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Abstract

Fiber composite materials are investigated for many years and a wealth of
theories and equations for the elastic and thermoelastic properties of composites have
been accumulated.. The existing equations show good agreement with experimental
data in the regime of low fiber volume concentration, but norrﬁa]ly show much larger
discrepancy at the high fiber volume concentration. We are proposing a new method
to study the composite properties at high fiber volume concentration regime. Our

work is based on a recent effective medium theory (EMT).

Numerical calculation has been adopted to determine the elastic and
thermoelastic properties of unidirectional fiber composites with anisotropic
constituents and of composites with short randomly oriented fibers. Moreover, the
coupled partial differential equations of EMT relating the five elastic moduli of the
unidirectional fiber composites, which are based on the Hashin bounds, are solved
analytically. In our project, we also use other equations, suéh as those of Chamis and
Hashin, for the purpose of comparing with EMT results. The Chamis equations are
for unidirectional composites with anisotropic fibers but isotropic matrix, while the
Hashin bounds are good for composites with anisotropic constituents. For the EMT
calculations of the thermoelastic properties of unidirectional composites with
anisotropic constituents, we base on the Hashin bounds for calculating elastic
properties and then use the equations of thermal expansion coefficients derived by
Rosen and Hashin. Results computed by other equations, e.g. the equations by

Chamis, Chamberlain, and Rojstaczer et o/ are used for comparison. For short
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randomly oriented fiber composites, the Tandon and Weng equations are adopted for
the EMT calculation. Results are compared with the Tandon and Weng equations,
and also with the Halpin-Tsai equations for aligned fibers followed by randomizing

through averaging.

Measured values of some actual systems are reported in the literature are used
to illustrate the ability of EMT on the determination of elastic and thermoelastic
properties. They are the composite systems of polyethylene fibers in polyethylene
matrix, liquid crystalline polymer fibers in polycarbonate matrix, graphite fibers in
epoxy matrix and Kevlar fibers in epoxy matrix. For short fiber composites, we use
sysfems of steel fibers in concrete cement, glass fibers in polyester matrix, whisker
SiC fibers in AlbO; and SisN; matrix as wgl] as Si0, spheres, Al,Os fibers and
Si,N, fibers in Kerimid 601 matrix (K601). Furthermore, the difference in the
predicted values of the effective elastic moduli of typical randomly oriented glass
fiber/ epoxy composites between the EMT and Tandon and Weng equations have

been investigated..

The EMT results have quite good agreement with the experimental values in
the predictions of elastic moduli and thermal expansion coefficients of unidirectional
fiber composites. Also the EMT results have excellent agreement with measured
values for composites with spherical fillers especially at high volume concentration.
Moreover, in the prediction for elastic moduli of three dimensional randomly oriented
short fiber composites, the EMT results are close to the experimental data and good

results are obtained in the prediction of thermal expansion coefficient. In addition, we
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have demonstrated th edifference at the high concentration regime between the EMT
and the Tandon and Weng calculations in the prediction of elastic moduli of a three
dimensional randomly oriented glass fiber/ epoxy composite as a function of fiber
aspect ratio from 0.0001 -to 10000. In conclusion, this work shows that the EMT is

able to give adequate predictions of the fiber composite properties investigated.
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Chapter 1 Introduction

1.1  Background

Many theoretical and experimental works on composite materials have been -
reported in periodicals and journals. In composite materials science, composites can
be divided into two main categories: the long fiber and short fiber reinforced
composite materials. The long fiber composites have high fiber aspect ratto which
may be taken to be infinite, while the short fiber composites will have relatively low
fiber aspect ratio, which is often less than one hundred. Composttes contatning
spherical inclusions are known as particulate composites. Designers and engineers
are most concerned with the mechanical properties of composite materials in
structural design. Fewer works in the literature deal with other composite properties
such as thermal properties, expansivity due to water absorption, and thermal
conductivity. However, such properties are also dependent on the mechanical

properties of the composite.

In the early investigations, bounds for Young’s modulus are given by Voigt
and Reuss. The “rule of mixtures”, the Voigt result, is wiplely adopted to calculate
the Young’s modulus of a unidirectional fiber composite with isotropic constituents.
However, it 1s found that the prediction by the rule of mixtures is not good enough
and thus other equations and theories have emerged. These include theories and
formulas given by investigators like Whitney, Behrens, Halpin and Tsai, and Chamis.

Particular mention should be given to Hill’s self consistent model to determine the



effective elastic moduli of composite systems with isotropic constituents as well as
Hashin’s bounds which are tighter bounds compared with those of Voigt and Reuss;
In Hashin’s work, we can find the equations for elastic mdduli of unidirectional fiber
reinforced composites with anisotropic constituents. in which a replacement scheme is
used to convert equations for properties of composites with isotropic constituents to
those with anisotropic constituents. Theories and equations for the thermal expansion
coefficients of unidirectional fiber composites have also been proposed by many other
investigators, such as Yates ef al, Rosen and Hashin, Chamis, Schapery, and
Chamberfain. Yates ef al. also provide experimental data on the thermal expansion

coeffictents as well as elastic moduli of unidirectional fiber composites.

The short fiber composites may be classified according to fiber orientation:
fibers may be aligned, random-in-plane, randomly oriented in 3-D, or more generally
the fiber orientation is prescribed by a distribution function. Short fiber composites
are usually fabricated by injection molding, thus the orientation of the fibers inside the
composite are not easy to control. Therefore, the injected short fiber composites may
exhibit skin-core structure in which the properﬁes of the skin layer is different to that

of the core.

Eshelby and Russel have tackled the elasticity problem of aligned short fiber
composites. Chou and Nomura use the self consistent approach to derive equations
for the effective elastic moduli, thermal expansion coefficients and thermal
conductivity. Laws and McLaughlin have studied the fiber orientation effect on the

elastic moduli of the composites. Berthelot has derived elasticity equations by



assuming the fibers are in rectangular form and regularly arranged. Halpip and Tsai
have derived semi-empirical equations which are widely applied by engineers. Based
on the equations for the moduli of aligned short fiber composites, the elastic
properties of random-in-plane and random-in-3D composites can be .calculated
through an averaging procedure.  Such 15 done by Halpin and Kardos,
Halpin and Pagano, and Lim and Han. The elasticity and thermal properties of two
and three dimensional random ﬁber.composites with isotropic constituents are

recently discussed by Tandon and Weng.

In fact, most equations have similar predictions in the limit of small volume
concentration of embedded fibers. However, large discrepancy is found in high fiber
volume concentration. It is difficult to judge which theory is better for the esfimation
of the composite properties. Recently an effective medium theory (EMT) is proposed
to tackle the problem of calculating dielectric properties of binary composites. This
theory is then extended to calculate the effective elastic moduli and thermal expansion
coefficients of unidirectional fiber comppsites with isotropic constituents. " The
predicted results have good agreement with experimental data in all cases examinea.
In this thesis, we intend to further extend the EMT to other cases. Qur aim is to
apply the EMT to predict the thermoelastic properties of unidirectional fiber
composites with antsotropic constituents and also to isotropic composites with

randomly oriented short fiber reinforcement.

Chapter 2 of this thesis gives an introduction of Hashin’s equations and the

EMT formulation, both numerical and analytical, of the elasticity problem of



unidirectional fiber composites with anisotropic constituents. Chapter 3 gives the
EMT prediction of thermal expansion coefficients of composites with anisotropic
constituents by the numencal approach. Chapter 4 introduces the calculation of
moduli and trhe‘ thermal expansion coefficient of composites with randomly oriented

short fibers. Finally some conclusions will be made in Chapter 5.

1.2 Literature Review

1.2.1 Unidirectional fiber composites

The simple and inverse rules of mixtures are two of the earliest results in the
science of composite materials which are equations used to predict the bounds of
effective elastic moduli of composites with isotropic constituents [Voigt, 1910;
Reuss, 1929]. Much later, a self-consistent mode! is introduced for the study of the
effective elastic constants of aggregates of crystals [Hershey, 1954; Kréner, 1958].
Then, Budiansky [Budiansky, 1965] and Hill [Hill, 1965] have extended the idea to
solve the problems of multiphase media. Hill has developed equations for overall
elastic moduli of the fiber composites with transversely isotropic phases in terms of
properties of the phases and the fiber volume concentrations [Hill, 1964a; 1964b;
1964c]. Somewhat different works on the determination of effective elastic moduli of
composite materials have been published by other authors [Kerner, 1956; Hashin and
Rosen, 1964, Hermans, 1967, Chen Jand Cheng, 1967, Behrens, 1969,

Chen and Cheng 1970].



Hashin has been able to establish bounds for the overall elastic properties of a
multiphase composite material by a variational approach [Hashin, 1962; Hashin,
1963; Hashin, 1974]. In a further development, Hashin and Rosen have derived
bounds for effective elastic moduli of a composite with parallel circular fibers by the-
variational approach [Hashin and Rosen, 1964). Finally Hashin is able to obtain the
elastic modult of unidirectional composites with anisotropic constituents by
introducing a replacement scheme which allows the isotropic constituents to be

replaced by anisotropic constituents [Hashin, 1979].

The well-known equations of Halpin and Tsai are based on the work of
Hermans [Hermans, 1967] whose results make use of Hill’s self-consistent approach
(Hill, 1963; Hill, 1964a]. Halpin énd Kardos have reviewed the formulation of the
Halpin-Tsai equations and discussed the parameters in the equations [Halpin and
Kardos, 1976]. Chamis has also studied and developed micromechanics equations for
hygral, thermal and mechanical properties of compos'ite materials [Chamis, 1984].
Before this publication, Chamis and Sendeckyi have given a critique on the theories
predicting elastic and thermél properties of unidirectional fiber composite materials
due to many investigators[Chamis and Sendeckyi, 1968]. More recently, some
investigators has extended previous theories to calculate the overall elastic moduli of
unidirectional composites [Siboni, 1994; Low er al., 1994: Darras ef ai., 1995;

Wilczynski and Lewinski, 1995].



The foregoing is a review of the literature on the effective elastic moduli of
unidirectional composites. We are going to review the results on the effective
thermal expansion coefficients (ETECs) of this kind of composites in the following

paragraphs.

Wang has derived the equations for the prediction of ETECs of composites
with isotropic phases, the embedded phase is assumed to be hollow cylinders with
different diameters and have no interaction with each other [Wang, 1966]. The
theories due to Turner [Turner, 1946], Kerner [Kerner, 1956] and Arthur and
Coulson {Arthur and Coulson, 1964] are good for dilute suspensions of inclﬁsions.
Levin is concerned with the determination of the macroscopic ETECs as a function of
the mechanical properties and the thermal expansion coefficients of the phases
[Levin, 1967]). An energy approach Has been employed by Schapery and bounds are
obtained for ETECs of isotropic and anisotropic composite materials with isotropic
phases. The bounds are actually derived by employing extremum principles of
the'rmoelas_ticity. This model is extensively used by investigatofs in predicting the

ETECs of unidirectional fiber reinforced composite materials [Schapery, 1968].

Rosen and Hashin have later extended the work by Levin {Levin, 1967] and
derived bounds for the ETECs of composite materials with anisotropic constituents
using the known bounds are given for the elastic moduli. The bounds they derived
for the ETECs of composites with isotropic constituents as well as the expressions for

anisotropic composite materials with isotropic constituents are similar to the results



by Levin, and the equations reduce to Schapery’s results when the phases are

isotropic [Rosen and Hashin, 1970].

