






 
 

Abstract 
 

Gene expression data mining as a new research area poses new challenges to data 

mining researchers. Gene expression data are typically very noisy and have very 

high dimensionality. To tackle bioinformatics problems involving them, traditional 

data mining techniques may not be the best tools to use as they were not originally 

developed to deal with such data. For this reason, new effective techniques are 

required. In this thesis, we propose some such techniques.  

In particular, these techniques can be used to address the problems of 

reconstructing gene regulatory networks and clustering gene expression data. The 

former is concerned with the problem of discovering gene interactions to infer the 

structures of gene regulatory networks. The latter is concerned with the problem of 

discovering clusters of co-expressed genes so that genes that have similar expression 

patterns under different experimental conditions can be identified.  

To reconstruct gene regulatory networks, we have proposed to use an 

association-discovery technique, which is based on residual analysis and an 

information theoretic measure, to detect whether or not there interesting association 

relationships between genes. Given time-dependent gene expression data, this 

technique can reveal interesting sequential associations between genes for the 

effective inference of the structures of gene regulatory networks.  

The association-discovery technique proposed can also be used to find 

interesting association relationships between gene expression levels and cluster 

labels. Based on discovering such relationships, we have developed a two-phase 

clustering algorithm for gene expression data. This algorithm consists of an initial 

clustering phase and a second re-clustering phase. Using this two-phase approach, it 
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is able to group genes, whose cluster memberships cannot be easily determined by 

existing methods, into the appropriate clusters. Since the effectiveness of the two-

phase clustering algorithm depends, to some extent, on that of the existing clustering 

method used in the first phase, therefore, we have developed a novel evolutionary 

clustering algorithm, called EvoCluster, that can be used in the first phase to 

overcome some of the limitations of existing ones. By making use of an 

evolutionary approach and the association-discovery technique, it not only is able to 

perform well in the presence of very noisy data, it can also be used to discover 

overlapping clusters.  

For performance evaluation, the data mining techniques proposed in this thesis 

have been tested with simulated and real data and the experimental results show that 

they are very promising.  
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CHAPTER 1 – INTRODUCTION 
 
 

Chapter 1 

Introduction 

 

The study of bioinformatics is multi-disciplinary [32]. It combines several scientific 

disciplines including molecular biology, biochemistry, mathematics, and computer 

science. It is concerned with managing, analyzing and interpreting a huge volume of 

biological data such as DNA and protein sequence data, RNA and protein structural 

data, and gene expression data, etc. As the proliferation of genome sequencing 

projects have resulted in an exponential growth in the numbers and sizes of such 

databases, there has recently been an increasing demand for computing techniques to 

deal with such data. To cope with the demand, effective data mining techniques are 

required to extract interesting, nontrivial, implicit, previously unknown and 

potentially useful information from such data [68]. 

 

1.1 The Problems 

The recent advent of DNA microarray technology [90], [132] has made possible the 

simultaneous monitoring of the expression levels of thousands of genes. Specifically, 

this technology provides biologists with the ability to measure the relative levels of 

mRNA abundance of thousands of genes between different samples or between 

different time points of the same sample. This development is having a significant 

impact on many areas such as in biomedicine and pharmacogenomics, etc. If hidden 

regularities can be discovered in such gene expression data generated by microarray 

technology, it can facilitate elucidation of the signatures of complex diseases and the 
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development of individually optimized drugs, etc [16], [27]. Given the potential 

benefit, there is, therefore, a growing demand for effective techniques to mine gene 

expression data so as to uncover biologically meaningful patterns hidden in them. In 

this thesis, we propose some such techniques. In particular, these techniques can be 

used to effectively reconstruct gene regulatory networks (GRNs) and cluster gene 

expression data.  

A GRN is a complex biological system in which genes interact with each other 

indirectly via the proteins they create to perform various cellular processes. Given a 

set of time-dependent gene expression data, if the expression of a gene is dependent 

on the expression of another gene, one would expect to observe that the expression 

levels of a gene be associated with that of another after a certain amount of time 

delay [15]. For the reconstruction of GRNs, such time-dependent gene interactions 

need to be discovered first. If this can be done effectively, the structures of GRNs 

can be inferred directly from data and it will be possible for us to have better 

understanding of how cellular processes are carried out to accommodate changes in 

the external environment. The problem of mining time-dependent gene expression 

data for GRNs is therefore an important bioinformatics problem that we would like 

to focus on here.   

The problem of discovering clusters of co-expressed genes in gene expression 

data is another problem of great importance in bioinformatics. Co-expressed genes 

are genes that have similar expression patterns under different experimental 

conditions and they may also have similar or related biological functions [16]. 

Clustering of gene expression data can therefore help understand the functions of 

genes for which biological information has not been previously available. 

Furthermore, a strong correlation of expression patterns between co-expressed genes 
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can be an indication that they might be co-regulated by the same transcription 

factors and might have common binding sites. Once co-expressed genes are 

identified, the promoter regions of their corresponding DNA sequences can be 

searched for common patterns. Transcription-factors binding sites specific to each 

cluster may then be identified among common patterns found in these co-expressed 

genes [163].               

 Over the past decade, many data mining techniques have been developed to 

tackle different problems in a variety of application domains and they have been 

shown to be very effective [99]. Due to the uniqueness of the data involved, gene 

expression data mining, however, poses new challenges to data mining researchers. 

In order to tackle the problems of reconstructing GRNs and discovering clusters of 

co-expressed genes from data of such nature, we also need to effectively handle the 

following two important challenges [143].  

The first challenge comes from the presence of noise inherent in the data. 

Sources of noise in gene expression data include experimental, measurement, 

reporting and other data processing errors. Due to the complexity of biological 

systems, theoretical estimation of error level in the expression data is difficult. One 

way to make a fair estimate of the error level is by interviewing biologists who 

understand the experimental processes that generated those data. However, it is 

usually not possible to do this. In the absence of a better estimate of error level and 

in order for useful patterns to be discovered, there is a need to have a data mining 

technique that is able to handle noise well in gene expression data [18], [151], [153].   

The second challenge is concerned with the need to deal with a large number of 

irrelevant attributes. Although irrelevant attributes are present in almost all kinds of 

databases, the ratio of irrelevant to relevant attributes is likely not as large as that in 
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gene expression data. In most of the expression data, the number of relevant genes, 

which are relevant for the determination of a particular class of disease, is usually 

very small when compared with the total number of genes. The presence of those 

irrelevant genes often interferes with the discrimination power of those that are 

relevant when existing data mining techniques are used. This can not only result in 

extra computational time in the data mining process, but also increase the difficulty 

level of the problem. To make matters worse, the samples that can be gathered are 

normally relatively small in size. This makes the problem of uncovering hidden 

patterns in gene expression data more difficult. 

 

1.2 Overview of Solutions 

For GRNs reconstruction, we have proposed to use an association-discovery 

technique [113]-[115], which is based on residual analysis and an information 

theoretic measure, to detect whether or not there exists interesting association 

relationships between genes. By computing an average gene expression value which 

serves as a reference point for how large the value is, the proposed technique can 

discover interesting sequential associations between genes such as “if a gene is 

highly expressed, its dependent gene is then lowly expressed in the next time point” 

etc. These findings can not only allow hidden regularities to be easily interpreted, 

they can also determine if a gene is supposed to be activated or inhibited and can be 

used to predict how a gene would be affected by other genes from the unseen 

samples. 

Given clusters (or classes) of genes, the association-discovery technique 

proposed can also be used to construct classifiers by finding interesting association 

relationships between gene expression levels and cluster (or class) labels. Based on 
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discovering such relationships, we have developed a two-phase clustering algorithm 

[112], [118], [120] for gene expression data. This algorithm consists of an initial 

clustering phase and a second re-clustering (or re-classification) phase. In the first 

phase, an existing clustering algorithm, such as k-means or a hierarchical clustering 

algorithm, can be applied. The results, which consist of a number of initial clusters, 

can then be used for re-clustering. The re-clustering problem can be formulated as a 

classification problem by treating the data in each initial cluster as training data for 

the construction of a classifier. Once the classifier is constructed, the genes in each 

initial cluster can then be re-classified either into the same cluster or into different 

clusters. With this two-phase approach, the proposed algorithm is able to effectively 

determine cluster memberships of genes whose cluster memberships cannot be 

easily determined by existing methods.   

Since the effectiveness of the two-phase clustering algorithm depends, to some 

extent, on that of an existing clustering method used in the first phase, we have 

developed a novel evolutionary clustering algorithm, called EvoCluster [111], [119], 

[121], that can be used in the first phase to overcome some of the limitations of 

existing ones. It not only is able to perform well in the presence of very noisy data, it 

can also be used to discover overlapping clusters [116]-[117]. EvoCluster makes use 

of an evolutionary approach to guide the search for optimal or near-optimal 

clustering arrangement. To do so, it encodes the entire cluster grouping in a 

chromosome1 so that each gene encodes one cluster and each cluster contains the 

labels of the data records grouped into it. Then, given the encoding scheme, it has a 

set of special crossover and mutation operators that facilitates the exchange of 

 
1 The terms such as chromosomes and genes, when used in a computational context, may not have the 
same meanings as their biological counterparts. In order to avoid possible confusion, when referring 
to these terms in the contexts of evolutionary computation, they are made italic. 
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grouping information between two chromosomes on one hand and allows variation 

to be introduced to avoid trapping at local optima on the other. In addition, for 

fitness evaluation, EvoCluster makes use of the association-discovery technique to 

discover interesting association relationships in each possible cluster to estimate 

how good the cluster arrangement encoded in a chromosome is.  

For performance evaluation, the data mining techniques proposed in this thesis 

have been tested with simulated and real data and the experimental results show that 

they are very promising.  

 

1.3 Organization of Thesis 

This thesis is organized into six chapters as follows. Chapter 2 introduces the 

background materials that include some basic concepts in molecular biology, the 

process of knowledge discovery in databases and some popular data mining tasks. 

Moreover, a survey of related work of this thesis is also presented in this chapter.  

Chapter 3 introduces an association-discovery technique for the discovery of 

interesting association relationships between genes from time-dependent expression 

data so that the structures of gene regulatory networks can be better inferred.     

In Chapter 4, a two-phase clustering algorithm is presented. Using this two-

phase approach, it is possible to group genes, whose cluster memberships cannot be 

easily determined by existing methods, into the appropriate clusters. 

Chapter 5 introduces a novel evolutionary clustering algorithm to clustering gene 

expression data. In addition, the extended version of the proposed evolutionary 

clustering algorithm is also presented. This extended version is able to discover 
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overlapping clusters so that genes that have similar expression patterns with 

different groups of genes can be revealed. 

 In Chapter 6, we conclude the thesis and end with directions for future work.      
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Chapter 2 

Background and Related Work 

 

2.1 Some Basic Concepts in Molecular Biology  

Molecular biology is the study of biology at a molecular level [27]. This field 

overlaps with other areas of biology, such as genetics and biochemistry. Molecular 

biology mainly concerns itself with understanding the interactions between the 

various biological systems of a cell, including the interrelationships of DNA, RNA 

and protein synthesis and learning how these interactions are regulated.  

 

2.1.1 DNA 

The nucleus of a cell contains chromosomes that are made up of the double helical 

DNA molecules. The whole stretch of DNA is called the genome of the organism. 

The DNA consists of two strands of phosphate and deoxyribose sugar molecules, 

joined by covalent bonds. To each deoxyribose sugar molecule is attached one of the 

four nitrogenous bases, namely, adenine (A), cytosine (C), guanine (G), and thymine 

(T). Note that uracil (U) exists in place of thymine (T) in ribose sugar (for RNA). 

Bases between the strand pairs are attached by hydrogen bonds, such that either AT 

(or AU) or GC comes together. DNA in the human genome is arranged into 24 

distinct chromosomes that are physically separate molecules ranging in length from 

about 50 million to 250 million base pairs and there are approximately 3 billion base 

pairs in our genome. A nucleotide is a combination of a phosphate, a sugar, and a 
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purine or a pyrimidine base, where a purine (pyrimidine) consists of A or G (C or T 

or U) (Fig. 2.1).  

 
Fig. 2.1 Nucleotide is a combination of a phosphate, a sugar,  

and a purine or a pyrimidine base [62]. 
 

Genes, the basic physical and functional units of heredity, are coded in 

fragments of DNA (either strand) that are dispersed in the genome and each gene 

contains information to produce a protein. Understanding what parts of the genome 

encode which genes is one of the tasks of the Human Genome project [26]. Each 

chromosome contains many genes, however, genes comprise only a small portion of 

the human genome. At the time of writing, it is believed that there are only 20,000–

25,000 genes in our genome [137]. The remainder consists of non-coding regions, 

whose functions may include providing chromosomal structural integrity and 

regulating where, when and in what quantity proteins are made. For protein 

production, each gene is first transcribed to produce messenger RNA (mRNA), 

which is then translated to produce protein. The mRNA is single-stranded and has a 

ribose sugar molecule. In humans a gene consists of exons that get translated into an 

amino acid sequence, separated by introns (that are not translated). There exist 

promoter and termination sites in a gene responsible for the initiation and 

termination of transcription. Translation consists of mapping from triplets (codons) 

of four bases to the 20 amino acids building block of proteins (Fig. 2.2). It should be 

noted that more than one triplet can map to the same amino acid, but the same triplet 

cannot map to different amino acids [154].   
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Fig. 2.2 The genetic code [62]. 

 
An amino acid is an organic molecule consisting of an amine and a carboxylic 

acid groups (backbone), together with a side chain (hydrogen atom and residue) that 

differentiates between them. The carboxyl and amino groups of a pair of amino 

acids react through hydrolysis (removal of a water molecule) to link and form a 

peptide bond. Similar reactions occur along the chain to form a protein molecule. A 

sequence of amino acids, held together by peptide bonds forming a polypeptide 

chain, endow a protein with its three-dimensional structure. 

     

2.1.2 Proteins 

Proteins perform most life functions and even make up the majority of cellular 

structures in our body. Proteins are polypeptides, formed within cells as a linear 

chain of amino acids. The length of a protein can vary from 10s to 1000s of amino 

acid monomers. Chemical properties that distinguish the 20 different amino acids 

cause the protein chains to fold up into specific three-dimensional structures that 

define their particular functions in the cell.  
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Proteins are involved in virtually every biological process in a living system. 

They are synthesized on ribosomes as linear chains of, typically, several hundred 

amino acids in a specific order from information encoded within the DNA. In order 

to function, these chains must fold into the unique native three-dimensional 

structures that are characteristic of the individual proteins. In a cell, this takes place 

in a complex highly crowded molecular environment. There are several families of 

proteins whose job is to catalyze the folding process of the other proteins that are 

required by the living organism. In a cellular environment, molecular chaperones 

help to protect the incompletely folded polypeptide chains from aggregating. Even 

after the folding process is complete, however, a protein can subsequently 

experience conditions under which it unfolds, at least partially, and then again 

becomes prone to aggregation. The failure of proteins to fold correctly or to remain 

unfolded under all appropriate physiological conditions can give rise to a wide range 

of pathological conditions, such as genetic, sporadic and even infectious ailments 

[27]. 

The constellation of all proteins in a cell is called its proteome. Unlike the 

relatively unchanging genome, the dynamic proteome changes from minute to 

minute in response to tens of thousands of intra- and extra-cellular environmental 

signals. A particular protein’s chemistry and behavior is specified by the gene 

sequence and by other proteins made in the same cell at the same time and with 

which it associates and reacts. Studies to explore protein structures and activities, 

known as proteomics, will be the focus of much research for decades to come and 

will help elucidate the molecular basis of health and diseases.  
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2.1.3 Gene Expression and DNA Microarray Technology  

Every cell in an organism has the same set of chromosomes, but they can have very 

distinct properties. This is due to differences in the abundance, state, and distribution 

of cell proteins. The changes in protein abundance are in turn partly determined by 

the changes in the levels of mRNAs. The process of transcribing the gene’s DNA 

sequence into mRNA that serves as a template for protein production is known as 

gene expression [154] (Fig. 2.3). 

 
Fig. 2.3 Gene expression [62]. 

 
Gene expression consists of two basic steps: transcription and translation. 

o Transcription: This entails the synthesis of a single-stranded RNA at an 

unwound section of DNA with one of the DNA strands serving as a template 

for the synthesis of the RNA. The product of this process is called a 

messenger RNA (mRNA) for protein genes or a functional RNA (tRNA or 

rRNA). The result of transcription is that the genetic information encoded in 

DNA is transferred to RNA, this occurs in the nucleus of the cell. For RNA 

genes, the expression is complete after a functional tRNA or rRNA is 

generated. However, protein genes require additional steps. The mRNA 
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carries this genetic information out of the nucleus and into the cytoplasm, 

where it becomes directly involved with protein synthesis via translation. 

o Translation: This follows the movement of mRNA to the cytoplasm where it 

interacts with structures called ribosomes to synthesize a protein. Proteins are 

a linear sequence of amino acids, each of which is specified by the sequence 

of nucleotides in the RNA molecule. 

DNA microarray technology [90], [132], [136] is one of a number of 

technologies that uses the information arising from the genome projects for the 

exploration of patterns of gene expression on a global scale. Microarray technology 

makes use of the sequence resources created by the genome projects and other 

sequencing efforts to answer the questions such as what genes are expressed in a 

particular cell type of an organism, at a particular time, under particular conditions.  

DNA microarray technology exploits the preferential binding of complementary 

single-stranded nucleic acid sequences. A microarray is typically a glass (or some 

other material) slide, on to which DNA molecules are attached at fixed locations 

(spots). There may be tens of thousands of spots on an array, each containing a huge 

number of identical DNA molecules (or fragments of identical molecules), of 

lengths from twenty to hundreds of nucleotides. For gene expression studies, each of 

these molecules ideally should identify one gene or one exon in the genome, 

however, in practice this is not always so simple and may not even be generally 

possible due to families of similar genes in a genome. The spots are either printed on 

the microarrays by a robot, or synthesized by photolithography or by ink-jet printing. 

There are different ways how microarrays can be used to measure the gene 

expression levels. One of the most popular microarray applications allows 

comparing gene expression levels in two different samples. For instance, it allows 
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comparison of gene expression between normal and diseased (e.g. cancerous) cells 

(Fig. 2.4). 

 
Fig. 2.4 Microarray experiment [62]. 

 
The total mRNA from the cells in two different conditions are extracted and 

labeled with two different fluorescent labels: for example a green dye for cells at 

condition 1 and a red dye for cells at condition 2 (to be more accurate, the labeling is 

typically done by synthesizing single stranded DNA that are complementary to the 

extracted mRNA by an enzyme called reverse transcriptase). Both extracts are 

washed over the microarray. Labeled gene products from the extracts hybridize to 

their complementary sequences in the spots due to the preferential binding - 

complementary single stranded nucleic acid sequences tend to attract each other and 

the longer the complementary parts, the stronger the attraction. The dyes enable the 

amount of sample bound to a spot to be measured by the level of fluorescence 

emitted when it is excited by a laser. For example, if the mRNA from the sample in 

condition 1 is in abundance, the spot will be green. If the mRNA from the sample in 

condition 2 is in abundance, it will be red. If both are equal, the spot will be yellow. 

If neither is present, it will not fluoresce and appear black. Thus, from the 
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fluorescence intensities and colors for each spot, the relative expression levels of the 

genes in both samples can be estimated. Since DNA microarray technology only 

measures mRNA levels rather than protein levels of genes, it should be noted that 

microarray data alone does not present researchers with a complete picture of the 

underlying gene expression process. However, although it may be incomplete, gene 

expression data is still worth exploring as it contains a significant amount of 

information pertaining to the actual protein levels.  

The raw data that are produced from microarray experiments are the hybridized 

microarray images. To obtain information about gene expression levels, these 

images should be analyzed. This is called image quantitation. Image quantitation is 

done by image analysis software. To obtain the final gene expression data matrix 

from spot quantiations, all the quantities related to some gene have to be combined 

and the entire matrix has to be scaled to make different arrays comparable (Fig. 2.5).  

 
Fig. 2.5 Microarray image analysis [62]. 
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2.2 Knowledge Discovery and Data Mining  

Knowledge discovery in databases (KDD) is defined as the nontrivial process of 

identifying valid, novel, potentially useful and ultimately understandable patterns in 

data [28]. The overall KDD process consists of turning low-level data into high-level 

knowledge (Fig. 2.6). It is interactive and iterative involving, more or less, the 

following steps [68]:  

1. Understanding the application domain: This includes relevant prior 

knowledge and goals of the application. 

2. Extracting the target dataset: This is selecting a data set or focusing on a 

subset of variables. 

3. Data preprocessing and transformation: This is required to improve the 

quality of the actual data for mining. This also increases the mining 

efficiency by reducing the time required for mining the preprocessed data. 

Data preprocessing involves data cleaning, data transformation, data 

integration, and data reduction or compression for compact representation. 

a. Data cleaning: This consists of some basic operations, such as 

normalization, noise removal and handling of missing data, reduction 

of redundancy, etc.  

b. Data integration: This operation includes integrating multiple, 

heterogeneous datasets generated from different sources. 

c. Data reduction and projection: This includes finding useful features 

to represent the data (depending on the goal of the task) and using 

dimensionality reduction, feature discretization and feature extraction 

(or transformation) methods.  
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4. Data mining: Data mining constitutes one or more of the following functions, 

namely, classification and prediction, association analysis, cluster analysis, 

etc.  

5. Pattern interpretation and evaluation: This includes interpreting the 

discovered patterns, as well as the possible visualization of the extracted 

patterns. Visualization is an important aid that increases understandability 

from the perspective of humans. One can evaluate the mined patterns 

automatically or semi-automatically to identify the truly interesting or useful 

patterns. 

6. Using discovered knowledge: It includes incorporating the discovered 

knowledge into the expert system and taking actions based on this 

knowledge.   

 
Fig. 2.6 A KDD process [162]. 

 
In other words, given huge volumes of heterogeneous data, the objective of the 

KDD process is to efficiently extract meaningful patterns that can be of interest and 

useful to the user. The role of interestingness is to filter the large number of 

discovered patterns and report only those which may be of some use. There are two 
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approaches to designing a measure of interestingness of a pattern, namely, objective 

and subjective. The former uses the structure of the pattern and is generally 

quantitative. The subjective approach, on the other hand, depends additionally on the 

user who examines the pattern. Two major reasons why a pattern is interesting from 

the subjective point of view are as follows [138]: 

• Unexpectedness: When it is surprising to the user and this potentially 

delivers new information to the user. 

• Actionability: When the user can act on it to his/her advantage to fulfill the 

goal. 

Data mining is a step in the KDD process consisting of a particular enumeration 

of patterns over the data. Data mining involves fitting models to or discovering 

patterns from observed data. The fitted models play the role of inferred knowledge. 

Deciding whether or not the model reflects useful knowledge is a part of the overall 

KDD process for which subjective human judgment is usually required. Typically, a 

data mining algorithm constitutes some combination of the following three 

components: 

• The model: The function of the model (i.e., classification, clustering, etc.) 

and its representational form (i.e., linear discriminants, decision trees, etc.).  

• The preference criterion: A basis for preference of one model or set of 

parameters over another, depending on the given data. The criterion is 

usually some form of goodness-of-fit function of the model to the data. 

• The search algorithm: The specification of an algorithm for finding 

particular patterns, given the data, model and a preference criterion.  
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A particular data mining algorithm is usually an instantiation of the model-

preference-search components. Some of the common model functions in current data 

mining practice include [68]: 

1. Association analysis: This function mines or generates rules from the data. 

Association rule mining refers to discovering associations among different 

attributes (for details, refer to Section 2.2.1). 

2. Classification: This model function classifies a data item into one of several 

predefined categorical classes (for details, refer to Section 2.2.2). 

3. Cluster analysis: This function maps a data item into one of several clusters, 

where clusters are natural groupings of data items based on similarity metrics 

or probability density models (for details, refer to Section 2.2.3). 

4. Prediction: The purpose of this model function is to map a data item to a 

real-valued prediction variable. 

5. Summarization or condensation: This function provides a compact 

description for a subset of data. Data compression play a significant role for 

multimedia data, because of the advantage it offers to compactly represent 

the data with a reduced number of bits, thereby increasing the database 

storage bandwidth. 

6. Sequence analysis: This models sequential patterns, like gene and protein 

sequences. The goal is to model the states of the process generating the 

sequence. 
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2.2.1 Association Analysis  

Association analysis is the discovery of association rules showing attribute-value 

conditions that occur frequently together in a given set of data, for example, a set of 

transactions. A typical example of association analysis is the market basket analysis 

(Fig. 2.7). This process analyzes customer buying habits by finding associations 

between the different items that customers place in their shopping baskets. The 

discovery of such associations can help retailers developing marketing strategies by 

gaining insight into which items are frequently purchased together by customers. For 

example, given customers are buying milk, how likely are they also buying bread on 

the same trip to the supermarket can be revealed. Such information can lead to 

increase sales by helping retailers perform selective marketing and plan their shelf 

places. For example, placing milk and bread within close proximity may further 

encourage the sale of these items together within single visit to the store.  

