Q THE HONG KONG
Q' db POLYTECHNIC UNIVERSITY
v T T AR

Pao Yue-kong Library
BIERIESE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk




The Hong Kong Polytechnic University
Department of Computing

Effective Techniques for
Gene Expression Data Mining

Ma Chi Hung, Patrick

A thesis submitted in partial fulfilment of the requirements for
the Degree of Doctor of Philosophy

February 2006

Qb Pao Yue-kong Library
N7 PolyU:- Hong Kong



CERTIFICATE OF ORIGINALITY

1 hereby declare that this thesis is my own work and that, to the best of my
knowledge and belief, it reproduces no material previously published or written, nor
material that has been accepted for the award of any other degree or diploma, except

where due acknowledgement has been made in the text.

(Signed)

MP\ (ML J—’UAI\LQ (Name of student)




Abstract

Gene expression data mining as a new research area poses new challenges to data
mining researchers. Gene expression data are typically very noisy and have very
high dimensionality. To tackle bioinformatics problems involving them, traditional
data mining techniques may not be the best tools to use as they were not originally
developed to deal with such data. For this reason, new effective techniques are
required. In this thesis, we propose some such techniques.

In particular, these techniques can be used to address the problems of
reconstructing gene regulatory networks and clustering gene expression data. The
former is concerned with the problem of discovering gene interactions to infer the
structures of gene regulatory networks. The latter is concerned with the problem of
discovering clusters of co-expressed genes so that genes that have similar expression
patterns under different experimental conditions can be identified.

To reconstruct gene regulatory networks, we have proposed to use an
association-discovery technique, which is based on residual analysis and an
information theoretic measure, to detect whether or not there interesting association
relationships between genes. Given time-dependent gene expression data, this
technique can reveal interesting sequential associations between genes for the
effective inference of the structures of gene regulatory networks.

The association-discovery technique proposed can also be used to find
interesting association relationships between gene expression levels and cluster
labels. Based on discovering such relationships, we have developed a two-phase
clustering algorithm for gene expression data. This algorithm consists of an initial

clustering phase and a second re-clustering phase. Using this two-phase approach, it



is able to group genes, whose cluster memberships cannot be easily determined by
existing methods, into the appropriate clusters. Since the effectiveness of the two-
phase clustering algorithm depends, to some extent, on that of the existing clustering
method used in the first phase, therefore, we have developed a novel evolutionary
clustering algorithm, called EvoCluster, that can be used in the first phase to
overcome some of the limitations of existing ones. By making use of an
evolutionary approach and the association-discovery technique, it not only is able to
perform well in the presence of very noisy data, it can also be used to discover
overlapping clusters.

For performance evaluation, the data mining techniques proposed in this thesis
have been tested with simulated and real data and the experimental results show that

they are very promising.
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CHAPTER 1 - INTRODUCTION

Chapter 1

Introduction

The study of bioinformatics is multi-disciplinary [32]. It combines several scientific
disciplines including molecular biology, biochemistry, mathematics, and computer
science. It is concerned with managing, analyzing and interpreting a huge volume of
biological data such as DNA and protein sequence data, RNA and protein structural
data, and gene expression data, etc. As the proliferation of genome sequencing
projects have resulted in an exponential growth in the numbers and sizes of such
databases, there has recently been an increasing demand for computing techniques to
deal with such data. To cope with the demand, effective data mining techniques are
required to extract interesting, nontrivial, implicit, previously unknown and

potentially useful information from such data [68].

1.1 The Problems

The recent advent of DNA microarray technology [90], [132] has made possible the
simultaneous monitoring of the expression levels of thousands of genes. Specifically,
this technology provides biologists with the ability to measure the relative levels of
mRNA abundance of thousands of genes between different samples or between
different time points of the same sample. This development is having a significant
impact on many areas such as in biomedicine and pharmacogenomics, etc. If hidden
regularities can be discovered in such gene expression data generated by microarray

technology, it can facilitate elucidation of the signatures of complex diseases and the
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development of individually optimized drugs, etc [16], [27]. Given the potential
benefit, there is, therefore, a growing demand for effective techniques to mine gene
expression data so as to uncover biologically meaningful patterns hidden in them. In
this thesis, we propose some such techniques. In particular, these techniques can be
used to effectively reconstruct gene regulatory networks (GRNs) and cluster gene
expression data.

A GRN is a complex biological system in which genes interact with each other
indirectly via the proteins they create to perform various cellular processes. Given a
set of time-dependent gene expression data, if the expression of a gene is dependent
on the expression of another gene, one would expect to observe that the expression
levels of a gene be associated with that of another after a certain amount of time
delay [15]. For the reconstruction of GRNSs, such time-dependent gene interactions
need to be discovered first. If this can be done effectively, the structures of GRNs
can be inferred directly from data and it will be possible for us to have better
understanding of how cellular processes are carried out to accommodate changes in
the external environment. The problem of mining time-dependent gene expression
data for GRNSs is therefore an important bioinformatics problem that we would like
to focus on here.

The problem of discovering clusters of co-expressed genes in gene expression
data is another problem of great importance in bioinformatics. Co-expressed genes
are genes that have similar expression patterns under different experimental
conditions and they may also have similar or related biological functions [16].
Clustering of gene expression data can therefore help understand the functions of
genes for which biological information has not been previously available.

Furthermore, a strong correlation of expression patterns between co-expressed genes
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can be an indication that they might be co-regulated by the same transcription
factors and might have common binding sites. Once co-expressed genes are
identified, the promoter regions of their corresponding DNA sequences can be
searched for common patterns. Transcription-factors binding sites specific to each
cluster may then be identified among common patterns found in these co-expressed
genes [163].

Over the past decade, many data mining techniques have been developed to
tackle different problems in a variety of application domains and they have been
shown to be very effective [99]. Due to the uniqueness of the data involved, gene
expression data mining, however, poses new challenges to data mining researchers.
In order to tackle the problems of reconstructing GRNs and discovering clusters of
co-expressed genes from data of such nature, we also need to effectively handle the
following two important challenges [143].

The first challenge comes from the presence of noise inherent in the data.
Sources of noise in gene expression data include experimental, measurement,
reporting and other data processing errors. Due to the complexity of biological
systems, theoretical estimation of error level in the expression data is difficult. One
way to make a fair estimate of the error level is by interviewing biologists who
understand the experimental processes that generated those data. However, it is
usually not possible to do this. In the absence of a better estimate of error level and
in order for useful patterns to be discovered, there is a need to have a data mining
technique that is able to handle noise well in gene expression data [18], [151], [153].

The second challenge is concerned with the need to deal with a large number of
irrelevant attributes. Although irrelevant attributes are present in almost all kinds of

databases, the ratio of irrelevant to relevant attributes is likely not as large as that in
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gene expression data. In most of the expression data, the number of relevant genes,
which are relevant for the determination of a particular class of disease, is usually
very small when compared with the total number of genes. The presence of those
irrelevant genes often interferes with the discrimination power of those that are
relevant when existing data mining techniques are used. This can not only result in
extra computational time in the data mining process, but also increase the difficulty
level of the problem. To make matters worse, the samples that can be gathered are
normally relatively small in size. This makes the problem of uncovering hidden

patterns in gene expression data more difficult.

1.2 Overview of Solutions

For GRNs reconstruction, we have proposed to use an association-discovery
technique [113]-[115], which is based on residual analysis and an information
theoretic measure, to detect whether or not there exists interesting association
relationships between genes. By computing an average gene expression value which
serves as a reference point for how large the value is, the proposed technique can
discover interesting sequential associations between genes such as “if a gene is
highly expressed, its dependent gene is then lowly expressed in the next time point”
etc. These findings can not only allow hidden regularities to be easily interpreted,
they can also determine if a gene is supposed to be activated or inhibited and can be
used to predict how a gene would be affected by other genes from the unseen
samples.

Given clusters (or classes) of genes, the association-discovery technique
proposed can also be used to construct classifiers by finding interesting association

relationships between gene expression levels and cluster (or class) labels. Based on
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discovering such relationships, we have developed a two-phase clustering algorithm
[112], [118], [120] for gene expression data. This algorithm consists of an initial
clustering phase and a second re-clustering (or re-classification) phase. In the first
phase, an existing clustering algorithm, such as k-means or a hierarchical clustering
algorithm, can be applied. The results, which consist of a number of initial clusters,
can then be used for re-clustering. The re-clustering problem can be formulated as a
classification problem by treating the data in each initial cluster as training data for
the construction of a classifier. Once the classifier is constructed, the genes in each
initial cluster can then be re-classified either into the same cluster or into different
clusters. With this two-phase approach, the proposed algorithm is able to effectively
determine cluster memberships of genes whose cluster memberships cannot be
easily determined by existing methods.

Since the effectiveness of the two-phase clustering algorithm depends, to some
extent, on that of an existing clustering method used in the first phase, we have
developed a novel evolutionary clustering algorithm, called EvoCluster [111], [119],
[121], that can be used in the first phase to overcome some of the limitations of
existing ones. It not only is able to perform well in the presence of very noisy data, it
can also be used to discover overlapping clusters [116]-[117]. EvoCluster makes use
of an evolutionary approach to guide the search for optimal or near-optimal
clustering arrangement. To do so, it encodes the entire cluster grouping in a
chromosome’ so that each gene encodes one cluster and each cluster contains the
labels of the data records grouped into it. Then, given the encoding scheme, it has a

set of special crossover and mutation operators that facilitates the exchange of

! The terms such as chromosomes and genes, when used in a computational context, may not have the
same meanings as their biological counterparts. In order to avoid possible confusion, when referring
to these terms in the contexts of evolutionary computation, they are made italic.
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grouping information between two chromosomes on one hand and allows variation
to be introduced to avoid trapping at local optima on the other. In addition, for
fitness evaluation, EvoCluster makes use of the association-discovery technique to
discover interesting association relationships in each possible cluster to estimate
how good the cluster arrangement encoded in a chromosome is.

For performance evaluation, the data mining techniques proposed in this thesis
have been tested with simulated and real data and the experimental results show that

they are very promising.

1.3 Organization of Thesis

This thesis is organized into six chapters as follows. Chapter 2 introduces the
background materials that include some basic concepts in molecular biology, the
process of knowledge discovery in databases and some popular data mining tasks.
Moreover, a survey of related work of this thesis is also presented in this chapter.

Chapter 3 introduces an association-discovery technique for the discovery of
interesting association relationships between genes from time-dependent expression
data so that the structures of gene regulatory networks can be better inferred.

In Chapter 4, a two-phase clustering algorithm is presented. Using this two-
phase approach, it is possible to group genes, whose cluster memberships cannot be
easily determined by existing methods, into the appropriate clusters.

Chapter 5 introduces a novel evolutionary clustering algorithm to clustering gene
expression data. In addition, the extended version of the proposed evolutionary

clustering algorithm is also presented. This extended version is able to discover
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overlapping clusters so that genes that have similar expression patterns with
different groups of genes can be revealed.

In Chapter 6, we conclude the thesis and end with directions for future work.
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Chapter 2

Background and Related Work

2.1 Some Basic Concepts in Molecular Biology

Molecular biology is the study of biology at a molecular level [27]. This field
overlaps with other areas of biology, such as genetics and biochemistry. Molecular
biology mainly concerns itself with understanding the interactions between the
various biological systems of a cell, including the interrelationships of DNA, RNA

and protein synthesis and learning how these interactions are regulated.

2.1.1 DNA

The nucleus of a cell contains chromosomes that are made up of the double helical
DNA molecules. The whole stretch of DNA is called the genome of the organism.
The DNA consists of two strands of phosphate and deoxyribose sugar molecules,
joined by covalent bonds. To each deoxyribose sugar molecule is attached one of the
four nitrogenous bases, namely, adenine (A), cytosine (C), guanine (G), and thymine
(T). Note that uracil (U) exists in place of thymine (T) in ribose sugar (for RNA).
Bases between the strand pairs are attached by hydrogen bonds, such that either AT
(or AU) or GC comes together. DNA in the human genome is arranged into 24
distinct chromosomes that are physically separate molecules ranging in length from
about 50 million to 250 million base pairs and there are approximately 3 billion base

pairs in our genome. A nucleotide is a combination of a phosphate, a sugar, and a
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purine or a pyrimidine base, where a purine (pyrimidine) consists of Aor G (Cor T

or U) (Fig. 2.1).

¥
¥

Ou_ Base Base
(pyrimidine) (Purine) Q

— Sugar- _.._._..—v—--—--i
(a) Nucleotide  phosphate  (h) Nucleotide

Fig. 2.1 Nucleotide is a combination of a phosphate, a sugar,
and a purine or a pyrimidine base [62].

Genes, the basic physical and functional units of heredity, are coded in
fragments of DNA (either strand) that are dispersed in the genome and each gene
contains information to produce a protein. Understanding what parts of the genome
encode which genes is one of the tasks of the Human Genome project [26]. Each
chromosome contains many genes, however, genes comprise only a small portion of
the human genome. At the time of writing, it is believed that there are only 20,000-
25,000 genes in our genome [137]. The remainder consists of non-coding regions,
whose functions may include providing chromosomal structural integrity and
regulating where, when and in what quantity proteins are made. For protein
production, each gene is first transcribed to produce messenger RNA (mMRNA),
which is then translated to produce protein. The mRNA is single-stranded and has a
ribose sugar molecule. In humans a gene consists of exons that get translated into an
amino acid sequence, separated by introns (that are not translated). There exist
promoter and termination sites in a gene responsible for the initiation and
termination of transcription. Translation consists of mapping from triplets (codons)
of four bases to the 20 amino acids building block of proteins (Fig. 2.2). It should be
noted that more than one triplet can map to the same amino acid, but the same triplet

cannot map to different amino acids [154].
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Fig. 2.2 The genetic code [62].

An amino acid is an organic molecule consisting of an amine and a carboxylic
acid groups (backbone), together with a side chain (hydrogen atom and residue) that
differentiates between them. The carboxyl and amino groups of a pair of amino
acids react through hydrolysis (removal of a water molecule) to link and form a
peptide bond. Similar reactions occur along the chain to form a protein molecule. A
sequence of amino acids, held together by peptide bonds forming a polypeptide

chain, endow a protein with its three-dimensional structure.

2.1.2 Proteins

Proteins perform most life functions and even make up the majority of cellular
structures in our body. Proteins are polypeptides, formed within cells as a linear
chain of amino acids. The length of a protein can vary from 10s to 1000s of amino
acid monomers. Chemical properties that distinguish the 20 different amino acids
cause the protein chains to fold up into specific three-dimensional structures that

define their particular functions in the cell.

10
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Proteins are involved in virtually every biological process in a living system.
They are synthesized on ribosomes as linear chains of, typically, several hundred
amino acids in a specific order from information encoded within the DNA. In order
to function, these chains must fold into the unique native three-dimensional
structures that are characteristic of the individual proteins. In a cell, this takes place
in a complex highly crowded molecular environment. There are several families of
proteins whose job is to catalyze the folding process of the other proteins that are
required by the living organism. In a cellular environment, molecular chaperones
help to protect the incompletely folded polypeptide chains from aggregating. Even
after the folding process is complete, however, a protein can subsequently
experience conditions under which it unfolds, at least partially, and then again
becomes prone to aggregation. The failure of proteins to fold correctly or to remain
unfolded under all appropriate physiological conditions can give rise to a wide range
of pathological conditions, such as genetic, sporadic and even infectious ailments
[27].

The constellation of all proteins in a cell is called its proteome. Unlike the
relatively unchanging genome, the dynamic proteome changes from minute to
minute in response to tens of thousands of intra- and extra-cellular environmental
signals. A particular protein’s chemistry and behavior is specified by the gene
sequence and by other proteins made in the same cell at the same time and with
which it associates and reacts. Studies to explore protein structures and activities,
known as proteomics, will be the focus of much research for decades to come and

will help elucidate the molecular basis of health and diseases.

11
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2.1.3 Gene Expression and DNA Microarray Technology

Every cell in an organism has the same set of chromosomes, but they can have very
distinct properties. This is due to differences in the abundance, state, and distribution
of cell proteins. The changes in protein abundance are in turn partly determined by
the changes in the levels of MRNAs. The process of transcribing the gene’s DNA
sequence into MRNA that serves as a template for protein production is known as

gene expression [154] (Fig. 2.3).

O o

Free Amino Acids

NUCLEUS

tANA Bringing
Amino Acid to
Ribosome

(Growing
Protein Chain

% Amino
4 Acids

RIBOSOME incorparating
amino acids into the
growing protein chain

CYTOPLASM
Fig. 2.3 Gene expression [62].

Gene expression consists of two basic steps: transcription and translation.
o Transcription: This entails the synthesis of a single-stranded RNA at an
unwound section of DNA with one of the DNA strands serving as a template
for the synthesis of the RNA. The product of this process is called a
messenger RNA (mRNA) for protein genes or a functional RNA (tRNA or
rRNA). The result of transcription is that the genetic information encoded in
DNA is transferred to RNA, this occurs in the nucleus of the cell. For RNA
genes, the expression is complete after a functional tRNA or rRNA is

generated. However, protein genes require additional steps. The mMRNA

12
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carries this genetic information out of the nucleus and into the cytoplasm,
where it becomes directly involved with protein synthesis via translation.

o Translation: This follows the movement of mMRNA to the cytoplasm where it

interacts with structures called ribosomes to synthesize a protein. Proteins are
a linear sequence of amino acids, each of which is specified by the sequence
of nucleotides in the RNA molecule.

DNA microarray technology [90], [132], [136] is one of a number of
technologies that uses the information arising from the genome projects for the
exploration of patterns of gene expression on a global scale. Microarray technology
makes use of the sequence resources created by the genome projects and other
sequencing efforts to answer the questions such as what genes are expressed in a
particular cell type of an organism, at a particular time, under particular conditions.

DNA microarray technology exploits the preferential binding of complementary
single-stranded nucleic acid sequences. A microarray is typically a glass (or some
other material) slide, on to which DNA molecules are attached at fixed locations
(spots). There may be tens of thousands of spots on an array, each containing a huge
number of identical DNA molecules (or fragments of identical molecules), of
lengths from twenty to hundreds of nucleotides. For gene expression studies, each of
these molecules ideally should identify one gene or one exon in the genome,
however, in practice this is not always so simple and may not even be generally
possible due to families of similar genes in a genome. The spots are either printed on
the microarrays by a robot, or synthesized by photolithography or by ink-jet printing.
There are different ways how microarrays can be used to measure the gene
expression levels. One of the most popular microarray applications allows

comparing gene expression levels in two different samples. For instance, it allows

13
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comparison of gene expression between normal and diseased (e.g. cancerous) cells

(Fig. 2.4).

‘gq
%
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CERLd

Cells i condition 2

Fig. 2.4 Microarray experiment [62].

The total mMRNA from the cells in two different conditions are extracted and
labeled with two different fluorescent labels: for example a green dye for cells at
condition 1 and a red dye for cells at condition 2 (to be more accurate, the labeling is
typically done by synthesizing single stranded DNA that are complementary to the
extracted mMRNA by an enzyme called reverse transcriptase). Both extracts are
washed over the microarray. Labeled gene products from the extracts hybridize to
their complementary sequences in the spots due to the preferential binding -
complementary single stranded nucleic acid sequences tend to attract each other and
the longer the complementary parts, the stronger the attraction. The dyes enable the
amount of sample bound to a spot to be measured by the level of fluorescence
emitted when it is excited by a laser. For example, if the mMRNA from the sample in
condition 1 is in abundance, the spot will be green. If the mMRNA from the sample in
condition 2 is in abundance, it will be red. If both are equal, the spot will be yellow.

If neither is present, it will not fluoresce and appear black. Thus, from the
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fluorescence intensities and colors for each spot, the relative expression levels of the
genes in both samples can be estimated. Since DNA microarray technology only
measures MRNA levels rather than protein levels of genes, it should be noted that
microarray data alone does not present researchers with a complete picture of the
underlying gene expression process. However, although it may be incomplete, gene
expression data is still worth exploring as it contains a significant amount of
information pertaining to the actual protein levels.

The raw data that are produced from microarray experiments are the hybridized
microarray images. To obtain information about gene expression levels, these
images should be analyzed. This is called image quantitation. Image quantitation is
done by image analysis software. To obtain the final gene expression data matrix
from spot quantiations, all the quantities related to some gene have to be combined

and the entire matrix has to be scaled to make different arrays comparable (Fig. 2.5).
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Fig. 2.5 Microarray image analysis [62].
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2.2 Knowledge Discovery and Data Mining

Knowledge discovery in databases (KDD) is defined as the nontrivial process of
identifying valid, novel, potentially useful and ultimately understandable patterns in
data [28]. The overall KDD process consists of turning low-level data into high-level
knowledge (Fig. 2.6). It is interactive and iterative involving, more or less, the
following steps [68]:

1. Understanding the application domain: This includes relevant prior
knowledge and goals of the application.

2. Extracting the target dataset: This is selecting a data set or focusing on a
subset of variables.

3. Data preprocessing and transformation: This is required to improve the
quality of the actual data for mining. This also increases the mining
efficiency by reducing the time required for mining the preprocessed data.
Data preprocessing involves data cleaning, data transformation, data
integration, and data reduction or compression for compact representation.

a. Data cleaning: This consists of some basic operations, such as
normalization, noise removal and handling of missing data, reduction
of redundancy, etc.

b. Data integration: This operation includes integrating multiple,
heterogeneous datasets generated from different sources.

c. Data reduction and projection: This includes finding useful features
to represent the data (depending on the goal of the task) and using
dimensionality reduction, feature discretization and feature extraction

(or transformation) methods.
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4. Data mining: Data mining constitutes one or more of the following functions,
namely, classification and prediction, association analysis, cluster analysis,
etc.

5. Pattern interpretation and evaluation: This includes interpreting the
discovered patterns, as well as the possible visualization of the extracted
patterns. Visualization is an important aid that increases understandability
from the perspective of humans. One can evaluate the mined patterns
automatically or semi-automatically to identify the truly interesting or useful
patterns.

6. Using discovered knowledge: It includes incorporating the discovered
knowledge into the expert system and taking actions based on this

knowledge.
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Fig. 2.6 A KDD process [162].
In other words, given huge volumes of heterogeneous data, the objective of the
KDD process is to efficiently extract meaningful patterns that can be of interest and
useful to the user. The role of interestingness is to filter the large number of

discovered patterns and report only those which may be of some use. There are two
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approaches to designing a measure of interestingness of a pattern, namely, objective
and subjective. The former uses the structure of the pattern and is generally
quantitative. The subjective approach, on the other hand, depends additionally on the
user who examines the pattern. Two major reasons why a pattern is interesting from
the subjective point of view are as follows [138]:

e Unexpectedness: When it is surprising to the user and this potentially
delivers new information to the user.

e Actionability: When the user can act on it to his/her advantage to fulfill the
goal.