The equations due to Chamberlain are derived for the case of a fiber
embedded in a cylindrical matrix in which the radial displacements on the surface of
the cylinder are related to the transverse therma! expansion coefficient (TEC). In the
transverse TEC equation, a packing factor is involved S0 as to identify the fiber
packing geometry in the composite [Chamberlain, 1968]. On the other hand, Chamis
used a simple force-balance approach to derive formulas for the mechanical and
thermal properties of a unidirectional fiber reinforced composite with transversely
isotropic fibers. Again the axial TEC formula is identical to Schapery’s. However,

the effect of Poisson’s ratio has not been constdered [Chamis, 1984].

Besides theoretical studies, experimental work has been carried out by
Yates et al. [Yates et al., 1977]. The ETECs of high tensile strength carbon fiber in
epoxy at different fiber volume concentrations are interferometrically measured. The
formulas due to Schapery [Schapery, 1968], Chamberlain [Chémberlain, 1968] and
Schneider [Schneider, 1971) are used to compare with measured data. Strife and
Prewo [Strife and Prewo, 1979] have studied the ETECs of unidirectionally and
bi-directionally reinforced Kevlar/ epoxy composites prepared by conventional wet
winding procedures. Moreover, Bowles and Tompkins have compared the equations
for predicting the ETECs of unidirectional fiber reinforced composites with different

graphite fibers in metal and ceramic matrices [Bowles and Tompkins, 1989].



1.2.2 Short fiber composites

Short fiber composite materials have been studied by many investigators due
to their wide engineering application. An attraction is the high flexibility in
fabrication. They can be produced by either injection or sheet molding process so
that the production cost is lower as compared with fabricating long fiber composite
materials. The fibers in short fiber composites can be unidirectiénal by aligned,
random-in-plane and randomly-oriented. We will briefly give a review on these three

different forms.

The importance in the application of short fiber composites are reviewed by
Chou and Kelly [Chou and Kelly, 1976]. A number of theoretical works have been
devoted to predict the effective properties of aligned short fiber composites with
isotropic constituents, or with transversely isotropic fibers in an isotropic matrix. The
Hill’s self-consistent approach [Hill, 1965], the Russel’s results [Russel, 1972;
Russel, 1973] and Hahn’s model [Tsai and ;Hahn, 1980; Hahn ef al., 1986} are all
derived on the basis of micromechaniés and aré frequently used for the prediction of
effective elastic moduli. However, in engineering. the Halpin-Tsai equations are

frequently used instead [Halpin and Tsai, 1967].

The self-consistent approach is used by several investigators. Laws and
McLaughlin [Laws and McLaughlin, 1978] assume the fibers are various-sized
spheroids but have the same aspect ratio. In their work, fiber misalignment is not ‘

considered. Chou ef a/. model the composite with distributed ellipsoidal inclusions.



By calculating the stress-strain fields, the effective elastic moduli can then be
calculated {Chou et af., 1980]. Chou and Nomura examine the fiber orientation effect
on the elastic moduli, thermal conductivity and thermal expansion coefficients of
aligned short fiber composites [Chou and Nomura, 1980]. In the theory, bounds are
used to calculate the effective elastic moduli for short fiber composites with isotropic

constituents and with fiber misorientation [Nomura, 1980].

Berthelot works on the misalignment effects on the elastic properties of
aligned fiber composites with misoriented short fibers [Berthelot, 1982a; 1982b]. In
his model, an averaging procedure is applied to the stiffness and compliance constants
of an perfect aligned fiber composite to determine the misoriented stiffness and
compliance constants. The upper bound is obtained in terms of stiffness constants
while the lower bound is given by the compliance constants. Similar works and
theorieé are derived by Aboudi [Aboudi, 1983], Halpin and Tsai [Halpin, 1969;
Whitney ef al., 1984]. Christensen [Christensen, 1991] has reviewed the work in the
determination of the elastic moduli of composites at dilute fiber volume concentration
by Ruései [Russel, 1972; Russel, 1973] who makes use of Eshelby’s the r;esults on the
elastic fields associated with an ellipsoidal inclusion [Eshelby, 1957]. Equations for
the five independent elastic moduli have been derived and explicitly determined for
low fiber volume concentration. The inclusion is assumed to take the form of a
slender prolate ellipsoid. The effective elastic moduli are expressed in terms of the

aspect ratio of the inclusions and the properties of the phases.



For composites with randomly oriented fibers, Halpin and Pagano [Halpin
and Pagano, 1969] and Halpin ¢f a/. [Halpin et al., 1971] have developed the laminate
analogy for two- and three dimensional randomly oriented compos_ites. Also, Lim and
Han have derived equations for the determination of the effective elastic moduli for
randomly oriented composites [Lim and Han, 1986]. Tandon and Weﬁg have given
explicit equations for such composites {Tandon and Weng, 1986]. They start with
the Eshelby and Mori-Taka theories for aligned fiber composites and, for the three
dimensional random fiber case, the composite is considered to be macroscopically
isotropic and the elastic properties can be decomposed into hydrostatic and deviatoric
parts leading to the effective bulk and shear moduli. These results will become useful
in Chapter 4. Corresponding experimental investigations are carried out and can be
found in the literature [Nishimatsu and Gurland, 1960; Richard, 1975;

Fishers et al., 1992].

We now take a look at the thermal expansion coefficients of short fiber
composites. Nomura and Chou have developed equations for the thermal stress
coefficients and thermal expansion coeﬂi;;ients for aligned short fiber composites
[Nomura and Chou; 1981} These results are then extended by Takao and Taya
[Takao and Taya, 1985] who use the calculation on carbon fiber reinforced aluminum
composites.  In the reference [_Christensen, 1991], the ETEC equations for
composites with isotropic constituents are derived by adopting the work due to
Rosen and Hashin [Rosen and Hashin, 1970]. Moreover, Craft and Christensen
[Craft and Christensen, 1981] have derived equations for the thermal expansion

coefficients of composites with two- and three dimensional randomly oriented fibers.
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1.2.3 Effective Medium Theory (EMT)

The concept of an effective medium theory [Shin ef al., 1989] has been firstly
applied to binary mixtures, in which a single algebraic functional equation for the
mixture dielectric constant is formulated. Based on this approach, the formulation for
a symmetric dielectric binary mixture gives a simple symmetric formula for the
effective dielectric constant [Shin ef /., 1990]. Then the idea 1s extended to deal
with the effective elastic moduli of isotropic composites with isotropic constituents.
The EMT formulation is adopted to determine the binary mixture properties involving
two substrate variables, the results from EMT shows an improvement on the
prediction of the shear modulus of composites with spherical inclusions [Shin et al.,
1993a] as well as the elastic properties of a solid with a dispersion of soft inclusions
or voids [Shin et al., 1993b; Au ef al., 1994a). In a further development, the EMT is
extended to calculate the elastic moduli of unidirectional fiber composites with
isoiropic constituents [Au et @/, 1994b]. Also the thermal expansion coefficients of
.unidirectional fiber reinforced composites with isotropic constituents are calculated by
the EMT numerice_ll appfoach and better agreement with experimenta!ldata 1s oBtained
when compared with the results calculated from Kerner and Schapery [Au and Shin,
1995]. Furthermore, new dielectric mixture equation are derived for binary mixtures
. when interaction between the constituents phases are considered [Leung, 1996].
Currently, the EMT is applied to the determination of thermoelastic properties of
unidirectional fiber composites With anisotropic constituents [Chen et /.., 1997]. In

the last paper, we have illustrated the use of EMT numerical computation on the

11



effective elastic moduli and thermal expansion coefficients, with good agreement with

experimental data.

It should be mentioned that, implicit in the use of EMT, the fillers are assumed

to be evenly distributed in the composite.
1.3 Aim and scope of this work

Most of exisﬁng elastic and thermoelastic equations have similar predictions at
low fiber volume concentrations while at high fiber volume concentrations very
different predictions may be obtained. Prompted by its previous success, this work
aims to further make use of EMT to composite materials science. The scope of our
investigation is to apply the EMT to calculate the elastic and thermoelastic properties
of composites with anisotropic constituents and with three dimensional randomly
oriented short fibers. We are interested in a comparison of the EMT results with
_results from other well-known equations, especially in the high fiber yolume
concentration regime. Also results will be compared with experimentél values

available from the literature so as to indicate the relative merits of the theories.
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Chapter 2 Effective elastic moduli of unidirectional
fiber composites with anisotropic
constituents

2.1 Introduction to Hashin’s expressions

In this Chapter, we are going to estimate the effective elastic moduli of a
unidirectional fiber composite with anisotropic constituents based on the effective
medium theory (EMT) by numerical and also analytical approaches. Comparison will
be made with experimental data and with other theories. Good agreement of EMT

results with experimental data is obtained.

We shall start with Hashin’s expressions for the effective elastic moduli of a'
unidirectional fiber composite with anisotrbpic constituents, which are derived from
the Composite Cylinder Assemblage (CCA) model [Hashin, 1974; Hashin, 1979].
The reason for choosing Hashin’s expressions rather than many others is that the
model is based on micromechanical studies of elasticity and has rigorous form which
also can determine elastic moduli of a composite with anisotropic properties in both
phases. In addition, these equations are widely adopted to solve related problems and

known to have good agreement with experimental data, at least for low fiber fraction.
Here we will start with this CCA model and outline the derivation of the effective

moduli expressions. We use the same symbols as in Hashin’s work [Hashin, 1979].
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X2 XS
Figure 2.1.1 * Unidirectional fiber compostte model.

Consider a unidirectional long cylindrical fiber composite as shown in Figure
2.1.1, in which the phases are both transversely isotropic materials. X, is the
~ designated fiber direction and X; and X; are in the transverse plane normal to the

fibers, and average stress-strain relations are as follows:

5, =nE, +1(E, +5,)
G,, = I'g,, + (K'+G,)E,, +(k'-G)E,, (2.1.1a)
G

= PEH + (k'_GJ")gzz + (kl'é"Gilr)gaa

33
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o %12
6,=2G;g,;, L (2.1.1b)
G, =268,

The definition of homogeneous boundary conditions is through either

u(S) = eg.xj P (2.1.2)
or

I(S)= cs;.nj ...... (2.1.3)

where es is the constant strains and G?j is the constant stresses, #.(J5)is the

displacement fields on the composite surface while 7(S)is the traction fields on the

composite surface.

Here we will outline the derivation of the resulting effective elastic moduli
solving the boundary-value problems. To obtain the transverse bulk modulus &, a

state of plane strain is imposed on a fiber reinforced cylinder with €}, = ¢}, = g’ and
others vanish. According to equation (2.1.1) we get 6,, = G, = 2k'€®. From this, it
is easy to obtain the expression of & . The axial Young’s modulus E, and the axial
Poisson’s ratio v, are borrowed from Hill’s results [Hill, 1964a], then {” and »’ are

caleulated from the moduli interrelations. The transverse shear modulus G, is

15



computed from the equation (2.1.1b) by imposing 823 # 0 and others vanish. This
defines the transverse shear modulus by &,, = 2G €', , which may be solved from the
corresponding boundary value problem. Lastly, The axial shear modulus G;, 18

defined by G,, =2G e, if the only if €, is the nonvanishing average strain,

Furthermore, by applying a replacement scheme, the resulting expressions are
applicable to a unidirectional fiber composite with anisotropic phases. The case of

isotropic & and G are to be replaced by the case of transversely isotropic X and G,
phase moduli for all the results of ¥ and G, for a composite with isotropic

constituents. Similarly, all bounds for ¥ and G, for isotropic phases transform into

the counterpart bounds for the case of transversely isotropic phases. Other moduli

have to be expressed in terms of & and G and the replacement can then be carried out.