 
Fig. 2.7 Market basket analysis [66]. 
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Much work has been done (pioneered by [1]-[2]) to find associations among 

items in large groups of transactions. Typically, this consists of two steps as follows 

(additional filtering steps or interestingness measures can be applied, if applicable): 

1. Find all frequent itemsets: Each of these itemsets must occur at least as 

frequently as a pre-determined minimum support count (a set of items is 

referred to as an itemset [68]). 

2. Generate association rules from the frequent itemsets: These rules must 

satisfy minimum support and minimum confidence.  

 A rule is normally expressed in the form , where YX ⇒ X  and Y  are sets of 

attributes of the data set, and the implication holds with the support  and 

, where s  and  are user-defined thresholds. This implies that 

transactions which contain 

s≥

cconfidence ≥ c

X  also contain Y . For example, 

>< satisfiedconditionssomeIF __  

 >< conditionsothersomeforvaluespredictTHEN _____

[support , confidence ]. s≥ c≥

A sample rule could be of the form as follows:  

)""_()20000( noloanunpaidANDsalaryIF =≥  

)""__( yesloanforselectTHEN =   

[support , confidence ]. %20≥ %75≥

 

2.2.2 Classification  

Classification is also described as supervised learning [147]. Let there be a database 

of records, each assigned a class label. The objective is to develop a model for each 
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class. An example of a model with good credit is 4025 ≤≤ age  and  

or . Sample applications of classification include: 

Kincome 40>

"" yesmarried =

• Signature identification in banking or sensitive document handling (match or 

no match). 

• Digital fingerprint identification in security applications (match or no match). 

• Credit card approval depending on customer background and financial 

credibility (good or bad). 

• Bank location considering customer quality and business possibilities (good 

or fair or poor). 

• Treatment effectiveness of a drug in the presence of a set of disease 

symptoms (good or fair or poor). 

The input to the classification algorithm is, typically, a set of training records 

with several attributes (Fig. 2.8). There is one distinguished attribute called the 

dependent attribute. The remaining predictor attributes can be numerical or 

categorical in nature. A numerical attribute has continuous, quantitative values. A 

categorical attribute, on the other hand, takes up discrete, symbolic values. If the 

dependent attribute is categorical, the problem is called classification with this 

attribute being termed the class label. However, if the dependent attribute is 

numerical, the problem is termed prediction/regression. The goal of classification is 

to build a concise model of the distribution of the dependent attribute in terms of the 

predictor attributes. The resulting model is used to assign values to the testing 

records, where the values of the predictor attributes are known but the dependent 

attribute is to be determined (Fig. 2.9).  
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Fig. 2.8 Classification process (training process) [43]. 

 

 
Fig. 2.9 Classification process (testing process) [43]. 

 
Classification methods can be briefly categorized as follows: 

1. Decision trees [129], [131], which divide a decision space into piecewise 

constant regions. Typically, an information theoretic measure is used for 

assessing the discriminatory power of the attributes at each level of the tree. 
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2. Probabilistic models, which calculate probabilities for hypotheses based on 

Bayes’ theorem [147]. 

3. Nearest-neighbor classifiers, which compute minimum distance from 

instances [147]. 

4. Neural networks [99], which partition by nonlinear boundaries. These 

incorporate learning, in a data-rich environment, such that all information is 

encoded in a distributed fashion among the connection weights. 

 

2.2.3 Cluster Analysis  

A cluster is a collection of data objects which are similar to one another within the 

same cluster but dissimilar to the others in other clusters. Cluster analysis is 

concerned with the problem of grouping a set of data objects into clusters (Fig. 2.10). 

Clustering is also called unsupervised classification, where no predefined classes are 

assigned [147]. 

 
Fig. 2.10 Clustering process [43]. 

 
Some example applications of clustering include: 

• Spatial data analysis: Creating maps in geographic information systems by 

clustering feature spaces and detecting spatial clusters [68]. 
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• Multimedia computing: Finding the cluster of images containing objects of 

similar color and shape from a multimedia database [101]. 

• Bioinformatics: Discovering clusters of co-expressed genes in gene 

expression data [11].    

• Biometrics: Creating clusters of facial images with similar fiduciary points 

[101]. 

• WWW: Clustering web-log data to discover groups of similar access patterns 

[68]. 

A good clustering algorithm will produce high-quality clusters with high intra-

class similarity and low inter-class similarity, and the quality of a clustering result 

depends on the similarity measure used by the algorithm. Some popular clustering 

algorithms and the similarity measures will be discussed in details in Section 2.3.3. 

Clustering approaches can be broadly categorized as: 

1. Partitional: Create an initial partition and then use an iterative control 

strategy to optimize an objective. 

2. Hierarchical: Create a hierarchical decomposition (dendogram) of the set of 

objects using some termination criterion. 

3. Density-based: Use connectivity and density functions. 

4. Grid-based: Create multiple-level granular structure, by quantizing the 

feature space in terms of finite cells. 
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2.3 Data Mining Techniques for Bioinformatics: A Survey of 
Related Work 
 

Recently, there have been many data mining and statistical techniques [68], [70], [99] 

available for use in biological data analysis. In Section 2.3.1, we briefly review some 

existing tools and databases developed specifically for solving bioinformatics 

problems [10]-[11], [51], [91], [98], [142], [155]. In Sections 2.3.2 and 2.3.3, the 

related work of this thesis will be given.  

 

2.3.1 Overview of Bioinformatics Problems and Tools 

Sequencing of a complete genome (i.e., yeast, human, etc.) and subsequent 

annotation of the features (i.e., genes, promoter regions, etc.) in the genome are the 

two important problems of genome analysis [11]. The first problem is related to 

sequence assembly. To solve this problem, there are many tools have been 

developed such as CAP3 [72]. The second problem is related to the prediction of 

genes in the genome. Since, the eukaryotic gene structure is much more complex 

due to the intron/exon structure, gene prediction is therefore easier and more 

accurate in prokaryotic than eukaryotic genomes. Several software tools [12]-[13], 

[140], such as GeneMark, GeneScan, Glimmer, and GRAIL can accurately predict 

genes in prokaryotic and eukaryotic genomes respectively.  

 Over the past decade, many techniques have been used for DNA and protein 

sequence analysis such as sequence alignment and motif finding [98]. For biological 

sequence alignment, many existing tools were based on a dynamic programming 

algorithm [139], including pair-wise alignment tools such as BLAST [3] and 

multiple sequence alignment tools such as ClustalW [71]. Hidden Markov model 
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(HMM) [133] is another widely used method. HMMER [44], which is used to find 

conserved sequence domains in a set of related protein sequences, is one of the 

popular HMM tools. Other interesting problems include promoter and protein 

functional motif finding. Several probability models and stochastic methods have 

been applied to these problems, including expectation maximization algorithms and 

Gibbs sampling methods [10]. 

 Common problems of biological structure analysis include classification and 

prediction, comparison, and visualization of the molecular structures (i.e., RNA 

secondary structure, protein secondary and tertiary structures, etc.) [14]. For these 

problems, some popular software tools include Mfold [14] for RNA secondary 

structure prediction, DALI [81] for structural alignment, Cn3d and Rasmol [82] for 

viewing the 3D structures. Protein structure databases, such as PDB [25], SCOP 

[110], and CATH [125], and the associated tools also play an important role in 

biological structure analysis [14].  

 Biological processes in a cell form different biological pathways among genes 

and their functional products. Biological pathway analysis is concerned with the 

problems of modeling and visualizing these pathways [15]. Several tools and 

databases have been developed and are commonly used, including GenMapp [15], 

KEGG database [88] and MetaCyc [89].  

 With the advent of DNA microarray technology and the genome sequences of 

many model organisms, the simultaneous monitoring of expression levels for all 

genes in a genome has become possible. Although a relatively new technology, the 

use of microarrays has spread to almost all branches of biochemistry and molecular 

biology, for example, in drug discovery [67]. Applications of DNA microarray 

technology have resulted in generating very many gene expression databases [19], 
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[91], [143]. Effective data mining techniques are therefore needed to analyze such 

data. Hierarchical clustering [52] was the first clustering method applied to the 

problem of finding clusters of co-expressed genes in the expression data. Since then 

many popular clustering methods have been used [130], such as k-means and self-

organizing map. By combining sequence analysis methods, one can also identify 

common regulatory motifs from the co-expressed genes discovered by the clustering 

method. Furthermore, any correlations among gene expression profiles can be 

modeled by advanced techniques and can hopefully help to reverse-engineer the 

genetic networks in a cell. With sophisticated gene expression data analysis tasks, 

there is much room for research and development of advanced, effective and 

scalable data mining techniques. In the following sections, two important 

bioinformatics problems and also the related work of this thesis will be presented 

respectively. 

 

2.3.2 Reconstructing Gene Regulatory Networks from Gene Expression 
Data 
 
Large-scale monitoring of gene expression such as DNA microarray [90], [132], 

[136] is considered to be one of the most promising techniques for making the 

reconstruction of gene regulatory networks (GRNs) [152] feasible. A GRN [15] is a 

complex biological system in which genes interact with each other indirectly via the 

proteins they create to perform various cellular processes. Better understanding of 

gene interactions may therefore lead to better understanding of how cellular 

processes are carried out to accommodate changes in the external environment [157]. 

Unfortunately, since living cells contain thousands of genes with each interacting 
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with one or more other genes, the task of inferring the structures of GRNs is very 

difficult.  

In an attempt to do so, some approaches have been developed. They include 

biochemically driven approaches [31], [94], [122], [150], Boolean network 

approaches [4]-[5], [134], Bayesian network approaches [75], [126], [164], and data 

mining approaches [17], [32], [52], [102], [141]-[142]. They are described briefly in 

the following. 

Biochemically inspired models [122] are based on the reaction kinetics [6] 

between different components of a GRN. Reaction kinetics provides a framework by 

which biochemical reactions between molecular compounds can be described. For 

example, if a transcription factor, produced by a gene, say , is brought together 

with the DNA sequence it is selective to, say, in the regulatory region of , it might 

react with a rate  to form a compound with the DNA, and then also dissociate with 

a rate  from the DNA. This process is started by a high expression rate of , 

followed by diffusion towards the binding site of , and then it is decreased by 

spatial diffusion away from  and other chemical reactions. Reconstructing GRNs 

based on biochemically inspired models has the advantage that these models can be 

most directly related to biological processes. Unfortunately, they also have some 

disadvantages. For example, most of the biochemically relevant reactions under 

participation of proteins do not follow linear reaction kinetics. Many proteins 

undergo conformational changes after reactions and these also change their chemical 

behavior. In particular, in many regulatory DNA regions transcription factor binding 

can show cooperative or competitive effects, which are nonlinear and mostly 

unknown. Moreover, the full network of regulatory reactions is very complex and 
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hard to disentangle in a single step. One needs to know the kinetic equations of all 

the different interactions to do so. Unfortunately, the types of reactions and their 

parameters are often unknown and at present, the data collected are not sufficient for 

regulatory networks to be understood at this level of details. As a result, some 

researchers used approximations to reaction-kinetic formulations to arrive at systems 

of coupled differential equations [31], [94], [150] for describing the time course of 

gene expression levels. However, the primary disadvantage of these approaches is 

that they are computationally intensive.  

In a Boolean network [4]-[5], [134], the expression state of a gene is represented 

by a Boolean variable (ON or OFF) and interactions between genes are represented 

by Boolean functions. The Boolean functions determine the expression state of a 

gene on the basis of the expression states of some other genes. The Boolean network 

approaches require that a number of assumptions be made to simplify analysis. For 

example, the activation of a single gene is represented as a Boolean switch that can 

either be on or off, and regulatory control of a gene is describable by a combination 

of Boolean logic rules, such as AND, OR and NOT. As there is little knowledge of 

connectivity patterns in real biological networks, for example, an ensemble approach 

has been used to generate large numbers of randomly connected networks with 

randomly chosen Boolean updating functions. The goal was to measure the generic 

properties of certain classes of networks and observe how the global dynamics was 

affected by these local interactions. This model of Boolean network has two primary 

parameters: (i) network size, N , which specifies the number of elements in the 

network, and (ii) K , the number of inputs regulating the activity of each element. 

Each of the  elements is associated with a rule table specifying outputs for each of 

the  possible input combinations. The rule tables for each element can also be 

N

K2
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defined in a number of different ways. If the several assumptions as discussed above 

can be validly made, then the use of Boolean networks has the advantage that the 

computational requirements of simulating regulatory systems are massively reduced, 

allowing the exploration of much larger systems. Unfortunately, the validity of the 

above assumptions has been questioned by a number of researchers, particularly 

among those in the biological community, where there is a perceived lack of 

connection between simulation results and empirically testable hypotheses [53].     

Bayesian network [75], [126], [164] is a probabilistic model that describes the 

multivariate probability distribution of a set of variables, where each variable only 

depends on its parents. The basic idea is to display the associations among the 

variables, namely the conditional dependencies and independencies, by means of a 

directed acyclic graph. In the context of GRN, each node of a Bayesian network can 

be considered as representing a gene, and each edge between connecting genes hints 

towards an interaction between them. If this edge is directed, it can, under certain 

assumptions, be interpreted as a causal relationship and can be inferred as one gene 

controlling another. To construct Bayesian networks, one can use Bayesian statistics 

[33] to find the network structures and the corresponding model parameters that best 

describe the probability distribution for which the data is drawn. The goodness-of-fit 

of a network with respect to the data can be assessed by assigning a score based on a 

statistically motivated scoring function such as the Bayesian score [76]. 

Unfortunately, this learning task is NP-hard, especially for high-dimensional data, 

such as microarray data which often contain thousands of expressed genes. To make 

this feasible, the size of the search space must be restricted by such heuristics as the 

construction of small sub-networks or in a slightly more sophisticated way, by 

restricting the maximum number of parents of each variable. Another problem with 
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the Bayesian network approaches is the effect of small sample size and this can 

make the estimation of the many parameters required for a Bayesian network 

difficult, if not impossible. As shown in [46], a Bayesian network constructed from 

small amounts of gene expression data is most likely not able to detect all gene 

interactions that are supposed to be present in a network.    

Other than the above approaches, some recent attempts have been made to infer 

the structures of GRNs using data mining approaches. Given a set of data, the goal 

of data mining [68] is to discover hidden regularities and structures in it. As opposed 

to the above hypothesis-driven approaches, which search for known, pre-defined 

patterns in a set of data, data mining approaches are data-driven. Instead of requiring 

patterns to be known ahead of time, they search automatically for patterns that are 

hidden in the data. For GRNs reconstruction, several data mining techniques have 

been proposed [17], [32], [52], [102], [141]-[142].  

Given a gene expression profile characterized by a set of different experimental 

conditions, clustering algorithms have been used to group co-expressed genes into 

clusters according to how similar they are to each other. Co-expressed genes are 

genes that have similar transcriptional responses to the external environment (i.e., 

temperature, pH value, pressure, etc). This can be an indication that they might be 

co-regulated by the same regulatory mechanism. Among all clustering algorithms, 

hierarchical agglomerative clustering has been more popularly used with gene 

expression data [17], [52], [141]. It performs its tasks by a series of successive 

fusion of genes into clusters. This fusion process is guided by a measure of 

similarity between clusters so that clusters that are similar to each other are merged. 

This fusion process is repeated until all clusters are merged into a single cluster. The 

result of the fusion process is normally presented in the form of a two-dimensional 
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hierarchical structure, called a dendrogram. The genes falling along each branch in a 

dendrogram form a cluster. Depending on user-preferences, a specific number of 

clusters can be obtained from the dendrogram by cutting across the branches at a 

specific level. The key step in performing hierarchical clustering is the measure of 

similarity between two genes, and for this, the correlation coefficient [16] is often 

used. Since this approach can only determine if two genes have a significant linear 

relationship with each other, the regulatory relationships, such as which gene affects 

which other genes, cannot be discovered. In addition to this, the discovered 

relationships cannot be explicitly revealed for possible interpretation.    

Artificial neural networks [99] are mathematical models of information 

processing originally inspired by networks of neurons in the brain. A neural network 

typically consists of a collection of nodes, some of which may be designated as input 

or output nodes, connected by weighted links. A transfer function is associated with 

each node and this transfer function transforms a set of weighted input signals into 

an output signal. Neural networks can be trained to match particular patterns of 

activation via some learning processes. Mathematically, it is possible to create a 

mapping between a neural network and a GRN. Conceptually, a relatively 

straightforward analogy may be drawn between a neural network, in which the 

constituent elements are neurons and the links are synaptic interactions, and a GRN, 

in which the elements are genes and the links are regulatory interactions. Based on 

such a conceptual model, there are some successes using neural networks to model 

GRNs [142]. However, since the training of neural networks requires many free 

parameters, it should be noted that the trials-and-errors required determining the best 

set of parameters are usually very time consuming. In fact, even with the most 

straightforward neural network formulation, it also requires weight parameters in the 
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order of the square of the number of genes. In addition, there are other free 

parameters describing the nonlinear functions. Given that the number of microarray 

measurements/samples collected usually ranges between tens to a few hundreds, it is 

very difficult for these parameters to be accurately estimated from the data in 

practice. In addition to the requirement for estimating many parameters, it should 

also be noted that the neural network approach is a black-box approach. The patterns 

it discovers cannot be explicitly revealed for interpretation.  

To use the decision-tree-based approaches [32], [102], the expression values of a 

gene, say , is first divided into finite number of states. Whether the state of  

can be determined by the states of other genes is then decided by checking whether 

these genes can predict the state of . If the prediction accuracy is high, then we 

can conclude that the state of  can be determined by the states of other genes. Of 

the existing approaches [68] that can be used for such prediction, C4.5 [131] is the 

most popular one. C4.5 uses a greedy procedure to select the attributes that yield the 

maximum information gain in order to recursively partition the training set. The leaf 

nodes of the tree correspond to the states/classes of the gene. And the discovered 

patterns are represented in the form of decision trees. The advantages of this 

approach against others, which have been discussed above, are that it can identify 

genes affecting a target gene in an explicit manner, and also the discovered patterns 

can be used to predict how a gene would be affected by other genes from the unseen 

tissue samples. However, due to the fact that the pruning methods which the 

decision-tree-based classifiers adopt are based on hill-climbing approaches, 

important information can be overlooked [131]. In addition, these classifiers still 

have to overcome some other problems to effectively deal with imperfect data in 

classification tasks [34]. 
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The biochemically driven approaches, Boolean network approaches, Bayesian 

network approaches, and data mining approaches are the most common techniques 

for GRNs reconstruction. Recently, the use of evolutionary computation to 

reconstruct underlying GRNs from gene expression data is also a growing research 

area and is getting a lot of attention from bioinformatics community [7], [37], [165]. 

However, besides their own limitations, many approaches can only be used to 

generate hypotheses about the presence or absence of interactions between genes so 

that laboratory tests can be carried out later for verification. It should be noted that 

many of them are not intended to be used to predict, for example, how a gene would 

be affected by other genes from the unseen samples (i.e., expression data that is not 

in the original database). This can make statistical verification of the reliability of 

the discovered patterns (relationships between genes) difficult.   

 

2.3.3 Clustering of Gene Expression Data 

Gene expression, as discussed before, is the process by which a gene’s coded 

information is converted into the structures present and operating in a cell. Gene 

expression occurs in two major stages: transcription and translation. During 

transcription, a gene is copied to produce an mRNA molecule (a primary transcript) 

with essentially the same sequence as the gene; and during translation, proteins are 

synthesized based on the mRNA molecule. If one would like to prevent undesirable 

genes, such as cancerous genes, from expressing, the transcription process should be 

prevented as much as possible from taking place so that the corresponding 

undesirable functional proteins will not be synthesized [27], [73].  
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To prevent the transcription process of undesirable genes from taking place, a set 

of transcription factor binding sites must be located. These sites consist of 

untranscribed nucleotide sequences located on the promoter regions (non-coding 

regions) of the genes and are responsible for activating and regulating the process. If 

they are located, we can then bind appropriate molecules, such as protein repressors, 

to these sites so that the genes they correspond to cannot be activated [27]. To locate 

these transcription factor binding sites, co-expressed genes may need to be identified. 

Co-expressed genes are genes that have similar transcriptional responses to the 

external environment. This can be an indication that they might be co-regulated by 

the same transcription factors and therefore might have common binding sites. To 

identify co-expressed genes, one can cluster gene expression data obtained by 

performing microarray experiments [29]-[30], [45], [57], [92]-[93], [141]. Genes 

that are grouped into a cluster are likely to be co-expressed genes. By analyzing the 

promoter regions of these genes, we may be able to discover patterns (motifs), which 

have relatively high occurring frequencies compared to other sequence fragments 

that are possible binding sites of these genes [163].   

Given a database of records each characterized by a set of attributes, the 

clustering problem is concerned with discovering interesting groupings of records 

based on the values of the attributes. Many clustering algorithms [68] have been 

developed to tackle different clustering problems in a variety of application domains 

and they have been proven to be very effective. Recently, some of them, including 

the hierarchical agglomerative clustering algorithm [156], the k-means algorithm 

[100] and the Self-Organizing Map (SOM) [85], have been used to cluster gene 

expression data [52], [148]-[149] respectively. These algorithms are described 

briefly below. 
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To discover clusters in the data, the hierarchical agglomerative clustering 

algorithm [52], [156] performs a series of successive fusions of records into clusters. 

The fusion process is guided by a measure of similarity between clusters so that 

clusters that are similar to each other are merged. This fusion process is repeated 

until all clusters are merged into a single cluster. The results of the fusion process 

are normally presented in the form of a two-dimensional hierarchical structure, 

called a dendrogram. The records falling along each branch in a dendrogram form a 

cluster. Depending on user-preferences, a specific number of clusters can be 

obtained from the dendrogram by cutting across the branches at a specific level. 

Comparing to the hierarchical agglomerative clustering algorithm that does not 

require users to specify the number of clusters ahead of time, users of the k-means 

algorithm [100], [148] are required to do so. Given a data set, the k-means algorithm 

can group the records into k clusters by initially selecting k records as centroids. 

Each record is then assigned to the cluster associated with its closest centroid. The 

centroid for each cluster is then re-calculated as the mean of all records belonging to 

the cluster. This process of assigning records to the nearest clusters and re-

calculating the position of the centroids is then performed iteratively until the 

positions of the centroids remain unchanged. 

The Self-Organizing Map (SOM) algorithm [85], [149] is one of the best-known 

artificial neural network algorithms. It can be considered as defining a mapping from 

M-dimensional input data space onto a map (a regular two-dimensional array of 

neurons) so that every neuron of the map is associated with an M-dimensional 

reference vector. The reference vectors together form a codebook. The neurons of 

the map are connected to adjacent neurons by a neighborhood relation, which 

dictates the topology of the map. In the basic SOM algorithm, the topology and the 
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number of neurons remain fixed from the beginning. The number of neurons 

determines the granularity of the mapping, which has an effect on the accuracy and 

generalization of the SOM. During the training phase, the SOM forms an elastic net 

that folds onto the cloud formed by input data. The algorithm controls the net so that 

it strives to approximate the density of the data. The reference vectors in the 

codebook drift to the areas where the density of the input data is high. Eventually, 

only few codebook vectors lie in areas where the input data is sparse. After the 

training is over, the map should be topologically ordered. This means that n 

topologically close (based on, say, the Euclidean distance or the Pearson correlation 

coefficient) input data vectors map to n adjacent map neurons or even to the same 

single neuron. With this idea, SOM has been used successfully in various 

application areas. 

Despite some successes with existing clustering algorithms in gene expression 

data analysis [17], [52], [74], [130], [148]-[149], there is still no single clustering 

algorithm that is the most dominant gene expression data clustering algorithm. This 

may be a result of their use of such metrics and functions as the Euclidian distance 

measure or the Pearson correlation coefficient [84] that do not differentiate between 

the importance of different variables when measuring similarities. They also do not 

give very accurate measurements when the data concerned are very noisy. As these 

metrics and functions measure only pair-wise distances, the measurements obtained 

could be too local. Clustering algorithms based only on the local pair-wise 

information may, therefore, miss important global information. In addition to these 

deficiencies, clustering results obtained with the use of many clustering algorithms 

could be difficult to interpret. For example, although one can visualize the result of 

hierarchical clustering as a tree-like dendrogram and note correlations between 
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genes, it is the users’ responsibilities to discover the similarities and differences 

between various clusters and to decide on the number of clusters and the cluster 

boundaries to form. To do so, users need to have prior knowledge about the data. 