Data mining is a step in the KDD process consisting of a particular enumeration
of patterns over the data. Data mining involves fitting models to or discovering
patterns from observed data. The fitted models play the role of inferred knowledge.
Deciding whether or not the model reflects useful knowledge is a part of the overall
KDD process for which subjective human judgment is usually required. Typically, a
data mining algorithm constitutes some combination of the following three
components:

e The model: The function of the model (i.e., classification, clustering, etc.)

and its representational form (i.e., linear discriminants, decision trees, etc.).

e The preference criterion: A basis for preference of one model or set of
parameters over another, depending on the given data. The criterion is
usually some form of goodness-of-fit function of the model to the data.

e The search algorithm: The specification of an algorithm for finding

particular patterns, given the data, model and a preference criterion.
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A particular data mining algorithm is usually an instantiation of the model-

preference-search components. Some of the common model functions in current data

mining practice include [68]:

1.

Association analysis: This function mines or generates rules from the data.
Association rule mining refers to discovering associations among different
attributes (for details, refer to Section 2.2.1).

Classification: This model function classifies a data item into one of several
predefined categorical classes (for details, refer to Section 2.2.2).

Cluster analysis: This function maps a data item into one of several clusters,
where clusters are natural groupings of data items based on similarity metrics
or probability density models (for details, refer to Section 2.2.3).

Prediction: The purpose of this model function is to map a data item to a
real-valued prediction variable.

Summarization or condensation: This function provides a compact
description for a subset of data. Data compression play a significant role for
multimedia data, because of the advantage it offers to compactly represent
the data with a reduced number of bits, thereby increasing the database
storage bandwidth.

Sequence analysis: This models sequential patterns, like gene and protein
sequences. The goal is to model the states of the process generating the

sequence.
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2.2.1 Association Analysis

Association analysis is the discovery of association rules showing attribute-value
conditions that occur frequently together in a given set of data, for example, a set of
transactions. A typical example of association analysis is the market basket analysis
(Fig. 2.7). This process analyzes customer buying habits by finding associations
between the different items that customers place in their shopping baskets. The
discovery of such associations can help retailers developing marketing strategies by
gaining insight into which items are frequently purchased together by customers. For
example, given customers are buying milk, how likely are they also buying bread on
the same trip to the supermarket can be revealed. Such information can lead to
increase sales by helping retailers perform selective marketing and plan their shelf
places. For example, placing milk and bread within close proximity may further

encourage the sale of these items together within single visit to the store.

‘TH Conpamar Mionducd’ mE=E

= o e o
— ———— Pe— (rOUpE Of products
p_walear 0000000 [log = -17,00048%) ) suppasc 33 Eﬂld tugether 'I'."Ell
Beloqua

Eaipins

Bamber of diffepene bashers! 13600 Mmbee of Sllferes

TRODUCT ASSTATION FHLES /
Hippost Ceal idsnds Inpraveasar

Filtezs = 3.00 3 70,00 * 3.00

Directed
Azzociation Rules

Bamburger Bma - PER Fat Fiee Hesboogez 4, 0GR LN 7.0k
GEk Fac Fras Nasburgss - Hasburger Suna 4. 0856 EE. 0T .20
Hoc [ops,
1 -# Hot Bz 1.0L% AT 6T% 0108
{1073 Todhpadte | Sueee Relish i
Hot Bop Eums
PR loits Lermoris 2zt o] < Mot Poge DOLY LG TEN
10073 Oranges ST
C10073 Cak | i Har “’; =k Fueer Relish  3.01% LTt 7. BB
10073 Brocool Dumestic Beer -+ Pepperond Hema - Frezen 3.68% 58,35 7,863
1[:"[':'?3 stﬂ Pa, sicomi Fizza = Frosan =» Dompacic Baaz  3.88% 23 15 7583
BlaliE Egia 2k Milk,
10073 Shimp Coctiad Sauce White Bresd, <@ Uhesk Boeed 2.3k @ LR 5078
oo Whe Wine — x|
L C10073 Oraong

Fig. 2.7 Market basket analysis [66].
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Much work has been done (pioneered by [1]-[2]) to find associations among
items in large groups of transactions. Typically, this consists of two steps as follows
(additional filtering steps or interestingness measures can be applied, if applicable):

1. Find all frequent itemsets: Each of these itemsets must occur at least as

frequently as a pre-determined minimum support count (a set of items is
referred to as an itemset [68]).

2. Generate association rules from the frequent itemsets: These rules must

satisfy minimum support and minimum confidence.

A rule is normally expressed in the form X =Y, where X and Y are sets of
attributes of the data set, and the implication holds with the support>s and
confidence >c, where s and c are user-defined thresholds. This implies that
transactions which contain X also contain Y . For example,

IF < some _conditions _ satisfied >
THEN < predict _values_ for _some _other _conditions >
[support> s, confidence>c].
A sample rule could be of the form as follows:

IF (salary >20000) AND (unpaid _loan ="no")
THEN (select_ for _loan ="yes")

[support> 20%, confidence> 75%].

2.2.2 Classification

Classification is also described as supervised learning [147]. Let there be a database

of records, each assigned a class label. The objective is to develop a model for each
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class. An example of a model with good credit is 25 < age < 40 and income > 40K

or married ="yes". Sample applications of classification include:

Signature identification in banking or sensitive document handling (match or
no match).

Digital fingerprint identification in security applications (match or no match).
Credit card approval depending on customer background and financial
credibility (good or bad).

Bank location considering customer quality and business possibilities (good
or fair or poor).

Treatment effectiveness of a drug in the presence of a set of disease

symptoms (good or fair or poor).

The input to the classification algorithm is, typically, a set of training records

with several attributes (Fig. 2.8). There is one distinguished attribute called the

dependent attribute. The remaining predictor attributes can be numerical or

categorical in nature. A numerical attribute has continuous, quantitative values. A

categorical attribute, on the other hand, takes up discrete, symbolic values. If the

dependent attribute is categorical, the problem is called classification with this

attribute being termed the class label. However, if the dependent attribute is

numerical, the problem is termed prediction/regression. The goal of classification is

to build a concise model of the distribution of the dependent attribute in terms of the

predictor attributes. The resulting model is used to assign values to the testing

records, where the values of the predictor attributes are known but the dependent

attribute is to be determined (Fig. 2.9).

22



CHAPTER 2 - BACKGROUND AND RELATED WORK

Classification

/ Algorithms

Training
Data

Classifier

ik [Aesela Pt

= e (Model)
Mary |Assistant Prof 7 yes
Bill Professor 2 yes
Ji A iate Prof 7
il PERRLE 10 i IF rank = ‘professor’
Dave |Assistant Prof 8 no OR vears > 6
Anne |Associate Prof 3 no Y

THEN tenured = “yes’
Fig. 2.8 Classification process (training process) [43].

"" ‘\

Unseen Data

(Jeft, Professor, 4)

n ED l

Merlisa |Associate Prof no

|
George |Professor yes Y(esl
6y

Joseph |Assistant Prof 7 yes
Fig. 2.9 Classification process (testing process) [43].

Tom Assistant Prof

|~ N

Classification methods can be briefly categorized as follows:
1. Decision trees [129], [131], which divide a decision space into piecewise
constant regions. Typically, an information theoretic measure is used for

assessing the discriminatory power of the attributes at each level of the tree.
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2. Probabilistic models, which calculate probabilities for hypotheses based on
Bayes’ theorem [147].

3. Nearest-neighbor classifiers, which compute minimum distance from
instances [147].

4. Neural networks [99], which partition by nonlinear boundaries. These
incorporate learning, in a data-rich environment, such that all information is

encoded in a distributed fashion among the connection weights.

2.2.3 Cluster Analysis

A cluster is a collection of data objects which are similar to one another within the
same cluster but dissimilar to the others in other clusters. Cluster analysis is
concerned with the problem of grouping a set of data objects into clusters (Fig. 2.10).
Clustering is also called unsupervised classification, where no predefined classes are

assigned [147].
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Fig. 2.10 Clustering process [43].
Some example applications of clustering include:
e Spatial data analysis: Creating maps in geographic information systems by

clustering feature spaces and detecting spatial clusters [68].
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Multimedia computing: Finding the cluster of images containing objects of
similar color and shape from a multimedia database [101].

Bioinformatics: Discovering clusters of co-expressed genes in gene
expression data [11].

Biometrics: Creating clusters of facial images with similar fiduciary points
[101].

WWW: Clustering web-log data to discover groups of similar access patterns

[68].

A good clustering algorithm will produce high-quality clusters with high intra-

class similarity and low inter-class similarity, and the quality of a clustering result

depends on the similarity measure used by the algorithm. Some popular clustering

algorithms and the similarity measures will be discussed in details in Section 2.3.3.

Clustering approaches can be broadly categorized as:

1.

Partitional: Create an initial partition and then use an iterative control
strategy to optimize an objective.

Hierarchical: Create a hierarchical decomposition (dendogram) of the set of
objects using some termination criterion.

Density-based: Use connectivity and density functions.

Grid-based: Create multiple-level granular structure, by quantizing the

feature space in terms of finite cells.
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2.3 Data Mining Techniques for Bioinformatics: A Survey of
Related Work

Recently, there have been many data mining and statistical techniques [68], [70], [99]
available for use in biological data analysis. In Section 2.3.1, we briefly review some
existing tools and databases developed specifically for solving bioinformatics
problems [10]-[11], [51], [91], [98], [142], [155]. In Sections 2.3.2 and 2.3.3, the

related work of this thesis will be given.

2.3.1 Overview of Bioinformatics Problems and Tools

Sequencing of a complete genome (i.e., yeast, human, etc.) and subsequent
annotation of the features (i.e., genes, promoter regions, etc.) in the genome are the
two important problems of genome analysis [11]. The first problem is related to
sequence assembly. To solve this problem, there are many tools have been
developed such as CAP3 [72]. The second problem is related to the prediction of
genes in the genome. Since, the eukaryotic gene structure is much more complex
due to the intron/exon structure, gene prediction is therefore easier and more
accurate in prokaryotic than eukaryotic genomes. Several software tools [12]-[13],
[140], such as GeneMark, GeneScan, Glimmer, and GRAIL can accurately predict
genes in prokaryotic and eukaryotic genomes respectively.

Over the past decade, many techniques have been used for DNA and protein
sequence analysis such as sequence alignment and motif finding [98]. For biological
sequence alignment, many existing tools were based on a dynamic programming
algorithm [139], including pair-wise alignment tools such as BLAST [3] and

multiple sequence alignment tools such as ClustalW [71]. Hidden Markov model
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(HMM) [133] is another widely used method. HMMER [44], which is used to find
conserved sequence domains in a set of related protein sequences, is one of the
popular HMM tools. Other interesting problems include promoter and protein
functional motif finding. Several probability models and stochastic methods have
been applied to these problems, including expectation maximization algorithms and
Gibbs sampling methods [10].

Common problems of biological structure analysis include classification and
prediction, comparison, and visualization of the molecular structures (i.e., RNA
secondary structure, protein secondary and tertiary structures, etc.) [14]. For these
problems, some popular software tools include Mfold [14] for RNA secondary
structure prediction, DALI [81] for structural alignment, Cn3d and Rasmol [82] for
viewing the 3D structures. Protein structure databases, such as PDB [25], SCOP
[110], and CATH [125], and the associated tools also play an important role in
biological structure analysis [14].

Biological processes in a cell form different biological pathways among genes
and their functional products. Biological pathway analysis is concerned with the
problems of modeling and visualizing these pathways [15]. Several tools and
databases have been developed and are commonly used, including GenMapp [15],
KEGG database [88] and MetaCyc [89].

With the advent of DNA microarray technology and the genome sequences of
many model organisms, the simultaneous monitoring of expression levels for all
genes in a genome has become possible. Although a relatively new technology, the
use of microarrays has spread to almost all branches of biochemistry and molecular
biology, for example, in drug discovery [67]. Applications of DNA microarray

technology have resulted in generating very many gene expression databases [19],
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[91], [143]. Effective data mining techniques are therefore needed to analyze such
data. Hierarchical clustering [52] was the first clustering method applied to the
problem of finding clusters of co-expressed genes in the expression data. Since then
many popular clustering methods have been used [130], such as k-means and self-
organizing map. By combining sequence analysis methods, one can also identify
common regulatory motifs from the co-expressed genes discovered by the clustering
method. Furthermore, any correlations among gene expression profiles can be
modeled by advanced techniques and can hopefully help to reverse-engineer the
genetic networks in a cell. With sophisticated gene expression data analysis tasks,
there is much room for research and development of advanced, effective and
scalable data mining techniques. In the following sections, two important
bioinformatics problems and also the related work of this thesis will be presented

respectively.

2.3.2 Reconstructing Gene Regulatory Networks from Gene Expression
Data

Large-scale monitoring of gene expression such as DNA microarray [90], [132],
[136] is considered to be one of the most promising techniques for making the
reconstruction of gene regulatory networks (GRNs) [152] feasible. A GRN [15] is a
complex biological system in which genes interact with each other indirectly via the
proteins they create to perform various cellular processes. Better understanding of
gene interactions may therefore lead to better understanding of how cellular
processes are carried out to accommodate changes in the external environment [157].

Unfortunately, since living cells contain thousands of genes with each interacting
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with one or more other genes, the task of inferring the structures of GRNSs is very
difficult.

In an attempt to do so, some approaches have been developed. They include
biochemically driven approaches [31], [94], [122], [150], Boolean network
approaches [4]-[5], [134], Bayesian network approaches [75], [126], [164], and data
mining approaches [17], [32], [52], [102], [141]-[142]. They are described briefly in
the following.

Biochemically inspired models [122] are based on the reaction kinetics [6]
between different components of a GRN. Reaction Kinetics provides a framework by
which biochemical reactions between molecular compounds can be described. For

example, if a transcription factor, produced by a gene, say g;, is brought together
with the DNA sequence it is selective to, say, in the regulatory region of g, , it might

react with a rate k, to form a compound with the DNA, and then also dissociate with

a rate k, from the DNA. This process is started by a high expression rate of g,
followed by diffusion towards the binding site of g,, and then it is decreased by

spatial diffusion away from g, and other chemical reactions. Reconstructing GRNs

based on biochemically inspired models has the advantage that these models can be
most directly related to biological processes. Unfortunately, they also have some
disadvantages. For example, most of the biochemically relevant reactions under
participation of proteins do not follow linear reaction Kinetics. Many proteins
undergo conformational changes after reactions and these also change their chemical
behavior. In particular, in many regulatory DNA regions transcription factor binding
can show cooperative or competitive effects, which are nonlinear and mostly

unknown. Moreover, the full network of regulatory reactions is very complex and
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hard to disentangle in a single step. One needs to know the kinetic equations of all
the different interactions to do so. Unfortunately, the types of reactions and their
parameters are often unknown and at present, the data collected are not sufficient for
regulatory networks to be understood at this level of details. As a result, some
researchers used approximations to reaction-kinetic formulations to arrive at systems
of coupled differential equations [31], [94], [150] for describing the time course of
gene expression levels. However, the primary disadvantage of these approaches is
that they are computationally intensive.

In a Boolean network [4]-[5], [134], the expression state of a gene is represented
by a Boolean variable (ON or OFF) and interactions between genes are represented
by Boolean functions. The Boolean functions determine the expression state of a
gene on the basis of the expression states of some other genes. The Boolean network
approaches require that a number of assumptions be made to simplify analysis. For
example, the activation of a single gene is represented as a Boolean switch that can
either be on or off, and regulatory control of a gene is describable by a combination
of Boolean logic rules, such as AND, OR and NOT. As there is little knowledge of
connectivity patterns in real biological networks, for example, an ensemble approach
has been used to generate large numbers of randomly connected networks with
randomly chosen Boolean updating functions. The goal was to measure the generic
properties of certain classes of networks and observe how the global dynamics was
affected by these local interactions. This model of Boolean network has two primary
parameters: (i) network size, N, which specifies the number of elements in the
network, and (ii) K, the number of inputs regulating the activity of each element.

Each of the N elements is associated with a rule table specifying outputs for each of

the 2% possible input combinations. The rule tables for each element can also be
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defined in a number of different ways. If the several assumptions as discussed above
can be validly made, then the use of Boolean networks has the advantage that the
computational requirements of simulating regulatory systems are massively reduced,
allowing the exploration of much larger systems. Unfortunately, the validity of the
above assumptions has been questioned by a number of researchers, particularly
among those in the biological community, where there is a perceived lack of
connection between simulation results and empirically testable hypotheses [53].
Bayesian network [75], [126], [164] is a probabilistic model that describes the
multivariate probability distribution of a set of variables, where each variable only
depends on its parents. The basic idea is to display the associations among the
variables, namely the conditional dependencies and independencies, by means of a
directed acyclic graph. In the context of GRN, each node of a Bayesian network can
be considered as representing a gene, and each edge between connecting genes hints
towards an interaction between them. If this edge is directed, it can, under certain
assumptions, be interpreted as a causal relationship and can be inferred as one gene
controlling another. To construct Bayesian networks, one can use Bayesian statistics
[33] to find the network structures and the corresponding model parameters that best
describe the probability distribution for which the data is drawn. The goodness-of-fit
of a network with respect to the data can be assessed by assigning a score based on a
statistically motivated scoring function such as the Bayesian score [76].
Unfortunately, this learning task is NP-hard, especially for high-dimensional data,
such as microarray data which often contain thousands of expressed genes. To make
this feasible, the size of the search space must be restricted by such heuristics as the
construction of small sub-networks or in a slightly more sophisticated way, by

restricting the maximum number of parents of each variable. Another problem with
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the Bayesian network approaches is the effect of small sample size and this can
make the estimation of the many parameters required for a Bayesian network
difficult, if not impossible. As shown in [46], a Bayesian network constructed from
small amounts of gene expression data is most likely not able to detect all gene
interactions that are supposed to be present in a network.

Other than the above approaches, some recent attempts have been made to infer
the structures of GRNs using data mining approaches. Given a set of data, the goal
of data mining [68] is to discover hidden regularities and structures in it. As opposed
to the above hypothesis-driven approaches, which search for known, pre-defined
patterns in a set of data, data mining approaches are data-driven. Instead of requiring
patterns to be known ahead of time, they search automatically for patterns that are
hidden in the data. For GRNs reconstruction, several data mining techniques have
been proposed [17], [32], [52], [102], [141]-[142].

Given a gene expression profile characterized by a set of different experimental
conditions, clustering algorithms have been used to group co-expressed genes into
clusters according to how similar they are to each other. Co-expressed genes are
genes that have similar transcriptional responses to the external environment (i.e.,
temperature, pH value, pressure, etc). This can be an indication that they might be
co-regulated by the same regulatory mechanism. Among all clustering algorithms,
hierarchical agglomerative clustering has been more popularly used with gene
expression data [17], [52], [141]. It performs its tasks by a series of successive
fusion of genes into clusters. This fusion process is guided by a measure of
similarity between clusters so that clusters that are similar to each other are merged.
This fusion process is repeated until all clusters are merged into a single cluster. The

result of the fusion process is normally presented in the form of a two-dimensional
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hierarchical structure, called a dendrogram. The genes falling along each branch in a
dendrogram form a cluster. Depending on user-preferences, a specific number of
clusters can be obtained from the dendrogram by cutting across the branches at a
specific level. The key step in performing hierarchical clustering is the measure of
similarity between two genes, and for this, the correlation coefficient [16] is often
used. Since this approach can only determine if two genes have a significant linear
relationship with each other, the regulatory relationships, such as which gene affects
which other genes, cannot be discovered. In addition to this, the discovered
relationships cannot be explicitly revealed for possible interpretation.

Artificial neural networks [99] are mathematical models of information
processing originally inspired by networks of neurons in the brain. A neural network
typically consists of a collection of nodes, some of which may be designated as input
or output nodes, connected by weighted links. A transfer function is associated with
each node and this transfer function transforms a set of weighted input signals into
an output signal. Neural networks can be trained to match particular patterns of
activation via some learning processes. Mathematically, it is possible to create a
mapping between a neural network and a GRN. Conceptually, a relatively
straightforward analogy may be drawn between a neural network, in which the
constituent elements are neurons and the links are synaptic interactions, and a GRN,
in which the elements are genes and the links are regulatory interactions. Based on
such a conceptual model, there are some successes using neural networks to model
GRNs [142]. However, since the training of neural networks requires many free
parameters, it should be noted that the trials-and-errors required determining the best
set of parameters are usually very time consuming. In fact, even with the most

straightforward neural network formulation, it also requires weight parameters in the
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order of the square of the number of genes. In addition, there are other free
parameters describing the nonlinear functions. Given that the number of microarray
measurements/samples collected usually ranges between tens to a few hundreds, it is
very difficult for these parameters to be accurately estimated from the data in
practice. In addition to the requirement for estimating many parameters, it should
also be noted that the neural network approach is a black-box approach. The patterns
it discovers cannot be explicitly revealed for interpretation.

To use the decision-tree-based approaches [32], [102], the expression values of a

gene, say g,, is first divided into finite number of states. Whether the state of g,

can be determined by the states of other genes is then decided by checking whether

these genes can predict the state of g, . If the prediction accuracy is high, then we
can conclude that the state of g, can be determined by the states of other genes. Of

the existing approaches [68] that can be used for such prediction, C4.5 [131] is the
most popular one. C4.5 uses a greedy procedure to select the attributes that yield the
maximum information gain in order to recursively partition the training set. The leaf
nodes of the tree correspond to the states/classes of the gene. And the discovered
patterns are represented in the form of decision trees. The advantages of this
approach against others, which have been discussed above, are that it can identify
genes affecting a target gene in an explicit manner, and also the discovered patterns
can be used to predict how a gene would be affected by other genes from the unseen
tissue samples. However, due to the fact that the pruning methods which the
decision-tree-based classifiers adopt are based on hill-climbing approaches,
important information can be overlooked [131]. In addition, these classifiers still
have to overcome some other problems to effectively deal with imperfect data in

classification tasks [34].
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The biochemically driven approaches, Boolean network approaches, Bayesian
network approaches, and data mining approaches are the most common techniques
for GRNs reconstruction. Recently, the use of evolutionary computation to
reconstruct underlying GRNs from gene expression data is also a growing research
area and is getting a lot of attention from bioinformatics community [7], [37], [165].
However, besides their own limitations, many approaches can only be used to
generate hypotheses about the presence or absence of interactions between genes so
that laboratory tests can be carried out later for verification. It should be noted that
many of them are not intended to be used to predict, for example, how a gene would
be affected by other genes from the unseen samples (i.e., expression data that is not
in the original database). This can make statistical verification of the reliability of

the discovered patterns (relationships between genes) difficult.