16



The replacement of isotropic moduli by transversely isotropic moduli are

summarized in Table 2.1.1 .

Isotropic phase moduli

Transversely isotropic phase moduli

k K
G Gr
(in transverse shear modulus expression)
E (3 - G,)G,
K

vV 1 G
—{1-—L
2( K )

G Ga

(in axial shear modulus expression)

Table 2.1.1  The replacement scheme for expressions of unidirectional fiber

composite materials [Hashin, 1979].
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Finally the resulting expressions for the elastic moduli are as follows:

K'= KK+ Gp -0+ KK 2 OnJp (2.1.42)
(K, +G,)(1-9)+ (K, +G 00

4(VA2 - V,q]):‘b(l - ¢)

E,=E (1-§)+E, 0+ TS C (2.1.4b)
+—+—
K2 Kl GTI
11
(VA'_: _vgl)(z_?)d}(l—‘b)
v, =v, (1-¢)+v,,0+ 5 3 e (2.1.4¢)
KZ Kl GTI
G ¢ Gal-0+G,0+re) (2.1.44d)

ATTAG 1+ 0)+G,,(1-0)

Only bounds are obtained for transverse shear modulus: G'“ > G'T > G’” -
Ti{+ - -

When the fibers are stiffer than the matrix, i.e. G, > G, and K, > K|,

Y G (1-9)
Gpe,y = Gpy + 1 X, 30, . (2.1.4e)

e
2G,,(K, +Gp,)

18



Also, £ and v are given by
Tiz) Tt}

KG,,

E -
o K+l

Tiz)

K‘—wG'

T(¥)

vV o=
"  KeyG

T(¥)

where -

19



EA , £, £, =axial Young’s modulus of composite, matrix, fiber, respectively

E., E,, E. = transverse Young's modulus of composite, matrix, fiber,

F T2

respectively

G,, G,. G,, = axial shear modulus of composite, matrix, fiber, respectively

G,

, G

1, Uy, = transverse shear modulus of composite, matrix, fiber, respectively

v,, V,, v,, =axial Poisson’s ratio of composite, matrix, fiber, respectively

, V,, = transverse Poisson’s ratio of composite, matrix, fiber, respectively

K , K;, K> = plain strain bulk modulus of composite, matrix, fiber, respectively
k', k. ky = transverse bulk modulus of composite, matrix, fiber, respectively

¢ = volume concentration of fiber

20



2.2  Numerical calculations based on EMT

We shall first introduce the term “increment function” to facilitate the

discussion to follow. An increment function associated with any property P of a

composite is defined as (cj_(b)cb:o 1.e. the derivative of P with respect to the fiber
G

volume concentration ¢ evaluated at ¢ = 0. Five increment functions can be

determined in our present problem corresponding to the five elastic moduli
. expressions of Hashin. In the case of transverse shear modulus, the upper and lower

bounds give the same increment function.

The five increment functions calculated from Hashin’s expressions are as

follows:

. A(v . — 2
L :E-h _E.u + (VAH VAl) . (221[‘))

Ad ¢_n Al K L-I_.—l—‘

K2 GT]
1 1
(V.u - V.u)(z - -K_)

v.“ _ = VAZ - V.»il + 1 1] — (2210)

=0 RS

KZ GT]

21



G| =——m—0—mmm— (2.2.1d)

SG | 2 20aGOnKx Gy C21¢)

G
Kl (GTI + GTE) + 2GT1GT2

F(+)4

$=0

Because of equation (2.2. e},

_ 26, - 66K+ Gy) (2.2.1f)
me=o  K(Gy, +Gp.)+26G,G,,

The procedures of numerical calculation for the determination of the effective
elastic modult of a unidirectional fiber composite with anisotropic constituents at an

arbitrary fiber volume concentration is discussed below.
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Without any reinforcement, the fiber volume concentration in the composite is
¢ = 0. First, we suppose a very small volume & of anisotropic fibers, say & ~ 0.001
with respect to unit volume of composite, are embedded in a homogeneous and
anisotropic matrix medium which hgs elastic moduli X, £4;, vy, G4y and Gy or in
brief m11.s.  Fiber elastic moduli are Ks Eg, viz, Ga» and Gr;  or in brief #..
Therefore, the corresponding effective elastic moduli are functions f1.s of ¢ = & and

the elastic properties of the phases, which can be determined by expressions valid at

small fiber volume concentration:

Effective Elastic Moduli = Corresponding Matrix Property + Corresponding

Increment Function x  Small Fiber Volume

Concentration &

Then take the calculated elastic moduli as new initial values of the medium.

Same fiber volume concentration is thien embedded in that new medium and the fiber
volume in the composite ¢, now is equal to ¢, + 8 — ¢,5. Following this
procedure, the next new fiber volume concentration is ¢+ 8 — ¢ 5. We can then
generalize the formula for fiber volume concentration in each step to get
d) w1 = O+ 8- d),@, where n is from zero to any positive integer, and thus it is

possible to calculate the effective elastic moduli of a fiber composite at arbitrary fiber

volume concentration.




These steps can be illustrated by the following pictures in Figure 2.2.1 .

Step 1. A homogeneous and anisotropic matrix with elastic moduli 7.

X5 single

fiber

Xi

Step 2. Anisotropic fibers, with elastic moduli 7,5, are embedded in the
anisotropic matrix along the matrix axis at very small volume concentration 6. The

elastic properties of the composite is fi.s (my.s, irs, O ) where ¢,=25.
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Xs X &, fiber

vol. conc.

Step 3. Then take this composite as a new homogeneous and anisotropic
matrix, with elastic moduli fi.5 (mys, i, ¢1). & volume concentration of fiber is
embedded in this new medium. Now the fiber volume concentration 1is

¢, = ¢, + & - ¢, and the effective elastic moduli of the composite is

Jrs (fus (mus, f1s, 91, d1s, 8).

Figure 2.2.1 The iterative procedures of EMT in computation of effective elastic

moduli of a unidirectional fiber composite material with ariisotropic constituents.

By repeating the last step, the effective elastic moduli of this composite can be
calculated at arbitrary fiber volume concentration ¢,-;, from the EMT equation
Si(mys, ivs, §as) =f (frs (s, drs, 94), fs, 8). Actually, this is an iteration, or say
continuous replacement, of composite properties from the old medium to a new
medium and it is assumed the fibers are uniformly distributed throughout the

composite at each step.
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2.3 Analytical calculations based on EMT

In this section, five coupled expressions for effective elastic moduli of a
unidirectional fiber composite with anisotropic constituents are obtained by analytical

EMT calculations. The analytical results will be compared with the numerical results.

In the last section, five increment functions, equations (2.2.1a - 2.2.1d,

2.2.1f), are obtained. These are used as the starting point in the following calculation.

Recalling that the notation for matrix and fiber elastic moduli are .5 and 715

,and ¢ is the volume concentration of fiber in the composite. After embedding
reinforcing fibers in the matrix, the composite elastic moduli X, E;;: V'A, G; and
G;r are functions of m.s, i1.s and ¢ which we denoted by f; (mus , iis ¢ ). Consider
a combosite with fiber concentration ¢,. The effective elastic moduli of this
composite material are thus.represented by f; (ms , i1s, ©1). Then use this material .
as"a new matrix material which we embed a volume concentration -(1)2 of fiber. The

fiber volume concentration in the new compositeis ¢ = ¢+ ¢,- ¢, ¢, and its the

effective elastic moduli are given by
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K (ms, s, §1+ &2 - 0102 = K (K (ms, ivs, $1), E, (s, is, §),

V.A (M1s, irs, 1), G;, (s, is, @ 1), G; (myis, s, ), is, 02 (2.3.1a)

E (mus, ivs, §0+ 02 - d1da) = £, (K (mis, ins, 91), E, (ms, ivs, ),

V:‘1 (nil.j,ri'l_s, (1) ]), GA (m|.5, i].s, ¢ 1), GT (ml_s, il.s, ¢3 1), i1-5, (b 2 ) ...... (23 lb)

Vi (s, s, O+ 02 - 01 = v, (K (ms, iis, §0), E, (mus, ivs, 0),

V',, ("71-5, hes, §4), G;, (mys, irs, § 1), G} (m.s, ivs, 01, is, §2) (2.3.1c)

G (mus, ivs, 91+ d2- §,02) = G, (K (mus, frs, 1), E, (s, irs, §),

v, (s, s, § 1), G, (mus, i, § 1), GT (mis, s, 00), 0rs, §2) L (2.3.1d)

G, (ms, i1s, @1+ 02 - 0102 = G, (K (ms, ins, ¢)), E, (mus, ivs, 1),

v, (s, frs, §1), G (ms, fs, §1), G]‘r (mys, s, 00, s, 2) (2.3.1¢)
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We then partially differentiate equations (2.3.1a) to {2.3.1e) with respect to
the ¢ and set ¢, equal to 0. Then by renaming ¢, as ¢ and the matrix properties

K, E, v,,G,and G, as K, E v, , G, and G,, aset of partial differential

Al A

equations 1s obtained:

(1_¢)a£:}('¢ aihg; aiJrv' ?ﬁ ' oK GT| oK
20 =0 OK M=o gE - Mheo gy A0 gG L Tle0 96,
...... (2.3.2a)
(1) af" = K‘epl o O, +E;¢ " aE'* + V"M o (iE'4 + _'4¢ - aEA + T¢| - a}{A
&b 4=0 5K 0=0 OF | 0=0 &y, =0 8G +=0 3G,
...... (2.3.2b)
(-9 2 = K| Npvby) Dewv,| Mg, Dy o s
& W0 oK Mgk, Mheogy T 8G, T 6
...... (2.3.2¢)
(]—d)) OE;A :KI¢ —0?&1’- :41] mr?—c;"-l- .Afb _ C:GA + b, aGA + m| _,aGA
& =0 K 4=0 GE | #=0 Cv =0 6, 4=0 B0,
...... (2.3.2d)
6G, . G, ..y oG . &G, _.| &G, G,
(=0 =Kol ak " Bl . Votho 2y Ot 56 e 0G,
...... (2.3.2¢)
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‘These partial differential equations (PDEs) have the same coefficients, and

thus the same general solution. The method of characteristics may be used to give

4 _ 4K b, _ dv, 46, | 4G (2.3.3)
(1-¢) &K oF o, G ol 3.
% =0 4 =0 % $=0 o =0 b =0

2.3.1 Solution of first-order linear partial differential equations: Cauchy

problem and method of characteristics

Before going to solve the five PDEs it 1s relevant to give an introduction to
linear equations and their solution. The Cauchy problem is presented because it is
directly applicable to our problem. In this part, the Cauchy problem and its solution

by the method of characteristics will be discussed.