Similarly, for the k-means algorithm and SOM, users have to decide on the number 

of clusters to partition a data set into. They also have to use a separate technique to 

uncover underlying patterns in the clusters.  
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Chapter 3 

Reconstructing Gene Regulatory Networks 
from Gene Expression Data 

 

Recent developments in large-scale monitoring of gene expression, such as DNA 

microarray technology, have made the reconstruction of gene regulatory networks 

(GRNs) feasible. Before one can infer the structures of GRNs, it is important to 

identify, for each gene in a network, which other genes can affect its expression and 

how they can affect it. Many existing approaches such as the biochemically driven 

approaches, Boolean network approaches, Bayesian network approaches, and data 

mining approaches (as discussed in Chapter 2, Section 2.3.2) have been applied to 

GRNs reconstruction. Besides their own limitations, many of these approaches can 

only be used to generate hypotheses about the presence or absence of interactions 

between genes so that laboratory tests can be carried out later for verification. Since 

many of them are not intended to be used to predict, for example, how a gene would 

be affected by other genes from the unseen samples (i.e., expression data that is not 

in the original database), this makes statistical verification of the reliability of the 

discovered relationships/patterns difficult. To better infer the structures of GRNs, we 

propose to use an effective data mining technique in this chapter.  

The proposed association-discovery technique [113]-[115] is able to discover 

interesting association relationships between genes and can handle very noisy high-

dimensional time-dependent gene expression data. By computing an average gene 

expression value which serves as a reference point for how large the value is, this 
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technique can discover interesting sequential associations between genes such as “if 

a gene is highly expressed, its dependent gene is then lowly expressed in the next 

time point”, etc. These findings can not only allow hidden regularities to be easily 

interpreted, they can also determine if a gene is supposed to be activated or inhibited 

and can be used to predict how a gene would be affected by other genes from the 

unseen samples. In Section 3.1, the proposed association-discovery technique, which 

can be used to discover interesting association relationships between genes, will be 

introduced. Given time-dependent gene expression data, this technique can also be 

used to discover interesting sequential associations, the details of the sequential 

association discovery approach will be given in Section 3.2.  

 

3.1 An Association-Discovery Technique  
 
To describe the proposed association-discovery technique [113]-[115], let us assume 

that we are given a set of gene expression data, G, consisting of the data collected 

from M genes in N experiments carried out under different experimental conditions. 

Let us represent the data set as a set of M genes, },,,,{G 1 Mj ggg KK= , with each 

gene, , , characterized by N different experimental conditions, 

, whose values, , where  represents the 

expression value of the  gene under the i

jg Mj ,...,1=

Ni EEE ,,,,1 KK Njijj eee ,,,,1 KK ije

thj th experimental condition.  

Since gene expression values can be described in a finite number of different states 

such as “expressed” and “not expressed”, “upregulated” and “downregulated”, or 

other different number of states, etc., we define two different states for it: “highly 

expressed ( H )” and “lowly expressed ( L )” [32]. These states are defined below. 
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Let 
j

N

i
ij

j N

e
e

j

∑
=

−

= 1
 be the average expression value of  under  different 

experimental conditions, from  to , where  is the total number of 

experimental conditions in which the expression of  is recorded and  due 

to possible missing values in the expression profile of . Given , the expression 

data obtained for  in each of the experimental conditions can then be mapped to 

H if  and L if , where 

jg jN

1E
jNE

jN

jg NN j ≤

jg
−

je

jg

−

> jij ee
−

≤ jij ee jNi ,...,1= . With such mapping, instead of , 

 can now be considered as taking on a transformed expression value,  

under the experimental condition . This process of transformation is performed 

for each of the 

ije

jg },{ LHsij ∈

iE

M  genes in G  (Fig. 3.1).  

 
Fig. 3.1 The transformation process. 
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 After transformation, the association-discovery technique is used to discover 

interesting association relationships between genes. This technique consists of two 

steps as follows. 

 

Step 1 - Discovering interesting associations between the states of genes: 

Interesting association relationships are discovered by detecting for associations 

between the states of the target gene, , and the states of each other gene, , in a 

set of training samples, where 

qg jg

jq ≠  and Gg q ∈ . To do so, we let  be the 

observed total number of experimental conditions,  where , that the 

state of  is  and the state of  is , where , 

, , 

pkobs

lEE ,...,1
'Nl ≤

qg )( p
qs jg )(k

js )(
1 ... p

qlqq sss ===

)(
1 ... k

jljj sss === },{, )()( LHss k
j

p
q ∈ |},{|,...,1, LHkp = , and  = 'N

∑ kp pkobs
, ≤  N due to possible missing values in the data. We also let  = pkexp

'N
obsobs kp ++

 be the expected total under the assumption that the state, , of  

is independent of whether the state of  is , where  = , 

and  = . Given  and , we are interested in 

determining whether  is significantly different from  (Fig. 3.2).      

)( p
qs qg

jg )(k
js +pobs ∑ =

|},{|

1

LH

k pkobs

kobs+ ∑ =

|},{|

1

LH

p pkobs
pkobs pkexp

pkobs pkexp
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Fig. 3.2 Frequency table for the states of the target gene ( , column)  qg

and the states of other gene ( , row). jg
 

To determine if this is the case, we can use the standardized residual [77] to 

scale the difference as follows:  

                                                = pkz
pk

pkpkobs

exp

exp−
.                                 (3.1) 

This statistic approximates the standard normal distribution only when the 

asymptotic variance of  is close to one. Therefore, it is, in practice, adjusted by 

its variance for a more precise analysis. The new test statistic, which is called the 

adjusted residual, can be expressed as follows: 

pkz

           = pkd
pk

pkpkpk

v

obs exp)exp( −
 = 

pk

pk

v

z
,                       (3.2) 

where  is the maximum likelihood estimate of its asymptotic variance and is 

defined as: 

pkv

                                         = (1 – pkv
'N

obsp+
)(1 – 'N

obs k+ ).                                 (3.3) 

This statistic has an approximate standard normal distribution [8], [34], [36], [158] 

and an association is considered to be interesting if the test statistic is statistically 

significant. In other words, if  (Eq.(3.2)), we can conclude, with a 96.1>pkd
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confidence level of 95 percent, that the state, , of  is significantly associated 

with the state, , of the target gene,  (Fig. 3.2).  

)(k
js jg

)( p
qs qg

 

Step 2 – Determining the weight of evidence of the associations: 

Using Eq.(3.2), we can determine whether  is significantly associated with . 

If it is the case, then it can be utilized to construct a characteristic description of 

. Such an association is not completely deterministic and the uncertainty 

associated with it is quantified using a measure defined so that if the state of  is 

, then it is with certainty W(State =  / State 

)(k
js )( p

qs

)( p
qs

jg

)(k
js )( p

qs ≠ )( p
qs  | ) that the state of 

 is , where W, the weight of evidence measure [124], is defined in terms of 

the mutual information, I(  : ), between  and  as follows:       

)(k
js

qg )( p
qs

)( p
qs )(k

js )( p
qs )(k

js

                                        I(  : ) = log )( p
qs )(k

js
)Pr(

)|Pr(
)(

)()(

p
q

k
j

p
q

s

ss
.                             (3.4) 

):( )()( k
j

p
q ssI  is positive if . It is negative if 

 and is zero if .  

intuitively measures the decrease (if positive) or increase (if negative) in uncertainty 

about the assignment of  to  given that the state of  is . Based on the 

mutual information, the weight of evidence provided by  supporting or refuting 

the state of  is  can be defined as follows: 

)Pr()|Pr( )()()( p
q

k
j

p
q sss >

)Pr()|Pr( )()()( p
q

k
j

p
q sss < )Pr()|Pr( )()()( p

q
k

j
p

q sss = ):( )()( k
j

p
q ssI

)( p
qs qg jg )(k

js

)(k
js

qg )( p
qs

                                       W(State =  / State )( p
qs ≠ )( p

qs  | )                            (3.5) )(k
js

=  I(  : ) - I()( p
qs )(k

js ≠ )( p
qs  : ). )(k

js
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Similar as before,  measures the decrease (if positive) or increase (if 

negative) in uncertainty about the assignment of the state, which is not equal to , 

to  given that the state of  is . In other words, W can be interpreted as a 

measure of the difference in the gain in information, I(  : ) - I(  : 

). The weight of evidence is positive if  provides positive evidence 

supporting the assignment of  to ; otherwise, it is negative. Since this 

measure is probabilistic, it can work effectively even when the data being dealt with 

contains incomplete, missing, or erroneous values.   

):( )()( k
j

p
q ssI ≠

)( p
qs

qg jg )(k
js

)( p
qs )(k

js ≠ )( p
qs

)(k
js )(k

js

)( p
qs qg

Given a collection of the selected states of 'M  genes, where MM <' , that can 

be utilized to construct characteristic descriptions of , the total weight of 

evidence supports the assignment of  to  is defined as follows, 

)( p
qs

)( p
qs qg

                    TW(State =  / State )( p
qs ≠   | )            (3.6) )( p

qs
)()()(

1 '...... k
M

k
j

k sss

= . )|/W(State )()(
,1

)(' k
j

p
q

M

qjj
p

q ssStates ≠=∑ ≠=

Therefore, given a testing sample, the state, , is inferred to the target gene, , 

if the total weight of evidence is maximized.  

)( p
qs qg

With the association-discovery technique, interesting association relationships 

between genes can be discovered. In addition, this technique can also be used to 

discover interesting sequential associations from time-dependent gene expression 

data. In the following section, this sequential association discovery approach will be 

given.   
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3.2 Discovery of Sequential Associations from Time-
dependent Gene Expression Data  
 
Let us assume that we are given a set of time-dependent gene expression data, G , 

consisting of M  time series collected from experiments with M  genes. Each of 

these M  time series consists, in turn, of N data points collected from N different 

experimental conditions, , carried out, one after the other, 

at  different time instances. The data set, G , can therefore be represented as: 

, where each gene, say , takes on the expression value, , 

under the experimental condition . By computing an average gene expression 

value, , which serves as a reference point for how large the value is (as discussed 

in Section 3.1), instead of ,  can now be considered as taking on a transformed 

expression value,  under the experimental condition . This process of 

transformation is also performed for each of the 

Nttt EEEEE ,...,,,,..., 111 +−

N

},,j K,,{G 1 Mggg K= jg tje

tE

−

je

tje jg

},{ LHstj ∈ tE

M  genes in  (Fig. 3.1). Given the 

above representation, the association-discovery technique can be used to discover 

interesting sequential associations as follows [113]-[115].  

G

To discover the sequential associations, the first step is to determine, for the 

target gene, , which other genes, , it is dependent on, where  and 

. For gene regulatory relationships, if the expression of  is dependent on 

the expression of , one would expect to observe that the expression levels of  

be associated with those of  after a certain amount of time delay [15]. For this 

reason, we detect if there exists interesting sequential associations between the states 

of  in  with those of  in . 

qg jg jq ≠

Gg q ∈ qg

jg qg

jg

qg tE jg 1−tE

 47



CHAPTER 3 – RECONSTRUCTING GENE REGULATORY NETWORKS 
FROM GENE EXPRESSION DATA 
 
 

If, say, “  is highly expressed in ” is dependent on “  is highly expressed 

in ” (in this case, , and  ,  and  are 

described in Section 3.1), then we can expect the observed total number of 

occurrences of “  is highly expressed in  and  is highly expressed in ” is 

significantly different from its expected total number of occurrences. To determine 

if this is the case, the adjusted residual discussed in Section 3.1 can be used. Table 

3.1 shows the summary of the notations used.   

qg tE jg

1−tE Hss p
qtq == )( Hss k

jjt ==−
)(

)1(
)( p

qs )(k
js

jg 1−tE qg tE

TABLE 3.1 
SUMMARY OF THE NOTATIONS USED  

pkobs  Observed total number of occurrences of:  
jg  is highly expressed in  and  is highly expressed in  1−tE qg tE

pkexp  Expected total number of occurrences under the assumption that:  
qg  is highly expressed in  is independent of whether  is highly 

expressed in  
tE jg

1−tE

+pobs  Observed total number of occurrences of:  
qg  is highly expressed in  and  is highly expressed or lowly 

expressed in  
tE jg

1−tE

kobs +  Observed total number of occurrences of: 
qg  is highly expressed or lowly expressed in  and  is highly 

expressed in  
tE jg

1−tE
    

Given  and , we can determine whether  is significantly 

different from  using the adjusted residual shown in Eq.(3.2). According to 

Section 3.1, this statistic, , has an approximate standard normal distribution and 

the sequential association “  is highly expressed in  and  is highly 

expressed in ” is interesting when the test statistic is statistically significant. In 

other words, if , we can conclude, with a confidence level of 95 percent, 

pkobs pkexp pkobs

pkexp

pkd

jg 1−tE qg

tE

96.1>pkd
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that “  is highly expressed in ” is dependent on “  is highly expressed in 

” and this sequential association can be represented as =H → =H.  

qg tE jg

1−tE jts )1( − tqs

It should be noted that there are two major types of gene regulatory relationships 

at the level of transcription [27], [154]. They are activation and inhibition. 

Activation and inhibition can take place through the regulator (the protein product of 

) directly binding to  (the target gene), or by binding other regulators and thus 

controlling  indirectly. In the activation process, if one is hypothesizing that  

activates , one would expect to see in the data that, if the state of  is high, it is 

to be followed by the state of  being also high and if the state of  is low, it is to 

be followed by the state of  being low. The expectation would be reversed for 

inhibition. Hence, based on the sequential associations discovered between the 

various states of different genes, we may determine whether or not one gene is 

activated or inhibited by another. 

jg qg

qg jg

qg jg

qg jg

qg

Since the discovered sequential association is not completely deterministic, the 

uncertainty associated with =H → =H can be modeled with the confidence 

measure defined as Pr( =H | =H). For the purpose of predicting  in a 

future time point, a weight of evidence measure, W( =H → =H), which is 

defined in terms of the mutual information I( =H : =H), can be used as 

follows:            

jts )1( − tqs

tqs jts )1( − tqs

jts )1( − tqs

tqs jts )1( −

  W( =H → =H)                                        (3.7) jts )1( − tqs

= W( =H / tqs tqs ≠ H | =H) jts )1( −

=  I( =H : =H) - I(tqs jts )1( − tqs ≠ H : =H), jts )1( −
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where 

         I( =H : =H) = log tqs jts )1( − )Pr(
)|Pr( )1(

Hs
HsHs

tq

jttq

=

== − .            

W( =H → =H) measures the amount of positive or negative evidence that is 

provided by =H supporting or refuting the state of the target gene, , in  

to be H. The sequential association discovery approach can be summarized as shown 

in Fig. 3.3. With the discovered sequential associations, whether or not the target 

gene will be highly or lowly expressed in a next time point can be predicted. In 

addition, they can also allow gene expression of the unseen samples to be predicted. 

This can be done as follows. 

jts )1( − tqs

jts )1( − qg tE

Step 1: Compute the average expression value, , of each gene, , in ,  
−

je jg G
Mj ,...,1= . 

 
Step 2: Map each real-valued expression value, , into one of two states:  tje

H and L, depending on how close they are to . 
−

je
 
Step 3: For the target gene, , determine if there are interesting sequential qg
associations between its states and those of other genes, , using the adjusted jg
residual.  
 
Step 4:  If a sequential association is statistically significant, then it is used to decide 
if  is activated or inhibited by another.       qg
 
Step 5: Based on the discovered sequential associations and a weight-of-evidence 
measure, the state of  in the next time point can be predicted.  qg
 

Fig. 3.3 Summary of the sequential association discovery approach. 
 
Given a set of time-dependent expression data collected from a set of 'M  genes 

from the unseen samples (i.e., gene expression data that is not in the original 

database). This set of 'M  genes can be represented by =  'G },...,,...,{ )'()()1( Mj ggg
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where  and GG ⊆' MM ≤' . The gene expression values can then be mapped into 

states of H and L based on Steps 1 and 2 above (Fig. 3.3). To predict the expression 

state of the target gene, , at time t, the discovered sequential associations can be 

searched to see which other genes  is dependent on. If, say, the sequential 

association, =H → =H was previously discovered in the original 

database, then we can conclude that there is some evidence supporting  to be 

highly expressed at time t if  was highly expressed at the last time instance. By 

considering if and how  is dependent on other genes in , then we can 

combine the evidence that support  to be highly expressed by computing a total 

weight of evidence measure. Suppose that  is only dependent on some other 

genes, , in , where , then the total weight of evidence 

measure can be computed as follows:    

)(qg

)(qg

))(1( jts − )(qts

)(qg

)( jg

)(qg 'G

)(qg

)(qg

)()()1( ,...,,..., βggg j
'G 'M<β

                 TW( SsSsSs tjtt === −−− ))(1())(1()1)(1( ,...,,..., β  → =H),       (3.8) )(qts

where . },{ LHS ∈

= TW( =H / )(qts )(qts ≠ H | SsSsSs tjtt === −−− ))(1())(1()1)(1( ,...,,..., β ) 

    = .              )|/W(s ))(1(1 )(t(q) SsHsH jtj qt =≠= −=∑β

The total weight of evidence for  to be highly or lowly expressed are computed 

respectively and the state for  is determined by the one with the greatest total 

weight of evidence, i.e., 

)(qg

)(qg

    ),...,,...,TW( )())(1())(1()1)(1(},{ MAXqttjttLHS
SsSsSsSsMAX

MAX

=→=== −−−∈ β .  (3.9) 
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3.3 Experiments 

A. Experimental Data 

For our experiments, we used a set of real, time-dependent gene expression data. In 

this data set, the biological samples were synchronized by different methods such as 

α factor arrest, arrest of a cdc15, and cdc28 temperature-sensitive mutant. Using 

periodicity and correlation algorithms, a set of cell cycle regulated genes (from 

about 6000 genes) that meet an objective minimum criterion for cell cycle regulation 

were identified [141].  

 

B.  Evaluating Criteria  

In our analysis, we chose the cdc15 experiment as the training set as it has the 

largest number of samples/experimental conditions (24 samples). The other two data 

sets, alpha experiment (18 samples) and cdc28 experiment (17 samples), were used 

as the testing sets. During the training process, interesting association relationships 

between the cell cycle regulated genes were discovered. For performance evaluation, 

we selected a subset of target genes from two important functional groups, cyclin 

and histone, for testing. This subset includes CLN1, HTA1, HTB1, CLB1, CLN2, 

HTA2, HTB2, CLB2 and CLB6 (Table 3.2). Based on the discovered sequential 

associations, the states of these genes in independent testing sets were predicted and 

then compared with what are known about them.  
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TABLE 3.2 
SUMMARY OF TARGET GENES SELECTED. PEAK EXPRESSION OF THE  

TARGET GENES COVER THE STANDARD PHASES OF CELL CYCLE  
(G1, S, G2 AND M) 

Standard Name Systematic Name Peak 
CLN1 YMR199W G1 
HTA1 YDR225W S 
HTB1 YDR224C S 
CLB1 YGR108W G2/M 
CLN2 YPL256C G1 
HTA2 YBL003C S 
HTB2 YBL002W S 
CLB2 YPR119W G2/M 
CLB6 YGR109C G1 

 

3.4 Results and Discussions 

During the training process, the sequential associations that can be used to construct 

characteristic descriptions of the states of each target gene were discovered. The 

examples of such sequential associations discovered are given in Figs. 3.4 and 3.5. 

For example, the first sequential association shown in Fig. 3.4 reveals that if the 

state of RME1 is high (H), then the state of CLN2 is high (H) in the next time 

instance. This also implies that CLN2 is activated by RME1.   

RME1 = H A CLN2 = H
     

ESC8 = L A CLN2 = L
 

RFA1 = H A CLN2 = H
     

POL30 = H A CLN2 = H
 

FAR1 = L CLN2 = H   I

     
RME1 = L A CLN2 = L

 

CLN1 = H A CLN2 = H
     

ECS8 = H A CLN2 = H
 

RFA1 = L A CLN2 = L
     

FAR1 = H CLN2 = L   I

 

POL30 = L A CLN2 = L
     

CLN1 = L A CLN2 = L
 

Fig. 3.4 Interesting sequential associations that can be used to construct characteristic descriptions of 
the states of CLN2 gene (A is activation and I is inhibition). 
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TAF2 = L HTB2 = H   I

     
CDC47 = L HTB2 = H   I

 

HTA1 = H A HTB2 = H
     

HTA2 = H A HTB2 = H
 

SPT21 = H A HTB2 = H
     

TAF2 = H HTB2 = L   I

 

CDC47 = H HTB2 = L   I

     
SPT21 = L A HTB2 = L

 

HTA2 = L A HTB2 = L
     

HTA1 = L A HTB2 = L
 

Fig. 3.5 Interesting sequential associations that can be used to construct characteristic descriptions of 
the states of HTB2 gene. 

 
Based on the sequential associations discovered, the states of each target gene in 

the testing sets (alpha and cdc28) can be predicted. The predicted states were then 

compared with the original states of the target gene and the average prediction 

accuracy can be calculated in each testing set.  

For experimentation, we evaluated the performance of the proposed association-

discovery technique by comparing it to the well-known decision-tree based 

classification algorithm, C4.5 [131], [159]. We chose C4.5 because, compared to 

other approaches which can only infer plausible relationships between genes, it, like 

the proposed technique, also has both predictive and explanatory capability (as 

discussed in Chapter 2, Section 2.3.2).  

To predict the states of the target genes with C4.5, the expression values of each 

gene were divided into two different states as discussed before: “highly expressed 

( H )”, and “lowly expressed ( L )”. The expression value, , of each gene can then 

be mapped to H if , and L if , where  is the average expression 

value of  under all the experimental conditions.   

tje

−

> jtj ee
−

≤ jtj ee
−

je

jg
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In order to improve the performance of C4.5, feature selection has been 

performed for it. Many feature selection methods have been proposed to reduce the 

number of attributes in gene expression data. The most popular methods are the 

filter and wrapper methods [49], [65], [143], [146], [160]. Based on the t-statistic 

[143], [146], for each target gene, the following steps were adopted and performed 

to select genes (attributes) for C4.5: (i) all cell cycle regulated genes are sorted in 

descending order of their t-values, (ii) initially, the top 5% of the genes are selected 

and removed from the ranked list, (iii) using C4.5 with a 10-fold cross validation on 

the training data of this subset of selected genes, the average classification accuracy 

is obtained, (iv) an additional 5% of genes from the ranked list are then added into 

the subset of selected genes, (v) steps (iii) and (iv) are repeated until the 

classification performance converged, then (vi) the final subset of genes with the 

highest classification accuracy is selected.  

In Tables 3.3 and 3.4, the comparisons of the average prediction accuracy of 

different approaches are showed. The results shown in the tables indicate that the 

proposed technique has higher prediction accuracy than C4.5 and the feature 

selection version of it for both testing sets. Even though C4.5 and the feature 

selection version of it already performed quite well, the results seem to indicate that 

the association-discovery technique is even more effective.  
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TABLE 3.3   
COMPARISON OF THE AVERAGE PREDICTION ACCURACY 
(ALPHA DATASET) (FS REPRESENTS FEATURE SELECTION) 

Standard 
Name Proposed  C4.5  C4.5  

+ FS 
CLN1 88.89% 66.67% 83.33% 
HTA1 88.89% 61.11% 77.78% 
HTB1 94.44% 66.67% 77.78% 
CLB1 88.89% 66.67% 83.33% 
CLN2 88.89% 66.67% 77.78% 
HTA2 88.89% 72.22% 83.33% 
HTB2 83.33% 61.11% 72.22% 
CLB2 83.33% 61.11% 77.78% 
CLB6 88.89% 72.22% 83.33% 

Average 88.27% 66.05% 79.63% 
 

TABLE 3.4   
COMPARISON OF THE AVERAGE PREDICTION ACCURACY  

(CDC28 DATASET) 
Standard 

Name Proposed C4.5 C4.5  
+ FS 

CLN1 82.35% 64.71% 76.47% 
HTA1 82.35% 58.82% 70.59% 
HTB1 82.35% 52.94% 64.71% 
CLB1 88.24% 70.59% 82.35% 
CLN2 88.24% 70.59% 82.35% 
HTA2 82.35% 64.71% 76.47% 
HTB2 82.35% 58.82% 70.59% 
CLB2 88.24% 70.59% 88.24% 
CLB6 88.24% 64.71% 82.35% 

Average 84.97% 64.05% 77.12% 
 

Biological Interpretation: 

In order to evaluate the biological significance of the discovered sequential 

associations, we tried to verify that any known gene regulatory relationships [19], 

[61], [104] could be revealed from them. Fig. 3.6 shows some biologically 

meaningful sequential associations discovered by the proposed technique. Based on 

these findings, we can then construct the gene interaction diagram [15] as shown in 

Fig. 3.7. This diagram might provide important clues in inferring the structures of 

GRNs. For comparison, we also show the interaction diagram (Fig. 3.8) that was 
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constructed based on the rules discovered by C4.5 (the best diagram, which reveals 

more known gene regulatory relationships, among C4.5 and C4.5 with feature 

selection). Comparing the diagrams, it should be noted that some of the known gene 

regulatory relationships can only be discovered by the proposed technique.   