2.3.3 Clustering of Gene Expression Data

Gene expression, as discussed before, is the process by which a gene’s coded
information is converted into the structures present and operating in a cell. Gene
expression occurs in two major stages: transcription and translation. During
transcription, a gene is copied to produce an mRNA molecule (a primary transcript)
with essentially the same sequence as the gene; and during translation, proteins are
synthesized based on the mRNA molecule. If one would like to prevent undesirable
genes, such as cancerous genes, from expressing, the transcription process should be
prevented as much as possible from taking place so that the corresponding

undesirable functional proteins will not be synthesized [27], [73].
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To prevent the transcription process of undesirable genes from taking place, a set
of transcription factor binding sites must be located. These sites consist of
untranscribed nucleotide sequences located on the promoter regions (non-coding
regions) of the genes and are responsible for activating and regulating the process. If
they are located, we can then bind appropriate molecules, such as protein repressors,
to these sites so that the genes they correspond to cannot be activated [27]. To locate
these transcription factor binding sites, co-expressed genes may need to be identified.
Co-expressed genes are genes that have similar transcriptional responses to the
external environment. This can be an indication that they might be co-regulated by
the same transcription factors and therefore might have common binding sites. To
identify co-expressed genes, one can cluster gene expression data obtained by
performing microarray experiments [29]-[30], [45], [57], [92]-[93], [141]. Genes
that are grouped into a cluster are likely to be co-expressed genes. By analyzing the
promoter regions of these genes, we may be able to discover patterns (motifs), which
have relatively high occurring frequencies compared to other sequence fragments
that are possible binding sites of these genes [163].

Given a database of records each characterized by a set of attributes, the
clustering problem is concerned with discovering interesting groupings of records
based on the values of the attributes. Many clustering algorithms [68] have been
developed to tackle different clustering problems in a variety of application domains
and they have been proven to be very effective. Recently, some of them, including
the hierarchical agglomerative clustering algorithm [156], the k-means algorithm
[100] and the Self-Organizing Map (SOM) [85], have been used to cluster gene
expression data [52], [148]-[149] respectively. These algorithms are described

briefly below.
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To discover clusters in the data, the hierarchical agglomerative clustering
algorithm [52], [156] performs a series of successive fusions of records into clusters.
The fusion process is guided by a measure of similarity between clusters so that
clusters that are similar to each other are merged. This fusion process is repeated
until all clusters are merged into a single cluster. The results of the fusion process
are normally presented in the form of a two-dimensional hierarchical structure,
called a dendrogram. The records falling along each branch in a dendrogram form a
cluster. Depending on user-preferences, a specific number of clusters can be
obtained from the dendrogram by cutting across the branches at a specific level.

Comparing to the hierarchical agglomerative clustering algorithm that does not
require users to specify the number of clusters ahead of time, users of the k-means
algorithm [100], [148] are required to do so. Given a data set, the k-means algorithm
can group the records into k clusters by initially selecting k records as centroids.
Each record is then assigned to the cluster associated with its closest centroid. The
centroid for each cluster is then re-calculated as the mean of all records belonging to
the cluster. This process of assigning records to the nearest clusters and re-
calculating the position of the centroids is then performed iteratively until the
positions of the centroids remain unchanged.

The Self-Organizing Map (SOM) algorithm [85], [149] is one of the best-known
artificial neural network algorithms. It can be considered as defining a mapping from
M-dimensional input data space onto a map (a regular two-dimensional array of
neurons) so that every neuron of the map is associated with an M-dimensional
reference vector. The reference vectors together form a codebook. The neurons of
the map are connected to adjacent neurons by a neighborhood relation, which

dictates the topology of the map. In the basic SOM algorithm, the topology and the
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number of neurons remain fixed from the beginning. The number of neurons
determines the granularity of the mapping, which has an effect on the accuracy and
generalization of the SOM. During the training phase, the SOM forms an elastic net
that folds onto the cloud formed by input data. The algorithm controls the net so that
it strives to approximate the density of the data. The reference vectors in the
codebook drift to the areas where the density of the input data is high. Eventually,
only few codebook vectors lie in areas where the input data is sparse. After the
training is over, the map should be topologically ordered. This means that n
topologically close (based on, say, the Euclidean distance or the Pearson correlation
coefficient) input data vectors map to n adjacent map neurons or even to the same
single neuron. With this idea, SOM has been used successfully in various
application areas.

Despite some successes with existing clustering algorithms in gene expression
data analysis [17], [52], [74], [130], [148]-[149], there is still no single clustering
algorithm that is the most dominant gene expression data clustering algorithm. This
may be a result of their use of such metrics and functions as the Euclidian distance
measure or the Pearson correlation coefficient [84] that do not differentiate between
the importance of different variables when measuring similarities. They also do not
give very accurate measurements when the data concerned are very noisy. As these
metrics and functions measure only pair-wise distances, the measurements obtained
could be too local. Clustering algorithms based only on the local pair-wise
information may, therefore, miss important global information. In addition to these
deficiencies, clustering results obtained with the use of many clustering algorithms
could be difficult to interpret. For example, although one can visualize the result of

hierarchical clustering as a tree-like dendrogram and note correlations between
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genes, it is the users’ responsibilities to discover the similarities and differences
between various clusters and to decide on the number of clusters and the cluster
boundaries to form. To do so, users need to have prior knowledge about the data.
Similarly, for the k-means algorithm and SOM, users have to decide on the number
of clusters to partition a data set into. They also have to use a separate technique to

uncover underlying patterns in the clusters.
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Chapter 3

Reconstructing Gene Regulatory Networks
from Gene Expression Data

Recent developments in large-scale monitoring of gene expression, such as DNA
microarray technology, have made the reconstruction of gene regulatory networks
(GRNs) feasible. Before one can infer the structures of GRNSs, it is important to
identify, for each gene in a network, which other genes can affect its expression and
how they can affect it. Many existing approaches such as the biochemically driven
approaches, Boolean network approaches, Bayesian network approaches, and data
mining approaches (as discussed in Chapter 2, Section 2.3.2) have been applied to
GRNs reconstruction. Besides their own limitations, many of these approaches can
only be used to generate hypotheses about the presence or absence of interactions
between genes so that laboratory tests can be carried out later for verification. Since
many of them are not intended to be used to predict, for example, how a gene would
be affected by other genes from the unseen samples (i.e., expression data that is not
in the original database), this makes statistical verification of the reliability of the
discovered relationships/patterns difficult. To better infer the structures of GRNs, we
propose to use an effective data mining technique in this chapter.

The proposed association-discovery technique [113]-[115] is able to discover
interesting association relationships between genes and can handle very noisy high-
dimensional time-dependent gene expression data. By computing an average gene

expression value which serves as a reference point for how large the value is, this
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technique can discover interesting sequential associations between genes such as “if
a gene is highly expressed, its dependent gene is then lowly expressed in the next
time point”, etc. These findings can not only allow hidden regularities to be easily
interpreted, they can also determine if a gene is supposed to be activated or inhibited
and can be used to predict how a gene would be affected by other genes from the
unseen samples. In Section 3.1, the proposed association-discovery technique, which
can be used to discover interesting association relationships between genes, will be
introduced. Given time-dependent gene expression data, this technique can also be
used to discover interesting sequential associations, the details of the sequential

association discovery approach will be given in Section 3.2.

3.1 An Association-Discovery Technique

To describe the proposed association-discovery technique [113]-[115], let us assume
that we are given a set of gene expression data, G, consisting of the data collected

from M genes in N experiments carried out under different experimental conditions.

Let us represent the data set as a set of M genes, G ={g,,...,d;,...,dy }, with each

gene, g;, j=1..,M , characterized by N different experimental conditions,

E......E,....Ey , whose values, €;;,...,€;,...,€y; , where e; represents the

expression value of the j" gene under the i"™ experimental condition.
Since gene expression values can be described in a finite number of different states
such as “expressed” and “not expressed”, “upregulated” and “downregulated”, or

other different number of states, etc., we define two different states for it: “highly

expressed (H)” and “lowly expressed (L)” [32]. These states are defined below.
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Let € = be the average expression value of g, under N; different

experimental conditions, from E; to ENJ. , Where N, is the total number of

experimental conditions in which the expression of g; is recorded and N; <N due

to possible missing values in the expression profile of g;. Given €, , the expression

data obtained for g; in each of the experimental conditions can then be mapped to

Hif e; > e_j and L if e; séj , where i =1,...,N ;. With such mapping, instead of e;,
g; can now be considered as taking on a transformed expression value, s; e{H, L}

under the experimental condition E;. This process of transformation is performed

for each of the M genesin G (Fig. 3.1).

E1 E; Bt
E &1 2 Flas
£ Eh By Zing
Ey € €17 € nnt

fransformation

4] I T
E, H L L
E L H H
By H H L

Fig. 3.1 The transformation process.
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After transformation, the association-discovery technique is used to discover
interesting association relationships between genes. This technique consists of two

steps as follows.

Step 1 - Discovering interesting associations between the states of genes:
Interesting association relationships are discovered by detecting for associations

between the states of the target gene, g,, and the states of each other gene, g;, in a
set of training samples, where g = j and g, € G. To do so, we let ObSpk be the

observed total number of experimental conditions, E,,...,E, where | < N, that the

(p)
a

state of g, is s, and the state of g, is s,"), where s, =..=s, =5, ,

= .. = SIJ = Sj(k) y S (p),sj(k) E{H,L} ’ pyk=11-"1|{HlL}| ’ and NI

S, q

i

Zp’kObSpk < N due to possible missing values in the data. We also let exp

obs . obs
N be the expected total under the assumption that the state, s, of g,

HH LA
is independent of whether the state of g, is s,*’, where obs,, = D obs,

KH LA
and obs,, = szl obs, . Given obs , and exp, , we are interested in

determining whether obs o is significantly different from exp , (Fig. 3.2).
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abspk
BED H iL;
dy
5 4
H 216 2.64
245 109
1 2
iL; 2.88 3.52
-148 -111

Fig. 3.2 Frequency table for the states of the target gene ( 9q: column)

and the states of other gene (g i row).

To determine if this is the case, we can use the standardized residual [77] to
scale the difference as follows:
_ obs, —expy,

pk —
XDy

This statistic approximates the standard normal distribution only when the

z (3.1)

asymptotic variance of Z,, is close to one. Therefore, it is, in practice, adjusted by

its variance for a more precise analysis. The new test statistic, which is called the

adjusted residual, can be expressed as follows:

_ (obspk—exppk)/,/exppk Iy

pk !
Vo Vo

3.2)

where Vpk is the maximum likelihood estimate of its asymptotic variance and is
defined as:

ObSID+ . obs ., 33
N E- ) (3.3)

Vi =(1-

This statistic has an approximate standard normal distribution [8], [34], [36], [158]
and an association is considered to be interesting if the test statistic is statistically

significant. In other words, if d, >1.96 (Eq.(3.2)), we can conclude, with a
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confidence level of 95 percent, that the state, s, of g, is significantly associated

with the state, s,'”, of the target gene, g, (Fig. 3.2).

Step 2 — Determining the weight of evidence of the associations:

Using Eq.(3.2), we can determine whether s, is significantly associated with s .
If it is the case, then it can be utilized to construct a characteristic description of
s, . Such an association is not completely deterministic and the uncertainty

associated with it is quantified using a measure defined so that if the state of g, is
s, then it is with certainty W(State = s, / State = s,* | s,*) that the state of
g, is sq(p), where W, the weight of evidence measure [124], is defined in terms of
the mutual information, 1(s,” : s,“’), between s, and s, as follows:

M [
Pr(s, " Is;")

' Pr(s,"”)

5, =log (3.4)

q

P .o Wy " ; P | K (p) : - -
I(s, " :s; ") s positive if Pr(s,”[s;"")>Pr(s,”) . It is negative if

q
Pr(s,"™ |'s;*%) < Pr(s,"™) and is zero if Pr(s,"” |s,")) =Pr(s,"”). 1(s,"” :5,")

intuitively measures the decrease (if positive) or increase (if negative) in uncertainty

about the assignment of s, to g, given that the state of g, is s,"’. Based on the
mutual information, the weight of evidence provided by s," supporting or refuting
the state of g, is s,'” can be defined as follows:

W(state = s,'” / State = s, | 5,“) (3.5)

— ® . o K P . o K
= (s, sy ) - (#E sy s ).
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Similar as before, 1(=s,'” :s,%’) measures the decrease (if positive) or increase (if
negative) in uncertainty about the assignment of the state, which is not equal to sq(p’,
to g, given that the state of g, is s;"’. In other words, W can be interpreted as a
measure of the difference in the gain in information, 1(s,"” : s,%) - I(# s, :
s;“)). The weight of evidence is positive if s, provides positive evidence

supporting the assignment of sq(p) to g, ; otherwise, it is negative. Since this

measure is probabilistic, it can work effectively even when the data being dealt with
contains incomplete, missing, or erroneous values.

Given a collection of the selected states of M~ genes, where M < M , that can

be utilized to construct characteristic descriptions of sq“’), the total weight of

evidence supports the assignment of sq(p) to g, is defined as follows,

K K K
TW(State = s, / State = s, | s, )---Sj( )...SM,( )) (3.6)

M k
= > L W(state=s,” /state = 5,7 [ 5,).

Therefore, given a testing sample, the state, sq(p), is inferred to the target gene, g,,

if the total weight of evidence is maximized.

With the association-discovery technique, interesting association relationships
between genes can be discovered. In addition, this technique can also be used to
discover interesting sequential associations from time-dependent gene expression
data. In the following section, this sequential association discovery approach will be

given.
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3.2 Discovery of Sequential Associations from Time-
dependent Gene Expression Data

Let us assume that we are given a set of time-dependent gene expression data, G,
consisting of M time series collected from experiments with M genes. Each of
these M time series consists, in turn, of N data points collected from N different

experimental conditions, E,,....E, ;,E,,E ,E,, carried out, one after the other,

1ty
at N different time instances. The data set, G, can therefore be represented as:
G={9,,....9;,....9u }, Where each gene, say g, takes on the expression value, €

tj?

under the experimental condition E,. By computing an average gene expression

value, €;, which serves as a reference point for how large the value is (as discussed
in Section 3.1), instead of e;, g; can now be considered as taking on a transformed
expression value, s; e{H,L} under the experimental condition E,. This process of

transformation is also performed for each of the M genes in G (Fig. 3.1). Given the
above representation, the association-discovery technique can be used to discover
interesting sequential associations as follows [113]-[115].

To discover the sequential associations, the first step is to determine, for the

target gene, g,, which other genes, g;, it is dependent on, where q= j and
g, € G . For gene regulatory relationships, if the expression of g, is dependent on
the expression of g;, one would expect to observe that the expression levels of g,
be associated with those of g, after a certain amount of time delay [15]. For this

reason, we detect if there exists interesting sequential associations between the states

of g, in E, with those of g, in E,,.
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If, say, “g, is highly expressed in E,” is dependent on “g; is highly expressed

in E,” (in this case, s, =s,” =H , and s, =s," =H , s, and s," are

described in Section 3.1), then we can expect the observed total number of

occurrences of “ g, is highly expressed in E, , and g, is highly expressed in E,” is

significantly different from its expected total number of occurrences. To determine
if this is the case, the adjusted residual discussed in Section 3.1 can be used. Table

3.1 shows the summary of the notations used.

TABLE 3.1
SUMMARY OF THE NOTATIONS USED

obs o Observed total number of occurrences of:
g, is highly expressed in E, ; and g, is highly expressed in E,

exp Expected total number of occurrences under the assumption that:
g, is highly expressed in E, is independent of whether g; is highly

expressed in E, ;

ObSp+ Observed total number of occurrences of:
g, is highly expressed in E, and g, is highly expressed or lowly

expressed in E, ;

obs,, | Observed total number of occurrences of:
g, Is highly expressed or lowly expressed in E, and g; is highly

expressed in E, ;

Given obs , and exp, , we can determine whether obs, is significantly
different from exp , using the adjusted residual shown in Eq.(3.2). According to
Section 3.1, this statistic, d ok » Nas an approximate standard normal distribution and

the sequential association “ g; is highly expressed in E,_, and g, is highly

i

expressed in E,” is interesting when the test statistic is statistically significant. In

other words, if d , >1.96, we can conclude, with a confidence level of 95 percent,
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that “ g, is highly expressed in E,” is dependent on “g; is highly expressed in
E,,” and this sequential association can be represented as S, ;); =H — s,, =H.

It should be noted that there are two major types of gene regulatory relationships
at the level of transcription [27], [154]. They are activation and inhibition.
Activation and inhibition can take place through the regulator (the protein product of

g,) directly binding to g, (the target gene), or by binding other regulators and thus
controlling g, indirectly. In the activation process, if one is hypothesizing that g,
activates g,, one would expect to see in the data that, if the state of g, is high, it is
to be followed by the state of g, being also high and if the state of g, is low, itis to
be followed by the state of g, being low. The expectation would be reversed for

inhibition. Hence, based on the sequential associations discovered between the
various states of different genes, we may determine whether or not one gene is
activated or inhibited by another.

Since the discovered sequential association is not completely deterministic, the

uncertainty associated with s, ;,; =H — s,, =H can be modeled with the confidence
measure defined as Pr(s,=H | s, ;=H). For the purpose of predicting s, in a
future time point, a weight of evidence measure, W(s, ,,;=H — s,, =H), which is

defined in terms of the mutual information I(s,,=H : s, ,; =H), can be used as

follows:

W(s; yy;=H— s,,=H) 3.7)
=W(s,=H/s,#H|s,4;=H)

= 1(Sg=H: S 4);=H) - 1(Sy #H : S5y, =H),
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where

Pr(s, =H[sqy; =H)
Pr(s, = H) '

(s =H: s,4;=H)=log

W(s y;=H — s, =H) measures the amount of positive or negative evidence that is

provided by s, ,,; =H supporting or refuting the state of the target gene, g, in E,

to be H. The sequential association discovery approach can be summarized as shown
in Fig. 3.3. With the discovered sequential associations, whether or not the target
gene will be highly or lowly expressed in a next time point can be predicted. In
addition, they can also allow gene expression of the unseen samples to be predicted.

This can be done as follows.

Step 1: Compute the average expression value, €;, of each gene, g;,in G,
j=1...M.

Step 2: Map each real-valued expression value, €, into one of two states:

!

H and L, depending on how close they are to e_j :

Step 3: For the target gene, g, determine if there are interesting sequential
associations between its states and those of other genes, g, using the adjusted
residual.

Step 4: If a sequential association is statistically significant, then it is used to decide
if g, is activated or inhibited by another.

Step 5: Based on the discovered sequential associations and a weight-of-evidence
measure, the state of g, in the next time point can be predicted.

Fig. 3.3 Summary of the sequential association discovery approach.
Given a set of time-dependent expression data collected from a set of M genes

from the unseen samples (i.e., gene expression data that is not in the original

database). This set of M genes can be represented by G ={g ..., 9} G}
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where G =G and M <M . The gene expression values can then be mapped into
states of H and L based on Steps 1 and 2 above (Fig. 3.3). To predict the expression

state of the target gene, g, at time t, the discovered sequential associations can be
searched to see which other genes g, is dependent on. If, say, the sequential

association, S, ;) =H — s,,, =H was previously discovered in the original

t(q)

database, then we can conclude that there is some evidence supporting g, to be
highly expressed at time t if g ;, was highly expressed at the last time instance. By
considering if and how g, is dependent on other genes in G , then we can
combine the evidence that support g ,, to be highly expressed by computing a total
weight of evidence measure. Suppose that g, is only dependent on some other
genes, gy, G(jyrer G(gys IN G', where B <M, then the total weight of evidence
measure can be computed as follows:

TW(Sey =S Seny =S Senp =5 = sq=H).,  (39)
where S e{H,L}.

= TW(Syy=H 7 Sy ZH | Sy = S Sy = Soevns Seeaypy =9 )

t(q

s
= Zj:lW(St(Q) =H /s # H[Sey; =3).

The total weight of evidence for g ,, to be highly or lowly expressed are computed
respectively and the state for g ,, is determined by the one with the greatest total

weight of evidence, i.e.,

JMAX TWSayw =Ss-sSeayiiy =SiSaayp) =S = Siq) =Swax) . (3.9)
MAX ’
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3.3 Experiments

A. Experimental Data

For our experiments, we used a set of real, time-dependent gene expression data. In
this data set, the biological samples were synchronized by different methods such as
a factor arrest, arrest of a cdcl5, and cdc28 temperature-sensitive mutant. Using
periodicity and correlation algorithms, a set of cell cycle regulated genes (from
about 6000 genes) that meet an objective minimum criterion for cell cycle regulation

were identified [141].

B. Evaluating Criteria

In our analysis, we chose the cdcl5 experiment as the training set as it has the
largest number of samples/experimental conditions (24 samples). The other two data
sets, alpha experiment (18 samples) and cdc28 experiment (17 samples), were used
as the testing sets. During the training process, interesting association relationships
between the cell cycle regulated genes were discovered. For performance evaluation,
we selected a subset of target genes from two important functional groups, cyclin
and histone, for testing. This subset includes CLN1, HTA1, HTB1, CLB1, CLN2,
HTA2, HTB2, CLB2 and CLB6 (Table 3.2). Based on the discovered sequential
associations, the states of these genes in independent testing sets were predicted and

then compared with what are known about them.
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TABLE 3.2
SUMMARY OF TARGET GENES SELECTED. PEAK EXPRESSION OF THE
TARGET GENES COVER THE STANDARD PHASES OF CELL CYCLE
(G1, S, G2 AND M)

Standard Name Systematic Name Peak
CLN1 YMR199W Gl
HTA1 YDR225W S
HTB1 YDR224C S
CLB1 YGR108W G2/M
CLN2 YPL256C Gl
HTA2 YBL003C S
HTB2 YBL002W S
CLB2 YPR119W G2/M
CLB6 YGR109C Gl

3.4 Results and Discussions

During the training process, the sequential associations that can be used to construct
characteristic descriptions of the states of each target gene were discovered. The
examples of such sequential associations discovered are given in Figs. 3.4 and 3.5.
For example, the first sequential association shown in Fig. 3.4 reveals that if the
state of RMEL is high (H), then the state of CLN2 is high (H) in the next time

instance. This also implies that CLN2 is activated by RME1.

(D) () — (=)
o) g e
e (o
e ) e e
e
o

Fig. 3.4 Interesting sequential associations that can be used to construct characteristic descriptions of
the states of CLN2 gene (A is activation and | is inhibition).
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Fig. 3.5 Interesting sequential associations that can be used to construct characteristic descriptions of
the states of HTB2 gene.

Based on the sequential associations discovered, the states of each target gene in
the testing sets (alpha and cdc28) can be predicted. The predicted states were then
compared with the original states of the target gene and the average prediction
accuracy can be calculated in each testing set.