For a given first-order partial linear differential equation,

: cli
a(x,,x,,...x )—+.+a (x,
€x

where «a. are real valued functions of the » real variables, the method of

characteristics consists in solving the following equation(s):
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dx d dx
i - %2 == L (2.3.5)
a,(x,,x x) a(x.,x,.x)

137237y,

fori=12, .,n

This is known as the characteristic equation of equation (2.3.4). A function

w{(x;, x2, .., X, )=constant .. (2.3.6)

which satisfies (2.3.5) 1s known as a first integral. There are altogether n - 1

independent first integrals from equation (2.3.5).

Now we consider the Cauchy (initial value) problem:

~

Zai(xl,xz,._.,xn)i‘!: 0
= & (23.7)
”L_xu:?’(xz»---’xn) _ ;

In the equation (2.3.7), the function @ ( x;,..., x, ) 1s known and is continuous

and differentiable. Now assume that the functions w; ( x;, x5 ..., x, ), where i = 1,

2,..,n-1, aren- 1independent first integrals. Putting x, = x? into y; defines w,:
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Wl(xloaxz’“wxn) =¥,
v, (6 ,x,,..x) = ¥,

g AT et e (2.3.8)
\Wn—l (xlo ’x2 LR ’xn) = E;.n'—l
from which solutions of x5, ..., x, may be obtained,
X, = a)Z(ilZ;l ’Wz ’”'-’anl)
........................................... (2.3.9)
x, =0, W, ¥,,)
As a result, the solution of the Cauchy problem is as follow:

u= gp(wz(W]:Wz7""{:”"_1)1'-""30)"(!1/]?Wzs---awn_])) """" (2310)
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2.3.2 Calculation of G, for unidirectional fiber composites

In this and the following sections, we will present the calculation of the
effective moduli of unidirectional fiber composites with anisotropic phases by

integrating equation (2.3.3).

The expression for G, is now derived first, from equation (2.3.3), by

considering

__dy _ dG,
(-9 g,
aaly

...... (2.3.11)

0

On the right hand side, the denominator is the increment function of G,

which is given explicitly by equation (2.2.1d), thus,

do__ ( 1 + ! ae, (2.3.12)
(t1-¢) G,-G, 26, °
By integrating equation (2.3.12).
In(1-¢) = —ln(G_ﬂ.:—(}A)Jr%lnG_4 +const. ... (2.3.13)



from which a first integral @ ($) is obtained:

GA2 _GA
P, D)=—"=="0-¢) .. (2.3.14)

NN

Then evaluate this first integral at ¢ = 0 to get

GA2_GAI (2.3.15)

e e

(:DGA (0) =

Following the prescription of the Cauchy problem, the resulting expression for

the shear modulus G'A of the composite is, finally,

G,-G, _6,,-G, (1-4) S (2.3.16)

Jo, o
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2.3.3 Calculation of G, and K for unidirectional fiber composites

For the evaluation of G,, again a pair of equations are picked up from

equation (2.3.3) with explicit increment functions from (2.2.1a) and (2.2.1f):

Cde 1
(l—¢)_(K2—K+K+GT)dK ...... (2.3.17)
@ ('K(GT + Gr) + 201,06y kG, (2.3.18)

S (1-4)  2G,(G,,-G,)K+G,)

However, it is necessary to simplify the denominator in equation (2.3.18) by

use of partial fractions before integration and this results in:

2 1 2
(1-9)

1
+ +—)dG,. . 2.3.19
K+G, G, -G, GT) ! ( :

We now aim to relate the composite elastic moduli G'T and X . This can be

done by adding equation (2.3.17) to (2.3.19) multiplied by two, thus

3 1 1 1 2

-4 (K:~K+K+GT)dK+(

1
. +—)dG. . 2.3.20)
K‘l‘GT GTz—GT GT) T (
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which may be put as

_3dy _-d(K,-K) d(K+G,) 2d(G,-G,) dG,
(1-4) K,-K  K+G, G.-G, G

T T

By integrating equation (2.3.21), a first integral is obtained. As in section

2.3.1, we can evaluate this function at ¢ = 0, which then gives

(K, - KNG, -Gy _ (K =KX)Cr=Gr) ) 4s (2.3.22)
(K +G.)G, (K, +Gp )Gy,

However, equation (2.3.22) involves two composite elastic moduli at the
same time. We shall have to establish one more equation for further evaluation.

From equations (2.3.17) and (2.3.18), we get

! b yag = (KO #6) 42650 e (2.3.23)

+
(K: K K+G, 2G,(G,, -G WK +G,)

This implies

d{( - (K. - KX K(G, +G,,}+2G,,G; )
dG 2G(G,, -G UK +G;)

T

...... (2.3.24)
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We use the substitution = to cast equation (2.3.24) into the

following form:

dn K (G; +Gp,)+2G,G,, . G, +G,,

ne———1 7 (2.3.25)
dG, 2AK,+G,)G.(G,,-G,)  2(K,+G,)G,(G,,-G,)

Equation (2.3.25) is then a linear ordinary differential equation and may be

integrated to give

Grz _Gr JG_T

2G4 K, + G,

G
= + I - : + const,
“JGT(K2+GT) K. JK, +G, K. JG.(K,+G,) K: G,
...... (2.3.26)

The integration constant may be evaluated by considering ¢ = 0 where Gr = Gz, and

K=K, . Solving equations {2.3.22) and (2.3.26) results in:

b 4 3 2 1 11 Y 2 1 1

3 .
B 1_ ’ —_t— )= g ’ - —_—t —— - - ’
KEG]'_'I ( ¢) (GT K‘.’. GT2) (GT GTZ) — K:G;:z (GTI KZ GTZ) (GTI G]"?_)
11 - R
1- )’ (—+—)° +)?
(1-¢) (GT Kg) (Gn Kz)
...... (2.3.27)
where

| . (Kz _ Kl )(GTZ _ G]"l)2
(Kl + GTI)GTE
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Indeed, equation (2.3.27) is the G, expression at arbitrary fiber volume
concentration. Thus once the value of G, is calculated from given phase moduli and

fiber volume concentration, K can also be calculated from equation (2.3.22).
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2.3.4 Calculation of v, for unidirectional fiber composites

From equations (2.3.3), (2.2.1a) and (2.2.1c) ,the following is obtained:

dK av
= — 3.28
T | 1 (2.3.28)
() al
K, K k+G, Wav)d+ )
K2 T
Upon rearrangement,
_ K +Gp) - 1 K& O (2.3.29)
| (K, -K)XK+G,) (v,,- v, )K.K+G,)
which can be simplified to
K, 1
———dK=—«7—dv, = {2.3.30)
(K, -K)X \ 'y
This can be integrated to give a first integral from
-In(K, -K)+InK = =In(v,, - v, )+const. ... (2331)
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and the solution of the Cauchy problem is

or

A (2.3.32)

This equation can be arranged in the form below and the v, value can be

calculated in terms of X', the phase moduli, and the fiber volume concentration:

Vo=, (1=0)+v b V'I“ _ Vlf” (l;" +Ki—%) o (2.3.33)

—_—— 1 2

KZ KI
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2.3.5 Calculation of E;‘ for unidirectional fiber composites

The equations to be used are as shown below from equations (2.3.3), (2.2.1b)

and (2.2.1¢):

dp dk av,
(1-9) 4V =v,) VA
Eﬂ,z—EA+——‘“+—1A ) +(v,,2 vy K’)
[E— —_— vq_ =
K'G ettt
KZ GT
...... (2.3.34)
From equation (2.3.32), we get
Vo Vi _p_ SIS N P
i__L_B—const. or % Kﬂ_B(VM v, )
K K,
Thus,
_(1d¢¢): dEg ; d]"’; T (2339)
- v, —-v, ) vV, —V
E, -E + 1”“ 1’* vAz—vA+§“1”—i"——
K, G K, G;
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from which it follows that

S dd 3 dEA—4deA
(1-¢) B 4(v,—-v )2 1 (v v )1
E.‘{2—_E.—I 1A2 IA —43[\’.42—\",4'*' ’;2 1.4 ]
_+ " -__+__
K2 (’r K2 Gr
...... (2.3.36) .

Simplifying, we get

~d(E,,—E)+4Bd(v,~v,)  -~db
(Eo—E)-4B(v,,-v,)  (1-9)

or

- dlE.-E, —4B(VA: -v, )] —db

=— . (2.3.37)
Ep-E,—4B(v,-v,) (1-¢)

Integration then gives a first integral @, (¢),

In(1-¢)=-In[E,, -E,-4B(v ,-v )]+ h®, ($) ... (2.3.38)
Upon evaluation at ¢ = 0, 1t gives
2
®, (O=E,-E, —ﬂ‘-’lﬁ”’—lﬂl) ______ (2.3.39)
K K
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resulting in an expression for £, as follows:

C Ay, -v,) 4v,,-v,)
E,-E-——F———=E,-E, —wr(w—ii—%-———l“—‘—](l —¢)  ....(2.3.40)
K K K K

This is still too complicated for it involves three composite elastic moduli.

From equation (2.3.40), we can solve for £,

: v, -v,) 4v,-v,)
E = Egpr By e gy M) o5
K K K K,
and since ~az_ Va4 _ Vfl” _ Vlf“ , We can write
K% KR
C ~ éI&(\Iﬂ—vm)2 4(\2”—\1#“‘)2 1 _L
R U T N &
KK, KK
...... (2.3.42)
Hence
- ' _ 4(V.42_V,41)2 1_¢,i__1_
E.-I_EAZ(I)TEAI(I ¢)+ (L_l)- (K] TKZ K'
K K
______ (2.3.43)
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This E, expression involves only the K value which can be calculated from

equation (2.3.22) and equation (2.3.27).
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2.4

Results and Discussion

In the previous sections, we have discussed a numerical approach and an

analytical approach for calculating the elastic moduli of unidirectional fiber

composites by EMT. We first make a comparison between these two calculations to

cross-check their validity by using as an example the composite system of liquid

crystalline polymer and polycarbonate (LCP/ PC). The results are tabulated in

Table 2.4.1. It is observed that the difference is found only at the fourth digit which

shows the two calculations give almost the same results.

v, (A)

¢ |E,M) |E, A |G ®M |G @A |V, KM | K@
0 124 1.24 0.43 0.43 0441 |0441 13.65 3.65
0.1 {13492 |13491 |0464 {0465 [04457 |0.4455 |3.6827 |3.6825
02 125687 |25.685 |0.5102 |0.5101 [0.4504 [04503 |3.7315 |3.7316
03 |[37.811 [37813 [0.5565 |[0.5563 |[0.4551 [0.4550 |3.7492 | 3.7493
04 [49974 [49974 |06078 |[0.6077 |[0.4597 |0.4599 |3.7833 |3.7834
0.5 |62.133 [62.132 |0.6645 |0.6646 |[0.4644 |0.4643 |3.8180 {3.8179
0.6 |74305 |74306 |0.7274 | 07273 |04690 |0.4691 |3.8533 |3.8535
0.7 [86.496 |[89.498 |0.7968 |[0.7967 |0.4736 |0.4738 |3.8891 |3.8890
08 |98.658 |98.657 |0.8732 |0.8733 |[04783 |04784 |3.9254 |3.9255
09 |[110.831 |110.830 |0.9575 [0.9574 |0.4829 |0.4828 |3.9624

3.9625

Table 2.4.1 Comparison of elastic constants of the LCP/ PC composite system

obtained by numerical and analytical calculations. (IN) and (A) denote

the numerical and analytical results.
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Next, the EMT results are here compared with experimental data reported in
the literature as well as with Hashin bounds and the equation of Chamis in Figures |
24.lato 2.4.1g, 2.42a to 2.4.2g and 2.4.3a to 2.4.3g for three composite systems.
The effective elastic moduli are plotted against the fiber volume concentration, ¢.
The equations due to Hashin and Chamis are listed in Appendix A and the phase

properties in Appendix C. Since the Chamis equations do not include an equation for

plane strain bulk modulus X, only Hashin and EMT calculations are presented in
Figures 2.4.1c, 2.4.2c and 2.4.3c. In the following, we are going to discuss the

relative merits of the different formulas in these three composite systems,

In one system, the gel-spun polyethylene fibers (PE) are embedded in low-
density polyethylene matrix (PE) to form a PE/ PE composite. From the reference
[Choy ef al., 1995], the polyethylene fibers are highly anisotropic with axial Young’s
modulus about 40 times higher than the transverse Young’s modulus. However, the
transverse shear modulus is only 5% smaller than the axial shear modulus. In
addition, the axial Young’s modulus ratio of fiber to matrix is about 99 times. The
five stiffness constants are ultrasonically measured by the contact method and
determined from propagation velocities. The effective elastic moduli are calculated
from the resulting stiffness constants. The reason for selecting this system for

comparison with theory is due to its high anisotropy.