1. Activation pair: RME1 -> CLN2 

RME1 = H A CLN2 = H
     

RME1 = L A CLN2 = L
 

2. Activation pair: HTA1 -> HTB2 

HTA1 = H A HTB2 = H
     

HTA1 = L A HTB2 = L
 

3. Inhibition pair: CLB2 -> CLN1 

CLB2 = L CLN1 = H   I

     
CLB2 = H CLN1 = L   I

 
4. Activation pair: SPT16 -> HTA1  

SPT16 = H A HTA1 = H
     

SPT16 = L A HTA1 = L
 

5. Activation pair: SPT16 -> CLN1 

SPT16 = H A CLN1 = H
     

SPT16 = L A CLN1 = L
 

6. Activation pair: SPT16 -> HTB1 

SPT16 = H A HTB1 = H
     

SPT16 = L A HTB1 = L
 

7. Inhibition pair: CDC20 -> CLN1 

CDC20 = L CLN1 = H   I

     
CDC20 = H CLN1 = L   I

 
8. Activation pair: SPT21 -> HTB2 

SPT21 = H A HTB2 = H
     

SPT21 = L A HTB2 = L
 

Fig. 3.6 Biologically meaningful sequential associations  
discovered by the proposed technique (to be continued). 
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9. Activation pair: CLN1 -> CLN2 

CLN1 = H A CLN2 = H
     

CLN1 = L A CLN2 = L
 

10. Activation pair: SPT21 -> HTA1 

SPT21 = H A HTA1 = H
     

SPT21 = L A HTA1 = L
 

11. Activation pair: HTA1 -> HTB1 

HTA1 = H A HTB1 = H
     

HTA1 = L A HTB1 = L
 

12. Inhibition pair: FAR1 -> CLN2 

FAR1 = L CLN2 = H   I

     
FAR1 = H CLN2 = L   I

 
13. Activation pair: HTA2 -> HTB1 

HTA2 = H A HTB1 = H
     

HTA2 = L A HTB1 = L
 

14. Activation pair: HTA2 -> HTB2 

HTA2 = H A HTB2 = H
     

HTA2 = L A HTB2 = L
 

Fig. 3.6 Biologically meaningful sequential associations 
discovered by the proposed technique. 
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C L N 1

C L N 2

S P T 1 6

R M E 1

C D C 2 0

C L B 2

F A R 1

H T A 1
H T B 1

H T A 2

H T B 2
S P T 2 1

Fig. 3.7 Gene interaction diagram constructed by the known gene  
regulatory relationships discovered by the proposed technique (12 genes and  

14 known regulatory relationships involved). Solid lines correspond to  
activation relationships and broken lines correspond to inhibition relationships. 
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C L N 1

C L N 2

S P T 1 6

C D C 2 0

C L B 2

H T A 1

H T B 1

H T A 2

H T B 2

Fig. 3.8 Gene interaction diagram constructed by the known  
gene regulatory relationships discovered by C4.5  

(9 genes and 9 known regulatory relationships involved). 
 
In this chapter, we have proposed to use an association-discovery technique for 

the reconstruction of GRNs from time-dependent gene expression data. This 

technique can discover interesting association relationships between genes in high-

dimensional and very noisy data without the need for additional feature selection 

procedures. Based on the discovered sequential associations, the user can not only 

determine those genes affecting a target gene but also can identify whether or not the 

target gene is supposed to be activated or inhibited. In addition, the sequential 

associations discovered can also be used to predict how a gene would be affected by 

other genes from the unseen samples. Experimental results on real expression data 

show that the proposed technique can be very effective and the discovered 

sequential associations reveal known gene regulatory relationships that could be 

used to infer the structures of GRNs. One additional advantage of the reconstruction 
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of GRNs using the association-discovery technique is that the user can easily 

improve the classifier by adding new expression data and reproduce underlying 

structures of a network consistent with the data. Since such iterative improvements 

can be part of an interactive process, therefore, the proposed technique can be 

considered as a basis for an interactive expert system for GRNs reconstruction.   
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Chapter 4 

Clustering and Re-clustering of  
Gene Expression Data 

 

In clustering gene expression data [17], [52], [74], [148]-[149], various forms of 

inaccuracies and data variations need to be reduced as noise can be introduced at 

different stages - the production of the arrays, preparation of the samples, 

hybridization experiments and extraction of the hybridization results (as discussed in 

Chapter 2, Section 2.3.3). Genetic variations and impurity of tissue samples may 

also introduce additional difficulties in the analysis [16]. To cluster gene expression 

data in the presence of these various types of noise and overcome some limitations 

of existing clustering algorithms, in this chapter, we propose a two-phase clustering 

algorithm [112], [118], [120] consisting of an initial clustering phase and a second 

re-clustering phase.  

In the first phase, local information is extracted for the clustering process by 

computing a pair-wise distance measure between gene expression profiles. This 

information is then used for a conservative clustering approach that prefers to leave 

uncertain genes unassigned rather than forcing them into one of the clusters thereby 

rendering the discovered clusters less reliable. The second phase consists of a re-

clustering process. For the purpose of re-clustering, global information is obtained 

through the discovery of interesting association relationships between gene 

expression levels and cluster labels. In doing so, the association-discovery technique 

discussed in Chapter 3 (Section 3.1) is used to discover interesting associations by 
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differentiating among the expression levels that are relevant for the clustering 

process from those that are irrelevant. If an expression level is relevant in 

determining whether or not a gene should belong to a particular cluster, then it is 

reflected by the interestingness measure. Since the interestingness measure is 

probabilistic, it can work effectively even when the data being dealt with contains 

incomplete, missing, or even erroneous values. Once the associations are discovered, 

they can be made explicit for possible interpretation. These associations specify 

different characteristics, in terms of what expression levels the genes should have 

under a particular set of experimental conditions, that different clusters of genes 

possess and they can be easily understood and interpreted by human users. In the 

following section, the proposed clustering algorithm will be presented in details. 

 

4.1 A Two-Phase Clustering Algorithm  
 
To describe the proposed two-phase clustering algorithm [112], [118], [120], let us 

assume that we are given a set of gene expression data, G, consisting of the data 

collected from N genes in M experiments carried out under different experimental 

conditions. Let us represent the data set as a set of N genes, , 

with each gene, , , characterized by M different experimental 

conditions, , whose values, , where  represents the 

expression value of the gene under the j

},,,,{ Ni ggg KK1G =

ig Ni ,...,1=

Mj EEE ,,,,1 KK iMiji eee ,,,,1 KK ije

thi th experimental condition (Fig. 4.1).   
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Fig. 4.1 Gene expression data representation. 

 

Phase 1 - The cluster initialization phase: 

To find the initial clusters, the popular hierarchical agglomerative clustering 

algorithm [156] is used. This algorithm consists of a series of successive fusions of 

N genes,  into clusters and the results of this fusion process are 

presented in the form of what is called a dendrogram. A dendrogram displays the 

results after each successive fusion. The genes falling along a particular branch in a 

dendrogram form a cluster and the similarity between different clusters are also 

shown. By cutting the dendrogram at some level, a specific number of clusters can 

be obtained. The advantage of using hierarchical clustering algorithm is that a 

suitable cutoff level based on prior knowledge can be used. As a result, a set of more 

reliable initial clusters can be obtained (as discussed before, in this phase, it prefers 

to leave uncertain genes unassigned rather than forcing them into one of the clusters 

thereby rendering the discovered clusters less reliable.). Since the Pearson 

correlation coefficient is more commonly used for gene expression data and is 

known to be better than the Euclidean distance in dealing with noise [16]. It is 

therefore used as a similarity function in this phase. For any two genes,  and , 

whose expressions are monitored over a series of M different experimental 

conditions, the measure is defined as follows: 

,,,,,1 Ni ggg KK

xg yg
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Phase 2 - The re-clustering phase: 

With the proposed association-discovery technique (as discussed in Chapter 3, 

Section 3.1), in this phase, genes that were not assigned to any clusters in Phase 1 

are assigned and those that have already been assigned are re-evaluated to determine 

if they should remain in the same cluster or be assigned to a different one. This 

assignment process is performed in two steps as follows. Firstly, interesting 

associations are identified in the initial clusters that are statistically significant. Then, 

based on the discovered associations, all the genes that were previously unassigned 

to any clusters are assigned to one of the clusters, and the cluster memberships of 

those that were previously assigned are also re-evaluated. The details of this 

assignment process are given below.    

 

Step 1 - Discovering interesting associations between gene expression levels and 
cluster labels:  
 
To minimize the effect of noise in the re-clustering process, rather than the actual 

expression values, the data is partitioned into intervals (levels) instead. The 

partitioning, which is also called discretization, is based on a popular technique as 

described in [35] so as to minimize the loss of information during the process.  
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After discretization, interesting association relationships are discovered in each 

initial cluster by detecting for the associations between the expression levels of the 

genes that belong to a particular cluster and the cluster label itself. To do so, we let 

 be the observed total number of genes, , where , in the 

data that belong to a given cluster, , where 

pkobs li ggg ,...,,...,1 Nl ≤

pC Pp ,...,1=  and P is the total number 

of initial clusters discovered, and are characterized by the expression values that are 

within the interval of  (the expression values, , are within the 

interval of . In other words, the genes, , have the expression level 

), where , and  is the total number of distinct data intervals 

(expression levels) of . We also let  = 

)(k
je ljijj eee ,...,,...,1

)(k
je li ggg ,...,,...,1

)(k
je valKk ,...,1= valK

jE pkexp
'N

obsobs kp ++  be the expected 

total under the assumption that being a member of  is independent of whether or 

not a gene has the characteristic , where  = 

pC

)(k
je +pobs ∑ =

valK

k pkobs
1 ,  = 

 and  = 

kobs+

∑ =

P

p pkobs
1

'N ∑ kp pkobs
, ≤  N due to possible missing values in the 

data. An association is then considered interesting if  is significantly different 

from . To determination if this is the case, the adjusted residual as shown in 

Eq. (3.2) is used. According to Section 3.1, this statistic has an approximate standard 

normal distribution and an association is considered to be interesting if the test 

statistic is statistically significant.   

pkobs

pkexp
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   / 

Step 2 - Assignment and re-assignment of genes:  

Using the adjusted residual, we can determine if , under the experimental 

condition, , is associated with a cluster, , say, a 95% confidence level 

( ). If it is the case, then it can be utilized to construct characteristic 

description of . This description is represented as follows: If the expression value 

of a gene in  is within the interval of , then it is with certainty W(Cluster = 

 / Cluster  | ) that the gene belongs to , where W, the weight of 

evidence measure [124], is defined in terms of the mutual information I(  : ) 

as follows:     

)(k
je

jE pC

96.1>pkd

pC

jE )(k
je

pC ≠ pC )(k
je pC

pC )(k
je

                                  W(Cluster = pC Cluster  ≠ pC  | )(ke )                          (4.2j ) 

=   : I( pC )(k
j ) - I(e ≠ pC )(k

j : ), 

 : 

e

where 

                   I( )(k ) = log pC je
)Pr(

)|Pr( )(

p

k
j

C
eC

          

The weight of evidence measures the amount of positive or negative evidence that is 

provided by  supporting or refuting the labeling of a gene as .  

To re-evaluate the cluster membership of a gene, , characterized by 

If the expression value, , of satisfies the associations (i.e., the expression value, 

a

p .  

)(k
je p

i

1 KK , its description can be matched against the discovered associations. 

ij i

ije , of ig  is within the interval of je ) that implies pC , then we can conclude that 

the description of ig  partially m tches that of pC . By repeating the above 

C

g

Mj EEE ,,,,

e g  

)(k
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procedure, that is, by matching each expression value, ije , Mj ,...,1= , of ig  against 

the discovered associations, the total weight of evidence of assigning ig  to pC  can 

be determined. Suppose that of the M characteristics that describe ig , only 'M , 

MM ≤' , of them are found to match with th

total weight

                      TW luster =  / Cluster 

e discovered associations. Then, the 

 of evidence supports the labeling of g  as C is defined as follows, i p

(C pC ≠  pC  | 
(

1 ...... k
j

k eee ) ) 

= 
'

1
)( )|

j
k

jpp eC . 

Then, the cluster label  is inferred to a gene if:  

                         { ≠= )|/( eCClusterCClusterW }.           (4.4) 

ips. This feature makes the 

roposed algorithm more robust to noisy data when compared to those algorithms 

that only rely on local pair-wise similarity measures.  

4.2 Experiments  

)( )()
'

k
       (4.3M

∑ = /(M ClusterCClusterW
=

≠

pC

P

p 1= =

'

1
)(M

j
k

jpp

The re-clustering phase described above allows for probabilistic associations to be 

detected. It performs its task by distinguishing between relevant and irrelevant 

expression levels and by doing so, it takes into consideration global information 

contained in a specific cluster arrangement by evaluating the importance of different 

expression levels in determining cluster membersh

MAX ∑

p

 

A. Experimental Data  

For experimentation, we used a set of simulated data consisting of 300 records each 

characterized by 50 different attributes that take on values from [0.0, 1.0]. Initially, 
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larities in this noisy data solely relying on 

the 

ilar features to those that have 

een clustered successfully, it is important that they could also be properly assigned 

lts can be better interpreted. 

rithm was evaluated based on three 

obj

all these records were sampled from a uniform distribution and they were pre-

classified into one of three clusters so that each cluster contains 100 records. To 

embed hidden patterns in the data, 10% of the attributes in each cluster were 

randomly selected. For each selected attribute, 40% of its values in that cluster were 

randomly generated from within a certain range [L, U], where 0.0 ≤ L ≤ U ≤ 1.0, so 

that L was selected uniformly from [0.0, 1.0] first, and U was then also selected 

uniformly from [L, 1.0]. Since this kind of data generation is non-deterministic, it is 

very difficult to discover the hidden regu

local pair-wise distances between records. Therefore, it is used to evaluate the 

effectiveness of the proposed algorithm.  

In addition to the simulated data, we also used a set of real expression data. 

According to [141], the authors successfully applied a hierarchical clustering 

algorithm [52], [156] to cluster about 230 genes into 8 distinct clusters based on the 

similarity of expression profiles (under 77 different experimental conditions) and 

their prior biological knowledge. However, due to variation of the expression data, 

the cluster memberships of the remaining genes (about 560 genes) cannot be 

determined. Since the unassigned genes may have sim

b

so that the clustering resu

 

B.  Evaluating Criteria  

For performance evaluation, the proposed algo

ective measures: (i) the F-measure, (ii) the predictive power measure, and (iii) the 

Davies-Bouldin validity index (DBI) measure. 

The F-measure [96], which is typically used for cluster evaluation, combines the 
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considered as consisting of records desired by a user

set of discovered and original clusters, the F-m

idea of “precision” and “recall” from the field of information retrieval [86]. When 

the correct clustering arrangement of a set of data is known (i.e., in case of the 

simulated data described above), the F-measure can be used to determine how well a 

discovered clustering arrangement compares with that of the correct, original one. 

According to the F-measure, the records (genes) in a discovered cluster, qC , can be 

considered as if they have been retrieved through a certain query. These records can 

then be compared against those in one of the original clusters, pC , which can be 

 by posting the query. Given a 

easure is therefore defined as: 

),(Pr),(Re
),( qp CCecision

, where 
Pr),(Re2

),(
qpqp

qp
qp CCecisionCCcall

CCcall
CCF

+
=

p

qpCCcount
CCcall =),(Re  

C
qp count

and 
qC

co n

cluster label pC  in the discovered cluster qC , pCcount  is the number of records 

with cluster

qpCC
qp count

u t
CCecision =),(Pr  and is the num

 and  ber of records in the discovered 

cluster . The F-measure has value in the interval  larger its value, the 

better the clustering quality it reflects.  

The predictive power measure is actually a measure of classification accuracy. If 

the clusters discovered are valid and of good qualities, we should expect patterns to 

be discovered in them. If these patterns are used to classify some testing data (i.e., 

data that is not in the original database), the classification accuracy can reflect how 

valid and how good the qualities of the discovered clusters are. In order to determine 

the classification accuracy, a set of training data can be randomly selected from each 

qpCCcount  ber of records with 

 label pC qCcount is the num

qC  [0,1] and the
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remaining 10% used for testing. After ten experiments 

cor

cluster to construct a decision-tree classifier using C4.5 [131]. C4.5 is a greedy 

algorithm that recursively partitions a set of training data by selecting attributes that 

yield a maximum information gain measure at each step in the tree-construction 

process. After a decision tree is built, the cluster memberships of those genes that 

were not selected for training are then predicted. The percentage of accurate 

prediction can then be determined as classification accuracy. This accuracy measure 

is also referred to as the predictive power measure. If a clustering algorithm is 

effective, the discovered clusters should contain hidden patterns that can be used to 

accurately predict the cluster membership of the testing data. And if this is the case, 

the predictive power of a cluster grouping should be high. Otherwise, if a clustering 

algorithm is ineffective, the clusters it discovers are not expected to contain too 

many hidden patterns and the grouping is more or less random. And if this is the 

case, the predictive power is expected to be low. Hence, the greater the predictive 

power, the more interesting a cluster grouping is and vice versa. In our experiments, 

the predictive power measure was computed based on a ten-fold cross validation 

approach. For each fold, 90% of the genes in each cluster were randomly selected 

for training and the 

responding to the ten folds were performed, the average predictive power of the 

discovered clusters was computed as the average classification accuracy over the ten 

experiments [159].     

The DBI measure [47] is a function of the inter- and intra-cluster distances. 

These distances are considered good indicators of the quality of a cluster grouping as 

a good grouping should be reflected by a relatively large inter-cluster distance and a 

relatively small intra-cluster distance. In fact, many optimization clustering 

algorithms are developed mainly to maximize inter-cluster and minimize intra-
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cluster distances. The DBI measure combines these two distances in a function to 

cluster and its most similar one. Assume

that a cluster grouping consisting of 

measure the average similarity between a  

k clusters has been formed. Its DBI measure is 

then defined as follows [123]: 
⎪⎭

⎪
⎬

⎪
⎨

+
= ∑

))(
max1 intint qrapra CdCd

DBI , where 
⎫

⎪⎩

⎧

= ≠ ),(
(

int1 qper

k

p qp CCdk

q
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i
qci

qra n

gg
Cd

∑
q

==)

number of clusters,  and  intra- and inter-cluster 

distances respectively and ber of genes in a cluster, . The intra-

cluster distance for a given cluster is therefore defined to be the average of all pair-

and its centroid, and the inter-cluster 

−
1

int

||||
( , ||gg||),(int qcpcqper CCd −= , k denotes the total 

radint erd int  denote the centroid

qn  is the num qC

wise distances between the genes in qC  qcg  

distance between two clusters, pC  and qC , is computed as the distance between 

their centroids, pcg  and qcg . A low value of DBI indicates good cluster grouping.  

 

4.3 Results and Discussions  

As discussed before, the proposed algorithm consists of two phases: an initial 

clustering phase and a second re-clustering phase. To find the initial clusters, we 

used the popular hierarchical agglomerative clustering algorithm as discussed in 

Section 4.1. The effectiveness of the proposed algorithm was evaluated according to 

the objective measures as discussed in Section 4.2. For comparison, we also show 

the statistic for the three other clustering algorithms popularly used to cluster gene 

expression data. They are the hierarchical clustering algorithm [156], the k-means 
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each run using different randomly-generated initial 

cluster centroids. Only the best res ong these 100 runs was recorded. 

T ble 4.1 shows rison

Based on the r rs rmances of these existing algorithms 

can be further improved. They do not seem to be able to discover hidden regularities 

effe

COMPARISON OF THE AVERAGE F-MEASURE 

 Proposed 

Hierarchical 

algorithm [100] and SOM [85] (as discussed in Chapter 2, Section 2.3.3). Since the 

Pearson correlation coefficient is more commonly used for gene expression data and 

is known to be better than the Euclidean distance in dealing with noise [16]. It was 

therefore used as a similarity function for these algorithms. Also, to ensure that the 

best results for the k-means algorithm and SOM were obtained, 100 runs were 

performed for each of them with 

ult from am

a  the compa  of the average F-measure using the simulated data. 

esults, it appea that the perfo

ctively in very noisy data.     

TABLE 4.1 

(SIMULATED DATA) 

 Re-clustered Hierarchical k-means SOM 

Average 0.77 0.58 0.63 0.55 
 

 to demonstrate the effectiveness of the re-clustering phase in the 

proposed algorithm, we have also applied it to the k-means algorithm and SOM by 

using them hm, in the 

first cluster initialization phase. By repeating the sam ents, the 

e s of the re-clus -means and SOM algorithm iven below in 

Tab

(SIMULATED DATA) 

k-means SOM 

In order

separately, instead gglomerative algoritof the hierarchical a

e experim

rformance tered k s are gp

le 4.2.   

TABLE 4.2 
THE AVERAGE F-MEASURE OF THE PROPOSED ALGORITHM USING 

K-MEANS AND SOM IN THE CLUSTER INITIALIZATION PHASE  

 Re-clustered Re-clustered 

Average  0.73 0.71 
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d by the cluster arrangement. By making use 

of the association-discovery techniq e to distinguish between interesting 

a d uninteresting den regularities that are not 

completely de sing ion d have also rmed 

x to ev e perform  differen ng algor  the 

result

COMPAR VERAGE PREDICTIV
PRESSION DATA) 

 Proposed
Re-clustere
Hierarchical 

erarch al k-means SOM 

The above experimental results show that the proposed algorithm is rather robust 

in the presence of a very noisy environment. It is able to perform better than the 

three popular clustering algorithms. When applying the re-clustering phase to k-

means and SOM, it can also improve their performances. The reason, as stated 

earlier, is due to the proposed algorithm not only able to consider local information 

but also global information as reflecte

ue, it is abl

n  expression levels and to discover hid

terministic. U  real express ata, we  perfo

e periments aluate th ances of t clusteri ithms and

s are showed in Tables 4.3-4.6.  

TABLE 4.3 
ISON OF THE A

EX
E POWER 

(GENE 
  
d Hi ic

Average  76.98% 63.11% 62.58% 56.83% 
 

TABLE 4.4 
THE AVER VE O GORITHM  

K-M M I R INIT N PHASE
NE EXPR DATA) 

tered
k-means 

tered
SOM 

AGE PREDICTI  POWER OF THE PR
N THE CLUSTE

POSED AL
IALIZATIO

 USING
 EANS AND SO

(GE ESSION 
  Re-clus Re-clus  

Average  69.90% 65.06% 
 

TABLE 4.5 
COMPARISON OF THE AVERAGE DBI 

(GENE E  DATA) 
 

Hierarch

XPRESSION
Proposed  

Re-clustered eans SOM Hierarchical k-m
ical 

Average  1.69 1.73 1.72 1.76 
 

 

 
 

 

 74



CHAPTER 4 – CLUSTERING AND RE-CLUSTERING OF  
GENE EXPRESSION DATA 
 
 

THE AVERAGE DBI OF THE PROPOSED ALGORITHM USING 
TABLE 4.6 

K-MEANS AND SOM IN THE CLUSTER INITIALIZATION PHASE 
(GENE EXPRESSION DATA) 

 Re-clustered 
k-means 

Re-clustered 
SOM 

Average  1.70 1.73 
 

The performance of the proposed algorithm is again consistently better than 

other clustering algorithms. This indicates that it is more robust in the presence of 

noisy data collected under real experiments. Moreover, by using the k-means 

algorithm and SOM in the first pha  applying the re-clustering phase in 

the second, we can see some  as well. With the proposed 

al we ed t itial ibed in art 

A) after Phase 1. These clusters have characteristics as shown in Table 4.7 below. In 

the re-clustering phase (Phase 2), we successfully classified the remaining 

unclassified genes. The re-clustering results are als owed in Table 4.

TABLE 4.7 
SUMMARY OF T IAL AND RE-C ERED CLUSTERS 

(G  EXPRESSION D ) 

Cluster Peak No. of genes No. of genes 
(Re-clustered 

se and then

 level of performance gain

gorithm,  discover he same 8 in clusters as descr  Section 4.2 (p

o sh 7. 

HE INIT LUST
ENE ATA

ID name expression (Initial cluster) cluster) 

Cluster 

C1 CLB2 M 32 168 
C2 CLN2 G1 57 332 
C3 Histone S 9 13 
C4 MAT M/G1 13 25 
C5 MCM M/G1 38 116 
C6 MET S 20 41 
C7 SIC1 M/G1 27 54 
C8 Y’ G1 31 43 

 Total no.  227 792 
 

ages of two initial and re-clustered clusters: Figs. 4.2-4.5 show the microarray im

CLB2 and MCM. The figures show the same cluster before and after the re-

clustering phase. Using the hierarchical approach there are only initially 32 genes in 
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CLB2. After re-clustering, there are 168 genes. Similarly, for MCM, the number has 

increased from 38 to 116. 