For experimentation, we evaluated the performance of the proposed association-
discovery technique by comparing it to the well-known decision-tree based
classification algorithm, C4.5 [131], [159]. We chose C4.5 because, compared to
other approaches which can only infer plausible relationships between genes, it, like
the proposed technique, also has both predictive and explanatory capability (as
discussed in Chapter 2, Section 2.3.2).

To predict the states of the target genes with C4.5, the expression values of each

gene were divided into two different states as discussed before: “highly expressed

(H)”, and “lowly expressed (L )”. The expression value, €, of each gene can then

be mapped to H if e; >¢€;, and L if e;<e;, where €; is the average expression

value of g; under all the experimental conditions.
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In order to improve the performance of C4.5, feature selection has been
performed for it. Many feature selection methods have been proposed to reduce the
number of attributes in gene expression data. The most popular methods are the
filter and wrapper methods [49], [65], [143], [146], [160]. Based on the t-statistic
[143], [146], for each target gene, the following steps were adopted and performed
to select genes (attributes) for C4.5: (i) all cell cycle regulated genes are sorted in
descending order of their t-values, (i) initially, the top 5% of the genes are selected
and removed from the ranked list, (iii) using C4.5 with a 10-fold cross validation on
the training data of this subset of selected genes, the average classification accuracy
is obtained, (iv) an additional 5% of genes from the ranked list are then added into
the subset of selected genes, (v) steps (iii) and (iv) are repeated until the
classification performance converged, then (vi) the final subset of genes with the
highest classification accuracy is selected.

In Tables 3.3 and 3.4, the comparisons of the average prediction accuracy of
different approaches are showed. The results shown in the tables indicate that the
proposed technique has higher prediction accuracy than C4.5 and the feature
selection version of it for both testing sets. Even though C4.5 and the feature
selection version of it already performed quite well, the results seem to indicate that

the association-discovery technique is even more effective.
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TABLE 3.3
COMPARISON OF THE AVERAGE PREDICTION ACCURACY
(ALPHA DATASET) (FS REPRESENTS FEATURE SELECTION)

Stﬁg?nird Proposed C4.5 S4Fg
CLN1 88.89% 66.67% 83.33%
HTA1 88.89% 61.11% 77.78%
HTB1 94.44% 66.67% 77.78%
CLB1 88.89% 66.67% 83.33%
CLN2 88.89% 66.67% 77.78%
HTA2 88.89% 72.22% 83.33%
HTB2 83.33% 61.11% 72.22%
CLB2 83.33% 61.11% 77.78%
CLB6 88.89% 72.22% 83.33%

Average 88.27% 66.05% 79.63%

TABLE 3.4

COMPARISON OF THE AVERAGE PREDICTION ACCURACY
(CDC28 DATASET)

Stggﬁqaerd Proposed C4.5 E4Fg
CLN1 82.35% 64.71% 76.47%
HTAl 82.35% 58.82% 70.59%
HTB1 82.35% 52.94% 64.71%
CLB1 88.24% 70.59% 82.35%
CLN2 88.24% 70.59% 82.35%
HTA2 82.35% 64.71% 76.47%
HTB2 82.35% 58.82% 70.59%
CLB2 88.24% 70.59% 88.24%
CLB6 88.24% 64.71% 82.35%

Average 84.97% 64.05% 77.12%

Biological Interpretation:

In order to evaluate the biological significance of the discovered sequential
associations, we tried to verify that any known gene regulatory relationships [19],
[61], [104] could be revealed from them. Fig. 3.6 shows some biologically
meaningful sequential associations discovered by the proposed technique. Based on
these findings, we can then construct the gene interaction diagram [15] as shown in
Fig. 3.7. This diagram might provide important clues in inferring the structures of

GRNs. For comparison, we also show the interaction diagram (Fig. 3.8) that was
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constructed based on the rules discovered by C4.5 (the best diagram, which reveals
more known gene regulatory relationships, among C4.5 and C4.5 with feature
selection). Comparing the diagrams, it should be noted that some of the known gene

regulatory relationships can only be discovered by the proposed technique.

1. Activation pair: RMEL -> CLN2

(=) (e — (@)

2. Activation pair: HTA1 -> HTB2

G =i G G

3. Inhibition pair: CLB2 -> CLN1

D e CEED R CEEDSn CER

4. Activation pair: SPT16 -> HTA1

D e GEED R G G

5. Activation pair: SPT16 -> CLN1

D e CDRCE e CUD

6. Activation pair: SPT16 -> HTB1

) )

7. Inhibition pair: CDC20 -> CLN1

@y (@) (@ot) (o)

8. Activation pair: SPT21 -> HTB2

sy Gmer) (med (=)

Fig. 3.6 Biologically meaningful sequential associations
discovered by the proposed technique (to be continued).
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9. Activation pair: CLN1 -> CLN2

Gl GO e CLLT

10. Activation pair: SPT21 -> HTA1

s G N G e G

11. Activation pair: HTAL -> HTB1

G e GO R CEED e G

12. Inhibition pair: FAR1 -> CLN2

() ()

13. Activation pair: HTA2 -> HTB1

D e G R G S Gt

14. Activation pair: HTA2 -> HTB2

Cimee=)— (=) ———Comee=s)

Fig. 3.6 Biologically meaningful sequential associations
discovered by the proposed technique.
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Fig. 3.7 Gene interaction diagram constructed by the known gene
regulatory relationships discovered by the proposed technique (12 genes and
14 known regulatory relationships involved). Solid lines correspond to
activation relationships and broken lines correspond to inhibition relationships.
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HTB 2

Fig. 3.8 Gene interaction diagram constructed by the known
gene regulatory relationships discovered by C4.5
(9 genes and 9 known regulatory relationships involved).

In this chapter, we have proposed to use an association-discovery technique for
the reconstruction of GRNs from time-dependent gene expression data. This
technique can discover interesting association relationships between genes in high-
dimensional and very noisy data without the need for additional feature selection
procedures. Based on the discovered sequential associations, the user can not only
determine those genes affecting a target gene but also can identify whether or not the
target gene is supposed to be activated or inhibited. In addition, the sequential
associations discovered can also be used to predict how a gene would be affected by
other genes from the unseen samples. Experimental results on real expression data
show that the proposed technique can be very effective and the discovered
sequential associations reveal known gene regulatory relationships that could be

used to infer the structures of GRNs. One additional advantage of the reconstruction
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of GRNs using the association-discovery technique is that the user can easily
improve the classifier by adding new expression data and reproduce underlying
structures of a network consistent with the data. Since such iterative improvements
can be part of an interactive process, therefore, the proposed technique can be

considered as a basis for an interactive expert system for GRNSs reconstruction.
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Chapter 4

Clustering and Re-clustering of
Gene Expression Data

In clustering gene expression data [17], [52], [74], [148]-[149], various forms of
inaccuracies and data variations need to be reduced as noise can be introduced at
different stages - the production of the arrays, preparation of the samples,
hybridization experiments and extraction of the hybridization results (as discussed in
Chapter 2, Section 2.3.3). Genetic variations and impurity of tissue samples may
also introduce additional difficulties in the analysis [16]. To cluster gene expression
data in the presence of these various types of noise and overcome some limitations
of existing clustering algorithms, in this chapter, we propose a two-phase clustering
algorithm [112], [118], [120] consisting of an initial clustering phase and a second
re-clustering phase.

In the first phase, local information is extracted for the clustering process by
computing a pair-wise distance measure between gene expression profiles. This
information is then used for a conservative clustering approach that prefers to leave
uncertain genes unassigned rather than forcing them into one of the clusters thereby
rendering the discovered clusters less reliable. The second phase consists of a re-
clustering process. For the purpose of re-clustering, global information is obtained
through the discovery of interesting association relationships between gene
expression levels and cluster labels. In doing so, the association-discovery technique

discussed in Chapter 3 (Section 3.1) is used to discover interesting associations by
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differentiating among the expression levels that are relevant for the clustering
process from those that are irrelevant. If an expression level is relevant in
determining whether or not a gene should belong to a particular cluster, then it is
reflected by the interestingness measure. Since the interestingness measure is
probabilistic, it can work effectively even when the data being dealt with contains
incomplete, missing, or even erroneous values. Once the associations are discovered,
they can be made explicit for possible interpretation. These associations specify
different characteristics, in terms of what expression levels the genes should have
under a particular set of experimental conditions, that different clusters of genes
possess and they can be easily understood and interpreted by human users. In the

following section, the proposed clustering algorithm will be presented in details.

4.1 A Two-Phase Clustering Algorithm

To describe the proposed two-phase clustering algorithm [112], [118], [120], let us
assume that we are given a set of gene expression data, G, consisting of the data

collected from N genes in M experiments carried out under different experimental

conditions. Let us represent the data set as a set of N genes, G={0,,...,0;,.--. Ox },
with each gene, g, , i=1..,N , characterized by M different experimental
conditions, E,,...,E;,...,E,, Whose values, €,,...,€;,...,&y , where e; represents the

expression value of the i gene under the j™ experimental condition (Fig. 4.1).
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Fig. 4.1 Gene expression data representation.

Phase 1 - The cluster initialization phase:
To find the initial clusters, the popular hierarchical agglomerative clustering
algorithm [156] is used. This algorithm consists of a series of successive fusions of

N genes, g,,...,9;,..., gy, INto clusters and the results of this fusion process are

presented in the form of what is called a dendrogram. A dendrogram displays the
results after each successive fusion. The genes falling along a particular branch in a
dendrogram form a cluster and the similarity between different clusters are also
shown. By cutting the dendrogram at some level, a specific number of clusters can
be obtained. The advantage of using hierarchical clustering algorithm is that a
suitable cutoff level based on prior knowledge can be used. As a result, a set of more
reliable initial clusters can be obtained (as discussed before, in this phase, it prefers
to leave uncertain genes unassigned rather than forcing them into one of the clusters
thereby rendering the discovered clusters less reliable.). Since the Pearson
correlation coefficient is more commonly used for gene expression data and is
known to be better than the Euclidean distance in dealing with noise [16]. It is

therefore used as a similarity function in this phase. For any two genes, g, and g,

whose expressions are monitored over a series of M different experimental

conditions, the measure is defined as follows:
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(9,,9,) = ’Z( i ( i y)}, (4.1)

where

T

M (e, —E (e, —E - = - =
® = X X ,® — /] y , E = j=1 ’ E = j=1
T D e v D3 R S VRl v

i-1

Phase 2 - The re-clustering phase:

With the proposed association-discovery technique (as discussed in Chapter 3,
Section 3.1), in this phase, genes that were not assigned to any clusters in Phase 1
are assigned and those that have already been assigned are re-evaluated to determine
if they should remain in the same cluster or be assigned to a different one. This
assignment process is performed in two steps as follows. Firstly, interesting
associations are identified in the initial clusters that are statistically significant. Then,
based on the discovered associations, all the genes that were previously unassigned
to any clusters are assigned to one of the clusters, and the cluster memberships of
those that were previously assigned are also re-evaluated. The details of this

assignment process are given below.

Step 1 - Discovering interesting associations between gene expression levels and
cluster labels:

To minimize the effect of noise in the re-clustering process, rather than the actual
expression values, the data is partitioned into intervals (levels) instead. The
partitioning, which is also called discretization, is based on a popular technique as

described in [35] so as to minimize the loss of information during the process.
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After discretization, interesting association relationships are discovered in each
initial cluster by detecting for the associations between the expression levels of the

genes that belong to a particular cluster and the cluster label itself. To do so, we let

obs,, be the observed total number of genes, g,,...,9;,....9,, where | <N, in the

data that belong to a given cluster, C, where p=1,...,P and P is the total number

of initial clusters discovered, and are characterized by the expression values that are

within the interval of e," (the expression values, e;,....8; ..., , are within the

€y
interval of ej(k). In other words, the genes, g,,...,0,,...,d,, have the expression level

e,")), where k =1,...,K,, , and K, is the total number of distinct data intervals

val !

obs  ,obs

N 1

(expression levels) of E;. We also let exp, = be the expected

total under the assumption that being a member of C,, is independent of whether or

L () Kyal b
not a gene has the characteristic e,"’, where obs,, = Zk:lo Spk , Obs,, =

P '
szlobspk and N = ZpVKObSpk < N due to possible missing values in the
data. An association is then considered interesting if obs , is significantly different

from exp , . To determination if this is the case, the adjusted residual as shown in

Eq. (3.2) is used. According to Section 3.1, this statistic has an approximate standard
normal distribution and an association is considered to be interesting if the test

statistic is statistically significant.
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Step 2 - Assignment and re-assignment of genes:
Using the adjusted residual, we can determine if e,", under the experimental

condition, E;, is associated with a cluster, C , say, a 95% confidence level

p 1

(d, >1.96). If it is the case, then it can be utilized to construct characteristic

description of C . This description is represented as follows: If the expression value
of a gene in E; is within the interval of e,", then it is with certainty W(Cluster =
C, / Cluster = C | e,’) that the gene belongs to C,, where W, the weight of

evidence measure [124], is defined in terms of the mutual information I(C, : e,")

as follows:
W(Cluster = C, / Cluster = C, | e,") (4.2)
= 1(C, : ej(k))- I(=C, : ej(k)),
where
I(C, :e,*) =1log Pr(;p(—cl:epj)(k))'

The weight of evidence measures the amount of positive or negative evidence that is

provided by e,“ supporting or refuting the labeling of a gene as C, .

To re-evaluate the cluster membership of a gene, g, , characterized by
E,...E;....Ey, its description can be matched against the discovered associations.
If the expression value, e, , of g, satisfies the associations (i.e., the expression value,

j?!

e;, of g; is within the interval of e;*’) that implies C,, then we can conclude that

the description of g, partially matches that of Cp . By repeating the above
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procedure, that is, by matching each expression value, e;, j=1..,M, of g; against
the discovered associations, the total weight of evidence of assigning g, to Cp can

be determined. Suppose that of the M characteristics that describe g,, only M,

M" <M, of them are found to match with the discovered associations. Then, the
total weight of evidence supports the labeling of g, as Cp is defined as follows,

k k k
TW(Cluster = C, / Cluster = C | el( )...ej‘ )...eM.( )) (4.3)

M _ (k)
- ZHW (Cluster =C_ /Cluster #C_ |e,"") .
Then, the cluster label C, is inferred to a gene if:
o ,
MpAilX{Z';A:lW (Cluster =C, /Cluster = C _ | ej(k)) }. (4.4)

The re-clustering phase described above allows for probabilistic associations to be
detected. It performs its task by distinguishing between relevant and irrelevant
expression levels and by doing so, it takes into consideration global information
contained in a specific cluster arrangement by evaluating the importance of different
expression levels in determining cluster memberships. This feature makes the
proposed algorithm more robust to noisy data when compared to those algorithms

that only rely on local pair-wise similarity measures.

4.2 Experiments

A. Experimental Data
For experimentation, we used a set of simulated data consisting of 300 records each

characterized by 50 different attributes that take on values from [0.0, 1.0]. Initially,
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all these records were sampled from a uniform distribution and they were pre-
classified into one of three clusters so that each cluster contains 100 records. To
embed hidden patterns in the data, 10% of the attributes in each cluster were
randomly selected. For each selected attribute, 40% of its values in that cluster were
randomly generated from within a certain range [L, U], where 0.0 <L <U < 1.0, so
that L was selected uniformly from [0.0, 1.0] first, and U was then also selected
uniformly from [L, 1.0]. Since this kind of data generation is non-deterministic, it is
very difficult to discover the hidden regularities in this noisy data solely relying on
the local pair-wise distances between records. Therefore, it is used to evaluate the
effectiveness of the proposed algorithm.

In addition to the simulated data, we also used a set of real expression data.
According to [141], the authors successfully applied a hierarchical clustering
algorithm [52], [156] to cluster about 230 genes into 8 distinct clusters based on the
similarity of expression profiles (under 77 different experimental conditions) and
their prior biological knowledge. However, due to variation of the expression data,
the cluster memberships of the remaining genes (about 560 genes) cannot be
determined. Since the unassigned genes may have similar features to those that have
been clustered successfully, it is important that they could also be properly assigned

so that the clustering results can be better interpreted.

B. Evaluating Criteria

For performance evaluation, the proposed algorithm was evaluated based on three
objective measures: (i) the F-measure, (ii) the predictive power measure, and (iii) the
Davies-Bouldin validity index (DBI) measure.

The F-measure [96], which is typically used for cluster evaluation, combines the
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idea of “precision” and “recall” from the field of information retrieval [86]. When
the correct clustering arrangement of a set of data is known (i.e., in case of the
simulated data described above), the F-measure can be used to determine how well a
discovered clustering arrangement compares with that of the correct, original one.

According to the F-measure, the records (genes) in a discovered cluster, C,, can be

considered as if they have been retrieved through a certain query. These records can

then be compared against those in one of the original clusters, C, which can be

considered as consisting of records desired by a user by posting the query. Given a

set of discovered and original clusters, the F-measure is therefore defined as:

i coun
_ 2Recall(C,,C,)Precision(C,,C,) where Recall(C, C,) = ke,

F(Cp!Cq) - . .
Recall(C,,C,) + Precision(C,,C,) count

unt. .
0—” and Countcpcq is the number of records with

co
and Precision(C,C,) =
count,

q

cluster label C, in the discovered cluster C,, Countcp is the number of records

with cluster label C_ and Counth is the number of records in the discovered

cluster C,. The F-measure has value in the interval [0,1] and the larger its value, the

better the clustering quality it reflects.

The predictive power measure is actually a measure of classification accuracy. If
the clusters discovered are valid and of good qualities, we should expect patterns to
be discovered in them. If these patterns are used to classify some testing data (i.e.,
data that is not in the original database), the classification accuracy can reflect how
valid and how good the qualities of the discovered clusters are. In order to determine

the classification accuracy, a set of training data can be randomly selected from each
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cluster to construct a decision-tree classifier using C4.5 [131]. C4.5 is a greedy
algorithm that recursively partitions a set of training data by selecting attributes that
yield a maximum information gain measure at each step in the tree-construction
process. After a decision tree is built, the cluster memberships of those genes that
were not selected for training are then predicted. The percentage of accurate
prediction can then be determined as classification accuracy. This accuracy measure
is also referred to as the predictive power measure. If a clustering algorithm is
effective, the discovered clusters should contain hidden patterns that can be used to
accurately predict the cluster membership of the testing data. And if this is the case,
the predictive power of a cluster grouping should be high. Otherwise, if a clustering
algorithm is ineffective, the clusters it discovers are not expected to contain too
many hidden patterns and the grouping is more or less random. And if this is the
case, the predictive power is expected to be low. Hence, the greater the predictive
power, the more interesting a cluster grouping is and vice versa. In our experiments,
the predictive power measure was computed based on a ten-fold cross validation
approach. For each fold, 90% of the genes in each cluster were randomly selected
for training and the remaining 10% used for testing. After ten experiments
corresponding to the ten folds were performed, the average predictive power of the
discovered clusters was computed as the average classification accuracy over the ten
experiments [159].

The DBI measure [47] is a function of the inter- and intra-cluster distances.
These distances are considered good indicators of the quality of a cluster grouping as
a good grouping should be reflected by a relatively large inter-cluster distance and a
relatively small intra-cluster distance. In fact, many optimization clustering

algorithms are developed mainly to maximize inter-cluster and minimize intra-
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cluster distances. The DBI measure combines these two distances in a function to
measure the average similarity between a cluster and its most similar one. Assume

that a cluster grouping consisting of k clusters has been formed. Its DBI measure is

1 din ra(C )+din ra(C )
then defined as follows [123]; DBI :EZT;%X{ t q p(C Ct: ) = where
1 inter p!™~q

K
p=

S0 g |

— =1
Ointra(Cy) =- n , Qinter (C1Cq) =19 =9 Il k denotes the total
q

number of clusters, d. .. and dimer denote the centroid intra- and inter-cluster

intra

distances respectively and n, is the number of genes in a cluster, C,. The intra-

cluster distance for a given cluster is therefore defined to be the average of all pair-

wise distances between the genes in C, and its centroid, g, and the inter-cluster

distance between two clusters, C, and C,, is computed as the distance between

q’

their centroids, g . and g, . A low value of DBI indicates good cluster grouping.

4.3 Results and Discussions

As discussed before, the proposed algorithm consists of two phases: an initial
clustering phase and a second re-clustering phase. To find the initial clusters, we
used the popular hierarchical agglomerative clustering algorithm as discussed in
Section 4.1. The effectiveness of the proposed algorithm was evaluated according to
the objective measures as discussed in Section 4.2. For comparison, we also show
the statistic for the three other clustering algorithms popularly used to cluster gene

expression data. They are the hierarchical clustering algorithm [156], the k-means
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algorithm [100] and SOM [85] (as discussed in Chapter 2, Section 2.3.3). Since the
Pearson correlation coefficient is more commonly used for gene expression data and
is known to be better than the Euclidean distance in dealing with noise [16]. It was
therefore used as a similarity function for these algorithms. Also, to ensure that the
best results for the k-means algorithm and SOM were obtained, 100 runs were
performed for each of them with each run using different randomly-generated initial
cluster centroids. Only the best result from among these 100 runs was recorded.
Table 4.1 shows the comparison of the average F-measure using the simulated data.
Based on the results, it appears that the performances of these existing algorithms
can be further improved. They do not seem to be able to discover hidden regularities

effectively in very noisy data.

TABLE 4.1
COMPARISON OF THE AVERAGE F-MEASURE
(SIMULATED DATA)

Proposed
Re-clustered Hierarchical k-means SOM
Hierarchical
Average 0.77 0.58 0.63 0.55

In order to demonstrate the effectiveness of the re-clustering phase in the
proposed algorithm, we have also applied it to the k-means algorithm and SOM by
using them separately, instead of the hierarchical agglomerative algorithm, in the
first cluster initialization phase. By repeating the same experiments, the
performances of the re-clustered k-means and SOM algorithms are given below in

Table 4.2.

TABLE 4.2
THE AVERAGE F-MEASURE OF THE PROPOSED ALGORITHM USING
K-MEANS AND SOM IN THE CLUSTER INITIALIZATION PHASE
(SIMULATED DATA)

Re-clustered Re-clustered
k-means SOM
Average 0.73 0.71
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The above experimental results show that the proposed algorithm is rather robust
in the presence of a very noisy environment. It is able to perform better than the
three popular clustering algorithms. When applying the re-clustering phase to k-
means and SOM, it can also improve their performances. The reason, as stated
earlier, is due to the proposed algorithm not only able to consider local information
but also global information as reflected by the cluster arrangement. By making use
of the association-discovery technique, it is able to distinguish between interesting
and uninteresting expression levels and to discover hidden regularities that are not
completely deterministic. Using real expression data, we have also performed

experiments to evaluate the performances of different clustering algorithms and the

results are showed in Tables 4.3-4.6.