From Figures 2.4.1a to 2.4.1g, the experimental and theoretical results of the

effective elastic moduli for the PE/ PE composite are depicted. The predicted G,

and G, results by Chamis shows over-prediction throughout the whole range of fiber
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volume concentration. The worst Chamis prediction is found in the transverse

Poisson’s ratio v

r» since the experimental v shows a maximum at fiber volume

concentration of about 0.2 and then gradually descent .

The Hashin bounds are quite narrow for this system and show generally good
agreement with experimental data. It is found that the upper bound has better
estimation for overall elastic moduli, except for v, , which is nicely predicted by the
lower bound. Similar predictions have been obtained by EMT, and they falls within
the Hashin bounds. Almost the same predictions are obtained at fiber volume
concentration below 0.2 where the EMT results are usually close to the lower

bounds.

Another system is a composite prepared from blending polycarbonate (PC)
with different weight percentages of a thermotropic liquid crystalline polymer (LCP)
[Lau, 1995], and the composite is in the form of drawn strands. It is revealed that the

_LCP domains in the blends become more elongated in high-drawn strands and in'
blends with high LCP volume concentration. The data of effective elastic moduli are

plotted in Figures 2.4 2ato 2.4 2g.

The Chamis equation over-predicts G,. On the other hand, under-predictions
are found in the case of G,, £, and v,. Large discrepancies between the equation

and the data have been revealed in G, and especially in £, However, the v, has

better agreement with the experimental data at low fiber volume concentration. The
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predictions of E,; and V;‘ are close to the rule of mixtures for all the models and the

data lie on the predicted curves. The Hashin bounds and EMT calculations give
almost the same estimations on the effective elastic moduli. It can be observed from
the figures that the EMT results and the Hashin bounds often collapse onto the same

lines wn this composite system.

The third composite system is graphite fibers (ModmorIl) in epoxy matrix.
The original work [Kriz and Stinchcomb, 1979] aims to extrapolate the complete set

of elastic moduli of transversely 1sotropic fibers from experimental unidirectional fiber
reinforced materials data measured by the ultrasonic technique. But the v, data

show fluctuation, contributing to error in the determination.

Almost the same predictions in £, are made by all models. Reasonable
results are obtained by Chamis in G, as shown in Figuré 2.4.3a, while in Figure
2.4 3g, it shows under-prediction for v'T_ On the other hand, it is found that over-
predictions are obtained in G, and E;. All elastic ;r-loduli predicted by EMT fall

within the Hashin bounds. Wide bounds are obtained by Hashin in G, and v,.

Experimental data are often closer to the lower bounds. On the contrary, the EMT

results show good agreement with the data, since the predicted curves are close to the
lower bounds of Hashin. Exception 1s observed in v'T where the data fall within the

Hashin bounds.

47



Axial shear modUIus (GPa)

1.1

® Expt. data

| T ' T T
00 0.2 0.4 0.6 0.8 1.0

Fiber volume concentration

Figure 2.4 1a G;; versus ¢ of PE/ PE composite.
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Figure 2.4.1b G'T versus ¢ of PE/ PE composite.
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Plane strain bulk modulus (GPa)
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Figure 2.4.1¢ K versus ¢ of PE/ PE composite.
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Axial Poisson's ratio
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Figure 2.4.1d v'A versus ¢ of PE/ PE composite.

51

1.0



140-

120

100

GPa)

(

3

Axial Young's modulus

EMT -
® Expt data

T l T

’ T {
0.2 0.4 0.6 0.8
Fiber volume concentration

Figure 2.4.1e E;I versus ¢ of PE/ PE composite.
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Figure 2.4.1f E, versus ¢ of PE/ PE composite.
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Figure 2.4.1g v'T versus ¢ of PE/ PE composite.

54

1.0



Axial shear modulus (GPa)

T | ' l
0.0 0.2 0.4 0.6 0.8

Fiber volume concentration

Figure 2.4.2a G, versus ¢ of LCP/ PC composite.
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Transverse shear modulus (GPa)
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Chapter 3 ~ Effective thermal expansion coefficients of
unidirectional fiber composites with
anisotropic constituents

3.1 Effective thermal expansion coefficients (ETECs) of

unidirectional fiber composites

Referring to the calculation on effective elastic moduli of a unidirectional fiber
reinforced composite material with anisotropic constituents in Chapter 2, five
independent elastic moduli can be obtained at arbitrary fiber volume concentrations.
From these results, the effective thermal expansion coefficients (ETECs) can then be
calculated, since the expressions of the ETECs involve the effective elastic moduli

and the thermal expansion coefficients of the phases.

The EMT calculation of ETECs will be based on the theory by Rosen and
Hashin [Rosen and Hashin, 1970]. The following will outline the theory Ieadihg to

the computational algorithms.

Elegant expressions of ETECs of a unidirectional fiber composite material
with isotropic constituents are developed by Levin [Levin, 1967] based on
thermoelasticity. Rosen and Hashin [Rosen and Hashin, 1970] have later extended

Levin’s method to anisotropic composites with anisotropic constituents.
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In their work, they consider (i) a prescribed stress and (i) a prescribed

temperature on a representative volume element with surface S. Thus in the case of

prescribed stress,

onS (3.1.1)

Under the condition of uniform stress &,, , the volumetrically averaged stresses are

given by

— [V}
Oy =0y
...... (3.1.2)
7T=0
The averaged strain and stress can be related as follows:
E;’I = SklmnGrnnn """ (313)

where Sy, are the effective compliances for the heterogeneous medium.
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For the problem of prescribed temperature:

onS . (3.1.4)

o, =0
...... (3.1.5)
T=T
The corresponding average strains are well expressed as
€,=o,,r, - . (3.1.6)

where o, are defined as the unknown ETECs.

If we multiple the o), from the stress problem by the g, from the

temperature problem and integrate over volume, we get

[, ouendv = J‘V(c;,k).tdv ...... (3.1.7)

where V is the volume and @, is the displacement field.
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By putting CT;U = 0 and using the divergence theorem we have
J.Vo;e,ddv = J‘Sc:,mknlds ...... (3.1.8)

- . * [4]
where »; is the unit vector normal to the surface. However, we have ¢, = o, on

the surface, and this yields

J'VG*E dv=clgV L. (3.1.9)

ki~ kl k&l
By use of equation (3.1.6), equation (3.1.9) becomes

_Lc'e dv=ca, TV . (3.1.10)

kI ke K"K o

and by definition, we have
. & . ()
G, =2 v,0, S (3.1.11)
r=1

where v_ is the phase volume concentration of the 7th phase of R phases.
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. . . ] 0
Write the linear transformation between &, ~ and o, as

« (r) - H("') 0-0 ...... (3112)

ki kilmn R

where H f) are regarded as influence coefficients and can be determined from the

Ion

solution of the stress problem. Combining equations {(3.1.11) and (3.1.12) yields

. .
Gy=>vH e L (3.1.13)
r=1
Since G, = o, , this results in
& o 5,6 &6, +d,90
S v H) =T, = e (3.1.14)

r=1

where iy, 1s the fourth-rank symmetric unit tensor.

The unknown ETECs can be determined by making use of equations (3.1.13)

and (3.1.6}1n (3.1.10), thus

«,=>veaeES, (3.1.15)
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Noting that the average strain is defined as

ki

R e : .
= Z v.E, L (3.1.16)

and putting this into equation (3.1.3), and then making use of ('3. 1.12), we get
(r) gy (r) n
Kimon Z SkquH pgmtn e (3117)

Equation (3.1.15) together with (3.1.14) and (3.1.17) determines the ETECs,

o ;. in terms of the phase properties and the effective compliances, S, , of the

composite by eliminating the influence coefficients, /) . Thus for a two-phase

" composite the resulting equations for ETECs are as follows:

= (2) (n T
(_xkl = Oy + ((xmn (X’mn) ks (Srskl - Srsﬂ)

or

a (1) + (a(Z) S:) Pmnrs(Sr.skl - S( kl) ---- (3 1.1 8)

(2) ( n
Where Prsir! (Srsk[ rski ) I kimn
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Here o, and S, are the average of the thermal expansion coefficients and

(2) )
S and S, are the

compliances of the composite. In equation (3.1.18), the terms §

compliances of fiber and matrix, respectively.

For a transversely isotropic composite, there are only two ETECs:

a,, =0, =0, and o, =0,. The equation for the axial ETEC is

3
)+ (a:rz _arl)z (Pzz;j + 13331';')(51111 - S_;()'II)I
=1

(3.1.19)

)

3
— (1
o, =0, +(C(‘_‘2 —%1)2 Pn,a'(SJ;fn - S;;m
5=

and for the transverse ETEC

(1)
)(Sjjz: - S;}'ZZ)

3
- S('i} ) + (arz — O )Z(Puj;‘ + ‘PB];_}'
J=1

3
Oy =0y +(arz —-aTl)ZF;Uj(Sﬁzz 22
=l

(3.1.20)

For a transversely isotropic composite material, the overall compliances are

given in terms of effective elastic moduli as

BB -V, -V,
E_A EA 'EA
§=| e L ey (3.121)
EA ET ET
vV, Vo 1
| E, E. E, |




Then the values of P,y can be calculated from equation (3.1.18) by using equation

(3.1.21) and the results are

(L__l_)z_(_iiz_F__vﬂ)?
P - EA2 EA‘] ET2 ET]
L A
1 1 1 1 Y
(E " )(E “F ) (-2 + Ay
P - P - A2 Al T2 Tl EAZ EAI
2222 3333 A
(- V., N vm)[_ (1+V”)+ (1+vﬂ)]
P =P EAZ ‘EAI E'rz £
1122 2211 A
(_V42+ .41)3 ( 1 - 1 )(ﬁ_ T"'+VTI)
Pzz =P = —EAZ EA[ EAZ EAI Erz ETI
33 3322
23122
where
1 1 , - _
A= (o m b T (Yo g STy I (e ey
T2 T T2 Tl A2 EA] ETZ ETI ET2 Tt EAZ EAI
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3.2 Numerical calculations of ETECs by EMT

A straight forward way to calculate the ETECs is first to determine the five
effective elastic moduli of the composite. Accordingly, we can calculate the axial
shear modulus from equatioh (2.3.16), the transverse shear modulus from equation
(2.3.27) and then obtain the value of the plane strain bulk modulus X by use of
equation (2.3.22). Once the value of X is calculated, the values of v'A and EA are
then determined from equations (2.3.33) and (2.3.43). Hence we can calculate the
values of the transverse Young’s modulus £, and transverse Poisson’s ratio v, with
equation (2.1.5). These moduli results then give the overall compliances by equation

(3.1.21) and the values of P,y by use of equation (3.1.22). Thus the ETECs are

determined in accordance with the results of the overall compliances and P,y values.