Fig. 4.2 CLB2 initial cluster (32 genes) (each lab on the top indicates the experimental condition, 
and each label on the right indicates the gene name). 

 

el 

 
Fig. 4.3 MCM initial cluster (38 genes). 
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Fig. 4.4 CLB2 re-clustered cluster (168 genes). 

 

 
Fig. 4.5 MCM re-clustered cluster (116 genes). 
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e format. 

TABLE 4.8 
INTERESTING ASSOCIATIONS DISCOVERED FROM EACH  

 CLUSTER IN IF-THEN RULE REPRESENTATION  
(GENE EXPRESSION DATA) 

For demonstration, Table 4.8 below shows some interesting associations 

discovered from each cluster represented in easily understandable if-then rul

RE-CLUSTERED

If cdc15_70 = [0.32, 1.01]  
then CLB2  [0.76] 

If cdc28_30 = [0.32, 1.01]  
then MET  [0.74] 

If cdc15_140 = [-2.56, -0.2]  
then Histone  [0.81] 

If cln3_1 = [1.01, 3.09]  
then CLN2  [0.84] 

If elu330 = [0.32, 1.01]  
then SIC1  [0.82] 

If alpha77 = [-2.56, -0.2]  
then MET  [0.80] 

If alpha21 = [1.01, 3.09]  
then CLN2  [0.76] 

If cdc15_100 = [-2.56, -0.2]  
then MAT  [0.72] 

If cln3_1 = [0.32, 1.01]  
then Y’  [0.80] 

If elu150 = [0.32, 1.01]  
then Histone  [0.72] 

If alpha56 = [-2.56, -0.2]  
then MAT [0.78] 

If cdc28_70 = [1.01, 3.09]  
then CLB2  [0.75] 

If clb2_1 = [1.01, 3.09]  
then CLB2  [0.82] 

If alpha21 = [0.32, 1.01]  
then Y’  [0.82] 

If cdc28_20 = [1.01, 3.09]  
then CLN2 [0.77] 

If alpha_14 = [0.32, 1.01]  
then MCM  [0.79] 

If alpha56 = [1.01, 3.09]  
then MCM  [0.80] 

If cdc15_3
then SIC1  [0.72] 

0 = [1.01, 3.09]  

If cdc28_70 = [-0.2, 1.01]  
then Y’  [0.76] 

If cln3_2 = [-0.2, 1.01]  
then MCM  [0.78] 

 
The interpretation of the above rules is as follows. For example, for the 

iscovered rule: 

If cdc28_30 = [0.32, 1.01] then MET  [0.74]. 

he rule states that if the expression value of a gene under the experimental 

ondition, cdc28_30, is within the interval [0.32, 1.01], then there is a probability of 

0.74 that it belongs to cluster MET. A ple, the discovered rule: 

If cdc15_140 = [-2.56, -0.2] then Histone  [0.81]. 

The above rule states that if the expre under the experimental 

condition, cdc15_140, is within the interval [–2.56, –0.2], then there is a probability 

of 0.81 that it belongs to cluster

d

T

c

nother exam

ssion value of a gene 

 Histone.  
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Some of the rules given sistent with the findings presented in 

[141] and this is an indica tions uncovered in e iscovered 

cluster are biologically significa ple, the authors mentioned that genes in 

CLN2 cluster were induced by GAL-CLN3, one of the associations that we 

disco in this cluster is “If c 01, 3.09] then CLN er, 

the dis overed associations “I  [1.01, 3.09] then C ]” is 

onsis  with genes in CLB2 cluste

 

eanings of the discovered 

binding sites were then validated based 

 
 

in Table 4.8 are con

tion that the associa ach d

nt. For exam

vered ln3_1 = [1. 2  [0.84]”. Moreov

c f clb2_1 = LB2  [0.82

c tent r that were induced by GAL-CLB2.     

Biological Interpretation: 

Other than evaluating the results statistically, we have also evaluated the clustering 

results according to their biological significance. For evaluation, we used a motif 

discovery algorithm described in [78] to determine if any binding sites located in the 

promoter regions (from SGD [19]) of the genes in each cluster can be identified (as 

discussed in Chapter 2, Section 2.3.3). The biological m

on published literature [19], [79]. Since 

many regulatory sites can be detected with hexanucleotide analysis [78], we also set 

the oligonucleotide length to be six. Table 4.9 shows the summary of the known 

binding sites discovered in each re-clustered cluster.  
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SUMMARY OF THE DISCOVERED BINDING SITES IN EACH  

Sequence revealed 

TABLE 4.9 

RE-CLUSTERED CLUSTER  
Re-clustered 

cluster 
Binding site 

 name 
CLB2 CCAAAG Mcm1 

 GGTCAA 
(potential variant) SFF 

CLN2 ACGCGT MCB 

 MCB ACGCGA 
(potential variant) 

Histone ntial variant) SCB ACCAAG 
(pote

 TTCTGG Mcm1 

MAT GTTTCA 
(potential variant) Mcm1 

MCM TCCAAA 
(potential variant) Mcm1 

MET CACGTG Met4/Met28/ Cbf1 
SIC1 ACCAGC Swi5;Ace2 

 GCCAGC Swi5;Ace2 
Y’ ATGTGG Mcm1 

 
DNA microarray technology is becoming increasingly important in the analysis 

of bio-molecules. They provide information that may lead to the understanding of 

the mechanisms that control gene expression at the transcription level. Because of 

the large amount of expression data collected everyday and due to the very noisy 

nature in the data collection process, interpreting and comprehending the 

experimental results has become a big challenge. Therefore, an effective data mining 

technique that is also easily interpretable is required. 

In this chapter, we have proposed a two-phase clustering algorithm that uses a 

two-phase approach to clustering gene expression data. The proposed algorithm is 

able to utilize both local and global information by computing both a local pair-wise 

distance between two gene expression profiles in Phase 1 and a global probabilistic 

measure of interestingness of associations in Phase 2. And also, it is able to 

distinguish between relevant and irrelevant expression levels when performing re-
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clustering and make explicit the ed in each cluster for possible 

interpretation. 

The ctive 

method f  assign 

nes, whose cluster memberships cannot be easily determined by existing 

clustering methods, into the appropriate clusters. When identifying regulatory motifs 

at the promoter regions of the co-expressed genes in the discovered clusters, some 

known binding sites can be discovered. These binding sites can provide explanations 

for the co-expressed patterns. In addition, the discovered interesting associations, 

which specify the expression levels under a particular set of experimental conditions 

the genes should have in each cluster, may lead to further understanding of the 

mechanism of gene expression.   

 

 

 

 

 associations discover

 experimental results show that the proposed algorithm can be an effe

or discovering clusters in the presence of noisy data. It is able to

ge
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Since external knowledge is seldom available for gene expression data, and also, for 

a clustering algorithm to discover the best data grouping, it has to consider 

Chapter 5 

Clustering of Gene Expression Data  
Using Evolutionary Computation 

 

              n(N, k) =   ∑
=

⎞⎛k k1

.  

                                                

−⎟
⎠

⎜
⎝

−
i

N

i

i ik
k 0

)()1(
!

          (5.1) 

possibilities, where N is the total number of records, and k is the total number of 

clusters [97]. To find the optimal grouping among the very large number of 

possibilities, there is a need to have an effective clustering algorithm

Evolutionary algorithms (EAs) have been successfully used to solve different 

data mining problems [39]-[40], [105]. They have, in particular, been used for 

clustering [21], [41], [59], [80], [87], [106]-[107], [128]. In [41] and [106], for 

example, the data records are encoded as genes2 in a chromosome and are given a 

label from one to k, where k is the maximum number of clusters to be discovered. 

Such algorithms are relatively easy to implement as they do not require special 

evolutionary operators. Unfortunately, they are not very scalable. As the length of 

each chromosome is exactly the size of the training set, these algorithms are not very 

practical when handling large data sets. 

 
2 The terms such as chromosomes and genes, when used in a computational context, may not have the 
same meanings as their biological counterparts. In order to avoid possible confusion, when referring 
to these terms in the contexts of evolutionary computation, they are made italic.  
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osome encodes the 

coo

An alternative data and cluster representation was proposed in [128] where the 

clustering problem is formulated as a graph-partitioning problem. Based on it, each 

data record is represented as a node in a graph and each node is mapped to a certain 

position in a chromosome and is encoded as a gene. The indices of other records are 

encoded as alleles so that if a gene i contains value j, an edge is created in the graph 

to link the nodes i and j. The alleles in each gene i are therefore the nearest 

neighbors of i, and the users are required to specify the number of nearest neighbors 

as an input parameter ahead of time. With this representation, an evolutionary 

algorithm is used to find clusters which are represented as connected sub-graphs. 

This approach is again not very scalable. Other than the length of the chromosomes 

being again the same as the size of a data set, there is an additional need for the 

nearest neighbors of data records to be computed. It also suffers from the same 

problems as other clustering algorithms that are based on the need to compute pair-

wise distance measures.  

One other popular use of evolutionary algorithms in clustering is to use them to 

identify the best cluster centers. In [80], [107], each chrom

rdinates of k centers and the standard genetic algorithm (GA) is used to find the 

best ones. A similar approach to identifying the best centers is to use an EA to 

search for optimal initial seed values for cluster centroids [21]. As in other problems, 

in clustering we can use domain knowledge in several ways to try to improve the 

performance of the algorithm. For example, we could design specialized 

evolutionary operators or we can hybridize the evolutionary algorithm with a 

conventional clustering algorithm such as the k-means algorithm. In [59], [87], each 

chromosome represents the coordinates of the cluster centroids and different 

crossover methods are used to generate the offspring. After crossover each 
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measurements when the data concerned are noisy and 

contain missing values. In addition, these similarity functions measure only pair-

wise distances, the measurements obtained could be too local.  

llenges 

 the data. And also, th

of gene e

posed by gene expression data, we propose an effective evolutionary clustering 

chromosome undergoes several iterations of the k-means clustering algorithm. The 

authors observed that adding the k-means iterations is crucial for obtaining good 

results, and although there can be a considerable increase of the computation time if 

many iterations are used. This kind of hybridization raises the question of how to 

allocate the computing time. For example, using many generations of the EAs and a 

few iterations of the local methods or running the EAs for a few generations and 

using the local methods to improve the solutions. In principle, the centroid-based 

representation has the advantage that the chromosomes are shorter because they only 

need to encode the coordinates of the k centroids. This means that the length of the 

chromosome is proportional to the dimensionality of the problem and not the size of 

the training set. However, just like many EA-based clustering methods, the 

drawback of the centroid-based representation is that the number of clusters needed 

to be specified in advance. Moreover, the similarity functions used such as 

Euclidean distance or correlation coefficient for measuring the similarity of the 

records do not differentiate between the importance of different attributes. Therefore, 

they do not give accurate 

Clustering gene expression data as a new area of research poses new cha

due to its unique data nature that the previous EA-based clustering algorithms were 

not originally designed to deal with. As discussed before, there are some new 

challenges in dealing with gene expression data. For example, the presence of both 

biological and technical noise inherent in e clustering structure 

xpression data is usually unknown. To effectively tackle the challenges 
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algorithm called

g algorithms (as discussed in Chapter 2, Section 

2.3

hat each gene encodes one cluster and each cluster 

con

encodin  a set of special crossover and mutation operators that 

faci etween two chromosomes on one 

han n

other. And also, unlike many similarity measures that are based on local pair-wise 

dist ents in the presence of very 

noi

Chapter 3, Section 3.1) used is probabilistic and it takes into consideration global 

info a is able to distinguish 

etween relevant and irrelevant feature values (expression levels) in the data during 

evealing hidden 

To describe EvoCluster [111], [119], [121], let us assume that we are given a set of 

gene expression data, G, consisting of the data collected from N genes in M 

experiments carried out under different experimenta

 EvoCluster [111], [119], [121]. Compared with other evolutionary 

and non-evolutionary based clusterin

.3), EvoCluster has several desirable characteristics. It encodes the entire cluster 

grouping in a chromosome so t

tains the labels of the data records grouped into it. Then, given the above 

g scheme, it has

litates the exchange of grouping information b

d a d allows variation to be introduced to avoid trapping at local optima on the 

ances [84] that may not give very accurate measurem

sy data, the fitness measure (the association-discovery technique discussed in 

rm tion contained in a particular grouping of data. It 

b

the clustering process, and explain clustering results by explicitly r

associations discovered in each cluster. In addition, there is no requirement for the 

number of clusters to be decided in advance. In the following section, the details of 

EvoCluster will be given.  

 

5.1 EvoCluster: An Evolutionary Clustering Algorithm  
 

l conditions. Let us represent the 

data set as a set of N genes (records), },,,,{ Ni ggg KK1G = , with each gene, ig , 
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E, , 

, where represents the expression value of the 

gene under the jth experimental condition (Fig. 4.1).   

Like other evolutionary algorithms [22]-[24], [60], [64], [108], EvoCluster 

consists of the following steps: 

1. Initialize a pop representing a unique 

4. Apply crossover and mutation operators. 

romosomes in the existing population by the newly 

e best cluster grouping, EvoCluster encodes different grouping 

arra

iiniji

Ni ,...,1= , characterized by M different experimental conditions, jEE ,,,1 KK M

whose values, iMiji eee ,,,,1 KK  ije  

thi

ulation of chromosomes with each 

cluster grouping. 

2. Evaluate the fitness of each chromosome. 

3. Select chromosomes for reproduction using the roulette wheel selection 

scheme. 

5. Replace the least-fit ch

generated offspring. 

6. Repeat Steps 2 to 5 until the stopping criteria are met. 

 

A. Cluster Encoding in Chromosomes and Population Initialization 

To evolve th

ngements in different chromosomes so that one chromosome encodes one 

particular cluster grouping [55]-[56], [60]. In each such chromosome, each gene 

encodes one cluster. Hence, if a particular chromosome encodes k clusters, 

ki CCC ,,,,1 LL , it has k genes. Since each cluster contains a number of data records, 

a gene encoding a cluster can be considered as being made up of the labels of a 

number of data records in gene expression data. For example, assume that iC  

contains n  records, ,,,, ggg LL , where g },,,,{G ggg KKi )()()1( )( ij 1 Ni=∈ , the 
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iagrammatically as 

sho

labels of these records can be encoded in each gene, iC  so that, a chromosome that 

encodes a particular cluster grouping can then be represented d

wn below (Fig. 5.1).  

  

 

randomly from within a certain range of acceptable numbers. Each of the records in 

},,,,{ ggg KKG=  is then assigned, also randomly, to one of the k clusters. 

 

B. Selection and Reproduction 

Reproduction in EvoCluster consists of the

Fig. 5.1 The chromosome encodi heme. 

For the initial population, each chromosome is randomly generated in such a way 

that the number of clusters, k, to be encoded in a chromosome is first generated 

1

 application of both the crossover and 

utation operations. As the evolutionary process enters into reproduction, two 

lection 

sch roportional 

to i

Sin mosome that conveys the 

mo rossover operators are designed to facilitate the 

exchan

“unguided”

“guided” o

ng sc

Ni

m

chromosomes are selected as parents for crossover using the roulette-wheel se

eme [108] so that each parent’s chance of being selected is directly p

ts fitness.  

ce it is the cluster grouping encoded in each chro

st important information, our c

ge of grouping information. And since this process can be “guided” or 

, our crossover operators are also classified in the same way. We have a 

perator and an “unguided” operator. For the “guided” crossover (GC) 
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operator, the exchange of grouping information is not totally random in the sense 

that the

crossover p

 grouping information of the “best-formed” clusters is preserved during the 

rocess. For the “unguided” crossover (UGC) operator, the exchange of 

g information between clusters takes place randomly. 

e that two parent chromosomes, P1 and P2 are odes 

1
,, kiL  (with each corresponding to a cluster), and P2 encodes 

the groupin

Assum chosen so that P1 enc

k1 genes, ,, PPP CCC L

k2 PPP mber of clusters encoded in each 

chromo that MIN is a user

number of clusters encoded in a chromosome and MAX is a user-defined maximum 

number of clusters encoded in a chromosome, then the following are the steps taken 

by the guided and unguided operators when crossover is performed. It should be 

noted that the probability for a gene or a record label in a gene to be selected by both 

crossover and mutation operators can be randomly generated from within a certain 

range L w

111
1

genes, 1 2
,,,, ki CCC LL , i.e., the nu222

some can be different. Assume also -defined minimum 

],U  or ],[ UL  respectively, here 0.10.0 ≤≤[ gg rr ≤ gg UL  and 

0.1≤U , and L , U , L  and U  can be set by users or also generated 

Moreover, in both guided crossover and guided mutation op

0.0 ≤≤ rrL

randomly. erators, the 

interest n

part C belo

 

The Guide ver

g g r r

ing ess of each gene is determined based on the fitness measure described in 

w.   

d Crosso  (GC) and Unguided Crossover (UGC) Operators   

P1. Set 

2. Set Pr-rpl, the probability for a record label in a gene to be replaced by another 

record label from another gene in another parent.  

3. Gene 

g-rpl, the probability for a gene to be selected for crossover.   

selection procedure:  
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a. For the UGC, based on Pg-rpl and using a random number generator, each 

gene in P1 is scanned to decide if it should be selected. Those selected 

are then represented as },,,,{ 1
)(

1
)(

1
)1( 1

P
l

P
i

P CCC LL  where l1 < k1, k2 and 1
)(

P
iC , 

1,...,1 li = , is in },,,{ 111 PPP CCC LL . 1 1ki

b. For the GC, based on Pg-rpl, Ng-rpl < k1, k2, the number of interesting genes 

to be selected, can be determined. Then select Ng-rpl of the most 

interesting ones in P1 and P2 respectively. Rank them in descending 

order of interestingness and represent them as  and 

 so that  and is the most interesting in P1 

r-rpl

in iC  can be scanned to identify thos

then represented as ,{ 1
)(

1
)1(

P
in

P
i i

gg KK  and removed from . 

 

 other 

b. For the GC, begin with the most interesting gene, say , select the 

P  P2. Based on Pr-rpl, scan 

},,,,{ 1
)(

1
)(

1
)1( 1

P
l

P
i

P CCC LL

},,,,{ 2
)(

2
)(

2
)1( 1

P
l

P
i

P CCC LL 1
)1(

PC 2
)1(

PC  

and P2 respectively. 

4. Record label replacement procedure:  

a. For the UGC, for each gene in },,,,{ 1
)(

1
)(

1
)1( 1

P
l

P
i

P CCC LL , say 1
)(

P
iC , randomly 

select one gene from P2, say 2PC  that has not previously been selected. 

Based on P  and using a random number generator, each record label 

1P

record label in iC . Record labels that are selected for replacement are 

i

)( e that should be replaced by a 

2P

},,, 1
)(

P
ijg 1

)(
P
iC

Randomly select ni or || 2P
iC  record labels, whichever is smaller, from

2PC  and replace those removed. Repeat the above steps for all thei

selected genes in P1. 

1
)1(

PC

corresponding most interesting gene, )1(C , from2
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11 PPP ggg KK  oved from PC . Randomly select n  or 

se 

oved. Repeat the above steps for all the othe ed genes in P1. 

remove duplicates in such a way that if a record label is found in another 

gene, other than the one containing the replacement, it is removed. For those 

record labels that have not been assigned to any genes after their removals:   

a. For the UGC, they are randomly assigned to one of the genes. 

b. For the GC, EvoCluster constructs a classifier based on Ch1 using a re-

classification algorithm described in [34]. They are then re-classified into 

one of the genes encoded in Ch1. 

6. Repeat Steps 1-5 with 2 to produce child Ch2. 

 

After c

getting tra

EvoCluster makes available six different mutation operators that can be selected at 

random

according to whether or not the mutation process involves just the removal and 

reclassification of record labels or the merging and splitting of the whole gene. They 

can also be classified accor are “guided” or “unguided”. 

Bas

follows

through each record label in 1
)1(

PC  to select those that should be replaced 

by that in 2PC . Those record labels to be replaced are represented as 

)1()1()11( 1nj )1(

)1(

},,,,{ 1 and rem  1
i

|| 2
)1(

PC  record labels, whichever is smaller, from 2
)1(

PC  and replace tho

rem r select

5. Repairing procedure (for producing child Ch1): Scan through all genes to 

 P

rossover, the children produced undergo mutation in order to avoid 

pped at local optima on one hand and to ensure diversity on the other. 

 when a chromosome undergoes mutation. These operators can be classified 

ding to whether or not they 

ed on these classification schemes, EvoCluster makes use of six operators as 

:   
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(a) The unguided remove-and-reclassify-record mutation (UGRRM) operator.  

(b) The guided remove-and-reclassify-record mutation (GRRM) operator.  

 (c) The unguided merge-gene mutation (UGMGM) operator.  

 (d) The guided merge-gene mutation (GMGM) operator.  

(e) The unguided split-gene mutation (UGSGM) operator.  

(f) The guided split-gene mutation (GSGM) operator.   

The m GMGM, UGSGM, and 

GS o allow the length of chromosomes to be changed 

dynami

is that the n

the users ah hese p

 

The Guided (GRRM) and Unguided Remove-and-Reclassify-Record Mutation 

erge and split mutation operators (i.e., UGMGM, 

GM) are specifically designed t

cally as the evolutionary process progresses. The advantage with this feature 

umber of clusters that need to be formed does not need to be specified by 

ead of time. In the following, the details of t  o erators are given: 

(UGRRM) Operators 

P
 

1. Set 

2. Set 

3. Gen

a. For the UGRRM, based on Pg-rr, scan through each gene in the 

chromosome to decide if it should be selected. Those selected are then 

represented as PPP CCC LL  where l1 < k1 and , is a 

PPP

n Pg-rr, determine Ng-rr < k1, the number of 

uninteresting genes to be selected. Then select the Ng-rr least interesting 

g-rr, the probability for a gene to be selected.   

Pr-rr, the probability for a record label in a gene to be removed.  

e selection procedure: 

},,,,{ 1
)(

1
)(

1
)1( 1li 1

member of },,,{ 1 1ki CCC LL . 

b. For the GRRM, based o

1
)(

P
iC , ,...,1 li =

111

genes and represent them as },,,,{ 1
)(

1
)(

1
)1( 1

P
l

P
i

P CCC LL  where l1 < k1 and 1
)(

P
iC , 
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},,,{ 111
1 1

P
k

P
i

P CCC LL1,...,1 li = , is a member of .   

4. )()1( 1li

, scan through each record label in each of to select those 

that should be removed. These record labels a e represented as 

 and removed from

5. Children repairing procedure: For those record labels that have not been 

assigned to any genes after their removals:  

a. For the UGRRM, they are randomly classified into one of the  

b. ifier based on the child 

ion algorithm descr

 

he Guided (GMGM) and Unguided Merge-Gene Mutation (UGMGM) Operators

Record label replacement procedure: For each gene in },,,,{ 111 PPP CCC LL , )(

based on Pr-rr
1
)(

P
iC  

r

},,,,{ 1
)(

1
)(

1
)1(

P
in

P
ij

P
i i

ggg KK  1
)(

P
iC . 

genes.

For the GRRM, EvoCluster constructs a class

chromosome using a re-classificat ibed in [34]. They 

are then re-classified into one of the genes encoded in the chromosome. 

T  

1. Set Pg-mrg, the probability for a gene to be merged.   

g-mrg g-mrg 1

Ng-mrg least interesting 

genes and represent them in ascending order of interestingness as 

)1(
P
l

P
i CCC LL  so that is the least interesting, where l1 < k1 and 

2. Gene selection procedure: 

a) For the UGMGM, based on Pg-mrg, scan through each gene in the 

chromosome to select a gene for merging. Those selected are then 

represented as },,,,{ 1
)(

1
)(

1
)1( 1

P
l

P
i

P CCC LL  where l1 < k1 and 1
)(

P
iC , 1,...,1 li = , is 

a member of },,,,{ 111
1

P
k

P
i

P CCC LL .  

b) For the GMGM, based on P , determine N  < k , the number of 

uninteresting genes to be merged. Then select 

1

},,,,{ 1
)(

1
)(

1P 1
)1(

PC  
1

 92



CHAPTER 5 – CLUSTERING OF GENE EXPRESSION DATA  
USING EVOLUTIONARY COMPUTATION 
 
 

)1( 1li

gene to be merged in this set. The number of genes 

rem ining after merging should be greater than MIN. Otherwise, the 

erator terminates. 

 

The Guided (GSGM) and Unguided Split-Gene Mutation (UGSGM) Operators

1
)(

P
iC , 1,...,1 li = , is a member of },,,{ 111

1 1

P
k

P
i

P CCC LL . 

3. Merging procedure: For each gene in },,,,{ 111 PPP CCC LL , randomly )(

select one other 

a

mutation op

)(

 

1. Set , the probability for a gene to be split.   

2. Gene selection procedure: 

a) For the UGSGM. Based on Pg-splt, scan through each gene in the 

chromosome to decide if it should be selected for splitting. Those 

selected are then represented as 11 PPP CCC LL  where l  < k  and 

ki

3. Splitting procedure: For each gene in CCC LL , randomly split it 

utation operator terminates. 