COMPARISON OF THE AVERAGE PREDICTIVE POWER

TABLE 4.3

(GENE EXPRESSION DATA)

Proposed
Re-clustered Hierarchical k-means SOM
Hierarchical
Average 76.98% 63.11% 62.58% 56.83%
TABLE 4.4

THE AVERAGE PREDICTIVE POWER OF THE PROPOSED ALGORITHM USING
K-MEANS AND SOM IN THE CLUSTER INITIALIZATION PHASE
(GENE EXPRESSION DATA)

Re-clustered

Re-clustered

k-means
Average 69.90%
TABLE 4.5
COMPARISON OF THE AVERAGE DBI
(GENE EXPRESSION DATA)
Proposed
Re-clustered Hierarchical k-means SOM
Hierarchical
Average 1.69 1.73 1.72 1.76

74




CHAPTER 4 — CLUSTERING AND RE-CLUSTERING OF
GENE EXPRESSION DATA

TABLE 4.6
THE AVERAGE DBI OF THE PROPOSED ALGORITHM USING
K-MEANS AND SOM IN THE CLUSTER INITIALIZATION PHASE
(GENE EXPRESSION DATA)
Re-clustered
k-means

1.70

Re-clustered
SOM
1.73

Average

The performance of the proposed algorithm is again consistently better than
other clustering algorithms. This indicates that it is more robust in the presence of
noisy data collected under real experiments. Moreover, by using the k-means
algorithm and SOM in the first phase and then applying the re-clustering phase in
the second, we can see some level of performance gain as well. With the proposed
algorithm, we discovered the same 8 initial clusters as described in Section 4.2 (part
A) after Phase 1. These clusters have characteristics as shown in Table 4.7 below. In
the re-clustering phase (Phase 2), we successfully classified the remaining

unclassified genes. The re-clustering results are also showed in Table 4.7.

TABLE 4.7
SUMMARY OF THE INITIAL AND RE-CLUSTERED CLUSTERS
(GENE EXPRESSION DATA)

Cluster | Cluster Peak No. of genes No. of genes
D name | expression | (Initial clustery | (Reclustered
cluster)

Cl CLB2 M 32 168
C2 CLNZ2 G1 57 330
C3 Histone S 9 13
C4 MAT M/G1 13 25
G5 MCM M/G1 38 116
C6 MET S 20 a1
C7 SIC1 M/G1 27 54
Total no. 227 792

Figs. 4.2-4.5 show the microarray images of two initial and re-clustered clusters:
CLB2 and MCM. The figures show the same cluster before and after the re-

clustering phase. Using the hierarchical approach there are only initially 32 genes in
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CLB2. After re-clustering, there are 168 genes. Similarly, for MCM, the number has

increased from 38 to 116.

Fig. 4.2 CLB2 initial cluster (32 genes) (each label on the top indicates the experimental condition,
and each label on the right indicates the gene name).

Fig. 4.3 MCM initial cluster (38 genes).
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Fig. 4.5 MCM re-clustered cluster (116 genes).
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For demonstration, Table 4.8 below shows some interesting associations

discovered from each cluster

represented in easily understandable if-then rule format.

TABLE 4.8

INTERESTING ASSOCIATIONS DISCOVERED FROM EACH

RE-CLUSTERED CLUSTER IN IF-THEN RULE REPRESENTATION

(GENE EXPRESSION DATA)

If cdcl5 70 =1[0.32, 1.01]
then CLB2 [0.76]

If cdc28_30 =[0.32, 1.01]
then MET [0.74]

If cdc15_140 =[-2.56, -0.2]
then Histone [0.81]

If cIn3_1=[1.01, 3.09]
then CLN2 [0.84]

If elu330 = [0.32, 1.01]
then SIC1 [0.82]

If alpha77 = [-2.56, -0.2]
then MET [0.80]

If alpha2l = [1.01, 3.09]
then CLN2 [0.76]

If cdc15_100 = [-2.56, -0.2]
then MAT [0.72]

If cIn3_1=[0.32, 1.01]
then Y’ [0.80]

If elul50 = [0.32, 1.01]
then Histone [0.72]

If alpha56 = [-2.56, -0.2]
then MAT [0.78]

If cdc28_70 = [1.01, 3.09]
then CLB2 [0.75]

If clb2_1 = [1.01, 3.09]
then CLB2 [0.82]

If alpha2l =[0.32, 1.01]
then Y’ [0.82]

If cdc28_20 = [1.01, 3.09]
then CLN2 [0.77]

If alpha_14 =[0.32, 1.01]
then MCM [0.79]

If alpha56 = [1.01, 3.09]
then MCM [0.80]

If cdc15_30 = [1.01, 3.09]
then SIC1 [0.72]

If cdc28_70 =[-0.2, 1.01]
then Y’ [0.76]

If cin3_2 =[-0.2, 1.01]
then MCM [0.78]

The interpretation of the above rules is as follows. For example, for the

discovered rule:

If cdc28_30 = [0.32, 1.01] then MET [0.74].

The rule states that if the

condition, cdc28_30, is within the interval [0.32, 1.01], then there is a probability of

0.74 that it belongs to cluster MET. Another example, the discovered rule:

expression value of a gene under the experimental

If cdcl5 140 =[-2.56, -0.2] then Histone [0.81].

The above rule states that if

condition, cdc15 140, is within the interval [-2.56, —0.2], then there is a probability

the expression value of a gene under the experimental

of 0.81 that it belongs to cluster Histone.
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Some of the rules given in Table 4.8 are consistent with the findings presented in
[141] and this is an indication that the associations uncovered in each discovered
cluster are biologically significant. For example, the authors mentioned that genes in
CLN2 cluster were induced by GAL-CLN3, one of the associations that we
discovered in this cluster is “If cIn3_1 = [1.01, 3.09] then CLN2 [0.84]”. Moreover,
the discovered associations “If clb2_1 = [1.01, 3.09] then CLB2 [0.82]” is

consistent with genes in CLB2 cluster that were induced by GAL-CLB2.

Biological Interpretation:

Other than evaluating the results statistically, we have also evaluated the clustering
results according to their biological significance. For evaluation, we used a motif
discovery algorithm described in [78] to determine if any binding sites located in the
promoter regions (from SGD [19]) of the genes in each cluster can be identified (as
discussed in Chapter 2, Section 2.3.3). The biological meanings of the discovered
binding sites were then validated based on published literature [19], [79]. Since
many regulatory sites can be detected with hexanucleotide analysis [78], we also set
the oligonucleotide length to be six. Table 4.9 shows the summary of the known

binding sites discovered in each re-clustered cluster.
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TABLE 4.9
SUMMARY OF THE DISCOVERED BINDING SITES IN EACH
RE-CLUSTERED CLUSTER

Re-clustered Binding site
Sequence revealed
cluster name
CLB2 CCAAAG Mcml
GGTCAA
(potential variant) SFF
CLN2 ACGCGT MCB
ACGCGA
(potential variant) MCB
Histone AC.CAAG SCB
(potential variant)
TTCTGG Mcm1l
MAT GTTTCA Mem1
(potential variant)
MCM TCCAAA Mem1
(potential variant)
MET CACGTG Met4/Met28/ Cbfl
SIC1 ACCAGC Swib5;Ace2
GCCAGC Swi5;Ace2
Y’ ATGTGG Mcml

DNA microarray technology is becoming increasingly important in the analysis
of bio-molecules. They provide information that may lead to the understanding of
the mechanisms that control gene expression at the transcription level. Because of
the large amount of expression data collected everyday and due to the very noisy
nature in the data collection process, interpreting and comprehending the
experimental results has become a big challenge. Therefore, an effective data mining
technique that is also easily interpretable is required.

In this chapter, we have proposed a two-phase clustering algorithm that uses a
two-phase approach to clustering gene expression data. The proposed algorithm is
able to utilize both local and global information by computing both a local pair-wise
distance between two gene expression profiles in Phase 1 and a global probabilistic
measure of interestingness of associations in Phase 2. And also, it is able to

distinguish between relevant and irrelevant expression levels when performing re-
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clustering and make explicit the associations discovered in each cluster for possible
interpretation.

The experimental results show that the proposed algorithm can be an effective
method for discovering clusters in the presence of noisy data. It is able to assign
genes, whose cluster memberships cannot be easily determined by existing
clustering methods, into the appropriate clusters. When identifying regulatory motifs
at the promoter regions of the co-expressed genes in the discovered clusters, some
known binding sites can be discovered. These binding sites can provide explanations
for the co-expressed patterns. In addition, the discovered interesting associations,
which specify the expression levels under a particular set of experimental conditions
the genes should have in each cluster, may lead to further understanding of the

mechanism of gene expression.
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Chapter 5

Clustering of Gene Expression Data
Using Evolutionary Computation

Since external knowledge is seldom available for gene expression data, and also, for

a clustering algorithm to discover the best data grouping, it has to consider
1< i N
0= 30 k- 6.
= i=0 1

possibilities, where N is the total number of records, and k is the total number of
clusters [97]. To find the optimal grouping among the very large number of
possibilities, there is a need to have an effective clustering algorithm.

Evolutionary algorithms (EAs) have been successfully used to solve different
data mining problems [39]-[40], [105]. They have, in particular, been used for
clustering [21], [41], [59], [80], [87], [106]-[107], [128]. In [41] and [106], for
example, the data records are encoded as genes® in a chromosome and are given a
label from one to k, where k is the maximum number of clusters to be discovered.
Such algorithms are relatively easy to implement as they do not require special
evolutionary operators. Unfortunately, they are not very scalable. As the length of
each chromosome is exactly the size of the training set, these algorithms are not very

practical when handling large data sets.

% The terms such as chromosomes and genes, when used in a computational context, may not have the
same meanings as their biological counterparts. In order to avoid possible confusion, when referring
to these terms in the contexts of evolutionary computation, they are made italic.
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An alternative data and cluster representation was proposed in [128] where the
clustering problem is formulated as a graph-partitioning problem. Based on it, each
data record is represented as a node in a graph and each node is mapped to a certain
position in a chromosome and is encoded as a gene. The indices of other records are
encoded as alleles so that if a gene i contains value j, an edge is created in the graph
to link the nodes i and j. The alleles in each gene i are therefore the nearest
neighbors of i, and the users are required to specify the number of nearest neighbors
as an input parameter ahead of time. With this representation, an evolutionary
algorithm is used to find clusters which are represented as connected sub-graphs.
This approach is again not very scalable. Other than the length of the chromosomes
being again the same as the size of a data set, there is an additional need for the
nearest neighbors of data records to be computed. It also suffers from the same
problems as other clustering algorithms that are based on the need to compute pair-
wise distance measures.

One other popular use of evolutionary algorithms in clustering is to use them to
identify the best cluster centers. In [80], [107], each chromosome encodes the
coordinates of k centers and the standard genetic algorithm (GA) is used to find the
best ones. A similar approach to identifying the best centers is to use an EA to
search for optimal initial seed values for cluster centroids [21]. As in other problems,
in clustering we can use domain knowledge in several ways to try to improve the
performance of the algorithm. For example, we could design specialized
evolutionary operators or we can hybridize the evolutionary algorithm with a
conventional clustering algorithm such as the k-means algorithm. In [59], [87], each
chromosome represents the coordinates of the cluster centroids and different

crossover methods are used to generate the offspring. After crossover each
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chromosome undergoes several iterations of the k-means clustering algorithm. The
authors observed that adding the k-means iterations is crucial for obtaining good
results, and although there can be a considerable increase of the computation time if
many iterations are used. This kind of hybridization raises the question of how to
allocate the computing time. For example, using many generations of the EAs and a
few iterations of the local methods or running the EAs for a few generations and
using the local methods to improve the solutions. In principle, the centroid-based
representation has the advantage that the chromosomes are shorter because they only
need to encode the coordinates of the k centroids. This means that the length of the
chromosome is proportional to the dimensionality of the problem and not the size of
the training set. However, just like many EA-based clustering methods, the
drawback of the centroid-based representation is that the number of clusters needed
to be specified in advance. Moreover, the similarity functions used such as
Euclidean distance or correlation coefficient for measuring the similarity of the
records do not differentiate between the importance of different attributes. Therefore,
they do not give accurate measurements when the data concerned are noisy and
contain missing values. In addition, these similarity functions measure only pair-
wise distances, the measurements obtained could be too local.

Clustering gene expression data as a new area of research poses new challenges
due to its unique data nature that the previous EA-based clustering algorithms were
not originally designed to deal with. As discussed before, there are some new
challenges in dealing with gene expression data. For example, the presence of both
biological and technical noise inherent in the data. And also, the clustering structure
of gene expression data is usually unknown. To effectively tackle the challenges

posed by gene expression data, we propose an effective evolutionary clustering
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algorithm called EvoCluster [111], [119], [121]. Compared with other evolutionary
and non-evolutionary based clustering algorithms (as discussed in Chapter 2, Section
2.3.3), EvoCluster has several desirable characteristics. It encodes the entire cluster
grouping in a chromosome so that each gene encodes one cluster and each cluster
contains the labels of the data records grouped into it. Then, given the above
encoding scheme, it has a set of special crossover and mutation operators that
facilitates the exchange of grouping information between two chromosomes on one
hand and allows variation to be introduced to avoid trapping at local optima on the
other. And also, unlike many similarity measures that are based on local pair-wise
distances [84] that may not give very accurate measurements in the presence of very
noisy data, the fitness measure (the association-discovery technique discussed in
Chapter 3, Section 3.1) used is probabilistic and it takes into consideration global
information contained in a particular grouping of data. It is able to distinguish
between relevant and irrelevant feature values (expression levels) in the data during
the clustering process, and explain clustering results by explicitly revealing hidden
associations discovered in each cluster. In addition, there is no requirement for the
number of clusters to be decided in advance. In the following section, the details of

EvoCluster will be given.

5.1 EvoCluster: An Evolutionary Clustering Algorithm

To describe EvoCluster [111], [119], [121], let us assume that we are given a set of
gene expression data, G, consisting of the data collected from N genes in M

experiments carried out under different experimental conditions. Let us represent the

data set as a set of N genes (records), G={g,,...,0;,-.-, Oy}, With each gene, g,,

85



CHAPTER 5 - CLUSTERING OF GENE EXPRESSION DATA
USING EVOLUTIONARY COMPUTATION

i=1..,N, characterized by M different experimental conditions, E,,....E,,....E,,,
whose values, €;,...,€;,...,&y , Where e; represents the expression value of the

i" gene under the ] experimental condition (Fig. 4.1).
Like other evolutionary algorithms [22]-[24], [60], [64], [108], EvoCluster
consists of the following steps:
1. Initialize a population of chromosomes with each representing a unique
cluster grouping.
2. Evaluate the fitness of each chromosome.
3. Select chromosomes for reproduction using the roulette wheel selection
scheme.
4. Apply crossover and mutation operators.
5. Replace the least-fit chromosomes in the existing population by the newly
generated offspring.

6. Repeat Steps 2 to 5 until the stopping criteria are met.

A. Cluster Encoding in Chromosomes and Population Initialization

To evolve the best cluster grouping, EvoCluster encodes different grouping
arrangements in different chromosomes so that one chromosome encodes one
particular cluster grouping [55]-[56], [60]. In each such chromosome, each gene
encodes one cluster. Hence, if a particular chromosome encodes k clusters,

C,,---C,--+C,, it has k genes. Since each cluster contains a number of data records,

a gene encoding a cluster can be considered as being made up of the labels of a

number of data records in gene expression data. For example, assume that C,

contains n; records, gy, '+, 9y s Yoin) » Where g, €6={0,,... G-, 9y}, the
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labels of these records can be encoded in each gene, C, so that, a chromosome that

encodes a particular cluster grouping can then be represented diagrammatically as

shown below (Fig. 5.1).

c

Gene: LA ]

c ,|c .

C . |

Eecord Label:

Eun > Bayer Bany

Fig. 5.1 The chromosome encoding scheme.
For the initial population, each chromosome is randomly generated in such a way
that the number of clusters, k, to be encoded in a chromosome is first generated
randomly from within a certain range of acceptable numbers. Each of the records in

G={g,,-..0;,-.- 0y} Is then assigned, also randomly, to one of the k clusters.

B. Selection and Reproduction

Reproduction in EvoCluster consists of the application of both the crossover and
mutation operations. As the evolutionary process enters into reproduction, two
chromosomes are selected as parents for crossover using the roulette-wheel selection
scheme [108] so that each parent’s chance of being selected is directly proportional
to its fitness.

Since it is the cluster grouping encoded in each chromosome that conveys the
most important information, our crossover operators are designed to facilitate the
exchange of grouping information. And since this process can be “guided” or
“unguided”, our crossover operators are also classified in the same way. We have a

“guided” operator and an “unguided” operator. For the “guided” crossover (GC)
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operator, the exchange of grouping information is not totally random in the sense
that the grouping information of the “best-formed” clusters is preserved during the
crossover process. For the “unguided” crossover (UGC) operator, the exchange of
the grouping information between clusters takes place randomly.

Assume that two parent chromosomes, P1 and P2 are chosen so that P1 encodes

ki genes, C,---,C{™,--,C.* (with each corresponding to a cluster), and P2 encodes

k. genes, C/*---C,--C, ie, the number of clusters encoded in each

chromosome can be different. Assume also that MIN is a user-defined minimum
number of clusters encoded in a chromosome and MAX is a user-defined maximum
number of clusters encoded in a chromosome, then the following are the steps taken
by the guided and unguided operators when crossover is performed. It should be
noted that the probability for a gene or a record label in a gene to be selected by both
crossover and mutation operators can be randomly generated from within a certain

range [L,,U,] or [L U] respectively, where 0.0<L, <U <10 and
00<L,<U,<10,and L, U, L, and U, can be set by users or also generated

randomly. Moreover, in both guided crossover and guided mutation operators, the
interestingness of each gene is determined based on the fitness measure described in

part C below.

The Guided Crossover (GC) and Unguided Crossover (UGC) Operators

1. Set Pg.rp, the probability for a gene to be selected for crossover.
2. Set P, the probability for a record label in a gene to be replaced by another
record label from another gene in another parent.

3. Gene selection procedure:
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a. For the UGC, based on Pg.rp and using a random number generator, each

gene in P1 is scanned to decide if it should be selected. Those selected

are then represented as {Cj,---,Cj,---,Cy)} Where I, < ki, k; and C,

i=1..1,isin {C™, Ci'}.

b. For the GC, based on Pg.rpi, Ng.roi < k1, ko, the number of interesting genes
to be selected, can be determined. Then select Ng.y of the most

interesting ones in P1 and P2 respectively. Rank them in descending

order of interestingness and represent them as {C;,---,C,---,C/;} and
{Ci.++.Ciyr--,Cy3} so that iy and C(if is the most interesting in P1

and P2 respectively.

4. Record label replacement procedure:

a. For the UGC, for each gene in {Cj,---,Cj,---,Ci5}, say Cy, randomly

select one gene from P2, say C? that has not previously been selected.
Based on Py and using a random number generator, each record label

in C(; can be scanned to identify those that should be replaced by a
record label in C%. Record labels that are selected for replacement are
then represented as {Qgy,.....9g):--- 9¢m)} and removed from C7} .
Randomly select n; or |C”?| record labels, whichever is smaller, from

P2 and replace those removed. Repeat the above steps for all the other
selected genes in P1.

b. For the GC, begin with the most interesting gene, say C('z)l, select the

corresponding most interesting gene, C(l) , from P2. Based on Py, scan

89



CHAPTER 5 - CLUSTERING OF GENE EXPRESSION DATA
USING EVOLUTIONARY COMPUTATION

through each record label in C/jj to select those that should be replaced
by that in Cg)z. Those record labels to be replaced are represented as

{9¢5:---190j)--- 9any} and removed from C. Randomly select n; or

P2

|Cg)2 record labels, whichever is smaller, from C and replace those

removed. Repeat the above steps for all the other selected genes in P1.

5. Repairing procedure (for producing child Chl): Scan through all genes to
remove duplicates in such a way that if a record label is found in another
gene, other than the one containing the replacement, it is removed. For those
record labels that have not been assigned to any genes after their removals:
a. For the UGC, they are randomly assigned to one of the genes.

b. For the GC, EvoCluster constructs a classifier based on Chl using a re-
classification algorithm described in [34]. They are then re-classified into
one of the genes encoded in Chl.

6. Repeat Steps 1-5 with P2 to produce child Ch2.

After crossover, the children produced undergo mutation in order to avoid
getting trapped at local optima on one hand and to ensure diversity on the other.
EvoCluster makes available six different mutation operators that can be selected at
random when a chromosome undergoes mutation. These operators can be classified
according to whether or not the mutation process involves just the removal and
reclassification of record labels or the merging and splitting of the whole gene. They
can also be classified according to whether or not they are “guided” or “unguided”.
Based on these classification schemes, EvoCluster makes use of six operators as

follows:
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(a) The unguided remove-and-reclassify-record mutation (UGRRM) operator.

(b) The guided remove-and-reclassify-record mutation (GRRM) operator.

(c) The unguided merge-gene mutation (UGMGM) operator.

(d) The guided merge-gene mutation (GMGM) operator.

(e) The unguided split-gene mutation (UGSGM) operator.

(f) The guided split-gene mutation (GSGM) operator.
The merge and split mutation operators (i.e., UGMGM, GMGM, UGSGM, and
GSGM) are specifically designed to allow the length of chromosomes to be changed
dynamically as the evolutionary process progresses. The advantage with this feature
is that the number of clusters that need to be formed does not need to be specified by

the users ahead of time. In the following, the details of these operators are given:

The Guided (GRRM) and Unqguided Remove-and-Reclassify-Record Mutation
(UGRRM) Operators

1. Set Pg.rr, the probability for a gene to be selected.
2. Set P, the probability for a record label in a gene to be removed.
3. Gene selection procedure:
a. For the UGRRM, based on Pg,, scan through each gene in the

chromosome to decide if it should be selected. Those selected are then
represented as {Cy,---,C(y,---,Ciy} Where Iy < kg and C{}, i=1...1,,isa
member of {C*,---,C™,---C;'}.

b. For the GRRM, based on Py, determine Ng. < ki, the number of

uninteresting genes to be selected. Then select the Ng.,r least interesting

genes and represent them as {Cjj,---,Cy),--- C,} where Iy < k; and C,
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i=1..,1,, isa member of {C/*,---,C/,---C"}.

4. Record label replacement procedure: For each gene in {C(j,---,C},-,C)},

PL to select those

based on Py, scan through each record label in each of C,

that should be removed. These record labels are represented as

{963+ 94+~ 9im} and removed from C .

