862 0.02748 0.02689 0.02689 0.02689 0.02692 0.02693 

 VaRT 0.02913 0.02718 0.02715 0.02696 0.02717 0.02726 0.02722 

 Diff_VaRT 1.77% 1.08% 0.96% 0.23% 1.03% 1.28% 1.08% 

10000 Cal_VaRT 0.02862 0.02748 0.02689 0.02689 0.02689 0.02691 0.02693 

 VaRT 0.02870 0.02780 0.02703 0.02711 0.02694 0.02710 0.02705 

 Diff_VaRT 0.28% 1.18% 0.49% 0.80% 0.17% 0.73% 0.45% 

20000 Cal_VaRT 0.02862 0.02929 0.02750 0.02754 0.02780 0.02782 0.02774 

 VaRT 0.02928 0.02780 0.02744 0.02749 0.02745 0.02743 0.02736 

70% 

 Diff_VaRT 2.28% 5.12% 0.21% 0.19% 1.25% 1.40% 1.37% 

1000 Cal_VaRT 0.03209 0.02956 0.02961 0.02967 0.02984 0.03008 0.03029 

 VaRT 0.03168 0.02701 0.02718 0.02676 0.02660 0.02690 0.02747 

 Diff_VaRT 1.27% 8.64% 8.18% 9.81% 10.86% 10.58% 9.32% 

5000 Cal_VaRT 0.03209 0.02956 0.02961 0.02966 0.02980 0.03001 0.03021 

 VaRT 0.03150 0.02968 0.02970 0.02997 0.02986 0.03027 0.03039 

 Diff_VaRT 1.85% 0.39% 0.33% 1.07% 0.19% 0.87% 0.59% 

10000 Cal_VaRT 0.03209 0.02956 0.02961 0.02966 0.02980 0.03001 0.03021 

 VaRT 0.03264 0.03005 0.02987 0.02978 0.03025 0.03039 0.03035 

 Diff_VaRT 1.71% 1.65% 0.91% 0.42% 1.52% 1.29% 0.47% 

20000 Cal_VaRT 0.03209 0.02956 0.02993 0.03003 0.03019 0.03037 0.03041 

 VaRT 0.03187 0.02985 0.03016 0.03010 0.03017 0.03001 0.03020 

80% 

 Diff_VaRT 0.68% 0.96% 0.74% 0.26% 0.05% 1.19% 0.68% 
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 Chapter 6 

Conclusions  

 

This chapter gives some concluding remarks about this thesis and discusses 

some possible directions for further research. 

The portfolio selection problem has long been investigated by researchers 

and practitioners since the pioneer work was done by Markowitz (1952). It deals 

with the construction of efficient portfolios. Due to the uncertainty of the 

financial market, it is emerging that an efficient portfolio may no longer perform 

well after some time. Improving an existing portfolio is an important issue. 

However, there are limited studies regarding this issue. This thesis has 

investigated the portfolio improvement problem in detail. It is proposed that an 

existing portfolio can be improved by adding some new attractive assets. The 

main contribution of this thesis is to derive some criteria to judge the worthiness 

of adding some new assets and to develop some solvable models to deal with the 

portfolio improvement problems.  

In dealing with our portfolio improvement problem, we first carry out asset 

allocation by applying the Sharpe ratio and VaR in Chapter 3. Regarding our 

intention, after allocating some new assets into the old portfolio, the new 

portfolio obtained should have better performance than the old one. Since the 

Sharpe ratio captures both return and risk into a single measure, we use it as a 

performance measure for comparison between two portfolios. As a result, we 

derive a criterion (3.8) to judge whether it is worthwhile investing in some new 

assets. The criterion tells us a lower bound for the weighted average of the 

returns of the new assets. It can be applied easily in practice.  
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Moreover, as VaR has gained popularity in risk measurement and 

management, we regard VaR as a risk measure instead of standard deviation. 

With this regard, the Shape ratio can be expressed in terms of VaR under the 

assumption that the portfolio return is normally distributed. Hence, we derive a 

criterion in terms of VaR for broader applications in risk management. We have 

also shown that diversification is carried out in our approach. 