 

Pg-splt

},,,,{ 1
)()()1( 1li 1 1

1
)(

P
iC , 1,...,1 li = , is a member of },,,{ 111

1 1

P
k

P
i

P CCC LL . 

b) For the GSGM. Based on Pg-splt, determine Ng-splt < k1 the number of 

uninteresting genes to be split. Then select Ng-splt least interesting genes, 

and represent them in ascending order of interestingness as 

},,,,{ 1
)(

1
)(

1
)1( 1

P
l

P
i

P CCC LL  so that 1
)1(

PC  is the least interesting, where l1 < k1 

and 1PC , ,...,1 li = , is a member of },,,{ 111 PPP CCC LL .  

1

P
l

P
i

P

into two clusters. The resulting number of genes has to be smaller than MAX. 

Otherwise, the m

)(i 1 1 1

},,,,{ 1
)(

1
)(

1
)1(
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ary algorithm typically uses a generational replacement 

technique. This technique replaces the entire population after enough children are 

generated. However, the potential drawback of such a replacement approach is that 

many good chromosomes also get replaced, making it difficult for the good traits to 

survive. To overcome this problem, EvoCluster adopts a steady state reproduction 

approach [23] so that only two least-fit chromosomes are replaced whenever two 

new children are generated after each reproduction.  

 

C. Fitness Function 

To evaluate the fitness of each chromosome, EvoCluster adopt the association-

discovery technique (as discussed in Chapter 3, Section 3.1) as an objective fitness 

measure. This method has the advantage that it is able to handle the potential noise 

resulting from the clustering process. Since, this technique is able to take into 

consideration the global information by distinguishing between the expression levels 

that are relevant and irrelevant in a particular cluster grouping. This makes 

EvoCluster very robust even in the presence of noisy data.  

The fitness evaluation procedure is invoked after new chromosomes are formed. 

The fitness function accepts a chromosome as a parameter and its fitness is evaluated 

in two steps (the details of these two steps are described in Chapter 4, Section 4.1, 

phase 2). In Step one, it attempts to discover interesting associations in the cluster 

grouping encoded in the chromosome. To do so, a subset of records (for application 

here, 70% of records) from different clusters encoded in a chromosome is selected 

randomly to form a data set for training. In Step two, those records were not selected 

in Step one are re-classified into one of the clusters based on the discovered 

associations. Then, the predicted label can be compared with the original label of 

A simple evolution
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e to determine the re-classification accuracy 

and based on it, the fitness value of the cluster grouping encoded in a chromosome 

can be determined. As discussed before, if a clustering algorithm is effective, the 

discovered clusters should contain patterns that can be used to accurately re-classify 

the records in the testing data. And if this is the case, the re-classification accuracy 

measure is an indication of how good the quality of the cluster grouping is. For this 

reason, the re-classification accuracy is then taken to be the fitness of each 

chromosome.  

 

were 

ran

each record encoded in the chromosom

5.2 Experiments  

A.  Experimental Data  

For experimentation, we used a set of simulated data consisting of 300 records each 

characterized by 50 different attributes that takes on values from [0.0, 1.0]. Initially, 

all these records were sampled from a uniform distribution and they were pre-

classified into one of three clusters so that each cluster contains 100 records. To 

embed hidden patterns in the data, 10% of the attributes in each cluster 

domly selected. For each selected attribute, 30%-40% of its values in that cluster 

were randomly generated from within a certain range [L, U], where 0.0 ≤ L ≤ U ≤ 

1.0 so that L was selected uniformly from [0.0, 1.0] first, and U was then also 

selected uniformly from [L, 1.0]. 

In addition to the simulated data, to test the effectiveness of EvoCluster, we also 

used two different sets of real expression data. For Dataset 1, it contains a subset of 

about 380 genes measured under 17 different experimental conditions and we tried 

in our experiments to partition this data set into different clusters from 4 to 8 [29]. 
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 to partition this data set into different 

clusters from 6 to 10 [141]. For perf aluation, EvoCluster was evaluated 

based on three o n 4.2. They are 

th e, the predictive power measure, and the Davies-Bouldin validity index 

(D re. 

The effectiveness of EvoCluster has been compared with a number of different 

clustering algorithms (as discussed in Chapter 2, Section 2.3.3) using both simulated 

and real data.  

In our experiments, we adopted the default settings for the parameters of SOM 

[85] as described in [149] (i.e., the bubble neighborhood function, the initial learning 

weight ( ) was set to 0.1, the final learning weight ( ) was set to 

 of clusters (say 6) can represent multiple 

SO

(Table 5.1).     

For Dataset 2, it contains a subset of about 800 genes measured under 77 different 

experimental conditions and we also tried

ormance ev

bje cussed in Chapter 4, Sectioctive measures as dis

e F-measur

BI) measu

 

5.3 Results and Discussions  

iAlpha _ fAlpha _

0.005, the initial sigma ( iSigma _ ) was set to 5 and the finial sigma ( fSigma _ ) 

was set to 0.5, etc.). Since a given number

M geometries (i.e., 1x6, 2x3, etc), we also tried all these geometries in order to 

obtain the best cluster grouping with SOM. For both SOM and the k-means 

algorithms [100], 5000 iterations were performed. Also, to ensure that the best 

results for them were obtained, 100 runs were performed for each of them with each 

run using different randomly-generated initial cluster centroids. Only the best result 

from among these 100 runs was recorded. Afterward, such 100-run test was repeated 

10 times. The 10 best results obtained from each 100-run test were then recorded 

 96



CHAPTER 5 – CLUSTERING OF GENE EXPRESSION DATA  
USING EVOLUTIONARY COMPUTATION 
 
 

nd SOM is 100 times more than 

the 

ensure 

the num er clustering 

algo

SUMMARY OF THE NUMBER OF REPRODUCTIONS/ITERATIONS  
BY EVOCLUSTER, K-MEANS AND SOM 

 oductions No. of runs No. of trials 

 In the case of EvoCluster, we also performed 10 trials in our experiments. For 

each such trial, we randomly generated different initial populations of size fixed at 

50. Using a steady-state reproduction scheme, the evolutionary process was 

terminated either when the maximum chromosome fitness converged or when the 

maximum number of reproductions reached 5000. As summarized in Table 5.1, the 

total number of iterations performed with k-means a

total number of reproductions carried out using EvoCluster. This was done to 

that EvoCluster would not use any more computational resources (in terms of 

ber of trial-and-errors through iterations/reproductions) than oth

rithms it was being compared against.  

TABLE 5.1 

PERFORMED 
No. of repr

/iterations 
EvoCluster 5000 - 10 

k-means 5000 100 10 
SOM 5000 100 10 

 
During the evolutionary process, th

record label in a 

generated from

In orde

clustering

that represents one of the m

Each 

encodes a fixed number of clusters. For our experiment with it, we set the crossover 

rate to 0.8 and the m

e probabilities of selection of a gene or a 

gene, used by the crossover and mutation operators, were randomly 

 within [0.2, 0.8] using a random number generator [108].  

r to evaluate the effectiveness of EvoCluster, in addition to the traditional 

 algorithms, we also compared its performance with a clustering algorithm 

ost successful attempts to use EA in clustering [107]. 

gene in it encodes one dimension of a cluster center and a chromosome 

utation rate to 0.001, i.e., the same as that used in [107]. Other 

parameter settings, including population size, number of reproductions, etc., were set 
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om irrelevant feature values during the evolutionary process, we also 

ompared its performance against various hybrid clustering algorithms that use a 

chnique in combination with a clustering algorithm. Specifically, 

ques that 

can be used for this purpose [49], [65 6], [160], we chose to consider the 

one describe use of the 

t-stati in 

gene expression data. Given an initial cluster grouping, the feature selection was 

adopted and performed in several steps as follows: 

exactly the same as that with EvoCluster. 

Since one of the desirable features of EvoCluster is its ability to distinguish 

relevant fr

c

feature selection te

we used an effective feature selection technique together with the k-means algorithm, 

SOM, the hierarchical clustering algorithm, and the EA-based algorithm to see how 

much improvement the performances of these algorithms can have when features 

were first filtered for clustering. Among different feature selection techni

], [143], [14

d in [143], [146]. This is because this technique, which makes 

stic measure, has been popularly used to reduce the number of attributes 

(i) A cluster grouping is first determined using say, the k-means algorithm (or 

SOM, or the hierarchical clustering algorithm, or the EA-based algorithm 

[107], etc.) that the feature filtering method is hybridizing with. 

(ii) Given the initial cluster grouping, a t-statistic measure is then computed for 

each attribute to determine how well it is able to distinguish one cluster from 

the rest of the others.  

(iii)Based on the t-statistic, a new subset of attributes with the largest t-values is 

obtained by first selecting 5% of the attributes that has the largest t-values. 

With this new attribute subset, a classifier is then generated using C4.5 [131] 

and its classification accuracy is measured using ten-fold cross validation. 

Afterward, the process of adding another 5% of the attributes with the largest 
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lues to this new attribute subset and measuring the accuracy of the 

resulting new classifier is repeated. The final attribute subset is determined 

w

(iv)  With this f al attri d improved cluster grouping is then 

ed.  

mance evaluation, we also compared the performance of EvoCluster 

wit phas lustering alg  proposed in Chapter 4. By using the k-

means algorithm, SOM, the hierarchical clustering algorithm and the EA-based 

clus

Pop. 

t-va

hen the performanc 43]. e of the classifier converge [1

in bute subset, a new an

determin

For perfor

h the two- e c orithm

tering algorithm in the first phase respectively and then applying the re-

clustering phase in the second, the re-clustered result of each algorithm can be 

obtained. 

 

1. Simulated Data 

Since the number of clusters (k=3) to discover was known-in-advance for the 

simulated data, the length of the chromosome was fixed in our experiment to be 3 

(the merge and split mutation operators were not used in the simulated data). Table 

5.2 shows the parameter settings of EvoCluster used in the simulated data. 

TABLE 5.2 
PARAMETER SETTINGS OF EVOCLUSTER USED IN SIMULATED DATA  

( cP  REPRESENTS THE PROBABILITY OF GUIDED OR UNGUIDED  

CROSSOVER OPERATOR SELECTED AND  REPRESENTS THE  
PROBABILITY OF GUIDED OR UNGUIDED MUTATION OPERATOR SELECTED)  

 Size MIN MAX c m g g rL  rU  

mP

P  P  L  U  

Simulated 3 0.5 0.5 0.2 0.8 0.2 0.8 data 50 3 

 
As discussed in the previous section, EvoCluster has a set of “guided” and 

“unguided” operators. For the ge of grouping  “guided” operators, the exchan
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in ation is not totally random in the se at the gr  information of the 

“best-form ers  dur

“unguided” operators, the exchange of the ping info on betwe sters 

takes place random T f t eed for both types of operators, 

three separa eriments were carried n the simu ted data. In the first 

xp

(SIMULATED DATA) 

(convergence) 

form nse th ouping

ed” clust  is preserved ing the evolutionary process. For the 

 grou rmati en clu

ly. o determine i here is a real n  

te exp out o la

e eriments, a 50-50 mixture of “guided” or “unguided” operators were used 

whereas in the second and third, only “guided” operators and only “unguided” 

operators were used respectively. The average number of reproductions performed 

by each algorithm until convergence and also the average F-measure are given in 

Table 5.3. 

TABLE 5.3 
COMPARISON OF THE CLUSTERING PERFORMANCES OBTAINED BY 
USING “GUIDED+UNGUIDED” OPERATORS, “GUIDED” OPERATORS,  

OR “UNGUIDED” OPERATORS  

 k No. of reproduction F-measure 

Unguided +  

operators 
Guided 3 3830 0.91 

Unguided 
operators 3 4561 0.63 

Guided 
a .80 3 3050 0oper tors 

 
As shown  Table 5.3 en only “g perato used 

alone, it appeared that the ly to some local optima and when only 

“unguided” operators we  a longe

req ed, the ult obtaine . The perf  of EvoCluster is at 

its st whe oth “ rator sed together even 

though it required more e (com “guide tors 

lone). Based on these  we

 in a d as ex ed, whn pect uided” o rs were 

result converged on

re used alone, not only r evolutionary process was 

uir  res d was unsatisfactory ormance

be n b guided” and “unguided” ope s were u

 reproductions to converg pared to d” opera

a  results,  conclude that both the “guided” and “unguided” 
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play in the evolutionary process. When they are used 

e performance 

of EvoCluster has been compared w stering algorithms and the results 

are given in Table 5.4 below. 

TABLE 5.4 
MPAR ON O E A GE AS

 (SI TE TA)

Ev ster EA-based +
clu d 
A-b mea

operators have a role to 

together, they can facilitate the exchange of grouping information in a way that such 

information in the “best-formed” clusters is preserved as much as possible during 

the evolutionary process on one hand but variations can be introduced at the same 

time on the other so as to avoid trapping at local optima too early. Th

ith other clu

CO IS F TH
MULA

VERA
D DA

 F-ME
 

URE  

 oClu  EA-based 
 FS 

Re-
E

stere
ased k- ns 

k=3 0.91 0.66 0.78 0.82 0.61 
      

 + FS k-means SOM + FS SOM 
k-means Re-clustered SOM Re-clustered 

k=3 0.75 0.77 0.57 0.72 0.72 
      

 Hierarchical + FS Hierarchical   Hierarchical Re-clustered 

k=3 0.52 0.65 0.70   
 

As shown in the above tables, compared with other clustering algorithms, 

EvoCluster performs better in terms asure. Moreover, it seems that none 

of the EA t feature 

selection) is particularly ef ing very noisy data such as the 

simulated data. In order t  differen ween these tering 

a re significantly diffe e performed d pair-wise t [50] 

on the null and alternative hypotheses of H0: µ1 > µ : µ1 ≤ µ2, respectively. 

The results of irm that the differences tistically significant at 

the 95% confidence level (in Ta ). This show Cluster is obust 

in the presence of ery noisy en ent. 

of the F-me

-based, k-means, SOM and hierarchical algorithms (with or withou

fective

o decide if the

 when handl

ces bet  clus

lgorithms a rent, w  one-side  t-tes

2 and Ha

the t-tests conf are all sta

ble 5.5 s that Evo very r

 a v vironm

 101



CHAPTER 5 – CLUSTERING OF GENE EXPRESSION DATA  
USING EVOLUTIONARY COMPUTATION 
 
 

BLE 5.5  
 RESU T-TEST (10 TR

MULATED D  REPRESENTS
T easure Null Hypothesis (H0: µ1 > µ2) t  Accept/Reject

TA
LTS OF IALS)   

(SI ATA) (F  F-MEASURE) 
test # M  -tes

1 F µEvoCl EA-based 3 Accept uster > µ +25.2
2 F µEvoC k-means 7 A  luster > µ +34.1 ccept
3 F µEvoC  µSOM 4 A  luster > +42.5 ccept
4 F µEvoCluster Hierarchical 2 A    > µ +76.2 ccept
5 F µEvoCluster > µEA-based+FS +19.45 Accept 
6 F µEvoCluster > µk-means+FS +22.36 Accept 
7 F µEvoCluster > µSOM+FS +25.08 Accept 
8 F µEvoCluster > µHierarchical+FS +33.95 Accept 
9 F µEvoCluster > µRe-clustered EA-based +15.26 Accept 
10 F µEvoCluster > µReclustered k-means +19.94 Accept 
11 F µEvoCluster > µRe-clustered SOM +23.86 Accept 
12 F µEvoCluster > µRe-clustered Hierarchical +27.65 Accept 

 

2. Gene Expression Data 

he performances of EvoCluster have also been evaluated using real expression data 

ts. The minimum and maximum number of clusters considered for both Datasets 1 

nd 2 were set at (MIN=4, MAX=8) and (MIN=6, MAX=10), respectively. Table 5.6 

ows the parameter settings of EvoCluster used in Datasets 1 and 2. 

TABLE 5.6 
PARAMETER SETTINGS OF EVOCLUSTER USED 

IN GENE EXPRESSION DATA 

 Pop.  

T

se

a

sh

Size MIN MAX c m g g rL  U  L  rU  P  P

Dataset 
1 0.8 50 4 0.8 0.2 8 0.5 0.17 0.2 

Dataset 
2 50 6 1 0.2 .8 10 0.5 0. 7 0.2 0.8  0

 
the si lated data, the experiments with  1 and 2 were repeated 

three tim ixture of guided and unguided operators, unguided operators 

alone and guided operators alone respectively. Based on the results showed in 

Tables 5.7 and 5.8, we found th ng both “gui  “unguided rators 

together, once again, gave us the ustering resul

 

As with mu Datasets

es with a m

at usi ded” and ” ope

 best cl ts.  
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BLE 5.7 
COMP HE CL ING PERFORM BTAINED B
USING “G DED+UNGU PERATORS, “  OPERATOR

OR “U ED” OPERAT
TASET 1) 

 No. of reproduction 
(convergence) Pred

TA
AR N OF TISO USTER ANCES O Y  

UI IDED” O
NGUID

GUIDED”
ORS  

S,  

(DA

k ictive power DBI 

4 3104 87.10% 1.52 
5 3631 89.86% 1.48 
6 4703 80.90% 1.57 
7 4464 83.42% 1.58 

U

8 4405 77.33% 1.59 

nguided 

Guided 

Average 4061 83.72% 1.55 

+ 

operators 

4 4852 67.68% 1.62 
5 4197 70.41% 1.61 
6 4763 62.33% 1.65 
7 4945 64.75% 1.64 
8 4572 62.59% 1.65 

Unguided 
operators 

Average 4666 65.55% 1.63 
4 2670 76.13% 1.57 
5 1978 78.47% 1.57 
6 2404 75.94% 1.59 
7 4204 72.16% 1.60 
8 3978 70.08% 1.61 

Guided 
operators 

Average 3047 74.56% 1.59 
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TAB
C N OF TERIN RMAN INED
U IDED+ D” OP , “GUI RATO

GUIDE TORS
(DATA

 k No.  reproduction
en ictive p DBI 

LE 5.8 
OMPARISO  THE CLUS G PERFO CES OBTA  BY  
SING “GU UNGUIDE

OR “UN
ERATORS
D” OPERA

DED” OPE
  

RS,  

SET 2) 
of  

(converg ce) Pred ower 

6 3325 84.88% 1.59 
7 3701 81.25% 1.64  
8 4088 78.19% 1.67  
9 4717 74.26% 1.67 
10 79 73.26% 1.68 47

Unguided
 
ed 
tors

ge 22 78.37% 1.65 

 
+

Guid
opera  

Avera 41
6 4493 67.28% 1.69 
7 4989 65.36% 1.69 
8 4777 57.19% 1.79 
9 4815 58.34% 1.79 
10 4622 59.71% 1.78 

Unguided 
operators 

Average 4739 61.58% 1.75 
6 2089 73.23% 1.64 
7 3385 71.02% 1.65 
8 2876 67.49% 1.68 
9 4002 66.33% 1.68 
10 4747 68.51% 1.70 

Guided 
operators 

Average 3420 69.32% 1.67 
 

The performances of EvoCluster in comparison with other algorithms are given 

 Tables 5.9-5.12. 

 

 

 

in
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TABL
MPARISO E AVER REDICTIV ER  

(DATAS

Evo er EA-based EA-based Re- ed 
EA-based k-means 

E 5.9 
CO N OF TH AGE P E POW

ET 1)  

 Clust + FS 
cluster

k=4 87.10% 79.36% 76.43% 70.23% 77.41% 
k=  82.2 % 70.6 % 5 89.86% 7  3.92% 80.16% 7 8
k=6 80.90% 68.34% 72.77% 74.61% 66.98% 
k=7 83.42% 69.12% 75.53% 73.39% 64.77% 
k=8 77.33% 60.02% 67.58% 70.48% 63.12% 
Avg 83.72% 68.33% 74.69% 76.02% 68.40% 

      

 k-means Re- ed
k-means 

SOM 
+ FS 

Re-clustered 
SOM + FS 

cluster SOM 

k=4 80.02% 81.35% 72.38% 78.21% 76.48% 
k=5 77.48% 83.11% 68.53% 75.51% 77.53% 
k=6 75.92% 73.09% 64.26% 69.23% 71.47% 
k=7 72.37% 71.22% 63.84% 70.06% 72.81% 
k=8 69.55% 68.72% 61.39% 70.84% 68.06% 
Avg 75.07% 75.50% 66.08% 72.77% 73.27% 

      

 Hierarchical Hierarchical
+ FS 

Re-clustered 
Hierarchical   

k=4 74.39% 75.37% 77.74%   
k=5 75.22% 76.82% 78.18%   
k=6 73.23% 75.16% 77.09%   
k=7 64.66% 66.79% 69.21%   
k=8 62.30% 64.23% 66.11%   
Avg 69.96% 71.67% 74.07%   
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TABL
CO  OF AGE 

(DATA

E  E  EA-based Re d 
E  

E 5.10 
MPARISON THE AVER DBI  

SET 1)  

 voCluster A-based + FS 
-clustere
A-based k-means 

k=4 1.52 1.57 1.59 1.61 1.57 
k=  1.  1.  5 1.48 1.54 1.51 51 56
k=6 1.57 1.62 1.60 1.61 1.62 
k=7 1.58 1.61 1.60 1.  1.  60 66
k=8 1.59 1.69 1.65 1.  1.  63 68
Avg 1.55 1.61 1.58 1. 8 1.  5 62

      

 k-means 
+ FS 

Re d SOM 
+ FS 

Re-clustered 
SOM 

-clustere
k-means SOM 

k=4 1.56 1.58 1.62 1.58 1.60 
k=5 1.52 1.51 1.64 1.55 1.53 
k=6 1.60 1.60 1.62 1.59 1.59 
k=7 1.61 1.60 1.70 1.67 1.64 
k=8 1.64 1.62 1.79 1.72 1.69 
Avg 1.59 1.58 1.67 1.62 1.60 

      

 Hierarchical Hierarchical
+ FS 

Re-clustered 
Hierarchical   

k=4 1.61 1.60 1.59   
k=5 1.59 1.56 1.56   
k=6 1.58 1.57 1.57   
k=7 1.68 1.61 1.60   
k=8 1.69 1.67 1.67   
Avg 1.63 1.60 1.59   
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TABLE
MPARISO E AVER REDICTIV ER   

(DATAS

Evo er EA-based EA-based Re- ed 
EA-based k-means 

 5.11 
CO N OF TH AGE P E POW

ET 2) 

 Clust + FS 
cluster

k=6 84.88% 81.37% 67.23% 72.26% 78.43% 
k=  73.0 % 63.1 % 7 81.25% 6  1.37% 69.55% 9 9
k=8 78.19% 67.12% 72.38% 73.47% 61.40% 
k=9 74.26% 60.51% 65.43% 68.81% 64.77% 
k=10 73.26% 64.86% 70.24% 71.24% 62.59% 
Avg 78.37% 65.22% 71.21% 73.60% 63.84% 

      
k-means Re- ed

k-means 
SOM 
+ FS 

Re-clustered 
SOM 

cluster SOM + FS 
k=6 75.86% 77.66% 62.88% 69.14% 73.33% 
k=7 72.37% 75.91% 63.75% 70.04% 69.42% 
k=8 68.88% 70.03% 56.21% 66.56% 69.19% 
k=9 70.12% 69.64% 56.87% 68.38% 69.80% 
k=10 71.11% 70.98% 48.38% 59.48% 63.75% 
Avg 71.67% 72.84% 56.72% 66.72% 69.10% 

      

 Hierarchical   Hierarchical
+ FS 

Re-clustered 
Hierarchical

k=6 65.30% 71.75% 74.78%   
k=7 59.86% 66.32% 64.02%   
k=8 63.11% 68.29% 70.35%   
k=9 62.80% 67.74% 66.67%   
k=10 58.21% 68.86% 69.92%   
Avg 61.85% 68.59% 69.15%   
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GE D

Evo ster EA  
Re- d 

E   

TABLE 5.12 
COMPARISON OF THE AVERA

2
BI 

(DATASET ) 
EA-based  Clu -based + FS

c
A-based

lustere k-means

k=6 1.59 1  . 5 1.626 1.61 1.67 
k=7 1.64 1.70 1.69 1.67 1.70 
k=8 1.67 1.69 1.68 1.68 1.71 
k=9 1.67 1.72 1.69 1.69 1.70 
k=10 1.68 1.73 1.70 1.70 1.72 
Avg 1.65 1.69 1.67 1.67 1.70 

      

 k-means 
+ FS 

R ed Re-clustered
k-means SOM SOM 

+ FS 
e-cluster

SOM 
k=6 1.63 1.62 1.74 1.69 1.68 
k=7 1.68 1.67 1.77 1.72 1.70 
k=8 1.70 1.69 1.78 1.75 1.72 
k=9 1.68 1.68 1.79 1.75 1.75 
k=10 1.70 1.70 1.85 1.79 1.75 
Avg 1.68 1.67 1.79 1.74 1.72 

      

 Hierarchical Hierarchical
+ FS 

Re-clustered 
Hierarchical   

k=6 1.71 1.70 1.70   
k=7 1.76 1.74 1.72   
k=8 1.73 1.72 1.70   
k=9 1.76 1.75 1.72   
k=10 1.79 1.76 1.75   
Avg 1.75 1.73 1.71   

 
 The F-measure was not computed for the experiments with real data sets as the 

original corre ifferences 

a st  sig ed p e z e 

sam e size i rge enough, ather than t) on the null and 

alternative hypotheses of H  µ2, respectively, for the case of the 

pre tive po  and on the ypothese : µ1 < a: µ1 

≥ µ respect y, for the re. Th  of th  are 

sho  in Tab  5.13 a  above , EvoC gain 

ct clustering results are not known. To confirm that these d

re also atistically nificant, we performed one-sid air-wis -test [50] (as th

pl s la  the z-test is used r  the t-tes

0: µ1 > µ2 and Ha: µ1 ≤

dic wer  null and alternative h s of H0 µ2 and H

2, ivel  case of the DBI measu e results ese tests

wn les nd 5.14. According to the  tables luster a
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performs better than others mbination e feat tion 

me

RESULTS OF Z  1 – LL Ks)
(P PRESENTS ND D REP TS DBI

Test # Measure Nu  µ2) Ac ct

 even with the co  of th ure selec

thod. 