An alternative is to do the calculations following EMT which will be discussed
below. Major results will be compared with experimental data as well as with other

mode] theories.

In Chapter 2, we have shown the algorithm of EMT calculations in computing
the effective elastic moduli of unidirectional fiber composite materials with
anisotropic constituents. Suppose fibers of volume fraction 8 = 0.001 is embedded in
the anisotropic matrix. Based on equations (2.3.16), (2.3.22), (2.3.27), (2.3.33) and
(2.3.43), the five effective elastic moduli are then calculated and the transverse

Young’s moduli and transverse Poisson’s ratio will be obtained by equation (2.1.5).

77



Then we can calculate the term (Siy—S2) and the overall compliances from

equations (3.1.17) and (3.1.18), The overall P values are also calculated
according to equation (3.1.22). By substituting the results of overall compliances, the
P values and the ETECs of the phases into equations (3.1.19) and (3.1.20), the
ETECs of a unidirectional fiber composite with & fiber volume concentration are
calculated. Based on the concept of EMT, this composite is treated as a new
anisotropic matrix with computed effective moduli.  Again, fibers of volume
concentration 8 is embedded into this new matrix and the previous steps repeated, but
this time the moduli with subscripts 1, in equations (3.1.19), (3.1.20), (3.1.21) and
(3.1.22), and with superscript (1) in equation (3.1.18), are correspondingly replaced
by the new matrix moduli. For each iteration the fiber volume concentration changes
to V + 8 - V9§, where V is the previous fiber volume concentration in the composite,

similarly the ETECs are calculated at V + 8 - V0 fiber volume concentration.

By such an iteration, the ETECs of a unidirectional fiber composite material
“with anisotropic- constituents can be calculated at arbitrary fiber volume

concentration.

Experimental data are again taken from Choy ef al. [Choy ef al, 1983],
Lau[Lau, 1995] ras well as Rojstaczer, Cohn and Marom (RCM) [Rojstaczer ef al.,
1985). The reason for choosing these composite systems is that anisotropic fibers are
used to reinforce an isotropic matrix, which is the case dealt with in the equations
from other theories, thus making comparison possible. In addition, two of the

systems are used previously in Chapter 2. Therefore, we can give a fuller discussion
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on the systems in this Chapter. The experimental data and the theoretical predictions

are depicted in Figures 3.3.1,3.3.2 and 3.3 .3.
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3.3 Results and discussion

The formulas due to RCM, Chamis,'Chamberlain and EMT calculations are
used to predict the ETECs of unidirectional fiber reinforced composite materials with
anisotropic constituents. We choose these models to compare with EMT calculations
because they are relatively well known and applicable to composites with transversely
isotropic fibers in an isotropic matrix. It is worth to state that the equations of
" Chamberlain involve a packing factor which indicate_s the fiber packing geometry. Its
value for square packing of fibers is 0.7854 and 0.9069 for hexagonal packing. In the
figures, curves for both cases are produced. The values of the ETECs of the phases

of the composite systems used are tabulated in Appendix C.

The data for the ETECs of PE/ PE and LCP/ PC are determined from thermal
mechanical analysis by Choy ez al. [Choy ef al., 1995] and Lau [Lau, 1995]. From
the PE/ PE data, the transverse ETEC of fiber is calculated as 1.17 x.10™ K™ by the
authors using a modification of the Schapery equations to accommodate anisotropic
constituel;:ts. Indeed, such a result is only an approximation since when ¢ = 1, the
transverse ETEC of the composite is not equal to that of fibers in their equation. The
EMT calculation based on a fiber transverse ETEC of 1.799 x 10° K

[Rojstaczer ef al. 1985] seem to fit the data very well.
For the PE/ PE composite system shown in Figure 3.3.1, the same axial a,‘\-

predictions have been made by the models and are close to the experimental data. In

the transverse direction, the Chamis results show under-prediction as compared with
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the experimental data but the trend seems correct: the ETEC increases from the
matrix value to a maximum value of 2.9163 x 10 K™ and then descents to the fiber
property. The two curves of Chamberlain both seem to under-predict. RCM and
EMT calculations have similar results and the maximum values reached are 3.204
x 10* K and 3.178x 10" K, respectively. Nevertheless, the experimental data lie

on the predicted curves.

Figure 3.3.2 shows the ETECs of LCP/ PC composites as a function of
volume concentration. In the axial direction, similarly, the models have approximately
the same o, values and are close to the measured data. It is found that the or
experimental data are close to the Chamis formula at high volume concentration but it
1s not the case at low volume concentration. Chamberlain’s formula has good
prediction for this composite system, since it is evident from the figure that the
predicted curves are closer to the ‘experimental data at iow as well as lhjgh volume
concentration.  Over-predictions are obtained by the RCM formula and EMT
calculation at low volume concentration but fairly good predictions at high volume

concentration.

For the Kevlar 45/ Epoxy composite depicted in Figure 3.3.3, RCM, Chamis
and Chémberlain have roughly the same predictions in the axial direction. However,
the prediction of EMT is closer to the experimental data for the whole range of fiber
volume éoncentration_. In the transverse direction, Chamis and Chamberlain both
show under-estimation. The predictions of both RCM and EMT are close to the

experimental data.
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Figure 3.3.1 The effective thermal expansion coefficients of PE/ PE composites as a

function of fiber volume concentration.
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Figure 3.3.2  The effective thermal expansion coefficients of LCP/ PC composites as

a function of fiber volume concentration.
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Figure 3.3.3 The effective thermal expansion coefficients of Kelvar 49/ epoxy

composites as a function of fiber volume concentration.
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Chapter 4 Three dimensional randomly oriented short

fiber composites

In this chapter, we will focus attention on three-dimensional randomly
oriented short fiber composites and base our EMT treatment on the work by Tandon
and Weng [Tandon and Weng, 1986b]. The formulation of this problem will now be
introduced and the resulting calculation will be compared with experimental data

reported in the literature.

4.1 Elastic moduli and ETEC of three dimensional randomly

oriented short fiber composites

bl <

General principles involving Eshelby’s “stress-free” transformation strain and
Hill’s “strain-free” stress have been discussed by Weng [Weng, 1984] under traction-
and displacement-prescribed boundary conditions. Later Tandon and Weng
[Tandon and Weng, 1986a] have used the same idea to study the stress distribution in
and aréund spherical inclusioﬁs. | With their method, the distinct roles played by the
matrix and the inclusions are fully accounted for, even at finite filler concentration.
The Tandon and Weng [Tandon and Weng, 1986b] equations for the effective elastic
“moduli of three dimensional randomly oriented fiber composites are derived by
calculating the average stress in the matrix following the above approach, together
with a standard method for averaging over fiber orientations. With the inclusions

oriented randomly in 3-D, allows the decomposition of the average stress or strain
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into hydrostatic and deviatoric parts, ultimately leading to the following equations for

bulk X and shear (G moduli as follows:

where

7 =1
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U :2(p1+p2_p3)+p4+psp_ 2

: 15 \ G,
’ S+ )

T (4.1.4b)

328, +—2—
( 2323 G - )

Here ¢, G, and G; are the inclusion volume concentration, the shear moduli of the
matrix and the inclusion, respectively, and the values for the constants p and the
Eshelby Sju tensor are given in Appendix D in terms of matrix properties and the

fiber aspect ratio, AR.

Therefore using the relations for linear isotropic elasticity, we can calculate

the Poisson’s ratio v and also Young’s modulus £ from the equations:

ve K226 . p_ 9KG L (4.1.5)
203K+ G) 3K+G _

In EMT éalculations, as before, a small amount 8 of ihclusibhs are put into the
matrix such that the effective elastic moduli of the composites can be determined by
equations (4.1.1) to (4.1.5) for the three dimensional randomly oriented short fiber
composite system. The matrix properties are then replaced by these calculated
composite properties. Again a small amount of inclusions are embedded to this new
matrix, as so forth. The volume concentration variable ¢ is renewed in every iteration

step, and is given by

87



6, =0, +8(1-¢,)=9,+6-68 ... (4.1.6)

where & is the volume concentration of inclusion in each iteration. This procedure
thus determines the effective elastic moduli for a three dimensional randomly oriented
short fiber composite system. In the next session, the numerical results are used to
compare with other theories [Tandon and Weng, 1986; Christensen, 1991,

Whiney et al., 1984] as well as experimental data.

The above calculation is easily extended to determine the ETEC for the same
composite system. Once the effective elastic moduli are calculated, the corresponding

ETEC can be determined from the equation for macroscopically isotropic composites:

o :a.+w[i—i} ...... (4.1.7)

where the o, «,, o, are the thermal expansion coefficient of the isotropic
composite, the matrix and the inclusion. By the concept of EMT, the values of o,
and K, are replaced by o, and K in each iteration. In this way the ETEC of a three

dimensional randomly oriented short fiber composite can be numerically determined
for the whole range of inclusion volume concentration. Computed results will be
compared with other equations [Craft and Christensen, 1981; Christensen, 1991] for

several sets of experimental data,
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4,2 Results and discussion

In this section, the EMT computed results for the elastic and thermoelastic
properties of three dimensional randomly oriented composites will be discussed and
compared with other theories and experimental data. In the first part, we will present
the results for effective elastic moduli of isotropic composites with spherical
inclusions (AR = 1) and short fibers (AR ~ 1 -100), respectively. Moreover, we have
studied the variation of effective elastic moduli with different fiber aspect ratio AR
from 0.0001 to 10000; these results will be compared with Tandon and Weng results
(T-W) [Tandon and Weng, 1986]. Secondly, we would like to display the results for
the prediction of the thermal expansion coefficient of three dimensional randomly
oriented composites. In this part, the equations for thermal expansion coefficient of
Craft and Christensen (Craft-Chris) [Craft and Christensen, 1981] for long fiber
composites and also equations for composites with spherical inclusions

[Christensen, 1991] are used for comparison.