Children repairing procedure: For those record labels that have not been

assigned to any genes after their removals:

a. For the UGRRM, they are randomly classified into one of the genes.

b. For the GRRM, EvoCluster constructs a classifier based on the child
chromosome using a re-classification algorithm described in [34]. They

are then re-classified into one of the genes encoded in the chromosome.

The Guided (GMGM) and Unguided Merge-Gene Mutation (UGMGM) Operators

1.

2.

Set Pg-mrg, the probability for a gene to be merged.
Gene selection procedure:
a) For the UGMGM, based on Pgmyg scan through each gene in the

chromosome to select a gene for merging. Those selected are then

represented as {C,---,C,---,Ci3} where Iy < ky and Cp), i=1...,1;, is
a member of {C*,---,C™,---,C/"}.

b) For the GMGM, based on Pg.mrg, determine Ng.mg < K1, the number of
uninteresting genes to be merged. Then select Ng.mrg least interesting

genes and represent them in ascending order of interestingness as

{Cy.---Cpr--Cppy} so that C is the least interesting, where Iy < k; and
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P1
C(l) !

i=1..,1,, isamember of {C*,---,C[",---C.'}.
3. Merging procedure: For each gene in {Cy,---,Cgj,---.Ci3} . randomly

select one other gene to be merged in this set. The number of genes
remaining after merging should be greater than MIN. Otherwise, the

mutation operator terminates.

The Guided (GSGM) and Unguided Split-Gene Mutation (UGSGM) Operators

1. Set Pypi, the probability for a gene to be split.
2. Gene selection procedure:
a) For the UGSGM. Based on Py, Scan through each gene in the

chromosome to decide if it should be selected for splitting. Those

selected are then represented as {C,---,C),---,C{5} Where I < k; and

CPl

o 1=1...1;, isamember of {C*,---,C[",---C.'}.

b) For the GSGM. Based on Py, determine Ngspie < ki the number of
uninteresting genes to be split. Then select Ng.spir least interesting genes,

and represent them in ascending order of interestingness as

{Ci+.Ciy-+,Ci)} so that C is the least interesting, where I; < k;

and C™! i

o i=1...1;, isamember of {C*,---,C",---C"}.

3. Splitting procedure: For each gene in{C(j,---,C(},---,C;)}, randomly split it

into two clusters. The resulting number of genes has to be smaller than MAX.

Otherwise, the mutation operator terminates.
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A simple evolutionary algorithm typically uses a generational replacement
technique. This technique replaces the entire population after enough children are
generated. However, the potential drawback of such a replacement approach is that
many good chromosomes also get replaced, making it difficult for the good traits to
survive. To overcome this problem, EvoCluster adopts a steady state reproduction
approach [23] so that only two least-fit chromosomes are replaced whenever two

new children are generated after each reproduction.

C. Fitness Function

To evaluate the fitness of each chromosome, EvoCluster adopt the association-
discovery technique (as discussed in Chapter 3, Section 3.1) as an objective fitness
measure. This method has the advantage that it is able to handle the potential noise
resulting from the clustering process. Since, this technique is able to take into
consideration the global information by distinguishing between the expression levels
that are relevant and irrelevant in a particular cluster grouping. This makes
EvoCluster very robust even in the presence of noisy data.

The fitness evaluation procedure is invoked after new chromosomes are formed.
The fitness function accepts a chromosome as a parameter and its fitness is evaluated
in two steps (the details of these two steps are described in Chapter 4, Section 4.1,
phase 2). In Step one, it attempts to discover interesting associations in the cluster
grouping encoded in the chromosome. To do so, a subset of records (for application
here, 70% of records) from different clusters encoded in a chromosome is selected
randomly to form a data set for training. In Step two, those records were not selected
in Step one are re-classified into one of the clusters based on the discovered

associations. Then, the predicted label can be compared with the original label of
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each record encoded in the chromosome to determine the re-classification accuracy
and based on it, the fitness value of the cluster grouping encoded in a chromosome
can be determined. As discussed before, if a clustering algorithm is effective, the
discovered clusters should contain patterns that can be used to accurately re-classify
the records in the testing data. And if this is the case, the re-classification accuracy
measure is an indication of how good the quality of the cluster grouping is. For this
reason, the re-classification accuracy is then taken to be the fitness of each

chromosome.

5.2 Experiments

A. Experimental Data
For experimentation, we used a set of simulated data consisting of 300 records each
characterized by 50 different attributes that takes on values from [0.0, 1.0]. Initially,
all these records were sampled from a uniform distribution and they were pre-
classified into one of three clusters so that each cluster contains 100 records. To
embed hidden patterns in the data, 10% of the attributes in each cluster were
randomly selected. For each selected attribute, 30%-40% of its values in that cluster
were randomly generated from within a certain range [L, U], where 0.0 <L < U <
1.0 so that L was selected uniformly from [0.0, 1.0] first, and U was then also
selected uniformly from [L, 1.0].

In addition to the simulated data, to test the effectiveness of EvoCluster, we also
used two different sets of real expression data. For Dataset 1, it contains a subset of
about 380 genes measured under 17 different experimental conditions and we tried

in our experiments to partition this data set into different clusters from 4 to 8 [29].
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For Dataset 2, it contains a subset of about 800 genes measured under 77 different
experimental conditions and we also tried to partition this data set into different
clusters from 6 to 10 [141]. For performance evaluation, EvoCluster was evaluated
based on three objective measures as discussed in Chapter 4, Section 4.2. They are
the F-measure, the predictive power measure, and the Davies-Bouldin validity index

(DBI) measure.

5.3 Results and Discussions

The effectiveness of EvoCluster has been compared with a number of different
clustering algorithms (as discussed in Chapter 2, Section 2.3.3) using both simulated
and real data.

In our experiments, we adopted the default settings for the parameters of SOM
[85] as described in [149] (i.e., the bubble neighborhood function, the initial learning

weight (Alpha _i) was set to 0.1, the final learning weight (Alpha _ f ) was set to
0.005, the initial sigma (Sigma _i) was set to 5 and the finial sigma (Sigma _ f)

was set to 0.5, etc.). Since a given number of clusters (say 6) can represent multiple
SOM geometries (i.e., 1x6, 2x3, etc), we also tried all these geometries in order to
obtain the best cluster grouping with SOM. For both SOM and the k-means
algorithms [100], 5000 iterations were performed. Also, to ensure that the best
results for them were obtained, 100 runs were performed for each of them with each
run using different randomly-generated initial cluster centroids. Only the best result
from among these 100 runs was recorded. Afterward, such 100-run test was repeated
10 times. The 10 best results obtained from each 100-run test were then recorded

(Table 5.1).
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In the case of EvoCluster, we also performed 10 trials in our experiments. For
each such trial, we randomly generated different initial populations of size fixed at
50. Using a steady-state reproduction scheme, the evolutionary process was
terminated either when the maximum chromosome fitness converged or when the
maximum number of reproductions reached 5000. As summarized in Table 5.1, the
total number of iterations performed with k-means and SOM is 100 times more than
the total number of reproductions carried out using EvoCluster. This was done to
ensure that EvoCluster would not use any more computational resources (in terms of
the number of trial-and-errors through iterations/reproductions) than other clustering

algorithms it was being compared against.

TABLES.1
SUMMARY OF THE NUMBER OF REPRODUCTIONS/ITERATIONS
PERFORMED BY EVOCLUSTER, K-MEANS AND SOM

No. Of. reprc_)ductlons No. of runs No. of trials
[iterations
EvoCluster 5000 - 10
k-means 5000 100 10
SOM 5000 100 10

During the evolutionary process, the probabilities of selection of a gene or a
record label in a gene, used by the crossover and mutation operators, were randomly
generated from within [0.2, 0.8] using a random number generator [108].

In order to evaluate the effectiveness of EvoCluster, in addition to the traditional
clustering algorithms, we also compared its performance with a clustering algorithm
that represents one of the most successful attempts to use EA in clustering [107].
Each gene in it encodes one dimension of a cluster center and a chromosome
encodes a fixed number of clusters. For our experiment with it, we set the crossover
rate to 0.8 and the mutation rate to 0.001, i.e., the same as that used in [107]. Other

parameter settings, including population size, number of reproductions, etc., were set
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exactly the same as that with EvoCluster.

Since one of the desirable features of EvoCluster is its ability to distinguish
relevant from irrelevant feature values during the evolutionary process, we also
compared its performance against various hybrid clustering algorithms that use a
feature selection technique in combination with a clustering algorithm. Specifically,
we used an effective feature selection technique together with the k-means algorithm,
SOM, the hierarchical clustering algorithm, and the EA-based algorithm to see how
much improvement the performances of these algorithms can have when features
were first filtered for clustering. Among different feature selection techniques that
can be used for this purpose [49], [65], [143], [146], [160], we chose to consider the
one described in [143], [146]. This is because this technique, which makes use of the
t-statistic measure, has been popularly used to reduce the number of attributes in
gene expression data. Given an initial cluster grouping, the feature selection was
adopted and performed in several steps as follows:

(i) A cluster grouping is first determined using say, the k-means algorithm (or

SOM, or the hierarchical clustering algorithm, or the EA-based algorithm
[107], etc.) that the feature filtering method is hybridizing with.

(ii) Given the initial cluster grouping, a t-statistic measure is then computed for
each attribute to determine how well it is able to distinguish one cluster from
the rest of the others.

(iii)Based on the t-statistic, a new subset of attributes with the largest t-values is
obtained by first selecting 5% of the attributes that has the largest t-values.
With this new attribute subset, a classifier is then generated using C4.5 [131]
and its classification accuracy is measured using ten-fold cross validation.

Afterward, the process of adding another 5% of the attributes with the largest
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t-values to this new attribute subset and measuring the accuracy of the
resulting new classifier is repeated. The final attribute subset is determined
when the performance of the classifier converge [143].

(iv) With this final attribute subset, a new and improved cluster grouping is then

determined.

For performance evaluation, we also compared the performance of EvoCluster
with the two-phase clustering algorithm proposed in Chapter 4. By using the k-
means algorithm, SOM, the hierarchical clustering algorithm and the EA-based
clustering algorithm in the first phase respectively and then applying the re-
clustering phase in the second, the re-clustered result of each algorithm can be

obtained.

1. Simulated Data
Since the number of clusters (k=3) to discover was known-in-advance for the
simulated data, the length of the chromosome was fixed in our experiment to be 3
(the merge and split mutation operators were not used in the simulated data). Table
5.2 shows the parameter settings of EvoCluster used in the simulated data.

TABLE 5.2

PARAMETER SETTINGS OF EVOCLUSTER USED IN SIMULATED DATA
(P, REPRESENTS THE PROBABILITY OF GUIDED OR UNGUIDED

CROSSOVER OPERATOR SELECTED AND P, REPRESENTS THE
PROBABILITY OF GUIDED OR UNGUIDED MUTATION OPERATOR SELECTED)

PP MmN [max | Pl P | L | Uy | L],
Size
Smg“'ated 50 | 3 3 | 05|05 (02| 08/ 02|08
ata

As discussed in the previous section, EvoCluster has a set of “guided” and

“unguided” operators. For the “guided” operators, the exchange of grouping
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information is not totally random in the sense that the grouping information of the
“best-formed” clusters is preserved during the evolutionary process. For the
“unguided” operators, the exchange of the grouping information between clusters
takes place randomly. To determine if there is a real need for both types of operators,
three separate experiments were carried out on the simulated data. In the first
experiments, a 50-50 mixture of “guided” or “unguided” operators were used
whereas in the second and third, only “guided” operators and only *“unguided”
operators were used respectively. The average number of reproductions performed
by each algorithm until convergence and also the average F-measure are given in

Table 5.3.

TABLE 5.3
COMPARISON OF THE CLUSTERING PERFORMANCES OBTAINED BY
USING “GUIDED+UNGUIDED” OPERATORS, “GUIDED” OPERATORS,
OR “UNGUIDED” OPERATORS
(SIMULATED DATA)

No. of reproduction
k F-measure
(convergence)
Unguided +

Guided 3 3830 0.91
operators
Unguided | 4561 0.63
operators

Guided 3 3050 0.80
operators

As shown in Table 5.3 and as expected, when only “guided” operators were used
alone, it appeared that the result converged only to some local optima and when only
“unguided” operators were used alone, not only a longer evolutionary process was
required, the result obtained was unsatisfactory. The performance of EvoCluster is at
its best when both “guided” and “unguided” operators were used together even
though it required more reproductions to converge (compared to “guided” operators

alone). Based on these results, we conclude that both the “guided” and “unguided”
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operators have a role to play in the evolutionary process. When they are used
together, they can facilitate the exchange of grouping information in a way that such
information in the “best-formed” clusters is preserved as much as possible during
the evolutionary process on one hand but variations can be introduced at the same
time on the other so as to avoid trapping at local optima too early. The performance
of EvoCluster has been compared with other clustering algorithms and the results

are given in Table 5.4 below.

TABLES.4
COMPARISON OF THE AVERAGE F-MEASURE
(SIMULATED DATA)

EA-based Re-clustered

EvoCluster EA-based +ES EA-based k-means
k=3 0.91 0.66 0.78 0.82 0.61
k-means Re-clustered SOM SOM Re-clustered
+ FS k-means + FS SOM
k=3 0.75 0.77 0.57 0.72 0.72
Hierarchical Hierarchical | Re-clustered
+ FS Hierarchical
k=3 0.52 0.65 0.70

As shown in the above tables, compared with other clustering algorithms,
EvoCluster performs better in terms of the F-measure. Moreover, it seems that none
of the EA-based, k-means, SOM and hierarchical algorithms (with or without feature
selection) is particularly effective when handling very noisy data such as the
simulated data. In order to decide if the differences between these clustering
algorithms are significantly different, we performed one-sided pair-wise t-test [50]
on the null and alternative hypotheses of Ho: W1 > P2 and Ha: g1 < Mo, respectively.
The results of the t-tests confirm that the differences are all statistically significant at
the 95% confidence level (in Table 5.5). This shows that EvoCluster is very robust

in the presence of a very noisy environment.
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TABLE 5.5
RESULTS OFT-TEST (10 TRIALS)
(SIMULATED DATA) (F REPRESENTS F-MEASURE)

Test # | Measure | Null Hypothesis (Ho: 1 > |) t-test Accept/Reject
1 F MEvoCluster > HEA-based +25.23 Accept
2 F MEvoCluster > Hk-means +34.17 Accept
3 F HEvoCluster > Hsom +42.54 Accept
4 F HEvoCluster > HHierarchical +76.22 Accept
S F MEvoCluster > HEA-based+FS +19.45 Accept
6 F HEvoCluster > Mk-means+Fs +22.36 Accept
7 F MEvocluster > Usom+Fs +25.08 ACCEpt
8 F HevoCluster > HHierarchical+Fs +33.95 Accept
9 F HEvoCluster > HRe-clustered EA-based +15.26 Accept
10 F HEvoCluster > HReclustered k-means +19.94 Accept
11 F MEvoCluster > HRe-clustered SOM +23.86 Accept
12 F MEvoCluster > HRe-clustered Hierarchical +27.65 Accept

2. Gene Expression Data

The performances of EvoCluster have also been evaluated using real expression data
sets. The minimum and maximum number of clusters considered for both Datasets 1
and 2 were set at (MIN=4, MAX=8) and (MIN=6, MAX=10), respectively. Table 5.6

shows the parameter settings of EvoCluster used in Datasets 1 and 2.

TABLE 5.6
PARAMETER SETTINGS OF EVOCLUSTER USED
IN GENE EXPRESSION DATA

Pl MIN [ mAX | Rl Rl L | UL |,
Size
Datflset 50 | 4 | 8 |05 |017| 02 | 08 | 02 | 08
Dag"set 50 | 6 | 10 | 05 | 017 | 02 | 08 | 02 | 08

As with the simulated data, the experiments with Datasets 1 and 2 were repeated
three times with a mixture of guided and unguided operators, unguided operators
alone and guided operators alone respectively. Based on the results showed in
Tables 5.7 and 5.8, we found that using both “guided” and “unguided” operators

together, once again, gave us the best clustering results.
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TABLE 5.7

COMPARISON OF THE CLUSTERING PERFORMANCES OBTAINED BY
USING “GUIDED+UNGUIDED” OPERATORS, “GUIDED” OPERATORS,
OR “UNGUIDED” OPERATORS

(DATASET 1)

k No. of reproduction Predictive power DBI
(convergence)

4 3104 87.10% 1.52
Unguided 5 3631 89.86% 1.48
+ 6 4703 80.90% 1.57
Guided 7 4464 83.42% 1.58
operators 8 4405 77.33% 1.59
Average 4061 83.72% 1.55
4 4852 67.68% 1.62
5 4197 70.41% 1.61
Unguided 6 4763 62.33% 1.65
operators 7 4945 64.75% 1.64
8 4572 62.59% 1.65
Average 4666 65.55% 1.63
4 2670 76.13% 1.57
5 1978 78.47% 1.57
Guided 6 2404 75.94% 1.59
operators 7 4204 72.16% 1.60
8 3978 70.08% 1.61
Average 3047 74.56% 1.59
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TABLE 5.8
COMPARISON OF THE CLUSTERING PERFORMANCES OBTAINED BY
USING “GUIDED+UNGUIDED” OPERATORS, “GUIDED” OPERATORS,
OR “UNGUIDED” OPERATORS

(DATASET 2)

k No. of reproduction Predictive power DBI
(convergence)

6 3325 84.88% 1.59
Unguided 7 3701 81.25% 1.64
+ 8 4088 78.19% 1.67
Guided 9 4717 74.26% 1.67
operators 10 4779 73.26% 1.68
Average 4122 78.37% 1.65
6 4493 67.28% 1.69
7 4989 65.36% 1.69
Unguided 8 ATT7 57.19% 1.79
operators 9 4815 58.34% 1.79
10 4622 59.71% 1.78
Average 4739 61.58% 1.75
6 2089 73.23% 1.64
7 3385 71.02% 1.65
Guided 8 2876 67.49% 1.68
operators 9 4002 66.33% 1.68
10 4747 68.51% 1.70
Average 3420 69.32% 1.67

The performances of EvoCluster in comparison with other algorithms are given

in Tables 5.9-5.12.
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TABLES.9
COMPARISON OF THE AVERAGE PREDICTIVE POWER
(DATASET 1)
EA-based Re-clustered

EvoCluster EA-based +ES EA-based k-means
k=4 87.10% 70.23% 77.41% 79.36% 76.43%
k=5 89.86% 73.92% 80.16% 82.27% 70.68%
k=6 80.90% 68.34% 72.77% 74.61% 66.98%
k=7 83.42% 69.12% 75.53% 73.39% 64.77%
k=8 77.33% 60.02% 67.58% 70.48% 63.12%
Avg 83.72% 68.33% 74.69% 76.02% 68.40%

k-means Re-clustered SOM SOM Re-clustered
+ FS k-means + FS SOM

k=4 80.02% 81.35% 72.38% 78.21% 76.48%
k=5 77.48% 83.11% 68.53% 75.51% 77.53%
k=6 75.92% 73.09% 64.26% 69.23% 71.47%
k=7 72.37% 71.22% 63.84% 70.06% 72.81%
k=8 69.55% 68.72% 61.39% 70.84% 68.06%
Avg 75.07% 75.50% 66.08% 72.77% 73.27%

Hierarchical Hierarchical Rt_a-cluste_red

+ FS Hierarchical

k=4 74.39% 75.37% 17.74%
k=5 75.22% 76.82% 78.18%
k=6 73.23% 75.16% 77.09%
k=7 64.66% 66.79% 69.21%
k=8 62.30% 64.23% 66.11%
Avg 69.96% 71.67% 74.07%
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TABLE5.10
COMPARISON OF THE AVERAGE DBI
(DATASET 1)
EA-based Re-clustered
EvoCluster EA-based +ES EA-based k-means
k=4 1.52 1.61 1.57 1.57 1.59
k=5 1.48 1.54 151 1.51 1.56
k=6 1.57 1.62 1.60 1.61 1.62
k=7 1.58 1.61 1.60 1.60 1.66
k=8 1.59 1.69 1.65 1.63 1.68
Avg 1.55 1.61 1.58 1.58 1.62
k-means Re-clustered SOM SOM Re-clustered
+ FS k-means + FS SOM
k=4 1.56 1.58 1.62 1.58 1.60
k=5 1.52 1.51 1.64 1.55 1.53
k=6 1.60 1.60 1.62 1.59 1.59
k=7 1.61 1.60 1.70 1.67 1.64
k=8 1.64 1.62 1.79 1.72 1.69
Avg 1.59 1.58 1.67 1.62 1.60
Hierarchical Hierarchical Rt_a-cluste_red
+ FS Hierarchical
k=4 1.61 1.60 1.59
k=5 1.59 1.56 1.56
k=6 1.58 1.57 1.57
k=7 1.68 1.61 1.60
k=8 1.69 1.67 1.67
Avg 1.63 1.60 1.59
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TABLES5.11
COMPARISON OF THE AVERAGE PREDICTIVE POWER
(DATASET 2)
EA-based Re-clustered
EvoCluster EA-based +ES EA-based k-means
k=6 84.88% 72.26% 78.43% 81.37% 67.23%
k=7 81.25% 61.37% 69.55% 73.09% 63.19%
k=8 78.19% 67.12% 72.38% 73.47% 61.40%
k=9 74.26% 60.51% 65.43% 68.81% 64.77%
k=10 73.26% 64.86% 70.24% 71.24% 62.59%
Avg 78.37% 65.22% 71.21% 73.60% 63.84%
k-means Re-clustered SOM SOM Re-clustered
+ FS k-means + FS SOM
k=6 75.86% 77.66% 62.88% 69.14% 73.33%
k=7 72.37% 75.91% 63.75% 70.04% 69.42%
k=8 68.88% 70.03% 56.21% 66.56% 69.19%
k=9 70.12% 69.64% 56.87% 68.38% 69.80%
k=10 71.11% 70.98% 48.38% 59.48% 63.75%
Avg 71.67% 72.84% 56.72% 66.72% 69.10%
Hierarchical Hierarchical Rt_a-cluste_red
+ FS Hierarchical
k=6 65.30% 71.75% 74.78%
k=7 59.86% 66.32% 64.02%
k=8 63.11% 68.29% 70.35%
k=9 62.80% 67.74% 66.67%
k=10 58.21% 68.86% 69.92%
Avg 61.85% 68.59% 69.15%
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TABLE5.12
COMPARISON OF THE AVERAGE DBI
(DATASET 2)
EA-based Re-clustered
EvoCluster EA-based +ES EA-based k-means
k=6 1.59 1.65 1.62 1.61 1.67
k=7 1.64 1.70 1.69 1.67 1.70
k=8 1.67 1.69 1.68 1.68 1.71
k=9 1.67 1.72 1.69 1.69 1.70
k=10 1.68 1.73 1.70 1.70 1.72
Avg 1.65 1.69 1.67 1.67 1.70
k-means Re-clustered SOM SOM Re-clustered
+ FS k-means + FS SOM
k=6 1.63 1.62 1.74 1.69 1.68
k=7 1.68 1.67 1.77 1.72 1.70
k=8 1.70 1.69 1.78 1.75 1.72
k=9 1.68 1.68 1.79 1.75 1.75
k=10 1.70 1.70 1.85 1.79 1.75
Avg 1.68 1.67 1.79 1.74 1.72
Hierarchical Hierarchical Rt_a-cluste_red
+ FS Hierarchical
k=6 1.71 1.70 1.70
k=7 1.76 1.74 1.72
k=8 1.73 1.72 1.70
k=9 1.76 1.75 1.72
k=10 1.79 1.76 1.75
Avg 1.75 1.73 1.71

The F-measure was not computed for the experiments with real data sets as the
original correct clustering results are not known. To confirm that these differences
are also statistically significant, we performed one-sided pair-wise z-test [50] (as the
sample size is large enough, the z-test is used rather than the t-test) on the null and
alternative hypotheses of Ho: 11 > [z and Ha: [ < [, respectively, for the case of the
predictive power and on the null and alternative hypotheses of Ho: p1 < g2 and Ha: g
> Ug, respectively, for the case of the DBI measure. The results of these tests are

shown in Tables 5.13 and 5.14. According to the above tables, EvoCluster again
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performs better than others even with the combination of the feature selection

method.