TABLE 5.13  
-T ST (10 T LS) (DATASETE RIA
 PREDICTIVE POWER A

OVER A
RESEN

  
)  RE

ll Hypothesis (H0: µ1 > z-test cept/Reje
1 P µEvoCluster > µEA-based +14.87 Accept 
2 P µEvoCluster > µk-means +16.13 Accept 
3 P µEvoCluster > µSOM +23.48 Accept 
4 P µEvoCluster > µHierarchical +21.32 Accept 
5 P µEvoCluster > µEA-based+FS +8.66 Accept 
6 P µEvoCluster > µk-means+FS +8.53 Accept 
7 P µEvoCluster > µSOM+FS +13.36 Accept 
8 P µEvoCluster > µHierarchical+FS +14.55 Accept 
9 P µEvoCluster > µRe-clustered EA-based +6.72 Accept 
10 P µEvoCluster > µReclustered k-means +7.06 Accept 
11 P µEvoCluster > µRe-clustered SOM +11.98 Accept 
12 P µEvoCluster > µRe-clustered Hierarchical +10.33 Accept 

Test # Measure Null Hypothesis (H0: µ1 < µ2) z-test Accept/Reject
1 D µ  < µ -11.58 Accept EvoCluster EA-based
2 D µEvoCluster < µk-means -12.26 Accept 
3 D µ  < µ -18.75 Accept EvoCluster SOM
4 D µEvoCluster < µHierarchical -17.16 Accept 
5 D µ  < µ -8.58 Accept EvoCluster EA-based+FS
6 D µEvoCluster < µk-means+FS -9.32 Accept 
7 D µEvoCluster < µSOM+FS -12.17 Accept 
8 D µEvoCluster < µHierarchical+FS -11.84 Accept 
9 D µEvoCluster < µRe-clustered EA-based -8.21 Accept 
10 D µEvoCluster < µReclustered k-means -8.79 Accept 
11 D µEvoCluster < µRe-clustered SOM -11.65 Accept 
12 D µ  < µ -10.37 Accept EvoCluster R chicale-clustered Hierar
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TABL
Z-TEST (10 TRIAL  Ks) 
 PREDICTIVE PO BI) 
l Hypothesis (H ccept/Reject

E 5.14 
VER ALLRESULTS OF S) (DATASET 2 – O

(P REPRESENTS
re Nul

WER AND D REPRESENTS D
z-test ATest # Measu 0: µ1 > µ2) 

1 P µEvoCluster > µEA Accept -based +13.12 
2 P µEvoCluster > µk Accept -means +13.04 
3 P µEvoCluster > µ Accept SOM +16.18 
4 P µEvoCluster > µHie Accept rarchical +13.67 
5 P µEvoCluster > µEA- Accept based+FS +10.72 
6 P µEvoCluster > µk-m Accept eans+FS +9.88 
7 P µEvoCluster > µSO Accept M+FS +13.37 
8 P µEvoCluster > µHierar Accept chical+FS +11.94 
9 P µEvoCluster > µRe-clustered EA-based +8.61 Accept 
10 P µEvoCluster > µReclustered k-means +9.28 Accept 
11 P EvoCluster Re-clustered SOMµ  > µ +11.04 Accept 
12 P µEvoCluster > µRe-clustered Hierarchical +10.36 Accept 

Test # Measure Null Hypothesis (H : µ  < µ ) z-test Accept/Reject0 1 2
1 D µEvoCluster < µEA-based -7.69 Accept 
2 D µEvoCluster < µk-means -8.25 Accept 
3 D µEvoCluster < µSOM -12.72 Accept 
4 D µEvoCluster < µHierarchical -8.77 Accept 
5 D µEvoCluster < µEA-based+FS -6.28 Accept 
6 D µEvoCluster < µk-means+FS -6.87 Accept 
7 D µEvoCluster < µSOM+FS -9.93 Accept 
8 D µ  < µ -7.11 Accept EvoCluster Hierarchical+FS
9 D µEvoCluster < µRe-clustered EA-based -5.98 Accept 
10 D µ  < µ -6.16 Accept EvoCluster Reclustered k-means
11 D µEvoCluster < µRe-clustered SOM -8.45 Accept 
12 D µ  < µ -6.97 Accept EvoCluster Re-clustered Hierarchical

 

Biologi

Based o

interest

Dataset lts), and for Dataset 2, when k=6 

(wh

then rul

 

 

 

cal Interpretation: 

n the clustering results obtained by EvoCluster, we are able to discover some 

ing associations that may have great biological significance. For example, for 

 1, when k=5 (which gives the best resu

ich gives the best results), we discovered some associations (represented in if-

e format) as shown in Tables 5.15 and 5.16, respectively.  
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INTERESTING ASSOCIATIONS DISCOVERED  

If Con
then C

TABLE 5.15 

 (DATASET 1) 
d4 = [-2.56, -1.28]  
1  [0.96] 

If Cond11 = [-1.53, -0.27]  
then C4  [0.90] 

If Con
then C then C1  [0.92] 

d8 = [-0.28, 1.01]  
5  [0.90] 

If Cond10 = [1.48, 2.97]  

If Cond12 = [0.87, 1.95]  
the

If Cond17 = [-0.23, 0.86]  
n C2  [0.90] then C3  [0.86] 

If Cond11 = [0.99, 2.26]  
then C2  [0.86] 

If Cond1 = [-0.14, 1.25]  
then C5  [0.88]  

If Cond3 = [-2.87, -1.41]  
then C then C4  [0.92] 3  [0.94] 

If Cond3 = [0.02, 1.45]  

 

If Con
then C1  [0.86] 

TABLE 5.16 
INTERESTING ASSOCIATIONS DISCOVERED  

(DATASET 2) 
d5 = [0.45, 2.12]  If Cond45 = [0.56, 3.35]  

then C5  [0.85] 
If Con
then C6  [0.90]

d63 = [0.32, 1.32]  
 

If Cond29 = [-2.5, -0.42]  
then C4  [0.92] 

If Con
then C3  [0.92]

d67 = [-1.27, -0.29]  
 

If Cond10 = [-2.24, -0.21]  
then C4  [0.88] 

If Con
then C5  [0.90] then C2  [0.86] 

d58 = [-1.83, -0.32]  
 

If Cond8 = [0.04, 0.24]  

If Con
the

If Cond51 = [0.56, 3.35]  d15 = [-2.17, -0.33]  
n C6  [0.84]  then C1  [0.88] 

If C
then C

ond36 = [0.43, 1.96]  
2  [0.83] 

If Cond21 = [0.53, 2.54]  
then C3  [0.84] 

 
The

“If Con

gene un

then the

rule “If

a gene u

there is

The

1. 

 discovered associations can be interpreted as follows. In Table 5.15, the rule 

d3 = [-2.87, -1.41] then C3 [0.94]”, means that if the expression value of a 

der experimental condition, Cond3, is within the interval from [-2.87, -1.41], 

re is a probability of 0.94 that it belongs to cluster C3. In Table 5.16, for the 

 Cond5 = [0.45, 2.12] then C1 [0.86]”, it states that if the expression value of 

nder experimental condition, Cond5, is within the interval [0.45, 2.12], then 

 a probability of 0.86 that it belongs to cluster C1.  

 discovery of these associations is of biological significance in several ways:  

Based on them, we found that genes within a cluster share similar expression 

patterns. For example, for Dataset 2, genes in cluster C2 expressed very 
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r C3 expressed very similarly to each other under the 

conditions of Cond21 and Co

2. The associ

tionally similar or related genes. For example, by closely exam

ults with Da genes such as 032W, 

R103C, YLR274W , and YPR019W, etc., which are directly 

olved in DNA re 9], [42], satisfied the rule “If Cond10 = [-

2.24, -0.21 genes that are 

involved in mitosis, such as R108W, YDR146C, YGR109C, 

 YML027W [19] satisfied the rules “If Cond63 = [0.32, 1.32] then C6 

90]”. 

3. logists can make use of these associations to classify other newly found 

genes of the same organism in order to infer their potential biological 

functions [109]. 

4. In addition to the possible identification of functionally related genes, the 

discovered associations are expected to help biologists better understanding 

the  planning 

 desi nts by  on the nses 

of genes in one cluster at a time and b ducing the nu erimental 

ests required

5 Given that the associations discovered in each cluster are different, we 

pted to see if there are any known binding sites in each discovered 

cluster. To do so, we looked at the corresponding promoter regions (from 

SGD [19]) of the genes in e We used a popular motif-discovery 

similarly to each other under the conditions of Cond8 and Cond36, and 

genes in cluste

nd67, etc.   

ations discovered ster can lead to the discovery of  in each clu

func ining the 

res taset 2, we found that YBL023C, YEL

YL , YBR202W

inv plication [1

] then C4 [0.88]”. We also found that many 

YPR119W, YG

and

[0.

 Bio

ir expression data. For example, they can help biologists better

and gning their experime focusing  transcriptional respo

y e r mber of exp

t  [144].   

. 

attem

ach cluster. 
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algorithm des ion factor binding 

s in 

ith hexanu lysis [78], we  set the olig length to 

be six. All discovered sites in each cl ter were then ainst the 

well-known s [19], [79]. A n Tables 5.17 and 5.18, we 

id discover  that are kno transcription ing sites. 

Moreover, in addition to known binding sites, we were able to discover 

KNOWN TRANSCRIPTION FACTOR BINDING SITES  

cribed in [78] to try to search for transcript

site the DNA sequences. Since many regulatory sites can be detected 

w cleotide ana  also o  nucleotide

us  checked ag

binding site s shown i

d  the patterns wn factors bind

some other potentially important sites (Tables 5.19 and 5.20). The validity 

of these sites can be confirmed by biologists using different bio-chemical 

methods [145]. 

TABLE 5.17 

REVEALED FROM THE DISCOVERED CLUSTERS  
(DATASET 1)  

Cluster Sequence revealed Binding Site Name 
C1 TAAACA Mcm1 

C2 CTGTCC (potential  
variant of CTGTGG) Met31;Met32 

C3 CCAGCA Swi5;Ace2 
C4 AAGAAA SCB 
C5 ACGCGT MCB 

 
TABLE 5.18 

KNOWN TRANSCR OR BINDING SITES  

C

IPTION FACT
REVEALED FROM THE DISCOVERED CLUSTERS  

(DATASET 2)  
luster Name Sequence revealed Binding Site 
C1 ACGCGT BMC  
C2  CGCGAA SCB
C3 CC  ce2 AGCA Swi5;A
C4 CCCAAA Mcm1 
C5 CTG  Met31;Met32 TGG
C6 AAACAA SFF 
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Cluster Sequence revealed Cluster Sequ  reveale

TABLE 5.19 
SOME POTENTIAL TRANSCRIPTION FACTOR  

BINDING SITES REVEALED FROM THE DISCOVERED CLUSTERS  
(DATASET 1)  

ence d 
C1 GATG 4  CC C AGGAAA

 CTCG  CA AC AGAC
 AGAAA   CTCTAA C

C2 TGGAC  C5 GTCGCG A
 GGTGA   CGCGTT T
 TGTCCA  CGACGC 

C3 CCAGC    C
 AGATCG   
 AGGT   GA 

 
TABLE 5.20 

SOME POTENTI IPTION FACTOR  
 

Cluster Seq ence revealed 

AL TRANSCR
BINDING SITES REVEALED FROM THE DISCOVERED CLUSTERS 

(DATASET 2) 
uence revealed Cluster Sequ

C1 AACTCG AA C4 GGTC
 ACGCGA  TTGGGT 
 GCGTTT  GGAA TA

C2 GACGCG C5 GCCCA G
 TCATGG  GATG TG
 ATCGTC  CCAAG T

C3 GAGCCA C6 CTAGA G
 TGGTTT  CCACAG 
 GGCTGG  GTGTGC 

 
Compared with EvoCluster, other clustering algorithms are only able to discover 

me of the known binding sites in some of the clusters they discovered (Tables 

5.21 and 5 overed by 

EvoCluster are mor than the groupings 

discovered by others. The tota mbers nfirme d susp d bind ites 

dis the clu rs found y the var s cluster  algorit s are also given 

in Tables 5.23 and 5.24 for tasets 1 and 2 respectively. In both data sets, 

voCluster is able to find many more such binding sites.   

 
 
 

so

.22). This is an indication that the cluster groupings disc

e biologically meaningful and significant 

l nu of co d an ecte ing s

covered in ste  b iou ing hm

Da

E
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RED BY DIFFERENT CLUSTERING ALGORITHMS  
NAME AND THE NO. OF OCCURRENCES) 

TABLE 5.21 
DISCOVERY OF KNOWN TRANSCRIPTION FACTOR BINDING SITES  

IN EACH CLUSTER DISCOVE
(DATASET 1) (SITE 

 C1 C2 C3 C4 C5 

EvoCluster Mcm1  
(64) 

Met31;Met32 
(99) 

Swi5;Ace2 
(32) 

SCB 
(138) 

MCB 
(101) 

EA-based - Mcm1  
(30) 

Met31;Met32 
(58) 

SCB 
(102) 

MCB 
(73) 

k-means - Mcm1  
(23) 

Swi5;Ace2 
(21) 

SCB 
(119) 

MCB 
(85) 

SOM - - Swi5;Ace2 
(25) 

SCB 
(114) 

MCB 
(65) 

Hierarchical - - Mcm1  
(26) 

SCB 
(96) 

MCB  
(57) 

 
TABLE 5.22 

DISCOVERY OF KNOWN TRANSCRIPTION FACTOR BINDING SITES  
IN EACH CLUSTER DISCOVERED BY DIFFERENT CLUSTERING ALGORITHMS 

(DATASET 2)  
 C1 C2 C3 C4 C5 C6 

EvoCluster MCB  SCB Swi5;Ace2 Mcm1 Met31;Met32 SFF  
(139) (86) (44) (62) (102) (207) 

EA-based MCB  - - Mcm1 - SFF  
(95) (55) (116) 

k-means MCB  - - Mcm1 - SFF  
(79) (40) (134) 

SOM - - - Mcm1 - SFF  
(36) (89) 

Hierarchical - - - MCB  
(61) 

SCB 
(31)

SFF  
(107) 

 
TABLE 5.23 

FACTOR BINDING SITES IN EACH CLUSTER DISCOVERED  
TOTAL NUMBER OF KNOWN AND POTENTIAL TRANSCRIPTION  

BY DIFFERENT CLUSTERING ALGORITHMS 
(DATASET 1) 

 C1 C2 C3 C4 C5 
EvoCluster 14 11 8 17 19 
EA-based 9 5 3 7 15 
k-means 6 2 5 12 9 

SOM 4 3 3 9 13 
Hierarchical 4 - 2 3 10 
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TOTAL NUMBER OF KNOWN AND POTENTIAL TRANSCRIPTION 

(DATASET 2) 
C5 C6 

TABLE 5.24 

FACTOR BINDING SITES IN EACH CLUSTER DISCOVERED  
BY DIFFERENT CLUSTERING ALGORITHMS 

 C1 C2 C3 C4 
EvoCluster 12 21 9 4 24 15 
EA-based 5 9 6 4 8 11 
k-means 8 7 3 3 13 10 

SOM 4 5 - 3 7 6 
Hierarchical 5 12 - - 4 6 

 

5.4 Extension of EvoCluster: Mining Overlapping Clusters in 

 
Gene Expression Data  

While many clustering algorithms have been used successfully with gene expression 

data, it should be noted that they usually perform their tasks under the assumption 

that each gene belongs only to one cluster. Such an assumption can sometimes be an 

over-simplification of the great biological complexity underlying the gene 

expression process. As many proteins have multiple functional roles in a cell, they 

have to interact with different groups of other proteins to fulfill them. The genes that 

produce these proteins are therefore expected to co-express with different groups of 

other genes in order to meet the varying demands of a cell. In other words, 

depending on the experimental conditions being investigated, each gene may have 

similar expression patterns with different groups of other genes in other clusters and 

they can, therefore, belong to more than one cluster. This poses a challenge to 

existing clustering algorithms as they need to tackle two difficult problems: (i) they 

need to handle overlapping clusters which they were not originally developed to do 

so, and (ii) they need to discover overlapping clusters in the presence of noise.  

In order to do so, some attempts have been made to use the fuzzy k-means 

algorithm [20] in the clustering of gene expression data [9], [58], [63]. The main 
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diff

ee. The only constraint such a cluster assignment process 

nee

erence between the fuzzy k-means algorithm and the standard k-means algorithm 

is in the assignment of genes to a cluster. Rather than assigning a gene to one and 

only one cluster, the fuzzy k-means algorithm allows each gene to be assigned 

partially to more than one cluster according to a degree of membership that ranges 

between 0 and 1. Genes that are very near a given cluster centroid are assigned a 

higher degree of membership to that cluster and genes that are very far away are 

assigned a lower degr

ds to work under is that a gene cannot belong completely (with full degree of 

membership) to more than one cluster. In fact, the sum of the degree of membership 

for a gene to belong to different clusters has to be 1.        

When dealing with gene expression data, it should be noted that, similar to many 

existing clustering algorithms, the fuzzy k-means algorithm may not be able to 

perform effectively. For example, it makes use of the Euclidean distance or some 

correlation coefficients when measuring similarity. One problem with these 

similarity measures is that they do not differentiate between the relevancy of 

different data values collected under different experimental conditions. And for this 

reason, they do not give very accurate measurements when dealing with noisy data. 

Other than these problems, the fuzzy k-means algorithm also requires users to define, 

in advance, a fuzziness parameter, },1{ ∞∈m , ahead of time as it may require many 

trials and errors. The fuzziness parameter determines the degree of fuzziness of the 

clustering process. When m is set to 1, the clustering algorithm performs a hard 

partition and when m is set to infinity, the clustering assumes the highest degree of 

fuzziness. If m is not properly set, there is a chance that none of the genes can be 

ghtly associated with any clusters. In such case, even though a clustering structure ti
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ree-of-membership values can all be relatively small making 

ult to interpret. The selection of appropriate fuzziness 

v

In an attempt to solve these problems, we combined EvoCluster [111] (as 

discussed in Section 5.1) with the re-clustering process [112] (as described in 

Chapter 4, Section 4.1, phase 2) to mining overlapping clusters in gene expression 

data. This extended version [116]-[117] also consists of two phases: an initial 

clustering phase and a second re-clustering phase, and is able to discover 

overlapping clusters on one hand and overcome some of the limitations of existing 

methods on the other.  

ed to discover the initial clusters 

from

can be found, the deg

the results very diffic

parameter is hence very important for the fuzzy k-means algorithm to perform 

effectively but it also adds an additional level of difficulty to the cluster-discovery 

process. In addition to the above, the fuzzy k-means algorithm does not make 

explicit the patterns discovered in a data set during the clustering process. To better 

understand and interpret the clustering results, a separate technique is usually 

required for patterns underlying each discovered cluster to be unco ered explicitly. 

For the initial clustering phase, EvoCluster is us

 gene expression data. For the re-clustering phase, interesting associations 

between the expression levels and cluster labels are first identified in the initial 

clusters. Then, based on the discovered associations and the weight of evidence 

measure, rather than assigning a gene to the cluster with the largest total weight of 

evidence as we performed before, the total weight of evidence supporting a gene 

belongs to each cluster, pC , where Pp ,...,1=  and P is the total number of initial 

clusters discovered, is calculated (using Eq.(4.3)). The cluster memberships of the 

genes that have previously been assigned are then re-evaluated to determine whether 
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the same cluster or be assigned to more than one. This 

positive total weight of 

evid

5.4.1 Experiments 

For experim

characterized by 50 different attributes that takes on values from [0.0, 1.0]. These 

records were first grouped into three clusters based on embedding the patterns 

ter. To do so, for each

% of the

andomly so that 0

clusters, three sets of overlapping patterns  embedded into the data as f llows. 

records were randomly selected (selected from t rather than from 

each cluster). The value of a selected attribute in each selected record was then 

generated randomly only from e  and 

were also randomly generated and 0.0 ≤ ≤ ≤ 1.0. 

they should belong to 

extended version of EvoCluster facilitates the discovery of overlapping clusters by 

assigning a gene to more than one cluster only if there is a 

ence of this gene to belong to the given cluster. Moreover, it can also facilitate 

the identification of groups of genes that have a strong association (i.e., with large 

weight of evidence) to the cluster for further biological analysis, for example, 

functional annotations [103].  

 

A.  Experimental Data  

entation, we used a set of simulated data consisting of 300 records each 

unique to each clus  cluster, we randomly select 20% of the 

attributes. For each selected attribute, its values in 40  records in this cluster 

were generated randomly from within the range [ cL , cU ], where cL  and cU  were 

also generated r .0 ≤ cL  ≤ cU  ≤ 1.0. To ensure that overlapping of 

First, for each set of overlapping patterns, 10% of the attributes and 20% of the 

were o

 the whole data se

within the sam  range [ fL , fU ], where fL fU  

 fL   fU  
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e have also tested the proposed algorithm using 

nd b  where  is th tance between  and 

all othe qC  is 

In addition to simulated data, w

two sets of gene expression data. The first set, Dataset 1, contains 517 genes whose 

expression levels vary in response to serum concentration in human fibroblasts 

(under 12 different experimental conditions). We tried in our experiments to 

partition this dataset into different clusters from 4 to 8 [83]. The second data set, 

Dataset 2, contains 384 genes whose expression levels were measured under 17 

different experimental conditions and we also tried to partition this dataset into 

different clusters from 4 to 8 [161]. 

  

B.  Evaluating Criteria  

The performance of the proposed algorithm was evaluated using two objective 

measures: (i) the F-measure and (ii) the silhouette measure.  

The F-measure, as discussed in Chapter 4, Section 4.2, combines the idea of 

“precision” and “recall” from the field of information retrieval. When the correct 

clustering arrangement of a set of data is known, the F-measure can be used to 

determine how well a discovered clustering arrangement compares with that of the 

correct, original one. The F-measure, it should be noted, can be used with clusters 

having fuzzy boundaries. To do so, the clusters are first converted into crisp 

boundaries by assigning records to the clusters they belong to with the largest degree 

of memberships [96]. 

The silhouette measure [135] calculates the silhouette value of a gene, ig , which 

reflects the likelihood of ig  belonging to a cluster pC . It does so by first estimating 

two scalars )( iga  a  )( ig )( iga e average dis ig

r genes in pC  and )( igb  is the smallest of ),( qi Cgd , where ( igd ),
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defined to b th ilhouette 

f is then defined to be the ratio, 

e e average distance of ig  to all genes in qC , qp CC ≠ . The s

)( igs  ig  
)}

 o
(

i

g),(max{ ii

i

ga
)()( gagb −

b
. The silhouette value 

lies en –  1. W en it alu

poorly classified. The overall silhouette value of a cluster is the average of  of 

all the genes in the cluster [123].          

5.4

For comparison, we compared the performance of the proposed algorithm with the 

fuzzy k-means [20] algorithm using the simulated and real expression data as 

described above. In our experiments with the fuzzy k-means algorithm, to ensure 

that its performance is not affected by poor choice of initial cluster centroid, we 

performed 100 runs with each using different randomly-generated initial cluster 

centroids and also, such 100-run test was repeated 10 times. The 10 best results 

obtained from each 100-run test were then recorded. In addition, the fuzziness 

parameter, m, used in our experiment was set to different values ranging from 1.1 to 

2 as suggested in [20] and the m that gave us the best clustering result was selected. 