Prediction of Young’s modulus of two composite systems embedded with
spherical inclusions aré examined. Figure 4.2.1 depicts the results of those theoretical
models applicable to the glass spheres reinforced polyester composite system
(Em = 1.72 GPa, v, = 045, E; = 70.3 GPa, v; = 0.21) [Richard, 1975]. We can
observe that Hashin’s lower bound (Hashin LB) [Hashin, 1967] has similar prediction
as T-W and good fit with the data 1s obtained up to 35% volume concentration. On
the other hand, EMT has better agreement with the data for a wider. concentration

range and 1s higher than both T-W and Hashin LB.
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Figure 4.2.2 shows the Young’s modulus results of the tungsten carbide
spheres reinforced cobalt matrix composite system (E, = 206.8 GPa, vm = 0.3,
E; = 703 GPa, v; = 0.22). The experimental data are obtained by Nishimatsu and
Gurland [Nishimatsu and Gﬁrland, 1960]. The predictions of the three models are

reasonably good.

We then turn to the EMT calculations for composites with randomly oriented
short ﬁbers_which have fiber aspect ratio higher than 1 but less than 100. Figure 4.2.3.
displays the Young’s modulus of a steel fiber reinforced concrete cement composite
system (E, = 20.802 GPa, v,, = 0.2081, E; = 200 GPa, v; = 0.3) with fiber aspect
ratio 50 [Williamson, 1973]. As the aspect ratio is not 1, Hashin LB is no longer
used for comparison. Instead, we choose the Halpin-Tsai equations [Whitney ef al,,
1984] for aligned short fiber composites to calculate the effective elastic moduli first
and then use the equations for isotropic Young’s modulus and Poisson’s ratio for 3-D
randomized composite due to Christensen (H-T-C) [Christensen, 1991]. In Figure
4.2.3, the prediction of H-T-C shows over estimation, while the predictions by T-W

and EMT coincide and have good agreement with experimental values.

Another set of experimental data is taken from Fishers ef al
[Fishers ef al, 1992]. They have studied the elastic moduli of AlOs
(Earo: = 399.7 GPa, v ano: = 0.24) and SizsNy (Esizng = 316.5 GPa, vsiang = 0.255)
ceramics reinforced with SiC whiskers (Esic = 548 GPa, vsic = 0.14) with aspect
ratio 30-50. Fishers ez al’s moduli values for SiC whiskers are determined from

B-SiC whiskers and the shear modulus of SiC whiskers averages to 188 GPa. The
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Young’s and shear moduli results for the SiC/ Al,O; composite are shown in Figures
42.4a and 4.2 4b. In both Figures 4.2.4a and 4.2 4b, good agreement with the data
are obtained by T-W and EMT results but the H-T-C results show over-prediction.
In Figure 4.2 4¢, the H-T-C under-predicts as compared with the data and T-W and
EMT results are close to the data. Similar results have been obtained for the
SiC/ SisNy composite system shown in Figures 4.2.5a, 4.2.5b and 4.2.5¢. We note
that the data for both composite systems with 5%SiC show abnormal values; these
are caused, according to Fishers et al., by the formation of pores during processing
and the nonhomogeneous mixing_and distribution of whiskers which can influence the
elastic properties of the composites. The above proves that both the T-W and EMT
calculations are able to predict the elastic moduli of composites with randomly

oriented short fibers. Furthermore, they seem to show no distinction.

We have examined the capability of both T-W and EMT calculations for
composites with spherical inclusions as well as randomly oriented short fibers. Since
thg:y show almost no difference in predictions, we intend to find out whether the
difference in calculated elastic moduli are negligible under other circumstances. An
industrial glass fiber reinforced epoxy composite with randomly orientedA short fibers
is used for such comparison (E,, = 2.76 GPa, v, = 0.35, E; = 72.4 GPa, v, = 0.2).
The elastic moduli of composites with 30%, 60% and 90% of glass fibers have been
calculated with aspect ratio ranging from 0.0001 to 10000. (Strictly speaking, the
inclusions will normally not be called “fibers” if AR is less than 1). The isotropic
Young’'s, shear and bulk moduli as well as Poisson’s ratio are depicted in Figures

4.2 6ato 4.2.6d as a function of aspect ratio.
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From Figures 4.2.6a to 4.2.6¢, we can observe that the results of infinitely
long geometry are smaller than that of platelet inclusions but greater than the results
from spherical geometry. The Figures show that the curves are level-off at the
infinitely long geometrical regime (logie AR > 2}, and at the other end, they come to
have similar results and reach a plateau (logio AR < -3). In Figure 4.2.6d, a peak is
found at spherical geometry regime, the lowest values are obtained by platelet
inclusions, while the infinitely long geometry resulis lies between the two cases.
Clear discrepancies between the two models can be found and are largest in the 90%
composite. These figures indicate that T-W and EMT do not always give close

predictions, especially at high filler volume concentration.

We now come to EMT calculations of the thermal expansion coefficient of
three dimensional randomly oriented short fiber composite systems. Experimental
data can be found in [Takei er al, 1991]. Three different kinds of fillers are
embedded in Kerimid 601 matrix (K601): Al,Os short fibers, Si;Ny whiskers and Sidz
spheres. 1Tt is reported that the thermal expansion coefficient of Kerimid 601 matrix.
.may vary between 50 - 80 x 10° K and this is because the thermal exﬁansion
coefficient is affected by the volaﬁle component content. In Figure 4.2.7, 4.2.8 and
4.2.9, different thermal expansion values have been marked for the matrix for
different composites, these matrix thermal expansion coefficient values are as
determined by Takei ef al. by use of which they obtain fairly good agreement between
the experimental and theoretical thermal expansion coefficient values of the

composites.
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Figure 4.2.7 shows the volumetric variations for thermal expansion coefficient
of the $i0y/ K601 composite system and the thermal expansion coefficient of K601 is
taken to be 50 x 10° K. All models have the correct trend in the prediction and the
Christensen and T-W result seem to have better agreement with the data. The
deviations between EMT and the other two models become larger as the volume

concentration of Si0, spheres increases.

The results for the AlQs/ K601 composite system is shown in Figure 4.2.8.
The AJQOg has aspect ratio 15 and the thermal expansion coefficient of K601 is taken
to be 56 x 10'6 K. Obviously all models do not have reasonable agreement with the
data, although the Craft-Chris results are better. It has been explained
[Takei ef al., 1991] that the AlLLO3/ K601 composites were made by the paper-making
method where the AlLO; fibers will tend to form paper layers which are better
descriﬁed by a two dimensional randomly oriented short fiber composite model which

show a laminated structure.

Lastly, the Si;N4/ K601 composite system is ékamined and the aspect ratio of
the ‘Si;N, fibers is 17.5 and the thermal expansion coefficient of K601 is taken as
65 x 10° K. The results are depicted in Figure 4.2.9, the data are denoted by
squares and triangles for the Si;Ny/ K601 composites made by premix and paper-
making methods, respectively. The Si;N/ K601 composites are made by the premix
method at filler volume concentration from 10% to 30%, giving a three dimensional
randomly oriented fiber composite. From 30% to 50%, the composites are made by

the paper-making method which shall giving a two dimensional randomly oriented
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fiber composite. However, they mentioned that these data seems consistent with the
prediction of three dimensional randomly oriented fiber composites.- And thus the
data are used in our examination. Figure 4.2.9 shows clearly that the prediction by
Christensen is far away from the data points. T-W predicts fairly well at low volume
concentration. On the contrary, Craft-Chris predicts quite poorly at low volume
concentrations but has better estimation at high volume concentration. Among the
models, the prediction due to EMT has excellent agreement with the experimental

values for the whole range.
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Chapter 5 Conclusions

We have proposed a mathematical approach to deal with the problems of
calculating the effective elastic and thermoelastic properties of composite materials.
The problems tackled are the determination of effective elastic moduli and thermal
éxpansion coefficients of unidirectional fiber reinforced composites with anisotropic
constituents, and of composites with short randomly oriented isotropic short fibers.
Also, we have been able to give analytical expressions for the prediction of the
effective elastic moduli of unidirectional fiber composites with anisotropic

constituents.

By use of the concept of Effective Medium Theory (EMT), the effective
elastic moduli of unidirectional fiber composites can be numerically calculated
according to what we have described, and it is found that the results compare
favorably with experimental data. We have also evaluated the five coupled EMT
equations for the effective fl:lastic‘moduli, as a Cauchy problem, by analytical
approach. The resulting equations are theﬁ compared with some existing equations

and bounds of Hashin.

On the prediction of thermal expansion coefficients by EMT, the results show
very good agreement with the experimental data. Since for thermal expansion
coefficient in the axial direction, the prediction of all equations are similar and thus
the difference can only be found in the transverse direction. The EMT results are

close to the results by RCM as well as close to experimental values.
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The overall elastic moduli of composites with 3-D randomly oriented short
fibers or spherical inclusions are investigated. For the case of composites with
spherical inclusions, the results show excellent agreement with the measured data
especially at high volume concentration. It is observed that both T-W and Hashin LB
have lower predictions compared with the data. Furthermore, we have also estimated
the thermal expansion coefficient of isotropic composites with isotropic constituents,
Three cases have been examined and the composites are reinforced with fibers which
have different aspect ratios. However, it is worth to point out that the matrix has no
exact thermal expansion coefficient and this relates to the volatile component content
in the composite. Therefore, in the calculation, the thermal expansion coefficient of
the matrix is different in each composite system. The results of EMT fall in between
the sphericai particulate and long fiber composites predictions. It shows that the

calculation is reasonably good for fibers with aspect ratio between one and infinity.

Also in our work, we have demonstrated the. difference between T-W and
EMT calculations in the prediction of effective elastic moduli of composites with
| randomly oriented isotropic short fibers as a function of “ﬁbel:” aspect raﬁo from
0.0001 to 10000. The calculation gives more information about the difference

between the predicted overall moduli of composites by EMT and other theories.

In some practical cases, a thrid phase may exist between the filler and the
matrix. One common example is that of a composite with coated filler. In such a
case, this composite can be treated as a sequence of two binary composite problems.

The filler together with the coating agent can be treated as a new filler. The first
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binary composite problem is the calculation of the properties of the new filler. The
second is one of the new filler in the matrix. This approach allows the use of EMT to

calculate the overall properties of the original composite.

Essentially when choosing to use EMT, no additional assumptions are
imposed on the material system apart from that the fillers are uniformly distributed in
the composite. Assumptions and restrictions that are inherent in the equations from

which the increment functions are derived will still be prevalent.

In conclusion, the EMT has been proposed to determine the elastic and
thermoelastic properties of unidirectional fiber composites with anisotropic
constituents and applied to determine the thermoelastic properties of composites with
randomly oriented fibers and spherical inclusions. The accuracy of the predictions
have been examined against experimental values and assessed in relation to other
models.  The EMT model is found to give reasonable results in all the cases
investigated. We suggest that the EMT could be applied to determine many other
properties of composite systems, sﬁch as hygrothermal properties and thermal

conductivity.
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Appendix A

The Hashin bounds are given here; () and (+) signs represent the lower and

upper bounds, respectively.