Since adding in too many assets into a portfolio is not practical, we intend to 

determine the ‘optimal’ number of new assets to be added that maximizes the 

Sharpe ratio. For easy tracking, we assume that both the expected returns and 

standard deviations of the assets are arithmetic series and geometric series 

respectively. The simulation results show that the ‘optimal’ numbers of new 

assets are small in most of the cases under our assumptions.  

In another view, we consider our portfolio improvement problem as an 

optimization problem seeking to minimize the portfolio risk subject to the return 

and other constraints. The number of stocks in a portfolio is not restricted in the 

Markowitz portfolio selection model. Taking the number of stocks into account 

is an important issue since it is impractical to add too many stocks in a portfolio. 

By introducing a cardinality constraint in our model, we restrict the number of 

stocks in a portfolio and consider a more complicated problem, i.e. Mixed Binary 

Quadratic Programming (MBQP) problem. To satisfy investors who want to 

invest in a small number of stocks for the ease of management, we formulate our 

problem with an equality cardinality constraint. We derive some analytical 

solutions to the problem under some assumptions. Moreover, stocking picking 

strategies for the case of picking 2 or 3 stocks are illustrated. It has been shown 

for the case of picking 2 stocks that the variances of the portfolios in the list of 
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combinations constructed by our strategy are monotonically increasing in some 

cases. Without any assumptions, our formulated MBQP problem can be solved 

by the Xpress Solver. We present the procedure for solving the MBQP problem 

by the Xpress Solver and illustrate with numerical examples. Furthermore, our 

problem can be formulated with an inequality cardinality constraint. In this case, 

the number of stocks to be added is not fixed, but in a range. This formulation 

satisfies those investors who are concerned much more about the reward of the 

portfolio than the number of selected stocks. This formulated problem can also 

be solved by the Xpress Solver. Comparison between these two formulated 

problems is carried out with some numerical examples.  

Due to the favorable properties of CVaR, it is much easier to be handled than 

VaR. By regarding CVaR as a risk measure, our portfolio improvement problem 

is formulated into a mean-CVaR problem. Our approach to solve the mean-

CVaR problem is to approximate the objective function by discretization, which 

makes the function suitable for numerical evaluation. The problem is solved 

under both normality and non-normality assumptions about the loss random 

variables. In both cases, CVaR and VaR are obtained from solving the problem 

by Xpress Solver. By assuming that the loss random variables are multivariate 

normally distributed, a matrix of scenarios with respect to the returns is 

generated from a multivariate normal distribution with a given mean vector and a 

variance-covariance matrix by a MATLAB function. Simulation results show 

that as more scenarios are generated, the loss random variables approach 

normality. In a similar manner, our mean-CVaR problem is solved under non-

normality assumption, i.e. with a Student’s T distribution. The simulation results 

show that convergence is not achieved under T distribution assumption; 
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moreover, the VaR values obtained under the normality assumption are always 

smaller than those under T distributed assumption. May be this is due to the 

fatter tail of a T distribution than a normal one.  

In the following, we present some possible directions for further research. 

• In the real stock market, investors need to pay fees for every 

transaction. Actually, transaction cost is an important factor affecting 

the decision strategy in portfolio management. Though transaction 

cost may not be a large amount of money, ignoring the transaction 

cost in a portfolio selection model may lead to an inefficient portfolio 

in practice. From this point of view, our portfolio improvement 

problem can be formulated into a more complicated mean-variance 

and mean-CVaR models by taking transaction cost into account.  

• In our stock picking strategy, we only consider the cases of picking 2 

or 3 stocks. It is extendable to devise a more complete and systematic 

stock picking strategy for picking more stocks.  

• In the determination of the ‘optimal’ number of new assets for 

portfolio improvement in Section 3.2, it is assumed that these new 

assets are equally weighted in the new portfolio. For further 

discussion, we can treat the problem without this assumption, in 

which new assets have different weightings in the new portfolio.    
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