For the simulated d  terms of the F-

mea re w t t In order to im rove t e performance of the fuzzy k-m ans 

a , also rform  fea se n it. fe  se n 

procedure is same as those used by other clustering algorithms a cus in 

 But, one additional step performed for the fuzzy k-means algorithm is 

that the fuzzy clusters were first converted into crisp boundaries by assigning 

records to the clusters they belong to with the largest degree of memberships [99]. 

 betwe 1 to h s v e is less than zero, the corresponding gene is 

)( igs

 

.2 Results and Discussions 

ata, m happens to give us the best result in

su hen se o 1.1. p h e

lgorithm we pe ed ture lectio for This ature lectio

s dis sed 

Section 5.3.
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gs ludi op

, the length of the chromosome was fixed in our 

experiment to be 3  

PARAMETER  OF TED DATA  
 REPRESENTS THE PROBABILITY OF GUIDED OR UNGUIDED  

CROSSOVER OPERATOR SELECTED AND  REPRESENTS THE  
PROBABILITY OF GUIDED OR UNGUIDED MUTATION OPERATOR SELECTED)  

 Pop. 
Size MIN MAX

For EvoCluster, the parameter settin , inc ng p ulation size, number of 

reproductions, etc., are showed in Table 5.25. With these parameter settings, the 

result we obtained using the simulated data for testing is showed in Table 5.26. It 

should be noted that the number of clusters (k=3) to be discovered was known-in-

advance for the simulated data

TABLE 5.25 
 SETTINGS  EVOCLUSTER USED IN SIMULA

( cP

mP

cP  mP  gL  gU  rL  rU  

Simulated 
data 50 3 3 0.5 0.5 0.2 0.8 0.2 0.8 

 
TABLE 5.26 

COMPARISON OF THE AVERAGE F-MEASURE  
(SIMULATED DATA) 

 Proposed  Fuzzy k-means Fuzzy k-means  
+ FS 

Average  0.82 0.60 0.71 
 

As shown in the above table, compared with both fuzzy k-means algorithms, the 

proposed algorithm performs better. Also, it seems that the performances of the 

fuzzy k-means algorithms are not good when handling very noisy data. In addition, 

the associations discovered by the proposed algorithm can reveal the overlapping 

patterns embedded in the clusters. F

then rule format) “If Cond15 = [0.07, 0.25] then C1” and “If Cond15 = [0.07, 0.25] 

then C2” with the same conditional part were discovered in clusters C1 and C2 

respectively, this indicates that these clusters contain the overlapping pattern [117].      

For gene expression data, the parameter settings of EvoCluster are showed in 

Table 5.27.  

or example, the associations (represented in if-
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PARAMETER SETTINGS OF EVOCLUSTER USED 
IO

 Size MIN MAX

TABLE 5.27 

IN GENE EXPRESS N DATA 
Pop. 

cP  mP  gL  gU  rL  rU  

Dataset 50 4 8 .5 0.17 0.2 0.8 0.2 0.8 1 0

Dataset 
2 50 4 8 0.5 0.17 0.2 0.8 0.2 0.8 

  
)1( )1( )1( )1(

sizes 186, 116, 141, 74, respectively, were discovered after Phase 1. For Dataset 2, 5 

 For Dataset 1, 4 clusters (which gives the best result),  of 

cluste 06, 

obtained for Datasets 1 r ual d in Figs. 5.2 and 5.3 

respe ) is 

effective in identif

1C , 2C , 3C , 4C

rs (which gives the best result), )2(
1C , )2(

2C , )2(
3C , )2(

4C , )2(
5C  of sizes 65, 1

83, 74, 56, respectively, were discovered after Phase 1. The clustering results 

 and 2 after Phase 1 a e vis ize

ctively. From these figures, it is noticed that EvoCluster (used in Phase 1

ying the initial clusters.  

 
)1(

has 1

Fig. 5.2 The four initial clusters discovered - Dataset 1. (From left to right:  has 186 genes,

16 genes,  has 141 genes and has 74 genes.) 
1C  )1(

2C  

 )1(
3C  )1(

4C  
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)2(

1C  has 65 genes, Fig. 5.3 The five  discovered - ft to right: 

has 106 ge  has 83 genes, , and 2(
5C 6 ) 

ed on the l clusters discover Phase 1, the seco clustering 

p as perform uring the re-cluster ocess, interesting as ions were 

i red in each al cluster. Based on  findings, the cluster

eac

different clusters is marked in the figure as which represents the overlapping 

subset between the clusters C  and C . Similarly, the non-overlapping region of 

each cluster verlapping 

subset of the cluste re than one cluster, 

initial clusters Dataset 2. (From le )2(
2C  

)2(
3

)2(
4C   )  has 5nes, C has 74 genes  genes.

 
Bas  initia ed in nd re-

hase w ed. D ing pr sociat

d scove  initi these  membership of 

h gene in each cluster was re-evaluated to determine if it should remain in the 

same cluster or be assigned to more than one cluster. Figs. 5.4 and 5.5 below show 

the clustering results after the re-clustering process. The overlapping region between 

)(i

j k

jkc  

)(i )(i

is marked in the figure as )(i
jc  which represents the non-o

r )(iC . As each gene is llowed to belong to moaj
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the sizes of the overlapping clusters are larger than their corresponding initial 

clusters. 

 
Fig. 5.4 The four overlapping clusters discovered by the proposed algorithm (Dataset 1).  

(From left to right: 1C  has 219 genes, 2C  has 159 genes, 3C  has 167 genes and 4C  has 128 
genes. The label beside the image of each cluster indicates the overlapping and non-overlapping 

regions, i.e., )1(
1c  labels the non-overlapping region in )1(

1C , and )1(
12c  labels the  

)1(
1

)1(
2

)1( )1( )1( )1(

overlapping region between  and .) C C
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Fig. 5.5 Th ataset 2).  

(From nes,  

 
rom F e can tha es vere h 

ove app ssion pa ilar to that w  gen the 

non ve he results s the teri s is ive 

in discovering overlapping clusters from gene expression data.  

 ad e have pared the clus vere the 

pro se ered b  the fuzzy -means algorithms using the 

silhouette measure. In our experiments, es be g to e cluster were 

treated a ing instances whereas genes that do not belong to the cluster 

at a  w aining es. A so, zzy ans 

algorithm eter (m) was set to 1.3 for Dataset 1 and 1.2 for 

e five overlapping clusters discovered by the proposed algorithm (D
 left to right: )2(

1C  has 91 genes, )2(
2C  has 125 genes, )2(

3C  has 104 ge
)2(C  has 86 ge )2( as 77 genes.) nes, and 5C  h4

F igs. 5.4 and 5.5, on  see t the gen disco d in eac

rl ing region have expre tterns sim ith other es in 

-o rlapping regions. T how that re-clus ng proces effect

In dition to the above, w also com ters disco d by 

po d algorithm with those discov y  k

 the gen longin the sam

s positive tr

ere treated as negative tr

ain

ll  instanc nd al for the fu  k-me

s, the fuzziness param
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Dataset er settings allow them to perform at its best in terms of the 

silhou t

d that the qualities of the clusters 

disc ver rithm better silhouette values than those 

disc er ans algori oth ts.  

TA  
E AVERAG ETT U N  

THE PROPOSED ALGORITHM AND THE FUZZY K-MEANS ALGORITHMS  
(DATASET 1) 

 Proposed Fuzzy k-means Fuzzy k-means  
+ FS 

2 as such paramet

e te measure.   

According to the Tables 5.28 and 5.29, we foun

o ed by the proposed algo  have 

ov ed by the fuzzy k-me thms in b data se

BLE 5.28
E SILHOUCOMPARISON OF TH E MEAS RE BETWEE

k=4 0.53 0.40 0.46 
k=5 0.50 0.36 0.43 
k=6 0.48 0.33 0.39 
k=7 0.40 0.30 0.32 
k=8 0.43 0.28 0.34 
Avg 0.47 0.33 0.39 

 

THE PROPOSED ALGORITHM AND THE FUZZY K-MEANS ALGORITHMS  

 Fuzzy k-means  

TABLE 5.29 
COMPARISON OF THE AVERAGE SILHOUETTE MEASURE BETWEEN  

(DATASET 2) 

Proposed Fuzzy k-means + FS 
k=4 0.44 0.33 0.36 
k=5 0.49 0.37 0.41 
k=6 0.46 0.31 0.36 
k=7 0.38 0.21 0.29 
k=8 0.35 0.23 0.26 
Avg 0.42 0.29 0.34 

 
For further performance evaluation, the gene expression data sets were corrupted 

by adding uniformly generated random noise to every gene expression profile [51]. 

Figs. 5.6 and 5.7 show how the proposed algorithm compares with the fuzzy k-

means algorithms on the corrupted gene expression data. Based on the discovered 

results, we found that the proposed algorithm, in spite of the additionally added 

noise at various levels, still outperforms the fuzzy k-means algorithms.  
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Fig. 5.6 Comparison of the clustering performance (silhouette measure)  
in a noisy environment (Dataset 1, k=4). A noise level at 10% means that 10%  

of each gene expression profile consists of added noise. 
 

Fig. 5.7 Comparison of the clusterin
in a noisy environm

g performance (silhouette measure)  
ent (Dataset 2, k=5). 
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iological Interpretation: 

Other than evaluating the results statistically, we have also evaluated the clustering 

results according to their biological functions. Since genes that have similar 

expression patterns may have similar or related biological functions [38] and it is 

shown in [148] that significant enrichment of genes belonging to the given 

functional categories can be revealed in the clusters discovered through clustering. 

Therefore, we also evaluated the results according to the biological functions of 

genes that can be discovered in each cluster. To evaluate the effectiveness of the 

proposed algorithm, we therefore look at the percentage of genes in each function 

category discovered in the initial non-overlapping clusters after Phase 1 to see if 

there is a corresponding increase in the overlapping clusters discovered after Phase 2.   

When comparing the clusters discovered in the data (Dataset 2) after Phase 1 

with those discovered after Phase 2 based on the MIPS functional catalogue 

database [104], we found that in each overlapping cluster, the percentage of genes in 

each functional category is greater than that obtained in the corresponding initial 

cluster (Table 5.30). Also, the p-value associated with each functional category 

discovered in the overlapping cluster is smaller than that obtained in the 

corresponding initial cluster (the p-value is calculated to obtain the chance 

probability of observing a set of genes from a particular MIPS functional category 

within a cluster, thus low p-value indicates high significance [104]). This indicates 

that the discovered overlapping clusters are biologically significant.  

 
 
 
 
 
 
 
 

B
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COMPARISON OF THE ENRICHMENT OF GENES IN EACH  
FUNCTIONAL CATEGORY BETWEEN THE INITIAL (PHASE 1)  

AND OV STERS  

 MIPS  
Functional Category (%) 

e 1
(p-value)

Phase 2 
(%) 

Phase 2
(p-value)

TABLE 5.30 

ERLAPPING (PHASE 2) CLU
(DATASET 2)  

Phase 1 Phas

)2(
1C  BUD/GROWTH TIP 7.83% 0.42 13.72% 0.29 
 MITOCHONDRION 18.14% 0.21 33.46% 0.04 

 ENDOPLA
RETICUL

SMIC 
UM 10.22% 0.07 14.30% 0.03 

      
)2(

2C  TRANSPORTED 
COMPOUNDS  8.29% 0.35 10.46% 0.21 

 DNA PROCESSING 11.73% 0.38 14.30% 0.23 
      

)2(
3

EUKARYOTIC PLASMA 
MEMBRANE/ 
MEMBRANE 
ATTACHED 

C  5.95% 0.41 7.88% 0.20 

 

FUNGAL/ 
MICROORGANISMIC 
CELL TYPE 5.67% 0.21 10.28% 0.04 

DIFFERENTIATION 

 CARBOHYDRATE 6.16% 0.23 9.92% 0.14 
C-COMPOUND AND 

METABOLISM 
      

)2(
4C  CELL GROWTH/ 7.08% 0.40 8.57% 0.29 MORPHOGENESIS 

 CELLULAR SENSING 5.32% 0.22 7.66% 0.09 AND RESPONSE 
 TRANSPORT ROUTES 4.96% 0.31 6.18% 0.28 
      

)2(
5C  RNA SYNTHESIS 12.73% 0.29 16.87% 0.11 
 NUCLEUS 19.46% 0.22 24.18% 0.18 
 CYTOSKELETON 15.81% 0.59 24.60% 0.36 
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5.5 Summary Remarks 

ed in each cluster can be explicitly revealed and presented 

for 

 

With the advent of microarray technology, we are now able to monitor 

simultaneously the expression levels of thousands of genes during important 

biological processes. Due to the large number of data collected everyday and due to 

the very noisy nature in the data collection process, interpreting and comprehending 

the experimental results has become a big challenge. In this chapter, we have 

proposed a novel evolutionary clustering algorithm called EvoCluster. EvoCluster 

encodes an entire cluster grouping in a chromosome so that each gene encodes one 

cluster. Based on such a structure, it makes use of a set of reproduction operators to 

facilitate the exchange of grouping information between chromosomes. The fitness 

function it adopts is able to differentiate between how relevant the expression level 

is in determining a particular cluster grouping. As such, instead of just local pair-

wise distances, it also takes into consideration how clusters are arranged globally. 

Moreover, it does not require the number of clusters to be decided in advance, and 

the associations discover

easy interpretation. In addition, we have also proposed the possible extension of 

EvoCluster to mining overlapping clusters in gene expression data.  

Experimental results using both simulated and real data show that the proposed 

algorithms are very robust in the presence of noise. They are able to search for near 

optimal solutions effectively, and discover interesting associations in the noisy data 

for meaningful groupings. The results also show that, under some common 

performance measures, the proposed algorithms are better than other algorithms 

commonly used in gene expression data analysis, and the discovered clusters contain 

more biologically meaningful patterns. In particular, we could correlate the clusters 
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of co-expressed genes discovered to their DNA sequences, and found that we were 

able to uncover known and new biological binding sites in each cluster of co-

expressed genes. 

Compared with other clustering algorithms such as k-means, SOM or fuzzy k-

means, EvoCluster is about 12-18 times slower than others when the time it takes for 

a reproduction to be performed is compared against the time it takes for performing 

an iteration in each of these algorithms. However, as shown in the experiments 

above, even if more computational resources (in terms of the number of iterations) 

are given to other clustering algorithms, EvoCluster will likely be giving the best 

clustering results. For microarray analysis, since the results are normally not 

required immediately, the relatively longer evolutionary process that EvoCluster 

takes to find a better solution is not very important. In order to cope with very large 

gene expression data sets, the inherently parallel nature of the problem solving 

process of EvoCluster can be exploited.    
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Gene expression data mining as a new research area poses new challenges to data 

mining researchers. Gene expression data are typically very noisy and have very 

high dimensionality. To tackle bioinformatics problems involving them, traditional 

data mining techniques may not be the best tools to use as they were not originally 

developed to deal with such data. For this reason, the contributions of this thesis are 

to propose some data mining techniques to solve these problems effectively. In 

particular, these techniques can be used to solve the problems of reconstructing gene 

regulatory networks (GRNs) and clustering gene expression data. The former is 

concerned with the problem of discovering gene interactions to infer the structures 

of gene regulatory networks. The latter is concerned with the problem of discovering 

clusters of co-expressed genes so that genes that have similar expression patterns 

under different experimental conditions can be identified.  

To reconstruct GRNs, we have proposed to use an association-discovery 

technique [113]-[115], which is based on residual analysis and an information 

theoretic measure, for the effective inference of the structures of GRNs from time-

dependent gene expression data. This association-discovery technique can discover 

interesting association relationships between genes in high-dimensional and very 

noisy expression data without the need for additional feature selection procedures. 

By computing an average gene expression value which serves as a reference point 

Chapter 6 

Conclusions 

 

6.1 Summary 
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 we have developed a two-phase clustering algorithm 

12], [118], [120] for gene expression data. This algorithm consists of an initial 

second re-clustering (or re-classification) phase. In the first 

algorithm, can be applied. The results, which consist of a number of initial clusters, 

can then be used for re-clustering. The re-clustering problem can be formulated as a 

for how large the value is, the proposed technique can discover interesting sequential 

associations between genes such as “if a gene is highly expressed, its dependent 

gene is then lowly expressed in the next time point”, etc. Based on these findings, 

the user not only can determine those genes affecting a target/dependent gene and 

also can identify whether or not the target gene is supposed to be activated or 

inhibited. In addition, the sequential associations discovered can also be used to 

predict how a gene would be affected by other genes from the unseen samples. 

Experimental results on real expression data show that the proposed technique can 

be very effective and the discovered sequential associations reveal known gene 

regulatory relationships that could be used to infer the structures of GRNs. One 

additional advantage of the reconstruction of GRNs using the association-discovery 

technique is that the user can easily improve the classifier by adding new expression 

data and reproduce underlying structures of a network consistent with the data. Since 

such iterative improvements can be part of an interactive process. Therefore, the 

proposed technique can be considered as a basis for an interactive expert system for 

GRNs reconstruction.    

Given clusters (or classes) of genes, the association-discovery technique 

proposed can also be used to construct classifiers by finding interesting association 

relationships between gene expression levels and cluster (or class) labels. Based on 

discovering such relationships,

[1

clustering phase and a 

phase, existing clustering algorithm, such as k-means or a hierarchical clustering 
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relevant the expression levels under a 

par

classification problem by treating the data in each initial cluster as training data for 

the construction of a classifier. Once the classifier is constructed, the genes in each 

initial cluster can then be re-classified either into the same cluster or into different 

clusters. It should be noted that the re-clustering phase allows for probabilistic 

associations to be detected. It performs its task by distinguishing between relevant 

and irrelevant expression levels and by doing so, it takes into consideration global 

information contained in a specific cluster arrangement by evaluating the importance 

of different expression levels in determining cluster memberships. This feature 

makes the proposed algorithm more robust to noisy data when compared to those 

existing methods that only rely on local pair-wise similarity measures. In addition, 

the discovered associations indicate how 

ticular set of experimental conditions are in a particular cluster and are made 

explicit for possible interpretation. Experimental results on both simulated and real 

data show that the proposed two-phase clustering algorithm can be very effective for 

discovering clusters in the presence of noisy data. It is able to assign genes, whose 

cluster memberships cannot be easily determined by existing clustering methods, 

into the appropriate clusters. When identifying regulatory motifs at the promoter 

regions of the co-expressed genes in the discovered clusters, the known 

transcription-factor binding sites specific to each cluster can be discovered. These 

binding sites can provide explanations for the co-expressed patterns.  

Since the effectiveness of the two-phase clustering algorithm depends, to some 

extent, on that of the existing clustering method used in the first phase, we have 

developed a novel evolutionary clustering algorithm, called EvoCluster [111], [119], 

[121], that can be used in the first phase to overcome some of the limitations of 

existing ones. It not only is able to perform well in the presence of very noisy data, it 
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determine how good the cluster 

arra

er overlapping clusters in noisy gene expression data, we have also developed 

e extended version of EvoCluster. This extended version [116]-[117] consists of 

o phases: an initial clustering phase and a second re-clustering phase, and is able 

to discover overlapping clusters on one hand and overcome some of the limitations 

of existing methods on the other. For the initial clustering phase, EvoCluster is used 

to discover the initial clusters from gene expression data. For the re-clustering phase, 

interesting associations between the expression levels and cluster labels are first 

can also be used to discover overlapping clusters. EvoCluster makes use of an 

evolutionary approach to guide the search for optimal or near-optimal clustering 

arrangement. To do so, it encodes the entire cluster grouping in a chromosome so 

that each gene encodes one cluster and each cluster contains the labels of the data 

records grouped into it. Then, given the encoding scheme, it has a set of special 

crossover and mutation operators that facilitates the exchange of grouping 

information between two chromosomes on one hand and allows variation to be 

introduced to avoid trapping at local optima on the other. For fitness evaluation, 

EvoCluster makes use of the association-discovery technique to discover interesting 

association relationships in each possible cluster to 

ngement encoded in a chromosome is. Unlike many similarity measures that are 

based on local pair-wise distances that may not give very accurate measurements in 

the presence of very noisy data, the proposed fitness measure is probabilistic and it 

takes into consideration global information contained in a particular grouping of data. 

It is able to distinguish between relevant and irrelevant expression levels in the data 

during the clustering process, and explain clustering results by explicitly revealing 

interesting associations discovered in each cluster. In addition, there is no 

requirement for the number of clusters to be decided in advance. In an attempt to 

discov

th

tw

 136



CHAPTER 6 - CONCLUSIONS 
 
 
identified in the initial clusters. Then, based on the discovered associations, rather 

than assigning a gene to the c total weight of evidence, the 

t of evidence supporting a gene belongs to each cluster is calculated. The 

evalu

ign

disco

the

cluste

 strong association (i.e., with large weight of evidence) to the cluster for further 

biolo

oth simulated and real data show that the proposed algorithms are very robust in 

the p

nd discover interesting associations in th eaningful groupings. The 

sults also show that, under some common performance measures, they are better 

han d 

we co

und that we were able to uncover known and new biological binding sites in each 

cluste

 F

o handle continuous values, the proposed association-discovery technique has to 

perfo  on does not 

take into account the expression values at the interval boundaries. These values may 

luster with the largest 

total weigh

cluster memberships of the genes that have previously been assigned are then re-

ated to determine whether they should belong to the same cluster or be 

ass ed to more than one. This extended version of EvoCluster facilitates the 

very of overlapping clusters by assigning a gene to more than one cluster only 

if re is a positive total weight of evidence of this gene to belong to the given 

r. Moreover, it can also facilitate the identification of groups of genes that have 

a

gical analysis, for example, functional annotations. Experimental results on 

b

resence of noise. They are able to search for near optimal solutions effectively, 

a e noisy data for m

re

t other existing methods commonly used in gene expression data analysis, an

the discovered clusters contain more biologically meaningful patterns. In particular, 

uld correlate the co-expressed genes discovered to their DNA sequences, and 

fo

r of co-expressed genes. 

 

6.2 uture Work 

T

rm discretization. Since the crisp discretization procedure it relies
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dd noise to the data and result in some important patterns being overlooked. For 

is reason, rather than crisp discretization, fuzzy discretization [101] of gene 

expre pression values 

embership functions. Since, the association-discovery technique can be easily 

modi n a set of time-

disco ue to GRNs reconstruction, 

regul

T ilies based on their primary sequences, 

re often used [54]. For most of these algorithms to perform their tasks, protein 

seque  alignment process is error-

quest for accurate alignment, many existing methods require additional techniques 

to de umber of binary 

andled is large. To increase both efficiency and accuracy, the proposed association-

disco

rotein sequence is first converted into a number of subsequences with equal length. 

Then

ithout having to go through a sequence-alignment process. And also, the 

assoc  to discover hidden patterns unique to each 

end up assigned to different intervals even though they are very similar. This may 

a

th

ssion values can be exploited. To do so, the quantitative ex

need to be transformed into linguistic variables and terms by some pre-defined 

m

fied to handle the degree of membership. Therefore, give

dependent fuzzy data, the fuzzy association relationships between genes can also be 

vered. By applying this fuzzy data mining techniq

we hope that the prediction accuracy can be improved and also more known gene 

atory relationships can be discovered. 

o classify proteins into functional fam

existing classification methods such as the k-NN, HMM and SVM-based algorithms 

a

nces need to be properly aligned first. Since the

prone, protein classification may not be performed very accurately. In addition to the 

re

compose a protein multi-class classification problem into a n

problems. This may slow the learning process when the number of classes being 

h

very technique can also be applied. Using the sliding window approach, each 

p

, the association-discovery technique can be used to mine a set of subsequences 

w

iation-discovery technique is able
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hether or not a protein residue is useful for the characterization of a class (family). 

Given

basis  to determine which residues 

able t

chnique makes such task much easier. Based on the discovered patterns unique to 

each 

of protein functions and can also allow functionally significant structural features of 

r

ata such as DNA and protein sequence data, and most importantly, it can also be 

used 

More  data sets, the inherently parallel nature 

possi xplored. For 

EvoC ave emerged very recently 

 

protein functional family by making use of residual analysis that can determine 

w

 a set of conserved sequences, it is well-known that it is very difficult, on the 

 of multiple alignment of protein sequences alone,

of a protein are important for its functional or structural characterization. By being 

o uncover hidden patterns for possible interpretation, the association-discovery 

te

protein functional family, we believe that they can lead to better understanding 

diffe ent protein families to be better characterized. 

Besides gene expression data, EvoCluster can be used to cluster other biological 

d

for solving different kinds of clustering problems in other application areas. 

over, in order to efficiently cluster large

of the problem solving process of EvoCluster can be exploited. And also, other 

ble alternatives, such as simulated annealing [127], could be e

future work, we intend to look into how specifically these can be done and compare 

luster with other EA-based clustering methods that h

[69].  
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