The bounds of plane strain bulk modulus

¢
)
KZ_K] KI_GTI

K7 =K+

*) _ (1-4)
K=K + ] + 7
Kl“Kz Kz_GTi

The bounds of transverse shear modulus

©) _ ¢
G =0nt L K+26, 1-8)
Grz - G‘m 2Grl (Ki + GTI)

") _ (1-9)
Gr - GT2 1 N Kg +2G;rz ¢’
Gn - Grz ZGrz (Kz + Grz)
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The bounds of axial shear modulus

GO=G, + 6 __ (A3a)
),
GA2 - GAl 2GAI
647 = Gy +—— 1= el (A3b)
+
G. -G, 26

The bounds of axial Young’s modulus

4= 9)(V,0 = V)’

C=E (1-0)+E b+ a-9 ¢) (] L e (Ada)
K, K G,,
3 ~ 4¢(1 - ¢)(Vm v,
Ei ) E (1-§)+E o+ -9 4)) [ 1 ...... (A4b)
K, K G,,
The bounds of axial Poisson’s ratio
d)(l—(b)(VAz .u)( __)
oy K, K, ‘
v =v,(0-d)+v 0+ .o, (A5a)
K2 K G,,
1
GA—dNv,, - v, ) —)
) _ _ K & ASb
v, v“(l $)+v b+ a- (b) T U e (A5Sb)
K, K G,
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The bounds of transverse Young’s modulus

E(t) ~ 4K(i)G;i)
T T {£) -~ (2)
K™ +w™G;

4KV
()
EA

where w® =1+

The bounds of transverse Poisson’s ratio

o) K(i] _ VV&)G;;)

A% = —

T () (£ ~{F)
K™ +w™G;
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The equations for effective elastic moduli by Chamis are as follows:

The transverse Young’s modulus

The axial shear modulus

The transverse shear modulus

The axial Poisson’s ratio

The transverse Poisson’s ratio

— El

_ .
1—J$(1—ET
1-Jp0- 2
- b -2
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Appendix B

Some equations are given below for the effective thermal expansion
coefficients of unidirectional fiber composites with isotropic matrix and anisotropic:
fibers, and of three dimensional randomly oriente_d fiber composites with isotropic

phases.

Chamis equations

Axial thermal expansion coefficient

— (baj.'-i Eﬁi + (1 - dJ)cx‘ml;:r:u

o6, =— Bi
p E (B1)
Transverse thermal expansion coeflicient
1P '
0y = o+ (1= D)0+ 0v, e, -(B2)

A

where v, E., Ey and £, are the Poisson’s ratio and Young’s modulus of the
isotropic matrix, axial Young's modulus of the fiber and the effective Young's
modulus of a unidirectional fiber composite. @ , ap , and oy are the thermal
expansion coefficients of the matrix, the fiber in axial and transverse directions, and ¢

is the fiber volume concentration.
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Chamberlain equations

Axial thermal expansion coefficient

— d)a‘ﬁ{EfA + (] - (b)amEm

o, =————""— B3
,, 3 (83)
Transverse thermal expansion coefficient
o, —a
o, =a, + ( ﬁ E"’)‘b ...... (B4)
vm[F—1+(1—¢)]+(F+¢)+E_l(1— vl - 1+(1-9¢)]
fa '

where F is a packing factor, equal to 0.9096 and 0.7854 for hexagonal and square

packing. v, is the axial Poisson’s ratio of fiber.
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Appendix C

Table of moduli values for Section 2.4

Constituents Ea Va Ga Gr K Er vr
(GPa) (GPa) | (GPa) | (GPa) | (GPa)
PE matrix 1.24 0.4410 | 0.43 0.43 3.6046 | 1.24 0.441
PE fiber 1229 | 0.4875 | 1.05 1.00 4.00 3.18 0.5901
PC matrix 3.141 | 0.3896 | 1.i3 1.13 5119 |3.141 | 03896
LCP fiber 8525 |0.5387 | 1.44 1.03 6.59 3.52 0.7087
Epoxy matrix 535 0.354 1.976 1.976 6.766 5.34 0.354
(for Modmorll/
Ep) ,
ModmorlI fiber | 232 0.279 | 240 5.02 15.0 15.0 0.49
Epoxy matrix 35 0.35 1.296 1.296 | 4321 3.5 0.35
-| (for Kelvar/ Ep)
Kevlar fiber 113 (.63 2.01 0.95 1816 |249 0.31
Table of thermal expansion coefficients for Section 3.2
Constituents oa (K or (K
PE matrix 2.35 x 10 2.35x 107
PE fiber -0.125 x 107 1.7956 x 10
PC matrix 0.673 x 10 0673 x 10
LCP fiber -0.0795 x 107 0.7999 x 10
Epoxy matrix 65 x 10 65 x 10°
Kevlar fiber -5.7 % 10" 66.3 x 107
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Table of moduli values for Section 4.2

Constituents Young’s modulus Poisson’s ratio
Polyester matrix 2.5 x 10° psi 0.45
Glass sphere 102 x 10° psi 0.21
Cobalt matrix 206.8 GPa 03
Tungsten carbide sphere 703 GPa 0.22
Concrete cement 20.802 GPa (.2081
Steel fiber (AR = 50) 200 GPa 03
Al,0; matrix 399.7 GPa 0.24
SizN; matrix 316.5 GPa 0.255
SiC whisker (AR = 30) 548 GPa 0.14
Epoxy matrix 2.76 GPa 0.35
Glass fiber 72.4 GPa 0.2

Table of elastic moduli and thermal expansion coefficient for Section 4.2

Constituents

Young’s modulus

Poisson’s ratio

Thermal expansion

coefficient
(x10°K™")
Kerinud 60} matrix 3.5 GPa 0.35 50-80
Si0, sphere 70 GPa 022 0.5
ALOQ:; short fiber (AR 300 GPa 0.22 8
= 15)
Si3N; whisker 385 GPa 0.27 2.5

(AR = 17.5)
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Appendix D

The components of Eshelby’s Sj;4 tensor

3 2 " 4l
Slm =—1——-— 1_2",,,‘*&1“1“(1-— 2v_+ JA,R )2
2(1-v,) AR -1 AR

2

1 34R I
i -2y —————|Z
8(1-v Y AR =1 4(1-v,) 4(AR* - 1)

Sopnr = Sy =

Symss = O35 = 1 Aff' - 1‘_ 2v, +—”‘—““§a— A
< 4(l-v )| 2(4R 1) 4(AR" - 1)

1 AR’ 34R’
Sy = S5 =~ T F } ,R -(1-2v ) |Z
: 21-v,) AR -1 4(1-v ) AR -1 "
1 1 1
S,,“:S“'33:—-—(l—2vm+ 3 )+ 1“2Vn,+—r—2
- 2(1~v,) AR -1" 2(1-v ) 2(AR" - 1)

oA

2 2
Syszs = S5z = 1 Aff +1=2v _—32*” z
- > 4(1-v ) {2(4R" -1) " 2(ART -1

. 1 AR +1 1 AR +1
S =S5 = —{1-2v, - ,+ -— 1—2V,.,“MZ
4(1 - Vm‘) AR~ - 1 2
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where v,, is the Poisson’s ratio of the matrix and AR is the fiber aspect ratio and Z,

for prolate shape, is given by

' 1
Z= __ffws{AR(ARz ~1)? = cosh™ AR}
(4R’ -1)?

and for oblate shape inclusion, it is

3

1
Z= —L[cos“ AR - AR(1- ARZ)Z}
(1- AR*)?

The values for the p and g constants are given by

b= 6K, = KNG, =G, ) Sy + Sy — D - 2(K,G, - KG,)+ 6K, (G -G,)

p, = 6K - K YG -GS, ,+2(K,G-KG,)
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p, = ~6(K, K, )G, - G,)S,,, +2K,G - KG,)

p. = 6K —K G -G XS, - 1)+2(K.G -KG,)+6G (K ~K,)

1) H

1

Ps =
S

3322

G
S I B &
3333 G‘—G

I "

pP= 6(K; - Km)(Gi - Gm)[QSnnSssu - (Sllll - 1)(533:: + S3333 - 1)]
+2(Kme - KiGm)[z(Sl 33t 53311 )+ (Sll]l B S‘szz - Sssss)] N 6Ki(Gf =G, - 1)

E)

_6GJ (K. - Km)(S:zzz + 52233 - 1) - 6KiG.'



1
4 = @ {2D3(65, 13 + Sy ¥ 8055 — 1D+ p4[3(32222 s~ 1) +25 '22]

+3psp(Szzzz Sy~ D+ 2p1[3(S| m b+ S,,”] —2p, (SI m T 3Szm y

~ 4p(2S,,,~-1) \
G
281312 +
Gi - Gm

1
q, = E;{ZPJZS“ZE + 308,50, + Sy — 1)] + P, (65,15, + Spopy #5535, — 1)

+p5p(S2?.22 - 2"33 l)+ 2p| (Sllll 2”Il 1) 2p2[822n + 3(S'llll )]

+ 4p(2512]25 1) }
2Sl2|2 G "’G

1

4= 4p (20,8000 + Sy = D+ P (28105 + 8oy + 85000 = D= PP (S = Sis — DI
1

9. = E{z(p: = P)85, + (2p; +p4)(Szzzz Spass = D= P08y, — Spss = 1}

! _ |
BT E (=200 + Po(Span + Sagy = D+ 2P(Sy0y = Syss — D)

where G,., G, K, and K; are the shear moduli of matrix and fiber énd bulk moduli of

‘matrix and fiber.
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Halpin and Tsai equations'

The equations for the effective elastic moduli of aligned short fiber composites

are:

The axial Young’s modulus

E,[1+24Rn, §]

E=— (D4)
4 (l - T]EAdJ)
The transverse Young’s modulus
E [1+2ARn
E. = ol S (D5)
(1 - Tlgrd))
The axial Poisson’s ratio
v, = vﬁ‘¢+vm(l—¢) ...... {(D6)
The plane strain bulk modulus
_E oK K KNG D7)
(K, +G,.)~ (K, K¢
The axial shear modulus
G, lG,(1+¢)+ G, (0-6)]
= A m: T (D8)

T GL-0)+G,,(1+4)



The transverse Poisson’s ratio

. E(E, +4VK)
T 2E K

The transverse shear modulus

= . (D10)
2(1+v,)
where
£ o)

- (-1

EmA EmT
e, TR and e S E,
[<Z +24R] (L +2)

Enm EmT

and m, f, A and T denote the matrix, fiber, axial and transverse directions.

Christensen

The equations for Young's modulus and Poisson’s ratio of three dimensional

randomly orierited fiber composites are:

E, +4Q+ v Y KIE, +(1-2v, ) K +6(G, +G,)]
randon 3[25_4+(8VA+12VA +7)K+2(GA +GT)]

v _ LB, +2(2v, +8v, +)K - 4G, +G))]
random 3[2E,1 + (SVA —+ 12\"4 + 7)K +2(G,| +GT )]
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Craft and Christensen

The equation for the thermal expansion coefficient of a three dimensional

randomly oriented fiber composite is

_ [E,+4v,(1+ v, )K]o, +4(1+ v, }Ka,

o =
rander E,+4(l+v K
where
_ (o,-e,) 3(1-2v)) 1
O N )
k, k
_ (o,-a,) 3 3v,(1-2v,) 1
S N TN S
%% "
and
a=da,+(1-¢)o, and (_1_):.¢_+(1"¢)
Kook k,
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Hashin LB

Hashin’s lower bounds of the effective moduli for an isotropic composite with

spherical filler:

(k - K, )b
R
-9k -k,

4
k +—G
( m + 3 ﬂl')

_ (G -G, )
N () (A

(G, +G,)

where G, = T

The expressions above assume (G, - G )k, —4,)20.
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