TABLE 5.13
RESULTS OF Z-TEST (10 TRIALS) (DATASET 1 - OVER ALL Ks)
(P REPRESENTS PREDICTIVE POWER AND D REPRESENTS DBI)

Test # | Measure Null Hypothesis (Ho: 1 > L) z-test | Accept/Reject
1 P HEvoCluster > HEA-based +14.87 Accept
2 P HEvoCluster > Hk-means +16.13 Accept
3 P Mevocluster > Hsom +23.48 Accept
4 P HevoCluster > MHierarchical +21.32 Accept
S P HEvoCluster > HEA-based+FS +8.66 Accept
6 P HEvoCluster > Hk-means+Fs +8.53 Accept
7 P MEvoCluster > Usom+Fs +13.36 ACCEpt
8 P HEvoCluster > HHierarchical+FS +14.55 Accept
9 P MEvoCluster > HRe-clustered EA-based +6.72 Accept
10 P MEvoCluster > HReclustered k-means +7.06 Accept
11 P HEvoCluster > URe-clustered SOM +11.98 Accept
12 P HEvoCluster > MRe-clustered Hierarchical +10.33 Accept
Test # | Measure Null Hypothesis (Ho: 1 < L) z-test | Accept/Reject
1 D HEvoCluster < HEA-based -11.58 Accept
2 D HEvoCluster < Hk-means -12.26 Accept
3 D HevoCuster < Psom -18.75 Accept
4 D MEvoCluster < HHierarchical -17.16 Accept
S D HEvoCluster < HEA-based+FS -8.58 Accept
6 D HEvoCluster < Hk-means+FS -9.32 Accept
7 D HEvoCluster < HSOM+FS -12.17 Accept
8 D MEvoCluster < HHierarchical+Fs -11.84 Accept
9 D MEvoCluster < HRe-clustered EA-based -8.21 Accept
10 D MEvoCluster < UReclustered k-means -8.79 Accept
11 D HEvoCluster < HRe-clustered SOM -11.65 Accept
12 D HevoCluster < URe-clustered Hierarchical -10.37 Accept
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TABLE 5.14

RESULTS OF Z-TEST (10 TRIALS) (DATASET 2 - OVER ALL Ks)
(P REPRESENTS PREDICTIVE POWER AND D REPRESENTS DBI)

Test # | Measure Null Hypothesis (Ho: 11 > ) z-test | Accept/Reject
1 P HEvoCluster > HEA-based +13.12 Accept
2 P HEvoCluster > Hk-means +13.04 Accept
3 P MEvocluster > Hsom +16.18 Accept
4 P MEvoCluster > HHierarchical +13.67 Accept
S P MEvoCluster > HEA-based+FS +10.72 Accept
6 P HEvoCluster > Hk-means+Fs +9.88 Accept
7 P MEvoCluster > Usom+Fs +13.37 ACCEpt
8 P HEvoCluster > HHierarchical+Fs +11.94 Accept
9 P MEvoCluster > HRe-clustered EA-based +8.61 Accept
10 P MEvoCluster > HReclustered k-means +9.28 Accept
11 P HEvoCluster > HRe-clustered SOM +11.04 Accept
12 P HEvoCluster > MRe-clustered Hierarchical +10.36 Accept
Test # | Measure Null Hypothesis (Ho: 1 < ) z-test | Accept/Reject
1 D HEvoCluster < HEA-based -7.69 Accept
2 D MEvoCluster < Hk-means -8.25 Accept
3 D HevoCluster < Hsom -12.72 Accept
4 D MEvoCluster < HHierarchical -8.77 Accept
S D HEvoCluster < HEA-based+FS -6.28 Accept
6 D HEvoCluster < Hk-means+FS -6.87 Accept
7 D Hevocluster < Hsom+Fs -9.93 Accept
8 D MEvoCluster < HHierarchical+Fs -7.11 Accept
9 D MEvoCluster < HRe-clustered EA-based -5.98 Accept
10 D HEvoCluster < UReclustered k-means -6.16 Accept
11 D HEvoCluster < HRe-clustered SOM -8.45 Accept
12 D HevoCluster < URe-clustered Hierarchical -6.97 Accept

Biological Interpretation:

Based on the clustering results obtained by EvoCluster, we are able to discover some

interesting associations that may have great biological significance. For example, for

Dataset 1, when k=5 (which gives the best results), and for Dataset 2, when k=6

(which gives the best results), we discovered some associations (represented in if-

then rule format) as shown in Tables 5.15 and 5.16, respectively.
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TABLES5.15

INTERESTING ASSOCIATIONS DISCOVERED

(DATASET 1)

If Cond4 = [-2.56, -1.28]
then C1 [0.96]

If Cond11 = [-1.53, -0.27]
then C4 [0.90]

If Cond8 =[-0.28, 1.01]
then C5 [0.90]

If Cond10 = [1.48, 2.97]
then C1 [0.92]

If Cond12 = [0.87, 1.95]
then C2 [0.90]

If Cond17 = [-0.23, 0.86]
then C3 [0.86]

If Cond11 =[0.99, 2.26]
then C2 [0.86]

If Condl = [-0.14, 1.25]
then C5 [0.88]

If Cond3 =[-2.87, -1.41]
then C3 [0.94]

If Cond3 =[0.02, 1.45]
then C4 [0.92]

TABLES5.16

INTERESTING ASSOCIATIONS DISCOVERED

(DATASET 2)

If Cond5 =[0.45, 2.12]
then C1 [0.86]

If Cond45 =[0.56, 3.35]
then C5 [0.85]

If Cond63 = [0.32, 1.32]
then C6 [0.90]

If Cond29 = [-2.5, -0.42]
then C4 [0.92]

If Cond67 = [-1.27, -0.29]
then C3 [0.92]

If Cond10 = [-2.24, -0.21]
then C4 [0.88]

If Cond58 = [-1.83, -0.32]
then C5 [0.90]

If Cond8 =[0.04, 0.24]
then C2 [0.86]

If Cond15 = [-2.17, -0.33]
then C6 [0.84]

If Cond51 = [0.56, 3.35]
then C1 [0.88]

If Cond36 = [0.43, 1.96]
then C2 [0.83]

If Cond21 =[0.53, 2.54]
then C3 [0.84]

The discovered associations can be interpreted as follows. In Table 5.15, the rule
“If Cond3 = [-2.87, -1.41] then C3 [0.94]”, means that if the expression value of a
gene under experimental condition, Cond3, is within the interval from [-2.87, -1.41],
then there is a probability of 0.94 that it belongs to cluster C3. In Table 5.16, for the
rule “If Cond5 = [0.45, 2.12] then C1 [0.86]", it states that if the expression value of
a gene under experimental condition, Cond5, is within the interval [0.45, 2.12], then
there is a probability of 0.86 that it belongs to cluster C1.

The discovery of these associations is of biological significance in several ways:

1. Based on them, we found that genes within a cluster share similar expression

patterns. For example, for Dataset 2, genes in cluster C2 expressed very
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similarly to each other under the conditions of Cond8 and Cond36, and
genes in cluster C3 expressed very similarly to each other under the
conditions of Cond21 and Cond67, etc.

2. The associations discovered in each cluster can lead to the discovery of
functionally similar or related genes. For example, by closely examining the
results with Dataset 2, we found that genes such as YBL023C, YELO32W,
YLR103C, YLR274W, YBR202W, and YPRO19W, etc., which are directly
involved in DNA replication [19], [42], satisfied the rule “If Cond10 = [-
2.24, -0.21] then C4 [0.88]”. We also found that many genes that are
involved in mitosis, such as YPR119W, YGR108W, YDR146C, YGR109C,
and YMLO027W [19] satisfied the rules “If Cond63 = [0.32, 1.32] then C6
[0.90]”.

3. Biologists can make use of these associations to classify other newly found
genes of the same organism in order to infer their potential biological
functions [109].

4. In addition to the possible identification of functionally related genes, the
discovered associations are expected to help biologists better understanding
their expression data. For example, they can help biologists better planning
and designing their experiments by focusing on the transcriptional responses
of genes in one cluster at a time and by reducing the number of experimental
tests required [144].

5. Given that the associations discovered in each cluster are different, we
attempted to see if there are any known binding sites in each discovered
cluster. To do so, we looked at the corresponding promoter regions (from

SGD [19]) of the genes in each cluster. We used a popular motif-discovery
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algorithm described in [78] to try to search for transcription factor binding
sites in the DNA sequences. Since many regulatory sites can be detected
with hexanucleotide analysis [78], we also set the oligonucleotide length to
be six. All discovered sites in each cluster were then checked against the
well-known binding sites [19], [79]. As shown in Tables 5.17 and 5.18, we
did discover the patterns that are known transcription factors binding sites.
Moreover, in addition to known binding sites, we were able to discover
some other potentially important sites (Tables 5.19 and 5.20). The validity
of these sites can be confirmed by biologists using different bio-chemical

methods [145].

TABLES5.17
KNOWN TRANSCRIPTION FACTOR BINDING SITES
REVEALED FROM THE DISCOVERED CLUSTERS

(DATASET 1)
Cluster Sequence revealed Binding Site Name
Cl TAAACA Mcml
CTGTCC (potential
2 variant of éPI'GTGG) Met31;Met32
C3 CCAGCA Swib;Ace2
C4 AAGAAA SCB
C5 ACGCGT MCB
TABLE5.18
KNOWN TRANSCRIPTION FACTOR BINDING SITES
REVEALED FROM THE DISCOVERED CLUSTERS
(DATASET 2)
Cluster Sequence revealed Binding Site Name
Cl ACGCGT MCB
C2 CGCGAA SCB
C3 CCAGCA Swib;Ace2
C4 CCCAAA Mcml
C5 CTGTGG Met31;Met32
C6 AAACAA SFF
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TABLE 5.19
SOME POTENTIAL TRANSCRIPTION FACTOR
BINDING SITES REVEALED FROM THE DISCOVERED CLUSTERS

(DATASET 1)
Cluster Sequence revealed Cluster Sequence revealed

C1 GATGCC C4 AGGAAA
CTCGAC AGACCA
AGAAAC CTCTAA
C2 TGGACA C5 GTCGCG
GGTGAT CGCGTT
TGTCCA CGACGC

C3 CCAGCC

AGATCG

AGGTGA

TABLE 5.20
SOME POTENTIAL TRANSCRIPTION FACTOR
BINDING SITES REVEALED FROM THE DISCOVERED CLUSTERS
(DATASET 2)
Cluster Sequence revealed Cluster Sequence revealed

C1 AACTCG C4 GGTCAA
ACGCGA TTGGGT
GCGTTT TAGGAA
C2 GACGCG C5 GGCCCA
TCATGG TGGATG
ATCGTC TCCAAG
C3 GAGCCA C6 GCTAGA
TGGTTT CCACAG
GGCTGG GTGTGC

Compared with EvoCluster, other clustering algorithms are only able to discover
some of the known binding sites in some of the clusters they discovered (Tables
5.21 and 5.22). This is an indication that the cluster groupings discovered by
EvoCluster are more biologically meaningful and significant than the groupings
discovered by others. The total numbers of confirmed and suspected binding sites
discovered in the clusters found by the various clustering algorithms are also given
in Tables 5.23 and 5.24 for Datasets 1 and 2 respectively. In both data sets,

EvoCluster is able to find many more such binding sites.
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DISCOVERY OF KNOWN TRANSCRIPTION FACTOR BINDING SITES

TABLES.21

IN EACH CLUSTER DISCOVERED BY DIFFERENT CLUSTERING ALGORITHMS

(DATASET 1) (SITE NAME AND THE NO. OF OCCURRENCES)

Cl C2 C3 Ca c5
EvoCluster Mcml Met31;Met32 Swi5;Ace2 SCB MCB
(64) (99) (32) (138) | (101)
EA-based Mcml Met31;Met32 ) SCB MCB
(30) (58) (102) (73)
k-means Mcm1 i Swi5;Ace2 SCB MCB
(23) (21) (119) (85)
Swib;Ace2 SCB MCB
>oN i i (25) (114) (65)
Hierarchical | Mcm1 ) ] SCB MCB
(26) (96) (57)
TABLE 5.2

DISCOVERY OF KNOWN TRANSCRIPTION FACTOR BINDING SITES

IN EACH CLUSTER DISCOVERED BY DIFFERENT CLUSTERING ALGORITHMS

(DATASET 2)
C1 C2 C3 C4 C5 C6
EvoCluster MCB SCB | Swi5;Ace2 | Mcml | Met31;Met32 SFF
(139) (86) (44) (62) (102) (207)
MCB Mcm1 SFF
EA-based (95) - - (55) ) (116)
Kemeans MCB i i Mcm1 i SFF
(79) (40) (134)
Mcm1l SFF
SOM ' ' ' (36) ' (89)
Hierarchical McB SCB - - - SFF
(61) (31) (107)
TABLE 5.23
TOTAL NUMBER OF KNOWN AND POTENTIAL TRANSCRIPTION
FACTOR BINDING SITES IN EACH CLUSTER DISCOVERED
BY DIFFERENT CLUSTERING ALGORITHMS
(DATASET 1)
C1 C2 C3 C4 C5
EvoCluster 14 11 8 17 19
EA-based 9 5 3 7 15
k-means 6 2 5 12 9
SOM 4 3 3 9 13
Hierarchical 4 - 2 3 10

115




CHAPTER 5 - CLUSTERING OF GENE EXPRESSION DATA
USING EVOLUTIONARY COMPUTATION

TABLE 5.24
TOTAL NUMBER OF KNOWN AND POTENTIAL TRANSCRIPTION
FACTOR BINDING SITES IN EACH CLUSTER DISCOVERED
BY DIFFERENT CLUSTERING ALGORITHMS

(DATASET 2)
C1 C2 C3 C4 C5 C6
EvoCluster 12 21 9 4 24 15
EA-based 5 9 6 4 8 11
k-means 8 7 3 3 13 10
SOM 4 5 - 3 7 6
Hierarchical 5 12 - - 4 6

5.4 Extension of EvoCluster: Mining Overlapping Clusters in
Gene Expression Data

While many clustering algorithms have been used successfully with gene expression
data, it should be noted that they usually perform their tasks under the assumption
that each gene belongs only to one cluster. Such an assumption can sometimes be an
over-simplification of the great biological complexity underlying the gene
expression process. As many proteins have multiple functional roles in a cell, they
have to interact with different groups of other proteins to fulfill them. The genes that
produce these proteins are therefore expected to co-express with different groups of
other genes in order to meet the varying demands of a cell. In other words,
depending on the experimental conditions being investigated, each gene may have
similar expression patterns with different groups of other genes in other clusters and
they can, therefore, belong to more than one cluster. This poses a challenge to
existing clustering algorithms as they need to tackle two difficult problems: (i) they
need to handle overlapping clusters which they were not originally developed to do
so, and (ii) they need to discover overlapping clusters in the presence of noise.

In order to do so, some attempts have been made to use the fuzzy k-means

algorithm [20] in the clustering of gene expression data [9], [58], [63]. The main
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difference between the fuzzy k-means algorithm and the standard k-means algorithm
is in the assignment of genes to a cluster. Rather than assigning a gene to one and
only one cluster, the fuzzy k-means algorithm allows each gene to be assigned
partially to more than one cluster according to a degree of membership that ranges
between 0 and 1. Genes that are very near a given cluster centroid are assigned a
higher degree of membership to that cluster and genes that are very far away are
assigned a lower degree. The only constraint such a cluster assignment process
needs to work under is that a gene cannot belong completely (with full degree of
membership) to more than one cluster. In fact, the sum of the degree of membership
for a gene to belong to different clusters has to be 1.

When dealing with gene expression data, it should be noted that, similar to many
existing clustering algorithms, the fuzzy k-means algorithm may not be able to
perform effectively. For example, it makes use of the Euclidean distance or some
correlation coefficients when measuring similarity. One problem with these
similarity measures is that they do not differentiate between the relevancy of
different data values collected under different experimental conditions. And for this
reason, they do not give very accurate measurements when dealing with noisy data.
Other than these problems, the fuzzy k-means algorithm also requires users to define,

in advance, a fuzziness parameter, m e {1,}, ahead of time as it may require many

trials and errors. The fuzziness parameter determines the degree of fuzziness of the
clustering process. When m is set to 1, the clustering algorithm performs a hard
partition and when m is set to infinity, the clustering assumes the highest degree of
fuzziness. If m is not properly set, there is a chance that none of the genes can be

tightly associated with any clusters. In such case, even though a clustering structure
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can be found, the degree-of-membership values can all be relatively small making
the results very difficult to interpret. The selection of appropriate fuzziness
parameter is hence very important for the fuzzy k-means algorithm to perform
effectively but it also adds an additional level of difficulty to the cluster-discovery
process. In addition to the above, the fuzzy k-means algorithm does not make
explicit the patterns discovered in a data set during the clustering process. To better
understand and interpret the clustering results, a separate technique is usually
required for patterns underlying each discovered cluster to be uncovered explicitly.

In an attempt to solve these problems, we combined EvoCluster [111] (as
discussed in Section 5.1) with the re-clustering process [112] (as described in
Chapter 4, Section 4.1, phase 2) to mining overlapping clusters in gene expression
data. This extended version [116]-[117] also consists of two phases: an initial
clustering phase and a second re-clustering phase, and is able to discover
overlapping clusters on one hand and overcome some of the limitations of existing
methods on the other.

For the initial clustering phase, EvoCluster is used to discover the initial clusters
from gene expression data. For the re-clustering phase, interesting associations
between the expression levels and cluster labels are first identified in the initial
clusters. Then, based on the discovered associations and the weight of evidence
measure, rather than assigning a gene to the cluster with the largest total weight of

evidence as we performed before, the total weight of evidence supporting a gene

belongs to each cluster, Cp , Where p=1,...,P and P is the total number of initial

clusters discovered, is calculated (using EQ.(4.3)). The cluster memberships of the

genes that have previously been assigned are then re-evaluated to determine whether
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they should belong to the same cluster or be assigned to more than one. This
extended version of EvoCluster facilitates the discovery of overlapping clusters by
assigning a gene to more than one cluster only if there is a positive total weight of
evidence of this gene to belong to the given cluster. Moreover, it can also facilitate
the identification of groups of genes that have a strong association (i.e., with large
weight of evidence) to the cluster for further biological analysis, for example,

functional annotations [103].

5.4.1 Experiments

A. Experimental Data

For experimentation, we used a set of simulated data consisting of 300 records each
characterized by 50 different attributes that takes on values from [0.0, 1.0]. These
records were first grouped into three clusters based on embedding the patterns
unique to each cluster. To do so, for each cluster, we randomly select 20% of the
attributes. For each selected attribute, its values in 40% of the records in this cluster

were generated randomly from within the range [L., U_], where L, and U_ were
also generated randomly so that 0.0 < L, < U_ < 1.0. To ensure that overlapping of

clusters, three sets of overlapping patterns were embedded into the data as follows.
First, for each set of overlapping patterns, 10% of the attributes and 20% of the
records were randomly selected (selected from the whole data set rather than from
each cluster). The value of a selected attribute in each selected record was then

generated randomly only from within the same range [L,, U, ], where L, and U,

were also randomly generated and 0.0< L, <U, <1.0.
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In addition to simulated data, we have also tested the proposed algorithm using
two sets of gene expression data. The first set, Dataset 1, contains 517 genes whose
expression levels vary in response to serum concentration in human fibroblasts
(under 12 different experimental conditions). We tried in our experiments to
partition this dataset into different clusters from 4 to 8 [83]. The second data set,
Dataset 2, contains 384 genes whose expression levels were measured under 17
different experimental conditions and we also tried to partition this dataset into

different clusters from 4 to 8 [161].

B. Evaluating Criteria
The performance of the proposed algorithm was evaluated using two objective
measures: (i) the F-measure and (ii) the silhouette measure.

The F-measure, as discussed in Chapter 4, Section 4.2, combines the idea of
“precision” and “recall” from the field of information retrieval. When the correct
clustering arrangement of a set of data is known, the F-measure can be used to
determine how well a discovered clustering arrangement compares with that of the
correct, original one. The F-measure, it should be noted, can be used with clusters
having fuzzy boundaries. To do so, the clusters are first converted into crisp
boundaries by assigning records to the clusters they belong to with the largest degree
of memberships [96].

The silhouette measure [135] calculates the silhouette value of a gene, g, , which
reflects the likelihood of g; belonging to a cluster C . It does so by first estimating
two scalars a(g,) and b(g;) where a(g,) is the average distance between g, and

all other genes in C, and b(g;) is the smallest of d(g;,C,), where d(g;,C,) is
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defined to be the average distance of g; to all genesin C,, C = C,. The silhouette

b(g:) —a(g))

. The silhouette value
max{a(g;),b(g;)}

s(g;) of g, is then defined to be the ratio,

lies between -1 to 1. When its value is less than zero, the corresponding gene is

poorly classified. The overall silhouette value of a cluster is the average of s(g,) of

all the genes in the cluster [123].

5.4.2 Results and Discussions

For comparison, we compared the performance of the proposed algorithm with the
fuzzy k-means [20] algorithm using the simulated and real expression data as
described above. In our experiments with the fuzzy k-means algorithm, to ensure
that its performance is not affected by poor choice of initial cluster centroid, we
performed 100 runs with each using different randomly-generated initial cluster
centroids and also, such 100-run test was repeated 10 times. The 10 best results
obtained from each 100-run test were then recorded. In addition, the fuzziness
parameter, m, used in our experiment was set to different values ranging from 1.1 to
2 as suggested in [20] and the m that gave us the best clustering result was selected.
For the simulated data, m happens to give us the best result in terms of the F-
measure when set to 1.1. In order to improve the performance of the fuzzy k-means
algorithm, we also performed feature selection for it. This feature selection
procedure is same as those used by other clustering algorithms as discussed in
Section 5.3. But, one additional step performed for the fuzzy k-means algorithm is
that the fuzzy clusters were first converted into crisp boundaries by assigning

records to the clusters they belong to with the largest degree of memberships [99].
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For EvoCluster, the parameter settings, including population size, number of
reproductions, etc., are showed in Table 5.25. With these parameter settings, the
result we obtained using the simulated data for testing is showed in Table 5.26. It
should be noted that the number of clusters (k=3) to be discovered was known-in-
advance for the simulated data, the length of the chromosome was fixed in our

experiment to be 3

TABLE 5.25
PARAMETER SETTINGS OF EVOCLUSTER USED IN SIMULATED DATA

(P, REPRESENTS THE PROBABILITY OF GUIDED OR UNGUIDED

CROSSOVER OPERATOR SELECTED AND P, REPRESENTS THE
PROBABILITY OF GUIDED OR UNGUIDED MUTATION OPERATOR SELECTED)

POP- N [ max | P | Pl L | U, | L | U,
Size
Simulated | o5 | 4 3 | 05| 05| 02| 081 02| 08
data
TABLE 5.26
COMPARISON OF THE AVERAGE F-MEASURE
(SIMULATED DATA)
Fuzzy k-means
Proposed Fuzzy k-means v ES
Average 0.82 0.60 0.71

As shown in the above table, compared with both fuzzy k-means algorithms, the
proposed algorithm performs better. Also, it seems that the performances of the
fuzzy k-means algorithms are not good when handling very noisy data. In addition,
the associations discovered by the proposed algorithm can reveal the overlapping
patterns embedded in the clusters. For example, the associations (represented in if-
then rule format) “If Cond15 = [0.07, 0.25] then C1” and *“If Cond15 = [0.07, 0.25]
then C2” with the same conditional part were discovered in clusters C1 and C2
respectively, this indicates that these clusters contain the overlapping pattern [117].

For gene expression data, the parameter settings of EvoCluster are showed in

Table 5.27.
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TABLE 5.27
PARAMETER SETTINGS OF EVOCLUSTER USED
IN GENE EXPRESSION DATA

PPl miN [MAX | P P | L | YUy | LU,
Size
Datlaset 50 4 8 05 | 017 | 02 | 08 | 02 | 08
Datzaset 50 4 8 05 | 017 | 02 | 08 | 02 | 08

For Dataset 1, 4 clusters (which gives the best result), C®, C{", C{’, C® of

sizes 186, 116, 141, 74, respectively, were discovered after Phase 1. For Dataset 2, 5
clusters (which gives the best result), C(?, C?, c?, C{?, C{? of sizes 65, 106,
83, 74, 56, respectively, were discovered after Phase 1. The clustering results
obtained for Datasets 1 and 2 after Phase 1 are visualized in Figs. 5.2 and 5.3

respectively. From these figures, it is noticed that EvoCluster (used in Phase 1) is

effective in identifying the initial clusters.

Fig. 5.2 The four initial clusters discovered - Dataset 1. (From left to right: Cl(l) has 186 genes, Cél)
has 116 genes, C3(1) has 141 genes and Cf) has 74 genes.)
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Fig. 5.3 The five initial clusters discovered - Dataset 2. (From left to right: Cl(z) has 65 genes, Céz)
has 106 genes, Céz) has 83 genes, Cﬁz) has 74 genes, and Céz) has 56 genes.)

Based on the initial clusters discovered in Phase 1, the second re-clustering
phase was performed. During the re-clustering process, interesting associations were
discovered in each initial cluster. Based on these findings, the cluster membership of
each gene in each cluster was re-evaluated to determine if it should remain in the
same cluster or be assigned to more than one cluster. Figs. 5.4 and 5.5 below show

the clustering results after the re-clustering process. The overlapping region between

different clusters is marked in the figure as CEL) which represents the overlapping
subset between the clusters C{” and C. Similarly, the non-overlapping region of
each cluster is marked in the figure as c}” which represents the non-overlapping

subset of the cluster C}‘). As each gene is allowed to belong to more than one cluster,
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the sizes of the overlapping clusters are larger than their corresponding initial

clusters.

{1

Clilﬁ
i1
1z
4]
€12
i1
14
i
Tz

Fig. 5.4 The four overlapping clusters discovered by the proposed algorithm (Dataset 1).
(From left to right: Cl(l) has 219 genes, CS) has 159 genes, Cél) has 167 genes and Cf) has 128
genes. The label beside the image of each cluster indicates the overlapping and non-overlapping
regions, i.e., Cl(l) labels the non-overlapping region in Cl(l) ,and Cl(;) labels the

)
)
1)

overlapping region between Cl(l) and CS) )
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Fig. 5.5 The five overlapping clusters discovered by the proposed algorithm (Dataset 2).
(From left to right: C1(2) has 91 genes, Cf) has 125 genes, Céz) has 104 genes,

Cf) has 86 genes, and Céz) has 77 genes.)

From Figs. 5.4 and 5.5, one can see that the genes discovered in each
overlapping region have expression patterns similar to that with other genes in the
non-overlapping regions. The results show that the re-clustering process is effective
in discovering overlapping clusters from gene expression data.

In addition to the above, we have also compared the clusters discovered by the
proposed algorithm with those discovered by the fuzzy k-means algorithms using the
silnouette measure. In our experiments, the genes belonging to the same cluster were
treated as positive training instances whereas genes that do not belong to the cluster
at all were treated as negative training instances. And also, for the fuzzy k-means

algorithms, the fuzziness parameter (m) was set to 1.3 for Dataset 1 and 1.2 for
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Dataset 2 as such parameter settings allow them to perform at its best in terms of the
silhouette measure.

According to the Tables 5.28 and 5.29, we found that the qualities of the clusters
discovered by the proposed algorithm have better silhouette values than those

discovered by the fuzzy k-means algorithms in both data sets.

TABLE 5.28
COMPARISON OF THE AVERAGE SILHOUETTE MEASURE BETWEEN
THE PROPOSED ALGORITHM AND THE FUZZY K-MEANS ALGORITHMS

(DATASET 1)
Proposed Fuzzy k-means Fuzzyikl;rgeans
k=4 0.53 0.40 0.46
k=5 0.50 0.36 043
k=6 0.48 0.33 0.39
k=7 0.40 0.30 0.32
k=8 0.43 0.28 0.34
Avg 0.47 0.33 0.39
TABLE 5.29
COMPARISON OF THE AVERAGE SILHOUETTE MEASURE BETWEEN
THE PROPOSED ALGORITHM AND THE FUZZY K-MEANS ALGORITHMS
(DATASET 2)
Proposed Fuzzy k-means Fuzzi/L kl;rgeans
k=4 0.44 0.33 0.36
k=5 0.49 0.37 0.41
k=6 0.46 0.31 0.36
k=7 0.38 0.21 0.29
k=8 0.35 0.23 0.26
Avg 0.42 0.29 0.34

For further performance evaluation, the gene expression data sets were corrupted
by adding uniformly generated random noise to every gene expression profile [51].
Figs. 5.6 and 5.7 show how the proposed algorithm compares with the fuzzy k-
means algorithms on the corrupted gene expression data. Based on the discovered
results, we found that the proposed algorithm, in spite of the additionally added

noise at various levels, still outperforms the fuzzy k-means algorithms.
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Silhouette

Silhouette

0%

10% 20% 30% 40%

Noise level {Dataset 1)
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—=— Fuzzy k-means
Fuzzy k-means (FS

Fig. 5.6 Comparison of the clustering performance (silhouette measure)
in a noisy environment (Dataset 1, k=4). A noise level at 10% means that 10%
of each gene expression profile consists of added noise.
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Noise level (Dataset 2}
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Fig. 5.7 Comparison of the clustering performance (silhouette measure)

in a noisy environment (Dataset 2, k=5).
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Biological Interpretation:
Other than evaluating the results statistically, we have also evaluated the clustering
results according to their biological functions. Since genes that have similar
expression patterns may have similar or related biological functions [38] and it is
shown in [148] that significant enrichment of genes belonging to the given
functional categories can be revealed in the clusters discovered through clustering.
Therefore, we also evaluated the results according to the biological functions of
genes that can be discovered in each cluster. To evaluate the effectiveness of the
proposed algorithm, we therefore look at the percentage of genes in each function
category discovered in the initial non-overlapping clusters after Phase 1 to see if
there is a corresponding increase in the overlapping clusters discovered after Phase 2.
When comparing the clusters discovered in the data (Dataset 2) after Phase 1
with those discovered after Phase 2 based on the MIPS functional catalogue
database [104], we found that in each overlapping cluster, the percentage of genes in
each functional category is greater than that obtained in the corresponding initial
cluster (Table 5.30). Also, the p-value associated with each functional category
discovered in the overlapping cluster is smaller than that obtained in the
corresponding initial cluster (the p-value is calculated to obtain the chance
probability of observing a set of genes from a particular MIPS functional category
within a cluster, thus low p-value indicates high significance [104]). This indicates

that the discovered overlapping clusters are biologically significant.
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TABLE 5.30
COMPARISON OF THE ENRICHMENT OF GENES IN EACH
FUNCTIONAL CATEGORY BETWEEN THE INITIAL (PHASE 1)
AND OVERLAPPING (PHASE 2) CLUSTERS

(DATASET 2)
MIPS Phase 1 | Phasel | Phase2 | Phase 2
Functional Category (%) (p-value) (%) (p-value)
C? | BUD/GROWTH TIP 7.83% 0.42 13.72% 0.29
MITOCHONDRION 18.14% 0.21 33.46% 0.04
ENDOPLASMIC . o
RETICULUM 10.22% 0.07 14.30% 0.03
CP | Lo ORTEP 829% | 035 | 1046% | 021
DNA PROCESSING 11.73% 0.38 14.30% 0.23
EUKARYOTIC PLASMA
@ | MEMBRANE/ 0 o
C” | MEMBRANE 5.95% 0.41 7.88% 0.20
ATTACHED
FUNGAL/
MICROORGANISMIC 0 o
CELL TYPE 5.67% 0.21 10.28% 0.04
DIFFERENTIATION
C-COMPOUND AND
CARBOHYDRATE 6.16% 0.23 9.92% 0.14
METABOLISM
CELL GROWTH/
(2) 0 0
C:” | MORPHOGENESIS 7.08% 0.40 8.57% 0.29
CELLULAR SENSING 0 o
AND RESPONSE 5.32% 0.22 7.66% 0.09
TRANSPORT ROUTES 4.96% 0.31 6.18% 0.28
C | RNA SYNTHESIS 12.73% 0.29 16.87% 0.11
NUCLEUS 19.46% 0.22 24.18% 0.18
CYTOSKELETON 15.81% 0.59 24.60% 0.36
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5.5 Summary Remarks

With the advent of microarray technology, we are now able to monitor
simultaneously the expression levels of thousands of genes during important
biological processes. Due to the large number of data collected everyday and due to
the very noisy nature in the data collection process, interpreting and comprehending
the experimental results has become a big challenge. In this chapter, we have
proposed a novel evolutionary clustering algorithm called EvoCluster. EvoCluster
encodes an entire cluster grouping in a chromosome so that each gene encodes one
cluster. Based on such a structure, it makes use of a set of reproduction operators to
facilitate the exchange of grouping information between chromosomes. The fitness
function it adopts is able to differentiate between how relevant the expression level
is in determining a particular cluster grouping. As such, instead of just local pair-
wise distances, it also takes into consideration how clusters are arranged globally.
Moreover, it does not require the number of clusters to be decided in advance, and
the associations discovered in each cluster can be explicitly revealed and presented
for easy interpretation. In addition, we have also proposed the possible extension of
EvoCluster to mining overlapping clusters in gene expression data.

Experimental results using both simulated and real data show that the proposed
algorithms are very robust in the presence of noise. They are able to search for near
optimal solutions effectively, and discover interesting associations in the noisy data
for meaningful groupings. The results also show that, under some common
performance measures, the proposed algorithms are better than other algorithms
commonly used in gene expression data analysis, and the discovered clusters contain

more biologically meaningful patterns. In particular, we could correlate the clusters
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of co-expressed genes discovered to their DNA sequences, and found that we were
able to uncover known and new biological binding sites in each cluster of co-
expressed genes.

Compared with other clustering algorithms such as k-means, SOM or fuzzy k-
means, EvoCluster is about 12-18 times slower than others when the time it takes for
a reproduction to be performed is compared against the time it takes for performing
an iteration in each of these algorithms. However, as shown in the experiments
above, even if more computational resources (in terms of the number of iterations)
are given to other clustering algorithms, EvoCluster will likely be giving the best
clustering results. For microarray analysis, since the results are normally not
required immediately, the relatively longer evolutionary process that EvoCluster
takes to find a better solution is not very important. In order to cope with very large
gene expression data sets, the inherently parallel nature of the problem solving

process of EvoCluster can be exploited.
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Chapter 6

Conclusions

6.1 Summary

Gene expression data mining as a new research area poses new challenges to data
mining researchers. Gene expression data are typically very noisy and have very
high dimensionality. To tackle bioinformatics problems involving them, traditional
data mining techniques may not be the best tools to use as they were not originally
developed to deal with such data. For this reason, the contributions of this thesis are
to propose some data mining techniques to solve these problems effectively. In
particular, these techniques can be used to solve the problems of reconstructing gene
regulatory networks (GRNSs) and clustering gene expression data. The former is
concerned with the problem of discovering gene interactions to infer the structures
of gene regulatory networks. The latter is concerned with the problem of discovering
clusters of co-expressed genes so that genes that have similar expression patterns
under different experimental conditions can be identified.

To reconstruct GRNs, we have proposed to use an association-discovery
technique [113]-[115], which is based on residual analysis and an information
theoretic measure, for the effective inference of the structures of GRNs from time-
dependent gene expression data. This association-discovery technique can discover
interesting association relationships between genes in high-dimensional and very
noisy expression data without the need for additional feature selection procedures.

By computing an average gene expression value which serves as a reference point
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for how large the value is, the proposed technique can discover interesting sequential
associations between genes such as “if a gene is highly expressed, its dependent
gene is then lowly expressed in the next time point”, etc. Based on these findings,
the user not only can determine those genes affecting a target/dependent gene and
also can identify whether or not the target gene is supposed to be activated or
inhibited. In addition, the sequential associations discovered can also be used to
predict how a gene would be affected by other genes from the unseen samples.
Experimental results on real expression data show that the proposed technique can
be very effective and the discovered sequential associations reveal known gene
regulatory relationships that could be used to infer the structures of GRNs. One
additional advantage of the reconstruction of GRNSs using the association-discovery
technique is that the user can easily improve the classifier by adding new expression
data and reproduce underlying structures of a network consistent with the data. Since
such iterative improvements can be part of an interactive process. Therefore, the
proposed technique can be considered as a basis for an interactive expert system for
GRNSs reconstruction.

Given clusters (or classes) of genes, the association-discovery technique
proposed can also be used to construct classifiers by finding interesting association
relationships between gene expression levels and cluster (or class) labels. Based on
discovering such relationships, we have developed a two-phase clustering algorithm
[112], [118], [120] for gene expression data. This algorithm consists of an initial
clustering phase and a second re-clustering (or re-classification) phase. In the first
phase, existing clustering algorithm, such as k-means or a hierarchical clustering
algorithm, can be applied. The results, which consist of a number of initial clusters,

can then be used for re-clustering. The re-clustering problem can be formulated as a
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classification problem by treating the data in each initial cluster as training data for
the construction of a classifier. Once the classifier is constructed, the genes in each
initial cluster can then be re-classified either into the same cluster or into different
clusters. It should be noted that the re-clustering phase allows for probabilistic
associations to be detected. It performs its task by distinguishing between relevant
and irrelevant expression levels and by doing so, it takes into consideration global
information contained in a specific cluster arrangement by evaluating the importance
of different expression levels in determining cluster memberships. This feature
makes the proposed algorithm more robust to noisy data when compared to those
existing methods that only rely on local pair-wise similarity measures. In addition,
the discovered associations indicate how relevant the expression levels under a
particular set of experimental conditions are in a particular cluster and are made
explicit for possible interpretation. Experimental results on both simulated and real
data show that the proposed two-phase clustering algorithm can be very effective for
discovering clusters in the presence of noisy data. It is able to assign genes, whose
cluster memberships cannot be easily determined by existing clustering methods,
into the appropriate clusters. When identifying regulatory motifs at the promoter
regions of the co-expressed genes in the discovered clusters, the known
transcription-factor binding sites specific to each cluster can be discovered. These
binding sites can provide explanations for the co-expressed patterns.

Since the effectiveness of the two-phase clustering algorithm depends, to some
extent, on that of the existing clustering method used in the first phase, we have
developed a novel evolutionary clustering algorithm, called EvoCluster [111], [119],
[121], that can be used in the first phase to overcome some of the limitations of

existing ones. It not only is able to perform well in the presence of very noisy data, it
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can also be used to discover overlapping clusters. EvoCluster makes use of an
evolutionary approach to guide the search for optimal or near-optimal clustering
arrangement. To do so, it encodes the entire cluster grouping in a chromosome so
that each gene encodes one cluster and each cluster contains the labels of the data
records grouped into it. Then, given the encoding scheme, it has a set of special
crossover and mutation operators that facilitates the exchange of grouping
information between two chromosomes on one hand and allows variation to be
introduced to avoid trapping at local optima on the other. For fitness evaluation,
EvoCluster makes use of the association-discovery technique to discover interesting
association relationships in each possible cluster to determine how good the cluster
arrangement encoded in a chromosome is. Unlike many similarity measures that are
based on local pair-wise distances that may not give very accurate measurements in
the presence of very noisy data, the proposed fitness measure is probabilistic and it
takes into consideration global information contained in a particular grouping of data.
It is able to distinguish between relevant and irrelevant expression levels in the data
during the clustering process, and explain clustering results by explicitly revealing
interesting associations discovered in each cluster. In addition, there is no
requirement for the number of clusters to be decided in advance. In an attempt to
discover overlapping clusters in noisy gene expression data, we have also developed
the extended version of EvoCluster. This extended version [116]-[117] consists of
two phases: an initial clustering phase and a second re-clustering phase, and is able
to discover overlapping clusters on one hand and overcome some of the limitations
of existing methods on the other. For the initial clustering phase, EvoCluster is used
to discover the initial clusters from gene expression data. For the re-clustering phase,

interesting associations between the expression levels and cluster labels are first

136



CHAPTER 6 - CONCLUSIONS

identified in the initial clusters. Then, based on the discovered associations, rather
than assigning a gene to the cluster with the largest total weight of evidence, the
total weight of evidence supporting a gene belongs to each cluster is calculated. The
cluster memberships of the genes that have previously been assigned are then re-
evaluated to determine whether they should belong to the same cluster or be
assigned to more than one. This extended version of EvoCluster facilitates the
discovery of overlapping clusters by assigning a gene to more than one cluster only
if there is a positive total weight of evidence of this gene to belong to the given
cluster. Moreover, it can also facilitate the identification of groups of genes that have
a strong association (i.e., with large weight of evidence) to the cluster for further
biological analysis, for example, functional annotations. Experimental results on
both simulated and real data show that the proposed algorithms are very robust in
the presence of noise. They are able to search for near optimal solutions effectively,
and discover interesting associations in the noisy data for meaningful groupings. The
results also show that, under some common performance measures, they are better
than other existing methods commonly used in gene expression data analysis, and
the discovered clusters contain more biologically meaningful patterns. In particular,
we could correlate the co-expressed genes discovered to their DNA sequences, and
found that we were able to uncover known and new biological binding sites in each

cluster of co-expressed genes.

6.2 Future Work

To handle continuous values, the proposed association-discovery technique has to
perform discretization. Since the crisp discretization procedure it relies on does not

take into account the expression values at the interval boundaries. These values may
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end up assigned to different intervals even though they are very similar. This may
add noise to the data and result in some important patterns being overlooked. For
this reason, rather than crisp discretization, fuzzy discretization [101] of gene
expression values can be exploited. To do so, the quantitative expression values
need to be transformed into linguistic variables and terms by some pre-defined
membership functions. Since, the association-discovery technique can be easily
modified to handle the degree of membership. Therefore, given a set of time-
dependent fuzzy data, the fuzzy association relationships between genes can also be
discovered. By applying this fuzzy data mining technique to GRNs reconstruction,
we hope that the prediction accuracy can be improved and also more known gene
regulatory relationships can be discovered.

To classify proteins into functional families based on their primary sequences,
existing classification methods such as the k-NN, HMM and SVM-based algorithms
are often used [54]. For most of these algorithms to perform their tasks, protein
sequences need to be properly aligned first. Since the alignment process is error-
prone, protein classification may not be performed very accurately. In addition to the
request for accurate alignment, many existing methods require additional techniques
to decompose a protein multi-class classification problem into a number of binary
problems. This may slow the learning process when the number of classes being
handled is large. To increase both efficiency and accuracy, the proposed association-
discovery technique can also be applied. Using the sliding window approach, each
protein sequence is first converted into a number of subsequences with equal length.
Then, the association-discovery technique can be used to mine a set of subsequences
without having to go through a sequence-alignment process. And also, the

association-discovery technique is able to discover hidden patterns unique to each
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protein functional family by making use of residual analysis that can determine
whether or not a protein residue is useful for the characterization of a class (family).
Given a set of conserved sequences, it is well-known that it is very difficult, on the
basis of multiple alignment of protein sequences alone, to determine which residues
of a protein are important for its functional or structural characterization. By being
able to uncover hidden patterns for possible interpretation, the association-discovery
technique makes such task much easier. Based on the discovered patterns unique to
each protein functional family, we believe that they can lead to better understanding
of protein functions and can also allow functionally significant structural features of
different protein families to be better characterized.

Besides gene expression data, EvoCluster can be used to cluster other biological
data such as DNA and protein sequence data, and most importantly, it can also be
used for solving different kinds of clustering problems in other application areas.
Moreover, in order to efficiently cluster large data sets, the inherently parallel nature
of the problem solving process of EvoCluster can be exploited. And also, other
possible alternatives, such as simulated annealing [127], could be explored. For
future work, we intend to look into how specifically these can be done and compare
EvoCluster with other EA-based clustering methods that have emerged very recently

[69].
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